forked from z814081807/DeepNER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
218 lines (151 loc) · 7.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import time
import os
import json
import logging
from torch.utils.data import DataLoader
from sklearn.model_selection import KFold
from src.utils.trainer import train
from src.utils.options import Args
from src.utils.model_utils import build_model
from src.utils.dataset_utils import NERDataset
from src.utils.evaluator import crf_evaluation, span_evaluation, mrc_evaluation
from src.utils.functions_utils import set_seed, get_model_path_list, load_model_and_parallel, get_time_dif
from src.preprocess.processor import NERProcessor, convert_examples_to_features
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO
)
def train_base(opt, train_examples, dev_examples=None):
with open(os.path.join(opt.mid_data_dir, f'{opt.task_type}_ent2id.json'), encoding='utf-8') as f:
ent2id = json.load(f)
train_features = convert_examples_to_features(opt.task_type, train_examples,
opt.max_seq_len, opt.bert_dir, ent2id)[0]
train_dataset = NERDataset(opt.task_type, train_features, 'train', use_type_embed=opt.use_type_embed)
if opt.task_type == 'crf':
model = build_model('crf', opt.bert_dir, num_tags=len(ent2id),
dropout_prob=opt.dropout_prob)
elif opt.task_type == 'mrc':
model = build_model('mrc', opt.bert_dir,
dropout_prob=opt.dropout_prob,
use_type_embed=opt.use_type_embed,
loss_type=opt.loss_type)
else:
model = build_model('span', opt.bert_dir, num_tags=len(ent2id)+1,
dropout_prob=opt.dropout_prob,
loss_type=opt.loss_type)
train(opt, model, train_dataset)
if dev_examples is not None:
dev_features, dev_callback_info = convert_examples_to_features(opt.task_type, dev_examples,
opt.max_seq_len, opt.bert_dir, ent2id)
dev_dataset = NERDataset(opt.task_type, dev_features, 'dev', use_type_embed=opt.use_type_embed)
dev_loader = DataLoader(dev_dataset, batch_size=opt.eval_batch_size,
shuffle=False, num_workers=0)
dev_info = (dev_loader, dev_callback_info)
model_path_list = get_model_path_list(opt.output_dir)
metric_str = ''
max_f1 = 0.
max_f1_step = 0
max_f1_path = ''
for idx, model_path in enumerate(model_path_list):
tmp_step = model_path.split('/')[-2].split('-')[-1]
model, device = load_model_and_parallel(model, opt.gpu_ids[0],
ckpt_path=model_path)
if opt.task_type == 'crf':
tmp_metric_str, tmp_f1 = crf_evaluation(model, dev_info, device, ent2id)
elif opt.task_type == 'mrc':
tmp_metric_str, tmp_f1 = mrc_evaluation(model, dev_info, device)
else:
tmp_metric_str, tmp_f1 = span_evaluation(model, dev_info, device, ent2id)
logger.info(f'In step {tmp_step}:\n {tmp_metric_str}')
metric_str += f'In step {tmp_step}:\n {tmp_metric_str}' + '\n\n'
if tmp_f1 > max_f1:
max_f1 = tmp_f1
max_f1_step = tmp_step
max_f1_path = model_path
max_metric_str = f'Max f1 is: {max_f1}, in step {max_f1_step}'
logger.info(max_metric_str)
metric_str += max_metric_str + '\n'
eval_save_path = os.path.join(opt.output_dir, 'eval_metric.txt')
with open(eval_save_path, 'a', encoding='utf-8') as f1:
f1.write(metric_str)
with open('./best_ckpt_path.txt', 'a', encoding='utf-8') as f2:
f2.write(max_f1_path + '\n')
del_dir_list = [os.path.join(opt.output_dir, path.split('/')[-2])
for path in model_path_list if path != max_f1_path]
import shutil
for x in del_dir_list:
shutil.rmtree(x)
logger.info('{}已删除'.format(x))
def training(opt):
if args.task_type == 'mrc':
# 62 for mrc query
processor = NERProcessor(opt.max_seq_len-62)
else:
processor = NERProcessor(opt.max_seq_len)
train_raw_examples = processor.read_json(os.path.join(opt.raw_data_dir, 'train.json'))
# add pseudo data to train data
pseudo_raw_examples = processor.read_json(os.path.join(opt.raw_data_dir, 'pseudo.json'))
train_raw_examples = train_raw_examples + pseudo_raw_examples
train_examples = processor.get_examples(train_raw_examples, 'train')
dev_examples = None
if opt.eval_model:
dev_raw_examples = processor.read_json(os.path.join(opt.raw_data_dir, 'dev.json'))
dev_examples = processor.get_examples(dev_raw_examples, 'dev')
train_base(opt, train_examples, dev_examples)
def stacking(opt):
logger.info('Start to KFold stack attribution model')
if args.task_type == 'mrc':
# 62 for mrc query
processor = NERProcessor(opt.max_seq_len-62)
else:
processor = NERProcessor(opt.max_seq_len)
kf = KFold(5, shuffle=True, random_state=42)
stack_raw_examples = processor.read_json(os.path.join(opt.raw_data_dir, 'stack.json'))
pseudo_raw_examples = processor.read_json(os.path.join(opt.raw_data_dir, 'pseudo.json'))
base_output_dir = opt.output_dir
for i, (train_ids, dev_ids) in enumerate(kf.split(stack_raw_examples)):
logger.info(f'Start to train the {i} fold')
train_raw_examples = [stack_raw_examples[_idx] for _idx in train_ids]
# add pseudo data to train data
train_raw_examples = train_raw_examples + pseudo_raw_examples
train_examples = processor.get_examples(train_raw_examples, 'train')
dev_raw_examples = [stack_raw_examples[_idx] for _idx in dev_ids]
dev_info = processor.get_examples(dev_raw_examples, 'dev')
tmp_output_dir = os.path.join(base_output_dir, f'v{i}')
opt.output_dir = tmp_output_dir
train_base(opt, train_examples, dev_info)
if __name__ == '__main__':
start_time = time.time()
logging.info('----------------开始计时----------------')
logging.info('----------------------------------------')
args = Args().get_parser()
assert args.mode in ['train', 'stack'], 'mode mismatch'
assert args.task_type in ['crf', 'span', 'mrc']
args.output_dir = os.path.join(args.output_dir, args.bert_type)
set_seed(args.seed)
if args.attack_train != '':
args.output_dir += f'_{args.attack_train}'
if args.weight_decay:
args.output_dir += '_wd'
if args.use_fp16:
args.output_dir += '_fp16'
if args.task_type == 'span':
args.output_dir += f'_{args.loss_type}'
if args.task_type == 'mrc':
if args.use_type_embed:
args.output_dir += f'_embed'
args.output_dir += f'_{args.loss_type}'
args.output_dir += f'_{args.task_type}'
if args.mode == 'stack':
args.output_dir += '_stack'
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
logger.info(f'{args.mode} {args.task_type} in max_seq_len {args.max_seq_len}')
if args.mode == 'train':
training(args)
else:
stacking(args)
time_dif = get_time_dif(start_time)
logging.info("----------本次容器运行时长:{}-----------".format(time_dif))