From 47ac24d829abbe2dd027e97d0d1e583a436359f2 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Thu, 14 Sep 2023 12:04:48 +0200 Subject: [PATCH 01/20] add metadata class for flash in docs --- docs/sed/loader.rst | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/docs/sed/loader.rst b/docs/sed/loader.rst index 59cc26ed..5d28919b 100644 --- a/docs/sed/loader.rst +++ b/docs/sed/loader.rst @@ -31,6 +31,10 @@ FlashLoader :members: :undoc-members: +.. automodule:: sed.loader.flash.metadata + :members: + :undoc-members: + Utilities ################################################### .. automodule:: sed.loader.utils From 30c248bd7ed81f33890cb5fd7edac9237ac4f459 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Wed, 4 Oct 2023 11:10:13 +0200 Subject: [PATCH 02/20] adding example data first try --- docs/conf.py | 64 +++++++++++++++++++++----------------- docs/examples/example.rst | 2 -- docs/examples/examples.rst | 4 +++ docs/index.rst | 2 +- 4 files changed, 40 insertions(+), 32 deletions(-) delete mode 100644 docs/examples/example.rst create mode 100644 docs/examples/examples.rst diff --git a/docs/conf.py b/docs/conf.py index fa9e0dc6..32086162 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -3,33 +3,33 @@ # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html - # -- Path setup -------------------------------------------------------------- - # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys -sys.path.insert(0, os.path.abspath('..')) + +sys.path.insert(0, os.path.abspath("..")) import tomlkit + # -- Project information ----------------------------------------------------- def _get_project_meta(): - with open('../pyproject.toml') as pyproject: + with open("../pyproject.toml") as pyproject: file_contents = pyproject.read() - return tomlkit.parse(file_contents)['tool']['poetry'] + return tomlkit.parse(file_contents)["tool"]["poetry"] pkg_meta = _get_project_meta() -project = str(pkg_meta['name']) -copyright = '2022, OpenCOMPES team' -author = 'OpenCOMPES team' +project = str(pkg_meta["name"]) +copyright = "2023, OpenCOMPES team" +author = "OpenCOMPES team" # The short X.Y version -version = str(pkg_meta['version']) +version = str(pkg_meta["version"]) # The full version, including alpha/beta/rc tags release = version @@ -38,46 +38,52 @@ def _get_project_meta(): # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. -extensions = ['sphinx_rtd_theme','sphinx.ext.autodoc','sphinx.ext.napoleon', -'sphinx.ext.todo','sphinx.ext.coverage','sphinx.ext.autosummary', -'sphinx.ext.coverage','sphinx_autodoc_typehints'] +extensions = [ + "sphinx_rtd_theme", + "sphinx.ext.autodoc", + "sphinx.ext.napoleon", + "sphinx.ext.todo", + "sphinx.ext.coverage", + "sphinx.ext.autosummary", + "sphinx.ext.coverage", + "sphinx_autodoc_typehints", +] -autoclass_content = 'class' -autodoc_member_order = 'bysource' +autoclass_content = "class" +autodoc_member_order = "bysource" autodoc_mock_imports = [ - 'astor', - 'pep8ext_naming', - 'flake8_builtins', - 'flake8_quotes', + "astor", + "pep8ext_naming", + "flake8_builtins", + "flake8_quotes", ] -autodoc_member_order = 'bysource' +autodoc_member_order = "bysource" autodoc_default_options = { - 'members': True, - 'undoc-members': True, - 'exclude-members': '__dict__,__weakref__', - 'show-inheritance': True, + "members": True, + "undoc-members": True, + "exclude-members": "__dict__,__weakref__", + "show-inheritance": True, } - # Set `typing.TYPE_CHECKING` to `True`: # https://pypi.org/project/sphinx-autodoc-typehints/ napoleon_use_param = True always_document_param_types = True typehints_use_rtype = False typehints_fully_qualified = True -typehints_defaults = 'comma' +typehints_defaults = "comma" # Add any paths that contain templates here, relative to this directory. -templates_path = ['_templates'] +templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. -exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] +exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- @@ -85,9 +91,9 @@ def _get_project_meta(): # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # -html_theme = 'sphinx_rtd_theme' +html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". -html_static_path = ['_static'] \ No newline at end of file +html_static_path = ["_static"] diff --git a/docs/examples/example.rst b/docs/examples/example.rst deleted file mode 100644 index 495d503b..00000000 --- a/docs/examples/example.rst +++ /dev/null @@ -1,2 +0,0 @@ -Use notebook to fill -=================================================== \ No newline at end of file diff --git a/docs/examples/examples.rst b/docs/examples/examples.rst new file mode 100644 index 00000000..1476af8b --- /dev/null +++ b/docs/examples/examples.rst @@ -0,0 +1,4 @@ +Examples +=================================================== + +1 - Binning fake data.rst diff --git a/docs/index.rst b/docs/index.rst index c73bb857..d0cf2cff 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -21,7 +21,7 @@ Single-Event DataFrame (SED) documentation :numbered: :caption: Examples - examples/example + examples/1 - Binning fake data .. toctree:: :maxdepth: 2 From 62ce18a1ae765c4dd4363eba17c108ba8089cee1 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Thu, 5 Oct 2023 15:54:59 +0200 Subject: [PATCH 03/20] tutorial files and index.rst edited for docs --- .../Binning Benchmarks.ipynb | 0 docs/examples/examples.rst | 4 -- docs/index.rst | 5 +- tutorial/1 - Binning fake data.ipynb | 12 ++--- ... of example time-resolved ARPES data.ipynb | 13 ++--- ...for example time-resolved ARPES data.ipynb | 53 ++++++++++--------- ...adata collection and export to NeXus.ipynb | 4 +- 7 files changed, 46 insertions(+), 45 deletions(-) rename {tutorial => benchmarks}/Binning Benchmarks.ipynb (100%) delete mode 100644 docs/examples/examples.rst diff --git a/tutorial/Binning Benchmarks.ipynb b/benchmarks/Binning Benchmarks.ipynb similarity index 100% rename from tutorial/Binning Benchmarks.ipynb rename to benchmarks/Binning Benchmarks.ipynb diff --git a/docs/examples/examples.rst b/docs/examples/examples.rst deleted file mode 100644 index 1476af8b..00000000 --- a/docs/examples/examples.rst +++ /dev/null @@ -1,4 +0,0 @@ -Examples -=================================================== - -1 - Binning fake data.rst diff --git a/docs/index.rst b/docs/index.rst index d0cf2cff..f016b7be 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -21,7 +21,10 @@ Single-Event DataFrame (SED) documentation :numbered: :caption: Examples - examples/1 - Binning fake data + tutorial/1_Binningfakedata.rst + tutorial/2_Binningofexampletime_resolvedARPESdata.rst + tutorial/3_ConversionPipelineforexampletime_resolvedARPESdata.rst + tutorial/4_MetadatacollectionandexporttoNeXus.rst .. toctree:: :maxdepth: 2 diff --git a/tutorial/1 - Binning fake data.ipynb b/tutorial/1 - Binning fake data.ipynb index 6b4ab0b3..876983c4 100644 --- a/tutorial/1 - Binning fake data.ipynb +++ b/tutorial/1 - Binning fake data.ipynb @@ -7,7 +7,7 @@ "tags": [] }, "source": [ - "# Binning demonstration on locally generated fake data\n", + "### Binning demonstration on locally generated fake data\n", "In this example, we generate a table with random data simulating a single event dataset.\n", "We showcase the binning method, first on a simple single table using the bin_partition method and then in the distributed mehthod bin_dataframe, using daks dataframes.\n", "The first method is never really called directly, as it is simply the function called by the bin_dataframe on each partition of the dask dataframe." @@ -39,7 +39,7 @@ "id": "42a6afaa-17dd-4637-ba75-a28c4ead1adf", "metadata": {}, "source": [ - "# Generate Fake Data" + "## Generate Fake Data" ] }, { @@ -60,7 +60,7 @@ "id": "6902fd56-1456-4da6-83a4-0f3f6b831eb6", "metadata": {}, "source": [ - "# Define the binning range" + "## Define the binning range" ] }, { @@ -81,7 +81,7 @@ "id": "00054b5d-fc96-4959-b562-7cb8545a9535", "metadata": {}, "source": [ - "# Compute the binning along the pandas dataframe" + "## Compute the binning along the pandas dataframe" ] }, { @@ -118,7 +118,7 @@ "id": "e632dc1d-5eb5-4621-8bef-4438ce2c6a0c", "metadata": {}, "source": [ - "# Transform to dask dataframe" + "## Transform to dask dataframe" ] }, { @@ -137,7 +137,7 @@ "id": "01066d40-010a-490b-9033-7339e5a21b26", "metadata": {}, "source": [ - "# compute distributed binning on the partitioned dask dataframe\n", + "## compute distributed binning on the partitioned dask dataframe\n", "In this example, the small dataset does not give significant improvement over the pandas implementation, at least using this number of partitions.\n", "A single partition would be faster (you can try...) but we use multiple for demonstration purpouses." ] diff --git a/tutorial/2 - Binning of example time-resolved ARPES data.ipynb b/tutorial/2 - Binning of example time-resolved ARPES data.ipynb index 92982d31..605ad175 100644 --- a/tutorial/2 - Binning of example time-resolved ARPES data.ipynb +++ b/tutorial/2 - Binning of example time-resolved ARPES data.ipynb @@ -7,7 +7,7 @@ "tags": [] }, "source": [ - "# Binning example time-resolved ARPES data stored on Zenode\n", + "# Binning example time-resolved ARPES data stored on Zenodo\n", "In this example, we pull some time-resolved ARPES data from Zenodo, and generate a dask dataframe using the methods of the mpes package. It requires the mpes package to be installed, in addition to the sed package.\n", "For performance reasons, best store the data on a locally attached storage (no network drive)." ] @@ -25,6 +25,7 @@ "\n", "import matplotlib.pyplot as plt\n", "from mpes import fprocessing as fp\n", + "\n", "import os\n", "import shutil\n", "\n", @@ -37,7 +38,7 @@ "id": "42a6afaa-17dd-4637-ba75-a28c4ead1adf", "metadata": {}, "source": [ - "# Load Data" + "## Load Data" ] }, { @@ -73,7 +74,7 @@ "id": "6902fd56-1456-4da6-83a4-0f3f6b831eb6", "metadata": {}, "source": [ - "# Define the binning range" + "## Define the binning range" ] }, { @@ -104,7 +105,7 @@ "id": "01066d40-010a-490b-9033-7339e5a21b26", "metadata": {}, "source": [ - "# compute distributed binning on the partitioned dask dataframe\n", + "## compute distributed binning on the partitioned dask dataframe\n", "We generated 100 dataframe partiions from the 100 files in the dataset, which we will bin parallelly with the dataframe binning function into a 3D grid" ] }, @@ -141,7 +142,7 @@ "id": "4a3eaf0e", "metadata": {}, "source": [ - "# Compare to MPES binning" + "## Compare to MPES binning" ] }, { @@ -170,7 +171,7 @@ "id": "e3398aac", "metadata": {}, "source": [ - "# Test the class and the histogram function" + "## Test the class and the histogram function" ] }, { diff --git a/tutorial/3 - Conversion Pipeline for example time-resolved ARPES data.ipynb b/tutorial/3 - Conversion Pipeline for example time-resolved ARPES data.ipynb index 13633790..f9499691 100644 --- a/tutorial/3 - Conversion Pipeline for example time-resolved ARPES data.ipynb +++ b/tutorial/3 - Conversion Pipeline for example time-resolved ARPES data.ipynb @@ -8,7 +8,7 @@ "tags": [] }, "source": [ - "# Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenode\n", + "# Demonstration of the conversion pipeline using time-resolved ARPES data stored on Zenodo\n", "In this example, we pull some time-resolved ARPES data from Zenodo, and load it into the sed package using functions of the mpes package. Then, we run a conversion pipeline on it, containing steps for visualizing the channels, correcting image distortions, calibrating the momentum space, correcting for energy distortions and calibrating the energy axis. Finally, the data are binned in calibrated axes.\n", "For performance reasons, best store the data on a locally attached storage (no network drive). This can also be achieved transparently using the included MirrorUtil class." ] @@ -37,7 +37,7 @@ "id": "42a6afaa-17dd-4637-ba75-a28c4ead1adf", "metadata": {}, "source": [ - "# Load Data" + "## Load Data" ] }, { @@ -123,8 +123,9 @@ "id": "70aa4343", "metadata": {}, "source": [ - "# Distortion correction and Momentum Calibration workflow\n", - "### 1. step: \n", + "## Distortion correction and Momentum Calibration workflow\n", + "### Distortion correction\n", + "#### 1. step: \n", "Bin and load part of the dataframe in detector coordinates, and choose energy plane where high-symmetry points can well be identified. Either use the interactive tool, or pre-select the range:" ] }, @@ -145,7 +146,7 @@ "id": "fee3ca76", "metadata": {}, "source": [ - "### 2. Step:\n", + "#### 2. Step:\n", "Next, we select a number of features corresponding to the rotational symmetry of the material, plus the center. These can either be auto-detected (for well-isolated points), or provided as a list (these can be read-off the graph in the cell above).\n", "These are then symmetrized according to the rotational symmetry, and a spline-warping correction for the x/y coordinates is calculated, which corrects for any geometric distortions from the perfect n-fold rotational symmetry." ] @@ -176,7 +177,7 @@ "id": "f7519ff8", "metadata": {}, "source": [ - "### 3. Step: \n", + "#### 3. Step: \n", "Generate nonlinear correction using splinewarp algorithm. If no landmarks have been defined in previous step, default parameters from the config are used" ] }, @@ -217,7 +218,7 @@ "id": "b5e69ffa", "metadata": {}, "source": [ - "### 4. Step:\n", + "#### 4. Step:\n", "To adjust scaling, position and orientation of the corrected momentum space image, you can apply further affine transformations to the distortion correction field. Here, first a postential scaling is applied, next a translation, and finally a rotation around the center of the image (defined via the config). One can either use an interactive tool, or provide the adjusted values and apply them directly." ] }, @@ -238,7 +239,7 @@ "id": "a78a68e9", "metadata": {}, "source": [ - "### 5. Step:\n", + "#### 5. Step:\n", "Finally, the momentum correction is applied to the dataframe, and corresponding meta data are stored" ] }, @@ -258,8 +259,8 @@ "id": "d9810488", "metadata": {}, "source": [ - "## Momentum calibration workflow\n", - "### 1. Step:\n", + "### Momentum calibration workflow\n", + "#### 1. Step:\n", "First, the momentum scaling needs to be calibtrated. Either, one can provide the coordinates of one point outside the center, and provide its distane to the Brillouin zone center (which is assumed to be located in the center of the image), one can specify two points on the image and their distance (where the 2nd point marks the BZ center),or one can provide absolute k-coordinates of two distinct momentum points.\n", "\n", "If no points are provided, an interactive tool is created. Here, left mouse click selectes the off-center point (brillouin_zone_cetnered=True) or toggle-selects the off-center and center point." @@ -285,7 +286,7 @@ "id": "1a3697b1", "metadata": {}, "source": [ - "#### Optional (Step 1a): \n", + "##### Optional (Step 1a): \n", "Save momentum calibration parameters to configuration file in current data folder: " ] }, @@ -306,7 +307,7 @@ "id": "c2f8a513", "metadata": {}, "source": [ - "### 2. Step:\n", + "#### 2. Step:\n", "Now, the distortion correction and momentum calibration needs to be applied to the dataframe." ] }, @@ -326,7 +327,7 @@ "id": "0bce2388", "metadata": {}, "source": [ - "# Energy Correction (optional)\n", + "## Energy Correction (optional)\n", "The purpose of the energy correction is to correct for any momentum-dependent distortion of the energy axis, e.g. from geometric effects in the flight tube, or from space charge" ] }, @@ -336,7 +337,7 @@ "id": "5289de59", "metadata": {}, "source": [ - "### 1st step:\n", + "#### 1st step:\n", "Here, one can select the functional form to be used, and adjust its parameters. The binned data used for the momentum calibration is plotted around the Fermi energy (defined by tof_fermi), and the correction function is plotted ontop. Possible correction functions are: \"sperical\" (parameter: diameter), \"Lorentzian\" (parameter: gamma), \"Gaussian\" (parameter: sigma), and \"Lorentzian_asymmetric\" (parameters: gamma, amplitude2, gamma2).\n", "\n", "One can either use an interactive alignment tool, or provide parameters directly." @@ -358,7 +359,7 @@ "id": "e43fbf33", "metadata": {}, "source": [ - "#### Optional (Step 1a): \n", + "##### Optional (Step 1a): \n", "Save energy correction parameters to configuration file in current data folder: " ] }, @@ -379,7 +380,7 @@ "id": "41a6a3e6", "metadata": {}, "source": [ - "### 2. Step\n", + "#### 2. Step\n", "After adjustment, the energy correction is directly applied to the TOF axis." ] }, @@ -399,7 +400,7 @@ "id": "8b571b4c", "metadata": {}, "source": [ - "# 3. Energy calibration\n", + "## 3. Energy calibration\n", "For calibrating the energy axis, a set of data taken at different bias voltages around the value where the measurement was taken is required." ] }, @@ -409,7 +410,7 @@ "id": "6bc28642", "metadata": {}, "source": [ - "### 1. Step:\n", + "#### 1. Step:\n", "In a first step, the data are loaded, binned along the TOF dimension, and normalized. The used bias voltages can be either provided, or read from attributes in the source files if present." ] }, @@ -434,7 +435,7 @@ "id": "314a79c8", "metadata": {}, "source": [ - "### 2. Step:\n", + "#### 2. Step:\n", "Next, the same peak or feature needs to be selected in each curve. For this, one needs to define \"ranges\" for each curve, within which the peak of interest is located. One can either provide these ranges manually, or provide one range for a \"reference\" curve, and infer the ranges for the other curves using a dynamic time warping algorithm." ] }, @@ -462,7 +463,7 @@ "id": "b2638818", "metadata": {}, "source": [ - "### 3. Step:\n", + "#### 3. Step:\n", "Next, the detected peak positions and bias voltages are used to determine the calibration function. This can be either done by fitting the functional form d^2/(t-t0)^2 via lmfit (\"lmfit\"), or using a polynomial approxiamtion (\"lstsq\" or \"lsqr\"). Here, one can also define a reference id, and a reference energy. Those define the absolute energy position of the feature used for calibration in the \"reference\" trace, at the bias voltage where the final measurement has been performed. The energy scale can be either \"kientic\" (decreasing energy with increasing TOF), or \"binding\" (increasing energy with increasing TOF).\n", "\n", "After calculating the calibration, all traces corrected with the calibration are plotted ontop of each other, the calibration function together with the extracted features is plotted." @@ -488,7 +489,7 @@ "id": "df63c6c7", "metadata": {}, "source": [ - "#### Optional (Step 3a): \n", + "##### Optional (Step 3a): \n", "Save energy calibration parameters to configuration file in current data folder: " ] }, @@ -509,7 +510,7 @@ "id": "563709c7", "metadata": {}, "source": [ - "### 4. Step:\n", + "#### 4. Step:\n", "Finally, the the energy axis is added to the dataframe." ] }, @@ -529,7 +530,7 @@ "id": "b2d8cdf9", "metadata": {}, "source": [ - "# 4. Delay calibration:\n", + "## 4. Delay calibration:\n", "The delay axis is calculated from the ADC input column based on the provided delay range. ALternatively, the delay scan range can also be extracted from attributes inside a source file, if present." ] }, @@ -554,7 +555,7 @@ "id": "d9d0b018", "metadata": {}, "source": [ - "# 5. Visualization of calibrated histograms\n", + "## 5. Visualization of calibrated histograms\n", "With all calibrated axes present in the dataframe, we can visualize the corresponding histograms, and determine the respective binning ranges" ] }, @@ -576,7 +577,7 @@ "id": "6902fd56-1456-4da6-83a4-0f3f6b831eb6", "metadata": {}, "source": [ - "# Define the binning ranges and compute calibrated data volume" + "## Define the binning ranges and compute calibrated data volume" ] }, { @@ -598,7 +599,7 @@ "id": "523794dc", "metadata": {}, "source": [ - "# Some visualization:" + "## Some visualization:" ] }, { diff --git a/tutorial/4 - Metadata collection and export to NeXus.ipynb b/tutorial/4 - Metadata collection and export to NeXus.ipynb index f7e629ec..506e3979 100644 --- a/tutorial/4 - Metadata collection and export to NeXus.ipynb +++ b/tutorial/4 - Metadata collection and export to NeXus.ipynb @@ -36,7 +36,7 @@ "id": "42a6afaa-17dd-4637-ba75-a28c4ead1adf", "metadata": {}, "source": [ - "# Load Data" + "## Load Data" ] }, { @@ -246,7 +246,7 @@ "id": "6902fd56-1456-4da6-83a4-0f3f6b831eb6", "metadata": {}, "source": [ - "# Compute final data volume" + "## Compute final data volume" ] }, { From 3ae3cfd0c810f6a71d99711a5c687d6a5eafeea4 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Thu, 5 Oct 2023 15:56:02 +0200 Subject: [PATCH 04/20] workflow for auto generation of tutorial docs --- .github/workflows/document_tutorials.yml | 103 +++++++++++++++++++++++ 1 file changed, 103 insertions(+) create mode 100644 .github/workflows/document_tutorials.yml diff --git a/.github/workflows/document_tutorials.yml b/.github/workflows/document_tutorials.yml new file mode 100644 index 00000000..f362e263 --- /dev/null +++ b/.github/workflows/document_tutorials.yml @@ -0,0 +1,103 @@ +name: Convert Tutorial Files + +on: + push: + branches: [documentation] + +jobs: + build: + runs-on: ubuntu-latest # You can specify a different runner if needed + + steps: + - name: Checkout code + uses: actions/checkout@v3 + + - name: Set up Python + uses: actions/setup-python@v2 + with: + python-version: 3.8 # Specify the Python version you need + + - name: Install dependencies + run: pip install jupyter nbconvert + + - name: Run Conversion Script + run: | + python - < Date: Thu, 5 Oct 2023 15:56:36 +0200 Subject: [PATCH 05/20] tutorial file with outputs for testing --- tutorial/1 - Binning fake data.ipynb | 288 +++++++++++++++++++++++++-- 1 file changed, 274 insertions(+), 14 deletions(-) diff --git a/tutorial/1 - Binning fake data.ipynb b/tutorial/1 - Binning fake data.ipynb index 876983c4..780fbe7a 100644 --- a/tutorial/1 - Binning fake data.ipynb +++ b/tutorial/1 - Binning fake data.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "fb045e17-fa89-4c11-9d51-7f06e80d96d5", "metadata": {}, "outputs": [], @@ -44,10 +44,130 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "2aa8df59-224a-46a2-bb77-0277ff504996", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
posxposyenergy
0-0.362674-0.462987-0.313282
11.1578371.5798960.178071
20.440438-1.116066-0.788611
3-0.0609990.0795401.489276
4-1.711246-0.590136-0.737433
............
999950.139515-1.9443550.167461
999960.4578061.270533-1.141602
999970.207229-0.0270700.633256
999980.3986841.295541-0.569704
999990.1390920.8467530.118386
\n", + "

100000 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " posx posy energy\n", + "0 -0.362674 -0.462987 -0.313282\n", + "1 1.157837 1.579896 0.178071\n", + "2 0.440438 -1.116066 -0.788611\n", + "3 -0.060999 0.079540 1.489276\n", + "4 -1.711246 -0.590136 -0.737433\n", + "... ... ... ...\n", + "99995 0.139515 -1.944355 0.167461\n", + "99996 0.457806 1.270533 -1.141602\n", + "99997 0.207229 -0.027070 0.633256\n", + "99998 0.398684 1.295541 -0.569704\n", + "99999 0.139092 0.846753 0.118386\n", + "\n", + "[100000 rows x 3 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "n_pts = 100000\n", "cols = [\"posx\", \"posy\", \"energy\"]\n", @@ -65,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "a7601cd7-cd51-40a9-8fc7-8b7d32ff15d0", "metadata": {}, "outputs": [], @@ -86,10 +206,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "758a0e95-7a03-4d44-9dae-e6bd2334554c", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.3 s, sys: 95.4 ms, total: 1.39 s\n", + "Wall time: 2.49 s\n" + ] + } + ], "source": [ "%%time\n", "res = bin_partition(\n", @@ -103,10 +232,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "c4f2b55f-11b3-4456-abd6-b0865749df96", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAEFCAYAAAAfe1P5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9SZNtSZYWCn5LVXd7OjO7vXcZkWRSSfNeIkWTk5IaIcKoRCipAUOEeTLJEUxAGDFlAD+CmlcJEyYlTx5SlAAi8HhAdtF4uPttrTnt7lRXDT5V3ceuXyc8eUFkuGNLxCXimh07Z5+9VZeu5vu+JaqqeLAHe7AHe7AHe7AHe7AHe7AH+yWa+dO+gAd7sAd7sAd7sAd7sAd7sAf7H88eEpEHe7AHe7AHe7AHe7AHe7AH+6XbQyLyYA/2YA/2YA/2YA/2YA/2YL90e0hEHuzBHuzBHuzBHuzBHuzBHuyXbg+JyIM92IM92IM92IM92IM92IP90u0hEXmwB3uwB3uwB3uwB3uwB3uwX7o9JCIP9mAP9mAP9mAP9mAP9mAP9ku3h0TkwR7swR7swR7swR7swR7swX7p9pCIPNiDPdiDPdiDPdiDPdiDPdgv3R4SkQd7sAd7sAd7sAd7sAd7sAf7pdufWiLyz/7ZP8MPfvAD1HWN3/md38G//tf/+k/rUh7swR7sV9gefMWDPdiDfRt78BUP9mDfPftTSUT++T//5/i93/s9/MN/+A/xb//tv8Vv//Zv42/8jb+B169f/2lczoM92IP9itqDr3iwB3uwb2MPvuLBHuy7aaKq+sv+0N/5nd/BX/2rfxX/9J/+UwBACAGffvop/u7f/bv4e3/v7/3cvw8h4Msvv8RqtYKI/Pe+3Ad7sO+9qSp2ux0++ugjGPOrg9h88BUP9mC/WvZ99BUPfuLBHuwXb9/WV7hf4jUBAIZhwL/5N/8Gf//v//38M2MM/vpf/+v4V//qX33wb/q+R9/3+d9ffPEF/vyf//P/3a/1wR7sfzT7/PPP8cknn/xpXwaAB1/xYA/2q2zfZV/x4Cce7MF+efbzfMUvPRF5+/YtvPd49uzZvZ8/e/YM//k//+cP/s0//sf/GP/oH/2jr/38/9r8P+CkgI4eOg4f/kBjYeryw7+zFlLVgJ+gfQ8dRqj3cL/2CdQY+B//DAj+3p9IVUFszOxi5USqCrJaQG/u4Lc7/ttZSF0DqtC+hxQOcPN1aN8BIfASVyv4j65g3+0Q3rzL12Y2a2DymF6+gjgHqUpIWQLWQeoSSNcxTgh32/kzhh46TQinju/f1BDngLqG7vcIpw72z/wA2laQn37J7xA/S8cJuFwjtCXsmztgnIC6/NpnhN0OOk5wL54CAMLtHXTy0L6HWS15X40A3sPf3MGUDubZE35GP0JWLbQsgNfvoMOHn53ZrIHCAd0AFA7+yQZm3wN3O37HYUTohvyMpCj5N366955S17znXQfz6BLDJ49QvNkDdztIWcz3sRswvXoNU1eQ5QqYBug4IRxPwHuNQ3t5AVkvods9NB1ocT1JXUKXLeRmi7Db3X8OVQVZL/N9wOMLhKqA+fwldBzn9TgM0H6ATlNea/byAlCFv7mdr/H8Wf83NDelKCGFxXDc4X/B/wur1epP/B7/vewX6iuq/ztMH/I+undv3zOzaCGLBcLN3df8imkbyHLJfXQ8wbQNYC0QAsRaoK6BcYQOA8KpB4Lna0JA6Ho+t/U6v0aaNvsTnSZo1+XPkqoCnAO6DnAO4QfPYY4j9PMvISV9gb+94z786BnXcTdAx3FekwDCqYcYgf3oGa8VAI4dwvFIH2QMzOUG8AHTV69hFg3Mo0vu/clz/wPwX7wExMBeXeTPkLqGFAV0swR8QPjx59CgME2Vr1H7DuoDPyMo/Yg1QFkByxZaVzDbPT8P4Peoznz2MAI+8DOCAq/eAEXB/Xc4QQ+HfK8BwKyW0D/7GWTwMPsTdHeEno4wlxfQsoDWFSQESP8Bv3Pq6cdOx+zP7NUlZLOC3m6h0wRpGmCa4K9v7j0rKQvuXw38nRiYpppfU9eAtdDTKfv+Dz3rvJ/f+/vzNSvOwVxdAkMPf7u9/x1EYK8u+Tdn6+l9f2KaOp9hOkzQcYC9WAOu5PUnv/renpkw4n/B//s77Su+yU/8X+T/hrJd5vvxre38fhrDWKLvYdcr+oTz5xr9tFm0MMsl90c8Z8RaPlfvoV13/zpE6Eu8py9pG5j1GuH2Nv87nfNpXaS1G169mf0VwM9yDtLU81d49gTalAi1g0wB5u4ImSagH+99VfWB1xy/o1ktYRYLTJ8+Rqgsyp++y3+j0/2z2FxuAAD+y1cwyxb6yXOY7QHh5o6xjRiE21ueyz/4FDKMkN0hf3++qd67Dn6hAI37Wf7cn4E6A/OjL/jvquZ5ms7UoLwvzjI+Wy0wXS1gRg8ZPcztHlBF2Kwg3kNud0BbIyxqmN0ReurpkwH6grpEWC8gwwQZRujdDtr3vN9VCfPiGXS7h393nWPDc38lVQV7sck+NZzou90nz/nVbu7oV9YL4Ppm3u/Gwj6+AoLeiyf5uxjTeM/4JT3jooSU7t65k5/r6XQvfk33+vzvk93zE8AH/ZSpK0wO+P/s/58/11f80hOR/xb7+3//7+P3fu/38r+32y0+/fRT2MnAioEGBaTIv5eKN4WHsUCm+YZLzURCxwlQAN3ExTgZSNEAlYEZACDAlNz0AKDecwNMAtH4fiY6H2OBXgFbwS4MnYER6Bh4cEoJTACmCWa15CFbL7hJ9wfIBLi7CXqcIJPhApECJlgoBFIuIHUFs1zEDTXCFAaApcPyBrZsGWQYC4hCxUALw2us6hiAWKBdA9UCEiy0U0ALwAgkOEAFagwQLDBaYBLAC9ArxBTAk+eAD7wPzZKOYRyhPvDzKwOs4/e3lvc/KGyzpNNLn+EMBAVUHeBqwFaQtuU9nSZeqzX8LK9QLxBrIa6GtA4CB9zcIRw93HIDsQZS11BVBi22AhYt0PdQVZh1PJR1B5kM7O0E6QJ0io7NKD/XB5jFJj6/EhBAIdAiJpzW5A1u6iW0WgDoEMIEk9ZcN0GCgfgOOgJGSqAt6SinADGACQ7qFQgGsu0B56FlC5gJOoxAACAlVBSanK8IrGFwZhd05ugmwIPP38Vka5oA4f3Ka/ZDJumeOkAMtGiBEd95WMI3+gpvYMUCaiGjQAP3mDi6wPOkREaBdB5y/hoxTMKthQQDlRJaAJgMMCkAgQQA8Fyzo/CZaOBrjIVb1AxWbQXtA8IoMCWAwM8Xa4DFBTAOCIcTjDMABDoCCIribgJGjyAlJFjAC0QdFAo7gOvYC6AWKrFo4RzUxkRYCwAWWpWQURA0JvEBMCiB0sBePKI/6LnvEOL+F4FdX/F3ZQOUAFrl4afKvSwKbde8h/G+wgtQLvl3o/D7LDZMXtoacBZqDIwZudZPHWACRB39iyq09/TDFyVgQX9a1NDlBqZX+PGI8tkLoCig+wMD+hM/W0wFNRPUBuDyEbR2MMcBUA8xEpOt+OxVoaeJfkRKwHhoYWDU0l/Yij8PAngDUy64x4KHcTWkqABXAN5D4nkko/CZlyXPmwnQSaBKPymFA6oqPivL34Vh9hlj4LqwFqgKoALPLgDSeWDU/FlATIic4/0DoFLGMyLMa76q6B/GCVI4SFVBZYCCewMhwKS1CwBi6Bvi+WhtALbfbV/xTX7CwcKe+Ydk9/zE+/7VWBYhsgtRSFFD2hXvXeAeVm9g4CBlCXOx4f31PINVDIJMgBrYSQClj0FVAmWD0DFw5R5ysIWBuAZGCmizgtoa6j1kBKQtud/kBDMJTK/QasH3S89sUdKXxSQTzvG8P3hoD76uXkB2R4TTKcc0cA5SCNRVgOnghwAjJYwpYY/gmRdjCgBQEagGrkFVmP0IWAN79RRSFtBBIFrw/CkKiAh0fcXrgQMEEFPG2MZwf3vPAqWrIOsL+iAfoIcj/ai3gBpIu4FO0XfAQQWQRQMUDrJa8j50PeAN3BHQooTWAusmxhHHifGbKenDDx7wFrAVtDRcB1XD19ww0YT3fH1TAosLfsdmAekVpjhBjAPEImDimeIcxJUQL4BrgLKFYg/1HjY4IAT4ERCdINJDe+53iT5DTAlAoToBKVQo4pl+OkHVwi02Mf6Y4llm49nGz1dl/KMoYIoGUO73+G6wZ35OHNcvggWGAAETFhkl+6kUt4g3/Dv8fF/xS09EHj9+DGstXr16de/nr169wvPnzz/4N1VVoaqqr/1cxwEqXw+0TNsCRuCHgYfLWWXDLBqgKBnkjiPCeQWyXkHqGiEudrGWG0AEGEa+T/DQs0oRipI/2x+4MBaLeHEB4e6aVa26go6sbJiLDXTBqgQmDxxP0FPH/4ZYsTKs2OnI1SBlAbNooZdr4NVbhN0uBvsGeup4nVXFzR/i/RAegDCG1xh/J00DOMsNONE5wCvQD9l5SDfEin0fD70eslqyI3EaIccO/vEaoTBwv/8zaD+wMtrW0EXDA26c+N3GiffESP4+AAAfIJjocJyDf7phQDRM0MJCnYF9cwc9svICE6sXpYOWDmZ3YAXv8RV00cBvWpjjAP3pl5C2hSwaaPCQcUJYt6wmdT3v8U+/RF41cY2E45EdlYvN19ZTDkDrOt8jNDVQOB7wwwAsF6z2brfA4RD/rmQQ0rAzFmL1QPuBG7/v4e+2gAa4j17wPqRKav319c4FbCGLBbTrEHa7+cf1eSJi6CzGb67qibV8Tf6O9sz5/GrYL9RXTBMDi7P9C8Q9bMy9RETH4d59k7Lk65qaz63r4yFUsauQKnQjcqUMSN3Tkge5tZCLTXbIOvHZaMfkNpxOMFXFqv0uQMcBwQjEOYTU3Xj5eq5gex8DTAZDejjMQUb6/LoCGiY/8J4Btwi0cLnipdME9R5GFTAGcrkB+gHh9u7snXqu/6uLnIhr4aCVg9kega7nfheBLNr5PvYDtOthLi+4V25uuTYv1tC2hl9VkJ5VSABAUPjdjut/PHsefc+D+dnj/PlSFPDLEubW8l49f4RpU6F4WbPTcbOlbyljQiCC8VEDX1nU2xNkip85jgi7ffwgRTix+mdaFnZSwK7jnvu4dNAjOxpSFsAA+pkU0AGzb4lnj5QFryN23dPzTOeHLFpoVUCthez2fA5tAwwjws0NoI7rJ3bfJJ4V5/s/mWlboCzyNXKthPtn4HIBiCC8u46JZZFiGFbsg+f7nK/VvofUK5hFi1ACeK8J86dtf1Jf8U1+4v14IVnyldm/VlWOCUxZANbe8wWmqYHHV8DdHno8Igzj3LFrauiLRzB3B4S31+99fnivm18xaR8naIjID2NnlANip62qoO+uEYLG0DC+XdcjhACJ3XjE7rzEzggA6GoBbUrIV++gxyN/v1xAn11BvGe8kQLfWGSUKiY1222+b3J9h28KN3WaoNME3/eQqoL5jR9AJw+54xpOewcikMsNNBYJ8j51NncTQ9/DNA3MZo3x+QXMFCDDBFM4SNezK2wNdNFAugHh5pbvYQxks4bWJUJTQqbYFe16SNdDH18iNBWsCDQE6PXtXOQ8naBdz/voHKTgM0fhoIcj/KtZEMFeXkLaBuFyDbWSv5+8v97iGZKek1ktiaTwHkjdy7j3tO9zXAFwD0tB36Z4LwZOheDoH+RiQ/9/OuuODgN9qbXsqAwjfVpV8fPOO6dtC/EGofN8dqsl/M3tva67jkP2U/eeuX67oOKXnoiUZYm//Jf/Mv7lv/yX+Jt/828CIFHsX/7Lf4nf/d3f/RO9lzgHeDA4K+avQsiB3q8Gx9eoD5DQc2GF9x7gOPKg7vo5kyscnbL30BFzBXkcoN4jbLcMLkzKQJUbViRmjorQ9bDLBeTZEy6+wynDOZQ3AGEY2aqt61ilVGb/AN+764B3XDBSVXMVQ5X/u1pw0/oAlAXE+9lprhZ0mtsdsGgQli2MCNuI54FT2yBsFpDtkYs2KA/A2E61X11Dly38oxXM7QG2G6BgogSAnz2MwO6AsD+w2ta20GePIKqQ7YEbKzAJxCQMyvsB9ksf33sJe3eCeXOIG7Vk0BQdn3QTzOEEOAf75En8rgH2eh9hJBWDzd2e1Zuy5PcR4SafPOEii4YQja6H9OP8HQDe/zFWRt9fcyJAUQCTh+yOkEXLJKwq7ydaAHQac1VRrIVdrViNqUped10B4Rah6+gsRWBXK35uCNnp58vaH+gEW7ZVparoUFQRhhFihMlPbLmyg/Oe8wv3D1r1hOOFb+kwfpn2i/QV71u+t8bMB0LaM+9Z6HqIGSDDAPUhP1N938ekPR/NrJb5sEAIDESthRRFDFwrrgFrYUKI0ASJB32VnXrqtklDGBSaGrrdIdxtYTdrBrmee1+HgX9XOK7HceT7pXVrBGZ/BIaRQU5cS7pZQq1Ajj2wbIHHG5jtkT4jfjfdHxgUXbDNLt2IsG6hj1bcfyFAH10wgNjueT/7ntdWFpCrS6hhIoRhhPvZntc4jNAnV8CygQ2xgmktcLmBv1rCvd2xqOFYFJL1invl7Y5FkKqCudmhOEbYpgg0+cNhzIlA8XIHVzhoWxE68uaa9/5iAz2e5oNVTA4A0dTQ/RF65F7XwkGCzrAKaxGMcM/2A/1BUcA+fcJEIgZ26PsY5Cvso6t5/XnPe2wtjAi7I84hxPtu1+u4ToX+dYp+yZh7a1aqisGvc9zjHeHAZrNmVTh+vo4DwnZP/1GWXCsJljzMMFcucM1BcfI1YRwRzH248q+C/cJ8xVlweG46DHO8oIGQpLYFri6gu/0MuUo+wAikG3IQKYUDQkya+x72zS3jhb6/7+fj2mNwOLBAeTjyLBGBWS7ZNUiFiH7gORfPAwaxLBzYZ09jHBQiuiCwUKCKcEsolLQN90k/8ZyNUC0xBugn6KKB+7VPGYNYg7BqIaowNzugbWD+4m+xKLjdAx89RWgKyOghxx76xUv6nqYm4sHQh0AV8u4WqjEAthFFUUSY9MjusLY1fUVZQE499BD3SUxCAMD98Vf825R8TxOwWvA99yeet7/28fwcRyJgzO40d3M3K0yPl4RldROLstMEs14BVQl/tYS93kO7N/QJZcE4JzDeERHY8wKmc4D3MO9u2ZFu6wh/vWBCZQzMqSP0s+v4HIcBwXvgcOTZUNdcR0VB2FbXI3Rd7KC4+0UnIzlBgnPQ/R56PPH5i0APMbk8g+Hp/hDpCDEW8POenmNfrmPt+7z2te95nUBOWu79Xd/f+3sRA8wv+Ub7U4Fm/d7v/R7+9t/+2/grf+Wv4K/9tb+Gf/JP/gkOhwP+zt/5O3+yN7KWm8vIvUwsnL6O6c+v8Z7Z7gdgK5ocfWxD8c0iTChh7lKVzPvskFLAm7L+e6+DB0a2EnW9gBxiZh2dDYAYeMaq2qIBuh46jqyiaIBpW26g1JIvywxfkqLg4isc22Hi2VpzltUJEWhVsMPiPcQYaO2ggyNO+mxBa+EwrSoe6AlvaIQB+zAibG8hiwZ+UcC+YtVUqjK2pg0djA8RH3mE3awhJSuXMgXYY2zjTQkOFwO/wADKOAeNjihsd3QEMYjQWMEV76HHE4O5ts7wDfTDnJRNhDiZuo4cEzpmXKyg1kMA6LLBtCzhdjHwSwkSAEyaN9PXTCQ7S03BXJ2+OyE4ee2o8vvFtTk7i7OaVfxdOEYHdLHhPRwGXld+OLFaGxTSBB5YsWPHe+ihKjDNGbbemK9XqCQg5xxCDg+CB/RXL7gAfoG+4n1LsLRo4hyLAh/ijQQPDfhgknLP0jOJhQmpKh6EzuWETwBohDmkg4OVtVhhU8Kgzq8tQRYQD2ttawbm3nP/1RUraDZkaKMURcbqSl0DznDdqtK/xL0idQUtHEIZq6uIfuCiRjEFVhhVGTQcTyzCFJbVxMkjVC1862Bv2HENteO1KveQes8gxllywqKZbkC423Kdew/z4glCU8C2Lb+DKsKixnBVwwwRRpV8cEy85HBiN6Isedh2PXDq+DllwSLJqWMRwxjI/ggRgX9+CRlYBJG24e97drnSM5SiAOoK2taxYGPy+4qz0CAMCEUY/EUfJutlXFuW9zf5t3GaIVUN4SF8FgEaK5UKxO5RMe//BCEB4iGf4FJyb81KWbIrDuROmUSujVgPNcJEeowdv0lgmobnQ7y2e+s7dVMinEOco1+ffjWLFsAvyFdEuMo9U0WIBZ/0b50m7u1Fy6JX8vnp78XkJFGnCaYsASdMKLxH2O6Y/CW4TP544d6Nz0LPu9rGZr4jui4nIyw8cd2qIeycBasmdsXH2a9VJTB5Fj7T+RACO5rm7LvHWAmFQ2jjuhLhWe4DzBsPrSsMTxeo4vfQpsC0KmGGAOtZgDWpeFKVUBfP2WGkLwFjHzHRL6Q4a4pdXhf3e2Ehx477NaFUKnb8/as3LOAuWiYHGvg+IvzOhYNfzwG43XZ8XUokRKB1geGiQHmj5OCNfEaoSoRljXFdEc5pzPxf9NUpgM881Oi/VRWakopUJC+LufNpDe95LGhrKoL1PezFRfQf8Tyoa8aKXRfjPsv1Ff3s+dmQUBqh6+f4aLtjIcPO/lfTGv6vnGnpus/Xfu6gVyyg6Yf2Rfp7ayDG/uomIn/rb/0tvHnzBv/gH/wDvHz5En/pL/0l/It/8S++RjT7ecZszuWbkys8AKsHVZXb0uk18x/f75aYsohkslOsaroITWLAnbO8soRUJdxmzYRmt2dF+XSCuILB77eRNOyHufJdlqyuKNuBIUGiUnJSVxGbeVa1955449WCB+WPPmdl73INudky047VcenoyMzlBTQST2UYWcFbr+gY9weYYwm3JVYZm1XeUDKMUGsgz59gerTEsCpgn25gCwe9uQMsEJ4+AgITBVkuYZMj3u1h/2iks6wr+OeXOD1v0H6+h3m35eFqDDsKpxPc739Bov9mzesQgX+0YrXWz88sBTH28SNoUyE8ecLOxqtryHrFjkc/cLNXJbSucPpkheq6h/mDNzAicCHAvLklSewyJgCHY64wITpYLifhc5gm6O0dK1ZpDRmB3m0BY+CePeH7pW4WgDCM0HGCAfhdI/k4kQVtWebKgp4RaCkMMG9R29RM0m7vcqKbfxcrpymwC30PcQW7gMPw9cQqVqpgDGQcI1fq5y/bX7b9onzF+6YDhQgSBI5dD4HJlSiHsN1/HaYRfUWCWkhVzXCrmCzazTqLP6CLlWjvCcnoenYW3ut2ATHRubnls2nbeEgFmCePCFV4e03i4Ju3kLKEvbpk5Xy7g3z0jJW2usqVc1lEQqKwmh5evuZ7LxfAiWR1s1nT/9wRniTOQg4nFG+ugc0K/vkjmP2J/uLUQcoC3dMFiv0I1w0wd0eYvSH8MQTYL94SNrg/wCwXcB9/hOGHTzGuHOpXR0I7d0cWUT56xqDeCmTfwXYDhl9/AtN7uB+/gnl1jfb1DQ/wwiHUDgiAvdsTlnqxAsaJMK5hpE/frPm7YYT4wCQtdkZQFuykvLnjPYpE+/nZcv+iZLIn3QC8fAOUJczVBcIiBht3WwbmHz/ja8RAdzueMRHGibfXLBrUcxAkwwidRhaixpF7PXEQ4+9SMGifPaX/PJ4yZNdcXsKsYhd0GOGjeIh9dHUPeqGqXAchUGAAiAGahalrQsPiWpXYfXvfQv8toodfMftF+Aop3NzFOrfY7TBVNcMThxG4uctV5Xtnv3NAXUHGBgaxGm0sfXjqXJb0z+l3BoiCFxVwIlzYtC3MZib6ijU5GU1EcJvOiaZmoa4foMcTIYexI2IfP+I5uNsDInAfvyC/83hiMTd1FDSwK2fNLOrQjdz/k0f5+ibHTtL1qF7ugJstwuEI98VbmEUDf7UEnGHnr66gqxnmJ3VN+PvjDQnxhxP35xQ7Ec5h+ohcNHszQ91QFjCPLnMxQ69vIUUB8z/9WXZu392w21OVhHz5QFGIcYTzft6XEV2Rj7qygHQj2v/ylp2hyfNeVhX85QIwBsVd5NhdXUDvttCbEfrnfx3qDNzrLfdePyAcjtDTid0aQxiZioFRFg75JixgpAIynj2BGSdI6jwjFiqsQXj9lmss/r1p29iVnOAuNuSU3W0jVLAkZHh/IMerrqCff5k7/hjO6AMp9hAhNeG9dT1fCJ+ZaZqZWtC2GTbKM61hEtX3XMN1lf1V6PtvXbT4UyOr/+7v/u7/YXgFncN/5ffGZAeSLAVvOTBTzXh5JgZxk8UsU4Pe655IaiMaA1Gi8wiBKX8+eS+9f1Conr1nhCCxghmhDGdEwbxoY2BOHOuYW4sIyoTr/S5Q4ohMnhlxwktPkdzlA6Q6g/F4D+nGSEpj5i3xu0tQVkJ9gB0CxCuDIw0ADLN8CYTKlQVEFtwYwUc4gYFoCbUCXwpCaan8tY+fke7P0AOOOOfshEKAwPD7hlhxCCTAsYopDGbiIa7WAHZW2KATMjBjJNcmlaNuJGxBlZUEp5CjQA2AYPg9CkdnkK5PdSZ5ugRJ83Nlqyq5LlKQaUzstkQ4hQjvu9X7MIBUPT5fu8l5vd+5m1hZz4GsIRSHogmxaqqxJR/ChyFE6WCQKFAg5lcyEQF+Qb4CuN/OVgX07J4HT7KuocADTITDvM+7iN0L8QGqIfsChMAgQM6eW6pyGSGpz8xVUlgLk55fUO6/ENeWtQwMpglAYPFAIv9rJMfAJkWqjv5CgnLdpsNEbYYB5GqWaqze61yBix1ipMCzXHJfxTWvlQV6x8C9SH4PLAp4z7UeDFAySaDSzxirlhW0qaAurjWv9EXjCOBsf4vQlwCEbhmZO33TRD+W1mskVkIK+qPoT+Hi3kz3Kr6X+Oj/E5xBCVviszRzVTNdS4Lrpfs4ThHSdnYfI3RMRFjlrassjCHTfH/54jPCt5F5bQD8t0qEF0fxCJF53Z0luDpNfK/EUTPC6nl6XbhfjUxdOSTfoyFXk8UVueuvQT98hJ49m3zNEU8O/6vZEQF+gXEFMHfbv8lSJft9iDfA4pSNviCKyIg10CnMnxEr4xlREEnGOS5wRSx8VvMZFLvkeX3FZ5Mr8dmnRIJ4fPaEpJ9dZ+rImbje3lNxQ1DuNc8zJCEAkp+QFRXs5NhBNcRCrmcxMJ4/4uzcnYhn57w3DVAwJuGexny+uvg3GZVBWBir+mb+3qkDVDAJ02VLIY5IjE9FPO163jNjyNkQgUwxDiwd5DRATu8l3iKzj0sKYHUFbOf9q8JnLDGmEGvmwmHa9xpyJxRA5pvqRGQGnOW1pr2fhHrO1hcASKpZiYGY+ExCFF0yjFVwrlAW44zULVUf8rmTzyyAay/626/Z2T7g2o2+xloAY36eIsI4OPst87Vz8+fZd0I16+dZZvJ/6HfWMsOMZjZrSmHe3kU5N8Kk5HIDO7AtF27vSPqKcpMJS8d2LHF7/vWb3JayFxvyP95ew7+7/nBXZJxYPUubK2aUAPhgUyWz7+l8QmBV2xroZsWNfbagkTC9xxNQFpTmFKHUbV1BmhrTkzUkKMwffs62/aMLYPIwp56ktHHi56YOhA+Qux102eak5d71H0+w725gp2nuCETZUtNTYlOGEWGzgF+UMP1ECMfAiqXuDrDXBywAqDOYnqxQdEPEysYK0eWGVY+II5dxgvnjL7nBn1xy8dcVjAh0aqENr9++jdjw9QLSDZBX1xlLrRdLyBRQ/q//EbJZI3z2AmZ3JI69JnxmvGhgxgDbsYui4whcXJLE97NXxOrebefn9/gK09M1ipd30N2BlfHi/nZKqkUA82UqpUQseVsTA1syQJKOGGOSAFMQNEBPQybrAvjawZj5SDXbsP7ddYYJ3IMK5j+IkAwgQ0L+hzBj8/cGkFVozjGuCJ4QOV9BfJT6fc9BS1nMFcMxChEIOVyZBzRNCNe380evlrOjPwnQdVwbTc2DPSh5WD5Ab25JjrygdCS8h19WUGvg4oFhmoZ/29S58q03dzz86pqQotgtSDwJeM/1FyWCc2BzboWjRG48RBJcK69REJdd/fQGcuoR7rYw6xV5XO+2/N4+QBYLyJNL7kcRlC93KCcPOXZzB2C3g//iK95Ta6F/8TfhFwXKlzsmK1UJbJYIi4pk9ikQez5GaGYL4Cx20mUDtRbaFNB4BtrbI8L1LeTFU4RNC/v6lh2p44nPr6oIcUkwDbDTmqqFCCFj5nHqkDy6RliCdAO0qeAvFjDLBvbYIbx8zS7WxQYYB0p2xqQxnVOSsO9VSXjZm3eZZI5Y/fY/+px8notNrHL3EdcdORsiMJeXQN9zz79XaDBNE6G+i0x4zRXOeJ6cyw9/0GSGbwGRCO8c/M3bXzlhi1+U8T7NHK5E3ucv9Z64zfsWui4TyT/43j7AX99yn6qS1Hy54f6MEEr1cS9XFewnL+bA/eaWHdzf+DVIPyK8ek2uxAX/Xo8n7v0kOFNXkGqd44Rww2dtXzznPjcC1CWkvMzXJ7FQAgAYR8j1Xe5GauKThsAux8WKvI231/wOzx7zs1RhtqecjKAfID2lczFO0KYmpyJ2OsOK0uZZSlsVdtuD8AElR2NVwewH8jl37Fbpk0vejx/9DHj6GMOf+wTjysGXgub1ANNPMG0Fs+8Q3rzjNdcJGiXcyyLwTUEhvvPYqqcEuvz4i/hgFRLPe2sEphuAlzcktVeEjYsxwLJl8vX6mufBBzqNcnlBaO2rt1TYPPVEORxPuaOT/LVs1rPwwKmD325hVitI2zBmGieeVx9KIozh2gie+zwlt/Hckb6HhvCNa5XruUeiBsBa/i/ALu3plDsiX/uOZZE5t0YH4PC1l3zNvheJiAadVa6+yQI7BjqOMdOfCTcAs+a0AHKFQ4QbImG2raUTSaRkMayqjhNM1KeGsXNFGmAFyTDrlY4a9Qg+V0mJoY7OoywALPIlm0hqRaq0Ja5DrPBJrNymaioKSzJlPFhNF1W3NmsGBQNb/1oWxKGm723uZ68S2OnRpPRxGWEmw8BgKXUEbAyy43vB8xqlrRnIDVPuvsAYksgKapSLKmQK/PzohNP3EB+gJlZwIidDrOFnpCqkd+S7KKuscupZXSjYEZGiIORINQYylLCUaYLpR0hUDEvfPDm/sGpI2B3HWNUiXOdeJTOwAm1O07yOUjWrH2LHw8aOSpEhNjmJCVFUIMR7IPE5SoSYVBW5Qr0FbEyAzwiy99Z8DJZTwmHKAupnDtM3VvRSRfdsL3zv7b3OqALzPTV2vl9hTrDz3ghKuMoorK7FQoIM41xRLBw7GRqA4TxKfu8em+invL9XtcuvSSTKWMWyh4FVQssOgHo/d1/T83WO1bdpgnSxcxDb8tpGAmrimUXyOEwkR9dnbfmoOIPCReJr/JjIMREfGGTE6pseT3xdxIGbpOY3eR78pYOcFADx5igLaF1C+ga2ItQxdRBsb5isJKWcGDRAZyw7fx4TgbMEQvoRMBFGmTpDzhJO4Sx9QOqejCPUx/d0joqEZyIECd8Pf59DN19XTESd5d6NPgiTJxwu7b2ghFRUVC/LxOFYDdVUlY7XQV8ROSXeQ5QcLikczGKRSdA5iTQS11w5d2GCz11bfpXYSTv/Hn5em+QkuG/kP+W1ljgDGr6ZP/d9MGMBjf51mmY/kSz8nO+e9uCpo3/t+yyCA/B+Uxo4drbfn9GQqtPKLkTiR0pVzV3RiOJIHD+dJn5G5JyZRTv7dWvITUyxURIymTzXb1Px7BzGXO3W44l/F7kJMp0phSYVrzNYMjlghhKuUY105hh5IMFbbQzYk4+wBuL1fqcmdpbh4zVWQCgspCkAE32YD+yG8oYy1hk8ih1gnWBqLawT2Nsj908SuvGKYGOnKsYF7kS1UG2qGXGR1rzIPGLh1MHuWCxWazhCIAQWl62Z466e/0ZVzvvsvPM6MvnQmLTJGdImcX0l+TRg7sI2NWyKJ+J5L1FMKHVj0nlBioLhfQ9KisJZUTJ1zthZO4tLoqVzz5g2d9YylHuKfLKEsogdFvOBvyfc9Nv5iu9FIsLKpo8HxIeTkfQgAnijEj7WXF5Cu+6e/BqAOViIxg1YZvWR1EYPnWfVJA4iNHXFTHKcA5xUtQz3cICp0nYWXLY1sJnJiSZ1UMaJmO7dnodOGYnaxhD6ME7Ads/BOqsa9l3EIXfsroyfPYY9DJCv3gKbFcKqhlGFnHr4r17OQWxdM2kBeJhFuTh/0cIME4eO5etv5qFjSVIzkcydg9VZJQs1IRrjszWJboOnCsX+yEqNtTDPnvCA2x2YpJwF0LJczIGSZUCkIpBxikERyX9S18CiofMuC8juSCzuYcbBYpyAd7f3DxfvIT/9ErJe4fTnX6B8Z2HOhiiFi1V2DvCxetMPMF8e5/cpSkD5jPNsgEVLqMjpFHHBTOyY/EWltyEmxtGZ+esb2MLBP17DHAfIsYOJXbl7IgxxzSeSaiL/yWoFiZ+hSXL6A0YoQAkZP8Af+R/AKFlaZDy4qasZ65qsPJszMo7Q7fb+7wH4WGk2TZNJlOL9vfWVoEDJTFMz2Dx1HF5mBP6Lr+IgwJpt+26gmtrxCPvyDUxRkMQscs9npMRCli33we0dwo5DNu3jR8DFGtOTFbQwcLcd8d7eA5Wyq7heItQRstlPwFev+b3Xq5yk+80iEkbPFFKS/HT8/vbP/AC6qBEqB9ONMK9voOUlplUJB0CsQJsSWjp0TxtIAGzvYQ8jzHGEnAZivW9mPp4pHLBpoI6BjjmxkILNclbmSgTNuy15IWmoW1UirFsMz56guD5RZjgw2UgcCRwB++wpwuNLDk5Lh2YILPq8bzGglGU7k+8NWHDZH6lq94JKNfjqdeYFyWaNsFnyM8ZpljE2JkPgxLFwoTd3cf4SoYJ66iDLBdcJwOu+uZ0hxEUxV8WHIVfwswT1Ebm6n59dIpjGQAJVxet6nxeiOouxWMrTEiL2/fUXpnRAH2b/WlUwZTyrVT/MHzm3eM9838/StgCJxqlTlbocXY9ptyOiInKJRCTyHCaEm1vyw+oaZs31kxJVaZrsQ5LcqjEGYgTh2SMWPV+9ZVKyPJPUBnhm9gNQtJg2NYrDid3Nqwt2Ce62cfDqKhcXc8FttaRwTJJ7ressJJO/f5KNrdnx9dst7HrN+SZ1FROgktCnM55UMunH3E1BWyOUBqEsAS1RHXuIH+hnRBhb9SPc622GUN39zscYYVH++xv6y4s1/XE/QC8ahNLAjVS9nL74Eu75M4w/fEYEx+hniFizgtmd4N++Y+dnf6AKXVMhLBr60S9esTCyWUJvt/A3N3Aff0QexanLMZqM5MDo4Qi9GaI4zUzSl7qG1iU0+WIz3ffz6yWmxyvYXYzrVKFuYqyU/v5wpJpbQznn8I7S0ObRFaTv4c8k2aUoKJrygWGF6dyTeE5Nn38J01jgYg3ZH6FjjAMlqZpSGEGniSiLgkWVcDhBh2/HNft+JCIifKhJLSQ+4HsTu8UwkUi4O1VmdePZRoh4uYTH1eOJMzwuL/LbhNjKl4SXLkqYRcOW2/6Yg3cA9wmp72P0E2bZBy6K8wnf8VDUKPfIvyepXZYLZu+nHvATYVUTAx85drDjBD1Qxk7WS2hZwHQjK4svHvPjR1ZKtCpgnzxmkHXqYJ49Qf/ZFYq3R5j9EfKIpDEcelYu2obkeGPg1w1CYWHj7wDwsy4voKuWk9m7s/sfq/8pwUjDzGxUhsiqV0nCL/4sZ9RG2OJdNAibFuaO1QW2izXK3RUzZtKyIipK4qlaCzzeRBx3gGwPJJSL8DM/eY5QWLjdyN+3JGiZWwYZqjo/Mxerg30PWS55L2/uZqWTqMqRp7YbC3Fnlc9lDG73RwYgqbMDcO2OE+zb+RCT5SKqrIV8HSnJuFdJT9yCAZnkJkWZh3j6RGwrC1ZQD9+iZ/p9MQ0fhCNlXzHOYhbqPTCAPiJVko3JpGCNwT8rUGfvOU5ZKcVcXRL+mQJaQz12jXNI8pA6IPsDAXLVOwUcX7veosiqS1o47idl4ooQYI1kQjwimRbPNvCFgSxKWBHIsZjJ0iEAAVnG2vc9q1vjBF02CG1JScvDFLs/BmHVwIQAc+ookNFUrGqeBuiy4jm+bAED2NMUE4mSRPVhQv3VEbBxsOkY2HUuHIUcLjf0ZzFwk9EjlI4csNIB4iFnZ5ueTsA+VhCrEnh0wSLFqYcceyp/Jb5LJLS7Tz5m0H59S8jasYPfLKCVhb0+QHqPcDjmAz4lOzloGieSeH3I81R0vYQsohSq9whn/l5PJ85piXycrLBzjCp4ZUl/l4mpkqUz71maLWAtIHy92pkXJ2UJm6RfE/9nnPJAxTQX6n0IKYCoFDbDm1MB44PX8T02njfz96VozHwGA8jxxj11TSBDWO5ZHPh77/3OTIqodlYUTKbTOZMkwnd7zr9aLQi53u6/VmXOsz3ic/bLEsYK58VkXig7fHnEwJlIQ1i37Iol5EW6ViOAcVz7qwUr6InnEbuBogptSvhFCZt+F4tyAEgyX60IuW5r4DoGw9UVO4P7IxOvZRvnl83qoFDlWXicMrcjdTrt3WnmdllyJDTyuNov4qyUKPOtJeX2EQLsvocpLMKyhlQFXERR2P0MXUx8EX9JdIpZre7PSStsRlkgwpC0LCBtAxNV8uA955hMnoIGyccvWhZWP2DiAzDEjmic73P+O3d7zF2Wc/5cIv+bt/Zrs4U0RD+R7qn3hJ2fK7UVlAvOiURSJYvqrUkdVt7dfrBomQYi5jjkjJv0be17kYjQibqM+07D3cJZICxFee81AHJwktvYZ1Kbqfph7ApYL3j4pLb5OORAQsoCsljAP1rBhpAHAgGYSUHvwyiA3J4kpKO4J+lK/fEhYzLTtaEooW3NrscpQppGOy/OqLACYCYwlQVMNyG0JbrHFYrtCHd34jXFDYRIkJ2errH9QYWrwwi87RGeXkKthb07kETaVAhtCd8UGFcMDiqA3ZJuysFRWFTwleWAoSiRB1WYcV7EoSmApmBGPU4cbCRCzka8V9r195JJBaFHvnYwW7b+wh0Ddvvi+ZyUOcytXykQ6hKhceieVDCjojhMKPoBes02qjiH4dkSUKB8c4jVkIr47WMHf3OT8ZDS1KwKnUHUtHBURprGeyoSnPsQ29Bxq4lh21ZPHddKXc3dN6HzUe+hb94xAWnqGVpzoIoIByt2ueqp48BuVhI0mKhwQUx6kQ8kSUpeRUllozjE8UOByffO9MODyhKf616lMw49vDfUsKpgHl9lPLN2HYP1M2EJ9R7YHyCXF6yA73YIKaCLWvfiffxZea97mzhuebBXkpB8n/RXFgirs4Ms7q/hkgFoNQXIsYARQdjuOJxVFaE08MEBCkgVE5FhgElQj26I3JEhdhtHaLnCtK5Q3h2B3SHvz1AXkKnmYKunl5g2FaqfvON9cYIAC2krIADmOMCvaoTCwHQTB4+9vuH7rGOlNkTolzPQykH6KQtYSO+BykELgxCUndzzx3rqEA4H4u3rGsNVC1HARWy6bPdZvhdROMA/u2BStD/Qdx5PCC8uMK4KNNsOOAaE/R6mqnhAVwW0rqjO5Sm+kaZoS0O+R1iRo2Vf30KP93kEaWAtF5yBPLpkUHh7Nyc7QBQgSVju9zh6QJxJMcT9D842KRxhFs7xNK8J4ckw4Dh7AGUBnE7z2fU+hzGeZfwgzQn2h67j+2x58Gmy9wagAshiEmmYJX8o5EbZ+/dV+4GQZuBrHZVcJIrnfz5D2rmDEbZ76DTCPvqzCE0B8/rd/TM+vVcaXFyV8A05IJIGJwOEJo8j/PUtuWyPUocN8IsKWFQMdM8SEQnKtR+HCKuNSlYhQqMM4dJaFfCNgxlZ1DBprlEKvp1DWC0Q2gLmZy/pdx5fMmE/HGGKAtpWOYnPkrIikMnDHgdo6RCcieeb577O8DBKiqNgUbP42Tve64tVFq2RxGc9dBBjML5YQ00B0xawx5EzR8qCRZNYPAoNZdbdcsECaOz4wghsFzuoqSPrqFxllgtkqOayhWKAv75h7LBesShaF5DTKQ+YPRflwVmiqmfnsowT5OZEX5ag2ONEkn5bY3jUojp9AP0QB2Sey0FDekhL+FSGXbYNB6WeupzYasfOOv3BBH9zk4c037OzgYj5M4APizh8g32nIxApSthHT0jk2R+iZrXLQ2vukYW8n3WtrYXf7SKRvYa4CcEI7OUFW4dfxUmyVcWKxudfzdXopoZdLmYoTCLlbE/QwsE8fQx5d0PpsmGESV2CKJWXKq9id3GoXZ2TEDl20MOJbUQjMPHACtc3DHqjSoXRqA5TUb0HzgL1kpX7YZhlXyNZVAtKZNohwETVDrnb5wqxVCX8R0+AoNj84QnSj+x8eIWMA8leZQFcbmC7ARZAERUxNClrXd/N8zucgzkbUuSfbman+V5nKCxLyGhh73bQ1QL9JxcobjrY2z3kYs2gI2Jlh48uIF7hdj21zdunkOORyWRFjHpoS8hpZIU3Jmhmf4L4EnZdZjyqLmqYp4/z5il/dvu169OWUC+TOg/na89RYEDf3XBdWAMpW5j1itVWxArs3e7eoEtUlH+WsoRcuFxZTzhas14RX3/kUMk0qwQAfJqKG4m0edqtNXNFPw6Sk4qBaTh1czclffdEOjyTnjWlA77H3HUpSmD6umPMgyDPh8O9J62rkVB+DtehZHcXuVKWe3wYSRw2W8g4Quoa9tncIgdAEurl5ay4MwyZ6yR1jfD0kiouuwPMxYZD7qL6XcIhy0+/ZDLc1sD1LTBOqNqKXYNT7CzWFUQVtqogL+/gbgrujSlyr+qKfI7jCTgQYijOwT17mmeVaJotEqEbWK0ytDIFLFoY+Cqp3ChMnJRu7g48zJwlDvtcbKOuoFUJrQoSW7uelcY0NyCEmOiNkOMJxT6Sux1Vm6jg5/J3NN6z+9vWMFNAcAbDJ5eUBx087O2R8Mw0+G0gTCKcOkjfA0eL4qcF3LKhH9ksYU8ziRc3d4QuVRULBRerfK1y6CBvrvmcROYOZayKhmGEXS8hyyXCzS1/H6u4CdaAumKi0veENTQ1iashsLPV95RiTUlpVOjKkBwAmmZ9xMQT3nM9/cZnMLd7+C9f3kcIWDsPYTubT5K4T+cKR+l7mLqCWS7gd7c5Efve2nsy3QBioaj8GvzbPrqa5/aMczCmZ1Vis6IIAU6MG0yE7krbzsPlJnbsMvQ7yftaA3zxEgZgYcFaDkuta6Ij3t7cq4SXrw8Uk3j1JscC6fm6p4+RJoJDFe7uNHNEUiyTOCVx2CBKxzkakeeaRGn81RrH39yg2HoU24GvSV3nusL0dEOY5vYIczjBHDtOm1clPDrN2NkfOOPmaoNwucJ4ycS8uOlg+hHmdk+0RVnALytgXcO+jQMj9/tciE7mn13wubzbzV3lpLxVMC4qf/IuQxO1KhA2LaT3kH5C+OQpYIDi5Y4+K/LtQuVgd93M3SmLOMm9ZxC/XkKfXsLc7tk9fXsDBIW9uMhoF20rTMsSxfQoD00WGBYQYkEoXKyghYU5dFlsRDtC801VZRlylAV9xtsR1e0OiAXJPLeson+UpqZyZ1TSCqcOtq4gtqDwhgbolsNhmQxPMwcpmjjHNRyVsShFfqYMdjpltIVGHsnP5VOd2Xc7EbGc7ZBJ1YkIFQk4iegNILdR09ThTD6OGWEKmrUsSFBLsmQJ8xgfil0ts1wjZSPjYT2MbNPXZSRkn0mplcW8IZQ4ZZ2mM7mz+MAjJEGqEiIOWpWZrJiHHw4D4WOxypcI3PckJyOBCZFrQTlahUw6E2Hj8Jwk6xsaR8LXm31udabWqA4DlZkiHwMTsYkQAdZLvmeclUBHSkUFDuaJw9IEMH08vVLHzigP0DP+h28Mih1brFqVPLBj4jVuCriDh931CKsKWhoUZYTb1RW0dvCVJf4ztcNVMzTDDIkkT4lAbaoMg5NU8a3O5D9LJnFSzAlMflaGkCsdjjykF22e4JzXXgiZm6SJWDZNkbwvgHX5GjURY6sSAs6YyQHBEK9nGgExWQ2MajzFvOZjYMu9YaEhOoORlRcSJWfi9L0D9dvMvvkumxHgQ/rEaRBkWc4DDdNQsuQ7ROKe9XMVSdl6zsMHU/dPwyype3kxd1nPSYmWHSlMmtvYIpRIDCU7AjlxTdBFgP//1MPvdrBlATQVFVf6nodWGoAVycmSZGdPHaQfGCwnboAx0MYB2zgfpG2yRHiGGwkgY+C8JNUojiGR+B07ndGHqZHcqRAfYUYudi+iCAgA+qVElI9VSgxj7AwaJHEQiJklQ4POeyt9B2OhdUGM+KmMIhWRPG4F08LCjEyQbCT1JkKoeM3+gfK1HrrbsQv0/BGDgASXshZ6OCLs97znziK0ZZ5rJEeh74vSvJkQGknOYqi0qHXsykToVYbnnktpBgUcZci1KhjwOYfQDwinU1bC4mvDLON97ptSEJAS27aA2ZmzqfFn/aSinDlrQPRD9+FGyTch+BjAnqn6fR8tPZtEAjbTPYTJvQBNE1qBRbA0ZBTA1/l551LgYiIKIu63aYoKRTP/L8PhYmwSTt0MPU/ne8EYgRBgGyvqAwuSXY9wONwrVmV1zsTpTJXsU0cY+mbN/V3MvDiKb8QKv/fzWps8YAX92sKeZmXMVGzQwsEvIiysK2Y0yaLh97y947pKe2KaoIWFXxToLx05ZCdHpbyJ5HEFyPEoDGyGX0e4dIqvROBrB1FQcSoKa6COA/jSmRdnrEhUDSUBneetX8R5Q6/v5u6MJU+NHNGRsUmCVQ9jLCQuyV1Jc2aOJ54VUSkMQPZPWlKZT2L3lIIaUxxIK9DCzETxCMPSvifHWc/UNYNCpx7h9jar8yHFruk5p8GnNiZVZ9s7DWfNaJrUQQHuKeZB4r0+kw/nhWsWysgSw8mHiACQDx6779t3OhEJA2UyU/AV9nvgYGDjhtKun6uOcdhgOB4ZjJ2TAWMVSvcHIFYWTFWR1Cjm3pAzKeJhGLstElvhAFhZSAcBkAmsSRkKIARDgDj0hoOw4BxEl1R5udjczzqdhf7aR1SfGifg3Q38F9eUdWwaTC8uSbL6yZcIZ1hUAAyurYWtyjzI0HQTN9J6CVxtEJYkJLk3O6o57PfA08eEf73dcuP95g+zKlaoS4TakRvST7MKx+UG4ckGux8usP5Pd5A//invTeHgtrHU3g/M8M/ajzYGFqoKud1h8b91s9OLeEy8PgCnDk1hoaWD39QYLgpMtUHx6AJmXOLdb1/AdYrVH9xxxkldZjhdePUGsBYVcBbImBlbai0rG+emCnz1BjidIC+eQS9nEj/iRHjtiJE3RYGw4fwF/ep1Vk2TxSLKBtb5wNeu57C31QpysWZVW4SV2ZRshsDBeBcXkOUC4d11JqqbqoA8fxLVSQg1QVAOOfSe62qccsfP1DUPx5PPaw9A3hfZyu83DlzHCaadhSDuQTSjvS/XmwdBRj6ZJphLPPyTBGRSxANYHdU4LFCiIpV5Qm5WVttD6qicGHfHAVoAYF/enMEy2WkL8dA2iyYS2hvIagl/uYSpSpjIBZGigP/4Mcz2BLx8Q1z2esEAwYccKOjdlvCxiwUJrm2DsFlQIveLV1yzTQn3+o4+8ckV5MVjYIycg1t2c/VyDZkCii2nDuuyQfekhjt61HezX9RFM/PfVDlrYHeEef2OnZ2oyif9wE5JU0J/8BGTq5st8PgCvi1hdh0P646dg+mihgOYYHUDxAfsf3ODUAjcMaC47WD/+EseoknJJiUrdQn36Uf8d+GA2y30eGInJ/mIlsPZbFWyc/30Cr4t4VsH03vYlzcMYj5+hrCoEApLWMg0kTPiCBfRwLlLZrOGtg3CxZJ7+cznSNuwM7LdQ4fjPfiZ1PV8Dc5CqxJmnBB+FNfY1QUTscLl4Y2h6xG6Hvb2Lp8LGYYZAzc9k6LNAxXPO9axqJQT8lTkKOz3Vr7XPnoEa8qsCpcC+XQfwumM3Bvvy/T67QzXeu+e5ZeeuryuxFk+74nCBWa5gLnY3BOOSWYWLWW6Y3Ig2z0hfGlI6jjBf/YM41/4FPUfv4HuD/BfvuLfti07vWWB8NEThMah+PImD77k4L6CsJy64l5PIwo0ZLJ1nrcjgvHTRwzS7zqEwqLcBZhJEZoC9ovXFGz4tU+glYO77QEr8BctxosKU2PQfHUiHwOxKBPHCoxXLeGXVli0HBXFVzf0KxerqCwJzjHzgbHKssHhf36BYjehuI6QtwAU7w7Q0mH/F5+hvB1R/sGX8I9W6J+0KK87mG6EbNaEm8cJ7e6rG4TNEv6iJfIkcH6TjOZeJ9xftJBNO0uKVyXQ1owNuwHuq5uIUKkgx4iEOHXsZhcF7Jtb2GuTEyT/7obk8qeP8mfIMMF4jbFElF1P8rlp7/ZDLFxyVINdRLiuOSugx+vWuNbC8ciYYr3MnBnUhMTp8cTrWK/PFh8LGzgeoVGK3EQeUjorEzQ+QdLDcR5CaTdrqAXw9ufvu+90IgIgH+4c+jPcb6PGrsDXErLzEsd5JThJ4cUKIDdffE0k9JwPm2FQ6s46GlPM8mVuj9k4xE7OfpY6GKnyFyXokjSfRom2XEWMpNlcqUjwkcIxwPBKBSQMPPTaqNa0P957DwlxWFBdzq33KcRKrmZyoxknYrNT9SNWKRWWmEuJVc8QqPLgDJOmOIxMmwJ2vZormGefjyQxl36eKjlRaSjhRPP9j1VJAFTt8QoDwHYzrwLWwg4KM8UEI0pvpqBDIoEzSe3BmFwtQFLeet/SYLv8GfF5pQ0cJV6TBLCkzyxKiPWAN7nqm6SHsxRkatl3PR2ZMRyEZ6KaSZTgS7Kw96ASdia3yzmJNETxhVSlvrfe78PhYDiESWNlWYxA/wTEsu+k6X2ZQn5n+VrAkINQ72esbE89dYxjhk3ekz1MHcb4/4FYOY1dlK8p+VnLwMUVc0fr/eGJISr3pM9KQ8ksE4dE5CYJ0t6HkzlLxbaqZEcvwSWqkuu+qqBlQd5Gun4rgNjcedAIq8pD7EJgF0BJZNSqIM/LK+xxxgebNOw0dVQ1wqjOYFcIhGlp13OCfNpfZ8+AHVrCUjQo/U16VnEvBGfg21hguSMkyfYBEiIMtSf5Uuoqqu2l7yRQY1nocISX2q6aJSkjF4YzAtidkLFCcIZdoiHAdPH6E6fNK4xE3/9+dzHE720NREpi3X3spquShN5U9MuHqEzVRbWqqoTU8brHiQmbmTKvDwB/XpUIVUyOz7rvX5t7cQZVuSffnaSr3+ckpXseoXeI5NX/USzf4yjVf+4vUmKXChbizXxuAeT+pXgkDr0zUfyAFWubz/x7vint5QjblUD4tRpDTolIHqpJ0jiiihL9ABEUc8dSRKKoRay8YxYlEM/X5b2eul9ZDjrMBHYRmMHn4aNmCih2E0ySoE8FxVRIDSH6ERNlc4XiFAM7+zDsCqoIY4MxwAaB7RV2iMp1dcWYRTXuo7k7rNZCLeArA7OoYOK4AIWNxHXMaIPRR99EHotW7BaHpoCkAYqW1yEnctQyLKvg8FQtDDu/ypAIVhBMne8NRgMZMccHVcWCgpE4KNfkQmaO/1KsWLjIOYx/a1m0zvFbVKbKhe4QuB6CBxCHqk4TYd2I3fp7PtXMBRljYuRv5zWSOM9RBphdOcf4IKFOQuyODgM7esA8cPEsfs1xbVBAvp2v+E4nIiSfd5SGu7pAePMOISkBCQ9cKahxrMOA0A1Rjo8VDjFxEFxSC4h2DxeaPquuOewrVhXD3S4SmM+qWmmAXVFmvptYE7POMzgYkINxWS+56eMcEx0G4Dc+g19WsDvKbZrXNzz8E/lMBOEZq3PF528BZ+E/e0pJ3NdvMfz6E5wel9j8u1esnFTcSAAwrWv4xqL+YgfZH2G+fMVrfvoISBNEtzuYUxdhSgZmd2LgsqohU4A7jcQ/DiOmv/gDwADlvoPddVj9CAiFgf+NFyje7HmvItbcgA4TA+J9cgxYQoC+fEOlqs2S7coTsZgiwkGM48QOz3YPIwIbq5vJ6W/+3WugKjFetayO3O0QPnoCvyjgqpLB2HYPoMjkbwDAzR1CJIBK5Oqoi47BbDiMLlZxtS5jJXHucOn+AMUBuL0jFOKTp3SIhxN0f2CFKA69S45J2hZ6PMJ/9XI+mKoS8MD08hVM28K+eAY9nFgNTx22uJ6lHzL5kAtW7wcHlkPvdJwQ4mClfKCaKPUHAF1HPHDbAjffomzxXTa9P4zs3A987aUjyf7u+TOSP7/4KsInOspwvm8irMp7j9B1MIsFzKMrYu+PR3ZSUou+YKAvsmIFarNi4nCz5aDVzRJmd7gnemGamgd8rFyG1YJcsVfX9AvOQpNa1DAhLCpMTz+CGXkAuzsGUN3HKyAoim0LLSxCadiFuL2DXCx52D65QqgdplUJ0xYwl0vYn71hUPD8MUJdYnq6RCrZly93vPZ4H5o/CkBZwG8aSPx8rd3M/wCAtiRs4hrcR/2AsGJF1PRUyAkVAxgBIHc7yFZmIQuAMM7aYFxVCLbG8o8N7N0B7R+8Y6JeOZjd6XzmYSbehorXE6pzaOIapmtJLjYGYbNicgYg1GUuatnDQH5d6lpNE2QcYaKilsYZI3IXJUzP10lM4CACOOGzvt1h+uJL2P/Tb2B8ukR5u4MeT/D7PcxyCTy9wrSpMWxKLP7Dl5h+9kU+6E3N+QDTF1/C/uavY9pUKD+nPLGJ8q7na57CFun7WthHC8g4wO/O9kWsdgLI6znJ/2rfI3QDgn5P2yEAtO+g58FThD3J8fi1/Ms+ukR4fAnz6h30cLjXCTm/ZxmuVzjI08d8TUpiiwXjliR56xx9RxxgJ6owfc+zuLFUuBqJ/df1EuOjJdy7PdwXkWy9bGHahl2xm9t8rebVNYy18M8vEWIsYHc9zNubKOYQlbHG6Z6UOKZp7qAAMNc3vB+bNbQfUN8eoIsavmGl3DQfENgA4E4etg+wr2+gu332hVqXkP0RxfUdk47CwfQLSB8Hl6YiZFSpktohFLwPagzq1z3GdYnDpw3ar3q4XY/pUQ0VQfPFAWZ/ov/98g3qd9s8oNFf0Af62tKPtAaLn3Vwb7ZUGhwnhOhz9dkVpk2DYV3ADOwA+ZoJoK8t3NGjfHdkJ7cpIa+umWy9eEJ/UzuKYxzOzo6KxWALAE2N8aKFiyqgEkiy10+f8Xvf7iBNTbXCd1tokuH1Hv56D7taIbx4BHMXlUCjyWqVkxG1hs8zrj1dL9ml6QdCveo5Jkpr2V5dsotzeZEVtXQYGXPXFTtnhyMQ/P2zNRbY/P4A778d8fS7nYg4CwzEtCGS9ChtOszYviS3aS3JmbEaASAPLQLoJDTi7O8NMkMMTA4Hytc1JFqahpAXs1rOsmcpO4w8Ax0GaPDz4JhpmmcTpIp7ajmma1su4Iu5AyAd+QIi5CuYpoFdTcBpgI2yufAB5o6KF9LUsIcRtREmNnEmAQIrALabqF6VOg1VldUvUDgG3mng0CJiBIeR2OjCwniNC5eSg+zIxODdGFYUxgAV4kQzptwKkyuASUGCdCXFssdX0Lrka+KkWcI0CpjbA6syFQMCdWeZ/LEjfGxkAcT0UX0oBi0SlNXY8F5VWnXGj3pPhRERVhcLF8liJ8qxVtWsahax3exwGAYuCeYUAuzNLnN9MnHPRoWRYcgVHSki+SvMfCa1EXZTlvevM34uUqcsVqjERbI7NBPTOIxthgfmKdHJIiRDz5RcEOWqv88mVcUhg7FTmgZWmSXhWvdgauB9S4Emhz+aeWjUOOROUt7LQK54SsF7HlL3L2KTZYqCAv3ASndTU4Y7hKiYFGD2R17X46sMAYS19wPaFNOrUqrbcKYO6grjkyUrlddHKt0kP+YDpal9gL07QZsS0IIY84sNNElrG7DYsB8JoerGLDntW/q14vqI0JYY15wLIk1NIii4n9XaKJBhYGI1U7zC1y4H96Yu5sKNtTD9CAz0cRCB6T1CUyB89jQWZAaEWIhJXZzqXQ+1sUrpPbs0EWpqr/d87bMn/HlBbgcAmH0Uhihmn2A6JvcS2B0KJSU67WGYu6DxcwnRdZDVYu7aRi6Yibw29GfrqeGMANkdIf0R2LS5K5nWmkSZUtQVJCxn1bDDCS7E7k4flfDSNOPzKno3wB3GuJfjQEPDYazvDy1N/ERxFoqzxAOYxS+6MwJ7xKn/SVRwvqumw8gOQ+w+ZwhMlP9P575GwQBJMu0a50qk+xz5QvfuWRS80MipRDN3tcW5/HoG4IZzgCIGX6KfCKuWHceJsGPTTVHk5gApNow7CsszOp4j5z7EXu9hrGEMczjNwX7heMYGpfJTwv0XBWHcUa76nh8671ACuQjrl+ximMHHjiN5nuKVZ7isGEelTug40f8t2zhugOp66dqzAIcq4BViAknrcahwcXa+hdrB3fVQKxgvaxQGkJdzITm0JUJpMVwUQADK2wGmF9jOUo67rghvTogF54BuhC0dXGFgI1LEN+ShVNc91cKADJ9PMv+5E5NQJwk6qfF5RindrJRYFhSrwVnidS7VHItdOk2E5jsHs17xvncj/ejVBYujaWZZ5IjmAZTxeSXOTr6OjLKJM0TSOAxjI2dZkAZTZ2GAbyKjpzVtLUTctxK2+G4nIoUDMOZKZcZznuHUkpnFgpVfgEGXkCSlfU9HkqBNiRweLTkdfzsAt3ewv/FD8ieOK1YlYgVfE1nb+0j8tMxOUwU9XUdV5unCAA8QBplCibi4UUjo2uZqfZKo01XLBGy7p1OoSVjVr14DLTWq7bsd7FulEkKq0ER4gkQlBk0Tjs/uUYYHAIAIpk2UpLwTSmtGiU0MkpOUTEAv5qqnDGzXhtJRm//mAG0qDM8rlADcccbL4tQBRYHxs8eUGC0Nml1HLkVbYFqVqF/e8D5ulghNAR/Vf8zoYfen3BkQIOuBpyFOZgyxtfteMDex9RrigRs2Czq5N9dATUiLHjv4t++iNGhFLGiURc5rxIfMt9C+nztyQJa6S7yitB4AdkXMRQPd7bk+imI+lL6BOC5lQZLuOGZoHh+czmvbCNd1lu8t77+J9/eu8b9Fau+7aKwSHugck5qeMRziFZSV5rRXihJSVfDbPRB8xFo7VvFOHfw4ZBJ6uu/adaw+LRczRjeuCWnb7AfSIED34jnlJX/yBcJul/G/uj/APHmE6cUl7NsdZO/nwaHvmaoixCGLpm1hHl2he/oIzcsO+KPPYT5+Dn8R14X3KF7estJ3c8vZSFccbqqbhlOIlQIRMk0cLng4cs2+eMqq57JksPyjL2A/eY7+UQW/KOPfsbNp414NJYeOegDFtoeMHtNVBXUxEelLFLFDoIWDuaMcZ3h+SZ+z79E/XeDwosTq8wLFzQnTmrK1LqqDuR+/mu/FZoXQVjh+3MAdA+o/+Bzy+ArdDx7xWlJDsA9oIo/jg9bUgBGEwsB1I+Td7f3fi1Ddp3aY1hVM52EPPUwfJdfjfCQZZr5FWDUYH7Uo394i3NxAnj+CImQSv1QVcOpg34F/X5cwceZHiINyBSy0SNNwzQKcg5K+//EI+86xmw92P6QoIVcbJsDnim8pWK4IIz1Xl0wk2BDXflxoXx92+D017Xt2RCIGXk8nhGmiDygLyBWHX4abW3bDtnsmj2UBc8YPTfv83nt7D93u5s6p91mkAlWVhQLCbgd7eQn9+CnM7kQS/G4H7A1wseB51g+APTGp2O7gdzu41QooAK0in6Qq84wwadgF9z/+HGIEJnLZ/HYLW1VZ+AIhQK4uGVPc3gFtg+nxMg/7y7CvD1nhIEYwXNVQAcq7AWoNQmkIi5oC/GYBUWUHxTPBliOY8JUFwrKEvTlCup4diWHMEtxakLwOA/SPa9g+wL3dwXQD7N5hWlXwjaNfcA63v/UpmkJQ/z6g6wW6F0uMa4epEgwrQXFQtH+0z98nrFr4dQW/riBToE+Mn29CQDl6FmZUoS/WgFcUP3lDDs46zkE5nlh4sFRhlGGEnDqgbRBWTSzUTpw7ljhXadxEW0KKDYfOdgNjo/e5RkkEabVAWDbwTQF7GmFeXUPXS0zPNyg+V2h3kxX6ODzx/lBTHCPn6Xian+dyQc5QVbGwM0YxjGUbZ7JpTpq06+L7f3MBU8qCxa3veyISDh3sN/1SOEAsV4eALJGKoLPs5noVNZkHVoASFyNVnsYR/t1NnESdJhB7VsI1AEOUXUs4urPKE+E28UGVBYPZRBqdPFA4+Isls+bDCRhGDgpL2v5VNSvu9AOrfO8vzChradwV33uccsAukRSJIVZmonpSkgHN+G2w8qZtTc3/ykEdq5IICr+pOVDn5sSqz+SjakScdizCauMUYA49oSGrCtOCFdliWcIXBsPGodhPDG4u1lEhis9KRs8ZASOfgYmzOuxxyrhDLSyk9yj2UaowqfjUFVWzvIdc380zWq7WCM6QLB8DBfgwq5UBkM2a3+nlO2b9RQEcTjC7A8QauI8/modCHTtoWcBfLSn1N4yUGA6B0JwpHjRGuH4iDCdsSCSTrqcUZ4LdKA88syrmTS0GkPises5RYYcukUw9dHcEVisgDUxK9yJoVnPL3Za0/s8cxvngMqm5xqQ/AN/sU77zpqcTpQ/DWVAlJreyzxO2ex0kkVmVZhhnmIVzGZeb+SdlAawWXGMhcA2XJTTKhuuvfwJz7IGXbwBVdj8WLf1ErHzqMHCv73pWZOPMEInzLuADD8M4NNOslsB6zWFbhcPiR3vimz9+DgCwNwf4Ryt2J4YoreuIBTfnUIUrfo69O93vuNUVP7sb4W5ZZED0a+7g4RuHqXWU74xqWjKMKK5PCJVjUSXyO8yoUE8ul931CNsdTNsg1A6+2PB+e4UEymi6w4T61gIC+EVUrgv8/6Z0JPD2Q67umWOPxY+Jt5dHl9CqgNsPCKXNRRIzxspkVAdLA9Lk+o4SlEdCXMooEexfPIa92UHvdvC/+Ql8W6B8vYf0xJzb08hgsSph6oqy4oi+v6fst3m3RbXvOIjt8SOEEGBGBXaHLKGuU/Qnachk00CWNg5PDfcSJ+24x6WMkM5IMNXdAVIWsG4d+Xkmqw3xM2L311G1TK9vs//MyAEAMAK7jrOShmFOuNOQRB2A7f+BzfgrbJQ0j4TcOOGcHXPOCNEopZ99yBmqIsQZDObJIwpWJFhtoFAIrEXYH2ZcfRwcpwdK0JvlMvseqco83C6b9xkdEABOr142MPsGZhgyJ9HsItz0LP5IZ5H7+AWffRmRIdstE6p+vP9ZhlOz504nfYc2sYB6jAMAI1LADFPsRgL1V3to6TBsSnZEDKgwN8X38R42dWBDYBfk8RXGTQ1fO9i3kUPxw4/ZySwdtDQIzqC4izzRSZncDJG3V7o4WDmwmCCCxVcjjA/Q3/oBggDFfoTtA9QJ6mvDLu1VGlPgERrOK7JbwpWGjzewpwnuJ6+hdYXxqkH5igiT/ccVoMDly2r+3RRIUE/Q7vPhladuhm/6yBdrW8ii4UDFNDH9NA8o1mXLZ/3mHeOLdSw0i4EcTpBugDQUBdHVgvt2y+RDEgw4ooQyxzkicfRuy47Ns8c8445RlS3CglmgL3mte8KvzukLOaZ4j38qZXnvjNVvCeP8TiciOg64P3xIkTMTMYQ+xOTiXkICzKSuuoJ0dCLZYhCpywbSzXreiAGceM+kJma38DEI6cN70miE2wAM+HTRQHZHBsRglSu0BcxggMNpVpTqSTpHQzUGRG1nDLGNl6BJwCwhV5UMlI8nKkvF4F8UKLYDpOeBmfX4Y6sXDYMzDCPQMgkZlw6hFNRvKIM7Lkq4E+7N5tAGkXw2AcbAVxY2BELJNg2mZYFxYSLeWxCcYGyEkK1TB3l0yanNSWoyQrp4YyRuwgATZh1vtnsH4Habh0Alol1Y1TDHgfNdrGUycrUmFCR2P7K04pESyUmzHz7Av3xNuNTTx9DTCf7dNScwb6LS0uT5udbCtyWsjCTjxWsItYtt2GmWVjyT+wQAVxbEaXsfpyhTSQdVCdze8TlEPkAKenWaMo8krfHQ97CLdibQ5w0RhyxaS6czDvNcgDMRB9PMEsVZQvR7bmGY4NomqgNFPyCS1WzoQL8hE3Pkd2l3vB9EODfLVkfpcI0dShlGVqBiVRVG0D9tUWwd3HbPZxwrlSI1IRuTB4YoOHHqY7cgJkghsLKWiK1pbSzW0LpkYSAE2JfvoMsW/tES9t0esj/Cf7TB1KRkwUKswNwdEG53bLtXFaZPLgAB/8aHOLHbzgma9zC7GBgVBRSA7Sb0lxUlt7cDoQmGJEU5dDBaMaDRlIgEwICzRroe/njkTCQjCFHq0931nHUSYSfuSDJrKC3nlwCEeBUkz5tEdI1wA9kfI8djyc/qxvx9YCi5m/as1pGUXxi4O8vO6OHIApW1kIs1xictzJ5TnPvHNYaVRfmaEDQZPROzUwddLYgRj1A0dRYy2XvDxMxmHYdaxkLDqZshEyFyvuIBLhebKKMcB76msyuELH1qFi3XYFnk7hXnYrmZT3OuBphgHTEg8dstuVIXm5kEnKyqYuIX+J7LdobQBPP9TUQc4SRpEF9K5BLc2r9+e+ZLI/F3AgPqmLSFZUs+5P4QEzfJ8yuyMlkSHoliLTqNMNUqw3rgYiD7vpDK7jB3r50l/6Ao5iKpj7Avx1ECYqMwi+N5pOe+P0GHvZ8V/SRJcVvGQJH0LZ5Q5hC7LfZE4ZfEPZUpINRxD391A20q+GcNZk3v+D8hfB1yVDiERQ3fOITC5BhjfNTCl+yohEIQLGA7z9kkIzssiAXd/N1hiDbxAeW7I/yixOl5g/KWg5xN/O4FAHUG46aG8QEyGBYsjKCIsLD+skBRGDgAWlmMC4dSKCDTbyRfe/pdUUTIr4v8thE5UNdxzHEfAO7dokBYtuw0dD1kf0Q4cGCkFA642tD3HY8sFqSOtTHQuy3Xx8g5Y2GzoD+K+/3cBwgwr4c8BoKDvHXV0k+qshi922deU4b2HY8f7PC9bxKlps/PWNVv0Q7BdzwRgUQMbJrVMJ1JEKqnpGlUqMl/slzQWWx3M2YzQXvadm5nhgDZHrIj1n6A7m9gozSbP3UM+vo4JHGzZkASte8lHtiiyvf3MUiPVfE0b8LuOqo41OUcMI/8DtPzCwCAe3kLdD1CdyIsyyUt/qg3D1YawqIBVlSCMacJdh/ycDGtSkzPNsRfjh7Tx1cIcdChGgE+2cBMgZhLAOoE7o6Ecbtnl+PwW09Qv+3gXt5mmUv/mNW44t3h3lRWqGL1h1uSZ1tCnerawd0y+PKXLfrLCm5ZRDUtpQqFM/BPa0y1wfInB5i7Y4aBSe/p+J5dQXYnHrKxWn163kJCg/KyhXuzY9XZCnzr4H/tgsFReIry+gT80eeQZYuwbjl8KASYX/+M1z3MGbw2FaZ1TaniMXYbioLt5G7i84z3377b8dBIMBqRjOt113fxllBJwz1/Bj0cKbG7WpKQu1zG4KgkHj4S0kzNtSXOQQ8H5AFJ4wT9yReUP3xv0qkOA8nOce2bsoCqoyNJCXpKtrc7hN3ua7KR3zsL/t5UYxOllVNAIGUJjCPCbj+3v89VhIJHOHUwi5bY7cD5GiF2oOzTx8TP3u15/4cxk8ulYQJU/5s/ppKONayijhODnKJAeHJBOeyOk3+1qeh/uh54fDFfR+E4fGvZAOES2p1NtC0s9NkVMAVOQI7Sl8WXdyiMgd/Mk5bDZgFsFpA3t9DjCeXbA6//1EM3Sxx/bZ2JmfbIYN50HIqFCybnppvQ/oQcLS04fXn8jWcAAJkUZvAwpxHmegftepTbZoZk+sBu4+ThXt+RfFrYObA5AeNljbsflrj4ox7lmwP6Z0sSS5cW5dajebljMDWMCE8vqbR1iuv4jBxv9uSYDJ9dIViD6u7IIKoqYI4D5OaE8GgNfX4J93ZLP+Ys1HuUr/YMNp8/gTuyC4Ioz236WCRJw8hOA8ybW/6smcmf5mKDcLkE3m0pnYw1E6PnT2CGkTyfONdJLjYUH7iNspg1+SXaVMDra0LxxolE9fUyq+BIT+1/TvIeCd1xjty3KN2ZJezTXKXIHwnvrs8U4ob7HUEAejxxoGIKYorvL4wznHoECZS1Tr5cFT4OB7SXmzyjwywazt7omWyaBO18+Sbza8xycU8BC6qEeX30jOfHTfTzDQnmCgBPyA+TYzdDedMwuaS2dLUBDifY//3HRDi0TSwCBPibWxKT6ytK/1YlEQOVI7wx8rSsMXD+41lJcrcHrOUwUK8801Xhbo8sirQlQuMQrMG4LgmN2nYzn6GwWWVOE4rAkxtieg8zTBieLaFGuI8MWCwNgPEB5ZsD+SDRqp9cIyxrTJcNZ6Cp4vhRjeBqLH9yghk9fIRyqiMUFEDkxhkMTxqEQjDV1AmTbuR1GUD6CWIN+SVRkUtUWYCJ53b9pmWXt65g9j3an8YCojF49r/eQg0V98xpxOK/vM0oE+lH3o80zqHriK55dJlfM358Rfjaz655zY6FLanrXIwIFRW9TNuSk9iN/PtxYodSNXfT5HAkD6Yuofs9wuEEEzl14XCijLyuWKg+8d/SNpDrLTsYxyMlv+MwTdO2jBOAWaL3LNY2KybN/m4LaCDaIELKzcWGZPW378hd+Rb2HU9EYkVCzHzAnZl6EsURMzuRKKOWFqwqKwGpopkgO2nOyEQo070BTqkimZSKssRe/Ow4oEeDZP1t8VG27az1nSR7iXlME8pTR8AAiFW8eGinyplG0ti9gTLJnEGoHYNundupGMb7EqJKstVUW9g+EPpQsfJhgAyBQIQLoB8gpYOvmChkiVwgk2Glj/K9ZcHArA+cED2MkMLSIfUeEgJktcxJkC8N26xnkLbg2EHJ3y9p31sO6dHCcFPGbkyeWmqEAw0LlxW1xGue/KwicEcHK0KSa2Gz5GnC1cJ7OoRYmZLopBJ0Bt5TDShJ6qaOWySh4Qz2xCrZOAsipGFSwgqZuCK29n3ubCFOrAeANMwqrdl0uIk1GUpBwrqZ75VSYi8PO0uBdvpu1tKpne2Bczjh99rO9orE+/BBO5MhTGpJOO8qpbZ78gPA3HXth9yJSt3LJG7gb+44+PJiE/f0yHWU1oQ1WUZRrURsfzcLLjgX50VYqFWIWh6oQSktmwZYGfDaYuVfujgVOcKGEEDOVxG7OiZ2M0TneyRAKAxgFDJZmAGZaK5WeHAnyWrvgahElbqweT/7uYODrj+rBBvAFVz745RhgaFkx0bGitwOA0Dj9xFEiXDw585mIY/QuNgpMRG6EXJgYtIeCwAscpA0d5c8QuXg2wIyxBkBMWjEMLLqaTnwVSYSRiUQ8nqv+AJCrKAhd4GAeJ1FlGMfJ/r1JH5hTBwq5oFRs+hHKoiotfx9EeK6SvDi6HcMu85ZHhTc01xXMkNz4pyLPDFbA/2CKsIwZEGNLF1//p2iilxe5+4b9s33wYLnBhrHPHBPnMudbLtYzLNYUkfDubnqnM6ELLl+5rtHwpgldrHQnT3PyCsTID5Hf0/mXquCfif5mxgbhOORyU7qpOT4JcYLzgKw88BPZ2b53cLMXNWzjlhwcfhtElRQjg9QyzNUDai4F0CfYxQigbBKROijFZiJSAczhqzgB4CoiCjnG+L5HxDP9P0xq4NKP9K/xb+nZK1k3Rk1Eoclv5c4xxglOBZZ7ajssk4+d0HFRocTBX9EFRg9/WB8HvY0AkmKHIynks8w77bsSK3b+IWI2qBEevy3NYBPyBXHUQcAz+7z+CY9c2ch3kI1fl4I9LNJQOLMp6TnhtMpds48NAmqIMYIgXLKOg5zzDAMRFScz7jzhF0luJUUVeajMpZNw2znWFvyeWX5/c1ZDGL+5D7iO52ImLSJoorJvSFlIszSioLSrBEmMysK0Fn4/Z5KRYtFxO8zY8wQjLKEWa+52S822QGYpgbAajXGEeH2LuLG6/sXaS30oobsKcVqri6g9YYErGiaJm0GcjxwuQZE4F5vId0A/9VLLsaza5QoX2tiV0AXxFqP6zITwyxAR1pXxJ3/558wM29qTLWFbwzaP3ibpWm1ZQeARFOgSBuqH2Budlj9ITsXWpeYLluE0qC46QhPUEVYLXD6eIHmiwOqP3yF8bPHmFqXJe6qn15jfHGB3WdXaF+NqN92c9LUjwwUDFD9lAlMWC0QVi3MwKmr/eOG1ZMxQJ+sAF1mB7f8D1/xXhZ08uEHH8EcB1TbU+azhNKym3G54c9EMD7bQFThvrimJOijFUxZwJYlcOzgDqfc+tU0dC7OLAAI0YBE8n5slRNa4iOfZqL8cOFY4Th08H/0E9irC5gffgq8fgt/cwP7/BlQxKDRh29esyC0zayWMC+echBbkuzT9waQxeqFXa/z4KO85o4n+P2BcLSmAY5Rdux/EAt9z8MHYBXx9G4eShbNrlZcS7d3M6yv64mtT7KeEV8/ffkyQuKqTFIHwOBvtZqlwi9WGD7aoHi9J5+p7ylIcToxoLnYzIEyWDzRukCoHKQtofH8Mt3IRP/E4H541MKMAcX//hPIaonp6Qb29kjJ67jW7eub+11UEeiyAdYLwgdD4OC87QHt//ctOzlNRUK7PUv+h5FzK5Y1Dn/2Ct2lRft6gtuPqL8gZEA6zsbQpoRerIDNkoGXswjrhp2I6zvosoXWFYanC/jawFcklgfXorzzePJvdwiVw/BsBShQHCaUtwG+dbj9ny7zfXKnAPHAuCxgRkX7ZUfSeWkwPVrArGoOOjMGxx+u4Q4e9e+/hC4a+BdX5MVZweGHa5iJilwyehZPxgky9lT8UwVu7u7BfBUAXjxFWDeEuo0TkAbPAdDdHnYYqcJmLYaPLzgI8j/+hFj9tmEXzFH2G6ok6qYgdH8Arm+jXHzsallLieCmhq7oe6Rt8nNF9Pn+q5cwywXsJx/NayoS4SXKeZq4TlFVXOvfAMHIczNqCxw/+JLvjYWuA/oe9vFjmCeP4L98RcTFkZ1Gk8RBksx94djNdAXw7DHkdgf/xZcMFIFc2EiD3+TLV/cFQqKsurjYleoGEomrkoNKr5bwbcFBmoce8vkraFnAfvoxdH8kzO9iDVgD++iScQeQk2CtCoSoZJUsQ6HBoD6Rmas3R55htzuES8ITi+sTzE0PbBqqzZ04T2S8rNn5nALFNcYJ/gn5Xs1PbrPITpq8Xr66ZpJ0scpnohZRCCdBY0vKbPurZS64+pZ80/XvbwFVdC+WUAsmRg7wRSyIBqB5mzqyAe4wofjyOieH4fEK07KEKL+rikRoVoC7PkAOJ4THG6JKduR1+cuWhZ7CoPrRW+jdDnj6iMVLEQxPWhw+ukS5DSj2E9yO8NJQOnan7w4zF3cYga5H8R+3fEaPLymlXjuY/cCp7BcrBvtfvmVicLFmIlkXuQg8PSHvr4jvqV0PnDpM765hf/0z6MUCcneEOfUc9J2eeVlynEWc1s6b6znOInZCzHpFKeXbLbsfDTsh4XiMynENB4PvFfaSsE5/ezsnVadTLLR/+wLndzoRUR+gQuWJrw2RAuafjQNUAzDZOXuMgYWJhPD8fomc5zijJFdC9ez9UzUE5z8iuQtVOcs9ev4nEYOZJEPTRG9EArkAs+SlaajtPMXBQdaQeByHW6GuWK1Iikn7Y5xEzuDX9p4Dt6ZIoM0VTmG13nFDu1OUqlzUzOJFEJoCU2vhOr5H4p5krOF7bTY1QuJoYUkKqyzUMZPXrsuBLTXEY2LnA4qTEut5GlkpjJ0LAFBIruxoRaKa6Udu6C6+R/LfIsAU+N+96zLQygIHktlQFuwkjXzfsFogLEv42gHCalC4XLL6MIW5mpGeY6qOx/apnmX7mfTflHOleIqyeKlaGp8tIvYd4aziGpWttB8g00SsbxRPYEU7DhWyEUNuTJQTjoT8oPdhVbGblmFFqZt37hSmGbeOoFB8e4fxnbZY4ckdjnGcO2fFLHMs1gCmyuRPSSoiMThU7yEDABsYwAVH7HHssIpIHtSnPnDdiORqFXxaT47Bho/S1GnA3VlFmlPbRxgRVuxD7Cz2E9eYo5y17WP3M/ElFHz+ZYRJpCpW5GOFtkZYlnwv7/NgU+LDwTXd1piuFsiSTQUrvmlS8LSuWT31yi5maVlQ8D4XbGSi1KYWFnbPfRNKC5lcHuY5yxGDhPaA7Dt87VhV7ZMUKOGWwQqKQ8CwNJgage0J93AdE5JQWwYj0WeoM4SIGuF7C3Ki5GsH00+wHeBrEm5NN83DXhO/JPoCWS5maeVzm+gDYQVydDNXK623eNbIFP2z9+xmpqLG2bmS1Ksyh6uI3aPgoz8w/JkqicPJ10QJWLGc6J7PqfT7lOBYO/uKVFGOKk76TZ3ChBh4f0Dn99GS79Qw8zTEnBH7x1gc4r2GNbPKUBQcuKdSdP6+36CKmJEUuYPJBBV25kelAkSWW1UiM1R1XqstCdBhVRNCfGLHU5yh7K3MapfaVjPXInGnSgc1AbZw0JrIiSLyGEwR+VmFYXElKEJpMLYO0rNoOK4rGB9gdh20slTWawqIr2CThG2KhZLS5kRYs1qL6aJhJ6MjdJVJCs9pGcibcacJvrLwVezu+NjVUSYXEKIyzBTi+TuPTDA+IDh2THxtYHsD50cG+qoItWPXUpJMNv2pAuT5RkQFYxbGLuzyIHZ5HIzhZyQOXPqOag3PjBOFRzgo1mFqCxSePGa1lvCxxxdZgOg8RoIIzBjY9IpiFiKCoETyyBih4/Hv7Go171lNfsfPsYQ1FDhJhY84xFKiwiu8h0wTBRJSbBZRQ1kaOMVIZ6IvOoRvXdz8bici51J778uUptfEVlSyNNxNh4HZ4bMnhEmMI9uxfQ/74jkVLr58SV3vNCNEozqWJX40JS4AKL+3XrLatz3lzFf7Af7mhpi7xWJuny8aLqC7HXkHIpg2DcZ1gfY/vyJ29PkThGUFfbzmRh0mTJctxmUkjA0B1R9QiUH6gYpb3ZRVuXL7DrGVt17kdVH+7AawFru/8AhqgGIf4CvB1BhUf3CC/eItwtNL+PUS/eOKFcQfvc3vZwaPUBgcX1QQD7RfIA8IkylA+4FkU8PODlSp2nHXYXXHGRviA7HhZ5APLYk1BxqM6woQwL3zMGOP8nCC1qzE8g8UZn8iGTUNewSgceiRDYH43YslKxwd+Sr9sxZTSydW7DkJ+vjsAsXBY/Gf3sxBfOLjJKtKDnZcz59l3xKzOV7UgADFmyNJZ2+vuVbKgpUTY2DeXJO4HNeubPeQpoEsWvgvXwEaYC4vgb6nrKJwncmiAXyFsD/wUNqs5kT0nER2VnHTvo8V/jLLSgPI0pHiHHHmwwBNWPfvsxnLys4wEmbxnhCAWS1zi1qahodF3wPjxJkeIplPph2Vz9R7uI9ezOpvxxOml68o93y5oYLakHDJAjmeIONEFbckcDGS2CeffsT4+G43z/UBmAhf38G0NabNY2AIsLtjJjbKpy8QFhXcG1YjU/dD+hFaufhfkfeY9B727oDh2QJ3v15i80cDytcHmNNphoYWDrJZ4/Drl9h/7LB46VEcJkyoYU8WsjvAbxpsf9igvvVYvJwwrB2mNhZ6DJP91D3pnl6g3xi0bxy7mSnwnRY5CTGD5/C2bk6Kh8sS2x822PzREe7NFuFigWlZYvdJgfo2YPXvXwN/7glOTxyaa4U7ebiXPbSyOHzcoL4eUX5xh7Bq4NsS3YsWoRCUdxOgwPDJBUJBIuziP91Ar29QFj/g9by5zYlcWNYIbUlFMR8wfMahdG7bZUiZDCPM/oTp6Zrd5GMPrUpWk98cOThus0IoC+Lqu5HBY4KsRUudVZwRS1PSaLdd7jSFBDs7dpRur1mcCNs9ic89ZyCYiw05ImfD7WBJRCZ0K37uSM4Sh6H+1xON867h99WSzLeeojT/NHJQ23rFYYO3d3m4qQW4Tk4dcAIFWMoS9vLi3nuqzjNCpK4jdzQ+gBCyKpEaA7NckO81Mtgzb+8oD3w8MfA7hzsm+N04QY3B9HSNaVGge1Rg9cd74Cdf8PfOQf/Cr/GcuDtCFzWGJwu4wwhzjHGMNege1zBeUYWAcV1hWFu0P/YI17dMRsoS4XLJwLgf0P36I+xfFChXnDPWryxcF7C+KzFe1Dg+KxEKIFiB6xewvWLxU3KvxnUJe5pgDwPGqxa+sTg+cbCDYvPv99CmxLSibLg9zjN9ii9u4ZYNjp8uYXqllH9P2LqvHeAMituO80SebWbVre0Aux2gFxVCYXF4blHuFO0YMFQtAHa6ghMM6wrFMaD52Z6Bt1qcPllB7RrtT7Z5VpA9Fai2BXksYPfGK3LxlT+MZ3BZINQV5HCc1cqWNbrHBSBAmeanOIO7P38BOyjW//pnjOfOzmhzw8HOs4rZPJg3vHoDXN8ycSgL6Gcf5YHOacgx38TCPXkEGANbd/ls0/0BsB1l2wtHIv3kYeOaPZcC99tZtcIk4Yu41sP1Laewfwv7TiciP8+kLCAhYiPP1EsA0KmIQI9drnrkAU5dP+PfzgYbAohynfZrJHgAs9RdTwnOVOW0STp1mlipaIqcrGjqlABw2w521/PhX13Eg8FgXLWUilRFKAzUCYr9BBkCwqM1ZJg4LEuJhVZroGWBKc4QcNfE7SUyaCgsTFeQzF0Qy1m9OSKUDr6N6h5XG4hX2EOPCoAZfVSCiY7x0MOFALew3LSXFXxtMCwNp5sPTwDvYQ8aN59D96xFcZjgbjtAyrNug0H3gm1YFaDY0zFlnDoALQuMT5as9AblcKWz2DlXTYaRU0ynWOmL8APpSR4zIaACUGxjdaSfAK8o71gVxfEEXbYIFwu+RwgcLBkUYVnznrzbRaWiOCW5cDOnBeCwqCePWC2YJnaSEt8ntj+THGyaJitlMctIJ8WJgVri4lwUTWA1BuNEcuqZUguASLougFHuwys+kGRkYYXUGVy0wOFrL/veWJr7wkmzZRa14HA3k3kcAHhgTLGDaOL8lzTYCZg5JFHGUwKLIcl/JC5A4naZOK07VSopQ01+gSwXfM+0PmLl29zsCRGNQ/I430PjcCyFrhaQNWW6VcDOCACRhsl6W3IfDBOmyyYfwjCgln9QNG8DbJfI3eys6JlPK28HrMcAX1MVpn135FouCpjBo30zwZ3oh5rjFKuP0QeOE7pPN9h/XML1CtcTt04elwHA/ebbEr6xM6l19LHTWsB2AcsvB4SKBFpyNAKaa75m+9tPAQEWLwPKuwm2m/gsvIHximAFfrOIFU76TI3VRHXC7u/Bo7xmcI8XTxEqGzk5lkWHZcPOrDOwqaMUeWFJDQ8AzJEYcjPEgtU4QSaP0nsGG0UBOfWQccL0bAMpLMw7dsXZ6WSXg6qGBubg7wWYMqaOec2i0+TvCa3AMLlISYJE+V7E4bGyJKxXk08SAdCwyl+Ws8BCVneaMs/ANDVkvcok2HMZz++b2csL4DYqU53dDynjULdTx24/kOdEpTVvFu0ML3rPNA6alFhhpjqbyYN3ARA2rcoZDSFQECZZSlhi5/Z8CCWsgZgiK2LKFFBsB7jdAHN7oFJb20IrzpzIMu1TgD1N81kZ1Z5M3ItasBNTvwN9VVlQuCcPtGOHv7jt0UY+BgSoth5m0Dy5fGoErlO4U+B7T8B4wVkjoTCwJ+4dux/YKX3M/eo3Dd+jNAhFiXFdoHrN6n330SqfucVxQvHmkGFeviJPzYkg1AVOTytOde8DxvW8Z23nsfkR+Sem91m1y/YetldUNwrjFb4tESqbp6lLAIYnC9iugnt5Swhn5MMAgI2+MDhD+eEna5iksJd8iHNQSb7So9h5jksA4vgEg/blwJ+9N/wZYIwBazK5Xy/XTEy6nlDgtK5UOQvJuahEGhUd4xwsLYvcydeB/5nNimtxfyQSYDobiJgoC4UDgs1zZUKEnaIoeG71w5+Ie/r9TUTEZNlNaWogquHkX0eHrWfD3dKsBcptmg9WfjRNwk7E4/wLnbsdEa+HzYqfFSV4w24PcZZDaN5uqXjQ9Zk0K7c7DhH67CP4VUtMtzUYl45txsFnIrc9jJDRo3/Swh0nKjMl5NRqAa0chktuOrvrAQNu6kVBknptCccqADsA9st3sGUBt2zhFyWTiTd7mGOU/bUmw850HCG7I8xQwK0rTK1Ff+ngS8HYAt2TEsAGxds9pO/gLxcYL2rsPnVo3hosj0naTSHdBJSCw4sSEEIzzKhwt55tThdbgXWBw8c1imNAeRtVzsJMmNfCZtnPDHcrC2gb5TInzynpJwN76mHjgZzMABEr2UHWS/SPatghQMaAohuhopjWNdyuh75+y4FwsogtXA5AS4mR1uyamNsDsGPSkL4vjIWslqyUD1Ghppg7enouMzyMwP6Qq52Jf6SxMhZ2u3gYRudqbRzM+f5e+NpPeOCNc7XCLJff70QkdbZSAUFD7opADJ8BYvs9Vq/M5QUxwj/7ErAW9qPndP75TSn/q/1AfH5KIL2HjOPsTw7kdIWL1awMlWBcywUTgEQMTb5iu2PH1/sMIaI6Dd8zrBsO1BsIySTx3EBRQKsCU1ug7LgXxtYhVILimko100UFmRTtVydI7+kbTJShbmaf597tUfz4gMP/+VMMS8v5BJEfIqcB9ZeJYQ6YWw5qQ1Qik3HC7tMSb/+qx6N/Z7H80hPeYAVTSz9pTw79VYF+bdG8nQgXnQK0tJhai/JmQPHyDoffeoLu0mL5xQDbTWhedjh+1ODdX7DY/FHA5o+O7ASfBYFmUMpzXnLPiCrcNmK3KwfvCkyNQXk9wP7sDfwnTzCuWUwxQ8hSp+d/n/aRGQNCYTC1870qEum1j0WQfmD18HXH/d42lNwEMP36Y0hwqFIC0PV54GweHBshxAAgg4WMsVNcCszdHno8wl/f5Mq9RLhvPpfSzJzjMc4raPMsKR0GqBjYoFHetaBs9MhZFAkxkAsYywXCxQrSdewmHr6/CntysQZuD8hTqY1kqDaArKoHgEpEi3b+20VLlET3gUQtqTE2NRAUYXcHs1iwIwvQl2yWETpJhEZ4e011o2JeZ1KQm6ZNxbOuH+ZJ3nGosIwecuigr97G4bsFwtUKoSmoppfWlfcs+EVjomsYVKsilIR8uh0TaJQldNHkmTycWzXA3hzQ9BP6Zwt2HG9GFu4KE1EWQLlTdiJBH9A9IszU9prvjxlGmM5BfAO1wHhR8Wx3gmFhMFUCd5hgJovbP8NzffmVZ4fj869gnj1GWLUIFUn1FYCpsTg8M2iuCd0c1w7BAuXWo9iNKH70CqgrhHULXzuEQuBOhIIWHbmp47rE1FqMrUG58xCv6B4XsJ3D8mdMMOww+x6761lkvmgRGodhXVBhbDfCDFQtRVFkwryMnhPex7NExAqqH7/lfj171mmtYNGwc7YlB3B8vIKbPGR/gKwWCKvIFzsN8H/4Y9jNGnr1HKbngEWJAzq1LLLSq0YfIE1D+fM//umsNBkRBXkdOqI88rnXUW1LqwLYUYnzT2Lf6UTErJbUag6K0PUwcTib3x8YaKRN6jgvwjqHEIfEmeWCf3c8MlmJGSKszcGJfXRJx3Im+5lMo3wuEDPVrmcwExVMtHDA9R0DoEgsl5qSnEU/sAq+Wub3kx0dRBp6KN5zym5ZUDYyBiC2j52AePCF0iD4CMGpOLTIr2uEiso7ZlQOSwzkfJhTDdtSW9tXguYNB4fpsmVlv3SQMcCOAdPVgnCpwmScNlYVgA2mtuBnO5LFABJG6xsSPd1dbDNHYqw7jLj8/YhPLy2dJQRhyWpD4mrYIWJOr1qUNxzO0326gSiw/uPDPFhJBLCC8dkaAFD+5C20KjC+uCCWdAqsQASg/4ht5Cp2jKDKoY+JtKuaJQjNMEKtQXXds9M0UvNcqwLDBWEvRV1x+OO6htmzQlO/JWlfvnhFwvJ6SXgMkGeGUP63BCJsRQZOvcWBcyZSZTKvsYnBrLnYsKv0+i0Dj8dXkLahLOjtHcLhCBN5AEn6z67XhCV2PZWanLv33u9buLv7E+2975olWc5kGXrxgXuSBpomOKZ9/Ii/OBMMSPKHejgQ1pLu+8Xmw3NZvIfZHWaMeFJFOhCqocsGGAKHVy0XkF/7mPu2H4CO4g3GUwlL2xpme0L1djsrbkUVJY0VXNuTryHdgPJ2QKhZhBAFpTNjkNk/baBO0P7xLYPfytG/TIG8p7pgQrA1hFEaA7+clXaGiwJTbbD4vIA5RtnyYQRut1j/9BGmRYXmnYftAtyBQXp5DXRPG7z97RblXlEeWClVI+iec7CiGSPeuy5RvzqivGGQFWLBoboZ8fh/A4ptDG4KqgNNcR5JeTNEvLYlAd5J5KCEKEXs0X5FDHl4egkZJpTvPKZVNc8l6UbKGgPstt5S5toYA7QVYSWdh9sPMLuOXcpULa44EE/WK4R1i2lTwa1ZMR82DrYLKIeBxYVnjyn7fDjA3OyQ5hDBUL0JIUShAHKA9I4kUvv0CTCMlNA0hjAvkSh0UWb+AIxwHcUA2iYp2HFA6GZ4sVQVgw1rYcuCMI7DgcNA395EJbgKOn1/OyLh9VuclRd5bzwHEorjma3DiLDdzl2JtiFaIMow6+nEavfxSEh29R5s3Joshepvbuf33lIEJcPozhEXEUqn+wM7ZQ1nFKGuWKgoHbkYANzNkbHIZx9BtgfOlxmmOS6pHPyiYnc1BcZnioy2L6IileV+6Ub4yxW7DXF/2cMIe6LMvCkKaFtF2KXJg4zVSe5YBgd0jwoUxxCVtPhfcZgQSnY8p8YS7XHkwM/qNeMutYIEhjanEWoMNj+i/3QnD78sIX/x1zFclPA1oZZ2CDDDhPJdhwtEjljJOMYG5MJumlI+PG4BBYrdBHfXQ53B9f+8gR0Uiy96lENAeQvYiLZwh5Kd0ahk5nYD+Tv9XBCx+56fIQJ318O+ucX42WOMT1q0e45GmJ6uIaOHe7OF1hVCW7AzlJVcDXC3Z1LsPTsVNZ+3OgNd01+6LWdMmc0aut1Bbu6YhBoD99nHfLZ3h3uwKnjPbgnAgazLBeHnpw7ys6+AOBxVk6peU3NQZ+yIZg5c2ivTBNMN0KKEvdjQX0wd8F8fP8Lr//kv+dU1SXM6zuQIefMFGqguwJYjCb8oGahpIEk4QzOSQzGsdoZhgFgwgZEzbF5svYmNmtVJNtZT5pWwpbSALBOYOKGVHRbOKpBx5AAsZ+dqR6rmGQ44Ek9IkzrDAWDps32A6fVehU5FGPBXhGSEysJHSJOkieqxvSaRtBqKFlMlaL+aYLoxK0vBSg7g/VUNXxmEkglNASBYbvQpQrLMlNoAgB0U5XaE3fccrthUWUpPpoDiOg5bjBhOBEUo4rUqW54SiHybWovi+siD9kXLROL2wM2vmgcGTgs+u6LrIdZgXFE1xwweLkKrxgVlKsu6ADrCt+i4i3wPKdXnOHUagDn0XyOrh5IqPFIUVP9xBsYSZ20OPaQbMN1tYf0iT8sWQ8gNcb3xXhUc0iYi7NQNY5x6ihlTmYljOsNmhhEo9J7Er8Skmy+mFK/EfYCJxHixsTs4zVXW888AgNB/c5LyvbAky5kstaZTuzvhrgEkkvC97ieQnbgkn+Is0NnIMYuDJNuZP8TJ1jrDO89m1OQ1MQ7Qif5EACaV6xWmTQMnUT741FEWdhwgiwUhE7sjwvUNry1VbKOUtUw8ZFPSbbqJMMfKsnE7ziRCXxtMtUHrYzfRCGU4Q4jkcM4kEiVEQR07tIRYKMaFxdgKqmUJZ4RziiaqxRXXHZZfOBQHH2cUjTnhx5MG/ZXAdYA9scoIAaaWJNBiF7tJUb3GhIDp2QbqhO+1ZzKRlM8oKy6YGgZPxe3Iie0th7OGQmAGSpfann5UOsp/h7aE2Q+QcYRN3aq4b+UYn3nQLMUt/TBD/dL3inBcAaJSkItiHw7TssTYuky49YXAjHFNOIuwqGAPJ0L7jh2LV3U1r5s4WBCBQVxIFfk4QRrAWTJRRiJ7hHOms8372U9E2FYeVJb4klkEI0l8M5hOgx4RQuyWfH/5ZOFwhDkfkpx8aogJXZxILmWZnw/hli4rnt0TMUhV5NiFzWYtz+RhmMnuUfUzc/jKefhg5iqe+Ww1AhgOzA11wa78GfHcryrYfgB2/BmDWybt08IxiR7O/F/83zwY0J6dD7WDbxx8Qwi06RlbhWGkClPspBijORmYKgPXB5TbCd0VERN2EJgxIR9mSNTUWgxLFjbb1yPcIU1711gojHOXaiq3lbdDhjmFymJclRhW5H26jvAvFYEZJlRvjpguavqtUbkPvbKY63mvEkzTDBFKiQLdlaA4AKsx+qfAvY7Jk38aQOEayyGMchoY97T1/LwC4a/m0JEzKE8wNfQPoox/rFcKFMRJ9imhUWsgweTh2QDoU9w8/y3UZVT3GyJypAS2O/j9AaauuP6uNkSJbPdR7IIiDKqEGsIIO6hVyQGLuz383Rb26hIoovS/OROpSEgUDfOazry/KYr6NHx2sN//RIT4WMcqTrGEHo4IpxMzOwB+u4fYKSYrA3ScYJcLYLUELjck8FzfnL3fNGPHvecglxAobeY5ZVxKVgtkdyDubsVOgm5WPKBudwxg3r/WVcsK+nEgzvrlGwBA+OwjhGWJYVOi+dkO+tMvYVYklYeSj8dtO6TJ4vbI6yM2XND+ZEu4w5N1TIYCiq+2KMcJ40eXUCcIjzesfBxOCMsaflWjvJ1Q3tGZ+bZE2BjYboLdUtZURdBfOEy1oDgq1IDT03sPd/SwPXkR08JCAlDeTVCJr6kK6BQwXrVMimIyM9UG5dajetuhf1TDNwbuyEC/uZ5YRTkrAsnhBL3bYfkfJmhbY/j4Am4/cHgg2Mkob3qoNfA/fJ6Hodnew+46Qkkmj3K7II4+gAd610P2Fk6VVSQRSvUBCMsqao4HjM/WmFqL5qd3wDBi8aM9A7TNCpg8ildbyO7Adfj4Clo4uI+e07l1PfRqA7+uszJRGkikL99GGEZUxKot8OSSh8HPOlbRUhUegB6OwN004zF/8jPitpsG6hzsxQVboWJgnz6GDiP8u2vK8dU1k5yC5Gs1Jv6sYlAbZfw0DMD1L2hj/iqaSJ4ofW4mJRl3HBQXjkdWvMuCU2aHYU5glEo4slqyUj1xsJTUAf7Va6oi1RUDgWmCLFomkfGAAZAV3cwdCedaMHA0+xMJgVcX5CjFjmbyXTAW/s9+RviEExQRGxy2e0jhMP2l30QobSae2pc35DFtlggtgxQVQagMjs9K7sObHs1XJ0KmIhRp2JTkQY0cDmj6CX5RIpQW48rBDAHtT7cITYFxXWH1BzuYbsDwfIXhogK0hO1rFG0F049Y/YfXnDZvBeZ2Dy0L9J9dQhR4/B+mWLgY4mwUg+IMRaiWGG977Mnv6ifgqJA//CnMxQbTn3maFaiGixKhFMr4BmDaVOgvCxyeWVR3iuIQSKYXQAJx5/1asHjp0X6+w/BsAV8ZND/bsYv66QUlSQ9jhsSFRyuoAPbmAHPs0P6X06yOmKCr4wQUDtPzDSu/x4E+68ROq1qD+t0ICUD47AVMx2cFIzBXF/OBfi7XXZcImxkCpI9XlF59cwsUBexv/ICDKLs+K1tpVbCzfk6EH0aej/Hf4dRxSN/VJTkEbU058OOJ7xUHlUnTQNZL6M0d/G6HP4ks53fV5FwAJwSEKK5iayZ/5wUHGUg61+Np7rAaS4RGXQNtQ5h2CMDbm5yomKYGVkvyb5yF/uwrjiAAu1NydZF9CcA9OvzFX4MZwywAA8A3BaZlgfb330B3B77eObgYFIcffgKzO5J3VhXAssG4doARuF2fERT8rkzS7WGA++otwidPsP+tKzSvOlSv9hieLhjgnyZo5WB/84cYnq/QXxZovzihuB4wXTTwNfdYsnLrUewD4ZdJ/clQFQ9gh6IEoAaoXx2hIjj8xuXcxUx5kgAQiuqYUVFd9yhfH1Bd36H8wTOM64JxlDO4+e0LlIeAxY92sNsB9jDmc/7wm1eQlUPbP8MUB736xsBXJdzbPcz2iMvfX6A4TLB/9BX8D59j95srVLce7jCxayGBg6IvGxw+rlBfNyhvehw/ajA1BsNSUN0FXPz/vuKzurpA8dUt3GsDXdTsNv/hV9DVAqffeg538jDHEadPV5gag+WPD1S/aqp52HVVQgtHnwFg+OFTiBawO8zCGU8fwW3W0B3hsnJ7BpNKRau+jzDbimIW7yiuIzsKupimYfxrLcx6zYTj1M2wxCTl3XNGiX10NZ+TTRqseKAq5Lew73QikgYEoYhToo1hBTlJIBqJmNcIX4j/zgMQk0RfIg1ZA5hyrpLGg+B8auTXLB1CVjLsQqI0LyVsY0U9ya8Zk+dSAMhEyHs4fs+qoSSlG69QBEBlnmLqDFutVvKgIkzhrDMzUU1K4vwMjZKOhY18hgh9sOcnP3ISAhcnnk6sXjB7F6hxkMLAjgG2J4wKiBXDwmBqDezJsasSfy5RjjM4wFds76rjYCRfC6BxWJIBfElZzqLjtGapSt7jyYMg/ohzXjQIbcEAzwiCc4ABXBfhC0WSq9NMHJsuaridALvYWUnEX0HunonX7ODVSh48JJOnjHB8T/5wvndULJm7ZBQmoDCA6ya+b5QuJEE6DVW7n7RK/D5ZerVwmWSaKxKRWJo4UPl/0zUZietOABhKyMo0VzXSf+n6g95ff99DM1U5E/hCHOKos69IJN4spXquXJWrPmb2A+l+nXdSgAiVOvt3kjaMsCpExdTkf+Q9IqLUcWbHFGZSKTCLTQgorW0NzHpFJTUAWhB64CcLTA42cgZCU7CLGpTKMUq4RCK6aJQUNjXhFOKjVGVaRyKxQCDwpQBqYjJ03x+SUCrkZhhKDdspwIwTtKV8b4KRqbCT4AZQacbEDrNSchOGnVdYTkymhGTInZrcHZhi5zjKawJU5hHhswrRx0BjBbTgv80AoNC4v2NyGAesaRUlPJ1AxUCXZYSUDbnrkqFw/ZD3UZYHTbN/rAEHJEmUExVeo87Xms+MiWpnWri543suk3s+LCz928Q1lLqjcRimRvneLA9+ZuIcz7Kz98rdveR34tDWPEfr7O/PB6p9X02KklXcdO/jcxDLjoimmENMlnNHlDtNPiVxShJ3Y0Y7xOekZn6+1s4DLq0lxLZoCfssuXc1IQCaEr4mEsFWJffCewM15y6apxBPRjpYwCVOV8jiEPA874MlbEmMQnqejRze63n+9zGmCIqUyaq10NZiqi2m2uSz2Qw+jgggxEq8wiYOVTxfzUBRHakiyT3wdRKQhy5mARgxWZo3lDIPNQ1MZOz/n7w/+bWtS896wd+oZrHqXZ36q8IRdrgAY5zUEiAugj7+B5Bo2pbAtKBHy6JFy9BC0LKQkCCRQEkqRQoQyGRenBfjKsJRfeUpd7nKWYwiG++Yc+0TYXD44vgg4k4pFN/ZxVprrzXnmO943+f5PXsJ4zSHflwnYyFNh+AU/Uk9JrsfP2i5v4dZSTIK00ZZl0JWIKgcyNhHaSrlOiYZqWHMHqlbakuoDb6SqWu0mn6q6af5NRolypdw772PcdyAqXzuaJ8BPDESCvHDJK3ktp50Xrv0W0Go8vsid1eN4IdT6Y5BswPeOaPnh0BjwQ8bUElya+B4vvd+XBNSlycxWkHUR3+ltWM46qAWGjDlqeuPeXjDPfa7OP7ANyK/+Iu/yD/7Z/+Mr3zlK9R1zZ/+03+av/t3/y4/8iM/Mv5M0zT8zb/5N/kn/+Sf0LYtf/kv/2X+/t//+zx8+PD39VyxEd23KXK+Ri+8/WGh0CcncqOvStHv+iBFXdOg2wpClK5EfrP0xbl0hV5fyci0rkQTu5hKx2knuzulFGk+lZtL18t4zlkhr9Ql/ZlgKd1v7KVoblrY7tCfeUHyziv0A+l4x8ph2oB7eSfjuaqSn29a+VuslecPoIJMNdKhwdwpqCvWf+QRKiXKm14kC42ML6nLTLFQxJwarvpCjJqlHlOLTZswbaB4vTvKHCaOWBjql01OFk+EqWP/oOBwpmlP4Pw3PPWLAw5IVhLS25Vl/1Azs4o6pVFaNUjGzFlFc2rYPKuYfxYorz2bdwt8Df1MES0kC8tvQP3iQPd0RTInY0Cje7NHb/fEm1v6Lz5k847g9UybJEho22E+uyQ8PWf/bMo0JPR6j+ojYWp585Ml808rli+vxnNIvCrkhS6KjtKKtMnkDYTaC26Y3JlgvYWzFf3pBFuLcTe9uZYLvq7kBlSVsnCkhPrkpRjl330qi+8QVugs6c2WuN8LAjKbzYlBdMIfvEP7aEqdP/MxW2A6zVrkJptTc7BeFF8UUYLPRlRf28q05GSJGpLf83OkrpegruLz34h8nmuFfvQApeXzS10Hd2tJmD09ERnlPYOpKhzUlUgOBk+IUiKXGRKSszQrvngl8oSqfIuAA5C225GkpQqHWi5kkW47KVirUs6rPEHDOTGsxoh7mT07owxEY+7Eh8CrS9L7Tzj85DtUzzfobYPZC/2tX4hc0SyHZHLF5Lfl/IvvP87kLQn7Atg9q+jmmvoqYA+R8vV+ZOGDSDK416zwE83tjy2wBzGf7t6f4Wu56ZoO5s93oDV+5kirCj1xtOci8axLSScv3+yJWbIkHpOSYiNZQ4M+O80l8yOVhu7BDJWmmHXOV3j/GWl4jzKFrLiGWBh2z0QKU2zk5l5fJdxW0J6hlC7q9Ju3xNJhn03RfcKvyowHhc37MnmYPm/xU8v2qWP+aULfbLHr3LjJfjvqilSXozY/Gc3+qdCAps9bwZPXTqQntaG8bFBtoH9YSTf3U5mCUVcZsWzk3EgJJrMRc6xCQN/uRDLS93KNG016IGQ+dbsZpX5xI4hOA+MmdzwenMm5/eqS1LQyVR0KkKZFNa0Y1pWS++KA+vYe5f3b+vLP8fg81wnz+ALdcYSBlKXI1lZLSJFwfSv5GXWNOl0Rl1PUq2vS/jBK4Qbvp8oUI3Z7GO4LczGkjyjw/QFdFELXuzgjOUv/SCZeg8SZQ0P/pSf0S5EdJ6M4vDfH7gLueo/uAm4D7bunKL+SSf2hJd6t0RtpQvrzObE0FK82qKZn+tFWGnFNKwGFCgn79SIxQinSowv0es/kV14JVKM+hgDG2r4t7xw2FCmh2h7b9rjXGzlP81qSlKJ9INOH+io3UEpHmDj8JK83VrF9f4r2iepNSywMfmowjeSIbZ9VRAf1pYB7ts8K7LnDPZlSf7zBfXbNy7/0lOgUD351S3tW8uqPV0yfR6YvesKDCSjGjUfzoKa466k+zMoYpfDnM/zUsn9gKWrN7PUKfbdn+WsN3ZNFnqyKd7Z5UOHrvCnwIoPt5op+pjj/tRbTR7p3TnA3DfrVNfFsRZiXdKsClaB6dIZa77H/4b9iHj4gni/RfcJ0uY/ho/jHpjX+bCZG+Lajf+dMJsiXW9Rmj3/+EvPF99m/u2C67+R6HjzITQuNIKf1fI6aTuR7w2YGMPOpbB6GENYkQafjRqM8elsHyM6QKYW1xNUcvTuQ1hviev027OK7OP7ANyL/7t/9O372Z3+WP/bH/hjee/723/7b/KW/9Jf4rd/6LaZTkUz9jb/xN/hX/+pf8U//6T9luVzycz/3c/yVv/JX+I//8T/+vp5LVyW02Wy3k3Fy8j77JziSL0IUVJ41xCZlA2Aa9ZxjIKKXEJjx7ctpnGRco7JmLExS5cZuhwoR+mMhY2p3NJHq3PEaNH5GOoo4KxuhJuP0yiJ3BXKHYzAqDYncuQOYnBVEZ+54miZiuoh7syMVEjJmshbb7ETy4GdZGpIZ2+3KSmcwQHnbYvb573aWlKk5eug2km++CdF7btXYdQkTN3YSAWwTqd9IQ7hfOjBTVB/zpECwmfagKdYJuwuinewd2iiqq0S0jEVNe1YRc3FcXcp70p9PsKXBpCQoPQM6SGGlspk/zSaiK+8TflmiplLs9BON9nlIsMg3eR/Qeykq/AMxvQ8hi9EZzL7D3OVk9mlN82SOaULefGm0j7LZKNwYbDdCA8pC/DYhiQ9oOsFfzCElrDXQ5MXCmGOXcggJgnFjYRrRsKqqzB35DEMYuvS5Q6VyV1Tw0vl8HV7XvQyRseM5LDDDFDC9HVb5eRyf51qRskF8lKKNk4r8fhsJd0qDLrvtRqMqw+fT3yMz5U2+Xi2lSGs7aTrsxGCpBtPw8AKM+HxUn583Jun4TwXZye0GZaLQ33qO3q4YBSShlJjdu146ZU2PW0tQWdJKJJ+dHr0W0oGXbmeaTcQ83Qd0/rtTpj6ZPlFs5RoigySGyXFKuePWR3RkDPUC0D5lTn4OFzzEnG4uk9N+avPUNZtb25jzjyxQCj630mgvWM9opLs4TIGSkrA0lZJgMI0mrcocaiZGVL2JUsjUjliasbkiulZQHrS+N9005AJCim+39cfnGrxi2SQvKF4t2OFhkh0jKuVJpcrrntaZEJThIKNnLo1TJd0Eyl0/on3d9qg5Hw+tpXPdyeuQ6ddxI6IyPYf5REzNIcBGfBup76UAdk4K5iB+ojQQierq6Ce5N1UZfGwcmvFzTf+t4iHe04N/zsfnuU4Asl5beU/1fCYS2CGvIwbR1mfamTZGUOl9f/RruYz01VoKNp/D4kIg7cU0Lv5TJZ7QHAzIoUEFh/IzUSs4M05KTOOlITBMFhLiJWiyR6OP2a+YFRFKSRbJfCq5VwrxPzRZ0ukmpMLArMg+Jy/EtkKPz4FRQmxSijSp8tqUwRKDF63x6L4Qz1iCEWsdE3o4XVIap6ih0jKpmFfi6Zo4dJD7XLIaFaDYeUwfRTY2EQO6NEc0pktjeKHK61M00E815uEUs6zEaxoSh4eV3Pd78JXicOFkStPJ2jVcw35iiM9WUo/kfLSYiZ2hUKSqFOVKJVkhbitNH6xMO1Ne5E0b0dsD1fUM0+hM+IqEQfZWlZKV1HnswcjkeJCC26PnzG2FDJaUnAMqg2j0gFrX4tsjq2FU4dCFQ3U91WUz0rXiIt83EKWLrtpjeLeVCbU6tG9vGKw95tuUZb6VSA07ft37UVI84N71vhGlTlVJs+T3OTn9A9+I/Ot//a/f+vc//sf/mAcPHvCrv/qr/Nk/+2e5u7vjH/7Df8gv//Iv8xf+wl8A4B/9o3/Ej/7oj/Kf/tN/4k/+yT/5HY/Zti3tvVyEdQ5R0cslvL6Rru99ZN5kAiqOG5PUthIytpxLJ7Tr5YYcoywiQ7p1076VmDsaALs8ji2LEcU6pPRaH2F3IL45dtlN1gmnnNqcmlb0/XVFKiRsTxciXzLXW1Keoti1Ro+GWTEepcISZoUk//qONK3E4J1P7uqyQd/tCb/zDcyPfJHm/RnVK7CdR7++gbKgW0mXR3U9/dyweywXpz0klr+5l64LECcl7WlJcdNiNu2YMBqdGacubhOIr0WG0a3y6ZNkslJedcy+fmD//oL9hYUL6ZqYTnIEqquO6rqjugazFjKE21fYJjH97EAsDe2Jo50b1u9ZeY1tYvKpbA7W75UUW0c9KehnYnA3hyiazZy83D9aAuB2nv3Dkm6qiHkI4DYyxuyfLLE3B/R6P+a9rP/wCSiorgPJQHSK+a/d4j/6FPVTX6Y9r7n54QK3TayM4JPNpiUWllQa1FyyGVJVSBd0khf4Psj0zFnW71fSBVkUVJ9u4PWleDVGuUQcUZ5qPiN56Xglm5G/Q0eyLKTIvH+RuEJ+f2D8p4SaTiUMMU8DU9NA345mSFUU0tmzFm4u+byPz3OtQCnien0s/gZEcp5EqIm8D6osZHpweyd0kBQxZ6ci09ls5T3LFJykFfHpuZg3v/WpBB2u1+jpVD6/xUwaFvePlMbNSdLSfUta4a5vIdyTUQ6vrW0J75zLn/CfPxL5xmqJWm9x661seLUWQl/uYg04yuFoHs+EPPPhbTZ+OvrTCc2ZpbryVIdWPCla4Wf3sjE6gWSYfS/F+plDNNtiMDebBn0i52J11WN24muIztCcmHHCOf/E4zY923cq+lq6hcObMP8kUNy0tOclfaXo5gWmT7h1GHNFgtOEQnM4l/WmWEfs3lL0QrnqF3nKm6VYugfTxeyxkecKhSZkA0qYldJFvtoTJ4UQADPcw61DNtF6VIJSK5GRFO649q+mUqyUBt0EzK6FQuQgbh1GGQlaEUpD+dkd6dMXqMcPSJOS4s0uy1COV3CymlhZzKE7Fm7DJKoB2g7/9JRuVVC9khyq8I2PpDs/+JYKR7xYiXTmN74+ZgmZwhEXE/GoNV1OXtfyO4cGf3U0h6mc/v6/0vG5rhMhkiaFbP66Dh6cSXPvGy+O2UwpkdpWAv62u+M6MZ+Lh7QqMkzFoqrsGzq04t27vETXNerJcVKTQIL4Lq9Fbz+fSuFbWpGUlgXmaoO+MyPGe5iCAaiulHvEoT02naqSeHqCX1V0C0d5Kff0dLtGVSX9vCDUmm5mmH3aYF+v6R8uBNmbqZa69fjVhDBZjC/UZRpmv6xEernZY1clphPIDkbTnsj9rLBa/B2dJ2RwRD+VIp8nteSPzTSTV576+ZZQicSq/salmKgBdbqUgMBCE0qL3YdRPirNTZF891NNuyoEzbsReej1j1pMC+VNolsoDheK1dcTbiPIXynkSw7njt0TTf3GUd5J3ghAKEB7RVhIXXQ4N6x+Z499uRGvxrfJU+2uJ718w+KrWQFyLVMflUMHh2tQ33W4NpAqS/NQUuSLq6VsOtuO4o1sQGJlM059Ip/HZj8GJJtLmZj7xyeSO3RYkTZb9JsrMahXFe2FNGUrZCL/1qsdYBpvro917mwK86nUC20nnrUBltK0hJub8dfNyQmYYgz2jm+uZBOynKH67u16/Ls4vucrzl3Ggp6engLwq7/6q/R9z1/8i39x/Jkvf/nLvPvuu/zKr/zK77po/OIv/iJ/5+/8ne/4ejocMNNp1rRGMZrDiC1LhybnNBTyM7uDBAzOrEgjkhWTzUCkKousq4tj8rFybrwJpVywj5kECSniez8mrosW03zHax3SbNXdDrdrGGkn2S9iDj39SY1/OhPTUs4HANklo+8FaKWEe7MFa7j+IycUu5p529Gfz+hrjTorCROLKyW00E8NsdTE8ozytufB/9HTnBaiYVQK6pIwE0pLcdfh5wXteTVOQkwTRl1zt7SyeLz22LWnOR3yPwKxNDSPZ8LibvJ7GhFDOtCc3QsTmorxtX7ZjOGEyifMIcLCEGpFfR0p1pl8FpM8ZxMwhx7t3ajzjIXJhJ8cUrYPmL2nvO5xO003N1k6kjDNvfJdKeLFilQ6qmuRYRU3jWy+CmG123ef0tXCLF9+y48dz2TzZCtrtVNVysYgJ7jruz1pVhNq6VaQEtMX/ZgerUKA2fSoI7YGfCDebY6BeGU5TuESSFczpaNEMEMZRj8SSPZFCCOBZfhZYAQ2yLleok9P5Of631/40Pfq+F6uFWp3kCKhaaWgUDIBkfyGHC7pJEVb957E7pgRkHHeMqVKYtBDunH6bi9duaaVcfZ8Lh3EtkOtt6h9pmtlkpLqfTb4SXCe2ebiJgRSTNjXd4SzObsvX1A/n6BvNtgXN/K8q6WsR1PRjws96wAh4N+5QCUwr2/H7w3maNNHIZdk7XOYlvg6U+/6KIW0KkcZhPJJqDV5XfQzme4Vt+KDCpVM5vxJLdfMJsrjOU1xw+irSkY02r7WKJ9DC6Mi1GB3UF9GkoH9k2r0oyUjnjR307B/d8rd+zWT15FiE48TTUQOcng6lynrPqBz8WAPgSHw1M8KwtRIp9JHig15SpMIE0v3qKa87ig/uSGupmNzZ8D3xsLQrSymDaj+gD+fS8c4yt/YTy2FT6jWE86ndMtMCDtE7K1sctqTArussc2pbOb6QJhLd9k/ngm5aC33A9XK5IMQJOk6JekyeskdEOkLEoa72QlyfvAqlYUErvaZ8DRMRkA2r9f3DKv3JxtViX38iHQ4EHeHt0N6ncPcz8lwEtqp2t13RcL5Xh3f05qi93B1SxwCHl9fYe9KUhJQDXvkGn/8ALXZEdcbzHIxenSIUSR0raz1qS5Hj5NS6ohO3uzG7jKukPU91w96d4C9wiSZPKT59LiGFJYwr2h/6ITyusV9di2PnRLxZEGqHd2J5AS5TYe9a3GXewafmlotJHoA8Tq0S0V1ZbDOZqyueIuS1QSbCZyFlmuoj+IVsRo/kbBDNjtUXBEK2Hxhhg5yzeuQ0MGNABq7C9hNz6wNQt4sNFrJ/dh0kTArMU3ANAH/cAlRNj+xyACaLkJH3oTIlDQZha/FU1pf+hz2DCpAKBW6l6lCP1GYJuG28hmHSlNu9lAWHH5ohor53p6JWqHUJAPVTcT0KdcX8rvNgxI7c7h1l+sEhYpQ3klYov3xD+Q1tkEa2FqLZLISCVrxJgMkygJ8pHzToBKEx+fiQe16/KoWGugw9amtpM+vpQEeC0GYE+LRO5jJWHqICtASTJlSzJEHubmeJ/0aZPphjoGm5PDVpNV4rwRG2qZyhdQJIzUrkfYHVJ6+kZLAEpRGz+cyJfTqmG/33zm+pxuRGCN//a//df7Mn/kz/MRP/AQAL1++pCgKVqvVWz/78OFDXr58+bs+zt/6W3+LX/iFXxj/vV6veeedd4iHFntyLm9UK5SPFMKxuBs0cMbIG7jfi+/D2nEDoOazMaRv0H0ra0kmSR5ETitlL3kiogPPN6yQSQIpjZuW+5sQNRgVQUawzgqJp+1khO6sdE+USCv8w5rNM0t5a3D7iNt46c51QeQJEyOyhD7A7RpVFOyenNHuNfXzFd3SEQpFuxTD1HCEUuNr6OaGxVc3qK9/zOTHP6CfyUYllrJ42Z3H3RxoLioOZ3nk5hPV1dFg2U8UzYli9lmUhPQz2dComPCVoV0ZTJ+wTdbGB5FAhMrIYw5vR60wvaH66AZ1aAkPV6igsPsAyREduG2gvMo36STTH7zIMpRHxtdaTGIgoYL9VGRZzkeKO8kSSKoiGZnaDBKu4fDLmlAbirsubyDEI2KyJC7Nypy2DJOP1yRjCLNCRrL3IAOpdscO1a4hvXiNeu8paV6OIVPly3vFQIhvkVdS7pylEESn3TTH5N5sgEzLuZgih/N4MgQj9hLCqTTpcTWaeWlb2YzXlfggen+UfjkhvinvibvPX5b17cf3eq1I+z1MFqBFnjVov8memdQ1ouas3IhwVjn/RxbbBEUlY+mBTpSSoLi9F6qOs+jpRLTfTZtpV/c8QVodYQUDCGMr/PcEMr19c0V6sGT71GLamrIPpG99Irr/p49kk1E5wrQk1JZyL2Fj7UUFCSa3bvRNxEzY0m0OCsyb51AL0jYZRk24LsSs7qssXxikjkoRJvK98tVeZICpJDpNN3eYLmI2ko0RSrDb3PGE3CgQAIWuzIjnDk4CAOvLnsO5o1soquuI6RLBKJkwbQ908znrH/GY1sgmIhynSaHSdFNNfe2x13JjVSHKpg2Iyxm6tCLHSlLIDNANAF8Zdo8MxVqRXr5BO0syGbWaN2DRafqJorIiq+mXBf1UCyHQakKlSFv5XijlZ+0hnxebPcoYQiUp8Xo5FVqiD3nDZzmcW4qtFHSqz42njFpX+2b0EuDkM2WQq212Eo5bHBs7qXDShb07SCF8bwPBoSHe3I7SodGAmpLIcWcT9J19K7kZslxxIbSn1GTlAKDp/6dtRL7X6wR9T7g9JruGyytQShqWua7Q0wnNsxXlZwq2O2kI5SBSMWz3WYnRod0psS6OiejTiUynM5ks9d1xCjWYgTOdKB0a9MXZcbqZ7zn93HH7Rcv8E8XitZXP2wdB1C4c26cWt0vMG4+92ZJeXaJXS1JdEqc1KW+4o1X4iRKZszO58ZCve61E7ugkg0c1aQwMTtrKBmCr5W8OAndoV3qcSJgWdC0p591UsfhYGh7qqgej6R7NZVPdBZGJ1kakpn2keTzJ9/QsAW1kPVI+y1qVAitri6+gvIPq5Y5YWmKeTJKM1AgaYgluB9VtIDolyeu7A0mpvPYkph9upXExsXQTkY+VdzJ9iUNqPNCsDGpumGcEejQi53SbQD8zNGeO6acHMc77AEZebywM/czirpU0FuRkxtw0Qiu8mOLuFLr39HNHNxcZ2sA9SblGjIUhVBZdu7GWiVYTF5Wkt/eFrDNJ8OqKdCTwKSXZYrvdMRtnUpNUzJsN8T9K897JOTrkmZDl4k0rdod8pMOBZAzm7ERqkfVGpi/Tidw3dfifvxH52Z/9WX7jN36D//Af/sP/0OOUZUlZlt/xdeWMFFv55NSTiUwOciDQUIC9lZBeiqSK23XGluZFWR83EKnvx7RJCicYTvIH8eCMUBVyw2s7ManVFSykKBzTL7WWXSrkkBdLrBzpfCEEJ6OOOs8+oPYd1asDpikxGZtpLmVcHOdT1MThncUOGuTVgqQVp1/xJCOeCtNEVl/bEyorVColWtLJq1aeszbE2mLfeUw/c4TK0J1NSBr6ee487GT8WWnQXUIH6Y72c8fmHYvuYPJakoW7swnRSPfh+ssl2oNpobqRDYSfujEdXcXE9NXxRtecGtq5Yvtj57LheL6WE35ecvKVLSe/LQb5blnQnOeQsrWQs4bNR7GNTD7dovYtcVqJgQ7RXMbC0C0csTwabaNTaDT0x82I2XeQHM1FhWkjVdvLBdn1pEVFqC3FlfDh/UktXc2UMPsOfbdj92MPaZeG+ccNZtehb7dSTFQlflnTnBfMr3ai64YxkO53PYzBPrwgHQ6E2zvpeFYlcSuheWa9lWKkFiRvKtxxUQNIUbDSkBPCI7FpsScrkXPd3o2LSDw06NdX46RFtbu3KU2f8/G9XitS18G92kzPpqL9zp4OvVyIf+fj1+L3uHeoqpIN3KGBwqFPVjKBalvRypYl5ksfSHcqJsHyNq0UitbCak6Y1Wx/aIbbRqpP55I70nvirBKd77yWdWB7QO06Tr7S4K52UtCerPKLFh9QKh39wkkH/qbG+ED96ZaR0NX1mLsIy5owZiQp6aZOLM25w20Di281pELTPV3hLvfYzlNMrBi37w70Z1ORAl020qEHSJJrFEpDN9eU64TxCbfL51XuYBbbiHsVsNseP3M5ZAxUjCy/KWvC3fsF7pCobiLt4tjNjEZRPFigPUw+kcySfqYzfU/+G2TCGa2S92IhEx73uMa0ieJaJq3VZY/ddqjG41cVYWLZP5TmidvKWqpXS1FSNX58/QDutmG1lclEXE7QXcRq2D4rMG1i/tFB1prlBLfp0X1k97hAnxpWt3NSZTFtGnOe9Fb028XziHOW8rIUb8/NWnKl6oJ4Kj4ytRezO0MzzFnc6w1u2MDOZ6N3SN5wJ6ASY6DKX/NhzLYYwCtY8TSk3pNeX0rxW1XE/Z54aDBnpyK3WG8EtHA7SJburTP/E6Vb3/N1wntB9Dp3DIENYcwA0mVJ3O0p/+uHQF4bBjT38LOQJ6gywR4Kw6SVyG790ZeWmqyiyJ4d5ZyE4TbSREqHRmTkIL4L7zHrBbPFKXYfiatp9jBJtz5axexTUQ7og2T6JKB7/4Ju5Zh+9QrVtDgl01C3tRIqWNqxaRoLMxbeuhPvV8iTEbsWo3Z0isODgvgnfxhiYvZpR7cUpL/O9CsVxZvRnirMVz3q4xfED55JDbLtxQOR/V+x1KMsdPdImhrRKYq7xOyzjv3DknaumFwFdJeEvlnkNSUlYmm5/ZEZzali+up4I7P7xORNJDiRgRVb8Ygc/tAzVEisvtbip4bbH1uIwiVB/brP/tWInzoOjwqJKMjZRoN6Q4XI9LOQJyNaNkxdop8LoMJVOavOaNzVDve158QnF7RfepQlshHbHKv0gRBYf7KmMorD03kOpY7YfY++26FvtriU5L6lFfrpA/mctk3OlRGyVtIas++kedN04jV+eIo2Riauq6XI95ZTIZx++jJTI4/vXUpCWlULWZNS18t9MjdHiVECFkPIGSnii8R7gT0cGqL/7joW37MV5ed+7uf4l//yX/Lv//2/59mzZ+PXHz16RNd13N7evtXBePXqFY8ePfp9P89b4UE5GCiuZQZnJnUOc8uoUiUoNUCKiLy4KGuhNG+ZelPISZYAhWA9lXPE0hErK+acth0lV7HOAXZDCN49UyTJjYjdUMqOPTrZiLg+ZAylaCnN3kjnoJGuqtJ67OJJdz8/ZCZhlVctobJ0S4ttAvauQXmhY/mpJZGlVSqPNAtDmAlRZ+gOCC5TULWpFAnFYDwdZAoDWlf3Ymz1taD35MXI95LOF2hMkltSGpI2YrKLMoId/haQcWebC4ji0uYOc0BvheDiZxf4HJimIthGvYX1UzFJiNDugHYZ37sXk2yyYkSLGQssn7O8VvlIjEwh8uOMaNKMtyPp4zQr3/xDfm9UK+AAek8sFKF8++dQKp8r5vi9nHo8GkaH90Eduy1oJcbSlFB2J2bzHHiZQvYujfhdfUQFpwhKeIap748oPhCEtTUZL3rclBGCTEucfevn/2ccn8dakTLm9f5nhNHHhdeImT1u8vw+SxkGQABJybRVldL9bBDpRi7K4lw2l6rzqMaMIWUqv/exsnR5SunmJWaHfAbGkJxkiwgqU4K73OUWtZVcAjXJcIp7549cB8jvWjMG75F9afSZgJO7+0OGSHBHQ7fqA6EqpMDIPjA1SA+dIVRGAga9pCvHRT2iNQcfVbp3TiUFoZJzyQ7erXWLn9jRg6GSmOO7uaadakwHdoBiyGAzQytyPtFaXqsvFe5w7+cYflahnPhDYi42rEvYQw4QDAnVeFmvz2ox0td57d3nTUJVCMJXHa/DMC2lw9h4Uu0IpQQlSp4SqCjeEfl5jWlDhlcUeKuIAyAk5dfpNFpLaCVth+o9OkbxbDSZfle4Y3L18HnmyX5yBt10R2Sw1pLPAuN0TXDkuaNt9THsV6vjtF7rvFYkmZBmKVjqpQhRmRjIKCO8V0gM78+3aeM/r+NzqSliBJcJV4VDJcHnjtJV52Rqst2iZzORb6p76+rg+ykyxj/Eo0RnQD8b+V4+NY7ScOfkvR9+TmupSe41RlKQ+47di1QqOgMOaTQouZe5rRfVBDIp08sF/dzST/I1mFHYQoU81iqqD9LItUrOmSBSLeUjlDJdjUUOI05ynbYri9sG3M4LdMIpVCCf84poyL6tKIVpDkbUfSfPVcjjkuTnUce1pZ+BCiItb+eKfqHwW41NMa894gcTrK+hn0I/B38n0AjtwTTg1h7mskmKOe29dxrTJ6rXLWluaZcSdGq6JDKoXTsasYNT8nWfhF46fMZJmhcpT450nwAJdAxWoTs3TnDMBtLdGt55MFLAdIRUF29RxZJS6O1eJNwPpsQhWiKkDFsRaVTc7mRiOcQNHBo5pwqXMb96zEMDJIC5sqhJhVousl/ZiQ9JZYx8TMdp6XDkEE9SRqcXTuSGbScApYx/H++FuZEjMJjvHnDxB74RSSnx8z//8/zzf/7P+bf/9t/ywQcfvPX9n/7pn8Y5x7/5N/+Gn/mZnwHgq1/9Kh9//DF/6k/9qd/Xc8Wmg1pyP1LfidH7XoJpOjTyoez2smBUpXSIQiCGezu/LNuKgxZuGJPWsrsLL16iT07gfCU0Kh9RswlpOSOcz4lWEyqD6euR6KJ8FF2uP25icBaTCVCHH3k4jh+T1mJYP53QnDvmX5EAr+bH3yFpKG5FCmKbYxhQKqRwHzTm4UJulrF26FboD/vHJb5UqHMjFIgC6ktNFRL9zBAKmWAMhvLoFM1Fhdt47KZn96waC2nTJk6+1rF76Fi/Z8bu5dlv9Uxee5Zf83QnJbvHjnZpCMV8/N3yxudNUE5fDTHnkyDo3qlm+/SEyevI6j+/on+0pHlwxuFUEx1MXwoZjIj8bh+5/aGS5lxTv5rjrMEvK3Trqb72inC+pLuoqV/sUD7y4s+d4CeiSy9vE8Wm5/BkSjebU65FX17eSAckVZZ2VXJ44Fh+bYf71g2bn3w0hjG6VjTdyWrigxPKq57izmOvhVp28yeeUN566o/v8BNDKISMYdJCGN+dR92spdNZS75C0nrUdqeqgNKhFzNZlAHd90cT+nD4MIaYpbYTjabJRUY+9GpJevxACqJh8VRKQsqKAsqStNsRD2tSfFuW8Xkcn+dakYKY9YfGRbi6Rt3eyfugFNzcjaSPAWlMlrvp+l4Qovcynt4fjuFwKQltLUuSUpXDyO5RtsyhZ/nNRjb9lRGPU0RMsTEKYjsXl/p2Q3j1RiZiWZI3MuLbHvPyhiokdJCNQVyJVyhajZ87zN5jbxv0rkVvGvzZFD+1NGcO20YWX9+ye2fKqz85Z/ZZoNgErn9yQTRQ3UV85WhOJjn9GKplia4sVz9RZ8mCTCJCyXhj31+IXKOfKqqbxMmvrzk8m7L98ZpkGIt8HRJulzf+QLdU9DPN2W81mHVH80RkGd3Son1i/pln99DQLBTukygZQxtPc15w94GhvE2Ud5HlVzYi53q2op9a7j6oxg3LyVci+nbD9klJt1AUa5GahgL81GBXU/p5QXQKt/X0M8vrP1qgPRR3IjOxbWLxjR32pqdeWpJR7N6ZUl13uOd32dsRWWUp2/bdCUmRCUPSTdbdFF0WgkTOm0rVV6j5BA4t6m5LPH9AtBr7yo9deHLBkIo8LWkyGVIjG9DLa0F61yXcbaUh8c4jkZXc3MjacLI6NkFAmhzPHqMOLf7Tz1DWoet6XJeozkUy+9Gn4/1UFcVxSvA5Hp/rOuEDal6PXV0B3kjAm7ICnME7tNZHAlHOexrWAsiFX1mgXl0Rb+8wjx5I06ftpDG0mo/PqdYSQhgfnkp+x9c/lIbYbHr0AAGUBfsfezT6EnRImEOfpUiK5X9+DkD7wQXeOVRt2X15zuFCs/jIM33eEk6nJK3oloXIKg9elBKFZvrbN9B7Dj/9VHwP112mxwkIJinD5ktyDk5fdGOgcT8zNKdG7uk+Ud31+Nqwfc/iNomz3+rBR8zTxzQnRTaWW0KpaE40s+eB6cdbupOKWCpOf+tAt3C8+mOO3TuJux/WlNdKmhL3DtMlqpsgPpCly/Q/ua6TUpx+pR0bAdWblkkX+PR/m9OeJi7+f9LMefUnJBpB9wnbSPCpvd6hes/+S+dEpyk3gWikaVte90L4cproLLHKXr9W3id8RGV0ej8XCWw31dgHBcU7S3QXKW57zF1Dqixv/vgK08L0uYSe6pu1kD9Li917QrS0pxbdF5i6Ip5MCbWj+PQaek+YFJmuWYnMshRIQspe1eQM8dGJ1K3XO9pnKw4/dcHskwNmJ5vBZLV4S4droBDqm3p1Kd7EupR1RylRBVzfCJjF+3FNIOO+0168mGpSo6oKEzv4Ljg4f+AbkZ/92Z/ll3/5l/kX/+JfMJ/PR43mcrmkrmuWyyV/7a/9NX7hF36B09NTFosFP//zP8+f+lN/6nc1lf2ehzGjblg03xY1TEkyPo8cvKIGuVUMxyAnjt3m8Wv3io6Uu6KqLAiTAn2QdOyBEAGyQ7aHkE1BcTREAqPvZOhSDt0Ou/NZvy0ouJR3sHYXQSNFR5SrKFktm53SYHOmhl+WJKVwN9mMLE18Gf+O2EdB3UG+7+X/TnbATKoR20ki54EoiiS0msFwnoxCB97qCJoe4a1r6YrqLmCbgNtbdECKjzzBCaUecXuDtEr7hG3InRXFYZqnKhMxzcas7VYhS6q8othm1LEmd02gOS8kkCij7dKsFppGJyjU5IzII4ZdvpKCLWkZsQ58chXyBMjHjAQmj44zvUaJEVa3shlMLncdQjy+rxnlmazCn0xIWokvJSHGs4N0QlMONSLEnC2XteEgqGANuKMhTTkJyFRleezkxzQWKsrafN7mz/3euT1048hjVqwbw43UYFIfdLfDsOpzOj73tWJE7+auTUYZK6VGLayylqSleaCr6u3pkjGjtn4MNRtkcjGi0Bnpqo5rCIx5Mu56T6ydJJCDFK/5sVRuLKghFM3kx3Zu/FhCZcWdZg0qiOxJrh9NrKQr5ycasJiDQTUJQvaZ+UR0EL2CAXkdGTNFkgZ0/reXrqbpkDUg8XbXF1nzdJcRwXl9MB2Q5IaenCaUokHX/fA88rvd7DhJ8TV5uqMxHLuCIDhMc4ioc4FN2EPKxnSPaSymETJXu9BMaovuxByrUhK/iVNEB6G22OWMUMqE1HRR1oFcXLSnZZayis8saXnNpgV7EA249mKQ1aUZPXFu4yXwrHDEjOsOtRC8hilsUtl8v/dj5zkN941wnF5gNCpKo0aplGV4+b5hZYpuGp/BJTC4ZVRMxN7nDW0S6WXv0bvmKJ0ohaok59e9izyKMVnZ3IWPgoePhR3DW3VVZoNqOt5Xvj2f5Ht8fK7rxNAVhiMSnaO0W+XmkGTJqGOgYYxjwTauy11/xKkPvr1hqhnz/ckYjFayfhw6+boxYxNiAPGoHHgJZNlTOvoU4fi5xoTdipcgliZ7LLLPog/4iTvCJIZ7cZ7yx7l4FuXalKDflD0XsdB5ei/3ZLPvUbWlG+4zYXhdjEqKkW4FxNqi0kSmCF7u9b5U+KlIu9GafmHpa0X1usE2GrST68jKGqR7xsdTUa5Ju+2FxlUZ7EHyN5oTCSoNlT7+PXX2/SWZkmifjeABTJMoNgLdsIcgU4rSyvdTIiHv0YA1TlbTLe0Ij7CHiBsyjmIcs9dUVCgvTQyVch0UEslDWJRjqOGo0higNRn9nPL0WufmrShupE5JZZGDU9UoWRW5FPI5KSWSqxAh2tHfYxqP2+faIpv+lVKC/70fQphVHSlEobHBsabNqgyltfhclR4N7cR4VBZZi1Lf3VrxB74R+Qf/4B8A8Of//J9/6+v/6B/9I/7qX/2rAPy9v/f30FrzMz/zM2+FD/1+D5X1rSAjTjWfkkqHKQoZYYGMmsuCtDsQb++Ov1tXx+5x05DaFn1+Jmayu7XgyvZ76RStlsTTOe15Tf1hC+ut3Jt9wKwddL3owtuO5P2oo0uzWrI95iX2tkG9uYbTJXFS4D6+HHnLalITzua41xuKr28Jj88JD5cUz+/AaPqzKX7maFeG2bZHbQ/svrygrxUn2ewF+YZe2nGsOpgqgWwa1UKoKDTlTS8X88HfI2IV9FPp1OpDz+Rba6FuLSpiRmj6GvwsMf9tqC99nqzIpkn5xOzDHWEi/pPoZMqyf2AF0fuyJRp5HLuP2F2i/mRNKixv/tiSpGH3hQW6l0VhmNLsHhrcVjH9yiWpLvDLYcGE6y8bio3h8f/7klg77v7QGdVVT/lyy/ZLS9q5Yfkt0aPuHgn9qp8bzCFS3vYUn9zA/iDhcvlGW3QesxOTef94JdzxJlJ8ditvlDteNjr7TeJUisvZR3u6k5LbL02orwPTly1626D2DeHFS6GiLBYy0eh6gRcMqMK6Ir3ziCFATvlObmZVKd+rCpHyVBZ9uyO9eI2ez2A6ly79vc1vWkzh6pbw6rUU1AOiNkTCzc3bkgvyJv5zNqB+nmvFcIyJxyAL8eFwL7RJMKgqBFkPHj2Q4uLFaylO6qO3RzmL1hPS0wdSuN3t5S5s3Hc85yC7il/9BubpY+LDR9K0uNuI10RpmD2RG/ftRs6Rxw+Ji4k89vqAConmvMB0ltKIcdG+XhPnE+JEwkajI6ckK3RfYrVGHRT6bo87OOL7pUwxKovbehYfirRTN55iK76J6k1HUlC/MWOQqMo65+lr2bDcJ8+pJNdoddlj+oh7uSFOSprHE9q5JhbDFDIy/WSPnxd89ucKdA/FHXSrRL+MbF4W1LWhXWp0ALeNFDfyN9onD+mSonp9wNzsSGVBlcSAfvvFgvUXATWhvKsgF/7zDw90y4LDheVw4WhPV/hKXq/bhnyz1rQLzeapTFbcIQJCD7r4Ly1257GXG9K0ItQOP3eEsqSba6rbSPWr34TzE7pnK/YPCrq5yDRVSMxeyP0nFIryusV+9Jp4sRrJh8pHOWeMkS5mVZKqErNpMECc1lLUNB1hWtAvHe7mgLq+I50svgMd+tb55j3x6x9KYOH7z455JF32v4FIsV5dgtHo0xVpuyPudujKERYF5sO15Cw9vDiGgHa9SAWnU7j9P3f9/Z85Ps91IoUMAykKgUxUlawP9yfSOejRTCekqpBCreno3r+QhsOrNWrfENcb2aSUpUhXIOeFRbnOV3PCtMSEKO//myuUs5gnjxglu5udrBEnC1LlqF/sSM7QL4RW2S9L7KZDdR7/cCU5H9/4DDOb0r9zxuJrDct9myEXlv1Dh0ow+6QZDenutkFvW25/6pxuKrRK7ROxNHQLS7vQFDsJDraHKM27uwPJzehmmnITKa89sczyxiQy7OpassH25xZfa0xTUmx63B72D4pMnpPGRL8ouP2CoV8kll9DQogLaZa4a02xFk/XkL6ue7mO3as1PFzQnFimL1vMrqf5o3P6meLmS26cdjQXivY0cvKbidPflvDWpGDxUaK87XEv1mMBvv/SKaHUVK9bVGnoZo5iEyhuO/q5o51b7j4wRCfNl+pKs1x/m68wgd30qCBZK35e0q0EE56M4u4DJ36eF2HEBcfKopbTLE9TQiQF6tctZiPBlrpp0VoTHpzkyapMxmja0RYg8nrgzc0xqNdaKAvs73yK9R61XJAmFX7mMqJdckji9S16MRe1xmyC6j3h408lU2e1FGnitEZHae6mHBZ+HyUedwdS3wng4btUfX9PpFm/11FVFb/0S7/EL/3SL/0PPlkcd2Jp6CL2OXgFZFPhLGlSiuGr745Jx/aeNt57+bf3on2ra6HptCKJUoWDpqe8PAjGFyQUz2bahM8BcbnISdN6RHWqzmN22ecxn0rXNSTSfCLF6F46V3ojdKh0shANZkyyM8/BiCO2srbolSSP2jZPJJR03lHQzy2602PAkEjFZLQqu2WZfHgjGuxy18tO34iGvF0oio1F9+UY0iUhPAG7j9RXoh23hzCieZOVhaXYRKqXXQ46lJ38ff9ItJpuYWlWEhSm+4R5IDkK43h0G4iFzvi9rMkMiVjA4YfO5GPXQuZQUSheJDi8syAZRSik8xBrh6+OtDDtE+VGSBcqD8ySVsR5LSPz++FiCM0jgug7uxzuOASZlfK5R6uPmQFIkSO62oQ7JMla2AsBJx2EQKGt6DRTWZAqJwVt78XsZaTTTVTH7stwo/M5jMoamcTEJBsik/1Pk1oKxvVGDNMbNW5wUpYH6ulECBn573oL1XmPhPF5HZ/3WjF4wgD0VK5xHeMo1/qO/IRBpz2k0S9yKnKIIrHo29yhjqM0R+0Ocp4Ubpx66btsiL84JzlL+aZBr/eyTikt60amWsUHJ8fOdZKUYrVvwBrcLhAKzfadmulnCne3I0wd/dzh9pEjHSqim0CYWOKiENSkEgO56JiRkL02ZD/EkNgM7WmB7iJufXyvNu9P6GvF5I2kles+CknGqjGp3deCCFfn8h4Vt51MBqymnyr6qaG4K4hO47Yqy9LAHJQgSrV0RottJBSK7RNDLCqmORBVRdi9M8GeVdhDwE8MhzOLCjD5TOH2eZLZyetJWq7b8u4IuCi2aXyPAJwSeUexFTSxaaOQBytNuzTYuaXKmNBB854MY9ZA/MIT0BrdBGwTZWKSpz9DSGMoZNpDVY6ac/l7FcwnIuPdt3LOWC1ADK2wmw46L5Sqpqe40ULhKcSnKPeIKP6gonjb52UM9smjbEzvjooBn8N9B0w9yP1NKagrjLOobYPzmZIVBDOeUpJ7I9KwGBDgn9fxea4Tuire+vfQXASOMilXYDJKm2GqGXJRzLDhk6JQTSbyfmfPacowEWU0at9gh3pkNsUu5rIxNRrlw5hwzqQ+qi/2LUopikNPnBX46bHxofe9rENGg7NCV+pFx+9XFX5q8+QyYjaNSHhMIfeyeTVOKwaPhgqC7a2vjpk30Yox259OpQ5oU4bd2HFKAXK9hVIgNbYdJrBJQk2TgGfEEyLKBl8binXCtEMzFeYf5d5OA0mn8RqMVrC9vtLY3YxkNcU24GuLrzMpj2E6I5PN4g6U1+MaGApB9Ibsm3M5aDoVlmZl5PFLyf2KRqYr/dyhvUxCi7XIxu0+b3QelJJPsvcEJ75C3Uj+2eHxFBQon/J7q9GdwICGaIMwUAVz0yfZXP8MHt3Cks5W8t4qRX8qzeHyzZ5kFP0HD9EHLz4ylT0+ebqSwrd5NYyR+qN06Fwf6vVefIWTWjwhxqDWW2lAKP12rewFxgNKUNO9F/ny4GMF1BCZ8V3WFf9rJRf9Po8U05EA0gsfeUyoLArSpCJWBWFW4HyEfYOKuXM8pJ+C0Cq6Mj/OFvX4gXyYV9dSrDmL2jei38vJ1v5sJnKCNhzzPkqRhvllTXIG++oO1UVM00nQ3Wqa5VsBv5KuvnuZZTm3azg/oT+doHsxPvp5OXbHh6OfGaKrpYhvU0bIgt0HQq3ppwbdy0akuPPoLooe0RlUKPBT6U5EJ4tE+UoM4slYfKVpTxVuZ1BBOn8A9WWP3QvFa6oUpi/RnVwgbhvwtWH9ruim60/CuGDoLqFJghJWcgE2J5rtO4pirTCHRCiLcaRrm0Rx19GeVfhaUzY+j5RNJnM57CFRrBPlTWD6PLB+r8TXcPeBy52SvLhMHX0tC1az0rhDYvq8Ywg3g/z/pzWqzxOrezc81QdJrE3HjyBORAYWnYyqo82blGHxTQkTRCta3CnctkfvWtJ2J5SLfN6laU2cFITawVKStQufmfKDHKvr5fydFJh9kzuSuVgeJjKuGKc4cTGRwvXqhhRa0n4/Ft5pGJtai8o4QWXM0R+REumw/YO8NP/XO1ISLPJwlCtZdPsO+jy2z4jNby97VCFGX38yPYIY1hti22KGTmfbjaFP5uED0lw+V9V7uLwGVxDef4Q69COZK3Vdxokb8JFUWA7PJpgmYnNgpto3pI1sUoubBYdHNesPDG5f4L7Z0S/ypPSTNpPc9tlr4jiczGlODVXOASivPTpnDuh9h942dE9P6Bd2nJTuHhqqW0X1YisFSmm5+WFNv4zM/59ZgoDIxLzNGR1doDlzhAL6iXip6m9cMYkJ3Vdc/mFLt0zUl5LkXt6ksbHitgrTKZIR30j9qqU9L9i+J3AI01ZEC0S4+4JBe8P0uaGbKXZPFfOPE8tvtgLdUFDcCaEoljLRqV/1+KlsLkwrj6PbHNR48ON6rO92ECL9Tz6hrzW7J/Lz3awaU+N9pYVC+LIllIbbH51TXQfqTzcUa3ltIM9hNz2xMvQzkVjEeS3J1ffkX6GyuJsGc3UrBCxXcTgvCIVi1kdMbkbobSPELUS/HaayadFtEFTmEGo5nK/W0r93ITjjj14fJRXDUZWS7g2jGVqab1bUAK+Oo9H7vznif/ffJtb/ATrUZArdPf/o4UBsGiFyDrVFWZCWM2iPlMyUEuHrH6IyynQsyGYT4rxG32xlfbi8RBUF5kSmUOnyWqh4i5msLwn07U4wz+sNejGH2UQ+34hgZ7semgbz6AI/PckvNKHvtpBjCFJV4KcGHSyqszQPSqFGbSJuE9BXa9K0RmccbLRHuXTMkmoVwG0E6e/nkk3mJ+CtIj0oZVqxi/RTjZ+pnPVzlHP7GuxBSbZOLqoP57IRWX5tS7I1JDcGEk7eyO+HWrKMzn59L8X1Zs/hi+fsHll8JQb45lxhGoVtKuwuUNx07B9XtAupbUTKJXJQt0+4vbyuYiPNlHaps89NScp5YQmzMnvpNP0UDhcqTzwSvYLgLNPnLWbbUc9lw1PcevqFZfvYUDtFqSCW8lnpfUdY1mzetRTrxOS1BEr7UuP2R2lZLA3tMueiafl9kXUfa4tQO/qlqC6SgsOFbEDrj3vCTBQYkzee+rN4lKEXThqs+2OW2BBtESclYeIwjcfsOuLltdwP59PR8J7u1uKDnEykWQuSRda0aGNQypFuboXmNp+Jb3K9HnHUqfek9N35yb6vNyLDKAgQHndOiwZEv3l9h3EOvavkAu67rG1TR633vSR1vVqSJpXc/L3HzKayE8xFRjoc0GenpLrEXG0x1hCnJUlrdFEQHq7oVjk3IiZsWchI1g+6XSSptLZSEPSRVDqoCpKbE6aFaDEBSli/J4bL6k6QdfUb0YSrlDCNTArMoZek9UKPUwXTiUzK3raoEIgTCTiLhaZbGNqForyTi379w3NMn6hftdh9ZPaJYva8w65bdo8Wkg1wsPjawEUllCin8PnG39fqHnYT+pOazbOSwwM1diTK25QXhSiLwkblICPRfYsnQ7jZAz5T9wk/yQSeVnTn5VoWvXapMHnqkzToAPVV9niEY8fTtol4kDFpcIrdk0KmLgfx9JgmjHrg/mIixUlOfBcfiBmZ/8koepVla30cR6y2uZfRYDXdxGJ3nvqTtUwweg9FgSoKtJZOVQIxEq8PYkI2JuuL87kbo8j9uh5zl2UVdUU4m4+TGPcmSoHaFkJ3GahKhUOZSoqGrif1vRQZ1ozaZfvksXQr7tFYjInwg1tfoOczVM+YpZLu1qMZFS2BTKooJFPBOckG8CGjeKUItANRRAmmV5claVqRCot+3UOKmMVCnm+9Jy6nxEWN3hw3eXFWEOaPsLd79HonstFMNMFH6o82YNSR4pS7U8SE3jaUV5r5R0JoCU/PJdRsrQWRW8jmPcxLmvMKFRL1Gwn68tOM5z4wBpyJ1O/Y6NB9YnIZMAfZFA0a6OIOUJr1ew63tcyeS+EfSi0BpInRc+Z2Ek7aP1pKMvl1y/S5wR4UuycK3cHsReBwotk9UxS3UL1J1NcB00T6hZMb9VoKo24mMgO3S6iNNBqqG4/ba7Q3FLsoTYFCpCzdKssxuggGImYsSgbaHiA3/xMnctNSMf90gl23FLc9uo1EV2APicnrLlPCFEZJV3YIG6vfSAhqfyZ+MOVF9qkCmF2L9g5X5RDJWYm9a9Cd0MeIYO520v08WxHmkgtTbGRNMo0f4RWqybKoWoht4gfIa07tJPAuZV3+Yg5KYS/lnEuzSaYkBQnk7TtpeBgjhUcOQ1VOYAj3MfaC7Mz3zHvTws/brP55Hmm/A30P6+skkVqfnUrjMqdOs96Q6kok3tmjYy7Ojr83wG6SBF6mTt538+CCIRR11NI7e6Rl+ThOVFT9tkct1Y7LP/oepkssvroZPQbJGSLQ/bCktReX+5zIDb62RDORQMG9kOxUiITHpzQPatbvWarrJAV63vj6Sta4aBW60zgQnK2PmIPJXlJNqDXN0mQ/KGNAsng8xWfl9pHyuqO5KOimx/u5Xh+oQuLiv8zGSUrISohubvMmx2B3FgdjIHGxERKg6WQjsL8wTBQUNw2mk+nLsOkYlBj99Hjdq2QwnQQlh1qzf2BJyqD8TH5Ag93JBqbYSC3ltnH0uPqppZ/Z0Tuyf+gwPcw/kXpCwlNlIts8FZXG7LOQ8+Aibg3WRrqFeM38THwwphcFhVt3IpXPABTIki0vOUOxdGMOjEqg7rbY3YHTBOrQo3cH0momP9NJQKIqheia2g4enOHPpti7BnvZyrnX9d9pD9WMaex6MSf5INaGrNAZ38/ZTEAL92SI5AHB/Zyj3+v4vt6IDLIGhoVR6+PIOYnuctxI9JIq/VaoE0h3YdDN1qUUDuutaEKzJjxl+UZsRZ+HMaitdB6ZDOZii58VtKcS8qU76Qooa+RDzjKLlFNJ3U7Mf4OhOswKopHidvhfu5LOhG01RR+wm25MER+Mi6rxQutAtH46S5lEntFBTMRlTcyIS58NpNWtSJQOT2UDUN6If6S+AnvboncNvlrgp0qCu7Smm2UTZ5ey5ADaUzkp7T7fpGcSUNaepKzXlsAgHWQDpfuE3csmRHt5LJGhZBNWLhZ0kIUpmuO0pHp1gIc1+4uM4suSCaJ0JnSIY/EE8tiC/JWFsquki6J9RO0SuhEjd7RaFpcgnhk0UqyqbOjLC6+Y5mXjNIS1ifE3EjLW1Ncau5MF4nijkY56qo8+FNV00qlIU+m43/OdkJJsjvO0Ty/m0uFalCMG1RlNbNssBwvZWK3zc4k8kJwzEue1mCJf34icYzWXEKx75Li3br4/gIcqClSKskhG0XiTNxjKWinACkeaVtm0brIm3o+G0dTcSGcoNz9UURALK5KcQWIxneQJU0M6mxNqhx68aCkRrZERfx8wbS+bgbwGqDagr26F7z6tM7RiSM+W9cNsWyavjFxrixJ3fcD4SHdSEK3BVRY/cXQLTXXlceue9qyUm7KRYpnej6GH9/G7KibsJmYppBklobZJxIOsR9FC/SavU5pscle5mJANQDKK7qSgWPfYu47qNghx531BZNpvRNRK0y8ixa3IJYo7Wc8OD0uiBbeR9cFXgto1bb5Zd3LDVj5RD0bYjOUUaWaWYXZxRH2LKTW9NV0OTtPODf0M+pnCtgWVVri7FhcixdZidxF3fSDMSkJlcoFB7h5DcdfJZGhqRqx5NEpQ6b34UEybU69zYaC2e0GN+0C6vkEtF/iTKX4iU5virpeAw84jCe7ZyJ7XkqR1Rq5qkpPpiqoLVOsh+jGjSN1uZG1bznJicj4FBwmh0SL5SUkMqSAm6fvoznzfUwBDURHTdwxYfpCO2HQwOa6FQwc5TSqBRPQefEtYrzGFkxpgCHzL/g+a9ggMuQ/JSTnEtvey/oBML7PEG2A0uw+kTTtch1Lgb95T6E5RXYpsaDCc4wyHc+mq61aaoQMIJlpDsenFD9pHMIp+WXI4sxweyDVZbKVpqNSRhKc0Y6NCwClCh8Jq4rIg5qkHSjYgYsRPWcJ4lFvrpicUFd1c5JEqIsbpux3TDyFOHL6WZmq0Qt6Te7i8r7ovRlO23YcxbLWbGXaPNWGdp0VRGpHlnVwr3cLgS0WoGNHg3itAU9wKLChU8rVuIUHMKkrTkxaq65CBGVmKqKC5KPGV1ExJQTdXlOtEeZMnY2pYAzX7x6VQxF634+bCZFxyPxXy6NAcGSSlaqjbei81gtEoM0W1XtaO2YSUChyypqX9QRpg7SDJkrUiRT1OQpVzpBglKLMu6FYF9monMuIyBylDNtgnsTmEBK4QRVBdoQ4NIW8u3tpg5Iy+eDiIyqKuZWrSCQ2S75Jr8X29EdHT6i0kJ73s7FR5L3E2BCk44hFBiDHEq2v5mnNHQk3v0esDnK3kQ/U5S6T3qLpCX5xJ8Xh1ID57KJOPzpMKS/vuKboLzL+5xVxvx5FtPFlw+1NnuH2kuPUUrzYU39qTljNi7di/txh1y8V1g7naEM4X+Klj8bFHBShue6LTtBciWQpOMXkticlpLn+raSMxKIiyodA+yrTGapqLAt0JX7y+9BRb0Uf2Mz3mg2yfFOMmRvkKM3X083yhliJx2j1VzD9KTD9rxpCy6k5u9t1Ubs4A8888kzc68/olkMhXhpsvSehhsU1U1wF7CNy9X4KC+ceCkuvmTjYsbSLaRHKK5kxjmkR1ZSkvWx493+HnpejSrRRDugv4meP2i47yJjJ545l+vEeFyPaDmRRinWxqQqHQTcC8vqP7wgXd3EkuSkxwUY05CdNvrrEfv8Y8u8iBT3mT1wxUNkZOtz/L06vLDl8b9n/yHerLDntzQL++kWTvLPEBiJMK5rV4gBApmPpv3OHTbg9NS9n7owQjRuyTx9LV76RLp6qS8PQc1Xn01VoK60qSVrVvZNEKIRvboxQgRe6C+h/cLicMXdzvXO7MYgFaCWJzPmXzxTnzr62JH36COT1BTWrixakUE89fZYpIIwWFc5hP34w+E71c0H7pIcWrLXz6EnO9RW9lfUkhoj96hdaKIpN20BpKJzemmUNNHHAm50Lb4S/m+ImlRM6zflWjfKR4vRUZwazg7stLQqmoLz1JK67+8ILpK8/pf/yMNKlIpaN+GQi14+ZHKtq5xU/Oc4EisoUhdTxpJcUM0m1rl4p+JkWBaWSyKVNLnTM+Au2JZfe4wOTw034h8onDuaa8NVQ3jnZuiAXEIpEs3L0vWMviWjYJkiIsfo/DmYQkPv5/vWT35XOuftxSvUkUu8ThTMzvNz9cY/dQXwoGXAWRf4YSDudKvveqpTsp2D42FBspLoZk9X5RjGhxt5Wgsv2FZvu0ZPJKJir9VJo2yc7pJ9KpXX59j1m3x46kF18ImLHjWWz12A1FS7PEbT1m242UNNV0pNIRfvhddNNjX92iO5mI2zcbkWXmPI9Yl4Jqn9WY6zWst8QvPyUpRfm1l1AWhLO5FA69zyQmhblPOfM5jNPL+qEXc9mI1hJwqNq8eWm7EcV5v2OvJxN4dAHXt3KdPDiDT79XV+r/3OPbPSJSaLmRdkjhUFpjjB6bnOHRCbGwuBc3IxRHVaVEBtw7xoBIa9Gnq1GNERc1YVZgrw7ofUO4zsjlh+fEaaYr5WnDo19pBQpxuccvK7qTYqRezT45MGRbSGe/z5N7TfHZDRwa+g8eEipLqDTlOnD+64r6RYO93NC8d0JYWtpThd0nVl/vMHu51x2eTOlnJq8Tcs2SZGrQnGm6hciwktL4M8MQCXA4NWzeWY5Ni/1E6oToHgPSaCi2UbI+kPvz9GWQaUGlOZwZ7j6w48SlmxeYRkA5tom4jdQeN39okd9kCJUaSZa2Fb9mu9B0C9k4qaQIuZiurgVRPryWpJVQ/xRs3rGU68Tq19bEWUU/F9lkKGWzFB30i7yGLR39zNDXitlnHTokdg9FyunLimITKa+PkkfTRUwDk2/ekJzFn9T0C8vhwZz6dYfdZTJrBBUj4WSCf7ZE57yiflGgQqKaTuQ6zdjtWDtUGzDblu5LT0CD2fV5wqWxt3um//W53BsW0zGrCpDGp/dST8cIX3xX4iD2HcpZ7P1w3H0DOQyYFAVvXZaoxWz0OaXnr4i7707y/X29EUGJYe8+rvTbTceDkUzdw5tKF0hG4LpQx9FzENPpgGJUIG86MKQas9sL1nfgwIc0mun0waO3B9l55mA5laRLNnTtVNuLMXk5E0lVeURlyt+kRnOkW4fc8Y6QJxqCy82dinsdPpUyLi7KRRSNRltZhKJBwvxGwkLMmE9GFOCA+R2mMZjclUiMmDvdcUTV5qc2h4g2MjFQkRFXqULM2FIESZkgFtLZ1T7LtrJ5K93rvAwTDnWvJh+6GQDaR/S+www33Dab6wp5L6NjnJbo1qMOHdpPpVMZGLujqZBuoa8kXHIoUobOajTyOlKfzfwpoVD5fc7nWJRiJCl53xUIjnlq6WYatzUYY8bO2CgHTAmltTQsNLkNpUghFwO9l/NTaZQxY7gmu/2IzRsoGHg/dksBCSjKExXlcl7BgNRLUR6r644bmpBhCJ+zAfVzP2IE0tumPZ1xvBmXOUATVB+IeXFORsu1EDMKPP88GeUr50ccA9BCBhkoY0TaNXQKtZJO55C+bnT+XDKWMcl1EKYO0yg5B4wWWt20RIUoCNcoclKRCgiVJji5jiGN2Fi6HibViAXXfRhNnNGJvDIUGcPtFUmlY6CgkWsoFHI9keTxY87DSyPCmBEQAWqMqhkkEcGBr/X4vKbNfqb8mG4na0VS0M0G8l/+W9ZbdHeaszgG6Vc2jpYyzU0K8Y8Yha+kAAl1Qocsn8uT0GHtkNwmuVYHo+yIOM+P1c2ORcwRiZ47z04fO9eIJEbQ6ipjh2VNwxyDHVVMco0bJQCTfE4lYwjTjGiPacxrGM4JlZLI80z+UCzHaapPErS32+VAvHg8V5N0hRlw1PdQmtCOX095IqYy5GUM4wW5HowmxQzCGAJUh8ne54zv/VyPYQOX4hggqzJ+e8R2D2sAHJugirEDnXI20AgSAfHn5cdURgvMQg01hs641aPnBG1GaXAY0LNBPJQDwEJX9ijnRZC6pESYFEJr6oLcC2x+7VqPRmiSdOFVjJiDmNyHab8Kcn2ZRmAWfl6OAYJSrOf7fJT1Q3lkabVkct/x/h0dEkwYEVlzkO83J2oEVGgvEs1hLXM7mZrI9FEeIxRyLaugiCZRbtQIsYgF9EPYcgDf6/H35bqVdSxpeY0JmWQMgYfDOiqBk4xr6DhJ9WGMIZDagrHOGNaKWMg6GAuyaiESxAaM3ytsI+fB8P4rnxsjXQ85mV2M+Mh/9wailulPG/J7Kf9OQb1VE92fqsXSytQqRAmgNErqwExIwwfi3RrtLEm5I3YX8iQkiM8IqSViadAHNQIQ8g/K9XFPiTRGCJgcnmyOk8Lv5vi+3oiIo79AzaZCBNruRPP9uxxqPpOgmOs7UrOTjoO1ItUaFovekzIiDWNIi6no9ycFuhH6kSziBebFpRiP5xP0+kD5MiNRu574wVNi7bCv17BvOPv/vCZVjljlbuOkZvfeAj8RjK32MvJsHtT4948BO/WLHWjN4aEQkUybsLteFouMy3Vv1uAs/elEUGlK0S8kh2PaChPaZFJOt7DjyWsPEZqcWLyPLH/jmv5syu5ZJQnttw31m4pQQrGOTPaBs19vaS5q1l+o6SdShCw+9ug+UV0F0BBLSTfuJ8ONHsy5oAar60g3V+wfKaK1FFuT041h/1DIP9Vlnw3heSwbYP5ZwLQimwoTy+HhCfWrA+XHN7j1FD913H1QopJoNVWU1xFLK/6TPom+O//dxW3L9Y9O2f65msW3JBRp+s1bkjM0j6ZSnHjxiKiH57QPakKeRGkPbneUKZQvd+h9Q/VZyuPohGkdprMiy+gD/skpyWgxH/deFp+mhd0e9fhB7oiVQtn42mdSmBTiU1DVTHDR+aJXA5p3OGe1Gs/h5P47l7NSUJYopQm3t6NZfUhXjoff/br5gTlCILZHEpQqS5QxhPUWXZXww+/DvmX2//g18fBMJpliFuHTV4z43vmUeDLDvLwh3dzBw/PjeNpq3F0nxf+TB+IPu0fpS2crYumk+7kWcpbyAfYtxZtEmJYcHleYxmFncs2YLtI8EKlI9SaHl64mmcoSWHwoGM5kpcA+/7UDYerY/Il3R2xrdSnnjmRjJGafNPRzR7c45nCYTs7t6trTTw2Hc8XkTcR9M/Dqjzva88D+kaa41Vz8V2lk+EryQ4pdYvNMj1OGYgPLD/3ov1BR8jhWv5MxlZkI4zJZKjrF1Y8rYgmnvy5rX//lpySjWH4rin49Iy6Dk47koBdvTgztUtGtIJTS5CBKh1IFmD0PYs7tArdfqvG1othkiVXeQJHk50wbufpRkbfMP4kUd4H6xQ4/KwgTy/WPVISyljXPp7EwCQXZXKoFeZynPNoLFaefWpqzArcuRUPeh/GzCbWDRyfiDWh7AZr4iPrkpZwbp9PjKXyxhDjHfXYNbSehvPsD5iWC26xKMd23nUxRtRKfyWxCeHSC/rgj3t4KQVJr/KLCHHrMDRmUcaRDpWw41ch9Vn32CjWpMU8f0d9d/0Femf9LHvEggBCzXEAtFaWKSZqMPhyxqID57BIzJLFXpWCTJxPxfw3ZTvMphApu7qS2qCUHQmlpSJjGw92G1PWYxw8lVA4pPkM5SDsBCuwG1McvMEpRVIKEDZXFZijN7Y9MsE1i9tFBwDeNp39yMvoalU8UO4+fWtqVRYUaV1l0FyivEieHOFL7tu/UbN7VXPxax/Rba65/8oRkYPmtVnyTM8PkTaK8U7RLTSgUJ1+V7+0fCkDGraFbQqzg4tekXnjzRxx+mvCTiGkU848C7aqgXeX3K0K3UJgGlt8K3L1vODyQjWCoFHelHTG+fqro5zBcy4dOTObldaI9UWx/KOCuFeWNUK6Sgt0TMI3i7LcD3VTTnCuKO5mc7s/l2r3439cik0qJMHUcLuzYgAVZS6cv87pUaFF7bBKxVNlLIto5t8kNEyT3rJ8oFh826KbHXyxozytuf8gxfRWZfdwI3KLQ2HUr0/FDhzl01Dd7ucdndLf2kXQ4iBS7LsYmSXIGNBQvN2OjC2skm67pxGpwdSPn16DCiFHUQoWT+AlnZe/ahjH/jPu1tT82Lgfq3hB4qA7jN9CTGna/9/X2fb0RIQQwSSYUTSsFnDFva9/vY0pDyJSc/ugTiUn8AD77R+oyJyLLCF0pRept1oYO5CEjBj+liNMSddCo7V5MwbMpcUD05jwPYubx58wJrKW47TCNHXffwcn0wLTivwiVol9VcrFPh+mFEKP0QUhVyoLJZmfZUeuxu6/73JXLnY8BYdnNBadZbNI9v4PCn07pF45QiDwqGp01k0oQgGMyt/yf2zFOBoYupi81zWrQdYKvpZMnFItjlyOU8j0VoNjJYzQr6YwMXdYhnDFa6GuNKRN2J8WZ9rl7WzjCRALEbCuPf3z/NH5eYIyWIiYxvo9632G6yfh80Sm6B7MchCafk2mDII2nssFRHnB58uTFTKrbHEJYiRmMqMQkGGRzY3e509Rm87Ez0l03GefcdW9N6WQCI5MMNZnIhd31R+pVNp2i1Fsa0lGjHCL2Jo9Ll3OZ1HW9JLB7L1OYfP6O3c0Bz3l/UvADeEhOiiCyZZKaSMiUaAwbg7ypk+ln6nuRe3a9gDAmtRQIQ+czJbTPRWWMqE5h+yATi8x0J6XRcB5rJ2jOmEEIOSsCpQjziliI+du0UpioNmSc40RINlpJUKDTmD6i2yDTuqiIhbT69KGnW5VsHxncDtwhSpDW/QmjVRKeupe1JTmRJykfCbVMCEfNdUzYA4SNxm0Ubktm+ct5a5uYCX46SxVlvRmu3VDkLqmW4mCYmqb8OchalbAHjScRSmi1pp+W0pDxSWhVpaav9RioFpxif2GkQ2tzBzcdi5joctiilsYMSZKf3T43caJINKLNRYL4v2V6kaC4k41JmBbH0LgIKNg8s3mTIX9/dZXPnTw9TkMgXgQdRDIr+UUWP0uUN4x47ug0yTrMrhdIho/HokBr9L7L0x0t2HBr0dagkhN5T4hvFQWjT7IsZW2pSulYDgGFpUg4UmmlE9582yT0ns4c5+Se5r3gx71HNYzn/w/iIUnRFewlXyiFCH0v59Lg3xjQvC53gYfQ4uF611omnzlnITmDud1K/ZA3eIQ8oajLDFmR9ZmykDUmS3hNI0CEUMomQvson+vDC5I16KZHBfF6xdoRncHtIqYXomYElFb0M5s76uIflQmc0PSS1SMGeCy0dTadZ+lzc2pJek7IUUp+mNLE4TyXr0cLzZkbDehyT5bH85VMSFWZkbwqT1yV1CrjNFfJVLU5k+ZIPzMSojwoMtKggoD2RNaV4jaHo5rja/FTRSxA9ULmM12eJiqZAg/TGZVyA4Pj1CRqJQARDegKn2sp8rRHwmCH+AJFP5HmiO4TdhcylVTAFXYvv9PPpclhesYGVb8o8LUe8cYoJZJzJ9J7PahulMreVZnYm0GVcX7KAFDRB6F0jqNp4BigKYHKWCMp6kNwLuRzPE83hkDDJHCUgapJjAK+KTMww1ppcjRNJu+1UltYK/WK998Vdns4vq83IrHzUCMBKrd3ovcuS3lzhsLCGPma93DXj2ErGsTYC6SmIW42mB/+IfqHC+y6kQ/t5RuRsoCMpcpSskCcFZmMg8PDGrd1lLsD/mJBd1JSXh7Qu1bkSUaPHVPdidxCWYP9rQ+x1uJ/5B18bfAzg1sH3GXH9j0JAzucFePCIFMCWPaJ4ibQPxBTp4pCbOnnZpR/1a977L5n/6SWkLLLXi7u0rC/0OzejUyea9w24baJUMDVT9Tjc/UTg0qG6kZoGqaNoKA9E2qW6aSrajYNh2dzopMck2apufsSzD6G6avIZi4LSCgYL/ToFH6SUF4kUJPX0kHcPpYLPZT578jSEV8ptu+C7jQqOcrbQPWmITpNfz5h+6QUP8dzuVmEQksHcqUAhz0YqjctqdUczivJG9gcmLyZSRBjSPQTxeZZhdslTn9ji94LfaJ/tKJfuNzFjCRjMW3CbTrMi2v8p5+hfuLL9KcT7LohGUN3WmE3PZOvvs4fXEKtt2AM/bvnY6qyLaTbGN1ACYvozhNAmNwXJ3C3Jd7cEpsWYhBQwtBh2+7xL15izs9Q80z86HrCh59gH5yz/8l3qF7tUS8uCbd3pN5jnzySSUhZHovpQRP6A1xcANKh3DTj35/aljRsJEPErPeCLXz2WKZWvSe+fE3c72U6MqnxF4sR30vW0abtPmtmD2/JQhMck9FPFsTS4Rel4LQ3DWFaEueF+Ly0YvtOhW0Ts2+sBQ/c9qTLa8J2R/kTXyLMSmJpJD/j1FJfe8kBAQYktekidD39wnL3w4n5hxp3gFCbUaYQrTQa7D5QXrVEJ82O+pvXoBRv/vRFJtTIQ0enqV8lyiuYf9YLjSof0WrKqx67aWlWi6z3lqZHN5UMn1Ap2hWESjIClBdfBtmbNnmZqK8C0+cJX0lhEUroThL1S83iw0BzqvG1fF0FwWl2S8Xm/Yjbgt0pijW52JcGh0hJRILWLUUbfvI1j90GuqWkJusu0s013Vw2JKoUyYNpYfLhLWFesXt3IkWCF8lI0nD9J3roNYuvWFZfT0z/j48JT8/pl9X4eQwngW4DNndu1+8V+Fqh2zSGmIVS08+0oI73PerQQErEs5U0MV7fyH3KWfyDBbEyxLl4D/yyxG47zKdv5Pk0xFklxUopm1+/rDHbVh5HKdTJiv58DlrhPnrz9iYGMr1JQxOhKmnfO8NuWsxnl8T1hrDfw2rKD+qh6gqmC/kI93uZRMcof/dg/rVWJqp1LZlhZUFSCn27eYtECIza/+mbW5HSnazkHtB2pElJmJbYdSP/ntYM6O1h4m1fr+HQEB6dESvZPIaJ4+4nz6kue8qP83RKa5r3T4hGMf/6luSkEUehSQraE0soBLFrEU/lIN/qTgoOy6M3zLRRvJR54qd7uP2iUCHtTq6P3SOLbWUqef9IFm6+rLEHOPkdLybsTuAPvlJsn4hUc/ZZxFeKfVRA4nAu9CjdI3VABfsvtWgrj28+rajeqLeeq59B+vIWfmvGg//csnm3oFsKmS9paM7lsarXGreRQESQ7xW3smEZUL/D90IxSE3h8FiyVUIhzztAepI5TpfdpidUhj6rW9xdh3t5S3IW81MPUR5mL3r6qWH32FHdBqorwYYnZ9g/kmyy6loUL6HUHM4tvgLdF9hDQBfiuYiFxl03qM0efZDsofUfeSS0w082qNsN/rPnknFT16TT5bGJ0vQSoHu6xD9aicJnqJE7j7rdiNd0CFf2Fq5uZKp6esJAelN1LTTIUrYO9oX4X8PVNbqqUKulYHz3ewHo/F/CrF5YMdvek6kAbweT6bdP3oGHPIZA9R2qcJiHDyAlkUxcrWVBqSt0JhCpjPBVu4P83nJOKgvczos2E9BNj1trQs6IMDsnXa6mlyKndugYpZtdVTJd6QPa6TFoLDrh8NtDRAXZ4XdzkYiYPlFeCVXF7QKh1OwfFm+NC8U4JSSXdiFngWmtdPHbKKzuIL4RX8noc+haSBigGkMEVTiGEA1dxKHTuX1WoaKYz4cuS3UXCR/JIuRLmWpoD7PPOpJSHB44ylvpJA5BgNunIhezB/GL3H1gcTuRUB0upJipX8kiIJQOTb/IeR5Z1hEcbJ8V+XXIBb34JIxd3UG6khS0C0P68Yd0C1kQpTuRcDsx4vp5ga4tapFNgkrhp4LgHLoW0Wn0coblKX5WSLK9UqgQsJse3XjRg2fNdcoceN3647kao+iE+4wKzgFlunBibL7bSpfj9OQ7r+W7Lanv0dOpJP86K+GIPmLWU0FO9pnc0/WYk5XIAfpeOhWZ4DJcK6osMTZ+rmnJn/eRfEAh172ez3JYpZb1wBjS3UamIYsZqbTEWYmu38H0Hl5fQghSKIYg3WVjJNUejiGphchE06QizkrUvoO2RzXS+IimIlWGpCXh3hykMSHnT55A7BqZnswqmD0RC1EfsDd7kjHY2qF8idv0wqnPk5TqUpovcSEZQ9NPpRvXnGgmr4Xjb5u8SciyIXfnKdYe02q6J8uM5JU1JCbwUY16b+2HbqFIO/xEs78wmF4KmGIXsY3ge/uZZv9AABPljUgWfW5EmBZmLyLNStGcSsERncIeEiooumXebLzW2L0YVkevipIu6O6p/Nu0QhDSfdZ1J4Xdyc9tH2vJHNrIJkIFxfaxQQWT1yxZY/qZoj1RgOSGmEaKjP0HqxwWK5PeVEvhUq4T898s8vNBc2rQP/nOGCTZLR2xUKMHpVsWDGnQxTZiWyU6fx/FD9RF1DpJ8OkAo8jhalgNeiHy4NLQLQtCpcckbXvXSlfyZDGS1/TdXial3oO1Y7BxOlmg1pLSbdeNrDeZBofPQWZD8N4Q0hcjZt+jD/1YYCtXHAlaP4BH8kHkUyDJ0Nmvp4riGNimNKoqZU3Z7qHpxPcxraEuUdfiP1XbPfamRPdZhlXXxw51pmHpPsgUvXbyPitFmJbjZtbPy5G0CVDvWvF++DSS+iiLnBOW0Nk7NpAjB1/pQHWrXzWYXYe+3ZLKAlSNaSJODx4GUQ74UkAV2osKQ0X1VoCfyZNM5ROpFpmm20sOyfDiN09sJlem0Z9Z3sjU8+4LWQHSQ7eUa9A0eXpCnnBeijG9ulboTM3r5rIRMK2Q9dpvTDEtrD8Q3Pb0eSKUuZnhZYK7+DgQsv/CdDJ1aM4UPueXDDED3RLxmHUJ3Sn2F3rMIfG1NDMmbyJ2L/jd4BQ3X66lfuoSh3PD4axmOhECZ/VG1tvmVKbV9pBGT9wQclhdhVEFMmSGVDfi56teH0hasX82ybRRiWLATFGzWuID9mGsHdOkwj56KMZ1ZwnT4phLo5RsTLTG7DtptCMyX+UM2gfUXkuNm6emzCZHOWKfzfN9j9o1aKoRtIPKMRruGK4JoM9OUQXwzd/7uvu+3oioohDE2Giiy8vuf28jknF8w5QiHTp0VZFOl5L1cbcjvJHCwzx+RJpP6M+muGshF6XDQXaH7z8hFXa8KYDsOm1IMiUoNM5qzL7HbiQvIkws6mBGTV0ygmLUfUT5bNZ0WljSfZBwssKhny0wewkWGg677QHH+r28M92lcVPQzWWj0c8y+rLTuH3E7SOTVz3ljebuCw4/FdnEsLuPRi5ylYCQje1J6Fo6CE9bTKiKw7ksTPOPxeOiQqK49didoltauulxI1J8cgOF43BxSnUTKNY9fQ5WvP4x6dYuvyH+ke27UL9UTHpFc57wk8TJ78jm4nAqhvRukT9fJea2UCmaczCdorhNTF96Jh+vCXNJh+ee50Q8KhbdMxrGTBNHs3w/N5Bv32Lmk5A2lKJYyw0mOY1fVuhJgZ+4o7ktyEYWyBrLbNqfiml44IIfP8SM9AwRqkJG905CiOLtHfpkJXS1wgo8ofGopiW9eC3yrdlUzmMnYUwqJux0Ak4Sdekzv/7BGXFSoj9+Qdrt3wr2U3WNmtQom36gNyKEIRnaSQp9JgipqoIUpaMzmaBr2UT4RUnI2TLVzRq8R+9lDJ2aVjYtRS3m0mGaVDjickZ/MaE5c0xetNjbA+p2IwwGJ/KlUGnJq9i3+EU1npsqIHlH8ylxUtCeloRKM//1N6hNNiaXBVUrOEdCIJ5OCKWh/NYlKEX73hnKJ+afBA5nmnalmLyR7r9tdJZeKtxeoXrh1pvCsH1W0U8UsRBPh4zn1YjD1oPBO4Hxib7WNOfg9kLSsVvJIdBNIFQl7QomL6G+9oTCZvkYmANMnjeEosJPZaMRbZZ4eUXSRnKBXsn0wdeDMVTe4miheRRQnaK41SMGfMBpF+sk3dQnUF4rqpuIDvI37R8pkk5U15JjRNL0M0W3TKikMAdBFQ8NEilC4ljYVNcRt41cvOnxE8Pd+5Z2pWhXBYuPvBDzJlLEQd64LQxuHzEH+V2VEPmkyon2XcTugpBpei+yKSub06QVVDanWRv6uckgACU+wUziC8t6PM3V7iBMf63FhN73sJgRTmbYrYTh6e3+ngFbTKdqNiXOKvGYZFmFCjFPaVqBNyiFKtx/34v2/X70PeF2h1ktRfZyt4X9XuoGY0azuXKO1HbEfd6gFQXxfAERzHZP6nvirpHgt6YUCprNn1PG9oM0Gfy8JBYGl83woT56OdsTS5clxaZPTD5K0Euu2CjvKyyxtuN1CoP8kbEJN2Dy3Yvb3LE+oBdzVF1gmjA2M6PT9BeyRhweJurXitmnIm2O7iiPGjbzuo9EY/AV1Ncp5/XIBPPwEHQna01xK/ke9U2gm2luftqjWs3sm4b2PNGfeybfcmJUzxuU8lpRv06c/vaO7qSgmxv6mZjFlYeiSdSX0K5g+w6c/iZMP2skvDGJZ6O8Tcx//Q3d0xX7hwVuJ+qO6DT9LOGnsumwB+je7Vie7Lj7ZIndag7nKstb87R2pVh8FKle7QnljL5WrH8I3EYxfS6eln4K0RW4fWJyJRugw5nG7aC6DSIt0yIrVQlOf2OT5aPFKJ8tbjrJbHlzR5xP2Z9raZQeAqEyIwiDBG7Tj+TONClJA3paKcIkNycPLaku8SuZjqpdI80KpYiPF/k8LKVxOsgDp5UQuPqAvr4ZYTapFwQ5OehbAA46SxrvrQtKkVZz/IT/C2xEJhNEdJc7FE3WwheFLMLu2LlRWkORDWUhh7MYIyhDrVHr3dgF0pOM3bu3iYmVRS9mUJyM2F61vzchsfK/WFiqV/vx95LV9E9O6JaO5tRQzh1uN8Fd7Y+pvkphssejryxWKbRWsutVCruVKcjweEkLCce0siCJlEneCpTCHmK+OUvXwQ0+jFPBVvpSigIJ+pKNR7uSkebkdWT/QOd/C1u7OZGugVnpzByXzl60im6haE5Eu+w2iekrTztXtGeK+pVMGV79b4+wB5h/0tKcOq6/XDF7Hqiue+zOjJ6RZKSjaRvpuLiNvP7tE43dJWYvfF5YpUsZMy1I0talSPETxd0HjvV7p6y+3uHWHW/+6EyM9R952lU2pnXicxm6EdVlnznkR4mSn1qiy4mxvaRKR6sl4LAaOloR08e3pE1CHjP0j2b0M5MT7rP2UqlxU6J2A/zASpiYM2IU8146EACtdNOTUb873jdTttw+6zmthd5TfEsSldVqSbxfOBiDWSxIubunyswF94fvfOwfoCN1nehhe49qc0hbWYzaWLNcgJI0Wb3eUKhcyBkjabNGPie1b0QPe7okLGvM1VakXBnVqTY7ipTQbSWZNCATqLZl8k0r05ZJIYVn05NORVo5+6wVzOK9z9g0IpFo3jtBh5X4CPK3kzMQyTcmRThfMJCsJPArUV9Fyjsh2qWFon7d0a0cm3ctobQczk7GTbTupdDYP8lhXrdDh1IaHERFu5RNR3kr3pPZp9Lw2D62MkmNifoyjgQse4Dyqs0errzBAYFdTKF6kzXgU00/yYScErxJ+ImiuMkdyIN8b/dEmhvzb2QE9mD9K8Dm1zr/tBOajXcjpGP3RNE86ak+c+Jz2eSi6HVPuTZMXmrcQTqLQ3q63UfJXapVbuLI10wXsZsOc9CsvOQeRSuFxd37E6avIuVGwuP8RLN7kLX+h6Ofzp9OM4XH4NoO++ouTzWlGaF6j+numUFnFbEwlDdeNoI7CTiU6ayhXxRyL2iDpGWXBd2z01x43pBSwtwdRhpOmtakQU2QKYD3NxeDFyJ5jx78T3WV1yVPvLn9H7sYvw+OFCTPITYNqW0x52fHafY9YlY8NJizU1RZoD96Kd+/J90KD5b4RUnxeidByVnKqdty9Pc4L4GWhycieaveNON9yDSBegjijPneYrU0LxNQFqgYR3x9VAqb7zH93I5Bws2p3MvMF85RMeErg2kjdtuJHLrUohYwEg5sD4pQinxb0NwCidg+kw3Iye9EYg4JHqRMdp+nggtDdFDeSr5YsRb5c3OqcDtDUjD/ijSCTQfVpcJtnNyPh/dfZ+LWXLF7WtHNNKECc0i4rTQFQBQcbgsoxfWPKS5/qub0N0S50K1kI+QfLGjOHc2p4nAmPg27h+JOJFHNmWL3LJEaw93thOnHBrdOgFC4glOyvrxKMgkpZ5Q3PdVlYvmhoj1xbJ+YLPGC2fMeu+1Zf6GGBIuPPaaRCXi/LOinhulryQnqViWx1HRzQ/2mp3izI8wr/MSx/6NPcnZZnlKXWlDg+3tyyoz4BSQdvrK4q52Y0s9qYmEJFytiZWWdWLdwu5bMIOckwLkPqE9fkFyBXi0Jyylh6rCbFrVviQfxQ6uZBKemppFG3EAANRqqSrK3ygJtLTosSK8useG7g+B8X29EMBoCUnArpFvZdWImB5SNEHNBMejrjZXib9DFF05QZ213LDwyWu8t/FhOxR7Mi7YRI3Lc7qSYm2WSkVGoXSfIt7IAq+nnmTE9UWivQVns2ozyp8HUE51Ij8STITtaMZuHcdcrxWZ+XdkoJobWUW0jwV9NQs8GuoJ0M32lxu5etIzTD7kpqlHWJH6SRD9ThJ4ReSe4ujTSKlSEdqVHHwhJEW7zcxQyrjRdYvtM4baKxUeisWxPFPWlooiScj6YRpO6Z0hDxq/RKPxEpBW6k0TzWIisKhqZ+BCloxpKRWeFvhNKRfxEZ6mayCQkXyXjRBMjEhTAHPzR0wMMOMYx8C1J90qTFwUt3WPdMy4Ebx0a/MTQLowUlCFlbKcm1BbXBwlgNOZ4niklXYYB6wjymrIRPiklC8I9s/kYlDVM+qyFvidutuJRmE5kAxOj6G20FsJFyNkCGUP7FuDhB/EYTP4pyXs2IDgHjbwrBFqRmxlDB0gZg37/mUy4dEb4IhuBUFmMNWJqrUpUjNKY6HrsbRqfjxQFybreygIOMtHIGwdAZDaHbix2RiS0j5KKrsA6oTKZRuQhZKQmQKjsKENUidEELlIskRGYQ4+eWsFd6szbz2tIcZdJUi5PQgyi782ThmTI17Si2KoxZLSbS7HuJ0BSmEYKBrIJVLU5qT2fr9FJ1zAZ6TaKL0z+hiHcK1no5hHdir59ML2CGuUd0WQz6jAtSbJu2J0U29XMjMCLUCfMvEclh+lkjRECoZdibJfNoikBduw0hsoQSjGmj2bSJNe/6gLFrRDSopMMkvYUpq9A58cORUGoRKaVcrBiIhtz1fHvpWmFamO1bGpDPIbg9h5VWFR0o8l4xPVqMbFHo/KGIUk3s4R+kact1sh50ecph5FGVrIaSjvSkQYUPUqhtCYOBC0n76eyMuElRNL+BzhzaDT3xozmDgIfsIIkHScjw5qa4hhIG99IZoJeLOTnnCVWDl8ZXA6mHNabBLImeaEWKi9ZVgxhcrnANJ0fJx8j6v0eDCdWxxJuDPjVZPT3UZKVMva6XcnPtwtNuZa1JNSabmbGBPLyLor0aSv34PsNsFAlUi+TUakbZNMga46ANgZUrt0L6MI2iX4qOPChbijWw3ojJnLdcw/Zq8Yg41EqNpFMs4FsNaSXy/oAbpPYvJ/Q5y3+G5Vg/clrycLRT2RKEwt53W4rr2/6siPakv0j0AdN8o7iTjZPvlb5ek8i2fRJHqdSVG9kE6fXe0inrN+RSa7uE3bTY3Yt0Yq/rLgT1YPycUQSV9ce5RPd0uErecykRFXDvCI6RbPSowxNpLEKQpZcDzjpezWqbFLzPScE+Yy0Ik6cwIyG9bXtshIgoTsvpNfdQepFN5X60gjQ5C2kdyX5QgMNcgSykJUGQ+q6k3M/3dwSDpvv6rL7vt6IpN0Oipl0arxH1TVmOpE3I2R5y2xKOr2A6zviq9eYC8FtqozkS0076ubTe0/xZzXFR1eCR1xMJEwKBK/YdJhO0rjDaoKaleimlWkLSDerUfRn05xMLBdVKGVKMdvnYjgnbw6LiF+UbJ8UtCtNP4eH/1+PvT1w84dPUBGWXxHNasyeBYDupCRkisxw2EOiug2YRkapKfOuD2fyPGLEFD/E7onBTyPl9ZGFHSpFcyrTh2kDdz8SUR6+8M/2xNJw94EYw5tTzf6Bwk/l5mwOgtlsTjUv/oyhuJFuSHMqAWTdw57uXPGZq8fCZ/2eYfe4ZvnNXv79rsUMhJ5KsX7XUF0nJi8Tbd5IrN8rRkKHaRNFGyVsrIDtM9HEu20iNUPBY0gPa2afCSZ0/8ASjRhkVRATWnkbsE2Q6UehaVcm577A5DJgd4HXPy1/99lvGcqrnurrr4knc/qTSn62yBdgFuaqVqZlldHYfTF2t2Jh8DPH9oll9plicr3NJ3KSAMIh78M50nIu+Tch4lc1IeMVdeckrCxK5k26uRNj2A+9L9ryb34soXvOEjdbuL1Dr5Zo5wjbnXgilnNBCIN0Pg8NMf5g43tVUWDmU1LbEa6uMYuZLMbzuWxO1ptjHtBiMW4YSIn42Uvx0jw4k9Co1TOS04I2bKTpEFdTukXJ7vEpiw8b7G99JBMXa0mnK7BGUK0RSb7NHegR79lmGk9VkuqCWBraE0coFdNPG1QUlKbbxbckmtWrME7ZojN0C4tpIsWdhJlFqzAZ/ykUnGyCbaC4TUwuBUaxfk86lBf/GZJOOWNEpiGbdzX9FFBJjOEbCSzcvgN2f6RhiUlcrt9+JgGExXtTTJOwTeTlH3doD49+paVbWrZPjQSmDu9BhMnzRLdS7J627Geaw1NDca2xe0V1lcaCReW1LCmVyXyyl+4XRfbDiUS1OdVMPwY+mdCeig68vpQGCUA/s7Qnhm4uhZLouEU+p7tEcedH7Gm/FIpQfFZg2sTkdTde/9V1xBykcPETTahKKWQgP7Zj+tJTrHspCkpDt9CoUGAzzACrUa0naU37dInbdPBfvorpz3FZzpOM3F9UTJh1iwqB6uU++wISzdM5SSsmv/qRTE2qUshZZd4AVyXqbgt3CM6z96T1Vrr4hSOt5qTlFO7yenQPb6+qUghD2v/AyjjVbIKxQgrj0KDqCjOpBYcM8j6mKN8rCsxkIt4QZzFPHomx/PIKVdfo2RT36RXOGNp3T0lnEwknPbSkzRa1mJMWU/yqJhaG6ScHklHsnokkVHeJ6uUec3Urz2004cEqBxIa8S5eHFUfQ/HeL6ssx4o5OC9Q3Wj84Rhg3M+FJAVw+ROO3Zc6Fr9Z4DaJqx+z2D0sv+UFNjGXCZDbJx7/imQY9RONbSKT157m1NHNNW4t/kiTAzLrq0hfa7ZPDXYvE9p2qfET2D+RGsU0EItErBLlpUG3iv0jKb5XX4/j6w0l9FOoX8s689mfkyLdbRTzb8Hpb+5pzqbsnOP2h+XrT/6jx1eKuy+4MctIPmRoT0S67uuKch158h8Ch3Mj/rkO+oni8FDyTU5/ezeSqC5/asbhXBGKGu1rklmigoSr+koaI34q0rrqRgqrUBr8pMjBrbKRsndtlvRPIMn7FypDWE2ITjaa05deJPFZiREmViSaqwp3uUeFQP+ghpCwmxa97TB3B1LpiFOZwmEU/WmdqYV50zCppaEWo0iLnYWf+BLsW8lv+ngvKoxHZ8SzOboqSIWlW1S46z3q8oYhSyg1rfz36VLO6/vTUmME33sUCP03j+/rjciIKRu61lo6whL4llAHQeslZ1E5SGyQwujVciz8Esh/G0mfHLoOQ0dTt34cX6veQwwjfo3FTDpNA7Ixh5OplEZW/BCcZQ8hd+7EnDx034dgHhmjKjGhxXjsRM5KMb+FjNGN4suIOYhLUkyzVjrmTptS2cR033Cakb2ZXKNSljcZKcyTEomU7nPrLgJJMH6h0DlYKMu6kO5o0mmcqoymecW4QUoa9E42Zf0sYfcySpUFJv98nugMpvnocmduQAN66SKE+jidcApsmyc7GcGpFEeJWpTFJDgtxUumY5keqpuYcagcM1nGTrR8djqo0eBvGsYQNjRSREYZtcaZE0OgvdfN0gowqD5id71MQrJkRvljGvRgWkxGobQ6Tla0ElpFnztjKne+x/Pp2/4/v4fAGLClCgcdYzCiJNFJoKH24SgBCiH/zHd3yX3fHlqBkomGclYmIIOmNclnpsjrhzVHLHIUDX3qPabtxaBXuhw+1x87Qo3HlBbtRVebuk4MwLlby8fpnAABAABJREFUKrp/I5PNAXY1mEpTIlaFTLp6P5oABRChZCI64DDTADbIf1fu4IqPQG7OySpCaTKWMo3d01BZkgW7A533nXYvPhH92IGFch3uBXdJZ3JsdqQh1Ey8FX4RMK1BeYgVb4X/oUS25EtNcENQaCJFRahkQyRrHrI2THMX9YCYy68KUhlJdThmCmVd+rie9aBKxi6jimpEYUq4qbzeQV7W5rVQOoUQK4Of6nETMqylKokcQ55THydD+X/RAKWiXWVzppLiyO2HzyhTuxTZhM+IFPa1YQiRtY3gwlGKVMqEzbX9W/JQkGta5ewRhUap4V4QMxZcCxWn9cdJS9uKDHE5l/tMHHZvBtrDOB0ZJqHKaJEXewnjSwMBzgf5+uApiQm04Qf2GHIXhjU8Q23i3RpAMocwMskejgEukCcmg1Y+5Y6xsna8BsfaIsu5R69ISmJcV+IDUnLDkO60UuJLM0PAJdhDyBkjuROuRIGgovgctU85PydmH6pkacVCgnNNK+dpqIQgR6elIakEIKF7kYXFwuYgwWE9Oqo3RIIsHknbJGJlSEVeu0TZlKfxklZuD4l2kRukZUQFhdoPhYNIQm0DfpLl5lbO5X6aSVV+UHIoYp1N3jvJzEBLXkdxJbIwmQrJx6PCsP6AHoZ5GcoxkGB0FzGtxo7Py6g2CZUVXP+hH+WlyUDQkqxu93KdwzCBzdK9/Ll0S5Gu+jqvMUqaQjrlINNgj9jgwuBrQ7LZiO5lkkIOTtUgdYERP10/ET+o3SDT06aVjYgz2E0DyYwbG7uTOnb0ciiF8sdMI4yWe+LhkKMCEjhIhdy/xhrXZlXR8PNDwG2MoiQY6HI5t+wHfyMyHNqgquPCkOYik9JVKbSqyqJz0FBaTAnziva8wrSR6ltXqL3s7JSXacXwpqq2R+0CarMjnS7pL2ayI9w3mOdXUFfsfvQCc4iUL48jKHt7kKTdSjR7oRYMm3uzJ86k2+lLOy4qKiSmLzqmWWJq1p0Y4Q8yHrz68ZryLjF93mL2HbrxFK922Ilj/c4c08vuWdIzFf1EuvrTVz3ERHPmxnAtGd/Bw/+9AQUv/3gFSkxh/UxQm9rLlGTyXOQEr/5YNUoz/DQRppHT/6KZvAlsnllCBdtnWsKHvgrdSgxkxZ2MTB/+J+kK3v5ownSK6csoxlgHu4dyEfZz8YcU24AOkpgu3HE1dkG7KYQa+lmkuNG4rRoL6GGROjyQDq1pYLeUhX/xLdHa+6mieBVZ/JfXxNUUPyvyQgn20GEajYqitzYHL4i7PvDk34r/YpDj7H70gvKyxb26w0/O8FONn5eC6lw3xKoQjeW6wbzeyWTNailWd12GEURSVRCmBbEwEpzc5rDDJBk29OIV0a3HaEmK1xnDN5rFCocKpXgXgBQTuipRq6V0O7seLk6IzqCuroltS3z15jsuIfVtxIsfuMPYrG2tMGcnpKqQgv/lG6EE1dWYjs4Q3jRMRZANXby+kS7ophQIQO9huZAC5NMX2M80Jx/WggYG4sVKEKt37XHjlw/Vi9ncNJ6kLbv3ZxIMeimfo24D5W0iGo3qpeicPG+EQLU4vq5Qmiy70OMmoF1odg8N05eC6BW5lGb/SCYS57/R0Zxa9hcac/CYlzfUD2sJCmxE+x0LuWb9JHs9hiGMFtN3c57Qpy3qxYTyJnH7ZWkgFLc6bzDkwgyFYvO+pp8mps9l8/HmJ614zdZCtXKHyKv/m6FfRfxMU13CF/7vLVc/WnHzk+DWSuhbmrEJonsotrI+RpcnIiUcTsUE2s9kY29akaWGCoigh/q60nTzgsO5prlIzD5KVLdpRJV3My0o8IkaISC2GbCmim6qufoxgz1IiFl5l3Ab6T4nozicCzFo8qofGzXbZwW+Niw+9LhNT/XhTW5eRPqnc/YXlpkCs+sprvYi0zhdybV5aCUlu9e4u6107FMiPThh986E+Tc28OI17nwmlMPlAqU13bun2LsW/fJKqFhaCwErN+CUtajVgjitiROH+eZzwvWtFNxKEe/WqKpCzaekQyOYaveD27WIN7dw8JiTE9TJUnw7SsHllRDGzk9JdUlYVNjXa+KbK7g4lTW8lbVb58nIINtGa9z1XjaS2cunTpbiCyR7fpTIrGJpRr9VUho/c6jlDG7vxABvH6NCpPrqawEbTKtsdtcUr3akyvLqTyyoLyMnv/ZcfmZSYpyBKBIjh5Co/ESzfVYw/yiy/Iain6QxJ+TbD4FJiHIhOoXuJCxw/67n5NcMZ79x4PZLNd1Sphe6FzqfaRPz557yqscceg7nc/qkJMPkoJi8kGvTV4blNyW89PrLDl/B3Rc1oZTQw8lzLeqIU3l8uxb6XXmtiDZx90M1sxeB5YeR7ROLn8CbP2wpb+DkdzrW7zl2p4rFNxPlJtLOMwCgk3Vl+6wYGw3tSuqK2afSsHzzkxXzTwPzr/cSWGgzFKNUbE9kk+O2smbGEnYPDNqbkQjYz6TBag5JsswUwAS3jZSv9pITU4jv1VaG7RNLqBSnX5GcqH5R0s8NzcoweSMI8jApSIVm+8Ti9onyUqHajnh9i5pNoM4wJqPoFuIvcx++ls1vnaejMYnHtO0w2z3UFfFkhrZGJn77htQZUuUke+3lzfH3SyGXKuYi0brdjL7W1HuS77GPHpBqBVe/93X3/b0R0Uq6lzlsSOVgoTTo54LIV/ROEs8BkVdpjZkV0tVsO/nduiJOCvzU4qa1TFWG7khZEKcl3arAvdmSdgdYzqAssHspWlXT5dRL6XC/1a0G2XUalcPPoLhtQSma82rMCDGtGNCbRxNiocQc2cp4wfSCjVXF8SNLVo+Uiehk86DbRMo0LJm0iAxBpSS+hVrhK0Fr6j4yeZXG0KL74Tsk2aGnPD4NlXQqAMz+qPc2rUxd4pxM6JKLbiDY2DaJ/tFAealRXpCi7YnoTeffIhvCQA8b9UzlEP23dEuSEnN5qCAsAnEnF/QwBdJB/CdDJwNk6jNMgYYJSzIQV1P6pVzcw/SnfyzBUsWdaDdVyKFzhfwvOU1z6saNT6gtZjHJ7PMkG9SmR/mAcoYwsditvE/9SUUoNNWLrRQeUToasXZyDg+TPaOFruKyofl2B72EFKleFiUVgmxCYpRiOSVJSJ/IHUTlsKFkjSwQ3otvwVmYTTF1PY5V5TmF4ha+S1PZ9+2RctipzrK2nCSfciCZylkNaVJJseD9SMRSZYnSWmSeeUIinWElFD11D4wRghR3izkxJVQficX/n7s/ibVtS8+ywWcUs1r1rk59bh2lwzYEpnD+mfozAYlMocwG7qREC9E0iKKDaCIhQY8OkCIRSQuERCezgVI0+AX+fxKwCeMibEd149b3FLtc5axGkY1vzLnOtQ0Oi4gwEVPa95y7z9p7r73WnGOO7/ve93lFp68blyR1Xh7XJ/R3FCNi1Ir6fkm29eQ3Nc1iQj8zmNqiXcDNE+vfifcjjjpeWV9CrugHo3gT6WcaV6XsnC6SMRg8RZPsS+hOcnS3Eh12qeinObaJzD/s2T/MqFNyOHmaorr0Mcg5q0i3UGlio2hP5PrL76SBMPg/VEBIVSBmXS8b+H6qqC9koTE7jd2LSV6Qo2C3UlgILSp9eZpwDhNI3auEFWXUmQ8hq8qD0mn6qFInM5HBgk3r2lReK91DlTxq4l2LaUN4nGyHTNEsRXJq64T77Ri1+OJhU7iJ/DwVZEIVjBKpxi1iOG2TvvqVUDvbRHwxBMVF8FGaZ8NEYpjaVoVw/rse1Xuqqw61kymHbnqsYny8YIH9KwG+Mq3DezGgg6yNvcPs0z1Tq9T1HCbQIkXCe5mc/PjWIUf/TScbNAVCt5xKwGxYCJRC7zo5RxdzYtsJ5vvV9zMRC9WkEkJmgszEacWr+v5o9dGng1zb5a1PE3DJB1JnFdmLkhjC6FMihR4Oa4AJkVgYQmYSKS7SvX0v3csCuvcpsNTiS019ZkVa9aLHTQ2uUCmsV6A1ppN76gCkMa1Ie7KdNBx8Lvf54qXFTeHmy9UIjunnipj+PhT1ymeYNCkwLVTP071xliauGiFtKiMIXzlV0a0i28gJ15wdG49+GoitVA4y/QSixtq0VihphJou0q5kYw/Jt9oEwpkQBNs0mVVemhyDokIUImkq2sv37M4n4/MfJK7VC9kDKS+Pi4pjoGIl33vyTOA7pos0K40vRapvWo+fZkQF5W0y2C8tWR3J6qSuMJIR108liDreCCAn5IZgNPlezof68ZQqRri8BieTlFiITGT6cY1KIAs1BBxP5JxULTL9HO5bLuBXMzhfYK42cp80aSq3nEnId93K5FQnsl+MyU81jItk3xz3B3T72Qbcf+340S5ElJYuj/OSgFwV0iFuutG4ToekpLZp47HZopqWPDOo3hM229Fs3i9y2qXB7ieYncWs92KImlZ0JwX1uWH6DU+4vYXX7xNyIzq8tiPuD5K8bNPY1vy2QkTLiGswQeuPUuDdvdcFYZlJ1y/betZvTuiW8Pjf7dG1Q/fCHw+ZAuwYUhOtorzzie6iyXaB7OBoTk3qEip0lJNeuomSrN4tFNoZ8p1i9c0DvrLcfS4X/eJBChCfKboVEGF6G2hXGrfwZBtDfitdiG6mRY7QJ1RwYEwcVg6mLxzaRa6+It6OxfuSDbJ/GvFPGibTFj5YYuqIr8CkLqoK8j3jYEbNZFNSJo1pdVrT31hApYJKFphhTD0sVtMXgXzjR/O87qVY2T+dSsL85EjOWr8D2U5z/xf7UXbnphm+NOmxmt1rgvicfRLoF4aQpYWpCfDuR4S2RZ+cwKzETTR5Jom3+wc5rlQUL40UEkDITKKf+CTzSSdKZnHLiuZ+wSRG9HYPN2uZ6KaUZDILTSuG9DxHFTlulZ7Ly1I2xXkGTSeyoqsbMTg+vCfd++aInI15JkXL3c3377r8H/FwDoa0+rYjNo2QcU5XRwpOmePnBcZ5ONSQHqMmE1SRE1Zz9O5AuLyW98IWhGt53cyTR/JzmhYmleSAxIjZd7hVCT6SPV8fi85OMl303Q51yIj5gnaVsXnNMv9YUb5/oPvcnMN9Q762mD5wuJAue3ntkhxQkW18kvtJ3k+7VGS7yPTas349oz2Ds9+A4rZH33n8xLJ7lCeTuRCv+umM+kzjK2hPI4vvKBb/6rcwf/QL+KJg91Ru0vlGbrqmg26l6IF+KX4304pMs3nksWvNyTfSRHMiIYZ2L/SpAQdsGpkWPP/jBYd3OoqPc8prmaDaGvqplY7ntVzMbsJI+st2EBJjwCT63fR5wNaBdqHHADLt5blKLkpMUpKY4BfptKggLBztaUbUimKjsF2guBWYhG59Wgf0mGlS35O1bvosHrOLmoEYZHGVol0eC6cBQrL4rTvUzZp4skiNkUgsLH4uQZfFrZMMqEqgBFopgp78jlPZr5KH4E5ITPk3U+5VCJIj0hayeQ4Rc50m9XkmfrC+l4ldiJhXEpjVoZF7aAzinywKKTpAOvEbydlRZYkKP8Zm9XTEtiXcrcdQUhZzYpnTnU2wuw774UvibEI4W6Be3MikaFKhqhK3KLFtR2xbwfrOK0Il51eoZjLZXh+kAVlYkX4ncIruPZMPG0JhcfOcfmbolpbVR1NZLzoJQA3zamyU6VbS1/tVSdSK+fs17VnBy69WVC8D0+dCY1JNT3y4oK0sm7cVi3c1q//1ffZffY39PUu+jWkPoDC10LZcIdPPbKvIdzB90RMyxfaJJV9HZp9Ebr6s2f10y8m/LyhvArsnGuUVxZ2jPbEc7skm2rQCkMj2kcUHgWalufsio0SzOVf0rVDt7CHR8Gqobjw3X7Lsn3qq50Kn0qct/mDh01yCUyspmkxj6OfSoFx+1+Mqxf6R5JGBNGjswdPNM/o5tGcec9Dka8F4+0mgemZE9p2onNlBph/bp7JHyg6RdiGT0rPf7AiZopuZMW/JtCI17+eKbAOnv7ZhCA+Mn1/QaE227jGNo7lfoTzMPqo5PCw5XGgWHzjydcr5KC3NSkAC3RLCc4XqHHEie8nqsqdbWm4/n6H8jPI7SFHROWlmNg5+8TfQZ6e4dx6RvVjLtTwpJcdsn+IoEkmSLqN5Y0l9Zjn/3zbE7RZlDWFe0V1MKZ5tiUlRoYxBna6k6Ejrz6uHf/ESF39bZMF/5fjRLkRiEHmEl3wH7jbyoowdLD12ddR0ejSVA7ggG/q3ngj1JkB205DdNZjbvRQyeSac9mmOOTjmH4pkRlmLfnGHsakz3cniTiayjt2XVvQTzeKDRmQ/h4R4hTR6NfD5x+l3kJPdZ4rm1NLPDcUmUGwYNZbFy5pQWfp5Jt01pccb4+6RwXSR6QsJwekWWeo+Qn1m0L2mvPHSBTnRaI+kePYx6RJFWx4yhT1Eio3Qp3QuhY5QK+Q1nH54PF1sLRhfV6rPMP5dpTg8UHSriOnsmEYM8m/dHPqVx35c4uqKeCZpyvkGso1opg8XlvqeUHV0x6iZbk412QHc1xYsriP5LlCfaeIUps9j6kqqlOicsL8rxek3G6JSNCdHSYvuI7aWLqUQOAS9c3iQj1OUfqLxmSLfBfJ9oLg1mDpSrEVH3y1F+6t9RP3RL0inIkThwAN+YiFMmLzox64PUUuHMjOEXHJkVIySUQFygxkkey5A20oab57J5M55QUACej6TzIkqx9wIRnbQLgtWWqNPT4i7/egdIUTZBA/hXMOldD6HT37/l+CPyhG9J253gi20FmGfG+KhkXXEOSgKTD8TeZxSRGtRJunFvUfvDjL1fPOprDshoB6eE63GK7lB6BgJsxJ3Uglut3PYu0amWW1PLHPCaoqqe1Tb4S7mMjFxMrXQffKBFBnFOiG7jSJEzfR5Lx6AXFOfG5pTzck3JeTUTUXLbQ9yo7R7T3Vt0E7SxduVoGujkeaF6TTZPk0tkrQpKrA72az7n3qHbiVZGuV1CgNL3a1ukeSS71cUjUghi1vpzOlesMLNmRQivhQCH1pM79pJ4aAC1BdCscpeZmMXVPcytdg/FGO4PUgWgG0jzYmQ//qZrCX9LIUT9tKhDUazf6whQnklCODd0zSxcGl60SuW3+0ImWb/0JDtIbzMMI0S2dmFxtaa+ccd/cTiLvKUq8I44SjupPlRrD2u0rRL0W/bVmP3HlsfmzIhl8/lN7KxiPMp7kQMqagpg2fQTWQ9GCY5kKTzuRVUfOvwJxNCYVBdAFI+ETBQngjIJiQE+ocriGJiHQ69iTJhPTlJn3ilWebcuBlR1oq8A2QSMhy9I4ZI1J/dcPw4HSrPoW1QRYFeLaVo6zqU1iggv6kFLIGssarpoCxQVUnc7aFpMdsWtMY+eSyNn31DWIiBPH+xk85xnokCY5ZR7Fr0rhnJmKpuwZfowqK8ENaaN84wD1dCX+sCeithd1pr4kRySNxEGl+mFQBFeSXF9/ZJjj3PUBGalUoSTJlGbP/E6/hcU2wiPnmqynQtb94o8YU0A0IeRXLkDYPJHCU+zHwDvFcSlTQn7UEk3Xdv56ggcByVvF0DedMePLZUsj7lUkgAIzJ78IB1S9g9kbWtuDZjeKnf5BCgW8iEItukNSlGkWxHqE/1uK4N05H6XHO4KCTIOULI5PnmG5Gkh7WhuJVgxmITpPFwKg3X7JCmFGka7azicCENE9PLfkT3ke2TDFeKJNzWMeUFeXTrBBQwU9x+qRrz24qNx+xa8rXF55mkqXceX2Wp+Swy1GIjU5PmwXSkI9raYepAvtaY1kuzoO1HP2pUCvOFt2Q6um1FJn46k/vPsG81BvXwHrHMCGUmYYx3Kdh0uC5aJ6num700XFdLoWgV+Tj9gyT1rCqh+OUZMTq4+r2vux/tQiQkFGc64i69SCnlURU5hFSM5JlMTAb0WO+INqc9rzB9wOx7zM2OuN2Pbw4PzqXrUIhZKbutZcOSZdItMVooGgn3qZxsTg7nmm6lmD43mNrLCZKyJkKmcZWmWwiHOd+GhN2Ui7qziuoqkO38iM0zdztUlIlNJJlAK+nSN+eQ7RTzj8SI1k91kkhFmjMxoJW3Uuj0C5m65Nt0I1GMZJ3BjJ3tPCCLn2mOC4N2EjLmpknz2Ilmup/IIhH1IHuA9iQSHzY0L6tkngWCJLn7iaA0y3ct02eB2y+KZ2X6kSI7yOP6maJ54DEfysZfJ4RwNxN83+J9oYEMGSMhk0VFexltizE3JTpXSjaELqBiMRZ32qVux84JDhXBBB7uabSTRa2fyHMrNkl+tU3Ei1oKkX4yLH6KZlkwpCcPoAJXGgi56L1dkK6YAt05VEwdnAEXOQQGDbAEAC/YTcr82N1wfvQ6UJWERUUoM+yLG8Khls/rZG6cVMRpAY3QdT5jaE+LUOw68T+8dvpDuGD/AA/vCW0vRUhRpImGldRY5wh1jS4KWUDT8ZmAphhl2lEV9OcTSZzuPIcnM0KuJMzzoFB7QXb2UytUrQ7JG0oyOXSJm2UYo9BW061yfKEpL1sJBHSILDIz2F2PcjGZx5GGRGnpTmWiUd+LrN4VaYacN2DbiG0lVyDfelRIyeRWoYIZE3p1H8n2IuUapJMoaTBEDfun1ShzzLZy8x2yRlwlm/vJ8yMIo7wJaC+TPlfJBsGXEV9EYh6JRjblplbMPpSXtFvItKS4Pb7m2ktDoz2RNOXsEKluHNnGEVWBmkNzIWtNj3yt5IwItrs5lSnI/CPxvDXngXyjMbVMT+w+Un6ywy8K9g8nmFp05oM+vF+oBL9Q0rxJm5ChCFNpImM6KfZcKWjRoVApbmWKYlozErVM47AvN0Jcm5b0MyH0+UImTNnOJeOx+uz5ptXwbeX8LQz91JL5HtCynhhpJA1H/nIPIdCtEvrdHYsGdTDSjBtCz4YiI0mFxlyhLBOpZ4yoVwqR6H0iu/1obxv+m0e65lWej/uF2DYi3wTBtQ4AkS6hTB9cyMRpvSXGHtW0Iq89W6A3B5HCWAnVVfta1A3LaWpKJmlWkoEBos83Wrx/QaTX9UWGCpZ848l6oR2pQQpWZsQsx5d6PI91FyhvPfWZoT1RtAl40s8Yp4q+VKzftJRXkWLrcafiN8tSM3L/QHyf+VaKei8xJ+he8sZCJj4ye5AJBkoaBDbBXZp70tgob+JYXAcLGvVKOrvGVYEw9fhG0Nkhl0LI7hVuHunPe/LnGWWajgYL+iDrnS8jplVk++N0z9Yi5e7nSR4ZhaZZ3nnu3rH0U5h+GjG9+L1MLQ2coQmS72QNyXYeZoZQQKxFOg8kbLDsmbqFSojiIHuJXYd/K8NXMP1mj3ZBGpKA7vzoV9vPZe2bPkPCZVuHaTzZwRwDCq1K+WFg60B54+hnhnZl0xovyfa28eRbmaJKJpgTSTZAmdM9mKMbj73a4pYL2tOc6uO9BB06h7IWt5qI3KsQ0IFgoxPoRqVG3PZArOvxa2KZj+CeITaDpNBQ1kJVAv2PfyESvWzKhkPN59jVkrA/yMK93qKrErVcCKu7S5SbGIlXNyilqC5nDOSZWEsGAE8eiH4fQIlJGCCUlvjGfRmN5mZM0tabg+QPnCzo782orgPlnSK/bQm5Yfe4pLzqKS+36HmOiprySnTC9q4mWk2Z/Cn93NIupct2etvK5KbMCaWQF4o7OdlVrDBNJN+KZOtwT8zt+TZ1UbV0PmTxMXQzRT9BLrpajZuPfiKIy+0fbqh+q+TkGz2bNzL2j0WfORgtTZ82IokJ0JwJbUY7uZgPrzvyS8PkhWxaprOG7TsZ+05h79X43qBeCAY33uZj4WX3agwvaleKdimG2sW3DKZJi/B96TBWL2SxqU81ptejhEsFaBfHm/j0WST/toyVUQg2VctiY3rx0egUdtatLK7Iuf6KGkexk+eK5XM3JlFLropK41HF/lFJcRPHhd6V6pUQRoevDO0qmYetwq7TFKK0Ulx2PWYDRevxs1z8Ksv76C6QvdwK5SPTcqOpSlTToZ2XTlmMEnqYAtD0+oC5FuSvWmZyLht9nKA03fj/3Nylc13L9VHXKJuhC0v86Hca2H+cDunSpORYSCx0j5rPxFczKSWTwWrUrpb02Ew8PLSvJNHfbijutvRv3Kd+XIpH7Nphv/Mpqsjx91eYbcP02S3N5+7TPawob7rUiJAiNH+xo7s/4/CoonreoDvP/umUqGH2zEmw3rJCt45s3WDKTDr4b8yEtrT3LN53zD9WFNdtmvalTcQ+4grN7RcnZPsoqd69FOft0ggFKxHqVJBpZ8gS9toI7MFVw7oxsPulc9dPJdF78jyOxK/dE02/iGI+bUnUKEF7m1qR3ynqh4FYBNROvu/2TchvFYv3A7obipvjOhC1FDrFOjK5dNy+k9GtMubvx9E7RgTTquTPkLXDVUjBY2WNiBaKG/mzn0VCK3Ss658RLLruoGgj3Mnv7QsoX8gasX2ajRS/qKRrO1C4opZNXH1WjNSd2XNH+aLm8HhCsFnSgAfKywadcjfcUorQaKQrnG0DtvGynoeI62Vx1S5i103ygDjCbIK7v5RJukIMzCEmIlKUgtcJHSkmMlb5opYu7PNr4nyKP5vhz2ZwNhvDNLnrZBp40KjlHO6dCMIzRPrzCcpFstuNbMIrdWy45T/S24b/5qEmFUaLVDuUBXqYfiglDZzUBIqrucjZDo1MqUEan8ZIfliMqLoTiVyeUXz3UgqQk7lATyZ29AO5VYUupYFBiNh1jl+U1PdLCc57dqB+Mk33avF42PUcPy9oTwryTZ/Invk4TTeHnuy2JttVdGtLu5D0c5B7aXEj9+nBH9pNNflOrp3bzxvxhyroVpGQMcqtB+re/L097VlJfZbJY00i4EVpRmoH048i3VKx/hzM35dmxfodjZtEmjSVqF6ktWkGi/dg9qkgd7uZZvN2pD91PH16zfPLB5TXEZ+l9ctLw1WmnbIPqC8ErjH9VCYwIM/Z1nH0kFaXkeJGGjYqyHNqVprDw0TUU7KW2EYQwFGLz61bCe1PJ4/c4iORx26fmET8M3QzjekLaQS3MhESn4/CHjKKTUF7Iutt9SKSHQTxGzLF1c9epAmywn1Zrq/zrzvswTP7pBOqV93j8wpViNR2bJ4bTXZbEjND/+Z9dB8kbqL3su/ZyvoTlhO6ZUa70JiLCltZMoDeYT98Kej4qUj+otUiIY0RP8lRrUffbYnWYs6kaTmksw9RAKooROrsUsOi61HfYyzAj/SKopLRdggXkglFjmqaI34QxGyTCEIqTwVG34uZ1PsjzjNGQfUVGSG3mDpdWUqNnPZQZokLLYWIOYjBWKV07H5iE0YvdZ/VMC1QgkGMciKP4VS9QwWNUWpMTZVRv3RFsV7kU1ZoNMrFhHIElPgTopbpCIB2+jNBfUPwEAkPFxNGU0INpRhxFdjMy+RCJ2ynTR2CZPCml+c9BiDmcoPWyThLJgYqVygg0vcWdCQm6MiArdOdQjVS4AwdwDEt2qRuRyp69KAmykTTreJgMJU2h3bqM52WqOUiLzaB/M5hKp1yXAR7OGAzVfIGRiOyFVcq3CwSbUS3KhllpQs6yDKGyY7Pk15ekxLsTdKiD9KwiNMiSRk47ZJiakU6MZyXXt5/McOKWTlYhS3kkjS1TD/GjsQQjpfO58GLpA+NTD+y7DhJeSWUa8glUcZI0R4jymp5ToN5W2vibvffcyn+j38Yi8qTF2R4HUMUw2cu3HX5XECH1B0eXtMBDmCMBDodDqh4D58nre9BPocWsho+iBwuTROD1cN+lei1vK+kDXcrdLYBNTkkcIdMo1vGDSZZ0ll3imznyXYuGdXDMeA0Sk6RL4xMAruYgBIhFf58htQnIVnypTqFuodMkMHRpslAdrzRuwlELx1Q0gRS1o+IL3WaBHJc49LUUXnAy7qDlo5n3CaMbSRJstIkM0tdTC+fj1rhptCtwgjkUK8ubykraXj9dDLSD5IM3YPLIGbHS69dqlHSpfzRXEoUDbn2UqDJY9I/aUEZD2/k4KEzrUxZ7MGj9y3RTPH5MaNhDCCMkZiJBDZkyTdzEG9YKIeU6STNSYh25UO6P6TPu5gQ5Wnq3cbUjEkbD+/H56cHnO8AXAHBiOsUfjiEn4a0adBa0tZbRyR51gYDtVKSbQSC4/xtIJYfq8MaVKbFU/fbNO9KCTJVwpGHDzUij4HRgI6PKPyxybnby59n85Tnk5DuXhQOobASRheU7D8yKTp16zHrPerRZLyHSiPU4iYZ3cIIvnV4ryIjHINDFCXHVuFzLQV1yXjdCeghdfi1ElM7aowNIKQmwUQ29iYeJ6CqD2O6e1DSoBwKEUiT1FoUFMNm3JV6/N79VL5Q7vUKvEwWsp1UOz6Pac8UmeVtwmMH4lQTkOtOJQrYq/AEFY+/37AmDOHH2jCi+vup/OzJ1qOiYJBRcYwgiFqkmp/BfSckt2FoAsj5IEhzNe71huiDIUhZnpeid2mP1jMGPY65LlM1hkxLIGz8bPZJ2n+OCOXh+kxSTNpeYhYqSzRyXzAJUICWiXkoLCFNxyW+QAlYAcQLkuRUGHk/BnVGyK3QBpUa0b1DQ0/5AEGAOQPqejSt+2Pg4e952X1Pj/of9FCrBUoXcGiIh4M492OELEeXpWB8QeQszhGbhvD6fdwsJ1/O0E1H3O7lMVqhZnNinqF3NebOE++kG6TnU5Fw1DVZWZIVOf3jU7nxv7iTjeH9C9yyIBTDRQ/ujYkQaN6vcbOMzU+cUtw4iuuW5n5B1DllWoD6qSQjKx+ZfdyBVtT3C6Iqxk1uthVErzup2LyR0S1S6njq7tUPpItZXhoZvRYiR5hcenzahIVEjXET6QC6KDf36f86xXSRzZslk0vP/NOUIlqIOTNfR06/UbN+u6JdKfKt3ICHYLDikww3jVz/7xzZZYb5z3NOR61lKZsDmyQaRrF/qGhPob3nwcPi2+J1UQ42b4N/rWHxHyomLz3Frcg9Nm+BCvJ8y0uRbaigRtlIP4ftm4FQaLSTrqTuIt3KysZhLvKvbAfNqUwtqivxf5z8hvhuujnjmNc0YdSSDtQNe4D8RaS6dmR3LSc3TdrBAUbhK0nIPdxXgie96aifyHk4/ZYYm8My6a+Vwuw7zDYQiww3zbj+6gmTS8f0Vz4RQ3XX4z7/mH6eUX66RdUdartPExELB8Eyxt1ONh2IpEgVrwRd3T/FT/NkigzQSZFjZlO5bl7Vgf+YHsoa1Hw2gi2O/yAFnmp7STa/uiXUNaFtMacnsrgWuRQriwq9PsDhgFnXVFph72oJNPz8G+MmP0xLtL1Ieu1IfiVEtVhmxNzSP1yQP9+S/+aamN6bybM2FdJHmU3MDEGrUcIx0GB8KYW17hX9Qjaxi/fEN+QmGTlAlM5efaE5+YZ41PaPzRgUNuRllLeCpO0nonkGKSKybZS8HwWLDzq0D3z0Jyt8Fdk/hmyvKW5l0hBzaWxI5pBcI/d+OXD3tmH3Tk/5LKO81By+3BCB7IMC3Ymsoz2VpPXld0RSdvNFnQLCIvV9xd2XDKaG8qWEKspkVIqq7jTQL2Cv4OQ3pLvZzfUoHxvqlWgjIZOcAqIUaP1csXvLg4lgIuUHOcUtKdtD1i1pUhzfD/PKaeMLqB945u8Zzn5D9P1+XmJq2aCIYd6gfEl2FVBNi64dqjQcHon3pnq2Z//6jKuvGE6+FZh9UBMKIxvGeYma5OimQO1r7LNLsuWcOCnZfOkEUEze2x913K9kUgxHmJd0T5citWgcZt0ICaqWJPf+c49kM7dpoOkwz27Gosl+7YVsnGfTI9Z6PpV73cuX/13X4o/CEbc7uL3D141kCJ2uUPMZzdvn2L0j+/BSpK0JmUoM0hGez45qCnLMVh6jclmP9aaWc6WckO0Exx4zec+zS9mL+EWJbh3TDzrM9Za43hLVPYKBxXu1eBFLO/oHNm/k+Lxg/omTcNI3cog5pqso7zz5XU+21WinZR0pFdvXFdULOP2tBjcVqpTPBKDw4Bc7fC4I8G4lJLxowdlI9VIaEbu3Z0QlQX7dXDbS+Z2oArqZbHK7uaK6DJz+Zs+z/6lg/dWO5X8p5DprI/0EDvflfl59ammX4KqCwwMlDREncsIPb08orxXVZUezKukWIg/XfcJ6J+ro/MNAvg0Maeybk9SQsJHqhaZ6CftH4l+df/GGzaGg/Y8zhvRyN0nTVkDFKNe+knwS0wrJavDRHO5lo5wVBaGA8i5S3nj2D6ysD/cEvLH6Vhwn0NnHUrxFLQ3Qmy9b8lu4+LVXlD2pwPOFoV8Y7t6y5JvI7FkmBdnWs39UoGLBPABW05yXDFlTIAWC+viZ7A2+8Dq+ENlVSPeo8vkBc7eje3yCWpZkIFjqeZFAOkpkns6hqkzUQA9P0Idemp9FSlLvejA5+u3X5e/7Y9ju7+f4kS5EhnBCVaa0UyMa2DggiBKjna6Xj4RCtUAoMrRSooFNqMOYWUGeBcB6IXANneUhzKkshM2dzEIDNhVSl6CVcli6DKlqP0i1Cka6YcEkakvSf+eafipJpbYL0lnVij5pj20dkschpipdPi+YyePLMWzStUuYuoSi7Kdyc9adVNt1rkbz5quoXp8mCmoq338MBGuS/OkkJ5ikI1fyvaId8HnJlO6lc+gLEtIu0s7NGDqGPnZhbQ3hRh8nIqmBoKJ0XruFTHiUT8i8QRoxLAAwdhG0l98v28lr4AoRy2qXEMNpAiLaU0e8sLgyTWDS+HYIHVPulQ6IVmNBY/ci2yi2kl4vZjczvl8xacLF0CoGNkm8HtosMl0LxfGy0z7KrxKkw2RrKWribDKGLDJ0PQdiVqJnqV4IKqrIhXaj0gQkBinKtRG8NXIe6rqX7p17pVOhkzk1/vgaUIGxcxn7tBZoBVq6N0p5aHpU0xHqFPZmMzH0hwBVIROkXnw2qpSAUd2ljmdmiZkeQ0o1MnUxjTw+JimLOrTSKbWp41qVEhiWCcBimJwKLCF10ZWEcoZMj9dQPzWYLqA7Oe8AmZjGYcoSKNtANOmuqiFoJetDuiFGLSb1fJtSyGdWENk7NeK3B+/X5o08SZLkQvVVouhsIt1cpe4x40351Wwf1RiCiVAqtIkELyhQlbwgIhWL1BdyrUYbJegsIb37lUe3VjqnHlmbFWlaoVA9Y7BqN9fU92T90T5dwwZMo2QSm07xfibdR7sxsm7lcUTwmqS7HkiGIZNuZ8ihvJZ/7yepM9roJF/JxvCxIfxQZC8i57ClXLNuluOmJk2CZbou+O/0XAd0b4xCU+o97ATzrspC7k+ZGX+PIRB1+LtyQYqR4Z4Fck6+2pVUSu5ZRovkOMhjsAbVp/UFUK9InvEemuR9s0butT+uh1LJCyPhbCpd38QIvWz0tQsp/NGIlyNhkEdUr0rThS6N2rSWz2tFmFXEIk0skqE4FLJ+hCpLU/M4mo1Rsr4rP5yb6X01x2tflANpExoYTdtD4RwyPU7Ksr1MAfuZGv+tn2m6qR4DEduVxRUKN02hnHs1Ym3tQQqEw7ke/Q5CrUzTUS0YcSKoLq0zlaxtBPk+0vGXe3m2Ez+Zm8ZkZE/SskYmJNob9mbKLIPtE5E2uYk8XgIQj5MIkWca8p2sU+PzTijwQZYaTaTKezpn08Q3Bal6lTKZGCXnQ8DxsEcZMotoGVUpw15sNOMHmSKjZf22TVI9ZOItEc9KQDuF3RtsE8fpb9SQpf1et8pSRolMr/upGVUXAxkwVJZoNC4l3asuSLL7xFBZCz4kMEZCrHspFkNlUb4iZhpcJGaWUMqUTXceUye1jvOyb1DDJN2P18IQiChglzSpSaqiwVfyvR4/0oVI1FpM6HkG80lCYnpJl4wRtvs0CWmJXU/sO/itb6OKgvjTn8cXBfZQjNkNMW0K+rlo+/KUdKy6XsbYVUn39Iz2NBOjUIj0sxOybU/27A6zaSl7kUZEK90H23j05oA1iqw0uKmYjcrrXljfC8E1NivF5Eph+kBzmgsCciV5H8W7ogOP9rig5Fvp2lXXTtCyjw15D/lauhD5LlBedvjS8PIPi26xuItsX4fwuGH2nyumL4Jwtheam6+I1MnUiuZRT3HS0B1y2FrO/7Nw819+1VLeCL5290jTnqaLIY/05w5Va8pPM9oLT3u/p7gtURGuftahq2TGdproFPPfzJl/GMh2IrnYPjWygBGxO0V4VnB4zXF4DU5+zZCvRavez6VDMxy+TIWIi5S3kfIOXCFJzf1UKD1nv7YjWs3u0RTtIvnHN+gnD3EThSukKMvqNN2JGtuK8b9ZGnwBiw8D9uCZfyImwGx79AwcHpcp/Cx1PPZCwbj3i3v6VUF7JovJKJezhn5+DA/MlEK36YbS9Cx/o8HPC3ZfOqX6tMa+XGPvDpitIRaGOMlhkqMaJ96kzBIXU5Ecek9sWtFyNy1qMklSxR7T9IT3PyL2TnxTmZi2Afkz/BjLLYAhnC02LbHvJBskdSmV0agamZg2DXo6Rc2m0Er+kDuZQITs/ReyyC4XUgAmROIwCYlG0y8sptZYIH8phJz9507RLlL9p+coa7HNDHdvQff6QgJUgfpeNqYjZ7uA3adwKKWE818mc2YB+7nG1kK+GWSgviySpyGQ33Rk778gvz6jPy2FQ19p6ex1QOr2dQtFcRewux7/1BKskF58oUbPhS9h+cdf8mC65Rv/7i0xkM7EHHn6q3dk+wX1uZz/g5QgZMnHVcP8Pc3u9UBY9hgVia0VvbmHkCc6jlM0f3RPXjjiby0waWPjy8j03p7uZoHpFDZlJnVzIXXlt4r5h4H5hzUv/tiEzduRk5+4pO0th2+sxs3D9CNFdR3YP5Spyv41T7bWXHwtHhOPo2zQsp1MnddDxxPYP4q4M0f5C5Zi7WlOBZ05+UQM8pd/yDL70DC5ciI/GZRyFvqZRoWSzEp4XLuSSXQwiv1jMYSv3pWisznPqC7FT9Qtc7Id2M1OPB73l4RMUpJNmwJaF+UINNG7bkxVjpmWhliMAkpJa4+kfyvai4k0S371PbCWeHEqnrIU/iv5GBORjt5uiIcav9kcr5kf4+zTaAyx2Y2FnJpNRcJaN8R+S/5tCT8Nyyk6bbjick4sM3yVSZNQIZ3j6zvifEqscnxhCYWlvp9LcOllO4IEfGVxEwOLTP7t+X6UxYXFBBYTsoPDdJLgHpQUrcO6U115aXqkY/qsE/BF63ET8Z0Om+r5x23an4gXs77I2L6mac8E2617uPlKMoyrQPnCMP00jt6t6lq8l5c/AfG048nDG5796gNWv8UYNuiLhN29kkbF9jUrIJdPM+qLSH0h13dxozj7zY4XfyRHv7Ujzx3OGfJfWFBeB6orh5tIkN/685H9T3TEXvRSqvC4WvTSupfnffvTHrPomP6nCeWtQG20k413Ozdi1A8iD7/bV7RNThWluCrWiVgYYPdQDOrtUo1j1SF/qDmT4mvyLI4IcN3LfT9kivrMiFd0L1+rvSLbetxEELwDAOf+d/eJlDWXYnBuRYFSKmbPFKb27O9LA+biaxvaiwnrN9Lv6hn3G/0il6yXmUjydevZvFbQzxXVR2eoQyMNjigyP5uIYodHJSCZVTZ4Ypnh5gX1RcbiOymwe1hbXlVMDLLmthPP1KRCKYU6vNIRt0YGBHUL32Mton/vh/z3HX/37/5dlFL81b/6V8fPNU3Dz//8z3N2dsZsNuPnfu7nePHixe/7e6t9jdrsjwErTSfpr0PXs5OusD4/RS/n6MlEPopCJDGbhrjZwmaH2uzRdzv0rWjlg1WffXXyDBYzTN1TXHeEQo0+kagl6GgYjYv28jiCC3PJAck2nei79xI4FLWiXZhkUhWSTbvKRpN5cRvIt5H2rKA7yekXlvYkozmXx/gMDudyApc3UYhYa8HM6TZS3ys43MuOUw8jCaD6k5LJy0Bx52nnSXtey4ZYeVC9pmsyYm0wtU7Uhsj0E7lYmxOdMjtShkej0FtDttVkG1CdQunj4lV+nJF9tyT7bkn+QUH5oWwA6zPN3TuWu88ZDo9iGgFLOFl1qdC1bL7qC0VzPmz2BhrPsYhQAQ73NfWFkKz6mZjK2xNFfaG4/ukZt1+cCKbXQPf4BO0ikxdCAznc0+zvadqFxjaRbJ88Jr34X/qZxk2FYmQaR7Ba9JiJHqNdpLoJFOswamFDYccxaLbz5GuXpmpiUB0+fGnoVoXgWxuhaenGkd856VgqJQVyaaV7rpV0KJCbVKxyOe9CGL0HqixRD++h5tPP6LmVteg8Qy/mgrNOGvHB3/AHefwg1wlACpCmRZUF5uJCqB9dJ9ONIpc1w1r5t6qUkfRqCRen2Mst9nIjFJDkMQtljluUMvLORJtLjFSf7MmvD+hDR8wtYVZgGtkoqMUMNa3AGHTtyG87TONHWpZtItVlj+kC7WlBc17S3CvGSaCsC7IhJ0qRoFMQnmh+RU4YSkP3+Yc0Dyb0cyNdupgkhxF2j81IrOrmmuZeMaaoB3v8MA0UN/Di/VN+/cNHuGnEV5H8Rtas3dsL1m8b1u8g1+9pHG/cvpT1U/dQXGuyF5kgN53kEvTzz74//SGjaTK6U09zJvKObKfovrGguJXnOkiuuoU0GqKBzZuaT/7nCfWFyD7vNhO2mwrTKvK1YvqJwlewfkvTzyAUkZjJ2tRPFId7iu2bEpbWzxXrNwvWb+ZC/SpEpqYCope38h7oDmlERTHulpeRkMPukWX7mmH32OBzkWe1c83+Qcb67QndXDqu5XWkupLck2wXKK97KT5rMZvLdE3uL+FsRZimjnuIaB9wEyEvmq2gYvUhEZSMkXuWVqM8KP/4TsJWey8fncMenITwluWxGPfSwNN3e8ztHtU68VX2/RgWPHx8Rtr4B3D8QPcUffKRai1ETh+OU5E8E69MCngjhKMcPEbMzR57vcPe1TLVulhJ1/jQYm73ZFc7Jp82lFepkTUYitP92e5lnXDzAjcv8BNZY7qzSZqySOCln1hcJYZy7Y5+1G5pac4zNm/m7B/mxEzjZob6VIAqPldsXis53BOpT3ZIG00naoJ+Lg0Iocspso0AKF4NKm4XWuTfV5rsk5yP3r3AHuSe255E2tOQ5NdH7H++lu+vojRK843AH/op1OdWPCgKnDM4p6nvRQ4PNL6S+3m3TP6JoKDXqEbDbY7ZDsYwRoBF6FIAagaHe+K3VR6aU8Xm7UjzwNOvPM0hx+/k/u0mQghrVvLzhuL+8FDWhUE9ku8kXX7wsJn+CPnYPVFsX1Ns3xCJm+ki5ZWmuDn6VVwpxL/948j681O2XzjhcC9j99By95alOZUJTn1uOTws0s+IAjxwgWwvRK98F5hcBiZXA4XrmLcWM01145k+87hlhXuwwk0MvpRQZtMH8rWjuJWPfN0JLKP32F3H5GUndM48Iy5mUmQvZsTZRJoW8ynh/AR1skQvF0Lhs5a4nItaKO29VfJkx+9xrfiBTkR+6Zd+iX/0j/4RP/VTP/WZz/+1v/bX+Ff/6l/xL//lv2S5XPKX/tJf4s/9uT/Hv//3//739f3DbkdQnQSOTStBizWfdenrssBfLNF5JkY7ED/I7iDdzuubpKlPsffGwGunYhx75YgDQnXboNeB/eN7wra+jWAUblUK39vJh5ieZDPqViW6dti1aIlNJfIvP9G0K0V5G5l9Z039dMH+QRqNB5h90hGNYvcwG8d9rkpJx0iRI/heWL3bJ+Omwu48KsDmdYuv1Fi5h0wkQ+UVzD5uMXXPzRcWuAnYQxq9RTAHjdMWuzPy+Sgs8PlHLes3Sw4PxdQaFWRpTc21xu7l9WjuKTykYgVW3w5HwXb6y/6hpr4H7X0HhcfkAXebk2+M6NP3kfZU0ZXQPHDYnaG4SR6XUl4H06aNgobDQ5GqVJdCB3Mz0YVHA/WTiK4Vq2+IUWv3tCSrA/MPHVc/ldEto3Rcd1DdBvKNI7/c05xlxIWSkLRMUX28I2qNn+Upe0XOJ9PB5FPpPDSfK3BepVyHYSHu0Yd+pNqY/XHU2d2vcJWifCZUrFjmQla6FMQuIEVNknOpGFGHhjivpCPqArpzIiUYUNZFTv9whd226PUrHqgk64qrudxgux62jrDfo6avjJl+yMcPep0AiPs9sQ+SDXD/DPWJIxwOxDIX6cTtGjWpCOcn6LstYb0hnM3xVYb95W/JN3nzqZiI254wyeiXGbod9LyavPXw7keoSYWaTnD3FvjKYg9OdN3L6fh89KHFrPf4kykhZtK5qwP5x7f0D1fsHuVynWuZfqLkRjbw7bu5bAjUFZja0800MSpM7ehOcraP7Qh8GCQX+TbSrhS7p4H8VlO9lI5lu5SwrEGaGJJJvdxGirsASFf18HpP6DTzd6UQuf2cYf/5josHa65vZ/S7jHydbu7VkDweqV7KOrBVBj8J9A96wo0l2x5N9npr8U5RXRyoy4L+tiC/iyy/G+inMnHxhXRcuxPxYdi9on2r5e2nL/nOe/fRW0t/W6Bbja1lwz/71PHij2Q0b3SYGyvSDxvED7bQ1A8D5Ztb6vfn5GstaGAtT8ruxBune4VyMhX2hUxMffLDZHshe63fzGjOoT316F42W1GBm6bJUqFSbgBMnzsJQQXxbuxa/KzAp2lE0LJpjEbT3Zui+5SM7QMgYBLdR/R6J5OcPJNJSCFG0qgUoTTY3uO/8x7m7BT16EJSlZ0XIheiCR9Np21P3B+gbY9Bn0BIpEn1CvI6bO9+39ff9+v4ga8VTYfK8qOCIkoSnsoyKfQyOwagDmuuiilf4vJGzMOTini2GgPg1HorgYdAdlvBpKK/v5Ticfj6GMk2IsOr71cjFU2kfJrySnDhbpnhc/GLCWY1AVW0ol3KmnB4FCmuNdVLTTcT5UK2AwIcHok08vxXO6KVID7dSTOxWzJKsQbfqa2TX7Ibmhiiypg8T3KjXPyb/Ry6c48qPfpZnjLNBKtbXcv15kvxdABjM2L/QOOmgRzoOkv0ivCgx1eWyXOdfGTSPKDX6EZL2vpWJk8hjyIZ1aB6SWZXQaaR9cOIv1VMLqG5F1l+4Ya2z+h7Q3ddYvZStPQT6JeR4jploqSjfdKjN5bppxLGmq8d6nGaLqTgQtOKzK1+rUflAXRk8qygXAemnwr0hiDeEjdRNPcd+VnDbT/F7vXoTWnuecpLQ3kVOVzINVldBQlHTHLM8k6a1boPZGvZ5+5en45ZbsEKGGUg5jUPpuL9ydN60WvMwWETxW8gu42Tj64nv5P9QswzwnIy7nF0mzKylhP6ZUG2yVB1j77bgjX4kwlmrYiX13K9xAh9R+z+gKlZu92OP//n/zz/+B//Y/723/7b4+fX6zX/5J/8E/75P//n/Mk/+ScB+Kf/9J/ypS99if/4H/8jf+JP/Inv+WeoagLNwGlTguJczOWGHwLqU0GS6m0j4S2QWP6KsDoTs/C0SpOUlMGQWYpncjaqhC6M07QYdQ53Jvzv8jptEq1or7UP4hHQA6ohCr7XauFIVxa0kpTeXJNveuzesfhIbhy7zy3HEybYdBObiJZ0CBnsUofBdJI2Gqzi0y+C3WumL+SEiVqxf8uI7KgSrXR5JYFf/ULhSpmMrN8uMW2RzFzQLeIY7JPfKrKtTehKuPsi5HeGs9+0BAOqh+6BR00cKhbogQ5lpbsQ7KBjlRtwnSet9US6I9VVoD2LdA978qlcFN02H8MIdZ+kF3cK06QNuENMpzmEKlDeKJbv9Xz8f8xwCxkhRw2H+4krvkmaeLHsJM14FBPrRGEbRb7pOP91xryAaGD3wFCfaLKHOUQoNpHDPZGxqLCkWHuqjza4ZUnI8kQYS0hNF1l86F7xl8ip4CqD0UpQkKkA8aWM41VMnanfhS4RFpVk2Ow7zK4VmWDyPOl1IKs7eUxuMc5B3wn9re3Inq9x53MOT+4zffdW0tmXC/n5O8nDiV0HeYa5uMDjfsfP/2EcP4x1AhAfQ5FB26KvbonnJ+jH94UE5L3I0xKKMJY5Oj+D6y0mRljMhZjVu3HRtlc77O0xpT5WhUxlF3ORyG226HklE4xrWdzd2VSQqptaism2g9MZUSsmHx+EoDar8JWsIfleNjimlxvZQHAaPF8g/gXtDOWNIxrF/klFXwmZyXTpaxOdLjsE7DPP9Bm0i0i3UmPHf/Isjpvkwz3LdplAEGihM3lFP7Ov0KyS56vT3KynxLscU8uk1DRQvRT6lHRxFQGYfwDd0tD8VEu879nMRBOvvCK/1bDOaIoAjQSXdStF/eBowDYp42SAU+RrUO8WvP/yCdVaJAvNhUgvqpcRVyoufyojZBF7mUnOiwd7yCUEbR+Zfqhx10sqn7qctyJdiJYRAZrtAWQt9jkjmhuOPrhsJxPu+fuitR/kUzohxyX8Tac1UWS7rlSomKFdSXHjyLbdqOc2aVp6uC9vtPjOxKNQ3ghtzz84QbW9hOHtapRz9G/cx80lxTuuSrI/8hNEF2R9yazQ9ga9d0pb11e3IrNwaUqiFPF2PT5G5blMAw+1ZBhlKcTlh3z8MNaK2PciZy1yjFmiplORmuwPgvFuW1RVSfjbcoaaT0QyHUAnfG84W6B8pPh4DdYQ7p2gN1L01e+cY1pP9uka1Qs0xO56olLUDycJTZuUFOMG0mNqh3aBniyFFTpB/a+MGKiNTFSzQ2TyErQLkmGTwkbLO4/yUN+zya8gUh7Zx2SYhLYOGfSLJLOM4EiT1rSWxOTr6qcyQW1PI9lGrpH8WqbD1UsljdYyIcALkTMNh/aQb/TYIM22mvbT6ehfM4mmtX80hCXLdZrtFLc/EXEXPYrkp9ECwQm5NAz0QTP7REKK63PZOxzuGfK1YvcrZ+RbReFAL+T6znbit3Azj6nt6FFBQ/XdnJBHbn8iMv3EsHhf1gWQSYX2ssZk28jiNzN2rwf0/UbWkSYyaWQv0M9tylqKdFeGLlQsXop3tVvKXmf2vmH6LDD7tGX7pMBNVMpBg/Y0T0RRWdeJAtbRfWT+zTWxytg/mVDedGTPt5LtYRT5nQBQVIiC320SqKLtCBcrYmbQmySZn5RH9US6z4VMyxRl38vkDjA3O8z19hgknnyvqhWviD5ZHT//+zh+YNKsn//5n+fP/tk/y5/+03/6M5//2te+Rt/3n/n8F7/4RV577TX+w3/4D7/r92rbls1m85kP4Mgzj7LQxlyCmPpVKd3iLC3ibSeyFa3SY8UM6CcZYTWVQsNakWhUBWqzh6s7oRb1ydgaBZvrSyuhUruebNcn0xiJ3z5gLxMOr+3RnWwQgtWiBa0MvtQQhGRSXPeYNtCszKj7G/BzsjAoMUYHCDnjWDBfO7JdIM48bi4J5y7JtbqVojlLm/a0sA0G1ZBSTJszRXOmR/O4n3pCIV0PYWgL/Ub30J14umXEp+As7YEsUE46fCGTB5Dv4yr5MwbRQvqCZC6TTmY/k81TPw9MljVF0WNMAKdFblIkQ1gyxWdbmfjYA68Y1QXbl921ksg6c5g6mfGngahjQgFKWnt5E8nvpKssr0EqEkKk+nTP9IMd5Z1kGrhZ2gCdyWbDNjElxouUrJ9pVN2m1NLB/JYWCAX5XYut/WcN9ZkACQY+N0roSL6S33nomozHgIouLG6WybnXdMKtrxvZVLRCz1K9H3/O+OVdD3db0JIvgVLS6SxyYdwnSUFsUqrqq4vQD/n4fq4T8F9fK1AKXRTEGAn7A3FS4M6q0dyrTDKQOy9FRyVBkHG9EThAet2IsuFUhwZ1sybe3BJv71C3G1nk84T8dQ7Ve5FoNi2qE2BFyI6NCoIfIQfm7oDeNkLDMSqFbg4G1QRjSGGHPpfzWDC1Em5qG4/uAu0ioSBzaSKoIDIFn6UU3zvH7P0dxSaIeTPBHvKtNDxMI5vckEhYUuhIZzTbKmwtkqsBZ61bjd9lmINsekLyisjzPQaHqoDIQXaQZZ5q2lGdH9DznlgEdC/m1NhpVMJyu0mkeeBoTz39PIzfmyDGdltHimvxgBS3IpNS/TB5kPWvuRCKjq1T0eUhvyNNOiSrZPppJN+I587uZRo7EgFVgmDs5bUPidATflsLT/cRW0fmH3XMPmwEPHLwFLcd5cuayUc7ylsnCNLUoOknim6maE7E+Ks6N+Ka7a5DO5lYdXOVCIkis7O1JGf3c5nSR62gTxMNrUbMqM81zb0Kt5RpfxywvekYzv2wPwiWunfS7c8zQt0QDofxvhgm5bEYN4Y/iOOHsacgJHmrtWNjMmZ2bNzEuhFpWozE0uKWFXF4PbIMihw/KwQXvzsIIn5aECclYVZSn1u6eSaKjEQ8U70kaXczmWCEAZ2dTN+jQT5l9ygfZdrtUqe9ksJAecj2gemzliI1JlSSbtqDnI96wOAnAp9pg4TxHSL5Vj5GX0S6zmUfIXuaYEXe6AvwFbilYP91B+YgU0q7FwBGsDLF7WeMocPDfkknNUPUMiUsbjV2pzBNUjp4+To3EVVDcSdNPlTEVg6fxyRHioQyEsvjlDTbe+zBj3uebi5+usnz5Cn7yMt+oZefI/EDUSTfFWOTp7iVSVG419GuGBG7pHWVtEfTPUyfB0ytUDp5i0LE1g7dhZF2qJ00e7O1lrVwL4Af5aRIKW8c2dVBpPXd8T1wiWgWlZD8JNNMJmX66hZzuSbfOMymQ212UuACqvXSxLzeYW634vfa7iQvD0RiOKC9kz86jij4wZ0v56fyUaandUN4eSV+y72QGtFKmnkg979Xg4D191Zi/EAmIv/iX/wLfvmXf5lf+qVf+h3/9vz5c/I8Z7Vafebz9+/f5/nz57/r9/s7f+fv8Lf+1t/6HZ+PhwOqmghCb73FnJ1AVVJ8c00MQa4n72F/ELlEWUDSxJrbPQN1a3T3924kGKmyoP3KUwmN+fbH488sQiSvcvTdTsZX5yVhIh0J0fmKhwCLIM5coHh5oH40ZfNa0vj7yPw396h9Tf/5B0eqEnKxVjcO5SLNmcVphclFz+xzqW5x0K6EuFJ9V4LMtk9JHUiYfhI42QfB780V138oYhpFeSk3a91DfR+asyj6aw9kETcJtCeabC866MN9ORlPfl1wwKYJ5DvZiNh9TjQ5WQR0WnAWYlrXe4P9tKB51IOC+W9lmBaImsPbHW//nz+G7YLtoaD97kIkJJVclN2JR3cmGVojGqFnkXSq1ctI9cLSnio++ZNzZh+CfregvBbTu22GUXMU7WSu5MLuIzrRJ2wdOFxYLv/IlOoqoPtIX8kFU9xGypvA5NOGmGuC0Sw+YNR8A/jllO60pDkzadMoG5FoFNs3Jim9OqTMFskH0C7gZ8OGQN5r3crX+FxJ1k0nBUc0Qq/RtcNGqB/PiXYh2RGpYFFdwBw69HqPenFDeHAGnKA+fC7FdpaTPbvjdNvI4vLkoVBvMkPz+or8pkG//4y42xPu1nBv+bteez/I4/u9TsB/fa1QZQkX99BtR9zXqM2BrHOyiYhRMlaylArbtCK7OF0Ss1MJeYPRHwIyupZiYg7W0F5Msfse/Z2P4WyFe+M+unOozuFPF6LXrgxxbjk8LscbGci5U/SOaDShECJWdRnZvpbRLhWzT8Ox625kE1xdSdLu9ZcLdk8UURWpcIH2BHZvOmbvWUyfWP5Jg+5Lzc0fX5JvI6ffcGzeEGzmQOW6/KpG94L2tPsBkZ0kGwfZfNRpXVAeJp9o7F7jZqngqSK7dxxf+L+9x9e+8zrTbxRUlzJtuf5JhVs5TsuWzXZCeF6SbSW9+fC6Q097jAavLM1pCkqc9YRtRvSK+qFD9ZrJpyJpAJlqmD5y82VFvwxka5k6vPxjCAkuCmHHzQP6rCX0mtV/EGN/cyabODeNzD6S4uTmK3Lzn36sRqa/7mXjZFpJUK5uxJjaLjSugpsv5vhSmifZLsO2Qh0KmcK/lmEawZUe7snEaPGBJ994Ji88rjJ0CyM4z1WZ6GkKohC2Qq4wdSTfR5qVpj7PKe4kpFJ3EchQqyl6pEdKpkl2fRAiVpGKjTLDXm5kUreYE8ucfjXF5BbT9cSEwPdX10JtMhqyBLNwHjWYU7VGn57A9nu6xL9vxw9rT6FKIV/RtMS0byDPiF1PSBs4ZQyqnqJ8olhFkWf7e0tCbumWObYw2NymxhP0Z1OiFYmPaTxUJf5kSndSjh7O8tbjKs3+gR6JWLNnnnzT4yeWYI6f70/Kceo5fSHekpsvFuwfWvKNwdaCmO/mlvpM083EnD77SDKF6hNNuKfxRSbesBzufc2Rr3tMV8jG1w6TT8X6HUW/jOSPtwSv6L81RfeKyQciAQ25FCghE9N6yKC579GNwu712ERZf17kS+ULQ8gj9aNA+dIweRa5/XJEnbaEfYauNdVzQfybN3cc9nPynUG3CnewmCDN09XjDdt9SbgpsAcpOF78TI6rIuHtA26TM/nA0s+laOnnQvirHwaijRweiVQTBOLT68jsf5tQrAVuEXKIO0t74XhxAaiAcip5TxS7p4psD5PnUrQ0tyX9QrF5mhFtNkrcDg8U+9cdi29r5h8I0MYXkhcnVNDI3ds5L796xuyTSLn2ZFtpLtlNQ9QynagfVrQLw+Rlj208/dsPpalZavQsR58uU7GnaR4KZGXy7iuBvOnaj4V4nfyFQDD6ZY7dO+ymgfWWcLfG3m3EE5ZUQf39BbnzhOcvMPfESxmrpCRoelkjNjsJQDUaigKVqe9prfi+T0Q++ugj/spf+Sv8s3/2zyjL8vf+gu/h+Jt/82+yXq/Hj48++gjgmJtgtOjfQTYVfS8dySGMrCgEnzebiMZTK+kwt2LyGzZ3hCBdCivhhDKaMmOFF51LHPZuHEn5lFCuPNLN6o54vZBpSUSf5vhSS4djeMUTqevVYwjNUl42r4MMIljZCGh/rMRFyy1SKlvLBmD4WttEsq2Xzt4rcgblj9MReeEYQ7v03ggOdKBBps7JkBKqvYSWDRW8dq+EgQXpnLhJZHVvSyjDsdOg4vHnekDDKj/QOUN3yD/zO6kk0xgkXvIhnpCQSzFAFMOWzyX1VfdCvQj22GnRfUzBRvKzQxprDni8YYPRz0gdRzGyfsacmt6PaAW/Z5t4fN1SGJVQMUQ+4ypB6A1TrGhS5yKFKkaljgWIC2gfxjAy0/gxBCjq1LWMERWkgPlMgJtWuNIQcy3UuCTVipkRg2qeyQJQFtA79O1OgAqJshKVGik6KgUdyv/8cCciP4h1Av7ra4UsqOb4e8YoPhnvj8GR6SYf80wSZoeNBMhmrpKgU4BQZfh5KdkgKXxsCJgihZMOGxW/yHHzXOQ6PiY536vdtfjZUXa67qIihWjKOSXnmnyNFLB6DAwcQ1Mh3fzkeftMjSGcIZc1KOTyM7Odw7Qp2DBNCwcUpZhUZU15NY1dNuVHxPXgXRuuq6gBE5lnLabw4ulYiAnWTwMUnt4bXGvIdgKmsAcglwlrcPI7uHkkFumCU0gYYpES2pP5c/i+IzzDHqeesZDJqGkTZj2Lv31wKI9LfphBPhKKSCjS9CWtu2MoWTiuAYLqJFG35HO6l8eG9DoEk4LODGNw6fihj/hVFUgZRpJBNEAJhqR5+d7xuNZquY5NI+tIKGzyiOSjt0DVQtHSjRuDUyVDR7xnMq33o5JAlQWqKo/rgdZHfHiMMimE4+d+iMcPc09BLvI1TPoYguSsReU5uiiOON/hmh0KkkTMguP0STx8fvzcGAqcNoIStCsQAtP6tEYMa8IwwdcJ4T2ciEPjQCaHtnbYbSv36e54LQeTVBIV4i0tpCC2TeqCWzUWIcFG3ETTz+x4XpLWFmmyiU/DO4130vwc9iQxKQaGYFFfSshprDyhStPVNMGIWRBYRJq4xpmT+7tRxKljOm9QLpEk0z02eGkuuEJkTGqfLkwFmfWEzpCtJQAWoL4f6J50vHX/iuK0lmvcyoSmn0e6hQQXm4OWqUivUJ0mDujgTqah0crPzzYG5RRkEay8DvJ6SsN2QJGP770eXhMh8o3rImm6Wh89swMEwPQRX0J7HvApwFl3AdM4uZa9lwYlsi6bLqD6gKsMrjLjniMqJXvX6pX3EWQykRQ/YZJLs1ynIM38FampEziDsvZ4DVj5GJDRQ5D4GGw4rAk+ENv2OFVU6nteL77vE5Gvfe1rvHz5kq9+9avj57z3/MIv/AJ//+//ff71v/7XdF3H3d3dZzoYL1684MGDB7/r9yyKgmJAjb56hECsG/TpCeF8Sdw3MpY6O5F/bzuoCtzplG6R0c80y9+4hctbQXPmGbySAxL3e5Ftvf2UUFmKF3ui1rjPP8beHlCXtykR2xFO5vSrkv0DQ3kdWH3rTkgj3hMfCqmgn2f0M8PmDQkSy7ZxxMTu31qi/ELGpb2clYLAVBRrkR1MXgh+d3/fitfj5ngCuxSwN/vUS6fsfqS4UZx8S+Ri/cwwfdZTXmtUsKNW0JdCh7F7yDeibywcTD8VOkVzLhuDbCfd1WDlc8NVZvey8d+8HfGnPeX7OSqK2Wr1+h1/9fP/hv9H/j/zwp1TPLNC43KMBtj8Wcb/7+bL5GvNpIP9F1tMHuCywBwU5bXQN7ZvB2LlUSYSa4Pq5Aadr2UxGsay/VSCgZpzKUrKa5BcjyjSMh843JOFTHcDx9yMhVZzKjf85l7ANIrlt+Fwodk+mWJreQ2y/e/0b+Qb6Uj4XGRXN1+US2n2iUhe6jMjYW0T0M5Q3EayJqAPHfryjnDvBPdgSvXRBrXejfrtsJyInnNfp4ldpPrgTqZ1dUuclDRvnkri7t0OjEatFpJXYjXqyQVooXrZlxvi80u0NSgl/HrdOLJ//3X0fEa8OIVphekdLna/43f8QR4/iHUC/htrRVXIetC0Mv04XRIWFeblnWzQVovxoc2bp2wfZ5z+1h5ztRWp0qxk/3RKcduTf3ygezynPrPM36+xm4biOy9FvlGVqKYje7ER/4jRrH/mFBXh/Bc+IeYZ+flMJFu9JyTyWszEaKxbj59puoWRbn+XwgYrGd9HJZvf9ZsKX2rOvu6ZfL2jn1oxhOaK6jKyfC/SrCS4z83kvr15XXxf02eBfOPRrWf6XFC83UwkBqtfONCd5ty9ndHPpYgZJJookVed/qZj98iyeUc04u0p9DPpdNq9Jn+e8Z8++EmytInf/7EDJ4sD6jun6KucbWuwa0Nxo5I8IkIQao79pMBXkeXbt+z2Jf26ABOJs4ApPMEG2lODmwTyBwcW04aTsmb9m48pLo0QeIKieCGY4Hwd2T9RdDmYb0/Im2NOQL6NqCgbxv2TQMgg2yqU13QrmSJnm1Ss5MdG0N1bFl9JmKNOG4nJ80ix9scGTDpC8t1U791i9yd0S5NkWbLpE0kXdOcaX8lENjtEptcNIc/pp/L6mzYyeV6jW8fh8QTdRYpf/xBOFhzeOcVmGpPL9Y0LIuMEkXxqJU8pRmnI7ffEzRZzc4uqKiFzzSqwJ+hNjR4kiUODznuok2qgKol36+/1Mv++HD/MPUVYTNEml1yVPJN1d7OH0xXamqNEs3eS/1NlZC/W0HbotkCnqalunXjBUqSAXs2leVFVhEzjVhNM3VO9dys/WCn8skJ3gdOtk3yuXNPPDdsnBfk+jPuEqIbsrleUFC5w8Ys3RKtpLya4qaG+sDTniuY0Ul3KfROkcTC59rRzobtle1BB8fJnwFcaswfTKoo72QcUm0h4pvG3Bvv1iUByLqRobybSBI2FTAoIie5XBPJZhysM/SDViYr80qCCor3nUBPHanVgrSObac5bb7zkfrXlG/96hT3A3RfT/fe/TIV8daaonkNpFPWDSGw0l8+XTL6Tc/ErPZs3LPWF4vM/+RF//Ox9/u/LX+L/dfI/8f9+/09I87SH7lGPMpHH/x9LvnH4QnO4sOyealBiRM/2UlSGTPxuy+9E2pWhPTEi9Sw9zUUkv1M8/I8t/dywe2Do54HspEG5GdkujmnrPhclx/wjjfIBV2j8XOS3y3f96CkDg595fCVUVFJzKVY53dmE3eMc20hoo6lFxhlWOSGXcwUFqu2oX5/TrAyL92rM/uhhHMIKxYd2POdViDIJ2ya58dmK8MZ9QQMbJdLAzpPdyZqiz07lC+tGakVriGWGqlvC4YCxVmSKv4/j+16I/Kk/9af49V//9c987i/8hb/AF7/4Rf7G3/gbPH36lCzL+Df/5t/wcz/3cwB885vf5MMPP+Rnf/Znf18/S5WlnPxD5Wc0Meij1Eop6J0UEb7EtNlIIhq/5tVwN6XBIDrtwmAOr+hpc4tazUeTTrQaFSPldSA7BPy0wACqDuPUwzaeaBT2oLEHKNce0wwhRnIyhFw6G8KwTiGIXoJw2pMsBSBKFSy0hhS8l2Q/3VQ26Coli99+PjsWESmQL6bwoJAP2QDSEYgOdJE6pimwKNsmX0f16pma/kg+FadSQNDO4CdR6IMmcmhy/t3dF3l5tSC71eRr6QD1c9IFDr0Wf4ibRLRVmJsMomhEUfLYkKhgemOlQ5s6tSRdfLYP2IORaVTyuIRCOhjdSsaz9qCwd6J/rc/ke9s64lC4KaPpTLeywSiuRO5hunBkwffJI5JIQt1iCCyciGzMHfW0+TomzGGaFPUB7TRZqWThaIN0wPJErsoTVSt1DOK0kjC7FB404KCj1SKN6B1xOSPmFlN7MYeRNrDWCI3NC/o3KoXp5WtQSgypQIylnP8hSle0bo/yxB8ykvOHuU4AKcixle5mkYP36EMnPPREHiIEYtOS3bVUE8GjqqaT8TOQbxx2J4a//KZB+UI8YErBYprQq0ZQqC5JQ5Wiuk4a296htEZ34g0JVTZeW2GRgBhOUtBtLb4Jmaykm0yUjqa+lE2yFAqK5jQX6WAhn2MzmKVlcqeHYLFCCvSoFCpotM9GP8EQDLp/UtIuNO0JI3XOdIqBZSBTGjVOWLWTKaVIpRTFzbHr60rZpPhdxk2YCvkGMFuRTw7eq2iVEK9qQ9HIenf7PBWGKqJaLUGptRm7tCooQlDcbSvuNhOyjcYeZPMgNJ9ITF1VKSgMxW3ykVXgMvkeuofyUrwuoWCcWqo0mfGlbEayRnTv0syR527qY0jiOH19BVIxBrUahGiFrO3WybQEpBNq65i6nTJ9NW1aSxqR6GV7eR9006M3NXYl0jJV5ET7SsDhKx3QOJGMkrFjaXQKKFOwXMgG4tCI/2OWSye0T/fCECXMzxhYzOQeWTdiYo/ybz/M44e6p2h6GWy4NCl9dS+hNSG3RxXFsN5WBaSk6agUZtceJVtD53iYrAzTDoVMUqscfASNeFZfoXVqJ8oGuw+jLLc5z2UKcvApg0z8p4C8d34gXkWyQ6C80phGjcGlIu8+5loNxmrdk67JIzEr28hjBkjOQOGLOqapqELlEYUiOI2vZO8jsitFV2RQG7K1GVUPwzWqZ1IQbDYVsZZG677LuTOVrFMG+vMedTASDzD4Ziu5RqsXqQGZtrD1hdxPTQvffO8hH92u+PDxKe+uz3FzP9K2VCPFRjfToNImQMk1PsQN9DMpqEIWIQw5Q4NPTCRS+Voasm5ixNuzkoaru5J1fJiEgqxvMUqYq+1FSip+E/Hz6R6yNJ0pnmcSGpkmnwBq36BXJT6XtXiYtKvOkd91uFkmIIykpDBNIKt1UnRotPNSLCSFR8hUmrAGdJ3M6sm7SiFxALJvRGT3U4NVoC47geVk2dGQ3nYof/Q96rI8+kTyjDi8CL/H8X0vRObzOV/5ylc+87npdMrZ2dn4+b/4F/8if/2v/3VOT09ZLBb85b/8l/nZn/3Z3z8JZ7WAhELVXdp05Zl0mL0Xk+l6h7+8RE+nFLMjPpMsFx1b6lgAo7bNTS2+NEJRSKNVX2XEeUH27A61r6UQ6QOrX7/Dzwua+wXFlSJLRYTyEXtbYw4ZIa/I1478ZUKjKUV3byrklIksIsL0juPYLRrF5nWRfExevDrKkwXFlbLxaE9TSnCtqB87qsd33H3rlPJSo7vjTSrkctPvZxE/9Zi9SYm+ItVo73nK54bldwI3X1bSOdgbdKspbtUo4RKpBRS3iuLasHvbQRag17TXFf/L9ZeZfGiZPJffI2SK6zciplacfT2yrjT6rMMtNLHVnP6ypbiLmM6ze2y4+8MdtILpm32gyfaR3WvH4sTWMHnZ4coSFRX9FPyQDVBF/InD3GSUKLJ9oLhq2d8XL8fkKtCsZNHwpYyLy0spEk/fd8mkK3PtkEnhmK8dm9cLuoUatfH7RxKwWNxJ5ojpIiffbhGzvSbb9GTP75hmdpTfDZ0qlTTb/TxPMhmLKXK6e1PpTHzrGXExo3kyH1F91ol06/D6UugbH2+l0wZiQC8tqnGo3qHW21EyEAGKQgxqMaJXS0bcp/fEy2vRe88nRP+9Yfa+X8cPdZ0AYt0Q2oMElC3m0HTE7V7Mp1rBpCI2Lf7FS4xzzK8WxPVGNl1zKTyLD25Q+5qw2aLu1uRaox7eI0xL6gcTkdfMNOWtp7yS7pHykdmvfnos9ILcQPxJJR3xhP/tVjm6CxQv91JQDoWmUhSFIeQyJbH7QPXJFres6JYZm9cs+8eMG/v2NAIKkjReUnxTIVKmBsNCiHyulLUnapFC+hLWn1eEIhAnHpwCp8g2luF2EqwAEHypEt5TfrZyQq1afVtADfXpIFOE6sMMFTIOn2uJXjF5Vy5mN4H2vkevOqpfq8jXgvRUO8XsI8vhoaJ5rSO70mQbNT7XkIG20B9ysucZ1Qsh0IBIPHwV6U49IPKvfCP5BbNnHiLcfkGCSkMemX0AJ9/q6OcGV2luP68JeSTbpebDKjJ/H+YfO3QrJCJfAhEmLxJxZ3I8z1yVKEPtUWrXTzTmfCoBjkFAI8O6rH2Q6WZT4KaabOsxnRQD+brj/Fc7+kVOuzToXQsvriimpYAPTufEIhMplntlaqvBn0xFntr2EtJXGEwK5+0fnRKtJnu+JkxL2rOC4rrF3OykMO96Qt1gZlP6R0vMrsN8cgw1i90PtxD5oa4Vd1tiF8Y0elUdoTcoJRLXoNEgcIGmxd1fyn6h8eimlzC4JO+Og6xFayRML4w5FX5iCYsc3XqZzp8dCxHTRfKNo/xkJ1Sz5GHj4k0A8uuafjajPVFMXqbr+BUpqW08+bpj1kl+TCgsobLcvV0mOAWyAe8i+U6Klu7K4iby8/MNLD7q2T/I2D0WCaXp4ghpKO5e8Tem12b7doAssvp2IFjFjckly+fZMSywOZNA4rPTHZt9SXx3NspQL2/mHGYZbQLtfOmdT/jw9oS2Xcj09ACHh/LaPf1fenyhufqKxZcSwlheyvNa/X8NUc345cc/SX0vUn5uR7MtiDtDfiXqlN0T0F6iAkC8Zu1KEYrI4Z40MHweCTZS3xP8cXEbmX8UErY3BTE/kfyP+pGnfGGYfSCo8W4pUrihGTGsE9khilfvvpA46xQ7kN9qqsvIvV/2xz1bptGNgpfXmNWUkJfHJkfv0bsGfXmHuXfC7uFqjJzI7hpMbcecM9P10oggwTZyjWmdeFCf3UrI8oOV5F4tp2Menu4jQUlIYxmh3OykuChzadD1PWx38nwmUoDp1TIVM5awmuJ0D9/9vS+7Hxi+9791/L2/9/fQWvNzP/dztG3Ln/kzf4Z/+A//4e//G613xLoXktBuL0acQoxlOMlWoP3sBkuVYq6J251s1DILVUE00smMIUoAWR+k66wh5GasTsNygpoUuKl08s2mRXkZm4bc4JalJFjuA/p2R5xVEGXT4cpF6pxJx0v7iLN6TEQ2dcAeetrTAjeRCjka6GZSPfsSps/BtD5106UTHzJFPwOz09ytp9hGJbylTAm2b0gnYvI80p4out6MHdaRF74WneD2NU20EbVLOQTJp2J3sHyvZ/1WRnMmOE/TQfWJle6OIuWYRNw0sn0TIOkjs4jTcPMludDDXU4svWgukU7t9jWNm4LaWVBSWGy+JDe8/NJg90cZR3OWJ/pW8q84kamIH0WyT5ST8KVgS5pTea3avRa8cCYyNpuM90TY3xfdaz9LRVcXqU8N7cKgXaS4S5SNIJOVfBfIdp52ZenmijAY0/ooqbeTErcscROL3Tv5+aeZaMV12iBuPH6W42c5u8e5JLw/m4KRYkYlH4k/nUmx3ctkRe9r6XBMSik+2g5/MgWdY7RMAVXTyeQueMis/Ny6PuqatRYdKMjjux/uROR7Ob5v6wRy3etcFti4P4gmPpeQJpQiTCuUNRjnZOPR9SlFOoPt4fiNtEbPZ/J1qcusdzXlpaJfFHSzXEhWk2y8MRTdHGLEnVSy6bw94CpLfWaZfdxhGoebFPRzS7dcYg/SAT0+ebm+XClFsp8WdMuM+kzOzWwjWmMhtYncUrnE+U+67aM/STp5Awp4SESvLmOajGpcFXE6jtMa6ZZGmnO55idXcrNuXuswtxnZ7kikkvVKc3ik0C1UL+W6jQrU1h4nQAV0K5E5wKBFlw9XQX1P9ORqJzTBeCJ+lWHXoiLYy4ziVpFvkt7cKLIDqKjoTqE/dazvR8yNxe41m8/Ja1l9KsWZdrJZuP6Jguo6YJtIeZOKv7sofH+vaE6hOc3I1/L1zWsdam9YfUcohUOTBqQAcZXi+ielA1tdin/NTYx0LTVUL6Vb3i8zglPYQJJXKPr7kq69/JY4PPtlid31FC8Pklb89OG4UZAX8uhBCKmTqYIQHlXr0Xdb4mJKP8sxqWNqb/bEwuLPZkSjhTDko2jLT2dEq7FWfoZdt6hdKr6n03Td2D8QfO9/6/h+rRWxPoCSiWn0QYz902pcZ/VumGxJ7hNNizUGUwh1SLkgGzEr9LFhHabIZajfy9QgDvkMr3gAhTIXKW4SjdMowiRDnS5BreR92fnkeZL3R7lU3PQedzKRgNylTRvWjGwXyDYdoTC4UrD+YfB39CK1JEJf6VFd0J4GfKnINwLLEBm0XFcgzcj96x5z0JRXapQOkkWKZcP2tbl0+XeAEqM2SIe9X8r9b/3L58QM3IkEIA5+D+8FUgHwzU/uE1qDziLdUkJS3cqDDXz6v5fRZ8iFKphtZaPfzxQ3f0jUJdP3Zd/TfDqFmcPeq/HNFO2St8PJtdtPJUNFd/J9hvwz08oEuV/ImqN76BNyf/YMUWs4oYzarSZakXoP8IF8nTC/nTRd+rmiOVG4MjuGEJYB5QRNbGsBUMh7D82JxcwMFW8SSsP0+dHPLNN0BYsJbi6gkvrM0q7uM/m0we46uqXkndmTBWGS0a1ybO3JLhuZ0A9TO+cx+xZ1aGG7l/NtkmPvUvbNpkL3gTibSBbR7iBN/jIXdUXwgqI3aU/Riv/a1C3Z9yj5/qEUIv/23/7bz/x/WZb8g3/wD/gH/+Af/Hd937jbEtpjJ8iWpYxInRPTTJdIH69+TUpN5W6AWFvRbk5yCY1yYhAiRpFdZGY0CQH4SS7jqkpS1SFt6J0UBNFm5Nc1etcSt1vUQLmYaFyVRmIOqqteNgsDGthDtu3QtzvCg5J2LpzvENWYCdIvIvlaUSjGxSTbJYydVdiDot1mo5k0TzrF/sSjnGFyKeDtqBRuIuPggWahonyuvi887jHgML282SEy/eYlh/sPCZNAOMhEZfJC9N2DmdxXiuY84E8cKgsoFYn7DPKAP3f4bUZ2a+izgCp9kozA/qmHKHhQX8gF+vTNS1ZlzTev3hR5xC51VZaSBh+yI1bTzERqMRQh2ifWeaXGhU38JCLLyu8i848c+wfSBWrO5ecO5J3qEtoTWRDmH0bpMG0VppNNojk49KGjOTmhmwleTztJXw25JkxyulVOtzCUWkGItIuUbeIt2daRbzra04J+ZqjPpfBcTgpJOd0cO5D9+QRfGDEzNk4K79mEUGWYmxYONeHBEl9oCBHdprwRkHG9tiK3aJpRhqiMlhFqjCLh+iHLLX634we1TgDyu+pCshB2ewkvnJTyOii54Wur0X4hr0XKE0Ap0cSHKF0fa0foRTQGfbdFNS3GiUldxUxMzJVkRQCYQ0G0mt3jnPLWM7na4ksJEpx/GNG1I9iSfiJI7fJGJc2wHCpJPFwhEgE/sXRzTbcUVKatRbI1yH2yfRylF4M3a8DQirSRccIqOUKK8tNULJ+I61Jw02JSHQqEfhaJtTy3kGsuHq65VEvQlvxGJ9OmYGmbe47qE0t5fXwedq/HItznkbBw6CwVIoGR+hcyiE+bca1wk4gvwki3odeYnaG8kcDBfB+pk5zD1IP0TJGdNfzEw2f86odP6K8KvvqH38XqwK9/+kUhgu0j9X1FfT9IhtI2UN4IKr267GlPLK40HB5KdkH/UppPFw/WXF3NyQ4WYxUqylqtohiB+4nFv1PTrnOqS0HuDuZW2QDK7+xKyRyJaQIerKI5E8nL6te9kJgqTX7Tw7sfwdtP6U6k0TVOQIJsZkNmkuxCmg5ZI82FsN6gylyK4uE+drdBVyXNwxnKR7KdhBbGzNCeV7hKM98uUXWL3hyI+4NovyeVNDWKAvb//Zfkf8/xg1orQt3CJE8SNMlZipMCdSMFhdZHchVNS9juUM6hi4JwInLCmEA0MTOoBlFdpNBC5dJ7XRgpQvqkdlAJSOAi2YuN+ALOJ2ImtkLTi0rQzcQ4yrFMl65153FTSz81CQEsTYbSKJSzhJRdM+Dxo5ECvthIYGhfHUEuYeXoCkN9Z8ZNeZRbiGC1Kzh/84br2xnhthL1xyGissBi2nD1cEq2E5mmq2SqGLIoMIm5I9aGh1/T1Gea9Z/osTZg0zrgnCHOnIQXPivRJhLziLMRNwMz78mLnuJiR91muBcTsrWoGprzSL/y/F9+5teofcYvfvyTmBaqF5rDFB6cbPn4ssLURvC9qXkScmjPPdUzg93L6zasl6GAfhJQvca0UuxEoyhv5drVXuTdUghFwuQI9Mh3MUktA7UxtCuRd/dTRhgGhYe9Jk/+Yd0HgtYELROTqBQ+r8h2gepFg5tl8j6WVqhXpZH8OYeAO04VxY0hu+yIdiawkmUpdL65Idv0mKutFMavwigO7agesnkuWUEvr6HryW4qKAvCQgqRsD+gZhNiWaCbTtDfXYPCQqYEc920hLrB+Ybv5fgDmYh8vw41mWBevy/d3EZSqQFi2xJ7h55NZbR6siIuZoR5OTKR4xuPRSZxaOVFB9GE7w5SrCglmzZTSGryusNcb4U6kFuKdKMfaESmC9hdj6p7YpVJ0qR9gE86cNsGqZxroWOoTnjx89sGv8jZPSrYPZzhi9m4sTAbKW7294XRr+4U0UTak4F0BJu3NMpBdSXTDjVxhMIQCsX+gSxW0/ctKsD6TUO3ADcTY7bujiFpg/QJJEgw20FzjiweyAV0+0cfoAKc/opoyF0FNz8dZMS71xTXsPxuIF8ruqVoWYOB+pEnZhB6jRp+ZhaYzhtu/7ARCQiAjvTTgN5YipeWj8w5H5ceXUack6yAbqFo7kWqZzD/QLq0Pk868J2gMZsTTXOuaE9kEmIPEoa2+m7P9oll947n8NASsoxuMXR7ZJEtruQ1a1dHOVqWjILNqaabW3YPLLPnjvJ5OE436ohtAsV1Dxr6eU59JmPbqASjOhDLQqZozjMO9zOKtSS2rjrpFDX3J2O2RHnVYK62ZJcRqzVhkon57ckFqhMz5BAypltHyHOa+xXZzlFsDsTFlFBlo/5bPbsU8lueoSYTCeTa13Lt/D4DiH7kjrYTiMFva0yo7Z4Y49gtfvWI+wMoDQ/vif7beWKZ4ae56MBfSaUFUHXP9NM+NSQUxU2fZBeRAOR7uVa6pyd00ySh2Pfo7QEVpqio0J00KgD6udBQ5t/ekLtA1At8qdk/FKlIeROk0J4CSCc824tc6PbzOcpLuviAuu1n8qfPUy7IIdItZU24+ilZIzKZtIsHLZPu6eFhTLp06fZd/aRMNnb/8YJq/OWl67d+U5CXZm/wZWT7NOUChKM2vp9GTKew383pFxE38+ze9Oxel+6q7hSTX65wJbhZJE4dZuLIvjVBt+lzWjY4/RQOD7UYZvWxaJp+YNDfmfFe9zkWaVr7teXrFNOO7rGnfgKx8pTv51z8ZymU6lMz0vaas4zDuWb/RDKLqvfykT64/cULJi00y0g/U7QrmD7T4+uGgvzXJ8w2sPigG3OG8q28sZu3JhIi+aLDblrMizv8Vx5Rn2rR6ztwZ+Mri59k2AcXo9RCdx6GCUZucFMricnbnn5ZCIxjXmBUMqnfrimGCWkUf1hsW6pfaVBlQTiZC5nn0FA1vVBygDApJfTMmiTvMNLtXM7h5vd5/f2IHCqz6NMTYl3LRs0LgSysN8SuQxmDXi7wj8+l+bDdEXci8QxPzyFE7FrQ/m5VwkpgOPa6RtUdtnNjFzpOCvw0x65r8fF1U2l85BmqcxQf3or0NjNkz9cQI92TU0BhDh3T91pm3w64VUX7dEU/lal+tg9oHzFNmooWWnInclkPQpYm/z1kW4fPM6iErhVsZPFrEuYbjUi0zGXk7osiez79TxnlFdT7CyZJTXD7Vcdbb74g+0+PaX7tAnshTZH2JI4+ifKlxjaw+UKELLB+S0L+indL+nmgmXtUq9GdotzJteSqiJ8HFg+2bK6mmLWF5wVdLHCdxA7kQaSY27cdutPoVvO8nuOiEXJVJqQsc2f59O4+WStSEDdRdMvI+ose3WnsTkshkSmW70oz4vKrUizoXqGHoEOQhs1SvDmbtyV/LF+nx/SiCInLwNWJ5KJUz+V3zVKRM5jg7QGK64J8E1m+39DNM5rzbNw37R+n33Eb6acaN6nG+027kP3V9FknxSlQXgdOvxEwu46YWaqPpVug2x7dyPc1tWz41N0WpRTt5+7LfePTNVycoF67h9fiLTQXp2JbGJpsTfraUoAsKvmlldFQlqhpRVjNUIcWXbeo9YbQRvgeahH9ez/kf9xDZRlhmljGg47TBwlpM1o8H1km5uBJgZ/kopc1SjwfRSadY//ZDYhK5uChqyyG4SAbE+cFq9r06FbY/+M4vHPoQ5MkESLT8knCJXSUgN1LN3049L5BpdCbbqmo7x1TSKVoiSM2c0Dx9pMjEq6fRQn1i0ka0YsWFcTYFYpjeFe3EMRuKOKInx2PKBOFoTOp+5hwgEkvWSL0KQXVdUiysQiLHr3qcEtHyEiyEsg2oqks7pKxzStiSDpvJf+JUTE5O5CfpTPVRLJZB1ouVLO2sJa8lAH/50sppKIVaZvPE+vfyXh4CDIaEJqDWVd+l4QVDoOELJlpy6Nxz6ZOyRhI+Aqu0+cqBTRJoFAopcgcMyGi0FJUwpkO3egBHSwdlIgrElYxH9CekN/15GuHTxhgwf5p2bx1wujWnYzlQyGEJdX1ROeIXjpr2oWUvqrlvMzkOQ5hRa9eN0PHDiD2/R8IlvOHeoQoRchg4EUmDdG58fVVvWMILQRE3tl3op0tJdgsZkZkFUNQkxW8t7xXKYiul0mn7ryYWbUCozC1nH+uShIaf3x6A956kP+B+I365CHDJbRnkPMHBKQgiE/xMwzQi2hEozyALvJ9oNj68ecNjx3+HhIKu1um6yCA9gLA0L1cI24u1zxBpBtRQ3klZDrlxG/hJpH2LNDPktnSpuurYkTcEtI6k9Yz3YLuNHHqYdXhpiLVyDeyIQ9ZROWBLJMQsmyXTOJeNir9ItKeedm0FHItByuZK9VlYPVuR3kTBBKyyWi3BTEPMHXMTg5EKzJLwY+L3NOVMtWR9TOgggAwhmDG6kWkvEqBsamz6XNGT0xUInWrrmV6OkyndCdNqG4uQYaDhCo2zYhr1U5eT1cafGGSJNcSFpVMPQa0d0o+DpmWLCMfBXRB8gMVYqpVRuAtcX8gOi/XeQzE3okHan8QylaaAqrNTjyWSgmmPNMiX84zuYa6/hjg92N4KKNFYpJlYy7LuC6ESGhaySizWkAB+bGDF5USv1maOg+o9X5qZacVwohOVmlKEo0eSZyq9yKXsXo0uCsvHg/aTgrIFJiMUtIIeXYp0qqZGa9r00VMHci2vfiNIGG4VYoZgAGXr/uEw073K7TsF/JtTJJx+bufBBZn+9R0C0yeB4obeUx1UvNnH3wdu1PMPw7y/dWwzsjPMm1SNDjZT/SLOIIgdKdQvRQD+VpL1lmb9hc2YI1H2TiSL+1BUdwpsr2sb76ImFUn3jYF+75g3+dpbYuEifgwims9qjfcVNaO/KwhTP2I4HUTWXdMJ/ukUIZ0H4+fkbm6KqGPhyBokPWylalnzAJh6eiXPk1RRN46BEqqIO9DsU5BsofkUU2vmXjh4ggMCdkxS26IBvCFGqdsug/Yg5OCtxdLgW46dCPNskHpM2Km033OVSLZI0ZibulXJX5i095BApAHo/uYol7kojpqUodLKZQ1xMxK4z0BdEhY8O/l+JGeiMRphX15S9zv8bs9qihkYXjrCVFr9LMrYpBk48FR6KeZSGOe3aai5ViL7d5Z4soTFt/do3eyOY6FoNRCaTFVSXdvTj+3lM8OQMQti5HfrwuL6nPZBFrF/nElWsGNxzYeU0vh4ieW7RP5uunzgmDTJjVNC7qlyLGGTnx5E0ZtdX2mac7SE9aMfPr2VDwgp79lhIxViPnqmO4NbhrQTmFutRgay0h9L6H6btImqNfUF5H908DDX5DO6cufsXQLSTCdfKKxrYKQphAfCm4ze3ygaTWb121i+oNDHrd4F9qVpvlyR5hHukJjLzP6TzL4/B6tI9mdoT9z/NTjT/kv7iluX4r2fCPSjJBHbr/qUbUmu9VsP+dofqalP2Sog6H4jhhon//xnGhFUnL69cjkZc/6zZx+pvj4/5STbxX3/72MMcQTo4gqMvk0Jp5/2ux0MhVxFazfkG7xkBeT7SLNSlGfVTJtaWD/MNFJ1hmmcRSXLWhFvjNUVz268ejO0TyY8OKPZqy+GTj9T8/Z/uQ9tq/lnHxjj2oi9UWGbSLFdYvuA/7kaB4zN3spgpU6Sq8AQsDcbNBbS/6BJxY57t4Cc+ixLxNG1jmCcyhriYsZynnMy1vCZkusa8LnnsKLH9il+gd+xNUcnt1Kk6IsGdPp57Px77GTzqdeLeXzfU/sevTL29F8qtoOvVGE5QT3YAlw1OT7IM2JRU670ERdoLucfm7QfWT+rTui1fhpLlPE3rB/MsHcK8nXPdleYRubguqgWYlUp5+uxgLFdILeHDKGJleeYBSHC5lE2FaNN67Dw0S9+rrCNlDfT4VvD90Sms7QzaXINw0QFfW9ON7A7UFht6npYRg9ayrKDXv/CIFEZBH9qGY6aTmdHrirS25eLMguM4obxeFRwM8Cdm3INorzrzv2Dwy3X46C5tURcyuEvJCM5tdnYJYdFydbmi6j7S3NeRxDy6IBddZiTEDpiP2VGeWNrHnSoBHvWbfI2D+G7sxL0+BgmHxiEpWmwK8iH/5fI/ZOGhbduYcAs/fFI7f8lkizdu8IecfUgjvVSYpb3niKO8fd2zmbNzTVSyEWmkQqq+8XKTFbYdojPQgFd2+V2KYgf20BCibXXiZlSrw6IVc0K027NJh72TG7qcvE3HyRY+pA+fyA3tUipTqfpMwqjZ9m2JOV+NVWlWi+D4LcVPOM7q0L8PEzMlCKHIwRrLTW0lipW8KhFslF78BP+HE9VFHgP/5UEKWP7sPthrjewptPUUZhNuIXMzd74qQgrh6ngiGSPb+TtaTIoXfkn24kZygRiWKRi59vOeHw+hSfa3wG5cxia49PG8Js09M+nXH3luXsN1qqbzyn+cJD+oU5UrVOM/JtSb6c4KbHbdyYI+OjyHkbT7ZuiXpCszLcfUEeN3kmj/WFoZtq+rmoLYKFzTtg94rqhciFbBswy56fvv8Jv/TohH5q6GeMeUPNJzP+n+F/InMkDLhskIdcsmCj5IzkCtUpUHJPd4vkEdMRpSPF+yXVVWT/SNEtIjxqUDcF3b87J36p4/WfeMb7H1ygt1YK/ypSPNqzzHumRcddWdF1hqvDhM7Zcd/ArCduC9lbPeyZnR14vFzTestHlyegIv08ErMAJvLsT6fCojWoieOnvvQJH9ydcHc1Q28tuhG1hWng7BelyPS57AuyOnL3tsal10F3AgbQySsiUCLYvCHAnEMAuzc0JzPK28D8o1ZQ7IVm9Y0UDHmqR8w3IOv+Sy9FpIuCei4N9b2MdjFh9Z2O4qqmeTyVdaDQEka97sRbUmW4pydyHnznRoritgNjME0uuSRTTdl5SDJStCaWWcJ8awEy7PewXMikND3G1OIhiesNnJ+KZv7u977ufqQLEeU9BCWbizyXqi51PVWM8gI5J3IU7z+zYXjVtJvYpke0HsjkpLSE3MjGQJGqw9TVz/RIeyDEsVMdjcZXVrqRXirgIXxG9V66JkEIM0HFkZqlnWDdtEtIyEAypKefnZCyYv6WnyuG5zRi3UdsI+aobi434VF2lYn/wc8C6s7IZsVCMFHwuxqKhOTNotxnhIiRvt5KERKWPe72mLoqqaBSKU+rjru8lMLIygZ+6PKaVsaQYZ+BFW8I0WJaRdNa2UgEICi2XSkGtVaNWR/2kLoPhSc6Nc7xvNeSM5KJ38UXovVUTmRnrhSTqLxhx26G9tIhGjYErxr3BUlKImNIh0mlx/l8MO+nbmZgDJnTvUr6WTGzqdajXBy71mgl51pIOS11gLqRqddEj5hleQ6RV0Puhvcea8BLN2MIs1LWShKwkuck57MY20csdd8f/SFaEcsMWiVTgDQ5/NGejX4PR4wpzDTlAwyv128LZlJpihoTglAAFgHlHMpIF3SchkBCMwoumYCQdIYaMZ1bYwc7t2OXWZLSQ+psaXIX0ibTHIEGqQMvm4/jjchnilCpsYEx/qxhwpm6bVorYoh0C2lsSMhZhEx6MN4rukUg5pHyuWyS+4V04vwkoDsz2jLG8D8LvgrYnUAh+qUUIqEz7FXOsmrovUE1EpAqHViZiIZcuqCuFGhEnCc85/5I91M9kEEsPXnumGQ9hzYnBIU/7/ApgyRkkbDLiJXD5n58jm6apg/bwWQrPxfFiPAcQxubhBY3cTTzCx44Bcs6+f/hddWNSC18ngyl4/sr79Gr8lZfpPctdZu1SzIVLWs1yL/7XChkthH6nm1iKkRUmsCK1nygcKkYpRs/3hPUeP/COZmM9hHTSk5MNEesZ6gylBXiUzQaX5jR6DyuFaQ1rxcdqXKyjiil5HpQCq9+jBeLVyEezh/3CVYmzLEqhotnnJYPR7TH5DrlPIRe1v1hm/XbXjYV5H4v/5OM7EDMj8Q5tALvCbnGlZpg5B5k6yAhuk8m9BOdPIoR0/OZcyJkmqjsiJUecNu6Fwnn/mFGP5PrWvdD11vO3/qeoq8V2U4RY8/Len58ru44wbW1ot0U6FLM2r6U+3HUSakR5XcPpHuwkQYEAK2W6y9NPFwJ3TLiq0Dc5NidHjOMKps2NBGRjCfZeIgKF9LrruBuPSV0Bm3kh0cn/xYNEBTea7SKWB2kT2uiTEmtTGCy0hGjwreG2Gk+2izZ7UvxrbQpuiATQ/xw/WuXAhMnsg4Ek6Y9Tnxrw8+PSTlha4T6OUuT1eTjw6dgyYk+osTTnkR8aGmdm0iy+7gHVcc/3dSgXUkoXomGiIgvqfXjeTZmiSgl5nNAH3ohe4Jc90EsBOOaQFoOrRGKWyJ6kiaJcbifZuKv/F6PH+lCJG52sDqD2QRlDdysxYj67Fr+v8hRIRB2e9HJtQ5ztZHu52J2nIYohWk91Qu506u2B6upH0yEYnHdEI2mvzdPOmxHvyogRKFruYjuPPWDivrUYHoJLZx+0og+PyIFUNqsYDXTT8BXhv2DDNNFijs/pi0PvG6XEnYH5rQkAKff3UZUpzj9hifbOrJdT32/ZPfQUD8Q49Tym7Jo7Z6Igfzk0Zp1c0L2Qk4Qnwum1/caf2XJ9pH8OiZyhGb9DinVPBJmjqePbvh4e4/+haZbihZS94pQRT53dskvXc2YvlDcrAztPY/Z6zHQsFhH5t+yHB4F8jd2tEVObBT6ZT5ucnSj+daH9yk/zJl9HKkvEv7zhWg6N+cGTKQ78RQvLNm7lt07vaQ1Tyz9PLJ8fc16PSFc5ay/oNi8ZUZyT3Upv/f+QUpUDUnKkYmR3bQiYRuSVctbCIml7nNJce5TkOLsQ5h/6Ai5vEezZ1709PcsWW3IyyMCr5/bUSur+8j9X2qwdy0UOeVHa4oXlu5sQshkCqaS+dS4IAFlAFrTn06EttY6kWH4Rs5ja0QZlhm68wnm4Mjeey6+qOUEfXWLX28kFdha/LxElR5jNFQF2vlxkflxPdRWqHq/6+KY+OmqyFHzGWFaESYZtuulVh38I00L8yn+REIn7abBLUoZg7dOMgjWW+y8xHQWnTCPpglEq9i9NRsX//Kqp3ixp34yE7NhQqKa1orpuBAD4xBCpnwylk40+weGbgXdUnIC7D6ZVnsgRmwLZZpwEuH2KxE/DUw+FEJYc+ZkI2Aj9x/eMS9aXnz3qSAsT8DPPJPzA007h42STUIR6VYif6ruHXDrOedfd1z+lMXNofpGiYrwwTs5am+Zvy87DxWhvFb4raF+u6NbRa5sTn/iuLi/5vbr58zfg/1TmeJma00oIn0lBJ19l1PXOd5p/uxXvs4qO/BL16/znU8vWPxyRXNu6E49aiaUK/vlDW2TU/xn8Zj08wQCuZUARRVEu657RX43NHLy0chfXtuRNiZGftmgZbeG6UeS83G4L29itpfJhSszyT/KRNahYqS+EANpcSud0uo60JyIfGbx3RrlA+1FSX0qmOLiWlOuA+VVj/KR3ZNC4BozmL4MzL9+iTuf4ycWVxmRrybZjVsU5I2D3QGzFwmnfv+ZFMDLBerQoJqW9rVTupVl+pEV/GcXMIcedbv57OUQIuo6fa6QBh9Vic4l6C/EDq6+r5fn/zCHKnL06gzqhvDspawLZTF2ht2yQjdOfF1Nmz46UIrujQuZaLzYQNcTNlu0PpXsqFcO3faUL9vjWpQywuzdgZgZ6qdzkT5eRyEupiMquU9l+8jkwz3rL825+iklUAkVWXwnrRmpCalDpDvNaOd63BxPP5Jz1LaR3SPN9vOe7NYkKbUU4VKERN74P3zIi+2cm7sJcW/51tefMN+A3UcmLwYqn8LdKYLJqF/rUbkndjI2VXmAbUZ+/UrjpvLoiSPLHe1Nxeo3rJi4V5H2NNLciyw+d8t2V3HyryvcBA4PQGeeQy9ri61lA0+A9sWEpgjsqpSH4RWT3yzRPexfE1mlvpEJoptG7I2l3c/4jtOjSV6piLcBkz763hB6ec7ZVYb/1XMmw1Q4rce711KxZKRQq15Gdo8Vzb1AnPfy+z/LMa2S8MiFoTkb5Clw8m1HMIqXf0SP5NKoJGx5/aahPYvYrcLWEkBrekEg9xONKxWHBzJtmn6qsY3ECOS7QL6DZmXY3zdJGuqp3r/Dn0zYvTZh8mmDvtuT17LH9afT0bRuNw3m+TWYc1AFukn0zRRcCMfaJS5mMK0I3/2Q0PXoqkSfnxLKOZzOUPMKvd6jmu+NavEjXYio6WQMeyOEZMTN4WQh3YleshVi18OhRmeWQSOuNjuRW8wn4ONnNmJ61xC1ItuLWSMajXYBGkcsDMFqXKUTyvVIsVAhjgFVuo/ETGgXbmIwTRBjauOgc7SPKxmJTkWT7DOb+PNHQ5Nt0mZiF0eiBUrRG8h3YgKVPJGM/UORe2QHCNdgdwrbyI0q20uwzW2xxHhoTqOQeRqkI4HkD0jgGWNYYsilCPEzjy4826YAA/0ieUlaeQwRfuPFA+g0m6eGbhmJhceVHtdpuks5zdxEfi/vRcZkd4wkmWytsFrhD7Ip6GfilREvhzym+jATr0gur5PyoFpNTN6WbK9Yv78CLRunfiK/vz1YbC3J9v1MjSn0+VpMZsFIlzJksH+iKG4V0+fyvmqvaOcq+V8Yp1O2Gbo+KTcgbQRN70f6yaD7jkp8SfWpwbSR+c5Jhy1hoxmnXYp+qtFOg/aYg4Tn6d6B0ei9dEDFp2DEGJaCsoaAxPEcSwnAeiuGVHN6IprOrsfe7NPPVNK5a9pjF//H9ShyKSRe/X+tZSRtDe7+SqRVu1ZkBa0TDXjio6PEsxMnBcFqjBNvmb2t5TwoxKOm9hbd9FRXR76pCpGgUvCoh+wg1Kn+pKKbSbqxPa/+/+T9WaytW5qeCT2j+5vZrn7t7jRx4pyIjCZ7Z1baaRemDHIZgUVJCFwSQsUdElyAbMm+872FJTAXNjKFDUXJINpCoKSsypKMnU5HdpGREZFxIk5/dr/26mb7d6Ph4htzrpM2qowCZ9rn1C9tRZy9VzvnP8b/je973+fFdBG36ukPS9oDI53P9o6GNYx0zgCQaV1xK3sQikzQgsMfdqwfVWweyr1tt4nyShNXQsxRUZDbfiq+j5dPD3mZYBbzXjKVQ8p2UaNjDhxUkFSCNzcYoFlWWC2SxfZewJ00dNuxHO4bgwoi/fK1HIDsSoAa9LvGj6zbq+sJyiTaY40fyWTGq0ioI5PDLX1veXU1JW4tRMX/++lbAKw/nWHX0jEcDiInr91y3RzhVprmxYRkEsuv+P1kFGDngRMEePbHlDsdu8islJFiRUXZm5LJ4a4j+T3aE4NtJJdE+zsIQHAZHTqPbB4YtJdGkN2INMPXin5qJChNwTCX4n57avfJ9SYfhIap7JU2hxruOp39owPUEDFtEFQ5UFwLgCGUIqXSs8mesqSPD3PXPvsQtMa0nmIhUzt2oWgx3aGodZ74KSUhZUrJBGDnl4zyDJSx8Bf0ikkwycHJdHQX0NYPKMCf1Fit0CvuXpMcGKkHeb0BcBY9m0pTIwNDCEka6FqoRzuU/668i+MyT7vyPm+gOyognZO03BP9NHsEJgWmS4yfaUHBGlFDiDcjP0+0ELS6A0HD2haqTAsdRnJQtjlsMJYQsifMdDLleLmaslzVsHDoKJOU5ixhOkV8dacK2HlAQsg3q41oG5lMW9Y6MQwlppEJY33UMK56ri6nqJGn/bMNwWuS16inFW6lub0ZkwZNc3rnoUSBM4FUBXw0pKmHCHpt9yoVYyJkr5fpRDq+m37qISP9zwfcrKcopNHRrkpMGajHPZtXI+LKELNndDcB3WWMdAdSDyQF6b7IGWNX0c8T/QxQkj/EymXwh0jTb79s92oLQfSyl+XZRu0lr5JBZMVPs8jKGyNTFhpRaeg8HbFb2AU8a08OwM1NcZ9ynplHJdi+fbgPrg0ji/6M3FsNAR3jnubG0VyaWaueWFmUMyhnZToS4h1RMt/HajLGhChrBDnMEKPAGMpiDzv6w67P9UEkziak6w1pvSFuNpjZDDUe0d+fEY2muNjk4JVeMHspQSEFSHh5gSoK1KSWv98dRFISfVtM2OlIDh7OoJoBvdgQpzWMCoaxhgTVq2wGc2ZfZLhVQPuYud2Gzbl0KupLRdV61LZjfe+A/uCuO9shSNlykehzB6O6lo5qsbx7M6O1hEIxeSaj/OZIMG/bB5HxU838wyBhRflKWkzjdgPFrWV7L9HfHyhvCoptwi4NYRTp7w8MayvJ4X4nCZGDRnkoi261qUg60R2KVtutc8hfguG9GcYlll/1UAdMGTiabwhRsX1xAinnBpSR4A3lUlHeJPwkHzIuZFNTCbpD6I6kABBKmCzq4+8H2rlme+9Odma3Oh8EwKxg/ESxfk3TvtkzmjdYE9neHqCiYvo4iqnv9Rbf1VSXUL2S71uuIttTTfeVhvBpRX2psiY7MUxzwOFVyiQtOXCGQu8XuIAFMrPdagm89GIg3+Eat/cUdqOYPBVDOZPq7n3KB5H2SO8LnOIKMZMCO/yuKhzq/IQwq+jnhcAPusAwE9JJ+em1fL1xjWo6Ce2bjuFginp+IVjrT5+hpxPS0Rw6WRupuLsXv4hXrCvi1eVegqIP5oLm3GxQdc324QjbRKohoDqPboTCF+ust9GaWFmi1VmuKVAE9eIVAP5rr4vsZeXQ65Zy3eLPZoTaiixTiwF6F2jlR4ZubmgPxXyatJMAzSc3pKOS9lhTv4q4rci3olX0M2k+jF55TBMxjWf1Zp2xjSKvtO9+ijl/h/B2S/OkprpUTB7L/nH9DXnwHb4X2Z5pNg811SuDW0sOxzCF8qihbxz2WSlSg9ndGP/f+erv8bQ54Fv/+Gskm1h8PXD06JY35jd8Lz5gWBfYK5n+teee8fmGr5+94Lc+eAN1VaC3es/Yt1sF24pQJ5pHORTVJMIIitHAV08u+O6zB5gn1T5McXh5iGng0Q89/TixfqSo7635d9/8Lf4Xz/4c+kYzfd/QniT+1J/7Hu/enPHiYzHU7UEcg0xDkiajvKUBgZMOrz/y4BWzhSVk86qfB+yspy0dem24908lAA6gnxi6uWKYRvRxx7ZwEBS6k2aL20bWDwzNvUR0ERUU29yYWb8mh8f6lXw9PSSaE0NSMH064GKiWGn6qeHmnZKDD3qKq4Z4Uoi07/ElaVQRHh0IfMUZISYaTXg4x7Qee7GUA0ZpMetOcq866eDr3gmopXACYsjp70RknRhDGBciF/RB9pLtllR+caVZyQd5HWKU5PpRRaqcZIKlRH+QGz4vEVnKMAgMx1n0ts/6oyRNpvmYMBGKme6C0M4yBMCPDcqn/VQLIBblPh9sF9y5OTc0RyNGlx67jaikc3Cpw24jx9/3EsZZiZxrN6WIVkEpdKfuOOEeC1p+9LQhOk339gjTJeqXimEm9zlR9hd3mSiWituXU8zCUl0r/ESmofGNhhAV0VWYRih3O/n00MtepopIUXm+dHjNi2LKK8DfFuhO8Y2zl0xcxz/54IjpGwt+5xf+Q/6P62P+9y9+kd9/8hbVJURXEsrE5vWAaTTFrTybxrbHTAeCS8yONjStI944yFt0UXqcCSyOKuxGY1dq32DbocEP7q34ybNnvHd7ys1qhLm2hOPE6dma/t0Z8/cyhS8fRuxWfB3bc0V/L0+nTOJnX3/C1he8d/EacRw4erDg9v0jJp9qIRX2CV9KgOP6Z1rMi5LpR0I6LFaB1SOHr4T0KfAc6J2CqSDZhVqaQ1Xnck8UK5mMmx6qm3zm69Ke2Go2PWrT4q6LfbClP6i4+EaJaSUYe5gYQinNNRUT1YtBZORtR5yO6E8riZ9YbhjuzYlOY1o5SOvOozYtahfOq4HD+Z180QfU1a38f6UI947xzsL7f/i6U+lzyO1cLpfM53P+3PF/Hxs1KNGnxdfu4ecldt2LVjsjCcPFJeb8lHg8Qy82wv++XaDGI+JbD+/CvjohV6jlRjaTyYg4KWnPRhSLHnu53nc//LwWnXDeVJpjS7GKuE1gGItPYPzRilg7ll8SXONuvKayDjAaudEkRTXQzwz9VFMu5JAxjDMP3KmcjK72CMndYWFnmuxnQrEZv4x0c72n1CS105pmKkRNRl3KQzgcemg1k49t/nihbYUqMZz3sm8+L/YmTT+SrmHMD3B90hEHTfmxaMaiTfSnHjfvSJ+OMY1oRlUUA1x3HFFnHWHl0FuNW+m9F8QtYfY40E80w0hyPGKZCVqdHKiaU8XmjUD91FDeJhZfFbJFcWXkwb/c6VChOY9C+3jPYjeygIeRojvaUbTyBuUlXbabaW6/6amfW+bvR6FUVIrNa3LYOvghkLKhfSO0neLWo4fI+lElev8CRq8Ckx9ckeqCVNgcUClZIbZJzD5o6I8KtieW2acd7qYV6IHedXDSPsxQhYSfOJJWFJdbkf+0nRQg02ofhhWdTOTs02uRT8zHgqbetvtuRbq+EcJW7oDutdDAEDp+9eJ/xWKxYDab/TGs4j+ea79XHP176FWLPjyUrk/2jNEPoJSkVGsNRqFvN7BYy2S1LiRjqPeYp5dQV8TZSEhaVmOvZE/YfvkQFRLFjQScqpCEtGU0ZiUH+TAu8WNLe+IobzxuOXD50yOZZjRyfx//zjVxVDDMCsmqGQL9UUUoNP1MtOChZI8CR0k3tDmRA7ltU87zQaRRuROHhn4q/21amYAOJ576E0exlMN/qBJ+HtGtorjV9F/b8otvfMJvfvIGfuM4urcAYL2t8L0htpbp6ZqDuuXJD88wW02YyOeXV5rmXsTd26J/MKG8vpuSDEcBuzCMn0ojoz8K4CLKJmzpiVETthJsiknoW4fdKqpXdw2IYSrrO049btKjfzihWOTJbp2Ipz2pMZi1IZ13zGdbbi6nqMZgF3pfoJTXiupKMOB+BHuaUC/rvJ+nHDaWfWVKfgeVpOPqa/HZuaXGtLJ3SmNCoBejl2FfGIZCCky3FfLZ+g2oXikO3xv2D/P1Q0cycPT7DUkr2pMC08shBWCXuM4uR0QjjbVKDK77CdnMYvpI/XQjHXajpCvvoxxEkhxA8EH2CCdUOLXakHyAsyOSyWSm/Mzbdfs9A7/67t/8Qu0V+33i7f8xLpr9FEntfCJtB4XDnx8ASHMh5ilHP+wPbsQocpbdpLouoXDE0sl7FQGjiKWlP3C0B4b5B1vM9YbNV4+ztzOHFI/0fuow+3CL6gJXPzvby7N1L+u9WIv8szuQ/by89TSnluuvC2HKNtJEc9u7g09wiuZEs35NmhO75ytJAgiFQLebkEjBrAdYv5ZAJ8pLzTBPhEct9qOKyWO4/br4SBk0RDGm615hOjmopyqiyoDKYallNfD60Q0fvTpmeFmTCvFo6DIQvUbfOlLOERHsvyIcDWgXiWuHqgJvPLzk8atD1JOaMI5iOE+gvKa4FC+Zn0aKG02xUGx+tuHoYMPVh4eYrWSDhDrhZ2HvDytfSVO5O4lSaw0if4tFxGzFmxEfyp6uXuS6x+UJ9EZeKxUTw1g8HKaTGkMPyPR8f9CUWsRuYfIkihRzlOs1pEGxAxHZTaK+jnnyIRMPEpQ3/X7S0U8N3UykWqYXSmvSivbIUKwi40/X+1y8mAM17aITf+2oYJhZ2gMj90kXsY34zOzVRurrcYleNqjFir23ssynwKzaSIWDxYq0WqNPjxlM5Fc/+J//oXvF57q1EW4WQvGwFjUZ0x9XwmFuPXrVyCYC6LoijWv8tJTuUIjgHMo5QSPWdj/SBmSDLpykSIZELJWkqxdONpqmw724xV1tiIWWrthBPlR0AV8p+rFGrxrMzVa6XRnb2h4YmhNLsQyMXvbUV4HRi576w2vcOubO+8Do8XqfptzPJaimOU97ecUwk+JhhwHdjfdBDhv9TD5vmOWDxS4ttBddtJ8F0llHMe5BwfiZ4Pj0kE3sZaIYDZgiUF8oxs8Ss08CxS1SjI8jzAfqUYcpgiByW3LKsryOo2eK6Sd3CDq3yWmlCdxBi3kg3X4VZFriR2DaiNtEymXa4z2Vv/u9hmlCH3VyCPIQi4iqPcMkMYxT/hr597nSFNeG4lY24VDKYXD8NO2LhujYpxqjJf9gpwMNtcrI4yiHqYAUIpUUFkkp7KLDXm/wOaBue1/RT7R4EoYgm46VA2S5SBQrGXEOY5M3fCPFgU/oLlA8vcW9WGBvpRDpjiu25wWbe058JNNKZAJNh9ncFSS6D+Ib2aEjjbrDbqYkMg34A0GGcZVDI6ryC4/vDdc3+wyVMK/vXpfCgTXol9eYxSavp0jabu9ey7wvhMsr0s0tapPH8qUhTiv5UyhCpfHTgjApBGNI9oZ1Hr1ucR+9wC17+qlM2+yVvP7R5QZBKd9Lr1vKT66xr5boxRbTiMHQZGhGP5eE3uZY5EmukSA+PcDNNyP9AUw/iYLO9uDHQpEyPZCgy8FfZuwFP2sgjKSxYJeC0TQdHM03/PfO/ykHsy2YxPWrGYvViNdPbhhP5TXoe8uiEUmF3SpSDimtLxPVpaa/qqguob6MkhHiJZQsmYRbCVlHDE6yLxgbiYOmeuxQrWE8b4lVzLJVaeR0R+LziDOPagzp47GkGPe5SeIS9mmJu7boQUnBM7/l3v0b6ntrkr1rVpgWxi+9NCo6aeaU11l2mY21xQJmHwVGLxJuBf2jnv7NjuZhoD/3pLMOu4HZx5FiIQeQ8loQwgDFMjJ52jN55hm/lEmayDqlkeQWvaCZE3ssu+4FqhIt6C5SvpR7c5hZ9O0Gc7vGz0tC7fa4zljovYjbVwpf64ypN/t7eBeOCUgWQD9kCZfIjOJ6Q7y5kY/XGrXeCibcGOKkJByOhPr2Bb3SqBRNfEwC9YgCFQEgRMztFr0diJUljArCtNznrhCC1Bzek9qWtFrDQnDIuhcpUaysIHbXMvYexkr27etb8VtkNLdAXtLeL2pWHXq1ZQdG6A7k+d5PVc74CeJNHcRXEo3CP+qEaLlOezxte2DoZiL7TEoRRrtk8kR5GynWQpAKddqbrZMWn1N1FSVjbCUey1AkvvHac4kIWGdjukmC4l0axp8aRs815bVItnTt0Rcl6kVFVff4wfCj7z+CH42ZfGLQk4HXXrvi4GBDMRpQXvxpxWGLXWumH2nwGmMi9taQBs2fO/8hdd3Lz3WrMUuDKiNp5IUCVibUQb8/vMWt5WYxpn5uqF+JPN2uFcUrgxoFpq8txX8bEXTvzGNe3xDnAyrIwc4tFeplCZelyD17RXUpRnYxkou03E/k0HHwXs/4QrJJhomEJ6csn4tF2jeQdq+1IMShXASqRTaIGzk8qgB2PWC3Qf5crrHrnlBKQOT6DcX2XNOcCG0vVIrqJlC96jAvbjBXa5mMbgfB+WaE9DCze/loe6BpjwQVrvsge0ArSg8y9j21HWmzuZuGxMiOrAUI5nq9kRT2H+P6XEuzlFZ3nOK2o3q+plhIAFCcjwEItaM/eEj1qqF4fCWfN6pk7DquGWZW/Bur/i6tFqTTOK1Fe9vJSLY5O2D0vMOuOlTviaWjnxpMnzh4f8B0kaRkcwiVonnreN+hikaKXdvdafjkj6I9LPFvn+OaJN4EBX5S7PWAcZ/0eUdJaE8DGBg/FRlXeyan+eoG6iuReHVztUcL7zjhKbPCp+9ZwOJHMIqwPcuHmxMxmdu1wvzeBKMEAxpfSyQHbpkobxR+pkAnNk+nmI3+TBAalBcGvx6zvZ9o7iGLdJAOjlsq4suSmMlh1aX8bM2jSHsGr37Gib6zk66nHyWG0wHVGObvSodjPOpY3i+IpRB3UqeJo0BMBhaK/gC6Y00oc/DZXDYct7nTfQuGV5jpZpBDolsnjr8revhQKEyTqFs4/V3RX7bHOZyykX9vjjR2W2M30sU0XWL2oXQjNj/32v5WWj0S/8/xdxuRnp1UaJ+YfipTjzCvCJX4SIbpkUzfHl9inCEWhtn7wgZXvScZQ//le0LF2fZgpbvhHl9BjAxvnKIbj/70gvjojOatOeMPblGLNemNB3vJmNp2qJsFKSWZsHz+BqP/uS5lLebgCJTCLBrUck3qezg+lA+4aSEljLN7L4nqZFpSLLfiD/mJt+XwUTl0H7Crju6kJmnF6JMNYVKw/FK1l2cWix41RPr7M5SPFM/kWxWrbPSc1ZSLzK3vkKyPpgdniXNBpCajWb1R4mu11wPPPoks39CsvhwxrUZ3hoP3oFxGph8YYgG374hEoLqKqKj3jYg4ypPOlcW+X+fuHYw/3WnSc6d1DZevZvxfT3+O69sxai3FVkhCqVk9n3L6zwzDeCoH+rNEf+g5ubfk0h9QXStCIVkY2/PE9p5imAdSETEqwYOW63sKLkqqFzbLMMFfFBStorqWwno7K5ndX1G/MfDy7EBoXI1Ce0X1aUH7cGDy+oLFeI5baqoLKbhjCcM0Eo8HhkXFd65ep3ru0B3YvJ8CLL4RaP5sy/BsTHGrqC9kbwgl6JxbAAKrsO2O9GOg0xx9T6FCJm0o0e93h7JBzz6RjrjQjxTDROcQNMX0icc20oQoVpFYGlavl6KJV3KgGmbFnqrVHVpCNRUwhoJwLMmU/dziK80wqqmvA+VVj111EBK6r0VDnjME1BDQt2vStiW+fkZyBnO1lknIwYQwcoTaUsVEWq5g00rHsyrFa3a7Io1rUuWwl7d/tIv1X+GlL29JrUflbIRdLlm4f4SfFmzuFbhtZPTpRvbeXfMyX8loqUlmE1JdSKMoJfxBLbKlIUpHunYUNz1Hi0H0+o/OGX+0Jjkt732hUemuOdSfjYHx/jlTLNlDcbqZpj2sqG5ChqNI9pa6KqguFJNnnuUbln668yJKzkx5A+e/Lp7RYaok2K9NnP6OeCJuv5oolpriBgkAnMrBJZmcPq7h+4/vo0xi+aYmTnusjcRBkXSiOc8ehgBpNjCZtjBtaVuH/8EMBegMi2mPE7EzPL+aE15V2K1i9EoRSou/GYMRg7ib9FR1z/Y1jQH+gx/8Iv1tiZtmqE6ZOD5Z0XuDf68USXhnUFb8oWZpSGuzJxDGkn3+ECoxeAHtqE5jFwYdDLor0AeReDjATSHT6GcygQ4VtOeBez9/wdMfnDP9QNOcy+/k1nJIHKZ3iOTuUFDGxUJRLKS52080N18xVJeJ+UeeUAodbTcVa4+yV/VAaia3Uty8UxCd4t6qFs9ypaivI/UV7Ehe9UUvuVNjob8Ob54hhNfsic5wE9156scrqsISKiuHj0zWUrmByeCxt5KjR13B8YFMV3wkOcNweIy7adGPX8DxIer1c9STV6T17Y+17j7XBxF2Rl+t5P/3g1DrdsFPWjrDsVCSRLvZoupaKEOFE8Z3PuGpQTaMnSkVpUhajGM6JGLKD4FSo7zDAMlpklHoECVILyVBsGYdtJ8YkVDt7Ccma/zaJF05rUR2leUWO8Ni0gqcRvtMYQkKvTNdeT5jYkz78L2kkPmWIo/yxW8Q3R09Z5fsjUICvvIoMllZUKEUT4bg/SR7IGnoXCLWUfSZXSmfYxLOBdK2FL035M9jL7Xy2SxeXhm0l++RFILA84iZdEifQSJLyBBLMZbtgoTcpGcwjqTNvoDYbah6gBQUcZb+RWOU7C15eqIwOTgy2juJm/ZZLucy+3wQA/0wZh86VCwH1BDkIJLkARCt/BCx0IRk96a6cimhgsPYYLosqchyD9MM4jUoRONdthFiIhZyH+2M79HmkacSDK/e9jLujxHqkjCSpFb92WaD9xK0ZbTcB50U0zGHXwF7OZEyEeN3Eq1sTk0DX+RL5eBBlJIOsNZSae4mQUqkJ2rw0gmuK9DZzN8PKJdDDa2WfcJHQftq2WfUEPbY3R3OUYWM7bUKZcw+qVpFkdKFcU677cC2Ed2nvC9ZCULNnXOfw6tIsm6LVZ7OJVmHyd2tP8nHYK9xNoP4IqK5kwbhJcF41/Hc39N5P9jtEanTPN4cCk7by74WBk2IGjUoXJPy38H2QYIy4oMGlfC13ksMxBSe16eC0FoxiI56ti531xWgxAirQgZbWFnbhQ0cVA3LeUVXOmIsshEdiAprIqkQL43ucrNGS1FSTTqayxHu1uBWsp6H3VMvysTjeLbheePotGP0XMvXVXc/ViwyrWgrv68K0gV1m7RHLO8CDQVnnl/nlNc0gJViTqbm8oDYTY5jofPn5/cDwYBDLuJ0xqHn7xV3eE0lf3boTxWSSIWCgC7QdwjQlPHUaJEFJacxKcl/Z0x9tErkWdbKz5zlRYRI6noxrQKp7f//XI3/+l6p99m8v2OtyhUqi6/M3giuYiTlFzdZjUp2j/uVMFnZL3TrpVjb3U+ZoikYeXl9Y2GgtJhFixoC1hliSPhkRI1hJRhRvkBWLPZpnysDZNx3/nqVTMbsRu5Z0wRCKVTJ/drO+HoB2pi78F2vKDaB3huZRK40pkt7yZCvczZRK79Q7Awmqj0aN0Yl+5YS+p4aFKlXaBex+u41sxupO4ap7BvkfdM3FrdVElr6GWnpMI2kScAmRds6tAkEb+hvS5QXT0cqEslGjI4Yrehzw0F1RiZJxd3+Is1h2SdDmYjjgNYJPxj0eCBaI36/XZyCBlNE4m6dDrv3U37u2g5CF7TsDwK6l4/b1Rspv+4i85LXzK0DvtZ7Cegew8vd+yrSegmDlPdJcuqiE0nWruY0mdIovlUlVoMQMVm9EQuR+qWQsK3/F0mZrccOQRLUQyBVpUxQQ/Y27bLLlMqBnlq2SasJtUzS6QfIaHBjzH6C8oddn+uDiB6PSE2LPjoknMwlK8RH1LqRF6gs0Ist7gcLGDwpBFRZkowjHE+EqzwkzNZjFhviqJLAl8qKXnAIaMAUmvLlBn29ovnqOduHFdWVHHZE7ye4Wz0kdIhMH3sJ05rKJGB00ROdoy3EvFhc9/RHhVBq8t/N329p7lVs7hvqS4XbBMqbAbvRqGilC7LwNGeO9kAzeiqLyzUR7aG+0NitdODcRnSci3ckMKh67jANFMu0lwdd/4RsTMVCFocfJ0yjKK/tPtlz+0AkEeWVBPTE6UAsEsMEpvdWPJov+OiHb2JaoWkUC8X4WWT9uqJ+e8FwNUJtZQPtZzB8dUu4Lagu7m676GTxuVtz59XpZRTc3JPskzrrxgdpBLK6HVE/sYxeSufGj4HaIwHGhtHzxPTpwPVPFHRHOzIO1JcD7bFjM1H48S7ZVVEuBDLgK8XqNc0whf4w4FaCH+4OR+iBfdqz0MkS1U3eRCbSbTItlFeddLVGlvrZGn21pLo4FJhBF0h1Jt7cDrgXC/pHB/QzCbGzbaB4tsQfjbn6k/cYvxgoXm6IpUMVFv3q9k4GsFsD2170lXnTcM9v5YF0OMcsNky/30px7SzmaoUuHcPxGBUspiqJ8zFhXAig4cUf1Ur9V3+p2SxnIRhSVRJOpkSrcVcbmXwc3OlXw9khYVLgrreoRrThKPGOqLaXhsZ4RKoKqktHKA3twwkoxeTZQPlijXp6AfdOCdMSu/GkQrN5eyaEpVIRnKE9MnLAAMxKHk63P3mwR3XbJmt9O5EKrR9lnXRtmDyNnP7ugB/L1/CloptrFl/3mLXOU0gpTPSg0E78DqZTHH/LirTjUP7bDInNfXkw2kbWy/a+VEvvvzzZk/XUoIR2tRnBzHPx8wWmlaZCmA+gE+23j7B14uq/1hAGTRo0emlzaKrdZw9IUnAFR5H+nYbRpCMlxfbxlDQe+NmvfMLj5SGXr6ZcXU24vhlTVJ6i9LRjQ9AwRE1xZVheHuOMNC0O/uRLQtS8+vSQ6qTh33j0Cf/o6TcYP1Yy2d2RarImvry1rH9wjy//xcf8N3/hd/mflv827sZitvL1QpHYPkhsHsLomUjWdEaSN8eyJ/UHiePvJg7eaymXBf1Ys/iSfGx9KY0IELlFdFBctyRn6A4doVKQLG6bcB+nfd7D5ly02pPHLX7i6Kd6D8QYRkJcql71qBCZ+UgsLbEyxHKE8hH3ai1FceUIk5J+XmAOK3SI+NoKYacbsu+jxq573G3cG9njdCTd0FdXImWGfXODH5OE83m8lDXE1x+IBHu4I3ICuK1n/Guv9vQ8+QTwh2LIdC9WdxLYEATzu9xC1+OSZM/omzVoRSqkBumOq1xIJkxlMFuP/eFjVF1jT+YsvjZl/Ugz/VTw8rtnZMhyYpWQ58RNR3dcEWpNN5Vmx/RjqG7lZx+mMBwFTE4vP/k9T3touPwpu29kxkKInOtHlmGWcEctYTkWj0MSmtz4rQWlDSy+e0xSUE471OOC2UeRpB3DzAgCeBSZ3lvRNgXDshBlRVuQfjjBbcX72R0Fzt+5ZF62zIqW33zvTcxlITKyMrF+IxEngcnJhm+eXPDlySX/l3/4JylfKTavRdCyf4VJxN5vKIqA1pGLy5kcDn5yQXs9YvKeo5+J5GzyicZtEutHCT9J6POW2bjlfLrigxenDLcl529co1Ti5uk5wyRy9LUr3GDpB0v/sMXf02gXCa2h/qigfmZ48ux1zEFi+Y5n+r6lvE2Uy7CX0plBpljDRBpC69ci5kxBKugPFMORZ1lrtg+MZCFFeO1Xoxw2MZJa/6lkTTWnjtnH0rFYPywFE34rcrywA0kkiIUR+MCLVfZvSHK6n1t57i0FrZtmY1ZfO8ItPeWrf05KlTIkZzwmHI0xiwbWW3SXGx2zMclKYKKKCeoKtVhTLDdgDepg/l+AQMO6Im1XMAx7Dj8gxUPIQSv9ID4SZ1GlbB7KB1QX0DHhvBiD40gIRroZxHgD4gnJBrPkDGlSY4aIW4umX5Gobvxd18kqohLpi0ETD3OoYRcwncF0YjBiZ0renfiTjHSBTFBQ+JEmFFZO7bmL72uXZV93+NqhVrk7L58nSclS1KfKoyrphpAUQ1T7kaTQn+Rzd8GI+05JvqKF5CLDVEmImY6EUaCPitg5ni9nhCLtMZkq/+ymhfXVCLWRAiTlIsGYSDBidPcjCSLUg/kDqeV2rf7glAfB/aaYA8p2KNNJogl3HYQEYrqq5YARijs+t+lzJ3Ri9kFDoZJE9VjINMpt455YIgcKOeihYJjJ7+jW7L9ftEgXHelamk66yqGy+2lLmJSg5oSxTN50b/Ymseg0aVyJL2Qh/PBo1L6DYAb2HfWETPZ2yFm78ejO3wVupSQ0NyWhQylE9gGKGWNNEA3n3SJRguoMCd14Yne3fr6Il7KG1PYot1vTOeRpVKCMQS/WYvIfVagYMeteujsxksqcn1BZtLM5LHVXnAcZyLpdKKVMnvRsSsyT2Z0+v7j1e0Pxbk1rT4YS5LWn5L9NJ0SUnXFV91DeShFf3op3YHNfyCsoqK8iINrp3QQ0afk+w1gO67HKxJXbSD8zDLNIdSkPKz8WRG1nErrL0syNZogVatB7PLb2sL6twWv8VALz9KDAa/DcEfeSwriIKj1+a6DL0IrPoHPDSNKMlYLtuiQlRZp6XD3Q501Nu0jcWpJXtG3erLxGN4piKZjcUCF5RQO0vSMmheo1fWe56sboXjw54kdJ6FxPtyc7yWbiyfUB/7h6B9XKFHuXIG+bu+npTt5aXsv7uWuMFAuFr2B7rxC9fidBdbtMIl8KbMQ2QMt+PyiWuYvZC5ZTxUTnzD7MUkg/Ek5oczhidFoMx0kmKUmZfQcWINQaMLgbI0Z0L1khRULwm4A2OoefKogRs2zvQvq6XgI8c7dUjccy+RuGfTPv8+0s/UOuuiSUBrsO6FWz3zd3KHZCuHu5s+xt99onZ8WDlz8nGSVYb62k2WPE/0UIqLbHLFtKoDssiaWgtlVKqLomVQVYgZuU13KPqJj2ExnT558nSSM0Op0biGovPS523pBCU12C7u3eF7ULTJRJBugkU0gVMp0pKbaLkqqRQ1IopO5oNxWtjvt1rpRMH5NSfwCTC5r1opYwwaCIQRGU2ecYJiWyx5ev5nQHFjuLKJOIZSTWopYobjRDgE1Z8Z465WI7lUboLCshjGSYAQzrgupkw0Hdst2WKOBrZy/5oT4jfHIggJ6xJ9lC/DPjSBwFjI6EpNgOBTHIRHOxqfe3gwqKxbomeEPoNfW0w9nA8nKMag2hTuhO6GG6Ryhfi0R1G/f7b3uYsz62CdsqQncHtZDkecBF9FIOHPv7Kb+mxY3UbUnLIUYl8Y+okGiOZbSlB8ke87XGbQK6izItcRrX7IIgs0zTSzinKgupDbw0vXUnaz7Ma5IzUmMMAT2dCp563WcK7ZCfo3qvELCrHr2ReIC9iV1rUvrxNovP9UEkHk7Rz6+Iy5UUB9Ox6Kuvroldh65rkZ+UJWoyEoLFckNqWkFCZllGOJjQPpxQP1nBxTXxdiGyjK99ec9b7o4rwqMRo082FI9vCPMxKkaK965JhzOa1+eEQpMsuJVo7ISIBWbZ4bSiymbCYWKzJCNiciBed+wkz2KbxPg8M6xfkzlseSOm6fZccHa6E0yt6RPNudqFuWYcZR4Xm4SZeLSOUpyXiX4OKmhMp/dG0e5QiuiDDwLbU836jbuHenIRNQrY0waX8UzVSY87D1w/PiAux4RZJBZKjGQKugPF6CWMnhdS/FjRW0cHyRuRmowS47cW3J+ueC89xDSaMI64W834WU5fHovsBKBrHHEwYqitItpF9Jc2BJUIH03ER+NFctSdBFQUN2rSGb+3kqJzfd/kCVUkWU2oYBgDSTF+FvI4VVO/SoxfiK62PVJ094N0g57fLaphrPGVhI3ZVWCEHJKaMyfFw5BYvV7tUXnaJ8a7hHRgmBmG2YTJewvU7YrtNx8QS51JWInRyw6z+YxcSinC0QQ1BNyzm7u/z8Vy+8YhoTa4lce0HrPqiLUj1A73fEA1raAoC5EnJa2gcOj1ltS0xPjFlVsAUDjC8xcYa4EJuh2g83TnY/QQKZ6+RM0mDKcjiqcLyGFmlCXxeEqYFDQnBXYbKW9qzKqThkfmsOt2IFaO7rSiPa/hvMatPaqP+LHFtIHidz9ATaf4h0e0pxXtgXgE7hCeIlW0rSB+BRGcSKbE9IrJU49pJUjxxZ854vbnBDShGsPb/7uWcetBTeknin4uEkMUNPckfDROPWntGD1rWb4+ZvRwDR/MKZcRfxI4v3/Lv/Pad/h/vfg6L/7JQ9xKYTpNcyZyjNFzkZ5t+5L+KKLPWnxhCb2YU/cFfIB0UaLOW944veH924q0heHMixxybYjjwPhkS9s6QmspHxeoBPNfvMDoyI+en6FNpB71NJclxbX+DDFLpq/zjyJX39CkR1vMd0cUK8Xtc5lsVTeaPpa8a85xGzmAlDcg4bWJ5kShfnbB9vGU6Yca/e0p3/neTzBZZTnqUZJp6ZUUPTok2iPZxw5/GBjGmqufSoyeaw5/6Ln+umXxFc3J7wqKt7xRAgZZR4aRoTtUTJ5EilVkc1+6vkfvdvuiI7/9bE9kwlVfCSEHwDQe3QaZopea8WMxT29eG9GPNd2hYvQyUr8aaI9EPlS9KkTS2XQSWLjeSGCnc6h7xzkp3Eph8fj5HZgBQGvZF8oC//BYAlRXDWm1ge1WvFVf0CscjkmlQb3q8R99gr13TprKHiFNBrdv6EhRF0XKkhLhQHxdkkGkZUpVWFmD55Xc+71HLxvSi1eki1fQ97g//TNsJwVmM6CGyPDoWD6/0NQvWiYfDfh5yTAWTydkOE0mMYkMUpqsSWcZ4TpRXQ6E2jBMDOffWqG3PTc/dcgwVqwfGpEsZ/mQitCci3Tr0X/SE0vNTeP2h/Z+Jg0581GFCkLZCpk+H4t8KE8iu3Y5PiDeVoRSmoPeJCH5lbC76ctrTfFhxerNkg/fcmgb4bjn9GjJq5spR79WMow1mwcV0VfcJOCnGszrPfG9GVEl3OmW7rJm9GFBOt7y5fklq7ZkVPb8Tx7+Q/5v45/n//zkF1GHPYezLZuXRyLbP+soXMAPhs3asFlXxK1InodPx9Jc1dIQSj8aYwADHP3CDV87fMmv/dZPS8P1bY9uNHrQFCuFvlbMP+5wy57br4xpjzTLtyOTTzTTT3uGWvRibW427BpGuggUNwXHv+/pJzpPxaWBcvSuZxhJHgyAihLArbtAtNlL3AXCgaM5UpTXkeKmZfnOlKRgMkRMJx5T08kzJYxL4qjAXG9QXU/x2++jZlPi8YzN6yOaI838wx678YTRMWbVwSdP2T+pqkrw9qVFhYh9ekXabAi3C+yjh8TZSNbFj6n4/lwfRPS6QVmHKkuZjhROdGvjEdpIEIsaj4knc1JIouusCtGLtx0YQ5pPsvZb4WcVNh1ishSjz0jVHUZ1H1I4qgizAiI4f8BwWIuh0KlMPVE5tVtunOFkJN3PXfbESE7zuxOx3JDZK1LsihHxNaSM+I2FaCnNtaG6VHuCTijk892Kvadk9aZIi9R1QYxKTuFVIh32+JtKpiujXWCgfO2rbxp8xtgNpxHlImU9YG2kdAMpKXzUsmBXDrOVcLWD129JSbG0BxQ3cpDwteBDu2M5AKVCAg7rcqDZWkyvWN2MGAYLeVqievkZb7+msp48ConnwtCdIiPwseD0wtKhbyvMRklzLoH9QUXK3P9QiJRiTxxppYsQKsUwFTwhZJ2qFqrQ8o1CNKsTSaWuXmzYnM8BqF5YmSBlXa72mXSBwm4Cbu2zZvNuXK68TFlsp9ica5LR2NaKHyXLu8Q8XKC9JKYnoDut5P1fD9LpGhVCbNOi+UTnAqLrSW0nEqG6FL1xEwTHZzXd+SQHHOW2lbXSiWsSbpBpoeoHmYrMJnB7/ce/gP+YL/vaIyGJdVlukRJumelWswmpcNhlJ13z8Yh0NCeUDt2IR6jKk8xoNdookeivt3K2NEYkMYXJPoK4h1+YVrpX3D8jTCq64xLlE6OLQSZdCYpFT6gs3dxJcOGJSHNsJ54jwUbL107OSEDZlfhItIdXPzvGbRP1ZYCk8eM8BRiguBXNtd86TKe4+uYIP4Lm5Ziphm6uoU9cL0f8o8t3eHErxfwO7BBGgq4cplYenDZR3GjUqxHpMBLGEX8kT5ywtoLvvdS0RcnzaobeaiF2TQZJMc4dR6XuqvDuXCZyYTmiKCSDaN2WNJsiT4mlQbGjTQ2zxO3bog0Pi4JYQg/oRpNsojsWYzxeY32GfjhpjAxjBRq2F2PMoOgOpLCzDaxfjzKpbcSjl6zCF7nrnO0s2zOdD3kSZLZ4SybXdq1oThRN0vQHsv/0E0s/l8OTXQuyXYckf3wkOI2fGPEK7iZkIZvcjcZXFaZPIn3wCesD3VGJSjJh072USCZPzmwre1MoDUkVqMqiqwJtLakuiXVB83BMdIpqZDHLHuO9eCK0Bu9lyuoDamdYCQm2jfwboA8P4McLTP7cXWqIuMstquvR47HsmynlSUYUClAtpLwdQESmz4YwkrwFc7MRvyEw3D+gnzvqly268ZiblezhX3ooAYiDJ1iRZ+s+hw3OnASejjRmsOih3PsMpo/jv/AzJwNBK7qZNEJNL423fm7p5lpyKBjjVhU2e0NBGhW7ZiEKQi1ejcufKveHcbeS55mfSG2gO/HShVoUEOH9Sc75kGZFLBObE5kSma0WiXsAnaEydrvzgCWoEv1cEQvxZsTrEt0qXjSH4DXXX881ydHOkCGD6L5zhHs9qEQMGjXxbN9MvDVdU2jPpinYbEv+ly//LN+/vIe71QyqYJEgHUTxu2wsvZKg1F0zwN0Y7FbRvt1hS89wXZFMEs/I1qI3hqdPj3j28kCgixb4zB7WTyVs+SqUmLagO5QE+DT1DLOC9tjJtPRCph07Kp9bgfpujWlge2rojgTJXq7I9UKue3besJSb2bW9IyEeC9AEJc3QYZZrjQjD1BFGFtNZuQc3PX5WEZwmmakQN8c1sbCEkcOtgkxqByF8mluRKEcQebOz+3wds+5EmREjajzGTqciydp2mcrX/Fjr7nN9EEnLNbpwqKrcd3uTUei6lg0ESJMR7b0xbjlI6mNZkEyA2wW4glg7IeE4hZ/KQcY6MbH2Uye6+7XPxuUkRK6R3AhiiB/RHTjaAylExQSmBddbywOsO3Q5SCsyjC3D6O6htsuyIO1MqVC1WZaTnwPRyh9TBeymYPRSTNehFLOV6VTOtZA8ksU7FnfUon8kOR6xEOP44dGa1ViCyvxIkKHRCQe/eLhGR4XxhtfOrnltcsPL7Ywu5FT0qGkGS1w5Rp8K5caPE//lh+8xsR3/sfsaF+8fc/AjCW7zYxiOPWY8ULiAMXKgaZQEIYUbR9tk/UMBZq3xcwlIA0hJ0fz2MdWVLMBQR9I4oFqDWxhm78Pk+cDt245o4fBHnmGsWX5J0x0mhvMBvbDYRu3pFaFCtKLnA8ULR3WpGEbgC/CPslG8yOPx55fYr87yJCRlidddsimkTLAYMOsOWxlCpQmFycFpEZ1H7cs3KoYRmFaLt+Q65E1IZbNZDTGRlKY5NpJPctMRnZZwslKweTpjOqWY7knrDZwcMpyMJEOkC+jVljgf0Zw5yttAedlIgeHsPhk1LaTNlQAOZsRJ+WPpOD/vl394JJ6adSuTpBAwzsqansqE09zkCmtU059NCKVm9O4SFSIuQhw5MZLvAADLtUha6goVAtbqjOwdSJUES5mtyLP6e1OGsaU9NIyf95QXG7oz0djaqw16VuOrgmEqEstioXBblc3pcsAHg9labJP2NLqk4fanPHZhmP8/BpJ1NF6Sk7UXL4Q0MyQr4/YnskTrhUg1+rkE8A2Lkh/FM8KyoGInGYA4DqgyyMMvY0DrKzj4wHP5U5btJDI92WB15NaNiVcF9SWESrOpa4qNSDfH0y1awdWFHER2xlWlE9N7K4yO3LyYEUaenzh9yXv9KXHtMBGSAz+JJJ3QvSaME/39gFob3K0R8k0pnq9QgrrXipxz0HvIh8hipfGQtPz+oUr0B5HyVjx29Rsr6mLg6oMjYpauhurO/A/QnCuiEb3+MI0MUyEDFktoT+Tn8NOA8go7F3pfrCL92oKW3BI9JFQfSbWlmxr8SGQc1bV4/vqpHExioXHrRLFSVFcy7Vy/VqNiYvbeCtM4VJKHSbJKpihJDO2xkMLFFBajNWFWEmrL5r4cfEJRUpWGelFLoKGzgqz3QZC1YSc/9Heob62Js8kf5TL9V3qp3qOzdl5PJ1JUxSRKCu+J2wZtJOTY9F6kLWVBLCy+NmKG3rakriN1PfH1I9pDw+T3F8RXV8QY0WcnbF+f5XA6ORXYbd4znKGficRmGMNuhC4kycTBjzZCzTyvpfHlFNGofHCQ+qO6lAK0n2raE0V7kiTgebkjtgEYhih7QnByf+9yPlZfD3d6Zy3yaj8O6MlAdEZM6YC7ssx/JI2JXRM2VImTN68JUXH9cobaWNxSYb1CpTtp+DC5W1exlIZBcS1ZH8O6wI8S8etrJlXPwaihtgOFDnzv6X18Z3hw/4YhGK5uJowmHaf317w5uabUHt860tbwT4a3YeGY3CpAM6QCddhjbIDnI5GUfuaqLmWvHf/Sii8fXvI7vIYrPO+cXPLhzRGriwnVp0UOG5Qm62evYZZQRx2LuUPlr52KSDnp6OeirhhdRKq1Jzq3JxkW68Thj3rWjwo2DxTtWRTj+49A9zLNQCvsZ4JE+0le270cAJtjs5foNycCqTj4wKN9op+ZLPfVlL0QM+PxCD82EqwZE7or9meqYtGjm4FYO6kZLi6JO5+Ys6hCgn5j7SS3bJe0Pqrwp1Ps1Qa1WJHaltj/FwHfO5uQnl4SbwJqs0WPRyKnyJ0bVRTQ9dQf3ZAKRyysFAlaoSYTkXGVFuUj5dWQAw3jPtjMboWJH5zGtAG39PushiqxR+MWC8U0yKKORrwCAPGVyADqF+0+oC4WI+moepmauK10srqp2mvEm2PxkkyeiLly80D41en9Wkaop1rS1hWkL2/pgsbXFbbRmEZTXkO6mWRJAdirRLE0rNbHqACrNxXdqQcNJ98y+LFmdWoJjcHcOB6rQzZ9wXJT4b0htBa1MVQvDZXJacPTRKwDv331Okolrm4nqKhoTmVSYrcw+sgRSkf7mnQvNs0YtxB0nh4EfdgdR7DiF1FecXM1JQUFQWFmkVApkYi0hq4QqtcwD6zeMjTnjvYsQoTqSjDKs48jSzR+LsnGppHCBCU/t+kU7n2ZfvRzmVx89jCoohSB1//Vt2iPRG4muQ9QLKSRrpzowO06EmpLqC037xRoD4fvNjL+7Aaah1OaE7tnmANEIyhP8QclfGUwWrqkaRCCiYqgugHTgIoRPSklX6IRnGyYlhhA9wP9YU136CRpWyvSpIYIk08bMZ2WFr3Jm6KTxGDaTg7vkxFquUFfXN2Rl76gV9JauOmdh66XhoSriVUh3ctX19IJNjs6jcKue/SQC7QsEzTrDnOzIZUFYT4mnUzl71ctsbD0xyPK50viy1fwpdcI0wrdiuRC9zJON63FrfMEoTb4SqEfzqU4vo2YTmMaCS3UGS0NQqkaJor2aITbRE5+b2D5hhjPdSMPqeuvVfQHiu39SLHQ2C2s3/JgErPvZWjFrcaPEt1ZoPPyvpcPNsSoiB+NKXLRvqPsqUaTYi7Gk0wWVl8OLL+RwHUonVhdjUEnDo/XpIMt7RuG/nqEvXDUFzKduT9dUZmBK3WI6jSbizEnj2756tEFT9YHbAfH6HhLSorvv7jPqOp48+2XPPntB4yeKZbvgJ4OfOP151xsJrx8fIg56Ri/0bJc1sTeoKx0D9Og9yYz2cN3tCpF90YkVhHKgF44imu9p435781YWKhXYqhtT6Ow/ovE5HyN1ZH1Dw9xK8X4GfmwQKaYkfcq0eWDNHqqV5r6UpCmIL2XaJVMxkJi/LwXCk2epkerMH0uip61bB6UrF6T7IfqKjJ+1pGMor0niHrdSU6VeAjk+9pVL/kA8wK3iqhX19hughmVTErxLxQ3vcg/+wFWG9TQw8N7+IMRZiUSpFiKLwpAjUYi7/oCo77VektqB9R4LPtj18Pg8a+dkJTCPbuWFPXeSzOiLFDLDSZGqozz9Q+PUSGiWy9QgZtA/9oh+mSKvViQCodbe+yiw1wvZV9WCpZrkYeO9L5RmfIhw24FWqGXDXFasbmX96koMuZQSGghQHuqJNfmU8/mviWcd2xtwTDVFGvxj65elymlWwnMIjQKu5XgxfaeR/WK+rlhmCbWbwXJFrqucUv5tt1hYphHVn9hy/BsTHWh6A8DaRR4dTGDQWNvLaGO9A+9rEsgPinl+03kv5VXmLVBLwSb2z2M6JUVauYnY26PCw5eb3i5ntANjqLwJBe4uJ4RBg1Lx2bt2C4rHrsjtAmMZi19ZUifjAmTSPrTt/TXI8ytFWlZVAznnliDWRnQUsyvvj5gRp5HRc96KPnmw2c8Xh7yvd/6EmpQFEFqANMl/ET2mckHOTfDiJ/M3xZydFRyQFNeEz6eoEzi9icSzbnBbu4IaILphWJtMX2ifgluLRS9xVuQtODYTQ68TWL3zbkkidXDO2KnWyXqq10QstBTd7RE7aUWXb9R4786YvZxR/18u6cz6s4LOa/MgYdlbrQbDWcn8js5m5U8QpTVrSe1ncAXzo+IlTT1d/7J/zzX5/ogkrLcJHkPbfZ9ZK2r2r2IIaKWa5iOSa6WTTQmoefkDUDFhM5jVpW5yCmBaeXNkU5HlloMHuUDeocwK6wUOD6KbCunrUuAXxTyzaZjJ67TQ8IMYvASA2hgmJhsYhVp1TCRh6J7mVFsRgxgxXZnQN0/Y6lr0esuDx2hFsrT6Lk8xLq5jFXdNtOeknhNhmlCT6UQKtYKFTUxKNk8GujWjqWtGDpLHAx6YXFLzehloj1ShEOki1FErjYjUlKEXkyTw5iM5pWfN1roTuXGdAuD3ai9LjVp6A8hqjsTXmqN0Hm8jGyjS7ilEQ93fpATFcMsj1gnXoyzI4OKinIZMK3gRU2vMj6PvY9G97KZ9PM8TcpYUhXyCLmXkfV6dufnSDKdv5NTOTmY2BSzL0gxzJQUj+se1Q3S3bIzwQAHMHlEDRJMZIZsULYKr80+0Gwn/VIhCTbWB7QzpCjGcqwilgblHXpcEyqDLzW6S3ncKwnKZtmRKjloo1SWZxnIZmGUIhYW3feE21s4PfgjWKH/Gl1KCXJ38KR+gDoHkRkFQ5QNFSTINL9eqvXolERKoZFpVOelYDg+IDrHMJOKQQ2RVBpCLUZAQthnvJhNkjyBqNApYeEPoBOTVvQHFhUSdrszv+p8j9ytDcjmx2NFsRb54Pr+XNCNGXfZz0UOEOtI6MR8WR41WBtBzdGDSJDCCFIZRLNtEqOqo+0dKZslY5Z8QoZa7FCwRta+Pu554/yKl8spzbaApfi/Jg96ZmXLUbnhn7Zfxj5x2Ebu9ZHtmdoODLLGB0XtBn5y+pTbvmaImtJ52t7RLkqqYuDt2SVP1ANsI2vfFoGfP/iU76iHvIxH1KOOd45f8W46o9mWaBOJQeObu0dbyg97PSAP/4nHjDxlOdBs7uQNKklXdGdO7x2EUUaL2sjJZENtB35YHEBSVDcpd5N38AHZP0g5uFXLPu/WMH4RaI6kqEg6T0OrXGA2AciynIkEPWmfsG3EXawwp8V+YpK0wm7k4NIeOwlE7OX+015yrAB0O2SMfcEulE9lmVGxKGV6sur2/ga6jrDeoB/l5kW7Q+Pn+15rMWJbs3/GfhGv1HakIaKUIlVOqFlBGk5JK6yz8lpk2WUyCjUMpLZFbyZQO4Z5JcXgSPYGuw342qJKg1kUYvztA3rTkm4WQuUzZi+L26FedxCXpMWjpIe0f+1Dofb1gq/lHrTPpKbYZhmXzg1R7SJhFPFR4DZoGOYJlir7phJEtc/H6o5lQlosZXrIdEBflxS3UN7upH+K/jjxMw+f8hvtm/hVucdzq63NqeoQxlDPWqyV+3tbFHu8NiCeLS8y6fBwYDZruPVT9NZQLBRhZAhRs2lKuk1BOe4Fs7tyqEGjW02MAnSJa0tUMH/jhsJ6Nn6MN4lvnL3gd4eHDEsrPo4euvsJTMp5LUCCat7x6OhW1B/ecTpZ81HQjJ6K5C24u8mqhB4qyptEKMVrqwawm4wSttK0Ub2iuBHPXjrq6aMjWmksi9xWmqBDlroVG6kPQyES+1AJRMTdGGyj9jI6uflE2ZJ0BvIkqSdNF1A+iZRrHwsgr3c/VnSHivlHCb1qxS+qspQ46Py7KZLKMmA0qS5IWhNrofURU1ZXREgRpSTcM1q9l7nJe6tRu8beH3J9rg8iqhVDeup7OYxkmdYfuLKeTW0a9PWtHEJSJGXUmNlx+yuLVqB0xLy4Ig0DpqoIpwesH01pTi1JVcw/aHDXW2Lp9vQQNQTstkc1PWrwrH/yHv1UU1969BAJ00o8BFaIR3Y90JyLzrd6uoKHU7pDw/QxzD5pWT8o6aeKxVuGUEF3FAU56SXhvL7yrB9YolO4/+eBBBW97YVtv1aCjlsF6YZ8hiClEtQXifFTuJo6isOWl78kpnBtEmky0FUBOkN3WfPwrUsScPXkHBBJx+5OU0GROsNmUaNMFNKNV/iJZG2QED1oguJKDikqqH2wofxc+UBTRexhhzYR5wLrmxHq1gqXOsH2zYHioOO/9c53+Y9++FPMfnXE5oFimEdGH8gkojmHzUNhspsGRk8kN0AHCVNTHo6/GxlGmuY8TzhupVsQShjGoqvVvRjx3PpOOzt+HrGdkEKGsWZ7rumnio2W0DjTJUYvcurzSY32FboPWbMNJ9/ZYDYdw/EIX8voXQ+JYulpj4V8ZHo5jMzf20hns7LoGMEHyf8ojMCeCiOSwZHFTgvpbC6DoIJXDfHlK/RsyvDWPcyixb28FYlQVeDnNXoImMWKtFihXlxAUWCODvHdj6fl/NxfXU+4uka3LapwmKqSpsTZsfhurm9hVAsO+dW1EHLun+SiDkw7kLYN2jmMD9hX0tHsXjvYE9HWb88JX/8ZikXANllHDgyHYzGPjg31ixa72DL53WekUcXj/8YZpofTbzeoYLJ3RO7J+YdiTl4/kn1hey9hWo3djCjWEdsqjr8nD3pf6+wr0ySVzeXNlFiwz5tw6yQHLS+yRjSsnx4DEGc5GKwOEJQ87HuFXSomjwVGMf+mwBIu12M2t7XIo1aSGxKT4tlyxvefP0JvDbEQHbiK8HvPHjAddUwfLlktauzzkovFhG/Vb/JwdMvMtfzmP/kJbKOoA9z6GT+szvCnAzfOkqpI8IZvXb/Ji9UU3Wm8v3vQxaCwP5xgIjBJ+wd2LBPbBxmcMYp87cvPaLzjk+fyOw8TMbLbbWJ7pgh12meg2JXJskzLs+cPSBbiYaA7EgmE3UquS3MkExSQA8/xd6RAaU70PnRud2AZJhKWOv/IE2rN7du1AAq6KJPNJlAgBcbmK0eEQjF6LvuL7B8jklGybwziKdR9QDcDfiRhdvrVLRhDUeZH/MNz2LaoptsfUnZ43zg5RM/G2HUDqw3FYk1qGjAG10zl8F5VxM2WdHUDszuq0BftSk1DbAP68EBQ/kqhek/53kuRWi2XmMMDwtG5qCt8BOdkn+gHdEq4CN1ZzfqhY/J0oLxoxM/qwz5jJFQWdTDCmHPUzZI0DAxfe51YGA5/uCVUlv7AMtSSITR+JknYy586xfSJ83+2kImV1dx+ZURzquhm8rw5/faAH2lu33IUK3C/PpLmpoXtfeTZvJb/bU/Uvqm5o+KNnuSm4lSaEPZ5iWlEsbF4h0zaTNi14Te/9RVsDlqe/0Ckm4uvBWId8UqTRp6qGFita3xjKRqFbRR2LSb+aMXM3h1HqlHPqOxZTTzBJZpKg4u8uJ7BRyMOnimGifhXDpZyANs8ipQPNvzCo0/4tfe/DJclhfWc1huK/9IlHy+O+NZ33mb6YMXP/eIP+Wff/grlpcEsDeHA84t/4kf8xgdvcvBPS4bnUx6PpwxfbtA68eJXH2FbkcV1h9CdRPpDUU24hUEN4jfrjhLDWy32o4rJx7B8WyTek48sdiuhyf4Khlcl42eR8tbTHRiGkWLzSBpHNz+hqK4V5bX4TILb1UoCAvIjyWoqFgq7zqoZdjJx0J0clLZnFrfJGWb+7lSggsCRDj70+6ZFnNXodUusCrZvjLHrQHHT0t4b0c0M1U3AbjyqHQRrXVnMzRaubohv3MMf1lhOSVE8L/a2Rb28Es+UUnByCHoGyz983X2uDyKik1FiFN39XRATKjqzvneBKimR+gFVSVAZTQveo3qZDGitiLUlTjTmVtJk0zCguwHTQ3A5eC93S5MT3b4K8lBPO/2es3v84l3GiHhQotMUPqK7KGZzxHgaMzY2aYhGOqGmy4E1hRhO1SAPODPcmaWj2QM80K1ooZOoOEhK3Wmb8yFAeaFa2E5OJc4F+hw6qIIS41aUTqXuFTebmpQUdiPygzAWGZTyuUMbQd06YhV5cO+a52pGuHR3npdJ2v88cjgRA79ggUW2QBnRRSBGDSqJgVWlu0PeZ07YQ2ZqSjdINsliJX6a7lA22lgkCXLasF+IO+nVDpe8M/ju5Bgpf60dUnnnBxHGIPtRp/Yph1Ahptn8e+mQUK38uxlifu1laZk+oXufH1oJ3edDZS8TjN2hbfc9dveq8hkBWRX7AKOUdafaiwxD8H45OG8I++lg8kE6HP0gBUX2KuwlFdbCMJC8F/miNuxQxF/US3kvuQghyBseAgwKnIQbplo6x6nvBQDgLEpreS130wslAYdpv+9oyNKmHXxitwZ9qSijoLt3Us/dQcU2kVRowskUc7mSfSTJQ7k9kcTcoVb7MEL+OSmMBBYqOdB6GcGrkO7CWWOm6VQy4t91y3wtHVbdqf263K0Hk/8uVFFodTbJQST7K0xG4KoE1gS6wdK0DjqN7jI61CT6YOi93X8uURoOAP22YK1gUncidcu/llaJ1VBx29eyVvu7ia9WCVcPDFmuGVrDshNcTzrsGVcyER4GS2ytaNCj/K67NbrrMEvycsaQRy3T1yzZBCnCYpn+gNRKZbkmiLwh/nP7U8hG9mTJpnr5XMl3UjkAlwwr2ckxc+hiDhozw2fWc96DdsFk3VykmuVK9p6kM8Bkd/5Ku5A6JUjOJN1t6irf9/Hu37Q8mJLR+9De3X2djIGqkOdhBjngPWrbyvewIrlIWsn6+YJeqizRcpPLX2Q8emoaUtPu91jdfgZ3viu8QLrFgySc78OHNTJZ8QEKQaPGIneYQ4FpSpQxOQFb5MChkDUlX0PyyVT8TGE5BFKpsxeI/cF5509USRNLCUB1TZ68V4Lp3jUJIdcQ4W7fUknANyn7SGU9qn0wsAApBS6jIqIoiHffWyh/CVwkOiFcdoMVGdUgcmnd52e1lslCqBJx5jEmMgRDWOUw1zqgcshg1SjsRlQesUyE7AVLE49znq0vSEGjI9xuaoxKfO3wBc/MHN1qQvY7pTJKsyY3Gbe+IPm7qYiKEHtD0gIMIskhpD+Qn1FtjNRQrdRTfiT7R1X3DLbKr4EoOuxGZFzRyetqt+kPHA4Aos17Sd7/Y7GbhiVso2RvbqWpER152noHHDDtbt+Q7zNYlRUwd9/HtneTdd0jhxBnwIFe5ogAreQ+jnfyUN1HAeSEIM+6XS2dQSzKS52NlntUhSBZQ2UJhd3Xwj/O9fk+iORL1xW4AoaeeHNLbFrMZEz/9hm6C7jntwCoUU340j1CbfcdDhYrtBL60uJPv8nyDcNRdUZ52WIfv4LVltm7IrdIzqCbgaQUflJId3HZ4yeO7ZkEFEYHk2eeejXQHudiNNOyhlpuGBclrTtazfKdKcNI4zbSbeynJeMXgfo6sL1vMa1i9FLJhrKVu689spl8Be2f2tBvCqbfL2SjmchiDU6LZnMSiO4zMpD3a2yrsNOB0+ma5pMpyisCoBtNscoGxQjm1+bYRkg8m3uG7qsDKShhgw8a1WmOv63YPLD8r//Cf8i/f/Mn+QdPfhl7K9r09ue2HM43XC/GhMaiFxbOWt6+/4qL9YS2d9ybbGl7x+q9A4KF1XyAQROLCMjhqriwxBvL/735aZSNbP7NNXw8pn6pqK5Eq7l6QxZR9VJGytVNpJspYqGYPJUD0fqhIEar67siyK3ld62vBN8byrsHvckbb3soxt/xCzF/ufXOtC7Gc9MF+pnFNpHi/ZfEkzmbL00Fz9zA+s0JknQbcWtP9fE1/nRGe16K/GIj91HSivUbI6orT/X7Twj3T+hP6/0DQncB3XmqJ93+/YyTQvIqnIGqRB/MUVpjL5akjaB51fGhZFuse9l0ZmNU4dA6P2y1Qo1HcPNHuUr/1V7hxSvsEdJcGI1QVSks9KoUTOm8xPpIbFt04QgHI3RdyDTjxSsp7qtS8hSAOJ8wnIz2X1/5hO0jugvYjaa81ZTPlqjVluH1E0JlCZWmvO4w737C+s9+lauv1UyejCk2kcmTSHukePLnEyojMEcvNOVtZHu/lALDJ9kH1lJULN8wHP3QUywHLn+y3if+7qRI3ZFomd2tFu/TUUB3Upn3h4nhVIAOplP0c9lbdD5YBaspLw3lTc4bUAhkw8KrmymhteilpCDrQdGdeagCN4sx2kRG5xuaZxOqS00/k5RzdSuACn0WZQ8BDqdbfuHgE/7+u79Ee1XjHAxOJJnlUcM781f4qLk0Y9IPJ6hkuJqN+dLJFf/Dd/4R7zb3+WhzTHtT4S5FW757+EWXJP9oabCt/B7KKz64PKZrC+y1xR96qvOG8PEMM0SGmRRa83elwOtnMjEJ44AaBZSJsHHoVhCpm/uK7VsD9ceO6irR3FNZxy1Sl8mzQD/VDGPF5InHrQaGucNXmvU9y+gycPhbl4SjMX6UCW4xUVw09Ec17Zcc9avI+EmDn7h9psyuJnDbiFv0hNoyTGvKS/Ejrr9xJl/nukdF2f+Ts2A03XFFLBTjTS9y5E0rRUNZkHYekK5ENR3+2QvMZIw6OUJVJeYQye76gl7p/hmYkqhBN4MEEjYtafAoa1HTidAHP3yCOjogzsWns8tOSEqhup7yRcTdCNhimFfi7/OBMK/xk4J+Js1JazWxcpASfmzoppr1T1uh3S0S9XWiuvQy4dSKyScbojM0r03Znli29xTtqeR7jZ8J6GRzv/gDvkSQfUHn6QNRUd6yz8UpFjLVaw/l8DN5FgilYnuucctEfR25+YqhO5S9R3lBU/sRtKcSKWA62DwSrwV1oBz3vHV6xePbAzbPplLkB0X9Sg5oN18XyZEaeeYHWx7OFzxfTblejDn5DUELd39+g/eablHJQUmD/vkFP3FywQ9e3qNwnp87e853Xj7g27/5NjrkLLPvznlezYg/o9h0BXES2N7U/Priy6giEB94jAuk3vLur3+JwosPtzv3uIMWGkfqNas3I2nq+eqbz9EqoVXi3d9+g9ELUU34CtZf9ujJQFUMNJNIe2xEYrvWFCsBVyzeEe9YeZNYvSagAz3kw94kYhrF+JkcrJoT+TjbwOhVEC/YYW50INPs0WWgWIr/qJ8JZbE9lEmrn8D000j1eEHzush2px+sGOYVq9cKzGDQQw7oHRLu2oCPFAsvh5VKyIi2jVQfvhLlRFmQZhNCZdDTCjPMUdcr9NWSNJ/c+VdDRI3q7L+0d4fzH+P6fB9EYpKu7mQMR3PUagtti51ORFrhZWRN20kXEzDLFt2KVlYZDc7tv1x57ZlknGYYOcxkJBr95ZY0qohaE2uXNXfSBe0PS6KRKYN0mpQUoK3HNkbSSmvBPe4oWioKxSJl/Z6KclqWzp0gYJORjqJS4hmR0Vqin8iIX8WE3Sq2V8Inb84lGb24Vdl7kHWMJkpQWK9RW0MyifZEEW5KPm5Oqa/kqd1rnYO/oD0LMPXEpwVhrdBeE2qIgxaPgdeCt+wV2/uS0PwPFj/P79y8Bko2PbuF0Bt80IxHHZukMC8c/drxajNm2xaEoDEqUTrPopROilKQXBQvBKAGDZUUB6k10kUsFOl0YDjQRCMa72TSXv/uNnJo255Zhonge0E2TrvNr+NUEMbFIqEjtAeGXVihDjkIKocN7bqj/SyHjaX8bxlWoHzK75mhuHeIn5aEQgAHduOJpehCk1H4kYGHBzL5aqJgnwvFfNkLw3ykcRtNyh0GCSrSuVtt0VphWy/3jjGS3tt66bqXFp0nhMlZlFJE71Fa7jPddqgQJU8H5ACy84/4L242ACA43kGSpJWzqJEko4fDcd5IZWKip1OICb3NyEitUc6RQpQ9xBhUXeFnJf2BpbzsRZuvxZujt4PkEAShcTGf0J4JBrx+2YmB9fAA0yZGL8XIatqAcRowjD+y+86YHoRuJcjNtJdY7u5B00nuRHtoRHqhZPqxC9yUPCCdMd150vHZh0NUFEuNW4lnKro8PcgBW36k78gyKR9wCsHl6k5oYHYre0Y/9rjS019XEs4170gu0c/SPiQ1HQyY3fRTyyHpdj3iH778GjEqVO0ZZDiBqgJaJ35wc07nLc4F2kI6xN1NxRM350cH93jcHHKxnaJ6fdeBTnm/bARyYXL3Ugeg1XQfzuTnsTL50VoIh/1YY9fiAesO89fx5Bc7SXN8MNil0JH6mbxPDJkYVCqKG/kZpaEh72G0Iq9pTi393OynUUI1k46IHzvaY4fpo2DChyKHw8oUKtSWUOp8EMld7VawvqYZxDC6m976SHE7ZG9HDtQMBmp5L93WwxZU0+/VA9LlvGtYqVbkzrpwUDiSNfLvIXyhc0RUP8Ckyn5QMfIn76XLq5XsBUAKrQQj+0g8mMi0tJFGD1qmTSrKpFLFJETP0gntyuZIAL+bmEo3WkXJEBo/k3vDNrKvNMd27ykEiE7TT+9ysuqXecKF0KvcNoLSdBaUU4SY9jJj06i9OiLtELSw77Cj5P5Pmn3I6jDeTQTz8zA3OpIRT8Sumy+TOfkyQ2d595P7aBcpz7a0VzV2q/PXlmBTNUhTMyZFoT1GJ6wNLN+SrxNaR1g5ypcCfFm/ruhuar7X36coAiFqfvvpa4Sg0Pda/NZCr1FRnuXPL+conTBjT2gMqjGQDFEnmILSieFskM/pFZR5LNRLnZPKCEHxw0/u4eqBcd3v95JhnPfoTpNCwfXG4VZ3kxUU9DN5MYrFrkG0i3fIkioP5aWWfUmBbRJuc/e6hzKTPDO+3TTS3DDtTnWh2dyT/cQ28p5IbosW4ESfP25SSNBpVnCoBHYdMF1+063klmgQ5USQ5048mMgkdNNIvRx2Kp4cH+B9DoHO974PorbIMp30X5iDSEqkTrIUtq/PJe9h5RjO53IgaD161UrgYVHIi/TkhWymdYUqS9L0rqtZfXBB9fs9zTcfMUws5niCWTSkT5+hT49hXNIflIRKiTnYKJpjg9tGRhc9KjhU1NjNgF73FFoxzBzbU4uvJFsjvlDoPkiStr2T2hTLTGCxiWGcH2K93LTtmaRhuk1ke6ZpThWTJ4liHVHvWpqzxPinrlm9e8Thu4lhpAi1ApskrbQ36KVl8ljTniTWb3omH1uKhcatY77hs48kwOGbN/zXX/8+/4fRz7G9qQi1FRlVY/YbSLGQaUXzzQbrAn/3t/4M9Fp8nS2UiwhLy7oqeevsisdBY65qVDDcpLm84Ar0cWJc9DD1KMRYZ6zgfptYSQE+zkbfjWGnifjKTz/m3z7/Pn+r/rdQV6L90FtJNS0XkfJmwH/d0t4L+/T2fpeQvk1s7mua+1HCznpYvZ5lWB6KpWA0YwG+UlTXMr7cnEuxY7c5vb1UpBegQqSfyLjXl9OclirTGnvT4MeWVEtXoxtbFoeO8UVk/HjLzVcK2tPE7BON6iP9TOG2eSrVDtj1wDAtSIWmn1tMZ8SI7gxhVOBeLlHLNf71M/GVZFN6nFaYTUPqOvYJqLdLSV2vTu7WkLXikbj94nY5ATick14tpatZVcT5hDAr9yjU+e9doQaPOj2GwaMvb0jzqXR2ckOCtpPXazyiOy7ZnhhGTzz6dkOqSvn8xQpGNWpSEaYVfmxZvm4xbWL2m5ekUUX7pROK65aTZ4MUg0A8GFNdwvwHA5u3Zlx/1cqBeh1wyyHnAsj+EouEXijKRWL5lqKfRQlObRX6OuUwLMnDcWu4/IWIPuhhddd0IQJevAfjF4HFm3Jo74+iyJdGHq+hGWuh2gSZMKigqF7I5EHWguwZ8/mWadVx+b2JsP9HHj0eGIqIvrWooHjj4SWl8Xx4cYyxEY47uosRjz+YoN9ac3Kyoh0sVkeOx1ue3sx5+tEJ1UnDpO5YzwJmo6meOdbtjH9UvM26LelayTX67KFJD4IKLRZpLykJlcJEOPluoDnUXP285CWBADy6Q0V9IQ2Lzds9em2pdyGmLkFnhCb0UgqE7T2RvbqFIdnEMFWcfM9jWqHZ6KBwm4jPwanNmRQj5ZUUFHXG+KbKsT13rB9p+bc27WlJ5eIzU/BcIBbZuGzaiN3mrn2MqFDsQ/aKD19CWdC9cSThbEBwBckqipdrCeNsBGcfp2P0tpWsECClRNw2KKVQ8xmqroiVQ62EkhNXX9AQEYDbFYwnAgpZbUi54NLHhyRrdjWmDNRDgH6gef2YUGtm334BPhAPJ/sDv95lQIwcobIs3hQ60viF+MfsqttnOigPZeM5+PaNyOUqx80356xe17i1yHx9VQhyeyJd+dFFpLrxmK1n8XbNMFYcvNehjx3rhzsfhtpLfsoblYlKKWdfpdxQy0VmnnyCHKJDKZ12kELYTxPRio/MbjXVhWRz+XHCrOXjhqRItwXH39Zc/UzkL/6Zb/N/an8WcyGYapLK2V4ar6CfSRlamMBs3HL2py9ZdhVP3j+jfmE4+FHk4hcS03du0b95hN0W+D+1pN0WTL5T0X6j57/9s7/Fr198iYvFhE7X6FZjP64Y5pHDN2+47maYjcZupPHbKLDznn/z6z/k2WbOp9eH+MEQvEY3RiRKxz3qpuDoO5btvZLFg8BoqdABNidiSLcrhd1qyluhn+4OZNHB9jzhNorZx5F+rOjnd+HTtpFIgNFFDrA+VNQ3idHLgc2DgmG8O4jcUfmKBRSriFsN9HOZqt1+NeHWmtNve0CmbN1ME03F5BNB567fGBEzFVPnhnb9fIPatKRacsqi0/sAadNH9ADNwzHKjxj9/guhwOXk9VQ51EJkWLvAb71cg7Wkqvj/adl9rg8iKUTc/XuQEtXTNXrTQD/gHl+Cs4SjiXQaiuJO43Z2LB3RTmghOw0sIBhDwK0HmWqsOpIxpK99CZ9Ho7bxWU8tPonxS8kHUf2dhlP5iApBOq0+MXka6Gea9lAL593HPSkLJdItu5W/G4w8QFVKDCNAy83dzxOLNwWfVixExpW0/AymU9x+fEB9IxvK5pGiOwmYlSGtDYwkpKs5lZ+vuJFTdD9TLN8i4ymjeEM6xfbxAf/biz+JasR707/ek4JCbYywxg89nS3EHF94UlLoW9n0kk20xwlfaVSMkk3Q3oOVZTaIPt1sNem8Yzxpab1l3RUoG3GF52y+5vEnJ1RPHIWTbmqo5ZBkN+J78bPAhy9P+N+sfglbBMKZSJW6A0N/YBk9N0yelLQnEX3UsXEOvTVMPhFzqa9ltFzc6qxfT1TXaf+eJi2hZTJhyQe+KJ9nm8ToxcD23NGcKpZvWrSXUbrZJsplXqxaEQpN+2jK7VuOWEL9Ku51/LvLrZNMzSYW00QOPhxwS48aj4TVXRjaE4cvFfWVx248er0lMoIRomV27k6rUciYX99uwHvp8Hc9doF0850jjEs5sGy2dwFmRwdfaGlWKgv0ZEzygdT16NUGNXjqyoq+dbneyyt2V5xWhMribpJM6UbV3u+xQ2+rjOhsH0iAZGE0+IBeNRKC2loOPshT1pM5/XHF8ksFxdJRrCToUKhtu0JA0rN3BT5KggyTUQxjje0SR99n31UvbsE08vHay8MtTqE7vsMA108Nw6IiHAXCJLAZRXSnsQs5oIdCsgb8RPIu7Lznqw9e8v0PH1K9tHSngeAixSsZ2w/TSHEjoIbVm9Cfeqresd5UlAM4r+ie1hRvrvmld97nH737Fbh2PL+RScRwXUEZqWYd09duqYuBy8WE2+WIs8MVpfVokkxJBkW3dYSgMPOeUBnspkR3msubKdZ5qrpnc2bwM0PXZnN9DisVb17u3jZSJLQHgketXlqGRrPpNaZObO+Dnwm1rHjp8sRHur7RSSaRaSTFXAUhbPlaMpOKRcI2sodEC9OnXuSz9d16r1+qHE4oKNby1kNMdGdjmhPJPxo9l8OH3co+YnV+Ht1s6R/M6Gd2P6HVg+wn4XgqPsTSoHNHU40LefYNEYzCj13uhibJB9BaiHBKiX9hR8KyMkkVXbgR2qRSgr1W8ixVVfFjJyZ/7q7DGWFSoo3AQQgRvCetN6jJmObtU3k/2lZen5SoLlvpDDetHFpSEqlblQ+GRhGmFSoJoMD0keJVg960qG3L8HBCcyLSXhcVqh+I8zHb16YZRpInXRGqawEcbB5Y0lqImN2Bhblh+rgnKbh9R7wK8w+lsdVP5dCyu6KD/uDOpG76hG0iw1Smp6a7UzUMU/FbNV/qqeYd6cOJRAl0IsmMLksXjwaitQJ7uXKoKNQnFPxH7/0kcePEt4XggstbweL7e54YFR/dHLNc1qSgORuvmZUt9qilcYV4Z047lJLsMpSi7xxpa7HbhNKJr1Qv+LX0FkNncQctzgUOxw2TouP+aMm3uoJukeVCUSAUPhX83qv7bNuSdlmiVyKF93UCl9CvCrQXQ7mvEyrnCvlaaiZUksiEPCDUvey/Kqr8GkvDsjnRWTYvpnIdYPW61G3nvzmgp4bmzNCcaPpZsW9CgBwapk+DQHaOpV6MhUx8TJ84/L5k1kUneHf7LDF+3mGWPd1ZTXQa2yQGLflubpuwmyBrupBaIOWoCpVkSme2PaoL+ENp0qW2k4ytVSd94F1AsivQ254dxnp3+JbJaUS1PTp+5sb7z7g+1wcRUiQdTCXB8dW1nOljIt7cyIY5H8uLU9x1AuN0RBw5zKoVdOHiX+wE620v2LGuh0nN9tFIHh4bj+6keNilXLql3IVJIV3GhGBWgyQiq5CoLhpUqAiFErRajPhKZ1qSjFztNhAqLdrifmdIzxkYNhFG0JxryhsoVon1I0kidysxQY6emTvG92lg/HBF//05uld3+RsHQRC6Kym4fQ32rTXOeZptKVKqxlBeWIqlHH6GSeL4dMmmLWiXUygDB/MN14MmdIbaBfreiqHdgS8jwzSJATSC3hj0rTzEVZBFqAeFrQYezJY8X87oB5vvZc/r0xuebs45eC+yPRdaxG7cKeGMCWzEX1csLmqqh2umkzviUzzWLMwcPRjiQc/RdEscaxa3I8rvlJLqWsp41a2zTlMr6isxaEanZPM+gPIazCaHTYWE7iXtunyxYZjOaYDmTKhjsw9EKmE3YW8K72eObqppz9i/Vzt62e6ecU0iroR2RIT68UqMx3Up43yr6CdCyBm/TJjWSw5ILpiT1jI+BTlE7Q7Zq41070a1/LcP+7UQy5ynExMJMWPGs9m/hAX5r++VnJHQwaYlti1stqh+wI1K8c00Dbhi/7oChNrlA+Iga752d/jvmE2DvTQ02kMrHo6mwiwaWLZiMu0tdRdIzuAPSppTx/aeSHVCqdiBCsplzFhMTSikK65DlmpWRu7TSuOayORxR3dU0B4Y3FrG+cVK5DoiEYQ09sSi2AecubVicQR65BlNOtYvJxTXFshdz3kkTaT4HY06fmr+lO+rBxQLaB9G3KRHP3EiOTgKcKspl4mro8ibb13w+NWhBCF60FGKdPOO579z8hv8xvR1moWjW1R3RYACYyI/cXzBT8+e8O/f/kmGjWN2r6XQgUVfSWpyUMTW4IH5wZa+NAQlpLxh4VAHiemoQx1sCUEz9JZh6zBNsdfA7w4ippPD3a7DW9wCSZO0FQPsODK7t6JpHeWHk1yQJUwrEjS7liaR+MKkcO8OLc2RZnQZcUvPMLMkC+XzLaF2+CyDVEl8a8Vy58VJ2NVAGFm6Q5lG+XHEDAqXnzO7g4N9ucB/8gTn3iGpMaESCYgALVT2joi8YucnC6UcSNxqIDpNqLSEKA5J8LxKkToJOd0hatNOrpzliBhDrEpUkFwkQAL+7Oe7bPjPuuK0JGXQiIoler0VKVbXo6qK5kxe67G1+7wEfbPOBVsrEs6uF618/nelNWkupLHRk7Xg3W9XpGEgdj1+9Ij2UFEHIUoRIqmwNCeyr9tt2kMQikVPT4GvpahFQTcR2e/sBxvQ8OLfKCmWMH+/AVUxTFQukO9gMd1RkAN7llaaTormXZNBxYTdyJQvVIl7D2/4qeNn/OrHP4Np1d5jmTTEUaSetzShhq2huNFEl+juefAK/+kY5SBWEa/yJOe5dPxdPRCDZrEYwcLJek+Kke2ZTxv6uqc/tFRO4AC7YNE4iJxKkNyJh+5GEL694ehww/lkxV88/w4A61Dx/foerRmL9DpluXYy3FxPSL1BtZriVmM34F+TQMHiwmSAiDQe9CCqhoDIx1XMAIoMvtmBPWwr71d3CKFM9LO78Omil4NQfxpQncYthyz1Nwwz6JzUJbqX91YFGD3Z0p3UdHOVZbfShDZ95OC9jlgYmlOHbSN2Eyge35CWK4a33sZXivrSy+GokHvANPJaxsJK7oeSqIo9PGQlB2SzS3L3npQiqu3kgO2M7APBQJd//l0NAneH96Yh+vbHWncqpX/56URPnz7lr/7Vv8qv/MqvsN1uefvtt/l7f+/v8Sf+xJ8AZPT71//6X+fv/t2/y+3tLb/8y7/M3/7bf5t33nnnx/r6y+WS+XzOvzX+d7GqQDkLZSkbpM388xBJqxVqMiHcO8S8vCW8uEDPpyLJmo3lBVusRPdZizkvDYNQc0rHcDyWB8WBpbocKJ8vSaWkr+utsNx3SNZhYnCrgNuKsSwUmvUDm9nOaZ8PsTNCdzOhDej+rjDtZ2qv9RamvWwE659vSFcl0w/1Xoe5eSijwemHckoeJhJ647bZrF5LVzRl+s3ukoWjqK5kEW3vJfyh56vvPGPVl9ysR8SoCN6gPq4xnWR27A2gk4CbdvirGtUpzIMtSkF/U2E2WnSSAznTIBFGkfL+lq5xlB9WEoY4C0L58hDPeiFlXZXEKlIctvCjMfP3RRM6jJPITtOdV0MlkZAw8YznDYX19N6yvhkx/lHB9n5k9NqKZlMQG8vs+3IQXX1FpB31C1mUIteQF7++EO216dhLsnaUrXIhWsvtfXnNyhtB9u7IZyqB3Uih70eaaESC4TYR00W6A6FHFAvxfJg20J6VbM409VXErSPFbY8KkTByYnhetsRRQRj9wYe+bjz25S1pMmI4GuEuVqj1lnh6IDCFdZsL5UzN2rYQg/ydtdIlzTQoOtlYsJaQBv6Tl3+XxWLBbPbHcyj5o94n4G6v+K88/B9IVst8RjieYq5W0sE8mu9BFDtCjrlakW4XxHdep58XxELvp4/lZYf76AX9Ow9ozgrmv/2ctGkIX7oHWokHZNOiVhvCo1P8tBC6CGQphOikmyNLP82a3z5RX4mp+frrhvJaDKMCv8iUOQO+Vnv/SLGEYplYP1T4kRw0TCcgBu1FutNPNT7LLKLLa/3A89qblzx+dkT1cUl3EkjjTBALCrc0+Emkvr9mez3CLAxuKdPBUInZNdzr0BcFk081yy9HzGmL37j9PqN6hVtohqOIOezye6mIlyWYJE2S3tKvC5QRH1scDEonzs9vubyZUv/2iOYswWsNB7Mt46Lncj1muy6pflTt5Q/R5pAvnYuiOu6pPebWUr/UrL/kKU8a7O9MKW7v3gtf52bLYcQuRNrVvdZDpzn9Z2KY7edKwttmkeJWqD/FUvboUEsRYnrxjO3QyLv8Bz1IllQopZGwC4gEmYJX17IfqJDo55ZhdLe/+0oOo6MXPcPU0h4YZh+32JuG7sFEZDYXjdDYCoNdtKj1Fn//ED92hBxaGEoJMjNNwG49uvN3xtLhjvyUVhvi7QJzciRyrYtLeZ6+dl8acle3gsfXmmG74Fdv/4Mv1F6x2yf+3NG/hz0+lYKrsLKWu0Foes4xvH6CWXeoT5+j5jPiVMzqKiVp9uR9FyXFWZyPCLUjFkI0czetfMyQ9+SUGM5n0vDoZPKu+8AwK9jcswxjUQHMPg64TWQY77CtCV9r+oliGEsTcPRS/Cjtsd5n4eheDhluK/f99deUTD7nHr2wjJ7L1NT0ifZYULLhtZa4cUx/ZOmOE/2ZRxVCsIqNxawMx9+Rrn0/VSy+4Xnr7Rd8+PgUOsODNy8xKnG9GTGpOk5GGzGtbyrCxqJazeip2ZMCo5MJQ39vwI0G/GVFsomDB0uh861KDo42nE3WvPf4nNQa3LzD2EjhPNYEnIlcL0f4zpKCxpSBbz56htWBmBTfe/qA+LQWj0eE/iBKHfRKwl2HA1GNYCNqa9CZHGpayVpJStb0zr+x+dkG4wL+omb82HDvNxrWD8o90hsNyy8BWiSzdiMZLDtt3zCSdXn2WyuiM/RHBTdvO9ZvRE5/G8YvBrpDgRLF7NPpD8TI7tYpZ8tAdTmQrKabm0xbjXtlh+RBKdb3pWE1fdzn/WYXepjQiy0Y8ZTo3qO3Pf29KcPEMn73EtV0xINpBlhIjUKMpDKrjDKhk34Qqp6zsn8UFt32+L7hV9//n/2he8W/dGbnzc0Nv/zLv4xzjl/5lV/h93//9/mbf/Nvcnh4uP+Yv/E3/gZ/62/9Lf7O3/k7fOtb32I8HvPn//yfp21/vNPT/gqB1HWieweRVhiT6R+OuBaNZ8w6tuQlAyBtNrIJKHV3eNkZzJSSMXWUTIqYZRi7IJdktXy9bN7Z4RTD7rS5GcScWMn4P5TyUEkmI1uzXGDX5Y9WEJC+kodZUhDLjJ8EdkGIKiNno8v/phDfhJfubDTS3Y9GDj7S7SOboBSmU/sTz95QlRAMXa+xOlKYQOk8B5OG44P1fiOzG1mQ8porfG/lENLL/49Bo0ZetOv9Z4xvABrqsqesB/xItKUgsqj6pSZtrXhYeoVuNf1W8ll2nZhYpP3PKgmiIo8gIoZXb2h7R9+LUc2t5dueTDaC81sbxi+jkLImA2Ec70LFtHzNZOV92r0vKsoiT1aKr34q4+3d+9RPZRN2G2GCl9fDPvAyOIEN7IrIpBVuEyhWAdNHzCDm0mhgyGY228oUJRktRa/9TBaEVph1L4zuQUIPMTlnAsQn5b3Qb/odVFzJAUNnOWJMd9ha74Wm1bakHc42BJkI/DFef6z7BJAGD4MnGY0fO1K5CxGT4iHswh+13u8jd2hU+SP06CTSriHsD6KkiFk0mGUroYlBkKmhsvjRTn+bgQFDxC0GGacX5CJajO4qZZmkUKpFH2zE2yB7CJnkJDSW3freUbJ2ZnPTJ+rLAdMJLS7kQ7fdKnRjaIa7Q0MaB0bzBjVozFZ8X7pTbBe1TFhGMXstIBnRhxOlMziMpdj2y2L/9fR4IFWRZEE3inBZonRkNG4FA+oVh6OGopBuKUuLelnK5+vEYlPjV04gEh6KcqCwHqMjbetIjdm/RlJkyd4myG0wG8EJqyLmQFSgjNSl7D9+lA935jPvq0q5K8weR6zya7vzl2CkgaOzUXWYSrq0H8me68fQH7CXwnTzvGeUu/f97uv1c8l8ECSnYLWLhWf0cpAipRYZxVALRrObaZozRailmNVDlOlG2plHtdzbi6VMST7brc77hBkycjPkgjmEvRwrOZsnIUrue/2ZsiDlZ59WGV2bC+g/xuuPc6+Imy1qvb2bADkxme+mQGbZodethKJGKTjZhRjXhfzJ9LFd9zjl91ieYUo8e86QSkuqHLoT8p3u5TkwzArxofr8OXqHgRcvoq8Ubp33n8/sTd2hojvIhXCC9kT2CT1I7aACWVqDGLR3hLz8TFNRMN1lPaBqv68nMInUWOLKSQhgeRcfkAyQYDs4UeaYxGElkqgYFVZHzqsVo7LH2ABWGqg7M7wklcvXMFWgrnvsSuNuDU3nCEGjcyq7TxpXD+jJwHjUcTzd8LXTlzgTubiYM2wKUm9gUIRec9mMudhOebI6wA8mezdlD5U9Sry5dqsgKrARXQbxwQapP5JJuJVABHQGXqgIKSoB60w90YFZ93n/Zt/k3KHRBbkrjSPtpcarbhLVjUwnk1GYJkrNkXHKugt7MEk/U4Qqy3udPAt2f2Khc12U12kCP9J0M33332P5OsXlBtP6PIFRe6M5u4NLRDxOTuNrLc8x70mV3McqH5x3tfN+n8gNPFkghlhYUpmbe+7Hm57+S5+I/LW/9tf4tV/7Nf7xP/7H/1//PaXEgwcP+Mt/+S/zV/7KXwFgsVhwfn7O3//7f5+/9Jf+0h/6Pf5A9+L0XBz8bbefZOzSz9N6c/fCZda3KktwlngwkTcigl5t4eJKEKZlQZyNZKMweQQ+BIbDivbI5XRbwb2aLuzHXEkrdOdRXSDlDkhzVuab5O6hMHnSYm+2DMdj+rnj5isW00nyrunkIbN+4PC1YnQZCQUs38zEA+QkH8aR0ScWt5Gb2o+guR+oLgzjpzIKjOVdN2T8MrJ8w9D+0hr7nQlHPwjcvmPoDhLDUcizfAUmoUphf6MS9v0aPSiah7nAjaD7Ow22HsDXiWGWeOPrz3m5mNJ/PCHMA2Y8EG9K0VXWYb9h2htLdamYfhopFoFXP+MYZgk/jaQqUM07rA1olVi+mGLWMjIlIdkjJu3JE+TNDITlnapAedjS3Va4K7tnltcXcot3x7KYd5sBsA8EChXZPBZpj/TeiAqy4aoI5bXCbRKjV3HPTN9njwy56Ku0bHZW8If9XLrXupMD4r4LlD+mWCXMkGhONMonDn8k5JVopPAQs7zHNB6z6SEkVIzE2u3N6twsxesBIi0qC9K4lnUw+P0aSCuRIarpVLoa/UDabIhtByezP9aJyB/HPgGfmYi8+T/Cqlwk1MX+IGculzI9rUvZXFPKhUTeSGPCPr2S12s2ITnZZFUXhJuulBR2VzeghZK127CbL58wzCyjJ1tUgvakIpZqr/ft5+xJbyffbVE+Mcws21PL5r6El5bLyOZccmTsJheeGmwnZJOdLy04tZcV7ugpbikep8U7UgAffV/u5fZE7R/KIGto9knE14rbP9uCSoTOwKDF0P7YYttszkZQlMmKed3mELTtfTG5K5/xnp3Cz8Qk/81Hzzgst/z6f/yTctD56QVaJ0LQdI8nVK80zVc6dBGof3dEP0uc/ImXLJuKzaKGjUU3ivqFJpRw+GdecLUck96b4F9veevBJS+WU7abktHv1mJGPRcEcHKJ8pXBbYA/c8PpZMOHH59hbi3jJ/Ie9Acx72cy/SVBcZMfslqMuKFIPPgnifJ64NXPVPiRGNxNK3Kt9igR8h5Grzn4vpB+mtNEsZQpSn0pX/vFXxhIveb+fyrSj36qmDwLVJc9N1+p8bWiuo25eEx7QqMeZBI7fu8aNXjC8ZT2pGL5puXgvZ76g0vC0YRYOfqZELjKF2s5cISIP5VOZ3nZoNedPPMOZmy/cordBsxO7w173CwhkEYlflZRPLslvrrCh5b/dPMPvlB7xb6mmP13ceM5jGritM57J+jblewNdYnaNPgXLzHHRwLBKAshD1V3RVcsDcPIygFjR+Azgv3XfcC+upOE+5MpYSRUtFDK3lCsRevfHTj6icYMsu7XD/We5FhdJSbPvVDzxormVIzUp7/TsXlQcPGnAqNPLPOPoqC3nTTb9JAYXUQ29zSLr8g9bDp150vL0qXxRWB7Iofg9p5HjQL6VQE6UX1pxTAY+nVB9WnB+Fni6hc95bxFf3eKyX6sYYpMXZ1MKYkK1WiOvy0FdHui2LzT89NvP2bjC7aD49lHJ5itxq71/4e8P421Nb3uO7HfM7zTns98h5qLxak4tmjJliw7bRsdOJC7jU7spIMgCoJ2ECeBY+ubjDiABUMOkG8dxDbUQdBAgG4giRNEttFxYsnxIMs0JUocRLKqWMOtuuMZ9/xOz5AP69n7FD3SsVg2mRe4vKxzzz3n3L3fdz1r/dd/oHup4b//+a/w/3j3s2wejnnt04/41OwpXxi+z5v1Hf76m1+gW+WYhWw/TQ3u319wf7qgC4YnNxP8OyPcSc/ocMt6XkGvGR5v2a4Kpl8pBVycSS2zjVh2u0HEvrKmuao4/rKhPlXUZ4F8oYU2hdSF7NNLmnfHPPernuULlvpMDACI7GnzpgNTR/J1ZPGKpptF7v66xzSR609kye5bNCT9ULbbu95Ke9EEZ+tIeZ0G0eqWXlpdijatmLv9MxwKCUBuDzL6gaI+1QyeBQ6+co47GdMd5GRr6RduPlaiPYwedtitk21f06Oclz7YKPS6lT6ibghHM9xRRfZ0hdrU4qi3c4IdlfRHA0wtW1f97Jq+Xn5f29Pf9Y3IL//yL/OlL32JP/En/gSnp6d88Ytf5D//z//z/Z+/++67PH36lD/yR/7I/mPT6ZSf+Imf4Nd//df/uV+zbVuWy+X3/AKEapImM6W1FI2dBaESqz12fNZkayooxYemNCNCG3UwJY4Gws1PqNCtI8AWu+r2KIR2SFFSilDIwKJ3iNNuOgyRYt5T3Dih7URZx7nKEIoshY6F9LVuud3ayfQtwsf0z6ylMAjHOTVQrYTZ7OhDptZ7r+36TmT9ihO0Lq32dA/ddUk0IsTuRxE/iOhhD1nErgyqldvBtwa/tamhSXNqQBBTJ8ioL+Ke1qR7OF+O6Dor3uC5R+uAmnbEww5VhH1Ami8izaE4e8XkGoaCmAcwkb6T92ZQdPuGJuTyvXwe90FEIZeMgB1lSwXAK7pG0N4PB+m4odpTVKKRrYZKxTaaXShZ+uS0fdm9zjvr0X2w4m6TZcAV8porF2kODfWxFceyQu0d0YRbmgSB7W0YpWmhnMv94nPREkmSqpfNRwDdBbJtSJkxFj/Mhb8cI6r1YtupFKosvjdwKMT9MI4PglxYk5AMCUmUjYlsBHWe8QNgaP5Lrx9EnYB/Sa3YCejaTnITArehbjEKCtr1Ulh3VC3S+55L3ghGkE2VdF6AiNetmADsh8DkoW76IFaLmSHkRsIwIb3fIgbVicYoVrGyLcm2ci/stqfZFrKV0Cu0BzcQNMxnAjTYTZDBwiTdShq0ZXuangUV09bvQ3zmPj07uw1pgOAURCUopN7RmG7pE7tnMRjRtsn9D+q0ZXxvRcwjYRDoz3oYOmKAD5ZTfufqjtSvINoQ5wzNWuiY9Zl8r9BLfQE4G6woM7cH2qIWZM8NI9s2x/VW3sNUJMvMiXGG2W2I4v5082WkH8vnFMah7O7fkahdWvKXully53M7lEICZZWXrbJPphKuShumjbj/6E5Sqe1SS76SSzTPRv4eyBZ7V+NZW/R252mcNt1W4YZ272qjnYAb+cqTrUOieaYtfGaJVYEfJDS1kUEljCuxkG76ffBqVIpYSC4OMVD7bX0AAQAASURBVJKtBSzDJ1ONtIUNWdKG9B7VfEi8vkNM00aPEIQK/RFeH2lPsa+hQbbMPgW+lblQ03wAYzBHh6iiEAvfdObvDSe0Ah+xjZf3oulSmOqHauwuZyHG/bbEl3qvG9N9xN7U5At3qx/LFaa+rRsgOgu43S4UNzFtNiLZjcE28uz0IwEpRPMkm91dHQhWGm+pSZHqMpJtIs1UNvJ5mpls2eOHHj8MGB3Ic4epHG4odHAA55LjlCE5ZEFxaciuDfYyI7uyZEtNcyyDUz+OmNKTG8eqLZhvqnTfyjMcneY7qzO812KUoyK1z7h2I9a+wFqPymT76QZCUS8yeXEWdbnvJ4gQwu65joyrhulsy/Jjge39gBuKrrUfkGzO0/uUB5oTRT+JhCrIlsTK+W03iu1awObFi9nerndH69pt033akuxCCaMVm+VoRE+yo+cLWCn9Tj9O9SukjVYn2R7yusrAlK3jfvsJCPW3sCgXMNs+yQG4Zans7rkAwWpcafb9jWklvFA1/a15RRrC9/d0nkFiaey/Z9KUxRSGqLuQtrJR9FIfon/+y67f9Yryzjvv8Ff/6l/l537u5/jzf/7P85WvfIU/82f+DHme87M/+7M8ffoUgLOzs+/5e2dnZ/s/+6evv/yX/zJ/8S/+xX/m46oq9snoFLlY7tXNHrlUJO5mVcrq2jlpEjIR6+IUsbR0J0O6j02xG79/Q6LRtIc5+bxHXVyhnl1Qak35ynO4WYmuHSE3bO+V2G2gevYhwXQmAqDirWfCFZ0M8a9Nqc8U0eQUhxnllQhg84U0CNszTTGXFZlNrirdSKcDTxqTbLvLH9FJpCoPjHYyfasodI9P/+Q7/Nnn/t/8j//h/4juSUHIDHYbufMPNJdfiBRfuqFPDhVnx0vm6wH6uzmt1pKIep1jNho3CqJjqTWmVpSXiuZEvLc9CLqxFU99fnMKR4HqxTVtk9HXGT/1ibe5X8356vXzPJ5P6N6aEJ9v+D0vvcc/MZ/ElVa2IaNAMWvoW0s8L1jPNH6sKZ8Z8gUsPunEPrNX6E542vG4YzrdsnhvJv+dR8zGMHjbChp6v6F/UpJtFPUo7gcNae4iw4each6Yf1zTDyPFze3DZZpIMVdpJZpCnEJqyHJpSERsDINnDrPtefzTI3wZKS8k3MluhcuZL6C69uKIsuzwpWV7J6e8dhSP1yw/NaU5EEQ0W3vsvJFDP7dimlC3bD55QntgAXFaGn57jepr4kUHh1P86RS9zG853z7Acn1bo4pholwoMJowqcTtom5QkzHKGvz86l/vQf83vH4QdQL+xbUi3MwJKgnRtUY/dweflcTUXLgnz7Cnx3QvH6P6ILabQMg07SdOATCtJ7vYwoNHcO8MfzCQgFOticcHxMLgJgV22WJuHNnFBrPM2L4gPPLyoiXYHJ9DdS3NZX1kUiJ7RLuA2vRUVgM57VSxPdEcvNFia48vDKvnc5af9ORXmvJCU96ILu3qddFBHbzlcKWmbZVwvsfJlatXrF7cvRoxWVRHyQEaRrIUZKovc/zYC2IYC2KvZfDIIAw9Kg/4M0+4LBg8MvsAxf/Vj/0tfk/5gP/uV/9TxlXDf/z8b/M3Hn2OD945oX7zmGwNNgh9aVY1PFrPGHynIHxpyR99+Vv88hufw18Ve1Hnhy817dA6Ur7a0DnD6s0DbC2NgLvOeZAdMhy0VEXPZioHuDpr8WtLdm3h5S13jucs6pL3rg6JrUZpqE+FnhGzyPjuinHZ8uxrZ9i1Ituk1ORhpLjRZEtYvKwIhaY9Eq3ZwXduaaiDZ/I6L1+yot9YCkVvcKFY39XUZ+IWlG3g+DeSXsQHsk40aO1U0xxklDeBshMDgWzjqb7xkDgZ4Q6Hoj+KkfbeCJ9rfKmwdeDgO1t8ZamfGzN4+wa9bTCDnJBp+pMB7SyjPtYcf3WJevN9VFmijCbmGRQ5vhAOu2p79PkNYbMVC+osI8zGRK2FKuK8sAGHQ5j/q5/x363ro+wp9lfTotpuDyyEgxHEiHlyTRwNaD9+h/xyg76YQ5kDWqixWhNLi5036Kv57dc7mEjdaYUd4KaVuBNtmpTEbqTxt2I8UV128O4jitUhdjai/fQYX8D0vV6c7gpx0VvfNXvU/ezLC1TrqV8YY+vAnS+zN8XZ3JONXfmb4uS5OZNte3GtqO94mDjMg4LBRaB61rG5X/Dk9wWqDyyztwPLT0buHS7hcMm2z7h4NkWZQDHoGXzqiupzjvXjQ8J1QXPmiUVgcrZm9WDK0W8rTEqaN50MON1/dEOmA81iQJ473r454vrRDLMy2ERRdfdb2Fq+8fdeI7665bMf/4CresBXz5/nqzxPYR2vHV9yMRxyPRgSz4RhVWaOm6bi5tFUBpBDQWa21wPRwmn45ME5nxw+5Q9+9jv8nfXr/N/e+zyds/S9oX9WoZy49ZnS0X+pJTiD9grXK1CabKmEBv6dkuYkwH/zmu37U6rHhuJG/q3NkejQ3FAy3/wy0Xt7RX0kG+zDbzW4oWVzx+6B5+WrosWrnkjQdXkVZGBpA/1I0ZxGzr4cKK87tqdypoVc44aGYHNG720w8y15ZVFeoiO0i7ipbPjyRUdzUuBKMRzJ1kFiADa1RF0cHxImA8kGAWKZgRKwMtp0D1tDLBMFEVBNi2pabNsJ2G//9XYcv+uDSAiBL33pS/ziL/4iAF/84hf55je/yV/7a3+Nn/3Zn/3/6Wv+/M//PD/3cz+3/+/lcsnzzz+fHvpc0N+m26M8WJNCnOyeu6Z6J4IaJXxO1UpRV73DIojUjkdrVsIrdeOUdHt2vOeKhtygegkvVCFSXXSylrIabL7n7aIU7Wtnac3pUF7QinwlVnm+lClS+whdUhZFKRx+FygUBBnoJxK8l68D1YXCdHqPpIseRfjKNtlNfu27z/Nziz9B7AyhjPu0cF8pog4sVxUm8+jC8exiCquM8VZeg3aei3NFHtFtonBMnbj+bIygNSu795yWohjZvuiojmq+dP993lsecb0Z8Gvf/hg4RTZt8c4QBwGjIvOu2vNV+yOHHfXEqFAa/Fia6WabY4Yi7sfE/UaGmF6bq5zFPKN6JluJFp1+FkE0YlCE4w5/pCTUsddk51niy4oWxOcKlagxtpaBrpvI9qQbC9KbrUQgjBbEYuezHpOexw1Nok2oPQKre+QB3wRsHTC1CLpU69FaRGoAYZRjOrkngFvdhxJ9iMoMxBxbC1/U1uKmE60RhA0k86JJfE6thZrogzQaVUEoc3TbyzMym8rPt2qEztj1t9sS/a9XOP5Nrx9EnYB/ca3Q4zG6Gt1uTZsO47wAGSGgqxKA7Lrer7Z159FOkqtJvFqsRk/G+ElFP8owmbkV//We/HyD2tTE9YY4PsWPclwpr23MhGJoG3Fuc6XZI4miDcroz6p9EF62SVvQCL4wbO4J6qa3Gt1KMxsyhc80+VIoi91YhOXDZx6UCCHcIOKryOBjC7rO0j8cEmol+rfk9NIegLi0KLJri388JTMx3fdyb+fTlhjBPxmgItR3AsWlDN6/tniNCzemaTKaOuf/1P44q4sR+bWhPQg0xyLaDFnk8eWM0Bia44ANim8v75DlDj/RdBtpxt64OMWawOHxivl8iFtlrACiwo88pjOUV5HuQBGjYrMtCFGhxAiMMM9RiB1vbCwPLw4oq47MevyspVvn5Fe55CjkkdV8QFNl8HxNvcmw3/6Q06IV3d6OIx6MFgt3fUvNRIBsBk/iPuchZFJLfE7S6CUKnU1IpZMGQYZMqdHtVO4RQcEV4eww0YRTfXFxP7hWT+XsUTFi1x3ZCsKggHFJe5ihXaR6tMHUjnyRYW42AnAezwi5IKehtLK1X3eo3u/1lrJlNdJgdBrapJkaDcHegjYfxfWR9hS7K8sEQe4dqm9gKnljsetRXS9neu/ZBUJGrTGLjSDEZkCsMtzzJxKo7IKEG/YebTWhsHQHGbYwWKv3RhnFSrbfu5BLNaiEfndWCTjZRLKVhMiFzO51TQKuIWi40TQHtxrC5kgJbXAUiFo0UlHJPSs5ReCGmi5pWruRRvcZ3UhBJg6YmzMNPvD4aoq7kDpZ3t0SI/SdZdEbFiAtjI3YpSF2iiUjsq3CDRV9QtHLqyBbAcDoSF46rE1nmRb9iB96VOGpRi2NjvSdRkfF0/WYGBWdMyyvhuSjji+dvM9lPaS5LpNeJ+KHNZnx2GmHayx6aeG45XC24fJiDF6hibxTH/PLj/4ECpiULe8/HqGuM2IlDoLP37mh84br5QDfa2It4HbIIt0spbhb2YDMn43Jl1IL87Vsl+oTeWZ3myflhYWhfLI9rqCbZUnvkTYaFoaPBLTI10kbUyQNB5ZsFRk+lNeyH9oUlJxcN0n9yUzCN3XtsEoRcovvFTHXmE0vtKlpjjGRbOmwdbqP8ww9nQhAkXJsCKCanphnAsB3HrMV2qYKEbXLH0vC9di2qKqS4XwXnfF9xA79rg8id+/e5dOf/vT3fOxTn/oUf/2v/3UA7ty5A8CzZ8+4e/fu/nOePXvGF77whX/u1yyKgqIo/pmPR2MIwwK9EgEpIA1YZvYJkSSvdLaNOF+kP1db4b3FpsX0jr1pZ4xwOYfgsQcDotH092f0I0s3Ngyeddh1jy8MykeKB9fEqqA/HMiK2yqyVU9UcPWpEu0ik/dF6DM4D2Qbj+4CzXGWio7QsUwrg0BfyYMbNZTXcsK1Mxky8mUvKd5XmvpQi4tOJutI91KDuyyonmoOfiND94eozwdCKUOPs1H8sQEuCoqXllR5z/ydEdlCkS8jKijQhn4cCGXEzoXHOTzcUJcFbl1J4N9c7Pl2FIgw8Hzq4494ffqEPzb7Lf5f1Wf5jesXuPxbE0ZPHA//8IAwDDD0KBV5th6JTkPD7GzF8WjDg/NDtA7ks55mkxM3FjfxuCkyiPQ6+flLU1Weaxns1unAzm5XmruV7tmdOadDUa+fb0bcPDnB7Cz/otAlTItYZi5l5doeSOPWjyLVuSCh9ZloU+xGCkI/lvdNuUg3NqiB3hcYEGpFee0pnm0x87UMy7tGX4sdcFTQTXNJRm7jLZ1LJzqF1fgqQ1uNXffYeYs5v5FbdDoCl6hDTScbEBLNYpDLijSz9IcD2qOM4XtrdNPhD8aoENDPriWoq+v2drUq+1DY3Udw/SDqBPxLasV0hDucCfWk9+jzG+JmCwkd1uMRAPrZNZwe4IeZZIQ0DjvfgDH4g4GYVRxN6A4KuonZ02VME8gWnvj+Y0LTEvsO9dJdupnwdFUAn8k9YGvRIbUzhRvGJIyU2rF8wZKvIoMLt/enB3ADw+oF2ZBmK5UGZ7Gb9qWhug74XFEfaQbngeG7S1ATwLDNFX0Z+LlP/gpv1nf4r65/L34r1EjlpEluj73cm2txlTv+esvmriDpIZftwL3DBdebAbwvGqry4wvadoqtFf/o4Ut8a3iGX2eYlSGcV4ydDPObH2946eyKR9dT/DZHf1CihgF1r8E7w3efnjAaNpR5z01rUL2meX9M/tyGn7r/Lv/P60+T3Vhcr4lZwEw7wqJi+NSzvWPpgX6dy8Y0F7//4tzQzQL6rMFfF/Asx73qmY22nI7XPAiHFNc5ITlaOZ/TDy2//8e+zbwb8O4br+xf+5BJ6FhxI4iuqdVe66WRRiMY2UhPHrREo7j4fEE3hfbUkc0N+TwNnBmEInHHW1B1wG56fC6GBssX5T0uF4KeSqhYCjBsPTuuhGkD+bvnQtE6HmPmW9RyTffaPdrDjPrIkK8Cw4s5qmnQTUsAlDH0pyP6oU21x5NfbASY65NNp1LEgTSc6mZ5exNmmegov89sgN+t66PsKfZXZgnj6rZOnB7Im913UGvR6/WSrSJ2ppq4WApVtsrpDwdsz3IBo7ae4tlaGBtGEYcZ22NLXmoKo4TO4gPFtSNaJY5nSsF4SH1nwOo5w/TdnmzZi9FJaenHYheebdm7ZrmBuHQ2R3qv/9o8H8if28Amh8aIK6dWZKtIvhHNUzcr6MeSdcFUrGTbmUJlATfzbLVBdxr/tOL0N4QaNP30glVbcPF4hqrF4IGDHgqP3VgB5q6l3u00F8GCctJTeK8JxjMoP3QvmUgoAqOTDVXeM8w7FlnJQkEMiqubEcNRg/ea8oOc5kzzheH7fOXiBYpnVkTiWaQ7NkyrnudObnh0NUU9yshe6PhD99/kbzSfoVkXaBV5c3HK5m/dYfVy4PNfepsPru8weVsz/6Lj4HjFH77zBu/Xh/x/rl8j1ha7NHt6anvshcbZSSbZ4N0M2yQtyCokCrYm6rg3CxBwSe2dwvqRYhtMeu9UCkmGe/+go3xwQ6xy3KTk+vVqz8Qo54HsA0c3tXQTI2B0Ll9LpV5yF346eG8p+WdlifJy/tjOoa4X2JMhKCgfr/b5ebHMiZPbgO8wyGVTf7MEa+gOcoqrFnWdHIFixD+7gBjQR4dQN/jlEjOZoPqKXe7Q93P9rg8iP/VTP8Ubb7zxPR978803efFF4QW8/PLL3Llzh1/5lV/ZF4nlcsmXv/xl/vSf/tP/et/seo5e1NKIeS/8bg/q0bnkgIyHe8Q3ToaoYSWI8e7SWgKbUs6I3rSotqf/2D0JeVk2RGPwo5z8pqO4CPhhRndQpOKReLaZoR9bso0jWzqxRMssKlTi/DJv6aY5/UzhqlvOovaQrSQ/pD6U1G7TR0Inh1CxCJhKYzpNcwyP/kBFthSKVp9u3PqOeFznb1VEE+mmkldhm8D022bfRNAosqU8NMrDUk9YDx0Z7B8ENxCBlB8EKALmsQSera6G4BXGRsIgElOYDxpU7sFp3vrKi7yRv8D/tfoSqjFC5TpStAcZvnKgIqo29L3mepORKxmg2nVF7w0hKtGl3AygCpAHsisJCuxecpKlUhncgeP47oKroxH1MiNbpGJ3t0OtLNM3tQyomeG8PuLqQBrMEBThxFM+tUy/45MtqhJffwXNgRaHHQQBzoMin0eKZUz8aRlWULvEU4i5YnMmDcYu+ba8kWGvnRmiHmCnBW4om6Tq0fr21kuNhW4dygXcKCdmmvr+WD5BQXHdojct888d0Q8Uh9824sxVZcAQ4kyQuc7t7SDld/kSZt1RugAuiO10YcSp6N+B6yOtEwBXC4wt9wL+OB6iDia3+Qldv/c/1+c3FBdzqErZfLY90GO8J0wHNHdHYrdaKYarHrsRRJkY4ZXnBBmdL6DuKa47XNq2iCNb3N8n2WYngEipvEbS0rOtuCLtNmluYIlGTA9C4vTmKxE/1oc6oemkHBJoekX24gTdR8YfOExryeeGv1j+h+jCYyYdvSvQnSFfgVrLJjAMAv2hI2JZbHLqE0V7FCS4zMD1ZkDdZGSV8I63DyZoZBurfmfCpZ6gRzEN2TEN6wq/ynjAEb41qNqQLxRtphgMWu6MV5xUa776+Dn6zvKp1x6x7go+eHxIjPDN67uYJwXVE8XqY0AeqKqO9TQXeslQXsPjuwsK66h7y2pd4d8doJzCLXOOX7rh1YNLvvzmyzy9qMgOG/qbgskmEmuwVtEoRdSaX3v7VanNJ8m1a6HxVaSfBoob2b72Y5KTkVCa8j6yekHRT8C0GfkqMP7A0y40upd6H6ygoTv3rF1j0k4Mm7PhPrPEboQCujnV6F5Ey3I/eNwoI6qcfmTEManI5X5aNtIQj4dkTxdkVxbUTHSJL51iFg36Zkk4mdGPcsymxyw7QelduDW16B3x3om4RCUHvnD/WChh66247c07sYT/CK+PtFYoLTTvXupAdF6o3RrR0IzHxEGJGxeY3KIGBTh5fzg73mtqsssts/M1IdXd9mwECrLrBjtvOPqtGj9MOh8rOtdsIe9je1Sieyni+apneK7I1g7de/xQ7MQh1ZIe2kwc2m4+WYgQ/ZmAEt1UckKaeUnxxJIt1d5C1g12OspMQk+fSK/Q5YLM92OwmafXyXHUytlXHxu0g4e/fl/OKC+gHAHazBLGjuf+wAesu5xnb54QK08+lQ2kqg31mSHayCjvGRcdmfEMbcfAdvzj6xFsDa8eXlHanm8+u0tuHa/cvWReV9TJHTMERXitxgB/6av/LbLMU33+hvmTCWatmc+HrDclNvMQFd29ntBk/NcPPiVBiE7xa7/8eXnmtACIHywPCIPA5r6imLRYE/jl9z9D02WEzjA83XD/tQXvXhzSrwrypxbtBPy0a0V1EemmivpU9JwqgE+6m3whW9HNfdHx2Fqe9V3CvRtotncj1TMx8Vm+nLN45YzhM492Yo6zy5sKVtEcZftBs1x4AbR7qU0mmeb0Q4NabjBbg+nGApbkAlSqyYhs3mAXar/ZoHdQS3AhyUk2ZmMB3o6nKBcYvnG1ZxiJ1hr0dCxGOW0r52hRiGnUeJjyib6/x+53fRD5c3/uz/GTP/mT/OIv/iJ/8k/+Sf7JP/kn/NIv/RK/9Eu/BIBSij/7Z/8sf+kv/SVee+01Xn75Zf7CX/gL3Lt3jz/+x//4v9b3itstvq8lKd1aVLSgICxWoBWmKokp2l7C4W7FqZCENkW+57Optoe6oZudEApFdrWRIDOdo7cOvaxxowNcpcm7WxQ6Wk3IFaxA1b3QXsLOWQkp5JNchONJGJ2tJVzKtIGY1mu42xWeCoJ6RS1OVd0k4o4c/pklzG+tPMPUodaG6jwKwjq4Te/euW5t7mkIOwqSOK+0B5o+CT73NpUZhCJCFlAmJE4n6KUlJoFnLAKq9GgbUSpiM0+zzhk+FMu7vRhDQX0qSAjJ8lM5SUomaqE1VRG/tWy9QqmIag3FtaI9UviBII+mhV5HlA2ELGKGPa8dXGB0YF5WdKOcGGFysGXpRuI44USI148MrS/ACF1LDRxRWarLnm4ivv3ZVgaRzV1BkbQHE4BeKDSmk4ZxJywTW90IpJTVgfyTqwv5vPKyxw0N9ZGoZn2h6UZC4yufJUFoBO3Tqj4Nvxbwwxx3lOiAuwe4d3QTRXug6J4UmFbs9YJRhFxRzBUmicqUSo1FunTn0KmhiMaIu4XaCfYU/7RN50d5fZR1AiCuV6jJTNbHXQfDA/ww3w+Cu60SDsJqTdhusXfOUFUJfS9Ftu9hPKAfmb3BgYg/JTuEPKM7GZIBunfEXlxIbJ3fmhdEkojQk21Ap2C8fiK1K9vKhowQ0b0XF75JTtQKu437fABbR+w24M8s3YS0SZPf3VDRHBjKa0+2cRQpIyO8mdMeRsyra5oi4AcalkIV3OdbDB2+17QHhvYg4meOsJVBum4yXGsxOWivyBYqmVbA+D1xTlm+uhOLy+ujsohqNT5KGKLq00YyKIrMcW+44LXBOb8Rnsf3ms/OHjPvK84XI5SCm21FthG3OiIoHcmMhzzghkIRDUFxNNhwf7Cg9hnvZwc8e1/oY7rRvDi95o8df40vf+Nj5NeGzhaYOtV8D9YJFUJ7CE9FfOqHATayEfVVqosgtK9cNqQotQ8e66cRf9bSDwuybaC8cmhncUMjQvUinQUuCmUh1ShfQH0sSdPZeldjoJ0KaCS/5N7xuU6IuWxmY1VIA+G8UCNsBpc34vR2b0woNN0kI48R1RR0RxXtzDL+biv364cv58E5/Likm2SU51sI4MYFVmvMtgHnCJstsfhowYyPtFbsTG26hrDeoIocpbN0TopoPZZZSrdWKKuxixqcxx+mTJHWY1Yb4uU1JvHt+7NSsqUWCrXt4dkF9u4pvprI9kNLnxCVCMpJ6eyqk6BM1cuB4EuxAwfZNuoYiFpAtGYo283RY4/2in6UKJxbQ3EjwJoYI8g9jFJ0AbSP5CvF9izZXaPwVdzrtaNC7jcdcUPpI8YPdgDm7efoThGC4j84+xaX/Zj/86MDymnLJ07P+fbTM7q+pB8nXVaU4MLK9hwUW47zNUpHYoSTco1WgabO0cPAQbGl9wbnNU2dEwNMp1vW2wLeG9I/3/Bj9z/g15cVbApiY+hTMKJWkXzU4XrD6maAMtKLnHzdoULk5rUM5WGxFgcbP4hUuUOryMXFVIC7oBhXDT998l0uNp/nZpNjt/J89iP5PdtEYVMMIyFZq4cMdJDNpxtAPw3YjZFnP9E8Qd4PP/boR5bqwnHxhZxuFtHOkK/FEWvn/NpOzT7jTDs5A0IyklBeQK5ulLLMuk7qbQKfUSJS14WEHu/teIG9i2bTyD2fZcCYaDR+mGOWLTw5Rw8HxNFA6IhGoasK+l50ZSA213m2B/cj5vt77H4QgYZ/82/+TX7+53+et956i5dffpmf+7mf40/9qT+1//Nd+NAv/dIvMZ/P+f2///fzV/7KX+HjH//49/X195acz/1p1J1TEfWutlJEkhd6NJo4LAWt2DbQdsS2JTx/hzDIsPNaUosnhThe1b1sOEIkDApipulnxfck1bpKk608tvbYRQtG0AuU8C53A0Vx1aN8YHu3FFHZQJFtI/ky0E00rlAMn0mS5fbUCkJ67fCVpq/0vpc3Xdw72nRjTXOk2NwPxMOe/P1c8jSUoJPlddxbwjYn0I8ioRQ7zcEjsb3sDgP5taZYsA9OHD6RA74fKuoz6F5qYJ2ha7W39avOI+vn4PU/+F1++xuvcPSbmsuf7Dm5u2Cxrugbi7rOxcpyvdM5ILa/uQSLRQNh4NFbSXbvDwKxCFQPRLfhKyl0UUN37MkPGuLbQ+xG0bzWEoMif5zRzwLlnQ31soRO8z/7/b/CvWzO//or/6HkkWSe/O2Kg++k9aiCm48bfCnUs2wD5UXc2/8GIxuO5ScddmG49w9lW+ILyQJwAyVN/o4LnpAJQaQDrpBDYHNX3rTy6tbJYuewtnM2ydfiopTfdLihpZ9YyosOu2r3LjUxt/hhRnuQkc8ddtESKiv348ii20D5eCVr38KIzWbvRCOye76MvvWwt8kJJzXbquuJVzeo4YBwNEMlznO/uOZXrv+LjzSk7AddJ+C2Vvz79r9NPp7JB0OE0yOpDzGK291ivXcKiT5ADHAwlYL7wWNx0ZlOYDwkHIykkPf+1l1r20r9sUZsDMc5+dUW1fR0dyf40uAqSbe29S1MFDKdMm12PGDJHdoNyaaLbI8l/Gv8fkcoNNtjS7YVR7UdLXF9z9CNk27jRjN8GNncV7RHnuqJQXvYPC/f12w0MUt5AEOHtgH7oER5RXfgyRaaybuwuadoTn0CGKTRUMih5oaRMO3JH+dkS8X2XiAOPNmow51XnH1Z3Pnqs5jyPCJMe2kEogDPxnqyzJMZz7hsMTqwqEuKzPH8eM6irbiuB1w+nmIWsh1FgxsH7FIzegC+EkHo9qWe6rDmp194m2f1hG/81suEPKBGjthr4YVvzG12wthz76VLLhcjupsS1Yq2xjSi9zIf6tNDLu5ZxY0AIzvP/X2ODMIHdyNBNbNVZPbdhn5kWb0gwZVuAMPHssXapSP3Ixk+Buc9m7sZ7Uxx+J0eWzuWL5aiFVl5dCuAlakd2gU2zw3kXKlEBGzryPCDLfbxNXEyJFQZ7ckA5QLF081et7h9cUI7M4w+aEUo3fpbTWPaivR3ZvjKkt2IiFp5L0G/8wVqNBIq2HLO33n6Sz9StWJv33v6n5Ll0mhhNHFTC9rrvdBM7p7s66qcCxFVyza0P5vsHciyVY+93ogDp9VsXhzhc0W2Dug+7K1S9aomDCtildGclJIb1XjcyLA9NgI4tHGfKSTCYyiWnnzhyC63zD83Y3NX8kOiUdSnMeVtsTd/MK08w81dh/KK6pHZA6UuDdrBiEj67OMXzNcD+MYYX4mblN0KDclXkq2xyw9RH0K8d4yCbC3fKxrojx13nrvm8uunDB8pCWLWMHyoaA8h//wNR8MtZ4MV37o4Y7spCV4Re41eWexKTHK29yPupKN8ryBfwPgDz/q+4eCPPeJqM2B1PcSWjrzoORjWDLOOs8GSt+YnPHvzhOlLc37q3rv86oPXqK8qBg8yGcrM7dleXooz4ZM/ELCzDre1qI3YAreHgXDSkb1fUMwV5ZUACa4UnZ6rEvhixdY75Leup2LRCdEGhu9mlBeRPqWtd9OI7sTeO1uLwc3845p+GtCtsFiOv+lkw5X0f6aLTL89R69q/GxEGGQ0J/ler2bagO6C9BVAPy0lamLRJPe2wPbVQ3ylGT5Y788xCeOtBdwAtp+5hy815WWHWTTw4NHtIJIA/F1/oc9viH1PbNr9cKOPDult4Ffe+c/+lbXiB+LD9zM/8zP8zM/8zL/wz5VS/MIv/AK/8Au/8G/2jazZW20qK4IvQhQKSlLuqxhF3FuHfdZC1Grv+a12KdQ70ZlRe/QhGGkOVOJiu1IaWZACFKOsu1QQRwOXG1yhyXKhWdk6AJJ++mE72d1wsQvNErRBSRheIWnL2kcRKXF74KnUEEf5nxR8Ix/vh0l4ugtZTG4wQiWSYhTKmNA89pZxO0E8WgYBkK+/t2jbnbUKSiMhZPlK/lJpHfOg2AnIRaNx++/bpXsqp1IiqRTvmJEs8uKeKx3ypI1IInjvxdkmGmBjEwIgQ0GMCrxsWPpg6aMhtAaCIh87fB73lsWCQEPsE687BT/tivAtOpTqReNRQUIrZYhE3vPAPk9ECpjCFVo448mCdReQ+OHBRfuI2wXTZdLkiLA8vd+VQfkMs+mkIV418tof3FIIzTINvQdjCFp0IUaclfCpeS6T1mPbyL2ZnrOo9fcg/rIFLMSK70OhiLtn46O8PrI6ka64y1QBdNOxCzGVnIWUCZJlqPTcxV0gpEnopxbRpt52kjLrPLGQPCKVAhDxQYwhShGwqp2tZzKX0C5iGn9rmRqlafClfE8JqmO/oYipBhEllE5q2of+TWkTIq5bKtUH9s9jLAK+0mLLq2UjkW0Ubih/bvIgQnEtNcGuRYi9s+3WXTKH2P1MKtWSPKD0bV3aDSHaSDCj6WKymkw/rAKdBbSKEi7mIQZDX2ci4zuK5NazXA3Ii567wyUuasnO06n58UlDVXp8p3ADvbfhVo2mazNqnxFIQnItGxQaI8NXesZ1L4yBF8c3dM5yucnFvVgr8hsxvdhpd3RHGjrUXhS8MxLRjlS72VPjxLJU0U0zyWzoZLO6s8kMSUy/ywaRpk7ts4WUC+hWUrR394P2Eb1/fgUx97naawSFdmFkCC4yCUlTgsbqbUO0RoSnu/cw0YzQnh3uraK5LfWJ4qm6HlW3shFMBhjkGXuL24/w+qhqxfdYEysFMRC9F2MPgJ2l/7aTIcMk8BO114jqXmqyDDOKqNTt2W0VQWu6PKfsA1wtUVVBhFQzRPwcrGgCdA+x34WSCh079nIfhFwcuqKS7Ui2AZ/J4KCdDNW7/mJ3HqvKE53oQHbb1Z1NbMwBG9Eq4p2mWkGH1AKV2BqikQi3LIdk0hJ1vM0QqtV+24eXrcTuOfGVMBDypSZkiu22wCj5ns4ZycZrhEKs9oYO8vMR08c6sNuAcoZx3rJsROsTgRA0VdYzzhtGtsMHTbZSQrFC0XcW1QswG6w8l7toBJAz3tQal1twep/zFFaazuboPtUBezuEhVxySCQI8baPMq08336Ymr0dWSQNcLvMFpW2JpIJl8JZtzL0+Yr9Nl076TulJw0QAn6S4zONbnevcdq2uiABvRGypfzjYmGgl2dlv+7SWvqxzBCd6MM+HEL44XBqpZTQtnZ/vtNf785RbVCZlXM2BabuTXX+FddHawj+u32FgH1wLo2CNcJhbTs0U8lFKC2hygjjAltm6KUED0WjaO4MMHWgfOOJDC2D8pa+la7iqpHNSn7rnRwyJUKxNpOU2y5IYvamB/IUbChhh7p2FFoxeKzoDnK2J3ZPzWoPhOc7/qCjnVmuXs+SWCly+luR8rzl+vWKbqJojmSoCHkgvzZkT8v9jZytZSW4+UwLa0u20ORzqM412gmiv/xsJwVhbVICccRuAQXzT6SHcSu/q5scfdJS3ulQvz7F1nDzuUDMA//4uy+TrcV6TuW96DqcJm4No4ea5iQy+OSczabEby32yqJ7I77btWLyXc36BeC1DfrJgOzC4EvZ3nSnDuU0dqWxcwOLimjFG/zwt6WJ2N6BOPR88d5Dvhqfo7sY8H/8239ImoJMCkF4OiJfi+vVzScFpSySM21z6oXraiJ6bbD1bjCA0TsWuwE3MrRjQ3ugJJm2hMG5FKt+mBqQHtYvKOr7ntNfM4wedYweqn3QXF8JZ3dwESiuWrafG+ArxfBc7KF3jYLpIt3E0E0MgydKELLrBTqzQCX30WIjbm1ZTjMz2CYyhGSfZyVXRClWLwkVZfrlR8S6ludgOMAMKkhGDt0rZ4RcY5opZtWIMBtBE0P90QpQP+prJ8qPvSP2HaGuQWl0VUrxLIq9S03IDdEKz5u2Qz1/V4ruLm257QizIW6U002lhJbndr+VClZjmiBNSJmlg1rRjQTIyN47p3/plOYwY/CkSRSBESrC4JmnWHhGb6+JmRhrmCYjGkU/tLhKp7RkaXCuP2XpppHhI9ErVE9vA7fG7wLvWlYvgh9FyqT5UhHsSmEag1+XOAN+HAiZZvYGtIdw80WHWRqytRahaR7pjx0qDxTDDr8sME8KqWWHEWwgBE2/zDEeFi8Z1h/vef3jD3nr2QndNmM8bFitKw5+raCbKLb3A9lawlEbXVAbiLNAk+X81vVLqDxgC0f5MKe4gsW/13JyuuR/8erf5TfWL/O3vv0ZuCzIbyRjQOvAmzen1F0mOrYIYZ0JjavwZBcZppbmLhjDNy/usHoyZvCBpf5EQ3XSMvjqhH6k+O/89/4+/+jyFR58+TmpE0m31xfQfqomBoU+F4pGtlbUL/ZMTtasHk7QjWLznNBMj77liNeAgsWLlu2ZEuDCCZ1je0dx+UVDeSnBZd1UskFGDzaEzNAd5phWbL23z4/pxmLZnC/9frDNVwE/sHQvHqH6285BhSgW3WVBLDPyZS9nVXLI+vAViow4Koh5Gp4vronrDb5u0GWBGo9Eg1a3gnr+iF5xPCR6Lfz2pt3nMOnpGDUc0B5U2EWLevQMfTgjTIfJ1czQTSy2DhRfexeURllDPJoRhlZoM62g1a7SbM4MxJLBTYGbVkIzTKBCyDW2Dsze9slJScA+FaCbiNi7HWs2p5r+87nYxTeRwbOeqBWb+0I3ypbg7kT6A8/giU1RAfkeWAi50KMHjxXlNVx8KRILz80/vEPRCMiZKVBe4wcRl1gW6HjbyAJx4MgHPf1FBQqmP/WMVV2ivzoFG/j47ILu05bFCyWfvnPBuiu4fHRPANDHJfNBzrwcYW5E5J69skYpaJ8N6M5q7v30FUWXU3cZq42hn2gWn9LEvGf16A53Dpf8sc99jb/xW1/APh5w/nlHPzA8XM24eDTj6F3Y1mP+9qMvkC0VeaPIVpJLtPlEC43BLgzLz/eU4xb99ojsgxw3lMwV3aZhJFO0r7SoUcvN+yNhjHSK9iAwenEh1K+lMDzMVjF9S9gQq1cMvgzEKhASbXXywAmgUGp5L+/JxKgiHH5HgIgnvy/bu3tWV47pN69Zf+KAzZlh9ckDojrg/Mc0xY3i/q8uCIWVvLFS4ytNtnSYusc8vaF/4ZjzHxsyOA8MzjsG785RTYc/nkgOXuNks9e0xMMpflxQXEokRcgtGIUaVITZmP5kQHa1FXvfutufe6rIRZedJY3J+TWxWf2zD9k/5/ohH0Si8L2tlWnNGFTipt0GDHnMLmioyFG9x2zFhQYQWlVCkpT36NrjpuXenhdkI2IaobdEIzfLbqUteoSYeP+yQm9OClBIAGI6ROJRQTeViV4FQbRApl3tI/kyiqVmpuhGGp+XspFJMFVUskXQTgKNdmKlmKxlo09oaJrWQ8Y+bMxepMK0EupYfaoortMmZSbiZrsy+wndby1bpyjLHWoQwSn0QhABNwR1lfOoO5LXJ6g90rfZFpLK7BOP2cr3iMakkD5Fs8khD/QTTXH1IevbKCiOcFIjrlJ7tAYrHEsUvHVzQrsu0O3OvQqy5S1SrKJQNuT73b4W1WMJ8PFVxGzVfhMTrDRTrlJka7P//GyZ/PVdsshskkvZWN7H4twI/cvKa0/aLpkuUiwEzYxawodUiKhky+gGQrXJVi41hvI1QpWhY5T7sEtBWimESIVAeePRfZTEXwAfRQMSI7ZOH3NOfoUgKGYIxF3qug97Zy8CxL6XZ0drdFVA/7vxUP67eenxGNYtKs9ua0S6og+oVpSLepPjiwH9yGLnGtUKWkQKhlO9UFVQwsvNFy5tUxURLaJVdhsJg1YK1QeyrWP0FLK1k9R7JKDKpVA6W6caZZK9pvf4SU6/O1iSIHWHvEcjz5bdpE1iQjdF9EzaQEp9Efet2+bBtKDsjg2YkoCRMEFfCM0gn7b45QC7BqLCO2QwCoqmFfG9O3CoTgL8aAy+15DtqFhAUFxuhwQvHdb82RjV6uSvH/dAQ8jSdoGEFrYKvbZivZt7XBVRE9mCruuC31i/zHubI9mM5hE3jOiBBBpeXInZg53cWo75mwKzFrTZDyLUUlfqbSHbqAJir2mbnGyk8BV8e3WHZ6vRPnHabiPNsZLMobLHe02fZ8RWtrRmbln68f75sslZa3NqsK3o8nTSne0CxvbBphd6T80wKfQ0ZJL7o9sgw8WHGNT7ELIuYvqI6cK+tsiGXz6mPzSUAKKH8il410cZstMZ5w9ksLbrTixnZxP0cIDe1vwz10esJ/soL9W0KJ+AzWEl9cIHoWnlAj4KGyLCoKQ7HpDNhcZWXnai68oy4cmXBVjZSGsXhebfB4xW5GuhaCrn0Y3DanFKvM27UqLhStfOXGVn/S66Trl37VaAMsmRkEFbe9L2VWE28myrmFB6LTUi5OAHQRgjMWJrhcNKvdDQnAgwGopENUo2+nLIyaCvO4XvtQQODjwxwqouaeocmyFGNvMTVtsC11merMY4b+imuzBmBUVgcrihPp+RLSQkUGdedJ0KseVWEaOF/ul1qhGtQS0sT6Pi4WAFNtCPA58+vGSaN/yjBy+jei19V4D8Rsu/ZyJal2CRANKkD+NDj5lyUD1LFr2ZvF75QtHdB2s9caGlNwgQlWY1GAm9093WZkia01phGg1zLYG0lWTA7PoDCYuV77kLdFVBrJV3ly80/dFQqHst9JX0irqXn7GflpIlkui/H3aMjVUBEYp5pFh47DKdX2Uu541WeKtFzRGCgPdWYxJ1U7sgnz8ayFYlypmofCaay50lvvMo5+T+Nwm8/z7dOH/IB5FAbFpUloKW8lwcLkgFuUuFt+uJg5IwLtHLGrOJmFEu6+5UMPwol1CX5Rp39zncUKw5dRfIVp1QZ3ov02HamohAK+yLuW49NsLV6xndJDJ+X1NdGSYf3BDyCdu7keI6TeOJW2gbg2kCh2806Wsqnv7ekuYIhg9FrCgFAkIpD4TdRvrRzj86Jacv7P4Q9JVQyTIjN+3x1+SAyzaBpz+RwWdWrB8MRf9xZy1F470KtMLFSHZh0X1GcxyIWYAIdmEYP4BuCs1xZPqmIttarj4nhaqfJkrJ+1XiQyYb3Txy9uI1l/MR/r2B0Jzez2lfbhjeqwlPD9AdNBFUJ6jgTuvic1lnRptEYc9t8OucxTePyHsRzPbDiAZm35XU0e2pxpdiGZhtIF8KZ9ZuFff//lYC6g4yTBcgwOLVjOYIxq9fsakLNt1YUOtVZPQkYOpAcyRC72IZaGbicDF6ANPfcrIhG5q9oC9kinzlKc8b3DDDjTLKG2lObS2UnPbAUl72lE/WIi5tW5ovfQxXGqxS4Lz4xStFGJd7V6zxN86JZU7z3EScmuY16mpO2GypBomzWdf/bJqpE0ccs27RyTVOtR2xadFjCTVT2RSWP8iH9d/u5e8dor/7DDWoxIIUhNJ2Myd2PX61Qq03qOUKNfuYiL3PLWor4ZK+MPSTjHzRk6XtkQqR4o3HxL6n/9QLsjLfONnEFhqHWGzaRYu+asmenKOODmhfEuQ6v+5YvVzRV4rBhU9bE/2hDICc7bHUGl8qlq95zFYzeCyp6j5TTN53gra/JDqsbC00CtNBcyybwWwj4X/toXDF7UbcV0IGDiAoGTiA5gjaU8+rxze8+/6QwXmUTIxC0QSN8mJju34p8MpnH/HwekazLMieJefBj63pdE7IDXZpePbgELIAXnHw2xafK9qfWhGDIm5z7FFPXjjqTU5oDXptsWvF6ANYP68JB+DvtLhjjdoYmu2Qv7H8vDREvYYs4E4dJwdrMuO5+uYUX0Ze/73vkBt5Dn7r/Y9z8B24+kIkjBx+LRvJuMhBR9pTh9pY4tKyvS/c7q9841XswjCYQ3UVKBaB1UsGf6dlUnS0fUaXeOCmg9kboJ1h8ZoMGKMHkX6suHk9Ul7qPf88X8nWNFiojzTlVeT4a53QbAxkCxGRdrMc7SN21e8NJ8TkINIPdMqBCJjGk61vEQTdJGACZKD40NCgV41QJopcptDzK8KOOnEwpD20FB/cwPWc7U+8ii+06BAWDebR5e/6M/nv4hUurggqR58e405uOe2mltdYdWIyEoHubMTNaznHX3dk12uy959AlhPuHhEGOW6YYVNug2kl40O3Xqh3S7DzGpoWcwN6bTGrXBw4ZyXd1LI50zIEN3GfXZUv0+BY3NKhbS3uSat7llAkS/pkdFDcREyjxY0zObeBABhuCGrW4QYVPlMUl4osE4ZAN43wyTVF5smto+0zCft7OhDd49ijnGwzozF4BQdnS3LrOX/rWOidVURvNY/fOknNvuLmJidmAXW/JbYGe2M5OFnxn7zyG/wfvvEfMH4/4AYZbmhh5Ile8WwxxlrRkg1mNW2TU3yzIl/Ks7mYV3wtPkdW9ZQHW/7n93+VJmb8va98Gt0p1i97ynNDeQGLTwb0ccvZ4ZJ1U7D57lS0rVuFW1raoMiQAeP0qw3dxHL1aUu+gOGTwPplgxsbZm8GymtHyDX9UNM8tXRT6Uf6wyD08FycrIq5bKcGl57FS5b2ULSBQkuP9EMRudu1wmxlA+IGmsHTRMMK0BwYVvcrikWknHvWd4U6Xj2TurB6Id/TO4fngXzhZeuVacLJGOUCh1+fo69XhPmC8MmX6MeybY1W0U0yzCjDVhmhkBwa0zjoA6pzEidwMhGKbedT1pbF1L1sUtqW0LbE9nZbau/fg8EYvo+s5B/yQUQClpTWt8nRSglivHMECkEC27oes0nojtZkN42IlZNvsl02hHFJnA0S7zhxdDuPuVgQRgPctJSBZOsIpWxhdgUKBDF0lQRt2VpCarqRJgxK7MYzfi9tWaJY8GoHuov4QtNOk6e5gmwl1Is9alEImjZ4KG9XcyxNBFFE6rpTomtIokq7ERTUVTLwuEES1gVDsJH+8ZB8K3zO5sEY0yiKmxSQOPIUVxnltRQwN1R09zu8V/QjI5uAK8Xm+Ygv494tAxJ3fOKgE5QhDj1KR87fPkL1ivULO4pZJK96CutZ54njXnpiI8iNbaXJc0Phas8/hehiLisJKRsGVL/TnUh44fZUkIBsLSiDL6FLqdKDJwrTRJYvlXRjxfauQjuzb9jsFq4fzeQ+mKYQxagoVmC6QHkFIYnFfC5bG1/A9sRKIGW8RSmVT7zu+QZ/dMT25ENapPS47Vy9AOKdoz3vX/WRcDKDpOvQKfNCeJxKAjp9oHi2IeaW/niAVQo9qOhKWZ+au6fouiUuVjAd4Q9GGB+IdS2bld6jFxvZGJ4eQ9cTNzWx3/6uPpr/rl169U/RSZJoj93WM8vFfS/PsYuG0UMjWpAYxQyj0+hO7HTDSETuZtsLahqSvWdImQJpkIhWExJfGK3E1tBKIKofWHyusY04nUQtGrT6VKGCIb8Ro4wdumm6yPQNg+4ixVJW/K7SuEoaX9FiyecDexe8aJP7XC8bv5jB+gXI58lYAXlWQi73sC8iUUUu18O9kLWbyp/brWwylq87VOH54GpGCApTOXwpQIjbCgWuea6X16zWhNJjBo7561oOMmcInYFW07ucvk6omZKf15dQH4sHv78ssCcNw9mWhRkSg2I4q9muCuxFJjlGhaa857g3WvDstQmh13zz0W2ehNKwuSvcab20lBfyc/Qjsd8Mxa3VcLZI6OiV8KujFbBHBc3gqaJfldycZns706hTnU1Bcf1IHuz2QL5HeaFl+KiTKNiqvdPQzr7TbnuaQUk31sk1ScCtqBXtUUG+0tibGrsRuNWXOtmC9oRM0xyX5PMOO5czbZdt4a2Gs8PbYcR7VNtL6KExqKJAGy3iUx8ZPEnZWtpQPtmCUbfDS5YRq0LccK6+d9Pyo3SpokDpHJzHzreixwtB0GCrMUkfRghkNw3jh1YC3naXc+h1I69/XoihDKBrh8oMvpINqLgeGuzwNsskWNGkaRfEqGQrTa6rktNc2liaLjJ45lDB4gaK+hTqEysW8vUuLFOc9XYah36UgjWTg5LpxebfPS6pziPVtaebWkKWHN6cwr07wmmodRRth40w8Hgd0bknNjnFjZyFYRq4eTYRBsfA4zJFfmWSxkztjV6iRdgS8wyyiD/t2NQF/+XbvwcVFO1MEsvtVsGFppta2vuReluhWo09rcmLnvpejhto7FbRzSIv3bniejOgc4b//aM/xNblSZsqmpX2MNDcEepZ6AyXi5FofI97wtpC1NhaQW33JkCP/mBJ1AlQtQpfCe21vq4opwqfZxJ5MJCst5iJEN9s5PkUjU8kW4lebnXf0o+QLLRC3o9uovZmHvvtcKdxWxk8VWDfy9Vnwq4o5pHyWjZUpo17JkiwAlDpTnqYzb0CFWDwtJVBwuZEPUVPhrTTHF8JBVl3gerJlpCZW2qmSzrhzNzSOJM2RYUoGVtpe0KZoccjTAL4ovMQPNE5cZr8Pq4f7kEExF4TRCyTfvfDQia61kPUkuK5qQkXV+jZFPJMgubyjP5kJDy66w3dc4e0RxnZUrj8vtBoFwhXN6hBST/OMOtWqBm5BR1RrRcueG7xmSYUiuraE5aK5YuGfoC4dG09kwe39mv5MuwTVN1Asz37kDZlLjkDOyQy5JF8rhk8idRnivbodi1qa6HcZFtxeYoz4aGbRnytXRlpc3kQYhbI5obqabL/izB8qLF1pJwHmmODGTpskzF8FtC9pu0V4RWPiwo3NOQLyBeR9esdd+7MOf/OiSQvA6EMHJ4smc+HhHVGNWmIUZF9vZD099drULLBGFYt1ngZZizY3NFbK3aaySmkdppoA0cv37BtM/zvTMQK87AXJ5wgD200keZEqGejh0FE5oAbSWE4+qYgifOPGZrjiH15hXMa7zTltxKy8tBKXsBM1JzaSQHVnQSOhcKwOSsJeaJ0ZZJam21umz8iGB+FErFc44tjmiPhl4vQLGXFfGiL1h2LHWy+dCgXcdMqmR+4vdvVfgvnJe9CPb2Cu8e0BxVRKezmFsXgdIRZ5+i6IQ5L2sOCalGgnJOtYe8Jl9fo6QR/5wDzbE7cbPD1h/bAP4KXqpsdF0kuH4SaBjKg5ZkMIkUOyw3FhzUzdSuazhXiGjQuUK1Hd444KMTBTCmxn8zMXk8WDXtrTrQWSlaeoV2gKzTNzFBdOkwXaGcWV6atRa3xlWWXN7Gj4Iw/cHuqZnNkaQ5kPR93zi9uZ6SQBhFxkN6nMttG0RWR7m6PaXPytehCUEpc9jL2Bhfrjbg2uVKlkFAYPJUm+rMf/4AP5jPmjyeYSU9RdmzLXJ7FrUENPCf35lycT7CrnGgiVdVx/IkbGmd59mxGbAy6+RD1ZOjBCl0rVNCagGkVxZVB33e8fHDFd3rJEDibrHi/ycjnIvL3LlJYx/PVDfrFyIPVAedfO/vQAR1pTiO6VdjkAhgNMjgNZbGikig2X0kzVywD3UhLLkAlQ8bgWdoO14Z+CO2ZT8NbCmwrIrGSoLNuJihreRWxjWxBuqkWu28l3ytbyRCqtx3RlhJKFjWmE8qfL8SGWfmIvUFsol0AlcvWY9nQH1Q0B6Ll0dtG6Ba5TW5sCl9aTCPbUJVycnYia53LNtQfj9HbjuzJXOgVRmOeXBJ9IG63qMFA8raqXASw4UeYmpVlYtfb96ibXtDjrsd87CVQmVC3mo6oNfpmxSBGVNPf9h/ew7ZGjSvJB0lxAbp1xBDpZhk+13vU24xtyiS7dcg0jSNbd5JH9uoR3TgTw5oojavuoXy6JeRDmiPL9m7ETTyzb1qybXLbTFauu6s5kia4uE5/7mR7SlRUl57iqkM/Z2Eg97PuYPRAQjqj0jQnmn4c4F5DlkkwcXOTk88jzTEoHbEXFtMq+o/X+E5jGvs9xjVRJWqkF3fNfhKY3V9zczUiPBhiozAZ8hUJcIms72lWh5b80pLPFdsDw2jQwt0NdVHhnmW4Wc+Xjt7n1/3LnC9G/NZ3X4ROYxLdSvfgzzpeuHvNw4sD/NbS9QUq98wO1yzMgLAtyRaKbEsSjcPoS5c0vWXzcIwvlQQZdwrdWPqJZK30YwmK9jMx8lG9org26ET7VlGR3wTqI019J+7NLnwZExgS2RUqP4h4oG0MIVfoVgZGkDrcHnkGT3QCR8PeXCcqCIXYOgtdKxCVgDlEqM6FruELDQNp+fvJbSp75iLmyTV6Nqa9M5L70YXkDBeTMF7ex52RhV5vxV1rcCja6kEpZ1yZMoh6BzcLQvv9AZw/3IOI0YJOGHHJ8ocjQplhL9cSUNakxJpMkGQ9mwpfzhhp6HpHdiU2WDHPsKsW3Tr8MEvcarHHVM/dwR1IcrofFqC1uBUUhn6Y7DtDRHeRbOUxtSSuBitDUntU7v3f86Wnugx0E4sbaNqxoAWD80A/VPTD1MRoaXQBZm/IdmVzXxoGX0WqpxrTwfq+wtaK0WM5JHWvWH4sEA568oc52VpQgVCkBNY80h7Loaw8xIk4wgRrcCX4RUY7i9x83Ii/dRFx6wy9MeRzmczbmUJtLE/fP6S6li1GNKB7w3J5BDaiDNSrAp0Fui/WZIXj1aMb1n3OqilYrgZ4pzEv1XS9Jnt7iLUw/5zDzg35UtPNRCR/+XCGrjXVRtxwfK8xGy2+5WnD0p+1+Cclx9/wgnQmNxkVoD5UqKDoh0JRMb85hgJUHvfON8NHUhhcJboP3Yv2p59Yos5oZobrn+gxc8vRb6vE+w648jbFNmqxat6e5hCfw5WabBP3BgGjh23iZ4trlpuUmEZW9XYpO3M3KeXh78TT3w0txbMNqvW0d8bozpO3HfSe4qqHGAm5IVt2YlXd9sTc0n3qObJ5w+A7z4hlQTyYoB5fSjJwkIZEdY7YdYSmxcwmcP3RPbof+ZVZKZTrDXG1liTY2QSOZiKd6Pq9g96uqfAHEohqPjiXHJHhQDarixQQmVv0pgW9W8NHdOsFeW8D2VL49tFq3Kxie2dGtgmUTzep8YjkC6F9RjXAbjXDc3ClZnMvEzrlNsh2QCnAyn3p4p6+la1lyC4WMmT1Q00YKvqRSgiWYv28cLF1L/e/fStH97C5Y/abk+5IbHqn3zbUZ5rq3pLFSMI43TASs0BUlmyt+ObXX5SBJQuE65y2K2AQCAMvDleN4erNIygC/UmPmmdsr3POn0/N2sZKivKsh9pIKvPusoGIRqHojxxm1vDi4Q2lcdSXElLoZytilK3vzvr4wZef4938PoOPLYhR4aae4emG/8bz3+U3Lp7n8maMW2b4oJi/1uIbS3aeUVwrxu/CzWci3WmP3RSUHYwebGmPStwgo51Bfw9A7IuzhdjuDh9LQ+kr4d6DYvBMkM6bn+xotwbdSQMIsnUu5pHlS0LDKq5lWOxOhigH5XVg8LRFd572MIFpe0MLuXfkTAKiwo1Fi1hdic03XU84GErgqUpnUi/3s5uUqGGBipHVi4JczhbSJOjGSTPddvg7B4TCkn1wBT5REI0WV74YhZYxGPzo0jjLHHQh29K+Rx/M0MbgUkaIubiWjfWdE0IazMKshAB514P3xMkI1TmG371BzVfEpmX7+z5GPzKUl0lQfkds9LO1UDKjVuRz0TX1kww1ylBT6RvytVCCg4VsKxvS+v5Qzpd1ZPiBIlrL4Jkg1/OPGUwrg7OrZJDO55HiWvShu+yLndasH2hsGnbsRobkqKGbic2/G3kGjwzlhWaRlTSTnpPTJfGu4tJWDN+3zP5OwdXnoD/uMY9LsmTxvbPCbg8ifuyFphkUobWooJjPhygThX65sahO0x6L2Nu8LTorvTHYTy55+fiKN5+dsFhIHogd9Wx/umVc9Pz9p6+y2FQ4JxoGsoC614l+ZZVBVDydj8mLHl11HI82bLp831vsNkd2E6lPpX+o/+ExKsAQ0ZD2R47BO5mwRxL927y+FDbKNkOtc7KlJr+R2WLxeo+dWw7edLgqowaKawEmV69IvZ59O2lkSenqFXutrulFk9MNJYhy+GuKYuHQnWQo+UyxPZMA1eEbV4RhiZsW2LU4cIZshC8U2zv53vXQbjx242SAsZrFKwXdSGPqE0zdU3wwl75aS37IziFPeY9dSG8RCgujgVh7J/euWydP9oCfGg3RpYHvQ6/+wz2IIIJbBZAJZ80XhqztpOHY1jJ0lKUgnXm2p3DtxOiq6YhWBhnV9pi2JxQWpcWVJmaaMCrxhbm1XMwMwcr02Y1l6jRdJO892oW9fV++8MlmT5BLVyjyecCuOtoDm9BGEarauVCjdjchCMqme0UxD8QDccsRSkBEJyG6n0hh2qWshhbC2HNyumTx+DjRv+Tr6QKhYRSilFQ+2fwaUBNp6nWj0+dEsaFToBq99yEPBXQHXjiftd2H5QR2Hvy3vuS+E3rF2emCQdZTWIeLGp9rNuuS2BoGk5reGdiWxFHETjocOWgjNoFRYecG28j2J+QyWKleMk6iEuFtOeiok4UtSTiunPBo+1Ha2OSyjq6eCX97Z3kcFWS10KV2ouGdDaorJbm6mygGs5ptO8Q2SjIe6pBQhVuamEsDZz8WRNu0STTYRfH1dkEogWVGGAoapjsvjYDRhMJIM+tlHewqTaEU+EDIFGBEwB4CZtslxxa9z7VQjXysH1uym0i4nqPunQllaLUidD06rVBV66DrIQax5fsRvqKSMMfovbwGWhGz5DoGQu9MOSK4RMFKLno65YrEZBGumu7WYS9ECP57UeKYLFc7L8NeVog2aCLcfvk+8qnKpWBLFzG9NJT13SHNoZVn18d9CnIwQFSkPnRP7TGdmGlAyqyJt9RN3Se+t47kNxrTChIfUgO992xNphD5Sjap1ggI4AZadGJJq6U8FBeGfhzxRwFTCz0iFLLN2H2dbKXoMoWuHNxYTKOoNwVKRQkJU1E2SDv3nZRVQi7oQQiQjTpeOLwh1561K1CdPPsuiO2PL24pkcW1DALbuyXGSuDh4XDLl8bv8v72gOW2pC4MUUWeP7nhcj2kuZiiWygXAVBkpcNVOb5Ue/MR7SIxU/hxIFpporKFCHoHl55upGmsNDIqwOCZww01q7KnD/I+iGkADJ+KTm8X6KqCnCf9yKRNcMCsGmki7lSELFHqCqkpKijhmSVkMhRGRK0bJzaZezv7RAH2EeWDOD9mErobbap7ARnOeye1w4l9dSiFn59ZOSdVZsHu7nVpSCi+PwHqD+WlpQnbW5OWhdQJLYGdOAdlKZvQZOXrM6FUYZOpRWZRbYdabSTozXt8qUUL1geU27lwxr3BTFRq7z4kmSGKMJLvqd2OBqiwjdSobqwT+Ad5v6N7B3yuJVBPJVH0WCzohR4Y2VihZ37YAjxk4Kvbe1L38jFXpQ3GxKHfMxTLgN0q+lKTGc+oavEHGvWuZXDhuFIGVXrsEzHH8YPbszRUATPpiF4ReklXj1osuXUWMCbQl9KPeEjAqNrb5B4Ma37vwbu8dX4iWrLCk5WOF4+uua4HXM1H4uDpNQQFWkwlemPoUo5Quy7Ihx2Z7TksN4SYhPz9LfgbbMpK0VA9INEtFRHQlUO7jGyb+qgs8sJswabPOXdjfNpg69RTmHEvBh7p2lFtbXO7BSnnJCOLSDvVQtWyAiLtYgCCBbONVBf9rbFNinroK+mDVNuhM9H27s6UfNHjBob62O4t1WEHmvvkEFvIv3lg0Y1Db2rRTVuDqrL9dl/5uN8EUloRrXs5M3fDiNxMCchTiphnRPP90Th/IIGGP+hrFz70h4b/CboJmOkENZsIh9Vq9NWS2DT4mwVKK1RVoacT4niwD2uJowpCQK/q20FksSZuNqiDGWEy4PrzM3QvSPbOgtMuW1TvcZMSXxqa42yfcCk8yEhzJGLIg28uIEb6wwHbOzmr5zQHbzmqZw1Xrw+Ft1mKRmFwcfv3VRB+4dOfDqigmH1TDjrtSA009BMpPuP3gCguUTu3rPUrDjPt0A8q8fRON3PIRbAWs7jP6zBb4TL7FH6oO4WbedTAcXy0ou0t/VcOJNjoxQabe/LcsX0wIVvo28TOPNKPIvqkgScl+Y2mueth6JgdrllvStQ7A/rnW3781fe4qEcsm5LL92cor8hOa7qbkvFbls39gL7TEJ6WZGuVLD5h/NCxuWNYvpK4870I/1FQnwl6YLcSDlTciDVmP450x4LU6rXZh701x8ItLS8FoejH8jXLK+Fd2lYSSl0puSNRy/sE0pBla0lS32W9jB85sRg+s+SrwOBxIzqAUou4NMLwYS2C5INcCkmm9kjF8N01YZDx6A8MqM4jp//4Gjer6McZ2aITUVgrFIBQZCJgTba87A6x9CjHPMMdDrHLBrXcyAEJhMtryQI4OUJtG/z5pTQbStG7lr/b/18+0pCyj+Lah5/e/59i88EtXz4lze+oE6rpCMdTlh+fMHjckD+e059Nibkme7wAa2juT2SD8fBib3FobqTRwMiAGEZ52l5Ae1wkQaG4E/Uji2089qamPR3SHmaiJ0rOe7uDxw003Ujyh3wp5hCmVdz7hy3BKupju6drKS8GCVefMmgHJ1/rRdj4ghbOeBu5+XTSbnmF3hoGj/Xe/tsmTnk/vHXkag8i/Yst2qbcj8sSU2tCnigdK7H0dVMvIEFKGQ4G6pd60EK/wESUkQ2JajXDR5L4W9/32JWmeiqhZm4UGD6URnfz4zWHszWfPXrCyhUs2oo337pHdm0Yvn7DtGr2oYfHgw3vXh2yvRpgRz3GevrWEpyGVr6nrRX91KOGjsGoxXuNf2tEMVdM3gtsjzXNidC3opUANnREryxmq4QDnwuwsrP6zhdJOL7Ld0gOiFHtdDmJ3tJLzfClfN7pVx3lpdT+kLGngUQD+TqSrT3leU3IDI//4BC7gZPfroWS1fasPzalmWqq5J5HFJ1I9v4l3YvHbO8WVJc9ZtNjL5aSinw83t+P3Sy/tfVsA3ZRSyja46eY+3fp7s3EKaf3qLVoysKoEuqxVpj5FrVtaE8q/u5X/zc/UrViXyfu/E+wOt/nJcQiIxqDvppDjMSDiaDCVYZZNqjVNrEs9G2w7C6vyHvC6QF+nLbcMe4HDt15usOK5sjua1BxI0h1dlPT3B1x/amCfJVMDpZe/ux6izuouPxshXJC+wOEMtjE/fBcHxiWH9tpxQSAEwaBAJOD87gHIeRzFNs7AkqWlwl0zG81qoPHimwdWT+v6KeB8cfmLJcV2TsV/TQQRo78qdhju5HUpXwp2xC7jVx9yXPnxSuePj5ANUaCfGY9/97L7/P1h/fhwQA3FvBD5Z4YhHURbUSVHlYWs9W4iWxVdJHcCYOCRUZ+sxtupNdBiZ2/Hwaykxr/wYDBY40bCi2qu9MLyLo2CWSJmElHVXVsNwWhM6iNfE01dBgbMNbTXlbYtTiA+jIye/WaSdnuAxlXV0PUWihq2XKnFZT6smdpeCgvZPPkKulVDt6oqe8UbE/EoEB7MShQHqHNH2g2z8nruaN6mzYyfbff59xFLTRgV2mCUYw+qNGdxw8z2dJ3Hl8YQi4uaaoP5G8/Ba1Fm5rCffd04pRDtgtO1peL9EzkuMOhnI0Xm/19v8srCoOcUBjMssN3W371m//bfzuBhh/Z5cUVJDon3M0YpenKLEpV6F3KYwori8ag216mtj45ivRO8n4SmkEKJlMuyIPdx8StBR2lWdgHuJAQBCc0nd2lHclFKU2GRu352j4X3u6O+71D04npcOsi/UgEanYtSFm+ThzvOrAxdu+YsQsrEhQjQhCkyy4MLubYTu1tIiU0R1CYoNn//d0gQUxNMYjQvNO0vcUHndBOiF7TbQzdKier04M0lPA8k3piYwIugQC6VnhlcDNNTF8/esW6L1i1BZsmRzeCEnu/Q9wSUsgtaiOcSljfNWKdGxJCZOLevk4EZnH/+SGTnyluFP0sWRZ2CoK8D7umS7fyQLeHu+RaobGQnG18oRLyLMYAvoD2UO23V2r/M8t7uQuekh8k/VKKoMENsv3Hd4nYphU+b39Y4kt9i6hYjfIBW4s9bDRqj1qqXDYiqnf7e0zus3Rf6mSiEOP3hhMNKpSWoL3d5ylrRRvRuh9p+17gFumMQsHaDf4k7jxREPpotaCgRhGMJlZ5QkrV7dcJIRkJKEHgQDZdNlG0kkWqCoqQEOo9CqmTOUGyFQ/J/ll5xK7VS90xPaAVxVztt5q7uhONIkQwLqbvg3COh5p+IAJSk2xi0YBXZFd2n4khGQIk+k/aBCpop4LGRSdhgmLZ+eH7+UO1h/S7Zh8WqBrRbKFBtcm0YuKg9PiLQp6ltcauFdlGNpNRSaMuXy+SGc9ZsQQmLNpq/31CVPRBU7cZvTcYLdklZAHvtCQyBwVOsohMJ1taN1RoE9E64L0WI5AuoXxBCOymVdBCyE0SwEvhdF0Kim1vQQO7TZzuUup5SJx6CZSVBaPu2Td6OzvlbqyBEttEYie27cGqfT0OmQiYo1b7vwPptVUK3cXbM8ntimO8pU8EqSsxM4SpUIl2SL5K2rVoFdm6F3ct5NzTVZksXJGNrQu395qVZ2ZnYUue7e/BH8UrOg9lOsBSbVAAZcHOwjsm0w9cCm3bNvKaJKv1/S8tVO5umlFct6InzT5sM78zLYnfs6HA+b2Zyf5sT0F2aL0fLLWT4WOXP2J66R/s1uMKje6Si0UUkCHkKXQvIH2MkqZ9h3rrXgkF1d9+b+Wk3ImQWtydQhmp20wMJ1QaaII8Q6YFN+YW0fdJH9kpNm0utcUGGASqQYdWEW0CLouymQgaCi8ARgJLY1DYWoIJ/SD1U+tMzmkPdqPFvngk/x6Vfh4V5Pt2mxyjhGbWzQKxiCIMCxJe6IcBPewZDlrGZct2U8jrE6RfspknREXXZGJVHpOph4lcX0xYDSQ4cbstULURZoi77bFCFlPm220dVVF6EDeS190PbBrebm+EfBX3NszpbdyH1e7vV63Asg/W3ms5omzbAVxlpZ9Fzjbp++SM2sVfhNIKANF72fZnt99Eedmu4sU4R3U9aCXmCr0Tg4sEdu6+p/xcmujN9/Xc/XAPIlqjq5zYtLjVSlxAigL/8RfEkWIyRG0bwsXVPgCOdSDWDdTiBhLqBlWVKEYiuJkM5fwIgelXn91qTNIL7o/Gsr6vDMGIjsTUwgffXfnlFpSiO6rwhaYby5rRdOKiFXVOdeXhGuojc0vdqcWOcf5aSTuDo69JdsTgrStpOtsO91Mvsj0zKcET6mPZAEzf7fcHX76w9CO7F0btPKrtFrGYm6YfNApnfOcvHowMHMWlQfeGzU1GqAK81BI3lsGbBdV5ZPjUs7kL7QE0r7VEryh/R9w/2nGO0kIrGzyWptedGqpBy+YlhVHwxuMzwrOSbKUwO7/t71YYBfVpKpznpayXh5IG78aBz33mPd68OIHvjqVxUREVpZm3W5VobBLwuHwFRh9EqotItjF7HYeKyS0n5Z4MLjzZOrB5LpMCaxXhRnQzO87m6GHA1hHTBPqx2Vsn9yPF6JH8/ajADUXcGqyimGd78dhuOFk9n5NvAsP3t7THJe3EMnzcYVctT356SjRw8rVOOKCTErtssOdLwrgSGkAuvt16sRH/7q4Tz+6E3KH1vqDoxSZRj1KHpxRhOkSFgF5uwRrM3bPbRymU8OAH9Jz+u3DtskOchyRSjzFKHQCoSlTdyfrbBfzBAD8QQV93PET7gF31IsQrclTbo3v5/7EyQrUrrFDiVg61aakeOaLWbF8YJlqdbOx0m+ycm4BuRS9UH1sJJftgix3mqIOc8jqg+0h+uQGlWL8ykfDRTrZ1/UgzfihWzwdvKbqh5vqTBjeK9FNHPxEdVTQRe2N59b+8AaNYfnzCzccN3adr6k62B0dfMWTbiCtvOcvqKidbafppwFeB8qkcKvJMRsgDodBCpx/J0FU9NmlDCuUlVJeBy/+o58dffMBvDp+nvqw4+g2pebvhCwWbT7aYXJq+pv/eY+ng3oL6KGd5OWTpJCfELw2rp1PcWYSTnuHXBT2+/nFx6zr+ehQU8X5EzToOZ2uWm5K+szAV+kC20clVJu7fn5OvCQXy6nVLP440z3fkTzLKS0U3Y18zQqaYf8yI2H0cqJ5pipvI6LEYCqzvWXwp4v58HikWkcsvKNxYcf9XI9naiWi5kEnOZyp59+foPnDwhtgyi6hUNIvVs5bBw06GFbMzHIm4sxmm7hm/3dEdVTTHOZvPVOgeJg86zNah2458AXGtsE/nUj+mI8Kkwt1/Fbtqsc8WQsvQt4240LaC6E9mQ9zZGP30R1dMFrcbmB5I01U3qEbAyc3n7uELTXXeig360xupKUVOeHZBbFvM/bvEIieOyv3Xa48KmkOx6LeIHscPczYvDbBNJF+kjKcowmPlg4SgIo1oee0pbjo290tcoSgmApBkazFUqJ61ctbnmvJZjeoDobSUVzB7M9trRNoZyfmOvRunqxTdVLRK+VJyK2JqnKO93fIBbF5y6FHP0eEa5zU3j6YQoT1zVA8zBt+Ue90nE7Bd3xESuFU+M2z7KfqsZXjY8JmTp2xdzrvzI4ZVS/hYz+bbB+RzTT2TXiq7NmnDYVLGUaJ+OsXkLYty7N3+ghWdWzZrcM8Gkm9SBexWM/hWzvqTHZ/8sUf8kZNvM9Adf/kf/1Hsec7oA8XqRc1zHxcjjW2XERei9Rg8kbyPrY3ojSFby4ZU97B4XQKYT/5ehi8zLk9HDJfynplOaPaXP9GDV4zesRTzKD1fem2uXk/01rHHVQbTZkweOMbfumHx+WO6keLk1y8hRDavHVKsIuoB+x7PtjKcbE/FIj7bSB9qt458mbb8fcCPci4/IyGL5Y2En+ZLh72pUU1PvHtKGOWsn68YPO0wj68IL5/RHsobqftA9d5chg+Qs9M5McLINWq1IbYd6mAKrofVBq2FehisJvD/B4OIKktUNKIDMVrCU4xBNU5sVVNYoapKoWFtWuFvqkoakLIk3jkRJDQEQpnvJ0EVIua6B++kaGt1yxEPUVbYRhONuBU0pyJYUyFitxY01CeZ6A+2AZRMoju7znzRS8L7gUloeyfi97EVO7ws7vUH5Bl+VIlAPlfkK1CJB95N5d8pLgsSZLXzqQf1PQ24hDGlML6loO9C7ZA1o+4gW6i9hZ/pQHuNC1kStKdtQGlpp+JKZXOHtYH164hzRhbwtWyX+lGa+juLcxKGhhYEUjlpeELy4t/vk5T8sFFHOOhRNuIu5aF44/yUZlVg04ZHRdliUCr6iYQ35cu0ai6iHKgxJtvMFOS2p6SAdop2JhaJ2UooFr6Qz3VFClZMgneAPtFl+pEU9GyT6FuVxrSJV3oulC2UpB4L6i2cdtMI2u0HGSH5tfcjaXari8AuhwQkTCjmljAo90iFn5SCZMwDlDkxH8OmQTWdoHZKodsuuVfkMjxvuv0GT+8CzNyH8gWSMO1HGeUEYNsQo5M6YS0YvdeMECPKWtnsJWciFSLZXMS6ZtMRjcIdVIQoHNyYGUGXfASjCJU8aNmyF/6tMcTiVksWtcLWt055Ox2QLyQFd/2crOTLc1lrRwuqERQ7lBkhN9SHek+jKBaRyftyIPSTnUV0Qkk3CuV2ftKQzYWi5I6qdIAksepFgfGCyNn2FgklAikgFRWxK1m9+ko2kNWFWIaqE+G+k8IQifLs7cI96xPY3pH76o3rU9rHQ7JasXlOJQtLoSCYWmHuOMqqY/VkzE1n+ObkHhfbIVeLIf02F0vwTiDBmIc9pUn3oFZSMzulUBuD7pU4xiCOMVtbctEZTOnZ6ceike2PLyR3SagcUF3qtD2Gfgim9ASbCTUzBZh1Yy1brLALk9NkK6mf22ObNrgCQPhCTEe6iSJbQrY09FUgKrO33tT77Uba1DoorlpCaahPckwbyFdJN2ZS8J3RhPxWL6I7vw8qNE3AbiVIMZs36d8rNpyqi8QiF9Fw14uhW5EOiSJlEWlNLIepmfFErVEpDDibN4R/Xsjhj8il8kyGkK4XpkWWgTW3r+u8FtfMHQ1WK9RggMpzsTYGoXvnGbGUTUi2MehOKC/RalTvqS56Mb8pzX4zpxOLIlTydbJNIFrophnEKOexi/i0eXeFwg0t/djgCoXd5igfaY4zfCYDSMiQGrCBmN62HfIejTyHbijbcbuV5rabpXt7I/evz0E3muhzbswQpYPQLhtNdi1Dghvefq/yQnoFX0Gv5FyNmTAtfGPYqpJ38iPa3rJcVZweLXlt9pRfe3smutWlOO1JT6LIl0qCCHPk+dUIfbuXHBNfRtwggg0Eb4iVF8aCk/7AF6C2hjcen/HBfIbRAaWSc1WatJSKrOqCelOQXxp5vYxoYrNRh+tKdC/2/a6E2Z0VISpWLx4ITbxLG5epYvgE9sGP7PQ2Kai6FJaF7iHbKFCy6Slv0vbiaEg7lfDa9u5E6n8CSUyXbMZ9TAYHaQMUbuMmfGlFrN4H6WVjZPaO/5CZksNsbxPR/eFQmBpKSZbReIjuA/ki5eZ8iPJNlgmbyHvJGNHyMfXh3iFGVNNiQChd8fvTiPxwDyKDSizTQoQyoRBaoVcb4WyXuQwm45GIcq8XcHyAH1WYFHK4/PRMuLkXEkDnCznAdlkQqhVnIVWVYr8ZkKCoDlRqMvqxYXts9v7d2UaagFVqLoZPOmytsY1kXeg+kl2uZc31XDpo3r+meeWY7bERyoQV6kQ/FPeC5qxi/qolW0XKK7G27EeK+pWOUGb072lyF9AuYJtAVDoJORX+w69ZajxGD2WKbg417VThxoHiwlA9i2yeU7hRIJ9Lg5EtJJHcDSPtcSAO01fUkUnZczza8Mc/9TXe2N7hy89e5HKdgdK0x17cdWrLLtAbE1BWDn2V1pfBRsh2jVTiqmeRF+9ec1yt+c3mJdTawu+MyXIpUKaRVbAMUdAdO/TGUF6mBqAKiaokw1q0oG7S9sfFZHvMvimafjfiM3Emi5a91/+OYhENNIciJmsPA6bR5MvI+r7GV1DcCEp18Ga7p13pPqJ9INuC6gP2fEkclmxeHksCros0hwYwHHx7DTGyemUkW7bW40sLpSV/eA29o31xiopQ1j1+WtKc5AzfibDaCFLhPbFu0OMR/rkTzFUnupCyAG2ITSNMsbK8pXMgm5Qf9SssFtAGzGyKOjwQm1Ot0c7fhrwBZp1sewOY1Ya4bfBX15iDKf39VzEpzNQNM3ypJYAuQj+02K0nfzonlgVhlNNP8r1VpzStYmYBYDY9ynvc82PaiWH9iQ69sow/EPqCzxRZWq93hyX9SLO9I8OAGwQG/wTGX37A8ve9RH2o0xpfNoM7wWk3lZT08lroh8sXS2mSc2kyxu/sQJcElsCefoSTQTxYSRjWDpavBewGpu94fG5Rn2ypAZ8ZzI0VimUV9zWme7nhS6884KvvP8/VOwccfEuyUrrfv+LudMWnD57yX3/9Mwy+m1MMGw4GNf3TA0Jm+FZ+B7/MyW4MVXLy2VkMu0woY24gvPfiWtFPI52J5DdCF1m9FBg80Rx9q8duLc1NzvaVHlV4TC+HeHsU6Q8do9MNXWfpWkv9tJTtZy2vQzlo2ZYF0SqKa9GFNEd6n05t54JMgzSl849LenO2Fs2MG0TcSGrm8T/IGD/qmb+SyTb1cWoQPkSJFJ63Int4RTiaMP9YwfApFE/XAkzkVuhjuaabmDQ0BVQhZ4tpPbrzVFpha495fEUcDfBHI8nSaTvCVIqbeXojLnBKEQuDHwvgE5XaByoWzzYidC8M5noDixVxu/xBPqr/Vi9VlNB2xL6XsOSyJGbybKsQ4dHT2xq6u6YjAT2rHNU6sUefjInllOzBBXG1Jr7ynABQucFse+wHF7gXT2leHEiD2cdE5wKXDDTKa0d7YGlmhnwVBMjoozTDgx0dT2y8fakwnfy9xSuyldzROVWE4loA0PpE7pPBhcPnmQw6s0g3FXtu5aE+DdhaUV6IJtUPA9lcYxpN25WEMqBGDr00TL8rIajNsQwNpoPJA09faa5fhzCRfA2zSTrXlSU0hmebA3BCPy9Ob/gfnPw6/2D4CVTQFOdGrPQPHOrGUl6K3tNPE5Cg4OT1C9ZNQf3dKX7iKA8b2m2Grw3ZpIWocNclMYv0U8jnGvNkgLmpBCj5yZY4dEC+fxu3iwp7njF6XzSi6/tiWfzc0YIHmwzdp23zKPIfv/g7DHTHfxV/jPXTEeO3LNv7nvzOlrYeky+j0LiU1IBdT9CcSP0ePZB8Id1qyuvI6IOabpqzfqFieyo6m/lrObaW2g2k4UVYM91UwmF3FPRs1eMrixsaskVAbxr6uxNUHxj/6ncEfJtNRGe6s60vcrpZgS8TPbbUuOMRZtmS3XyvnX80WsC73oH36GWNahPjIqaQ5B2dcL1FbWribIwynu/n+qEeRIgR2k6KwqCSAuKSE5ARysPOxYI8k//uekzdSuNhDeVVT7ZoMc/mGJsEp2PxRMYY4sgSs5HwZrseZUXv8OHLbgKTOtAPdHI3gV0GQLSwer4QEVkvYk+IhEEOAcob2basP3NGfWgEOdtImnq00A2hOa2IGsYPvThtDRT1sfA1CYowcpz/uKU8twyeCm1rT3vIoTkSNIWYHoTjlCOwEGTPtDB5w+Dz1IhrQVW7VERCEVBeoWuNqTVqq7EraerbL3Rcbwb8777xBynLnpPRhks7gSgPvwrqVisBNHcck+cWzIc5rtf4Oy1KR/TDUjjdtSJD/PQf6BMejg4wc4vdKMpz2cj0h558biluBCEKVmFWBu0EBfJlBBvpxiBBRTLwaLcTucP2TNEeBRF/9Yr6WP68uoiYBvJNpB2LCUBzqPboht0iRWQpYuHRo7B/r01ywOrHmVBtWhG+53OhN8SBmCnk8906PuKz2yRtooSKhUzTDyy2FmtffzyBGKmebCRtfZChW8fw3Vbu77NDQTicF4tZrcVWFtDjEXE6JhZWnLlCyjDpZcDefd+43akefzQvNRpjT0byH11/a+c7KPeviXIetRL6ZXdYoruBWCsjSGm2dUJzmW+w54IUxVLSkLNEZXBnU8yqwT65QbUTwiAj26SGvw9gFG6YoQuDcjHlCsHkmzkm0f9UBJt4/TEXNxvtIqNHImBsDxTdMLL54gvURxo3EL1FsIpuQhJHilNOeS0USlCM3xPEU0LQIv2dnuJhRnGjUF7oSZv7sqE4/G3D+gXo7vRUz3LsVj4eLFx83uJGEXc5RNWSexENeJs0L2UgP2jQzvAbb78oW4yx4+bTGTHzzPKei9WQv33+KexVJlaXbx9wU0wxowg64pc5KBkUorbYrQwc0cJmqAhjT3/WYt4tGX0AN58NMO4pPijRKcgMJRSpbiaif8wt/zrkEX8g4aubD8YwcSgbqO/IMJctIV8o6ncmMlRN5fXVSSu22x65ClYvGNmEboOAP0oaP9maKOzWpLwW6CayAQ8ZzF+xDJ8GZt+8oT8c0I8trtL43KBfPaUfWfqBUD1V6whlJqF6jRPhsVHsdII6iVF37m3ZVnKJ4uFU9GWtF21DZmVLG5LTjVe3tIvkiqV8xGxa+e/eobSCLmmlBseoZ/5H1r431jUMb5vT2PcopcjOV0LvfuGuPJc7fZ7RQptNgvNYZvDyfXyyOVXNQCSYyV2on+T044x4fyjnVi+bdF8oupmIivd15maNqSfYWS4bFaNYvJRJNlAdEwAizb9p436rPXgq2hOTDA1QomXqR/Lc604xPJchtri67WV2oFt5IdEAEmwnAX35SiURtbhedjNNPtfJqUuG1/YoylCTHL38KKBrTb7Q5F+84afuv8vffe81mnWOWltiHsheWdF6w3/28I+Qz1pWn4DRdzPRq7zQ453GDQz9NGCOWtGB9YbLr58Kg2AQpK9ZFtAmJ9CB9Gh2KaBAuNvglzlmpSWDDbCPCrRLFrwtPHjzDrPnFtx/ZcE7m5fJlorNax0oeP+tM8bvGA6/0/Pk91nipOf//vbn6NoM892K3MDm+QAa2usKlYJLo4moTpMvxWwnX4kmzldRwI5W8kGI4EYZ6/tWBOm1gD/5SsSy7TRtULai/8kWDW4o9091lQbULoEarRe3x8MhupXesvnx14RJ0SWDikTtJsjHJCx7m1g/WnRhebbXPvnjiTCK6l70lCDhqL0iDgrRSz25kO1glonTXJ6JQYN339dz90MPhe4KQiyToDQIzQonmg6SgH2n5lddT9xskyWfJlu06MVWgosur4lPztGL7Z7GFcpcKBlFJmLh3ZpqJ1aPYBtPcdWSreVN3QnPdC/9a3Ok6EaJZpV62lBmhNKSLR0qRNb3DO1MhI92I04KwciKvxvLIVZe9cmtQYYQl8KBdOGZvDxn+7yjPhF7Rp/dTqh+7HEDoUK4iefgeEU7i3QTOdilyfHYBtpD8ak3jcKPPPGgozyuUdNOxOEd5HPF4Glk8CTiestmW6DeGrJ6OqYwDmWkObdbRb6A8kIa/OpCwtqqvBfnrgwGo5bBsJUhoZWimi+E4lQ8zeBpIdkHW0WxCJgWMLKitFv5eQQJVKj+ljOKifhBpB/J5sW0icaR6Gj9JGLvb4Xe4SQ92g2gWETKRSBf+kRXifQjRT9JzjFtZHAeyNdBqBwXPaNHLcXcka2EHhGNrFa7oThm7e6TnY7DrjuyeUN2uSW/aiiumv19ZW9qTO0Ihdwruve4UYYb5+irJeZmRcyEfqieXgGSPRIHBXFQSgJwngl9AGBQCQ98WhGmA8J4IM9KZmWlulurfp8JqD+slypzwuFY/u3O7e0GY5nttyE7Xni0outqjjKa0wI1GoimZuvQm1ZsOZ9d4B48RC03qLrDbHrwEliGUoTrOXq1xaxbsqst2U0j4kClcAODqyy+FO1YNDB91zF54JLxhcduxaQgpK2ecjC4cFRXgXwljcv6OXurd0oiRl8KYtcdCXqYLyP9MNIehH3TGnLoZ577967FbCKdAsEoafyNaM50pygniZ7WyTMWTaR5ocONPWZpyFaabK0liLAMhCKgRz2fuHMOyIEfncIWnuq5FeN7KzLradsM/bjEbuQgrp5qBg8toQiEPKK3osA14x5fycfEgUd+Vl05Xjy7Ek3bPBLzwGDckq0ixTzsP689EO56KOJtYUaor+W4hQjFtSE2ssXuDgLdLD2LWyjPBcn1ZaSfRNxI6LXZNpDVwqVvjqS2ilhcqKb5Oorj0VrqWXmZktcHWgLlAjQnwiXngyfy3DdCw+gHmvokozk0Us90ujd1sgp30njYxu+FrHuDhCjuTEL9C/hxQcwtKoR98O7echPYGzd4L7+aHrVt0FdL9M1SBpFWPhatxk2LW73Vj+AVPhxkqrW87s6hlmvUtqE/HOBmFbEU6lXMbdpUyf0TraY/GtBPCnxpiFUuYAdy+4Vc0sKXL1i6sWwnALFxHghNUzkJueT8Cnu1IZ932K3UhuZY0sd3NOOQJRZGLf1CVFDOPdW1o7zsKW8cxY00g76QEMF+HOkrARLzRdz/2lHE8oXkaUQt5gumS1TkdZQsnBtxzss2Ar7ZhmStH/FTT/98R3+3k3BPpJ/57OkT/sLZ3+FsukJnQYxjTORjJ5d0zvDth3cYDRqO7y32Avdq0BIrjyshDD2T8ZZy0KEzz+iBonoqNE0Q6pXZasxWTCuCV5hGzrbpdAvjHj8McLdF3WsorhXF1c5oQlE9MhyPNvwP7/0julmgH8HsZI2tHNUjw/iDwOCdOUTIqp7mwRjz1oDRA7BrBcet9DxzQ8gjbhTZGQnZWupBOffSv6SNtWzC5FZzA017oGjuONFzXMuwoj17ip1oeT162+0NcrKVx248+IhuHHbdyXM6yFL4qWL5YsbquZxuJj1w3JkqIBoQs3WYJ9eYRb2/F4V2LGCbG2b4KttTQlHJOMf5vY29XyxFe612tvhCJ9y51P6rrh9q+94//Or/kmynEY+R2DTCix+nVelmK5NdCiKLbUfcbIjeY+6cCo+zyKVAWy0c27T52Nl1RiMPrN04zKZDrWuU87jTqYgGraY9yFjfNQyfearzbp9aaWvx9d6cGbI6Uiz8XgyxvidUhqNvrNLXKBItQhoRgOWLJcEK+tFNVAraEYu94cOE7N9NoX6JQjF+5Ln+hKE7DFRPJDdg5zrVjyPdqWNwtMV9a0Jxo77nz4MVNBUS//qzC2bDmsW2YnNdMXg73+tKdA8o2N6Ne1tgtIjJ9vkjKe+juNJ7BHG3lcjn4gDTHEk+Sj9MNIaZJ5sb0aoUEJIDj+4U5RVSpHtYvwjtsUf1OnmxRxGmPVLUZ5IebS8yse8cC5Xt4Fs71Dg1JznM3hLe/qM/6qHXTH/Hkq2jpE5bQSPbg1s/c1mPxpT7ANlGrDR3Lmk79xtfJKekAOV5K2naswLTePLHC8K4xE0K7KpDJQcbrKaflQmJipKGvG3FCS5E1GL1/yXvT2N2W9O7Tux3D2t8hnd+97zPOVV1anC5bNON4zZNp1HaCR0hYr4FiUQWKAKJRMhCAhkJW0JgWfDBIpAENR+igEITUCQgUUuEtoFmcnvALpfLNbnqjPvs6R2fac33fefDda/17Gq3cdmUD6nKko7OOXu/w/M+77qvdV3/6z+Iq8no7maNDB+ZDLUAetuJh/22wp8cMpwUqF6ybWSd2uEvrtCHB7j7J1P+yNBW/PTX/o/fVpac8Iot52v/e9Sdcyniu3rvkpdKwVTr3eTCR54RshQ/l/BSfbOVwguyRcmic5BSqG0ltcV7WM5pHx9hakmyHg4KfKqxu14GkEVCe2jZ3dFkKxEOTo1ktPac/OFLRXHlSLaO6o5oFIqLgX5u2D4w2F0g3Ym3vG4dm9dzaWqDpC83Z4GDX4PFk47n/5OM7ihM7nL5RRTC3jqhfqbS3PQzqD7aQadJr6PGJED5Qhybdg+JNtZSN2wVBPhYetLXtxjjqd5eYloBDsak990jBwc9NpX30HvN0cGO77/7Nv/vX/well9MpmFqDEcVnVwcICI18t53P2eetnzl2Tm+M4RWk15Y8kvF+jMdyazj4J/MSKpAF+2I5fzCsAj0dzq09XCZiZ5sJQGx/SJMoI0/EJvj5NJiatGcjbqx/EoonfnKMeSazSM9ue+ZJlI9HwuKefx5AS1MH+hLTV8K7Uo7oW+6zHD1HQn5deDga4247im4+kyByxWHvyYDYXVqKC8d5ZMYvGs0V981JxixMze1J9lImKkandxCiM43BjdLcIloEUCeL8WTDXrbQFVDnuFOFrgiweWG4q0rwnqDf+2uAB69Q28auLgGa1HW0N1e8k+r/8e3Va2YIgEWf4R0fihGFj4IrTWxYhiiRd+hdzX+5SXq4T36uwvSty4Imw1qLn0H3ovov8wnK9TqtSUuVeTXPf3ccvsRS34dmL3oSdYSQLf+6JygoXwZw1UjNVP5wDBP6GeGi98luT3nv9jJ9ksrNg8TeUYl8nyaf+AjcOCpjy3tkRIN0yC1IRiiI1aY3C4hakUzxfbROIhHkEoFyqeQrWVwHnKo74qw08QEcZcG+iNP0IHDz1u6Q7j/X7zPi82czfMFutKYRnHwVSDA1e8SumK+bKOR4V6rcbQQFGFT59RVSrhN0cctB4uK1XqGqw32KpFe6KQjRKvu5VcM5YVne1/TL6B5LBsNBiWbv0FR3N+Spz3rL56QrARQ7ZeyKVIf2fH66TXv/Mwj8is11R2X7imr9R2PzwInvyiAQnVHC6h7vyd/N2X2VAIRhzLQH3jGUNn525rzz9bUp6noSiP1O9kRAWf572QXs8niEDjmyOguYGuhZHWz0eQC0k0EPmeKfOUpLjpxetRxoNCKYSYa1nTdC5hWSX/A4AjLmegZY63oFwn5RY1e16IfHcHKwQkYUeb4MsOsdlOfDMiGJbGEIpNww7gEGFzDTz39r77N7XvDuHd0YrsHEx0LELHZaLk5DFOq9CSuCUGsx0yCTy0qkeJjggidfRrRyD5Mays9OMlviN9HRRQqRNGQbgfwNoq9BtRgJm3IKCyEV0SdSLGxtduL1jondnyd/Hyj7e9QyCcoL/xP20gSqk9UTF0N2J0Iad3CMaz1RBNQQUTWeEXfG7SP+SLp/iCEfd2R16rAKLG9hL3YWzsRbAU7DiQKn3tZ5beKUAbIHKEVv/DxYe3TQHYtwuyRPpauhPPqUkktVsWAazS6jWGLakQaZVhJ15BtAhulUKUjOC8i+F7tre0CkmOgowPIK/ai42UrUFtI105+x1aKqMut0NBc5Fz30WIzgaST31/QTEOjuEMQN11iGkCQcLLxmmyITeSAew9aVtwWoUOAvPagVVyjjuJTvxeXK3mPwjDIPaxHO+BI41GAUdIsD05oQLkhbSVYT3U9NC2hE4qWt0KrwYd9Qfl2vZxQUYJRsgFxDjW4SWA6WXcrFUPeOgkOjBQudCDsKlRZyOAXQYikbkE7sQ53Ht3FTUuWSPCUjTaHSu0FhomcOdkaim6kLy3YeM5zcWwbdho9CHpJHHTHB+Jo/213YsUadCHGGE3ANzJwmC6Kl1vQrWi8xvNbXA+UX71h9+Yxw6kRIGAWxZtWmgq7EiHlJKJWouFKNkQjBjlfbuYJQYkFt5KakF0zbWmUU3ivpmbDO0VqB17Pr1CvCM8BbBPFnTNABdlyJlI73jy4YGZbvvTuPUKrwb+i59Ly2l0mr1EFcQL1Kfu9v1MEpSEJUIvmwyeK7tihd0Jp9R4wgWHmAY2vhBZhGiICHGgOhU43CUUjiB6MbHUny/SAOOppuQ+GSNkAQSLH8NT2JMFM/P+IfkYQI6mE0huMngLvXKomwEg7j6ol6OzrrmhTHaJNN/E9DqjpXnyVYDxpg0YRthH0cxpshgEVPKFn2iZ+O17KvhJwqpm0dL4Q2167raFu8FWF8V6avq7Db3foJCZRty3KF5LSHmuFS+Ue0K1Dp9IYKh/pe61DNx0wn0L1pP9QmMZjujE4V861rcBu+vg71QSTMETJivKxtqQKlwjVuzuQ5+ZomuMy2RSaRmGbOIQHoQm5FHHKDGKpP94XUsv2Pcmk74xDiE8g5PIsFaRfoQlY7SHx5BeW2dNAtvGSvRUU9JpmlYlm1Mr3VCbwaHGLD4ov7Aq0Drj5ILEAzuA6DU4xHA2QeLKip/UKVYkTn/wjfYoyQvMMceUblPxM3WDFsrfVpNuwz2BrLU/XS2GOFLB82+NSxe6+UDuHKJ43lVBhxbJfzpUyIRpwqGnDrBvZFIckajxaR7oa0INhW5pI3fQQQ5DTtZhStAdGACkd6+1WniuqF2C7n6kpkkHCL2WAlGdHdCT0MaTSSC+iWy9ujd4L6G72A4RSiqDjs08xbUnHgE76Yc8GerXOxG0hxkwhiHJYvDAslOLrgn7/Hde39CASXlwwNB5d5Kj5DDVfSGOxraZmCx1F61kCfjEV36CVeISvNqi1pBW7h2d0Rxn9MpUtSCUNohp91H/dC5CGsXxSUb4fREiYiWNWMNCcpughMHvW4wqhexSXPXbXc/xljzeK7jCTlbuCYWboZloeKiEmcALVmSbZBe7+7GjwDas3LPW5orgU3njzyJNUWig9AfCK7s2aprbYX5bgtPK5AmXoyCkiT3n70R41aOZvGZqTwPCgJXs7J7uC3VeXvH9QcvfxNVWZ4bKU/CpQXHsuvkfTnYnFJF6hG41fDpzfvaXqEto2Ift8RnYtQrjuAPqHLT7J0L1m/QmHPalRX5uRrBXzDwLdRrFVGRKmFOjvdujEk3+hgADVA0d3KLalpgOepPRLT7AB3Wl8IqitCmBvrKS754HimUE7WL0h+pviwk+p1dW5ZSjAPhW3m+5QqFjtsWLxLmRrx/ajgWA9D/6JVJhuoUk3nuyypTnP6GcGl+xpd+nOk9zsV5LKefBi2YkL+IMSl0WEMqahA9Br0peI/3b8hzwVbZLzhOWckCf0xwV222Mu17iDgmGWkH/5OThH+8n72I1BPX0x0S/MqkbdrAlVDcZg7p5DCCTvvJjuY5V8yy1Gf0uXv7wiJSEcLujvLkieb2BXR/cxi79zSLAiyrW3jVgcG2lG/EEpzd7lNcxK+sMcn0polG5nKFdSPZxja0f2/u1UrJM6xSaG7iwOCesO5RPAkuy8iNsvduJMdGdBP7d0c2mik02gPhU3LWmuIVsb+TobeaCnq4HmNJeHUCJNwe5QDCbyK3ko7u7Lmc1uYcj3taUvNd29JdffYanue5I1Ujd6QQ7HoNNhHqbAQpAHfLqRTcjukYgz78xrNv/yHNNC97sr2kND0CnpWgnlQxgC2MRhrSO1A+s65//yuf8pbCztSZiS4EGCRo+/64LVrqC9zTGznsQ6/tmXPgEby8kvaraPFW/8vnf4yrNz2mc5JvUY61l9XIws7C6aStzfMVwW2I3GXiaieTvrGIIYaqhBBKPiwgfps4SQQH8y0GeeYa45+JLh8Gs97YGhPtG89r/+Gu+vD1j8vWO5t6wiqaJj4ecksXjzQMCo/PkO0+SY1rJ5YBlmcPUdOaYL5DeySa5ODMGKHbxs32WrqjvZeNlqQDc9/XGJyw0nX2xQvcfs+q8PNgX6B4cMuSFZ9xNFK7mu0Ddb/PECN0tFu6BL0Uo2Leb5gK5qdFXBvTtwfiLhhf1AuF2DVpJBNBNap3KH8KUP6+R+uJdKI01zDDTc7MA73GvH+ERjrxRYiy6j4L8ZUGWB5ni/qS4L/LKkPy7oZ5L7JWGFA/Zqh73VZNcZu0cltx9NONulcRABoU7qCH4p2gPRbua3ogV48C9adDug1zXD2YLqbip28haWbwVs4xkKTX2kqO4FXCqN8PEXArP3K9Yfm9EtNNVdT3ajSdeQbsX6df1GQn/gsdFRU7dCAe/nge0joWs/+qlG6MK55NToHvqlgJyPf/dLPn34jP8m+078NuGtX3iE7qFoxenTW3jy+z26HEjfKjDtnimBgvqux80HfuGrrwsIYSQd/c7xmtuqYLfLURsLCj75ne9zmm9Z2pZ//v7H6D9IWb0ZuPlMYHZ3hR80+S8vqB8N/JH/5Gf43OoB79wcUX/pEL1T2E9v6UxOugmREu8JlWXrCr7v93yZdZez/j8/wvSBphU9jeoVJ1905Fcdl58pcJFG3x7B/bs33P/YivNsy3/zb7+b/Lklv0A0sgpmzxy6GTCJkeymVmp5faInYLm6q1m/kU75ZKbdGw6YXqM7I9S5jUQHECDdOHTnmX8QGEpDtzSUL4UqXJ/N5Xtftehevv/4bHLH88kYQ9c9+p1nmPkMc7yc7kW1Ftt4fyB9Bz5H36zh7ffh9BiKfIrBoImAad8RrJWBPkvlF/sNXN/SgwjOoWezCcVgcDLQdT14J0VFK1TdyrQ2Bpp5L+FCICL3aNdHXMfquJlQQ5wAA+hm2BeLNBEUI65G8WJzqIwWcakWIeGIMJl6ACzWRnRRy7+1C3gjSEk/NxOy7k0cTPJx/SaT/pBrbCvImWkCeEW6CdO2YShiTokJ4CGsUikmOaAF7TC1onzXij3duBgye44ztyl63Hy0oGvD7bbEbRLStTysu5mO4nUJ75GQRwjK8kIdoExAqQBHgvCNzlhhJ7+nbgHMBmZFx2pZAJp+DXhx7ujLiM46BXaP5JpKCpfLoFsGfOnRtUJVeqJWjJcK4GZBhpRIqXIxKbZbCrXERH2JDYpkI+/5iG5OfHqrsCuxtHSpUM58MgaZSVEZxcTT9/bgMo1phRI13WtFXLVW3bhumoYFP5ME433Sd9Q4jVqGUeeUWUE9Oo9OJDPE7iC0HYSInAyC/qu6JdnkBGNgXsYtihahdrThI4SJhvDtfIUAYxChrgfZdCzn0UVkgHkhwIIPYsn7iiVhUEBm0CdHuKMZ/cIKRTAGEoZo1azj+w7yvVQnzlimSqbfre482c0gdsCFwcwzERkjKHm+knrgprDL6P0/iDtSiOg2yD3WLbUgjMSPqYmbQIXvxRJUD0G2hgUx2VnOZb+w9DPwhUNdJ+gAKoitdrJRMVk5iMAziD5kDB8UeofCDYZuMNECV+FaA4OezqicE9laNjc5JJ7lUUVTp/irTCw9U6lBKoh41CeBy5sFrjaoyuCcwhnx8jeV/Py6g3eujnG3KdlWMwDWOlwrG4yhlLPverP/HYJsUWqx+B0KqU2mVdHyOH5IBr2TGj2K3iUPSLasX7s+YbfJOUfqg8vixwVFGoO/TG8hiFX3UBr6UksY4fAKepnxdeGqQkEdP0YgT93L8yKkEkpmGrDbDlxM6rYaVCaBvm3Mx9Fqfy8mZhKnq6rFRg2bcrLlgIj+m1dQ0hBQbRefiV5WS9PWVsNYz74Nr+A8IXjUmO7qxVVPN076ASP1U81ncsYHcWdUSSKA58ifdyHSiH3MunISKJlZ0QhUHabOsbUEFIbEiHYoiAvouFVQXs6jcnJ2XW4IVtgZLheATbdxY1d5bOVFpI6hWygoAz5EO90ymcJOxy3Iq5cYucimREWyiR5kAJmoi9FcpTvYI/8AaoAX6wVaBfwmkW2AkbozshmGQkESULFfGT/f1pIYPoUIboz820E9s9zqQLXJCJVFx/P45Q/u8F55xMdOLql3KVkdKWdBs7sqwSlKL7SoZ80BL3dztuuCfCvfKy9bahO4eXPBUAoY4fEEDFfNjHawdHP9ddtNYYIo2qOE6p68/uXXhDbugqJxCeshQzdaeqhRhqUl7bw9LRhmBpfp+FqD/DwwgZjKy+ZVd9K34KXX0IMI1X1iIZX6J2HK8hzSnUPlEoaqBulHIda9ccsZqZaqd7LhMxpdiZHO6AKntzVjREUYAY7oCocB0gQ9lyGUfphYBCGP+uutkz+DyOT4xjQi39qDiDGoh3dRTUfYVoTNRsTrgDJGQla6Xvic85nY/TYtoe8Zrm8xyznDp99AVz3mZiNDQ+ux6wZckABEF9DdgFpt8Te3qPNTQpljVjuCNfTnC5TRQuOI1p4++frUbLNpMVVHsrEMkYcHTOKjfmlZvaFJVxJ8JQm7sP6YCKEe/tMd9d2cm48biheK4sYxey788uyyRT0qCKWjPVYorxkKSVA9/pw07uuPBPpDT3anIv/vFtz9F9dUry2pjw16ZwhZoDn1ZFea5deYMkxsLQWp8zPKS83BWz3bB5bN67JZyK80y/cGvJFwr/IDRXGVsH5N09zxLL/ninnW8s7b55i1YfFVS3cYqB8MpEWP1h572tAvLBuTMvsA7v7rDTefmrN5Q+G2Fj9ohscNfpdw+CuCKLZHgeJjKz519oJf+W8/QX4RKRhTgxapZjagigHlrBTZQWgc1d1AslXYneb0cz3pusfbAj3A8t2WYWZol7I67eaas1+SBrC6o/fFN2h8IuiZ8oJMTOYAmaI9suSXPXY7oHfiSNUf59jWEZ48xywX6MOFOL0ZTfNQLH3TTY9dtaiLq/19vpwTshQ3z3CZwWfSxOplgbneivlC06CMxl7vUE0nNuY3K+yuYvjIPYb7c0HkWycoaj/I29UPsl79Nr9UmuAP5qimxb73kv4jd+mXC4r//iv4XY15eE8KdtOKX3ry9aXRFQnNp87p54b2QDF/OpDcdFOTlz/dTHzukFhCYsVGvO1Im46Qp3R3FphmIH2yofr4Kbt7hm5RSN7DeiDZ9BRvXdPfP2D9OGf2QoSIyaoRV6vc4jMT3ZQ03YmluiONxexZwO4Cs7WjPjVsHkc3nW5PBe0OpKHIrsVtp5+JG40uB5JdghqguQOmUizeD1TnivYU7HeuWRQNL794hnJC6wgK0htNazJuWoP5aEM3KOzzTICNucPfGbCzFlWnhMqy/EIiW9jv9oRVSvmBoT0MDAcO1Wkx17vT4NcJR/8q39Me0Ywi+6Akn0T3oP/VkqISZ7qrj0CR9tgnMkCsvkNcXcwHOT6mSoOc1ey51N/6XAT46Y2KrldBXMhm4hSkBtG6+AS294zQLoH8/3VATrRXnyu6hQyLtjEkldAgkkooZ9X9nPpY0x0qjr84kN72XH9HzlAo6jviwmWrSJkbAslWNkjtUmE6EzUzipBokqsKVbVyj1mDOywlRT3VpB/0+NsVajiVpmnbgA+4o1KoGFkKtxupE9G+O1Q1qizkXJQ5ermQ96jpCKu1gBNFLgFmdSPNN8Dt5nf6uP4Hu0JdEdSwD3WMNNrk2c2UDRLSEhaFAAutNGOhzCe71OTdC7RSWKOwr7iLBa3pTmdiRvFiJVz8PhNgYJ6Rrobp+WIah91EVEwp2vOSfmZY3UsnwCzdedLbgdIq+p1sXey2w9xWlIucbDWjOjfUp6L/2t1Pqe4ofPb1W05vFSqVMGDTRipaIgCgaRTpbXy+As1pwpArdh8XTda8bFm9dcTsPU3/2QOe6AOOnwqrYPvdDa62hLWhPfOE1KNqg68N7mRApZ607GiezJg9Gd9vRXZpsDuYP/U0xwmb15aktWxouiOP8op7/8+E5iDnl//TUnRi1wGuARTpRp7dm9fkc/75V9+ElxnFpSa7lvyU1w+veVje8t75MZ//4B7Z50uGUgCUr/7aPQCKh2qvbXXS/K8+Ii6FZ//RC253BdkvzumWAtZe3c5xgyZ/oUlXAmj4ZNS/KpqTbKLlphsmQFneawFHk11g+e5AuurFzKQ0bO8b0i1k713j3jylXVrZYrVjTtnXX8Ky6KfQe/l9GvxMk9w2qF1PMAU+0STXa9Ca4dEp5qYiPH0hdSBL8Wu5efX5sVA6AXeywN89JHn/krBao44PCWVOe3eBrXrMpZ0sgsN2ix++MTfOb+lBROW50FqaVopl1xP6Ab2cCyVrvQWj0YcHsma1RtAfpdFFDtZKbkAI4mwxaj5qOaHDSYHqPOZ2C9agz04IRSZ2fc6CVhLsEgU9uveEwQv9IihMK51pe19sQ4MSh61kI1OoLyw3H5NJdPF+5EiGaOlrYP0x8a2++UQp6eiR360GaI915F+ncmM/F0FrdyA6DNOaiTearsA0hn47xzSB7nRGP9MiwLzQwjcOcjhsE+gjH1UPQLPXXqw+ktAtxUEm2QqCePMxuYVsLa+9OdZT8NDV1ZybpETlDjeIgNsngAl0Vzk3lwUhE5F4fqVElB9F++kKkrXQk3YPlXj/G/m6plXsni74t9sMDj1DdADRfRTYRXpD9tLgEyNJsokIzUytmD3ZDxT9Qhp7VyhCFwRx0oJAoMATXcsCzD+IKIMRKsy4sQLo5la0PLm8L6YLJFuDTw39w8NoHxw3bidHDOcH1PcKyg/Eoc1HnmhrE4JWpLu5IPhGCzWraVFlggH0jUfFzUfQSjaCShGcR0fRtUrsxG/W3YCpFOZ6J7oIa+QB+yrqP1p4fpteKouHIbFQFphKBKHq6BCzWMj7ZzQcLGQT1YtrFdYQZvGevOkwrUUPFlOPmyrhLOtGgiPdwUxyF1IjwZttzGYwZgqcwxhs5SiuNJNQfXQkCQFTDeQ3ojtxhcbl5f7n8GBqz5DrSWemvKDqYu0tacTlC3GUG3JNEvUHtmJ6Mo16pPRa4aocW4XJRlq+ljQ72aWiShdU2ZzZM3GQCkb+ztSB/NLgMkN130NEOUfXuuAUTZXiGwuDor4bGIrA4/Mb1suM2/kMdZWSv7C4POBtwK0TTCUC+mDi9rEQHrq8AUxW3HYnmqyRD+68DAU6Wo4qJ2hu0gnSO+pQphDXAnyQbU+/EPCnPZH65pNA0ijyS+gX0B4qsltBn30y8uNVpMGNX1dQcOHpR2S7ESprulUkmwHdO6kPTXQfqgPp2tEtJBjVZSPlQlBJlwsqroa4pUsT2nOhVSTrFtX06Fa2qHpW4nuHaaKhwhS6pyXIN00EdNBKtqNlgbJWbDq9B+flOWgNbFMIXuw4R6734NBVg1+UcPk7dVL/w1765AidlALQ9L2gu1pPbArVx7DSfN866XUF/YBZ5xJuerIUvWS/3xz5LIHRern3slXpHemqi1t1JUF08TZ3uaV6tCC/bDBXW9ILhakS6uNCujYVLXmXsnmzTdQEaKGVe6uxO0f5EpLtaOgyouhqYk2InkDu2fKlaFHqUz0NIsqJJsxWsqkDJubG0Fputim2VVMI8/gcNg2wkiBk2Q5o0dNE85mgFeomQX81o2yJUQcBlTt8YnC5YvtAS6aaCfKMz2RQ0p1id25wmSK5suLwmQvTwmeB7St2+Mop/G2KbUYWCuAC766OeFEtePreCfbWxm2yivVN4wuP/64N7Tpj8cWUIYfhMDAsPCHzPHt+RGgM5rERs513ZyinMEG2sT5R5NdMTp0QNSoJhATMhWj3xu1UshWapreKbiE9yKTxa+QZ4Q9n2MZRXkCyi/bcVqGiLW8wEs4cjJx303lIFP0iEXesPj5/otRAh6h7tJagDglFij47wS9LfG4xRRZDkWvIUobjGbp3mEqANaWWUmO6HlMPsmUtM0Ytq0oStE/hG8AtvrUHkSIX3nvXE7pO/nFuWjMNl5eYxYJwfvLKJwkvTs1nKKVQqx2hyPCzLA4TTqxPtaKfW+zOyfdYzqcgKEBWr96jK7FLC1mC6gaxUHQSmmNrh8sM23tWHop9wH7gJJ216XAnC9YfEy/vk1/Z0h3ntIeG7KqVYsWcYeZZfUJjKnFw0b1MwWMqsB4MQSlmT6A+F/u35VuG+dOBq08n0U1r7wpj+kB1J6GfCdpYPg+xqEFSxUEkOs7oTg6R8vK91h99RYDtpFnfflxcZk7+rWEoFO0xIqoPYJ5n4rLzaMdQKnxmBZlMxJo3XUugoHLyOiTgz8qD+DZQ3IgF6VBYWfPGQUS3UL5vCKqg/kSLKTvaXYqqLMoLmpJsxTpTrkCfK8y9Cv+k5OBtT3MUwwkPFHjDUILRiqEQHr0eiBuWMQQKTj67RTlHyBJ2D0t2MTU6aHHmcXmgP3LYjaZ4LtSPJDVsHqUEA0dfroUydnZA9bBk/dhg65ysGya3pC5S++x2FtfgmvSDG6gb9Lwg9F42Gq/ez+PQ0TtBRY2BLNsPIs0ga++rGzkfhwcTBQyQJqP5Ns8RyQXSC4k4hKiqxWxr3ImgwPp2B2mCW+aYmwpV1dD3UqTNUs7zxRqbpdhdNn3dYLXQEAcHqWY4zHCpJlih3unWif86CF0mBEJmsZsW3Tr6pYjapemW6VjVPfmloj3O6OdGrL+1UAnTradYdagDKw1BfLh6AyGV85ddw/LdgfYgZoxUEuKZbMLUjIv5hthqKyeDxXhuhUoguodsBbYSrUx+JdbezYlsb+cfdBOt7OX3lrSHSHhfEsAG6DW+MahOGiH3oGG+aPje03cBWN/N+W9/7rsonwWqO0Id0ysT7XKJrlfQnjgJUe0iepB6aLUILEEoJFrErP0yakS2arIBzS8ldNBlQpkd6Zneipg76EDnJXukOfWTJajuFeVLx/WJoX3YkewkT8VlanL2SleB4koypMS1SEJMRdgrOsP0VgwJdCOUPBO3s4snHXbTYS83mNeOqc9S6uPIKX8uH1ufWEwT0DHhPGSa7UO5lw9vGnTbTxqzMC9FO9IMk4seIK6QmUW1VjYjIM1CkUsNeCUpPWRzQpZg8kyGljQR2hbI/w8D/nT273UW/3/5ckdLwmyGqXvUto4iXD1lMNEPKC1ZL4A857qesNliEhvR4Tl212MuYwemFMwy+d1XQgEPqQwiatdIX5EYsU+NFDj34JDNQ0OytdjNDrOtMEWOerOYUG6XCsUv2UmIcV9qVKGF9997bDWQ3rao3lE/nNMeSOjyCBaMwadjbzD7QO6Dbj6TvIu5k+Z8gPw2iAtopuMgEgi1Jb0wcraLEE0WpB7ZRsJFx+9BvMX6RTR50IrsUnP35zuaI0t9oglJIMl7fJISdKA59xPLwZcedKB4L8E0knemnKS4j+HP7R2HPuw4PdrQO83trx1jOkV6LdtNEBBCObi8WhAGxeEvJ1P/Y+Mz36eKroA//h3/mp+6+CTPful1uiX0ZwP5YUOSDLSfP0T3iu1jT7JRLL8WewGlWH9MhpXyhbiWJgiwM5SR7pqJNa9tAkMpOrV0I86oQyG1yWWG8mU0rIimFt1hht0NFNf1BJa74xm6GVA3a0yRYDr5eUJihL6PgK22VthqT/VWgxd572aLzjIBvcoEVx4wzGOw91mOqR35L72NCjNceYBeyT1LluLzDH27Qfkes2uj81aGGU0vshSvUnjym5+7b+lBBO9RaQF5JghP24mNpvciyv3kx0SQvqmmTwkHc3wanTG8lwKjFKobaM+F/728XBN2NfmLWn5haQp1i9lWhOMDfG7Rtxtx65oVkOQM8wS7BTV0+EQxZIrqXNCJpIpuDn3A1MJJ92VOUHD0BZmgn/1nC6EbdAHbZOg2MHui8MaQ3Qr/3MRckvZQiqAeZIIecrHxVQGKZ5bmGLplIk1KJ6F83siqMNlEy7hEmhHbSAhXP9NilQuTTa0eBOHsEiVe2GtNP98nHLtMkb6Iuo+lHEQJD5SHqQqAh/4mx+y0oIszxeHJlttuicsNapCCsn0Y+bAD9HN5T9a9hBTanbhH6A6GJbQnntkHWrJWsoyhSEkH4WqmaykqzamanH6yW0Foip+VjVBfIluTSpCWoCS3xTTiiz5S66ozsQGU0MNA/XA2OWVt7xt2D8W1zHTisKEduFQLitEHyucddlXDa5mssx/kkpreBNLVwPkvidVeez6TMMSYKm+3DtX2mH7kD1vQBXq1E9Q8TfBFgivTmCkwYAAVaYdoI7aTwyBBWnWL7gfQBqyVnJHBTTRFhgF1fPhtG1IG4I8W2G01gQ76ak3YbNFpIjSM1RaVpRjAzzP86Vz4s70juYgTbZpAP2BftrjjOa5IsOtG1uB1C4MjuVKE0xn1oehILEyOR2YTi/UiZygMLjdUZwafQH4jD4jhbMmwSGiObHSvE8vY0ZO+OdDcfmQWMyoC3aE8vHTURpRPJTTr+X8iSF2wgcMvitlFPxdL7H4mdSC7CeweSIpvso6bxI00+81ZoHXxYX8laP/L7wOfSadhV5bd/Wyy/Ha5ABrJOgq/B0O/CAyzQH6p0R00Q8buKuMffPX7cKXHHAiaX58pXCkbEQCUwnf7Rik5r3nzzgW/+vZ96DXlQU11XZLe7jd6QzejSsHNZODIL/W0/ekOFd2hYfuGI2SSf+Jzjz2p6asUv7Exa0iRX2hcrnBvNDQKbnpBS8uvpgyFbJ3KF2Fq4JQXKu6o81i9sQ/DGxu8YWYJVpHeynvbHoz5TQnm2JKc5XQLyZTJ1mECm1BqT63LDKGwAjo97QlWsf3ofLLl1K1DtY7hQBreZBU3/Ymgq6QWfziHoURXklsU8lSejzEYODQN+uWNCLWNFsrRejMJT8N2h9/uUM3Xpy5/O1362SU23Oz/wBi0UvKehCCb44M5Pp1hVy16U4EVGrhflgyLjN3dhKS2ZLkVM4r1DtWmsl2J209XJCTXFdyu4aDEFZZ+eQg+iDlBPXDnZ25x84z6Ox/SLy1DrugO5Tk4ez7gMk1fKvqZpp/xddoP02l0qsWxs5aBtjmOwZ4Ic0B0k4qbT2maOwPle3OSrcQFZNcBUycMJeweBupzjXI65pgFTOYg9XSpR20NttIMSwcmcPVdRqz7g5jF+JkjubTYrYQNhyRgtpqQwNWnUrpDye85e3zD/fmazzUPxRXPBtTWkl9qhlnAZWHScLo3padrrzJMJZbGZqMJdcbt16S3Yi7ud+EwoFqNacW2HwVp2dF3VpxElQxH/SLgCk92ZSieWv5PP/2/ABVQb0ZgYmdo+oJGA8cONSiSlY42x4HmWNEfBPxcAFQ1CPOiPlPT8CdbVcXunopugJDewvz5QLe0DCUUF5IFo7xojObvNDR3Cq6/IyPZpKS7gmQXNUuALhNseoabCeW0O0rhMJUhZuOYXW3xuaU7SGXTkhhcBCqSwwPwAXO5YThbUj3IKZ635B/U4iTbu0lDnaw7sfW9XUtERmInvam+uI3HxUjf4Twqz9DqG2NafIsPIiIeC9bIqlNrsUJtRQw8HJVCwVhL4Qwh4PMDXCG/MD14zIgue3C5oZ9FQa93Uzo11kjQWdOAFwQ1tJ0I4rNU3GJTjTH7B+OIKupBMilksxCFsCGIeBUJKdvdtaw+FkhX0du+1FgdSNfyQMqv3dSUtIeStjshBXEgcHlMBN6OnERItlKYXBo5n2UUo7Vh8qqeXm9sKCb6QvQxH+liaojrw0QOczDy8aPXuMviSraW9aNPQIQzIjI3tcJEq8A87cWmtxd3HuXjGjiKy7pDj18OIljrFQdfsuhOqCPBgC9krZzsPMnGoLs9+qnbUSMSs00QmoRthVoVjAyJowVqH39mc0MMMAQSKUxDCf1Mhg09MFG0IA5LM48aNHqQsEVbOUFDjSDipupk0EW+RzdXmE6T4rFbR/J8RffoiH5mMU1clWq1X6G6aAurFWCgblFaEzJJ8x5KE1OtFTpLo8Or2lO6vN6jeN7vm4tX7KtxXgSa2b6B+na8QqKFwpkK9S10PW67wwxObB77TkKIm4Qwz+gXCVYLB9y+kAwHfziXAa6qUctSpAu9E1tk5wTQaGN4WKomH3efSSNuBgdW4xONz6ThHcOqwipmiBRWtiBLsYh8VecBEBaK5lSErMWVF+vGIhA2CtUF0q344ndnAyoTFHEo84me6BL5eFvJPe3KwHA0EJSNIVuyKXBFPPwBsptIc7pTMys6us7SJhk+sWL1mXjU1gptopftSrKRRtoVQhFLdhLapTzkl9AtNU2nUV4GodHOmBApDFkQWkcPs6LlY4sLvpTexQVFah2VjjadHvAiePUWNh8PYL5eKDrlgNzdsSwbXqZLtA0czBtunMFXZtoe2ko2wME4fKHojjXZpSa7DeweMOUJmU4QTTeK2JE62S8F2Eh20drTKlyucZmeBgwXReryu1cTsh2MZDWYxguVJoSJIuqyOFAA2UWFTy2bBwkmCyhnSQDtxxqpJsOKKQdAKXxuo1mBkwwBY6ReDFHQ77xQNYyWrWmkhQYVhezOEboO9208iITtFlcPqCQVKhtCbZt0NU2DnhUCDPROaCt5JrqwVDRcQy7PF1MYksSg9N6UhFiffWbk68ZhccgNw2z/fElvGtSTF/CJRzSnCfWxnraEIk6PxhUhouxW+gDlZVgOGiwaPwSU1YLIF/H57vdi53HjePb4hkt3zHCrWbwbt3lNoMoka4fRwr8SS1qtPcYEknSg6XNCo8EEVObxuSN0Rpwrc0920NBvZtjqFWvbEVQ9CXSHHnXUcVxUHGUV5bKha63YgW8syYZXnlnyM5webdAq8Gw4xKkE3QlrQbWa4gWgYR3NalQxSMhfplGtvIAs1prJet+Cm3uY9xA1Kgc3mvYAmo83hMpiNwbdGqGlHYmeR/dSRwnScwxLJ9vgbi90l+FHCpupA9k6cHuqcWWkTm4VuvViMKSlD7E7F6l0QTZl5wXdgYC8YpYj2y1bi2tosJnQ3bz0aEErbCXmNfpyhTqYE04yfCrOWxglrJ4iFxrirkadLhhyJcL31Radp9GiWOiJYwTA5EgbRKum+kCoa/CB4PZ5WwQ/3Te/2fUtHWj4A3f/OLaYRzSnJbTtpBFRaUqIicghtahagt7CrJBVaxvf1Ns16uiA/t4hw8wKt+9lg+rk5pVAp1rQjmUu1K1RIDSIfsTPCvrTErvt0LXYLA6loT2yIii/HugOLPWxZv5sILtusS9WhDzl6ntPpwdlupGQszGTYgytsY1HtxJos34ti4E5TOGGdqtYvuvp5uJmsXxHksGvPp3gCnmpLg/0C096K9kAPjbbPtq2mtjMv7qu3b7mCSaw+KrBZ1Cfezl4nYjVlYPmVJx0bK0oXgSOv9Ry+9GM6q6iX8RCMChZ1+6E4uWKgN3KJmEcYObvy8/SLRTV/UB/3pO/l5KuoHwhft6bN/bhjbYSZKh+KDf+8S+JE0V9KtSHMWBMEoeZBo9s7Sg/qNk9KqnONN0ibiFqQYLKC0c317SH4vWue8jWot8ZBxE9yGF3CaQ7aS6qM/HvXr43YBon9IjE4BPN7l4yPZySOlC87GOehJ54oDai5buHBcnWU7wf1xMhoK5XBOfxj89lmxftnoPV6E7cWPTtDuU8fp7LA/JmzXi0VZpKUzEOHrsKlWeE5VzC/ZqGwbX89PX/7dsqpAxeCT89/9+RmEyQ3SyVn7vrCfdPCVZjriKNQuuJH+4eneNKi9n1kpi8TEnWnZzd0YVvLLyJZTgsWX+kmOgJ5TMxqXDzdAqZMq3HbDtCZqb7QxyThIevvKzSm0NDvnLYrcP08pCS1xdpVTGb4r3/0mLuVeQ/PyfZhElcqQIxbDBQPBfwYSjUZBvbF4phpmhOZdhGB/BqMnUwjTT2E0XTC11qdPHqF9CeDeIW5RXJVoEXhM9WivKZbFvaBx0MGtUpimfS8Nb3HSHz6GLAb0UTkqx1dO0RM4rZp2+4fbmgeC+h+1TFo7MbOmfYNhmb95byPhQOc52Q3iryK3nvbr9Dhqf5e7K9bU4983c1xWXg9hPQLyRITXgJYK8S8qsoSg2v0sH83j3s6wAaRNuxDcw/6GlOLLu7muJCAKcxB6JbxKYruuHIQCr/nWxFGD97GnVKIdCcSNBZuvFyj7R+cm6s7qbs7hkOf60nf1lJI5vI/Whah1236G0rgWNFJlSqbS1U5c1WNhppgn/jPu1xRvayFq1DkcjzbV1Ngb9qMZMNrHPRdtxPzfO4NenrDf9093e/rWrF1FO8/n9AX8TaOza/cRBRRkugrNZSR1IxtRibZOUco/ugalrCzYrhMx+hupex/MINqmpwZweSKxSp3/3CsLtrGAo4/KrDVtJfSLp1NJQo4iYjwOHXhJLTHgmFWXmEglnIIDKGgibbwOKDHrsb0FXP7vU57YEWCqSSjeioDRkpQaaLbIhO7Pa7N2u4zCheaKr7jlA6Dn5ZWB6339Wji4E0H2guC9IrI0L3CCpKoLH0HW4u9Ut5xewdg22EquQjKDIU4GZuClH9/f/lLzA3Lf/orc/QvL/g6FekF/IpbB97/MwJyOkUuo6TjQLVyzN2NKYw9fj7g9mnbvhfPv4C/+Af/V6WbwW2D+R90N1ed1vdCwwHHrPV05CGkr5EeiNFso4mII30LrvHjuRWs3xbgAWX7YX96a30Cc1ZzB9pIV2H6XPHoSzZwexZxzAzDLlm/l6N2bQ0D+aiARlC7GMCPpX8sd09cVmdPZeNpreK7Hoge7GdNF+7T98FBeVXoogtTXCLDFdY0vdvUHXL8OhU9EnrRu5jo/BFIvdo1C4FI26Po4mTcg6fp2D13qnPGPSmIjx7uT9UWuPo+en1//03rRX6N/yb3+blnONHf/RHeeONNyiKgo9+9KP8xb/4F3l13gkh8GM/9mPcu3ePoij4gR/4AX7t137tt/09g/fTECJ2g0EoKYMUhmAjQhybDNVEBNN7aeqMFHY1CBolLiVmevgHK+jFiDSptsenRni4IaA6yQZ5VZymAjGgkOmBNAXbvYpSRdTeNDGgsJahQ/dRvDRSUaPd56iTGEVnIP9t6xCb6TFQKIppo7hTaFryVJxC1cagnUFF+pF8rRBXlWMYT3cgW5YRsVSRk+5SJtvJV39mHQcanwV8EW3oQqR0xaTkETlVcUgwXZiCeGylMLdWfLRHoZeWQCFvmIR3U/aA27/28evb6KYzcmJdBs2Jol2YvZVnYAo/culoqyke7mFsIJQU7JFaN73G2lPcROcKT2wQX7kpfRSE9ULZ0k6QDh0FZsHqaWMkzkvE8LkgIvRE1vj0suYkeHxqJ2e2MfhS9x4GaRaCiS/A+b01p7UyjMd0drHsFTRjDElExSHlQ7w+7DoR6jrS0CTIEK0F8Qzj+y1OV8FoWS1XdVxLyxZT9Q5Ti/UhSqH6AdW0TEGI8VJhNCpwUZjsY7K1xhXicATEr9eTbDqSbS8PmwCjbbRsB8fzKE3JUJqoH5KEXFs5oRt0+8W2bFD29ErTqHjfRrplJ5tE7SK630vN0L2ABfJmCU1LXFyIJgzx68WvrwfZXupO7D4BuZ9jvfE2AhuV0C8JCtvI546bVmlWVAQ35PvZWihSSgWwnqEMuMbyYrVg22S0nZUt6qCwxSBNR+R1+0QJRa2NVNQkEFI/UTTVIN+LVqNqg9pZko0SWmYdBbPRTte0Kr538WduY42J9uFS+9Tk969C2IuBXwk6G60/TR8moCfZySCinZ/O/rR9jpvofY2K9uPjViw+h8SQYxBb2Rg6KFtQ2YASjVl80xK6Tv5+EKdFxpodUc1fd8XNSzBx+2rNNHCrJEEV5a//nN/B68OuFcqKsF+l6d7SeP9iJCy2acF72TCFEGneAnYSWRm+bafBJLwieNe9E9pnYG+93cszxbTSkwylYXcu7Ac1nsUqYBrRG43bsTFYVNDxgKnj80iJBbTLDCETkMy00iOYUQ4Yxt5BjGqSjQww4zO3mHX7oSXa5tomyLN1ZQnXGc1FIVsSE3+GJoKanmnzp2I2keqlidddmOqcvOFxcBjzf7ylD4auTQhKqJVDKQ2+LzykHrM2mI2ZWBQjNXWv7RRw1O4UdqPoBkNpOlwmAcrJVgxttIv9ThrZIruvjwJQgyK90didjg53su1VY2jisGeETDa/sV6MAbYqAjzJNuyDIBNp8JNKnhc+1VMfhFaE3OIT2aQOM9nY2k2LqUagc08ZH8Xwysd+oaoJ252wLPoQNaSx940g+ggyuNzic7OXK9TdfnvH/r0MRizERyaPMAEGAfQHL4yDSD1E763Apw3Jb3J906lZf/kv/2X+xt/4G/ytv/W3+PSnP80v/MIv8Ef/6B/l4OCAP/Wn/hQAf+Wv/BX+2l/7a/ytv/W3eOONN/jRH/1Rfv/v//184QtfII9C89/ypZT4GxstyA4QDpfimtUM4KToqq1wC8NyLohGmePnOS7T2N2AGT3SXRD+pzH4ZYFuBrL3dhJwNAyoNx/Kx7UdbHfo5xeoowPCvKQ7SOhnGtPLtqA5STB9YPZsILtp0dsOdzDDl4noPGI9FdGow3YyDK0+UkIQF61uYajuCEqfX4/FTSggpo8uDbeOxfuO6m5CdZ4yphz7FNK1InuHaWLvDuTBefL5QLp1JGs3JUGv3khoTiB/Zhhmgcf/+Xu8c3nM4l/OY8MO7XHA5x5T6anBGXLF+o1c/MsBc6+iyHuGJ0cEC/XjHjPrmZUt9ZcOsY2athWjv3m/gNmTwNlnPdef0lR3AqDl+86jJWerpqYliYnIevCSRj0LpLeK4tpTnWqGWcwlWQSSN1dcPJ2DmqOc0FhMDHaszmOicdzeJNtAfUcJWvyWIdt4yhf9hFKl6wG767n9+IxuKWnxtvGYRuhUPrMkz27h6hZ78ibeaubvNfjMsH2Qkt848hf1xOF2c9F7zL50SZjltOcl+fsrwvOLyU5PGjePWbe/PknZGnDC1Qx9T6gb9OEB4WAuBQTgZiVI58FSzsNqI0wArVCzEm5+e0fvt3N96HWi73G7G8zhoQh2EwER9NVamrvlbI9sDgJSqLoj6R08vyA0LaZt0YsFHB0QdjW0LeH1+yIMfHFLsq05usrEdavrCfMSX2ZUdxNcoki3HjAon2FvW7H3zVIJQj3MJtTdv0LxREF1J6UvFdVdSVVePEkoXrQkz1ec/lJG/X4utAsNR1/csHljxuV366lBydaBpPK0C1nLy8Adtxc1qN3YeO4BB5+IJXB54bj8Tiv0ifGWCwJeZNcGFQGA5ly2p+mNiM2HOeTXMH9fTy5T2Uq2vXanaU4M9SNFdmXIbpgyU0wLeMXmC8ewdPjHDfpFhn+yYIz4sU7R2xFEkX+qu9L855fSMHVHwikHqVUuV7RnA2gonthpczR/Ejh4q2bzOKc9jNkiVhBM3UldK1968uuB24+ldEupnSIStmRrx9lnG9av5+zumanJ6paiqytfepKNI13303ChfMCnhuYknf5spHfpToIRXabxSn4pxYuWxa9uaR4dsHtYkl926HbAVN00SLjjGS4XEwQ1ePpljql79HaHns8IxwfoqiWLAmwAVdf7QWQYhHoMqNpMdCN/UKLXNf7FpTTnSUK4e/yhumZ9mLUirDaoci6akDQhrDdTYGQYBtz1LTpNUIcHcs5hb1da1aiDJdWn7pCue5JnBfpyw/J6h1/kuGKBXlXCzLhZkbd3gSXLt3sJKdy2hMxSP1pQH2vWb0L5VFG+8BSXPXrwdAeJNLF7djZJ7TGdoriQDVt3YOlnmtuPWNKNId3YaWhePHGSFn5XY6NIuo3AwfyZw1aisdK94fqqpHypWXwwUN8xtIUwApIqcPpZsQ8unjc8/7456+/osVUiwnRkE1J+dEW1ywnXKfkLQ7YS8KM7ULTH8fz2ssFQ84HmTKM7xU99+ZMEp7FPU8KxY/YDF9xsSroqhUFBbZg9EbpZ9fpA9sIyfzfqXo1sT1SAZB2mmnX7tSV/T/9HZJ9csX49YfavZ9hKdHPdAbR3BooPLMW7snmZthXbwOK9nvbQ0BxpZi8cpg08/37ZSCzeFsrc5rVASAT0yF9obBz2lBcqXX49fh0JrV19UgrQvX8Rt9endqoF3UICnF8FNr0BFQU+KsDx525Rg2dY5qI5arS4tuYJusuhacm//AzShOFMzFbG7YVuHf5gBgczhiLqjQuLNgo0mOutGDAczCUja7UlLGdUry8pnmzhgxeEupEhI3h0WaI/+gjVtLiqkmdkkaPqb9wA55s+iPybf/Nv+MEf/EH+wB/4AwC8/vrr/N2/+3f5uZ/7OUCQi7/6V/8qf/7P/3l+8Ad/EIC//bf/Nnfu3OEf/sN/yB/+w3/4G/5eYXDSEAQRxhBdVFSWoqzFFykMXpDLyK0noqDTRiSxqG4gvRGqi08NZtdNKDPI9IePVql5BmQyUSpFOFpOQ45PE0JmSHYDejBC5YEp7M7lWkRCPtAvU3ymSSofQw2ZhND9YUqwivzaT/7y4xZAd0IHapfSOOshTMipSxXuxMpDLcga0CeK5nh8w5gsMcfQIhlmNLoIkk2w0BEdGLcMiq+8exe1M9MQIqJ3BRsj4jMVaRsB+i6iIAG0DhjtcR5UB3prcEBjvDQw0cECLY5fysuU388V61KCn2wlCbHBgNlqRqrDiEAMZXSWiM1Ueq0F1enDhM4mUexefTAnWWlcAnoMoesFmg0JMIzopnwP3YGNNnqmDSSrhmGR0d5LUMHs0YVBxOm6F5qF6r24CSlxZ/NW3HpcaSN/c9wkCdI90na0UZIXUiZ0S4M9LEmqQ6ETJgZ7K9YjwYpj0Mj3VkNEQUMgHC4E+YiIhKoaGKLzTZ7LpqTrBdVrxR1OLCpfaX4/hOvDrBMAqiyxx3OhVFgjyOXg9tQqBNUe30eVJHEbNSLBdq+9cU4oLIcLQYSi4QVGgzX4IpXNlQeM6Ie8FfvWYBT9zIqbVhs3Mr3D1gNDLsm4KsS040jbG3J5OObXY8aERg8pyi9QPpDswp7WdCqOffP3ZKh3GbhEQaFpTgSG1J3Ujfwi0JwI2phs4v1u4rYzh+qOojmRJONkK9otkM2qT0SIarcCDEhjr6KFpyL0CBf96zaae/Q3XQNP5Gv3C0E98TK8uGhKprzCDwodgCB0UHHRk//3Xmwig4bhQNyu9DMx6dhT2YKEvQqeAUQdSNjTQ/povT1ugXxQe42ZUvRzhenFVAAgu5Gft1sobCtGBNnaT8J1b6WOBQXVqaZQTFQrgH4mZ9e0cl+4VE2aE2I9nqhjjUM3vaScG9n6CKUmTBqDEZmfdAu9CF0ncK7I8amVH7/fAxhjI43WYKOjllb74SQEQT37aHpRFIRZgXIfbu7Qh10ryDNGW1I1n4kwd3AwDOg8k01qtEwH5D2zVpwKrUH3nmFmca+fkGw6dNWhuuhcGHV6ZBkMDrvpow4w1hYE5U53gexaozsZepUPUjMSeXgYHTf0vcelZkLZlWPa6I+MABWgzyMF+cpj60B+PYawyvNvtI51maI5NAwzBU7+vF0a7E7BS9HQulRJGLMV50oU2BuhirmUacNnVMAPChuF6d1SasxowR90HEZaLSGInYCA/mUW2RWgG83V7Zx+naJ3BgyTJkN5UI2JVMqxriHboAS6B7KBSdZy5ncfLFCHHcZ4dg8DqhfWh09CtDR+tfbIz+FSxfr1uC0IQYwByvhzKtkw6U42RkLNin/WS+L62AsBk94LBbP3jPwMwU2GQ6O5zz6PTDY2+Y1sMl0urB09iOtasB5XWJQPpCsZln2e4MtDEaDf7MAa+sMM3XmSUQ8dmM64z4R+NbgEuwG7js5tzkkfYQ0hTwlKkWxl+0GWoRO7R9DTBKIW1hwdSV5fIudD9Qp2v/mR+6YPIr/n9/we/ubf/Jt85Stf4eMf/zi//Mu/zL/6V/+Kn/zJnwTg7bff5vnz5/zAD/zA9DkHBwd83/d9Hz/zMz/zP1o02ralbdvp/9cxaIWhw61WmOVSXH+ia5bKS0KWMsxTzK5HXezgYIFfFvhou5e8eyGN28EcvalRzyv8o3O64xx7U0moU3QV0Zta1tNZiluUYBSqGcBqmodLaTRThalFsJw+F75587vENji/dvQzSUFGJZjCsLsnb/3ynU4epHNZn7rMsH1gcZni/Oc36HZgWOaohbzudOspLnqqs5yhRNwtYhNcH2uaM0W6ksyA4spJNsVhLFRxkBgKcWownThIDYWim1maU0V1z5Ndi+h9bFiW71r6mWJ3P3I+s8DRFxXZref6OwxDIfoTn8gpU5EG4r0iBDU1ScULTVcrul5RVkIZCUoaoeqNHntjOfySBDkOrzXMf6Egvw7U37tmGDTpz0oKanvkhVamIX2wkxy6zYJ0HTh4y0uCcb/PNJg/kbTZ5buCBPfROQOlJpqKy4VTmq88LlH0pRIu907e82QzYJ7f4LMzqnsKn8RBwAdJhm39NHDqdsBci3bIHc3oCwlKehX1CEaS2V0iWSmj0FCFgm6ZUJ1qCDlFeopLNNoFkp/9kojNP/54ommZSlapqmrAGprXjtGDJ7lMYbXFX1yh8kyQzIMFeI9/fiH88badRJnBf7iDyO9EnYB/R604XNK+fhfdOMyuRa23+F0Vud9xFdEPYmyRJFJc205430kCaSrCvki7GF6/Q3uUMfuVp4KanhwR8hS3zGmPM+oTy+yZ0K7K9yTskLZjOF+y+miJ8ukkRFRNi70Cjgo2jxLyG0/5LA6dRtNH+96zz9Z0hwnXn7IMhaVdShrzGG7lMsXNmwnzZ467P/WMm++9y+Y1LeGFC8XmI06E3J3i4CuKo1+pePqfz2juOpKNwbTiStPPRVsyfKzhtTtXPP2XDyleKtrzeH9Xmv7QMb+zZft8TnIrSeUM0T1Lv8LPhoke2ZwKQJJfBcqXnsO3HJefSdi9PpAcCnpWfXUGIfK8PYRKGpxgA+ltpEbdi9SPzoi0JoH8zo550dJ/9kzqWhd59anH51GHYwL0inS916N1C0V1nuDSSJvaiLi0PRNd2DATymNfisU3AQ7edgyZYvUxLfkEQPFkR+k91eMFQ6FjIyJWni7XKG8n04HtfYPu4PiLFa6wuGNLuhqwu4HmPJMw3CZgOychhmNKcswvejUdmUEyhcZLVa245EU7en92KLkXmcEDaqRWxPuRqHcgTaTBHqlFyPZVber9RuBgTnc+w7z97Bs85d+c60PtKYzFL0v0usLf3BI+/jr9UU72fCPvK0upwfne3CMkVjxa85SQWOxuoL6Xs37NsHzXUjyTQEQGhz9cQLTYxXvsxZrhfMlQJiRetBR201P2nmRnaQ6NbCkD6GbARs6+6QQI052jnxtcqoTCE5gSwfObMA0b3VLhCihfiqV0ftHicsswE6qyT4SVMGSGzWtiMqF6cbPbPlAUFwH7JHD7cWm2dT822JpkA4t3oTmOFM5OgD+AUFvyi5ghdG+gfFfsd5O1DE7DLJBsFPomDvoKyg9kqG5O5ONYl8zXsg1ujyHYSCsNkK7ka2zfHMg/SEjWMiQMs0D2nbdsb0uKr2SkK8hfGjYfyeiPB+5+90u0CtxsS+p1jr1McGkgHAroojrpWbpDaD7VYD7Imb/LFCDrZgO60dhKaJbJZqA+S2gPZPPtreL2uwdQkD63rxjnSC188M/WqGZg88kDhlz0emqQfkt3TMYXpobieYsrLc2RlX5lcAJkW0W3NKRrR/blC/zZId35jOpuwlAojn9VNli7O4n0MDd7m+6xpvSFngwzZq2bjJ1G+nFQCncyF/fID27j4RoBvT3NWN2sZYv6+O5kL63SBHrzDW1Pv+mDyI/8yI+wXq/55Cc/iTEG5xw//uM/zh/5I38EgOfPnwNw586dr/u8O3fuTH/3P7x+4id+gr/wF/7Cr/+LNMPeXRKGgXB9Gz3PjSAZgNn16PYV+7AQ0COnbbsVHr818qaXBbruSS8Car0TelfdiN1pkQldY1ejTEmwCW4po3Oy7vDRwcjuBkwz0N1d4FJNdrNHW/UQIr8y0ne8NKW26kWjkmmS7YDZdng7Yyg1u8clug9ktz228WQ3kjHRnCTR2k3E6b4W3nG6DZheGu1uqQQ1t/JQD0aaEbuTRiDEyVwPcnCru9J8+MJP4V7diRTG5a9Jo2ZaQUMTpdg+hM1rwnm1tSK5kAPaHkphSSrg7RmbpCQtgFKaFN0rimeW4jKQbgL1aWzAW3Hj2D6Sr2me5KQrabK2v3yAIiYQD2qyESRAzYygoNgJJ3N3X2GrgK20UC3KwPah0FQmfU0AcyvGAMqDV5CshMNuK487NPSj2JRYMEtD+MQ9fKI4+rLb60ZiwbU7+V0PhazBJRTJ4jJDF9/PxQcxhChuH4bCYloXeZY66oAsuo/pquteAjcXmRgnPLoPWuFSK1kndS/NWiKWeTQN+VuX+EVBc29OphRqV6EWkYZ4uxY0vyzQs8jzzsRW0u/Wv9nR/qZevxN1An7jWqGalvTJrRhUVA2kCfr4UFLp2xa1i6UwibB3dAYJIcQQOMOro5pZN+SDF/e88ePTRBqK3UB606Fjsa8fzFEeivdW6HZg9kxCzLrDjMyFvTGGl/A75QJdpGoFrZi9cDGcb8BWmuxaGo/mREmYXgfVQ7lZ8xtJ9N598kxcmG7EVtKnCJXKRbRew80nS0kwfsvItiUEmmON6WDxDqxNzvv6CGWD5JFcy7bGbhW6tdSbA4pbOet9vJ3K9X7T6jOoZmrafCYb2ey6XLJI2iOhZhYfWJrSkhU9zamLmhIZPrABUyvStdQXFaL9eAo+cSiXYGto3lpwmc+wjwTpTLaxtiGWxMlK4TbCVU+3niGL4WU2ZopEOka6kiarv9YkW8XsaRDkVjHlErULHd9b5EH/oJC63nnREblAX1qSbeD484ry5UDxoqY9yRkKzeKJw7Qee7XD31vSLjVJpSfkUHj7472ziH8o/yquZEOCB1fIZs1uGozW05Yea9CriskxK97Seiv5Vf3jUwmzjOGnvBJmGspcON7rraCmVs6FXswJbUf6EvrZb5M+/du8PsyeQuWpNGmDvP/mdovuBtRaKNlkAk6yeQXmXc5llTgIipw8v8XUM5K1OMW40pKEIJTZREBBlRjcLJVtnFZRH6ZAB1w59gaOJFWgdKTQyPuue0/6YsdwUoglfB8orpwAnUBxLSh7P1MMudyr5YUAZf1c41PF7P2OfqHEZMXJtnXc1JfPAz5VtAdG3LNqCfSszwSgzG7lGTt2nKNu8lVthakV67cOyaIJhU8Cuhyo74pTnl8M0GuSGwNpkHO6U5PWcyihfdyiKkv+3LyyJQiSf/Qc2mPF4e++4OJqgf0gx6UBfwLdqThuZv/yiMNdIFv5aEKhSFeaoU/YfPmOhBw/HEgvDAdfi7rYqD11Gazf9KhBkX+xmFwHu0OxJE9W4ta5uy9akzyPm6JetDraeU5+TtgpPhWXzeffl1G8lBo/LFJUkZBsHLb2pFuNrQTI3t1P6WcCKKsBqvs5ycaxeHtHe5ZTnyXMnjTYnadfFKLfWMwmCraK4vuQaEw1cPSlLaru0bcbQpmj8kTuQ6vJY49qtz2mdYSTQ3HXMxrVe5Rz2JfSGwStCHlGGAGQ3qFv1sKyUAr6Ab15JZPot8Cy+KYPIn//7/99/s7f+Tv81//1f82nP/1pPvvZz/LDP/zD3L9/nx/6oR/6bX3NP/fn/hx/+k//6en/1+s1jx49krXR4RJ1s2a4vMIsl5BpgncokLTj/uvXyKPAxkdKl84yVJlLAe56zK6W5qSLdp5lCQtJWg11g5oVeMW0EksuKlRigFRCkFpH8/qMIVcs36oFVVsId9Iqj60H8Xz3mQwCzSABa4MVIdLNjtxohkXKzcdTlIN0PchAspYU8bbUkxi1PSY+cESEmq0C69fEj1poP+BtQOnAgCK/DMyfDjTHhiETSoBLFe2Jx+fy4Hczj8sV52+I28Lq4lxEaM0oUg3cfJcjOWrh7RKzg/K5pz7XVA8dprWwg9kTcfepzyV3JCSi38gvAvmNx1ae5kihQhSYJtDcHcguDflzJdqVnefoS7Iidqmsk03HVLCCHt2IhMLSnARsoUhyQUVcEWhi8Ju4ZAh3Wzt5v8YMgHQDpglyGNUe/VQ+UltKTX1qSTeexVduGQ5ysXjtxM9bt/J77A4s3loRvSdS9IcS0JCsZVANCoZ5Sr80IjBsRCUbEk23tCRbR/ZsIwj94DCpxSlFf76Y7mPdDOi6nwqK8oFQN7jrG+zjhzSfOsRWGfYiIZS5FKn3PiCEgLl7vnd8GQXw7TewP/0mXr8TdQJ+41oR2o6wfoEfBkLbYh89FFe97U7sCI2Z8hLoekLfi7UpSA1Jvv77qF2NaTqCj2h1NAdwuSZ52WKeXBCWc/wspzkWpDJ/Lr7s2fMd3Z0Z7ZHBNMne9jsE0tsBl2v6ucZFGt/8g05syNse0xjyW8/u3NAvIF2B6cUhS/cwf+oYcs3mkcVWQs/cPVAMRaB4IaYUyU4Q0u0jabSz57JFHHIVhZyB+QeObmnZzXISLTSmdK0mVx1bIZvTKkReuAwPy/cknLM+1nSHivYwTGL04kqal+ZE05wF0k+s6b60ZP4e1I8Nquywyw7Xa8LOxq2lAB3pOkzas3QjoavKSAOkO0FRfWLYfqqDXpPdSDYIQQSr+bXQVIXu5AlKoyP1xM+ZaFflC3mN/VpTvAwcf+6W9qykO7SYVjYpm/vy2EzXYp7RHGtsLjSt4qIT2oqxpLvA/N0ae1uhbjfo5QMoNcWzCr1rUdsK5RYMMzHJmK4ApnG43NCcGFwitXHx/kB6Lbk1JJYhNyQ+CMVKKwnMjOYJalvttx0AGtS2ItQ1w+wuPlGkSgmD4FXRd7EgpBZ9dSMDSpHLuSgLCU7c1fgHH65T1ofZU4SYFYQTQ4uw2aLqRkKNdQyBdF7+P15qORcr5MEJinyzQq03FM8T+jfu0h2nk1FIiBtwArRHKfWJId2KvnAcHIdC6F1202MzHbfnit5YEau3AX11C0cFzbFm/oEjXfXUp5KfMX+/F9fOZSKOVLli/kFPdt1y9Z1zXKKYDZ5gFe2hNLzZRs5XUDK0CM1LTSYX4sDnOfiKDCPpdn/fuES0peqVrbruYPa+jp8vQ06SOtxJh9aeN+9c8my9pFodiqlEErBbM+WE+ATu3Fnx8nKJerIfRHwiAEVSKepz+N++/rP8X933U3+poD+Q3JCje2tW65K7/71oqXxm6Q4TuoUh2ShMrbj7szX93PJ0bilfKA6/smOYJwyFpj6RZPfs0Zb6suTg32q6maJfKnHdWwzkL7PJNdSWsYeJzA/TBmzlOH13h5slrD9SsHlN0bzZkN7mpLcD/Vw2vdmN6LzSGyToerWlPX5EN4+bWw31sRLh/QdXtGcPaJeKRedEQhAKGRDKDJ8IUKTduIVWYlDxzlPCMOAB7RyEEn9Q4lMj2SDRdTMUKcMyZ1gkuFSTrnpJUb++EUDicEnIDP0iJdkI3dBdXoFz6JNj1BDPzejWWXzjgMU3fRD5M3/mz/AjP/Ij0zr0M5/5DO+++y4/8RM/wQ/90A9x9+5dAF68eMG9e/emz3vx4gXf8z3f8z/6NbMsI8uyX/fn7uoGvW4gTbF37+B3FeF2JToOa1FtLr+M5VzWqqsNnByKoOfwALyTj1VKiu6oI7l3hlLinOXHZqRI4GSBT4RPn6xEFKiaFl0FzO02eonHJ1oAs21RdYe9CNL0xVTnYDTFlTywm7sz4e9tevpFSnN+BrziOuOEM+xyoVgQxH0puZb1X3NqGHKojzRJJRsEWyNbhWiP2x0JJzO/DFMexu6uWP6la9lIzN8VKlJxHbj9mKE+D1z+6hnKQ9rLhJ3sQrQYdtjG0s9mkyNNfSZfz+xErIqC5hSCCRQXanL/GQtKN9MMuaAsPgskmxiE5jRBiWj29mMG5eVwjXkJ4tIj7hy6FyqJT+H244JELN4ZHcGgeCnFdPFkwFvF1XcKJSK7CbgEdnesWKRWnuU7Ym96/Unx47Y7aerS1cDNx2VoPP18DS7Qnc1Qg/zOlBd6WXeUoYfA7J2NuCyFQPV4SV9qjr46oFs5nO1xxvZ+Qn7ryS/aaXhNYmZNcqWFNtH1hDLD5QlmVWOuBqEAgKD61sgGcJCtDmdHqNNDbNMRiozZ8xbdDnLvr3dCWxzdLNT+gaHqDuU9w29BWPbNuH4n6gT8xrXCb3eYpEAvl6h5Ka43Ly7xcRWtykIGkqbZ60ZmM1Sa4O6fTfkfo6gULU1DKM9FF1Q1hBDILxqCVgyPzydu8NHnI6KUGFQXUG1LUDPRBlQ9ZtPEDAKLjw+A8u1dNNEwtKcpHFqK5zLYmzYwf+aYvZTAKtMJjSNoQSf7mWL7SITb6RqKF7IRHXKx5azviN6ifCGNdXMsjdHogNcvFDcftygPs7fN5H4DghoOs72+q74jZ23+PmS3gfyipTtM6R8bTCN/3s/kY3b3BDRwuWxHu07MMJozzeKLCconMIdsEOtLcawyNMdCc5qyDxLhfqv3C1weWH/CkT+3JFs4+vmEfq7YfndD2Fmy91NcGtg+lPwSM4jVNl6Q326u6PfzPS5R0++tnym2H10Kha6NCHAQB6zxsk3AdIFuoannir7I47ZU3qvqQU5WWNIsibqzgE8M7mRG86ljXCJaQNN5fGYmXVu/EP1Qfi1GJRKCqPCZRecJIRXrVxQkYzCh6wlFitdacm4GL+GF8QrLOcxL0usYaFhV4ioZRehYI1a+AEUB1uJublHGoIocdbDEL5aYm82/62h/068Ps6fg8hq1PBYQ4dEZZtNA3ULTiHvheoOazwiffB1zuca/vITrW3HasjFZ/XvfJFkJGGHXDSoEutdOhXkxOinuWuy6oXxP4eaS79AdpPg0UriDpjuwpGvH7IkAmnrwsunyHvKM5Lri5HOe5k7G+vU8ah6RZ3/rKS8l9NCliupOwva+mOPYNjAcZLRLwzCT89QvlYT7eSiu5Xnbz0d6cqB4KduE8sIRFFx/0uByGOZCKRDb/xDpjMS8MgH38hsPX9J0T+e404Azgfe+8Bq2gqNLYUHUD4cpOqBbSr25/uwZWXTDEmc8Jpesfibg4U/+kz8gIasf7dAri11puvdPWG6hW/Z0y1yYG14a9FFb+uR/VuBtmDYg3UEqw7qXraNtNC9ezEhvtQDBg8b0Gm+F/eItEGd8n8rWebTwdpkSHWKQXiLZeYoXmqBzTBdojyw3n5CCeufn5ewDdHfmcD6neNFSPA/0i4RhZmhONOtHlt35a+gB0q04co6XyxTteYmpHcm6I1lHvYjV+DKh+48/gq0G7OUWN8vFJKkd0L2nvlOgQiDJjNxfzYBVYIwmudyi6pYQz4mKod763QGOD0UH8nWHKhVA//IWv16jwwHKeL6RS//mH/Jbu6qqQuuv/7LGGHyMln/jjTe4e/cuP/3TPz39/Xq95md/9mf5/u///t/S9wpdh6/GwpnL8DAKbUJ8A7Se0h+pG1mrKjXZ84UskVX0K2ttn43J1YlY9EY7X58JehzUuFnpo91ifDAZvbc3C4h9b0RJVN3K2ipSaXQf0K2gdKOlp8s0/czgIgoimgFi1kAUhCpx1dHdKw9HNfImRcw42tKaVjyrdRub94rY5GuGEkkzjpQEWwfylad8WgsFygnimV+pyY6XaC9nd47i0omDRAwpdNEjf8zvGAcHl0UnmFqSoKek4DQGeqVSDOxOXt/IjwyJUDtcQcw7iQ1MEeTf2V6cpzz40uPSuLHxQqXQfZCf62VLftVPiIWOgvqhlPcMJQik6cVdByXvR7oaSG8a0PIazC6uL2MTuidDyu/IJ1pSttsOVbeRoqJIVwPZVYNyPtKv4veIDjdoOeRqV6PXlaR0x3s3WC2BeVUtX7dpoW72ji1OqF0+S/Blio/CdrPr5WtbI9uASqgaKlItJvteNwbyfbgC1A+zTgDR2jtIFkCeiuV33Ux1QoIgZb2MD/KPNYRUaoDLLT6NQMIUXpaIzWJcZY/i3mA0wzzFJ1F8uq5Q24igRtRThm7h4Y80EHmhIl5XVYOuOkwz4BKhWPjIydWdrPCTjVB8VO+xOxctg6UmjE5Voz2nqeVMiBXvmP3DROHolsJT1i2yEZjL52arvR3ouIV0qQjVXS4bRzdzcUMbCHELOHrv22r/ef0iSLaQiUjqYISKkkttyK8C6UroUdkqUF455k87bCOvV8VBwMUGINnE97Fw8jUDFFeedB1I8gEVFEnsmUczDR1rE0BS+ThIMNWRoPc8bp8KDculep8JovcAkfLRWtfJ6/NGGqR+pia6iktjoGGRCKLuAiHVuNxMFK90K6YkQYtuznRh0pLZ2k0iV6nvWu69SPEJerQCF5F5SAy+sHL/lYkAFrC3qC5SdN2j15KjQ/CSizEGA4/WtOO96hyhHwjxz6Qedb/l8/fvc32YtcK3nfQKkVobUrH1xlqU0VIftKZfpIRc7H1DJ45ZI0WlX8ReIQredTMwzCz9YhQKiLmI2laoF9eYbSvmJjEfKMRzOmQSF2B2XQSsxLRADU5+V/2Ava0E+Cjk/jW90B/1KzUh3TgBJJf7zavL9jb13kbjBos8ixwTvXK0lLW1DCTj875fBrojhzvucQcDw9JJLxGp4D4JkzU+SpGtArNngWSnppyh4qW4+SmH6LdizzTGDeSXsn0hbmT7hbymgJwrNcD8XY1dG2w+xE2iongZyG58dLpSdMvAMBf66Jhm3h15+qV8T7HvVdFoQk2UIrvRQkPtfGRL7O2PR9e9yXgmAggSYiu1wGWSE2UbT7oNZNdiBR6MhERKzpqKNr2GfmZpjxJxxty2ojsd63kmgnyxFg8CglnRjqrAxMAAUG0vBgkubr2OYqp6nsT8KnlWEW16g1IxYFPMb3QrzA1VNdGmWup1iLb2frWRnuHV5xbyew7GQPBiGT4Mv/5jfoPrm74R+YN/8A/y4z/+4zx+/JhPf/rT/NIv/RI/+ZM/yR/7Y38svlbFD//wD/OX/tJf4s0335ys9u7fv88f+kN/6Lf0vXRZYIoFqixFx3FyhF0uhFaRJPR3DtCd0J1ILOroQPQj4+o1SxnOl5LHUO2Lq47uAhPPdhxkBoc7mk2Cd5Qi5CndnTk3H8/Irz3ZTfzcAdwiIxzk1Hdystue9MWW6vGM+sSQraIT03ZgKAzrN4ooRO/kwWckhdtb2N01zJ47jn/pGZf/2QPWHxUtgekEFRg9qlHy4JTkc0V+48nWjnylJleV248YqgdeBGWxKReLUEV9Zrh5cyGuWm2kfbT7waE9VuhBPLX7mWYoRHcyeYhXYF+KyKw7Cngrp7w9ina7VezclaAtPonfo4HDr/ZU55abT4+vS7F8O5CtnaAshWb7QNMeBupHPWZjJu647mDxFaGqXH6/iN6z633hTbeFiMorpJHJ9rS17T3ZuozF9vgLnQyQ8aV2RznLd0R01h1mJNue/Nde0D86Yfcwn/IBggFnFNXHjrCVhIxJ8mqQwdFq7OUWs03Q3Yz86Qb/tXfhuz5Oc5oz+9w62j8uCEXGcFRitu3EzySP6J0xIjqPjYda7+TzHtwh5JaQ74+0bOz29KFxUwhSrBitrEPAj8PPh3R9mHUCAO/wdY1vWtTVjTQVxqAPliLkP1qKZuyVdbI/mBGsJnn7OSiFPz/6OtF5v0jIn21FILyrCfOS4TDfe/z3wqPdfeIMFSB/vpOE33tLknVL9nwTtyoZ7VmJHgLFeyuGw5LN99xjCjZNY1BXZjDVQPHOhupjR6wf28lJav2GbD8e/r23SG7PCGbO/GmkY3xmRnsYNRYO5u+pKeG7OZEBwc0dya3hjX+wpblT8PJ32YmG5TMZPk4+L8Gi198p2is/c5TvJOSXKobyaV5+byZWos/lTPQLNTngdI87Qqc5/gVLd6DZmRRbaXSvqO4TGwlQXjGUiuxaAJfZC0dxpajONEOpqM+ErlW8DCRbjX+aiQ1x3HYoH1j+f0T0LvQRxTAIOpvsAuXzHhQMhWFWD8yewfaBGHIoL81UPxeQSA8ieleD8OVViJksQyDZefqZpjq1suFceTYP5NmweH+QRqJzEhKWG6Fw+kB1R7anR1/cSopx2+MOClxhKd+6lZyqhQAKPjFAMqWvS0q7OKPl1wMmaknGgLF+meJyTTeXmlYC5raCpy9Qd87Eiv7JBWFX4bdbzGIh9/4rNMTQevzNBcoYzL270Pf4zZZweY2+WTF8g2nJ36zrw+4pKHLUekfy8grOT3BHM3SWCugTN86mdQIonhzBeiNDHULZXHz2ueSIVDV6VgodthXXTV0PKO8JRSrNXN2g6g6jFMnzFcFo0rsHkdarsZX0Ez41BJvQ3p2je09yVeHmmTSYSuiKtpHvo5seXfdSk8ocP8toD4SSNZSjK5sYrcyeRkAwESvrdOcpP6hws4S+zMhWnuJlh0szukRMeUarabvTmKtsAhqqh44wG+RWukw4eNuxvWd4+bsVx5+H+ZOO6m4m7lKpDBbNsRhfqMxh2oR0HfsNq0S/tYDmzsDRwxUfP7ngF959jLtNaTuDboVmnd0oXF1K7RjEFMNlivqNjuRlwtkviuC+uhMYDuW8nP6c0L1292Xj4jItIa8F3H7aExLP4ect2Y3H1m5q8utzSYI//UUBJy5/t8NeWI6+7Ng8Nrx8A+78fCC/6mmPE5QLZFcdpvZktzFtXcHybdlgKye9TXUWt6EK6uMZpp+xeL+NoK+W4XIIoimpHO2JPKeKp7UAXzNLvzTs7s0wnRgYZVd9pKIGbOPkPmt6jJLeAe+Z/8Il5Bn9/SO5N+sOvR4mR8ngPP7mBpRG5Rn6YIl+cAduN3C7InTd3uyl7dAx90yXJeJi+40BnN/0QeSv//W/zo/+6I/yJ//kn+Tly5fcv3+fP/En/gQ/9mM/Nn3Mn/2zf5bdbscf/+N/nNvbW37v7/29/ON//I9/y9kAyhj5YX10DRqzQrQcNLOLiHMIe6vOLI2bD7Hj1PUgYVQ2UmK8F75nkG0GKqZLZpYwl9dn2hgi5QRxFuekGMrn5GaZPs9Ei8UAhFHgHDcmIaA7L5Z8cW1vtz1hkeK0iiF/8rPq3gvtK96skroeolWtDD5jWrppBa2TQBtP0PHncQFbGwkMrCSBXA9CLTI9jGGFqDgER2RmRCJNK//fLc3EJx8FXsZF5w2rpgMGQs0KZtwyxO1GykRz8BbIYJjpuDaV4UUNYsHXFzHl1ICpwaYKtzGYRn1dGvy4BdI7GVBMw7SxGJGdZBOmkDEiOvrq6/BGrHp9ohlSLejOK5kOQwwZ0tVcbJ77MIUW6S5a944/dyKFZSwguo8bNy9WngC6LHFKflehzFGRGhjSKGAc/H47Erd1gpgL6o7WglIM4uAWrMZsWrnvEkHMqBtpsMezAnvd1DiUhBAdc35Lx+/f6/ow6wQgm6Ag1DQ1hptqLZSULMXnaUxGjjXER+vSV8DfMcyQLJX3X0nIk3JB3lOlJH9oCNNmA+/xMbRMzoHUhXFI9GVOSAz9wgrFyhjhhFuFbbx8XNAykGQaKdkzoQ9WI4L4iijQWkYrZj2IoYFp92dXRc620J4CppXEb7ZybtwsEZvdeE+nW4/dGlSu6OaC4NttRG1TvT9jSs6onzuohP43RJvL7FaolGjRoBE3p/lLM6GmI/XLdERLcRhKEcxOQbBGQI8xCFRCw5jOdEhUtLwUe1HCK0vLcQMVtx7BCpCih9GeG1BSb52RYWS0IB7zWMSpR3Qxo3X3eIkNr7y3ysctiVX0RSLvdxeDFa0Wt6Ne7jFiQK4aMrnnmk5owvFZE1KN6QLZbaTEVk6Cbcea4wNojc+tULuQ15DsfEzolm0HKm49VLxHEosuCsgyoWy6KNAetySjZmrcqJQleCcPhg/Z6vtDrRXRFQ/nGINe5T1GXE0A+kFo1+2w/5yRzhn/O/SSLSL/H58Tdr+RGAXxoevQTkwxQmLFZn3wqMhucEVs0ZQg9bLF0JgyFUBUy72m4jNfGBKx/sftuFDCZFviEoUmTEYsY8AmQbRT8hyTod7W8t/9XIIVh0Ix5HL2s6tYY5xsK4YCgg1CFOgkcHTIRWOSXSt07/GpjuwGaS6CEpDD1BqqTETqeayPY8ukgSRgotWv7yQgVRgYIdoAS98QtEJp0K3UI506hpmhOjWTFa7qYy2WlmTqd8YcM59I7UMHhhLUoKjPM9kaL4TqbXd7s5zk1khfE9kZplEMmaJf2GjLHXux1qE7J4waIwPUq8GGepD30UXdLgjLQrkgQcixhoyByGL1u69BKgjQkjlx+xstvvGiVzH1IJTuPCPkidDHvRdzFq1j7xfZEW1HcB5lDcoaySFyfn8/gxgvNC3KJvI8jZoqoYsPqOAlm4hXzKL+HZcKr8aTfotc6/Wag4MD/ovl/wabLwhNg99sUFmGSlP0wRJCYHj2Al3k6LMTwu0Kt1pjHz8kzMTNgq4nvLhEHx7g7hyKgLDpBAlVCrPaMdKu6o+esvpIysmv1iRPb6TBM4ZwMBd+bh85/NYIJz+EyZ1ENi49elfjThayNk/lJksvdvgypbpXMHtSYd5/Sf/GXfoD4R/ozpNe7nDzjOYsozo19GOGSA8nv9qBDwxzQzfXdHPF8t1IBQrgcsv69Zx055m9X9EdZfRzMyX1Nsdi32f6uHqsPLt7Vty4EjmwppNtRnnhxSL4RE32ff08Hvo+Ui/Oe9LnCdm1orrv8VkgvdFkV4qzzzU0xwnVuVTBoBWbNzw+gexaR6edgI2uW91S1ryjwHz2wT5UzUWRuQxfwm+1leg6gpFth4lNASOasB3oDizbu/sGaDz0/Vy2NrPnA82RmV7jdMXmSPdSuGcvHMXTmvpegcs0+aXQtsyqIWQGV6Z0hwl9qTn48hq1rfEHZXRI29Oj9ODl97dIo/f7Hm1Mnt0Snr0EZOhW8b72q7XYzs5LwmYLXc/wmY8QrCL53DtSDE4O4eoW9+JlNHGIG5UglCS9mBOOD6bv5aoNP/X2X2e1WrFcfrhi1N/Ja6oVJ39UaExlOb1voe3EOSvP6O4t0b3HrIT2pvoB/+KC0PXoNx5JQ9b1hFlOf1xM4YcuE6OA/PkOnDQsqhf3HOWluVh91wlBK+bv11OWhN526KrBHcxw85SrT+foHg7e7uK6XlG8v0FfrQkHc9w8Y/0xMcEYStE9zd7Z0p0U9HN52JoODr5aUd/Luf2Y4ejLA7O317R35/QzQ32ipwakuPKUTxu2rxW0S0W6leakuqNjsGjg+POBo8+vqB4taI4MV98tZ/H0c6KtaE7lnKHEQcpbWH+6RzWa8gNDdd+TP9iS/ndL5s8cH/xAgMRTfjWluAgs3+kYIhV14knPRQtXn6uJjqUGptR3b+S1pSvFwdue6kzTnMRftiI6BEqzM7ltJYCG+XuBpJZkZZdIPsgIDGW3QtNymQxc158W/dzi3YCt5e92dw3ewPGXZGJvTpMoJFe0B9LILN/zJDuHqT3NacLNxzXLdzzLr9W0Jxk+VeQXXQw11OJWc7XBLwp8kWCf38rm/e4RwzylOU0oLjqSpysZUkKg+cRdec8aj3Ye3Tq6g5R+biifNZh1i77diKD9bCl88E09fQ9d9xPIEYwWutbNFn+7ElDPGGEPjOnIkaKoIptgaLb81NP/6tuqVox14vfxg1iVYM7OCPdOZNgY7Yx9gLqR/LKmmfLK3M0toeswp6fSlAGhqnHrNebOORws2H38RNyq3t0KbeZ2g9/u8JsN9vXHuKMF7Z1Sthvrnu4wYf3IklSCaI9aMKFtqalJ1f0rWoHcxEyJHpcZmhOLrQO2dnQHVjSZJ4KuF5ey3exnsHx3IH9RUT2UzKviRTt9vfpcntftkTyby6cibj/+wpZhllDdTbn6jIKP7eiqBFpD/sxGrQocfs1z+G/ep/r0PbYPEq6/MxBs4PhXBAjYPQwsvwrHX2y4+J6C9gTslinxvDuA9n6PSh3KBMx7OaZRNPcGVK8onhuhXh0P2FuL3SlOf0Vcw57+Po9e9MwXDdt3Dpi9J7VNwoeYUtDFUYupJ+gXQgHv74jxhb22+FwCnJdftJQXnm4u29Pi2tMuNLv7anLE2jwS/Ux2JU6m8ycNZtehdg1+XuDLhPpOxpDJdsk2gfxmYP1awvahongpDJdsLfoR3YrTqt12NHdKuqVh9kETox2yCYhKX+xQ7z1FHSwJRRw4QHSgTSfn+6OPqB7Op4yqcWjRncNe7QhPX0z3kz4+lFyzwxKzqnFf/ip6sUDPZ7jrG7nnT45BaULToI8P6e8fY6+2sNrgr2/pux3/nH/0m9aKb/pG5MO8gpOCQN9PYjEV0R5BNr3wNzdbwhjy5gW9nDhuRktQ0aYhFClukcdp04tXeNR4pLcty/e0+LfPisn2N1hNyBJCUsiavRskZTWEyZbPbGRbE6yRlefCkq571BBwi1x4hLXHpwZ1eoRyIoQOVomFWjugUys0hZcOd6vYPIxoSO9RMb/CGzWJLYPV9NEFYnSEUXWPycXRaSg13jAFKorVn6JdarpF9MrOZKPRLyBNFMXVSAOTrcboja28DAEoEVOaWib8ZKvxtThl2SbQHiUEI24Q7ZGWISb6gSebiIQOatoCJVsmdMTUey618oHm2NAVsioGsR+0tQxSwcQ/j1snUwvX0ux6WFr6pSK7koPu7Z7PLpsRSarPbgPdgdAy8oswIT+mg/xWGg2f2T2n1yq816h5OhUGU4ujls8tSpVy8LUgHaaV4XR0URkDyJQXxMNlBrMoMe0RYbMRhGIYppXqpG2YlTBD0Ban4PRo2gAqa2UIGQ0UIkVLLxfirNNEPrTzYH6nT+t/2Cs0DaFXKNPudTNdR6galBLETndONDhJtOwuopXpmJS+3aGdx6b7smlq2XiqOqZcx4T7ceDAS+6Pt8LDVT7IwFImYDXKe0wzkK1HJN3jlYZE0R+X6FkWg1YFhRvF0QDdSSG2ngry2xEt0yTrgcOvyqC/+8hSqJ6RvuETyc/oZ5r6bk5fqMl1TkeUvz0Q44luodi9saAvol3ttSBn9am4TREQLVcScDE3RNVxI9lKbtCwXdCcQnti0LVH7XQMIlXU53FbMASqUzNRQsc8D2/jZkLFgLJjEcbO3xPBvmjCAulGsbsv1uP5CxMDXtVkKWqi1m7k3Y+aM5+AcpGmlqoJwPA2Js4P0exjbuTnXwXSNgjlwgtfXvchbrDElrSbKVxiKNx+E+tjZlB23UKA7khqxIha6iqjPyoYZga9LdFVI2JmF0itkpyQNIG6JfSSsB0U2G1c18XnjHZB9AabaDUb9qFmoZCQPl330zZfOOEeqlYGEPtKO9B2MXhv77o12QF/O1+jjq7v0NcbwnImg9rFLWEYUGURLcAr1HKBO1lgAL/ZCgIctHx+kWOyTEwwrCG97fCpYVhmmMRgt7XQXJYLQpaKYDiKjHU9kAILvbeQR0UdQLanWdudJ1l3dEcZrtBRvxHoDhPGJPVRvyjsCOkPRitol0FzrMivDemNjeG+MMwTXK6oTsXuO7sR57vxmepTEXe7PDpvVormRUG6lmT0saFPdgIcdB89Z/MooT4XExjlJVTYpdJf1Geaa5WLJu1KzjxEnWsDZmUwtZXtR9SgKK8INtCce0ISIqNEzm1zGDe3G4NvNZtVSrKVzw2RwZHdEI065GvpAXQt2tAxD63vNDgJTU1vNKbR5NcC2LaPdQRgpZ7l1xKd4JPodrUVUbnpPC43dIcz+nIRN1tMvwcdNTH9zEiK+zsSWG06P4HFLjdxwyv1xjYyOKjBM8S/S69EQ0qRiwYyT+ReHgQkpxc7etUNErjdOMkJitro0YRJWbsP3YyOfGbboroeXZYSemotKh2d4KR3UGUBWouWKTKJVGJR3n5D7Kxv7UFkcPhqIwNIlk0c+DAOIkoT+g53dS3BbVkWfxk94WZFCCGmTTu4XuHevE9znpFfdCIkL9MYHiVhdsX7L/H3zxiOCnSbTM2jK0VklF12JNeRKhNEuKk6L2EvWUqYl3TLhObIkL+oUb2nfjhDuUCyG3C5oZ/Pya4azG0tDawLgkQ1lqQasDc1qmppju8Kp7n3gsQ3gI5idYRTWp1JMOIo7tS7Gl0m6MFGBE9x9JUOnyh2d5PoZhPfXAX9TFKJw2zA24T5+7I2NNdSPHwetyGDNDm6VyivMbXQA7JrOdD5lTz0dueabC2e5/W5pjsU4apuxXHCW+gO1IRY5FchNhzyfdPVINul3tMeznCFmrYUs2cuCs493mj8oKcU82TTCyrYDKAK2qNAfgHFZUdzkjLoWIhcmMLEZtuBfi5BZ+WFI9kNdEuL3TnyZ1ux712mr7gJycrcZWkMJfLY3YAePP0yhVlCerEDL78ju3WY2y3uZIE3kpiqgjTDzlqGUqOOcjAK3XViMzu8YsIQL7+YEXKLqnuUhv7OUu6Hy7WElI1Bn4MjdDKwSyJ4T9hV0LYi5D779kA2f6PL7yq0SvBBvNFD2wqtbbOB4NHdgVBkthXhaIlbZNhqjrKNoKB9j7u6xnSRYxsvAzKAxA3p1LjFSzlP9t41ocioHi8jChdBhxBIX+5QTU1+FZ1JOo+Kg2x1JxXErI1ULxdFoxtBOLf300jfDBQvWkHZM0N61VB8/pLVf/o6tx+12G10lPugZyg1zbGlPYT2MNJuvNAy7M6Rv3BU93OaE0N7DN2BuFGZLjB/IgGo28dgOgnbGhPWh1waHxvFqLYKlC8kq+e9/1XgweMrLn/uDqZWcRgSbnT5PFBcO3b3JZhsHDLyKzGlGApBbX0WSF/b0jYJh//c4q1idye64DWB9Xf2zI8r1FuHkcbk6UtNdyACcEmc3oMnPlrimlbqxxCTp0EalGQrNMqhUNR3Av2h5/4/g+Ki4+pTOXqQ7dWe/mlRTrbFyktWyUhRDRqGmWH27hVhW7H5n3+UIVekGw9YdJvRnCY0h5pklZN4eWYYa8l6JxvWRYZdbaFtUZ3HuDBpH90yF/1JF9CrHf76FpXn0hjfrtCnxwz3jjCbVrKxXr2cQ0V9pIr3bghBwj6tFcrm/z9dSqOyDL+r5b37zk/SH+Wkb23xbYs+PZJG7RaG0wXb12cs6yOhX9fRcc9aVFngl6XcHiGQvJQN1fqTh9jKYK5SAT7nmWSb9Q57sZkYGHoD9gW447mE12ViAtEu5SY1bSDtA+Z6SzjLaZeG+Vo2bbs7mTSnG3lW+ESRbMQlSflEcrEyTV8qmruO9lJTXFp051FOQvKaI836o6InO/5SK+5bmWZ730S3y0QSwUvRqSaVIbuWDf/ugUYNsnUZMsXVd+RsX4P+cGD+VbEV99loOBOoHw7UrwWOftEyf+rZPhBXKjGbUXClWbzvKV/2vPiPUwl4dEAWSB/s6FpLqAUAtVuxGg5aQpt1r0h24ogp9UTe3+xW6GTdJxyq1aQrAU+ylfQAKoCuxV1Pd1A+Cxy81QnLJJPgaJ8GdG/IVoH5Uwmt7gtFcSm9CMj2aigNm4eGzRtgKzEESTdCrczWUh/aA035YuDw6XYyRRKDFLFy14MhQWQBKCRDDBhKTbJ1mKdX0vsuZrJ1yS0mfow8/6O5TdVIHlTdycBQN5Bn+LuHArplqQQTWiNucXU/1Qy9XEgfm1j5OC+idJWmqOVCht9tPVG/VZqgSL/9BxFdZNizI2kqXimwqmrAaOxrD4WHWddSlPvf4B3xwuu0NxV5gOTFah/ylCa447lMlt2Arlr0rpHJNk+oH8zRgzgzudxSPz6gGByq7YTXnRvU43NZgUe9ga09w1ySlUeur9l2uJOC9tAylLPIMxfXlHxdyTrvLKUcArZ35NceWwmaN8wStg9SRnGrTxS6V8yfdvhEGg9vFZvvviP6AR3pDiqwvZdE4WO0sosaDnGQEM7jwS8m+BTWb+jJgadbyvrSbsVVqzmOiOgAo8OLrcX9ZfWm2Odlt9AuYcgsQy4P6ePPaeGiOqFFDMWe851sY6MwRP/+x5k42ljhdHq7DyDrFhqbKlgL/apdakEOhkB7kqF8Cl6QiNkTmXS296X581axuydDk63ER33+XsPh14hWoaIbEXcyjVtkqMGTXjek14BWuHwMGZR7LBhNv0wYShNFq174ulpoKMFo/KxA3+4wl05s75SSQbk1sgmLrhYqSWA+w712R8SvX3sflSSymeuE8kd0kEnXVeQIv3K0N1sZOqJ2Sm33Hx96ydWg+h80KN9ml84zTDaXYUEr4byDDHbGoLdRY5alqKbD9IMU43mJ2u0zA3xVoS6CIKNJQjiYC8c3RHSo62UtPsvFzUgpMb3oesr31oJmmtHpSNOdzaIlr1Bs7OWG/u4BzZFkzCSVUChGZFQEi13kRdvJ6WXMEnKpJhzl+PwutvEs3lVRTyYPrT5uSNWwpyUSoDky6ChwbmMwmmmEIiDueJ7mRFDJ8lnM82mheAnEgFOXj+ADdIeROmkN2TPF0+YMtRSnGOUhvdUUF5EeemhIdrKdaE6j1fiF8NldKvoS2yiqrwr6vHkorjntsVjyFleee//EglrSzaOD1Yg49kFAglQ+LijF7SfBxwwSnyhcrugOxEEwu5LPa04CyVbJUHMrIaouDbQRbfZJoDpPSDee7KbDW8lsSHZhyhLwNpDsZIul+8BwtkQdzsmvRE9kdwM+0bTHGaYNlJdOXBKLBKUPCbmlO86ja8+AP16gFqWYqWiNO5pN96WpB0wNIbHSMGgtjULdSD7WppXnYj8IYyAEwu1KKJunR5MZi4r/4AMMA/7yGmUtOs/EpbLr8cP+PHy7XeboAFqPns8gPZSAwqtKGjkfJJ/Fedl47DrKF1a2qCCDSpHjHpyiWidWyIOT7ZQxYDTLLwp4SWJR7YCtY7q9VoRZLoBD1TIFUzY9WecYFhnBKrKrXprbmcHGbKFubqjPZLOR7AbKi2FycDK1E2rWYcKQJxNQabpAcekxnUZ3sL2fsnlNtgYHX/XoXlLLTXSsaw8MfTlaTQeSrcPlGpShOof2OMR6IWwDn8L6NR3pz0hOxsYKxbnYby+yS0OwsqkdZordXS0Of5li+1g2Jt4GQNPPEpKdDBfNucY7RduWhNxj5j3DzGJroWyaNmaERSrbtpQzPoKc6zdEhzp7x0ZGQ+zDuhCDk2HRyAZYRyeyzaOUdCdbp/RWR8BC+rT6eDQwgt09Q1AmmloI66S88BSXsH1g6OcCnKYbh+48LtN0S9EGdqclzYkAoMWlgK7lixiEnEoOle1d1MuZKWzZnx3Sn5RU5yn5VS+1JTXyXOo61HyG+8h9PEyMGeWCbC36QQxZihx/fiTaU6XQiZV6cbPa61H6XrSmJ0eQWdQHL2Wjsiz32qemk0DwxQJtSnj7Nz9339KDCMYSDuaojd4PIj7Im5AmuPOlpD8aTdjtJzUQ1OfVK/QDeltjgbBaT3aF+vAAnx/KGstqzNVGgg3zDKyJE6nHrhqG+YL20JAtcrTaC1T7w2yyY1Q+YBsmy15AbohebGFdFhuHsPerD1rEZ91ck84sukpJdl4EoMQJ/VjHtV1E540iuW7AKPqZcMvbM0EQRVQvn9sdiDNNebHXXwy5YsgkTVUPcPTFDfW9gtWbRtJJUWLdmULqEOSwJKaKxvdT7/mX7YmkJSdbGcZcMdIiYP5kINkO7O5nk6e3T6KoPPLPQX6m0fnHFaCiQN+0TKGMANZqXCZuXiM1o5+9IlCL/NihEMvSUTTWL4Q2FYzCrWTAy15UKOfoT0pcZqL5QJjci1QtVr0A4Vw2CrrpxcIOcIWmXWry24ByUUAIqMjrDblF36zx6w3aHUzCUAaDdWEKK8QalFK0pzmm8WTvaEE/MoOumn24lg/CXc5zODsab3RC1+ObRpwsQKz19gdBNgMfsiXnh32pNIVXHLFUmgqy2UZKVR0f/kZE/qpuJHchsTAOItEePGy3shUZqZnR0lcxiN2hyvGpWHiiQW+10OC2ldBD0yTSOQ3DeY7LNMXzBlN10ixywFAIYp5sB8KBxceDoNyeYjne96OAO6CijbQEK+o+UFz01Gej65KePn60sh7P11AoyIm1KVKaYrOQrsTOsT20oqdYCXBgekh2Qj/cPkzxyd6QojtAxL0hRGc8Q/VoABtQvdS+dBtDFPPYmAD1nTC56fnk/0ven/zaluXngdi3ut2e7vbvvXgRkRnJzCSpjqJTlgsGSuUqAkIJECx4JINDAfoHpIkmAjQSoKEAARpqZsADSwY0kCG7UCZsUzSrxC7JbCIz+tfd9rS7W50H39r73JfMIpMussQIbeAhXrzbnXv2Xmv9ft/va7gHyJQZVN7wtQ9z7gHDMkz5Q8vv3kPsGtz9jedwxSjq5R7hM/5ODPmKGE5oma0OEmSjCQyrgFgGqMbQdrcgGqtSeCNA2pbPEyAhBYYFoKzgukv/phtOcYULnBp1dLARjjowgBNa4ehu5BYF+hMN3QSYfXLAyjSTt0uNfqmQ7Zg3EwoDFIY0TAT4RRK4D4Hp330SjI5TuURHjiGZXgyW9KJEHwz7A6RiwrdIDm/AQKqhkohBILZtCuujhW+0A0L82QSoX8ZLlAVgO1Lh5jX1YoOFT5EAseshkslFHCwZCtYhTpbfGm6eQ4ce6Hq+Z6kQFE6wqCsLxKtTfu99Q5RZK4RlCYQIlRqRaFQStVsoTQt/9XAAMoOgZ5MRj885mWDhLaD3FiFTsAtFwOAwwF/lNJuQXAe6Dci3Edke6BcKw1ygfZ9aDP8pheOchKYapqKmqrr10Ac/aRlVKRE1p5k+k9AqwjQRVggMK+q0pOf3Ej4eXTYdKVGTLXWyEPaZwOwFmRJ26TEGTNgFgcL8gQ1PfwqoICAHgeEU0NrDJ+pVcWthdgPtc3MFO1dkK5QBsqdGZlgFqFZg8WMGPg6LUSPCZkR4Af0QJhvjoRZka4ABsirVXuMe6iruYcxpY5q6HBK1bBDI1x75TYN+saAj4INDdt+SblVn8CXNceyclsM+EyjuPaQLUNuBznuZmpwY2ajKyerZ1zn1t1cSplHQB8ezydKIIhqN/qKYhOsjUKmShb+/voV+egU/W01TXkhAdnJyzzpeFrG6hJ9lMK8I7EWjEs2bpj3ROaDIELKfTYL+pW5ExlEyNAOX4BzpJ3nGtMddQwrKbgfkOeTJauJwj42GKAoIYyDKksXYdcNRU1FM9A3zxd2UthwF0Qv0A4QQqF6VaQMnGjnMBXYfzGAOFcovdnQuMWrKIjCvGoimR1jVCEbBCMBVHNlmG4fV9/eQjYUIAcPljCPfjOFW2T5g/YGB/csZzv7AIltbJrxH2t/6UiaKBPUpzXt1SlmWqK4jLv/fd2jfW+JwpWnpFiLpaxLoTo6NUb6NKA8e/YlGVMDhPRawp9/laNNVAtmGG4pN4WbZBpMTz3iNDcDZb8nJKnR0rtEdgCCwf6YhvZ5yD/KH0UmCo9s2F2ieEL0s7ljk2JrIqzmkRsoJLD+yKc9EIH/wqF5bSB+AAPSnqRArJbJdQP1Fg/6swLBQ2D+VCBlw+vsB2SGgfN2heVbi9X9Ro34VUDx46L2FDhHtWY6oJMwecLUBZgZyYHHbXWS06U3/5SSFtBNbS9iKG6BqHMzNHlOORwh81hY1kfVdS5HpksFowgUmo0uJYa4gKwnzzfcgty3kp6+BkZIITKiFUBLoBo5km5bPuhBESo152/XGOcgQ4L/i3O/oHMLdfaKbZLQj9Z4NCYD4sCYH9iQ1hEqyeAuBE1UA6vSE96oqIHbJNvnFNaQxCFengKXGRPQD1EZAjXkzktOvuJpBdhSqQklgbExDhNr2EDHCvnfBxuQuoLjuoTctZF8eTS8GTlvtbI79M4WguN6HhUGUwOGKVIH6RTcBC0ETYRPxSE0y+4j6taMDXj4esLS29aWEbnUqvIGbv8rE5tWPHaQT2L2ryKu2EbbUUJMLF9BdAKMTXX8a0T5honu2AXSn38oD2T+TyB8iivuAzTcU7IxFRhSJ/tXxT9BJK+ZomrH4xKG50uhPgP4swlUSD98+B5LWjBqzY+q6QYS3Atv36dpTvGbisz6wqSrWDne/oNGfSpplHASe/DoQVEjOWhFmB5R3tORtz7IJMBJeQtocs5c9Fj92aJ+VDKONgD54LD/y1HwVEu2Zhs+Axedist1VrcX8ww5+lsMXGq7mDdJ7i6AEhjmBLrVJzbAUcCcVQq4wLMnr1wcP2TmCIpqBuWLX0CXr6+8cUcqmZbDn1QWQGcivvUtg7M2aKKhWwO0DfJPOwKoEfunnIToHuTsg7g+IhwYySuArOkCN+z0QqBsVbU9bXueSg1haPEUOfzqD3PeQD/spoyl85xcQpCAF1zparrctQttBX55T8A8AxiQnzoyTkYct0AYMP3cOAKhePSAWGUJp4M4ruFIhv+uhDj1tU5cz2IWGmynIqxKmCVh9KJLOVBJ4yAWGmcBMCqjOQXUBRhGRlxaobpIxw5yubNVtxKaViCqiPxEo7iMufqdFe55h84GBq0hl3D3XEEGlJHWe98IlsxnNIlylsmz2Gfc24QHTsMAPD2lttAHtqULzDPB5RCgiZCu5h5zRgWr+Y4reVUe9pqs5aR3NZ0QQCSSQGHyN+lYgW0fc/0IOiHxyxxTJ0VPvJYrbxNSQrHv605FaDpiWTqPhhK505a2FzyTaC0YlqLuI5gnNQhgazXBYEbhPZbuA4t5DDQo+Y3M1OnM2Fxq7dxeYf2Zx/tstuqsK7bMaxasGvtTYPTuW4tJFZNuI8rMdRAho311Q49o59Kc5fCFperDvsPiYoKncd1hsWsw/lNNEI+aPhJ93a9S/3ROoUBLtz13AFwr19ZbSg2+8j1DyxqlmgLCeAYuLHPm6PjKEEmgpv7iGUmyO4T3E9z/B6DjprUP0Hmq7h9T/GTQik1gm0UwgJMTI8x3tdxMlS5YlBajW8fMfF2NKsfgYbfsyQzFvOHaBMQROWqryLVGfbGzyqk/ddBJbQgAIIOKsKBrSBwvROwbNSAGMxYWPEydS7brJHUU1ObvNFOYkLYXMY05IlCyuRwpXekUTL9lnPCxH9ytxaCHCgsVIKghGu9lggNFJYhzr8peiwFP3EeWNQ3fKRabSzwh6FKaR2uULcrzlAIytdbEOGGqJ5gmFo+oR+O4LAZ9E5RS9p/GpSPSrHMdE9TZlcowuOskR67Elri9ScReTKFgIuFJSHJZ+nzHQR9pxCjIK4yLUtoN4UsAXx4YIikjTFOz4+BFMYZOuSI5Eo6XouAm6YyAcX9f4QKV0VKUgAPhMJ8qO4v1OKbzChWT5pyZ7xqAlZEyTv9Fic2xCRooXkBAKP62NkZaEx+iG1hS8f4VRTgB0uGt7vt9SkJJmhylpPvY93+Px/QrxGMqULEtFlhG9rAsWKTFyzwAmypUwhhSOR6FwY8ERUsaLrCnsEz5C9oGFD9KaHkXpB09kySiMQV9ySPbCGU0fokgHfWrAg+IhqXqO3hPYz5cRMTl9cb3QXcfWCWm1XA8jB1l3kcLrTMAmFptuQ9JWkHaAhAYyLwfJJCKJP4ckDE0BX1FxbY/W41FzUqFbwFs6W03WwBoYKtJDhBfHfSm9fHLdMYUzTmYcHsjXbBym9ffoEQhZ0n9sj06AumMhlW15r0Y3wurNADvTGOZHHQ3vM6b/H4MNoxSQvadQ3BZ8n2N6nT7Alxoxl1OYms8lnxEnuf/vO4aRGjauo4h9TJqW9tE6DuN0NwXchrR3jhP+MWDX04hlnMLCJxEqwI9FzYLYOmDXJatOjZise/nocuInEo1wbKq/ys4WcbCAzLn+neP69x7CaO6hjwOMY5w+DqUQ0tmDnmFyBJoSq0Fxso084z7sx7OH77uwlp8vBEOW054eNKmDmECN4xNNimCqG/o4AZBjESzimByuGNinR5ZAnM74oMTRPckLRCemtaO2A+SKew3PsrFOENPCGl01R7H4GIYoPKCamFgEmLJ3VHcsTMfPE54gA23GOXmUMdGyB0YjjO6cQY1fJyaDGWnFMWRQMNl9jBUYAQdgnHik19Yd6WBwmIThR4vlVAM9Pssj9yxfRmRbAYQRJCFgwxykAF0QdAyO+4R0nPzaKrn07XuIi+o4yRa8V2N2iu5AXSCAKFNQoWANNJ3tLnDi6R89j9ZBNo6ur4/yxJDnBNJ3eza+xrDmHGsQQVrgWKcK66fGI0pBrakQrKVlsuvte359QTphODRApC6bX5hoyo8shv+o60vdiMSmgRBm8jSW56c89G/uuUGMSDGAOK/hLuYwn96QCjOrMeUqpEvUJYASYVkTQY4RsczRP50ju20gXt4Cp0v4KrX8AVP4IQBUn6xR/TgQmRIC/dfO4UoFO5OYf9IAv/U9hL/ybbTPTjHMWXDMP2mg9xbzjz15vN1AAXOmoA5sSGKhE488on7tka/pemPrHMOMhXmxFsjWDuXLPfqLimiJY0GRr7kg2m9eornUsLORP502lIiJsmXaiOZCYlhK2BlHlBCAbgKqH91BP19BxGzSaNSvYypqHB6+lWHznR7lD3IsPw6of9xBdQ7DaUEf8joiX0uc/NBi+66eRp1IzYnqgOrGIXsYoNcNXv+NcwwrAdUJZGuBy/9hi2GV4/A0g62J6MxfeOhm9Mzn9zs80ehPDYo7Fle3v8zN5/J/IP/9/tv1ZLVnksh+84GEbiWW+QoulyjfsPHK1gO6qzzZr3apsZTQ+x5y18A+WcItDLoU2rj83g6QpFe4OV3Lqjc9ZOtI28o0uneX0AcHvWlZ4IYIt+TPMABpHZuO2o+uRzhbAVmyf+091PUDD7+iYDGc0taR5xj+wrsQLsDcExEVmYFUig5RgwW6Dv5hg1H0rt97jnByDnz+4s9mkf45ueTpCti/gcxziJMV6RR2OAYYNg058Pfr9F6lbllIqNMVG4wiR5iXsKsCWTuweAALNrU5IOYG/skJUdI3t9PHUBaQVQl3VqI7qdD//ByLjxvoT69R9AOQGdjTikjhOkHNQuDwtRm6VY3igRoNAAi5Qn9ioIaA1UfHw+JwxUA+O0sFhk7i90iherbngSU9D7vy1nEvfO9d9CcC888D9Si5gi9k8sInZSHbcoJSfPKAsCiBXzDQycJ6zOUg6MEmY7S4NocAcwi4/mWD3QcB84+Imm6/7SAGAb2X6M9YEKiOVKjVjwNsKbAuBe13d/EYmJbQyIefz9GvgDiz8AAQBM7+g8bspYP0TI0+PKHTVZAJ0MhYkKiB/Owx+fxwqbD5usbZHzgU/7HH7uslJ7yvdwjvLmHnpKMJBzSXOmWeCOhDxMmPuuTHHxGMgr+cTcWI6qgDCen99Dn3b+EFmgsF3UnMPzmeHXaRoTvTqF5b6IaBdFlrcbLpCEYUOZ0eQ4Da9lCHAdn9WDTx3sY8g7i5pwFFnkM4D7k+IM5KDE8XMEZDzWrEzQ5oW073fKD9/TAgJmQ0zkqomzViP0D94HM2MFojth1C0wD5cXr+VbtCNwBVPjUhIs8mAS9ipMlN30OuNxB1TbrnQADT3DAgdpqk9D2i95BlkbKfFPzlCnABcs/JdzQK/moFCIHy8y2iUWh/7hz64GBeb5BJARHpUBVMCYMzfu6bPtkydxieLo6p7ZG5E2oXkD/QxndYGmy+puEq4PT7HtJGtGfUNOo+oj2VsAvQwW+npnDEUNKcZfZCTJROn3ESOntJ6lO/Uog7dvzZjg6eIQWwyiHA1Qr9QqZJrITpSbfafI1hf6sfHNGC4t5BDgEP38pJvSwBQEwghBpzriLXclRsUFik0+7fzsSkU7Uz2nyXtwFRSviS1E8RxmlNqnvaiHxL4KVbaeYEBWD7HhEO6UhTH1ZAVKSbVW+4X8ohYv9M4+EvRhR3ghlzgW5j5Zo5brL3UEOGKBX2zzI0l+dY/nAH2blkiuJw9gcB+2c5midkbWRbj/03l5h0bkZgWGUobjuohwa4e4AwBrtfvgJiRHGXT2AENSYC849byBjh37+iffAd13Q4NMg/uUOWGTbICSSTnYPcHiZHWXPTIOaKFuCdhbx+AFYL+GUJ/eIOcb2hay3AZ9xoNj3JACc6nrE/y/XlbkScYxOSuK+x6djte89JQlWwEABIgRkDD5VkEzKiC2OQWUKXY6Zpx2gZNiZdEg5LcRT8Wn+cdtiUuJpyRNCDXWLSaohAKk/+3nMMpUk6kUehWClPIuYKQdfwtUlOSomjmMStY2iObo8ou265oIg8kKsXMkmrv9StmwNRkP5EIwq6SCB18VHy+wQtgCSsFB6QPSCTXZ/LBSchf+mCvvn6iIi4nMisbiURjdcZdIfJRhie7wMAmJ1k2JAUE1IqPBeabkgNcaWE6jWkK2j/9wAmsw+gWYDPjtOcwMBDAPROVwr9nB7eoyWvGiJUIxOVhMFl2U5MUxmV7pVOblm6DQkhPmp8hAME4oRY+VxCNeDzBAARyLbMIwiFhhwc9LZLqLUGAqYAPE7GOBULVQZpHeAd9H4gcpVrIOdrGkM1xahtKvQRsQfYxBQ50f4QGT6UUFj4wIngYPl5RpP3DfDvI7rpA61nv+qX83TWq9JkNHFk42AhhEiTEfkT01XF96quuLaTyFcfUgPyCOgAcERLhaDbUIhs+JwjVcPT01+6JOorC6KjgpPRiWs7ruW0P9mK2qpsM/AZ7pK/vAvUGwkBvUqF9yF9zUJM6J8IQHRx0m9xIpE0VR3FmVFRQ6IPfgo/o9WmSDa1gH26gCsU1+r4yMRHP0OwEVI99xzpWZRDANFENkmj6H5gxsewoCZMt6O1JycqakhZRQ6TmHT8eSGtbbnVdOg6cKLjS4kho0VpUJy22hqTVmyczBye0Ah2CEnpAAEAAElEQVSguvbTx2gjHCb3r2iYhG72jwIj0+RWWvLEyYcG75ce9Tm8d01dMGDsYQAKNWlIAO7fpg0EmnxELDJaqhfHfdXXGYuYTXOcngKTXhBK8Od72nhOQZlav0U5FB1teGVpko2nO1KMyoJ7RCSrICY9hOzUhLKOyckR4L89Pje/gteUEv2IDfGWbbFSKbAwJaRLTkGjTnuzENxfhGARlh74aDRirsnzB47TjxREG4Xgv6dsEJncOoULaXLqWS+kr/GFSs9cokk9CjbVLcXaaj9AOAMEBd1SDG1LAZlow3IK1uSzk9+RsphtA3TPSV7I5dSABMO1ErTA4UnG9d0nnZdhsyIls4AAQDo5aTHNPk1ZF7TptjPuLVFxfzFtssHOJKSLCP44SY0jvScKFHecXriadcdIMRgzQaTnFDEkm9+QKJTS07FqZIfYOT8v28bJEAc4ToN4UHKvbJZc79kG03RId5zumJ2FWSlOK4Cp9vIp3yxKuo0NM0ltSMorCkUKEgy0XLc1Ka7FXbJnF2IyLJoCctM9DlUO6ReIyfhG2giz7VONqKAPAaoTBDoHCzGvuDcUfC5hEw1TCoh9T6nCqmKN3PbH6SvAZ6/pKHEYp4M+TH/njZYE9GJkvZFCVmVdQcoc2P3x6+5L3YiEbkAU3USz8Dc3AABZFBCzGu60htop4OaOTjhbul3BvG2xOWYKyDnFqb7SFCdntN81tw1E000aHsQIkZyzwrKC6CzC9S3E86ewZzVMctAJSdhoDgHdmcH2a09R3TiYrUPeuyNNJ31PuyxgF8cpjc8LesP3TNO1NfNGdMNCRISIAqTq2LmCKxWCpvbBlsfArsWnDsNcYf+OQnkTMHvhsX+u4epjOrqbReR3AqZho2KaiM6TTmDnAod3BYafa6E+LzD7NL1kKdBegSI8AeTbgOf/fUB7pmBndAxDiLA16WOzz1is25SiTvtMNiHlrYOrJKcx8wy6M6iuLepXEXd/KaeTBkiFGqki0pGzqXqF2ccWrlQ4PBMT0pHtA/K1xeLjnCmsXYDZBcxeBthKwxcS2Z6FUnYgxzZ/uYc8r+CKLInwNMzeccytuKm4mYI+6ImgIH3E8scNopK0f74VkF/cwIQA1Seb31xC+ADZWOiPXiFenaJ7OkO56zjN+/waqizI3Uz3unqjkMUIsT1AeE8dwpheagVgLcJqBjfPYW7ocKEf6OpCr/sWcX9gwZzndIQCIKWASKLWuD8gPqyB7KtbXABA3O2hVkvExQx+UUDdcA8Iux03/bKcio0pk6gsIPIc/nwxUVzUjvcqzmuEOV2LxEjRikxjh07hk6NtYtshyoHZMXcHxC9eQzy5gEsGB2K0Ys0Mhst6KmgBcqvbMwHrBOpPPWQz8JkxCtEo7mnOo6g1zEEi2wm05xL793jwqp4UQzkIZHsHJwSGJTDMFerMoLgfIJ1h+nAmUF6H9Kyn/AAXubcUEm/+VyWkA+rXiQuciSTE5nscDNC+a6H2CtkmhR2O77+M6K6o2ZKtRH4nsfyxx+5dhQ5A+ZoOU1GOE1iCLGqgDo16jGM9qBtg9onEyYcW1Yd3ePhrl9i+p9CdsbDK74HuIiJ8vQU+L5E/CNqR50B42kG8yVFdp4nxA5JAXaN5wkJjuSggfcD8c49hwaDYo8kHm5GQHX9BpkanSXUlsHsfqN4IPPlsC5VzKj5SYutXA/Smh7x+QJxV8GczDHMGORK8kmivcpitQ/nFDSd1XQ+5WgJVAV8bRC2JtLYRoutI51GK7ntlTmbAYBFf30D0A4x1iLsDTStWS8Qyh1tVtH/f6IluHG7vucc8SiSP3gOtT+ukQIhfXeBCZH9ESZSKuWgt3490xVk6kJIjmbtYcJ9wbqJ7x7pIOiA+MxJpcjmF2wIxI9CR3TYQneWkO4GVet3RibPMEDJD1DsVu8WaAvKQ85zN7wci2JsGsjVQe4VZoTAsJPbv0CXr9PtDcnP0aE/5+k9+4JGvHVTnGYh4nn6GEehPBFwBlLekkd/9ElBcS1z9Zo9hlqE/FSmk+WifCwAhB1wVUb3iuurOaE5hZww2DFlE+UpBvgLas7THDgBExLAScEWEr9kUCs8w1fzB4fqX80nvNl7ZljECAPWph68F2Ah0p5J24q8TtSoX2L9P19Gn/x9uXsEIyIquwMCxsWnPgfx/fY/2t0/x7D/2sAs6kOqGgKK+2aGYaWTrLGn1NIbZ2LSRrj3MWYvZRcTsVUT9yR7N+wzNrj/ZI8wzbN/TmL/wmP9og/68hC8UsodhyqOSlq6t9rREf5ZD9SWEiyhuBubUffwCarVEOJ3DXDN41L94xffznaeIRiMsa4ghB6xDWKZn9qPPyBK4WkL0DuFhzXPPGGpMAhB/9CkQA0SeQ2rNZ3d/mAxwhNa07z008G+up2DxcHkCm0fgZyBbfKkbEZlpclylgKzrtz/oA/T9gUjoyYpFwmYPAEeR+6juzwwRzOSfrLYDlARzJ1yKve/oOiL2DaTNeCOl5OSkyiEvz/m1rSUHP7LwFSHCPHTICo28MjDbHmJw2PzCClEByx/uqTGYZ5BDQPHGIeSKvGNPFwLV+4kC4As2HeaF5WivNggF04ApGOVJLZOwUzqOSLMtUlMTp0WmuggEAakBQEyjz9FRC4F/TJM0Gl2J/J6UpqDoINUqIibtGV161ELSJePARSlmCi5NLXTHAseWpFzohhuArSNMIyfnKzpoCOBEJ6oDC4Dm/QVcSdTGF2LStQBAf1EhGIHiLmJYsNiylYAaaG0oLVD8TgtfaHQXOVGcXKB48JBDRBSkyvlFDlerhIxKUnXNkYrgc4Y+mq2GAYsRhkPmnCyZtCFXJXyVwReaB0vSeowTDZHQKL8sIQsD0VlEJZmF0nnktxGqGXi4jRxQF4jCNS1RfGOAznIRP56UpM9Bn26odRNKgRgR9wcgy9iMjN9bf6m3gj/2igmtEbsDtPOkZZmMqKWQU17CT7P4FmkiKnePPNIHe5yIjT8DDB+FkgizAtIn606jIYoc3XmBzEiYh+pte+UYJ6DDlXS6MRsLAwBKwI1F4WOQ1kcAHvaMjYtwESp4REUr3OJGpIwMHughpYkrC1Sv2WAM75zAjYVRmh7qdYtQZbAzNupOpsDPAFTXDBTVTZpyKDAPxwY0FxTBnvy2JvI650EMaJgtILyeCvGYrHOHuURxF1HecDrrM0y0iKASfdTR2Se0wOEZ/y3bxGQ/TEviw7fP0Z0Q3MjXIk1ZAdUKDJsM5U7AbIH8ngB1/1DC7PmGmjZAOgFXSbgqQ/Wa66F5VkANAaoNzDKI/H29SjTSlAQ/oteDyagXE5zWZFsivb6maFbZiOrGc+ITI/wsg/2Fd6Zk9PLOwbTcQ6MUyB9S4O2zs5Rl5eGrjGYZ14QY/apKU3CdtBuPHqk0WZN1dfT+zwwQPKcczkFbR1t5o6dJwGhTO+4n0TpOBfOcOirrIAqFr/ollOIEdLAI/QCZZ8cuOF2xbUnL0pp7aclMMr0mRSueLjmR8p50rIZUqWAkwskMcJyKTe5XM4aXAoDyEbAWanOACAQHRioXBEEz4BhWjETPBACzcwi5RrhccIKmJcG/jHldamANINLPLx9yRKkAwf2HkxdOVkQQcAJAJMPBHMiYEN+n2+awJMXL7Djpkx7ADc/vYckpQv0F17adMexPbIBwCwrGk4NW0FxXIlAHCv5IZBuB/BOJ7lzAziJcAehSYvaCtuauBNpLJq3nd0ySZ+wAkN0q6IbC+2CYG+Iz6j5mn1Kkb2cy6WpIv7I1bb5NEyCCgtkLrO9mqFvWAS5NWFyuoVYK2fwUrpIor2Oy7BbI9nHSkgUj4EsB3TG+oLgZIA8ddENTi1AZIAL1NWvF/rwknbbxUAd71Cmn6ac6cF9QzcDIg/KY8xOrAv1Fheyhg9yDLplKwi9rusfe7zjpCwFY1QiZgs451VcPDSdw8xlrASUJjnmPoCQgeYZFH+j0ZvQfqrmF5r+Jgo1ItB4qePws15e6+hBFjrhp2ZXN0puSLEyjcxC3a37OoobY7BHWG6JKo01qEpuNaewxo0hMbXgDRmetCBBdSsFyYrBwz5YIGROyvTCIes6b3QzTWFe1KYDv9R2kUtCZSVQZif3zU/gMWP6ABaKdKxRvHMzrNYOQRmQmBDqiDPxZzTslbCUhB9oNh4piMlsngSh1TRSfuvG/Ebq1KG49fKXhktNN7MS08EcaUxSATEJJkTjl5hBR9AHmo8R5dAHeMO3ZluRt9yeYEkrL64jiIWKYySnBWFqiFbYmlzzfcEPcvacQCgG345iWxfyjZgTJKk8Au3fUNHp1ElOYISLRFGWB6tbDVRp2EWBrAWUV+rNIdPh2C5wv0C/LaVMq7wDdeYSU1WAXGWyt4HNAeoFJfJUubrDJJAAUntpSQhwBRGY5VAVCYeBLheyjDeLhAHF1cRz5B76XdpEBMofeMTFZ9R7y0AN3azYaWk1uFMJyHBqbltONsmBBPByFjgAgnEfYH6bXE72fxKvwAeFwYJGcmangEPorXlyk8KU4DMCWhZzIDKJLIn2TkaLyk41ISOI95xFu7lJ4asZpR4wcdQsBFLS8RHAIpiDtbs/UdhhDrdmJAkQGPauOIuJ0xaaFMBqulMg2pPaJjq/NnGdH84jHrysA/ZmBrSRmL3pgiAi5hDmQh6Qs13F3LqZsIN1F1K8CogaaJwxEHAWVauD0jU82bYVdLqbQxOq1O4q2dQrmbFzKzimgbMT5b+3QXZZ48x0Dciglnakekq2lAROaAwuT5UcO1ec73P3SihNcP6Ym8+dIFzkNjcD+uUbUpH7pLiLbebRnGvtnLCCiBMqbMR8E0K2AeVATUlreupR0fFzTso0w24jmiYGtBGYvHDnsXzcwO4H51kM3HtJKtGekv9H/P1FCfOCev8wmhFZ6IF8zfNKXbMykjcjvesjWwq0K2LnG/plGvgmov+iQ3bTIvYdblsl6vUXINbonFcMKbaTle4wof/gZKYWLD0jVyfVbTepo/QolgJTsHY0mHdFpoO0QvAe2O4hZjXhxykJaSjbiwb/F7RaKQWdsRAbgJ0G/r+KlFLOaDg3zQR7XDekKhxbRDpBFQWCnoC4H+4aa1LNZosR5iM5COg+xynleLzKY7QDx0LBZARBO6YYGgGtqsMB2B9l2iKs5Ym4QMjrP6caT8hyPRXt3TrrS8iNmTEy6EdCeOxhg9sJNxi7SBYimR35XQPhk218KqIFGGrrxAI4OWYhkd5idx+wLDzs3OFxpggW7OO0T5kB61rCUyNYRJz9o8PDzFdpLgeom0gWuOxao3dlRY0mLbf67iFxH57/X4v4XS+wNawdXSsy+6BPgodGfaORnLSDn0F1IFtsRxR0nIcWDR3uq4JKtrgjA6YdkOTTnespOG5aAq/l7mK0jjX0voG8Mw1uT+Y8rkbKZBLoTOnfVb3wyCRDItjQg6pcqGdkA5TZi8ekAc3eAOLTQhzmT6Usmo5evOwzLDN2ZQXmbdGLN2zQpADTE6CzkA503w7PT4/NY5ejODFQfmGNTV5zQrXLodY+w3rCWkBIQF4gmsSucg9jseE6l6Z4ISQ81DIChQF0Y6rFD10HkGWRRHKMDADYn89kEfMC6o2nLH3N9qRuR0PbQef6Wi5VQEnj3KaKUELsDi4TBMhzo8WYypT9mkyNFLGmZpxwdazCvORpLVnxCSk5GYoR5aBGlhOztxOmGlAi5gTB0xTAv7vmxsxULRR8QTmcIhUFxS+cKuyzYNWcSbm4g3QL9aY6QSegmIWizDN5IuFrRT//W4faXFgAWuPwP90RaitnkzDB7yWyO+18oSGUqZULiGK6jutSkSArLxqtfCTRXAsuPAupXFtkmvc/JfrK51BNPegxZG4WpPueCLO/ILxUOWH8L8FXE1X/gob1/ptIkICEFmcDhHaKr1RtuMt25QLZOCafpVlW3fB98TvqDN8DJDyzMzqbpBmkNIkRUdxaLCGQb0sN2zwWKW06ANt95OqEt+YZc3OZCITxTk/VwhjD9XNNQNGa2wxQcGTKJ4kEiW1taLCYRX37PgiV7ucEYRqUOHJHTdWKW+N0Z4vMLIAB610NazXDD5HmuDxYhN5DnJ4gh0F0HmBqRKAVNGZSc8koQIw0aYgCyC8TMcEI3UrOS40vcH1g8J8tfkWWkwiqFsNn+qa/PP0+XMBph1zGw7GTJps494sImMSqAyWlPGMN7d78hEpRnEHWFsKyJLu33iCZjQ1NkpMQdWkjgqOUpcsSaSbfVGwtEYHh+AtUx9yFUhi5oF6eIIWDxO9dH5DNNTbINPeF9beCLAv2pQb52yB56VC9aBC3RvFMgKFKlaB4xwGz5/Kl+AVdIZDtmFdmZ5OfsArpT2vee/KCBbB3se+cYFgbt2ZEyEpL7VX9qpvdo1GhtPyinSaa0wOG9Gt1SMnX4QaB4CFMRk+1Y7Oyfc2oqB4ow3aKAndEN0OUSpgm4/B89mguNzTcUZl8E5JvA0FWVRN+BIEDx4FHeRnQnCq4S2L1PQGbxaYBuI4pbTmeaK4GgNYW8fQJnDtTrSBuAmOyPn7IwGeYAooBdKOgmINtY6j3SRCMqCTs38GWGcJlPvPHylohlVCJpvJKD4JgrlVGnpxuP0z8Y4EuN5lmB/MHB7OjUBQFk1yxmzFZzGmf9UTtY10DuAJsm5YNNAulhaihUQzAuJGqmTECdKHJaV1sHuZjxvu0OCMsZ/PMz6A+/gL+9g5zPeZYC1EUgIZ5FAf8T05ev0iVnM6BlyGtoGqjLC4hZiZi0erE7Fofq7IQ6r7ZDjNT6QAjuGdbBfHZDAGR0L1QKWQjUoRpqUd3lAvp6C7FvkH16i1hkpGwqAfHkArHK4UtDvcYYhJr0AtnGobgPEAN1gee/A05Lkt5Q5tRb0HEvaclaR0rfQwN7McPmr18iXzOvCJHP3giKAcCwrHC4ksjXEdWbiPZU4fCEZ2txF7H6Ae1nfSHhC57P1YsG+pChO8vhC+Dh23SIytYMKUVNbUPQTHGPkplC5hCheupufDHqKwRe/JcVzAGYfcGaqV+QgeAzgfaC+pPi/z5DeUeAoDknOGprAEguYilLqD8hJWw9aJg9p5Q+l+jnrDt0I7B7R2P/lBqcKID6BSnk7amC7pnV1q3SlPg2TPQp6uw4cRk5Xvk2YP6ZI2C50FB9DW0U1K6DHAx2X6tgDgHVdapVRQKwRzvuFDgs8hyxzKfQ0dj1QPDQN1s+Y0UBMTiUtxbmesfGIs8Qs2QVbSTUaglYi+gDXK7gCgVzeUZdyONA8LZnyLH3BPLffcIsom3DMzCFnQIA3rki+H+/4X5R5DwHU6gh/M/m8/2lbkSidUfXG++JXmuJUBN1GBOnhUvk4pEOMdobAmxMxkNCSoqKlUQMdBOIPnGmNS1+6bZjIToLIQVFPEpCGI1oBENmpIQQiTeuNUKabowjeVeoSZsQMo4nETmZ8LmCLyl4ovVrEijlAkMtUdx7mMbBLgzHsiFAdgOTTg3zONQQoJoBURakPBQAkOw+PS0jhY+QbuRdp8A9Sa3IaOln1nSJYqork4N5pQUnGA4YPacHLG48R0gSsIuIWDvoNoX1zIhSqp5NRlRAyDkGHkONfBYhIj8HKd9ADhTsCZ/sfo1E9tBDv3qAL69YJBmB2AOqc8jvInSr8fDNDL4A8ns2Xu2pnMSpTIcNaM8pIjO7o0PYKIZnerSnh78P0KgQBgk5KIaKjQe0p32y3vSIr67pv3+6hLAAguCkbXz2lIAvDQvRw0C+ZTIYmJ5NJZiunCgZ0eij0UIAv994SaLLcXRoiZEHXUmXnQikUatC3O0QQ4QcRdJJKxKlQnRvIy9fySsGim3zjOK9UaQu094Qkv2gSHalqeCKyaJXJKQnZpoAg3UQo97ssaDVHjVFUHQkiUpCNaRduorPj7QeCJp2woWhacDNHcRshng6n1626gOHYoYi1X4uuKZEQsiEgP9aOelKaHlJO1lxaFFc5wgFAznHrCFpWZx4o+ELMMdksOieVZwIZphE6KBVQ0L8SVMaha7DjPznfM1ns19wPYnAj+s2wGdJK7f3kE5CeHLJ5aQtkZPlNfdCIL/v0Z5p2DnFsKYZw0fToS8oWldthNm7NNFUcFWETOGF0kaoITB52JCbTnvc1EhFpH0lpIJNMAzRsCajBWjy6e8dxeUhEJkuiEz7jIJc3fL95B8P0XPyHQo9FSoAJhMCaQP0ukU0NVxJ5DWmvYdOhqRiyGT3LqyHGIXOo52m9Tz0bQokbbvj3jAauCT3N2EMM4SUZCin9/w3IXhOncxhFwZG89kWeTYBfDFGBppJwX3jJ8KAv1KXVgDcJN6PRQY/L6DWzZHKDQIbKAuERUXgwbpUP7AGEINF2O6OZjkAH8ptuhdFhqgUdUbjPrPbAUMOnM8JWtUFfGXgCw2fy6m5RUg2sIPnOeJItynejBbPARKAtHqiDo5iakSkCU2PqBfoTiTpkOswUbJk+n4Q1HmFPIF0e4/2wsDWnByYPSiIFiWCGT20QfBDSVLYNQ0sdMcC3mdpDWxEcvdDmshynxunNcJLmFLCF0B3EaBbiWwXMcwJWEYhpiDH6nXE8qOBU1p9bDqiStMVkRLWBY0xYh4xLPhiZQpPHOsXEZhXMk6gVcepTNCcKuk+2ZwPrJ3M1rEBKR7tYUIgigRGDAH56x3sWQ07z+FzCVFlyTHTT4ZG4+Rd9eq4X1g35dggrcspfywSpIR103qNMUK1bGBinxwhlaS+JIJnnBSTZS+QdEk+vG0379wUEC4yAzfLOD1rkw5ytKYGEKqM1OW+Z06OKLh2nAPsgOj+M3DNUrMKYT+mHkuos1MgzyAf9lT2P6wBIY+akEdXHJuRpmUoXF1C7hrIvUCscsAoop6KNJsxGXlCRJZzosy5mTpAeD0hVNAKD3/j6zBNwOy3X8K9c4rN1yvkGw9z4MQCIMVBuIjiteVGEMIUakV0ABSfVxLDQlDs/mqLy9+M8IXC/lsnE7qnBi4QO1OIosD8hU9IpEVQEq6inqE7VQzeWQdkOzm5bbhSYqiJqnbnhptKQlKEp4XneImKC7t6beELid17MvG6GZYoLVC/kAgqA4Sbcjyi4iYhkqf36e9QxNk84UTl9A8Csj2nC+2FgS0FNl839Pa/8xjqlCL/QY3svMDtXzZwFalXYyaKOljoXY95JTFsJOaf0E1tOMnQLxTaC4lsL6A6j/o1G8Hi1ibfdQHhNKKQKVDMQPZMvO3Pi0lMCwHoEFB/vOV9S44zIQRqEdY7uPcv0Z/lFMLZiOpHDxBNDx0jRDuQazmvIYxGfpuQDaOZnDsu8G6AP6kpTN71LBqu7zDa78JkpFVVJYSQbyH906FZV4h5xiLGuWlDiw+btDkpIqY/2xT1S3mFtkd2dsqNeL1j4zZYhBTeFpY15L6Fv7uHrCtam45j5/MTvmeWIWfyYfO2liQkBCjZ96qHA+L9A/D0EqHKoO73RNDfWRHx6gMLzK6HfvEG0Tm+/5lBfHp5zPu4faD3++m3ETJJhxY4VHcUpKp1A7+qEDKF1fe28HWGh2+VcIWCnRUQ7zAUs7i1kEOAnRsMc4XDU4EoJPIHNtvSCbTvzzEGb4lwpFHamUC+CUwMTgGl6lHkTLaPUMMj2pWhD/7yQ8C0AVEI3P+8gl1EXPyWgBo42ZA2Iks0D9U5LD+hlmyYCXSnGte/PKPObQ80T4DmSmH5Eacru/clVAvUrz3aC43de3rKRcjvSY0aZph47eVtwPxz6tOCEWjOJaSlo13+QBpc/UKgvFUYFhq2ktjnEtk2ov7skPR5Ad07cxaEkghpcd0QRDBqAhBe/RekNjz/d/cQzgGF5r1uB6KTRsFdFHCFhn8/T5TVgGzD+1nfkjYYy5xOSv1RIyZtQIhAqEueMW9uE8BmjvbSt/e0l10tIesKcV4fNY7WMvsl5WKEq1MgRshdC3m7QfnqFn69+cOLp+/ht3tqRbRG2B3+8Od8Ra7YtBBVDaHnkFoB3QD9apiKq3BooBYz4NkVfJ4EvajYDFgHMQb6xsjMsZFem/5tCoYDoG43kF/0nMZWJURZIGYmgQbUXsjOw2w6qJyFqBy4t4dMYVgY7N8tMP+0hb47oH9nCQAoPrpJjogxgVkO7qzmxH3bIxqF/V9+CuEjzv6gJ2tiaaY6oLsgLbNfSugu4vR7Ds25Qntu0F3Qvva9/1sLV2vc/rWzNB0lFVG6iPadOQtzARQPAdUbi+5UY5hL7N9HsuJVyLceyx816M9y2gn7OFG2hI/IdwLSS6hWwDR8X71htpid07Di/LsOZsv3aPvNOdozCvZ1Q92KOXBy5I1G1AK64Xlv50xD3z/XE+DiC9Kuss0xoPVxTpNdAK6mFvfkhzZRNlmv+WQUoPuIqAFnFA5PJKSTiPIEIsZkMARAAPaMAcb1qwEhk9h/+2QSwPdnOaIoUH/6ilPO956xyX3U1IrLM0Sj0DynZbjZuaPT4tMTyDNKBUTvoH/7R5xWlCXiao5Q5zBvtsgGS71ojAQptGKdIOmuGdoOYrCc1OUGscgZbLrZQsxo7KRut9RRxQjsD6R/pUvO5xBl+dV3zYIUEzdeSMHibLQ79Z4d47gH+MCPK0WUwtN+d7IijJEoVkKUx39DiEe0c/x8mTQlWrJLHEev49c9RkfH1wlMKZtRCIgYiCwmBABScvwFTMnDUfJrJ62H5SKOmSFqYQUGkzjIPSc39Krn91Ct5yZhA0VLuUiaDkANauIuM4ODi196ogch2VECSAK7o583xKP/jnacNv1+ApPeJFsfv69IRcEoLtcdPcyjFHA5hW0i8PckiqJIkRKY9BvecKGJwL/bWlK02gpkG9rw2UUG1Y1IIjcTOZDaJfsAZYnG0t5TweyYPaB3rMJDrqGMpH2oP9IwIOMU/AQAwsXjfRORB5AgbQrOE8kIcUqEFi5O0wvR9JzSPaY4DJYFQoikS2l5FKoHTOiHsA5hzLiQEkI4hpDlOb/fWwVyEqiPqOm0JsRbz+Vo3/mVvh4HK3kiyQBS0jpdiKY16/0k6oWUbPQSchxdomdIebT6BFKDSm5+1MkK2DrITk7TWG9ketYG3tMRIEm0jQkZzTR8ncHsStLE0v0SPiTfeyJSMTMIWUJV0/2zc6LzasepY1DJiUnS898VgpqJA6d9puERMMzVhBqOhYUISUOWKAoy2QGbNqRAvzhNYX7a5Qqu7XGP8AaQTiDbh8m2OwpOeqJKe5vEJPiWlsWGL7hex++DNNHg73V8/6PERAPzGdfvSJEYqZ0+o3g0asA31LmMgbEicP+MkkYauo+TSBRhnH6Q7hLFuG9GQILr3/ProgL8suAelOhTiAynHCckIqSiQcRJdzOdMeMlH/17+ph0ga8nRoiqOp49ShKRTBbToijY2JajjW8/nYEi47QjyGSeYR8F96WPTej/OA0ZEVjvjyDIV/FKlqpIVrxjnRCTnnR6HwBaJ3dxEpuP15jDwL02WaWCz1cMPelzRgM9s0ZQlxOgGQ0pWDy34xQdIFRI9qwseDlRVZBeJcovC+0RFIPRQKJxISrS+wCapigJW0noLsBsPe1mUyEtUiSBz1MA3xh0aiO8BWRP45coBRCopxgjAMY/IReT+FwNMeVoqKRHY3p7SNML4QhW+IzsEOalpP1AJgC0QbIZ5l7gC6Q6iu+3zyXEIp+yTkQKEhzDpX3BiaxMNVRQAv1JxDjdHe3Bx71E9UkvK8Vb+4o+8EvGZiIqAZvrKSB5nLyMdYpMjQwnpoCZQmolfKqtdOPSBDQ9dzHVGAIQsxoilPB1solP9QiNDQoEPe5b/DlI0xhIOu+JntrQOBoqFPH47Do/OT1CKhotKEk6WLLjFcn6n896SA5wiTUwPeyckgolET2nrZMVPvD2uftHXF/uRiRdMs8h5nPADggPa3ZyUkCulkQk8gw4tIhtd9SJNClMbrngBtD1UxALNlt2kMvF5G4TtSKvvmDB11/U5GlePzB1HSAfvNBMtYwRy++tASHgzxeQncPi+2u4ZQlXKWZRDAHZF2uEZYXdBzPyvu+7CXV3MwU5RFSvWgSjkM/40B++seAvng7sKCn4UkNEeeeh9xZy8AiZQtQSbmbQnWrs3pNwBeCLiPZSQvUSp99zdNCZKdhaYJizUJFtTDoOjcMTlRYy6QpBI6UAA82VgfTA7MWoYgXq1wPMXYNsU1PQ33k2PQOmP4tPOuibHZpvnEIEifKaD+4wk3SvmIGe2gmlj4q2v8ITZQlKwFYSl/+xh94TTbSXc9z81QrZNqJYUzwWBThatAHKBuhDQHFPCsbuXY3L/9ct8OoaYrVE1IruKBFpIwmQPkzNT/FqP4lCx/Cg/TeXsJXE8ge0gd1/rUZ5M8B8/wVkZ5FtNLIXD4B18OdLyG6gfetijrickTOuBJQQydlpAIYBct9wHGs01JrCtLjeIIzaJqMpsLYDYu+Aq3OOgj97NaH1IssgigL+5pabUdp0ZME8DbFaUjfSdvDNzwBbfImv6D1i203p6KS3ZBCnKx7iAtSRlUWalNwDSI1KygOJDxs2c+DIenIaG62QkwA9FgZytUB4w/c9/pVvwS4yDEuN8k0P9f1PET94jua9BUohILoefpWcTa4fYL/xBA8/X6I+zWB2Z3SyCRGySwLKEBEKheG9OcZA0uG8Rnemsf1GwOJHEvPfu4E/qeHmGexcYagl7v+iQPlG4Pm//pyHplaYrzOEKsOr/+0cIQPmn4Up38gcAkwjcLgitXL+mUe288ivm8mz3n69pClE4k4DbBCaJwKupiPe7HNg9oLUBgBYfX+HkGsMJxncTKE33GMYOhiRbyJOfmiT44+YCp3DFfnk8y+o47IzAbOPKO8CxaglEOaPJpaNQNZGDHOJfiVpKZ7TOlR1tDSWTkENOV3CMoFs52F2DotPqe8YhZ6ybSe6Vr72kENAKDTszGBYaZSve+h1h2f/l9eIswpv/usnyDcRq//xDUGrMkN/VcGVEsXtQL58wXPAVRKuNkBgoK6IeIvaNV6i95CDBW7uIfIcu+88R762yH7wMuVUZBAXZ6QAr2qeI1JA2dSNOYaMybNTxJzUT3lo4V68hLq8QHxykag/AXh9i9h3CG0LoRRkVVE30Q0QuQL+sLncV+NaLRBvtgx4HAao5YJNXdsdG7NhgHzYcsI0WOaxaI24mhOEethwL0faJx5TwtsOmM/glyUUAGEtwqKiuUXnGHBYKJg9Aw0nvRiAqCT27+bQbcT8929RHHpkdwa+pu03Aov+2LQQJ0u0V2WicAXkLzacwOcZoq7hMwERGLjpaomhlqlR4Br1mUjWuwKDVaiuHeafezSXGWwl8fp/U2L2IuD01z6Hffcc3SUbAZcfm/rynpoNah8ZyupyQ+qUBrWdyxz9UjIiAArSKbTnbMSKuziZaKiBBXp3EeEWAdVnClEDm69pTjq1QbaNMLuIkAGIbCZ8LtBcaWaEjXKFLMIuA1QrUd4HsiyS0F/1QPnA0Mf1B4ZUUQDVm4CT77XUchoaV/ic4dC6odbElWzghjkbqNPv94haYP/UoLj3KD55gH26wLAgjU34CLQC6mBRP3RpuiqRrQeG1P7Fp1NzoYZA7c5AgPXwnK5by++uIZsO6AeEswWGi3SOdBZyswecYx08Gtl0PWTKv0GdpnBFhv5qhuz1Dv77P4J+/g7ik4sp78Y/OYHcd/Df/xHU6QnEyZLP/WDhn57S2TWBaTJZXENr1tP9fwYaEQDMDKkriKpA3DA9WkjBjswHRBXGjKj0BXIS3wFIHZ2EiJoodqJsRQDoelK8pGQH6Tw9xAHoXXIOiZEIUuLoyUOfUPLE5wSRMiSuovABqh+7zEjEykdULzuOXdN4UoRHGpFJDH8cFTaXGkHRrUGkYC0RiNL5SsPNDL33A5iD4WOiFAC6IzIv3bGhEIFIiKuAfEPrPlfKyVFLOuZyjM4a0nKjVWkU7TNaT5omic3mBVxFlxmz9dAHgeKO3HNXCtiZhmwKmMZNqE5QLGLMjuFrqmejla/5e43jWQiiq3QI46Qh1AWikSmcDehOFFRPJEcORLcOT3OOfLdMP/W5IHXmZJVoE5ri4Zyvm5MfgcNzhijOPhcpaMpPmTI6pauyeKPHudonXnbvklZHEFWXYEDmckG3CgBicBNnczJdSM/kxOM0ibd9sqKdnycKGlMIpzCjgBFEJ8ZnO4XpiYRa8HvLCfGkT31yUKl/thHql/aKpFaIR8LbiW7lPLQPRyRRSgIRo1tI13O6ld7bsRkBcNwrAN6DJPKc7HnTlEvZwGejtUBO2o0IkailUhyju0CxHzgxNDsH89AiZDWCEnDLnHtCsnw1NgklIxByBWUjytcK+TpNiS3daexMsZG+4doKy7R3CQFfZQg584Wioi2oTC5NrpTwWVp/MaK4p9i+eT5LOjRH+lQbj5MJRbvt6oZJxa5O00rL/49KwM1pxuEKTojUQNcdJqxz4mL2Dr5QsLliqKFKjUyitiHZaCKAz3RMVIpIRLR6TX1KtguJ2sqCQfYMQKT+i1OeKAg6CEdEWYQIuXPT+oeWiHk2oaOukpAqobkq8c819YnjlKu+9pB9RKwLuFWBYW7S608htz7ArEm5kc7wvUy0mygEfJ3TRW/XT0YoAH+OSKF65ZuOFvNjszw+l48m8qMFPYDE205hnCFOiKg6PWFBIgG4I2o6uvVBJA1kShv/Kl+iH7g3WDs1EwBowS0FJCqIukY8WUDsGk6LAL5X/cB6Qalp0jo2IaJPXP+0/8iO4ZIjfTYKQXv2GGEODqqxidkRAKcgpIRQDMNTfbovzkMCCKWe1oUcPPUCUiDbWNgZXaWyOwPRKfhljZBrlHd0z9IHi2FJgwbTMGhZHzzsXKFf6kRROk6Bsq3nxNVK5GuPWBWQg0O+lmiu8pT3Q7qnHKlIAJQNQBdR3Y4BfyIBmjKFDUa4Kk00Yppk5GnyEiNintZ+y9pOJUBT9Ww2UCRdWHo8Rw2YtEnL0vJ3OzxR1JW8UKnGCFCZeEtD4zOyHOrXnvECFenqIVNpauph2gScpuBYUkwDMi2wf6qTCxfvixyDq4WAbB0yAMPCTPuASBkhCAHSKdL9IpDfdcwuK/XkVkq7bYH8wXGCNUoFpIToHcyGznzMCplx4vn6dgrexGBZy46p6mmS7rOkiYxpimdUCkam9TSEgJrPj8yARDEUXQr27PrjtNUQpIt9/zMzLb7cjUiIEPM5RF0yyGmzPdrpSZlcRH6COpCsDN9Khx2F7KNLCEBO6Ji3oBWbkH5A2G4RhwF6TGGPESIz8KczyPUB2OzSeJuCYfgAOSSHpTpP4rFUrAjALUvobQf9Wx9CnqwQlzPoDeia0TnmCCwKBmYZBulIG9BcGfic6KDZWuhth1ASHWlOM1rnZizmi5sOauCtztcR2TYmSkJCPhQtOoOiwFx8Qaee7ddy+Gx0tAioXrboT3P0J5pjTh8hezpvdadAZoF8bWErTa51zdFn9Rk31oUN2L+bo7sQ6M40RCyRXzfpIazoLFFLlPceZu/QnVHsRo67p1VyruBmBlKTXhGFoJhvSYvT6s6Tz3opUL9k86QOFn6WYf0NifI2Yv5JA9kTjbWrAr7KoDpHruzcTNak0vL1r7+VXIBsRpT44KbJSH7dkH6RnpniowMPGADi0EKN974gvSdmGv7JCcftg+NhNgwsQNVx+sbQQhbJscz4dTldblTvIbctsN4SrTM6aZ4CLfZkajpGsaqUU9IylGK4oXMIu/30uMv57CveiETqQsZGTZMKFR/WR61InpNbP1K0ipz37O6B/18WgBNvWyoOFlCpMIgp0BCkTwolEUKEtB7qAJj1gQXgvAYUUa6ouPdMAak1EfHiwSN7sQZu7iBPvgE/12gvMqguorjtKFLfEwkDgOHrl9B7j4vfZSERC0Pf+X2AXBkoG3HyQ4ro23fnkyWsndOec/XDA+AC3CqHHALUroO4qBFONOaf99AHC7k+wF3Mcf/zBYq7iMWnccozGEO8ghEo7gNWv/YxUJUIswLDeQ1XK9hKIWigvcwmqmW+9TCjHe5Ijej484OpmH2SCkKb+idalyoGHWZsdor7wOT4SBrE6e9uIHoL0VvIr50BZ3pKe882XOvDXE42vGbP/IyQ09lPbzvETMPOM/hcQWg5CVH7uYLKk8PPmHmgBKcXqxmEC5h99waxyDFc1tg/z3B4yjwD3ZAiJnsP9fIOKs+gFhVET9olAMTcoL+qoA8O6vPrJDTXRM5zDZ1lDEH9/Y+pf1zQ2ED0Nr2WhEr7ALFvp+8La2lFOz6ruwMBtKeXR9rb6A71iH4llIQoiqP5xVf4ivs9RLlgg9A9chJKYn9RFIjLOfqnc2RaQqbGDjFy4gDwniQhuxgcDW32jARAWRAk2LcQhxahHxKQmOzZhwhzF4+BhgCEEJDpnuYPllRrgEXeECACDXtUM0D0HnFeAzHCvFrDfvMczYVE9TqH6Cz6q4rukh/eTXQycVUkbVdEtrXIPrqBOV9i/3SRAJGkS1ES+W0L0XvU/QBkBu58BrXvYV5uEJ9cwlaA6gnCyiFMoc2y95AttZu+ytD/hYo0yTxZW2+AzQcM/atesrh31UhvwmTpn20A7ARksvAu7zxsLdEvBVSHND053k/dR+TbwFyOzuPh2xX6k4h3/x8Oem85rTEC5nCsB21FK+GT37lHzDSad3nuujpRuQePbC0grUJ7zklSdtdw7/cBzfkl7Fxg/1QlkX+iZhYGatNCrSOGxRmpab2HHGjVLAYOc4Nk/of66CXv67OLCVgIsxw+V8g/vZ+eN2iNWGQQXQ+12U3/1r23IhX4w4/ZGK+WiF3Pqeg4JUn3MRg5ZdhEzWZoNLuQQ9KVXp5B7JtJByKUInPDB7j1GjKdn5N9b/uzRwJ8qRuR6BydgLoOYmc4mnxkOxhtQh0S/ST2tCkTziOGeGxGxNtNiagoOAzrDYRSk+uRyAxkDExi7zpAKm46g4X8/Pr4PYxmMZkcDUJdEi0DplA6YRMHVZJXLt9/Z9rkQ0H9iVkf2KXOc6jWQx+OwsX6ZUzp5BJ2mdHxZO+gH1rouYHPGDwobYQvNFQXsPqQi3ZYiKPDzkOEDBRSlfcsvrN9oJtXoji4guTt4YRobbb1tOszRw5ltovINx76oYVwBZzXyB84HVn/4jyFIfH11C+I4vZLBdVkEJEoo/AUjftCoT3PaNNngGGWwTQR84+SSDJG2BnT4/MHC7UfoDeAW+XYPMmJrLaYpkChMhAh4uwPPF10akPtzRBh7jvI3sIviuRmEwEXIS3fo1BJZFsAUaC8oaHASDeTnZ06fmoMFEKRkTvcp1TdwUJ0PYRS8BcrTrVcuv/WkRucG4S6IAf8fgchJUKmIYQgWruhoEzOKiLpKRdEmGSnOtAiGDFyYicEGxTN5zNsd2zKs4xOUSM1Kc8QDg1i2yJsvrppyQCSIH8OhEA3m5zj4wnRBIj6DZaotjFA4tWLuuL0abAQqwXct96Fvt1B7A4I7z1LglVQu+B9ckHTMPM56RfbhhO3ugBS8yl3HYwL6J7UtLz8bEvK53kJ1QcUb1o2kKcnpA3l9KfXOwv9eo2YZwjzkhQ9AK7WcLVCP5eoAGSv3NQw2WoBW0tUB+pN+iUPT93FafoxnOSkO84VzN6j3HUJ2YxwNSlEmSL3ePkxbW8fO/5Jx6aduhGg+aX32DB3Huahg9kKNBfzKWtDDQQ3+NoVbM39JtvT1tPPcsjeo/7CY/e1Et2pnETym6+TDlrc8pDP9n7Sf8g0Pdl/MIfZe2QPPV2zNB1vAODwxExoqbQBej9g90GNYS4w+4JZI+07M7r5JBcs2ViUrwWyQsEuNLwR2L6fIdtz0jUsNdpzg8UPd4CKaL95zt+z51QGkNN7nV+3zAjIDMKiQn9ZQ1kio/p6C9H2yNZpCne2mgAJ0Vso6+mIZzQBsiJHmJeQ2wZx30BkBkJKyIekDzP6qIcqS6gsI+KpJHC6JKr+wGcPCXBDQjijS65wyRGJGTo5RCGBn41x8aW7wqFDsIIGFDkD3GAtcH7KT7i9p8nEIZnL5Nn0njGXKSAeGgilWJg6WmaLujrqUrVCnJXMXShyxMAsmrAouZYOPT/nbAUggW1LWvHLLrntPQpEHelCSCwMsTvQJbHMUX26QfHawM8y9M+XU/1gnyyhNy3Em3vkd0sEkzM3JADDBxeIQuDkwwE+Y8bZGDBq53WqCSR0G1Dc9BQyKwXdBWR70iCDAfINdScA0K9KRFWh/ryFdAH5Np3NWqA7kehPBcwOyNYC/Rmnmqsf+SlAWA0pAJkJAsi31Jbsn5LZ4EtOPdQQJ90nQKTfzhRcoQFhUL2OKO6A7Xsaqteobh2GmUR7TqAg29MhS0Sge76AqyR2zzXp3g8e3blBlNnECKnfcILcvDsnuKuAYu1RbID2REE60BCj86RhawkEQB88QibRvlMns6EkNk8TVhEAPU8N0Cw/siMETSuQZ9wftrtkQmERB0ujitMTxLqEPjg6ps3nBNlznv8YBCcYqSZACKg+30F0Fvr5O/DLCsEo0sW9Z8OjyFqh1iSftKjRaEBHyDxHjJFnawo1jD+jPgT4sjciPiAMHZGLNDoSYwpxCieL3gMtxcMUmnbcLGKEwE+IAwEe/mm8Hr3n5yWxWTSAsCUgJJsf5YGqQGw6+JsbyPmcTiXJAlj0lt3lY57v2IQMqWB0FMraixqqcRCtRcwk/eJTIwNgso+Mhh7k5a1DyDkVcNkYPBZg9h2knXF0epfyL+YMucnvOuy+XqM7UQgGE1ohAiAc3SWyLd+Tx+mmPuNfbK2gW6ILY6bHmLpsGk4K5K5FVApKCpjbPWKmcf2dEyCQJ667iOrGoV/SJcfVdMsY8wPM3sKXCsOcNqAMQAP8DpiPwqnI5sjOBOAjZDNAdANCSc6mCPw5o3g+ZBJyCJh9uEGozNRQCR8h9y19s1cloFKafapNXWlgSwmzZxaAWXfU3FQFVIwQfRKfTSJliaAlRNCQRkH6ZJPYdWkkv2KxmpoQYd3U5PpZTsrNteMhpNj8iagQ79eI/cCgycdTO604Jh0pFAA3CEWr6ck8YbfnhhJGC86jgFo0LYJzCCOy9xW9hFIQVYnYtAi7HZvFx2nyQpC+NRAhElohNg3fz3pFykXbIVYFmmcFZp2DajrY84qc7s3AAsFjyoWJZQ5h7QR++GVJAwTnIJoO8B7DfA5bSZRvmCcyLDWKO0unrSJDKCv4glNLvbfQmxbh7gHy4gz+pJqmN76gLa+dC7i9ZKPas1H2GUO1pI/witRKOuQEZDsil8OKGolhJlIiOlIOBsWgsQCEN1A2oH7RwpcadqZTgZLseiEgLPeO3bsa+UahuLPQd3sKHzGfONdjYJqruA/YRLsyLZIdpobZDZzC/HyF/hQwCezrzpkdMP/Co7izMPct2uczuFxN1Iz2jI2J8JHvnxEQLRd2v2J6fXEfJxvU9kyiuwDq1wIhCHQnCrqLKHpP6kQ/wDxEaKMQVYWw1OjOBaSTqA8OzZVBv5RYKAF4kJc+RFSvA8zBQ/UMWhMxMjC3HxDLHKHKMKzShHmI0DekC6od3Y18nUF2AmLvj0YUI+IoBZuZXNMGvGkAVNwjhoHT0eWMIlQkpF4kmpekzb089CwesuS8BbCgGCwQA2SVU4gaIymE+ieYA1+xK9oBwUUIw4BCAKRflrT8lp4i3zG4eLJWB470V+8TDe5IY4tFyl9ou6Ots5YQmWYUQGfhTkpSpjcNpw2LIumdBHUFAih2PSmBjwJRg+JZPLkhptgAVAXw5pYOfv/lL6E71cg3BCeGpWFN0ffQux55riB7gqPNJSf/1Y/uYa8WaGYZacypJggGaC8EyluB4jaZ2hiZbMMjDk8AqdKaS8Pj7pQareJWQ+wHmEMSyWc8x7vTiNUP6SB3eE6zmPLWoj8xaC/oxKc7OvkB/LvLgf5EJjc81ipqoAPdOJkWiwL9Sif9Bp325BBx80sJzFgzisDOgfyBlHSfc3/sTjWGmUB7gaRNBYaalsLZjmBK/uDgS2pGXEljnbPv9swEqmpIB5gdKa1BS4wibpVqh+YiZyCk4fvlDdkpqg9k1CTGx8i3JoU0IGSak817Zl5BMnA79j0zxAoDdeCzIqqS0//MHN3B2+QIWZWcnL655xTvdI6Q60QHFYghInY9hDGkGgpSvCbjG63ITMqyY/bOuEf8RBjjH3V9qRsRhAi1WrL5KAsimM5TwGsdQttBlgUpT4cGsZUJKdZMX0/CdGjaEoq6AlYUr08d3zBQ9KMVu8Ikapczjj/DmxtAKaiTE4jV4mit6DzCrDiGzj2+hEA4mSFo8v9GBwZXKAA5itcHFvQZA9XemtikS9oAEQSyh55itXdz9CsDEU4QNTnQvtIJ8bOQvYPctph/FFG9zqbgrPIzFmUQRCGHEy4MEQKKTdrgQD3GMCOdIYrEew1AvqWwa/T/dlfL9Po87FmNkCnMPueI1uxHTntEecPCd/88gzfkp7ZnCusPZsi2EfkuQLdp0+mpwwia6fLmvkEwSwiv6R4mBGJBQfr8C1oWixhhS4rwzI6bpX1nRs7o1iIUimjJsyUQwBTaCJjGUWtjPfSBUxpl2dyMftr5dQu3ytF9Y4Fs45iQPjeQNiB/uaWV675BvDqDfbKcRp4iJadjlwLIDgeI+Zw+/Zp+yGG9oejr0PIgHGlX4+UTZVBR6xEt+aAi0YhCjEDfI7xqIOcziFkNebKCmNUI92vEFLg3LaH+K+zZ++iawttmNeRijrDeIPY91PkZYAwFfF0H/7BhQNxmC3lxPgUVRqMRT55B+IjFd+8AAHFRw9w2yEKAeOA+EpYzqE0LfbubaFP85JhclFJx4sitrV90cJXGsMySQNNODm5+UcDODMrXPfUCm5YI9mis0JFXDCGY0WHjNGkIy4qNsveo3liGcD70SQdi4EqV3FwcVOPQPDHwmYA5pCnIsoStOImRnjk81F9EqE2L/nSFh28drS+FJ1978ZlLFrk8xPtFhmVcwWx76I5iWJ/xUHaFTGnEdPFCjGjOE4q4CeRYP68QDJuQ5ScO0ka0ZxrmwIYo5Ar9VY2HbzLf4PK3LVTH9HSfSbTnBs2VpPnF7zLvh179vA3NlcHu3QzlXcDsZUT90SY19QvozsPcHGBPK3RPKpQv9xDtgPxWQPU5fJZBBODwvIAaImavPak47YDT7+4QjIIvNbL7DnLTwF4tKFA/TUjnnIBXeTNADMx7EAmgcosC0gXo6w2fvdS0BC1h3myOTmttD53EqqKqgPMVglIQr67JAOg6Fj9KIp6t4Oc5gZveQX1xAwAQqyXGUF+Ae6esq0lPEn2ASKF9X/VLFjmkYHCpSCGQCJGFWoyIKTdoTLbGKO6XkntFTAG0QrxNY8vMaIYEDBbqDz6BOD+FO5/TTMAyaHC8RNvDNB3698/QXGUoHhypyTNqSqULDL1repidhvQavtLwhYZcFJOuVOcZdFkibHrUQ5gyQoQL8LMc+7/x7SQk9wTSUnPgMwX3l85R3Fksv3sPd1LBVZp05kqii6RVtZc5qZR9SG5ZKVMoOYSO1/YDAF874E1eo7jLUN4eJ9HVdUBxx5yf7lTi4rcjgoq4+aWCjdnACUh+7wBQa7X5Gusqs0fa94DqhpRuX2mgYo1ia+5hque0I7+3ED6geqMp+v/dNyierKD6kjTuPiB7YIDs5us5ogSqVxHVDafUUZWwViLbBoRM4O4vZEmsHlBdB+jO0zBACcw/pe5X3W4JThsNez5jGvxKJXtjvvdmO2A4LeCXCrpJ7JfU4Jrt8YwWg0vZYse6UmQZn9VEpYrJOU/erAEAcTWfAjRHF065a45At3Xwdw8EI/YVTAIqgw/Jyp4Sg7jZcoJSFpzA2B747CU1a3kOqZhVhbKgcdN2h9D+Z5CsziCybEqQFNZNyZGjBedoqwb1SKQ+bqjy2KFGH/iGZgbokthYMvQsDpZoso609Rw3G+D4dyWTc4mi4M0H+svLhJL7MCEnUYnkaHW0nxSetm5BE+WH90CebEUlqT+hYDhi1Azmkz5AdgxUpONFPFq6+SQ6jIkK5DmqF9aTS5oaArmhTiBWBTtgLSCS6E11CsIku9xMTEVDVMn9KlE3RmcOxJh+V26UsaSuha8Nkzbm8TV9Pw9YBdgFdS3Y4ZgGv/WcVIyXEBSG7QN/XpVNCJVu+DpEEp350Q40NXtIYl8RZJqsULsRskTLCsfnQ/Uhid6OI2YE2nkGJeBKNjmIRF2j4BQMqVmFEjwcUlhhtqEZgngkUhx/H94EpGc3QJhhErRDiOMkJIQpaRW5ogBSiqM/fQic5A2khcHRVlooyc/z/m060p8AtfhSX0JOor5RkB4DUV6okZaSwAdnEV2SLCT7Y4hkbLDtgPsNsJrTpaizx5BTpIlnPzDRfhTEjy/B+skWNAYWBKrhffMlBcf6YHnQJAvGqJiUPNI86Pn+yD58NI3o/GQvLW1CzIQAnIRuPWLnIVoLoQSUTGFiRpFv7sJb1r0MPuRUTgRA9tSDRcX9ASElopdcq6OtuHS0DAcU7XXVqOFQEDHZyCZ7Xf4P137UmBKgfSYQZaJtGLrbRcn9hloSmmjoNtCe0hxpIyICZmOhOgfpDOKCU4oo+TNHi2A1cH9UQ4StyC/PdgH52k4AFDnljvlQooYvU1BtCOS6S4lsr0kjMxSzikdW73LXQZQZhaatBdY7qAWnrr7QDC01Mml1PFRLPcuYzB1yRSOOrieCOTq7jXTiMZQsaRdFcnX0RcZAPRypySLLAEVEn05a3AvC/kCUsy6n82A0WRBa8zal5/StJuSrbPVtDCAMLU3HtasE4q7l3l+Ttj0GRQI4hhaO79HY0CWL9lGzQ6MCWib77Ra6riB8anaSbbB49DYjWekGw+dV2EDBtAJEH6d7A0daX5QCUAJ2xnND+kiuf5FBDA7KBVLEQ6ALUp3B1jIF+TmEZFcrk739ODkVbQ+VExANRkIa2uAico1KxykiQbvR9hspRiAxBiRgjIedRchBoLzj+S4d9xfhQOc8LVDeMNtk/25GK97+OLkUQQMQk55MRO5Bow5EDMz1iIpgLIDJfnikUwHMF9FdILDTOZg2fTyJ0UOidkmXogYa1m+qo3W3Gmin7HNqYlTPEFm9H6Y8FhFobIMQJhbCqD/1KQ7BHNiAcjrlGS8Q0zNn9JFBM+p5RjMUpaZJNAyBWOE4sWRkQDiGFKcJKF+XYMmbEtcBQHhxrA0SuwhSHKef6QyMg+U0REmuDykJzCvPemQ0eBltyEPAz2r1/aVuRGRCLGLX8/AfpxyPrjgMRJkTfcXfPTCBusgh5jP4rz9hUNztw/GLBotoLYU34/fpekTHjVvkGfztPYTRkO+9Q1rQ/QNk20OmbnS8QqbQn2YwO4fs5gBfZ/T9F2w4TG8n4fJIu3JnJeJFBXPfIkpJgfbKYJiXU/Lv2R901GP4CH1/wMnLezq7FAb2tELIJIpP7iFChH26wjDL4MsatiLiUd468hIXNUJpcHivnpqN1V0P/cUdormEzxX0zqaD0Uze3XlCaEZqlezd25soGCwonMbm6waqB5YPNm2sEg/fMrALgbPfs8i2zNzQ5zmGJf3Q21NSswAirWYfYR5a9Jc1dn9phuXHPeY/eMD9L5/CG4GL/3DLQiYXMPsAvRvS/8upAal+/ICYa7hlmb4vxe/j78RcF5eoNZoc2nZAWPLwGUfm9qRESDaF+astxHqH7de/BlEClUypxJlB9BFmOwDpYNC7HmLfIj5sqDu4uoCfFwiZgt70U+iZKAvg7IQjUqMgpWCRYi0NE9oWaj6DvzyhkMw6hBevEdqOzbdUkGWJ0HaI+wP05TlQ5JCLBTeYxAuNQ/qeX3EnHACIzQG+Y06CzHMexkVOWsooxhWCoaiWriD+NXVfcrWEqBlqSavvDkIsEAoDKZiKHk9nFB4+bBF3e/jdDvrqcnLBQowQmz3XfZHTPrwl1S8qieKjW96TzCR0NYfa9xSlr/fkAy/q5M5jMVzUODzNMP+sg9p00Ld7QEnIZZmE0wohaVf0foDoHOR6h1iXGJ7R9aq87tO6ZbigDQw0FSWdYooHj/JNz+8dAra/dAlAIYoFpyd7oH4dkG09ds8ZKkitxnhAA9k2oDtRaC5ovTtOO8zew6w7HN6foT0jrYNOVhHKUlDenRkMYy5Kn5zpksFGlAp4UsHsLMpXB1SfsKGzZzV8oaE3PWytMcxJlSg+3+D+O+dozhVWH/VQreOE6dsnaK90SmlWGH7hDHKIKF43XFsAVOeQbQgIwWiI7QGq6VC5QPAoU9h8o0R/ImB2FVRDzd44QUI/wN/dQ895XrXPaggXUX2yRpgV6M4LVA8N8PoW/oNncPOcls2j20463/QmUarOFkS1P39zXLvPrmAv52weU2bEH7o+fQFlLcS7z/iMtS2LhjwD2h7oergnK7hao+wH4NCQjugcpyvp8s1Xd78QQpDK0nZwd/esEzSn0kJJrt2kO52uoiAIsT1w33h4mPjx+p2niNUMcndg8ziCSwDcmxuI23vgg/fgT6qpgAQAv6zRPakYyHnjEtAH6E1PC9fE0nicUWI+vQGEwOEvPSMTYt1DJgMDsWsgpMDw7hkbgLst9PUWy4GTkCgFNV8SmH90IF18bhAyicMvXJEpYAMdtPZA/VKkrI7AwjpXmH+4hXAB6//2DNIBy4/Sea8FnvyGgP3dGewMGLMydBOQ3Xc0m6k0zIFuWOahgxgcnm0L9Cc5Dk90MqVR2L+j4HPgyf+3g51pXP9VjfkemH2SrPUl0D8vGBb4oofZDqg+6dE/maM7N9i/mwMRqN5YBCNw89+8y4wiBeQbitZ9zxputB8ubjv4SqO7qlDcdCibAcNFDSWAkx9SL6c6DzvX6M4MZp/sIXqP7S+u+H1uC+Y5ZXKKAph/PkB1DublA9f0vIRe99C7AbsPZhhmBuXKQB88DQIcNYphVcPNDIYF6Zzlh46gQ54hzBSikVAPBz4fdaJkDRZisFCNSGC9Q5xXU8ZQzDPI+n0yOQ4M+IXR1K8CQHquHwMQIpmx4HTFM3G7I3WzKhF2e4TrDjIzkGUBNH/8uvtSNyKIkbxX5yZbXaEUEcNAikpMCPYUZPgYzQnk+Y/2hvDUbsR+AOyQQsYU+eLBH79WSL7B6hFqAhxtzyzt30Y7NI7aSMcRmYYYk3jHyzNpG2AWgRiS5bCPECCdZxSXqz7Z2loiYn6eQfQeqh8Qywz2pISIFD/RkldiWBqE5I4VEhdxRBj8PJ+cYqTD5AwTiwxBycmLfrTXlSmIDABtejOZHDI0D8DOMaBMy2PIjhIM/kLSZcRAJwmAqKgWUHsL1WpkO5VSktmASJd+XgRCYVIIY3qNmU7ITESoc0Q52o9SCyF7nwKhUqN0aIFYQNT5NP0ZkWC995z8VIbToDaJEYUgopmeNyBRVMb3wXIcqruEZkna6436DNlaZKmgGK16R7qesA5icOR3GwWAI1aRZWxCMo2QKcjRujNZFQtN1EGE8MjlJv509CEQ5RDAEU0dp4Z2DEZUgP9qa0TiiCqNAjpJZHBEM2M/8L01BtEdrZNHC2T0A52kun7iYgt71OYQTLCITcviUJBXP96jyQrVmIRekUcurKcocExxzwxClTO/Ym8hWpsmt3Ga7sbcEIDoEkroPcKM+UbSBcABcfDwlUkOTYro6LxCKDKMNuByIGLrxwMy0mVGBDYMPpcYVhlkW9Be2COlErNwHzNMpKNHP334w0RFDIrgckiTCGnHyQemqYjqScGMCggQyA5EJqUjxay4RwpSZMBY0HToUgORSF9w2qLT/W2e5sw12vXpddE6Gd5Dd5H7zRhUNq5Dd3w9pJqRmhmFQFjWcLWBzyTGEjIu6mlCzRBZj3wXAMHAOVGoFHqY7NEzA1nkgE/OQY0/Bs+5cLT3HNFHjHtM4LmmNfUbI2iQbF4BTi6QHByRnIqkDTy3lCKXOyGVAPjMJWG6nNVkFLh07nU9eeXJGhYTsyByj0iXkIIJ7V/BK8ZIFoQUx/cvhDRVogFNTOJgUeSTA2F0LvHiQwp4w9EqfARHI5vSaC1F/1qTVpM0QSHTx/saSBMaLfnVfoAIAW5VIPYKerN/xOxIz3RqSnVHXZPsBp4PPukNNHWMcIENdaAw3p7VsAuD0WzC14/Q8kDGR9By0gZJH5Ht+AyO7lbeiET9sch2MYUKRkTNNSptROZToGE630ddi5sZ2u1brtf2nRrCA7pNQMDAdRtySR2GSa8r7TvSMSzUlxo+V/BZ0s3lEsJJyMFCxJgy0DhFUJ2DHARUryH0aCUM2JkEBPdXOXDyMV4ipPch0wgZz4jiLi0EDp8J5lYZpKLpRRQi5UCNex8bStVSSB5Hyr+UE6gobQ3hxbQPIjWnGMNK0/QrKkwsH2EJKEUv2FA4x0ZE83sLm3SJznFSUlC4HrOkzB/8ca2HJE0YtdHOEeB8fD2yCB+nuAAwhYEGD+Cnywp+2vWlbkRi3yM+rWmButunjUEDS7rjYLOdPnfcsEWe8/zsOsSug3x5c/x+XQ80HcJDmpqUJUdOdZmakGSnpyTikwvy9LvhSOnIM7h5zjfVpTGq9Sg+vgOaFmG3h9RqctCKAkzy7j2w3UNkJwhGwbxaQxxaxMUMiArmtoGwBXxWoLjpoNcdYq7gq2ziJ1da4vBuhe27Che/0yF79YCYG7hVhc0HBsJFFOskQo+A2Q6Q2xa7v0CEpHzZIuQartYIhYJ9ZzXlgAAGvmCSuTkEen7XCkFrDHPSlnwmkW0c9LaDq0rYmSZaot9+EJkIG3Dye2yTNz+/xLBQWH6vQ7YZMP9cojtV6BcC8y88sp2FbDktap+WkEPE4rMOttI4vD9D/aKDCBHt04puQy92tDEuDdR+gOwtxGZ/tGi1NbTRCFUGrzl9AYDi8w1imWHz7QXqlz3k56+A0yXCvIC63nABr+YpmNFTvxLVlFhev2gnHmjINPwsg960kJsD4mZH8fDJkvS45ZxI45sbiE0OWRRo/8IzBCVQusCNOtPwteFE6iYeqQBScVKnFJ1ydntOQgDIPEd4ZDk5Xn69AcQW6vQECBFuvT4W0CZjkdT0eJvU/NW6oh14wBjNALK+Jz0qz4EY4O/uOS15NAUVaXONw0BnsddvuCfMZxCDhdxFoslp2hGbFv7hge9pWaRRd49wdw8AkGenQG4YZiaZzSB2LQXldwypw8UpumcV1h8YnHyoULy0ydI3TlaLfllCNQNmP+bzBQD7v3AKRGD+oy1E09PR6+eewp4nmkap4YsKI6dUuAjRW9izCrbWyRkPqF7bST+xezdDe6kwn8+R7TyyrYMvJPZPk/gzS/bfRqC457o2b7YQ5zMA/Bw7F9CHCN2n4iXRNUIm4RY5VBtQdwHtuUGUwOyLJLCMnIDW3+/gz+dsBnI6+ByeA2ZP9NJWBlEZFPf8Pa//moRuBOqPJfTeon7FTCd/Pkf1skNUAt1lDjFTyHJSQcw+HfgRyNcDQYuuRziZYf8+LYSjYg4LYsT+WycTMJStHfLrA+a/f4d5jGi+eYphoVF9dkCoDJqnOfRphay7pI7jYYuiS9lCIUIOjlNTKSEWPLcoGgZk6+DvH6DOzxGWM8jbB8SmJbqeQjSRZwjzGpCA3nakCiY6ZowGaEmbCMsZpHNknhZJ4P7eU37+ZkcU83CAbFtIYxBSYnvoOgit+TyPaymXwN2f1Ur9T3vFbgBmgCgKqKJAWG8Q+h5qVgNKIWy2tEHuOuiTFcLFCuKTl/C7HfcGraFOVpOlKnoLsd1zkqIB9/lLCMPPics53GkN/eEX8J98Dv3usyM17tAhb/op0FC8voMQAptf+gC6j1jdHRuRaDj9FEIgWgtz09CMY72bwAv7/BTD0kANnJaFZQ3R8nnsv32CzfsaJz+0UEPA+oMcIgDlvUe2YZZR+84MdqaQbalpyG5aQLJ+8UUOn0l0lwVUm+H091uCcjHClQrtmYJpmIEye9kjSoHdc7r0qT7D5msau68B7/w/PcpXB/zo7y4RTcTJ71PHMTrpDXMFV9OVb1iwppl/RifO7qLA9l0NuzgGIXdnBrkS0Dd0Fx0bFOEBte8hOovVroeb5+jPMjTnCvZCAJCQPVknwgXYBbWhZjvALgzCeQ5XcFJb/fgascjgLuaAIECzf55DDRlmnzUMoH5eIts45G8ORye1nBRKd7GYnj25axDf3KK8mEPaDMV1y5yOfkDMM/hFAXXoYbYthlVGo6AExIvNjg1DPzBaSUmE+gKhYg1hHjqIl2+mnyXArw1PT/maXt9QXxoCYpfAkIHMkdi0P52OOZ5JSnHv6gc6dP7/wbD4E9tf/Nqv/Rr+9t/+23j27BmEEPg3/+bf/MRri/jH//gf4+nTpyjLEr/yK7+CDz/88K3Pub+/x6/+6q9isVhgtVrh7/29v4f9fo8/8eU9RNuzEEiWu3DJ6tAHCtUfOV/AOdJmquI4HRmDWcqCSBEwIRVyMZ84oUJr/gzJ7JCpa2w7IlGrJVG3h5Y3SCfO58i9XcyAr7872bSK3kJ2dhrFirJI1qwhZT1kFC6GgOGC4zhpI7mDhYZdFrDLLAX2JZ54G1A8kFfqT2pEpSAHh9kLj/pNIGVp5HsnvrHZOsg+oj8vKGCPEXrdw7xYo7hukW0chjm1K+WdR3HH9HfVcwMobx3qNxbVq5b5Ju8tYOcsCnzOycjiM4fZKzchkWPwmxgc8rWD2dMusz8rKPjeeNTXdOEaebG+UHCFBASgGke/842beLdmR6qYPSnhy+P4GwBdkOoS8vwUOF0yl0XLCVkIJtFrhJhcReLVKQV685z6meJoocfQSyK3sS4hTlYsLHyAaHvIjmNXBHK7xayGmM/eRhB8cnIbLGLXofh8g/LzHYXSvYNsLdTBEhVPEztR5McJYN9zg4iRBW1VQsznUOdnUGenEHUNuZhBrZYM/dTmGKAV6QpDowf+XipZBf5pXX+u9onHP9c6Ti26nu99Q/qJ0IYIpjva3tJHPd2jpCETOVPpY2a4AW/2EPcbhO0OiAHq4mJKZ2cQnIE8O4W6ukR8ckbK1e2O07lx/+gHqOfPIK8uILxHftdj9WNL6uC8YKCeEETOMk3krzQIhUFYzRCWNYo7i+LeIpQGYVUjPDmD8BHlmwHlFzvkr7bINhRycyrK6e2IgiJy8pDddTDbntSOjpaZdLZJYV5tSMJuj9WPPIsEI6ZQVXs5h5sZmAP9+/N1RLEOyNdholcFkywqHe1z5RCg+wA1xMnCMuhRkzFOQjiBkS6iuBXQe1qIikC+d7YeUFy3OPl9YPmjkPR0akKYAUC1ln86FjbrD3J4IzB75VHcO5idS1MMTtVFb1G97JCvPVQfSWHJSZcwO4/8wcHs7TFHSEmYrUO2oRGB7CzKmwF62/FeJ1GzX9YIy4rUh0ATAtEymExY5groHUEUtVpR/9H1QJX2MIDT8OcXCKsZ7cEtrVfFoUXc7thkj898shAfqRNy20A9HCY93MQmMGzE5RkDDkWRQ9Y1G+THa+iRPuJP4/pztVdETqHGP5CSe2faF+Rywewyk5G+vW0glgvoZ0/fduEbtYBVgXC2QixzxDyDvjyHnM8QDg1zH5qkRx0bkMCv47Q8mQUYxTqkLDD/fED9RQfRdBAHZpGohwbmviXQWlXwywJ+XjDpvSqBzJAGlIKNRTp/oSTicg6z85i/8NMkpb72KB98mgAQ4QeQ7KeTnfWBYXuHdwoELZAdku12IaF3PfRDA71ukW0sig11ccOMZ67eDShvefZLR3ZE/iDgaonuSQ1zEMjuJerXDuWdIz3pwaG8tlh8BCw+ohZNDQG6TfuKiyjvAuoXEdW1R3XtUL8guBkrZiMVa498G2CaCLco4M5nGM4qmvoM3Keq1wF5svEdlokyth0mIwE1hEk7GjIB+/wM/oxnp24C6aw3FuXtcY2YHV9rNIr6T8t8uCgE9N0e6tAjZhJxVkJenEH2Dvl9mrxPmt+k7e1IsyrftCiue+DidLKWFrMa4tkVqcQl9WiInP4A4Pee1XxOA8O5xyDdcRLIDDxGVYhk4jQ+n6N5gzi0jLBwbprGjroYhMCvMxmiD4jDz9aU/IkbkcPhgL/yV/4K/sW/+Bc/9eP/7J/9M/zzf/7P8S//5b/Eb/zGb6Cua/zNv/k30T1Can/1V38Vv//7v49//+//Pf7tv/23+LVf+zX8/b//9/+kLwXRR8R9w0Vfp+6t69lchMAbkwKEJgGv0YgFqTljyJkQgsXmOF4y5LbF5RyxLjFZndblZOUrLIWMYben69Fyxgbo5h7wPLTGFG4A8KsKh59bwC+SaLMdIJp+4iHHlDUiB4+Y0yVlTL5uLzPYmaIIVUn42qA/0RgWCrI/OlaZvSP3UQsMZ+n7dQ7zH65Rf7JHtrMMRHRIgiOJ7KGDbj2aCw075++mbjfwP/4E+vMbmNsG/SLpSl63yN/soW+2DNsaAsoXexSfPEB9/BrCBWzf5+uiAJzWevUP7lB9siWKmOw+4TxENyC/bpHtLPbvaLRnihvT/YD68yYV4YFNSKUm8ZxsBm5yNweKvzIJc99Atg79eQZXv23LGqsCYVbBXyzhTjmG5v0JiIrBar7KACWQ37K4757O0J9SsxJmqRl51EiIwE3ZLwr48wUXYohA00I0HeShJy0nM6RyLOqJ0sMHIiDaIaHtHfz3f4T4g49odNAPEIcWcttCr1mwCiEQixyxyKaviTtqB5DndHmZ18DlGXC6hJhVRO5XS34sS5Z7Y9FR5PxYsqqeHGL+lK4/T/vE4yvaAWG3Q+g6/v1w4KQspdfHrp+S06N1vEd2QHR2akLCvCS/ViuE+we4128QdjvqOK7O2KjYgZPTIgPOT+CfnqJ9Z4ZQGcRX14i7Pe/jgYGWw/NT2CdLwDroF/eo/+NnkJ3HsHxkWJFrhEJzLdQabpZhOKvgTkpkL7fI3uzhS43hJE/+9AHZF/eIP/4U4UefQt8foBqHkNZMNCzUR/qBdBHqZg11v4e0Hqahva/PQO1IiNANQYf5j7ZY/tYbhgNqOmshRLRXOexMId94Hsp3DuXtgPyuZ/aOj8emwjITQbgA1bKoGI08Qqa4V4B7VZy+JmL20qNYB7iSNJF8baFvdlAvbnHxay9x+h/vqZHJ3j7eRDtA7nuYA529tt9gk1V9ukV2c2DDoAQbjmSraj56jeK2g2loPhIKDbO3yO97ZDcHNhG9xZgHpTctzD3PJNlaZJ8/0GHJ2gmdHs4KDGclaRHO03GtaTkxsZ5ao/UBohs4RdWaQWIV9xqk5uzwbg17WtLnP9F/wnYHf3f/tgmFcykLQPLZXG+B2wfuT5H2nAAngPF0CX/BQkYUBZ33ircbkXBo/2etwZ+8/jztFaNd6fgHQvB9sQRwwmoOLGf8t7ZDuHtAWM7gn529le2BZPMbZjmGqxqhyhDLDOHqFGIxR9jtELd7BpmC0+zpfBgskeZ+4DlqUiJ6XaL4wSuYH7xA2O6mP7h7gLx+YG2zqDGsDIbTAu6k4l5lNGQzwKzJHkAAqXhKwZ3VMJse8w+3UC0blerzPcrXfF3BSLpQAdRxpVwdcWgRjcL+OalQ2dol223J5ux+A3G/gb7Zobju6bo5J5tAbhqUL3bUPtiAfBNQvYkYZpy2mi1QvY6oPl4jf7mHbhyy2wPyzx9w9rs7nP1eA91Q5G32nNCoIaB+2WP5owbVZweUn2+R/fg11O2OmUSDR3HdI3+wMDuHYZWhu8zRXhi4SibN3ID5py2qa4dsFxgxUEnI9YFmOABkP+a5sW7Yv1eiO+e0UO8tiusexcsdzKvtpD3NNmxkQqaO9Ly0p+P6FnJzoIvgMod9smR9c7MjbXx0x7IO4tARsOh6qM+vYV7eY7iac6oiBMKsQv98iXA6R5xVU52iDgMgmR0TFzOe+d4Dfc9pyEgdVMwdo8aVWWMwzDOD1gziBfeY2DR8TseA8MeXUlO9Ee3PBlqI+D/Dk08IgX/9r/81/s7f+TsAiFw8e/YM/+Af/AP8w3/4DwEAm80GV1dX+Ff/6l/h7/7dv4vvfe97+MVf/EX85m/+Jr7zne8AAP7dv/t3+Ft/62/hiy++wLNnz/7Yn7vdbrFcLvFfyf8D8vmKiLcxfIP6fuJziqJg4zCGDo3NyJgvkn51uZgjni65uJok+A2POPdK8XsmGsbIo4uOojVRFrT9zZPG49ARDTm0LEaSdSiTl+lkFCsGzoV6nNiQlyxG5GxEVDKD4Z3V0fo1BG4k6cB87DE98SbXRNjCrJicstyiQHeVQ1ryOvU+pZXveQiF0hx5f4kaIXpuVv2zZH1qqbcQPvDrArD79hIQQPWiQ8gV7FxPKaY+TwJVH+EKhfZcw7RhSmp99CARVQ0Rsg8T8kJXMf5yrlBoLjWyPTcMc99A7Bv4yxWiElD3B8TCoL+sucG9ugXmNWKRwy9y+EJjWGnohnkqQVPEvn+3QDACJ9/bkxeuJe9FCPBVhqgl9SIphDCUBv1ZgeyhJ6o4vmdKIqREZLMZYL64Q5yVDDgc7+v9hkYHT04g1wfg+o72ud7TRjbP6MQ0WFINy5KF7GbPYmK1oOuK84j7A/z9Gup0xbTffuDzOmqhhGCh2z2y/pvVgPfwt3dMEZ/V01pwccB/d/g/YbPZYLFY4E/z+k+1TwDHveK/rv+PMPOTY46I1kcXPSC5WcmJjjX+27g9CqWIEi/m8GfzaWSON7fk3dc1xLxmUNjdAXhzk1LvDfyTEwCAul4jHphMKysinGiZMeO/+Zzud62dJm4jGia3TdJBEVzwpcGYL6DvWbCGeUnNgxLwpYFdMMRUDkfLbCS+cntpUL22yD+7R6wLhFxjOC0gh4D8dz+BKAr4ixUe/uICu68JBgduI1Z/sAOUQPO8mjjkuqUmwRec2ujWcx8KEXamMcwU6pc9VGvRvENqWH5n4SqFfqVRv+5hbg4M+zIK3SUnw9JF5Hcd1Kt7+KsV/CybdHF2fjTNCMlgYwxEXHzGQ1/1/vg+Aim5mraa/ZMZfCbhKtJJ87sO3WUJX0iUr1ms+VJD7y3U9Rr+YolhlfN3G8MBew/1sJvWv1/WCJWheYeLyF9tJ34+2o7C8NWSwZZV2vNDYKJ61xNkyDWzI5SgJqD3kE2aplg7Pa9jmG68OuOk4/YeYjbjmXJzz581nxPdbzs+t3XFAsg56k2knBzcICXRTe/5eUpNk34A1JNFsgei93CuxX/X/Z+/UnvFVFPgfw9jyunfZVWRbpvE6epkxXO/7QheaCLFUSs2pM5NYZCwFmK5YPNniBy7kwpq0yF89/vHrJLAaWt87xkneK9vpkZSzGY8A6Q8alBdgNg+EstnBtFohEWZsip4VstmmJw21a6ftCox13AnJdfJjpbeEAJuniNkigGGmva89asB+Sd3fG6NnlywIAF7VmH7fo7FJz3yz+7x8NeeYJgJnP3enoCqUejPChyudAo+BVY/6jgFkjx/oxQYVhn6FXN7pGUNEzWzfLJ9QPm6Q3eZo1/w/1UXUNx08LlC86xIYnG6Zsmea240zgk6ZTol0fxoADG6aumDnRwKQ3aMKxhrktGFUDecSPA9khNICiDZHh/PErPupgI/lhn6JzPogyOoGAIQIvyypOPX9RqxKtA/W2BYavRziZMfHKDuD7CXc4I/NztSs+Y5M5m2adKXZ+i/fsGG7JM3iHWJWBeIidkjDx2fLR+mnzu54J0sCLb0rEdF23MC2PeAyShE1zrVC/cM8z5ZUdLQdqyHtYaYVZMrnNg38LdHzmZ0Di5a/Pf4v/6xe8WfeCLyR10ff/wxXr9+jV/5lV+Z/m25XOKv//W/jl//9V8HAPz6r/86VqvVtGEAwK/8yq9ASonf+I3f+Knft+97bLfbt/6MF8V7FODEJBoLTYNwSFJ9rRGrghOGhGL43ZE7+ZaYZhSyJtsyv90jjKnso6B9tAIebyyQqEYsYn2dHQvFu3uEHd1sRNsjvr5hlsMuWeaOYvc0ghOpUREpSZciVdp3qoOFbAbIzkH2FnLNh3VcDMFIIND1Sax3iLf3R9eVSLGXz6jn0G0aDRqVOu0W6sUt1O0Wshk4cblMwlYA2X0HvbcIRsJVCnbB4lruG/RLifZMJs6iQLa1CVlJI1zHgsTOFWwN2IrfY1hq9Cd6Sj02eweVENGYhOTeUPxJ2ghFtFECrkqLvh8gejvZ2wlPYarYt/DXN1xkAF05UmhaVOD7mCZVUSLZe6ZFKgR/t80B6kBXIb6epOuRyXbTB+p62p73rBsgIrNQfKXZAARS6cRE5RtYUGapOS6LSdAYZ1Waio3FBjcG4fxRDOlY5MUyn8ar03NsB1KOdvskmE76hMNh4mwKk0LLJEOIHqP/P6vf95/G9We1TwD/03vFOM2YQt1SOJvQ+ihKjWGyOqTphTmOqrVm8adGYTfX/PR9ZhXpF0oi5hqiThMm5/gMA/AvXsHf3nGfmoSmibdseWCEjPSrWBrSNzcHFoVJcAkXoHbJ7cqzIInrbXLck0lUnpx3cgk712gvc7RXBXyaEgTFpl/sG4iOgIQ+OKiWqC/tryN8DgyLRPu0pAcAYD7PXKI95cRT9p7hppo2wrKjjSYiJnvy8fUEJaB3PaRlOFkUgr/bvoU89MlxSyTTDH4daZy0OpadJZWr8wwu84DPBZonAofnAv1KU8BuKQyX+5bOQYHUiJiziVGdx+yzBtlmQDAKw1yhW8oE5gSKXvMj2jfSWaPka540Oyk5Oxq6G9pawdUqAVlxoqJGHyhMNRpi305IOANGFaddVZYoqIo27Y+yAgAgHg7Mv0n24OLmHlhvidYnSjKUZJEgH51rQvJnxEiK0Uin6DoWH2OYYcrJiocGMVn2jgYZtLlWqSD+KdlYf0bXf6qaYvyDlCY9gphht0dMmrxx7ce248TJaNYYKc8hdB01Jrf3RLLTswKdMqC8Z53iffo5pDITHAppj04UrDGbrDAEDVPGWCyy9MfAFxoxk1wnzTDlGIVC0aDCcjIm2gG20qQgOlL6uCey+La1hK0oKhc2OSKtt5B3a1LCrIOf5QhGwjQRetfTCTJS8O1rAzfLYOcZ+qVCf8L1rIYIXyr4GZ1DR52UCKCYOwX5FTctzN6huRLoVjz/u6XC4ZlAP5fwhZzOPWYSJcAy0c3HxmBYZnBzw+yenLVEVMd1IXyE2na0UI9He3IK1VNj4yLsXCW9rJy+lzoMUJsWatNC9scpM/dB1m2ipQ5lam4GmxwRj2BXzLMk8gdcTk1dMMe6MKZ8n1GMjzS5f5z5I2LkmeU89YFJGiDans9l200AWOwIMPhZDjdnPohIbm5CyjT5G63Bx7raTnU20s+CkmxWYpyiKaIPb6+dP8H1pypWf/36NQDg6urqrX+/urqaPvb69WtcXl6+/SK0xunp6fQ5P3n903/6T/FP/sk/+Z/8udEy/EWkKUjoe2aAFPlRUN60iE0LkedQec7JSEpRjzFCPGyJIA8WcjEHsgzqhA4A40aPrqf7iFaIc1ppCoB8u/s1xG4PLZO+oyyhRjrvekf08+vvpCyBgFjliEbBzrOE1gUgaMiQQezZOYczdq2+0FzklYHadBD9gLCiTWWXAoXKl4cJ2Rg3RLy+gZAKYlZBx4j54OHmGYa54SLzfkJT4mp2LOZbS/cdlWwyQVTAbAe42sDOJOzlDMJWKNZhyh8Yr2GVwRcSxc0w8RNFUBhqnUa0cnLPyR9YYLXnGXRHWlZIRYC0AXCkcggXsfrBftpkQqYhl3NExQ1ieGeVOKoK8nQG3T6lO1GM0PsBZhNQf3fLw7bIoF7dQ2x3OFm/gzBujCXtCo0LQNfDPz3BcJqoSy6ieEXLz9nNlgsy6SuikrBPlhAROP3NG4imo8gzzPl5b24R2w7y6oLTj9/7iCjaagGxmHHjMJrP8J4HkyiLtznHIaV+DwPwYBGcgywKInXb/cQxBsCiOtEWZFGwOU+pqyLLoK8uuPE+2ixEl+wP/xe4/qz2CeCP2CuC5/pViqL9NAkidVNCVWWaouYsPpWCHKeXmy0316aBDB4qOW4BoFbHe8jMQLQ99G+/hHh2he7bT1F8dIO43kBfb7kuV8sJMRWaI+9oWDTKfTtpx0YXwCmHZGxk+4F5OtYhnC3g5jnUoobIM9hlQa/+LTDm7IyOcVNBHyKCNvA5pgPZL0vYRYZswxwe9613j5PNNmL5ocDJD5m+fPhgAeGBxcfNhCB2pwbtaYny3kH2gZSvRMssrlvUv7fG8MEF2qcVsq2f8obyN3tcvEiOTokeGAqNYca9oXxj4WYZ+r/8LIETgNlx+tuep4lQBLK9x+yLAdU1JyK6YbPUXybNYKC1pnQB2w8qRAmcfHfL/bXK+HsYiWzvobsx5yEiv2kI5OQEXfS2x/5rM7hCoH5tAQGIk8VE44IUKS05uf4VBsIlUEEIyDxjYTnY5CYkJ/cztB2EVpBCoNj1aZKTuOSPJxNdjzBYqOWCxfFPuTj1DHTY+skPnp/QzXC95+dcnvO5OrQsVJpmarx/6mU0p6+bw0//+J/B9b94TSEEpyDpGsMcRZZB/MSn0v7csd4QAmI553tUUbQek6YMWtPud7eDfnUNuZjDfecXp0BC0XTMgnlxwylWjLQQPl2yUXCeFPTgoQAWfQ8b1jd1yebAB5jOcjJS0VVR9gPUwwHqfn8sapc85+sf3MCfzbH/+dMpkDAqATUELL+3o0Xw9gD3zim2/9U3Mfv0AHW3I9BiWHcgAtnWc0L7tWdY/vYNljGSYqoEzKZLuRkayx810NdbvPxvn8FVwPnvWWTrHvrVA+zsEv1Co1spiKhQl9R+Va8jijUdLLNDgN0pBh0fWMcIG3Dy3S3BDC3RnxXoVwbFPRswu9DoFxLNE4HZ5wHzz5hPEjKJ3busRfR7eQIYgNkrh+INBeIA4Bc5zDag/PEBD9+5xBf/O4PqjYDZRgyzJeRI7IiP8l8ikL8+cGJlNBACqk8JFIVVzTDRdoDqLFkUKRrAbDqs7hqmphecbpn7BlEJ2KsF7++GZhs4XU4/19wcGPHw9HRqTtQtLeQnALIojgwAR42k+vg1FIC42zFos8gnYF0Yw9pmYIMmq2oKMpwAucMBYRgw5vDx9aRpscmmekTG4Wey7/1TnYj8WV3/6B/9I2w2m+nP559/zg/ENHIaue+Plf1CHlGhFOIWY0zhZcesj7EgmP5/nHbEyBtisslSMSa0cEKhlaJuZIy8HxsWl+hVI4o0oowpVBCGvtjjAiDCxg4djxHwKYTmD1/BkEc9Wrz9/9j7t5Bbl/QsGL6q6tmO/buZ27VW9+pdzEbS8kcN/ghGDMYTQQyCkAMPJEHpQDQHggcaCUIgngUCOfQkigR+BQWFoJAgxBjjF/P9SbrT6V7buX83Y/9sq+o/uO6qZ4w55+qsztfpXnP+b8Gie76bMZ73GfVU3XXd1yYkbsJ70nuEhoOOPFNYtmqVhPwEW8C4ycmG6kakl4WTeJjcIQU+oLuD8Fw+CrHjC5QNAIIQaLHDpfjVtD5aBceQotbF+6BDh8fQm9wWA/rmykSoSXJIKlJaBacGfUm0V/e0LD7sLkArCsfXW9ILMtlouw6qaaED9coJfz2RORK06YcIRNdTDFrVg+2zoEkAYotTifGA6miNCWvjZ8nWvdDsgmYptE0j1cuIl/cBZ1Os8XzfR2EZACIW9sBe2ns+D0HrENDZ8B7xmuX+WHe8oLzC4yPXCoDAQ5ifxnCx9H6gtB2EF0bua5rI/HFCtxAzDCkQoCT4yctnUxG91NZFGqeqGv6XJNTzSCHpreNnW+Sx+4nDNUZMK+I6kiYUyQedmqwnPjGCjIFtcu8lQRliouDlUOIG+1yArfXQbWw6FkZWrGE9xOnKw+w7qIYhnt6A3YaGHZTQpbS5hi2J5ttcH3VCYH1EGXXnInUginGFJgmhZIUgMq9JvfIG7OiW7KaGLqY3oAPOvkO6bpGuJbcg0xK4qNHNElIztIodDX4ucm0i3NUNKR9xqlQdnQ+LZLheQW5tQUosr9sM97i18d6GTCif0CoXxrx8LQ97Q2+H0Mr+gKIbfuwwhFTQSFIwNedPksTPPurQFJ3ZQlhZfD3ruEfJs+D7gYIYA1HDfwHhDJqToIV7xcdHrhNKD0VbMBUJgI1SFO2m7KLGNSGExAaLbgAxEC585p6IsduQPu7C3DCCLieGYIl1LByzbGBMyOtBG647nZiVhP1HagbScKx0V+1R/RAcHQNaj4q0nW7Ef+tuAC50w6iBQOvtC4V+ksHNxwRQxQyGzwM7/HaWRYvYyGaQfdY01EuhqqNN7qGVuvLyWh4I8fPKeeRrS+fNjFlfSgxiGHwqEQFS9xyG/sHy+bapBDBr6bg0Qk2Tbc9roBsDtuA16c5B7xrq8dIAIoDPb+zOQjS2gEsQTTpCLaQtWRA+T2MmFLtIpIWGZz3MlQgSWc9D6eUScGS4xLpDDz8DNbAz4H1kZBwZ6YQIipSAOEYlAZWg9chzMijqGq4huOG7g2c8AF9i5xtoWEHeEOpu7/ygoeza4TmJYYjPxVt8g/Et7YjcvXsXAPDkyRPcu3cvfv3Jkyf4c3/uz8Wfefr06dHv9X2Pq6ur+PvPjzzPkT/n3AGANJeX2JUeDeuiy4cqxILQO7i64SJ9uhiKzCLn5Fhvo92qem7RJV1GQmTKHPVnb9EabbOFmlHc7h4+ga8quhckCePuN1vY9z5Ecv8u/HwC3fbwTtPHOtAtVlu2z5yLRRKTQy395oMDQZ7FsLLxH1KYqCyLWmU9mjfmsLnG+P9iUWzn48iR1k2PbAOY9WBtC6Wg1QTNnQm2b2ZI5NCQXzbMGgDQzTMsP58iv3YoLy2SLTfq9rMlbAZkWyaoA0C66ZFfWWzfKuFNisXvXiHxHsm+jAgkwLai2bXwmsnwsQAxCi5X2N8ycAlt9LpRgod/Mcf4ocf572xjByO0XLupQbq1KL92CT8u0N2eItkS5W1OcmjrUa7mcJMCze0R0szAzMaw8xJeKWo6igzd5JTivDsLOng9q+HyZCherIW9uo7zIfnUm3Ql2XExsLfnLOh2FJ/qfQWf50TGxHbT3L/Dw8jjZ1D378CXKRPuvYe9taD/+9UKbjFBc14iG+XQ+4YWfRZH2ie92cJXBq5u4L2DLksWEM1zVCuliKSCQVo6S6GmU2omqgpIP96C8a0Yf1rrBPAN1ookg19Moa5WtES9fQuqLGAfPaEbzskJfFPBrtYMNVzM2C1MzIuvBfAgWtXQJwtuVJsdDwBnp/CX1zAfPICfToE8h316AQDQpwtgPkV3b4b0wRL+yQVw+3TI8uk9O56yofbTnHbeTzeAVqg+xa6bbh1M3R+5MaWXexbFOdPS1a5Fc2uEbpaguGyhqh666ZFohdEzmkK4xRTmYg3zUKhLvYVarpCOS6S3z9HfmqI5kQBWrZBf94AC+lnOnILeIb/ukOw1rr4ngy0QHWdGT6gJ6b4wweIP1sg+uIS9NYfLDPp5Dm8K2GyGdN9DVz2L+M5i+l4Fn2p0s5Q0jaecx14rXP+ZEj4Bxo+Hgj/Z9dB1B5+ncLnG5lP87Isri26kUZ9pTC254LN3a3gFZi1ZSTTf0TTEzMohx6F3XBcXU1R3RjxA9R6Tr60ApXD1/QuY1iO7VCz8rIVqSFsw84zWxNMspqZr66FAChSUEj2XdL+CUHRfQVU13O0Thpiu9qx9yoLd/JpaIl2aI9BAjQr4yQgubPhPLuD2e+iTE64RkwVQN3BXS6hrxUwILw454AHHi0WvOjlh9lYoSA7se593zvp2jW93TaGMIfIbtB5te0BtzaBvnSEKjjdb3mvRgqnNjnS2fSUumyXdhdpa1mwHbBV8VSN9vGLRvtkCsynfsyzgEwO7GIkgvGaR2XZcjxITw+lcVcEc6tkAuAm1Lfr9R8yiurUg3a9MqBWzzPkKp3BvaEKTX1TQX3sA3D2HK2gTi1kBnE/hUoPRsx7VrRTbNzPm97QO+aVQtccGbqIkK+gMurVoTlLmadzLYFommNtxBtw5Rb70SLegK5Rz6O+dAABGF3SiC5o21VmYVYX+bIztp0foxgfIhlYDXUpPRbvqkG46pNseet+xq5ACpgVm7zqMH7Uwyz2aswLdSGPyYQ+XK2zvGugOSPce2QVDRfd/+QtoJxrlZQ+ba+y+f4LRhcVn/z9VrAe7GQXw6VceAOcLbL/rBPmyg1lz3XX3J8hWLUGcJzt2qIQuhboBpJuqm56U/jJF0nRCwyLoa4sE2jqYdRu1fzocvLZ7zsF9xZwi0RRDXCGV0bCfu4d+lMIWGtmyRfr1x8DpHHZaIHm2BrZ7YPdiu8Lthq8ro6FOFgw7/fBB/Bkzn8FMpzTGeC5jJHZPqj+mNj8Y39KDyGc+8xncvXsX//W//te4SKzXa/zmb/4m/uE//IcAgL/0l/4Slsslfvu3fxs/8AM/AAD4b//tv8E5hx/8wR/8f3YBghCRO+8iRxLAMWfWcsFRSkVnCgC0PHTSNdGKwnV/gHJIIeohv6810k3LwlHaXqpp+TpKS1tWCpmAwAbUyoZAIEEivIfPU9oABy5eZ0XE3g9dGDlJJ7uMgusy44a221DMJpoE5TwXRzlR2zyFLUpoS9QDRsJsxiWQJujOSVsorizSHR0pyIlUtLxsLNJNgqTx8SSvPe17vVZId3202QwLSVJ5uAzo52XkrUPcpuDIbQzJ0vTx9wfoB5BuqW0JXZZsBYYlNR00UjilkOz7GMZmahtFcHTtMlCW+pN4oHQiug8c3BDaKGJCYOiAqKajy484+PjcwNdEw/RkDDUew03HESGKh5WejilIhCK33Uf7R58eWOIJ4qaaAa1UzkXEUu1qZIkEHXkvnbxOBM4li+RAnctSboLWDo45WuZcRDrkPbRi+79ppAujodTxgftPc3yn1gm1r2OrGT3NJCDIL5qG9ySjPTI2O7qEhK6R1gPCKfc4WB7GTIeelLhQyKkiB4ocarPh7494EDc7coX1fEY+MMDDQ++ggpYhS6IIkO/piPgn7DzoTsfuGfUetNP0XSa/A7hcox1rJDuDtPdQmxrae6S7hIjhNKeGqaMLjgrXnApVKtN0qjMZdOeRboSykGtor1mwS7fDNB7wCvnKI9tYpKsGuk1haiK/flxC7xroPdcdVyTwKuXzopX8m5twXxjUJwb5SkUxKZRCtvWxCxK45XQTSyM9NBUbUTrsAcmedsHNSY6k5ufSj3jo4/oincveQWtHkCTV1BUaiu8H+2AFWOnqeh5okg1NK0L3LAaXibC+H6VIOwvshy6JBohe1x3XoSShVuMAeT8aaQo9HuhCQyfTir5mT52T0VG3AGfhe3advHMsKEpauWK1ln3ODOindwedwaFreNjY8qJfxMs6O39K4zuxViiliPb2/aAPMxIQGYora7kPFAXva6CzBXZG+AxDAnUwAxCdjerYkVLj0bH9qVB94fto6QxAOrQGervn5xC6pIfX3R0UhEkiAcDUWLhMQzkFs2l4+C1y6LrD9ANhBBQ5O7SdFbtwxFBis+9RWNFQKF5jN0vivhw6jd0kgXIGXcnnxSVA0gDplp1jW6YS3kmLbhjRPXha3OpemChB4zYvYcuETpm9R1LJc+j10IXs+My6cRINeNqzAi5nSjuDIanVsqdjuCwwPaSb2rLDAQ/YcYbk9hnaiax7ii59xbVj4HGoYYJGDAIEaI10y04UNOsQIzbH8J4OVlJb2MUEMFPRgSAyMcxONKUFQR6zl8Ov9+yIeM9DZKKZ4xM+/zynQ5WEZ/uGh2d4T/ctANoaXktC+reuOzJLipy1wHNguwpsCVlPQm2iDw7u3joo18h8fsl6YO2LX/sG45s+iGy3W/zRH/1R/Pc777yD3/md38Hp6Sk+9alP4R/9o3+Ef/kv/yW+8IUv4DOf+Qz+2T/7Z7h//350wfie7/ke/I2/8Tfw4z/+4/ilX/oldF2Hn/zJn8Tf/bt/92M74XzUUFkGZQxcVVEItt5EOsTz4j0lSbduM3iNs93ZI7l3FzAG/UPyS3XIkPAerm4A72Dk4KHDiTLPKf6T19MlkSqAm4FKU+jZLC4eDMJT0E0aaQLuZAJbJEg2tFVTdUv043pJzcB0wrZb38N0PXSeoXlrgWSXQL//EDpL4bIxUYVO0lRdKgsHg4MmjyxGEl7oSwVMc/Qjg93dFOMnPSa/94R/Q9uh+fNfgC01knWNZNlg7jxdKBKKp7x1GP/uw8FJ4d5tVJ87i8hLftXA5Qa7t0r6/1+2RFJbS5G59ejnBQ8M0g3pJsEq0GH6XhMDhZQHTr/cIV210JuKlvzeEzm0DmlBhys3LfiQa8RORvpkHR1DVNdzwaqILHmt2FWZFC+IQ/WWqDdOR7C5AZBx4chz4I272L855Wt6BkTyb5MwtPUG6t5tuPmIm0dVEV1MM2gtD29Z8D6ElqcI5VXbcZ49fAL1EFCLOQuIxEBZi369hhEdkDJs4aoJu1726joenHWRUzQt89qHe5Bl8F0Pu17HQEPnv7XZAJ+4dcI7uKcXUJMx9J1bcM8u4TZX8dt2vaaT2GIOv6UoONF32c10UrDmOYGOZggxBYSmOBrR/eh6CQBQeQ5/MoMb59CbLaA07PkMqupgPnwGfzpH/+YZX8D5wZmtbuGzEbppBtOwgwnJFkjfeQx/MkP32QVsbqBsAtOI0PJ6yZ8TZNXNRuhGGs1CIa0M5+j7PGykDrDzgvqn0wxwwOg9gitaUFlfpOgmCeoTDZdRo3Xrf9cswKcFVHAUBOd/cU0gYfaHm9i94xMDtJ+/h+asQPk775MrDyA5PQHeoIjOKyWW2lyj26nB7g26/xQXIP1SK0w+qACl0M5TEbfSztzJvVLWYfygQj9OsfpMhqTyGD/pUS8M6pME5SX1H+2URYruPHQj3dlgXjHieuTNlBbGl3v0Jwxo9VkC1VnkK4u+1Ni8lWP2rof68rtQb95DPyui81+yaWAnOZrThAeya8COMrjCQKcGuu5hHl9yP8hSopvSKXlh6o4K+FycFx1o791boCIV0D56DD2d8rCS03aTIWQN/F72xaKAvXuGfp4j/zJpGcgIVHmAa0PXizYtGz7bUclMjbrhGtb3UPm3lsb5iVsrAK6XTTNkMhQ50Fv0Hz4Y8oSKHHok39M66nlcXUNrPRzsjYF7+BiuaRh6aDRQN2JQUkDV3QuFm+os9/0iZ3cjS1iEbnfUmIn25HDoHZ8PZBl8maOfMohPtxbdLIPXQPY+KcXuZAJ9vUXyu1+GevMNBjPWpCpDg1RCIxEEbQ/9tWv43R7qdAF7MsXFn59Btww9DKM+IYPB5hioTJadhn6aw07lufWe1DTDw0u27pAsa+Z7ZQam6mgN/FYZD2jpngcUmyma7oAH/mTToL4zwu5ugun7DqbqsPpsBpcoLL7eyRpq0c4zVLekHvOgI5ZiBlEY1d0C6laOZjGIxNNNh/Jra/gyg50cFOJKwWcG3Run0J1DdrEnwJIltO8W2inSBP35lGBz22P/qTHqBbUuuqV+LV23MM+WZNPMRtD7BnqzH35/MaJJ0WYPezrh57qXmrbM4UUArxqx9Zeupnn4DEmesw4EqJmtGHbrF1NSxx5rAM8dGiRDBBJ9cZSVJ8NeLzmfR6MXgRPnhgP7xxzf9EHkf/2v/4W/+lf/avz3T//0TwMA/t7f+3v41//6X+Of/JN/gt1uh5/4iZ/AcrnEX/7Lfxn/5b/8FxSBFgXgl3/5l/GTP/mT+Gt/7a9Ba40f/dEfxS/8wi98s5cinM2DRTNQrDLy4dR4TJSna3lyTFMuwEHDAUQudggxBEi/QttGBPkwwElnKQXrSriyhz7JSsuiT4cul5MqhV3FE/FoRv7vviaCpnW0hVX7mtcc+NKJhqroahLsiOHpmARdRspI/t4VT+onC1KsVntgMWbhnBig8zAXaxSdhVcTpJuOC0s45VYdzDaF1wqmtkxcTQxU28HUPbQVN66+g37aojufoJ1lyC9rvleaQKmSB5GqQX5Bf/F+UaKbpuhLjfpEwRmN7b0S4ycWk3d3IjIHEREAxRMKs+woI8LxHFVI9Y40jN7BzSVYp5OE0siJli5I76B3duBSGg2vUmY/OPJA7SSHvT1he3Xd00azs8gv6KqllkSxkSRI1jVMZbh4pgb6zXvwkjkSUGuzore+L1JgXEKbW/AAD0pZCshBQZcFcDLjolE3Mhf1ECp2vY7c34h6WQu0RCThLLQ4MqkVBWkRxYfYTXo/cD53u4NnJQGcZxK7dxSVyfX77ptDMP648YlaJwAi0AI++N2e/5a1QxnNA0jf0zY5SUjPAoYNRe6pShM+/13HzhWA4GqiuucQytUWZl/Di15Nr/bDgXhfw/TDPY/c7+0OardHsSxgz6awZQoT35/ubMneMvBuXUWhq7cSJDUeRaen8qJDUnsUz2roqqMNaJrATkkrKB+0A2e8F451b0UHnqJ8tEd+adCPyC23I5o5NHOD4hrQ2xY62IhnXLdcmZAeNivZMXGkkeneofvuN2gv/nTNTRB8/oPNNxxIIVgppFsaTbSLnI5eTQ9bJOzSjDTSrUP2dEcuvHXYf+4U3USjvCDAMXnQI6ks0mUN3Y3QTg2KZ0xNL54RJVbSZbank8gxT1ZNtEX3XkO1gNm2pI+tK6iuR9n2cGUKc3vEkDGh9Oq2F+oL4tqT7EXzNilgNg3MhqYjMIphqF3P+egd1wnrgaYDrlfUbSRJzPFQwaVrVLD7JfNYT6fHttNhTqUJbXyFZmSWW+hGwvqsY6cWLJZDwCe1CX7o4Hb9C6/rPmZI2ccdn6i1Qis6YwX9UtcDSug0WiG5e4eOWOstP5c841xWCriqeA/TbKDgzadw0wKmPYOqqvi6AAhCiQuizxOoJ6RZpyKCh3zuvm1pxZqYowOL0prv3fUvHmR2FYqvDx02l5+iL6l7C3WSn41hvutzXC8OiskQjqlDt7TtxVVpIkGuCtnGI93RJAfSmdx+ZoJupFE+InXSpQr5UuqNNgGMwvgROwCJ2AYHcxzV9tHJ8tA0xSXM+lE7IOk8n++gZ2ks1LZCOs6Q7pPoHrX4oxZQoAugdFnTLQMd23kKlyokFbu56dqKvk3DVA6mdVh8lWGO2eUePqERDju/TtgcDsn1nqyWoPewYi40knupNdysFO2tdI/bHsXTJppuUFNCDUz/1i06IbY9fJ4AWoDVlJlRCQC9AZKLDZJnXkw16GimMrqmQUuXI4DdwVZazJyi9lhooT4hs8Mf1sMAfy5o18JcEe3J8MH4ODdjFzbMHzF7oWb64z123/RB5Id+6IfwjaJHlFL42Z/9Wfzsz/7sR/7M6ekp/s2/+Tff7Fu/5M30kVtQ/HI4WIwKoO3gqnqgSVknqccqPnzBM1nlDCnzyxV/Jgi5D9DP6P8PvLBQhxAYPxmJG5UI0LoOKDK4WQlzJfZ/2ZQId08XnOBLrotE2rMmZp5EtwIVQu2E2tP28F99wMn31j22ctdbqHEB5KREqA5wl9dQVY1Rf4BiBsvb5QYmS1EY2sb10xzGKOg6JRrbShuy6/naixEXhpZWgH4+FSqbhm8amMsN+rsLdFO6a/WFQjtVsCXQLhyU1Zi8p4CErU+bE6XUz5bCoZ4COo2UlXjfrafneS7XuG+haxspHbrqYltbdw666ogiGd5LZBTcmbqH3mxg70ywv51h+t4eZlNH+pupW/j1Bv3lFcytW1CTEfSaLkGYj+h0dnvKw8nVVgRpit7exjD8MDXAKGNWyGbHdqsuiWQWBeyshF4D2NfwzgKwcshwR7kfMCaKmhG43EpBCbXILVdRSOZFK6VGI845xcLCNXuid0kSW7O+ayX9dHBl8t9kK/WPG5+odQLgRp0nXGQFlQ/Fm8oy+LNF9EE3Z6cUlEvughf6iu9awBUiYDcADhbmIEo+GG65ks2h4IIu/u/ee6JMh6iRFC72etAfmdF30WIxWMAKP9zsOuhNDbXeigVrCKTScKMiihvTyz3SZ6D+yDn4xZTJ64WBuWqhn1wNYvgwOrq5AIB5fA21WiNdzOFHBaq3F+jHBt1YIV+DGRdgRygtU7rZ5YZGEwVd73TnkT3dQVuL1Q+wAzQL1FGAlrcTTUFr65iL0vVIHyv0d+bY38uRbCl2bed04+tzhXQL6ItrHuC7Ht0Xz1Gda2Qbg2TXo3y4pfhzs0OmFHSbI73cDRztLIWbj4VDnyLZtMyGEQerfpJFyoLeSgZDmA/PLmHGI+TmNjuraUq6bmeJbisFOydfP6nEHrtIyctuO/j8hOvlKIfaOB4+CwHKegvVQ7SCAlyAe5rf7uiuJOGqbreHzlLo6eTlcz5J4OYTdmTXG2C9YXCi6Ip8CPLMcwAN57eXYOC2A7ru5RoR9/quFUoBLoA3GPb+4CimP3+LeWOX7KZGQwvv4XZkYoTPzLctkCfUE1QTanaulsObdbzHfirhlpstXFVBSy0Q8qF830NXDWsTgACZmOH4VEw2wsWH695XsA8exqwSfXcOFGZ4DZCK1E8nSCQagL/IvV5ZF2mb6Hr+nVkaD13p1iFbtjAPLuIzmNz9M+hzhfIRgwpdmUBX0mnrHLSm7gOBlnYAxPJn7GAmAkQRuM0BV4MUruta7K+rofM/HcE0Gd36Eo3ia095MFhMme1TZsiWDfRqD5ee8NCxJziiq46dyySDaRySfYfk8XKwPj5bYP/5DNnaIltSc6o6Czy7Ym15OG/nE9LllYJSrDeCO6FW4D16tkaiFNxizMwXAC43qE8y5BcNkl0NP8rg8kQMMdgBCqHV/uoadrVG8sZ95tCt1qxJby1IV0sHoNyPpE7dVQQfDqQKqqPOmZ0+qR+CE2QXQg7pMomyiPbVcX4FI5xAOTzszhnDtewlIMZHjW+pRuTbPZShSDf+W9wsfNuyNXX4w1XNwmxPe1Q9nQ50LaWOqFtqMoE6tDbNUlonhnZ2xnTrSPHSRtAs4Y3LCdTsquGQoTW08PhUkZO/mSWw4xRm38PULbCvYTY7QOgRqiyBWYLu7oJo27bh5r9lV8AbA/PmPU46IDrqqKpFWrUUN4ubmNIaVtq7LtFIVhVgHdrP3yNCcbFl/aIV3ChDPy/QLjLAA6Ov1zz5ZxmSqx1mdU9f63vnDPXyHnjzrthG9mjnGXZ3Eoyf9MivHJI6obVuqmjDN81EW9OhfNAD1scEe9X2tCjsHHTVRy6mSzW68xG7HZ1lq/dcfqd3yNse6IUSMc7QnkyRLhvouiMCCSC92sOVKerPnsNmtOw0a3ZyunsnFM+vKqi24Ma7mMKK5V7Q6KjOIqnlmrOURZt1TLgFYGQBcNMC9nwKf2uG9PESaGoedFMpftsOdrmCHpd0t8izaKwQgvOC5TQyevzr2ZRzbF9FxMLt99S6BF1C3XDjWcylmGiHQrPtOD9zunS5uoEWKo9qdvh22fd+J4bbV3A1ufIxoNRouNWGVMfVFr7raHfcdsBqzTb3c4usaxro1VqoWuxEqcrDBKEgAD2dEIxYrlk4CsABgGnMh8UICISoW+cUNBYFi9KyBPY1sg+7wT1NKfjdDskHjm38O6fQm4rdtQ0PwnbGglF3jhtdyClxDv1cEoA3TPBGkQ8uXG1HzUWRw48K9LMCepRB3T1BK7bW7TyB7jxOf2/PUDIAblTAFwmquzmcUZi+t4cfp9jdNSiWCvlVHymPkwftkdMewGBVU0sX2ANuWrD4GKXwRiHdWFIp8oT5HB44/d+XgNboP3VbnHY8pl/fYvqObP4Jw9nUOIM6GUO3FlkITcwSKAmI83lKitSGrmZwjoL6VEcB7OGIa9RsAg/AbGoin3dOuR4Vg8tfuqXOLnu6kyKrj4iiyzmfkhUPLfpkwYKzroHZZADI0mQwQwBY+Oz20A+EMhy680DMvvI76tFULja8TUuxelWTzpkkMUT18HChpxOuL0EHVdXDxyRhntQ2dNQHfXPMi9djWEtbVudgTiiyxvUq6vRYfxzT1vTVBnnVMkKgE1DU6ME4B4Be0jDGHhRuvu2YYO/pThQCLfViDuUc883qGnopHc2yQH9OqnDygF265I370dEr+dojpEoNwntjYE7npPlUHfR6T6aBUtDXZAP4MoPLU2CUCd2ZeiqXMOvH5SZmYXndIV3ztduTPAYSFpcWo7aH3tVQK3GOzFJUb80IUkjXATpHe1KgHxsol8NUFrP/8wx+lKM7LeOasf3sFPBTzP6vRwQUAPTzHNt7Bvq2gW4z3Hq8JI2syaGKBC7XsOMUAE0AtBVBfGOhn1zB63P093Nk16wH3HwMr6cEPccU3qebDsmX30f/PZ9Cc38M9/k5bb6vOphtC3OxEvo20J+UBI6MYtjg080LlEvV9tC9UMw6C1Mz1d4txrFL3U0Nrcwf7GBWO7jHT9mtPz0hMyZNoN9+ixrhdx/ywFAWQ4fs4RMeVs9Puf5sCHj4Mocb5fBKSa0lXdy6htvtYSZjAjXSGQwH6zDHkWasZYXFEdeHtoPd7qDFQdJVNVz/8fLJXvGDiIoWmtFJROwHFcDCOHQ1gojXef6s0fxf/xLrUqMBDC02pCwSceBEpJSSIDwlHRXZLILQ3DnyQDuxVhWr2PiaMpjqyYOQb3vxlJf2aZrAlzldnBQpQ0GgCD9iANG4jIF5TG/VRAJFSxIFcsbEQ0iwkQOAbpqQa/lUhGKdB4qMxUChh1RmgAtR08K0HezpBK5IYELrLk8BEZsxxZSirWQnLW490BUC7UpZTwocQIqVRkToI2XNuSOL0MR7qMZLZgj9xpXSESVSnY2dljTY9oroDl0PjDJ0ExOtB2lJ5xj65AGzVkBiKMzKUoYXBnGa9dF9jJS+A7tMOYT64MYGIh021dwAvI9i54gydS28zemmYsQNp2kApYXPWQv1Ko3zAUpJ+J58JkFsHea5s2LZSUtI7+URD10P77lxuJ7IptDPXhf73o8avu8prvTJILALz78F0SJnozgvOuY4H1vdAAQZ6mKHyTuxu+0ZQhapW6EQbKXDIPMazsP3Q7eVRWfKf4ewuDyHn4wkEKuBP51HC9hILRuXpH52km+wJzIaLFy9AtcUrdgVhI7tfFX3g01x+E9reOWJmGZCxRJtBoPAQPFm75FcHGysiSZ6J5xrPrNJtO/V1sGnGtDUdHgFrj8OUaiJfliDvaxR4dBjGv4OUtK3dOeBqxXUqIQ7H0Ub8fzDFbVZ+RntezOxNE41dN2xIE9JlUAv5hNGQTViaiIdUZcZ+IQFRDS4CM/4of1p76D3NTf1PJFsI4pcASCpZI0LguPQYTcmvq4KdLhUDgxuWGehQqjmwfPrPeAdEXvFvItY+IZ9xXuZh7xOJSFjcHZ4fQEulMxHXvBg1jGs95ogm+wfymh4ZxD9T1/XcYjKh/8f5mfbDjaoXTtQrcJzFAwAwr5YVVG8HhPqoY87QBJ+662Nn3sIWKXluoVrHFSSxu6LOqx5ZPjDQ1Aw0LC0GnfXS9i6gR6PYhAd3GAfC8j+HCzMAVmTwKgAscA2tfxtCtSKFlx/FEJBzcDBvuCzYAva7Oq95LCNS1K3xwamcqQiJho+N7T/LsmQUL2G2rA7moihjU8NbCYOXVkaqZUu0wQfUkAnnrR1Lza5IUldgg6V5T6upb7wTRuDWpX1koaewmWJ0EZZO+jWMrNLMXG+mbL2AIBcA3qTyvMn6xtUdDdU6y33iiIb5on1UJC/vwO0c+xW58kA1AT61q4WIL0VbZLo+BINpWiS4vZ7aNn3IfWG21WyH4nrp5jy+CyNhj5es35VYY9yFtF+96XPBsGtuBYAB8YJpI6z3pU65WN2T1/pgwi0hi4yqPEIqizhrpexrer7Hv3DxxTsjthuhtLQtxlJr7Z7UiFW6yjq9dIqRdPAd/0Q8FQUUEUBk6UUsq42MLfPoZyjfZnSRJZHJS34pH2pDro1PqQji6BQPXwGZR0yQdS9tVDTCfzdW3BlBq8Ht6Ts2Y5CMqH5+AWD/ACQplX30MsN+rfvYPOZEtP3aiTXe7hbFBfpdQVXpLC5oahz08X2aAgy6m/PxI/bMbl9V0v6qTz0Xc8QpdkUfjqC3tTQANo3TykWf/8CfjZG89YJ0l2P0y935FG2HfKlgpuU2H9qDNP4+J6uTOFmRURtyf82dMXpHcqnK/jNFmmekoKV6ShqZ0iZF2cKtpmV2HGaXYdc3Hx8bmC2DRHUW1N4rZCte+zuZqhPNNLVFOl1MvBO65YHuru3gLZD8rSNaKmRxd2ejEnJqJqIPqhz2jrGw1/dw3gPbaQALAui2nUD/+Wvwwn67asKvqpg7twmIls30MZAi4+7qyqY6YSfe55BaUEvpFWqRyOKzVdr0gLyHN5a2EePj90w/HPtjuD6kaXsoIwLYPmtfDg/2YMFRDfowl5iA67ns0iZiq5miVAmdju41RrmZA5kGTd9Sc5G01FjBBChaloWHnLINGenXEfqmjbCaQr77CKm2iYzduJMTZTcp6fwiYZZzIYDpzG0ftQaKHMoP4M3NJYIQ13vOJ+rClAaCUiNUnUTEXolIY/ufA5bpuinKR3yljX6eY6+NEh3pFYUT8U/Ps8k54LdDpdqzN7ZR/Age7LFnQ+XchM19p89QTs36HMWMABQXFuM391gf3uK6txg9LRHumNgqD8ZYXvfINt4FFfDAWj8/h7KA/3n71Pb9XiD7u4UzUkK3U5hqoJ2vJ1Bc1bQzvPphgCF81CX63io8GUOlEKfFa4/IAcpS6qn15qUqk0Ff72EH9+DHWXDPaqZlq2bHgkAU2uUHzZEM0/KYa7lGYPnNnv4toX5I7HBDN0MIJpX+LD2BxSyqocOyaiEyVLY69WLz3PYuyQvJIrRD9DMOC+KHKrTpAHlOdem9Yb7XZ7HQlhlKZKzUyL5L7H5fB2Ha3sk5YQMhzTjYaPraVgT9lypG57/DHTJz9xVFVSSkkkhTmM+z6lFOzlhcVbVL9LRvCMA9sadCH6p5QZutebnmCQDLass4G+donpzivLrV8DTCySrNV+m6+XAKz83GUErBdXRBtiXGZrbI8kFUti9PQXUFPl1F92aYB1U1UL1iWRl0HlKN6wbsjXdLfdvL2hTu+ZhSjehqAd1FusDeo7WsOdT2DJBurVIlw3Ugyfovu/TWH5XGR3nxs/ocrn9C59mXodRyFY9kl2Pxe9eAd6jeWuBviStM6kcTn+/gUtZWLtJScR+u4fe1UhXtNfXuxpuxq6m/ur7vKZ7t+FTg9HjFlo0p3rbQJsOQAlTA/mFACbf/wWYTY3ZsoITLWs/Yu0AEChOewe92UPVLdz1kuCGMeJ6l8GPKcgPduVqTfMBt1xBf+YtdPMFkm0LXVmMxBLcFymQzqEX0wicorfQdQv36Al8msK8cY+ggtB9lVLsnmUpnAbnTFWT7tm0UW8Ka+GVFrZGQpqXzHNz+xbXpbaLbCLV91D9oMsGwHm8r4YOyZ9gvNoHEXXQ5jc6akOipsNRw0ERk4lc6+ezQeAo5AkFsW+7AZ14zhEgoFKHhYn3XvigOWI4onMxhOoFHYt1LG4OW1vBmStwELUfAvNk8fHOiUUv3ZPgWMwr6TRQTCWFiiCLUIAqyVXUvSCSoxRGukMREZH7olv6WkM89ZUF30spHpTKnPSGuovdD0BHTYxPFNB6LlgB5ZV7qFvpdFj537YHcvIgnWEIWjiE6F7+/q6nPbIGurKIInsujg5mz+uwIykoxb5YB+tjx/fzcIIQepimQ74W+zzr2aKUrBbIXPFZShqccHThPOAlqLCzvLaDACtfZILuMpRM7yo4XR6FjAXKXgwjzHNgs2GgUNtR0FwWXBQEddMHc0p1Q4criM5eeCQyomCuaXBo3+stXvrzsHaYZ6/zCAil8yJwlr9ZLK5fqpEJ6eehaNBGUC95/gPac8irDp03y+6KUmpw2DpEmdKU3YnwfASUPEmHYiNcet2RXy5/R0T82l46GWrQaWnNOR/n8tD5UTWLZOX8gJhK1xaOB3HdOejGQq/31KuNEuZhtCJaBaiH8YbdoKZD4igcBQQYcT2fHenimMbBNEQQhwAvcO1yHknlkezpbuNGzC1J9kBSeSbEWyKHwT7TJwm8leK8c0RWQdRTVy00qCXRnUFSZlyrnKzvdngGvGaWhjp8LmIAnaDBGdcCpNkQWhpeQ4wyVO+glYXvHPNE9BAQdzyfDJRP4/7kHQ0GkCYxtdtbmZ9hzzjooLNDkkLXB7auB8NLNyTYSxN5lX0smLpYSzQT6SA+lW7uUT5J6NBKp+9oPr5El/m6DCXhpbFTZAyUov4xdLZ82x4jvaE7EaxOQ40ADNo8J7b/0zHT2JereGg8HN4zUNCnCYXlRmjfz9UhkHVMt47zZzqF3++J6AsjxPfMuEHXw8/GQ1cW8qxYD9U42ILOeC7RUImGlkBe+CyaV6hEDyGdsl/a3MDm6thmHBAbXkCnKtZaUSTvPFTvobSsdwIAhAwy3dOBEs7RxMICWkly+QF9noGG7JDqluuT7uT5DGwFWTN1a4evWQ/Ak/pqDFyeDl1krYBUaisv7IfeQ1Uduzaho9L10KseOk3gjWS+dOy4ayfRAKLpg3cDBTJQ80OwsGcHWiVm6EgoQNcdD4HSufBZwnWhk89VkZmCtuM+YnQMG/RWTC+0hkr4NyvL9zwKVHU2rg3Rpjd0yZ10VXN1PO9CBzXk3IVaW8IPY+hqqBe1Yvf0Y1C+X+kVRaUJ3Kri6VdsenWWwl4t40LhrSVdJoh6r5akyRQFYIg8+baDu76OaFCw6NVlObSo+p6tsSAg7kjP0Hduwe9E5DqmY5Ha7plWG4R+B7ZnELckX1VxQzKzGXDnHFht4R89JWc/OB9kGdztOZSV6zAGvkhgnq0A59F+4Q50opGtcpjlHrN9F3MIwsGjn+YwVYfkyQrNp8+wv5Nh+h5RP5dr+mmvG+jNDu5qif6Ln8P+foH8qkOy63lqH5eoP39fQrockkBP6By8VmjfIGeWNppcVNw4l1Ym7UOLi1poHpoONJsdXHELLkvRTQ2SnUXx4SYWBnQDslAXS+jFFP39MUwFmBrRc1xfb4jsSkBQTE0HaCPa9aSNKSLIet9CXa0w+nqHkbXA+SkDgS4P6CZGs6BadhSEB/Fh6GrJAdLL54M8g5uOGGy22zO8crOB+cJn4WYFkt7C7+s4H/Td28LTzGAeGmC1hr28Ysjgp9/k+8t16HEpwUV1FKsjz4lQiS0vKqFaGEORddsCux3MbAK1mMOvJM23GgR+YbgdnYC8/9Y64XzShs4zoOHhwUmeBJTiM6sNcCDWC0Ol1E/4i0siSQIWeKHMheH7nqGFzkbKjJ5OqClIE6jlhgea8xOofU0b4dCpFRBDFTm0cL2hxP3Oex5Wnzzj5lBSP+LzkoX+ekuziFAYJgwLTHYd9GYDNy1h84S6p6aFf3rJn53P4MYl3ChF8vAKfrWGXjELI7sG1HaP/slTmOSzMKM0urnwRmq4IoEyFGSqh8/grpYw9+/CT0eoz6dIqh7ZfujM5O9fIX+ukLJnE+zeLDF6WGP01Q27i2mC5Z+/C90DZ/9nxfdsuwHkyJLIuwYAezKC2TYYPdtEpBMXV1Anc9Qnc7TTDO08wfhBRacu0XigaWMorG4t3xuktrhEEFOl4LIE3TyFcmOYVPQlVqw6E4329hjJpoW52gINDzXIKZo1mzpqTJSkpfsyB0YFUGT8Wt2Qens6iM2Tpyt+PeRX5AP66POUIFTB7Ci3XL0wz30tonMIMFWy46xPF+z0i2GGShFBHV/V7Pyflscv1vfoHz+JdrXxuRiPX9vuqUoMBfqS86VnU1J0Hz7mYWT/YmdI5zkLwlFJ0OFA7K4WfNbwzgeA9+i++026RC1XdDY8dN0E4JsG/TvvwUynULfPWNAVxeD2GdaMuoZ6eolivUP36VtoPz3D6A8vaI6yp2ge9bBnVP/vP4P6xODkfz2F3tdIyxRm10BfruHOZrDTAu0shVcJzGpNQGMyYsG76aDSEyBP0IiVfv5kD0wy1CcJcu+5vswL+FQjWTfQKQMHw3DzEbxRMKsKZqvQ3plQB/aZuzCNxeL3NmhvlXCG3QpX1RidnkSBvD0Zo59msPemkd6ZbizyD5ZwsxLdPKeTYNNDVaJfC5qXRjSt5YjaWO+x//43AaWQrls+95lQGY08s54ApQoADoSmJ9ejHj0FlEJibkHtJTA0zyjSXkyBMofe7QbBdpIw863tofYNAk2zvzOHaixMWcBOWWfop9esJ9+4B0xGaGc5kn1HS195f//oKRkRn/0UVN2if/d9duGKHGo6hpsUvA/eC+3TsebNMx4KAe53YU/TihlWAA/aAsw/D8THeT2ZcC+5XjIq44BR4MWdSxcFdKaA3Utf4mi80geRMHzXszUE8IYbcYaQYMMYABSCiYBouYhgf6on0cLwCM2A0DYOHbK0YvKqdZH/ae7cZuECIhE4OClCkMjIH4XQPpyPCdjqes3DTZrwtJ4m/Jucg942CPaj3lroTR21MVpOsW5aQu0b6Msl27E5T8VeONwBSdWtRbZmiJ7qLJK9pdvEhBoNrXmCzpd9TDpnl6YXpEKQjKbj5qrFHWZd08861UQvlIqOETEjoe2hsoTXkxgmAmfkTI8+3MUMDYrkEiTTMVGBEWlN2XULU3Us0nLa28E6/p0Z3bNUfVBQH3QslPdALa3OyUiun90LD4pulbVQGyYaa0futj49IRITtEXP8ycFDTcredokd0Lt91BVg2Qt4vRwuAgjcEWl4FBGRITB6lmTn+/TRBy9xMVGkBqEg7BoWULKrm+JlDDUzEfbSQZzpQOdQAkvNKCtef6xFoxXfih1wMH2PFwehDYdDt+0UL2I29XA+wYQkdL4NbFD1vNpREFV18M7F7tdwYlFL+bk6qYJCwdrB4/2TgrviYSAikgVEDqHtTywSBAeEmq/Qkp3ukxYwFsLvdpBay2C8hSqzNmtCdxhTZc/VZA+ppyHO2XhlaRMlU83IjDPErrEGQ1lqE+xiwKZUUhm0+H2SvHtRgVd4toupqD7wA+XJHnTSKDouIAf0Q8/2zjmILWiYzFD90dVLZAYdLfGMUwN4Jql97S2VWUJnyYolvTpT3fsZrrZiJ+xUrByr5Mtu6luNoqbdjdLAQUka65b+TMGTPZnJW18LbuvtNakvaY+7BAIDeyoWxqeM6W4Rsk8RJIwzGzbDHpG7/l1QELsEqZrh+fYedLtmjZaZ8KY2PGn+9ZwPSFlGcaw8O17QV/10OnlTSSCGZgDTdgLRbsQuida0UDjNR20TpcOqaSqK60HALLvAW0ISshQYiaiUu65gd6ikoRzsmlJobQW6eWOXRX5vWB1Gm3U7eCcqLpjW1VvHSCmFDQW4GevO4dkH1BoWsEH2pdKEqDIkW46diMTdjSiVW7OHCF2FEQ7WR4cSI0ByqGzUDyjUQvthDWSJuWzMCkHapYwD7JlG7uCXlw5dUqn0GTZwKdSm9QUs+OsgM811HwGMx7Dnc/jMwOJF+CLeWSrlgwG6WYo60kT1QqmZwdP9Xx2XZnG4GKXp1COzBHlaYjjigTIeBhRidybPui4HIGKLIUvstgR0tMJnw0AXlxLnVDIde+A3sGcnkR7cShF903Z21XbwSuFfpzCKAXzlHbsqfVAWZCqLRa42cWO4G6asIOTaiSTMXybRgc8XZZkzbQtsK8IMsRDkBwIZX4CYD3b97ETi97CexeNmHzbkk4WHDm947x21Jz5uoayaeyQcILwufDy3Pi+h9cfzwHnNTmItEfIgi4KKKOJfHrP72epLO50tvCjQopISRUdl1CPng3WfVqCpvoebrl+8T1lI3R1DXN+BvfWbaLt+zp2T4JmgF7Pqdgkggv9yYkgnxv4fYX+0WPo8Zjez7MxXJbABFrQ1YoJnuOS1oGbHReyNGVwodHo5yWybY3+0WN2WAQ9RZ4B05yHgiyF2XcoWksXi94iWTZwRYJ2nkGPU+h5CbNvUTyoo8sOAKBukDxeDgnCWx6SvFnQflesQP2YVoQ+NUPGxsWGvtVtS+rRuKQbx5gFiW4s8H++QqT/1hncfIT2JJdNt4edF0QiH1wDVQ232UKfnzIVXgRrdpxxMV1uDz6kg+LROeia88AtxqKHIUdTdT362zP+/tWKxd++gj+dw41z2npaO9BjDl+/adn9Wq74Gd8550F3n9OWs22JOhzywQ9HYmKHA87BXV3HEE41GRFFDXNNeJ2+aaKlpgqBWgBF98sVF2HRivhN8LuX9wjCvOc40OpgY32dR0R3pZvk9ns+h2X5Av3B7/d8zl4i3ItfC4J3ENzwd2+R/tJ0MfgwdrIAoCzoNy/PR7LZAdbB3qYLi358CV9kaE9Luu1UNZCm8EoNerSq5kY4KgeLaqFlqLqJ7+XWG/LV/1/fi25RwOYa2aqD+d2LWEj5gnkdXvjM/aKAMxq4O0V6XUNfb9HfnsFpBS3OcCrPYBcFtvczpIsESTVB+f4GqhvACzfJSP/cyHpqWBD00xzbNzMktUd+1cOlGu1pSVGoB4rHuxjm6tOE+Qq18Oyvl1BFgf5T86iXtrmGKRPkX13Brzfwb9yBz1OMHlZ0A9pUsGdTdCcFkjW1YptPFci2DuM/eAY3HaE9LZFdkFZVn/KFywcKalcjebxD97l7qG5lmK4aqKpFd2cUwxd9pun7D+A4bFAOuHlw6Bp+hjeR6zGshbpaRZvWGF4KiEA3iQGpWgsFdrslaNY08NqQ/1/kUCalBjHMX7GDDmtF6KB6oXv5A/MVXptj99dp2PX2iHp4uL/aeovXdfi+B1Qq66wVXdcAPvmeWUL64PANYPg8fQLtD77XSQddCmr/3oPhV8SyGUUec8F0b+Eurzl3muNuCaxl53w0gv/cW3G9Um2PtOniNbimGQC4JIFKUyQXW+aFCWNAdTYCmOE1TCffm4yHIjs/+J2qYyeg66FGJbRSSGekfXenhYT60lJf9Q7pk3U0v3AJC312FTuYp9fw4xL9WwtSOzc7AAvYXMHeXgAAqjslD+qNQ7LreGCHgB0PHgNpBn+PXSPdWtIoC8N9veEBECmdr+IYkw5q6p70yW0FoIQdUZjutYLZdQcFOh0x9WIugYVct9ViEu+xnWVoznJ0Y1qLTx60SPY9XDknbbPpoVc7uKcXDNMtM9aJRqNZJCicZwByXcOsU7g7p8wput5TU/roKdRsCnc+hxulsAUdz1TVMKNOOndut4ffbGCvl3G+KmNYIwSxfJjnMaSUILura3byZ1Oyddp2ALoCbXw2pZPWbse5bI7rIZ2l/Jn1ZjiI+I+nG3ktDiLB2SO40bj2xT/e9z2UuFx4ADohd96t1kCVQTUtU2PTTF7HxRTzw/cI/LsYez8lAqp3DdSWwmNoNVj8BipMmh1vEuEUmaZALuFyoxF/pmqgmxbuZMYT9eML+H0t7TTPxavv4bsO6TtPuPhMuXiY8zN+P0vR3T+l24VRDBd8o0RSO+jGobzawm920InhyVas+UKYkU9NtM/1Y0FItIabM/U59x5qX0swkYZ96zZsbtBPUiaF7lpYWaSSnAJMlSZEV9sOWhBY1RRcWCZj4PwUuy+cI6kssuuGHYFJBpsb6E4JVzshz7a3PJQtpvRSFx6zD5t7P2gf/LgENKAOYxt6NzgaATD7LqYrK3Ev8k6Q2FbSz9tuEKuv9sByLUimhMmVJbqTEXQuIXSB/+89ABftXt3lNbSdQ6WGVry7HdQbdwEA7t0PiXIFSkYr/t9tJ4I3uf6iYJ5A08ZcDAiaFjZKH0KMhFPOTVY+B0FZg5OL33885OJVHb63UHkRi3RVciOl1bc78kgPIyCb7jB3JCBJZclu3X4/6HW6DnorPO1WOm5eHLhE/+N3FdRmC3Uyh59wg0DfQ3/4jPMu5yZVvNtGu+Xw+Zqz0+PCJTEwyy3RrEDrmtLWm3oE8sjN1Ra67mGnOS0rZ9MYKOjKFCo1wLQkivnBNQGExMDnKezpBGZNiqOairVs2yFd1pg6j35k4DKFflFEkbvq+Kyo3rIQPwxx6x3ypQMU0I8Nkr1luvBGDAGcI3qcp9RarfdwsxHcfAQtaG6y4wHGJ4r2v7sW9s4CuHvCbKXUoLpTIF8aZJuKFNLWkULlHCYFKVbIUupdALgihTIGxTXNL6Kova6RvvsUsyd5tLnMrlkQ6X0HN8nQ3J0gf7KD3u5I24NQNuUewnnqVA7nozjYqIrCcl/LISFoCsAuqur642whgHuJ0vx8Q+Ch84PhgtJi+a0JVoQ5L4yAaOGa58O6EK5LuvBHQmzRtLFza+B9C7yIzb0WQyUJDoOm3a5iMRjW+TwfDC76Plquw3tgu+O9Nob3XtBkL4YQAI4Of77v+fOiUwNAwPT+Hc61fRVtmdGw+2XOz7nuNH3MthkunnuNEbYFAOo6JTgT1qK7t4jmMuzKGSL9mYiuw9yPByvOXSXGDJhOhGnBvyd/tCFKnxt2KMLfJja9bpShm2aiP6XWyyvFv6HM0E0NbDGBujuG7jzKJ20Mfp1crLkWZWm03jYXa64nJwv4IoOdFrCFYVhjkNHZHCbtYZoWqmqRP7IxL0hJOeZTTcMYcd9Kdh2SDbUorIEcksst17DZFO5kgvZsxGfOeTifRAq6bnqM3mvQz0t0k4RauJRZJart2QnZVfzsm5b7b91AOYf8ukeyOd579HoPtWeodKDyO2uh6hrpbIqkyGgjbS38dAzVdnDPLuMeZu7dgZuMgPce0G5eqxcPtsGytyULJ3nzDX7u1kKNRzBZxuwhUN6gUoLayo9hjOFhV+ZyMMVxbQcsV7H+1uMxjLYfa614LQ4iSjM1mnSLj7AMcxQPBf2Hqgq27OtanAAkZCdLB+u8g8TJcAgJuSExQK4gp1uJy5FvWmnV6qMDi5IHHgAf7kbsHBN53SyFyjP4ModabaGshT2fQnUWOlzPHkMmgbgz9c8uoYucGSBKEc0QGlY3S6Mnvi01qjONdKeQ7eS835E6AYAtUxFEOeloqKYjgneQXm6LBN3MILtKoeoWet/CFRma26XYV2okFYOKaOMrqdMAF6/eDg+Yc5GnjKKAnY6wv5Ng8tAje9ainxVEHBMF72TRFPGWXu6IFI54UAk+3NFSVwktznsKzZ7nOnoRv8phIVDN4khMNA5QQQjW90CZw44y6HVFNAFgqzVnpyjkCOhmaG+ruo2omu97uM2GfNJuJBSIlkWpBqIQOtg09jaG6lHEriMFw48Zkhivw1r4ngsLChZOHoLshw1QybPyHD/ZVa/5QcT54/TXLOUm7z0UOrjwPB6OGCgZDqh5RHoUwHUg6HQAHhqq0BHtIj3H90INdR5oGtjNBkmWwQeDCqVhw3N851bs+qki5/uHZ/TOrShiBYTHLFkzalSSn5yTPuAyg2TLIEu/2TIIkRcZecJwPtpihs6kefAYIR/J3z5hztHVlof+kxnft26htw3SzsKlE/SFHvIzrrdDZkZA1MI66MA0420PWxh0Y41kL7SQtXRYy0zshiURuG7gz6boxynSrmBns+mhnIEV3ZfaN2jfOoEtNIone3ZZJhqmNkiF+6xbC79lxkZ6KYnHwcociB2qdEvqSVgfnHVwF5fwXQ9zMqd74k4419dr+Pwc3cQgfwJ+9lXNjveopMWmMVCuH6x6w3w8oEV66+Q/SyArII3BdrPvB0oFZC8BDzvKaH7uTXtAHdYSgKtZNIc1VmjJTn5OZ0JhPjiIuLp5QYgdA4IDgm/1a3wQkec00Oq6FhHUVYrmIUGcLYcQ3zSDhbo27PpnGZBAao4aumAOy+GhDz3XZxzw6/V4DD8roaoOuqoHIXGwWZ2Oich3tPp3681Arx2V1G0dZJT4Mictc9VCdR62FFCvIr0uHJghlKlQqNP6W0djD7+vWXjeu83unlI8oFytoCcjeBvWsmGf9UYxNXxkmKsT6GAaXMcy2n53Iw2XKMzeq5Fe7aFED2mvllwTZ1PgbAFbpjA16ywspnHvt8Vgm608pLtqYIQChc0OGrMhJFnJQSkB6d2egamqFap2cNCrSIcMes5+TOMN1Xso4+G1BzxgNh30xTVS66FsEa2OYyq95Hn5AGIJwO29Q7puYhhzHHUzmFf0PXzfca/e72G6Hmo8ik6IOJ1H+94w3GSE/qxE+r6C63r4pB9oWs8N33eseecTHpK2e64nSQJ3tYTvu+gGF/O3lIqMgqPxnP6SXVr/+h9E7HqHBPrl3wwoTviADxZyIl3NC4VHcAIwgniEotaU5ZDXcDiCTWJChynMJ1C3T4EHj+HrBvrenYggwmgWpHumXGI0ijzx6NqSGFKyZEMyF7LI3D6jHdxqzcVAq5j9YOYsDvxq+LT9p++jXxSkOYRsj9SgfJyhXTBHo/7MGcy9BXmddQ/zdMUHblrAlikTklN2K/KnO9KTdhVMmUJPksi39lkCVyRwmUa66TH+yioewooHG/hEo7kzJlr6YDmgOJJk7ybMQ1F5xlySlk5erpBgLUcut24t0LTQIfdjPokiT1N1MJcbHiS8h5+N0Z/OYd55DL/ZovvuNzgFPmAQmNmXDB2cj+N8UPtGrE5ruF6cR4TCgPGYzhZZBg9Ei1R9shjm024Hf71E8fsNPxtxq0JvudArRUQBgC7ICVerbSyQ1QcsADGdsggssiEFOknI326pF1CTMVHWFf3J9WIOv9kyZG3Ba/JLmhl4LzkYeR6RO1dVUMZAF0Wke73uQ4XQpVA8tB07DrIhm8UiurKEVOnQLQPYdlZ3b0Hva7jLq2g4oZKE60ygXVY1ux2LCfSTK9II5Xvu+hp6OoX53NtE+5cbvr+1SO7c4nsv1y84Iun5FCrP0XzqFKbukTy4YiJz3xOhPV1wfvUW/t0PGVaW53C7HVzdwBzS7qzjc+QcM0iCDiBsvvMZfJGjOx2DDi4Uc/uqYsdGa85tI4GArUO28sgvKqhdDf/wCTAew79xiwL45Vp0UAZ6W0HvdVxXS0v+tW9bYD6FH+Wo7k9gGof8wyULt5MZaR7LGnq1433TCvbWHNs3C/Qjg0RoYjYDTMMizHQsNtx8BHO9g9/suHY+RyfwRsPmdBfUrUP23mVEn6FogemnI7hRBqwrbvqFWJqWBczja0zfe8ziryx44BdtlvKegXeGhzG33UUqcHSrkec3dGDc5RV801BDGObTfAb/5hRY76N4X0lHSyVC/6rrWIwoY3g9WorSYLQihi3JbAp4D3tx+XK3OCAi/3o2JYtAXpsduteXmgUAyRv34bdb2OWKTAWjiQDL8NZxH5d925yfDVx6yW0JNu5QtGk/1IeqNIOeTY7f1HnY1Zp5EF9+F3o8gj+d0/J5zT1VjcdcA/Yd9O9+NYJoWiIBorvmas1DaB5MEbqYDaJbB5cotN//NnTroOuOVvzXW2A+IWgXitLHzyiULzIWq1pB7SqoLoU9I0jq90INajq4sxlcZmJIsHt6gfT0BKo7QfLoGn61hv/MG3TGmxXQrcX8dy/hywx2lCJ9tCRYMCqAxQz6/i12EtfDfPPTMVRBMBDeI3+yhVcKZaKhdrXQrOdwZYLdF06R7C3yx6xDdN0zEkFqFwK2AkikBsiT2BHxicbm8/eR7B2Kd66g6x7ZskN6tQeaFu5kAq8As214cNpXwJyUvGTbAT3tj6EV7N0T6P0YyWRCwEDWRHgH/YfvQ41HcJ99E3q55b595xbcKOe1BgBJmA1qPqN+UGvuU08vB6CqKMioeXaF7FID56dIzk7gLrhfxDmsNMxswrUH4Pr/zgcIOubAEtDjElBj2NWaFPPtLnZFI8X7oOMahj5ZSKDvBr7afLxn7mP91Cd1OLEfk3EkUpd/Pz+G8JXwhUFDEJGQEDwXAqK8B1og2pcpWrB6HQS/Kr6WNxQjemlv+hAWA0iIHa1a1QhHByEVEPBuQM6Ck4wvc6DpIm1BHYLXoQNg8aLNorhGAQASg6SzDNkrNJ0nEgXViUd43QgaxLZi2Jxp4i/IXd9D1z3SfT/Yg3qGA5mGVrpqs4OfjuHzlO/vhPpgxC7UOhbHUawtqKSgvOnewbSCnnaW3S4R1kf3meBalQofNAQRRdtmWtUpxcR5Zb10G+R+h06X97yfAO+zpyBMaQVYE80LkpA4DLCLUg/dLN57hxhI5fbUYwT/becGcWr4L6Vo3DdN3Mz8dofDBOMYKhVs9ZwX4SQ7Q+hEe1AUgxgNGKwidwd0jiC2PBBp82anNF14vZshHOGP9DJvg2NQsDAUoW7QAfmD36OIVw//yWcSwg6VUDFiHhBAehGA4I4SO2rBmlW6bFEsHMwz2pbPnAW/JzbASHnY162Kh5Bot3gYkBreI4iMgUFQGOhG0tFRQOxM0uI8/H062n0HLjk3KEHPJEzLK0gCOaCajhSBrofyjsV6RYpocB9T1sk9UoNr1GF4GgCXKSg3rKe0oPX8RIKYuyF6qTwYdJqRpqStiLmdR7q1MK0b7LMlqCuulw6ka1quN7oX283eksYHSEeMHHdbpkQ3O96jQK31dQ17eQVz6xZUOlAnYxco7BkasRjQ4ftKkZJa5sM9WMrzLmnd3nfUNGZEoblPCQIeuk32YO/CQJUgTUjB+zB31QBiHZozBIH6wVBBQC17XJzPzsN3rzFwIXM1HESV0fzaoZ7Gubi/B0tlpAnBiwMdXlxDtI5rjhKNanimIiUrrMnek6Mf6MyO+4QalUPnwwOuaaCSlK5oiQCavawngQbm/QByhvfvHQ0fJglMZZGGeqPvpYMubIhe9rZA0QrPRLjGw+lixZyndzFKAF6MeLqO1rF1w9RtpSSlnX+HEkenpBNdVdfC5zNqOYsUxg7XryzF6d6TBqYcQRWlFJ/L9ZaH+MVEtBw4ClJWzkXKqJfPQCGlyY5YeXsndZtW6Eo6ihLkYThhtGnvZV/v+lh7KMsQVNVKfeT4HIeus8pSmSOOz67XsAJUMdRaxzUHiYZ3GsrRBMEDgOmH+IZQtwpoGoc27FYA1NBCwgetfC4hKFVp2fe0aEQamct+ACfVmOuCd/C9H/YqPLfGhLUhXFPohDv7YtfkI8YrfRBReQ60wQVIQU94414a+CQ/Y85OKP4UizINMLywruNiYxYLotKzCR+yzS66G4WWlMoz6DTlzwSHgvUW6klNt6XpBP7iiq29PI90DRVcasSvXK02XMju3IJfruEfPII/O6Uv+GaDmGUSeL2jkohaI9z2piVl584t6O2edrMPL5BdpIOX/IEFZPpsj/QS0M+WPHzkGVEuQbyMovCsmxhM3t+TWz7OoEVYjycXSB86nrwTw9dxDsUfdVCjEn4xRXd7gnaaIr9KoasexbvXcPMRrv7cCaYfNki//OCFz8UXCcymwfSDi4HO0XYDOhwOhOFX6gYGgM/JG0eWCkrQQu0qpF0PFDl0miJ7h1Z7/vyUnwdAjuWzS+jpFH5SYvtdJ1AWKB+NYMsU3SzF6A8v4J9coPvMXUArJL//HheRoogPm9/uIg1HpQntcw+cT+AEeex6tuzTZEApq/qI2gNtOB+bFmqzBc5PYW+fQL/zoQRoeWg1pv1n3cBeXcNMp0Cew4mjkimLKD47fE5UkhBltRZ2uZLsmmIoal/z4fueYm+Am5rcEwCAs7BX19CTCdT56eCw1zTipy6F4qOncDIH9WQcAQtYC3u15KE5z+GultCrNeyuOm5tA0Q8HzwBxiPS58L1lTnpQecz6OWO77Xd8TM9mQPWIV23bOMDMdMHuyqGWCFJaOfYdPC7/UDRaKSjUeTSxq+OHdxkRC1B3SBbDSikO5sBes6unTPo7rBLYXYNVHDwk4OMPl1Eu+vu7hT92wu+pvUoHqwH6kPTknt/7wz9rED2cAm13CJfFhTmL0a0wL1eU/dSpLDnfF/95Ar6eov5/+nhRjlckWD0dVI1/XYHOE9K1mQMNx/DLibA2ZTc816ypayDL1IkT1Ywy7UEeqXo3zyjDuXZmqju5TV01yPdl+jPJvCJRrJpSOWsm5dTHtIE9u5JLEB11QH7Gmo8oouZ0CoChadf8ACjPGDqE64dcjBQoxKwjnMCoO3w46ecg3dvw1c17LPLuN8dzeswgmC17SKVDyAtR4sxRjRYORi+7WAfPGLg73QiGRo1VJYAf/Lssk/00LNptPjXo1GkR6qqGgq+IO6dTnlf5XAbqCwvUDzjixuY0wUga5GeTI50owC7Jeb+ncjp9/uKobYl1+rs/36XHSrvCV6WjCFQzsM9veBrfPoN2js/uwSmY9jTMczVEm6zhbl/BhgFWxqYzsFI6Cm8h1pvobIU9vYCPi2h0tvo5wXaeYriUUr72FwyyRoBQkrR3XkPfb0G0gTtm6fQswJJ3cDdPkF9p8T4ogQuGSXQjwzKD9bwqUHz9jnSqz30JRkdajJB/dYCAJB/uIrUcbWvYbo+Hkj0+49YdM8n8HkWzTF4KLFINg0dygIIkybMAdnsCOAFNsO+hp6M4MqEZkN1Bzeju1952UO3XCdU1UIvN7D3TmGLBNmHV7KWsc5y+z2SmuuzXu24LkhtZa53kQmiihwYiwkNIJ9rD/21D4H5DP7ebZp+yPMespPiEEOS0ElXizkp6rtdrGHNfMaa4IOHnHaLORkQQt1XZUEGhVjWqySBORvD1zXcZuhgeDFqgPfs4i3mL6wTR3VGMMVYrQHp7rnu4znsvdIHESJNJnZFovgLiIjg0YlNfoaoGlvoStChgQd6gGSK6NkDCBauIbxQKcXFIAiADhHs8FKjEjFROUnYbhXRWzhd+kaEbjKhvfPR3i/aMgqqqkYjoosBTQEifSTwDnlfLHwvG5lScdLD0jmKJ3hLJOWEhbPqe3KPtUKy61B4wGwkOTjR0p3QvD4JI4IIZJUjOowshRvn0I1F3pGXrcQRQ3uP0bOcAq6yoCWvuFCQjyq2ewEhEoQi3tOA2hwg0qRQyN8mQtfAuz10iIpta2sBnbBbcyii7S3SjaBYqVAygn1fMuSxHJoPqLKk5kcbKGNJlzJmQLqfG5EaFOeXG6g1ZRkf7mAt6/oepu3YnhWbXlczv0JvxdVCLDgVQP6wOUBHtSGSH97vAH0PeTkIGhH9cvva12nQvvi5RNiDA5hKRDDa9RI22h53GL0nChnEqIAUfyYWlbHbkGUHPyPPitZxrfISZKZCSGkY1kP3HQ8SwNBtlQOP3rbkbIfAy5CyC7CjIui4Fw1RsIT1Tj57OTAEfYyKdBLLdSV0bg8tGcPzqBR0Kr9nHQGfSc78oRDAZkTXoakRU0ZDd+JQ09pBF5cSlfVT6tlMM/CK4QClKRp1RQZ1+0RccHq4Uca/TfJA6Kpl4AoT12der1BvJdCTXRwdqbAhk6Qfp8g6Gx1iVAp2XwGiy0qJ44zovjoJDGu64W/Jc5oIjApq4ISqwIBHCVILeiHRiQWqnjLU+plVFfVvUSh+uIT0PVQ7QNDR6jl0Ww7nedjvHO04j0aYd6I5gNj48v2seP8P62ksdpWSLps8Dx9B53odhu8Ogi8PgyHDfgtwfuc575Hs30q0dwA+mu4mn7eXgjp2Zfuen3HoQoUgZCfPsvDyffi8w7MZPgvpjEa6nlh5x9dXBEh028F3FmbfI+89zK49YEwksTANr613FWAU0kTBp5qUoLaH6j0zwgDSwkKnUu4N933PNcmBuiupk3yiaHudp4BRgJI9N8/ivEo2LbslQSAPxE6En44IPO6ryHhAomGLBEYprtlNy+DQPJXcjpq/kxrWK0kSzT78uATCwUprpphbBjIbJWyKYDjT97C5QTdLkMzHMVvJT8dIzH06hh50zn2ZSxaJMDYCXTNNpWsuM0qiIVTbDa57ANy45D5QZNGNFdaSQg7Erl20ig5fC4YKzg+AfFgLQy0cLMLDXH3OwAKABGlqZud4F9//aOgDNkboxEmX5qOeg5eNV/og4q0d0Ebv4Xb7I757tDcshtb3YdihShLokxNOsrpmMSJCc+89IDa5R+8p4jQrp0Vd1dGaV6UpecKrDeAt3Bu3oeoO9g+/huTObdg3b8E8voYTG0oAsMslkSmAHZoiJ/oNILl/N26CvsyB2ZgTtuvZCk6GAj2gIS+MJEF/OuaDdbmBv17CLldI7t6Bn02w+Z5TmMZhHNqVaYLk3SfQO6IfKqGNcNQ4HLq8KoXuzhxQQLIqYUcZmtMcoz98hv7d92He/hR8msA+u4B/1CP96tdh7t2FfeMc7WmBvtTI1j3gKTDzRiNtD5zFAEEuSenCakMHDbExxroaKF5NGy3pALYmnSDF+nu/wMXmyRX8dIz+fAJjFHSRsUvV9Sh+/0OgLIjmND1Fc13PhHUJl7NVzbmzB4zkdwTzgP7Tt1l8feU9aednA6oZtEpnJ1zo11uKxZsG5tY5/HREvYAsQKoRhON6CdV1dGgqS/hHDNXqP/iQc1c8u91+D3Nywnkb/uYijxa9br0mggcwmXk2I6VEONC6yNFXrzfvW49K6NEs/tuv1gOao43w9B3c9ZKIY9cO3G5Aig7R6wiPFgDBgcRA3T4Hqhr94ydEUuczIlfhsKfomhVH38PXGMTNIE3BP34WDydqPGLxL6J2fXEt4Zlj6H0NFbjTxpCzfWCj7aZjOl11vaQs9zGTRM1ncKMCdpIhebpmPsl0FO0YlXNESWWQZgDyfpWC2TboT0pUt3KMnSciN5FrtJaFWtvDtD3MBlDvP4JdrdnpFYcgNy3R3Z0ie7LlNRc5nbw0AEszj+b2GLt7GU5+fw3z+Br+bCzasWkMIetHBn2poesRjDFQecqD3LJnl3e/Z1hklsHdOYUdpWjnGfqRRn2qceI9kvdl000MzOPLoagqcrryhTm0rqKAPv7MYgp7Nhnoo7MJwZuLa27IVc1DYZqyAAqARJiHuz2sWK7rUcmOxfMbuITrhc+6+ywd9tL3noHBu8VxZ9UddGRfNvJ8oGJZy86szHlz9w5Q5LAPHvO1z05j9zYM176+HVR3vYI6vw2/29PIxouG79DNLEuhC1qZ2utr/qJSdLQCjgv6w+E9u9HPv+dGKEUjPl9utRZ0mQF5JqD3gIBqCtjtJMxWTHPSlCi/9/AXV0fsAQDUfZQ5s8ZWO+igXcoZyAuTMLjVe+Ct29BVh/7d96FHI2SzKdrP3UVzXmD85WeA9+jvTACfQo8yaLHCD3+jud7x75B8nuwPl/ybtILNNGyh0N4qaZ/bWLg8gbszR7KqoOoW5qsf0tQFiPfB79kBsPdOYEcpsn4odF2RoJsmyOTeK62gxiPs354ze+yDR9B6AV9m6G/NCOrUPWyZYvdmgeKqR/7eFez5FP0oRf5kSwpXmw10IxndLEV1lsBmU5jaIVu1cDmpbsnOwlQ9dJOxM3RLdHaNRVo1tNI+cF1TStHUQp5bt94A2x1QFFB5hv6khC0NbKaRXzVIxQwpdLtV0J5qzRoh3KvZhFS9Zxo+hKoaDRiJrKibgQJe1fBtG22hzclisBIPOrXVmoyC62tqprLBDjmE/B7NNckR+WbGK30QYVhhG1FfcrkPwpwOEc9RybbRxSX9wV/2ctYOWpCAcATuvziRKKXighQ7McITjOFSADd8yerQoxF813EzXW9k0T+wtEwSYDaB2icAdtCBg5om1JjUbeQvH1kKOx5CfHDpCcF1ZRm7IB5A8mxDRKXMofopTLhfTYvxO1tuctLy9MqS0mToDOa7TtyapOAXnYsSVxh9sCmptkd+Bfg0QfLGfdjFBD43MOnniIhcLmlNW3UwFSdzes2FtL8/JiLYW0HqhJeulHRspDPVhHvxkomupWs0phg9uV7zoTAH2gyADluNJcpSNdFqVRnDwMR9yzR5yYFQlRQehwhjVfNnRtRoJE/X3HzmM7l2Pdi4dh281tABfZIDqxY+MJqDBzfok8Re2m93QMEQLZXnvCfP+/8DYhutB+ec8JkAA2c56AoCMhq88buewrSPpyt7JUe8vyL681JgxK93wcZXqABpNmijDkJOX/7ingt6QP1EAB8pYKOSnZA9D7Qht4VBqsIfr4j++YBYh24ocOzm1lumqjvHeSR6p+i8ImGmPjfsnoTrdxYoyxiSB2DQo3nPIM/ERNF6DNLsyEtWWpx6jIEzdNgqn7QUpjbdi84vAOejUTzs5jnUbApfZERDNZjr0Vv+HYEW1jEQUHUW6brFyCi+trVIllV08vFZAj/NkV1b5Jce5pLOYD5nEaCyFGo6gT2bQj+RQuhkBp1opJsO2RoYPfRInq3pLNc0vF/BLlW6sHq1hZtP4CYZdK2BLiHXvLcseqoGZmV4cJMgWy+d2eBieCjmfF7Y6fMc5uQkUsPUnIFrbr2JSCksuzZ6MYcvc5g9xbB+s/1o9D3LuD+G37cMxFViF8150cb5GOa831dM5A5OjcEaHBhex1BL+DoOby3chgd8PR7LvX+Rh6YK6XIHu38gdph93cQQyXDP+IKKgJG1cFUdNawhfNZ3klEiFNoXLMW1AW6fUlORpkdZEL5poUOw4ngU2QEAO3lqsx8MBzTBiABi8muKh07ngKst4D2SO7d5GC/z6ErpRgWg2WUxrWVSeW+PtaldH12xqAM1vLbeIqmp6cwf76KlsC9y+CIZDvfesdg9P6WBT6Ip5N7uoPdd1IpAtGqqsSgf7UnjCpo0AMWTPe3KTxes33Y1TE9qmapaJJ1FcZXAVAR29bZFVnXc762NtLA48gzZqgM8+Hd0joep1h5Z8LJ7YZGscjr2LbeAdQR/AyPncC4lCam21gHOsruapUhWFZINxfR6w1qM0RCSc9Oy4/q8NhhKglMzod2L/pQ6JnHgtOxY+64b6KXhYBrsxIPpQZoAVh3X02kCOPNCvQF8dEfwG41X/CDij29OoJwACAmQ8XtFAT8bQ603Ly3k+DsW3lmimIohZ94OAXKQwiGcaCNtoe+PXtMs5kCSx46KGo2iqDGOkLYMbhpuPiJi3VLcpYBYMMRDS4sh8fb59+/aiNr4UQE3I31BNR3Uuw+5Kd87hYacjpuW2SRXS/5bnFtUK1kcZU5bwTDRghCy6xjUJ5SFwFkHQB7lagc/LmHvnaKbZnCZhr1TIN1aFKHlvK9hSnqU62s6g/k3J4BCFMxBWqfw4jYWiqqmpR1plsXgr/j+4iBjz2dozgoUiYbe1nCaYtbQQdJ7SR/veiKQYcE3TGhWmz3c9XJ44Uq/sHi4qmbhcvYp2FEG8+6HLO4/89ZQVO0qHhzDwanrxSoxgQJpWm69JhpWFBE1hYTu+aZhsdP3csBksKM9sOKN13PA1Xx+BGFZtJmVuRJTVPuencHX+SDSDUW52+24VkjoIwGNjs961x6jPt5/Y943IGnINTsOkM+iriP6FXjgvib6FNYXSDhoPMj0w4agDnRdR4dua5kvEASyQs9QVQOfGKaop4Z0h9CGDy31qTm2/23sILxdb7jJnSykiEi5EXfdIK5tOyAnTUNXHQ/f4RC/r4eDm4aYXqhBpFnksPMxXJkwVX3XIbmQCReSwL2H7kQI2nQwzqOoO742AHW1ivQYNSqhQ+jXasN76zzwxh2CN2kKezLF9jMTzNYV3IMtTNtBJRpJ20NvKvTvvAcnn7WvaoIFpwv4jDbIelcxYHQ6gi2ZgaQ7Ay1rNA94noYPdf0iCFCKi03Xx7nx/FB5BkzHw1wq6AakdjuutQf2sfr8lCnOOx6A+s1mCOg8MG2B1tGVB13P+dkxTBZZGufaoeVnmPN2uztiFbjdbuB+B+vqXL+2GhE4C7fbxXA3t1wd2ZwDGLpJYulPqqWNWkHftYCXzmlw0IIUnIsZhd/BxAKIlC6339OhazGF3tcxxyEMVeToTkc8xGcJ99oQbGktD6qpAsblYAYBAoR+tYZdk2mhRyP4O2ekAh04UrmTGQ/ZD5/QZfHOaaRPJ6saerWHW4xJp1YgBevqxQ4PACitKUrPDDDKoEcZ9V1VD7N1UB8+is+LPj2BM9MjmqFKUzT3Z5G+lFnP525XwTcGvszgjYErEiTrGupyyd/LsriemIeX7A4vJnxmtnvee+kEIEmQCUjpswR6vY8dJupmBVByjprfyQjJsorBivFaqxZqvaVJT5nB7ypqNdIEaDv0Dx7C3LoFf//86D3ikLDBoCPxRQ6fJtBXm+GgGFyzxEI7dE6/YeczTaD6/vgZDt3+rhsCCQMVSwJUeShuYZdSB0un7pjKPMzZb7Q3ftzxah9EhPvoux4faUHq6AiA1Zr8u1EJk2ekaIWXyVKY2YyC34NFR+U5HWDwIpIFQA4lKVRn4IDhOtJsOKx0Hex6FV8vXtZ+D6UUxcbeQX/tQSwKVXDsuFoOG4x+8f2VMVAncxYJwgeHZbiZ6izzLsC0Sz8q4PIE5moL9/RCWnPh0OaPw25Cu3cyHoqZrifSK4uHu7jiPcmEcjAZkRKx39PBprdQY9p7jr5ycdzpAGkOeqcFEVUsQAC2c/cNDwOSQG02Mtmn48HuM0t5j6sGMBru7hmpEVcr6HWFHICyHj5NGPomjhmYjGCnOcy1ZXdlNhl4k94Dm3202FTTCQ9lV0vAWpjzc9Lg9nuYW+dwZxTPJlc7Ui4CR7du4QOtTyuYO7eO/naAByonG4PK85hs7tbryPPW02kU4QNE2oN4WpcFO187hgsFdFOlGbmgibiAWQudpfA+iQdqfXICdC3TkwXpfxll4LUaWjF1Hog8WNcN6FTIFwJA3/aYHaKGZxkfsQ4AYgfujp5xIseCKosld3zdsPnIYdWtN+wWLubR4cjv6SKjJpNj/cbLitoQIAgAScEQ0IqOcCrP4DuKV2nJOolCWIxHkToEoyMNUm92QyCoHG70S5DhODp2AJClpIM1LXyXMxckJzVR76XrgBxm28A9ecaMgEBV8iFAtIdfb5gmPC1gbxEk0btm0MR4z4OQ90POkSMXW/UWbrmC7nvMtnOo3iL59Fv83sbBnk7gZiMkb38qdnr9xRXcfg+/Tvg3zCjOdlWNZLVFqjV8Kc93OHwJdQZZSjvXtoN56z67ScLp9usNf0Y0aT6sQ0kCLKYUxD95NswZ4bDjZMHC5OKSBW+awK/WUKs10ew0IWKdZ/DjEnq9Y+K6oKNxHTGG1LRxySJkuRq0iC8Zh2tFvKYsoyXnbs971H806PHKD6kpoBQPl/YYaQ5rgb1eRraEShMok0PPZ/x8DwW8EgQJ4AXraFj7wnv4vod+dkXApKph5jPau15dw+/2FGB7zwwbWQdUlvEA0XUDhU8pmmFs94DMbQCxq6437Ob3n7oNs6rElrfn3yRufaruuBZlRkTSLeBHgPPUcTQdaaO1AGayTvntjtSiaYpk09H4YbuHr2skpaR8n5/S8ne54rNUH+Qu1U18D5dSO9WflMBJSaMIARIAQAud3N05HfSda1oK+9snw+cgLpOYjPh8i0ZHP72O3QKfJtGCF1pBnZ/E4GT0PbBcw795B3acIf3wkjECp1OCi5LbpcQkJ9BpoTVBRmcHETsQdauko/LnvKYxkdruBy2gN3CXV3yG5Rm010vSf/OcQIY4lMV15moF1YnurSzIsLEuduF0wdoBWsGth66q2w5dKnVk91+/sDeG7pvO8wh0xHsdglPbFi91RXnJeMUPIjoGhUVB5ouOvUQrxGVAz2dEnkNh78UqMVNQ7WF4kRY3DDUsJAcBhQAGfUIQCzk/CNt1oDIhFoCHBY2T4Co1GVMEdcA1VTkLA18RZTwMKILSQ5GpFakIocjth3Yiw4lkFgj/OR5UWgldVEqKXkV9Qrgn4haE6ZinanHViLQVY+CqGs5acgRD0KOc2iEUtpA86p484wJx+1z+eDe0PWXx0Z0HPIigymLklYJLNIzkiSBL44OsAv2paQFvYEcpdKV4AGpa6I0a/p5KFvuQEyFFnQ/BgUGQ2fVA0EokCS0UywzqCkQ+RwWpMdZyEZ/mSC/p1hMyAUIx5He7qNHwZU77UrmPoSXu25aUFfH3jzSJUPyG1GRAbE8F/c4yalDyDGhbIrKKMHQ4hCDP+fVAK3SONDcpTLx3L+ipXvfBxTo7QjHjOPz/3gNeinAHOgsdWhQergNiB+z7DlAaOnvRGtyL+1tsWYd1QwAEWnq3A5oXxJGen3kUIHsPwMfXPUKiAt3OJoMAPsw1eS9XsbumMyJqbrNBMh6x+yEid2gBB5o28syjz/6BfSiAaJEd318pwEuXpmmJCAd6qXRvVGdp+Vu3sPs9qZRHH5LnPWnaKNYlAksBsZL1QjU9sK+HLKYg4g0WvJbUJdW0UOencJMRXX1EBe4TTaFqGMbAOzEiAWKQKByLRb3P4ILVeAB9IoVuMKBwowK+SKAtjTp8VfOZO7S/DTbcWQrU1HgFwEkD7LzPp8NBQrq/brmCb1sk4zGQafLLczEICa48romGKh6ALkt2tPJcXK/a43nz/DCy/oY5GOZrQotq6qP+nyOgn9QRwhsBARYDJVOpWG8ElkT8HSWd7JDbcQhWHJhbqGC6Ep4r78Waehg+0HGDOYAU2nAOru2Q7CrOoYMcEyV0XhrhdMPX0gS+aQeQScwSAiMCo4KBpbt2EOZ7yZ4KYvrDtSQ8e9YJRcoOXVB7YFMvxijOKFKAdhXcegNXVexqlAUwPR8MOYBBNA8M60zdQ1sPJBr9JEVfkDqtWgzGG61nZ6RM46Elk4OIy5Nop8tDo8QuiHGFajvSaQ33R6RJDGv0WpPe2llmLm0t2RhKMWB5L3pRN0UwzlB1S5AoGIeEkaZ8/6o+qhmjYD4wKGSdj1TxsgA07XSN1FlYy9wbjXjvpK5TVjRMWtP9aruFOTtlbZumgG+Bzg5r1qFRRThkWEsgOcs4z5XGCwHhcW8UxoCsbUesgfCcHHZp/5jxSh9EVJqwoI+0oXbgaz43gpIfwNGhgA45HZxE3etQ9GvN7wXhaECgt7vI14W1sBeXCDy6EDzmliv41Rr61vmL19EyYTMiJYpcUl0UsRAJrjt+vXlBdIazBfwoh74kpQfProh4ns5jO5b2twrmKx9wUTiZQ12vSR86O4X67s8Dz66ApoE6P+V17fbcLOWAgpA6LuFcACJH2RcpzEZoRwcUs5iD0XYUYp/P4PKEBxClYBcTmNUO/npFO8iU6CO0RnYhXGTHjoKra5irNXSRo33rDMoDybISYVYx6HREv2LWDVHYuma4oLXQ0wlUksBeL4nI3joH2g7p+xeDu9Z2zwczS4leh/vsPHB5zQVZKW7kTUsE8u37ABhsqPY1Ec7zUxZzTy/hmobzsm6gtILJBDWt2blw6y30uETyxn2K740mYtQHq1Zyw916DYQDKrhQ6DyHPg0GC+QHu6o6Du/8RnPOGAZLef//V4GGvuuhR5OXf1OpI2QnrA8hZfowzEyXpdgeM8narTZDNou3/NzDzwqgQI2VhhkdFL7eQy03EgjmKBK2Fn65opFB20WeeQgrdVVN2+B7t4awy0woWgcdTX29RfroMlKqQictmHb4PVPM9WgEd7aAnRdILqixwGp77KTS9dDrPelKUzrk6NWeG1mesfsacmz8sFYAiFaT2PB57L7nUwCA7P0LBnWdnQ4UtLaDUgr9nTl0cCiqG5jlHol0rrp7J+RLNz0wyuDPJwxkq3u4Ce+tvqSFqP+B74ZZ18Cz6wg8uPUGvm2JVR0W2gAwHiER+/dwcFNak5YAAFXNjpDR8FN2f3FxJfkBGZDn/LydgxKeeQBu/L6KLo0+FnjShU4MkjffEHtRcR3rLQXHh9qug3wYt96wEz+bUty7reA3m6MOZ+z0VUS6lXVQ0wmS0xPuK5Gm2R+hmUcp4TLcfg//oIs0xtd5vdCTEdx6PxjXyDDzGaA0jWTcc3WEEgdN0Z7psuTacEB94y9ozr1gp3w4HOmZSqtogKGzlIDc9XL4vGoi3+p0QZOIzRa4cw43KaE/fDpQiwBgx8NJnMNKce8MB6N9jewxWNSHrqS1UPthDfOpgS0SJAK+qMZC+x54csHaJbAARiX8Tv7elCj96L3VYPHbdaSFi14OTy6gyhL2c28ycPTqOro9+e/7HJwCzHIPvdzAXV0jn02RlwW8uGUFS33dWuhdg+TBlbhYaoaqOgeDO1xnhdods1iUgi9S/icmH+hIb1XXW9jzOXxK7YlyDj7P+BrOwVxvoPcZn8cIbCoeQqsmBjwqrQnKCkAUcka8aFh8LnPrycVBoLUcJm6fwmUJ9I4Hl+St+3G9CGuCFfF/rD1nU4LtG9EMlmXULB6C56FGNkUOlWiyIxwNK1RZ0PL8agm3DUG8KanGYvr0UiF6kDHIWhLr8G+CsvVKH0QOQ5yOUIgDpMA7PyycAXF+ztHCHwqRD0+yhxSIgGRoFZMlfQg10wevd/jafR9FsUcidrm2YOdH5ENOquFnA80h/H1i06dC1yWirUzvDLaxQYjkVUD0BKmQDdAXGewsR3pJK15/2CkBBnqHZuiY14otYKWHhVkpbpre8+HyPtI4VFFE+1OKTFnIe6OHv0UyVCJaC0DtG4QwNciDdfRZQB74xMTWOT8PPby2ot2m31d8KKVToAKi7T3Qitg+lS5OsNbsDzZfsb3zDRcwPZuyIKzrKNRU1oo4VQTGYS7Gw246zClrgV6z6xQ289hx87zPwbZTkLejvzvY8AVhWkCu+hfncpjPKnCTnROEAvE+HBYaSit4r/BxW6iv6lBhzsl4KTVFD2jVC8JrQO6/hQrdV2BYcF/28wFdDSiSDsiodDAPPztZX6K1Z+hOAMPnGNCrPmxuNnY2vZPOSRCpNg05wAEpDeimWIR6YKByhHkbn33p+CTJQN/0fgjzElGoL/Ohs3PYfT0wk1DOYwiDBDuboaOgguDUEJHUDEmEhoRwOdqjh1TozkaNtDca/ThBah1Q99SVRNSWAWU+0dCCOCr57IJ4O37G4VkI9sXhfsj1RJqOUF+gdMxl8p7hiXHuiPX60LE6eFaf/6yt2BlL9zxaeR5+HhKYGQ8vSvPzsBbo1GA/Hv4uWVeUVkP3LczZrgNQHs1TJfSKIwetsI5F2q5c/6FOQr3G60X4+8N6e7hOHB7CDteJsH8earycA/xBgKw2sZuiAMAlPMAnCffww8Nd+DyEIuW7PgJNEWx66frkhs89BB8f2HArI9lRSrHz14sVbDCwCJbisq8r66CsH7qN3lOo7pRYeHvA6gNUXHSQUjOoXdBY+OHwFSxedyxuVWeHPSoE4XkP1fsBWGxbdkiF/QIJW6W5jXRBHQNJ47Mi+yrfzIvboY6gRAg0BVhXeJNAN2QX6LaH98fdq/j/G3ZMfZJI3AFioHIwC1GxNlGAV1AQXWganjca2Sjpjg5MBwkulM9BtR3/tsQAVnTIoZ4MH/nRc6njwSR0XgEMxjfxl3i9/nAtOFzrA0Xu+YPE4f5p3dDlfdkIc1554GMYaL3SBxGKPtOX056UZtei7aJIK/xOpF/JKY8ZD88jFI5IaCjYrIMSsRCylCF1zg/WwADR0b4jdzdNI5KpT04GKs5oNKD5EqSmQvs9XiPRQZwu+P7rLVDx7zDWQu/L40nS9cBqEydaQA3UYh655X4ygjqZoTufoF2kSB9mQEAwvGfbseV/Zkrett/tEcPa0gRaK6BuoNdq2LgB8u33FfR8BntnAb1tiA49fgbd9fB5TovTIFZfzHm6D/fTOuDymgev6QTd3QWa8xz5VQu975A+WZNaMhNEI00oWqsbcjrTBK5I4McZ/K0pkqdr6Ac2brLqjbv8PJ9cDA/T2Qn68wmR4Lo5oqKEz8o3DQ+ab7/J9//KU2qN1sO9ZkfHMLwSIDI6Jg+VDmdyUAs8WqU4H4DoTOGahjbUz20uuixI7RIhtKupYeofPxkQO62hyxKuqiIVw7ftUTCRmc3Y0QG4WUn4YaAq6TID9t3rW1wAUIn5aEG/97TqTJIBPTwYuiw5f+o6WncfBccJIvTC57eYM9zuwWOxGmegJYx09FJ6ufuug33CkDqV51DjMfRkRFekqmZnBmCr3Tv4R0/jR6VCRk6Yq+HNJbTKVRWRLa3jPFMnC2C9gd1skFwukVYl/PWKxfCdc252TUdtiCSKq7aH+/r70djBzGfsAoZCrSWf3N5ZkFJxMXTyAn87WTUsHDIaVfjNlva3i+Ge657pz6ooqGu5WhIIyFKYR1cwWsPNJ7Bzg3ZmkOw0kchnl/xbF3MogPoRuQ/BAh2QA2meDYL0fU3xf9eRchT0cSNy2dViFp0C3Ya22waIBQMSCZXb7OhKJPMIixmUtbB1/YL5QdyfDqgtcSpCKBoHFruq7SKdVgklwvc97MNH7JAu5tECXhU516ODNYM6SRutaCNX/NbZoD9bro+taE/mgPPD1w7ndZ4Br6lMxK43SFR6JDIHntPQaXNkxR30ZfqAtqnKkoWl2ISb+SxmdXhrOU8Wc7iTCe2tw+uL66evKqLeGfWm6u4tHv6Da2R9YNe83MBs90fuXsqQ0u03W4aoFgXXolsLFrnvPKCu0TngdE7d5KqKWlBvDExRQxmNFIgaDys23el1ORjIlDlZGqJrC6Y8ejziHGwaJG++ATefQK+28LUwBvZ74PIK6mQOdTKHnY8Bo6D+4B24qkbviezrs1PSiVPqqrz30F9/MNC0RyWtxTOmpOuTRaSKeq0AuT43ytjlEEcsFSioiymauxPkVQds98DDpzzM37sdc4B8XVPXm+d8Zm6dwCUElNRuj/69D5C8/SnYe3eQPFuTDTGbIjIXTudo7kyQbOnK6d/9EK7tGADbNLCbDVSXsc6sasB79Ls9nTzPTqLdvpnNyCYBWJsdGCBR6zfm9XYdvHxPTSdc9w72v8OaWKUZncWsZSinMACO6NqyhoQROh/faJj5DD7xwNNv+GMAXvGDiC5yoBlO00GcC2BAtJ8TdqqQ72DtgDwH55jDIWgUAJ7mD/newMstygKKIpsAuxWCqiUJ264HVpXeqRhuBUBQScWTqeGpWtnB/SsIYQNSH69Zq6PTqe8tvOuH6wc3N58pmKpDHsLNAh8dGGggSvNUPyrjKT9kUqhROVj1JYadiDw7OqHrquP3gigsIPjWwW/3w7UGcbdSiDbM3kMlNcy+RbJLoPcdBa6SbI9ZSeRzX7M7lAglpeuhVAllhFNv3aDX6PuILET3Ma2h9jWSpXnhEKK0JtphLZBl7F6Ja493DPhSo5KvHVCsQy1G35M77wQFdRbKMLzJi1OFCnOllYNZuBfh8+r6eAiOaJS0lCNyHubK83P1Gw1nj5C7I5c5pV/rgwjvrYvI4BH9RESoSh07g0TubHeALCH8ijw3ofP1XEeWfNuKVJ7QBQOIVHWdfLYumj1gsyV4UBZcn1rp2gU0yw5orDIaQSjLwiTo4wwQntv9HqosYt4NqR/V0BlRisVJkQ80AWs516XDScSWmSCqEXAky4bEadFDhfUAmjaTsHYAW6ylY03oSIp+BM6RTqBIr1Bt6ARJN6agEDPO/5brCpRi0BqAvDAwm5ooZZKQ0lKWCEnTvszRjzPy2ZuW1AM5vPOw1Q525IEqK98LVtexywLEn2GxL5Q0CUpVcr1+S42ZLzKadhQFvPdH8yqs+UcuNMGgJHQonEXQJ/oQfnrYqRM6IbRmB1jWIGUPtnSxnH9+zgahaeio+EAdSZKj9PCDXzx+Zj7OWvOqD01q1BF1VamXfnb60L0xuHVqBswe7tFHhjOS9aJXiu+Bg/W4qlls5znUeESQsm75Xyep6kGzkmVCE4XsrQkBOkldV9ZR0ygFtVnSmtd5PzAl2g56LzVJmpD+6VjHKLCr6WtSDZPrPV35xiVphFUtlPBO1tE0hrsGi3EtoKUK3VpnYaZTzqegLXMStqwUXLAdnkyGyATroJSFN9SyqrKET7rB+CHQzeQ9vPdDd6Xr4YyBLQmm6o5umvCe9vsA0lUzdBilMx40MD7PoMcjdkwE+FEbOpx5+ezNKcFFvZfXMBT4xz2m6ynwl3VOTcasS0SPe+SamaXQoWsVWDIhy+ZAl0e2R8rrkPXBa7nuvh+6eWE+HWiNA91Yj0aR4QNAaMfd8fwuihcE6c+PF9hHgHT6XmRsvGy82geR+Rx4ek2UMc+hmuao/XSICsffGZcDyhxO9C+7yYJyBuEvxKL3KDTxIzj5h+iJSqWYzVIgPe66kKo0G7IN5MFURc4JFQrouhEe4IyLTtAgQNDaA7oAAKAl6nAklAO/by7W0FVN5C2VVqDWkgis2a2cTWDnI+jVHqrVPFGXBT35K9pp+hD8KOimEo9qXC7h75wyjCfl4Sh/uoNe72E/fBZt5PStM/hRIQJuKbxF1KuTBHlnmdNR1+ivlkRX7izIi312CT2dsIhargDnoUOxDvA68lysjmWhs+6I6+iuroGr6wFZFl4u8gzKCE1NNh13ec0DrbPQ+Rg4W/Dw0/Xwq81g/+t4oFJetCZNw7a6dNtc20EZBzUCP9eDg6qaTofu1a6CX68PUO/8xYOGs0d5OLooXkBXnx8x00TsgtV0yvn0jdyQXpOhMnZ9ot3pYQCc0vHZci9xD4t23i/plhzyyIefJ1fWHiJKYfMImy8auqTcvUUq4oZ2zmo2Baqark+3z/mMdJ101Jq41oVnxe/3R/OkP5/CrCr4q2voW2dwM16zanqo62uxGhbzjMUcbjKCL1Noo+GrFv7ZZbxkbe2AGvY9i4o8g797K1KLfOj03bvN+fvgCYugOTsJaFoGYlkXTTfcfk9r1FsLqEY0KNcrbqajUuzMJyx4coPkw0vmgNy/wwt79BRqs0Wxr+nktN3RUabIYg6Kqhr0swK7NwtM/2gLfbEDppP4jER7U8liUEVBjnmekW4pPHO/R7TMVGOxsZxJ5hFAh7/tHv5sATfKoN8lzcZNCqjUQNdzuM0WbreL80CfnXJ/OrRzD10TSTMO3VNvDD+zpuEaHUL1jAEmY6BpjvYbf7DmQ6kjF7c4FadTfg6id4wmDnlOcf2BFW14r8NnRmUZsHvhZV+roYucnbjlakCClaZjWdMcrRP65GSwRZb7GbQB3yiF3i1X8M/EMU0p7mkA7MUldFFQkzkdw5UZ8M6DWM+oNIM5OxHwMINbrth1OT/j6zZrmCKnA6XR0EbDXi/h9nu4d957YS1Tmx3n8MmM5iy3zqD2NfoHD6HSCkoCF33fQ7/3AGo8hv3MXeqzqprof92wM5hnBBhCzs6oBKZj7qd1O7gLnp2w/gmaMnkN7w/yVG6d8R7WDQ8wfS9icwN3OqVL5nLDTkiRQtViyd+Qru7FwY+62Tm6SQKdaZjGwTxlXdCfT2E2DcyHB851ASxuOqGyF+zUpEkMWbYfPkIM/ByV8G/egdpU7ASX7D75y2seHIoCarOD2exYsyQG/tYpVNfDfvUdqDQ5Cq308ylcSqoYgEjRD45nw8RTAgiR5TCYLHTxPsN72PU6zqf4HpfX7NLfOuNadLWMn5VqmqF7Ipkzqu1grz/iIBLWmb4/qkncbgfrP15t8UofRHzbQqcZN/fNRlwjXEQpX5bu6AM3Tx4AWu9pAFnkewffZABEH6RYiyfUgGB7H+lWaj5jkdd1cJJECUjh0VGU6LOURXzXwd+iSFxtBy/weI0B/ep7ToTJOHYR2LrXMKE17MhF9NtdDDJUWRa7AQjdgcALHBXwkxFbpG3Lhz9N4N68Bb1toFcbcqoDQqmki6M1H/yqoRtNUbDwEJcQPyqAIqPrVe+QPt4gDfqTZ9fwzsKcnfI+VlV0tEHglobPYjqBH5d0grlcwu8rWhiOSlhpfassi/QKNR5HhDdqV8IpPBUdjtKAAe1wDzbX+FB7B7/bSdcqcF3byNdn6nIJI+iUD1z5+IEdtxLIbWfh6PuemSRaR794v9kQ/cgy3ou+h1uuxAUjGURm32goBZWkcc66totOcM/rH4JbEjtQmfB7NeelkoNQs8PrGlIGAG5fkVJjraBQB4LTJImBhiqsJ84OmS6BNukkzC0EQ9kh7Cwg7XFdCLk+Sh+DHNKRikj1mp0QK5QgLfoFVeREG9tuCKdq5RrDexY5cEL6l3//IXxdx1Rjdf8OUDVQjy7p9qYUzJ3bA/93MoKflOx2rPbwb9zm2ne5juJo3/ekHAXQRimg7+k+lcg6mNDoQW12nFOSmRLoAWg70aUMWgRV5PC95XuNS7hJMRx6crrM9WcldR5aIQm5J6sNokPNeAR7OoHWCqrvWQhmKVyWkHe+2yO5SjDKxDFuMuK6bzTcrGTndrUBEtGjATxYSdcxGAyEv8+nCbDZ8WD15GLIM0kSPsvbPcyuEvFuCvN0GXVEqsihw9wAWOxby+58eJ3QdT60jvU+ZrnEuZplFI+3Hf9uY2DOz0itrcXt0NI9b+h2iz2pFMoIlLCPANIA7q3PryOqLKEAWP8xSN+v+AjdRq7bmWSDHIdIKjEoUAUZD76qhw4AgBgaa0xMpj924tLRih1pNuiiwmuKSFrta0YIyKFSKTWwIg672/J9LQVr6GRGfcXB75MSbWkbzi/SHbCQTLMshdnM2FUpi2GuyAE1eXAZg5QDXR21UNkF2Vdia+szOru5zCApcx70JajZNy1w+wzd7Smyd57CXy8pzhZ0H9qwOA5MDHk+Q0cjmMzoTUWHvjyNHQ03yaAaA1M30Nsaow8k2sC5GNaXhMPKCxPA08Cn62EkRDUOpdg1sjZqwrRSQ6htXfOzDdEKh/WBdFn9pIQ3KSl7cc5Jx+jyGgqIEQ8I+1OoEcXdL2oTpQ71okPxYc+qagAudpYOh8pSKKuHjjYQwSUnf6sejfg5bBh/8JFRGd5HGvufdLzaBxFBcnzXw3UHzjZFAUC//CAiyZbBXYucbdkoQws8z4n2V0ww9o4JteF7IVwO1tEZQys6ynSkAand/ui9fdsRFU8MN+eqZpKotP+e56MGRyftJA03nGSD6BKI9AAvaIGvarH9FeeFhIgE4GJxpLoeblygn2TIdhXQQlJgDdqTAqnRSEKR09mB/51Iy68TdFQ4jIGLrJIEmI7gigx2kiF9ugFC0JGzsNcr6CyFvnsb2GzhNht6VicN76MIV0mvKOHKDFYsMF3d0OlFkuJhxKnD0PoOeXbc/ksM0GkpekwUpEWxXLAYDi1PAPAObr2FMj03hb7n5y0FqykLHsbEG/ylC5d8PvybXaQ7xM9WDQGZrq6htQYOaBt+szn6mT9uMNU3GQ7czn5k+Hd0yigLIJHWracdc6ANvu7DNw2g0oF2IyMWCoF+laV8LsJBJE156BZtDbRsDNYCFpF2FQGNZCgAw7py6OQXaTrB4nC7Q7BbhfewTRPD1ELGgCoKINExRT1Y/ao0hV2MmQ/0HsEVtd4C0zHs6QTJZgf77BmTu0cl/GJK4GC5BvIM3UmB7MEKaleheXMBKCCvWqEMKNGN1dFHPjqjLFfsIE7H8TnyO6FdniwQeNHBLvbQqQcA71Hfwy33UKNCuNsiIs8zuFGGbpwgVPs+YR6L22xZGI5K+CzlOlaRwuYlZRkJqVIQhDC5TCiwHeVAxc6WHUnXJBzOy0Ionl20E410jyylniRNoFbboRstxYVZzHk96w3TrU8XLIIur1lEiMNfpHQpRaDK2mNUOiRCi55FKSUH3TbmTESaRtgzuhZ6OmUXbbfnPZLPKoAeAIY5e7AmRV3TRz0vL9k7CcgkwH79kt94zYbc+0A3ioDPYQhklnFPEedGaEWBeNhDZJ9RIBj0fAGnJG9MTSaxoxJeF2nGObfdk4URvi57XXAv8qJX03keqYvBySsEaXo5sMYkdwn8fN7ZSxU5FID+jQVMopGMSmBEoMDnKbwCM0f2NfoHj0g1L0so5JIbwZwMdVZQFJ6nYlMr9rsjI6GglkBAS/qRn+TY382Qva/5fJ1MmVu0JLjhi5TUr3AAFIcxGDMEAe4rYDaBN0LlMgYuJ6VepwnUtoK6Xkd3MCv0TnPIJDkYMdCw76HTZDCTCPdqVPL+i+uhAqLONmqw7p6Lfu8gY6NuaZijFEX3o0Frc6RNDUC2UtDmIBhT5ASHa3J8rrseSvTFPgsRFax7nnfUVGlCi+K+F5q5iP67g/ssB1B7eUXWQFkgRmU8f79esl58M+OVrkBc3cIpzwfi4LR2aLcJLWFQ8r3grx7cB9TBRuGWqyElPWycz6OcmbTQ2yH0zFU19NNLhtSJ4BsQlCJ0Vnb7Qa+SpTDPWKj7JIEuC2ZmCB9VCTpyZJ+bC+1gs4VbbTgpZGNSUiz5+QT9rEBaNUDbEulLDNyUAia12UE/uUL2BEcuLn6zQ/E7G77GuGRwz3ZHr+qwMTYA6uFUrkYj+DxlcI4ljcpsK5ilGewqZZgZW85+tQGMRnL3Tkwi9g1FmObzbxMJDB9b00MVBUWTwV2q5kOjMoaDKeGae0ekCgHpkW6DW67Iw51NqNNI01h0+7qB3+6IbGQpktvnwKhEd2+BZFlBPX5G+lgIDAL4+m1HOlbPRf6QDqWMGYRkQJxPkPnmqirSHLylVasqiIjZ9ZZz98D+9fnxsvCg+N6ifYqhhZNxPDzz0lWkW7iDZFclc/XjHH5ep6HHY86R7e4FapoucujJmMjzbk/agReHvEYBuypqqsxswq5H++Jn4tsWXmmaP2h1lLx9GJoIIForx5CqQtaOkO8T0PVgNR1yJ959BG0daTvjMdezXQXz9BJeK5iTE177vgLKHKrpYK+WMGmKpGDwnt9XyB+syOOu5LktaFftqhp6PJIDm+gn6oaOMUXGQ20Hvn8IROwt71nILAhOW4f3pu8JMtR011PrLUGaxQy6tyibDj5PYXMCDvpkEW1n3dUSal8h39eDvu/pBWAd9Khk93g+49/TtPCjnIWNWI5nX6cNuL97a0gzruuBSgYMGryug5qM5RAma9Vb9wnqPH7KQ8K13LtRCTcdEyx68BjOWqiqHgJG2w5HzkYQICxJSNXcV/wbgwtW+Bmxd3dNEwswnWWDZvB6FYuHsNa67S4ilGHOHlnbB9H88/PxyL3JELH1AsTt9lx/kte3darSDOhFf3W4Th7Yo4c12O323F8Wc+6TwQXpahnXizDMhId2L3TdkHSv5jP4zYagUDSxOdibp2OG7rYd0PWwTy/wfHCqnoy5H4dsCzE6UBWfQX26OP4jQyjqYVwBQDCu7WDqU+h9y+C8pqXGRMJVobSsK3OosmTo8K4mU0JMULTUS7i85p6pNPL1HlmWsrNhLamYbcuMjA+fYb5vKZR2HnpbQWlZi4LOY1cJsAp4bYCTmQCkmq6TdR2twKl1ckj/v++x/gs5aqXQL5UiTek55M5LEa6m0wGQaDu4h4/JeJmOxWa/p3Yn6LOsYxfEGKjRCIm4bGIbXMOcuJ911J8qBf3uQ84R4AW7dn12CqU1+ifPXrxGeU6NWI277e7I5tvXdeyMxvTzg/DuYZ4TMHMHAaeqaYAtQVxdFHDBDtz7CAoFwO2jtFMAjupYrfXHMrZ4JQ8iQQDWuxqAhVIJlAac7wBvcSS69Y5uDqqH9/3R95T30LA8ORoFp3o430HbGvDCJdYJAA2PDs53MOj4b9cAPb+G1kHvSNM4EvnogLiDD3EvaEWaAvvQEgWgLLy28RqV0lBBPOwsVKegUg8PDdgGtt1B616CGQsobQADON2jRwugA1xL/bEGXNoz8KqvgVZ0C4dIeNfBXi8puBonQLOD3S5hUiAG1wC0Yes7eN9C6x5ea8C3tA6tD8R4bTMIw5WCKkeiadhDlSOoLIFvLO+hA1Ti4QoRUrY9vPXwnQJ0D68dlJOuT+dY5Og+OlLxunrYPVut2jVQozFUBri+gutqGCeiVwUADl47eNfAtRWM4waiyhw+A6qiR55aaO2ADHAjQNVDOKRyDVyzJfoROmQhlEl5KGMjIu61PeZIegAwpBN2Fr5rYQoNmJw/9/zcjfNUQ3nL69cOztN2VXnA+w7e93zgwWdAQQ2uq4eFhSDqzh4c1MMthAhXnzdteMVHXCtw7ApmtAUSD+caeHuM5mhoqCSDsy28beM9AhD/P91TDJRJADh41UN5BzgF71tZi8DDdSLagraF9xbedy98zjovoYwCEg+lLYAOUD2gOCe8c/C+5QatKbz31sOt13S6Oz0RBKyDbyvYFXVUqiwjD1u1PMD37Q6uKuHrDL7dw3V76L2IuFvZ/JHCuxrW1jCmgErB9+x7Pv/o4FQH7VvAd7KOaf5trodyrXwN8F39AmLmewtvG6Cv4NoUqq2AtoFqRTDeAK4s4HyK3rXUbakO3ndwbQX0NbSt4zrmtmsWd33Jz2Y+5Zt3HXPHjIHvK6HB1qSxTk7YFekq+F6usX/uGpsGOvFQygKWAJUrAZUoQFvAdoCV+WAyWN2T+hHmlQWUz6CQ8LW959wAoD31ZKSDtvB9C1c1LyLnKoFKs/g9Oj1yroR07vizmhae1h5Ywn4UxuA/4v/H9/V0vektvA/5AD2cHIJfp7Ui/C1W9/DevfT5HExm5BmWz950pOPBc71w7YvhsN6UQKLhOwto1hleWyBxfAZ3e6LjgU7nEs63LCXd2TooZ2EdKTDaq7iWeO34fHR0uURRQHnOfeQpvD4u8xQc4Dv53QNOf9OwM9ns4ZsOtt5CGwddAW69gqsbHvSThM9P6tHnDsmOz5Bt2R3QnpbbvtkNVGh7oGHoe9j1dewqus01tO9gmx1rtGY3UIedhlcZ0O7hKwqTVJoAegyv+fvaNXDtHrpL4bWFUj28belImmUwizmg5T54BQ8FnXo6+LmDDB3L+a2RAzAAuNbZagNTGGCUAC0BZTVix9Z5EWTHNSBlEr1yQDW4rnrRZpLSbuDWotGQjohrRaeVZNCJBxLAqh7eWWj/4r7hTQloA9vX8T2UVVCti8+pHgVt6ovgptbBSXH4/aO9zRi4euj88nOVw9lhrS0zSh/MsVDHaq3RS7TFH7dWKP8KriYffvgh3nrrre/0ZdyMm/HajQ8++ABvvvnmd/oyvmXjZq24GTfjT2e8TmvFzTpxM27Gn97449aKV/Ig4pzDV77yFXzv934vPvjgA8xmsz/+l77DY71e46233nplrhd49a75Vbte4JNzzd57bDYb3L9/P3ZXXodxs1Z8e8ards031/snH6/jWvEqrhPAJ2tefJzxql0v8Opd8yfpej/uWvFKUrO01njjjTcAALPZ7Dt+s7+Z8apdL/DqXfOrdr3AJ+Oa5/P5H/9Dr9i4WSu+veNVu+ab6/2TjddtrXiV1wng1bvmV+16gVfvmj8p1/tx1orXA864GTfjZtyMm3EzbsbNuBk342a8UuPmIHIzbsbNuBk342bcjJtxM27Gzfi2j1f2IJLnOX7mZ34G+UuSYz+J41W7XuDVu+ZX7XqBV/OaX7Xxqt3jV+16gVfvmm+u92Y8P17Fe/yqXfOrdr3Aq3fNr9r1Aq+oWP1m3IybcTNuxs24GTfjZtyMm/Fqj1e2I3IzbsbNuBk342bcjJtxM27GzXh1x81B5GbcjJtxM27GzbgZN+Nm3Iyb8W0fNweRm3EzbsbNuBk342bcjJtxM27Gt33cHERuxs24GTfjZtyMm3EzbsbNuBnf9nFzELkZN+Nm3IybcTNuxs24GTfjZnzbxyt5EPnFX/xFvP322yiKAj/4gz+I//k//+d3+pLi+Lmf+zn8hb/wFzCdTnH79m38rb/1t/CVr3zl6Gd+6Id+CEqpo//+wT/4B9+R6/0X/+JfvHAt3/3d3x2/X9c1vvSlL+Hs7AyTyQQ/+qM/iidPnnxHrjWMt99++4VrVkrhS1/6EoDv/P399V//dfzNv/k3cf/+fSil8B/+w384+r73Hv/8n/9z3Lt3D2VZ4od/+Ifx1a9+9ehnrq6u8GM/9mOYzWZYLBb4+3//72O73X7b/obXZXxS14pXbZ0AXr214pO+TgA3a8UnadysFd+6cbNWfGvH675OvHIHkX/37/4dfvqnfxo/8zM/g//9v/83vvjFL+JHfuRH8PTp0+/0pQEAfu3Xfg1f+tKX8D/+x//Ar/7qr6LrOvz1v/7Xsdvtjn7ux3/8x/Ho0aP438///M9/h64Y+L7v+76ja/nv//2/x+/943/8j/Ef/+N/xK/8yq/g137t1/Dw4UP87b/9t79j1woAv/Vbv3V0vb/6q78KAPg7f+fvxJ/5Tt7f3W6HL37xi/jFX/zFl37/53/+5/ELv/AL+KVf+iX85m/+JsbjMX7kR34EdV3Hn/mxH/sx/N7v/R5+9Vd/Ff/pP/0n/Pqv/zp+4id+4tv1J7wW45O8VryK6wTwaq0Vn/R1ArhZKz4p42at+NaPm7XiWzde+3XCv2LjL/7Fv+i/9KUvxX9ba/39+/f9z/3cz30Hr+qjx9OnTz0A/2u/9mvxa3/lr/wV/1M/9VPfuYs6GD/zMz/jv/jFL770e8vl0qdp6n/lV34lfu0P/uAPPAD/G7/xG9+mK/zjx0/91E/5z33uc945573/ZN1fAP7f//t/H//tnPN37971/+pf/av4teVy6fM89//23/5b7733v//7v+8B+N/6rd+KP/Of//N/9kop/+DBg2/btb/q41VaKz7p64T3r/5a8UleJ7y/WSu+k+NmrfjWjpu14k9vvI7rxCvVEWnbFr/927+NH/7hH45f01rjh3/4h/Ebv/Eb38Er++ixWq0AAKenp0df/+Vf/mWcn5/jz/7ZP4t/+k//Kfb7/Xfi8v5/7dw9aFN7HMbxp1oTFLHHUpoXJSX1dVBBKoYgdmkHi4M4lergCyJVOwginRx0cnJxlnZwEAe14CLYtIOigZZIKWIwJTRLjqISrVioNs8dLp5rbnsrXpp/zj88HyiUk9Pyy4/whT9NCgB4+/YtotEo2tvbcfLkSRQKBQDA5OQkvn//XrHv3bt3IxaL+WbfCwsLuHv3Ls6ePYuGhgbvup/2+6t8Pg/XdSt22tTUhEQi4e30xYsXcBwHBw4c8O7p7u7GmjVrkE6njc9sI9taYUMnAHtbYVsnALXCFLWiOtQKM+qhE421HuBPfPjwAYuLiwiFQhXXQ6EQ3rx5U6Op/lu5XMbly5dx6NAh7Nmzx7t+4sQJtLW1IRqNYmpqCoODg8hms3jw4IHxGROJBIaHh7Fr1y4Ui0Vcv34dhw8fxvT0NFzXRSAQgOM4FT8TCoXguq7xWZfz6NEjlEolnD592rvmp/3+28+9Lfca/vmY67pobW2teLyxsRHNzc2+2bvf2dQKGzoB2N0K2zoBqBWmqBWrT60wpx46YdVBxDaXLl3C9PR0xXsjAVS8L2/v3r2IRCLo6urCzMwMtm3bZnTGnp4e7/t9+/YhkUigra0N9+/fx/r1643O8n/cuXMHPT09iEaj3jU/7Vfkd2zoBGB3K9QJqQdqRfWpFeZZ9daslpYWrF27dsl/V3j37h3C4XCNplrewMAAHj9+jLGxMWzdunXFexOJBAAgl8uZGG1FjuNg586dyOVyCIfDWFhYQKlUqrjHL/uenZ3F06dPce7cuRXv89N+f+5tpddwOBxe8iHJHz9+4NOnT77Yuw1saYWtnQDsaYWNnQDUClPUiupTK6qnHjph1UEkEAigo6MDo6Oj3rVyuYzR0VEkk8kaTvYPkhgYGMDDhw+RSqUQj8d/Px82OgAAAqVJREFU+zOvXr0CAEQikSpP93tfv37FzMwMIpEIOjo6sG7duop9Z7NZFAoFX+x7aGgIra2tOHr06Ir3+Wm/8Xgc4XC4YqdfvnxBOp32dppMJlEqlTA5Oendk0qlUC6XvQDKyvzeCts7AdjTChs7AagVpqgV1adWVE9ddKLGH5b/Y/fu3WMwGOTw8DBfv37N8+fP03Ecuq5b69FIkhcuXGBTUxPHx8dZLBa9r2/fvpEkc7kcb9y4wYmJCebzeY6MjLC9vZ2dnZ01mffKlSscHx9nPp/n8+fP2d3dzZaWFr5//54k2d/fz1gsxlQqxYmJCSaTSSaTyZrM+qvFxUXGYjEODg5WXPfDfufm5pjJZJjJZAiAt27dYiaT4ezsLEny5s2bdByHIyMjnJqa4rFjxxiPxzk/P+/9jiNHjnD//v1Mp9N89uwZd+zYwb6+PmPPoR74uRW2dYK0sxV+7gSpVviFWrG61IrVVe+dsO4gQpK3b99mLBZjIBDgwYMH+fLly1qP5AGw7NfQ0BBJslAosLOzk83NzQwGg9y+fTuvXr3Kz58/12Te3t5eRiIRBgIBbtmyhb29vczlct7j8/PzvHjxIjdv3swNGzbw+PHjLBaLNZn1V0+ePCEAZrPZiut+2O/Y2Niyr4FTp06R/Pvf7V27do2hUIjBYJBdXV1LnsfHjx/Z19fHjRs3ctOmTTxz5gzn5uaMPYd64ddW2NYJ0s5W+LkTpFrhJ2rF6lErVle9d6KBJKv4BxcREREREZElrPqMiIiIiIiI1AcdRERERERExDgdRERERERExDgdRERERERExDgdRERERERExDgdRERERERExDgdRERERERExDgdRERERERExDgdRERERERExDgdRERERERExDgdRERERERExLi/ADkp+Cx4n0o3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "fig, axs = plt.subplots(1, 3, figsize=(8, 2.5), constrained_layout=True)\n", "for i in range(3):\n", @@ -123,10 +263,96 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "ba0416b3-b4b6-4b18-8ed3-a76ab4889892", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
Dask DataFrame Structure:
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
posxposyenergy
npartitions=50
0float64float64float64
2000.........
............
98000.........
99999.........
\n", + "
\n", + "
Dask Name: from_pandas, 1 graph layer
" + ], + "text/plain": [ + "Dask DataFrame Structure:\n", + " posx posy energy\n", + "npartitions=50 \n", + "0 float64 float64 float64\n", + "2000 ... ... ...\n", + "... ... ... ...\n", + "98000 ... ... ...\n", + "99999 ... ... ...\n", + "Dask Name: from_pandas, 1 graph layer" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "ddf = dask.dataframe.from_pandas(df, npartitions=50)\n", "ddf" @@ -144,10 +370,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "cbed3261-187c-498d-8ee0-0c3a3c8a8c1e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e0a850b32464d0fab872cddde5f1130", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/2 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "fig, axs = plt.subplots(1, 3, figsize=(8, 2.5), constrained_layout=True)\n", "for dim, ax in zip(binAxes, axs):\n", From 0a13521fea5c42f101fe02cac7e702fa6749c697 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Thu, 5 Oct 2023 16:03:58 +0200 Subject: [PATCH 06/20] update to workflow --- .github/workflows/document_tutorials.yml | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/.github/workflows/document_tutorials.yml b/.github/workflows/document_tutorials.yml index f362e263..0e13deef 100644 --- a/.github/workflows/document_tutorials.yml +++ b/.github/workflows/document_tutorials.yml @@ -13,7 +13,7 @@ jobs: uses: actions/checkout@v3 - name: Set up Python - uses: actions/setup-python@v2 + uses: actions/setup-python@v4 with: python-version: 3.8 # Specify the Python version you need @@ -21,8 +21,9 @@ jobs: run: pip install jupyter nbconvert - name: Run Conversion Script - run: | - python - < Date: Wed, 11 Oct 2023 22:23:24 +0200 Subject: [PATCH 07/20] Use github cache feature --- .github/workflows/document_tutorials.yml | 136 ++++++-------------- .github/workflows/generate-requirements.yml | 21 --- .github/workflows/pylint.yml | 2 +- .github/workflows/pytest.yml | 42 ------ .github/workflows/testing.yml | 38 ++++++ .github/workflows/update_requirements.yml | 34 +++++ 6 files changed, 112 insertions(+), 161 deletions(-) delete mode 100644 .github/workflows/generate-requirements.yml delete mode 100644 .github/workflows/pytest.yml create mode 100644 .github/workflows/testing.yml create mode 100644 .github/workflows/update_requirements.yml diff --git a/.github/workflows/document_tutorials.yml b/.github/workflows/document_tutorials.yml index 0e13deef..ad2f9bd2 100644 --- a/.github/workflows/document_tutorials.yml +++ b/.github/workflows/document_tutorials.yml @@ -1,102 +1,44 @@ -name: Convert Tutorial Files - +name: autogenerate docs from tutorials +# Not finished! Only will run on a specific branch for now so can be left on: + # Triggers the workflow on push but only for the main branch push: - branches: [documentation] + branches: [ workflow_trials ] + paths: ['**.ipynb'] jobs: - build: - runs-on: ubuntu-latest # You can specify a different runner if needed - + docs-from-tutorials: + runs-on: ubuntu-latest + defaults: + run: + working-directory: docs steps: - - name: Checkout code - uses: actions/checkout@v3 - - - name: Set up Python - uses: actions/setup-python@v4 - with: - python-version: 3.8 # Specify the Python version you need - - - name: Install dependencies - run: pip install jupyter nbconvert - - - name: Run Conversion Script - uses: jannekem/run-python-script-action@v1 - with: - script: | - import pathlib - import shutil - import subprocess - - def create_new_directory_with_modified_files(directory_path, new_directory_path): - try: - # Create a Path object for the source directory - source_directory = pathlib.Path(directory_path) - - # Ensure the source directory exists - if not source_directory.is_dir(): - raise FileNotFoundError(f"The source directory '{directory_path}' does not exist.") - - # Create a Path object for the new directory - new_directory = pathlib.Path(new_directory_path) - - # Create the new directory if it doesn't exist - new_directory.mkdir(parents=True, exist_ok=True) - - # Loop through files in the source directory - for file_path in source_directory.iterdir(): - if file_path.is_file(): - # Remove spaces and change hyphens to underscores in the filename - new_name = file_path.name.replace(' ', '').replace('-', '_') - - # Construct the path for the new file in the new directory - new_file_path = new_directory / new_name - - # Copy the file to the new directory with the modified name - shutil.copy2(file_path, new_file_path) - - print(f"Copied '{file_path}' to '{new_file_path}'") - - print("File copying completed successfully.") - - - except Exception as e: - print(f"An error occurred: {str(e)}") - - def convert_ipynb_to_rst(directory_path): - try: - # Create a Path object for the directory - directory = pathlib.Path(directory_path) - - # Ensure the directory exists - if not directory.is_dir(): - raise FileNotFoundError(f"The directory '{directory_path}' does not exist.") - - # Loop through files in the directory - for file_path in directory.iterdir(): - if file_path.is_file() and file_path.suffix == '.ipynb': - # Construct the command to run nbconvert - command = f"jupyter nbconvert --to rst {str(file_path)}" - - # Run nbconvert using subprocess - subprocess.run(command, shell=True, check=True) - - print(f"Converted '{file_path}' to .rst") - - print("Conversion to .rst completed successfully.") - - except Exception as e: - print(f"An error occurred during conversion: {str(e)}") - - if __name__ == "__main__": - # Specify the source directory path where you want to process files - source_directory_path = "tutorial/" - - # Specify the new directory path where you want to create modified files - new_directory_path = "docs/tutorial" - - # Call the function to create a new directory with modified filenames - create_new_directory_with_modified_files(source_directory_path, new_directory_path) - - # Run nbconvert to convert .ipynb files to .rst in the new directory - convert_ipynb_to_rst(new_directory_path) + # Check out repo and set up Python + - name: Check out the repository + uses: actions/checkout@v4 + with: + lfs: true + + - name: "Setup Python, Poetry and Dependencies" + uses: packetcoders/action-setup-cache-python-poetry@main + with: + python-version: 3.8 + poetry-version: 1.2.2 + + # + - name: run python script after setting up + run: | + poetry run pip install nbconvert + poetry install + mkdir tutorial + poetry run python renaming.py + + - name: remove notebooks from docs + run: rm *.ipynb + + - name: Commit changes + uses: EndBug/add-and-commit@v9 + with: + default_author: github_actions + message: 'Updating tutorial rsts for docs' + add: 'sed/docs/tutorial/' diff --git a/.github/workflows/generate-requirements.yml b/.github/workflows/generate-requirements.yml deleted file mode 100644 index f971a3d8..00000000 --- a/.github/workflows/generate-requirements.yml +++ /dev/null @@ -1,21 +0,0 @@ -name: Generate requirements.txt for readthedocs - -on: - push: - branches: [main] - -jobs: - generate-requirements: - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v3 - with: - lfs: true - - name: Set up Python 3.8 - uses: actions/setup-python@v4 - with: - python-version: 3.8 - - name: Install Poetry - run: curl -sSL https://install.python-poetry.org | python3 - - - name: Export requirements.txt - run: poetry export --without-hashes --format=requirements.txt -o docs/requirements.txt -E docs -E notebook diff --git a/.github/workflows/pylint.yml b/.github/workflows/pylint.yml index c02f7fa2..857e4e5b 100644 --- a/.github/workflows/pylint.yml +++ b/.github/workflows/pylint.yml @@ -1,6 +1,6 @@ # This workflow will install Python dependencies, lint and run tests with a single version of Python # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions - +# TODO: switch to the cached version name: linting on: [push] diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml deleted file mode 100644 index bb07fbd9..00000000 --- a/.github/workflows/pytest.yml +++ /dev/null @@ -1,42 +0,0 @@ -# This workflow will install Python dependencies, and run tests for multiple versions of Python -# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions - -name: pytest - -on: - push: - branches: [main] - pull_request: - branches: [main] - -jobs: - pytest: - runs-on: ubuntu-latest - strategy: - matrix: - python_version: ["3.8", "3.9", "3.10"] - - steps: - - uses: actions/checkout@v3 - with: - lfs: true - - name: Set up Python ${{ matrix.python_version }} - uses: actions/setup-python@v4 - with: - python-version: ${{ matrix.python_version }} - - name: Install dependencies - run: | - git lfs pull - python -m pip install --upgrade pip - python -m pip install pytest coverage coveralls - - name: Install package - run: | - python -m pip install . - - name: Test with pytest - run: | - coverage run -m pytest -sv --show-capture=no tests - - name: Submit to coveralls - env: - GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} - run: | - coveralls --service=github diff --git a/.github/workflows/testing.yml b/.github/workflows/testing.yml new file mode 100644 index 00000000..a816e5fc --- /dev/null +++ b/.github/workflows/testing.yml @@ -0,0 +1,38 @@ +name: pytest + +on: + push: + branches: [ main ] + pull_request: + branches: [main] + +jobs: + pytest: + # Using matrix strategy + strategy: + matrix: + python-version: ["3.8", "3.9", "3.10"] + runs-on: ubuntu-latest + steps: + #-------------------------------------# + # Check out repo and set up Python # + #-------------------------------------# + - name: Check out the repository + uses: actions/checkout@v4 + with: + lfs: true + + - name: "Setup Python, Poetry and Dependencies" + uses: packetcoders/action-setup-cache-python-poetry@main + with: + python-version: ${{matrix.python-version}} + poetry-version: 1.2.2 + + #------------------------# + # Run pytest # + #------------------------# + - name: Run tests + run: | + poetry run pytest + + # Coveralls missing diff --git a/.github/workflows/update_requirements.yml b/.github/workflows/update_requirements.yml new file mode 100644 index 00000000..21c6d435 --- /dev/null +++ b/.github/workflows/update_requirements.yml @@ -0,0 +1,34 @@ +name: update requirements.txt + +on: + # Triggers the workflow on push but only for the main branch + push: + branches: [ main ] + paths: [pyproject.toml] + +jobs: + pytest: + runs-on: ubuntu-latest + steps: + # Check out repo and set up Python + - name: Check out the repository + uses: actions/checkout@v4 + with: + lfs: true + + - name: "Setup Python, Poetry and Dependencies" + uses: packetcoders/action-setup-cache-python-poetry@main + with: + python-version: 3.8 + poetry-version: 1.2.2 + + # Generates and commits a requirements.txt used by readthedocs + - name: Export requirements.txt + run: poetry export --without-hashes --format=requirements.txt -o docs/requirements.txt -E docs -E notebook + + - name: Commit changes + uses: EndBug/add-and-commit@v9 + with: + default_author: github_actions + message: 'Updating requirements for docs' + add: 'docs/requirements.txt' From d7299d92af07852ab488d4ff3ceaa801ffc6aa28 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Thu, 12 Oct 2023 15:39:51 +0200 Subject: [PATCH 08/20] try distributed testing and coveralls action --- .github/workflows/pytest_coveralls.yml | 34 -------------------- .github/workflows/pytest_muliversion.yml | 40 ------------------------ .github/workflows/testing.yml | 17 +++++----- 3 files changed, 10 insertions(+), 81 deletions(-) delete mode 100644 .github/workflows/pytest_coveralls.yml delete mode 100644 .github/workflows/pytest_muliversion.yml diff --git a/.github/workflows/pytest_coveralls.yml b/.github/workflows/pytest_coveralls.yml deleted file mode 100644 index 4909c2a3..00000000 --- a/.github/workflows/pytest_coveralls.yml +++ /dev/null @@ -1,34 +0,0 @@ -# This workflow will install Python dependencies, run tests for a single versions of Python and commit test results to coveralls -# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions - -name: pytest - -on: pull_request - -jobs: - pytest: - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v3 - with: - lfs: true - - name: Set up Python 3.8 - uses: actions/setup-python@v4 - with: - python-version: 3.8 - - name: Install dependencies - run: | - git lfs pull - python -m pip install --upgrade pip - python -m pip install pytest coverage coveralls - - name: Install package - run: | - python -m pip install . - - name: Test with pytest - run: | - coverage run -m pytest -sv --show-capture=no tests - - name: Submit to coveralls - env: - GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} - run: | - coveralls --service=github diff --git a/.github/workflows/pytest_muliversion.yml b/.github/workflows/pytest_muliversion.yml deleted file mode 100644 index 955304ea..00000000 --- a/.github/workflows/pytest_muliversion.yml +++ /dev/null @@ -1,40 +0,0 @@ -# This workflow will install Python dependencies, and run tests for multiple versions of Python -# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions - -name: pytest - -on: - push: - branches: [main] - -jobs: - pytest: - runs-on: ubuntu-latest - strategy: - matrix: - python_version: ["3.8", "3.9", "3.10"] - - steps: - - uses: actions/checkout@v3 - with: - lfs: true - - name: Set up Python ${{ matrix.python_version }} - uses: actions/setup-python@v4 - with: - python-version: ${{ matrix.python_version }} - - name: Install dependencies - run: | - git lfs pull - python -m pip install --upgrade pip - python -m pip install pytest coverage coveralls - - name: Install package - run: | - python -m pip install . - - name: Test with pytest - run: | - coverage run -m pytest -sv --show-capture=no tests - - name: Submit to coveralls - env: - GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} - run: | - coveralls --service=github diff --git a/.github/workflows/testing.yml b/.github/workflows/testing.yml index a816e5fc..5abebf8f 100644 --- a/.github/workflows/testing.yml +++ b/.github/workflows/testing.yml @@ -22,17 +22,20 @@ jobs: with: lfs: true - - name: "Setup Python, Poetry and Dependencies" - uses: packetcoders/action-setup-cache-python-poetry@main - with: - python-version: ${{matrix.python-version}} - poetry-version: 1.2.2 + # - name: "Setup Python and Dependencies" + # uses: actions/setup-python@v4 + # with: + # python-version: ${{matrix.python-version}} + # check-latest: true + # cache: 'poetry' # caching poetry dependencies #------------------------# - # Run pytest # + # Run pytest #------------------------# - name: Run tests run: | - poetry run pytest + poetry run pytest --cov=sed -n auto tests/ # Coveralls missing + - name: Coveralls + uses: coverallsapp/github-action@v2 From 04a996b1e97c6cdc4505107d34b9467e356409ea Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Thu, 12 Oct 2023 15:41:22 +0200 Subject: [PATCH 09/20] add the setup-python action (accidentally commented out) --- .github/workflows/testing.yml | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/.github/workflows/testing.yml b/.github/workflows/testing.yml index 5abebf8f..deb1cc45 100644 --- a/.github/workflows/testing.yml +++ b/.github/workflows/testing.yml @@ -22,12 +22,12 @@ jobs: with: lfs: true - # - name: "Setup Python and Dependencies" - # uses: actions/setup-python@v4 - # with: - # python-version: ${{matrix.python-version}} - # check-latest: true - # cache: 'poetry' # caching poetry dependencies + - name: "Setup Python and Dependencies" + uses: actions/setup-python@v4 + with: + python-version: ${{matrix.python-version}} + check-latest: true + cache: 'poetry' # caching poetry dependencies #------------------------# # Run pytest From 8b25f6323174d3ecc53b472bac6966df7d5d1580 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Thu, 12 Oct 2023 15:45:16 +0200 Subject: [PATCH 10/20] go back to the combined action --- .github/workflows/testing.yml | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/.github/workflows/testing.yml b/.github/workflows/testing.yml index deb1cc45..823f2d85 100644 --- a/.github/workflows/testing.yml +++ b/.github/workflows/testing.yml @@ -22,12 +22,11 @@ jobs: with: lfs: true - - name: "Setup Python and Dependencies" - uses: actions/setup-python@v4 + - name: "Setup Python, Poetry and Dependencies" + uses: packetcoders/action-setup-cache-python-poetry@main with: python-version: ${{matrix.python-version}} - check-latest: true - cache: 'poetry' # caching poetry dependencies + poetry-version: 1.2.2 #------------------------# # Run pytest From 103c9a6f3b50bd725321acb8b6ef5729f326b3c3 Mon Sep 17 00:00:00 2001 From: rettigl Date: Thu, 12 Oct 2023 18:01:04 +0200 Subject: [PATCH 11/20] remove race condition for sed_config.yaml detetion from test_processor.py --- tests/test_processor.py | 22 +++++++++++++++------- 1 file changed, 15 insertions(+), 7 deletions(-) diff --git a/tests/test_processor.py b/tests/test_processor.py index fba83d77..d6228756 100644 --- a/tests/test_processor.py +++ b/tests/test_processor.py @@ -273,7 +273,10 @@ def test_momentum_correction_workflow(features: np.ndarray): ) assert len(processor.mc.pouter_ord) == rotsym processor.generate_splinewarp(use_center=include_center) - processor.save_splinewarp(filename=f"sed_config{len(features)}.yaml", overwrite=True) + processor.save_splinewarp( + filename=f"sed_config_momentum_correction{len(features)}.yaml", + overwrite=True, + ) pouter_ord = processor.mc.pouter_ord cdeform_field = processor.mc.cdeform_field rdeform_field = processor.mc.rdeform_field @@ -281,7 +284,7 @@ def test_momentum_correction_workflow(features: np.ndarray): processor = SedProcessor( folder=df_folder, config=config, - folder_config=f"sed_config{len(features)}.yaml", + folder_config=f"sed_config_momentum_correction{len(features)}.yaml", user_config={}, system_config={}, ) @@ -290,7 +293,7 @@ def test_momentum_correction_workflow(features: np.ndarray): np.testing.assert_allclose(processor.mc.pouter_ord, pouter_ord) np.testing.assert_allclose(processor.mc.cdeform_field, cdeform_field) np.testing.assert_allclose(processor.mc.rdeform_field, rdeform_field) - os.remove(f"sed_config{len(features)}.yaml") + os.remove(f"sed_config_momentum_correction{len(features)}.yaml") def test_pose_adjustment(): @@ -378,10 +381,11 @@ def test_momentum_calibration_workflow(): apply=True, ) assert processor.mc.calibration["kx_scale"] != processor.mc.calibration["ky_scale"] - processor.save_momentum_calibration() + processor.save_momentum_calibration(filename="sed_config_momentum_calibration.yaml") processor = SedProcessor( folder=df_folder, config=config, + folder_config="sed_config_momentum_calibration.yaml", user_config={}, system_config={}, ) @@ -392,7 +396,7 @@ def test_momentum_calibration_workflow(): ) assert "kx" in processor.dataframe.columns assert "ky" in processor.dataframe.columns - os.remove("sed_config.yaml") + os.remove("sed_config_momentum_calibration.yaml") def test_energy_correction(): @@ -521,19 +525,22 @@ def test_energy_calibration_workflow(energy_scale: str, calibration_method: str) method=calibration_method, ) assert processor.ec.calibration["energy_scale"] == energy_scale - processor.save_energy_calibration() + processor.save_energy_calibration( + filename=f"sed_config_energy_calibration_{energy_scale}-{calibration_method}.yaml", + ) processor.append_energy_axis() assert "energy" in processor.dataframe.columns processor = SedProcessor( folder=df_folder + "../mpes/", config=config, + folder_config=f"sed_config_energy_calibration_{energy_scale}-{calibration_method}.yaml", user_config={}, system_config={}, ) processor.append_energy_axis(preview=True) assert "energy" in processor.dataframe.columns assert processor.attributes["energy_calibration"]["calibration"]["energy_scale"] == energy_scale - os.remove("sed_config.yaml") + os.remove(f"sed_config_energy_calibration_{energy_scale}-{calibration_method}.yaml") def test_delay_calibration_workflow(): @@ -639,6 +646,7 @@ def test_compute(): metadata["user0"]["email"] = "email" # NXinstrument metadata["instrument"] = {} +metadata["instrument"] = {} # analyzer metadata["instrument"]["analyzer"] = {} metadata["instrument"]["analyzer"]["energy_resolution"] = 110.0 From 2644b41ce81e0e53b6b1763d89d03dfbdb0e4e02 Mon Sep 17 00:00:00 2001 From: rettigl Date: Thu, 12 Oct 2023 20:19:58 +0200 Subject: [PATCH 12/20] remove race condition in test_io, and remove generated test files --- tests/test_io.py | 19 ++++++++++++------- 1 file changed, 12 insertions(+), 7 deletions(-) diff --git a/tests/test_io.py b/tests/test_io.py index 6b01beb3..1bde7c88 100644 --- a/tests/test_io.py +++ b/tests/test_io.py @@ -1,5 +1,6 @@ """This file contains code that performs several tests for the input/output functions """ +import os import random from pathlib import Path @@ -35,9 +36,10 @@ def test_save_and_load_tiff_array(_da: xr.DataArray): """ nd_array = _da.data if nd_array.ndim > 1: - to_tiff(nd_array, "test") - as_array = load_tiff("test.tiff") + to_tiff(nd_array, f"test1{nd_array.ndim}") + as_array = load_tiff(f"test1{nd_array.ndim}.tiff") np.testing.assert_allclose(nd_array, as_array) + os.remove(f"test1{nd_array.ndim}.tiff") @pytest.mark.parametrize( @@ -51,8 +53,9 @@ def test_save_xarr_to_tiff(_da: xr.DataArray): Args: _da (xr.DataArray): binned DataArray """ - to_tiff(_da, "test") - assert Path("test.tiff").is_file() + to_tiff(_da, f"test2{len(_da.shape)}") + assert Path(f"test2{len(_da.shape)}.tiff").is_file() + os.remove(f"test2{len(_da.shape)}.tiff") @pytest.mark.parametrize( @@ -66,14 +69,15 @@ def test_save_and_load_tiff_xarray(_da: xr.DataArray): rgs: _da (xr.DataArray): binned DataArray """ - to_tiff(_da, "test") - loaded = load_tiff("test.tiff") + to_tiff(_da, f"test3{len(_da.shape)}") + loaded = load_tiff(f"test3{len(_da.shape)}.tiff") dims_order = _sort_dims_for_imagej(_da.dims) transposed = _da.transpose(*dims_order).astype(np.float32) np.testing.assert_allclose( transposed.values, loaded.values, ) + os.remove(f"test3{len(_da.shape)}.tiff") @pytest.mark.parametrize( @@ -87,10 +91,11 @@ def test_save_and_load_hdf5(_da: xr.DataArray): Args: _da (xr.DataArray): binned DataArray """ - faddr = "test.h5" + faddr = f"test{len(_da.shape)}.h5" to_h5(_da, faddr, mode="w") loaded = load_h5(faddr) xr.testing.assert_equal(_da, loaded) np.testing.assert_equal(_da.attrs, loaded.attrs) for axis in _da.coords: np.testing.assert_equal(_da[axis].attrs, loaded[axis].attrs) + os.remove(faddr) From ef76eff9cc13e8b9734cc0fa81179b97b7b50a7b Mon Sep 17 00:00:00 2001 From: rettigl Date: Thu, 12 Oct 2023 20:21:16 +0200 Subject: [PATCH 13/20] remove race condition for flash loader tests and remove additional generated buffer files --- tests/loader/test_loaders.py | 50 ++++++++++++++++++++++++++++++++++++ 1 file changed, 50 insertions(+) diff --git a/tests/loader/test_loaders.py b/tests/loader/test_loaders.py index 1d744088..3947adfc 100644 --- a/tests/loader/test_loaders.py +++ b/tests/loader/test_loaders.py @@ -1,6 +1,7 @@ """Test cases for loaders used to load dataframes """ import os +from copy import deepcopy from importlib.util import find_spec from pathlib import Path from typing import cast @@ -86,6 +87,15 @@ def test_if_loaders_are_children_of_base_loader(loader: BaseLoader): def test_has_correct_read_dataframe_func(loader: BaseLoader, read_type: str): """Test if all loaders have a valid read function implemented""" assert callable(loader.read_dataframe) + + # Fix for race condition during parallel testing + if loader.__name__ == "flash": + config = deepcopy(loader._config) # pylint: disable=protected-access + config["core"]["paths"]["data_parquet_dir"] = ( + config["core"]["paths"]["data_parquet_dir"] + f"_{read_type}" + ) + loader = get_loader(loader_name="flash", config=config) + if loader.__name__ != "BaseLoader": assert hasattr(loader, "files") assert hasattr(loader, "supported_file_types") @@ -165,6 +175,15 @@ def test_get_count_rate(loader: BaseLoader): Args: loader (BaseLoader): the loader object to test """ + + # Fix for race condition during parallel testing + if loader.__name__ == "flash": + config = deepcopy(loader._config) # pylint: disable=protected-access + config["core"]["paths"]["data_parquet_dir"] = ( + config["core"]["paths"]["data_parquet_dir"] + "_count_rate" + ) + loader = get_loader(loader_name="flash", config=config) + if loader.__name__ != "BaseLoader": loader_name = get_loader_name_from_loader_object(loader) input_folder = os.path.join(test_data_dir, "loader", loader_name) @@ -176,12 +195,23 @@ def test_get_count_rate(loader: BaseLoader): ) loaded_time, loaded_countrate = loader.get_count_rate() if loaded_time is None and loaded_countrate is None: + if loader.__name__ == "flash": + loader = cast(FlashLoader, loader) + _, parquet_data_dir = loader.initialize_paths() + for file in os.listdir(Path(parquet_data_dir, "buffer")): + os.remove(Path(parquet_data_dir, "buffer", file)) pytest.skip("Not implemented") assert len(loaded_time) == len(loaded_countrate) loaded_time2, loaded_countrate2 = loader.get_count_rate(fids=[0]) assert len(loaded_time2) == len(loaded_countrate2) assert len(loaded_time2) < len(loaded_time) + if loader.__name__ == "flash": + loader = cast(FlashLoader, loader) + _, parquet_data_dir = loader.initialize_paths() + for file in os.listdir(Path(parquet_data_dir, "buffer")): + os.remove(Path(parquet_data_dir, "buffer", file)) + @pytest.mark.parametrize("loader", get_all_loaders()) def test_get_elapsed_time(loader: BaseLoader): @@ -190,6 +220,15 @@ def test_get_elapsed_time(loader: BaseLoader): Args: loader (BaseLoader): the loader object to test """ + + # Fix for race condition during parallel testing + if loader.__name__ == "flash": + config = deepcopy(loader._config) # pylint: disable=protected-access + config["core"]["paths"]["data_parquet_dir"] = ( + config["core"]["paths"]["data_parquet_dir"] + "_elapsed_time" + ) + loader = get_loader(loader_name="flash", config=config) + if loader.__name__ != "BaseLoader": loader_name = get_loader_name_from_loader_object(loader) input_folder = os.path.join(test_data_dir, "loader", loader_name) @@ -201,12 +240,23 @@ def test_get_elapsed_time(loader: BaseLoader): ) elapsed_time = loader.get_elapsed_time() if elapsed_time is None: + if loader.__name__ == "flash": + loader = cast(FlashLoader, loader) + _, parquet_data_dir = loader.initialize_paths() + for file in os.listdir(Path(parquet_data_dir, "buffer")): + os.remove(Path(parquet_data_dir, "buffer", file)) pytest.skip("Not implemented") assert elapsed_time > 0 elapsed_time2 = loader.get_elapsed_time(fids=[0]) assert elapsed_time2 > 0 assert elapsed_time > elapsed_time2 + if loader.__name__ == "flash": + loader = cast(FlashLoader, loader) + _, parquet_data_dir = loader.initialize_paths() + for file in os.listdir(Path(parquet_data_dir, "buffer")): + os.remove(Path(parquet_data_dir, "buffer", file)) + def test_mpes_timestamps(): """Function to test if the timestamps are loaded correctly""" From f4ea9b12b6c9cf96e4857b25733d9e2833276622 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Fri, 13 Oct 2023 15:35:51 +0200 Subject: [PATCH 14/20] update testing workflow for coveralls and change name --- .github/workflows/testing.yml | 24 +++++++++++++++++++----- 1 file changed, 19 insertions(+), 5 deletions(-) diff --git a/.github/workflows/testing.yml b/.github/workflows/testing.yml index 823f2d85..aa6588dc 100644 --- a/.github/workflows/testing.yml +++ b/.github/workflows/testing.yml @@ -1,4 +1,4 @@ -name: pytest +name: testing on: push: @@ -31,10 +31,24 @@ jobs: #------------------------# # Run pytest #------------------------# - - name: Run tests + - name: Run tests on python ${{matrix.python-version}} run: | poetry run pytest --cov=sed -n auto tests/ - - # Coveralls missing - - name: Coveralls + - name: Coveralls Parallel uses: coverallsapp/github-action@v2 + with: + flag-name: run-${{ join(matrix.*, '-') }} + parallel: true + + finish: + needs: pytest + if: ${{ always() }} + runs-on: ubuntu-latest + steps: + # Coveralls missing + - name: Coveralls Finished + uses: coverallsapp/github-action@v2 + with: + github-token: ${{ secrets.GITHUB_TOKEN }} + parallel-finished: true + carryforward: "run-3.8,run-3.9,run-3.10" From 48c6fe328bc0b555083257d19668f292d3553653 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Fri, 13 Oct 2023 17:15:51 +0200 Subject: [PATCH 15/20] linting workflow restricted to only lint, also allowing code analysis from github --- .github/workflows/linting.yml | 20 +++++++++++++++ .github/workflows/pylint.yml | 47 ----------------------------------- pyproject.toml | 12 +++++++++ 3 files changed, 32 insertions(+), 47 deletions(-) create mode 100644 .github/workflows/linting.yml delete mode 100644 .github/workflows/pylint.yml diff --git a/.github/workflows/linting.yml b/.github/workflows/linting.yml new file mode 100644 index 00000000..2811bd03 --- /dev/null +++ b/.github/workflows/linting.yml @@ -0,0 +1,20 @@ +# This workflow will install Python dependencies, lint and run tests with a single version of Python +# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions +# TODO: switch to the cached version +name: linting + +on: [push] + +jobs: + lint: + runs-on: ubuntu-latest + strategy: + matrix: + linter: [pylint, mypy, flake8] + steps: + - uses: actions/checkout@v3 + with: + lfs: true + - uses: advanced-security/python-lint-code-scanning-action@v1 + with: + linter: ${{ matrix.linter }} diff --git a/.github/workflows/pylint.yml b/.github/workflows/pylint.yml deleted file mode 100644 index 857e4e5b..00000000 --- a/.github/workflows/pylint.yml +++ /dev/null @@ -1,47 +0,0 @@ -# This workflow will install Python dependencies, lint and run tests with a single version of Python -# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions -# TODO: switch to the cached version -name: linting - -on: [push] - -jobs: - build: - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v3 - with: - lfs: true - - name: Set up Python 3.8 - uses: actions/setup-python@v4 - with: - python-version: 3.8 - - name: Install dependencies - run: | - git lfs pull - python -m pip install --upgrade pip - pip install pycodestyle pylint mypy pytest types-PyYAML types-requests coverage coveralls - if [ -f requirements.txt ]; then pip install -r requirements.txt; fi - - name: Install package - run: | - python -m pip install . - - name: pycodestyle - run: | - python -m pycodestyle --ignore=E203,E501,W503 sed tests - - name: pylint - if: ${{ always() }} - run: | - python -m pylint --good-names=i,j,k,ex,x,y,t,k,v,ax,df,ec,mc,dc,ct --disable=fixme,too-many-branches,too-many-locals,too-many-statements,too-many-arguments,too-many-lines,too-many-public-methods,too-many-instance-attributes,too-few-public-methods sed tests - - name: mypy - if: ${{ always() }} - run: | - python -m mypy --ignore-missing-imports --follow-imports=silent --no-strict-optional sed tests - - name: Test with pytest - if: ${{ always() }} - run: | - coverage run -m pytest -sv --show-capture=no tests - - name: Submit to coveralls - env: - GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} - run: | - coveralls --service=github diff --git a/pyproject.toml b/pyproject.toml index 78581d11..18b6299e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -58,3 +58,15 @@ omit = [ "config.py", "config-3.py", ] + +[tool.pylint] +ignore = ["fixme", "too-many-branches", "too-many-locals", "too-many-statements", "too-many-arguments", "too-many-lines", "too-many-public-methods", "too-many-instance-attributes", "too-few-public-methods"] +good-names = "i,j,k,ex,x,y,t,k,v,ax,df,ec,mc,dc,ct" + +[tool.mypy] +ignore-missing-imports = true +follow-imports = "silent" +no-strict-optional = true + +[tool.pycodestyle] +ignore = "E203,E501,W503" From 132f7cc204cc6bbbab7cf403987235a03e916ac3 Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Fri, 13 Oct 2023 17:40:29 +0200 Subject: [PATCH 16/20] try ignoring docs, installing package --- .github/workflows/linting.yml | 5 +++++ pyproject.toml | 3 +++ 2 files changed, 8 insertions(+) diff --git a/.github/workflows/linting.yml b/.github/workflows/linting.yml index 2811bd03..9686310b 100644 --- a/.github/workflows/linting.yml +++ b/.github/workflows/linting.yml @@ -15,6 +15,11 @@ jobs: - uses: actions/checkout@v3 with: lfs: true + - name: "Setup Python, Poetry and Dependencies" + uses: packetcoders/action-setup-cache-python-poetry@main + with: + python-version: 3.8 + poetry-version: 1.2.2 - uses: advanced-security/python-lint-code-scanning-action@v1 with: linter: ${{ matrix.linter }} diff --git a/pyproject.toml b/pyproject.toml index 18b6299e..5d6eb9fc 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -63,6 +63,9 @@ omit = [ ignore = ["fixme", "too-many-branches", "too-many-locals", "too-many-statements", "too-many-arguments", "too-many-lines", "too-many-public-methods", "too-many-instance-attributes", "too-few-public-methods"] good-names = "i,j,k,ex,x,y,t,k,v,ax,df,ec,mc,dc,ct" +[tool.pylint.main] +ignore-paths = ["docs"] + [tool.mypy] ignore-missing-imports = true follow-imports = "silent" From 4e99f9d1a7f69115bbeaf46105f9fd64432db3cd Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Fri, 13 Oct 2023 18:00:16 +0200 Subject: [PATCH 17/20] remove code analysis section for now and use old way of running linter --- .github/workflows/linting.yml | 14 +++- poetry.lock | 147 +++++++++++++++++++++++++++++++++- pyproject.toml | 8 +- 3 files changed, 159 insertions(+), 10 deletions(-) diff --git a/.github/workflows/linting.yml b/.github/workflows/linting.yml index 9686310b..a673389b 100644 --- a/.github/workflows/linting.yml +++ b/.github/workflows/linting.yml @@ -1,6 +1,5 @@ # This workflow will install Python dependencies, lint and run tests with a single version of Python # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions -# TODO: switch to the cached version name: linting on: [push] @@ -20,6 +19,13 @@ jobs: with: python-version: 3.8 poetry-version: 1.2.2 - - uses: advanced-security/python-lint-code-scanning-action@v1 - with: - linter: ${{ matrix.linter }} + - name: pycodestyle + run: + poetry run pycodestyle sed tests + - name: pylint + run: + poetry run pyling sed tests + - name: mypy + run: + poetry run mypy sed tests + diff --git a/poetry.lock b/poetry.lock index 6561d021..09087b09 100644 --- a/poetry.lock +++ b/poetry.lock @@ -175,6 +175,21 @@ dev = ["build", "twine"] doc = ["Sphinx"] test = ["coverage", "pytest", "pytest-cov"] +[[package]] +name = "astroid" +version = "3.0.0" +description = "An abstract syntax tree for Python with inference support." +category = "dev" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "astroid-3.0.0-py3-none-any.whl", hash = "sha256:f2510e7fdcd6cfda4ec50014726d4857abf79acfc010084ce8c26091913f1b25"}, + {file = "astroid-3.0.0.tar.gz", hash = "sha256:1defdbca052635dd29657ea674edfc45e4b5be9cd53630c5b084fcfed94344a8"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""} + [[package]] name = "astropy" version = "5.2.2" @@ -1843,6 +1858,24 @@ files = [ [package.dependencies] arrow = ">=0.15.0" +[[package]] +name = "isort" +version = "5.12.0" +description = "A Python utility / library to sort Python imports." +category = "dev" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "isort-5.12.0-py3-none-any.whl", hash = "sha256:f84c2818376e66cf843d497486ea8fed8700b340f308f076c6fb1229dff318b6"}, + {file = "isort-5.12.0.tar.gz", hash = "sha256:8bef7dde241278824a6d83f44a544709b065191b95b6e50894bdc722fcba0504"}, +] + +[package.extras] +colors = ["colorama (>=0.4.3)"] +pipfile-deprecated-finder = ["pip-shims (>=0.5.2)", "pipreqs", "requirementslib"] +plugins = ["setuptools"] +requirements-deprecated-finder = ["pip-api", "pipreqs"] + [[package]] name = "jedi" version = "0.19.1" @@ -2697,6 +2730,18 @@ files = [ [package.dependencies] matplotlib = "*" +[[package]] +name = "mccabe" +version = "0.7.0" +description = "McCabe checker, plugin for flake8" +category = "dev" +optional = false +python-versions = ">=3.6" +files = [ + {file = "mccabe-0.7.0-py2.py3-none-any.whl", hash = "sha256:6c2d30ab6be0e4a46919781807b4f0d834ebdd6c6e3dca0bda5a15f863427b6e"}, + {file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"}, +] + [[package]] name = "mdurl" version = "0.1.2" @@ -2739,6 +2784,65 @@ docs = ["sphinx"] gmpy = ["gmpy2 (>=2.1.0a4)"] tests = ["pytest (>=4.6)"] +[[package]] +name = "mypy" +version = "1.6.0" +description = "Optional static typing for Python" +category = "dev" +optional = false +python-versions = ">=3.8" +files = [ + {file = "mypy-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:091f53ff88cb093dcc33c29eee522c087a438df65eb92acd371161c1f4380ff0"}, + {file = "mypy-1.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:eb7ff4007865833c470a601498ba30462b7374342580e2346bf7884557e40531"}, + {file = "mypy-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49499cf1e464f533fc45be54d20a6351a312f96ae7892d8e9f1708140e27ce41"}, + {file = "mypy-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4c192445899c69f07874dabda7e931b0cc811ea055bf82c1ababf358b9b2a72c"}, + {file = "mypy-1.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:3df87094028e52766b0a59a3e46481bb98b27986ed6ded6a6cc35ecc75bb9182"}, + {file = "mypy-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c8835a07b8442da900db47ccfda76c92c69c3a575872a5b764332c4bacb5a0a"}, + {file = "mypy-1.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:24f3de8b9e7021cd794ad9dfbf2e9fe3f069ff5e28cb57af6f873ffec1cb0425"}, + {file = "mypy-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:856bad61ebc7d21dbc019b719e98303dc6256cec6dcc9ebb0b214b81d6901bd8"}, + {file = "mypy-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:89513ddfda06b5c8ebd64f026d20a61ef264e89125dc82633f3c34eeb50e7d60"}, + {file = "mypy-1.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:9f8464ed410ada641c29f5de3e6716cbdd4f460b31cf755b2af52f2d5ea79ead"}, + {file = "mypy-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:971104bcb180e4fed0d7bd85504c9036346ab44b7416c75dd93b5c8c6bb7e28f"}, + {file = "mypy-1.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ab98b8f6fdf669711f3abe83a745f67f50e3cbaea3998b90e8608d2b459fd566"}, + {file = "mypy-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a69db3018b87b3e6e9dd28970f983ea6c933800c9edf8c503c3135b3274d5ad"}, + {file = "mypy-1.6.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:dccd850a2e3863891871c9e16c54c742dba5470f5120ffed8152956e9e0a5e13"}, + {file = "mypy-1.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:f8598307150b5722854f035d2e70a1ad9cc3c72d392c34fffd8c66d888c90f17"}, + {file = "mypy-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fea451a3125bf0bfe716e5d7ad4b92033c471e4b5b3e154c67525539d14dc15a"}, + {file = "mypy-1.6.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e28d7b221898c401494f3b77db3bac78a03ad0a0fff29a950317d87885c655d2"}, + {file = "mypy-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4b7a99275a61aa22256bab5839c35fe8a6887781862471df82afb4b445daae6"}, + {file = "mypy-1.6.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:7469545380dddce5719e3656b80bdfbb217cfe8dbb1438532d6abc754b828fed"}, + {file = "mypy-1.6.0-cp38-cp38-win_amd64.whl", hash = "sha256:7807a2a61e636af9ca247ba8494031fb060a0a744b9fee7de3a54bed8a753323"}, + {file = "mypy-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d2dad072e01764823d4b2f06bc7365bb1d4b6c2f38c4d42fade3c8d45b0b4b67"}, + {file = "mypy-1.6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b19006055dde8a5425baa5f3b57a19fa79df621606540493e5e893500148c72f"}, + {file = "mypy-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31eba8a7a71f0071f55227a8057468b8d2eb5bf578c8502c7f01abaec8141b2f"}, + {file = "mypy-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8e0db37ac4ebb2fee7702767dfc1b773c7365731c22787cb99f507285014fcaf"}, + {file = "mypy-1.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:c69051274762cccd13498b568ed2430f8d22baa4b179911ad0c1577d336ed849"}, + {file = "mypy-1.6.0-py3-none-any.whl", hash = "sha256:9e1589ca150a51d9d00bb839bfeca2f7a04f32cd62fad87a847bc0818e15d7dc"}, + {file = "mypy-1.6.0.tar.gz", hash = "sha256:4f3d27537abde1be6d5f2c96c29a454da333a2a271ae7d5bc7110e6d4b7beb3f"}, +] + +[package.dependencies] +mypy-extensions = ">=1.0.0" +tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} +typing-extensions = ">=4.1.0" + +[package.extras] +dmypy = ["psutil (>=4.0)"] +install-types = ["pip"] +reports = ["lxml"] + +[[package]] +name = "mypy-extensions" +version = "1.0.0" +description = "Type system extensions for programs checked with the mypy type checker." +category = "dev" +optional = false +python-versions = ">=3.5" +files = [ + {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, + {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, +] + [[package]] name = "natsort" version = "8.4.0" @@ -3802,6 +3906,18 @@ files = [ {file = "PyCifRW-4.4.5.tar.gz", hash = "sha256:a8fd092cbefe6ddd4b7e667d05682e5c8c2e64ba63e7ef8b3ce4c07f2ff62827"}, ] +[[package]] +name = "pycodestyle" +version = "2.11.1" +description = "Python style guide checker" +category = "dev" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycodestyle-2.11.1-py2.py3-none-any.whl", hash = "sha256:44fe31000b2d866f2e41841b18528a505fbd7fef9017b04eff4e2648a0fadc67"}, + {file = "pycodestyle-2.11.1.tar.gz", hash = "sha256:41ba0e7afc9752dfb53ced5489e89f8186be00e599e712660695b7a75ff2663f"}, +] + [[package]] name = "pycparser" version = "2.21" @@ -3938,6 +4054,33 @@ files = [ [package.extras] plugins = ["importlib-metadata"] +[[package]] +name = "pylint" +version = "3.0.1" +description = "python code static checker" +category = "dev" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "pylint-3.0.1-py3-none-any.whl", hash = "sha256:9c90b89e2af7809a1697f6f5f93f1d0e518ac566e2ac4d2af881a69c13ad01ea"}, + {file = "pylint-3.0.1.tar.gz", hash = "sha256:81c6125637be216b4652ae50cc42b9f8208dfb725cdc7e04c48f6902f4dbdf40"}, +] + +[package.dependencies] +astroid = ">=3.0.0,<=3.1.0-dev0" +colorama = {version = ">=0.4.5", markers = "sys_platform == \"win32\""} +dill = {version = ">=0.2", markers = "python_version < \"3.11\""} +isort = ">=4.2.5,<6" +mccabe = ">=0.6,<0.8" +platformdirs = ">=2.2.0" +tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} +tomlkit = ">=0.10.1" +typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""} + +[package.extras] +spelling = ["pyenchant (>=3.2,<4.0)"] +testutils = ["gitpython (>3)"] + [[package]] name = "pynxtools" version = "0.0.5" @@ -5424,7 +5567,7 @@ name = "tomlkit" version = "0.12.1" description = "Style preserving TOML library" category = "main" -optional = true +optional = false python-versions = ">=3.7" files = [ {file = "tomlkit-0.12.1-py3-none-any.whl", hash = "sha256:712cbd236609acc6a3e2e97253dfc52d4c2082982a88f61b640ecf0817eab899"}, @@ -5851,4 +5994,4 @@ notebook = ["jupyter", "ipykernel"] [metadata] lock-version = "2.0" python-versions = ">=3.8,<3.11" -content-hash = "0886d7c6beeb6d8052154aa45cff0bac51bf4dd7f182e70603758a256f5f819e" +content-hash = "506d2e30877fa36c9a398559488a187b8d858e41e09dd92b1f490b3f05554c74" diff --git a/pyproject.toml b/pyproject.toml index 5d6eb9fc..c87843b3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -43,11 +43,14 @@ sphinx-autodoc-typehints = {version = ">1.17.0", extras = ["docs"], optional = t notebook = ["jupyter", "ipykernel"] docs = ["Sphinx", "sphinx-rtd-theme", "tomlkit", "sphinx-autodoc-typehints"] -[tool.poetry.dev-dependencies] +[tool.poetry.group.dev.dependencies] pytest = "^7.0.1" pytest-cov = "^3.0.0" pytest-xdist = "^2.5.0" pytest-clarity = "^1.0.1" +pylint = "^3.0.1" +mypy = "^1.6.0" +pycodestyle = "^2.11.1" [build-system] requires = ["poetry-core>=1.0.0"] @@ -63,9 +66,6 @@ omit = [ ignore = ["fixme", "too-many-branches", "too-many-locals", "too-many-statements", "too-many-arguments", "too-many-lines", "too-many-public-methods", "too-many-instance-attributes", "too-few-public-methods"] good-names = "i,j,k,ex,x,y,t,k,v,ax,df,ec,mc,dc,ct" -[tool.pylint.main] -ignore-paths = ["docs"] - [tool.mypy] ignore-missing-imports = true follow-imports = "silent" From e7d4780846ef18d984ebb2f31d54e5d3c71c08ac Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Fri, 13 Oct 2023 18:02:56 +0200 Subject: [PATCH 18/20] remove matrix testing --- .github/workflows/linting.yml | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/.github/workflows/linting.yml b/.github/workflows/linting.yml index a673389b..411e2830 100644 --- a/.github/workflows/linting.yml +++ b/.github/workflows/linting.yml @@ -7,9 +7,6 @@ on: [push] jobs: lint: runs-on: ubuntu-latest - strategy: - matrix: - linter: [pylint, mypy, flake8] steps: - uses: actions/checkout@v3 with: @@ -24,7 +21,7 @@ jobs: poetry run pycodestyle sed tests - name: pylint run: - poetry run pyling sed tests + poetry run pylint sed tests - name: mypy run: poetry run mypy sed tests From 097a566024ea5ac83a799a0deb644ee89574894f Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Fri, 13 Oct 2023 18:24:29 +0200 Subject: [PATCH 19/20] fix linter --- .github/workflows/linting.yml | 4 +- poetry.lock | 544 ++++++++++++++++++---------------- pyproject.toml | 11 +- 3 files changed, 285 insertions(+), 274 deletions(-) diff --git a/.github/workflows/linting.yml b/.github/workflows/linting.yml index 411e2830..b859adbf 100644 --- a/.github/workflows/linting.yml +++ b/.github/workflows/linting.yml @@ -18,11 +18,11 @@ jobs: poetry-version: 1.2.2 - name: pycodestyle run: - poetry run pycodestyle sed tests + poetry run pycodestyle --ignore=E203,E501,W503 sed tests - name: pylint run: poetry run pylint sed tests - name: mypy run: - poetry run mypy sed tests + poetry run mypy --ignore-missing-imports --follow-imports=silent --no-strict-optional sed tests diff --git a/poetry.lock b/poetry.lock index 09087b09..16036039 100644 --- a/poetry.lock +++ b/poetry.lock @@ -376,14 +376,14 @@ lxml = ["lxml"] [[package]] name = "bleach" -version = "6.0.0" +version = "6.1.0" description = "An easy safelist-based HTML-sanitizing tool." category = "main" optional = true -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "bleach-6.0.0-py3-none-any.whl", hash = "sha256:33c16e3353dbd13028ab4799a0f89a83f113405c766e9c122df8a06f5b85b3f4"}, - {file = "bleach-6.0.0.tar.gz", hash = "sha256:1a1a85c1595e07d8db14c5f09f09e6433502c51c595970edc090551f0db99414"}, + {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, + {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, ] [package.dependencies] @@ -391,7 +391,7 @@ six = ">=1.9.0" webencodings = "*" [package.extras] -css = ["tinycss2 (>=1.1.0,<1.2)"] +css = ["tinycss2 (>=1.1.0,<1.3)"] [[package]] name = "bokeh" @@ -905,14 +905,14 @@ dev = ["black (==22.3.0)", "hypothesis", "numpy", "pytest (>=5.30)", "pytest-xdi [[package]] name = "cycler" -version = "0.12.0" +version = "0.12.1" description = "Composable style cycles" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "cycler-0.12.0-py3-none-any.whl", hash = "sha256:7896994252d006771357777d0251f3e34d266f4fa5f2c572247a80ab01440947"}, - {file = "cycler-0.12.0.tar.gz", hash = "sha256:8cc3a7b4861f91b1095157f9916f748549a617046e67eb7619abed9b34d2c94a"}, + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, ] [package.extras] @@ -1270,54 +1270,54 @@ files = [ [[package]] name = "fonttools" -version = "4.43.0" +version = "4.43.1" description = "Tools to manipulate font files" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.43.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ab80e7d6bb01316d5fc8161a2660ca2e9e597d0880db4927bc866c76474472ef"}, - {file = "fonttools-4.43.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:82d8e687a42799df5325e7ee12977b74738f34bf7fde1c296f8140efd699a213"}, - {file = "fonttools-4.43.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d08a694b280d615460563a6b4e2afb0b1b9df708c799ec212bf966652b94fc84"}, - {file = "fonttools-4.43.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d654d3e780e0ceabb1f4eff5a3c042c67d4428d0fe1ea3afd238a721cf171b3"}, - {file = "fonttools-4.43.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:20fc43783c432862071fa76da6fa714902ae587bc68441e12ff4099b94b1fcef"}, - {file = "fonttools-4.43.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:33c40a657fb87ff83185828c0323032d63a4df1279d5c1c38e21f3ec56327803"}, - {file = "fonttools-4.43.0-cp310-cp310-win32.whl", hash = "sha256:b3813f57f85bbc0e4011a0e1e9211f9ee52f87f402e41dc05bc5135f03fa51c1"}, - {file = "fonttools-4.43.0-cp310-cp310-win_amd64.whl", hash = "sha256:05056a8c9af048381fdb17e89b17d45f6c8394176d01e8c6fef5ac96ea950d38"}, - {file = "fonttools-4.43.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:da78f39b601ed0b4262929403186d65cf7a016f91ff349ab18fdc5a7080af465"}, - {file = "fonttools-4.43.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5056f69a18f3f28ab5283202d1efcfe011585d31de09d8560f91c6c88f041e92"}, - {file = "fonttools-4.43.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcc01cea0a121fb0c009993497bad93cae25e77db7dee5345fec9cce1aaa09cd"}, - {file = "fonttools-4.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee728d5af70f117581712966a21e2e07031e92c687ef1fdc457ac8d281016f64"}, - {file = "fonttools-4.43.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b5e760198f0b87e42478bb35a6eae385c636208f6f0d413e100b9c9c5efafb6a"}, - {file = "fonttools-4.43.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:af38f5145258e9866da5881580507e6d17ff7756beef175d13213a43a84244e9"}, - {file = "fonttools-4.43.0-cp311-cp311-win32.whl", hash = "sha256:25620b738d4533cfc21fd2a4f4b667e481f7cb60e86b609799f7d98af657854e"}, - {file = "fonttools-4.43.0-cp311-cp311-win_amd64.whl", hash = "sha256:635658464dccff6fa5c3b43fe8f818ae2c386ee6a9e1abc27359d1e255528186"}, - {file = "fonttools-4.43.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a682fb5cbf8837d1822b80acc0be5ff2ea0c49ca836e468a21ffd388ef280fd3"}, - {file = "fonttools-4.43.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3d7adfa342e6b3a2b36960981f23f480969f833d565a4eba259c2e6f59d2674f"}, - {file = "fonttools-4.43.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5aa67d1e720fdd902fde4a59d0880854ae9f19fc958f3e1538bceb36f7f4dc92"}, - {file = "fonttools-4.43.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77e5113233a2df07af9dbf493468ce526784c3b179c0e8b9c7838ced37c98b69"}, - {file = "fonttools-4.43.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:57c22e5f9f53630d458830f710424dce4f43c5f0d95cb3368c0f5178541e4db7"}, - {file = "fonttools-4.43.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:206808f9717c9b19117f461246372a2c160fa12b9b8dbdfb904ab50ca235ba0a"}, - {file = "fonttools-4.43.0-cp312-cp312-win32.whl", hash = "sha256:f19c2b1c65d57cbea25cabb80941fea3fbf2625ff0cdcae8900b5fb1c145704f"}, - {file = "fonttools-4.43.0-cp312-cp312-win_amd64.whl", hash = "sha256:7c76f32051159f8284f1a5f5b605152b5a530736fb8b55b09957db38dcae5348"}, - {file = "fonttools-4.43.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e3f8acc6ef4a627394021246e099faee4b343afd3ffe2e517d8195b4ebf20289"}, - {file = "fonttools-4.43.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a68b71adc3b3a90346e4ac92f0a69ab9caeba391f3b04ab6f1e98f2c8ebe88e3"}, - {file = "fonttools-4.43.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ace0fd5afb79849f599f76af5c6aa5e865bd042c811e4e047bbaa7752cc26126"}, - {file = "fonttools-4.43.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f9660e70a2430780e23830476332bc3391c3c8694769e2c0032a5038702a662"}, - {file = "fonttools-4.43.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:48078357984214ccd22d7fe0340cd6ff7286b2f74f173603a1a9a40b5dc25afe"}, - {file = "fonttools-4.43.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d27d960e10cf7617d70cf3104c32a69b008dde56f2d55a9bed4ba6e3df611544"}, - {file = "fonttools-4.43.0-cp38-cp38-win32.whl", hash = "sha256:a6a2e99bb9ea51e0974bbe71768df42c6dd189308c22f3f00560c3341b345646"}, - {file = "fonttools-4.43.0-cp38-cp38-win_amd64.whl", hash = "sha256:030355fbb0cea59cf75d076d04d3852900583d1258574ff2d7d719abf4513836"}, - {file = "fonttools-4.43.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:52e77f23a9c059f8be01a07300ba4c4d23dc271d33eed502aea5a01ab5d2f4c1"}, - {file = "fonttools-4.43.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6a530fa28c155538d32214eafa0964989098a662bd63e91e790e6a7a4e9c02da"}, - {file = "fonttools-4.43.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70f021a6b9eb10dfe7a411b78e63a503a06955dd6d2a4e130906d8760474f77c"}, - {file = "fonttools-4.43.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:812142a0e53cc853964d487e6b40963df62f522b1b571e19d1ff8467d7880ceb"}, - {file = "fonttools-4.43.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ace51902ab67ef5fe225e8b361039e996db153e467e24a28d35f74849b37b7ce"}, - {file = "fonttools-4.43.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8dfd8edfce34ad135bd69de20c77449c06e2c92b38f2a8358d0987737f82b49e"}, - {file = "fonttools-4.43.0-cp39-cp39-win32.whl", hash = "sha256:e5d53eddaf436fa131042f44a76ea1ead0a17c354ab9de0d80e818f0cb1629f1"}, - {file = "fonttools-4.43.0-cp39-cp39-win_amd64.whl", hash = "sha256:93c5b6d77baf28f306bc13fa987b0b13edca6a39dc2324eaca299a74ccc6316f"}, - {file = "fonttools-4.43.0-py3-none-any.whl", hash = "sha256:e4bc589d8da09267c7c4ceaaaa4fc01a7908ac5b43b286ac9279afe76407c384"}, - {file = "fonttools-4.43.0.tar.gz", hash = "sha256:b62a53a4ca83c32c6b78cac64464f88d02929779373c716f738af6968c8c821e"}, + {file = "fonttools-4.43.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:bf11e2cca121df35e295bd34b309046c29476ee739753bc6bc9d5050de319273"}, + {file = "fonttools-4.43.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10b3922875ffcba636674f406f9ab9a559564fdbaa253d66222019d569db869c"}, + {file = "fonttools-4.43.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f727c3e3d08fd25352ed76cc3cb61486f8ed3f46109edf39e5a60fc9fecf6ca"}, + {file = "fonttools-4.43.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad0b3f6342cfa14be996971ea2b28b125ad681c6277c4cd0fbdb50340220dfb6"}, + {file = "fonttools-4.43.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3b7ad05b2beeebafb86aa01982e9768d61c2232f16470f9d0d8e385798e37184"}, + {file = "fonttools-4.43.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4c54466f642d2116686268c3e5f35ebb10e49b0d48d41a847f0e171c785f7ac7"}, + {file = "fonttools-4.43.1-cp310-cp310-win32.whl", hash = "sha256:1e09da7e8519e336239fbd375156488a4c4945f11c4c5792ee086dd84f784d02"}, + {file = "fonttools-4.43.1-cp310-cp310-win_amd64.whl", hash = "sha256:1cf9e974f63b1080b1d2686180fc1fbfd3bfcfa3e1128695b5de337eb9075cef"}, + {file = "fonttools-4.43.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5db46659cfe4e321158de74c6f71617e65dc92e54980086823a207f1c1c0e24b"}, + {file = "fonttools-4.43.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1952c89a45caceedf2ab2506d9a95756e12b235c7182a7a0fff4f5e52227204f"}, + {file = "fonttools-4.43.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c36da88422e0270fbc7fd959dc9749d31a958506c1d000e16703c2fce43e3d0"}, + {file = "fonttools-4.43.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bbbf8174501285049e64d174e29f9578495e1b3b16c07c31910d55ad57683d8"}, + {file = "fonttools-4.43.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d4071bd1c183b8d0b368cc9ed3c07a0f6eb1bdfc4941c4c024c49a35429ac7cd"}, + {file = "fonttools-4.43.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d21099b411e2006d3c3e1f9aaf339e12037dbf7bf9337faf0e93ec915991f43b"}, + {file = "fonttools-4.43.1-cp311-cp311-win32.whl", hash = "sha256:b84a1c00f832feb9d0585ca8432fba104c819e42ff685fcce83537e2e7e91204"}, + {file = "fonttools-4.43.1-cp311-cp311-win_amd64.whl", hash = "sha256:9a2f0aa6ca7c9bc1058a9d0b35483d4216e0c1bbe3962bc62ce112749954c7b8"}, + {file = "fonttools-4.43.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4d9740e3783c748521e77d3c397dc0662062c88fd93600a3c2087d3d627cd5e5"}, + {file = "fonttools-4.43.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:884ef38a5a2fd47b0c1291647b15f4e88b9de5338ffa24ee52c77d52b4dfd09c"}, + {file = "fonttools-4.43.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9648518ef687ba818db3fcc5d9aae27a369253ac09a81ed25c3867e8657a0680"}, + {file = "fonttools-4.43.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95e974d70238fc2be5f444fa91f6347191d0e914d5d8ae002c9aa189572cc215"}, + {file = "fonttools-4.43.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:34f713dad41aa21c637b4e04fe507c36b986a40f7179dcc86402237e2d39dcd3"}, + {file = "fonttools-4.43.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:360201d46165fc0753229afe785900bc9596ee6974833124f4e5e9f98d0f592b"}, + {file = "fonttools-4.43.1-cp312-cp312-win32.whl", hash = "sha256:bb6d2f8ef81ea076877d76acfb6f9534a9c5f31dc94ba70ad001267ac3a8e56f"}, + {file = "fonttools-4.43.1-cp312-cp312-win_amd64.whl", hash = "sha256:25d3da8a01442cbc1106490eddb6d31d7dffb38c1edbfabbcc8db371b3386d72"}, + {file = "fonttools-4.43.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8da417431bfc9885a505e86ba706f03f598c85f5a9c54f67d63e84b9948ce590"}, + {file = "fonttools-4.43.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:51669b60ee2a4ad6c7fc17539a43ffffc8ef69fd5dbed186a38a79c0ac1f5db7"}, + {file = "fonttools-4.43.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:748015d6f28f704e7d95cd3c808b483c5fb87fd3eefe172a9da54746ad56bfb6"}, + {file = "fonttools-4.43.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7a58eb5e736d7cf198eee94844b81c9573102ae5989ebcaa1d1a37acd04b33d"}, + {file = "fonttools-4.43.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6bb5ea9076e0e39defa2c325fc086593ae582088e91c0746bee7a5a197be3da0"}, + {file = "fonttools-4.43.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5f37e31291bf99a63328668bb83b0669f2688f329c4c0d80643acee6e63cd933"}, + {file = "fonttools-4.43.1-cp38-cp38-win32.whl", hash = "sha256:9c60ecfa62839f7184f741d0509b5c039d391c3aff71dc5bc57b87cc305cff3b"}, + {file = "fonttools-4.43.1-cp38-cp38-win_amd64.whl", hash = "sha256:fe9b1ec799b6086460a7480e0f55c447b1aca0a4eecc53e444f639e967348896"}, + {file = "fonttools-4.43.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:13a9a185259ed144def3682f74fdcf6596f2294e56fe62dfd2be736674500dba"}, + {file = "fonttools-4.43.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2adca1b46d69dce4a37eecc096fe01a65d81a2f5c13b25ad54d5430ae430b13"}, + {file = "fonttools-4.43.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18eefac1b247049a3a44bcd6e8c8fd8b97f3cad6f728173b5d81dced12d6c477"}, + {file = "fonttools-4.43.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2062542a7565091cea4cc14dd99feff473268b5b8afdee564f7067dd9fff5860"}, + {file = "fonttools-4.43.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:18a2477c62a728f4d6e88c45ee9ee0229405e7267d7d79ce1f5ce0f3e9f8ab86"}, + {file = "fonttools-4.43.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a7a06f8d95b7496e53af80d974d63516ffb263a468e614978f3899a6df52d4b3"}, + {file = "fonttools-4.43.1-cp39-cp39-win32.whl", hash = "sha256:10003ebd81fec0192c889e63a9c8c63f88c7d72ae0460b7ba0cd2a1db246e5ad"}, + {file = "fonttools-4.43.1-cp39-cp39-win_amd64.whl", hash = "sha256:e117a92b07407a061cde48158c03587ab97e74e7d73cb65e6aadb17af191162a"}, + {file = "fonttools-4.43.1-py3-none-any.whl", hash = "sha256:4f88cae635bfe4bbbdc29d479a297bb525a94889184bb69fa9560c2d4834ddb9"}, + {file = "fonttools-4.43.1.tar.gz", hash = "sha256:17dbc2eeafb38d5d0e865dcce16e313c58265a6d2d20081c435f84dc5a9d8212"}, ] [package.extras] @@ -1446,33 +1446,37 @@ test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mypy", "pre-commit" [[package]] name = "h5py" -version = "3.9.0" +version = "3.10.0" description = "Read and write HDF5 files from Python" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "h5py-3.9.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eb7bdd5e601dd1739698af383be03f3dad0465fe67184ebd5afca770f50df9d6"}, - {file = "h5py-3.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:78e44686334cbbf2dd21d9df15823bc38663f27a3061f6a032c68a3e30c47bf7"}, - {file = "h5py-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f68b41efd110ce9af1cbe6fa8af9f4dcbadace6db972d30828b911949e28fadd"}, - {file = "h5py-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:12aa556d540f11a2cae53ea7cfb94017353bd271fb3962e1296b342f6550d1b8"}, - {file = "h5py-3.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:d97409e17915798029e297a84124705c8080da901307ea58f29234e09b073ddc"}, - {file = "h5py-3.9.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:551e358db05a874a0f827b22e95b30092f2303edc4b91bb62ad2f10e0236e1a0"}, - {file = "h5py-3.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6822a814b9d8b8363ff102f76ea8d026f0ca25850bb579d85376029ee3e73b93"}, - {file = "h5py-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54f01202cdea754ab4227dd27014bdbd561a4bbe4b631424fd812f7c2ce9c6ac"}, - {file = "h5py-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64acceaf6aff92af091a4b83f6dee3cf8d3061f924a6bb3a33eb6c4658a8348b"}, - {file = "h5py-3.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:804c7fb42a34c8ab3a3001901c977a5c24d2e9c586a0f3e7c0a389130b4276fc"}, - {file = "h5py-3.9.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8d9492391ff5c3c80ec30ae2fe82a3f0efd1e750833739c25b0d090e3be1b095"}, - {file = "h5py-3.9.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9da9e7e63376c32704e37ad4cea2dceae6964cee0d8515185b3ab9cbd6b947bc"}, - {file = "h5py-3.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4e20897c88759cbcbd38fb45b507adc91af3e0f67722aa302d71f02dd44d286"}, - {file = "h5py-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbf5225543ca35ce9f61c950b73899a82be7ba60d58340e76d0bd42bf659235a"}, - {file = "h5py-3.9.0-cp38-cp38-win_amd64.whl", hash = "sha256:36408f8c62f50007d14e000f9f3acf77e103b9e932c114cbe52a3089e50ebf94"}, - {file = "h5py-3.9.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:23e74b878bbe1653ab34ca49b83cac85529cd0b36b9d625516c5830cc5ca2eac"}, - {file = "h5py-3.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3f457089c5d524b7998e3649bc63240679b8fb0a3859ea53bbb06841f3d755f1"}, - {file = "h5py-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6284061f3214335e1eec883a6ee497dbe7a79f19e6a57fed2dd1f03acd5a8cb"}, - {file = "h5py-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7a745efd0d56076999b52e8da5fad5d30823bac98b59c68ae75588d09991a"}, - {file = "h5py-3.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:79bbca34696c6f9eeeb36a91776070c49a060b2879828e2c8fa6c58b8ed10dd1"}, - {file = "h5py-3.9.0.tar.gz", hash = "sha256:e604db6521c1e367c6bd7fad239c847f53cc46646f2d2651372d05ae5e95f817"}, + {file = "h5py-3.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b963fb772964fc1d1563c57e4e2e874022ce11f75ddc6df1a626f42bd49ab99f"}, + {file = "h5py-3.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:012ab448590e3c4f5a8dd0f3533255bc57f80629bf7c5054cf4c87b30085063c"}, + {file = "h5py-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:781a24263c1270a62cd67be59f293e62b76acfcc207afa6384961762bb88ea03"}, + {file = "h5py-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f42e6c30698b520f0295d70157c4e202a9e402406f50dc08f5a7bc416b24e52d"}, + {file = "h5py-3.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:93dd840bd675787fc0b016f7a05fc6efe37312a08849d9dd4053fd0377b1357f"}, + {file = "h5py-3.10.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2381e98af081b6df7f6db300cd88f88e740649d77736e4b53db522d8874bf2dc"}, + {file = "h5py-3.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:667fe23ab33d5a8a6b77970b229e14ae3bb84e4ea3382cc08567a02e1499eedd"}, + {file = "h5py-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:90286b79abd085e4e65e07c1bd7ee65a0f15818ea107f44b175d2dfe1a4674b7"}, + {file = "h5py-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c013d2e79c00f28ffd0cc24e68665ea03ae9069e167087b2adb5727d2736a52"}, + {file = "h5py-3.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:92273ce69ae4983dadb898fd4d3bea5eb90820df953b401282ee69ad648df684"}, + {file = "h5py-3.10.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c97d03f87f215e7759a354460fb4b0d0f27001450b18b23e556e7856a0b21c3"}, + {file = "h5py-3.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:86df4c2de68257b8539a18646ceccdcf2c1ce6b1768ada16c8dcfb489eafae20"}, + {file = "h5py-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba9ab36be991119a3ff32d0c7cbe5faf9b8d2375b5278b2aea64effbeba66039"}, + {file = "h5py-3.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:2c8e4fda19eb769e9a678592e67eaec3a2f069f7570c82d2da909c077aa94339"}, + {file = "h5py-3.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:492305a074327e8d2513011fa9fffeb54ecb28a04ca4c4227d7e1e9616d35641"}, + {file = "h5py-3.10.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9450464b458cca2c86252b624279115dcaa7260a40d3cb1594bf2b410a2bd1a3"}, + {file = "h5py-3.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd6f6d1384a9f491732cee233b99cd4bfd6e838a8815cc86722f9d2ee64032af"}, + {file = "h5py-3.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3074ec45d3dc6e178c6f96834cf8108bf4a60ccb5ab044e16909580352010a97"}, + {file = "h5py-3.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:212bb997a91e6a895ce5e2f365ba764debeaef5d2dca5c6fb7098d66607adf99"}, + {file = "h5py-3.10.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5dfc65ac21fa2f630323c92453cadbe8d4f504726ec42f6a56cf80c2f90d6c52"}, + {file = "h5py-3.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d4682b94fd36ab217352be438abd44c8f357c5449b8995e63886b431d260f3d3"}, + {file = "h5py-3.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aece0e2e1ed2aab076c41802e50a0c3e5ef8816d60ece39107d68717d4559824"}, + {file = "h5py-3.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:43a61b2c2ad65b1fabc28802d133eed34debcc2c8b420cb213d3d4ef4d3e2229"}, + {file = "h5py-3.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:ae2f0201c950059676455daf92700eeb57dcf5caaf71b9e1328e6e6593601770"}, + {file = "h5py-3.10.0.tar.gz", hash = "sha256:d93adc48ceeb33347eb24a634fb787efc7ae4644e6ea4ba733d099605045c049"}, ] [package.dependencies] @@ -2024,14 +2028,14 @@ qtconsole = "*" [[package]] name = "jupyter-client" -version = "8.3.1" +version = "8.4.0" description = "Jupyter protocol implementation and client libraries" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.3.1-py3-none-any.whl", hash = "sha256:5eb9f55eb0650e81de6b7e34308d8b92d04fe4ec41cd8193a913979e33d8e1a5"}, - {file = "jupyter_client-8.3.1.tar.gz", hash = "sha256:60294b2d5b869356c893f57b1a877ea6510d60d45cf4b38057f1672d85699ac9"}, + {file = "jupyter_client-8.4.0-py3-none-any.whl", hash = "sha256:6a2a950ec23a8f62f9e4c66acec7f0ea6c7d1f80ba0992e747b10c56ce2e6dbe"}, + {file = "jupyter_client-8.4.0.tar.gz", hash = "sha256:dc1b857d5d7d76ac101766c6e9b646bf18742721126e72e5d484c75a993cada2"}, ] [package.dependencies] @@ -2073,14 +2077,14 @@ test = ["flaky", "pexpect", "pytest"] [[package]] name = "jupyter-core" -version = "5.3.2" +version = "5.4.0" description = "Jupyter core package. A base package on which Jupyter projects rely." category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_core-5.3.2-py3-none-any.whl", hash = "sha256:a4af53c3fa3f6330cebb0d9f658e148725d15652811d1c32dc0f63bb96f2e6d6"}, - {file = "jupyter_core-5.3.2.tar.gz", hash = "sha256:0c28db6cbe2c37b5b398e1a1a5b22f84fd64cd10afc1f6c05b02fb09481ba45f"}, + {file = "jupyter_core-5.4.0-py3-none-any.whl", hash = "sha256:66e252f675ac04dcf2feb6ed4afb3cd7f68cf92f483607522dc251f32d471571"}, + {file = "jupyter_core-5.4.0.tar.gz", hash = "sha256:e4b98344bb94ee2e3e6c4519a97d001656009f9cb2b7f2baf15b3c205770011d"}, ] [package.dependencies] @@ -2193,14 +2197,14 @@ test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", [[package]] name = "jupyterlab" -version = "4.0.6" +version = "4.0.7" description = "JupyterLab computational environment" category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "jupyterlab-4.0.6-py3-none-any.whl", hash = "sha256:7d9dacad1e3f30fe4d6d4efc97fda25fbb5012012b8f27cc03a2283abcdee708"}, - {file = "jupyterlab-4.0.6.tar.gz", hash = "sha256:6c43ae5a6a1fd2fdfafcb3454004958bde6da76331abb44cffc6f9e436b19ba1"}, + {file = "jupyterlab-4.0.7-py3-none-any.whl", hash = "sha256:08683045117cc495531fdb39c22ababb9aaac6977a45e67cfad20046564c9c7c"}, + {file = "jupyterlab-4.0.7.tar.gz", hash = "sha256:48792efd9f962b2bcda1f87d72168ff122c288b1d97d32109e4a11b33dc862be"}, ] [package.dependencies] @@ -3065,14 +3069,14 @@ files = [ [[package]] name = "notebook" -version = "7.0.4" +version = "7.0.5" description = "Jupyter Notebook - A web-based notebook environment for interactive computing" category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "notebook-7.0.4-py3-none-any.whl", hash = "sha256:ee738414ac01773c1ad6834cf76cc6f1ce140ac8197fd13b3e2d44d89e257f72"}, - {file = "notebook-7.0.4.tar.gz", hash = "sha256:0c1b458f72ce8774445c8ef9ed2492bd0b9ce9605ac996e2b066114f69795e71"}, + {file = "notebook-7.0.5-py3-none-any.whl", hash = "sha256:f26bd66accd54fcd96cc6696fb6c2911f15843b1c524318fd7cbdb32a763e6a6"}, + {file = "notebook-7.0.5.tar.gz", hash = "sha256:9e7c7a91de138bc8b5ee50486a20e70fa4d82d407b5622ec8beac9e13e773181"}, ] [package.dependencies] @@ -3150,33 +3154,36 @@ setuptools = "*" [[package]] name = "numcodecs" -version = "0.11.0" -description = "A Python package providing buffer compression and transformation codecs for use" +version = "0.12.0" +description = "A Python package providing buffer compression and transformation codecs for use in data storage and communication applications." category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "numcodecs-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bc116752be45b4f9dca4315e5a2b4185e3b46f68c997dbb84aef334ceb5a1d"}, - {file = "numcodecs-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c27dfca402f69fbfa01c46fb572086e77f38121192160cc8ed1177dc30702c52"}, - {file = "numcodecs-0.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:0fabc7dfdf64a9555bf8a34911e05b415793c67a1377207dc79cd96342291fa1"}, - {file = "numcodecs-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7dae3f5678f247336c84e7315a0c59a4fec7c33eb7db72d78ff5c776479a812e"}, - {file = "numcodecs-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32697785b786bb0039d3feeaabdc10f25eda6c149700cde954653aaa47637832"}, - {file = "numcodecs-0.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:8c2f36b21162c6ebccc05d3fe896f86b91dcf8709946809f730cc23a37f8234d"}, - {file = "numcodecs-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c240858bf29e0ff254b1db60430e8b2658b8c8328b684f80033289d94807a7c"}, - {file = "numcodecs-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee5bda16e9d26a7a39fc20b6c1cec23b4debc314df5cfae3ed505149c2eeafc4"}, - {file = "numcodecs-0.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:bd05cdb853c7bcfde2efc809a9df2c5e205b96f70405b810e5788b45d0d81f73"}, - {file = "numcodecs-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:694dc2e80b1f169b7deb14bdd0a04b20e5f17ef32cb0f81b71ab690406ec6bd9"}, - {file = "numcodecs-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf3925eeb37aed0e6c04d7fb9614133a3c8426dc77f8bda54c99c601a44b3bd3"}, - {file = "numcodecs-0.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:11596b71267417425ea8afb407477a67d684f434c8b07b1dd59c25a97d5c3ccb"}, - {file = "numcodecs-0.11.0.tar.gz", hash = "sha256:6c058b321de84a1729299b0eae4d652b2e48ea1ca7f9df0da65cb13470e635eb"}, + {file = "numcodecs-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e03960dd507e00bc102ff4ca2f14fa40b0cfc2ba7279752d31558d0787431a53"}, + {file = "numcodecs-0.12.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:68b3a18a93a96cba0a1d367ae76c02a74f29f93790e1c8b0423eacc4ce5d421a"}, + {file = "numcodecs-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a265db9177bd4a19939651b68722b72044bc92bb0b646e2a0d55835c0acb9d5"}, + {file = "numcodecs-0.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:3b5a0be940093d81eb49b0adba62615d3b973174d8167dbd63cc6d392e157bf6"}, + {file = "numcodecs-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f16787a674d1badd55f827b01bbc62b3ef2adecbed59a7db7139a328f0744e4a"}, + {file = "numcodecs-0.12.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:98dbc61366e2974a1bdc28e08ed790c74d39c9cb40ce3f487ae6e6a76da843dd"}, + {file = "numcodecs-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bd746cd6e7af4925bd2d3e902b5027147d71590cdc8e9e2ad999014fc2405c3b"}, + {file = "numcodecs-0.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:eae479f65b75af0e75a20049bf83beff154c4662a233695b4f7848d5eee0ef2d"}, + {file = "numcodecs-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c1f679b148bfdc9341686814485d03ad652ea551a90debadbbf9da3fb4cc003"}, + {file = "numcodecs-0.12.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:aa78ffc79a94aa78234821639c253219d8a26455f020c760ad1b331144363849"}, + {file = "numcodecs-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01f5457c0c81a556812240a2318c6022ca5c6f66fe2a51f619bdf8b0c855b5f2"}, + {file = "numcodecs-0.12.0-cp38-cp38-win_amd64.whl", hash = "sha256:e9fc2f2abcb09c301c8e1db16e4d5dc9faf93be8c46d88ac3974e023f0a3533b"}, + {file = "numcodecs-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:98c2cedb3d6dd1238b033657da0b710689a9600813bfece28fd7c158328c0d4d"}, + {file = "numcodecs-0.12.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:182458355f5cad297575f9a16e804fe345c22c7a1b796ee9a0a8bce5a9f66c60"}, + {file = "numcodecs-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1fe66c7a2b016e772a60dc8d68479958ae8c9ce306bcc318ee3d2ca883930e94"}, + {file = "numcodecs-0.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:488ba767d956f8dbf794c4c30df1983a385f048a4f1bc670dd0761b8fe7fd7a3"}, + {file = "numcodecs-0.12.0.tar.gz", hash = "sha256:6388e5f4e94d18a7165fbd1c9d3637673b74157cff8bc644005f9e2a4c717d6e"}, ] [package.dependencies] -entrypoints = "*" numpy = ">=1.7" [package.extras] -docs = ["mock", "numpydoc", "sphinx", "sphinx-issues"] +docs = ["mock", "numpydoc", "sphinx (<7.0.0)", "sphinx-issues"] msgpack = ["msgpack"] test = ["coverage", "flake8", "pytest", "pytest-cov"] zfpy = ["zfpy (>=1.0.0)"] @@ -4349,17 +4356,18 @@ files = [ [[package]] name = "pywinpty" -version = "2.0.11" +version = "2.0.12" description = "Pseudo terminal support for Windows from Python." category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "pywinpty-2.0.11-cp310-none-win_amd64.whl", hash = "sha256:452f10ac9ff8ab9151aa8cea9e491a9612a12250b1899278c6a56bc184afb47f"}, - {file = "pywinpty-2.0.11-cp311-none-win_amd64.whl", hash = "sha256:6701867d42aec1239bc0fedf49a336570eb60eb886e81763db77ea2b6c533cc3"}, - {file = "pywinpty-2.0.11-cp38-none-win_amd64.whl", hash = "sha256:0ffd287751ad871141dc9724de70ea21f7fc2ff1af50861e0d232cf70739d8c4"}, - {file = "pywinpty-2.0.11-cp39-none-win_amd64.whl", hash = "sha256:e4e7f023c28ca7aa8e1313e53ba80a4d10171fe27857b7e02f99882dfe3e8638"}, - {file = "pywinpty-2.0.11.tar.gz", hash = "sha256:e244cffe29a894876e2cd251306efd0d8d64abd5ada0a46150a4a71c0b9ad5c5"}, + {file = "pywinpty-2.0.12-cp310-none-win_amd64.whl", hash = "sha256:21319cd1d7c8844fb2c970fb3a55a3db5543f112ff9cfcd623746b9c47501575"}, + {file = "pywinpty-2.0.12-cp311-none-win_amd64.whl", hash = "sha256:853985a8f48f4731a716653170cd735da36ffbdc79dcb4c7b7140bce11d8c722"}, + {file = "pywinpty-2.0.12-cp312-none-win_amd64.whl", hash = "sha256:1617b729999eb6713590e17665052b1a6ae0ad76ee31e60b444147c5b6a35dca"}, + {file = "pywinpty-2.0.12-cp38-none-win_amd64.whl", hash = "sha256:189380469ca143d06e19e19ff3fba0fcefe8b4a8cc942140a6b863aed7eebb2d"}, + {file = "pywinpty-2.0.12-cp39-none-win_amd64.whl", hash = "sha256:7520575b6546db23e693cbd865db2764097bd6d4ef5dc18c92555904cd62c3d4"}, + {file = "pywinpty-2.0.12.tar.gz", hash = "sha256:8197de460ae8ebb7f5d1701dfa1b5df45b157bb832e92acba316305e18ca00dd"}, ] [[package]] @@ -4764,111 +4772,111 @@ jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "rpds-py" -version = "0.10.4" +version = "0.10.6" description = "Python bindings to Rust's persistent data structures (rpds)" category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "rpds_py-0.10.4-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:e41824343c2c129599645373992b1ce17720bb8a514f04ff9567031e1c26951e"}, - {file = "rpds_py-0.10.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b9d8884d58ea8801e5906a491ab34af975091af76d1a389173db491ee7e316bb"}, - {file = "rpds_py-0.10.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5db93f9017b384a4f194e1d89e1ce82d0a41b1fafdbbd3e0c8912baf13f2950f"}, - {file = "rpds_py-0.10.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c31ecfc53ac03dad4928a1712f3a2893008bfba1b3cde49e1c14ff67faae2290"}, - {file = "rpds_py-0.10.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f92d2372ec992c82fd7c74aa21e2a1910b3dcdc6a7e6392919a138f21d528a3"}, - {file = "rpds_py-0.10.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f7ea49ddf51d5ec0c3cbd95190dd15e077a3153c8d4b22a33da43b5dd2b3c640"}, - {file = "rpds_py-0.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c27942722cd5039bbf5098c7e21935a96243fed00ea11a9589f3c6c6424bd84"}, - {file = "rpds_py-0.10.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:08f07150c8ebbdbce1d2d51b8e9f4d588749a2af6a98035485ebe45c7ad9394e"}, - {file = "rpds_py-0.10.4-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f3331a3684192659fa1090bf2b448db928152fcba08222e58106f44758ef25f7"}, - {file = "rpds_py-0.10.4-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:efffa359cc69840c8793f0c05a7b663de6afa7b9078fa6c80309ee38b9db677d"}, - {file = "rpds_py-0.10.4-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:86e8d6ff15fa7a9590c0addaf3ce52fb58bda4299cab2c2d0afa404db6848dab"}, - {file = "rpds_py-0.10.4-cp310-none-win32.whl", hash = "sha256:8f90fc6dd505867514c8b8ef68a712dc0be90031a773c1ae2ad469f04062daef"}, - {file = "rpds_py-0.10.4-cp310-none-win_amd64.whl", hash = "sha256:9f9184744fb800c9f28e155a5896ecb54816296ee79d5d1978be6a2ae60f53c4"}, - {file = "rpds_py-0.10.4-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:72e9b1e92830c876cd49565d8404e4dcc9928302d348ea2517bc3f9e3a873a2a"}, - {file = "rpds_py-0.10.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3650eae998dc718960e90120eb45d42bd57b18b21b10cb9ee05f91bff2345d48"}, - {file = "rpds_py-0.10.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f40413d2859737ce6d95c29ce2dde0ef7cdc3063b5830ae4342fef5922c3bba7"}, - {file = "rpds_py-0.10.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b953d11b544ca5f2705bb77b177d8e17ab1bfd69e0fd99790a11549d2302258c"}, - {file = "rpds_py-0.10.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:28b4942ec7d9d6114c1e08cace0157db92ef674636a38093cab779ace5742d3a"}, - {file = "rpds_py-0.10.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2e0e2e01c5f61ddf47e3ed2d1fe1c9136e780ca6222d57a2517b9b02afd4710c"}, - {file = "rpds_py-0.10.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:927e3461dae0c09b1f2e0066e50c1a9204f8a64a3060f596e9a6742d3b307785"}, - {file = "rpds_py-0.10.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e69bbe0ede8f7fe2616e779421bbdb37f025c802335a90f6416e4d98b368a37"}, - {file = "rpds_py-0.10.4-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cc688a59c100f038fa9fec9e4ab457c2e2d1fca350fe7ea395016666f0d0a2dc"}, - {file = "rpds_py-0.10.4-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ec001689402b9104700b50a005c2d3d0218eae90eaa8bdbbd776fe78fe8a74b7"}, - {file = "rpds_py-0.10.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:628fbb8be71a103499d10b189af7764996ab2634ed7b44b423f1e19901606e0e"}, - {file = "rpds_py-0.10.4-cp311-none-win32.whl", hash = "sha256:e3f9c9e5dd8eba4768e15f19044e1b5e216929a43a54b4ab329e103aed9f3eda"}, - {file = "rpds_py-0.10.4-cp311-none-win_amd64.whl", hash = "sha256:3bc561c183684636c0099f9c3fbab8c1671841942edbce784bb01b4707d17924"}, - {file = "rpds_py-0.10.4-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:36ff30385fb9fb3ac23a28bffdd4a230a5229ed5b15704b708b7c84bfb7fce51"}, - {file = "rpds_py-0.10.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db0589e0bf41ff6ce284ab045ca89f27be1adf19e7bce26c2e7de6739a70c18b"}, - {file = "rpds_py-0.10.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c330cb125983c5d380fef4a4155248a276297c86d64625fdaf500157e1981c"}, - {file = "rpds_py-0.10.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d230fddc60caced271cc038e43e6fb8f4dd6b2dbaa44ac9763f2d76d05b0365a"}, - {file = "rpds_py-0.10.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2a9e864ec051a58fdb6bb2e6da03942adb20273897bc70067aee283e62bbac4d"}, - {file = "rpds_py-0.10.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e41d5b334e8de4bc3f38843f31b2afa9a0c472ebf73119d3fd55cde08974bdf"}, - {file = "rpds_py-0.10.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5bb3f3cb6072c73e6ec1f865d8b80419b599f1597acf33f63fbf02252aab5a03"}, - {file = "rpds_py-0.10.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:576d48e1e45c211e99fc02655ade65c32a75d3e383ccfd98ce59cece133ed02c"}, - {file = "rpds_py-0.10.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:b28b9668a22ca2cfca4433441ba9acb2899624a323787a509a3dc5fbfa79c49d"}, - {file = "rpds_py-0.10.4-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ddbd113a37307638f94be5ae232a325155fd24dbfae2c56455da8724b471e7be"}, - {file = "rpds_py-0.10.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:bd0ad98c7d72b0e4cbfe89cdfa12cd07d2fd6ed22864341cdce12b318a383442"}, - {file = "rpds_py-0.10.4-cp312-none-win32.whl", hash = "sha256:2a97406d5e08b7095428f01dac0d3c091dc072351151945a167e7968d2755559"}, - {file = "rpds_py-0.10.4-cp312-none-win_amd64.whl", hash = "sha256:aab24b9bbaa3d49e666e9309556591aa00748bd24ea74257a405f7fed9e8b10d"}, - {file = "rpds_py-0.10.4-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:6c5ca3eb817fb54bfd066740b64a2b31536eb8fe0b183dc35b09a7bd628ed680"}, - {file = "rpds_py-0.10.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:fd37ab9a24021821b715478357af1cf369d5a42ac7405e83e5822be00732f463"}, - {file = "rpds_py-0.10.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2573ec23ad3a59dd2bc622befac845695972f3f2d08dc1a4405d017d20a6c225"}, - {file = "rpds_py-0.10.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:362faeae52dc6ccc50c0b6a01fa2ec0830bb61c292033f3749a46040b876f4ba"}, - {file = "rpds_py-0.10.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:40f6e53461b19ddbb3354fe5bcf3d50d4333604ae4bf25b478333d83ca68002c"}, - {file = "rpds_py-0.10.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6090ba604ea06b525a231450ae5d343917a393cbf50423900dea968daf61d16f"}, - {file = "rpds_py-0.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28e29dac59df890972f73c511948072897f512974714a803fe793635b80ff8c7"}, - {file = "rpds_py-0.10.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f82abb5c5b83dc30e96be99ce76239a030b62a73a13c64410e429660a5602bfd"}, - {file = "rpds_py-0.10.4-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:a3628815fd170a64624001bfb4e28946fd515bd672e68a1902d9e0290186eaf3"}, - {file = "rpds_py-0.10.4-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:d37f27ad80f742ef82796af3fe091888864958ad0bc8bab03da1830fa00c6004"}, - {file = "rpds_py-0.10.4-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:255a23bded80605e9f3997753e3a4b89c9aec9efb07ec036b1ca81440efcc1a9"}, - {file = "rpds_py-0.10.4-cp38-none-win32.whl", hash = "sha256:049098dabfe705e9638c55a3321137a821399c50940041a6fcce267a22c70db2"}, - {file = "rpds_py-0.10.4-cp38-none-win_amd64.whl", hash = "sha256:aa45cc71bf23a3181b8aa62466b5a2b7b7fb90fdc01df67ca433cd4fce7ec94d"}, - {file = "rpds_py-0.10.4-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:3507c459767cf24c11e9520e2a37c89674266abe8e65453e5cb66398aa47ee7b"}, - {file = "rpds_py-0.10.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2603e084054351cc65097da326570102c4c5bd07426ba8471ceaefdb0b642cc9"}, - {file = "rpds_py-0.10.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0f1d336786cb62613c72c00578c98e5bb8cd57b49c5bae5d4ab906ca7872f98"}, - {file = "rpds_py-0.10.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf032367f921201deaecf221d4cc895ea84b3decf50a9c73ee106f961885a0ad"}, - {file = "rpds_py-0.10.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7f050ceffd8c730c1619a16bbf0b9cd037dcdb94b54710928ba38c7bde67e4a4"}, - {file = "rpds_py-0.10.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8709eb4ab477c533b7d0a76cd3065d7d95c9e25e6b9f6e27caeeb8c63e8799c9"}, - {file = "rpds_py-0.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc20dadb102140dff63529e08ce6f9745dbd36e673ebb2b1c4a63e134bca81c2"}, - {file = "rpds_py-0.10.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cd7da2adc721ccf19ac7ec86cae3a4fcaba03d9c477d5bd64ded6e9bb817bf3f"}, - {file = "rpds_py-0.10.4-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:e5dba1c11e089b526379e74f6c636202e4c5bad9a48c7416502b8a5b0d026c91"}, - {file = "rpds_py-0.10.4-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ffd539d213c1ea2989ab92a5b9371ae7159c8c03cf2bcb9f2f594752f755ecd3"}, - {file = "rpds_py-0.10.4-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e791e3d13b14d0a7921804d0efe4d7bd15508bbcf8cb7a0c1ee1a27319a5f033"}, - {file = "rpds_py-0.10.4-cp39-none-win32.whl", hash = "sha256:2f2ac8bb01f705c5caaa7fe77ffd9b03f92f1b5061b94228f6ea5eaa0fca68ad"}, - {file = "rpds_py-0.10.4-cp39-none-win_amd64.whl", hash = "sha256:7c7ca791bedda059e5195cf7c6b77384657a51429357cdd23e64ac1d4973d6dc"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:9c7e7bd1fa1f535af71dfcd3700fc83a6dc261a1204f8f5327d8ffe82e52905d"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:7089d8bfa8064b28b2e39f5af7bf12d42f61caed884e35b9b4ea9e6fb1175077"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1f191befea279cb9669b57be97ab1785781c8bab805900e95742ebfaa9cbf1d"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:98c0aecf661c175ce9cb17347fc51a5c98c3e9189ca57e8fcd9348dae18541db"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d81359911c3bb31c899c6a5c23b403bdc0279215e5b3bc0d2a692489fed38632"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:83da147124499fe41ed86edf34b4e81e951b3fe28edcc46288aac24e8a5c8484"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49db6c0a0e6626c2b97f5e7f8f7074da21cbd8ec73340c25e839a2457c007efa"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:125776d5db15162fdd9135372bef7fe4fb7c5f5810cf25898eb74a06a0816aec"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:32819b662e3b4c26355a4403ea2f60c0a00db45b640fe722dd12db3d2ef807fb"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:3bd38b80491ef9686f719c1ad3d24d14fbd0e069988fdd4e7d1a6ffcdd7f4a13"}, - {file = "rpds_py-0.10.4-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:2e79eeeff8394284b09577f36316d410525e0cf0133abb3de10660e704d3d38e"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:3e37f1f134037601eb4b1f46854194f0cc082435dac2ee3de11e51529f7831f2"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:ba3246c60303eab3d0e562addf25a983d60bddc36f4d1edc2510f056d19df255"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9123ba0f3f98ff79780eebca9984a2b525f88563844b740f94cffb9099701230"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d98802b78093c7083cc51f83da41a5be5a57d406798c9f69424bd75f8ae0812a"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:58bae860d1d116e6b4e1aad0cdc48a187d5893994f56d26db0c5534df7a47afd"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd7e62e7d5bcfa38a62d8397fba6d0428b970ab7954c2197501cd1624f7f0bbb"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83f5228459b84fa6279e4126a53abfdd73cd9cc183947ee5084153880f65d7"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4bcb1abecd998a72ad4e36a0fca93577fd0c059a6aacc44f16247031b98f6ff4"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:9e7b3ad9f53ea9e085b3d27286dd13f8290969c0a153f8a52c8b5c46002c374b"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:cbec8e43cace64e63398155dc585dc479a89fef1e57ead06c22d3441e1bd09c3"}, - {file = "rpds_py-0.10.4-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:ad21c60fc880204798f320387164dcacc25818a7b4ec2a0bf6b6c1d57b007d23"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:6baea8a4f6f01e69e75cfdef3edd4a4d1c4b56238febbdf123ce96d09fbff010"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:94876c21512535955a960f42a155213315e6ab06a4ce8ce372341a2a1b143eeb"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4cb55454a20d1b935f9eaab52e6ceab624a2efd8b52927c7ae7a43e02828dbe0"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:13cbd79ccedc6b39c279af31ebfb0aec0467ad5d14641ddb15738bf6e4146157"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:00a88003db3cc953f8656b59fc9af9d0637a1fb93c235814007988f8c153b2f2"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0f7f77a77c37159c9f417b8dd847f67a29e98c6acb52ee98fc6b91efbd1b2b6"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70563a1596d2e0660ca2cebb738443437fc0e38597e7cbb276de0a7363924a52"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e3ece9aa6d07e18c966f14b4352a4c6f40249f6174d3d2c694c1062e19c6adbb"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:d5ad7b1a1f6964d19b1a8acfc14bf7864f39587b3e25c16ca04f6cd1815026b3"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:60018626e637528a1fa64bb3a2b3e46ab7bf672052316d61c3629814d5e65052"}, - {file = "rpds_py-0.10.4-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:ae8a32ab77a84cc870bbfb60645851ca0f7d58fd251085ad67464b1445d632ca"}, - {file = "rpds_py-0.10.4.tar.gz", hash = "sha256:18d5ff7fbd305a1d564273e9eb22de83ae3cd9cd6329fddc8f12f6428a711a6a"}, + {file = "rpds_py-0.10.6-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:6bdc11f9623870d75692cc33c59804b5a18d7b8a4b79ef0b00b773a27397d1f6"}, + {file = "rpds_py-0.10.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:26857f0f44f0e791f4a266595a7a09d21f6b589580ee0585f330aaccccb836e3"}, + {file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7f5e15c953ace2e8dde9824bdab4bec50adb91a5663df08d7d994240ae6fa31"}, + {file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61fa268da6e2e1cd350739bb61011121fa550aa2545762e3dc02ea177ee4de35"}, + {file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c48f3fbc3e92c7dd6681a258d22f23adc2eb183c8cb1557d2fcc5a024e80b094"}, + {file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0503c5b681566e8b722fe8c4c47cce5c7a51f6935d5c7012c4aefe952a35eed"}, + {file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:734c41f9f57cc28658d98270d3436dba65bed0cfc730d115b290e970150c540d"}, + {file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a5d7ed104d158c0042a6a73799cf0eb576dfd5fc1ace9c47996e52320c37cb7c"}, + {file = "rpds_py-0.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e3df0bc35e746cce42579826b89579d13fd27c3d5319a6afca9893a9b784ff1b"}, + {file = "rpds_py-0.10.6-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:73e0a78a9b843b8c2128028864901f55190401ba38aae685350cf69b98d9f7c9"}, + {file = "rpds_py-0.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5ed505ec6305abd2c2c9586a7b04fbd4baf42d4d684a9c12ec6110deefe2a063"}, + {file = "rpds_py-0.10.6-cp310-none-win32.whl", hash = "sha256:d97dd44683802000277bbf142fd9f6b271746b4846d0acaf0cefa6b2eaf2a7ad"}, + {file = "rpds_py-0.10.6-cp310-none-win_amd64.whl", hash = "sha256:b455492cab07107bfe8711e20cd920cc96003e0da3c1f91297235b1603d2aca7"}, + {file = "rpds_py-0.10.6-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:e8cdd52744f680346ff8c1ecdad5f4d11117e1724d4f4e1874f3a67598821069"}, + {file = "rpds_py-0.10.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:66414dafe4326bca200e165c2e789976cab2587ec71beb80f59f4796b786a238"}, + {file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc435d059f926fdc5b05822b1be4ff2a3a040f3ae0a7bbbe672babb468944722"}, + {file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8e7f2219cb72474571974d29a191714d822e58be1eb171f229732bc6fdedf0ac"}, + {file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3953c6926a63f8ea5514644b7afb42659b505ece4183fdaaa8f61d978754349e"}, + {file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2bb2e4826be25e72013916eecd3d30f66fd076110de09f0e750163b416500721"}, + {file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bf347b495b197992efc81a7408e9a83b931b2f056728529956a4d0858608b80"}, + {file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:102eac53bb0bf0f9a275b438e6cf6904904908562a1463a6fc3323cf47d7a532"}, + {file = "rpds_py-0.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:40f93086eef235623aa14dbddef1b9fb4b22b99454cb39a8d2e04c994fb9868c"}, + {file = "rpds_py-0.10.6-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e22260a4741a0e7a206e175232867b48a16e0401ef5bce3c67ca5b9705879066"}, + {file = "rpds_py-0.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f4e56860a5af16a0fcfa070a0a20c42fbb2012eed1eb5ceeddcc7f8079214281"}, + {file = "rpds_py-0.10.6-cp311-none-win32.whl", hash = "sha256:0774a46b38e70fdde0c6ded8d6d73115a7c39d7839a164cc833f170bbf539116"}, + {file = "rpds_py-0.10.6-cp311-none-win_amd64.whl", hash = "sha256:4a5ee600477b918ab345209eddafde9f91c0acd931f3776369585a1c55b04c57"}, + {file = "rpds_py-0.10.6-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:5ee97c683eaface61d38ec9a489e353d36444cdebb128a27fe486a291647aff6"}, + {file = "rpds_py-0.10.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0713631d6e2d6c316c2f7b9320a34f44abb644fc487b77161d1724d883662e31"}, + {file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5a53f5998b4bbff1cb2e967e66ab2addc67326a274567697379dd1e326bded7"}, + {file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6a555ae3d2e61118a9d3e549737bb4a56ff0cec88a22bd1dfcad5b4e04759175"}, + {file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:945eb4b6bb8144909b203a88a35e0a03d22b57aefb06c9b26c6e16d72e5eb0f0"}, + {file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:52c215eb46307c25f9fd2771cac8135d14b11a92ae48d17968eda5aa9aaf5071"}, + {file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1b3cd23d905589cb205710b3988fc8f46d4a198cf12862887b09d7aaa6bf9b9"}, + {file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:64ccc28683666672d7c166ed465c09cee36e306c156e787acef3c0c62f90da5a"}, + {file = "rpds_py-0.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:516a611a2de12fbea70c78271e558f725c660ce38e0006f75139ba337d56b1f6"}, + {file = "rpds_py-0.10.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:9ff93d3aedef11f9c4540cf347f8bb135dd9323a2fc705633d83210d464c579d"}, + {file = "rpds_py-0.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d858532212f0650be12b6042ff4378dc2efbb7792a286bee4489eaa7ba010586"}, + {file = "rpds_py-0.10.6-cp312-none-win32.whl", hash = "sha256:3c4eff26eddac49d52697a98ea01b0246e44ca82ab09354e94aae8823e8bda02"}, + {file = "rpds_py-0.10.6-cp312-none-win_amd64.whl", hash = "sha256:150eec465dbc9cbca943c8e557a21afdcf9bab8aaabf386c44b794c2f94143d2"}, + {file = "rpds_py-0.10.6-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:cf693eb4a08eccc1a1b636e4392322582db2a47470d52e824b25eca7a3977b53"}, + {file = "rpds_py-0.10.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4134aa2342f9b2ab6c33d5c172e40f9ef802c61bb9ca30d21782f6e035ed0043"}, + {file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e782379c2028a3611285a795b89b99a52722946d19fc06f002f8b53e3ea26ea9"}, + {file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2f6da6d842195fddc1cd34c3da8a40f6e99e4a113918faa5e60bf132f917c247"}, + {file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b4a9fe992887ac68256c930a2011255bae0bf5ec837475bc6f7edd7c8dfa254e"}, + {file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b788276a3c114e9f51e257f2a6f544c32c02dab4aa7a5816b96444e3f9ffc336"}, + {file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:caa1afc70a02645809c744eefb7d6ee8fef7e2fad170ffdeacca267fd2674f13"}, + {file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bddd4f91eede9ca5275e70479ed3656e76c8cdaaa1b354e544cbcf94c6fc8ac4"}, + {file = "rpds_py-0.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:775049dfa63fb58293990fc59473e659fcafd953bba1d00fc5f0631a8fd61977"}, + {file = "rpds_py-0.10.6-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c6c45a2d2b68c51fe3d9352733fe048291e483376c94f7723458cfd7b473136b"}, + {file = "rpds_py-0.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0699ab6b8c98df998c3eacf51a3b25864ca93dab157abe358af46dc95ecd9801"}, + {file = "rpds_py-0.10.6-cp38-none-win32.whl", hash = "sha256:ebdab79f42c5961682654b851f3f0fc68e6cc7cd8727c2ac4ffff955154123c1"}, + {file = "rpds_py-0.10.6-cp38-none-win_amd64.whl", hash = "sha256:24656dc36f866c33856baa3ab309da0b6a60f37d25d14be916bd3e79d9f3afcf"}, + {file = "rpds_py-0.10.6-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:0898173249141ee99ffcd45e3829abe7bcee47d941af7434ccbf97717df020e5"}, + {file = "rpds_py-0.10.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9e9184fa6c52a74a5521e3e87badbf9692549c0fcced47443585876fcc47e469"}, + {file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5752b761902cd15073a527b51de76bbae63d938dc7c5c4ad1e7d8df10e765138"}, + {file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:99a57006b4ec39dbfb3ed67e5b27192792ffb0553206a107e4aadb39c5004cd5"}, + {file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09586f51a215d17efdb3a5f090d7cbf1633b7f3708f60a044757a5d48a83b393"}, + {file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e225a6a14ecf44499aadea165299092ab0cba918bb9ccd9304eab1138844490b"}, + {file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2039f8d545f20c4e52713eea51a275e62153ee96c8035a32b2abb772b6fc9e5"}, + {file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:34ad87a831940521d462ac11f1774edf867c34172010f5390b2f06b85dcc6014"}, + {file = "rpds_py-0.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dcdc88b6b01015da066da3fb76545e8bb9a6880a5ebf89e0f0b2e3ca557b3ab7"}, + {file = "rpds_py-0.10.6-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:25860ed5c4e7f5e10c496ea78af46ae8d8468e0be745bd233bab9ca99bfd2647"}, + {file = "rpds_py-0.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7854a207ef77319ec457c1eb79c361b48807d252d94348305db4f4b62f40f7f3"}, + {file = "rpds_py-0.10.6-cp39-none-win32.whl", hash = "sha256:e6fcc026a3f27c1282c7ed24b7fcac82cdd70a0e84cc848c0841a3ab1e3dea2d"}, + {file = "rpds_py-0.10.6-cp39-none-win_amd64.whl", hash = "sha256:e98c4c07ee4c4b3acf787e91b27688409d918212dfd34c872201273fdd5a0e18"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:68fe9199184c18d997d2e4293b34327c0009a78599ce703e15cd9a0f47349bba"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:3339eca941568ed52d9ad0f1b8eb9fe0958fa245381747cecf2e9a78a5539c42"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a360cfd0881d36c6dc271992ce1eda65dba5e9368575663de993eeb4523d895f"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:031f76fc87644a234883b51145e43985aa2d0c19b063e91d44379cd2786144f8"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1f36a9d751f86455dc5278517e8b65580eeee37d61606183897f122c9e51cef3"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:052a832078943d2b2627aea0d19381f607fe331cc0eb5df01991268253af8417"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:023574366002bf1bd751ebaf3e580aef4a468b3d3c216d2f3f7e16fdabd885ed"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:defa2c0c68734f4a82028c26bcc85e6b92cced99866af118cd6a89b734ad8e0d"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:879fb24304ead6b62dbe5034e7b644b71def53c70e19363f3c3be2705c17a3b4"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:53c43e10d398e365da2d4cc0bcaf0854b79b4c50ee9689652cdc72948e86f487"}, + {file = "rpds_py-0.10.6-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:3777cc9dea0e6c464e4b24760664bd8831738cc582c1d8aacf1c3f546bef3f65"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:40578a6469e5d1df71b006936ce95804edb5df47b520c69cf5af264d462f2cbb"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:cf71343646756a072b85f228d35b1d7407da1669a3de3cf47f8bbafe0c8183a4"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10f32b53f424fc75ff7b713b2edb286fdbfc94bf16317890260a81c2c00385dc"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:81de24a1c51cfb32e1fbf018ab0bdbc79c04c035986526f76c33e3f9e0f3356c"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac17044876e64a8ea20ab132080ddc73b895b4abe9976e263b0e30ee5be7b9c2"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e8a78bd4879bff82daef48c14d5d4057f6856149094848c3ed0ecaf49f5aec2"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78ca33811e1d95cac8c2e49cb86c0fb71f4d8409d8cbea0cb495b6dbddb30a55"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c63c3ef43f0b3fb00571cff6c3967cc261c0ebd14a0a134a12e83bdb8f49f21f"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:7fde6d0e00b2fd0dbbb40c0eeec463ef147819f23725eda58105ba9ca48744f4"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:79edd779cfc46b2e15b0830eecd8b4b93f1a96649bcb502453df471a54ce7977"}, + {file = "rpds_py-0.10.6-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:9164ec8010327ab9af931d7ccd12ab8d8b5dc2f4c6a16cbdd9d087861eaaefa1"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d29ddefeab1791e3c751e0189d5f4b3dbc0bbe033b06e9c333dca1f99e1d523e"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:30adb75ecd7c2a52f5e76af50644b3e0b5ba036321c390b8e7ec1bb2a16dd43c"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd609fafdcdde6e67a139898196698af37438b035b25ad63704fd9097d9a3482"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6eef672de005736a6efd565577101277db6057f65640a813de6c2707dc69f396"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6cf4393c7b41abbf07c88eb83e8af5013606b1cdb7f6bc96b1b3536b53a574b8"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ad857f42831e5b8d41a32437f88d86ead6c191455a3499c4b6d15e007936d4cf"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d7360573f1e046cb3b0dceeb8864025aa78d98be4bb69f067ec1c40a9e2d9df"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d08f63561c8a695afec4975fae445245386d645e3e446e6f260e81663bfd2e38"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:f0f17f2ce0f3529177a5fff5525204fad7b43dd437d017dd0317f2746773443d"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:442626328600bde1d09dc3bb00434f5374948838ce75c41a52152615689f9403"}, + {file = "rpds_py-0.10.6-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:e9616f5bd2595f7f4a04b67039d890348ab826e943a9bfdbe4938d0eba606971"}, + {file = "rpds_py-0.10.6.tar.gz", hash = "sha256:4ce5a708d65a8dbf3748d2474b580d606b1b9f91b5c6ab2a316e0b0cf7a4ba50"}, ] [[package]] @@ -5646,62 +5654,72 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.5.1)", "pre-commit", "pytest (>=7.0, [[package]] name = "traits" -version = "6.4.2" +version = "6.4.3" description = "Observable typed attributes for Python classes" category = "main" optional = false python-versions = ">=3.7" files = [ - {file = "traits-6.4.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:348fbd56b8c05ebd415dcb5c6c73edfa730144444c40e34af4427f449d4dd922"}, - {file = "traits-6.4.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:23ef1b1d7cd135db1b051f31c5c22ed70e41cd25f77961c56def5fad4e339c71"}, - {file = "traits-6.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b175cd1307de814df6e72c30859fcb9126f25ff26ba8400d680f8f17d32ec191"}, - {file = "traits-6.4.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eae0eb6f01b2b287127604e2b3364b717ef504b502b5e369c58f46d62975462a"}, - {file = "traits-6.4.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7c9561417748e1c0dad5ef091612e11ef4489dd5b76893773c325889d31894c"}, - {file = "traits-6.4.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e2ec55ac0b576a10aae98e9d9b89cb6799750b5566e32f635223656835eccf11"}, - {file = "traits-6.4.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:54c9b156b52d13f8cefd89dfbd85be03aa1963007a7b1bdcab07dd39df023dd3"}, - {file = "traits-6.4.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:770688643f4b8e3c8c48b77f11e99d5e00606660a6afd699a0e3474922f695ad"}, - {file = "traits-6.4.2-cp310-cp310-win32.whl", hash = "sha256:9df3008437e3b394bf8ec87720b173095b56a449bd5fe1e78b8505047499dc6c"}, - {file = "traits-6.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:cb8797d61e31648a0604199e38fe16bc6c88b9ddeeba69f4b7800a8b2484b6a3"}, - {file = "traits-6.4.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6ef41e314b99b498b16b034cdd483ab5639058c367362912ae4f9688a1462655"}, - {file = "traits-6.4.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0eb67f6e51dfb3957db45868aec36a66ecbd00c705bf27a7b89559839c0026ff"}, - {file = "traits-6.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e339561850fa001ffbc30d9d4e24fa4de26aea473066cabdf8587625844d492"}, - {file = "traits-6.4.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b66f1cbbcdc2e7d2b68506d57f230ad6008ebe2cb4b1528006d7633169b204f0"}, - {file = "traits-6.4.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ec3c67c900a537fe119a733af277b9d79918a1b975e2a2a46aab5b9d3880dca"}, - {file = "traits-6.4.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ef1b1f09f1f3461bdd064ec140a56f70fd6ec087b92bd9eec00a8ec28595b742"}, - {file = "traits-6.4.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:2cf7b52c192bde17b2c05bfd43bbab70656548cf966ccf3f01f586aed26f82be"}, - {file = "traits-6.4.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f3b1cef635fefe2546efaf91a824d0da1c148940056b22b270a3a5b388db2dc3"}, - {file = "traits-6.4.2-cp311-cp311-win32.whl", hash = "sha256:9bbee77943ab888ab303d4a874dbb3226f4c1a82a45f86d41e4b22c32c94ab2c"}, - {file = "traits-6.4.2-cp311-cp311-win_amd64.whl", hash = "sha256:9f2b082820c715612c7154aac3ba86a52e8b4c79dcf0474752d5e3958de242de"}, - {file = "traits-6.4.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:879de4aaf19cb00ce3beff03fc297d266a53275824af4bbd88f02128e5763818"}, - {file = "traits-6.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aa1e6fadd40603d5f2dd3f3f84b274eae934925b28bad10a5ce985563028056d"}, - {file = "traits-6.4.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a4d12049e4b90a5d1a7470dc3a46e28c2ebe3f8ef54e470130ca1f9e91b7552"}, - {file = "traits-6.4.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ac8c4eed0fac8c7b4f6ac3a59490db70fed8f8928ec589737315e0ef7ac14be"}, - {file = "traits-6.4.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d393670685c776c8c0e7dd26b9566361dc0c03997e0799877eacc5f48b996e58"}, - {file = "traits-6.4.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e23f2631d225627b909322d7f05c7b9b5c3c06b5dea9f6aebf886d7e51aea83b"}, - {file = "traits-6.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0eb6b528af4d95f720a76d50114a04aabdd57243ec33088d4ec56009c6a052fd"}, - {file = "traits-6.4.2-cp37-cp37m-win32.whl", hash = "sha256:45e54214f217efbfc4090cab68346e3ccea4137ebe887c749381b8f0e0182739"}, - {file = "traits-6.4.2-cp37-cp37m-win_amd64.whl", hash = "sha256:dcb7fedad65c348d661707bb16eb78f0a7fbb5d0446b6526de41d4c0c9991e3d"}, - {file = "traits-6.4.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3fe1a78ffaf718a541fa0c4149378b37c15255e7cc6f355a7a050c0ad6ccf5c4"}, - {file = "traits-6.4.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:826c97924fafb20fb6617eda6088331d2b368eaca04b68c1dd544140ae39b3a4"}, - {file = "traits-6.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4d3b9bac40bcffe7484897cd2d80d5ed35399cc920792f0f72af13b96aee71e"}, - {file = "traits-6.4.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a6f907f352151d7015944a2992c797023c2e9ec1549faf1ffd19ad9e63b7ce5c"}, - {file = "traits-6.4.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f263bc6007a6516ebd4707deb2720b6897b7120e15a5b14ac31e4edd20722d73"}, - {file = "traits-6.4.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e748ba33ddfb674d0863d2c93ad5cd4b6bf71edb19852f1e6a891d3b7cf3b7de"}, - {file = "traits-6.4.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:38d1ce9de88c0ef1255ce3f6d4f6c5e6c9647510ee8a09d9c3b0eb4723c5da23"}, - {file = "traits-6.4.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:260dd783c2f9f9f596dc2b320e9147c61bef21c59ce2209f41eab5fad47c2956"}, - {file = "traits-6.4.2-cp38-cp38-win32.whl", hash = "sha256:72ed42f9c6b9b3623bd76ed9717d65c4f224a3dcb7f0e4e16e06e09bdce0901e"}, - {file = "traits-6.4.2-cp38-cp38-win_amd64.whl", hash = "sha256:41a6cdcbaf484920f3a94cdac09a1ceb889ab932228731e09ac7fd0c604a012e"}, - {file = "traits-6.4.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c19f8959ecaf9f9b08d27a441dc63942f86a261586cd9cae4b628eba49e72d4e"}, - {file = "traits-6.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:56d9c5d1a750f593dc7674fceb0761da750516ee5973e90efe3516d80899806f"}, - {file = "traits-6.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70537b88b022c1aa1e27093771d62decccd523a8c25db42ffea63cf1c7443ee7"}, - {file = "traits-6.4.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e0d499ff65d76f6d8fcbf861e5f36daab423c8145c435a2f3c88e4140fc512"}, - {file = "traits-6.4.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dd5e01c1086758deeade9a5d4c3f4e1eb1bc32027cb1eac9ca120257987df07"}, - {file = "traits-6.4.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d503d3945aa2706b5bd7dcc79df5e4e46deec2460e3a94ed6c56f8dc1afad91"}, - {file = "traits-6.4.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7dee261c10e084426096b8073a4f524a45fc956628817dc1c683c0402f30efec"}, - {file = "traits-6.4.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8c98337f688e702dca1aa7fa856994f96a71ce53f2bad9e0e07ebcb8dc3e4b3d"}, - {file = "traits-6.4.2-cp39-cp39-win32.whl", hash = "sha256:9c4375a597088e4a9ffdc59312ec365c353493aafad582e184d80c865911fbb0"}, - {file = "traits-6.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:e9a67abe16994b92f55e8dafaca59ef0cb46307265fd2b12439059b8cc3ae691"}, - {file = "traits-6.4.2.tar.gz", hash = "sha256:5be7cc5fb7a99cba7e9014786373e3ad2f75efb445eeced094654bbaf3b0fa82"}, + {file = "traits-6.4.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:64bfbd0fc4c8fa25eb55d6d46a8f98992852acaf904618879dbbba87a09289aa"}, + {file = "traits-6.4.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e1e97f8a45c161715dfb69d5248cb54210057b5bd649caf08041465374dadbc1"}, + {file = "traits-6.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb126a6485edab740b2f238e9b02c830f7c8f7c1112609b4b5d280aef3e9421"}, + {file = "traits-6.4.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35f0bd177409697a33e95d5e5066670db122f0b5451e7a0ddffc9752d2bf3f48"}, + {file = "traits-6.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:57109bca87c1e9ec125332a758c95cdf940540efc4c53a30df8d1dfa119472b9"}, + {file = "traits-6.4.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:46cc41d2c65b374fbc600f39fe4bd68bbd01bfbdd6629c29e39686a854d4cfd0"}, + {file = "traits-6.4.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2faa1467ac1da29f295a90ef0867474be79edb5aea133811c0e2403ac645adf9"}, + {file = "traits-6.4.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:053d7c176cc83b228d497cf96171792fb96b91a342bb9666071d513b4e064e66"}, + {file = "traits-6.4.3-cp310-cp310-win32.whl", hash = "sha256:371c2b24daa7534206c8353d2fc62663b7068c25eb5f9a2a865e115e940abedf"}, + {file = "traits-6.4.3-cp310-cp310-win_amd64.whl", hash = "sha256:fa8bc65a24dc3638f94f4fbc7d60c1838bb4e569c73317d37ab57fb3f23abb08"}, + {file = "traits-6.4.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8b098ecde49f78bc2587f43880d1344a8a81c9862244ad7e63d48409a8855b5c"}, + {file = "traits-6.4.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8348b7f54f4a4be6c60872c23c5ec00db2322591d12d4eee3f3c7f472585504a"}, + {file = "traits-6.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f791cca287a428dda5adc833915789f60dea1241e9ec21bde47668538fb01f40"}, + {file = "traits-6.4.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5d8eaa97adfb079872e760fab29452506f3cbe03e37a055737dae620d06ad5c"}, + {file = "traits-6.4.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f622915217b5edfb95bf043a9eb75e7ab7c2f0697b59a92b3481e58c883b1e7"}, + {file = "traits-6.4.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3ed9ea3e7f830460fe39aeb170816152df87d8e99947034e74f2b58178599253"}, + {file = "traits-6.4.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:22d17a47dead1d78fcd7c85dc961e646c4b924ee6f0005b5b7020b88aeeee2ad"}, + {file = "traits-6.4.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:79f937db0b0bd61272867f4a104d86a132cffab6cf8046f590fed800d621d9bd"}, + {file = "traits-6.4.3-cp311-cp311-win32.whl", hash = "sha256:c51635d076b4c2919e7fd7e82198cd7c3d5d0beee2cc4a5c366f2706dee1e465"}, + {file = "traits-6.4.3-cp311-cp311-win_amd64.whl", hash = "sha256:c0e8ef49bcf8ab4e880009de934ce06a4f3fe47b3a064807eebd0e80798c0ab5"}, + {file = "traits-6.4.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:dba809d945d599980694b69c5d5756115959a3899afa9354f0994eebdc843e14"}, + {file = "traits-6.4.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e1600875fc3b1cd0502ce0d4317479e0ae0b91e4fa6f14fff1cc525eb1ad088e"}, + {file = "traits-6.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92add65d02b4d9ebd6b607948eff84c3a4dfaa642335e3d63c5d8c5a52f08e98"}, + {file = "traits-6.4.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:13181f5433dc2d2fc2d9ee3f7ee3d0ede734c4eb53311ab9710500e7c45ae2c2"}, + {file = "traits-6.4.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2203ab21df7fd58d0eefb26c56501654ababcafe5e9299bac83dc1ce559be2f4"}, + {file = "traits-6.4.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:44a663117ebd197dbba4a9222ac0ecbb7a6bff7cf97e051924e987685025edd9"}, + {file = "traits-6.4.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:83f531a45d681bbe133953c5d5a5a4b572d06239672b3346fb927706bee0c9a9"}, + {file = "traits-6.4.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:7b1f5763ae1e6b1cab0ce7c82f7da3a642170666fba32dd643181f564e576d4d"}, + {file = "traits-6.4.3-cp312-cp312-win32.whl", hash = "sha256:f1253043fb8f034c4342b78e56490a1f2386ed6a645cf5e33e3aa428b4b680b6"}, + {file = "traits-6.4.3-cp312-cp312-win_amd64.whl", hash = "sha256:a01968bff6b13a0dc64842caf598ffc628bd973610b309d14b50fa92ce493a56"}, + {file = "traits-6.4.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:48394bbc474c6e160897d339791750e75aec638c426c0e930f54e308a43ada47"}, + {file = "traits-6.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b6777907777c595103e1c11c423eea907e895921b763eab0c8a213cc81d2224"}, + {file = "traits-6.4.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:21e69c544a48223f5bb662fbf2b1810d90be6e1bc45245345cbddd446658b4b3"}, + {file = "traits-6.4.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2ca6513b6449877dc2f7e9c10aab7b2b6fca47d95920139dbefd1098eb4f2f1"}, + {file = "traits-6.4.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:2e53c14dd203d7527eeab52e3ea62dc360df634b1814e79c1015470d1ea254dd"}, + {file = "traits-6.4.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:01ae3e7567d4b06dcabb2d2c32e5fced42f05ebb1709cf41e7f4d816f3ce3eb0"}, + {file = "traits-6.4.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d4b7d5297b3c7541fda86a244f873aa29a9a09e7fd281b63f44ba3b864de6380"}, + {file = "traits-6.4.3-cp37-cp37m-win32.whl", hash = "sha256:2b09fad29dd5b153c510f699e65da87f04c5c7d25d03d2376b9f802e52c35219"}, + {file = "traits-6.4.3-cp37-cp37m-win_amd64.whl", hash = "sha256:6b75ffe02d9b2f870b647df9a78740f65d9d599594060ab0985dcad3391d2b28"}, + {file = "traits-6.4.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4755a4ee9ea6bc9287e03e4ff5f0b80d12f62c10c1cb1b9fd4c8648650a485c8"}, + {file = "traits-6.4.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:370b892835e057e9353ea26a31127dccc427f72eb8f400200bf4d0ed4fa4293a"}, + {file = "traits-6.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d3f0887f6261f7595a80a97a995a229109e2902b66bf370caa4468ffe5b7f56"}, + {file = "traits-6.4.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:309131c6633eb80a6a73b90d0aef83dfbb8c81c81452c81dda0f80dc38df7cf6"}, + {file = "traits-6.4.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:996bdc5ffcb2fc1edc08ecfa86cb42fe49b80d1b71abcd8379c852b87c1d1ec6"}, + {file = "traits-6.4.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b6bda9dd716ab4ee296a24d3948dbc84beb2b06b2aadf3f56fe293750a234f40"}, + {file = "traits-6.4.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1f950691085c32ac30d66d90e1347fd7971ffc118c1ba36c39aca7d3826f61b3"}, + {file = "traits-6.4.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:dba974e6277353f01d5cd780b2efbf22142fc81e7907da3a50c6b49ed67f10bc"}, + {file = "traits-6.4.3-cp38-cp38-win32.whl", hash = "sha256:c7b8983528582c3b22f04b341470be512ca43d8036c96acd6a038fdb0ddd9769"}, + {file = "traits-6.4.3-cp38-cp38-win_amd64.whl", hash = "sha256:cdf92353fd3522e409b245c025b424294264724ce6fa6c12b47fab56e66d915d"}, + {file = "traits-6.4.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:ab854a855947a544f7b6644086499d13e7a8f0c23dda9dbfc2f50b4439848303"}, + {file = "traits-6.4.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1951ef5a5702f80a83b825747969bd910eaa7f093658d092342eae8004617580"}, + {file = "traits-6.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fcd8467a47c4369e85efeb86a48d5e4540209b0f58f2a66ddad65d8245cddc86"}, + {file = "traits-6.4.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:220b8faac11ae71045a9d0e65ef32e9298fc545f108605a149a81f38fdbfec9d"}, + {file = "traits-6.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:51589af37bac46d8af91593a0f44116d416db830a59491f603e982fe2d96bed5"}, + {file = "traits-6.4.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:109f835eafe8106a76245b9dc6455d52cd315d60965987c3d27061f9f4a6fc22"}, + {file = "traits-6.4.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:d3b5977372d983c39856ebdbd8389b82458b0907c1fc3a801f831ccb1de740a1"}, + {file = "traits-6.4.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:79fe4de34f6c5cb9aa5ba21dfbbf4ba232bd1b74882a49c3fe10883806ebf422"}, + {file = "traits-6.4.3-cp39-cp39-win32.whl", hash = "sha256:8af9f2bafea38a9747798a90b61ac5f806cc6d930889d993c899bb0862e0d3e1"}, + {file = "traits-6.4.3-cp39-cp39-win_amd64.whl", hash = "sha256:723bb5c8b0f7f1125092f6ed8c1fc21d9673d64b6ed33b30f1933ab5de357f7d"}, + {file = "traits-6.4.3.tar.gz", hash = "sha256:a9bbfd9e0c08b7de07e86ef64e69cb96a29c2105a43bf832cd8b162fa1e22f44"}, ] [package.extras] @@ -5887,14 +5905,14 @@ files = [ [[package]] name = "websocket-client" -version = "1.6.3" +version = "1.6.4" description = "WebSocket client for Python with low level API options" category = "main" optional = true python-versions = ">=3.8" files = [ - {file = "websocket-client-1.6.3.tar.gz", hash = "sha256:3aad25d31284266bcfcfd1fd8a743f63282305a364b8d0948a43bd606acc652f"}, - {file = "websocket_client-1.6.3-py3-none-any.whl", hash = "sha256:6cfc30d051ebabb73a5fa246efdcc14c8fbebbd0330f8984ac3bb6d9edd2ad03"}, + {file = "websocket-client-1.6.4.tar.gz", hash = "sha256:b3324019b3c28572086c4a319f91d1dcd44e6e11cd340232978c684a7650d0df"}, + {file = "websocket_client-1.6.4-py3-none-any.whl", hash = "sha256:084072e0a7f5f347ef2ac3d8698a5e0b4ffbfcab607628cadabc650fc9a83a24"}, ] [package.extras] @@ -5994,4 +6012,4 @@ notebook = ["jupyter", "ipykernel"] [metadata] lock-version = "2.0" python-versions = ">=3.8,<3.11" -content-hash = "506d2e30877fa36c9a398559488a187b8d858e41e09dd92b1f490b3f05554c74" +content-hash = "ddaad303f024e4bf9d32f26f2a67be94ef39cce044884ae0eb2c7effd2f581f7" diff --git a/pyproject.toml b/pyproject.toml index c87843b3..8cd9c747 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -62,14 +62,7 @@ omit = [ "config-3.py", ] -[tool.pylint] +[tool.pylint.'MESSAGES CONTROL'] +max-line-length = 100 ignore = ["fixme", "too-many-branches", "too-many-locals", "too-many-statements", "too-many-arguments", "too-many-lines", "too-many-public-methods", "too-many-instance-attributes", "too-few-public-methods"] good-names = "i,j,k,ex,x,y,t,k,v,ax,df,ec,mc,dc,ct" - -[tool.mypy] -ignore-missing-imports = true -follow-imports = "silent" -no-strict-optional = true - -[tool.pycodestyle] -ignore = "E203,E501,W503" From 627ecb669b9a7def2255a0682561f9a12e552d2c Mon Sep 17 00:00:00 2001 From: "M. Zain Sohail" Date: Fri, 13 Oct 2023 18:30:28 +0200 Subject: [PATCH 20/20] revert back linting configs --- .github/workflows/linting.yml | 2 +- pyproject.toml | 5 ----- 2 files changed, 1 insertion(+), 6 deletions(-) diff --git a/.github/workflows/linting.yml b/.github/workflows/linting.yml index b859adbf..607dce2f 100644 --- a/.github/workflows/linting.yml +++ b/.github/workflows/linting.yml @@ -21,7 +21,7 @@ jobs: poetry run pycodestyle --ignore=E203,E501,W503 sed tests - name: pylint run: - poetry run pylint sed tests + poetry run pylint --good-names=i,j,k,ex,x,y,t,k,v,ax,df,ec,mc,dc,ct --disable=fixme,too-many-branches,too-many-locals,too-many-statements,too-many-arguments,too-many-lines,too-many-public-methods,too-many-instance-attributes,too-few-public-methods sed tests - name: mypy run: poetry run mypy --ignore-missing-imports --follow-imports=silent --no-strict-optional sed tests diff --git a/pyproject.toml b/pyproject.toml index 8cd9c747..7df915cf 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -61,8 +61,3 @@ omit = [ "config.py", "config-3.py", ] - -[tool.pylint.'MESSAGES CONTROL'] -max-line-length = 100 -ignore = ["fixme", "too-many-branches", "too-many-locals", "too-many-statements", "too-many-arguments", "too-many-lines", "too-many-public-methods", "too-many-instance-attributes", "too-few-public-methods"] -good-names = "i,j,k,ex,x,y,t,k,v,ax,df,ec,mc,dc,ct"