-
Notifications
You must be signed in to change notification settings - Fork 969
/
cvae-cnn-mnist-8.2.1.py
executable file
·297 lines (255 loc) · 9.7 KB
/
cvae-cnn-mnist-8.2.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
'''Example of CVAE on MNIST dataset using CNN
This VAE has a modular design. The encoder, decoder and vae
are 3 models that share weights. After training vae,
the encoder can be used to generate latent vectors.
The decoder can be used to generate MNIST digits by sampling the
latent vector from a gaussian dist with mean=0 and std=1.
[1] Sohn, Kihyuk, Honglak Lee, and Xinchen Yan.
"Learning structured output representation using
deep conditional generative models."
Advances in Neural Information Processing Systems. 2015.
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten, Lambda
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.layers import concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.losses import mse, binary_crossentropy
from tensorflow.keras.utils import plot_model
from tensorflow.keras import backend as K
from tensorflow.keras.utils import to_categorical
import numpy as np
import matplotlib.pyplot as plt
import argparse
import os
# reparameterization trick
# instead of sampling from Q(z|X), sample eps = N(0,I)
# z = z_mean + sqrt(var)*eps
def sampling(args):
"""Implements reparameterization trick by sampling
from a gaussian with zero mean and std=1.
Arguments:
args (tensor): mean and log of variance of Q(z|X)
Returns:
sampled latent vector (tensor)
"""
z_mean, z_log_var = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
# by default, random_normal has mean=0 and std=1.0
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
def plot_results(models,
data,
y_label,
batch_size=128,
model_name="cvae_mnist"):
"""Plots 2-dim mean values of Q(z|X) using labels
as color gradient then, plot MNIST digits as
function of 2-dim latent vector
Arguments:
models (list): encoder and decoder models
data (list): test data and label
y_label (array): one-hot vector of which digit to plot
batch_size (int): prediction batch size
model_name (string): which model is using this function
"""
encoder, decoder = models
x_test, y_test = data
xmin = ymin = -4
xmax = ymax = +4
os.makedirs(model_name, exist_ok=True)
filename = os.path.join(model_name, "vae_mean.png")
# display a 2D plot of the digit classes in the latent space
z, _, _ = encoder.predict([x_test, to_categorical(y_test)],
batch_size=batch_size)
plt.figure(figsize=(12, 10))
# axes x and y ranges
axes = plt.gca()
axes.set_xlim([xmin,xmax])
axes.set_ylim([ymin,ymax])
# subsample to reduce density of points on the plot
z = z[0::2]
y_test = y_test[0::2]
plt.scatter(z[:, 0], z[:, 1], marker="")
for i, digit in enumerate(y_test):
axes.annotate(digit, (z[i, 0], z[i, 1]))
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.savefig(filename)
plt.show()
filename = os.path.join(model_name, "%05d.png" % np.argmax(y_label))
# display a 10x10 2D manifold of the digit (y_label)
n = 10
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# linearly spaced coordinates corresponding to the 2D plot
# of digit classes in the latent space
grid_x = np.linspace(-4, 4, n)
grid_y = np.linspace(-4, 4, n)[::-1]
for i, yi in enumerate(grid_y):
for j, xi in enumerate(grid_x):
z_sample = np.array([[xi, yi]])
x_decoded = decoder.predict([z_sample, y_label])
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10))
start_range = digit_size // 2
end_range = n * digit_size + start_range + 1
pixel_range = np.arange(start_range, end_range, digit_size)
sample_range_x = np.round(grid_x, 1)
sample_range_y = np.round(grid_y, 1)
plt.xticks(pixel_range, sample_range_x)
plt.yticks(pixel_range, sample_range_y)
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.imshow(figure, cmap='Greys_r')
plt.savefig(filename)
plt.show()
# MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# compute the number of labels
num_labels = len(np.unique(y_train))
# network parameters
input_shape = (image_size, image_size, 1)
label_shape = (num_labels, )
batch_size = 128
kernel_size = 3
filters = 16
latent_dim = 2
epochs = 30
# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
y_labels = Input(shape=label_shape, name='class_labels')
x = Dense(image_size * image_size)(y_labels)
x = Reshape((image_size, image_size, 1))(x)
x = concatenate([inputs, x])
for i in range(2):
filters *= 2
x = Conv2D(filters=filters,
kernel_size=kernel_size,
activation='relu',
strides=2,
padding='same')(x)
# shape info needed to build decoder model
shape = K.int_shape(x)
# generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary
# with the TensorFlow backend
z = Lambda(sampling,
output_shape=(latent_dim,),
name='z')([z_mean, z_log_var])
# instantiate encoder model
encoder = Model([inputs, y_labels],
[z_mean, z_log_var, z],
name='encoder')
encoder.summary()
plot_model(encoder,
to_file='cvae_cnn_encoder.png',
show_shapes=True)
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = concatenate([latent_inputs, y_labels])
x = Dense(shape[1]*shape[2]*shape[3], activation='relu')(x)
x = Reshape((shape[1], shape[2], shape[3]))(x)
for i in range(2):
x = Conv2DTranspose(filters=filters,
kernel_size=kernel_size,
activation='relu',
strides=2,
padding='same')(x)
filters //= 2
outputs = Conv2DTranspose(filters=1,
kernel_size=kernel_size,
activation='sigmoid',
padding='same',
name='decoder_output')(x)
# instantiate decoder model
decoder = Model([latent_inputs, y_labels],
outputs,
name='decoder')
decoder.summary()
plot_model(decoder,
to_file='cvae_cnn_decoder.png',
show_shapes=True)
# instantiate vae model
outputs = decoder([encoder([inputs, y_labels])[2], y_labels])
cvae = Model([inputs, y_labels], outputs, name='cvae')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
help_ = "Load tf model trained weights"
parser.add_argument("-w", "--weights", help=help_)
help_ = "Use binary cross entropy instead of mse (default)"
parser.add_argument("--bce", help=help_, action='store_true')
help_ = "Specify a specific digit to generate"
parser.add_argument("-d", "--digit", type=int, help=help_)
help_ = "Beta in Beta-CVAE. Beta > 1. Default is 1.0 (CVAE)"
parser.add_argument("-b", "--beta", type=float, help=help_)
args = parser.parse_args()
models = (encoder, decoder)
data = (x_test, y_test)
if args.beta is None or args.beta < 1.0:
beta = 1.0
print("CVAE")
model_name = "cvae_cnn_mnist"
save_dir = "cvae_weights"
else:
beta = args.beta
print("Beta-CVAE with beta=", beta)
model_name = "beta-cvae_cnn_mnist"
save_dir = "beta-cvae_weights"
# VAE loss = mse_loss or xent_loss + kl_loss
if args.bce:
reconstruction_loss = binary_crossentropy(K.flatten(inputs),
K.flatten(outputs))
else:
reconstruction_loss = mse(K.flatten(inputs), K.flatten(outputs))
reconstruction_loss *= image_size * image_size
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5 * beta
cvae_loss = K.mean(reconstruction_loss + kl_loss)
cvae.add_loss(cvae_loss)
cvae.compile(optimizer='rmsprop')
cvae.summary()
plot_model(cvae, to_file='cvae_cnn.png', show_shapes=True)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
if args.weights:
filepath = os.path.join(save_dir, args.weights)
cvae = cvae.load_weights(filepath)
else:
cvae.fit([x_train, to_categorical(y_train)],
epochs=epochs,
batch_size=batch_size,
validation_data=([x_test, to_categorical(y_test)], None))
filename = model_name + '.tf'
filepath = os.path.join(save_dir, filename)
cvae.save_weights(filepath)
if args.digit in range(0, num_labels):
digit = np.array([args.digit])
else:
digit = np.random.randint(0, num_labels, 1)
print("CVAE for digit %d" % digit)
y_label = np.eye(num_labels)[digit]
plot_results(models,
data,
y_label=y_label,
batch_size=batch_size,
model_name=model_name)