-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathrun_custom.py
228 lines (183 loc) · 8.94 KB
/
run_custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from bundlesdf import *
import argparse
import os,sys
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(code_dir)
from segmentation_utils import Segmenter
def run_one_video(video_dir='/home/bowen/debug/2022-11-18-15-10-24_milk', out_folder='/home/bowen/debug/bundlesdf_2022-11-18-15-10-24_milk/', use_segmenter=False, use_gui=False):
set_seed(0)
os.system(f'rm -rf {out_folder} && mkdir -p {out_folder}')
cfg_bundletrack = yaml.load(open(f"{code_dir}/BundleTrack/config_ho3d.yml",'r'))
cfg_bundletrack['SPDLOG'] = int(args.debug_level)
cfg_bundletrack['depth_processing']["percentile"] = 95
cfg_bundletrack['erode_mask'] = 3
cfg_bundletrack['debug_dir'] = out_folder+'/'
cfg_bundletrack['bundle']['max_BA_frames'] = 10
cfg_bundletrack['bundle']['max_optimized_feature_loss'] = 0.03
cfg_bundletrack['feature_corres']['max_dist_neighbor'] = 0.02
cfg_bundletrack['feature_corres']['max_normal_neighbor'] = 30
cfg_bundletrack['feature_corres']['max_dist_no_neighbor'] = 0.01
cfg_bundletrack['feature_corres']['max_normal_no_neighbor'] = 20
cfg_bundletrack['feature_corres']['map_points'] = True
cfg_bundletrack['feature_corres']['resize'] = 400
cfg_bundletrack['feature_corres']['rematch_after_nerf'] = True
cfg_bundletrack['keyframe']['min_rot'] = 5
cfg_bundletrack['ransac']['inlier_dist'] = 0.01
cfg_bundletrack['ransac']['inlier_normal_angle'] = 20
cfg_bundletrack['ransac']['max_trans_neighbor'] = 0.02
cfg_bundletrack['ransac']['max_rot_deg_neighbor'] = 30
cfg_bundletrack['ransac']['max_trans_no_neighbor'] = 0.01
cfg_bundletrack['ransac']['max_rot_no_neighbor'] = 10
cfg_bundletrack['p2p']['max_dist'] = 0.02
cfg_bundletrack['p2p']['max_normal_angle'] = 45
cfg_track_dir = f'{out_folder}/config_bundletrack.yml'
yaml.dump(cfg_bundletrack, open(cfg_track_dir,'w'))
cfg_nerf = yaml.load(open(f"{code_dir}/config.yml",'r'))
cfg_nerf['continual'] = True
cfg_nerf['trunc_start'] = 0.01
cfg_nerf['trunc'] = 0.01
cfg_nerf['mesh_resolution'] = 0.005
cfg_nerf['down_scale_ratio'] = 1
cfg_nerf['fs_sdf'] = 0.1
cfg_nerf['far'] = cfg_bundletrack['depth_processing']["zfar"]
cfg_nerf['datadir'] = f"{cfg_bundletrack['debug_dir']}/nerf_with_bundletrack_online"
cfg_nerf['notes'] = ''
cfg_nerf['expname'] = 'nerf_with_bundletrack_online'
cfg_nerf['save_dir'] = cfg_nerf['datadir']
cfg_nerf_dir = f'{out_folder}/config_nerf.yml'
yaml.dump(cfg_nerf, open(cfg_nerf_dir,'w'))
if use_segmenter:
segmenter = Segmenter()
tracker = BundleSdf(cfg_track_dir=cfg_track_dir, cfg_nerf_dir=cfg_nerf_dir, start_nerf_keyframes=5, use_gui=use_gui)
reader = YcbineoatReader(video_dir=video_dir, shorter_side=480)
for i in range(0,len(reader.color_files),args.stride):
color_file = reader.color_files[i]
color = cv2.imread(color_file)
H0, W0 = color.shape[:2]
depth = reader.get_depth(i)
H,W = depth.shape[:2]
color = cv2.resize(color, (W,H), interpolation=cv2.INTER_NEAREST)
depth = cv2.resize(depth, (W,H), interpolation=cv2.INTER_NEAREST)
if i==0:
mask = reader.get_mask(0)
mask = cv2.resize(mask, (W,H), interpolation=cv2.INTER_NEAREST)
if use_segmenter:
mask = segmenter.run(color_file.replace('rgb','masks'))
else:
if use_segmenter:
mask = segmenter.run(color_file.replace('rgb','masks'))
else:
mask = reader.get_mask(i)
mask = cv2.resize(mask, (W,H), interpolation=cv2.INTER_NEAREST)
if cfg_bundletrack['erode_mask']>0:
kernel = np.ones((cfg_bundletrack['erode_mask'], cfg_bundletrack['erode_mask']), np.uint8)
mask = cv2.erode(mask.astype(np.uint8), kernel)
id_str = reader.id_strs[i]
pose_in_model = np.eye(4)
K = reader.K.copy()
tracker.run(color, depth, K, id_str, mask=mask, occ_mask=None, pose_in_model=pose_in_model)
tracker.on_finish()
run_one_video_global_nerf(out_folder=out_folder)
def run_one_video_global_nerf(out_folder='/home/bowen/debug/bundlesdf_scan_coffee_415'):
set_seed(0)
out_folder += '/' #!NOTE there has to be a / in the end
cfg_bundletrack = yaml.load(open(f"{out_folder}/config_bundletrack.yml",'r'))
cfg_bundletrack['debug_dir'] = out_folder
cfg_track_dir = f"{out_folder}/config_bundletrack.yml"
yaml.dump(cfg_bundletrack, open(cfg_track_dir,'w'))
cfg_nerf = yaml.load(open(f"{out_folder}/config_nerf.yml",'r'))
cfg_nerf['n_step'] = 2000
cfg_nerf['N_samples'] = 64
cfg_nerf['N_samples_around_depth'] = 256
cfg_nerf['first_frame_weight'] = 1
cfg_nerf['down_scale_ratio'] = 1
cfg_nerf['finest_res'] = 256
cfg_nerf['num_levels'] = 16
cfg_nerf['mesh_resolution'] = 0.002
cfg_nerf['n_train_image'] = 500
cfg_nerf['fs_sdf'] = 0.1
cfg_nerf['frame_features'] = 2
cfg_nerf['rgb_weight'] = 100
cfg_nerf['i_img'] = np.inf
cfg_nerf['i_mesh'] = cfg_nerf['i_img']
cfg_nerf['i_nerf_normals'] = cfg_nerf['i_img']
cfg_nerf['i_save_ray'] = cfg_nerf['i_img']
cfg_nerf['datadir'] = f"{out_folder}/nerf_with_bundletrack_online"
cfg_nerf['save_dir'] = copy.deepcopy(cfg_nerf['datadir'])
os.makedirs(cfg_nerf['datadir'],exist_ok=True)
cfg_nerf_dir = f"{cfg_nerf['datadir']}/config.yml"
yaml.dump(cfg_nerf, open(cfg_nerf_dir,'w'))
reader = YcbineoatReader(video_dir=args.video_dir, downscale=1)
tracker = BundleSdf(cfg_track_dir=cfg_track_dir, cfg_nerf_dir=cfg_nerf_dir, start_nerf_keyframes=5)
tracker.cfg_nerf = cfg_nerf
tracker.run_global_nerf(reader=reader, get_texture=True, tex_res=512)
tracker.on_finish()
print(f"Done")
def postprocess_mesh(out_folder):
mesh_files = sorted(glob.glob(f'{out_folder}/**/nerf/*normalized_space.obj',recursive=True))
print(f"Using {mesh_files[-1]}")
os.makedirs(f"{out_folder}/mesh/",exist_ok=True)
print(f"\nSaving meshes to {out_folder}/mesh/\n")
mesh = trimesh.load(mesh_files[-1])
with open(f'{os.path.dirname(mesh_files[-1])}/config.yml','r') as ff:
cfg = yaml.load(ff)
tf = np.eye(4)
tf[:3,3] = cfg['translation']
tf1 = np.eye(4)
tf1[:3,:3] *= cfg['sc_factor']
tf = tf1@tf
mesh.apply_transform(np.linalg.inv(tf))
mesh.export(f"{out_folder}/mesh/mesh_real_scale.obj")
components = trimesh_split(mesh, min_edge=1000)
best_component = None
best_size = 0
for component in components:
dists = np.linalg.norm(component.vertices,axis=-1)
if len(component.vertices)>best_size:
best_size = len(component.vertices)
best_component = component
mesh = trimesh_clean(best_component)
mesh.export(f"{out_folder}/mesh/mesh_biggest_component.obj")
mesh = trimesh.smoothing.filter_laplacian(mesh,lamb=0.5, iterations=3, implicit_time_integration=False, volume_constraint=True, laplacian_operator=None)
mesh.export(f'{out_folder}/mesh/mesh_biggest_component_smoothed.obj')
def draw_pose():
K = np.loadtxt(f'{args.out_folder}/cam_K.txt').reshape(3,3)
color_files = sorted(glob.glob(f'{args.out_folder}/color/*'))
mesh = trimesh.load(f'{args.out_folder}/textured_mesh.obj')
to_origin, extents = trimesh.bounds.oriented_bounds(mesh)
bbox = np.stack([-extents/2, extents/2], axis=0).reshape(2,3)
out_dir = f'{args.out_folder}/pose_vis'
os.makedirs(out_dir, exist_ok=True)
logging.info(f"Saving to {out_dir}")
for color_file in color_files:
color = imageio.imread(color_file)
pose = np.loadtxt(color_file.replace('.png','.txt').replace('color','ob_in_cam'))
pose = [email protected](to_origin)
vis = draw_posed_3d_box(K, color, ob_in_cam=pose, bbox=bbox, line_color=(255,255,0))
id_str = os.path.basename(color_file).replace('.png','')
imageio.imwrite(f'{out_dir}/{id_str}.png', vis)
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default="run_video", help="run_video/global_refine/draw_pose")
parser.add_argument('--video_dir', type=str, default="/home/bowen/debug/2022-11-18-15-10-24_milk/")
parser.add_argument('--out_folder', type=str, default="/home/bowen/debug/bundlesdf_2022-11-18-15-10-24_milk")
parser.add_argument('--use_segmenter', type=int, default=0)
parser.add_argument('--use_gui', type=int, default=1)
parser.add_argument('--stride', type=int, default=1, help='interval of frames to run; 1 means using every frame')
parser.add_argument('--debug_level', type=int, default=2, help='higher means more logging')
args = parser.parse_args()
if args.mode=='run_video':
run_one_video(video_dir=args.video_dir, out_folder=args.out_folder, use_segmenter=args.use_segmenter, use_gui=args.use_gui)
elif args.mode=='global_refine':
run_one_video_global_nerf(out_folder=args.out_folder)
elif args.mode=='draw_pose':
draw_pose()
else:
raise RuntimeError