-
Notifications
You must be signed in to change notification settings - Fork 640
/
Copy pathanisotropic_averaging.cpp
356 lines (327 loc) · 12.2 KB
/
anisotropic_averaging.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#include <math.h>
#include "meep_internals.hpp"
/* This file contains routines to compute the "average" or "effective"
dielectric constant for a pixel, using an anisotropic averaging
procedure described in our papers (similar to MPB). */
using namespace std;
namespace meep {
////////////////////////////////////////////////////////////////////////////
#include "sphere-quad.h"
static vec sphere_pt(const vec ¢, double R, int n, double &weight) {
switch (cent.dim) {
case D1: {
weight = sphere_quad[0][n][3];
vec pt(sphere_quad[0][n][2]);
return cent + pt * R;
}
case D2: {
weight = sphere_quad[1][n][3];
vec pt(sphere_quad[1][n][0], sphere_quad[1][n][1]);
return cent + pt * R;
}
case D3: {
weight = sphere_quad[2][n][3];
vec pt(sphere_quad[2][n][0], sphere_quad[2][n][1], sphere_quad[2][n][2]);
return cent + pt * R;
}
case Dcyl: {
weight = sphere_quad[1][n][3];
return cent + veccyl(sphere_quad[1][n][0], sphere_quad[1][n][1]) * R;
}
default: meep::abort("unknown dimensions in sphere_pt\n");
}
}
////////////////////////////////////////////////////////////////////////////
vec material_function::normal_vector(field_type ft, const volume &v) {
vec gradient(zero_vec(v.dim));
vec p(v.center());
double R = v.diameter();
int num_dirs = number_of_directions(v.dim);
int min_iters = 1 << num_dirs;
double chi1p1_prev = 0;
bool break_early = true;
for (int i = 0; i < num_sphere_quad[num_dirs - 1]; ++i) {
double weight;
vec pt = sphere_pt(p, R, i, weight);
double chi1p1_val = chi1p1(ft, pt);
if (i > 0 && i < min_iters) {
if (chi1p1_val != chi1p1_prev) { break_early = false; }
if (i == min_iters - 1 && break_early) {
// Don't average regions where epsilon is uniform
return zero_vec(v.dim);
}
}
chi1p1_prev = chi1p1_val;
gradient += (pt - p) * (weight * chi1p1_val);
}
return gradient;
}
/* default: simple numerical integration of surfaces/cubes, relative
tolerance 'tol'. This is superseded by the routines in the libctl
interface, which either use a semi-analytical average or can
use a proper adaptive cubature. */
void material_function::eff_chi1inv_row(component c, double chi1inv_row[3], const volume &v,
double tol, int maxeval) {
field_type ft = type(c);
if (!maxeval) {
trivial:
chi1inv_row[0] = chi1inv_row[1] = chi1inv_row[2] = 0.0;
chi1inv_row[component_direction(c) % 3] = 1 / chi1p1(ft, v.center());
return;
}
vec gradient(normal_vector(ft, v));
if (abs(gradient) < 1e-8) goto trivial;
double meps = 1, minveps = 1;
vec d = v.get_max_corner() - v.get_min_corner();
int ms = 10;
double old_meps = 0, old_minveps = 0;
int iter = 0;
switch (v.dim) {
case D3:
while ((fabs(meps - old_meps) > tol * fabs(old_meps)) &&
(fabs(minveps - old_minveps) > tol * fabs(old_minveps))) {
old_meps = meps;
old_minveps = minveps;
meps = minveps = 0;
for (int k = 0; k < ms; k++)
for (int j = 0; j < ms; j++)
for (int i = 0; i < ms; i++) {
double ep = chi1p1(ft, v.get_min_corner() +
vec(i * d.x() / ms, j * d.y() / ms, k * d.z() / ms));
if (ep < 0) goto trivial;
meps += ep;
minveps += 1 / ep;
}
meps /= ms * ms * ms;
minveps /= ms * ms * ms;
ms *= 2;
if (maxeval && (iter += ms * ms * ms) >= maxeval) goto done;
}
break;
case D2:
while ((fabs(meps - old_meps) > tol * old_meps) &&
(fabs(minveps - old_minveps) > tol * old_minveps)) {
old_meps = meps;
old_minveps = minveps;
meps = minveps = 0;
for (int j = 0; j < ms; j++)
for (int i = 0; i < ms; i++) {
double ep = chi1p1(ft, v.get_min_corner() + vec(i * d.x() / ms, j * d.y() / ms));
if (ep < 0) goto trivial;
meps += ep;
minveps += 1 / ep;
}
meps /= ms * ms;
minveps /= ms * ms;
ms *= 2;
if (maxeval && (iter += ms * ms) >= maxeval) goto done;
}
break;
case Dcyl:
while ((fabs(meps - old_meps) > tol * old_meps) &&
(fabs(minveps - old_minveps) > tol * old_minveps)) {
old_meps = meps;
old_minveps = minveps;
meps = minveps = 0;
double sumvol = 0;
for (int j = 0; j < ms; j++)
for (int i = 0; i < ms; i++) {
double r = v.get_min_corner().r() + i * d.r() / ms;
double ep = chi1p1(ft, v.get_min_corner() + veccyl(i * d.r() / ms, j * d.z() / ms));
if (ep < 0) goto trivial;
sumvol += r;
meps += ep * r;
minveps += r / ep;
}
meps /= sumvol;
minveps /= sumvol;
ms *= 2;
if (maxeval && (iter += ms * ms) >= maxeval) goto done;
}
break;
case D1:
while ((fabs(meps - old_meps) > tol * old_meps) &&
(fabs(minveps - old_minveps) > tol * old_minveps)) {
old_meps = meps;
old_minveps = minveps;
meps = minveps = 0;
for (int i = 0; i < ms; i++) {
double ep = chi1p1(ft, v.get_min_corner() + vec(i * d.z() / ms));
if (ep < 0) {
meps = chi1p1(ft, v.center());
minveps = 1 / meps;
goto done;
}
meps += ep;
minveps += 1 / ep;
}
meps /= ms;
minveps /= ms;
ms *= 2;
if (maxeval && (iter += ms * ms) >= maxeval) goto done;
}
break;
}
done : {
double n[3] = {0, 0, 0};
double nabsinv = 1.0 / abs(gradient);
LOOP_OVER_DIRECTIONS(gradient.dim, k) { n[k % 3] = gradient.in_direction(k) * nabsinv; }
/* get rownum'th row of effective tensor
P * minveps + (I-P) * 1/meps = P * (minveps-1/meps) + I * 1/meps
where I is the identity and P is the projection matrix
P_{ij} = n[i] * n[j]. */
int rownum = component_direction(c) % 3;
for (int i = 0; i < 3; ++i)
chi1inv_row[i] = n[rownum] * n[i] * (minveps - 1 / meps);
chi1inv_row[rownum] += 1 / meps;
}
}
void structure_chunk::set_chi1inv(component c, material_function &medium,
bool use_anisotropic_averaging, double tol, int maxeval) {
if (!is_mine() || !gv.has_field(c)) return;
field_type ft = type(c);
if (ft != E_stuff && ft != H_stuff) meep::abort("only E or H can have chi");
medium.set_volume(gv.pad().surroundings());
if (!use_anisotropic_averaging) maxeval = 0;
const double smoothing_diameter = 1.0; // FIXME: make user-changable?
// may take a long time in 3d, so prepare to print status messages
size_t npixels = 0, ipixel = 0;
size_t loop_npixels = 0;
LOOP_OVER_VOL(gv, c, i) {
loop_npixels = loop_n1 * loop_n2 * loop_n3;
goto breakout; // hack to use loop-size computation from LOOP_OVER_VOL
}
breakout:
npixels += loop_npixels;
double last_output_time = wall_time();
FOR_FT_COMPONENTS(ft, c2) if (gv.has_field(c2)) {
direction d = component_direction(c2);
if (!chi1inv[c][d]) chi1inv[c][d] = new realnum[gv.ntot()];
if (!chi1inv[c][d]) meep::abort("Memory allocation error.\n");
}
direction dc = component_direction(c);
direction d0 = X, d1 = Y, d2 = Z;
if (gv.dim == Dcyl) {
d0 = R;
d1 = P;
}
int idiag = component_index(c);
bool trivial[3] = {true, true, true};
double trivial_val[3] = {0, 0, 0};
trivial_val[idiag] = 1.0;
ivec shift1(unit_ivec(gv.dim, component_direction(c)) * (ft == E_stuff ? 1 : -1));
// TODO: make this loop thread-safe and change to PLOOP_OVER_VOL
// Note that we *cannot* make it thread-safe if `medium` is not thread-safe,
// e.g. if it calls back to Python.
LOOP_OVER_VOL(gv, c, i) {
double chi1invrow[3], chi1invrow_offdiag[3];
IVEC_LOOP_ILOC(gv, here);
medium.eff_chi1inv_row(c, chi1invrow, gv.dV(here, smoothing_diameter), tol, maxeval);
medium.eff_chi1inv_row(c, chi1invrow_offdiag, gv.dV(here - shift1, smoothing_diameter), tol,
maxeval);
if (chi1inv[c][d0]) {
chi1inv[c][d0][i] = (d0 == dc) ? chi1invrow[0] : chi1invrow_offdiag[0];
trivial[0] = trivial[0] && (chi1inv[c][d0][i] == trivial_val[0]);
}
if (chi1inv[c][d1]) {
chi1inv[c][d1][i] = (d1 == dc) ? chi1invrow[1] : chi1invrow_offdiag[1];
trivial[1] = trivial[1] && (chi1inv[c][d1][i] == trivial_val[1]);
}
if (chi1inv[c][d2]) {
chi1inv[c][d2][i] = (d2 == dc) ? chi1invrow[2] : chi1invrow_offdiag[2];
trivial[2] = trivial[2] && (chi1inv[c][d2][i] == trivial_val[2]);
}
if (verbosity > 0 && (ipixel + 1) % 1000 == 0 &&
wall_time() > last_output_time + MEEP_MIN_OUTPUT_TIME) {
master_printf("%s is %g%% done, %g s remaining\n",
use_anisotropic_averaging ? "subpixel-averaging" : "grid initialization",
ipixel * 100.0 / npixels,
(npixels - ipixel) * (wall_time() - last_output_time) / ipixel);
last_output_time = wall_time();
}
++ipixel;
}
direction ds[3];
ds[0] = d0;
ds[1] = d1;
ds[2] = d2;
for (int i = 0; i < 3; ++i) {
trivial_chi1inv[c][ds[i]] = trivial[i];
if (i != idiag && trivial[i]) { // deallocate trivial offdiag
delete[] chi1inv[c][ds[i]];
chi1inv[c][ds[i]] = 0;
}
}
// only deallocate trivial diag if entire tensor is trivial
if (trivial[0] && trivial[1] && trivial[2]) {
delete[] chi1inv[c][dc];
chi1inv[c][dc] = 0;
}
medium.unset_volume();
}
void structure_chunk::add_susceptibility(material_function &sigma, field_type ft,
const susceptibility &sus) {
if (ft != E_stuff && ft != H_stuff) meep::abort("susceptibilities must be for E or H fields");
sigma.set_volume(gv.pad().surroundings());
susceptibility *newsus = sus.clone();
newsus->next = NULL;
newsus->ntot = gv.ntot();
// get rid of previously allocated sigma, normally not the case here:
FOR_COMPONENTS(c) FOR_DIRECTIONS(d) if (newsus->sigma[c][d]) {
delete[] newsus->sigma[c][d];
newsus->sigma[c][d] = NULL;
newsus->trivial_sigma[c][d] = true;
}
// if we own this chunk, set up the sigma array(s):
if (is_mine()) FOR_FT_COMPONENTS(ft, c) if (gv.has_field(c)) {
FOR_FT_COMPONENTS(ft, c2) if (gv.has_field(c2)) {
direction d = component_direction(c2);
if (!newsus->sigma[c][d]) newsus->sigma[c][d] = new realnum[gv.ntot()];
if (!newsus->sigma[c][d]) meep::abort("Memory allocation error.\n");
}
bool trivial[3] = {true, true, true};
direction dc = component_direction(c);
direction d0 = X, d1 = Y, d2 = Z;
if (gv.dim == Dcyl) {
d0 = R;
d1 = P;
}
int idiag = component_index(c);
realnum *s0 = newsus->sigma[c][d0];
realnum *s1 = newsus->sigma[c][d1];
realnum *s2 = newsus->sigma[c][d2];
vec shift1(gv[unit_ivec(gv.dim, component_direction(c)) * (ft == E_stuff ? 1 : -1)]);
LOOP_OVER_VOL(gv, c, i) {
double sigrow[3], sigrow_offdiag[3];
IVEC_LOOP_LOC(gv, here);
sigma.sigma_row(c, sigrow, here);
sigma.sigma_row(c, sigrow_offdiag, here - shift1);
sigrow[(idiag + 1) % 3] = sigrow_offdiag[(idiag + 1) % 3];
sigrow[(idiag + 2) % 3] = sigrow_offdiag[(idiag + 2) % 3];
if (s0 && (s0[i] = sigrow[0]) != 0.) trivial[0] = false;
if (s1 && (s1[i] = sigrow[1]) != 0.) trivial[1] = false;
if (s2 && (s2[i] = sigrow[2]) != 0.) trivial[2] = false;
}
direction ds[3];
ds[0] = d0;
ds[1] = d1;
ds[2] = d2;
for (int i = 0; i < 3; ++i) {
newsus->trivial_sigma[c][ds[i]] = trivial[i];
if (i != idiag && trivial[i]) { // deallocate trivial offdiag
delete[] newsus->sigma[c][ds[i]];
newsus->sigma[c][ds[i]] = 0;
}
}
// only deallocate trivial diag if entire tensor is trivial
if (trivial[0] && trivial[1] && trivial[2]) {
delete[] newsus->sigma[c][dc];
newsus->sigma[c][dc] = 0;
}
}
// finally, add to the beginning of the chiP list:
newsus->next = chiP[ft];
chiP[ft] = newsus;
sigma.unset_volume();
}
} // namespace meep