-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathmain.py
424 lines (376 loc) · 18.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import argparse
import os
import sys
import time
import math
import torch
import torch.nn as nn
from torch.autograd import Variable
from fp16 import FP16_Module, FP16_Optimizer
import data
import model
from model import DistributedDataParallel as DDP
from apex.reparameterization import apply_weight_norm, remove_weight_norm
from configure_data import configure_data
from learning_rates import LinearLR
parser = argparse.ArgumentParser(description='PyTorch Sentiment-Discovery Language Modeling')
parser.add_argument('--model', type=str, default='mLSTM',
help='type of recurrent net (Tanh, ReLU, LSTM, mLSTM, GRU)')
parser.add_argument('--emsize', type=int, default=64,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=4096,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=1,
help='number of layers')
parser.add_argument('--lr', type=float, default=5e-4,
help='initial learning rate')
parser.add_argument('--constant_decay', type=int, default=None,
help='number of iterations to decay LR over,' + \
' None means decay to zero over training')
parser.add_argument('--clip', type=float, default=0,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=1,
help='upper epoch limit')
parser.add_argument('--dropout', type=float, default=0.0,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--tied', action='store_true',
help='tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1234,
help='random seed')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, default='lang_model.pt',
help='path to save the final model')
parser.add_argument('--load', type=str, default='',
help='path to a previously saved model checkpoint')
parser.add_argument('--load_optim', action='store_true',
help='load most recent optimizer to resume training')
parser.add_argument('--save_iters', type=int, default=2000, metavar='N',
help='save current model progress interval')
parser.add_argument('--save_optim', action='store_true',
help='save most recent optimizer')
parser.add_argument('--fp16', action='store_true',
help='Run model in pseudo-fp16 mode (fp16 storage fp32 math).')
parser.add_argument('--dynamic_loss_scale', action='store_true',
help='Dynamically look for loss scalar for fp16 convergance help.')
parser.add_argument('--no_weight_norm', action='store_true',
help='Add weight normalization to model.')
parser.add_argument('--loss_scale', type=float, default=1,
help='Static loss scaling, positive power of 2 values can improve fp16 convergence.')
parser.add_argument('--world_size', type=int, default=1,
help='number of distributed workers')
parser.add_argument('--distributed_backend', default='gloo',
help='which backend to use for distributed training. One of [gloo, nccl]')
parser.add_argument('--rank', type=int, default=-1,
help='distributed worker rank. Typically set automatically from multiproc.py')
parser.add_argument('--base-gpu', type=int, default=0,
help='base gpu to use as gpu 0')
parser.add_argument('--optim', default='Adam',
help='One of PyTorch\'s optimizers (Adam, SGD, etc). Default: Adam')
parser.add_argument('--tcp-port', type=int, default=6000,
help='tcp port so as to avoid address already in use errors')
# Add dataset args to argparser and set some defaults
data_config, data_parser = configure_data(parser)
data_config.set_defaults(data_set_type='L2R', transpose=True)
data_parser.set_defaults(split='100,1,1')
data_parser = parser.add_argument_group('language modeling data options')
data_parser.add_argument('--seq_length', type=int, default=256,
help="Maximum sequence length to process (for unsupervised rec)")
data_parser.add_argument('--eval_seq_length', type=int, default=256,
help="Maximum sequence length to process for evaluation")
data_parser.add_argument('--lazy', action='store_true',
help='whether to lazy evaluate the data set')
data_parser.add_argument('--persist_state', type=int, default=1,
help='0=reset state after every sample in a shard, 1=reset state after every shard, -1=never reset state')
data_parser.add_argument('--num_shards', type=int, default=102,
help="""number of total shards for unsupervised training dataset. If a `split` is specified,
appropriately portions the number of shards amongst the splits.""")
data_parser.add_argument('--val_shards', type=int, default=0,
help="""number of shards for validation dataset if validation set is specified and not split from training""")
data_parser.add_argument('--test_shards', type=int, default=0,
help="""number of shards for test dataset if test set is specified and not split from training""")
data_parser.add_argument('--train-iters', type=int, default=1000,
help="""number of iterations per epoch to run training for""")
data_parser.add_argument('--eval-iters', type=int, default=100,
help="""number of iterations per epoch to run validation/test for""")
args = parser.parse_args()
torch.backends.cudnn.enabled = False
args.cuda = torch.cuda.is_available()
# initialize distributed process group and set device
if args.rank > 0 or args.base_gpu != 0:
torch.cuda.set_device((args.rank+args.base_gpu) % torch.cuda.device_count())
if args.world_size > 1:
distributed_init_file = os.path.splitext(args.save)[0]+'.distributed.dpt'
torch.distributed.init_process_group(backend=args.distributed_backend, world_size=args.world_size,
init_method='tcp://localhost:{}'.format(args.tcp_port), rank=args.rank)
# init_method='file://'+distributed_init_file, rank=args.rank)
# Set the random seed manually for reproducibility.
if args.seed > 0:
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if args.loss_scale != 1 and args.dynamic_loss_scale:
raise RuntimeError("Static loss scale and dynamic loss scale cannot be used together.")
###############################################################################
# Load data
###############################################################################
# Starting from sequential data, the unsupervised dataset type loads the corpus
# into rows. With the alphabet as the our corpus and batch size 4, we get
# ┌ a b c d e f ┐
# │ g h i j k l │
# │ m n o p q r │
# └ s t u v w x ┘.
# These rows are treated as independent by the model, which means that the
# dependence of e. g. 'g' on 'f' can not be learned, but allows more efficient
# batch processing.
#
# The unsupervised dataset further splits the corpus into shards through which
# the hidden state is persisted. The dataset also produces a hidden state
# reset mask that resets the hidden state at the start of every shard. A valid
# mask might look like
# ┌ 1 0 0 0 0 0 ... 0 0 0 1 0 0 ... ┐
# │ 1 0 0 0 0 0 ... 0 1 0 0 0 0 ... │
# │ 1 0 0 0 0 0 ... 0 0 1 0 0 0 ... │
# └ 1 0 0 0 0 0 ... 1 0 0 0 0 0 ... ┘.
# With 1 indicating to reset hidden state at that particular minibatch index
(train_data, val_data, test_data), tokenizer = data_config.apply(args)
###############################################################################
# Build the model
###############################################################################
args.data_size = tokenizer.num_tokens
ntokens = args.data_size
model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied)
print('* number of parameters: %d' % sum([p.nelement() for p in model.parameters()]))
if args.cuda:
model.cuda()
rnn_model = model
optim = None
if args.load != '':
sd = torch.load(args.load, map_location='cpu')
if args.load_optim:
optim_sd = torch.load(os.path.join(os.path.dirname(args.load), 'optim.pt'), map_location='cpu')
rng = torch.load(os.path.join(os.path.dirname(args.load), 'rng.pt'))
torch.cuda.set_rng_state(rng[0])
torch.set_rng_state(rng[1])
try:
model.load_state_dict(sd)
except:
apply_weight_norm(model.rnn, hook_child=False)
model.load_state_dict(sd)
remove_weight_norm(model.rnn)
if not args.no_weight_norm:
apply_weight_norm(model, 'rnn', hook_child=False)
# create optimizer and fp16 models
if args.fp16:
model = FP16_Module(model)
optim = eval('torch.optim.'+args.optim)(model.parameters(), lr=args.lr)
optim = FP16_Optimizer(optim,
static_loss_scale=args.loss_scale,
dynamic_loss_scale=args.dynamic_loss_scale)
else:
optim = eval('torch.optim.'+args.optim)(model.parameters(), lr=args.lr)
if args.load_optim:
pass
optim.load_state_dict(optim_sd)
# add linear learning rate scheduler
if train_data is not None:
if args.constant_decay:
num_iters = args.constant_decay
else:
num_iters = args.train_iters * args.epochs
init_step = -1
if args.load_optim:
init_step = optim_sd['iter']-optim_sd['skipped_iter']
train_data.batch_sampler.start_iter = (optim_sd['iter'] % len(train_data)) + 1
LR = LinearLR(optim, num_iters, last_iter=init_step)
# wrap model for distributed training
if args.world_size > 1:
model = DDP(model)
criterion = nn.CrossEntropyLoss()
###############################################################################
# Training code
###############################################################################
# get_batch subdivides the source data into chunks of length args.seq_length.
# If source is equal to the example output of the data loading example, with
# a seq_length limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the data loader. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM. A Variable representing an appropriate
# shard reset mask of the same dimensions is also returned.
def get_batch(data):
reset_mask_batch = data[1].long()
data = data[0].long()
if args.cuda:
data = data.cuda()
reset_mask_batch = reset_mask_batch.cuda()
text_batch = Variable(data[:, :-1].t().contiguous(), requires_grad=False)
target_batch = Variable(data[:, 1:].t().contiguous(), requires_grad=False)
reset_mask_batch = Variable(reset_mask_batch[:,:text_batch.size(0)].t().contiguous(), requires_grad=False)
return text_batch, target_batch, reset_mask_batch
def init_hidden(batch_size):
return rnn_model.rnn.init_hidden(args.batch_size)
def evaluate(data_source, max_iters):
# Turn on evaluation mode which disables dropout.
model.eval()
init_hidden(args.batch_size)
total_loss = 0
ntokens = args.data_size
with torch.no_grad():
data_iter = iter(data_source)
i = 0
while i < max_iters:
batch = next(data_iter)
data, targets, reset_mask = get_batch(batch)
output, hidden = model(data, reset_mask=reset_mask)
output_flat = output.view(-1, ntokens).contiguous().float()
loss = criterion(output_flat, targets.view(-1).contiguous())
if isinstance(model, DDP):
torch.distributed.all_reduce(loss.data)
loss.data /= args.world_size
total_loss += loss.data[0]
i += 1
return total_loss / max(max_iters, 1)
def train(max_iters, total_iters=0, skipped_iters=0, elapsed_time=False):
# Turn on training mode which enables dropout.
model.train()
total_loss = 0
start_time = time.time()
t0 = start_time
ntokens = args.data_size
hidden = init_hidden(args.batch_size)
curr_loss = 0.
distributed = isinstance(model, DDP)
def log(epoch, i, lr, ms_iter, total_time, loss, scale):
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:.2E} | ms/batch {:.3E} | total time {:.3E}\
loss {:.2E} | ppl {:8.2f} | loss scale {:8.2f}'.format(
epoch, i, max_iters, lr,
ms_iter, total_time, loss, math.exp(min(loss, 20)), scale
)
)
data_iter = iter(train_data)
i = 0
while i < max_iters:
batch = next(data_iter)
data, targets, reset_mask = get_batch(batch)
optim.zero_grad()
output, hidden = model(data, reset_mask=reset_mask)
loss = criterion(output.view(-1, ntokens).contiguous().float(), targets.view(-1).contiguous())
total_loss += loss.data.float()
if args.fp16:
optim.backward(loss, update_master_grads=False)
else:
loss.backward()
if distributed:
torch.distributed.all_reduce(loss.data)
loss.data /= args.world_size
model.allreduce_params()
# clipping gradients helps prevent the exploding gradient problem in RNNs / LSTMs.
if args.clip > 0:
if not args.fp16:
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
else:
optim.clip_master_grads(clip=args.clip)
if args.fp16:
optim.update_master_grads()
optim.step()
# step learning rate and log training progress
lr = optim.param_groups[0]['lr']
if not args.fp16:
LR.step()
else:
# if fp16 optimizer skips gradient step due to explosion do not step lr
if not optim.overflow:
LR.step()
else:
skipped_iters += 1
# log current results
if ((i+1) % args.log_interval == 0) and (i != max_iters - 1):
cur_loss = total_loss[0] / args.log_interval
cur_time = time.time()
elapsed = cur_time - start_time
total_elapsed = cur_time - t0 + elapsed_time
log(epoch, i+1, lr, elapsed * 1000 / args.log_interval, total_elapsed,
cur_loss, args.loss_scale if not args.fp16 else optim.loss_scale)
total_loss = 0
start_time = cur_time
sys.stdout.flush()
# save current model progress. If distributed only save from worker 0
if args.save_iters and total_iters % args.save_iters == 0 and total_iters > 0 and args.rank < 1:
if args.rank < 1:
with open(os.path.join(os.path.splitext(args.save)[0], 'e%s.pt'%(str(total_iters),)), 'wb') as f:
torch.save(model.state_dict(), f)
if args.save_optim:
with open(os.path.join(os.path.splitext(args.save)[0], 'optim.pt'), 'wb') as f:
optim_sd = optim.state_dict()
optim_sd['iter'] = total_iters
optim_sd['skipped_iter'] = skipped_iters
torch.save(optim_sd, f)
del optim_sd
with open(os.path.join(os.path.splitext(args.save)[0], 'rng.pt'), 'wb') as f:
torch.save((torch.cuda.get_rng_state(), torch.get_rng_state()),f)
if args.cuda:
torch.cuda.synchronize()
total_iters += 1
i += 1
#final logging
elapsed_iters = max_iters % args.log_interval
if elapsed_iters == 0:
elapsed_iters = args.log_interval
cur_loss = total_loss[0] / elapsed_iters
cur_time = time.time()
elapsed = cur_time - start_time
total_elapsed = cur_time - t0 + elapsed_time
log(epoch, max_iters, lr, elapsed * 1000/ elapsed_iters, total_elapsed,
cur_loss, args.loss_scale if not args.fp16 else optim.loss_scale)
return cur_loss, skipped_iters
# Loop over epochs.
lr = args.lr
best_val_loss = None
# If saving process intermittently create directory for saving
if args.save_iters > 0 and not os.path.exists(os.path.splitext(args.save)[0]) and args.rank < 1:
os.makedirs(os.path.splitext(args.save)[0])
# At any point you can hit Ctrl + C to break out of training early.
try:
total_iters = 0
elapsed_time = 0
skipped_iters = 0
if args.load_optim:
total_iters = optim_sd['iter']
skipped_iters = optim_sd['skipped_iter']
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
val_loss, skipped_iters = train(args.train_iters, total_iters, skipped_iters, elapsed_time)
elapsed_time += time.time() - epoch_start_time
total_iters += args.train_iters
if val_data is not None:
print('entering eval')
val_loss = evaluate(val_data, args.eval_iters)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(min(val_loss, 20))))
print('-' * 89)
# Save the model if the validation loss is the best we've seen so far.
if not best_val_loss or val_loss < best_val_loss and args.rank <= 0:
torch.save(model.state_dict(), args.save)
best_val_loss = val_loss
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
if os.path.exists(args.save):
model.load_state_dict(torch.load(args.save, 'cpu'))
if not args.no_weight_norm and args.rank <= 0:
remove_weight_norm(rnn_model)
with open(args.save, 'wb') as f:
torch.save(model.state_dict(), f)
if test_data is not None:
# Run on test data.
test_loss = evaluate(test_data, args.eval_iters)
print('=' * 89)
print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
print('=' * 89)