-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
executable file
·569 lines (529 loc) · 20.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import xlrd
import numpy as np
from math import sqrt
import pandas as pd
import time
import datetime
import math
import random as rd
import calendar
import torch
from torch import nn
from torch.autograd import Variable
import torch.utils.data
from sklearn.preprocessing import minmax_scale
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn import preprocessing
import csv
from PewLSTM import pew_LSTM
HIDDEN_DIM = 1
SEQ_SIZE = 24
message = "pewLSTM"
# Global variables
record_path = './data/record/'
weather_path = './data/weather/'
park_all_cnt = 10
weather_all_cnt = 6
park_table_id = ['P1','P2','P3','P4','P5','P6','P7','P8','P9','P10']
park_weather_idx = [0,0,1,1,1,2,2,2,2,2]
weather_name = ['Ningbo','Ningbo Yinzhou','Changsha']
def read_park_table(index, debug = False):
park_table_path = record_path + park_table_id[index] + '.csv'
park_book = pd.read_csv(park_table_path,encoding='ISO-8859-1')##########
if debug:
print('open table ' + park_table_name[i] + ' with lines ' + str(len(park_book)))
return park_book
def read_weather_table(index, debug = False):
weather_table_path = weather_path + str(index) + '.csv'
weather_book = pd.read_csv(weather_table_path,encoding='ISO-8859-1')
if debug:
print ('open table ' + weather_name[i] + ' with lines ' + str(len(weather_book)))
return weather_book
def trans_record_to_count(data, debug = False):
invalid_record = 0
valid_record = 0
p_dict = {}
for stime,etime in zip(data['Lockdown Time'],data['Lockup Time']):
start_tss = time.strptime(stime, "%Y/%m/%d %H:%M")##########
end_tss = time.strptime(etime, "%Y/%m/%d %H:%M")#########
# Converts start and end times to seconds
start_tsp = int(time.mktime(start_tss))
end_tsp = int(time.mktime(end_tss))
# A parking record which has duration less than 5 mins are regard as invalid record
if end_tsp - start_tsp <= 5*60:
invalid_record = invalid_record + 1
continue
valid_record = valid_record + 1
start_hour = int(start_tsp//(60*60))
end_hour = int(end_tsp//(60*60))
# Calculate the parking numbers per hour
for j in range(start_hour,end_hour+1):
if j not in p_dict:
p_dict[j] = {}
p_dict[j]['cnt'] = 1
else:
p_dict[j]['cnt'] = p_dict[j]['cnt'] + 1
if debug:
print('valid record is ' + str(valid_record))
print('invalid record is ' + str(invalid_record))
return p_dict
def calc_park_cnt_from_dict(p_dict, debug = False):
if debug:
print('calcing parking count from dict ...')
park_cnt = []
st = min(p_dict.keys())
ed = max(p_dict.keys())
for i in range(st,ed+1):
if i in p_dict:
park_cnt.append(p_dict[i]['cnt'])
else:
park_cnt.append(0)
return park_cnt
def process_weather(data, debug= False):
output = []
start_h = data['DAY'][0]
start_h = int(time.mktime(time.strptime(start_h,"%Y/%m/%d %H:%M")) // (60*60))############
output.append(start_h)
for i in range(5):
output.append([])
output.append({})
for i in range(len(data['HOUR'])):
output[1].append(data['TEM'][i])
output[2].append(data['RHU'][i])
output[3].append(data['WIN_S'][i])
output[4].append(data['PRE_1h'][i])
output[5].append(time.strptime(data['DAY'][i],"%Y/%m/%d %H:%M").tm_wday)##############
output[6][int(time.mktime(time.strptime(data['DAY'][i],"%Y/%m/%d %H:%M")) // (60*60))] = i########
return output
def invalid(w_list,idx):
if w_list[1][idx] > 999:
return True
if w_list[2][idx] > 999:
return True
if w_list[3][idx] > 999:
return True
if w_list[4][idx] > 999:
return True
return False
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
n_vars = 1 if type(data) is list else data.shape[1]
df = pd.DataFrame(data)
cols, names = list(), list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):
cols.append(df.shift(i))
names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append(df.shift(-i))
if i == 0:
names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
else:
names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
# put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names
# drop rows with NaN values
if dropnan:
agg.dropna(inplace=True)
return agg
def is_valid(w_list,idx):
flag = [1,1,1,1] # "0" represents that this data is invalid
for i in range(1,5):
if w_list[i][idx] > 999:
flag[i-1] = 0
return flag
def valid_weather(w_list,idx):
flag = is_valid(w_list,idx)
temp = [0,0,0,0]
d = 0
for i in range(1,5):
if flag[i-1] == 0:
d = idx - 1
while (is_valid(w_list,d)[i-1] == 0):
d -= 1
upvalue = w_list[i][d]
d = idx + 1
while (is_valid(w_list,d)[i-1] == 0):
d += 1
downvalue = w_list[i][d]
temp[i-1] = 0.5 * (upvalue + downvalue)
else:
temp[i-1] = w_list[i][d]
return temp
def gen_series(park_cnt, weather_rec, start_h, end_h, debug=False):
tt = []
for i in range(len(park_cnt)):
tt.append(start_h + i)
temp = []
for i in range(5):
temp.append([])
for i in range(len(park_cnt)):
if tt[i] in weather_rec[6]:
idx = weather_rec[6][tt[i]]
temp[0].append(park_cnt[i])
if invalid(weather_rec,idx):
vld = valid_weather(weather_rec,idx)
temp[1].append(vld[0])
temp[2].append(vld[1])
temp[3].append(vld[2])
temp[4].append(vld[3])
else:
temp[1].append(weather_rec[1][idx])
temp[2].append(weather_rec[2][idx])
temp[3].append(weather_rec[3][idx])
temp[4].append(weather_rec[4][idx])
#if debug:
#print('The length of temp array is ' + str(len(temp[0])))
park_cnt = pd.Series(temp[0], name='cnt')
tem = pd.Series(temp[1], name='tem')
rhu = pd.Series(temp[2], name='rhu')
winds = pd.Series(temp[3], name='wind_s')
pre_1h = pd.Series(temp[4],name='pre_ih')
output = pd.concat([tem,rhu,winds,pre_1h,park_cnt], axis=1)
# print("park_cnt: "+str(len(park_cnt)))
# print("weather_rec: "+str(len(weather_rec[1])))
# print("output: "+str(len(output)))
return output
def GetCntData(index):
park_book = read_park_table(index)
#weather_book = read_weather_table(park_weather_idx[index])
p_dic = trans_record_to_count(park_book)
park_cnt = calc_park_cnt_from_dict(p_dic)
park_cnt = minmax_scale(park_cnt)
data_x = park_cnt[:-1]
data_y = park_cnt[1:]
return (np.array(data_x),np.array(data_y))
def GetAllData(index):
park_book = read_park_table(index)
weather_book = read_weather_table(park_weather_idx[index])
p_dic = trans_record_to_count(park_book)
start_h = min(p_dic.keys())
end_h = max(p_dic.keys())
park_cnt = calc_park_cnt_from_dict(p_dic)
#print(park_cnt)
weather_rec = process_weather(weather_book)
p_series = gen_series(park_cnt, weather_rec, start_h, end_h,debug=True)
#print(p_series)
p_series = p_series.dropna(axis=0)
p_series = p_series.astype('float32')
scaler = MinMaxScaler(feature_range=(0,1))
sclaed = scaler.fit_transform(p_series)
reframed = series_to_supervised(sclaed, 1, 1)
reframed.drop(reframed.columns[[5,6,7,8]], axis=1, inplace=True)
return (reframed.values[:,:-1],reframed.values[:,-1])
def mypreprocessing(precord, weather):
valid_record = 0
record = []
for stime,etime in zip(precord['Lockdown Time'],precord['Lockup Time']):
# Parses the time string into a start time tuple and end time tuple according to the specified format
start_tss = time.strptime(stime, "%Y/%m/%d %H:%M")#######
end_tss = time.strptime(etime, "%Y/%m/%d %H:%M")#######
# Converts start and end times to seconds
start_tsp = int(time.mktime(start_tss))
end_tsp = int(time.mktime(end_tss))
# A parking record which has duration less than 5 mins are regard as invalid record
if end_tsp - start_tsp <= 5*60:
#invalid_record = invalid_record + 1
continue
valid_record = valid_record + 1
start_hour = int(start_tsp//(60*60))
duration = int((end_tsp - start_tsp)//60) # minute
record.append((start_hour, duration)) ###
#print(record)
w_dict = {}
for i in range(len(weather['HOUR'])):
s_hour = int(time.mktime(time.strptime(weather['DAY'][i],"%Y/%m/%d %H:%M"))//(60*60))#######
"""if i == 0:
print(s_hour)
elif i == len(weather['HOUR'])-1:
print(s_hour)"""
if s_hour not in w_dict:
w_dict[s_hour] = {}
w_dict[s_hour]['RHU'] = weather['RHU'][i]
w_dict[s_hour]['TEM'] = weather['TEM'][i]
w_dict[s_hour]['WIN_S'] = weather['WIN_S'][i]
w_dict[s_hour]['wday'] = time.strptime(weather['DAY'][i],"%Y/%m/%d %H:%M").tm_wday########
w_dict[s_hour]['hour'] = time.strptime(weather['DAY'][i],"%Y/%m/%d %H:%M").tm_hour#######
data = []
idx = 0
for (s_hour, duration) in record:
#tmp.append(,w_dict[s_hour]['TEM'],w_dict[s_hour]['WIN_S'],w_dict[s_hour]['wday'],w_dict[s_hour]['hour'],duration)
#print(s_hour)
if s_hour not in w_dict:
#print(s_hour)
continue
data.append([])
data[idx].append(s_hour)
data[idx].append(w_dict[s_hour]['RHU'])
data[idx].append(w_dict[s_hour]['TEM'])
data[idx].append(w_dict[s_hour]['WIN_S'])
data[idx].append(w_dict[s_hour]['wday'])
data[idx].append(w_dict[s_hour]['hour'])
data[idx].append(duration)
idx+=1
#print(data)
dt = []
i = 0
ct = 0
while i < idx:
j = i + 1
avg = data[i][6]#duration
while j < idx:
if data[j][0] == data[i][0]:
avg += data[j][6]
#print(data[j])
j = j+1
else:
break
avg /= (j-i)
dt.append([])
for t in range(5):
dt[ct].append(data[i][t+1])
dt[ct].append(avg)
i = j
ct+=1
return dt
def getdata(index):
park_book = read_park_table(index)
weather_book = read_weather_table(park_weather_idx[index])
data = mypreprocessing(park_book, weather_book)
return data
#depature
def ptrans_record_to_count(data, debug = False):
invalid_record = 0
valid_record = 0
p_dict = {}
for stime,etime in zip(data['Lockdown Time'],data['Lockup Time']):
# Parses the time string into a start time tuple and end time tuple according to the specified format
start_tss = time.strptime(stime, "%Y/%m/%d %H:%M")########
end_tss = time.strptime(etime, "%Y/%m/%d %H:%M")#####
# Converts start and end times to seconds
start_tsp = int(time.mktime(start_tss))
end_tsp = int(time.mktime(end_tss))
# A parking record which has duration less than 5 mins are regard as invalid record
if end_tsp - start_tsp <= 5*60:
invalid_record = invalid_record + 1
continue
valid_record = valid_record + 1
#start_hour = int(start_tsp//(60*60))
end_hour = int(end_tsp//(60*60))
# Calculate the parking numbers per hour
if end_hour not in p_dict:
p_dict[end_hour] = {}
p_dict[end_hour]['cnt'] = 1
else:
p_dict[end_hour]['cnt'] += 1
if debug:
print('valid record is ' + str(valid_record))
print('invalid record is ' + str(invalid_record))
return p_dict
#arrive
def p2trans_record_to_count(data, debug = False):
invalid_record = 0
valid_record = 0
p_dict = {}
for stime,etime in zip(data['Lockdown Time'],data['Lockup Time']):
# Parses the time string into a start time tuple and end time tuple according to the specified format
start_tss = time.strptime(stime, "%Y/%m/%d %H:%M")##########
end_tss = time.strptime(etime, "%Y/%m/%d %H:%M")######################
# Converts start and end times to seconds
start_tsp = int(time.mktime(start_tss))
end_tsp = int(time.mktime(end_tss))
# A parking record which has duration less than 5 mins are regard as invalid record
if end_tsp - start_tsp <= 5*60:
invalid_record = invalid_record + 1
continue
valid_record = valid_record + 1
start_hour = int(start_tsp//(60*60))
#end_hour = int(end_tsp//(60*60))
# Calculate the parking numbers per hour
if start_hour not in p_dict:
p_dict[start_hour] = {}
p_dict[start_hour]['cnt'] = 1
else:
p_dict[start_hour]['cnt'] += 1
if debug:
print('valid record is ' + str(valid_record))
print('invalid record is ' + str(invalid_record))
return p_dict
def pGetCntData(index):
park_book = read_park_table(index)
#weather_book = read_weather_table(park_weather_idx[index])
p_dic = ptrans_record_to_count(park_book)
park_cnt = calc_park_cnt_from_dict(p_dic)
#park_cnt = minmax_scale(park_cnt)
scaler = MinMaxScaler()
park_cnt = np.array(park_cnt).reshape(-1,1)
park_cnt = scaler.fit_transform(park_cnt)
park_cnt = park_cnt.reshape(-1)
data_x = park_cnt[:-1]
data_y = park_cnt[1:]
return (data_x,data_y,scaler)
def p2GetCntData(index):
park_book = read_park_table(index)
#weather_book = read_weather_table(park_weather_idx[index])
p_dic = p2trans_record_to_count(park_book)
park_cnt = calc_park_cnt_from_dict(p_dic)
#park_cnt = minmax_scale(park_cnt)
scaler = MinMaxScaler()
park_cnt = np.array(park_cnt).reshape(-1,1)
park_cnt = scaler.fit_transform(park_cnt)
park_cnt = park_cnt.reshape(-1)
data_x = park_cnt[:-1]
data_y = park_cnt[1:]
return (data_x,data_y,scaler)
def pGetAllData(index):
park_book = read_park_table(index)
weather_book = read_weather_table(park_weather_idx[index])
p_dic = ptrans_record_to_count(park_book)
start_h = min(p_dic.keys())
end_h = max(p_dic.keys())
park_cnt = calc_park_cnt_from_dict(p_dic)
weather_rec = process_weather(weather_book)
#p_series1 = gen_series_old(park_cnt, weather_rec, start_h, end_h,debug=True)
p_series = gen_series(park_cnt, weather_rec, start_h, end_h,debug=True)
p = gen_series(park_cnt, weather_rec, start_h, end_h,debug=True)
p.fillna(value = 0,inplace=True)
values = [0,0,0,0]
for k in range(len(p_series)):
values[0] += p['tem'][k]
values[1] += p['rhu'][k]
values[2] += p['wind_s'][k]
values[3] += p['pre_ih'][k]
for i in range(4):
values[i] /= (len(p_series))
p_series['tem'].fillna(value=values[0],inplace=True)
p_series['rhu'].fillna(value=values[1],inplace=True)
p_series['wind_s'].fillna(value=values[2],inplace=True)
p_series['pre_ih'].fillna(value=values[3],inplace=True)
p_series = p_series.astype('float32')
scaler = MinMaxScaler(feature_range=(0,1))
sclaed = scaler.fit_transform(p_series)
reframed = series_to_supervised(sclaed, 1, 1)
reframed.drop(reframed.columns[[5,6,7,8]], axis=1, inplace=True)
#print(reframed.values[:,:-1])
s = MinMaxScaler(feature_range=(0,1))
m = p_series
m = series_to_supervised(m, 1, 1)
m.drop(m.columns[[5,6,7,8]], axis=1, inplace=True)
m1 = m.values[:,:-1]
m2 = m.values[:,-1]
m2 = m2.reshape(-1,1)
# print(m2.shape)
m22 = s.fit_transform(m2)
return (reframed.values[:,:-1],reframed.values[:,-1],s)
def p2GetAllData(index):
park_book = read_park_table(index)
weather_book = read_weather_table(park_weather_idx[index])
p_dic = p2trans_record_to_count(park_book)
start_h = min(p_dic.keys())
end_h = max(p_dic.keys())
park_cnt = calc_park_cnt_from_dict(p_dic)
#print(park_cnt)
weather_rec = process_weather(weather_book)
p_series = gen_series(park_cnt, weather_rec, start_h, end_h,debug=True)
#print(p_series)
p_series = p_series.dropna(axis=0)
p_series = p_series.astype('float32')
scaler = MinMaxScaler(feature_range=(0,1))
sclaed = scaler.fit_transform(p_series)
reframed = series_to_supervised(sclaed, 1, 1)
reframed.drop(reframed.columns[[5,6,7,8]], axis=1, inplace=True)
#print(reframed.values[:,:-1])
s = MinMaxScaler(feature_range=(0,1))
m = p_series
m = series_to_supervised(m, 1, 1)
m.drop(m.columns[[5,6,7,8]], axis=1, inplace=True)
m1 = m.values[:,:-1]
m2 = m.values[:,-1]
m2 = m2.reshape(-1,1)
m22 = s.fit_transform(m2)
return (reframed.values[:,:-1],reframed.values[:,-1],s)
class Pew_LSTM(nn.Module):
# timemode: 0 for day, 1 for week, 2 for
def __init__(self):
super(Pew_LSTM, self).__init__()
self.lstm1 = pew_LSTM(1, HIDDEN_DIM, 4)
self.lstm2 = pew_LSTM(HIDDEN_DIM, HIDDEN_DIM, 4)
self.fc = nn.Linear(HIDDEN_DIM, 1)
nn.init.xavier_uniform_(self.fc.weight)
def forward(self, input): # [batch_size, seq_size, weather_size + input_dim]
x_weather = input[:, :, :-1] # [batch_size, seq_size, weather_size]
x_input = input[:, :, -1].unsqueeze(2) # [batch_size, seq_size, input_dim]
h1, c1 = self.lstm1(x_input, x_weather) # ([batch_size, seq_size, hidden_size], [batch_size, seq_size, hidden_size])
h2, c2 = self.lstm2(h1, x_weather) # ([batch_size, seq_size, hidden_size], [batch_size, seq_size, hidden_size])
out = h2.contiguous().view(-1, HIDDEN_DIM) # out size: (24 * batch_size, hidden_dim)
out = self.fc(out).view(-1) # (24 * batch_size)
return out
def Pew_LSTM_Predict(x,y,s,pattern):
x = torch.from_numpy(x) # [hour_size, 5]
y = torch.from_numpy(y) # [hour_size]
x = x[:((x.size(0) // 24) * 24)].reshape((x.size(0) // 24, 24, 5))
y = y[:((y.size(0) // 24) * 24)]
l = (int)(0.75*len(x))
train_x = x[:l]
train_y = y[:l*24]
test_x = x[l:]
test_y = y[l*24:]
model = Pew_LSTM()
loss_function = nn.MSELoss()
if pattern == 0:
model.load_state_dict(torch.load("model_P1_1h.pth"))
model = model.eval()
pred_test = model(test_x).cpu().detach().numpy().reshape(-1,1)
p = 0.0
r = 0
k = 0
test_y_numpy = test_y.reshape(-1,1).cpu().numpy()
atest_y = s.inverse_transform(test_y_numpy)
apred_test = s.inverse_transform(pred_test)
for i in range(len(test_y_numpy)-1):
k+=1
if test_y_numpy[i] != 0:
p = p + (abs(test_y_numpy[i]-pred_test[i+1])/test_y_numpy[i])
else:
p = p + abs(test_y_numpy[i]-pred_test[i+1])
r += (atest_y[i]-apred_test[i+1])**2
accuracy = (1-p/k)*100
rmse = sqrt(r/k)
print('accuracy: ' + str(round(accuracy[0],2))+"%"+' rmse: '+str(round(rmse,2)))
else:
# epoch = 500
for i in range(500):
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
out = model(train_x)
loss = loss_function(out, train_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 10 == 0:
print('Epoch: {}, Loss:{:.5f}'.format(i+1, loss.item()))
model = model.eval()
pred_test = model(test_x).cpu().detach().numpy().reshape(-1,1)
p = 0.0
r = 0
k = 0
test_y_numpy = test_y.reshape(-1,1).cpu().numpy()
atest_y = s.inverse_transform(test_y_numpy)
apred_test = s.inverse_transform(pred_test)
for i in range(len(test_y_numpy)-1):
k+=1
if test_y_numpy[i] != 0:
p = p + (abs(test_y_numpy[i]-pred_test[i+1])/test_y_numpy[i])
else:
p = p + abs(test_y_numpy[i]-pred_test[i+1])
r += (atest_y[i]-apred_test[i+1])**2
accuracy = (1-p/k)*100
rmse = sqrt(r/k)
print('accuracy: ' + str(round(accuracy[0],2))+"%"+' rmse: '+str(round(rmse,2)))
return (pred_test,accuracy)
k = 0
print("Example: P"+str(k+1))
print("pew depature 1h:")
pattern = 0
x, y, s= pGetAllData(k)
x = x.astype('float32')
y = y.astype('float32')
ai = Pew_LSTM_Predict(x,y,s,pattern)