-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
test_dyn_rnn.py
129 lines (105 loc) · 5.06 KB
/
test_dyn_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import paddle.v2.fluid as fluid
import paddle.v2 as paddle
import unittest
import numpy
class TestDynRNN(unittest.TestCase):
def setUp(self):
self.word_dict = paddle.dataset.imdb.word_dict()
self.BATCH_SIZE = 2
self.train_data = paddle.batch(
paddle.dataset.imdb.train(self.word_dict),
batch_size=self.BATCH_SIZE)
def test_plain_while_op(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
sentence = fluid.layers.data(
name='word', shape=[1], dtype='int64', lod_level=1)
sent_emb = fluid.layers.embedding(
input=sentence, size=[len(self.word_dict), 32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='float32')
rank_table = fluid.layers.lod_rank_table(x=sent_emb)
sent_emb_array = fluid.layers.lod_tensor_to_array(
x=sent_emb, table=rank_table)
seq_len = fluid.layers.max_sequence_len(rank_table=rank_table)
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
i.stop_gradient = False
boot_mem = fluid.layers.fill_constant_batch_size_like(
input=fluid.layers.array_read(
array=sent_emb_array, i=i),
value=0,
shape=[-1, 100],
dtype='float32')
boot_mem.stop_gradient = False
mem_array = fluid.layers.array_write(x=boot_mem, i=i)
cond = fluid.layers.less_than(x=i, y=seq_len)
cond.stop_gradient = False
while_op = fluid.layers.While(cond=cond)
out = fluid.layers.create_array(dtype='float32')
with while_op.block():
mem = fluid.layers.array_read(array=mem_array, i=i)
ipt = fluid.layers.array_read(array=sent_emb_array, i=i)
mem = fluid.layers.shrink_memory(x=mem, i=i, table=rank_table)
hidden = fluid.layers.fc(input=[mem, ipt], size=100, act='tanh')
fluid.layers.array_write(x=hidden, i=i, array=out)
fluid.layers.increment(x=i, in_place=True)
fluid.layers.array_write(x=hidden, i=i, array=mem_array)
fluid.layers.less_than(x=i, y=seq_len, cond=cond)
all_timesteps = fluid.layers.array_to_lod_tensor(
x=out, table=rank_table)
last = fluid.layers.sequence_last_step(input=all_timesteps)
logits = fluid.layers.fc(input=last, size=1, act=None)
loss = fluid.layers.sigmoid_cross_entropy_with_logits(
x=logits, label=label)
loss = fluid.layers.mean(x=loss)
sgd = fluid.optimizer.SGD(1e-4)
sgd.minimize(loss=loss)
cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu)
exe.run(startup_program)
feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu)
data = next(self.train_data())
val = exe.run(main_program, feed=feeder.feed(data),
fetch_list=[loss])[0]
self.assertEqual((1, ), val.shape)
print(val)
self.assertFalse(numpy.isnan(val))
def test_train_dyn_rnn(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
sentence = fluid.layers.data(
name='word', shape=[1], dtype='int64', lod_level=1)
sent_emb = fluid.layers.embedding(
input=sentence, size=[len(self.word_dict), 32], dtype='float32')
rnn = fluid.layers.DynamicRNN()
with rnn.block():
in_ = rnn.step_input(sent_emb)
mem = rnn.memory(shape=[100], dtype='float32')
out_ = fluid.layers.fc(input=[in_, mem], size=100, act='tanh')
rnn.update_memory(mem, out_)
rnn.output(out_)
last = fluid.layers.sequence_last_step(input=rnn())
logits = fluid.layers.fc(input=last, size=1, act=None)
label = fluid.layers.data(name='label', shape=[1], dtype='float32')
loss = fluid.layers.sigmoid_cross_entropy_with_logits(
x=logits, label=label)
loss = fluid.layers.mean(x=loss)
sgd = fluid.optimizer.Adam(1e-3)
sgd.minimize(loss=loss)
cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu)
exe.run(startup_program)
feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu)
data = next(self.train_data())
loss_0 = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[loss])[0]
for _ in xrange(100):
val = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[loss])[0]
# loss should be small after 100 mini-batch
self.assertLess(val[0], loss_0[0])
if __name__ == '__main__':
unittest.main()