-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathevaluate_cub.py
executable file
·291 lines (238 loc) · 11.7 KB
/
evaluate_cub.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import argparse
import scipy
from scipy import ndimage
import scipy.io
import imageio as iio
import cv2
import numpy as np
import sys
from collections import OrderedDict
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision.models as models
import torch.nn.functional as F
from torch.utils import data, model_zoo
from model.model_factory import model_generator
from loss import softmax
from utils import utils
from visualize import Batch_Draw_Landmarks, Batch_Get_Centers, Batch_Draw_GT_Landmarks
from PIL import Image
import matplotlib.pyplot as plt
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
MODEL = 'DeepLab50_2branch'
DATASET = 'cub'
DATA_DIRECTORY = ''
DATA_LIST_PATH = ''
NUM_PARTS = 4
RESTORE_FROM = ''
SAVE_DIRECTORY = 'results'
INPUT_SIZE='256,256'
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="VOC evaluation script")
parser.add_argument("--model", type=str, default=MODEL,
help="available options : DeepLab/DRN")
parser.add_argument("--dataset", type=str, default=DATASET, help = "dataset : PASCAL/MAFL")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--split", type=str, default='test',
help="train/val/test split.")
parser.add_argument("--lm-count", type=int, default=5,
help="how many landmarks")
parser.add_argument("--num-parts", type=int, default=NUM_PARTS,
help="Number of classes to predict (including background).")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--save-dir", type=str, default=SAVE_DIRECTORY,
help="Directory to store results")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
parser.add_argument("--crf", action="store_true",
help="crf")
parser.add_argument("--save-viz", action="store_true",
help="save visualization")
return parser.parse_args()
def read_frame(fpath, bbox):
img = iio.imread(fpath)
# crop img w.r.t bbox
img = img[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2]), :]
img = np.asarray(img, np.float32)
img -= IMG_MEAN
img = np.transpose(img, (2, 0, 1))
return torch.from_numpy(img).unsqueeze(0)
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
gpu0 = args.gpu
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
save_part_dir = os.path.join(args.save_dir, 'part_map')
if not os.path.exists(save_part_dir):
os.makedirs(save_part_dir)
save_overlay_dir = os.path.join(args.save_dir, 'part_overlay')
if not os.path.exists(save_overlay_dir):
os.makedirs(save_overlay_dir)
save_part_dcrf_dir = os.path.join(args.save_dir, 'part_map_dcrf')
if not os.path.exists(save_part_dcrf_dir):
os.makedirs(save_part_dcrf_dir)
save_dcrf_overlay_dir = os.path.join(args.save_dir, 'part_dcrf_overlay')
if not os.path.exists(save_dcrf_overlay_dir):
os.makedirs(save_dcrf_overlay_dir)
save_lm_dir = os.path.join(args.save_dir, 'landmarks')
if not os.path.exists(save_lm_dir):
os.makedirs(save_lm_dir)
save_seg_dir = os.path.join(args.save_dir, 'seg')
if not os.path.exists(save_seg_dir):
os.makedirs(save_seg_dir)
save_prob_dir = os.path.join(args.save_dir, 'prob')
if not os.path.exists(save_prob_dir):
os.makedirs(save_prob_dir)
save_dcrf_prob_dir = os.path.join(args.save_dir, 'dcrf_prob')
if not os.path.exists(save_dcrf_prob_dir):
os.makedirs(save_dcrf_prob_dir)
# create network
model = model_generator(args)
#model.load_state_dict(torch.load("snapshots_CelebA/SCOPS_K8_retrain/model_100000.pth"))
model.load_state_dict(torch.load(args.restore_from))
model.eval()
model.cuda(gpu0)
if args.dataset == 'CelebAWild':
from dataset.celeba_wild_dataset import CelebAWildDataset
dataset = CelebAWildDataset
testloader = data.DataLoader(dataset(args.data_dir, args.data_list, crop_size=input_size,
scale=False, mirror=False, mean=IMG_MEAN,
center_crop=False, ignore_saliency_fg=False, iou_threshold=0.3),
batch_size=1, shuffle=False, pin_memory=True)
elif args.dataset == 'cub':
from dataset import cub
args.batch_size = 1
testloader = cub.data_loader(args)
elif args.dataset == 'ImageNet':
from dataset import imagenet as imnet_data
args.batch_size = 1
testloader = imnet_data.imnet_dataloader(args)
elif args.dataset == 'p3d':
from dataset import p3d as p3d_data
args.batch_size = 1
testloader = p3d_data.p3d_dataloader(args)
else:
print('Not supported dataset {}'.format(args.dataset))
interp = nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
colorize = utils.Colorize(args.num_parts+1)
N = len(testloader)
landmarks = np.zeros((N, args.num_parts,2))
#landmarks_gt = np.zeros((N,args.lm_count,2))
with torch.no_grad():
for index, batch in enumerate(testloader):
"""
import pickle
with open("/xtli-correspondence/Data/trim/bboxes.npy", 'rb') as f:
bboxes = pickle.load(f)
bbox = np.squeeze(bboxes[0])
fpath = "/xtli-correspondence/Data/trim/output_00001.jpg"
fpath = "/xtli-correspondence/CUB_200_2011/images/001.Black_footed_Albatross/Black_Footed_Albatross_0039_796132.jpg"
bbox = np.array([122, 128, 481, 379])
img = read_frame(fpath, bbox)
batch = {}
batch['img'] = img
"""
if index % 100 == 0:
path_split = args.save_dir.split('/')
print('{} processd: {}/{}'.format(index, path_split[-4], path_split[-3]))
image = batch['img']
#label = batch['mask']
img_path = batch['img_path']
tmp = img_path[0].split("/")
img_folder = tmp[4]
img_nm = tmp[5].replace(".jpg", ".png")
size = input_size
output = model(image.cuda(gpu0))
output_raw = interp(output[2])
#permute = [0, 1, 4, 3, 2]
#import pdb; pdb.set_trace()
#output_raw = output_raw[:, permute, :, :]
lms = Batch_Get_Centers(output_raw)
landmarks[index,:,:] = lms
if args.save_viz:
mean_tensor = torch.tensor(IMG_MEAN).float().expand(int(size[1]), int(size[0]), 3).transpose(0,2)
imgs_viz = torch.clamp(image+mean_tensor, 0.0, 255.0)
#landmark visualization
lms_viz = Batch_Draw_GT_Landmarks(imgs_viz, output_raw, lms)
output = softmax(output_raw)
# normalize part
output /= output.max(dim=3, keepdim=True)[0].max(dim=2, keepdim=True)[0]
output[:,0,:,:] = 0.1
output = output.cpu().data[0].numpy()
#output = output[:,:size[0],:size[1]]
#gt = np.asarray(label[0].numpy()[:size[0],:size[1]], dtype=np.int)
output_np = output.transpose(1,2,0)
output_np = np.asarray(np.argmax(output_np, axis=2), dtype=np.int)
filename = os.path.join(save_prob_dir, '{}/{}'.format(img_folder, img_nm.replace("png","pth")))
file_dir = os.path.dirname(filename)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
#save probility map before softmax
torch.save(output_raw.cpu(), filename)
#Image.fromarray(output_np, 'P').save(filename)
filename = os.path.join(save_seg_dir, '{}/{}'.format(img_folder, img_nm))
file_dir = os.path.dirname(filename)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
pil_image = Image.fromarray(output_np.astype(dtype=np.uint8))
pil_image.save(filename, 'PNG')
seg_viz = colorize(output_np)
filename = os.path.join(save_part_dir, '{}/{}'.format(img_folder, img_nm))
file_dir = os.path.dirname(filename)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
Image.fromarray(seg_viz.squeeze().transpose(1, 2, 0), 'RGB').save(filename)
seg_overlay_viz = (imgs_viz.numpy()*0.8+ seg_viz*0.7).clip(0,255.0).astype(np.uint8)
filename = os.path.join(save_overlay_dir, '{}/{}'.format(img_folder, img_nm))
file_dir = os.path.dirname(filename)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
Image.fromarray(seg_overlay_viz.squeeze().transpose(1, 2, 0), 'RGB').save(filename)
if args.crf:
output_dcrf_prob = utils.denseCRF(imgs_viz.numpy().squeeze().transpose(1,2,0).astype(np.uint8).copy(), output)
filename = os.path.join(save_dcrf_prob_dir, '{}/{}'.format(img_folder, img_nm.replace(".png", ".npy").replace(".JPEG", ".npy")))
file_dir = os.path.dirname(filename)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
np.save(filename, output_dcrf_prob)
output_dcrf = np.asarray(np.argmax(output_dcrf_prob, axis=2), dtype=np.int)
seg_dcrf_viz = colorize(output_dcrf)
filename = os.path.join(save_part_dcrf_dir, '{}/{}'.format(img_folder, img_nm))
file_dir = os.path.dirname(filename)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
Image.fromarray(seg_dcrf_viz.squeeze().transpose(1, 2, 0), 'RGB').save(filename)
seg_dcrf_overlay_viz = (imgs_viz.numpy()*0.8+ seg_dcrf_viz*0.7).clip(0,255.0).astype(np.uint8)
filename = os.path.join(save_dcrf_overlay_dir, '{}/{}'.format(img_folder, img_nm))
file_dir = os.path.dirname(filename)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
Image.fromarray(seg_dcrf_overlay_viz.squeeze().transpose(1, 2, 0), 'RGB').save(filename)
filename_lm = os.path.join(save_lm_dir, '{}/{}'.format(img_folder, img_nm))
file_dir = os.path.dirname(filename_lm)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
Image.fromarray(lms_viz[0,:,:,:].transpose(1, 2, 0), 'RGB').save(filename_lm)
#np.save(os.path.join(args.save_dir, 'pred_kp.npy'), landmarks)
#np.save(os.path.join(args.save_dir, 'gt_kp.npy'), landmarks_gt)
if __name__ == '__main__':
main()