-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSearch2.py
136 lines (120 loc) · 4.33 KB
/
Search2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from elasticsearch import Elasticsearch
import csv
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from search31 import *
elastic_client = Elasticsearch()
search_tag = input("Enter word you want to search:")
user_id = input("Enter user id")
query_body = {
"query": {
"bool": {
"must": {
"match": {
"title": search_tag
}
}
}
}
}
titlelst = []
midlst = []
scorelst =[]
# Pass the query dictionary to the 'body' parameter of the
# client's Search() method, and have it return results:
def results():
result = elastic_client.search(index="movies-index", body=query_body)
all_hits = result["hits"]["hits"]
if(not all_hits):print("Nothing Found")
for num, doc in enumerate(all_hits):
#
for key, value in doc.items():
if(key == "_source"):
midlst.append((list(value.values())[0]))
titlelst.append((list(value.values())[1]))
if(key == "_score"):
scorelst.append(value)
df = pd.DataFrame(list(zip(midlst,titlelst,scorelst)),columns=['Movieid','Titles',"Scores"])
return(df)
def csv_todfmov():
csv_df = pd.read_csv (r'movies.csv')
return(csv_df)
def csv_todf():
csv_df = pd.read_csv (r'ratings.csv')
return(csv_df)
def mo_ela_ids(dfm):
mo_ela_ids = []
dfm.assign(Movieid=dfm.Movieid.astype(int)).sort_values(by='Movieid',inplace=True)
mo_ela_ids = dfm["Movieid"].tolist()
return mo_ela_ids
def mo_ela_scores(dfs):
mo_ela_scores = []
dfs.assign(Movieid=dfs.Movieid.astype(int)).sort_values(by='Movieid',inplace=True)
mo_ela_scores = dfs["Scores"].tolist()
return mo_ela_scores
def mo_movie(csv_df,df,mo_ela_ids):
mo_lst= []
mo= 0
j=0
for i in mo_ela_ids:#Lista Me Tous mesous orous basei ton movie id apo tin ES me tragiko search sto ratings
for index, row in csv_df.iterrows():
if(row["movieId"] == float(i)) :
j = j+1
mo = (mo + row["rating"])
mo_lst.append(mo/j)
mo=0
j=0
return(mo_lst)
def usr_rating(csv_df,df,mo_ela):
ratings =[]
for index, row in csv_df.iterrows():
if(row["userId"]==float(user_id)):
for i in mo_ela :
if(row["movieId"]==float(i)):
ratings.append(i)
ratings.append(row["rating"])
return ratings
def ela_title(dft):
mo_ela_titles = []
dft.assign(Movieid=dft.Movieid.astype(int)).sort_values(by='Movieid',inplace=True)
mo_ela_titles = dft["Titles"].tolist()
return mo_ela_titles
def metriki(usr_rating,mo_movie,ela_mo_score,mo_ela_ids,titlelst):
ratings = []
mo_ratings =[]
for i in mo_ela_ids:
if i in usr_rating:
index = usr_rating.index(i)
ratings.append(usr_rating[index+1])
else:
ratings.append(0)
for j in range(len(mo_movie)):
mo_ratings.append(mo_movie[j]+ela_mo_score[j]+ratings[j])
dfr = pd.DataFrame(list(zip(mo_ela_ids,titlelst,mo_ratings)),columns=['Movieid','Titles',"Scores"])
dfr.assign(Scores=dfr.Scores.astype(float)).sort_values(by='Scores',inplace=True)
return dfr
def add_alldata(mo_ela_ids,csv,df): #MO new
genrelst =[]
splitgenres = []
scores = []
score = 0
for i in mo_ela_ids:
for index, row in csv.iterrows():
if(row["movieId"]==float(i)):
genrelst.append(row["genres"])
for i in (genrelst):
splitgenres = i.split("|")
for j in splitgenres:
l = 1
score = 0
for userid in range(671):
row = df.loc[int(userid+1)]
score = score + row[j]
l = l+1
scores.append(score/l)
return scores
x= results()
print("metriki")
print(metriki(usr_rating(csv_todf(),x,mo_ela_ids(x)),add_alldata(mo_ela_ids(x),csv_todfmov(),result),mo_ela_scores(x),mo_ela_ids(x),ela_title(x)))
#print(metriki(usr_rating(csv_todf(),x,mo_ela_ids(x)),mo_movie(csv_todf(),x,mo_ela_ids(x)),mo_ela_scores(x),mo_ela_ids(x),ela_title(x)))