-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathouter_mult2.h
398 lines (355 loc) · 15.7 KB
/
outer_mult2.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#include "CSC.h"
#include "CSR.h"
#include "Triple.h"
#include "radix_sort/radix_sort.hpp"
#include "utility.h"
#include <map>
#include <algorithm>
#include <iostream>
#include <omp.h>
#include <unistd.h>
#include <cstring>
#include<set>
#include "cpp-TimSort/include/gfx/timsort.hpp"
using namespace std;
static uint32_t ncols_of_A;
static int *rows_to_blockers;
static int *flops_by_row_blockers;
#define SIZE 16
#define GFX_TIMSORT_USE_STD_MOVE 1
template <typename IT>
uint16_t fast_mod(const IT input, const int ceil) {
return input >= ceil ? input % ceil : input;
}
template <typename IT, typename NT>
uint64_t getFlop(const CSC<IT, NT>& A, const CSR<IT, NT>& B)
{
uint64_t flop = 0;
#pragma omp parallel for reduction(+ : flop)
for (IT i = 0; i < A.cols; ++i)
{
IT colnnz = A.colptr[i + 1] - A.colptr[i];
IT rownnz = B.rowptr[i + 1] - B.rowptr[i];
flop += (colnnz * rownnz);
}
return flop;
}
template <typename IT, typename NT>
void do_symbolic(const CSC<IT, NT>& A, const CSR<IT, NT>& B, IT startIdx, IT endIdx,
uint16_t num_blockers, IT* flops_by_rows, IT* rows_to_blockers, IT* thread_rows_offset,
IT* flops_by_row_blockers, IT& total_flops, int num_threads)
{
double avg_blocker_volumn = 0.0;
double avg_thread_volumn = 0.0;
double cur_blocker_volumn = 0.0;
double cur_thread_volumn = 0.0;
IT cur_blocker_id = 0;
IT cur_thread_id = 0;
IT *flops_by_iters = my_malloc<IT>(A.rows);
// #pragma omp parallel
{
// #pragma omp for reduction(+ : flops_by_rows[:A.rows])
for (IT i = startIdx; i < endIdx; ++i)
{
IT rownnz = B.rowptr[i + 1] - B.rowptr[i];
flops_by_iters[i] = rownnz * (A.colptr[i+1] - A.colptr[i]);
for (IT j = A.colptr[i]; j < A.colptr[i + 1]; ++j)
{
flops_by_rows[A.rowids[j]] += rownnz;
}
}
#pragma omp parallel for reduction(+ : total_flops)
for (IT i = 0; i<A.rows; ++i)
total_flops += flops_by_rows[i];
}
avg_blocker_volumn = total_flops / num_blockers;
avg_thread_volumn = total_flops / num_threads;
rows_to_blockers[0] = cur_blocker_id;
thread_rows_offset[0] = cur_thread_id;
cur_thread_id ++;
IT *blocker_row_count = my_malloc<IT>(num_blockers);
for (IT i=0; i<A.rows; ++i)
{
cur_blocker_volumn += flops_by_rows[i];
cur_thread_volumn += flops_by_iters[i];
flops_by_row_blockers[cur_blocker_id] = cur_blocker_volumn;
blocker_row_count[cur_blocker_id] ++;
rows_to_blockers[i] = cur_blocker_id;
if (cur_blocker_volumn > avg_blocker_volumn)
{
cur_blocker_id ++;
cur_blocker_volumn = 0;
}
if(cur_thread_volumn > avg_thread_volumn)
{
thread_rows_offset[cur_thread_id] = i;
cur_thread_id ++;
cur_thread_volumn = 0;
}
}
thread_rows_offset[cur_thread_id] = A.rows;
// for (IT i = 0 ; i< num_blockers; ++i)
// cout << "BlockerId = " << i << " nrows = " << blocker_row_count[i] << endl;
}
template <typename IT, typename NT>
int64_t getReqMemory(const CSC<IT, NT>& A, const CSR<IT, NT>& B)
{
uint64_t flop = getFlop(A, B);
return flop * sizeof(int64_t);
}
struct ExtractKey
{
inline uint64_t operator()(tuple<int32_t, int32_t, double> tup)
{
int64_t res = std::get<0>(tup);
res = (res << 32);
res = res | (uint32_t) std::get<1>(tup);
return res;
}
};
struct ExtractKey2
{
inline uint32_t operator()(tuple<int32_t, int32_t, double> tup)
{
// 32768 for S23
// 256 for S16
return (std::get<0>(tup) << 16) | ((uint32_t) std::get<1>(tup));
// return ((std::get<0>(tup) % flops_by_row_blockers[rows_to_blockers[std::get<0>(tup)]] << 16) | ((uint32_t) std::get<1>(tup)));
// return (((rows_to_blockers[std::get<0>(tup)] % (flops_by_row_blockers[std::get<0>(tup)])) << 20) | ((uint32_t) std::get<1>(tup)));
}
};
template <typename IT, typename NT>
bool compareTuple (tuple<IT, IT, NT> t1, tuple<IT, IT, NT> t2)
{
if (std::get<0>(t1) < std::get<0>(t2))
return true;
else if (std::get<0>(t1) == std::get<0>(t2) && std::get<1>(t1) < std::get<1>(t2))
return true;
return false;
// if (std::get<1>(t1) != std::get<1>(t2))
// return false;
// if (std::get<0>(t1) != std::get<0>(t2))
// return false;
// return true;
}
template <typename IT, typename NT>
inline bool isTupleEqual (tuple<IT, IT, NT> t1, tuple<IT, IT, NT> t2)
{
if (std::get<1>(t1) != std::get<1>(t2))
return false;
if (std::get<0>(t1) != std::get<0>(t2))
return false;
return true;
}
template <typename IT, typename NT>
inline void doRadixSort(tuple<IT, IT, NT>* begin, tuple<IT, IT, NT>* end, tuple<IT, IT, NT>* buffer)
{
radix_sort(begin, end, buffer, ExtractKey2());
// gfx::timsort(begin, end, compareTuple<IT, NT>);
// sort(begin, end, compareTuple<IT, NT>);
}
template <typename IT, typename NT>
inline IT doMerge(tuple<IT, IT, NT>* vec, IT length)
{
if (length == 0) return 0;
ExtractKey op = ExtractKey();
IT i = 0;
IT j = 1;
while (i < length && j < length)
{
if (j < length && isTupleEqual (vec[i], vec[j]))
std::get<2>(vec[i]) += std::get<2>(vec[j]);
else
{
// vec[++i] = std::move(vec[j]);
++i;
std::get<0>(vec[i]) = std::get<0>(vec[j]);
std::get<1>(vec[i]) = std::get<1>(vec[j]);
std::get<2>(vec[i]) = std::get<2>(vec[j]);
}
++j;
}
return i + 1;
}
template <typename IT>
void initializeBlockerBoundary(IT* nums_per_col_blocker, uint16_t num_blockers, IT* blocker_begin_ptr,
IT* blocker_end_ptr)
{
blocker_begin_ptr[0] = 0;
blocker_end_ptr[0] = 0;
for (uint16_t blocker_index = 1; blocker_index < num_blockers; ++blocker_index)
{
blocker_begin_ptr[blocker_index] = blocker_begin_ptr[blocker_index - 1] + nums_per_col_blocker[blocker_index - 1];
blocker_end_ptr[blocker_index] = blocker_begin_ptr[blocker_index];
}
}
template <typename IT, typename NT>
void OuterSpGEMM_stage(const CSC<IT, NT>& A, const CSR<IT, NT>& B, IT startIdx, IT endIdx, CSR<IT, NT>& C, \
int nblockers, int nblockchars)
{
typedef tuple<IT, IT, NT> TripleNode;
const uint16_t nthreads = omp_get_max_threads();
uint16_t num_blockers = nblockers;
const uint16_t block_width = nblockchars;
omp_set_dynamic(0);
ncols_of_A = A.cols;
IT total_flop = 0;
flops_by_row_blockers = my_malloc<IT>(num_blockers);
IT* flops_by_rows = my_malloc<IT>(A.rows);
IT* nnz_by_row = my_malloc<IT>(A.rows);
IT *thread_rows_offset = my_malloc<IT>(nthreads+1);
rows_to_blockers = static_cast<IT*>(::operator new(sizeof(IT) * A.rows));
do_symbolic(A, B, 0, A.cols, num_blockers, flops_by_rows, rows_to_blockers, thread_rows_offset, flops_by_row_blockers, total_flop, nthreads);
IT *global_blocker_counters = my_malloc<IT>(num_blockers);
TripleNode **global_blockers = my_malloc<TripleNode*>(num_blockers);
IT **local_blocker_counters = my_malloc<IT*>(nthreads);
TripleNode **local_blockers = my_malloc<TripleNode*>(nthreads);
TripleNode **sorting_buffer = my_malloc<TripleNode*>(nthreads);
IT *nnz_per_row_blocker = my_malloc<IT>(num_blockers);
#pragma omp parallel for
for (uint16_t blocker_id=0; blocker_id<num_blockers; ++blocker_id)
global_blockers[blocker_id] = static_cast<TripleNode*>(::operator new(SIZE * flops_by_row_blockers[blocker_id]));
IT max_flops_in_row_blockers = *std::max_element(flops_by_row_blockers, flops_by_row_blockers + num_blockers);
// IT min_flops_in_row_blockers = *std::min_element(flops_by_row_blockers, flops_by_row_blockers + num_blockers);
// uint64_t avg_flops_in_row_blockers = 0;
// for (IT i = 0; i < num_blockers; ++i) {
// avg_flops_in_row_blockers += flops_by_row_blockers[i];
// max_flops_in_row_blockers = max(max_flops_in_row_blockers, flops_by_row_blockers[i]);
// }
// cout << "avg_flops_in_row_blockers = " << avg_flops_in_row_blockers / num_blockers << " max_flops_in_row_blockers = " << max_flops_in_row_blockers << " min_flops_in_row_blockers = " << min_flops_in_row_blockers << endl;
#pragma omp parallel for
for (uint16_t thread_id=0; thread_id<nthreads; ++thread_id)
sorting_buffer[thread_id] = static_cast<TripleNode*>(::operator new(SIZE * max_flops_in_row_blockers));
#pragma omp parallel
{
uint16_t thread_id = omp_get_thread_num();
TripleNode *begin_local_blockers, *cur_local_blockers, *end_local_blockers, *cur_global_blockers;
local_blockers[thread_id] = static_cast<TripleNode*>(::operator new(SIZE * num_blockers * block_width));
local_blocker_counters[thread_id] = my_malloc<IT>(num_blockers);
IT first_row = thread_rows_offset[thread_id];
IT last_row = thread_rows_offset[thread_id+1];
// computing phase
for (IT idx = first_row; idx < last_row; ++idx)
{
// std::set<int>::iterator it = dense_cols.find(idx);
// if (it != dense_cols.end()) continue;
for (IT j = A.colptr[idx]; j < A.colptr[idx + 1]; ++j) // ncols(A) * 4
{
IT rowid = A.rowids[j]; // nnz(A) * 4
uint16_t row_blocker_id = rows_to_blockers[rowid];
begin_local_blockers = local_blockers[thread_id] + row_blocker_id * block_width;
cur_local_blockers = begin_local_blockers + local_blocker_counters[thread_id][row_blocker_id];
end_local_blockers = begin_local_blockers + block_width;
for (IT k = B.rowptr[idx]; k < B.rowptr[idx + 1]; ++k) // nrows(B) * 4
{
// *cur_local_blockers = std::move(TripleNode(A.rowids[j], B.colids[k], A.values[j] * B.values[k]));
std::get<0>(*cur_local_blockers) = A.rowids[j];
std::get<1>(*cur_local_blockers) = B.colids[k];
std::get<2>(*cur_local_blockers) = A.values[j] * B.values[k];
cur_local_blockers++;
if (cur_local_blockers == end_local_blockers) // flop * 16
{
// cur_global_blockers = global_blockers[row_blocker_id] + __sync_fetch_and_add(&global_blocker_counters[row_blocker_id], block_width);
// for (IT offset=0; offset<block_width; ++offset)
// {
// std::get<0>(cur_global_blockers[offset]) = std::get<0>(begin_local_blockers[offset]);
// std::get<1>(cur_global_blockers[offset]) = std::get<1>(begin_local_blockers[offset]);
// std::get<1>(cur_global_blockers[offset]) = std::get<1>(begin_local_blockers[offset]);
// // cur_global_blockers[offset] = begin_local_blockers[offset];
// }
std::memcpy(
global_blockers[row_blocker_id] + __sync_fetch_and_add(&global_blocker_counters[row_blocker_id], block_width),
begin_local_blockers,
block_width * SIZE
);
cur_local_blockers = begin_local_blockers;
}
}
local_blocker_counters[thread_id][row_blocker_id] = cur_local_blockers - begin_local_blockers;
}
}
for (uint16_t row_blocker_id = 0; row_blocker_id < num_blockers; row_blocker_id++)
{
// cur_global_blockers = global_blockers[row_blocker_id] + __sync_fetch_and_add(&global_blocker_counters[row_blocker_id], local_blocker_counters[thread_id][row_blocker_id]);
// for (IT offset=0; offset<local_blocker_counters[thread_id][row_blocker_id]; ++offset)
// {
// std::get<0>(cur_global_blockers[offset]) = std::get<0>(local_blockers[thread_id][row_blocker_id * block_width + offset]);
// std::get<1>(cur_global_blockers[offset]) = std::get<1>(local_blockers[thread_id][row_blocker_id * block_width + offset]);
// std::get<2>(cur_global_blockers[offset]) = std::get<2>(local_blockers[thread_id][row_blocker_id * block_width + offset]);
// // cur_global_blockers[offset] = local_blockers[thread_id][row_blocker_id * block_width + offset];
// }
std::memcpy(
global_blockers[row_blocker_id] + __sync_fetch_and_add(&global_blocker_counters[row_blocker_id], local_blocker_counters[thread_id][row_blocker_id]),
local_blockers[thread_id] + row_blocker_id * block_width,
local_blocker_counters[thread_id][row_blocker_id] * SIZE
);
// local_blocker_counters[thread_id][row_blocker_id] = 0;
}
}
double t1 = omp_get_wtime();
#pragma omp parallel
{
uint16_t thread_id = omp_get_thread_num();
#pragma omp for reduction(+ : nnz_per_row_blocker[:num_blockers]) schedule(dynamic)
for (uint16_t row_blocker_id=0; row_blocker_id < num_blockers; ++ row_blocker_id)
{
doRadixSort(global_blockers[row_blocker_id],
global_blockers[row_blocker_id] + global_blocker_counters[row_blocker_id],
sorting_buffer[thread_id]);
IT after = doMerge(global_blockers[row_blocker_id], global_blocker_counters[row_blocker_id]);
nnz_per_row_blocker[row_blocker_id] += after;
}
}
IT *cumulative_row_indices = my_malloc<IT>(num_blockers + 1);
scan(nnz_per_row_blocker, cumulative_row_indices, (IT)(num_blockers) + 1);
IT total_nnz = cumulative_row_indices[num_blockers];
if (C.isEmpty())
{
C.make_empty();
}
C.rows = A.rows;
C.cols = B.cols;
C.colids = static_cast<IT*>(::operator new(sizeof(IT[total_nnz])));
C.rowptr = static_cast<IT*>(::operator new(sizeof(IT[C.rows+1])));
C.values = static_cast<NT*>(::operator new(sizeof(NT[total_nnz])));
C.rowptr[0] = 0;
#pragma omp parallel for
for (uint16_t row_blocker_id = 0; row_blocker_id < num_blockers; ++row_blocker_id)
{
IT base = cumulative_row_indices[row_blocker_id];
// auto space_addr = global_blockers[row_blocker_id];
TripleNode* this_blocker = global_blockers[row_blocker_id];
for (IT i = 0; i < nnz_per_row_blocker[row_blocker_id]; ++i)
{
++nnz_by_row[std::get<0>(this_blocker[i])];
C.colids[base+i] = std::get<1>(this_blocker[i]);
C.values[base+i] = std::get<2>(this_blocker[i]);
// ++nnz_by_row[std::get<0>(space_addr[index])];
// C.colids[base + index] = std::get<1>(space_addr[index]);
// C.values[base + index] = std::get<2>(space_addr[index]);
}
}
scan(nnz_by_row, C.rowptr, C.rows + 1);
C.nnz = total_nnz;
my_free<IT>(flops_by_row_blockers);
my_free<IT>(nnz_by_row);
my_free<IT>(nnz_per_row_blocker);
my_free<IT>(cumulative_row_indices);
for (uint16_t row_blocker_id = 0; row_blocker_id < num_blockers; ++row_blocker_id)
{
my_free<TripleNode>(global_blockers[row_blocker_id]);
}
my_free<TripleNode*>(global_blockers);
for (uint16_t thread_id=0; thread_id<nthreads; ++thread_id)
{
my_free<TripleNode>(local_blockers[thread_id]);
my_free<IT>(local_blocker_counters[thread_id]);
}
my_free<TripleNode*>(local_blockers);
my_free<IT*>(local_blocker_counters);
}
template <typename IT, typename NT>
void OuterSpGEMM(const CSC<IT, NT>& A, const CSR<IT, NT>& B, CSR<IT, NT>& C, int nblockers, int nblockchars)
{
OuterSpGEMM_stage(A, B, 0, A.cols, C, nblockers, nblockchars);
}