-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport_compiler.py
290 lines (228 loc) · 11.3 KB
/
report_compiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import matplotlib.pyplot as plt
from fpdf import FPDF
import logging
import os
from PyPDF2 import PdfMerger
from typing import Dict, Any, List
def compile_case_file(analyzed_clues: Dict[str, Dict[str, Any]], report_format: str) -> Dict[str, Any]:
"""
Compile all analyzed clues into a comprehensive case file (report).
Args:
analyzed_clues (Dict[str, Dict[str, Any]]): Dictionary containing analyzed financial data.
report_format (str): Format of the report ('pdf' or 'txt').
Returns:
Dict[str, Any]: Dictionary containing output file information and temporary files.
Raises:
ValueError: If an unsupported report format is provided.
"""
logging.info(f"📊 Compiling case file in {report_format} format...")
if report_format == 'pdf':
return _generate_pdf_report(analyzed_clues)
elif report_format == 'txt':
return _generate_txt_report(analyzed_clues)
else:
logging.error(f"🚫 Unsupported report format: {report_format}")
raise ValueError(f"Unsupported report format: {report_format}")
def _generate_pdf_report(analyzed_clues: Dict[str, Dict[str, Any]]) -> Dict[str, Any]:
"""
Generate a PDF report with charts and key statistics.
Args:
analyzed_clues (Dict[str, Dict[str, Any]]): Dictionary containing analyzed financial data.
Returns:
Dict[str, Any]: Dictionary containing the path to the merged PDF and list of temporary files.
"""
pdf_files = []
temp_files = []
for stock, data in analyzed_clues.items():
pdf = FPDF()
pdf.add_page()
# 📝 Header
pdf.set_font("helvetica", "B", 16)
pdf.cell(200, 10, txt=f"Detective's Report: {stock}", ln=1, align='C')
pdf.ln(5)
# 🔍 Key Statistics Section
_add_key_statistics_section(pdf, data)
# 📈 Momentum Indicators Section
_add_momentum_indicators_section(pdf, data)
# 📊 Charts
_add_charts_to_pdf(pdf, stock, data, temp_files)
# 💾 Save individual stock report
pdf_file = f"financial_case_file_{stock}.pdf"
pdf.output(pdf_file)
pdf_files.append(pdf_file)
logging.info(f"📄 PDF case file for {stock} compiled successfully!")
# 🔗 Merge all PDF files
merged_pdf = "financial_case_file_complete.pdf"
_merge_pdf_files(pdf_files, merged_pdf)
# 🧹 Clean up temporary files
_cleanup_temp_files(pdf_files + temp_files)
return {"output_file": merged_pdf, "temp_files": []}
def _add_key_statistics_section(pdf: FPDF, data: Dict[str, Any]):
"""
Add the Key Statistics section to the PDF report with left alignment.
Args:
pdf (FPDF): The PDF object to add content to.
data (Dict[str, Any]): Dictionary containing the financial data for a stock.
"""
pdf.set_font("helvetica", "B", 12)
pdf.cell(200, 10, txt="Key Intel:", ln=1)
pdf.set_font("helvetica", "", 10)
# Layout parameters
col_widths = [30, 70, 30, 70]
row_height = 8
# Row 1: Price and Volatility
pdf.cell(col_widths[0], row_height, txt="Price:")
pdf.cell(col_widths[1], row_height, txt=f"${data['latest_price']:.2f}")
_add_linked_cell(pdf, "Volatility:", "https://www.investopedia.com/terms/v/volatility.asp", col_widths[2])
pdf.cell(col_widths[3], row_height, txt=f"{data['volatility']:.4f}", ln=1)
# Row 2: Sharpe Ratio and ATR
_add_linked_cell(pdf, "Sharpe Ratio:", "https://www.investopedia.com/terms/s/sharperatio.asp", col_widths[0])
pdf.cell(col_widths[1], row_height, txt=f"{data['sharpe_ratio']:.4f}")
_add_linked_cell(pdf, "ATR:", "https://www.investopedia.com/terms/a/atr.asp", col_widths[2])
pdf.cell(col_widths[3], row_height, txt=f"{data['atr']:.4f}", ln=1)
# Row 3: ROC (Average and Latest)
_add_linked_cell(pdf, "Avg ROC:", "https://www.investopedia.com/terms/p/pricerateofchange.asp", col_widths[0])
pdf.cell(col_widths[1], row_height, txt=f"{data['avg_roc']:.2f}%")
pdf.cell(col_widths[2], row_height, txt="Latest ROC:")
pdf.cell(col_widths[3], row_height, txt=f"{data['latest_roc']:.2f}%", ln=1)
pdf.ln(3)
def _add_momentum_indicators_section(pdf: FPDF, data: Dict[str, Any]):
"""
Add the Momentum Indicators section to the PDF report with left alignment.
Args:
pdf (FPDF): The PDF object to add content to.
data (Dict[str, Any]): Dictionary containing the financial data for a stock.
"""
pdf.set_font("helvetica", "B", 12)
pdf.cell(200, 10, txt="Momentum Signals:", ln=1)
pdf.set_font("helvetica", "", 10)
# Layout parameters
col_widths = [30, 70, 50, 50]
row_height = 8
# Row 1: RSI and MACD
_add_linked_cell(pdf, "RSI:", "https://www.investopedia.com/terms/r/rsi.asp", col_widths[0])
pdf.cell(col_widths[1], row_height, txt=f"{data['rsi']:.2f}")
_add_linked_cell(pdf, "MACD:", "https://www.investopedia.com/terms/m/macd.asp", col_widths[2])
pdf.cell(col_widths[3], row_height, txt=f"{data['macd']:.4f}", ln=1)
# Row 2: MACD Signal and Bollinger Bands
pdf.cell(col_widths[0], row_height, txt="MACD Signal:")
pdf.cell(col_widths[1], row_height, txt=f"{data['macd_signal']:.4f}")
_add_linked_cell(pdf, "Bollinger Bands", "https://www.investopedia.com/terms/b/bollingerbands.asp", col_widths[2])
pdf.cell(col_widths[3], row_height, txt=f"Avg Gap: ${data['avg_bb_gap']:.2f}", ln=1)
pdf.ln(3)
def _add_linked_cell(pdf: FPDF, text: str, url: str, width: int):
"""
Add a cell with blue, underlined, hyperlinked text to the PDF.
Args:
pdf (FPDF): The PDF object to add content to.
text (str): The text to display and link.
url (str): The URL to link to.
width (int): The width of the cell.
"""
pdf.set_text_color(0, 0, 255)
pdf.set_font("", "U")
pdf.cell(width, 8, txt=text, link=url)
pdf.set_text_color(0, 0, 0)
pdf.set_font("", "")
def _add_charts_to_pdf(pdf: FPDF, stock: str, data: Dict[str, Any], temp_files: List[str]):
"""
Generate and add charts to the PDF report, ensuring all content fits on one page.
Args:
pdf (FPDF): The PDF object to add content to.
stock (str): The stock symbol.
data (Dict[str, Any]): Dictionary containing the financial data for the stock.
temp_files (List[str]): List to append temporary file names for later cleanup.
"""
try:
# 📈 Generate and save price chart with Bollinger Bands and RSI
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 6), gridspec_kw={'height_ratios': [2, 1]}, sharex=True)
ax1.plot(data['price_data']['Close'], label='Close Price')
ax1.plot(data['price_data']['UpperBand'], label='Upper BB', linestyle='--')
ax1.plot(data['price_data']['LowerBand'], label='Lower BB', linestyle='--')
ax1.set_title(f"{stock} Price with Bollinger Bands")
ax1.set_ylabel("Price")
ax1.legend(loc='upper left', fontsize='xx-small')
ax2.plot(data['price_data']['RSI'], label='RSI', color='purple')
ax2.axhline(y=70, color='r', linestyle='--', linewidth=0.5)
ax2.axhline(y=30, color='g', linestyle='--', linewidth=0.5)
ax2.set_ylabel("RSI")
ax2.set_ylim(0, 100)
ax2.legend(loc='upper left', fontsize='xx-small')
plt.xlabel("Date")
plt.tight_layout()
plt.savefig(f"{stock}_price_bb_rsi_chart.png", dpi=300, bbox_inches='tight')
plt.close()
pdf.image(f"{stock}_price_bb_rsi_chart.png", x=10, y=None, w=190)
temp_files.append(f"{stock}_price_bb_rsi_chart.png")
# Add a small space between charts
pdf.ln(3)
# 📊 Generate and save MACD chart
plt.figure(figsize=(10, 2.5))
plt.plot(data['macd_data']['MACD'], label='MACD')
plt.plot(data['macd_data']['Signal'], label='Signal')
plt.bar(data['macd_data'].index, data['macd_data']['MACD'] - data['macd_data']['Signal'], label='Histogram')
plt.title(f"{stock} MACD")
plt.xlabel("Date")
plt.ylabel("MACD")
plt.legend(loc='upper left', fontsize='xx-small')
plt.tight_layout()
plt.savefig(f"{stock}_macd_chart.png", dpi=300, bbox_inches='tight')
plt.close()
pdf.image(f"{stock}_macd_chart.png", x=10, y=None, w=190)
temp_files.append(f"{stock}_macd_chart.png")
except Exception as e:
logging.error(f"❌ Error generating charts for {stock}: {e}")
pdf.cell(200, 10, txt=f"Error generating charts: {e}", ln=1)
def _merge_pdf_files(pdf_files: List[str], output_file: str):
"""
Merge multiple PDF files into a single file.
Args:
pdf_files (List[str]): List of PDF file paths to merge.
output_file (str): Path for the merged output PDF file.
"""
merger = PdfMerger()
for pdf in pdf_files:
merger.append(pdf)
merger.write(output_file)
merger.close()
# ✅ Verify that the merged PDF was created successfully
if not os.path.exists(output_file):
logging.error(f"❌ Failed to create merged PDF: {output_file}")
raise FileNotFoundError(f"Merged PDF not found: {output_file}")
logging.info("✅ All PDF case files compiled and merged successfully!")
def _cleanup_temp_files(temp_files: List[str]):
"""
Clean up temporary files created during report generation.
Args:
temp_files (List[str]): List of temporary file paths to delete.
"""
for file in temp_files:
try:
os.remove(file)
except Exception as e:
logging.warning(f"⚠️ Failed to remove temporary file {file}: {e}")
def _generate_txt_report(analyzed_clues: Dict[str, Dict[str, Any]]) -> Dict[str, Any]:
"""
Generate a simple text report with key statistics.
Args:
analyzed_clues (Dict[str, Dict[str, Any]]): Dictionary containing analyzed financial data.
Returns:
Dict[str, Any]: Dictionary containing the path to the output text file.
"""
output_file = "financial_case_file.txt"
with open(output_file, "w") as file:
file.write("Financial Detective Agency: Case File\n\n")
for stock, data in analyzed_clues.items():
file.write(f"Stock: {stock}\n")
file.write(f"Latest Price: ${data['latest_price']:.2f}\n")
file.write(f"Volatility: {data['volatility']:.4f} (https://www.investopedia.com/terms/v/volatility.asp)\n")
file.write(f"Sharpe Ratio: {data['sharpe_ratio']:.4f} (https://www.investopedia.com/terms/s/sharperatio.asp)\n")
file.write(f"Average True Range (ATR): {data['atr']:.4f} (https://www.investopedia.com/terms/a/atr.asp)\n")
file.write(f"Average Rate of Change (ROC): {data['avg_roc']:.2f}% (https://www.investopedia.com/terms/p/pricerateofchange.asp)\n")
file.write(f"Latest Rate of Change (ROC): {data['latest_roc']:.2f}%\n")
file.write(f"RSI: {data['rsi']:.2f} (https://www.investopedia.com/terms/r/rsi.asp)\n")
file.write(f"MACD: {data['macd']:.4f} (https://www.investopedia.com/terms/m/macd.asp)\n")
file.write(f"MACD Signal: {data['macd_signal']:.4f}\n")
file.write(f"Average Bollinger Bands Gap: ${data['avg_bb_gap']:.2f} (https://www.investopedia.com/terms/b/bollingerbands.asp)\n\n")
logging.info("✅ Text case file compiled successfully!")
return {"output_file": output_file, "temp_files": []}