-
Notifications
You must be signed in to change notification settings - Fork 10
/
finetune.py
302 lines (260 loc) · 10.9 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import sys
from typing import List
import numpy as np
import random
import fire
import torch
import transformers
from datasets import load_dataset
import datetime
from utils.chat_generation import generate_chat
torch.distributed.init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=5400))
from peft import (
LoraConfig,
get_peft_model,
set_peft_model_state_dict
)
from transformers import AutoTokenizer, AutoModelForCausalLM
from trainer import CustomTrainer, CustomDataCollator
from utils.general_prompter import GeneralPrompter, get_chat_content
from utils.core_tagger import CoreTagger
def set_random_seeds(seed: int = 13):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_random_seeds()
def train(
# model/data params
base_model: str = "",
data_path: str = "",
output_dir: str = "checkpoint",
# training hyperparams
batch_size: int = 512,
micro_batch_size: int = 4,
num_epochs: int = 3,
learning_rate: float = 1e-4,
cutoff_len: int = 512,
use_val_set: bool = True,
optim="adamw_bnb_8bit",
lr_scheduler: str = "cosine",
warmup_steps: int = 1000,
# lora hyperparams
lora_r: int = 16,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
# from peft docs: ["q_proj", "k_proj", "v_proj", "o_proj", "fc_in", "fc_out", "wte", "gate_proj", "down_proj", "up_proj"]
lora_target_modules: List[str] = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "down_proj", "up_proj"],
modules_to_save: List[str] = [],
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
# prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
logging_steps: int = 10,
save_steps: int = 200,
save_total_limit=None,
eval_steps: int = 200,
use_int8: bool = False,
precision='bf16',
train_split='train',
dev_split='validation',
tasks: List[str] = None,
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
# f"Params using prompt template {prompt_template_name}:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"use_val_set: {use_val_set}\n"
f"lr_scheduler: {lr_scheduler}\n"
f"warmup_steps: {warmup_steps}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"add_eos_token: {add_eos_token}\n"
f"group_by_length: {group_by_length}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
f"precision: {precision}\n"
f"use_int8: {use_int8}\n"
)
gradient_accumulation_steps = batch_size // micro_batch_size
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
# Check if parameter passed or if set within environ
use_wandb = len(wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = wandb_project
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = wandb_watch
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
if precision == 'bf16':
dtype = torch.bfloat16
else:
raise ValueError("Please use bf16. Others are not tested.")
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=use_int8,
torch_dtype=dtype,
device_map=device_map
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
bos = tokenizer.bos_token_id
eos = tokenizer.eos_token_id
pad = tokenizer.pad_token_id
tokenizer.sep_token = '<unk>'
tokenizer.cls_token = '<unk>'
tokenizer.mask_token = '<unk>'
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
# print("pre-trained model's BOS EOS and PAD token id:",bos,eos,pad," => It should be 1 2 None")
assert (bos, eos, pad) == (1, 2, None), (bos, eos, pad)
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
tokenizer.padding_side = "left"
prefix_chat = None
prompter = GeneralPrompter(get_chat_content, '[/INST]')
core_tagger = CoreTagger(tokenizer, core_tags_as_special_tokens=False, include_tags=True)
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
add_special_tokens=False,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point, add_core_mask=True):
input_text = data_point['input']
output_text = data_point['output']
chat = generate_chat(input_text, output_text, prefix_chat=prefix_chat)
full_prompt = prompter.generate_prompt(chat)
tokenized_full_prompt = tokenize(full_prompt)
if add_core_mask or not train_on_inputs:
user_prompt = prompter.generate_prompt(generate_chat(input_text, output_text=None))
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if not train_on_inputs:
tokenized_full_prompt["labels"] = [-100] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:] # TODO: could be sped up, probably
if add_core_mask:
core_mask = core_tagger.generate_mask(tokenized_full_prompt['input_ids'], user_prompt_len, data_point)
tokenized_full_prompt['core_mask'] = core_mask
return tokenized_full_prompt
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
modules_to_save=modules_to_save,
)
model = get_peft_model(model, config)
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
# resume_from_checkpoint = (
# False # So the trainer won't try loading its state
# )
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
model.print_trainable_parameters()
if tasks is not None and len(tasks) == 0:
tasks = None
train_data = load_dataset(data_path, split=train_split, tasks=tasks)
train_data = train_data.shuffle().map(generate_and_tokenize_prompt)
if use_val_set:
val_data = load_dataset(data_path, split=dev_split, tasks=tasks)
val_data = val_data.shuffle().map(generate_and_tokenize_prompt)
else:
val_data = None
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = CustomTrainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=warmup_steps,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=True if 'fp16' == precision else False,
bf16=True if 'bf16' == precision else False,
logging_steps=logging_steps,
optim=optim,
evaluation_strategy="steps" if val_data is not None else "no",
save_strategy="steps",
eval_steps=eval_steps if val_data is not None else None,
save_steps=save_steps,
lr_scheduler_type=lr_scheduler,
output_dir=output_dir,
save_total_limit=save_total_limit,
load_best_model_at_end=True if val_data is not None else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
),
data_collator=CustomDataCollator(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir, save_embedding_layers=True)
if __name__ == "__main__":
torch.cuda.empty_cache()
fire.Fire(train)