Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Detection models do not match the format required by the Detectron network #29

Open
xiaohunshui opened this issue Jul 20, 2020 · 0 comments

Comments

@xiaohunshui
Copy link

xiaohunshui commented Jul 20, 2020

I tried to train this model on MSRVTT, but I don`t have a detection.json file, so I want to obtain it by Detectron_pytorch @ 75793bf with the given detection models. While this network can not read file correctly as following:
image

I tried to print the content of the file,in the following text, the upper is part of the content of the file given by Detectron_pytorch and the lower is given by this model.

'res4_20_branch2b_bn_s', 'res3_3_branch2b_w_momentum', 'res4_0_branch2a_w', 'res2_1_branch2b_bn_s', 'res4_20_branch2b_bn_b', 'res4_13_branch2a_w_momentum', 'res4_12_branch2c_bn_s_momentum', 'res4_12_branch2c_bn_b', 'res5_2_branch2c_w', 'res3_2_branch2a_bn_b_momentum', 'res5_1_branch2b_bn_b_momentum', 'res4_7_branch2a_bn_s', 'res4_12_branch2c_bn_s', 'res4_4_branch2c_bn_b_momentum', 'res3_1_branch2a_w', 'res4_6_branch2b_bn_s_momentum', 'res4_2_branch2c_bn_s_momentum', 'res4_7_branch2b_bn_s_momentum', 'res2_1_branch2b_w', 'res3_1_branch2c_w', 'res4_20_branch2a_w_momentum', 'res4_17_branch2b_w', 'pred_b', 'res3_3_branch2b_w', 'res4_8_branch2a_bn_s', 'pred_w', 'res4_19_branch2a_bn_b', 'res4_3_branch2a_w', 'res4_3_branch2b_bn_b', 'res4_1_branch2b_w', 'res4_12_branch2a_bn_b_momentum', 'res5_1_branch2b_w_momentum', 'res4_3_branch2c_w', 'res4_5_branch2a_bn_s', 'res2_1_branch2c_bn_s_momentum', 'res2_0_branch2c_bn_s_momentum', 'res4_5_branch2a_bn_b', 'res2_0_branch1_bn_s_momentum'])
odict_keys(['Conv_Body.conv_top.weight', 'Conv_Body.conv_top.bias', 'Conv_Body.topdown_lateral_modules.0.conv_lateral.weight', 'Conv_Body.topdown_lateral_modules.0.conv_lateral.bias', 'Conv_Body.topdown_lateral_modules.1.conv_lateral.weight', 'Conv_Body.topdown_lateral_modules.1.conv_lateral.bias', 'Conv_Body.topdown_lateral_modules.2.conv_lateral.weight', 'Conv_Body.topdown_lateral_modules.2.conv_lateral.bias', 'Conv_Body.posthoc_modules.0.weight', 'Conv_Body.posthoc_modules.0.bias', 'Conv_Body.posthoc_modules.1.weight', 'Conv_Body.posthoc_modules.1.bias', 'Conv_Body.posthoc_modules.2.weight', 'Conv_Body.posthoc_modules.2.bias', 'Conv_Body.posthoc_modules.3.weight', 'Conv_Body.posthoc_modules.3.bias', 'Conv_Body.conv_body.res1.conv1.weight', 'Conv_Body.conv_body.res1.bn1.weight'

They have different structures. How to deal with it? Or is there a better detection model?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant