-
Notifications
You must be signed in to change notification settings - Fork 370
/
multigpu_lightning.py
204 lines (177 loc) · 7 KB
/
multigpu_lightning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) NVIDIA Corporation.
# Copyright (c) Chris Choy ([email protected]).
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Please cite "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural
# Networks", CVPR'19 (https://arxiv.org/abs/1904.08755) if you use any part
# of the code.
import os
import argparse
import numpy as np
from urllib.request import urlretrieve
try:
import open3d as o3d
except ImportError:
raise ImportError(
"Please install requirements with `pip install open3d pytorch_lightning`."
)
try:
from pytorch_lightning.core import LightningModule
from pytorch_lightning import Trainer
except ImportError:
raise ImportError(
"Please install requirements with `pip install open3d pytorch_lightning`."
)
import torch
import torch.nn as nn
from torch.optim import SGD
from torch.utils.data import Dataset, DataLoader
import MinkowskiEngine as ME
if not os.path.isfile("1.ply"):
urlretrieve("http://cvgl.stanford.edu/data2/minkowskiengine/1.ply", "1.ply")
parser = argparse.ArgumentParser()
parser.add_argument("--file_name", type=str, default="1.ply")
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--max_ngpu", type=int, default=2)
def minkowski_collate_fn(list_data):
r"""
Collation function for MinkowskiEngine.SparseTensor that creates batched
cooordinates given a list of dictionaries.
"""
coordinates_batch, features_batch, labels_batch = ME.utils.sparse_collate(
[d["coordinates"] for d in list_data],
[d["features"] for d in list_data],
[d["labels"] for d in list_data],
dtype=torch.float32,
)
return {
"coordinates": coordinates_batch,
"features": features_batch,
"labels": labels_batch,
}
class DummyNetwork(nn.Module):
def __init__(self, in_channels, out_channels, D=3):
nn.Module.__init__(self)
self.net = nn.Sequential(
ME.MinkowskiConvolution(in_channels, 32, 3, dimension=D),
ME.MinkowskiBatchNorm(32),
ME.MinkowskiReLU(),
ME.MinkowskiConvolution(32, 64, 3, stride=2, dimension=D),
ME.MinkowskiBatchNorm(64),
ME.MinkowskiReLU(),
ME.MinkowskiConvolutionTranspose(64, 32, 3, stride=2, dimension=D),
ME.MinkowskiBatchNorm(32),
ME.MinkowskiReLU(),
ME.MinkowskiConvolution(32, out_channels, kernel_size=1, dimension=D),
)
def forward(self, x):
return self.net(x)
class DummyDataset(Dataset):
def __init__(self, phase, dummy_file="1.ply", voxel_size=0.05):
self.CACHE = {}
self.phase = phase # do something for a real dataset.
self.voxel_size = voxel_size # in meter
self.filenames = [dummy_file] * 100
def __len__(self):
return len(self.filenames)
def __getitem__(self, i):
filename = self.filenames[i]
if filename not in self.CACHE:
pcd = o3d.io.read_point_cloud(filename)
self.CACHE[filename] = pcd
pcd = self.CACHE[filename]
quantized_coords, feats = ME.utils.sparse_quantize(
np.array(pcd.points, dtype=np.float32),
np.array(pcd.colors, dtype=np.float32),
quantization_size=self.voxel_size,
)
random_labels = torch.zeros(len(feats))
return {
"coordinates": quantized_coords,
"features": feats,
"labels": random_labels,
}
class MinkowskiSegmentationModule(LightningModule):
r"""
Segmentation Module for MinkowskiEngine.
"""
def __init__(
self,
model,
optimizer_name="SGD",
lr=1e-3,
weight_decay=1e-5,
voxel_size=0.05,
batch_size=12,
val_batch_size=6,
train_num_workers=4,
val_num_workers=2,
):
super().__init__()
for name, value in vars().items():
if name != "self":
setattr(self, name, value)
self.criterion = nn.CrossEntropyLoss()
def train_dataloader(self):
return DataLoader(
DummyDataset("train", voxel_size=self.voxel_size),
batch_size=self.batch_size,
collate_fn=minkowski_collate_fn,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
DummyDataset("val", voxel_size=self.voxel_size),
batch_size=self.val_batch_size,
collate_fn=minkowski_collate_fn,
)
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
stensor = ME.SparseTensor(
coordinates=batch["coordinates"], features=batch["features"]
)
# Must clear cache at regular interval
if self.global_step % 10 == 0:
torch.cuda.empty_cache()
return self.criterion(self(stensor).F, batch["labels"].long())
def validation_step(self, batch, batch_idx):
stensor = ME.SparseTensor(
coordinates=batch["coordinates"], features=batch["features"]
)
return self.criterion(self(stensor).F, batch["labels"].long())
def configure_optimizers(self):
return SGD(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
if __name__ == "__main__":
pa = argparse.ArgumentParser()
pa.add_argument("--max_epochs", type=int, default=100, help="Max epochs")
pa.add_argument("--lr", type=float, default=1e-2, help="Learning rate")
pa.add_argument("--batch_size", type=int, default=2, help="batch size per GPU")
pa.add_argument("--ngpus", type=int, default=1, help="num_gpus")
args = pa.parse_args()
num_devices = min(args.ngpus, torch.cuda.device_count())
print(f"Testing {num_devices} GPUs.")
# Training
model = DummyNetwork(3, 20, D=3)
if args.ngpus > 1:
model = ME.MinkowskiSyncBatchNorm.convert_sync_batchnorm(model)
pl_module = MinkowskiSegmentationModule(model, lr=args.lr)
trainer = Trainer(max_epochs=args.max_epochs, gpus=num_devices, accelerator="ddp")
trainer.fit(pl_module)