Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG] test_mod_mixed decimal test fails on 330db (Databricks 11.3) and TBD 340 #7595

Closed
gerashegalov opened this issue Jan 26, 2023 · 0 comments · Fixed by #7609
Closed

[BUG] test_mod_mixed decimal test fails on 330db (Databricks 11.3) and TBD 340 #7595

gerashegalov opened this issue Jan 26, 2023 · 0 comments · Fixed by #7609
Assignees
Labels
bug Something isn't working P0 Must have for release

Comments

@gerashegalov
Copy link
Collaborator

gerashegalov commented Jan 26, 2023

Describe the bug
test_mod_mixed fails for 330db with

lhs = Decimal(16,7), rhs = Decimal(30,12)

    @pytest.mark.parametrize('lhs', [byte_gen, short_gen, int_gen, long_gen, DecimalGen(6, 5),
        DecimalGen(6, 4), DecimalGen(5, 4), DecimalGen(5, 3), DecimalGen(4, 2), DecimalGen(3, -2),
        DecimalGen(16, 7), DecimalGen(19, 0), DecimalGen(30, 10)], ids=idfn)
    @pytest.mark.parametrize('rhs', [byte_gen, short_gen, int_gen, long_gen, DecimalGen(6, 3),
        DecimalGen(10, -2), DecimalGen(15, 3), DecimalGen(30, 12), DecimalGen(3, -3),
        DecimalGen(27, 7), DecimalGen(20, -3)], ids=idfn)
    def test_mod_mixed(lhs, rhs):
>       assert_gpu_and_cpu_are_equal_collect(
            lambda spark : two_col_df(spark, lhs, rhs).selectExpr(f"a % b"))
Detailed stack trace
../../src/main/python/arithmetic_ops_test.py:387: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
../../src/main/python/asserts.py:548: in assert_gpu_and_cpu_are_equal_collect
    _assert_gpu_and_cpu_are_equal(func, 'COLLECT', conf=conf, is_cpu_first=is_cpu_first)
../../src/main/python/asserts.py:468: in _assert_gpu_and_cpu_are_equal
    run_on_gpu()
../../src/main/python/asserts.py:462: in run_on_gpu
    from_gpu = with_gpu_session(bring_back, conf=conf)
../../src/main/python/spark_session.py:130: in with_gpu_session
    return with_spark_session(func, conf=copy)
../../src/main/python/spark_session.py:97: in with_spark_session
    ret = func(_spark)
../../src/main/python/asserts.py:201: in 
    bring_back = lambda spark: limit_func(spark).collect()
/databricks/spark/python/pyspark/instrumentation_utils.py:48: in wrapper
    res = func(*args, **kwargs)
/databricks/spark/python/pyspark/sql/dataframe.py:837: in collect
    sock_info = self._jdf.collectToPython()
/databricks/spark/python/lib/py4j-0.10.9.5-src.zip/py4j/java_gateway.py:1321: in __call__
    return_value = get_return_value(
/databricks/spark/python/pyspark/sql/utils.py:196: in deco
    return f(*a, **kw)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

answer = 'xro252469'
gateway_client = <py4j.clientserver.JavaClient object at 0x7f76c236a850>
target_id = 'o252466', name = 'collectToPython'

def get_return_value(answer, gateway_client, target_id=None, name=None):
    """Converts an answer received from the Java gateway into a Python object.

    For example, string representation of integers are converted to Python
    integer, string representation of objects are converted to JavaObject
    instances, etc.

    :param answer: the string returned by the Java gateway
    :param gateway_client: the gateway client used to communicate with the Java
        Gateway. Only necessary if the answer is a reference (e.g., object,
        list, map)
    :param target_id: the name of the object from which the answer comes from
        (e.g., *object1* in `object1.hello()`). Optional.
    :param name: the name of the member from which the answer comes from
        (e.g., *hello* in `object1.hello()`). Optional.
    """
    if is_error(answer)[0]:
        if len(answer) > 1:
            type = answer[1]
            value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
            if answer[1] == REFERENCE_TYPE:
              raise Py4JJavaError(
                    "An error occurred while calling {0}{1}{2}.\n".
                    format(target_id, ".", name), value)

E py4j.protocol.Py4JJavaError: An error occurred while calling o252466.collectToPython.
E : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2671.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2671.0 (TID 10684) (10.2.128.5 executor driver): java.lang.IllegalArgumentException: Both columns must be of the same fixed_point type
E at ai.rapids.cudf.BinaryOperable.implicitConversion(BinaryOperable.java:84)
E at com.nvidia.spark.rapids.CudfBinaryExpression.outputType(GpuExpressions.scala:284)
E at com.nvidia.spark.rapids.CudfBinaryExpression.outputType$(GpuExpressions.scala:281)
E at com.nvidia.spark.rapids.CudfBinaryOperator.outputType(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.CudfBinaryExpression.doColumnar(GpuExpressions.scala:294)
E at com.nvidia.spark.rapids.CudfBinaryExpression.doColumnar$(GpuExpressions.scala:290)
E at com.nvidia.spark.rapids.CudfBinaryOperator.doColumnar(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.CudfBinaryExpression.doColumnar(GpuExpressions.scala:309)
E at com.nvidia.spark.rapids.CudfBinaryExpression.doColumnar$(GpuExpressions.scala:308)
E at org.apache.spark.sql.rapids.GpuRemainderBase.org$apache$spark$sql$rapids$GpuDivModLike$$super$doColumnar(arithmetic.scala:1057)
E at org.apache.spark.sql.rapids.GpuDivModLike.$anonfun$doColumnar$10(arithmetic.scala:763)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.CudfBinaryOperator.withResource(GpuExpressions.scala:336)
E at org.apache.spark.sql.rapids.GpuDivModLike.doColumnar(arithmetic.scala:762)
E at org.apache.spark.sql.rapids.GpuDivModLike.doColumnar$(arithmetic.scala:747)
E at org.apache.spark.sql.rapids.GpuRemainderBase.doColumnar(arithmetic.scala:1057)
E at com.nvidia.spark.rapids.GpuBinaryExpression.$anonfun$columnarEval$3(GpuExpressions.scala:257)
E at com.nvidia.spark.rapids.Arm.withResourceIfAllowed(Arm.scala:73)
E at com.nvidia.spark.rapids.Arm.withResourceIfAllowed$(Arm.scala:71)
E at com.nvidia.spark.rapids.CudfBinaryOperator.withResourceIfAllowed(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.GpuBinaryExpression.$anonfun$columnarEval$2(GpuExpressions.scala:254)
E at com.nvidia.spark.rapids.Arm.withResourceIfAllowed(Arm.scala:73)
E at com.nvidia.spark.rapids.Arm.withResourceIfAllowed$(Arm.scala:71)
E at com.nvidia.spark.rapids.CudfBinaryOperator.withResourceIfAllowed(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.GpuBinaryExpression.columnarEval(GpuExpressions.scala:253)
E at com.nvidia.spark.rapids.GpuBinaryExpression.columnarEval$(GpuExpressions.scala:252)
E at com.nvidia.spark.rapids.CudfBinaryOperator.columnarEval(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$ReallyAGpuExpression.columnarEval(implicits.scala:34)
E at com.nvidia.spark.rapids.GpuAlias.columnarEval(namedExpressions.scala:109)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$ReallyAGpuExpression.columnarEval(implicits.scala:34)
E at com.nvidia.spark.rapids.GpuExpressionsUtils$.columnarEvalToColumn(GpuExpressions.scala:94)
E at com.nvidia.spark.rapids.GpuProjectExec$.projectSingle(basicPhysicalOperators.scala:108)
E at com.nvidia.spark.rapids.GpuProjectExec$.$anonfun$project$1(basicPhysicalOperators.scala:115)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$MapsSafely.$anonfun$safeMap$1(implicits.scala:216)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$MapsSafely.$anonfun$safeMap$1$adapted(implicits.scala:213)
E at scala.collection.immutable.List.foreach(List.scala:431)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$MapsSafely.safeMap(implicits.scala:213)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$AutoCloseableProducingSeq.safeMap(implicits.scala:248)
E at com.nvidia.spark.rapids.GpuProjectExec$.project(basicPhysicalOperators.scala:115)
E at com.nvidia.spark.rapids.GpuTieredProject.$anonfun$tieredProject$1(basicPhysicalOperators.scala:335)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.GpuTieredProject.withResource(basicPhysicalOperators.scala:286)
E at com.nvidia.spark.rapids.GpuTieredProject.recurse$1(basicPhysicalOperators.scala:334)
E at com.nvidia.spark.rapids.GpuTieredProject.tieredProject(basicPhysicalOperators.scala:354)
E at com.nvidia.spark.rapids.GpuTieredProject.$anonfun$tieredProjectAndClose$2(basicPhysicalOperators.scala:360)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.GpuTieredProject.withResource(basicPhysicalOperators.scala:286)
E at com.nvidia.spark.rapids.GpuTieredProject.$anonfun$tieredProjectAndClose$1(basicPhysicalOperators.scala:359)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.GpuTieredProject.withResource(basicPhysicalOperators.scala:286)
E at com.nvidia.spark.rapids.GpuTieredProject.tieredProjectAndClose(basicPhysicalOperators.scala:358)
E at com.nvidia.spark.rapids.GpuProjectExec.$anonfun$doExecuteColumnar$1(basicPhysicalOperators.scala:177)
E at scala.collection.Iterator$$anon$10.next(Iterator.scala:461)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.$anonfun$fetchNextBatch$2(GpuColumnarToRowExec.scala:241)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.withResource(GpuColumnarToRowExec.scala:187)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.fetchNextBatch(GpuColumnarToRowExec.scala:238)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.loadNextBatch(GpuColumnarToRowExec.scala:215)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.hasNext(GpuColumnarToRowExec.scala:255)
E at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
E at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.encodeUnsafeRows(UnsafeRowBatchUtils.scala:80)
E at org.apache.spark.sql.execution.collect.Collector.$anonfun$processFunc$1(Collector.scala:186)
E at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75)
E at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
E at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75)
E at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
E at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55)
E at org.apache.spark.scheduler.Task.doRunTask(Task.scala:169)
E at org.apache.spark.scheduler.Task.$anonfun$run$4(Task.scala:137)
E at com.databricks.unity.EmptyHandle$.runWithAndClose(UCSHandle.scala:125)
E at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:137)
E at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
E at org.apache.spark.scheduler.Task.run(Task.scala:96)
E at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:902)
E at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1696)
E at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:905)
E at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
E at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
E at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:760)
E at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
E at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
E at java.lang.Thread.run(Thread.java:750)
E
E Driver stacktrace:
E at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:3312)
E at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:3244)
E at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:3235)
E at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
E at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
E at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
E at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:3235)
E at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1424)
E at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1424)
E at scala.Option.foreach(Option.scala:407)
E at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1424)
E at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3524)
E at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:3462)
E at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:3450)
E at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:51)
E at org.apache.spark.scheduler.DAGScheduler.$anonfun$runJob$1(DAGScheduler.scala:1169)
E at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
E at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
E at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:1157)
E at org.apache.spark.SparkContext.runJobInternal(SparkContext.scala:2727)
E at org.apache.spark.sql.execution.collect.Collector.$anonfun$runSparkJobs$1(Collector.scala:274)
E at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
E at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
E at org.apache.spark.sql.execution.collect.Collector.runSparkJobs(Collector.scala:271)
E at org.apache.spark.sql.execution.collect.Collector.collect(Collector.scala:322)
E at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:105)
E at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:112)
E at org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:115)
E at org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:104)
E at org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:88)
E at org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$computeResult$1(ResultCacheManager.scala:531)
E at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
E at org.apache.spark.sql.execution.qrc.ResultCacheManager.collectResult$1(ResultCacheManager.scala:519)
E at org.apache.spark.sql.execution.qrc.ResultCacheManager.computeResult(ResultCacheManager.scala:539)
E at org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$getOrComputeResultInternal$1(ResultCacheManager.scala:396)
E at scala.Option.getOrElse(Option.scala:189)
E at org.apache.spark.sql.execution.qrc.ResultCacheManager.getOrComputeResultInternal(ResultCacheManager.scala:390)
E at org.apache.spark.sql.execution.qrc.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:292)
E at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeCollectResult$1(SparkPlan.scala:433)
E at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
E at org.apache.spark.sql.execution.SparkPlan.executeCollectResult(SparkPlan.scala:430)
E at org.apache.spark.sql.Dataset.$anonfun$collectToPython$1(Dataset.scala:4052)
E at org.apache.spark.sql.Dataset.$anonfun$withAction$3(Dataset.scala:4292)
E at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:777)
E at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4290)
E at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$8(SQLExecution.scala:243)
E at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:392)
E at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$1(SQLExecution.scala:188)
E at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:985)
E at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:142)
E at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:342)
E at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4290)
E at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:4050)
E at sun.reflect.GeneratedMethodAccessor139.invoke(Unknown Source)
E at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
E at java.lang.reflect.Method.invoke(Method.java:498)
E at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
E at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
E at py4j.Gateway.invoke(Gateway.java:306)
E at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
E at py4j.commands.CallCommand.execute(CallCommand.java:79)
E at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:195)
E at py4j.ClientServerConnection.run(ClientServerConnection.java:115)
E at java.lang.Thread.run(Thread.java:750)
E Caused by: java.lang.IllegalArgumentException: Both columns must be of the same fixed_point type
E at ai.rapids.cudf.BinaryOperable.implicitConversion(BinaryOperable.java:84)
E at com.nvidia.spark.rapids.CudfBinaryExpression.outputType(GpuExpressions.scala:284)
E at com.nvidia.spark.rapids.CudfBinaryExpression.outputType$(GpuExpressions.scala:281)
E at com.nvidia.spark.rapids.CudfBinaryOperator.outputType(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.CudfBinaryExpression.doColumnar(GpuExpressions.scala:294)
E at com.nvidia.spark.rapids.CudfBinaryExpression.doColumnar$(GpuExpressions.scala:290)
E at com.nvidia.spark.rapids.CudfBinaryOperator.doColumnar(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.CudfBinaryExpression.doColumnar(GpuExpressions.scala:309)
E at com.nvidia.spark.rapids.CudfBinaryExpression.doColumnar$(GpuExpressions.scala:308)
E at org.apache.spark.sql.rapids.GpuRemainderBase.org$apache$spark$sql$rapids$GpuDivModLike$$super$doColumnar(arithmetic.scala:1057)
E at org.apache.spark.sql.rapids.GpuDivModLike.$anonfun$doColumnar$10(arithmetic.scala:763)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.CudfBinaryOperator.withResource(GpuExpressions.scala:336)
E at org.apache.spark.sql.rapids.GpuDivModLike.doColumnar(arithmetic.scala:762)
E at org.apache.spark.sql.rapids.GpuDivModLike.doColumnar$(arithmetic.scala:747)
E at org.apache.spark.sql.rapids.GpuRemainderBase.doColumnar(arithmetic.scala:1057)
E at com.nvidia.spark.rapids.GpuBinaryExpression.$anonfun$columnarEval$3(GpuExpressions.scala:257)
E at com.nvidia.spark.rapids.Arm.withResourceIfAllowed(Arm.scala:73)
E at com.nvidia.spark.rapids.Arm.withResourceIfAllowed$(Arm.scala:71)
E at com.nvidia.spark.rapids.CudfBinaryOperator.withResourceIfAllowed(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.GpuBinaryExpression.$anonfun$columnarEval$2(GpuExpressions.scala:254)
E at com.nvidia.spark.rapids.Arm.withResourceIfAllowed(Arm.scala:73)
E at com.nvidia.spark.rapids.Arm.withResourceIfAllowed$(Arm.scala:71)
E at com.nvidia.spark.rapids.CudfBinaryOperator.withResourceIfAllowed(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.GpuBinaryExpression.columnarEval(GpuExpressions.scala:253)
E at com.nvidia.spark.rapids.GpuBinaryExpression.columnarEval$(GpuExpressions.scala:252)
E at com.nvidia.spark.rapids.CudfBinaryOperator.columnarEval(GpuExpressions.scala:336)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$ReallyAGpuExpression.columnarEval(implicits.scala:34)
E at com.nvidia.spark.rapids.GpuAlias.columnarEval(namedExpressions.scala:109)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$ReallyAGpuExpression.columnarEval(implicits.scala:34)
E at com.nvidia.spark.rapids.GpuExpressionsUtils$.columnarEvalToColumn(GpuExpressions.scala:94)
E at com.nvidia.spark.rapids.GpuProjectExec$.projectSingle(basicPhysicalOperators.scala:108)
E at com.nvidia.spark.rapids.GpuProjectExec$.$anonfun$project$1(basicPhysicalOperators.scala:115)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$MapsSafely.$anonfun$safeMap$1(implicits.scala:216)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$MapsSafely.$anonfun$safeMap$1$adapted(implicits.scala:213)
E at scala.collection.immutable.List.foreach(List.scala:431)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$MapsSafely.safeMap(implicits.scala:213)
E at com.nvidia.spark.rapids.RapidsPluginImplicits$AutoCloseableProducingSeq.safeMap(implicits.scala:248)
E at com.nvidia.spark.rapids.GpuProjectExec$.project(basicPhysicalOperators.scala:115)
E at com.nvidia.spark.rapids.GpuTieredProject.$anonfun$tieredProject$1(basicPhysicalOperators.scala:335)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.GpuTieredProject.withResource(basicPhysicalOperators.scala:286)
E at com.nvidia.spark.rapids.GpuTieredProject.recurse$1(basicPhysicalOperators.scala:334)
E at com.nvidia.spark.rapids.GpuTieredProject.tieredProject(basicPhysicalOperators.scala:354)
E at com.nvidia.spark.rapids.GpuTieredProject.$anonfun$tieredProjectAndClose$2(basicPhysicalOperators.scala:360)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.GpuTieredProject.withResource(basicPhysicalOperators.scala:286)
E at com.nvidia.spark.rapids.GpuTieredProject.$anonfun$tieredProjectAndClose$1(basicPhysicalOperators.scala:359)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.GpuTieredProject.withResource(basicPhysicalOperators.scala:286)
E at com.nvidia.spark.rapids.GpuTieredProject.tieredProjectAndClose(basicPhysicalOperators.scala:358)
E at com.nvidia.spark.rapids.GpuProjectExec.$anonfun$doExecuteColumnar$1(basicPhysicalOperators.scala:177)
E at scala.collection.Iterator$$anon$10.next(Iterator.scala:461)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.$anonfun$fetchNextBatch$2(GpuColumnarToRowExec.scala:241)
E at com.nvidia.spark.rapids.Arm.withResource(Arm.scala:28)
E at com.nvidia.spark.rapids.Arm.withResource$(Arm.scala:26)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.withResource(GpuColumnarToRowExec.scala:187)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.fetchNextBatch(GpuColumnarToRowExec.scala:238)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.loadNextBatch(GpuColumnarToRowExec.scala:215)
E at com.nvidia.spark.rapids.ColumnarToRowIterator.hasNext(GpuColumnarToRowExec.scala:255)
E at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
E at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.encodeUnsafeRows(UnsafeRowBatchUtils.scala:80)
E at org.apache.spark.sql.execution.collect.Collector.$anonfun$processFunc$1(Collector.scala:186)
E at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75)
E at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
E at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75)
E at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
E at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55)
E at org.apache.spark.scheduler.Task.doRunTask(Task.scala:169)
E at org.apache.spark.scheduler.Task.$anonfun$run$4(Task.scala:137)
E at com.databricks.unity.EmptyHandle$.runWithAndClose(UCSHandle.scala:125)
E at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:137)
E at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
E at org.apache.spark.scheduler.Task.run(Task.scala:96)
E at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:902)
E at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1696)
E at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:905)
E at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
E at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110)
E at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:760)
E at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
E at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
E ... 1 more

/databricks/spark/python/lib/py4j-0.10.9.5-src.zip/py4j/protocol.py:326: Py4JJavaError

Steps/Code to reproduce bug

TEST=test_mod_mixed ./jenkins/databricks/test.sh

Expected behavior
should pass :)

Environment details (please complete the following information)

  • Environment location: Databricks 11.3

probably broken locally on 3.4 as well

Additional context
Similar to #7465 addition/subtraction

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working P0 Must have for release
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants