forked from bengida1989/getWAKE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lift_force.m
278 lines (225 loc) · 13.6 KB
/
lift_force.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
function [x_c, time, CIRC_NORM, Cl_circ] = lift_force(A, INPUTS, U, DUDX, DUDY, VORTICITY, VORTICITY_w_thresh, vort_thresh, MASK, FLAG)
% LAST UPDATE IN: 19/05/2020
% By: Hadar Ben-Gida
% Update 1.6
% 1. The origin of the (X,Y) coordinate system of the PIV images is set at
% the bottom left corner of the image, where the x-axis points right and
% the y-axis points upwards.
% 2. The WAKE GUI is now reading .mat files that were generated by spatialbox,
% from .vec files of either INSIGHT or OPENPIV. This is done according to
% the value of the dy variable. dy>0 relates to OPENPIV .mat file. dy<0
% relates to INSIGHT .mat file.
% 3. OPENPIV saves PIV images with the y-axis originated at the upper left
% corner and pointing downwards. As a result, the v velocity component is
% flipped in sign. To solve this, when a .mat is loaded from OPENPIV, we
% flipped the y-axis, and change the sign of the v velocity component and
% the partial derivatives dv/dx and du/dx.
% 4. dy is taken positive throughout the wake and forces analyses, yet if
% the lsgradient function is used, dy value has to be negative. This is
% because the definition of our y-axis (positive upwards).
% 5. A minus sign SHOULD NOT BE before the integral of Xi, as it appeared
% in Panda and Zaman (1994, JFM). This is due to the fact that in our wake
% analysis we deinfe positive vorticity as counter-clockwise motion. In
% Theoderson (1935) unsteady lift theory positive vorticity is deinfed as
% clockwise rotation, since this motion exists on the upper surface of
% airfoils when these generate lift.
%% INPUTS
% A - .mat file consist with all the flow data
% INPUTS - Vector containing all the different paramters for the program
% INPUTS = [laser_dt, p_cm, dt, chord, wingspan, body_l, body_w, weight,...
% Uinf, density, viscosity, horizontal_cut, vertical_cut,...
% cycle_ni, cycle_nf];
% U - Streamwise velocity array of the final wake
% DUDX - du/dx array of the final wake
% DUDY - du/dy array of the final wake
% VORTICITY - Vorticity array of the final wake (no threshold)
% VORTICITY_w_thresh - Vorticity array of the final wake (with threshold)
% vort_thresh - corticity threshold
% MASK - masking options for the representation of vorticity in the wake
% FLAG - flag for determing the method of calculating the unsteady lift
%%
%% OUTPUTS
% x_c - Non-dimensional streamwise distacne along the wake
% time - Physical time of the wingbeats cycles [vector]
% CIRC_NORM - Estimation quantity of the vertical momentum (~lift) =>
% normalized circulation (Gamma) with the chord (c) and the free stream velocity (Uinf) [vector]
% Cl_circ - The circulatory lift coefficient [vector]
%%
%% METER TO PIXEL PARAMETERS
p_cm = INPUTS(2); %[pixel/cm]
m_p = (1/p_cm)/100; %[m/pixel]
%%
%% WING PARAMETERS
c = INPUTS(4); % body's characteristic length [m]
b = INPUTS(5); % body's wingspan [m] (includes the body width)
W = INPUTS(8); % body's weight [kg]
g = 9.81; % Gravitational acceleration [m/sec2]
bl = INPUTS(6); % body's length [m]
bw = INPUTS(7); % body's width [m]
%%
%% FLOW PARAMETERS
rho = INPUTS(10); % Air Density [kg/m3] at 14.8oC
Mu = INPUTS(11); %[Pa*sec] Air Viscosity
Uinf = INPUTS(9); % Free Stream Velocity [m/sec]
%%
%% GETTING THE FLOW QUANTITIES AND RE-DEFINE THE VELOVITY MAP SIZE
dt_laser = INPUTS(1); % [sec] Time difference between consecutive PIV images
dt = INPUTS(3); % [sec] Time difference between consecutive velocity maps
h_cut = INPUTS(12); % number of vectors we slice from the vertical edges of the PIV image
v_cut = INPUTS(13); % number of vectors we slice from the horizontal edges of the PIV image
A.x = A.x(1+v_cut:end-v_cut, 1+h_cut:end-h_cut);
x = (A.x - A.x(1,1)).*m_p; % x Coordinate [m]
A.y = A.y(1+v_cut:end-v_cut, 1+h_cut:end-h_cut);
dx = A.dx*m_p; %dx=16pixels * (meter/pixel)
dy = A.dy*m_p; %dy=16pixels * (meter/pixel)
% THE (X,Y) ORIGIN IS SET THE LEFT BOTTOM CORNER OF THE IMAGE
if dy < 0 % insight images (x,y) origin is at the left bottom corner of the image
dy = dy*(-1);
elseif dy > 0 % openpiv images (x,y) origin is at the left upper corner of the image
A.y = flip(A.y,1); % flipping the y axis to be at the left bootom corner of the image
A.v = -A.v; % Flipping the v-component velocity to fit the new y-axis origin
A.dvdx = -A.dvdx; % Flipping the dv/dx to fit the new y-axis origin
A.dudy = -A.dudy; % Flipping the du/dy to fit the new y-axis origin
end
y = (A.y - A.y(end,1)).*m_p; % y Coordinate [m]
y = y - (y(1)*0.5); % Placing the origin at the center of the Y-axis
% CALCULATING DERIVATIVES
[~, ~, nTime] = size(A.u);
for i=1:nTime
[A.dudx(:,:,i), A.dudy(:,:,i)] = lsgradient(A.u(:,:,i), A.dx, -abs(A.dy)); % dy must be negative in lsgradient
[A.dvdx(:,:,i), A.dvdy(:,:,i)] = lsgradient(A.v(:,:,i), A.dx, -abs(A.dy)); % dy must be negative in lsgradient
end
%% Computing the Fluctuating velocity maps based on the spatial average
% Uncomment in order to use the uf & vf computed from the Spatial ToolBox
% [~, ~, nTime] = size(A.u);
% for i = 1:nTime
% Uavg = mean(mean(A.u(:,:,i))); % getting the average streamwise velocity
% Vavg = mean(mean(A.v(:,:,i))); % getting the average vertical velocity
% A.uf(:,:,i) = A.u(:,:,i) - Uavg; % Computating the fluctuating streamwise velocity
% A.vf(:,:,i) = A.v(:,:,i) - Vavg; % Computating the fluctuating vertical velocity
% end
Uavg = mean(A.u,3); % getting the average streamwise velocity
Vavg = mean(A.v,3); % getting the average vertical velocity
A.uf = A.u - Uavg; % Computing the fluctuating streamwise velocity
A.vf = A.v - Vavg; % Computing the fluctuating vertical velocity
%%
%% Computing the 2nd order derivatives
[nRows_wake, nColumns_wake] = size(DUDX);
D2UDX2 = zeros(nRows_wake, nColumns_wake);
D2UDY2 = zeros(nRows_wake, nColumns_wake);
tmp = 1;
[D2UDX2, ~] = lsgradient(DUDX, dx, -abs(dy));
[~, D2UDY2] = lsgradient(DUDY, dx, -abs(dy));
%%
% Getting the different flow parameters (u, v, u', v', du/dx, du/dy,...)
A.u = A.u(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
u = A.u.*(m_p/dt_laser);
A.v = A.v(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
v = A.v.*(m_p/dt_laser);
A.uf = A.uf(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
uf = A.uf*(m_p/dt_laser);
A.vf = A.vf(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
vf = A.vf*(m_p/dt_laser);
A.dudx = A.dudx(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
dudx = A.dudx.*(1/dt_laser);
A.dvdx = A.dvdx(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
dvdx = A.dvdx.*(1/dt_laser);
A.dudy = A.dudy(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
dudy = A.dudy.*(1/dt_laser);
A.dvdy = A.dvdy(1+v_cut:end-v_cut, 1+h_cut:end-h_cut, :);
dvdy = A.dvdy.*(1/dt_laser);
vorticity = (dvdx - dudy);
[nRows, nColumns,~] = size(uf); % Getting the NEW velocity map size
%%
%% WINGBEAT TIME DATA
ni = INPUTS(14); % Wingbeat start at this image
nf = INPUTS(15); % Wingbeat ends at this image
nTime = nf - ni + 1; % Number of images for the wingbeat
%%
%% ESTIMATION OF THE VERTICAL MOMENTUM
switch FLAG
case 1 % Calculation based on Panda & Zaman 1994 (JFM) with Vorticity array of the final wake (not threshold)
[~, nColumns_wake] = size(VORTICITY);
u_Vort = U.*VORTICITY; % calculating the u*omega_z array
Diffusion_term = (Mu/rho).*(D2UDX2 + D2UDY2);
xi1 = sum(u_Vort,1).*dy; % Calculating the xi1 vector - summation of all the rows in each column of the wake
xi2 = sum(Diffusion_term,1).*dy; % Calculating the xi2 vector - summation of all the rows in each column of the wake
xi1 = fliplr(xi1); % Flip the order of the xi1 vector to account for the fact that the earliest wake is on the right
xi2 = fliplr(xi2); % Flip the order of the xi1 vector to account for the fact that the earliest wake is on the right
dt_wake = dx/Uinf; % Estimating the dt between two consecutive colmuns in the wake array
circ = cumtrapz(xi1).*dt_wake + cumtrapz(xi2).*dt_wake; % Circulation [m^2/sec] - Panda & Zaman 1994 (JFM) -> A MINUS SIGN DOES NOT EXIST BEFORE xi INTEGRAL DUE TO OUR DEFINITION OF POSITIVE VORTICITY AS COUNTER-CLOCKWISE
CIRC_NORM = (1/(Uinf*c)).*circ; % Normalized Circulation
Cl_circ = (2.*circ)./(c*Uinf); % Circulatory 2D lift coefficient, which accounts for the unsteady phenomenon - Cl = 2G/(U*c)
time = 0:dx./U:(nColumns_wake*dx-dx)./U; % physical time in [sec]
% Calculating the x/c vector
x_c = 0:dx:(nColumns_wake*dx-dx); % Actually only the final value is zero - corresponding to the last image (larger in #) taken
x_c = x_c./c;
x_c = fliplr(x_c); % To account for the fact that the earliest wake is the rightest
case 2 % Calculation based on Panda & Zaman 1994 (JFM) with Vorticity array of the final wake (with threshold)
[~, nColumns_wake] = size(VORTICITY_w_thresh);
u_Vort = U.*VORTICITY_w_thresh; % calculating the u*omega_z array
Diffusion_term = (Mu/rho).*(D2UDX2 + D2UDY2);
xi1 = sum(u_Vort,1).*dy; % Calculating the xi1 vector - summation of all the rows in each column of the wake
xi2 = sum(Diffusion_term,1).*dy; % Calculating the xi2 vector - summation of all the rows in each column of the wake
xi1 = fliplr(xi1); % Flip the order of the xi1 vector to account for the fact that the earliest wake is on the right
xi2 = fliplr(xi2); % Flip the order of the xi1 vector to account for the fact that the earliest wake is on the right
dt_wake = dx/Uinf; % Estimating the dt between two consecutive colmuns in the wake array
circ = cumtrapz(xi1).*dt_wake + cumtrapz(xi2).*dt_wake; % Circulation [m^2/sec] - Panda & Zaman 1994 (JFM) -> A MINUS SIGN DOES NOT EXIST BEFORE xi INTEGRAL DUE TO OUR DEFINITION OF POSITIVE VORTICITY AS COUNTER-CLOCKWISE
CIRC_NORM = (1/(Uinf*c)).*circ; % Normalized Circulation
Cl_circ = (2.*circ)./(c*Uinf); % Circulatory 2D lift coefficient, which accounts for the unsteady phenomenon - Cl = 2G/(U*c)
time = 0:dx./U:(nColumns_wake*dx-dx)./U; % physical time in [sec]
% Calculating the x/c vector
x_c = 0:dx:(nColumns_wake*dx-dx); % Actually only the final value is zero - corresponding to the last image (larger in #) taken
x_c = x_c./c;
x_c = fliplr(x_c); % To account for the fact that the earliest wake is the rightest
case 3 % Calculation based on Panda & Zaman 1994 (JFM) with Vorticity array of each PIV image
d2udx2 = zeros(nRows, nColumns, nTime);
d2udy2 = zeros(nRows, nColumns, nTime);
for i = 1:nTime
n = ni + i - 1; % image no.
time(i) = (i-1)*dt; % physical time in [sec]
VORTICITY_trsh(:,:,i) = vorticity_threshold(vorticity(:,:,n), 0, 'Vorticity', vort_thresh, MASK); % Thresholding on the vorticity
U_avg(:,i) = mean(u(:,:,n), 2); % getting the average streamwise velocity for each row in the PIV map
V_avg(i) = mean(mean(v(:,:,n), 2));
VORTICITY_trsh_avg(:,i) = mean(VORTICITY_trsh(:,:,i), 2); % getting the average vorticity for each row in the PIV map
u_Vort_avg = U_avg(:,i).*VORTICITY_trsh_avg(:,i); % calculating the <u>*<omega_z> array
% Computing the 2nd order derivatives
[d2udx2(:,:,i), ~] = lsgradient(dudx(:,:,n), dx, -abs(dy));
[~, d2udy2(:,:,i)] = lsgradient(dudy(:,:,n), dx, -abs(dy));
Diffusion_term = (Mu/rho).*(d2udx2(:,:,i) + d2udy2(:,:,i));
Diffusion_term_avg = mean(Diffusion_term, 2);
xi1(i) = sum(u_Vort_avg, 1).*dy; % Calculating the xi1 vector - summation of all the rows in each column of the wake
xi2(i) = sum(Diffusion_term_avg, 1).*dy; % Calculating the xi2 vector - summation of all the rows in each column of the wake
end
circ = cumtrapz(xi1).*dt + cumtrapz(xi2).*dt; % Circulation calculation [m^2/sec] - Panda & Zaman 1994 (JFM) -> A MINUS SIGN DOES NOT EXIST BEFORE xi INTEGRAL DUE TO OUR DEFINITION OF POSITIVE VORTICITY AS COUNTER-CLOCKWISE
CIRC_NORM = circ./(c*Uinf); % Normalized Circulation
Cl_circ = (2.*circ)./(c*Uinf); % Circulatory 2D lift coefficient, which accounts for the unsteady phenomenon - Cl = 2G/(U*c)
% Calculating the x/c vector
delta_x = dt*Uinf; % delta x in [m] between two consequtive PIV images
x_c = 0:delta_x:(delta_x*(nTime-1));
x_c = x_c./c;
x_c = fliplr(x_c);
case 4 % Calculation based on circulation summation
VORTICITY_trsh = zeros(nRows, nColumns, nTime);
CIRC_NORM = zeros(1,nTime);
CIRC_NORM(1) = 0;
Cl_circ = zeros(1,nTime);
Cl_circ(1) = 0;
circ = zeros(1,nTime);
circ(1) = 0;
time(1) = 0;
for i = 2:1:nTime
n = ni + i - 1; % image no.
time(i) = (i-1)*dt; % physical time in [sec]
VORTICITY_trsh(:,:,i) = vorticity_threshold(vorticity(:,:,n), 0, 'Vorticity', vort_thresh, MASK); % Thresholding on the vorticity
circ(i) = circ(i-1) + sum(sum(VORTICITY_trsh(:,:,i)))*dx*dy;
CIRC_NORM(i) = (1/(Uinf*c))*circ(i);
Cl_circ(i) = (2.*circ(i))./(c*Uinf); % Circulatory 2D lift coefficient, which accounts for the unsteady phenomenon - Cl = 2G/(U*c)
end
% Calculating the x/c vector
delta_x = dt*Uinf; % delta x in [m] between two consequtive PIV images
x_c = 0:delta_x:(delta_x*(nTime-1));
x_c = x_c./c;
x_c = fliplr(x_c); % To account for the fact that the earliest wake is the rightest
end
%%