diff --git a/tutorials/dataPipe.m b/tutorials/dataPipe.m index 24894fe7..0603482d 100644 --- a/tutorials/dataPipe.m +++ b/tutorials/dataPipe.m @@ -65,7 +65,7 @@ % scenario. The following code utilizes DataPipe�s default chunk size: % -fData=randi(250, 1000, 1000); % Create fake data +fData = randi(250, 100, 1000); % Create fake data % create an nwb structure with required fields nwb = NwbFile( ... @@ -77,7 +77,9 @@ fdataNWB=types.core.TimeSeries( ... 'data', fData_compressed, ... - 'data_unit', 'mV'); + 'data_unit', 'mV', ... + 'starting_time', 0.0, ... + 'starting_time_rate', 30.0); nwb.acquisition.set('data', fdataNWB); @@ -110,8 +112,8 @@ % To demonstrate, we can create a nwb file with a compressed time series data: %% -dataPart1 = randi(250, 10000, 1); % "load" 1/4 of the entire dataset -fullDataSize = [40000 1]; % this is the size of the TOTAL dataset +dataPart1 = randi(250, 1, 1000); % "load" 1/4 of the entire dataset +fullDataSize = [1 40000]; % this is the size of the TOTAL dataset % create an nwb structure with required fields nwb=NwbFile( ... @@ -123,12 +125,14 @@ fData_use = types.untyped.DataPipe( ... 'data', dataPart1, ... 'maxSize', fullDataSize, ... - 'axis', 1); + 'axis', 2); %Set the compressed data as a time series fdataNWB = types.core.TimeSeries( ... 'data', fData_use, ... - 'data_unit', 'mV'); + 'data_unit', 'mV', ... + 'starting_time', 0.0, ... + 'starting_time_rate', 30.0); nwb.acquisition.set('time_series', fdataNWB); @@ -141,7 +145,7 @@ % "load" each of the remaining 1/4ths of the large dataset for i = 2:4 % iterating through parts of data - dataPart_i=randi(250, 10000, 1); % faked data chunk as if it was loaded + dataPart_i=randi(250, 1, 10000); % faked data chunk as if it was loaded nwb.acquisition.get('time_series').data.append(dataPart_i); % append the loaded data end %% @@ -155,7 +159,7 @@ % Following is an example of how to compress and add a timeseries % to an NWB file: -fData=randi(250, 10000, 1); % create fake data; +fData=randi(250, 1, 10000); % create fake data; %assign data without compression nwb=NwbFile(... @@ -178,7 +182,9 @@ % Assign the data to appropriate module and write the NWB file fdataNWB=types.core.TimeSeries( ... 'data', fData_compressed, ... - 'data_unit', 'mV'); + 'data_unit', 'mV', ... + 'starting_time', 0.0, ... + 'starting_time_rate', 30.0); ephys_module.nwbdatainterface.set('data', fdataNWB); nwb.processing.set('ephys', ephys_module); diff --git a/tutorials/ecephys.mlx b/tutorials/ecephys.mlx index a844ed9e..5bffdbf2 100644 Binary files a/tutorials/ecephys.mlx and b/tutorials/ecephys.mlx differ diff --git a/tutorials/html/dataPipe.html b/tutorials/html/dataPipe.html index 81dd4450..39c1232c 100644 --- a/tutorials/html/dataPipe.html +++ b/tutorials/html/dataPipe.html @@ -6,7 +6,7 @@ Neurodata Without Borders (NWB) advanced write using DataPipe

Neurodata Without Borders Extracellular Electrophysiology Tutorial

Table of Contents
Neurodata Without Borders Extracellular Electrophysiology Tutorial +.S19 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(192, 76, 11); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left; } +.S20 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left; }

Neurodata Without Borders Extracellular Electrophysiology Tutorial

This tutorial

Create fake data for a hypothetical extracellular electrophysiology experiment. The types of data we will convert are:
  • Voltage recording
  • Local field potential (LFP)
  • Spike times
It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.

Setting up the NWB File

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session start time. Create a new NWBFile object with those and additional metadata. For all MatNWB functions, we use the Matlab method of entering keyword argument pairs, where arguments are entered as name followed by value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'Last Name, First Name', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', 'DOI:10.1016/j.neuron.2016.12.011'); % optional
nwb
nwb =
NwbFile with properties: + Python tutorials

This tutorial

Create fake data for a hypothetical extracellular electrophysiology experiment. The types of data we will convert are:
  • Voltage recording
  • Local field potential (LFP)
  • Spike times
It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.

Setting up the NWB File

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session start time. Create a new NWBFile object with those and additional metadata. For all MatNWB functions, we use the Matlab method of entering keyword argument pairs, where arguments are entered as name followed by value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'Last Name, First Name', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', {'DOI:10.1016/j.neuron.2016.12.011'}); % optional
nwb
nwb =
NwbFile with properties: nwb_version: '2.6.0' file_create_date: [] identifier: 'Mouse5_Day3' session_description: 'mouse in open exploration' - session_start_time: {[2018-04-25T02:30:03.000000+02:00]} - timestamps_reference_time: {[2018-04-25T03:00:45.000000+02:00]} + session_start_time: {[2018-04-25T02:30:03.000000-04:00]} + timestamps_reference_time: {[2018-04-25T03:00:45.000000-04:00]} acquisition: [0×1 types.untyped.Set] analysis: [0×1 types.untyped.Set] general: [0×1 types.untyped.Set] @@ -125,7 +124,7 @@ general_optophysiology: [0×1 types.untyped.Set] general_pharmacology: '' general_protocol: '' - general_related_publications: 'DOI:10.1016/j.neuron.2016.12.011' + general_related_publications: {'DOI:10.1016/j.neuron.2016.12.011'} general_session_id: 'session_1234' general_slices: '' general_source_script: '' @@ -143,12 +142,12 @@ stimulus_presentation: [0×1 types.untyped.Set] stimulus_templates: [0×1 types.untyped.Set] units: [] -

Extracellular Electrophysiology

In order to store extracellular electrophysiology data, you first must create an electrodes table describing the electrodes that generated this data. Extracellular electrodes are stored in an electrodes table, which is also a DynamicTable. electrodes has several required fields: x, y, z, impedence, location, filtering, and electrode_group.

Electrodes Table

Since this is a DynamicTable, we can add additional metadata fields. We will be adding a "label" column to the table.
Here, we also demonstate another method for creating DynamicTables, by first creating a MATLAB native Table object and then calling util.table2nwb to convert this Table object into a DynamicTable.
numShanks = 4;
numChannelsPerShank = 3;
 
ElectrodesDynamicTable = types.hdmf_common.DynamicTable(...
'colnames', {'location', 'group', 'group_name', 'label'}, ...
'description', 'all electrodes');
 
Device = types.core.Device(...
'description', 'the best array', ...
'manufacturer', 'Probe Company 9000' ...
);
nwb.general_devices.set('array', Device);
for iShank = 1:numShanks
shankGroupName = sprintf('shank%d', iShank);
EGroup = types.core.ElectrodeGroup( ...
'description', sprintf('electrode group for %s', shankGroupName), ...
'location', 'brain area', ...
'device', types.untyped.SoftLink(Device) ...
);
nwb.general_extracellular_ephys.set(shankGroupName, EGroup);
for iElectrode = 1:numChannelsPerShank
ElectrodesDynamicTable.addRow( ...
'location', 'unknown', ...
'group', types.untyped.ObjectView(EGroup), ...
'group_name', shankGroupName, ...
'label', sprintf('%s-electrode%d', shankGroupName, iElectrode));
end
end
ElectrodesDynamicTable.toTable()
ans = 12×5 table
 idlocationgroupgroup_namelabel
10'unknown'1×1 ObjectView'shank1''shank1-electrode1'
21'unknown'1×1 ObjectView'shank1''shank1-electrode2'
32'unknown'1×1 ObjectView'shank1''shank1-electrode3'
43'unknown'1×1 ObjectView'shank2''shank2-electrode1'
54'unknown'1×1 ObjectView'shank2''shank2-electrode2'
65'unknown'1×1 ObjectView'shank2''shank2-electrode3'
76'unknown'1×1 ObjectView'shank3''shank3-electrode1'
87'unknown'1×1 ObjectView'shank3''shank3-electrode2'
98'unknown'1×1 ObjectView'shank3''shank3-electrode3'
109'unknown'1×1 ObjectView'shank4''shank4-electrode1'
1110'unknown'1×1 ObjectView'shank4''shank4-electrode2'
1211'unknown'1×1 ObjectView'shank4''shank4-electrode3'
 
nwb.general_extracellular_ephys_electrodes = ElectrodesDynamicTable;

Links

In the above loop, we create ElectrodeGroup objects. The electrodes table then uses an ObjectView in each row to link to the corresponding ElectrodeGroup object. An ObjectView is an object that allow you to create a link from one neurodata type referencing another.

ElectricalSeries

Voltage data are stored in ElectricalSeries objects. ElectricalSeries is a subclass of TimeSeries specialized for voltage data. In order to create our ElectricalSeries object, we will need to reference a set of rows in the electrodes table to indicate which electrodes were recorded. We will do this by creating a DynamicTableRegion, which is a type of link that allows you to reference specific rows of a DynamicTable, such as the electrodes table, by row indices.
Create a DynamicTableRegion that references all rows of the electrodes table.
electrode_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(ElectrodesDynamicTable), ...
'description', 'all electrodes', ...
'data', (0:length(ElectrodesDynamicTable.id.data)-1)');
Now create an ElectricalSeries object to hold acquisition data collected during the experiment.
electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 30000., ... % Hz
'data', randn(12, 3000), ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
This is the voltage data recorded directly from our electrodes, so it goes in the acquisition group.
nwb.acquisition.set('ElectricalSeries', electrical_series);

LFP

Local field potential (LFP) refers in this case to data that has been downsampled and/or filtered from the original acquisition data and is used to analyze signals in the lower frequency range. Filtered and downsampled LFP data would also be stored in an ElectricalSeries. To help data analysis and visualization tools know that this ElectricalSeries object represents LFP data, store it inside an LFP object, then place the LFP object in a ProcessingModule named 'ecephys'. This is analogous to how we stored the SpatialSeries object inside of a Position object and stored the Position object in a ProcessingModule named 'behavior' earlier.
electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000., ... % Hz
'data', randn(12, 100), ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
 
lfp = types.core.LFP('ElectricalSeries', electrical_series);
 
ecephys_module = types.core.ProcessingModule(...
'description', 'extracellular electrophysiology');
 
ecephys_module.nwbdatainterface.set('LFP', lfp);
nwb.processing.set('ecephys', ecephys_module);

Spike Times

Ragged Arrays

Spike times are stored in another DynamicTable of subtype Units. The default Units table is at /units in the HDF5 file. You can add columns to the Units table just like you did for electrodes and trials. Here, we generate some random spike data and populate the table.
num_cells = 10;
firing_rate = 20;
spikes = cell(1, num_cells);
for iShank = 1:num_cells
spikes{iShank} = rand(1, randi([16, 28]));
end
spikes
spikes = 1×10 cell
 12345678910
11×22 double1×21 double1×19 double1×16 double1×26 double1×16 double1×17 double1×21 double1×28 double1×27 double
Spike times are an example of a ragged array- it's like a matrix, but each row has a different number of elements. We can represent this type of data as an indexed column of the units DynamicTable. These indexed columns have two components, the vector data object that holds the data and the vector index object that holds the indices in the vector that indicate the row breaks. You can use the convenience function util.create_indexed_column to create these objects.
[spike_times_vector, spike_times_index] = util.create_indexed_column(spikes);
 
nwb.units = types.core.Units( ...
'colnames', {'spike_times'}, ...
'description', 'units table', ...
'id', types.hdmf_common.ElementIdentifiers( ...
'data', int64(0:length(spikes) - 1) ...
), ...
'spike_times', spike_times_vector, ...
'spike_times_index', spike_times_index ...
);

Designating Electrophysiology Data

As mentioned above, ElectricalSeries objects are meant for storing specific types of extracellular recordings. In addition to this TimeSeries class, NWB provides some Processing Modules for designating the type of data you are storing. We will briefly discuss them here, and refer the reader to the API documentation and Intro to NWB for more details on using these objects.
For storing spike data, there are two options. Which one you choose depends on what data you have available. If you need to store complete and/or continuous raw voltage traces, you should store the traces with ElectricalSeries objects as acquisition data, and use the EventDetection class for identifying the spike events in your raw traces. If you do not want to store the raw voltage traces and only the waveform ‘snippets’ surrounding spike events, you should use the EventWaveform class, which can store one or more SpikeEventSeries objects.
The results of spike sorting (or clustering) should be stored in the top-level Units table. Note that it is not required to store spike waveforms in order to store spike events or mean waveforms–if you only want to store the spike times of clustered units you can use only the Units table.
For local field potential data, there are two options. Again, which one you choose depends on what data you have available. With both options, you should store your traces with ElectricalSeries objects. If you are storing unfiltered local field potential data, you should store the ElectricalSeries objects in LFP data interface object(s). If you have filtered LFP data, you should store the ElectricalSeries objects in FilteredEphys data interface object(s).

Writing the NWB File

nwbExport(nwb, 'ecephys_tutorial.nwb')
Warning: Attempted to change size of continuous dataset `/units/spike_times`. Skipping.

Reading NWB Data

Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data. This allows you to conveniently work with datasets that are too large to fit in RAM all at once. load with no input arguments reads the entire dataset:
nwb2 = nwbRead('ecephys_tutorial.nwb', 'ignorecache');
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data.load;

Accessing Data Regions

If all you need is a data region, you can index a DataStub object like you would any normal array in MATLAB, as shown below. When indexing the dataset this way, only the selected region is read from disk into RAM. This allows you to handle very large datasets that would not fit entirely into RAM.
% read section of LFP
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data(1:5, 1:10)
ans = 5×10
-0.2598 -0.2503 -0.7306 -1.4552 -0.3254 -0.8368 -0.6304 -0.3502 -2.3128 0.0892 +

Extracellular Electrophysiology

In order to store extracellular electrophysiology data, you first must create an electrodes table describing the electrodes that generated this data. Extracellular electrodes are stored in an electrodes table, which is also a DynamicTable. electrodes has several required fields: x, y, z, impedence, location, filtering, and electrode_group.

Electrodes Table

Since this is a DynamicTable, we can add additional metadata fields. We will be adding a "label" column to the table.
Here, we also demonstate another method for creating DynamicTables, by first creating a MATLAB native Table object and then calling util.table2nwb to convert this Table object into a DynamicTable.
numShanks = 4;
numChannelsPerShank = 3;
 
ElectrodesDynamicTable = types.hdmf_common.DynamicTable(...
'colnames', {'location', 'group', 'group_name', 'label'}, ...
'description', 'all electrodes');
 
Device = types.core.Device(...
'description', 'the best array', ...
'manufacturer', 'Probe Company 9000' ...
);
nwb.general_devices.set('array', Device);
for iShank = 1:numShanks
shankGroupName = sprintf('shank%d', iShank);
EGroup = types.core.ElectrodeGroup( ...
'description', sprintf('electrode group for %s', shankGroupName), ...
'location', 'brain area', ...
'device', types.untyped.SoftLink(Device) ...
);
nwb.general_extracellular_ephys.set(shankGroupName, EGroup);
for iElectrode = 1:numChannelsPerShank
ElectrodesDynamicTable.addRow( ...
'location', 'unknown', ...
'group', types.untyped.ObjectView(EGroup), ...
'group_name', shankGroupName, ...
'label', sprintf('%s-electrode%d', shankGroupName, iElectrode));
end
end
ElectrodesDynamicTable.toTable()
ans = 12×5 table
 idlocationgroupgroup_namelabel
10'unknown'1×1 ObjectView'shank1''shank1-electrode1'
21'unknown'1×1 ObjectView'shank1''shank1-electrode2'
32'unknown'1×1 ObjectView'shank1''shank1-electrode3'
43'unknown'1×1 ObjectView'shank2''shank2-electrode1'
54'unknown'1×1 ObjectView'shank2''shank2-electrode2'
65'unknown'1×1 ObjectView'shank2''shank2-electrode3'
76'unknown'1×1 ObjectView'shank3''shank3-electrode1'
87'unknown'1×1 ObjectView'shank3''shank3-electrode2'
98'unknown'1×1 ObjectView'shank3''shank3-electrode3'
109'unknown'1×1 ObjectView'shank4''shank4-electrode1'
1110'unknown'1×1 ObjectView'shank4''shank4-electrode2'
1211'unknown'1×1 ObjectView'shank4''shank4-electrode3'
 
nwb.general_extracellular_ephys_electrodes = ElectrodesDynamicTable;

Links

In the above loop, we create ElectrodeGroup objects. The electrodes table then uses an ObjectView in each row to link to the corresponding ElectrodeGroup object. An ObjectView is an object that allow you to create a link from one neurodata type referencing another.

ElectricalSeries

Voltage data are stored in ElectricalSeries objects. ElectricalSeries is a subclass of TimeSeries specialized for voltage data. In order to create our ElectricalSeries object, we will need to reference a set of rows in the electrodes table to indicate which electrodes were recorded. We will do this by creating a DynamicTableRegion, which is a type of link that allows you to reference specific rows of a DynamicTable, such as the electrodes table, by row indices.
Create a DynamicTableRegion that references all rows of the electrodes table.
electrode_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(ElectrodesDynamicTable), ...
'description', 'all electrodes', ...
'data', (0:length(ElectrodesDynamicTable.id.data)-1)');
Now create an ElectricalSeries object to hold acquisition data collected during the experiment.
electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 30000., ... % Hz
'data', randn(12, 3000), ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
This is the voltage data recorded directly from our electrodes, so it goes in the acquisition group.
nwb.acquisition.set('ElectricalSeries', electrical_series);

LFP

Local field potential (LFP) refers in this case to data that has been downsampled and/or filtered from the original acquisition data and is used to analyze signals in the lower frequency range. Filtered and downsampled LFP data would also be stored in an ElectricalSeries. To help data analysis and visualization tools know that this ElectricalSeries object represents LFP data, store it inside an LFP object, then place the LFP object in a ProcessingModule named 'ecephys'. This is analogous to how we stored the SpatialSeries object inside of a Position object and stored the Position object in a ProcessingModule named 'behavior' earlier.
electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000., ... % Hz
'data', randn(12, 100), ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
 
lfp = types.core.LFP('ElectricalSeries', electrical_series);
 
ecephys_module = types.core.ProcessingModule(...
'description', 'extracellular electrophysiology');
 
ecephys_module.nwbdatainterface.set('LFP', lfp);
nwb.processing.set('ecephys', ecephys_module);

Spike Times

Ragged Arrays

Spike times are stored in another DynamicTable of subtype Units. The default Units table is at /units in the HDF5 file. You can add columns to the Units table just like you did for electrodes and trials. Here, we generate some random spike data and populate the table.
num_cells = 10;
firing_rate = 20;
spikes = cell(1, num_cells);
for iShank = 1:num_cells
spikes{iShank} = rand(1, randi([16, 28]));
end
spikes
spikes = 1×10 cell
 12345678910
11×22 double1×21 double1×19 double1×16 double1×26 double1×16 double1×17 double1×21 double1×28 double1×27 double
Spike times are an example of a ragged array- it's like a matrix, but each row has a different number of elements. We can represent this type of data as an indexed column of the units DynamicTable. These indexed columns have two components, the vector data object that holds the data and the vector index object that holds the indices in the vector that indicate the row breaks. You can use the convenience function util.create_indexed_column to create these objects.
[spike_times_vector, spike_times_index] = util.create_indexed_column(spikes);
 
nwb.units = types.core.Units( ...
'colnames', {'spike_times'}, ...
'description', 'units table', ...
'spike_times', spike_times_vector, ...
'spike_times_index', spike_times_index ...
);

Designating Electrophysiology Data

As mentioned above, ElectricalSeries objects are meant for storing specific types of extracellular recordings. In addition to this TimeSeries class, NWB provides some Processing Modules for designating the type of data you are storing. We will briefly discuss them here, and refer the reader to the API documentation and Intro to NWB for more details on using these objects.
For storing spike data, there are two options. Which one you choose depends on what data you have available. If you need to store complete and/or continuous raw voltage traces, you should store the traces with ElectricalSeries objects as acquisition data, and use the EventDetection class for identifying the spike events in your raw traces. If you do not want to store the raw voltage traces and only the waveform ‘snippets’ surrounding spike events, you should use the EventWaveform class, which can store one or more SpikeEventSeries objects.
The results of spike sorting (or clustering) should be stored in the top-level Units table. Note that it is not required to store spike waveforms in order to store spike events or mean waveforms–if you only want to store the spike times of clustered units you can use only the Units table.
For local field potential data, there are two options. Again, which one you choose depends on what data you have available. With both options, you should store your traces with ElectricalSeries objects. If you are storing unfiltered local field potential data, you should store the ElectricalSeries objects in LFP data interface object(s). If you have filtered LFP data, you should store the ElectricalSeries objects in FilteredEphys data interface object(s).

Writing the NWB File

nwbExport(nwb, 'ecephys_tutorial.nwb')

Reading NWB Data

Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data. This allows you to conveniently work with datasets that are too large to fit in RAM all at once. load with no input arguments reads the entire dataset:
nwb2 = nwbRead('ecephys_tutorial.nwb', 'ignorecache');
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data.load;

Accessing Data Regions

If all you need is a data region, you can index a DataStub object like you would any normal array in MATLAB, as shown below. When indexing the dataset this way, only the selected region is read from disk into RAM. This allows you to handle very large datasets that would not fit entirely into RAM.
% read section of LFP
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data(1:5, 1:10)
ans = 5×10
-0.2598 -0.2503 -0.7306 -1.4552 -0.3254 -0.8368 -0.6304 -0.3502 -2.3128 0.0892 -0.6888 0.1147 0.7930 -0.8179 -1.0429 -0.7021 -1.0593 0.3750 0.5636 0.1012 -1.5281 -1.1489 -1.2679 1.5675 0.0814 -1.3598 0.8827 1.5249 -1.6651 0.2384 0.3405 0.1056 0.1532 0.1086 1.4486 0.0502 -1.4344 0.1349 1.0144 1.4378 -0.6437 -1.2244 0.1417 -0.8462 0.2846 -0.0092 -0.2735 -1.0856 0.4303 0.8605 -
 
% You can use the getRow method of the table to load spike times of a specific unit.
% To get the values, unpack from the returned table.
nwb.units.getRow(1).spike_times{1}
ans = 22×1
0.3740 +
 
% You can use the getRow method of the table to load spike times of a specific unit.
% To get the values, unpack from the returned table.
nwb.units.getRow(1).spike_times{1}
ans = 22×1
0.3740 0.7428 0.4703 0.3847 @@ -158,7 +157,7 @@ 0.5587 0.4400 0.3532 -

Learn more!

See the API documentation to learn what data types are available.

MATLAB tutorials

Python tutorials

See our tutorials for more details about your data type:
Check out other tutorials that teach advanced NWB topics:

+

Learn more!

See the API documentation to learn what data types are available.

MATLAB tutorials

Python tutorials

See our tutorials for more details about your data type:
Check out other tutorials that teach advanced NWB topics: