-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
fp16_utils.py
1004 lines (884 loc) · 35.8 KB
/
fp16_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import logging
from dataclasses import dataclass
import numpy as np
import paddle
from paddle.base import core, framework, global_scope
from paddle.base.log_helper import get_logger
from paddle.base.wrapped_decorator import signature_safe_contextmanager
from .fp16_lists import (
AutoMixedPrecisionLists,
black_list,
get_low_precision_dtypestr,
)
_logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
_valid_types = [
core.VarDesc.VarType.LOD_TENSOR,
core.VarDesc.VarType.SELECTED_ROWS,
core.VarDesc.VarType.LOD_TENSOR_ARRAY,
]
_fp16_guard_pattern = "__use_fp16__"
@dataclass
class AmpOptions:
enable: bool
custom_white_list: list[str] | None
custom_black_list: list[str] | None
level: str
dtype: str
use_promote: bool
DEFAULT_AMP_OPTIONS = AmpOptions(
enable=True,
custom_white_list=None,
custom_black_list=None,
level='O1',
dtype='float16',
use_promote=True,
)
def _rename_arg(op, old_name, new_name):
"""
If an op has old_name input and output, rename these input
args new_name.
Args:
op (Operator): Current operator.
old_name (str): The old name of input args.
new_name (str): The new name of input args.
"""
op_desc = op.desc
if isinstance(op_desc, tuple):
op_desc = op_desc[0]
op_desc._rename_input(old_name, new_name)
op_desc._rename_output(old_name, new_name)
def _rename_op_input(program, op_var_rename_map, origin_ops, keep_fp32_ops):
for block in program.blocks:
ops = block.ops
block_id = block.idx
for op in ops:
if op not in origin_ops or op in keep_fp32_ops:
continue
for name in op.input_arg_names:
if name in op_var_rename_map[block_id]:
op._rename_input(name, op_var_rename_map[block_id][name])
def _dtype_to_str(dtype):
"""
Convert specific variable type to its corresponding string.
Args:
dtype (VarType): Variable type.
"""
if dtype in [core.VarDesc.VarType.FP16, core.VarDesc.VarType.BF16]:
# TODO(Xreki): change the returned str to "bf16" for BF16 data type.
# Currently too many codes use "cast_fp16" as key.
return 'fp16'
else:
return 'fp32'
_keep_layer_norm_scale_bias_to_fp32_flag = True
def _keep_layer_norm_scale_bias_to_fp32(*args):
global _keep_layer_norm_scale_bias_to_fp32_flag
if len(args) == 0:
return _keep_layer_norm_scale_bias_to_fp32_flag
else:
assert len(args) == 1 and isinstance(args[0], bool)
old_value = _keep_layer_norm_scale_bias_to_fp32_flag
_keep_layer_norm_scale_bias_to_fp32_flag = args[0]
return old_value
def _keep_fp32_input(op, in_name):
op_type = op.type
if op_type == 'batch_norm':
# Scale, Bias, Mean, Variance should be float32.
return in_name != 'X'
if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
return in_name != 'X'
if op_type == 'instance_norm':
return in_name != 'X'
if op_type == 'fused_bn_add_activation':
return in_name not in {'X', 'Z'}
if op_type == 'resnet_unit':
return in_name not in {'X', 'FilterX', 'Z', 'FilterZ'}
if op_type in ['fused_attention', 'fused_feedforward']:
return in_name in {
'LnScale',
'LnBias',
'Ln2Scale',
'Ln2Bias',
"Ln1Scale",
"Ln1Bias",
}
if op_type == 'fused_multi_transformer':
return in_name in {'LnScale', 'LnBias', 'FFNLnScale', 'FFNLnBias'}
return False
def _keep_fp32_output(op, out_name):
op_type = op.type
if op_type in ['batch_norm', 'fused_bn_add_activation']:
return out_name != 'Y'
if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
return out_name != 'Y'
if op_type == 'resnet_unit':
return out_name not in {'Y', 'ConvX', 'ConvZ'}
if op_type in ['fused_attention', 'fused_feedforward']:
return out_name in {
'LnMean',
'LnVariance',
'Ln2Mean',
'Ln2Variance',
'Ln1Mean',
'Ln1Variance',
}
return False
def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
"""
Insert cast op and rename op's input.
Args:
block (Program): The block in which the operator is.
op (Operator): The operator to insert cast op.
idx (int): The index of current operator.
src_dtype (VarType): The input variable dtype of cast op.
dest_dtype (VarType): The output variable dtype of cast op.
Returns:
num_cast_op (int): The number of cast ops that have been inserted.
"""
num_cast_ops = 0
for in_name in op.input_names:
if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
op, in_name
):
continue
for in_var_name in op.input(in_name):
in_var = block._find_var_recursive(in_var_name)
if in_var.type not in _valid_types or in_var.dtype == dest_dtype:
continue
# op's input is already casted to dest_dtype before. Set the in_var.name to cast_name.
cast_name = in_var.name + '.cast_' + _dtype_to_str(dest_dtype)
casted_var = block._find_var_recursive(cast_name)
if casted_var and casted_var.dtype == dest_dtype:
_rename_arg(op, in_var.name, casted_var.name)
continue
# insert cast for op's input.
if in_var.dtype == src_dtype:
out_var = block.vars.get(cast_name)
if out_var is None or out_var.dtype != dest_dtype:
op_device = op.attr('op_device')
# NOTE(wangxi): optimize for pipeline, reduce one send.
# if in_var is stop_gradient and prev_op device is `all`,
# set cast_op device to `all`, can reduce send cast_var.
# TODO: need remove this after we unified the dynamic
# and static pipeline interface.
if (
src_dtype == core.VarDesc.VarType.FP32
and in_var.stop_gradient
):
prev_op = None
if in_var.op is op:
prev_op = find_true_prev_op(
block.ops, op, in_var_name
)
elif in_var.op is not None:
prev_op = in_var.op
prev_op_device = None
if prev_op is not None:
prev_op_device = prev_op.attr('op_device')
if (
prev_op_device is not None
and 'all' in prev_op_device
):
op_device = prev_op_device
out_var = block.create_var(
name=cast_name,
dtype=dest_dtype,
persistable=False,
stop_gradient=in_var.stop_gradient,
)
# Only forward program will be inserted cast op, but some ops
# has no op_role attr, so here set it direcly. eg. resnet_unit.
op_role = (
int(core.op_proto_and_checker_maker.OpRole.Forward)
if not op.has_attr('op_role')
else op.attr('op_role')
)
block._insert_op_without_sync(
idx,
type="cast",
inputs={"X": in_var},
outputs={"Out": out_var},
attrs={
"in_dtype": in_var.dtype,
"out_dtype": out_var.dtype,
"op_device": op_device,
"op_role": op_role,
},
)
num_cast_ops += 1
_rename_arg(op, in_var.name, out_var.name)
for attr_name in ['in_dtype', 'out_dtype', 'dtype']:
if op.has_attr(attr_name) and op.attr(attr_name) in FLOAT_TYPES:
op._set_attr(attr_name, dest_dtype)
return num_cast_ops
def find_true_prev_op(ops, cur_op, var_name):
"""
Find the true prev op that outputs var_name variable.
Args:
ops (list): A list of ops.
cur_op (Operator): Current operator which has var_name variable.
var_name (string): Variable name.
"""
prev_op = []
for op in ops:
if op == cur_op:
break
for out_name in op.output_names:
for out_var_name in op.output(out_name):
if out_var_name == var_name:
prev_op.append(op)
if prev_op:
if not len(prev_op) == 1:
raise ValueError(
"There must be only one previous op "
f"that outputs {var_name} variable"
)
else:
return prev_op[0]
return None
def find_true_post_op(ops, cur_op, var_name, search_all=False):
"""
if there are post ops, return them, if there is no post op,
return None instead.
Args:
ops (list): A list of ops.
cur_op (Operator): Current operator which has var_name variable.
var_name (string): Variable name.
search_all (bool): The type of operator search. Use if \"cur_op\" is not in the \"ops\" set.
"""
post_op = []
if search_all:
"""
\"cur_op\" do not have to be in list of \"ops\". E.g. \"cur_op\" can come
from startup_prog block and \"ops\" list from main_prog block.
By setting idx to -1, we'll start looking for post-ops from the top of the list.
If search_all is False, assume that \"cur_op\" is in \"ops\" list,
so to reduce the time of search we can start iterating from \"cur_op\" idx.
"""
idx = -1
else:
for idx, op in enumerate(ops):
if op == cur_op:
break
for i in range(idx + 1, len(ops)):
op = ops[i]
for in_name in op.input_names:
for in_var_name in op.input(in_name):
if in_var_name == var_name:
post_op.append(op)
return post_op
def find_op_index(block_desc, cur_op_desc):
""" """
for idx in range(block_desc.op_size()):
if cur_op_desc == block_desc.op(idx):
return idx
return -1
def _is_in_black_varnames(op, amp_lists):
for in_name in op.input_arg_names:
if in_name in amp_lists.black_varnames:
return True
for out_name in op.output_arg_names:
if out_name in amp_lists.black_varnames:
return True
return False
def _need_keep_fp32(op, unsupported_op_list, use_fp16_guard):
if op.type in unsupported_op_list:
# the highest priority condition: If ops don't have fp16 computing kernels,
# they must be executed in fp32 calculation pattern.
return True
# process ops about learning rate
in_out_arg_names = []
in_out_arg_names.extend(list(op.input_arg_names))
in_out_arg_names.extend(list(op.output_arg_names))
for name in in_out_arg_names:
if "learning_rate" in name:
return True
if use_fp16_guard:
if op.has_attr("op_namescope") and (
_fp16_guard_pattern in op.attr("op_namescope")
):
# op in fp16 guard
return False
else:
# op not in fp16 guard
return True
else:
return False
@signature_safe_contextmanager
def fp16_guard():
"""
As for the pure fp16 training, if users set `use_fp16_guard` to True,
only those ops created in the context manager `fp16_guard` will be
transformed as float16 type.
Examples:
.. code-block:: python
>>> import numpy as np
>>> import paddle
>>> import paddle.nn.functional as F
>>> paddle.enable_static()
>>> data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
>>> conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
>>> with paddle.static.amp.fp16_guard():
... bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
... pool = F.max_pool2d(bn, kernel_size=2, stride=2)
... hidden = paddle.static.nn.fc(pool, size=10)
... loss = paddle.mean(hidden)
"""
with framework.name_scope(prefix=_fp16_guard_pattern):
yield
FLOAT_TYPES = {
core.VarDesc.VarType.FP32,
core.VarDesc.VarType.FP16,
core.VarDesc.VarType.BF16,
core.VarDesc.VarType.FP64,
}
SUPPORT_FLOAT_TYPES = {
core.VarDesc.VarType.FP32,
core.VarDesc.VarType.FP16,
core.VarDesc.VarType.BF16,
}
def set_var_dst_dtype(
op, var_names, block, global_block, dtype, need_set_dtype
):
low_precison_var_names = set()
for var_name in var_names:
var = None
try:
var = block._var_recursive(var_name)
except ValueError as e:
_logger.debug(f"-- {e}, try to get it in the global block --")
var = global_block.var(var_name)
if var is not None:
_logger.debug(
f"-- var {var_name} is got in the global block --"
)
if var is None or var.type not in _valid_types:
continue
if var.dtype in FLOAT_TYPES:
low_precison_var_names.add(var_name)
if need_set_dtype:
var.desc.set_dtype(dtype)
_logger.debug(
"---- op type: {}, var name: {}, var dtype: {} ----".format(
op.type, var_name, var.dtype
)
)
return low_precison_var_names
def set_param_dtype(program, dtype, amp_lists, use_fp16_guard, level):
keep_fp32_var_names = set()
if level == "O1" or level == "OD":
return keep_fp32_var_names
all_parameters = []
for block in program.blocks:
all_parameters.extend(block.all_parameters())
ops = block.ops
for op in ops:
# Currently, lookup_table is in black_list and unsupport_list, it's weight will be
# set to fp32 in setp 1 of cast_model_tp_fp16. But the weight may be used as matmul's
# input in transformer, so the weight is also in to_fp16_var_names.
# TODO(zhangting2020): consider fix auto_parallel_fp16 and remove lookup_table
# from black_list and unsupport_list.
if op.type in amp_lists.black_list:
continue
if _need_keep_fp32(op, amp_lists.unsupported_list, use_fp16_guard):
for in_name in op.input_names:
keep_fp32_var_names = keep_fp32_var_names.union(
op.input(in_name)
)
else:
for in_name in op.input_names:
if not core.is_compiled_with_ipu() and _keep_fp32_input(
op, in_name
):
keep_fp32_var_names = keep_fp32_var_names.union(
op.input(in_name)
)
for param in all_parameters:
if param.name not in keep_fp32_var_names:
_logger.debug(f"-- set param {param.name} to {dtype} --.")
param.desc.set_dtype(dtype)
return keep_fp32_var_names
def op_need_keep_fp32(op, amp_lists, use_fp16_guard, params_list):
need_keep_fp32 = False
fp16_varname_list_in_fp32_op = set()
if _need_keep_fp32(
op,
amp_lists.unsupported_list,
use_fp16_guard,
):
need_keep_fp32 = True
elif amp_lists.black_varnames is not None and _is_in_black_varnames(
op, amp_lists
):
need_keep_fp32 = True
elif op.type in amp_lists.black_list:
need_keep_fp32 = True
for in_name in op.input_names:
for params in params_list:
if params.name in op.input(in_name):
fp16_varname_list_in_fp32_op = (
fp16_varname_list_in_fp32_op.union([params.name])
)
return need_keep_fp32, fp16_varname_list_in_fp32_op
def get_promote_dtype(op, amp_dtype, block):
dst_dtype = amp_dtype
for in_name in op.input_names:
# for ipu, all inputs must be converted to fp16
if not core.is_compiled_with_ipu() and _keep_fp32_input(op, in_name):
_logger.debug(
f"---- Input {in_name} {op.input(in_name)} should be kept fp32 ----"
)
continue
# if this op has inputs
if in_name:
for in_var_name in op.input(in_name):
in_var = block._find_var_recursive(in_var_name)
if in_var and in_var.dtype == core.VarDesc.VarType.FP32:
dst_dtype = core.VarDesc.VarType.FP32
break
else:
dst_dtype = core.VarDesc.VarType.FP32
return dst_dtype
def get_amp_dst_dtype(
op, amp_dtype, level, block, amp_lists, keep_fp32_ops, keep_fp16_ops
):
if level == 'O2':
return amp_dtype
ops = block.ops
dst_dtype = amp_dtype
if op.type in amp_lists.gray_list:
keep_fp32 = False
keep_fp16 = False
for in_name in op.input_names:
# if this op has inputs
if in_name:
for in_var_name in op.input(in_name):
in_var = block._find_var_recursive(in_var_name)
# this in_var isn't the output of other op
if in_var.op is None:
continue
elif in_var.op is op:
prev_op = find_true_prev_op(ops, op, in_var_name)
if prev_op is None:
continue
else:
prev_op = in_var.op
# if it's one of inputs
if (
prev_op in keep_fp32_ops
or prev_op.type in amp_lists.black_list
):
dst_dtype = core.VarDesc.VarType.FP32
elif (
prev_op in keep_fp16_ops
or prev_op.type in amp_lists.white_list
):
dst_dtype = amp_dtype
else:
# For numerical safe, we apply fp32 computation on ops that
# are not determined which list they should stay.
dst_dtype = core.VarDesc.VarType.FP32
return dst_dtype
def process_op_input_and_outputs(op, block, global_block, dtype):
low_precison_var_names = set()
# Get the FP16 input because the low_precison_var_names is required for the parameter casting.
# The dtype of the input is not set to fp16, because it is done in the step 3 of cast_model_to_fp16.
for in_name in op.input_names:
# for ipu, all inputs must be converted to fp16
if not core.is_compiled_with_ipu() and _keep_fp32_input(op, in_name):
continue
in_vars = set_var_dst_dtype(
op,
op.input(in_name),
block,
global_block,
dtype,
need_set_dtype=False,
)
low_precison_var_names = low_precison_var_names.union(in_vars)
# Set the output to FP16 because its consumer OP needs to determine if the dtype needs
# to be promoted.
for out_name in op.output_names:
# for ipu, all outputs must be converted to fp16
if not core.is_compiled_with_ipu() and _keep_fp32_output(op, out_name):
continue
set_var_dst_dtype(
op,
op.output(out_name),
block,
global_block,
dtype,
need_set_dtype=True,
)
return low_precison_var_names
def map_block(block, fn, parent_op=None):
fn(block, parent_op)
program = block.program
for op in block.ops:
if not op.has_attr("sub_block"):
continue
sub_block = program.blocks[op.attr("sub_block").id]
map_block(sub_block, fn, op)
def prepare_op_amp_options(
program: paddle.static.Program,
amp_records: dict[int, list[tuple[AmpOptions, int, int]]],
global_amp_options: AmpOptions,
):
op_amp_options_map: dict[paddle.static.Operator, AmpOptions] = {}
def fill_amp_enable_op_map(block, parent_op):
block_idx = block.idx
ops = block.ops
for op in ops:
# Set the default options to global_amp_options if the op has not parent op.
current_op_amp_options = op_amp_options_map.get(
parent_op, global_amp_options
)
if block_idx in amp_records:
for amp_options, start, end in amp_records[block_idx]:
if op.idx in range(start, end):
current_op_amp_options = amp_options
break
op_amp_options_map[op] = current_op_amp_options
map_block(program.global_block(), fill_amp_enable_op_map)
for op, enable in op_amp_options_map.items():
op.set_amp_options(enable)
def cast_model_to_fp16(
program,
amp_lists=None,
use_fp16_guard=True,
dest_type=core.VarDesc.VarType.FP16,
level='O2',
use_promote=False,
):
"""
Traverse all ops in the whole model and set their inputs and outputs
to the fp16 data type. This function will do some special process for
the batch normalization, which keeps the computational process of
batchnorms in FP32.
Args:
program (Program): The used program.
amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object.
use_fp16_guard(bool): Determine whether to use `fp16_guard` when
constructing the program. Default True.
dest_type(core.VarDesc.VarType): the cast type. such as core.VarDesc.VarType.FP16 and core.VarDesc.VarType.BF16.
"""
_logger.debug("---- before cast model to fp16 ----")
_logger.debug(program)
if amp_lists is None:
dtype = get_low_precision_dtypestr(dest_type)
amp_lists = AutoMixedPrecisionLists(dtype)
# For amp o2 there is no blacklist by default.
if level == 'O2':
amp_lists.black_list = amp_lists.black_list - black_list
if level == 'OD':
if amp_lists is not None:
dtype = get_low_precision_dtypestr(dest_type)
amp_lists = AutoMixedPrecisionLists(dtype)
amp_lists.black_list = amp_lists.all_list - amp_lists.white_list
global_block = program.global_block()
keep_fp32_ops = set()
keep_fp16_ops = set()
to_fp16_var_names = set()
keep_fp32_var_names = set()
# step 1: set params dtype.
fp32_var_names = set_param_dtype(
program,
dtype=dest_type,
amp_lists=amp_lists,
use_fp16_guard=use_fp16_guard,
level=level,
)
keep_fp32_var_names = keep_fp32_var_names.union(fp32_var_names)
def need_process(op):
need_process = True
def is_support_type(name):
if not op.block._find_var_recursive(
name
): # a special case for lod_tensor_blocking_queue_0
return True
if (
op.block._var_recursive(name).type
!= core.VarDesc.VarType.LOD_TENSOR
):
return False
return op.block._var_recursive(name).dtype in SUPPORT_FLOAT_TYPES
if len(op.input_arg_names) > 0 and all(
not is_support_type(name) for name in op.input_arg_names
):
return False
# if input type of op is fp64, we just skip it.
if op.type in ["set_value"]:
# NOTE(zoooo0820): OP set_value has attribute "dtype", but its output type is
# determined by the input.dtype instead of attribute. So, here we still process it.
return need_process
if op.type in ["create_py_reader", "read"]:
need_process = False
else:
for attr_name in ['out_dtype', 'dtype']:
# output type of some operators such as fill_constant will be determined by the attribute value.
#
if not op.has_attr('in_dtype') and (
op.has_attr(attr_name) and op.attr(attr_name) in FLOAT_TYPES
):
need_process = False
return need_process
# step 2: divide op into different sets according to the black/unsupported and white lists.
for block in program.blocks:
ops = block.ops
for op in ops:
_logger.debug(f"-- process op: {op} --")
if not need_process(op):
_logger.debug("---- The op does not need to be processed ----.")
continue
all_params = global_block.all_parameters()
op_keep_fp32, fp16_var_names_in_fp32_op = op_need_keep_fp32(
op, amp_lists, use_fp16_guard, all_params
)
to_fp16_var_names = to_fp16_var_names.union(
fp16_var_names_in_fp32_op
)
if op_keep_fp32:
keep_fp32_ops.add(op)
process_op_input_and_outputs(
op, block, global_block, core.VarDesc.VarType.FP32
)
_logger.debug(
"---- Add into keep_fp32_ops because the op needs to be kept fp32 ----"
)
elif op.type in amp_lists.white_list:
keep_fp16_ops.add(op)
# get fp16 inputs and set op's outputs to fp16 for promote judgments
fp16_var_names = process_op_input_and_outputs(
op, block, global_block, dest_type
)
to_fp16_var_names = to_fp16_var_names.union(fp16_var_names)
_logger.debug(
"---- Add into keep_fp16_ops because the op in white_list ----"
)
else:
# if cast in orgin program, we only modifiy attr and output's dtype to avoid dtype mismatch errors.
if op.type == 'cast':
in_var = block._find_var_recursive(op.input('X')[0])
out_var = block._find_var_recursive(op.output('Out')[0])
op._set_attr('in_dtype', in_var.dtype)
out_var.desc.set_dtype(paddle.dtype(op.attr('out_dtype')))
_logger.debug(
"---- op type: {}, in var [name: {} dtype: {}], out var [name: {} dtype: {}], attr [in_dtype {} out_dtype {}] ----".format(
op.type,
op.input('X')[0],
in_var.dtype,
op.output('Out')[0],
out_var.dtype,
op.attr('in_dtype'),
op.attr('out_dtype'),
)
)
continue
# divide others ops into fp16/fp32 sets according to promoting principle.
dst_dtype = dest_type
if not use_promote:
dst_dtype = get_amp_dst_dtype(
op,
dest_type,
level,
block,
amp_lists,
keep_fp32_ops,
keep_fp16_ops,
)
else:
dst_dtype = get_promote_dtype(op, dest_type, block)
if dst_dtype == dest_type:
keep_fp16_ops.add(op)
fp16_var_names = process_op_input_and_outputs(
op, block, global_block, dest_type
)
to_fp16_var_names = to_fp16_var_names.union(fp16_var_names)
_logger.debug(
"---- Add into keep_fp16_ops because it should be promoted to fp16 ----"
)
else:
keep_fp32_ops.add(op)
process_op_input_and_outputs(
op, block, global_block, core.VarDesc.VarType.FP32
)
_logger.debug(
"---- Add into keep_fp32_ops because it should be promoted to fp32 ----"
)
# step 3: insert cast op for op's inputs.
for block in program.blocks:
ops = block.ops
idx = 0
while idx < len(ops):
op = ops[idx]
num_cast_ops = 0
if op in keep_fp16_ops:
in_var_cast_num = _insert_cast_op(
block,
op,
idx,
core.VarDesc.VarType.FP32,
dest_type,
)
num_cast_ops += in_var_cast_num
if op in keep_fp32_ops:
in_var_cast_num = _insert_cast_op(
block,
op,
idx,
dest_type,
core.VarDesc.VarType.FP32,
)
num_cast_ops += in_var_cast_num
idx += num_cast_ops + 1
_logger.debug("---- after cast model to fp16 ----")
_logger.debug(program)
to_fp16_var_names.difference_update(keep_fp32_var_names)
return to_fp16_var_names
def _convert_float_to_bfloat16(place, fp32_array):
paddle.disable_static()
framework._set_expected_place(place)
fp32_tensor = paddle.to_tensor(fp32_array)
bf16_array = paddle.cast(fp32_tensor, paddle.bfloat16).numpy()
paddle.enable_static()
return bf16_array
def _convert_to_float(place, org_array):
paddle.disable_static()
framework._set_expected_place(place)
org_tensor = paddle.to_tensor(org_array)
fp32_array = paddle.cast(org_tensor, paddle.float32).numpy()
paddle.enable_static()
return fp32_array
def cast_parameters_to_fp16(
place,
program,
scope=None,
to_fp16_var_names=None,
dest_type=core.VarDesc.VarType.FP16,
rewrite_master_weight=False,
master_weights={},
):
"""
Traverse all parameters in the whole model and set them to the FP16 data type.
Whereas, this function will keep parameters of batchnorms in FP32.
Args:
place(base.CPUPlace|base.CUDAPlace): `place` is used to restore the FP16 weight tensors.
program (Program): The used program.
scope(base.Scope, optional): `scope` is used to get the FP32 weight tensor values.
Default is None.
to_fp16_var_names(set|list, optional): The data types of vars in `to_fp16_var_names`
will be set to FP16. Usually, it is the returned
value of `cast_model_to_fp16` API.
dest_type(core.VarDesc.VarType): the cast type. such as core.VarDesc.VarType.FP16 and core.VarDesc.VarType.BF16.
"""
all_parameters = []
for block in program.blocks:
all_parameters.extend(block.all_parameters())
dtype_str = get_low_precision_dtypestr(dest_type)
fp16_var_names = to_fp16_var_names if to_fp16_var_names else set()
var_scope = scope if scope else global_scope()
for param in all_parameters:
if param.name in fp16_var_names:
_logger.debug(
f"-- cast {param.name} to {dtype_str}, place is {place}"
)
if var_scope.find_var(param.name):
param_t = var_scope.find_var(param.name).get_tensor()
data = np.array(param_t)
if dest_type == core.VarDesc.VarType.BF16:
p_array = _convert_float_to_bfloat16(place, data)
param_t.set(p_array, place)
else:
p_array = np.float16(data)
param_t.set(p_array, place)
# rewrite master weight
if rewrite_master_weight and param.name in master_weights:
master_p_var = var_scope.find_var(
master_weights[param.name].name
)
master_p_t = master_p_var.get_tensor()
master_p_array = _convert_to_float(place, p_array)
master_p_t.set(master_p_array, place)
else:
_logger.warning(f"Cannot find {param.name}")
def update_role_var_grad(main_prog, params_grads):
"""
Update op_role_var attr for some ops to make sure the gradients
transferred across GPUs is FP16.
1. Check whether the op that outputs gradient is cast or not.
2. If op is cast and gradient is FP32, remove the op_role_var
and find the prev op which outputs FP16 gradient
3. Update the op_role_var of the prev op.
Args:
main_prog (Program): The main program for training.
params_grads (list): A list of params and grads.
"""
block = main_prog.global_block()
block._sync_with_cpp()
BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward
OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
for p, g in params_grads:
op = g.op
if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast':
role = op.attr('op_role')
if role & int(BACKWARD) and op.has_attr('op_role_var'):
op._remove_attr("op_role_var")
else:
raise ValueError(
f"The cast op {op} must be in BACKWARD role "
"and have op_role_var attr."
)
fp16_grad_name = op.input(op.input_names[0])[0]
op_for_fp16_grad = find_true_prev_op(block.ops, op, fp16_grad_name)
op_role_var_attr_name = (
core.op_proto_and_checker_maker.kOpRoleVarAttrName()
)
attr_val = [p.name, fp16_grad_name]
if op_for_fp16_grad.has_attr(op_role_var_attr_name):
attr_val.extend(op_for_fp16_grad.attr(op_role_var_attr_name))
op_for_fp16_grad._set_attr(op_role_var_attr_name, attr_val)
# Maximize the all_reduce overlap, and perform the cast
# operation after gradients transfer.
op._set_attr('op_role', OPTIMIZE)
# optimize op should stay behind forward and backward ops
if op == block.ops[-1]:
continue
post_ops = find_true_post_op(block.ops, op, g.name)
if post_ops:
raise ValueError(
f"The cast op {op}'s output should not be"
"used by a non-optimize op, however, it"
f"is used by {post_ops[0]}"
)
# add new op in the python and cpp at the same time
new_op_desc = block.desc.append_op()
new_op_desc.copy_from(op.desc)
new_op = framework.Operator(
block=block,
desc=new_op_desc,
type=None,
inputs=None,
outputs=None,
attrs=None,
)
block.ops.append(new_op)
op_idx = find_op_index(block.desc, op.desc)