diff --git a/docs/supported_ops.md b/docs/supported_ops.md index 8d9dc3151cb..cdd8f6f1105 100644 --- a/docs/supported_ops.md +++ b/docs/supported_ops.md @@ -556,7 +556,7 @@ Accelerator supports are described below. S NS NS -PS
not allowed for grouping expressions;
UTC is only supported TZ for child TIMESTAMP;
unsupported child types BINARY, CALENDAR, UDT
+PS
not allowed for grouping expressions if containing Struct as child;
UTC is only supported TZ for child TIMESTAMP;
unsupported child types BINARY, CALENDAR, UDT
PS
not allowed for grouping expressions;
UTC is only supported TZ for child TIMESTAMP;
unsupported child types BINARY, CALENDAR, UDT
PS
not allowed for grouping expressions if containing Array or Map as child;
UTC is only supported TZ for child TIMESTAMP;
unsupported child types BINARY, CALENDAR, UDT
NS @@ -724,7 +724,7 @@ Accelerator supports are described below. S S NS -PS
Round-robin partitioning is not supported if spark.sql.execution.sortBeforeRepartition is true;
UTC is only supported TZ for child TIMESTAMP;
unsupported child types CALENDAR, UDT
+PS
UTC is only supported TZ for child TIMESTAMP;
unsupported child types CALENDAR, UDT
PS
Round-robin partitioning is not supported if spark.sql.execution.sortBeforeRepartition is true;
UTC is only supported TZ for child TIMESTAMP;
unsupported child types CALENDAR, UDT
PS
Round-robin partitioning is not supported for nested structs if spark.sql.execution.sortBeforeRepartition is true;
UTC is only supported TZ for child TIMESTAMP;
unsupported child types CALENDAR, UDT
NS @@ -7737,45 +7737,45 @@ are limited. None project input - - - - - S S - - - - - - - - - - - +S +S +S +S +S +S +PS
UTC is only supported TZ for TIMESTAMP
+S +S +S +S +S +PS
UTC is only supported TZ for child TIMESTAMP
+PS
UTC is only supported TZ for child TIMESTAMP
+PS
UTC is only supported TZ for child TIMESTAMP
+S result - - - - - S S - - - - - - - - - - - +S +S +S +S +S +S +PS
UTC is only supported TZ for TIMESTAMP
+S +S +S +S +S +PS
UTC is only supported TZ for child TIMESTAMP
+PS
UTC is only supported TZ for child TIMESTAMP
+PS
UTC is only supported TZ for child TIMESTAMP
+S KnownNotNull @@ -18594,9 +18594,9 @@ as `a` don't show up in the table. They are controlled by the rules for S NS NS +PS
UTC is only supported TZ for child TIMESTAMP;
unsupported child types BINARY, CALENDAR, MAP, UDT
NS -NS -PS
UTC is only supported TZ for child TIMESTAMP;
unsupported child types BINARY, CALENDAR, ARRAY, MAP, UDT
+PS
UTC is only supported TZ for child TIMESTAMP;
unsupported child types BINARY, CALENDAR, MAP, UDT
NS diff --git a/integration_tests/src/main/python/hash_aggregate_test.py b/integration_tests/src/main/python/hash_aggregate_test.py index ce2ffcf3094..752a461f58f 100644 --- a/integration_tests/src/main/python/hash_aggregate_test.py +++ b/integration_tests/src/main/python/hash_aggregate_test.py @@ -128,6 +128,19 @@ ('b', FloatGen(nullable=(True, 10.0), special_cases=[(float('nan'), 10.0)])), ('c', LongGen())] +# grouping single-level lists +_grpkey_list_with_non_nested_children = [[('a', RepeatSeqGen(ArrayGen(data_gen), length=3)), + ('b', IntegerGen())] for data_gen in all_basic_gens + decimal_gens] + +#grouping mutliple-level structs with arrays +_grpkey_nested_structs_with_array_basic_child = [ + ('a', RepeatSeqGen(StructGen([ + ['aa', IntegerGen()], + ['ab', ArrayGen(IntegerGen())]]), + length=20)), + ('b', IntegerGen()), + ('c', NullGen())] + _nan_zero_float_special_cases = [ (float('nan'), 5.0), (NEG_FLOAT_NAN_MIN_VALUE, 5.0), @@ -335,7 +348,7 @@ def test_hash_reduction_decimal_overflow_sum(precision): # some optimizations are conspiring against us. conf = {'spark.rapids.sql.batchSizeBytes': '128m'}) -@pytest.mark.parametrize('data_gen', [_longs_with_nulls], ids=idfn) +@pytest.mark.parametrize('data_gen', [_grpkey_nested_structs_with_array_basic_child, _longs_with_nulls] + _grpkey_list_with_non_nested_children, ids=idfn) def test_hash_grpby_sum_count_action(data_gen): assert_gpu_and_cpu_row_counts_equal( lambda spark: gen_df(spark, data_gen, length=100).groupby('a').agg(f.sum('b')) diff --git a/integration_tests/src/main/python/repart_test.py b/integration_tests/src/main/python/repart_test.py index 7b77b7be426..b12a680d3eb 100644 --- a/integration_tests/src/main/python/repart_test.py +++ b/integration_tests/src/main/python/repart_test.py @@ -214,10 +214,23 @@ def test_round_robin_sort_fallback(data_gen): lambda spark : gen_df(spark, data_gen).withColumn('extra', lit(1)).repartition(13), 'ShuffleExchangeExec') +@allow_non_gpu("ProjectExec", "ShuffleExchangeExec") +@ignore_order(local=True) # To avoid extra data shuffle by 'sort on Spark' for this repartition test. +@pytest.mark.parametrize('num_parts', [2, 10, 17, 19, 32], ids=idfn) +@pytest.mark.parametrize('gen', [([('ag', ArrayGen(StructGen([('b1', long_gen)])))], ['ag'])], ids=idfn) +def test_hash_repartition_exact_fallback(gen, num_parts): + data_gen = gen[0] + part_on = gen[1] + assert_gpu_fallback_collect( + lambda spark : gen_df(spark, data_gen, length=1024) \ + .repartition(num_parts, *part_on) \ + .withColumn('id', f.spark_partition_id()) \ + .selectExpr('*'), "ShuffleExchangeExec") + @ignore_order(local=True) # To avoid extra data shuffle by 'sort on Spark' for this repartition test. @pytest.mark.parametrize('num_parts', [1, 2, 10, 17, 19, 32], ids=idfn) @pytest.mark.parametrize('gen', [ - ([('a', boolean_gen)], ['a']), + ([('a', boolean_gen)], ['a']), ([('a', byte_gen)], ['a']), ([('a', short_gen)], ['a']), ([('a', int_gen)], ['a']), diff --git a/sql-plugin/src/main/scala/com/nvidia/spark/rapids/GpuOverrides.scala b/sql-plugin/src/main/scala/com/nvidia/spark/rapids/GpuOverrides.scala index 30a18b6d77f..cf33be44905 100644 --- a/sql-plugin/src/main/scala/com/nvidia/spark/rapids/GpuOverrides.scala +++ b/sql-plugin/src/main/scala/com/nvidia/spark/rapids/GpuOverrides.scala @@ -1645,9 +1645,7 @@ object GpuOverrides extends Logging { }), expr[KnownFloatingPointNormalized]( "Tag to prevent redundant normalization", - ExprChecks.unaryProjectInputMatchesOutput( - TypeSig.DOUBLE + TypeSig.FLOAT, - TypeSig.DOUBLE + TypeSig.FLOAT), + ExprChecks.unaryProjectInputMatchesOutput(TypeSig.all, TypeSig.all), (a, conf, p, r) => new UnaryExprMeta[KnownFloatingPointNormalized](a, conf, p, r) { override def convertToGpu(child: Expression): GpuExpression = GpuKnownFloatingPointNormalized(child) @@ -3692,11 +3690,26 @@ object GpuOverrides extends Logging { // This needs to match what murmur3 supports. PartChecks(RepeatingParamCheck("hash_key", (TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL_128 + - TypeSig.STRUCT).nested(), TypeSig.all)), + TypeSig.STRUCT + TypeSig.ARRAY).nested(), + TypeSig.all) + ), (hp, conf, p, r) => new PartMeta[HashPartitioning](hp, conf, p, r) { override val childExprs: Seq[BaseExprMeta[_]] = hp.expressions.map(GpuOverrides.wrapExpr(_, conf, Some(this))) + override def tagPartForGpu(): Unit = { + val arrayWithStructsHashing = hp.expressions.exists(e => + TrampolineUtil.dataTypeExistsRecursively(e.dataType, + dt => dt match { + case ArrayType(_: StructType, _) => true + case _ => false + }) + ) + if (arrayWithStructsHashing) { + willNotWorkOnGpu("hashing arrays with structs is not supported") + } + } + override def convertToGpu(): GpuPartitioning = GpuHashPartitioning(childExprs.map(_.convertToGpu()), hp.numPartitions) }), @@ -3912,7 +3925,7 @@ object GpuOverrides extends Logging { .withPsNote(TypeEnum.STRUCT, "Round-robin partitioning is not supported for nested " + s"structs if ${SQLConf.SORT_BEFORE_REPARTITION.key} is true") .withPsNote( - Seq(TypeEnum.ARRAY, TypeEnum.MAP), + Seq(TypeEnum.MAP), "Round-robin partitioning is not supported if " + s"${SQLConf.SORT_BEFORE_REPARTITION.key} is true"), TypeSig.all), @@ -3974,10 +3987,12 @@ object GpuOverrides extends Logging { "The backend for hash based aggregations", ExecChecks( (TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL_128 + - TypeSig.MAP + TypeSig.ARRAY + TypeSig.STRUCT) + TypeSig.MAP + TypeSig.STRUCT + TypeSig.ARRAY) .nested() - .withPsNote(Seq(TypeEnum.ARRAY, TypeEnum.MAP), + .withPsNote(TypeEnum.MAP, "not allowed for grouping expressions") + .withPsNote(TypeEnum.ARRAY, + "not allowed for grouping expressions if containing Struct as child") .withPsNote(TypeEnum.STRUCT, "not allowed for grouping expressions if containing Array or Map as child"), TypeSig.all), diff --git a/sql-plugin/src/main/scala/com/nvidia/spark/rapids/aggregate.scala b/sql-plugin/src/main/scala/com/nvidia/spark/rapids/aggregate.scala index 3a9c9595ab2..6eb222335cd 100644 --- a/sql-plugin/src/main/scala/com/nvidia/spark/rapids/aggregate.scala +++ b/sql-plugin/src/main/scala/com/nvidia/spark/rapids/aggregate.scala @@ -42,7 +42,7 @@ import org.apache.spark.sql.execution.{ExplainUtils, SortExec, SparkPlan} import org.apache.spark.sql.execution.aggregate.{BaseAggregateExec, HashAggregateExec, ObjectHashAggregateExec, SortAggregateExec} import org.apache.spark.sql.rapids.{CpuToGpuAggregateBufferConverter, CudfAggregate, GpuAggregateExpression, GpuToCpuAggregateBufferConverter} import org.apache.spark.sql.rapids.execution.{GpuShuffleMeta, TrampolineUtil} -import org.apache.spark.sql.types.{ArrayType, DataType, MapType} +import org.apache.spark.sql.types.{ArrayType, DataType, MapType, StructType} import org.apache.spark.sql.vectorized.ColumnarBatch object AggregateUtils { @@ -852,13 +852,27 @@ abstract class GpuBaseAggregateMeta[INPUT <: SparkPlan]( groupingExpressions ++ aggregateExpressions ++ aggregateAttributes ++ resultExpressions override def tagPlanForGpu(): Unit = { - // We don't support Arrays and Maps as GroupBy keys yet, even they are nested in Structs. So, + // We don't support Maps as GroupBy keys yet, even if they are nested in Structs. So, // we need to run recursive type check on the structs. - val arrayOrMapGroupings = agg.groupingExpressions.exists(e => + val mapGroupings = agg.groupingExpressions.exists(e => TrampolineUtil.dataTypeExistsRecursively(e.dataType, - dt => dt.isInstanceOf[ArrayType] || dt.isInstanceOf[MapType])) - if (arrayOrMapGroupings) { - willNotWorkOnGpu("ArrayTypes or MapTypes in grouping expressions are not supported") + dt => dt.isInstanceOf[MapType])) + if (mapGroupings) { + willNotWorkOnGpu("MapTypes in grouping expressions are not supported") + } + + // We support Arrays as grouping expression but not if the child is a struct. So we need to + // run recursive type check on the lists of structs + val arrayWithStructsGroupings = agg.groupingExpressions.exists(e => + TrampolineUtil.dataTypeExistsRecursively(e.dataType, + dt => dt match { + case ArrayType(_: StructType, _) => true + case _ => false + }) + ) + if (arrayWithStructsGroupings) { + willNotWorkOnGpu("ArrayTypes with Struct children in grouping expressions are not " + + "supported") } tagForReplaceMode() diff --git a/tools/src/main/resources/supportedExprs.csv b/tools/src/main/resources/supportedExprs.csv index cd37c792ccc..7b93812944c 100644 --- a/tools/src/main/resources/supportedExprs.csv +++ b/tools/src/main/resources/supportedExprs.csv @@ -263,8 +263,8 @@ IsNull,S,`isnull`,None,project,input,S,S,S,S,S,S,S,S,PS,S,S,S,S,NS,PS,PS,PS,NS IsNull,S,`isnull`,None,project,result,S,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA JsonToStructs,NS,`from_json`,This is disabled by default because parsing JSON from a column has a large number of issues and should be considered beta quality right now.,project,jsonStr,NA,NA,NA,NA,NA,NA,NA,NA,NA,S,NA,NA,NA,NA,NA,NA,NA,NA JsonToStructs,NS,`from_json`,This is disabled by default because parsing JSON from a column has a large number of issues and should be considered beta quality right now.,project,result,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NS,PS,NS,NA -KnownFloatingPointNormalized,S, ,None,project,input,NA,NA,NA,NA,NA,S,S,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA -KnownFloatingPointNormalized,S, ,None,project,result,NA,NA,NA,NA,NA,S,S,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA +KnownFloatingPointNormalized,S, ,None,project,input,S,S,S,S,S,S,S,S,PS,S,S,S,S,S,PS,PS,PS,S +KnownFloatingPointNormalized,S, ,None,project,result,S,S,S,S,S,S,S,S,PS,S,S,S,S,S,PS,PS,PS,S KnownNotNull,S, ,None,project,input,S,S,S,S,S,S,S,S,PS,S,S,NS,S,S,PS,PS,PS,NS KnownNotNull,S, ,None,project,result,S,S,S,S,S,S,S,S,PS,S,S,NS,S,S,PS,PS,PS,NS Lag,S,`lag`,None,window,input,S,S,S,S,S,S,S,S,PS,S,S,S,NS,NS,PS,NS,PS,NS