You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I tried to train this model on MSRVTT, but I don`t have a detection.json file, so I want to obtain it by Detectron_pytorch @ 75793bf with the given detection models. While this network can not read file correctly as following:
I tried to print the content of the file,in the following text, the upper is part of the content of the file given by Detectron_pytorch and the lower is given by this model.
I tried to train this model on MSRVTT, but I don`t have a detection.json file, so I want to obtain it by Detectron_pytorch @ 75793bf with the given detection models. While this network can not read file correctly as following:
I tried to print the content of the file,in the following text, the upper is part of the content of the file given by Detectron_pytorch and the lower is given by this model.
'res4_20_branch2b_bn_s', 'res3_3_branch2b_w_momentum', 'res4_0_branch2a_w', 'res2_1_branch2b_bn_s', 'res4_20_branch2b_bn_b', 'res4_13_branch2a_w_momentum', 'res4_12_branch2c_bn_s_momentum', 'res4_12_branch2c_bn_b', 'res5_2_branch2c_w', 'res3_2_branch2a_bn_b_momentum', 'res5_1_branch2b_bn_b_momentum', 'res4_7_branch2a_bn_s', 'res4_12_branch2c_bn_s', 'res4_4_branch2c_bn_b_momentum', 'res3_1_branch2a_w', 'res4_6_branch2b_bn_s_momentum', 'res4_2_branch2c_bn_s_momentum', 'res4_7_branch2b_bn_s_momentum', 'res2_1_branch2b_w', 'res3_1_branch2c_w', 'res4_20_branch2a_w_momentum', 'res4_17_branch2b_w', 'pred_b', 'res3_3_branch2b_w', 'res4_8_branch2a_bn_s', 'pred_w', 'res4_19_branch2a_bn_b', 'res4_3_branch2a_w', 'res4_3_branch2b_bn_b', 'res4_1_branch2b_w', 'res4_12_branch2a_bn_b_momentum', 'res5_1_branch2b_w_momentum', 'res4_3_branch2c_w', 'res4_5_branch2a_bn_s', 'res2_1_branch2c_bn_s_momentum', 'res2_0_branch2c_bn_s_momentum', 'res4_5_branch2a_bn_b', 'res2_0_branch1_bn_s_momentum'])
odict_keys(['Conv_Body.conv_top.weight', 'Conv_Body.conv_top.bias', 'Conv_Body.topdown_lateral_modules.0.conv_lateral.weight', 'Conv_Body.topdown_lateral_modules.0.conv_lateral.bias', 'Conv_Body.topdown_lateral_modules.1.conv_lateral.weight', 'Conv_Body.topdown_lateral_modules.1.conv_lateral.bias', 'Conv_Body.topdown_lateral_modules.2.conv_lateral.weight', 'Conv_Body.topdown_lateral_modules.2.conv_lateral.bias', 'Conv_Body.posthoc_modules.0.weight', 'Conv_Body.posthoc_modules.0.bias', 'Conv_Body.posthoc_modules.1.weight', 'Conv_Body.posthoc_modules.1.bias', 'Conv_Body.posthoc_modules.2.weight', 'Conv_Body.posthoc_modules.2.bias', 'Conv_Body.posthoc_modules.3.weight', 'Conv_Body.posthoc_modules.3.bias', 'Conv_Body.conv_body.res1.conv1.weight', 'Conv_Body.conv_body.res1.bn1.weight'
They have different structures. How to deal with it? Or is there a better detection model?
The text was updated successfully, but these errors were encountered: