-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_loader.py
198 lines (184 loc) · 9.3 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import os
import os.path as osp
import numpy as np
import json
import provider
from sklearn.model_selection import train_test_split
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
TRAIN_FILES_MODELNET = provider.getDataFiles( \
os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt'))
TEST_FILES_MODELNET = provider.getDataFiles(\
os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt'))
MODELNET10_TRAIN_FILE = 'data/ModelNet10/trainShuffled_Relabel.h5'
MODELNET10_TEST_FILE = 'data/ModelNet10/testShuffled_Relabel.h5'
CHAIR_PATH = 'data/Chair'
KEYPOINT_CHAIR_PATH = 'data/Chair/keypts_chair.mat'
CHAIR_FILES = os.listdir(CHAIR_PATH)
TRAIN_CHAIR_FILES = [osp.join(CHAIR_PATH,f) for f in CHAIR_FILES if 'train' in f]
VAL_CHAIR_FILES = [osp.join(CHAIR_PATH,f) for f in CHAIR_FILES if 'val' in f]
TEST_CHAIR_FILES = [osp.join(CHAIR_PATH,f) for f in CHAIR_FILES if 'test' in f]
KEYPOINTNET_PATH = "/media/tianxing/Samsung 1T/ShapeNetCore/"
def naive_read_pcd(path):
lines = open(path, 'r').readlines()
idx = -1
for i, line in enumerate(lines):
if line.startswith('DATA ascii'):
idx = i + 1
break
lines = lines[idx:]
lines = [line.rstrip().split(' ') for line in lines]
data = np.asarray(lines)
pc = np.array(data[:, :3], dtype=np.float)
return pc
def get_pointcloud(dataset, NUM_POINT=2048, shuffle=True):
"""
Load the dataset into memory
"""
if dataset == 'modelnet':
train_file_idxs = np.arange(0, len(TRAIN_FILES_MODELNET))
data_train = []
label_train = []
for fn in range(len(TRAIN_FILES_MODELNET)):
print('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TRAIN_FILES_MODELNET[fn])
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
data_train.append(current_data)
label_train.append(current_label)
result_train = np.vstack(data_train)
label_train = np.concatenate(label_train, axis=None)
if shuffle:
X_train, y_train, _ = provider.shuffle_data(result_train, np.squeeze(label_train))
else:
X_train, y_train = result_train, np.squeeze(label_train)
data_test = []
label_test = []
for fn in range(len(TEST_FILES_MODELNET)):
print('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TEST_FILES_MODELNET[fn])
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
data_test.append(current_data)
label_test.append(current_label)
result_test = np.vstack(data_test)
label_test = np.concatenate(label_test, axis=None)
if shuffle:
X_test, y_test, _ = provider.shuffle_data(result_test, np.squeeze(label_test))
else:
X_test, y_test = result_test, np.squeeze(label_test)
elif dataset == 'shapenet':
shapenet_data, shapenet_label = provider.get_shapenet_data()
shapenet_data = shapenet_data[:,0:NUM_POINT,:]
X_train, X_test, y_train, y_test = train_test_split(shapenet_data, shapenet_label, test_size=0.2, random_state=42, shuffle=shuffle)
elif dataset == 'shapenet_chair':
shapenet_data, shapenet_label = provider.get_shapenet_data()
shapenet_data = shapenet_data[:,0:NUM_POINT,:]
shapenet_data, shapenet_label = shapenet_data[shapenet_label==17], shapenet_label[shapenet_label==17]
X_train, X_test, y_train, y_test = train_test_split(shapenet_data, shapenet_label, test_size=0.2, random_state=42, shuffle=shuffle)
elif dataset == 'modelnet10':
current_data, current_label = provider.loadDataFile(MODELNET10_TRAIN_FILE)
current_data = current_data[:,0:NUM_POINT,:]
if shuffle:
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
X_train, y_train = current_data, current_label
current_data, current_label = provider.loadDataFile(MODELNET10_TEST_FILE)
current_data = current_data[:,0:NUM_POINT,:]
if shuffle:
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
X_test, y_test = current_data, current_label
elif dataset == 'keypoint':
current_data, current_label = provider.load_mat_keypts(TRAIN_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT)
if shuffle:
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
for i in range(current_data.shape[0]): # shuffle order of points in a single model, otherwise keypoints are always at the end
idx = np.arange(current_data.shape[1])
np.random.shuffle(idx)
current_data = current_data[:, idx, :]
current_label = current_label[:, idx]
current_label = np.squeeze(current_label)
X_train, y_train = current_data, current_label
current_data, current_label = provider.load_mat_keypts(TEST_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT)
if shuffle:
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
for i in range(current_data.shape[0]):
idx = np.arange(current_data.shape[1])
np.random.shuffle(idx)
current_data = current_data[:, idx, :]
current_label = current_label[:, idx]
current_label = np.squeeze(current_label)
X_test, y_test = current_data, current_label
elif dataset == 'keypoint_10class':
current_data, current_label = provider.load_mat_keypts(TRAIN_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT)
current_label[:, -10:] = np.arange(1, 11)
if shuffle:
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
for i in range(current_data.shape[0]): # shuffle order of points in a single model, otherwise keypoints are always at the end
idx = np.arange(current_data.shape[1])
np.random.shuffle(idx)
current_data = current_data[:, idx, :]
current_label = current_label[:, idx]
current_label = np.squeeze(current_label)
X_train, y_train = current_data, current_label
current_data, current_label = provider.load_mat_keypts(TEST_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT)
current_label[:, -10:] = np.arange(1, 11)
if shuffle:
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
for i in range(current_data.shape[0]):
idx = np.arange(current_data.shape[1])
np.random.shuffle(idx)
current_data = current_data[:, idx, :]
current_label = current_label[:, idx]
current_label = np.squeeze(current_label)
X_test, y_test = current_data, current_label
elif dataset == "keypointnet":
json_path = osp.join(KEYPOINTNET_PATH, "annotations/all.json")
annots = json.load(open(json_path))
X = []
y = []
for annot in annots:
class_id = annot["class_id"]
model_id = annot["model_id"]
kpts = []
for kpt in annot["keypoints"]:
kpts.append(kpt["xyz"])
pcd_path = osp.join(KEYPOINTNET_PATH, f"pcds/{class_id}/{model_id}.pcd")
if os.path.exists(pcd_path):
pcd = naive_read_pcd(pcd_path)
pcd = pcd[0:NUM_POINT, :]
else:
continue
if len(kpts) != 10:
continue
pcd = np.concatenate((pcd[:-10], kpts))
label = np.zeros(NUM_POINT-10)
label = np.concatenate((label, np.ones(10)))
X.append(pcd)
y.append(label)
current_data = np.array(X)
current_label = np.array(y)
if False and shuffle:
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
for i in range(current_data.shape[0]): # shuffle order of points in a single model, otherwise keypoints are always at the end
idx = np.arange(current_data.shape[1])
np.random.shuffle(idx)
current_data = current_data[:, idx, :]
current_label = current_label[:, idx]
current_label = np.squeeze(current_label)
X_train, X_test, y_train, y_test = train_test_split(current_data, current_label, test_size=0.2, random_state=42, shuffle=shuffle)
else:
raise NotImplementedError()
print(f'Dataset name: {dataset}')
print(f'X_train: {X_train.shape}')
print(f'X_test: {X_test.shape}')
print(f'y_train: {y_train.shape}')
print(f'y_test: {y_test.shape}')
return X_train, X_test, y_train, y_test
# debug
if __name__ == "__main__":
X_train, X_test, y_train, y_test = get_pointcloud('keypointnet')
print(X_train)
print(np.sum(y_train))