forked from SZUHvern/TMI_multi-contrast-registration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
189 lines (158 loc) · 8.67 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from __future__ import print_function
from keras.models import Model
from keras.layers import *
from neuron.layers import SpatialTransformer
from src.models.utils import get_initial_weights
from src.models.layers import BilinearInterpolation
class BilinearUpsampling(Layer):
def __init__(self, upsampling=(2, 2), data_format=None, **kwargs):
super(BilinearUpsampling, self).__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
self.upsampling = conv_utils.normalize_tuple(upsampling, 2, 'size')
self.input_spec = InputSpec(ndim=4)
def compute_output_shape(self, input_shape):
height = self.upsampling[0] * \
input_shape[1] if input_shape[1] is not None else None
width = self.upsampling[1] * \
input_shape[2] if input_shape[2] is not None else None
return (input_shape[0],
height,
width,
input_shape[3])
def call(self, inputs):
return K.tf.image.resize_bilinear(inputs, (int(inputs.shape[1]*self.upsampling[0]),
int(inputs.shape[2]*self.upsampling[1])))
def get_config(self):
config = {'size': self.upsampling,
'data_format': self.data_format}
base_config = super(BilinearUpsampling, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def flowinverse(flow):
flow0 = Lambda(lambda x: K.expand_dims(x[:, :, :, 0], axis=-1))(flow)
flow1 = Lambda(lambda x: K.expand_dims(x[:, :, :, 1], axis=-1))(flow)
flow0 = SpatialTransformer(interp_method='linear', indexing='ij', name='inverse_stn1')([flow0, flow])
flow1 = SpatialTransformer(interp_method='linear', indexing='ij', name='inverse_stn2')([flow1, flow])
flow_inverse = Concatenate()([flow0, flow1])
flow_inverse = Lambda(lambda x: x * -1.)(flow_inverse)
return flow_inverse
def BN_block(filter_num, input, name, trainable=True):
x = Conv2D(filter_num, 3, padding='same', kernel_initializer='he_normal', name='conv' + name + '_1',
trainable=trainable)(input)
x = BatchNormalization(name='BN' + name + '_1', trainable=trainable)(x)
# x = LeakyReLU(name='LeakyReLU' + name + '_1')(x)
x = Activation('relu')(x)
x = Conv2D(filter_num, 3, padding='same', kernel_initializer='he_normal', name='conv' + name + '_2',
trainable=trainable)(x)
x = BatchNormalization(name='BN' + name + '_2', trainable=trainable)(x)
# x = LeakyReLU(name='LeakyReLU' + name + '_2')(x)
x = Activation('relu')(x)
return x
def BN_block_leaky(filter_num, input, name, trainable=True):
x = Conv2D(filter_num, 3, padding='same', kernel_initializer='he_normal', name='conv' + name + '_1',
trainable=trainable)(input)
x = BatchNormalization(name='BN' + name + '_1', trainable=trainable)(x)
x = LeakyReLU(name='LeakyReLU' + name + '_1')(x)
# x = Activation('relu')(x)
x = Conv2D(filter_num, 3, padding='same', kernel_initializer='he_normal', name='conv' + name + '_2',
trainable=trainable)(x)
x = BatchNormalization(name='BN' + name + '_2', trainable=trainable)(x)
x = LeakyReLU(name='LeakyReLU' + name + '_2')(x)
# x = Activation('relu')(x)
return x
def block_leaky_single(filter_num, input, name, trainable=True):
x = Conv2D(filter_num, 3, padding='same', kernel_initializer='he_normal', name='conv' + name + '_1',
trainable=trainable)(input)
x = LeakyReLU(name='LeakyReLU' + name + '_1')(x)
return x
def Affine_arch(input_stack, trainable=False, w=16):
affine_net1 = BN_block_leaky(w, input_stack, name='affine_net1', trainable=trainable)
pool1 = MaxPooling2D(pool_size=(2, 2))(affine_net1)
affine_net2 = BN_block_leaky(w * 2, pool1, name='affine_net2', trainable=trainable)
pool2 = MaxPooling2D(pool_size=(2, 2))(affine_net2)
affine_net3 = BN_block_leaky(w * 2, pool2, name='affine_net3', trainable=trainable)
pool3 = MaxPooling2D(pool_size=(2, 2))(affine_net3)
affine_net4 = BN_block_leaky(w * 4, pool3, name='affine_net4', trainable=trainable)
pool4 = MaxPooling2D(pool_size=(2, 2))(affine_net4)
affine_net5 = BN_block_leaky(w * 4, pool4, name='affine_net5', trainable=trainable)
affine_net5 = Dropout(0.3, name='affine_net5gdrop_1')(affine_net5)
pool5 = MaxPooling2D(pool_size=(2, 2))(affine_net5)
affine_net6 = BN_block_leaky(w * 8, pool5, name='affine_net6', trainable=trainable)
affine_net6 = Dropout(0.3, name='affine_net6gdrop_1')(affine_net6)
affine_net = Flatten()(affine_net6)
affine_net = Dense(32, activation='relu', name='affine_net_dense1', trainable=trainable)(affine_net)
weights = get_initial_weights(32)
affine_net = Dense(6, weights=weights, activation='linear', name='affine_net_dense2', trainable=trainable)(affine_net)
return affine_net
def Unet_arch(input_stack, w=16, name='1'):
conv1 = BN_block_leaky(w, input_stack, name=name + 'g1')
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = BN_block_leaky(w*2, pool1, name=name + 'g2')
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = BN_block_leaky(w*2, pool2, name=name + 'g3')
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
#
conv4 = BN_block_leaky(w * 4, pool3, name=name + 'g4')
drop4 = Dropout(0.3, name=name + 'gdrop_1')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
#
conv5 = BN_block_leaky(w * 4, pool4, name=name + 'g5')
drop5 = Dropout(0.3, name=name + 'gdrop_2')(conv5)
up6 = Conv2D(w * 4, 2, padding='same', kernel_initializer='he_normal', name=name + 'gup6')(
UpSampling2D(size=(2, 2))(drop5))
up6 = BatchNormalization(name='BNup6')(up6)
up6 = LeakyReLU(name='leakyup6')(up6)
# up6 = Activation('relu')(up6)
merge6 = Concatenate()([drop4, up6])
conv6 = BN_block_leaky(w * 4, merge6, name=name + 'g6')
#
up7 = Conv2D(w * 2, 2, padding='same', kernel_initializer='he_normal', name=name + 'gup7')(
UpSampling2D(size=(2, 2))(conv6))
up7 = BatchNormalization(name='BNup7')(up7)
# up7 = Activation('relu')(up7)
up7 = LeakyReLU(name='leakyup7')(up7)
merge7 = Concatenate()([conv3, up7])
conv7 = BN_block_leaky(w * 2, merge7, name=name + 'g7')
#
up8 = Conv2D(w*2, 2, padding='same', kernel_initializer='he_normal', name=name + 'gup8')(
UpSampling2D(size=(2, 2))(conv7))
up8 = BatchNormalization(name='BNup8')(up8)
up8 = LeakyReLU(name='leakyup8')(up8)
# up8 = Activation('relu')(up8)
merge8 = Concatenate()([conv2, up8])
conv8 = BN_block_leaky(w*2, merge8, name=name +'g8')
up9 = Conv2D(w, 2, padding='same', kernel_initializer='he_normal', name=name + 'gup9')(
UpSampling2D(size=(2, 2))(conv8))
up9 = BatchNormalization(name='BNup9')(up9)
up9 = LeakyReLU(name='leakyup9')(up9)
# up9 = Activation('relu')(up9)
merge9 = Concatenate()([conv1, up9])
conv9 = BN_block_leaky(w, merge9, name=name + 'g9')
# x1 = Conv2D(64, 3, padding='same', kernel_initializer='he_normal', name='conv' + name + '_1')(conv9)
# x1 = BatchNormalization(name='BN' + 'end_1')(x1)
# conv9 = Activation('tanh')(x1)
return conv9
def Affine_net(w=16, trainable=False):
src = Input(shape=(224, 224, 1))
tgt = Input(shape=(224, 224, 1))
input_stack = Concatenate()([src, tgt])
affine_param = Affine_arch(input_stack, trainable=trainable, w=w)
affine_result = BilinearInterpolation((224, 224), name='affine_result')([src, affine_param])
model = Model(input=[src, tgt], output=[affine_result])
return model
def dual_net(w):
src = Input(shape=(224, 224, 1))
tgt = Input(shape=(224, 224, 1))
label = Input(shape=(224, 224, 1))
input_stack = Concatenate()([src, tgt])
affine_param = Affine_arch(input_stack, trainable=False)
src_affine = BilinearInterpolation((224, 224), name='src_affine')([src, affine_param])
flow_ori1 = Unet_arch(Concatenate()([src_affine, tgt]), w=w)
flow = Conv2D(2, 3, name='flow', padding='same', activation='linear', kernel_initializer='he_normal')(flow_ori1)
deformable = SpatialTransformer(interp_method='linear', indexing='ij', name='stn0')([src_affine, flow])
flow_ori2 = flowinverse(flow)
inverse_deformable = SpatialTransformer(interp_method='linear', indexing='ij', name='defo_iv')([deformable, flow_ori2])
resduce = Lambda(lambda x: x[0] - x[1], name='rl')([src_affine, inverse_deformable])
label_affine = BilinearInterpolation((224, 224), name='src_affine2')([label, affine_param])
label_flow = SpatialTransformer(interp_method='linear', indexing='ij', name='stn4')([label_affine, flow])
model = Model(input=[src, tgt, label], output=[flow, deformable, resduce, label_flow])
return model