From 661966608c27fb20fb1d040c97b563facffc7e38 Mon Sep 17 00:00:00 2001 From: Lawrence Niu Date: Mon, 25 Jul 2022 15:56:51 -0400 Subject: [PATCH] remove unused ophys script --- tutorials/ophys.m | 206 ---------------------------------------------- 1 file changed, 206 deletions(-) delete mode 100644 tutorials/ophys.m diff --git a/tutorials/ophys.m b/tutorials/ophys.m deleted file mode 100644 index 938521b1..00000000 --- a/tutorials/ophys.m +++ /dev/null @@ -1,206 +0,0 @@ -%% Neurodata Without Borders: Neurophysiology (NWB:N), Calcium Imaging Tutorial -% How to write ophys data to an NWB file using matnwb. -% -% author: Ben Dichter -% contact: ben.dichter@gmail.com -% last edited: May 14, 2019 -% -%% -% This tutorial will demonstrate how to write calcium imaging data. -% The workflow demonstrated here involves three main steps: -% -% 1. Acquiring two-photon images -% 2. Image segmentation -% 3. Fluorescence and dF/F response -% -% The data we output will be in the following structure: -%% -% -% <> -% - -%% NWB file -% All contents get added to the NWB file, which is created with the -% following command - -date = datetime(2018, 3, 1, 12, 0, 0); -session_start_time = datetime(date, 'TimeZone', 'local'); - -nwb = NwbFile( ... - 'session_description', 'a test NWB File', ... - 'identifier', 'mouse004_day4', ... - 'session_start_time', session_start_time); - -%% -% You can check the contents by displaying the NwbFile object -disp(nwb); - -%% Subject -% Subject-specific information goes in type |Subject| in location -% |general_subject|. - -nwb.general_subject = types.core.Subject( ... - 'subject_id', '005', ... - 'description', 'mouse 5', ... - 'age', 'P90D', ... % ISO 8601 Duration format: "Period of 90 Days" - 'sex', 'M', ... % prefer M, F, O, or U - 'species', 'Mus musculus'); % prefer latin binomial name - -%% Adding metadata about acquisition -% Before you can add your data, you will need to provide some information -% about how that data was generated. This amounts describing the device, -% imaging plane and the optical channel used. - -optical_channel = types.core.OpticalChannel( ... - 'description', 'description', ... - 'emission_lambda', 500.); - -device_name = 'my_device'; -nwb.general_devices.set(device_name, types.core.Device()); - -imaging_plane_name = 'imaging_plane'; -imaging_plane = types.core.ImagingPlane( ... - 'optical_channel', optical_channel, ... - 'description', 'a very interesting part of the brain', ... - 'device', types.untyped.SoftLink(['/general/devices/' device_name]), ... - 'excitation_lambda', 600., ... - 'imaging_rate', 5., ... - 'indicator', 'GFP', ... - 'location', 'my favorite brain location', ... - 'reference_frame', 'A frame to refer to'); - -nwb.general_optophysiology.set(imaging_plane_name, imaging_plane); - -imaging_plane_path = ['/general/optophysiology/' imaging_plane_name]; - -%% TwoPhotonSeries -% Acquired imaging data is stored an an object called TwoPhotonSeries and -% put in the acquisition folder. You may store the image series data in the -% HDF5 file - -image_series = types.core.TwoPhotonSeries( ... - 'imaging_plane', types.untyped.SoftLink(imaging_plane_path), ... - 'starting_time_rate', 3.0, ... - 'starting_time', 0.0, ... - 'data', ones(200, 100, 1000), ... - 'data_unit', 'lumens'); - -nwb.acquisition.set('TwoPhotonSeries', image_series); - -%% -% Or you may link to a tiff file externally - -image_series = types.core.TwoPhotonSeries( ... - 'external_file', 'images.tiff', ... - 'imaging_plane', types.untyped.SoftLink(imaging_plane_path), ... - 'external_file_starting_frame', 0, ... - 'format', 'tiff', ... - 'starting_time_rate', 3.0, ... - 'starting_time', 0.0, ... - 'data', NaN(2, 2, 2), ... - 'data_unit', 'lumens'); - -nwb.acquisition.set('TwoPhotonSeries2', image_series); - -%% Ophys Processing Module -% Processed data should go in the ophys ProcessingModule. Here we create -% the module - -ophys_module = types.core.ProcessingModule(... - 'description', 'holds processed calcium imaging data'); - -%% Plane Segmentation -% Now that the raw data is stored, you can add the image segmentation -% results. This is done with the ImageSegmentation data interface. This -% class has the ability to store segmentation from one or more imaging -% planes, which are stored via the PlaneSegmentation class. -% PlaneSegmentation is a table where each row represents a single ROI. -% Once you have your PlaneSegmentation object, you can add the an -% image_mask object to PlaneSegmenation. PlaneSegmentation is also a -% DynamicTable, which means you can add additional custom columns about the -% ROIs. - -% generate fake image_mask data -imaging_shape = [100, 200]; -x = imaging_shape(1); -y = imaging_shape(2); - -n_rois = 20; -image_mask = NaN(y, x, n_rois); -for i = 1:n_rois - center = rand(1,2) .* [x,y]; - sigma = eye(2)*2; - [X1,X2] = meshgrid(1:x,1:y); - X = [X1(:) X2(:)]; - p = mvnpdf(X,center,sigma); - Z = reshape(p,y,x); - image_mask(:,:,i) = Z; -end - -% add data to NWB structures -plane_segmentation = types.core.PlaneSegmentation( ... - 'colnames', {'image_mask'}, ... - 'description', 'output from segmenting my favorite imaging plane', ... - 'id', types.hdmf_common.ElementIdentifiers('data', 0:19), ... - 'imaging_plane', types.untyped.SoftLink(imaging_plane_path)); - -plane_segmentation.image_mask = types.hdmf_common.VectorData( ... - 'data', image_mask, 'description', 'image masks'); - -img_seg = types.core.ImageSegmentation(); -img_seg.planesegmentation.set('plane_segmentation', plane_segmentation) - -ophys_module.nwbdatainterface.set('image_segmentation', img_seg); -nwb.processing.set('ophys', ophys_module); - - - -%% Fluoresence and RoiResponseSeries -% Now that ROIs are stored, you can store RoiResponseSeries. These objects -% go in a Fluorescence object, which can contain one or more instances of -% RoiResponseSeries. Each RoiResponse Series requires a DynamicTableRegion -% of a PlaneSegmentation, which indicates which ROIs are being reported. In -% order to construct this DynamicTableRegion, you must first construct -% an ObjectView of the PlaneSegmentation table. - - -plane_seg_object_view = types.untyped.ObjectView( ... - '/processing/ophys/image_segmentation/plane_segmentation'); - -roi_table_region = types.hdmf_common.DynamicTableRegion( ... - 'table', plane_seg_object_view, ... - 'description', 'all_rois', ... - 'data', [0 n_rois-1]'); - -roi_response_series = types.core.RoiResponseSeries( ... - 'rois', roi_table_region, ... - 'data', single(NaN(n_rois, 100)), ... - 'data_unit', 'lumens', ... - 'starting_time_rate', 3.0, ... - 'starting_time', 0.0); - -fluorescence = types.core.Fluorescence(); -fluorescence.roiresponseseries.set('roi_response_series', roi_response_series); - -ophys_module.nwbdatainterface.set('fluorescence', fluorescence); - -%% -% You can also use a DfOverF object instead of a Fluorescence object. - -%% -% Finally, the ophys ProcessingModule is added to the NWBFile. -nwb.processing.set('ophys', ophys_module); - - -%% Write - -nwbExport(nwb, 'ophys_tutorial.nwb'); - -%% Read - -nwb = nwbRead('ophys_tutorial.nwb'); - -nwb.general_optophysiology.get('imaging_plane') - -%nwb.acquisition.get('image_series1').data.load -