From 63a7c4eac97b75695b6a49656e46435fb22d7d12 Mon Sep 17 00:00:00 2001 From: ehennestad Date: Mon, 25 Nov 2024 14:51:18 +0100 Subject: [PATCH] Add DecompositionSeries example to ecephys tutorial (#623) * Fix bug in table2nwb * Add DecompositionSeries to ecephys tutorial * Merge ecepys tutorial * Revert changes committed by mistake * Add band_mean and stdev to bands in DecompositionSeries * Properly incorporated changes from main * Suppress output of feature variable + minor fix of TutorialTest --- +tests/+unit/TutorialTest.m | 3 +- +util/table2nwb.m | 4 +- tutorials/ecephys.mlx | Bin 359611 -> 360288 bytes tutorials/html/ecephys.html | 1743 +++++++++++++++-------------- tutorials/private/mcode/ecephys.m | 60 +- 5 files changed, 947 insertions(+), 863 deletions(-) diff --git a/+tests/+unit/TutorialTest.m b/+tests/+unit/TutorialTest.m index 089a55b7..554c0cb2 100644 --- a/+tests/+unit/TutorialTest.m +++ b/+tests/+unit/TutorialTest.m @@ -120,7 +120,8 @@ function inspectTutorialFileWithNwbInspector(testCase) results = py.list(py.nwbinspector.inspect_nwbfile(nwbfile_path=nwbFilename)); results = testCase.convertNwbInspectorResultsToStruct(results); elseif testCase.NWBInspectorMode == "CLI" - [~, m] = system(sprintf('nwbinspector %s --levels importance', nwbFilename)); + [s, m] = system(sprintf('nwbinspector %s --levels importance', nwbFilename)); + testCase.assertEqual(s,0, 'Failed to run NWB Inspector using system command.') results = testCase.parseNWBInspectorTextOutput(m); end diff --git a/+util/table2nwb.m b/+util/table2nwb.m index b2513b94..98553cb3 100644 --- a/+util/table2nwb.m +++ b/+util/table2nwb.m @@ -28,8 +28,8 @@ for col = T if ~strcmp(col.Properties.VariableNames{1},'id') - - if ~isempty(col.Properties.VariableDescriptions{1}) + if ~isempty(col.Properties.VariableDescriptions) ... + && ~isempty(col.Properties.VariableDescriptions{1}) description = col.Properties.VariableDescriptions{1}; else description = 'no description provided'; diff --git a/tutorials/ecephys.mlx b/tutorials/ecephys.mlx index accdd482e6329ceb7bec72d2280164032d2ce92f..e8f63aab27defbffb32a3e556379b6c65506fe26 100644 GIT binary patch delta 21663 zcmV)7K*ztk`4!;)6|mt03hnJY&k!R30IAoL>jNf#NXo{i8csuafoJjbi{nbKJ5P9e97ifRVaX<2wEiNu{<$tNkE~Fth_5T>+k>gH1x#1 z6Gm>}zuIip8k@rLdx7ox{a2em-(Kzw@a@8p>$L1)@1*U;PUu^)a~Ak< z3g2O`41jTjWVF)@h9fI>yRPTP69V!k^?f!7+@2$Ta{fDULnnH*`BSUWJhBM*ksZr_ z9}Gj--)n&0kKJF5zrMFT&j}|A^0!tO_9nO!a;}kFiTQ2a=o5aCEg#ydER10U{4a-x4^H-n&gH?`!G809;?$gMyNeUN9k|h|M?c+f9bF!s?wg~ZI)LDg z_|G5_r%vDXS2XlNqkVDIIy^LozH#Cha8M*85f2>k_T8ztbUkN9GuS(8>>XS*GK-h{ zZ#&}3XF3P2TzdS)=Wu+`Y+N25>=n)dwjb$fg~RWj9vwG!k21r*hSt%FK;AfiyKJ2U z)XnjJa(YOLc8(Hn+&+9$ej^I)z~Ym*I6gRR9POQF>AByBNwmYznyeH6hsPJ~gTuBt_RoHQ^f(YKHih@cSRrK3OzCF-uW#Z583^;cgsjl1zhsPR} zbpgzD_Zar9bh;Q%Om|O#iJRM~Y5z^OtNL7Lf&yI$cSigjO+{_70G+=Vx?Mo{2%exG z4r&(ca{%NLlj=u*G;tROL*Zn!9A}DmJD&hOT%@fC6f|OF$mEgm?gGyX#>io)yB=&* zA12^LCk4Cv&{AK!QG9K|L_=#d;5GZnkXynpSGH={l#ADIOMnK=k$Y*5gk-G2jK8D_ zz7B9l?p(*S1#A&O8uzdYYVj87p?6AkcT&|oV%7aiS_W%>C^2ei3r=epgsWXan%eXe zlW_Cip%PSU_OoQFy@~~pEh6O*2n?MFAi3_`FoMMe;YT2{Fi83XBDMzv0SG_Dp_n}I z==6UCea49Dy-?6SkK)`vfnZp{tqLo4>j-MSVG^+7!J>L5+RpoYJiLgWgc+DT7| z*Ed#-oFFcLVtzBE*)~XHw>JRhGz2{am`>~+P$?6t=u8dgt95OsgIb}1iwdO4BU-=N?j0NhlXN?-4k8#qZ9zHshbACL;( zAqE8_f)MwhFxM3DVn-bth%4HJZ5k5WTHY88K@u(L7mT%fjxG(wS!a@~l~1)mY}j|3NHymYOnZpRj}&6gz=Kove*o^eo?4qqhMn+Se{9 znp5 zk;gxi_`}NpyB?qPqF0;13WI0_`qyTTCCCAPJFLo$5L=6x!}jCHa&6Q(KmiG74S^hU zX-kR_bvnoaiifL-GvxmWM&B8)j+Ei+`rC0AkuOKD2AeLsIKZAMES_c71uVk=`y<3Q zI$X6`0YvT^0CAA8v;2v$Y@37{$hRRdIA(%ZijTt1g#Cn-bF^)vk<-JCv_(ReKMS;f zN+doy6Ff}U&Be%aL(vO-^l6dIBpxjs#Ae+Hi5r7a`?K@*ZTmfJig+dDmQ+QpR@*=mxKcn1m2FWO1_{6q*gqa@lRyAlhhOSXQ`E*U z-ryJeopWol3x7`apCTr_1xP#iYZZ@wytl>PwrK6cf7@cW0slc~=!^WXz{j=~4^{Ze zmeD84=hzyKqE09eWt@k*hCZR^z5Tge_Z{B}Ew7VuAzs~U6q|2h%eH}`hVpk_r+5KC zVl>M3p_cC2*n|43+1lNk^C2p3E(k-p7eD(h#el>UWRY(sfTHI6hk6Pf58z>ccScFq zbD5YU_~iG>`Hxp8%|@-+Xdcvmtr1!KH2~Q`t=XzIn$5}|TQALC0ewDvC~_=(5z zLVfPlraQFy&SvH{x3=Oq)axBMZhsJOs^0e+$2?%B(b%=)fo`*Zcu>#=7%H6$v^}@) z>$Y7ha)8G>1s_;me2eRUQ%wt+kY0z%+`t`O*}7$TWh?J;W@+Z%OIKlTTwr6YJ)n4g zZju>P6G!ww6#{Fr$fA@Iv?ku6o7MBsC5O$>S1L9=tLu21U@Uscket7$qmjz95?53S zJ24sF3@ra+1lHo-%MJMR4F2>TFS>R@dIK+ZGcVvl`qf`W!6z?&H#So3!vrvVN*h`; z_OoU-sA|g$K!mu@=8F<;XdaPV(7$wiHq0sn*~%Y=ZI?4~fe#w0ZDk84X*>7G&()-Q zpy<}l=~;DFFSuV_utq^O4y}o4`3@~VxwCp0Q$i->br`_bV>Ai+9*!H0Mui%~z<}K~ zWwP-cqFUs{)r#tWlpjJ%JRWq_HZ)H(+-b-NfBhbzfYvEAh(;iv9Nls|@^ z@B_Vk`Y5~Zi_E*!V^9DDJ&f*8&|c7C<_p}h?92>Mvm07yS%5uL+0KuNFo35# z$;8K>cI_s(i!m;>Dq*BQl53=YOaNyLtd4`G6#+Xt$L$<{aAa=;|J06@dyvO>J?Ubs zuL1r46pXVloq|N-fAoW~p92G%_Y&o^kob{YU%$A{xSE^$tS%I>1K@wiL4Y_6Ge|43juug5MG^#JL-dJZq9N!;Lu`*fDI>S2Ljg^05w#Z_4Cy zl}R08u9ZN4{lruzDd@a}25El0d@l{6qSX!V9pMGRh=o2oUDl%SAWN=iS@Ppmoos&# zxYwf^otm!6`Gc_cMG{fy@Z$$f+2o8tLH>}dJ`Bbb?S^|PH8a=-Ak9(Wlm7M$cfKat zYuN%cBzhFekkDz46@&ahWQb@#5c+}d2n|sZg}6(9mXCp0;kK|;{FGJDN*^1j_H-yD zkI2Vl@o#HJqsVnPIvdp*P0RicpC<47*NUZFazZ z$?n7mdwg04C8vrk*GHo?;*0(epmjw`^P z8M7^Stgz^bL3%<<19U=y>Riu01K)^5qpwRjH8XC#tZ{`nU8bQ+2EXfl6L z@yn}vD6j{CXA7$bI3f!GaOzm#d7NZzC!r1lOQWopAW>F*^xm3#^nRpjMm^!tdutg- z@ALU>XpK9m8r+d;aKYJKiaBPyFVY%+V1bI4ZPXengfs#r8mmG~x9ebpUk@lre!660$AUSe z(MKpz`OpBhd<>55I*u>ELf#pnuTrHBlg5fj2lU@{;5D*6V2(1Mj=C6H6AoO)%)wyn zN7iuUfp#lSot{OR7L+Ndvym}>bW*1)L%)C`{Kd9xsq(?mQ3^8~X^LP^DXxMB9#a;e z8v3Eo?XTV^2KxajlH-l!p#$)TN#t@lqI)+=(Cw^BTm&GcF#3Y`o_t8p4O~jEG&1%S zR*_qgvlS2<{m8Y8G~N}02xjtlsN{Lg96(UwGoD0`Jgeud`DErP7L06vVvS3@*2QSw z1a`6vCttqDQj15KwS>6!iqoUWq)M^XmL^*x9}48O3f;QCS|($#l0E z+7UllpO=}jPZl^>0@lf%7UeBZvguE|>~9?AF&w7r46J)M2xqXE8Ap06E7zc=GgY5K zy(k5oSyfM#qT?^mC$)QjJl`kP+-)|W+$puY9;cLdH+m|kRC6((R8za8W;mpDUK{0o zXRSQ})&N^~=4rwbTv!_$0KqK0KwB&H*c5^qdypDOXGp9l+gYAb&CF+*lYU&89;gPq z0M|sN^6ubU_BFxud9pIUA-!vW-z)tHAeQOw+cC=;y)wGEv39M0=qILErhL8Q63!cQ zge5y~uI?~)A!Pq*D7_&W#|j3O-RUaGz#jUzBw8Mr`aYVt|N7_usI&g>t>MrT@X77K zi7j}6kr9~d#l|m6S3r}*i=U}Wh4fZ{q%{H{;IWq*t3cXy>U9bqFDRGi(U8b=x1i+` z1L3YeZu1Ge1Is^uv3McAm$fKTaz$utsJ}Wy&99_T-vP@yVtH2@GVAyYLywDYte37Ra37d4#&sT|ZV)>ji zNhMgMW{(v|EoNc`!40_;ex|mP(T1>UeAf9bx=uVsxA-1^@q(kAW;9E&dqAB7X}-uc$5O zTeu*ZY$Ej{!Fo|Stt-=CW*+$9n{Ks6-Adojpfw-;#MG@8yRxB#er1lbZ2bx}pJ0gT z?hzhrqc((pCtG97C#1bgLeiw9s!vF)Poj`YZMjxfow&{}FVlAKD2gsNw6iWQn0T*| zR!^sAG4O+-Ji!5Cq>{6!mXUit)y=Y}VthEyh2b!uHO4wOst*}yxlXMmv+>K);tD!l zM5wb@TJhCPG_dRUyu^0Wx&{{2=_aO|+cMm0Xa-z=53}}cx=^9Ego-nxU_85w;^TWC z09LQ8cRapzV*p_B2wRzAx-uf$NeM=xu#^lz==NQthV^0V6Q%}9KB4N=0=vPQx}kfo z;{8|RD@<8lY}S9@mf>@B9M9b885ueSC7qrNholgW(a5nvK**u%Sz%5501W9KlT8sP zJ~|VBEyj8d2aH+qa|M?>oy-@>>vmGN33-#IWpQx{Zdv{zt$6*6=+3Aju5xiGF36I3 z(r5>O;zi!A**6-jzxevwAf6%cPQ*J@)?_6lCET8?{ToO6;VRZ4P z2%qx#@A8t?C~2=`Kc+E8a^liagFXljqKmVY{4uQ@uO$FmjqiT&sG@O*EIU$_`m5@u zqq2wx=;T@56EuLUmDPuN3O>up{JN!17jAfZPv% zzipjt;47*dgf5idE98T!ycCtL{MkpJdF79n+;Hevm6^c0-h3ec3YI6~MWh!Y0Iy-B$F&v^ zDsxkt^M7RBA@1W9|5Z)bZj3K~HK)aY^EW(QzgVz+(8F6@!7S~Hs$Qwi^dHon{);=T z{IRv6XOzUQSEFgQfW1}aYT3J_9jWLl1*4Zt8)*c~`-Re*LNNMcgIW|hShumBo8uWv z-%>tT4oS`WTern-9*wenEB|Zya9h0J-EM75?<Tg1shv`&AUd; z!Sy?uY=w8w+&i{paVzMvGVaat=hlt7henc0Jk|r;`LD zP{!xD9GL@bi_D&s%OH57`YHN?QtdO-PfX8TnLA5M_~XpJzqwmimtdf-culhe)RWAn zPF;CgVhhclmh4|JZuZJoS6`!lF8s3(;^pz$FLhH+qv8B^D>V`=<^NvW(dm~{U4X0K za8Wg|^DK-g_}Vug?E)%yi5V6B8+0)gmG;s{26%AD)psMM8h-VV z{}r!{@R0AIZ{K$9A~)vZJ21B_!BPss$I}=-_oOhsi@b?+cKN8 zRTDpetwqT->Q)XuZj)MkM500;rj3FT2i>G4qi0sg`usG~WY|HK2bJt*HF~8#C#PsFw{QeJVWnd5Z)2+U59&C%&(Fd#+i&bK|`M=+B_3po`{-kfG z*IJK$V(L$s3+qd$PG%>6D^{K8@;I_dIe8@HsZtH?9pT26h?yRyV*(fX1g2gRr=>mz zZ2s$mXh7dCU*#x6#kqz%3JskTCp}iOkP?$7RVj6S+xg@u(X#%Cu&0qMq`}a=Vdm;1 zzPK+Q2ZF3l-=Qe2C(-kM0TC61=u(&s91{R(`%+NQx6fh5aDZ2T&S}r3a*saIlCN+} z7FjcW@Q6jrf>lcOx~ERLk*@qkCqY1Z-O#Z<8gU%Tnag+Rxpba(m-u``?xQsb@|@u z1Efc_-FjhvKpAwAD&@wSrBUWd++gaGsg9sN)y>scUmuDPeb7$|@h^GC`k}U=PwE*N73Q6YRzs-o zca3w{J$*onXRh3&CfKji(ReG}FfG1!d9MLN>V>#}mKiYFkvLRh-r4Nd^a$$6H~S(z z_7z5oM_L7%XsPV>yrBb2z0J{KGz^&EI9VScMD6E8+0x9a;s4X&K`uGFvZ>rgHRkQYP z^pk8pjl{Up2lQq)%hJjo$_u(|owX15FO9q)^~78U=Q8WM{b^PUB7_Hv z+@`=!*H5r^P-u;HZAyw#z<@k20Cq`)SHwbpSmTj$Dea!WMz_uSw1h7tn^|fJGpls6 zs8P!Z4&w^<{Hb!vX@!fm|7bd7t@;#y=BT=mc@tL^)ISSe1 z3C+;u&a{_LWMQNddugd1TR+Zb^JYHD=O2dMVyx0NP8;w}pSPQtyYnCV-7PaT{N+y7?)8rCpEdlUQ zdZ4(5H$8V`d2~ZApAl`9*kN;^CA(CAP@5!Yz$gsvU9>ka_iU0%<2$ti%3?uxWqM7> zNUz5{^LmQw%_N*TdT}`dWU9;ZGGqlY3e)kUOUOsr$YzyykY+}320~$R391c{hq5j&!7t=RxYL4vXzIh6 zbtQhUT%R@Ra_X}d|Jdapd(vwT^S)HTOuvj4t0aLp`c7Hh8Jj-6+KKFXj=i52L@!AY zy<|b8y5`d`b-+mR?PMWy`3kueSPDUH)U*Jb1?gfLCaUh82${LtTjeC$^;x?!Jr`pK zzvzJJ^MmvD#l?{k8={|>{2fGpQ$P$3IOh&mi^A==$QKdg@&?tmxJiaE;-n0pHwRoY zpUC{G*&xp=fRU2ac(VJh$cF21}QCrc93WW_)WCFdFgs8U&mFXQkWVUsGg+ED~v~OHP zUR|Qsg_+!WnA;rn60Yho6a$J>M01$K8aSudk~c4|d>`EM(JbxjD*>NS@}pH+S5eVA zI+o%y+#%!c4%-klgbefs%_3Zgo)KsL9W_n-My$wxbO5gE1T;%W6(CVT-4EDEGnz6VMG*?0pb zs*5yNotOgaOsJqq5(|CR7tkst%bK|zGLldw_s|XTmb!6{LL9RdBX#x$-i$d8!jEkH zVEYIo!}!X7c~n?~K!73JceqRsRa5_|{f4g7h9-gE%cnMe4v@USnjryrUOv{i93`I7PP#KFMe+lkJTC8-^d~?* zphbGj5~*@m`}TGFl**cdl`{7EZp<2&eWU3r*(r&Nb1BEx#4u4KM_yemg8*HoNoKFM z8-3(|>cPM)3OUdK6b}z`&%%jhFj?lqvqzSQT!(4go1}d%oy=eG^oTWt(uWt^Lz7;&$#=4*^NEt5gg^VvwymOdU@W^`l0c}UB-@3th;N}P%MDdIJ34Njo|-q_=qH&_l?AH;F6|WKa}O+#3<=*-_cj@W zoEfkE+hvqy10HKK0QL{tt%E(&08mfNJzc>cxXR= z8FEYb<;qqK6_M(<4=sFU3Ae%QYP3mCs{c5mEK@Nmb5!)z0m@}jS`JiK{(~2wJqm71 zQD=9L&-O1HMi{()ViL>s1VH33L@Z`MOIBo&o#GLOp3d|cBd5*NL5JpEi`rRFgqNcU z>M7HQyb)aLvb;AwL^9U}YeGkyrg`HbiD% zOu1~9eQ)_ausx{YbTD#z(bvX*WC{Jc8)LYvd+&6xKDILx4`llt-F}DKmqG|(^@+T* z1Hb#KNlU>NkX7dV&IN1Qv->_-;?np7k|}#>vCI1 zlIDLu1%p4vyRnj3m37z9n&|D0-tCBSyJOt5e{6>WB4G(*5@Z9QWv#-`(GS!wwpn#f zepw^|9Z(Y8ScStR4^G{(^77@S3a9_}%jLz<&-2xKakc#F*giAINAu;`)%jxi`m5vr z{Occ|=Hq{RaXP^B0%1 z<<0Ek^yKdI(~H@=tDDX6$NAOS&EmN7k7pwW~{N3rvt!Jm}>x;!^ zGhdAju2)yrSF1Y63-ipMo^*eop4@r&MCUy8`McF>_U>r&?t1>!@qeuTe$1=6nAdr| zIIWLg{5)GNX0I;h-)>e+kJFR(aBMyFw47beUo79gIz4H>oz_LqUmP9%%f;qjXGd>V z^B=!DzMO3?X0M*VnO|K0#zBV+SZ2yjw5UpRvoM*Yo9kHM{tfF2^n^8_r&y zU0qzv&qik0pMRaTlljk!v-!s@QTkx6o39pCZQNnb{pNGOn)0{$gv1^ZBGu6{uayiX0f>$$@8Df zMbk%{cSl!09)11p=ui6bo(o+pAH2{HH0`#4UpTv3o_{xy+PTmVb;Syk_mQmz_~1it z-+s25pIxo01>Q08hk9DgujiZl)BaGC_55!)RWVNgSPt@Ad>Ghl0>T-5AcKHDMpo7)b=8D@-HkJmf`2_=v^Ox5*uPzp6vyqkG zfBA=R{`B0MXV%zw@?X!E^PAPx@)=vw_{`EXW9^sw8ci8UO#kAX=O%wxa{eJqfX*%k zJF*{z(CX@D#kgQF8Xs=FwaLqd%PREzsJ&rz%YX8F^FXOV>zh~q#kSyKP*5AMUe8w# zW2vtB&x_SVr#<{zRP)Lx{d1ri^ug>&)22oormi%LJ-eBPatm&;j*fSXx^H4Cx za(PyHzFMfyhwqpzXPdJ(pVps47etNR)qg(I)Zd0HAPjtzS1Fx>$u3y;GllJqJweij6vOSPr#m^qR+6(UL&o}Jzuhu*KV{6#M7hn0L zd;dlE{GrbD8}|6;s~493@%Qjy54r(`($lG^+b~`Et=u@K(jkjo4uM}?0EZ&`>(%zx#iuvuYcg* zL*Bjj?*WZJZk#)<#=wiI|9k)C&GM(^)!XHlzt%tPeSPvxvy%U3F@HO}zkV}Y{$z*O z<*%pkssLl`WAskaJ3U74PI`Br&^z7gowiWMKSuAMOn8jmL7Dgoy}MhzyDgMSkI_3Q zlOLmZP^NrB@BUWr{yt^wr^xEg-hYKM_EThaXYZ9ViX=KiGZ@bG?C1G;vzy<2cWjQI z9AkL?{r&gHt>O2_&%ZxzGtsfXKYsH4@nZe;7!4m@`TqFV+Qlf}`fE?h;~$=UcWfVj zBpODd#~;ZJBe~Bx66r{Ek9z*`M;fUY9)F~fdhv6PxI@pu2I4)Uwn^8B8QTt~g@A-m7%AlFgb_OB=1wD#)de74O|-ty*pb3XrhzgI67 zmy6Ba32gOmAMR5=lB2rSJ$?V><_+`ifG!ok>p#M8&7rb1y7BM7e1BEj9ibuFzL|d( z!5ku(OS<;5C!SP%h?u&58)vz>I+g!0>RgadMy%}a)pI5`fGc?8w zpFTNuW_V?o8$Sr4eIzfr`oC=M8k0SA_5Z5sYWTED#PM_cWJ)6`hwrK3J~YPp)lC)h zZ9`Pac-#@1M1AZKw13wSgCyP^qwV{hL7wzOjPKch+Q_t@Jvn%|@<4-E;ugbJ(j!>G z%d_XdtJ(D>ukH6&%MG_Z`sMOsxqg0m#>Q^5xqg0fvOaq=znra~)xseD@W-na8%h3i z_4?#;w)*Mj`svx#(ptae~)d%RkO8E?&*fej4BG-_nmxwvPMxdiwu}p2D01NtIQ1(L&$2 z_3lU0_9Od~%m#Zt=EK0PF6=|Nt$yCs1U4bO1K!rxi=XEA6C8EydkKzvDIv23zYWCR z0^i<$XP#NdFn_>2^JFdmAmh?eP0~~Si$4qeBfC;xDYn$Vk|D=GOvt(ZSxZi&Z0|obYoKM%*5Dw@#%+OWxAf)%%XL* zLGh(F;GSy(mwoNpq&&Wy%@)!g_~znKl8Trl7C||Z4zx*mty^khDDoXW21{{ z?V_*adSkHhG>4r?v7DFs`}6HDvGg+@X#DQo8%iMl4*bWVq3e` zybSwbOj~UjW=*B_$-7ej@+?`6tZf8ua@);h+WKguu4!a-r7p#e3-hVHk{huC6T7X! z8J!@dP=6QZq8a*Z4Qy^CH^tGwD0S9}+D=nxYw#gAlBY&9GtjIIuUI=QI?}))jbDNf z!#)_VBP1FYX4~i`w^`>9>R-<1M%L2Uh9B0Mh2q*=f~Uq{HtJGrX?-%~TqB)ttTBv0 z6dPlPfrVY03-fawFHmC*-o-{9YF(Rw>kPG-*?%zXgKs?OOPgS!*oc*ec6pE$+jcrQ zayql<+g#i*voy+4YTTMq<4+%&jJX(w=54ETX@9xg269A=cSD<*D~%bL;`OuSn`lSh zB-rIFQ*LTOB+i)k!uN*cD`kG(X~<#R_lJh|LRmz#p9l|l6{*Cv=#n=Wro+avz7+s!;EftZIMZJvd9wT z+7v`EBMT4m5ZaV{+p(1Wz&1nIuI;;L9)E7ca@2iBO{$7-bFl-F%^;hsz)It+CP&7# z(aWG5gQ47QRccD0ghnNnoVG_H3}WASo`s||acU&z;pz`Fbj^#Uw*7-ba-qrJAV<8L zjZwU9>vN5)X%LH)+oCB9fQCG*3Bo6v7EihX#K_~0h?Bbt1~T0UZ5rkWgTn0PwGz%K00|91PBzh}61udgn) zJUYI80QJxx)h*n%tWSu~G8THo5+=iZ`J0z8)j{ted~+A#(<7HKHTPqvX}tULCzlEB zD#aNR@Z@V|Y2cY#buN_eeK3@$5P#kK!0&1?6o!z!_rXxpLGj)PLpg@M|G`j6VegMo zcC2HpU%36jzM)flS84X$?99GN3jTJ>yk|>yuO;o-(tq@r;a*F-XUll6W!$r6x@VB~ zZJF=2+;^SjqxZ9=fIp(?ff~?*%Cp|>q*H_ctQ4emk7438#`JQ%TwGtzH-GEfr(bV> z_TQdAdH%%y_oJ@{Rn0iP4BD(Zz}5}FW#_{9aW;8;7_2Gdi?R6eV^h7*_FD@swciT4 zG=3bjm(Fd-(xY+X$0Y_DKMr>MI2KdJkJ&{{@-U7sMxUhfWa2m?`@nIWg~8aSI-cz} zs{V8P%~_JML-gaq5@nJeJ%5cKJ0q*jyfRrB$;Xy`&++5n$FaT1Mp|bfYH}$E{Zf|J z)iEDhCqIr&5j1C~&d7X)EWvxw+zO@HrN`#@D4lyZPKemKANxrb>n<@$=V{zK&-;MR zWwqH@p}C9LlIr-489hV5TnT0 zAsFm8#j&-CLj4@QmHkfACXuz$Pm-~-l{N(n<43Y?Pr~PpsWG-TS=hm(JhmytB$|A4teHg#6tl7@7V?quDMaBEW`BHiDLSoKXvC7Gb@Za$ za*EjNAPU~|G{z=AThKcTL2Z$3lq+n!o0z`nNQ&d%wbz5c}QF%^eo5fVjjD;PsMKn0EbrJeGD2^b! z7HV*QXyP*z2R>$#A(K=imAq&r9z}LucPw~Ww+Uj0P1X$!qO2ncuX!IlL|?S1CE;`D zO9WYph=D6kmIz(W`qT(hiZ!b_1|f^f!eLHyxies7n}3A?jS+q7z0HtNp|l4pvVdkx zO>9`qNyI;RHO^kGuju6n0cKS$%7fMM_^c%Cn2~J^LF{L8;B)ImA2Em$X0k=5#<)N% zwh0ka+oAGYukx@R1?YjnnRINNtkeZnx&HC383@9#xWawEYxSUBV)6{l=*u3IOxJ0$P@<7C8+7<^1Yt$%(NZ4v+ia|FU9D{UMBz9yr1MSz4& zV#9KV2(V!j(RW4Rfpl)Xun>!Yn7AAPeyzv_168pJ0RWWswg^1@5eByq{UY2_iYP6L z0p3i6W=OK%yao`ph`Me0qH(%#c3cn>myLiSa)1@42=F#pP%=xKbgpKxIMK$WsDmK_ zn17$JC1}mE45cOdl-U7d09I6+z$^k!$}3p}@3BCr(vmKH5PixV4jDn4RDj+#!Br`MML_gySbs!S6%Qx{q!nQWav$WiF1t6OF6`cdGSm&^JSQtc~t$&O- z^n`V@@2>Dm1TiL&5OxFvGbEXL@vsCwNsL9EH3mBv8-7~}LIG|KHz~->*$&It3{YWS zg%wS30MQ5sFq(lIFRH#8O(5$4j3|7Ql;$yIaZSA-YsTUtLoG1YX zlQOmgtROFD+IbjAZY(0`5_|$6%zuz%BT5i)s+vkYSGXAf-Ud77NR)?jB1A0nfX+@7 z4kKd3IS|)k>mXZ_;Vi}o-I7JdEPN`qTRTu*=u{rd93}%l(u1HBVH~~aM)teFNKxEz z=RMF)Rs)3~Mv`GD!uO=8&@}?Qr>MK7dn8JLp#an^;$Q?X%0M$@gK(RVx_?`cPRel6 z1e%lxPDzE};ECfG?N`7nK^HsXvBnJB7j%~%1b1=(Uqb=OlHpRi}t8*3z7@H9OK``FKAAj-IYP=jm1n(db zv;#L0?O=rZ9SF=CC5hw?sEE)K)j6zg#Ans_4NE(AgA&EgW z30^asR$y|(JPC}%b_LZ%wqt&IEth9Vp@gOHa;U^Woa4nQtZt-eJ( zjTMmaS%Hahw!l3U3V&n=d|IHD9CR9k&Vrc(fC9eS0v>00j?iQT&IO{^5GU(kS)zj_ zut|2z!fvx037VS--%|uAdSq5u>kC;x{XiPK&7xO4Av$A`-5>+655YP%IFOKH!1%g% z7GNksctdC66a?U+ZN`h>ffM6&JK7S8gW?&pU!;UzFFATg# z<6-&PlnV0~!J0v3TYXRO)N2M=vNJGjNYfeMQ_4a$V+4{pjolUvr$?Z?q7ku-*ew?3 zH5wPditL06%|i#gMWK^OXv}6%S_+`x zF!_KKLMsCu9||k5cdbd)2#Serj0!2d?lmE`t7%b~cLSAsnQjABh)=35vHU+9CL>8SyFXchoq&#g36Cbk*TN+<Uo)2?I*i?bu@yohTbz+|Wy1wC zV+igc@}3UBzy{>PNEm||6<#x9ECnGLt3Dw6qlkEmO<)1l$du6#9Uwx~aDd=b3kNf6 zd?#eY)BwS);SJrY@^Yv0EFlXN)Hy~LEf#T5n15m-hz=ApFmDWyQ5yl37vZ_O*y%J- zETb9&xhSjtfJqX(_i*N!HNj_I)P+I$g2_;r#UhhcG`Ng#TY-_#xSZ8MVT5$D+7Z$g zU?s-i$Qc4@X>ySe6wX15bAS;o1YS)BFF`$afL{c^*uTSGJA{5LoYWldk8P4B?;!#O zM1N)86PlB3 z42wi*X-L~S^&VwmQDH@fFO<9>>#VtvVt*2FrJxrkBo>C`90AZp&C6Jn6%|ygC8NxQ z+MVj8jIAvM*hE=aE&v7v;Q)<=F{i@%!o)E+6Wbldh6POoI4~1a7m}_~F^@Ez69buc zs=U&xJYZ>u`k$aFaIMDRO_zW~)Qm0C(Bx3(mNdtmk_K;(Ux)CPLa;!RlI5|1@_&Me ztjh>48zh@FwPtJ=*ap3W(HMsag8`oz2VEW{1QIQ>8xfG5@fA|wS}Ub_ZUddBZjwd4 zkBa~Y8oOo|z_(9%M2B(3TwS_xuM z7NZ&_Cyg14d^sZko&g8A)C=QBgnz}EGZE#7_ftA-48;*pg_v_uRs?2ns08%LSu4#G zHbSd!n0^358TJ#x%Su4EM5NPZh@UkYPeW)I*n^o8n!#y~AS!Oqd@pjP$k3Foin9w^ zNwmdi$)G{mg9oQ}(KxMm(oh6rM9tWWf;Wgdv&V(-PXH?-QCSa%3Nr;1=YLov>@>8? zs6v!AhN%TR5Pxy63JJgnrD)ln3a~In){2aT*iwXcu!XR0CsG{}Y&Vl&yUMes(|Iw$ zzD1;T3PO-cgXK>6*=lSx!$O$?+^kV6RVNvh13^2F$m3>@RduX_2mrr`LM^q9S@@@m z#Ji-mR0hgFAs`u)4-r8LB7Xy2pgv)<3u@6!f`~9qgK#5V5KwVQT2iP6%ph1!rD$AN zm`3Amf#4M)b?FU4pvfYRABBs_LFai=WiE!0RS2erlHKG{VU#s5ilR0mF`kTEU;;go zXI9*1#(P~kqj;pqU$`z>2S1*Wq9+HfRZvyKE*g?>`F^>uRsuL@G=FM^3?KaBtSN?s zLfv8!tRbXz*wu!Xm0^N{;{cUd49u?s)gr1jJYw1uG|+*tsrpJCrzWTdgSfIyU7ijx z1f+FX3>4NQs+v&A91)Hynj}E_HF+Qd<4`^B5vSE8U_q^)L9iwhw6#Z-e?a&(D!dJd zT;4TbN8YfdwGLfKnG#-~c(k`s3Bqmle^p0lt3!pDDLasoemWV>6q_rThykk1%wuMOlP^0HG)+fC3@FN+l<|Tu_Fd9Mmx@Spi@ua$)CQH`Hnf0v{(; z=BS43ptq**Q4^;Hwv3CA!-M%SC?8}=LktugMyP>dl!8Ehko=p)p`fH8QjbCtMvjOV z07No}3EuHSzkjGnc!O+Mf#)0b1O*Q*8>-c$Y6=pvLKdw_)l$-$e8dzP`U$7T&UA_1 zVMGjEA7r&9VRN*+wcwCVTz60tTC)dIfCM2Cq!X&NE7BzjNa$4vy@T{#LMNbsgx&;E zdhb;_a%s}5(wlS<>4G3t(EGUGd~e=6GkbRTH@o}C&Y3f3&d#piU!k|b45Dj4)1}bTOxqv%5#`JdpHb>2-M4$50Sq?HLrZVA*>?`C z%?#UB;#%dm&q#%gObg~@e5KQ#s@+x-n??514Tq1Uu7ic-RlP1xv9Dk$bqH!by%FsRG$-=Z0a?( zvQ$!P!dw;@>sCW+N-X7&&$?uB$;9m|8-Z!XWmJox3)vlEdartuP!nN2#s(yp3(z<# z6&|Rrd{47})Lx=3dMUFWoxyQA;Vf(?OKz8h(u$sV|AyR;^(sI>YU)5$)-^K}+$gS- z0tUq!RC_Dc_BaDayD@Y4%FRUhp@;-;ewFrEwu3(*$@QMO;rDIn7=Ar+eq8U`{3=SECYFej5;e=n-=Ai(Tf6|8 zie1FVB@YzA8Dl?MDk-ofg0=5X)vE}kl0CKkMZ9g-SBCQTd)Mc~*H%fvg`+uh45YHL zxIASTy8AR|UQAAycF*XP(pTJ>t4PD(uAe3}nb|DdQJciQ(8L{d2xnt{GR`KEn+R%p z$j>}AT~QCNDK=XyR*b#_(0fkF475Ar7S(!J`Qjeg;yu#J(N`whaV8R(Uy!D6tj=V4 z`vc*-s?Z`PG3jXQq{KuN1gAv&U~jakN|j)5LB(y-eP&KmlJ`rL=j>skkJ^x9lA;-U zyr?cSQs)KpBDX?Ltnz(QlE$jFS*J*?P%m3d&pQr3|fAU6EY-Q(g@u?Qx<|u zQ6SD#hkI=#3|{C=qBNmzqeD0J zS?{756);HNK1UUt9r+?7gxw)pJ#kk~OC=C1P|$t*a=rWPgv%~6u3b5VPsl{X6@8j{ zO7sEY*AzvsJhKo0J*FrFmQYZaVO%`KykaV%Lk>z141DO1t6+U+lfNU>oJ$WA?1#|} zD(+mdZkFB;`(WR83TbV?)qCA%()wlT@_PQKJVH$%+Z;L z2h&#a|Hz-`B_Ya}T^}(5zVqA|dOdwfS?ep?!fs`SP*zLB>ETap)1p)qtmlBGodUru z2fm-$VSKie%AV!tJ7nQo!ZsTG*8~F& zw?DSb)$v-kZ@9n6;%`s-d<|}7{L{w^B^)JrycDNozQARXo=d+}k0sWgi4l4aIP6$a zR(cHObg699hGkdj>NcE`54&Hs4+a%~u08nD_ay;QQXO&4_6FpytvEg0^}DuVZWsyl zyi^PbG6(BS2YV`%OBUvnj^@o2eCOB0X{)>418<0FP0=6^^U+6*KC=;I|LmwnhD{3< z!5>o92h4m0m!%b*j{~ee=b?;_u*4!fTpPxME)M_*>lxkW=27<^QtTBFw&F#EUT5eS zFk@x!9Xx&BsQoF4_*%W^8Lhbw*}Iz26OLVNzgK`tVi1{BBN)m#R1j2pe+&K%cUi~g zn$*TyHUSx&YM+#3z*|7T-n4Dr?MNB~S|_7R<7|RZ#e`ZY^DL~La3X#ilc!u)LwH?l z(w7knWS|(^`T3~)ZBJ{Ht*N)~?l_99#HiFlib|FZTep||Gq60a0~vB$l7D+(RS-Oc1wXioAN)#F}F?E zmlXX;3KPRp!OsQr^g`^2vI}Wqsvpb!UZ5&uM|VtVRjLRigx~!E$b1nMHNe>T66u04 z9}U#DOV;uKXfe>t*f_TjB*^XnBg+>o2_{o`@Ju_6;)5`HXC>|g1_J9?noi@hN{kC7|zTR>b2w1s_1eo+UKa4|pSm7>%j0+Kkp$uAYfo z04}Th53IvQnX6{j+Y5e7P#2VE=*%I_x>OyQPW6ytCHHN!8Y+sp7&{#&G`uAYbOVu& zMji!&Gg5g*hLqK-iTfzr!~z%5kg*)QNQ_Uqwl;rE@^ux{k>x!bw86f1WseZmFp_JM z;t*p~YW^xh&JqR8&WUiidOOxun{NW)`YMLZdR=1J_>_!8g+W$_kV$n)?>W`y+O6t! zRJ;|wvT~@G2?Nj>eZxL~(KfdK%F4D#L&SN_d}`BiVxLs3W;z>}s!K}dYYD9CS5rVK zqWVmYJfmJJ@nti+xX2v-+3yr!0kQS@G!F#TH6(E?@QxX2=JYky`dCH zzHJOtX~$g*kE3|=?tx`|nnh>Hd%pY9Gx69G{IzkQx|k|iyG@@xed+r~b_G^XEvL8@ zIE?v8ch6pY;<`9ZP!BQN*)G7{Yl^x$?t7Pjfl=MM-xH-rDaccd%#!-#T|{K; zYvvdtor7Y9Q-OBq?H`JFn6fo55%IcstPo3~4Y3T?SW(Q_SS4aINUR`7YC1SQG`!K% zOT^l6Hi>k09VscEhq=8ia(h);bo=cDN@rpzwCfMhe5O^a8xbN?iKivXDuO|aQ3HiE zHEm+WIQ54Cmxn}RAPn*o31fT|PkQhxX>MEd|TwXBHv$z^Gr54<22uCHC+y4;o!HAs;$k_NyT`( zPXdcA2(ft#9%-~nY#&vT{qV-%IY^YAx(f?F+@hOiZ>=rP5ZJSK2X`vzUP z7_N)?3-VQm*%0-+O@6E;hnf+muGyP~J?4azvYamgrFS_+wXlWht8e-ea_0!_zo59I z_y>>>l?E8H$tmsH;DO74SVq}K4P*GW>qp^uf)z>L?`M=oqebu{iEqZH^&`EQ;h2pEO zaq~At>v+qRS9uqWbxJhc5(_O8ppUpO9_tB4ODvD3GE6RAG!zB8IEU`^)Le!gkRt^7% z6ZL1*x0Nn~8`-i`xZ855IG*FMe+*w%I;cJ;v1%756dC?73b0o4NRM54(TSwT1B}mV z11`QvMV`3vNp}8dx_(qfit8Ba{jhxH)od*A@~TV1;Ti6e{=&IpvsH~?Jxk}d{r-hn z(xy$$BG%nJ*j;a9AH#BffB8p_1fy<$wWaaz_uZ`ZOxpYx?Q zod}ylixTHA)Wmf{*q%)vYnf^*QxB91oJ%AeL`=>8a&4L0ae_*XHV~`)R1*uzWjX1U z$6V?H4{|6Of5u{t#pu;5w#^*rHMKr6nn}V6?ddUGtix|v|l_m@7)8+)1dtICs@o#JS>4#gN z6!Qz-qS_e&PKouVf-6BUytKeqS=?N)hkfb5His}%l7b+lr?gh%ge{nS)n`EZhMf85Eqyw&%0hW>ZWQHaatuCcyb z$KXIM_dhf73~^mWTzc0+e+SL_Xi#@)+Tx#Xj7n-A{> zAn{|E(aT4r)mlI2O26fXb}!8-C#E`cI)6QW|(gODF&}j&V z21kX}wtMVGDfBreC~ACR_sH31>+H(qynKmO5^MKIrY25IrgHUS{ndO8hl9l)YxY>` z_S((m_a7=ZSEl0wbrF0WWow(u|ConY#y6x_XKeq|Q{S~~+4RpBjMHyQs>r5B5030L z?$Kd`w{>;`xUYILPQrd(!nVy1OP;RU2)B}W<9G(aAHHFoupNQd*q>kAaxyJ6K6j=8 zHWg(4rhlJJz49{aGV>v~hG0aq-~j8Y^~S07#(6(8TW0Za|K)erEvm#%C#TlUnFWcI z9>R8B!d7k0l-K23l1SYA_F2{3&lr^&M^^5LX}`D;5wXH3sH0j6u8TXO(?V6pf+2MKvm(tTxQ&k6ziem^oL6<#g@SP!CpHg1!? z&yoHSx^&3@6N&iX1H+#jN>o_c1*+`wgiytV}WrX*up%6P*E-NANm1d zRk!YN{~@hqt(QLVLm`br1h0+qPMfq$qrmB{QKNj{6tR;2&211jDz)ZqDr;37?7{8@ ziXkwPW(&}0{gUcUl0R_ZL_Rba87Hs|h{GVHV;uldVk2yel)+2?nj+r5XPw{~(mAhcdX< z!8hk&flTKKpHZT3S=K)jF&8M9q?~A@gQL=X;zVM|FXCK)+GY|TFJjRk`8P3H(XLk}iIzWQvRIxNH17UM-XgalcMvbdTgFOBCg%X_)J{rA zosY@ii~4~+{{JbTspMFY1oQv(BM=e6Z#xwJUBv&{X?Rl2upns?N`ur)EJ%t({Bi2% ze>tHjl`iO(???wjtqTJQ5fRgWJpVTW-XE0u%Ll}qS{nr72P_1DQqg`O n#J?IW6⪚1bhkn55$-%7YvdBjAQ?+r38am!DB(7+hG3#6spfH delta 20999 zcmV)PK()W%{uR6V6|mt04o;T10M#D=01?Ch022V0zb}PbeD=c+;cRL&m5Gavog8&zYXii5*%t!3Q?(fZ)Y-ZMh0tt$sMM`Sh z6VsLi6za&zyE3!>{*O;%kKOSwas&U>ZmnG1W!$#|$MuJ=c7M9*9X59V@!j927fxU& zWA4Wc+WXPPfArPvD2^u=l}cof_}Gfd!G!zp?luU=Rt$fJ!^$)Wokgu12g4Rz(6?gV4*WQU@7OK^U>qTt9NNKnV#V&j_1t(yK;EUk+oQm>IeW+dJ8?rE zz1n?Of3MaW76CtUV);YB5cc;9p!at0tMS+Omgn(srXYV~4PbAATPEik$(5MjR*XL3 z7uoXuZN7Qi{()PFa;x`R{3G{Wypey!-!059vndrdh5P1FTRnr(Y{Em&^*=%r%eO~C z_-fbnX&1cJiK?Ze?Rnlr|r{|TDN6RwmHBF-i+L6+oQKm z>WyBbbz+X*;(*|s{b!J{79YC)mWJ-0o_EixryX$*#i&&WM!xkse zJMGn*t@A8ItSS3B@M3GoSqFI5wpdTA(X4jQ&di~>D-(8v+)tZF!HdF|Fg{ZnIPC zX0Wn%wZ#!To%43R*2?U{TVO#UyMYfQf0Sszh@d$F=JP?Z-lWb>I>$$~Rz@^jPu!23 z-MC|zl;tn%(jCg&ZSG99b<${b>zOG9VGLj~X13M@K0|VxpPp44$DJ(642Lj@W*Azt ztpeceyxTlIYno&Kqh+NgyH3WS)X%mx$Mg0{z1Hql%{jggT~d1e6*DqTVnR;~lyB?Kay``j%3IouM&ss5!o{1~Eoiko5nO-Y7?t}Zs8Wpv&mwHqTlTrFLj3=f?CC7@K+o(ksNw%xXN_$;_ zu7JlN{*I=iwwQrhZHMjv5I%w@sOo}}1^XNTxx}Ph5l!5N!I<%kmcti#H~$3a;UaBC z%=L+pA(KbKyA3=qm?DRvf9`D9s3A;%M;AG}d*4!DyHR{)!9+uAG7@X{ld)(Czg#-1 zVNEVxzbyb7)cEhD#vhVB1T%h46MP-uj@-K3a~Nz9KpOY31X}q%>7lnuJLai&90~3C zIW0qIC^2eiYfftugsZ(Rn%eXelW^x9Fa@aA>}SJNdl@qzTSUq+e-Iej=^(jo-7td1 z1>r{^vM@-7BOdrOT>6P1U(m@e_4{@xCmgFIE#|OuRsLwo%SFdKr43)G%*2XR6PJl(wgA+h)sdJ z(NC!h;_J{*%&>c6ZbC|z*F@hnwtR_e_Y$=CFt+@7Zje;k}^3V3m-JoD_5HsOGV z#I}|<1w)WTOZtVtT0KXaB2F6Sh8qw3%ZiLiQeWvzvweBivaZTP=EDC$EP0liGHRc& zgcuY%hC^LE8nx(IzOg1h2B>IXxu9q+(2rd9U%dF`;a`UFOZG#jcfvY)jqv#-M=a&h z(Q5RJfI_Z9e*^m-hXre|vu2(8iOGVOIHC)1VzavqbK<7KXhJ>#6Ppwsi=hDp&muIX z1TF$kN_C<#>sr9m=(}+OXgjj*z{HrxKa=>wUVvRsFYM^mF0jHNnt=YbJI4~_fPJCL zO%Pl2nZv=u$8sIiIY0pkmkog&b7M=25Ow;<0rH0{f3r67e*~k?r`scC_`34rbb!b= zN3RB(F1k3to&_vkX4VBlh5`0Rh;4L!=?Dc7xoZH#LBh`RXUuXO5^5md#=zhN6TDP> z6m}*YCPFz!+cuhT8#mHn30eL^pzTHMBcI`UwQkNPmK!oV@X@D5GLv{T=cy>$z0c;)dQh%DFHh%F2zc}f4tl1I#xzK-#nD7=L&GFX~o+=-(;{#Sd zf&UKJQ5F7!&d?Y6UxANp_dHbL_x6oGNj}Hce|Qr0LwWAO@9!G=gr1L2R(3t)J`XLg zpK>9wy4NT+e}pYN0EQaM-^DuF3jmTpqii2)>8^u4sK09UqvI7HqT=R)FqC`olkZZP zMLa_m`DO+vYQDd(r;vL952rs#2A(U3If74q+v~i&yr@;nwQB9O@@tvM+AjmhPRq4= zf4N$#?ft(0((Dz`=fj6Q$HKFaj`~DYi!=Sil#aQFqy=Q7+1aM86klqLp!buaw$f)H zw7wY_Swbx&$!JTa?yC>*5H_Zu2I;R*ep>TAI`9OhpbI`m?N9K)Zr&Um>ElcFNf_?I zf-CJjUtoz=GkPc0lzxMP9b+S&-7B!R6BAY5njhSjDO zTaC5-VHhNnC0gw=!Sp0ya)aGf!mhqbKHPU6@BkrN>=fW0L94@lv~1K*as{o7e*`KZ zW6gd(PsZA$tYxLF4Z<-P|Hs&aMu17E&%N4p$JUVVW?qZdRvd?Vy(8`pNAa%e{kSUQ zJ~NG`t`m=Ro0GHCoHoEv>0F@cxkF#K9as?u9?x?=u)O#N*Qc81G$FkXmAR2SxpZ{P z@X}G<<;>E|zc;SJT)V)=g!X{qfB9>Z%%GZZW`imO)?}VVDJ5u`y+=2z=b=juo1w3i z?RwULd%IvPddZlazo?^;%Ci+$Q~^6N8DEbq|6>H!;_=HJ__Gav`rM1Ict~&H#Zl%3 zJV?L#E6e%h<<3s3eV71-PiaHT#(tK~1|@Bo0f-Ryh54d{8=6NX7xXWEe_t48dj#3N z-woSt&cp>iXsEV(`!Gp|-yuI&ld?h4EqCZyX<0A0Ujwj4K{XDonQ8fsEkC)nY>X)( z6Y?qyVCylO1bq+Z)oOK*8pFVV-DPF6i8(~&h{vTp)v0(0E%A8JRohUz&~T?ABmDJy zgaTTp&>)(Ce2#BRd-Uc7f7+qqW9SJ#(95Tfvg__<-lZOc93bdnbbpNYf(|oZ;ErWy zW*FSmo4K2V&_c@s?3ulT`7sd&@Kj7P@$siqz7B3<4E-!g80nAX8tESsz!?Lp&(X9Z zU}xueFb5pj8^J%dBjp~<a-vD`fMX9r`aHCUGDLexJQy9XFbI z)+}X)J1aJ@Z`i1>mO%aGLme33l*!F1lRAi7D}nlnsZ3H_cL5F3{CM+T8bn2F5ZrO* z1;IoJeR8@iF{U3ye+xoJUCA=)hbutY{?>51M|gr*5FXod6yZMkEQu)0cw19R8SRo0 zK!TC8KMbZ6FNgasbvxKHAnr-vFGR|G)wok;%?&scS8og&C^m&iBy>t-#UPguaU$9! z)XD>&GYwG^vAB1Zj{#oc0kc$GmX*^=A4jP6bl4=1-qj)Kf3rPg)>$r^r|KsrL%u)p zr2wZkd)+XnR_Q0SD~7jP9NBF()@KQEq3M53!6cg^ue8TP1ZI0ygt0mp-$TEvppVCc z1fIEV3I=Ik#aA!RZY|IKCwjC&g}*bJdC0)VM$Q8|Q6z)Wo=jEDe=HTq0A}al zVL6wFj;U9pWD7%oU#NG0@!?Db)|mmsB6e_!K_8(KmKYG8Isu(PcuWT~BOvoB)xl*B zRgv1VS+}a_v!HWTpZf|W3ouBi)2OEiW(YDM1{cUR%*)+VCyOv?m42z(^B5DT|%=6>Nb4YMI&CH!5gUU=Le#-k;DmtCifP4^FL`+NKMxlF$) z$D37-e|13xmZr4HCmH26~`H<;1MQZzxNT8x3FSuW z{A&yr)d||rFQAC{;y|`k8Sv=Bg_%t>e?JbU8v4Fq^)KFA2m1jk689$Z zI0X2^EOJEwraL!E&>^mhdITV)Fy2J$J^7}-HgGAu(#TO%SVgW)k)MIs=tr)Tr}1tP zL@<+wLuH=VtN;Y1dgFQe#ItPv$Y(}Rv0!8qkGRAuUE%gk;3S)H2+sFdXz?hse>M=Q zzsGHg#oEia+S2rL}d8-z<(j50R22H&{?6>2&Q6)Dt0{^opA zN9U`3QnjO6?a7@|M~~x_@@^+jf8~^_t>=@fX_wRzhm_9bqfGa#wa3635Z0Y}ny>*E z*3J$q6CX-AS7gP?_+9o3KP4OxAb60WV&0^W{H7hA3v7#3H$<^KdX4b zzL#}3Qc6W=?5Mx`M98nCe>gt@<)BuliYzBpQQvJ6fb>D(US~2WEn4^(7Bo&`UdlW_ zV87Jivk%mpY++WsLxv$>zq9i~SBvu5Jk3bhq=SCGGBhWUJ0fdVf<@}|#E=C4$_ZUur)S?KF(}Jrr#3glx7;2)80g9LV3|&EvjeBF+i-SDd(HJAej~;H6kW7qGI}1 zroYTQ@IkQ?y(h}F&{rgA9YH@awU8pWCKS*=%)Y;=mfJhXg~T_|$? zXY{mT71F3JJYV1Ge-Xv{PhcKyK%b#*in(1xys4GuhKQrE$5d#ZPh_yjlPQa0xct^i zye0K=zj%~D>xt6v@tnCJ5Y~5PR+5ETEx0kMj4dS$QcZ1DV?@*niKOKGT6gJJEPLl6 z=Ry0@{&Rna$+@U$(ANa6T zJ7Bs&ZZQ_|N)%(EFMkv7f0w2l_JBX#(l51B(El4BusQ}-#SqQ^c#goMKdQE-Z{yNB zmVT0rw>B>5e=4A;nVoD|QKMqn6eJ~%jzck3su^_1+;}e%3=)H}fQx)OV1p!13lm^` zmj#^jmXbMQ#O#46T`v!cM9nG`J31mp1O}-@EJ2!RnqaaH|HPGWdVH_Y(?}uGm#9v% zx%x;HDvzfDv-RC!2T!9_{tSXE2+^am95^Nb()Q~(e*;ClV1OmI)olVQc<8B?e2H7K z&YJ0i2P|5qt10E}jye^MbUrD*K++q8-1-=$Y8}QyisB$xGu)*d#@ocVm)GxnxL%RO zu2&Yh8-0nteSyDAMocrGMR9dq^reR$LpmEst14ry9AGvkONvO+Q>3ZN*v!F?`!;IV zWX7y5e~4{&$#l`P^BDHr{G}Db@DeV@MJ-9b7VM)KqmlhT|E!gxlcSXp0%z5{Hjf)1 zpy~r`IY8hSQt8Ow8}$V{IAG>8qPh>D87?Qql28lLkBTSCWHe^Ixg@a+UwWoYqA}Wi zl@LX@DjP9%SsPzxXRcP0*Ho-vFK4N$+F`mBe^vDDTV=NAr5o$pVpIR4dSdFvc^AkQ z@nsr)ZCFKqKXSdt4pe?RH&qgeDjVWtJ~GV%1UD$5h~)A?x>BYqYI(K7g`Eh{(BHx`%cubKJiNXnNO;s&q*J=DOO#3$RXh!>A@4OmzgctifD0sK-MQq7OQ**<7q~ zw#PLT*R?Au6gke86%yyCCCq{Ja<%kUGJ>5*<=J_`$nV1MgrP)!6dk>We~DC}=tCKr zcIY-WiHr*KE?B+F)b~d${rb4d^@3f=v+?Xm ztb|wNF1eaaD{K3UBdEjp?27~T%h5sop!Q*(8Hc}V#Th~CvcN!S6h<-%o?>u-sJ36< zp)#!1XIGa%Oe?=0L4AKuoD*kumUfC6F$o#QBH56Hve@{nUNn!1rG=sAHzMbHe<3l! z+WEe`W{15HLXKY2tVA6k940@uP|Qp-GP-)IR;?yKr~GVbTxH%~Diuncs^@?TxV64) z&0vW;x!JKPkfQ#z+9DIC4?jfzrkZV5HESMKdyTV`Myi_WC#GuFQ5aV^NWko7Q(DuB`q?dI7@FI|UzVy;8PH|ly~e?k!vt`g+xF+V`3N$mOw<`ad+b;J}YfprhlJKyqH zh|qX4A&zvuKwqOX=kc_JXAze(Ve1`ndx8{#z&b&TDW9;v0ug3JVg%5%d4E1CZTUR_`Sl$ZdvqQ2Qv8C+6fZFn z5B|mK9Uta30c=#R9)V(5uAZLazvt&4<^=IlSUn`Z?M4Ad@NkS^%mRK!gi+;S22+Iif6>x#b7-OW-t0q1 zoy$jtiTeUfSiH)Vn>UbCS>4>Ia|#-s2eOVk7cb;(Ad7Nn;lrf?=fCY;wQF=kPrELD z9El&t(rFI!?kQNNUq4@CkQZbx_FB3DXtC^gx2GKLXnMcBMK;D*_J6E;>{SB*|Nyy)a$jg#50 z*Gj@boH0i~IeFNnY&SA8jMN%p#1xWa8mf`VBgCw`w5XAKe@Lyd3Jts!S$jI`LpGrs z%hkPeOAgh){OypJ9H6qI^%ROFq`(AvD+y6=5$e*1c*gALq+dy!v~QxUl)khNW^(Jz zKyF2L5|Lkf%tjQxh}N)(YM}5A;54F4{MPruEgs_1yt-uY3Ee!ucq{BOpsEla9ZK;T z-jM0wP?!*9e}oM52F)T|2=^-(%^AfNVN=jT{+vn1R#%LrOw$ad$R@*F={ALyCY>9* zh%h}GAM|liG@MqjD>RaTL_P>Iq)$IpT#fLT4TNPZWy(DRUl$J6M5-I|1WsHCIjBy>wxW+EBH#tr*+io6BJcSDjiO1wCAD=_4LxE&>AK3)=u zT-|-+e^5D1T_a`_Ob$KRHSdcL1`&B%U-~L3h=U?PDETL45h5f7@kB^S5zmGJYC;}j zLD2)i3P2i%n|Cy8;x|G?7Nc@iC!kq!ht8M$=C+ z=}2NI0(HUbAIyF>ET%i+mPHKiCldrsJcczhT#&l5HoUA<0Wzu$e7NwXr|a_`y2tNwr2ir#&7$)wqLWMO57#OlcVjj1m%+kB&8@gc!ngqT*pYQlNK=J}>S*9w@ z%g5W#CJ9byNZx{o))$%jw4D3JnhIbcep%1*(w(Jq#6Sdar zX0f%QS!`{;tlj<#PU)el+GaFbsD3icy+*+Jg0>#v`kbBDr`=}nxLIwd>_tB@*-O)w zKos6-aY#`lddTc;!%POOJfs2bkf6KZt^c!O@6RaroJebkM0>Rr>kVABr1_$Ikjeni5hWv zn~jVCbOlWc_UgFNN9YN71~7|U4m1MA!^4EMa3&c{midU;BTGcCBWT>4rG0Lk%wLG< z8wpxKgU^AAOSOxW16I4JRrm2=e{9|kfIi*@QzoKUR9>0Z_mBh3+ap$b6Cv6p7`}WH zU_T;7P|BRd2ORvEO3RSPNr*;&ugt- zqn#E~G@h6ovbcHC+UNQQ)Ose7A@L6I)6{o4iPnF)`_kU^4W84I!pO||hB#KTnC?cE9epavL zwHw7(R%i`FYcdi;`^i|egkLTl)ldZ+>9_YSd~5l(!SXto$(&SwJE0^~HYsvc^u+cGFDEn9Qx*?-Bhq3FY;=M#Xm1AL{yCbAJ{=Cd@K8586paq4(cxsa z5@FkxXS>OmVdDC{kKqqO*y{q28w7n12xYSj5a$oiH%s7u5cs*pf8gil!0!pT<{F%4 zNeoDP#KFoy{vykNYc?dV{GwDg%ek|B8*C4BFvh{ewWBYM|A<;+AP{4WmUZuVe;UH? zOYuOqKh*6HseK`YP@l-F>F~QRnzR&b0a<0r?@F+yO^ZOZt6P5+a8%^jA33)teK%MM zP4&ScesJgpMPS-gF*Hxk?#s&Cm7uMl?&Qqq7iFb=_y15!0|XQR000O8001EXo6x3` zVJ`pxGS~nB5dfC~eFYPL<$ddp8%LJre?LW`evEgqmMZQSO<9B9ZZx)mal0|yvwv(u zpsFZ|c)VtXPo&-Z0jks?bMHy0}yE;2JCGA`%xom=qqUw*#4IQnV6 zTrIAzzCN~3&GFIv>g@V_arOG^w%Gr9HC?BaH|mgaw5&(`zjm$R$e*~RI}{p+U}vv=3G>*34!_1W#^{AzuAGQE0w z-MepJZdcEj^V#{k(~~>bPFFVeJaXmk6m!JPMTP|iVFXn$;FJ(PWPx{5N_0ZGR>~jA6 z>g~(Zlm6+nO?v+P=;)s=*8e;^db6Cr`ug~Cw!WCXeD-F3ar2k!o7{bv2_<@Lq+@jty@|MU1z>*!>E)-D{qU98_6wHeN3hV#|4 zFTOZ>%s(0Bi*ci$9ewGZ=BMV%y?b~iLwRu~Te6 z<@MiO->&BI#UEzx{GNkY%~x&cFV5$yv*qGuJxt@W^>ehiI+9hnI-37{b8)@wM7QtM zwAGf)M z@ou$PeZnq}UeB-Q%h|=pbUAj>$Z+=J?E2zjel`++!~W#VPUb%?&gLIBMeReVZoXVJ zv2l+$_Z!c{ZaRnj>uj|?`m+d?ua5q>SdO1}^vJH(%h}od;^OvVwtO+adGqdZGki}! zFXnB%m)GZg(e|VO?Qe0lS})eOW)M)uSi+o~Dy6 zkO$6xuCLBJOKqL#`??Z=Df=i|19b4dr|(`{&d;uwO#^Rv^ZR;Q&Tr=Hhr@nflhyq1 zw@oz5?M-ifZ_~x)?ZtX_H5W1bQNv!nozHJxtediZlxopFf1JO2D=%L?P6|wWXe#=V zjkW33^?JVlo3+*T&HB21UN6o*PQ*?-Y>T;nxW2f4{q7^Bwsv~+X12VXosC^SVtvrT z@_KzO?RPfT2Fv+{0F3h&H@7b@7H6}Olz;j158wXjnKe(XvFYSLo?gvwm)BQMMU$qd z);%@Wez~vG)EBAhU!2R>^ow;qJcbC+*~Oqo_FEyey1rcsE*O-?`x|d;@}lFi20cH2 zXm3Q^3jf|dl55cV_T_(wE_fUiWaH)Q`SNijHEI6SV)@u%5C0ZTy$VYI6sQJ$i4eO! zd$XrPWUIxM{8^lLSojESdZ!PuOoquk7K{mBo;8|p8tT*GJ0Z*2`s~feb*W@2vSYq# z%J`E2TlBh~U*0qk^GSj2(b4VIVm)ks#OcXk2A-~$w^xG%`_t8{>*uF$XRE&rm*(f+ zEYAORaW#MbO15u)da~)(o#%hIZrA>&m|#C{YBRkphU&c+FR$OOp4-!t{`XX*@$KbR zzn~x0&K|7V3+d|5w_@`zS6l33YsA7=Tlr-2{PW56#~Rab#NwYXpIi4|{~6zZZ$WpU zaC~%jF?scI&x6K->BBWbAt|*k@NO8tluzF8ncyztg+lurm2`^p2G&pQCrIO#O)7!=2uL!^4%aAH%C# zd)Jk*AH%C#dv7a4Br#DmgW_Dxewv?mz4_gD$L9E}W4vBI|MLBDZ}|Q3v+s}lNcisW zkH7ltf_@ew;4l@ef~pcWgiZo80gw_xa!Chd238`6kCVxd*Ek zKL4A>)r+71P2=jNPx&T)&o}u8tCv6jo5s~EpZ`tc>eWyArocCahn)LKg~aApjmu|0 zsg&6KswP0#yKf8TA0Z)6%5e?dU+`FFn@cZ=ru*|8Y- zsR@h!)yg>(@a<+QfLZWi>)%8;BXZgB(eR4Tl{&;)y+E>ri{I1Y=@~ z>)O=R{>1(#MAt6nWK93lJ4?0p_YLh_i2jFPG0x!)vDnsiO2xHyF1E2mo7+X>Z0ZB- zQ?bFj{-n!)!;IP+OwO&BoPF-IjqRH$&h#W*T`nO{HSbQI+AG$Wx_u(cp z%sur!OXYA~>Wek5V2q}Z+Q;^y>U?YNeC>-IqwRghJ_p~Q3?cP#I^UZ6koy}#f33@X zk9;oeky82!+Sr$_78m+OH+;*(D)oEL_Gx-qpT1Rpq2DupvdHrG*q5%aZZ(|>YVA|; zzAu3dw%v27udckIcP(Grs7-R6mU3U~+8adQsYezf_P3k<+E_wg`7$hBCmW%HzDl_- zdCb1_cD@slGkw&)Z?Ua?tGw-GQ-lUNhmdM(5PaVi>pHoW+_%b=PIa=yotCm2cDgT! zuLBi-#QrUs*hf}+FDduMG9~3sQn?dK=_AX*49jB%>KVpqU2kWHX$IfPyQIW%`hhgc zFkE9hO_b0FSaUJGohf~*hBqYB?pfPuP*!l5yYJHseaYRpW~Pr?C?xbH=%cPF=V5@o z&)D}*sIF78ac075rjw};eXY&Fl%;kuO~c54gkSr5#!hEKmwgbiGrBBRpUNOEYV2g{ zTO=Cizt+__kZ|XBYx_3(Qafo3a}YY~3o^(oS-HSD$fo+f znstdzxMLu-KbG_?mI*(;((Y}=~E=D5q13y$haGWl|Ac9O^7a`qY8wU!><5c>8 zIEDB+T@TX~vDTM7RoAJf@1Mx5E_ZEzdrrAd=g?_MMmz9BUo+w2F7jgUGi1}HY3&j- zx-LMyHS%+C^tZHta$?_|nHR%B4Y?%DpZUN}pyNd2^7vWtfT? zXkHenUo4$-g#X-xq+*xQvI4{Yb-5&eLMnA)?_IlLfW~z4cD9SW>h19MzHuV2eP@I| zcoF5D$BG?RH;mGzZ%BOFCa;T>J zZWCSX&aMA#wdXtd+3+i7H*o>N7&3Ye8#A<5wiTvqsr~24@?hp z-}Z2yIjY?4q9M)X{=**~x!o2W9bzKRH)r2KGIv6cEF$kv<2Cla%$&|)t3yb}mi(T>=R2-dO zFIHEJo16K1b+;ht?!Eu^?5k&A+5dj@^&qO7@mtLB$utwWe+t(6@pd(TrH&6qpY)S; z+PWq?wuy1(hAKHfww6$K~<1728rf7n^YG zC)TXP^;tVNdRq*8?c9Z+6H9SyMe^BTzhsomg~c+=$Q|a>MOhs}3zht81lO8^!7y zZ<|ncDYGBvU8~b~m*#96ZZ}(U+_9W+Tc=Y@2s&J&w>{P>`51KP1D3^RZPUCRLqB4P zYHOQ~-nK>OVD)wq8XA|f+06Y@7L!$nmdn^>ZZ4l;vc_m@*?ACulMew>c0+IdY?7d6#75>u;N8(RzE=)0rUWr;;MCkLHa z2)bjk_`3SikG{Kq1aN2_9~2H$I=9&=Ih3GW5}c0QI+aW&DH|9eurI#&VuQ$Y6Om_q z)VEb-rFM-hfK|qNdk3-Om2G6A<(O2}OA<{TP32SGYpL59je zIVi7G5li}RP-%BVj&lGD2(zg6$hrcqLNb`7q>v4`vqB4r%24W}T(Oi4F^{)HQF;{_ ztMjfk=#C{7TA>8pP-FGo!RqRZ{84fUMv2M$sFJ~vc~e#mhb>UZ z8$TJNyls<8<4{0~K9EusOk|_`ohuY%i3ztc2M0PgkpHRbyG5##&cW4A`-us1B?Voz z;+3Sm&@|MH4u~sIEl@{w5zA5_Mm**%cxt?DBQ_L&bZ$zpI&!6WZ@?w8ehS8niArG5 z-J*IPl7kUAwNd2xiOBO*j#ar+=7be<3ZSf4N)bt{w@pyAlLJJEphetP-nLcO+Y7YQ zcUMoLrD|O;ml9GmAOMFs*MO0$w$4^Rwa5^_kanJuid#|j5L!iK?Yx0xs9?Y5V%IIgW(K9r67+V8Af(WuK;v4e;1y&C-6!Md(jKQaavX@NP&%A#5F5(RYg?1x^EhQjqZ~1Wz7trp5P^tWJ%+i90iB6j+i3~yemX~av1>VX*fT<*%t2IMd;XtX*>cv=8 zQHVazTo&EssPH6Ys+nQ|zf_*4LSY@Tp+;>X(IXV~`o@@H#c|%U5o#b6$~4egFxV1* zD0!EF>dgcWD2EDv>(E?OQD3rZApyyGv&aim!!{`kB&U*C78FYY<(LClDMrw^RhTcp zw&bIM`}@|6{vXyH7W5$9i*rh&{>4J5F?fs>=ytEYS5h*_Hyi8 zH5bHf$OQtkI!ZD?6OcpnigtwclkOd?sFETOCIn`Lz!dWaxLl=@m}oGnof?;a4yL`x zIRge#X)Mf(Q9y^4;#B*39fhR}CV>qsAb6sA7-8kd47pM>w!}gMx&YI@Ld8Yp%M4)P zd{A1m#)Ak9z%Q&v!S^aAF)>kVK$x%u1jfM~5HWABTBv%JjRFU8+bE?5r^bV*La5iO zYhJP66a5*iQmUXN09oiTF@cqTLxb{|00^oXWkG9IwscczqsWUBk!K)@V=hE_AktSX5ByeEc1z`KD@ zEtnz0VHTj&EaqSmnAbxSgs3uNqPI=JvN!`zOQ3hgD0e1Rj>%I|B&E`SFfmme^$6Wg z>S-ymfUrH4x=PkTij|3Z8x`<{4;nCU0^Fu6qEPHO*u6r-$}0)hqYFx<4n~WqFl?h! z?cwllfmfIqxGGs?UXi=7Trr^F6oA$^v3s?30VHdKRQ3y2_sPM#HPPMJMrW1cTRI{X zBm{?rJ3tnY28XKT3?nOl!dWLQshYrnQZs$l*#kG|Cr4Q>3LTvX0u0y$ks46_X~JTv zg#;MrfGklm{HG!}z|p9q6K zI`wlHY;99Lq!yj62YeM|r6UIzOW1iM^tV~$rHRNZ5P1d0hS;!wIw=E3ywHczIK93h zs$uI0*#+6?UL*KXtI8Ey0K`P`s(7{m<^ml@CQ@9e!1o}-3NlQkKzEu6`{@=IaAyDz z^YAN~qRb#hGYtCRX;K0PL#Fj4FdaE8e_HIuLRc$FiGBhIj0x@{3;hK}A;ts@6bFY{ z1k#EL07|8sC`=H4v4w{rKmgH0BAQ7(cw}P(GGxf3MxB_eiQaBNUU(gvR0jxDKw=!E zvB7N%7+0XKDjjAS%3REJ9k~!T#g0mo0RMA=1?T8TtQlq|qdKtvD)z2=`Z==Fh|q-^ zYl0?eRI4nqYV3%%g2@2L8z2O%Ne~<$etLdI6M)A8?Fcx3^ee+Qp(-4Rs@iJ=6M2R_ zylzRNnh|lT!5S=(>^w|{1PutW9V4un0`EpH3cOo9571fJzhY~Xr}hQ-H5MAs144=% zR1lS5#U*&1McL_w(gl;yI>X@bDZ>jX+IOSK%XcES>ia9u;9}>1#*0Eu8zF!K{nY^& z2X?OzF``L-Rd>sQUQNKHMENNo@d^h8YGTd-(!?qY2td-k4#ec}gNn|AdlOw&SO%#8 z?RZ#l4vMa2et*Fy#|MMP2x_3Prea1EGCF!8$Fk&rV&sWdL30TY5$4vKjasSdE% zt%KN3Fz9P>@a?FB*<0A2V!5hv2GxlHr)w@owaOyHc|%bM_vv_DL~BM5tExB;UxQ=Z z(;<481I!hJXjZ5WI?Tag7O3KsvqI8Q7z(Xu)qWE2tE~eKJYRwB;I0htBO0J_R|B{N zmQ+Q5XwSk>EF|O<3@8->vqDk0RzEVdDU9#H;GlrdF~e6wgFfgR#pG5?iYXUj;wZw5 zDkowMl!yqgk(CXEhk-35og?Zjnt!9nD-)3?;y_^>eC3vs*k^wg6H%9o?@76P+ogo}XKas+qw3W;%9bYh-%uXhZFLVrbqK#vGRR7&yO>sUP90bpJb zQu0bEqQW4TiPNgK7Bzy%FYO@gx3jwD69_4S3=R~PX^C*A5IQ59rA||t6s7nW0O;I* zgumcSP(E$(a_t~$Pe*(KD2N5|9mc{8oFC5V<_LDf$g=~j!IzgXw88*{fplYD zg8_v_NVk|hHNWmRrLke;(gM|+NSi8A6R2;*WW`ENVe8NggWmxT9BROf5V9*UaVO@A zs<;IIsSFZq0Kbgjd-c^s5;9b~3lQ6X%(fCCtFB3eo~G$k6*S`E=_!bP(r+9+Jl+9` z3&qeYhPbPkWSd1^ort`OAa>2_p9-|MLpAW$(vcA80#R&dk@XWwg{u$jC#0(q(IsjD zos{T*gb*N4V@9;o0J;V&Xoc${A#`FH;3IV}^Dt}Pc~e2~dGCMwc0LEqg9#Xt@~S{C+HfhRD5ZA{1yhZdbeAd47# zps(ClrSTk9Q3Sf%l7~YVzM7POAeF=()uoKOKqb;So0x-vR2j;&1ouTILlg+imffU7 z10%Z1&?MFz!FZbp+o2$HW!MYI+5+kaOGswv>a$=x6@Fn7kAlC~1A@0?7ho1798`Gq zEEhFZ(3(Q2NmieS+oq!P#8|TlDr5^Fg5Vg4TTr(JZg37^x&Ss1#Sg)M%NRQ(itMKf z-sYLwDDteCI`cqi0&H~29PC5ukZfGk+K3D%iG@d}r^@*Zz!H%XA<|nV{v=rniJO8c zkm#0~@T)*RCY_aK=3Qn&omVro(!nCu213jQfUh#(3xx~Mwx~o{IxrtyU`(5!A%aC< ztCYgbR#+Ro`gLesAsRe?5WhD{?n1B3KtuFCsW7h&Zhqlj9XT>vLuTY90H{S~L}%uv zBFJ8qk_zQcLF6SP1=d$YvIX1ebS$MGQb7zn(hhz`(UpW+>KA3Iw=T5Vuo!|usz@T|ZM?Ehfd8j@>{xLS;h@wwaW+gC540B2mRw|O z@5nsl21K2-s2f0k5~tWUW+fF%_!$jic*rD8v_=H{Axfb8At0A15qVw!a9h&i#v8(`{2}?46G5UziGSM?kmZXythB5TM z091G}EgjlGT@S;z@Elg5_gcZYOVf-y3AHy^KO$iD)V3F6CJ*xl^(hXq$6ay?!B&<;VrpV$Bc>S9#wOQufDZsEmo$#g$K|+$3N#p^= zD=eV^B?+A&NbV_ERQG0R!Zts^K$y!R15AOr3nCAH0!frvJYac(%u9$Th=B;v0C5tL z_m>zMHC0ER?4-nt7NW}Agrs=y!M(u%a}*$OKXC>!OH&m|Q+1FWa8y9g*hzsCoX#1F zvPRFCuJRxCOsv2=A<;Vtk2W=Tfgd2k0c&WyR=DbA{a}tTYE)rH807(xMTN_v2o-+b zLT`G1;JgDeH61l1x^(ThlVJs7Cbggd4<=wBkh6wmD=IOoDa?PM6Z{WS1TwG)nYS}_V7#IP!6WB?(8CjAs{;3&CJC&dmdIKKgl`jkI1X6@ z%muT|Sahhc6Y2$~L2*|o@cU4BM6(U&O)D@gnmW|kHlvdIPp1kuZ9Aq&ce5gfg;cl{ z$esvKvY^yBa1cpbWTTEELOqs@FdgcIs-;*$K7T)lYNUliT0ma5Rf|Co9XP1!yIoO# zqA^TQtyYn9HgrV*=NTlJ8iWx97fsU0)WL|H-)7w_C0XQ_8B~!N?54H4*-T0j$x7%A z≠~hNZCH(1=6ZmhI4>Vr(ssW2cD@{L7n!qo`0WPs}@oinac3XCPj2}J5E zA;Wxc*+?+85W;|0L(n>FC=_AYs?^f*>_F#;#bs7l8HUSX#UN@MnYo)QP+~!Up*&OH zW%YGB-oj1gCht~(ic)tYoV7*f-6_Fv9!P_oz$6F=ygK9viQJ)QSYc&k!RZ8408E*z z?#w{Rkzqc0qpDdXCYT#~zp&bZRT9;?iE7a`p|c(tk{*tCnJd#l5M)Qzd|=_FOR9T4 z3K=Wwo(1!wb{E+fm9~y|^a&|{93l*?MU^7UKSXZR8_3L>0-|9lx@Dy`&K6)STu22# zgmnY(3>TDovT#)ZGo>{ESkUxY4N#JR}{;ATmwq>O zSidw?1!`ynENUgjG(@$iW)gvkxGcg93@|y?SR_=7i2=P4Lhf;@8iyG=#_$XcefRAAG8lqxtBo-aQs#&Zd>9!1g?&^u<2jX-X$C6Gf{q-NDP zmiA2aimlW1utAE*Qe%m}F(~*BbmL;P4RfU#!B4eTql5Z(J~E<<`b4z#5%Bbv{>m#O9?zsDzP;xj(|{WMNz0l zLbAtxdpeX6gAGjU^(hfDqoR<`La$OQu)sgTrV!o+B!L%nVgj;43V}5teNZY+t`UOA z**&mM6X0($iVUo!ysf$sf4M3-h(!udBueE=(&hCQ=g0^t0`w{%Y?B4XgjWm@UL+z2 zIVzinA99+(3uvw+4TfZ*SW^hc=!!wRxp`w^;?_gRqpDXb#4zN)wPBk+*0ad{0JWu?}C|C^yqb!NDi3$KV zlkvO_4TeP6${>YDfTW;MSF|T+0c&omn*5VwuZUb~hqNyl1Zz_eR^oX^%&kp`7I}cF zJaIP=)g~3F?MMMge`};!A(cfI_2F3*2I0b3;J9M`b)w7C5Dvi;>6k&00iN?DEp^B^^gVHb|Y1~HUy=B5Oqn{o-*3WJq zuCeaS!6vN<2Q^jd8B_rq_@OMhq-I^|jKtkaX>FOs>}Xxke}8KTT2wgJIyqm5@m3yU z!1M(eOA$LSBLjz8`12;2?8sy*h_oljJVDIhl7bu^6oIy-+9LC&RTz_VDk`?CO!5a% zLuV@7nM4gpoBVl<)B)}u>KKe;d^;q)8Mo0YkX;~_nP(J+t~ z?6n*x=LJqGtaKC^q+$YM_{^J_R8Lx*U=|QsB?R>-7#FKY1D*6`c%;$ryr|4GrYsCz z=Xm@HJX0A~K`Bg;pc$3}=dFC~u%Vt2FGQThxFz)iMc3 zB84zHf(m)Rz}AK!G9$JhpvDuyb7392#{nixo_C1TGwsaN8(5JOX<#!DSSY2ksGK%&dZfAzBkpT&bvAwyYRufCO34 ziRbfWthx6%Pa-Pb$re*@egh6#}dm4E>$RW&gI9r-)Kp|IAmBnLre zhZs#}wQXVvu|es1<(Xg+&~Xxjws7M5XB7BOvTb^|o;kPz$*i`~p z9uDq!lAG||mh+LPbr^|73W>*SLdh_4Se@e7b}BMWKok}u5!6o4Mn_gZf2_SQsdk4j z%Cyp`*uixHCj%9FXvA=aN@c#5WqJ>?y@CU%2;2{x*bKL!VX&;?JP42QaA5IffWurq zD0{MX1WU7qSu853W-Ka`jAY>SOu>PJ_(_>~L0zRMP1iibzRUsX5E(I`0Ew9pe-lcA zwZaoykQ;ANdoH>c=Sacff5ezvWfih3lcN)m4-Hc&6%@81H%Zu!NDb}=1nP3Ynis_O z4R*f$z#Uc%#59rHOb9`mxPc-OqZ|+vCTppaL^PxgGeTErKJegm<_I9DUU_&dfBPWg zY{AGxm<**`;BXO*Lqb-@D{x`uNjeE=t(C!R6VO`WIl>UAvC@x;e=2{6(mumTyYsBG zqVtXB4g$$}a=-|@zYbm)3%TtRbzDaN8f%>j>^P4Sd@Gi?rXC`aC}`@@hU?-!A9(epp1WKKMzI3cDuoC_~7+f>R)PfKGBa z&=U!_Jm)sT1;v0Te+;$RrsAX?RTWh&Z>)v+4j)Ci6Ih zh+s@aDPQpjYoRt?#5C|9kN0w52pnsNQ>_a!FiJvHF2Y(2tnTJw24r#JAOwf#vg3I$ zILRO*Gm}*stS>P*Hqx4YSjU}>pXT*f%fotgq9w6-5l5pVfBs>35?v*JV#yP%Iv%DD zLP`OVHWoVM#K0C}pg6MC)CvWK5KILc#$W=D%CR_+CqwjzV4{}-<>&yH4rkptCa!pW zF>C7`e0w~rnuqYzgs1{+NC7`E71$x;>qzshNZzXaJr_W^2xpi@nQg{_g1IUn<_W-7 zbn5+$pC&gmfBQY63Wy=JRU5tqRHZPLkopj z5eR{cNp!wa90~_onV|N7L;3^089GZf<|L?$bbq6cVk2oTUB zwqU`@`CSDy*DkYiUeN$g)8@g`76`#6#p5i+FF0_+e?m+}gb|W-`2U6S43Afymow3t zKfmW^CwKowWZd-g^l`7BryqVKZqtuMKIvHxZF`?s{K$u!oI+>D!&q#KxQ5|V9**IW z7IygkqbH4nI~P9bQWX*20c1XL&8R?$6Mp$*@cgwVLm2-_cNM9|98Twumza?mT=OnL zVd7Xxe;#C#>mWsJ3mQNg!DK){&<&@~ z-W$i!gJ7q>zcVIp*rp8X*kTaBZGi_)l22*$?z@I6+_;!=@Sr?tg2#;`9NFthH&;Ct zX>4M=E@2J2{%%0=Pr3tr{1gVE)dwvG?%kiCe^lxie}8iPDL%c5pXR$+&Tp=7ZZ8_g zHPYS89b0(jm*IyCkDncn6nFgV240ywHBjS@rv^gZ@z6lSJ02Ryd*?%q@^_ECamB8u z29DYNRO6?B16qNOn?G zf0Hpg-`B*??p+bd^pU$V$h4hg*~Hz>;WSCO^PwgrcRtkQ=kC>RvUS%}gWTOYKew9( zMsdAc7WneftTHHp-7C-(#Ll@j-Lc2EWV^Gcrg3(!Qqx9z2w%Tb7K~bKCqp#_w};FW z<@fRX()8vY`yx7Z4|2+W5Bc15@g9=LfA1p@n-1UoRMYQ!^p(OMPc>Yy4;|aGWp7UI zqk_ky=~y?sU#yRfSMA2D?jM22`%hHg$K%ew&(PS7$GbBHj(qF*yJ_@XIo7q=ieO{1 z$n%JdSe3|f<;b7(YKMe;Mi6*cgUNh$D<`*y6l`m-hjKEzHCS7>-B3qXbmv2Df30`J z1=)q&1DE~TjVb&+CH@H*Fr_`%XYBNMt+CMh{I%HE{mYhKh5pYQAaW8kwe9a*8{ahy>A6USJKq~~_4ll2%kBkuZiV6at@S@#uD##k;xL!~ zliu^Y%W|?&WNetrIMk1tjNLgIe`hvMrd{4+GMs^VxRYap-*Ucg_k7Fd`If`mJimJ~ zb@OBnkP^er$@tBb==Y<<-*hr@_hj7W$%Mn3Oxit}w0SZINM?EGWWr`L3kOJMW%pz@ ztD=|>Z!&e~Wa4Jg9QPB=6S#2@s>tpJ5^=Nmjt9tBb~lnpn`e{V0nTPOe@@7oWnQrd zIGf!-q4>?S@dr4Y-AJKq78LaWm8;zi73yY6YnKmhHoLJx-Lf}_DARU>1#7n0dgc)2 zz;3)?&1PKMuOHlec0&ehHZxDZerWS?d$<-%-ZGy9M09R9Cg@p!o91H=aX!0If!*RR zv3vSUe%tx%#s$`Gk#Ft*f90FojSOsiX5)Mg5F5DN*uZY_@Yq9i@wnaSz;1E!*hBR4 zxIOTJ-@-rs0FkxZ10VP;{IjRyij%k#F#E^(gZF?Celue2*AHzA{T>ivi-XICc!2ZS z144u?kSOd2Avg(t5G3jMKpAlh7sdnBVtx;l5x1c9xF1UAB*I~Af8icLWQ%Wa$Rs$l zE!+c$q_}xL`2ZES-vfx`%^tCS{ov-a2N20ywAdlK`1~F~q-+rxi7Ppp3dL31UCPk&}oAA=1MhK%{Qb%7^IN40~ikZ1DxUL-YlPJ(3}|_?r6lgPYH8 z2;uBzdh6E@Za%vqK!mfKA%wFBXlRAq5W>055W=~~qT2Kuh`=E;?tL@f4Kmyo?~U8j zd&4>8y=HteNdj!wWmxCu^Yd@}^Q-6o7lRH~hYnT&hYnT(hYnT)hYnT*w+>bXf*}O+ zOXjJUly?Owf6Gq8Fc3xe{R+!_$Bzb7tR!84x&jG_AP_stnYIzJW7&qZe~%kzC{T%| zbCij)(Dt^(JYyJv)qT_2O^F}t6?pr8Iw7e^TkU+ zf6f1J9hy|py8Ta@6V8d?HP5BU<;B&B^e9MG(m!2Rvk$k}cm>P@3Qm@|0M#D=01?EO zu6zYI9GlRll3_0Z05aGB01*HH00000009610002lBbNbv1w8_3QV z1v~=Yp_jaU1v~;qg_rt$1tJ9VOXjJUAbtfF1Ko55m!Ee99G9Se1rV3!cm)s)00000 z0RR91001*~mw|o-Ndi1~mw|o-8

Neurodata Without Borders Extracellular Electrophysiology Tutorial

Table of Contents
Neurodata Without Borders Extracellular Electrophysiology Tutorial +.S22 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(192, 76, 11); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left; }

Neurodata Without Borders Extracellular Electrophysiology Tutorial

About This Tutorial

This tutorial describes storage of hypothetical data from extracellular electrophysiology experiments in NWB for the following data categories:
  • Raw voltage recording
  • Local field potential (LFP) and filtered electrical signals
  • Spike times

Before You Begin

It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.
Important: The dimensions of timeseries data in MatNWB should be defined in the opposite order of how it is defined in the nwb-schemas. In NWB, time is always stored in the first dimension of the data, whereas in MatNWB time should be stored in the last dimension of the data. This is explained in more detail here: MatNWB <-> HDF5 Dimension Mapping.

Setting up the NWB File

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session_start_time. Create a new NWBFile object these required fields along with any additional metadata. In MatNWB, arguments are specified using MATLAB's keyword argument pair convention, where each argument name is followed by its value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'Last Name, First Name', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', {'DOI:10.1016/j.neuron.2016.12.011'}); % optional
nwb

About This Tutorial

This tutorial describes storage of hypothetical data from extracellular electrophysiology experiments in NWB for the following data categories:
  • Raw voltage recording
  • Local field potential (LFP) and filtered electrical signals
  • Spike times

Before You Begin

It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.
Important: The dimensions of timeseries data in MatNWB should be defined in the opposite order of how it is defined in the nwb-schemas. In NWB, time is always stored in the first dimension of the data, whereas in MatNWB time should be stored in the last dimension of the data. This is explained in more detail here: MatNWB <-> HDF5 Dimension Mapping.

Setting up the NWB File

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session_start_time. Create a new NWBFile object these required fields along with any additional metadata. In MatNWB, arguments are specified using MATLAB's keyword argument pair convention, where each argument name is followed by its value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'Last Name, First Name', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', {'DOI:10.1016/j.neuron.2016.12.011'}); % optional
nwb
nwb =
NwbFile with properties: nwb_version: '2.7.0' file_create_date: [] @@ -154,922 +155,900 @@ stimulus_presentation: [0×1 types.untyped.Set] stimulus_templates: [0×1 types.untyped.Set] units: [] -

Electrode Information

In order to store extracellular electrophysiology data, you first must create an electrodes table describing the electrodes that generated this data. Extracellular electrodes are stored in an electrodes table, which is also a DynamicTable. electrodes has several required fields: x, y, z, impedance, location, filtering, and electrode_group.

Electrodes Table

Since this is a DynamicTable, we can add additional metadata fields. We will be adding a "label" column to the table.
numShanks = 4;
numChannelsPerShank = 3;
numChannels = numShanks * numChannelsPerShank;
 
electrodesDynamicTable = types.hdmf_common.DynamicTable(...
'colnames', {'location', 'group', 'group_name', 'label'}, ...
'description', 'all electrodes');
 
device = types.core.Device(...
'description', 'the best array', ...
'manufacturer', 'Probe Company 9000' ...
);
nwb.general_devices.set('array', device);
for iShank = 1:numShanks
shankGroupName = sprintf('shank%d', iShank);
electrodeGroup = types.core.ElectrodeGroup( ...
'description', sprintf('electrode group for %s', shankGroupName), ...
'location', 'brain area', ...
'device', types.untyped.SoftLink(device) ...
);
nwb.general_extracellular_ephys.set(shankGroupName, electrodeGroup);
for iElectrode = 1:numChannelsPerShank
electrodesDynamicTable.addRow( ...
'location', 'unknown', ...
'group', types.untyped.ObjectView(electrodeGroup), ...
'group_name', shankGroupName, ...
'label', sprintf('%s-electrode%d', shankGroupName, iElectrode));
end
end
electrodesDynamicTable.toTable() % Display the table
ans = 12×5 table
 idlocationgroupgroup_namelabel
10'unknown'1×1 ObjectView'shank1''shank1-electrode1'
21'unknown'1×1 ObjectView'shank1''shank1-electrode2'
32'unknown'1×1 ObjectView'shank1''shank1-electrode3'
43'unknown'1×1 ObjectView'shank2''shank2-electrode1'
54'unknown'1×1 ObjectView'shank2''shank2-electrode2'
65'unknown'1×1 ObjectView'shank2''shank2-electrode3'
76'unknown'1×1 ObjectView'shank3''shank3-electrode1'
87'unknown'1×1 ObjectView'shank3''shank3-electrode2'
98'unknown'1×1 ObjectView'shank3''shank3-electrode3'
109'unknown'1×1 ObjectView'shank4''shank4-electrode1'
1110'unknown'1×1 ObjectView'shank4''shank4-electrode2'
1211'unknown'1×1 ObjectView'shank4''shank4-electrode3'
nwb.general_extracellular_ephys_electrodes = electrodesDynamicTable;

Links

In the above loop, we create ElectrodeGroup objects. The electrodes table then uses an ObjectView in each row to link to the corresponding ElectrodeGroup object. An ObjectView is a construct that enables linking one neurodata type to another, allowing a neurodata type to reference another within the NWB file.

Recorded Extracellular Signals

Voltage data are stored using the ElectricalSeries class, a subclass of the TimeSeries class specialized for voltage data.

Referencing Electrodes

In order to create our ElectricalSeries object, we first need to reference a set of rows in the electrodes table to indicate which electrode (channel) each entry in the electrical series were recorded from. We will do this by creating a DynamicTableRegion, which is a type of link that allows you to reference specific rows of a DynamicTable, such as the electrodes table, using row indices.
Create a DynamicTableRegion that references all rows of the electrodes table.
electrode_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'all electrodes', ...
'data', (0:length(electrodesDynamicTable.id.data)-1)');

Raw Voltage Data

Now create an ElectricalSeries object to hold acquisition data collected during the experiment.
raw_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 30000., ... % Hz
'data', randn(numChannels, 3000), ... % nChannels x nTime
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
This is the voltage data recorded directly from our electrodes, so it goes in the acquisition group.
nwb.acquisition.set('ElectricalSeries', raw_electrical_series);

Processed Extracellular Electrical Signals

LFP

LFP refers to data that has been low-pass filtered, typically below 300 Hz. This data may also be downsampled. Because it is filtered and potentially resampled, it is categorized as processed data. LFP data would also be stored in an ElectricalSeries. To help data analysis and visualization tools know that this ElectricalSeries object represents LFP data, we store it inside an LFP object and then place the LFP object in a ProcessingModule named 'ecephys'. This is analogous to how we stored the SpatialSeries object inside of a Position object and stored the Position object in a ProcessingModule named 'behavior' in the behavior tutorial
lfp_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000., ... % Hz
'data', randn(numChannels, 100), ... nChannels x nTime
'filtering', 'Low-pass filter at 300 Hz', ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
 
lfp = types.core.LFP('ElectricalSeries', lfp_electrical_series);
 
ecephys_module = types.core.ProcessingModule(...
'description', 'extracellular electrophysiology');
 
ecephys_module.nwbdatainterface.set('LFP', lfp);
nwb.processing.set('ecephys', ecephys_module);

Other Types of Filtered Electrical Signals

If your derived data is filtered for frequency ranges other than LFP—such as Gamma or Theta—you should store it in an ElectricalSeries and encapsulate it within a FilteredEphys object instead of the LFP object.
% Generate filtered data
filtered_data = randn(50, 12); % 50 time points, 12 channels
filtered_data = permute(filtered_data, [2, 1]); % permute timeseries for matnwb
 
% Create an ElectricalSeries object
filtered_electrical_series = types.core.ElectricalSeries( ...
'description', 'Data filtered in the Theta range', ...
'data', filtered_data, ...
'electrodes', electrode_table_region, ...
'filtering', 'Band-pass filtered between 4 and 8 Hz', ...
'starting_time', 0.0, ...
'starting_time_rate', 200.0 ...
);
 
% Create a FilteredEphys object and add the filtered electrical series
filtered_ephys = types.core.FilteredEphys();
filtered_ephys.electricalseries.set('FilteredElectricalSeries', filtered_electrical_series);
 
% Add the FilteredEphys object to the ecephys module
ecephys_module.nwbdatainterface.set('FilteredEphys', filtered_ephys);

Spike Times and Extracellular Events

Sorted Spike Times

Spike times are stored in a Units table, a specialization of the DynamicTable class. The default Units table is located at /units in the HDF5 file. You can add columns to the Units table just like you did for electrodes and trials (see convertTrials). Here, we generate some random spike data and populate the table.
num_cells = 10;
spikes = cell(1, num_cells);
for iShank = 1:num_cells
spikes{iShank} = rand(1, randi([16, 28]));
end
spikes
spikes = 1×10 cell
 12345678910
11×23 double1×24 double1×25 double1×27 double1×23 double1×21 double1×27 double1×27 double1×28 double1×28 double

Ragged Arrays

Spike times are an example of a ragged array- it's like a matrix, but each row has a different number of elements. We can represent this type of data as an indexed column of the Units table. These indexed columns have two components, the VectorData object that holds the data and the VectorIndex object that holds the indices in the vector that indicate the row breaks. You can use the convenience function util.create_indexed_column to create these objects. For more information about ragged arrays, we refer you to the "Ragged Array Columns" section of the dynamic table tutorial.
[spike_times_vector, spike_times_index] = util.create_indexed_column(spikes);
 
nwb.units = types.core.Units( ...
'colnames', {'spike_times'}, ...
'description', 'units table', ...
'spike_times', spike_times_vector, ...
'spike_times_index', spike_times_index ...
);
 
nwb.units.toTable
ans = 10×2 table
 idspike_times
1123×1 double
2224×1 double
3325×1 double
4427×1 double
5523×1 double
6621×1 double
7727×1 double
8827×1 double
9928×1 double
101028×1 double

Unsorted Spike Times

While the Units table is used to store spike times and waveform data for spike-sorted, single-unit activity, you may also want to store spike times and waveform snippets of unsorted spiking activity. This is useful for recording multi-unit activity detected via threshold crossings during data acquisition. Such information can be stored using SpikeEventSeries objects.
% In the SpikeEventSeries the dimensions should be ordered as
% [num_events, num_channels, num_samples].
% Define spike snippets: 20 events, 3 channels, 40 samples per event.
spike_snippets = rand(20, 3, 40);
% Permute spike snippets (See dimensionMapNoDataPipes tutorial)
spike_snippets = permute(spike_snippets, [3,2,1])
spike_snippets =
spike_snippets(:,:,1) = - - 0.2780 0.0148 0.4113 - 0.9089 0.2536 0.2512 - 0.2961 0.4550 0.8541 - 0.5709 0.1663 0.1813 - 0.6639 0.8085 0.9136 - 0.1532 0.5275 0.1305 - 0.5169 0.6597 0.9037 - 0.6069 0.9045 0.9244 - 0.9657 0.3104 0.8828 - 0.4293 0.2333 0.9000 - 0.3021 0.8831 0.9400 - 0.1023 0.8102 0.2832 - 0.5171 0.9477 0.6370 - 0.6029 0.9545 0.8187 - 0.5206 0.4737 0.8799 - 0.3451 0.1380 0.5775 - 0.0495 0.1734 0.9920 - 0.8352 0.1176 0.1876 - 0.8302 0.8044 0.6006 - 0.3333 0.6354 0.1640 - 0.1174 0.6743 0.8681 - 0.3170 0.6718 0.1311 - 0.6166 0.2288 0.7316 - 0.8783 0.7603 0.0001 - 0.2442 0.5209 0.2155 - 0.3402 0.2235 0.5329 - 0.5665 0.0798 0.7609 - 0.5323 0.5660 0.5499 - 0.7377 0.0673 0.3152 - 0.2693 0.4380 0.2733 - 0.9295 0.5399 0.4471 - 0.2433 0.3025 0.8800 - 0.5839 0.5657 0.5774 - 0.9038 0.2999 0.9696 - 0.6991 0.2018 0.5173 - 0.2515 0.0586 0.2742 - 0.4466 0.4422 0.5018 - 0.9849 0.9096 0.8287 - 0.1720 0.6847 0.6424 - 0.1289 0.0637 0.0174 +

Electrode Information

In order to store extracellular electrophysiology data, you first must create an electrodes table describing the electrodes that generated this data. Extracellular electrodes are stored in an electrodes table, which is also a DynamicTable. electrodes has several required fields: x, y, z, impedance, location, filtering, and electrode_group.

Electrodes Table

Since this is a DynamicTable, we can add additional metadata fields. We will be adding a "label" column to the table.
numShanks = 4;
numChannelsPerShank = 3;
numChannels = numShanks * numChannelsPerShank;
 
electrodesDynamicTable = types.hdmf_common.DynamicTable(...
'colnames', {'location', 'group', 'group_name', 'label'}, ...
'description', 'all electrodes');
 
device = types.core.Device(...
'description', 'the best array', ...
'manufacturer', 'Probe Company 9000' ...
);
nwb.general_devices.set('array', device);
for iShank = 1:numShanks
shankGroupName = sprintf('shank%d', iShank);
electrodeGroup = types.core.ElectrodeGroup( ...
'description', sprintf('electrode group for %s', shankGroupName), ...
'location', 'brain area', ...
'device', types.untyped.SoftLink(device) ...
);
nwb.general_extracellular_ephys.set(shankGroupName, electrodeGroup);
for iElectrode = 1:numChannelsPerShank
electrodesDynamicTable.addRow( ...
'location', 'unknown', ...
'group', types.untyped.ObjectView(electrodeGroup), ...
'group_name', shankGroupName, ...
'label', sprintf('%s-electrode%d', shankGroupName, iElectrode));
end
end
electrodesDynamicTable.toTable() % Display the table
ans = 12×5 table
 idlocationgroupgroup_namelabel
10'unknown'1×1 ObjectView'shank1''shank1-electrode1'
21'unknown'1×1 ObjectView'shank1''shank1-electrode2'
32'unknown'1×1 ObjectView'shank1''shank1-electrode3'
43'unknown'1×1 ObjectView'shank2''shank2-electrode1'
54'unknown'1×1 ObjectView'shank2''shank2-electrode2'
65'unknown'1×1 ObjectView'shank2''shank2-electrode3'
76'unknown'1×1 ObjectView'shank3''shank3-electrode1'
87'unknown'1×1 ObjectView'shank3''shank3-electrode2'
98'unknown'1×1 ObjectView'shank3''shank3-electrode3'
109'unknown'1×1 ObjectView'shank4''shank4-electrode1'
1110'unknown'1×1 ObjectView'shank4''shank4-electrode2'
1211'unknown'1×1 ObjectView'shank4''shank4-electrode3'
nwb.general_extracellular_ephys_electrodes = electrodesDynamicTable;

Links

In the above loop, we create ElectrodeGroup objects. The electrodes table then uses an ObjectView in each row to link to the corresponding ElectrodeGroup object. An ObjectView is a construct that enables linking one neurodata type to another, allowing a neurodata type to reference another within the NWB file.

Recorded Extracellular Signals

Voltage data are stored using the ElectricalSeries class, a subclass of the TimeSeries class specialized for voltage data.

Referencing Electrodes

In order to create our ElectricalSeries object, we first need to reference a set of rows in the electrodes table to indicate which electrode (channel) each entry in the electrical series were recorded from. We will do this by creating a DynamicTableRegion, which is a type of link that allows you to reference specific rows of a DynamicTable, such as the electrodes table, using row indices.
Create a DynamicTableRegion that references all rows of the electrodes table.
electrode_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'all electrodes', ...
'data', (0:length(electrodesDynamicTable.id.data)-1)');

Raw Voltage Data

Now create an ElectricalSeries object to hold acquisition data collected during the experiment.
raw_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 30000., ... % Hz
'data', randn(numChannels, 3000), ... % nChannels x nTime
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
This is the voltage data recorded directly from our electrodes, so it goes in the acquisition group.
nwb.acquisition.set('ElectricalSeries', raw_electrical_series);

Processed Extracellular Electrical Signals

LFP

LFP refers to data that has been low-pass filtered, typically below 300 Hz. This data may also be downsampled. Because it is filtered and potentially resampled, it is categorized as processed data. LFP data would also be stored in an ElectricalSeries. To help data analysis and visualization tools know that this ElectricalSeries object represents LFP data, we store it inside an LFP object and then place the LFP object in a ProcessingModule named 'ecephys'. This is analogous to how we stored the SpatialSeries object inside of a Position object and stored the Position object in a ProcessingModule named 'behavior' in the behavior tutorial
lfp_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000., ... % Hz
'data', randn(numChannels, 100), ... nChannels x nTime
'filtering', 'Low-pass filter at 300 Hz', ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
 
lfp = types.core.LFP('ElectricalSeries', lfp_electrical_series);
 
ecephys_module = types.core.ProcessingModule(...
'description', 'extracellular electrophysiology');
 
ecephys_module.nwbdatainterface.set('LFP', lfp);
nwb.processing.set('ecephys', ecephys_module);

Other Types of Filtered Electrical Signals

If your acquired data is filtered for frequency ranges other than LFP—such as Gamma or Theta—you can store the result in an ElectricalSeries and encapsulate it within a FilteredEphys object instead of the LFP object.
% Generate filtered data
filtered_data = randn(50, 12); % 50 time points, 12 channels
filtered_data = permute(filtered_data, [2, 1]); % permute timeseries for matnwb
 
% Create an ElectricalSeries object
filtered_electrical_series = types.core.ElectricalSeries( ...
'description', 'Data filtered in the theta range', ...
'data', filtered_data, ...
'electrodes', electrode_table_region, ...
'filtering', 'Band-pass filtered between 4 and 8 Hz', ...
'starting_time', 0.0, ...
'starting_time_rate', 200.0 ...
);
 
% Create a FilteredEphys object and add the filtered electrical series
filtered_ephys = types.core.FilteredEphys();
filtered_ephys.electricalseries.set('FilteredElectricalSeries', filtered_electrical_series);
 
% Add the FilteredEphys object to the ecephys module
ecephys_module.nwbdatainterface.set('FilteredEphys', filtered_ephys);

Decomposition of LFP Data into Frequency Bands

In some cases, you may want to further process the LFP data and decompose the signal into different frequency bands for additional downstream analyses. You can then store the processed data from these spectral analyses using a DecompositionSeries object. This object allows you to include metadata about the frequency bands and metric used (e.g., power, phase, amplitude), as well as link the decomposed data to the original TimeSeries signal the data was derived from.
In this tutorial, the examples for FilteredEphys and DecompositionSeries may appear similar. However, the key difference is that DecompositionSeries is specialized for storing the results of spectral analyses of timeseries data in general, whereas FilteredEphys is defined specifically as a container for filtered electrical signals.
Note: When adding data to a DecompositionSeries, the data argument is assumed to be 3D where the first dimension is time, the second dimension is channels, and the third dimension is bands. As mentioned in the beginning of this tutorial, in MatNWB the data needs to be permuted because the dimensions are written to file in reverse order (See the dimensionMapNoDataPipes tutorial)
% Define the frequency bands of interest (in Hz):
band_names = {'theta'; 'beta'; 'gamma'};
band_mean = [8; 21; 55];
band_stdev = [2; 4.5; 12.5];
band_limits = [band_mean - 2*band_stdev, band_mean + 2*band_stdev];
 
% The bands should be added to the DecompositionSeries as a dynamic table
bands = table(band_names, band_mean, band_stdev, band_limits, ...
'VariableNames', {'band_names', 'band_mean', 'band_stdev', 'band_limits'})
bands = 3×4 table
 band_namesband_meanband_stdevband_limits
12
1'theta'82412
2'beta'214.50001230
3'gamma'5512.50003080
 
bands = util.table2nwb( bands );
 
% Generate random phase data for the demonstration.
phase_data = randn(50, 12, numel(band_names)); % 50 samples, 12 channels, 3 frequency bands
phase_data = permute(phase_data, [3,2,1]); % See dimensionMapNoDataPipes tutorial
 
decomp_series = types.core.DecompositionSeries(...
'data', phase_data, ...
'bands', bands, ...
'metric', 'phase', ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000.0, ... % Hz
'source_channels', electrode_table_region, ...
'source_timeseries', lfp_electrical_series);
 
% Add decomposition series to ecephys module
ecephys_module.nwbdatainterface.set('theta', decomp_series);

Spike Times and Extracellular Events

Sorted Spike Times

Spike times are stored in a Units table, a specialization of the DynamicTable class. The default Units table is located at /units in the HDF5 file. You can add columns to the Units table just like you did for electrodes and trials (see convertTrials). Here, we generate some random spike data and populate the table.
num_cells = 10;
spikes = cell(1, num_cells);
for iShank = 1:num_cells
spikes{iShank} = rand(1, randi([16, 28]));
end
spikes
spikes = 1×10 cell
 12345678910
11×24 double1×28 double1×22 double1×28 double1×21 double1×26 double1×16 double1×18 double1×24 double1×24 double

Ragged Arrays

Spike times are an example of a ragged array- it's like a matrix, but each row has a different number of elements. We can represent this type of data as an indexed column of the Units table. These indexed columns have two components, the VectorData object that holds the data and the VectorIndex object that holds the indices in the vector that indicate the row breaks. You can use the convenience function util.create_indexed_column to create these objects. For more information about ragged arrays, we refer you to the "Ragged Array Columns" section of the dynamic table tutorial.
[spike_times_vector, spike_times_index] = util.create_indexed_column(spikes);
 
nwb.units = types.core.Units( ...
'colnames', {'spike_times'}, ...
'description', 'units table', ...
'spike_times', spike_times_vector, ...
'spike_times_index', spike_times_index ...
);
 
nwb.units.toTable
ans = 10×2 table
 idspike_times
1124×1 double
2228×1 double
3322×1 double
4428×1 double
5521×1 double
6626×1 double
7716×1 double
8818×1 double
9924×1 double
101024×1 double

Unsorted Spike Times

While the Units table is used to store spike times and waveform data for spike-sorted, single-unit activity, you may also want to store spike times and waveform snippets of unsorted spiking activity. This is useful for recording multi-unit activity detected via threshold crossings during data acquisition. Such information can be stored using SpikeEventSeries objects.
% In the SpikeEventSeries the dimensions should be ordered as
% [num_events, num_channels, num_samples].
% Define spike snippets: 20 events, 3 channels, 40 samples per event.
spike_snippets = rand(20, 3, 40);
% Permute spike snippets (See dimensionMapNoDataPipes tutorial)
spike_snippets = permute(spike_snippets, [3,2,1])
spike_snippets =
spike_snippets(:,:,1) = + + 0.7910 0.0213 0.8335 + 0.8083 0.5109 0.0694 + 0.0414 0.1315 0.9237 + 0.6840 0.0158 0.8003 + 0.9652 0.0518 0.6909 + 0.4137 0.6962 0.6477 + 0.7065 0.4276 0.1037 + 0.0327 0.2995 0.3123 + 0.5643 0.7282 0.7042 + 0.3009 0.8131 0.9222 + 0.1623 0.8546 0.4080 + 0.3810 0.7375 0.5178 + 0.1005 0.8742 0.2635 + 0.9530 0.3118 0.5444 + 0.0115 0.0973 0.5146 + 0.1436 0.2857 0.3713 + 0.5966 0.3174 0.4652 + 0.0131 0.8012 0.6369 + 0.4585 0.6484 0.6865 + 0.5535 0.1510 0.3442 + 0.0254 0.5062 0.8555 + 0.7063 0.5182 0.6404 + 0.3815 0.1169 0.1685 + 0.8255 0.1120 0.3037 + 0.1461 0.4718 0.1424 + 0.8712 0.8092 0.7453 + 0.3177 0.3974 0.9020 + 0.4894 0.6920 0.5508 + 0.1267 0.0666 0.8641 + 0.9720 0.7211 0.6973 + 0.8166 0.9120 0.1665 + 0.4227 0.3168 0.6086 + 0.0780 0.9907 0.1200 + 0.0661 0.3271 0.7940 + 0.8019 0.9782 0.7975 + 0.4981 0.6964 0.9912 + 0.5068 0.4475 0.9353 + 0.4478 0.6194 0.5117 + 0.8898 0.5428 0.7175 + 0.8606 0.2924 0.9609 spike_snippets(:,:,2) = - 0.1356 0.8906 0.1356 - 0.8359 0.4499 0.4325 - 0.5334 0.7425 0.3893 - 0.7806 0.4774 0.1446 - 0.7090 0.6839 0.8727 - 0.6276 0.3848 0.9937 - 0.6387 0.0727 0.0036 - 0.2166 0.6525 0.1900 - 0.7040 0.5891 0.2017 - 0.3564 0.7157 0.4724 - 0.1167 0.6595 0.5219 - 0.2402 0.7465 0.9879 - 0.7433 0.5308 0.0752 - 0.5490 0.8776 0.2981 - 0.0620 0.7035 0.5912 - 0.1362 0.5743 0.8116 - 0.8572 0.4815 0.6027 - 0.9946 0.4654 0.4843 - 0.0120 0.4187 0.2885 - 0.4056 0.3358 0.7233 - 0.9679 0.1308 0.8167 - 0.2359 0.1989 0.8837 - 0.5314 0.6617 0.3106 - 0.0073 0.3747 0.3369 - 0.4491 0.5629 0.3621 - 0.3106 0.3202 0.3869 - 0.6711 0.7039 0.4220 - 0.5631 0.3319 0.3008 - 0.1683 0.4825 0.1346 - 0.2136 0.7076 0.7932 - 0.8566 0.7091 0.5236 - 0.0288 0.6919 0.5200 - 0.7006 0.1266 0.5687 - 0.6473 0.8367 0.3659 - 0.6176 0.6711 0.9105 - 0.9251 0.7086 0.8938 - 0.1278 0.7159 0.8852 - 0.0841 0.6990 0.3079 - 0.0080 0.0005 0.4075 - 0.7984 0.6617 0.3013 + 0.5338 0.3753 0.6193 + 0.1517 0.6080 0.1663 + 0.1934 0.6342 0.9882 + 0.9244 0.8932 0.3000 + 0.8507 0.4194 0.6482 + 0.5106 0.1159 0.7561 + 0.1162 0.3095 0.9177 + 0.9806 0.6443 0.8760 + 0.0513 0.4850 0.9481 + 0.8886 0.2191 0.6419 + 0.6883 0.4286 0.8974 + 0.8499 0.5069 0.4643 + 0.9019 0.3152 0.4006 + 0.2973 0.4501 0.0411 + 0.2026 0.1939 0.9824 + 0.6041 0.2842 0.5462 + 0.9371 0.5834 0.8635 + 0.4799 0.6260 0.2953 + 0.5238 0.7532 0.8461 + 0.6517 0.7502 0.3512 + 0.4229 0.1752 0.1634 + 0.7366 0.7801 0.9180 + 0.1957 0.2408 0.3131 + 0.9544 0.5748 0.1483 + 0.8544 0.0117 0.7080 + 0.7467 0.9576 0.2643 + 0.5438 0.0537 0.0843 + 0.9563 0.6243 0.4454 + 0.5092 0.1294 0.3496 + 0.4297 0.4393 0.2485 + 0.4890 0.8836 0.6625 + 0.1389 0.4318 0.3081 + 0.1869 0.0011 0.4418 + 0.9201 0.4152 0.0008 + 0.4235 0.6870 0.1545 + 0.9545 0.0976 0.9682 + 0.7207 0.6316 0.7971 + 0.9008 0.5584 0.7311 + 0.1453 0.9232 0.3198 + 0.5304 0.4056 0.1549 spike_snippets(:,:,3) = - 0.3783 0.7965 0.1050 - 0.7297 0.1329 0.8280 - 0.0421 0.7440 0.5148 - 0.0433 0.1966 0.3639 - 0.3937 0.0728 0.1104 - 0.5506 0.7925 0.4094 - 0.3709 0.7109 0.0431 - 0.5237 0.6674 0.2444 - 0.1808 0.7575 0.3823 - 0.8111 0.5852 0.2838 - 0.3822 0.9055 0.2303 - 0.0973 0.3953 0.7989 - 0.0419 0.8453 0.6505 - 0.4524 0.3664 0.2062 - 0.4113 0.1807 0.1150 - 0.0886 0.8685 0.3013 - 0.3449 0.5180 0.2821 - 0.3773 0.6463 0.4354 - 0.7497 0.3262 0.9738 - 0.3253 0.4987 0.7777 - 0.8843 0.4842 0.8025 - 0.6655 0.3403 0.4367 - 0.6173 0.6862 0.7745 - 0.3096 0.4351 0.8634 - 0.9581 0.5508 0.9057 - 0.9796 0.8453 0.2989 - 0.4616 0.3215 0.5217 - 0.6465 0.2757 0.8933 - 0.6273 0.7627 0.3487 - 0.7493 0.0711 0.7441 - 0.6469 0.6425 0.3223 - 0.2125 0.5889 0.7047 - 0.3090 0.2534 0.4767 - 0.2812 0.5091 0.6808 - 0.1553 0.4004 0.3360 - 0.5689 0.5763 0.1933 - 0.4353 0.9890 0.3021 - 0.4081 0.5490 0.2611 - 0.0308 0.0775 0.0438 - 0.2588 0.8739 0.3807 + 0.5092 0.9115 0.6848 + 0.0370 0.3598 0.5459 + 0.8909 0.2320 0.6210 + 0.1415 0.3598 0.3532 + 0.6650 0.7777 0.2036 + 0.0845 0.7893 0.6989 + 0.8263 0.5907 0.7732 + 0.7758 0.9209 0.6862 + 0.6141 0.4780 0.6086 + 0.4845 0.5522 0.5599 + 0.9572 0.1676 0.3414 + 0.1539 0.5025 0.8494 + 0.6809 0.5092 0.8636 + 0.9649 0.6492 0.5732 + 0.3245 0.6510 0.9502 + 0.3759 0.3767 0.4420 + 0.7450 0.5653 0.0341 + 0.8066 0.5285 0.6691 + 0.7006 0.0285 0.2575 + 0.4817 0.5484 0.8613 + 0.2185 0.3218 0.5705 + 0.4282 0.1795 0.8811 + 0.3090 0.8398 0.6193 + 0.0477 0.4053 0.8866 + 0.1156 0.5851 0.2542 + 0.8462 0.0158 0.3698 + 0.4941 0.9994 0.2657 + 0.6635 0.6725 0.1791 + 0.8944 0.2112 0.0403 + 0.3573 0.8075 0.2363 + 0.0931 0.0854 0.2321 + 0.4501 0.9337 0.2882 + 0.5619 0.6824 0.8621 + 0.5455 0.0936 0.0346 + 0.4649 0.7467 0.8067 + 0.0441 0.9981 0.1671 + 0.1436 0.4552 0.5099 + 0.9111 0.4916 0.9271 + 0.1548 0.1222 0.4906 + 0.3945 0.8146 0.5500 spike_snippets(:,:,4) = - 0.2649 0.6259 0.3227 - 0.2491 0.7486 0.8558 - 0.3198 0.5868 0.3054 - 0.9232 0.9241 0.1926 - 0.8567 0.2033 0.2909 - 0.9502 0.7225 0.7050 - 0.3448 0.9984 0.8057 - 0.6264 0.9101 0.6463 - 0.5162 0.6860 0.4762 - 0.3276 0.2264 0.5250 - 0.5039 0.8624 0.7269 - 0.7390 0.1356 0.6052 - 0.9651 0.2247 0.4177 - 0.1197 0.2531 0.0582 - 0.0431 0.1862 0.8068 - 0.5937 0.9858 0.4938 - 0.8370 0.3590 0.5061 - 0.0589 0.0558 0.9941 - 0.4473 0.9498 0.0472 - 0.8378 0.1685 0.4784 - 0.7923 0.4368 0.6926 - 0.5336 0.0716 0.9173 - 0.8650 0.4142 0.8525 - 0.0634 0.7115 0.9690 - 0.1277 0.2495 0.9790 - 0.2543 0.5766 0.0703 - 0.8826 0.7350 0.1136 - 0.6198 0.1620 0.6696 - 0.5354 0.5791 0.6978 - 0.8119 0.8240 0.6792 - 0.4559 0.7728 0.2349 - 0.1032 0.8007 0.3118 - 0.1165 0.3766 0.7736 - 0.2743 0.6713 0.0053 - 0.8355 0.9312 0.8363 - 0.8097 0.4272 0.2623 - 0.3977 0.9368 0.4354 - 0.4137 0.5146 0.7045 - 0.5012 0.6424 0.9537 - 0.6439 0.1141 0.0752 + 0.8651 0.0729 0.5703 + 0.7056 0.7361 0.0422 + 0.7220 0.4867 0.8848 + 0.7563 0.2299 0.4345 + 0.1388 0.6244 0.1856 + 0.4175 0.1199 0.3165 + 0.0970 0.6949 0.4674 + 0.6304 0.8521 0.2420 + 0.5424 0.2486 0.6067 + 0.1731 0.3253 0.6955 + 0.6922 0.3908 0.0253 + 0.3011 0.2044 0.2150 + 0.6281 0.9983 0.8887 + 0.5463 0.3738 0.2357 + 0.1263 0.2581 0.0286 + 0.5020 0.1082 0.0744 + 0.2669 0.0954 0.5680 + 0.3439 0.2201 0.8495 + 0.6176 0.9906 0.6916 + 0.2697 0.4133 0.1197 + 0.5944 0.7802 0.2287 + 0.4447 0.7085 0.0679 + 0.1947 0.6754 0.9432 + 0.4714 0.0661 0.0817 + 0.5271 0.9569 0.9435 + 0.8597 0.6655 0.0351 + 0.8275 0.0531 0.2852 + 0.2070 0.3484 0.4845 + 0.9358 0.0522 0.7680 + 0.6787 0.3460 0.3718 + 0.2934 0.3135 0.0939 + 0.9152 0.4345 0.1295 + 0.3650 0.2472 0.3402 + 0.1528 0.6372 0.5485 + 0.5785 0.9504 0.9111 + 0.5069 0.9808 0.3079 + 0.3256 0.3353 0.1383 + 0.5329 0.4452 0.8509 + 0.1127 0.6844 0.8668 + 0.7811 0.1499 0.4629 spike_snippets(:,:,5) = - 0.0353 0.5785 0.1052 - 0.9667 0.9307 0.7775 - 0.0724 0.7375 0.9376 - 0.2985 0.0157 0.5220 - 0.2656 0.4422 0.7409 - 0.1663 0.4812 0.8922 - 0.2181 0.4709 0.0764 - 0.2997 0.1134 0.7770 - 0.4091 0.1724 0.0672 - 0.3649 0.4570 0.8933 - 0.0467 0.9205 0.5342 - 0.2600 0.4604 0.6358 - 0.3632 0.4091 0.5228 - 0.3142 0.5238 0.8015 - 0.9972 0.8749 0.1874 - 0.2001 0.8972 0.8003 - 0.6966 0.7425 0.8926 - 0.2572 0.2725 0.3606 - 0.2437 0.2278 0.0985 - 0.5260 0.2972 0.9588 - 0.3713 0.6128 0.5907 - 0.5425 0.4280 0.9567 - 0.2313 0.8796 0.2725 - 0.8410 0.8233 0.3227 - 0.2570 0.2153 0.0822 - 0.6232 0.8143 0.8897 - 0.5503 0.2705 0.4599 - 0.4243 0.9212 0.8713 - 0.6731 0.7431 0.2173 - 0.7223 0.2741 0.7489 - 0.0597 0.2518 0.3761 - 0.9505 0.4155 0.3440 - 0.0127 0.5266 0.2639 - 0.9038 0.9368 0.6245 - 0.2475 0.5880 0.0437 - 0.8818 0.2390 0.7275 - 0.8650 0.2695 0.5546 - 0.5279 0.0313 0.2543 - 0.3718 0.3389 0.7586 - 0.9491 0.6410 0.0260 + 0.9833 0.1306 0.1439 + 0.2656 0.5451 0.9737 + 0.5678 0.3446 0.3483 + 0.0967 0.0733 0.2677 + 0.2653 0.9260 0.8876 + 0.3652 0.3403 0.3428 + 0.7242 0.2202 0.3057 + 0.8023 0.8464 0.9116 + 0.2288 0.7517 0.9695 + 0.7929 0.6289 0.9108 + 0.5254 0.5371 0.8497 + 0.9644 0.9208 0.5796 + 0.3907 0.0955 0.7351 + 0.8862 0.8287 0.5880 + 0.3508 0.8420 0.7759 + 0.9350 0.8327 0.3354 + 0.3336 0.4643 0.3187 + 0.3489 0.0708 0.8605 + 0.6006 0.7239 0.3991 + 0.3062 0.9719 0.1192 + 0.6141 0.9838 0.1967 + 0.0040 0.5215 0.8946 + 0.2364 0.0775 0.0065 + 0.7518 0.9408 0.8491 + 0.7013 0.8655 0.8282 + 0.9326 0.1311 0.8476 + 0.1252 0.0149 0.3416 + 0.9947 0.6125 0.6894 + 0.1763 0.6221 0.2775 + 0.7586 0.2494 0.6819 + 0.9048 0.7648 0.0505 + 0.2789 0.3761 0.7825 + 0.1195 0.3080 0.1136 + 0.3286 0.8026 0.9635 + 0.5285 0.2380 0.6579 + 0.4777 0.2527 0.4029 + 0.6137 0.4510 0.4112 + 0.3054 0.5817 0.7277 + 0.5103 0.9052 0.9271 + 0.8229 0.1610 0.4064 spike_snippets(:,:,6) = - 0.8353 0.8842 0.1327 - 0.0023 0.0828 0.0155 - 0.4521 0.2627 0.3135 - 0.6089 0.9924 0.1857 - 0.2771 0.0145 0.5243 - 0.0054 0.6352 0.6397 - 0.9503 0.6881 0.6905 - 0.5268 0.6878 0.0469 - 0.3679 0.0870 0.0940 - 0.7434 0.2069 0.6242 - 0.7756 0.0147 0.1339 - 0.3013 0.4838 0.5379 - 0.7562 0.3814 0.9576 - 0.5539 0.7027 0.2851 - 0.4565 0.4701 0.4139 - 0.9140 0.5460 0.2079 - 0.3755 0.6503 0.2046 - 0.1380 0.9547 0.2964 - 0.9064 0.5506 0.4604 - 0.4459 0.0249 0.1004 - 0.1336 0.8181 0.9869 - 0.7424 0.1500 0.2491 - 0.5502 0.8456 0.8847 - 0.2056 0.3975 0.2799 - 0.3125 0.9756 0.9344 - 0.1778 0.6799 0.5414 - 0.6171 0.7186 0.0913 - 0.5498 0.4818 0.1065 - 0.2924 0.6595 0.9587 - 0.0464 0.5249 0.9911 - 0.6492 0.7509 0.9557 - 0.3380 0.2306 0.6588 - 0.2239 0.2056 0.6502 - 0.0666 0.7243 0.5550 - 0.8463 0.7816 0.2333 - 0.1221 0.9336 0.6374 - 0.2198 0.0172 0.9353 - 0.2697 0.7625 0.7616 - 0.5676 0.3180 0.2653 - 0.7473 0.3677 0.3685 + 0.3054 0.2779 0.6491 + 0.5022 0.0909 0.5466 + 0.2294 0.5000 0.8570 + 0.4042 0.5115 0.9431 + 0.4964 0.2149 0.5783 + 0.4703 0.1227 0.4063 + 0.7156 0.5084 0.0977 + 0.1685 0.6039 0.9440 + 0.5246 0.4176 0.6435 + 0.1973 0.8868 0.0968 + 0.3190 0.5694 0.8356 + 0.9508 0.3955 0.3049 + 0.7104 0.8199 0.1919 + 0.5505 0.9165 0.1106 + 0.5106 0.9105 0.6328 + 0.1722 0.1372 0.2181 + 0.4067 0.5448 0.6478 + 0.9696 0.4703 0.5263 + 0.1818 0.4216 0.7169 + 0.2094 0.2752 0.8469 + 0.4900 0.4156 0.5015 + 0.9689 0.3503 0.3427 + 0.4425 0.7213 0.7925 + 0.1208 0.9218 0.1758 + 0.5253 0.4974 0.9133 + 0.5050 0.1665 0.3859 + 0.3676 0.0337 0.0437 + 0.9110 0.8914 0.5112 + 0.4501 0.4358 0.3669 + 0.8307 0.5862 0.6017 + 0.2800 0.0028 0.3824 + 0.9934 0.6645 0.1911 + 0.1871 0.5665 0.4545 + 0.5104 0.4363 0.3587 + 0.4477 0.1140 0.2533 + 0.0078 0.4282 0.6347 + 0.6320 0.1487 0.7152 + 0.4901 0.3613 0.0225 + 0.0841 0.3465 0.2337 + 0.2430 0.2622 0.4275 spike_snippets(:,:,7) = - 0.2717 0.8437 0.0614 - 0.9846 0.1554 0.6485 - 0.4405 0.5486 0.9861 - 0.2992 0.2502 0.0416 - 0.7311 0.8385 0.7856 - 0.5447 0.1100 0.3637 - 0.4743 0.6841 0.0385 - 0.7385 0.9559 0.6803 - 0.3589 0.2038 0.8423 - 0.6803 0.3435 0.9457 - 0.2223 0.2174 0.5204 - 0.5181 0.9136 0.4587 - 0.5111 0.5251 0.6280 - 0.1176 0.2497 0.5422 - 0.5466 0.6819 0.2333 - 0.5011 0.4795 0.9527 - 0.8456 0.4351 0.4552 - 0.5045 0.9980 0.1937 - 0.3748 0.1342 0.8555 - 0.6774 0.2389 0.2832 - 0.4197 0.1265 0.4677 - 0.9821 0.5483 0.3190 - 0.0633 0.8405 0.1184 - 0.8376 0.0095 0.9551 - 0.1982 0.8255 0.1118 - 0.9934 0.3247 0.2800 - 0.2720 0.7457 0.5024 - 0.4922 0.3824 0.4749 - 0.7537 0.4682 0.0557 - 0.5107 0.6124 0.4445 - 0.5398 0.3796 0.4417 - 0.0725 0.2940 0.3620 - 0.9727 0.1012 0.8457 - 0.6401 0.9106 0.6999 - 0.2930 0.8806 0.3215 - 0.4818 0.7571 0.2296 - 0.5412 0.0074 0.0305 - 0.4098 0.9592 0.5943 - 0.2615 0.6385 0.9016 - 0.0142 0.0078 0.2939 + 0.5203 0.4307 0.6524 + 0.7971 0.7307 0.9649 + 0.5900 0.5683 0.7583 + 0.4517 0.9439 0.4560 + 0.7591 0.4558 0.7293 + 0.5660 0.1464 0.6991 + 0.4934 0.6237 0.6178 + 0.8066 0.6757 0.4065 + 0.1988 0.2131 0.3927 + 0.9253 0.1590 0.2406 + 0.4513 0.2735 0.8884 + 0.3209 0.9513 0.4656 + 0.1497 0.7329 0.8223 + 0.8818 0.5569 0.8199 + 0.1966 0.0080 0.8479 + 0.2544 0.0254 0.1438 + 0.9411 0.2648 0.6022 + 0.9904 0.3270 0.8801 + 0.5011 0.0608 0.7151 + 0.4306 0.5025 0.6970 + 0.7600 0.0648 0.6352 + 0.8428 0.1614 0.4374 + 0.7337 0.1432 0.7528 + 0.7799 0.2674 0.2795 + 0.1125 0.0389 0.7427 + 0.6235 0.6113 0.4224 + 0.8652 0.3020 0.7012 + 0.0585 0.2901 0.6066 + 0.2551 0.6485 0.6733 + 0.3578 0.4431 0.8841 + 0.3194 0.8011 0.5885 + 0.8658 0.1362 0.9775 + 0.7267 0.8782 0.1815 + 0.9021 0.1424 0.9340 + 0.1541 0.2204 0.2235 + 0.3263 0.9738 0.1737 + 0.8442 0.1610 0.1785 + 0.0902 0.4908 0.3965 + 0.9395 0.1451 0.8357 + 0.5820 0.4252 0.1027 spike_snippets(:,:,8) = - 0.5593 0.0664 0.1353 - 0.3706 0.7314 0.5002 - 0.2348 0.4361 0.8898 - 0.3238 0.8773 0.3457 - 0.7999 0.0080 0.0955 - 0.1456 0.2914 0.5586 - 0.8459 0.2323 0.0713 - 0.8664 0.9928 0.3438 - 0.1765 0.6375 0.2839 - 0.0213 0.9495 0.2103 - 0.9784 0.6562 0.7590 - 0.4871 0.4380 0.3342 - 0.3254 0.4880 0.2579 - 0.7349 0.5574 0.3016 - 0.5836 0.4425 0.1105 - 0.6315 0.4373 0.2164 - 0.9936 0.1000 0.7040 - 0.0706 0.2114 0.4139 - 0.3899 0.1189 0.6065 - 0.8679 0.0302 0.9512 - 0.2909 0.3544 0.1529 - 0.2939 0.4527 0.7157 - 0.8946 0.0451 0.3767 - 0.8676 0.5813 0.1104 - 0.0709 0.2271 0.6175 - 0.8726 0.2966 0.0629 - 0.8273 0.7022 0.3356 - 0.0928 0.5537 0.5731 - 0.2954 0.0095 0.0852 - 0.1539 0.0523 0.0867 - 0.9804 0.0772 0.3589 - 0.8008 0.8144 0.7733 - 0.5719 0.3287 0.5242 - 0.7745 0.6716 0.0099 - 0.0604 0.9060 0.4542 - 0.3181 0.2407 0.6370 - 0.1010 0.6173 0.8799 - 0.3902 0.9332 0.4848 - 0.4473 0.5347 0.4481 - 0.8056 0.4465 0.1206 + 0.1236 0.6511 0.1434 + 0.6919 0.8788 0.5315 + 0.0110 0.2866 0.2883 + 0.6653 0.3658 0.7295 + 0.3830 0.3836 0.1894 + 0.0792 0.4844 0.6232 + 0.0429 0.0815 0.0893 + 0.9189 0.4935 0.6753 + 0.9430 0.6922 0.1165 + 0.6600 0.5560 0.4981 + 0.7278 0.3105 0.6180 + 0.2455 0.8558 0.8068 + 0.1648 0.5900 0.8158 + 0.7264 0.2944 0.9467 + 0.5387 0.3136 0.4850 + 0.2455 0.0724 0.9675 + 0.9792 0.7856 0.1285 + 0.0151 0.3191 0.4051 + 0.7201 0.2710 0.8689 + 0.6860 0.1948 0.5062 + 0.8377 0.2674 0.8979 + 0.3805 0.7267 0.2665 + 0.2113 0.5110 0.2891 + 0.2075 0.1331 0.1577 + 0.5781 0.8387 0.8078 + 0.0374 0.8755 0.9759 + 0.0858 0.7683 0.4930 + 0.9413 0.4375 0.2516 + 0.4598 0.0071 0.5345 + 0.3385 0.2310 0.6649 + 0.8964 0.7416 0.8791 + 0.9074 0.5103 0.8058 + 0.0780 0.2104 0.6698 + 0.1535 0.9910 0.7050 + 0.2712 0.3049 0.6195 + 0.0698 0.8990 0.2976 + 0.5451 0.3134 0.1452 + 0.6226 0.0632 0.5848 + 0.3860 0.4139 0.0877 + 0.2459 0.3314 0.7027 spike_snippets(:,:,9) = - 0.9006 0.9767 0.4546 - 0.4900 0.1118 0.3742 - 0.6286 0.1657 0.4895 - 0.0315 0.7151 0.8266 - 0.5473 0.4190 0.4702 - 0.5753 0.7077 0.3470 - 0.9155 0.6868 0.1367 - 0.0095 0.6625 0.5484 - 0.7689 0.2045 0.2163 - 0.4798 0.6163 0.2810 - 0.1679 0.4193 0.0015 - 0.3575 0.4011 0.3735 - 0.0642 0.3644 0.1549 - 0.9379 0.0651 0.6980 - 0.4819 0.6627 0.9033 - 0.8420 0.3811 0.3017 - 0.0722 0.2149 0.7973 - 0.4157 0.9105 0.2724 - 0.0533 0.0427 0.8246 - 0.6276 0.0139 0.2806 - 0.6060 0.0471 0.3017 - 0.5282 0.1674 0.4363 - 0.3956 0.7580 0.4897 - 0.6309 0.0353 0.6656 - 0.1861 0.6520 0.8533 - 0.0611 0.9159 0.1356 - 0.6147 0.7900 0.1875 - 0.2017 0.7556 0.4291 - 0.4022 0.2524 0.1622 - 0.5871 0.7990 0.1337 - 0.1497 0.4101 0.9119 - 0.0517 0.4808 0.4061 - 0.0749 0.3774 0.7091 - 0.2355 0.2938 0.9197 - 0.6699 0.6678 0.5774 - 0.3838 0.9774 0.6441 - 0.0487 0.8784 0.1452 - 0.7651 0.1562 0.2282 - 0.4379 0.5744 0.9057 - 0.9151 0.5201 0.2940 + 0.1862 0.3166 0.5625 + 0.6883 0.8583 0.6659 + 0.8207 0.2343 0.7708 + 0.4771 0.9836 0.6667 + 0.9927 0.8793 0.5623 + 0.5524 0.3897 0.6021 + 0.0158 0.0147 0.6756 + 0.5509 0.3765 0.1045 + 0.0319 0.8561 0.6120 + 0.6078 0.8196 0.1573 + 0.8092 0.9058 0.8133 + 0.1753 0.4625 0.3167 + 0.7093 0.0153 0.8247 + 0.0031 0.9350 0.7074 + 0.7463 0.7795 0.7193 + 0.6112 0.7431 0.8335 + 0.1113 0.7544 0.5980 + 0.1001 0.0113 0.5878 + 0.7874 0.3017 0.8858 + 0.3490 0.6528 0.4592 + 0.2282 0.9735 0.8830 + 0.5118 0.8896 0.5627 + 0.8384 0.6445 0.6133 + 0.7058 0.5834 0.9355 + 0.8892 0.4049 0.2107 + 0.7051 0.1832 0.5109 + 0.9029 0.6395 0.3890 + 0.2350 0.2461 0.1438 + 0.4924 0.8447 0.9080 + 0.3103 0.9046 0.0424 + 0.0415 0.4561 0.1136 + 0.9019 0.4703 0.8842 + 0.5687 0.0371 0.4397 + 0.1593 0.0056 0.3861 + 0.6538 0.0122 0.3605 + 0.1895 0.2687 0.9563 + 0.4757 0.9230 0.5992 + 0.5058 0.0182 0.8989 + 0.7973 0.6793 0.1926 + 0.9365 0.5756 0.1470 spike_snippets(:,:,10) = - 0.8282 0.2138 0.4285 - 0.1261 0.4883 0.5792 - 0.2228 0.6247 0.6779 - 0.5449 0.8480 0.6369 - 0.4660 0.2117 0.6570 - 0.3096 0.5601 0.1036 - 0.7891 0.2303 0.9913 - 0.4926 0.8584 0.9990 - 0.3495 0.0570 0.5718 - 0.9466 0.2449 0.6204 - 0.0511 0.9682 0.8855 - 0.3725 0.5535 0.6946 - 0.3412 0.3071 0.8087 - 0.5381 0.5668 0.9207 - 0.1865 0.0673 0.4772 - 0.3406 0.2523 0.8170 - 0.5898 0.5944 0.8017 - 0.8600 0.7295 0.3962 - 0.1895 0.6133 0.0434 - 0.0279 0.2701 0.1114 - 0.0769 0.4293 0.3671 - 0.7910 0.9349 0.3867 - 0.8657 0.1144 0.5284 - 0.8548 0.8806 0.7524 - 0.4823 0.9414 0.3000 - 0.9317 0.7896 0.5841 - 0.0128 0.5571 0.6863 - 0.8671 0.7001 0.9361 - 0.5764 0.2295 0.1059 - 0.8178 0.5535 0.1238 - 0.8806 0.7218 0.9090 - 0.0153 0.7562 0.7664 - 0.2824 0.6593 0.8112 - 0.3260 0.6340 0.0707 - 0.7501 0.4089 0.5904 - 0.5228 0.3117 0.3652 - 0.4952 0.8159 0.5059 - 0.0382 0.4136 0.9324 - 0.8208 0.4944 0.5800 - 0.2682 0.8801 0.1464 + 0.6774 0.8672 0.3929 + 0.7508 0.8390 0.1819 + 0.8385 0.0982 0.1049 + 0.8561 0.8053 0.5929 + 0.6299 0.8493 0.1438 + 0.4487 0.6291 0.9145 + 0.3847 0.4643 0.3373 + 0.5404 0.7072 0.0958 + 0.4907 0.5549 0.8605 + 0.7538 0.9238 0.0707 + 0.6480 0.6550 0.8500 + 0.2106 0.1632 0.5082 + 0.2997 0.4515 0.2181 + 0.5225 0.6085 0.4031 + 0.7164 0.0671 0.2393 + 0.4219 0.8559 0.8960 + 0.2255 0.7409 0.2879 + 0.1748 0.2214 0.3755 + 0.6444 0.8154 0.7101 + 0.8884 0.4719 0.3015 + 0.9329 0.2244 0.2333 + 0.9767 0.3629 0.4684 + 0.8712 0.7563 0.3301 + 0.1827 0.6614 0.8416 + 0.7168 0.9171 0.7254 + 0.0646 0.5612 0.5675 + 0.5051 0.9097 0.6379 + 0.6441 0.4000 0.2584 + 0.3448 0.8788 0.3373 + 0.7757 0.0176 0.1728 + 0.7208 0.7215 0.9140 + 0.2416 0.7711 0.6687 + 0.9054 0.5785 0.7456 + 0.0335 0.1418 0.4057 + 0.9318 0.0209 0.8280 + 0.4995 0.5503 0.6516 + 0.5591 0.8762 0.9773 + 0.4354 0.9011 0.0860 + 0.2329 0.4244 0.1117 + 0.0895 0.3846 0.8654 spike_snippets(:,:,11) = - 0.8236 0.0540 0.7995 - 0.0204 0.5714 0.1848 - 0.5037 0.2359 0.6157 - 0.1659 0.0862 0.1732 - 0.6297 0.3077 0.5853 - 0.5058 0.9417 0.8461 - 0.9337 0.4265 0.6859 - 0.8281 0.2999 0.5419 - 0.8863 0.3362 0.6720 - 0.7906 0.5052 0.6274 - 0.9557 0.0771 0.3880 - 0.5038 0.6242 0.7661 - 0.8903 0.7702 0.3272 - 0.4220 0.8902 0.2522 - 0.0672 0.8752 0.0396 - 0.9442 0.2209 0.3697 - 0.5215 0.2116 0.3633 - 0.3515 0.4938 0.7357 - 0.2163 0.7856 0.7170 - 0.9434 0.9972 0.2783 - 0.9765 0.7021 0.0121 - 0.4874 0.4950 0.5714 - 0.1665 0.2588 0.9994 - 0.9151 0.8206 0.1286 - 0.9721 0.8228 0.6599 - 0.1537 0.0543 0.0633 - 0.9924 0.5272 0.3047 - 0.6047 0.3395 0.0708 - 0.6732 0.5972 0.7567 - 0.9690 0.4308 0.0410 - 0.8854 0.6984 0.5455 - 0.4442 0.3944 0.5872 - 0.4572 0.4874 0.3204 - 0.2759 0.2410 0.6748 - 0.6670 0.9343 0.9368 - 0.1688 0.9325 0.1636 - 0.9597 0.4930 0.4160 - 0.7391 0.2095 0.5453 - 0.6546 0.9712 0.6962 - 0.6566 0.4447 0.1735 + 0.8347 0.4022 0.6120 + 0.3468 0.5189 0.4033 + 0.2546 0.6819 0.0986 + 0.7404 0.1464 0.7471 + 0.6433 0.2989 0.8645 + 0.9926 0.0527 0.3949 + 0.9637 0.2744 0.2190 + 0.7971 0.7036 0.4778 + 0.4520 0.5440 0.6679 + 0.3244 0.4465 0.5489 + 0.9640 0.3327 0.7965 + 0.5527 0.1972 0.7607 + 0.2490 0.6106 0.3055 + 0.8834 0.5081 0.0499 + 0.2723 0.1501 0.9294 + 0.2521 0.5971 0.5519 + 0.7322 0.9338 0.7382 + 0.0855 0.8082 0.5566 + 0.7416 0.1892 0.5572 + 0.2958 0.9147 0.6783 + 0.0851 0.4890 0.4612 + 0.3550 0.0450 0.2096 + 0.1819 0.2133 0.5934 + 0.9579 0.1414 0.7223 + 0.4275 0.6274 0.9427 + 0.0523 0.0421 0.6497 + 0.0685 0.9755 0.6641 + 0.5790 0.6845 0.7101 + 0.7696 0.1755 0.2687 + 0.7507 0.4235 0.1038 + 0.6559 0.8909 0.1183 + 0.6514 0.9716 0.1036 + 0.9478 0.7154 0.0593 + 0.7043 0.2236 0.8412 + 0.3663 0.5732 0.0736 + 0.1300 0.3943 0.1802 + 0.6451 0.1573 0.4161 + 0.8897 0.7446 0.7855 + 0.3715 0.4903 0.6490 + 0.5015 0.5459 0.3932 spike_snippets(:,:,12) = - 0.1184 0.1251 0.0214 - 0.5802 0.0419 0.5646 - 0.7721 0.2065 0.3439 - 0.8848 0.7671 0.2095 - 0.5418 0.3479 0.6222 - 0.8559 0.5945 0.7391 - 0.6337 0.6223 0.5492 - 0.0702 0.5033 0.6576 - 0.0921 0.6129 0.9543 - 0.8458 0.6076 0.3383 - 0.4057 0.1879 0.5339 - 0.0289 0.5740 0.8159 - 0.2173 0.5540 0.1329 - 0.5727 0.7952 0.9536 - 0.5524 0.2359 0.5984 - 0.4675 0.2840 0.3707 - 0.8868 0.5361 0.0724 - 0.9720 0.0704 0.1437 - 0.4901 0.2043 0.1668 - 0.4051 0.5348 0.8620 - 0.4173 0.5441 0.1257 - 0.1043 0.2794 0.7575 - 0.5445 0.8990 0.4524 - 0.1090 0.8750 0.9088 - 0.8141 0.4295 0.4942 - 0.0896 0.5689 0.9763 - 0.4692 0.4561 0.9672 - 0.5486 0.5594 0.7761 - 0.5805 0.8100 0.1513 - 0.8436 0.7339 0.5115 - 0.0133 0.0170 0.3654 - 0.2173 0.4141 0.6722 - 0.1264 0.5418 0.5239 - 0.2281 0.1424 0.2084 - 0.3829 0.8320 0.6373 - 0.1969 0.7664 0.5257 - 0.4521 0.7498 0.0649 - 0.2503 0.4570 0.1978 - 0.2399 0.7075 0.6893 - 0.4851 0.6479 0.6504 + 0.8950 0.7784 0.3370 + 0.3776 0.8958 0.1258 + 0.2153 0.5221 0.4411 + 0.9188 0.6917 0.9823 + 0.0532 0.3541 0.2336 + 0.6066 0.7796 0.6442 + 0.7270 0.2461 0.5945 + 0.2519 0.4929 0.5494 + 0.0581 0.7809 0.5255 + 0.2975 0.1215 0.7106 + 0.8214 0.1294 0.1760 + 0.4632 0.9377 0.6688 + 0.2908 0.8853 0.7457 + 0.1076 0.5625 0.0337 + 0.0972 0.5536 0.1822 + 0.1280 0.7994 0.4142 + 0.1412 0.1745 0.7949 + 0.3290 0.2348 0.6860 + 0.7861 0.2603 0.6156 + 0.4999 0.3998 0.9619 + 0.2821 0.8703 0.1428 + 0.9904 0.9902 0.9319 + 0.7028 0.0983 0.1120 + 0.8319 0.1780 0.2330 + 0.2656 0.7303 0.3022 + 0.9044 0.4930 0.4198 + 0.6919 0.8411 0.3521 + 0.1977 0.5059 0.4959 + 0.8080 0.3110 0.4749 + 0.7690 0.1746 0.0756 + 0.5096 0.2501 0.1510 + 0.9853 0.4394 0.0432 + 0.2593 0.5565 0.1624 + 0.9890 0.5731 0.9597 + 0.9599 0.0753 0.2030 + 0.5933 0.8058 0.7752 + 0.6314 0.7114 0.8213 + 0.8363 0.0528 0.3939 + 0.4076 0.7217 0.5043 + 0.1097 0.2343 0.2508 spike_snippets(:,:,13) = - 0.1851 0.2148 0.3096 - 0.1530 0.6928 0.4706 - 0.5957 0.5997 0.6436 - 0.5111 0.9477 0.0237 - 0.2794 0.8481 0.2508 - 0.8733 0.8629 0.9143 - 0.8843 0.5084 0.3684 - 0.2139 0.3135 0.3625 - 0.5994 0.2873 0.0790 - 0.9182 0.7084 0.1474 - 0.0354 0.0425 0.9387 - 0.2318 0.1590 0.8480 - 0.3196 0.2009 0.7093 - 0.1199 0.3389 0.8795 - 0.0257 0.4380 0.0876 - 0.3023 0.9498 0.4555 - 0.6875 0.8848 0.0010 - 0.5839 0.9727 0.6120 - 0.5932 0.3215 0.9277 - 0.7070 0.6221 0.4235 - 0.4214 0.4862 0.8240 - 0.3256 0.7700 0.4219 - 0.8684 0.9093 0.2151 - 0.1271 0.2716 0.2960 - 0.8478 0.4911 0.6642 - 0.1270 0.8443 0.8821 - 0.8903 0.9322 0.1781 - 0.0355 0.4999 0.5528 - 0.8283 0.6655 0.4869 - 0.9501 0.6728 0.0283 - 0.0597 0.0752 0.5528 - 0.0772 0.8877 0.5799 - 0.0882 0.7317 0.1380 - 0.6245 0.6600 0.9433 - 0.4312 0.1948 0.2695 - 0.2354 0.4766 0.3604 - 0.9902 0.3074 0.5376 - 0.7988 0.9897 0.9941 - 0.8217 0.5316 0.8525 - 0.2351 0.7831 0.0319 + 0.2949 0.5202 0.1211 + 0.5566 0.5845 0.5552 + 0.0722 0.6373 0.8406 + 0.9252 0.0517 0.5231 + 0.4902 0.5120 0.9631 + 0.2890 0.4406 0.8756 + 0.8333 0.0660 0.7129 + 0.7859 0.1514 0.2913 + 0.0624 0.2431 0.4692 + 0.9129 0.6801 0.7586 + 0.9633 0.8651 0.4898 + 0.9800 0.8840 0.2424 + 0.1020 0.8982 0.5261 + 0.6766 0.0988 0.9697 + 0.2313 0.1582 0.4006 + 0.0004 0.3593 0.5432 + 0.7084 0.5084 0.4525 + 0.7881 0.0612 0.4665 + 0.9016 0.5683 0.2416 + 0.9231 0.7142 0.3431 + 0.3189 0.6186 0.6160 + 0.5037 0.2760 0.5419 + 0.0237 0.7551 0.1368 + 0.6520 0.7281 0.4271 + 0.2760 0.1216 0.5721 + 0.8475 0.6912 0.3738 + 0.7810 0.0934 0.3155 + 0.6271 0.8286 0.1854 + 0.1149 0.9365 0.5787 + 0.7695 0.1150 0.0557 + 0.5477 0.5701 0.2503 + 0.4269 0.0165 0.1992 + 0.4939 0.9138 0.8500 + 0.9287 0.8734 0.5062 + 0.7151 0.2187 0.0008 + 0.2543 0.6974 0.4274 + 0.9483 0.7896 0.6908 + 0.7255 0.8452 0.2864 + 0.0348 0.5217 0.1593 + 0.5899 0.3122 0.1772 spike_snippets(:,:,14) = - 0.2230 0.1351 0.7886 - 0.4238 0.2492 0.9146 - 0.1847 0.5595 0.5707 - 0.8921 0.0787 0.4474 - 0.7938 0.3050 0.6435 - 0.0043 0.8448 0.9762 - 0.9224 0.5257 0.8517 - 0.0390 0.3533 0.2300 - 0.1118 0.7620 0.4621 - 0.2636 0.3288 0.9287 - 0.4195 0.1997 0.1947 - 0.6326 0.5843 0.1339 - 0.9864 0.6860 0.5085 - 0.3759 0.6882 0.3052 - 0.2147 0.6437 0.8457 - 0.8211 0.9626 0.7382 - 0.8825 0.5314 0.3377 - 0.2341 0.1485 0.8010 - 0.3810 0.8068 0.4227 - 0.4321 0.4115 0.7880 - 0.9936 0.1828 0.3977 - 0.7010 0.2326 0.6093 - 0.1119 0.4843 0.9668 - 0.0840 0.3081 0.2195 - 0.8017 0.3575 0.2703 - 0.6757 0.3959 0.3937 - 0.0061 0.4527 0.3682 - 0.1994 0.8625 0.6531 - 0.0574 0.4723 0.1477 - 0.0919 0.6493 0.7246 - 0.6749 0.4246 0.8361 - 0.1309 0.4423 0.8770 - 0.2955 0.5541 0.6218 - 0.3190 0.6917 0.7228 - 0.6028 0.3446 0.4859 - 0.6943 0.8714 0.3217 - 0.6263 0.6614 0.6188 - 0.5735 0.2745 0.5193 - 0.4774 0.9703 0.1984 - 0.5386 0.6275 0.1304 + 0.9771 0.4050 0.7480 + 0.0164 0.7490 0.3865 + 0.3992 0.3380 0.2018 + 0.4467 0.0394 0.6368 + 0.7589 0.7476 0.6173 + 0.3515 0.3967 0.4286 + 0.2178 0.9765 0.7002 + 0.8223 0.9313 0.6389 + 0.5271 0.3603 0.2278 + 0.6464 0.5478 0.1317 + 0.4060 0.4718 0.9555 + 0.0270 0.4830 0.8491 + 0.0169 0.4543 0.9645 + 0.3327 0.7379 0.5937 + 0.9158 0.2060 0.9178 + 0.7765 0.1282 0.4284 + 0.3668 0.5960 0.5725 + 0.8509 0.0220 0.6117 + 0.3111 0.9309 0.9131 + 0.6934 0.8826 0.2040 + 0.2483 0.4454 0.1425 + 0.5874 0.7093 0.7173 + 0.8735 0.5988 0.0476 + 0.0763 0.7666 0.8454 + 0.1493 0.6608 0.4174 + 0.5494 0.2831 0.4819 + 0.4071 0.2351 0.8550 + 0.7085 0.9237 0.4157 + 0.7682 0.6375 0.0323 + 0.0196 0.1156 0.2325 + 1.0000 0.7195 0.4628 + 0.1514 0.4361 0.4644 + 0.9657 0.9117 0.4204 + 0.6568 0.0403 0.5068 + 0.8954 0.0092 0.2470 + 0.0665 1.0000 0.5583 + 0.8023 0.3161 0.5107 + 0.4888 0.3307 0.9941 + 0.6054 0.8640 0.4672 + 0.3619 0.9700 0.5930 spike_snippets(:,:,15) = - 0.2262 0.2766 0.5907 - 0.2056 0.1937 0.8867 - 0.1219 0.6344 0.5519 - 0.5776 0.6414 0.7407 - 0.4338 0.4308 0.8669 - 0.4408 0.5366 0.0469 - 0.4334 0.6519 0.2752 - 0.0031 0.3424 0.6518 - 0.0089 0.9570 0.5937 - 0.3908 0.1357 0.6025 - 0.7333 0.2195 0.2525 - 0.1027 0.9820 0.3862 - 0.8368 0.5239 0.1034 - 0.5086 0.8720 0.9551 - 0.6295 0.4330 0.9450 - 0.8806 0.3041 0.5778 - 0.8743 0.3345 0.8624 - 0.9921 0.4705 0.1314 - 0.4447 0.1070 0.5149 - 0.7418 0.5089 0.6865 - 0.5510 0.5950 0.6378 - 0.5892 0.7082 0.6455 - 0.9912 0.5156 0.8352 - 0.3359 0.6611 0.4911 - 0.3669 0.8796 0.2214 - 0.1394 0.4076 0.7643 - 0.9438 0.9816 0.3084 - 0.3012 0.6891 0.7769 - 0.4734 0.3384 0.8854 - 0.6214 0.6087 0.1137 - 0.0905 0.7920 0.2819 - 0.1783 0.8610 0.3101 - 0.1026 0.2972 0.1394 - 0.9566 0.4932 0.2185 - 0.1568 0.0195 0.2752 - 0.1294 0.8462 0.1243 - 0.5607 0.1783 0.9560 - 0.6664 0.4109 0.7201 - 0.9564 0.1284 0.8795 - 0.3678 0.5102 0.1463 + 0.8285 0.2332 0.5170 + 0.8534 0.5185 0.1475 + 0.1406 0.4439 0.6468 + 0.6271 0.7734 0.2874 + 0.7247 0.1307 0.7292 + 0.8879 0.9477 0.5567 + 0.2379 0.0284 0.5833 + 0.1076 0.1909 0.3181 + 0.9581 0.8145 0.8141 + 0.0705 0.4884 0.9800 + 0.1540 0.4450 0.7869 + 0.8214 0.2924 0.8107 + 0.3680 0.9230 0.7764 + 0.6458 0.1220 0.8034 + 0.0179 0.1152 0.1233 + 0.6552 0.0921 0.4741 + 0.4289 0.4675 0.4627 + 0.5957 0.6017 0.0530 + 0.7899 0.0406 0.7737 + 0.2715 0.5865 0.3788 + 0.3688 0.0015 0.2919 + 0.8261 0.6455 0.1661 + 0.9652 0.1234 0.2829 + 0.9641 0.1551 0.6033 + 0.0687 0.3860 0.3001 + 0.0792 0.8179 0.7818 + 0.7146 0.3863 0.2066 + 0.1720 0.3922 0.6165 + 0.0660 0.6977 0.0619 + 0.3606 0.8087 0.4434 + 0.0506 0.2943 0.3097 + 0.8358 0.0611 0.0026 + 0.1669 0.6148 0.0415 + 0.5499 0.1266 0.6509 + 0.0248 0.1344 0.8819 + 0.4887 0.2018 0.2192 + 0.6738 0.0505 0.3670 + 0.9817 0.2910 0.5394 + 0.0308 0.4956 0.9864 + 0.4028 0.5162 0.1998 spike_snippets(:,:,16) = - 0.1927 0.6688 0.6547 - 0.1281 0.6194 0.0771 - 0.2197 0.5600 0.5198 - 0.4552 0.9523 0.6863 - 0.3747 0.6933 0.0655 - 0.0005 0.2037 0.3981 - 0.6358 0.3771 0.3128 - 0.9756 0.2283 0.1688 - 0.2239 0.9016 0.6976 - 0.6167 0.2771 0.7410 - 0.8370 0.4043 0.8922 - 0.1644 0.5570 0.8032 - 0.1674 0.9934 0.9522 - 0.3557 0.8356 0.3211 - 0.9197 0.0929 0.0852 - 0.5803 0.2539 0.5705 - 0.5259 0.0673 0.3024 - 0.6417 0.3843 0.7508 - 0.8997 0.1641 0.3253 - 0.5032 0.4427 0.6970 - 0.0421 0.0260 0.5815 - 0.2497 0.6524 0.2077 - 0.0868 0.2699 0.6739 - 0.7045 0.2186 0.7132 - 0.2521 0.5041 0.4006 - 0.4592 0.3762 0.8459 - 0.3910 0.6362 0.8886 - 0.9811 0.0518 0.6936 - 0.9311 0.1824 0.4904 - 0.3803 0.1296 0.3489 - 0.2317 0.9686 0.2949 - 0.7826 0.0530 0.1981 - 0.9760 0.7078 0.9084 - 0.1940 0.3259 0.6837 - 0.4076 0.6466 0.9943 - 0.0136 0.9390 0.2555 - 0.3636 0.5421 0.9818 - 0.9103 0.4774 0.2366 - 0.8823 0.6284 0.0572 - 0.3817 0.4467 0.2317 + 0.0632 0.4119 0.1498 + 0.7862 0.8745 0.7497 + 0.3152 0.5970 0.2680 + 0.9582 0.5279 0.0675 + 0.8466 0.0177 0.1343 + 0.0575 0.4940 0.0601 + 0.9653 0.0421 0.6708 + 0.3656 0.9654 0.3555 + 0.6427 0.6600 0.8240 + 0.5254 0.5350 0.7614 + 0.8651 0.4518 0.1316 + 0.3772 0.3970 0.1697 + 0.9844 0.6259 0.4263 + 0.7779 0.2904 0.9443 + 0.4432 0.5715 0.7672 + 0.4826 0.1578 0.9774 + 0.8992 0.2390 0.9241 + 0.5520 0.7640 0.5236 + 0.6074 0.4966 0.5190 + 0.8831 0.8285 0.8182 + 0.0123 0.3464 0.0066 + 0.8589 0.9798 0.5752 + 0.6037 0.3889 0.2671 + 0.4787 0.5672 0.1828 + 0.9966 0.1551 0.4506 + 0.4607 0.6693 0.8682 + 0.1410 0.9311 0.4041 + 0.8505 0.8780 0.9635 + 0.8570 0.6529 0.0714 + 0.3587 0.9783 0.4064 + 0.4781 0.3078 0.8497 + 0.4610 0.3308 0.1232 + 0.8942 0.0222 0.8837 + 0.2707 0.6125 0.0489 + 0.8865 0.2327 0.1457 + 0.5464 0.8523 0.6175 + 0.4665 0.8757 0.5159 + 0.1181 0.2201 0.9281 + 0.8407 0.2243 0.4280 + 0.7371 0.5195 0.5242 spike_snippets(:,:,17) = - 0.6173 0.6918 0.6871 - 0.7990 0.7099 0.8378 - 0.8449 0.0978 0.9949 - 0.5732 0.7979 0.6361 - 0.7057 0.3483 0.5367 - 0.2349 0.2924 0.7952 - 0.1477 0.4052 0.9149 - 0.9360 0.5117 0.0062 - 0.4026 0.8478 0.4686 - 0.9453 0.4626 0.3981 - 0.8858 0.2622 0.2753 - 0.5764 0.1099 0.3039 - 0.3797 0.8276 0.6748 - 0.1666 0.9840 0.7505 - 0.5156 0.3978 0.2766 - 0.0482 0.8001 0.9245 - 0.2122 0.5472 0.2862 - 0.3097 0.3191 0.8146 - 0.3381 0.4056 0.7843 - 0.1068 0.2273 0.6883 - 0.7219 0.8860 0.6370 - 0.2746 0.9846 0.0249 - 0.3418 0.3116 0.4372 - 0.1499 0.1693 0.3565 - 0.7936 0.9327 0.5851 - 0.0315 0.7144 0.9622 - 0.0995 0.4372 0.1286 - 0.8053 0.0565 0.4768 - 0.7469 0.6741 0.1784 - 0.3801 0.1842 0.0446 - 0.9876 0.0459 0.6812 - 0.3980 0.6965 0.4432 - 0.8502 0.9950 0.0137 - 0.7209 0.4370 0.6352 - 0.8724 0.0388 0.8579 - 0.2434 0.4660 0.3433 - 0.9861 0.0908 0.2780 - 0.4661 0.4741 0.7048 - 0.5965 0.5980 0.7120 - 0.9756 0.2825 0.6311 + 0.2248 0.9454 0.3343 + 0.2661 0.2714 0.5529 + 0.6409 0.5257 0.2509 + 0.9720 0.6149 0.1317 + 0.4660 0.5646 0.0069 + 0.6395 0.8293 0.7489 + 0.0363 0.0109 0.0759 + 0.1006 0.2261 0.0331 + 0.4483 0.7455 0.8873 + 0.4724 0.9053 0.7795 + 0.6163 0.1059 0.4694 + 0.5038 0.8689 0.7092 + 0.4000 0.2480 0.9829 + 0.2566 0.8716 0.0221 + 0.1963 0.2623 0.1946 + 0.8754 0.8960 0.0683 + 0.3214 0.5532 0.3871 + 0.3090 0.4612 0.3692 + 0.0949 0.9036 0.7243 + 0.5785 0.0853 0.4553 + 0.4080 0.4273 0.1826 + 0.2397 0.1025 0.2676 + 0.0112 0.4233 0.8566 + 0.6912 0.5644 0.1537 + 0.5037 0.1292 0.5835 + 0.8740 0.9701 0.2860 + 0.1776 0.8694 0.4239 + 0.0146 0.2931 0.1575 + 0.1438 0.2192 0.0534 + 0.1210 0.6226 0.3310 + 0.6808 0.5873 0.8866 + 0.0166 0.4711 0.0265 + 0.2377 0.0932 0.4810 + 0.4095 0.5646 0.3677 + 0.7206 0.4269 0.0106 + 0.4908 0.5084 0.7710 + 0.9168 0.9261 0.2838 + 0.0650 0.3080 0.7490 + 0.9420 0.4491 0.0547 + 0.6323 0.8976 0.8351 spike_snippets(:,:,18) = - 0.3776 0.7823 0.0801 - 0.8622 0.9565 0.5796 - 0.1562 0.4375 0.9515 - 0.6307 0.1624 0.2088 - 0.4483 0.3889 0.3454 - 0.2331 0.8179 0.4931 - 0.7838 0.0012 0.3175 - 0.1697 0.1593 0.4797 - 0.2247 0.6018 0.8109 - 0.0227 0.7476 0.2138 - 0.6950 0.5190 0.2881 - 0.4064 0.3057 0.6401 - 0.2390 0.8704 0.0040 - 0.6227 0.1564 0.0455 - 0.0884 0.0660 0.4039 - 0.2207 0.2480 0.9150 - 0.4498 0.5628 0.7846 - 0.0646 0.8577 0.3313 - 0.7398 0.3892 0.9641 - 0.4970 0.0113 0.2510 - 0.5149 0.6946 0.4709 - 0.3363 0.4596 0.7754 - 0.1217 0.6060 0.3198 - 0.2941 0.8403 0.3636 - 0.8140 0.8582 0.7648 - 0.9589 0.5882 0.1668 - 0.2749 0.3104 0.1562 - 0.9278 0.1316 0.6444 - 0.8572 0.8799 0.8106 - 0.0872 0.1756 0.3494 - 0.8922 0.9633 0.0120 - 0.2752 0.6267 0.2324 - 0.0307 0.7052 0.7999 - 0.0839 0.3741 0.6110 - 0.4028 0.6985 0.5585 - 0.6630 0.8418 0.7399 - 0.1706 0.5353 0.9734 - 0.6713 0.3043 0.4227 - 0.6851 0.4996 0.0506 - 0.3057 0.4802 0.9650 + 0.8528 0.8267 0.3742 + 0.7533 0.1331 0.9552 + 0.4917 0.0555 0.7208 + 0.8872 0.2577 0.6193 + 0.5457 0.5930 0.0307 + 0.1417 0.9495 0.2944 + 0.3786 0.4841 0.4944 + 0.8947 0.1513 0.0882 + 0.5805 0.2407 0.3165 + 0.4782 0.4752 0.6826 + 0.3881 0.8809 0.0212 + 0.1409 0.6620 0.2262 + 0.7749 0.3939 0.4166 + 0.7476 0.2595 0.6855 + 0.8465 0.2595 0.1188 + 0.5590 0.4504 0.5791 + 0.8377 0.9104 0.6629 + 0.6318 0.3158 0.3771 + 0.8022 0.9276 0.2942 + 0.2505 0.8024 0.0318 + 0.9150 0.5174 0.6685 + 0.0144 0.9595 0.8606 + 0.4961 0.8575 0.2233 + 0.5635 0.4358 0.9664 + 0.3172 0.9393 0.1256 + 0.1253 0.8188 0.1029 + 0.3440 0.3788 0.0650 + 0.7378 0.9603 0.1648 + 0.4810 0.1027 0.5597 + 0.0185 0.2453 0.5999 + 0.8983 0.2843 0.7902 + 0.9571 0.6531 0.9934 + 0.3729 0.3625 0.7644 + 0.8940 0.6779 0.7209 + 0.0921 0.6594 0.9088 + 0.1161 0.6699 0.5187 + 0.6088 0.3770 0.6351 + 0.6902 0.4612 0.4053 + 0.1904 0.8284 0.8358 + 0.0138 0.0373 0.1868 spike_snippets(:,:,19) = - 0.5319 0.4611 0.0238 - 0.0107 0.4021 0.9675 - 0.2670 0.4292 0.2256 - 0.0075 0.2988 0.7416 - 0.6676 0.3036 0.8923 - 0.2578 0.9139 0.3128 - 0.4729 0.1512 0.3253 - 0.0726 0.7248 0.6174 - 0.1111 0.1281 0.6482 - 0.1313 0.5600 0.3097 - 0.6213 0.9661 0.2627 - 0.2338 0.6094 0.3207 - 0.1518 0.5683 0.1826 - 0.4942 0.6299 0.3986 - 0.7793 0.3064 0.4732 - 0.6928 0.7628 0.8839 - 0.6003 0.6119 0.9674 - 0.2245 0.4440 0.3893 - 0.3195 0.2501 0.3615 - 0.9588 0.0686 0.9949 - 0.1095 0.7686 0.3792 - 0.6823 0.8999 0.1835 - 0.4789 0.4263 0.1516 - 0.7116 0.3164 0.5941 - 0.1937 0.2194 0.6845 - 0.6531 0.7972 0.8251 - 0.8248 0.3564 0.6396 - 0.9730 0.2390 0.7955 - 0.7474 0.6799 0.7575 - 0.9625 0.1981 0.9859 - 0.2182 0.2432 0.8913 - 0.6330 0.5699 0.0269 - 0.6607 0.3176 0.4056 - 0.1300 0.8386 0.4653 - 0.5340 0.0663 0.1382 - 0.6349 0.7329 0.6797 - 0.0701 0.4965 0.6668 - 0.5020 0.1398 0.9634 - 0.5295 0.0102 0.9432 - 0.4737 0.2624 0.7338 + 0.7833 0.3800 0.2596 + 0.4774 0.3225 0.9132 + 0.3767 0.5766 0.7866 + 0.5167 0.7333 0.2876 + 0.3313 0.6348 0.4921 + 0.9909 0.7142 0.0040 + 0.7992 0.8899 0.7669 + 0.1438 0.3450 0.1557 + 0.8615 0.5972 0.6849 + 0.2221 0.2920 0.8230 + 0.9428 0.8654 0.7775 + 0.5121 0.7407 0.5810 + 0.6163 0.4000 0.3330 + 0.3748 0.9231 0.6470 + 0.4877 0.7523 0.8188 + 0.4864 0.9930 0.0859 + 0.0486 0.4711 0.6532 + 0.3978 0.0564 0.0195 + 0.9749 0.1345 0.4348 + 0.4293 0.0039 0.9382 + 0.5667 0.6412 0.2270 + 0.5779 0.7878 0.6903 + 0.4924 0.9922 0.8492 + 0.6379 0.1296 0.5580 + 0.4197 0.5457 0.1361 + 0.4808 0.5291 0.6389 + 0.6873 0.0123 0.3525 + 0.9886 0.1202 0.7538 + 0.7048 0.8567 0.9505 + 0.3475 0.1045 0.1739 + 0.8209 0.6846 0.5388 + 0.0525 0.3191 0.7253 + 0.1306 0.5241 0.2333 + 0.6714 0.2183 0.1283 + 0.8935 0.1168 0.5805 + 0.8253 0.1419 0.3755 + 0.6320 0.2447 0.7466 + 0.0071 0.0700 0.8273 + 0.3107 0.5529 0.8195 + 0.2268 0.3851 0.4185 spike_snippets(:,:,20) = - 0.6584 0.9637 0.6694 - 0.6882 0.9234 0.5334 - 0.9451 0.2206 0.1100 - 0.1020 0.7264 0.1427 - 0.8448 0.6778 0.2754 - 0.1440 0.4233 0.8132 - 0.5736 0.6490 0.4518 - 0.2343 0.2426 0.4747 - 0.0774 0.1005 0.0246 - 0.9198 0.3224 0.4104 - 0.4359 0.3599 0.1246 - 0.5686 0.0664 0.3270 - 0.2882 0.4851 0.5189 - 0.7017 0.9357 0.8863 - 0.3291 0.3256 0.1743 - 0.7455 0.4708 0.5486 - 0.6446 0.0108 0.8551 - 0.4382 0.1401 0.4226 - 0.2296 0.6263 0.9103 - 0.2811 0.5259 0.3679 - 0.6857 0.9481 0.0568 - 0.2926 0.8703 0.7404 - 0.8050 0.0736 0.1273 - 0.7048 0.6245 0.4469 - 0.9038 0.0299 0.8430 - 0.5372 0.8920 0.6377 - 0.9344 0.5897 0.1500 - 0.5390 0.3147 0.9303 - 0.6639 0.7378 0.5821 - 0.7281 0.8026 0.4448 - 0.2334 0.8817 0.7433 - 0.4686 0.5002 0.2370 - 0.8984 0.6981 0.5906 - 0.4098 0.2956 0.0880 - 0.2328 0.6203 0.4738 - 0.6246 0.7486 0.9808 - 0.2156 0.1182 0.3692 - 0.6777 0.0449 0.6831 - 0.3080 0.6611 0.3553 - 0.0171 0.1520 0.3349 -
 
% Create electrode table region referencing electrodes 0, 1, and 2
shank0_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'shank0', ...
'data', (0:2)');
 
% Define spike event series for unsorted spike times
spike_events = types.core.SpikeEventSeries( ...
'data', spike_snippets, ...
'timestamps', (0:19)', ... % Timestamps for each event
'description', 'events detected with 100uV threshold', ...
'electrodes', shank0_table_region ...
);
 
% Add spike event series to NWB file acquisition
nwb.acquisition.set('SpikeEvents_Shank0', spike_events);

Detected Events

If you need to store the complete, continuous raw voltage traces, along with unsorted spike times, you should store the traces in ElectricalSeries objects in the acquisition group, and use the EventDetection class to identify the spike events in your raw traces.
% Create the EventDetection object
event_detection = types.core.EventDetection( ...
'detection_method', 'thresholding, 1.5 * std', ...
'source_electricalseries', types.untyped.SoftLink(raw_electrical_series), ...
'source_idx', [1000; 2000; 3000], ...
'times', [.033, .066, .099] ...
);
 
% Add the EventDetection object to the ecephys module
ecephys_module.nwbdatainterface.set('ThresholdEvents', event_detection);

Storing Spike Features (e.g Principal Components)

NWB also provides a way to store features of spikes, such as principal components, using the FeatureExtraction class.
% Generate random feature data (time x channel x feature)
features = rand(3, 12, 4); % 3 time points, 12 channels, 4 features
features = permute(features, [3,2,1]) % reverse dimension order for matnwb
features =
features(:,:,1) = - - 0.9316 0.4439 0.1664 0.8142 0.2697 0.6258 0.4445 0.5889 0.5936 0.5510 0.3843 0.0928 - 0.6321 0.6096 0.2896 0.5378 0.2169 0.2326 0.6727 0.3081 0.5352 0.3272 0.3730 0.7105 - 0.5674 0.5495 0.8397 0.5804 0.3298 0.0668 0.6826 0.1170 0.2237 0.8309 0.8602 0.1544 - 0.4657 0.4697 0.6416 0.8899 0.2070 0.2748 0.1939 0.7873 0.9721 0.7856 0.0667 0.1039 - - -features(:,:,2) = - - 0.9188 0.8798 0.8666 0.2478 0.7362 0.0880 0.0963 0.1304 0.5751 0.4159 0.8664 0.6476 - 0.9597 0.7697 0.0909 0.7685 0.0993 0.9162 0.8964 0.5880 0.4342 0.1795 0.7080 0.4490 - 0.5198 0.6699 0.2718 0.2714 0.3393 0.5473 0.2908 0.5508 0.2389 0.9618 0.6670 0.1449 - 0.1393 0.5076 0.7794 0.9437 0.9352 0.1637 0.5838 0.1138 0.7266 0.7907 0.8624 0.1127 - - -features(:,:,3) = - - 0.8750 0.5151 0.1783 0.6123 0.1882 0.2455 0.3716 0.9768 0.1423 0.1525 0.3370 0.2588 - 0.4765 0.7175 0.5126 0.4949 0.2113 0.9030 0.0051 0.3652 0.7116 0.9779 0.8704 0.7190 - 0.6226 0.7981 0.6252 0.9443 0.8116 0.8497 0.9575 0.3736 0.2381 0.6094 0.1856 0.6485 - 0.8744 0.2761 0.6534 0.0308 0.2033 0.1817 0.1606 0.0353 0.8287 0.1804 0.5846 0.6030 -
 
% Create the FeatureExtraction object
feature_extraction = types.core.FeatureExtraction( ...
'description', {'PC1', 'PC2', 'PC3', 'PC4'}, ... % Feature descriptions
'electrodes', electrode_table_region, ... % DynamicTableRegion referencing the electrodes table
'times', [.033; .066; .099], ... % Column vector for times
'features', features ...
);
 
% Add the FeatureExtraction object to the ecephys module (if required)
ecephys_module.nwbdatainterface.set('PCA_features', feature_extraction);

Choosing NWB-Types for Electrophysiology Data (A Summary)

As mentioned above, ElectricalSeries objects are meant for storing electrical timeseries data like raw voltage signals or processed signals like LFP or other filtered signals. In addition to the ElectricalSeries class, NWB provides some more classes for storing event-based electropysiological data. We will briefly discuss them here, and refer the reader to the API documentation and the section on Extracellular Physiology in the "NWB Format Specification" for more details on using these objects.
For storing unsorted spiking data, there are two options. Which one you choose depends on what data you have available. If you need to store complete and/or continuous raw voltage traces, you should store the traces with ElectricalSeries objects as acquisition data, and use the EventDetection class for identifying the spike events in your raw traces. If you do not want to store the entire raw voltage traces, only the waveform ‘snippets’ surrounding spike events, you should use SpikeEventSeries objects.
The results of spike sorting (or clustering) should be stored in the top-level Units table. The Units table can hold just the spike times of sorted units or, optionally, include additional waveform information. You can use the optional predefined columns waveform_mean, waveform_sd, and waveforms in the Units table to store individual and mean waveform data.

Writing the NWB File

nwbExport(nwb, 'ecephys_tutorial.nwb')

Reading NWB Data

Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data. This allows you to conveniently work with datasets that are too large to fit in RAM all at once. load with no input arguments reads the entire dataset:
nwb2 = nwbRead('ecephys_tutorial.nwb', 'ignorecache');
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data.load;

Accessing Data Regions

If all you need is a data region, you can index a DataStub object like you would any normal array in MATLAB, as shown below. When indexing the dataset this way, only the selected region is read from disk into RAM. This allows you to handle very large datasets that would not fit entirely into RAM.
% read section of LFP
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data(1:5, 1:10)
ans = 5×10
-0.0003 -1.3106 2.3180 0.0008 1.9394 1.7373 -1.1235 -0.1723 -0.7690 0.3233 - -2.7453 0.6558 0.7985 -0.7032 -0.1310 0.7679 -1.0497 2.1285 0.8362 0.3742 - 0.7983 1.4374 0.1157 0.9797 0.2739 -1.4714 -2.2506 1.2310 -0.5585 0.0383 - -0.3854 -1.5432 1.3848 0.9771 1.1799 -0.3393 -1.3353 -1.6190 2.2322 -1.1545 - -0.9029 -1.5846 -0.5733 -0.1312 -1.0385 -0.9423 -0.2002 -0.9642 -0.4652 -1.5418 -
 
% You can use the getRow method of the table to load spike times of a specific unit.
% To get the values, unpack from the returned table.
nwb.units.getRow(1).spike_times{1}
ans = 23×1
0.7889 - 0.1248 - 0.0928 - 0.2707 - 0.1974 - 0.6140 - 0.5269 - 0.8578 - 0.2521 - 0.3357 -

Learn more!

See the API documentation to learn what data types are available.

MATLAB tutorials

Python tutorials

See our tutorials for more details about your data type:
Check out other tutorials that teach advanced NWB topics:
+ 0.0803 0.5497 0.8134 + 0.2016 0.7139 0.9475 + 0.2989 0.6889 0.9147 + 0.4506 0.2072 0.5099 + 0.6934 0.8924 0.4041 + 0.9842 0.2183 0.5916 + 0.9099 0.1014 0.2588 + 0.3646 0.2869 0.1107 + 0.7892 0.5949 0.2686 + 0.8226 0.5505 0.3111 + 0.0764 0.4849 0.1924 + 0.2240 0.8471 0.8423 + 0.1020 0.2254 0.4194 + 0.8691 0.5801 0.1725 + 0.8217 0.0235 0.0745 + 0.6285 0.1380 0.2667 + 0.6437 0.4091 0.5609 + 0.6716 0.2623 0.3741 + 0.7291 0.8411 0.0698 + 0.4717 0.0125 0.4050 + 0.1205 0.4536 0.2174 + 0.1712 0.4339 0.4282 + 0.2948 0.1448 0.0394 + 0.8869 0.1695 0.8341 + 0.0986 0.4590 0.6105 + 0.2961 0.1109 0.6225 + 0.2111 0.6054 0.6792 + 0.9609 0.6630 0.4239 + 0.8231 0.0917 0.1793 + 0.9510 0.1655 0.7910 + 0.8841 0.3304 0.3527 + 0.7403 0.3570 0.1069 + 0.6682 0.3612 0.9556 + 0.7742 0.0715 0.6476 + 0.8029 0.4781 0.8936 + 0.8517 0.2079 0.6216 + 0.8403 0.8003 0.7215 + 0.5677 0.7792 0.8469 + 0.1805 0.0260 0.8686 + 0.4809 0.8847 0.0151 +
 
% Create electrode table region referencing electrodes 0, 1, and 2
shank0_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'shank0', ...
'data', (0:2)');
 
% Define spike event series for unsorted spike times
spike_events = types.core.SpikeEventSeries( ...
'data', spike_snippets, ...
'timestamps', (0:19)', ... % Timestamps for each event
'description', 'events detected with 100uV threshold', ...
'electrodes', shank0_table_region ...
);
 
% Add spike event series to NWB file acquisition
nwb.acquisition.set('SpikeEvents_Shank0', spike_events);

Detected Events

If you need to store the complete, continuous raw voltage traces, along with unsorted spike times, you should store the traces in ElectricalSeries objects in the acquisition group, and use the EventDetection class to identify the spike events in your raw traces.
% Create the EventDetection object
event_detection = types.core.EventDetection( ...
'detection_method', 'thresholding, 1.5 * std', ...
'source_electricalseries', types.untyped.SoftLink(raw_electrical_series), ...
'source_idx', [1000; 2000; 3000], ...
'times', [.033, .066, .099] ...
);
 
% Add the EventDetection object to the ecephys module
ecephys_module.nwbdatainterface.set('ThresholdEvents', event_detection);

Storing Spike Features (e.g Principal Components)

NWB also provides a way to store features of spikes, such as principal components, using the FeatureExtraction class.
% Generate random feature data (time x channel x feature)
features = rand(3, 12, 4); % 3 time points, 12 channels, 4 features
features = permute(features, [3,2,1]); % reverse dimension order for matnwb
 
% Create the FeatureExtraction object
feature_extraction = types.core.FeatureExtraction( ...
'description', {'PC1', 'PC2', 'PC3', 'PC4'}, ... % Feature descriptions
'electrodes', electrode_table_region, ... % DynamicTableRegion referencing the electrodes table
'times', [.033; .066; .099], ... % Column vector for times
'features', features ...
);
 
% Add the FeatureExtraction object to the ecephys module (if required)
ecephys_module.nwbdatainterface.set('PCA_features', feature_extraction);

Choosing NWB-Types for Electrophysiology Data (A Summary)

As mentioned above, ElectricalSeries objects are meant for storing electrical timeseries data like raw voltage signals or processed signals like LFP or other filtered signals. In addition to the ElectricalSeries class, NWB provides some more classes for storing event-based electropysiological data. We will briefly discuss them here, and refer the reader to the API documentation and the section on Extracellular Physiology in the "NWB Format Specification" for more details on using these objects.
For storing unsorted spiking data, there are two options. Which one you choose depends on what data you have available. If you need to store complete and/or continuous raw voltage traces, you should store the traces with ElectricalSeries objects as acquisition data, and use the EventDetection class for identifying the spike events in your raw traces. If you do not want to store the entire raw voltage traces, only the waveform ‘snippets’ surrounding spike events, you should use SpikeEventSeries objects.
The results of spike sorting (or clustering) should be stored in the top-level Units table. The Units table can hold just the spike times of sorted units or, optionally, include additional waveform information. You can use the optional predefined columns waveform_mean, waveform_sd, and waveforms in the Units table to store individual and mean waveform data.

Writing the NWB File

nwbExport(nwb, 'ecephys_tutorial.nwb')

Reading NWB Data

Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data. This allows you to conveniently work with datasets that are too large to fit in RAM all at once. load with no input arguments reads the entire dataset:
nwb2 = nwbRead('ecephys_tutorial.nwb', 'ignorecache');
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data.load;

Accessing Data Regions

If all you need is a data region, you can index a DataStub object like you would any normal array in MATLAB, as shown below. When indexing the dataset this way, only the selected region is read from disk into RAM. This allows you to handle very large datasets that would not fit entirely into RAM.
% read section of LFP
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data(1:5, 1:10)
ans = 5×10
2.0421 -1.9417 0.3559 0.4354 0.6993 -1.4009 0.5222 0.0893 0.1243 1.2460 + 0.2329 0.4688 2.1159 1.2094 0.1735 -0.3315 0.1403 -2.0881 0.2840 -0.4077 + -0.0943 1.3933 -0.0871 -0.5193 -0.0920 -1.1307 0.8399 0.0975 -0.6912 -0.4536 + -1.4224 2.7602 1.1832 0.0075 0.6687 0.2074 0.5432 0.4366 0.0113 0.2925 + 0.9660 0.9444 -0.8471 1.0362 0.0652 -0.2155 0.6006 0.1602 0.7417 -1.3644 +
 
% You can use the getRow method of the table to load spike times of a specific unit.
% To get the values, unpack from the returned table.
nwb.units.getRow(1).spike_times{1}
ans = 24×1
0.1312 + 0.4211 + 0.2037 + 0.1021 + 0.1315 + 0.8392 + 0.9195 + 0.7023 + 0.0588 + 0.7331 +

Learn more!

See the API documentation to learn what data types are available.

MATLAB tutorials

Python tutorials

See our tutorials for more details about your data type:
Check out other tutorials that teach advanced NWB topics: