This repository has been archived by the owner on Dec 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 462
/
mmc_agent.py
83 lines (65 loc) · 3.42 KB
/
mmc_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union
import numpy as np
from rl_coach.agents.dqn_agent import DQNAgentParameters, DQNAlgorithmParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
class MixedMonteCarloAlgorithmParameters(DQNAlgorithmParameters):
"""
:param monte_carlo_mixing_rate: (float)
The mixing rate is used for setting the amount of monte carlo estimate (full return) that will be mixes into
the single-step bootstrapped targets.
"""
def __init__(self):
super().__init__()
self.monte_carlo_mixing_rate = 0.1
class MixedMonteCarloAgentParameters(DQNAgentParameters):
def __init__(self):
super().__init__()
self.algorithm = MixedMonteCarloAlgorithmParameters()
self.memory = EpisodicExperienceReplayParameters()
@property
def path(self):
return 'rl_coach.agents.mmc_agent:MixedMonteCarloAgent'
class MixedMonteCarloAgent(ValueOptimizationAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
self.mixing_rate = agent_parameters.algorithm.monte_carlo_mixing_rate
@property
def is_on_policy(self) -> bool:
return False
def learn_from_batch(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
# for the 1-step, we use the double-dqn target. hence actions are taken greedily according to the online network
selected_actions = np.argmax(self.networks['main'].online_network.predict(batch.next_states(network_keys)), 1)
# TD_targets are initialized with the current prediction so that we will
# only update the action that we have actually done in this transition
q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([
(self.networks['main'].target_network, batch.next_states(network_keys)),
(self.networks['main'].online_network, batch.states(network_keys))
])
total_returns = batch.n_step_discounted_rewards()
for i in range(batch.size):
one_step_target = batch.rewards()[i] + \
(1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * \
q_st_plus_1[i][selected_actions[i]]
monte_carlo_target = total_returns[i]
TD_targets[i, batch.actions()[i]] = (1 - self.mixing_rate) * one_step_target + \
self.mixing_rate * monte_carlo_target
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets)
total_loss, losses, unclipped_grads = result[:3]
return total_loss, losses, unclipped_grads