-
Notifications
You must be signed in to change notification settings - Fork 59
/
lstm.py
139 lines (106 loc) · 4.99 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import math
import numpy as np
import tensorflow as tf
from tensorflow.python.ops.rnn_cell import RNNCell
class LSTMCell(RNNCell):
'''Vanilla LSTM implemented with same initializations as BN-LSTM'''
def __init__(self, num_units):
self.num_units = num_units
@property
def state_size(self):
return (self.num_units, self.num_units)
@property
def output_size(self):
return self.num_units
def __call__(self, x, state, scope=None):
with tf.variable_scope(scope or type(self).__name__):
c, h = state
# Keep W_xh and W_hh separate here as well to reuse initialization methods
x_size = x.get_shape().as_list()[1]
W_xh = tf.get_variable('W_xh',
[x_size, 4 * self.num_units],
initializer=orthogonal_initializer())
W_hh = tf.get_variable('W_hh',
[self.num_units, 4 * self.num_units],
initializer=bn_lstm_identity_initializer(0.95))
bias = tf.get_variable('bias', [4 * self.num_units])
# hidden = tf.matmul(x, W_xh) + tf.matmul(h, W_hh) + bias
# improve speed by concat.
concat = tf.concat(1, [x, h])
W_both = tf.concat(0, [W_xh, W_hh])
hidden = tf.matmul(concat, W_both) + bias
i, j, f, o = tf.split(1, 4, hidden)
new_c = c * tf.sigmoid(f) + tf.sigmoid(i) * tf.tanh(j)
new_h = tf.tanh(new_c) * tf.sigmoid(o)
return new_h, (new_c, new_h)
class BNLSTMCell(RNNCell):
'''Batch normalized LSTM as described in arxiv.org/abs/1603.09025'''
def __init__(self, num_units, training):
self.num_units = num_units
self.training = training
@property
def state_size(self):
return (self.num_units, self.num_units)
@property
def output_size(self):
return self.num_units
def __call__(self, x, state, scope=None):
with tf.variable_scope(scope or type(self).__name__):
c, h = state
x_size = x.get_shape().as_list()[1]
W_xh = tf.get_variable('W_xh',
[x_size, 4 * self.num_units],
initializer=orthogonal_initializer())
W_hh = tf.get_variable('W_hh',
[self.num_units, 4 * self.num_units],
initializer=bn_lstm_identity_initializer(0.95))
bias = tf.get_variable('bias', [4 * self.num_units])
xh = tf.matmul(x, W_xh)
hh = tf.matmul(h, W_hh)
bn_xh = batch_norm(xh, 'xh', self.training)
bn_hh = batch_norm(hh, 'hh', self.training)
hidden = bn_xh + bn_hh + bias
i, j, f, o = tf.split(1, 4, hidden)
new_c = c * tf.sigmoid(f) + tf.sigmoid(i) * tf.tanh(j)
bn_new_c = batch_norm(new_c, 'c', self.training)
new_h = tf.tanh(bn_new_c) * tf.sigmoid(o)
return new_h, (new_c, new_h)
def orthogonal(shape):
flat_shape = (shape[0], np.prod(shape[1:]))
a = np.random.normal(0.0, 1.0, flat_shape)
u, _, v = np.linalg.svd(a, full_matrices=False)
q = u if u.shape == flat_shape else v
return q.reshape(shape)
def bn_lstm_identity_initializer(scale):
def _initializer(shape, dtype=tf.float32, partition_info=None):
'''Ugly cause LSTM params calculated in one matrix multiply'''
size = shape[0]
# gate (j) is identity
t = np.zeros(shape)
t[:, size:size * 2] = np.identity(size) * scale
t[:, :size] = orthogonal([size, size])
t[:, size * 2:size * 3] = orthogonal([size, size])
t[:, size * 3:] = orthogonal([size, size])
return tf.constant(t, dtype)
return _initializer
def orthogonal_initializer():
def _initializer(shape, dtype=tf.float32, partition_info=None):
return tf.constant(orthogonal(shape), dtype)
return _initializer
def batch_norm(x, name_scope, training, epsilon=1e-3, decay=0.999):
'''Assume 2d [batch, values] tensor'''
with tf.variable_scope(name_scope):
size = x.get_shape().as_list()[1]
scale = tf.get_variable('scale', [size], initializer=tf.constant_initializer(0.1))
offset = tf.get_variable('offset', [size])
pop_mean = tf.get_variable('pop_mean', [size], initializer=tf.zeros_initializer, trainable=False)
pop_var = tf.get_variable('pop_var', [size], initializer=tf.ones_initializer, trainable=False)
batch_mean, batch_var = tf.nn.moments(x, [0])
train_mean_op = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
train_var_op = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay))
def batch_statistics():
with tf.control_dependencies([train_mean_op, train_var_op]):
return tf.nn.batch_normalization(x, batch_mean, batch_var, offset, scale, epsilon)
def population_statistics():
return tf.nn.batch_normalization(x, pop_mean, pop_var, offset, scale, epsilon)
return tf.cond(training, batch_statistics, population_statistics)