-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_cellbrowser_object.R
59 lines (53 loc) · 1.89 KB
/
create_cellbrowser_object.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#' Function to generate all necessary files for creating a UCSC cellbrowser object from a Seurat object
#'
#' @param object the seurat object of interest, completely finalized
#' @param ident the ident to use for cluster identification (character name). If NA (default) uses current ident
#' @param list_col_action whether to flatten, remove, or ignore list cols
#' @param output_directory directory to ouput files. Created if necessary.
#' @import Seurat
#' @import SeuratDisk
#' @import tidyverse
#' @export
create_cellbrowser_object = function(object, ident = NA, output_directory, list_col_action = c("flatten", "remove", "ignore"))
{
#reset Idents as needed
if(!is.na(ident))
{
object = SetIdent(object = object, ident.use = ident)
}
#create output directory as needed
if(!dir.exists(output_directory))
{
dir.create(output_directory, recursive = F)
}
#create H5AD file of counts
outname = paste0(output_directory, "/", basename(output_directory), ".h5ad")
SaveH5Seurat(object = object, filename = outname)
#output metadata
outname = paste0(output_directory, "/", basename(output_directory), "-metadata.csv")
md = [email protected]
list_cols = which(vapply(md, FUN = is.list, FUN.VALUE = T)) #get list col indices
if(list_col_action == "flatten")
{
for(col in list_cols)
{
md = md %>%
rowwise() %>%
dplyr::mutate(across(all_of(list_cols), function(x){ paste(x, collapse = " ") }))
}
} else if(list_col_action == "remove")
{
md = md %>%
dplyr::select(-all_of(list_cols))
} else if(list_col_action == "ignore")
{
} else
{
stop("Error: incorrect list_col_action selection")
}
write.csv(md, outname)
#output markers
outname = paste0(output_directory, "/", basename(output_directory), "-markers.csv")
markers = FindAllMarkers(object = object, only.pos = TRUE)
write.csv(markers, outname)
}