forked from open-mmlab/mmdetection3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcenterpoint_voxel0075_second_secfpn_head-dcn_8xb4-flip-tta-cyclic-20e_nus-3d.py
50 lines (47 loc) · 1.59 KB
/
centerpoint_voxel0075_second_secfpn_head-dcn_8xb4-flip-tta-cyclic-20e_nus-3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
_base_ = \
'./centerpoint_voxel0075_second_secfpn_head-dcn_8xb4-cyclic-20e_nus-3d.py'
point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-54, -54.8, -5.0, 54, 53.2, 3.0]
backend_args = None
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=9,
use_dim=[0, 1, 2, 3, 4],
pad_empty_sweeps=True,
remove_close=True,
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
# Add double-flip augmentation
flip=True,
pcd_horizontal_flip=True,
pcd_vertical_flip=True,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D', sync_2d=False),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
data = dict(
val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))