-
Notifications
You must be signed in to change notification settings - Fork 636
/
mpb.cpp
1102 lines (984 loc) · 43.6 KB
/
mpb.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (C) 2005-2022 Massachusetts Institute of Technology.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "meep.hpp"
#include "config.h"
#ifdef HAVE_MPB
#include <mpb.h>
#include "adjust_verbosity.hpp"
#ifndef SCALAR_COMPLEX
#error Meep requires complex version of MPB
#endif
#endif
using namespace std;
namespace meep {
#ifdef HAVE_MPB
typedef struct {
const double *s, *o;
double frequency;
ndim dim;
const fields *f;
/* for parallel efficiency, we first cache the epsinv data from each process, then
sum_to_all to synchonize, and then re-run set_maxwell_dielectric with the cached data */
double *cache; // array of 6*ncache eps_inv matrix entries in the order that they are needed
size_t ncache; // allocated size of the cache
size_t icache; // current position in the cache
bool use_cache; // whether we are using the cache
} meep_mpb_eps_data;
static int meep_mpb_eps(symmetric_matrix *eps, symmetric_matrix *eps_inv, mpb_real n[3],
mpb_real d1, mpb_real d2, mpb_real d3, mpb_real tol, const mpb_real r[3],
void *eps_data_) {
adjust_mpb_verbosity amv;
meep_mpb_eps_data *eps_data = (meep_mpb_eps_data *)eps_data_;
size_t i = eps_data->icache;
(void)n;
(void)d1;
(void)d2;
(void)d3;
(void)tol; // unused
if (eps_data->use_cache) {
const double *cache = eps_data->cache;
eps_inv->m00 = cache[6 * i];
eps_inv->m11 = cache[6 * i + 1];
eps_inv->m22 = cache[6 * i + 2];
ASSIGN_ESCALAR(eps_inv->m01, cache[6 * i + 3], 0);
ASSIGN_ESCALAR(eps_inv->m02, cache[6 * i + 4], 0);
ASSIGN_ESCALAR(eps_inv->m12, cache[6 * i + 5], 0);
maxwell_sym_matrix_invert(eps, eps_inv);
}
else {
// get cache pointer, doubling cache size as needed:
double *cache = i < eps_data->ncache
? eps_data->cache
: (eps_data->cache = (double *)realloc(
eps_data->cache, sizeof(double) * 6 * (eps_data->ncache *= 2)));
const double *s = eps_data->s;
const double *o = eps_data->o;
double frequency = eps_data->frequency;
vec p(eps_data->dim == D3 ? vec(o[0] + r[0] * s[0], o[1] + r[1] * s[1], o[2] + r[2] * s[2])
: (eps_data->dim == D2 ? vec(o[0] + r[0] * s[0], o[1] + r[1] * s[1]) :
/* D1 */ vec(o[2] + r[2] * s[2])));
const fields *f = eps_data->f;
// call get_chi1inv with parallel=false to get only local epsilon data
cache[6 * i] = real(f->get_chi1inv(Ex, X, p, frequency, false));
cache[6 * i + 1] = real(f->get_chi1inv(Ey, Y, p, frequency, false));
cache[6 * i + 2] = real(f->get_chi1inv(Ez, Z, p, frequency, false));
cache[6 * i + 3] = real(f->get_chi1inv(Ex, Y, p, frequency, false));
cache[6 * i + 4] = real(f->get_chi1inv(Ex, Z, p, frequency, false));
cache[6 * i + 5] = real(f->get_chi1inv(Ey, Z, p, frequency, false));
// return a dummy value epsilon = 1 while we are building up the cache
eps->m00 = eps->m11 = eps->m22 = eps_inv->m00 = eps_inv->m11 = eps_inv->m22 = 1;
ASSIGN_ESCALAR(eps->m01, 0, 0);
eps->m02 = eps->m12 = eps_inv->m01 = eps_inv->m02 = eps_inv->m12 = eps->m01;
}
eps_data->icache += 1; // next call will use the subsequent cache element
return 1; // tells MPB not to do its own subpixel averaging
}
/**************************************************************/
/* prototype for position-dependent amplitude function passed */
/* to add_volume_source */
/**************************************************************/
typedef complex<double> (*amplitude_function)(const vec &);
// default implementation of amplitude_function
static complex<double> default_amp_func(const vec &pt) {
(void)pt;
return 1.0;
}
/*******************************************************************/
/* structure storing all data needed to compute position-dependent */
/* amplitude for eigenmode source (the fields of this structure */
/* were formerly global variables) */
/* Note: 'Gk' is the k-point in real space, i.e. G*k where */
/* G = matrix of reciprocal-lattice basis vectors */
/* k = k vector in reciprocal-lattice basis */
/*******************************************************************/
typedef struct eigenmode_data {
maxwell_data *mdata;
scalar_complex *fft_data_H, *fft_data_E;
evectmatrix H;
int n[3];
double s[3];
double Gk[3];
vec center;
amplitude_function amp_func;
int band_num;
double frequency;
double group_velocity;
} eigenmode_data;
#define TWOPI 6.2831853071795864769252867665590057683943388
// utility routine for modular arithmetic that always returns a nonnegative integer
static int pmod(int n, int modulus) {
n = n % modulus;
if (n < 0) n += modulus;
return n;
}
/*******************************************************************/
/* compute position-dependent amplitude for eigenmode source */
/* (similar to the routine formerly called meep_mpb_A) */
/*******************************************************************/
complex<double> eigenmode_amplitude(void *vedata, const vec &p, component c) {
eigenmode_data *edata = (eigenmode_data *)vedata;
if (!edata || !(edata->mdata)) meep::abort("%s:%i: internal error", __FILE__, __LINE__);
int *n = edata->n;
double *s = edata->s;
vec center = edata->center;
amplitude_function amp_func = edata->amp_func;
complex<mpb_real> *cdata =
(complex<mpb_real> *)((c >= Hx) ? edata->fft_data_H : edata->fft_data_E);
const complex<mpb_real> *data;
switch (c) {
case Ex:
cdata = (complex<mpb_real> *)edata->fft_data_E;
data = cdata + 0;
break;
case Ey:
cdata = (complex<mpb_real> *)edata->fft_data_E;
data = cdata + 1;
break;
case Ez:
cdata = (complex<mpb_real> *)edata->fft_data_E;
data = cdata + 2;
break;
case Hx:
cdata = (complex<mpb_real> *)edata->fft_data_H;
data = cdata + 0;
break;
case Hy:
cdata = (complex<mpb_real> *)edata->fft_data_H;
data = cdata + 1;
break;
case Hz:
cdata = (complex<mpb_real> *)edata->fft_data_H;
data = cdata + 2;
break;
default: meep::abort("invalid component in eigenmode_amplitude");
};
int nx = n[0];
int ny = n[1];
int nz = n[2];
double r[3] = {0, 0, 0};
vec p0(p - center);
double phase = 0;
LOOP_OVER_DIRECTIONS(p.dim, d) {
double pd = p0.in_direction(d);
int i = d % 3;
phase += edata->Gk[i] * pd; // k dot p
r[i] = pd / s[i] + 0.5;
}
double rx = r[0], ry = r[1], rz = r[2];
/* linearly interpolate the amplitude from MPB at point p */
int x, y, z, x2, y2, z2;
double dx, dy, dz;
/* get the point corresponding to r in the epsilon array grid: */
x = int(rx * nx);
y = int(ry * ny);
z = int(rz * nz);
/* get the difference between (x,y,z) and the actual point */
dx = rx * nx - x;
dy = ry * ny - y;
dz = rz * nz - z;
/* wrap around to 0..n-1, assuming periodic boundaries */
x = pmod(x, nx);
y = pmod(y, ny);
z = pmod(z, nz);
/* get the other closest point in the grid, with periodic boundaries: */
x2 = pmod((dx >= 0.0 ? x + 1 : x - 1), nx);
y2 = pmod((dy >= 0.0 ? y + 1 : y - 1), ny);
z2 = pmod((dz >= 0.0 ? z + 1 : z - 1), nz);
x = x % nx;
y = y % ny;
z = z % nz;
/* take abs(d{xyz}) to get weights for {xyz} and {xyz}2: */
dx = fabs(dx);
dy = fabs(dy);
dz = fabs(dz);
/* define a macro to give us data(x,y,z) on the grid,
in row-major order (the order used by MPB): */
#define D(x, y, z) (data[(((x)*ny + (y)) * nz + (z)) * 3])
complex<mpb_real> ret;
ret = (((D(x, y, z) * (1.0 - dx) + D(x2, y, z) * dx) * (1.0 - dy) +
(D(x, y2, z) * (1.0 - dx) + D(x2, y2, z) * dx) * dy) *
(1.0 - dz) +
((D(x, y, z2) * (1.0 - dx) + D(x2, y, z2) * dx) * (1.0 - dy) +
(D(x, y2, z2) * (1.0 - dx) + D(x2, y2, z2) * dx) * dy) *
dz);
#undef D
return (complex<double>(double(real(ret)), double(imag(ret))) * amp_func(p)) *
std::polar(1.0, TWOPI * phase);
}
/***************************************************************/
/* entry point to eigenmode_amplitude with the right prototype */
/* for passage as the A parameter to add_volume_source */
/***************************************************************/
static eigenmode_data *global_eigenmode_data = 0;
static component global_eigenmode_component;
static complex<double> meep_mpb_A(const vec &p) {
return eigenmode_amplitude((void *)global_eigenmode_data, p, global_eigenmode_component);
}
// compute axb = a cross b
static void cross_product(mpb_real axb[3], const mpb_real a[3], const mpb_real b[3]) {
axb[0] = a[1] * b[2] - a[2] * b[1];
axb[1] = a[2] * b[0] - a[0] * b[2];
axb[2] = a[0] * b[1] - a[1] * b[0];
}
static double dot_product(const mpb_real a[3], const mpb_real b[3]) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
// return the next number factorizable into powers of 2,3,5,7
// for efficient FFTs, similar to optimize-grid-size! in MPB:
static int nextpow2357(int n) {
while (1) {
int m = n;
while (m % 3 == 0)
m /= 3;
while (m % 5 == 0)
m /= 5;
while (m % 7 == 0)
m /= 7;
if ((m & (m - 1)) == 0) // if m is a power of 2
return n;
n += 1;
}
}
void special_kz_phasefix(eigenmode_data *edata, bool phase_flip) {
size_t n = edata->n[0] * edata->n[1] * edata->n[2];
complex<mpb_real> *E = (complex<mpb_real> *)edata->fft_data_E;
complex<mpb_real> *H = (complex<mpb_real> *)edata->fft_data_H;
complex<mpb_real> im(0, phase_flip ? -1 : 1);
for (size_t i = 0; i < n; ++i) {
E[3*i + 2] *= im; // Ez
H[3*i + 0] *= im; // Hx
H[3*i + 1] *= im; // Hy
}
}
/****************************************************************/
/* call MPB to get the band_numth eigenmode at freq frequency. */
/* */
/* this routine constitutes the first 75% of what was formerly */
/* add_eigenmode_source; it has been split off as a separate */
/* routine to allow it to be followed either by */
/* (a) add_eigenmode_src() */
/* or */
/* (b) get_eigenmode_coefficients() */
/* */
/* the return value is an opaque pointer to an eigenmode_data */
/* structure (needs to be opaque to allow compilation without */
/* MPB, in which case maxwell_data and other types aren't */
/* defined). this structure may then be passed to */
/* eigenmode_amplitude (above) to compute eigenmode E and H */
/* field components at arbitrary points in space. */
/* call destroy_eigenmode_data() to deallocate when finished. */
/****************************************************************/
void *fields::get_eigenmode(double frequency, direction d, const volume where, const volume eig_vol,
int band_num, const vec &_kpoint, bool match_frequency, int parity,
double resolution, double eigensolver_tol, double *kdom,
void **user_mdata, diffractedplanewave *dp) {
/*--------------------------------------------------------------*/
/*- part 1: preliminary setup for calling MPB -----------------*/
/*--------------------------------------------------------------*/
adjust_mpb_verbosity amv;
// if the mode region extends over the full computational grid and we are bloch-periodic
// in any direction, set the corresponding component of the eigenmode initial-guess
// k-vector to be the (real part of the) bloch vector in that direction.
vec kpoint(_kpoint);
LOOP_OVER_DIRECTIONS(v.dim, dd) {
if (dd != d && float(eig_vol.in_direction(dd)) == float(v.in_direction(dd)))
if (boundaries[High][dd] == Periodic && boundaries[Low][dd] == Periodic)
kpoint.set_direction(dd, real(k[dd]));
}
bool empty_dim[3] = {false, false, false};
// special case: 2d cell in x and y with non-zero kz
if ((eig_vol.dim == D3) && (float(v.in_direction(Z)) == float(1 / a)) &&
(boundaries[High][Z] == Periodic && boundaries[Low][Z] == Periodic) &&
(kpoint.z() == 0) && (real(k[Z]) != 0)) {
kpoint.set_direction(Z, real(k[Z]));
empty_dim[2] = true;
}
if (resolution <= 0.0) resolution = 2 * gv.a; // default to twice resolution
int n[3], local_N, N_start, alloc_N, mesh_size[3] = {1, 1, 1};
mpb_real k[3] = {0, 0, 0}, kcart[3] = {0, 0, 0};
double s[3] = {0, 0, 0}, o[3] = {0, 0, 0};
mpb_real R[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
mpb_real G[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
mpb_real kdir[3] = {0, 0, 0};
double match_tol = eigensolver_tol * 10;
if ((d == NO_DIRECTION && abs(_kpoint) == 0) || coordinate_mismatch(gv.dim, d))
meep::abort("invalid direction in add_eigenmode_source");
if (where.dim != gv.dim || eig_vol.dim != gv.dim)
meep::abort("invalid volume dimensionality in add_eigenmode_source");
if (!eig_vol.contains(where))
meep::abort("invalid grid_volume in add_eigenmode_source (WHERE must be in EIG_VOL)");
switch (gv.dim) {
case D3:
o[0] = eig_vol.in_direction_min(X);
o[1] = eig_vol.in_direction_min(Y);
o[2] = eig_vol.in_direction_min(Z);
s[0] = eig_vol.in_direction(X);
s[1] = eig_vol.in_direction(Y);
s[2] = eig_vol.in_direction(Z);
kcart[0] = kpoint.in_direction(X);
kcart[1] = kpoint.in_direction(Y);
kcart[2] = kpoint.in_direction(Z);
break;
case D2:
o[0] = eig_vol.in_direction_min(X);
o[1] = eig_vol.in_direction_min(Y);
s[0] = eig_vol.in_direction(X);
s[1] = eig_vol.in_direction(Y);
kcart[0] = kpoint.in_direction(X);
kcart[1] = kpoint.in_direction(Y);
kcart[2] = beta; // special_kz feature
empty_dim[2] = true;
break;
case D1:
o[2] = eig_vol.in_direction_min(Z);
s[2] = eig_vol.in_direction(Z);
kcart[2] = kpoint.in_direction(Z);
empty_dim[0] = empty_dim[1] = true;
break;
default: meep::abort("unsupported dimensionality in add_eigenmode_source");
}
double kcart_len = sqrt(dot_product(kcart, kcart));
for (int i = 0; i < 3; ++i) {
n[i] = int(resolution * s[i] + 0.5);
if (n[i] == 0) n[i] = 1;
n[i] = nextpow2357(n[i]);
if (s[i] != 0)
R[i][i] = s[i];
else {
if (d != NO_DIRECTION || empty_dim[i])
R[i][i] = 1;
else { // get lattice vector from kpoint
for (int j = 0; j < 3; ++j)
R[i][j] = kcart[j] / kcart_len;
}
s[i] = 1;
}
}
for (int i = 0; i < 3; ++i) {
k[i] = dot_product(R[i], kcart); // convert k to reciprocal basis
// G = inverse of R transpose, via cross-product formula
cross_product(G[i], R[(i + 1) % 3], R[(i + 2) % 3]);
double GdotR = dot_product(G[i], R[i]);
for (int j = 0; j < 3; ++j)
G[i][j] /= GdotR;
}
if (verbosity > 1) master_printf("KPOINT: %g, %g, %g\n", k[0], k[1], k[2]);
maxwell_data *mdata;
if (!user_mdata || *user_mdata == NULL) {
mdata = create_maxwell_data(n[0], n[1], n[2], &local_N, &N_start, &alloc_N, band_num, band_num);
if (local_N != n[0] * n[1] * n[2]) meep::abort("MPI version of MPB library not supported");
meep_mpb_eps_data eps_data;
eps_data.s = s;
eps_data.o = o;
eps_data.dim = gv.dim;
eps_data.f = this;
eps_data.frequency = frequency;
eps_data.cache = (double *)malloc(sizeof(double) * 6 * (eps_data.ncache = 512));
// first, build up a cache of the local epsilon data (while returning dummy values to MPB)
eps_data.use_cache = false;
eps_data.icache = 0;
set_maxwell_dielectric(mdata, mesh_size, R, G, NULL, meep_mpb_eps, &eps_data);
// then, synchronize the data
eps_data.ncache = eps_data.icache; // actual amount of cached data
double *summed_cache = (double *)malloc(sizeof(double) * 6 * eps_data.ncache);
am_now_working_on(MpiAllTime);
sum_to_all(eps_data.cache, summed_cache, eps_data.ncache * 6);
finished_working();
free(eps_data.cache);
eps_data.cache = summed_cache;
// finally, send MPB the real epsilon data using the synchronized cache
eps_data.use_cache = true;
eps_data.icache = 0;
set_maxwell_dielectric(mdata, mesh_size, R, G, NULL, meep_mpb_eps, &eps_data);
assert(eps_data.icache == eps_data.ncache);
free(eps_data.cache);
if (user_mdata) *user_mdata = (void *)mdata;
}
else {
mdata = (maxwell_data *)(*user_mdata);
maxwell_set_num_bands(mdata, band_num);
N_start = mdata->N_start;
local_N = mdata->local_N;
alloc_N = mdata->alloc_N;
}
if (check_maxwell_dielectric(mdata, 0)) meep::abort("invalid dielectric function for MPB");
double kmatch;
if (d == NO_DIRECTION) {
for (int i = 0; i < 3; ++i)
kdir[i] = kcart[i] / kcart_len;
if (gv.dim == D2) {
kdir[2] = 0; // beta is fixed
kmatch = sqrt(kcart[0] * kcart[0] + kcart[1] * kcart[1]);
}
else
kmatch = kcart_len;
}
else {
kmatch = G[d - X][d - X] * k[d - X]; // k[d] in cartesian
kdir[d - X] = 1; // kdir = unit vector in d direction
}
// if match_frequency is true, we need at least a crude guess for kmatch;
// which we automatically pick if kmatch == 0.
if (match_frequency && kmatch == 0) {
vec cen = eig_vol.center();
kmatch = frequency * sqrt(real(get_eps(cen, frequency)) * real(get_mu(cen, frequency)));
if (d == NO_DIRECTION) {
for (int i = 0; i < 3; ++i)
k[i] = dot_product(R[i], kdir) * kmatch; // kdir*kmatch in reciprocal basis
if (gv.dim == D2) k[2] = beta;
}
else {
k[d - X] = kmatch * R[d - X][d - X]; // convert to reciprocal basis
if (eig_vol.in_direction(d) > 0 &&
fabs(k[d - X]) > 0.4) // ensure k is well inside the Brillouin zone
k[d - X] = k[d - X] > 0 ? 0.4 : -0.4;
}
if (verbosity > 1) master_printf("NEW KPOINT: %g, %g, %g\n", k[0], k[1], k[2]);
}
set_maxwell_data_parity(mdata, parity);
update_maxwell_data_k(mdata, k, G[0], G[1], G[2]);
if (k[0] == 0 && k[1] == 0 && k[2] == 0) {
evectmatrix H;
H.p = band_num;
H.c = 2;
band_num -= maxwell_zero_k_num_const_bands(H, mdata);
if (band_num == 0) meep::abort("zero-frequency bands at k=0 are ill-defined");
}
evectmatrix H = create_evectmatrix(n[0] * n[1] * n[2], 2, band_num, local_N, N_start, alloc_N);
/* initialize H to pseudorandom values on the master process; on other
processes we get the value via broadcast() below */
if (am_master()) {
set_random_seed(314159);
for (int i = 0; i < H.n * H.p; ++i) {
ASSIGN_SCALAR(H.data[i], uniform_random(-1,1), uniform_random(-1,1));
}
restore_random_seed();
}
mpb_real *eigvals = new mpb_real[band_num];
int num_iters;
evectmatrix W[3];
for (int i = 0; i < 3; ++i)
W[i] = create_evectmatrix(n[0] * n[1] * n[2], 2, band_num, local_N, N_start, alloc_N);
evectconstraint_chain *constraints = NULL;
constraints = evect_add_constraint(constraints, maxwell_parity_constraint, (void *)mdata);
if (k[0] == 0 && k[1] == 0 && k[2] == 0)
constraints = evect_add_constraint(constraints, maxwell_zero_k_constraint, (void *)mdata);
mpb_real vgrp; // Re( W[0]* (dTheta/dk) W[0] ) = group velocity
// track #times change in kmatch increases to detect non-convergence
double dkmatch_prev = kmatch;
int count_dkmatch_increase = 0;
/*--------------------------------------------------------------*/
/*- part 2: newton iteration loop with call to MPB on each step */
/*- until eigenmode converged to requested tolerance */
/*--------------------------------------------------------------*/
if (am_master() && !dp) do {
eigensolver(H, eigvals, maxwell_operator, (void *)mdata,
#if MPB_VERSION_MAJOR > 1 || (MPB_VERSION_MAJOR == 1 && MPB_VERSION_MINOR >= 6)
NULL, NULL, /* eventually, we can support mu here */
#endif
maxwell_preconditioner2, (void *)mdata, evectconstraint_chain_func,
(void *)constraints, W, 3, eigensolver_tol, &num_iters,
EIGS_DEFAULT_FLAGS | (am_master() && verbosity > 1 ? EIGS_VERBOSE : 0));
if (verbosity > 0)
master_printf("MPB solved for frequency_%d(%g,%g,%g) = %g after %d iters\n", band_num,
G[0][0] * k[0], G[1][1] * k[1], G[2][2] * k[2], sqrt(eigvals[band_num - 1]),
num_iters);
// copy desired single eigenvector into scratch arrays
evectmatrix_resize(&W[0], 1, 0);
evectmatrix_resize(&W[1], 1, 0);
for (int i = 0; i < H.n; ++i)
W[0].data[i] = H.data[H.p - 1 + i * H.p];
// compute the group velocity in the kdir direction
maxwell_ucross_op(W[0], W[1], mdata, kdir); // W[1] = (dTheta/dk) W[0]
mpb_real vscratch;
evectmatrix_XtY_diag_real(W[0], W[1], &vgrp, &vscratch);
vgrp /= sqrt(eigvals[band_num - 1]);
// return to original size
evectmatrix_resize(&W[0], band_num, 0);
evectmatrix_resize(&W[1], band_num, 0);
if (match_frequency) {
// update k via Newton step
double dkmatch = (sqrt(eigvals[band_num - 1]) - frequency) / vgrp;
kmatch = kmatch - dkmatch;
if (verbosity > 1)
master_printf("Newton step: group velocity v=%g, kmatch=%g\n", vgrp, kmatch);
count_dkmatch_increase += fabs(dkmatch) > fabs(dkmatch_prev);
if (count_dkmatch_increase > 4) {
eigvals[band_num - 1] = -1;
break;
}
if (d == NO_DIRECTION) {
for (int i = 0; i < 3; ++i)
k[i] = dot_product(R[i], kdir) * kmatch; // kdir*kmatch in reciprocal basis
if (gv.dim == D2) k[2] = beta;
}
else {
k[d - X] = kmatch * R[d - X][d - X];
}
update_maxwell_data_k(mdata, k, G[0], G[1], G[2]);
}
} while (match_frequency &&
fabs(sqrt(eigvals[band_num - 1]) - frequency) > frequency * match_tol);
if (dp) {
scalar_complex s = {real(dp->get_s()),imag(dp->get_s())};
scalar_complex p = {real(dp->get_p()),imag(dp->get_p())};
// compute sum of (kparallel+G)^2 in all the periodic directions
double k2sum = 0, ktmp = 0;
int m = 0;
LOOP_OVER_DIRECTIONS(v.dim, dd) {
m = dp->get_g()[dd - X];
if (eig_vol.in_direction(dd) != 0) {
ktmp = kpoint.in_direction(dd) + m/eig_vol.in_direction(dd);
k2sum += ktmp*ktmp;
}
}
if (((v.dim == D3) && (float(v.in_direction(Z)) == float(1 / a)) &&
(boundaries[High][Z] == Periodic && boundaries[Low][Z] == Periodic) && (real(k[Z]) != 0)) ||
((v.dim == D2) && (real(k[Z]) != 0))) {
k2sum += k[Z]*k[Z];
}
// compute kperp (if it is non evanescent) OR
// frequency from kperp^2 and sum of (kparallel+G)^2
{
direction dd = eig_vol.normal_direction();
if (eig_vol.dim == D3 && empty_dim[2]) {
volume eig_vol_2d(D2);
eig_vol_2d.set_direction_min(X, eig_vol.in_direction_min(X));
eig_vol_2d.set_direction_min(Y, eig_vol.in_direction_min(Y));
eig_vol_2d.set_direction_max(X, eig_vol.in_direction_max(X));
eig_vol_2d.set_direction_max(Y, eig_vol.in_direction_max(Y));
dd = eig_vol_2d.normal_direction();
}
if (match_frequency) {
vec cen = eig_vol.center();
double nn = sqrt(real(get_eps(cen, frequency)) * real(get_mu(cen, frequency)));
double k2 = frequency*frequency*nn*nn - k2sum;
if (k2 < 0) {
master_printf("WARNING: diffraction order for g=(%d,%d,%d) is evanescent!\n",
dp->get_g()[0],dp->get_g()[1],dp->get_g()[2]);
return NULL;
}
else if (k2 > 0)
k[dd - X] = sqrt(k2);
}
else
frequency = sqrt(kpoint.in_direction(dd)*kpoint.in_direction(dd) + k2sum);
}
if (am_master()) {
update_maxwell_data_k(mdata, k, G[0], G[1], G[2]);
maxwell_set_planewave(mdata, H, band_num, dp->get_g(), s, p, dp->get_axis());
eigvals[band_num - 1] = frequency*frequency;
evectmatrix_resize(&W[0], 1, 0);
evectmatrix_resize(&W[1], 1, 0);
for (int i = 0; i < H.n; ++i)
W[0].data[i] = H.data[H.p - 1 + i * H.p];
maxwell_ucross_op(W[0], W[1], mdata, kdir); // W[1] = (dTheta/dk) W[0]
mpb_real vscratch;
evectmatrix_XtY_diag_real(W[0], W[1], &vgrp, &vscratch);
vgrp /= sqrt(eigvals[band_num - 1]);
}
}
double eigval = eigvals[band_num - 1];
// cleanup temporary storage
delete[] eigvals;
evect_destroy_constraints(constraints);
for (int i = 0; i < 3; ++i)
destroy_evectmatrix(W[i]);
am_now_working_on(MpiAllTime);
/* We only run MPB eigensolver on the master process to avoid
any possibility of inconsistent mode solutions (#568) */
eigval = broadcast(0, eigval);
broadcast(0, k, 3);
vgrp = broadcast(0, vgrp);
if (eigval < 0) { // no mode found
destroy_evectmatrix(H);
if (!user_mdata) destroy_maxwell_data(mdata);
return NULL;
}
if (!am_master()) update_maxwell_data_k(mdata, k, G[0], G[1], G[2]);
broadcast(0, (double *)H.data, 2 * H.n * H.p);
finished_working();
if (!match_frequency) frequency = sqrt(eigval);
/*--------------------------------------------------------------*/
/*- part 3: do one stage of postprocessing to tabulate H-field */
/*- components on the internal storage buffer in mdata */
/*--------------------------------------------------------------*/
complex<mpb_real> *cdata = (complex<mpb_real> *)mdata->fft_data;
maxwell_compute_h_from_H(mdata, H, (scalar_complex *)cdata, band_num - 1, 1);
/* choose deterministic phase, maximizing power in real part;
see fix_field_phase routine in MPB.*/
{
int i, N = mdata->fft_output_size * 3;
double sq_sum0 = 0, sq_sum1 = 0, maxabs = 0.0;
double theta;
for (i = 0; i < N; ++i) {
double a = real(cdata[i]), b = imag(cdata[i]);
sq_sum0 += a * a - b * b;
sq_sum1 += 2 * a * b;
}
theta = 0.5 * atan2(-sq_sum1, sq_sum0);
complex<mpb_real> phase(cos(theta), sin(theta));
phase /= sqrt(fabs(R[0][0] * R[1][1] * R[2][2]));
for (i = 0; i < N; ++i) {
double r = fabs(real(cdata[i] * phase));
if (r > maxabs) maxabs = r;
}
for (i = N - 1; i >= 0 && fabs(real(cdata[i] * phase)) < 0.5 * maxabs; --i)
;
if (real(cdata[i] * phase) < 0) phase = -phase;
for (i = 0; i < N; ++i)
cdata[i] *= phase;
complex<mpb_real> *hdata = (complex<mpb_real> *)H.data;
for (i = 0; i < H.n; ++i)
hdata[i * H.p + (band_num - 1)] *= phase;
}
/*--------------------------------------------------------------*/
/* do a second round of post-processing to tabulate E-fields -*/
/* on a (separate) internal storage buffer. (Previously -*/
/* there was only one internal buffer which held either E-field */
/* or H-field data, but this is inconvenient for cases in which */
/* you want the E and H fields of an eigenmode simultaneously.) */
/*--------------------------------------------------------------*/
int NFFT = 3 * mdata->fft_output_size;
scalar_complex *fft_data_E = (scalar_complex *)malloc(NFFT * sizeof(scalar_complex));
maxwell_compute_d_from_H(mdata, H, fft_data_E, band_num - 1, 1);
// d_from_H actually computes -frequency*D (see mpb/src/maxwell/maxwell_op.c),
// so we need to divide the E-field amplitudes by -frequency; we also take this
// opportunity to rescale the overall E and H amplitudes to yield unit power flux.
double scale = -1.0 / frequency, factor = 2.0 / sqrt(fabs(vgrp));
complex<double> *efield = (complex<double> *)fft_data_E, *hfield = (complex<double> *)(mdata->fft_data);
for (int n = 0; n < NFFT; ++n) {
efield[n] *= factor * scale;
hfield[n] *= factor;
}
maxwell_compute_e_from_d(mdata, fft_data_E, 1);
/*--------------------------------------------------------------*/
/*- part 4: initialize and return output data structures. */
/*--------------------------------------------------------------*/
eigenmode_data *edata = new eigenmode_data;
edata->mdata = mdata;
edata->fft_data_H = mdata->fft_data;
edata->fft_data_E = fft_data_E;
edata->H = H;
edata->n[0] = n[0];
edata->n[1] = n[1];
edata->n[2] = n[2];
edata->s[0] = s[0];
edata->s[1] = s[1];
edata->s[2] = s[2];
edata->Gk[0] = G[0][0] * k[0] + G[1][0] * k[1] + G[2][0] * k[2];
edata->Gk[1] = G[0][1] * k[0] + G[1][1] * k[1] + G[2][1] * k[2];
edata->Gk[2] = G[0][2] * k[0] + G[1][2] * k[1] + G[2][2] * k[2];
edata->center = eig_vol.center();
edata->amp_func = default_amp_func;
edata->band_num = band_num;
edata->frequency = frequency;
edata->group_velocity = (double)vgrp;
if (kdom) {
#if MPB_VERSION_MAJOR > 1 || (MPB_VERSION_MAJOR == 1 && MPB_VERSION_MINOR >= 7)
maxwell_dominant_planewave(mdata, H, band_num, kdom);
if (verbosity > 0)
master_printf("Dominant planewave for band %d: (%f,%f,%f)\n", band_num, kdom[0], kdom[1],
kdom[2]);
#else
kdom[0] = kdom[1] = kdom[2] = 0;
#endif
}
return (void *)edata;
}
void destroy_eigenmode_data(void *vedata, bool destroy_mdata) {
adjust_mpb_verbosity amv;
eigenmode_data *edata = (eigenmode_data *)vedata;
destroy_evectmatrix(edata->H);
if (destroy_mdata) destroy_maxwell_data(edata->mdata);
free(edata->fft_data_E);
delete edata;
}
double get_group_velocity(void *vedata) {
eigenmode_data *edata = (eigenmode_data *)vedata;
return edata->group_velocity;
}
vec get_k(void *vedata) {
eigenmode_data *edata = (eigenmode_data *)vedata;
return vec(edata->Gk[0], edata->Gk[1], edata->Gk[2]);
}
/***************************************************************/
/* call get_eigenmode() to solve for the specified eigenmode, */
/* then call add_volume_source() to add current sources whose */
/* radiated fields reproduce the eigenmode fields */
/***************************************************************/
void fields::add_eigenmode_source(component c0, const src_time &src, direction d,
const volume &where, const volume &eig_vol, int band_num,
const vec &kpoint, bool match_frequency, int parity,
double resolution, double eigensolver_tol, complex<double> amp,
complex<double> A(const vec &),
diffractedplanewave *dp) {
/*--------------------------------------------------------------*/
/* step 1: call MPB to compute the eigenmode */
/*--------------------------------------------------------------*/
adjust_mpb_verbosity amv;
double frequency = real(src.frequency());
am_now_working_on(MPBTime);
global_eigenmode_data =
(eigenmode_data *)get_eigenmode(frequency, d, where, eig_vol, band_num, kpoint,
match_frequency, parity, resolution, eigensolver_tol,
NULL, NULL, dp);
finished_working();
if (is_real && beta != 0) special_kz_phasefix(global_eigenmode_data, true /* phase_flip */);
if (global_eigenmode_data == NULL) meep::abort("MPB could not find the eigenmode");
/* add_volume_source amp_fun coordinates are relative to where.center();
this is not the default in get_eigenmode because where-relative coordinates
are not used elsewhere, e.g. in getting mode coefficients in dft.cpp. */
global_eigenmode_data->center -= where.center();
if (!global_eigenmode_data)
meep::abort("eigenmode solver failed to find the requested mode; you may need to supply a better "
"guess for k");
global_eigenmode_data->amp_func = A ? A : default_amp_func;
src_time *src_mpb = src.clone();
if (!match_frequency) src_mpb->set_frequency(global_eigenmode_data->frequency);
/*--------------------------------------------------------------*/
// step 2: add sources whose radiated field reproduces the */
// the eigenmode */
// electric current K = nHat \times H */
// magnetic current N = -nHat \times E */
/*--------------------------------------------------------------*/
if (is_D(c0)) c0 = direction_component(Ex, component_direction(c0));
if (is_B(c0)) c0 = direction_component(Hx, component_direction(c0));
component cE[3] = {Ex, Ey, Ez}, cH[3] = {Hx, Hy, Hz};
int n = (d == X ? 0 : (d == Y ? 1 : 2));
if (d == NO_DIRECTION) {
n = where.in_direction(X) == 0
? 0
: where.in_direction(Y) == 0 ? 1 : where.in_direction(Z) == 0 ? 2 : -1;
if (n == -1)
meep::abort(
"can't determine source direction for non-empty source volume with NO_DIRECTION source");
}
int np1 = (n + 1) % 3;
int np2 = (n + 2) % 3;
// Kx = -Hy, Ky = Hx (for d==Z)
global_eigenmode_component = cH[np1];
add_volume_source_check(cE[np2], *src_mpb, where, meep_mpb_A, +1.0 * amp, c0, d,
parity & ODD_Z_PARITY, parity & EVEN_Z_PARITY);
global_eigenmode_component = cH[np2];
add_volume_source_check(cE[np1], *src_mpb, where, meep_mpb_A, -1.0 * amp, c0, d,
parity & ODD_Z_PARITY, parity & EVEN_Z_PARITY);
// Nx = +Ey, Ny = -Ex (for d==Z)
global_eigenmode_component = cE[np1];
add_volume_source_check(cH[np2], *src_mpb, where, meep_mpb_A, -1.0 * amp, c0, d,
parity & ODD_Z_PARITY, parity & EVEN_Z_PARITY);
global_eigenmode_component = cE[np2];
add_volume_source_check(cH[np1], *src_mpb, where, meep_mpb_A, +1.0 * amp, c0, d,
parity & ODD_Z_PARITY, parity & EVEN_Z_PARITY);
delete src_mpb;
destroy_eigenmode_data((void *)global_eigenmode_data);
}
/***************************************************************/
/* get eigenmode coefficients for all frequencies in flux */
/* and all band indices in the caller-populated bands array. */
/* */
/* on input, coeffs must point to a user-allocated array of */
/* length 2*num_freqs*num_bands (where num_freqs=flux.Nfreq). */
/* on return, the coefficients of the forward/backward traveling*/
/* eigenmodes for frequency #nf and band index bands[nb] are */
/* coeffs[ 2*nb*num_freqs + 2*nf + 0/1 ]. */
/* */
/* if vgrp is non-null, it should point to a caller-allocated */
/* array of size num_bands*num_freqs. then on return the group */
/* velocity for the mode with frequency #nf and band index */
/* bands[nb] is stored in vgrp[nb*num_freqs + nf]. */
/* */
/* similarly, if kpoints is non-null it should point to a */
/* caller-allocated array of size num_bands*num_freqs, which on*/
/* return will be populated by the k-vectors for the modes. */
/***************************************************************/
void fields::get_eigenmode_coefficients(dft_flux flux, const volume &eig_vol, int *bands,
int num_bands, int parity, double eig_resolution,
double eigensolver_tol, std::complex<double> *coeffs,
double *vgrp, kpoint_func user_kpoint_func,
void *user_kpoint_data, vec *kpoints, vec *kdom_list,
double *cscale, direction d, diffractedplanewave *dp) {
adjust_mpb_verbosity amv;
int num_freqs = flux.freq.size();
bool match_frequency = true;
if (flux.use_symmetry && S.multiplicity() > 1 && parity == 0)
meep::abort("flux regions for eigenmode projection with symmetry should be created by "
"add_mode_monitor()");
vec kpoint(0.0, 0.0, 0.0); // default guess
// get_eigenmode will create mdata only once and then reuse it on each iteration of the loop
maxwell_data *mdata = NULL;
// loop over all bands and all frequencies
for (int nb = 0; nb < num_bands; nb++) {
for (int nf = 0; nf < num_freqs; nf++) {
/*--------------------------------------------------------------*/
/*- call mpb to compute the eigenmode --------------------------*/
/*--------------------------------------------------------------*/
int band_num = bands ? bands[nb] : 1;
double kdom[3];
if (user_kpoint_func) kpoint = user_kpoint_func(flux.freq[nf], band_num, user_kpoint_data);
am_now_working_on(MPBTime);
void *mode_data =
get_eigenmode(flux.freq[nf], d, flux.where, eig_vol, band_num, kpoint, match_frequency,
parity, eig_resolution, eigensolver_tol, kdom, (void **)&mdata, dp);
finished_working();
if (!mode_data) { // mode not found, assume evanescent
coeffs[2 * nb * num_freqs + 2 * nf] = coeffs[2 * nb * num_freqs + 2 * nf + 1] = 0;
if (vgrp) vgrp[nb * num_freqs + nf] = 0;
if (kpoints) kpoints[nb * num_freqs + nf] = vec(0.0, 0.0, 0.0);
if (kdom_list) kdom_list[nb * num_freqs + nf] = vec(0.0, 0.0, 0.0);
continue;
}
if (is_real && beta != 0) special_kz_phasefix((eigenmode_data *) mode_data, false /* phase_flip */);
double vg = get_group_velocity(mode_data);
vec kfound = get_k(mode_data);
if (vgrp) vgrp[nb * num_freqs + nf] = vg;
if (kpoints) kpoints[nb * num_freqs + nf] = kfound;
if (kdom_list) kdom_list[nb * num_freqs + nf] = vec(kdom[0], kdom[1], kdom[2]);
/* in the common case of k aligned along a cartesian direction, update
our k-point guess based on the current k point plus a correction from the group velocity */
if (match_frequency && nf + 1 < num_freqs && abs(kfound) > 0 &&
((kfound.x() == 0 && (kfound.y() == 0 || kfound.z() == 0)) ||
(kfound.y() == 0 && kfound.z() == 0)))
kpoint = kfound + kfound * ((flux.freq[nf + 1] - flux.freq[nf]) / (vg * abs(kfound)));
/*--------------------------------------------------------------*/
/*--------------------------------------------------------------*/
/*--------------------------------------------------------------*/
complex<double> mode_flux[2], mode_mode[2];
get_mode_flux_overlap(mode_data, flux, nf, mode_flux);
get_mode_mode_overlap(mode_data, mode_data, flux, mode_mode);
complex<double> cplus = 0.5 * (mode_flux[0] + mode_flux[1]);
complex<double> cminus = 0.5 * (mode_flux[0] - mode_flux[1]);
/* MPB modes are normalized to unit power above, but we need to re-normalize here to have
unit power as integrated on Meep's Yee grid and not on MPB's grid. Thus, normfac differs
from a constant factor only because of discretization effects. */
complex<double> normfac = 0.5 * (mode_mode[0] + mode_mode[1]);
if (normfac == 0.0) normfac = 1.0;
double csc = sqrt((flux.use_symmetry ? S.multiplicity() : 1.0) / abs(normfac));
if (cscale)
cscale[nb * num_freqs + nf] =
csc; // return real part of coefficient scalar for adjoint calculations
coeffs[2 * nb * num_freqs + 2 * nf + (vg > 0.0 ? 0 : 1)] = cplus * csc;
coeffs[2 * nb * num_freqs + 2 * nf + (vg > 0.0 ? 1 : 0)] = cminus * csc;
destroy_eigenmode_data((void *)mode_data, false);
}
}
destroy_maxwell_data(mdata);
}
/**************************************************************/
/* dummy versions of class methods for compiling without MPB */
/**************************************************************/
#else // #ifdef HAVE_MPB
void *fields::get_eigenmode(double frequency, direction d, const volume where, const volume eig_vol,
int band_num, const vec &kpoint, bool match_frequency, int parity,
double resolution, double eigensolver_tol, double *kdom,
void **user_mdata, diffractedplanewave *dp) {