-
Notifications
You must be signed in to change notification settings - Fork 817
/
qmix_config.py
62 lines (61 loc) · 2.69 KB
/
qmix_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
QMixConfig:
'scenario': (str) The scenario in smac environments. All senarios: ['3m',
'8m', '25m', '5m_vs_6m', '8m_vs_9m', '10m_vs_11m', '27m_vs_39m',
'MMM', 'MMM2', '2s3z', '3s5z', '3s5z_vs_3s6z', '3s_vs_3z',
'3s_vs_4z', '3s_vs_5z', '1c3s5z', '2m_vs_1z', 'corridor',
'6h_vs_8z', '2s_vs_1sc', 'so_many_baneling', 'bane_vs_bane',
'2c_vs_64zg']
'replay_buffer_size': (int) Max episode number to be stored in the replay buffer.
'mixing_embed_dim': (int) Embed dim of the mixing network.
'rnn_hidden_dim': (int) Dim of GRU's hidden state.
'memory_warmup_size': (int) The learning process will not start untill current
replay buffer size >= 'memory_warmup_size'.
'gamma': (float) Discount factor in reinforcement learning.
'exploration_start': (float) Initial 'epsilon' in epsilon-greedy based exploration.
'min_exploration': (float) Min 'epsilon' in epsilon-greedy.
'update_target_interval': (int) Synchronize paramters to the target model after
the model has been learned 'update_target_interval' times.
'batch_size': (int) Training batch_size.
'training_steps': (int) Total steps for training.
'test_steps': (int) Evaluate the model every 'test_steps' steps.
'clip_grad_norm': (float) clipped value of global norm of gradients.
'hypernet_layers': (int; 1 or 2) Number of layers in hypernetwork.
'hypernet_embed_dim' (int, only make sense when 'hypernet_layers'==2)
'double_q' (bool, True or False) Double-DQN.
'difficulty': (str) Difficulty of the environment. Max Value: "7" (very difficult)
"""
QMixConfig = {
'scenario': '3m',
'replay_buffer_size': 5000,
'mixing_embed_dim': 32,
'rnn_hidden_dim': 64,
'lr': 0.0005,
'memory_warmup_size': 16,
'gamma': 0.99,
'exploration_start': 1.0,
'min_exploration': 0.1,
'exploration_decay': 2e-6,
'update_target_interval': 2000,
'batch_size': 16,
'training_steps': 1000000,
'test_steps': 1000,
'clip_grad_norm': 10,
'hypernet_layers': 2,
'hypernet_embed_dim': 64,
'double_q': True,
'difficulty': '7'
}