-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_solver.py
68 lines (51 loc) · 1.8 KB
/
gen_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import opengen as og
import casadi.casadi as cs
# Nonconvex MPC for trajectory following
(nu, nx, N, ts) = (3, 3, 10, 1)
# q = Gain stepwise position deviation cost
# r = Gain acceleration cost
# qN = Gain terminal position deviation cost
(q, r, qN) = (0, 1, 1)
u = cs.SX.sym('u', nu*N)
z0 = cs.SX.sym('z0', nx + nx + nx)
(x, y, z, xref, yref, zref, v0x, v0y, v0z) = (z0[0], z0[1], z0[2], z0[3], z0[4], z0[5], z0[6], z0[7], z0[8])
cost = 0
# LCI = last control input
lci = [v0x, v0y, v0z]
for t in range(0, nu*N, nu):
cost += q*((x-xref)**2 + (y-yref)**2 + (z-zref)**2)
u_t = u[t:t+3]
dx = u_t[0]-lci[0]
dy = u_t[1]-lci[1]
dz = u_t[2]-lci[2]
cost += r * (dx**2 + dy**2 + dz**2)
x += ts * u_t[0]
y += ts * u_t[1]
z += ts * u_t[2]
lci[0] = u_t[0]
lci[1] = u_t[1]
lci[2] = u_t[2]
u0 = u[0:3]
cost += qN*((x-xref)**2 + (y-yref)**2 + (z-zref)**2)
f1 = cs.vertcat(u0[0] - v0x, u0[1] - v0y, u0[2] - v0z)
to_zero = og.constraints.Zero()
max_accel = og.constraints.BallInf(None, 0.4)
# set_c = og.constraints.CartesianProduct([2, nu*N + 2], [to_zero, max_accel])
umin = [-2.0] * (nu*N)
umax = [2.0] * (nu*N)
bounds = og.constraints.Rectangle(umin, umax)
problem = og.builder.Problem(u, z0, cost) \
.with_constraints(bounds) \
.with_aug_lagrangian_constraints(f1, to_zero)
build_config = og.config.BuildConfiguration()\
.with_build_directory("solver")\
.with_build_mode("release")
meta = og.config.OptimizerMeta()\
.with_optimizer_name("navigation")
solver_config = og.config.SolverConfiguration()\
.with_tolerance(1e-5)
builder = og.builder.OpEnOptimizerBuilder(problem,
meta,
build_config,
solver_config)
builder.build()