-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_baseline.sh
35 lines (29 loc) · 1.05 KB
/
run_baseline.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
## run repeats
dataset='pubmed_diabetes'
datapath='./data/pubmed_diabetes/'
outpath_baseline='./outputs/pubmed_diabetes/baselines'
test_linktypes='0-1-2-3'
task='classification'
partition='dominant'
nClients=10
nfeature=200
nclass=3
num_round=100
local_epoch=1
nlayer=2
nhidden=64
num_iterEM=1
nlinktype=4 # for mGCN and Fed-mGCN baselines, nlinktype should be equal to the number of oracle link-type
lr=0.01
weight_decay=0.0005
dropout=0.5
foldk=(0)
#foldk=(0 1 2 3 4 5 6 7 8 9)
## for baselines
baseline=("FedGCN")
#baseline=("GCN" "cGCN" "mGCN" "FedGCN" "FedmGCN" "local_GCN")
for bl in ${baseline[@]}; do
for k in ${foldk[@]}; do
python -m src.trainers.baselines --baseline ${bl} --foldk ${k} --dataset ${dataset} --datapath ${datapath} --outpath ${outpath_baseline} --test_linktypes ${test_linktypes} --partition ${partition} --nfeature ${nfeature} --nclass ${nclass} --nlinktype ${nlinktype} --nClients ${nClients} --task ${task} --lr ${lr} --weight_decay ${weight_decay} --dropout ${dropout} --num_iterEM ${num_iterEM} --num_round ${num_round}
done
done