From fe17e1061dd5b09a6c5e07f108c0d0695a565b99 Mon Sep 17 00:00:00 2001 From: David Ogden <12831266+dav-og@users.noreply.github.com> Date: Sat, 2 Sep 2023 17:38:56 +0100 Subject: [PATCH] Fixed paths for all files in the repo. --- .nojekyll | 0 _about/about.html | 74 ++++++------- _developer/contribution_guidelines.html | 82 +++++++-------- _developer/source_code_documentation.html | 62 +++++------ _developer/source_code_overview.html | 70 ++++++------- _getting_started/building_hydrochrono.html | 80 +++++++------- _getting_started/prerequisites.html | 74 ++++++------- _getting_started/workflow.html | 84 +++++++-------- _theory/theory.html | 110 +++++++++---------- _verification/models/oswec/oswec.html | 90 ++++++++-------- _verification/models/sphere/sphere.html | 90 ++++++++-------- _verification/verification.html | 74 ++++++------- bibliography.html | 46 ++++---- genindex.html | 44 ++++---- glossary.html | 60 +++++------ index.html | 116 ++++++++++----------- search.html | 40 +++---- todos.html | 54 +++++----- 18 files changed, 625 insertions(+), 625 deletions(-) create mode 100644 .nojekyll diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/_about/about.html b/_about/about.html index 0eb513a..3cdec9f 100644 --- a/_about/about.html +++ b/_about/about.html @@ -8,40 +8,40 @@ About the Project — HydroChrono 0.1 documentation - - - - + + + + - - - - - + + + + + - - - - - + + + + + @@ -52,15 +52,15 @@

Navigation

-

About the Project

+

About the Project

-

Project History

+

Project History

Since 2023, HydroChrono has been developed jointly by NREL and TotalEnergies to simulate offshore renewable energy systems (namely wave energy converters, WECs, and floating offshore wind turbines, FOWTs).

HydroChrono began as an effort to overcome some limitations in the WEC modeling field (e.g. added mass, speed, licensing, modeling capabilities).

By using Project Chrono, we ultimately aim to create a multifidelity simulation framework, where system models can be easily simualted with either potential flow hydrodynamics or high fidelity methods such as CFD and SPH.

-

Contributors

+

Contributors

  • Zuriah Quinton

  • Dave Ogden

  • @@ -70,7 +70,7 @@

    Contributors -

    Contact

    +

    Contact

    For inquiries, technical support, or feature requests, you can reach us in the following ways:

    • Email: hydrochrono@outlook.com

    • @@ -78,7 +78,7 @@

      Contact -

      FAQs

      +

      FAQs

      • FAQ 1: Is HydroChrono open-source?

          @@ -107,13 +107,13 @@

          FAQs¶< +

          The hydrostatic stiffness matrix, \(K_h\), can be sourced by executing a numerical integration over the waterplane area of the floating body. Potential tools for this task include open-source boundary element method (BEM) tools like Capytaine [AD19], HAMS [jmse7030081], or the open-source mesh and hydrostatics package MeshMagick 1.

-

Radiation damping force, \(F_{rad}(\dot{q}, t)\)

+

Radiation damping force, \(F_{rad}(\dot{q}, t)\)

This force stands as a representation of the energy dissipated when a floating body undergoes oscillation in water. It’s procured through a convolution integral between the radiation impulse response function \(K_{rad}(t)\) and the system’s velocity timeline \(\dot{q}(\tau)\):

-(10)\[F_{rad}(\dot{q}, t) = \int_{-\infty}^t K_{rad}(t - \tau) \dot{q}(\tau) d\tau\]
+(10)\[F_{rad}(\dot{q}, t) = \int_{-\infty}^t K_{rad}(t - \tau) \dot{q}(\tau) d\tau\]

The \(K_{rad}(t)\) function is derived by implementing the inverse continuous cosine transform (related to Fourier) on the frequency-domain radiation damping coefficients, \(B(\omega)\):

-(11)\[K_{rad}(t) = \frac{2}{\pi} \int_0^\infty B(\omega) \cos(\omega t) d\omega\]
+(11)\[K_{rad}(t) = \frac{2}{\pi} \int_0^\infty B(\omega) \cos(\omega t) d\omega\]

This transform allows the frequency domain coefficients, \(B(\omega)\), to be remapped into the time domain, thus producing the radiation impulse response function, \(K_{rad}(t)\). The \(B(\omega)\) values can be sourced using open-source BEM software.

-

Wave excitation force, \(F_{exc}(t)\)

+

Wave excitation force, \(F_{exc}(t)\)

The following method to compute the wave excitation force involves convolution between the excitation impulse response function \(K_{exc}(t)\) and the wave elevation time sequence \(\eta(t)\):

-(12)\[F_{exc}(t) = \int_{-\infty}^{+\infty} K_{exc}(\tau) \eta(x, y, t-\tau) d\tau\]
+(12)\[F_{exc}(t) = \int_{-\infty}^{+\infty} K_{exc}(\tau) \eta(x, y, t-\tau) d\tau\]

By amalgamating these forces into the equation of motion, one can effectively model the behavior of a multibody oceanic system influenced by hydrodynamic forces.

Footnotes

-
1
+
1

MeshMagick: https://github.com/LHEEA/meshmagick

@@ -133,14 +133,14 @@

Wave excitation force, \(F_{exc}(