forked from emileaben/ixp-country-jedi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare.py
executable file
·514 lines (461 loc) · 18.6 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#!/usr/bin/env python
from collections import Counter
from urlparse import urlparse
import argparse
import time
import urllib2
import arrow
import sys
import re
import json
from bs4 import BeautifulSoup
from math import radians, cos, sin, asin, sqrt
import os
import sys
sys.path.append("%s/lib" % ( os.path.dirname(os.path.realpath(__file__) ) ) )
from Atlas import ProbeInfo
# find connected probes
PROBE_URL = 'https://atlas.ripe.net/api/v1/probe/?limit=100'
MEASUREMENT_TYPES = [
'probe-mesh',
'traceroute',
'http-traceroute',
'https-traceroute'
]
sources = {}
dests = {}
def country_stats(cc):
stats = {'routed_asns': routed_asns_for_country(cc)}
# add more stats here?
return stats
def routed_asns_for_country(cc):
# find country routing stats
routed_asns = None
yyyymmdd = arrow.now().format('YYYY-MM-01')
routed_asns_url = "https://stat.ripe.net/data/country-routing-stats/data.json?resource=%s&starttime=%s&endtime=%s" % (cc, yyyymmdd, yyyymmdd )
try:
conn = urllib2.urlopen(routed_asns_url)
info = json.load(conn)
routed_asns = info['data']['stats'][0]['asns_ris'] # should really be one
except:
print >>sys.stderr, "problem getting routed ASNs for '%s' from RIPEstat" % ( cc )
return routed_asns
def get_asns(cand_list):
nums = set()
for asn_cand in cand_list:
matched = re.match(r'\s*(?:AS)?(\d+)\s*$', asn_cand.upper())
if matched:
asnum = matched.group(1)
nums.add( int(asnum) )
# some kind of clinchers to distinguish from lists of low numbers
if len(nums) <= len(cand_list) / 4:
# print "num / cand_list %s/%s : %s" % ( len(nums) , len(cand_list),
# nums )
return False
# sanity-check, to see if a column is not just something with low numbers.
# woodynet/AS42 is always there ;)
if max(nums) < 42:
return []
return nums
def haversine_km(lat1, lon1, lat2, lon2):
"""
http://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
km = 6367 * c
return km
def find_probes_in_country(cc):
if cc:
probes = ProbeInfo.query(country_code=cc, is_public=True)
else:
probes = ProbeInfo.query(is_public=True)
'''
asns_v4 = Counter()
asns_v6 = Counter()
for prb_id in probes:
if probes[prb_id]['asn_v4'] != None:
asns_v4[ probes[prb_id]['asn_v4'] ] += 1
if probes[prb_id]['asn_v6'] != None:
asns_v6[ probes[prb_id]['asn_v6'] ] += 1
return asns_v4,asns_v6,probes
'''
return probes
def do_probe_selection(probes, conf, basedata):
probes_per_asn = {}
for prb_id in probes:
prb_info = probes[prb_id]
status = prb_info['status']
# down probes are not useful:
if status['id'] != 1:
continue
# probes with auto-geoloc have unreliable geolocation :( :( :(
if 'tags' in prb_info and\
'system-auto-geoip-country' in prb_info['tags']:
print >>sys.stderr, "EEPS system-auto-geoip-country %s" % prb_id
continue
dists = {}
loc_close_enough = False # this is only for location-constrained
for loc in basedata['locations']:
loclat = basedata['locations'][loc]['lat']
loclon = basedata['locations'][loc]['lon']
prb_lat, prb_lon = prb_info['geometry']['coordinates']
dists[loc] = haversine_km(loclat, loclon, prb_lat, prb_lon)
if 'location-constraint' in basedata:
if dists[loc] < basedata['location-constraint']:
loc_close_enough = True
if 'location-constraint' in basedata and not loc_close_enough:
# don't put this probe in the list of probes to consider
# it is too far from any of the locations we consider
continue
# feed the distance back into the 'probes' data struct too
probes[prb_id]['dists'] = dists
# TODO deal with too far away probes
asn = prb_info['asn_v4']
# TODO fix cases where
if asn is None:
print >>sys.stderr, "no ASN for probe?!, what's up RIPE Atlas " \
"backend?. %s" % prb_info
continue
if asn not in probes_per_asn:
probes_per_asn[asn] = []
probes_per_asn[asn].append({
'dists': dists,
'prb_id': prb_id,
'status': prb_info['status']
})
selected_probes = []
asn_count = 0
asn_multiprobe_count = 0
selected_asn_set = set()
selected_asn_probes = {} # probe IDs per ASN for selected probes
# stats
prb_per_asn_distr = {}
for asn in probes_per_asn:
asn_count += 1
selected_asn_set.add(asn)
selected_asn_probes[asn] = set()
# In principle this selects the closest and furthest probe
# for each of the list of locations
if len(probes_per_asn[asn]) <= 2*len(basedata['locations']):
# not enough probes for the fancy selection, just select them all
for prb in probes_per_asn[asn]:
selected_asn_probes[asn].add(prb['prb_id'])
else: # we need to do fancy selections
for loc in basedata['locations']:
loc_sorted = sorted(probes_per_asn[asn],
key=lambda k: k['dists'][loc])
selected_asn_probes[asn].add(loc_sorted[0]['prb_id'])
selected_asn_probes[asn].add(loc_sorted[-1]['prb_id'])
asn_multiprobe_count += 1
print "AS%s %s" % (asn, list(selected_asn_probes[asn]))
prb_per_asn = len(selected_asn_probes[asn])
if not prb_per_asn in prb_per_asn_distr:
prb_per_asn_distr[prb_per_asn] = 0
prb_per_asn_distr[prb_per_asn] += 1
selected_probes = selected_probes + [p for p in selected_asn_probes[asn]]
'''
print "member ASN set size: %s\n(%s)" % ( len( member_asn_set ), member_asn_set )
overlap_asns = selected_asn_set.intersection( member_asn_set )
print "overlap member+country ASN set: %s\n(%s)" % ( len( overlap_asns ) , overlap_asns )
selected_nonmember_asns = selected_asn_set.difference( member_asn_set )
print "In selection, but not member: %s\n(%s)" % ( len( selected_nonmember_asns ), selected_nonmember_asns )
nonselected_member_asns = member_asn_set.difference( selected_asn_set )
print "Member, but not in selection: %s\n(%s)" % ( len( nonselected_member_asns ), nonselected_member_asns )
print "selected asncount: %s, multiprobe: %s\n(%s)" % ( asn_count, asn_multiprobe_count, selected_asn_set )
print ' '.join(["--add=%s" % (x) for x in selected_probes ])
'''
if len(prb_per_asn_distr) == 0:
return []
# print some stats
print "distribution of probes per ASN:"
for i in range(1, 1+max(prb_per_asn_distr.keys())):
count = 0
try:
count = prb_per_asn_distr[i]
except:
pass
plural = 's'
if count == 1:
plural = ''
print " ASNs with %s probe%s: %s" % (i, plural, count)
outdata = []
for prb_id in selected_probes:
outdata.append({
'probe_id': prb_id,
'lat': probes[prb_id]['geometry']['coordinates'][0],
'lon': probes[prb_id]['geometry']['coordinates'][1],
'asn_v4': probes[prb_id]['asn_v4'],
'asn_v6': probes[prb_id]['asn_v6'],
'dists': probes[prb_id]['dists'],
'tags': probes[prb_id]['tags'],
'address_v4': probes[prb_id]['address_v4'],
'address_v6': probes[prb_id]['address_v6'],
'country_code': probes[prb_id]['country_code']
})
return outdata
def get_memberlist(murl):
try:
url = urllib2.Request(murl)
conn = urllib2.urlopen(url)
except:
print "eeps"
if murl.endswith('.json'):
return get_memberlist_json(conn)
else:
return get_memberlist_html_table(conn)
def get_memberlist_json(conn):
try:
data = json.load(conn)
except:
print >>sys.stderr, "reading json failed"
return None
memberlist = []
if 'member_list' in data:
for mem in data['member_list']:
if 'asnum' in mem:
memberlist.append(mem['asnum'])
return memberlist
def get_memberlist_html_table(conn):
soup = BeautifulSoup(conn, "html.parser")
tables = soup.find_all('table')
# print >>sys.stderr, "found %s tables in html" % ( len( tables ) )
max_table = None
max_table_len = 0
for t in tables:
if len(str(t)) > max_table_len:
max_table = t
max_table_len = len(str(t))
# use the max-size table
rows = max_table.findAll('tr')
col_idx = 0
asn_col = None
name_col = None
url_col = None
asns = []
while True:
col_vals = []
# deal with headers properly
for row in rows:
try:
#print row
#print row.findAll('td')
col_val = row.findAll('td')[col_idx].text
col_vals.append(col_val)
except: pass
if len( col_vals ) > 0:
are_asns = get_asns(col_vals)
if are_asns > 0:
asn_col = col_idx
asns = are_asns
#print "asns: %s" % ( are_asns )
#print "len %d" % ( len( are_asns ) )
else:
break
col_idx += 1
return asns
## probably make this blacklist configurable
alexa_blacklist = [
'xhamster.com',
'pornhub.com',
'xvideos.com',
'xnxx.com',
'bongacams.com'
]
def alexa_country_top25(countries):
targets = []
for cc in countries:
al_url= "http://www.alexa.com/topsites/countries/%s" % (cc)
req = urllib2.urlopen(al_url)
# when alexa changes layout this needs to change too
soup = BeautifulSoup(req)
tr = soup.findAll('p', class_='desc-paragraph')
for t in tr:
site = t.find('a').string.lower()
if site in alexa_blacklist:
print >>sys.stderr, "this alexa-top site for country:%s was blocked by ixp-country-jedi blacklist: %s" % (cc, site)
print >>sys.stderr, "please adapt the blacklist (in source code) if you want this site measured anyways"
continue
## add 'www'?
targets.append(site)
print >>sys.stderr, """WARNING: when using alexa-country-top25 lists, some sites may be considered offensive
WARNING: please consider looking at the 'targets' list in basedata.json and see if any of the sites"
WARNING: that are going to be measured to might be offensive. Please be considerate to our RIPE Atlas Probe hosts"
Targets found: %s\n""" % '\n'.join(targets)
time.sleep(5)
return targets
def hitlist_from_websites(urls):
"""
Get list of hostnames from a list of urls
See for example: http://www.top.ge/cat.php?c=2&where=Government%2C+Ministries%2C+Departments
Or: http://en.wikipedia.org/wiki/List_of_banks_in_Georgia_%28country%29
"""
targets = set()
for url in urls:
req_urlp = urlparse(url)
req = urllib2.urlopen(url)
soup = BeautifulSoup(req)
for link in soup.findAll('a', href=True):
ex_url = link['href']
ex_urlp = urlparse(ex_url)
# remove all but full-qualified urls (get rid of website
# internal stuff typically)
if ex_urlp.scheme not in ['http','https']:
continue
if ex_urlp.hostname == req_urlp.hostname:
continue
# remove everything that has url-path (typically website
# internal stuff)
if ex_urlp.path not in ['','/']:
continue
targets.add(ex_urlp.hostname)
print >>sys.stderr, "WARNING: when using alexa-country-top25 lists, some sites may be considered offensive"
print >>sys.stderr, "WARNING: please consider looking at the 'targets' list in basedata.json and see if any of the sites"
print >>sys.stderr, "WARNING: that are going to be measured to might be offensive. Please be considerate to our RIPE Atlas Probe hosts"
print >>sys.stderr, "Targets found: %s\n" % '\n'.join(targets)
time.sleep(5)
return list(targets)
def capital_city_for_country(country_code):
"""
Use world bank API to return Capital city for a given country-code
Example: returns 'Jakarta,ID' if country_code=='ID'.
"""
try:
wb_url = "http://api.worldbank.org/countries/%s/?format=json" % country_code.lower()
req = urllib2.urlopen(wb_url)
resp = json.loads(req.read())
lat = float(resp[1][0]['latitude'])
lon = float(resp[1][0]['longitude'])
name = "%s,%s" % (resp[1][0]['capitalCity'], country_code)
return name, lat, lon
except:
raise ValueError("can't get capital city for '%s' from WorldBank API" % country_code)
def locstr2latlng(locstring):
try:
locstr = urllib2.quote( locstring )
geocode_url = "http://maps.googleapis.com/maps/api/geocode/json?address=%s&sensor=false" % locstr
req = urllib2.urlopen(geocode_url)
resp = json.loads(req.read())
ll = resp['results'][0]['geometry']['location']
return ll['lat'], ll['lng']
except:
print "could not determine lat/long for '%s'" % locstring
def main(args):
member_asn_set = set()
if args.memberlist_url:
member_asn_set = set(get_memberlist(args.memberlist_url))
probe_asns_v4, probe_asns_v6, probes = find_probes_in_country(args.country)
selected_probes = do_probe_selection(probes, args, member_asn_set)
if __name__ == '__main__':
with open('./config.json', 'r') as conffile:
conf = json.load( conffile )
basedata = { # aux info we want saved
'locations': {}, ## locations keyed by name
'ixps': {}, ## IXPs keyed by name
'countries': [], ## countries by iso code
'country-stats': {}, ## various stats per country
'measurement-types': [], ## list of measurements we do
'targets': [], ## list of targets (if not probe-mesh)
} # auxiliary info that we want saved
####
# country
####
if 'country' not in conf:
print "need a country, exiting"
sys.exit(1)
# 'list'-ify country
if type(conf['country']) != list:
basedata['countries'] = [conf['country']]
else:
basedata['countries'] = conf['country']
# uppercase all
basedata['countries'] = [x.upper() for x in basedata['countries']]
####
# stats per country
####
for cc in basedata['countries']:
basedata['country-stats'][ cc ] = country_stats( cc )
####
# measurement-types
####
if 'measurement-type' in conf:
if type( conf['measurement-type'] ) != list :
conf['measurement-type'] = [ conf['measurement-type'] ]
for mtype in conf['measurement-type']:
if mtype not in MEASUREMENT_TYPES:
print >> sys.stderr, "measurement-type '%s' not supported (supported types: %s)" % (mtype, MEASUREMENT_TYPES)
sys.exit(1)
else:
basedata['measurement-types'].append(mtype)
# TODO: better syntax checking etc. here
else:
## maybe make default 'http-traceroute' if 'targets' is defined?
basedata['measurement-types'] = ['probe-mesh']
####
# targets
####
if 'targets' in conf:
if type( conf['targets'] ) == list:
basedata['targets'] = conf['targets']
else:
print >> sys.stderr, "config has 'targets', but that is not a list"
elif 'target-type' in conf:
if conf['target-type'] == 'alexa-country-top25':
basedata['targets'] = alexa_country_top25( basedata['countries'] )
else:
print >> sys.stderr, "unknown target-type of '%s' in config, bailing out"
sys.exit(1)
elif 'targets-from-websites' in conf:
if type(conf['targets-from-websites']) != list:
print >> sys.stderr, "unknown 'targets-from-websites' needs to be a list, baling out"
sys.exit(1)
basedata['targets'] = hitlist_from_websites(conf['targets-from-websites'])
####
# locations
####
# If no location present, select the capital of the first country in list
if 'locations' not in conf or len(conf['locations']) == 0:
capital_str, lat, lon = capital_city_for_country(basedata['countries'][0])
print >> sys.stderr, "No location info available for probe selection, defaulting to capital city of country (%s)" % capital_str
basedata['locations'][capital_str] = {'lat': lat, 'lon': lon}
else:
for loc in conf['locations']:
lat, lon = locstr2latlng(loc)
basedata['locations'][loc] = {'lat': lat, 'lon': lon}
# 'constrain to only the probes X km from the location
if 'location-constraint' in conf:
basedata['location-constraint'] = conf['location-constraint']
if 'ixps' in conf:
for ixp in conf['ixps']:
basedata['ixps'][ixp['name']] = {
'peeringlans': ixp['peeringlans']
}
if 'memberlist' in ixp:
member_asn_set = get_memberlist(ixp['memberlist'])
print member_asn_set
basedata['ixps'][ixp['name']]['memberlist'] = ixp['memberlist']
basedata['ixps'][ixp['name']]['memberlist_asns'] = sorted(list(member_asn_set))
if os.path.isfile('probeset.json'):
print >>sys.stderr, "probeset.json file exists, not making a new probe selection"
else:
selected_probes = []
for country in basedata['countries']:
print >>sys.stderr, "Preparing country: %s" % country
probes_cc = find_probes_in_country(country)
sel_probes_for_cc = do_probe_selection(probes_cc, conf, basedata)
selected_probes += sel_probes_for_cc
print >>sys.stderr, "END country: %s" % country
# writing to probeset.json
print "writing probe selection to probeset.json (%s probes)" % len(selected_probes)
with open('probeset.json','w') as outfile:
json.dump( selected_probes, outfile, indent=2 )
print >>sys.stderr, "writing basedata (locations/ixps) to basedata.json"
with open('./basedata.json','w') as bdfile:
json.dump(basedata, bdfile, indent=2)