-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenergym_util.py
355 lines (331 loc) · 15 KB
/
energym_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import numpy as np
from EMPA_VABO_experiments import pcnn_room_v2, rc_room, \
controlled_room
from EMPA_VABO_experiments.room import LinearRoomModel
from copy import deepcopy
import GPy
import datetime as dt
from EMPA_VABO_experiments import room_controller_evaluator
from util import get_dict_medium
"""
Define some utility functions for the test of safe Bayesian optimization,
constrained Bayesian optimization, and our method for room temperature
controller tuning.
"""
def get_energym_room_controller_vars_len_scales():
"""
6 vars to tune:
lower_tol,
upper_tol,
nighttime_setback,
nighttime_start,
nighttime_end,
nighttime_temp
"""
all_vars = ['lower_tol', 'upper_tol',
'nighttime_start', 'nighttime_end'
]
all_vars_bounds_dict = {
}
all_vars_safe_dict = {
}
all_vars_energy_func_len_scales = {
}
all_vars_discomfort_func_len_scales = {
}
all_vars_default_vals = get_dict_medium(all_vars_bounds_dict)
return all_vars, all_vars_bounds_dict, all_vars_safe_dict, \
all_vars_energy_func_len_scales, all_vars_discomfort_func_len_scales, \
all_vars_default_vals
def get_config(problem_name, problem_dim=None, gp_kernel=None,
init_points_id=0, discomfort_thr=1.0, max_discomfort_thr=5,
vars_to_fix=[], start_eval_time=None, room_simulator='Linear',
contextual_vars=[], discomfort_weight=0.01,
tune_PI_scale='linear', tune_obj='energy', energy_thr=ENERGY_SHIFT):
"""
Input: problem_name
Output: configuration of the constrained problem, including variable
dimension, number of constraints, objective function and constraint
function.
"""
config = dict()
cost_funcs = {
'square': lambda x: np.square(x),
'exp': lambda x: np.exp(x) - 1,
'linear': lambda x: x
}
cost_funcs_inv = {
'square': lambda x: np.sqrt(x),
'exp': lambda x: np.log(x+1),
'linear': lambda x: x
}
config['problem_name'] = problem_name
# transform the discomfort budget in one day into average temperature
# deviation on one data point
discomfort_thr = discomfort_thr / 24.0
if problem_name == 'Apartments2Thermal':
all_vars, all_vars_bounds_dict, all_vars_safe_dict, \
all_vars_energy_func_len_scales, all_vars_discomfort_func_len_scales, \
all_vars_max_discomfort_func_len_scales, all_vars_default_vals = \
get_tmp_controller_vars_len_scales(problem_name,
tune_PI_scale=tune_PI_scale,
tune_obj=tune_obj)
vars_to_tune = [var for var in all_vars if var not in vars_to_fix]
tune_var_dim = len(vars_to_tune)
contextual_var_ids = [i for i in range(tune_var_dim)
if vars_to_tune[i] in contextual_vars]
# get the ids of contextual variables in tune vars
config['contextual_var_ids'] = contextual_var_ids
config['var_dim'] = tune_var_dim
var_to_optimize_discretize_num = 20
discrete_num_list = []
for i in range(tune_var_dim):
if i in contextual_var_ids:
discrete_num_list.append(1)
else:
discrete_num_list.append(var_to_optimize_discretize_num)
config['discretize_num_list'] = discrete_num_list
config['num_constrs'] = 1 # 1 constraint on discomfort
config['bounds'] = [all_vars_bounds_dict[var] for var in vars_to_tune]
tune_vars_energy_len_scales = [all_vars_energy_func_len_scales[var]
for var in vars_to_tune]
tune_vars_discomfort_len_scales = [
all_vars_discomfort_func_len_scales[var]
for var in vars_to_tune
]
if gp_kernel is None or gp_kernel == 'Gaussian':
kernel = GPy.kern.RBF(
input_dim=len(config['bounds']),
variance=0.001/25.0,
lengthscale=tune_vars_energy_len_scales,
ARD=True
)
constr_kernel_1 = GPy.kern.RBF(
input_dim=len(config['bounds']),
variance=0.05 * 8,
lengthscale=tune_vars_discomfort_len_scales,
ARD=True
)
elif gp_kernel == 'Matern52':
kernel = GPy.kern.Matern52(
input_dim=len(config['bounds']),
variance=0.001/25.0,
lengthscale=tune_vars_energy_len_scales,
ARD=True
)
constr_kernel_1 = GPy.kern.Matern52(
input_dim=len(config['bounds']),
variance=0.05 * 8,
lengthscale=tune_vars_discomfort_len_scales,
ARD=True
)
if tune_obj == 'energy':
config['kernel'] = [kernel, constr_kernel_1, constr_kernel_2]
elif tune_obj == 'discomfort':
config['kernel'] = [constr_kernel_1, kernel, constr_kernel_2]
else:
print('Unsupported tune obj.')
global ENERGY_SHIFT
config['energy_shift'] = energy_thr
config['discomfort_thr'] = discomfort_thr
config['max_discomfort_thr'] = max_discomfort_thr
def f(x, simulator_to_use=None, is_look_ahead=False):
size_batch, num_tune_vars = x.shape
energy_list = []
energy_shift = energy_thr
discomfort_list = []
if simulator_to_use is None:
simulator_to_use = room_controller_evaluator.\
SingleRoomEvaluator(
PI_controlled_room,
temp_discomfort_cost,
ambient_file
)
for k in range(size_batch):
tmp_config = deepcopy(all_vars_default_vals)
for var_id in range(num_tune_vars):
var = vars_to_tune[var_id]
tmp_config[var] = x[k, var_id]
if is_bang_bang_controller:
controller_config = {
'tmp_thresholds': [tmp_config['open_temp'],
tmp_config['close_temp']],
'RB_valve_ratio': tmp_config['input_power'],
'RB_start_time': tmp_config['start_time'],
'RB_end_time': tmp_config['end_time']
}
elif is_PI_controller:
controller_config = {
'high_on_time': tmp_config['high_on_time'],
'high_off_time': tmp_config['high_off_time'],
'P': tmp_config['P'],
'I': tmp_config['I'],
'high_setpoint': tmp_config['high_setpoint'],
'low_setpoint': tmp_config['low_setpoint'],
'control_setpoint': tmp_config['control_setpoint']
# 'temperature': tmp_config['low_setpoint']
}
if tune_PI_scale == 'log':
controller_config['P'] = np.exp(controller_config['P'])
controller_config['I'] = np.exp(controller_config['I'])
simulator_to_use.controlled_room.reset_control_config(
controller_config)
if not is_look_ahead:
energy, discomfort, max_discomfort = \
simulator_to_use.run_one_episode(epi_len= 96 * 1)
#60 * 24)
else:
energy, discomfort, max_discomfort = \
simulator_to_use.look_ahead_one_episode()
return energy, discomfort, max_discomfort
#96 * 1) #60 * 24)
energy_list.append(energy)
discomfort_list.append(discomfort)
max_discomfort_list.append(max_discomfort)
energy_arr = np.array(energy_list) - energy_shift
discomfort_arr = np.array(discomfort_list) - discomfort_thr
max_discomfort_arr = np.array(max_discomfort_list) - \
max_discomfort_thr
# obj_dim: (batch_size), constr_dim: (batch_size, num_of_constr)
# expand the dimension
print(energy_list, discomfort_list, max_discomfort_list)
if tune_obj == 'energy':
obj_arr = energy_arr #+ discomfort_weight * discomfort_arr
constr_arr = np.stack((discomfort_arr, max_discomfort_arr),
axis=-1)
elif tune_obj == 'discomfort':
obj_arr = discomfort_arr
constr_arr = np.stack((energy_arr, max_discomfort_arr),
axis=-1)
return obj_arr, constr_arr, simulator_to_use
def get_context(simulator_to_use=None):
if simulator_to_use is None:
if is_bang_bang_controller:
if room_simulator == 'Linear':
simulator_to_use = room_controller_evaluator.\
SingleRBRoomEvaluator(
start_date_time,
STEP_DURATION,
LinearRoomParams['T_room'],
LinearRoomParams['uk'],
LinearRoomParams['T_neighbors'],
LinearRoomParams['T_amb'],
LinearRoomParams['s_coefs'],
MAX_VALVE_POWER,
'heating',
tmp_thresholds=[22, 24],
RB_valve_ratio=1.0,
ambient_file=ambient_file,
temp_discomfort_cost=temp_discomfort_cost,
RB_start_time=6 * 60,
RB_end_time=18 * 60
)
elif room_simulator == 'PCNN':
room = pcnn_room_v2.PCNNRoomV2Model(
start_date_time,
STEP_DURATION,
23)
# controlled_room = controlled_room.PIControlledRoom(
elif room_simulator == 'rc':
room = rc_room.RCRoomModel(
start_date_time,
60,
21.5)
elif is_PI_controller:
if room_simulator == 'Linear':
linear_room = LinearRoomModel(
start_date_time,
STEP_DURATION,
21,
LinearRoomParams['T_room'],
LinearRoomParams['uk'],
LinearRoomParams['T_neighbors'],
LinearRoomParams['T_amb'],
LinearRoomParams['s_coefs'],
)
PI_controlled_room = controlled_room.PIControlledRoom(
linear_room,
MAX_VALVE_POWER,
'heating',
high_on_time=0 * 60,
high_off_time=19 * 60,
P_coef=0.3,
I_coef=0.2,
high_setpoint=22.5,
low_setpoint=19.0,
control_setpoint=0.0
)
simulator_to_use = room_controller_evaluator.\
SingleRoomEvaluator(
PI_controlled_room,
temp_discomfort_cost,
ambient_file)
elif room_simulator == 'PCNN':
room = pcnn_room_v2.PCNNRoomV2Model(
start_date_time,
STEP_DURATION,
21.5)
PI_controlled_room = controlled_room.PIControlledRoom(
room,
MAX_VALVE_POWER,
'heating',
high_on_time=0 * 60,
high_off_time=19 * 60,
P_coef=0.3,
I_coef=0.2,
high_setpoint=22.5,
low_setpoint=19.0,
control_setpoint=0.0
)
simulator_to_use = room_controller_evaluator.\
SingleRoomEvaluator(
PI_controlled_room,
temp_discomfort_cost,
ambient_file)
print('PI controlled PCNN room.')
elif room_simulator == 'rc':
room = rc_room.RCRoomModel(
start_date_time,
60,
21.5)
PI_controlled_room = controlled_room.PIControlledRoom(
room,
MAX_VALVE_POWER,
'heating',
high_on_time=0 * 60,
high_off_time=19 * 60,
P_coef=0.3,
I_coef=0.2,
high_setpoint=22.5,
low_setpoint=19.0,
control_setpoint=0.0
)
simulator_to_use = room_controller_evaluator.\
SingleRoomEvaluator(
PI_controlled_room,
temp_discomfort_cost,
ambient_file
)
else:
room = simulator_to_use.controlled_room.room
context = room.predict_context(
24 * 4, ['Q_irr', 'T_out', 'T_init'])
return context
config['eval_simu'] = True
config['obj'] = f
config['constrs_list'] = []
config['vio_cost_funcs_list'] = [cost_funcs['linear'],
cost_funcs['linear']]
config['vio_cost_funcs_inv_list'] = [cost_funcs_inv['linear'],
cost_funcs_inv['linear']]
safe_point = [all_vars_safe_dict[var] for var in vars_to_tune]
print(safe_point)
config['init_safe_points'] = np.array([safe_point])
config['train_X'] = config['init_safe_points']
config['get_context'] = get_context
print(config['var_dim'])
print(discrete_num_list)
return config
if __name__ == '__main__':
a = get_config('GP_sample_two_funcs')
print(a)