forked from oleg-yaroshevskiy/quest_qa_labeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
75 lines (65 loc) · 2.56 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=str, default="../input/")
parser.add_argument("--pseudo_file", type=str)
parser.add_argument("--n_pseudo", type=int)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--folds", type=int, default=5)
parser.add_argument("--use_folds", type=int, nargs="+")
parser.add_argument("--label", type=str, default="qa")
parser.add_argument("--bert_model", type=str, default="bert-large-uncased")
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--batch_accumulation", type=int, default=4)
parser.add_argument("--epochs", type=int, default=5)
parser.add_argument("--lr", type=float, default=2e-5)
parser.add_argument("--warmup", type=int, default=200)
# loss
parser.add_argument("--num_classes", type=int, default=30)
parser.add_argument("--workers", type=int, default=8)
# tokenization
parser.add_argument("--max_sequence_length", type=int, default=290)
parser.add_argument("--max_title_length", type=int, default=30)
parser.add_argument("--max_question_length", type=int, default=128)
parser.add_argument("--max_answer_length", type=int, default=128)
parser.add_argument("--head_tail", type=str, default="True")
# infer
parser.add_argument("--sub_file", type=str, default="submission.csv")
args = parser.parse_args()
for arg in ["head_tail"]:
args.__dict__[arg] = args.__dict__[arg] == "True"
for arg in ["lr"]:
args.__dict__[arg] = float(args.__dict__[arg])
print("Initial arguments", args)
args.__dict__["input_columns"] = ["question_title", "question_body", "answer"]
args.__dict__["target_columns"] = [
"question_asker_intent_understanding",
"question_body_critical",
"question_conversational",
"question_expect_short_answer",
"question_fact_seeking",
"question_has_commonly_accepted_answer",
"question_interestingness_others",
"question_interestingness_self",
"question_multi_intent",
"question_not_really_a_question",
"question_opinion_seeking",
"question_type_choice",
"question_type_compare",
"question_type_consequence",
"question_type_definition",
"question_type_entity",
"question_type_instructions",
"question_type_procedure",
"question_type_reason_explanation",
"question_type_spelling",
"question_well_written",
"answer_helpful",
"answer_level_of_information",
"answer_plausible",
"answer_relevance",
"answer_satisfaction",
"answer_type_instructions",
"answer_type_procedure",
"answer_type_reason_explanation",
"answer_well_written",
]