-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_diff-unmix_Gaussian_noise.py
272 lines (225 loc) · 8.42 KB
/
test_diff-unmix_Gaussian_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# the test code of diff-unmix
from Dim_autoencoder import LR_decompose
import scipy.io as scio
import torch
import os
import numpy as np
import time
import matplotlib.pyplot as plt
from guided_diffusion import utils
from guided_diffusion.create import create_model_and_diffusion_RS
import json
from collections import OrderedDict
from unet import UNet
import torch.nn.functional as F
import cv2
import scipy.io as sio
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = '0' # gpu id
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
if not torch.cuda.is_available():
raise Exception('NO GPU!')
def LoadTest_256by256(path_test):
scene_list = os.listdir(path_test)
scene_list.sort()
test_data = np.zeros((len(scene_list), 256, 256, 28))
for i in range(len(scene_list)):
scene_path = path_test + scene_list[i]
img = sio.loadmat(scene_path)['img']
test_data[i, :, :, :] = img[:256, :256, :28]
test_data = torch.from_numpy(np.transpose(test_data, (0, 3, 1, 2)))
return test_data
# @torch.no_grad()
def diffusion_3HSI(A_y, A_x, A_c, E_y, y):
opt = {
'baseconfig': 'base.json',
'gpu_ids': "0",
'dataroot': '',
'batch_size': 1,
'savedir': './results',
'eta1': 1,
'eta2': 2,
'seed': 0,
'dataname': '',
'step': 100,
'scale': 4,
'kernelsize': 9,
'sig': None,
'samplenum': 1,
# 'diffusion': 1000,
# 'diffusion_steps': 1000,
'resume_state': 'I190000_E97_opt'}
# Assuming 'base.json' contains the JSON-formatted data
with open('./guided_diffusion/base.json', 'r') as json_file:
json_str = json_file.read()
opt = json.loads(json_str, object_pairs_hook=OrderedDict)
opt = utils.dict_to_nonedict(opt)
# opt['diffusion']['diffusion_steps'] = opt['step']
# Assign the value of 'step' to 'diffusion_steps'
if opt.get('step'):
opt['diffusion'] = {'diffusion_steps': opt['step']}
device = torch.device("cuda")
## create model and diffusion process
model, diffusion = create_model_and_diffusion_RS(opt)
## load model
fix_diff = 1
if fix_diff:
gen_path = './guided_diffusion/I190000_E97_gen.pth'
cks = torch.load(gen_path)
new_cks = OrderedDict()
for k, v in cks.items():
newkey = k[11:] if k.startswith('denoise_fn.') else k
new_cks[newkey] = v
model.load_state_dict(new_cks, strict=False)
model.to(device)
# model.train()
model.eval()
## params
param = {'eta1': opt['eta1']}
# print(A_y.shape)
# exit()
Ch, ms = A_y.shape[0], A_y.shape[-1]
model_condition = {'A_x': A_x.to(device), 'A_c': A_c.to(device), 'A_y': A_y.to(device), 'E_y': E_y.to(device), 'y': y.to(device)}
Rr = 3 # spectral dimensironality of subspace
sample = diffusion.p_sample_loop(model, (1, Ch, ms, ms),
Rr = Rr,
clip_denoised=True,
model_condition=model_condition,
param=param,
save_root=None,
progress=True,)
sample = (sample + 1)/2 # must
# sample = (sample *2 ) +0.5
return sample
def Re_unmix(A, E, shape):
# Use SVD to implement Hyperspectral Unmixing X = E * A
b, c, h, w = shape
R = 3
X = E.reshape(b, c, R) @ A.reshape(b, R, h*w)
return X.view(b, c, h, w)
def mix(A_hat, E_y, shape):
bs, c, h, w = shape
X_hat = torch.zeros(bs, c, h, w)
for i in range(bs):
A_hat_f_m = torch.reshape(A_hat[i,:,:,:], [3, 256*256])
X_hat_m = torch.mm(torch.reshape(E_y[i,:,:], [28, 3]), A_hat_f_m)
X_hat[i,:,:,:] = torch.reshape(X_hat_m, [28, 256, 256])
return X_hat
def Unmix_svd_3d(y):
# Use SVD to implement Hyperspectral Unmixing X = E * A
Rr = 3
# Reshape input tensor to be of shape (b, c, h*w)
b, c, h, w = y.shape
y = y.reshape(b, c, -1)
# Perform SVD
U, S, V = torch.svd(y)
E = U[:, :, :Rr].permute(0, 2, 1)
A = E @ y
# print(E.shape)
# Reshape A back to original shape
A = A.view(b, Rr, h, w)
return A, E
def Unmix(y, x):
# Load pretrained model to implement Hyperspectral Unmixing X = E *A
Decompose_model = LR_decompose().cuda() # spectral unmixing
pretrained_model_path = './exp/unmixing/model_epoch_17.pth'
checkpoint = torch.load(pretrained_model_path)
Decompose_model.load_state_dict({k.replace('module.', ''): v for k, v in checkpoint.items()}, strict=True)
Decompose_model.eval()
with torch.no_grad():
X_y, X_x, A_y, A_x, E_y, E_x = Decompose_model(y, x)
if E_x.shape[1] == 28:
E_x = torch.unsqueeze(E_x, 1)
if E_y.shape[1] == 28:
E_y = torch.unsqueeze(E_y, 1)
return X_y, X_x, A_y, A_x, E_y, E_x
def test(Condi_net):
test_path = "datasets/kaist_simu_data/"
test_data = LoadTest_256by256(test_path)
test_gt = test_data.cuda().float()
noise = torch.load('noise_tensor_g03_1.pt')
noise = noise.cuda()
input_meas = test_gt + noise
STU = 1
if STU:
X_y, X_x, A_y, A_x, E_y, E_x = Unmix(input_meas, test_gt) # A_x from test_gt only for visual reference or computing PSNR
else:
A_y, E_y = Unmix_svd_3d(input_meas)
A_x, E_x = Unmix_svd_3d(test_gt)
with torch.no_grad():
A_c = Condi_net(A_y)
start_time = time.time()
y = input_meas
z = torch.empty_like(A_y)
diffIt_A = A_y.shape[0]
for j in range(diffIt_A):
z[j, :, :, :] = diffusion_3HSI(A_y[j, :, :, :], A_x[j, :, :, :], A_c[j, :, :, :], E_y[j, :, :], y[j, :, :, :])
A_hat = z #* A_init.max()
e_time = time.time() - start_time
print(f'Time {e_time}.')
shape = test_gt.shape
X_hat = mix(A_hat, E_y.detach(), shape)
out_X = 1
if out_X:
pred = X_hat #/X_hat.max()
truth = test_gt
else:
pred = A_hat
truth = A_x
return pred, truth, input_meas, A_y.detach()
def main():
# model
print('Testing model: Self-supervised HSI denoising via Diff-Unmix')
unet = UNet(in_channels=3, out_channels=3).cuda()
pretrained_model_path = './exp/condition_function/model/model_epoch_61.pth'
checkpoint = torch.load(pretrained_model_path)
unet.load_state_dict({k.replace('module.', ''): v for k, v in checkpoint.items()}, strict=True)
unet.eval()
pred, truth, input_meas, A_y = test(unet)
# Show bands
show_image = 1
if show_image:
hh = 256
ww = 256
bb = 26 # 20
pred = np.transpose(pred.detach().cpu().numpy(), (0, 2, 3, 1)).astype(np.float32)
input_meas = np.transpose(input_meas.detach().cpu().numpy(), (0, 2, 3, 1)).astype(np.float32)
truth = np.transpose(truth.cpu().numpy(), (0, 2, 3, 1)).astype(np.float32)
channel_X = truth[0, :hh, :ww, bb]
channel_Y = pred[0, :hh, :ww, bb]
channel_Z = input_meas[0, :hh, :ww, bb]
# Create a figure with two subplots
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5))
# Show X in the first subplot
ax1.imshow(channel_X, cmap='gray')
ax1.set_title('GT')
ax1.axis('off')
# Show Y in the second subplot
ax2.imshow(channel_Y, cmap='gray')
ax2.set_title('Diff-Unmix')
ax2.axis('off')
ax3.imshow(channel_Z, cmap='gray')
ax3.set_title('Noisy')
ax3.axis('off')
plt.tight_layout()
plt.show()
# name = opt.outf + 'Test_result_g02p015.mat'
# save .mat
save_mat = 0
if save_mat:
name = f'{opt.outf}Test_result_real_check.mat'
print(f'Save reconstructed HSIs as {name}.')
scio.savemat(name, {'truth': truth, 'pred': pred, 'noisy': input_meas})
# save jpg
save_img = 0
if save_img:
OUTPUT_folder_rgb = './exp/images/'
save_path_our = OUTPUT_folder_rgb + 'diff-unmix_s10_g03.png'
output = np.squeeze((pred-pred.min())/(pred.max()-pred.min()))[:, :, 14]
cv2.imwrite(save_path_our, cv2.cvtColor(255 * output, cv2.COLOR_RGB2BGR))
save_path_our = OUTPUT_folder_rgb + 'gt_s10.png'
output_gt = np.squeeze((truth-truth.min())/(truth.max()-truth.min()))[:, :, 20]
cv2.imwrite(save_path_our, cv2.cvtColor(255 * output_gt, cv2.COLOR_RGB2BGR))
if __name__ == '__main__':
main()