forked from lRomul/argus-freesound
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio.py
79 lines (60 loc) · 2.78 KB
/
audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Source: https://www.kaggle.com/daisukelab/creating-fat2019-preprocessed-data
import numpy as np
import librosa
import librosa.display
from src.config import audio as config
def get_audio_config():
return config.get_config_dict()
def read_audio(file_path):
min_samples = int(config.min_seconds * config.sampling_rate)
try:
y, sr = librosa.load(file_path, sr=config.sampling_rate)
trim_y, trim_idx = librosa.effects.trim(y) # trim, top_db=default(60)
if len(trim_y) < min_samples:
center = (trim_idx[1] - trim_idx[0]) // 2
left_idx = max(0, center - min_samples // 2)
right_idx = min(len(y), center + min_samples // 2)
trim_y = y[left_idx:right_idx]
if len(trim_y) < min_samples:
padding = min_samples - len(trim_y)
offset = padding // 2
trim_y = np.pad(trim_y, (offset, padding - offset), 'constant')
return trim_y
except BaseException as e:
print(f"Exception while reading file {e}")
return np.zeros(min_samples, dtype=np.float32)
def audio_to_melspectrogram(audio):
spectrogram = librosa.feature.melspectrogram(audio,
sr=config.sampling_rate,
n_mels=config.n_mels,
hop_length=config.hop_length,
n_fft=config.n_fft,
fmin=config.fmin,
fmax=config.fmax)
spectrogram = librosa.power_to_db(spectrogram)
spectrogram = spectrogram.astype(np.float32)
return spectrogram
def show_melspectrogram(mels, title='Log-frequency power spectrogram'):
import matplotlib.pyplot as plt
librosa.display.specshow(mels, x_axis='time', y_axis='mel',
sr=config.sampling_rate, hop_length=config.hop_length,
fmin=config.fmin, fmax=config.fmax)
plt.colorbar(format='%+2.0f dB')
plt.title(title)
plt.show()
def read_as_melspectrogram(file_path, time_stretch=1.0, pitch_shift=0.0,
debug_display=False):
x = read_audio(file_path)
if time_stretch != 1.0:
x = librosa.effects.time_stretch(x, time_stretch)
if pitch_shift != 0.0:
librosa.effects.pitch_shift(x, config.sampling_rate, n_steps=pitch_shift)
mels = audio_to_melspectrogram(x)
if debug_display:
import IPython
IPython.display.display(IPython.display.Audio(x, rate=config.sampling_rate))
show_melspectrogram(mels)
return mels
if __name__ == "__main__":
x = read_as_melspectrogram(config.train_curated_dir / '0b9906f7.wav')
print(x.shape)