Skip to content

Latest commit

 

History

History
85 lines (73 loc) · 3.76 KB

README.md

File metadata and controls

85 lines (73 loc) · 3.76 KB

SG-Former

This repository is the official implementation of our

SG-Former: Self-guided Transformer with Evolving Token Reallocation (ICCV2023)

[arxiv] [github]

Sucheng Ren, Xingyi Yang, Songhua Liu, Xinchao Wang

Introduction

Vision Transformer has demonstrated impressive success across various vision tasks. However, its heavy computation cost, which grows quadratically with respect to the token sequence length, largely limits its power in handling large feature maps. To alleviate the computation cost, previous works rely on either fine-grained self-attentions restricted to local small regions, or global self-attentions but to shorten the sequence length resulting in coarse granularity. In this paper, we propose a novel model, termed as Self-guided Transformer~(SG-Former), towards effective global self-attention with adaptive fine granularity. At the heart of our approach is to utilize a significance map, which is estimated through hybrid-scale self-attention and evolves itself during training, to reallocate tokens based on the significance of each region. Intuitively, we assign more tokens to the salient regions for achieving fine-grained attention, while allocating fewer tokens to the minor regions in exchange for efficiency and global receptive fields.

method

Data prepare

ImageNet with the following folder structure.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Requirements

bash install_req.sh

Train

Train SG-Former variants: Small, Medium, Base

python -m torch.distributed.launch --nproc_per_node=8 main.py \
 --data /path/to/imagenet/ \
 --model sgformer_s -b 128 --lr 1e-3 \
 --weight-decay .05  --amp --img-size 224  --warmup-epochs 20 \
 --model-ema-decay 0.99992 --drop-path 0.1
python -m torch.distributed.launch --nproc_per_node=8 main.py \
 --data /path/to/imagenet/ \
 --model sgformer_m -b 128 --lr 1e-3 \
 --weight-decay .05  --amp --img-size 224  --warmup-epochs 20 \
 --model-ema-decay 0.99992 --drop-path 0.2
  python -m torch.distributed.launch --nproc_per_node=8 main.py \
  --data /path/to/imagenet/  \
  --model sgformer_b  -b 128 --lr 1e-3  \
  --weight-decay .05  --amp --img-size 224  --warmup-epochs 20  \
  --model-ema-decay 0.99992  --drop-path 0.4

If the GPU memory is not enough, please use 16 GPUs across different machine

  python -m torch.distributed.launch --nproc_per_node=8 \
  --nnodes 2 --node_rank 0 --master_addr ip_addr  --master_port port \
  main.py  --data /path/to/imagenet/  \
  --model sgformer_b  -b 64 --lr 1e-3  \
  --weight-decay .05  --amp --img-size 224  --warmup-epochs 20  \
  --model-ema-decay 0.99992  --drop-path 0.4

Checkpoint

The pretrained checkpoints are available at Google Drive

Citation

If you have any question, feel free to contact Sucheng Ren :)

@article{ren2023sgformer,
    author    = {SG-Former: Self-guided Transformer with Evolving Token Reallocation},
    title     = {Sucheng Ren, Xingyi Yang, Songhua Liu, Xinchao Wang},
    journal   = {International Conference on Computer Vision (ICCV)},
    year      = {2023},
}