-
Notifications
You must be signed in to change notification settings - Fork 84
/
extensions.py
488 lines (401 loc) · 15.2 KB
/
extensions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
"""
.. _tutorial-extending-nwb:
Extending NWB
=============
The NWB format was designed to be easily extendable. Here we discuss some of the basic functionality
in PyNWB for creating Neurodata Extensions (NDX).
.. seealso::
For a more in-depth, step-by-step guide on how to create, document, and publish NWB extensions, we highly
recommend visiting the :nwb_overview:`extension tutorial <extensions_tutorial/extensions_tutorial_home.html>`
on the :nwb_overview:`nwb overview <>` website.
"""
####################
# .. _defining_extension:
#
# Defining extensions
# -----------------------------------------------------
#
# Extensions should be defined separately from the code that uses the extensions. This design decision is
# based on the assumption that the extension will be written once, and read or used multiple times. Here, we
# provide an example of how to create an extension for subsequent use.
#
# The following block of code demonstrates how to create a new namespace, and then add a new `neurodata_type`
# to this namespace. Finally,
# it calls :py:meth:`~hdmf.spec.write.NamespaceBuilder.export` to save the extensions to disk for downstream use.
# sphinx_gallery_thumbnail_path = 'figures/gallery_thumbnails_extensions.png'
from pynwb.spec import NWBAttributeSpec, NWBGroupSpec, NWBNamespaceBuilder
ns_path = "mylab.namespace.yaml"
ext_source = "mylab.extensions.yaml"
ns_builder = NWBNamespaceBuilder(
"Extension for use in my Lab", "mylab", version="0.1.0"
)
ns_builder.include_type("ElectricalSeries", namespace="core")
ext = NWBGroupSpec(
"A custom ElectricalSeries for my lab",
attributes=[NWBAttributeSpec("trode_id", "the tetrode id", "int")],
neurodata_type_inc="ElectricalSeries",
neurodata_type_def="TetrodeSeries",
)
ns_builder.add_spec(ext_source, ext)
ns_builder.export(ns_path)
####################
# Running this block will produce two YAML files.
#
# The first file, mylab.namespace.yaml, contains the specification of the namespace.
#
# .. code-block:: yaml
#
# namespaces:
# - doc: Extension for use in my Lab
# name: mylab
# schema:
# - namespace: core
# neurodata_type:
# - ElectricalSeries
# - source: mylab.extensions.yaml
#
# The second file, mylab.extensions.yaml, contains the details on newly defined types.
#
# .. code-block:: yaml
#
# groups:
# - attributes:
# - doc: the tetrode id
# dtype: int
# name: trode_id
# doc: A custom ElectricalSeries for my lab
# neurodata_type_def: TetrodeSeries
# neurodata_type_inc: ElectricalSeries
#
# .. tip::
#
# Detailed documentation of all components and `neurodata_types` that are part of the core schema of NWB:N are
# available in the schema docs at `http://nwb-schema.readthedocs.io <http://nwb-schema.readthedocs.io>`_ .
# Before creating a new type from scratch, please have a look at the schema docs to see if using or extending an
# existing type may solve your problem. Also, the schema docs are helpful when extending an existing type to
# better understand the design and structure of the neurodata_type you are using.
####################
# .. _using_extension:
#
# Using extensions
# -----------------------------------------------------
#
# After an extension has been created, it can be used by downstream code for reading and writing data.
# There are two main mechanisms for reading and writing extension data with PyNWB.
# The first involves defining new :py:class:`~pynwb.core.NWBContainer` classes that are then mapped
# to the neurodata types in the extension.
from hdmf.utils import docval, get_docval, popargs
from pynwb import load_namespaces, register_class
from pynwb.ecephys import ElectricalSeries
ns_path = "mylab.namespace.yaml"
load_namespaces(ns_path)
@register_class("TetrodeSeries", "mylab")
class TetrodeSeries(ElectricalSeries):
__nwbfields__ = ("trode_id",)
@docval(
*get_docval(ElectricalSeries.__init__)
+ ({"name": "trode_id", "type": int, "doc": "the tetrode id"},)
)
def __init__(self, **kwargs):
trode_id = popargs("trode_id", kwargs)
super().__init__(**kwargs)
self.trode_id = trode_id
####################
# .. note::
#
# See the API docs for more information about :py:func:`~hdmf.utils.docval`,
# :py:func:`~hdmf.utils.popargs`, and :py:func:`~hdmf.utils.get_docval`
#
# When extending :py:class:`~pynwb.core.NWBContainer` or :py:class:`~pynwb.core.NWBContainer`
# subclasses, you should define the class field ``__nwbfields__``. This will
# tell PyNWB the properties of the :py:class:`~pynwb.core.NWBContainer` extension.
#
# If you do not want to write additional code to read your extensions, PyNWB is able to dynamically
# create an :py:class:`~pynwb.core.NWBContainer` subclass for use within the PyNWB API.
# Dynamically created classes can be inspected using the built-in :py:mod:`inspect` module.
from pynwb import get_class, load_namespaces
ns_path = "mylab.namespace.yaml"
load_namespaces(ns_path)
AutoTetrodeSeries = get_class("TetrodeSeries", "mylab")
####################
# .. note::
#
# When defining your own :py:class:`~pynwb.core.NWBContainer`, the subclass name does not need to be the same
# as the extension type name. However, it is encouraged to keep class and extension names the same for the
# purposes of readability.
####################
# .. _caching_extension:
#
# Caching extensions to file
# -----------------------------------------------------
#
# By default, extensions are cached to file so that your NWB file will carry the extensions needed to read the file
# with it.
#
# To demonstrate this, first we will make some simulated data using our extensions.
from datetime import datetime
from dateutil.tz import tzlocal
from pynwb import NWBFile
start_time = datetime(2017, 4, 3, 11, tzinfo=tzlocal())
create_date = datetime(2017, 4, 15, 12, tzinfo=tzlocal())
nwbfile = NWBFile(
"demonstrate caching", "NWB456", start_time, file_create_date=create_date
)
device = nwbfile.create_device(name="trodes_rig123")
electrode_name = "tetrode1"
description = "an example tetrode"
location = "somewhere in the hippocampus"
electrode_group = nwbfile.create_electrode_group(
electrode_name, description=description, location=location, device=device
)
for idx in [1, 2, 3, 4]:
nwbfile.add_electrode(
id=idx,
x=1.0,
y=2.0,
z=3.0,
imp=float(-idx),
location="CA1",
filtering="none",
group=electrode_group,
)
electrode_table_region = nwbfile.create_electrode_table_region(
[0, 2], "the first and third electrodes"
)
import numpy as np
rate = 10.0
np.random.seed(1234)
data_len = 1000
data = np.random.rand(data_len * 2).reshape((data_len, 2))
timestamps = np.arange(data_len) / rate
ts = TetrodeSeries(
"test_ephys_data",
data,
electrode_table_region,
timestamps=timestamps,
trode_id=1,
# Alternatively, could specify starting_time and rate as follows
# starting_time=ephys_timestamps[0],
# rate=rate,
resolution=0.001,
comments="This data was randomly generated with numpy, using 1234 as the seed",
description="Random numbers generated with numpy.random.rand",
)
nwbfile.add_acquisition(ts)
####################
# .. note::
#
# For more information on writing :py:class:`~pynwb.ecephys.ElectricalSeries`,
# see :ref:`ecephys_tutorial`.
#
# Now that we have some data, lets write our file. You can choose not to cache the spec by setting
# cache_spec=False in :py:meth:`~hdmf.backends.hdf5.h5tools.HDF5IO.write`
from pynwb import NWBHDF5IO
io = NWBHDF5IO("cache_spec_example.nwb", mode="w")
io.write(nwbfile)
io.close()
####################
# .. note::
#
# For more information on writing NWB files, see :ref:`basic_writing`.
#
# By default, if a namespace is not already loaded, PyNWB loads the namespace cached in
# the file. To disable this, set ``load_namespaces=False`` in the
# :py:class:`~pynwb.NWBHDF5IO` constructor.
#
# .. _MultiContainerInterface:
#
# Creating and using a custom MultiContainerInterface
# -----------------------------------------------------
# It is sometimes the case that we need a group to hold zero-or-more or
# one-or-more of the same object. Here we show how to create an extension that
# defines a group (`PotatoSack`) that holds multiple objects (`Potato`) and
# then how to use the new data types. First, we use `pynwb` to define the new
# data types.
from pynwb.spec import NWBAttributeSpec, NWBGroupSpec, NWBNamespaceBuilder
name = "test_multicontainerinterface"
ns_path = name + ".namespace.yaml"
ext_source = name + ".extensions.yaml"
ns_builder = NWBNamespaceBuilder(name + " extensions", name, version="0.1.0")
ns_builder.include_type("NWBDataInterface", namespace="core")
potato = NWBGroupSpec(
neurodata_type_def="Potato",
neurodata_type_inc="NWBDataInterface",
doc="A potato",
quantity="*",
attributes=[
NWBAttributeSpec(
name="weight", doc="weight of potato", dtype="float", required=True
),
NWBAttributeSpec(
name="age", doc="age of potato", dtype="float", required=False
),
],
)
potato_sack = NWBGroupSpec(
neurodata_type_def="PotatoSack",
neurodata_type_inc="NWBDataInterface",
name="potato_sack",
doc="A sack of potatoes",
quantity="?",
groups=[potato],
)
ns_builder.add_spec(ext_source, potato_sack)
ns_builder.export(ns_path)
####################
# Then create Container classes registered to the new data types (this is
# generally done in a different file)
from pynwb import load_namespaces, register_class
from pynwb.file import MultiContainerInterface, NWBContainer
load_namespaces(ns_path)
@register_class("Potato", name)
class Potato(NWBContainer):
__nwbfields__ = ("name", "weight", "age")
@docval(
{"name": "name", "type": str, "doc": "who names a potato?"},
{"name": "weight", "type": float, "doc": "weight of potato in grams"},
{"name": "age", "type": float, "doc": "age of potato in days"},
)
def __init__(self, **kwargs):
super().__init__(name=kwargs["name"])
self.weight = kwargs["weight"]
self.age = kwargs["age"]
@register_class("PotatoSack", name)
class PotatoSack(MultiContainerInterface):
__clsconf__ = {
"attr": "potatos",
"type": Potato,
"add": "add_potato",
"get": "get_potato",
"create": "create_potato",
}
####################
# Then use the objects (again, this would often be done in a different file).
from datetime import datetime
from dateutil.tz import tzlocal
from pynwb import NWBHDF5IO, NWBFile
# You can add potatoes to a potato sack in different ways
potato_sack = PotatoSack(potatos=Potato(name="potato1", age=2.3, weight=3.0))
potato_sack.add_potato(Potato("potato2", 3.0, 4.0))
potato_sack.create_potato("big_potato", 10.0, 20.0)
nwbfile = NWBFile(
"a file with metadata", "NB123A", datetime(2018, 6, 1, tzinfo=tzlocal())
)
pmod = nwbfile.create_processing_module("module_name", "desc")
pmod.add_container(potato_sack)
with NWBHDF5IO("test_multicontainerinterface.nwb", "w") as io:
io.write(nwbfile)
####################
# This is how you read the NWB file (again, this would often be done in a
# different file).
load_namespaces(ns_path)
# from xxx import PotatoSack, Potato
with NWBHDF5IO("test_multicontainerinterface.nwb", "r") as io:
nwb = io.read()
print(nwb.get_processing_module()["potato_sack"].get_potato("big_potato").weight)
# note: you can call get_processing_module() with or without the module name as
# an argument. However, if there is more than one module, the name is required.
# Here, there is more than one potato, so the name of the potato is required as
# an argument to get_potato
####################
# Example: Cortical Surface Mesh
# -----------------------------------------------------
#
# Here we show how to create extensions by creating a data class for a
# cortical surface mesh. This data type is particularly important for ECoG data, since we need to know where
# each electrode is with respect to the gyri and sulci. Surface mesh objects contain two types of data:
#
# 1. `vertices`, which is an (n, 3) matrix of floats that represents points in 3D space
#
# 2. `faces`, which is an (m, 3) matrix of uints that represents indices of the `vertices` matrix. Each triplet of
# points defines a triangular face, and the mesh is comprised of a collection of triangular faces.
#
# First, we set up our extension. I am going to use the name `ecog`
from pynwb.spec import NWBDatasetSpec, NWBGroupSpec, NWBNamespaceBuilder
name = "ecog"
ns_path = name + ".namespace.yaml"
ext_source = name + ".extensions.yaml"
# Now we define the data structures. We use `NWBDataInterface` as the base type,
# which is the most primitive type you are likely to use as a base. The name of the
# class is `CorticalSurface`, and it requires two matrices, `vertices` and
# `faces`.
surface = NWBGroupSpec(
doc="brain cortical surface",
datasets=[
NWBDatasetSpec(
doc="faces for surface, indexes vertices",
shape=(None, 3),
name="faces",
dtype="uint",
dims=("face_number", "vertex_index"),
),
NWBDatasetSpec(
doc="vertices for surface, points in 3D space",
shape=(None, 3),
name="vertices",
dtype="float",
dims=("vertex_number", "xyz"),
),
],
neurodata_type_def="CorticalSurface",
neurodata_type_inc="NWBDataInterface",
)
# Now we set up the builder and add this object
ns_builder = NWBNamespaceBuilder(name + " extensions", name, version="0.1.0")
ns_builder.add_spec(ext_source, surface)
ns_builder.export(ns_path)
################
# The above should generate 2 YAML files. `ecog.extensions.yaml`,
# defines the newly defined types
#
# .. code-block:: yaml
#
# # ecog.namespace.yaml
# groups:
# - datasets:
# - dims:
# - face_number
# - vertex_index
# doc: faces for surface, indexes vertices
# dtype: uint
# name: faces
# shape:
# - null
# - 3
# - dims:
# - vertex_number
# - xyz
# doc: vertices for surface, points in 3D space
# dtype: float
# name: vertices
# shape:
# - null
# - 3
# doc: brain cortical surface
# neurodata_type_def: CorticalSurface
# neurodata_type_inc: NWBDataInterface
#
# Finally, we should test the new types to make sure they run as expected
from datetime import datetime
import numpy as np
from pynwb import NWBHDF5IO, NWBFile, get_class, load_namespaces
load_namespaces("ecog.namespace.yaml")
CorticalSurface = get_class("CorticalSurface", "ecog")
cortical_surface = CorticalSurface(
vertices=[
[0.0, 1.0, 1.0],
[1.0, 1.0, 2.0],
[2.0, 2.0, 1.0],
[2.0, 1.0, 1.0],
[1.0, 2.0, 1.0],
],
faces=np.array([[0, 1, 2], [1, 2, 3]]).astype("uint"),
name="cortex",
)
nwbfile = NWBFile("my first synthetic recording", "EXAMPLE_ID", datetime.now())
cortex_module = nwbfile.create_processing_module(
name="cortex", description="description"
)
cortex_module.add_container(cortical_surface)
with NWBHDF5IO("test_cortical_surface.nwb", "w") as io:
io.write(nwbfile)