forked from tugstugi/pytorch-speech-commands
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_speech_commands.py
executable file
·278 lines (220 loc) · 10.7 KB
/
train_speech_commands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python
"""Train a CNN for Google speech commands."""
__author__ = 'Yuan Xu, Erdene-Ochir Tuguldur'
import argparse
import time
from tqdm import *
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
import torchvision
from torchvision.transforms import *
from tensorboardX import SummaryWriter
import models
from datasets import *
from transforms import *
from mixup import *
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--train-dataset", type=str, default='datasets/speech_commands/train', help='path of train dataset')
parser.add_argument("--valid-dataset", type=str, default='datasets/speech_commands/valid', help='path of validation dataset')
parser.add_argument("--background-noise", type=str, default='datasets/speech_commands/train/_background_noise_', help='path of background noise')
parser.add_argument("--comment", type=str, default='', help='comment in tensorboard title')
parser.add_argument("--batch-size", type=int, default=128, help='batch size')
parser.add_argument("--dataload-workers-nums", type=int, default=6, help='number of workers for dataloader')
parser.add_argument("--weight-decay", type=float, default=1e-2, help='weight decay')
parser.add_argument("--optim", choices=['sgd', 'adam'], default='sgd', help='choices of optimization algorithms')
parser.add_argument("--learning-rate", type=float, default=1e-4, help='learning rate for optimization')
parser.add_argument("--lr-scheduler", choices=['plateau', 'step'], default='plateau', help='method to adjust learning rate')
parser.add_argument("--lr-scheduler-patience", type=int, default=5, help='lr scheduler plateau: Number of epochs with no improvement after which learning rate will be reduced')
parser.add_argument("--lr-scheduler-step-size", type=int, default=50, help='lr scheduler step: number of epochs of learning rate decay.')
parser.add_argument("--lr-scheduler-gamma", type=float, default=0.1, help='learning rate is multiplied by the gamma to decrease it')
parser.add_argument("--max-epochs", type=int, default=70, help='max number of epochs')
parser.add_argument("--resume", type=str, help='checkpoint file to resume')
parser.add_argument("--model", choices=models.available_models, default=models.available_models[0], help='model of NN')
parser.add_argument("--input", choices=['mel32'], default='mel32', help='input of NN')
parser.add_argument('--mixup', action='store_true', help='use mixup')
args = parser.parse_args()
use_gpu = torch.cuda.is_available()
print('use_gpu', use_gpu)
if use_gpu:
torch.backends.cudnn.benchmark = True
n_mels = 32
if args.input == 'mel40':
n_mels = 40
data_aug_transform = Compose([ChangeAmplitude(), ChangeSpeedAndPitchAudio(), FixAudioLength(), ToSTFT(), StretchAudioOnSTFT(), TimeshiftAudioOnSTFT(), FixSTFTDimension()])
bg_dataset = BackgroundNoiseDataset(args.background_noise, data_aug_transform)
add_bg_noise = AddBackgroundNoiseOnSTFT(bg_dataset)
train_feature_transform = Compose([ToMelSpectrogramFromSTFT(n_mels=n_mels), DeleteSTFT(), ToTensor('mel_spectrogram', 'input')])
train_dataset = SpeechCommandsDataset(args.train_dataset,
Compose([LoadAudio(),
data_aug_transform,
add_bg_noise,
train_feature_transform]))
valid_feature_transform = Compose([ToMelSpectrogram(n_mels=n_mels), ToTensor('mel_spectrogram', 'input')])
valid_dataset = SpeechCommandsDataset(args.valid_dataset,
Compose([LoadAudio(),
FixAudioLength(),
valid_feature_transform]))
weights = train_dataset.make_weights_for_balanced_classes()
sampler = WeightedRandomSampler(weights, len(weights))
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, sampler=sampler,
pin_memory=use_gpu, num_workers=args.dataload_workers_nums)
valid_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False,
pin_memory=use_gpu, num_workers=args.dataload_workers_nums)
# a name used to save checkpoints etc.
full_name = '%s_%s_%s_bs%d_lr%.1e_wd%.1e' % (args.model, args.optim, args.lr_scheduler, args.batch_size, args.learning_rate, args.weight_decay)
if args.comment:
full_name = '%s_%s' % (full_name, args.comment)
model = models.create_model(model_name=args.model, num_classes=len(CLASSES), in_channels=1)
if use_gpu:
model = torch.nn.DataParallel(model).cuda()
criterion = torch.nn.CrossEntropyLoss()
if args.optim == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=args.weight_decay)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
start_timestamp = int(time.time()*1000)
start_epoch = 0
best_accuracy = 0
best_loss = 1e100
global_step = 0
if args.resume:
print("resuming a checkpoint '%s'" % args.resume)
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
model.float()
optimizer.load_state_dict(checkpoint['optimizer'])
best_accuracy = checkpoint.get('accuracy', best_accuracy)
best_loss = checkpoint.get('loss', best_loss)
start_epoch = checkpoint.get('epoch', start_epoch)
global_step = checkpoint.get('step', global_step)
del checkpoint # reduce memory
if args.lr_scheduler == 'plateau':
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=args.lr_scheduler_patience, factor=args.lr_scheduler_gamma)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_scheduler_step_size, gamma=args.lr_scheduler_gamma, last_epoch=start_epoch-1)
def get_lr():
return optimizer.param_groups[0]['lr']
writer = SummaryWriter(comment=('_speech_commands_' + full_name))
def train(epoch):
global global_step
print("epoch %3d with lr=%.02e" % (epoch, get_lr()))
phase = 'train'
writer.add_scalar('%s/learning_rate' % phase, get_lr(), epoch)
model.train() # Set model to training mode
running_loss = 0.0
it = 0
correct = 0
total = 0
pbar = tqdm(train_dataloader, unit="audios", unit_scale=train_dataloader.batch_size)
for batch in pbar:
inputs = batch['input']
inputs = torch.unsqueeze(inputs, 1)
targets = batch['target']
if args.mixup:
inputs, targets = mixup(inputs, targets, num_classes=len(CLASSES))
inputs = Variable(inputs, requires_grad=True)
targets = Variable(targets, requires_grad=False)
if use_gpu:
inputs = inputs.cuda()
targets = targets.cuda(async=True)
# forward/backward
outputs = model(inputs)
if args.mixup:
loss = mixup_cross_entropy_loss(outputs, targets)
else:
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# statistics
it += 1
global_step += 1
running_loss += loss.data[0]
pred = outputs.data.max(1, keepdim=True)[1]
if args.mixup:
targets = batch['target']
targets = Variable(targets, requires_grad=False).cuda(async=True)
correct += pred.eq(targets.data.view_as(pred)).sum()
total += targets.size(0)
writer.add_scalar('%s/loss' % phase, loss.data[0], global_step)
# update the progress bar
pbar.set_postfix({
'loss': "%.05f" % (running_loss / it),
'acc': "%.02f%%" % (100*correct/total)
})
accuracy = correct/total
epoch_loss = running_loss / it
writer.add_scalar('%s/accuracy' % phase, 100*accuracy, epoch)
writer.add_scalar('%s/epoch_loss' % phase, epoch_loss, epoch)
def valid(epoch):
global best_accuracy, best_loss, global_step
phase = 'valid'
model.eval() # Set model to evaluate mode
running_loss = 0.0
it = 0
correct = 0
total = 0
pbar = tqdm(valid_dataloader, unit="audios", unit_scale=valid_dataloader.batch_size)
for batch in pbar:
inputs = batch['input']
inputs = torch.unsqueeze(inputs, 1)
targets = batch['target']
inputs = Variable(inputs, volatile = True)
targets = Variable(targets, requires_grad=False)
if use_gpu:
inputs = inputs.cuda()
targets = targets.cuda(async=True)
# forward
outputs = model(inputs)
loss = criterion(outputs, targets)
# statistics
it += 1
global_step += 1
running_loss += loss.data[0]
pred = outputs.data.max(1, keepdim=True)[1]
correct += pred.eq(targets.data.view_as(pred)).sum()
total += targets.size(0)
writer.add_scalar('%s/loss' % phase, loss.data[0], global_step)
# update the progress bar
pbar.set_postfix({
'loss': "%.05f" % (running_loss / it),
'acc': "%.02f%%" % (100*correct/total)
})
accuracy = correct/total
epoch_loss = running_loss / it
writer.add_scalar('%s/accuracy' % phase, 100*accuracy, epoch)
writer.add_scalar('%s/epoch_loss' % phase, epoch_loss, epoch)
checkpoint = {
'epoch': epoch,
'step': global_step,
'state_dict': model.state_dict(),
'loss': epoch_loss,
'accuracy': accuracy,
'optimizer' : optimizer.state_dict(),
}
if accuracy > best_accuracy:
best_accuracy = accuracy
torch.save(checkpoint, 'checkpoints/best-loss-speech-commands-checkpoint-%s.pth' % full_name)
torch.save(model, '%d-%s-best-loss.pth' % (start_timestamp, full_name))
if epoch_loss < best_loss:
best_loss = epoch_loss
torch.save(checkpoint, 'checkpoints/best-acc-speech-commands-checkpoint-%s.pth' % full_name)
torch.save(model, '%d-%s-best-acc.pth' % (start_timestamp, full_name))
torch.save(checkpoint, 'checkpoints/last-speech-commands-checkpoint.pth')
del checkpoint # reduce memory
return epoch_loss
print("training %s for Google speech commands..." % args.model)
since = time.time()
for epoch in range(start_epoch, args.max_epochs):
if args.lr_scheduler == 'step':
lr_scheduler.step()
train(epoch)
epoch_loss = valid(epoch)
if args.lr_scheduler == 'plateau':
lr_scheduler.step(metrics=epoch_loss)
time_elapsed = time.time() - since
time_str = 'total time elapsed: {:.0f}h {:.0f}m {:.0f}s '.format(time_elapsed // 3600, time_elapsed % 3600 // 60, time_elapsed % 60)
print("%s, best accuracy: %.02f%%, best loss %f" % (time_str, 100*best_accuracy, best_loss))
print("finished")