This folder contains the source code for ImageNet classification in Transformer-LS paper.
The implementation is based on ViL.
The long-short term attention implementation is here.
Model | #Params (M) | Image Size | FLOPs (G) | ImageNet top1 |
---|---|---|---|---|
ViL-LS-medium (224) | 39.8 | 2242 | 8.7 | 83.8 |
ViL-LS-base (224) | 55.8 | 2242 | 13.4 | 84.1 |
ViL-LS-medium (384) | 39.8 | 3842 | 28.7 | 84.4 |
This repo supports the following two ways to store the ImageNet data.
- If you specify the dataset name
in the evaluation or training scripts (see the Scripts section), the file structure should look like:
DATA.TRAIN "'imagenet-draco'," DATA.TEST "'imagenet-draco',"
imagenet ├── train-jpeg │ ├── class1 │ │ ├── img1.jpeg │ │ ├── img2.jpeg │ │ └── ... │ ├── class2 │ │ ├── img3.jpeg │ │ └── ... │ └── ... └── val-jpeg ├── class1 │ ├── img4.jpeg │ ├── img5.jpeg │ └── ... ├── class2 │ ├── img6.jpeg │ └── ... └── ...
- If you specify the dataset name
in the evaluation or training scripts, it supports zipped ImageNet format. You may find more details here.
DATA.TRAIN "'imagenet'," DATA.TEST "'imagenet',"
-
To evaluate the checkpoints, first change the path to the ImageNet dataset in the scripts undewr
launch/eval
, then execute the following:# directory for checkpoints mkdir checkpoints # evaluating medium 224 mkdir checkpoints/LS_medium_224 wget -O checkpoints/LS_medium_224/model_best.pth https://www.dropbox.com/s/ng14pebstaaydug/model_best.pth bash launch/eval/eval_medium_224.sh # evaluating base 224 mkdir checkpoints/LS_base_224 wget -O checkpoints/LS_base_224/model_best.pth https://www.dropbox.com/s/80u5p5eh4txad10/model_best.pth bash launch/eval/eval_base_224.sh # evaluating medium 384 mkdir checkpoints/LS_medium_384 wget -O checkpoints/LS_medium_384/model_best.pth https://www.dropbox.com/s/390tzi2ll3sfibl/model_best.pth bash launch/eval/eval_medium_384.sh
-
To train the models, run the following scripts (modify the dataset path accordingly):
bash launch/train/train_medium_224.sh bash launch/train/train_base_224.sh bash launch/train/train_medium_384.sh