Skip to content

Latest commit

 

History

History
20 lines (15 loc) · 474 Bytes

README.md

File metadata and controls

20 lines (15 loc) · 474 Bytes

nn

The most barebones nn implementation + GPU-enabled training harness that can be used to train serious models. Using only numpy and pandas.

import nn

n = nn.NN([784,1000,1000,10], Tanh, gpu=True)
opt = nn.Adam(n, X_train, Y_train, X_test, Y_test, batch_size=4096 * 4)
opt.train(epochs=100, lr=0.001, momentum=0.90).

Supports:

  • Feed-forward deep neural nets
  • Sigmoid + Tanh activation
  • Gradient descent + Adam optimisers
  • CPU + GPU training