diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 00000000..21effe56 --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 93977f5f62c2e7de11378d7d6fd147da +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.doctrees/SphinxContinuousTutorial.doctree b/.doctrees/SphinxContinuousTutorial.doctree new file mode 100644 index 00000000..3f929188 Binary files /dev/null and b/.doctrees/SphinxContinuousTutorial.doctree differ diff --git a/.doctrees/SphinxMulticatTutorial.doctree b/.doctrees/SphinxMulticatTutorial.doctree new file mode 100644 index 00000000..2a2124c9 Binary files /dev/null and b/.doctrees/SphinxMulticatTutorial.doctree differ diff --git a/.doctrees/SphinxTutorial.doctree b/.doctrees/SphinxTutorial.doctree new file mode 100644 index 00000000..05f1136e Binary files /dev/null and b/.doctrees/SphinxTutorial.doctree differ diff --git a/.doctrees/api.doctree b/.doctrees/api.doctree new file mode 100644 index 00000000..9c765f31 Binary files /dev/null and b/.doctrees/api.doctree differ diff --git a/.doctrees/categorical_stat_funcs.doctree b/.doctrees/categorical_stat_funcs.doctree new file mode 100644 index 00000000..60cf2594 Binary files /dev/null and b/.doctrees/categorical_stat_funcs.doctree differ diff --git a/.doctrees/categorical_statistics.doctree b/.doctrees/categorical_statistics.doctree new file mode 100644 index 00000000..93ecb925 Binary files /dev/null and b/.doctrees/categorical_statistics.doctree differ diff --git a/.doctrees/comparison.doctree b/.doctrees/comparison.doctree new file mode 100644 index 00000000..2e16a153 Binary files /dev/null and b/.doctrees/comparison.doctree differ diff --git a/.doctrees/compute_comparison.doctree b/.doctrees/compute_comparison.doctree new file mode 100644 index 00000000..f88ac9e8 Binary files /dev/null and b/.doctrees/compute_comparison.doctree differ diff --git a/.doctrees/continuous_stat_funcs.doctree b/.doctrees/continuous_stat_funcs.doctree new file mode 100644 index 00000000..3cb176dd Binary files /dev/null and b/.doctrees/continuous_stat_funcs.doctree differ diff --git a/.doctrees/continuous_statistics.doctree b/.doctrees/continuous_statistics.doctree new file mode 100644 index 00000000..dcedef86 Binary files /dev/null and b/.doctrees/continuous_statistics.doctree differ diff --git a/.doctrees/contributing.doctree b/.doctrees/contributing.doctree new file mode 100644 index 00000000..0234669a Binary files /dev/null and b/.doctrees/contributing.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle new file mode 100644 index 00000000..b77864e6 Binary files /dev/null and b/.doctrees/environment.pickle differ diff --git a/.doctrees/exceptions.doctree b/.doctrees/exceptions.doctree new file mode 100644 index 00000000..054cd52e Binary files /dev/null and b/.doctrees/exceptions.doctree differ diff --git a/.doctrees/extension.doctree b/.doctrees/extension.doctree new file mode 100644 index 00000000..c637dd8c Binary files /dev/null and b/.doctrees/extension.doctree differ diff --git a/.doctrees/gval_array.doctree b/.doctrees/gval_array.doctree new file mode 100644 index 00000000..3c9209ac Binary files /dev/null and b/.doctrees/gval_array.doctree differ diff --git a/.doctrees/gval_dataframe.doctree b/.doctrees/gval_dataframe.doctree new file mode 100644 index 00000000..d54593d3 Binary files /dev/null and b/.doctrees/gval_dataframe.doctree differ diff --git a/.doctrees/gval_dataset.doctree b/.doctrees/gval_dataset.doctree new file mode 100644 index 00000000..5e5b1ae6 Binary files /dev/null and b/.doctrees/gval_dataset.doctree differ diff --git a/.doctrees/gval_xarray.doctree b/.doctrees/gval_xarray.doctree new file mode 100644 index 00000000..b8559cc8 Binary files /dev/null and b/.doctrees/gval_xarray.doctree differ diff --git a/.doctrees/index.doctree b/.doctrees/index.doctree new file mode 100644 index 00000000..50a6f6f1 Binary files /dev/null and b/.doctrees/index.doctree differ diff --git a/.doctrees/loading_datasets.doctree b/.doctrees/loading_datasets.doctree new file mode 100644 index 00000000..fb6afeba Binary files /dev/null and b/.doctrees/loading_datasets.doctree differ diff --git a/.doctrees/nbsphinx/SphinxContinuousTutorial.ipynb b/.doctrees/nbsphinx/SphinxContinuousTutorial.ipynb new file mode 100644 index 00000000..51b5c92b --- /dev/null +++ b/.doctrees/nbsphinx/SphinxContinuousTutorial.ipynb @@ -0,0 +1,718 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d9c0d99", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "40183645", + "metadata": {}, + "source": [ + "# Continuous Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4bbfe0e8", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import xarray as xr\n", + "import rioxarray as rxr\n", + "import gval" + ] + }, + { + "cell_type": "markdown", + "id": "3e5c08fe", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "markdown", + "id": "33d00a22", + "metadata": {}, + "source": [ + "In this example, the comparisons output of Variable Infiltration Capacity Model total annual CONUS precipitation in 2011 with that of the model output of PRISM, also total annual CONUS precipitation in 2011. \n", + "\n", + "- Livneh B., E.A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K.M. Andreadis, E.P. Maurer, and D.P. Lettenmaier, 2013: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions, Journal of Climate, 26, 9384⦣8364;⬓9392. https://psl.noaa.gov/data/gridded/data.livneh.html\n", + "- PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu, data created 4 Feb 2014, accessed 16 Dec 2020. https://prism.oregonstate.edu/recent/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "271aa18e", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(\n", + " './livneh_2011_precip.tif', mask_and_scale=True\n", + ") # VIC\n", + "benchmark = rxr.open_rasterio(\n", + " './prism_2011_precip.tif', mask_and_scale=True\n", + ") # PRISM" + ] + }, + { + "cell_type": "markdown", + "id": "4331a54f", + "metadata": {}, + "source": [ + "## Run GVAL Continuous Compare" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ad35fb26", + "metadata": {}, + "outputs": [], + "source": [ + "agreement, metric_table = candidate.gval.continuous_compare(benchmark)" + ] + }, + { + "cell_type": "markdown", + "id": "c601b584", + "metadata": {}, + "source": [ + "## Output" + ] + }, + { + "cell_type": "markdown", + "id": "ddc2cb91", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "d38aaeeb", + "metadata": {}, + "source": [ + "The agreement map in this case will be simply the difference between the two modeling outputs." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "810a5cbb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAErCAYAAAA7aTGEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydedwkRX3/31XV3TPzXHuy3AiCCoiKICpgEFBBWeLBIqcKEpOgoFET0V9exjOahBCNJ3iC8QBRBBWQQwx4oEZJECKIGkGQe49nn2tmurvq+/ujqnp65nl2FxB0kfnowz5Pn9XV1fX53qVERBhiiCGGGGKIIf6kof/YDRhiiCGGGGKIIR55DAl/iCGGGGKIIR4DGBL+EEMMMcQQQzwGMCT8IYYYYoghhngMYEj4QwwxxBBDDPEYwJDwhxhiiCGGGOIxgCHhDzHEEEMMMcRjAEPCH2KIIYYYYojHAIaEP8QQQwwxxBCPAQwJ/08I//Vf/4VSCqUU73nPe/7YzRniYcSJJ55Yvdu//uu/3uBx3W6XpUuXVsdeffXVf7hGPkicdNJJjI6Oct999/Vtj23f2M+JJ57Yd86OO+4475iJiQn22WcfzjjjDPI8n3f/brfLBz/4Qfbdd18WLVpElmVsvfXWPOMZz+D1r389l1xyyQbbvnbtWt7//vdzwAEHsGLFCtI0ZdGiRey555689rWv5Tvf+c7v3T9r1qxhxYoVKKXYZZddFjzmG9/4BieccAJPecpTWL58OWmasmLFCg477DAuvvjiBc/5xS9+wb/8y79w0EEHVedstdVWHHHEEXzve9/bZLt+9rOf8cpXvpLtttuORqPBlltuyYEHHsjZZ5/dd1y73WbrrbfmsMMOe/APP8QjAxniTwannnqqAALIE5/4xD92c4YYwDvf+U4B5Oyzz37Q555wwgnVu12yZIl0u90Fj7vggguq4wD5z//8z9+v0Y8QbrjhBtFay1ve8pZ5+2LbTzjhhA3+fOpTn+o753GPe5wAsmrVKjnhhBPkVa96lRxwwAGSpqkAcsABB/T12bp162SvvfYSQNI0lQMOOECOOeYYOfzww2XrrbcWQJ70pCct2Pavfe1rMjExIYCMjY3J8573PDn22GPlxS9+sTzhCU+o2n/YYYf9Xn10wgkniFJKANl5550XPGbVqlWilJI99thDDjvsMDn66KPlWc96VtWG//f//t+8c7bddtuq7c9//vPlqKOOkj322EMAUUrJBz/4wQ226VOf+pQkSSLGGNl///3lmGOOkYMOOkiWLFkiz3ve8+Yd/4EPfEAAueqqqx5yPwzx8GFI+H8iyPNcli9fLoBstdVWAsiPfvSjP3azhqjh4SD8pz/96QLIhRdeuOBxL3vZy8QYI0972tM2a8J/8YtfLGmayr333jtvXySrB4NI+Lfeemvf9v/5n/+RRYsWCSAf+chHqu2vf/3rBZA999xTfve738273o9//GN597vfPW/7N7/5TVFKSZIkcvrpp0un05l3zM033ywnnHCCPOEJT3hQz1DHt7/9bQHkr/7qrzZK+P/93/8tq1evnrf9Rz/6kYyNjYlSSm644Ya+fc973vPkP/7jP6TdbvdtP+usswQQY4z8/Oc/n3fNq666SpRSsssuu8hNN93Ut6/b7cp///d/zztnbm5OFi9eLM985jM3+cxDPPIYEv6fCL7xjW8IIPvvv7+85z3vEUBOOeWUP3azhqjh4SD8008/XbTWcuSRR847Zt26ddJoNOSQQw6RQw89dLMl/Ntvv1201nL44YcvuP/hJHwRkXe/+90C9Gmg22yzjQBy5ZVXPuB7TE9PV0L15z//+U0e/9Of/vQBX7uOubk52XnnnWX33XeXX/7ylxsl/I3hL/7iLwSQD33oQw/4nEMOOUQAede73jVv3+677y5a63kCxANtx0ICwRB/WAx9+H8i+MIXvgDAK17xCl7xilcA8OUvf5miKDZ4zg033MCf//mfs3jxYsbHxznggAO48sorufrqqxf0k0Y/8tVXX83ll1/OQQcdxOLFi1FKMTk5WR132WWXsXLlSrbYYgsajQaPf/zjefOb38yaNWsWbIeIcO6553LwwQezZMkSms0mu+22G+9617uYm5ubd/yBBx6IUorbbruNL3/5y+yzzz6MjIyw7bbbctppp1X+2v/7v//j2GOPZcWKFYyMjHDQQQdxww03bLA/Hky7633x3e9+l4MPPpjx8XEmJiZYuXIlN910U9/xO+64I+9+97sBePWrX93na34wfvatt96agw8+mIsvvpj169f37Tv//PPpdrvV+18I119/Paeddhp7771333O+7nWv46677pp3/G233YZSigMPPJCpqSn+5m/+hu233756Rx/84Adxzj3g9gN89rOfxTnHscce+6DOe6h4+tOfDsAdd9xRbbv//vsB2GKLLR7wdc455xxWr17Nfvvtt9E+jth7770fZEs93v3ud/Ob3/yGs846izRNH9I1gOrcLMse8DlPe9rTAOaNhR/84AfcdNNNHHjggTzlKU95UO047rjjAPjkJz/5oM4b4hHAH1viGOL3x+TkpDSbTcmyTNasWSMiIvvtt58A8o1vfGPBc6699loZGRkRQJ761KfKMcccI/vss49orStz5wknnNB3TtQy//Iv/1KUUrLPPvtU501OToqIyFvf+lYBJMsy2X///eXII4+s/Jo777yz3HPPPX3XtNbKscceW/kUDzzwQHnZy14m22+/vQDyzGc+U+bm5vrOee5znyuAvPGNb5QkSeT5z3++vOxlL6u0r1e96lXyy1/+UpYvXy677rqrHH300fKUpzxFAFm6dOm8NjyUdse+ePOb3yzGGHnWs54lRx11lDzxiU8UQJYtWyZ33313dfzf/u3fVmb2/fffv88fffPNN2/yHcf7ff7zn5ezzz5bAPnMZz7Td8wBBxwgIyMjMj09vUEN/+ijj5YkSWSvvfaSl770pfLSl75UdtxxRwFk6623ljvvvLPv+FtvvVUAefazny177723LF68WI444gg5/PDDpdVqLThONoVnPOMZAsy7VwQPs4b/xS9+UQB5ylOeUm17/OMfL4CcfPLJ4px7QPc47LDD5rkGHiyilWdDffazn/1MkiSRk046SUR6/f9gNfwbbrhBlixZImmayq9//esHfN6qVasEkHe84x1926PV8O1vf7vMzc3JZz/7WTnllFPkDW94g3zuc5+b943W0W63JU1T2X777R/UMwzx8GNI+H8C+PSnPy2AvOQlL6m2ffzjHxdAXv7yl8873lpbEdP73ve+Ba+1McIH5Lzzzpt33fPPP18A2WOPPeRXv/pVtd05J+94xzsEkKOPPrrvnNNPP10AOfDAA/sIstvtVqbAt771rX3nRMIfGxuTn/zkJ9X2u+++W7bccktRSsluu+0mb3vb26rJ3Dknr3zlKxeczB5Ku2NfaK37/OllWVaT5j/8wz/0nfNwmPQ///nPy9TUlLRaLTnooIOq/b/97W9FKSXHHnusiMgGCf873/nOgkJXNHu/+tWv7tsXCScKhvfff3+179e//nVlGt9QTMEgpqenxRgj22yzzQaPebgJ/5hjjhFAjj/++GrbP/3TP1X32XXXXeVtb3ubXHjhhXLHHXds8B4x2O373//+g2pbHRsjfGut7LPPPrJ8+fLKL/9ACf8b3/iGnHDCCXLcccfJc57zHNFaS6PRkHPOOecBt+3Xv/61NBoNAea5I2If/v3f/7086UlP6gsMBWSHHXbYqKl/7733FkB+85vfPOD2DPHwY0j4fwKIBPiVr3yl2rZ69WpJ01SazWalfUdceeWVAsgTnvAEsdbOu97++++/UcJfuXLlgu2IGuyNN944b59zTvbcc08xxlSkURSFLF++XEZHRxfUuufm5mSrrbaSJUuW9LUzPu/b3/72eee86U1vEkAe//jHS57nfft+9rOfCSDPfe5zf6921/uiTiIRP/3pTxe8z8NF+CIiRx11lGitq4Cz97///QLIJZdcIiIbJvyNYdttt5Vly5b1basT/hVXXDHvnDPPPHOef3xj+PGPfyxAn7AyiEEyWehnUMAYJHznnNx2222V5UYpJd/97ner4621ctppp1VR/PWfJz/5yXLmmWfO+zaazaYA8otf/GJem9euXbtgNsGg9eYjH/mIPOlJT5K3ve1t867x7//+7/PGxwMl/Pe+9719z9BqteSTn/zkgt/3QiiKQp7znOcsKNyK9MZTkiSy3XbbyaWXXirr16+XG2+8UV7wghcIII973ONkdnZ2wesff/zxAsjXvva1B9SeIR4ZDAn/UY6o2S1evHhexPBLXvISAealML3rXe8SYMFJR0Tkwx/+8EYJ/xOf+MS8c+69995KiNgQTjnlFAHksssuE5He5P+CF7xgg+esXLly3iQbCb8+gUd85CMfEaAyidYxPT0t0J+y+FDaLdLri8997nPzjp+ampp3H5GHl/BjkObpp58uIiJPfvKTZcWKFVIUhYhsnPBXr14tn/3sZ+XNb36znHTSSRU5rVixQoDKLSTSI5ylS5cu2K7JycmKYB4IuXzzm98UQI444ogNHlO3MG3o57rrrus7JxL+Qj9ZlsnHP/7xBe915513yoc+9CFZtWqV7LDDDn3nvfSlL+17po0R/h133LHgvR+owPXb3/5WxsbG5gmJD9ak32635cYbb5TXve51Asjhhx++wRTOOl772tdWgnL9/UdEUgfkxz/+cd++Tqcj2223nQDyyU9+csHrRzfhQnPHEH84JAzxqMYXv/hFRIQjjzySRqPRt+8Vr3gFX//61/nCF77Aa17zmmr73XffDcD222+/4DV32GGHjd5zof233XYbAL/61a9QSm30/NWrV/edc+WVVz6gc570pCf1bdt2223nHTc2NrbJfd1u9/dqdx3bbbfdvG3j4+Pz7vNw44UvfCHLli3ji1/8Is9//vP5+c9/zutf/3qSZOOf9Lnnnstf/dVfMTMzs8FjpqenWbp0ad+2xz3ucQseu2jRIhYvXszk5CTr1q1j2bJlG71/DDSMfbQxnHPOOZs8ZhCrVq1ibGwMpRRjY2PsuuuuvOxlL2ObbbZZ8PhtttmGN7zhDbzhDW8A4Oabb+aMM87gs5/9LBdddBHnnnsuxx9/PADLli3jzjvvXHAsbrfddohI9fcLX/hCLr/88gfc7lNOOYU8zznrrLMe7CP3odlssscee/Cxj30MYwwf+chH+MhHPsLf/u3fbvCc973vfZx55plsueWWXH755fPePfS+nd13351nPvOZffsajQbHHXccp59+Otdccw1/+Zd/Oe/8iYkJgL7g3iH+8BgS/qMcn//85wG4+uqrec5zntO3L0arf/e73+W3v/3tBiftB4tmszlvW4zU3mqrrTj00EM3en5sRzxnl112Yf/999/oOQsRidYbTjLZ2L46Hkq7H8p9Hm6kacpRRx3FmWeeyd///d8DbDJy/Le//W2VefHv//7vrFy5km233ZZWqwXAfvvtxw9/+MM+4nq4sWjRIsALFY8EzjjjDHbccceHfP5uu+3GZz7zGdatW8eFF17IJZdcUhH+0572NO68807+53/+Z5Pj9cHi4osvZvHixZx88sl92zudDgB33nknBx54IADnnXceW2211Sav+cpXvpKPfOQjfP3rX98g4Z911lm8/e1vZ9GiRVx22WUbrOgXx/6G+jZuH6yaGBEFvcWLF2+y3UM8chgS/qMY1113HTfffDMAv/71r/n1r3+94HEiwhe/+MWKGLbeemugP02pjg1t3xiiprt8+fIHrJnFc3bdddeHpM09HHgo7d5c8IpXvIIzzzyTyy67jCc+8YnzNK9BXHrppeR5zt/93d/xN3/zN/P2/+Y3v9ngubfffvuC26emppicnKTVaj2gyXzFihWAL027OePggw/mwgsv7LPqvOhFL+LSSy/lvPPO49RTT33Y7zk5Ock111yz4L5Op1Pti0LAprB8+XKgl4I4iPPOO49TTjmFkZERLrnkEvbcc88NXiumNq5bt27B/fF9RkvAIOJ5DyYNcoiHH8M8/EcxYu793/3d3yE+HmPeT8zxjscClXZy4YUXLqjNnX/++Q+6Ldtttx277rorN910E7/85S8f0Dn77LMPixYt4pprrvmjEcBDafdDRcyHLsvyYbnefvvtx9Oe9jSWLVvGSSedtMnj46S7kBviu9/9Lvfee+8Gz12zZg1XXXXVvO3nnXceAPvuuy/GmE224clPfjJJknDLLbds8thHEpuyYkThue4aOvHEE1m2bBk/+MEP+r6nh6s9C/3ceuutAOy8887VtgdqwYgCws477zxv36WXXsqrXvUqkiThwgsv3KTF4rDDDiNJEm688cYFv9V4rygYDCIqJhsTKoZ45DEk/EcprLWce+65ABstYPJnf/ZnbLvtttx8881cd911gNdenvCEJ3DLLbdw+umn9x1/zjnnPKAFNBbCP/zDP+CcY9WqVVx//fXz9q9Zs4ZPfepT1d+NRoPTTjuN6elpjjjiiAU1zDvvvLNyWzxSeLDtfqiIfuSHk+yuv/56Vq9ezVvf+tZNHvvEJz4R8MLf7Oxstf3OO++cZ0peCH/3d3/XV4To1ltvrRZpOuWUUx5Qe0dHR3n605/O3XffzZ133vmAznkksN9++3H22Wf39UPExRdfXPnSjzzyyGr72NgYZ599NkopXv3qV/Ov//qvC2rbv/vd7zZoJfvoRz/Krrvuyv/7f//v936G+++/n0996lMLFqe68sorOe200wBf6KmOH/zgBxx55JGICF/+8pc55JBDNnmv5cuX8+pXv5qZmRne8IY39C1G9LnPfY4rr7ySZrM5r1gXeIvEjTfeyPbbb89OO+30IJ9yiIcTQ5P+oxRXXHEF9957L0984hPZa6+9Nnic1pqjjz6aD3zgA3z+859n7733RmvN5z73OZ7//Ofztre9jXPPPZfdd9+d//u//+MnP/kJp5xyCh/72MceVIUu8BW1fv7zn/P+97+fvffemz333LPSTP7v//6PG264gbGxsb6gnre97W384he/4POf/zy77bYbT3/609lpp53I85xbbrmFm266iac+9am88pWvfMh99Ui0+6HgkEMOodls8sEPfpD//d//ZZtttkEpxVve8pZ5QWCPBF784hfz5Cc/mZ/+9KdV3ESn0+E///M/2XPPPdlvv/249tprFzz32c9+Nnmes8suu3DwwQdTFAVXXXUVc3NzvOIVr+CII454wO1YuXIlP/nJT7j66qsr//hCWIg8InbYYYffa0XIm2++mZNOOonXve517LXXXuywww60221uueUWfvGLXwBw8skns3Llyr7z/vzP/5wLLriAE088kdNOO433vOc9POtZz2LFihVMT09zxx13cOONN+Kc41nPehZPeMIT+s5fvXo1t9xySxU4+/tgdnaWv/qrv+KNb3wje++9N9tttx2zs7P88pe/rJ7hTW96E6tWreo77/DDD6fdbrPTTjtx0UUXcdFFF8279nOe85y+QF+Af/3Xf+VHP/oRX/ziF/ne977HM57xDG6//XZ++tOfYozhk5/85IKBwD/4wQ8oimJeXw7xR8AfMCNgiIcRsTrdO9/5zk0e+5Of/ESAvrQtEZHrr79eDj/8cJmYmJDR0VHZf//95Vvf+pZ84QtfWDBtL6aGbSrV6JprrpGXv/zlss0220iaprJs2TJ56lOfKqeeeqpcc801C57z9a9/XVauXCkrVqyQNE1lxYoVsvfee8tpp502LwUrpuUtVGQlVqHbUL8Q8oV/33Zvqi82dJ/LL79c9t9/fxkbG3tQqVuDaXmbwobS8tauXSuvfe1rZccdd5RGoyGPf/zj5a1vfavMzs4u2K8xLey5z32uTE5Oyute9zrZZpttJMsyedKTniRnnHGGlGX5gNoUcfvtt4sxZoOrybFAetvgz9Oe9rS+czZWeGch/OxnP5N/+Zd/kUMOOUR23nlnGRkZkUajITvssIMceeSRcumll270/DVr1sj73vc+2X///WX58uWSJIlMTEzIHnvsIa95zWvk29/+9oIV/DZVaW8QG0vLm52dldNPP10OO+wwedzjHietVksajYbsuOOOcswxx2x0bG7qZ0Ptm5mZkb//+7+XXXbZRbIsk6VLl8rhhx++0WJEJ510kgDzvuMh/vBQIo9gSO4Qj0qcfPLJfOITn+C8887j6KOP/mM3Z4g/Im677TZ22mknnvvc5z6omv+bwste9jIuvvhi7rjjjgcUcT7EoxPtdpttttmGJz7xifz4xz/+YzfnMY+hD/8xirVr11Y56HV8+ctf5tOf/jSLFy/m8MMP/8M3bIjHBN773vfinOOMM874YzdliEcQZ511FpOTk/zTP/3TH7spQzD04T9m8ctf/pJ9992Xpz71qTz+8Y8HvF/zlltuwRjDJz7xCUZHR//IrRziTxV77LEHJ5xwAmeeeSannXZala43xJ8O2u02p59+Oi960Ys4+OCD/9jNGQIYmvQfo7jvvvt4z3vew3e+8x3uuusuZmdnWb58Ofvttx9/93d/x7777vvHbuIQmwEeKZP+EEMM8YfHkPCHGGKIIYYY4jGAoQ9/iCGGGGKIIR4DGBL+EEMMMcQQQzwGMCT8IYYYYoghhngMYEj4QwwxxBBDDPEYwJDwhxhiiCGGGOIxgCHhDzHEEEMMMcRjAEPCH2KIIYYYYojHAIaEP8QQQwwxxBCPAQwJf4ghhhhiiCEeAxgS/hBDDDHEEEM8BjAk/CGGGGKIIYZ4DGBI+EMMsZnjXe96F0qpP3YzhhhiiEc5hoQ/xBAB55xzDkqpvp8VK1Zw0EEH8a1vfeuP3bxN4pZbbuFNb3oT++23H81mE6UUt9122x+7WUMMMcRmguSP3YAhhtjc8J73vIeddtoJEeHee+/lnHPO4bDDDuOb3/wmhx9++B+7eRvED3/4Qz784Q+z++67s9tuu3H99df/sZs0xBBDbEYYEv4QQwzgRS96Ec94xjOqv//iL/6CLbfcknPPPXezJvwXv/jFTE5OMj4+zhlnnDEk/CGGGKIPQ5P+EENsAosXL6bVapEk/fLxGWecwX777ceyZctotVrsvffefPWrX513vlKKU089lYsuuog99tiDRqPBk5/8ZC677LJ5x37/+99nn332odlssvPOO/OJT3ziAbdz6dKljI+PP/gHHGKIIR4TGGr4QwwxgPXr17N69WpEhPvuu4+PfOQjzMzM8IpXvKLvuA996EO8+MUv5vjjjyfPc8477zxe/vKXc/HFF7Ny5cq+Y7///e/zta99jde97nWMj4/z4Q9/mFWrVnH77bezbNkyAG688UYOOeQQtthiC971rndRliXvfOc72XLLLf9gzz7EEEP86WJI+EMMMYDnP//5fX83Gg0++9nP8oIXvKBv+y9/+UtarVb196mnnspee+3FBz7wgXmEf/PNN3PTTTex8847A3DQQQfxtKc9jXPPPZdTTz0VgHe84x2ICN/73vfYYYcdAFi1ahVPecpTHvZnHGKIPwV0Oh3yPN/kcVmW0Ww2/wAt2rwxJPwhhhjAxz72MZ74xCcCcO+99/KFL3yB17zmNYyPj3PEEUdUx9XJft26dVhr+bM/+zPOPffcedd8/vOfX5E9wFOf+lQmJib4zW9+A4C1lssvv5yXvvSlFdkD7Lbbbhx66KFceumlD/tzDjHEoxmdToedHjfGPffZTR671VZbceuttz7mSX9I+EMMMYBnPvOZfUF7xx57LE9/+tM59dRTOfzww8myDICLL76Yf/zHf+T666+n2+1Wxy+UM18n8YglS5awbt06AO6//37a7TZPeMIT5h33pCc9aUj4QwwxgDzPuec+y69/uj0T4xsOR5uaduzyjDvI8/wxT/jDoL0hhtgEtNYcdNBB3H333fzqV78C4Hvf+x4vfvGLaTabfPzjH+fSSy/lyiuv5LjjjkNE5l3DGLPgtRc6doghhnjgGBtXm/z5ffDP//zPKKV44xvfWG3rdDqccsopLFu2jLGxMVatWsW9997bd97tt9/OypUrGRkZYcWKFbzlLW+hLMu+Y66++mr22msvGo0Gu+yyC+ecc87v1dZNYajhDzHEA0D8UGdmZgC44IILaDabXH755TQajeq4s88++yFdf4sttqDValUCRR233HLLQ7rmEEM8FuBwuE3sf6j4yU9+wic+8Qme+tSn9m1/05vexCWXXMJXvvIVFi1axKmnnsoRRxzBD37wA8C76FauXMlWW23Ftddey913382rXvUq0jTl/e9/PwC33norK1eu5OSTT+aLX/wiV111Fa95zWvYeuutOfTQQx9ymzeGoYY/xBCbQFEUXHHFFWRZxm677QZ4jV0phbU9/+Ftt93GRRdd9JDuYYzh0EMP5aKLLuL222+vtt98881cfvnlv1f7hxjiTxmFuE3+PBTMzMxw/PHH86lPfYolS5ZU29evX89nPvMZPvCBD3DwwQez9957c/bZZ3Pttdfyox/9CIArrriCm266iS984QvsueeevOhFL+K9730vH/vYx6ogw7POOouddtqJf/u3f2O33Xbj1FNP5cgjj+SDH/zg798pG8CQ8IcYYgDf+ta3+MIXvsAXvvAFPvCBD7Dvvvvyq1/9ije/+c1MTEwAsHLlSubm5njhC1/IWWedxXve8x6e9axnscsuuzzk+7773e8G4M/+7M/4l3/5F973vvdx0EEH8eQnP/kBnb9+/Xr+8R//kX/8x3/kqquuAuCjH/0o//iP/8hHP/rRh9yuIYbYnOEQ7EZ+HN5tNjU11fdTj7tZCKeccgorV66cl7Vz3XXXURRF3/Zdd92VHXbYgR/+8IeAr3r5lKc8pS+l9tBDD2Vqaoqf//zn1TGD1z700EOrazwSGJr0hxhiAO94xzuq35vNJrvuuitnnnkmf/3Xf11tP/jgg/nMZz7DP//zP/PGN76RnXbaiX/5l3/htttu44YbbnhI933qU5/K5Zdfzpvf/Gbe8Y53sN122/Hud7+bu++++wFdc926dfzDP/xD37Z/+7d/A+Bxj3tclf43xBB/SnA1Ut/QfoDtt9++b/s73/lO3vWudy14znnnncd///d/85Of/GTevnvuuYcsy1i8eHHf9i233JJ77rmnOmawfkb8e1PHTE1N0W63+7KAHi4MCX+IIQJOPPFETjzxxAd8/EknncRJJ500b/vgJLKhwLyFFrY54IAD+OlPf7rJay6EHXfccRgEOMRjDoUIxUbGfdx3xx13VBY6oC/2po477riDv/mbv+HKK6/8k4vqH5r0hxhiiCGGeNRiY+b8+AMwMTHR97Mhwr/uuuu477772GuvvUiShCRJuOaaa/jwhz9MkiRsueWW5HnO5ORk33n33nsvW221FeDz/gej9uPfmzpmYmLiEdHuYUj4QwwxxBBDPIphZdM/DwbPe97zuPHGG7n++uurn2c84xkcf/zx1e9pmlZxMuAzaW6//Xb23XdfAPbdd19uvPFG7rvvvuqYK6+8komJCXbffffqmPo14jHxGo8Ehib9IYYYYoghHrUoURRsONe+3Mi+hTA+Ps4ee+zRt210dJRly5ZV2//iL/6CN7/5zSxdupSJiQle//rXs++++/LsZz8bgEMOOYTdd9+dV77ylZx++uncc889vP3tb+eUU06pLAsnn3wyH/3oRznttNM46aST+M53vsP555/PJZdc8qDa+2AwJPwhhhhiiCEetXDifza2/+HGBz/4QbTWrFq1im63y6GHHsrHP/7xar8xhosvvpjXvva17LvvvoyOjnLCCSfwnve8pzpmp5124pJLLuFNb3oTH/rQh9huu+349Kc//Yjl4AMoGUb5DDHEEEMM8SjD1NQUixYt4sc/34qxjZTWnZl2POvJ97B+/fq+oL3HIoYa/hBDDDHEEI9aWBR2I2b7je17rGGzI3znHHfddRfj4+MLLkIyxBBDDDHEowMiwvT0NNtssw1aPzIx4oVoCtnwtYuhDbvCZkf4d91117wCCUMMMcQQQzx6cccdd7Dddts9Ite2aOxGEs42vXjuYwebHeGPj48DcManP8eyFcuZWNEiSUZpamgkXXLXxSgLlKAUWjURydGqRekEpUZJ9SSF7SJkGJUidDBaIaIoXU5iUkqbY8XixNdhcuJQwfRjlAYm8DWaphFAK0WqUpQyOCmxYmmYJksa22NlhnXd+wGFE4d1JanOMDrDqGXMlfehVY4CEp1hxaKVRqHQSiMilFICglGJb0fHkGQalSq2am1FovySrEpRGaiUBkKOqYhCaVAINpSO1sFCopSglEIEnPVniMRrqXC+v87s7CyNkQyjEqwUaOWHiA4flCAo1O9tfRERrIBRcTnZuhj+8Ft2rHOUnYKs5fvRimOyyGloS8OkJCpFoSgkr/7t2pzC5eQ2RxBGklFG0xE0fuW7deum+PWvbkUBY+MTpIlBG42IQymNOId1FqUVk1OTNEYatDtzLF4xztiiUebKGaw4Mp2BbVA6hUk1pTRxklFIwqiZxeg2IiWCxommlSQ0zXJmC4dSjvFUKJ1/T6Opwijfr4KicIKgmc4nmS4m8dNjhtEpILSSBls0tyRVOowRqYKcjPbvoWMd97Ytt88U897Njq0u3XI1Wms/pgS/VIkCUQnOCqIsVndwUuKnnJJY/0yFsSC1K2ulUSqOUf+NWGdRSpGoJHy34MQCglYKrQyCYJRBoSnFhivaMF4NpfM1zP33rasMbQUoNKPpBNuPbo9WmryTo1OD0boa6/47ddw2/RvmyhmofQsimkWNpWzV2hpQGKVYXzicwHgq/G72bpzMIYB1Fhvarqpxr8K3ZdCqgVIaP5+UJNqS6pTC5ThnSXRG7LGtRrZmIu33Swswma/ldzO3o5QBcWFrisMvAuXE90EhE2EOcOwwNsYWjSUU4r/zVCmswGw5x+3T95OaOaxLKESRqgKRDMSEPihDbyTMloux0qAQYWZ6mr96wX7VvP5IQEThZMNzhmxk32MNmx3hx4/rSU97Em5kCxyCWX8vMzNz6JGMTienkWqUNjiVkCaKolvQbCSkSlGW6+i4kvZcTqtlMOMtsokVNMws1jkcCaPJCIUryJ0n/YZuULiC0vkJzWjDWDIBtIBxwLOjAj+RB3I0yjCWTtAuhU46g4gnVhsm2UynbNFcxp1zJUZNkWjf3VYsmc5ItCd3ESF3BYk2aKWZyqdIjKFpmqQtw8TIBIlOcQJGDxC+ciAg+EkS8d93DMUc5GUJ/6kmutpkJghGGxojvm2lOHRF7v6CUUB4KITvJ0xPRuCjZ+OV47ZHyo3jrCNPC5qjDQRPao0yRylHw2RoNIJggzCnGPPCGFJ73wlKeeGw67ps0xohSzKU0rSaTcqyJGs0yPOcNE2Ynplh3bp1LFm6mNGJEVSiuOuuu2m0MlyjIGtkVb8o6yiKFTRHJ9BKkVtP7qkZoaFnfK+rUVLdpWUMK5rLERRzZcFMuZaGbjKaTpCoKLRCKTBTOIyChk0YsyOAJnczdG0HK45GkrJ4bDwIoJ6snUCieu9ixAllw6JajqncoRTkVhhLNVuMznFvZ11F2kZ5+hRxlAJaDEY7FKM4LCIWSML4U+ggiPp+NhgNWpkwPspqnLqwAIqII8GgVRII37dThe/WKEPhHKlY3xalA+FpHC1ESowyCEkgWO/h1UozmowyEfqim+YkqRfg6t+IE2HrbGva5RwgdGw7CIQwko2yeMy/g1JKKKYRUUwVijJbhFE5RjkSNYGIQysLWJwISpkgiMR2eSEk0RaF80qCeIXCz0HOf+NNh0vKsCKcqr7pxBjG1BgQBf/wzJLjpEEpLURSUoRMz+JkBNMcJ2mNMaYVSvUUhqyASS2IjGCUpm2bZLrLunXjiGgSrVBKaKQK5zIaqgVoOqXFJr139EghF0O6EZN+PiT8Cpsd4Ue00rVkjRTHGHbREspSMeM0BUI2MoG1DnElDSkZScfRJgEpcYkgpCRO0RhJSUaFZjJKpmFOZtHiaNs2Iq7S6l343WhTTTatJCEBljQfh1YbHkxOFO1S+8kqTJKiCgSLVoZWosj0OLmbprSdSrMvXIEVL+lrDCiDiFBI4YWAhqXb7eJyw2p9PxPZBKPJmP+klaCNJ/XCKhLlP1Bn/YRtmE/0PTFBKBysyy3LGoakTrQCRieVYGLCc6v6+TWrwEOBrp0a2+icJ5lU9/T8B3KHDR+7gLXAz6CVZUMrGEmy6ujCQaIVRiVoDIVYShEybUCBE6EUi0FhlCFRKSbV7LDdtqFPwk2UF5yUhsVLR9liq8UorRgrm6xtr2HF6BLS1FC4AsRrmQDWlqiZNXRzhU3H2GJxxmjSxtFistuimWgWZ/59udB5BhhNUmALBGhoReEgd0LL+Lc0kXnNeyxdDCwGvPZ399xdfuwDuXOUThhNA3GqaAWS8M6EJZmiaTRbtjSIouuE8VRTOkASIFrIJJC/RqFROifQeSBuCQRde1NhTDlJsS4H7fskCqFSXTMKCUEQw5OfExe+K79dK02iDKXkUGn6jkQ18Hq1AwpUHwnaSoDoR290Sej3rVtb4UJ77mn/jvva91XPXjqH0pp2OccdM7cH66HC6AaQolSOUKBCDThoIaTh7wLrMoyaA1ViZQxxGq063moU/lfrNNZ217C2uyZYlbzwlOggUKlgcRSHVrE/HUoJmZ7xVhEpvaVD2hROWN9tkrUaKIHSeSuPE8GPOqGQhET7Pl66qMRJGAMkaGUpbYITP5dlaUJemgX69OGFQ+E2YtLfWJ39xxo2W8JXStBqDamapDk2xtKxMbp2lHU5zJUKK/7zXqTm2GY8ozXSItGKtp1jOp/DiaWUglYyhogltxatBKUSlFKUrsSJ4MRRUFSThjcJKhKdYm0bJyVGN2qauJ/AvMlbSHXCksYIRi0l0Skd2w5asdcM7u/cjVJCKxmla6cBP/2VUqJFo5XCYVGi0XoEaDOSjmKURrSgi5TZuTkSElrJCAbjp5ZAkkqi9uH7TVe20ToNCnUS1ArGU72AUFCzHqjfh9Zrd65MDf6ahp6mr5XXCLXutc0Ge7LRG7+/iASdxl980wqE8ooe4vtKUZmNO9YxU1gWZ5pEa7TWZChKZylciS9IaUlUQuFyRDkSZXC4QDAqqqGhXYJ2ngCU1qQ6JVE5aZJSUnryUwoYBTogOU4y/vqnfoGcf9vzBTRaGdOFwiihlfgxmVshSTQto7xJGyicYJSilXiJJtUSxpTvSytRkPF94ML7iEJup5zhvvbvAMWarkMrhUKjVYoKz1e43PcfmpZpMJEuZUJroGTGBfdaeBvefBpN00XNLqQRnA/ckoU0PkOibRgvgkJXE7UK5Cbiny1SfxTOpdZOrzkb0EllcfPHApQkygAGKyVCWd0vWhl6oyX8q3pjWMUfpdDhiUVUJZTMlZPcOZujlL++C0Tr7W8Cygazd5foGhPJ0TgUhT9OTQaBRGNUgVYGKykiBSgThB3nn61qq0LCe1NRHqisBBBdliIaEBJdhPMsSiXh3Zbkrs2svZvODKE/E1KtsNLBicWoqAgkKNdk7WwDIUMZRak0tmMxOqF0JWlq/HOUD30t+geKYZT+A8dmS/gd28E4KCno2g6pThlNJ1iqWqyWUTpWU3ZL5kiYTGCy3WF5U2O0YRFjwfeaUnTazJVzgcwzL/U6B+IwJCTiTYGFLTDamwmVUszmbVqmyVxRkGovXQvC+nyS2XKWhmkyU86yZXMrSsnpljnWOCa7k8FyoDFK07VdLJYl2VKMjDFdTld2da2V/+yVJ350AmJwYkmMprA5qTYYa2hPdpkr25WFIGKeLrvRsa2qewN0B2QCAfJuibPzP1JVTbQDN93E7RY8Xm1gG16IqZv4q7bFybt2zUrDDxqibKJhRV7grO1ZKZT35XfKOQpXcM9MSaJTxpPxYN0IflXlApEXOIQ5OxMsQglaae+DrzdXHNG/Yp3D0qG0lsw2MaR+TLgShaBUk67VTM2M8a97H4peNIpbN0vZLVHNBiuaCa3ECzQjwZ/jXHCNaEXDKHqvS6oyogqYs0LpYCz1WpBGUMq7opqmSeEsWim6rhtMH1HTjNq6ItVJFcOg0BS2zfp8Eu+LNlhxQWvES6HBvK6Vd5v4vkgQvJnfv2MXzOpS3adHVjro7gI0g1k5R8S31QssGqMztFJYl6NUEOLQlQXJuuCaCdtFKZRypDr171W8tSFaEaKlz9ZieSJi9+oFheD4TUhwC05564bKyMxijOpgxVK6stcHKroJfHu9q6OsXw0lDlFtrCShHy3gcGIACXE5pvrmU1ISnQZFpCR33UpgkiDQ+H5qYSX3yg8ahQRrhWBdG+s6RFHaKEPu/LeX6AzQdMtFWDeKdQk5/jmcFUyq0Q0vzBkBo3NS3YFs7Ua/yYcDhRgK2bAlYRil38NmS/jxw1UkCBlOHFP5OrSaYzw1NI2m4xRT67pMzij0WAuTwUsvvAgxgqQCVnkX9+ICNZmSrtdIAsuefh/3rR0HgSSztJo5U7ctZsnj17H2/nGvJrcNOIUqgg4pIEFk1l2FaJBUUGE2UIXCNXrOcZkoYDolmVPYpuBGLMopdNubnsycphx11e+SCpIIomHkd5rZJxWQONT6FN1RmB1nsaXBpN5S0Z5sohsW1zHotvEEqH07YxsiRPvGV/sIbaxUhBpLVCcNvBAFGN8+VM35Hvc5VfXFPNR9aPXrir8mKrQxXMsrZdJb6UEWODdcV2L/OwVOzT/W88P88yvVp9cvdTegGmxnbbuo2M/R9l27phYWchnGa1d9tJDQE7aftd/hNG3BjotGGU2CGTeIM06g42BN17JF09A0ipnS0TSKZpCSYqzHiNGI8Tdpl0KiIdWKkWSC7UZHmS0dc6VgFCzKNA1jiPpq1/r7NbRG1Tpjupji9pl7KJ3QsRM4yUh0h0QLRnVJlSXR/ho66t7iBYJoNYpEpUj961HOm5ZFVSKAoLAyjlYdjCorTbu6sjhveVBUvaOVD9rz95TgipPK9x7deDoIcwqF0jFotsn9nQlSXbLDmPECVe21WAdaSxXjUI85icJj9bsILZOx4/i2GKXp2Jzfzd5G11qUKlGYoFn7NmlsEEgUSlQQGIIGryxeV/bP4ihCQJ8gYlHaB5uOpuMszhbTdT7QNHUpnbJD6UJhWeXdGnEAauK4SkHliHO1UebJProylTLkLqNtx5jKx3q2g8TP06rrMNabzluJ8q5LOjSzDq5Yt8Agf3jhNhGlPzTp97DZEj5kaGVwUuDXQ4qTRMlYOsdcmWFNE2korFU0Win3lwrTUdgGSCKQOVq/TeiUGa17FPkzZkluGOXuO5egAtGUwPq5MbSDNXdPYEZKXCdBEkG1dR8xSCqQCFIqT87K38d0NHbEQcsiTmGmE6SdgBbKcUF3NenahGJZiTOgS08UyazGNoO5sFS4QPpz2znMmgTXEGRxgTUJcucorulI7zEct+o/+dxlB2K3DIFMWnpkbQfIVQUyjH/HXX3kHhhsoe+iOlA8Oargja0LCTJwfCUdEYSDOmMu0ACpnUdQNlE+n0YNNKp2nkj/39V96yQsqldbU1TweQy2pfZ7bAMDAlLt/ioEPdeFwL7r0d8FfYJU7K8F+jq+gl2WC8VUTr5+ko4Io60RkpABoBPvx+/klt/MFSxqaBKjSRoJhYJMx4A9oW2nyV0nmKu9WyDVGU2T0kwaaAWZFnInJFr7GJTQlvXWE0DTaBIVTbwF08UsM8VynFiaZj2ljFNKRrdMEFmMomcy9hYHQSuLUZaRZD2aPFiLQEhQOCRkyyhliBKa98hPhcj+6Mf3mqe3HhTxLXkClBIn0TrRI/po9VGBELwFLyVR3nVTuOC7D5aA2VJx95xl7XTBVuOKMRSpVpTiPe2KnjKigdFkMVu2fLtz12Uqnwx9lWHF0NCGTEcTvA1krYEMyPFzmwApIk1KSXDSwqguiV4H0hOBpBpLUvnVrQOlNF2b07Zd2mXCZDerYnFaiWBdl1JyrOjw/A6HxuDN9eBqgYlhTgk0aVTGVLGEqXwEW2nR/thECSOJkNLFuhwfcqjQOsdaQCxWNqQFPHyworEbCdqzw2KyFTZbwl8/NY5ppBhTolUbSxHSc3Io1zOabIvoFGdzXv/TK/jqS45mfeE4c9XL2GGsZNW/fpNyFDpbCEtvgPv3Lxi5YZTOCkey1pMpS3KSzFLe10RZ0HMGq0ClDtU2Pa4JxK4ckAeyzxwUGl16bV+VynNWIriJ0pOWVZBrXOZwKehZgzQczihw2n/3ShADtiUkc4rSeGuApJpk0lBmiSeXLTuo+xuIhnN/tTds14HJzLfJUNkdxXhiDs2uaaP9/VvXVKXvQCqmqp5fAKWQwEhRu/WWg97xFeK1VO1yNQZckEjxgknU9CVo3qJUf2PpCTCVIBMb6mozsev9HY+r2lsnerylBtXrw4UsAb2x0LvAPE2+ZiXoF6iqebp3iartYYMNWqLAIV+5tLJMDN7jmpe+mKIoOfry3gIb5/7ZStpGsXi8ydKJZhWbsC6fpV3OABalsiD3dBlNWmzV2oqGaQbCDM0Uqt8nUsFhmSlmcaKZKjp0bMlskVNKk0Qp2nY5XdvCDRi6uy6JPYTU9okYxtJ7A2lqFJ7MlTJo0VVAnyfrFKMtPtCthGAKj6ynlfFjQ5RPGVXi42bC83gXULQK+EA2TRbM16NAl4bJMKokVw7t2kxk0yzKFtO1bVJdUAoUkvnQPg0dJ/6TjZo8irG0xWjSQCnFuu5a1ufrAE2qfRCl7wUFyqCU9QGxkuIT8hQO46Pm3ThCFoQzP4i0jKHVjB8mIdvAx1f0LAAi/hm7do7ZUmPdItYXLboWWskIu0wonKyn63TltsiDFSBmyYCquTIi8Xshcbocq5G9d5y1EmFZQxhLHd08R2cd2qXDGJ8x1LUF2gilddhylEcaQ5P+A8dmS/idboOZqSZONCaZoNEoyLICY3IEn85j0oS50vHxg18aAo5gi6bmhV/+BmwP6YzCLS7oLspo3ZFiG6AL5SfSRGj+uknn8V1oOBixqKnEa/51SG+CliQQngMplQ8mFoVrBKaYSWCigNygGha62muUTnnTtQWVe/O9G3HojvaafUPQFsoJ5yeuwp9XTlgoPQu4+xtIIuRLHHLXmL/PaImaTD0RuwHtdVOQnkAAzNek6ZcB+jZGywHRuhAJOVxYVE8gqBF/ta8iZqncEMoFsgw37TMSVBaKqL3XLQy9a6AHNPyaQKJcTXioI6rVG3RH+Get+D4IJdVlohshujoWQEXwdQGq7/qxM2vyhFrAQiDw3K9/g+j2iPuP/d4lfOsFL2FyzQzSLRgdazCXlyhlybTBkkIICnOS0rY564v1LNeZ1+y16hlEFXRtl/X5JFZKOla4Z26UubLFSDKDlUU4lzDnWjgfirZgylXUq+to21EynZKaDj4wVhP951obSmexEoWAMvitUxQJqAJxCQ6DEodWZSB631k9slc48RkyKjTBiSNRGUoJzlpyp0l1yXTeRikfVGmxGCWMJF3ub99KWTrKToO1RYNEh3sh3hqgEhQJqdYoDHPlJKluULguqU4RSVB0K2OOFVdZJ0pXIlKE4GGNUinWjaFCkF5i5shtKwRdgqgRjCq8K0AFawa1oR2i50vnmM7XY9QsE+kYhRlhJMloGsO6bk7HOpY2FpOahJkiZ113BihRyqGQkJkhvYBjNB27iMnukspm0kyExZllcaMDtME1me1AXmqcS2mmCShHYXOs8xJ03l3wk3hYsenCO0PGj9hsCT9tGZYum8ZaRafboNNJmJ1uoDUkCdwnlqKYhjSldBqVO7YeMbzswvP55suP4vCvnQ8o1FTC9M6O8f/TzOzkMB0/CS3afj0zs0vQkymN1Zq5xzkYs5BrVKtEnOqZax1gJJCGb58uQiGa+OURuGMqhdTBnKkmbk/iwRLggMyR3J96k713J+JMOMa79nrEhbcUSHBBJDOaYolFr8l8rILx1gbdNv5atteWSrOEHoHU2hv9+vM0/JqLQLR4oSNaW+N+Bgg5kUpDFKndI8569XtUBKZQwdwWfc1RWPDXrd0kQqi0YRIZ5JT50P4ZNmjVC/08YNyYZ66vZJnBZw8++z4T/gK3qIg8CDf1dteNBwu6CGpCQH3uqssXh13xdQAuO/Aw9v2WFwoufO7zGB9r0RrJyHWXubLElQWduYLV6+eQpW2WtEZItI/qd+GaqU5JdEKn6DCVJ3SswTrN7GwD2xWcKzxpaY1qpEhqQG26GJMVQ8ctwqg2Vluf1YDX9nWItI8P6PPM/fsVyfDTtvJm8VA8pvdx6iqC3LsAFNb5D0ErjQ7ZFeAoXYlRRRVYK6Lp2k4QEBTtco7c5YholEDCHIoGVoRCOuG6o2jl6FqfJ5/oRtC8E7pOIdJFi2OymATxKbgE1wWAw6FDqogTIVUlTmXhdXdJ9CyKFFQoMERZvetYZ8HXkojmd6qg2tJZUj1Lqn1G0D3txNcfEc267jpSA5oErQoIfSwqBVK0kpCmq5grR1nXncChGEksi7M5mqYN5ORW0bVdtJpFZZYshVg1N1GaBBfuaSnc7EbHxMMBJzoUEtrQ/iHhR2y2hO+lfOHkC36KKG/yli26uG7Ik1/coTObwVQK0BcM1S4VPzjmOPb/8pfQuSfaxpTg7tIoCzM7W6bWj9CYUdiGov2ELqptSCe65NMZajLzk68Rb5YPE60oUKW3EPRNvMFvLkYgFVRXe5O/U9C0qJnEXytYCUTApYIdKzGtEjeXolIHU0lPS40pwdqb/FWpSKY0xZYFjd+ldB+X+8BCJahSo5Z1cbMpyinUQDpx5ePXQOaQEMyIpQpsrAQCRRWMWGnOBupBdPUAO0I/zROiIzkNaLXKhf6MGq/rZ0s1cHz1e5zb64KEq50z+L1HAUVq59evVRdeXI+oqjCAKBzF00K7+4LuiMLSwmRf90Qo20/8FbHXBIAo/M2XPuoNC22vFzSoWSdeeNW3qnf3smuuAiVctP+hNEYyxtMmB37rol6f1RGu/YMjVtFVc0wXs6zLSybzUbrtAsoSnSlaY45CjVBKgpQWyQuk00UlBrIUkqhZL0T+ik45QaZzUjUTIvuFWGnSa5he43Y4EJ81YFQX0GhxISagF3QnNT+MDxMMnnaVV0FnPpXP/+5z1H3aYCyiJfiCPUanNE2LxdkKnAgd3cUoT4SCoCS4P2Q2vJSUltmSxY1tGUs06/LV3D13H06a5K7LHTO/rdIIYxYChIqdxO2x/TmKeuVAL7jooJ+6mG5Y68s4jGPmjidvhcNr7VrpUEzMf/+F69K1jkSnJEphifULfNqlVglWMia7E8yWPs15q2bJRDZFu1xH7rwboaoUWBv01ucI4/A1EBKtKKxgNqJ5P1wo0OQbM+kPNfwKmy3hWzE4lyIKkrYnitatTXQJ657Vpb2uSXNJh9bSWdZPjiBWoSdTPn/oSznqovP50sEvQDlPrOm0pr0cWvcLxZgnzrKlSWfAtKFYblAjJcV9LfSiHMm9qX2hYDfl6PnJowAAPcKxwfSvQDJXmb2V9YIHTqFnDW7Uooyg7m6ilhcw6zV00WDmQhaAFh8bEK5dbJ2jphO6Sx1qfYKMl6SjBc4p0tSSjXWYumNio1qvxKC+GnlU8Xoxh9oq0FIjt55WqxLn260EKbW/Xp2Eo7lbQtHQSOjhOtGnq+J/gsa/oIa8UHR/PKceeb+h51UD++ukX/97wXNrL1167RTlx2IlEDhVaf/1GIT+KP/wDrWwUJlPSWonRGmj+psewUutn+rXj+6EGKsQ577wHl5y7eXz71m7Rd2atP8FF/Cp5z6bmU5CyRhWwdv+6zIQ+PChL6SUBtb5WhakCSpNwDmkKJF2F1CoRoKkCWqBxVIchqliBVZGyfQc4LCicOKJuGmERLd9vIGU+EgCRaIaGJUgRHdAEopWhQA9pHIB9HLcey9asJiQDue19CAwVJUq/UAZS8cZTSeYYj13dH+LSloUzrGssZQslLQV8cGrThSJbjGWGAoRxtNF6JEGoChczuru3VVAoNfA/YsTqdfF870ioaqgt1bEEsdlZTXxZK9CPn1MJYypjRIsFuGaokKsqreaOBeDBf1T+hog0VLQ+3Fi6bgRZssmE5li+1GLMFVZJmKJ47K0iBXECsGw4usbafE1NZRGS+INhe4PUXhHb6LwziMvdDxasPkSvlWsn1vsic9AOo3/cCyM3dhg5oklY60ua1aP0xjNKX43yuk7PJ7Ofb/j/dvvxDHfvQJCRHwx7rBNxdy2QvN+hcug9euM7lKwTSFZl2A7Gu0Usi7z/0atNWphUcFKgwk3kn7U9uMx8W+rPHFGIjD+AkrwAkHhMwBsy6HXJ7gsXCD4teMEXGnZAapQyIiDXIERbKFxuWHReJtOngRNcQH2VPgYgpi+Vouyrw6N5v5YDD1uo/d80fogFftR9VNVgbd+70iKtSapSKCD9x9k/XpsQB/h156rbhEY3K6lp2nWzxf63CQoqdwa80iwzwXRezYV3nH92lK3COh6n9XaFW8Qz9X959VftqJ+b9WzJNSfs+qbWlsq1c9fr4ohWGhcSO1Y4BOHrWKyWyLiSExCYuCjB7+QskxxRYoTX+hHOzCpxjnBisLqBDOaebrtFuSdDqaVYY3GBmtELIIjIuQ2oWsXUbisJgQKmvvJtC9VW7oy5L4rnHR8qhh+PPjCWd7fn+q00vpFCiD4+kPJlVggp3r3feV8e/2daRNfiT9UHF1bolE0zAijyWhlWCkcdK2j64RChEwr2mXCeDpOqhWz5Qz3d1x47hi/DhKKfIEBpX3+vapVkBDBYiFkVUisDRBKHwNolVA6g0+uczi8eV6FNQic2GCNUOH5/XWMTgBf3MgpQhEfQh8oCmkwnU/QNJptRwtydz+FK8L7gkT7tEYpvStRJaB0EJwSQaxPk811F6VyxAiFbvNIY9NR+kPCj9hsCd+1u3QXTfDRww/nb752McUYNNbD2mfnLP9+ivnfhLWdpTTWaYqJDASe8rSn0HaCaY3A3b+BsRLXMUjikFyz5H8N6/YsSRd3KbqjZFNQtjyJA9XkWPfLV5N5v6Lqt9UC/PqsAUEFk9T57aUnfyXeImBHxZvdOxo3anFGoG388YlDjLcwVDetR6MbgYZFWqAmU9SKDjqzrLlrEWbW+PgBHRoivfaosvccfWQbn6EeVAb95uxIMjFKHxVS4vq12sE0ucr6Ef+JPvlIovEaVZepvkA130zpb1sf2Qmhckmf4NXX8Fof9JH3IIlrf2B/dP0gOdZy9uvBnfWYg2pbTV5ZKOYhZmgMEHg1zgZln7rfv3oXAyRff65KaKz1XYxXiBkdGj618khmCkfpfDdOdh0UDp0YxIG2ik7ZxImgrSNteFLMS++Dtza+QCFr+IpvZZJiktRr57Mdr4U2UiRNCAn5WAnFeGoSnFEFDTNXdWCMZYyR92UoO+1z1aUaQnlYFKfKuydE7hOFDBeuF7PPVeXzjmloWumwoE3sx4TRbJy2E6z4RXDu6/j9W7W8Zj1TSkiDVJWcXApIKIwkYryGggmxLSXetN/AG9TLSh7VoYhN5aJQodiXJGgV0hfJewtiIWiV+4qcaO8CUSAkQEG0prm4cE6t0A+KqlJf0zQBw0wxxvp8hIZJ2XY0J7f3M52vRytDohMy08IX/umgcL60dxioEvrZpAalfMxCFKbqn+MjBV9aV210/xAemy3hk2iksHTwueo6V+hCWPTfGYiQT8DInRrThcv+ahWHfvZrrPzqNxAFX3rpS73pfdbAiGVsSZv8pkV0lwBWoX/hU0Wc8dp21PQiYfVHjfea1GdpHVBEq5SxOFlbhS6MJ3qHT70LZnzmDDJqYc6guhrGSsa3mWZ67QjYGAzoL1b5vMVbFVxD0JMpblnOyA7TzN45BuMlKnG4JNQNGIw4j6b0OtHGebbhfFAe4rVOoa+gEPVnDuQh8UEjQUdirVkDgJ5Vo3KzzifdeRbuWgdHMlRKQuDgBqaP+nsa1PJV/Y9wSBQgqgjMngDUt70mGAG+8JCj904qrhJwvn+U63Fxxcd1olfSHwMxcLvBgL7qvHhOvIYKFoDYFnx/V9r8IMRzz09efTx3z5XcMVsyUwhru7XBIuJDw1E4oxEThlLSW1inG/oxGzGMp5pXX3E+ysFHnn8knVCsh6zqMEhbKOuQbo60c+8CaKSUJgnt7rXVSsJMsYzRdD2JaqNQVTVDH65XEle3NMr4NL5wH6HoVWOUIogDPso2yBhYZysiiqvwofyiFNYJZSCowgr3ty3jY4sxdpa29f79pYkm1rlMtWKLphd+EkUoFa2wIqzpOkRSHItRkgOaws2hlaul1EnPlUYMeIzVBhWKBCcZVhoYNRuOiQPdZymoUGbXqLR6yQpBaV/L3ooNzx4sIxDq6nthJ1EZTkaYLTMmu2MsbymWN+eYzu+nY9soq3FzUCQlyWgbTQKFI4nlyYN33L9G72bxcQNl1R49OJgfAeSSYGTDVJb/IaSORwk2W8LXWYbkBUXS4LwjjuSYCy5g6vGKrX5cMreFIVvvtfOyBS/4/AW4Ubjs5Uf7DzYUWlFOIYVmdl0LNeYoFgnpOkM54v3UWtPzrYcJVXd7RXUWEk8rzpL5Ezr0CD8qYSi8uV4gXZsg2pM2MwYZs2CE5miO1g7TKrFrG95vbwTGStSarIoJUPc3/DS2tICOoZ1kmKU5KMGVGhktoWv6g9tiTnokr0iaKhCy88+uQuxBRTr0hI5KA66TYZ28F0oJHAzC69tHn+DRZ/ZWPS0/xhJg1fygvHoee59WT2/7QiZs6BHuoKBQke2AYLTQfQafRzbwrAvdF/pcNfWgyXnyj603ILZjoChQdJsslPoXrh3v9YvJnLvnrC8v7eoXCb9aB420/lh9D6qBv/3eBT7GReBbq47ljtmCuVLmyZkQNOzEgGmixJv73WzHm4KzFNIkCHVe25+z4xTSZCK9h6xmDrahiEvUTEspUSoJ5XbLcC+DwgSfrQbaOFy1/oQvbxu+8zCgvBaq0IzgxFCGIkSLGil5WZAaDRRkWqq8eoCulbAMcW9byyhKR6iOKHSspXQtuq4B5GhVBCuDN407BKriQI1gWi9RyhDr3hnVRVFUlgAX1hOIOfXhN5z4f7XuRe+rmnXH4frO88+QMZkvxolhScMykU4x2V1L13aRQnHi936OJMI5T3wK1nVJtENbw7HXXcc39zmYaTeJjDicLnHO0hUf5JiEEuVhYeIFRsXDCycbXx53Y/sea9hsCZ8sfLzdgrtmFOWYJZs0rN4jwXSgHAXbANsQrnnV0UwXMFc6jrjofFzIiBPtI+bpaGRRAaKwuUZ3Fa4puDSQ3ojPmde515BVXYtagDMGFcBqm+qfIL2FoBLjKcd8ZKs0XGUVkFzTmWqgFvlAuNZWs3R/O15F3bslRUXikgoq96mGAK6poQxFRxKHlLpyGwA1H/VA+01UQcNzxGh3q/oeqvLZZ87XFFhII48HDpKd6r/Hgp03SPZRylKBBCPZ912XmoVC+rXZegR9zEyIx6jaMTUBr2pP3B7Pj+Rf77/4jpMo/IQfN0DAtcef1x0LuRMj2deuUfV9XbisfqQnHcQCQ3F7FMDqAkjol0/8+ZHcNVMgsfi+jnnsAUXpyXnhJjKRwV9f/jW09SV7/+Pwl3PzZF7V798YVFSzmxmqmUFpkU6OtLuozGv9aK/haixGeXKOMQOROKK27wksvqRA4opAZllFkr4OfW3NCqJwEavVRSuB/90obxFYNNpgZs4x1hyncIIixYqv2ubXI+iRvbc4+JYkWrEoMzhRZHorSoGp3DKZ+1701QA9GYs4pHqyAuUHPb5aYBvCMsC959ZAFG4U4qwXDkIsg0/380JMd32J7Tqy0ZS0aRALxaxf2yEdMRiTMp23wBVsOSFkyX1M5dPefZELJ/7w55XAML50jFXX/qjvm/nz//pPLj3wYOycpdOYo0hycpejiDULYhbFI49Nl9Yd+vAjNlvCV0qhmhl2/SxFM+XcQ4/iFV//KuUoqAJMV+ESsIssz/nquZg5jckVtDxBSSrQCFWUZ5LgRxXsRIkrNOlag3KQL3GombDqVsi136h2WsP8qPLY+N5+HUrmVh9L4gvuSOZ8LXwNplFSloYsK2k1Cvba92au/a9dSeY0riG4VkjxCxkC2aShu6JETYfXp4Fx560X485bDrRAx0DD+gBBq7z5vqtRTetdB8GSoFolUpiw6FlPcxftl3mlG0u+SVQwe4QEDKbp9XVOjYCqvxcSEIBYh75HVKqnpQ9KV1K7bi3YTmqmb0l6Vo0YQFkvkOPrItQEgtj+agzUniu+3+qYnjQYCzBFIbFyRQzWEVC1tRdqhC5G0PVj+yIca11X1YFQA4IPfQIq4o+N9//iy4/knpmCdTM5aIVOFCakLcbHdaV4Qjb9QoAGxjPNkkxz1MVfRgl859hV3DGjWN2JGvcDn9irXP008Sl8ziHdAplpgzGoRko20gkBZylCWEJaaQx++WqjTPC9+2A4p7qhYI9viQnuAEGHRZA0Vgxa9aLNY46/T//zQX7WjVA4IdG+sFemE8QacoGOnQNKbKjLr6P5Lqb7qZhj7yPqNYqmGSdVitFUmC0NebQ8olBkqBB0pyvfva4Nt36hppfG51+8xOcIxxuVQViJMdMZ69bNolDMrunSGGnQne2Q5zlaJzSaLaam19IanWVkJGV0yRKmymkUisSmHPfD/wHC92EVq679UTWWet+6cNjV3+G/Dz+Wu+65l5FllvXFJArvw0+0waiUTD/yFFOIwWy00t4fQux4dGCzJXwAtKqk9JluibL4xWy0UI4IbmmBWZNi5hTonk9eFYqRHWaYXd9kZKKDu20R+VLBTWVkaw3FhMM9fg5XavT9DVzD9bRixbzpayEtfx7qpBD+VeDJ2tJLr4vzeFdjdQpKSH47Qr5Th3w6o9Mq+cHtT8LkCpf52vq0StT6FEkEXSjyrQtfsa/heoQ6k1IuspCKJ2iApkVKjRktsHNpqCEgXgByCrW0i7MaWZ8hLVtpxSr4y1Uaro/2woAN2+vabJQA+h661lnBktF78IGPb7BfVW9a61N3K3NL7e9Aun3vpxZPMKAA9prUR/qBrpzydQlCzIEXBlSv8FBsh6JnZne1MRMFj3CzyOeKXuOi5ag6NwoGNeGpumC9/wa7ra7tRzgfOS+Bg0TBV1a9nLtnCu6Y7KA1NJuWv7n80qq/Pn7YS+hYhbMKSgupz58eS339/Fdf8RV0+ObEcyvOgJOUV17xpZ4A5eCzL3gZk7nGPgjzqVLKk/yI8QlmhaWcnmNGWpStFs1klpaZ9JHqMbo8xHb44DUfnZ+qjEQMhYuFaPxiPQaNX6rWoYLZX6NJVUqJCtYDX39fQgqb0coXn1GKkVbGmun1zNChLQ6lOoANdfzDCoqSgDJAO7x7n8/eMg0eNzaO1+p9Xr03qRtKaVG4EVI9g1G+xG/hckrnV+r08QnOpxGiQ9yCxsdH+hJJkfCj0JFoaJoxHELpSrZ+3Bbk0yWjY6MUtmC8Oc7cVE6hNY1mE6MKOm6adjHHnJ3yQkehOP6710MY+z0LYByT0gtODv/u/fXzuOiZf0a3aJMpn7bowmA12oTMgEcWmy68M9TwIzZvwg+5vq50dAvF+Ue9nO1GU/Y950u4MYsUvpCOy+j5QZuO0RWzPje9VZLnCXZpMKFbKJaXqFaJMQ67ttHT/mCj5ueFgvXCrl4KVi1S36XBphoFiVBlTwg+6sz5Aj0tS3epw9zjqwi6WUMypynHQ8RwK0j4TuEyi3MGNWMCGXn3gI85EFSu0R3tgwO7Gjp+PQA3naGqgjteOJLUIdOZb1/qqjQ1X5tfPLlPp2gLdsz2CKdOWrHPBoin2l3X9uuRbPXAvUozH+j7wTr59XOCtaMvQK2m3Q6+J+8vDzvsAimCEq434D7oBdvFLeHZYkxB3G5qbRzAoHGiEkjqGvpAXf3qnEFXwUJEHzX6eIyGa172Yg74+teZac8y0dC8/jvfnGfFOOfFK5ktvctelZZGZhhtJpx01flVH6nQ1xJd4uFZD77wSzULh9930hUXgRI+8NxVA6Tfa3yiYDT1deZT1Ss5c8Kl5wNw4UuO4dfOYWe72EaDRJUkSvkytCgKCvySwlHL7gRzvY+wF2xV7dEvS2xJtRe6GsbgQ8g0DdPE2pTSOTI1BxQY1aFh2iFlzRvPtVbYpM3s1DpUo4FT3aBbe4nQl8fNEcrKWiIhp97pFPB+/lRDXHJWKe2XDFI50KGZNNFocnyanUhBKaFUjPQyC/xU7QvzqBgKp7zur1VKwzQYSVt0yjYj2QiSGmwr8S/HWZzWtCZgUZrQbDSY7M7hioLEKJ+d4OD47/2sz/JUoQocVr34oDh+haqKpVtnoKvITCPUnHAktOZ9Ew83LBtf895ucM9jD5s14SulUMYg1mLF0C6FZ533RYzT6BmD2rqDbXvS13kIdLOKudvHkUxYtO161t+5CO0UbjLzpKkE5hJKLb5+/vpkHknMm6RrG+f57aHSCGONda8NxYvGf6kK7wCeNBJfN18J2BUFBCK3I45kxvjrzfqZ1jXEl88N+f+ig/ZfKq+RK8CEaaXUnsArkgas9opIy8J00vONp1EtDIF7UcMPgX7OKFRHzyea2AeV33tACJh3YL+W3NfH9d/jZBN/lOr546lt18GwWRcCwkQkKmjn1r+HStOvZzzE9xBWLlRRGFIDboWBSDoBn2kRt8eUuw2sYxBjNeZp7VW76evb6rBYARF6hLuhtsX5OfTNAV//OkrghG9f0qu7ENosRkDDiRf7xXf+4/ADeOV/XlMTuOYLGX3pp7Xlop3xVR2roFenePy44d62N4vnTsitkCjH4kbKKy75SnXNvjES/m4aaLQybFmSzE7REkviWuRSkizyvv2o7folcnuFaYwyKBJElSEgzneej1T3EfmJThhJRmiYFhMi3Ne+l67roNFhOdgYEOdN/R3bJifHJSXSdajMobQnXN/nZSik5KP/tVLhb03uLKu7qxlLxihcQelssCgIqSkBH3lvVErHtrHOuySMNqE6nn+xGkXpLEZ3qvLDsUhQbPdoMooOEkeiR7CuiVIOJ3MI0DSG0nVoNUdoJQ1yl1OG1Dkblgsu8yDUxwqhtW8lCqIxi6c+lpXz1QsbyQTlqKWrcmxpSZOUbqfEmpJHGoVLMG7DVBaDuIfYzAkfqAadBpakQQu10FyvmMsapLOaYmkJyhMk0RybK6anWmy902rWzYyQdxLsXIpu+o80bZZ01zX6eWhgXIgOJqwFI71ryppQFeqpzPaRfIKLIZr0q2NreeOSCsz6FD5ZXPhFeKJC2hQk88F6YsRP3GUI/OtqZHHh09Ymw0pbTYeqgg/BjQS/5ZzxBXPKxAsoMfCsVEgs+qPwC/dQf4bBTok7Y78toFIPaO+1g3u/OvpdHJFD+3zZ4eB5aWlheySp0E4xPSKvE6c/3o8N77rpXUPiZKbAJX4Ro75SybWmx/Z6Q4X0t3uA0yuL0MCGXkqf9LSmSripHarpdz3U5QXVf8151w0HVSWWgxAnQSNE9VIDX3npNb4rbf+1e8KY1N5Nv+anJX4jvRNf9o2v+L+d4tpXHEfhhOee96WqHb6tzLfoAC+68Dy+f9RxPOeqC/j2nx/BC77xNUTBl559AEY5tErp2jmsOFLtA+NKydCUpFqRKOOHtCsD0TUr95ATS+ksXdv12r9YHI5UZ2gMqW4iMsZ0Yelav6TvbLmGdjmLTkJFvlyDcThtQbma1h5dDJ7s/bLesLp9H2v1akQkuBtsiKb3xwlCbouKfHWop6+Uz6KI9fQI7Y+lhxPtS/OmOmVxYylWHIVzOBoUzqGYRaRL6YpQpjgJkfOO2WK2eg9puE6RF7gpPNlDEJ5rUpmDelzHYICqRvuUxFaHIp2jdCWl0iTNBnL/hjXvhwu+QPGG7yMb2fdYw+ZP+OLHWlE61s3kfP2QI30UbaIQlXPI5y8mmUywIw6ZKJDc0LjXIAak3eK+e5roroJRRzarKRb5l9/JNSoNZm7b89rXtScVbaWDqr8ob26Lc6v2E6qZ05RLyr7FZnRH41rWR0TXJrpIJiqQrl6c4yYzpGtIZjW6gHypxUwZX3s/EnShcSPWt7nh/Gp5SW9Iq0JXBKIEzHTSXyRGCVXKqsa7NIz0SuTW0++qvgj/utp5kaDi2gK1zpOazFBfGa9PA4f+uvRR4FpIcKj3fX1FPFU7Lpga+8zw1XvzB1XXV1JZSbwGrvrvXyfOePvwzBL6DPBllGtDYnAirLd/0P1QPdMAKrdCrQ2D9SDi9XrP2s/SVYAiVK6HnjCFj1vQMk+I2KDrAaogwBiQGAWwPhOw7gUtKi3s98UvUbdKVALDwFioP+/+X/kSaHj+xV8DBdcefRy33X4vM7MzdNQ41k1gEiHRjkR3SBTkLsM6MFpQZH7VOSVVcJ5SGicJXQuFa6PULIlKyLRfprawhplSUVjL3XPTFE6BMixvthhJFA6LJAU2ddjSxxKIVcF8r0LZW4szPi0OypBv7z8EX9BHwkI+KUY3EKsR6YaFegSlTFi4Rsh0A1EuLLpjwrAREuUtFK1kBCslTTOKdaPc27ZMZMKSBqS6TW6FQhStZIRUJzgRSldQuDaJTkhVRqozn5oJvPK6n4a1IvzLUIm3olTfkKYXx0Lvu62/O6UUzrlqtUMUZK7BXLeYN8Yfbgwr7T1wbPaErxopbrJL2UjpKMdx11xQmbCTdQnlIhc0BoF2gioVjTVgWz5tL9+5i1uboazCNoVsraEcD7K5VXWFqO/feXHHA47fumCQTil0CS6FZDLx6XfRFy6qN4kPTtw6aOwpuK7xaXelwraCBcApdKEoRl1FrkpAtY0P2CsVruXQ7QGtPJEeGbHwUrNRC5NEkLSM9Ue8FhOXta1sxfQm/0GOUrV9NbfHPC20InPpJ9466tr7A8E8C4LfVkXCD6as1UhMtPTSE+vNXCjjoHav6LbumXZq11S1blO1dlTSJD2haaHgNhkg1fr2AQtCda9owagfXyPzepEgl/S7pCpBod6FUmvjQNukZpWqlwaOD121uy64RcG51vj464+OOZ675yxzZcFx37qgFyQpcezCfl/21oFPPuPPOPkn3+YLB6zk/ilLMTaCUqNxiYGgGeNN5rpEK0fLlCGq34V15XPfPFEonaKVD/RTqkRLzkiaV8vYKgwt4x84t357KQXa+EBAJRaHkCjj8/wlwVrBFhYShyhble2NhO4zCBTOCb7IToqIryzo8+N952c6wei0V/dfQou0YTydoJX45XO7pabrCrZoKUZThVGCD2RUjKpRRByz5RwxBNZFwRdFZjIER17kXvhzqvq3bwzFqSDGKdWE3NDwYDlo05WuTyNU+AV0soTG4j9MlL7eaJT+QgP6sYnNnvDrnFO4GRqLurhfj5HOQHe5kMxoXBYmsq4imVPki/3qerqraPyqSb7I+7tVqShjWdtE9V17cILt/V4rHRuD2uIpAjoHXYCyYEe9Wdm0NXbcB85Jw/VM0mGdewhaWOIvphsWN5P6fYG7bQPSdQbTATersSOuqvSGwS9Hq7wFQcZLX7UvTsIhqlrXossrwoizY72YTScULkhcrx/6rBkD/aJqf9f7rW5iHjy2fv4g2Q0eW0WM1Y6va9+DRFwnGnq/R02zUjv77kGYxKSn9S70nHXNX6jiRGIzRdGzaNTOn+ciqiZSepaFwX11oSJMzn0m/bpQUT1f7cZhpwy+E1W7rurfVe/H6I+vW15iM/qCFNXAObEGbl/fDdSxUMLXXnIUk13hpMu+wqdf+HL+Z02X2UJwCGc8dxWJhjde/VW+svLl3N12ZDrSk/fDnnnokbzi8q/ysb2fS6Jz0E2M7uLD/0ZJtCJRbQrXQCmLVrA+T7GicdIIxF+SaBhJUsbSOZzMYJ2PBci0wYqQ2y5KQdcmoUysDoKAgFJVtT+NxkoZSuRqGo0GSdlECoNSjrKw6NRR6C4uD1UamxqlQYu3BojypnYdVu+z0qUMRYasK0l0SqYaWCkZT8cZTUexIswWJYl2LG96s3zXdVEk5K5AxJEmKR2bU9iCQvxyv6V4Rcdr+963bsteSJvE7ySM9SgQ6rbuc8H03qnvkrIs6JZz6EQjeHdGokfp3mPprnnkffjDwjsPHI8Cwg/yqYBWCeOXjZEvAvXcdSzKCu67ZXnwb4MkQjnqCbgcczQ6Pte+eb+iu8z7w3WhsFltEjWCznUv4K6nmBBv3KdZhQlRCahcYdreV1qOgqSA8gV9KnIKdfRRQXBwCsZKpOw9l+skPnjOho9NCzQtpUsox+idFwIBdVsjuYJMkIng808Euj3fvs//d5UVo2/Mi69jIBrsiFRam8p1z1wtDKTXqf5qeoPEW99eO6U/AEz6Ne7BA+vSV73oTp2kB++9AaJBVM8kGfdFrUVRFSVSZb1j6GmyodPqvuyK2AeEvnnPHzQhZalIuu+QQbP9BoTNeYGAUnuG0LZKeKixq1e4e+eKolrmuSpoJKqX6RC7ycT7Mr/P6fVb36ur9W/U0HurLSrOOfzlGAWvuPR8fjfr6Fjh9INWsbZrMUpoJkKnDOFoovj8oUcBQsuU5M7SsVlvwrbCP+//YqZm26gZg26mJInB6BIVctYTU9IwYKWgdIqGKZkrm+SuGVqcAYqpHJY1FUsaOaGqPqWTqoiNUSlKpUBBFQOuvIQlTuNQaJXjF7sRUmX8ErE6p9FskckYogRbWrKkwW/vuAOTGO6fnaTZaDI6McL09AxaQ6fbZfGixRR5QXNpRjJuEEqM9iVsJ7IJUp2G+gNgXUJDK9KoPACZTmlbv5KgAzq2U9UaKGyBUU0UFiclHVd6gdLC8T/9L5RWXrMX5a1+jt4aIDH2o56HX1lt/FiZ65TYUYvRDpTPGtDKopcpsuZwtbzNCZs/4YMvBiKCE8OafUpadyTIdUuYelyBKZQnWquQUYs4hRsVdNvX4F/+7Hu56xcryNZpzONmKe8c9eRY9gihCrgbmNyA3lrytYkcqFKmXBoq/o24/qC8GBjnQJrR7O4/GJ1ZnDJIrv32MJGmM5pykfV+/0L3r+iWeCKPJXDjAj9Sami4XrBdiPp3i0KFvvo67PSesVhWojpB0BkvkBkfC2BGQs4+0hf5Pk+rrmvDsX/q/vo62UfNNEak19EXHzFwj8G/57WhproOYJ6Jvu+eVKl9gz73KuK8Oj9quQMCgPQ0HTXQT96VEC4ZnzkG4YVtg75rXxq3d8+4auK8uIAoeKlgho39EPs5CgA1oaKyNoTaLtUSvVEYCW3o686av73PKrBQJkNNgFMClx11DL9cX1A4YXXHMpIo/vXAVXTmleQTjCpxZGgUb7rmq30fYey7s15wJNNFrNOfoNIxpFtgZ7o4DarZgMTQsTBTNGmanKYpg2/X+/h7Da1eH+u6Bq1GaeoCo0sEi9EGG1aD1Pjo/1JK34/eNAbYqqa+94X5aHkrPhPAaTCJMJq0mJ3rUrqUpYuWU9qc8ZEJUEJRlNjCMjo2QaZbGDJECUuzpaQqxTnBaEPaSGmYFKMSNIpOXtItcu696w7GxsZAFOPjo6CE6c40zvomaa2ZmZqlNdFElynt2TbN5YbcFWS6SdEpOPa/rwXARaE3Cm7xG6hSdeOaGf3vL1oMX/E/PwbgnGfshVlaYJOCLhkm65J3Z3mkUTiNdhsm9WIj+x5reHQQvvOSY6IVes6vG59NQT7ZWw5WEiqTuR4rcA2NA+789RahiA3kk00Y9SasqNn1Tb51VBN4GNW1/HPlVLX6nG2Jz7k3PhpfJrx5HTzhq9y3GQFJ/Op5bm0DXfTIPAbVleO1xijxrgqremkyob0ukIwQSgc3XZ/f1RlgNvHuBO2JxDWkl5Cq8Gb/UMjHWY1Z0kUpQRvBrc/6NbyQolcn2UEyRyT4c/v7ry9gMGruDGj/g+Qetd5ILIN1Egb87oN+9PrtFrJC1NskulZoJ5L4QK2BullaiBo0FelXwkDoX2V7RCr1/qhIufe3qk229YBAUT5y3hl6hCo1a020+sQGhjFSPf5AvEjU2nWJ/1Z0TZil9iy1/o1xJPM/j5p1oZKM/FHfP+44bljdod0uSLXfO11AVca3Wu3NB1NNF17jNgp0ofsEjyj4/PV3fDrffxxyFOtzS241rtVAmhnkJa7d9e1vZrgsoZQms2UTrbwVYUOFV6wo1nZGmMhyRpIuDQ0KCxRYZ7H0lucVvOtBS3iUIOU651Aq8QWB6FC6BMhCZT7xGTglLFuxJUb5ysVzeZc7f3cHebvNNk/YhfGJUQoKGknmeVYErKbdzsmtout8jf6GcnSnZ8iMYu3qSVbfv5as0SBdnVKWBVkzZW62TZqlNJtN7r3nPpYuW8qaNWtojTXZcukSSltiXZfOvV3Eec1exfEjoFIbqm6GdN+Bb7NvjNRchUpghIy27Xp3I22sgHOPfBa8bKLwjgyD9io8Ogi/GnQF6bSidb9fNEfHnGADYlxFji4U1InFVFwmpFOKxr0J+XZ+KU2KYL5aiOxrqLSdQP5igu9ceWKoCuwokIkSsQqzOPc+eUAvzuH+Jm5xAbMh3c5Iz3wa0vZ0rrCjnrWdAd3VvWV701CON4xb0w5WjfjxzfTMZlXKkwnCgBZUqaEIRNd0vjiJ9fn1LhPoGF8PXRQqs6iJAtdOfM71IPnVtdCgtVdyUa0ve9qp6ttW9Wl8r4PveEAjV4NaeO0C1TrqUYuuCHjg+jXiVYMTWE0T7yP9oBpHU3il3UctKFoI6PVDvGcvYK72+ANzTtS4eyvoUVXIG2xz3ScjRqpFjjA10o/n1KPnqxfT2+9S+lF7nr7YAi19wshgrISYBQQEJfxqXZeZdsF4M8FpxVwpYAVK54XCLAjpoUEKYUmm+MvLvtp76D6fQa/tr7r8fFDwtcOO4fbZ0kfTN1J/zdLipubQ4yOQJQiEJXiFTIecc5cE826vk0sR1ueLKF2XiWyOVOcISViYxmvZIhk2LMHrlEVJTLGTYLwRLAajNFYKCltinaFTdqsXn+g5ljUXo7UiSZs0d9iJzopZxhY1SRONOINWiq7Nycuchhoh0SnoBJTGACMJLN1iKQoY32cvxPnUwrl8DqcdVhztYg6jMkabI2y17XIcjsVbjdKZ6uLWQepaHH3TD/3YNvg5UIJJPwoAcdXMulAeBdhqcNELAA7CX5KlGOfL3Crl6wTETIVHEha1icI7m5jkH0PY/Ak/Tkjgl4S0sG4PSzJtPFnpnhaoBFzTV57TDYvM+QIzuqvo7NyFucRX54vS66ZuHTWg0AYd1qiXpl8fO0a5q5gbbxUqEexsikoEnVrsXEpjRlGYxBcHCu4EFF4Dtz4PXsVI+9JH5kcNzS+Y45lAuZhrTo/cpDdRR9JVDk/ywewr2rsAVKmQrq6CCjGC7mpcI7BVR/c+aCUwZr2GN51UGmjPNRBINyEUdqG3MxKgqBA0R5W66Duy5neOBB9TyQYC2PqIJlobpGf+7kN8VwPkRHyNNUKsiCv6JBcSKlRNCAhChaq1cUOlewe3VdHnA2SudK8f+y0csY/p/yVo9brTWyfA1zsPk64Lmmdd7QrCxEJrCdQftfo3WCokauI1l1CM54oBo73m9q63eiZny4kGJ3zzq5xxyBFecNJ40tdem0yUpZSURZmia+EvL/tqEAYHAg7js9dXNwSO+NZ5fP4FR3NPO1jrwop8KkuQovCL8cTTBbQumMgmaZeLmS5G5r0sK4rZskGqc0gcpWsiJGg1Q7ecw2HCWvZUA0JC7X4/hToESykqFNCRsGpc6rVnFFoyZos2rXQEKznJiGbZ+DJfyjf453NXUpQWsYqZoqRbCA1lGUk1mgJrYdZCqhqIaEQZnBQ4XdIpO3RcByFBaY04RzNr0LUdSptz/E0/obIEif9epewJ9ErRH79joyCqFp5v6uMpYNnSZZhJgy1hfaYYHdHh+R9ZONl4YN6w7k4Pmz/huxgIAs1UKCaEbJ3xmsqKDqxu+Im49BOVtoakrQCvyuTLS8gNel3m8+HBF8KpaWLzECfkWqER7zf3GpaeMbiWQ7JQ5CZXkAh61iATJapUJGsTVFCnignX0/ycT+HTpaII6XONtZpyRNC5qiL6q/k6bFMOxATiiEtzOZ+WF6vF1QPRXCJI03r3Q0eju6Gin6ZK/2PMwhq/T0pfW1+cQq3NfExCoTGtEiGpluh1+LZUxWl01I79ZCK1hWr8OXWVl36yiUKDom/Rtj7fei04jZpVof6uqmvUhJJ5PvL68XWtWwAR756U2tK8Nc25rulUbZXes/e1x/XGVlj8rIoJGNT4JT5rdaP+f1V9W7x21MRrFe/qlipVgA8Q9f/2hK/QLxKu7PD1F+pWgFhS1/b6pio2FH830t+3Aj867njumiu4fbrkjVdeCAIfP2wV00W4YVH6OByt0Qoyk7I81SxpKO6cCwJX4E+lxLsx6GmOVZ+E+333Zcdz0/qcPoQy3NLxgXRxQAmKjh0hKTRLm74OftcmlH0mKV+jf6YYQaucTM/5QjfSwqgS7wvzL94oHSL3o32pDCvyhdQ7ZVB4s5evvOcfJDMpqcnolj4DoLQ+At+QYq1lanqW9qzjRd+/1H/Pdcta2hsE0bWknPILY4X30BzNsVZTdBK0CZZCq6HUXhFJwzgJSkmFKJCHcaQK1T/mau85vhQV5prBOfS5l1yEcvCfLzuS++9czwwjTLU3rVj9vig3kZZXbmTfYw2bv3OjtGC098fpnJG7FIt+LZSjDlnTwCXitfpgJvf58H5xHRyo3K84l0wraNlezvqGEAb3YD50Fa0aXASqUH5xGfAHWq/5q2mvybtMcIlgm/7j7OXi+8p5xWKLzhWmqyhCLQHEa27OgIxZb8EIqFddQ/fI3VsLer5+Vfh76ZgdkPvnjZqaLoLEbhVSKuy4xY1YJHO4qQyZTXFNV93KdU1FtnEN9P7+El8dMJC7ciChX6KlQdna8/cRu6r6uiK+OtnXyTr0cX+Ee2+X7yPp/VsLIov3r7SSOsnGWggh1TFOaJUroabdV+RX19aJloNaO1QUgoKgGOebSksaeM7aO43GlThmVLD46PBe60GIVdcEM7//obICecGsd5++6PvQ/5Wfthax75Ja/0bNPmTB9AnJoW9vnS743azjjd++ELTwHy95OTOR7EvryTf48P/2P7/GKVdewKsu/iqZgZMv+0rvPQTNMhSy6wkjsTJlwAFf+yInf+crJPjXlooiVQqTGIwTUhQNFIlSGMCg6JQtuoVjWWOaxY0yZOX2+jLTltG0BMZxTJCZkkR3KtO0Vn6p2p4ZPwThhop5AiAOrfzKdYlqIBgf84HBOktuHZAykoyS6YxO2WHd+mn2Ov98DrzsYk/2YSzELIdK8IyBuvUYmNpYKPIEG4puudLgcoMUuhecDCE2xb93KRV0DBItk7GUcxx7C1QYrY/zvvEe56MwVp77ja+SakU+08Y6HnFYUZv8eTD4p3/6J/bZZx/Gx8dZsWIFL33pS7nlllv6jul0OpxyyiksW7aMsbExVq1axb333tt3zO23387KlSsZGRlhxYoVvOUtb6Es+9MUr776avbaay8ajQa77LIL55xzzkPqgweKzZ/wnYRa2KCVMLe1sPbJXkN2I5ZkxmDmdEUE5bjzhWsU5Cu8ti2pkMyBXuujdQdJS4xU/vJqMMfgqUistROVw5vnuyF/fbyEEdvTsp3CTpTYMeer4sV3rPGmMus1LKyPAVCFFyaSaYVkPt+erg5+fetJJly3PunHsqZVNH9NGxItVXpe3X0hJlgqmsFcHzW2zLtC1GjhXSKjRU+gaXk2iBO+6N4PomAqRc2Gvmj6lcokc4HwXOjDMKHHiSQSTewPoKorH4kpTPh9/vcFfpTQ7/uvxw2EvoukWL3LGIhIvFdk2rC7CpaLz+r7t7rWgIm+al88LhJw/QurCQ3Vl6fj8/b85z6mA3Q3BALGOIOyNnbrwk5dWQ3tkqQ3lhdEOCcKN/O+iSjcGELMifQLbnhiuPKYY5jMHW+44gIAvnnEMdzXtj0qtc5HqinFW665oNYPwiFfPb/PbdFzkdQm6OAuq76ZiowgKUHmLJ3pHDdXYpxCpynFXInrWEzXkRSgu4LqCjPTLUZ0k61awk7jip0nFE0DCkXuDJqEncZTthsdZ1E2QdMspmnGaSVjNJNREtUk0QmJbtBMRkh1k0w3SHVGqlNaySgN0wiL++SI5F4A0A20ygLxlL5WvlO01xa84FuX+ecqtBfOXS0zJ3ZirqHt8/e9EKir4FIpNNI1lHOJ1+jxZC6lRrV9sDCB3CEYPoyr5qpqDYnat1l1f/27jWOmsvoMCJ4qCISZ8KUDX8KaqZwscyT6kWf8uFrexn4eDK655hpOOeUUfvSjH3HllVdSFAWHHHIIs7O9jIM3velNfPOb3+QrX/kK11xzDXfddRdHHHFEtd9ay8qVK8nznGuvvZbPfe5znHPOObzjHe+ojrn11ltZuXIlBx10ENdffz1vfOMbec1rXsPll1/++3fKBrDZm/RjLmmiFFZKxIBbWjAy0aZz+ziuEQgrpI8wUtL8VYNiQnCLHC5Ivd2lvfrhgwJfNJO6luv596X2EUA10UVJ2GWC7gS7bJ70mbfEiC/3O2a9b7+mvaEVruG8id0Fzgrj0TWivz5o+I0gkMcFLVRtPfVYZa9b+0Dj9xnL9gZ/L8rXJkjmoLPCp+zpxIWKY4K0k2D2c96kX2hkrlFV7PMXmy/49F5SaINV1XE6XIuO6ZFOjCyX+BJqhFtdi962aC5XvcPrCn/t9pUrpE9tHjx4Xl57fGHzN/e7BaRm/qdWyjYQYuz3eEx43r6SuLVnGDSR9jUxWmCCLz0GilbLpUttHEiMH6cnTAj0yj4HjS7m3ceHCv0ahYJKYHG9JlXCwoAwUz9etDCSKF57+VerwNbbZ0qq7Dtf77bXsbGiW40Dotnej1vVE24iz9SLHNF7X1859BjualuMMRiV+GfWnuzSBCTR/tPVfhGlsUyxw1jKRCPFYbHSIVEpizLD6k6X3GWMJAmpcRS2QMhY221i1Dg7jfu69l0LYEPRmxIxBbltk2i/TG+iUpTyOfCJ8mYSX/3PBxGmugQMs50u+XrhJdde1RsP0cIRh2wSBPhSee3eiNfoE3xpAAHJDaphYS5BNb1WoRKHLcJ81LR+PhkvkVz787X4VN4YG2F1EKSoiL/+vcZ03+8edSzP/fK5RB9+HLD/+fKjOfDC8/jCIUcxOVfSnm5z+z1TkKZ0zDi5neaRhkVTbqy07oPUay+77LK+v8855xxWrFjBddddxwEHHMD69ev5zGc+w5e+9CUOPvhgAM4++2x22203fvSjH/HsZz+bK664gptuuolvf/vbbLnlluy55568973v5a1vfSvvete7yLKMs846i5122ol/+7d/A2C33Xbj+9//Ph/84Ac59NBDH2QvPDBs3oQvQoi6AZVzzDU/hIZBacfc/aPo6DOWQJYdBV1Dd7e2N2lZ5VPymtIXVVz5ZOPvwW8VzeExIEqVque7T12VUx9N+7RKsBo9barJtppT0yAQhMA+As+hvK/eNRxKh+j8pr+fC4WBAKSt0YXGNR06194nbwRR3uSJAj2nvak9ThTGP1Ay5wlYUi/EiAqlhpuq0iZEQTpSYEuNCotmSKFQWkHD4pLgGsgVblEJ7WCX7tOkw7/BpyhWQdv4PsuN1yYGJvheZHs4OZLUgBAWzcWVD7qm0ar68VFmCBpPXwRxncgVvn0D5vi+dkn/eT1tuqLVniAYDwhEVxFhXWBRUh1eXcup2gpzteYFIUii9i8y3wRfe16pk0Tsr/rzhglZlSA6ShMDF6tlKFQxCVLb5oJAE+rXVumMsf8V7Hv+F/2qluFZ5iLb+woxkBr6AzQGn2dgfAy+5/q7UL2fNkJOfJfhX+f8SvHtLnpRmNrEMdGAXRYZFmU+e366WM+cnSPTDZRSLGkUZFowytAtuzTMKFOFRuFoGEtmUhIFTePr5zeN0DAKh/Olb5WEqnsWK76OfsM0aehG5b1xTlGWlpmpnJdcc0XvWU1vDBE1+yhcBzeKigW5lHhtP0wyqlFCqdHjeVUS17aT3vFafMpux6/CiXbQ1ahm8O91dE3Q6M1TsXZHrOnxg2OP5/+mCkTBFUcewwsu+hKI4rOHruIXq3POeNZLuHuyg1iHbed+hVPnsJ0cN9PZ8Lt/mPBIV9pbv349AEuXLgXguuuuoygKnv/851fH7Lrrruywww788Ic/5NnPfjY//OEPecpTnsKWW25ZHXPooYfy2te+lp///Oc8/elP54c//GHfNeIxb3zjG3+v9m4MmzXhC3gfYCNFqRKzJvX+89UNZEmBE3y6moJ0rfGV9GYMzBhfxl77qH3d6UWiL1Q/n6h9i+qbtCWtFRgpVWUmr0xYNulpezWy74torufaB+EiCgOS+Fx7HTQ5l4Wcfqc8yWfB9BZ80rqIBTB8kFPdN1xNDPgiQPXnUwPPo+cMziqKWGEw8YuBxDKtseqWyjV2zJcI7pnQaxdVvW1xZUGxtbxtp/q0fn9er8/7aucreib9+Fj1oh81gq/6Fnraa9WcXvrcvPdcOanD3zF4qYolUBusy7BQ3XlRtWvUbxH7Q/qPHTTH+7x9VVkJqvNVP/n2CRNRKFGVCDK/rTV/LITc+xiEV+vvuiZfLY5TFzIq14pvVN/xoS0xd773oOGfEBodl69tmp5rqf+5/LWr/orvoibL9FschE8//yjua9v+G6JAKVSa4NpxQRrvx99+LGE8EwrJSVRKalJG1CggpDoF08RKiZWCZjJCU2csbVgWZyBYFJq5MsFKScM4Uq2wkjBbKppGkfgPB43BSYNMj+BE0baaudIxU4Dp5Lz82ot6ZBybHa0auvc41fLL9GQl5ajqe4DycYQd4wN3takK5aj4PsJ3IdaPF932dUl8LY6wzHYoN15lyNTGT1Vi2SnubpdMFZbPvPDl/G625JPPO5K8LFk9U+DyErEuZEpozNLx6jlEHJI/8ovnbMpsH/dNTU31bW80GjQajY1f2zne+MY3sv/++7PHHnsAcM8995BlGYsXL+47dsstt+See+6pjqmTfdwf923smKmpKdrtNq1Wa6NteyjYrAkfQJxDK8V41sB0FKYT6sR3M1yzN6vblp8hGmt9kR0xgPNBZ0kbusv6J5vB37FqXgSypGHWCbXpK7N+NK+XIUgmkz6i6COMMFGrUoVALK/8VIFWqUN1DCrUdNfBVG9bwbzvQBoOM2VwDU/6yYxfYMc1ernS9ZS32AiF9JFj9Nm5zCGpIx3PKaYagFRxAJVWXvjYB9XR3ocf2l/xfT3VrE5ywSdfuVlkoD+i6d0NTHT1FLdwvUGCrJvDK1N/YK5YC7+uFUaiHKyWWFkVam6aPg9DEBZF1y9EnyAxT6OndmiMfB4UciKZR4Kvn6v7O6q6R82VEH39ooJwIrU21t5JDGCNxF+t0KhqzxADuVJ/77iceP/yxL17RfeWjn0TrVY1webDh6wiL5wPpAMkS3xWB/CGb3+1r7+c8fcVAAmCHSw4Zuq/f/mwo/ndrK+TP5ooljQMWsHdc75sL8bEPC0wiiUNzYqmQSRHBRN7qjO0Mij8gjVKNHf97j6yLGPRRAJGI1JibYnSipmyjS0hbRhmOwWNZobSKUZ5M/9MoehYT/6NEMoyXQj3tx2zBRSzHVJbVt9Gn9XL0osfSoLZXuFTLE2UelQVsBpN/ZUVMrwbbRyuDC/RhhLbbROChB0u8/ci5N5XwlUNcVGyutB91THH8Kv1Ba4smSn8zsI6nPPvTkqLMho11vKn1a05IqixwTTIhx+laNRGCD+a+7fffvu+7e985zt517vetdFrn3LKKfzv//4v3//+93/vdm4O2LwJX/CSulZMZCNE06kufTnbZFZRjgIq+N8LRWeFXzTHdBR2RLAjDpN7iVYXulc4J2jVfaZl6tqE0Fs/3ROxVAJBiBcIk/tCtdX7VhajpyHaECeACoF/RajKl/qceNGBZI1UdfFpWaz1kdq25bAjoNva52OnPrjLpdLz8dZQETP0isgoUKngSl+TAKchFZRx0DXe5Jcpb/JLCKY/L6hUJFNJErH/pH8CGfBJ9qUZRdIfNFlL77iK7Gv92adI1v9WcbAMaOHxPS6EmqAxSC4VKYb+ippoJD8XtZ8Nqdg1waT+DPX+qcZMFHRqE+U8gWCwGFHcVxO+ejt6v0qMbo+EXSfc+OXXhZH4/CyQD19Lu5znpgE+fsDLKC3ksyUIJKlBJT5KvrQulJn25O9CFHq1II+i77p1YaoeIPbhA4/k9hlLouDxixJe8q1zq/Fy6WHHcfP6wstwRkFZgslwAlZKEq1RwTWjUKQqrkYnoLwmvHbNeu69ZzW2dIyPj9Fpd7DOkWQZU1MztEZHaBcli7bZjk4mFE77KHDn01WbBlINSxuarvWkX3YKXCdHLR7jUwcexV9e+dXai6TPfYhWNfeLQK4rAVIR+j4GjIoPuCVzXmArjF+lL2bGdHzArk+lrGkiuuaSFLylLVgdRMPVq45lrnTMFY772pb/vb9Dp3AocYj1grXrdFGpz/f3QYB6PtnjrTsq+wPU0n+AJv077riDiYmJavumtPtTTz2Viy++mO9+97tst9121fatttqKPM+ZnJzs0/Lvvfdettpqq+qY//qv/+q7Xozirx8zGNl/7733MjEx8Yho97C5E761KK1JtOKIC74GTe8bT6f9bG8z/ISd0DNhNRxlC1hvfOU6B92lfhaJqSM++Ej1TZDRDx3JRuhp9NGs6aOZe4Vsqn0Dk2n1Qc1TVUDH6ne58gGHWsDg/04E0l7NfNU2QSjIvGXA+OC7yt8WpHXX6H+O+i0rn2zQ4CXxD5c0vanNOXyGQWx45nyBosRVpKi7QcN1NS1eRdKqTSZ1Xqo0Unoacs1C0DMbh5Pq5t7Ba9WeI/Z1n3UmkkPVpl6T+toT21QRsD+oihHYkMZOTcuN5K97pDdY1GaetaC6Rr9A4Sf82j3r49KpvjK78/oiXrNaEdH/pycE9c6NdQMqMtW9fordDT0hqt7+ioyJz03Vrro1ZemilLvaluZY5iVD57AGjNZkSlfZJZUwEwWuMB6r+hMxBz+SVSUYehN9Qwtv+P5XelKBEigVy5qG5kzJrBNUmiB5iWpkflEeFDoEGXgtX/V+1+CwbLXtFhRlgRTQzJpoY7jn3vtoJyNMqQZ6PKdjLbabsyZPsHnee4kBbXxswdRM6E8Bme2gx1uIVvz1ty4gUGP1HcVVPBG8RS/60cvw/mPgXHQN1r4/Pe3rgcTOlFL16uC7MJ8k0lulc6T00fu1jAeA/3r58fxqqmR91/J/kzmzuSUvHVLVpxAvjChw7S6q6d+xOIdqZL7a4QagNha/8TDhgRL+xMREH+FvCCLC61//ei688EKuvvpqdtppp779e++9N2mactVVV7Fq1SoAbrnlFm6//Xb23XdfAPbdd1/e9773cd9997FixQoArrzySiYmJth9992rYy699NK+a1955ZXVNR4JbLaELyJIt0AlhpGk9zLHfquZ3VYqU2X0gbvS58FDmAPCIjR+3fhwckVUNU2rzsl1sqyTTkUmqu+cup+xz4wMPVNn/eA6N2a9SGtJnHcPJOKDalxvIgN6WqhQpRlWqXi11cvqEzeEST1O/NEfXlVl07j7G9DwWj3ghY3E+YC9sNJg5dqIq79BFczY/8L8feMqfZi4LWgjtW4AfABdvfNrsRCxj/tOqGmxfVwvtX11qN6zV52jpOe/j2bNgb6rxxLU4wQkbhfVNw56bF67bj2uIMzHVU68DiRfe9a+vgxtVro25uoxEPXnlQGC7hMyQixFRdaBnsJxC9Ui6ROWIiFvKBAhWHyikDRVOkrxLiEnDqyFRFOIN/EP1i7AMb808ALPVgVFGnj9NV/ptSNaGZR/sFR7k/pc4Z89LvRiw78KjdH+oZ24nuAYNP5GI0UljpGxUSDh9umCO12Tdq6xZYnkPj1WpSPBDx4/hoGxV19gRkCPtTBZSisJwnKoZaEK/1xkvfdWfd9RyIGeNSwKBzGtVbzykyzqUkw1UIlDxfoJpQrnS2/sKHzAX03gVQJYxX3tkjUzOZ3CMWMtYp2PwVD+eXzlPk/6eqzlqxr+AYj8gaJ0GrWRBXLKB7l4zimnnMKXvvQlvv71rzM+Pl753BctWkSr1WLRokX8xV/8BW9+85tZunQpExMTvP71r2fffffl2c9+NgCHHHIIu+++O6985Ss5/fTTueeee3j729/OKaecUlkWTj75ZD760Y9y2mmncdJJJ/Gd73yH888/n0suueQh9sSmsdkSPoVFlCIdbbJsJOXHJx7Lfmeeh0uo6s8DYAQ3UaLWp34cj1r0ZOL93Vt0ULe3sE3xde6d8iavUF4XaopMjXsiOcbtvR3hR/f84wyO+4H5sXcR5pFeNHHqKeO1925NQ4slPE1tktZhc9B+5gWlQUV0sf0uLqmb615tAQXlTIrKpPIpMlGQNktfqath0WMFNjeo9amvACiqUqgqgopE0+NiHxxpw4Rb7ZP+Poyb60F7YZ/aEAFU91I9Dbdm6h7sgz6CqZNDbE7w0fdbHaJwxDwhrUpbqj1D9XttwgaqinWxmI3OVdXGuIJiX7qh6p07T0PXPctTheg+iUJgPDeOae2JNz5HvS/qfDQvvqJqT40kBp9Nhfu4Xh9f/IIX87tOzqi1FHMzmNYYnW4brRo455DmqBdwy16bCWQTr9n37uvfUBjnVf0Jme9OQMFe536Brx5+NGvbJdLJ0YtCUJ6K69pJ5R5EgnsmPKSCUDtf0clzVueOW2csRTqKa3eRuQ7J4jHSTNMwfhGv2HEC5E7oWmFwMUAFtIzi1G9/tfdKQ/xrtJCZOe3dfHGMhn9dIlUGjiTS+0wEb30TBYlQdmpTeMjj7zPVxzGRiBcKuqZnURC4fNXR/GJNh06nxOUlKktQjRRlQjACKv4/PNTmQ/QR/lPbcLtkg3sWxplnngnAgQce2Lf97LPP5sQTTwTggx/8IFprVq1aRbfb5dBDD+XjH/94dawxhosvvpjXvva17LvvvoyOjnLCCSfwnve8pzpmp5124pJLLuFNb3oTH/rQh9huu+349Kc//Yil5MFmTPhSlKjRJmOZ5rjzLggSLXSW90gr+u1lNkG0YOY0ZeZw49ZnBbWTXhpwOwz0aNYfGAV9ZvBacZHo06w0NpkvJPSZ7x3VKnSVFhX21YPcRNHTBAmkoKVH6i5O+LVGxvlwYKYenLgr33PmXQfScDhcFejlI3P95OBNgoJan1IIPkdXgZ1KqXyMRSTZwU6Ded9ZDISLlQkXIJV5JNmTJ3rxBrUYicraErWTuvZTcUZtlbX6/QKJ1IW4qs01QSUKE1XRE1eTzlRso1RCWhXcFomxTkIaxMWyAL3YD+XCOgk1oSlqWX1wA/sjQ4R99XtW6aC1FLtqCWVDL8c9XEvlIfgy8Rkh82KdBgMcY9OESsCqBD4BVShu+J+f0ZhYgitLJicnWbp0KVPr12PSFJNmTOy8G/++78t507Vf6RfyogstBqTFgLVIdPHveK+agFC3vvx/9v48XrejKhPHn1W1937f94x3SEhAEgalobtt2ha/rXEEBBKGkIkQAjggrV9poFFsB5zw1367waHBCYGmEeluIJAAQUSGEASVSY3SKJMCBkKSe5M7nekd9lDr90fVWrX2e869uTcEuRdOfT7n3nPed+/atWvXrjU961ny2UJBwLQGCo+yKrB3wDhviVA6AsFFr2GnTn503Kn8qlyFSR1w5NgGNoplLHiHzhGqaoQSLX7gpjdHZSMJUZsqmsfFGdAo75l5tMGb97rifE8SJiwQU+cAoGStS09FAHPy/CWFuliq0R0ZAK2k2SGOSwCouj45hgxTOi4M8+J7rrgKn7hjglnHCLMGbmUBJFUNz6B2T6fl8VwZ4J3acDjEy172MrzsZS877jH3u9/9trns59vDH/5w/O3f/u0pje/LaaevwG87UOGxMvDRqk8vv58Syg3C7KyUeiZMdUVErYMJmEY0Lpehx5onFqNaCCJo5tLB5jc6sXqip5CM9bVd2MOJNQIVAlwgFjhJm1eO45J+v53UJI8x/j9vPvCOf7KcW4WUs4scwwPAqw3cHRW6AafUPhMe2ChBKUYo9MDUJjbANg1mHkVtLD8dR/rMhR2+O07b9p0Jr6hFP3/MHIreXsv2I27Qbe+9CBU2nhWJnYtLVHL350+luTFb93T6PALjkuDujDJjhk0dYignkBGoeUnZGHxPSZI5UWUkddxlZcuGkPTeCArwPCEB2Q5WdH/xyu/AOeffHxvlIkoinHvfB4LA2Lt3BjccgJnRgNAx8OqHX4Vn3vim/Iys8m29KchzZbMUFMA3v/ZSW/bAqGlQ7l3EeXsK3GtEcEiZJ+bgWd3g1i8dAIOxsrKMtmnBzGi7DoUvUa3dgdGsxp59e0CB0WAa11BHPet4XgfW0IoIau4PMdbDMC8PmXdVng/S3yl0FN/PyLLHjPguA2i3Svg9dSzUNfaxlkdDUalgQHwCcdxQZVYU6fc+4RJ88eg0xurbEN30Z6CwB5LL/h506X8tt9NW4ANA6QlP++O3oNoitAuEdinANYR6D4OXohVPUkY2vUxa0rUM8Fte492a/iKWWkcxD3Xmcs4pEL9PL+W861AFf7JM/CSmAPbiuPNWb9LiBXQ3jxmQTbMXU7VC9ERSUpq1XIlVgPAgROvcuPboWJnCBw7dckwVcjOXefuTSzDIvFGeG2Kk2DsiQ5/d+81w1AWdbpS2Seq5OeVs1anwMgJuJ6S9Tp3kpIvg66UKwjxPZFS4cQWQnWudT/O3VRYTIIoleyNZ/Hrs3Jz0whhpfHoeZGzIz0/CSPo4rTRBP08+PWtdemLZOcR0VZtiCijV77ZHMe+Gmc8koHwIGLlkc7Jq2TP279+Do9NChQyYgYIAX2YtF8Az/+IacAWTnmbGFiKhVPb0mLlPg4gCE6p45HmOxxdNg3+xr8Ses4co9X0iECJJjkMUaBwYk8kUHQccPbqG8XiCvXv3ggho2g4dM5qmxaxp0bYt2qZT/I+dNv2fWEM3nHg0NESjmTGs3kCuOK+BhNXQmg7y/Blxf7LrOYUjxV0fGg+/2EShn56/0iTrHmPGkeYKAA5OOxzeCmDvwU0Dt7J4Rgp74J638L+W22kr8N2ggneEMAwIlUe73AFLLZqiANWE6rYS7IB2KQH10osVRpEjnh1Qrjk0y2zctAAWuui2FlCdefdUYKTNxe6DVu7GErwB6Aq4OoYa1BVqNnkKSXCG6N63wDDtzsT3gTnrn/qbth4n4QFpEpuXKnjDDrReQJjVFJVL6MXfi2NFxDeUnBUZOx/isUhAwUAp9JDu0wokO/55S1aEQ0igSiUQghHc1no1z2HbvadjdJptrJ6RY/Jq/aOf/ieWu3wtqWAm/cuSoPQEpACiZR4lRATTP5DT9ojVSlM0fsl9N74Ib4Yy8IlyqAtF5kTI43welHqoXGb1s5a7Yi4S8EvnQsHdMhdzmoBkv+y03hxr+IkCcOmfXo/f++4nY5KC2AwkQc99cJePcXKWqRYAWlp0miooD1eyH0SRJVLvWY99MSHbuyZgNCpQuOiyF3gnI6DjDgwCc6zb/k0Pvj8AxqyeYRYIa+0Asw7o2oAmAIEZk6ZFO5mhAsH94ydiCMRnLIJSWEvZ7PSOz69n10B5IiBhdqKMwpf1kLgp2JCEoYykWDFEkAAAgl+qC4TC9wQ8pT7IyTuEzCmRwicfffKV+PThGqh8Lm7kz1wrmJmi5/UE3++22E5bgR+mNWYd4xXfcyGe95b3RnALl7j3g+7EnX97jsbKik2HbpSJKCJClUGeFeCn+ciOI11kRwr6E++ApFbZ+L003ZzSpuqmDn4cmf10k5oHoAFAyEC8UEEFqhSwAZDTo+athzmg3/YBye/QHGZJ4XGHY5qMxmgljtfEDT9UIY61iudTnaSOEdoAooUR4jnURMskLCbmPdmnbQ54oGwkGCVKflwTUwhDwTFH2N4XG+vVDoJY3bocqHfrNpbb3/SgSl/2vWL780knsqPMGyBjN4JYrV6biglsA07Ojy0ew/l/7mcrUJvuy9A+50wIZMUDWSERgaKKhuEK0HUj1ykkrSofJ+slCwSTrUDImSFyD4SIZ/BGwIk3TRD0jhFijdj+ufOxUE70y+nZkFnnwNw8y7MTV3pAtIwj5ATEUXHggvGGb/0ubExm+Meb/wmz2RQPfei/xtLiCIE7BA6oA3B0Rrhz2qIN8WZLB6xWDKISt09iznxgjmj0pgVPGzAzqkGF53z0jzVUl6v4mT0jRA8edUnZE44Pua0yfkYc4/iqgPVeeijwX7AN7CL5FnHM5LG8IMToKyBpGgWkq8BOKapVMmjTgzrCd7zhOrzjyiuxdXSKjZBiBeb9OdNaAJ0QtHei777e2mkr8NFFl/2oWMTsrPQmLHY4+Kl7oWjiptNWAA9YLT61jMsA+BA17qUW5WKDem0QrXYpFxsI1ETsmrSw0MUwgN3zpO/0groG8BNKZW+NNbXTC5xe/mDTsHScdz0FKgRM19myhW4+XAW4sY+xPAeEFIenluBCVGrCIG7acu+qeFQBwVGmDDbXUKBekJQgxEpcgpxm9DdsoB/7TRujtUiltDhTUraaPGckx6rgnRM+6aOeTiB4CmvhyCkJmd+rktdz5yALFhHs8rufe57zsQuL3eA8H7oOCb1n3FMkCUZwpePmlYz0M58eF5VPqPtexzQvPNMYt4WQfJ7nKHCDueYcEl5uxuUJJoNpyMdStBSThU9A5NF3c1ZjnWmpATPHjKyAizdOFLB0X8Kcab04sq5qGmJtNsXCwiL2Li3D63Udjs4YN2+2ODbjvDSTInJwnB5Fx0BXR5rYNnJ/lIsD/NSfv00VGnl+sYoi955nJqKCps/l50XqDdGlqd6RPI8UKPFqICrUSVBHxSq/s0qkxZFeO4dyWJUwnUNZyy1FQycN4K2XXYHPrnWY1YgkOoMqK2hnoFu/u4u0vG43hq/t9BX4hQd3AUCB6oiHnwHThzRgx3AdYXqvLlr3w1iSkZr0IqS60TTzCOdNwJMCzR0j+BQfVKIL4liNzgioyBmfnI7zvvz0Qocqk4PE79P/kidrLSn7/Vzr4QPmzEMr3EWJUcAPrABN1lnrTJoZIkPf1GVefrEak4VAjAjaC6QgoPlr934X0g+yg9t+HIlVIf9zmm/ZD038WWmLZY7k92CElBGyurFJmIOz4NHx7OS6SwIyW/jpPOnbpgFay1KaHYfFJqRNX/+U/GojpHvrgZGVQgkXyQYvxUrs8NPfOhc2VJTyufUca3Eij6HvceCeMqHENnIdAtgIeRZkt1ibWu0xCTLxOATgTy+8Gp9ca2OVusRchzpEshYEdEI3Y1PGkutZ2fVU+FMfeFgwMAqxRoMoBWle3n/hE7GxuQWuljE6az/KwuOckUflCRt1wOFZhy9stph2iMjrLgBtB+46IOWaEwMooruBygLDxQH2FIQf+sBbYlnumsCiNMoaIUAyNkDIIZWkGOkaMFuHLuVhMNkHac04qGey9zJUIVr3jKyAIQp9agGiBKhF0mFcGpeuib7WyZ7xjkdfiANbMziOlf1c28XntDUBOxeFvyOcTnn2d9V2Y/gn305bgU9VCa4brM+K6BILAI8LDA87NCux+Ay1BHf2FOHOQeSbX2nQHalAVYjL/M5BNDKM5UUNKW8+hUgSIxs3pVx1fTlTfM0ahZLSJGlE8vKpgLfArWBS89j83zNTYTqfs9AI2wpbAICfxFgeVzFKKdS6JORDdQLhESISnxCr/TkCTRw6ofEtYiqjMpqhPwSLOQCQLY3jgRvkvtL/1CGlCsVNLZSsm5w9PYhwMnNNRltSodobk7EAOVtAdki999wKVLHOUix6G/mLuhNgnlcanAMQTIofZ7xHr7QrIRexkb6CEbIGXNUTDr2wBnrradv9MHa+Z6Z+VkD6olcbgNPz8fGaLOM2niomRG+ZCaXksEGe4Ie/8xr8zgO+Dcure3HrLbdgMByha2oU1QBcFBje+3zsGxZZ+dKHD50EUVZUWRJwIBCBp/YZhqiQTCYd9u3bi6WlURwOA4emHT633uHorNNYPDctwiQy41FZAN6DqkitS20HN6ywWBLOHnpc8cdvzJOdFFaZ31CwAuYE16LgxfS8exlBgIIl7eck4ElKgrqjSHpFiMRYDsAggOuMNeIigoT9JL7r3WLIz9/K9cSmKWVte2yhAC5+x3uAAPzh93wX2nGNUDfwvAC3sh910yKsb8EtL8SY/hki9Hdj+CffTmOBX4CbDtPAeOVjH4f9ow1ced2fI1RAtxjz75v9DdzBIejsKXB4ALplCBoysFHktCO7IcqD9/lFVX59ALyngT8SUezWVbxNDidefWJE0N6AM9lKcvsDefPa1jgK4m7EytGvX1ECtSXXtub0Wrlq8qclLVBzfiX7oMluz+KsKfjwEChyNT4uoiAJJW+7v53Gq3PYl8jzv+YPOCk7aQy9Y1n3+egi3aHtFMZQIWMt+53IWuafGVOMQ9v3XvuyF0U+RrwCcrvJjUytOV8Gmqw1eGhcnlIfOeQTBayGYYwiSAB2Yr6zzXoAZG1s44tgI7R3Ol/GnVzjcEgV1kxeeaqixo615C07TlamUXI0WyFqa8/7/F/j5f/qezBcWsbAEY5srGO0uhdclHjeB69Ti97WXN+WDos8fjLATosDEaXqg096Gj598xEcog6LocFWyygccMekQx0ADgyuG/C0jmWohxVQFUmGETwBz7/pjdEzJ4paR7HqT4iSmJOO0vMQUZw3LthUgpQ8+jh3PV4FeRaCtRCFQUB0HuAGCvyjQXL3zHIqLeIlIoC5TGMYdtHrIetSFIfGgZo8l3rNtJaZIs7mhz76F3j5Qx+GcnEJwRV47of+CK94+KU4BiBsTWNO/g7r8HRsgQldOP5ody383E5bgW8pHafO48rr/hzdiFGMCdWdHs2ekDYroJsVUdYN+xvd8UqdKsDOWCvEAI+9At2UwMTGn1WQJcu/puh9EKrZZEVxFfkCALPhW008XdslEgzqCG5KCMOU2OSMEE4xO2sRM2F7SCDF8Hrc3IiCqGt8EowGYbwDCv6ELRvQ89Ohv/fGo4j2rDjpPCD/bvWH3j26/nEyBrUunfk7xep3CjP00PcitEx/HJDzwe31jPUkhXKsp8deRzZWAdwBUOEWEfeGUKkDnChcgsOwa8S2pJQoWE6Upbb/3ETRnK/vIF4mcUNTMGyLJt3L4g+iUE1eGKvgIX2e7g0dgWyowzEGoxEmy/cC2garq/cCBgM8/yNvzlSvRoBryp8oL5JdYdaLS1kLSp4k8+QZn7xjjKPwCIe24LZaFKMSTISui5TcqGvAe7jFoVLBVg5YKR1++M+ugXQoHvAMakwKXJnortuoQPeyPuQH0JAND8VCp1zlLgEORbFCCjmSVd5aisC8LmYkqQJrU/RKBooQi+PUTnklyAEM1rg+NTF8JziDHoVzAgBqOe5A+PG/uwmvvuhKbDYBv/v9T8JCwdioC7T1FGdSPD/mfpxA4J8xqstXvp2+aAbnYpnKusEsMK67+nKExQ7sgMXbgcFhB9r0Ebk7dRlIFkhJL6zrsBfOmtuw5W8/SdMhMTYr7AF9GZUdK9WMkE2JXba8w06qlBVItlpZSOmFAerylHCm3cSV7jdQTmlKFpvG57tsQQFJHs5i6o6buDwXyY3P7iTl/najcXu838Y/PGNe2FOySPT5wMji+b7mNtbeOM0zU0zADlat7V8mlFQQJ6UoCS+NL9tujJLSV2jm+hcFx44tKRpSZ17d/kCuusiIlr0gqV3uQ8snm7BSb44sgn+ntWrvgckgyeU+qRdD17UknA1MyoCn8yU3nNasnpOu8yM3vQf7CqCqSuxdGuAnP/LmrFwLaY0Zl6SNyXqH5wws5YRoN+x7cREz/uziq7B3scTK6gjl3iX8zGfeCl4fo1vbAm+MgRBASwuxZGtZoHCEn77pjXjeX70Rz/jwG0AOoDJm8vQELLGG0BT8VsUHJ++jVaB0/n1yoTfpHiUVswypGA5npZKiLOXGgRsXwbKioKdzAYA8o1hoAR8FPRFHF7+sv4RDIgfNugCixw5SWIuyEfCOx16VLH3GR572VLz9SU8GdYRvWinwvBvfjOe+9zqUkpoX5hTg07yJS/9EP7stttPWwicC3NICwtoWmtrhzq0OxTGP5S8AS7e2mNyrwOItDs0yMDuvBm0USZAlIZNiZ8WajyVyJy6W1R2yupplB9bUOJNiJxuQqw36yYDRek1e5EGA2/K5P4fMFAb0LXyxStPnmt9uLG+xdKmLla9IzXu5YDz+vVdejUe96Zo8TrWIkkVRMMIwRNyDWFYERQXn+yDMC+mTfl4iRDhuOmqdyZAWOrVkRGFSL4VkAFjLh+aEpE4IzX2Yx94jUIK5TzNG7j33tNGqFZ4ekBX0FvVvFTY7Tqu0pHsW139PSMw3q25bwTOvqBrrUnPjKf0u7nkggwjNGC0ttG00J7C3FbeR4+UZGjCq5vSLR4Og6Xw//IG39Na3KqAphAQPzdTA/NxKKIug6bLb3jUHfO+fXKPjvf7RT8NrvuOpmLUBm00AEaH0hOXSxdeDgHNHokUA3BCozZ4O+Cj4BbCoWIzagcqgc6LrSgR3KlzFMtEpvCH7jnoHxbIP8d6LhTYW+goErr16B5BSKCnVWhAtr1ps0KbiVlQyMPGZHdMAQhnGIJe69xw9oH96xeNxaNwBDvij778MnznWYL0JYM/47OEpfut7LkHHjFvXZghdiOV0nV0Mp3frxAA60fe7DcBpLPBBBHHTknfoAuMjP/JUfNfvvwELB+MDrPcAfgJUX6rQrMaX02+5SNLjGGgJ3UKIXPKcYjnEOYZdmlghA65NFleyPFxDWesH0kuM3iZgQVZunGvbiyQICe0sAl3Ti2TzFNe3CHphstNdGykzYW4D1xgz4VFvvAYv+47vw2T9KJ7/+Y8las54+vCsCaaHRzl2KtZS6hsFg8XCkDShE70forRgzurVD3Kuso0ru3GsZVBMCO2iUaAglp4RVoRtwrVX/KajzHdt0taUf18EtYDs2FhtNlyivnjOf1rXuDnPKhuimIgw5gA4yYWWH5rbhJEVQKmgp2tL4vcSuiHDfw9o/Lwn/FOYgEQgC2nL3CPp9Sf3Y4FcZgrY5SItnAQUhBVPnlfon2sVIlUa5H0xXg+17kM6TixZmS+ZH+mbWMs/a31EwwUgA730Pa9LLnTqcymo8pjed8sR4bKQJ3NNcvFKcU7Ne6Y3iOSeR1aWxTsj75WuaWTlaBCiu2LUgQNiidoigIat/s5B0mLjfbtk1cvYOBBc0SGMItWuvP/UUUxtTe/Ph696CtrAaDvGZGuKsWtw+5rHkVnAS/79pfjHtQ7wjD2jAm943OU4vBXQdAElAeQcunmypDOg7YL2Tr6dvgJfWoolrQw8vv0PX4/RBuHABQ5+ChRjoF6NHNJuRjEHvWJUxzy6AWtM300Taj1ZJE42Pc4biPLfp83TyQaluy62pePNF7ahVqwuYW+LcU5X59x1FfCykUgfcxuppvzAuBOBbJXJZhK1ADz7ox/Ab37/ZcA//t9sqTlG0/hkYUXtxNVJMNjsgQTKUiklt8THEf4yHz3FJAlDzzmXvmRQCpOIMO4GRpKl0+YvYrEXPD/PaVxSIMZuyD3nh+Y6o8c70DtOOpP/7L3YORAlwQh7bRKeSIokcRZucQx50xYsgJ6vCor5P2ExlGwmjUfGLAAztJRjwXNkUTR/H5QVquO6agMiHS4jp6CJJW7v1cy3enWkfwtAFYVA1pBdMyaXfNt603fDXFhSOK3AFuUiZEuXatfrjx3USte0QySFQwF36fmnsJzFzqjSQHNjFaNAFzGyclAxXNll5aqKtMFS9CawR7HQoGs8wqQAlQHceOPFkfkEQufQzmICPxXibYj3SwD+9LFPw8Fxh3HTKWnQ3x2cog6xInhXx6I73gE1OoStaZy+hSGObTU4ImRJzqEobIxo+/I4nduuwD/5dvoLfDAIjGHpwAUwPZsjfz0Y3TCR4AyAap3QjiQWHolxUDBoHOPW8DmNRVN/xDIoojJgwXh2c+kJWbtpiqUi771Wx4MqD64x1s78pq1CvHe7qgTEDID8lQof66IyLnimtCGL14KA7vAgKQ5xI+emvylzEQdDnsFbRQxjzOU7a/8u733bYu8WGCc53gktHIYhxiq7WJBnvnaBnuqSsLTu7yQot2U8UP/3eYZEay2GMmsQ2ld6jvY+rFdBwX1G6cqd51u2SqK0MOgrIgAUpd8LJ0mKpwgMM38gqHeI5taLllJNg5YYsF1/+UbSYI0SJYJf5kL7D1D2NgWaGaGt8tF0NL8e7ZwopSuQlaG0hhVPYRUCmVsmuDqdn0IBhHxenE+jSDVeP2MpRCTjaxOILg2M0nrnpPxzm8JcQmEr8fjUV2II7mUYxBi6S8C6PDFcmrUgj5Pj9alsEdq4KNtpmZ/D1AODSAc+Dx4NrYtxe6aECwh47/dchWOBcHjS4hN3TFJdHIL3Ds/+8Jvxhkc+GUXHGDcMwKNuGRwCeNaCqhIoPMK0jpdxLrrvmxabE9lHCG5x2FtCp3vbdemffDu9BX7Ivu+OA8JqA6yVKDYIcEBXCXUseoK83tdFASCCm6CMblYwKFHJTF4o1hz9nkZvrQtCTxu3ZVd7ZUMtKQtyPz235Zwmrfn8xupnMmhuEUpzcXbZZP/z+94MAHjp912Kn/iz6zOCeKkFtpI1UXFO6akdXPrdlSEWnBp7BYFRyGz5lDYcdb2nQkSWDCW70AEMAzgAYTFuur4mVWZ4uQXWCvBSB9r0+ozYcXZvy33ZP1ThIp0fPUgHmvoRoRMo/Z7mTNzUPSXLpKUxTNEWJKFmFC0j7Hs4BLkHEgEVx6bPTKz0kK+p1RbN2POY5gQsGaVD11WfgIckJEVQXn51dcualnUE9NYV8mU0RSzOF/cUowgsQ1JKCT2MigFW2lQwOABliM9CnyFnfIMK/XROosVGh8yVoFS+ydINFGtiANHaB7KAnsdLcCKv0ZoacRxRmKc9RLAlwvxYQFH3AOYIlBBR8ylPHgWANlWYXOiy8EnjKKpOWYaj0OcI2EvYDk2vM0pF4CJ6MprIrcEd4V2Pfjo26haVB+6zUuLid71R5/mdF16ONz7yShAz2rrDdNqhazqEtgN5F1MSE6MeDUpsQ+GncB5J7P4Mcusz4y4s/H/GwZzm7bQV+MwMHs9AgxJLA4cr/+TNQBVddsUUmJ4VF3oziMQ5s7PzS+/HLv0e9wc3I9DAqRUkrvcwDKCW0C1EfnjXSjpS5sZmR3OxRUDivJK6FzeRtMlLXA/W+oOmJfVAc9JtQAQWbrksvCh+ptagvIDGIkX6ap6b/ifff330WuhBcUx+08cywuRAVXIxTgr4sYt9GNY9jbm62D+XIVuJYlVibnNN8+BaQggevotzLDzkYZAE4HoB2j8Dz4ptlru1OPtWtVi15jMyn+tx0OqIOs+isKnSFgF66uK28fn0nNSNLx2QEYgWuGmJlpCP6aHrk3Wv33cw107XM4j0+eeswrabu1f5PlnqYcB6XA+nYRj4suVt5tKuR1F01YAmHVd02WdlQbxf8xkCqnDJ2m3TTaoFaxQ2OVVi4cY6h48DozZNVZkXRk8Qp3rwGo8XwpokTNmCJkWwCnBUlAxZ73bNpdoTWnxK5pMBSplB1uvHUt1OvCMBoCKgLCOCczqpYhdt1Iy4CCA5p6MUVkhrsU3zI16vKuCid78ebtCBA+HPLvpBvPsJT8G4CdiqW3zxaMCkrtE2HbpUEIeqEm40wI7MefN/+zNHwM+3XZf+ybd5R+kptRe/+MUgIvzET/yEfjadTvHsZz8b+/fvx9LSEq644gocPHjwlPvmaQPuAqphif/4/utjrvrER256DwyOpBc+aeuywbmpi5tnETeeUDK6Ud6QwkIH9ogFZEK0RNzYw0l6DKBUp6FEfqlV2McfterncqQ1pposrngM+oIK5ljEa41u83Ej1vKfeaPP4DH5nYzgiT9qWTl7XhI8PkTmLtnoAwG1Aw+7qDBUnAmIDOGPcIJTQCRn6XJamwoFG39O1k9I5zGlTbAK6EZBlQN2DFcE+FELLHSp9kHmJ98252TmN821Cb/2lAZN+2tlrFBAW8wflz7zAxGPRhbo6esuKX5tqkugaVfYJniR3IqUUvyU792sGa205xEtWGeEL+z/nNNMOSkLInQkhVByvGHmSZooDubz+bBAPE7ek/y5q+O6jcps/NtPXFSaA4znIE1cgM5LDwzoOFLkSirZTmmDgvmQWgdmY47u/KCYBrJrLD3TTMkr/ceQlTyP6K4nVSSYkYV9uj7Eqg/5+WqJbRhhn95Xfe+HIa5bee8q7nn4lMzHM2bTCtNxhdCkeLwNRwg4zyG+p8jnchnABeP6730i3vjvLsJ133YR3vJtl+H/fNvl+Ifbj+Efbz6A249McfvhGmtrNeppg+Ac3OIIbnkBblCCvDvjQHin2oRa90Q/uy22u23h/9Vf/RVe+cpX4qEPfWjv85/8yZ/EO97xDlx77bVYXV3Fc57zHFx++eX44Ac/eEr9c93ALS9h4GOZW3C0YEIVN6ng4+bTDUNMnUP6jDIRhWsoxySJUGwSQJFcR6xeVAG0Vmbrx9SzlvSXDI6T/6H9i4AWK84C+yTNz1Y+s8xrFq0/22usuySQgu8LIHHjqiRJm5Bw5UdrK4CJ8n14IMw8/GYRPRpNcj2WgFtsQXcMNAdZ3bsuz6E2MsLTZTe3WiAwyorkAANwWz67//fNEDZjWeNmo4oWzdTp5t1z4YtCxObezXB68Wg7PkYGT8p8q+WYrTwlKqJs6SvPgQg1gwHTDABV0lgBaL1wgCFJ0qmzyop6SUTQ9oGA0QNgOjDYA+UOYOQ1LN4jM1/xHpGtbCCn883NrVVk1ZMg8yHjSL/L2tb0UHO/BBh8ArLyI4I6ID9IGYM1N0QhEfIosc6Pt1cTAxWD7LvQxZQ7S/pki1tp+MQAZHshFXk+Dqk2Rxq7hAKQFAxLcFR1aTiUaxE0ac9w8d0DIZe4TeuRfLy/MPMJWMgI0zm6xUB48fJ9cXhtDeOWsH7gVhRFiRACqsEAh+68A/c6/wFwe+4Fdn5nS/7roZn367jf7zYAd9PC39zcxNOe9jS86lWvwt69e/XztbU1vPrVr8ZLXvISPPKRj8TDHvYwvOY1r8GHPvQhfOQjHzm1gQ0qhEmNWYpLujZa9dQB7QKj3IiCxo8j8lyquYGi9c6eFSAGRLc++yxwNb7dEcIgA/qoydz4riEFAdlUInD+TjfFeeFoCtZIbLPnrjbu27DY9dJ7NEYbsvWpZS+lzXkItC2mDagmoGAUe6eRYWsQ4Ooo3NzUxZz8Q4PjrwDingAgSc9KG6YIIGpIxyvWJ5chIqtFQLQEXmkQjg4ieK+hCIyaOmCxVbe33DOZe9t2f3l4+UW33gYk4UZZeYkx1zkr0m4SIuwEfGWq62WUvSgLUEtbaI21GM/x9tq5a4oSly3VrPBsU2pM7F6UV10LsrY88hoTVr8iHqdeG+S1F0maoBa7LdMrF1bvhDnPDlALxlCcb06lqPW+5JnK3CSBHLWVPO/5geZrU+PUOldPVgLgKeGUjJPjO8y1i3S0qsT0GTNtCVkdS4cd11akrk4Hi7BPefdCq8tCQRxMeCF5zmQtsjAMusiFAQBo4+ecMD7UEbiJ51DJ8Ue8RQy8YP1LOO/e+1As78HSOfdHeda9sXjeAzC87wNw72/+dyj3nhXrAnwdWPLHbXwXpDu7Fr62uyXwn/3sZ+Pxj388HvWoR/U+v+mmm9A0Te/zhzzkITj//PPx4Q9/eMe+ZrMZ1tfXez8AgEEBeId61uAlFz0B1/zwZeiGadANYbo/bz6hSqlvKX1HhXkVgMUWXDLa5S4Le7E+OlIBFAacFQKHTFObLHwyVgGArP2n91gEerx+tuIAY/kgCSMnFlPcTPy6zwAmyMZJKhjUdU8pnp6ATLKZWiFB68Zp0wHtkWGOlabF3+xr0a22kZu7yGl/1onRa8ZdD8/q/lZ3cVKAQNHr4WUMoza6OgfZ/y1IfErx0fK2Qbbe54T8Nrf5XLMCUgS2CDhVqNSSTQeqAOpvBHYORFDlfHwkz4hRSKzVp+ex1jtnWUPpf3jznBiwxXNUiTJucftMe255yn2Iu58SRbNrsrWra6elzCMQANeYzxtSj4+rSTnY7XVDEUNigr9gH3+i8pFwA9S/fs9lnt4nvQ8LfpP/7bNnxFCAuNXlUSWAHpoY65BqfTrUljJngIRVasqhD6ZeSMvWDuBhiCWkK05FpzhW6KvifsJFyAp/8hSQUWQE7KfMfCUbvAEiEn/qovcByGOXdzmFH7ilGJKoQvxJdTQaKjBpgUnn0C3vwWy4hLErMRssYlIMpCrx122LoL0T/+y22E5Z4F9zzTX4m7/5G7zoRS/a9t2BAwdQVRX27NnT+/ycc87BgQMHduzvRS96EVZXV/XnvPPOAxDfRbe0AADY2pzh80cbvOrqR4Ha6KZ3DSEUQLcUEAYhgsOAHsI90mLGztwsMu2VG4TqGMUYfpc3fZJ4rVrmRgICKmR7TTYqUQgIGhdVlPhxLej8axjkOtbKmy8xcHO+phEiyypr+ducb9cmLgEJSVD+3m/5aGFb7vc0T8cV+mmD67mcrTWaWAk1Jiux21EbrZomYgYAaCU0N3W5bzb9ifAm9AWfkcrzSop8vc1CNha59D1P7WsxA5lrPv0tgrvM4ST2sW9RlgDkiosiTNnMU+pPhKSC9AigJlvZUfAilwKWe+rMGNmOFQmEGgU2OD33JMj92MFPY4U1v+Xgk2CXeLxrjR7UxnM1I6Gj+H16L+Y9SnptUaYI/UJP6f6j4M7nAul5+KSQD9MP5bWrIQrHRklHtPwpDSCtZYvQ50HIwtJzFNgm1U0VROE60GswuAoGt4KMwDc8HahCXndt9kL0QmzyvIVit3GZrlhKdEt4RtITZe2LUi4KWnqHDo2BtguRavzr1Yo/QePg7vJnt8V2SjNxyy234HnPex5e97rXYTgc3iMDeMELXoC1tTX9ueWWW+IXRCBHoMUhaFCi3pzhjq0KYcDws7gxhSqWycVCh+FZk+hKBrJF1zhg7JPrk9EsB7QjRrOU3sxFs+MR6yamm63L1m/8YO5l000uCWHZRJIF14v5JotQq61pH7nUrvRpL6UxX8mNluuWeSOy8ey8ySagWUso13xkp/McUxvvNVUlReL/ymuOHQSnxOzn7kXuP1TRSgqj+MMFw63UwGahVpQbdpGJ0MVnFoUS0Kx0PSGWrfI0p7LhyzPdPn15vuYUJEobqLpIu/ychFdcgYSiqBRx8++5rhHxIaGMHpFQRgCkejs8a9ElHW+bXfVi/YtC0Q0i1TGXjDDkqESUcT1LDQarlGipWOvxMNaxPAMJJbFRDChZ9VF49z+3mJFQWSEY++wG2ZujKXyJG0C9FCk7RO4/lJyKtyC7vgkpVEbQuDmg/POQSo8pG4TLEBUCOdbE4omhCqROhYTDzPvKRkHlKmRsBafrVNGKx7ADVQHkIrgUQA49QO47TVTywJDnnM8vygMQqXUNOJKEtrcMGlYSr07kxHB5SZv3HbWLabQ1RRDybIJBqFFW/uvXbX+Ctmvhn3w7JYF/00034Y477sC3fuu3oigKFEWBD3zgA/id3/kdFEWBc845B3Vd49ixY73zDh48iHPPPXfHPgeDAVZWVno/thERaFgBjtDWAb/9iIfHTaWK9aHhGG6tQP3FJZTLtTLkacwZyGlyFevGCgaKgxWqYz7nMssmLlZzeu8F9d2LFwNqxQBQEJ+OOx3n6jTRkq9uEPs53S8LULHSVJmQviTVTE5p564lLcWsoyCKX3YDzgh/xwhHBqCpy2GNjuDS5jNvUUtceN4yFmpiOMQNrYnjc1MXBcjRCiw1vYddJPVJcyZCpN2bUPpp/tIl07V6yyDrWklI61itW96Z+ZLnY56XddHr3Mk9mU193ovSCwXJNY1LXwFiwq9eMkIVIpbExJFjJ2mAIV+DnYm3G/yAFpyx2REGiGeVSym9G9cPcj631LsXZSgpJSGh8zXk0Jts+Txey7UEP5UMBPQUNF0fVUjrgbNlLO58MnMv8yDKx5y3Rj8TshwRwtYLJMqfnGRi5Kq/O2TCnTRGMngGADHM4lgpbLkRjgnR8ihyVyTPmq6HgBi3F8+eZBLUCZtSu/g/cQ9xD0rrS5RPxxHpPwiZIwBQxU74ENZv/xKO/tNnEGYb2G07ND6Jn90G4BRR+t///d+Pv/u7v+t99oxnPAMPechD8LM/+7M477zzUJYlbrzxRlxxxRUAgM985jP44he/iAsuuOBuD5KACEoBofQFuiFHEF6qXc2e4RugOzjq46bkpRR6yhpqUbuG0C530cqtCcGk1/EwgCYuU4USg0B54ehGnzZuSiA+B3W/qsWZsgl6tLziWp9G3IG6plOakaZnDQKo9eClFrQRkWg2f5qrOA+2OIuGA0qOhEIp9q/XnRQxM2HikM0N9DMSrPWorGtJMI2CWmtqfTUeYRTJjhgJLIX4vV+t0U0KVPunqI8MM9ipI9DYoxgn/ESaM9f2Lbpek/g0MPcs4jmi7GXlIP1u06BsOEK+T4RLkSGQc3347NpBf2EhI8GtAJbn4GAIhDiFeDgpE+iRMjlBhSugjjSspCA/waTMubi1UI94gURR4uwxopAyMiRFNJ3jmqR3lAAT5eccsmIgx/coiZNnQDIhVDkWnIgNqUmT+0214rkS4R+PF/ImJCWVinhDvTQ6UYDJrE8LqOycrolISZyUo+SuovRekKNM6JPWhIybiIE6eYTSmDFgVRqJ81zkdZT2mDZjiHRtWAs+3cNbH3M5Lv3AdUAR8I5vfRwu/tg7QJ4RGhc58tNxb//+R2ILI6xNAtqtCVZGq/Are1Bjt8035sS1cILvd1tspyTwl5eX8c3f/M29zxYXF7F//379/JnPfCae//znY9++fVhZWcFzn/tcXHDBBfiO7/iOL2ugHALgPSofhywEOkibVruU0vPE+gCyFZY2fdlkiQXo59Qy8hOnYQItRhFkwzSbg7U8DWo/gtGMYE8biYLbrKapaX+5K40lI1ulqpim8rYWyEaMyCQoAl2wCGAzXtb7AEUQk7VWFHxmLQ4TW1TQohLFRJBjJhZKczoISlzEhMhQlu67G0ca0frwMLr6x16pdoGYceGnUQjEOeiDEPMmbix5YV2TjViE3E653uKmTml5Gj6xQoPznIswtvSoOcZqzp23tOefMZCt4ZZAnNcK2Xsi430xoezefdtxpAwSq4D02fqM4ipCzhLxIAtttagTiBQdcvggucPhkHnhJTxRmGdvsQUybgWapq7EYyWWv3g4CFkZSMozCcBT1kHKn9exty677pvoXgfSMTLHLYF8unwS9rFQTjrOsxYdUoS9S5z280soAe2sshFBei6v185lfn2btZP6+usrno5jdYuDE8al73sjyAPoHJ7w4Xfj7Y9+Ei5+/1sUS0CpYFAzXMGhdca4bsEYwO1dRLfrzt+x7RLvnHy7x5n2XvrSl8I5hyuuuAKz2QwXXnghfv/3f//L7pfKAjxrMJlVaph2oxAJY5LAoXMnaLcST7VW56K+ZZQ2GDeh3mfgmM4nufVhGOIGWHGqI582qWQFAdCNXt3P2l8U5q6J3PE9LnirjABqIagADqRWtNtKZTHraHFoDDCdR9t2pyT/073HPP5M4hJS7fUeHW4ai4KPxIOgwjRv3FHQQlOG1A0bCK52CKstyoMlii1gcu8OtNKAN8s4XyXDVR24YJQHS3TDvsDIAipdjvNnvfi9tdLRP8/+DiQh0pGxnl2fOAb9vrZPJrZ5Tmzc26IbFUth50/y+kUA2j4F5JUsep0LUQSlL2SFRPElxppXciFVdGUCKdHMIueWm/hy8IDrUuxdcQNmnRogh4TAZK3LulEugKRQq4LhEEM5HSKQ06aUUp6XXjGekiOnPJCBeCF2TnU6vmAVqvoe1BTBevI8QnxPuIjrzZUh0tl2LqbtqcLGOgZ4jsAuHwBHGdnfpocgIQNT6548R+VB+pLsA2/6Tc962jG+sMl45p++Uel6JUR48bvfht+74HL4gvGsP/sjwDOuvfBi3Hw0oB7PQORAywvzK3O32TavaO/0/W4DcA8I/Pe///29v4fDIV72spfhZS972ZfbdW5EoLJAmMwwC07dsJRy6P3YoVvq0M18ttIWWvBGuZ2rXIxijvn27VKIQpmBYsuhG6Z4XEPgKqBcmaGbjOI5VoNH2oSRN8AImkPcI+oo7AGokHEtlGFtvhMCshASyx1RUIRByAxfqhgg5Zsnq0OwC5yQ+wux/jVv+hiimEWgXDfIAr8/x1kBEReqTUWc5yfXcXSE0UGHdgg03qMbMkKJWLFw7BJmIkRmv9KBNorkqUjWreAnOgK5OHYdiriV0zz00N5GCPYE73Fce9lKRyaEIe4LQkCFkNyfWAcEpPi3CB2AOpfxFZ6TAyjdl7Vw0++UWP56TG4S4/UAWNIxE4DUjKtH6GSFSoMeh4H0qWEllng995QGCkAruFtjzfeeryjL3ghSKQ2rB6YfKVITXH5OHpFjAsjAPFVMEJUECXekOLa4ZjmlqiFQP5qiWBrSPqhxCWgZLXEqAyIRjgN3HPtJiHd9j6QPSuQ9xIAH/KAFmNChiILZxzg8TZ1iNeLcIyogCRAKzzEdb8vn+XexT0cdKuGoZyhzIwhgZuxdHOC2YzNQQ7j2oktx2xqjHtcg7yNoedeyP3FTy+ME3+82AKcI2vuqtsQiFbqAN1x0eQQRtZT45wl+o4iu75mLm4+4apN1pSxlIW4KYRjQLQSNm4vrO6y2QEp1Yge0W5UOQeO98ndPcMs4AaHsFQUjFP3/hXDFAoF6Vqu1fJJQjBsTtHqYBXdto00dBWDq4Y5loBx8vGc/duohkR/rNej1k64v/yljHveFzOScgGY1aIwzVIx6bxdjtSFaebGKX1Q6uJQOKVtc/cv107HEwjdzapHi/RORFTyjo6j72igM6mUn5GehSkH+3zLpESOlvrlMxcpRiFNtYv+ieFqgm/TXxewI1+b7i2j6rCRY+ACAXmw9zxEDgoyv+il/pAoRqxUfyqQ4eFa3fJ54qLcmvgtmPfaAdlm73VYgJ63tzErImawpWbuaEgcYcKmx6AOBO8HcOLiJ2+6FYdL7U0s6kKLiNWTWUmR2lNQ4ud1O7jE99y7HgENC2vtRi2K5BnzIYMm0hmnm4to2ghtMKRSI7MFIilHLwEYT8D8fflUeh7ml81cc9i4WeMl3XoxbjjIm40iIQAu7wv6kGp/Ez24DcAYJfCKCWxiinczwpWM1/uDiy/Dhpz815efGY9zYx820dghHB3Omd88Q7AvrpOEzAcUdJYq15EovAtyGj5bOMBbpCUXuS4UR0BMgFs3uZpT/t0InbYhybG/zZfQ3OSsELQGQEQ42h5+2cuYBpY2Q56w3eRF6yvFOL4Zx7bpZ5FRXlyrFsIps/IL6Jo6YCAkRBMlvVhYy5I3absQyNoLGQEUY5++4N4fC898DiRnhLP/3LH9jeZNxD2txmnmFwQp+k/0R087yfbPxl+m1E4ArA/GyALTgPCXESSA1V6d8+s782LHJqWkMAHpo/1CY5yprPq0RSTFUK1TukUX5BZQK1857UhbsTXIREg4EGpdnQdYj9dNSPJdJgY1KUZueJzcU4+UyVlkfaW0jkRkJ4922injEMfedEddZ7XpV/3qudkAVfSpDzqLoCESM0Dl0GyXajQqY+Th+EeyelR0SiWSJJLUweY5CGTkBBO0/nrWgpoYLnQmfQbNjvu//vAnnrxZwnlBPIizPLY/OpIJ1X90mm9iJfnYbgDNI4IMIqAq4pRHaaY0D6zN8+tAkfhUyS5jQeyq/vDSxAtIm0mM1C8lKSulrmpM8i4KzW+xUWCkS3OV1JMJAFIpQRre2vPz2/x7gSuO6fYsqdjo3fAfwYpet87Q5C8hKindwybESXcHA3joKiamPFQTN2s/AMR3CtmvGMQLFhtM4qtDWgvPGLt4TLuJmGEYh3i/HCzkhgZmRpm4pratRnKiJ80vqFaBcjlWEczs/MciCtYthmoih6LPdyfgU0ChCTdaFSWvreT6MRQ1EK9wl+uXomjUegLSuhPCopwymebPMeNaLIdkcxTgKf82dN3H6uGahqZTCLxCfS0w55TJa8rKeg+TSy3wUrEJHvQB5GarQV09SxTnezciguzZa4DH9DFEg2/VYBlX4en0AWthIFVLxdgWA68g4R10MqcWfjENRrxCyIqCen2StI1AW0gEZAyPKliHc4qQUiJcvHKtynD5AvSjwhiNg6qOL33JYAPp+SZgnHkP4/Kc+g7XPfhJbX/onvOqbvjV7c4xn7rFvuBYVERAYVBYg57Ar8U+ucbjrn90W25kj8BGtfCoLuOUFhLrFwbUJfufCJ+I9T78yHhCQisYgAsmEorMj/O0PPTVbD2I1yAZX5EI4XETU+OBIfKG7xYDyqI8KhLWwRcgAWQBai0qsaPu/cQ3rcUC2WuVPtUJIlQHqCG4jmnLCCqbXdYgEIgI+PFpFDEJIZW8nEvbw+XLWIBZrWJpY4ToeM/70uasJxdEibuhltr44pLzqktXVHAYhCh/5zCPXNqAs+NRCTvF6LSNrjXMDuMsDhCLcc4w6KQ5i9aXUqR5FsliZ1uI2z04VBQWyIVm1cQAaiw2ITHlTUoHeU6TMWhHe+951fL624EB6uAKCYhV28vxY61yyCOKcR+8LV4Z1bk5ZjO7+ZJEOQ1YQROlFer6iUIp1LoqTywpFBLcFYBgiCj4JbBKvASUSmkEGSVjCJ3HVg3M2hK3YKM+RhTgnMftJSql4cqimbN2LLBbFEYjnAaAmKSxpzVHVgVYbYOaU+lrz6YvMpqmFdeQZeuTKecS45oKH4/UPe7h6AJpZjT3792OwvIrh0krPGyV0ze998uXomONwdwX9qbVdC/+k2z2O0v9nad7BrSwirG9hc9Li80drpaf1CSj2lz94BS545VvUsvl3//t1aZMxwo1SznUS5NEVSigaoFlmuJlDcf4Wuo1FLZUKIFOKAioQegLTNsnVB4yAz1+zS3UAiv644pdkLE7Oloe4KwUZDQDrheZSy4bkjhUxBJHmICykdLjjjXVeE0gbZLPM25WbIlpx1KYCQ44zsClRmwKAm7geKyBx3Hy7hchY56cJhClo8zlPg+AEdvJAMAEuzQmXZsxpvrbhI0T4qjAn/VuAYJT4BnpKm17Q/C/PZM5j4pIVroWbDPKe5tjuAGR3PEWLvquglqLExu19CNeDXUvKDy/LRqxSGaO2uXVolSmJu3MesxZ+EUS6CDwJa0gIRyxci3y3a7jJx/fWsUO0yAnZc2NCBpJCSW18wWgWU2cpUdzKNSmte1v6VioRAqI45zniQegp7m4W+w9NGcfYElCGeF3B/ojSOIkgWKuk6DpIgManfOj9YAf8n0deAXKA72ZwoxFumwCtI7z6CVfimX/yJh3DjU+7DF9cj2h+hACUc1XzdtsJ2zaDZYfvd1tsZ6TAJ0qbRFUg1C0mbRSAf/NDT8W3v+wN+MOnX461GrjhGZejoSmW/SIueP0bY8lNs+mDI+mL3fhCxWiM9VwfWIB3YnXlgjeY20f1T7FWJY84KRnxQ/M/pT7bXGJ3m/SYVwAIhkkQvZg5V0ERzEwADzsEsVSS0KQtbwRFRqirG5IJx1MGegJX9koB7iXUPzHgtxxaiWsCUdlI/YcykuOIW901CdGdqGWBaCVHIcbb/E82JYw9gGBCJVZZIHtO3tjl+eR6C+m+jaCw51NDPeVBQGKaztbDgUBd7z3AoXi2Z3mO5NpI8087hJ+y8pete3aU5yUgWt0igM0csBX2dq12WWmwa0riyaIwchnUVS8WOEk/6TNK9MOZ/Y+z0uCgOAfqKHoDymSpW0VKwJwhptZRivdLbn1UBJLrnPL8ce1S8RpoNcs4b1Gx0Fh/eq4CqpSsFu4IbuaityJRJcvagEnnVSQ+kAl3quihYEX9Z6UPKXVPwKpPf/+bAQdc9/DLcXgSEAJh3AU0xksTCuC2NeDQZouubkGDCrsW/ik2E9o67ve7DcAZKvABgJnBdQsqC8wC4bcf+UR87ugsCjwQHvO/rwMFQrsYch40A//3h5+Kb3nt63UTdNMk9AEICEyvIRaOjfmlTRqMGC838Uhbl1wFaG/Q6AmjXm7+vPUImHxtsSJYfxcBqTnWM5fTCT2Dpl6tTWoJ3SikzIXMwuaMQMuSFLlaX2fuFzAhE8qCjdJnPqYktUsdMOqAOi4tapKA1Ip5OYcfxOhWA1AFuKMlqMu54RrlSIJMU85EAIqwttYyzDNgUnBXrssOFczZjU+9Z2KVLfaJvY8pumclBGCAhooUt8+U4vVdEzf0XvfiJSKoxR/vOX2W3PnsgSAJIolHglIxG2Gi4S7l2ifXtlr1LgoceGQLtbNxc4Ad6fypIssUY8iNy9csozXMgeLvDtEjBuR0NABEc8BQjmNDEb0D5POEkWNwKHKGhkMvFVWr0kkIRsYp60YAfKpsknojlOa44IhbkXsr8lqJyH+AKBLxCBAXOvex3kNUTDmvEwBcRPAuFSGm+0kJXKS5ljoL8g7NHK684a14x+Mvxxc3Gmw0kTvp5Y+4FD/+gesBBo5NOnRtALcd3MouMv+Um+wDJ/p+twE4gwV+dNEFkI+5tlPn8fnNFr97+cV4+tuvxduuugqXXfMmFFtOAUhwwLf84euzkCDEUECXNxj2hkoTAAeKufllQLHhAM/oysTSJwQ2JsarLHDb3PgMONEERIAjW9XGggKMriBuSUOvqtayWNGLLbiJKUxS7ENc/uAo7LVPyoyDeq/iYlUQI2mRn15cm5Dz5hOIjIchAvvWCoRRFAiYOfAwwG16RUD7qUc34h54iylmVoQmcQ0Y4as6TrJaleVNU894mwOEzfRar0WuB5+UGO2b8njsvKfvVEBCPkuCuMwxZSZk5LVZCyK4XQsFy6lL3igwXABdkRQDjn+7lFtv14Ok/wFQK5a6lMfO6AlbVcisV6NM89Xle7NzB7McZSLIh0hYY3yi5IKuVQ4OLhWRIYpKeKh9BMIBOVbOSTlxDO4cqOqiQsHIoD85XsGJMp+sYSDx5ihjX4qvb/OgpXc5FByrADaUnlnyABQx9172hZ7njpBZJ8mQVAnpD1OU2MjYGk3DBaKHouA0IXFMriEsLw4iEygF/NSfvxkUCDdc8WR8/nCNtUmLblrDLQ4j9e9uO7W2K/BPup1RoD3AyE8CqCoRpjU4MHgyRTet0XLklz9aB9z4g1fFqmTenmh+BzLYiaDFTgDEDU82rmRJtOc0CKttAjsFSGlSO7CdQqbSX3ajsn60ze16ontPmxdS6qFsjO5YCb/mIRXy2PTH5RxVLcymDiP4jYKi1fGkemByIfdohdM8uZmDqx26hZBc1w5+w6M4Fnnyyw3KbmsRwPb6LgKwXHKR2opzKvREQRH1VIT1caYXgAIe1bo1/aiw1hAPqRdnG45CxiHSMOTzxenikldFK9YlAcwesTJemZ93jwuf8nGU5jeUjK4yio3MhU8pd07miFURkrx+VSTE2k6WpoITiYGSI+hT+jVKoCL/gZxuJ+BWys/cl5HBjlyIMXgGQksIjYsV4KYebuyj29t4QITGlhufKs5lAKSGJMzzVKeTg5JYydqTQkXy7KimPj4l/R/KWDwKiO8PkoAPpTADpsu3pGswEg7FQYRRF8NlnnusjTrOBEh0DSWPWsxe0DS9NIajM8YsAKB4zJ9e+RQcmXRYn3Vot6Zwi0OgKrDrzr8bjU/i5260l73sZbj//e+P4XCIb//2b8df/uVf3jPj/Sq2M0rgF20Nd+wOrFKHKjQYjTwGlUPZ1RjNxqjqKdB2eNuTLsQz3nodurbDXzzp8p6g3amuvWzcmuuc3IiuJhRbLocEJh6uiqlxkj4mZDTa5i17exFpaTdTS3z+eAEXSkwUyFacjDWlhUXQEWV3LgN+Nu8mMFawHDd/TVE81MLJx0TA0g73JH0YwSTu1FBG4dMuAOV67MNPSV3x9sdN0kbbGWtcBLSWWkV2Aff1pr6g5rzR9l50A74iM4Y4J0Iik4WACJxoIfavaavOiddBc7lV2MdsBC2Uk1zOoeLIRljkczU0knjU2UWLv6uygBdBHAsNcX/tAD3QHoC8xk34QbkaPEfXs1ilTOrl4SqmnpHnZM2nOTdgutC5SFDDkcM8tD7Xh5+57D0oIriN0zslYxYlQdDwvVCRCE1JfxXPk8yrYApS2h7KdA2x0AVQSMjKjnhXClmrfcQ9zDqQ/0Vx6oUZgCzIjTfMfp+LE5GSd33k6qfgkuuvwWLq/5qLn4xD0w53bLbomg5UFUBV7Lry72aT1M4T/Zxqe+Mb34jnP//5eOELX4i/+Zu/wb/9t/8WF154Ie64446vwB3887UzyqVfImDz2GHUzRSHDx7EwuIiiuEI1Z792Dh4OwBCWC/wuQPR7fi4//lmNMsMeNLYq+PkkrUId9PUdcpAN+KY3y+KQBV5uc++71Hccete+M05NK211Bk7W/jibhV0tlDDagfx7wgy4rypp41EBGtkrEsblOS8p+MYpk/rtga2oe01Bi1jTWAyOxyJmQvQkIdswE1QSxNATLlL3zXLYllRVgyEOnebSR43V6k6KKj2XkrcnDKlwtm4fa1iZKsZWiBc77lr/FUEK9TtyyUjEOX0QIZSI7NgCNI9xY5zNoOwCUr+PHwWKADQLrNa4tTNhRoMIFOenQId63gDcs+ujiEnEXZEWXFSIShEL84UGEoCMd7j3NwwRQpdJ+4IViHKLLXozQJPGo2kuPEgxOMl5U3mW6oFEoDO5zRPNjwaLj5sqWjJZnCuQwQuClCPOVffS0oDe87rDdC/ZT40rJLiHVrrQrJKkpBmJEEyzZiXHiBRUhYJcIn/AQ7wXa6pEGtHAv/4uVvw0m/8V1g/egR+eR8cgIObHSZNQJjV8KtLO+rSu+0k211Z8XfDwn/JS16CH/3RH8UznvEMAMArXvEKvOMd78Af/MEf4Od+7ufu1jBPh3ZGCXwqKwz2nY2GGXvucx4WlpZAvkBoZhjt3Q+Gw8AX6LjFq77r2/D//ulN8JPIaR+KZLUmt7jm1WrnrPFYra5EDK6gVhdtevAK4/CxJbhRC2xF7v5QBSVbETejxvt2aH1K3h2OS/1obBHQeLOgskPFWQmYVzQASOxaKtdRiqGmr3qI995uczyfj1yrRN+yNL8KN0Cg5KJPc9AuMfyE0Kx0sSqh6EkSX09GlpRwlT7DIKYs9uLLVnkRJcC88KooCGAtKSl638lboa79PBRkj4J0JoKA9HfJmVehLOEiEsGSnwMXAE1N7FmYjtNas7gJReJ3UTlQ93ZAn+yIzPiQAGeIygSXrJkPxOjVfejlyXMkuVFXfQAYcX1JGVlOljcIcd0UMf6OBFTT1EUgWqZSmEZc7w4xHc8orWq1O5k/g30ANPSQS51mzY4E+FmyPjtqXX7fRh1AgPMJTNdEqU2JVle4A0LFoJoQvJBwMcIoP4fgOVU3zGuqp5yKEtWmMEpSEMKAjbLK+rwA4Ol//UHAM373XvdFy8DhaYdZ3aKbNnDDCjENaFfkf6Xb+vp67+/BYIDBYLDtuLqucdNNN+EFL3iBfuacw6Me9Sh8+MMf/oqP8yvZziiBP2YHrJwFIL5PG+l/7wfg4Qq6wNhc3wJVi/Ajj2ue8nhUpcelb3obgGRhlcgpYwb1DiZo9TmJgSarsGcVTTy6LqYO+WmsbIdRADZ8X1ga1LueO48Inz9O85mNwiFWpwXvSZ9z8cReH+LKSvFZW5FPLOyc9879Tc3Mic5Tuof5r+avnwVYnksKMe/ej42wJ2PxclRo1HIzKWtAEnhyr+bCmvooH3E+XhUa60QI+e/e8Ak6Lg1f2EsRq+fAVrbjOQePKAMs1jxFpL26uKUmvWRYdOY5y7WKaBWKwOZKMi/i+RoeSAauKDs5NJRM6LSeFTcgCkZC8FNwPZc+NaS7AYvwSQKbg4+/p2O5sJpSmswkcCFxdI73oiGFuVLQulbsM5L5SHn/NgzFgyREBwFEDOcDuknKBBGEvw9adEcVHskkYAC1g5PsEhexFRo+8DlUggJgScO1CpZDDCGkctW6RjgZEXIvFJVfV8d5ffuVV+DYhNHCYaNhjGcNmroFmEGjXVT+l9uIT+y2l9LU5513Xu/zF77whfiVX/mVbccfOnQIXdfhnHPO6X1+zjnn4NOf/vSXP+CvYjujBL5t1qBt1dQAaGURPJ5hY73GuBnAVw5/cvWT8Nhrr1UBaIF5O0kva/kGBwjYSS7otrzSj4IJGAtlnAyC+25yGSihv8HZ48QjkCSyytodBF2/j/mJISMcYTIDjGE4L63V7W01gu3zsaNL3IzJotD1Y9OVCmLf719ZzaxVFWKndhOVDudBf2LpK8I+6xpZ+CSrcHtIpQ/eEmE7/5mGJEx4QxXCtA6UHc48Z05CT5D3VrHoRTXS+NhFN724oUOJWMxJQH4yX4ZcRxWKOlmYEupJwDYp50ouhbI4Wd4SD7ekO/PrrqG8puSeW6fKAwNa7pUpKR6CaJfJYwK6fohBwY6i5KXLaMjHghNTrXn2HJVyJrgiRP1Zq86lccnzF2EvY0ihApYbHMYS1D0F2XhEpFJgPF/6YWDsNVWTmtSvKs7peTSxFoLwazzxjW+OREzpef/vx1yG2yYACpOhsNvufrP7xvG+B3DLLbdgZWVFP97Juv9ab2eswN+xEUVteXEIPrIBDgFDxxh619PUyZnNVmLcgtIikwMupxAhpHQkiVNSF9PdXOJOt+7Jncc297sI+7lNRdO25hZwGIaIRJYNdCehz+jH2uctVT3cmLnWw2CFvj1eFCWjCPVesDx1fXCg9JvipW4WK+X1hOliB3ck+ayNm9h6JLLy00f461wE9OZXBbQV9HbakoCmVP2NzLX0mRB6HpuMC0C29NVyz3Fb6Ujy/2MBnDwf1EFDRDYODI74BxH6POA+RW+R14u17AFoXroKKIn9i4BOgp8SAI98AFN0/bOEoYpMI6teAvG2mOesefcMLSijqZMiWOW8pExYKmJ5QMrrnx5oxCKkhV9FJYkHDExj8RoexPEx4v204zITrgw7dd1nit38zKh1kVxHQHyJE0LCMW7L5/WlXg/kNFWZZ/EGGCUyr8OsiBGnNEvl2ocSL4WK4R3gCo92awpa6K/d3XY32kkK/JWVlZ7AP14766yz4L3HwYMHe58fPHgQ55577t0f52nQziiU/ik1F9X+PVWHR7zuTQBEa0+xQMobZE8gpk1Ei4skzd+nCnRIVLLKSjb30mfTDb1NYacFKdYlm2O2lQJNA3SzORT2nLDX7AOJiZsna6v3bWuCwk5KSL9kqlg/c3NkhLoVNLzDaupZ4wJkY6TUPwYmDn5CefNsc//zzpdtFdLm21xOvb0FLW4kQlZcumnOhZFQCGfmUfhIMXJO6W3qJher3claSSlaQn9s5kU8IKHMPPXB8ArIs+AipuAFY6nH1LRY0jmMusiVvxC0UFEfWJbGVwZgGBS8yF10t3PKR48FoZK1KuuuTelt1jr2rIA4wR6weX8UGChpeEAOKSFavGQr/wXKVrIUH5LnVbvoMQM0Do8ycTQMu6ictaRlasGIFe0Ec5DGLN4G4pRum2oBIFDE3mwWoNaBJr7/DsGsuTndl5MibUGoYKQ6EUmBcTGMY3dWLbWcAJxNE1A4RKWqm6dZ3G2n2noFpo7zcyqtqio87GEPw4033qifhRBw44034oILLriHR//P274mBT4BoEEJbjts1QF+SvCTVEhGCmsgbaxVQFjoNN3HCj9tYvk1ESQkObeuttIoCy09R/43Fq1tro6CPDLecdqosxLA1uLufWhu1F5SBJAw6Ql3e/rSuuR7Atzc6/aqfVGJ8FORyDvcj1h+MnZnBG2y5kTBYieWbE6ZaVdCFPQWZGa8BtKP9SDQ3PzqRizWVjD3b6bP5tuLRSceh56CIf2YOdvWrEIHs7FLVTvKz0QBgIReumVm/RNhmMcPQHPvwzBE9LsoaKmojObKA9Cqbvat7tLNyX0E1xs0mWtpGVqpbpdCWRoSsKEBmfeU1UB1HLvfSjXs5T6SkJd3RYoMuWkcE5eMbhj6VQyBGEoQQKag7MXiTsA6VfCkMI5ZMDwI6JY6hD2RN0OzJaR/mTNJVRTPTUgpt5zXTfQixX0jVH1OAC5E6TPKe0B09xsMCptyxT98w9vgSw8qPXjWIDMk7ba71fgkfk6xPf/5z8erXvUqvPa1r8WnPvUpPOtZz8LW1pai9s/U9rXl0pdGpKQ8a5MCr7n8UjzjLddH13si+yCTJ+vGPls41nKe2+VdB6BNikNjUn1sXhMA2Q0FwNX/PDcBo2la186H9fEAImRSGKIfNxZKXOoLxIDsip0fK8x97uDOl49CGS3XHgFKb3widFgVJALASy2wVfRSDHvoeB+LFCkwz2SCybgkbqvhinllw/5pYs0aOpBN2M4J7D0jx/VFPoo7eK6Ofa8PtWaNYsNx8EzmPjn23auyZ5SBHge/Fb6U5oNCCjOZmxVhmO4Vkl2Q1oau54RaJ1kz0rzNv4wyR/jpnQHlscS2UwxcaXalUl1yV/uxS3F5oBukp+ZYUzRDETM1AECIdJQSmKD0zDnrIj5v6iLPPgR/IELfQVNDXQcwpTBJwUrj7IYd+FgVQxlyqxrCy1Oh6yxhPDRE1UlBLc6IfEZUEqw/X3SVhD9QkKUqDHKPwNsufxIOzaZoWo9ZVaDdmoJHA5DfSaPcbSfTdoAdbfv+VNtVV12FO++8E7/8y7+MAwcO4Fu+5Vvwrne9axuQ70xrX5sCH4gV9ZZGaLemuK0N+B+XXIIff/Pb0C4mY6DIPPgwf8c/MJe/njYqFapxYwtsyE88MK8gzKO4twlU4rRRo79528PBfdlk4ukiZObBeFxk2lmmpKiYa26Lg1vTdm6M+qvLm/FOrns9l/O4XAfwNNLrMsx3cn2Clq+VnHstJNTz5affRSDKXJEdoHl2nDdrG79XJ4yxrtnJnJAqCJYNT4SwFfQatQkEmiHzIBilTFIMRaBLvn2P7MblkIIdqwp6mXPx2sjztfdhFBIesBIAsRORlNaoWNAioARrkDwefZBd+lW8PYJyB2W2vGDoeRMo0QmXgGQqeICT9doDZIr1LP3Kj6QmJjxBVARZr8FCNpQUOHkooUSmwy0ZruqiknO4AgVTKyMNRBR9JEWAktJtnWkalw/xpRQwpKD6lSPB4H6kaZEemeZAuO6yK7FeM+6YMjabEiNPWBwUWK8L8HgKLI120fp3twmW40Tf3432nOc8B895znPu5qBOz/Y16dIHEF+esohldOsGhzZr/MFVl6FcpwymkhzgtPH04j3ytpogvTCFRWrO6Gbtgbvmhfk2/3Nuva7TJj1vdfTcyZzT7OwClnj48a5BIbrQBSXcA94BPbm6zefP/YPUEyF4gXk/u+lDN84mI7ItoE9d6XKfas3OCR77E6zFbW4yUKbdlfi7MCD2JhoaNrHXcQkMOe/lUYtfLHf7POTyae2o50PHG93YfpY3IwoJvKWeoXRtIfYRhSPNGwSINnNwEw83zXTKvUkWoVNHWld1Qxu3PIgzQ5ys+45AJcc68EXQHHjuXH/uWhc59TsCtWksEwc3dXBjH5kIjWIkoQ3XImdPpPkMJStfAwnnAJJgFd6EOobOItV1HLesZZLwF9CrvUAdAQXDDVp89zd9LiqTU5e9HQkDIIqPS5UD9ZptxnGIla4hGoM90P1BlDFAWfX0PZGwiigoDDzpzdfimddfh3uNZvjJd78VS9UG/uOfvhV+UIKbFuhOMdC827TZbeh4P7sttq9ZgQ9EoU+O4JYX0E0b3L42w+t+4PIIrJo6dZ9qyVDMWczakfkgxfzCQmdAWdsF3nH/NtJC3dbiVraueHOoVgyTZihA8/c5/mvj2HI/InhtjF5j69ZSnn9DzHhtPBphTimQe5onwhFgI+Xz5b4lRY+9KDXILl0AijLv0Lt/4ea39eUV7GeEcuaVZ+1LxigKllaqS8A0IdXZCeyjILQgdLms8VlKyPReDJ6jspWBgumeJFbfZVZBQYALL77eZ0jXMehxjVk3Lmd0cPIEFIYWNglRseKZESlwu8SWR9JhVuxIKIa79ELMXPyZOGDqIni0IfhpxJ/4SRZqGqc27nMBsjElK7rI7nylyZUUuI5i7J6Q8/4p9kMzB7QU8Tae4VZrhMVOQ1Xixg+tw1989huBjSIq5EhrP2UkyDiCh8b2xWuT14VY8GatyRpMx0fsDeDqnEYpcyOYBVv2mDj2d8l1fwx4Ruk6vOSRl8c9qizA0xq7sfy72XYyDuZ/dhuAr3GBDwAgAgoPtzhAO5nh5qNT/OHjL+2RtoSFyI8vaGytsW6tSEABdQAikKjMK0kFG7BNyEdB11c3bYw6CyIkohLqd8PznRmlIQkF12GbzKYgGw9la2anPoG+3N4RodZvEgpQJSJZ6ho3R/xfXeoy30YZoZYMCZIZk5wfYKwsYwXP61TB/C/99xQEUsESwXHxGAEQirdB6W1DGpcBemnuu0yRR8o6SJMhIME2gTCNHBX0viD4xerXIj7C6eAYrka01AUUSsiFktJ4nAifBLALozQ5jsGCzAeih6BJJDSCkk/gNolXcyuaLmWsiKTVSRGYtFZdLalvae6KrGDkWgpQwKJkC3DBCMP0XlnMCce69H6SkPtdX7l1tUOx7lGtOVTHYpEmv1mAGoewVcKvF1ERkHAcA+5wBX/bIOIFRHgnCmEAscTvqAOqoM9IvAuSMUBdfJZCnCOeBfEEiYCnllRB7WUaiIKAeGwxjv2IEvrWyy7FkdkSWgbYuVjxM+xa+He73RVCf3dqtX3tC3wguverEm5xhGZS4/a1GV5x0SUxzjylCNozC6NHHWuEfk+Om/g9MTQFSDayOW/4tt+1b2tM7/Q0WNyG/WOBLMAAqMUtpXnjhiT9soIV51PWTijbj6cdq1dg7nCJSRvPyXGcBfFvsf4E62Bc59l1ar63Y7HzO2e9I3k07EVzqD+n1FlFoTeXIgikz9bE3tO4FWsgKHUrSNP1BLgl/W9nIZz7AbJHRoVeuh8RLukYiPAUl7WpEc9tdO2jdmoZw1xbMBagiLrvPee0KCRWL+5uwVpYnIIorQpQS3H7WO0vpzeGIlvyouhYRbAbsj6q/DxTBkvy4uTqgRzZ9qYupSZ2GOyfRMFcR48HU1TGIqU26/yqMpEAf64hfe97iqXJECCGeipyOmIWJpEciZXiWObmwz/yVNz4tKvBnvGapzwpKnMJp/KFzQLrtdxQAAcGua+Lrfgr03Yt/JNuX7ugvblGROCqgPML6I5tYr0slKrUj2OsL1R5w91ZKyQQojsQgFoOVFOPkGTH/H70rc7UXerIXG8nAUzRmtJjCTnmn2KFgNkYzSInRrbsk9WlG6eNbac/e16F3njjlyLYFOMAc15IBU8EMZ6OsVgkQTxrqppY/gLqSyj7HnAKyMpA+t1SH1ulTN3nhrlPatFDriO/unxenqysCDGhVyUOjJ6glxi1NNeZ5xTMGEU4GMuW2lQrYWCEIXF/TQDqfoag4suIGyEf89GpycC2eN3UQaotzxbkKF3bEIcIbcmAmMacdl/HVDtRuNhlkKs8awmjWM9OSEqcNGoAB5dJaFL4RrwN1GX8g+Iuugw09TPAT4FmGWCKFM2Spz88Z4x6WmB2cAEYBJTrkQGzG6bCQmadUR1Jn9B6YNTFokEFR7pdjuMmBmjq4nP0+b7lfWMXs3PiHCKHAUV2MyeGPcZ3vOb1aVEACwXhNx9/Obr0mGZd9C749JzbtgMNK+zy6d+9dldx+t0Yfm5fNwIfSJa+d3CjCu14hv/+yItx9oLHD7zz+mz9mo12RxIcZCHDHso21osxG1na67MvV+wv5mT0V6iaepSVAmd28JB/tWldKvDF+rPjENe055y/vO0ms5CyFq/FOvSambeeN0TngSPFrFGOtrnnKW+ekZEuH2NdpqEwf4vQckCwSHdAx0ENbRtvfoachaTMo88WvH2O0SUf+82sdvkGOssXH3Iuvt4D5/mR6/RCLCwx5qhMhApxzjqgSzn41DpwEevQk0NkjVPPlMtcCARNs+ulmkn+vgHuqWeiM14rwacQknITtSQv3BNp/cs96vMWJkWZbxGaRjHy03hNBfDJ3MhaJI6sjJ7RjgjNYpxnWwUvLHaYHBnFdEACyg2XhDvFioJAzsCQAjsEZdlDogWmghEoKl/BRUWqM4Jc10lKMdTsk/R+wEEzTFwT4/rtQjo3hQK2GkZgIDAQKyoGcBvQdl105YcAKr+utuLd9lVqX3+rjAi0METYGGM2a1APnaZVKfd4oLgxbPp+XNpuzkiuP8p7CWAExNyx8YT57+ZdAP0/e18Tg8Q0ZerFCWWDVVR5yJuV4A4oJAsqCQotYeoQc7Dt0EjcvsYzYP+XsZKhE942P5SVF4M7iBv7HE9AGrMVjlFg5T6Vwx75vnVqAkVhbwVsshQlVi9xZ8uNoK514TRI8xgoClx57ooNMA9FEeKUlQOJi2chAXXjxnFCK7eJ54VCLMGbPRKUlUmOgs2NIypePEpu2MVjUtydEC10LkMeGxAVPREyHRn3PfUEPc0SK6BkSYiygijMJA0tMgDGeXOJaAdpTkOJvF4VtAcNd3GimmW5RzmkzGlybubgZ/E5uDbOfTvinELrWUGCdMzpmKRwDfvopdOyyvL8ZD4aAproBaDC4HE4U2NzwnTosk3ri5r0uQD/vJ6q1wkVJyUozt/bn/ZkNAFwLuAZ174Vv3XxZRjXLbq6BbcdqPCA93CrA2jBrN12yu2u2PROlWnva7l9XQaOKBHzcBcw69ggnZER0NM4NZI/DfQNb7V0E9hKaVeln7QBqetPBKIoEOoWhxGi2Te1k9Hd61+6IChCXH9cX84qGY2kIDUEt+UzKGluHNtcYDu4xHqphNw/hr2hehXfPOd4tCoCCWgGAFoIxiLkjYVv3dIC3pMu4mYNFc7CuqeWOuVzgTmFQWL35qZV2COPuV8bIFr6roGC6wQcKcfY68r1gqDYxboWLIDBECiRkgdCFSLwTuYoCT7eKMHjAph40HoBTGItehIXv+hXtYtx7VQuliVunlL9qKFU6ha6fiMhFZJSmRU1l5QpZ4VpWmPdIKfbKd5C4uIS2hB0e4NIRTvIglzmLCpjGTkfyijM/TSu0WKL8tz52K+fUlJCkoVdm/WTvDvKZmmUVQlRoIsLSvLrKaXrqZIm50imAcm10/2WUDDlX/3wU6Li4xgfeebVWC09lgrCwBFeffllmExrdONZdP0vL8AtDuFGA5D3uzn4X27jE/zsNm1ffxZ+akQERrSAcqyV1I2tlkl68d00xgB7AgbILnQpp+nMZmMQx7Jx9K129Dah+dYjbTFCTz+T/lLnsqlpTDcJHAtS0/UvFiZB3cDZ6rbS0Q4oYhiww2G9uWXznQp45BBBAECkfYt1palP5pzePWecU+5LlAAbIye5cLbKNN4P6SdashJ3p04qt+V7kPGLxabKRJp/m9Yo9yzKo3hKgo8elSgUjKJIpAJOlENF5jOiW3/mVCUnMDgh7blgVQSE6ZEZqhgoziKFUTTEEgjMOXVMn29a68TQGLUi79P7IaGdYHaMkGoexbTB/LvOl3hX0vvAJcAcFRk3jeyKfkrq/pa5DENWLAh10ZsQqlQ5MN2Wq6GZAiLghZ7XFrEB4nVFkIeSI+hPMkSSB8DVQK9wkmRlzJO2SKaOeNT0Hhnf9r+uAXXA9Vdeif97cIJJ0yEw4ByhbgPa8Qw0KEGjwa6AvyfbXQn2XaGv7etW4MM7UGBszTq85pGXYe8CITDBO8Ylf/SWhPQ1G4hQv8p7qpYnRcsrxTaFSlSJOYzluKOA3EnQGyEG5C4E8a2KgAhMdSnHzd+PCe1CX+iLIHN1RD53A46bFoBcM9woKKb/7CY/vvdBbzOFCaIVbtwMDEVjx07MNTTWanKXrdBP19TvUkw6qmxzCoaZNxF6GaRmnkcSgqGMz2m+ZK+mqFEULqI4iYCRWLxr5V6hCG4GlLktegGQY7qcAGGGZY8CK4ucCL5ArIxtQdD+KeuBZrE8LYOU4hmOIyJfFDwA1DmTkggETils0o+J1yszoNyDWfuCdJc6Dfoc7JrwIuhFkQGEGjdUMSYvCk458alevFPSnnbB9Its3VPISoYA66TaoC1gJB6kUKCfVivrrIx9uJYQJg5Sx0E8ETIH3VDWXlYYFMkv104gQ6EKBuIY3nH5lbhlo8Zn7hijmzWRZTAw3KgCdyFa8rvC/h5vuy79k29f3wJ/cYRmbRN3FMu4s427BgF4yfddKh5m7KmAH3rv9T0BqMh3AG6GeKRYQz66HrsBUtwy8c/PWfpWeM670HcSYPPCvVcNzxDTsGcEZMGBVg7K31Md3aRcJCEs1pBYpxI71zhoLjBzvCaCNyPfAaGFnb8vuV+J3/ZYBm0sX/7Wi4jrpf+nhjWMNyAPiownRBQH0rlgQvRysCHTEecDJRe6uOfTPFrgXTCWrc0e0CG7qMiI+1srtgHGesxAM9fGtDZXE2iG6CEoDQ5DwjViFYviIPXou6w46Px49IrTaA6+UVR769DyTbgM2LN0stYr5pJglwqSriGzhqIgZwHodQQ3AToXreluIfXTQr08cm+h4qh3dcgFbeQZOGg54ZgtgRwRUxBjekYV60KhBiikSiBxUp5T2p2kDYKVf8CmW4Yyptb5WQx7CB/CXzz3anz2yBSfvGOMZjoDOQdaHIK8B9oOXDdxvxlWJ3qFdtvdbLso/ZNvX7cCn4jACR1LXYhCwTkwx81OQOIHJ4xXPeJSPHC/x6Pe9Obs9gPUTanWc7JQugH3BI+fUGZzs4L8LhaqNHuOuL9FCNt4I4zQjgIgd05CFOSSkE/ubNcAoRRNBipY/Cx5CZLA0HEYt7fgAbYPGFlApk0fhAgyM/djsyCiBQt1Hdt4ffY0sM6BntNGgSMx3Z0adcng89COVWkT5UKVhTwmAYPpfUCeKfW8LOrSTsdRCu+IpRkKA24MmbwlGFe2hmyQvAKcrN4QFchQ5r5DhXjPCUAna02IepigpX9lzmXNCAWsa4BQZXd6TJdLXouGetY2IN/nZ5bDVvFz3wGhEKUpZRn47DGQwjjEQLPEapXFOH+0riWPP1r1nOe4AJgzYM6GcahDTh2UwaZ3tAembAz9MrJHAsTqjZHnJex5NoODAnIZZ/HoOOAv/uPV+OJajS8dm6EZz+CXRkBVZCu+KkDV1+02+8/TzLtz3O93G4CvY4EPADBkF6UDFkvCf/jgm/E/v+tJWCoJm7MOGx3j6CTg/97a4mWPeBwqH0AgnLu4gCe89S1xZ07UqLJhAcgWhUGF71h6dq4dLy6+7TxJywJ0ExJrNQyMUJbLJEAWl9mqFcUEDHXp94Ru6ptC7JMairXIYaxoe30HxLQj6n2eJXweh8SpNd6tAjUD13peEVEWvCCh8/ci7IUIhV1OiZN7nccUZKXD/G08BCKoqIV6Kaz1LrF8ETbzbkMKGVMxn5HA8oyShSzhI9dQtO6b/rVUKKdruTopacQA9cMgIlxdYgqUeY/WeQSwRUWV9bkLJkIEsq1Rv12RQeYiMPdKIRbgi/cCZTAkRs6BT8qNpLXF+c1EPKLU9IiRWJ51zgqwxyjwT55h8k54wUL4qJTqeJIiFhUt7ntkON+3EOmI3Oak54e01qqNePz6LODWjRrttIabF/a77Z+l7br0T759fQv8qgB1FbrJDNOZQxiV+L3/51Ic3aqxxgw/WYcvK3Bbg5sO08KhXVjGdP0YNvigujcBaHqblLvVUHEiTpFNDthB8Js2787f6Xu53k6aqwL8stcyU3SnrAGtnmetaTZuW9ko27h5s8uWPBkhAph7YjkvW9+9Ij+9dDgjsAOy4gIYdH++H41Ta1wjfx9K7rno8wWhFlov/GEwECIIFe1vhL1aj2mOQpnP7c0bcj/Sv3hdNLXNggwdjFIIDfewsLBwTmHzsyzILGBQYtoWTCgtIMb2RUDZzIFIFxs9BEEFn8uhjZSbDqLe/fQ8TD6S4YQUExfgHrVzc5Ty1qmNih2M0NY1msIz7NK54s63hDkcrxFBdcgehHQMy/OVZ5dCDOp1a+L/vksTTmlekYR4HcehIY3kHSAG/vo/PBX/zyvegL/88avw71/xRoQCuPbyJ2I9EMZNXGv/cHiCaR3zDWlX2H912q6Ff9Lt61rgExEwqkDDEly3mI1rzMCgoogg9nqKITdoN9bBIZJkDLzHbP0Ixm2N33zgv0Q5GICaGf7TP3469plcxeyzaafWE5DDAcfx5Z9I2OumNH+Q6XI+ZCAocy3/KRsyuLepsiDPBFhWsaZSUUNRWaBsJQlTn2IFjDUvaVhkS+p6M0CeE7TIgkmyACxwUYS9KAPicmaXLTCxlnvnGoZBsf6U4U0UFEmVk+fRJSCeEe7zHg/5n9P/86hwjYETlOM9fm6eoayRNAeRHIgjEDHxH/gk5IJmh+Q5mU+PE8yF3F8oDRYhWa7iOQipgI0sEukn+Dz31JEWE5Ixu6SABN8flyDyYyGi+MzlWKXWJQkfsT4bJigJk0vuchZlM+Rn7Jo030VWoiQcQoCy9YUiro1QMsiRXlPWgAh/VSpKUZYog1YT/z+1hH//8jfg3Zc8HpONGn/01Cfin9YD/uFYVP4ZAAJHHvwuRDAedttXpe0K/JNuX9cCH0hCnwg0KIFBGTeczTFCF1AOltFxh2r5bPiFIRiMtqiw935L8J4QmOECMD18EL/5kH+Db7z/vXHZO9+zDfEt6GZXU4wbW2tVB3LXq3KbsO9Z6PFH6UTNMZq/LwJHrC75nqCC2brSuYBmG2Rilh2UEmtYC2DKZigYa90qCJSAalplDshhEeNeZUrALGMhWpa33ng4Czm5jioAyfWr8XLKfQiRjqLUvekD+Vb0/lI6n2slrc/cLmWgWygZjqIiZa1+naM01oiSJ7V2Q5VSFUP/2lb5EJe3Pked57jWBAEvQrsdmbVhnpnMbajSV0U+IKcRxjBEZMAzykebxxe8ZDFwFOCp74j0T0oHKPM0iPeCI67EJ+588RqIl8a64YXYRj1mch9JoZZQiiVOYsms8HktqDKn6yYrpqJIsgPqSY2p9/j8jLG5MQP5BMgrPBAYaFqQd0DhsUuN+9Vpuy79k2/HgTl9HbYk+BECuGnhRgPwwgLawSImfoAxe0xCga3NGcYdwRUtnvP+P8HapMMMiwjL98EXJgO86eLH9bs1xUKkgM2OVryAq+bkvljBx9UH7KYHY/URei50EbYSB1USHOlD4ua9MaFXYU9eHKlqJsJovkhOHIdRany/vKslZOm5iyn+M0+MowC4VMlQBIa6xs28kVEUVPO3m7wcb0BnylpohKt4IaynQSxEDXmwmVdb5VDK3hasaZrBIO3lmq4x1zZzrMRBDv3NKil0ZMYtAk1c7L5GFpwDVoueJV1NvCRKeGOUjgaaPqdAuDKD50Rhcm36SS54IRTyM2glOXbJ9Z+ekQhyUS4lhc9JFTrJMgiitLIqPQCUgMeZrAJNiWTz3GXti0D3UXnqkkdDMhusUu66fK7iCVLhnZXz9uG2jrC1NQMVHrQ0ikBfoij8h5X+vdu+Os3ukcf72W2x7Qr8+eYc4D247VB6QjUo4LzXetXUBYS2w3o7wG98z+PBHIDlRXTeY7w+wReOAdc9/gm68ahbfyf2rvl2V/78bf569ASaRcZbIJmNUUvcXPOpKf6tfOvCDkimP+RzxUsRXcdiosUD7MulMdp5RaCQGvJJkEj83fWvp9d0mbWvh4GwQlzKsEpanJ0LqxBR3yruue0L6NtgLWqNQhgFSqfe5e8syl5rvYcsxKRKnApgZyxZE9cXd726n0kUAGSrlfN4pC85184lE5TuNTLh5fFTiMA2ZZaTsInnnEKXBqBI+iYKcTLKmoYa0ty7BkqL21V5XiKQLgtU6cvPzHOSORYlMilDUdlAT2ES3oCeZ8XiWsRTIx4OAyIEx+p/rs1hE5kYScF0s7ieN2YdNlqOFe2G1a5gPx0bn8TPbgOw69Lf3ghwywsImxNMNtuYvscMt7oUrf+2Q1EVQGA046gEuIUBSmJ0oUZZt1ibjHLKT9qEQhXgJ85Qru7g1pchmK9UmOx0vMTdU+vJfmMlW0uRi7h5yvhgQgAs8UvmvotfhIwViIZMRvOzTcpi3JxJwwi2aexaLDLtNI9XnoVF11tFqW/5ZivVuqwVJ2AVH3u/VgGQ51QkIeD7CsS8ta/C3aeiKjblUoZTpDBOAib2PBLiLWmxTVlRIZbS8wSkx6ZvO08yHitgu0FSrBz3mf5EP5Pr2XmX59JmIJwtUStC3HUSBogAQLn+NoWoANpBFOrsgWDXT1I05ZnYWLvckwBFQ4VUWk7Wrnns8lxEqTXPK/aBSOjkMrjTNVnpYB/7oAZAypIgBt73jKdgbdri82s1mlkDMGOX7/70bHdlxe9a+LntCvy5FivqEdzKAtAFgCMwJ1LxAqn6BxZ9g61RiWarBrqAilocvv1mnHv22eiOrqtVqqjvjtAtd4AQzQARoDZvtauEz633kXVR0/Y+VIjZvcl2a9PZxPpNAk/j7nNVAnvsdyIcETdftZpTWqLchv7SEUhzmjJQrZfidrwX0gj7bfNg7s1u9PY4DWGwGaeZj1BlgSvHaT64ESQAMtiSaU7QZje+PhfkmvMWQR6kkqA8H4ay6PWsEKM4BDtuoJcSZ5UFaVKeNuIQkrXeRgpbceOzS/H4Wtz9CS8gXoV0rlwvUHwvVGGS+/HmuDTp1MX3JAygSp2EG8Qy73kiUp+C8BdQoFjwQAbtSRgoKGtexk/EZyAnoIcLAcfxi7VPIaLz/TQy63Gi7GUXPSLve8pV+NShKTamDdq6BXcBbmURuzH607TdlRW/K/C17Qr84zQiikAc21LMrhnX2BqVGSTFjLassLRnL2Ztg81jh3sALgDZRVrG1CeNoc6Z869/2L9BFwr8wMf+Rs/vgfXuYs+RmLpytJvLZFf2XCfJ0hMh5+ucr7+jILIClua+Z4NYF2EYAJ7bLCX+q2EFaUzIeYRmzEag5uPyr5r2Zyx6TdWy7uKEYZAYcM/7IEqIxHPNGJhI+1algKBFZSRWLWxz6FI8WwS/zKt4TIwiYj0NPQWlBVAkoWY3NXFXJ6ta71e8K8LGKFZ0+l6oaW3qpc4tQyljtVm3eOrbT6PC0pXmuaVQALUUXf6ptG+XKtcJcHBwNGUIlLHgDpAVHr0/7ieyiGJhhbefZUVKnmEvlNSZ30PuR9aAPPNuCPW4SQGet1xyGf7+zgnG4wahaUFVCbc4VHDvbjv92q6Ff/JtV+CfQotpfAOACM20iTi/hQFQFmhAKO/1DShmUww6h9/6t+fheR//gMrz9z38YnRtCwZjMKhSeXtCR4TQTcFM+NRnPoNbbz8KbxQNNfp3MHN7Vr9pIuzjQX0LMQqTaG0TQ8lOIDBvz+gWQy+drGeN2wvNu4R7ygVtGxcw9/JJKMC45EnGksbYCyukDshYqlYobMMzpPuzFr/GscOcoJhTDMSt3g3QA9qpdd3A0Oom93CR7mFGvT6UzMhkKcy7423IQhDlUixGQyrGmpX5kznoqmzZyzgjIj5NrfzvWIGY4tkQi16eW6hCj1FP69BTBgEqxsCRhi7UNZ/mSgQzdUC5gR6hUDeA8kEEZwCRyApQxD4ghkNEuQqS/mfWpcsKg+AJtilnyl2QrlnmeWEHvOPpV+COcYub11pMx3VUJlajVb8btz/N266Ff9JtV+CfYiMiYFiBhlXvswBgxoTJuIPfdw7atsMbv+8inL9/EYOqivza8WA1FCYdY70O2D9YgiNgZfXbUE8bEBrc8KDz8Oj3/bleg43Ag/1VgrLmOJs7bVPbyPaVKv7ZCm4AEvOZ8SaIEBXr0Qhn0FzcmgHltDeCmgmQKmrRl97/TjEKhJiPTvaG+1Yvpyp7En9mpj54jFIeuwzJzo0RcDJ/Nh4s36li0EXXLwswLl1DBI7Mg1qxQa6awGtdvm4PByHTG/KPYjJdUjK6rOzZNEFCtrrZoZfGZl3kFvwmxXVUIbPhD5M1Ioqlm7kkvCNQT2PlzoQjED9zLdCla7kWoAbwDTAb9ddFNwCaZejc+NqsUYs3Seuiq/ruf7HWgfg/tVDmOy38k4S3KCTi/reIfamyBwAffe7VODZr8Y+Ha/z9oRmaaRPr1Kf3W97X3XZ6N7vPHe/73RbbrsC/G+2EGn9Vot2awi0McNSVuDcKLBQ+C8R0buAAl1ZiHYDF0mE0HIA6xmjYolgZ4eNPeRTqaYd6FtB0JahYxPe88216qW0x7XmhYgRvjqubz+d89kpUoxtkLi2r4QHJ6Z+bgm3WshFsCND87f5J6WvhfU/XVB7z5CUwiQBRcNmLythMjN3epw2tOJN+J8doVbc0b9YD0Iv9m9/Fspd7sMJIU7yMNyGUyFStkmaWhNRO7vpedoBY07zdSrUYAfUuiJAnjkC3uedkq+dJlgSXYqGTKmZWEIv3ggQZL0I4gfHKVIGRmhS7JyjXg4xPqtBFb4QoeVnREk4D6/1QxUi4EmSOjMKi65JMCmCdv1ZPCed5pgD86XOuwhc3axzeqnFsGtBtzUCjCm5xiF2r/gxruxb+SbddgX9PNqLo4i88wniKta7EFzzhm4dFREonKcQMbDYbmIUZ9g3OAkAatiZHCKEDCqAoHPwSYbQIhECY1S0+9ISLUc8A5x2+911v60u07P/vL3Ir7O3HLrnHfU5HEtctYLRmc74U71GmPdlEbb/GWtbPTJEWnS6TR72NEMaUp7VWHvcwAlDLtVfURe5V3NZynPEG9ICLEts317fhAgX1GRc6m/mUPhStTgAn0BoopcRpyCGeHHzmLiADULPjIwBUZ4tdjyMzPgaC5wi4E+Ep19MSzYjgSaCf85/u10+c3qeXrALOFjPUW5CFv+V7sOVyy82cVSDPQzIflB0R+RhnPExSR0AonSUdUefGIPAVYS8tAC4Y8F8aj+T+S2ZBqOLnt6/V+NJGi8mkBjdtJNOpyl1Bfwa23Rj+ybddgX8PN0qsfewIYWOCw8MSXzi8hWVfY3VlGVVZAgRUPtbFLp1I2XSu82i6BZTFFEATlQQCvAdGowbDUYUWq2jqFh+8+HI00waPeM/boTFvoGfN9IQ95w1XBVthhP28ppxyx10dy/2GxYiQoimpcLHWt7jmKeQqbD23sgiauUpslvCGXbTQulHmNxeqWe0/eScUIAeAIYpIukbI/7PL9yIxYHEzWze/utdNSp5a01ISl/MGo2xxyVKOwj3fVi8WPad0KSZAD05W+pzCIoLXgu1s3N1qWgq+K+JcU6qe5xrKbv+kCFAS7HHOEzOfWPVy3TlPjZLTtNA0OQk3BA+QT2A8Z7wgeXnn+XTZpW/vU76jNufsq3KR5kiVmuSJUtyFrj8Tn0/PVD0H6dzrfuhxuPnwFOOtFnAEt7qUqHh3hf2Z2PQdO8H3uy22XYF/DzYPhuOA4Dy6woMIqDvG59ca3LessbIMINn5AzdAgRJSr11aWXlsbbbY3HRYWCAsDULch4jAKBBoCAKhGlYoByV4Bfjrq65GPW1Qzxo8/J1/tOMCVyuVkIVKahawhiQce9arHDf1QJHR+2Ll2zg+x6H2rDkVTHKeUQaE/xzEavW1S6xx/ngtUxq1NyC5OfQ+692/dQWrRZw/61nwxp0cKV0BqWUfi7uwWvA2XCGKxnxGhNAcKxOhEToi3HpKlsFbAMj54alvxWFwfla5P4pC1ANIsfdQQCloHQPdKETBPnVKxCPCPpRAuZUFvnozQh6P4BrmXft5zqCgOVvUyBnPRG/MyLn5io9oTL/CEGkKL+l8uXy85NLL966N3gI7Rpfm5u3PvAL/eHiG8TSiBN3Sgr5fu+0Mbbsu/ZNuuwL/Hmzh2J2o149iz9nnYNoGhK7GcNZhsrUJt3cRdx46isWFEbbGYzAz1o6tY9++vVhZWcLS4gKAaOWz9/iH9YBuXOG8hRr3XQ7wHjgyqTAclBhWADFHjwABblCgqDwWMMRNT70azazBbFKDA8OXHt/7lut7YCt1B3fpXbHxdqTfKQvZbsAKSmMW4Rgt7L94zKVYXF2I9crTpklo4MMGOOEUAgoc2qzRjAmPu+HGfA0ZQ7KUbYYidVFKqUvejCtONvXSD+N9SQEb6t+P3KMoGwbUqFajuM3Fa5Hi2ZojJn0AOTtBFCMNK8hCyKx6IuRdQBSWMNYsZYHW88qY5zCfQqcAPsTzVNcSD0DI7HVZ4Yjfu3UXnyUAahPXPiiXw+V8TfEs9LIHUlxect8F/W5pgrthvE/HRthznjvrSQGSnBVlxvI9UBbmMgdCACSC3tL12gqE+TlxvEAAPvq8qzFuO3z+aIOtcQduO7jVxZRuh912JrddgX/SbVfg34MttC0KIszWjgLMqCdjTA+3mEynuK3eg5WFIaaTMQ4fOYqzzzoLs9kMBw4exAPufz6WHnh/7Wet7rBeDcAAPjMtcEfdYEQBd9aMqpjim1ZK3Gu56l1bhG1RehSlx3BxgNAxmlmDP7v0ErRNF4X/H78tkY9Y07dvyQHIlrsKw3SsJeUJBOcIt9x2GwiEhcVFLC8tIgTG2rEZ2naG1eUhvC9x9OgU55x9Nq797u/Ckz70QY2Ja7w4jYE4VfYrWXPVmRBLt9rxFbw9pU1AftYVb2LxPTxAsrJFYJAIZ5kLAbSJQiFCj4EgpEoSI9cwQVJ4EnBPwGLOWsXz1iqMsBXLVsZklAAhp5HjfQdwIsPpFfHh6BVQxckg3UMJFBPKCogoXYKtoGhxy9gVdyChGZkH9QRF8poejXNKgysm2RNisRw29q73Iyl8ovSJR8PMk7MKiQc4xOwA6pLSYZRF6/WQ+5t0U0zbEmvTFqFuY3U7Z9F/u+1Mbbsu/ZNvuwL/HmzVvrOBegXVMCJ93awGMzDc3EKxsoRB5XH+CCi8i4YHB3Shw/LCUu6Ega021yUPIByWMmYemDHwhbUZCMDiwGNQOHi3HVVMRPAFwRcDDBYqcGA0dYu/eOKlkT2MGR3H6umeHAIYDg50HHOn67po3RPBF5F5sG06wBOOHj2G+51/Hj7/T1+AL0psbW2BwGBmjLc2MBwNAQD79y7iziOH8Op/81A0TYMf/9Snkos6uqNj3nmUgkxGwMg98XahEL8QWRAPmE+9U8VlDswlQl5d7EbwqSs85aArEryIFeOsO17GY4Ur2PDEi5BE7l/z9OfCDyq0TYhBBLIIcwXKUUK8i9u6NS7xf1E2vQAAaGdJREFUkAFxwrnvk3Igfcda8Ok+m3yPoBT2SIpKKKE4DVGmJOUQMPn1SJ+nMbCg40VYu3wcU3azx7K56bo2XII0p+YZ2TCCnNMjXBLlqEpLJzqn0DLjzkmDrVmHWLvegC122xndiBlkybp2+H63xbYr8O/B1rgSGJZogLjbVCOAGbxcYG1jgsnKAs5aqrB/dQCKIhEAekKWAYQwt0CtMGfGEXisrbWoqMVez/gX+0cYVvM5b/Z0AnnCYFSiGpbRCk4COV6TQUhKgxFO879Pt6IEGy4O0ucxpPCA+5+PtunwoG/6RmyOx/DFuWibBt4XWJvOsH+pQtd0KKsBztq/DysrK2AGrtu7D1f+xQfBntEZ4Ju9rmYEIP8dww1pWGKlioWf0PjiclcFQScXOWfeuMylCE0vpi/nMABNj4seCEhBmS73IYJZq7jZZ5CUAbHegeyaFite6ssrT4FEL4psAYOSm1w8FkmhCUW2qotpPldDFhytYlEIei50Q0wD+Y6RqZOt0mVCQ+IhsTz3Vlj7mfEUyHCcKViTvARsvQqUlQnliEjXd7WkOObrzNcnkHtTNr50/+Mu4OiYEdoOVPrdkP3XUtt16Z902xX4X+lGBJQFmAhdx5i0ARwQhdYOuw4RcNbQ42DdYsbAtp0p/d0BmDCDpx2atsOwmktO3nkwGjMFA5NujMKV8OTRcYuSqohW3qExM8phicnGFADgjDt0757VeAyAlZUlyBsWGNgTGANP8EQIzPjGb1yBdw5goN2/D+9d2oNHvesdyVJjBV8pyE249ykKe9ck680hkgSl2404AJOuJ+51Rk+Ai1DthTB2uGUF9tkIRkr5omThCxZAhDwAOFNNrjd/c6CznnU/F26wx1KbjO6Qx6057gCqNUO8k7wiImTFC6LxfXMfACKmIDHcuRpK+mOR80rwUydkvYD5EphQct5F2REPgp+m3yXOXuR7APLfFhgo32sBI/OZuvjNfcTrcSQIEka9ZO2HipUhkFrg6CRgo0asX7/Li/811XZd+iffdgX+P0MjAFR4hFmNf9p0IJriG1YHKPzOm87+5QHuPetw82zHr3ttVPkdrPs5SbXTmAgYFQkoCIKn43sIAIAZqCcNRstDuOOMmwCQMQcZQOkIk5ZROmDgkTdaAorSYe85K7jhwscCDDz6hndm69Z6GfQCjFBGyWbd0ZIKqNIkxdZt/FuteYJasSok5Rhn+8wubAuoE8Q7wwjDLgtwPQc5tq6UuAZ8xn7bren5boZeFTpxsYsrX5jy2CWXvtQjMNgFagBOVeaUODF5D+Zd8FSb+Q4pVz2FKFwNuBSTDz5iBySbwo/j/81inkMv2ReiVKRwQRDFqI5jc4x+zjwSHiApG5qTL8oRx3GJ8qDWe3oG1kNDSMpgwj2EEYMDgUMXp3M3dv811Xbz8E++ndLKf/nLX46HPvShWFlZwcrKCi644AK8853v1O+n0yme/exnY//+/VhaWsIVV1yBgwcP3uODPuMakTJ4jdfH+Nxmi61Ze5xDCY6AUXFyj6ZloJ0PAQA4vp8rf+7IwZFLaP/tOADm/EMAnCM4ImwPie10LYIMq3SEOvAOoyH4wmP/ffZiae8i3vOoi6Jred6pERLdr0Wy2T9bSpZvqkQYTNEaj1SfHmq5qiUo/YvAtEqBKAtilSZBraVixXMg3gdTsMWmkwFJaDb9vjXWbixwsdS7UexDGOkkZu6a9JMqvflpPD5UWVEQcGA3SgIyKQp+BgW4CX7AT2J/xTR5DeIjgatjil61DozuZIzujIQ6xSRb+hQSXe5SFKrtosl/Fys/jcc1QDFO49Vnmu+F2qwE6fdJIegG/f4VmyEZCMm6J/N8VGFL9/7uyx+L2bgDtwFw7q504d12pjU+iZ/dBuAUBf5973tfvPjFL8ZNN92Ev/7rv8YjH/lIXHLJJfjEJz4BAPjJn/xJvP3tb8e1116LD3zgA7jttttw+eWXf0UGfiY1D2AJwEJVYlAWWCyyb7JrA+pZ9A2HDuhaRlMHLFcFRg6oHKFyhCXvMHCEnnFNhE0mfOHYDE3LSRDfs7tZEzjG+B2hGpWoZw2aWavx/+0tm+cFAYUDKgcsFPLp9vE55zBcHOCsb9iH9z/24j4aP6XAzVPnalnWuUiG0u96o/Yndj6tIJh+V45560IXa537lnuvbG4SmJJypgxuxnVOIQpGEbTajLdAiWKSEA6VCRuETE7TS91LOIBuAI27S+47W2vX536ozT/lBlBsReHt6xxPt8LWtVE4RyWFdMP0s3Rd8TgAeOWPPCkqH5MscBGAa553uSoAb/mp78dbn/94vO0/PS7z3huQo00BtCRDEppoR9CN26b5yXOxPBLWvRsqRjcKeMwfvROjRV2Au+1rrOk6P8HPbovtlFz6F198ce/v//pf/yte/vKX4yMf+Qjue9/74tWvfjVe//rX45GPfCQA4DWveQ3+5b/8l/jIRz6C7/iO77jnRn2GtQEHlLcfwvKwRCDCwhZwx+YYOHsJzXiGwcIARw+uo2ujqVlPa1QLA+yrQ6yo13YYVgWmTYfZ4ghrxiXJAG6ZMZY2ZviGPcO5K++0w538rsdgOMpn+MKhGlaYbExRDoodQYe9KwnMnhTXddxGFOPiy3sX8c7vfRQe94H35nGIMHA8dw5UcIqLXc9RARDd+64lhIJzeqEIZ3ELi7fApJfJtS3hjcab0zXE7S6AMkHIyzWksE6Qgjjitpc0OxlHuhcp/GJz8kOVLGFkFL8i6UMU3oBJc5PYf0jpbICmQapnId1L8AAK4I3/+XI85dffAjeJfbsOKCeM637zKZi0DdYbAtBhoWR4BsYTYDCqcPNGh1f9v0/Cj73iOrz7+U/GnWtbaAYj3Lwe8Fs/eikGvsPtmx7jluCEQ4AAN0WPRc+mMloufX0exgui4LzEky8cADInsQ9Oz4UQKsawALx36I7jWdttZ3b7arjtb775Zvzqr/4q3ve+9+HAgQO4z33ug6c//en4hV/4BVRVTpv++Mc/jmc/+9n4q7/6K5x99tl47nOfi5/5mZ/p9XXttdfil37pl3DzzTfjQQ96EH7t134Nj3vc4/R7ZsYLX/hCvOpVr8KxY8fwXd/1XXj5y1+OBz3oQac05rsdzOq6Dtdccw22trZwwQUX4KabbkLTNHjUox6lxzzkIQ/B+eefjw9/+MN39zJfE60A4IcluCjguoB6a4L1SY0jkyZanIHRtp2WxV1YHoEDo/AOvixQFh4cGNy26OY7J0IHwoFxh6Y1eWf3kDkTGUczus25KJmOb+HPNznOBuV3PpeI4EuPpT2LeO+Fj9PDNC7ucjf6gjtGKDkxx3HffQ+xyOP3VoD0wYHJ8vesQDebI66kPOKit/SzJm1OAGxapEfcyoAi2N0speuJUJbCMCkX3c+y1T3PEtdDpqfrhyqS3bSj/DmQhH1ylxcixFNIQGLwcp8vf/Zj8IUDx/Cipz0Cr/oPj9I4+qv/f1fg7w5O8Mk7G9x8tMEXjnb4h0PApw4FfH6txWcOzzCtW9y51eDlz7wMnziwhZu3gC8cmWK8McWRQxPcdusEt9+2gY07N7B+ZIwXX/kEvPxHLkG7mO/NZg64Orr/q7X4v/L3C+agMf8nxYUdEAasylv8PoZ1XE1wM8JiySh9zI0pCRg4oNy1+L82mo09Hu/nK9A+/elPI4SAV77ylfjEJz6Bl770pXjFK16Bn//5n9dj1tfX8ZjHPAb3u9/9cNNNN+E3fuM38Cu/8iv4H//jf+gxH/rQh3D11Vfjmc98Jv72b/8Wl156KS699FL8/d//vR7z67/+6/id3/kdvOIVr8BHP/pRLC4u4sILL8R0OsWptFMG7f3d3/0dLrjgAkynUywtLeGtb30r/tW/+lf42Mc+hqqqsGfPnt7x55xzDg4cOHDc/mazGWazjE5bX18/1SGd9m3LOfiz9gJEWCKgHs8w6wI8CPc9exmFd1jeOwI5Qj1t4QuHwIwjhyY41AEYRG2RF0doj7N2NwIwbQOq8q5s6ZNv7jhIZl/6GPO/C6VC0v16TeLj2xSB9BcRRksjbK1PshAwghVAzsEXcMH2brZfE9AUMKsMKCI9eQKAbF1LjrgF8FnEu6V9VcFtxuhSwRiSfUdIdywDXhqTr6HCy7WAb6Mg5yK64SW+rymGLnsIgNxPGGY3t5ISilWcYvhOQhaphO+zfu89aBcyOv7FF/9bjO77ANw6bdESoSMCM4O7gK4L4Fnyqyd62hbAbQC4jTnu8A7wDlT4WJAG8VmFtsN4bYLJGvBfL3s8Xvi6d+ANP3UpnvZr16u3QQGPJfDe51yCA+O4rp/5urfnEEAS+nAmhW+WQj2UU/I4MSG6hrC1toaFUMIVjMH4GKZbG/C+AA0XEQYLaP1uXv6Z2r5aoL2LLroIF110kf79wAc+EJ/5zGfw8pe/HL/5m78JAHjd616Huq7xB3/wB6iqCv/6X/9rfOxjH8NLXvIS/NiP/RgA4Ld/+7dx0UUX4ad/+qcBAL/6q7+KG264Ab/3e7+HV7ziFWBm/NZv/RZ+8Rd/EZdccgkA4H/9r/+Fc845B9dffz2e8pSnnPSYT9nCf/CDH4yPfexj+OhHP4pnPetZ+KEf+iF88pOfPNVutL3oRS/C6uqq/px33nl3u6/TtXUM1AzUgXGkY6wHYNp2WG8ZW3UbK+k5AGBUQw9fEIqCcP5KiWHbYtYFzLqAmrO3uNeI0DJwbNxsz+G/h1tPVp/s8UYaMzrwtuo5/eY8gUO8U0ucI2A7iVUrql4UgNTef/ET8cErInbkL596VXYquCxQxKUtgr3XRDHg5B5OaHubFtcD9JmbFYu0SDFtO77esWnsFCJATmLmAsILg3h+sRXPf/9/fgpe9yOXarxcJzdhAK79sSf3094c8LZnXaypg5K/3pWI/PU2lBGAV191AYo0hl988//FT//G9bj3aojKp3NA4eEKD04141EWwKCMP8MKNBrA7VmC278Cv2cZfmURbmEIGpTxZ1jBLY3g9i6DFkeo1yf4xcsejZvXGK/9mcejK/Mcv+k/fS/e9OzH4QvrjC+tAbcemOH/u+ixeMlVT+h5KqpjfaUKLt9/N8o4DWLgiuv/DJM7bsXRWz+Ho7ffis2jR7B+xwEc+NTH4cYbu+H9M7gp7uYEP0A0Ju2PNTTvqba2toZ9+/bp3x/+8Ifxvd/7vT0X/4UXXojPfOYzOHr0qB5jPeNyjHjG/+mf/gkHDhzoHbO6uopv//ZvP2Xv+Slb+FVV4Zu+6ZsAAA972MPwV3/1V/jt3/5tXHXVVajrGseOHetZ+QcPHsS555573P5e8IIX4PnPf77+vb6+/jUp9HvNAQiMCQh3bDVYHBQofB8lT0RYWSjxjXs6fGmzwRH2aCPV3Y5ddkT4wjhgz6jF8qhIh30FtjGOjH1VV8EXJ+r/OFqBBsSB443PeYelPYs94hR7OmAUAeS/b3j0Y9G1HUIbMOtq3PCYx2Lt0Abe8+iL0NYtHvvn740CGNAUOYvc1/x5w0YHY7EDUAGqZV0pW/cAehqZDUX0itKY8IDEoPVcBR5GxULS8x75omvwuh+/FG/8ySdh2jLGbUBBhNWhx2WvuhZPfuWbcP2zrgIDuOwVb8Rbf/wq3DLp8L+edyWe+j+vhUu16/0seyGaxTiOt/zC9+PQ5hBv/s8XYzgAwB7H6oD1GaBRImaELoBDgFsYgIZ9aueTbUQErgq4fcsIRzYw3qxxRzEECHj9T1+IrcbhwNhjY+ZRb80QkhehawM2xjP8xlUX4+de+3adW9cAXfJ2aPqe/N6legEcU/Pu/y/OxxcOTuHYwY0qMBEWZ1P4pVXUd+tudttp0Y4fJczfA9vkygtf+EL8yq/8yj02jM9+9rP43d/9XbXuAeDAgQN4wAMe0DvunHPO0e/27t2LAwcO6Gf2GPGMy/8nOuZk25edkBpCwGw2w8Me9jCUZYkbb7xRv/vMZz6DL37xi7jggguOe/5gMNA0P/k5Y9rdjA9RUQCB0Y1n+MJWh0/cOcbhzRptF7bFxs9eHeLfnLuEBy85jBAAZriuQxG6/rWJsAXC59Zq1O2OfgAAQOgY440ZupYRAqPr4v/xJ35/vFvitOmXVdHLxWfeHtPPDvvkamVJ53Po+dV3mh+iGMe/6PH5sLt6qQGMloc4+7z92HvuKvaes4qzvmEfzrrPXpz1Dftwzv3Pxnsf83gZlLrT1TpkQAvlSFxYGOhEcFsg3VyKWM99n7wRISHpQ/JMCEOypKMpUE+s7yHwymdcAQrAHz/3KQglcP2zr8Irn3kFfv0Zl+Cf1mr8/e2b+Ifb1vGlO7dw8x0b+LtbN/Cblz8Bf/BDl2HWdOi6gPc8+yk4MmnwrNdeh6e98lr81tMuj+EBF6/RDRLBDuK4rvj/bsRCRXBuhItf+HY8/r9ej9s3Cxwce9QBcZ21HcIsaSZfJi2tpoEuDhHGM2yMW/z6DzwRN6+NcOvGAEfWGNPDm5HzfnEIt3cZbs8S2DlsHZng15/xRC3cI0RBoqBpbYSWlBZYGPwufdu7Ua2sYoNLbGCAzXIBzdI+TO4SUrrbTuemmbon+AGAW265BWtra/rzghe8YMf+fu7nfq6XqrzTz6c//eneObfeeisuuugiXHnllfjRH/3Rr/Qt3+12Shb+C17wAjz2sY/F+eefj42NDbz+9a/H+9//frz73e/G6uoqnvnMZ+L5z38+9u2L9KnPfe5zccEFF3zNIfSZGWg6cBNp0GhQgfzJ607kCG51ATxtUG9OcNvU4/As4D6TDucsFlgdFfDOqcVfFoRvWB0glGv4wpqHDxXuM3D4p5pRW8FJhENtwJHNGuesDgAKCBzgqdC+ujbgyIE1+NKja1qELihY0HmPrm2xtGcRe85e2jZuOd8Vfc79wMCkYywW2JE9UFqbXj5/EhXKyBH2nbuKv7j8Mmwe28JF73tPjmHPWfnEwLu//yIsrCxovzoOikoHM2PPvVbwrsc8AeNJgyv+9N2JiIZyP0kB2FbTPvUDZGuekVzQwrBneOttLr4NHQg3vaYLpZg6kM/dM3D4zR+4HJ9ba/DrT70EH79lDd20zkqYd6DRQO8ttB02NqbY3JzBFQ6F93AOaJjw4ic9FmVJ2Jh1+O9XXYa9Q4cfe8Wb4/0VwPuffzXW6g4dE67872/EdT91Ff7nf74Sz/ida7FcAbOOomLadOAugCc13L7le4akjih6CbqAdm0LG4FBhQd3MVfeLY2AKq9bMMOtLiIcWsfWZoOX/cjF+PHXv12VJstSGCqGFM/RfP0E0Th70WNtXKAbT+HKxROu1912ZjQKHDE4J/gewEkblD/1Uz+FH/7hHz7hMQ984AP199tuuw2PeMQj8J3f+Z09MB4AnHvuudu4aORv8Xwf7xj7vXx273vfu3fMt3zLt9zl/dh2SgL/jjvuwA/+4A/i9ttvx+rqKh760Ifi3e9+Nx796EcDAF760pfCOYcrrrgCs9kMF154IX7/93//lAZ02jdm8LQGT2u4QQnuAsLmBG5l4eQ3DyKQ98CCA40q8LTGdH2Mm2clbh+XuN9SgfvtGcIbNz85wp5Fh644igOH9qDuhrg3BRzsAqY+P8bAwJfWJpjUR7G4FIPCZ43uk5j0COQcFpZj+p5bHMIXHm0TLbfhwgDjjSmGiwO0geF7CP3Yui6gHPRzmhnApGUsGhf/PFiPyC42xlYT/ekLx1EShP9/cc8CykGB9z3uCejaDo+68Z3Z0g8APHDDYx6LalidUBAREYrC49x7r2I2rvHexz4ej37Hn/RpZym79vsn5/9DykMXQQKp2OahDHmaY+4AatBTKJSUJwl8cSp88BeuRt0F3D6Orvq1rRnata0IelteiF4hxJAOyYQC4IpBo2SBtx3qtouligOjmwLTwgOYYavwCF2B1zzrSpQ+kjvdOu5w56RDHVKc+6VvxH/5ocvwX37kUhzaClgeeIwKhw1iHJkEoPTgpgMV94xFTETA4hBYHIK6EGlvCw8UvneP6WAQALe6iG5tC4cwwu9ffQn+4zVvy4WEBibcYih2pbmGcOV1b8XvXvhErE1qoGkjFmFX6J/Z7SRd+ifbzj77bJx99tkndeytt96KRzziEXjYwx6G17zmNT3KcQC44IIL8Au/8AtomgZlGS2JG264AQ9+8IOxd+9ePebGG2/ET/zET+h5N9xwg3rGH/CAB+Dcc8/FjTfeqAJ+fX1dcXSn0ohPPr/qn6Wtr69jdXUVf/jhj2NhafmrPZztjRlhYwyqSuz1jA3yqNcnsbb2KVj5/S4Z6AK4bsDTGuXSCOcteDxw/whVqkzHYDSY4BB/CYcOlzi0sRfnDjzGbcAhSpsWM0ZhgrOLw2imhJW9DYbVCu61eG9DnXvXmxszsN4EDDyhchmtz8yYbEwxWKjUK6Djl963bZ6s/6p3PiHNmXPan3QRT2dzBmn/bdNh69gY9bTBYKHC9/3R2/D+JzwR9bTGvnP3oKhOTn9ljlbrkQPHcOE7390j6JBcb0m9Yw/Npd9Wt15i/JRTyyTlTRjffJ1j9BSAZiH+L6l7Em9+7y9cjX9Yb3Bk3GC6Ponu7IUhaFSduhXKAIPBswYxTsPguoGrSlRVAU9AqEoEBro0t+eOPKazDkenDbiLD2ZQefzsm/8Ir/3hJ+GWo1O0kxpU+Mga+VVqzAzULcLaFor9y1geOSyWHZ75v9+uCls3TFDRXmGjbO13iwG/8e1PQDuZwe1ZPm79iN325bfx5gZ++IKHYm1t7R4P14qs+I7H/yqK8vhrsm2m+Mg7fukeH8Ott96Khz/84bjf/e6H1772tfA+74lila+treHBD34wHvOYx+Bnf/Zn8fd///f4kR/5Ebz0pS9VlP6HPvQhfN/3fR9e/OIX4/GPfzyuueYa/Lf/9t/wN3/zN/jmb/5mAMCv/dqv4cUvfjFe+9rX4gEPeAB+6Zd+CR//+MfxyU9+EsPhyb+Pu1z6d6d5B246sPcoAdS4e7F8aUQEFD66a71HsznFFzEEeIwH7B9hkNLgCgwwoBEWh1s4dnQTt7kVFB0DRb72ADVGwxqz6RCz2mPvyMMJ+brmdOmVjzMixkIRWf3mj/CF33arxxNIzACYoqWb/iZKP+ny0ldgzooFkJKvCxCb0EZVYPXsZYQ24Ogda/iT7300mlmD/ffZC3cqIRWT7w/HYDN+Tf8zADrVQQD1CEhuuBTOsfF5JIvezzKJjngRClPFTWrDhxL40laLO9ZmqNe2QGUBt2cproe7Y32mMIYA65g5e5I2JnDDCtSxfgci3D6ZIaSyyZKK0bkRfuPyJ+L2tRlC0wFdAH0VhT0ABf2h9OjWxlibldgcVqpwdUOAGkoIfaOwEYMS46KbEVYWHI7WHjyZAQuDXdf+GdxO1qV/T7cbbrgBn/3sZ/HZz34W973vfXvfiZGyurqK97znPXj2s5+Nhz3sYTjrrLPwy7/8yyrsAeA7v/M78frXvx6/+Iu/iJ//+Z/Hgx70IFx//fUq7AHgZ37mZ7C1tYUf+7Efw7Fjx/Dd3/3deNe73nVKwh7YtfDvVuOmRdgYo1hZBHcduq0p3J6le6QoB3O0zMLWFOXSCN+w4PDgsxZQFFFqjnEMR7uDmE0YRzcWcKxZQRsKsHcgZix3G1gtN3G42QM4wgOXG9xn79nwPkmvHm/t8Tc5WRbzG2Eza9A1AYPFu7Y81w5tggPQNi0WlheweWwruehLdG2Htm4x2ZhiZf8yyBO6pgURYbjigEQxRKHqjVMAgtOtGtWwhPM71wE4mda1HQ7ddhQX3vAutdapo8zuZhjdNA1P3P2C4heloOsf72bRii8m2UPAlEFmrk6kOQPg959xOQ6tTdFsTkBLI9Cw2u7Svicac1y7kxmk0AF5Fz0AzsWysYMS6ALC2hbcaBBj6szgtoNbWYju9tNAOEZMwQxhcwK/Zwm/+K53aN0BdpKWB4QyCnhpAuD631dcgtuOBTSbk4gXKIvT4r6+1to/h4V/wUX/5S4t/A+/65e/ImM409quhX93WuFBZYF2fRw376XR3dqcVddKKGgwgLTpeiK0mxPcRiPQoTG+MVn6FS2g8AWw2OCc0RjhzgJHJstw4ymoKjHGIrbaRQRmcAvcMRlg/yKwMJhXRk483uNtfkVVoK1n4MCg41TNAwAOwGRzhtHyCJO1GtNxjRAY9SyawF0b0LUB1bDEoduOgENACIzR4gCj5b3gXlF6O2fAbKtGOSjgi7tpAafmvMPynkXccOFj8aj3/QmE5SfWjSflc3c1esKEU9lXIH/uUrnYYN4oCRFwBbz+565AGxxK51AQcGja4disw3hzhttvOwZ4B7e6FJ//V0rwEEXvQdl/7cl8DwBMBFoaIdQNyDlQWcbYurt7itVXopF3GvvnulGmw1CmuH0gwMcqit1igJu6CNxLy2p1UIGXO9zWdmg3o8K+m4x/Zrbdankn33YF/t1oRAQsjUC8HUR1so0N+I85gvLIEXgc4FYWQVUBWhyi2ZziFgxBR8e439mMlqZghOgW98De5QlmXYUpipinzwyqSnTjMcLmBHfsWcKwcHjg3kEKDXz5+5ovHbq2O6EbnRyw/96r6EDYuzjE0FOCGTC6tlOr3BceXdfFuDFFvn5wYvHj/khj7L2F8w7FPSAYI6vfEFvr4+S6T754l4RGiv2GMjO6KUOeBQ4SNG/eJ/Y610bh0pXx66v++5vx3370chA6tE2HZjJDN6mjoF9ZjIIe98DDueubvstLkCDoE8Pj6SwIyTtg1mh1QSEuQuCIufBJeStytUbXEJ5w7bUAAb/ziCdic9pEhfskMSC77TRrHWf06/G+320AdgX+3W4kwei725jBkxncwjBu+o4waFqMZy141oAWBtG9WrcIdYvN0QxHsR6FkmmjhQbnFYdx66E9WFsrEGY1irNWQUUBvzBEmNT4kiMcqwMesFTg3L0FgEKy4+0dnWCokWxHTmlmLcrBXedil4MCBYABc4+PvyitosBJcdjp+tsFftsGDEblPWdpErC8bykz1An3vbjvU6Wa4NOeIi58+d2ncrHCua+0v7FwTXDAa3/iyWgC4+C4xXh9gjCtgbJQQQ8c36PyVW2n4ZB6rQsI4ymKlUWEkkFCnuQjpXMoGJK2l9P34gN0DeN1T3oSbj06zejR3XZGNsJdWPj/bCM5/duuwP9qNSLAOXDbgUqPAQfsKwkTLhJ4KgGuug6uSrVXsTMpTlEylgYzrFcD8EaL7tgmwAy3vABioJvOcGzW4HNhiIUSWD1BqdDjIe7rSYOi9HA+lrI9GZBcGxgEwB9nMw0crS6vqLgTKx1t3d0jlr1tRITBsMIHHnsJvu+db9NYvtLthmj5UzDWN2UwmPD8S4qg0tsScO3PXIXNJgr6ybRBvTEBB/7yAHm7TZukCA4WqpzymLIX2TO4EjAGUvU8Skx8BAqEUWFArLsC/8xtd0WAdnrB1L6q7ctHme22u93c8gjcduBJjS5Ejn04AuoGvD5GWNsCHGHoHUZcwE9H8NPh9p/ZECN28I7ghLN8z1LEGlRFJGppO2wy4R+O1Di2WaNuOrSJVW/+fajDds7+ovQoqiLFzk9O6Dq6631Uvk7qzHGPEy/DyV77VBo5wur+ZXzwiVfgxkdFNj5qItqbAimNazfgWH41CZX55hpoTfg3/cxVODDpcOekxcbRLcyObgKDEm7vrrC/x1qy2itHuPHpT1HBTh1Fa37mgJaSx4VAbfwcPh73xHe9CQuDiE3gWbMrGM7QZtNqj/ez22LbtfC/So2IAO/hVhYQjm1i5h0a5zDygN+/jKYL6AJjWHoMHHDu6j7srdxxowiLCy1un9RoCNFr4F22l5PU5bbDYUfYPDTFMgJcWWCJGOfvH2E4iCjlkHLw9xmQHxGhGpaYbs0wXNo5hWknz8Dxqu3lYYm/9a5baCOP+1dCTjIzGIzR0hD1tDbu+mTZwwgSiKu/n0svKWDv/umrsVYHTDvGVh2wcWQToQtw+1ZivveuoL9HGxEw8IQ2AG+45Mm4+q1vymZMmmpqKWdUpCJVlJSDs5cctqYVmnENHtyDoaLd9s/WiDniqU7w/W6LbdfC/yo3IoJbWgBPZuAQUBHwwCWPb73XCN96zgK+5V4jnLM6xJgJW4HgnIP39sfDe4/FUYlvGDkMVxYi69raFsKkRtiaAl2AWxqBpzXCeIbJ5hR3zgLuaIHDLUfAYNrnnAP2Ddy2hUGO4AqHetJs482XVocZWm6P+/18E/KdTLFz/M3WeXePpD3u1ELHmI0b1LMGg9EA73zEY1RYsOMsOAxhTvwOPZa+bgA8+r+/AUdnAXdMOky2pkDbYbB3CQsuoHB3DZjbbSffqPAIbYdj4wZ3TDrUHccKhYxs5QeCmzlQTfoDx6rMXf6+a7EySiEuwanstjOrhZP42W0Adi38r34jAspk6W9McKz1qEH4JiKcs1yh8A4LA2DWMaoT+McdEe6/b4S9wxZf2HA4uFkjzGpQVSJsTeEWhnCri/HgLiBsTcFbU7jVIZwI/OT78mHn6wxGFWbjGl3TwZtYugj40p2ogpooAbnvEBhbbYzzL5Z0Qvc/OYJzkXXvnrDCmDmGLpjhmw5lFfEJs3GN5b1LuOHCx+LR73yn8u0L+Z/Q6KJNrv0ip+YJXe7s4JcwbRk0rqN35cgWjh25E0v77wU/GKFbXD1Vts/dtlNLSmDTdPjBa68DEAU8UV5r7CNanxpCGKQ4fhPJ9Wnm4DrC3lGBY2URiwOdwMrnFP/itovKaeFi1sOuV+Cr2nYt/JNvuwL/NGhEBPYebnURvDXF1voEn+oYR6YdHnLWCFXpsbBjKdrM8UpEKDxh31IJAuNYy6hHA1AX0IUAblq4KlHwFh5uYYCwMcZWBxyZdji3IhCFGBYl8X3Gvq3FXg4KNLMWPqHLmRkdd3DkMqNfb4SJ4GWH0TsCRkWk1aW5c3ayhYloWwSgqTt0TcznJxc9Bs2sRTUoQI7QdRHsVw68svxJa7uA6azFAgFF2uirUYV6UmNpz2IW9uLOpyjkxeVvOf2pA172mH8HBuHmz38OS0t7MGtaFFWBekpoZzVm60dBgymKpdXdTKF7qNGwQhhPI61xmdJkuyTcAbjaECm1kfWRA8AupuoBwJXvuA6/9d1PxGRjAgqxeI9dKMwcyYmmNbhuItNmiJ/RoASGlYbNdoX/V6GlZ3HC73cb/v/tnXecFdX5uJ9pt+3u3cayBZYiXQGRJiBYEhRUVCCWKCGgqLErxoAGUYlKFBUlGg3GRP2i/hQkIigxIkZFFEQEkV6Xuixsv/1OOb8/ZvfChUXQ0Jadh898lnunnXfmzrznnLeBo/BPGhJhfqleiOnEqsOUKilUhnUyfXZ8+uFs4rXHSfdp5AXi7Iro6JKEFY6hZPuTtV2N8tRNwbaqOF4F/F4FSRFIsrBfaDXxZQJ7hsGtJI/oE4eq+XeYltXZVlWq7RDUBgrW/XBKkp2nwDSsRISAEFBRUo03xUN5SRWSBPFoHNOw8PjcuL1uolF7RkKSIKdJFp4UO5zQMgVK3CDdrdjV/xJ5ASRUl4JlCj66aCADPvnIVuyqsG3B1Izy9wvNq+Wu2ct4+cZLyUtvjBGM40rxoNR0QlIAC4Elq+jO++eoIEkS+NyImM7jFwzk/sX/RghRk7JYIDT7nsnxmo6izL74LVkkVUrM8KpEIwoiHIdUT00qaAGWXSVQ6IadtMjvs01LEgjTDq21qoIgy7byd2mOr8Zxxkm8c+Q4Cv8kQ5Ik25s7rhMNx1klwBcwyPcp5KW50FQ5sd0+vZs8zS3LEi2zvbjKI2yOCixNsUv57u8drshIPjdmMExpTCVsWKS7FfwuieZZLjTFNq4LS0o4RkkAsoRlWsQicSRs5aj8SPW0n2K1/jEvfbA7PXrMRHXtMydoXs0u9OK1QxclFdw+Nxh2sR1fqhdJAj2uo7r2tdOyLDu3gESiQFHi+ikKpqFz0X8/QrZIjPItTSDXKv2aLHpSjSKx07mC5PERjseI6zEU9WcUvnH4SUiSZJfNLQ8w5RdXcM+89+2CRJaEFLNz59sV9CR7Ol6TWPDra9lQpXPDRzMSHbdCv0pl2EU4EEYRHrsjV5NiWPK47JwJB2QalBQJKcWD8HnANLEicbuEcIonubSvw7HFCcs7YhyFfxIiAaR6sUJRwtURIqpMQHezO2JSmKqS53djWQITCOkW6a7kqXRJkvC4FBqneyjRo4TTvMRDMTAt8LprnPTsbGrCrSHCMUJVEUKKTGmKmzSXTF6GrUCFJCEJKWnAoqgK0bAOsoQaN0jxe4+44lhtLvz969UfvNG+70VtzncZTMPiQKtBSlYKmiQhZdi5tO3YftvEIFGb0OfgB17VFHx+D/GogWUK9vcHNOIGeszgq6G/ou87M+3zmxIo9nES0/q1qXMle/AoBFTFrX3Fdn48tYDD0UCS7M6rx0WkKoKlCeZdeSUXzXi3Joe+lCh5LBT4cthVrKuMUBaTkfV9JiKvy8DvUYgEJTAMcGl2AiyXZifBOpTyliRUGRRVRbhUdN2urUFMtxX/SZSO+FRFMsV+fht1r3ewcRT+yUjN9LKc6k2UzY0FwpRqKjHLjWkJArqFJEmkeTT8LrlOvZLqUTkt0004ZrBdlgiH41hVQTt1r6rsczhK8SD5BCIURY/E2R2S8XsU9Ggcj9uNpikkFKcA3bDw+j0oiowR1RPlao8EPWYQi8RRNRlFVVA1tWYKdL/ZgFplLwSxaBxTt1BUGcuysEwLVbPz6AOoCe26fyhgTbWbA50D2HdcIexpfSHsKAVRs62EZPspxA1cbo35Q67glzNn1yTXqYnpVgRSTEookdpqeJJpz4SEFdnOiGia2OnfnBf+saT2N2yWVfP0OZezNWghx2qm8gEEGCn2S7/vGzMQak1BHclOoSyZEv3+MYs3hw62nwuz1q1bJDrHtSgSuOSabK6ShCpB1BSYAtyyhM+nUa3ImDVT/XKqF+EU5jm21Hauf2y9A+CE5Z3USJJk1x/3upEzUhFCUF0VYXV5jK3VcbYGdLZVRakMG1hWchY+2yZtK32f10WhV0HxuJA01U4ycuB5ZBnJ50HoBruq4nyzK8K3JTE2lUXRTfuJMg2LaDhGBAkh1yT6UWRM0zqiUDwhBHpMx5PixuXVMHSTYEUII25gmRaWZSEsgVVzPNOwP3tSVVxeFY/PjcfnxjRMYuF4zUwBdSh1CTu5/cEvWSFs/4R4JI4eM5AVe/ZAYCVeDJIsoblUDN3A63Pzr4sGJPLnyyYoUSnhkS+ZgLALtygxuO21d3EpMpJLQ0R1511znJBkCcmtYUTihHQJhGTXM1DBcouE855UUxHRctsmGiCRV0E64Mdk13Owt3HJ4FUgx2OR7zNp7FVId8l4VRm3ImEKW/HLQLpbwZPqRU71YgWjzpTyMabWS//HFgcbR+HXB2oUspzms19qUR0rZmCEolQEYvxQGmVrZRTjAMUrSRKpqkQjr0K+34VfgURR+joeAkmWkP0pmIZJoDJMKBhjW8RkbzCGaVmEA1EMScbnc6HVlKVVNSUx7X44hCWQZLvwjaIoeFM9pGT4MAyTSDBKNBQnHIgQC8eJhePoMd0ugavaIXmyIqG6VFweDVOSMPVaJS1hCYF1mAe7thMRj+pobhVvmhtcJnEzTFCvQrdiCXOD2+dC1VRkCfw+bV+OfRO7SE5N+VslZmfWq62s9+4t15Cmybh8bkQ8foQ32OF/RpLscr66gWFYTB0yBD1FIAlQIpKdBTFekzVREQi3heUzbUVv2h7+uikQpomowzylW/ZjEzZktgZldoRMSiIme6MmYaPG1AMEdItMt0y+T0F2aUgu1Xb6c5TOscMS9pTLoRbHSz+Bo/DrEbV2d8nvQ/L77HKqkkSwOsyGihir94YpC8aJ6WZSPXtNlvC6VfI89ktIRGJY0TpeQpKEpNgdCzk9FUmSbU/4oE44rONJcZHiVUlRJZSa0bMk20rf1E2EJQ75YhNCYOhmYireDiW0HfG8KW58fi/eVDfeNA+eVDeKajsDyoqMJGpNClAzFicsJHTdTBw/ZkHU/PHBlCTZDoeyIic8/RVZI2ZGiBkhquPlVMfLiZvRxOyBqVukpHn5aPBlfHjJQBA1xXIMkor51YZ+/WrqO8iyhMutIWMbF2TJngpWJMekf0zR7LLV8fIA5eXRxNe10RSW2zbbCNV25KvNnGipsHjE1cRM7FA7+WAnVAGEDajWwTywimPNX1mydcu+2BaQvG47lM8wcTg2OCP8I8ex4dczkmyBErb9XTfQgxF2xlX2Ri1yvQbtG3lQD8jZnuFTcQUN4iluuzQr9gvpgBMgCWHXQlck/C6Z/Ew3qktQoZfjxUuqlpa0i+ZWiYbjENORkFA0Bc2dbLcUlsAyLNwph7D1y7YHnFwzrZrwqJfs0buUkN02XUhCICtSIrxQrY2EOoRGDUeilJVXoKkqWBKpaT40l0okHiIWt1A0D5alU2aU4lFCZHhy7Glhl0w8ZoLHTXqGj89HDiUWjhEORRg661M7+Y7EvmI6Btz02gweP68rLkvG3FOFrKr4fD7C4TBqih/dk3q42+zwM5AA/D6I6hjVIZ66YBAPzP0QSwNLwXay1MS+THwmdmy+CZYlEzNqOsrKvtwTP8XvsmZXgrqgLGbaKl+WkNwuO/lVeopjyz8WCA7jpX/cWnLS4yj8eo4kSeDSUDIUrGicWHWY3fjwVsY5LcuTCEKVJAmXIuOWBJphEFDt7SW3VmfKWhGNo/rcNEvV8LoMqmKVuBQXXtV70PmFDJrPjSrZXvJ6VMc0bEc7O3zQLnwjK/scoPbNQMD+T2TtC7Z2u7husHrNOrKzsvD701AVBcuyUEyDcExgCouSvaX40jNxSRapqSkIpH0j6prjhMNhVq1aA0BaWhqKomIJE1VVCIZCeNweotEoiibhdrvZKVVQUVFJWloaKT4fbVq2RMQMZFkmJd2HN93D+9f+kpKSMqqCAYy4jqqojF28mcm92yOERVWgEknTcGka5RVlRKJR/AUykifVeQcdCyTb7VPyaGC4MaI6r1w3mFHvzLJXC5B1CdMl9pXQTTGRojKGJaEblt3hrDF5WfEaT/sjRAB+l0yqJrE3WtskCbwuRFy3R/ouJ1//Ucc8jNee46WfoF4ofFWWkCWJuHn4pMgeVbF76sehXScLXkCzLIxUL5JbQzUMKuIKMd1EMoVtM1dlMKGRIhNJ8WAKCSsURYrE0NJ8qLJE1BLErOTceHFLoMleclP2KfoDY+utWi0tSyhIdnhSTAe0xBS+aVjJnvxJ3vV26J+oYzylaSouTaO0rJxdu3YTN+L409LQ9TglJXvJzMxElmUi23aS5vfTuLAQxe3Go6n4VQmt5nA+n4+2bVpjWhYul4uqqmq8PjcpKT6qqgNYhkVmRjpp/jRkRUKWFLweDwIJj0vD43MDAssSGDEdr8+D15tHTuMc21xhmkQiMf6enUWT/Dz2GDJ6ZRhLllA9bhTLwmdZ4HLjWPaPMTWmL6syxN6gxZShl3Pn7NlYKolQPEm1wFBAl5B1ib1lFcQNKZGfxwrH7EQ7Lu2w75L9Az8rYxZxMzmjhATIKR6sYARJ0xy7zlHGSa175Jz0Cr9VVhpdC7IBWFdaxYrdFTTx+2iRkUqG14UEVMd0dgcitGnkx6epGJbFRxt2EtEPtpu5VYXWWWk08fvwqAoh3WBbZYgtFQGMY+Tc4dNUOuSk08jnxq0qRAyTikiMjWUB0twaKZpKcTBCVfSnqwIJcIciSGWV+PwpKBKo2OFCspyOGY8RCIYxDUFOQWM6+DOIxnQ2bS3GlCwy01IoaNoISZKorA6xoipM2AJJlbFMi+3VOrqQaJyq4VYkPIr9UqwdpNh15gwUSUl0BGwlrxGujuDyanb4nm7gsjTbqE1tp2G/KX9hdy5gX0a/WvkKC5vidvuIRKPE4xFUVSIYCJHiSyUzM4NIJELzlqeRnp5ZM3MgavwPBLFIED0ewef1cFrLZonjRnOzqA5V4vKqqK40otE4ebl5+DxpgCAWi5Cb04id5QEa1STvqSumX61JOqRpKh63m4z0NAzTYsPeCOG4QE7zosuq4y1zvFEVJI9GvCKIrqk8cdFljPnvbN4b3otBH35pR2aodj5902uxNxRDslx2GWhZQpEFutttO/kd4rWgGXEURUZTZCJCtp8LIYgaArXWMbZmxsDQVCRVQUSi4PM4o/yjiZN454g5qRW+R1XoWpDNK6+8QuvWrena+xz8bo28VC+LFi3ilXnzEEJw9tlnc+GFF6IoCmPGjOGee+6hc24mi3eUJh0v0+vivBZ5REJB3pn2Olu3bqVjx44MHTqU1llpfFa0u85Owv9CqkvlwtYFlBQX8+q0d9mzZw9NmjShf//+XNi2LbquU11dzemn5TFn7Q5066eVdpIl23tdSbensmUhEIrEWWe1paysjOz8HCr2lJHiT2XL1iIWLVrEwIEDadkin+17K2nfoQX//ve/2b17N9dffz07jBLCgYhddCccJSRJbA3ECcVN/F6NFJdMY+8+5W4JiFs6mmShKa7E97FwDJdXQ5ZlO+Ndmmc/h726USQpafZNCIGFRW5eAaFwFI8vBZcmU121l+rKapo3a4LP57WnUtMzeeqpp+jcuTMDBgzghRdeoEmTJlx+2SD0eCTJmTAWj2MJC0mTqaoIoXgg5grj9fmxTDvePzU1i3Cwgpz0FDQ5uQNiGnaWPvWAAkICMIHSkE51xKC2boHD8UeqTVPt0hDROEZFkMn9B3HZv+YgqRLCqKmcpwqm9/wFO8qqkCxBJBTGE0pBVRQUdz7xQ+gKWYJA8XascJCs7CxM3Tb3KKqKrutkZmVTsruYrKwshKwQ9aUT93mwqoJIbpfzuziaWIcpev8T36mnMie1wm+T7ae8vJxnnnmG5cuX43KpuITJwIEDKS0t5Te/+Q1ut5sXX3yRL774gokTJ9K9e3ceeeQRXn75ZVaWVBLS7ZKXsiTRu7Ax336zmMGDB3PllVfSrVs3Zs2axbhx4/j000/p1zyfikicgjQvLlUhohuE4gZbK4NsrggiSxKnZaXSPD0Vr6ZQFdPZVBagOhanY24mealeNEUmFDeI6AabKwIUpPnYuH49ffv25eabb6ZNmzZs2LCBV155hUmTJvHDDz9w44038t1333Fpu6YIIQjqBlleNxHdwBKCkmAUAeSmehACSsNRVu2pJKKbpHtctGvaiCyfG8O0qAxGMA0TSZLo06cPc+bMoV27dgB88sknjBkzhtGjR/PEE09QISSCwSDDhw+nurqa66+/ntw0H03SU8j0ulEkqAxGWb+rlMq4RbOcNPLSU/BoKqZpIoSFHo8Qj0SQ7GB2BHZ4nKyo+LOy0DSX7XhnGsRjESzLwO1OQVbtnPamEScWDaFpGj6XF1Vz18TKW5iWjh6PoKguxo//Ay1btuSee+4hPSOf9Ix8ZEVBlmUs0+6kNW/enOzsmtmgdetsW7+qkeLPxjR0QuFyJEkhJTUDU5hIcYU0dxZurw9ZlfF50njqqacoKSnh6aefxpeagRaPIisqak2aXNMwsMwqJAW8Kemomp2FzTRNTCGIxHWa+BRaNlEIxHV2ByOsLa0+bMigw9FHkuzYfOFSsSqC6GGTaQMvZvgnc5HiMtQUz9mzZy9V5ZWk+FJITUtFkiRisSgEIwh/6iFH46l+P3FJUFVRjqEbpKen2/sBpcU7iQQCBLAwAV+zdGRFRnjdtgOf3+eM8o8WNXkUfnS9A3CSK/wWmam8+JcpDBo0CLfbTif7l7/8hcrKShYvXowhJOKmyW233UZxcTEAV1xxBffccw8VFRU0z0xl9Z5KAPLTvPg0hRtuuIFHHnmEW2+9leponBtuuIE77riD3//+97z77rsYoQDz/vM5zZs3Z86cObRt25ahQ4fi97jI8LjwqxLvv/8+mzZtomfPnvzyl78EYNu2bSxcthm/389HH33E6aefzhVXXIEkSTz6lxlcfvnlTJw48SAZ582bR1lZGdOmTSM1NZUhQ4bw+ZzZnH322cyePZuMjAx+/etfs337dv7++rsoisLgwYO5pG0hq/dU0jE3k9WrV/PG7NlkZWVx9dVXk9Eoi8WLF1NdXc37779Pfn4+F198MQADBgxg+vTpPP7447TNSef111/nl7/8Je+99x4Ap2WlsXz5cmb+97/EYjHOOecczu/Xj4pgBA2TD2e/z5lnnsnMmTNp2rQp11xzDamyRHl1MWman7gpISkajZvmsWPHDmbOnEkwGKRPnz5ccMEFABQVFTFnzpyELPn5eUiSzMKFC8nNzWXZsmVs3ryZiy++mM6dO7Njxw7WrFlDaWkp06ZNo3PnzuTn5/Pdd99RWFjI7NmzGTJkCE2aNCEzMzNxbS3LYsaMGWzZsoWLL76YTp06AbB48WIyMjLIzW2M5tLYuGkTAIWFhSxdupSqqiqmTZtGmzZt6NWrF+FwmHfe+n/s2bOH8847jx49egCwdetWioqK8Pl8fPzxx4wYMQKXy8WMGTMoKyujefPmXH311eiWYENZ9dF+PBx+AlJNhbvh/5mbqHw487KBxA034ahEdiMdSbfsNLqKgiIEkcqwnXWvrtG4gPScxsSzGxM3DLvIjmlglBWjpWbiTvHjSfikCHRJRpVA8bqIxQ1EKGpH2DhK/3/GseEfOSetZTHd68ajKnzwwQf84he/QDctZFni7bff5o477iBiCj5Yv53/bNzFl1tLsFL8LNtVhtvtpnv37syfP5/G+3nY5qd5WblyJUVFRYwaNYqVJRX8Z+MutlWGuOOOO/jwww8JhUJs2bKFkSNHcv/995OXl8eLL77I6NGjaZPtJ8ujccEFFzB//nzy8vJ47LHHePLJJwFYunQpI0aM4JlnniErK4vx48fz0ksv2efOz+fLL7/kq6++wjCMJDkjkQiWZREIBAiFQgDcd999DB06lOrqajweD4sXL6Zfv34AmKbJ+eefT9GWLXTMzeStt97iqquuIjMzk507d9K7d2+CwSCxWAzLsgiFQgQCAayaaa3MzEx69OjBvHnzAHjttdcYOXJkUpveeustfD4fjRo14q677uKf//wnmaleysrKuP7667njjjvIyclh+vTpjBgxAp8nDbfmAwSqLMhI87N48WK6d+9OMBikSZMmfPTRRwCsWLGCPn36EI1GKSsro0ePHhQVbQXg5ZdfZvDgwaxYsQJZljn//PPZsmULhmGg6zqxWIxAIEA8HmfDhg2MHDmSsWPHkp6ejmVZ/P3vf2fBggUJOaZMmcKyZcvw+XxcfPHFLFq0CIDXX3+dTz/9FLAzBc6aNYv33nsP0zSJxWLE43ECgQDRaJR4PE7fvn358ssvSU1N5brrrmPatGkAfPvttwwfPpwnn3ySzMxM4vE4ffr0obKykrZt27JhwwZKS0vxONO3J4TamSIRjmFFYgjdZHLfITz3yyFMvmAo24KplERUKnWI6BDSBWEUwkIiLCSsw5RdbexTyPUpxFGIyRqxWJhg8RYCVeXEJIWYpCb+1uZ/0RQZOc0Lhukk5DlamNbhFwfgJB7hp7ltj+7Vq1fTunVr4qaFpshs2rSJli1bUh6JJXwxigMRigMRADrlZtK6dWtWrVrFJVcMThzPoyos37iRpk2b4nK5KA2XA1AWjtKhRQui0Si7du0CIBQK8eabb5Kens6QIUNo1qwZDz/8MPPnzyc9PZ2pU6cCMGTIEFq1asWYMWPsc3g8TJs2DVmWyc/P5+WXX+a2225jxIgRbNy4MaHE+/fvz5///GfOOOMMLr/8cmbPns1tt92WJP+9997L1VdfDdij8smTJzN06FDAfpG9+OKLPP3004wdO5Z58+bRvn17AHbu3Mn06dO54YYbyMjI4LrrrqNtmzZJoXfXX389r732Gm3btqWiooIuXboknXvSpEnEYjH27NlDTk4OTz/9NDfccAMAgUCAV155haZNmzJs2DAKCwvZtGkTBQWNiUdD6IaBqmo89NBD/PnPf+b666/HNHSUmin8p556itGjR/OHP/whcbznnnuOKVOmAHDJJZfw6KOPArBq1So++eQTbrrpJjp37kzLli0T12nhwoXEYjFmzJiBx1P3SKl3796JWRWXy8VTTz3FzJkz9/0m3G5Udd8jkJOTQ58+fSgpKUmcZ/r06aSkpPDyyy8D0LFjR377298yfPhwADRN45133kFRFMrKyqioqODmm28mJycncdz/bi4+qG0O/yM19RBELA66AYqC5LXNRximXb/eMBGRmB09kpkGiowhJEzL9tSXLRNLN7EMExHTa+LkazoK0bidnOcQnTVVhlRVQZZgh2LaaXVTMkhp2wPZVXcon0uWkCU7WRV+H1Z12HYo87r3S+3r8JNxnPaOmJN2hK/UOEpFIhHcbjfxGjtteno65eXlSaMmTZEpTE/BrciYQuB2u+2Y6v0eIMMSZGRkUF5uK3qvptT8VamoqEgcG6BFixakp6fzQ0kFGRkZNG3alM2bN7NixQq+//57evXqRa9evRg4cCCaplFZWQlAu3btkGWZ4kCYnJycxLkCusUTTzxBcXExy5cvp6CggIsuughdT85p/31xeeL/nTp1IlCT837FihX86U9/Spz31VdfTSiXHTt2MHLkyMS6BQsWsGfPnqTjxuMRTHPfuS688EKWLFnClClTGDFiRHKCHCG488476datG3feeSdTp05NmEsAGjVqRNOmTflhRylut5sOHTqwYcMGFNlW6HJNObtVq1bZ0+HBABWlewgFbNnWrVvHWWedhR6PYhhxunbtyvr16xPHb9++fWJ2IicnJ3FvajENHT1md+5at26N1+ulYk8JdXHmmWdimQbRcIguXboknQdsD/vajHsHYlkWpmGwfv16unbtihCCSDBA165d2bJlC/GatLlnnHEGiqJQsqeU7Oxs7rnnHjp27Ejfvn3561//immaZHiOrLCQw5EjACsQRoRjSLKMiMQQoag9mq8MYgUjoBvIaT5cWX47HbRmK2jZtCBuYETidmU7QE5PAcX2tCduICIxO5V1HTpYkSDTrZCqyaRqMk1TVBQJhKSgpfhRtIPvtwRocq1TqoQiy7jTfQjTwqoK2m03TGfE/7MQ+5R+XUuDCtL+cU7aEX60xtmuSZMmlJSUoGQ0It0jGDRoEHPmzOHyyy/nrPwsYqZFq6w03IpMdUzHrSqUlJRw1llnEdsvnWVpOEqfPn0wDIOFCxfSpcfZpLo0Wmel8eo/p9O9e3caN27Mtm3bKCsrw7IsWmelYVkWpaX2yzwzM5OLLrqI1157rc42yzWjaEsk99azfLYDXty0aNu2Lc888wxTp06lpKQkkZgG4IzGGYl9NE1DN/dNw//1r3/lnHPOSTpfJBLB6/Xy4YcfJpzV9qf22KrLi7LfCF9RFK666iomT57Mjh07EtP9AN9//z3z58/nhx9+QFEUFixYkDTlX11dTSwWo3Wu3da9e/eSnZ1NdTDElk1bKSxsAtij5d27d3PaaS0xUdBcPsDuMOzdu7emVvy+/fe/hkbMQFGUpGtYK4uiaonZAk2r+eup+2dcWlqKrKi4PFLSeWo7hGrNi7miwu7Y7X8eWZZBlsnOzmbVqlV24iKvlx07duL3+/edu+ZvWNjXcPz48TzwwAN8++23/O53vyMjI4OLh1zJxvJAnW10+PkI3UDxuEBTkXQDYVqIaBzF50F2awhFRpNAQWDGzZoCUwIzbtSUvlUTil6qCaMTpmU71aX6QKm7AJNPlUl32YMLRZLI9SoUhw1CRh31KdhXzC2oW3aUHvZhvZqC6fdiGXa7rWDEnolza+Cyf9POqP8IcEb4R8xJO8Ivq+l5n3vuuSxZsoR0j8buQIR7772XWbNmMXHiRLzRAI0lnRn/7y3+/Oc/k14zklqyZAn9+vWjPLIvrn1HVRjN5eKPf/wjo0aN4tuvF9LcpzL7/Vk8+OCDjB8/PrFtaWkpL7zwArJl8vzzz9O8efOEA9YHH3zAnDlziMfjlJWVMWfOnMPKMn36dP49ZzZ6sJqysjImT55MYWEhBQUF5Ofns337dlasWEHJ7uSp39JwDMO0GDVqFGPGjGHLli1YlsWqVatYunQpXq+Xa6+9ljvuuIO9e/ei6zqLFi1i48aNgN1Z+u9//8v2bduIxWJJxx43bhxr166lcePGSd+73W4qKyspKSmhtLSUxx9/PGm9YRhMnDgRyTR48803icfjdOnShU1bt1O0o5gVK9ei6zojR45k3Lhx7N5dQlZ2Nt8tWw7ANddcw9NPP83u3bspKtrK888/zzXXXJN0DpdHrUmxu4+mTZuyZMkSNm3alJhRqSUWSpatlrfeeovVq1dTVVXNpEmTuOqqqwDo3Lkz7733HhUVFXz77bdMnz49sU+TJk1Yvnw5GzdupKysjMsuu4yPP/6YL774gkgkyvjx47nmmmsOehF73F727NnD/PnzsSyLjh070rhxY0zTyaF+rJBTPHYZ2lAUIcvIqV67WI1hYEbtVM96JE4kEica09FDUYxABGGY9vR9qhdJVfYpe0tgVYeRfW47L3/NPZYlO8qnNj1EULfYEzEpjVpETEFV3Er8XmvyTyXYX9VY2EnfRM3fsCHQZLsippTiQfangEvFCsewqkK2WcFRVofHNA+/OAAn8QjfsCx2ByKMGDGCBx98kNtuu401e6o4s0VLFi9ezPPPP89FF10E2LbaWjv6unXrUBSFM888k6+27U0cL2qY/LC7gjFjxtC6dWsee+yxRBz+u+++S79+/QjXzCqceeaZVFRU0K1bN1q3bs3MmTMxLEF+QQEfffQRTz75JPfddx8ZGRkMHjyYyy67jNzcXLp27QrY6WUzMjLo1asXYCurKVOmMH78eBRFoXPnznz88cfIskxeXh6TJk1iwoQJpKen889//pPzzjsPn89HpWWxZm8Vo0ePTij3iooKWrduzYMPPgjACy+8wKRJk7jwwguJx+OcccYZPPHEEwA8++yzTJ48mdmzZzNlyhSaN2+eMCPEYxGyMtOpDgRwuVwMGDAAgA4dOvD73/+egQMHkpGRwe23385//vOfxHWs9YTv2bMnTZo04YMPPkA3LYorQ/jzm2MJky1FW7nzzjsRQjB06FCi0SgXXnghvXr1Yvjw4ZSXl3PppZfi9XoZM2YMgwYNAmwzRpMmTRI58du1a4ff7wfgxhtvZMKECdx9991ce+21dOnSJXF9PSnupP1r5Rg3bhz3338/W7duZfDgwdxyyy1YlsmwYcNYunQp55xzDl27dmXcuHEJc87QoUNZuXIlo0ePpn///tx9991Mnz6dP/3pT+zdu5cLLrgg0QnKzc3lrLPOAkCT7Bf6Sy+9xF133YXb7ebSSy9l2LBhrNxT9T8+DQ4HIkkSeFwobs3WoLKdAUJO89llieO6rfQlyV6nqUgeF7JLTaTgFWBPoxum7UQX15E8LnDvS3/rlSXUskq7AJKqEE3xYcoykahBkSkIlceIB8NkZGdgCgtVCIjFifu8tVN9yNjOg5Yk2/Z7y0rUgHBrCm4hCOjYdnyPC+HWwDSxQjHbHyHV64z0fwxnhH/ESOIk60JWVVWRkZHBS598RZsm+fyiXXMuvvhinnjiCbKbn8aSomLOapZLy+yMpP0qwlEyfR5uueUWBg4cyEWXXMq73609yHpzWqMMOjfJId27z7FmTyDEsu0ltMhOJ7B9C7/73e9YunRpYn1JdYgvNmzDo6mc3bKAxmkpSccMxuJ4NBVVltlSVsn6knIuaNscV42fQW3b9mdXVZBFW3aSm5ZCj+b5iW1rieoGH6/ZQkU4yun5jejSNBdtP3tzOK7z1ead5PtTOKMgJ2nfslCEFTv20LGgETkHtBVg+94yQhV7SXWryKpGTm4TNFVFj8cpLq+kWV7jg/YBOwytX79+bNu2LfFdeSjC5xu2UR2MIMK2g5RLkenWrDFtTytMelGFQwF0PU56xr4pfCEEleV7cbk9pKT6EcKiomwPQoKsrFwAAlXlqJqGL8V/UJui0TBle4rJyGxESlp6wjNbVg52tqquLGfvrt00blpAmj/j4PVV5ciSTOp+6/R4rKYM8D67bDBQRTweJTMzB0mWCYcCrNpWzGlNm5Kd5ks65g+79vLdtt11Xk+HY0RNEqRE6br9Rt+1/xdCIMIxhG7YjnmKgqTKdoa+/X6zigTe6gAqECuvRvW4EKYgHouhtWiCWVKGUh2goEU+pWXVmJKMHovhy0zH1HWsuG2XN3Ud1evGm5pCoLQCl8+N5PUgsvwYpkXwAHOAT7XL9UarovYMgNdVL5V+JBTk1v525Eptp/poUV1dTXp6Ov2b3IIquw+5nWHF+GTn36iqqkoMIBoqJ90IPxCwbZ239u8DwIIFC3jrrbfQdZ2i9Wv4Vc2oLiMjg/bt2yNJEmvXrqVFixZ899133HPPPbRr145rr72Wd95555DnOf3008nOzmbHjh1s2bIFsEdn3bt3T2xz++23M3fuXIqKipL2bdasGS1atCAQCLB69WpisRgpKSn4fD727rVnFTweD+np6ZSU2A5lOTk5tGnTBsMwKCoqOsixLjMzE7fbTUlJCbm5uZSXlyccw4DErEVqairbtm1LapPX66Vz585omsbGjRvZvXt30rqMjAwqKipwuVxomkZZWVnSuTVNo1GjRpSUlGBZFn6/n9NPP51wOMyGDRtIT0/n9ttvT3imAzz88MO89dZbCfNBXbjdbs4880w0TWPt2rWJ83o8Hrp06UI4HGbNmjWJWYfs7GxisRjBYDBxTSzLoqqqKnENGjVqRCwWIxaL4ff7E9f3wP2zsrIwDIPc3FwaNWrEypUrE78tgMaNG9OmTRu2b99OdbUdI19rKpBlmUaNGmEYRsLxsmPHjqSmprJmzZpEe1JSUvB6vZSW7svomJeXR6tWrYjFYqxbty7pnA4ODZVAIHDUFX4CS/Cj2XWOUcr0+shJN8K3LItdu3aRlpZmZ8qSJFwue3Sl63qSg9mBqKqKUlNN7UAP+CNB0zTcbjemaaIoSkLxNCSqq6spLCxk+/btSb1hVVXxer3ouo6maQSDwVPOvngo2RsKDVn+hiw7HDv5hRAEAgEKCgoSTs1Hi8QIP+9mVPnQkTCGFeeT3S87I3xOwhG+LMs0bdq0znVu96GnbQ7E6/UefqM6CIfD3HvvvTz11FMN+sfh9/vrlL+285WWlna8m3TcOJTsDYWGLH9Dlh2OjfzHbGRfi2Xx4yN8J/FOLSetl/6JwjAMpk6desqNXh0cHBxOSSzr8IsD4Ch8BwcHB4f6TG0K5B9bjjGxWIwuXbogSRLLly9PWrdixQr69euHx+OhsLCQSZMmHbT/jBkzaN++PR6Ph06dOjF37tyk9UIIHnroIfLz8/F6vfTv358NGzb85HY6Cv8A3G43Dz/88E8yH5xKNGT5G7Ls0LDlb8iyQ/2WXwjrsMuxZsyYMRQUFBz0fXV1NRdddBHNmzdn6dKlPPXUU4lqrrV89dVXXHvttYwaNYply5YxePBgBg8ezMqVKxPbTJo0ib/85S/87W9/Y/HixaSkpDBgwACi0ehPaudJ57Tn4ODg4OBwOGqd9n6ZPhxV+hGnPRFnftW0Y+a09+9//5t7772XmTNncsYZZ7Bs2bJEfZKXXnqpJgHZ7oT/0/3338+sWbNYu3YtYCcjC4VCfPDBB4lj9urViy5duvC3v/0NIQQFBQX8/ve/57777gPs8PXc3Fxee+01fv3rXx9xW50RvoODg4ND/eUE2vBLSkq46aabmDZtGj6f76D1X3/9Neeee25C2YNdDG3dunWJOiFff/01/fv3T9pvwIABfP311wBs2bKF3bt3J22Tnp7O2WefndjmSHEUvoODg4ND/eXHCufsl4Wvuro6aTkw3fhPP61g5MiR3HLLLUn5W/Zn9+7d5ObmJn1X+7k2X8qhttl//f771bXNkeIofAcHBweHeoswzcMuAIWFhaSnpyeWP//5z3Ue7/7770/kgDnUsnbtWp5//nkCgQAPPPDA8RT3f+Kki8N3cHBwcHA4YiwB0uFz6R+YVOhQDoq///3vkyqE1sVpp53Gp59+ytdff33Qcbp3786wYcN4/fXXycvLS8oGCiQ+5+XlJf7Wtc3+62u/y8/PT9qm1lfgSHEUvoODg4ND/UUcJrVujcI/0qRCOTk55OTkHHa7v/zlLzz22GOJz7t27WLAgAG88847nH322YBd2G3cuHGJDKUA8+bNo127dmRmZia2mT9/Pvfcc0/iWPPmzaN3794AtGzZkry8PObPn59Q8NXV1SxevJhbb731sO3cnwal8MPhcJ2OFQ2FysrKRN33hkZDv/cODqcqwhKIHxnhH6tAtGbNmiV9Tk1NBaBVq1aJbLHXXXcdEyZMYNSoUYwdO5aVK1cyZcoUnn322cR+d999N+eddx7PPPMMl156KW+//TbffvttInRPkiTuueceHnvsMdq0aUPLli0ZP348BQUFDB48+Ce1uUEo/LVr13Lffffhcrlo2bIlN910E+3btz/RzTpurFu3jjvvvBPDMGjevDnDhg07yCv0VKWh3/sdO3Ywc+ZM2rRpQ6dOnSgsLEQIUS8rr/0cGrr8O3fu5JNPPqF169Z06tQJv99/yskvTBMhHdodTQjzOLYmmfT0dD7++GNuv/12unXrRqNGjXjooYe4+eabE9v06dOHt956iwcffJA//vGPtGnThlmzZtGxY8fENmPGjCEUCnHzzTdTWVlJ3759+eijj/B4PHWd9tCIU5zPP/9cZGdni+HDh4uJEyeKFi1aiB49eogvvvhCCCGEaZonuIXHlqVLl4r8/Hxx/fXXi7///e+id+/eomnTpmL27NknumnHnIZ+75988knhcrnEueeeKxo1aiQ6d+4sFi1adKKbddxo6PJPmDBBuFwu0adPH+Hz+cTll18uVq1adaKbddSoqqoSgOjLJeJ8rjjk0pdLBCCqqqpOdJNPOKe8wh89erQYMmSIsCxLCCHE6tWrxZVXXilat259glt2fJg4caI499xzRTgcFkIIsWfPHnHrrbeKnJwcsXPnzhPcumNLQ773JSUlolOnTuK1114TQgjxzTffiGuvvVYUFhaK9evXn+DWHXsauvzr168Xp59+upgxY4YQQojZs2eLAQMGiI4dOwpd109w644OkUhE5OXlCeCwS15enohEIie6ySecUzYsT9TYbTZu3IimaYkprA4dOjBu3DgqKyuZMGECwI+W3K3vrF+/HkmSEtUDc3JyeOyxx0hPT0/IL07RZIsN6d4feA8//fRTiouLGTRoEAA9evTgH//4B7IsM3HiRAKBwIlo5nGjIcq/fznvf//731RUVPCrX/0KgMsuu4wpU6ZQXFzMI488coJaeHTxeDxs2bKFqqqqwy5btmz56dPfpyCnjMIvLi7m7bff5uuvv6a8vBxJkojH4zRr1oxQKMSuXbsS23bs2JF7772XyZMnEw6Hj3qd5hNBSUkJGzduBMA099mszjjjDCorKxOFFizLIisriwkTJvCPf/yD4uLiem/P27FjB1OmTGHu3Lls374dsItZNJR7HwwGE1m7amnZsiWVlZUJxRaPx/F6vTz//PO88cYbrFix4kQ09ZhQWVnJ4sWLE/ceoEWLFg1G/rKyMq688kpGjRqV+K5Zs2bouk5ZWRlgP/ft2rVjwoQJPPvssxQXF5+o5h5VPB5Pwvv+xxZH2dvU/7cdtkND27ZtmTp1Kv379+fmm29mw4YNuFwuOnXqxLZt21i8eHFie1VVGTBgAE2bNuWNN944gS0/OkycOJGCgoLEA68oSmLkWluBqTZPsyzLCCHo378/HTp0YOrUqSes3f8LtSPaSZMm0apVK/71r38xYsQIBg0alIiNPeussygqKjql7/2DDz7ImWeeyeDBg/n1r3/NunXrAMjIyKBnz5789a9/BcDlciGE4LLLLqNr1678/e9/B+r/DMdDDz1E27Zt+d3vfkfHjh2ZMWMGYDtL9erV65SXf+zYseTn5zN//ny++uorqqurAUhJSaFVq1a8/fbbAImO7W9+8xsKCgp47rnngPovv8NPo14r/IqKCm688Ua+/PJL5s6dy0cffcSrr75KZWUlr7zyCgC/+93vcLvdzJw5MzECBjtxgmEYSTmO6xvxeJz777+fOXPmMGzYMCorK3nttdeAfQ/yoEGDaN68OR9//DFLliwB7DCPtLQ0MjMzEbYfx4kS4WcjSRJ79uzhjTfe4OWXX+bzzz9n7ty5nHHGGVx11VVs27aNUaNG4fP5ePfdd0/Jez98+HDmzp3L1KlTufHGG6murmbAgAGsWLGCNm3acPbZZ/Pll1/y7bffAmAYBmCHCn3zzTeEQqF6O8Nhmia33HILc+bMYebMmcyYMYNrrrmGP/zhD4B9j7t3787ChQtPSflfffVVGjVqxNy5c/niiy946aWXSE1NTaRa7du3b6IjsH79esDuJPv9fq644gp++OEH4vF4vZXf4edRr+92aWkpkiQxduxY+vXrh9vt5uqrryY1NZV4PJ5QeuPGjWPZsmVJJQljsRiGYdTruHSXy0WrVq244YYbGD9+PD179uTFF18kEAigqirxeByA2267jXA4zJNPPpnY17IsysvLadGiRb2d0j+UnVZV1US6y4ceeuiUvPfr169n2bJlTJ48mf79+/Pb3/6Wf/3rX1RUVPDoo49SXl7Ob37zG7xeb6L+dm3ij3Xr1pGfn4/b7a6XnT2wzThfffUVo0ePpl+/frRp04bhw4eTk5NDdXU1brebwYMHn5Ly79ixg7fffpsHH3yQH374gV69etG1a1fWrVtHOBwGwOv18tvf/pYdO3bwz3/+EyCRFnbjxo34fL7ErIdDA+KEuAr+TGrDqOLxuBBCiEAgIFauXHnQ+uuuu07cdtttSfs+9thjol27dqJfv37i+eefF+ecc47o2bOn2LVr13Fq/f9OrXy6ric8z/cPLZszZ47o1q2bGD9+/EHr3nzzTdG6dWvRqVMnMX78eNG3b1/RsWNHsWHDhuMowc+nLtkXLVokVFUVmzdvFkIIEYvFhBD2dZBlWXz55ZdCCCEeffTRen/vD+TLL78UqqqK8vLyxHdFRUWiRYsWoqCgQEydOlUIIcTrr78umjRpIm6//XaxdOlSsXr1anH22WeLRx555EQ1/aiwY8cOIUmSmD59euK7/v37i6FDh4oXX3xRVFZWCiGEmDZtmigoKDil5LcsSxiGkfR506ZN4owzzhDPPvts0rYPPfSQaNWqlZgwYYLYtm2bWLFihejevbv461//epxb7XAyUG8U/iOPPCIuueSSxOfal34ttQrBMAzRokUL8eabbwoh9imBWCwmFi1aJK677jpxwQUXiFtvvTXRcagPHCh/XVRXV4sHHnhAnH766WL16tVCCJEk48aNG8Xdd98tLr/8cnHnnXcmrs3JzqFkX716tejbt6+47777Et/V/i569uwphg0bJoQQIhQK1et7XxcrVqwQZ511VlLH9oEHHhC33HKL6N27t+jfv78QQohwOCxmz54tmjdvLtq3by/S09PFddddV69DlGqf9VGjRom8vDxx2WWXCbfbLc455xwxevRo0axZM3H++ecnYu5nzZp1SslfF9XV1aJt27Zi4sSJQoh9z31paamYOnWqSEtLE506dRIpKSnit7/9rYhGoyeyuQ4niJNe4a9du1ZcccUVIicnR0iSJP7v//5PCCGSerj7s3LlStGsWTOxbt26Qx6zPj3sh5L/wFjaWkX31VdfiQsuuEAMHz48se5A5VZflN2hZK9tfzweF6NHjxa9e/cW33zzTdK65557TnTo0EEEAoGkY9ane/9jRCIR8eqrrwpN08TZZ58tsrOzRUFBgSgqKhKffvqpUFVVVFdXJ7YvKysTy5YtqzczOj/G/s/+5s2bxeDBg8Wdd96Z+K60tFS0b99eTJ48OdE5OJXkP9Rg58orrxQDBgyoc5+tW7eKL774QqxZs+aYt8/h5OWkt+EvX74cn8/HK6+8wu23386DDz6IZVkoilKn/WnVqlXk5eXRtm1bwI5HfeKJJ5K2qU8hGoeSX1XVJPlr7fC9evXi8ssv59tvv+WDDz7gnXfe4eabb04K1au1ZZ7sHEp2TdMwDANN0xgyZAg+n4+nn34a2Cfb2rVryc/Px+PxJHki16d7Xxe1jmcej4eRI0eycOFCbrjhBl566SV27txJ8+bNKSsro3Xr1lRWVib2y8rKokuXLrRu3foEtfzoYBgGiqIkPns8HtauXcsNN9wAgK7rZGdnoygKa9asSTilnUryH+hzI8sypmnSsmVLgsEge/fuPWi/Zs2a0a9fvwaVVtqhDk50j+NQ1PZiq6qqxJIlS4QQQixZskS0atVKjBkzRghR9yh/2LBhYuzYsaKkpET0799faJqWmOaqT/wc+Wv3WbdunTjvvPOEJEnC5XKJcePGHceW/+8ciez7z3C8+uqromnTpqeUnfZA9pc3Ho+Le++995Cj1bvuuktcfvnlx6tpx4X95dd1PSF/ZWWlyMjIEG+88UZi/aJFi0S3bt3Ehx9+eCKaekw4lPxC7Htenn32WdGiRYtTZhbL4ehz0ir8uggGg+LJJ58U6enpoqioSAiRrPT27t0rmjVrJlq0aCE0TRO/+tWvTqn8yYeTXwghdu3aJa6//nohSZK49dZbD5rSrq/UJfv+/hmnmp26FsMwkqZwn332WeH3+0WrVq3Exo0bE99v2rRJbNq0SfzhD38QBQUF4r333hNCHDz9W984lPynnXaa2Lx5swiFQmLMmDFCkiQxYsQIccstt4iMjAxx0003NZj7X7t+6dKlQpIksXjx4hPSVoeTn5Na4e//Q6/9/9q1a8U555wjhgwZctD2RUVFolmzZqJv377iu+++O27tPFb8VPmFEOK1114T5557rvj222+PSxuPFT9F9tr1paWlp4ydVojkztwnn3wiWrVqJXJzc8Urr7xykA/Hm2++KTp27Cg6deqUiE6o7xyp/JZliUcffVTceOON4qqrrmpw8tcyf/58MWzYMLF9+/bj2UyHesRJq/APVeBB13XxxhtvCL/fLz799FMhhBCfffaZqKysFKFQSHz//ffHs5nHjJ8i/+effy52794thKj/Izohfr7spyLbtm0TAwcOFJqmifvuu0+UlZUlra+936FQSHz11VcnoonHlCOVX4hTs/rh4eR3cPgpnHQK/8dsVbXs2rVLXHfddaJNmzbioosuEpIkJby06zs/V/5aW3d9piHLXhczZswQqqqKSy+9tEF6VzvyN2z5HY4+J42XvmmaCCFQVRWA5557juzsbN5///2DvFJN02Tv3r1s3LiRrKwsdu3aRY8ePU5Es48a/6v83bt3PxHNPio0ZNl/jK5du/LFF1/wwQcfNEjvakf+hi2/wzHgBHc4hBA/zVa1Zs0a0a1bN9GqVSvx9ddfH++mHhMasvwNWXYHBweH48lJofCFOHJbVSgUEv/973+Pb+OOAw1Z/oYsu4ODg8Px4qSY0n/33Xc57bTTUBSFFStW8NRTT5GVlVXntj6fj/PPP//4NvAY05Dlb8iyOzg4OBxPJCFOfLmkzZs3U1JSQu/evU90U04IDVn+hiy7g4ODw/HkpFD4Dg4ODg4ODseWk2JK38HBwcHBweHY4ih8BwcHBweHBoCj8B0cHBwcHBoAjsJ3cHBwcHBoADgK38HBwcHBoQHgKHwHBwcHB4cGgKPwHRwcHBwcGgCOwndwcHBwcGgAOArfwcHBwcGhAeAofAcHBwcHhwaAo/AdHE4ARUVFSJLE8uXLj8nxJUli1qxZx+TYDg4O9RNH4Ts0SEaOHMngwYNP2PkLCwspLi6mY8eOAHz22WdIkkRlZeUJa5ODg8OpjXqiG+Dg0BBRFIW8vLwT3QwHB4cGhDPCd3A4gM8//5yePXvidrvJz8/n/vvvxzCMxPrzzz+fu+66izFjxpCVlUVeXh6PPPJI0jHWrl1L37598Xg8nH766XzyySdJ0+z7T+kXFRVxwQUXAJCZmYkkSYwcORKAFi1a8NxzzyUdu0uXLknn27BhA+eee27iXPPmzTtIpu3bt3P11VeTkZFBVlYWV1xxBUVFRf/rpXJwcKhHOArfwWE/du7cySWXXEKPHj34/vvveemll/jHP/7BY489lrTd66+/TkpKCosXL2bSpEn86U9/Siha0zQZPHgwPp+PxYsX8/LLLzNu3LhDnrOwsJCZM2cCsG7dOoqLi5kyZcoRtdeyLIYOHYrL5WLx4sX87W9/Y+zYsUnb6LrOgAEDSEtLY8GCBSxcuJDU1FQGDhxIPB7/KZfHwcGhHuNM6Ts47MeLL75IYWEhL7zwApIk0b59e3bt2sXYsWN56KGHkGW7j9y5c2cefvhhANq0acMLL7zA/PnzufDCC5k3bx6bNm3is88+S0zbP/7441x44YV1nlNRFLKysgBo3LgxGRkZR9zeTz75hLVr1/Kf//yHgoICACZOnMjFF1+c2Oadd97BsixeeeUVJEkC4NVXXyUjI4PPPvuMiy666KddJAcHh3qJo/AdHPZjzZo19O7dO6EYAc455xyCwSA7duygWbNmgK3w9yc/P589e/YA9ii9sLAwyUbfs2fPY9bewsLChLIH6N27d9I233//PRs3biQtLS3p+2g0yqZNm45JuxwcHE4+HIXv4PAz0DQt6bMkSViWddTPI8syQoik73Rd/0nHCAaDdOvWjTfffPOgdTk5Of9T+xwcHOoPjsJ3cNiPDh06MHPmTIQQiVH+woULSUtLo2nTpkd0jHbt2rF9+3ZKSkrIzc0FYMmSJT+6j8vlAmz7//7k5ORQXFyc+FxdXc2WLVuS2rt9+3aKi4vJz88HYNGiRUnH6Nq1K++88w6NGzfG7/cfkQwODg6nHo7TnkODpaqqiuXLlyctN998M9u3b+fOO+9k7dq1vP/++zz88MPce++9Cfv94bjwwgtp1aoVI0aMYMWKFSxcuJAHH3wQIMlUsD/NmzdHkiQ++OAD9u7dSzAYBOAXv/gF06ZNY8GCBfzwww+MGDECRVES+/Xv35+2bdsyYsQIvv/+exYsWHCQg+CwYcNo1KgRV1xxBQsWLGDLli189tln3HXXXezYsePnXDoHB4d6iKPwHRosn332GWeddVbS8uijjzJ37ly++eYbzjzzTG655RZGjRqVUNhHgqIozJo1i2AwSI8ePbjxxhsTStjj8dS5T5MmTZgwYQL3338/ubm53HHHHQA88MADnHfeeQwaNIhLL72UwYMH06pVq8R+sizz3nvvEYlE6NmzJzfeeCOPP/540rF9Ph9ffPEFzZo1Y+jQoXTo0IFRo0YRjUadEb+DQwNCEgcaCB0cHI46CxcupG/fvmzcuDFJYTs4ODgcLxyF7+BwDHjvvfdITU2lTZs2bNy4kbvvvpvMzEy+/PLLE900BweHBorjtOfgcAwIBAKMHTuWbdu20ahRI/r3788zzzxzopvl4ODQgHFG+A4ODg4ODg0Ax2nPwcHBwcGhAeAofAcHBwcHhwaAo/AdHBwcHBwaAI7Cd3BwcHBwaAA4Ct/BwcHBwaEB4Ch8BwcHBweHBoCj8B0cHBwcHBoAjsJ3cHBwcHBoADgK38HBwcHBoQHw/wF0kxkTS/qm2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "6de1bc13", + "metadata": {}, + "source": [ + "In this case it is a bit difficult to see the variability of the precipitation difference, but if extreme values are masked out the map will look like the following:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f23a3282", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAErCAYAAAA7aTGEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgtRXX3/1lV3b2HM96Rey+zzIKCIhpBERAnICiDgqBBSWKMGmNMQnzzOGd4Xwk/NRLjlDhEERxBRQSJc4wxmgQhyigz3PneM++9u7tq/f6o6t77cAcGQVH2l+dw7umxurq61lrfNZSoqjLEEEMMMcQQQ/xGw/yqGzDEEEMMMcQQQzzyGAr8IYYYYoghhngMYCjwhxhiiCGGGOIxgKHAH2KIIYYYYojHAIYCf4ghhhhiiCEeAxgK/CGGGGKIIYZ4DGAo8IcYYoghhhjiMYChwB9iiCGGGGKIxwCGAn+IIYYYYoghHgMYCvzfIPznf/4nIoKI8M53vvNX3ZwhHka84hWvqN/tH/zBH+zwuF6vx9KlS+tjv/3tb//yGvkgce655zIyMsKGDRsWba/avrOfV7ziFYvO2WuvvbY5Znx8nCOOOIILLriAPM+3uX+v1+M973kPT3/605mYmCDLMlavXs1TnvIU/uiP/oivfvWrO2z7li1b+Nu//VuOPvpoVq5cSZqmTExMcNhhh/GHf/iHfPOb3/yF+2fz5s2sXLkSEWHffffd7jFf/vKXOeecc3jCE57A8uXLSdOUlStXcsIJJ3D55Zdv95wbbriBd73rXRx77LH1OatWreLUU0/le9/73v226yc/+Qkvf/nL2W233Wg0Guyyyy4cc8wxfOxjH1t0XKfTYfXq1ZxwwgkP/uGHeGSgQ/zG4HWve50CCuj+++//q27OEPfB2972NgX0Yx/72IM+95xzzqnf7ZIlS7TX6233uC984Qv1cYB+61vf+sUa/Qjh2muvVWOM/vmf//k2+6q2n3POOTv8+chHPrLonD333FMBPe200/Scc87R3/md39Gjjz5a0zRVQI8++uhFfbZ161Z98pOfrICmaapHH320nnnmmXrSSSfp6tWrFdADDjhgu23/4he/qOPj4wro6OioPvvZz9aXvvSlevLJJ+t+++1Xt/+EE074hfronHPOURFRQPfZZ5/tHnPaaaepiOghhxyiJ5xwgp5xxhn6tKc9rW7D//k//2ebc3bddde67ccff7y+5CUv0UMOOUQBFRF9z3ves8M2feQjH9EkSdRaq0cddZSeeeaZeuyxx+qSJUv02c9+9jbHv/vd71ZAv/GNbzzkfhji4cNQ4P+GIM9zXb58uQK6atUqBfQ//uM/ftXNGmIAD4fAf9KTnqSAXnrppds97pRTTlFrrR566KGPaoF/8skna5qmun79+m32VcLqwaAS+Lfddtui7f/zP/+jExMTCuiFF15Yb/+jP/ojBfSwww7Tu+++e5vr/fCHP9R3vOMd22z/yle+oiKiSZLo+eefr91ud5tjrr/+ej3nnHN0v/32e1DPMIh//dd/VUBf9apX7VTg//d//7du2rRpm+3/8R//oaOjoyoieu211y7a9+xnP1v/5V/+RTudzqLtH/zgBxVQa63+9Kc/3eaa3/jGN1REdN9999Wf/exni/b1ej397//+723OWVhY0MnJSX3qU596v888xCOPocD/DcGXv/xlBfSoo47Sd77znQroa1/72l91s4YYwMMh8M8//3w1xujpp5++zTFbt27VRqOhz33uc/V5z3veo1bg33nnnWqM0ZNOOmm7+x9Oga+q+o53vEOBRRbomjVrFNCrr776Ad9jdna2Vqo/+clP3u/xP/7xjx/wtQexsLCg++yzjz7+8Y/Xm266aacCf2f43d/9XQX07//+7x/wOc997nMV0Le//e3b7Hv84x+vxphtFIgH2o7tKQRD/HIx9OH/huBTn/oUAC972ct42cteBsBnPvMZiqLY4TnXXnstv/3bv83k5CRjY2McffTRXH311Xz729/erp+08iN/+9vf5qqrruLYY49lcnISEWFqaqo+7sorr+TEE09kxYoVNBoNHve4x/HGN76RzZs3b7cdqsrFF1/Mcccdx5IlS2g2mxx00EG8/e1vZ2FhYZvjjznmGESE22+/nc985jMcccQRtNttdt11V84777zaX/vzn/+cl770paxcuZJ2u82xxx7Ltddeu8P+eDDtHuyL7373uxx33HGMjY0xPj7OiSeeyM9+9rNFx++111684x3vAOCVr3zlIl/zg/Gzr169muOOO47LL7+c6enpRfs++9nP0uv16ve/PVxzzTWcd955HH744Yue8zWveQ333nvvNsfffvvtiAjHHHMMMzMz/PEf/zG77757/Y7e85734L1/wO0H+OhHP4r3npe+9KUP6ryHiic96UkA3HXXXfW2jRs3ArBixYoHfJ2Pf/zjbNq0iSOPPHKnfVzh8MMPf5AtDXjHO97Brbfeygc/+EHSNH1I1wDqc7Mse8DnHHrooQDbjIXvf//7/OxnP+OYY47hCU94woNqx1lnnQXAhz/84Qd13hCPAH7VGscQvzimpqa02WxqlmW6efNmVVU98sgjFdAvf/nL2z3n3//937XdbiugT3ziE/XMM8/UI444Qo0xNd15zjnnLDqnsjJ///d/X0VEjzjiiPq8qakpVVX9i7/4CwU0yzI96qij9PTTT6/9mvvss4+uW7du0TWdc/rSl7609ikec8wxesopp+juu++ugD71qU/VhYWFRec861nPUkDf8IY3aJIkevzxx+spp5xSW1+/8zu/ozfddJMuX75cDzzwQD3jjDP0CU94ggK6dOnSbdrwUNpd9cUb3/hGtdbq0572NH3JS16i+++/vwK6bNkyXbt2bX38n/7pn9Y0+1FHHbXIH3399dff7zuu7vfJT35SP/axjymg//zP/7zomKOPPlrb7bbOzs7u0MI/44wzNEkSffKTn6wvetGL9EUvepHutddeCujq1av1nnvuWXT8bbfdpoD+1m/9lh5++OE6OTmpp556qp500knaarW2O07uD095ylMU2OZeFXiYLfyLLrpIAX3CE55Qb3vc4x6ngL761a9W7/0DuscJJ5ywjWvgwaJieXbUZz/5yU80SRI999xzVbXf/w/Wwr/22mt1yZIlmqap3nLLLQ/4vNNOO00Bfetb37poe8UavvnNb9aFhQX96Ec/qq997Wv19a9/vX7iE5/Y5hsdRKfT0TRNdffdd39QzzDEw4+hwP8NwD/90z8poC984Qvrbf/4j/+ogL74xS/e5njnXC2Y/uZv/ma719qZwAf0kksu2ea6n/3sZxXQQw45RG+++eZ6u/de3/rWtyqgZ5xxxqJzzj//fAX0mGOOWSQge71eTQX+xV/8xaJzKoE/OjqqP/rRj+rta9eu1V122UVFRA866CB905veVE/m3nt9+ctfvt3J7KG0u+oLY8wif3pZlvWk+Za3vGXROQ8Hpf/JT35SZ2ZmtNVq6bHHHlvvv+OOO1RE9KUvfamq6g4F/je/+c3tKl0V7f3KV75y0b5K4FSK4caNG+t9t9xyS02N7yim4L6YnZ1Va62uWbNmh8c83AL/zDPPVEDPPvvsetv//b//t77PgQceqG9605v00ksv1bvuumuH96iC3f7t3/7tQbVtEDsT+M45PeKII3T58uW1X/6BCvwvf/nLes455+hZZ52lz3jGM9QYo41GQz/+8Y8/4Lbdcsst2mg0FNjGHVH14V/+5V/qAQccsCgwFNA99thjp1T/4YcfroDeeuutD7g9Qzz8GAr83wBUAvBzn/tcvW3Tpk2apqk2m83a+q5w9dVXK6D77befOue2ud5RRx21U4F/4oknbrcdlQV73XXXbbPPe6+HHXaYWmtroVEUhS5fvlxHRka2a3UvLCzoqlWrdMmSJYvaWT3vm9/85m3O+ZM/+RMF9HGPe5zmeb5o309+8hMF9FnPetYv1O7BvhgUIhV+/OMfb/c+D5fAV1V9yUteosaYOuDsb//2bxXQr371q6q6Y4G/M+y66666bNmyRdsGBf7Xv/71bc75wAc+sI1/fGf44Q9/qMAiZeW+uK8w2d7PfRWM+wp8773efvvtNXMjIvrd7363Pt45p+edd14dxT/4c/DBB+sHPvCBbb6NZrOpgN5www3btHnLli3bzSa4L3tz4YUX6gEHHKBvetObtrnGe9/73m3GxwMV+H/1V3+16BlarZZ++MMf3u73vT0URaHPeMYztqvcqvbHU5Ikuttuu+kVV1yh09PTet111+lznvMcBXTPPffU+fn57V7/7LPPVkC/+MUvPqD2DPHIYCjwf81RWXaTk5PbRAy/8IUvVGCbFKa3v/3tCmx30lFVfd/73rdTgf+hD31om3PWr19fKxE7wmtf+1oF9Morr1TV/uT/nOc8Z4fnnHjiidtMspXAH5zAK1x44YUK1JToIGZnZxUWpyw+lHar9vviE5/4xDbHz8zMbHMf1YdX4FdBmueff76qqh588MG6cuVKLYpCVXcu8Ddt2qQf/ehH9Y1vfKOee+65tXBauXKlArVbSLUvcJYuXbrddk1NTdUC5oEIl6985SsK6KmnnrrDYwYZph39/Nd//deicyqBv72fLMv0H//xH7d7r3vuuUf//u//Xk877TTdY489Fp33ohe9aNEz7Uzg33XXXdu99wNVuO644w4dHR3dRkl8sJR+p9PR6667Tl/zmtcooCeddNIOUzgH8Yd/+Ie1ojz4/itUQh3QH/7wh4v2dbtd3W233RTQD3/4w9u9fuUm3N7cMcQvDwlD/FrjoosuQlU5/fTTaTQai/a97GUv40tf+hKf+tSn+L3f+716+9q1awHYfffdt3vNPfbYY6f33N7+22+/HYCbb74ZEdnp+Zs2bVp0ztVXX/2AzjnggAMWbdt11123OW50dPR+9/V6vV+o3YPYbbfdttk2Nja2zX0ebjz/+c9n2bJlXHTRRRx//PH89Kc/5Y/+6I9Ikp1/0hdffDGvetWrmJub2+Exs7OzLF26dNG2Pffcc7vHTkxMMDk5ydTUFFu3bmXZsmU7vX8VaFj10c7w8Y9//H6PuS9OO+00RkdHERFGR0c58MADOeWUU1izZs12j1+zZg2vf/3ref3rXw/A9ddfzwUXXMBHP/pRLrvsMi6++GLOPvtsAJYtW8Y999yz3bG42267oar1389//vO56qqrHnC7X/va15LnOR/84Acf7CMvQrPZ5JBDDuH9738/1louvPBCLrzwQv70T/90h+f8zd/8DR/4wAfYZZdduOqqq7Z599D/dh7/+Mfz1Kc+ddG+RqPBWWedxfnnn893vvMdfv/3f3+b88fHxwEWBfcO8cvHUOD/muOTn/wkAN/+9rd5xjOesWhfFa3+3e9+lzvuuGOHk/aDRbPZ3GZbFam9atUqnve85+30/Kod1Tn77rsvRx111E7P2Z4gMWbHSSY72zeIh9Luh3KfhxtpmvKSl7yED3zgA/zlX/4lwP1Gjt9xxx115sV73/teTjzxRHbddVdarRYARx55JD/4wQ8WCa6HGxMTE0BQKh4JXHDBBey1114P+fyDDjqIf/7nf2br1q1ceumlfPWrX60F/qGHHso999zD//zP/9zveH2wuPzyy5mcnOTVr371ou3dbheAe+65h2OOOQaASy65hFWrVt3vNV/+8pdz4YUX8qUvfWmHAv+DH/wgb37zm5mYmODKK6/cYUW/auzvqG+r7fetmlihUvQmJyfvt91DPHIYCvxfY/zXf/0X119/PQC33HILt9xyy3aPU1UuuuiiWjCsXr0aWJymNIgdbd8ZKkt3+fLlD9gyq8458MADH5I193DgobT70YKXvexlfOADH+DKK69k//3338byui+uuOIK8jznz/7sz/jjP/7jbfbfeuutOzz3zjvv3O72mZkZpqamaLVaD2gyX7lyJRBK0z6acdxxx3HppZcuYnVe8IIXcMUVV3DJJZfwute97mG/59TUFN/5zne2u6/b7db7KiXg/rB8+XKgn4J4X1xyySW89rWvpd1u89WvfpXDDjtsh9eqUhu3bt263f3V+6yYgPuiOu/BpEEO8fBjmIf/a4wq9/7P/uzP0BCPsc1PleNdHQvU1smll166XWvus5/97INuy2677caBBx7Iz372M2666aYHdM4RRxzBxMQE3/nOd35lAuChtPuhosqHLsvyYbnekUceyaGHHsqyZcs499xz7/f4atLdnhviu9/9LuvXr9/huZs3b+Yb3/jGNtsvueQSAJ7+9Kdjrb3fNhx88MEkScKNN954v8c+krg/FqNSngddQ694xStYtmwZ3//+9xd9Tw9Xe7b3c9tttwGwzz771NseKINRKQj77LPPNvuuuOIKfud3fockSbj00kvvl7E44YQTSJKE6667brvfanWvSjG4LyrDZGdKxRCPPIYC/9cUzjkuvvhigJ0WMHnmM5/JrrvuyvXXX89//dd/AcF62W+//bjxxhs5//zzFx3/8Y9//AEtoLE9vOUtb8F7z2mnncY111yzzf7NmzfzkY98pP670Whw3nnnMTs7y6mnnrpdC/Oee+6p3RaPFB5sux8qKj/ywynsrrnmGjZt2sRf/MVf3O+x+++/PxCUv/n5+Xr7Pffcsw2VvD382Z/92aIiRLfddlu9SNNrX/vaB9TekZERnvSkJ7F27VruueeeB3TOI4EjjzySj33sY4v6ocLll19e+9JPP/30evvo6Cgf+9jHEBFe+cpX8nd/93fbtbbvvvvuHbJk//AP/8CBBx7I//k//+cXfoaNGzfykY98ZLvFqa6++mrOO+88IBR6GsT3v/99Tj/9dFSVz3zmMzz3uc+933stX76cV77ylczNzfH6179+0WJEn/jEJ7j66qtpNpvbFOuCwEhcd9117L777uy9994P8imHeDgxpPR/TfH1r3+d9evXs//++/PkJz95h8cZYzjjjDN497vfzSc/+UkOP/xwjDF84hOf4Pjjj+dNb3oTF198MY9//OP5+c9/zo9+9CNe+9rX8v73v/9BVeiCUFHrpz/9KX/7t3/L4YcfzmGHHVZbJj//+c+59tprGR0dXRTU86Y3vYkbbriBT37ykxx00EE86UlPYu+99ybPc2688UZ+9rOf8cQnPpGXv/zlD7mvHol2PxQ897nPpdls8p73vIf//d//Zc2aNYgIf/7nf75NENgjgZNPPpmDDz6YH//4x3XcRLfb5Vvf+haHHXYYRx55JP/+7/++3XN/67d+izzP2XfffTnuuOMoioJvfOMbLCws8LKXvYxTTz31AbfjxBNP5Ec/+hHf/va3a//49rA94VFhjz32+IVWhLz++us599xzec1rXsOTn/xk9thjDzqdDjfeeCM33HADAK9+9as58cQTF53327/923zhC1/gFa94Beeddx7vfOc7edrTnsbKlSuZnZ3lrrvu4rrrrsN7z9Oe9jT222+/Redv2rSJG2+8sQ6c/UUwPz/Pq171Kt7whjdw+OGHs9tuuzE/P89NN91UP8Of/MmfcNpppy0676STTqLT6bD33ntz2WWXcdlll21z7Wc84xmLAn0B/u7v/o7/+I//4KKLLuJ73/seT3nKU7jzzjv58Y9/jLWWD3/4w9sNBP7+979PURTb9OUQvwL8EjMChngYUVWne9vb3na/x/7oRz9SYFHalqrqNddcoyeddJKOj4/ryMiIHnXUUfq1r31NP/WpT203ba9KDbu/VKPvfOc7+uIXv1jXrFmjaZrqsmXL9IlPfKK+7nWv0+985zvbPedLX/qSnnjiibpy5UpN01RXrlyphx9+uJ533nnbpGBVaXnbK7JSVaHbUb8Q84V/0XbfX1/s6D5XXXWVHnXUUTo6OvqgUrfum5Z3f9hRWt6WLVv0D//wD3WvvfbSRqOhj3vc4/Qv/uIvdH5+frv9WqWFPetZz9KpqSl9zWteo2vWrNEsy/SAAw7QCy64QMuyfEBtqnDnnXeqtXaHq8mxnfS2+/4ceuihi87ZWeGd7eEnP/mJvutd79LnPve5us8++2i73dZGo6F77LGHnn766XrFFVfs9PzNmzfr3/zN3+hRRx2ly5cv1yRJdHx8XA855BD9vd/7Pf3Xf/3X7Vbwu79Ke/fFztLy5ufn9fzzz9cTTjhB99xzT221WtpoNHSvvfbSM888c6dj8/5+dtS+ubk5/cu//Evdd999NcsyXbp0qZ500kk7LUZ07rnnKrDNdzzELx+i+giG5A7xa4lXv/rVfOhDH+KSSy7hjDPO+FU3Z4hfIW6//Xb23ntvnvWsZz2omv/3h1NOOYXLL7+cu+666wFFnA/x64lOp8OaNWvYf//9+eEPf/irbs5jHkMf/mMUW7ZsqXPQB/GZz3yGf/qnf2JycpKTTjrpl9+wIR4T+Ku/+iu891xwwQW/6qYM8Qjigx/8IFNTU/zf//t/f9VNGYKhD/8xi5tuuomnP/3pPPGJT+Rxj3scEPyaN954I9ZaPvShDzEyMvIrbuUQv6k45JBDOOecc/jABz7AeeedV6frDfGbg06nw/nnn88LXvACjjvuuF91c4YAhpT+YxQbNmzgne98J9/85je59957mZ+fZ/ny5Rx55JH82Z/9GU9/+tN/1U0c4lGAR4rSH2KIIX75GAr8IYYYYoghhngMYOjDH2KIIYYYYojHAIYCf4ghhhhiiCEeAxgK/CGGGGKIIYZ4DGAo8IcYYoghhhjiMYChwB9iiCGGGGKIxwCGAn+IIYYYYoghHgMYCvwhhhhiiCGGeAxgKPCHGGKIIYYY4jGAocAfYoghhhhiiMcAhgJ/iCGGGGKIIR4DGAr8IYYYYoghhngMYCjwhxjiUY63v/3tiMivuhlDDDHErzmGAn+IISI+/vGPIyKLflauXMmxxx7L1772tV918+4XN954I3/yJ3/CkUceSbPZRES4/fbbf9XNGmKIIR4lSH7VDRhiiEcb3vnOd7L33nujqqxfv56Pf/zjnHDCCXzlK1/hpJNO+lU3b4f4wQ9+wPve9z4e//jHc9BBB3HNNdf8qps0xBBDPIowFPhDDHEfvOAFL+ApT3lK/ffv/u7vsssuu3DxxRc/qgX+ySefzNTUFGNjY1xwwQVDgT/EEEMswpDSH2KI+8Hk5CStVoskWawfX3DBBRx55JEsW7aMVqvF4Ycfzuc///ltzhcRXve613HZZZdxyCGH0Gg0OPjgg7nyyiu3Ofbf/u3fOOKII2g2m+yzzz586EMfesDtXLp0KWNjYw/+AYcYYojHBIYW/hBD3AfT09Ns2rQJVWXDhg1ceOGFzM3N8bKXvWzRcX//93/PySefzNlnn02e51xyySW8+MUv5vLLL+fEE09cdOy//du/8cUvfpHXvOY1jI2N8b73vY/TTjuNO++8k2XLlgFw3XXX8dznPpcVK1bw9re/nbIsedvb3sYuu+zyS3v2IYYY4jcXQ4E/xBD3wfHHH7/o70ajwUc/+lGe85znLNp+00030Wq16r9f97rX8eQnP5l3v/vd2wj866+/np/97Gfss88+ABx77LEceuihXHzxxbzuda8D4K1vfSuqyve+9z322GMPAE477TSe8IQnPOzPOMQQvwnodrvkeX6/x2VZRrPZ/CW06NGNocAfYoj74P3vfz/7778/AOvXr+dTn/oUv/d7v8fY2BinnnpqfdygsN+6dSvOOZ75zGdy8cUXb3PN448/vhb2AE984hMZHx/n1ltvBcA5x1VXXcWLXvSiWtgDHHTQQTzvec/jiiuueNifc4ghfp3R7XbZe89R1m1w93vsqlWruO222x7zQn8o8IcY4j546lOfuiho76UvfSlPetKTeN3rXsdJJ51ElmUAXH755fz1X/8111xzDb1erz5+eznzg0K8wpIlS9i6dSsAGzdupNPpsN9++21z3AEHHDAU+EMMcR/kec66DY5bfrw742M7DkebmfXs+5S7yPP8MS/wh0F7QwxxPzDGcOyxx7J27VpuvvlmAL73ve9x8skn02w2+cd//EeuuOIKrr76as466yxUdZtrWGu3e+3tHTvEEEM8cIyOyf3+DBEwtPCHGOIBoCxLAObm5gD4whe+QLPZ5KqrrqLRaNTHfexjH3tI11+xYgWtVqtWKAZx4403PqRrDjHEYwEej7+f/UMEDC38IYa4HxRFwde//nWyLOOggw4CgsUuIjjX9x/efvvtXHbZZQ/pHtZanve853HZZZdx55131tuvv/56rrrqql+o/UMM8ZuMQv39/gwRMLTwhxjiPvja177GDTfcAMCGDRv49Kc/zc0338yb3vQmxsfHATjxxBN597vfzfOf/3zOOussNmzYwPvf/3723Xdfrr322od033e84x1ceeWVPPOZz+Q1r3kNZVly4YUXcvDBBz+ga05PT3PhhRcC8P3vfx+Af/iHf2BycpLJyck6G2CIIX6T4FEcO3aN+Z3se6xhKPCHGOI+eOtb31r/u9lscuCBB/KBD3yAP/iDP6i3H3fccfzzP/8z/+///T/e8IY3sPfee/Oud72L22+//SEL/Cc+8YlcddVVvPGNb+Stb30ru+22G+94xztYu3btA7rm1q1bectb3rJo2//3//1/AOy5555DgT/EbyQ8ulOhPhT4fYgOo4aGGGKIIYb4NcPMzAwTExPccP0ujO0kSn921nPgQeuZnp6uGbrHKoYW/hBDDDHEEL+2cPdD6e9s32MNQ4E/xBBDDDHEry2chp+d7R8iYCjwhxhiiCGG+LVFiVCw41z7cif7HmsYCvwhhhhiiCF+beE1/Oxs/xABQ4E/xBBDDDHEry0cgtuJFb+zfY81DAX+EEMMMcQQv7YYCvwHjkedwPfec++99zI2NrbdRUiGGGKIIYb49YCqMjs7y5o1azDmkSnsWqih0B1fuxhS+jUedQL/3nvvZffdd/9VN2OIIYYYYoiHCXfddRe77bbbI3Jth8HtpEr8/S+e+9jBo07gj42NAXDBP32CZSuXM76yRZKM0DTQSHrkvocVB5QggpEmqjlGWpReERkhNVMUroeSYSVF6WKNoCqUPiexKaXLcerwGuowefVIpH6sGGCcUKNpFgWMCKmkiFi8ljh1NGyTJY3dcTrH1t5GQPDqcb4kNRnWZFhZxkK5ASM5AiQmw6nDiEEQjBhUlVJLQLGShHZ0LUlmkFRY1VpFImFJVhFqgkoMEHNMVQUxICgulo42kSERUUQEVfAunKFaXUvi+eE68/PzNNoZVhKcFhgJQ8TED0pRBPmF2RdVxSlYqZaTHVTDH35mx3lP2S3IWqEfnXqmipyGcTRsSiIpglBoXv/uuZzC5+QuR1HayQgjaRtDWPlu69YZbrn5NgQYHRsnTSzGGlQ9Igb1HucdYoSpmSka7Qad7gKTK8cYnRhhoZzDqSczGbgGpRdsaii1ideMQhNG7DzWdFAtUQxeDa0koWmXM194RDxjqVL68J5GUsFK6FdFKLyiGGbzKWaLKcL0mGFNCiitpMGK5i6kYuIY0TrIyZrwHrrOs77juHOu2Obd7NXq0Ss3YYwJY0oJS5UIqCR4p6g4nOnitSRMOSVV/TOJY0EHrmzEIFKN0fCNOO8QERJJ4ncLXh2gGBGMWBTFikUwlOriFV0cr5bS5+G5xACmzt4WQDCMpOPsPrI7Rgx5N8ekFmtMPdbDd+q5ffZWFso5GPgWVA0TjaWsaq0GBCvCdOHxCmOpcvf8WrwuoIDzDhfbLvW4l/htWYw0EDGE+aQkMY7UpBQ+x3tHYjKqHlvVXs14uriYjAJT+RbunrsTEQvq49YUT1gEymvog0LH4xzg2WN0lBWNJRQavvNUBKcwXy5w5+xGUruA8wmFCqkUqGagNvZBGXsjYb6cxGmDQpW52Vle9Zwj63n9kYCq4HXHc4buZN9jDY86gV99XAccegC+vQKPYqfXMze3gGlndLs5jdQgxuIlIU2EolfQbCSkIpTlVrq+pLOQ02pZ7FiLbHwlDTuP8x5PwkjSpvAFuQ9Cv2EaFL6g9GFCs8YymowDLWAMCNJRIEzkUThasYym43RKpZvOoRoEq4uTbGZSVjSXcc9CiZUZEhO626kjMxmJCcJdVcl9QWIsRgwz+QyJtTRtk7RlGW+Pk5gUr2DNfQS+eFBQwiSJhu+7qp94X7ms8X/1RDcwmSmKNZZGO7StVI+phXu4YKUgPBSBHybMIIwgRM9WV662PVJuHO88eVrQHGmgBKHWKHNEPA2bYTAoiovKnDAalDF04H0niATlsOd7rGm1yZIMEUOr2aQsS7JGgzzPSdOE2bk5tm7dypKlk4yMt5FEuPfetTRaGb5RkDWyul/EeYpiJc2RcYwIuQvCPbVtGmYu9LqMkJoeLWtZ2VyOIiyUBXPlFhqmyUg6TiKV0gqlwlzhsQINlzDq2oAh93P0XBennkaSMjk6FhXQIKy9QiL9d9H2StlwSMszk3tEIHfKaGpYMbLA+u7WWmhbCeJT1VMqGLVY4xFG8DhUHZDE8SeYqIiGfrZYA0ZsHB9lPU59XABF1ZNgMZJEgR/aKfG7tWIpvCdVF9oiJgo8g6eFaokVi5JEARs8vEYMI8kI47EvemlOkgYFbvAb8aqszlbTKRcApes6USGEdjbC5Gh4B6WWUMyiKswUQplNYCXHiieRcVQ9Rhzg8KqI2KiIVO0KSkhiHIIPRoIGgyLMQT58402PT8q4IpzU33RiLaMyClSKf3xmzfHaoNQWqikpSmbm8drGNsdIWqOMGkGkbzBkBUwZRbWNFUPHNclMj61bx1A1JEYQURqp4H1GQ1qAoVs6XNJ/R48UcrWkO6H086HAr/GoE/gVWukWskaKZxQ3sYSyFOa8oUDJ2uM451Ff0tCSdjqGsQloiU8UJSXxQqOdkowozWSEzMCCzmPU03EdVH1t1fv4b2tsPdm0koQEWNLcEyM7HkxehU5pwmQVJ0mVAsVhxNJKhMyMkftZStetLfvCFzgNmr7BglhUlUKLoAQ0HL1eD59bNpmNjGfjjCSj4ZMWxdgg1AsnJBI+UO/ChG3ZVtD31QSl8LA1dyxrWJJBQatgTVIrJjY+twyeP8AKPBSYgVOrNnofhExq+nb+A7nDjo/dDlsQZtCa2TAC7SSrjy48JEawkmCwFOooVcmMBQGvSqkOi2DFkkiKTQ177LZr7JN4EwmKkxiYXDrCilWTiBFGyyZbOptZObKENLUUvgANViaAcyUyt5leLrh0lBWTGSNJB0+LqV6LZmKYzML78rHzLDCSpMAKFGgYofCQe6Vlw1saz4LlPZpOApNAsP7WLtwbxj6Qe0/plZE0Ck6pWCCN70xZkglNa9ilZUCFnlfGUkPpAU2AiiHTKPwNgkFMThTnUXBrFNADbyqOKa8pzudgQp9USqjW16yUhKiIEYSfVx+/q7DdiCERS6k51Ja+J5EGwa72QIEsEoKuViAWoz+6NPb76tYqfGzPus7dbOhsqJ+99B4xhk65wF1zd0b2ULCmAaSI5CgFEuvDQQsljX8XOJ9hZQGkxOko6g1GuoE1iv8NdBpbepvZ0tscWaWgPCUmKlQSGUf1GKn60yOiZGYusCJaBqZDOxReme41yVoNRKH0geXxqoRRpxSakJjQx0snSrzGMUCCEUfpEryGuSxLE/LSbqdPH154BL8TSn9YS7+PR63AF1GMbCaVKZqjoywdHaXnRtiaw0IpOA2f94QssGYso9VukRih4xaYzRfw6ii1oJWMourIncOIIpIgIpS+xKvi1VNQ1JNGoASFxKQ418FriTWNAUs8TGCB8lZSk7Ck0cbKUhKT0nWdaBUHy2Bjdy0iSisZoedmgTD9lVpi1GBE8DhEDca0gQ7tdAQrBjWKKVLmFxZISGglbSw2TC1RSIpW1kfoN1Nzo4NiUBkUgkZgLDXbUQoG2AP5RcT6wJ1rqiFc09K39I0Ei9CYfttc5JOt2fn9VTXaNOHi929ASDD00NBXQk0bd51nrnBMZobEGIwxZAildxS+JKwi7UgkofA5Kp5ELB4fBYxUZmhsl2J8EABiDKlJSSQnTVJKyiD8RIARoAua4zXjVdf8BBTe/YTn0mhlzBaCFaWVhDGZOyVJDC0rgdIGCq9YEVpJ0GhSo3FMhb50WikyoQ98fB+Vktst59jQuRsQNvc8RgTBYCRF4vMVPg/9h6FlG4ynSxk3BiiZ89G9Ft9GoE8raroY4IUMig+BW7o9i8+SGBfHiyKYeqKWKNxUw7NVor9SznWgncFytmCSmnELxwKUJGIBi9MSpazvV7EM/dESf0t/DEv1I4KJT6wqtVKyUE5xz3yOSLi+j4I28G8K4iLt3aNyjanmGDxCEY6TqaiQGKwUGLE4TVEtQGxUdnx4trqtgsb3JpU+ULMEULksVQ2gJKaI5zlEkvhuS3LfYd6tpTtH7M+E1AhOu3h1WKkMgQTxTbbMN1AyxAqlGFzXYU1C6UvS1IbnKB/5pWmHUfoPHI9agd91XayHkoKe65KalJF0nKXSYpOO0HWGsleyQMJUAlOdLsubBmssE4xG32tK0e2wUC5EYZ4Frdd7UI8lIdFABRauwJpAE4oI83mHlm2yUBSkJmjXijKdTzFfztOwTebKeXZprqLUnF6Z46xnqjcVmQODFUPP9XA4lmRLsTrKbDlb8+rGSPjsJQh+TAJq8epIrKFwOamxWGfpTPVYKDs1Q1BhG1t2p2Nb6nsD9O6jEyiQ90q82/YjlXqivc9N7+d22z1edrCNoMQMUvx126rJe+CatYUfLUS9n4YVeYF3rs9SSPDld8sFCl+wbq4kMSljyVhkN6JfVXwU5AUeZcHNRUYowYgJPvjB5qqn8q8473F0KZ0jc00saRgTvkRQRJr0nGFmbpQLDn0+ZmIEv3WeslcizQYrmwmtJCg07ejP8T66RozQsEL/dWldRlSABaeUHkbTYAUZFJHgimraJoV3GBF6vhepj8rSrKx1ITVJHcMgGArXYTqfIviiLU59tBoJWmik140Et0noiwQl0PzhHftIq2t9n76wMtF2V6AZaeUc1dDWoLAYrMkwIjifIxKVOEzNIDkfXTNxu4og4klNGt6rBrahYhEqps8NxPJUqLrXbFcJrr4JjW7BmcBuSEZmJ7HSxamj9GW/D6RyE4T2BldHOXg1RD0qHZwmsR8d4PFqAY1xObb+5lNSEpNGQ6Qk971aYdKo0IR+auE0D8YPBkEjW6E438H5LpUqbcWS+/DtJSYDDL1yAudHcD4hJzyHd4pNDaYRlDmrYE1OarqQbdnpN/lwoFBLoTtmEoZR+n08agV+9eEKCUqGV89MvhUjC4yllqY1dL0ws7XH1JxgRlvYDE75wmX4VNGJEroGSmHl47aw4efLGL3d4Frw9t/5NP909zMovWG3kWmeMHYP//jdZ3PecV/lgzc9k2ZasnHzGFoYZC5BrSKlEOJclHTa4hPFjXpMHhpqFwzFRIyIM7Bsz61svnMJjQ2WfNKTrOrgSoNuCnRZY5Ohs8ohXmhsMpQtcG2Ppsrq7wpbT59ncqTDutuXkW2yPO34n7Jp8wjLG/NMph2+fvsBrBifY92Wccotzfq+VOxbkFdBMCaKOKlYOVCBREGCE71ycYntfxmqA8dKoKgldZhEEeNrq9z7YKG70uJL6d9Tg18vXEv6Mxn9f6sTTOYQo9g0TKtiFGs8ifUY4+vzBwNzKlree8E5g/eCeoMrDHip2109g9gYLOCrB60aIFBK2O6IfRKbWV+n6pB4qutP+eJDn0pkgtWGvq76VBTUxGtaDRsr1ji2RzxU7kdRUKt86Gm/TdMV7DUxwkgiNV0cLDXoetjcc6xoWppWmCs9TSs0o5ZUxXq0rUHjO+2USmIgNUI7GWe3kRHmS89CqViBiczQsJbKXu25cL+GMfV7BJgtZrhzbh2lV7puHK8ZiemSGMVKj1QciQnXMJXtrUEhqFijSlAJaRi24gO1rFKrAIrgdAwjXayUtaVdX1l9YB7qIacYCUF74Z4aXXFa+94rN56JypwgiKmCZpts7I6TmpI9Rm1QqOjDeTBG6xiHwZiTSnms/61Ky2bsNbYrVgxdl3P3/O30nEOkRLDRsg5tMriokAiiEhWGaMGLI9jK4Vk8RQzoU1QdYkKw6Ug6xmQ2Sc+HQNPUp3TLLqWPhWUluDWQ8E0ZqnGVguSo9wOjLAj7ypUpYsl9RseNMpOP9rmDJMzT0vNYF6jzViLBdUmXZtbFF1t5pOHvJ0p/SOn38agV+JBhxOK1IKx3VE0SJaPpAgtlhrNNtCE4JzRaKRtLIZsS8nFwTjBjBcu+3mRzZzlrfqjs+oabuPVj+/OWn5xMq5HXd/rp5lWYQnjvdcex5/It3LllCWmzJJ9vomngTk0huFEHTYfvGFzbgw1CP92cUOxS0F6yQOks5V0jbN44Bpmnt6fDbEkxN4xgDp6l10iRjkU8tNZaeksjhd2DchRoOdY+y5JdP8b6iRFW7beJdY1Jvv+Dx+OX5kz+Z4NvvvMMrrryM+RP7mKMBiFjgvVGz/S5RwfYKKSUxQIvCnuqX0KkvCOicBUPVNZ9aVDjYrAgqO/T8WI8iEWdIEajBS7RElGq7zFYyxKOS+J1VPDOIMaHKG8VitJGt0i8fqTfve9/2EoQ+hqFu0j0FMfrV+3X+DyiBKEOoT0+cvsDClKt/IguUh4QRbyEnzL2S9yulXJl+g2TyrUyaBKaeM0o6GslYkCxkFLYd7lSzOTk01N0VRlptUliBoBJgh+/mztuXSiYaBgSa0gaCYVAZqqAPaXjZsl9N9LVwS2QmoymTWkmDYxAZpTcK4kxIQYlNnXaBQHQtIZEKoq3YLaYZ65YjldH005T6hilZvTKBNVJZIAyDoyDYsRhxdFOpjHkkS0CJUHwaMyWEbFUmmvwyM/EyP7Kjx8sz8AeBApcIkOGlnit2Im+oK9YH4kvJzB4KYkE103ho+8+MgHzpbB2wbFltmDVmDCKkBqh1OBpF/rGiAFGkkl2aYV2577HTD4V+yrDqaVhLJmpKHgXhbUBMiAnzG0KpKg2KTXBawsrPRKzFbSvAinVeNLar+48iBh6LqfjenTKhKleVsfitBLF+R6l5jg18fk9HoMl0PXgBwITo5IdxaSVjJliCTN5G1db0eHYRJR2oqT0cD4nhBwKxuQ4B6jDLZpUHhk4NbidBO254QrwNR61An96ZgzbSLG2xEgHRxHTc3IopxlJdkVNinc5f/Tjr/P5F57BdOG58OWnsMdoye//7heZ27XF5kOVA957F7e+ewn5R/djy2Ge9PpRZiY8qw7YyG4j09x5za7YXMg3trhDlrJ0dIH1G8f7AtKAG/FIbiA3uJZHRgt0IcHMW3wCMm+xy5Qszent6XHeUOYWP5fiJ0q6YyDr2sh4gW94emWKWsAoPhPyFSWNdQndptBY1iFvZTR/nrFufAL1wn5PupMbf7obPoO33f7n7PeMZfz0tl3RUpCGAyeoF6ThoZC+FK8E1+B3V1m71ewuGi3NASFPPD8yBiICTY96wRU20HiJr4V1OJ5agIvVIPgJVnugEyu+FbRyNtaCUeN1gi1TOhOVh6BMqA8KARCO0/5vsVHB8DHqL4kTWBEtlCIoQWoVnBDkivale8sFYRyvF9okNWMiBcHyiu3USjIOxCdoNKAw0crXwABUjEC1v/rbFNX1whiQ+M7EwfMu/hrGgbehzVI1VeDbp55MUZS85Oqv1kzFJUeeRMcKk2NNlo43a+Voaz5Pp5wDHCJZTLfrMZK0WNVaRcM2o8CMry8yJwDjqeJxzBXzeDXMFF26rmS+yCm1SSJCxy2n51r4+xDdPZ/ELVWoXnV9y2i6PgpNgxCEuYjFqKkD+oKwTrHGEQLdyuguqKI6YxqehI43mDCGo7urYgP6rEAIZDNkkb4eAXo0bIaVklw8xncYz2aZyCbpuQ6pKSgVCs1CaJ+BrtegF1aWPMJo2mIkaSAibO1tYTrfChhSE4IoQy8IiEXEhYBYTQO9j+CxIWrej6FkUTkL49boKEbmwhCL2QYhvqLPAKiGZ+y5BeZLg/MTTBcteg5aSZt9xwWv0/S8qd0WeWQBqiwZkAFXRp9FUyyz5eiAsA+Os1aiLGsoo6mnl+eYrEun9FgbtOueKzBWKZ3HlSM80hhS+g8cj1qB3+01mJtp4tVgk3EajYIsK7A2RwnpPDZNWCg9/3jci2LAEaxoGl5w8Zfh2Qnte2F0nykWHr+a1rdSukvAzgs+BT/i6F62Czf8tqGcLBlfPk9x9xitRh6o4wErWZwgpeDbHkoJ1n43wfQM4gU/Gfxvs+tGWbXnFqa2jNAe65J3G7U7QFIfLM+5FNolbkURLP+ekE94pGvo7dXDGCXvpJjU0d2rgK4FAzf+7+5oyzGzH3zlx4exas8trFo1xfqblgcLMzeQhlSdaAQEDD6LRNdEtOxr2p8+rVybpvF4Kgq7Oi4KVY3C3CY+CGSNgtQHql69YKxirMfYaNX7IKRrBUEUE/vFlwZjtbbW1UtkEjTcM97bO1nEIohRTOKDRS8+TK7VMUn0XRaC5AIN5b6GgBoNwjwf5NUHlBEPmmqQNy6yB9V1laBAxNQINfH6laJYdakH6Zq+IhV/19mOlclYsQaAT/p9XDMICs+67MsgYExQ0FTgzO9/lSuf/UKmNs+hvYKR0QYLeYmIIzMWRwoxKMxrSsflTBfTLDdZsOyN9AlRgZ7rMZ1P4bSk65R1CyMslC3ayRxOJ/A+YcG38CEUbbspV5VdPYiOGyEzKantEgJjDZX/3BhL6R1OKyWgjH7rFCEBKVCf4LGIeoyUUdCHwd0X9oLXkCEjsQlePYlkiCjeOXJvSE3JbN5BJARVOhxWlHbSY2PnNsrSU3YbbCkaJCbeCw1sgCQICakxCJaFcorUNCh8j9SkqCYIveqVhTiHyE6UvkS1iMHDBpEU50eRGKSX2AVy14pBl6DSxkoRXAES2QyCfhqGaKCKSu+ZzaexMs94Okph27STjKa1bO3ldJ1naWOS1CbMFTlbe3NAiYhH0JiZof2AYwxdN8FUb0nNmTQTZTJzTDa6QAd8k/ku5KXB+5RmmoB4CpfjfNBw8942Q+Nhx/0X3hlK/AqPWoGftixLl83inNDtNeh2E+ZnGxgDSQIb1FEUs5CmlN4guWd123LKpZ/lK2e8hJMu/SzihZm7x5k5Rdnz0oI7TjI0NgdN8NVP/wYfXvt8iluWsex/DbPHpzRWLTA706K9fAYtTPiqBHCCzzQIjTiH2bmYrpXoAH0srLtjKdIumd/cDlZuTJ+T+QRSD4WhNdbDXzdOMaHByreKb3pkPkFbDrz0BRtgugbfdkiitG6zdPbL2fjTFbimR1uebDSn2NJEUh8EV2xzbT1Xwt0ovuFrmroSWKHt0QJWgVTrGUXaHt+1QWGpIs+TvrDVaFmnWbnodpVQF6ORrle8l0DbV5aPD4oBQJK5aK0IPlLplW8+HAx153cN3iqm6aLgj++lEqgDckaMBjdMKgzG/KHxvZThPYsbUIwI/YOJjtxo8StBoAfffLVZawWq8peLi/EeGq19JPrnCe6A6l4a3knFeoqTRTEAVVvCu4ntWuR2gUh6cMLXv4QKXPWsEzjyq19GDVx6zLMZG23RamfkpsdCWeLLgu5CwabpBXRphyWtNokJUf2e8GypSUlMQrfoMpMndJ3FecP8fAPXU7wvgtAyBmmkaGpBZLuCfxBOLV0/gZUOzriQ1UCw9k2MtK9UhZBnHvtCM8K0LYEWj8Vj+i/d1BHkwQUgOB+CJYwYTMyuAE/pS6wUdWCtqqHnulFBEDrlArnPUTWIQsICQgOnSqHdeN0RjHh6LuTJJ6YRLe+EnhdUexj1TBVToCEFl+i6CK/QY2KqiFcllRIvWXzdPRIzj5CCxAJDlHXYSVVnIdSSqOh36qDa0jtSM09qQkbQuk4S6o+oYWtvK6kFQ4KRAmIfq6RAihGNabrCQjnC1t44HqGdOCazBZq2A+TkTui5HkbmkcyRpUEBDe0zJPh4T0fh53c6Jh4OeDWxkNCO9g8FfoVHrcAPWr7yuk/8OFgdy5TVT1zHhulQsen4vW/kv7fszro7lobDq4CxFDql8P0zzuLIz19EMmtRq7Svv5tVS3cj6TjufqHjy/c+kZF7obdgyE7dQLlpnN/a507+6+7dWXvr8jBZp4Fqrfz4iGC6giZxEpZIfxeBuvUth22X+OkMM1qgpaE93mFh3Sja8OFaLRcCzVqKXbPAHsu3cPuGZYy0e8zcORGVDEXzmHKUKDRKpGtp3WbRJ80y/r0xkudsZsumUYxRim7CAQfezS3rVuBKA13TDxiL1xCrYD3N0ZyysPjCoIUNAr/qOwOSeGzT4Z1gUxeEdeYDLZ94xICxIZe3ElqSlHVAXUXdi9FFAl19kGLeBb++L2MlsTLQkz5aLlWgnQ5a2ZVAH1CCxCpaBgsTL5BULyQK3TQm7XlC8GUUxuqCIK+p39T3A/HiO67fQVLRwkFQV0XiNPYVsYmU8ZqVzz+Oi0EGwOTVeJG+eyFS+CYGhGoaFIqKxq+s/cCmavD9u/jPJDIgVdsIzX7B178Wnscqp3znG6hRvnTk82i0M8bSJsdceVmf/RlAFefx/dNOoycLzBbzbM1LpvIRep0CyhKTCa1RTyFtSk3Q0qF5gXZ7SGIhSyGpLOvtCX+hW46TmZxU5iLDoVSVJoOFGSxuH6gVBIeVHmAw6mNMQD/oTmsNqAoTjJ52yeugs5DKF/4dctRD2mBVREsJBXusSWnaFpPZSrwqXdPDShCESmCCQpvnqSablt2FycaujCaGrfkm1i5swGuT3Pe4a+6OOo2wykKAWLGTanvV/hxhsHJgUFxMtE99lW440Jd9giiwG0F4C55gtRsxsZhYGGuF79FznsSkJCI4qvoFIe3SSILTjKneOPNlSHNe1SwZz2bolFvJfXAj1JUCBwrauJAjjCfUQEiMUDjF7sTyfrhQYMh3RukPLfwaj1qB79TifQoCzU3B59n48iR7zxdsemfO1285kOMedzOn7/HffPneJzLXa7D150v41HNfxEsu/SyffvZzMIVQjjrad1umfmtXlvzHWnp7LqNxR4PppU0m7i5pbTKsO2SMVSum+cG1+7Hb4zZy93wGXYtUgtBJzfSKE3zDh32WEKXfi0pA16ILFh1xGKukzRAYqKnHLNgg9EshX99G1vRopSV3/nB3Rg7eyvSGUST12NSjGxr4TIMw6pkQaKaQPW0L03dP0D2oRH6+hPbusxy8cj2lGla3pjl6+S18+IdH11R2uPnifi3zJNLkgWIX37dIKyHq8kCTu8LWljyE/Y1GwUgjp5GWbJ1vk+dJEMJRAUgTh4uBdF6EsrB1YJ+xHh/9rpXfoe/fD/vxlRCnVhaIfyORMYlt7SsD8eVQ85zR/x5M8Tr7oOJBvaCVwnLfPoqWdaUsVfvr/rFaswKVu4ZI40sZ6f6+3hHPF9SCT7VP6w/Ap7pIyIuX6GoICkFgD6Kwj/uqPqmYA2xgmgYVPYnuqBf++1UDLhtqhaR+5EpRAZ7x2S/w4eN+i7luQskoTuBN/3kleHjf859PqQ2cD7UsSBMkTcB7tCjRTg8QpJGgaYJsZ7EUj2WmWInTETKzAHicCl6DIG5aJTGdEG+gJSGSQEikgZUEpXIHJLFoVQzQQ2sXQD/HvXoJguKwMR0uWOlRYagrVQZNbTQdYyQdZ4Zp7urdgSQtCu9Z1lhKFkvaVhkoXoXEtBhNLIUqY+kEpt0AhMLnbOqtrQMCgwUexqjqYF280CsaqwoGtqIqcVzWrEkQ9hLz6atUwiq1USNjEa8Z401C2XDF+ypYMDxlqAFSMQX9H6+Orm8zXzYZz4TdRxzKTM1MVCWOy9KhTlGnRGIl1DcyGr51MRhNgt7sfxmFd8z9FN555JWOXxc8egW+E6YXJoO/PYPxOzziFekVtD6yhK2n5zx1/FY+fOszOWz5Pfzrvz+Rv9vjcXQ33M3f7rE3Z/7gSmiC6Vg6azz5hGHdkatYeq2hGFNGvrKUzQdBbwmkt7RYu6WBKYW7b1qJKQy+6fuUeGVdaUidA9As+sNtFJrxJ7ABgs8teW7JvSCFwbd8mGS9wEiJLiR0RXHLS8rbJ5CJElKPTR15Q0OEfZU+FylgVcHOG9zKHC2F0WbOll6LtdPjPPvA67m9tyK0zfYFy6BvXgtDWZrY7igkLUH4mYrSB5zpxysm8Xmjta4qzPcyukUaKXqthYWI4rzgvaktfWs93sco/HjNkK4dhVKVXRBRpwMO0uvVBh8kaeVSqK1+pR8VD7UAxmisRES/jYmiRVTOGj4I7kT7GUuRWZCKmajcOjLoxydG2stA8xTfCK4BiewQRXXswPNVgjy6hzQJ/a4S3oPc59i+TBhoj+krFJXrYFHkf9WsgaA/yYMyMshCUCkU8VgUPnjyaUz1SlQ9iU1ILPzDcc+nLFN8keI1FPoxHmxq8F5xKjiTYEeyIG57BXm3i21lOGtwVTBoXXZXyV1Cz01Q+IwqsC/Y4RvJTChVW/oy5r4LXrshVYzQb6FwVvD3pyatrX7VAoi+/lhypSqQUz/zonK+fc0sM7YePoF88PRciUFo2DYjyUgdblF46DlPzyuFKpkROmXCWDpGaoT5co6N3ZhqKlX8Omgs8hXSZ0zIv5eBChKquJheE5SWWBsglj4GMJJQektIrvN4Aj0vcQ0Cry6yERKfP1zHmgQIxY28EIv4EPtAKLTBbD5O0xp2HSnI/UYKX8T3BYkJaY1aRgU1ATFRcYquTfWQmx4iOWqVwnR4pHH/UfpDgV/hUSvwfadHb2Kc9774JM7758uZ2cMwfmOPu/4qYY833MveW1fw19MvZOJGy7/uuRxx8IRDn0DHK7bVhs23MLbLHLPTLdJmSTGXsf8HutzyhoQj9r6Ta2YPYPxWpbscylYlMMKErTZS+dLfVvNn9A1KzfrW3CAtXE3aSasIQWoLIffeFILpGMqRErqCbmnQXDNPIy2Z2TpCNlIw2uqxOW0gpUVUg4AoAzWdJg6fKe2xLukSx4afL2P1obexemKG91xzPLq+CaMlkkWrpfLPFwZcRbVqLezFap8Kr/LRo7VtbaUxBKGvJubbR398WYZrl4XFJv3AvLK0sa+EohuGV2X9+yqTwAQXQ035Dwj96jpGPL6sAvz6FmhtpUu4rtr4fmyk8J0EZUm03we+z9BQ+fyrOgTVPtv3xVcvuRLotUJS5+xLUBaqQyuhWw60cyBfHzuQUhWteE1CW3yi/XS+iuqHMP5MpQQIJq5bo1VWV/1AQWhrxXzcRxGoFBTx1O4FcQSlNFM+fPLpzBWe0gfBONXzUHhMYlEPxgndsolXxThP2ghCMS+DD945raQjWSNUfCuTFJukwTqf7wYrtJGiaUJMyMdpLMYzoNlZKWjYBaqBV8VcVO6XMpadFq3o8NCdeVwUp867J0buUykZPl6vyj6X2uddpaEZMXFBm+pdJIxkY3S84jQsgrOhG/avagXLeq7UmAYptV5XKmgsjKRqY2fb6BoqI7XfIBDqZX/cxyI2tYtCYrEvTTAS0xfJ+wtioRjJQ0VOTHCBCCgJUEQlQqJyoXEQx8JEAlWlvqZtApa5YpTpvE3Dpuw6kpO7jczm0xixJCYhsy1C4Z8ugg+lvWM+qcZ+tqlFJMQsVMrUINH1SCGU1pWd7h8i4FEr8EkMWji6mGCFz4LMdVjzd5OgytS+TVZ/19PcnHPZm87kpPd+kZM/9RVU4JNnvhDpGWY2jDKyfJ6TH/e/fPmzR7H14ARfFlz/uQPIANcUXMujzZBb7j2BrgVMT9Csb10PonZd6eAEGy2pUvAG6BnKhSa2Y0hc9Lmu6ZBmJeXGNs2VC3Q3t+hNN5lYPcWpT/53vnDrYSx0Y9W21Edhb2pBMZb12DxR0Lt1nNHHb+LsZ36fT/3ot9hl1ymarZz5VhoEaSGLGqqJrxWZvuMvWL/NsR55N4Em+OjTt62yLqIjpvK3E7MXAvtQWfCmsuC9jRH7QZB7LyRZiAHQgcj9isJHwdjF04FqUCqM8UGxsKEIj3rwuUWyKl+aAQVM+0VtotLWp+qDUqNQuwdEqAVzrcgluuhyEi3mRZkLVcZAGayoEBMxMACcBMnv++1QUylQUiuFGl0BKsTzGRhEQlUvuK4H4EJ8iKaD94nZAKqYvN9OnynGhTHY79TYJbGWxA9fdRZrF0rumi+ZK5QtvUFKQUNoOIK3JrghAJL+wjq9+AKytmUsNbzyW5dAKfzDsS+mG4v1kFX3t5C2EOfRXo528uACaKSUNonvqd9WpwlzxTJG0mkS6SBIXc0whOuVVKtbWrEhjS/eRymoqzFqEdWBoMxGHQPnXS2IqlX4qqha55UyCqjCKRs7jrHRSaybp+OCf39pYqjqXKZGWNEMyk8ixFLRglNlc8+jmuKZRDQHDIVfwIgfSKnTSicFqoDHqtqgICR4zXDawMp8PKamczBShhgEPFbS+mULiphQy96pi88emRGIdfWDspNIhtc282XGVG+U5S1heXOB2XwjXddBnMEvQJGUJCMdDAkUnqQqTx694xI/rCS+q9KXdXvML0HY5ppgdceiLP9laB2/JnjUCnyTZWheUCQNLjrrNM6+6Avc8ZI1/Mefn8UZR1zAkhsXWFjdZGFVyvM/8kWKVcqVLzkjfLC+b/l1OxlfvvUQFtY45h/nGbkxo7MyBlElYLuCy6S2dO2swY14vKX23d9XyAwYV4tQ+24rijUGY7l28N1nN7RxKTDh6d07Eqz7rOApK++kbXL2WrKF627ZHekEunnlmim2/u9yyrZCotx1zRqswNgBW9m0dZQft/bgkP3uJjGezUkbs0qZnWrVxV2CzztSbSY00DTCxyhWSVKH94JNPWVusY0yCOsqV9xqnQNvU1cLcompclXwnvdReGuccqrUshgnUPviKz0kCn7vJKbiVcdE33W0wl1hsKnH57ZPzVd9PZDax+D1Y99TtV1lsVyJwXgAUrEbEK4fg/uqlL5K+NZC2dznpUdmFpWgCERhXwXr1db6gFKolXWeaL8+QkU322iJRQGtJgjvMN6iIhHfY7DSoyUfYwlM5UKAvlVf90to+w1TOWsXXCgv7QcHd/yn89BI6z/v0+sY4E9/9DnoGMQJXzv1bO6aL1go++FzgxARSCzYZmCsegV+vhuo4CyFNIlsTbD2F9wYhTYZT9eRDdDBLhZxqSzTUktEklhuN45psQg2+mwN0MHj6/UnQnnb8ET1cs9aMQJtvFrKWIRoopGSlwWpNUBBZrTOqwfoOY3LEPe3taxQemJ1RKXrHKVv0fMNIMdIEVmGQI17FOriQI1IrZeIWKq6d1Z6CEXNBPi4nkCVUx//hdfw25h+9L4MMGMev+i88AwZU/kkXi1LGo7xdIap3hZ6rocWwiv/6yekzZIPrXoKzvdIjMc4yytu+Xc+v/8LmPVTaNvjTYn3jp6GIMckliiPCxNvZ1Q8vPC68+Vxd7bvsYZHrcAnix9vr+DeOaG7a8HIz1OOf8NFtA5ayeyahN4kFBPwzd97CbMFLJSeU7702UC3eoNmDj+d0dncYMU+m+kWKfPTE6Ea31KlbAdh3FzWoTvXwM4kYMDkZnHQFvStrsrUuQ/qdKrKT281WGWVoWGVzq4hvcaO56gP/u35hQbfu3sf0t0dTVvywsP+h698+wj2fvxablu3nJEDppmdaoMT3MoSmU6ZunsCgK1L2sx2GogoS0Y6LHQyQEKAoNXAUMTqblUKHQJpo6xL0oayuGHyc7mtA/QgGHxaGkbHusxMtYOAj7nytRSL1lOYu6KwGiiyU0fpx30aJ6E6WC8qBINrVosQlQGPi3UIamXLVmmQ2hdk8bk0FtrBhPx/MYpoLEtaW+Ix6yAWCanbWYTtENpWFf2pIvZjjwQlIaGvKJQGyqDcbcNfqiwO0hMgulsWbauUgKpUb3QzSNGPyqdKzVOCYhCj/SXGeqjts0wUUgdj1scIfODU07h3rkCr4vumymOPKMognLcDAcYzeNW/fgHbTfCZ8skTX8z1U3ldv39nkMrMbmZIM4PSod0c7fSQLFj9GBPrHTmsBOFcxQxUgqOy9oMAqzSyKMSFKMyyWkj6+I41WshV4Zzq2nFEUqk3VgIjMDHSYG7BM9oco/CKkOI0VG0TYZGwD4xDJIuMMJFZvAqZWUWpMJM7pvLQi6EaIFT+ea2frEAkpBiGaoEdiMsA95/bAJVyI6h3QTmIsQwh3S8oMb3pEtfzZCMpadOiDor5sLZD2rZYmzKbt8AX7DKuZMkGZvLZ4L7Ild//3/8J7AcwtnSUM679HkkW7u294dQbruRLT34BbsHRbSxQJDm5zxGqmgVVFsUjj/svrTv04Vd41Ap8EUGaGW56nqKZcskxZ/LyLZ9n0y6QzCekM+CaUO7d4agvf5rG+oRkHsxSwU14pF0yNt7FGM/02nEaaUmWOPI9Ld1lGe2bGkgBc0s83bWhGpRvhtS5Ohjrvm3ahk4e+Bv6ikAlNK1iFgxuzNeR9pI53FQDGSlYNT7D1k6b3cenWNedYM+RLRzYupd3nvMeDrvoIhqbDfMTTVhWhACwwuJbjtFbUrqHdlh/z2S4vVWWj81jb27j9shp7jpHmjhmtrYZm+wwP9fA55b2ZJfObJOJkQ5z3Qa9ToppOHZZNsPWuTZ5NwlpcjYwA8Z6ksQzO9MConB01EuMO18xAb6m4yFY9nXXxDz8WkAqkTXoKwJV+d3Kt18Xn3EGidX8BtMANTIY1e+Kgg/BcjHIsDSYRlgoxxrfr7Of+Dpg0CSKLwlV/KqSu0qoXljFciB9l8GgfCmDv1o8SCzAVKdBSlAApZRFEfA+1VAgCfoCWQmKocriQEEnMZCSygUdMkKiy6Tui2jM1gF+8V6mlLoE8L+8/HTWzRVsncvBCCYRbFQeoi6BLyO7YBcrAQYYywxLMsOLr7wEccI3zj6Nu+aETd3K4n7gE3udq58mIYXPe7RXoHMdsBZppGTtbgw4S1HiEtJisITlq63Y6HsPwXBeerFgT2iJje4AxcRFkAxOLUb60eZVjn9I/wtBfs63KbySmFDYKzMJ6iy5QtctACUu1uU3dZRoTPeTKsc+RNQbhKYdIxVhJFXmS0vuawIfIUNi0J2pffdxbMT/Dyo1/TS+8JK1eo54vJUM4kqMmcnYunUeQZjf3KPRbtCb75LnOcYkNJotZma30BqZp91OGVmyhJlyNjgSXMorfvrD0E9WKXoJZ1z3XbwzFL2EJHX1t37yj6/iP4/5He5dt572Msd0MYUQfPiJsVhJycwjL2IKtdidVtobcvoVHrUCHwAjtZY+1yuxXSGZB59Ad4UyesBWyuuX0N4gdTS/aynMWc56xg+58p6DOHbNLfzrVb9Fa7+Cm+9cRfumDPYs2e/5P2dzt0332lW4JXGhHaUf1XyfMaJwn2p0gzsrWjhYZVXUNwhueR6sx04QKmojlTibcvv65djEces39mH8+eu4Zu0afrJ0DX/9H58gnc8oRhXf9ixbMcPmW5dC22HmLO6IWdxcRjaeY6ynzBPuvGcZsneXZqugM9OkA7QnOiwsNNhz1Wbu2rSEXjdFrGfDPUsQJ+y17zoWioy1dyyjsayDTT0m8ZSdFMkcE2MdrCizovQ6Kb60SNIvkFNb81UlPPF9637Awq9XMxP6grt6xXaxxWtMcBHU7koGLG67OMdfXAysjHnnQFzQJkygvqyYjQHKHzBpf/EfRILQL0yk5QONThLiJ0Lqna2Fq9gotDUI7G3S20Tr9M3+WImKUSmLYj3qADztC39MvE613Q/sj91an1cPzHA9kwclRRNwRvn8mS9m7VzBXVNdjIFm0/GGr11RKzPvP+mFdF104ZQO0pA/PZqG+vmv/PZnkK4hmTchpTATtOnxmvKy73wq3DdRtBQ+dvRpTOUG9yDoUxEJQr5tQ4JZ4ShnF5jTFmWrRTOZp2WnQqR6FV0eU85C8FqIzk8lI1FL4aOyR1isx2IIS9V6JNL+BkMqKSUS2YNQf19jCps1EorPiNBuZWyenWaOLh31iHQBF+v4xxUUNYmWcCeqPSGfvWUb7Dk6RrDqQ159oNQtpbYofJvUzGEllPgtfE7pw0qdIT7BhzRCTIxbMIT4SB/uTRWkGJSOxEDTjuJRSl+yes8V5LMlI6MjFK5grDnGwkxOYQyNZhMrBV0/S6dYYMHNBKWjEF7+Xz/CJEHZrmtkFKb+hspYH6SMrODhV3+Kyw45ll7RIZOQtujj/GiNjZkBjyzuv/DO0MKv8OgW+DHX15eeXiFc/Duns9tIyjM+fDG6usvcXAvbE8pRkDJMhGZpj5cc/N8s+Ix9Jzdzx/xSpg5yLNMwoLsHd9h1+TTjaZef3LI7NDQUqonC477500A/r7me3PuTr3HRcgNMNwTYmQXBjbkgIHo2XDPVECzWi1r8WIGbTUmWlcweWNL7z1X4TLl57QjNjYbO7mEBktaSLs4bTCnY0ZyibNBd18b0DGWawmRO1i6widCbadDbkpGtXqA33WBhugUKt929guZoTqGx0E3iMW3H7fesCIpOy1H0EtJGSdFNMKnD55bNd00iPUO263y/fn0MIqxXwqvsuyjUQwld6VvisLgQT/x35TrQmiXoXwPifVRC/fwBFwAESrES+ItYXS9B4bIaRraEH5u4fuBhGRf4qcr9xmBCdYLkwcoOr137TE0RXraJee9BqaMueFMF1NXjRPs6TF2cqZL/tU+e2k9vimqcsciVJNFVMBjTN1gOuRL2ZqDwnFr4zqknc/SXvsRcZ57xhuGPvvmVOoUUE9r9sRedyHwZXPZSOhqZZaSZcO6/XxzGaIypMIWEOgFJYC3IPMd97VN1AGIl9M/99hdRgfc8/fT7CP0+LZYIjKShznwq/ZIz53zts6hRLjvppdziPW6+h2s0SKQkEUEkCZYjBYLGHHjFSDfS9SHCXgnKaAjQC0pCakBQGtbGEDJDwzZxLqX0nkwWgAIrXRq2E1PWAnlujOCSDvMzW5FGAy+9aFuHFxfK4+YoZc2WaMyp9yYluAggNVAtOStiwpJBkgNdmkkTgyEnvBzVglJjqRjtZxaEAe3iFxdD4STY/kZSGrZBO23RLTu0szaaWlwrCS/cO7wxtMZhIk1oNhpM9RbwRUFiJWQneDjnmh+hGoR7JezDNxpcYuoEVdPP5qm+8+qb3WqhJ2S2EZgo9SS0eKTh2Pma926Hex57eFQLfBFBrEWdw6mlUypP/dynaDiLrG1y4BG389PNe2JyIZ0VfAa+Z/nMd56OTha87inf4h9+dBwmN9zy89WBrh9V7t0wSTMpGFu6wPzMeD+CO1pxaoMgr9uhBD/pwIReWWMqYcL2DcVnHlMKrq3QDNWuKl9rHQhWxI+lNNDw9OYz8EL7sC1sXTeGFIbuCk/znrC4jl+bsgAw7ik2NaHpoQgpVdpy0LN0eyEVzmQOD+QLKSYG/lWcXydvIQ3H5NJ5pu4dx1fUcrushXTRSxCruG6CVgVlmp7u1mbfn81iK70S1IGWJ0bl92ns2kceA9MqwV25BWq/vIbJy1dUvUpogw0KSnVPjfXsxYbCRHUMQUxd1ERDEFthgsLVKOvYhCD0g4uhDMXFcN0ktCE3mCLGbgz6yON7RmPAnQvZG3X53CqHvso4qHKqpc8AhLoIUr+LsBRv/NPRr5Vf/WjIEjExLkATDbX1K7dDNQbjS/BZHI9x5j36S18C4JxvfLUO5vONoGVoorhEecXlXwXgX046mpd999sh+LB62DqVrx8bUOf7z9s+e9HwYa2HROuKhY8bs6zvBFo890rulEQ8k42Ul331c3WsS6Ws9GWZ0LTQaGW4siSZn6GljsS3yLUkmQi+/craDUvk9gvTWLEICSplDIgL6kSIVA8R+YlJaCdtGrbFuCobOuvp+S4GE5eDrQLiAtXfdR1ycnxSoj3frzhJUHqVMo7vEP1vpIpFMeTesam3idFklMIXlN5FRkFJbQmEyHsrKV3XwfngkrDGxup4UeFCKL3Dmm5dfrgqElS1eyQZwUSNIzFtnG8i4vG6gAJNayl9l1azTStpkPucMqbOubhccJmHoNzRsS55aYPAr9xHUclSF1mwOPYEoAjR+Y1knHLE0ZMcVzrSJKXXLXG20kYfORQ+wfodi7LCDyn9Co9qgQ/0J0BgSRryn23HMvFz+OnoHrTWGboHdimkESyR0gShOJtw+b1P4O+fcTFf2/oEbp5ZwR0bl7LLklkKZ9lvfCM/v2X1IuoYFgt6rWqsV/nOA5aWZpH3l2ClahqCufxI3B4FnG2VuIU0VMyLgkSzEPyGj9Hd7ZKpDWNIz7Bqn82su3cJsjGkRRWTHh0vYTaBlgslY+csLMmRqYwV+24mS0ru/vlKvBcaS7rk81mYWHNDsqKDCBQbWtAzTHXG+3nkXtCeJRkp6zXu8066qN9ri7MyW/U+/toqn77SADQoAeqjZU81aQSruoJ3gomleivrARMnlSp4rYr8dybk2Xv6tfVFkRTqinxGIetT35VyEiL8CT5bZwKj4QUfry02Ru0bwnoFXROYGli8tr0Plny9rSpiH62d2q1QGRp1lL4sttqdLCqIU8UB1P74aoyl4Kq2Db6PmH0SCpj1mSepfP7Rly9OQiZKpcB2TWQ+Qnt9Eu7/squ+Hc511U3695L4/qugQfGmLtQDoD4Eh5JXfgZ40RWfDYp1Kfz7y8+i8MrRn/l0rUssilsYdEsY5fmXX8z3Tzmbo779eb5xwmk858uBNfj0bx2NFY+RlJ5bwKknNSEwrtQMQ0lqhERsCK/wZRR0zdrr7dVRekfP9YL1rw6PJzUZBktqmqiOMls4ei4s6TtfbqZTzmOSWJEvD+PQG0dYqKmy2isXQxD2YVlv2NTZwBazCVWN7gYXo+nDcYqSu6IWvibW0xcJWRRVPT1i+5VQejgxoTRvalImG0tx6im8x9Og8B5hHtUepS9imeIkRs575ov5+jWn8TpFXuBnYGSkF4pnlQNKuxDm1MEUWh/GSxVzYjAhJbHVpUgXKH1JKYak2UA37tjyfrgQChTv+D66k32PNTz6BX6k6IrSs3Uu58vPeglyDEwkgkrOie+/nMYtTbq7OFbsuYUtMyM0/7uNz2Dtpl350x+fQzYLnV08rXWGu/dugCjfmG2HRVWshmVvK2usmvN8pKpjlHtFGVc104NLME72qSJdQ3O9pbd/F9+zdcqX29ogW94ht1kUCiE31qa+FnS+l7Df3mu5+bbVbJwaJbs3JZmHhSd1SO5ohTWyWz5EhOeGdFWHsmdhMmfDz5ehLVcrI/lCGovPCMaB3t3GpVpTgN4qkkZhl3pM5kizkqKwuDKk2oX88SjpopAH+oV8iNushij6yn8eGyHWh4A4Z/Axct4kwYIQG4vs+H5+v5igHGgp9T2CMIgvHwYK9vg6WK9KlZMY5Ka+L0QkN2hVFGYgvVKiYkFh8JkPEfbVPWMVQqLFrhWr4WMevBKCL2NgIIXpC/uqImKVZhcr4qn2q+/VY6z66qp0vMGxXuXQS1A4RAnWeTXBamAW6rS9GNUflBCtXQ614mAC5a9Gw5K8ZVAmZFB7rV5qVDokWvexlktgj4KMq69Z1wWIbTYxdsUnWsc6HPmpT/eZD2Lfe8J4qao9VumJkSk56kufggSefdUXIIUfnHY2t9+5nrn5OboyhvPj2ERJjCcxXRKB3Gc4D9YoQhZWnROtg/NEDF4Teg4K30FknkQSMhOWqS2cZa4UCudYuzBL4QXEsrzZop0IHocmBS71uDLEEqiTSN9LLHvr8LaKDSljvn3MftGqRr7BSIo1jaDYai8u1KOI2LhwjZKZBio+LrpjY9apkkhgKFpJG6clTTuC8yOs7zjGM2VJA1LTIXdKoUIraZOaBK9K6QsK3yExCalkpCYLqZnAO9deQadMaaZB2S+zSOsX0XWWRCan+uR6Uo+DauyICN77erVDBDLfYKFX8EhjWGnvgeNRL/ClkeKnepSNlK54XnnNpym6CWKU9OYWvX3KMHkkysaNE9AzLP/fgoWVCfmEMPHb93LX9aswuZBPKmM3JizspmG5iDz4xmsqfyBSu75/RTtWgj9uNHHtCCkN7duFZAHycchubdJdXQbLPQ1R/8Fq1j5VHK1am3ia7YKybbhnaoJkJKdcSHErS3wWaLXGAhRryjBB9yyoUGxuYsZzfC8hWdGh3BhKBVZKhmmW+NzgTd+Iqo23KIBtHpQC37bYVaFSmVchn8uQKv2uKu9LFPbSt7rDCfG6lU+PKkdfakEtAxN+FeWv8d99oRN+aut9MYcQdw5srn3EMtCOqBwo/cI6Vbqc6bM1laD0DR+YlooRKKoo/8gqZBrD16VfErkieyKFXjNAFWxfeNV5/YNpeSa0tapxv81Yg9qCrhhKlcUCvF+PILTL9Krn6xNL1SI8lTLgoyu3bPhFNSRCUR/6FHtkMmRgjh4sHa0Dr6deOTIJz60aWQcLkvffUZ29MODXr/75wxe/jLULjoWy4Kx//Vy9WqBU/WLg6Z+/CFT4yJOfyR/8+F+56JknsnHGUYy2EQmlbqtPNKTLKakpMeJp2TJG9fu4rnweHlUFMSlGQqCfSInRnHaaUy1jK1haNlAuuQvbSy0wNgQCijo8SiI25PlrgnOKKxwkHhVXl+2tBHrIIBC8Dw8nkqK6UL3NmCboyUyCNSl13X+NLTKWsXScVhKWz+2Vhp4vWNESRlLBhmAhjAgjMoKqZ75cqMj3UHaBmCNgMxRPXuQ0bcl8kdFISzpFijVhbhosi+2dCW7JQmomqirzHJiDDj3thTRCISygkyU0Jn85Ufpmp1H626sQ8djEo17gMzDXFX6Oo/a4lR989YmM3q1seYLSvCehGNNQZWzK0togTO0LnRWQzcDMpWuweyqupZie0F0Zfvu21FaUxskFoPJd1hPjgO9eRxzSM3XNeXFCOiek82B7ysIawWVKtjGh2K0XaPglecj9Tjy6kMRUL8XllnYrR1XYdXKan69dQZK6aC17yglo3dKguRnKkYxiVR6q75UGyRyNVkFuoNzSZGS3WeY2jiDdMOi9t3FhnyrNZ6C0a7RwTS8KAoX5rS2wStosqaiCas35ENhG1Rl9a6wM22Sg3ntdV78SHgKLKt9VXVyllVUyT6Wf219dk+o8rf32lT9xESqLvSIDNCpUFfVsNVr4lRVMHfwmcaEbvCBpVHCgToMDqJfOrQKUjA6k1sU2V4pixYCUob2LAkBrfz79hXIGn4G+sA/nau0W0PsqEl5CyV0naEr9zvp1nuOfkSWp1ytS8LZ/eCVUq0V4TE/qdMKK5ZAyKB+a0g9SjEoACqbKL69mkkqBEK3rBlTPcOlJZzDVU8696nP80/NezP9s7jFfKB7lgiNfTGLgj3/wWT53/Jms7XgyU4mn4If94HNP5+yvf55/fPKzSEwOpok1PUL43wiJERLpUPgGIg4jMJ2nODV4bUTBX5IYaCcpo+kCXudwPsQCZMbiVMldDxHouSSWiTVREQiDrKr2ZzA4LWOJXEOj0SApm2hhEfGUhcOknsL08Hlwc0nThBUnNbABKoFqN3H1Pqc9ylhkyPmSxKRk0sBpyVg6xkg6glNlvihJjGd5M9DyPd9DSMh9gaonTVK6LqdwBYWG5X5LDU6IYO2Hl+lKVxemycuEvEgoSot6CfU5FNjUgKxSxAaVzzB2yrKgVy5gEoMS3BmJGaG3ztHb/Mj78IeFdx44fg0EvtQav5GEdWevZMXjS57z19/jkNZd/OkVLyOdNfgsCPXOKrALQr5bTuN/M2wOy66FLY83FMtK7JzFjcSZ1QZ61kynIeCukEhJxslKCKKyElwQrMI8WG7JnKG5KQj7uV2FciSc68ZisJwNQYTStUGxiBXRxlbN08uTkGKkcOeWJTRbOXkeA8gST2uyw0IxRmd1KOAjeYimpwS7KaM7k6LjBcv23MqmeycwrRKdTpHxAp3OMF3BjZaYju2bQBqeWVwMckyh1wwCWFTIZ7OQu66ASh3YVwuvSolW6hiERYLbSyx4Qx0tXcU4hFfZT+ET6QcUVuxBvUCMN3WmQDi4f4/wd3UitbAfLCMMhCospSCFqen8KpsiLDkcKtpIXBGw7iNPCEKrAu2qNRUG/PNS+fir9LgqhqD6rSFnPqTJhfb2a9v321oX3DED94/Cv8rlX1QAqnIHGO1b80ZjcF+Q6DLQ1/V1TGhPlVVSMRHBmpdaKPtGPCcqcYuIFI3KSlRuap7B9YsDmTxkL1T0vjjh4ye9GCtw9lWf4e55T9cp5x9zGlt6DitKM1G6ZQxHU+FTx5wJKC1bkntH12X9Cdsp7zryZGbmO8icxTRTksRiTYnEnPXEljQsOC0ovdCwJQtlk9w3Y4tDcaqZHJY1hSWNPCrESum1LmJjJUUkBQrqGHAREIN6g0cwkhMWu1FSsWGJWJPTaLbIdBQVxZWOLGlwx113YRPLxvkpmo0mI+NtZmfnMAa6vR6TE5MUeUFzaUYyZlFKrAklbMezcVKTxvoD4HxCwwhpFUQLZCal48JKgh7oum5da6BwBVaaCA6vJV1fBiPHwZvvuYLMmiDsnaUoLWUZUvJcN8Es2DrduF7FcXC9kUxZ6Ja4EYc1HiRkDRhxmGVC1hyulvdowqNf4EMoBqKKV8sNb5tk6bcTLv3AsVz07FmSOUPZDjXF/aoerjDoaofZ2CCfgAte+xFe/dXfZfwm4fHH3swPf3ggtMpAjxcCztbL3S5aybGSdTZS5UTBmAcL3+QGPBRj0FsidFf44NtVCcLESxDQucEs6cGmBr4RBNKaiWk2zo8yPdPGbW7UUc7Ne1Lc3l3YmrHQSbC9kHlA0yMth05l2FxwIz7Ux/fCXKdBOpZTdmM51E6CcdDcc4aF2Saam1gApm+kq1F6B3bwUxmaedbstoW165aQNEr2WLGFOzcujWUEQmyDGg00OVGQxzQ24naJ0eqo4AvbdwlUgXtxcZxQnz+KikpJqKntgX3V9rrYTvDvhwVI4u/Kd82gYBqgjuNvn3rEDhxXBzuYKGDjjkqwpkEJrBe/SYLCVafXVRR1FSjnpc79r4S/KeJiN0QBL0G5qtYyMGXfUNIktMkU/RRDTUKwXhVYyUC/Bda2rvAUAhE1CF2fUiscthvTTA31YjnWRWs9Cuhqyd7Kmq9Q1QkQT8gGie4B6LMa9TYhpvv12/e1M8/kpumCwiubuo52IlzwzNPpblOST7FS4skwCG/4wecWl7KOgYgfOubFzBZVnf4ESUfRXoGb6+ENSLMBiaXrYK5o0rSBpg6+3eDjXzTo4i229ixGRmiaAmtKFIc1FucgxuJjxVJqGRiresC4uqZ+tV6zFYvTkAngDdhEGUlazC/0KH3K0onllC5nrD0OohRFiSscI6PjZKaFJUNFWZotJZUU7xVrLGkjpWFTrCQYhG5e0ity1t97F6Ojo6DC2NgIiDLbncW70CRjDHMz87TGm5gypTPfobnckvuCzDQpugV/ee+X8SrM5o3Q3bFcdZJ4SDzd3IZiZFWgpeu/c1HCwk8ezv7JDxGFjx/+ZOzSApcU9MiwWY+8N88jjcIbjN+xUC92su+xhl+PnvBBc0yMIBsaaAITtxaUt46GSSvzuHGHziegwj6rN7Jkvy2MPmUTr/rWK0hmDfkk/Ofte2FWL2Ab1ZqgwSdFVcBlkGeNh4gLkfQUpp6ITG6wnTB5dJcp3TUljJVQGMbXzNSrwNkszqwbmiEPOvVIabjxxl2ZunEpbktWC3uA3u55P3ddoJwoQ7tygy4kgYqPaX1SBp9ab7pJkni0EmBe8E3PwoaREBgYg8/8ZIFvu7DCX9PjFlK06bHzlvlexhP2vpsn7nYve4xO4TpJiIwfsKA1CnBxUpeSNQs2xASUsY+gnvir50gbJUnqsEmscmbDynomLrQTexlqJoV+pb/Uh2eIHV+tfEdVwa4SuGV4j5U1X7/GmO6mRvvvV0OWRG09JxomscqCdxLeNfQFT10Bj3608uCXI1pT4qaMNLdUFnE4r1rXHvr+eXFBMNsFUy+C45u+X+u/Gx3zqQ8xBVWAmxDjNSqyI7yjqh9C7nwUxNUjZIpraKTgiYWqFN/0YSloqR8l9FFkBqQUbC+wFaaQOiixqltRLQYU/hD+7aVnc+t0TqeTI0UJRclsp0C9p07Yjm/cqWG2CBa3FbDzFumaOoiWmHr5Bz+4hD/9z8+yS8vQSsAag2k1kPE2ZBm+08PPLOB7JYU3zJVNNveWMlOM0XWjOyy84lTY0m0zV7YpfANDGsW8x/k8WMlUgp7IQoQ1360h0vuKSIJXg9Kl9F1KX9J1C8yXC2hagi1ZtnIX1qzZnd12XcPS5cspXUHe6bBm9Uoe//h92GvfVRz8hP3YZcUSJkZHWDIyTqopuRNmCmFjN6xkOD0zh8+7bNk0xe233cm9a9dx6213ctNNt7J5wxT33LmW9fdsYuvGGe6+Yy2b753mtuvvZmrLDOqhLEo6nR5z6zsU3jKfN3De0CstzgvLxuYRUfJeAj0b5sfKmzHoCo9jQMqKWYI2Gd55PCVKJ2RC+Ec+C15j4Z0d/ehDCNr77ne/y2//9m+zZs0aRITLLrvsPvdU3vrWt7J69WparRbHH388N99886JjtmzZwtlnn834+DiTk5P87u/+LnNzc4uOufbaa3nmM59Js9lk99135/zzz3/QbX0w+PWw8Cu6k4KRu4QVP5qmu3qEJApdnxlcoww+bKfcfNMaaPhQ4a5nKEc9Y3ca7H+3sEdvQVWYnk9jbrf0LcNBX0+VhibUKXXipI7sL0yYpP2oi8HWyvge03TzlP0ft5af3xvWpt97rw3c+b9raDxuBrdhJFhr7Tipq0CjROYT0lkT/PSElLlk2uJGg3NVRgrYmtWR0dmmhHJEg0WnQrfT7tsunvBWGx43m6KJYjuCX0gg87SWdEI6U8/itzbw42Fp3lu9wTnDyolZ9tp9I3dtWkI5n/aj2itUK/GlQWBKbsI8bqNppoChXhTHlRUtr0EBgjo6v7buwwGgiqko+dj3vhzg8yuaOv5dKwyVa6GKkI/6Q02xV9S5RMt8UJ5Xx5fSd1lUMRyRyqxL8cfCPhC2V5Z6RXki1P5vFExBfyW7akGz6mljFoWU8TmToBz4Kk99gOavgwMFyBy24QJ70vB1PEHdhVZrPUW0r3hVXhDX6itWVfxCFaewyH1gNaQnxom+CtqrggNdYyA2oMpiMcrNW3vMdQrGmgneCAulglMoo8DPQlBXRUYLypJM+P0rPx/+9hItR6nLUWss9/zyb1+CGPjicWdx53wZoukbabhm6fAzC5ixNmQJCnEJXiUzMefcJ5HerSkhSlWm8wlK32M8WyA1OUoSF6YJVrZqhotL8HpxiFYpdhpfleKwWDE4LShcifOWbtmj0gwTs8Cy5iTGCEnapLnH3nRXzjM60SRNDOotRoSey8nLnIa0SUwKJgExWKCdwNIVSxFg7Ignoz6kFi7kC3jjcerpFAtYyRhptlm163I8nslVI3RnevitkPoWv7f2G6SJY7QBnTzF+bCstXOGjaWlLGw/1bWML7zKzKiCN0UxRTU+wjtLshTrQ5lbkVAnoMpUeCThkPspvLPjfTvC/Pw8hx56KOeeey6nnnrqNvvPP/983ve+9/GJT3yCvffem7e85S0873nP42c/+xnNZnAfnX322axdu5arr76aoih45Stfyate9So+/elPAzAzM8Nzn/tcjj/+eD74wQ9y3XXXce655zI5OcmrXvWqB93mB4JHv8AfYICNlCQ9uOHVI7TuSihGI/VpQLo2VL0bL8laBauWzHD3hiVot0E6a5CTNzG3cZxkoUHZScMCMwMT1qK4jsqqTaM/OlLCdsHgXYJZ0kNbgvMG2yhJU0feS+jmKaOtHreuX07aLFk+Ns/dmydp3yPMZaMksxbXCnn0mihmMg9+6rECs6URHrJrMPM2UL0OGHXoXIrxguTBKqvqpJs44/qEusALBMtQFmxNvfrMo6nHzFu6toHdmCK7d0JNg+kUPxH45+50kw2AMaHQzepdtzLfy5i9dywI07Qfle4b0SrMSshjRkJFO0tYCa/y6YdldKHshuFWV7nzgkmDperLkIHgq1XwIp1bBeVJtMC1or4rKx/6PvZKSFY58bVCQCwsE+jyqoiPaHCxBH+DLMrEqJcSjqvhkZuYkkmf7o+pghQDSgYsosCRIPirSPna45CEim51nIMdGOjVWKyCESuFJvVQGFzPBrcRQehLx9RBdCD9+APRutRunUoVXQj99FPqd1pZ9yYHrQraxFz++tlsYAoqRSYoAn1FYdNczi7jDV7xpc/zd88/NShnhiD0TcjMSMRRaspEJvQc/P6Vn8fXdS0G+gHqyH1V6vUOTv3WRXzymWexruPieJNQlz9L0KIIi/FEqIIxBePZFJ1yktmizWIIToX5skFqckg8pW+iJBiZo1cu4LGhyE/9chWNtfvDFOpRHKVKLKCjcdW4aFQgGM2YLzq00jZOc5K2YdnYslDKN/rnc19SlA51wlxR0iuUhjjaqcFQ4BzMO0ilESriicVrgTcl3bJL13dREsQY1HuaWYOe61K6nFev/Q5ZWtLppaE9XphaaFG6UFHP2hCVX1efLML8KNG9JYX02R/TF/b1gk5GWbZ0GXbK4kqYzoSRdr9a3yMJrzsPzHsodXde8IIX8IIXvGC7+1SV9773vbz5zW/mhS98IQD/8i//wi677MJll13GmWeeyfXXX8+VV17Jj370I57ylKcAcOGFF3LCCSdwwQUXsGbNGi666CLyPOejH/0oWZZx8MEHc8011/Dud7/7MSzwfRUIAs1Umd1LGb05oRyBvQ+7m9uu2zUIzwWD7QmSZyRbGmzWUZoCnYO76FyTrTctQ5b3gg94NqkjpqvJrw5IqYS/DbS5FIHQ09ESn8WiOfc28SsLGqM9erMNytkM0yzJ17Updi9xvYTkpjZbijFShbm9XE2Lm0KwnTCpdlsWCsPYDQndFWCmkxBLUJXqLQWN20wuMQZAcQ1iaddQq59eKBdLI1L4CxY1nnRJL0Tabm6QbEnAC2XDBOagk7BszTTT1y/FTKXMdyx7H7CW3CXce8NKzIoeW+db7LF0K7P3jqFNX1fEowi0q7jQH7gg2H1psFlcqEaFpBlXLBtIZ6zT9JTatx8siUpgS3CxVELIA2pCzEIlhKsAvdp6p8/SLLLow30GGb0qHiN0cN9KRftCEiG4KipmqbpmHBv16oC2r3xR3bLsW8Om7FvuEFmASnExxCI69O8ThW+IyicEHtashSK9pN6vzvYZBdfPzbdzgto4hkxkJ2r/OyEtUkKZYJ8NMCRQpzGaInwbooGZWKSkZAMUfnQX/eeLX8a9CwV3zpb8yVWXIg7ef/JpzBYaJG5RhjgcYzACmU1ZnhqWNIR7FsK1TEfqe2gzBnSqhPduqkyNsO27L3g5P5vOF88TsQy3dkMgXV2/AaHr2iSFYWkz1MHvuYRSBzWrUKN/rmhjJCczC6HQjbawUlKnHohgxcTI/YpnKuOKfDH1TmwImxNi5b0wMDKbktqMXhkyAEoXIvAtKc45Zmbn6cx7TvyfLwUjoDB1v9uRfp6kicWrvDMsmZzHxCyMJ6+4i635CLdNL2Ws0cWrMJ83mO00KApLu6V0eillaWk2quV2lcR6nA/GiytscOf5ga6p2CaphmkYM645kNIah9HRV16KKYRvnXI6G++ZZo42M50Hb10/WJT3k5ZXxn0zMzOLtjcaDRqNxoO+32233ca6des4/vjj620TExM87WlP4wc/+AFnnnkmP/jBD5icnKyFPcDxxx+PMYYf/vCHnHLKKfzgBz/g6KOPJsuy+pjnPe95vOtd72Lr1q0sWbLkQbft/vDoF/ilA2sw4rAmZ/X3HaM/upPr374HP79hDdr2JGM5zjUQNSTzgmtB2VZa6wSdSykmHKO3WVr7z7Lp58vCZD04DqPPMkwwMfrUEvzrQYGHTighKrnBTTiYtyzZpcO62UaQNaXBLO0xe88YpggR+7YjMaDQ1LSobyjlmOInSsx0gukJc3t5sqmw8IgbCTR+a8UCnelmrZxUE60aRZPgpzddE4S9UexcKNARllQNX2fZtmgniVZmEAJ2zoaKhMYw12nArt3wwZaG2+5cGRSdJXldF/+eqYmg5CQKC/GjGvTrG1i952am5lv0FlK8E7J2QT6b4XJbL7JTW2xVnj6gzoQSqLWFTRBecZIMk0wQqIsC5CBY3rUVXQlRravDVZuDj59aGags10p5kMRTr3OvBDdQYWqKvgp0DAuz+VDuV6r2xPtHqrvKsVfbF/auRd+HL/TTCGExKxDT9WpffFX3oKDPZESBWwm+Kjpekz6NX817VVS+DPSLr9YXqLqt7AcK1tkDAq6p9Riqxh4mBPjVLJICURG9bbZgY9fzhqsvhUT5xItewroFFwRv6UIj4lK8b/zu5+vnu+qMF/MHV30upEzGqG/TleB7TTR8b06QRlyiMb6jZ371k4hV3vOUM6JxGcZOmVjUa/TES6gQHFdt6pYtesUMyxqzLLgxpnopTvtiOzOOkbQExvAkZHamXoHPaGg7YvDqogw0MbnDEErrgqjHGIshw0iCRrLfYHDekTuPlZR2klH4Ht2yy/xcl+d85/JYkCq+RRsUJemZ+n1ljRIfGaWqQFZmHWVkxO6YX0ruQhT/1k6bbp5QOkvZi99gC5wP1yvKUKWwN5+RtYqQax+r66kHqdLxqnGqlXIaSnrjwven1TEx7VLy8N6edeVn+dihz2duroMb0K8fKTiVnS7aVO3bfffdF21/29vextvf/vYHfb9169YBsMsuuyzavssuu9T71q1bx8qVKxftT5KEpUuXLjpm77333uYa1b7HpsD3GmthgxFl7dMTzFMfh5lX7K4LmOtHKCYNNhaE6O2ZQ8diOob5Q7vYDQ3cipyRdYaNNy7vV4VT6lxm33ZBACzYevDW1n7mw/KnLghMASiEdMaycWoURJlYHTTHmel2KOvbTUj2mqM320CsJ7m7GQKkUuqCJVoKphcUgmQu1H1v3yPMH1qghaEz08TMJJhVHfzadrAme4IaCXS6Rn9vHhbS8K1A2+NjbEGqMJVhXBR48cPzWYg6TyZ7uMLWVfbaY13yPGHF5BybZ0fYdckU83mD+V5Ge0mH7kKGtgkLqwxQZKKw7o6lITp9PGdsvEMvT2mMB3bBGMXFlbfUmUDdo2huI4UeJJRWbK6EOvvblKyt/MRl/8Ou3Rgi/cj6yrAfSJMLFrb2iwb5EPVvmuUit0Mt2IW4DkG8l9F+ydokuCukZzAVGxQVA+P6AtfZaN1X1jBB8FfsTS3sYy2EwSh3O2/Cgjjav55PQoCfT+9TAVAIvtWo7Gn0fwehHTuquqX2X11Vvz8UJrqvBhyvGddsqNL1QqU+qZVPkxu+ftaZ3DJd8PqrvgDAV049kxuni/4QcT742UX48x98DkyoWqhWec5lnwkBcZViFul7tMoqUUh9SG2tUsFiTQXFk5SQ545u6clSg7WCT1OKhZLUGmysGOkjpzuXt1iyzIaqdFmwVe+eh54Tcm8ZQ9l7zKCEqnwLpQF6VAK99IpKD6/BX1/6yhSulqUNVTxLX+I1jyVnLdY0MJLiVLBSUsasjs7WghP/8+vB0OgFYU3TYxtlEFIVATOT0UkSWku6FHmCy01Y1dIZpudbeC9MLzRZMtLBqWG+m1EWtl6G2/csM74dFtkynlajYGauiU19WD8jKuFhtcg4HiJjqIWplccg1EOMUbWKZL1iZcwqkcTz6cNP59610zSXJ/TyR17iP9DV8u666y7Gx8fr7Q/Fuv91x6Ne4Fe5pIkITks0UUafsIXjdr2ZL3z3qchEoOR9M9Cry1bMwBeXM7cH2L16LCwk4IStB0pI0apSiaD2jUpuYMRhl/VwnRidWpWnjXOhFIIYwXZDmlsx7mBLAymF6fmJEIUffYy+6XG3jCG7dvHdYFG7ZlhYRxPBLymwU2kso6pgFJ9BPh4YCSmExpp5GOuFiWY8VBN0aVASKgrUL8uR6bR+nipi3TWC9DS5IZsKz2gXYOQW2PQkobXbLBPtsApflpSs3TRJWYZCQKUz5PMpt21aDU0XS2pq9H3Hd1LT8tFaBrCKzy2NxFE6y2S7Q15aNm0ew1RR5zZMIGh0BxAndaG/UEdMu8NoSMXLTQjeEo1++3jrSjBUFHgp/UI61dip/MzBFAsWY/XuhboAULUC4KCAH8yp1yqGAEJBoipl0EiMqQin+TSmsg3EC1RFbapFaAZL4mp8zqor1YQaEhLTn0weo+nToEz4JDILaM12VCmC2CCkg4XWt8A1jfct+4qTKYjZHNqPVSDGJ1R9arSu2FfBV2sJxJfuE6WdCH941efrYMU750rq7LtQ77b/PqrYAjdQ2IrQ7sAkRKbBD7yfIq4M56t6HIFZ+fwxZ3Fvx2GtxUoSLGITFJI0AU1M8FSYUDhqNBP2GE0Zb6R4HE67JJIykVk2dXvkPqOdJKTWU7gCJWNLr4mVMfYeC3Xtew7AxaI3JWoLctchMWGZ3kRSREIOfCKBTgnV/0IQYWpKwDLf7ZFPKy/8n6/3FdvUh7EV+8pmDieK9iymWZJkjiwNFTe7ZYZ6YcvMCMsm5tmwYZwVq6YwoixrdJmZa6JeyJZ1yGcb7LLrFFtm2iTW0cxK5joN1Bts6nB5GpiI3NTsoGZVLYsg4FH43otfytGfvTiMuXruVL512pkc87VPc9HRZzK1UNKZ7XDnuhlIU7p2jNzN8kjDYSh3Vlo3Bk6Oj48vEvgPFatWrQJg/fr1rF69ut6+fv16DjvssPqYDRs2LDqvLEu2bNlSn79q1SrWr1+/6Jjq7+qYhxuPboEfeOVIB+ac+5Nv4pa2aSQlX/zZocHfncWJaixEsk9Nj7DXWXfRmR4nzxPsjMUtU1ym9cI4gwFLKiEYz3nBzYbcd9cOPjjbiauMNTx+NAgrnewGKzC3LFsxw3ynQe+ekSiAot9doBx1yJYMW8ZrWMI60T746v2SAjUxOn9pDPfOPDIXTLrOlhZ23uKX5uH4EQeZD4FecYlduyELldY0ULiuESyg5sbgkijbSr7UB2GyUsmXWKRUet2Mees5YNlGZooGY2MdAOYXGvRswshEl6JtKboJ5Anje08zvWU0ROha+oLfh1lbK4o7N2zcNEbaKtk4M4o1HvUG16O2aOs6+IlfLOiFvgVe0eNd2590qptWMFAT2RIFdBVHxX0o90p4F3F9+4EiOuFgoDR9OnOgbn0Ilvv/2fvzqN2yqrwb/q21dnM3T3fOqR6qBIlRosEGOxJjE0lsEhEoEAVj86JmGElM8E2MI9/Q6HC8yZc3wy7BT2NsYgeCfYJRkUSjEUVBI6IgXVFUd+p0T3c3e+/VfH/MudbeTwFlgcFUyVmjnnHqee5ud/eec17zuq6ZSMjFYhLj42p0k5xeU3UOmqgcr9TT42ZnQ54qFVVAyTPU5CdVsulxyVlnvIlyRCr7OLr6DZPPM0iFlq/hYtOr6JImHCUxyC6CLo0Qv/byw0w+0ETp2+ZjmxRy/+Sf/xFMLWgHBtY52otDDNTu7LmbtmoSxbO/7J4dTyeJMppYEiUjyZ+FDYk+wzn53xhlUvymw+7nnY7stfCX9h37jajnT4Yj1mFNY1uMMZxrBxqbcMbR+Y7WLTkeLIZI6wKNq6kMzJwgCzOXaJ0hEsX61iR13QuEJD76rZvR2lbAC4TH4n3g9Ljn81/7X8sOmzoWCaydBYwVAp2xiaoBluD7qlhRb07bUpHfeHDK0XrGEx9/ia2vicnwzivnCYOT96wDs/0tl6/uEL2lqiKHhwtuOH9K5x3HhwusJho4+U4ml0Ti6xJmK4XPb37hC3jb8QAGfum5X8jTdTzyDz79Obzpcs+//ehncf/hlhQiYdPLhNMYCdueeLrlA73+vJ32nvjEJ3LLLbfw6le/ugT44+Njfvu3f5uv/uqvBuBpT3sah4eHvO51r+OpT30qAP/tv/03Yox80id9UnnOv/gX/4JhGKh1jsGrXvUqPvzDP/wDAufDozzgJ5AeYFtjjGd40z7sRi6+8SaWTzri9CaDvdIQ68TiTS3dhQT3zrjr3seXijvcMOCu1PgD1YFvRkh6WmFY7WEmh84OT9JPz3CyDomJJ03pYV2+90D6kbq91o8+06XC0/en0VJvI0x9d6UmLiKDHVsGoY6wE2AwuBNH2PMSUFQzbk9dgTXd1ujNWG7eYRll3wx0N8QRas4e8l4SmWTBXJxxfM7xupMZVRNoG0/XV4WpO6hEJ61qmtvWHB8uJNiX6lZjofrtZ7a78TI+c9jIZdUHKx4CE/tdOVAJ2wR13ZsS96xW15oYzIK8Z3U2kBXtuRsDRJ72lgfpEMfkK8PXKScYOvTGqtIgDaNPuM1e4fkaNEjykX0G0uQxK8iSbNsIRRfUIU0gfZPK9ZEtiG0vb1KS1kQZuxvnE0WES8XO1nqIZqzW301xlMb9yGhItTGEBg3m47Es22kEAbA+W/nKU0LFhNhqxuM5i2Q/BLetxvfMSAqaDEIZXztzpjgU5mFC0SF9a6uIApL0lGMcx+cmCzRyXX//pz6PBzcP6Vcoqc7UFXGTB9IYKmO4fadit0kMqacyNbWrWZglkKhtDW5GSJ6QBmbVgpltON8GDhpIBAyWta8IydO6SG0NIVWsvGHmDJWMfMTiiKmlsQtiMmyCZe0jpwO4bc8Xv/EnZK5GVClrtNAEQbKyBDEa6jrI908veTGwshxd3hmTPW958Oou0Vuu1gvmted409KvGh1eJe8RowyxcpcatgZSb7l8bYeqCdQzz9BVwsiPYJQkajpF1ZTEef/GczwEvv+znss9K8/3fcoX0HvP5dOB2HtSiKqUsLjzu+W0pBRJ/Qd+eM4jhfTfl3V6espb3/rW8vs73vEOfv/3f5/z589zxx138I//8T/mW7/1W/mwD/uwIsu77bbbeOYznwnAk5/8ZD77sz+br/zKr+R7vud7GIaBF73oRXzhF34ht912GwDPf/7z+eZv/mZe+MIX8vVf//X84R/+Id/5nd/Jt3/7t7/P2/tI16M64AOkGLHGsNu0NNegOdSxsccHmP1UYNftjQKt7v+Jod+FMJMBMcNxw/wyHD55POnl/mQm979Beosx6+MtsPByY9PevpBoRJKSQsINMi7U7wfRo+eYYBmNSWrte3knDmydIc61QpoF6sXAcK0tc+PtiYMbOqoLW+JJIzeDg5727hn9fqQ6dSzvge2NMMwjbq3VwdoqqzqNldMEN01VItYJu7GEXU89G/jYx9/L6+++HRqP7x1VG6R9p2xdFp7usGV+bsvm6nyEhfX9k0mlci5Bf+NIRifoKYO/sOgZg0zyeRIXpcIufeksFXtIZp6TuJSlcRZMHKezkdGDHFC0ik4q0csIgqklYMXeSbKxteO44oxETODr4kWgicQYKPNFOl5YyQqzPB8jE03xT0jKPYs1hTGfV6zTmDxq4MekAnOboJX/pH8OyMQ/RVnsIMlVbGTbbS8JWmhy9azXQxKpoEnglwrVz6Mcz94UXX0h6BUCn8EGQxqMyEutXFMmCHT9XX/7Tvoh4oAaSE1FlC49/+jVP6kSR91fNRiKhjPISnBjolOulXyco+Hln/U87lmJT/6yMpxrHdbA/Wux7cW5rNMCZzjXWm6aOVLqMQqx17bBGodBjXOS5b57HqRpGvb3KnCWlDwheIw1nPoNwUPdOlbbgXbWYGyNMwLznw6GbZDg34p4gpMhcWkTWQ0wrLbUQYIr3qrls8LnvcEsAxioZ56qCliT8ECjZlW9qUidE2noTPz53VzscaO3xGhZNh1H65lcg72j3uvor8xIVaLe6RkOJPk2TSQOjiEYQQFg9EPS+1yWoppoePUXfSFvORqI3nM6SBUxhEiMkqAlHzDOYnbmcu1O0ZyUMDsPlUH+718+WczDBPWHg/vf2/rd3/1dPuMzPqP8/uIXvxiAL/3SL+WHfuiH+Gf/7J+xWq34qq/6Kg4PD/mUT/kUfvEXf7Fo8AF+7Md+jBe96EV85md+JtZa7rzzTr7ru76rPL6/v88v//Iv8zVf8zU89alP5YYbbuAbv/EbP2CSPHi0B/yEZOrWsNcsChvabSC0MH/AsLlFnhgv9MRNxZWPg+aKozmSATr+5p7muCHOA+6kkilpaiqSb+RCOqFA03nYhwka7JPBdrY4kqWgUG4mYamEJveKjQYM403RaFvtcQ43DuIBUCfMccVwqqdg6UUTXyU4bOiaRLPf0Z803HDhhEuDw5w6/I0DRzcnqgdrmqsOv0jUx0L+SzUji13XOK1MMvdUJ0yV2Fl2XN4uCFvHqZ/RLgaW845rh0tuOn/CZqfi6NoSOwtsj1ths0erfWEhhBlvSzAVb+2RVVxc4YKRVkUYg2lhoOfePBTZG8W4Riu9oHBuIy5npezJAV6DvRx/fU1OdAxjBVuCs54oJxO0k7dF3y2ZklbG6sAoEHK+RtSgpoqynWrQk69VJh+Bg4T2rHUiYx59axLFwMdqGyIrFzCi5ChyvUkSV66xLFHTxHIaoKckwdgkTFLVSX6+wvixTSP6wYhqZVQIRugf5HgnTGkjWN3+vE3f/anPwgfoVx4SVLXDVAYH+BBJO+JESdTPaVTmqdeMeF6Y0cJZK95s8ATw7572Bdx9GqgMfOh+xbP+xw8TVUf+yk//Ev74aBCLBGfAe3ANMUFInspajDFyTjDUJk+jk3OeAly9csTFBy4TfGR3d4ftZkuIkappOD4+Zb5csBk8+7c9nm2TGKIqayJEDDMHtYXzraULEvT9diBue8zBDv/hE57PV/yPl5eEPDVJZzoAa0dvakLtMDbiqsjqtMVYcFUUdWYdcXWQ36OhacQDpKk9D57ssr/YMgwOnyq6oxa3ccQ6ElqBbEwwZSx36FxpreVrlDryq894AWsfWQ+RBzeBP7y0ZTtETIqkIAlt3HaYWvT+xgDOvnuwR9Ad0/w5eOl/ACD9T//0Ty/TDt/TMsbwLd/yLXzLt3zLe33O+fPni8nOe1tPecpT+PVf//X3efve3/XoDvghYKylsoY7f+Jn4LwMyJnfp/KSXbmBsRAb1ngi1XA419PdNcff2pG85fjJXlj28yg6ZDdhOpPvj6kERyGUJfHbz9Wplf4rGWLPJK48B71K0I8XllU0oAQuvXbcUSVZ9zXHcC5IoGwC5qgmzgNm6UmHDaYzDFdn1IeOK8c3UPXKBTh1mGjwOzLsxwyGYW9SbZpxUIv+Cgbc1koltxsgwpPOXcGSeLu33HjzEQCdr9jd3fDAxX2qmcc1AWMS/kj6S7a3441YPy9XlaVnnuVvwUglnQljTFEHyr/ZWS+qpMgoOSsHxLKm3z3DCGeX99Lj7W3pQ+dgDVJFEs2IBFgEPclWutobTpNDWYxgMmFMGe2p1mTFQ/bOJzJOrsvoh253Pge2N2fY+MkKzyKz6eW6olw3RSePohUwqhUM0rbIx8nKsS8tF5uKVJBK2weD0ap8ApXrdiat7DKJksjYTsruf1Grv7lmAXrOUzKc36+5bxOY7TRyEGMkOLHBbYwFHSBl2lCuERI4VUqkDGE3Mokuy2CpMudCIPrWJv7R616mX1qLsYnYOS7MHLNTzyomTF2Reo9pG7HDxWBV1idVvhn/30IkcMvjbmTwA2mAWTPDOscDFx9kUy04Ni12t2cbAqHrudJXhL7nzBcB2CDcgmN1T00J0mqL3Z2TrOHv/9efwkkmKAjM1hJnQfY1GDitdLCXxSPW3K4O9OsaUwesS1R1KMz67l07kL1FTOLy0ZKqihLkvSUuArRqOV4lFjet6LYNoavKtZ+S5Xee8fd4y7HnqAu87bBn1Qd6H0lJfTdSkraLgbjpMDM5xylGTNuICuO9LPNQ7s0HYF2flvfI16M24KeUSN2AqRyLSm9O0fD4Xwnc9ymmTOQK+wGztcTGYc938toI6UNXcHVGddDj1+rwppK4PBNenqxxw+ovMJKXJpPNohur9Pw9N9rXFrh3rEpMVEWAwrImVzWMBa3fibI91mBmHtsZgjOkw0b2zSXsiSQ2YoQigcFtLH4ZcRsN4M1Y/eX+Ho0alwwS+ZNNhJm2IrZSZW19xRvfeAd2b+DK4Q4As3nP/mLLeu4ZrrWj292O3JSMtm6rlWxDXiZqBVkLjyDsBEyGmps4+t5PIOVMoItRe8DKxi7WtRqg83GzWztWn6VaR4hcYVJpo8dBB94UU5n80blXPthxuwrKIAlCxCq0qX/XqihVUk3nBCZPqcsVvU4cIiskigmPk/1yPYRGA3mdr5UJDyBR0ASbrzFtNaHnlzBBCgIjShXH3JQ08hCSJg3ixpj5HBSpXb7e5aI0hUMhrP84tgFMtt/VQ1xFwe2Rzzv2EZ8ESYkpQghQWYYkEH+qY9mHPPjIVFGcFacoiRJSczKREZ/URP7ha18m5zyKUgY/cm5qK5D6ekDIiVqdBf3XYHFWx0enOH6HteJv2xpTRRY7S6Di7pOBe+OMTW8J3pN6qcRNvdBWTB628dDEdHIhJrA7c1xTM6/UoU7bLHatAXSfUcmRgLUmRnWUvCkYbBWJvcNWAd+L7W1KhrQT+Pgn3MPv3/14ZvOexbzHWvHBN1UEI62q6ATV26xarJtsn7acHtx4rpz2bIfIaQikEIWDYWR/xLlPgr7dmYur4Z9DIH+ky0eLeZgBOf768JyyHrUBnyGQjKFezriwqHnNV34hn/7/fRl+bonZGASgjtzw+Gtceud5YjIc3HTC0dsP8AcDf/Uj38mbf+1DCecDu48/wQfxi+/XDWnjGIdCZBYwcvNs4hgQ9HGBonXb3KS3OGWWT25cGfIvvdOcIEyCVWZlV3fPCE2iuTrCX1ZvrqEFklF7VkEWcrAvQWwa7O3oHIhNgmokcMfVGDhc4k333QJLL4S13nLrE67w+J0j3nl8jhv2T7nltvu5/3SPB+66gD2sShARtnaGDybBAtnOeDAI10H76UbZ9IX1nvMEJckVp7zEaDijS5jkZgx2SSsGDaKpUrJl5ktkuVtGYHI1Hcw41c+bcr5Spb4Ken4Ky92FsQVh5TlC6tMbR+YYQJGRle3TxNQEOWdZXgd6fak+vhDgdBof0/69XjPJQGojdrDl2jFaHYp+nhJgTDS4rpwGYq2JRTTS58+BekJKLEhIzjByeyZfry5pLpTKcCTjEmblSLW64FWJ//Ipz+Sebc8yBIb1KW6+w7bbYE1LjJE0W1ItPaF3YwIcDEk9GDLqUgxfpsmbtoZMbwX2j6aYIpXlEh/3kz/MT37WF3F140nbHruvpDyT59ql0h4k6XdELywBL4RtsO17LveRd5wGhnpJ3HSk9ZbqYIe6sbROhngVbgzQx0QXEg8dBmiAuTN8zX9/hXyH03jdJiff//qBhv4GX5I7MxjoE2EByUVCcDSLgQEk6YyWeqYmPDPPXUfnJME0idPTGXGQY2qrIJNDN5JQuybQznrWJzNJ3vUa/KU7n8ebrmzZbj2x95imwrQ1xim6icn/6U49egJ9XglpqTzc49eXrEdtwE+Dxyxn7DSWL/mPPyWBZgFXPlJxSpvwNw6wqrj04D6pSjQXa9a7DbPHnxKi5e1XLxRb05NrC4HOWtW7TkaOnhkakihysJThX6bOY+aMk1tC4PusMTaDVE9ubccqyiRQ457sKIbJiIBcqPWJEVKWjlGN2h/ORi1Fy50AO80cdLMnv5Yb4jJgTh1mbyDsK7IRDW5liVsxKwo39lAn7n/HDfg7LMebGdYk7rv7glQJs0AaKglsE9nX1IL4TMKTK7SNG+euTytoDfo5YJbBO3Zkh0/Z6hS9vVbKSl7DTJIB9D2MvoeVA2YMY084cypy8qDVfHb5M4ORfnGjVq5ZgpeDvoFkVAZHNjMyo4HNCHgooz6VRDI2YzLitvLaMINse2u3EwWAYazAczskAuq7bwbZ5OTQ9hRkEh5JOAEmSLch1RRSXTJi61ydiKmPnyMoTa689bOLbLF4EVCStIxgpUWQYxsMrC1/8Hv/i3bvHNF7Dg8POX/+PMdHR7i6xtUNe096Mv/2rz6fr/tfPy4VvUmlX59sEqOsrR3nM7gkCZluS+ZumDwoyFLQl+T0PBvxBGDbQ+Wom4pzbeL2Han+DVZQw1BAfkIKJX41tmHTR64ennBS7bJwlmANTTOnxvPCt7yUGKzYRm/dOD/BUtQxyQrixkzHY29sSbQKwTGrVvYiXhnxOUllEcCKCdR82YuUr3fszDuO9bN39rZ0Q8VTbruf3/uTD+HKtmLv3FqKmU1VktKgaFQyYOpIDIbtphFdvxYav3zn83jjgxu6kIjdgN1bYNQR8bG0rkP6j3w9egO+D5jKsdc6You6lkFzDXbutVz7SL057HrMUQU7geEg4IKlP2m1uh0km1bYm1zpTfueatpSlqT74//rv7FOWCtwZNLKJ7bCes83ZuuVga1scqNuaWEObgDjKEEim5yQpGLO09RK0JtorjEQi20soyxt/EcCoVZrqU7Y3Z64quXGua7K5LEbP+Qqh79/I+GcJ2wsro74Qdi7l+45Vywy62OH3w24jSXsBuyRusk0qn7P1WauyPOG5B4zeiMEohsPZCY2luOb93NKsosGk0Z29tSsZrxA5NwVNAN9jwkRMFt/Gm/HSn76em0ZyA1X90khclNP2iK16J5NThCStniyXa4V9CUH57ydYZZKVV7kfpNLLdmE69U5MTsKArGlIB75OGUSX7ksMtlPA35U6RwGnKcQXMvrVWKVHAwzdR9spgdU3z8H/3xetV0jEkwzog+ZsGjh5juewEm9pDaGWx7/oRgS58512FlLSokBQ0jwfZ/wxbzwNS8t/XvqVK6X0cxJ/8kzD/L58Xa0cNWELqk6ICUwFnYdzIeB+tyS2w8qbpqb4jU/rfO6fuDeex4gkdjb28UPnpQSPgQqV9McPci86zk4f4CJiYEtYbDicd85sRQOek1qolXOqxfzHzNkc6k0WiNHscTO8L2xcgzsUjTuuTpf7Ip2vd821DPPettQVYEYDetNA8nwxgdu4cM/9D7e+sCNHF3awc28DN1Sh8iCQHkDXa33wVjuTa/+7Gdy97Wt9Op9FJj+MRjsQSH765D+I1qP2oAPUDvDF//cT7N30bC5CbY3eqp1xdGTErPHSRXfnzSkPS8e543MeccbzCIQH5gTc6+8d7D0clOdQRosbuaJR438TbXZ0i/UHn4maekXNuuGM/msfdAJYU6DVcw2qYr4ZW2124puvvSV89ISMo8dLTcNzWVkwtr4mqmM8ExF78dqNLYR5l6MNvY7/KoROU4nlezlt13Atgl3rcLdsaLf1FTXKsJuGANeMPhlFOTCUEawCsGNkihNt6dAnFYnaU0kgeYh46rOMNvT6FBY9r+OxMoUZ73cvsicvylGV6bC5W3K1Wl+S4vot+MkaOW+fk66JpA8SYOLTRLgNSiaAnlLb5qtlb79pAWBS0XvbqrJMYljQlZtJ+faypjZwkHIAT4b8jwkQck6+RLMM+yvBDBcItYGP5ckN+UEKgHzSAB8OHsRZXviMuJ2MPLmNsn/O4q3gUlAru51+h5t4MKFA65tK1I+gSlBZcDVJUEC+Jo3/BDNUkczeyffWYBZlCmIipSRNLmqZAJjNulhsFIBq/GR0XNn1R2uGgb+8vmagxtn1KU7ZjCISY5FAlqKic1mS0iRa9eOWK83nDt3DmNg8IGQEsPg6QaP9x4/BAnGimIZTfiyP0FGsAq3pbflO5lNssheCoOBHY8tZElpNbk6YFpPSoZKvTCamaeuAtZGYrR4mxjWNbaRXv6l1Q4fevNl3v7AjYTeqqxSEAPhbCj/I0lhEjWJTDZxcRu4sook50jDgN1bPiaDPVyv8N+X9agN+LZtcNYQLnj6SzWb2wduuu2QS7M9OK2wv72HqaB/XCimIRhIN3SkocK6xOIuy+r2VPqkyVuWByu6rsa0fiQMTSqplMl2kwEmwBhAEsRzPc1iIHRLqhNDmKeitZ6y8s0gZjcmmFLtFTZ07iWn9O7Vq4VsRnLm80tQmty09YYfLbDjYePYPdhwevcefquSwo0tE9DCIkKvScZbd+CCJ+yIJtp0440KpIpMtSQsYSeCS7gj7e3FsSKdHh/SyG/IfvBuq3yEC4PczE/cWH2mh/zkP1dRZVSTt09abeZjZxj709O/O6QqTxpsq1wVSsImD+h7BQrj/4xenxG9KFVkPjcmwSwSk9XhNIiXeEn2NLHQoT+pTgzqUhcW8p5uawr3grzZW1P087n/bhKSkNiROxHbsSePTZitqCdim8SDvZ72Fwy0QQhyvRMypaoZUJ13UU/klxm5Ps08FYJdUuTEAMZFmEdRxnjLs1/7Cr7rY1/ARpvYaXLQpuSuxUzIDKepZUiG1OvUSiSZSsr+F/Y4GG+JmexpJGEznZUkLHMYDKRlAJsIQ2Q+r6isQPbZiTERCSmQMKQkc9v/0oc/AUh0fUcXDUe+pQsQfGSIEFNiM3j8pqPBYN76RuIyYNoIgygIsgWtWYlyJrSacDr5ZDMI6iczEAxVlETBW7lGUO/5lMD3jjiIcRX7cp0OXYW1ka5vBN7vZOJlUBLy1dN9rs52yv3AJDl2YugkxOE81jrWQUms8No7v4A3XemhceNwo4kF8mNtpWSKj8l7e/z6kvWoDfhx29OFxPd8wufw9f/rV2gv1lzy5/l3f+uH+ac/8uViHTuDxb2O7ry64oEYVFSJph0I87kMlWnki+XqyHbTEDsnxBVvYNfLzVmJZrl/j/Zwc8Cx/Vih22sN1Z+0dOfkJpssE4MZShVgA9gTMecZdkfHu1QnGUChyUYm+AEUNvRDIM5SPBkKEgEUAx96Kw5bq5rNHx/gjIoMGvEdCA4Z0lMZ/J4EgKAyNXNcQWY+588AUpt15zLQJewF4i0d6UT8+wlGpWa6TUGJcbr/uQWRsiPeSUXa94RlwK4lcZD4qxE1m9nojav0lHPv3zNW1JroTAe/FKTAC0phcsVfkpMkNzc9sQVarZBWQNa3a+DOiACDKXPrIY4GMg/xmkcfJnvp58dNKmqFBNICCDIm2SQITSr7m2V2bmOkzaPZV1Qv/oxk0Gp0Vm8FuUgTyakqIkqgJxn1pHdyHEm4OpIq0XrHYNXJzWDqRNxOxqNqfzwBpo5UM0+KlugNVRsIXjTwthIjljMMdcPZ35Epbd1QEaPBuqQGRaacFnpFa+qIqYVLwWAFYRqsfFfV/8B5HSTURl72V/4GJ5uOt9z1Drpuy1Oe8pHsLOfEFIgp0ke41hkubT0+yjGoLew3CWNq7t+IZj6mJGz0wZO2Ayklmrbha17/n6GR6tn2ZmzfJL1nBDHUsgMMlSkjizMS45fC2zER4kK+r6aK48hfEOa9jpXOx9VVkc2qFfe9mRfJ6amagAVh6bs6iqZej2OcB+JCr+fBiN9BHZkterb37mB7wyf/+E/yyi94LqtrW06i1QR4vMc81lbEPCxp7+Ee+2Bbj9qATwikBPNqyeFHiVvI/k2nfO3PfxmLU+mJD7vQ7zJWJmiGuzuwM+s4nsHy1lOecvN9vPadHyIs4VMdF9vLKN1+Zkck+aYN/oH5SMZiRKaT9hurrWF2GbpznBmYk6qJcsACOh7VdeDnkwCjFqmlesz/wtiDz336NH4++rhB/p6Z3bhEtRjw6xn2YktyUvUarzeh0wq/jKSDgUFtwEwwmE1Fmkfq3R5fRTgcZzJPUQWZiqUeAIMhmkoq4GyIU6UzL8u8hfwHEygmL4BAt0rIYhFI6/FmRRRotqApEz5A6Vnkc5EYIfwcWFImY+o2DBaTkpqbyHOMkX5Jyla8dSJT4E1mzgeDbcOEuGfGY5/1/70tfyskyVzh52sgf2w0QmbMz4kUyV5Obsp1pteHUfQh1jlxSuPfjBEouKBK+rkPTT56CSCm+E0Y0blHcXUzQF0LbOyD2CkHTQKiNyJ/qyIym0Z+z5PajEkyZTBaQcp8INPUDYiPvj27QatVK8m1JhKmisoFMPq9TKRGEBl5b6OqASRIBkMeEBWrEVXrzYyjbstiseTczi6ufK7lWpe469Rz2KXxNqHXy8W1glUhQejFJtaL90e9bPm63/g5QavqVKD5OJMEmgyhq69HbOR6dVtph2WTJqzyeapEWOp32EWsSwS9lqo64AdBX9JgCceNVP8uUrfighl01oMtvBMDK0fotP1SiyLHBANNkGQjgkmGuHVs1gusJhg/c+edvPUo0PWIiU7bjAnaYxDWD3+KLC9c7+GX9egN+JUjhQhU7L2por2W2Hn+muN6n2pruPaxA7N7a7rzUQbnbCrRrs891kWuXNvhSX/jbt555TyvecOHiY+3RZiwW2HK9gdxZNsmQ3/c4DJpK//dSEsg98aG3UhoR9g7w7IZhp16sYvz2eRmPtm9qbFMGf05rebT+K+JwlLPs9DjXCKCHaQP6rdCygt7Wukf9HClIRwEgjey7wkIBrcWMpE/J2ZEw6Y+u2HwbqhCdhjEplHKFd/9xpCqNOrGg2xzbmkYBG0oRL1FZhkykukSwjLOAUz7uSnq320qZK6pt0HenhxAp8eUwDiFTIsZq3IyIUrZscpySQLcFF2ZcCjwRoKmBmC7ceW1tjPqejcqK2Izyueyb0Q+LhkCtl70+ckxEjYZkZGpGZTst4IUqtcu0H46y/ZPTRpRJzjTHkrR0K9rbB2x1soNE/AqvbMuYh2EQXzYjZVqM0U5dhiwNlFpovBLn/xl/NGRlyl16lxHHyXYEQnoCOdBpLDGqWRMiW14I6NVM+Fxa4lRVR5tYHFhTd/V4qdhZJ+Nt/zqZzyDk9MVqdllfsMF6spx89zROMNJH7nSBd556tkGhOkfIvhACgFUa24SwslQH/7ZsuWgMnzJb/0kprZUR058LBaaLtSKOFm5d6RGmfdVwu8oiqdtnGmLhHzNHPS4OmJdBCOaeueinI8qEhMkxKp6vhRTneBkvHS+BuxgcRtDsga/I5B8inLt4swowdTWSL4mYhP5hc/+bB5Yddgkk/2sD3KeVhuStRL8reHRpLP/09b1Hv4jX4/agG+amtQPHHcVw67cMO9+8Dzn3mg5+RCorla4Dp78V+/mj//wdszewEfecT9/+JbHs7O7ZdvVvPUNj9cbn9xAbYB06sbg3ItJjN3IF8wcVYRZLN7guaoqNqJ6447ziNW+qfGm9KhBpDeZPW0HhR1zAAc12TBnbtTA6NeOEk4NUCXsqR0rfb3xN5ek9znsqUzsqCbtBNhY7LmOeFqT9tVDdS30/2Y54OtIGlr8OU91WBGWkeqBZnRTm6wpqlASj86+u0d/DiQpB2FKFWwHA2srPcw24a1C470d2yZBbvaEs9V5cmni4qdzCrLvfv7chKAF+bXxLCpQprrlfdAHolcPBqdwtHI5jLrdpExsy14COWGzUqllFnY5b0nQHpuZ9Apa2GE06TEBUkaELGN/32kVrx4PsUmjxDGjGPl3I2oNYHxOGPc5b2f2M8hDl0hCXMvHOWEhIm5sdcRq/zYlCsyPES5D0w4EaTrLfriEtUluskESnqf/xg/zbTf8NXb3z3Hvu95FO5sThp6qaUlVxezWOzg/k1tNikbkY0qKFHdFi90qZyVfh4sRldmuGkFbdNxwSoY0D2w2gfPnz7GzM890GC5vA287DlzrQunFp8ETN+KMZ+oKnMM0Yq1rfMDOGpa14caZ485ffqmc5yiJSJjwCuI8YusgXIithaWMj85tI9fJ8zPxNdlEmktya6qgtgmGxbzDB1fy+r6raXd6DDAMjlRFDg7WHJ3MJdEKAun7Sy3tVYOfw3BrPybDlpF46iLNYqBfyfc+m41lkugzfv6Xsb3h+5/+1/DrntgPuLTA7l2gHzzxeIXdXUhP/zES9K/38B/5ehQH/Io0BLYx8ZJnfS4X5ic8/z/9Ot0B+Fs7WFfUH3HEm1//ITzpo+/h7X/4ON5y1xOx+5HTd+5JoNdgT9KbsVqkplqIUSRwp076/N6w/JBjujfvC3xdNPpoMKMEI7cW4xuS6Of7gygOWkk+y21GUxWgwPOFaxdlgll/o0hp4mKEsbFJ/jYTYlKukKd9bb8TC5yZLXzTRljjcXDS019L6yLNAk998l387pueQLXwMrbXG+E8mIRfxgIhnzn+STfJUG4mWQ6YeQRTtv0Z5r0GmTCTYOv34pkquXjsO+nB5go997tLIuDGcyBtEL255TZKQhANdBvTxCwn6/jTWOkYa8bz6gXuj9PtNpP/yRwChdtN1qRvx89LhlFKh1IFthOyZxivgZwAoi6KOTHM/gJZlpl5BRiKs2FJqnR/UiMPmJKI5mOmecrEfbFUm6qrT/mB7HTXCUokxjaJUEeReFWJSqF7Kg3UUQJ/DIbaiflLv64xNvFPLr6Gl8z+JrOdXVpruHpyzHz/HKmq+ce/9zKxzs0VfaBwJvKkxKSub0nbRGbjyrmKWYqXORXAb37e3+NNd13lsgks48DKJyoLD24CfRSkIfUDadtjrMHOGmgqjWEGZ+Bb7vp+Nl0tCQ7gO4dZoKw6QReSoQx2ykmKyd4F/ei/kdqInyfc3It8L38vsnX0IPvj2sC2r3E2Ym2kqQOrYOk3NSkYlvtbYjQcHi2o6lBG4VqTiOd71rvinrc8t6HvK8JgC9ckDsJN6jd53KEpjon5OcnK8LEv/e3f4P/3lKdSL3eItuJFr/05vvdTnsUhEFdb0eTz2FgxGWmPPMzj15esR23An1o6bq2TYH8+0V427Lyh5fRDA11fU60M9147ILlEfyGU4IgVKUrSfnHSYA9o9s1INotS/Z9eXmDnUYLQoASdNooCAEowCq1A2/WJxS/U+U5HhqYqMewm2quWqL9ndmxJmDMCsJU2gV1bmmNDfyBRNlWpmGOYwRbnuGLk4qSFMB4rRQeaiGsDoXejF0A0XNos5cYfkcpEJ8iN41JNeZspZ6DsMvL+xc/9IYTG6WvL4x6FqcfE4EzrIqE6eEpCNu1hF1dArWJzwEtq/WqyQYzTihvL1OqsDJGpJvyB7JYXjXgXNQmsGa2IFXmZkqmMS3LDnyo2HjIPJB/C6TmxuUffGUJLCfKuM5jOEGaM/Ihmsq9Jq31NBozTyhwUcaAEw4fKC2Nm5+fWhSIMKSmfZFBzGxgJjxnF0ENgKoHxc8/eulhauzFYSWIG6eVPEZGUEu18zmb3JvAD+/s3Qdvyf7/hZcSuGs9XSYb0WKvfgVE0pyR9Vq7VVKfR4bCO8h1qIn/04JprOOLlFXblqeY1yRhCEEtu+h6cwy5nxQq2sbBXW77q939YDmecjZLbQZiY4rWQaJaDjLLdilmXVUVD0mQ1t4mMklbbgy3WJoa+ktHPwUiSk6dA9la3X5QOTpGa9aahP2kwg8Xt9/ggUySrRhUUQLsY2Fts2VtsOTydC6NfWwEgSI2tImFbycyMmY7BngnkZJIRZcWmFuLt1mIHw99/4+v4gb/9XE6HyL//tOeyqBInfYXvtzyW+vnikfgwAf8xk7p84NejN+BbC8aS+oHO1rz0K57Ns17zY6TDOY971TEXt3schSXsRdJxK/D3doQeM5u3MNq1Ypo6oyWQIGbkZc2lmmE/SKBMiThhw6NQaTLgOlPYt0QNQlpJpUbm24ep/W++mU9WllilSuDd7a0edzzaWcY2lglmyeoNcJD9KTPDFcozUarXFC3BSXDKVSDR8MDhngTXK20ZKGMalewYW6xpH1rlywZmhGLaM89DNcxZhzmbxufW45tFLdaEqSzbfmb0qqEkZqXSn7xvcT1EP1O16HlbjIOUtAVgzr4u91MK7K2qiOIeZ00p6gsJz1CMUZLuv+ynbqsiHWcCptfjoihCctLXtx5cD7E2ZduymyJJzXmq0RjKBEiTx4vKQNEE43Ufi3e/XsMT74FyXGFMqHpVVCS1Zc4GR0GRgmQkYVIeQJoFQpRq3pikSgpGF76gsrecY7jIV7zplfzAx3whG1szq+CFr3+Z9J4zye0hSpZisqTtFRrV3eepek1SeaZuk5WK+X88/fk82CdCXbGaNfy/938f/3R4gYB5CQnwOwJLGyPV/De/4/uJ0eJcpKoqmtrTDxWbkxm2DtgqCFNeeQy+d6JmcOJ8l3kd0Ts1ZTIj/6eN9BtBOpIXcmY9HwDlKkQjcwmyOgEJ9ABhXUsCZxNhK5lk1Xja2vO4/SMeXO3gTKJ2gYvXdrHqAtltaubLXhIIm3A2MkRD3A1ynQDGinSSZPj5v/7FfO6rZBbBa5//fC5tAp/3ipfzl/YqPvUnXwrAyz7nuXpBPSSbf5Sv65D+I1+P2oBvDNidBfFoxdBbLq0C9Vvn3PGfD/nuX7iTO/+fV/O4/544vsPhP23D+v4dqRCze9g8EBeB2V0N2xsizTVLtYbuQFnjboRCs9d5mI83QZmKlnAnVcG3Y53KZLRpELdeA9ZBj3ugLYhAVFlWIfiN5GFx6LKjFtudOLk558o0u3NVwjWI8zD2Fkugkcd/5TlfxNN/4mXj+xc72YhtA4tZT9h3hMNG5IXBSAxpQgmwxYRmEvWLCUquyNPkOXn/J8chk9bCrgw0EkKTvL66ecNw2kBnFdlQFMAKKdDkBC1P47NChsoJR6xGox/RxJ+FIkxiVC7kPxhGQiCcTVp06IrxQO8kwarTOAwJCllwOtZ2hP5NSVJM1vEbrZy1ZSMvkoSOijFJAUVyJr/nAN2M+5XUijnbx6YEaSHnzDjtDytyQzIFMcrtJklg9H/yYcjHsJegmo9XnBIAoSQZmUmfx9iShByWBifvocc5dhUpwZf99k9KwhMMxlaiTojAXNjtpo7lvTLrvvAl1m4kds7D6FURGR0UXeLTf+1HsCorfNknvJB/Nf9qOh85HcS7oXaG3Vqm71kDt8wdKRmsjVJRb2r6WnoorgnUjbQnQpBxt3hLPGlg4YWkmCBmQqMmBqYOMkxJIXeCgaMalgG3GPC9o2qk32+bIIlTHfmwGy9x1M/YDDWHxwtBIs93NK0nJsO87Rm8o608jQ181IUHuPv0AGsSeztbrl7exbWe0DkGdeZLyRCyWZJJooSpJVHxq5pf/bufx+V1wNSRn3/ac3nz4cDxEIlN4q1XtnznX/98Qkrce9QRQyb+PXaCZMgy1Id7/PoCHsUBX6jIuaqwhJj4n//gi/iMay/lXHsBgKsf7lhcTKTf2IcnSl97dr9jc8cgZKxNxfamgNkdGELDsKs38yAWlyw9nFbimpWgOhHIs5BwToWh67ZywdiVVO7k+9wgcGzUo2gvtmDQvrjcyOJMKv7q1KpkLmmw1xty1CpMg7jpTYG1Ae1FqyzIUIJ+tlbFG/7Wj7+Ml/z1T2NzfI0X3/867M5QWhif9RF/xKve8mTxAA+jnz8gGzD30AlbmD4fe/0nM+Ef6lkfctV89pTJPHWpfIoTXCXQsr84x3WG2SXD5hZNoHKvuYkY77BB4bfSbxYydFRNcdH4B1MkW8UkJzPZNeBa9SzPhjm5so91HDkVuf+ak4KsJsjzC7T6Lc/RjKOw400SOVQljH3x16e46mXtfkaVUiV+CNKyoExPK4HWadvEjDa9qF0uWmmTOQ9VxGXoOGb42JQxwGVwk4FkpS2VHf/KYCCviIImfOV0GiRgN1HtZLXCrhIjBVwOrFF5Wt7+ZAWCNyC6+kxA3eS/Wankp/JJb8eEDbRXHjEtJC8e+BhBpapWvABypfu83/4BqkoklCIvlI2pnKAFjQus+4bB11hFKmwVadoB7x1On4cx1LX6FlSR1Mhxjb0bt1OvmTSIXJFgxc+gEa/6tD8I+x5RM1gnGvid3S3Hw5KDCyvWvubq6YJzyw23nD/meDNjZ9axGWqB6W1iPu/Yn21obMCaSGUjG1+z125xN0ZOty3bQVoqw7YSEqRyIH7r2V+EjwkfEpvVlrUduP/IcbWLfNtHPYe3HAkCcDCveNlnP5srq8gQIrUBYy3hIWZJj4V1vcJ/5OvRG/Dz0l7SXut42n94KTe9K/LJ3/1y2gYWFxMnTzBUK2iOLLECv5NYvq2m369J57wE0asNcc8Xi1i71mEdqVLdt7jR5erMBINdCQPZQCF/helI0Ql5LN9Y7SCue8YbZehTgn2sJbjYQVnZHu2l6xtOIFgTKYEfm4qNp1TQphC9skogOfia3/o1/u3TnwV3/Z4ku6qTvnd9QPTC8h2SwRxJJUY76VvX2QTkrPlOmVanqwS+bNc6Wfmx2ESpzqLBzTxcbuVx3b/uHGUAzpRYNv3Mkq0bDfaT9kD2XjeDIbXpTL99ijbI64SVbjtBCgrPIiMa+eTp9hmvxXWy5diYDD0nxsTATj5v2jpS6NzpqPRUUeyWZT8nwTZNJJy5l5B1541Qr80gJDtTFB1aaQNEK+x5k8SUZoqy5OORq3RFAAq/ZZK/oTmazQN9khBFMZA6V0hnuSI3K1denMmMBXnK3Asy0jEmpiLVRPTpShDMbYx87oGiuhAto7zWLQei9qlTMlSNx9mIs4nBO7yXL1G3qc/c3K1LLJdbKic+9MPgZF9dpO9qXBVwLmJNKhB/yq2ewZahTlLFT45xpS6DSHISvQYcb2mWPRd2VwzBEZJhtrui947ZbkfXV1yJS55804Nc2iy59/IBO8st104XtM1ASobBOyob6YPjMM145/E5Nn3NueUaZyMhWfpebtv/9Wkv5OI6sB5CMQ16w8UtfVSPqj6SksVZ6AnElXj028WMw9XA1WyWZC1VNYF3HvLdfrSv6wH/ka9Hf8AnYUjMakuYJy59tBW9azL0B2qCcwC774DNzbC5WW6k/ryHNkhf3IJtpCeZSXGglWUwMhGuNwR1sLJrWyrw6Y0rWYp8KhPLxJsaCU7NGBCEMEchDuZxqGAwmVymFWB571xFaJAQBUAah7ugQSdO7tgus+YRjXgnPUNcIhjHH7z5DkwVxaOn9YTKnXFmq+cegKbxrB5ckmYBc1K9Wz8/GSSAZlzdn/0SlXHBCVhVGJ1r4IB0vofDRvT/u0Fu+rlqrCUaJnXZy3JHPfVjUM0ufCW7UgAoKwhy0Muvya0dC2EnnGlLpFp70lnKl8aAkz/XDnasfjnrqGcmMs08137qADjsJrEy1vOSn1tkmhnRyQx6GOWEwUhPt0okVWowqGqh0Up3sOP4ZpOKrDQ2E8+AjCpokuI6Ro6F9s1L4jXopqsMTZwpk/jl95kXk0Y//cK7SCOyknOe/P1Kcr2Ua21QyEP5JSbItWqScDxKG0XbQnbl5Puk3v22ilS1BG6AeSsbHaJhezwv34VmMUi1HS1GIfy29QURaPV1wyAw/3bTEIOhnQ8Mg6NqgygPqkg9k9fFaAjeETaVJDXBiFtnHUkoIS6BWwzEZNj6CmcSlkSIlnkzcDDfcNLNAHjH4XnZ12g4urpksbelH4RXkJIpPvtH2zmHp3OCdwzesTvf8vInfwWH0XBl43njgxvhsxqDc5av/cOX8iOf8MVUIbEeEuDofSLFSOo8pqmhcsRtLzHdWoHvB8/pRo+/Mdjl7DFFc7sO6T/y9egO+DE3yw0hReZPPGbz9j0W9xpSJU57QoBCSHaVBN+TJw8yOarPMDjyZYXRLMWA2TplUgtrNTYJ24lm3GQCFVqNowHZUoa5ZMa+1V5jWGYmILhgRzg+GnmfpBKjiA63GIOCSeDWsl+hENrksdREqYqypWYmeSGVrPXSovi//9tPkSx8x19/Fv/4NT+tcGticcOG9cUd4nKAHc/e/oaur+jXDbeeP2LVN5yfr7lUBQ4v70jyMpvMFEiKXrR6LJIRlzwLqEWuENWSuL8Fw/xgQwiW9ibPtqvhNPeXDfsfcsTROw5oblvRPbAQApoy+mOKpbLOJLuUtei57aFJFxNY2Oh8ALKioVbS4kD5/5TAzKJA1H5ynSV9z0lCp38mjzUVtvh4YzHaNkCDpVSxEK3KsIwprHOr0tCsjJBgK6hPYfbrtVWQh37MFgqnJG+Ufi2SFYVIUh9/tzWERgmDfU5WtO3UalYzSFWaFLYtrSG9QE0SBCyjAXE+QYJStpA1glwY1Hdh/P/Svqjj6JFQR8wykBRuL60GF1Q1weg3oGqTqAN1rIu4OjBrBvqhoqoCzia2fU3XVcUNEAN1K5W/ZPihjDkOQRQzdR2wRlABY5NO0ktUTWIYHKGrCGv5MpomFtY9IMNpnCKAVcTOI/GkFiOeKpG8I6wr3A0bNp2Y2iwa6ZHdujghaiC/tllgTOLoZE4cLLaO9H1FDBbvxVHvJM7F7bGKhE1Fu98x9BU//In/gJPe0zi4ba/mGb/+Y7g6YG3iZ5/2RfzYJ7wAkxK+D2y3gTAEog8YZ0WSqI56pq15Nxa+6lNN7t0/hmD9lB6+in+Iw/MH9XrUBvyUEmndYdqandbynF/+ScxOK3yeK4krfxUw0B9E3NZy9SmJZBJpHmguCiEnLOQG214z9F0tAacRaVSYJcKFgbR1NBc2dEet3Oi0+rGDsqx7c0ZLnSFoCb4jY1/mkdvyGcKkltdZtdlNRit9CyaOhD4TwN80YLuGPAYVC92FqG59aaxws0GLWndab4o3fa5C/8mv/izsxhKcKicwu7tvRphHTk1ivtPRd5Z7L50jXmq5vNjHnVaCVieoDl1JluIykHbjGX9ws3WlWi7aeYvcpNeOTb/E9Ib+YMDVkWpAJgsCh3fv86SPvJf7DveVjMWYoWcPcDhToebko1TS+e+Jom2Xkw7GW/VlR5UMehPP89xtwtRI0M+PKV8hVbpPOmJWpG/KFUhg1FGvsPzdZDsmK1ZjcM+JpHy2XDPZbS9pAR1n2g7J961JJZ5bAnY7MkALgdEmDcCJYTcq2jGiTiS5jssxzNtcnPdGvkV+YxPkmgWgs9IeqRLuVP39lSwqlfxZRQZQdN9YxKhmq8l2o0z4YGRUdGfHbZ3JVLiSFNgItTx32FYYk9hfbLEmsRkqum1TrH73zq0J0dLWstFHxwuB623Ea3WcNe2DFwth37sSVAHCVjX6E1VPt6nFAjerBrIio4nEa41cqyr5TcFg5oG29jgX6fqKVddwbrnhtvkhziT+17XbADjdtMI5mHsW84557Vl1jTjuDY4YLf1WkgBTyRCd+bLjGa/5IW7YP6UPjp956tfwi5/xxayHyKr33H0tsul7/BAIOhDHNDV23vIenfMe+rt7yO+PoXUd0n/k688U8P/1v/7XfMM3fANf+7Vfy3d8x3cAsN1u+bqv+zpe9rKX0XUdn/VZn8V3f/d3c/PNN79P7522A6m2tDszvvo3fkb6sF0rVUwLB2+Cw7+SlJylN9XeUF2tJOBauRmGOWwrvYFFQ7y5gwda/F6Q6rWJ9BcXVJtRMmY7o69NI6lOb9ZFK62Vb7FPTQajDDG3NcRGKvYwS2eGo7y3deE3Gg4/XF5fkAVFed9NUqarQKm56kyCBtDlfoQEr91Zx7Dr6K7U2qKwrE9mVPsdKVrSrscd1UWj7da2WImOgVacwTJDfAxICWpg0ESgEk9vACpolz3LWc/V8225maYmstd0NBeu8g6VGKXBYtZOIHJlGL9bLzGM1bUJRhwJszvbYEfOgZWgJwZKkGwmsZnSAkh2JCfFPAJW35tBzXb6zJmQqW1mMBONvHosIAE0tygKt8+M0LZRZUdu1QTV3Zs8fjnzOLIsMScL2jaxvSmIRN4Xq9eh/I2RHJch9XysdHunls/5Oow1UqHmTk2E+tiMiW0C28lxizWlpRXz+OiYkwNbHA3DXJMONfXB1+Jo2ITJ+dTEo0pS5WuWmXKryoCtElYteF0tSmofLc7IqNjgnQwgaiIhWhZNT0iW03WLsZEYDV1XF027H4SgF6MhDMrPcUnUBdpGMHkQUTDEXUnyQu+KWsBUSfX0YM/1Euh1m6udQT43yTUTgqWuA7Nq4E+Ob2Lta462cwbvJBFBUIb9+ZYQLdZGdtqOq8OCEASZbOYDwTt+6mPupOu2WAxV27CKlj+5/5DtaoWd77HqorDrDVBX2GUjkkR4TFXq7++KyWAeJqhfN94Z1/sd8H/nd36H7/3e7+UpT3nKmb//k3/yT3jlK1/JK17xCvb393nRi17Es5/9bP7n//yf79P7p37A7u7QOlje5bBeevV+JzEsBVK0nWE476mO5Y4ZZxGcLb7lbm3xO4HUANYwvwzJzmRanEuYOrDY7dgc7RUynN+Jak0qNy+3HQl3mPFGGptEtVYmeRCYP1vI5usrzOX/q7UpTmpFMuXGm3Gs4PAjtHIrN+8Mw8qNqGjFM0tfb1JSbWtVNBjiXKoON/eEocY0ot+N9y2I5wfMSQVHFWkncNttR9z7e7diS2/YlG20gy0mOSlJYLK9GLnEWm/WMzmOdHoDrcSx0DQCp0bj6O9b0u2I/v+JH3Y/d913A66OvOHeW6mqyPZoJgmFjjjO/Vyj0wl5KHEww8EGsrtekd9FCdRuZUafA1VdmGDI41Izmz81UeRHyZCCQvTIYKZYCUSfFA/MiURuwcQmFm5GZpznYUJllkKWfQaKU6M8N6kcUY77tIed9330zpdjL0RQipuen8s1ZP3kmlISZ0aoSrsrit6/DOuJShzV6yfD8uU4a+zI5EOTwG2Rlk6C1I3IQ4b2CWZMZFwiBSstJf3aRGWVp6x0yPr8lF8v6IWpZWBMVQW8d0WFYYzY+eYkzbpIO/MFsu+Do+tr+nUt76WVu1MzIucifnBntPaYVNp5xRBK/fFZVyNKM8twDmWoTd6mxV5XIOUQLCFYNuuGqg7UVeD+oz0qF9n2dfHNr6tA03j6ruaBwz3O76yZ156L1/bkY/RSiNHwreaJXDk6Yu0Nxw/cS1XVxBhp2pbLlx7kpjueiD24iWTde67kPxjWJPl9r49fX8BZ5e0jXqenp7zgBS/g+77v+zh37lz5+9HREd///d/Pt33bt/E3/+bf5KlPfSo/+IM/yG/+5m/yW7/1W+/bhrUNcdPTeYgNVBu48EcR2xm2N8DuPQnXQXuxoj4xYier5K6474mzKAQxhRvrY0NsGeHHTm5AXVcRzw0Ffq1OrWioLVQrqXQlyMUzeuxqZYmttAfk7qjVpMLIVued294Uo5U861z6nSM0y81bIZJN7VYN6uKVZOTlPI4s8QzzPvTsWdi/6RSSwZ/WMIt87JPehV/XxHMD9kg8+NurFnel4p433CoQdt7u6TJnKz+7tQINR4qDm107WLvRr1tHDjfLgdmyl35+AraO87cf8o633UI6rgnrGr+p2RzOOH/zcdHfxypJyyJ7ziuKINtDOV5Gg1Cx6M0e9plLMVOER6FoU0WZCZ818wlhgueKUhEDrEDd2RIYpglaThakP16MbFSmJ62X8TgWu9uHQPNnKuNekjTbS1+cvE2axGSUKsPzfiFT2UKrp1tbRbFS9MCJDDS2YpkcF4E4i6IuSYwkxKCjeQfpybuNbE9OVk1OLhV5sBO5ZpkiqUoRrBxvP5cE1QxG5IFBvovFaTIZ0uBEApfbMvncJor/RApi19t1tQToMI6L3XQ1275mUFZ+jJaYDENfcXo6Z3valgvEmETVeqI3+M4xbKtR0RGN2OJmJj5nUTIWXpUSScifJmGrgK0DuEg999Stp5n5ohJIyeAHx/a0ETlfNKy3DXUVmNWexUxMcvptxbar6buaFCEMjqunC/rgWC46FvOO6C1xkIE5/5/0Dm6/9TzV7gE7Nz+B+oZbWd7+RGaPfyK3ftTHUp+7QeYCqMnQB+VSSP+9/bz7ze2Dd71fAf9rvuZr+Dt/5+/w9Kc//czfX/e61zEMw5m/f8RHfAR33HEHr3nNa97je3Vdx/Hx8ZkfANoKnKXvBv7Ns/8uP/hPn8X6BqkY3AauPnk0rRl2klSuiyDBsJPqwewOLG5cwY5n+7hBAq+RSs52ltg7hpMGVo7hIAi5qRZdfSY62a3cFGyWQ2XYNBvk5Bjsxr6t7bWnnNn7kx6nOKsxjpw14O6ea7CTG31YiI5fYOXMyNb3WobSPxXG90jgI8HxPXsj43kw/N5b75AKPI7BZPjwDdWHnhLP98RFKKS4aQIx/Y7kIBlrCQpBrTsLwzyBXYsm2a4c4Z1LUjLceOMR6WDA7svNjoTA7zlRqCOb11wojPUzlrU2lRniZTsyhJ1jYibAKeKBS8QmEdqJVj4H3pwsVeMxmxIDgWKUJA5vE028JnjViQbmNLHDhcKziJXMBogLUSKkVhjvcRalws7QsCZNAt9rAuONJlUZHpgcC/2cQpaDwrJ3HYq8iHmTiQiPQVnwdmOFN6J2zdVKkALXSRJdbaA+FUVItZ5I+vQYhzlsb4B+X66PoAmHn8u13B8E8Vrw0grKiaDRRMXobPtMCkyDkjwVuSBlWFxPSDSk3hHWNVFd6iQxF4hss26wNoqczsZijRs6Jy6BnYVBLG2Hk4YULNFLZW/riK2StPI6K62ENmIudKRdL4XCgcfYxOLchnq3L7PoqyYQg5DsfC+wvFN2/rCt6DY1VR2Y7fTMFj3LRSfXVLRcOdzh6NqCfi2kOedEo9/MPK4KBC+tiE1Xs9k2LHc62p2eeuaJwTCYio2HTbCE3QO62Q5rW9O1SzZVO3WU/qBcgrA8/M/1Jet9hvRf9rKX8frXv57f+Z3febfHHnjgAZqm4eDg4Mzfb775Zh544IH3+H7/6l/9K775m7/53f5uALuzIK23rE473p7g37/o6XzFy36FMIN6Bd1BItw0iFyoCaJH1n47g2F+rhPCmk24qzXVGmZXpJo5/LhBBq/km+nGluo7VmMQKJW4S2I+lSFkJpC8sq2Tk99DJnjl4SlaGWWWv3ygwvMYhoMgvgCtGva4VGDfMvsdYBalgsrJhknERZQb7KQKxcjNF4RlLYxpSRCsN6QHZnTne1Lvirwtk7iSQsKF/Z6DbFYGGLC515nnxxsJktVRJQlTkwirhuW848Ybjrn0wAHHp3Pqcx3DtRZ2PZw67JWmoB3Fdpexqi05R/6fNAak6bjX0svOv5tE9v9PBaZ28sXPyUGitAHyFDksxCaIfW0+7naSQGTpnF4PeeaCiSO5MyVl7lcJ0xmRMiLn0e/EQthLur3V6Wi0lBUCfqlJom5fSSCjzhzQazwHf9eB2RqGZRKPiV4+w/VMFCbKP9DCNTZgBvm3vEeUzx5JqxBbec2UgY8RpEECvaIcbnIcQecWGOidjL6t5aJKHgm4baCZDzi1ru3WtRw7NatJweCqKNr7KByKrne4JhCjpak9IVqqKhC8w7VBht1Mr10rN/uo46NT5tHUUaYOBoOtg5BK21CmAqYIm9OWZj5gWyX7dZUSXWuMjXRdLW0GnTswtYJOybDZNlLl+4awdYXwZ2cD3lvC4Jjv9azWraIhyIAi7/Au0lSBk6M5xiQur8EHaVcmYx5Tkrk/j5WiFZ+Eh3n8+pL1PgX8d73rXXzt134tr3rVq5jNZv9bNuAbvuEbePGLX1x+Pz4+5vbbbwdjRCKynMG2pz/teJCGYT8xuyjwfNgPuMs1yw875NMe9zZ+6e0fQT9ITzhZRGOrDOFUJda3JepjHaiTYHnTitXlJTbr1mdjXzO/pniZ2yQJxWQJuzrqxDrKPHhgJPvpio3OPt+IlG9aHdrOjoxnhbJjdtvLk8VaSVzoK0lq5hI0TWfP+APYrT0rMQuO9qphc4cnzQKzC2sed3DE2+67kbiqCsM71Umh+RGBSJNtxE0CfJOKo11qYyFlhcEKiap3POnxD/LWd9zCrY+7hmkCN5875p4/uYk0i7grtcLYsL5DI5KdJCz5+GUGf+ErjANjipSMyTYaeZ8sJUzhISTHpO+pMG2GnU0wMA+SzLgIs0DcOmH7K7GuoCnRjLB3oyoKIDWa+Vg5TnYt10TECglRE5jYQGqiXCu9JexIslnOV87ZVPOerCI+vcGpQyNMEkiUK6IITW4zZIMfp9X8VJ+fLMXtMV/HYUkxB8oEvdBQEJbMWRnm2XkygQfjpe0Vd4J+T7S/bREDpqAOiSuZ3mhmAXNakeqoFa8YRBmbMDNPVYtr3rCpMRZ8V9HMB8ARlA3fx4phcLTtgDHICN8osL/vBTKxapgTvKPe6bUtANEbbBNE119FFrOexgWONy3ztud0NSP2VZmIZ528B0lY+9FbZjvKxO8qqjoQbCJ0jn5dU808VZYJ6r5YmxjWwqeJ3lLPPK4Sj4BCVNQVBstmaGVoj7Z5UrehjR7fVMQPVtj+YdafVsVfr/DH9T6lPq973et48MEH+biP+ziqqqKqKn7t136N7/qu76KqKm6++Wb6vufw8PDM6y5evMgtt9zyHt+zbVv29vbO/EyXMQYza8AafB/5zs/4dMJcYPzmolSUJ3ft8wu/+lT+6m33S185CmQXO50q1ojxSjoYhPR3IDen+Pv77Ly1Ula+3uRmqcC1eZqZ9UbgyjC5KWv1a9XvPVVJeqF6g8xVZHUqX9BqJc8rDGeQKjBDndpvJokOmioRl1mDZ2TududGclfWv0OZNGcS2jdltPx1iX4/lVn2y7bnLW+5jXjYSHIwiBOdO3FCQNM+skmMsjEd5GNK9Z+gDbDjxaBkMRBWwrQPhw2QeOvbb6He6bl6suD8+VPufeBcOSap1t7uh69Y3rAqzHQiWtVyhqhYpFLk6n9EPUpAT6bMUbBBEQDtm4s7SRrlldmaNxkJ6tEUt7q4rcpjlNkF+ln6XBO0cteIa7J0sonyMw+EPU/Y8zIhrbeSTKH7rn10kPMTW4X95+JvnpEi06vuvZNrME9KLN4NfmwPZE6BiSon1Ws1zEfyXqy1599AWIy9/9jwkBaOIAxhJtvittBekZkTJkySWf2OxHnE7g5iVV0nYf7XQY6fIhUFMcmWxxOjJGPBVrG0XWKwuCbgqkC7FAKBq3Xug7YAxBDH4oOlcpGduUDo2SlPhuSEkkxUTaBpB1wjiV2KlsWsp62ydh/WG6m26+Ug10Iw4tTXePnMPOpWXfusSwLvq70upxV+W7NdNfQrQQCCygybZY+xibCt8IPD9xWuiszmPbu7G9rGyzm1ScfzgttIi+T4/nu49o43E7sTrq/3sNIj+Lm+gPexwv/Mz/xM3vCGN5z525d/+ZfzER/xEXz91389t99+O3Vd8+pXv5o777wTgDe/+c3cfffdPO1pT3u/N9KAkFIw1K6iuyHQXHP4nVTcy6qV4fWvf1IJoID08lzCXGsEatRBOG5jMSeGze0DxluqQ0fcDzI32xvMTR3pwVZc37JXehqJV3mjirWtFQi9GKlkZMDIzdT2D+n51kJkqq9U+B2lRKtfflwGkZuZRLvf0W/nLG45ZX3fjgScOo7w4dJjD2vZhmxpqn3rtOsxh7VWXfr8KnHp0p547V9uiwwsE7aMF8ldqkQiZT2kXSG7pd5ABfaGDr+uMJ0TF0GXGNYVzYWt6KXbgGsC3lSEwfHkO+7j7Vcv8Kl/+a38+tuexKz1zG8Z2HY128tz7MUl9iCWQTF2JUlNnNgYZ67EdOBObqegbZbkpLWRj4HJSYRLOpBGq05NJEywo4dAG0Vu1Tk5Jop8FIKfQb4p03Mfjdjc5/fwAuWnCkwVC7scY0lz8ViPvRN2ejdyMkyvXI5M5otmopsf4fWkNsz52rFe4HZJSClcADtQjJ1AnjfsSK9ezG7k8Wol7+8XCJxcSUJgPYWAKO2tRGxMOa5WDY7c1uDniZSVBgqHZxKcjIXVY9ZZkU3NgxzjHY/ByJAXh0LeFbYVE5l21pOSkTnnCn8bK7Pkrfa/Y7DUlcDtlYust2O1HAeLNwnrDDFYKicokjGJug5sB2kNhGioXSAm8eGvXOR0mMmEO2/x0TDbW4s/fzSaiOhQml59KJIhhigcgh3hECXvME1ku2lKGyH1cm397Kc9h+f9/o+xu9jyn25/Hl9534+z1265vF6yOm2JnSgT/vOn/i1WzDnaRPxqw958H7d3UMZdXF/jykngwz1+fcl6nwL+7u4uH/VRH3Xmb8vlkgsXLpS/v/CFL+TFL34x58+fZ29vj3/4D/8hT3va0/jkT/7kP9OGphjBORpXQRQJkNtKEA47ge3jAu64IpvWYJAhHTaRarnJWy/wddUZ/L4833USRJrLIsMJe4F0WuOiErR6Iw56hjPQedFXk2HQRLVRaZJugzCZtQqMUKbsBanAinRs2kvOfWIdlmKCYX08GyvC3hYpYDoSFmIOcJkYFZdiR5ptT40XWNUcV8RGtMgaJ6Ui0+ekSqWF6hsQlmMQzQE3HNeYNkKPyhXB7vf0R61A04BvpKqLBt5y6UYA/sdb/hLNfKC7tMDv94QTIWF1N3tJfHaVCJhJiLm618p27O8rLG/HnrQQ6XTWe4bV8+vrKMEmiNOe66xI6tQ1LdXI48kUspv10n9OKjkzEVCpXFIynsktBDRpegiJUw6EFUjbO2IUW1arKIdJFFWJqB/kOizeCtnCeTLcBsBtzCilU8hfTJ84Aw0XyZ0Vln1OAPLzk0EmBgZNSr38+IU+T1ELYw1hYkaVXG4hqGSzFUe9qbVpGsRlshxPTRJCFQXSt5N+erburSLJW2a76vduFdo37gzTethWBQ1YbxrqOtAP+pXRajr2jhQtrhVSnNHHrBGr26oJVDrfftPXRAyLZuBwNR8Dh0gLOF5L67JaDMWHf9hWpHUl11SVGHorznwuyvhcNyZBxiR+57O/jMPec3GTeM5rf5SqSaw2Lc94w3/h5572Qp7/Bz9KXQmXIKVAGizDbI/Lx4l170m02HNLwnU4/z2u68Y7j3z9b3fa+/Zv/3astdx5551njHf+rMvUFakb2HSNWJVa6G/wuJXD7feE44aP/oS38UcXb9YeoPbuo7DHsxe90bGg7YOuaIhdDynIfHu7csLQPt8Teke128OlWXE0K97j+RoyYyU2kqhEB16fGlEQBEEhbBJIFpCqE61E8wS7aDADuPMdYV3T3b+UKvKoFsvfmUL+qj83pLM3ekUdxHVPvNhTMHpD1wmBbcQcV6M23SCtBa0uY4NA6lESmsIsTxrgO6s36fHcxMFSHTvqJ5zC/9pl557Epb/mefwdV7j3vvNCwJp7bthdsZn1rF53gXAhyDbpqGKpuk1BF/Ln5lUc94wE+PwdLhP9JjB5loulSuB0tFVho8DSyZnx/XRGfPE0yBW9leNQJgsaxAnPQXHnsxOzmE7UHCZzMXILRIOaze6B2v7JATJb1ebeuYkypEkSG9lhExDyWaPHweZrTrX5HpzmOiVBUa19qhg98zWoJyuPuV5IemGux8Kboigp58Ilkbfmaz3PEche/1YuDgnCEhCdi2xXDalzuGOdMJkPrI2l+i+mTgbc3HPu3AqAxokF7tZXIntbSXKYe++xd+X4+VhT7/ZC8LMJ7y22CdRzz4XdFbcsT7iyXXC8nXF8PJfnuUilZMFV17Az69kMNYtZT+UiPlg2h3PoHFsabBVp5wPdpmbYVEIQbIShbwwYp+OCrcj3qCGquQ8usQ2Jd54mvuK3fwzjwA+OoDLBz/v1n+Lff/QX46rEV//uz2CrwMs/7ZncdS3SrzuMsZjdxXu8J15fuv402P46pF/Wnzng/+qv/uqZ32ezGS95yUt4yUte8md963EZg6kr4qaji2r16RAI/NyAeXBGc9uau48PSFGsOG+56Yj77z0vxhpeb/A5EGg15jrYPs4z7MoNf/agpTsvPUmzrrA7A095/H383tUnlj5z7sVO58eX4JMk2McmUR8bsZI1QpqKtcCgaZ5IasIjhH+Fc40pA2n8SVO6EsYb4rmBdFifPSRerYO9wLxurZX/IFa7OzesaWvPlfv3aPc7uuMWd+qwBx3+tMofPtGLp7JRthAB844JtDs6teUEQQLmuV9r6M4ZTusldj9xNDPsvLXm0gO3YJfqi3BSc20+Z33/Do1DZI4mKbltVDlklCMHNkAQkexyp9uTDWhim0YzoiTbb3SccWwfchnlirOToI9NZVyx6OUVIu+z770Y8hg9t7ExRKIka4OFrYz0NUNuqRhiUpRiGCcP5rkM+Xd3aoqHvfUg3gFyTk2SKl6MmlK5mWU2vZjuSLCxWklnLwWbWfiZyW/0OplJkKfJSYAc7/6cnnMr5j9mapFrKIOM4jLIts8icTBjGyPpE5ExsqaOhK6m1/Gxpg2kWwfJndQetxBg0WPcRmwV2NvfMK8HfHAl2J+sZoUwl6/X2Ik2vxgT1Qm/rbHLXqRu88jefMsQHZ2vOO5brq0WrFZyMYTBEgZLrK1Y19rIcbQ4F5nNPLedu0pMhrdzgb6vaBqP904SgMwz0ITOtkEKimAxTWC26NlcXEpSpDwV2wSsCTTqUZ+ikXG2Gyce/AnOLVvuO+zg1PHyz72T+44S/brHOIdZzj549fWPdP1pWvvrFX5Zjx29grpIxRB52d+6k+aaxW0M9b0Nxhv83UuuXVvSHbfE3jGrhiINMsHgtlYgVR2OMxxEugsRs7UCS2ovu33CCaYJItOrEn988eZCYssM9SINc2Owz0cyOwBmZ71kwc8l8PvFONgEZZCLntyc8Uk33ohkMGpysnXlBhuXgeiEuT0yrsfADDA/t2V1OOfa285BEhMQ2wTS+Z5wcS7JSvZCdxooYPxi2PG9CvsdYMeDDutJ2WluMFz5mMTpE2TOfJhFhoPA6YcNDHtRqsqjCgZLt22oTi1+oQFDq8iMjEwZ+WX08JClaEnJfpSZBBKc83FOxX1vKiuU5EB3QI9nhsjPWM3m1ogmEk4JcK434/yDnDBsLO60olqJzt14g1vJGORMjkT9GMwgqE2GxF0//us2ihYlCczVdgz6Z2YFWIqjXmzGxCG5RKwFhvc7idDIPoVW31OrfL9IhEXCL4UbkWqxjS6SUUMxjjKKhuTWQnKiJgCk5x7lwOaeenGfdDpGVtshWEQKqp71KSKafBfL60wdca2XqXQm0fuKdV9z2jVs+5p+1RCutIIqTUwYMrE0G+igBjZNFWiqwFZny5+uW95+342s1y1RTXwwEL0jRlOm6nkv5D+Aa92cta95woWr/JXbHmAxE4Y/LpIGS1pXhOOaamcQBdBGOCcpGLbrpozGxoBpRX/pE5wMke/7xBdILz9Lb7VouGPPcm5Z8e2f9AzedS2xWctEJrO4Huwf0UqP4Of6Ah5DAd8Yg13M8JuOew57/uNznslvfunzsZ7ijMeDM+zaUR1WvOOtt4xseKOBVqHgVE2Y+Pleokzw9Ad7tHdJNbBYdPT3LCW4nO+kel5E8gzzfHMEtEqf3KQBDDRHkiw0R2NvtkwayyzwhDj55arFmzKUBwBl4ScdmEOufnX/5Cafit3r9sGF3Ij0vdrWCzuZcbtMb868Hig98fIFiRos1XzGHtbU19RZT1sR/Y2+mPfEzND2hvpyXarPuAikeZD+fw7ouq9ZM14+01JY/GcMjtBjkHvHOdkJRgLvMN4Yk83wtZnIJHMGY0YnQzW7yRC47Uc2vLxm/NcOozNdHoQT5pE4kwAaG3GbK/75OmAnt4FKEMjtkiABPl8T9Yluc5CEoFoZ6pVRVz/RxNvJOctz6Auz3whsn1n5papXmD9fP6kSN76wEyRpy5yJiYIiuwBmlKME/jqOY4cBaxP1zEv/fcgVM5g9HSGYkL9vZVyyeM9bXBWpWi8MepNkQtxqxvF6JklDkrnwGRJPbRRCXxWF/a+yRtkIRahsZNvVxGRYnbacnswYuqr05G0lUE3MaozB4urAcrkl9I6hqzjetFQmsupb3nzPzfzRvbdy7XApap9NJb35JrK8eSWf2Yj2n3UlKppe2oFhGbG7Pc1iwFhYdx4z9NgYMLWiJVEUPu7U8en/6eXcsV9hnaHfSAZrd+cfDDb4/3tWMQN5mJ/rC3gUT8t7t2UMNBXWzvGnGx5IAocJjC3yN79MpGXArGsxspnFUpkLHKwsdMCtJMqFhTC0w06g7wzNkWF7QW6KJ4dzqo0lPWFNOG5wiTLfXjBeufG6rVb0emP0c0r1nav6YZkmyQWlmkIr/NwzhfEaNdObe5WY37Jic3Epr4+Mc8vXDpZeeqNV4km3X+Rt77yZWz70Gg+8+UZWh3Ox1b2hy1yk8X1JBdYv6d8EtTADzB+09PvCcQizpPp+gznoSZtKRg4Dac+z3N+wWTX4a60EKJeklaDELb+UnXJb3Wc7bo/rwOfJMJ1OWOv1WFhTqtaSCKkbXyZQ2qgtlUrOa04cjDeYjdFhSKojV5a/JAcTrsLE2Cb31Z1uA0aTy9xPd+j4Xkrvuzq1xdQmJ2dGCZpmMFQbCd5AQYHsxD66WgurPsvoplPvqq3M9k6VJjxuVI5I4qGnLydQhnFyo0kF1TEuybRD9LX5f10qvAqQ5IodL970Wo3aWibexU1Fr4xyWwfQ3jitaOer2YDfVpgq4mZBOAg6Cjfza2wtbHsSqmqwrNat6OWDpdnpGWqRrxmTBD5PRox5vBU7bSv7I3p5yzA4McPJsj8DvrfartDrvLekWcIY2GwbUjI07UBKhne88yb2bzylagLDtqJqRTtPG6jmA9YmVtfm4iWwCEWSWYoG5eLE3tGta0wdefsfv5njVcdyd5f/cNsn8vf/8PfVeyEVyeTn/ugr+Hd/+xlsY8LMaox9zNRi/8dXihQ55nt7/PqS9Zi6qoz28u3ugth7Lh5t+I5nfB6/8JXPlcc9uMWA9WP15lbioPd7X/b8M/Bl1jsbb0jzgDt1xae8vWY4+CNHGiz+1g73loVK0ChadBMoVWVSWHxq/pLlT3kwSR6WM2VcF1lZ6Yei0iqFRJW8JtC1pXvXjtwcdwfpdefg7RJ759YyWzwY3vq2W2EjPcy4DLhLIs+z98xLhQw5qZigFDkRCXIss6ogB8FMTsRIYGvfMpOBOXteqrA64IMVvfKul/bDvscfeIZzQQxaloHURprDbEA0ShizakFUA2C3iiRMGOnFzCj3dZG/W4Xbo9rimqgVuULuWYGQ2yhF4qb6fxMm8jejp0Q/KwfmPFsgzOTz3VZ4INbLgKTm8Kxuvqw0wvChGQN5bhOEVj/bgvUyI2LKvM+fmRTaL+dqClUmxEe/iSQH/kCOe5wH2B1EMpbVBdGQ6ghzT9oJsAiYgx570BMPFLHZ02sM+U5VS49Ti9mqDThlrRsnLnV1K2YybevZP7eiqiLz3Y5mp6dWHbtxiXo5sLu/KYY0lSYQIEE+/2T9fD0Tk5swODHNqaJY3e6ICx7JULcer719PzjMUS098qxcSQbWbhyaMxOofVjXDBs5uX5w3Lx3wu13XObkaI7vHVUbxADIyDCqqLA/aydIiEESjiZq8iFJ0k98/Gfw4x/5mZhG2hdD13Nw4QLt7j6znb2S6CcrhYrtDa/6omcTko53ul7av2/reoX/iNdjp8KfLmexe0vi8YrTjeft13r6c0HIZg/OSMvEa7/kTj7lO35abtYJPuZHf4wyQjEzq22iOrUM6pAXW6nOZyvD6R2J6lrFp3zqG3nNPR9V2NRCsEqFJZxNSkrQhFJFl95oZo9rtZYyHK+IQHVihSldYG0dYpLfU3u6xhtoE+mkxm3GkaQgHvqpThgXMZ1YiR6+9RwshGQW6wQ393DUlGo1Ew5zcMoyvryy1n31ePUXyEEwQWoT3SIJvyB7x19u6WY1bnfAVoE4A3epFlkjwm0w0WG3lu2NibDrsVe12hsoDonT72f2gD8j13vIMUr1yJMwJSCOiEre9pLMZDRF4f0ytyBKZZ6DcU7aymsnEH9xY5wmIAgaUJ+A35HWTZ4fHxuR37luPK7JjsqOMJMKv9/PY3/12jLjZ+SExA5CJkx6DZdENF9nlaoFVEmQN1AsRtNo+JQzG5D+dLaEzsemEvZ9XYtWPagPfuhlDgVOvOnrSlj1tUrdBu/K/8ektrmDK6S3wTtcLYiAHwQlCJ1Iam0dyjU9bCuqJtBr0OWwITYRv4NY7gYhB1aV6PfznHsSAvtnHkRGcJxU93avJ+oAHoLBHtckk7hrc6OUQJ2FhZdkYGtJDYRksC7SX53JaNzMcQjSTjBWRu2aOvG83/pVqCM/+je+AGPBhQ47n3PfBrw1/MdnPJf/67++vIzY/pUveyZ3Hwubnxihng6VuL7+tGUSYxv1vTx+fcl6TAZ8YxQKbypi79l4i9tYXvflz+dvfOtL+Q//8Nkc9fCL/+DZDGbLrlvytJf+xDi6tJA5DMP5oP70EnzDfmS1MKVH/mu//xFUFcXFLCqcmtm6pQrLPeesd3aTm+qkR57bC1kPbbZW+AS57wsS3KfBLZMDLUXr7jpD0OloRINZDuLEh8Do9UFHbxvsxslQH28w982wun0xO/sNttz3p0YzJebql2maXJS+sI7V5VT5AgmaByq6WYDTCvGmT6XPGvYCdu2kjQK4U3E5DIuE35Fj0FxTyNop1KzHIU+Zy74GsUYZ6EL6ywz+AoFD0e8XBru+Lk9QzLp368eKeuoZX63H4F/67wFMJ0S5nEyi728VGUn1eJ6rlSQx9oQz/gLWS7WfCXzloYjILvU6Ff36uO05SbA9hL1IdJQZEDkhiG0swV5G1Wpw6sVZkWraxpHk1fRGPe8T9XxgWNdkuV1MBmsSPoI14lo3291SuUg3VFQu0FaBTV+XwTZdX0kvflvRLgZAfPNzYhCCpTttxIjIG9x+L1PiukosaIOY7fTrWnrjVmStREM8rQmVEgfnwqI3NhGjESi/Va6Bt0KGTYJIhSC8h9g77GEtvJNlIKijpbGawBpNgILBzCQBceqsaHcH9vY2nJzMwSRikqmbGLCtl0Ro10MwfPFvvQJc5Cc/6Qu4shH/i3WIDJmrE6Xld98RXD71hN5j2uZ6hf++rkzgfLjHry/gMRrwAVJKpN5j6oouGr7j6c/gbdc6gdYxfM73/xR2gO2tXo1uxBr39/6v5/MxP/jjgAaoK47+XBgNTzqrFebY83QdJfhmSZNJ0ie2G5VGWWGQF9OdCeRctPL5Ro78Hisk6GZ4dgq1K1SfL2ZjRy93jDCuTaKoDNJxXTT2cR4YrrW4jcMq7NyfUze7LC+MYFauIB1TxCLMI3YQFURySTy9NeDlccGSJBkJ+ksZHWoemLG91XNwbsXx4QGgY4Q7gz/nx4Qh76dN+Cdt2dnZcvrWA1xnRBte6bHKxjcJ1csjsqZZUltZMwmQE3mkJgfSi1Z53TR58OOMeps9FfI50nNT+vdb+fwMxVNR3OzyZ03tlnPCYAO4tVjYZgtcGIfUJCcDoAS+T/iFbKPrx8/u9ziDBLhOEYw0HhNnEQQl996z7NSLVCx2MrjFTLwAUjQCQ0cDvcEOYkZkoiH1hiHWmCpi68jezpZuqPDBMl/2tLWMhDUm0Q0Vy1atb21k3gz63YRNqjFAOx+IydDWAr3UVaBxgaMwx9Y6i6AyIkVVnkDympTk6YGJgsSkXscXV9K/D5sKH41sbxXlO9MKlB4vVaWdkyWs1GAv17jekIwhJAjLIIN2eocZ5PvkrtUyHwC5loLO0ahaT9dXtLOebtuIM17+Dm8cZmfAqidAGCzxpOE5//2n+YXPupO7TwZOBvDA93z6M/n7v/kz4A2Hm0DwkeQDdu86M/99XtPi6L09fn0Bj+GATwJixDhLComtdbz91PP/fuXn8YL/8gp+/u89j+f80CtoL1aElmIX+rE/8ONl4liy0O/Hoje2G7FbtQHtKxoYoD+IpF1P+65G/MV3PPaoKsS/WGemM+qVb6QPnWF97e1Rq77caBRzFFi59PgzgUqhbTOR6pl8M08iz7MrR7KwuGnFdt2QrrQC63vhLuRedndj0OMlAdwGrfB15ZtiJq7lYI/C4cWlzSDHSt8jdYawFClW8/Y5/YWIaSInJ3PMDZ0gCoO8R3tY051LxQK4BNmLM45WNebAE3tLMpN5AaqEUL8WCXw6eCi2ExwvoxB6WHNCb4O8R57JXjT2WbeviM30tZnhbyJqMysBzASwRkfD6tTBqZudCYAfFRh2kME1rAX1CTOK450dKPr7YQkmGfxcK76ZIAvZhOfMRLycNOj7uF6SH7wpRjCFDOpNcWA2VYLKy31xsMWMKE/fA0YCZaVyz2RoGs9Gp8Jlt7J5PbDXbulCRecT5+ZrfLRU6kd///GeEuFgZ9lhjUD4276mcoFuqDi/s8ZVwtqXHrqiQE2S9tfGYrbjd0u8DqwQPl0i1VFkpptKzpuTHc/baJxY3aaFIEpua/ALtcceMnnTEOY61MhbceWsonxvlWyaDJiNunfOg/BVoqVTlC2qTTIDQqC1ibiphBthZZIeAapTx+6ylbkbJvLi174C4y2/8ozn8fYrPUcbT9j22OVMyKnX1/u2rgf8R7weU6Q9mBRhBkxTE7c9KSbSZkvY9viUqI8s1/rIL3/VFzDsq2wp98/deBMlSVDIj4c9XwawZPY9RoPU2jH/uKvsPfEQtxgIu57YJtx2fN/Cwi8VLCWwZRlVYfNCYU/nIJN7/xJ4RvlZXnYrQ3xsZ3AnFW5jcZ2he/se1V1z7CB68KwgAKn+JJDn8ldMVpjcV9KUg2AlGYjVZLa8SwJ7h7wvlGl+7lpFdVjR3RAlMF+rse+aU791zuxBw/IeCW42oyTTBr2RG3q912HVFjkPl4ExkcoVsV+kApWfaT+8h39HrTYj0TJSHBMzAS8fh4ziZFLi9LhnEqYkQCr382NlX62FZT/sUJztYi3Be9gTN7t8PeSWT4HfK3leHszkl/KaPOimEAcbSRpiNf49Jxq2NxIgBwtDDtwCedtW0BfXCGHPzb3I5rTHH+txGJEMUxor2bbxNLXH2YSzkbb2xGS4MF9zw3zFvB447maEaDnuZlxdL1itW4bDFn95xumqxQcrEjug72Xnr50umDUDs3agmg2SpNjxmi1f9JzANQm/H0YzKpdEZtqICoetxRxVgnIVmaz8G5cBvy9ZTbYltl7ktQXdAthY7GGt59jKbIkE9fmtVO2NWN5GP+l35bZWMKJEWQs/JZ3WhE0l8xUAvxO41iW6CBiD3Th+9ZlfxNVN4LgL+NUWu5xBU12H89+flR7Bz/uxXvKSl/CEJzyB2WzGJ33SJ/Ha1772f8/2/h9cj6mAX/kee/gg+ybQxIH53NE2ljr0zLs1Tb8FH/iZF/xtvuKlP0Xwgd94zrNLTzxZCWS54stf3Azvmq0rvvImQH1smD/gdBKZ5fDqklt2T2SwzNrJDXpnUiknpEeqVf3ZnncaK/6kMH023GG8sedKvFRq2RBFTWNysHPrkQBWHxuZopY5WYcV2UymbJu+nmzji96scqWt2v5k1BGw4uxNtxrlW3kVcptFbFaNHuNZlIpqgPUtsHeXbHd7TUxoyn5qgA0PzkvAiXUqx83kZKxSGHdqAjRd2WUPCfTFiCj/Lep5UV+B6Vz4kgQ2Z/ensKjXapCjHjNyLFIJyFip+o3yALKNbZ5KZycQfapg2IX+HPj5+Jx8rDMvIVYS+P3OGPgzlD/sp4IGuW48BDmJKRlPredzYnxTNaH8mIWX868qDaPWy2Z3oJ4PtK1n2fS0VRAYvvaEaHA2cjo0HPUzhiA+98fdjNNty/FmRjhudNKhIARBjW2CyuX6Tc0wOEK0nB7P8FsJjG4WYLCYlcN2ktQm5ajYTirl1ERRF6BGO8seM/eCeC2EJc+QCYWa7DQBZkE4L0rszOTUVCXcSnkNyYh1MsKBMIoEZWZ+1EQobiti79Q614zSy0x8baS9YlcOs3KkJvHbX/BFPOM/v5SlJhcv+7tfwOVt4MFTTxgCpqmgqa5D+e/nyrbgD/fzvq6f+Imf4MUvfjHf9E3fxOtf/3o++qM/ms/6rM/iwQcf/ADswZ/fekxB+jWR08Mr9MOWKxcvslguqWZzmoMLnFy8HzDE44q3PSDSpGf/65/i9PFAa8bee+SMy1hZGnzsxhbXve6GRHWq8q7e0O50XF0v+OaP/3n+5eueQbpPBmtM4eBpIMv2pqq1AZOKgUvWOhdSW34j5IbkVlJluPUkIUgQVcJXbQQGFie/AhqoE106y1B2I6RNmNjWZpOZPMiEMWDJdlA+2w46KrUz0gbZ2LF/bRDHMyTwZ27A6nbhCqxuHge+5MopW6wWRYOOInZrITGmBtx69HYnMVZv+XeDSCxR0tzWliRBCJTjNMMcsEsyBqIN1yTGaTulDJGZUbwVbIbT0xi4jZpAJANxNp7z/Dl+ITJA64UHUBQOeppXj0+qw04S4PqxH2EH/RyXMJXss9exytWJwPCxRoL4qSlJgM0jePuK2MYy2CZFS/ICQVcznRxnE3bmMQsl9kUjOaqR49J1FadO/HzbKtANDc5GfHBc6ndwJjJER0owrz3rbUN32sh5OehJvWO7kdeLxC7iT5vSVlr1IntFWys+VfJVabRP4g3VsRN/gdyC0cFO1IHkLalRS98djwnCrK9aj99mHaWM1fVbGaMd51GSkVocNkkQ9oPwdrIEUadeApjBEo4aks63B4T7sFVioMJxtnPFDtl2VeHz5HkVb3nbu/iOJ3wkx9eu4nbPY4GLp4HNEIldj9vfeY957PX1CNcHANL/tm/7Nr7yK7+SL//yLwfge77ne3jlK1/JD/zAD/DP//k/f78289GwHlMB39QN7fkbGVLi4LbbWezsYFxFHDrm5y6QsLSuIiTP937GU3nRf3kd7VXwOxoca7Brg1sJpHdGSqdM29imcnNPNuF3Uxkqsrl/SXOH50fv+2Ruv/Eqd1+8DSKE3VCg9thqIKhyOT+uzH5P0yA2ZfuDBBgdmSrDbMbAjVqp2l6G8hQimnpyF828EdhSkglKsD/jApelYUZRxBx4pza3OUBCGarjl5qETB6T5yfSQnqswSbccSWfFwybWxPtVcP6QwaaS7Xo75GqO+bKPcrNlsm2DAeB6kSQFJyeI5dK352EVH8K14OcP7cRjb9UX1rd2/FbL0qLNGrlbSomNqGdaN2T/J4ThlhrT1nJhbFCvfzl5u62QmQsyMUi4a4Z/ELeIyxSOedR5wYYZdjnxM/0EI0E/eAENRArYkqyErPqI1HmBSQrChO3cqPpT68eBE4G3VSzQNN4YrSS49WpDJzBygx5p+533jt8cDgbcTZysNhwsm25tpozdBXVRD7XDxXbk1b883cUoq8iYV1hZwG/lcBvOiW4NlGMleo4zhswSUinNpJaS1rp4IuYKzhkwqW610UvA7LEz96wOLemcpFl23O8mbFZy2hav6mhs8RFkHbGbsKfNKJu0YTN3bhVhQvENghTP5iSYBprigTSVoE4TzJHYaNIhBWeT3Vq1bY4FpUPJvHFv/8bMA/8u5s+F5/gyjbQ9Z6wHbCzBpy9DuX/Oazj4+Mzv7dtS9u27/a8vu953etexzd8wzeUv1lrefrTn85rXvOaD/h2fiDXYyrgr5OFvRsAudec6L/OtaTZHiEmTo9XmGaJmzt+5IV/h6Z2POvHfr5AeWEp5LzSS9dKM7Pfkz4v1XpzzlPmACwcXdlh0zXM257m0NCfiywurNludsqAkzO96kl2meVTZQem8H1kdNqrxko/1UnGjNrJe2QUYWrCYnJQGuWAxYaX8b3zyha3WY5o4vjcUSaQy5r8HhSou0yWm2j3UwTTOXFKa6Ma4Qjjf3tDor1Yl5G6Mn89lV66HayoHoYJiTGb1cxT8ZjPc+jlYKRyfKc8iDBPZySQxX41lF0p2VfS6XchJ1Ypy+00UCZINhP8Ek7tbWNNScbGXjPYPhFbPXdVYtixxVbXbSRwBJ0lYLd2vN6sfrgDTNQhP4ZhL6p7nzoEKlKQNEZMbYHF1zYho4NNaT9QSz+/ajzzdmDT1fTbinqmRL5oCZuK1Hq8cUW773tHOx+4OizoN9LfTslQteN8+RSFLLd7bo1zkeNjHTEbdbhMLyiA0QmByUoSKEmnQO/lO7K1pBnYOhBmRmRxSY/zPGBMYm9/w6zyLJuOd105R4wGv66J0bKYd/TB0XUyiS72Tq4hVSTEVS2olrb16p0Ov60I2wpb6yS+YIktxDxDQM8PSRz+Zoue9fFM9iVfh0nUKJlQiwFmQdwtN5aff96dHG4SHsvJkFh3A0PvISXM/Dor/8+6THp42D77r9x+++1n/v5N3/RN/Mt/+S/f7fmXL18mhMDNN9985u8333wzb3rTm/7sG/x/cD2mAv50pcm/vgQmMHtL0rrj5LhnPbS4xvLKL7mTz3nFKwpxLmu5pzrk94ipGanCkktUSy8Wjskw3L+gm7c0jbzH5tICmwOoNQWezuYpBbaekPgA+eyskc4jU20ao5JhhN0fQnYb3+PsATHqUiewuSYPbsIfgPLlyNtlM9FLI9fUjY98w1VkoLQKMgkxa+N1eiHVuE8o0pC32c+lrZITqIyquI2Vilwh8UJGG/QzcttAj9n0Rpv9DnLPtwT1NBL1CvtetfK21wEzSNDMcxUAQT6SKUFYOiiptGeyyVIhWAYjkK/KHSVYUFCLMBeUxa3VXyAPBVJWfNk+lwqyUx06mbDYQNiNgvaoV4QJo3ogOnm/fIztYIhVIuxogtqK97xrpLJftj1NFeiHimbmqSsx1OkzepRdEhH4HxD1RzRCQNMhMT7JiNjGeYIxeG/pu0pY6ttKXOnUzzRlL4QEzMSKFlUJVGuxvyaooqASMl6KghCkxkrgbQK2jlRNwNnI1lfcvnvIuzhH6FU3DxythUAYgy36ftkGDfKMX63FuQ3btYy+xcj+lpG2Fkxvx3OVHfuiYXVlIfwdb6g2omBxE7MmDLhTizly5Xvz+T/+U/jdWBLPH/2MZ3PfBqjse77vXF/v29IC6GEfB971rnext7dX/vyeqvu/6OsxG/Df4zIyUY/ljHT1hBQjM5uYOenL5Yo4ZWi2NyPUHQXfLs5keaRuNBh12bJNlD6lkeDW3zwIO3cjQzPyeNuyphfhtLI3yJ1HiUOlp63BdUo6sxmqPt9jjmrK2Fo7ef8c9HPAdAhUPKnq40Mr/PyrViqld58M5iHfHtvZAkMLBpoK1Jpn0ZeompnWVivXBEQJkvXKyryDzJ8wML9pxfAne1hNeoqCwqU8dl6Mg+Io0ctVl1X1gQx60aI9J1h5HyLjebGAn1jj9loQ+9HTP/fPMaMcUa4Z2efYAEkIidl5MUsVU5ZZJiGHmsFQnViB/7P6bND9qBNhJpKA3HKJsyhGSHViUBmf7ZQnoP4H2ZuhOAAiEwqLTbBRr/w6lgq8bSXY106r5PmWVd8weKmGqzZgrKdfSxXvnEjmoreFaZ4SYnSjUH4Khr6TXnkYJFFI0YCLoln3alzjjQR6gwx06mW7UxuJet2bJMY4w3kZqLPc7dh2NXZvy/pI5tKbJtKvGk6AWTPwR5duJgQZTbvYl+AdByfJhBI38zlzayeujm2AFnZ2t4CQGK2LdA8syvUV2xGOF+8HU5IytrbwREyiGENlhYXtTVFpCGlVrrtYJ+prkpgMewFnwVYOv9piFlwP+n/W9QgD/t7e3pmA/97WDTfcgHOOixcvnvn7xYsXueWWW97/7XwUrL9YAX+6rIGUOGgCf/NHXo5pBPaJC5kSxsYR64iN9oycLgcVE8Ao3EuC0M0Zzg3Q6aCaIGS46EZNNQmppstQHM46+5nx36TogdzNR3hWZtGPV68EMYM5rM/uX8qVof6aWfbkqnMCN+tNNWkQPnuccuIBRSIYM+ItG2sGhaH1/fKY2cL2z8evjuV4CaVd9zdIQPRLRQ+8Ic7lLrq+smD3Cqxvk5dUa+EehAlxMLvl4SbT6HKiMkVQ6lR64g9Ntuygh7oZkyI/16AaxsdStsO147HIBLpS8XmjPg1plNpptW87A8aMk+2Mvt5A1Ukg8Dtj7zq1ig7UsiOmEg4EVln7Qc2NKiGdVTsDUeFqXD7epgwIMRYZO1sH2laqeGcj26Fiq0Y5na/YdjXdusZq5ZvUabAMfdHpiikYTCvMfkmIY7GxzQNtbBUlOdi6kcw2SKJMAnNaleNTriH9PDF30uslGYbThsNNzXx3K6S/KAlDGCy7B2tiMmy2jZjanNakKgnEroY9BiTYWxmQFZtE3PdUiwFXRfrThuNLS6na2yg2ug4huk6T8ezmmQf/6aZnP4TQjt/nYV9QipwAxmVGxPQ12xFtcmvLMEQqC94YCIFif3l9vV8rH9uHe/x9WU3T8NSnPpVXv/rVPPOZzwQgxsirX/1qXvSiF73/G/ooWH8hrzQDmLYm+cCqN7TXDKExdLd43JEj7GhQmEdCG2n3O4b7FxNomwL7ZylWCkYqlCaKZhwN2hrQpQc+2YgJJP6eMniToDpyJaDEWSys8OnrM7cgOwGWHdQAnp+bGcGpSdBTIMfQ5l6zJEACxVOSEJMoBj3AGdgetEpvob3ixK2vSmfRBYPAtHm+96DN5akLjiYCeaY9pe8vn7l+fCzDicpx1f3J+5kNYrLffklKlIfgOq0mJx77dhi3MR+rjAYUYmZFITDm9xpbKKnsxzTYl3PoDakdEyGZFZBRAoHnkyYFrjNqACVJXZyr9GvSGmCwxQeAbPI2F6252x1kGp3sBWmmA2nqKLI7dXwrjnO6tl0tM92jxZrEZqgFdcnnV9tUxiRcEwVO1+l2KRrsYsDVQubLy6kHftUGulUlLZy1QCz1lUpHNct5tjqvPrcr3NYU74phR0bJhmUYJy5qIr1V0l2KQOeodga6oaKuAnXt6U8WmDoJ2a9zZ6R2xoDZ7+FCYn9XbHDjYHVan16btV4AbRTLYYt8PzqL0QQ1w/RWZbok2WaTORMIaTPWSV6vrRbj5XwDOrlRWk3i6wFf9qqf4zs/45mY2pG6AVM5rpP2/gzrEVb478t68YtfzJd+6Zfy8R//8XziJ34i3/Ed38FqtSqs/cfq+gsZ8DGmmPIcbSr+w997Jl/1wz+LXYvMh0WAU9HJ0kaGBxYFfiv9Yksuc0fkfGsFGVgE3LEj6ghWvCMT/qaWuGbQAJxXJtDp8zIZLc7GEaa5X2imF2kO9mlS0eYxnHVUoldS/bBVTfZYARsPqRnnnptJHzwjCIVA6N7zt2PYEXa+38vWbPpAQoJw0MSkSqSgcGg0LG49Zf3gEuaBtHGSFEwqvVQn3MoR5mmE00FJhXpOkh5PLxVs8bZP4/+XU58tkiPkEcV5ylw+t8XRMB8DfTy6MYkrcHAnB8l4OyYCen5y5WDFXVZu/A6xHLapeDJIRZgkAXByHE2v7ZBKqmG8BKGkQ3DiQuxejYs5VyNOiEky132SMOTBSTaVgJwSLOcdJ+sZzkbqRobcRAyLWV9cHAFCtLS1L5B/pTu39TUn27YgBZuuZvCOphXCn2sC4UrL7KKTJHYlA4AwahW80fefQ31VK+Aahl1BLEh6Tne82OHm/QoGgpVE4KDHVYHKBfq+whhJbNjKSbRbW8iJtg3Uex0pGW49f8Tdb7tJksd8Xfciy0tR0IB8HQES7P2YuNte0KY4F+me29hCpI35OzqxpfYLlU6e2lEloiZYIp9N/NxznsPlbivtlKbCr7akeYtx1wP++7vMQ++X7+Hx93U973nP49KlS3zjN34jDzzwAB/zMR/DL/7iL74bke+xtv5iBnyQiXo7c/xqy30+8pIXfD7/6Pt/js3NhpAqGQt66iRYOWXvr63cBDQwTglWoIHAJMzWUq0nZWOGiqdMUcNoIlOqfQ2KaQzaeUwreWRmDmRaAJuYFHKU39EqNuoUOTL/IAduK373mXyEVcvgvGnuLGnRBkamvTm7jdOVqgS9JjGzOCIXk+eZ7GwXjZD4eiM92GAg30xLkJZj49YSSEXHnCQx8ZMkJB9MINUCsRZrZMdEbmdKMM+2uLHShCfvQ0YG8mnznFEeZEe9fN6tl1aH9VLt5vfP+2492GMjcw2C0aE0lGouGxblbbHDxO42mDLbwHZWesfKSUiN9uHVytVW0mtOaXKB6IWaNECaCHYvEL3B43Ba5ftgRb62GGTwjY2EZIoffna/sy4R1E46REsyhq2XATjLticlGKJjGOT5Q7QC4ydwW0u1hmqb0RaBvKcEx9znJoHR80IbNbBPElqXqNuBftXgrlXiFIkoBkKwhK2aSuW2EhB2VEvvEvNFz417pxxtZtzzxluwwRD2s5wFUhUxitRlhARvYBYlkVe76gzJW2+IWFKT8C7gNuJGmNSNMs+5mCbpYZ6/Y3KejDf85LOfy3GfeHCbOB1q5s6wbCuO+4q03sLO/Dpb//1dqgp52Mffj/WiF73oMQ/hP3TZP/0pj81ljIG6kjG6/cDl057v+fvPYvcuufHaE6eua2Z0x1JCVTFQyfIhw2gMs5HK0y8S4YKXIJF14WqKU3rYObDahwT+spH6T28KgTAThLL2uNzjs4PcxNULkMSkjiNMH8++dx6qknbHm15pP5jRxlZQjTQ+rj9lW5LAy1lznnTimkCfqez7lEGPAZTR7E7duP+1jOwt1ZG2FVLNyI7P7odxEigmUOk0icr+6GiAzWOOUzW+x1ROmL0GMvpRnerNXQllhe/XCBJSEofcVrDlo0uf3S9jqebzT7WC5nh8nfGG+kQMleIsCqnvWOyRba4snR6XVUXaVKIhP27wV2eEw5bQO0LnyvE16pSXLPjTmnRai/IgWGaNp60C7UIm1W26mk1fs+3FH38YKnaWHXs7W3bmHctWoP9V14gWX21xTzbiotf1FcO2Yrg6I16awdUG+2BbFAh2oKAiwkcxBWkBIUv6hQwiwiA+Aa1OqlOWvLGJ7rjF1gG/70lVJA1OtfcWVk5QD7Qi1w6S7S1u5rl574RXPvWfYgzURzpPYrAwWBYHG9xCJCx2oz74Kr0T/35XEJPqVM5LJuPZjcX2dkz+qxHBcWsriWuWESqJ0niD1f79c1/+Cr7qZT/FTfOOF//Cz7DTnPDVv/7TuLYmDR7C+9hovr7KyhX+w/1cX7L+4lb4aNC3YHcXhJMN9x8Z/uPXPZsvfPlPY1cGP1eb0q1k/KhxRu4Flyp5IpOLrQQ7c2Eos+WL/haEtJfh9MQoYysVsSmBNg93yZ9jh8mgl2klqr3sQvbTyik2GmQGYdFnlCAHfRO0Go8Gc1KNf1PiGxl+9+/u80/uZUzkgLEStGFqZXuGS6CJSe6J5+MhKIo+zyWtSKVfGueR2LsxyE/69rmitoM67qXxM+wAKbPzrZjtlO1RbwG3ycnaWeTEqJueSSrRWwicHxsJVinkzztbGeRzYrMMy8l43kwszNuapXPWi79+bCjSu6TEvogExFhJVWsGg1X1RZYrkgfIzGOBsJOX9gIZFRoUTQkGZgEaiN7gGhlU0wHDINV8iJa+q7Euso01rpJxtfJdSWyHmrYWot9p1xLV/jYFK5/rEuZERhq7rRybakO55vycYlAEcpzCnFH9WkugDG3SSZRxVF/U4oIXBoupI2Fdj+jNYAiDKFTqG4Rh//hbrnDf4T7DthKP+4MBC5z0LZ/zu/+Ww3tvxBzIF8GdWsI8SjvAJphH8cSvhbybvxf5HGaUJ+Vzmq/fSmZKJCvJRF5WVRiuM8TGQBRzpnLONWmONTzz5f+F2CZqG/j2T72T2AdMXZG2PWY543ov//1YkyT9vT5+fQF/wQM+IF+gymGXLX615a5r8APP+nxe+NM/V6r7+vxWqha18aRWC9yEkIasSNWKhj8aGYu54zGXhQSVmlQ082nSq5dtUIQgjoEnj3A9A4mr3/v0rBT1QA5Wk7pj0wAAlqpJREFUCpunaiS1yfNGyVqBF5PBHrszJDXMQ67/vG1hTFLezZcgB+CciUBBFoy3o7lNMe8xEuQrCeow7n/WuJsgLmV05t0+xzBWyZlb4bam+PkXAp++9Az/Ij+Q478GeCbHwPWQzXOopOLMwT+pu50kGfLaWCsRrxnfM8ySSvRk300vJEkzGTJUiIJD3m/x5scY+gMNJCmJk54O9amPLMkZlZEahvOB6sgRW2l9pEEd4VyQWe0t1HNPf9JgXaSeeXYWHSerGZtVdoKCzWkrbYFopFpWb/jVtmHWyIzgwTtm7cC2l4i9WTXEbSUOetFgTytBWXoJgGLyZKhWgpqkQY6z7Si2z7EWAp+vk/BHIgXFMNFgDyuqE0N/oyZATdKxyInqsKI+MdhOkqfNLYm4WhAPBu6+eB7zwEy+qxc64olY4B7+0QVO14bGajKmds4sA9YmZm2Pbwe2GxltC0KilFkI2YZZbZF7xFejAtPLdVXO4USBIdLOSaLTmTIcqTo15doZdiSx+9nnfj4PbMAnMNZinCX6cvFeX+/r+lNY+lwHT8r6CwvpT5cxBpoau5wzbHruP+p4yTOeQaoTzWXH8OBcMnJFvYsn+RSezgSyDHMraz/f1N3KlovOTAJmkcJNCsYSWHOwzpDzZHAMk+Ar8PAkUudWwGAKxCjtAKPVrxCZ3Dq76SXCIhYb2PI+xehnUqXnlR4CY5eDSWHlm+l7oUhHHi9qxCO+IBtMEAtl7Atagk5soxjLnLHKrUYuxJgoTY6lthfM5FiaoDflybHN25ms6qcnzH+rg29yoC7nJcuqso4+5zrzVH43HmnJZE1+GD83tHoctX/tekqQyNdDyiY9VhOJZvzcZKE6dCM8nqV8tUy9szqz3vdOp+IJae900zKcNsTTmnjSELtxcptrAtFbrDLv21qsdn0QFGBWeWI00ts3CLKwcTIMRk2R8uChnHAKf0Uh+zkM+7mal59MzpMpgypZ7K0mRYlBK3FBkORYmGioTwxuDfVaEwhFbma7HfFaSzjnqW9d8/S//GbciUyps5qM+GUi7AbiMhRliO8dPljqKhA2Feakku+NJjFGk8FqZco5y9dcaOQn2UmLx8u++/no7ZCT7f/51V/Eq778C4ktfN9XPIdYyfyLVCfeeVpx3CtrNEVSTBj7QXEr/sCs9Ah+ri/gg6HC12WMITUV1i0Ih6cc15X242F2SSRhw64wcJNOVCvBwkyqa6PsYoB5IC48nFaELCODsxB/bg1Mgg7o+2nATFarSzt+XnmNGaFjkJtMtp3NFrV2kOq8VEjTQJ1UntYZ1XYLMS7DqePnyP8kI6BIDryQ47W2InQAT2Hb59dGCXpubctgIHm9GRMhQ2E8Z2ShMOrTCIlnmN5osJxWvCA32XyMjR/bCyaNVVZsxxt20Ao9Jx+pUnDFcqa/N7ZQNGBZlTROCHuxTSXQu+1E+melsg0zDRKWghBkqV5OakiU/vCgSYHd2pHrwRhMwzKKIc9M+iT1fMDYRFt7Ntsav6lxeSCOSXhFAOzME504zqFSt3wOqqyxTwYfLDFaopLPHry6K5a0x5XwDepUoHizNThFvkwnNgDj3Il8nUpAzAe2OpULOKMcOem0vQHvsJ0R5UcCdiTjSr0rUyTbQ5hfCSQjAbK7IbG9LNOiPvej/4A/PryZX/qDj4TznsVdNbEWX3tAiHy19tqHmrjrWR/OWRxsqBaeNPfEY3ES7JcB4w3NNSukQx1HnFtRGcqvNihhcEwCw0zPWwP1iSG28Ne/96VkTsmiMvybZz+LoNdaFyQBcsix8z5gZg3X4fz3b30gWPp/UdcHTcAHrfSdxc4b/Lrj33zO3+XGheNLXvmzQtBS2BGFbF33EPw7w7RZctdGMeJxjH3rnFGasQo1wYx+9fo+pV9u5P1yn7kE0Px6ZczHxowmIJknAAWVMMhNOQcgQQe0j9pKJZ/11ynrtFXDXbZrWglPoPOUiVeTap3pACAYdeM6lKT4F2iAy9ax7lhGhk7b41M9fZglDZ6mBEmppkxpa8QJzyJXYNHJNpU2x6RKrzbjdkzljUIWHP8/r9BKYC8WuhOL1Yy0FM+AyTfI7+h7ItP33JZCFMwJ5LQSHMmAus3qgeDnkkz4Xe0FDw72RIc/bCqaxUDXV9R1oKqiOM4l8NsK10j5nTX7ySZSkGTCWJjPeioXGbwjRMMwVOIfHwxpsGKSYxNuY8sxsQMYnT9Rn4zHNbTCeYharMqgn4y66D6qA2DKvBiguSbBPMyEvEiU6j9UIyJUH1liBdsbYH2LI1XKr9Drrr1lzS/9yV8hXmoxFpb32IKcVCvlPlSJoIZFQh5MzHdkprCr5ILtF14+d5CJebGxDHqt5EFYeS6D28o5c90kCXBSuYcG6pUQQDcLTZAUmVsNIuOLCcQLI5J8xIdAihFixNQfVLfi6+v/0Prgu8qMwSxmxJM1XTfQzyxhKTed1ESsQp6zvY7t/UuVrVF02SAQLoA5rhSGT2BNge7PfJwG+zMVbbHOHaPemX7/QxL9qANVLNJrzI5uTvXfSatJqd4RZ7xmRByy0U2YRbFqrS12rxdWdJUgJEQ3nUrglmBtxiSnBHZTUItMVpsmOAZKZV/kd5gS1Ew0pCABPUPDOSBOK+zkRC9eoP16hNxdpx8UxvfIvIscfJIVmZgJKonrlZS3HYNu6cm7MTmJddKbuylV2xlVhJ4j2yOISa70GNsCuaqPtQb9anw8OYXtNRmT60OQBEGURpicCOHWDnuxJVxt8LNIvdNzy7ljIeB5Rx8c/VDhvaPdkQti6ERO184HQpDqPfSOOs+nD1YCvdrnpqNaNOY6RdBtpcrNqFGlgc7PR5Z9czI5tp4yERAYnQezvLKTqYgyWS6VhDcZiHse1uI7Xx056mM57jlZ6s8Jx6FaG8IM2ksOtwXztl1cJefSbeS5oQG/k5TvkZRwS7E+ZlWxWVekOuJmviBsRp0OzSD6+aRDnbKs0IT/P3vnHS9ZVabrZ62dKp3UOdKEJogEQVRQdGQEAclIEBRQdFQEZsCAchWzKIgoo+jA6IiXkasgBlBEEB0DCCrKICA5NA0dT6xTYae17h9rrV11OqMgNNTrrzxN1a6da3/p/d5P4E8KMxyp6xq6357LzKVVe80TIBH88ORjSBVIqfiXy37ABW86gmaSkScZOsuN4I7nIQcikL3o/m/F062093zGC8/gYyJ9EQbodkKcd7TrtaYg8rTHS+ZHH5nZ9Llty9N20hZumlbJpiM9bdTOUoETsHHLuSjeGVOzMVHUqov6eZfojdP377DhbZYg7RhBF7WK3AbgNtOgfWwtU9vIy/zba1vJ0UmJbpWQTk3MDbxhHekvFw276F+Bdkn+3B6XY3oXGQTr2OTGC9COkFY3D20is7D2ra9gMxxAJ0ORdfWxWzJYd6SsrGY52PetJHKRutfWUeoy6s4x8Wz5pCgZyK5roIUR27H/7R70KjTEPMchCBp233zQCZ0WSrteFXYcN69touGsbNbr+vJViaKc4xZ27V4q1Ka/vOUXXRmyZGa9L3liBkKaDg09HqBLyqjsWVKeFyiQmtZkREEYaXtkYY7nKdLUJ6nbE2MHy+Q1VWj/u/vLi7ucmQQoG25EXtJoYTUcAkgqFCqRuSt5KAomvxn+Y7MtiSAd0NapUSajAGhh70/fnC+ZQTxopJZNqQrKyyHtM/uTl8z2wjFIBuy1agK434wpA/l1aQR0fKNPoUMjDuWHOUkjNJkHTyMbnuG+JIIcwztwuhEmU8EUeWZtCaQq1ASTApHALacfy8u++R28WHDLu44jyaGdK3IEl5xwBCvrCXkrMVnGvgpCil4a/+lCL22/SXhBGnwwRl9jx5/aOp9IZaHDbcRgJCozEV846hklrXxqPVm76M+2FzktfY0oot0pPfVucAwUkShQkLaK/bMdBDqVJqWsKdrbZGLIPwrjgLixu74l6eVdz3nlWTKUsEbU/jJEZtbn0sqF2IimICi6en7H2FuREdthUNTA12T1O7jUuuykQDNfWza8KCIwp3EgE1HU3QvjqZxB7xDBulXznKMgMrufopNiBjtTPnPRtH3P9oEL+76KKCbouXY97Yhpynzm9s2LKRQBtU9HJwEKhr9QoO02jAANVoynE+2bAUfGeDhpZdmSxuBqY1T9ca9TMhDaEM3aHlRydOwbh86qK5JpsIJLKhNoJc30usRIxaJNNN/WgVlPy6Y1rLPktYyj6ltlPJl2Sg7K75znrNK5T4sat2XCmwyJshkC0TnOTJiuUatEp/oz/NU+qqLxhz3jEGRySqujmakAJKaMkNUgq3bOW2nY1tnLnWubl9fYd/vbzCqmnU5kpk213NcmbgWmp18aln4wITodGVKANKp63RwRsNfcZXYi87vMbeS/x7e+g5cIrn7zUfzvihatNEdps74kU2TNGBEFiHLUE9l5OtFVwlvv5z0AL2CDjycRStOIcy57zZEMVQRKCzypOeza75t+4YoJdWQsyEu6SOcBpg3P1V9LOdQDYyBsu5PwtJl85gbMWGPU3UrXbfjXhBYUqnp0RdjSTgETXTXRvGT7gzMTdZVXQGsWxbS3gv0uNf6k0TJP+50h0mjMiFdpW+hEd+bBpfQtka6AwETptgWuEAxKO4bcDeZxaf94SHe+a+u2hWa5Z0bLythkQtz2C4OuKUoYhTSu7qyru99EOl6DW4c0hndKNsUa87zcSb+79906nPxuUDd/lSNy+R0GfjeJC9E553mErYUbI5qXOuc1Dzv3g3EgBDIxqWqZOkfCiAlpqY2WQiYQsTQlg1Gf3GnsT3pmWp4PYiyEQKM847mJpodn2zhlKsiTCFXLjeCNMlPkwOyDM/TaM8eQVs1/e9YRcpmgzDOMdnN93X3Q4VV4bRNR56GZZujFkPRrwnFBGBtCW/RgQF4Cv+HjN0AFhoxXaDAI08LmN01rXG5m45hrZdnzedghVjoehj/Z6RRw97xQIHMjlIUA2fRojpQRqUSm0jhzqflN+C2Ih9x9oju/Bfu7ch0gWdnyCIY7jq7y4SdvPIbH6wn3rWySxylam8K9LIfoXCE8r2fsnwH0Uvqbjhe2wa+WSccnWen3sSoz1k0AF77m8OJZNhjCib/8QdGX7YybnJSWtSsAH+W5VK6mtEKQ9lsnIZFkfXlhnIp6sA0birq1Zmo6XYGWopO29nWxfjSd0be2pu0Mbh4Cta6HnStXuAdTaAxYOGYejskQJiuRC2Mole2fz0zd1RnuYsa7i/bdM6tgAtqHtVOxyzEkNGeYMZmOQsZXGwa6azdzRtqxod33ikmEdBls0Yk8nTMkXGQumNJOVdSV7TqLFLpLzXqddRfLdaoURQ91t4ORd43RdlPTVGAjYV93eAVY56BknRQfspI9Jsvqx57KYNLeltYZCyYhHBfkkSCryIKHoZ1wUWZmzLs6s2yajItsSrvfnXOtStrcg2CEf6yqoyor/ElZHHdBZHQZEtHhP8gcVNy5nq6kInOQTZCJNNkK39TUpd8RsfHagqxs0uQytnPkA/NZewY4aWWXQVGhibbTPmNcvdgYZFeq0cKUQ1xNXcRdUb491zKzcxAwzosjuvoNQTARFNfSZAI6okGuPOY1TabFlZhkapYJYnNdvLZ11jK48VPH8eBIm3tWNknbsemtr5YQngdZjk5S87wphetMhPXw96HH0t90vGANvhACbdmxIjd63VpKtDYpfNeVtqKl+fprjmDr6R6vu+pqk/K3KXJDVtJFbc+ovQnTh+zUz4QmHPbIqma4TdGTzvpvRJfONjtq/1jGuA4VMulM85KJVYWjKxLRhrCW2egbAZ59YKnAGHknJes3BFkFQ0DzzZ6ZensnKnUtgUgNpRydSZPql9qkRZ38sFjDaDj2u2fOqS7S8MZpEbZ33ZUFvKRjbJ0hLrIbdM6Ji6JNndgci0uN486rO7fuoa1N6t4ZMxetFc6F6nrf/ttrdbZdOATKGj+bpi+MvSX7GWlZ48CkVd3prbffl5bQF9Q7JQTttmlvD79httGaaT4vr4CsalLLMhZkNZCZJCtblrsAUoFvnVAtNbltHXWyxDKRBZcCa/iymiF3+rlJn7uMjt8090bhQGnjqJhyEh0HS3VIbMFEJ1uSh7bWbx0l7WubITM3SXOuxrRxUrxcFkSFZt15mcLxNKWAjpiNcGS8rMMzUE7zQHeyM65tTmaGuZ+XOz84FXSWyz1z07Qt8dCfFAQNe92cI5pCZMmBUrnjghs+dhxLxhOWjsWkzRivVobQ70TxoY8IX7CP2X8Mein9TcYL+07sErsIJFQDwbvu/A6X7HIctUAwGefUc81oS/G/T2R89bVvIPQUAsGcaoVDrv6+iX6jTtq/GHErTDq7UGyzD92p2+8M0ulI8bLuG9RFuTbKk7EAW0MWYNPaGq0FSV8nrW2+Q6EQZtqmzPrSfgrtcCd5K2NRKO8VUrKJQA2m0PSh7Rljn3TS/0U7ox0eIx3ZycFOJnMiM25gTl5y7YVThXNcndRF6t3G2xh2q4RojWgxdjbtRNpeTFFfdmNL3YOhEPmx9XmtO9tz403dd73YOhjWCZGWK+C1O8s5PX1BJ5MiMggaJp3ujstdXy0h6Z9qnNLIEAGTPvM3DzoOYZEh8Mzx+w1zHT0pQMhCKMpkPYzOgteSRXbEdR/gGeKksKx6R0rVdkyvc0b8Ziez4joaZAbYkoNzBN35dLwGzzq+jsXutBD82Nzgrs1SWoKlif47nAzneBXX395HXlsUjpubUud4BXlk2+W6Syq2DOPaIL2m5VJYUaOsojviWk4B0v6GpM3AueN25YLi/rLKjLUl5nsTseKJekLWTpBrGvse/iHopfQ3HS9sgx/6iDwkb8W0Y4kqB1y0w9GMNhLGtcZrTeAFITpL0GlO25dklT7aE2PU9QqTTrUENxV0okblRtFKQ8ZSJWVag4pocWqafQpcutyl/B3r2Blmt5iLMNeAsrPtlY+JwG0fMQJ0aKOmLp3vom7q+o0tQTAvmUg1q5h53zTtlLLUMvVsSUE7LQFnTMs5umHC86J3HpNiVnZUsAp1QYLrlqyFTmTfrbTntygcqc45NP/Oyh2iXVGHFy69TkHEcue2mFyXUejnu2jVGT1n2KXtty5q/XnH0IicYlRvITNrOR2uDu+iYZl0DNqaLV1p1e27JrNlkaxith2M2/MhKVjunu11B7NeJ+DTcYoMy9yl893oXqEFwSQEk5q432SCsnKn3UwwlfNRSDPY8oNzDPPIlIPSmvVpy0bEz4vtfjtCozSG2LcqeW6gjlOnE5qio8SJIDnipFM2dMeVlwwT3qXtVWivjev1t5wImYK059s5vMGkve5d0rjhWCcj5Tdc+2hn/7Rv9u22047jlV/4f9z8vmN51QXfJQ/hihMPZUIJmqk54fcPt2gnOWiN6Bn7Zwe9CH+T8YI2+EIIKIeIUoBOMuJmQoxG+L7RQUnalHRKVp9AKyOSEXke8cQIzSzhC1u9iCCKEGnMv953rzUYwj40dEGqw7L/haBIv68rn98tvbtWKtnrYgy7enmR7qfzvtumACfL66IyYwToSLs6qS8l0NLksV2LWFbtRF5eQxYKabqUG5ESFxm5KW8CQ9CzTGjRliaVb9v9lJuOZ/fdGUjH/ncp5O5zoWWXrC2dqNxriOL9bqfJ1Vvde9K1y1lRIx10UshCmdRsXsJO6TPbF4kxVF5iouzuToAi4usqObg0t8kg2GOzUabyOmQ4oSG377vasDN8IgfP8h3c9REKwnGzXNJnywi2jVEmptzgDKuwaes8dMcsiqE+hihqDJnXAuUL8nKHlOf6zR3xzjibhszmDDg2+xFMgLYG10uM0TcROEWJyDlG4bh1qHx371njX6WI1pH2HGNY964rwMkLe21r3BtWLrfcucZOl0ELs960z2zHb5ltOI6AP0lRogkmKTQrZIItjVA4DW69LvPwqvP+Hz8+4SBa9YSr33koj0wo7h8zzr8GUBrhSUPIK0e9+vyzhZ7B32S8oA0+WKMvBCIKILKDcCabqFwRRH3kOifsm4lXKaHRZH7I0KIanidQWiMVtIdXcMGOO7PNlnM54rob7OjYro0EijwAb8JIierQRt7dN6LQHSa/puDCARgRk25vAFxtvpvBjzY8goJ0BVNYzEVNM7EtUtY4Ca0L4lzR9y60ZaQ79rWJhHJfWvKeNufNpeTthEBSaQlzorDgpkPAGACXEtfSErW0JX5lnf0thtmkHefHb3bqri6t6vrpu8sgIsdOj+t85j53Yi5FvVx2Uv/S/kWY85WGnagfKNr+XFratwI+TsjHTcnTwhyrjM1xZRVbFsg6UX8xLtcxv7XlC1jDk1WMkTca7xSOkZd0onD33+6zQpcgdMbV8jCs2BAS2tM7hq3QVoBCYjqr2vNfMtcW6LQRSksmnOiSz8VcF3cMRlfelFtKq8FX4Lc1cSIKUpy7ji7boT1zH8ZDgnBiatnJdQyI3Oybl3SIeu7aF7oNTvAoM+tw1xps655j+zvSYdi5Vt3OteF5aJCmFJe0Etqex8OxZrIeIzxLyPM9U19IM4Qnwffo9dQ/O+il9DcdcuOLvEBgDT9KodMMWY7QlQpZVKXlRTS1R0v5NCZjmrlA+hmn/+I6xls5MVVU3zwea0VceegbOv3pwrQmiVhCZtqs8rLu1M27atOFA1DUsjvtbKLrtTE43XMjEGKiahWYKX8ytezswGh+Fz3vlljlFOccsUDkdCb4QZH+ly0jRSpiU4uX9m/3PhZsclsnLjIbmmJQUVFjd6fBnhfPzqXvdgacEcjKnXS9S42jO0bUOEd2f+06tKQgJTojIC0rU2TGGPhxp4Ztzn8nfQ+W+DWJMfq5rU/bc+eiW7fNQo0t6rzvlOhkahwAr20iTpl06thgjt21ybmSRPcDq7te7mRts4qNnAWEE8Yoe00jSKN9yCudZZyh9uKue007YywIxx3vxAw3yivKZpc6RtRvWKMam/PgIvhoFALb9qk9iCY0WckYQUfK685ImOO0Q3IcYTPvZEzSWqdcEzTM+n2bonclA+fwiG6n0WZXtDDbTKtWsMdlVvwuxwl7/t32bb9+0m8c3v6F03gyFzQaMcL3ELWyIfoKYYx/KSz+u4dnB0Jv/NWDQc/grwkpwfPQWU7gCcLIR3oeum3YXSJXqCxnIos4/58OQmsFfVVyz6M50eKxMbj6wIMLJr+WlsgWSzN/e01MieRF5701b1ItOoVVmHoXi85fx3g36mb2O44zIHWHWe1TDN0RqXnIOYlXx/TWa94dGvxxk6UwI0W79smms6e81vilac+wtfOyLpwA2TWqtkiTu1XaNjqXIu9m2BeKdtb4u9a57ojU/XURPbZEUCjBJZ11Zl1Ra8Fsd2QyW6d3RC4Xybttu5T3miTC7qyAzDqGLKt0Ut3YFHNWNpdRpiba9xvuHFrD2O5IyLoyRVYy0avbb5naU98VQadVKzlbhrzcmT0gU+NweDFFXb3IMFRVpzPDDkWSqTG6pdFOlsWR7MxEQ/Pqjq6Tvs4QKuUbR6Rg5VsDHo6a7WqbWXHlDJl0nJtOOaJzLh0nwLUMAgW50mkEaLtPRktAF6Q9oew5bXbKJu5ecWWScNw4q/U4p55pM9GuFPYM+3MRaz531vXqAeil9NeGANlXQU22aE1mpn1Pa+RAzUT/WY4f+qA0adM4AbISEQhNrhKCJGO8VS70u7WVZM0HMsKVgZEelRR9wWtt3j78ijY33DPMPckMisE6iE76X+niSyYtb5d19XYBeUXjNbv63hNRkAyVp9GRQitp6vGOOS0xfYpCF1wBr4lVSDNtikp2/u0cHZHIwmg7Qpv2tenvz4Vha8vO8bijK1LronMuphDTmJruL06NNSzSevXK6xg3sP/ukostmPpZx9DkEUVLoiuHFL6W28HMGJncppydTr+rmbsSQl4yRlVkIJyBj+3xWGfAtX9pz9aztck2dDPHjYiP+azbqLl/u2vpiHRC2Zp22WR2dGCGPbmyjFtPwQFwtt12BngtWdTzg7rAa1EMjEn6Ow6IUBAPdLIlecme57zjbCT9JuugQlDlznUoMi1Zx/g6noLjSkg74jjt6+yjZ3v1ncOlAnNuhM3sFEQ+WwoI6q7H3maVhM1QxNaJCM219RvmlfaZ/bvhtDcx3s54eDwhjVPQJs3fw3MPvT78TUfP4K8BM1FPIPsrkCsT1XvSSvFifvhoql5KoxyQNhLIFaHIGF72KHNmziQfnSjS6iKxErSxJFvYRrU9ZMuzbXjOuruN2zQ4eqp5d0YNWFNVzli2buaaNbxe13vOD7APvULAxHeG2P7bfs/p9RdENquJ7lK/jjHvtZwBMWNTHQvf1NQESDvtLTefyVQYRrZ1LMSYnHIY3YI3BalQdA0BstH9lGVV17LOebDRdTHIxkbpLqIXyqbCa3RG2qadyK97LCp0zo/TGXCkR5mBdnV4p8KoOt9RfscRkKmNxp0DYg2vE+Jx/d1A0bLWbRS7ORmufOGIi3nYuT/yyEbfge3Rr2TkbY9g2De1fMx30n5tZhvYbIvIBH7TlG+0bydHalCBKGrdosvYytRmRazEMFaMSGTm0JJKx5kqugpyK8pTTH00h+XFxllRtiMgDzuiOWiTxp/SFufWZ0sKTmfBET+d1K2XdtZhvmCzNpkx7uXhnPaQJK0ZDX/tmeE7P3/Lsfx1dZt6OyVLMnSukP1VejX65yg2FsX3DH6BnsFfD4QQhojTDVuzS5sJjXLQEZnTmiwIqQ0OEWcpk2PDuBo0WCNhpVD9akYGyKY1+t10ey244qU7kyufE+74k7lPi3q/YKoX0L2zXR9ZgRLX6uTmyrt6+pr1bpf6RGhjsD3TApWVzL51dwxozPKu3xvXouYOQRpDX2QUtHV28o5ioFuR15RmQlpTFD9I0f3XGU573IWssduWW8buX3crl8tuaAle1jGgeYlOm56tAbt1CucAWbW1woeyDkbudfgEJrthjbR1Jtx0O6cT4OWmDa7gAvgm2nSp9qIV0IPcOgTS7rtztvy2JiuLome+KC+ITkbCpakd2RBs5kVhUh254Y8gOv387jw5xUCRmoxPVlMdPQgBBBrd1jZ9b05IOGYCXecUOedRBcZIR6OmXp/0m2jZkfS8Nky/JyHp80hrknjA7pOVPMZmJlDg5x0nybXhudHQuPkHhdPZceLcb823gkkis86SMsZfSXPdHNrTJFlJFOWVPILvvfEI7lrVotlMUWmGCANktVSQe3t47qEX4W86egb/KcC08UUgBGk7NTy/SgSBT4ogmDUfP24T5ZKLdlnIv935q+Lh+cu9DiPPMjSaKAqRAhSCXAhU3kZrwV/vu48nlo3idTsa2kXaGqfsMkXT3i5T3NSik6otvICuWtaaRjWramtIBGiTAm7PzpFOuAUT8RXja0XHQJuoSK/tQDsHw6XhXTO+24eiVQ+0TQ0XkrjWiLko0hm/7kE6LvpT3QbaGlzXQ+06ArJyx5CTmeiwMJ6i62/Wifxd+57IIB0w35OWtObOqd/opLBVaFL3aRXbTic6Uao2kagjDbo6vvZB684xu9G/ADIzZLe0asb9Ks/a7kpX5Otq3j54ykbIVvFPuql+k54hbEpTwwbA65oO6a6rb4y9yAxRNO/LDNFUm6yPbwltRQeDbX/DZRisaJBMIGhoy6YXRYrei6FvqcKvp2RlQ/CMBykmG+aBJePZa5wHtmSQddL8yoogeQnIVJNVBLltzXPdG87x6O5G8WLzA8xLNoMSm78m62AcW+3DD9/9RlY2Mx4dz2g3ExAgB0xU36vbP8fRi/A3GT2D/xQhhIBSiCiFU95TQKwFrWaON202WZbz3X86gC2mV4nC0Ohrm4WLQKGVayYSxfSohhTQP7AHSTtFkHLjtgvZ7xe/6aSRbRSjA9VJcWtMKCqN8XCCPUVLnIvqAaQZaYrqPLwN81pMEY2h5RVqY90RtSrpTrugdtGpLtj4TuvdqaM5zoD27G6GZvypE6aZQsTTzpkw0bOWdKb0QcHALlqqHLtfdNZRGH3M58BU2VywRMVOJCx0h0WvvY5SHDb6laJTA1Y+iLBjwFya2inTuTZBZc+PY7E7I5R7nX93zwmQLk1u38sj06LmvqttBiZzYjV0MgbOCDqSoNHVt+9ZB0gmtiffcSvMpepy2pwksChOij/m47VN7T5oUJDZnO68cGURS9Jz7wcNCCc14XhGa2Zorrt1cuIBwcQWVdBmuaBOUdbw2vY6qs59EA9Y0p6T8nUsfGGvUxv8pkYFZjiR6Uqx59qq6xkypCj2XQUQ1u39IeFXHzuOsTjjgeGEu1bHpO3UzKm3v2/3e+3huQ3HW9nQ5z0Y9Az+34ANevxhQNZoIysRozJgLj4V3ysibfddpRXS3omJgmogKZciRK4plzL8/jJ3vmlfknZOEivSPED4Vfb+2Y/W2Jmuf0uMQbc6+8JG093ktkKy1rXkdf0YRNqZcQ6QV5Rl41ujHazDlbZOBsKMGhZaFON7C+GXFMJxSW5Tzd2CQWiKscPa0+SRSYW76M1tw9W0nYgOTP18Sn+5TXu7SN4ZOi+hUGhz2YI86qSO82Aq8UzaTIHITRTtFPjc9LhuMqGb5CddFJpDWjbLZBWK0a2uZdBvUqS087BTxy8Il9aBy8tWW99lK6BoYcOdE98Q9Nz0RpGB9IyT4YSCAOtkuBKJHZIUS7KaIqjLomwiY4r2Que8ZGUb1WtQtmQSjZl9D8fBb2mCpibul2jpGzEcO842L0HbF0W/dNLfcWKBYs6DY+Kr0N1XZj8K/YS8kxHA3naF1oLtWgBbOrH3QFa2MsLd2RQN133yWJZMJgw3EsbairwRI8ohslrqRfWbG3oR/iajZ/CfTghhUvy+h2q2Gc8DHvMEO5V8hASrto7WMJnWiVXMtGgGdDHthRQolYMPvi/xaoJyFZQSxEnG795wCEkM0pO85mc/YkouX2iTmodOKh3RibZlZ9Gixt02RjoPNdjIR0tt0qtpd/He/tPOX3fT+3C6+W67rgMhFUZ+1z60XapZRY5TQGfKn2Xvd09sKwalQEeoxh2HNdiunQ86THX3t5he6DgGviHMFVr5zgmy9XfHmhdd2QDljL5L/bve/yLDQXHMjvgn7bba/RSCQ1nF1NVRIO0ERFdPdwbNHVvRWZCbmnM43lH9Kwyu33UOsJH2pCiIbXnZpvA9DblAR9poJ2gKSWMwJSWhobRaFtyGoE6RSs9DW2PXHTZ90DDlhkLlUICX6MLx7Hs8Ia15RUlJZJ1ShGedLZlb4yw62RG0qfkH1rlJqya6910ZxV4TDehQEDRMdO8cWWkzDGm1w+FQ0pwL7YFsm8/jAXPfLxtPWFrPaLUSdJoZMZ0w6Bn6zRC9Gv6mo2fwn2YIq9qnpUDVWwyXAh4bbtDnJQz09xEGAQgIPTMXO5Cd3LUQAiE90rxC4LeB1DgJAjwPyuWUUjkkY4A0ybj54CNJ2ymvvfFaQ/7LO+I9Qom1ItxCRlULm660zPFwqrEF+yPKDGM/aBgRF29ukzzzyNMQ4WkzQMc32zVFZsMvkLlE2/nori3OkcywRqe788BMjBM2kteEE4L2DOuguG4Bp5dvU99oQ8Byx+OMtbLHJVPzXamn1vqdsI1QZva5smQ8l+6HTh3Ype8RHUnY7oE+zvA6QyuElZvFOTk2bZ8Zp6bQpBe2vmwjdZepyKJOFOpY+wW5zp0HS0BL+5kiDOScJJGDKmuz3aZpi/QbnlXPs9fa1/iTneE6yodwstOuVigAdnUraGF0+JUPfqzJEAiljVRvKGymQtAeCk0q3Rr07oyMtudT+RCmnXW7Fkd3n/gtK0qUmixJ4dTZjIuXQG7JdkXWx2YAtLQiO5YLUnAvrIMrM7jiX9/Ao8Ntmo0MpEAO1BBS0Evfb57oKe1tOnoG/2mEh0ZqhZIeuW+myiW55uHxlAVBQn8fuDg/khE+gckKdK0jCD0akxmTk5JKRVCLlK1nCzQ+SpQQCMJSSBAF6H64/ZjjSNopSZzy2uuumTqtzq7cTZhzETdQGM4Ouc4ZL9GlFW8NqoZ4rIQIc8MHyIUhgClMJGlOAI7CJxNhmPyIgkRY9KdHVoFQGRlXNw0ttzyBxnwKCdtOKYSpbXu49YkpP2hnfLv/23EGC815xwxXtgpijX1hQIV1UJwgDYbcKGNhBub4XYbbOhaFip+N/l1U7LT2u8mHjo3v2PLK7nORnbBtf/gQWHa5M2zSOQSeJTdKcy5lboRtzHuiIBUWWvhaEE9T+JOScEzYMoNG+ZqgLslqUF0KXmp4AHkIMhdFXV1IyCqGWyBzjdDGqXAZErBMd6spUOjw25IAmOMQfsfwOrGdgjxpyXtOnCePzOd+25Yzuso0Tqc/mLRSv0GX85RasqXNMKBN7T6P4Or3vpEHhmOabXOTyFql+H31sJmil9LfZPQM/tMINbaKZGKUwZmzaWcKlSeU4pxWYxI5VGXV6lGqlTKNZhOtNeNjE0ybNkR/f41a1bDAhBBoz+P+CUXeDFlYSVjQp/A8GGmFlKKAUghCa5MRECAjHz/0qFDi9jcfRxqnxK0ErTRe4LHPd35k6uqupctO1CvY7t3POpf6t/3vRkNdm+l8iYBAQCoQHhDl/Hbvo6gOVNB2f8wqUjxVR1uegsJn9WRC2hQc9NNfYEoPNnXs9styDtxDvdsAr1WSgKL9rkgtu55515cvO9910rraN/Vj6aR7rdEXtgXMRYTFWNzADrzBrtPXnb5zl9HwbPQu3Lx3CgU4XARqHYOihz3raMG7QS4uyi967jVTtOTzkjk/WQmE1fk3108UBtM5KeG4PV+uJp+An5mZ8E5i1mubSXFgpHC91NxTygPsecsiCrlhjanTZ2VBVhZWvc7sj5e4iFwTDwp0bocpahOtd18D1yMvE4q59m46n7BERadh4Dc6RDyR23S/JV0Gkxq/pcgqEu2LDq8C4zgUHRuYc/s/nz6OZpbz8GhKo5mjsxw5ULXtdn/7b76H5wB6Bn+T0TP4TyNUluELQTw+ClqTtJq0hzNa7TZPJoP0V0q0W02GR0aZOWMGcRyzfMUKttpyC2pbb1msZzzJmQgjNHBf22dlklIWilWJJvTbLO4PmNUXTtm2M7Z+4OEHHqVqhMo1aZzyy2MOJUtzvMDjn675EV4sivGwBRM+M2l53f3fxYFZK6wFJLLotSeVSCl4/MknEQgq1Sp9tSpKacbHYrIsZqCvhOcFjI62mT1zJle+9pUcdfPNhbHu1q+XbTvEpdw19taS8BQURh1t68J2EI0Q4ORyRVd6XtCpiTsnoBBpyTps++60MGB6vq2hLBT0CmdEoDxl1mXfNA6KKE6Rk4TNqma/nDKd4S109b/b/TLHobt098WUaFbYCDWr2LKEcx4cs79sDHgemevpNSiMq5v8hzD17WjE/FtmJuKW1jnJSqA8U3YQliCYlwzvwZ1nbfkHWhpOgZdAacSKB9lxsX7bbLc06iSabYbHXrpwwkbr0g7rsd8JY91xdKTJpLj2TKHA72rRdETLrOSZ8kKZwtFyTqLMQSSdrE4rb9POAsbbGSrJzHQ72eVB9rDZopfS33T0DP7TiHDaTEj6CUuG6SvjBK2hNNnA768RhR5blMH3pJnToxW5yumr1Dor0dDIbGJcCBSCYZcz9SDW8Nh4jACqkUfkSzy5NqtYCIHnCzw/IqqEaKVJk4zfHH64UQ/TmlwrNBpPSBQaiUSsJ9zJ89yw8IXA843yYJbm4AlGR8dYtMVCHn7kMTw/oNFoGNEerWk26pTKhj49fajKqpHVfGOXXUjTlFPu+qup/2uTjs5qXVG8NATEgpOggbxjfLsjfu3KrzbS7x4BXMyht++bdXcp0nmdOm+3KI8jfvlN+31PdIxNJju8AN3ZntcyQj9gHjLBhN2cZeALrGCNMOtxY2VNhsKuv9QxUsVwIdtBIHKIbJucF5vzEw900ta+1eD3UpNury1VqFCQRYK8ZNj7abWjQBfWO+cwnOxkI4TozLAPmp1Ruqb1z/XD68KKl5tdjPu2NtF+rkmqEqE6mQ83UEhoc47DCduV0dSkVTGlC0ML44w4SV8zIc8cV6oFyhckfdCWwpAurXNk+CBdXArrhGVas6qV0ohzzOz6YN0/4h42OwhtSkwb+rwHg57BfxqRygBKASmYh2FYBq3RfT7j9Rat/gozaiHTByI6ArpMMbIaUGqNG7TbmGvNCB7j4xmhyBjyNNtNL1MK11AFnPJ1gfAEUTkgLJlwS1uDbLZpNPmFE9Vxm1vj3+2GqQGUqhGO9ScEbLXlFmRpzraLt2Gy2cTz55ClKZ7nM96OmV4LydOcIIyYMX0a/f39aA1XDU3j2F/cgg4h9boMo0tPQxFROrjMhJNRnUI21B2j5VrmdFeE72RVCwJhV9rfDbRx7PhCqx8bTdqec5de9xwJ0Pa8S23JZ5GtWbuSgYWL+vMIk+rHsuInLechh7QqinZAd1wqMKn1aMzurzSpdXOuTP1eCbNPpdXmuMvDOSLTIAXKOhQqEEhtDLvrSPASXUjRZiWT2i66I3Jj7AvtfjrnwhllP9akFVOL0QKCllNmNPdRaTQn6ZOdjgnrkIX1jpCTK92IDPKqc2YosiHuWmkB0bgiqUmji2BvdxV19s+LO46SmOg6hz40c8VoU6OyHBF4vZL98wm9lP4mo2fwn2kIAYGPFoI817QyhVaA0GtF5W7xGSWPFUlGrGGtJ5P97xxoaY1u56RZTinsTk+u72kmOpGwhlbexJcBnvDIdUYgQsNWXge01gSlgFbdCLLLrnTo0OCAWQbo76/hfmFKw6DSRJ7AEwKlNdts048nJWjIpk/jhtogr7/2ukKIx5UZhK2P21NVtNN5LdBVWw6wUbnuYmt3dya4zEAxuQ6TRi60712GYB2+kiP2aReB606ZIRy327dtZi4TACYC75Z+dVBWOMdpH/ixSYNrKfBjXdT5wdbpbZrSb1kRH0um81KN19ZkFbPzA49kpo4tbBZCQFp1krGdYTmFUBEd0SAvAX/SCDJV6goVCOIBUZDfXApdBcbhiCYUeWjU/0LL2I8mjFcjUxOtZxVTLiqPK9KyJGho8pIoZga4h29WEshM20yJ6GRV7HmOLA/BkBnN6OY8FAVj32kv5GFnkmBuR/WiTYTvt61j0oLRlqKeYObX93Txn1fopfQ3HT2D/w+AAITvoeKERyYlQrSZPxDhe+t+6Ezvi5gb5zwar/PjKSiH3jqi++7QfD37JKDsW6IgAk+sP0MAxkglrZRyXwm5nv02wV3HndZAIAWtTBNIiDw6D1oBfiAZmt3Pzw4+ADS8/qfXF+z8QuNeTd2Aa48LJm3q19XdnZGHjia+Tbe7aNIx6bujVJfSFylmrKzoWq+go2NvX9oDks52CtJd2iHiubR1VjJp+6xqjI+LdL22KzmYqDrDGD+Rmzp2aQzifhftG4Och8Z4qwTywDp9oYB+D79ljK1pWTNORNDQJH02crftjWDS+X6TYqqcHyuiMVXIJnuxRzwgUIHAizVh3fTdV5dn5CVJNJKR1jyEhvKKBIRgckGEzDRerJGp6dxIK7I4h2HdHkNk/h1MaqJckfRJtJt7AJRGFFqaKYpJvyUCZtoQCtuaeEAWQjrKCgqpEDN0p9zJ0IjcOgFtY/jb00ErgVa5+WX0avfPK/T68DcdT+nO/9rXvsYuu+xCf38//f397LXXXvz0pz8tPm+325x66qlMnz6dWq3GG9/4RlasWPG07/RmByEKBa/mRJOHJjMacbaeRQVSQNnftEuTacjWLAEA689zdd6XQiKFtGz/tXkAWndeApBSIIVg7ZLYurYlcLsVSEGi1qG5j8DzPabPG6I2VOVnB+xvR7pOWWQKsQ86afuiLz3u1OGdBr5jeudRR0/fZQDcoJRucRjXI1+MW3WsedvbLhTFnHq/DU70x5UG/FbnVKjQKgW6WvmEbR9zMwJyo0pX6PgrIyKTRwItBa3pZnpb2mfLBokxpkHDvKIJRXl1Rnk4R0uKqDwaV/htc8FaMyRxv6lvK5tG92LjhOSRcVIqq3OCiYxoZYNgMivOaTSuqT2ZMXh/g8GbH2fGzSsoPzpKeVmTcCymNJIiM017Rkh9UURaEdTnm6E4CEFWkchMU16d4rc0flNRWZlTGrUlLG0yAmFdETbMPntt47S4ay5sHb49JEiqguZsaQx90LkujsnvhIu8dmeYjnO8tAc/fdMBxM0cnSmQcmO+cA+bG/QmvHoAnqLBX7BgAZ/73Oe4/fbb+eMf/8g///M/c9hhh3H33XcDcOaZZ3Lttddy1VVX8atf/Yonn3ySI4888hnZ8c0JHlADKmFAFPhUfStpB+SZIonNk1/lkGeaNFH0hT5lCaEUhFJQ8ySRFEwJroVgUgseG4tJM20N8dP7NEuVNjV+KQjLAUmcksZZUf9fG65mAL4AX0IooeK7d9fePyklpWrEjPnT+OVBh1AMB5K6GJzS7QS4yM6ldYv6fZfUbCHPSqeO694rtOGDrmXter2Eom9eWi33YkKeHUWblU1K3m9hWPitjlxs0QqWmrR0aVTjt7UL5gs+QRG9SyMik0dmoEzS3+EauOl6KrBtc8oYyrQqaU/zyUsmNFaB04sXKM+0zeW2pU4mphYfNDRBS9O3VNH3RE5lVUY4EhOMtiDPySqdZJ/fVkSrYuREG0qRoeorjTc8STyzjPIleWiM+xfOOZryiKKyShE0FOFEhkw0//HvR5P0m3X+11dfz2VfOZRvn3cQfssecyjwWgovNhmBPLS6DFZkSPmGLKgiaM+w11h1znk32dIR+7D1f2FLA2kfxNMUr//hTylX/Z6hf56iOwO3vlcPBk8ppX/IIYdM+e/PfOYzfO1rX+PWW29lwYIFfOMb3+CKK67gn//5nwH45je/yYte9CJuvfVW9txzz6dvrzczRFoRLFtNXylACUGlASsnmzCzRtqMiSoRoysmyDOTl07aCWElYlqizES9LKcU+rTTnLhaZrwrJamBx2NNrR4zf7C0xpbX9YTb9KeeRiNF5xueLwlLIa16myDy10k6nLIl4QrpxunZEIQwqee+oSrX7bMvB/38JrOvQqPCLnEd57E7Y553ftCF8adTFnARusw6kT10GWdjy6a2wVkjDh1tfbdt1ydv9AysIbbkvbRqjWzqtqHxY43yBOlQJxNhshaapGTkbru7BXJX63YlBCFIaxDWlW1ZlAVZMY1MvbyyMi9q9y46dtkOLzVseplrdAbRWIpIFTLTyCRHlQO0CPnqN9/EaW+5Ar+Vm/1rpbB0GZc+8GlaWcpEKoCcSqDxNDRbEJVDHq3nfP68Y/jAWd/luxcfx6rxBmlU5tEJxcc/90YiL2fZpEczE0hr6LWE8uqctCrN2F2tDachg6Qmpjhuok0xHCUPOloJuAyO5SO4ITtZ2bznevf9SUleVZR88DxJvp7MWg+bN3pp+03D31zDz/Ocq666ikajwV577cXtt99Omqbsu+++xTI77LADW2yxBb/73e9e0AbfB7xSgPZ9ZJKSNFqkQuK3UvoEaKXJshzf98gzRaWvTJrm+J4kl54ZKqY0OsvI11y5EOQaljdzZtUUYdDFznoaYBRH3frMQxvL8N803XFnnbup/6xzH4UQeIFHbbDKjQcfyOuv+Sla2p5/YYxf9xAUV1NPqxQp+TU3rQKMOp6tJztCnWurKyRrreEtDEfNqL55bQpVO7/dYfC7LoA8gND2wId1IwXrUsxamjG5QkHQNLXwaFwhco32BEFLW716I37j264CLzZOjpfoYsJbHpmaOsKWC2yZI+kTZJHXxazvEACjcYXQENRN3T2YVPiTKe2ZJaKRBBV45FWfz3z5EB5bPsb7zjuQGWWPD733JwiluOCOj/GXFS0Spcm06SsxhEtFnilk07h8q1LB5z5zFHcvb9BUkDXaqEzRzI3AjdYaKQQi8DjnjEMYqHq873M/pDSq8Os5KhTG+EtBNKGNM5JCc5YsOBJ5ZNv03CCfppF7NoJI5rxHYx0hJqc0GNYhyyTVQBN4ghRNIMCTxtFLe4Zi84erO27o8x6Av8Hg/+Uvf2Gvvfai3W5Tq9X4wQ9+wI477sgdd9xBGIYMDg5OWX727NksX758veuL45g47rDTJiYmnuouPefRkBJvxhAIQU1A0oyJc4WHYMHMPnxP0jdURkhB0s7wfInSmpHVLVbnQGRyzrpaJlvPvVtX0M6cwX96INdj0L3AMzX/jTgWrt1vCmzQvz7DL4SgXCvTmGh1pvolomOg6aTui2lpYp2r6uyHZ3rC3Ox0V7tXoR0LnJnxxo4w6IypiozhcONylR1Y4+rITvddhZ3vuql5xlDroqYulMRLtEllx4ZM57e1dUAEYd0Q3vLQvO83MtozfLKSoP/xjLQiTWtdZvXr7ejXgpxoiYjt6QK/aTIIQpm2u6zqWXa/IqsE+A3Ti+6Nt/CaHh9769U0FlTIKpJoPOeDZ7+c8oKteKKdkQlBLgRaa3SuyHOFji3d3srTZsCTgM7MevEkeBLhe2YgDYA2LXHN8Ratcfg/7zmYL338R1z8n0dzxnFX4Ld8sopHHhinLqkJrv3EYSxvmvv6lK9ci98yxxU0REG4dGqRoW3D07LTReHImn4TGuPjVFSA9DVRc4x2o47n+YhSFRVVyLxeX/7mih5pb9PxlOmq22+/PXfccQe33XYbp5xyCieddBL33HPP37wDn/3sZxkYGCheCxcu/JvX9VxFriHRkCjNSK6ZUNDOciYyTSPJzCQ9GzmHJQ/PF/i+YIv+gFKWEeeKOFckuiBbT4UQZBrGmunaPfxPM6bY6k1dforOQI4Wa+UppkB6Aq3Mkbq2OlfLVpEZ/mJkbu0IXqnNy/6yf3nEIfz22CNAaG478ZhiiI/RXzcpbkMcE4jcTPBzEJbE54R70pphhbvasUxNTdyl7l3rmisHeImpl5eHbe1eUrTLiVxPPSZpCHnVZRmVFQlBU6E9w9CPhzz8pqK6PCcPJdd8+Xj+42NHUFqdUVmVdzIc0kS83/roMcbIFwNxBP/384cXrX9JTZLWPNJ+nzySiFxB4KE9gUhzLjx7byorUoLxlH//4G/4/EFfY+6AMs6nlOB7SN9D25nxBD5EgXmVQkQ5Qg7WkNP78Qb78PqryEoJEQXmVQqRtTJyqA9RLZNMtDj1rAN5dFxzwRVHEw/6BJMZMtdc+qXX8s3PHMRjE5ql4/DE8piPHncgn/7Xg00HQlMT1RWDD+SEE4Zr4Yy740jEQ5a3YYmVx37717RWPsHoEw8xuuwJJkdHmFi5nOV/vRPZrPfK+5sxisBgA68eDJ6ywQ/DkMWLF/PSl76Uz372s+y6665cdNFFzJkzhyRJGBsbm7L8ihUrmDNnznrXd/bZZzM+Pl68Hn/88ad8EJsdJKA0LQQrGylpptYiwQkh6K8EbDMYMkvkJhWzgdRULgSPNRWTbUeoe4YMvzaKfSrf2PrX87nuTu+v+zErPUltsFow64sI3kr/dqfutZMD1oIbDjiQn+63HypTxK2EGw48kPHVda4/aH9+vN/rrGNA4SyoQKNCXaT+wdaFyxTiNG6QiwooZGjBatFbuVyZdJwSoWxLgzb7lYfCCOrojrBQVhKF3G3SJ1G+IK16iEx3BGV8k5FI+iR5CEeddDkS+OrXj+dLFx3Ll84+kv8480i+88Gj8Vvw1o9/l29/4k185+xjEVrz7Y8dy+N5xEVfOY72kLRDgwR+Mzd1eqC5qI9keoWLf/ZG9PRpXPrNN3LZ1cfw9Z+eyPm/ehf1WJIV3AmNyhVaKWQlQpYjZClElkJj0EMf4cmNatMLISD0kdP60FlOczJhZTNES/j3bx3KFy48mOXNfh4cCXhiVUJ7ZBKd5uStlPqqJp/4t0Pw2sp0YdgxuTI316yQS652piJGIybCVyFsud0WDM1fRG3GfIa23JZp2+zA7O1fjNc30CNyb854Fln6n/nMZ3jlK19JpVJZK7vtsGTJEg466CAqlQqzZs3iAx/4AFk2lUvyP//zP+y+++5EUcTixYu57LLL1lrPxRdfzJZbbkmpVOIVr3gFv//975/y/v7dDalKKeI45qUvfSlBEHDTTTcVn913330sWbKEvfbaa73fj6KoaPNzr80GG6sdrQfC90Fp8mbMY42cu1c1GZ5MyPK1Df/MgRI7z6mxfU1SRoHWyDzHV/nUbQtBA8FD4wlJts48AAAq1zTrMXmmUUqT5+aveZnP13dI2j70g9Cf0ouvtV5rvzsJe2GXce18XQX19Z0fIagNVrnhkDd0tP0VCDf+121jjVWU+0rMXDidoTkDDM0eYMb8acyYN8SM+dOYveVMbnjDQQWlQKbCvGIT5RckPlub176dB1+ykaLf2Q8X+bv3/LbpLffanVa7PBLEg5K0YsfHhhD3G1KdYbPnhTZ9WpNkZUlzls8X/89RyBy+c95xJH2Sb3/mTVzwiaP50HlH8ch4wl3LJrn/yQmWrmrw6Mo6f3miziffczBf+dCRxGlOnit+8OnjGGmlvP+zV/Guj17Jue87kvY041i0Zvi0Z4TE00ugIS9J3nXMT6iEAinLvP2gKzjpuO+ybNJnRdMjUZj7LMtRsesz/PvS30UbaLWEasbUmxkf+cjhPDpe5ol6xMi4pj08aTTvqyXkUB9ysIaWksZIiw9/6ggj8hMZoSCEKWkoO6VPe9Yhaxmmfmolm4+4+gbC/gHqOqBOxGRQIa1No7VRSmkPz2W4lP6GXs8UkiTh6KOP5pRTTlnn53mec9BBB5EkCbfccgvf+ta3uOyyy/joRz9aLPPII49w0EEHsc8++3DHHXdwxhln8I53vIOf/exnxTLf/e53ee9738vHPvYx/vSnP7Hrrruy//77s3Llyqe0v0Kvv79qLZx99tkceOCBbLHFFtTrda644grOO+88fvazn7HffvtxyimncN1113HZZZfR39/P6aefDsAtt9yyyTs0MTHBwMAAl/3uTiq1vqd0MP8oaK0hzdFpZh42UYjwnoLvpDVaKZMeTVKE7xGVQ+ZVfGZXfQbKviFHdUEpxePNlTw27uFlIfNKkkcSQSKmLudpxU41j9kDRv1FaYUn/IJgl8Y5K5YM4wUeeZqhcoXnmwee9DzyLKM2WGVwZo01obUmaZmpNFEpLGx2rjStXFP1O738azL4tTZ65gLw7JS/jZ1jrTTNiRaTYw0OvOFG7ArRni6G/ZiFBdfvvz8zF0431wPWoSmgyTLF6lV1mq2UY66/wUTnbpSuJeNJO1CnOwnhW/16vw2lEUO+S2umt95vm30IGsoadvPFPLQa7zkFCU1Lo1DnxQq/lZP0+4VAjZO4/ebHj+HxyZxACOI0o92IydtJxwnzJKIcFftGlqOTzOg3+BLf85DS6M0HgSIIBM0soOxLhkqSD5x1JWlNInK49ovHM57k5FrwzlO+zX/+x5upJ4r3nXoFn7v4WFa3TFtmnmToXKEmmshpfeZefxqU6rTW6EYbYjPZUfgeOje98rJagrBz32KdSrV6Aq+vxIwhnzO+fG2HcClNBibpg2RQIxNRTCh0A5CyiuZ7Rx7Bg6ti8iTrTMvr4RlDc7LOW/fahfHx8ac9mHO24hWHfAo/WLNDqYMsbXPbtec8I/vgcNlll3HGGWesleH+6U9/ysEHH8yTTz7J7NmzAfiP//gPPvjBD7Jq1SrCMOSDH/wgP/nJT7jrrruK773pTW9ibGyM66+/HoBXvOIVvOxlL+MrX/kKYOzBwoULOf300/nQhz60yfv5lEh7K1eu5MQTT2TZsmUMDAywyy67FMYe4Itf/CJSSt74xjcSxzH7778/X/3qV5/KJp770BrdTtDtBBkF5kE42UL2Vzb94SEEwvOgIhHlEN1OaE80eTQOWNYMWFTzWTRYwvM6BlRIwWBVkvujLF89SJKXmCsUK3JF2+tcRqVh6XiLVjJKtWbo5DPK86ySnkBISaXP/DhktYTne2SpsXqlSkSz3qZUjciUxhNrG848VwTR1J5mDbQyY/CLQ1yLjNd9s2kaqQm1K/7a2zDLG/3/6mCFIPK56dCDyLOc/W746ZQoPQ81Nx54AGEp3KANEkLg+x5z5g4QNxN+dvgbOPB7103pnde2r1/mdJoLoFD9A1NfnzI+1wr/ZCVBNJaT1jxDzEtMqjmYNOQ5oyBnxGWEEui2MOIzkyYb8+NvvoUkVyxrKnwhGG/EZOMNQ3rrq5isENrcO+6EAjrUiLKNwLOcxLLihdLkbWj7HhDT8D1U7vOlz7+JwDPiTk80c1a1chKlkYniHadewZmfOoozzjua1Q1FX+RR9iV1oRlp2Zp/miP8pyciFkJAtQTVkuEUpJlZt+9NOUa7sBF/GqiSjzdYTZkLTzuM9178I9OCKCGeZnkRLVHU7tNa5zr6DcGb/vuHfOmwQxhvJZBmhovQM/qbNzaWtn8W6zW/+93v2HnnnQtjD7D//vtzyimncPfdd7Pbbrvxu9/9bkp3m1vmjDPOAEwW4fbbb+fss88uPpdSsu+++/K73/3uKe3PUzL43/jGNzb4ealU4uKLL+biiy9+Sjux2SHNkOWIIU9TD0OSiZaxtOuRnF0fTL1TQDlChAE6SWlNNHlIlUkyxdbTy4R2Mh1AWdQoRWPUSg2eqIfMiTxqStE2Y+xAa0q6TTUYpj4pEEFKKezvMs4aPxBMm7Oml9vxjsu1EK1hIlVEniCUeipbX2vkGnr7noAZpfVlOHTx/13BGmV/qmKf+7dZxv2CjcMTlkPCckiW5vzPIYeStFOiSshrf/Aj/ufQQ0naCdX+8kYdLvOxIKqE+IHHT47Yn4O+/7NCGldmpuUtL3cGuKjAOADKt1GkG8YDVq7X6MSHkxAPesUQGr9tjslvK4K6qdfJJKc5r1w4E0E9IxnwCRo5cQb3T+SMNFPaEy2bzi4jyuGUtsi1j8neQ6HsTIDTJsOi47QQzVHNNq0s4Ik0xxOgwgClIbcn/tNfOY52nDPaTtC5JpUClSve+7Vr+NpZRzHWzgx5Tz29KibFsVlDv5GFTf3fGv3R0Of89xxONcg59YvX4jfsaOWa6cpQXSUap5WgQjjldz/kgt0PIZtsIQf7evZ+M8emsvTX7ACLoogoip7BPYPly5dPMfZA8d+ue219y0xMTNBqtRgdHSXP83Uuc++99z6l/emJSv8t8CQ6zdEIzCP2b6vlOwghTAtTOUJWy6STbZY0cx5e3SRObcSGwCciEmWqpRg/m+TJVDOZ6SlcgoiEcilBIYgTj7LnIV3a382a3QSXuOILwnWokHq+t9ahblCaVxmSnkCgLWHPyAcLPNkh8KmulWpAyxRtC+Zu3UHoMzCzj+lzB0njlJ/ssx9pnDJ93hDeU2hH7O73156t01sVPe163C3b3Wn1y4xCKU8FFPK9eckQxOJ+QXua7JDzBJSGM8LxFGlHsiIE0UiK3zJG059o47UV8YDP0kbGyvGY5uo6WoMcrK1h7J8CbGZGlkLDlK+WkANVtIB2vUUryUlaCVk7QbUTVJyybKTJ8GiDvBmb95pt8kzxiXcfyrLxGJXmkCtE9Oy2rznSH4FHPt5kfCxmRV0SNDWlESMf7E/aFswQ8pLutHHaroZg1KO/IhGeh27FG1CN7GFzgFB6oy+AhQsXTukI++xnP7vO9X3oQx+a8kxb1+upGtrnCnrDc54qhECEAareZKIconMnuv73hwlCCHToI3REWm+xRJfJabH9jAq+LxFCUqJGVG4wf26d0XrOWNoPygi5CK3JlaDRKjEhB5mIBdVWSl9J4Xlr0Ns3sh++q8F3GRwhBNITZLHRCtiYMZoYnkQryNKMSl+FybGGTdEH5FlOlmS06m36p/chPEGemlp0qd85KBnocO398wSV/gqDswKkt25nY1OOMaqE/OSw/Tnwup+ZEbdZJ9J39fegbmfUuzQ/tu5vuYciNzV/r+163yGLBKVRhfYFspXhTbbRoY/2pZGw1ZpgIiGZUSGe5vO5jx/FIysbpJMtRK2MKIVrp7T/DgghwPMQlRI68FGt2PSJgqnHK42SEhEFyMjUKdR4gyzNSdupKWNlObK/Ynrsn2UIIZD9VXQrJp9ogpTEg4YA6bdMRqY9HfAs3yM3WZe0j6K1sq8sqcehOeeBhw78v8256uHZxyam9B9//PEpNfz1Rffve9/7eOtb37rBTW699dabtGtz5sxZi03v5su47rU5c+asNXNmxYoV9Pf3Uy6X8TwPz/PWucyGOuDWhZ7B/1vge4jAJ5tomlpyrfw3PZyLyMKyoM14OQ8RBXhCkE22eFKUEaubbDO9TBR4hKKC7/lQTZldbqJW+Yy0+pDNNiIMaFKlkVVR2kiprmxFTK9CJVrzQb2x9Pe6P/dDnyyJDclqAyUMraA1GVPuK9MaT2g3E5TSJLEROs8zo9YWlgJWPzmCVgqlNOVqRLlvCF00Va95ziBuJASRv0lOx4YgPUnfYJWfHXwAr/vldajcsPZl3pkol1SMqIvIrbiObwbQ+C3MKbQ1/HBSGzGcUqctzWsrdCDJhipcdOWJZEoSSIkvYHU7ZyzOaU7GLHtyDDyJHKiZ6/9MGR4hEIGPDKb+7EXX54BRNKyVUUmKkBIRBKa2Lp+6Y/VMQXiyqP3rJCWPjHOW9BmVRJEBIYhckMxL8YZ9hBKoQCNTwUAUovtynsxyssk2crC2sZ9ED89RbGpKf1O7wGbOnMnMmTOfln3ba6+9+MxnPsPKlSuZNWsWADfeeCP9/f3suOOOxTLXXXfdlO/deOONRXdbGIa89KUv5aabbuLwww8HDGnvpptu4rTTTntK+9Mz+H8DhBBQKyP02iSqTYXuIv9pbUh5Qgp0UyH7q6avuVoinWzzOCXEaJNFMzWZaKNRCAHCg6G+FnEe0sYns6l9EQbkzSZqssXKwRolX7L1UEQUeGykTXqT4AWSPMuRG4j2hITpcwfIEQxVS5Q8YWkGmjzLi6jc8z3yPEfb0bCeb6TzhBOsX+Oc5WmG9CT+02AYjapficZE06jxAUKbMbNpzTHsjXSvF1NM0ysEd4TR0tfC1P6Dpplm5yVmiEweeSSDISLXnPIv3+H9XzgWQW4i51ZM3kqMoe+vGkPP03BxNn7QG92EEAJRCguFx+eyIRSehNgYfDcYKe0zAkReYhUU6x55uZPa9SYFh3z3KrSAf3/doUy2U+Nwh73H4WaJXHc6dtb3+TOEJUuWMDIywpIlS8jznDvuuAOAxYsXU6vVeP3rX8+OO+7ICSecwPnnn8/y5cv5yEc+wqmnnlpkGN797nfzla98hbPOOouTTz6ZX/ziF1x55ZX85Cc/Kbbz3ve+l5NOOok99tiDl7/85XzpS1+i0Wjwtre97Sntb+8O/xtRkKX+VmiNbsXISsk89KUgSjOacYaOU0QlMvXSJEMlGZPlmFEmEGvkrsqVlIX+ME+sHmR83EfFCf6MAYTv41VKqFbCUikYSxRb1XzmDPmA75rluo9oA7tqxHbcV9I4I9iEWm4Q+fhANEV3X+AH3Y6Cto7Dura/7ta6qBw8fZGmgL5ptaLHP4+MHC2pKKR7ETatryiMisgBaer+Yd3MbPcSI3uLEGCZ73kk+eKlbyFVmhXNjOZEC9VOIPALQw/rz6g8q3gO7tIU5ArVbOP3V8mq2koPgyopZEuSDJpBQGjM9KZUFKqLXlNw+ZvfyBOjll35NJTkenh2INhIhP8MbvujH/0o3/rWt4r/3m233QD45S9/yWtf+1o8z+PHP/4xp5xyCnvttRfVapWTTjqJT37yk8V3ttpqK37yk59w5plnctFFF7FgwQK+/vWvs//++xfLHHvssaxatYqPfvSjLF++nJe85CVcf/31axH5NoaewX+2IARIic5yROARacW0QNDSPirJ0LZ2rfMcGXZmwK6LX+QHmloUMxFG6HpGPjZp2PR9FWPE2jFjccpDqkQlgIENjArtJjB1G6GkleIHHtIzo2w3FN07ZMr23a/nYaq06db3Cmb+hp2OLMmflsi+G0IIolLIrw84jNdc/yPjw+VYuV2T3kd1VPKAQs42aAIpKE/gYXTwRW6yLNqT/MflJzKZGkPfaqck9RZaaZM+9v6+ckQPFC2CUSVEJkYiOS8BuUBVFKJqNCOE1EhPoZU0paY+H5FKylZmGegZ/M0Zz+LwnMsuu2ydqnjdWLRo0Vop+zXx2te+lj//+c8bXOa00057yin8NfHsM3BewJB9ZTNNrJWQK6OxjxSQpOiJJmq8AVJQ8iRl7eO1y3jt0tqvuERZSzxpmdm1sjEqvmdKA+UIspxJLbh/JGFsMiFJczKrqrfm7yFRa2v2+4GHH/q2dr5pRleKjT9H3cfWnVnvci7LsKnbfioQUjAwvY9bDnkjN+13EAB+U+C3KCR2lQ9pvxmik1e6evWhGNoSTOYEkznhRMbXLj+R5a2cVa2M+miDeHQSogA51DP2Txts9B5KwY0nH2uuQ6Dx2gJyYCxEtT2E1GglyWMPrQUiVOhQcfhvv00lMtwEHafPqGHo4ZlD99z79b16MOhF+M8SHHNa9ldQY5PEniSVkrIH3vQ+0lyRK00p8IgkzBmYxlAo11tFqFYylrUSUoHJGniyEy9bq6uznGEpmFzdpg+FDHxqQrPF9DKlyLCUle3Bn9ZF8hNCEJYC2o2YUi1ap7FaV2ZgfdP2Orvl8q0bh8qMjvszYSe11mg05VqJpJ0gclGI8DiDr/0OO18mFINvvFiTViVZJMhLkiv/4y2MJ4p2rmkkivrIJCpXyGn9CPl3loF6WAtCQOQJMgX/7/BjOP7qK61Qkih4GXnbNzlfqZGeBl+hpMYPcmbWJI12SNpM0NHTWCrq4R8GobXhU23g8x4MehH+swwhBLJWMf3AShEK2LrmsfusMrvPrvCSWWVmD5RoakFDCaSUeF73y7RsVMsB88uSUn/FqK6NN1CtBNVoQ66QtTK6naCaMa3JNqtixcoMhjNtCIP2OSclTIvkWjeGkEa6NWml6+1bTlRMprP1fr4mNDYbh63DbSClLz2JkM/M7apyTdxMSeKUqBxx3ev3Q9t0b/fwHpEb6V03kjUPBCoQxQG0hyRv/LdvMxorVrZyWo02ZDnRUI2KVPhy44S5HjYdwvdQWc5YM2VlKyfJNV5LWJEdc11EJpFjAWLcvLLJAM9X+GFOlnoc/6fL6S/bEpfjqfSweUFtwqsHoBfhP/sQAgIb6ddbjGUeCYLFQjC7L8T3JJUI4lwTbiA/LoVgy2llhkoZj9UlKyYTVJwYzYBGG1kx4iuAITs12uhGGzlQQjqDb3Nfnlr3dqJySNxMyNMcr6uW7gx8INfume/AOQGddSulaWSmzl8NxAbT/0IKpDRz2Z+OKExrbUoXWuOlOUFo+AlxM6FvqMYNbziQA354PeiOEI8bf6sC07aXlyAviULFTabgtzTxiqW0M41oJia7MtJgbGQVtemz8KIyebU3ne1pgXUC0zTn5G99DwT4GV11JIkKNbItkJkg7VcIBUkjQHgaPRaStUsMvcRnLPDNcKANRPna1r90lhvn1DczBXpZgWcXvQh/09Ez+M8BCCHQnmfU0BptGhMt/pprRto5O8woEwYeFX9dD5WpErS+J5hWCxBoxjJNUo4QuSJXCp1myNDqhvseshKh6k0aOYy0c+aEAiGUKYsKS0W36+6O2IPIJ42zQtlOa02uc6SQHUW/KXto293WsfdSdCR2xRrfWVcsLIRYqwKQJjl5avr5hTQZgzTOCCMfIQV5bsh+QWRbErtWm+WKdpxREeDbB31YDklaCbXBamHstdf560R4lH0PaceypprzTt4djeDRhx+iVhskTjP80CdpC7I4IZ4YRURt/NrAM9kp9IKCKIWoZhuZmbG4WposTDJoW/Aa0owiBmQs0MpDxxJdUuhyjtIeR1/3Pb70qkNp1VsIZYb3dN8oWmsjbtVO0ElqlDaVeU9EAZTCwsnoGf9nAfZabPDzHoCewX/OoGjzq5UhToknmqz2qow1U4Yqpj99YzVxt56BSsCcesKTrZRUCFQzxpveP9XaWeOZ5pol4wllD/rLHsLTluSkbS7bmOw410Te1Ii+WJX930b2bJ376gvnELhGwXX/OIUwOgV5pooOAa1hdMUE5WqJkRXjCAFJOyHPFKVKRFSOaLdNRkIImDl/GqWqaSdUucZLMgYiD2kFfIwugMAPPVSuue4Qo8IntGHl+22zLzI2xh/VJRWg4WNf+APnnXcYcwZmkU0mhNUSnnVCqoBCo6RP2nv+PC0QQkAlQscpHz/kAD50qxmsFEwKtK/R/Rmq5UFdGl6GD1pqU67x7cRFDdrXDJZ92i0P3UygVjKOr9agFLqVoNPMiBb1V0xpSYDOTWutGp8Eq1RIGPS4Gv9gbKrwTg89g/+cgxDCsLmTlHYz4W4NlXrG3IrHnL6QwJfFch27OzXNLaVgq+llwpEWD7c1KvDMKN9udrgnEZWIfLLJ6tinmSkGIo/+ULBoWkjg2Rq2EgUxSgDYoSpxKzH6/qFXjNdd5/E8har1hlj6YJyeNM7xw045ISgHIAVR2bQuCh+iSgQZZGlOpVZGCEiTFD/s7KdSymgLCKYMKAI3Jjhl/59fj5eLIrp3EroCY/SV7ZZUAeS5oDXDQ5QqNJOYJI3x/L9RC7+HTYYQAjlQRY3Uueh1h3HmddeQVTVCCcRYgAqUEUhKQChBVobfHHs8D4ynnHz9VWYdmWBhv89YM6RZb+LpkrnIVmJYlEKjmbCG0qDwBKJaQldKkOeoVoJuJWuP9u3hmcWz2Ja3uaFn8J+DEAC1MqrRpjnRouVL6mnE8lbOwprPnP4IpTQ50EgVA+HUVLoQglLoMWugxIq0TbOvTNKIzSzXcmRJekZNTUcBuhnTGG/R8CSrqxF9oWTOoLFmWgiEnjq/3vM92s0UpMBPMjOpbhP7mLWda148DNdXqbDva5uOExLyTLFm1aA6rUogBGLQTPwzvf2mxCBwgj5r/+D9wKPSXyJpZ6hc080HzJKMNM64+eg38pr/+32T2k9MSx4Ywy+yjtqe689XuWA8MWWRrmpLD88khDDOaymkNd4iryhuPOooXn/V9/AnJEJ7xZyENILfnnA09421GI4lXlMWYkrlMKO/5NGaFJBlEAZGACsMjAjW+oy3EPgSPN9Hhz5pmpM32hCnxvA/h+SIn68QuUZsIIwXvfpZgZ7Bfy7CppdlrQxWKzyuN1kd+MQqIleaeqoQQtBXCugP5TrtSq3ks/VQRDPOeFwKms0ENT5ppHt9r0M4qpYQFY1utElbCcsbkv6SR9pOKEURQeBRGE4NaaYo95fwPEnWTotxtZuCNM6IWwl+IPF8Dz/wbQq0KxvgjL3WxO2EPFV4vkQphcoVfmB09AH8wrp2twLaAfZrkgPorFdrk9bX2nQpaLusQBieQpIRRgE3vulQ9v/va4oxuVqaiD6ITdSYlU1NPw/Az00mpOlJo4iY5yC8Xnr3GYa7h/PhCS541aE8NqnwJyThhNVHmIDWHDPYaO/Lr0KVFcGYBxKyPoWMBft8+Yd86y2Hm99F7mjdunCOHTwBobRqrkLgC2jnmlxDJAWVSsCEJ8ltql/Wyr3BPM80nHO9oc97AHptec9puLG5shwhB2torZkYb3HPSMxjEwmP1VOWjLcZa2YoNVWFz9SkjdGvlEMWlj28UogIfCMysuZ2pDTT1NKMJ8cTfv9kiz+uiHlouE2am19UninazZgWAi2t0I8nyXO1Sa14WmvSOKVUjQjLAVmaMznaIEsyVK5QSqGVRtn15Zn571LNJyz7lCoRpUpEnuXEzcRmCliHUReAXKeh1drwE5JWQhpnZr69BI0qHgxCmlG8WZpRrkRcedj+eLGJ6r0YolFj7L3YsPVlDtGEJprQvP+zVxF6Zja9bqe9Z80/CEIKRBSQtRIaqVFI9NomK5P2Q1AXiFwgE4FsS9LBnKxmJl2KTNjbZerNZOY5mCsYSih7MLOkmFvJmVX2GAglZV8SeYJcG8MvgYHIo1QrI2tl1GS7l1J+huFY+ht69WDQM/ibA6xBln0V81Brp6g4I2u0Ga3H/GV1m8fG2mRrGF4hBDVfMKPsMbc/pN8DN5d9XQ8hIc3Y0TzLqY81aUzGLGnlrJqMyZWiWW+TCUmlEhLYsbR+4BVp941BK42QZvCN53mUayWqgxWyLKc12abdSGjWW8TNhLiZkMYpYSlA+qYlT3oCP/QJSwG5EOSpM9ICpTVqIz9s50Qk7ZQg8in3RRDmJHmTyXScVMVFuSGqhPiBjxTQXwmK4SwyNpPyonGNTDXRuMZrgwoEaUXwfz/xJvoCSViJ0Emy6de4h78PQiDLETrNyDLFxccfQWu2IWyVhiGYNNP0tKdRkUL2J/gz2kaZL4G0qklzjc5z9DrKU6kyP5tmJnlsUrK0kbOilbOqndPMzH2ngHqqGIokcyseMgwQoW9Ifz2j88xBaZNyWd+rx9Iv0DP4mxFc3V30VxD9FTNOVQgmJ5o8MBpzz6omw5MJcZoXDxghBIEUlCOfOSXzENKtGNVex0NICIRnHAs5UEMIaZjwkynNZkqpGlIt+1R9gWejZyGN0c/THK30eh9sWmuyNC9S8aaV0BDxytWISn+Zci2i3FeiVIvwfEMGlJ6pw3YiL40CmlqQpnmx/lhBO99wMCWEIRxKTxZMf08GxHmLOGswkYwwkYyQ5O0ie5CnimpfmZ+86RB+dNQByBzCCUXQ0GgpzCAdDdJS70/8+HeQUhBGARJTXJDCpII90SvpP6MIzNjqZKTOyEi7eNu1USYDtruikiN9RZ56oCAra249+RjiHNNqJ9cmoWqgmcFECvmaUxztXymMben0toAoR6aVL8vp4ZlBL8LfdPRq+JsZptQCBab+nmakky2eSHxWtRWzyxk7zCjhr6HZPljxCSczkmpkRrNiHkhrbAChtZmF7gn6Q8ncoQg/1IymI5QpUwv6pnwliHzazQTiFIHACzyCaGrdUiuNyhRRdT21fqlAu9ZD0WHUCxO9i+LYTelCaI30RNFe6IbUrc+iNltthkdGCXwflKDWVyEIfVpJgzhReEEJpVKGs9WUvAaDpZmgBTKUJHEOpYiBwQo/e9+RxM2YZqPFCV+7ibxkZHjzSOC3Tevev553FR85ZndCJclXjiN9n0qlQrPZxK/2k5ZqG73OPTx1CID+CrRTsokGnzvgID727Z+QViEvY3v1NShBFvvo2MNrS7xYoJQkzqyj7HW0J54K79J+lclUMxznxuRLgYhCI341UO3V8p8JOMnODX3eA9Az+Js9hBAQBniDHqqdEE80WU6F8ljC1tNKRROqEILQk0RCE2QZdd8sL6JgnZK1up3gVyK2qAWUw4zxeIzQCyn75bW2ryUElQhfGJZ82k7JM0O0M+2DZvCN9DoEqE4GArp/ke4B65ZL0ox7/nof06dNo7+/D9/zUErh5RnNWJNrxYpVq6kMDBEKRa1WRSM6EbVdT7PZ5O67/wpAX18fnuejdI7ve0w2GpSiEu12Gy8QRFHEE2KU0dEx+vr6qFYqbLvVVug4Q0pJdaBCeaDEFe/dlxUrhhmfrJMlKb7n8+nvPcS5h++A1orx+hgiCAiDgJHRYVrtNv3zJKJU6z2DngkIQ/sUpQCyiKyd8tVTD+fdX/8hKBPp+w1J1pfiBYocoJqSro7IlCDNlHE4bclLJZZpv4nQQH8oqQWCVW23SwLKITpJTaQf9vT6n3bkG2Ht9Vj6BTYLg+9LgRSCJN+4KHLJ94yn/g/Yr+cKykCgFFmtjIgC/CxjNPGI0xyRa1Mz9yXkMMOTtKolci1QjTaiFRP0VfCloK00sZqqjZcoTSDLzK52DP2avfXKWWkp8BCmPSlOgaBI4eeZmsrkn8KuN61/eh3xVBD4hEHA6uERnnxyOUmW0N/XR5omrFixiqGhIaSUtJY8QV9/P7MWLsSLIkqBT78vCOzqKpUK2227mFwpwjBkfHyCciWiWq0wPlFHZYqhwQH6+vuQnkAKj3KphEZQCgNKlQjQKKXJ4pRypUS5PIeZs2aackWe02rFXDh9GvPnzmFlJknHmigp8EsRnlJUlIIwolfZf4ZhS19qrMGqScUFJx3KGVddQ1bW+C1BpgWlckIjKZM3fYKWZNXwKEkm0Jg6p2rGRmgnDDb6LOlu/ByLFUk+VVFCALJaQk22EEHQq+s8zehJ6246nvMGf5tpfew+bzoA960e587lo8zvr7DlYI3BcogAJuKU5fUW287opxL4ZEpx/QNP0ErXrptFvsfiaX3M769Q8j0aacaSsQaPjNbJniFyRyXwedHMAWZUIiLfo5XljLZiHhyu0xcFVAOfZZMtxttP3RQIIGq0EMNjVPqreAJ8TLuQlAPkSUx9skmeaWbOm8WL+gdpxykPPbaMXCiG+qrMWzADIQRjEw3uHG/SVCB8icoVj0+kpFowqxYQeYKSZx6KLkgxc+YyPOEVjoAx8gHNiRZhOTDte2lGqAJT1MY5DV0pf22cC+go+rnjW7hwAVFUodVukyQtfF8wWW9QrdQYGhqk1WqxaKutGRgYspkDbfkHmrg1SZq0qJRLbL3VFsV627OnMdEYIyz7+GEf7XbCnNlzqJT6AE0ct5g9cwZPjNSZYcV71tXT71vRoSDwKUURgwN9ZLnigVUtmolG9pVJpd9jy/yj4XuIUkAyOkka+HzmkEP40I3X8L137Mnhv/olgZ/jRRl5HJLOSFnViBEqNGOgpcCTmjSKjM7Ceh4LQZbgeZLAk7S0NL8LrWlnGt8RY23GIAt8hO+hW22olHpR/tOJnvDOJuM5bfBLvsfu86bz9a9/ncWLF7P7Xq+iPwqYUytz66238vUbb0RrzSte8Qr2228/PM/jrLPO4owzzmCX2UPctnT1lPUNlUP+acs5tBqTfPfyb/HYY4+x0047ceSRR7J4Wh//8+jydToJfw9qoc9+i+exYtkyvnn591i5ciXz589n3333Zb/ttiNNUyYmJthx6zlce+9SUvXURjtJYdjr3oBJZUut0Z5gt922Y3h4mOlzZzK6cphqf41HHnuUW2+9lQMOOICttpzL46vG2OFFW/LTn/6U5cuX87a3vY2l2Qqa9ZYZutNs0xCCx+oJjSSnvxxQDSWzyh3jrjQkKiUQisALi/fjZkxYDpBSGsW7vlIXYW/d8ISYkn3TWqNQzJ4zj0azTalSJQwkE+OrmBibYNEW86lUyiaVOjDE5z//eXbZZRf2339/vvKVrzB//nwOPeRg0qQ1hUwYJwlKK0QgGR9t4JUgDpuUK/2o3PT712rTaE6OMnOgSiCnOiB5ZlT6/DUGCGnMGPbVjZSJVoabW9DDPx7CyVSHAbqdkI1OcsEBB3PItT+CkqTZDskmA0SkuGrn/Vg6PI5QmlajSalRxfc8vGguyXpshRRQX/Y4qjnJtOnTyFNT7vF8nzRNGZo2nRXLlzFt2jS09GhXBkgqJdT4JCIKe/fF0wm1kaH3T/GZ+nzGc9rgbzu9n5GREb7whS9wxx13EIY+oc454IADWL16NW95y1uIooivfvWr/PrXv+bcc89ljz324OMf/ziXXnopd60Yo5GakZdSCPZaOIs//v42Dj/8cI466ihe+tKX8sMf/pAPf/jD/OIXv+DVi+Yy2kqY11cm9D1aaUYjyXhsbJKHRyeRQrD1tBqLBmqUA4/xOOWh4ToTccJOs4eYUysTeJJGktFKMx4erTOvr8KD99/P3nvvzTvf+U623XZbHnjgAb7+9a9z/vnn85e//IV3vOMd/OlPf+Kg7RegtWYyzZhWjmilGUprVky20cDsWgmtYXWzzd0rx2ilOQOlkO0XzGBaJSLLFWOTLfIsRwjBK1/5Sq699lq23357AH7+859z1llnceaZZ/K5z32OUS2YnJzkhBNOYGJigre97W3M7qswf6DKUDnCEzA22eb+J1czlii2mNnHnIEqpcAnz3O0VqRJi6TVQphmdjSmPU56Pv3TphEEoSHe5RlJ3EKpjCiqIn2jaZ9nCXG7QRAEVMIyfhDZXnlFrlLSpIXnh5xzzgfYaqutOOOMMxgYnMvA4Fyk5yGlROXGSVu0aBHTp9ts0H33mVq/H1Dtn06epTSaIwjhUa0NkusckXj0RdOIyhWkL6mU+vj85z/PihUruOCCC6jUBgmSNtLz8a1Mbp5lqHwc4UG5OoAfGBW2PM/JtaaVpMyveGw136OepCyfbHHv6omNtgz28PRDCNObr0MfNTpJ2sy5/HUHccLN15LUQ0SoEFKzcuUqxkfGqFaq1PpqCCGI4zZMttD9tfVG47X+fhKhGR8dIUszBgYGzPeA1cueoFWvU8dwBSpbDCA9iS5HhsDXX+lF+U8XrFriBj/vAXiOG/wth2p89d8v4uCDDyaKjJzsv//7vzM2NsZtt91GpgVJnvOe97yHZcuWAXDYYYdxxhlnMDo6yqKhGvesHANgbl+ZSuBx8skn8/GPf5xTTjmFiXbCySefzGmnncb73vc+vve975E16tz4s1+xaNEirr32WrbbbjuOPPJI+kshg6WQfl/wox/9iIceeoiXv/zlvO51rwNgyZIl3Pznh+nv7+f6669nxx135LDDDkMIwaf+/SoOPfRQzj333LWO8cYbb2R4eJjLL7+cWq3GEUccwa+uvYZXvOIVXHPNNQwODvKmN72Jxx9/nP/81vfwPI/DDz+cN2y3kHtWjrHT7CHuuece/vuaa5g2bRrHHHMMgzOmcdtttzExMcGPfvQj5s6dy4EHHgjA/vvvz5VXXslnPvMZtps5wLe+9S1e97rX8YMf/ACAraf1cccdd3D1L39JHMe86lWv4rWvfjWjky0Ccn5yzY/Yddddufrqq1mwYAHHHnssNSkYmVhGX9BPkguEFzBrwRyWLl3K1VdfzeTkJK985SvZZ599AHj00Ue59tpri2OZO3cOQkhuvvlmZs+ezZ///GcefvhhDjzwQHbZZReWLl3KX//6V1avXs3ll1/OLrvswty5c/nTn/7EwoULueaaazjiiCOYP38+Q0NDxblVSnHVVVfxyCOPcOCBB7LzzjsDcNtttzE4OMjs2bMIwoAHH3oIgIULF3L77bczPj7O5Zdfzrbbbsuee+5Js9nku1f8P1auXMk//dM/8bKXvQyAxx57jEcffZRKpcINN9zASSedRBiGXHXVVQwPD7No0SKOOeYYUqV5YHji6f559PAUIOyEu7f8z48RbR98zfcPOIAki2i2BdNnpIhUGRldz8PTmtZY06jurSsa1zAwcxbJ9FkkWWaG7OQZ2fAygtoQUbWfUsFJ0aRC4gvwyiFxkqEbbdNh0zP6fzd6NfxNx3O2sjhQjij5Hj/+8Y/553/+Z9JcIaXgO9/5DqeddhqtXPPj+x/nZw8+yW8fW4Gq9vPnJ4eJoog99tiDm266iVldDNu5fWXuuusuHn30Ud7+9rdz14pRfvbgkywZa3Daaafxk5/8hEajwSOPPMJb3/pWPvShDzFnzhy++tWvcuaZZ7Lt9H6mlQL22WcfbrrpJubMmcOnP/1pzjvvPABuv/12TjrpJL7whS8wbdo0zjnnHL72ta+Zbc+dy29/+1tuueUWsiybcpytVgulFPV6nUajAcD73/9+jjzySCYmJiiVStx22228+tWvBiDPc1772tfy6COPsNPsIa644gqOPvpohoaGeOKJJ9hrr72YnJwkjmOUUjQaDer1OsqmtYaGhnjZy17GjTfeCMBll13GW9/61in7dMUVV1CpVJgxYwb/+q//yn/9138xVCszPDzM2972Nk477TRmzpzJlVdeyUknnUSl1EcUVACNLzWDff3cdttt7LHHHkxOTjJ//nyuv/56AO68805e+cpX0m63GR4e5mUvexmPPvoYAJdeeimHH344d955J1JKXvva1/LII4+QZRlpmhLHMfV6nSRJeOCBB3jrW9/KBz/4QQYGBlBK8Z//+Z/85je/KY7joosu4s9//jOVSoUDDzyQW2+9FYBvfetb/OIXvwCMUuAPf/hDfvCDH5DnOXEckyQJ9XqddrtNkiTsvffe/Pa3v6VWq3H88cdz+eWXA/DHP/6RE044gfPOO4+hoSGSJOGVr3wlY2NjbLfddjzwwAOsXr2aUi99+6zAZYp0M0a1YnSa88WXvZGL9jmCL+79RpZM1ljR8hlLoZVCI9U08WhqQVML1EbGrs6qeMyueCR4xDIgjptMLnuE+vgIsfCIhV/8dfovgSeRfWXI8p4gz9OFXG381QPwHI7w+yLD6L7nnntYvHgxSa4IPMlDDz3EVlttxUgrLrgYy+otltVbAOw8e4jFixdz991384bDDi/WV/I97njwQRYsWEAYhqxujgAw3Gzzoi23pN1u8+STTwLQaDT49re/zcDAAEcccQRbbLEFH/vYx7jpppsYGBjgkksuAeCII45gm2224ayzzjLbKJW4/PLLkVIyd+5cLr30Ut7znvdw0kkn8eCDDxZGfN999+Wzn/0sL37xizn00EO55ppreM973jPl+N/73vdyzDHHACYqv/DCCznyyCMB8yD76le/ygUXXMAHP/hBbrzxRnbYYQcAnnjiCa688kpOPvlkBgcHOf7449lu222ntN697W1v47LLLmO77bZjdHSUl7zkJVO2ff755xPHMStXrmTmzJlccMEFnHzyyQDU63W+/vWvs2DBAt785jezcOFCHnroIebNm0XSbpBmGb4f8NGPfpTPfvazvO1tbyPPUjybwv/85z/PmWeeyQc+8IFifV/60pe46KKLAHjDG97Apz71KQDuvvtufv7zn/Mv//Iv7LLLLmy11VbFebr55puJ45irrrqKUmndkdJee+1VZFXCMOTzn/88V199deeeiCJ8v/MTmDlzJq985StZsWJFsZ0rr7ySarXKpZdeCsBOO+3EiSeeyAknnABAEAR897vfxfM8hoeHGR0d5Z3vfCczZ84s1vvLh5ettW89/J2w8xB0nECagechyqZ8RJab+fVZjm7FpntkqA88SaYFuTLaDVLlqDRHZTk6Tm2fvHUU2glaYLT11wFfQs33kAKWermR1a0OUt3uZchw3a18oRRIYcSq6K+gJpqGUFaOzByHXrT/t6FH2ttkPGcjfM8SpVqtFlEUkdg67cDAACMjI1OipsCTLByoEnmSXGuiKDI91V0/oExpBgcHGRkxhr4cePavz+joaLFugC233JKBgQH+smKUwcFBFixYwMMPP8ydd97J//7v/7Lnnnuy5557csABBxAEAWNjYwBsv/32SClZVm8yc+bMYlv1VPG5z32OZcuWcccddzBv3jxe//rXk6ZTNe3/d9lI8e+dd96ZutW8v/POO/nkJz9ZbPeb3/xmYVyWLl3KW9/61uKz3/zmN6xcuXLKepOkRZ53trXffvvxhz/8gYsuuoiTTjppqkCO1px++um89KUv5fTTT+eSSy4pyiUAM2bMYMGCBfxl6WqiKOJFL3oRDzzwAJ40Bl3acXZ33323SYdP1hldvZJG3Rzbfffdx2677UaatMmyhN13353777+/WP8OO+xQZCdmzpxZXBuHPEtJY+PcLV68mHK5zOjKFawLu+66KyrPaDcbvOQlL5myHTAMe6e4tyaUUuRZxv3338/uu++O1prWZJ3dd9+dRx55hMTK5r74xS/G8zxWrFzN9OnTOeOMM9hpp53Ye++9ufjii8nznMHSpg0W6mHToQFVb6KbMUJKdCtGN9ommh+bRE22IM2QfRXCaf1GDjowBlrmCpKMrJWYyXaAHKiCZ5j2JBm6FRsp63XYYE/AUORRCyS1QLKg6uMJ0MIjqPbjBWtfbwEE0pFSBZ6URAMVdK5Q45Nm37O8F/H/TdAdo7+u1wuqSXvDeM5G+G1Ltps/fz4rVqzAG5zBQElz8MEHc+2113LooYey29xpxLlim2l9RJ5kIk6JfI8VK1aw2267EXfJWa5utnnlK19JlmXcfPPNvORlr6AWBiye1sc3/+tK9thjD2bNmsWSJUsYHh5GKcXiaX0opVi92jzMh4aGeP3rX89ll122zn2WNopWeqq3Pq1iCHhJrthuu+34whe+wCWXXMKKFSsKYRqAF88aLL4TBAFp3knDX3zxxbzqVa+asr1Wq0W5XOYnP/lJQVbrhlu3H5bxuiJ8z/M4+uijufDCC1m6dGmR7gf43//9X2666Sb+8pe/4Hkev/nNb6ak/CcmJojjmMWzzb6uWrWK6dOnMzHZ4JGHHmPhwvmAiZaXL1/O1ltvRY5HEFYA4zCsWrXKzorvfL/7HGZxhud5U86hOxbPD4psQRDYv6V138arV69Gej5hSUzZjnMIfftgHh01jl33dqSUICXTp0/n7rvvNsJF5TJLlz5Bf39/Z9v2b1Obc3jOOedw9tln88c//pF3vetdDA4OcuARR/HgSH2d+9jD3w6dZnilEAIfkWboXKHbCV6lhIwCtCcJBHho8iS3A6Y0eZLZ0bd+YeiFbaPTuTKkuloFvHUPYKr4koHQBBeeEMwueyxrZjSydcynoDPMbTJVpksPs9py4JH3l1GZ2W812TKZuCiA0NzTvah/E9CL8DcZz9kIf9h63q95zWv4wx/+wEApYHm9xXvf+15++MMfcu6551Ju15klUq76f1fw2c9+lgEbSf3hD3/g1a9+NSOtTl/70vEmQRjyf/7P/+Htb387f/zdzSyq+Fzzox/ykY98hHPOOadYdvXq1XzlK19Bqpwvf/nLLFq0qCBg/fjHP+baa68lSRKGh4e59tprN3osV155JT+99hrSyQmGh4e58MILWbhwIfPmzWPu3Lk8/vjj3HnnnaxYPjX1u7oZk+WKt7/97Zx11lk88sgjKKW4++67uf322ymXyxx33HGcdtpprFq1ijRNufXWW3nwwQcB4yz98pe/5PElS4jjeMq6P/zhD3Pvvfcya9asKe9HUcTY2BgrVqxg9erVfOYzn5nyeZZlnHvuuYg849vf/jZJkvCSl7yEhx57nEeXLuPOu+4lTVPe+ta38uEPf5jly1cwbfp0/vTnOwA49thjueCCC1i+fDmPPvoYX/7ylzn22GOnbCMs+VZit4MFCxbwhz/8gYceeqjIqDjEjanH5nDFFVdwzz33MD4+wfnnn8/RRx8NwC677MIPfvADRkdH+eMf/8iVV15ZfGf+/PnccccdPPjggwwPD3PIIYdwww038Otf/5pWq80555zDscceu9aDuBSVWblyJTfddBNKKXbaaSdmzZpFnvc01J8pyGrJjKFttNFSImtlM6wmy8jbRuo5bSW0WgntOCVttMnqLXSWm/R9rYzwvY6xVxo10URWIqPLb6+xFKbLx8lDTKaKla2c1W1FK9eMJ6q4X63+VIFuU6Mwom/a/m1mmkCaiZiiWkL2VyH0Uc0YNd4wZYWesdo48nzjrx6A53CEnynF8nqLk046iY985CO85z3v4a8rx9l1y6247bbb+PKXv8zrX/96wNRqXR39vvvuw/M8dt11V25ZsqpYXzvL+cvyUc466ywWL17Mpz/96aIP/3vf+x6vfvWradqswq677sro6CgvfelLWbx4MVdffTWZ0sydN4/rr7+e8847j/e///0MDg5y+OGHc8ghhzB79mx23313wMjLDg4OsueeewLGWF100UWcc845eJ7HLrvswg033ICUkjlz5nD++efziU98goGBAf7rv/6Lf/qnf6JSqTCmFH9dNc6ZZ55ZGPfR0VEWL17MRz7yEQC+8pWvcP7557PffvuRJAkvfvGL+dznPgfAF7/4RS688EKuueYaLrroIhYtWlSUEZK4xbShASbqdcIwZP/99wfgRS96Ee973/s44IADGBwc5NRTT+VnP/tZcR4dE/7lL3858+fP58c//jFprlg21qB/7iKUznnk0cc4/fTT0Vpz5JFH0m632W+//dhzzz054YQTGBkZ4aCDDqJcLnPWWWdx8MEHA6aMMX/+/EITf/vtt6e/vx+Ad7zjHXziE5/g3/7t3zjuuON4yUteUpzfUjWa8n13HB/+8If50Ic+xGOPPcbhhx/Ou9/9bpTKefOb38ztt9/Oq171KnbffXc+/OEPF+WcI488krvuuoszzzyTfffdl3/7t3/jyiuv5JOf/CSrVq1in332KZyg2bNns9tuuwEQCPNA/9rXvsa//uu/EkURBx10EG9+85u5a+X43/lr6GFNCCGgFOJFgbGg0ihAyL6KGUucpMboC2E+C3xEKUSGfiHBq8Gk0bPckOiSFFEKIerI35alwB8eMwOQfI92tUIuJa12xqO5pjESk0w2GZw+SK4VvtYQJySVskv1ITHkQSWkqd8rVcyAiAKPSGvqKaaOXwrRUQB5jmrEho9QK/ci/Q2hF+FvMoR+jrmQ4+PjDA4O8rWf38K28+fyz9sv4sADD+Rzn/sc0xdtzR8eXcZuW8xmq+mDU7432mwzVCnx7ne/mwMOOIDXv+Egvvene9eq3mw9Y5Bd5s9koNwh1qysN/jz4yvYcvoA9ccf4V3vehe333578fmKiQa/fmAJpcDnFVvNY1Zfdco6J+OEUuDjS8kjw2Pcv2KEfbZbRGh5Bm7fuvHk+CS3PvIEs/uqvGzR3GJZh3aaccNfH2G02WbHuTN4yYLZBF315maScsvDTzC3v8qL582c8t3hRos7l65kp3kzmLnGvgI8vmqYxugqapGP9ANmzp5P4PukScKykTG2mDNrre+AaUN79atfzZIlS4r3RhotfvXAEiYmW+imIUiFnuSlW8xiu60XTnlQNRt10jRhYLCTwtdaMzayijAqUa31o7VidHglWsC0abMBqI+P4AcBlWr/WvvUbjcZXrmMwaEZVPsGCma29NYmW02MjbDqyeXMWjCPvv7BtT8fH0EKSa3rszSJ7RjgTl12sj5OkrQZGpqJkJJmo87dS5ax9YIFTO+rTFnnX55cxZ+WLF/n+ezhGYIVQSpG13VF3+7fWmt0M0anmSHmeR7Cl0ahr+ue9QSUJ+r4QDwygV8K0bkmiWOCLeeTrxjGm6gzb8u5rB6eIBeSNI6pDA2QpykqMXX5PE3xyxHlWpX66lHCSoQol9DT+slyxeQa5YCKb8b1tsfbJgNQDjdLo99qTHLKvqZzxTnVTxcmJiYYGBhg3/nvxpfRepfLVMzPn/gPxsfHiwDihYrnXIRfr5ta5yn7vhKA3/zmN1xxxRWkacqj9/+VN9qobnBwkB122AEhBPfeey9bbrklf/rTnzjjjDPYfvvtOe644/jud7+73u3suOOOTJ8+naVLl/LII48AJjrbY489imVOPfVUrrvuOh599NEp391iiy3Ycsstqdfr3HPPPcRxTLVapVKpsGqVySqUSiUGBgZYscIQymbOnMm2225LlmU8+uijaxHrhoaGiKKIFStWMHv2bEZGRgpiGFBkLWq1GkuWLJmyT+VymV122YUgCHjwwQdZvnz5lM8GBwcZHR0lDEOCIGB4eHjKtoMgYMaMGaxYsQKlFP39/ey44440m00eeOABBgYGOPXUUwtmOsDHPvYxrrjiiqJ8sC5EUcSuu+5KEATce++9xXZLpRIveclLaDab/PWvfy2yDtOnTyeOYyYnJ4tzopRifHy8OAczZswgjmPiOKa/v784v2t+f9q0aWRZxuzZs5kxYwZ33XVXcW8BzJo1i2233ZbHH3+ciQnTI+9KBVJKZsyYQZZlBfFyp512olar8de//rXYn2q1SrlcZvXqjqLjnDlz2GabbYjjmPvuu2/KNnvo4YWKer3+tBv8AkqzQXWdZ0gyfXPEcy7CV0rx5JNP0tfXZ5SyhCAMTXSVpukUgtma8H0fz05TW5MBvykIgoAoisjzHM/zCsPzQsLExAQLFy7k8ccfn+IN+75PuVwmTVOCIGBycvJ5V19c37G/UPBCPv4X8rHDM3f8Wmvq9Trz5s0rSM1PF4oIf8478eX6O2EylfDz5Zf2InyegxG+lJIFCxas87MoWn/aZk2Uy+WNL7QONJtN3vve9/L5z3/+BX1z9Pf3r/P4nfPV19f3j96lfxjWd+wvFLyQj/+FfOzwzBz/MxbZOyjFhiP8nvCOw3OWpf9sIcsyLrnkkudd9NpDDz308LyEUht/9QA8ByP8HnrooYceethkqI2I6/Rq+AV6Bn8NRFHExz72sadUPng+4YV8/C/kY4cX9vG/kI8dNu/j11qh9fqj+A199kLDc46010MPPfTQQw8bgyPtvW7gBHyxAdKeTrhp/PIeaY9ehN9DDz300MPmDKVAbCCK70X4BXoGv4ceeuihh80XGxuQ00tiF+gZ/B566KGHHjZb6DxHi/Xr5Wvd09J36Bn8HnrooYceNl8oDaIX4W8Kega/hx566KGHzRd6I9K6PYNf4AUlvNNsNp/tXXhWseZY2RcSXujXvocenq/QSm/01YPBCyLCv/fee3n/+99PGIZstdVW/Mu//As77LDDs71b/zDcd999nH766WRZxqJFi3jzm9/Mvvvu+2zv1j8EL/Rrv3TpUq6++mq23XZbdt55ZxYuXIjWerOcvPa34IV+/E888QQ///nPWbx4MTvvvDP9/f3Pu+M3Nfz1x669Gn4Hz/sI/9e//jV7770306ZN42Uvexnf//73OfHEE/nNb34DsMFhPM8H/OlPf2KfffZhwYIFHH/88dx333287W1v49prr322d+0Zxwv92p9//vlss802fP/73+ekk07i4IMP5rbbbntePew3hBf68X/yk59k66235tJLL+X1r389J5xwAvfcc8/z7vgzHZOpDbx0/Gzv4nMH+nmOM888Ux9xxBFaKaW11vqee+7RRx11lF68ePGzvGf/GJx77rn6Na95jW42m1prrVeuXKlPOeUUPXPmTP3EE088y3v3zOKFfO1XrFihd955Z33ZZZdprbX+/e9/r4877ji9cOFCff/99z/Le/fM44V+/Pfff7/ecccd9VVXXaW11vqaa67R+++/v95pp510mqbP8t49PWi1WnrOnDmuJ2+Drzlz5uhWq/Vs7/KzjudthK8tUePBBx8kCILCq33Ri17Ehz/8YcbGxvjEJz4BPL8jvfvvvx8hRDE9cObMmXz6059mYGCgOH79PCW1vJCu/ZrX8Be/+AXLli3j4IMPBuBlL3sZ3/jGN5BScu6551Kv15+N3fyH4YV4/N3jvH/6058yOjrKG9/4RgAOOeQQLrroIpYtW8bHP/7xZ2kPn16USiUeeeQRxsfHN/p65JFHKJVKz/YuP+t43hj8ZcuW8Z3vfIff/e53jIyMIIQgSRK22GILGo0GTz75ZLHsTjvtxHvf+14uvPBCms3m0z6n+dnAihUrePDBBwHI807N6sUvfjFjY2M88MADgDFw06ZN4xOf+ATf+MY3WLZs2Waf4lu6dCkXXXQR1113HY8//jgAcRy/YK795OQko6OjU97baqutGBsbKwxbkiSUy2W+/OUv89///d/ceeedz8auPiMYGxvjtttuK649wJZbbvmCOf7h4WGOOuoo3v72txfvbbHFFqRpyvDwMGB+99tvvz2f+MQn+OIXv8iyZcuerd19WlEqlYqRvht69Yy9web/tAPOOusstttuOy655BL23Xdf3vnOd/LAAw8QhiE777wzS5Ys4bbbbiuW932f/fffnwULFvDf//3fz+KePz0499xzmTdvXvGD9zyviFx32GEHSqUSP/7xjwGQUqK1Zt999+VFL3oRl1xyybO2338PXES7rjrt7373O6IoYrfdduPRRx99Xl/7j3zkI+y6664cfvjhvOlNb+K+++4DYHBwkJe//OVcfPHFAIRhiNaaQw45hN13353//M//BDb/DMdHP/pRtttuO971rnex0047cdVVVwFmBvuee+75vD/+D37wg8ydO5ebbrqJW265hYmJCQCq1SrbbLMN3/nOdwAKx/Ytb3kL8+bN40tf+hKw+R9/D08Nm7XBHx0d5R3veAe//e1vue6667j++uv55je/ydjYGF//+tcBeNe73kUURVx99dVFBAyw9dZbk2UZYbj+oQvPdSRJwoc+9CGuvfZa3vzmNzM2NsZll10GdH7IBx98MIsWLeKGG27gD3/4AwBCCPr6+hgaGkJrvVmm9IUQrFy5kv/+7//m0ksv5Ve/+hXXXXcdL37xizn66KNZsmQJb3/726lUKnzve997Xl77E044geuuu45LLrmEd7zjHUxMTLD//vtz5513su222/KKV7yC3/72t/zxj38EIMsyAI4//nh+//vf02g0NtsMR57nvPvd7+baa6/l6quv5qqrruLYY4/lAx/4AGCu8R577MHNN9/8vDz+b37zm8yYMYPrrruOX//613zta1+jVquxfPlyAPbee+/CEbj//vsB4yT39/dz2GGH8Ze//IUkSTbb4+/hb8NmfbVXr16NEIIPfvCDvPrVryaKIo455hhqtRpJkhRG78Mf/jB//vOfufTSS4vvxnFMlmUMDg4+S3v/9yMMQ7bZZhtOPvlkzjnnHF7+8pfz1a9+lXq9ju/7JEkCwHve8x6azSbnnXde8V2lFCMjI2y55ZabbUp/fXVa3/c5++yzARMBPh+v/f3338+f//xnLrzwQvbdd19OPPFEvv/97zM6OsqnPvUpRkZGeMtb3kK5XOb8888HIAgCwLRpzp07lyiKNktnD0wZ55ZbbuHMM8/k1a9+Ndtuuy0nnHACM2fOZGJigiiKOPzww5+Xx7906VK+853v8JGPfIS//OUv7Lnnnuy+++7cd999hd5EuVzmxBNPZOnSpfzXf/0XYJxkIQQPPvgglUqlyHr08ALCs0IV/BuR57nWWuskSbTWWtfrdX3XXXet9fnxxx+v3/Oe90z57qc//Wm9/fbb61e/+tX6y1/+sn7Vq16lX/7yl+snn3zyH7T3fz/c8aVpWjDP3Xtaa33ttdfql770pfqcc85Z67Nvf/vbevHixXrnnXfW55xzjt577731TjvtpB944IF/4BH87VjXsd96663a93398MMPa621juNYa23Og5RS//a3v9Vaa/2pT31qs7/2a+K3v/2t9n1fj4yMFO89+uijesstt9Tz5s3Tl1xyidZa629961t6/vz5+tRTT9W33367vueee/QrXvEK/fGPf/zZ2vWnBUuXLtVCCH3llVcW7+277776yCOP1F/96lf12NiY1lrryy+/XM+bN+95dfxKKZ1l2ZT/fuihh/SLX/xi/cUvfnHKsh/96Ef1Nttsoz/xiU/oJUuW6DvvvFPvscce+uKLL/4H73UPzwVsNgb/4x//uH7DG95Q/Ld76Ds4g5Blmd5yyy31t7/9ba11xwjEcaxvvfVWffzxx+t99tlHn3LKKYXjsDlgzeNfFyYmJvTZZ5+td9xxR33PPfdorfWUY3zwwQf1v/3bv+lDDz1Un3766cW5ea5jfcd+zz336L333lu///3vL95z98XLX/5y/eY3v1lrrXWj0disr/26cOedd+rddtttimN79tln63e/+916r7320vvuu6/WWutms6mvueYavWjRIr3DDjvogYEBffzxx2/WLUrut/72t79dz5kzRx9yyCE6iiL9qle9Sp955pl6iy220K997Wv1rbfeqrXW+oc//OHz6vjXhYmJCb3ddtvpc889V2vd+d2vXr1aX3LJJbqvr0/vvPPOulqt6hNPPFG32+1nc3d7eJbwnDf49957rz7ssMP0zJkztRBC/9//+3+11nqKh9uNu+66S2+xxRb6vvvuW+86N6cf+/qOf81eWmfobrnlFr3PPvvoE044ofhsTeO2uRi79R272/8kSfSZZ56p99prL/373/9+ymdf+tKX9Ite9CJdr9enrHNzuvYbQqvV0t/85jd1EAT6Fa94hZ4+fbqeN2+efvTRR/UvfvEL7fu+npiYKJYfHh7Wf/7znzebjM6G0P3bf/jhh/Xhhx+uTz/99OK91atX6x122EFfeOGFhXPwfDr+9QU7Rx11lN5///3X+Z3HHntM//rXv9Z//etfn/H96+G5i+d8Df+OO+6gUqnw9a9/nVNPPZWPfOQjKKXwPG+d9ae7776bOXPmsN122wGmH/Vzn/vclGU2pxaN9R2/7/tTjt/V4ffcc08OPfRQ/vjHP/LjH/+Y7373u7zzne+c0qrnapnPdazv2IMgIMsygiDgiCOOoFKpcMEFFwCdY7v33nuZO3cupVJpChN5c7r264IjnpVKJd761rdy8803c/LJJ/O1r32NJ554gkWLFv3/9u49pub/jwP489OptKjvcVwSzhFHbnNPbU2uK/cRxh/6I5cYG9mMYsydDTNshhmL4Q/DYsNmwiEhYeKPjjlx5lASW3Eac6rX7w/r/M5RKDrndPo8H1tb53xur9cpe57P+/3OwadPn9C7d2+3z07Q6XQYOnQoevfu7aPKm0d1dTU0Go3zcUhICMxmMxYuXAgAcDgc6NChAzQaDYqKipyL0lpT/z+vuQkICEBNTQ169uwJu92O8vLyescZDAaMGjVKVf+tNDXA1+84fqXuXWxlZaUUFBSIiEhBQYEYjUbJyMgQkYbv8lNSUiQzM1PKysokMTFRgoKCnMNc/uRv+q875sWLFzJmzBhRFEWCg4Nl/fr1Xqz83zWmd9cRjqysLOnevXurmqf9mWu/379/l1WrVv3ybjU9PV2mT5/urdK8wrV/h8Ph7L+iokK0Wq2cPn3auf3BgwcSExMjV65c8UWpHvGr/kX+/+9l3759EhUV1WpGsaj5tdjAb4jdbpddu3bJf//9J1arVUTcQ6+8vFwMBoNERUVJUFCQzJ49WyorK31VbrP7U/8iIiUlJbJgwQJRFEWWLVtWb0jbXzXUu+v6jNY2T12nurrabQh33759Eh4eLkajUSwWi/P54uJiKS4uljVr1kjXrl0lOztbROoP//qbX/Xfq1cvefXqlVRVVUlGRoYoiiKpqamydOlS0Wq1snjxYtX8/Ou2P378WBRFkfz8fJ/USi1fiw5811/0uu/NZrOMHDlSZs6cWW9/q9UqBoNBEhIS5MmTJ16r01Oa2r+IyIkTJ2T06NHy6NEjr9ToKU3pvW77x48fW808rYj7m7mcnBwxGo0SEREhx44dq7eG48yZMzJw4EAZNGiQ868T/F1j+6+trZVt27ZJWlqazJkzR3X917lx44akpKSIzWbzZpnkR1ps4P/qAx4cDoecPn1awsPD5ebNmyIiYjKZpKKiQqqqqqSwsNCbZXpMU/q/ffu2vH//XkT8/45O5O97b43evHkjkyZNkqCgIFm9erV8+vTJbXvdz7uqqkru3bvnixI9qrH9i7j/GWpr8af+iZqixQX+7+aq6pSUlMi8efMkOjpaJkyYIIqiOFdp+7u/7b9urtufqbn3hpw7d04CAwNl6tSpqlxdzf7V3T81vxazSr+mpgYigsDAQADA/v370aFDB1y6dKneqtSamhqUl5fDYrFAp9OhpKQEsbGxvii72fxr/yNGjPBF2c1Czb3/zvDhw3Hnzh1cvnxZlaur2b+6+ycP8PEbDhFp2lxVUVGRxMTEiNFolPv373u7VI9Qc/9q7p2IyJtaROCLNH6uqqqqSm7duuXd4rxAzf2ruXciIm9pEUP658+fR69evaDRaPDs2TPs2bMHOp2uwX1DQ0MxduxY7xboYWruX829ExF5kyLi+49LevXqFcrKyhAfH+/rUnxCzf2ruXciIm9qEYFPREREntUihvSJiIjIsxj4REREKsDAJyIiUgEGPhERkQow8ImIiFSAgU9ERKQCDHwiIiIVYOATERGpAAOfiIhIBRj4REREKsDAJ/IBq9UKRVHw9OlTj5xfURRcvHjRI+cmIv/EwCdVmj9/PpKTk312fb1ej9LSUgwcOBAAYDKZoCgKKioqfFYTEbVugb4ugEiNNBoNunTp4usyiEhFeIdP9JPbt28jLi4Obdq0QWRkJNauXYvq6mrn9rFjxyI9PR0ZGRnQ6XTo0qULNm/e7HYOs9mMhIQEhISEYMCAAcjJyXEbZncd0rdarRg3bhwAoH379lAUBfPnzwcAREVFYf/+/W7nHjp0qNv1Xr58idGjRzuvdf369Xo92Ww2zJ07F1qtFjqdDjNmzIDVav3Xl4qI/AgDn8jFu3fvMGXKFMTGxqKwsBCHDx/G8ePHsX37drf9Tp48ibZt2yI/Px+7d+/G1q1bnUFbU1OD5ORkhIaGIj8/H0ePHsX69et/eU29Xo8LFy4AAF68eIHS0lIcOHCgUfXW1tZi1qxZCA4ORn5+Po4cOYLMzEy3fRwOByZOnIiwsDDk5uYiLy8P7dq1w6RJk/D9+/emvDxE5Mc4pE/k4tChQ9Dr9Th48CAURUG/fv1QUlKCzMxMbNy4EQEBP94jDx48GJs2bQIAREdH4+DBg7hx4waSkpJw/fp1FBcXw2QyOYftd+zYgaSkpAavqdFooNPpAACdO3eGVqttdL05OTkwm824du0aunbtCgDYuXMnJk+e7Nzn7NmzqK2txbFjx6AoCgAgKysLWq0WJpMJEyZMaNqLRER+iYFP5KKoqAjx8fHOYASAkSNHwm634+3btzAYDAB+BL6ryMhIfPjwAcCPu3S9Xu82Rx8XF+exevV6vTPsASA+Pt5tn8LCQlgsFoSFhbk9/+3bNxQXF3ukLiJqeRj4RH8hKCjI7bGiKKitrW326wQEBEBE3J5zOBxNOofdbkdMTAzOnDlTb1unTp3+qT4i8h8MfCIX/fv3x4ULFyAizrv8vLw8hIWFoXv37o06R9++fWGz2VBWVoaIiAgAQEFBwW+PCQ4OBvBj/t9Vp06dUFpa6nz8+fNnvH792q1em82G0tJSREZGAgAePHjgdo7hw4fj7Nmz6Ny5M8LDwxvVAxG1Ply0R6pVWVmJp0+fun0tWbIENpsNK1asgNlsxqVLl7Bp0yasWrXKOX//J0lJSTAajUhNTcWzZ8+Ql5eHDRs2AIDbVIGrHj16QFEUXL58GeXl5bDb7QCA8ePH49SpU8jNzcXz58+RmpoKjUbjPC4xMRF9+vRBamoqCgsLkZubW2+BYEpKCjp27IgZM2YgNzcXr1+/hslkQnp6Ot6+ffs3Lx0R+SEGPqmWyWTCsGHD3L62bduGq1ev4uHDhxgyZAiWLl2KRYsWOQO7MTQaDS5evAi73Y7Y2FikpaU5QzgkJKTBY7p164YtW7Zg7dq1iIiIwPLlywEA69atw5gxYzBt2jRMnToVycnJMBqNzuMCAgKQnZ2Nr1+/Ii4uDmlpadixY4fbuUNDQ3Hnzh0YDAbMmjUL/fv3x6JFi/Dt2zfe8ROpiCI/TxASUbPLy8tDQkICLBaLW2ATEXkLA5/IA7Kzs9GuXTtER0fDYrFg5cqVaN++Pe7evevr0ohIpbhoj8gDvnz5gszMTLx58wYdO3ZEYmIi9u7d6+uyiEjFeIdPRESkAly0R0REpAIMfCIiIhVg4BMREakAA5+IiEgFGPhEREQqwMAnIiJSAQY+ERGRCjDwiYiIVICBT0REpAL/A3b3dt247n2yAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement.data = xr.where(\n", + " (agreement < np.nanquantile(agreement.values, 0.0001)) | \n", + " (agreement > np.nanquantile(agreement.values, 0.9999)), \n", + " np.nan, \n", + " agreement\n", + ")\n", + "agreement.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "a3759b13", + "metadata": {}, + "source": [ + "#### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "7f9da249", + "metadata": {}, + "source": [ + "A metric table contains information about the unit of analysis, (a single band in this case), and selected continuous metrics. Since we did not provide the metrics argument GVAL computed all of the available continuous statistics. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "cb56e8bf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
coefficient_of_determination0.685261
mean_absolute_error216.089706
mean_absolute_percentage_error0.319234
mean_normalized_mean_absolute_error0.267845
mean_normalized_root_mean_squared_error0.372578
mean_percentage_error0.010022
mean_signed_error8.085411
mean_squared_error90351.664062
range_normalized_mean_absolute_error0.033065
range_normalized_root_mean_squared_error0.045995
root_mean_squared_error300.585541
symmetric_mean_absolute_percentage_error0.269394
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "coefficient_of_determination 0.685261\n", + "mean_absolute_error 216.089706\n", + "mean_absolute_percentage_error 0.319234\n", + "mean_normalized_mean_absolute_error 0.267845\n", + "mean_normalized_root_mean_squared_error 0.372578\n", + "mean_percentage_error 0.010022\n", + "mean_signed_error 8.085411\n", + "mean_squared_error 90351.664062\n", + "range_normalized_mean_absolute_error 0.033065\n", + "range_normalized_root_mean_squared_error 0.045995\n", + "root_mean_squared_error 300.585541\n", + "symmetric_mean_absolute_percentage_error 0.269394" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "ad610371", + "metadata": {}, + "source": [ + "## Alternative Uses of GVAL Continuous Operations" + ] + }, + { + "cell_type": "markdown", + "id": "247d5d33", + "metadata": {}, + "source": [ + "Aside form running the entire process, it is possible to run each of the following steps individually: homogenizing maps, computing an agreement map. This allows for flexibility in workflows so that a user may use as much or as little functionality as needed." + ] + }, + { + "cell_type": "markdown", + "id": "0789693a", + "metadata": {}, + "source": [ + "### Homogenize Maps" + ] + }, + { + "cell_type": "markdown", + "id": "1cf6aa4d", + "metadata": {}, + "source": [ + "Just like in continuous comparisons, homogenizing can be done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f22f9ceb", + "metadata": {}, + "outputs": [], + "source": [ + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "51129e9e", + "metadata": {}, + "source": [ + "### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "b430629f", + "metadata": {}, + "source": [ + "The \"difference\" comparison function is the default used for the `comparison_function` argument in `gval.continuous_compare` and is the only continuous comparison function available by default. It would be advised not to use a categorical comparison function such as 'cantor', 'szudzik', or a pairing dicitonary because it could result in a very large number of classes." + ] + }, + { + "cell_type": "markdown", + "id": "9900e890", + "metadata": {}, + "source": [ + "Using difference in comparison:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "c47e812a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAEyCAYAAAAfsGLXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wvRX3//5yZLZ92yq1cem9iQRAVsIAiKGDjYsESbMlPBY0agyYPY0uM3xAeGoPdKBgLqIkVEESNvcQSBRVRbPTLbad92u7OvH9/zOx+Pp9zzm0IivJ58Tjcc3ZnZ2dnZ+fd328lIsIYY4wxxhhjjPFnDf3HHsAYY4wxxhhjjHH3Y0zwxxhjjDHGGONegDHBH2OMMcYYY4x7AcYEf4wxxhhjjDHuBRgT/DHGGGOMMca4F2BM8McYY4wxxhjjXoAxwR9jjDHGGGOMewHGBH+MMcYYY4wx7gUYE/wxxhhjjDHGuBdgTPD/jPC///u/KKVQSvHGN77xjz2cMe5CPOc5z6ne7f/3//1/22zX7/dZuXJl1fYrX/nKH26Qu4jnPe95NJtN7rjjjpHj5di39/Oc5zxn5Jr99ttvSZvJyUmOOeYYLrjgArIsW3L/fr/PW9/6Vo499limpqZIkoTdd9+dBz3oQbzkJS/h8ssv3+bYt2zZwj//8z/ziEc8grVr1xLHMVNTUxx55JG86EUv4stf/vLvPT+bN29m7dq1KKU46KCDlm3z2c9+lrPPPpv73e9+rF69mjiOWbt2LaeeeiqXXXbZstf8/Oc/51/+5V848cQTq2vWrVvHGWecwde//vUdjuvHP/4xz372s9lrr71I05TddtuNE044gYsuumikXbfbZffdd+fUU0/d9Ycf4+6BjPFng3PPPVcAAeSQQw75Yw9njEV43eteJ4BcdNFFu3zt2WefXb3bFStWSL/fX7bdf//3f1ftAPmf//mf32/QdxOuueYa0VrL3/7t3y45V4797LPP3ubP+973vpFr9t13XwFk/fr1cvbZZ8tf/MVfyCMe8QiJ41gAecQjHjEyZ1u3bpWjjjpKAInjWB7xiEfI05/+dDn99NNl9913F0AOPfTQZcf+yU9+UiYnJwWQVqslj370o+Wss86SJzzhCXLwwQdX4z/11FN/rzk6++yzRSklgBx44IHLtlm/fr0opeS+972vnHrqqfK0pz1NHvKQh1Rj+Lu/+7sl1+y5557V2E866SR56lOfKve9730FEKWUvPWtb93mmN73vvdJFEVijJHjjz9env70p8uJJ54oK1askEc/+tFL2r/lLW8RQL70pS/d6XkY467DmOD/mSDLMlm9erUAsm7dOgHkO9/5zh97WGMM4a4g+A984AMFkE996lPLtnvyk58sxhh5wAMecI8m+E94whMkjmPZsGHDknMlsdoVlAT/N7/5zcjx//u//5OpqSkB5MILL6yOv+QlLxFAjjzySLn55puX9Pfd735X3vCGNyw5/rnPfU6UUhJFkZx//vnS6/WWtLnuuuvk7LPPloMPPniXnmEYX/ziFwWQv/qrv9ouwf/hD38omzZtWnL8O9/5jrRaLVFKyTXXXDNy7tGPfrT853/+p3S73ZHj7373uwUQY4z89Kc/XdLnl770JVFKyUEHHSQ/+9nPRs71+3354Q9/uOSaTqcj09PT8uAHP3iHzzzG3Y8xwf8zwWc/+1kB5Pjjj5c3vvGNAsg555zzxx7WGEO4Kwj++eefL1prOfPMM5e02bp1q6RpKieffLKccsop91iCf+ONN4rWWk4//fRlz9+VBF9E5A1veIMAIxLoHnvsIYBcffXVO32P+fn5iqn+0Ic+tMP23//+93e672F0Oh058MAD5T73uY/84he/2C7B3x6e//znCyBve9vbdvqak08+WQB5/etfv+Tcfe5zH9FaL2EgdnYcyzEEY/xhMbbh/5ngwx/+MADPetazeNazngXAxz72MfI83+Y111xzDY9//OOZnp5mYmKCRzziEVx99dV85StfWdZOWtqRv/KVr3DVVVdx4oknMj09jVKKmZmZqt2VV17Jaaedxpo1a0jTlAMOOIBXvOIVbN68edlxiAiXXHIJj3rUo1ixYgW1Wo3DDz+c17/+9XQ6nSXtTzjhBJRS/Pa3v+VjH/sYxxxzDI1Ggz333JPzzjuvstf+6le/4qyzzmLt2rU0Gg1OPPFErrnmmm3Ox66Me3guvva1r/GoRz2KiYkJJicnOe200/jZz3420n6//fbjDW94AwDPfe5zR2zNu2Jn33333XnUox7FZZddxuzs7Mi5j3/84/T7/er9L4cf/ehHnHfeeRx99NEjz/niF7+YW2+9dUn73/72tyilOOGEE5ibm+Ov//qv2Xvvvat39Na3vhXn3E6PH+ADH/gAzjnOOuusXbruzuKBD3wgADfddFN1bOPGjQCsWbNmp/u5+OKL2bRpE8cdd9x257jE0UcfvYsj9XjDG97Ar3/9a9797ncTx/Gd6gOork2SZKevecADHgCwZC1885vf5Gc/+xknnHAC97vf/XZpHM94xjMAeO9737tL141xN+CPzXGM8ftjZmZGarWaJEkimzdvFhGR4447TgD57Gc/u+w13/rWt6TRaAgg97///eXpT3+6HHPMMaK1rtSdZ5999sg1pZT5l3/5l6KUkmOOOaa6bmZmRkREXvWqVwkgSZLI8ccfL2eeeWZl1zzwwAPl9ttvH+nTWitnnXVWZVM84YQT5MlPfrLsvffeAsiDH/xg6XQ6I9c88pGPFEBe9rKXSRRFctJJJ8mTn/zkSvr6i7/4C/nFL34hq1evlsMOO0ye9rSnyf3udz8BZOXKlUvGcGfGXc7FK17xCjHGyEMe8hB56lOfKocccogAsmrVKrntttuq9n/zN39TqdmPP/74EXv0ddddt8N3XN7vQx/6kFx00UUCyPvf//6RNo94xCOk0WjI/Pz8NiX8pz3taRJFkRx11FHypCc9SZ70pCfJfvvtJ4Dsvvvucsstt4y0/81vfiOAPPShD5Wjjz5apqen5YwzzpDTTz9d6vX6sutkR3jQgx4kwJJ7leAulvA/8pGPCCD3u9/9qmMHHHCAAPLCF75QnHM7dY9TTz11iWlgV1FqebY1Zz/+8Y8liiJ53vOeJyKD+d9VCf+aa66RFStWSBzHcsMNN+z0devXrxdAXvva144cL7WGr3nNa6TT6cgHPvABOeecc+SlL32pfPCDH1zyjQ6j2+1KHMey995779IzjHHXY0zw/wzwH//xHwLIE5/4xOrYO9/5TgHkKU95ypL21tqKML3pTW9atq/tEXxALr300iX9fvzjHxdA7nvf+8ovf/nL6rhzTl772tcKIE972tNGrjn//PMFkBNOOGGEQPb7/UoV+KpXvWrkmpLgt1ot+d73vlcdv+2222S33XYTpZQcfvjh8upXv7razJ1z8uxnP3vZzezOjLucC631iD29KIpq0/yHf/iHkWvuCpX+hz70IZmbm5N6vS4nnnhidf53v/udKKXkrLPOEhHZJsH/8pe/vCzTVaq9n/vc546cKwlOyRhu3LixOnfDDTdUqvFt+RQsxvz8vBhjZI899thmm7ua4D/96U8XQJ75zGdWx9785jdX9znssMPk1a9+tXzqU5+Sm266aZv3KJ3dvvGNb+zS2IaxPYJvrZVjjjlGVq9eXdnld5bgf/azn5Wzzz5bnvGMZ8jDHvYw0VpLmqZy8cUX7/TYbrjhBknTVIAl5ohyDv/+7/9eDj300BHHUED22Wef7ar6jz76aAHk17/+9U6PZ4y7HmOC/2eAkgB+4hOfqI5t2rRJ4jiWWq1WSd8lrr76agHk4IMPFmvtkv6OP/747RL80047bdlxlBLstddeu+Scc06OPPJIMcZURCPPc1m9erU0m81lpe5OpyPr1q2TFStWjIyzfN7XvOY1S655+ctfLoAccMABkmXZyLkf//jHAsgjH/nI32vcw3MxTERKfP/731/2PncVwRcReepTnypa68rh7J//+Z8FkMsvv1xEtk3wt4c999xTVq1aNXJsmOB/4QtfWHLNu971riX28e3hu9/9rgAjzMpiLCYmy/0sZjAWE3znnPz2t7+tNDdKKfna175WtbfWynnnnVd58Q//HHHEEfKud71rybdRq9UEkJ///OdLxrxly5ZlowkWa28uvPBCOfTQQ+XVr371kj7+7d/+bcn62FmC/4//+I8jz1Cv1+W9733vst/3csjzXB72sIcty9yKDNZTFEWy1157yRVXXCGzs7Ny7bXXymMe8xgBZN9995V2u71s/8985jMFkE9+8pM7NZ4x7h6MCf6fOErJbnp6eonH8BOf+EQBloQwvf71rxdg2U1HROTf//3ft0vw3/Oe9yy5ZsOGDRUTsS2cc845AsiVV14pIoPN/zGPecw2rznttNOWbLIlwR/ewEtceOGFAlQq0WHMz88LjIYs3plxiwzm4oMf/OCS9nNzc0vuI3LXEvzSSfP8888XEZEjjjhC1q5dK3mei8j2Cf6mTZvkAx/4gLziFa+Q5z3veRVxWrt2rQCVWUhkQHBWrly57LhmZmYqArMzxOVzn/ucAHLGGWdss82whmlbPz/4wQ9GrikJ/nI/SZLIO9/5zmXvdcstt8jb3vY2Wb9+veyzzz4j1z3pSU8aeabtEfybbrpp2XvvLMP1u9/9Tlqt1hImcVdV+t1uV6699lp58YtfLICcfvrp2wzhHMaLXvSiilEefv8lSqIOyHe/+92Rc71eT/baay8B5L3vfe+y/ZdmwuX2jjH+cIgY408aH/nIRxARzjzzTNI0HTn3rGc9i8985jN8+MMf5gUveEF1/LbbbgNg7733XrbPffbZZ7v3XO78b3/7WwB++ctfopTa7vWbNm0auebqq6/eqWsOPfTQkWN77rnnknatVmuH5/r9/u817mHstddeS45NTEwsuc9djcc+9rGsWrWKj3zkI5x00kn89Kc/5SUveQlRtP1P+pJLLuGv/uqvWFhY2Gab+fl5Vq5cOXJs3333Xbbt1NQU09PTzMzMsHXrVlatWrXd+5eOhuUcbQ8XX3zxDtssxvr162m1WiilaLVaHHbYYTz5yU9mjz32WLb9HnvswUtf+lJe+tKXAnDddddxwQUX8IEPfIBPf/rTXHLJJTzzmc8EYNWqVdxyyy3LrsW99toLEan+fuxjH8tVV1210+M+55xzyLKMd7/73bv6yCOo1Wrc97735R3veAfGGC688EIuvPBC/uZv/mab17zpTW/iXe96F7vtthtXXXXVkncPg2/nPve5Dw9+8INHzqVpyjOe8QzOP/98vvrVr/KXf/mXS66fnJwEGHHuHeMPjzHB/xPHhz70IQC+8pWv8LCHPWzkXOmt/rWvfY3f/e5329y0dxW1Wm3JsdJTe926dZxyyinbvb4cR3nNQQcdxPHHH7/da5YjJFpvO8hke+eGcWfGfWfuc1cjjmOe+tSn8q53vYu///u/B9ih5/jvfve7KvLi3/7t3zjttNPYc889qdfrABx33HF8+9vfHiFcdzWmpqYAz1TcHbjgggvYb7/97vT1hx9+OO9///vZunUrn/rUp7j88ssrgv+ABzyAW265hf/7v//b4XrdVVx22WVMT0/zwhe+cOR4r9cD4JZbbuGEE04A4NJLL2XdunU77PPZz342F154IZ/5zGe2SfDf/e5385rXvIapqSmuvPLKbWb0K9f+tua2PL44a2KJktGbnp7e4bjHuPswJvh/wvjBD37AddddB8ANN9zADTfcsGw7EeEjH/lIRRh23313YDRMaRjbOr49lJLu6tWrd1oyK6857LDD7pQ0d1fgzoz7noJnPetZvOtd7+LKK6/kkEMOWSJ5LcYVV1xBlmW88pWv5K//+q+XnP/1r3+9zWtvvPHGZY/Pzc0xMzNDvV7fqc187dq1gE9Ne0/Gox71KD71qU+NaHUe97jHccUVV3DppZdy7rnn3uX3nJmZ4atf/eqy53q9XnWuZAJ2hNWrVwODEMTFuPTSSznnnHNoNBpcfvnlHHnkkdvsqwxt3Lp167Lny/dZagIWo7xuV8Igx7jrMY7D/xNGGXv/yle+EvH+GEt+yhjvsi1QSSef+tSnlpXmPv7xj+/yWPbaay8OO+wwfvazn/GLX/xip6455phjmJqa4qtf/eofjQDcmXHfWZTx0EVR3CX9HXfccTzgAQ9g1apVPO95z9th+3LTXc4M8bWvfY0NGzZs89rNmzfzpS99acnxSy+9FIBjjz0WY8wOx3DEEUcQRRHXX3/9DtvendiRFqNknodNQ895znNYtWoV3/zmN0e+p7tqPMv9/OY3vwHgwAMPrI7trAajZBAOPPDAJeeuuOIK/uIv/oIoivjUpz61Q43FqaeeShRFXHvttct+q+W9SsZgMUrBZHtMxRh3P8YE/08U1louueQSgO0mMHn4wx/OnnvuyXXXXccPfvADwEsvBx98MNdffz3nn3/+SPuLL754pwpoLId/+Id/wDnH+vXr+dGPfrTk/ObNm3nf+95X/Z2mKeeddx7z8/OcccYZy0qYt9xyS2W2uLuwq+O+syjtyHclsfvRj37Epk2beNWrXrXDtocccgjgmb92u10dv+WWW5aokpfDK1/5ypEkRL/5zW+qIk3nnHPOTo232WzywAc+kNtuu41bbrllp665O3Dcccdx0UUXjcxDicsuu6yypZ955pnV8VarxUUXXYRSiuc+97n867/+67LS9s0337xNLdnb3/52DjvsMP7u7/7u936GjRs38r73vW/Z5FRXX3015513HuATPQ3jm9/8JmeeeSYiwsc+9jFOPvnkHd5r9erVPPe5z2VhYYGXvvSlI8WIPvjBD3L11VdTq9WWJOsCr5G49tpr2Xvvvdl///138SnHuCsxVun/ieILX/gCGzZs4JBDDuGoo47aZjutNU972tN4y1vewoc+9CGOPvpotNZ88IMf5KSTTuLVr341l1xyCfe5z3341a9+xfe+9z3OOecc3vGOd+xShi7wGbV++tOf8s///M8cffTRHHnkkZVk8qtf/YprrrmGVqs14tTz6le/mp///Od86EMf4vDDD+eBD3wg+++/P1mWcf311/Ozn/2M+9///jz72c++03N1d4z7zuDkk0+mVqvx1re+lZ/85CfsscceKKX427/92yVOYHcHnvCEJ3DEEUfw/e9/v/Kb6PV6/M///A9HHnkkxx13HN/61reWvfahD30oWZZx0EEH8ahHPYo8z/nSl75Ep9PhWc96FmecccZOj+O0007je9/7Hl/5ylcq+/hyWI54lNhnn31+r4qQ1113Hc973vN48YtfzFFHHcU+++xDt9vl+uuv5+c//zkAL3zhCznttNNGrnv84x/Pf//3f/Oc5zyH8847jze+8Y085CEPYe3atczPz3PTTTdx7bXX4pzjIQ95CAcffPDI9Zs2beL666+vHGd/H7Tbbf7qr/6Kl73sZRx99NHstddetNttfvGLX1TP8PKXv5z169ePXHf66afT7XbZf//9+fSnP82nP/3pJX0/7GEPG3H0BfjXf/1XvvOd7/CRj3yEr3/96zzoQQ/ixhtv5Pvf/z7GGN773vcu6wj8zW9+kzzPl8zlGH8E/AEjAsa4C1Fmp3vd6163w7bf+973BBgJ2xIR+dGPfiSnn366TE5OSrPZlOOPP14+//nPy4c//OFlw/bK0LAdhRp99atflac85Smyxx57SBzHsmrVKrn//e8v5557rnz1q19d9prPfOYzctppp8natWsljmNZu3atHH300XLeeectCcEqw/KWS7JSZqHb1rwQ4oV/33HvaC62dZ+rrrpKjj/+eGm1WrsUurU4LG9H2FZY3pYtW+RFL3qR7LfffpKmqRxwwAHyqle9Strt9rLzWoaFPfKRj5SZmRl58YtfLHvssYckSSKHHnqoXHDBBVIUxU6NqcSNN94oxphtVpNjmfC2xT8PeMADRq7ZXuKd5fDjH/9Y/uVf/kVOPvlkOfDAA6XRaEiaprLPPvvImWeeKVdcccV2r9+8ebO86U1vkuOPP15Wr14tURTJ5OSk3Pe+95UXvOAF8sUvfnHZDH47yrS3GNsLy2u323L++efLqaeeKvvuu6/U63VJ01T2228/efrTn77dtbmjn22Nb2FhQf7+7/9eDjroIEmSRFauXCmnn376dpMRPe95zxNgyXc8xh8eSuRudMkd408SL3zhC3nPe97DpZdeytOe9rQ/9nDG+CPit7/9Lfvvvz+PfOQjdynn/47w5Cc/mcsuu4ybbrpppzzOx/jTRLfbZY899uCQQw7hu9/97h97OPd6jG3491Js2bKlikEfxsc+9jH+4z/+g+npaU4//fQ//MDGuFfgH//xH3HOccEFF/yxhzLG3Yh3v/vdzMzM8OY3v/mPPZQxGNvw77X4xS9+wbHHHsv9739/DjjgAMDbNa+//nqMMbznPe+h2Wz+kUc5xp8r7nvf+3L22Wfzrne9i/POO68K1xvjzwfdbpfzzz+fxz3ucTzqUY/6Yw9nDGCs0r+X4o477uCNb3wjX/7yl7n11ltpt9usXr2a4447jle+8pUce+yxf+whjnEPwN2l0h9jjDH+8BgT/DHGGGOMMca4F2Bswx9jjDHGGGOMewHGBH+MMcYYY4wx7gUYE/wxxhhjjDHGuBdgTPDHGGOMMcYY416AMcEfY4x7OF7/+tejlPpjD2OMMcb4E8eY4I8xRsDFF1+MUmrkZ+3atZx44ol8/vOf/2MPb4e4/vrrefnLX85xxx1HrVZDKbVscqUxxhjj3olx4p0xxliEN77xjey///6ICBs2bODiiy/m1FNP5XOf+9w9Ovvgt7/9bf793/+d+9znPhx++OHLVv4bY4wx7r0YE/wxxliExz3ucTzoQQ+q/n7+85/PbrvtxiWXXHKPJvhPeMITmJmZYWJiggsuuGBM8McYY4wRjFX6Y4yxA0xPT1Ov14miUf74ggsu4LjjjmPVqlXU63WOPvpo/uu//mvJ9Uopzj33XD796U9z3/velzRNOeKII7jyyiuXtP3GN77BMcccQ61W48ADD+Q973nPTo9z5cqVTExM7PoDjjHGGPcKjCX8McZYhNnZWTZt2oSIcMcdd3DhhReysLDAs571rJF2b3vb23jCE57AM5/5TLIs49JLL+UpT3kKl1122ZLa39/4xjf45Cc/yYtf/GImJib493//d9avX8+NN97IqlWrALj22ms5+eSTWbNmDa9//espioLXve517Lbbbn+wZx9jjDH+fDEm+GOMsQgnnXTSyN9pmvKBD3yAxzzmMSPHf/GLX1Cv16u/zz33XI466ije8pa3LCH41113HT/72c848MADATjxxBN5wAMewCWXXMK5554LwGtf+1pEhK9//evss88+AKxfv5773e9+d/kzjjHGGPc+jAn+GGMswjve8Q4OOeQQADZs2MCHP/xhXvCCFzAxMcEZZ5xRtRsm9lu3bsVay8Mf/nAuueSSJX2edNJJFbEHuP/978/k5CS//vWvAbDWctVVV/GkJz2pIvYAhx9+OKeccgpXXHHFXf6cY4wxxr0LY4I/xhiL8OAHP3jEae+ss87igQ98IOeeey6nn346SZIAcNlll/FP//RP/OhHP6Lf71ftl4uZHybiJVasWMHWrVsB2LhxI91ul4MPPnhJu0MPPXRM8McYY4zfG2OnvTHG2AG01px44oncdttt/PKXvwTg61//Ok94whOo1Wq8853v5IorruDqq6/mGc94BssVoDTGLNv3uFjlGGOM8YfCWMIfY4ydQFEUACwsLADw3//939RqNa666irSNK3aXXTRRXeq/zVr1lCv1yuGYhjXX3/9nepzjDHGGGMYYwl/jDF2gDzP+cIXvkCSJBx++OGAl9iVUlhrq3a//e1v+fSnP32n7mGM4ZRTTuHTn/40N954Y3X8uuuu46qrrvq9xj/GGGOMAWMJf4wxluDzn/88P//5zwG44447+OhHP8ovf/lLXv3qVzM5OQnAaaedxlve8hYe+9jH8oxnPIM77riDd7zjHRx00EFcc801d+q+b3jDG7jyyit5+MMfzotf/GKKouDCCy/kiCOO2Kk+Z2dnufDCCwH45je/CcDb3/52pqenmZ6erqIBxhjjzwW9Xo8sy3bYLkkSarXaH2BE93DIGGOMISIiF110kQAjP7VaTY488kh517veJc65kfbvf//75eCDD5Y0TeWwww6Tiy66SF73utfJ4s8KkHPOOWfJ/fbdd185++yzR4599atflaOPPlqSJJEDDjhA3v3udy/b53L4zW9+s2T85c++++67y/Mxxhj3ZHS7XVm31mxzzQ//rFu3Trrd7h97yH90KJGx19AYY4wxxhh/Wpibm2Nqaorf/GBfJie2bZ2em3fsf/TvmJ2drTR091aMVfpjjDHGGGP8yaLZ8j/bgh2LtBXGTntjjDHGGGP8ycIhO/z5ffD//t//QynFy172supYr9fjnHPOYdWqVbRaLdavX8+GDRtGrrvxxhs57bTTaDQarF27lr/927+ton1KfOUrX+Goo44iTVMOOuggLr744t9rrDvCmOCPMcYYY4zxJ4tc7A5/7iy+973v8Z73vIf73//+I8df/vKX87nPfY5PfOITfPWrX+XWW28dycJpreW0004jyzK+9a1v8cEPfpCLL76Y1772tVWb3/zmN5x22mmceOKJ/OhHP+JlL3sZL3jBC+7WqJyxDX+MMcYYY4w/OZQ2/N/9fI8d2vD3PexWbrrpphEbfpqmIzk0FmNhYYGjjjqKd77znfzTP/0TRx55JP/2b//G7Owsa9as4aMf/ShnnnkmAD//+c85/PDD+fa3v81DH/pQPv/5z3P66adz6623VsWv3v3ud/OqV72KjRs3kiQJr3rVq7j88sv5yU9+Ut3z6U9/OjMzM8tW0rwrMJbwxxhjjDHG+JOFQ7Db+SlV+nvvvTdTU1PVz5vf/Obt9nvOOedw2mmnLSmm9YMf/IA8z0eOH3bYYeyzzz58+9vfBuDb3/4297vf/UYqXZ5yyinMzc3x05/+tGqzuO9TTjml6uPuwD3Oac85x6233srExMSyOcnHGGOMMcb404CIMD8/zx577IHWd498mYsj346eOhcHsKyEvy1ceuml/PCHP+R73/veknO33347SZIwPT09cny33Xbj9ttvr9osLmtd/r2jNnNzc3S73ZHiXHcV7nEE/9Zbb2Xvvff+Yw9jjDHGGGOMuwg33XQTe+21193Stws/2zsPMDk5uVNheTfddBN//dd/zdVXX/1nl6znHkfwJyYmAPjZtT+sfheE2zq3sFAsMBlPEumYlekqjPIFSUSEQgQNOCy3dm5hIZ8DwIm/XqFRKsG6iJpxRDohcxkiEJuUwk2TGIiU0MkVzWQOJxmF82EdCkfNxCQ6hq7G1Aw96VBIQaJjlEpoF2toRJZm1GEhn6Odt3FisWJxSFUoxeFQeO1F+S8ojDLEJmJluoqpZAoQCnG0c8d0kgKD6zUKMIDGKN/L9jQilauGGr4n1fziYK49j0stENOKUiIVLWknCBqNhLlVCn9v8H+IkDkJxwWFwpSNBHIpMEqjlfbXMwibUXj1XLyd5yikoO/6REqjUFi8Q06v6GHDXOcuZyGfp3AFCEhfo1ONC0q+iWSSNbV9aReK1ammZ6HvBK3gp1szMiccOpWwKtVYgbpRPo2uE27vFtzYLugUA5FCVW/Gwyg4eDJmz0YU5s3PlVH+PkYpIjX6vkSErNsnqaUoPfr8VoROIcQaIqUwi6bHir/H4j6H+25boXDCRKzR4RoXxp45wShItEJvbw35zkaO5eKvz51QM4q4Gp+i7Gqpl5BU/y/XjQvf753R6o32L0vObWln/GYhZ9YpykEp/PtIjCJ3Qr4NiuH3lMEad05ozc1zxF6TtCbqS8YrIoPnqu4kFAK/W8jJwmJPjWZ13TAZqbtNk1mOpe86dIouCk2n6LCQt/3za/9UVhxaGRQRVjLAsiJdw6pkFVov3i22fa9M/HwNr8PZuTmOuN9R1V5+d6BU3W/v/K7gBz/4AXfccQdHHXXUoA9r+drXvsbb3/52rrrqKrIsY2ZmZkTK37BhA+vWrQNg3bp1/O///u9Iv6UX/3CbxZ79GzZsYHJy8m6R7uEeSPDLhdJoNZiYbKGVRkSotVLmslk2dG9nsjbJVH0ybE4KEfFcnIBWMDk5web+Jjb1NpJZT8AkPKqIQStLbBQ1FWGdoxG36Nkaic5oRprC1enYHIBIFJFaQ9/OEGuhESe4GmQ9TawmWFl35PQQozAWGnGL6aRGkkesUWvIXc5Mfyu55COV0fzHOPjbqIhVtTVMJhMYZTDKeIImkFhDI4JYg/9AC6w4FIb5TJNGmuYONo7yXmro/yPnnRBFEUkjRiuNHnLvGGzMI28Kwobi08ANiL8E5saKI9FRxQgMMwhDL7zqp1P4NhOJWsKUlHPWKbp0sg5GQ+4sC8W8n9fYt/HMFDRrTaxYFArpaVSisGSAsHtzHZFucNtcgdFd0rgFLmI6NewfFcz0HdMTEStqxjOE2q9LEWFqCnbPHD/dmrFQCImGVqzZ0h+lGFuUYu9GSmvovZQbsJWlxFlE6EcJaX0pwRcRJgLDUBIfHcZjA8F1Ao1odNbK/p0IRd/R0opmHBiwRf2XKMI3VBE4qWgkhPsuvq4cg1aKRLOE+SwZhdwN5nLk/qGvwvl7m20wLjuCH07JPQ7mYmpK2K1v+dWWHrdaNfpA+KUTb6PPYWau/D1uNbk5KzjYRaxc0VjyHLnzc14zqvp2CoHVUUFmoeeElYlmVc34+bobCb4TyPoZFA6tNImLmXSNivFXGAqxEIQIoY4CVtWnmE523qxa7sGLmbZyjdyd5tlc2IFKf9f6e/SjH8211147cuy5z30uhx12GK961avYe++9ieOYL33pS6xfvx7wBa5uvPFGjj32WACOPfZY3vSmN3HHHXewdu1aAK6++momJye5z33uU7VZXPb66quvrvq4O3CPI/glfrvwaw5uHkIr8hkVaqZGnEYYFdGIGnRtl0QnlRRacuJe0olYmawktzkd3SZ3ObnrISKBqxViVScxCV3p0bcZkcpwYukUKYVEpHqKXDL61pBJk8nE0Snm6FlHM06x4tiaTdPrZdQxpA1Fz9WZUgWgmIgmQClEHLmzzGTzKDKcuAEBCFtJpCJa8QT1qEZN1zDaUMoJWSE0IyHSqiKqXhrSCJapVBEFKipBol4OO8OnG2Wq+VRDBMUKYSNXo4xD2FRFvKjuACuu0gLEOiyvcjMY4ho8U+A3dwEyK6QmSL7bGWusa6xO1zCfz7BQzGCdBUWl7TFEiDiMNkQSkbscECKlqUVNJuIJppMVLBRtYr2Jdm5ZU2shGG6Y8xLYVKJZkeiK8HieRCrGZjLRHDwVc3vHsqXvggZoQBgakaJnhc09S6s1+MRUmK9F9LzqO+zCS99d0AiILPWyNcprIHpWWMi9pF6L1Eg7BaxMt20/HWZIokX3L8c6vGdWmirxhMwFDUQzolqBvo0aYgLB6NE+SmZRh2s29ixWhL2a0U5JlUufo3zaoTEHohfHhjU1zca5gtyYJUR/WxD8HJdaFIBcG+aU0M0tTmRkrOWaNsoz6+XzZ1ZYKAoaxrB3PaIRqWrtL6MCCc/z+xJJhVaCk5yu7aIxWLH+GxaN4NAIUirFlfb7Ewq7i6FsSimWKwD9h/DDcijsdlaM28XVNDExwX3ve9+RY81mk1WrVlXHn//85/OKV7yClStXMjk5yUte8hKOPfZYHvrQhwJw8sknc5/73IdnP/vZnH/++dx+++285jWv4Zxzzql8B174whfy9re/nfPOO4/nPe95fPnLX+bjH/84l19++S6Nd1dwjyX4nbzDfDaHdTCRNDF4bjnSEX3XR6OZKbbSilrUTD1spqWq0Htmrq3vRrtY4NbOzYDzkosiEEvBSoGTAussSlkUmkKgZiy5sxSSk2hDz0b07SoSXdAu+ogIyhTEcZfcriAv6qj5ggLD7VnEimaPZtyncAW5y8kcNKMmTgy5y+nb/oh0b8XSLdooJUTK0FBNAIzykntJyJWCzPXJXU6iE6yzOOUwRqNEV88+rEK+Mx/c8DWlxAUDwo7gTSjKS3xley2CVuU4GCKUgQAN07NFkmNsVCVZVk0GwtqgnVbEJGg1jVaaTtEmMSmJjtHK0Lf9ijHp2i6Ri5hoTNGsNYnjCKMjz8i4AmEBEYVRDhT0rbCQO/ZqRrQLYSZz7FY3DI+qnIu1NcOK1PDTrRkbupZEQ81outbRt56ZyVxgdES2+R5EhL71ZpBYZEidMpCaGCIcw/0ME2qlFJlzNCpiv7TdjrC8OcAPwBPmAXpWKkanHFs3HIu1J2ZayQinoKs+/cFS4i+xtm4onNwpYj/crx8xlTbFBe3DiomUvTPHLbmfbymfdzvzo/DPgxswuoUT6gjNelLdywXNyDAzN0zGa5Fi/1ZK7qAeKfpWuKNrcQLTqcaK0DCaxHhGO9JqCfO1qwjKMwgat1yysE96U6DCIRQ4KbVTft063MhcLodhbcqoRD+4t/97F8XrOwEn1evZ5vm7Gm9961vRWrN+/Xr6/T6nnHIK73znO6vzxhguu+wyXvSiF3HsscfSbDY5++yzeeMb31i12X///bn88st5+ctfztve9jb22msv/uM//oNTTjnlrh9wwD0uDr+Mrbzih59k91W70YparKqtJtIRhSvY3N/EXD5HqlMm4glacYtIeYWc//AsVgp0kFZ7tsctnZtZyBcoZYqSNTBK47chwYnFW53931qV9ueYRrSOzPWxbhalYlKTIOKACGECJxqjEqzrU3MFFk2SZmhVUIjFOotWmkZUp2d79GyPTtGmcMWA8AvEJqZuGqytryU1KYo42LsH0nUhPlOTiN/EtDKV+r0IquJSPd6IBjZZGfoSl9tHxAn9bkbaSJbd+F2QyEyQ/Eu6tK22XhXsyJ2QaF0xLGEQ23j7A+WpiFBqyW2wr9eMGrrWszZ955mnSEXhfXk5w2t1MnKXY/KYNE4xiaZbdJnLZtjS30zhLJH2PhOpaXBTO6FnNc3IsK4eIcDamgYUuWT0ii5OvGq0FU+gUGzuW67dkrMi1ezZjJjNHPO5q5iAQ6YS9miYbdrGRYTZzJEYhe1mNJpp0EINVLJey+I1INua89HPWG2Phu0SJEjwDioCZAXmc0c90qSaIf8UIXc5ThxWXAiHsmHOTHg3/rvSypCaeqUC3pZKeOfH6e3kIgOiO8pAek7VOaGdWeZ7Bbd1CjY774+y3IRFCtY1DCsSwy2dgpnMoZ1QK3L2a2j2WDOB1qqa+6JkspcZn1JBHAmvqWsdv1soKJwwGWtasSY1itSoqo+7QjoWEebzeebzBWCgXSz3E4WicBaUCjsfiFimkmkm4snq3QzxodV8FmF9JnrAp9qg9UmDqWJmdo599jv4bsljX9KKb/10d1rbicNfmHccd8Rt41z63IMl/D2ae7J7YzdqZuAlaZRhZbqKRKfEOqYZNUftowJKaWKVVERdq5jJeLoiAJ5w1QCHlTyoWAWjDFrpasNylHbknEh1ENUnF4VIl0QL9ahBZjVOclJjSUxG4TJibZjrtJhbMCTJHE2T0Eo9Q5KaFKUUWulgH3W0i3alltZoEpNQM3XvHBg+seEPPw7MzbD4UH6U5Yas8FLEiLRMqT69cyhJbR4cvJYjYKUJoJTuerZP5qyXakwDgx5w/v6CkWdYrI69rVPgBKYSP19pkH6y4CCmlKKma95Wr9TQJuY1QYCX+gtPrOeLWWaz2cBoOZTy72RrtgWjZoGV1MwKr0XQXvrsWv+8hRRs7G3E4aiZBkY3cE4xEcMDViVoBc1I0zCK6UQz03dkTri5XdCKlH+G5Zij8BMF08GIKl4pNN4BsrBeqk6NQslA4zM6f0vfhws78a4Q0oGJwRMGo71MOMxU1Iyfo1ygbzPa+RZi4yVeJ7bSbhXi/xUgVt6fI1YRqUmpmRpqSCNUlDb+nRrl0DMykOJKKXt5gqkwRjFZ10zUIlY2LLfM9rml5+iilxB9J7C179jS84wrTqjbgkOnE1ZO1arm/vvzDr/D12o1+DYl2ONKrVfdKA6diqtnLpn0zIr/du8qjk3BRDxBM5pYYkoqUe4NufOmmUqrMYTMeWfaIhD4UuvTKRxRrCvTx0Lu2NLPWVNPaEU7Z0r8feFE4WQ7Kv3tnLu34R5L8FckK4l1bYSzVEoRETGdTFd/D0MFSbg6LkKsDSvTldRMws2dm4O07dX51hWYQFhLVbQa+k8QnETM5nVqJiN3GVo5ClfQt30SPcFMNkXmbmcm61GPBKNTpho9NszVmO1O4aKMvouZqjsKJ0CdSHlP8b7t0rM9rLKV3SxWEXEYk5cKZKDSH/54Fq3hxY4yhSs/zEFztfSybWKYIKugtvfS0/ZVrjao+h1CpGNyV1QEefHAJdxiiSNfaLVH8HIffg5hsBmV78goM7JOHA4EjDb08i6b+xtx4uipTlB/a0QGBCzRCZnNqJsOMMVsJjjJyJxGYZiMNShhoWiyIlFkts4Ns/MottCMYY/GHtSM96qds37TTI1iMtG0YsVM5mjFeon0V2pCpsMD9kc1+tXcI1IxBMMq03LutoctfUccHAvNMirYYZTzMayiHjnPQH1qA5UwyjOuPZdhwzqNlMZoQ+6KyibspCATR6RTMikAgw1agfKZS0mxNFHsCCWD6QSiklHYhgZrMZRS1BLDAasbTM33+clsQT9cX8KJ0M6FRBwR3ha8IlJMNJPqmxj0B+Wbk/ANDI9RKW/aKc0M5Zov25VEdlPPawPrQ/r85UxbO4uB4LPtd6/COBOtsBp+OZezumbYszGwyhul6DuhW3jtZ+EsPVugVIxRisT4NpOJph4lVEEsfwBaa9m+DX975+5tuMcS/Jm8g8qT8CEXIxthtUEYHzo2kA6Xqp4UXnXfs31sEHd8OJgmNt7pz+Ftui44nJVcOQqUKlBsRESTmohCHEoZeraLwrAi9UShWxT0XM5s1iPWMdOtGooYRY2N8zGdfI56rcDRYir2H1Kq69RM3zvSBPu3xdEpOjSixg644+1/UckiUf5OqUmr3v1vSoFZdL+B0FcSz8EOlkaGWE8MjXJUwVoyNMtBKUW6jBeQXkS0ynfVt1JpAQwGlF8NiU69v4M4anHKfD5f2SyVUjhxrEhXspDP04qb1IyQmA5WvBanZiwbuhl9K1hpUDc5oIh0l9R4n3kZGsd0quk7SyNSHDgZ4wSun80wWrFXY9RZzIl35mqEzT1ahvEpxxlr7/1tNGQOlEjlHFZ9FyOOcOFfDfXIm4VyN0QYF2FxpMty/h/lX/0gTjtAide8dYuYXMNkHGGUIpecQnIKV2ADA5aYhLpJKVw+4szXK7zNunSOi9TAV2I5DEc72KA+Hl4TO4vSIXNlK2G3bsFNOUtWY9MWHDadkBWO2zJhQw7N2T57rWoE7csyBDQwx36OhHYIqYy133uG37NSAwkbBg6CRTBjVfZpNYgkGGhtds50s5gZWc4cVzqU1iLYqxlRN6PnInzY3e8WFnCyCSFDpMDKJKtq6zhgIkbwe1iiISkv/gNYjAsx5LJt3WUxlvAr3GMJfmbn2ZJpCpfTiBy5y+jZDEWZKlHYvb4n08n0IPSDgYQwDCuWubyNE0ekNU6sD2vC23qVMr6qUrA7KjQiMdDHiaMgp3AxRk0Air7tk5qImkmoRZrMGlITQXC669s+PfFEu3Bdppoa1Te4okeaOCI9Qeb6xDpmRbqK1NSYzWbAKu7YsJliSlhdV+T9giiOMFoTRYai8J6zxhi0VsRRtOwHP7oJ3XlWe2ifGPQmXoo31cmBVDh8SAlYt2Otgie6PkZ8W3Hki9svd6y2mDkYDI161CTCEKcRWmnmslmceK1OLapRj+pE2pDqOnN5xFxmacZt6qagXcyT6piFfBVaRURaWFuPSfVu1XOVfgMo0AKrUq8VSLTihvmcvhVuG1btV9dREXv/HCHSwcqyRNcor/bOy7nCU4Ryb7biHQ/bhWNFaoiUJ/zej0JVxH6xBD2iwi/5tUXzXJoHFNCMPOEaxKcLWmVktqCjYmomIXMWKwajU5ztI1gKl5ErTaITalHdO3ziGYxSlV+uoeVci0rCWI5DExiYO6n+rkJjNaxtxmydyeiKlxYFaOUZBzYjVjQTTKRZUzh+dfsC9aDCLsQzXiWDNWyuKv0vS+fZXmBIS+99zWj4owrPMpFouoXQszISaptZoQjtc1euHX+fvhPmMr8OWrHeYahf+a2W77Q0PYSpZ0Wql5iAvFOoJXdb0WpLOBrjpGAmy8lcTN0M7P3+uf8whHYs4e887rEEH1aTGq9CKlw/OP2kTCZ1NJqO7ZC5Prd1b62kY0/QY+pRg1bUHJGQC9fDSYYV/8hOIrSKQeX+I3TlpqdxkiJYVAgtEiK/meuElckEvWKGvstxOLpFl9xl1EyL+WKaJGpTi6BwlsxmCH5MSV2TZwnddo8s7dNImnSc1xI04wkKl9Pu9sjm+sStlGuu+Rlaa7TR5FlOo95gfmGeVStXglIYozns4AOBweZ4V4bAKGDAGI/2WzH/wQt7sVbFz6Kil4v3Pq78CZaXiHrWS+jTi9USuzLeYQI2JKdppTFGU2RCqgwT8SQ1UydzGY2oSd3UQXm1PigmY8NNCxM4qTMZZ/Rsj1grJuKCrjXc3I6JFKyuZXSLDg7HdLJi4FuB166kRjOXeU3CisQwk/X49XyXQ6YmaRjY2LuD3GUoFFPpClLdwknplDdQqTs3UA8XAt3C0Yw1m/uWrX1HqhV7h9C/zPqw0+nUVCFfU0lIkoRnwErnv1LyygIDocOhKDAGy0UW5CKkWlVx9z5RD4EB7wMF3SInc47COSJtMUoT6ShIpYpCLOJyjBuEf5bMWqldm88XyF1OpL0+yYpnxo0yTMQTPgx1mfe+K/Bz4tjan0OpBvVazAPXGvqFY6Znua1rWduIWdGKvTZCKeJIs266Rj31jPZMfyudwjsD102DlemqEem+fCYnkGpFEpwuBx79o2PXIjSMom6U18aogco/1apisKxkoBR9F3F7x7Kx501mdaOYtsKauiFmoAUpv9cyoqbkjX3OAKnGBUMe7ctMayMyrEpXsaVvgXkEg1IJqTaDOV3GFHR3w4rGbkfCt7LNU/c63GMJ/q8X6uyVxrSiOWKd0nNNUjMbEozEGG1o5wvMZXMYbUh0Qs/2cOKYTFYEpzchs3mIB5fgIFQGiVlK73yNwmiDEkXuEpQq0OQIGicRIglWuii3hV7Rx+Eqx8HM9mnGLdp5TO4myF2H1ESIEvou84Sv6FLonCiOMaJRufahebEQacGJJjUpRdMi2mFSOPSwA6mlKXOzC9x2+wb23WcP4jghTVO2bJ2h0SizfA1W84Dwj8r1FUfPsP19qRagvGY4tnhgZV20B6hgQVee7vtDvoXD+xAoBf3CUTgF9EiMom6WZiczi55jMKryvmrk7+Fjy0Ex8JyOdMREMsl83iUPORCMjpiM6t6cIy5IvJC7DJEeezYVTiKaUZO2adCzfRLdw4mhZjRGCT1rWSgWyF1GK5og1rEf09CwvF0TcoS+00zpmNT4jH/zeZu+7QBQjxrUTYvMeS/wSCtMZZP2DJHDq75dcFqsG0cWWRLtM8VpoGcdsRgaUVSpgkvJOQvJYMD3JwLtwvnYfe2d8JJAlGQ5Do6BuaaM/S9nu8wR4DfWHIMi1orEpDRMg3rkk9OIOHIpgvOspXB5xajPhwRKE/EE7WKOzGVEKibRNdrFHE4stahGM6oz7No48GwpfW5ccIoNa1Gc9+kYeiQvffvQOKNSUgOJtqhIkSaGybph3YSAUrh8NB59opmQOa+R6hRtZrIt3k4fF0zEk16y1d7Mp5Wfh25R+jFs31wxLGVHWpYcN/h3uKnXo11Ap0jJHKxKvTPsmpqhFWviRf1bcTixlJ/ZkIsTOmiNKjNmdU+DllFH00TDvhMtJpOUzf0+Cs3KNGEyNp6JhErz57VTyz/nXQ2Hwm3HHdkts7fcW3GPJfgN08HKNLd3V9GzCYWkrEzrrEzmmYgLDJF3ENMxiohI14icpes6zPQ3Y12OxdK3PeqmTuEKFAqNrtT3VnxYlla6Cp2LlEUpg1EtCmfJUWhlvWOYODq2QyuawIqmU/RpRCmJTslNn93MVjKXAYZCIiIVuHE8Me65LhhI4oTIJujckKfeE13wG0VU13TUPJPpFGnSYvWaFUxPT1BLa1Vmwd3WrkYFT1kYNmX4NJKJVohjEDfPQNU2sN8tZeWdeMkMpUbsg2X/Ph1rcMwqd45F2oWyfx0I1VRqQKBnoyHJbPTeiYZCKzIHiV76cQ4T+hHTwQ5QuV8qIUIRqxijEzZ0b6dve8GhqiDSMU5cFaHRiOpMxFNoNUE9agQpv0vfRRhVo10UFNKnZuo0oxalp/li9KywoWM9gRBN7rSPgFaGvVt7IeJCUqMYo7wUt5j18Zu/IrNCK9YhyY2jU2xkIZ9DKZjLy/traqZOI9odo/QgsUuYY4eqtClWvBZiIva25V4wI2zLrFLaeGHgbOid5fzbyWyKj3wofJgXmkIcsS5Qtkvhcqw4+rZP7jL6ts9CvjBInKX997W5vwUfXqlRWtO1C2S2R2oiDDCXz1CIIrNdYq1D+KpCKU3uCnpFJ5hoIqw45rN5n3QmfL8++VaEUSmFFDjJUPhojbpJEKBm6kwnqxCgkxVeBR80Hgaom/AdKA2BsHeKDr9d+A0iipqJacV7EOuY+dzRDiGya7QhMjvnga+XrASPwsFCkbKh66gbYW0tohV7U1GZAtrH3EMc3uem3mbm8rmQd2SQEdJL8wlK5WgV4VwORKBy1tZ2Y2W6askaiBWsqcXE2pBo5bV3y5h//L/bz3F/VyETQyzLpf0pz/8BBvEngnsswe+7FnPZBLlonIPYWIzymerm84K6AaNiYl3QMM2Q4c0Q6RoS8qkXkmOUT3aztr4bnaINStEtLIVz1IxhOp2kb3vM5bN+czURmctRZKSmjnI+t7RP0+rT3UbaUNMJm3vzZE5IdU6kPSddSI44y3y+mprJaEUdrBRVsh2fFMjhIotkIH2LSzSRiaiZKbb2t9Iu2kwl0z6/gPbx+R7+w9LVXqBQYcNVgRLGpV000AAnIK4ik9ugk75DrTSRXj58zLMagkGRhw9ZDzl6KaSS8vIqPjckD1GKlvbZpUriLQCBCbnttg3Mzs8zvXIVRiuSyGCtDZKmUEtTuv2cRqNGHEfE2sCQynlYheq1G1I9aEmmNJpEG7QyrKvvTu5yerZLu1igV2SBkfDS5lw2R99mtOIWE3Hpb5FgdI+N3ZQ7ugn1KGbflqKVQjRU06GE4NWlfSfB50HoFpbN/Xbwmp8g0ilWoGfb1bzEumS0VKUpceJrKmRFBygQDPOFwYryaz0klQJHpEdj9Us7rVFeLm4YRTPSwdERykRNw2l5h2Pih1fAsGSYOa9pKHLQOJRqo/C5LJxYBI04w9b+PJBVb6LK9IbQKTphXSlacQuH0Le9Shvl5XBDI4rRKObyLpHOKJwjd31iHdEpuhXTroP5IHMZM9lsSGjVIVIx2kQh26NBqxij/JdogpYnc5nP6SDCRAxTif8evKNdsHVXJimFltKB1AaGXZMXeZgjy1TiHUg7hU83vDI1REpV637UBAXWFXRtx2skxAX1uPGqf8RrIPFMYzuHqVizdysi1WoQATLs7zH05nz9iQGD6yQJnvaOQqbROLQSIl1gReFDlm21FjKX0c7bYRl4hr9TaApT5sooa4MYwo6AiEEpy2w2x90NL+Fvm4na1Ux7f864xxL8dfU2KyZ6zGeKtm2SuTqT8bxXgxbgpMBKTt3UcORBmohJVUTf9jE6wjmHBJWe39z9oi2zvxndItUp1hXUTB3rfGEWJwUFlprWtGLDQp6BGETFCJaFfIHd6i0aUY3ZzBElOcoZOkWPNIoQHCJtnBQolRIrXSX+SU3qs+9JnyROSVwN23M4U0DsnZl8MhlXfVxDysjw7+DvwjcbJBkZ4qq1VgzRPn/ldqSLHX0WZfKQmIG2oLT5iStD8pSXVNXAU3x4g3OhGFE8xJDML7SZm51ndtabZ1DQaXeYmJykUa/hnGPr1hkOOnB/Vq1Z6SXJkC2xlIlLW6Vb9LyVZ4bSKLx+OyIiiiLqps5UMk3f9kPRHUun6DGXbfKbXNFmMp5iOlkBStGMhXqkuX5GMZ8rbpiDg6ci1tV1RSQrL2hlKxU6QDOaIdI5m3o5ShWsA6aSaZSSEO5pKvNJSXpzJ2TWO8mBcFN7A7nr4iRGKQPkWFfHiiHSnng6cRTiEOffVc/6OZmIRwvjKKVIjGCD30C78LkNIuV9Bfoh5r9TCKn25gmv1FFDSZD8DPvURC4k4NEICQpLpNtVUp5hlbEKzIyIVCVT20UnEG3PMIDCOkdsIiIVk7mcwjn6tlup7MsQXKMMqUnY0t+KE0fd1IOpBiKdQuUDEKPRdIsFomAGNNqQ25xIReSSh1TMo9+ECet+cdZEYSC/SsnkSIEiZSLWRFqxKtXEwUbet4KRQSz+8Prsuz63dm6lZwWkQLAoYlRI1e0Jf0zXTpOaFew/ETMR6xHmbvjdDmfHLGtbCCrkISnC2rRo5shlgghLQ0dkzhPuYZNZO1/gxvZNFC4h0r3wPmuIOH8fVc6O8o66qszml9HptLm74dDYsUp/p7BLBP/1r389b3jDG0aOHXroofz85z8HoNfr8Td/8zdceumlI+kGF9f83RmkeguxbtKKa8zmdQoHW/s9em43GiZjgg2AQlzmk87oiDI2NtHNoK6L6LkOCkXP9vwiVp6D1QjdYoG28VXzOkXpxR8RKYNSmnqUUrgixMV7iGhESdUevPRudYRWqiIeThyz2RSFq7OqlpGaNHx4GhvsmN5xzBHHCbGOWeguoCNNK2qh1WhK120hK6SKg4XBJQu5wyhFPRqEjd0V8MLnQPVcLSAlxAzU+oXzWobM+hCjRhQ2goEVABXsmQcdsJ/XfFj/aW7avIV2u82+++xFZDzjlhc5aZoucXQqN85hu2ipz7BBM6NRlYPhcCOlFFo0NeOT96QGalHKVNKgXbSJdAwKUlMbeOLTZW3dcOOCpWfhhllLqg3TiY+3n050UItH1CNLI/L284kYWrH31ygkZmNvji39eSAPDqnz2J4wFU0xmUxDMM2kISdxagwr0908gRBhvmjTLQxKOURqdG2LRC/Qtz1uXLiFSBv6tk6iJ9mzGS+7knzMvM8b0C1GwwOjyDuOWfGq65nM0Yo0iQlrSXzymJrxCWO09kH0hSiclIWfNFAg4v3efWSM8WmNxVEaXYyKQqIkReF6FeOoFD7nhfPMU6Q14nQlzZuQZVIQ+tbvAwqNFV8Ns3D+3fSLPjYQp65dwEoBTihcUfVlxdJ3gkh9xIRUrlOtgo/CyERGXhWOQ1Gur3iELS9t2z4Ln6pC7XIJkUj9zYCf59w5rGvg03wD9AMDBNZZLIpEG5qRoREtT+y3BZ/zwBNFHaqOKIRIdzDSQymwEoc+R5+/GbfYvbE3G7uK6bTPbLbJa0XEoFXhmW8pK5kooMBRBGeJO++Iu7PIJSLfjko/H4flVdhlCf+II47gi1/84qCDaNDFy1/+ci6//HI+8YlPMDU1xbnnnssZZ5zBN7/5zV0emOAJrVaOmmlTM7mXGpRGq5TMTZPZPo1oLiQliUNZVaFdtH0hGG3QztvuMufNAeK8qk4QYp2iVUTu2kTK5+jvF/1gq2oR6yY9u5nUpKRGBQ2AlwDaRdt/oJLQtwWFFLSiFpH2sd5GOSJd4HB0ih7WFaCgb7vEuoZWhsJ5iaJQlshEqARs19GTPjVTo50vUI8aVercgZPe4INMTcgroMEYwTnvdNWIFUjYYLa53pfa8aszQwlDthVeo0YuHVJRBic48MSjvL8EZ8DFCYGiyMuIYrx4vse6tVjniIyX9g2aOC5Lzfr0whrt4+1DJ6WjXrkJivgCPv5dlwryIG2G/yrGA0WkIiQQJZSP9CD4LPiN2nhCIV6iLbUXSgk9W1CIoVNYJuKISHtNQiNSHDxlMEqwLmUqWcPWbAs9W9DOhY5bQKRPpCcxqsDmiqzXoV349LoNgzdfKMFnE4uoR74gSrvwhEuISMw82rXI3CR928QoS6QdiowkzekUDmsg1TFKDRMKPwGJUVWM+HCIVqwHkRONSBNrb16Yz/08Zy6nZ7fSs/NDqmiLoszZXsOJxkoTpXrh/CCznohPRuWUt6v7tNhUPhUqKM371ue26Nl+kCojrLL0pY9RhsSkIUpCBd+cgpquERnj828EhqNnu9Uz+9wXLhSqMp4RdxOgIlxIXz2y1pUfTanar74RVxZnLRdTipWU+VxYmRK0LF4TV2bQ0wiJgoU8YzafC2vSIFi0isJz5yiV48SryZ04UI7pOKuYDxH/jnZE9L1Zp8CbgwSRBIdBq06YD69RKZyvJikyVCRLKRKdEOtpUmNpRjUW8hmc5NiS+aoK0JYFsQeCwfa85+8qWFHBFLHt82N47DLBj6Koquc7jNnZWd7//vfz0Y9+lEc96lEAXHTRRRx++OF85zvfqaoI7SwWckstn8OoCOhSM45YGyTfgialEc1TMz60qnAFc9k8U8kEkTZEqoZQR2SOSMXkklVqwsQkvsqeTqiZFs04JdYRC/k8fdsHfMgeNL0aXoSVtVW0ogmcOK8pCJRua38rheuBMigcXdujjpcGa1GNpuoR6wKjErriib/npP0GYXQZjyS+6IvWRLGiXwhz+Rxd22VFupKaqZMGGzj+1gNI1YUnQDrEcItXn482HGzyy6G0wWtKwknlzV2LRsuqjnr0jn5QOkgy4Psq1b+Cz/w2nzumYu2TFg1xDZWXslaVqnd44xEEJWokBG4YI+MYEuoVoI3GOUGUnxSfe3/R9eG/MuuixbKQzxGpiEbU9OYKk7Jn0zCZ+EIvzciBamMlZV0jIRpK4K6VYkXiCUghdaxYZrMZvJOpz6xodEIrTon1JAtZB6FPz27EFpoZ6XsCrTRIjKOD6hPsr0U1vwpHrGe9BCz+qJMaRiu6xSb6NkcrxW71dTRMg0j7l507mM0cU4kv3tIthGakSQIRKR31RIQ4qPo3di03zOe+lrxWKGIS00cF9bZGI+F7gJzYpGjX8etKaRQWlEaJ/xaU8lXbekWXMmvisKq+dDIrXEFZgW/Y7GHF0rd9+tL3/jMi5E7RK3qoQLyteCnUv9uBKUCrqNKk+dz+bYxKMGrU32RoSQ0r8YEiMEg1tHJVaK9UcQFe0zWX+/DJ8vsp51UBsY59ciKRYJbzmkjBBs96V43X+3JE7NUwIX31sp/BNr+L8v8OQ+EapKaPVFXxfH4TrfSoU0x45sz69fKruYLUGM+4qZhISZDmHVBDiBHmKQuZoXat6t6dgd2BSt9uZ8+7t2GXCf4vf/lL9thjD2q1GsceeyxvfvOb2WefffjBD35AnuecdNJJVdvDDjuMffbZh29/+9vbJPj9fp9+v1/9PTcXnDwUwdbtMErIbB/NJI4miZlDKFDUMaqOqC5GQ991UapGLjmZVayqtYh1xGw2Q2b79F0/eOt76Mgx099Ku1gIMfMSpEVNzWj6bsFvrOKTq/ifIDEqQ8/CTHYLkYZE1+gUULgFIq1pRnW6dh4jeeDegz1NBB/2V6oyYxIdV9n2nHZEuf8bB+3CMx1pkjKg7n5+JMxTbIINPffERpff7NA69998SBISdhtnh7zeQ19VojzlHX9s+H25vWU4xndbGCHCIrRiReYUpQIQ2X62sGFb4uKwtx1jcLUXaKUKxcslJ1Eh93uoDualFV0ds2KpmTpz+azPyohPe5xoRbOs/IsGpqpNOUR+0s/6CJoo1iQqRlvNXD7r1cwmohW32NLrkUYpRgmpFkgU8/SDxFLHr0Rf/U/rAue8xFdIGVraRykvHVISQVXGa9cQgVwSvDNfh4V8hk7RwyhNqusolVTv3BdeUtskImXs/S2dovK+bhfeo2NKpkhdGyJHIRrcBEnURivBSIQjIpMMRxY2X+9kV74c54JmoPTzwAXJechXQ6kQwucJoQkaGa9OloFUXvaJRYfcdCWBHS7eU6ZldmLDvLlA0B1S5okbZqZlQP4H/5ZJdxqIdBGy4BPh+yq/j5WJIRdhPndMxLoyS/nnzMOIYhCft8OXqfVZGg0KpRMMFohDCKEa/W53Cn6kCtDKBR8QjVYSNFvG2/dlKXHU+EqGE4nmZ1sVuTOBOXE46Ye+DUVeI4oEcamfTyVoyZf0d1djrNLfeewSwX/IQx7CxRdfzKGHHsptt93GG97wBh7+8Ifzk5/8hNtvv50kSZienh65ZrfdduP222/fZp9vfvObl/gF+IEZMpuQOR8zHylfoGZa34pCyKxjLl8bNh1fYMfJFm/rUxHa9Ojbgm7h06t2i07Vd+ZyMpezkC/4OHxlKokGiYn1NDWjyF3IcR5K0vZdjzu6G2hETVamu+HEkWhCIZ0CJ5ZYayIV+7CgXBAlZFL4sr52EBpY2vQV0LM9r9LEopQm1jFWQT2qszJdOeL8VUmPOiS5MOJ15sOEnnBcQh5tvOrZWgUOnBa0lPy+Gum6UonjxWPNIOZ6cYKfHRH7xVDK26R3r3sGyI0wDNs2L9wZDDMHVSpWa9GxrsIwM8kqGy74DdhgELwH+Xw+S2pqaKW9t7eOwruNvR+GzUlVrZrDOB6YGBbaHSITUa+1vOd/7ov2mNDXZDLpCZgrEJ1QiK/EF4ccDrE4rLSIdRHCBXMfqqZ0UFF6IqFV5iVhvDSJFGgVYVQvzKkn/0bFzGYLCHMhn8Aqdm9ETCee9BmlSKJtl1S2ImzNHN3Kmc8FP42YpNvEZBbJHbEC5XJ0lCBOMPUYlQtGNGalJlPdQFx1cPi05eLwMrMUXjMjJSEimGfKb9Sn7vUqfz/fPipg4PDoHSADx6sSlPTCLQxOSrW2YzicsmS4lYr8PC67pgbrtVSpW1dQsICiQCtF7nz1TiuKrZmjZnxSr819x5qaqUIxwdvly3wV3sSYVAyNCwRMKYOIoW+nqrDC3OVs6t2BVoZVtdXooDbXavkIm1IzYnQSGIw+iZ4J2hY/Td4kkyDEGNWlzMRRfvN967P/rUwTtvQjIj0PJJRlxsTFdDs1GmlEbpt+79CwsPCHcNrbvtr+DxEa+KeCXSL4j3vc46rf73//+/OQhzyEfffdl49//OPU6/U7NYC/+7u/4xWveEX199zcHHvvvTezmaaZTNGMMtA9clejW+SgLJoEXyv+ZiLVolMomlGEYOjbDJ/0wuDES+0+LhjqIcOaBK9d71ktXq0lBPVeg8J12NjbiOCTeGzub2I2m6GQoqoCFuupwB1bukU32Akt4Dff3PlynZ2QXKUMHfIxwD6VL2FTy1xW5Z5WAkr8puVV+fVRhVQp3YtXbpYGcu8zFdKfivI/4HO9onDOawEEkDJH56KPupAC4zSRNuRSVI5qumIFBnLFnXUCLDORuWDnv4t8CXdwU5/jAMuQP4RhJsuomZyaiYmUT5yTuSxoNBSpTsltVvl/NKImzThCxKFRFF3Hz35xLVk/o9lq0Ww2AYcxPqxQKc3Nt9xOFGlmFmbRkfKpnCNo7d0GvPNn3/aJTZ2s70cnKsFJSu5StIppRAXg7filt/WKdIJu0aQQS8348rq5izBYmrFBq7LQM+TOv7+t/U20i3m0yilkC7d35tFKqJkaq2u7+bz8alCqFgGjg+ZCCdb59dUuvAQbG0XhhNpkjMsLlAlVIF1RaW5yY3FWeW2S9k6rBIZFyAcaGMrEQIM1ZlSZjc+r/lEK54qgitcUYkFUVZzJ+2x4ZtX7ZBDOlZEzttISDAw4Plm3v0/pNWCrv0eWUemdH749r6VyQDewF4ZYzVKLJmjF/g6RUvTxjEJq4LbuVjrFFsCHxfkuHYp+YARUYHR6KBUHZlSRmDZa5XSt5qb2QsgtoJnL5yA8717NvUlMymKooGAvmR2/LgJL5AhJazSFawEaS0Lp4Fc6bvqyvYpEC3O51wqlxpG7Olo5jNJMNH2+gzjJg/bOkNw5srBLcD6wcLvnx/D4vcLypqenOeSQQ7jhhht4zGMeQ5ZlzMzMjEj5GzZsWNbmXyJNU9J06SLtZxH2llvpRxFGZyHErAANOo5weRuRgskWuF6Pjtb0ej2sc2jdo75qDSaFWHvpXOHtrz43vrcHplGNrHTqCSrDZmQQGpVUXcVxK41WhkSnA7VvSN4znJs8d/7DWpEY5mjixIcAIYS8AD4KoFRpWnFovKf4fD5PkfdouBbKUtkzXaDrldKq3BMrz3MV1I4qcOulpM6Qx96gHnfQbo8Q20HojoSnNlBtiH47G9YG7CpGqoYNHbdOKpPBXZkaeBiD6IyB9kKLpqY1kfKmFVVttApbhniG9eKJhbe3lgV3Mten3khZuWKaKIqJ4xjnhFotpdvtMTlZo9PusHXrVqZXTJHECSbRtLd2ceS08zky5wm5dRm5zcjzSTBraMWRz2fgIoxy5C4m1hZIMSom0l2aUZ01tQZWhPmsTd/NMZ2sxKh6lfJW4SWzHF/hrCzPDJC7Nn3XrUKrqiQ9Mig3O6zBiZWiZnyY2XwuoQ/v2T9RU2xSPQrnJW0TBYIuzjvtqQST+KyTWvnQteGsj17DBt5hzDNjnvkwIdwtGIDEr1PrbEW0tQpZNEsVPVTJfKyURN54FbY4RHwWPO9cqPBe9bZSw3uzzo7gv/d6VCezk551kZzMZoDPaqfx8yUIfddhReqYyzQbewRNTwet6jhp4At0+eqdPpEPaJUEIu3XpFFee2jFkrkM6wqs8kWKHI5IRczn8yQhl0C1cym/73h23XnGVzSOCMThSHHSQCTCiiIxCzip0S0MXesjRYz2vg+JgUIckVrAOsFoC9RQ9Jmbr1NYnysgiiIi4/OH9Dp/CJW+IdquSn9swy/xexH8hYUFfvWrX/HsZz+bo48+mjiO+dKXvsT69esBuP7667nxxhs59thjd7nvOK1h+zm5itk806FZr9GamKLTblMnRvV7GJOyMNfDGMVcuw06QjmNicEkOc1oJVa2YFUG4j3rS+leD6nzopCQBaARRb4Eb+0AtvfpC4pNvRwn3g5mlA/X87ZETWp8OMtctpnM9oMdUeGTCFA5IykVYUKyECsWMY6MHqqvmItmUWgm4gl0SYC1oDWhPvfAEWi4UM0o3VQjo+47YSEXVqaDIi7elOEJWhmCqNVArq/6UKMmgF3F6LiC5gFfLGY4n/fvj6XmgcU6CqMVE3FpVik91L1mRaHJpSTynqA48ZudQQVfjgitNQcfeMDIw5XFnbzJZYrV66ZRWmGlYGt/KzKRew1NIG7leAWw/QWSImJOraA12WCflifU7XwVPeuYTgyt2ASGxBfHiZTCpE3mshoan22tG3TGNeM364lg823Fa6r52NS7g429O8I70CEJi6YRKcpCMJ4x9H1pBdOpJjGqKgTTKYTJRBOrHiIlg+jbSyWtRmiVoULx3PJph7/Bisksw/YkAvqVP3/5rZSqeFe1NzgGjihOLIYIo40Px1QxKB8Gq4IKXisJqm1fGEupDJ83MkIkq5j4YQw7lparywmsra1hdboaQZjpb+Hm9o2UTLILDK5QcEv7Jvo2DzHwCd6BMCQ2oIePBdEILQSDVr1Q4S1Cs4DDBp+OHMjDuHUQSvz9rAi3dm4BCOdDyKOOqr+H00iL5HjGBWK1gFYRQgZicapL7hwzWZ21tcT3P1TTQSkLYoMt349lsuUorAIs1kUY47xGKl7ewfauxI5z6Y8l/BK7RPBf+cpX8vjHP559992XW2+9lde97nUYYzjrrLOYmpri+c9/Pq94xStYuXIlk5OTvOQlL+HYY4/dZQ99gKn4DlYcsI6+rdFYu5auhTmnoLGKnuTsPdlg1YoJ4jhCa2G2P0e3yHDi1Un1qIlgcYV3oom0TxdTUFQ2q8z2w8ZjKmk61gnWtkEmMSHDnYgPBQOChOKJw1SS4lgZsvllFUGJlGEun8WJkIS0vsF4QCE2xAR75aFITqJaKCy1YC8mVujMYHvCTLGVtJVU+cj9eECc8ptY+RFWNG4x2ZSRXzWqKie6LQwX2Ph9UPoBLO7TF0PxaTq1gmjIR6B0dNqpUCNK/4SdYBVUSBJUOl+V9xBPuBYKG7Khaa9FEk3uLLnzDJxgiULWRlHi/SzEeru/1v4FVMZCH9oEgjY+5C/YWojTQWVGrWpYiVDMAxpXaJ77nW9xwVGPoVAGp3yoWiv2cfhWfGx8zfisbWXN8V7hC5uU0RA14wvc+B/fKFKKksUrI+BdiJ3uFfNs6t8GeLuzRgeNV0wZzpjbPESY6JA6dgWra55o9a0L7Yqgmjd485ZGK6/F8FNe2pq909hyLJ4PgczCJWUGNwlX+wAwT8y8d783W5UL2rNbfdvDiZdAjQol5VT5THjP91BrQ8TiKCMAyjqcyyyfoaGWtnwf4lgmWhowL7lrc0fv5kqIyFzfz7oKFfPwIXZQUNZ588mf+6GfLMxfJzxjRKzLxD668j8wqvRfGOjhRjVlZbIjwY80zKU4fCY8R6Sy0N6bI1GgxdJ3XXRxO7d2dHgmQ6w0VrqD/AUCWmsMCfP9lH6eEKeaHE1/wVKLYvrZ/DKzeddix176Y4JfYpcI/s0338xZZ53F5s2bWbNmDQ972MP4zne+w5o1XnJ461vfitaa9evXjyTeuTNYyGcxmaMZN1nbmGBTr4bNEjILkoNttZjp+LrjzQhaNKnrOpnt+9SbvR7dootGEZEGT2QLTnkHoKBezJ3PsmVDNa520SE1CV2XY3X5CQkz2QwLxQIN06BddFiRrvbRA1lGPWrQztpeMhAfR9wruuSS04xaTJopZvMZv8EGZsGGLHpKgdIKVIx1OVp79XwhOYlKydsFbemi0rBBDoupi3em7dC9Uo0Pvq52VoYah2MiQtZfGn8MBKei0T52iHIsy40x8AHDzjQqEORCJORVGDopS68vD5fC13LTMQoh6xWV30Q5l9ZZX3TJ9dnQtSQ6oRm3MMonkvG1A/w1NniNL1gfOVH6Y8S6NAmUdyqzyCnEQkbus8YVCRNEdPKOV9VKQU0JhaS085j5fhOAV/7wat5xzGNxEymCoRXq2adGUTMhZDDkEyhL7A4/uxv6Yy7zUlwrAj2kRVFKVetewNuCRfC51C2EhDsK739SRrEofFrV+WwWn7nNm0Dy4I3t6zd4lkIHAmedraR3oR/m1VXf4MAk5tPe+tkOFnLRKGoo5RmKkmkpJXgTvM1tlTxmUAfC55TPvSf+kJOeQhOrGEGRi3e2lWAu8PkZ3JB5a3heyyiX0Xkso29KrY2lYKa/hZAUF6OaGJ2hXA44nJKheRI8G+6984Xc+0BQoFRIaKOCICMJgsVn8/P5A6jCG031LUTBh6nMHZFXiY6k8ltSCE5qKHzJcaVMlWdAEJzr0pZeMJ0QTCeqipDQStF3TfrFBOISFnLvVJn3QcUaHRnsNmpM3NUoxGzXS78Yq/Qr7BLBv/TSS7d7vlar8Y53vIN3vOMdv9egABQJjph20QXpEKmVtOIJcq3otjN+c0sOtZRWUzjn6s8BIJF3DDI9/zkW0xZqFroGEge5Zs1eW2n3E1Y0u2ycbfGOoz/Ky655Gt12gtJgMwMLBmW9BF2VgxNVURSXOJQNKtwifPpGcJEMrgue8y4SdO6TyigB3VeoQmFr/m9loWg6dK79PmvATRaoxKI2pcRziv4ai+5rbwpYmUOmff+FQo1QTZbTZg8q2g2dEz2kHoDg3FdesORlQBRUtcPtyvuVHv/D1438rgbHymsc3ilBiU/GpaU6r7SMMjbD/Q2rNEQNwg9F+Xcii9oPj7Ua76Jxiipp1MiUlMeG+1OyuM3gnsqBlPO0iPkqtYqL38NyXMoHTjmT+Q0zTEewtpkMVaYL3uF4rUTPOtbWDdbBfOFzG1TphcMlzWhwbafwNtlIw3SykrqZYKFwVX31VuTrDfiHdN72KRAbXWlGFNC1XW5q3xJS3U6TuwaRrhHrgkjnGAriUPDBT68EJ82cKnyR0gSiQHknQ0+UvHRfMlBCitAkVnMEhXG4ztfOcFVoGNVxo2PKu0swHUjJtDkHWJx2Q86oqnL2c5KypV+jHuXs3kiXvB5PO4IJRgZ+Dt6x0bvDeSnbawKNMuzTWkvNJFhxbOxtYDabhzIWXyVVVIET734mpbe96NAuzJXOPTOCj9NnKJTRM5g+8+BUOkXdNMhdQeb69G2XzPraIqIUIp4ZK2esyk1AjFJ5CJNk4N2vtE9QJIJRMU4ierbJ1v4khXhGoEyNYaxgnEM0pBE00rvfR96Jxm1Hbb+9c/c23GNz6XsP3hDygaURdakT0c4jdDOi5yxOCTb2/u2iwcUhqUpbY1PAKig0umOwGpRVbNw0Sb3V55bbVjK1coEXfPm5qLhclAp6uvpVGKL1iUPlgZhHAiVhV36TL39UV+ESQfc8lTU9VW32LhV0T3uioDzxR/y4XOxQWqGcQrV92BpG6K9xSCTYyBJNZNCL/MDqFjpmkLlSAvFRS4nNCJG5cy8jMDBhMkqiXx7DP8MoxV88AIaYELW4MssyDIKMaixGmJlFzImowaEl/6oBMzFMwBcxK9W8lR3JNtQGJXOwDEMhZhEzUDIH29K8CEvMMqLgeVf9F5874WQmiz62XdCNDEmaeOct7dX6hYPb2wV54QvmpJGma3099bJOQeYcDq+C9VK/JncKoxISY6iZGkr5hDtWIDGaRAeVsAjtvg8hS42mjDh0OObyebrFCno2oma2EmuNw9C1KVL4+vGx9t+vv2+BE0WkM2LdJ9b9EaneSYqiGyRLhghnBFhEtoZqlgSCRyBQBc75JFYDfwAXEu0MCGWpWSs/WMEhrkDp1EfOKO8k6ZzFSkzfNZnJFDXj2LxQsLalqAcVetcKrahkVgZLKdIpk/EKvE7I0S06FGIRDIUk1ExtaJwumKIMQhRC8LpDCzQBichdgpCCnsUn5NGVT8VA41bOh6v2o8z6NNGdQtEpYiKt0SojURbB1yCxLkRJKO9YaZSmkAyvWfAzV/pOOAQVMhz27QRb+00yVzJDgeFAfIiyKrBZH60gRmHs3R+W5+OjtvWRsd1z9zbcYwk+aKzr4ZTfMdvFAok2tOLdWdjUZqJRY2K6gUXx7sevJ9aOs7/2CZRVRB2o3wHcbJh7RJ/zjruct17yJPIJQboJXaegr5m9ZQrT07hIkJpFBUJe7sCiAeWldoKzqUsE1fdEW2V6QCjqFh05VCeBQuFi/zlEPUUxnfu2jQLX0Zi+wrUsOte42O9Dpq0pJhwusTR+G5NNK+xqf1M1HxF1FG6hziOP+ymxtlz94/sM1N7BmC1KKq/8knhsk9gv5gqGCXrAMO0LXm0oFyRrPaBWSvBENWg90F5qX1ZqDhJStV2qsp2q7iUVJ7WIiagIsKoIryqPOzVK0IfyCSurBsR8WGswNKgRIWB4vkreQ5ZcMniuIcZg+Hh1Xpa5ZTk+JQNNUminHDzxC1cDcMmpR1FkPgGQFsNEPMHEZAuZ61LvOWbbPuSyFmta9ZhoskYtHkSR3NrZTOE8MVHUvGJF5UwlE6ytraFuImLlHfEk+FYEdpNWrABH7tpkTtEpenSKnJlslp6dRiuLlUm6tkXuFm8lPvLGKFc5TSkgNT2mktvRZIH4CZHqhfnxEnvFRAIGE1TOPi9/0NX780qFstWBBSiXX9gzSsu2QlVrqky+4/9qosmoR6lPzCU5Si0wERsaUYu5PKPvctqFQkeaZgSNiJD4KAwljHwibtIKfjY92+U3878K9zCkenih6DBuHaTlGFEWEeMjGqRBLhMoDFa8qt9IHaMcQl6FFZaakjJPQfm+QejaBaIiZj5vsqEbobBMJMI+LcjsVnKnvSZRLIUrQt2RQUIyOxR1VK5fAXouZabfou+SatFHSphIFCsSQVxOYrp0cp8DwmhFUSxwd2Ms4e887rEEf25uDSaOSZMcYzK/8JWjFUfUWzX68z2e/z+f4H2nn0kjUkwmhh+ecRYPffd/IQqKx87Qv3aaia83eOvPnkS2UlAF7HX/27jx12uhUJiuxjad96eJHSZx2J7xqvUhYlmqsYOmE6k5dMfgpnLUvJ9Ck1qKhRhVd6iehtRBpilaFpV7RzC6Brcqg80Juu8/OjG+72IyeO33Nd3dbTAVCHprgmihaDniWcOPN+7BQjv1968HR6AsLOhhwXdbTO02j8vo79vqYNjEoQbq61H1t0KJVAzTyOUMqd71Mt2Vm71TVfuhi0cZmBGKKt5EUBJSU0r1gQFyIJWbsVSXeTvLoJvhZxQGJpMR58ig1WFInV/2UUn0ixgArxVQA4aj0nSqQWL+xdoJ4KzP/3DJq/j0qcfzpC98Y+T41U94Cltvn6W/0GPdmhYmMnTznEgJouPgaGoR56X2uWyeuqn5Msxa0VSjWfZyl7FQzJO5jF6Rs6XfYD43xNqhmMBJTO7qFJXtdLn1IkMe0l5F37cp3aJO3fR8mmTtc8f70DLvCGlFgspaQsiaRZGglEWHkDLPN7rgAAgEbcAgkZI3I/joGSobe83UEawvXWxj0B0Wcs98JCbxORG0Y1VaeK97KVjIa7RdnUiHqoYhNbZCh5wAEOs6nXwGoyOKUG8j0SkOiwnpZX2Z3fDNiPfTKXN9eHt7jUKaGBSx6VA4ReHq5C5GdBrCGmE43W4589584X0R+kUP6+4gUjUm4ykyV6NhIupG0c49AzaVTAIwn/fI8g6+YI+glFSfgyoTkqGw0mJLb3VlKzdKaMXC2npOon0J4g1boas1C90m9SRGIfT7d39q3Vw0ZrtheePUOyXusQTfGEu302Jhro7SjjiGJFbckrfJ+xanDf9y0pOZzx0rkognfvJj/M/Tn4JtODot4MZJpm+B/jQ475CLGLjptpWIEdKNEUVDoG6RQqEWImyrqBLVjNA/qyrCDKB6GtGCmo+QRKBQ2JmE0tlVYn8MAA0qV0HiVbhIcImAFlShkNRVkrHKB39LIqi52N/HKbBgU2HmpikkEqJcQdjMqGzeg3GPEIlFUnZ1uFI5L7pIAUggVKMEd1jiFa0CIS0J4FBfVT+MXF8STMpxM2B6KuI+RBhHfBTK46V7vh5I5lW7ktiWDIgJ4W+lBmPJmILEuKjCUMVwLLK9j/gwBL+M4amr5olljpfjc4umfOgZ/bwyqi+Wod+BJ135TWAoBE7ByZ/5RNXH5447mcd/42pQ8KmTTmB6okmUaDp2gR6gxJH1c+7oz2In60yltYGFI9xGK+MrtImlW2jmsoTcGaRwFH0ocoe4PkQalSZglsvytnTRCYqenSTRs+DKWHivdLW6vMYGe76X6n0sehQkTR8Kq1SBUFAmyi2T5eggwZdpYi3DSXYietaHwRXOenu1+D6sCDk5Zb37ru3QLto4C7ZQGLpYiQGDlX6ImW8gqMAECUIPCo2oMj2vgPTJXB9lNblzSCjA5ELBHZ8lwYR3bEl0hpUaih6RyjFmAe/8V1QOgf45Q8EdsZSlhv378/8vXIFVXRpRTgMfvruxG9GzBU4Mmja1SBNrXza6THrkzSjel8CE7Me5qzPTX+Hj3ZUwleRMxD1i3ccoRzvveb+JxIdMNlu+sqHWGuv+AF7647C8ncY9luD/3VXfwu4Rc9GjH4aWJjVVpygc9cggzRpxbJgrfFGKMz/1cS550lOZz7QnrNYT1v5KaNwuzO2v0Lm3ocf1ArshpWiKt/n3DKpmkcA1U6gloW5iPNEVLehAyEWFjXnEaW5IX1w6ollG1MVmIdjdQz+qH8wCWgaMglvEcBTgIipmQNUsdgLviKgEFoZe45Bk6X9hlCkoUTIZEgitT/HnGY0hSVNKPfOQCrrqUwliQFXSraC014IsQam2hoFNveRThu6/xB4f/BIGf492uyxDELQH1TWB8I+o6od/XzTfMswgbc+mPyTgb08psmRsw10MazcEZPEXObSkBuNlwDTBiOMgwBO+dnXJ//Hkq7/ClY8+lUxBs7WKCaDf7XHKF67ks488mcz2mE8sUaQrD+16I8GpHJxirt9jc3+CrOdwfR+nHteEuJFQEONyi3SCTT6JUEnsTT/bDJVU5K5G366kGW+tHtAhiCsGCpPKtu7DBI3KBgp6XeafHzAZpU+AV3kTzg1y9PvWugq807pkNLz9WsTbqn2VTR91UTNNiBRO+0yNifaMQeFKD/4OKjACNTPNVHIgE7Ehcx1uWrglpOZW3Ny+KUQjBHu78vNQRin41+yCVsOg1RzgvLoenykQcZ6RCE57UCbW0ejA2Pj+FKgQaYDPU6Dx1eSsLcL3nNEpuizkPpVzpFWVF0GFnABGRTiJaRc1ZrMWVgwTsWNVrYNzmyikwPpwfHKbA12UViFkUJHjwCnykNb47oQvH7Xtj0+2c+7ehnsswUeDJI6//My3KFYX3plOwZp9tzDXrdGbqXmCETsuOf3pnPWZT/Dx08/gysc/mVP/69MoDelW2HKE/zfdopg/QMjaCY0tit5uDkSx5wF3cNt1a4n27JBt8Hkgl/M9U15QqHZn5bzamiLEYFuFMyE2PhB6NOjSnh8JBH8BWpbk5oRsysFEDn3jCbAWvxsYQYbt4UYRz2mKlsN0NLK6wEUacZ4yrTtwM7f/biVqxFju/5GS0Ed+DOI8Q+TTqQ0Rfe3vr8pxyOBZvXbEE2RlxGstHP7+BAKvAuFXEj58lhC3irqNSNNSTesosV+kWRj+l0VtFknAlfZgMZFdJE2X84tTo+4Ci50MZWge3SItStBCDF+/2AkPGCXSApUGstIcDN1vGGro2tC+Yg5YhgkZun95zWP/53K+eNoZuNwRJxEnf/HzoOHxX79qEcPh5+vzjz6ZO7KtzGdC3zXIUZioQ6MpqDjm3C9ezQUnPgkwaGOQNEZZh/Rz3HwHFRlIY4jKfPCjDyYo2sUqUCnNaB5F4cmdmJBpT9GIvPRLFX3v7fixqnnplZxIpV62F8FoCeF1ZcLbGio4/vp7ltylBMLmQ8wIBZOsstX3I2im0xW04mnanTa39m/CqJTcWRpRg1bcClkEvbe7E0ViWkwn3m+hZuqsqq0kd97/YD7fhA2V/EoNgn89w/NSZhzIQppu7/WvAwctuHCtH68gVYnf4T4JzxXS/4CUAoyrkhYNsgdICJnUQUMQBAixWApyFzGT+RDVvVtCI+oAPRZyqeaqKDLECS6XAeMfzHnKCNrd/dJ17nwZ9G2fH6v0S9xjCb5oqN8Y07wV+EXMil90ufXlGZ0socgNB+1/OzO9OptvXMGGX/yUdz3wGJ562Sd5932O8I51TjG/n7DiOkVvFfRXQrJVo+9IUAXorsZNWTZ+bx1u2pLf1kA7cGUCrLCRVjQqOOF5iVJVRD4kP69UvRJJkOy1l8xrriJyovESdF+TTzjvdLY18UyA8bZ4iWRw30CAJRLySUFnimLCQmZoTHjOub2lwcatE5DrpaF2Yah+V1ReOwAj0nalQq487xnaOxaLo+G6ymkq/Fq2N2FORlzPGXEIFAVqObW/jErZoyqKsg0DzckwsV/CWCzze9muJJDDFHpobOVYRsYw7Om/qO1izcBiVIQ0MCGVmaQcS8mcLHO9GtZwLHrmikFYrAGoROTReTnp8k8OmNXFYxweD3Dq1V/gLSefTi6CiWISA6/48qdBCW979HouOGE9SiAWH9vvlJewpGHACcZadG7Juhm6nkJkfJW8oYQwDugUDfo2QdChToAv9hvpHKNuJ9aCdV7trpXGKYeERDEG4wmbMl4tLppIR8E2XqBVH1/X3S9Sn5lOhanxPgMQ6gYoVzm+KRSJNuFfX6uwcFlgwDUT8RQT8YQv4INf/2VpYRFfXyB3MavS3YLkXNCbn8HaPGgavGe+SN9L9SI+94D46nLic2RXgSq+kqMn0S6k8dZlpcAyM6Hz8f7e18EnEVLaO8gIBCYncOSuCMvRJ5PyzIUEJsLnTPCXxMznk4Bm7xY0o1k6wQEvs0UIY7TYQhDnfPoGn40InCCFIH1Fnt8TyuOOVfol7rEE/8NnnsLz/uur5BN+L7r14XWSL9XpnTjP2hXz/O5/98bVvcPOy37zc/7z2BP4wDEP4bk//A6uYdEdQzEpzB5kUM7HugOkmzRFCyT2IXJFy6GDGr9yroJqs1yysQ9tzmrIrl+2GTkieCIeB4lfeWKvxN/ff2H4CAEjSLuquTpkEw9jmSxwXeNV/qLozNfYZ4/NdOZr2EwPVNalnTo8R5kvYAkN014dLyXhc2rQh1VeI+AUErlR4lpKqE4ttYtbFaR9T0Aq+7+EY8Pth4h4afJY7Bi3rAq+ZDqW9TtgiLCHA8NzONyOxceXeeHleIel+2FfAVVuzAPmaZhJXOLoVw674iKpHBdHxlTOi8K/k7KPMurBLGo/zMwMHxtmYKo5VaNMUmjz3lPPpGuF3PkQvSwv0JF/nwbNBcc9kSx3FB2HiRQm1mQ9XzAHF+zlTqglBm18ISujHJI5pJ/5oQepv0x6pJVDKyGzBsdA5VHTbTRZSIbjRsZpxUuUkfZEzzmvpi5L6uoQXS8iKJIhQgjeN0C8x77yOfdLT/4BwSdoCcJttaYeNeiHPp3AQi7k4tNT506YyVzIqmlKJYJXznvaHVLaUsXqKwpELXrxavDiyoRHPsmOQgUmzYmvCeAIDnYQmAfjE/uoEBdaSfw+9G44aU752k1wyPPZMH1yJl/gy5DZGjP9FoXU2asppHqGjd2NVVSEVnW8xsA7U6so7D/l+LXCJF470S3TQd6NcKIqZm5b58fwuMcS/F6WeKe6sMnmLb+W7fUT5L9q0ZiEbEKTrfDe962Vq7DdTrUBSyKIEVwqJFsVOtP0d7MD264DIkHlPgkOMGoP3gkMq0IVfvOX2KF6xifbicRL3WWSGcFz76XUljqkUOiuGRD5MrufXSTxCuie9hqDjjcB3BKvGIQRavHMwKK1XUr9i4lQJV2WlXaQRRI0lKaLEcc+8NJOxQQoRgfK8hL3MDMSjpWXjqi+g3d82aYypZRzCEvvtxwRl8V/qwFHVt5s2LRQOeMN9T0ivoexDXv6l32XTKAwCAFkiPBrqZ6zGkeQ9peT0kuFwCjDo0ZzF5Rjc4O5qvoo/d0WM0zh73Kdf/BJT2FT35I72JqV4Qji14QTJIkgWJuUMaT1UFeAEJtdM2itqGufKT9zhHQwgSkRA8rgXITKC6TnibVOY0giMolRKmExcknIXUpi+pW9uyyI4x/Phlh7HYodlUPXwZaNJ4zSH5rWkphC6e5oh8LbyglzhIycQCGwtSe00hVo16VT+NoASvmNU+HTGK9Mvd9AzXipP3e+3PDmvjdFFG4FMAMYrCsQfEVGjc+t4EJee8+n6qByh0H+xAgnKSIao/MyQhYArQqUDtoD5VAqDktDgdJE+EqBZYplE6rv+a1IqiyaWhlS06RbRGzpTxHriL2bFmQzM9mMNwf0FWIgTnKUiskL0E6jI7AhM6JQhgtqUlNjXt39YXm5GPTYS3+ncI8l+HOZxcWgLagcVv3ES6Rz+ykW9laYDnz+RU/kpI9+Gt1XPP2jn+KTf/EUbzNHe6ndCPGsore7xSxosJBNC8mMwjac/8Yj8VnsNAM7bbkxDgl9y9G1yv5ZimMinnhDcPTzF4uRQVY85dX8KlNEzQxnNS5PiNf0vKpbQZEZ3JZ0ZMOeWrXA3Nw0uqtR63rY+dhnBRTfTzGTDjb9xcROyUAFXNLp2A0k1mUebsQ7fTGxh6WTAaNpd0v1vRv8PaICUUPzJ6NzPTL3xkczlJn+RhiN4Wes7jt4xiUS/EAIGfhalO1KpmJ4rDB6XgAXmCCUl2qGpfWhWw0PceTxh7z8RQ+k/2GUmoLqb6sqjcISRmv42pL50MvMTfkuBD711Kfxu4WC2zreY3wJg1YUEHkJWoLqepQD8Rn79mhErKkZTvzER1FO8c7HrqefDyWkLcemFSqJIIlQhUX6OdLLULFBpQkSyuqWkmnPNilcjWa0mXo06zPBlc5twQ7tiVU59ijY0v0HpkK6XRCcRKB6KKEqNNW3/Uol7pXs4ZtFIZLiJKZwpQStAEPdGBQF9UjRMAPOK3dlut3B9NUj/zzzuS8KFWlBXEohLZx0Q1KioGavFo4KaXQ1ThIvPSsHJAg1nEQYlSFSDGUl9OvCayi8kt6n+vV58k3JPEv5JGWWQ/DGAkdZ88FJwu2dKXo2JtGavVo9CruZ+XwecQ63oEiI6Xdy3HQfYwpcLmhnSIsafdPFpRaUCxESllwV2y1AdldhLOHvPO7BBN/xySeeyZkf/2+SOVjYQ5HMQzoDNoH+CjjpI59GIrj0mWeyMjE+jagStPWEAoF8UojmNEVDqN9msHUoavhNu5XDQuST6BSDzFyyDZvq8LHFttuKGw8buJJgv3fKS/02cO2ZRmU+o17RTsA4pvedZeuGCaKtEcWURUUOs7qH7UWouQhWZvR/sBLZzfr73lzD7NXzqsMspujGXtKrW9RCNKAJITtgNS7jCYRoQWlvcxQdnA8Z0BCG6IiYIAWUjMHihy/7HulgmWbDxGqI6C3WqlQahfLvktgNScYjEvzicVREJjxEqU0ZYQQ887iEWFYMkQzvw0MPM7o+vGOmqsYzEsK43PCGGa6geVnObj/iXjDsge8WSfnDjEbFlKiRuSnDJocJ/w2zObawA+3OsFNdYX0xGh/wveQZjBKmEssLrvzMyPHzH31GVTZ3WZSEJo68Wt8Jkhe4ds8rL9LEMwShbSE+Ll2YDQTEP2hZr8JL5RI8623VRlfqcI1Igq+Gp3BYT/yraRj850sg+/frbdMFKF9waLfJGjNtS70RUY8cmmhkyoVQmGhoqkxYcitr3rueehMrDTpFzEzWDdcJVjL/GqsKgOH9S4ZSPg+BSB+lbFW1scw1MFzj3afl9aV1fTW9kGlQeZu89MFZIarroMJXGJsgroDEoVXEXDZBt0iYSBQra1uZz7b4+gnOIW3Nc7/3E8QIlxz1IPJ2TiNtUYtqPPZ/r+arjzmDLfMbse2CvNGj0AVWClyoEnp3Q3aQeEfGYXkV7rEE3xWOzd0CiYXeGqjdocibkE/6uHqXCFed9URqpgEID//YJZ7IV8mtBQxII/ccXk/T2w2YzpCFGN33DnwSj0pdKFlCzBf/vi0Jzp8M40/EJ8cJefdV39vyRQETheesrULHjk43YWrNAnsfNMNPf7IPGIWdSf1mvjKDrQnF4W1UiCKwDYfeUMM2LaZtcCusJ+Z9M8gXIKCyRZKxwpsxspCisySgwS9gxJnOKe+1n4csacNM0GLCXdnmF4nsi6XxarIG87Ssyr08N0zs1NC15bOUdnZZ1EcgfqXGpkoKVLY1DDnQMcjSN+w5z+L7qkVMAUP3pfKVqKa6JNiLaGDptLw4lG64TzXMPAyE6iUS+5Jrhx0d3eC5dU6l4fmXRz0Rmxde6o7NEE33aW19XlyzhNgbBfVIsV/L0CoZWCO87aT19O3y/Ne2oJQCo1A69h7+uUX6GdLto5IYlcbEkQ3SfZg3XGVzt1hf/TIQal85TpO7/qB/yfGCeMjfj0FC3ncT1q0P4RsyZRBhRSPUvfMfgtGauklompSu8/HzvSLzamIJOenVoBJhFExyPumPP9aImogoIuWwLmah8PHzBCc+FThqFRarHvrGlFYQvPG18jZ8RVSlGQapChB5LQFonYB45z1jI+64eStRFCEWmhN15mfmKfqWPC+YXDFBp5sjUU6jPsva/aaZyzcCgsGQL8Bzf/DTat2v3W0tj/78FSPf7SOv/iQo+N9TnsbGTZtg2jFrtyLi6Mnd77SXi0Jth6jnYwm/wj2W4Is4FjLHfz7xTPadiJmINUd+5MPVziKJ8Nj//KyXQK1C1bzdvsy3qls5LtdISbAKb1NnIQbniYGkoa9hxyiWCKpLx7a99VNu9GXBHKcgC2r9UjToRL6oT+RwuSZuZFinuXFmBWoqR21MsS3rw1y2JN4X4fY6UndI7omzq1uUVdimRXUj7/yXhDj4Iam8JCwSOVShEQsqcV5NLoEhiAVCFdNSzVymzq3szkOEuFI5l7n7hxmm4ZC+RXMyQjxLNULod7iPAd2SRdcMjaUa11AoZImQqGjkNVVMAqOFghRB8zHUrxvqs7SHl0xD+ftw7H5JoNWAKRpZI0Ocoi6zOI546g/NmQyNb5G+fyTrn4SxDD/PsD2/mgt4/xPXs7lT+JSpWkgiqEc9EqNo5wm5Uz5mvCh8KJ3yVfi08mrwVqx4/mX/5e8doki+8Yyz+MVsjtEO6zIcEd1C07Nq54n/sNQfG5Rz0C+Q+Q5FouiYlcQ6I9ELaN2rSlT7KdeVql8kRSmf898novEvSZFX1fS8Y5+qCLxCVSWxCa3BS4O59aljff9QT2PmO126yrFgOyjV9fcRh2cLQMQgJCjVQQWTg1YxWsGejb1JTJ0ERaStzxioDD46oQ4oYt1DK6/mL1wezAQ+z4ALlTy9dA6OolLOjFQdxKcVjrTxnvwikChWrJyiPdNlauUU/azP2tVrKHIhRxNFCY1GRpQKue3RK2YQBC2aZ379R94vxdsNUFZx0uWfpwpfLDNphnX74Cs/xhce+ljmszlMZHz+AO7+XPrj1Lo7j3suwc8KcuC5H/tviqagMzCisXv0kE6E7hhPD0KcuwRJNd29Q7+doI3DdiMvmfYNOtMgEO3dJuvGyFzsiV2hlqhit0fsd3r8etDPiG9A7LxEnWkfGhgJvTTGziaQOvTW2JsYHKhM4+qualepp8vMdJHzKnAjVQw8zqeuLVXGupXjelHI+++dFLEK1cy9lqETeU/8QAxVoXyIYGmfDinMK0l2mbkpkxL5QbGUI6oI+3IXl31QEf4qpe1yonJJBMP5AdEts/4FYl0S75LID/1dOSEqKkc7YOAoWUnT4f524PSIkkGlxGGtAoPfl9MAVQgOniNUccSGsbg9g3kfpv9V2mIVvOpCO4c3VxjvYHjhiY9nrp/RSAviqCBSCzzvs9/2XWv491OeTO5ACgdKEUWaNTXDHs2IWMHD/+ujKAe6NLWEWxqleO6XPjHCEF3xxMexpVfj9q4Pr9sWFCUzMXjESGkm44h4MmFzp2Bh0xydtEmzBg2tKyneicOKw7o+onyWOHDEQcVdBFV5ebwQb0f2Xv2WSHl7ry9rnNAuEpwIqe7jJEOrLqlJgAlKI18cG7J+m5mFrbgkAZUFiTokskEDOSKZn4iQDU+pInjDC5Hy0rpPi+uJqFCjcE2gQ2Qc9ahB4fLQq//oyoyBBaU9XFNIDSRDq354zqH6ASoiNSn1qE7P9jBK01jXYO26dSilKUSomzqd2QWiekSrXqddzLGQz2GsIafv0xcvALkaOH+OOIcOCUjDxws/ltzlREWM6hnq+eQ218FdBcf2E+9s79y9DfdY1kectzG/7YlP5HPrn8oPXvBMxIgn9iEJT+mEpDNF1NaQOPobGp7Yb6hj5iIav0w8Qduth0sdcWwHWeYyVfUBQ/vu0AY87FC25Hc32q4KLxsqkVrabVWhKtW+cv5fN1mgM+3V97mGTBMt+CQ7WIVpa0xHD+4V0vF6U17w7rfKE+dCoXrG95MrVO59BdzWxFfVi92AWFiQ2cRrGgJjMWJLz5VPdNQ1/t9CDaIBFhGnJZ7/gQiPVJRb5Fw2EkO+KAZclZJzpaofukFJhBfxAKVqfuAJP+i7GttQpkEVNB+q8PNUaQSG1OCDlzpgApTziZSUDT/F8Fx4plMWzclgTQ3GPnIdEMy1o0xRyWi4oec04SeSgWRVnQzvI/gmXP64RyNaOGBVzl9/+XO8+KrP85dXXM1zr/iWzweh4JInnc50Okcz6jJJxoGTMQ9clfKsqz7Go//rozzi4x+t5kpK7UbAQz/+UXRPj8zDqZ++kmdd9Sl2bzCkIfCDUzhiDatSzeHTMUetSnnQ6lr4SXnQmpSzP/9xnnHZx4lDul5pdzGuR2Qduh+hXIRSJmThM2gVB0nXVf+VGfVKdZoTT/S9dkBITUojajCRTDCZTLI6rZHqjEJ6Ie+99wnwtvxyah1iLIXqY7MezmVAP+gMSi2BQqmCQclaFSRPoWf7IWeAdyx0YVP4/9n78zBbsqpOGP6tHRHnnBxu3pqoASnE1n6aRqQVVKhWsWSUKsYaGFsUbRUb+ATe16bpx34dnrb18+sG7QaRdsIBKAoKpKSYUYoWsaVRXhxREKUYaq5782bmGSJir++PNewVkXmLusXgRXM/T96beU7Ejh07duw1/dZvTVPGen0MTdpVdj+gy52A7kQtRJfN9QYIv5/Q7yZaueJgaY5VSthsNjFJtSg0NMUkHUWiLWRM0LKED+b9cWwcrXF0fYZEGct+oRUVJSUmdxnf9cH/V5g8TZGPTJ1K+AU1HtCV34W/YIq6naC9I6O79QtgPX2O1ubqc/6cSvvpn/5pfNM3fROOHDmCc889F0984hPx0Y9+dHDMYrHAc57zHJx99tnY3NzE5ZdfjptuumlwzCc/+UlceumlWF9fx7nnnosf+ZEfQdd1g2Pe+9734oEPfCCm0ym+5mu+Bq961avu1hzc1XbaWvhifTFmibBWJzzof74G/ZkSD6rvuQdKjPZTG65h5oaRdiqxbG6bSp79uQvsbjWgmtHvNqjPWmG+NxELNmNsmB3shgX2W222oTMXoafHcY2S2manr2jIx28CLrFY8IuEPMmY3FJ7XvbkDqHgpfMWyDfPwJM83HQZ4M1OhPJeJdeb5KJxm6XeymZAu6WULjHAG72MN6vQYyqCByhubYKD/fbNzShWH+PYLtBHzzQ28YIU5citdevH4uqmMHDoJwEcP2cahPH9kmNPgR8EV5wiqU20YilYzoNbt+d4UA59tML1+paWJ+g0Vu4D6xCDvHqf2hEmwL06A8VJ+x3xQTABl7z9PQCAS974Ni+bbF+yPs+nvfktI/yK/hfGR6qEDCh/GUgZRQiEe6Oe8Ix3XYN3P/7pdiiOLTOIOmw1Fb7zDVcXZSiV5eOKFgP33qxw9nQTmC+Rlz3OonvgjhMLYH2JerNFB6DtV6hSFeLwNRJlcWczA+jRZonf16nR2yP0uUOVKhFKVAOpBWMlpYepRk0NmjQBs+TaAz1uXdyE3XYHqDN4tQSvgNTIw2Ul7YmYftbfBH9Q47N7N+KO6nYRtt0CPQuD4IQmIBgxbI02t2hzC6BHnSYAOu2vEPIAEKIgXWhWSXCSJthoNkFSQQodV2i5ATGDsYdl3sMkTbzWQEoJPWcss1QqbJIUHGEGVrudeA0BiXQlexe47C9mIITwF7Gk961Va+hnHZq1Fnzsi0+tK6EautPvT6Vdf/31eM5znoNv+qZvQtd1+I//8T/iUY96FP7iL/4CGxsbAIAXvOAFuO666/D6178eR48exXOf+1xcdtlleP/73w8A6Psel156Kc4//3z8wR/8AT772c/imc98JpqmwX/5L/8FAPCJT3wCl156KZ797Gfj1a9+Nd7znvfg3/7bf4sLLrgAj370o+/mbNx5IzbGidOkbW9v4+jRo/jl634fW+efi3Mawvde/2ahlFWyGGt5sxcueqjwWyUBx211WNtaYLVs0M9raLYL0BFmZ8+x+OzGwKI90IXvuxLcjXWyNWXWPU+UpCbL77RMRdgkOBOdoOdTeYEyJI7OANqEtBJhnWfSB9u5JPdg/AG80SPNOknhI+XBV1Q+dYppYBSkPqGQAJniUJX7cgAbsB+lbnMRfUJxwx//P56/ONHjeYzHRDehz/0Bk84H/H4ylLxVO9TwzTg1zl2U6lUwQT8QhmHcHhIYLQj3LpykUZyXfWg+KmMdAARPvu7utG9T4A64pCmtzgVwZ/3mYZ9jhWbfHEHmNPUYzM+g4qSvh31TOJyWsJ7e8qgn4MTydvCRhD43yFigIkKlNd4FPd9iWtXatRSQSZTQpKlb/23O6tJvNRc+qeVM6HMFYIZV3gChwbxn1EQ4MtkB8wmx9LkDdwIqtsI8jAwmEaKmBDPg1LgilCXtrstCk1unGrNqHT0Dy36BOtXILFZ2osaR/p1+xpw0Ji6V+CrNc59UU7R5hTMmZ6KmTdy6mGNWV8JSyCssum0wpEZAUynnAcvcEBEm1RTzbg+r3KLPHebHFvieP/uw03azerMG7yRQQmqjffRdj3wMFtM58iRje3UHto9v45IHXonjx49ja+sL6943WXHle56JZmM/n4O1dneF1z/8N+72GG655Race+65uP766/HQhz4Ux48fxz3ucQ+85jWvwRVXXAEA+Ku/+iv8y3/5L/GBD3wAD3nIQ/C2t70Nj33sY/GZz3wG5513HgDgF3/xF/GiF70It9xyCyaTCV70ohfhuuuuw5/92Z/5tZ761Kfi2LFjePvb337K47wr7bS18FNdI3c9jlOFN156GdYbwkZdo1vN8bBrfkdqyk/VKqsZ1W0NqgWhWgLdzgTLO0SrTwTkrQ60Uwni/7Y1jXPy0CK1Nto04+dGrhMbdYTUErozReFALUIwzSsB1nWpAL4AZ7PjJotwAWCAMU5iOXHN5SXTjRmA9sNS4EdBdXmncYXDY8uduqFXtH9zjkKUuAAWbS4qHqZ/8QH/W5/96DjtXzwJPKQh1l8PFNTx8zjBY/KY8TPZp2wEb0PciPohV36phBfGiCA0TaBHJUSvMaAhBvumx5ViD0YCcRB+sDCFzxkNjyOcXGkZz91oWuwGHRAI9RwMhxoAkeHcMJQ4xYNMAr2+AwercMzgJPZruWeMh/MbsS02X/u8bFRIn4iBjc0Z7thOOLHYxQpng2gL/bRGVRPq1Ml7zoRKUe4VAZNqqSl72QF0hBYsRL/IuUdKFSqqwSAwMdq8QEUdOoYWy5mA0GFWT7HKS2Su0NUtUDFqrXLHqkFV3AAsqXCZelAlFEU22b0Wz7ESvolqr+TW5zkASyskOY8SNqpNdNyh7Vt03OqjIDRpgq3JFqZpBoDQ5Qk+M+9R0RSbtYAD21yjok0ArMVwYnhD+kiUMKvWQEjY6zs86y//BMpO5M+P7VVgXQh9WWP2TDkojzlnrPoWPfeo0umTh7+9vT34fDqdYjqdfs7+jx8/DgA466yzAAAf+tCH0LYtHvGIR/gx973vfXHve9/bBf4HPvABfN3XfZ0LewB49KMfjR/6oR/Cn//5n+MbvuEb8IEPfGDQhx3z/Oc//3OO6e6201bgo67AXY++SZjnW/Gkd/2exIkyoW4r5Foq11FHoL2Efj3jK97X41PfIe7tdP4c/U1r4ATM/r7B6gwRonmWkVYErgm5UVrdIFhKPr1tmvK3lLfVYxjIFTC9PaGaA+0RIO3Ky58BsZwqScuzc8suqC/PVDpLax3yiQngVr8aUnVWT0DlbjNqCf1WJ0j8npBO1OBpdnIa5xPQ8aWQLmWbabWbkKcsuCIioRNjEjBhiI8H32RppihEBcZAW+atSDwSKjzsy33m4+uMrm1twCE/sjKsz2AxGnbAXcWdKCWFHEmfT0LxdgBKpoOhcoLS10Bw2tgitiC2MCYXYtGNDxws2Akgq65oCpT1MTpuoEgErgLS7wdZD6Y4Eg/7sXFQuEfW/T6PrG+jaNb3YOg9KPc2LCdMPhfmWSHw4JpMwK8/5sm4fdnjBb97zWC+oifgO974Orzhkiuwc+IIXnD9dbjmEY/FDdvbyFubWGWhzxXkvtRhr6nDXreJSeoxrRjLLC7/hD0k6pCoQ00TNNUMQIc2L9FrFsCk6tGwsNMR7YCowbzr0LGVoZUqexkVQJ1Q3xLkdxCmVKNvG+SWQNMWfd8BRvJDSZMrjAK4V8rahD5n5dRPWgCnd8pgImCSJshZ3PmbzREcabaQmbHTdUhoceFGA1BGRgdQJamMqcasmmG33cVOu6PMhFk8HWDMMFFcQUbuWZ+/gHZzV/n8l+UrC8TKdru3S9dkZsZuuyOMfDTFEl/8tLwuV6A7idN3+t2FF144+PzHfuzH8OM//uN32nfOGc9//vPxLd/yLbj//e8PALjxxhsxmUxwxhlnDI4977zzcOONN/oxUdjb9/bdnR2zvb2N+XyOtbW1Ox3b3Wmnr8AHlBWK8Yy3vg+8DkxvrrG69wq8p258glSAS0BzPOHT30aoFiKV+O/XkZJYIqsz2NHL1JHkw6tFzGMr0vodBIIxsESQgcmxhLQSTgCxyFWAmJtbgXQldUXPV0AfzStgkpEXjQj7Ha33fUaLdPsEuQaq47UUAmJRPPK6vPi0W4kngCBx+4XG5w2x3yakVscdbi5p+eDmeEKeMPo1Viv6JKbjQcIeo/9HczV2d7usG1j20ZyLpufQ7HSvxUHjGCsHsSv9msyadgu4PMOBtyNWywt9+2dBUQCrEhF0EBfocZjmMTHrKPYblSKEc6MiEz7fF4IIt81AydAIEz22lmPbF1UI/0eiHr+teGvWr3mCbDBG/MZxukMn9kwJeMkjL3OdMTNwy0IE7c9efBkAQpOA51//Bvziw67Q+u1S7/wTcwbqKf7bIy7DZb97DV7yzQ8DcUadMiZpDhCQMMW06lGnFm2eiLWegcwT7LVTtHxUlgExEoDJinDe2hyJFsqzD63P16PnlfyeK7S5ReTcTylpxbwKiTJy7tCjEx78RKiaCjXVaPIm2k48EDxd4vgdJ7DcXaKeNMgTKQjUTBv0WXLyAWDaTLC3WqFeq9HnTrnzCQ01mE1nAODCfpUJCTVmVUZTidIAJHS5R5ulbMwSS6msB8Zuu4eUZl4XYHu1jY471NRgubsEVSwMnlYrI6wL9ITmeIV+yrLnxfdE181yuULbtKh88Y2Ytb4I7a6i9G+44YaBS/+uWPfPec5z8Gd/9mf4/d///c9/oKdBO20FPlUJ3GcwGrz6km/H9/7G/0K1AFZqSVvLlby83SaQa0Z1jNCtM/qtDs3tNdKKkCdyQtZFmmvVTqM1os0QzP5FEE7ESvW7knPzBOinQK5RYuHRkjWLEyUP3xD1mGTBFkyy0NVqKICX4r3gWY9MqcScM4EWquhUAvajigW0Z0K2krGBGLnWOGrYlDmJJdKtowDO+rBpG/jLyufa5+62xVDgutQpLxsZeYt9zOWwQW37OL/2XflC/rV0wCjdcJLfwzMzt7Z8XL7cB1Bjue6gIA7gSppZxsbaOBhHsLAH68dkm2UNqMXuqcAUlBi9jnPtK9rdMSERGW3X05AP65xRuK8xLCAqHYPPgQG3QMzvZyV0s//thAg89N9j/n9QrMyb8qbLnoxbFxldZtRaMnm7zegGj4HxI+95I37ukU/CsifUBDz/vZLz/+x3X4OrL30S5h3hRAvM1VhsM+P/+61PwGqxAo71WE0bLGdH5V4ImPQd1utKuPjRInONmhZgTHQ6CMxCGdx1wM3zCc5bW0MiyRnvrBwtBMQnhDctoGQ5AEQ5YFLK2yWIEnpmNFSDISGC1GRMKsKR9Q20yx4tT9DvboOQcOymbSymUvmv7VosFyv0vSgMR7eOYm++i/vc70KAGdPUoKlrTKsJjky2hFyHRBHp2xY1dWj7jGY6QZ1qdNxjr9tFjdrDAdzCwYp9x+Cqw7JvUVGNBhMsji/xrD//k7DIIfH7uL4zodu0xQJ/z7yOCAGcauR5QgajnuJLwnJ3V136W1tbpxTDf+5zn4u3vOUteN/73od73ete/vn555+P1WqFY8eODaz8m266Ceeff74f80d/9EeD/gzFH48ZI/tvuukmbG1tfVGse+DzFPg/8zM/gxe/+MX44R/+Yfzcz/0cAODiiy/G9ddfPzjuB3/wB/GLv/iLp9h7ECLUYHICmJ8rm2K/kYX/HsUqyzNZiKt7CC0mdQndGT3q22vk85fgYxPxBvRwUNbJQFYuh0yQUhA+QUC2R9iBTwNgnW34Zi1Zq8SYNjKe1KplaS75JHzXIEa1XSNPBZnvFe8CExwlSEnciRTroVwM9X5DqgWyubIRjEgCeCIEMMQQr0GbwHVGmvaSs08IG3i5pv9vUq0j5W7HwFo2nMIgnj2az33zPlYEXNEYjcOEVE8jxSycH8Fids3xtSwGORb2hIJFGFvIPIzRD9ze1h+JkEcQop6iaEpWvJdExc3t4x3Nh12TR+tpgFmgkyphfriNqWStyd+aCTGAR4yBk+GaFrd3vIB9HxSqt1z+FHz02ApdL0pmlciy0wc3xgD+28OfgLaXm37h710Dp7gm4MnXvUkVIMZvPPop2Gkz9jqAmwqo14CcwYsW3fE9oK5Bswn6aoJ5P0FFU0xSh0Qi9Ds+eLvb7SrcPD+CI5MlptUKNRGIGvR5iS6vUKcGUuNORixEN4DQ3GYtgMMAGhX8LQBBxPfokKoJJrMK3Tzj/PMvxGKxhwvOrdH1HRbdHm6/+Q6ce4974oyts5BU8Z/UFaaTBl0mtMsePQOJasx7wpQarFYtTuwcx+6Jbdx00y1ouxZnn3UW6rrCqmvByJjPF1hbmyGlCrfddhvOveAeuP22OzCZNjjzPptaPGiCvVt28KyPfUiAevFRa6VMttRLC9uN39XQHv++d/qyfNW//lrkanngnH8hW5cTKJ9cseju5LuDGjPjec97Ht70pjfhve99L77qq75q8P2DHvQgNE2D97znPbj88ssBAB/96EfxyU9+EhdddBEA4KKLLsJP/dRP4eabb8a5554LAHjXu96Fra0t3O9+9/Nj3vrWtw76fte73uV9fDHa3Rb4H/zgB/HKV74SD3jAA/Z99/3f//34yZ/8Sf97fX39lPvnvgc1U3HpX/se8Fcxzv5/Cbd+I2N6S4VunZG3siDzGUX4bAh5TbUnm/PqXkvwsgId6YBl2o823XdhFGVALTGu2ePjUGHYbeayAW90QALOOHsHxz51FMhAOmOFvKpAJ2rwZi/57MRuxXGdQSstp6k1720TJtWsU0diye9VoB5exIQygBOVA8gojDmCEUnnhAnIG70ADOcV+EgLHG8AlnK91ZkrUMpodyagSZY0P2smMIOA3BcO6TFIn3O3eojz+dhMSBLKfNqziMVs7O+DnlcADLlCZP3QSKge8PswPZKKQmHjDKx50ar1C7ryYwqAKoX96NqQtbKvWJcKXDJMVww31Dw81tbYWGkxrofVkCeAxSc9nEebFwvJGk7AvFJBgfEWlS71PgwUYSZN2RrOk13vE8dX6JcdZhNhiFu28r6gSs7Tb1PVseSgr9eE33zMlXjmtW8oyrNdg4BnvvN1+MAVz8CtixVuXxKOrxhLqkDrwpvPyxZ5Zw6qK9DGDD1qzPsahKlQ4MZJHUot7HY1GGdgo15hrW5R0Z6z3C3zEg01mvdfisNY5b2eJb+ewOgVR9HzHLmvkXmFNi9RkXju6nqGM9aOYDapsGxb8DFCN78ZfKTD2edsYN4vQCCs1TMs2iXquhYcT0PoKGG3rXA8M7YqYHNjDWuTGn2fkaqElAirrsXaZIqqqUENYVI3WJutCQ1xz+IpWJsiLzPaZY/l4gS6vYzcGYkIeZlrK//tHquD3sUQrvHMDGK842GPwmdXn0ai08fCv6vtOc95Dl7zmtfgzW9+M44cOeIx96NHj2JtbQ1Hjx7F933f9+GFL3whzjrrLGxtbeF5z3seLrroIjzkIQ8BADzqUY/C/e53P3zXd30XfvZnfxY33ngjfvRHfxTPec5zPJTw7Gc/Gy972cvw7//9v8f3fu/34nd/93dx9dVX47rrrrubM/G5290S+Ds7O3jGM56BX/qlX8J//s//ed/36+vr7ra4202LYxAxcsNoTiTsnQ9Mb67QSxhLgHIKwELNwHoHLCpMbid0m4z2SMbkk1Oszu5lNSoL3cmvqf/bJmtANs1p58RipVeQeP0kA4sE7gmzrQWO/f1RfNuD/gofO34Obr7jCLBbSz/zhKRc+mb5cluBtVKflIpXyykDaUnozurk/laC8ueaUe8mdJti9XPDQkA0ro1es1j+ilNIPcAz3WxVS2ej5FVh0y8qYNVIeMGq+ikLoQk1s1TldwaINH0QEjJhHQBxyKkugrn8Eoh1Dpp7a3FzCRau9WOI+AFRjn0dBVcQ9vvi0SpMxmtCHAYm/W0cQbCqcKM+dhRuI+gGrgRgZJ3bcWYtA4OU0zLeAzwiCcHTJM9Cwg40SLO0r73Aj122Cv3HORo3u8fwvZVa348DoKBYMFarHvfYmmDJwPEVy3rKDLRC30s1qa1MqJMg4p/7zjcceA9xTi56w6t9Pq597FPx8e0OHUjwPrMJeNIg33ECNJsITTCg18nYrHeQqMO8O4KWrcAt/Ji9bgbmCnUSBb7NM1GKaYkOHfrcoOesVewIiTMYS2RmEBJSYoBbJFQKAGzRc4W2b5T6NoOwQG7WMMFR1A3h/HPPwAXnPBA59ahShc0kxtEqd1j0SzRJwpqLJZAmFY5OJOxRUUKVGgAzHNk6AgJj0c+x6BdY9Ess+yXWj6xhvd7AtJ7gnHPPxLzbw9pOg8WtK2wuj6KmGo/5m7fKc8sJ5r2zQllsaPyxoA/r0cNRo/e5aho0exI++GI30UdOvq+f6ghe8YpXABBvdWy/9mu/hu/5nu8BALz0pS9FSgmXX345lsslHv3oR+MXfuEX/NiqqvCWt7wFP/RDP4SLLroIGxsb+O7v/u6BIfxVX/VVuO666/CCF7wAP//zP4973ete+OVf/uUvWg4+ANytPPzv/u7vxllnnYWXvvSluPjii/H1X//1A5f+n//5n4OZcf755+Nxj3sc/tN/+k8ntfKXyyWWy+L22d7exoUXXohffc8fYX19E+trwP/1lre7ZdivSy5+LIzi9LoVo5on9BulShzXLBtIJaVr96GPB7Oh/0erSi3RQToWwd3W5uJKR1bo9xoRNtMM7FZIxuPfCzGQ/F6sbpAId2FQ4yGPPRNSJwqAAALh7my34k3ZGb2ItglbJgMQrq9lg5POmSCXsgj3qQj8tFchr4s0o0XhEhi4je2FtyyGCRdyDkA2DC2yAkD6tzGa5Z4KeNLmPVrqyOF3ezaR/vZOnuFYIA3oja0/UwwOcn8z9gtO29h4eL4x9MVMjnG/dn2v0heVBz+mzGfcv8bDo7AODINguACfG5K1P5iHA9yxg+9NaI/GFT+TkEdZT3EtEAO/8agn4aa9Hv/+vb+DN135ZBHIDBH2XQekBKoT6tQjc4X/+91vwqseewUWK8az3yUC36tVuicmKjdx/MAvXHwldoNQYWbkYztIa1MR+uEmmrTC2dM7sMxHcWw5C0uIwm+MI80ejjS3gpHQ8RoSliDa1bi9Ztcod33WFDegQkWSkw8IXiFzh0SEppq4pdukBhv1JlKaIqHDKrfYbDYxrSeYVA2YGcvVCnvzFt2qRZ8Je0vC5hph0iR0eaWueEJChRpTrLK+21hi2S+w6KXuAFUbmKUas0qY+xbdHI9///uATEizDtwnfw8BqLJPQJPFy2UGUl+mydfZOIRkz8fea33Hrv3Wh+EB3/DAL2oe/sVv+SHUGycH4HW7S7z3sa/4oozhy62dsoV/1VVX4Y//+I/xwQ9+8MDvn/70p+Mrv/Ircc973hMf+chH8KIXvQgf/ehH8cY3vvHA43/6p38aP/ETP7Hvc+56UJUwazI4ARufBvYuAJoThMU9+gJ8YhHG9W4Sgb8gcJWQp1IgptpL6LdUeLW0j5Vs33V1oUawnfPim+udUAQYQzbArlJAXgKdqJEWJELaLb0i8GhF4KmmCU5kzJmoKAYJ8pIRg5jAtQqMJC+aE8PYyxYEiN1DXu+9WE5qCdWKnJaVMiFPGWkvCcEPETDLoly0CXxEGL6QWDwMxoaXgtC3e+mF4MfCBz6PKoxMeaEoyBhDqk6Ez6x/Ux5MCDlwzqKoGGw4dp2Dn6d9xyPiIDvINCQaCPqDvAc+ByjHmBJpHhP/24Zf8TB+r2sGhML5j/D/6N5iOujga9t8g7D3cZDMoRe9i0pKzFwYC1UT9gHQZ++Egw8PINt5/1Ofjr8+3uJ4xzh7Szxbn9nrRdgzu2WPJKiS9brBBeu1PgbGxiR5eqGxUg5KJR8AYHz7456Gv9luy7MAACJQUwNt5wLfxGGbJzi+Ohvnre2B0GG3XcdyEN9lJGIs+ikqOgvTahs1ncAgHq/FeLzIjT1AArosvxMJ978A/hIqmkAQ/kLU01SNcAakCdZSA4YQ4aAH9rYXWCwyvvP336oWjq4pW5fGuGkhp0ziPamylrwmrG0usVrV6FcVUiXCmzMBKuCpzuAugbsEMsrtDFDDAIsHEEo9PQDZx/BcKgr+IK05CHswsLZ16uHcU21faJf+P+Z2SgL/hhtuwA//8A/jXe96F2az2YHH/MAP/ID//nVf93W44IIL8PCHPxwf//jH8dVf/dX7jn/xi1+MF77whf63WfjoM5ASQDvoNjOIE9Y/C+zeE1D2yMJJzgV5n2sVmgzktYzpbTX6e2RUx+rPKewB+ItkRVjiRujCqi/Ibj7SAcsK2Kn8WGpFoJZKdTxwY3Ojl2oB1KRKS5ZjKsULAECbBp4B+Z0F7BcAfOK6176t9OdcshncgzBVL0crrjve6JETC7fBRG9mISESqjN4pxELHRBmv+UBsbgoqIxQSC128nJeVKSfHctlI6FgIQ549d2a050uFqwJ1x68yy7xitSOz5BBKDXgMfTY2NzbRheftylXhknwuLXNOVx4W3zc0fm1eKTGVM6el2b3o6h8v78D7tevEzEIKH+7QpFMEQiPynP7w9zavdr0qZeCxWAdgE59vY02dFM4/na7w7xjPO/t1wCJ8arHXYmb5ook7bM8aI3dzyrgB9/xBr/vc2YVLrnmdfpeWxiBYBTVHN/b8Fy+882vxS9ffAU6VboILNlkTQ3eW6HuGHWVZLllZdPjBtt7Nc7c6LDZ9Lh9UaFnxlznuyLGWdMV1uoJCGeiTttY9j1YY2cCsUxgbp2pLnNGRgJRr3n0hDpJyED0HcmdF46AhN12hURTTFKDigjLfoETx+eolxM8+n+9zTQXud9Kb7q1da3rMEGwPyRClhKDO3l4850pUi1hvNxWIsDtPUgs9TbsWZqyaCygtrfZO2qhLAxfYwCDmiEOnjaDSGP+D3vjG/DFbocC/663UxL4H/rQh3DzzTfjgQ98oH/W9z3e97734WUvexmWyyWqakiA8OAHPxgA8LGPfexAgX8ytiMNTWJSNaBMOP7VQh2blSwlqcUq7iWIgGXZ6HkqFeaaWyukFZCO1fsWKwCJqUME9IBi1Sz5rix2kBxf7ST0MxkLpj2wSiIYc0LqgH6zR16HFLDZq5S3X14ebtjDD6kTyz0tVWjU7LzutBSXgnkp5AB4SlbWDc9c88hAnmQvZGLgOLDMEfWApxNVLAyAxIB6DggAr5JU1ltVSMTg9U40+Jneo4EKDWAGwLjTqSNRuGrBXHAikB4v1Jx6nm5Wykjq9zV88OEHGAruA44vLvsD+rLT7aB4TRN+44PD8/bnHhQQS9E7mKWxXItruGAcFGgaYy6onOf3mCWDw56xH5739zEE0g375hoDC43EgNMvy/UdZxD1MoIrKqbsmKeKAOfjN+8CE+M577jG5+vWRbhwn4FGyu4SgOf97jVF0SPgMW98nep2NFBsBs+NMMAtmJel6wC0GTlDY+nAbH2CRSsgtVXbo64IKRG6PqMiQqIpjjQJoIRzZhnMFT61C2yvGB1XWOUZvnqD0OcW826GLk9A1GNWSSncRQ8kLLDqMxIxes5KiSsLalJNkUBY5qV4AEhofetUoakaEGpMEmPZt2iQsDiWcen17ykKlPJpQEMyTo3NJGm3FYOn2Y0I1oXMWuCKEgkIjyBu+p7EU2eYo6lY9UQAqgxu1drvSaqL2loeC8pU9kRTLm3f5BRCS/Yoa8bPfeOjcDl+FF/M1nMC3Un6X38n3/1Ta6ck8B/+8IfjT//0TwefPetZz8J973tfvOhFL9on7AHgwx/+MADgggsuOKWB2X6UqEde61F1QgZR7Ykb3CxfTgBVYs1XuxX6Ta1GREC9CyzP4bHR583j/DFeHxHuNDqnk2tTlhcJfSWW0Dwpe5+y65lV6G5sLm7UVIQ0IIqKM+VNVDtusrjYl0nIeyJaVvEEpELH3c/KOui0vDoHADQUAIBI5nKtA7O6+axwTp3BWWoR5MWknB8sOd+Eg5VlwpBWBJ4ANM2oJmJa5hOTsoHYAzgI6TsW/rqRxVi9W+oh7jxYKPb/SOoPLPxxfDyi1qKwH7cYO84jJTAi4uOcxOvYsGI6XBwzyVjMTSrPSr6MKXByDyPF1Re3/mlrWdcHcVEQ2BQuvQ/3alSqkOoapXzgVBZBFJSLrKWcn3nd6y3Qglc++kocX9kC1+NV4dynJvHofmKKp03DPj6B0ks9S8gJICJhxWdgAUbftcC0Aqa1V3euGsJ56wkXbtaYVFMs+gWW/R4mVYN/tpVwfDUHYQPTKiHnFpkZHW/gprnE5+97BmFSMZY9AziKnbZHk3pU1GHR7+kY5IEmSqhzA0bGtBKim4rEmyBKB2G5zDhxfIXLPvCewcR42BAQy7sSkhwwxH2fJNSHisFtKmh6SztWNz4IBX+01oPqjOaMDqsTE5l3fU9LGEjXUTfc+AysTJoR8rYrnobHvOG1ei7jrU+4Apf89jXgBPzywy/DqgfaLmOxu8Cx2+8YP/EveDu08O96OyWBf+TIEacXtLaxsYGzzz4b97///fHxj38cr3nNa3DJJZfg7LPPxkc+8hG84AUvwEMf+tAD0/futJFsZM98++8CU6A/W2N182pfWdLUiobXb/QutIVwp6zbMQBrYPFnSKw8hf0z7T/W+NJTDymU09IQHAgMNquy+Ra+dQedAaWYjoLwuOIi1FdKvWnpgDZ2dSlzkrS9CJRBrA/ggpZK3rXeV24rpEkPSoxsKW2ZgKVuIjruNBfwHq2ChnyQpa2uQsFIJOnT0tiiJRwVh8GzDv3FuHqIlYtjYfzg4ErZgOYTGILnrFm6nQtpE/Tk8xMxCgVpX0iaBvdubiibbxY+dgfHjZQTUuva5XOcmhE+YsDQaMqCz6GlCeoHcTpivN/HX+YwpjQCahWOjh/S48IVkn3PPii2EbC56OV/Zgb6HqiSlowFNpsDFD5gf12Gk723QSFgAna6LDpUxB6zWJzdqkNqyhZ37w3CfY5UWrKXsOpXaPPKBfVmU6GiVivlZWzUm1j0hHPXekyrFZrUIKFCk4CKMppUo0kTdAzM6nUteCNofCO8qVKNSZqIHM3ys1r2OHF8jiv/99s1cwaFz2JUOtkUfssexVwzk2oOoDoC1jtwm1DNOglLqTJgHiYGgVcV2r0atNYD80pCAGu9KApK4uRr15RjE/5qR/3+056Bjx5fDYihLvmdN+AXvv2JaHvgjt0O3PdCmtbJs/9iN2bSegYn//6wSfuCMu1NJhO8+93vxs/93M9hd3cXF154IS6//HL86I/ePZdOIqGBpZzQzyCFcdbZQWyUtXY8Ad0mo7mtRnekd9c/9QSctwAfm7i1Y825vdVF6bSpgFjali/vG7lt/MJih1USwX8SV7L1NUg/S5CiOQtJxaOWNByhssNe9rUsNepbCU9wJvcgUAaqpTL9NUKgA7uObRwIG6UqEabQ1NsVuE7Ia0kQ+Ee6EsdTxcHphwlCAbwvFhKEbrAYKQM8T2KFmCIRkfthTPsESBT6JoxGBY4GrnVXzIbgLq94x+EcBAFqzysi1lWwuUU8FjZ2CwdMwwAXYm75oHiU7/Q2FSdgljSyWOAUpb+NV7uJGRo+VobP8bhiXcSLiCdI5yvMhc2fI/7H2R72Zyp/l3kgt+xTDzCFVEuSeLmdKl4FUV6bRHj2O98wdHy4AA9rJNlztIdc5tvCCyDgv33bFWhVwalJnAmu5zU1eNnKAIhwdEL4io0GmZfIAOrUYL1ZxyQLoK6mGkSEVSsKwHq9gTrVOHPaYWsite0TActM6HKHSSX5iqs8wbxjTCqpzNdzRp8rZEywyhMgM07khL1OQgZpscKsa/H0P3qH3OxBKW+mzDVyN0QQjyKJoUHmprd56wnYqVVvr4shkcOj6wlpLntlds8Pg02ZTzxk2Azu+agAf2avw7zrwQ3jf158JbrMaLseu6uMvOrAyxY0m4CmDWhjBq1M/EVt/ecg3ulPkXjnH3P7vAX+e9/7Xv/9wgsv3Meyd7dbRWhIrPTUyg8gQrFf6xXEltFtJKx/hpBWCd0aMDmmRWwaIK0Avm3qJCWDZpszYx8BiVxfBZ9+SApCcQS2CsWTCftxTDW1kqrTb2ZAUwhRS+qduearPUkpREtIiyQAmExSGXDCqHalSJCldjXbkpevBstAyhndpf4ppXYV+MfTjGq9Q0+NMsOpq3aq2kNXSZU/YvAsgxZpYEHvixu79NB7MXCQz3WYF6C4k00IRy9AKGZz4Ln6e7H2QiZANPKCkHJr2MZrm6pZwwfl4RP2pYVRvHbsLw7tIGEfpihiIBiA85KYZ2KEWSjhJj3JLKswNYOxG6hQFT0eCRTPODFhDyDXKK56u8eRl8K9DxrSSPqMx4rC/3jk5VisMipmUGasTSUXP7cZz//9a4Zz7IDAodIo4+SDptHn/n9cfAWWPXDGhHD2rMJZ04S9jvHx7Q6LHqCmBu/M/XGfMUmYVUDPFZLOZUUVUhLvQ5eF4voTf/NpTKYTbG5uoEkNmDK6Xqq+Ldsl+pYxnU2wnTusb20gNVO0WYh7lj0w7wjTKuGsKWOSgDYDN84Zx5dAv1iC50tsnX3E4+EgHlTG5FoNjDrLWlCPkSmK1CYJn1ndDkA4OWYdeC7CnqoM7it5ZuZBUFxSXlNmzYziESQGuiAUVfmNnkoDcN6y12G56PDSb34C9hYt2l7WJmcGVaJQpPWpr1fz7HwxG38Ol/6hhV/a6culnxKmlYLXanlgtjHUJyqp+AYBq+18ZdFYJ7dVaI9KKl93puaXj9KtBtcJ8fFsm+s4r9kXfjnWrG1gaPAWSxODC+ZGNlRaJtHQVyJ8ndef5BhaEahLyGvaeV82xryWBy9iv1b43ocX13Hm8LcJdSakWY/JtMPi2ERuepoFxMcEqjLSmT36E42Md5W8f3np9UWObm4K7ugo8BSZzlzGJpcJwkUtOnddx4cUBXjaP8eD2LpZIYFnYR9DXVTE3NIvfbo+0IV0NrMqScI58rfOVUDex0Uw8AyElD0K1xuU7wXEdUsYgvpiWiAVIeiKg93ziJs/Nq4sS4BcWspmD4wLmQ1Q+ZG3IPxNOTitqChLnBi/9NAnYcUE9Ix21WNaJ6xWGU2d0DHw8m+9HP/uf79BvBqmMMXnp2Mdx+zdg5GA33rkU/DZeY9lD5yzlvA973ldmC/Cb1/yNHxsuwWbK7nPQF2hyyxFYkK5VoIUuiEQkmYEnHnmUezs7OHmm24FMnD0jC1sb59Anxn12ga2T+yiamrMly3WzmnQbqyjN5e5GQdg3LgHzGpgkhK2V4y+7ZB3F6iObqIFyT6Qi0WdlRzLAMSUkyh3dUZUEgEo1oeBhiWsyCrUJhmUBIRHTQ9ua8mwWUjKMtf6Pifpg6KHwJZNAt73xKdju81oEuHEKmNn2ePYskfuM3b2WvE45AzugH5vAaoqpKYCdxmYnrwu/RerMXDS+l/2/WGTdvoK/LrG5iTJBpCCJU0QZjfCQODYBrI6W3PuNQ4eLVJuuCBeD7qmuVcj6M0EUfj7IFzAoJ+x4EKxvNIyAYnlHixFRgWRo+4Jcpxq4QOBbseGYiaDOYhjsF8yhX7EUljctC59zQJEOzHysgJnmW9zqZMScnj9eD28CK2RkLaN3LwCI+t7XxzfBKEdZ4KMgxwdC0hW5YMxzP+P/ZpCoJbpYBAZA3fqYDjmEaLQH0frsxw9sH4Ny2BrRD+zegaIIQO7dKxZH296LMBDKEPGyyX9LgDuABo8+8G82/UTvDaEvF+juTto3Y/mt6Czi3J5z3Om+OvjLdKsQjOtwG2Lrib0CaAq4d+99w2yjpo4KG3qhvY1zxjGs3VM6w1hsyUcnSQ8/V2vG2pqPeGMibjeM0Pc+m0HqitkKBteSM0gIl2KJBXvwLjHeWfhzHO3UOcG01ri85/67E04kdZwnKbgjR6rVQuatZjnBv2J+f71DCnWu4q65rJF2lgDqoRVLso4ZaCf8UDZdaWV416knCBGT23FuHoSD+ZuLSmgvWTI5IUK+94UiIAvqbPw5C+r4XuQGH9w2dPxF3e02Flm1GCsuh5db5oXg/sMSiT4jFWH6siGvusZNGmEa+FLYNXH1g+qU53k+8MG4DQW+FVFOGutAfVAvUdoN1RDVWIr5zYfWQqW886sWmwQ8IPfbV8tho92ELTdcKwduO/4oTHiXfgmH81/aNy9pWJdJQa1qpis0mjzhucle6rgOBFiJOidrQ8obn0T9uaObTJyTwI87CUTAE0W8A4BOFGLRUoyn5ZXbnHa6P71eUxwPMEgLss0FNw2J4M8fQyE/ViRiQoDB+XPFY68f4MZ56qXL8oYonIxtsoHnxlLHuHk47RmOAidK/eKsIZ1jIQnejWCAhfDJj7kkXI0iNHn0E/8Xm9mgDMwfTHG7cd7YbzuKNwwGAzxwDPDFeOWZY+OGTVJxXjuswgjO30cAkD5vAgdDJQ7uUfya1z21qsG43TciwrIWUWYViQkODmD1KLvWQS7UOCqG7/vlA9fOkhIqKqErmdMpjUyJ3z8eIvP5nV0LdAv94A+C7HPdM3PFT0r7C06Pg43mqYNqqbG0UkS4GJ4ZtVCAcbhWZAqPzzVuWny4NlTpgGaH4lRbbTo92pRBIxQRxUCjooUQ1JtK0X7K5aJGbjhRIsTey3atsey60X5B0TIA6C6AmfZHGhrXeb3Syzgxy0zeSjsZN8fNmmnrcA/Y1phc1phclxejoYJy3MyqnlCNxWXveTbV7IHHemAHaGQTFsr4MYZODP4SFdcyvPkmnUwgorVYjnzGAkn35hpwCRlrlprFKxI3xcx/DtpDnpaEZAI1IqVlRYlBctTAo1QxfKpzZ1PQZiH5nzq2rJaqsny6PXGu50GWO8l378j4EiHZtahXdSgOqM6p0W/qkDHG69KiDBHPoGmG5kSFFHWI6T+wHIP8zqIKQfFSm4A8iKbBcXh75EwGlr2+oEpB1wEr13LgWt2bhBqYnVTUSj1ng4uHhL+D5ZmjJMbOFOeafkccc6CnrkvdIHh2ho8DypDHORBG+o7PjcbYwh77At1UZiPoEgPlAoFdqKHKzDXXPRw3La9ja2UsH3zjdg482zsbO+gXpthtVphesbZCjhLpT+zLjMGykMMW/k8kCq9YfKjJ87m4SFXvxqvevSV2N1tpb9JDQJj3VOGWYlwStjG+jTq3MSEnd05bmyn+PReRq6n4H4FWrWYnr2F2SRhvSZMKnKPQWZglRm7bcZux8IxFKZ1VhHutVHj8b8tCguptuBTqmW8B0BVBshqcChLaPTsUYZwgHQJmPbIbQm/SQ2OcAGGeBNJib0Sg5aVk0wRA2+69Mn4xPEVVosW3Gek2QSk7Ih+L//Awv2gxow7d+nfyXf/1NppK/DP32yw2Shz3gRS976VeswGlqt2tTiGxbsb0Yb7eQ0c7eRlaRPSPEm1OC4vkrWBZTdGhGMojAbrRj8bx3CjvBq4U1UYuPWfyNOlqIeDseT8EYgwCrgwQBGyRYqOC1hAQX8uiBoG7SWkhbCPocki9I81aI/Cj+12JH5v1tlB4KnxPA7m0uYx5KwPwpBRbqlHo1hKAUxJ4ScK1EGKXHxQ4SN7YGwCMBziz5x94wSGnovBA7dlY+BABEXPB14+G1CN9oWeGUzOQshBGA/OJQzS+uQ78rF6zDXMzeAxkOXyk7OecRgjWBUQhlMtD/ARkcL2ZNY4MFAgqSN87GN/i7R+BACwt7sL9D12jh/D5tYW5rt72DrjTPzXBz8ZP/IHr4/asHYAd08T67se596UukSD1EX7nuPzIWCWCHl3ibQxw9EJ4fx14Lw1KdELkBoAGZll8XXcodaYf5OmyC2wu7ODuq5w7qRCJsJkfQ2TqsfWEeAR7369DElT4mIq5Aee/gzctugxraQoECDV9B52zWsH9+TZJXVgwKSyXgYKTy1CnTqSEJwBM9UzkrZW6Pdq8RQqex5lUciQUEpv6zMH4MLfJu/aJ1yJj966QJcZ3PVIWxtaKOn0E/DjdpiWd9fbaSvwj0wTHvyy1yLPAHGHauEcc2MlYZyzPHUv/ECivWK3lhfMDNSFptEFAb8vRhnXRdgAiXTRmIBwya0HuVAdunuph1jnEYMQL2Hx0yjcosUVUuxOJnR9o/YPymZMq6RphFxcv4OqfyxKEgDs1L45pL7QxwK6YZiVlfZ7FgZjicqOurfH4x+HRMb3Ft3QxepHEfZc5qZ0imIxn+RiRREIil3kxjfvQUy1i5Z1WDNe9MeenfKYx+/BGp+FCnSOv1sfug5CKMD4GEq4RMZIIQUuPu+yTiRem0wZCUqF6wshhu40ujbFHH/BENRn6zMHRTPM673u85W4td4CU8KZVQUw48xzlqBJg5oZ80q2mpd+y5X4urMmeMSbX6NjL9dxfIGuI/dYmYKXC3By4J62IWq46SzqcWxCOOOsGe61WWGjIYC1AkOYvJ3dOf7+7z+FnDPOOOMoFvOFOGj6HrPpDPPFHVjszXHW2WeBc4/VosXNJ7JzzB+UxnnRa14NsHJlmMeQnaZBD0TJY9dnl5usID1WRL7eU6Mxe+TyrtielwnUZOQTDWiawS1JWLAv2UQG+vV01ZYEqEtwT+LbLnk8/u72BXqG1CBoKlDAqZzurc9JEdd38v1hA3AaC/zvvPoazPo19FvlBU0tgc9Zgm+bupubVrJoaa6qa8PAsiqCd6UW1oRlTdgLE7nhddN2C24UQ/S4qm3+RhJihDfRAgWK8FEGwLRIB7rg/djx50FRAU4u7H1wXASxkfuAgnvQ5FUr5lDSDAEyNg8TeFoKNQpBDgKbIcdGoT/2fAw8Hm4R778BTx+zuacyDUX4BCE9Pp/HB9tchucRP7M5jc82YAPM0GQKxySM8uwhgl1d0eQSuVxnQFpj4wvnF554FbpWPQ8ocfm4HogHnhvHeIR1MzCYAbfaY5lZq8TH4P0ARvNOWQ+j6/nzsWfifOl6/xXjgvPOwW3bwCpiClKjILGyzXQMPPxtvwU0EFe0ufOzhKBciPo9cnjHilfM73kcZsmEyWqFr71gHRtH6pBtIb/03KOiGmBGlSpsrK9j1ba47bbb0bYdzjzzLKSqwc5yhY4JPJnhjt0FVm0LYmBaNWGhjB6vLcMOUHaf8rl5u5K9X3qP5oXzdyGsZbuvVZI9KzJ3Qpk1la4YpDH83cYV9Li2XcG0sE/o/8a9jBMtA0Ri3W+s4cupHbr073o7bQU+COjWZBPgmbC9UUeYfGwN7VFxRRtxjrtMdcOtt7VgxiyUZ00C+gMgL85ieK3IdBa19rgv5mkGN0Lhm5T8pliUVE7M8Kp0aU8kgJAFoWjeoeODrneQcjCmWY0n8ERPnPZIxxvJAjAmLt1UxVUYxtomBfQNWd5kg5JzqBeLMBMKJfBIiMcxD7ALJgzVquRJFurhsRDnA3SegUkUrjN6PiVOX+Zo4JY2Qe/H64c2Zsv9NoXPjyl96g0V4eSCnwaAOB+7KRw+3YzcICgigT0xus15NC2WMWJjDULQ0+f0UTpyG2VuiheFy7gzCi+F3Y9fwP4vx3Jt9xK8Pnr/UXg97G2vx69d/BQsl2aaijAC875nS7Xk9jEraCwoYaysb4NxmPsZQWh5BkiYF33uXd+jIpnYhApZizdIkRuWnHtmpGmDC+59HhIBq67Fbke4ZdFgmYFVz+gyIzODVx36+RINEY5uTYG/1DlckY8ZgLv3nco4eCsAVfZ6lPg9ARmpKKmAv68O0iUMQkTcJulT043RQP7frZGtwqAr+jq3FhqyuTKSsZ7wv5/6ZHz0thXShNF3itT9MrLuARP4Jx/zocAv7bQV+P1mh41PA90ZDJpkYJJRfWaKbp1F2BLAU8nDjxZ2cV3D08J4mkuxjo4kJ32WJU1uT6tgjYBC3kz7BsRS3xF3GFf2IgZJHVy61YIc0c6NWSK8bxNA6CK2GLIdbNyjxglezz61BF4JSjctFKjHstH0a9ktfKfyTdiXpuiXMOIhT1FT9sKYyuaxZN6nBAwsX5vfVRhTHpID2Sn7LONgsTP28ym4ZyBcOla0G94cypjs/8Ck6MeMm1nE8RjCAOR5kMJmwt7OGYQP1Kr1rJO4drV/6jDMNhoBRl0Impsb4Tv92sF6ozkCsbz9cb7j/YUa6DJfXOZrdB37fdVlIA9cKPt2W9L5ZCN88XBGGctA6Y3XtLk25D+hhBgUPIgMfOzvP4GqSvjGB/0rJ37JzNhpgZvmjGOrFr0qIk0CthoGUYWb5sCiz1JZr8/gVQusOiARZmtTXHjmDJe95Wrso8AN69y8EFxjkEXiv0cFLwA2i+YGB9ulRRJq6zoDbQK3uhcZUQ8AWlTOr2/eloJbMaUsPPMKgglYCDHPQ17zerz5siux3S6w2+HLUjoeovTvejttBf61j3wSLnvnO5GOrMC3T8FHOtR7QLdOyLPwwpuar/EvEKNfz8Baj2rWo9tpRNgskpOfSFx0SGZ6Ute0vUgUrhk3Ox4dAxV0ZtWGmLNbziMdIbaBnOMDvjNhBVFkAICWCWlBsskQ3PKy8edpUQCyUnNaNS5ozM+FR9zHmgCgg/aLIOSM+99aZKwLQtWOG1je3QEWEGO/oB6/q6ZvRMEz2vwBBLQ65AIDYa2CxjZGwzGYkHNlINy7Pd+YCqhrwnWBuGmPx81lTPZ36sryjUQ/Q+XFrLIyRz6vUWDbvIzXVgzXeKfsz8U/qiTti7MKkwEfxWihxlBW6BI5C9GNjz0sdm01QUJu8TlbuesxaHacgjoqkzuucfCK+3075n2LamMN95iW7JLcV/j0XotP7vSYx3lQ4Xb7Qsaa+wx0PbjtwJmRqgqTrXW84Po3DYbha6vSddRpqGH0DFNbQHkADbwsbGybo5ARV1zWEiA4HCuXreuNSXAaHmLsUvDuUCmxbQBAVexZFZXUVn4Pr33sZfj48Q5tC+T5ErQ2LXPzZQDYA3AI2juFdtoKfHCNejehPSMBmx2q2xosvqJDfUftm32eSXycG9tkRRhVZ67Q7dXob5ui0hc8jzYPinsRo1ioYcfMlbqxoXu5gZz2beYq5E3YjzbT0gEXvUGVgrjxjS1X2HE+5uCuNqFk/P5T7BMWDgqbMLCSl97K81ImBwYNcsAPuDVXrCwXf6SMiHHIxRUYlYTgii03EuZn7LaPFnNQsrxoEA378RYzFOKcMeQ+afRjX8bzTMgPzHTrhIKQ12cZQFte5Y6pWG7B2hooRozi+uXwk4bHRCG/v6yt8DnkKqzlsZJIw1sZKyNebTHmwfvihIel7DNX0GwNksaVmfD7j34q/up4h0mTJB2WCGh7UErIuUNOFRiE5//B6/VaVK5rJVcDiQ8Awd+YC1oFJ7VJrGtdC6kHrv32h6NuGnTTDfRNg2lNuMesQseM2+c9bl70+Oxejz5LNT10nRR26bLklBugb1IBKSGtz7DWJJxZAc/43TdJvr2lxUYablVUAHioweZNPGmj5R2scFbPJCcWemVTwn0tcKmhYCyHLe3fe/oQkvJ3Fd63Kxj+uWI1KsZbHvEo3LzqMKVKHknO4LZFbjtQSqDZZFD46LRtcb852feHDcBpLPBvm3cuJKY3TNBuMerjFaoV0H/FSgTlXiMvzlovZDEkZDL9tuaPUzC6gkZMHUmtecuX7qlsbigCMAVroDDNlf+pU+swoNEB3aCr0UuiSgUCVkA+H0r2uHGkFUn5XNu4ufwPQGrY93DaXvaiNbpBaKUrbnqgl9hfrtnz8ivHF3AcwmBYLhxy2YjLpPD+v01IsglbQspAP7XNJwjJAzbLYdf7lYF9HgBT1iIfwp3cB4DiiQipTX5MvK4L4yA5EwpYDeHa9nxial4ejguMIXWuXkoqH4piwnUYaxDuBypjMdVwLOwzwdM7bU5I5y9DlLNeL2XhKZRHOJg/A1/aujOliODx9m956+vw3y98ADbOOhc3fupTqOoKuWdUVQWuEtYvuBCz9fWS0WLKkQo0Zgw9ILaeA56CrDqk8VIQI0+Avq9xwVecKddioM2MT+50uHneYafTOHxm8LIFL1aSW97UoFkNqkRKUtejnjU40iSct57wuGuv8nFYaNCUG66zeMfMrW/FatSb5JZ1mE+39IlLhgGgJW0FbY9O4/ONAEOpIwlHVizAPUAIeBZioVcLQreRkc3TEAGTBFGSlFoXwMjrBTz+re8CMvArD/kmLPZacNehXjuC6sx7YLXq0G/vIm2uA82Xnj3vVBpnQh7vTaPvD5u001bg33Siw2897lH4rt9+J6o5kBtC+xVLdCdqYFcFvW1Ex5qyWasp74J5LBB0N0ut8ksD4PUslaQOAIpFlyl1Yr0RA9SiuMpqlA3xc2iaHh0YucMPsujZKv6F3Od4H6nFUIPXDmIJXT668nhdVje2bUa54X0y+6AxezsoxkAjil8XUsXiYLNCIycAwWPgB5WyPdDjEJ5FHMNJhlXOYcK+2KTm3g/K+EYLyc8ddTpWfBxjEHAAI8E/9NKU7uJn2d7E8T1nDF3bNq9VAP7pmFnXqDAy7n+wg5CKPw9ReKgL70xE+HtaqgrloByRvS+a5/1VF5yLm3dbTI6egc3pBLd89jNYP/N8cFWjaib4weuvVt72EYdEWAP+3M27Y0LMXOJ+M/Lf2x7zFHz8k7dj544WVPVY9jLeWxcCzOM+g5cr8KoDNTXSkXW3WgkSw58l4Mg04/wzJviOt7xaLeaynnkiY5ElxF5Cmhp2TJCx1QGKK1LvjT8Fghyr+AOu2XFFZMBZFebooBa+CnuGFLZaVqIcqALRr0txK1c+KFxH1yQtyedV1gDcyrf8/O/94z/CLz3wwWjrM9BTQj1rsNYkHAOQ9+ZIRzf3LcvTqR269O96O20FfpcZ1MzQzxThnIDJDVNwAtoze2BP4oCyaFHi84DGPcfWJ8rbF9y2xABWgeyCeagsxLVi5/XkoByLo3oMLQlgb8A6Z0NguHVpQtLdmKpMxHFHYJbd2wAMFhdyZZYbCk6AIdS5qtzYXI3BZp9T6JtAiTFtHZSfG617R7Pz4BpjIRcnN3jKFWOxf/6GoAv9X9HyB+IdgBA60NNioZAMj3keKOh1A6UodEbjOHD+Ql/J0kKr0hdZ1oRlbaRwzgHKT5wP81aN6YRdyauH92KhIwN7GYrbLXd9pkXxMi+ApB0ylIPdWlbsi7mXTenuCY//wHtw1UMeieNrZ2IFwpF7HwFmU0wqwnPf90adgDK/Bvpky6DJYvEPsAVRqYnUzaq8/PXtCyzqBrs3boPWpmhmDTqGCPr5Etz1oGmDtLUBJEIiod49c5LwjPe+1ifY3OIORA3WvKcPWl0P2JoI61fXlQlgNsUwFgKyd1TDPkys+e4sCsY8cNtrlk3UcZkAajJo2oO7hNwlAfQBQA0BQgJCsLWSSpxZx+w4FVsXHdBtZPFiZsK//ZP/jV/5ziuxo/WGj04TtpcV8rIVj9bYY3k6NabBszjw+8MG4DQW+MyMO+ZAnkhBmdlNhLVbgeNfY1Y1h8pSdpK4MaNwGWzIYSMcuC0dtV6E/eBcjueSb5KDdJkkIQCPOx50T6aBh859Q7Yhjt3WvkHScCzWctl8PAcf0JQ6wVEls05MgVDw3dgVftL2ORSC4RzzEBDnFiWVTAnL7Q9phvF57btmfJ9HWABFOO0TgH6I5/uromUbrippokiZUDnJjfJIYRkrcfZZfDZUzjNL2taLrwNCKQ5lNx+UpTivMRafcunD0jzH1e2GkwB/1q5oqQdoUL3PPCG2hmoUMFrsm1RARUtY21P/6J147bddju1MaGYzPOv3rylCtA/PwJTIsD5APCjmU9zkcs1YohkJePelT8GtLeO25QTzRYf/+09fj//6zx6LbOOcNkgbM02DI0wS8MMffF3pL2laag8pD1vxvowAc8+Tv/P23lAQ4lT2g0xAC3hpWyXgKaEfmTdbd9wD1Kt30dLxUlm3ZMoHNFvJ5ktz87FKwj1CDBK+I30k5EXGPHav47j2kU/BE956NcDAHzz9Gbhp3uNJ11yNr9mq8e1XixL0mkuu1HmwzeP0bZzheKSTfX/YpJ22Ar/fW2Cny6j3CNWcsHEjo14wmp2EtZsT+hmwd0GWDW+aleYSHiurjlfgWiwsMBQVC7cogKIouJuyZkl9qSTOPWhxYx/LFpbreLW9CMiKjUTIpCUViwahv+h1GF0WgFvpcSyve+wT8JS3/fb+uGtHDgzKs+zxerDykY+FQ5AuJ1WIx9Z2sMqjgB+4awFJLTKio0rTG4OAjMLMFbggMBkIG7F+F70NA0UqfIbhOAbuYqDwLignPLu1VfoakN6MnqcpKoPnpe53MhIj69IseR2bg6jiMssornjFe3jJ5vBMfEi6wUeswTisJE6XkZZr92+uXzvWwGFh3ADKXJvg1rGBScma7G8Z3NN+743l+YGK9auelJLbX27IPV4EpYTlMhfRmlZhDwCPeNtVbk2/9mFPw6suejp2VhmLXrjsZ7UUqukz0FSEe65XPufcJlBAt2OSNXSh44EqPp1Un7PQTOT1cMWokTg6LSpNtdR+KyoeAQUayvgJ1dYK3BNyr0jgeQUkIE97US6AUrq7yqiaHqli9F2S8+rg3WwJaFBSHa2kNevcKYiQVoTfveyxuHkvAwl488Mvw1/e0WKvz+CK8dFb5njJtz4emYHPHF9K1kIioBrthadZO3Tp3/V22gp8quXl/O0nX4nHXXs1VrclrN/SgymhPSKbZ7Od0K8zaK9Cc4Kw+IpWXpJ5hX4j6yZTNhzf9you6PuYC2sWiIGDgLLJhWaEP2Ww0re791WpcPxAJ54K6km8ElEZiH0rChgYWnByHA8EoZ3b1A3+29d+I174F/8HtNWCd2vfiLlmUM3AUsB/aWlSkAT800KEXB4K3cFzGH9u1+eRALRYsCkBgRM87VUCEpynoaWuwsPz08nS98p9+z5v1h3s/odCcCx4Sx36wDoWvx8oC0XRYow6ivepHcW54CSUuilaERoLGoeEXBGMczkw3cP9govrn1Dm1tzwdj2zMImL8OUyjIGnC3DuiJIXzoU5cqzRuLDAvprpNl4HrsV7dWETvkNRnjheO06brW8TvGTH6Ho2RS9gESwD46uPNHjwW34d/+uSZ2J71WNSZTzyXa8NFxchb++Gp6IaCY0pMIzy3OzeWeof+P1ENL3OnQhdWXTccKGw9r0hpKaC0S8r2asM8FtnUIK46O36DKRa4vgphDmMUhc1gFXle5QosLQPZ8K9jjkRPnO8wu3LHi/55ifgb453SBXjzPUKnIBlBvrMaIhAidB34Zme7o0/9yGH7TQW+EiEOhGeePXrMd1J2Dsf2L1XhclxoF0TwFm1lGpzqSX0E2B6Y4N+yuhn7Oh1y3e1giKAvOy51oIVrOlNCpCLlaoGzV5C2m8Z+SalbtKkZDZGaiP1x6kcG8/D6G8bo/UXBUa/v4/Lrn0DAOAlD78ML3jfNb4h8gSoN1r0xycBIEhFyBjZCUKa0UggjkNjB6Hp5QtyK5RJFCo+2oG2a3dj0sosI5vLoNggKkjBwLZ5PUAJ4UCI5C5LkHv4vRpeBpJZmLFUa7ymDcf25wAujNgCF/ZBiPrgLO5twsSUAxMOhIH3ItavHwtaY5szF3xk1XOr2lwftq4CX3hUUEzImBAzz4NPsgmGDiAmZ6OE4Q5srQfhTd3wWRRtQpWCtH9NDbwGesvmKR4rdwPchT0LJ5cp84HEIqgJ+OZrfwNgwrde+1thjcoi4FpKPxsAjiOK3upG6MIhzQDgkdAceDUiQM4VrjAh5o6PIQJ7dX1/IcmymXXIbSpofZvD+IyY0M7lwXAmUQLAyJ1WGaqAt1/yNNy816PtM3LOrlQtsyyXvGgBItxygtFyj7y7AAioNma4fSfj//fgx2G+7IAqoa4PWEunceNMd4rEP0Tpl3b6CnwG6gTkKWNVA2s3E+bnAotzGPUOoW4JuQEm24TlmaJRY0lerAQ9iSG0Jjssh52elb+63+iR5knc8IxCTuGWBYaWjY5rUPAmNFEY5PcUcmYHVnJQHGxzHFRH098tdjqw9P380KEKoR6E//rQK/Ajv3eNkAoRo79tqgQq5fBCWMMlHa9i8QxoyGAMoAOC0BkJ/egiH4xrXnkNA1pKWWKuueSN+6TB59ct8iCIXQiP5nLwPGDWTZnbaIXnpqQxmAdh4FIuU1mGFQrjmEt8HMP3vnxy5bvcABhhSaL1O07N23ft4H1iG4sdq5a4pYW6VRqyAgbXs7kBtPgOynoyhcZIdogVNIfCXKfzMFB84nwnLh6a2OL9Gl7ALVF7BuWZDMauSsTgnpo8uH9vnuJGkqPP+lnDCmLTZ9eRFqWRxUGTPMxPX1RBQbO50PerCQvWFAED8a3SkF7ZLHxTEHSBk425KQogAORFLcctkwj7ugN3ogAAKsxUweWV1AjJqqy/49ufhtuWGccWPf76loVMLxEmdcIP/eEb8JqHPRmpYyw6Rjup0WUG+oy8bCXHPhH6+UqcRYmAlIBVhx3VxBhA2lz7MjDygxZ+0u8PG3AaC3wHnlRAAqPdILHos2yo1SpsWhngROjWQ9oaAf16FssyujBRNtS0l2D0t57OxOFlPohuV7V8t5otdl2xo6fdnRyEyrAEafncLKdqj9Cvl8s4T7/2YYI1ChHvr2L8yO9dAwB46bc8Bi94/9ugkgq82QlHAQM8KZsXdYQ068E9ITVZDESlGc7KSWBDFGR3FvSv1ecOSPGB0E8AphmYq4ldMdJKaH/7mX63Ikl1SixMf2UafWIGCocpRigHupXvrojwdcx0ME+GbWL2XAdK3LCIjtUXcIUqYd/z9HBNDvduOADzXnDIwmB4PrcBLR15H3ECQVmJqWoIfdn9umMlrDfq4KGlYaEdLtwQuaxHiVnDFUd3WHTlj8E9QBVbc/dG6xYYhCX20fqaEIufsaQkDlkICV77IirWyp1RBgJx09v8maWucf19FRVt7QS0PJmCaO+F0dZ2CqTTFHQe4AhQ7qvJQJsUSyT3a5S43JJa+QDnhGrSI1UZlBjtvAbnJHPRJg2pCOWtYAz0PtumrDmCrM024U2PfAp2+x4bk4SNaYPHv+t1PgfXPeoKvO5hTwZxRrfKWC579G2P3HWgqgLNJqBpI31OJ7pYwvxneTCUUrjwadxGyvuB3x82AKexwK+mE5y7WYPXemH6vDWhuQ048c+yuOkVhNZPgH5DGPdSWwQxZaC5Q2JTvVr5qSWh3YUIPKnOhbKpuKUNpCUhT1BAYm7dqbJgsXj9PrrsBwKdMQBm2YZvZX0BAdVRTsPNzdyXAeE7trJsk7bNkhhY29gMggSg4+URS+VAxRE07DnReacBWpIQh90bybjzJIuwbxNoofMbvBfuDtVNMC0TsmERegjSugJ6pT2mFQFnrsDLSqyYlkZx8yDQQ78ulMNhPh9RmbOMBbcwg9AJIDCprV7OM8CcCUgGCguiKgGW/hcVveLmjzHacO3w3J2xjYdjtvvZx8wWTw73N/QcsM+N1FXQaxqLng+hCHvXkVIZi/9uSoBNgl7CmCrTeJ0Hb1f0zMRKiF4Cd/iIZY17WWvsp5q1UIH+zq0A6OJaIUJR4KZ6c4mFhGukRDDgOe9sgE1TwiI6P4/+7oJOMwbaWvdecwKleM20F69Cn0BJgHdVylpqG2ArgGMYkiaDKXlcf1DfQxUdbhjv+86n4tvfeRWokfQ87sMcMnDDsR7zVYeu7ZHbHkgEmjRIa1NJA4wCnA64mdM5Be+gdijw73I7bQX+mWsJT33zNagq2QXbDRHuFosX8JNs0M2xCv2avjT6IueGgUaEVzVP6M/qwCcqT3syq95c2AAGG2QeWxejzcpJa7TyFRjiMk1lA+XwbtFIcTAhnTqADMwW97oAarNNHryf/ndwPAM/9PY3CPiHxVLnicQS0/FalIwVlVKby8oFveSKq5KRSvekSGUAzs/t80FhwwSASrj6oVYjZQnJcDccJ68qpGmPVDO6jryGt31/ENhsbF2z33OY/yCISQ+0GvEgLoKBwg0ADoQrwlyvEyva2TOLm0d8niZA7Ptk1x+OK4ZG3LUOFDe6Ds1xJzaXjIGwGWzJLkCDQhiB1eF5RFd7PCce6zF6X5OEOkeuCuzLQiHN5/a4tv2fqVDnmmvcleEg6OOYIzgu3gPpd9Z/D+EDsLACccmf78IiDjgLNoDiiOwHGg7YV+PeQhvA0OPHev0GYuXr2Ixf31n5VrKwqGG0ixp9nQVDsKpAdZZxMgrGQOvegwGGoO2pF8a9dz30Cdjte9xy+3H8zkWPQ5ca7GZgvliiazu09RoWiw7Hj69k36lrpM0vE3rcz6MdxvDvevu88i1+5md+BkSE5z//+f7ZYrHAc57zHJx99tnY3NzE5ZdfjptuuumU+z5rpoCvCKohoN5RWtwOnv/antEjG4OVWRbaOAH9OS3Sdu1ANdpsYaVjfYMPG46TlwBlU48vuvVvC0mtNo8fW2rWSDicLJ7rlqxZS4EHYJ9b0m+s3B8AcWPq5skNC3YhAUfPO1EGwijVyVYJaKm4SPW+KPz4OXoIdfvz9geWZrhXGNGMURwnnddaGMV4XoNSEAD2MwrSe+64WmMHhTQGLUNYEBHnVU+Kz41Q6sb7sxWLi6yion0PDAlZ7Gfk6vb+g7DnAwRqUU7KvBhA01PjTLGNik9WBXZBngY6ALxFxRUmhMOlA4XuIEwC/V0tdP/JMo7UytylFWnambA8ppaQVhDGxyzXc+XUhHNcS0ZEY0qao/VR/g5pb76eU1BGR3PNCcNa8XoNq21AXRqGXUgV/T6MRf+OdTPKpJEoAxGoa++RKg5+aJOFGMe8CKYsmwDvEvq9Bv289kkigtTo6EVoVZMshEerUmCIK8ZLzroPPvIXf44THfBXH/8k/vKv/xYf/cuP4lN/9Vc49qlP4e///CNIqwUwqSXufmQdtDYB1dU/amEPYLh/nOznsAH4PCz8D37wg3jlK1+JBzzgAYPPX/CCF+C6667D61//ehw9ehTPfe5zcdlll+H973//KfW/s+pR7xE2PgPsXkBoj5bNtz5eIU8ZeSrasLmY8zQPNgLSTSrd3CBP4G50ntfgWY+8DlS318F6kP9TK6QVRj0JwCluqaPiRo+bllmZCnqSeD4Kw1qspqUtz7LyBFjWAA2sNN/blFDHLUUdLxOQFIiVFqmMVUMb9VkLbN+w5RsqMUB7QcdLGMRnD3Inu2WphgcIA1e34x6sMYA1ieFTS6KIHG2BE43wgi8TsFeDVoQuz4aefLWw/G/rcqRUxNi+CZeBFV3rQSZANXMh4g4sTDAOCTghTZj7ASBtnI5pm7KSpIzn0AXgIB4f7o+lT7KMiVQUE3eRB0Kl3PCgyp5b2zQau2EPAsjSAZlJ16NZu3pfwsIIB6ZxYn/mKVY3DDwWXvu9DvNl92tCX+8FYxIfy7QYAFLLsyEuYRRTfin06RgLe/YGTjSuCiKfE39ffb3pxSwF9wBFMk95VGWw3DvawHPPNFREFP9AhkXoCTkrOK/Osp5W4tWjiosHJFfo7R6a7EYJiPF/3fZ34Irx5n/1DTj6FfdBni/QUYfpbA3UTNCccw/Q+hoSNf/05FsEn5zs+8MG4G5a+Ds7O3jGM56BX/qlX8KZZ57pnx8/fhy/8iu/gpe85CV42MMehgc96EH4tV/7NfzBH/wB/vAP//CUrnHLTodfffIT0K3J31IRrsS1LN5nrHteMU9doyLQe3RbvQhw5aGnDLFsVwm0K4rDQBAnSUcydy6pZWnudV87tqmFeLlb67YRNxDQWhs25bDpeH36ZMJey9cWY0Rdj+ZO1Z/EBVgXwIAeV1drqDs+BWVCWpjrQg+oeFBT/E7fF1MwLF6biiABB8vIhGqjG/BaRt7owUc6VJMsm+O8Ak+yYwgmt1ZhbMH6jHM8GsrBYwzfaWjC78ljzNqZkZ8c1E0qVrldzwQ09eI5iKDQMj/BMnSrVH83Cz+SyOiYfT0G5SW6mYtiQ4NxDMdFbllb+Cdqi6ZwmOLAqnxaCip1JZUwdRBO/aiUkISGhOK6zKtRNOdawzbq8TDviCtuFipK5T5NoA+02oMAsjo+n6uehFWtJ7G6IdYxWUok6zsV7g1ZMCvmbRiwWvYhE0DDX1zJfWYDldYsxF4J4DoXD6JS1TpwVJ+pCXKuGZhkzy7w8MaiApbJ74kzvMiN92E/Fes1i0K522bMucKiniGfeR7ma1vYq2doN8/C3j9FYY/yHt3Zz2GTdrcE/nOe8xxceumleMQjHjH4/EMf+hDath18ft/73hf3vve98YEPfODAvpbLJba3twc/ALDaW+DT2y32LhCBXC10U63kZUwrQn2slpdaBT+1ku8txS4kTYfaoVs0awqSufWS5YebBawav21g+xqF/yNgyVKt0ujvrOC/KOxpaDmSuY9JQG+Dy9kQAqDLrFJJh9LPNI7pQrMjsUImGXlWpAjXoixwUo9IvCccIPzVUjapMVBoUrGi0zJJ+t1C/t84aw+0ISlG/Vytm0pR/jUjzRP6mSlhOg95/xgGkYLR49j3nY0vtvEjNOsxxHAP6tv6yaZAVqNj1QUe4x8ULc/QByftp+ah4qff+TjUfV6qNppipd+n8r8rFLWl6BGgLv/UShqk/C7vBK1IXfHB3W0/pjToO8EEL9xU8CMYrG2uFOdizym66k0JNc+QWdwJpRCQKyii/PE0D2saqIcsKrGy7oMCrGtq8NDVEHAjwI4BPP7vc2feCILn+fOEfRysCuzAkxefbfQq6NgMhBfz7c2LM15cTumd5XzzBph7H72CFBMLn/8q4Y4FCxCvqXG6U95+yZproXfyc9gA3A2X/lVXXYU//uM/xgc/+MF93914442YTCY444wzBp+fd955uPHGGw/s76d/+qfxEz/xE/s+T5tryIsV/svFl2JjNsfz3/J7aLbFom3XsvBGb3aYbC2x2m2EKhMobtBOkei1oPibEwnVUlL6lud2oGmPvEqoduqhWz6uDw454fHdsg3bTLC4noJl5McaMroq57nAJx5s6vFzt3orlmpZbe3r1wlcYJZh4PcGFVezumqzWdk9idDVjTUKVr+deK9xDgB39Yavxaqn7FYUN4zd7VnZ2Mzi000/LZK4lBOQJzzIWBjEfDEcn3+gf8SxDvARcfzBzcv2zJKyMvj8a4EYQhEOphSagpYYeT3UWnALNeIKVFHMw6yKgeeiYpkmE4r2Y9amCUYop4NZyKACpgsAUL9uyC5AENKUJaxlXAx+TlA4hp8HS5NUQTHXOSlKn3johu+FsGdfDQjIvTDUKu5RhLVZsKa8ViyFnoglvQ2QvHrrrk3leIbH4LkSy9dc4GYxu+A15WlcAlqv3xsPvaXl2Zq1OH+GCN3NXsrM6txRVmVLhTRZKC5ZXY7ROgScFZB6yM7LVPLyA0ZAkP2kSo/sa9QSfvvSx+KzOxkN98jNDKd9utyXqo3354O+P2wATtHCv+GGG/DDP/zDePWrX43ZbPYFGcCLX/xiHD9+3H9uuOEG+aKukDbWkOdLzFczvOKybwAgQrPe0814t0L72XXQdlM2y6h1q8XOSSpDLc7JaI9kNHdUmHxyivp47QJmbC2OY8v7mlkwdkJcdCx59f53tBB1jKlN7kIeb76Dz5ssWIAubH7hOi5sDjJRObhWSfeHaT/AJaQezgw4UIQ1fMHROjKBrp9xxbK5TlRjmmYBUE16YLsRITbpheREFQEHwzVAf2YX0gPDfOu9DQB19vFIqERBH1PLAAys2KjEDeK45i63lk2jKv2V2LKluqnU8UwRVSI8TKLzE8I9DtKLCkAYN9fiueJmeM+RIVL6oqJQssTW7RrWn8XQnTnSlIOqzKnH66n8PfBosVjwlj3g4D29fVdQTXFMxSVuQDu32G1cwa0+qCSXSfjn61zWmzXzWk1zwAfQ8H0zgBzgdLXmOfLsEzvOvTJ271zCAvb8dQ1YOIYNj5PCvbtyrfMXgYGal2/ZJ9RkDBZZza7gGXe/3aux87nnQT0klAmf/Ju/Q3/rZ3HsU3+N5mRg3n+KLd+Fn8MG4BQF/oc+9CHcfPPNeOADH4i6rlHXNa6//nr89//+31HXNc477zysViscO3ZscN5NN92E888//8A+p9Mptra2Bj8ABFlay+5ElJDQoDuS0W1kjeWLAKGOBpsEZYi2nEncy8HqNHRzt85otySWnM9s0a/n4lrNLislPz6moY3fMULJFgiCCixxzYESYhu+bobR4vL/R65hB+tpHH7gTvcUrpBWqGhmjwfqeCgjWK7JN2/qNL6ZynVtQ7VSq+6W1n6NgtjvvyVgkeQc+3xPWfsmPapJxmxzWVICEyPPsoQTFglpngrwLriaYdMxEsbGF+4xaEOyczlvYO1HYRbm1zZRmzfrH2bVdcGdPbJ+XbgahsM51/WaFUT4TbK7lnmSnebZ+2AM1xXBY8TUhZ8WSEv1JFQBQ4GhUiKxeBTXfMBb9FO4EuWCnsM4qMTnSbkTLHRgINTUwYWlp+VRiOGbEmR4DxVYlrHhSqyFXgzIZ+NvU1FwCMCsd2WSVYHxd0h/PO015vBbqMnuMT67BKGxjYqFClqyNWJ/s67JUEiLQggQgGS7ZAsRFQ2UlsmL7/CqcoXdswP0ORIBVGfQWoc07UVZJrjiYfvXrz/s0aiPnoO2B7bOPR9eYeewlQ37C+zSf/nLX4773Oc+mM1mePCDH4w/+qM/+gIP/EvfTmnVPPzhD8ef/umf4sMf/rD/fOM3fiOe8Yxn+O9N0+A973mPn/PRj34Un/zkJ3HRRRed+ugyg8FIibDWSPQhae58nrLS4vK+uLfHi3UjSy2h2hOtO0/YN/JqBdQ3N+6e7I52rkRUCxImPmAolOP/OWx8vnHCN9NiVZahVQuSanmGbh5Zc4DE1t3NHTf0KPzMYhp3AmhaIft1iSH59icqVHfUcp6i1w2gGIWr5Vu7AO7LxmP9Uy/8BmAAG53Md50L+Kon8PEGfOMMi9vWNMsBEt/VZ5hWwkjmlm8E25nwO6hF4WYAtAOUMb8XcyEH8FvBU7DPpa2XMT9DBI15n0wh5lyeg2zo2m/MCDALNA/ndOBZiqEPE6rA/nsDCtgvPvrwe/TCuDJr1r0qqqkr92ZzQ4yBwmix8jxldGviqUotStZJvH60vBkuzA1f42uSIEC1hsv6DtY+gFLMJpOmuekaicQ7hILQ9wGXMfh8tnbTGFQXLDTTQG5lsr14jRoSXGc5T9HyPFElytD2kBAVOhLhDxSgn71HASsBAKgY1zz6aQUHAuD3vuMZkk/ey8L051czrrr0Sbg9T7HDa2i37oF07r3QHgp8b7Zu7+znVNvrXvc6vPCFL8SP/diP4Y//+I/xr/7Vv8KjH/1o3HzzzV/4G/gStlOK4R85cgT3v//9B59tbGzg7LPP9s+/7/u+Dy984Qtx1llnYWtrC8973vNw0UUX4SEPecipjy6JQOk6Bvebrhn3MxE4Bjpzzna3PFnBciwWMikLmjJIVfMkaUaVCOB+Rr5BmFDr10QxsCI7pggAGKRYxVidIfWFpa9sJhEjkJuT324UJLRIsrnUGWlZ+WaXlqmg+v1E7dysmLZQEkdXdl7LEof0+dUNOGGIXs4Ru0BulZmr2F39SQXY7VKgh1cJ1VzZDBtJwTNkt6cj2earG27aq3ToQ8BdQZ2rkE3saOyBMIwMbjoNbo2rpeTxbJa/Bx6hCKZCUB7MyiKAwjwajbPRxMZrD4RlT8PQUra51GdsAq0nmd7odjTLVN3IIqyHu5bjOGBKMAqYD0UZjEqnnUM2T7p2nfSHyt/je8uGSgdAlQo/64O4ZGnY2rD3SVHy1EMEmq05Yi8uFQFueZbFyrWJA4ql26qGYR4VU1yhz8Se+eDGIZTQdS7u+lZi8SLcywSxhQPVa2Mof+uvkCTJZDolt3XRBIWXSQGVZTwfvOLpuGE34zO7HS5/52vleXUCLr742qvxW4+4HCeWGUc3gKe/+1pwxfjNhz4RN9zRoVusQCmB1qaHHupxC8bKSb8/xfaSl7wE3//9349nPetZAIBf/MVfxHXXXYdf/dVfxX/4D//hbg3zdGhfcDXxpS99KR772Mfi8ssvx0Mf+lCcf/75eOMb33i3+hIwTo3c95i3a/jD73oywJoGRiguvPXerTPfUDPcajACFeqBelduOdeyiXXrRsQBQZkzkDd7ccEmeB6sI43D4omxTN+cO3iqn1lQJV6IsiHaZqboeulDNxXbCFeEarfAw91KsmsHSyeqsbbpGxrfCG/2tZGgjMLShf3onolVwGRy9+bkDrX2dcNPrSD1eZaHhUUUyT1w2ds4XKKGeyB49sFgnC5AVTjpBuxsd2ZNWaqWueZDbNf/H02Lu2UP+jzok8LylhwdX+LTCN6eoBTY9z2pm97Og6bDhawBva9sZVY1Q8PZ+djmBo5PGJPqHJSWZDHoXImnK9cWp2cHT7Ih7zU8VDAiZf5zCPXASKpMQcpD3Aggx/dTdm8DHAgYxlWJVWwubYupp0rBeDaHcT41Tg4Fog6EfWJh9pv1qNZbTNZapKYvSi5UAbF9ok8lNEcsCupaJ2Q6Lfn7DRYXP2lqnStvNgf2vlFZgwYgzOhQEcDBLUJL5atIwFnr65h3FT59vAZ6wuse9kTcsgN0uwvQdALaXCv89ofNm+v3J/vR48bZYMvl8sD+VqsVPvShDw2yzVJKeMQjHnHSbLMvl/Z5U+u+973vHfw9m83w8pe/HC9/+cs/364BIrEmMqPtGQ/5zau9rnRaEDIn8FFBLbHG4Or1Ft1ts4Gbl82irNmygTy2mpYJzXFCuyXsdMlobisGhfWQZ8LXf5C26Bah/m7ZMi7D+mA1wYSHCXyUuGD8HvB0veiCHoDU9IKyweqmstHLZrmrj7bJSgQCtaaHQMGh0Ofh2ABExjPnQCCAMgsvdwaW52QXqFldnmklIQSuWTjDzeJTIe4KBco4WMmHYtjNXXLjsAXpvDYmO9jnDEABeIVTU4yb58KkN+and3yFTwN5vNXj3NlwBPFhAFwL5wOISwEaDv3qPAwIeVRgG36gWPPm/o8KEHwOARHetIJb96mlgefJ8Ase94/TyFzyw22ebA0EbwSBpbiSCTaGForRY2KhKfWumScKFSQOz3D+eltXhYpXlWtDyhN7ieK8rKXAUiwvbXFy8xiopU/zCjzrPZ6v7PnCbqd4GKxEMfVYuuIIvGaFhrqs7G4165Ardkvc1wVpqlwPUXrsWbuHRxXfHuhnWeh2QdjrslDVK47EWwYuefNr8ZuPfjJuPrbAL3zLE/HZ44x2vgRNG/k5ROUf3D5XnF6/u/DCCwcf/9iP/Rh+/Md/fN/ht956K/q+x3nnnTf4/LzzzsNf/dVffd7D/Ydsp726SLMpuOuxvdfilY98gqQYKbMeMZDuaIC9Cmm3Ap2o0R2flk3FYoC9gZhU+za3Z2vgNBSrC6J113eMdKFglUYBPxhrFnc+IJkE1q+P5wBfnB0/juXKlxzuxb6Eb7p+nm60nIBqpwJ262ItzjKw0SvKOLr4wyBCDNolHxfQl4D84qYrm2GeFLZDTmr5M4JrF06yIyh03dANeGdzY7qPlSc+oLmlr8cXtzv2ueXFwi1pbgNK3mCJuatd772UnB325bds3A1t4W/wkA4Nz3MPgwv5oliQ/d2X85w8x87PsnZ4FG4ZeBlgyquGiky/sDCA3qusewzedlayl33o/DiHB1LNwteHeQE8HBAPS+GzTCIQVZi64hoR84CmohG4N8GqFngn2STFo8V+D64cdyJsPbStVjuvpCIdt0raY3iOwQsH3yvYvBQGnjTU/yTDiYUQ5nLTmJC0q2Uq4ZssXhrhBQG++Y1XYa/jUpsmKi+6tr7mjArnbNbYXWYsTyxAdQ1anx0K+ztrdxGlf8MNNwwywl784hf/w4z3H7Cd/gI/EdLWOnLX4/btBV72qCe4UEhLEVCkVo1r7Qjvs23EJuzG7tpgNaVlEnCfWkacoKVgC5hqkGqVRxtvAroN+aBf043FUNFjocABYY4ia+Xa7J/5GA24ZKhldRtGsJu7HUkBUVbNb68aCMUDQSxRSTIsQKeCzTbIimXOuVjh8R5yU0h+/P8JeyXDAkiTufE4fC4Kl1f+y/CUQUPUR4yFCW+zgGPMPCpAbg2rRZ+1tK+d44BE+ywoWM62GAVxp+vOlYmyhqyca1Ig4SD8k+BlYOO6cQyFKi/1nuBKqgWhWsn/xDIPaSk/ZCEAA/4FLwE3gnHp1oxgSVnjyH6XDAlfT3VR6so7U7I9nMzJLP8K4jViCCXsKonlGwBoVlbWyGxg4FMT8vqu+tpXAiky0pmOpOztUmMQTZZ7aNRNb0vZ5thAcgwR6gwJi9kcrZJw6q9SeZYduecr4jNI7yN3FTgL9z33BCyk8iZr6ikAcfdv124oxLANEuPXvukbRSlR9j/0hN1P/i32Pvm3+JWv+1YhWrI1rjiFb/nN16Fxtz2D1qeHwv5ztLsK2htng02n0wP7O+ecc1BV1b4aMHeWbfbl0k57gS9u/Qppax3MwPaJJX7u4sfhmsuucIAcAHWjorx8gz6i8OTBBu4ANF0UeSZpY2b9pVXR3hGOO8iqs2t5fJUxENrlouHwaL2Ztj9erFy+M2GLulhWeb0HT7OA/DY0rWe9A60I6XgjlnNEXtslwwY/GJ9tXATUuypQzPqqgeZEknlJI+KUGEMOdQgsjOCkK+bKDZY613AOfBfu0SszmudBWhuCAtaX+R/c4zh/P2HA7DYA9tlP4hIbt+/7AvqzNE633u36Aaw3fv6e220KE2sfippPHVAttM8OxRMAFejByxHnVvoOlLCV5PTnmawTY/pza9QUS1Nkay6sgnFXMCGdirLp+JkwLzK+koPPTS6e1kayTjyebYpAtO7Vk0Fdcta+mDNvyocrmBUDmupoa9ar8ZkHaZEkXGahElVSvGiOzoeBIov3T6rcsSkFcc1ZKGiS3cXvtN6hj1d97Tfiuz/yR0XR0TEvto+hqQj/9o/fL14LU1q4POsZ937KYbsLje/Czym0yWSCBz3oQYNss5wz3vOe99y9bLPTqJ3+Al8bAUhb60CVsLe7xN8dW+K6K69EnoiGXO9UbvnUJyrlqQc+/KynDPpxbV5f5NQD/Uw29mqult4yoT9nJQf2JHnQysdt7thoGRwo1E2o0OgnujoZhbvcmm2Ktlta6o+5Vyu1hpap8IzPKxnnioC5go/6VKx90vulocYLhN+JD3w52k3GePfp10SgpEWSzdw3XbvHoEhBlLGYbmbWrM+dCjwHWtrmZ5u0xYfjczRPC5e/o5Vtzx9QpSqEdoaIeA7HDa+R6zg/8Pn39EJjjjOlQXPgq0WxwuO5sGfHsT8oQK/89FMU2lqCg/bAIWxCej1TSEfKIZN4WbjmYm0bURJQ8uUr9pALahYr2tz9xhuQxJrlOhDrRGU3AZhkUMPlhyD55U0uxEyq3Fh4xrgC/DkSe/aCu8V1zqmymHmpDWFcEaacWSEbi8sXkiL2eXFwZfRIZAH90bwCHa+BZQI1WTAv5kExxH5iKWVrY7A0QSrziQx8z5/9H1BPuP6SJ5c1z8A/u++/QH3BfQAGfv2SK7WPsP4JuL0j9H0PrgPw57CdvH2BBT4AvPCFL8Qv/dIv4dd//dfxl3/5l/ihH/oh7O7uOmr/y7V93qC9L1kjSV/C+hR8xwqrLuOW+crNKK4Zb3zKE3HebIJv+bWr8d7veTy+/beuxde/6irfXCNa2dmsMmkd91KZjDLAIPBWB7q9cSCec18HV7Rb8vsAUTbu0X2EgCh1JqCobEq2kYbz3QokoNqtQL3GBvXamGRAc9pplWTT2asCgls2bY87E8BHO9ncBnOM4csRxxOUFLfsK+HGB4r1yMTOC+6WrqfSGfCPgSSkR+n2RmL9jFIFzsaiP85IFscBFC4D22jt5oKC4opOhodW/FlZ+MBAelFAUBiPKSVsk1esYI9fq/Vnln6CVkDswrCYyrV0Xs1DYuMbcOurUHej3CxqhHGNnptVdZQ/grLmimR4xgMOCe3Mqt41XEIFUUGNx1YsGBEfi90Ql3ASQWivOfRrpaxRFCYmVdKU/969HxFAYHgNhgjcWS7rUUGVVGcFBxbwpHkinJSoKpkGUfH3lM1Vcnc/bI+wOesJ0FRSJBYvQ5tAHN5fUzwy8O3Xvh6/94Sn4MQqY3fZYzclZCb87HdcjluXGb/5hCvxb667GgR5yK98zJNwbN6BV52UuT1053/O5qRHd/L9qbanPOUpuOWWW/D//D//D2688UZ8/dd/Pd7+9rfvA/J9ubUvH4FvjRmcGUgJx+Y9rrrkcvybq94EroFFW+NbXnc1kIBv/61rS4U8DpuHClbZjMPmWLGwkSVGtZvQ71So9pII5EyK6CdHQ8dytwNhPzYJgZNqmBxmn6IVO1IcOKFYL4Ayn5Vd3rjx01zz9ac90qoqQzEyGIT9c3dkPegGBUCsV+Nttw3f+tINkAwTYQJL05RyLZ4Gp2GtgLzVgRfJ3fyGU0h3NAOh7xt6ABeagIwAt4FQRBFC/hwy3HdlJEHmSbDx2r2Ym3aA6A/zn0KetSg1FnJAce235XwPUVTs55qiYwqiKQEAkJbl3jhkB6ROrP2IrhdrWB5I6uSCckywkkNWhfFWDFICoxcjl/VgZZZZx0IteQjLCrggq0LnwDe41Vs0DuucAZJ4PACJ+08BCootwcZkCgQ81k12TmBEBAdgJwE0T566KCEg0RwJKIBXvRdH9BvepSekneRptKxeDFTslfgsz96ePU8y0rQH79byndFCA47+F04LfUxTqa73Hde9rpTZJeAV3/pEQe8zsIuMNz/mMjz+HW/EVY+8DDdut+i7HqgScGjh37X2uaz4u2HhA8Bzn/tcPPe5z717J5+m7cvGpe9t1YEqGfYiJ3xyt8dLH/84/MaVTwSY8L++60p3dSdz6/kP3KIXLnsEAKBYxsbiByYl89ENOqQk7aNwZRStwgOX2qKVBQws17Elvw9loi7OgbIyPsaub2AoBlIQ5gWQNBzXkEmOfJwWsuDRXlMoWOExfaeobUnqtLfkzGT9LIti0gPVHfUAaT5Afe/UxS1qgi1+b0qFciXEKnFWfY6V8z16I/bl7gelTDb8Eqax8ItbhDo/5hrfn88ux3m+P5V1xIRSkTELm2O1PFjYS19wlH2utZ9U5t+8Hxa/9ph+Jp/fWF3P4vC+3kzZCyDTQUgnF+tWcCs0EOaO4rclmRhUZZ1Plnz1KiPV8kNV1hx6ckVDEO4QCuZ5pWtBH7SFg8zTYB4gEsHrFn1PA7IpToI5cNKoYI27x8fWhB5v2AADPFq4xEIhqSUR9pUSWynAl0nGlfYq8HajKcBwBZkySsGeERGUpbm+/4pnIK0S0irhvM0aRAROCTs94wlvfyPe8YQn47ZFj5YZvGqRNr4wtUr+KbS7Cto7bF+OAj8lgBnIGdxn9H3Gbg/knvG0a1+PG3bE3R0tbrfEwqbg4D2GxwEHebGQF73fyFhduEJuGP1GLla5bYDR7clh44nNBThGKzH0ZeOCWZklq8CtU2CQpmWAtohkN3BcFPAOpEplHPt0k7C5mZAbKDg2ZCvWwgC1eu8NozkhZW+rnRoWa653JZ7NFJDI47lRNHhuSh1yi2tHhYobltQzFbYOfHNiH/ZnbRUHnS+f2NPEHACnAj7WIbe8+XjvMn9hPCaQw/qS/sRK9LWn57qVHsMP8Zn7fajgnwyFfwwbgYNiA1kTA8VMn5VjFQKKHQ2DZ1KHIs+U1z8sd6fgDeexFUKytQ2990yotE4ChQdqKXHcJxHuizhREOHe2CID0qyTUFmdByEgX4/WrwIlbR5doUlKfetMfXAF1BkAOa4RuIdJnjEXT5CTAgk2JVcIpbPZa9bzJIMWFbBIwo9v+fddyRSiTANkPpjwrVe/Br/3tKeAE2MnV8hVBaoSXvi/fhsA8MnjK+zMO/TzJdLmGpDSoTv/rragkB/0c0hNWNqXhcCv+haTvkWTCPW0xmRzDVi1qJdLVMdPIHU9utwhLQlPe/Pr8b5nPLVY8wDMxTqwHMMfyQBeumFUe8k5+5EB7FaYnDuXanDAII3J4qoDT/74OhFxHMF40fJ0q58GVi6H3F9zRQJAtZdQ72mNgK64LFNg4wPgm9A4v53DXjY+Pgx7v1IS48h1ObbbkLmhTjbK5nhCc0IEV71nCspI2hPLXC/F8vH4cxS2wSp3F7J+OAAc2q8xnmebvqH+g5Xt4Dku4zIGRPH8KMFTyI9P3SgG75Opjzag942AiBMKzXJSdrumDFu+17/VOiwMeGV92fjGee8G9hrEKQlFwUtlEplEuBY+CoZ5JywzwgowoVbXvV3I2SHLXLN9zUDuE/pWhCC3kgKXWgWSqvXOGZLi1kn6XV5VoCYXcJ0S5oA1FVHXdVbXuIEGvRnL3yTDCh6ZG54Cf754TBjZUfxFcTZuClNyLPuEVMkcKJTJUhO5hBHs/VHlwoU+owh99ThefPVVMmwd1rQS5fJ1l16BnVUGr1rQxhrQ1IfC/lQa34WfwwbgyyCGXxPQ3vIZrK/NsOoz+q5D3/eYbp2JfrEHWs2Rbz+OO7YTfuvhD8a/eff/xsW/fhWgm6i48FA2FAyNjiioU0uey5wUpI+K0G/0aOc1jt7jBLZ3ztBNaLSKePSCmnA3F/GIbnQfmG/QFxxs5kqBWS8sgqGflop7WYk9HBxHALkvMnRb8UAw+L0H5YNdKZFrMw+tTBe80cK1Tb8p99puMvqZZD5wLel9qzN44IIGFQvbvABM5JYqgIPBkFEJQJhmi62rFT64t7BvD5Wd8jw8sqH3K0qikr5Ea1zdt255p+jeLxSy2UJCreEARJhkgiPz7dppNVIeWVkLaTj/sdlxZCDCmsrmZpZweMZEDJCOJenvxpHf8KBjr9rnk64D7RNQZfRtckY8UmQ6QAoWpTJPDUtOvfVg4SDPzefCoWBemFEWha37iN3ICYMa8lC+DAfeRQwD4IoPdUCesQNaBwWRoOGYKCRsUfRhHem8y5qgkrVhNQO8zkPAehDw1u98HFarFW688TOoj56H513/elz12KfgM9srtK28zDQ5FPan3D6XUD8U+N5Oe4EPImwc2cKxW29C27ZoqoStM88BUcZe36JrV6pcN7jx5h0gMeo9QmsvcFPoWnEABsaFhW7C5srkVDbPtFeB1jqcu7mD7TPXwXdMyoYFFJfRQe+pWaMePoj3NlQK7HevLBePg4yHCeBJ6DoKLT+2/O5CrIcIUxVaabCp7h9v/M7j0/uOhcdcIyGRAcdyFQR5wyo4izJhg2MyAat9qieY1BIfeBmCsB4MNRDQjMfvVrk1FaymvIigLYqHeAlY3eeMjMLUZ9UFo8fD0wFzQeW7gAoeAasZb/wCNm+UBezogK8ent7lSHpEQYLATcBl7eo6cbpfIGSW6OSZMAQcwCZzwkWQ2USw3BOIBP2OcL02yeNILC78isWFb0qGjbtThcCGpKEWGbNK3RzfAZTUx1aVXFVQXNj7veq4jbOh4TKngU/AXzNVBp1MCDavhulRRWDCGouXuh25tmcd3tM6S7yfUQCuCNcxRYAYL/vqf4FUT/CYd/wOfv4+98UuV1g7eh5AwIllh7bPyPMV0pG1O7UDDtvB7XPF6Q9j+KWd9gK/z4zV+lFM772FKTNSSmgpoSZgUjWo7/EV6OdLcNujXp/g1V99H/yba94pFLy6MXLNhWyDhlYuAF8xbvnpBmnkL9WK0G7U+MTNZyM1GTh3Ab5xDfmMFulYUyyVaDoOAqQjSzUKPD8m/B5R6gcsVtu4XImA9QcgjeLk4w4YSOaKPMDFXi4cPo/HmQaRg1IShUZg3gOTkL9YWMIEso+1CAJxpcaxyMbL8Ts9r8Rhg/IADJWOrgjIaJ3TeAwYfubWr91qAlgn2QFe5n0w0Bjr3BGVWL8J05UiyVXZI72XnDg8Q1LFQQVdUiVRORrifVians97Lv8LfW6ZEKeUrlhKEU+Vs15z3R3XkNjrtUePjVSoS5J61qdy39H9b79r2qi72XUYtFI+CAux2ftHDKzSKNQVrm+KmNHnhvFikp2fn0h0NfegzTJSktQ8QhK2PnPFZ53jkBFi18iUC4NexUANUJvcwyXTr9eowjiMQtmeTYWSEaPhked+/KMgBq699PF4wtuuBdeMl3zVffFf//Xl2N7rkOcr0KQGmlon8bCdUju08O9yO+0FvhgJthmVD1cMYLopf87WwHmBdq/Dp7nBf3/c47Cx1uB7rr3GNwryDZ4OEMjBwgDc9e2u2VkGzSt0y5nw0i8TEjGS5bGrZeQ17M2NPBrzwBq3303RoP3FXvaNzSzteJzdDjBMwTIlJHSD4Ucn+RCD+RmkfOnfpO7Xfc6A6PYM54rgL2A6t8JUEUorQfm7ADdBbIIwUhNbfNXmLJwjCl6Yl1HNdurDrZoAAYpwMYUgzK3Mq/Rv1lu5YQxSAJEYjGH53X4twzj6LbSUGw5eFwyUTQDFKje0ORMio1+0VvfNv43LxkNQgJ7Of62pZ+oFsCIxZGj+2uYjhBPUJe+cBjpGIAh5RimSoxgXe+7+TNXN7umyPXmlOBPmrGGPWKnP14opE4o/qBoNLdQAWvh1OBNYGfu4FpyIMXHG8JhR5VLWsTVZFJ8QXnBmSJtjG5POWVqRh5JAECCrK55F8QIDT3zL7+CNT7oChAoVEY4vWty4YnDfIx3ZPHTl3812aOHf9XbaC/y70ogAbMzAixVWJ+boN9fRpYz3fdeV+LbXXu1xVgAlJWhfMNc608MmWV7UzU42kt0aaZmQzXUcBKK/2CGPfaBVBqGz73pAsXgO/lo2zorLdYMF5UKJUdKg3AokxFruw4ta3yjzcdDYDlBC3MIeT2EYU+kb6jIluLvWHoW5zJtwfHS1xpBHAJ4N4rxczts3bSqoBzHhEGIhjcNzKgVL7VJpZFm70Jmwhw/MlStTSK6Q2D0bLiRmNjAJV74h/0mtWlN+ADjAUCZJhFYymmFTfmxKzHo2ZdDY58JzMEGfNGVSziXPI+eOxEVdDfP0naMgYzDPvlzMajaFoStKnXgvgrKiOfwRjW8eDffWqAKXm6wueVUqFgLs7Cs5n3uSSo2q6XKnvBDqyaM+OWgvGf5B3428ll1BtiwEXlWoNlrkYxP3fg2YHMf68IqQcvK1ZUqJETW5otkDiYPXJwNXvOEaD7+868orcNsuoQMBfZYMpMN26o1x50j8Q4Hv7R+FwHcWvkkN3hWP6D3XgW977dVwN609dLMyoxWezXLhYskZIGhRieWiVlHqSNKaeon77Q8PhP9PYaGd1IVv1p9bpqNr+Ak0/D4ed2fNhfNJBjDyfozH667ycL19UQG1zqgj5x23Y6p50jz0PKLfVcEZWOMiAQuAISCPWB58DvpB1Px9mkwgl4GOCwtxXdL+oiC2e+/J7QAAkdlJREFUzymxlFyu4Wh/V7pAQ90ulD42ZSVPUJ6rHwjPFWfNIXeBq5aqFWUxqmLLzHDA3Sgs5M9GlQ8OWStGYes3TZD8+pVYuAR7ZhC3PrFzz5dnE+YskAuh17i7pXOOLN2xEskExT5oOMhCaib/akY/FeUAs7JO+oVsX65gEMSFT9Ip5fIe5zVF8q+EX8P5/Oe1RKiOT0a8DFzAkgj3od4A6oRfoZ8wknmt9j1PeDjDMR1afKlfA3bmrUQH6gq8bEHNP47t+EvdDi38u97+ca0wkrc+ZwZ4gWqexKXKknMNNrQvDzZ5FxocBX+xBHlVlfSqbKursMa5C9B3sFG/Y52gC6xwuhr3gdCAMgY3iUcH2JhTWPHmFnQvwwFW/oGxg/FcBuusJ6l/PronDuM3G/lkL5e5lgemNIA8Baz8rltM9UjPMKs0YAksTu4pXUHL8F/NMo23HJDetg5MaPcTLniIqLwEgJ3eLIxL34S4WfbO5WDWbw1Pt0sdlRQ968pc9u7NkPkwjoAYQuA1TQttslj+9vzNCmUdh64tTppaF8FmDA/9cCfFalCrENVngAygS4VRDxAhSeVv/y6H505CtexYBGCgmMSHRx08VBLph6FlfmmZBOGfGGmZNDMC4FWSsAQg41dqZzLUPsMZBSmTUwR7KWyj0DYKamsZHmrwtUNlrfhNprLO+gl7ZouFXxxzApTwgc2ZgQY1q6anHlVTI3UV+sUKzHzo1r87zdb+nX1/2AD8oxP4AE1q5K7Hsblwydc7Cf3acOMEAXmanbDGN/KBxQwXqKQqvrkGuQtWobvbddM+mcUfGtdcwFvN6Jr77iloAgOrDL7QswKbLC0ISayIQgJDrjQMDPmxljEah2EfSLnCrdLbPhxApQNhFCGEIqCdsyBeqqeChh5tsi5kTA6iWIknnSsl2fD0tVEWgvUVC9o4aVItFjsdYKkFGTfYvPdhMtRl7NYqQymQi5JhufkDl7ErnmUdFsETmO5UwfH4vj0HGwOjFMaxHHxTRpjUDR4UR/0upmp6tTkWgc7Ro0Lw98AnJpNz16dQgrnaU6BiwJF4SMdS2FSRzFNGv8YeGjPBLsrJSMk0qxzSh2Qz6Hi70D8ZAyM7ct/CF2QeAFKPE6EADU0xUcOAAvU2m1Jp6Yf6fG14fgwwUAyj0umeGMW6XHHtdQCA//rQx6NnBrpe6HQPhf4ptciCebLvD5u0f1QCnwBgbYq8vYvbtoH/cenj8by3XOvxVK9NrZaJW2/WfPMcCVWowNHiGzxlRz47AphGmxON+hwLUwVHjQWhAKVCf/FLTdfzzdHQwnpMnkjqm9EDU1c2QOuLMBzHXWl5opvjpNzjwDkwEq7ODU8Az8RNzOqOdhKhJFaXpUyOU+rIFAcqYEaJVR+goARLbNBP/D8oIt5MgVLL11n3ooLgiGsaug5HAt+9BmOWwDAmY4nzvPKD9nWWlEmhjdXnOxA6QemyDlTJG4dBDiIyivgSqrPk1TsSDa4UUJOHIZku6bsigp7N9R2UgrSCemtsEuE4BeoL/bLHvZuQ72/CtmLxirQ6V1qjYaxpchvu3cauih7XAGYZrPOeJj14XgMKEIzYkn3WIRePj68Dzec3Rcz4OjwrZfwIdR15ae2oEWi/Vz/pybhlvkJFFfquRzedIO8tkLY27lIk7rCFNn6GB31/2AAMxd2XfyMCqoR0dAO5zzh+YoH/8djHIy3Fkk/LVFiwbIOOaUSqCAx29iCsjUgjLZK7oAcbUbTEfUwYLDi3AozVbSS/3PIGMFYSbFO3sIRZ3IN+k1mS7P+XeHvIeTehHe81dqZWjoUMuBIBLdfg4dhcaFq6FnwTT3uVMgFiWC62YqQFuRXkgtJCHSZIArOekJtgkPdsLmh3revf/p39rdZsnPtYBS0N8uXL+R6DNU4A+9H7qxYUlILyf2rlu7QyJHfog6HgslCPwNZkuF23/nOZ233eEntG9n9PIGMttPuJlNEDZTRonOb+tyXQi5LGbXLhLuNOwCqJ10dd6rRIHv+u90RJSqtyP0Yv7JS9NJxnnmj4IlOZlyOt1JtP4XlBFZJ5BVpUWhkSLqAtDMLTjHpjhXPueVzAijdNpbqeeQj0PqmnwKipypEx+pli3VuGhRIwBcXNLPVS10E9bbko4HkilNG//11PxpsuuwJg4LVPuBIV9agS4dlvuwaThjCZ1lJNZ9XBPRuH7S4128Lu7OewSfvHJfABEBGoqpCOrIH7jO29Fr98yRPRnCARFhFhbxz6g3QtFAFG7C4+Ex7GxAcg0I2WPv33uMqCFT6Q5Uz7FuW4mzImuJCKAjwqF4N7CIqF5bPfWcj+pG9FsBrNPTr4Lg7eUrkGFhP2udQ4MRCE/MCNX4XwSxROwP48/ghC8/sNfRJ8Ay4ZFGWibehpBS94E69r/YzHGJuFTTx8EtH7hILYNnS7WbhG22rzE69t026KQUtCYLMij1NHgU4Mp7EtXPhl4qgJwtyAZ6p4sLHRmRJH+hmrcE1yDhuaX+PVtJK69GmVVJGGA9NsXFzJuNLKUlwPoKr1tW2KpE7DbuP9xNx+Dnnv0Lg9seJrdKySm0/4Z0dvV4GsCscyCU6hyW7pR7wHKQOg0TxbsaJYeMlCB/FdszmvFkkqaqpya/eWWsK3/NbVeNI1bwAAPP1Nr8fRyR6efd2bpE9qkSpCmomVfyifTrHxXfg5bAD+kbn0YyMipCPryCf2cOsO8KtPfiK++7d/G9Uc6Na5sNVZrDIuDBM06gL3kq4jgRl5zseOPbOe98W7o2SPMX87PqQsHVjH2cZiFpOdO1rUA+rQvhzrbkzbQPcJaBrcv3TGw+/9IkPhuU9o9Qccq/0mtTpjmWFP3wpqqOU1u4vdYuLRIqfyNwXL0chhxnM0UAAYXh7VwhGE0bOloih6yVSzBNV9a2lfno9tmIJQe92ey3huWJnc3AUf5p16BZxWEJd0Bbfgc6AldhezFcHJKClyQaiKgpFKGKUK69GeQSMncE7yTFsSa1tb1aviogj41JbnIkyEZe4io6AJWSMAiqEEA9pxkrCbe956eQDOk7+QGAHXwLlfeTtu+vQZ6NX7gWkvWTXLhH5vhv9z89cgaajAWB65yYVMiMjXbOTSH2J64Ch783DlWsbrlQ+5hCmINT0vAQxyRsuBMg7gEa97m4P85n3CCkmqgGaWFL3D0rh3uR3G8O96OyUL/xWveAUe8IAHYGtrC1tbW7jooovwtre9zb+/+OKLxcIOP89+9rO/4IO+S83c+xsz9IsVPn3HAq+49HHo1tjj5wBKvDygm/d1ZYJR4+Z5lodW1kGXP8BiH38Yq/NJERTad+iAPEbNdIvl+jEmPM1IMxdwZ1YKHazlmnyOHoPw+YEtFSVmUKgGw74s7OBeEj8gCD1VXAYbbBT2ZtGHF3rg9YjH2fC5/G8Klwtjlg4MNe/hDbumhQbMfW7nAgHQBZg7Oqb2ecWunjxObeO1UJAhxw3AZp8hq4dAhZ2FLUitegmNaBaDFqPhxFoFL4On2UlvAIg1P9W/uxA6OCiNlGmoqHG5X0Hrq1dBn2Ey9zfDqxz2My7zAVFgPETBpoyocl2XanVWiIY6QrUkx3X4WPSYai+h2kuY3Fyj3lWvwiLh5r87SxSOuYbX2uThnNRpuKVFwI2oB8Pc+pNcgI72rCmspyzPKHWhNK8+v2TPx8o2U1h3himIWSJK0lOtCisfMuHlj7wM866SwwhDjMphu2vt0MK/y+2ULPx73ete+Jmf+Rn883/+z8HM+PVf/3U84QlPwJ/8yZ/ga7/2awEA3//934+f/Mmf9HPW19e/sCM+hUZE4KaWmP6JOW4/wfj5Rz4eDzhvHQ/7zauQGxq6oQeWrvfigtDT+ZZDS8wVggO8AMABVrT27whss2rH51p/0ZUNDArrGLjIlA/SDIJoIXlRGxtDEPQUrrMPkAbsUwk9l3p0X2YxJrOqzeoPN+5AQ5TN15vnahcBzPH+MvYL+wMcCIPwQFDSIt6CEw0yAvbl/7syRcVaDoC+bCxzZslqwZ8UFLiY0eCeFhMmhKJ01HBWOfEgwF3gAMrfdUkBzcYZryElMlpcBcERIHHujELM4/MV+q7LsxmGjSCo/jZpCELnJw2fJXkqm/DNJ6WW5QT3PthzGHh9GErvC/Ee6Lvga8mQ/ArqrBbFms4Q4qJ+Jgc3tzbIE0ZzwR5WOxOkvUZT+WTy85S92JErhD0ptwaAORWFOXiNqAeqVcGjuGLoISE4e6c941wJ1iUpo2Jqi7fgbf/mKbht2WOnZSRizCrCbUvGbqeKFBiZGWA+FPqn2D5XnP4whl/aKQn8xz3ucYO/f+qnfgqveMUr8Id/+Icu8NfX13H++ed/4Ub4eTYiAqoKaXMN/fFdLCc1vuO3rpINpYO8XGPvmW3+9jvEtW+c6JRJkesYCMs7jZEjCrBwgUzD68WO3LIfjcvczfFzYL+/xjZSo7w112qU0rYRn+ylMGS8CsIB6ng0ZK9BYPfYE5wUSe/HBXdwOvh0mEVkL3AUAGGOPN1toKQEC3zQr6a4uWU7VNYGNxD/1M17rAy6AkBmAZJPpVuzwNDCz+Vcu3f/bPBsh5oX9ZBaBBY6UO2MzZonuKs7Fr9hZsCJjEZrydPaiuBiQKx4e0YK/Eux+psrm+UZASIUrfn9KcjT57MHeMKeny5KLLnQ5IqL4ulYg5LKZ33kRvAWSBC6647Qnb/EZL3F6vaZF3KqdxP6qfEYaIw/pO9xA8nnT5C5rAVcOq7c6PNjyjiXNZ4UiGoFogAUT0aS6+SAPXj0667CO5/6FNy+7FTIq3BnBjEjMaPvs0zIYVreqTXDpNzZ94cNwOcB2uv7HldddRV2d3dx0UUX+eevfvWrcc455+D+978/XvziF2Nvb+9O+1kul9je3h78fFFalZDWpmh3F/iZix+L33zskxzMk5ssbnrbBCMhh7mldZOyqloDZPhJWuRUP9DKtzbuJ3gUDEg1ALIFwTg4P6SkWVwr0qLaZowEUXJSiV0P3PonEerxXgbKDet1UrFUx7neRaCXjXTQIezYcG0TaqpkuTIQU/D099wEIUN2PDnXgs+TCUX7PQh/y2jItfYVhLZZammlwC5NJ8w16/GaFREpYVms3uiliPduysMgNBSUBjZh2EuGCdZ7YNbLHCSVC2u9pNeZYLTnredyrW7rmsFNlv4mGVQzyJD5gKLtK9C8Ai3SYN04cdCSXCGwksEclE/x8Oh9pPI/N2UOzZK3tZlaeMoeqUD1oj+m0CSg3QC6DUa/rhbxUsZY3TJB/3cbqHYqTG6vkObJ0/8sS8JCFsaUCCr3bbiMPMvITXmWnIB+pih7/d/mNBkPP6GUTgb0erJGquVQUUwrwu1L+aMhgJhBfQZWHfq9JZY7C+Rli7Qxu9OI2mHb3+gu/Bw2aacM2vvTP/1TXHTRRVgsFtjc3MSb3vQm3O9+9wMAPP3pT8dXfuVX4p73vCc+8pGP4EUvehE++tGP4o1vfONJ+/vpn/5p/MRP/MTdv4O72IgIWJuA2w6565FRlxKjugmAE/LRDrRTCX3qyMJ2UJGl4wSj0QVIPP4gNj9gJC3jIIuFMQj3E6uVbf3CAWnERt6jxycUNjHrVlHhTjI0yUUgh/EV/WHkZQjW9eD3eG/2VQQh+vWHlhrMwjtwDuDKFB2UM22KQ+i7MB4ivOWlAI1b2Xovlhue6+CNQFBQ7HgD8oVYrDdTQmi4TqJiYrSsjrmw9LFG5teK6Yh7XvuNIFJtuWFUSwL25CCaiZCnxMhdBeOjZw09ePnZJPS0rOBQ6knqxrPOvxHPAI5Qd0HNGDDgVfNAApQYfa2CX+/BLPCBMqhjEE8BDRVkVXQ8W4EYWfus5iW9s1qp4J2yp8GtjmbUu8mPMVIjUw6ZlTuiN6UZLqQBCMuesvdRrfNt+fwGnNXnNGAJJHlmTiNsngN7hsoQyVOpD2GK6vXPeir2OnHlnzFNuGG7xx27PfrlCtz1oNkEaTYBKtXiDi38U2vR+DnZ94cNwN0Q+P/iX/wLfPjDH8bx48fxhje8Ad/93d+N66+/Hve73/3wAz/wA37c133d1+GCCy7Awx/+cHz84x/HV3/1Vx/Y34tf/GK88IUv9L+3t7dx4YUX3o1b+dyNAOGt7nssO0YUzKzuxLRdIy0IecaOdB4Icf3f4uIWY48APKdLteODhT2Ik8cNMAj7KHy9zzrQAXPZdECM1GKQw06hNCyZxaibZVoRsKrci3EQ6H544TLGAl7EUIEZnxItfcAFsdHmAhiQyRRgHAYWvFy0nO/xUT2RI6NctPrt0vYcRuOMGQzuzQ/x6RTy/Kk1lzkKME/BXOLyJ0fx5yrM4Uh5kLi23Y9anMED5Aj9OE5bO3o+eioV3ZYVcsWeiufc89aHkUz1Kj/MylWL1HLordKdKYqphwMFTdEhCs9Px+pj1/XRT+GWcVQOUytphXnKel2IS34qrmxAY92muKliwGqliweBUO0KviFPGc12Gl6H5H5yww6qY7YHW7IWXBFSr4yva3Pfk9bHMPZHKvcZSzHLejGPBbsrnzq5l//zg0/HN/zmb0mJ3o4xbxmLLqNjxs4q49hOi26+BJJwhtChkP+82iFK/663Uxb4k8kEX/M1XwMAeNCDHoQPfvCD+Pmf/3m88pWv3Hfsgx/8YADAxz72sZMK/Ol0iul0eqrDuHuNyN+rnuEgKGPLY7VI8gSOvPVNR79zARlYzAZlYXn090nHciffBSHr5B+hL3f5plJmlToCUdhwDWxklxsAt+DWHVURtDgSjnGMZv2UffTktxaFPeCEOY49CF4A0rCFK0wm5IJ1H8MU+0IjB4zFnxcg5h5Dnv2IIGcwJ9msuzJ0YvjaoDaco3PgAj44RNwjobUbvIKbke6YbqMKo/Hru+u+lbEYFsIsRRewHUlFN4LzwwMqhF06Q8vF6mQp8M6eN3oq6WgGWMvk/AHJLH9TclWZMcIaSzMknbtcB2Fv66kP822VHkP4JWIvAAkXRN4DMitd7zF1hJwYaYWSCtkWD0Oubd5QsifMcaPvSG5Q8BwMYNYBy6rMgWYLeGw+UmaHteaKWKgZEO/tG171alBPeN2TrsDNuyt85DM7yMxIasF3ixVQJ6SNNe33UNh/3u3Qir9L7fPOw885Y7lcHvjdhz/8YQDABRdc8Ple5gvXJg14scKx3Ra/8B1PwPokITNQE+O73vXbAFAoeBOEntNebmsEsbQqBq2S52ZbXNdDBaENBPbYArbPBwIWRZkABuA+sxjlc3heuoGi+hm7pewbN2uMsRdrzFDOYKXbNZR8TKXSez0ZD8G++2Nyy2gwV8Tgqgj0QbjC/jdQVcQqhD4sjcnLq0a09GhsAwKdGKP3eyqWpHsazC2uikYyMFwmVCt42lmuw3E6//H6RRmz6+h3dVEwcvS+JDhZS3JSHaBX97Ag9iEWewaoT8W7YMxuNle9pPEZU5woiuTeHXH7p+KS7ktYwQB60YK1Qj9jTnlKZZ2I1yIIxF49HoGPgCko0GplVwu1tlN5hn0NzUpAUZbsHL2MhaWSKlADKmMKoL4azstfQKWmDGiIwiZZ3w9Pp8wAGkbqQrgsrk29V7tutSjPINfAGy+/Ap/eXuETt+6ib9XFkgWQRymBmZHW1w4L5XyB2iFK/663UxL4L37xi/GYxzwG9773vXHixAm85jWvwXvf+1684x3vwMc//nG85jWvwSWXXIKzzz4bH/nIR/CCF7wAD33oQ/GABzzgizX+U29VQlqfod/exfZ0CyeWkBeSCT/7bU9STyxjPTH+3fVvtq+8mTBJi8o3LOoBrguoKSs7l7jZx+ankvmQXCe2fUI1CrNUin1E1DBSSePKddmY3R3rnYuQp7ls8mk1qtwWrjVwS9vXqYxt8AKNXyYVkoNYfy4btoVAjGwGXCzBAeBM5/VAjwPBB+qyxrwq1o+1gKJ392wQ9hZS8GcRlRG21LOiEJgCVIB+egoFKzcIOpgXQBWzAeEMivKWuiJwgaK8kQpVL9IYlJIxLsQ8AZShBY+KIET0TnERUDwp68qwAKkD+qi0muLJECIZu39VvoRbACUdj6JnbFgUp19TxSEoRu69MNCfhhNSK2u0n8l9mvU9wKsEjIavyxga0vVFZMDOUGhqiUHWBSDHpBgm6eGkQL4eGgmjSegD6pUB+hnwm098Ev7mlj10ixWoluwgVKodtp1k3TXVobD/ArZDl/5db6ck8G+++WY885nPxGc/+1kcPXoUD3jAA/COd7wDj3zkI3HDDTfg3e9+N37u534Ou7u7uPDCC3H55ZfjR3/0R79YY79bjQDktkOaTUFdj6pK4EQAM2oiJAK6DOx0wMu+9fG491kVGtrFpVe/axA35AbD/GYOVjMwSvuL3gGO/33ONrCCnSSkbBYMFeQZLgCj6zv+jwR0awWU5LF+IlFQ1IpJLaE3i84KD1k/JjiC0LAhRU9BTB2MFd4G31GZwxg3Zwxf0uhWdZQ1Y4AWz7aSXSpjoAAQAxnDTZZ6KrqDciFEwGIEraW+CAcgVKvT751aFyghlmS1C2QwrsAwIXppUlcs1bTS9LMWyBOgmzHqXUGcZ2WbNTxHZjjy3BQW8zKhkgqAYwwGgELvG4WcghQ5E1CJ8mpryUIXuUbxsKAov0arK0RCBKNNtr+7dfbHYg+4nwbGyE6O81x7de3niQL5zOuk81VKCpd1aWucJ+V5+/2H552WquRkVe3tRMuuYMkGMNAideR5/Db2eo9KeECf/x/8f56OG7aX+PjtC7R7S1RH1oCmHgr2SXOnkbzDdjeb7jN3+v1hA3CKAv9XfuVXTvrdhRdeiOuvv/7zHtCXotGkRt5bAlwhAThjkvA9v/8G/M9/fTk2moT5ssNOmzHPwF/ftELTTPCyR14CAnDOWo0nX3ctDJXrlqW5eH3ngQPUXDhEV/QB7WQu8wPd6dEKj4K3Kn87wC7073tuE04K9QK8WEgNZ0zLuuE5wC5al9ELAJQSrGHA+yiA9byYzz4YpAHxzKoN/blnwIR4TOOzQ83rEoVyTEDVvh3MZYIwA5xE8DCVsQ26t2NVwJknx84ZCNcR9sKuYcIMgKcqWsZAP6PiqlaLOysNdOpU+FqxnV5uZp8F00ifhjtInRDjcCPjr+bkY+CeCs++CXAVdnavnmHXqRC1DAYDY5o1bWDGBE955Uot885i6MP1Qbq4U4ficrfnxQTqy1owQW/FmIygJ5vV3qN8TqIIVep1Yxt/IuQUFDTWY82jFNalhG9YFRh2pTDXwPu/6wr869e8HvWeeDeOLXt8dqdFN18hrU/3C/vD9kVrhy79u97+0XLpn7QRiaadGf1ihZ6AW7sGL/mGx+PYiSWOA6h2b0czW0O32AO6DisiVEfPxu6xO3DLzm14/cUX48rr3zsQJhQZ7UyiaTrcUDjTKa/AAagOGAjNQTMLyEBpwbK365ugcFS/bqy2iXPNope0ApIyAcMNl2p5McUPRYjZWP0zu2angjqaeVGgR4WGeJ/GbnNrx3os18Y0mE4qc6BfeYnWkUcmxpDLZMf5Lh+7ByEoOwMwpyoehgY3BLe5uyOBjYHarOKhVHHTrq0sbNZc7l1SNj59xCF2jSwejrHA7ykgxy2HviPQQt3PgANTBVCp3BKqrGUCaEIDAWygNzCAStLlcsgM6SfqBaEyr1xpSp4i82UtiLLST4qFb/OX1EVuIRATyrGE8oCuNoRDWNeujJXARKI3Rm+Drn0LN8TQmIcqALj3Sj00qSN88Aeeim9+xVW+Fj5xYoVf+M7HY9EKQ95f3LyHZZ+Rux7V1vqhsP9StgAIPen3hw3AP0WBDwjP/2wCnk2AtkO3bAFmUF0BmdFzRt3ugRc7yFlYwHi5BvRLpGaCT372Frz86x+M5YljeOHHPlpkWEcl3U0RvFwXhrEv7E3o/wdot8UqDvIzIViOHMasSkkifzEEjMQDxQFtuAezeALFr3sVzH1vaYMIVnkU9ijnACipeea6V08FAyq4xLWatOaAWNDDa0s/I6XDBLsqPo5tCHqYAQvN1e5pd8FD4+e4ucsB6CheidJfwQYMlD1rUZkwBcMohU3oViKEyI4PnggTYGncdy73aNgDEJwC1qbXwgcDd7kC0Mapgq6w6v07TiXG4FE8AmRx/EzuSSAG+sYwBFSUsJi5cJCXJhY5ciWiCO8YrpLrE/ope8hIsglkDKmDAHDjMwCG6ZQh3dBCWaTx+we/7Cq8+2mPx05D+PjxjL+7Yyk59FUCZ4Zlg6S1KQ5R91/admjh3/X2T1LgA4BTvjY1qqYGMyMf3wUToZkdRdd3qDbWUW2uAWB0dYO1I2dgqxbAbd8DVa7ws/f7BtznKy/Ak9/+1iKsxu97dIPa3zEATLz/nDjU8YI9QGDui1MFSysOY5CnTiaMaWC5AkXYWUzWZcrUoOYm7Ib36ymEFj8wC954BLgoHwflw7sr274PVphZh+ZuN8E/tsijYI737+DA4CExV3yhHy4C0ecsbCgmmMnj2Cr8ctAbEga8DB6TV775Mo7imk7t0DrODTvmIDLYDTwSo42uZA7IeWlVcAg219166aNgB8QSBzGyW7eAqTCewcBAnrKn0OWmUMx6BoKBO5XQpt4r66KflmebMCRM4lr6NgtcQhlc1oNVKExh/tWCT6bYcXmOqQeYNTylCk2elOcgE6SkOyhz72BQU3aIkSvCOx73GJzoCX+7l7F7YgFqKqStDSDpPtLpAqjSoXX/pW4jb9yB3x82AEUE/dNtRnrRZyBnpGkDzKbIa+tY1RMsWsZixZjfsYv5KoOpQ5VW2Gt77LY18to5+PsThF971KVFEAGeLiVo+KwpRnF3DgePAHA+NDvlzrQBPzj8HwW9uZDVQhTrlcLx43GF/4NlZ0LAK6/lMrbx2A1Y54Q5geQkjpUPWH1mUVlHHv9Xl3Ou5X+3xILu5CELLgJoABYLlmR0D5d7Gd77QJExNDYNlRwXYEEZcRKdVMIQZm1zKkLf3O02VnPXx/5s3L5cuIzb6W2pZBKAxd2eOvnehGauRfHIug4N9Bg9B8ilChxM6Gv+va8hK4nbaTpaiHcziZJRrUIVuarMm4cjzHNkTHnKPzColGeKXSrzgyx58vVcx8llHqM3ylMh7XGGNL2soYTiLWFfNzY+x5GwzBlXjLVzj+LGDOztrUSor89AKtyJCNRUoPoQff8P0UjrEdzZz2GTdijwrVXywnLXo0qEuq5AicBtJ98RgfuMnX6KE6sJuO1BR9bB61O0e0vctJ3xqkc+NmzSsmMxFWuvILYPaCcT6kEpOLDR/q/2AeEOOJ06EzhUXLmp0INa37F/y/VPCxq44A+EJZiF7zsrYOVRhdwokO0ETv9BF0mJcEZV2lzJICDmh5uAMHdz6SgMKaT6xbzqQeGTcC8m0MTq9lsun5tHQK1DUm+Ggc6iwHJXu5PDFCEdXexi5aIQ4bTlXFdUdExiaQ/v1axgu06eFE54NkBfHxQLC70oKM6ej1Xlo45CDQEItkDj/66AEFxBYLWw7Xl67F/nLrWqMCyBZodQz+FhLw9/URmbWfwWNnBkv9UpGOmstjbMas8aUnJshdE0qwJRLeE4CwHuFarjtCL88fc9AyeWHU50DFaj4FCwnz5t/G4c9HPYpB0KfG2UCHRkHWBgsbvEYncBzizUl5MaSAn1tEade/SLFtz1SOszzKY1mgljrVthuSS864onu+XiLktzWyt//Z888xkHDGBoeQDBUh4dV35QrGUaHhL78A0w1G+3sQDwDd8F5XgvCxbmgAMgU0Gi9wdsgOYiHd8GlWsOP+ehQmTxYO3HLNzBDTMN4s77Uf/Bah4B3NzDMJ6v4PqPQDsHeiHOKReFIo5dBT9QBJNbwhYzTio8zSUdFA4TipbfHn9yCDc4UNCyFprismYtKJQbLkJSQXvmKncB6NgJ1uurIqDhqNSjsNopGY0JXQ8zmAITvChcSRihWyvKQG6CMtKUe6hWcEXEvS/RGzLyXEVlzBQvnxe9JfOopNCvsQCmrsxxVAKrBXlpXjDwiWNL/M2xFZbzFsgMVGON8rD9gza+Cz+HDcA/5Rj+AY2IgCNrkjr0/2/vvOOsqM7//z7TbttOXaQjRQV7FCKIRhRjA7ti7D1YYvmKxl6isUQsiS0m6s8Se5dYiREbNuwCIqC0pW69dcr5/THlzl2WFqkyn7xuZGfOzJw5c+88/fNI6bruwItlSqSUJFQLmVApOA6yYKInVJrm/0R5x/ZYS+tZRmWRSpTiy6fY8xx2ePiREmG4MriGslzx2OUsa5a3lMOuYP/FHipd8xUH0foHIop/h+PeUHwBA8iQ8C4qGLKoDAhchSDcf11IXDYUL8GPFeQx+Baw0upY/8ZksEiexCsqMkH8PZyo5ycvilCmOsX7U+yi+70EYRdxWMjaolQJkAIcn6pZ4lvvwotTF09CUQmDEld3IDhD1w2set969veFn7d/36oMCfRi+EPJKiHlhKDRjhQEJXsl9MNeuaaQ7pqo4e9LaM4lVSHecVIIlz3Rey6OBkpWBGsRzuHwFQY7VnT/B99JJ5Rc6F3DT6gMPE/+c5XFefn3UJLg54AUHlOfxFVkCp5S5Sskviz3GgTdvc9oZizNYRdM1wDw4vYRNh5ESXurj0jgh+En8qmtftAKiGQcK5OjRXpF0dJ9qRWERllNDVLVaKxfgFXIubvDAkKXbhzUDMWkoVRwAXf07Eltpy4cPvn9YHNbMfzWceuS2DPF7eEX4nKWMWHefVk8L8UXZEl8N7h48eW6XAxehhnr3JPJ0DXDL16g6AFpazlCcxa+NyFolCOKFl7IrSyVIlkMAEoxKc8nFgpnpJdQpfqC0z8+SA4rHhMkiVml1xXST9zzFlABpCyxvEuu5wu0kMD0Lc7WzzFIOAuVFoYTEv25Bjqht0Yl9eyhk4WfXVAS6F9Tut9Vn+fIP5+jeWqv7+Y2QwyEKoFiYMfdMknFc5M7ui/EhUeXC0YjqDl3n5UM6b2eIiO1YgKjwF0jJZSp73//As+H91z8ksBw2V44YVGxi4pXsD7ev+2Yt4bePBwNnjzkYOa12DQ059zwXUxHiRtRo5uNEKty20cu/SIigb8aEEJATAeBS5mJQCRiiJiOJUFv3wXHtkhU5UFL8uDONZz48SSkgIkjDsBxHGzHIRbTUDw+bRMFZAFFEfw0Zx6LlyxFojJt+gyglYwvMZ1bCeHwv1sLYNHqy14i+ItWnWtmeUqJ6h1Yqov4pyuxEANq2tD03JeuKL0WnjUZorCV/ntTUpLxLhVKlQb/mq31JF/xaJW9XuKxcAhatgbCMmxRhxWnkAcjKHvz+g6ES/VK4v/+eKUoXByNIPksnOQnCAkZP5NdLZ7XF+QlSoji6hCBgBcEJY4idG3/4QQ920OKioII7jlIHPSVubDyoBa/W8ISOHGnRDlVCiFtEK/u3sIt61SEV4VRdJML2zWEw8qFlgO9uSik/fBAsfLBtbgDb1M4qTGkwCq2e13F8zwEMXpKx/rrHRYIgZclFAIJ8jAUeHHMoSzKWvzYZJHPFFxFpDKFUKLo50aLVu+aNvdHAKIY/mpDCIEwdJSKFKIiifC0fQkUJDSlC1iVHcklU9jxMiYdfDCfHXU0NR0raV9bTeeu7anuUEVl+0rKqsuxEnFilVVU11Sz9Vb9GTJ4F3YYNJBhQ7blzb2Gl3qthWsNB/8uUQaKn5L8vpClGxaCfuKcz37mDvBOZYWT8ULnV4vKgNTauF6oHMwv4/Nj0vi5DF5JHo4IyuuKc5OBtS8cd0y47M934/oc/cVcgmKZFlD0AHjzctTStWod3w9nefvXCrwFoaxz/x79xD0/9uyzyRUpiovnVzxXsh8f9oVsuNGLvwZBgpsvxDU33FD0wHjX0orbfAHlx+vDVQDhCgDXTe8tgio9vv+Qcud7BUJrhAJKXkHJC7QWJWCTcwV50VvjTr6YTCdsEQh8LUcQMgrCWgIKlZBrB3bS3eavj6/0hL9Xjn/PPsEPxf1SIXDJ+1UJfg5AOAkSCDwkwRqpoQRAAZPPPppXTzqcOw84iG+W5qmrz5FvziEMDaU8ItHZFFCS2tTqs64we/ZsTj75ZHr16kUikaBPnz5ceeWVFAqFknFffvklw4YNIx6P061bN2666ablzvXUU08xYMAA4vE4gwYNYsKECSX7pZRcccUV1NbWkkgkGDFiBN9///0azzkS+GuAoATH+5QgZmBlckigWY3RbKkoqopQvbGC4BgHG0MV5Cw3L8AwdGKaRiIO7WtUOncy+Pzwvfho/z2Wn0NbX+CQkCvZ5r/wZatx0rUGSxrOhCxt11p0Sr4dgdKhhISGNzZQKBQZuEnD81FalVv5Jwxc516GvJWQJS/2cPkb4Wu0pu9tdb1wKCNsCQcC3qeNdYpCoRh/DlmgwQmLbnzffR8Q1YTG+0JLLYCSJxA8voLgGMW5hM8fuMZFKKkv5O73wwF+TXmJgAyOl0Wmx1D5nPsASr80wleo/EfoeyQKrjteeJa7r6T5YQyfOlcpUOL1ELbLL6/mQc2687NjpQK32D++1XOFEuUvLJSDPAQ/BBO6np/0iCgqbMFYL+bvK2vLKVHeM/WVyV/d8y9mNeRoLthYLTnQVJSqVKDURy78jRvCkav8rAtMnToVx3G49957+eabbxg/fjz33HMPf/zjH4MxTU1N7LPPPvTo0YNPP/2Um2++mauuuor77rsvGPP+++9z9NFHc/LJJzNlyhRGjx7N6NGj+frrr4MxN910E3fccQf33HMPkydPJpVKMXLkSHK53BrNWUi5cRUpNjU1UVlZyYMffEmyrHxDT2e1IaUEy8bJ5BBCUFGeYKeOMWKG608VXn6A6Zgszi2iXawTEg1DAUUIbMumkG+mLJ4PcoL8R2NaKvm8Rj4vsG3QDI2hrzxXFNDBJCi+xEMu6hKXeHiMHeqY15Zw8JPifMKTkEvXT+YqubZ3zuUEtScwg/Ix37K1ii9zPw6t5F0r0TFkcP2SqgM1JB2gmAfgs++1utcgZq0WywDD4wLlIJTo5c87IG0JW5fhxDpf0IcUq5IQg3deO0ax1ayD52Yu8g0E4QJK5xNcO+TWDsaIULmb8M7vj/HnJorPzn82QWJeyEJHUiQ1UkJWd/gefS+IHXpuvmLke0W8qoMgfh8vWtdhhjx/vM8NoJgEiYH+M1ELxbCBlnX/HY7Ph0sCw9+fYD204poFioMohhwcTwl59PDRzEtb5LMm0rTcHvVGxIO/tpBpaeaEIdvS2NhIRUXFWj23Lyt2PvQ6ND2+wnGWmeOTZy5bJ3NojZtvvpm7776bmTNnAnD33Xdz6aWXUldXh2G4+V8XX3wxzz//PFOnTgXgyCOPJJ1O8/LLLwfnGTx4MNtvvz333HMPUkq6dOnCBRdcwIUXXghAY2MjnTp14sEHH+Soo45a7flFFv5agku+4boApWWTsR1mLcuxZFkj2WyuKE9RSaopNCGIKQIvTRChCBzHwCaJ9KLYvifB0B3KygpUtY9R2b4c3dCY9NtRTNznAPekrSz4kmx7P+mstaUMReEe2heM813zocY67rVEIOxbhxcCXSCUjR9OWvPnGhaMgTBrQ3nwSw/bDGXgCf9QaVnYIg4rPq47XZRaiOGseBESbOGyvRBXvC+4/CUAQt6O4hqGSW4Ct7Kk1M2u+FZ4aJs/T+/5leQW+POjdB39tXZ8+tvQfQfrb3ohFNN7nt79hhPXhPecFbNovQf/DpXEBSELQVC3Hlw3ZJXbcffjhEIQwXVD3gm/1K+14hiEOjz+AX/dgzBKqDFPWHELPDT+MwuHO6Akli8kPDlmP+Y35cm15N0e9VVliEjYb3JY3Tr8pqamkk8+n1/rc2lsbKSmpib4+4MPPmD33XcPhD3AyJEjmTZtGvX19cGYESNGlJxn5MiRfPDBBwDMmjWLurq6kjGVlZXsuuuuwZjVRSTw1wIUQMdBFSAUBaFr2AWbuVmbn5amsaziG1NVVMr1ShShEvYWCiHQdJ1l9VDfrGF57n7AUwBiSDRUTSWeilHRrpyqDhVMPvxwJh04mv+MdIV/Wxmpft13uF4aKEnu8uET2wR/F0SQTQ64Wd0iVEInZPCy9RP5fBdxiaD3X/bh6/sJdD6zm3QFmJ0I5Sv4ZWVhRaV1nkFYQPqu35ClL0LXba18QEiA+1arcOv/XWHqChw75v3tbzdk8dfj5RL49e5BHN0pXlvx6rqF5bnN/cY1ngD18xeCksGQshH2PgRrJr3r+daz415DyxbJarS0ez0t47bXdZnvPCIdv0WuXmzrbBuuZa3milZ3EDoInk9xzQJXv29RS9ebYSWLQt82igLXfz5B/b0sjaX75/I9DD4jYeCKl0WFzlfq/Dp+JeyNCbn/7Zj33K3iNqnA8ycdwpwmQa7gLq5SlnQT8yJhv8lhdQV+t27dqKysDD433HDDWp3HjBkzuPPOOzn99NODbXV1dXTq1KlknP93XV3dSseE94ePa2vM6iLK0l8LULLNNM//kc5du5MuWAgpUAsOZt4mFtNobsmgKCotLWkMQ2fBgoV06NAeRRG0b1cdWPK6obEkL1nQCDUJnZ5lJlVJSdZUyTkJknEVVZGBBaJqAlWNEUsYSCn5+MgjKeQKmDmLPV57qdicJBRXD+qVW1l7QQa2V/4WkAeFktGk7rmNpTvm7T0OoqJdWdHKAwQ2qmwGaSGQSBSacg7NLTb7v/l28NIO5gX4FLThGu/llRCK3oZA8HvjFbySu2IL06ARUEjhEKJY3uYHssIx8XB8Wfj8AE4rFsCQBYmDW2suvQk7FHsGtPZ+OME0SgWdWrSUw4lwrcMSgZveO4kdZq8LMwYqXhJgKHkwqFKwBXqzCCxm4YAogBQeyUzo5Rh0XgxVEgRNaULXVkxvTX3viXdMuAwxcOUTevYU1xpPWQjnTgS19QHdbfFYP9k0rJAESkA45KJRDPmIYt8CYcOiZodsxkbaDkrU3W7Thgz9oFe0H5gzZ06JSz8Wi7U5/OKLL+bGG29c6SW/++47BgwYEPw9b9489t13Xw4//HBOPfXUNZj8+kUk8NcCbMtCkZJ8Yz2OaSJtm+Z0mpZ0GtmuhlxLgvnz61i8ZDFlZeUgJfWNjVhmgWFDh6B5zF2m5bBEKmSNGPNsWNao0ylrki4ImmSB9oZFv3ZxDC3UoEOAwHP9xxX0mAaV8MnRR1HIFijkTDcxMKaz2wvPeS9IVwJISoUcXnIhjihJfAvi5rYAj0BIOgJNU1hSX08mk6W8vJzyshRCCDJ5lYV1i9iith2KopLOOOhGnAl7jSCWMBjx4oQSi18Kgk6Dfulc2BKXIYVAIAMBKGRR1pZ0pvMQvodAuIYy8f1GKlL15Kt3imK83KWZDRQepXQ9hLdWxbh40bPht4QN6uc9oe7Hv0sUmlClAJTO1Rd6/hz8MjQ3a16UCDnhkQYFvex9Pclj11O8tVX9ZLZQB8Rwy2Tfeg9nyAdlfqFxftxdLYQUF/95iGLWfLiSQnox+yD04o+XXgjBf86SEgpiYDnCIUfzdMAQsVFwrJcvovpUvd53YNLvD6WxoDB1cQ6nYKGk4lHJ3SaOVWXj+/sqKipWK4Z/wQUXcMIJJ6x0TO/evYN/z58/nz333JNf//rXJcl4AJ07d2bhwoUl2/y/O3fuvNIx4f3+ttra2pIx22+//SrvJ4xI4K8FaKkKlM7d0JJJNEXFsQqoBZNkJkeiLIUW0+kcc+jRfQuMWAyzUMARDrqqo4ZeNnnLIe+bokBWqswu+OYY1BUkqfocHSpixDSBrrrHhq0T/9+6oaHpKsmKhJsQmDV5Z/+DsG3XvLIdC4SbU+AIB5UiXagfChaeje74ncAQqKpAKAKrYKNoKgt/WkjXrlswf8FC5lgWlmUhHYem5mYWLm6kUCig6Rpdajti2/DjvCbu325bTv7yS/c6ArSs20kN3A1SSNdyDsVbW5cctrag/Xh/0EHPFwKB0hCy3ikVQoESYBGUHfpj1UKxd7prvcqgn7qvOPite4Uti73bJUjHM9ZDgiqIJ0MxvyKUP+CX/gWleiJ0L6q33fcI2MXx/nqElQ0/Bl+SLW8XlZCShMNQOZs7uLg+y30xJKhm6TglHxLWtnffoTn61w9Ii6Ak8Q5vnfzcB1o9t3BoIUjG8138WnFs+L9BpYOvjAjIS4fFaYdc3v3+Y0SvwE0dYbf9ivavCTp06ECHDh1Wa+y8efPYc8892WmnnXjggQdQWimPQ4YM4dJLL8U0TXTd1ULfeOMN+vfvT3V1dTDmrbfe4g9/+ENw3BtvvMGQIUMA6NWrF507d+att94KBHxTUxOTJ0/mzDPPXKN7i77tawGmokJZFc3+Bi0BWgJppGhsztAiIBWPsWX7JIonkCUySNjzYUuJIyWhwH7pfmBGTvJTIU9CgS3iCltUrzg71Rf+mu7G/hPlcRzbzw2Q+O1Phfe/kGe+JA9Q4vYXQEK8LBZMS1EUenTvRjqToUttZ9KZbDD/jp06ki5YlCd1pGlRXV1O3cIlbLFFLY5j8+Svf82Rk953y/GSblzZb4HqCw7fgx/cjyQIObiWuCiWB4ZK9MJ132EhFQi20G8yaGITsmQDEhjPNS4cEIovPF3hjifofZe56yoWgXs7IPUJWee+QhFOMAsy4kN5EmqBYizaO8bR3Oz3YlOX4gMK0wGrOQK62OCBegLS9pQoxfdgSAJyIH8+4I4JSG68vKbWQtXPgg+ocBXv0YQy/AkJcuF4qRee9R30EAgpboHi4nkPAgEfqmBQvWRBxyhNCvRzCII5EfJUOMX1zVg2TXmJY9kIQ2/1C4ywSWI1XfprG/PmzWOPPfagR48e3HLLLSxevDjY51vlY8aM4eqrr+bkk09m3LhxfP3119x+++2MHz8+GHvuuecyfPhw/vKXv7D//vvz+OOP88knnwTeAiEEf/jDH7juuuvo27cvvXr14vLLL6dLly6MHj16jeYcCfx1CVUBQ8MuWGQsDceWCBWvRG/5V01SV6lUJEuckNAPQwgcIcgBOVuiN+eprYx5vTxW/uoKx/2llKStFmJq3H0BCwdDMVZ4rJSSRFmMdGPWddVqRW9AdXUl1dWVANTUVLnjPWUma0t0BQzFvWYyWY6uuVnQju3w33YdGP7iC+4xYYpX/7p+7Nq/tXDDH1+A+zywItS1L+RaD4ctgjhxyIIPpwQUL+xawUrIzS4FQX03lgi42N1Fdd3r4UQzdwJF4QUhS96/z5D7OnhOvlUaOs5n/QtXGPjro5igZEKWsS9EVS/ZTXhlaFqpUhH2GvjzVQqe4tCqxM0n+PE75fnu8kBZ8K36kMUtrFbc+97H0bywgHePvifDj60Ha+wpKkGVqCw+syCEEVqrYIwVqoyQRaZE//jFaYeWvATTRiTjbf/OImxSWF2X/trGG2+8wYwZM5gxYwZdu3Yt2ecnXFdWVvL6668zduxYdtppJ9q3b88VV1zBaaedFoz99a9/zWOPPcZll13GH//4R/r27cvzzz/PwIEDgzEXXXQR6XSa0047jYaGBoYOHcqrr75KPL5ig68tRHX46xhOroDM5omXJ+iW0uhRFSuNwYcgpaQhXeDzepO8WEVcUUq2jEOfDsk2RP2qXmIS27ERoWsoK7medCTZlhyqrmLEV9YatPhVciRY0v2vlJK4Krx3a9GH4DjQvKyZbHOOkW+/XlL+FSRvhazNMO+A7xp2BUAryenX74ddeaIofEoEsq8v2EXruTRUQNFi9WPJIbd0IJhlMTYduKN9174nQH0FonWtfhBz90MRvuAMJ/Q5rqANEugkpS5xL4YdzNfPIQiVsQXrG1J+3D70IRc97jF2rKhQ+IJYy3qKUIhTwbfUC+VFy9pHiddEDSkTXna/7w2wkqXKh1LArR7whLWSd6/v/9fP2g/Ij1SW41kIlCJR9AhIVfLAgQdR12jjZAso1WVRst46xvqowx+y7zWrrMP/4NUr1ksd/saOyMJfxxAxHWyHXGOG2SQxFOhRk2h7rBAkDBVNmKxOhagTZJm13hN2yLe9XVVW/ejD0QUEaLrahkG0omu5x6sCMjYYKqEsAXe8okBFu3JiiRhv7bMftmUz8q3X3GPD2dy+HPczrmVpUqHfmlf6SYf+9f0kO99iFe4B0mM2CixJWfxvMRNeBopDIETtkHIgQlayUhTawnGFS8CZ723zSXwcnRJXd9AYJ2R9+wlp4Ao+NesJ5wKBaz3cGx6Kcwlz5NsGRea5MDOf7s5LsYrCXs0VhbKwiz3vA8HsQfHd7d7yBFz0mhsy8L0QUvNCCx7JjVLwPAihGL2vOPlhkUDx8R+Bvz6x4rNx9KKwD6x+lYDWN/jeiNJ/IyT/Hr0fPzbbSMtGaGrkzv+FQNgS0YpNsvX+CC7WKD317rvvZttttw2yHYcMGcK///3vYH8ul2Ps2LG0a9eOsrIyDj300OWyDzc3xIQgnjBQhUBTFaRXcyUl2JbjhZcEjgOOA6pQSKkCRYAiBLoiMBTRZkfOhXmHhowZnGNtQkqwHC/eL8CI6RSyJmbeZsVOoaLvVgC6ApqApNb2/MFVcuKpGO1qq0lVpnhtr33d7YGQJzC5Aws/5GoOyr/Cbj3hKQZhGmDFHSBs4W7XQlzyIaWm2H+9yAsfxMRD7u2wG9G3eAML2z+dJywDYR8SvGFuAP8+feHsN5SBopAM/+3H8n3KWicWEqRQdOf7CYjePfheBC3jdq3TMi7nvZojqADwhbjvsVALoOY9Uh4TtJwMhK6VcIX5w2cfHngP/AQqNU/gTfB70TsGQd6C4jHpgTsPNV+cu/S4DxzdnZOVcGv6zXJKlC9wzxlcj6KCJ+xiFYYdd+f82+cnYMTVFSjJETZZyNX4RADW0MLv2rUrf/7zn+nbty9SSh566CFGjRrFlClT2GabbTjvvPN45ZVXeOqpp6isrOSss87ikEMO4b333ltX89+ooQlILWtCs23QVJK2Ay15ljk28ZhGPmui6RpmvoBtOVimjaqpVOEmg9mmRSymIyRkbJvmRJyCzwstBGkJ0xoKbKspJIzW1ndbb7Q1ecvJUlIgQ0VRFTJNOTQjUZLw1xbcPAV3jB6w4Kz4+kIRpCoT5NK5onfel+8Bna53TS9pL6DXDZe5ecc5uvQsXuEXGLgkPposnjewClyPgRJmjguHF/y/oSRMEGSgS6/UzRPkvitDOMVSM9soCnjXK1G6JGFGvxLh6VvSBgELni+QA8+CXrTQwxnuQXMkD2rePSbsmvevFVjdNuDN2bX8JY5erEowkyK4F//4+rxTck6puPO9/cRDEMLh7IeeR9hw14kHY0lJUoNT730+6DBo6yFlzRfmXsjAz+3w+zEECY/eWDVPCUVv4DHwvQB+IocicVRIGKBoCnah1eJE2GThOXBWuj+Ci58dw6+pqeHmm2/msMMOo0OHDjz22GMcdthhgNtcYKuttuKDDz5g8ODBq3W+X1IMPy4guWgZGiCkRHEkjhAYZTE6VSbQNZXmhjSO7aDpGrblSpW8LckbBlaugK4ICgWTgqLQUlNFodXjUh2HAWUqXavjazUe6XjXUULnlFLSUp8mWZFE0Tyre6U/J1+9bj2m7WOklJh5k6Xz6/ntf94IhpYktvlCNeTTL8nGD59attruu6KV0N++AA+8CATC1K9X9xPFwvXw4cx+39Xuu6DDSWIljV1869YiCAmglCaWhecQFsYB4YwoJuAhCRryhGvwFbPoFfC9C4rpcdN77nrbcAW/n2R339n70JhVUKWgS0rnyDtfRMvC05cfzuxmk5wlyUtX5zJUV5kzcyZKTPciFIJOcQXFtlmasbB1jbwlkbYNlktwI4RAaCpGTKUqpXD6Qy8UKXxl0eIP8/dLz8JXQusYlBBqxefgGDJoGOR3LwxT77oeDMkrR43mmzoTM1NArykLOl6uo/4qmz3WRwx/6G+uQtNWEsO3crw78aoohs/PiOHbts1TTz1FOp1myJAhfPrpp5imWcL3O2DAALp3775SgZ/P50s4jZuamv7XKW10MIFc+2pQBEkhcHJ5MnkTLZmga5lBKqaRqnQFteNIClmTWFJnSUuBRRkHmYwjEDiOgw2YbehmthAszjvUOhJNXXsCf0WCXNNVlDW6Tltj2477CyHQYzpG3CgKZz8sH47Nh1X6kDs+lA8Y/N0W+U5wnpAlHrj7ZWi8v08BfCa+cNxcFPeHWw0Htf6exSxVzxL1XNolzH1+fN8JCWrPRe1b9gDC9I4N3a9fihdOJoRi/B8RWkNJCbtfQGNrAxYsmrmAdCaHbVuc+8EsbjxgEBXdejG9PkfOFm7JqCPBdsiqKtKyXClp5oPln9sC0rJxLBukRCoKQnF7TKAqSEdCwSKTzpFtUPjT6P0pTxlccM9zvPjH/Tno+lcCRchPCnQ0eOP00TQULA5/8OViOSLuGlkJX5EqegD8Z6sUis/Y9+w4ZoYyTSOvQdLKYmbToBuYegJL1bEje3DTw6rc9pEyF2CNBf5XX33FkCFDyOVylJWV8dxzz7H11lvz+eefYxgGVVVVJeNXxfd7ww03cPXVV6/xxDcF2BIywhUiWSlB0zFbcsQdSdq0qUgVM95VBLrhss9Ul+mUpdMsyAtkqARuRcjZDnnTRlXaaNv7P2JVp1m5ZU8bLn/3Vyk9s21FRwshUFS/2FsUmf18N24bB8pWgq0kjt4qUz80weBFEMTWvTGBhagUP2qBYla8Z32GY+uELE8/Cz1MFrMcY54n2P38ABF4Ltwxjk7QXEcxCUoInz55NEfc+7y7HiGSnCCvwJtX2LUuTLDixfuwtSILnm9FX/bSV8XYPVDduSNn3foiUoHrzjkYy1MmFNvGzhZwMnlEXAdFQUqP7lkREDdQNNX9t/C9QAT/llK6fxcsCk0ZlmUKXHfSQSzKuJ4OnyxIlUXPx09NsLBF4U8j9yORULjwqZcD74ne7F7AF/wBQZG3pna82E1RsWHO9z+RMQV50yEnJKZZACFIZ3N07LsVTqoqkg+bGISUiJU4qle2b3PDGiXtAfTv35/PP/88YPk5/vjj+fbbb//nCVxyySU0NjYGnzlz5vzP59qY4coBCY7ERDA/Y2FaTpsJcIam0KddgnaKg+44rJQ4QgiapcKcxoJrga1LSLBMB8deQ+qq4uEh3/yKFYZUZdK1Zr2mOWGLOtw1L/zvMF7ba9/gmNf3+W3xcuFz+eV0/vGtyXhCHgM/Kz9ws/uZ4aFs8IDdzQrlAvjnUorna53d7xihmLwXOihJDAyR6jx/6iEcfcfzQXMbtVC8jpqHCacfxQtnHBmEDIQD/+/UI4pleU6xnl4K14Vulnm8/AL++fuRKDa8/McDGPu3txA23H/JgS6vCbhWuwTpSEQyhlKeREnFUcsSKKk4SjKOEjfcDHhFCXpEhLVHf5swNJSachCQXZZmfosSkP/4a/K3Ew/khiNHsbC+gFXfgtWUpWVxhusO2C+w9H2FLui6J4qeDN9LIGzhJR/C2M+nUdu1E3oySVl1e6pru1LVeQuqO9diJFORsN8EIWy5yk8EF2ts4RuGwZZbbgnATjvtxMcff8ztt9/OkUceSaFQoKGhocTKD3MCt4VYLLbCJga/OAiBUBVkrkB9XGfa0hxdy3QqEhpKyDoXQpCMawzqnKIha/FDs0VT4GqWbvmZdz5wX8bzC5KqlgKdKmIrtPKlI7EsZwXldSuHlOA4DopHrbvSsW28Nt13sUA6q2Y302Ma7xw0ikLeZMSrE4pudkqFfRiv7bUvyfI4sYSBFtP47HdHewRcksljjsA2beoXNbHfu28U48AUz+u6ul2pG2SAh3jwg37uYfIa31Xeuv7ck3FB5rxslRAY7skuAD+rXoEXzz6CH1sszvnns7x9yRiG3foYE84+kqU5h/k5kz8fvz85R+LYDlK4/pNETKMmqeHYDqbHW/Cfs45memOeY+9/ktuPH0WFrnPiA08jLC9WLoqMfr77Wxg6z15yGKMvfxo7DreefzDzWyBn430BJI5p4ZgWakVy1W6glcFXBlIJnKVNWAWb8cePJqY6ZCyFgg1LGkzslrQ7NhlDiRvIvInVlOHaow5giyo48X63h3gg3EN0ugE1sqfcuHz7kmPeepvbf3Mg6ZY8akUKFIFaCZn//W4ibEhELv3Vxhpb+K3hOA75fJ6ddtoJXdd56623gn3Tpk3jp59+CjiBN3lIiXQk0rTcz6ooHVtBAEpFEmnbFBozzG3MM2VJjulLc6RzFrZTtPiFEMQMjY4VMbZup1ClZVCkQycsalqTQwtBAcHMZotcwS2bCz6hb3suY7JsQSP1C5tZVtfEwh+XsayuiaV1TSyra2bJvAbSTbkV3TyO7aCopaRBUkoKAV3vSpcOM0hMW7mgEEJQVlNGPBXjtb1GMumQ0cuPkaX/1g2NsuoUWlxHCAVVU9F0Fd3QiCUMEuVxyjtW8OyvR/D8iP0pJtWJYlmfV4q3XMZvKPHPZ73zM+SVcL267yYP5RBA0QqVHumM7472Y+5+5rnUXFbCvA1/PelQvmkocMexBzNlXgsz5tRTV9dEU3OOXCaPKcGyHUzboakpy4+LWvhiXjMzl2S48/CD+GphmoaWAnf8bh/AZH7a4r7jD+XJ3x/ieU9cy95Ri+Q8J972MlKq/OuyI0DAOfc85z4zANtBWhZOOoeSisNqhJpWC6qCKEtgN6ZpqGtm0eI8LY15ckuasdM5lPIESk05SiLmeg3iBiIZp1CfZklGwY4VmfX8tQxImVSJo7s7SpoWSahMKDiKwMzksR1JyCkTYVOD/x5e2ScCsIYW/iWXXMJvf/tbunfvTnNzM4899hhvv/02r732GpWVlZx88smcf/751NTUUFFRwdlnn82QIUNWO0N/o4aUSNvBac648UkJKApKeWL103yEQKgqannSVRyyebKNGX40YyzK2XROqPSqiqGHmPiEECQTCl21RhbW55GFcjrqkM/ZZBS1aO0DWUcyvz5DVbmFopqoikG5XlUUPIqCZVpYlo2iCBRFIZvOu1ZieYJcc55YKub9PuRyngLHliW0uuByyCzJ23SMq2j+dcKZZP6tU9QuTUdiOR4ZzwqsREURpCqTxBIGjYubA3d4yTllcVuiLB5cp+2lF5SXx0kmDZqWtvDWAQcw4qWXPcEvgtg6hLLgRdEoRwF8hrlW7v8w6U5ArhMOAUCQLR/ch5cw5+cPKCY4Cux75xMA3HzMwWRa8tgtWdBURNxAUV2JpWpq0VXuK3YFC6tgYRYs0o6vNEK+oLvfV0zqTJtMQkfNw5MXHMmhf32Cp886koVZm7F/fxrFhsaCZG7a5M+nj0YXAl1RUAS0ZGxa7GJMfm2ltgkhIBmDmA62jcyZ4NiIVNzluhcsFxIgGUPmTVqWZbn5kIP4v2dfdPd5ypTLS+CGg4TX/MgxQt9HCZ3KNJa06ORbcsi4gViLCa8R1i+E47axXtn+CC7WSOAvWrSI4447jgULFlBZWcm2227La6+9xt577w3A+PHjURSFQw89lHw+z8iRI7nrrrvWycQ3BGSugDB0EoaKKQRmU8bNVF7Tl4UQ7gsmFUfEdJxsnpZsntmFOAXLYcuaOHFDLTa/wSCpx6kuTzNnURxHGnSPwQ8FhwJK8EI0nCyNmRbyBZNkhU1cr6RMr8R/TcfiGrW93C5QvlveTaJyBV5lO9e92Ww6xFWBpsiSsjzbstFbUesqQIe42sYS+Bu8RjdCoAo3BqzgTblVgl1opf1lQjM0arpUMfnoI8g0Ztjj3y8vd5lX99gHI7Eyyl9/2QWqqlDdoYJ0U9bd5ll8QbOXEMNfQJXrs+apxXFKyM3fuqtcQPzij/Vc/gG3e8gFGWT52zDh7KOYmzZpyNpkGjLYeROlPOkKQ2/+bdyUGxOP6ciYFy7xLRrTxsnl8evOhKqQkZJbTh7F3MY8t55wKDO9krtrjzuYq/7xHOm8hVmwKTgOCMFVj7/EP848jE7lBtllrnB0CiaqN6e1ASGE6zFQFYShh3escLxSVYbT0EKuucCth4/mvGefDyh0g3JLicvO6LdO9jUVCb/91zP8c//R1OVVZDoH5YmIZncTxdrulvdLRsSlv7qQEieTAwnt4yoFodDUlA0skZ9zXgnuy7kli5qK0SmuslX7BDFP6EskWZqodxZQNy/G0kIVZZpCwZbkdN2z9BxqxWLKjDTpZp3yaknHss6kjMpVTKD0JSelJGe7LHk+25+/vZA1UTUF7We1FF1eyofDGK6C4AfOtSDL3x9jmzYtDRmGv+JadW+O+C01tVXLhRpWOQspaVzczJ7Pv1RKmeslzPl0r37WPlCSRR/m4w/obLXiWD9xTssRWPqKDWay6D1QTAI6W7UAd551GIsac1hNadC1wHX+PwsiGQroSJDZPLJgIhSBYugouuaFfgBFYCAxCxZWwXQVWUVBT8Upi7mehaashZ3JIxIxlJj+82L4PxeeV8NpbEGtKkOoKuVxwbmPPQ+4zHyOLoPKiqADoik8xUBiJyS3Dz2ITGMWpTyJ0NUNe0+/QKyPOvw9drl0lXX4b3/0p6gOn4hLf40gDB2nOUNjXEd4tLM/2yrwEq+krqKUJbCa0ywkgbM4y4B2cZJxt7ucQRJNGFRW5hEtDTSYFZiqEVhzwnZAdbBslXpRjZPJUB3PIY1yhE9PGy7iXuF0BHE1LICLUFSBbTmo+qrv2yrY5LImAoglY1h5C6EKjJj7lbNtB6tgo6gKiu7ymkvHQdW9IKxwvH6u7nwDb4cXq39v9MGomooe19dY2Af3WRbj33vvzb5vvY5whLdORWEftvr92G/Aze5DUqyP9136oTa0wvKy6UXx3EGpneK6/186/yjmNJssXNqCnckHVv3a+m65/waRjCETBk5L1i2ty7mp7tILDWQloCooybgbckpnkbZDU8ZBOg5O3kTomtsfYkMLRiHA0BDJOHaDm9jX0r6iSIZkgbAFdlJ6VQoSYQpXCdDcfUoByhOCfCGGnc6iVKYiK38TROTSX31EAn91IQSorgVgZguui1TX/vfkJU9QS///BKCrqGVJ7JYsi2UcvT5Hn5o4yZiGKjTiIoVVkcdI5kimLeY2dsDKS9BUVClZSg1KwSSnJTDtOO1yChUJUcpMt1q3uvxYIQSqrlLI59EdbZUxz4YlzRhxg/qFDaiam0HuOA6JVBzHcTDzbi6BpinEknEc28YqWHTq0Q494ZPke/VvIfjHxsviqCvoOri6iCUMYsmYWwqmySLDnd91zaubD7Pm+aQ2vnXuQzVLk8f8rnDuieCFq47kgD89wYSLj2L/6x/nuSuOZFneoang8Pm8ZgrpnBvuqC53XdvrQvB4CoBSnnST8ByP/S7ISRFFJUGCzJuYmbxb5+zlEYi4sdEIRQFuWCxuYC9tcgl/RJHACAWUgsCOSYQURTIexc3WF6agIm6QN00aTQunxU0S3FjuL8JqYlWJeRuXE3uDIhL4awAhQKlIQcH0LIxVl5gtB8/NKnMFpOWAbQeldkpZAgwNpTyJ3ZxhvohTWJpj6/YxDAOvna1A1SSpMouyTI4mJ4G0HCxNAUVHqgb2smYsIZgpkqQMi+qUvlYMMiEEuuFSAItVkPwky+OYBYdUpxoMQdA8J5/No2oGRtwhljCK2+I6MulSDK+IF9sPKyiq+NnC3kdZVYp/77kPI999zWPMEy4rmwTHT5wM8ej72d4+lW6Qn+iz4/nWpWfZS9X1jjeaklvOOphv6k1uG3so39UXSKcLWGm3KkKk4iiG7lri61Lg+AJdUxGsWFkVSJSKpDt54SU1esdvNPC9Y6rilrt6/PiODk7MU6i9/Aipu1a+o4sgp0KqknJDEKs0yJsOmaYs2M7aq0CIsH7ge+JWtj8CEAn8NYOfbJf4ebwBMpNHmhbC0BBGDFW4jXKcFtetiK6ilCewmzLUq0kWFBZSZhSwKfYPVRToVNNIsjnLwnQ1hfq0KzTiBkJVwLJJp/NMVaC2YFNbrhPTXYVhTV7ZMmBd8bzajoMjQTNWflyy3I2p2dIzHL3tZVXLx9ra2tYWHI9Aw4ivBXc3BE2BkuVeu+KAh9cTFNItAwgY3PyGLH4ins+853e/s4rJiGHud1uHMX95EkeDa48bTVMmj53NgyLcHJC14b5f2/AVg00he93j6lc0BSshi5USivS6KbrxGWELpCqxdFAs16W/7xNPgYDxww/0lLdIOmxqiJj2Vh8/uw4/wv8Ax3FjoaqKMDQqHYu4oSFtxw0VCOFKdAECB0fksEQBGVZjBRgxh/KyAobiShonnXPjso6DUp5A2g4NDVmm1+eZvSSL44TYZgK2ilX/GDLNWdJNWfLpPFK6xDirgpQSR0oUZJsKhk+KI1dzDlJKrIL1MxMG20aqMsmbw38LQgYxYH/S0muxGybRAYLGLe4fBOx74cY8SHjx/45CSLj1zEO59ncHka9vxi6YKBUplOpyV0Hb2IT9pgQpcTJ5lLhBKmW47YU113r3iY2chIMTd3CSNjLmgCJxDAc7IXHiDo8deCim6XidDiPrfpODIwn6i7f5iQS+j0jgbwCIhFtH7BRMhG2T0Dyft5Suq79g4WRyCF1DBaSjIi3a/GiKJK6arrdACKRlo6QSYOiut8DQsDJ55hUkdfUFHFsWM7NbQUqJ7SxPoqOoColUjHhZjFjSWK0kOYlr3a9shCVL/14ZHNtBIteaK9+HEG54oKpjJW/ttX+JHhTQ5XplXT6Frs/qFrbug0Y8Xoe658cdxb3nHU5dxubPpx7MsqUt5Jc1I3QdpbIMof+M7PsIpfByDFK6UqyAyAvXKyPw3C+h8T5Toup6r45680l0zdv4P9JGR9iAcFbjEwGIBP76h0evq1SmwLSx8xZ1UqMgBVoqjvDK/4QQxJIx2ukq7UQHqswt2vxU212oUhIIr45ZKUsEwj/gMlcEBSmY3uIwta6FBUszLGou0JQ2sUNS2QGaLdlKULtxe9OLjwbnXOVtCrRVjNVEiTG8UuQzhdW+9prC7dKnUdmhgtf33Nfd5rjxfOHVcqNIHE0WefD9LH7cyUutyOfuGDDqlscpOJIlmQLNi5tclsKackRZ3E2Si4T92oWUpDSFF484MmgIpJhuwxwlrZYocCgS6Zfs4W6vSqoohoaTza2SNTLCxgXfpb+yTwQXUQx/Q0C4JWBKRRK7oQVbU4gJ6JLS0HSVtC1RBRiqgqOpGDGNhC48Vjr/y1usT+9gF1iQz5MpWDiNaZRkDDTP52zokC3gtGTJCMFPusb8nAOaQ6VjMahLOQlVBOdTRWnYVgjc7PycGbjUWwtdKSW2tBEIFOE1TSlOcQVL4O+UbfDytT1+XVnE0pGYeQsEJCv8eL5rAQpHFGPBngIgQsQuill075speOfso/mh2cK0JS15m8yyFjA09PIEEhHlD60LKAIch4wliamCB0YfxokvPO16ZARIQ4LV6jupS6TmaW6KpFOZQkNGJxsl7m16cFbBvONEJr6PyMLfUBACVAW1PImTzpG3JcssSVITbNM+wdYdkvSqidMu7ioAK1JShRBUJQ36Vxp0qEqgJwzsxjROfTNOQxqZzaFUplD85iOWTaE5i2na6IaGYSiesSlRFSjX2/5KxFIxrIIdJM61BVtaK9izvA0vpcRyJAU/xLYKSagZqttPfS3BzzFwpMQ0i/NWhGDiyAOYsOfebvKeKgMmL79nfTiObyVLY/6/ufFfVAkL2zKx0xl0aZFMGehNS0laOTS7sNZoaSMAQqDEY9i5AosyFqMfe5KTnn0apSCCcItiCa9PgkDNKq7iVnC3iYJAZFX2ff4ZqhMaQlOReXPV14VVl4NFWD+IuPRXG5GFvwEhhEAaGoqawmnOUF9QyEtIW5KuFQZxQ6V9bEU6WdHSFwI6V8aoSelMW5Jlnihz45iA1ZIF3XaZ0aQEQ4Osgsyb5OIqeUuiGSA8sh3piJI8fve3IlAUN1nPLJgoajHRzHd/qkJFFWtmFRUcSc52XbHGKlRPRVVwbGs5siP/txw2/qUs/u3zHLTlHGg2HaQDcctxqXm9enRFVYiVaa7R4IiAs99vLxtw4vvX80q/fBf/4Xc9x6VDeqMJjaZMmrLmcrLpNIZhoMTixLfo6ZImRVg7UBWQ4Fi2p5gJt9Oh5VZY4At9v62xBByBtAAVhAnCFFQlVBYZGla2gEy23XXSr1qRBdNVDEIcBeuMPyHCytGaDKut/RGASOBvcAjP0lcqy5CZHOmGDD9YCVSgV/u2SECKrvCScwCGptAlpbG0YJIXAscvV/KL4H1Xu6KAtEhbkoUtJj2rdTc5EC+5yW/+jkvra0s33q5oKk6+1Iq3pIWCQFWW/yqFO/W1LgYUQpBQBQk/2U2UHtPWeKeVhW/bDg2LW4jFDfceBVimTT5ToLwmFTQHciwHI66RKI+j+IqFBMOycRyJoikBr4Ae13CyEg3dLcnzErtwRJFoJ8zEJ4p198KB20bvSn1DE7FYEmHEIZkkkUggdAPdiGFLCUrkLl6rUARKKo7dlMGOud9hnyhJOF7jHAfwFQDwwjEKDk7QzvigV57krqEH05QrIAumy7MRfDG9ZNecicwX3N9sIuYqfgULpznjegcMPaDojYT/+oFwHMRKXPoicukHiAT+xgDhWumk4iiKwMkVWKALtKVZyuIalUkNVWltAi//MhFCUJUy6Jo2WZC1aPF7m7aOR+oaMpOnkDeZ1ei2We2Q0kjEBHFdgOIgpeJaL7gudxnUKHsWjieYNfEzvkKiKNzlKnz6QhFuS3ZHonpJBlbBxrEcCjmTloY0luUqI0ZMJ/tT1nX3qiqOZeM4Dl37dkbx1tEsWGA7xBMGilp8OQsh0DQF23J484D92Ovfr7iqjyJd74eflR/SuxwVNyejAF169sRqNkkvaUImE2jtOmIiMNrhNQ6SmJGHca3C7aAXRxYs/jx4Xy7++N9I6aqMju7lX3hjlbzA8Txa0qeQdkBqEsUSdCrTSOd0t2eA1yNDSrezpcyZCF11mQpD1rzQVGTcQOYL7idtuyycyShBc73AkaEM2hXsjwBEAn+jghAC4gZOIU1jS54WU2JkbLpnLdolNSoSemCt296XWFVKXyaqIujdMYVYkuGHrESaFrIlC6kEPoubUARKRdJtz9uUZUZe56cWjTJdMKhTjFRMRQhXwCEFhuL9YLxrNS5tQSiCWFwnllxxHfkaUfx41vLK1weXq0B1hbYW00jVpNBVhVRlAkc6ODioqkA4rpKjaiqO49LIqlpRaVJUgZmX5DMFYikjUCL8CzmOg6qrnqUo3OQv1Z2k39I2qMUXgON2wkubDlnLwTRtv9ISX0mKsO4gBCjlCZz6Zu78zcGc89rzvHfikfz6/z1RUlHh52J8cNwY5rTYzE1bnPf6s0HlRacywaIWjcZM3k32UlUoWMhcwWXZbMtt7xFyiWTcdZDZDk42j9OccRNo9eUTXSOsRUTUuquNTSJpL6mrlK0G4YoqBJUxHU3ZdH9cQgj3xaKpWJkcmYY0MxoLfLE0z9KWAqbl0JKzqM/bZNpIoBNCoCiCDuUxOupQ7mWdOw0t7ovLC3ALTUWUJVyCHinJNWZoyDssS9seha9n/fhKgt+8RtfQYjpawnAz9017tcuYfPKcQt50E/BkSCkIy9tQBUIha2JbriXvU/oWu+uBHtfQDJVYQiNVliCVTBAzdBIpnXjKQNMFRkwlliilF1Y1lWRF3L2vVvO3LZtCziRZFuflvUcWCfgcEbTFDVPrOppXo6+5eQGKZ9XJyJW4/iCE68mKGbQ0ZLj/oEMY/K/Hg06GSkGgpQV23C2tHPzoYzRaWUxHohTchAxhw+6PPk25objnMl2iKmnbHlHWymP0KmAogmRMJVaRQEnFcdI5ZHPW/S5EgmfdQK6MdMdx90cANgELf0CHSgZ1qgZg5rJmPluwlJ5VZfSqLqNd0qVkrc/mWdSSo0+7cjTPZTth+lzSheWzxlOGRr92FXSrTBHTVNIFix8bWvh+aROFdUS6URHT2aZjFR1TcQxNJWfZLM3kmbG0ifKYTsrQWNCcZXE6F8T+RCKGTMSQBRMrUyBdUPgOSDWbNDuQUqB7ZYwyTRRj8x6EEFSXJxlYXolZKPDFvHqMeIxBnWswDI2s7fDJvCWkCxZ9O9fQu7oMASxpSvP94mUgs2RbcnSoTFJZ5iYvSSlxbEkmaxJLxYjrCramkM+ZaPrqxaQt0ybTlCWe0sk0FxCKQizRNpGPlNJ11+dNYmqcWCKBZiTItDSjaSqqrni1/gCSeLIS3VieojefbaGQzyx3bqtgY+ZNV0FSFS8ZUMGIJTBiSaTTiERS3cFtp+m3xpV+zN7regcEzWaEDR3iKmnLbawk86Yb042su/UCIQRKWRx7SRNLWyzu2vtQzn32OcArz1Pc2nypSKQmOOXll0BIZNJN8FMKrivA0BSEooRcwX5Jn0AV7mZDkVTFwHJUV9cQghbTocWSqBJqYgotQienqdjpnFsuG3XjWzdYVZlP5NIPsFFb+EldY1Cnav7yl78wceJEOqTi7NGzM9t3quKDiW9y7rnncu655/Lv556hZ0UcTVE466yzmDVrFtt1rlnufB1Scfbr15VUIc34W27m97//PQ/+/V66xhX22bLLankR1hRVcYORfbegZcEc/nTtNZx55pncfMP1LJwxleG9OrNVdRK9aSnDe3bCUEOPwxP8iseYJ4HmxgwLG7OkGzMsyZjMqM9R11zAtp0SK1sIhVR5NcsW1lFVlmKrTpUM7NKOWdO/5e47bqNl4XwGdaompWtsX1vDhOef5d6/3kGvjtUkhMZXi3LMyAq+bTRJ513+/kLOJJPOY2pa4NoXvs96NX9PtmmTLI9jJGIkyuIIBLl0nnwmTyFnYuZN978FC+lICnmTRLlOZbsamtNZ8pZNdYcOgEvE407C/ehGnCuvvJIXX3wRgBtvvJF//etfaHqx74H0Eq/MvIVjO+gxDSUucbCxpEk8VUFzOkdDU5rqjh0CD8QL++7rncBzCVtF17CwCerxFQuOuO9JEqrASMW8LO7/4UsT4X+HoiB0FSdvYvu5Fj7tseo+IyCw6p24m7SHIt2mSXg5K1KGWysEEEC5LmifECjCxpGQsyQNBSeQK7aExoJDma7QPqGhlSVAU5HZQmTlrwtIZ9WfCMBGbuH3a1fBwoUL+cc//sGXX36JqqoIM89uuw2nrKyM448/HsMwePXVV5kyZQo333wz++yzD1dccQUPP/ww5YZOc8GtqVWFYHC3DrzxxhuMGTOGM888k5EjR/L6668zYMAAJk6cyB59tqQ+W6BLRTKYQ3PeZHZDC1MXN6Ipgv7tK+lRVUbK0KjP5pmxrJn6bJ7tOtfQqSwRHNeUN5m5rJlOZXG++OILfvOb3/DHP/6RnXbaie+//55XXnmFHXfcke+++45TTjmFzz77jFFbdQcga1okdPfROI5kUTqH6ThsUZFESkldU4YvZ9XR0JRlaTJB50QlFckEjuNgmfnAithvv/146aWX6N+/PwCPvvceV111FQsWLGD8+PHkLJuGhgbOOussmpqauPDCC+nRuYYtFUFtVRkA6WwOp5DGNvPUdOpIPF68R8e20PU0ppn1OqsWX42KqmHEkmi66yGwLRPHbkJRJYlUOapmQI3ELORpaWxENwziyTJ0wy1Xk1JimQUsK4+qGtxwww306tWLP/zhD1R16NwmEc+uu+5Kt27dAJg7dy6JRAJV0ymv6ohlFsjnWrBNSWU712OUz7ZgyjzJZBWKoqKpBg88cAcLFy7klltuoapDJ3LpFnqWV/Dt+WPRDYNPfprHA29/Qt2yZi48cHeG9OkeXD9nWsxZ1kDvDjWoikImV2Bec4avFzdiRVbGeoEAlFQCpzlDIWFw2+jRnP3qc2hpt0ueE3MH2QkHqUu3pFJIcBRw4P2TDmbaQumS7/iJsp5eKwDLK5vN2mA6Gm3VfAnAdFwCq85JlcaCjZ2M4zRlkHHd9R5Elv7ag70KoR6F1gJstAJfAD2qUtx6y10cfPDBaJqG40jGjx9PMpnkzTffpDlvkrcdjjrqKOrr6wFXyJ155pksXryYHtUpvl7YAECXiiQxVeH000/nL3/5C8cddxyL0zlGjRpFWVkZF154IS+//DJNy5by2MvP06NHD5577jn69evHSSedRGVMpyJmoJg5/t8//s4PP/zALrvswuGHH44QghkzZvDRd9+RSqV45ZVX2HrrrTnhhBNQVZW/v/AChxxyCBdccMFy9/nMM8+waNEibrvtNiorKznxxBN5/JGHGTZsGE888QQdO3bk1FNP5ZtvvuHef/0LVVU58sgj+e0OWzN9YT39OlXz7rvv8sILL1BTU8MJJ5xAbW0tEydOpL6+noceeoiOHTty1FFHAbDvvvvy/PPPc+ONN9K3XQX33Xcf++23H48//jgA3WvK+e9//8tdb75JPp9nt91246CDDiJZVkk6neHRRx9jhx124PHHH6dr166cdtppaDGDTFO9mwyoKKi6Tqq8hm+//ZYnnniC5uZmhg4dyiGHHALAV199xTPPPIOqqhx11FH07dsXgNdee43a2lref/99Zs6cyYEHHsiwYcOYOXMmU6ZM4aeffgJg8ODBdO/enUmTJtGtWzeeffZZjjvuODRNQw01PzFNk3vuuYdZs2Zx0EEHsdtuuwEwceJE2rdvz9Zb9Scmyvjkk88A6N27N5MmTaK5uZnbbruNgQMHMmLECBoaGrjvb39j0aJF7LnnnvztuFEAfP/997z88suB0nnOOeegScmfrruLpUuX0rNnT0499VTy1WX8sKTBLS0EzI3bsbZpQwgwNETMoLC0GVNXuXvfQ/jDv57DCRrreGM9+uSgUZIOioyRd3IgHbfrZBuw5cr7RCjC3V9wJIuztjtWEYiYjtOSQ6lIRuRLaxNR0t5qY6N981Ql3Xj3hAkTGD58OKZXT/7kk09y2mmn0ZQ3eW3GfN6eVcd/Zi6gXmpMnrMYTdPYZZddeOutt+iQLMZ0O5clmDJlCnV1dRxzzDF8sWAZb8+qY1Z9M6eeeiqvv/46zc3NzJkzh7Fjx3LHHXcwbNgwXn31VU477TS6V5WRVGHYsGHMmTOHYcOG8eijj3LppZcCrhA77bTTeOqppxg8eDD33Xcf48ePB6BXr168/vrrvPTSSzQ1NZXcZ7t27dB1ndraWjp47urrrruOY489ls6dO9O7d2/+85//MGrUKPr27Uvv3r3Zf//9+fbbb+nXqZp7772X8847j1122YVUKsXQoUNpaGigsrISTdPo0KEDtbW16LpbYlReXs6wYcP497//DcADDzzA8ccfXzKnd999l+22244hQ4Zwyy23cMcdd6CqGvX19Zx77rlcffXV/PrXv+azzz7j8MMPJxZPoKg6haxJLpMnnqzgP//5D3vvvTe1tbXsueeeTJ8+HYDJkyczcuRIunfvTrt27Rg2bBjfffcdAI899hhHHHEEuVyO/v37M3r0aKZNm0Y8HieVSlFRUUFtbS1lZWXMmjWLsWPHcvvtt7PzzjuTTCZ57LHH+Oijj4L7GD9+POl0mu22244xY8YwceJEAJ5++mnee+89LxTiKhqvvvoquq5TXl5OKpWitraWyspKstksu+66K4sWLWLHHXfkwgsv5K677gLgyy+/5JRTTuGJJ55g1113RQjB8OHD6dixI/vvvz8ATU1NaJlG7HmzUJcuoHnWdC/vIMK6ghACURZHqSnHKVjkCpbb7dAjSHIb64ji20+TOLpE2GA7grxpuzJCcXM7pO2ssoIkDEeCrkBSEyzOuQJfCOGS89gOFKxICK1NSFbBtLehJ7jxYKO18MtiroCaOnUqvXv3Jm/b6KrCjz/+SPfu3anPFoKxSzJ5lmTyAOzYpR29e/dm6tSpjDq0eHsxTWH27NlsscUWqKpKfc49viFbYOtu3TBNkwULFgCuZfjPf/6TVCrFXnvtRZcuXbjpppt4/fXX6dWrF9dffz0Ae+21F127duVPf/oT4Arvu+66CyEEyWSSO++8kwsvvJBjjjmGuro6xo0bx7Rp0wJBOnjwYPbYYw8eeeQRjjzyyJL7HzduHKNHjwZgzz335Pbbbw+ESHNzc6BQXHHFFXz44Yf06tUrWC9fKSovL2e//fajb98tUUJkLyeeeCJ33HEH/fv3x7Ztttlmm5JrX3rppSxatIj58+dzxhln8Le//Y1zzz0XgEwmw9///nc6duzIAQccQPfu3Zk2bRo9e3RDKA7SEaiqxjXXXMMtt9zC0UcfTSGf48ADDwRcITxu3DhOOukkABYsWMCdd94ZCNHDDjuMP/zhDwB88MEH/Oc//+GMM86gX79+9OrVi8MOOwxVVXnvvfcAePjhhwEwjOWZ60aMGBF4VUzT5LbbbuM3v/lNsD+byxOPF5XC6upqtt9+exYuXMgRhx+OUBQeffRRunXrxg033ABAjx49OOSQQ/j9738PQFVVFffffz9CCOrr62lpaWHvvfemT58+7LPPPgDMmvIlpm2Ta2pC043IulsP8AmtRFwnnzW59+hRnPbkC0Gc3vfES8Nx2RRViR2DvGVj2dJNUxGA7SALFkoozLcqSEBBoLdy2wsBSpmbua/oZZFXf20hsvBXGxutha94v4ZCoYCu6xQs9xfavn17Fi9eTCqUYJfQVPrUlJPSNRwp3fGFQnAOANOWwbFSyuD4lKGxePFiAGpq3ES/Hj16kEql+LKunrKyMrp168aPP/7Id999x8cff8yQIUMYPHgwI0aMoEuXLjQ0NADQp08fhBDMb8pQXV1NY2MjAA05k/MvuJBvv/2WhQsXsvvuu3PAAQdQKBSVFoAvFiwL/r3VVlvR7HF6f/fdd1x++eUMHjyYwYMH88ADD2DbNvX19SxevJgxY8YE+95//32y2WzJeXPZLIV88VrDhw/nm2++4eabb+aEE04oGWvbNmPGjGHUqFHceeedvPLKKyxcuDDY3759ezp27Eg+24KmafTr149Zs2ahKG7WvO6RlUyfPp0ddtiBfC5D49LFNCxxzzFz5kwGDhyIWchimQUGDhzIzJkzg/P36dMH2zKRjkN1dfVyHpF8Pkdd3fxgrGEYfPLJx7SFrbfeGse2KOSzbL311iXXAYjHY2graJIikZimGcxXSkku28ygQYOYN28e+byrYA4YMAAhBJnmBqqrq7n22mvZe++92XrrrbnmmmswTZOqLt2I9ehHstcAEt16R8Q76wtCoCRiONk8S1ocbhrlhmICemRcQiVhCXBAzQvmLViEaZpIPzM/m0fEddRVNNMRUOK5yTuSOWkLMxw+FsKtyVdVZC4fCaK1Bdte9ScCsBFb+FmvoUm3bt1YsGABWnUHbEcyatQonnrqKUaPHs2uXTuQt216V5eDdOjXvoKYplJXV8euu+5Kzio+6MWZHEOGDEFVVSZOnMhuw/egKm6wZU05d975EL/+9a9p3749s2fPZuHChdi2zYD2Fdi2zcKFC+nYsSOdOnVi+PDhPPbYY23OOeCXpzSBrSYZI2fZtBRs2rdvz6WXXsoNN9zA4sWLPcpY962wXW2xskBVVQq2Deh06tSJv/zlL+y5554l18vn86RSKZ577jk6d+7c5nwcxyGeSAYMcwCKonD00Udz4403cvPNN5coHlOmTOGbb77h888/RwjBxIkTmTx5crC/vr6eTCZDIu4mEM6fP5+OHTsivaQZx/tvbW0tP/74I337bkk8WUayvByATp06MW/ePC97XjBv3jw6duxYMueAXje0hv69JJMpkskUP/wwK4jX9+5ZTJwLY/78+Siqhi6UYJ4A8XicTCYTJCAuXryY9u3bl1xHUVQURaVTp0588cUXCCEwYkl++GEmVVVVxGKx4Dm5B7pzHjt2LGPHjuX777/nd7/7Hd26dWP0UWP4drGr/EXuxfUMXUMkYlj1LVgIbtjrQMa98xLPH/lrDnxlkpuQp7lC3045NEkNQ0gsDXRsDM0hF4uxorZQAHohC4UciUQcU9Fx8DgYhEBTFBzbRtFc8h1TCsxUzG1sZehunkBk6v88RBb+amOjtfCXpl0rdY899mDy5MnUJAzmN2e44IILePvtt7ngggtonDMTZ8kC7rzjdq666irKPOvyww8/ZPjw4Sz13PwA8xrTKKrKn/70J0466SQmvPgCRks9999/P9dccw3XXHNNMLa5uZnrrruOpYsXcd1117HNNtvQtWtXjjjiCN58800efPBBFi5cyPTp0wOX8srw4IMP8vAD/6Tux1lMnz6dyy+/nH79+lFbW0vXrl2ZM2cO//nPf/j6669LjluSyVOwbM4880zOP/98PvnkE5YsWcI777zDu+++SywW48QTT+Tkk09m6tSpLFq0iFdeeYVvv/0WgJ49e/LCCy8wZcoU0ul0ybn/+Mc/Mn/+/MCr4aOyspK6ujq++eYbpk+fzrXXXrvc/fzxj3+kbuFC/vrXv2IYBttttx225XojHNvCcdw5jxs3ji+++JJMvsDrr78BwHHHHcef//xnvvnmWz799FNuv/325XII2kKvXr145513+Oijj4LQi49UKtHmMU888QSTJk1i5qxZXHfddfzud78DYKedduLxxx9nxowZvPbaazzzzDPBMT179mTy5MlMnjyZH3/8kdGjR/Pf//6X5557jrlz5/F///d/bc5X02MsWLCAJ598koULFxKPxzEMg1QqhRO9cDYYhBCIVBylpgKRjGE3tHDrXgdw4Avvuv0RTAWRV5Ca5KFBQ1g250eyC2bTMncGmR+/J7N4PpjmSvW0QksTi36YxtLZM8jNnUlm1lQK82ZizZ+F3rCIlllTyf84Hb2+DiXbjFBVRCLmkvKst5X4BcORq/6sY+TzebbffnuEEHz++ecl+7788kuGDRtGPB6nW7du3HTTTcsd/9RTTzFgwADi8TiDBg1iwoQJJfullFxxxRXU1taSSCQYMWIE33///RrPc6O18G1HMq8pw0knncTZZ5/NueeeS11zA9t06sxnn33G3//+d8aOHQvAkCFDOOeccwA3ea6qqoqtt96aSbOLrui87TBlwTLOOOMM+vfvz7333svNN9/MwIEDmThxIttuuy1NXlx/4MCB1NTUcMQRR9CvXz+efvppMqZNVbv2TJo0ifHjx3PPPfdQXV0dxKa7devG8OHDAbAch/bt2zNy5EgAtttuO/7+97/z8MMPo6oq2267LW+88QaKotChQwf+/ve/869//YuysjJuvfXWoHJgqSP5elEDp59+OtXV1Vx55ZUsXbqUvn37cv755wNw6623cs899zB27FhyuRyDBg0KEgn/+te/cvfddzN+/HiuueYa+vfvH1im3yxuQlcE6cUNlMfjHH300QD07duXG264gbPOOouqqiouuugi3njjjWAda2tr2WGHHTjqqKPo1q0bEyZMQEoHs+C+vBwJLfUNnHTSSRiGwcUXX0wmk2HEiBH89re/5bDDDiObzXLuueeSTCa57bbb2GuvvYLn2Lt3b7dRCZIddtiBcs8zcMopp9Dc3Mzf/vY3Ro0axcCBA4P1dXN2ZPF4YOedd2bIkCH885//ZPbs2Rx77LGceOKJmGaeI488kmnTpnHiiSey4447cvPNN5NMujHaUaNG8eOPP3L33XczbNgwTj75ZCZMmMDNN9/MHXfcwW9+8xvGjRsXPPPdd9/de+YSwzB46623uOOOO4jH4xx66KEcfvjhfDa/GKqJsP7hxvMFJGPIbB4r7/DIPvvxu9cmoBRcYS8cyOQLOI5Dqqycyo4dQQisfB4zk0fqhltO1wYSZeUke/eladkSCrZNqqwc07LQdJ3mdBpHKKixGA1NzSQ7V6AKIGFg5wvIguVWFURW/v8M6dhIuWK3/cr2rS1cdNFFdOnShS+++KJke1NTE/vssw8jRozgnnvu4auvvuKkk06iqqqK0047DYD333+fo48+mhtuuIEDDjiAxx57jNGjR/PZZ58xcOBAAG666SbuuOMOHnroIXr16sXll1/OyJEj+fbbb0vykFYFIVeXF3U9obGxkaqqKu5+83161XZi5Na9Ofjgg7nooovosdVAJv0wl+226EjfjtUlDWUWNafpWJ7i+OOP55hjjmHI7sN59vPpy51/i6pytt2iAx3LU8G2OfVNfDF3EX07VtM8Zxann346n376abD/p2VNvPfDXOK6ys7da+lWUxHssx2HJS1ZKhMxDE3l+0XLmLG4nj379SBp6LTkC7TkC3SuKCuZx8y6pXw8cz4d2pWzU/daKhOxkv3NuQJvTZ1NYy5Pnw5VbLdFJ8rjxcS0JS0ZPpq9gM4VKQZ26YARijEubmzGzjZRliynrKKi5LxSSuYvWsLE7+fiCEFSCPbZrj+VqThL01lmLK5np26d0dooSfrxxx8ZNmxYUB4HkM4281PdDJIigUQjYzkkpUNZeSXV7TugakWdsqW5EdMsUFFZE7jCbduiYdkijFiMsvIapHSoX7oITdOpqKpBSmhqWIqq65SVVS73Ysykm1m2ZCGVVe0oq6hCOg6WZWLESn8EUkp++nEWP/zwA127d6df3/7L7Z+zcAapWDnVlR2CJMdMSwuqphIL8Q80NSzDNPNU13REKAotzU0saVhGqqoDHVs9509+XMA3C5Yst5YR1j+klDhLm1GTBld88rq7UcA/9v0teUulUICs6eBkCyipmEuvK6HQmIZ4DNEGMZcA2sUUQNBo2i4bo23RMm8mim6Q7Nzdo6p24YuemCLI5kzs5ixKWSLosPdLQzbdwpkjfh1UDq1NNDU1UVlZyV6Vx6KJFbebtmSBtxofprGxkYpW78O1gX//+9+cf/75PPPMM2yzzTZMmTKF7bffHoC7776bSy+9lLq6uiCx+OKLL+b5559n6tSpABx55JGk02lefvnl4JyDBw9m++2355577kFKSZcuXbjgggu48MILAVdOdurUiQcffDAouV4tyI0Mc+bM8XkSJSBfeeUV2dLSIhsbG+WkSZOC7YZhyH79+sl+/fpJwzDkwIEDpZRSLliwQEop5f77719yntafTp06ya233lpWV1cH2+6++2756aefyqFDh0oppTzyyCNlZWXlcsdWVlbKbbbZRnbv3l0K4ZKuKooidV0PxgghSv6OxWKyf//+sk+fPjIejy93TkVRpGEYwb355w1/evToIbfZZpvl5qQoitxyyy3lVlttJZPJ5HLH+edTVVVqmtbmevjXBqSu67Jv375yiy22kEIIaRiGvOaaa+SPP/4oBwwYIKWUcuzYsbKmpmalayyEkH369JEDBgyQsVisZL7++cPjNU2TiqKU/K2qaskYXdelqqrLrW/r4/1j27dvL/v167fceeLxuBwwYICsrKyUqqout1/TtJK16tKli+zbt2/JNkVRllvPRCIhBwwYIHv16rXCtY4+0Wdz+8yZM2ety4rGxkYJyL3Kj5EjK05c4Wev8mOCOTQ2NgafXC73s+dQV1cnt9hiC/nxxx/LWbNmSUBOmTIl2H/sscfKUaNGlRwzceJECchly5ZJKaXs1q2bHD9+fMmYK664Qm677bZSSil/+OGH5c4rpZS77767POecc9ZovhudS79Lly7MmTOH8vLywJpTVRVVVdluu+2CzPe2kE6nqaqqIpPJrDCxbkVoamrikksu4YwzzmDSpEk4jsN99933s+5lU0NTUxPdunVj5syZy2nCqqqSSqX47rvvkFJyww03BOWJvxT49z9nzpx1YglsCtjc12Bzv39Yu2sgpaS5uZkuXbqspdm1cQ3bRopVu/R9Fk4fV155JVddddX/fl0pOeGEEzjjjDPYeeedmT179nJj6urqgpJpH506dQr2VVdXU1dXF2wLj6mrqwvGhY9ra8zqYqMT+Iqi0LVr1zb3rUms4n/BI488wt13301ZWRmKomy2P/iKioqV3rsQIoit/xKxqvvfHLC5r8Hmfv+w9tZgbbvyl4P0HQkr289yCoyfz9QaF198MTfeeONKL/ndd98FZG2XXHLJGk95Q2GjE/gbGk7EuxwhQoQImw4cWSRWaAuewF9dBeaCCy5Yjp+kNXr37s3EiRP54IMPllMcdt55Z4455hgeeughOnfuXMJjAgR/+6XUKxoT3u9vq62tLRnj5wqsLiKBHyFChAgRNllI21mFS3/NjLgOHToENOcrwx133MF1110X/D1//nxGjhwZUG2DW3l06aWXYppmQG/+xhtv0L9/f6qrq4Mxb731VsAw6o8ZMmQI4JYkd+7cmbfeeisQ8E1NTUyePJkzzzxzje4tEvgeYrEYV1555QrdPJsDNvc12NzvH6I12NzvHzbBNZAObXUtLN2/9tG9eynhV1mZW6HTp0+fICw9ZswYrr76ak4++WTGjRvH119/ze233x70WQE499xzGT58OH/5y1/Yf//9efzxx/nkk0+CHDIhBH/4wx+47rrr6Nu3b1CW16VLl4B+fXWx0ZXlRYgQIUKECKuCX5Y3VByAhr7CcRYm78qX11lZno/Zs2fTq1evkrI8cIl3xo4dy8cff0z79u05++yzAy4PH0899RSXXXYZs2fPpm/fvtx0003st99+wX4pJVdeeSX33XcfDQ0NDB06lLvuuot+/fqt0RwjgR8hQoQIETY55HI5evXqtVqZ6p07d2bWrFnrPPF7Y0ck8CNEiBAhwiaJXC63XBOytmAYxmYv7CES+BEiRIgQIcJmgY22eU6ECBEiRIgQYe0hEvgRIkSIECHCZoDNQuBnMpkNPYUNjoaGhg09hQ2K6DsQIUKEzR2/6Dr8qVOncuGFF2IYBr169eLUU09lwIABG3pa6xXTpk3j7LPPxrIsevTowTHHHMOIESM29LTWG6LvAMydO5dnnnmGvn37MmjQILp164aUcrNqyRqtAcybN48333yTLbfckkGDBlFRUbHZrcHmjl+shf/OO+8wdOhQampq+NWvfsWzzz7Lcccdx6RJk4DNg0L3s88+Y88996Rr166MGTMm6AH/0ksvbeiprRdE3wG3j3afPn149tlnOf744znggAOYPHnyZvWSj9YArrnmGnr37s19993HPvvsw7HHHsu33367Wa1BBNjo2uOuLZx33nny4IMPlo7jSCml/Pbbb+Vhhx0mt9xyyw08s/WH66+/Xu6+++4yk8lIKaVctGiRPPPMM2WHDh3kvHnzNvDs1j029+/AwoUL5aBBg+SDDz4opZTyo48+kkcffbTs1q2bnD59+gae3fpBtAZSTp8+XW699dbyqaeeklJK+eKLL8qRI0fKgQMHStM0N/DsIqxP/OIsfOlVGc6YMQNd1wMNdquttuLSSy+loaGBq6++GvjlW3jTp09HCEEikQBcjujrrruOysrKYA3kL7gqc3P7DrR+lhMnTmTBggUccMABAPzqV7/iH//4B4qicP3119Pc3LwhprlesbmuQUtLS/Dvf//739TX13PooYcCcOCBB3L77bezYMGCn9UeNsKmh01e4C9YsIDHH3+cDz74gGXLliGEoFAo0L17d9LpNPPnzw/GDhw4kPPPP59bb72VTCaDomzytw+4XZNmzJgBgG0Xm0hss802NDQ08P333wOucKupqeHqq6/mH//4BwsWLPhFuPTmzp3L7bffzoQJE5gzZw4A+Xx+s/oOtLS0UF9fX7KtV69eNDQ0BEKtUCiQSCS48847eeSRR/jyyy83xFTXGRoaGpg8eXLwHQDo2bPnZrUGS5cu5bDDDuPkk08OtnXv3h3TNFm6dCngvgf69+/P1Vdfzfjx41mwYMGGmm6E9YxN+m130UUX0a9fP+69915GjBjBaaedxvfff49hGAwaNIiffvqJyZMnB+M1TWPkyJF07dqVRx55ZAPOfO3h+uuvp0uXLsEPXFXVwGodMGAA8Xicl19+GQBFUZBSMmLECLbaaivuvffeDTbvnwvfmm0rPuu3rNxhhx2YPXv2L/47cNlll7HddtsxevRojjrqKKZNmwZAVVUVu+yyC3/7298Al21MSsmBBx7IjjvuyN///nfgl+HluOKKK+jXrx+nn346AwcO5KmnngLcXuyDBw/eLNZg3Lhx1NbW8tZbb/H+++/T1NQEQCqVok+fPjz++OMAgZL7u9/9ji5dunDbbbcBv4w1iLBybJICv76+nlNOOYV3332XCRMm8Oqrr/LAAw/Q0NDA/fffD8Dpp59OLBbjmWeeCaxfcPsYW5aFYRgbavprBYVCgYsvvpiXXnqJY445hoaGBh588EGg+MM94IAD6NGjB6+//joff/wx4HZeKi8vp7q6GinlJuvSF0KwaNEiHnnkEe677z7++9//MmHCBLbZZhsOP/xwfvrpJ04++WSSySRPP/30L/Y7cOyxxzJhwgTuvfdeTjnlFJqamhg5ciRffvklffv2Zdddd+Xdd9/lk08+AcCyLMDt4vXRRx+RTqc3aS+HbducccYZvPTSSzzzzDM89dRTHHnkkfzf//0f4D7rnXfemffee+8XuwYPPPAA7du3Z8KECbzzzjvcfffdlJWVBRzzQ4cODRSB6dOnA67CXFFRwahRo/jqq68oFAqb9BpEWD1skk94yZIlCCEYN24cw4YNIxaLccQRR1BWVkahUAgE3qWXXsqUKVOCNoPgunoty6KqqmoDzX7twDAM+vTpw0knncTll1/OLrvswl133UVzczOapgX80r///e/JZDLceOONwbGO47Bs2TJ69uy5Sbv0VxSf1TSNSy65BHAtv1/qd2D69OlMmTKFW2+9lREjRnDcccfx7LPPUl9fz7XXXsuyZcv43e9+RyKR4KabbgIIenJPmzaN2tpaYrHYJqv0gRvOef/99znvvPMYNmwYffv25dhjj6VDhw40NTURi8UYPXr0L3YN5s6dy+OPP85ll13GV199xeDBg9lxxx2ZNm1awD2RSCQ47rjjmDt3Lv/85z8BV2EWQjBjxgySyWTg+YjwC8cGSRVcQ9i2LaWUslAoSCmlbG5ull9//fVy+8eMGSN///vflxx73XXXyf79+8thw4bJO++8U+62225yl112kfPnz19Ps1878O/RNM0g69zfJqWUL730ktxpp53k5Zdfvty+Rx99VG655ZZy0KBB8vLLL5dDhw6VAwcOlN9///16vIOfh7bu/8MPP5SapsmZM2dKKaXM5/NSSnctFEWR7777rpRSymuvvfYX8R1ojXfffVdqmiaXLVsWbJs9e7bs2bOn7NKli7z33nullFI+9NBDcosttpBjx46Vn376qfz222/lrrvuKq+66qoNNfW1hrlz50ohhHzyySeDbSNGjJCHHHKIvOuuu2RDQ4OUUsqHH35YdunS5Re3Bo7jSMuySv7+4Ycf5DbbbCPHjx9fMvaKK66Qffr0kVdffbX86aef5Jdffil33nln+be//W09zzrChsJGL/Cvuuoqud9++wV/+y97H74gsCxL9uzZUz766KNSyuLLP5/Pyw8//FCOGTNG7rnnnvLMM88MFIdNBa3XoC00NTXJSy65RG699dby22+/lVLKkvucMWOGPPfcc+VBBx0kzz777GB9NgWs6P6//fZbOXToUHnhhRcG2/zvxy677CKPOeYYKaWU6XR6k/8OtIUvv/xS7rDDDiVK7iWXXCLPOOMMOWTIEDlixAgppZSZTEa++OKLskePHnLAgAGysrJSjhkzRmaz2Q019bUC/7d/8skny86dO8sDDzxQxmIxudtuu8nzzjtPdu/eXe6xxx7yww8/lFJK+fzzz//i1qAtNDU1yX79+snrr79eSll8DyxZskTee++9sry8XA4aNEimUil53HHHyVwutyGnG2E9YqMV+FOnTpWjRo2SHTp0kEII+f/+3/+TUsoSbTaMr7/+Wnbv3l1OmzZthefc1H7cK1qD1rWzvpB7//335Z577imPPfbYYF9rwbYpCboV3b9/D4VCQZ533nlyyJAh8qOPPirZd9ttt8mtttpKNjc3l5xzU/sOrAzZbFY+8MADUtd1ueuuu8p27drJLl26yNmzZ8uJEydKTdNkU1NTMH7p0qVyypQpm5RnZ2UIvwtmzpwpR48eLc8+++xg25IlS+SAAQPkrbfeGigHv7Q1WJEBdNhhh8mRI0e2ecyPP/4o33nnHfndd9+t8/lF2Liw0cbwP//8c5LJJPfffz9jx47lsssuw3EcVFVtM9b0zTff0LlzZ/r16we4tad//vOfS8Zsav2QV7QGmqaVrIEfhx88eDAHHXQQn3zyCS+//DJPPPEEp512Wkmpnh+/3BSwovvXdR3LstB1nYMPPphkMsktt9wCFO9v6tSp1NbWEo/HS7KPN7XvQFvwk87i8TgnnHAC7733HieddBJ333038+bNo0ePHixdupQtt9yypIdCTU0N22+/PVtuueUGmvnag2VZqKoa/B2Px5k6dSonnXQSAKZp0q5dO1RV5bvvvgsS0n5pa9A6B0dRFGzbplevXrS0tLB48eLljuvevTvDhg3b7CimI7DxxfB9jbWxsVF+/PHHUkopP/74Y9mnTx950UUXSSnbtvKPOeYYOW7cOLlw4UI5YsQIqet64NLa1PC/rIF/zLRp0+Tw4cOlEEIahiEvvfTS9TjztYPVuf+wl+OBBx6QXbt2/cXFZ1sjfM+FQkGef/75K7RUzznnHHnQQQetr6mtN4TXwDTNYA0aGhpkVVWVfOSRR4L9H374odxpp53kK6+8siGmus6wojWQsvjbGT9+vOzZs+cvyqMV4edjoxP4baGlpUXeeOONsrKyUs6ePVtKWSrwFi9eLLt37y579uwpdV2Xhx56qGxsbNxQ010nWNUaSCnl/Pnz5YknniiFEPLMM89czp29KaOt+w/nafwSY9Q+LMsqcd2OHz9eVlRUyD59+sgZM2YE23/44Qf5ww8/yP/7v/+TXbp0kc8995yUcnm376aIFa1B79695cyZM2U6nZYXXXSRFELI448/Xp5xxhmyqqpKnnrqqZvV98Df/+mnn0ohhJw8efIGmWuEjRMbpcAPf6n9f0+dOlXutttu8uCDD15u/OzZs2X37t3l0KFD5Weffbbe5rkusaZrIKWUDz74oNx9993lJ598sl7muC6xJvfv71+yZMkvKj4rZalS9+abb8o+ffrITp06yfvvv3+5XI5HH31UDhw4UA4aNCioUPglYHXXwHEcee2118pTTjlFHn744ZvlGvh466235DHHHCPnzJmzPqcZYSPHRifwV9TMwTRN+cgjj8iKigo5ceJEKaWUb7/9tmxoaJDpdFp+8cUX63Oa6xRrsgb//e9/ZV1dnZTyl2HJSfm/3/8vFT/99JPcd999pa7r8sILL5RLly4t2e8/93Q6Ld9///0NMcV1jtVdAylLS1J/SVjVGkSIsCpsNAJ/ZXEpH/Pnz5djxoyRffv2lfvss48UQgTZ2b8E/K9r4Me5N3Vs7vffFp566impaZrcf//9N9us6mgNojWIsHawwbP0bdtGSommaQDcdttttGvXjhdeeGG5DFTbtlm8eDEzZsygpqaG+fPn86tf/WpDTHut4ueuwc4777whpr3WsLnf/8qw44478s477/Dyyy9vtlnV0RpEaxBhLWFDahtrEpf67rvv5E477ST79OkjP/jgg/U91XWGzX0NNvf7jxAhQoT1hQ3u0l/duFQ6nZb/+c9/1u/k1hM29zXY3O8/QoQIEdYHNqhL/+mnn6Z3796oqsqXX37JzTffTE1NTZtjk8kke+yxx/qd4HrA5r4Gm/v9R4gQIcL6gpByw7VImjlzJgsXLmTIkCEbagobHJv7Gmzu9x8hQoQI6wsbVOBHiBAhQoQIEdYPNniWfoQIESJEiBBh3SMS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAaIBH6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAaIBH6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIcIGwOzZsxFC8Pnnn6+T8wsheP7559fJuSNEiLBpIhL4ETZLnHDCCYwePXqDXb9bt24sWLCAgQMHAvD2228jhKChoWGDzSlChAi/bGgbegIRImyOUFWVzp07b+hpRIgQYTNCZOFHiNAK//3vf9lll12IxWLU1tZy8cUXY1lWsH+PPfbgnHPO4aKLLqKmpobOnTtz1VVXlZxj6tSpDB06lHg8ztZbb82bb75Z4mYPu/Rnz57NnnvuCUB1dTVCCE444QQAevbsyW233VZy7u23377ket9//z277757cK033nhjuXuaM2cORxxxBFVVVdTU1DBq1Chmz579c5cqQoQImxAigR8hQgjz5s1jv/3241e/+hVffPEFd999N//4xz+47rrrSsY99NBDpFIpJk+ezE033cQ111wTCFrbthk9ejTJZJLJkydz3333cemll67wmt26deOZZ54BYNq0aSxYsIDbb799tebrOA6HHHIIhmEwefJk7rnnHsaNG1cyxjRNRo4cSXl5OZMmTeK9996jrKyMfffdl0KhsCbLEyFChE0YkUs/QoQQ7rrrLrp168Zf//pXhBAMGDCA+fPnM27cOK644goUxdWRt912W6688koA+vbty1//+lfeeust9t57b9544w1++OEH3n777cBt/6c//Ym99967zWuqqkpNTQ0AHTt2pKqqarXn++abbzJ16lRee+01unTpAsD111/Pb3/722DME088geM43H///QghAHjggQeoqqri7bffZp999lmzRYoQIcImiUjgR4gQwnfffceQIUMCwQiw22670dLSwty5c+nevTvgCvwwamtrWbRoEeBa6d26dSuJ0e+yyy7rbL7dunULhD3AkCFDSsZ88cUXzJgxg/Ly8pLtuVyOH374YZ3MK0KECBsfIoEfIcL/AF3XS/4WQuA4zlq/jqIoSClLtpmmuUbnaGlpYaedduLRRx9dbl+HDh1+1vwiRIiw6SAS+BEihLDVVlvxzDPPIKUMrPz33nuP8vJyunbtulrn6N+/P3PmzGHhwoV06tQJgI8//nilxxiGAbjx/zA6dOjAggULgr+bmpqYNWtWyXznzJnDggULqK2tBeDDDz8sOceOO+7IE088QceOHamoqFite4gQIcIvD1HSXoTNFo2NjXz++ecln9NOO405c+Zw9tlnM3XqVF544QWuvPJKzj///CB+vyrsvffe9OnTh+OPP54vv/yS9957j8suuwygJFQQRo8ePRBC8PLLL7N48WJaWloA+M1vfsPDDz/MpEmT+Oqrrzj++ONRVTU4bsSIEfTr14/jjz+eL774gkmTJi2XIHjMMcfQvn17Ro0axaRJk5g1axZvv/0255xzDnPnzv1fli5ChAibICKBH2Gzxdtvv80OO+xQ8rn22muZMGECH330Edtttx1nnHEGJ598ciCwVweqqvL888/T0tLCr371K0455ZRACMfj8TaP2WKLLbj66qu5+OKL6dSpE2eddRYAl1xyCcOHD+eAAw5g//33Z/To0fTp0yc4TlEUnnvuObLZLLvssgunnHIKf/rTn0rOnUwmeeedd+jevTuHHHIIW221FSeffDK5XC6y+CNE2IwgZOsAYYQIEdY63nvvPYYOHcqMGTNKBHaECBEirC9EAj9ChHWA5557jrKyMvr27cuMGTM499xzqa6u5t13393QU4sQIcJmiihpL0KEdYDm5mbGjRvHTz/9RPv27RkxYgR/+ctfNvS0IkSIsBkjsvAjRIgQIUKEzQBR0l6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAaIBH6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAb4/78IzNbnvB+PAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"difference\",\n", + " continuous=True\n", + ")\n", + "\n", + "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "a6197929", + "metadata": {}, + "source": [ + "The following uses an abritrary custom registered function for use in a continuous agreement map:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "858705fd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAEyCAYAAABHz/HOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7xuVXXv/Z1lrfW0XU4/wAEUpImKiiWCDWOJQIyKUbFhi1cFTSxBkzeJJTfxDfHVJMQeRa8a0NyoMWo0xsQSE71qYkcURemH03Z7yipzjvePOdfazz57n4YHBO/z47PZZ68611xzzTHGb5SpRESYYIIJJphgggkOC/QvugETTDDBBBNM8MuEiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWD9JcL/+T//B6UUSile//rX/6KbM8FhxLOf/ezm3f6P//E/9nlcnuesX7++Ofbzn//87dfIQ8Rzn/tcut0ut9xyy4rtddv39/PsZz97xTl3uctdVh0zPT3N/e9/f974xjdSFMWq++d5zpvf/GYe9KAHMTMzQ5qmHHHEEdzvfvfjJS95CZ/85Cf32fbdu3fzp3/6pzz0oQ9l8+bNJEnCzMwM9773vXnRi17Ev/7rv/7c/bNr1y42b96MUoq73e1uax7z8Y9/nAsuuIB73vOebNy4kSRJ2Lx5M2effTaf+MQn1jznBz/4AX/2Z3/GWWed1ZyzdetWnvjEJ/KlL33pgO361re+xTOf+Uy2bdtGlmVs2bKFhz/84Vx22WUrjhsOhxxxxBGcffbZh/7wd3bIBL80uOiiiwQQQE488cRfdHMm2Auvec1rBJDLLrvskM+94IILmne7bt06yfN8zeP+/u//vjkOkH/7t3/7+Rp9G+Hb3/62aK3ld3/3d1ftq9t+wQUX7PPnXe9614pzjj32WAHkvPPOkwsuuECe9axnyUMf+lBJkkQAeehDH7qiz/bs2SP3ve99BZAkSeShD32oPPWpT5Vzzz1XjjjiCAHkpJNOWrPtH/nIR2R6eloA6fV68qu/+qty/vnny+Me9zg54YQTmvafffbZP1cfXXDBBaKUEkCOP/74NY8577zzRCkl97jHPeTss8+WpzzlKfLABz6wacPv/d7vrTrnqKOOatr+yEc+Up785CfLPe5xDwFEKSVvfvOb99mmd73rXWKtFWOMnHnmmfLUpz5VzjrrLFm3bp386q/+6qrj3/SmNwkgn/vc5251P9wZMRGsvyQoikI2btwogGzdulUA+cpXvvKLbtYEYzgcgvU+97mPAPLRj350zeOe8IQniDFGTjvttDu0YH3c4x4nSZLI9u3bV+2rhcKhoBas11xzzYrt//3f/y0zMzMCyKWXXtpsf8lLXiKA3Pve95brr79+1fW++tWvyute97pV2//xH/9RlFJirZVLLrlERqPRqmOuvPJKueCCC+SEE044pGcYx7/8y78IIC94wQv2K1j/67/+S3bu3Llq+1e+8hXp9XqilJJvf/vbK/b96q/+qvyv//W/ZDgcrtj+9re/XQAxxsj3vve9Vdf83Oc+J0opudvd7ibf//73V+zL81z+67/+a9U5g8FAZmdn5QEPeMABn/mXCRPB+kuCj3/84wLImWeeKa9//esFkAsvvPAX3awJxnA4BOsll1wiWmt50pOetOqYPXv2SJZl8uhHP1oe85jH3GEF67XXXitaazn33HPX3H84BauIyOte9zoBVlhURx55pADy2c9+9qDvsbi42Civ73//+w94/Ne//vWDvvY4BoOBHH/88XL3u99dfvjDH+5XsO4Pz3ve8wSQv/zLvzzocx796EcLIK997WtX7bv73e8uWutVgvpg27GW4P1lxcTH+kuCD3zgAwA84xnP4BnPeAYAH/rQhyjLcp/nfPvb3+bXf/3XmZ2dZWpqioc+9KF89rOf5fOf//yafqzaz/f5z3+ez3zmM5x11lnMzs6ilGJubq457tOf/jTnnHMOmzZtIssyjjvuOF7+8peza9euNdshIlx++eU84hGPYN26dbRaLU455RRe+9rXMhgMVh3/8Ic/HKUUP/3pT/nQhz7E/e9/fzqdDkcddRQXX3xx40/78Y9/zPnnn8/mzZvpdDqcddZZfPvb395nfxxKu8f74otf/CKPeMQjmJqaYnp6mnPOOYfvf//7K46/y13uwute9zoAnvOc56zwBR6KH/SII47gEY94BJ/4xCeYn59fse/DH/4weZ43738tfPOb3+Tiiy/m9NNPX/GcL37xi7nxxhtXHf/Tn/4UpRQPf/jDWVhY4Ld/+7c5+uijm3f05je/Ge/9Qbcf4D3veQ/ee84///xDOu/W4j73uQ8A1113XbNtx44dAGzatOmgr/Pe976XnTt3csYZZ+y3j2ucfvrph9jSgNe97nX85Cc/4e1vfztJktyqawDNuWmaHvQ5p512GsCqsfDlL3+Z73//+zz84Q/nnve85yG142lPexoA73znOw/pvDs1ftGSfYKfH3Nzc9JqtSRNU9m1a5eIiJxxxhkCyMc//vE1z/mP//gP6XQ6Asi97nUveepTnyr3v//9RWvd0GQXXHDBinNqq+m3fuu3RCkl97///Zvz5ubmRETkVa96lQCSpqmceeaZ8qQnPanxOx1//PFy8803r7imc07OP//8xufz8Ic/XJ7whCfI0UcfLYA84AEPkMFgsOKchz3sYQLI7/zO74i1Vh75yEfKE57whMaaeNazniU//OEPZePGjXLyySfLU57yFLnnPe8pgKxfv35VG25Nu+u+ePnLXy7GGHngAx8oT37yk+XEE08UQDZs2CA33XRTc/wrXvGKhp4988wzV/gLr7zyygO+4/p+73//++Wyyy4TQN797nevOOahD32odDodWVxc3KfF+pSnPEWstXLf+95XHv/4x8vjH/94uctd7iKAHHHEEXLDDTesOP6aa64RQH7lV35FTj/9dJmdnZUnPvGJcu6550q73V5znBwI97vf/QRYda8aHGaL9YMf/KAAcs973rPZdtxxxwkgL3zhC8V7f1D3OPvss1dRyoeKmrXYV59961vfEmutPPe5zxWR5f4/VIv129/+tqxbt06SJJGrr776oM8777zzBJA/+qM/WrG9ZsH+4A/+QAaDgbznPe+RCy+8UF760pfK+973vlXf6DiGw6EkSSJHH330IT3DnRkTwfpLgL/5m78RQH7jN36j2fbWt75VAPnN3/zNVcc75xoB8Cd/8idrXmt/ghWQK664YtV1P/zhDwsg97jHPeRHP/pRs917L3/0R38kgDzlKU9Zcc4ll1wigDz84Q9fIYjyPG8opFe96lUrzqkFa6/Xk6997WvN9ptuukm2bNkiSik55ZRT5NWvfnUzaXrv5ZnPfOaak8ataXfdF1rrFf7OqqqayekP//APV5xzOKjg97///bKwsCDtdlvOOuusZv/PfvYzUUrJ+eefLyKyT8H6r//6r2sqNzVd+pznPGfFvnpirxWwHTt2NPuuvvrqhlLdl893bywuLooxRo488sh9HnO4BetTn/pUAeTpT396s+0Nb3hDc5+TTz5ZXv3qV8tHP/pRue666/Z5jzro59///d8PqW3j2J9gdc7J/e9/f9m4cWPjNz1Ywfrxj39cLrjgAnna054mD37wg0VrLVmWyXvf+96DbtvVV18tWZYJsIrGrvvw93//9+Wkk05aESAHyDHHHLNfivj0008XQH7yk58cdHvuzJgI1l8C1ILm7/7u75ptO3fulCRJpNVqNdZkjc9+9rMCyAknnCDOuVXXO/PMM/crWM8555w121FbZN/5zndW7fPey73vfW8xxjSTc1mWsnHjRul2u2takYPBQLZu3Srr1q1b0c76ef/gD/5g1Tkve9nLBJDjjjtOiqJYse9b3/qWAPKwhz3s52r3eF+MT9Y1vv71r695n8MlWEVEnvzkJ4vWugm8+dM//VMB5JOf/KSI7Fuw7g9HHXWUbNiwYcW2ccH6z//8z6vOedvb3rbKf7k/fPWrXxVghVKwN/aetNf62VuQ7y1Yvffy05/+tGEilFLyxS9+sTneOScXX3xxEzU8/nPqqafK2972tlXfRqvVEkB+8IMfrGrz7t2714xe3puNuPTSS+Wkk06SV7/61auu8Rd/8RerxsfBCtY//uM/XvEM7XZb3vnOd675fa+FsizlwQ9+8JpKpMjyeLLWyrZt2+RTn/qUzM/Py3e+8x151KMeJYAce+yx0u/317z+05/+dAHkIx/5yEG1586OiWC9k6O2VGZnZ1dFKP7Gb/yGAKtSE1772tcKsObHLSLyV3/1V/sVrO94xztWnbN9+/ZGWO8LF154oQDy6U9/WkSWJ9lHPepR+zznnHPOWTWZ1YJ1fKKscemllwrQUGnjWFxcFFiZinRr2i2y3Bfve9/7Vh2/sLCw6j4ih1ew1sFql1xyiYiInHrqqbJ582Ypy1JE9i9Yd+7cKe95z3vk5S9/uTz3uc9thMDmzZsFaNwJIssT+/r169ds19zcXDORH8wk/o//+I8CyBOf+MR9HjPOmOzr5xvf+MaKc2rButZPmqby1re+dc173XDDDfKXf/mXct5558kxxxyz4rzHP/7xK55pf4L1uuuuW/PeB6vY/OxnP5Ner7dKGTtUKng4HMp3vvMdefGLXyyAnHvuuftMzRrHi170okYhHX//NWrhCchXv/rVFftGo5Fs27ZNAHnnO9+55vVr99Jac8cvIywT3KnxwQ9+EBHhSU96ElmWrdj3jGc8g3/4h3/gAx/4AM9//vOb7TfddBMARx999JrXPOaYY/Z7z7X2//SnPwXgRz/6EUqp/Z6/c+fOFed89rOfPahzTjrppBXbjjrqqFXH9Xq9A+7L8/znavc4tm3btmrb1NTUqvscbvzar/0aGzZs4IMf/CCPfOQj+d73vsdLXvISrN3/J3355Zfzghe8gKWlpX0es7i4yPr161dsO/bYY9c8dmZmhtnZWebm5tizZw8bNmzY7/3rgKu6j/aH9773vQc8Zm+cd9559Ho9lFL0ej1OPvlknvCEJ3DkkUeuefyRRx7JS1/6Ul760pcCcOWVV/LGN76R97znPXzsYx/j8ssv5+lPfzoAGzZs4IYbblhzLG7btg0Raf7+tV/7NT7zmc8cdLsvvPBCiqLg7W9/+6E+8gq0Wi3ucY978Ja3vAVjDJdeeimXXnopr3jFK/Z5zp/8yZ/wtre9jS1btvCZz3xm1buH5W/n7ne/Ow94wANW7MuyjKc97WlccsklfOELX+C3fuu3Vp0/PT0NsCLI8ZcZE8F6J8f73/9+AD7/+c/z4Ac/eMW+Ojr2i1/8Ij/72c/2OTkeKlqt1qptdWTo1q1becxjHrPf8+t21Ofc7W5348wzz9zvOWtN2FrvO6h9f/vGcWvafWvuc7iRJAlPfvKTedvb3sbv//7vAxwwUvVnP/tZE+n9F3/xF5xzzjkcddRRtNttAM444wz+8z//c4WAONyYmZkBgvC+LfDGN76Ru9zlLrf6/FNOOYV3v/vd7Nmzh49+9KN88pOfbATraaedxg033MB///d/H3C8Hio+8YlPMDs7ywtf+MIV20ejEQA33HADD3/4wwG44oor2Lp16wGv+cxnPpNLL72Uf/iHf9inYH3729/OH/zBHzAzM8OnP/3pfVZ4qsf+vvq23r53Fa0atUI1Ozt7wHb/MmAiWO/E+MY3vsGVV14JwNVXX83VV1+95nEiwgc/+MFmAj7iiCOAlekH49jX9v2httw2btx40JZGfc7JJ598q6yTw4Fb0+47Cp7xjGfwtre9jU9/+tOceOKJqyyJvfGpT32Koih45StfyW//9m+v2v+Tn/xkn+dee+21a25fWFhgbm6Odrt9UJPm5s2bgVAS8I6MRzziEXz0ox9dwVI89rGP5VOf+hRXXHEFF1100WG/59zcHF/4whfW3DcajZp9tbA9EDZu3AgspxbtjSuuuIILL7yQTqfDJz/5Se5973vv81p1ytKePXvW3F+/z9qy3Rv1eYeS3nRnxiSP9U6MOnf1la98JRL85at+6hzJ+lig0bY/+tGPrmmdfPjDHz7ktmzbto2TTz6Z73//+/zwhz88qHPuf//7MzMzwxe+8IVf2ER7a9p9a1HnE1ZVdViud8YZZ3DaaaexYcMGnvvc5x7w+HpyW4u+/uIXv8j27dv3ee6uXbv43Oc+t2r7FVdcAcCDHvQgjDEHbMOpp56KtZarrrrqgMfeljiQVV4rqeMuhWc/+9ls2LCBL3/5yyu+p8PVnrV+rrnmGgCOP/74ZtvBWuS1ID7++ONX7fvUpz7Fs571LKy1fPSjHz2gBX722WdjreU73/nOmt9qfa9aAO+N2gDYn/D+ZcJEsN5J4Zzj8ssvB9hvov1DHvIQjjrqKK688kq+8Y1vAEEbP+GEE7jqqqu45JJLVhz/3ve+96AKca+FP/zDP8R7z3nnncc3v/nNVft37drFu971rubvLMu4+OKLWVxc5IlPfOKaFtMNN9zQ0N23FQ613bcWtZ/vcAqVb37zm+zcuZNXvepVBzz2xBNPBIKS1e/3m+033HDDKgpyLbzyla9cUSzjmmuuaRZ7uPDCCw+qvd1ul/vc5z7cdNNN3HDDDQd1zm2BM844g8suu2xFP9T4xCc+0fg6n/SkJzXbe70el112GUopnvOc5/Dnf/7na1qP119//T5Zn7/+67/m5JNP5vd+7/d+7mfYsWMH73rXu9YsovLZz36Wiy++GAgFScbx5S9/mSc96UmICB/60Id49KMffcB7bdy4kec85zksLS3x0pe+dMWiBu973/v47Gc/S6vVWlVUBoKF/Z3vfIejjz6au971rof4lHdOTKjgOyn++Z//me3bt3PiiSdy3/ved5/Haa15ylOewpve9Cbe//73c/rpp6O15n3vex+PfOQjefWrX83ll1/O3e9+d3784x/zta99jQsvvJC3vOUth1SxBUKFle9973v86Z/+Kaeffjr3vve9G037xz/+Md/+9rfp9Xorghte/epX84Mf/ID3v//9nHLKKdznPvfhrne9K0VRcNVVV/H973+fe93rXjzzmc+81X11W7T71uDRj340rVaLN7/5zXz3u9/lyCOPRCnF7/7u764Khrkt8LjHPY5TTz2Vr3/9641fezQa8W//9m/c+9735owzzuA//uM/1jz3V37lVyiKgrvd7W484hGPoCxLPve5zzEYDHjGM57BE5/4xINuxznnnMPXvvY1Pv/5zzf+y7Ww1iRd45hjjvm5VnC68soree5zn8uLX/xi7nvf+3LMMccwHA656qqr+MEPfgDAC1/4Qs4555wV5/36r/86f//3f8+zn/1sLr74Yl7/+tfzwAc+kM2bN7O4uMh1113Hd77zHbz3PPCBD+SEE05Ycf7OnTu56qqrmgDCnwf9fp8XvOAF/M7v/A6nn34627Zto9/v88Mf/rB5hpe97GWcd955K84799xzGQ6H3PWud+VjH/sYH/vYx1Zd+8EPfvCKgEeAP//zP+crX/kKH/zgB/nSl77E/e53P6699lq+/vWvY4zhne9855oBkV/+8pcpy3JVX/5S43aMQJ7gMKKuVvSa17zmgMd+7WtfE2BFOoaIyDe/+U0599xzZXp6Wrrdrpx55pnyT//0T/KBD3xgzXScOuXjQCkEX/jCF+Q3f/M35cgjj5QkSWTDhg1yr3vdSy666CL5whe+sOY5//AP/yDnnHOObN68WZIkkc2bN8vpp58uF1988arUijrdZq1iAHVVon31CzHf7udt94H6Yl/3+cxnPiNnnnmm9Hq9Q0rJ2Dvd5kDYV7rN7t275UUvepHc5S53kSzL5LjjjpNXvepV0u/31+zXOt3jYQ97mMzNzcmLX/xiOfLIIyVNUznppJPkjW98o1RVdVBtqnHttdeKMWafq7+wRtrK3j+nnXbainP2VyBiLXzrW9+SP/uzP5NHP/rRcvzxx0un05Esy+SYY46RJz3pSfKpT31qv+fv2rVL/uRP/kTOPPNM2bhxo1hrZXp6Wu5xj3vI85//fPmXf/mXNSs6Hajy0t7YX7pNv9+XSy65RM4++2w59thjpd1uS5Zlcpe73EWe+tSn7ndsHuhnX+1bWlqS3//935e73e1ukqaprF+/Xs4999z9Fs147nOfK8Cq7/iXGUrkNgwBnOBOiRe+8IW84x3v4IorruApT3nKL7o5E/wC8dOf/pS73vWuPOxhDzusa7s+4QlP4BOf+ATXXXfdQUW4TnDnxHA45Mgjj+TEE0/kq1/96i+6ObcbJj7W/0uxe/fuJodzHB/60If4m7/5G2ZnZzn33HNv/4ZN8H8F/viP/xjvPW984xt/0U2Z4DbE29/+dubm5njDG97wi27K7YqJj/X/Uvzwhz/kQQ96EPe617047rjjgOB3uuqqqzDG8I53vINut/sLbuUEv6y4xz3uwQUXXMDb3vY2Lr744iYNZ4JfHgyHQy655BIe+9jH8ohHPOIX3ZzbFRMq+P9S3HLLLbz+9a/nX//1X7nxxhvp9/ts3LiRM844g1e+8pU86EEP+kU3cYI7AG4rKniCCX6ZMRGsE0wwwQQTTHAYMfGxTjDBBBNMMMFhxESwTjDBBBNMMMFhxESwTjDBBBNMMMFhxESwTjDBBBNMMMFhxESwTjDBHRyvfe1rD7hW7AQTTHDHwUSwTjBBxHvf+16UUit+Nm/ezFlnncU//dM//aKbd0BcddVVvOxlL+OMM86g1WqhlFqzCMgEE0xw22JSIGKCCfbC61//eu5617siImzfvp33vve9nH322fzjP/7jHboa1X/+53/yV3/1V9z97nfnlFNOWXOlngkmmOC2x0SwTjDBXnjsYx/L/e53v+bv5z3veWzZsoXLL7/8Di1YH/e4xzE3N8fU1BRvfOMbJ4J1ggl+QZhQwRNMcADMzs7SbrexdqUe+sY3vpEzzjiDDRs20G63Of300/nf//t/rzpfKcVFF13Exz72Me5xj3uQZRmnnnoqn/70p1cd++///u/c//73p9Vqcfzxx/OOd7zjoNu5fv16pqamDv0BJ5hggsOKicU6wQR7YX5+np07dyIi3HLLLVx66aUsLS3xjGc8Y8Vxf/mXf8njHvc4nv70p1MUBVdccQW/+Zu/ySc+8YlVa0/++7//Ox/5yEd48YtfzNTUFH/1V3/Feeedx7XXXsuGDRsA+M53vsOjH/1oNm3axGtf+1qqquI1r3kNW7Zsud2efYIJJvj5MRGsE0ywFx75yEeu+DvLMt7znvfwqEc9asX2H/7wh7Tb7ebviy66iPve97686U1vWiVYr7zySr7//e9z/PHHA3DWWWdx2mmncfnll3PRRRcB8Ed/9EeICF/60pc45phjADjvvPO45z3vedifcYIJJrjtMBGsE0ywF97ylrdw4oknArB9+3Y+8IEP8PznP5+pqSme+MQnNseNC9U9e/bgnOMhD3kIl19++aprPvKRj2yEKsC97nUvpqen+clPfgKAc47PfOYzPP7xj2+EKsApp5zCYx7zGD71qU8d9uecYIIJbhtMBOsEE+yFBzzgASuCl84//3zuc5/7cNFFF3HuueeSpikAn/jEJ/if//N/8s1vfpM8z5vj18o5HReWNdatW8eePXsA2LFjB8PhkBNOOGHVcSeddNJEsE4wwZ0Ik+ClCSY4ALTWnHXWWdx000386Ec/AuBLX/oSj3vc42i1Wrz1rW/lU5/6FJ/97Gd52tOexloLRhlj1rz2ZHGpCSb45cPEYp1ggoNAVVUALC0tAfD3f//3tFotPvOZz5BlWXPcZZdddquuv2nTJtrtdiO4x3HVVVfdqmtOMMEEvxhMLNYJJjgAyrLkn//5n0nTlFNOOQUIFqhSCudcc9xPf/pTPvaxj92qexhjeMxjHsPHPvYxrr322mb7lVdeyWc+85mfq/0TTDDB7YuJxTrBBHvhn/7pn/jBD34AwC233MLf/u3f8qMf/YhXv/rVTE9PA3DOOefwpje9iV/7tV/jaU97GrfccgtvectbuNvd7sa3v/3tW3Xf173udXz605/mIQ95CC9+8YupqopLL72UU0899aCuOT8/z6WXXgrAl7/8ZQD++q//mtnZWWZnZ5vo4wkm+GXBaDSiKIoDHpemKa1W63ZoUYRMMMEEIiJy2WWXCbDip9Vqyb3vfW9529veJt77Fce/+93vlhNOOEGyLJOTTz5ZLrvsMnnNa14je39WgFx44YWr7nfsscfKBRdcsGLbF77wBTn99NMlTVM57rjj5O1vf/ua11wL11xzzar21z/HHnvsIffHBBPckTEcDmXrZrPPMT/+s3XrVhkOh7db25TIJHpiggkmmGCCOxcWFhaYmZnhmm8cy/TUvr2aC4ueu57+M+bn5xvG6bbGhAqeYIIJJpjgTotuL/zsC+4XYDpOBOsEE0wwwQR3WngEz76l5/723VaYCNYJJphgggnutCjFUe7Ho1mKvx1bEzARrBNMMMEEE9xpMbFYJ5hgggkmmOAwwiO4iWDdP7z33HjjjUxNTa1Zc3WCCSaYYII7B0SExcVFjjzySLS+beoRleIp9yM7J1QwcOONN3L00Uf/opsxwQQTTDDBYcJ1113Htm3bbpNr+/izv/23N+5wgnVqagqA73/nv5p/C8JNgxtYqpaYTqaxOmF9tgGjQmFzEaESQQMex42DG1gqFwDwEs5XaJRKcd7SMh6rUwpfIAKJyaj8LKkBq4RBqeimC3gpqHwI11Z4WiYh1QkMNaZlGMmASipSnaBUSr/aRMc6unbAUrlAv+zjxeHE4ZGm4LrHowjWeP0bFEYZEmNZn21gJp0BhEo8/dIzm2bA8vkaBRhAY1S4yv4s/CZdWY3fk6Z/8bDQX8RnDkjo2Qyr7KrjBEGjkdi3ShHuDeEPEQovcbugUJj6IIFSKozSaKXD+SyHwysCbZPs5zkqqch9jlUahcIRSgqOqhEu9nXpS5bKRSpfgYDkGp1pPA7BMZVOs6l1LP1KsTHTjBzkXtAKvrenoPDCSTMpGzKNE2gbFcoXeuHmYcW1/YpBtawiq+bNBBgFJ0wnHNWxsd9CXxkV7mOUwqqV70tEKIY5aStD6ZXP70QYVEKiwSqF2at7nIR77H3N8Wv3nVB5YSrR6HiOj20vvGAUpFqh9zeGwsVWbCslnF96oWUUSdM+RX2p1XEl0vy/Hjc+fr+3hqVaeX1ZtW93v+CapZJ5r6gbpQjvIzWK0gvlPmbfMKcsj3Hvhd7CIqdum6Y31V7VXhFZfq7mTkIl8LOlkiIO9sxoNrYN01bdZsxc3ZbcDxhUQxSaQTVgqeyH59fhqZx4tDIoLE4KwLEu28SGdANa7z1b7PtehYT+Gh+H8wsLnHrP+zZz+W0BdwAqeH/7bivc4QRr/UI6vQ5T0z200ogIrV7GQjHP9uHNTLemmWlPx0lAISJBKxHQCqanp9iV72TnaAeFC4JC4qOKGLRyJEbRUhbnPZ2kx8i1SHVB12oq32bgSgCsKKzaRO7mSLTQSVJ8C4qRJlFTrG97SkaIURgHnaTHbNoiLS2b1CZKXzKX76GUcsVKJmHQL/9tlGVDaxPT6RRGGYwyQXAIpM7QsZBoCB9ChROPwrBYaDKr6R7gA63vpcb+v2K/F6y1pJ0ErTR6rIz08gS44k1B/HBDWaBlIStRiXDiSbVtBO64IB574c11BlU4ZipVq4R/3WeDasigGGA0lN6xVC2Gfk3CMUFpgW6rixOHQiEjjUoVjgIQjuhuxeoONy1UGD0kS3rgLbOZ4a62Yi73zE5Z1rVMULx0GJciwswMHFF4vrenYKkSUg29RLM7Xzkz71aKozsZvbH3Uk90TlYLQREhtylZe7VgFRGmomCuJ3kd2+OiYPMCHbuy1+rrexGq3NPTim4SFZ29rl+jit9QI0ikkUUQ77v3eXUbtFKkmlVKXi2QS7/clyvuH69V+XBvsw8F4UAIzam1tOW+mJkRtuSOH+8ecaNTKx+IMHSSfVxzXGmq/530ulxfVJzgLevXdVY9R+lDn7eMar6dSmCjrSgcjLywPtVsaJnQX7ehYPUCRV5A5dFKk/qEad9pFGyFoRIHUVkX2ihgQ3uG2fTg3XH1HLy3clSPkdvSrVcKB6CCb7Nb7xN3OMFa46dLP+GE7on0bMj8bZkWSWYxytKxHYZuSKrTxqqqNcuguVvWp+spXclA9yl9SelHiEjU0oREtUlNylBG5K7AqgIvjkGVUYkl0zOUUpA7QyFdplPPoFpg5DzdJMOJZ08xy2hU0MaQdRQj32ZGVYBiyk6BUoh4Su+YKxZRFHjxyxNt/GStsvSSKdq2RUu3MNpQ671FJXStYLVqhFfQ7jWCYyZT2CitJFqIa+Fg9E6jTNOfamzidkKcMNVKAR0nL5FgenrAiW+s2kTH4VV/dGPSOQjfMIkKUDghM9GS209bE91iY7aJxXKOpWoO5x0oGvbCYBHxGG2wYil9CQhWaVq2y1QyxWy6jqWqT6J30i8dm1o9BMPVC8GimEk161LdTPBB9kujQEynmhNmEm4eOHbnPjIayxNwxypGTtg1cvR6y5+Yiv21l9xsrh1nu9XvLlq4IqtXzTAqWNQjJyyVwfJsWbXiOAWsz/bt3xoX/Hav+9dtHZ+bGuZFgsDw0aLuWpoRGI5RY8oWGL3yGrVSpuM5O0YOJ8K2rj0oK2n1c9RPO9bmKFySxLCppdmxUFEas0q47gtC6OOaFQAotWFBCcPS4UVWtLUe00YFpbh+/sIJS1VFxxiObls6VjVjfw2TPj7PzyuMFFoJXkqGbojG4MSFb1g0gkcjSE2mKh3mJxRO3AGvvndb11oY8faIk/Eo3H5GjL9Vo+nnwx1WsA7KAYvFAs7DVNrFELQ/qy25z9Fo5qo99GyPlmnHSaummEL49eb2FvrVEjcOrgd80MQVUSgJTiq8VDjvUMqh0FQCLeMovaOSklQbRs6Suw2kuqJf5YgIylQkyZDSraOs2qjFigrDzYVlXXdEN8mpfEXpSwoPXdvFi6H0JbnLV1irThzDqo9SglWGjuoCYFSwRGuBqRQUPqf0JalOcd7hlccYjRLdPPs49XhrBvb4ObUFAcsCFCFQ7ypYMPXxWgSt6nYwJpDiRD8uN/ayhBKjGkupOWTZ+Fg+TisSUrSaRSvNoOqTmoxUJ2hlyF3eKABDN8R6y1Rnhm6rS5JYjLZBYfAVwhIiCqM8KMidsFR6tnUt/UqYKzxb2obxVtV9sbllWJcZvrenYPvQkWpoGc3QeXIXlIbCR4VCZJ/vQUTIXaDPE5ExemDZCmBsgh6/zrhAVEpReE+nEaqrjzsQ1qaRQwOCAFzGyEmjUNRtG8ZtiQ5CQytZIZF1c82wsbZga2xuGyovt3oaXMEIxR8ngb7VSrFuKuPownNDGfpb6ufdT/8owvPglxXKygtthG47be7lo6U/rjSNi8uWVdy1l1F6aFtF7oRbhg4vMJtpnAgdo0lNUGitVquUnENFJIMgMkilFHGeDC4khUeo8E1wTxi3Hn/AdYLH2YGVFuryvcPft7256KV5Pfvcf3vjDitYQTN0Q4wy9KQNccIeuSEL5QKZzphKprC6pnhrLdrhpGqsL286tEyHyi9FKylYVJUbYrwGNEr5OLgEGDFygla1fxBm0nkKn1P5eVKdYHSgp6fsAmIFn2qMSnG+T8tXVIVmqBxauegzDDRMx25g5EaM3IhB1afyVeO3zF2Ox+O8Z3N7M5nJ8KKiP1I1wkIrQ2YMIkJqUrQyDW1bRYox9JOsoAZlbMQf7Peqxo710cIwTTtWG1fj1GPwn3pKL6Ras2yH1pbMyonfNPuW21uzqy76P1umJigh1Snrsw10kx6CYJVFoZhOZgAofUnXdyl9iSkTEpVitGZYDVko5tid70IErDbMFXvITE7bpiil2VM4MmPHBBeUUjKqhngJ77KXTJEoxdFdw1zuWZdpjupa5gvPYunZPnRc36/oWM2RHbPfPh85ITUqWH+wUvOPjIHzwaJnDSGtlCLTQtZYpWp/suKQ4WO7dFSUnIQ2t60m08EvnurQ2NIXVN6Ti49pDi72mYmsQviuwjhuN4JZomBqmVvncwxxFsvXIbY3UURtSIHWHL+pw9bCsTiquGlQscvrqDCuvqdVsLVjWJcabhhUzBUe5YVeVXKXjma6mzWUvFHh+zNj38X4FY1StKyiFYd4qYTcB793UgZ3goqC2RykX/Ng0bG9GMewzJbV84lCUXkHKihkgZVxZGZ5jeHVfuNwhSoKtFQv73eRxchq98lhfI59oUBT7GcF1AOvfbMSr33ta3nd6163YttJJ53UrHh1MLjDCtYju0dxRGcLLbO81I9RhvXZBlKdkeiEru2u9F8JKKVJVEptv2qVMJ3MRjq4iAKiBXiclJGaE4wyaKUpfYmXOrxIASVWDRCVU4pCZEiqhbbtUDiNl5LMOFJTUPmCRBsWBj0WlgxpukDXpPSy4MHJTIZSCq109F95+lW/oTM1mtSktEw7BEnFoTw+0SQqeoPGRmxN29ZCVRG04hXWHzXtdutQi7QyBrqsFeRST7q1tTJyOYV3QUs3HQx6WZMNJ6x4hr1pvJsGFV5gJg39lUVtvoiBMkopWroVfKljyoeCRuHSypBXBaNqyGI1z3wxHxUaj1LhnewpdmPUPLCellkXrGIdrKmhqyfNih2jHXg8LdPB6A7eK6YSOG1DilbQtZqOUcymmrncU3jh+n5Fz6rwDGv0WR3RaCPlvILCVQpNCASrXBBmmVEoWWYwVvbf6vfh44x3KIFBy9R0mICNDorPuPXRMqGPSoHcFfTL3SQmWHBeXMPWVBJ+C5Co4G9PlCUzGS3TQo0xHFXtgz2oVo49I8tWSW017m3d109jjGK6rZlqWdZ3HDfM59ww8gzRq4SrF9iTe3aPgoKIF9qu4qTZlPUzrebw8P2FwMfxc7Va/jZr4V2zOG2jOGkmaZ5ZCDEGhZPw7R4uzUjBVDJF106tckHUqOeG0gdKv7HSx1D4EFRYRbdQzWIMKo9NdEOZL5We3XnJpnZKzx6cC+rnhReFl33fZ3/79oVTTz2Vf/mXf2n+tvbQROUdVrCuS9eT6NYKTUkphcUym842f48jUFJjg1KERBvWZ+tpmZTrB9fjvEOrQAM7X2GiAKspTDX2nyB4scyXbVqmoPQFWnkqX5G7nFRPMVfMUPibmStGtK1gdMZMZ8T2hRbzwxm8Lch9wkzbU3kB2lgVIlNzN2TkRjjlGr9GoixJbFPQ+GSZCh4fpHuNlb0DBipffwDLh6vVp+0T44JPRbo3WAP7p+pcpIg9gtUJpa8awbd3w4WVQU8rngc4MkbVjj+HsPzR1+/IKLNinHg8CBhtGJVDduU78OIZqUGkTTUiy4Ii1SmFK2ibATDDfCF4KSi8RmGYTjQoYanqsi5VFK7N1fOLKHbTTeDIzpG0TBuABRcmp8woplNNL1HMFZ5eoldYM7Bs2c/GB8xXMsFN3yPSCN5xqm0fhtYK7M49SQywMmtQd+Oo+2Oc2lyxn2XazcXZ2KigII58gYvj1CqN0YbSV43PzktFIR6rMwqpAIOTcJH6mVO9HAB0MIKlVuS8gK0F8kEyMkopWqnhuI0dZhZzvjtfkcfza3gR+qWQiscSfHXrrGKqmzbfxPL1oH5zEr+B8TYqFVwCNT1dj/n6uFqY7Rw5tNK0x3jgtVwiB4tlA2Pf717FdqZa4TT8aKFkY8twVGeZOzFKkXthWAU2r/KOkatQKsEoRWrCMdOppm1TmqD5216u4ti/j3V/+/YFay1bt2691W26wwrWuXKAKtP4wVQrJpzmQzQhJWTZ2llNWQQmSDNyOS6q74Gm1CQmBD95gs/NR5q41jJRoFSFYgcimsxYKvEoZRi5IQrDuixMvsOqYuRL5osRiU6Y7bVQJCha7FhMGJQLtFsVnh4zSRiwmW7TMnkIKIj+SYdnUA3o2M4BtL39j9x0L9P0VtFrzdVr+jZQwSuOkfGjQ8pG3azMGhI9NdbKsYkIGsVhLSilyNaIhtB7CYf6XeVOGqvWYECF0ZDqLPijxdNKMhbLxcanpJTCi2ddtp6lcpFe0qVlhNQMcBJYiZZxbB8W5E5w0qFtSkBh9ZDMhBhdGWvHbKbJvaNjFcdPJ3iBq+YLjFZs66wMmvESglo6cRK1aygYdTsTHaJNjYbCg4r0oxkTJCsDguJvDW2r0Sr4NO0+LMK9I+vX8s/Xf+XRPPSAksAkDauEUsN0YjFKUUpJJSWVr3BR0UlNSttkVL5cEdQ0qoJPsQ4SsmrZl70WxqOrXaQdx8fEwaIOTFvfS9kyrLiuZNVo7LqKk2dTispzUyFsL6E7n7NtQyeyCWsIqqiEhj4S+jFVKtFh7hl/z0otW4ywHChVRfdH4z9Uy5HLyyzEwVH+ewv9+rve2x2jgJaFbV1L26zcZwnpND9bWsLLToQCkQon02xobeW4qSS6iDSphrQ++XbwsVZiKGXfXFwVLdaFhYUV27MsI8uytU7hRz/6EUceeSStVosHPehBvOENb+CYY4456DbdYQVr4RbZXWgqX9KxntIXjFyBoq4LKRzRPorZdHY5pJtljXccThwLZR8vHqs1XlzwjRB8cUqZUG8y+oUUGpEEyPHiqSipfIJRU4AidzmZsbRMSstqCmfIjIUYfJS7nJEE4Vj5ITNdjcoNvhqRpR6rpyh8TqIT1mUbyEyL+WIOnOKW7buoZoSNbUWZV9jEYrTGWkNVhUg9YwxaKxJr1/ywVn7st151HPsel68mwSo1zc5lK2d8kxJw/sBWchBuwde0rzzMvY9fa1trbyG83DTatovFkGQWrTQLxTxeAkvRsi3ato3Vhky3WSgtC4Wjm/Rpm4p+tUimE5bKDWhlsVrY3E7I9JbmueqIZBRogQ1ZsHJTrbh6sSR3wk3jlHBzHo1QDc8RI6udrCncjAp0aVn3FWHmredAJyEAq1951mUGq4KADX5u1QjVvS3CFdRvrRft1c81rayArlWN3zW8X0GrgsJVDFRCy6QU3uHEYHSGdzmCo/IFpdKkOqVl2zF2IPpC9dhYUWsHvdQCqG6HJioKt5I2bVLeNGzuJuyZKxhKsH4E6JUFx3ct67opxmo2VZ4f37xEO1KflQQFp1Zkxt0cdRxaHUQ4iopfHS2sWZnWpOKzTKWaYSWMnKxIoSucUMXjS1+PnXCf3AsLRRgHvUQfMIWn/lbrd1pT1rHrWZfpVa6DEBznKP0etNodtyZ4qZgrSgqf0I6umuXnvh3MVQ7eYt278NBrXvMaXvva1646/oEPfCDvfe97Oemkk7jpppt43etex0Me8hC++93vHnQ+7h1WsMJGMhOoh8rnMfghYzpto9EM3IDC59w0vLGx9oLgTGjbDj3bXWHxVX6ElwIn4ZG9WLRKQJVhsPt6ctF4yRAcKqYMCDZMmjplfTrFqJoj9yUez7AaUvqClumxWM2S2j4tC5V3FK5ACG1K25qySBn2RxRZTiftMvDB6u0mU1S+pD8cUSzkJL2Mb3/7+2it0UZTFiWddofFpUU2rF8PSmGM5uQTjgeWJ6HDGdqugGXXxMrrNspsjPrcmyUIvagYlRKiHRt/79oa/sgFi3N2bzP7UNo7LijG7A6tNMZoqkLIlGEqmaZl2hS+oGO7tE0bVKCDQTGdGK5bmsJLm+mkYORGJFoxlVQMneH6foJVsLFVMKwGeDyz6bpl3zeBLciMZqEIlvG61DBXjPjJ4pATZ6bpGNgxuoXSFygUM9k6Mt3DS13oY5mK9X6ZVqwEhpWnm2h25Y49uSfTiqNjSk/hQjrZbGaaVI6ZNBbzICg6TpaDoCBYv2W8RwjmCgJ4rUjmUoRMqyZvNRSUqGux5kDFsCopvKfyHqsdRmmsttHKUlTiEF9i/HJaV60U1WzRYrlE6UusDvyIk6D0GmVCwOJeE/6tQegTz558AaU6tFsJ99lsyCvP3Mhx09CxuZOwrpcE61opEqvZOtuinQWFdi7fw6AKQZFt02F9tmGFtVo/kxfItCI14f0uRxCvbLsWoWMUbaMCu6CWqeJMq0aRcVKAUuTecvPAsWMUXC1to5h1wqa2IWHZqq+/1zqCv9ZBQ86tNO2CsQjaNbq1Yw0bsg3szh2wiGBQKiXTy6GHa7kQbms40bj9WKx1AZrrrrtuxULn+7JWH/vYxzb/vte97sUDH/hAjj32WD784Q/zvOc976DadIcVrD9ZarMtS+jZBRKdMfJdMjMfE+ETjDb0yyUWigWMNqQ6ZeRGePFMp+ti8I9QuDLmU0oMlKiTPxwgwXpFYbRBiaL0KUpVaEoEjReLSIqTIcrvZlSF6N06gKpwOd2kR79MKP0UpR+QGYsoIfdFEDDVkEqX2CTBiEaVOqTcJILVghdNZjKqrkO0x2Rw0snH08oyFuaXuOnm7Rx7zJEkSUqWZezeM0enU1d9Wf6KlwXsSju10VAZ94+utmrrc8Zz85a9YHt9ayp6OFWQr2FTOMITfLxKQV55Kq+AEalRtM3qajVmr+dYblV9X7Xi7/Fta0Ghmr6w2jKVTrNYDiljDrHRlmnbDm4A8dGCg9IXiIw4qqvwYunaLn3TYeRyUj3Ci6FlNEYJI+dYqpYofUHPTpHoJLRprFnB7wQlQu41MzohM6EC1GLZJ3cDANq2Q9v0KLxH+0iLNj7DoHh4AmXqY/BW23gK60h1qBykgZHzJGLoWNtQiLUlWMSiBRCuJwL9yofcVx2CkdI4+ctamhLLNH+dO1v3dp1jGyawEoMi0YrUZHRMh7YNRRREPKVUMYjQUfmyUYgXY6GPqWSKfrVA4QusSkh1i361gBdHy7bo2jbjIV7LkQd1TISPwYFxLIoPPvexRwrWZEh5MSojM5Bqh7KKLDVMtw1bpwSUwpcr8zmnuilFjOYdVH3mit3Bj5pUTCXTwVLTwT2kVeiHYVX7mfdPc49bjVbLqu2G8A53jkb0KxhUGYWHDVkICtzUMvQSHSKhx+DE48VRf2ZjISjoyII07q/mngYtKwPuUg3HTvWYTjN25TkKzfosZToxQVmDhskKbMvaz3m44VH4/YRl1kX4p6enVwjWg8Xs7CwnnngiV1999UGfc4cVrB0zwMksNw83MHIplWSsz9qsTxeZSioMNgTK6ASFxeoW1juGfsBcvgvnSxyO3I1omzaVr1AoNLqhfZ04rA70YAhq0ljlUMpgVI/KO0oUWrkQICOegRvQs1M40QyqnI7NSHVGaXK2mD0UvgAMlVisitolQeiN/BAMpEmKdSm6NJRZiHwVwgdp25qBWmQ6myFLe2zctI7Z2SlaWaupNLVl88aYfbQ3BR7Kd6VaIZ7lvFOWKZpl/8pq1dRLsDRQaoX/pr5+KIMXA1TqL3Qva7m+vo4CYSYzIDBydszSWHnvVEOlFYUPoft7Y1ygrqCcD4AmDE0JFkWiEoxO2T68mdyNYmBJhdUJXnwTEd6xbaaSGbSaom070WodknuLUS36VUUlOS3Tpmt71JGte2PkhO0DFyZi0ZRehwxCZTi6tw0RH4tvJBgVrJK9VYwwySoKJ/QSHYsxeAbVDpbKBZSChbK+v6Zl2nTsERillwsQxD72qIYdcBKs6qkk+P5GkX7eFx2/d+pVLbhtTLUoXEaItK5C+gaaSjyJrlBuSOVLnHhyl1P6gtzlLJVLywVedPi+duW7CWluGqU1Q7dE4UZkxmKAhXKOShSFG5LooJCGd6wpfcWoGkRq3+LEs1gshuII8fsNRWIsRmVUUuGlQBGiw9smRYCWaTObbkCAQVEF6jZa8AZom/gdKA1RgA6qAT9dugYRRcsk9JIjSXTCYunpV4G12aQN9iDTifSqkRBQeViqMrYPPW0jbG5ZeklwMdSlN0POakg1sgp2jnaxUC7EvP3lCmHBOk1RqkQri/clYEGVbG5tYX22YdUYSBRsaiUk2pBqFdioNdwG4fftU6e3EEMia5WnqPf/fNdfWlrixz/+Mc985jMP+pw7rGDNfY+FYopSNN5DYhxGhcpFi2VF24BRCYmu6JhurPhjsLqFxHqxlZQYFYoybG5vYVD1QSmGlaPynpYxzGbT5G7EQjkfJjFjKXyJogh5dj7Uzgzl8UKZQasNLZ2ya7RI4YVMl1gdNMNKSsQ7FsuNtExBzw5wUjVFIULxCo+3DilAcodPNdZYWmaGPfke+lWfmXQWqxLQkJiaZgwDWDffnELVOWRR4iS13yrOtV5AfCOO9iGPwgW10li9dlpIEOmCQVHGD0aPBbwopLFayjjxpnWSu1L0dKBdaiEpAFHY33TTduYXF5ldvwGjFak1OOei5SS0soxhXtLptEgSS6IN4/mc49RbsNaledBaHGg0qTZoZdjaPoLSl4zckH61xKgqosAO1tNCsUDuCnpJj6mk9oenGD1ixzDjlmFK2yYc21P0MrBjNatrCIFmy71En7QwrBy78n6M0p3C6izmhPabfkl0rdCoxvL3EmpGF9UAqBAMi5XBiQpjPRY/AY/VNZ2smjbVfj4NdIyia3UM+IK6oMjeOc91ebrxETBu6RQ+WM5VCRqPUn0ULrRbHIJGvGFPvkjIJFSRxoyVfxAG1SCOK0Uv6eERcjdq2JVgVxo6NkGjWCiHWB3yZEufk2jLoBo2yrGOtHPhC+aK+Vh4ZYBVCdrYmItr0CrBqPAlmshaFL4g93m0mmEmDd9DCDiKvsjGlaHQUgfSuagYa8qqjH3kmElDIN2gCmUe12cGG+M69s5FFsD5iqEbBAtbfKRVTaCMkcCoEZSzfgkzieboniXTajnifNwfP/bmQn3tZUXSSxojez2VzKLxaCVYXeFEEVIRXTMWCl/QL/txGATFelBpKlPnmte1zw1xRkDEoJRjvlgZMHRbIFis+1ZWDrXy0itf+Up+/dd/nWOPPZYbb7yR17zmNRhjOP/88w/6GndYwbq13Wfd1IjFQtF3XQrfZjpZDPRZBV4qnJS0TQtPGbXjhExZcpdjtMV7j0QqKEyiYXDU1YCM7pHpDOcrWqaN86HAu5eKCkdLa3qJYaksQAyiEgTHUrnElnaPjm0xX3hsWqK8YVCNyKxF8Ij08VKhVEaiNEtl8MVkJgvVmCQnTTJS38KNPN5UkISgjtznYYCqukDc2pYeNeVaByDEQ2otUWvFmIwJZ+5HWz7Q8KsTvhOWrd/aJyO+TrVRwfJSy5Gp4xOJj4saJGOCf3Gpz8L8IvPzgdZHwaA/YGp6mk67hfeePXvmuNvxd2XDpvXBMorVs2obr/Yl+b2et/GcK40i8KIWi7WWtmkzk86SuzwW73cMqhELxc4wmVR9ppMZZtN1oBTdJBRFuGpOsVgqrl6AE2YsW9u6EUZN1KVyDfUK0LVzWF2yc1SiVMVWYCadRSmJaVymod1rEVd6oXAhWAiE6/rbKf0QLwlKGaDE+TZODFYHIeXFU4lHfHhXIxf6ZCpZWWBfKUVqBBf9uv0q5AZbFXy5ecyZHVRCpgOtHUgKNVasI/RwKP/h40ITGiFF4bC63yw+MU41qqg0iEizlFi/GkThGAQzKJz3JMZiVULhy1B4wg0bqrdOrTPKkJmU3fkevHjaph0pfrA6g8ZHm6DRDKslbHQfGW0oXYlVllLKWAJz5Tdh4rjfu4qWsGyPSa1MSIUiYyrRWK3YkGmS6MPMnWBkOZd1fHzmPufGwY2MnIBUCA5FgoolUoOATRi6WTKzjrtOJUwleoUSNf5ux6ul1bW7BRXz+Ks4Nh2aBUqZwuLoaEvhg4Acd7X0yyWu7V9H5VOsHsX32ULEx9obde+oELCo6upOBYNBn9saHo07CCr4YHH99ddz/vnns2vXLjZt2sSDH/xgvvKVr7Bp06aDvsYhCdYDVaQYjUa84hWv4IorriDPcx7zmMfw1re+lS1bthzKbQDI9G4S3aWXtJgv21Qe9uQjRn4LHVMwxXZAIb4IxRG0pc4tS3U30jyWkR+gUIzcKAwWFTQyjTCsluibsMrNoKqjhi1WGZTStG1G5auYVxogohElzfEQrFGnLVqpZpL24pkvZqh8mw2tgsxkcYBrXPQzhQAaT5KkJDphabiEtpqe7aHVylJ6+0JRSZNHBsunLJUeoxRtu5wOcjgQjKllyrIZQEpIWKaDKx+s5sKF1IGOjR/cMnuMiv6mux13l2DJu/AJ7Ny1m36/z7HHbMOaoCCVVUmWZasCPuoJatxvVdvnLjINGtUEWo0fpJRCi6ZlQpGJzEDLZsykHfpVH6sTUJCZ1nLkL0M2tw3XLjlGDq6ed2TaMJuGfNXZVEc61dK2jo4N/s2pBHpJ8KdXkrBjtMDufBEoY2DeIm4kzNgZptNZiJR+FmtBZsawPtsSJmIRFqs+w8qglEekxdD1SPUSuRtx7dINWG3IXZtUT3NUN1lzJIWc05B3O6xWpv1YGwJonATKc67w9KwmNXEsSShy0DKhsIHWIQm1EoWXegEJDVSIhDjbEIlvQjlJ8dRkvVE2FvRQVH7UKGhKEXLGfVBSrNaI1411amLVsVC5LMwDCo2TsHpV5cO7yascF4XA0C3hpAIvVL5qruXEkXtBpL3C9VCPU62iD3lFR9pAoeJR1OMrWaH+1r7HUJVJNSk0pcTMh3wXEPq59B7nO4TyqgB5VDTAeYdDkWpD1xo6dm2hui+EnOEgfHSsqq4QrB5gZIRS4CSJ11z5/N2kxxGdo9kxVMxmOfPFzmDli0GrKii5TeU6BVR4qujMvm3WYB1HKZZyP1RweYgFIq644oqft0mHbrHuryLFy172Mj75yU/yd3/3d8zMzHDRRRfxxCc+kS9/+cuH3DAhCDStPC3Tp2XKoAUrjVYZhZ+lcDkduxCT55O43JjQr/qhpKE2aB98K4UPNLL4QPEIQqIztLKUvo9VoQZxXuXRl9Aj0V1GbheZyciMihZt0Gj7VT98CJKSu4pKKnq2h9UhV9Ioj9UVHs+gGuF8BQpyNyTRLbQyVD5oyJVyWGNRKbihZyQ5LdOiXy7Rtp2mZOFysNLywM9MzMvVYIzgfQg+6SQKJH7I+xxXq/2szZ6xxPZ9hc2rFaeOUVsxGAjCJF3fX2JQ1N6FK6wNNo+YYG4euXUzznusCdarQZMk9RJsQiUVGh3yVeNF6oClerIRCQsBhHddE6vReor/NQIehVUWiZM/KkSWE33KYUI0YUKWYKHV1rhSwshVVGIYVI6pxGJ1sIw7VnHCjMEowfmMmXQTe4rdjFxFvxQGfgmRHKunMarClYpiNKBfZRit6BgC7a2EUF3G0rahsHq/CgJCsKRmEe17FH6a3HUxymG1R1GQZiWDyuMMZDpBqfEJOXRAalSTYzmeepHo5UjtjtUkOtDSi2Xo58KXjNweRm5xjMJ0KOqatC28aJx0UWoU9y9XWhIJRVO8Cn7PUI6UxuetItmau5AbPnJ5tJIsTjlyyTHKkJosRmWrGDtR0dItrDEhfz0K9pEbNs8ccsd9XPDCBIXXT4GyeKlWj3UVWlNTws034utFy+rBlOEkY7EU1mdE1iAwS3VFJY2QKlgqC+bLhTgmDYJDKxufu0SpEi+BXvXiQXlmk6IR8iLhHR1IuAZ3QEVwIwgiKR6DVoPYH4EhqHxY/UlkbLENpUh1SqJnyYyja1sslXN4KXG1ktMszFYvFLmsgO8vWvdwwYmKFPa+99/eOGTBuq+KFPPz87z73e/mb//2b3nEIx4BwGWXXcYpp5zCV77yFX7lV37lkO6zVDpa5QJGWWBIy3gSbZByN5qMjl2kZULKROUrFopFZtIprDZY1UJoI7KAVQmlFA29lJo0rIqjU1qmRzfJSLRlqVwkdzkQUnGgG+hbEda3NtCzU3jxwfKNEmVPvofKj0AZFJ6hG9EmWDct26KrRiS6wqiUoQQhGzTD8CEaXecZhFrBSmtsosgrYaFcYOiGrMvW0zJtMj0WGr6S66wvESZ6HXMgJdCuKw9cnkzXQu0j1dQCiiZ6tGVXLje2MoJw5cDVUTOHcK2aNhRCJaDF0jOT6FBcY0w6N1GRWjUU4fgHLghK1IrUlnGsaMeYkaoAbTTeC6JCp4TawnudH/+rq3A5HEvlAlZZOrYbaG6TcVTXMJ2GgvFd60H1cZKxtZNix4ooa6VYl4aJupI2ThzzxRwh2C5U2jI6pZdkJHqapWKAkDNyO3CVZk7yIAiVBknwDFA50T9WNf2r8CR6Plh0ErZ6aWG0YljtJHclWim2tLfSMR2sDi+79DBfeGbSUAR+WAldq0njZF0HLIkISaSIdwwdVy+W1Ou3KhJSk6MiLarRSPweoCQxGdoPwrhSGoUDpVESvgWlwioro2pIXUVrnOKtg20qX1GvmDNOlztx5C4nlzzEN4hQesWoGqGikHQSrKrwbpcpZK1swwyF2sV9jEoxamU8wNiQGid/gSoqIi208k3KnjRxyIG5WShDWlT9/dT9qoBEJ6GIhtT1twOzJrgYyeub9gZfu2Vbx8SyoWt+Bvv8Lur/ewyV75CZHGlWsQn1AbTSK4MW4jMXLoyXHy9UoVY5GlSCVRKtUw+0EBKERZoqwerQVsm5NXAHoILvFOux7qsixTe+8Q3KsuSRj3xkc+zJJ5/MMcccw3/+53/uU7DmeU6e583fTXUMRfRFeowSCpejmcbTJTULCBWKNka1ETXEaMj9EKValFJSOMWGVo9EW+aLOQqXk/s8RgcHaOuZy/fQr5ZizqlE60fTMprcLzWLZddrpJraAlKGkYO54gashlS3GFRQ+SWs1nRtm6FbxEgZtdHo7xAhpPPUFFhYPL2uvuS1x5bhbzz0qyDcs7GFzmtpIbGfEhN9nGWY1HX9bYyNp/BtxWT2+FV7NxZlG6/VFE5SIQDCxX+v9Q2P58jtCyuEnQi9RFF4RU0cIfuvHjPu69k7neXAWD47GGjSpNiUUpKqWNs2ruYxvg6tjwEcLdNmoZwPVboI5SZTrejWK+KhgZlm8osZXeRFjqCxiSZVCdppFsr5QE8aSy/psXs0IrMZRgmZFkgVi+RRA28TRmJYrUfrCu+DBVNJnTKWo1SwdqiFjarzHVuIQCkpIahpwFI5x6AaYZQm022USpt3HhZwUPucrOvc1RsGVRPt2a+Cx31GZsh8H6ynEg1+itT20UowYvFYCinwFHGSC8FG9cvxPlq6tR8eHy3BMV+6UjE1JwgcExmGQEPKspVZXxOHjrWKakE2vghAXQ7TxzV7UT4KTo/UdYPGlVZZFrPLv+viEB1EhghF9FmHa9Xfx/rUUIqwWPqw0PyK5yxjixKQkPcelm8LVbsMCqVTDGFd6ZAapFZ+tweF0FIFaOWjj16jlVAv7uHj/LQ3NGHloalU8/09itKbqAR4vOTx2oaqbGGtID4L/akELeWq6x1uHG4q+HDgkATr/ipS3HzzzaRpyuzs7IpztmzZws0337zPa77hDW9Y5bcNDTMULqXwIefUqlDoflbfiEIonGeh3Bw/7lCo38vu4ItRFm1G5K5iWIWydsNq0Fy78CWFL1kql0IeqzKNho4kJHqWllGUPtZwjUu15X7ELcPtdGyX9dkWvHhSTSzIX+HFkWiNVUkI9y8FUUIhVVjuzi2n/NQ+VwWM3ChQYTiU0iQ6wSlo2zbrs/UrgmAaa0jHZGwjgWsdF6jE7RLrhBIoS+cUePBa0FLrr2rFpRsqlWDuaZZzFvcuRHEgobo3lAo+wyPaQdHwKwTzvmnpW4NxIdyUwHMOnegmvaqQovGxQZjoDGEt3EE1YLGcJzMttNIhulTb+G6T4Cd3JZlqNX2YJMvU9FJ/gDWWdqsXIo3LUPzfxGtNp9NBUPgK0SmVhJVzkpgDnYjHSY9EVzENqAwpKEpHaitMxloVwbIjWEdIhVYWo0axT4OYNSphvlhCWIj5uBs4omOZTYOIMUqR2n0vNehE2FN4hk1Qk49+9IR02MUUDik9iQLlS7RNES+YdoIqBSMas15TqGEUYjoGvrl6cAQbUKrANEg94RNp/fobDSUTA1Uc+jtEIS8HfoVAsKhZqhQlo3gLg5eaDvWMp0nViq1SNvTjmmNqebzWVKzzFRVLKCq0UpS+h1UJThR7Ck/LhOIzu3LPppZpUqwg+E3rfO/gmkobxcFHQaGUQcSQu5kmXaj0JTtHt6CVYUNrIzrSrVqtHdFfW/pGp1GQ56R6LrIHoZsClZ8iJBg1pM5kr7/53IVqUOuzlN25xepFIKVerkR8wnDQopNZStcNc4eGpaXbI3hp/3Tv7ZHyszcOSbDuryJFu92+VQ34vd/7PV7+8pc3fy8sLHD00UczX2i66QxdW4AeUfoWw6oE5dCkhLVKr8eqHoNK0bUWwZC7gpCcbfASrNCQVwftWHFHYpRgiOSUQIcIkRbqUPkBO0Y7EEKy+a58J/PFHJVUzaodiZ6J2p5jWA2jH8cBYZIrfVjGahCLANQpASGHLpRQJE4ehS+a2ppKQEmYHAIF3F5JZNTWqgRSrHZghtiRWHZOVPiBUGMPhffBqhVA6tpoe308lVQYr7HaUMal96DWc9XyzVl78j0Y1JVpfPTDHqaYqgPcNOQI4xjzVxvmioKWKWmZBKtCgYfCF9FCV2Q6o3RF45/v2C7dJCykrlFUQ8/3f/gdiryg2+vR7XYBjzEhXUgpzfU33Iy1mrmlebRVoYSmhd7RfSAEweUuJzFtijy0TlSKl4zSZ2iV0LEVEPysdXTnumyKYdWlEkfLeFKjKL3F4OgmBq2k8QOXPry/PflO+tUiWpVUspubB4toJbRMi42tLaHucPRP12lURkdLXAnOh/HVr4JFlhhF5YXWdIIvK5SJqzb5qmEiSuPwTgV2RIfgPaJiIJTLjAJ1AYvlMWZUXZ0pUMYohfdVpHA1lTgQ1SzyEHzqQSkMPnPivjpS3zVW7zLxH4qkhvvUXl3X/L1iGNXRwPHbC6yLB4ZRjBsSNU/LTtFLwh2sUuQEgZwZuGm4h0G1GwjpLuGSHkUeBW69LOMIpZKo9ClS00erkqHTXNdfirm5moVyAeLzbuseTWpWVxNSkZitlYowLqLq4YnFFTSV7wEaR0od6FQHsGUmUNmpFhbKwHJkxlP6Nlp5jNJMdUO+cJKWkY0ypLdOLBwSfEgY2u/+2xs/V7rNeEWKRz3qURRFwdzc3Aqrdfv27ftdJWBfhZDzwuJuuJHcWowuYupIBRp0YvFlH5GK6R740YiB1oxGI5z3aD2ivWETJoNEB2tToeIap56K4K/JbIuiDm6IVFPXGoROYyU2eZBKo5Uh1dkyXRiLTIzXXi19GMDrUsMCXbyE0H6EmFcboo5rKsyJRxMiUxfLRapyRMf3UI7G3+Sj/GzIjnruaSJdVaSrVNQ+a8uTscilOocuikhZKdSWQ/IlPrWBZuIJ08a4dXuoWLHKx9h256Whmg9nScZxLEeDL1vjWjQtrbEqUPKqmdAUrk7diuMlTMrBH1YX7i98TruTsX7dLNYmJEmC90KrlTEcjpiebjHoD9izZw+z62ZIkxSTavp7hnhK+uUChQ8C0/mC0hWU5TSYTfQSG/KBvcUoT+kTEu2ADKMSrB7StW02tTo4ERaLPrlfYDZdj1HtptSgIlgaJWFFknrZQoDS98n9sEmZaIpJyPIybOOMRKIULRPSRxZLidcIkcRTLcVONaLywXI0NgpO8SF4SaWYNFQh0yqkpIxXAQuMEYTAmaD0BCFvYhpLdBxIGKfOu0Y4ahWrqtXULjRFJ5zUwtQE6lM8IqEqUgiyUoQoXtfQt8EdcCCE771t2xRuOqgIUlK4AghVjjShvwQh9wPWZZ6FQrNjRGQuBmjVxkuHsNBHWG0rFJwArdIoDMOYNCqwYU4chS9wvsKpsNiBx2OVZbFcJI25uM3MpcK8E9RiHxRM0XgsiMeT4aWDiMWJIjVLeGkxrAxDFyLTjQ6+6dRAJR6rlnBeMNoBLRQ5C4ttKhdyba21WBPy70eD24MKNtj9UsF3Ah/rOMYrUpx++ukkScLnPvc5zjvvPACuuuoqrr32Wh70oAcd8rWTrIXLS0qVsGtuQLfdojc1w6Dfp02CykcYk7G0MMIYxUK/D9qivMYkYNKSrl2Pk904VYCESN7aWtVjNJCNhQMAOtaGpelax7G/T0xQ7ByVeAl+CqNCGk7w9WgyE8LUF4pdFC6Pfh5FSMKlCcpQymJiUrsThxhPwQiVKxbsPArNVDKFrgWdFrQmrg+5HBAxXvB+pXxSK1qde2GpFNZny8XgAwUeBEedWlSvGavGr6FWUseHipXtipY0oej8eL3Snx+raeW9bW6jFVNJTcfXEbGBKVBoSqmFaZi4vYRJxaCir92iteaE449b8XD1IhGBqp9h49ZZlFY4qdiT70GmysA4RCFSt1cAly+RVpYFtY7edIdjekEg9ssNjJxnNjX0EhMFfyiyb5XCZF0WihaaUH1nGLnGlgmT4lT0yfWS5Ty8naNb2DG6Jb4DHYsFaDpWUReUDwpYuJZWMJtpUqOagvKDSphONYkaIVIrYuF4aawvi1YFKi4qVz/t+DfYKHN1Oo5YIG/ih+tvpaZwfXO8wbMcKODFYbAYbUKalUpAhfQ2FalbrSRSomGBDaUKQh0xi0jRKMvjGA+wq0eXF9jc2sTGbCOCMJfv5vr+tdTKqI+KpFBxQ/86clfGHNKUEEgVE4MZEWLPNUIPwaDVKK7IYtEs4XHR514CZWy3jsp/uJ8T4cbBDQBxf0xl0rb5e7x8p0hJUBAgUUtoZREKEIdXQ0rvmSvabG6Fta3dWM1qpRyIi77W0JbpnqdyCnA4bzHGB4YlWTvQ8HDiwLWC7+AW6/4qUszMzPC85z2Pl7/85axfv57p6Wle8pKX8KAHPeiQI4IBZpJbWHfcVnLXorN5M0MHC15BZwMjKTl6usOGdVMkiUVrYT5fYFgVeAk0RNt2ERy+CsEEVoeyBhVV41MoXB4/cNNYh4lOca4PMo2JFY9EQooHEDXuMAnPpBme9bG6U9FM3FYZFsp5vAhpLKcYSWcqcTGnLpBOIiWp6qFwtKI/j0ShC4MbCXPVHrJe2tRbDe0B8SpMFvVgb2TJ3uJJVvxTo5pltvaF8ULdPw9qP+3e1wxF1UN5NK3Ajvlw64CPg0oh4BAW8FaxmEUdhFLfQ4KAWKpcrI6jAysimtI7Sh8UJcFhYxUvURL84OKCX1br8AIaZ05IWQBBm5DKEzl6kmx5JSWtWjixKBYBja80r3/1F7jw9WdTKYNXIQWll4Q8Vicht7RlQhWfes3LURUKpNfR1y0TCuWHn3CQVYpalaozSH3MPRxVi+zMbwKCX1CjI4OTUKcpla6MEe06luxbx8ZWEA658/G4KlK6huAW0WgVrPLQ5bUvMATPrKVKhdSmIp5SV/SReHZI7AhCI0QTB3dHPaCDWpO7EV6CRWVUXAJG1c9EiLSNtcRFHJ464rheN2uN4TPW1NrXGlKX6oIgy0pC6fvcMrq+UdYLn4dej2sZG0LqDFTU67KEopt5vE4R+28Qn9GS6LoAhW78w0bV/uVlXmkl81MX5RBCS2NfiidURvJYVcTjgxsLBVocuR+iq5u5caDjMxkSpXEyXM7/FdBaY0hZzDPyMiXJNCWafMnRsgl5sbhGbx5eHDgq+A4uWA9UkeLNb34zWmvOO++8FQUibg2WynlM4ekmXTZ3ptg5auGKlMKBlOB6PeYGYd3LroUeXdq6TeHyUPJsNGJYDdEoLFmMfHTgVQiEiLRU6UPVFRdXz+hXAzKTMvQlTtdDVZgr5liqluiYDv1qwLpsY4hWLgratkO/6AdNV0Ie3qgaUkpJ1/aYNjPMl3NhIotC2cWqSkqB0gpUgvMlWgdat5KSVGWU/Yq+DFFZnIjGza69Z4D9yJea/oWwrmNRp+rFbSJCka/O3wNicMXKaxwQdVvWamOUt+NBBSoKvkqWF/VuIKvPrzfXxsRa3bESQjGqGr923ZfOu7B4g8/ZPnSkOqWb9DAqFDwItZHDOS5GqS65EKld+8sTXVPJ9Z3qqkIKcVBQhipCVcoUlkE5CBSfVLSUUElGv0xYzLug4a1/+Ele8aePw09lCIZeXE81M4qWialAMR+3Xnpu/Nn92B8LRbBKehb0GCuglGrGvUDw1YkQasU6iIUhFCE+oI6aV4RydovFPKGST6DOyxj9GepTB9GtoyBx3jXWqJDHfvXNN7jsSgnlBkNvRw+maBQtlAqCu1YOaovUxOhW1xQ5WK5zHWrmliHydyxYSaFJVIKgKCUEHUqkmUN+sx9zi4z3ax1Vv7If62j/moVwVMzlu4nFCDGqi9EFypeAxysZ6ychqLshGlgog4+aCqVi4QUVDQZJERyhulPIv6VJWzLNt2BjjEmde102BTmkiStRCF5aKMJSnEqZJk9XELwf0pdRpNyJlLtqIrK1UuS+S15NIT5lqQzBZWUOKtFoa3D7qKF9uBHWY923KVDd0angA1WkaLVavOUtb+Etb3nLz9UoAEWKJ6FfDUEGWLWeXjJFqRXDfsE1N5TQyuh1hTc/5wMASGoRrdB5BUpR9VJ8otGFa/JI5u7WwhRCPquwA9h9T086p9ElVG1o7YDeTZ7WrgozqtCFQ4xGOY+K4YKjLR3swKG8YBZi7msnwbUsSgQ9cqjKI1bjM4Ppl/i2RTnBLAxRpcP3WqgiTPTDo6dp3TJEVHB25esz8nWW6R/3MbuWKLbNYoYVqnQsHjfFaJ0mGQitOYcuPD5WzPGpRhdBeLt21KC1QnlBl0KyGARnMZsw2GRQTtBRluazKvRBC7QPcysCosFlMNwquI6HXoU2Hl8ZpFSoSmPnDboEXdFcQwm4NGxTHryFJMTrkM5Da07IZxRVG/JZ8JlgRoqqI/hM6By9SH93ByoFmYeRRvcNugiWuovH20G4px1CNi9N2pzJgzNZgksp9JEKz6UraSSxyQWTe8zI4xOF1LUWnaArwdvQfzUjYPsVrh36Di+YURXGhQiq8rhuBlrhMtM4k0UrXCsIal14VK1RKNBlpDmVCssUGsUfvP1pLG6fY9bC5m66YtFpF5WSQSWMnGdz2+A8LFYhN7gp6xhP6Y6t9zqoltdlnU3X0zZTLFW+Wd+zZ0M95UCF+OCbEkiMbix9BQzdkOv6N8QSg7OUvoPVLRJdYXWJoSKJBa0FootEUKqkSUuips4VqBBsFSb/IsYBqGg9ZghdErVAJBrjeaE2uG9SPmi2G51Q310i5Sy1cuQ94PDajwXlqSboyUvG7rxF25Yc0clWKWthjo7U/ZgfOgR4hbCgYDUGZssowzG9zbRMihPPjtF25otFqHNZVdpEMXsJYThSR/eKjsfFvtJlEPqEPFfGUpSCIhcqUc1kM7RNh9JXFD4nd0MKF2qni1KIBKWn7rEmt5cEpcqY/lS7AcKCCEaboEyqBC+WkeuyJ5+mkiBw69Ry4wTjPaIhs9DJbvuYXC8avx+6d3/7bivcYWsFh4jBGMqNo2OHtLH0S4vuWkbe4ZXgkhBPK8bgWuFxzMIQSW0QKJXH5A6XGZRAe5ej7Gimf1oxWmc46t+E+ePAjMC0obUnTLo+UYi2pIXDZ4bhpjbt7Tm69Iw2WHrDIDwximJDm2LKgFK0dhWU0wnp7vCx26UCMQoxirJnace2AahRCUaTLFUMjuqQzpWY3JEslohVlFMp+foNmJGnnEoZbbSYkZAtePIZjXYaURqXKUSFZxOjcJluKon5RGGHQTBUHROVZGmEai14lAPXAp+AXp6nguDVkCyoQKdtqGi3SpYWWqhBim97fMuTLGrEhOuYUMAFb2m2iYZiKgjBWrUWHe6nBMwomMViAr29tLMT/qEI+XC9Esk1uq8oZ8LH6jNQSwpdxOsShKbyYEpBNJhCKDsaXQVBWbXCfauWwhRgRwI6vB9JNN4EQWggpIvkHuUlKCghnJlkz2h5kUcIi10nBt82jWDWcbkxnzWLjdY8HbpyQZB6CYqbDVSyrgSfav74RZfzV39xDtNVjutXDK0hzdIQxKIDHVx5uLlfUVah8H5mNUMX1vOsdYPCezyBugtWrKb0CqNSUmNomRZKhcIQTiA1Y4tki9DPQ2pIZjR1JpHHs1AuMqzWMXKWltlDojUew9BlSBXWL010+H7DfSu8KKwuSHROovMVVqqXDMUwWkqMCSgLOET2xNWniIKl9ixWeB+KrSz7a30sCLEskGqmqF6pQvCIr1A6C5H6KgSLee9wkpD7LnOFomU8u5YqNvcU7Ui9Dp3Qs7VSQPPb6ozpZB2B4/AMq0FYexZDJSkt0xprp48uDINgY2rNkJqkhxTEUvoUIQM9TygcoRuf9zKDVPeHbxbiKFwozzmoFIMqwWqNVgWpcgihxrrzMSpbhQAzozSVFARLOfRc7dv2CCpWvMrdFHvyLoWvlY4o2JGQeqgqXJGjFSQojLvt020OdqHz2xN3WMEKGudHeBU0yn61RKoNveQIlnb2meq0mJrt4FC88vLnkmjPay/6MLoUVF6hCodeGDI4YSO7Tm2x9fM78d2Mzg0Vo81tzMjTKYRsT066mLD7pIxkANlCHEyJwrc1Ylpku3PaOwCt6B/VpnftiHx9SuemCtEa0YrBFkPVhs4NgQ4uZ7Ngve4sGR3ZA4H5u1ha2y16rk++dSPZoEA6KarydK9ZoH/cDGVXs+4LP8MM1rFw4hT5tGb2RznZ9iWSxZSrn9xFl4pN/+1xmcKlCl0Kxayi6liyuSBE7cBTtRV26NGVYAZhFR2fBsGrK1aUz9VlsCzNiMayS5cEkwtVW+GNwmeK6sYOi5lHTZdIy6OHIX0i3+TpXKcxRbBAR1s87e0an0C+yUHXoROH35GRzsdJ0AZhbvIgQ0ObFKIUutQ1o4jLLLqAsgfaQbZTY0bQ2h32V+1gedqB4FoKb8COfGO9pgsOnyrKTmifS4PwN4WgvOBSRdmxjdIBsT0SWAA7CMwFBCEKoOLyeqIUkhioAk2sSo8kOghLAeUEFZ2hvl5g3At2UIIG0eEcLYIqHTpXqNLxyqcFduj1H34UVREKVWgJC31PTfeQhSHtkWe+H1KpWomm106w0y1ayXLU+o2DXVQ+TNqKFh4wqmQmnWJzaxNtY0mUimu0Bt+3iaOilyjAU/o+hVcMqhGDqmSumGfkZtHK4WSaoetR+r2nkhDpb5RvgkcUkJkRM+nNaIooZASrRnHqCxZoTQ8EsWsiVamBKvol4n4VAsmaKNg4f9bLK9aeR4VCVG19Bb9w+KuLpqBts1BARkqUWmIqMXRsj4WyIPcl/UqhraZroWOJBTpqF0m46VTSpRfjIEZuyDWLP473MGR6XATr2G4drb8EUQ4REyKopUMpUygMTgJFbKSNUR6hXr/WNZZ/nedbv28Qhm4JWyUsll22Dy0Kx1QqHNODwu2h9EEJDmviVrGu+nLhHDeW5RA+hjBPjHzGXN4j9yk15WOVMJUq1qWC+JLUDBmUIYfaaEVVLXFbY2KxHgIWFjZhkoQsLTGmCANMeXqJpd1rkS+O+H9/6z1c/LfPoWMV06nh7694Gk9/6DugLNlzxlHMfneOzndvpP2zLm6mjao8u06bYuYnObrypLsL8o1tyinLYCtU0x6Ta9o7HS7VmMJjCk85naJLjy48ydCzdHSLmR8tcdMZU2z+5gifKhaOE7b8H2Hh+A7T1wwZbkrJ5iuqdS10IfhEMfvjkl2nTbPhm0IynyOppeomSKLpb2ujnNDeUdK/7zaSxQpVwcZvLeFTw+iIHq2bluhe32PqOk9ne87Oe7UppqF7UxCIugwWnzMgSmNHwTJVPggICJSorgTtgpXrk2Ap+kjl2JFQdhWmikLBCYjCtaDqCravqETjSaDtYKQRLWS7gpXsTaSEHQyPdKG2YssxPTtgVCQUqZAMwA6FURatVgtVB9IFKKYFkyvSOXCdIEyVD89lB+E57SgIY5sL3oSAF58oiulwXY2imDLoQrCjEC5tB1HKShBmVTsIVtEKl0ULxIOYoIyEZ1GY0iNa1dEqqMIF6zS16LxsHMWSGfDg2haX6WDpIoGqTzS2X6Eqh3ISFIeiClYrDmnZhk4OTjrXXPePnvq5RoDX+PMrzuYVz/+XQG9Ha/udf/M09tw8T740YuumHsYahmWJVYLoJAbcOcQHK3ShWKRtWmF5Qq3oqpVVl0pfsFQtUviCUVWyO++wWBoS7VFM4SWh9G2qxre1llUgYxGZgdrNXcawatM2o1CeUofauCFlJASEOZFIdUpMRXEoUpRy6JgqEhhZHwOhgGjdLhf8CPRziNan8YG2TBvBhSX9XAJ6wFIZhHxq0pBTrD0bsipE+UrFUtmi79tYHVchiiVJFTrm1EKi2wzKOYy2VLGeeKozPA4TNbyw/FxU3GIcRZ0rH/yhLSrphoXizYDKKyrfpvQJorOYrgTjZQ7rng+0d/AV59UI52/BqhbTyQyFb9ExlrZR9Mug6Myk0wAsliOKckAo/C+BHarfWF04B4WTHrtHGxtfplFCLxE2t0tSHZbm274HhlqzNOzSThMUQp7f9iUNS9GY/abb3P4lIu6wgtUYx3DQY2mhjdKeJIE0UdxQ9ilzh9eG57/nWSyWnnWp5eVPeS9/89Fn4XotmG4z9bMRqqiQmS4Y0/ivpq4r8Kkmu24PbkOPpW0J3ipmfyTsOk1RTClaexR6jOpLdw0pZ1pIdKj0rs+pplI2fSunf2RGtrti638GyzAZQLEuJRlGX2eqMSOHrhRm6IIA2NhBVYLOPMMtWaAvnZAuOspeGCDDjUEwu8xgcocxCp8lbPxuESb8fsGG7yqqjmG4yeLTYGEm/dCOsqtxKSiv8ApcJ1DG3gYB7G043idBgNihoF30rSIkg2gVSKBXszkVzTiwSwqfGPKNimRBU8x6ipOGsCPDW0FXCt/2ZBuGaCUk1rG02MLnFtPXVFkQ8MVs6N9ySvCpMEoUPgtBHMW60NZ0PrSp9vmmi5DNB2s8n1GU3UAzZ/PgYjKmKcCMgkU/mDaYHJL+GBMRlYmaKjY5mGF0NMb3rqNf1aUaUlDeYEYOn5ogaNWYT1sHBUGMRomQ9CtEK0SroNAIjeNTrEIPS/AeVUezjqrY11IPfiQL/jUxKgjdWrgaxSsv+EywfaIPTjS86Onvp05O/ou/eBwvf9FHEKv58785h9mpLjbVDNwSI0CJp8hLbsnncdNtZrJW7XJuKEatTFhRRRzDSrNQpJTeIJWnyqEqPeJzsBqVpWDWqvqzWtgKipGbJtXz4Otc0kDWOV2f46K/NVipIZfTRssppLgpVSFU1AUK66IOOlqkdXk+x3gxCMvIhfSWyrvgT5RwDSdCSUm93urQDehXfbwDVykMQ5wkgMFJHnNOOwgqKhuCMIJKI6ouiyggOYXPUU5Teo/EhRx8LNwfsoxNpI4cqS5w0kIxwqoSY5YIQVBVExgVnjMW7hdHvQRfeH/h/5WvcGpIx5Z0CGl5O4aWkavwYtD0aVlNosNyinVxjkC/B1+viVUnS99mLl8X8kWVMJOWTCUjEp1jlKdfjoJfOw2pUN1eWIlIa43zt0NU8J093eb2xDte/E+oddP8P+96BFq6tFSbqvK0rUG6LZLEsFCF4ta/96R38z//7rksFrqZ7MQqJEtQgxw/ZcEJYjWubehc38dt6FHMpExfU7DjtIzRBoWqIF0I1CAEq8gbRbmuhV0qcS0bfKdK4ZWmmLbYQbyXUagy0Hwu5rN4ozF58JuJClkBrVtyfGbQZbCKujeMKHuWqmvIZyw29+i8DmgBnxqSuRE+Nbhegi49ZTdhtKXDYLPFZYrODkfRMyEQZ+TRZfjtU02VKaquJp9RFFPB8jM5tHcE68jkYCX4HqtWsPqSPk0fuAyKGdBFCBByGfg0/Egq5EeUdNYN0Vror9PYrKLa1cLMG/Isoz01QkThC4PqG0yuKNYF61NVoT0ISCL4jkOVGrQgRqGrcJzLIk2dQ7rko9ITBG+yFIS/qoKQ1FVQBKp2sKDThWCBF9MaUyxz39qFa+IEMxK0E1Tp8XY56EsUiFW4RJEuBipd5yFiVrRGMh1oX62w/QqfBL+pRAGvxsJzVaR6G6sUln8rhXJhn29ndQ5R2OeC/3YcqnSgdey7YBXXljDAK5734SDSvOZ3n/MJ/vrdT6ZQ0O1tYArIhyNe/LyP8Oa3Pp7CjVhMHdbqJiK03UnxqgSvWMhH7MqnKEYen4c8z6QlJJ2UigRfOmQQfaapRaUJaLWGkG1aT+lb5G493WQPtSj3COKrZddE4/sM6T9GFcvErq7r6y4L89pnG6hS4r7lGsThaN0k1GhdC/TgXxQJvsSwKlaI8m6ZLliF16FyV6qDAK58HTE8QEWB2zKzzKTHM5UYCj/guqUbYklUxfX962L0c/SHxhiDOioagm9YYsqLVgtAWLw+tD8UcxDlm+Alag+y0uioQITrBWYlHBfyfDVh9RfnQmEOVMGgGrJUxvVutWryilXMqQ0LwCf0qxbzRQ8nhqnEs6E1wPudVFLhQjorpSuBIUqrmAqkKPHgFWUsJ3lbIixDsW8/quxn322FO6xgxQSN//99+mcoZ7NgGQBzJ7Qou4rOLZ6qFXyMb7n8Av7wqZfxpx98Fm9931N56Xn/C6+DUHXru+hBgR6WVOu72IFD75ynOmI9ZuT4i/e/lZc9/UVc/XzDpn9LmyhWXcXJPVowZm6A3zyFLhyuk2AGJa3chcm4Zch2CeV0inKCT4PFVLU1yWJBMZMEwbsErmtZ3Jay8cvbKY+Y4Zb7tels9yGIxkKVaaSjSRccykM5pUn3GJIb56i2zGB3LbH75M1kCzpaap7rH+fY9IUoOHTwhXoDKMVonaHqwHATlHcZwVxKtlPT3hGoVJtLzM8weBsCeoroy7RDyNcFwZVvENxAMTqqpLt+QLHYQu9J8JVh1O+hN4845dibsMqzY6bH9p3TMJ8wXOxBLyyZJ9MlVZnSvkWFIKccXBskAbGCyjVmpMGHACozCpZ1iOStqW4VhHsS2qd8oK9rGjpQ4YqipxohG3ypwVpNlnwINoqRwt4abN/VcVLB59oKwrIOZNJVUJZcqrCpRudBKXJtgy5CRLFrG8ygCkJVBaGsS49PTQhSGpZBQEar0ndC0J2qQiSSZEn0y8oK6lchIXpc60Adly74dwkTGDpQ9rBs8YZgKIVEi/jCF/5v3vG/no4vPUlqeeGLPoZKNL/z0n9YjlCW4G/GCZe++4ncUuxhsRBy36FEYeyATldQScKbX/gJXvSWpwAGbUxQYJ1H8hK/OEBZA1kCtq53u3JiExT9agOojK5dRFEFsSImPr6iY4M1R5O9GvysiWoFa4wSq7Jgq4pgtMS0mbrQYAsVAyDDPaWO9qFeKN1LWGlHo3HKoaQOxNHMZuvoJbP0B31uzK/DqIzSOzq2Qy/pxapSIbrWiyI1PWbT4FdumTYbWuspffAPL5Y7cXHlndoiDu92vF/qjN0ilkcNUcZhtZkQEBXODe0VhHrpu/FrEp8rlqkAUTHX3TfFNZazbyWmQulo8Ub/tjgcFaW3zBUh9ezontCxA2DEUilNX1VVgXjBl0KdXSPx+1JG0P62txZLH5YH3ff+CRW8DAXJ7gFqWJAtDGE4YvF+2zAFtPY4dt7LkCzAhu8VbP/h93jFJWfxe8/8AL/7uvvjM4tyHj/VwmyfQzptfDvBLOXYXUvgPHZuwOjoGS5+xNOYf3CbbR/zZHty+kdl2KEPAT6lR+eOYl1KedL6ECCzZ4C2Gp8a7NwQyRL0yOG6SQgMSg0mWhDpfMVga4Yd+ChwNa5l6GyvKI+YQTlhy1eXqHoJrmWwMcCoammUCxN8suQo1rfQUylmUJJvm6FqwfzJQu+nIRin972Uzs0lo40hAEd5ieVYVWMRtnZBe2crpMUUwReJF5KlimImoegGQW0HUGXBWi568VU40IUi3+DQfUM5ZYNlug5wCl9ptswu8VtHfZH/7yePZqY15BY1hYgi3Tqg2N6GRKDQ+FSoOqqJ4g0UqqBKhS6iUI2r9IgFVUbLVgWLNJ8JQjNbCO2ywxBgBTEYKgnKVs3+uCwIce1qS1bFwCUfjlPgWhpTCs5EAVWFScKl4T2YUqiy5YIcIZJaNf5rNEHBiqvN1ylOYlRM04pRw4nBpwkmj+lYSiFWI4kJrEc8r/kEav+tMYjVMSo5UPJidUNd1xRxaHsUJFYvJwoL/I8L/hZVhdSxZrH4xnKmiXBX3vPbz/wwL/rAMyhFMDYhNfDWF3wQMZqXvuPpvOivn4aS8Eq1UXgVLAbpmJCC5By6dBTDAt3OwJqwqs1Y4QIPDKoOuUsRdKyDHBbBs7rEqJtJtOB8oGu10njlkVjQwGCCAFEm0KmisdpG32WFVjlhXdEQ7BQqFYX76+jThVgXWfkmAEgRFhMPv8PaQpUvEBeE2lQyw1QyFfz6sQvrJfdEQv3k0idsyLZES7BitDiHc2W0nEMksEgerFSRkLsrYTUYiYxGrC9CWHkpiEIfy6fqemWfulKVD/mywRcdil0oHYIKJb7nYMlq8FVUIkPRk3qtWl1XSY511UUSFstpQHN0D7p2nkEMRCpcFdOTHK4SxPuQ/hyVSrwglSC5oizvCMvG3f5UsJK11gn6BWJhYYGZmRm+/N1v8PqnfwyVl0HzTgx4z/DoaYoZw/RVC/gsaSak17zpMfjRiP/5e1+gmEnIdgdfql0sAsWWBR3C7hnAcIRMd/HtpNHqi9kUnwXKtvYrQvTDjTy2X4UJNUZ7ouqIzzB7lVMJPtUU0waXQufmqvG1uZZpLG4VcwN9qpvJWUzIc9S5x2calwSBaIc+0ruO/lEZne0FuvDMndDC5LDz3tC5QdG7yWMKoZgK1K9PCD5SgdacD8LAhCAdMwr+urIbJhk7XE5LGa43Te7m0jFg+zA8QuLEGyxLu61Pr52z+/oZ7LyhmnG0Nw0oCkuaVoz6KUoLfiFFlQrb1+giCD0bI+/LKTDD0M9VG8oNVZilhxoz0OgqUKlJH4gUcHd7yMUdbAoRzT4JgiddjJHLrSCMk77gLZRd1UQ2Vy3VpOGICc9ic98Izhq6juCVQAGrShAbfLJVS5HNuUC1V56qY5E67SIep0qPjWlYrmOXc10jfeyzUAVIOUGPYkGF1OJaIf8awnsK7yPSu9Gfq0cOXVSN3zXceJkuVs4hdSzBuOVaC/44ziBauN4TQ4QRrbn4A89m6ITSh9QbyjB5Kq+wWlOVjqL0ZIlBWYVJNMWwwhqNeMFJKNLfSk0sjCFUziPRr1gBKlqxIXdVSHSJUY7ChYW3A4Qpu4desouwoHewtLTWjYUnIkGINr7F5Sjh5TreAmTB0sOxrEsE/18dLVxHDtfr2xqlmUlnOaJzFArF0qDPjfn15PHcbd0jMapHKbA+0xROmCs8XoR1Wah+lbtQ3iKLgvUni1eH9ZZVXds4VLNqyqZBpIEZS5+p/aV13i9xSbq6zrFHK4WXBOdNKEChDEgV6F9lCDWBy6YWtpOqKW9oVYI07QhC2uoErQyFazGX96ikwxEdoWvn2JPvaKKwvWSEmsgFrihD+LxZbnXM0EUrzcLCIufc9zeZn59nenp6f1P/IaOWFS/9998g6+27dGK+VPJXD/6H26QN+8Id1mIdFWmIvKypsxiF2bplSOeqJVAKnZS46RZ46K3fgBsOopUgVN2Qx+oTg+nnaCdUM1mYdMoKvEeMxizlzJ86i2hF98Ycn2hcK+QzKiH4TYWQB+ulCUJxmUEUJEslunDB8ptOKNuK3g0l2c4R1Uyk+2q/qwJdhtxa0YqqEwR5tqfCDiqK2SSktlhFuuDQRa25hsAmu1RSdRK6N1YoL0xdk5IuBWGTLUgM3FmeQEUT8l1LCbmsLkYBx33ehFQdMaopMlHEgCAzBBSYoaLqeXxLwCmKfsL8NV2sU/gsbAPYvG4REcVokOJLgyQeVZl6IZNw75QmZ9ZnUE57dK7QA4Nve8xQE5fewCdC2VNkuwINbEae4aaQi+xDNbrl4g9JEEbKQ9lRkcYOQsnbQBU3VjwKE4vI63K5WINLFc7oQF/FAhISi0pAuEYTWe1D2pKEXAewgSY2eRCIonSwep2PAUym8a02qTdRKfQxmrgWqCo64eqgpbp9SkKMQA3RYTypMlDb6NB3ojSqdGG/J9DGEq22WIyiVgb/4CMvYGfuKD3sKWrzOI5xLyHf2oRXrIwha8e6ycTcxlYQom0dKgEXnli2oPadG1AG7y2qrJBRoA11lkBqKSRBqZS9UUpK6bOwgHp8Z3VhfSDWzg2Ll4dFE+qm6+hrhLBEXD5GtsZJX0FdfMKNpa3UA88TK7QR1qjdMxJ62Tq0HzKoQu1jpcLEqQjlI9dnwa/bMnF5dx+W4duVuyi01wFzgMH5CiGsoKRJo3AMdXvDq9eRqoXleloWLxkiGqPLWNc67NGqQuloDSuPUknMVgoWqiWs7FOXtjRxtRyh9ksHOyEs9N5lWFl25zMk2nJ014HsYq6YCzRyHhT+JC1RKqGsQHuNtuBipSyhTgPSZKbForrt021KMehJVPDBYaFwgd7yQXM380tgbZh0ui3UqOSt//p8/sfjPoAe5vw/Z7+TP//nF2OGcWHyURUEZz+nmm2HakyAm+1g8pJi6xRV28CGjNmv34Jb32VwVIeiF6oa2b4LVo4IZddgRn5F8IuKlohYjVcKXYTjezeHgt++bRufm08MtvAoF63bmRTbr1g4NkEMpIuOnXdvs3SMUG0qMbsTtv1L/BDykPi9cIwlWbDYxYKlo3u0dzmUQLroWTrSkC0sCxk7jILBKHQu0dcao2GjkOsfBZ2bA1VadhRlj+bZXCvOxSZGELcdKvEoI8h8EijXjoOpCm09U+0c5zV5ZVBawHgYJiinsCEIs6lcpKNf1aWgKoUuFXoAsmTQLmwXDdmekOJTzMC6HwpL20ygdCOFbEbR0k+DIhX8w7VQDM/qkkD7ig4+oTodSVdBcLjOsoXuLSQDv8wi2GXqt2qF6+kKUidRICuKKR2irKPgV8JyihKCT3QQzk4ixe2bghGiVQx2IvRZDQljK1iYOoyzQRkFr27yZxtEYQpBYPpUw5ilWidPqFgZChEu+eSL+NlSxU2DKgr8vT6+qgIbLcJIeQYJVR8YKjgd2bFsahme99TLMLnj5e99Fnk5VgiwbqZWqNRCagMdnZfIqEAlBpWl4TkhPpdi5LpUvkXX7qJt54PlXAf5RD9hEAp12230dQZ6t17EGwQvFtQoFCGJ/Za7vKFSgw0Y3wkKkQwvCZWvK+sqwNA2BkVF2yo6ZlnBKX1d5nC5+9o2PM9iGRaXsFoQn1FJDy/DWDwj0rMNX69i+UKNlxSRAqU8kCK08GIxqkCkGqtSFV0mSKimVNPDsQ6wURKp8GVLsrZ+A8nsqWtae0m5eTDDyCWkWrOtN6Jyu1gsFxHv8UuKlIR8UOJnc4yp8KWgvSGrWuRmiM9CRGCIyHaUqtrvQiaHC15UQ/Pva//tjTuwYPVc8rcX8KrffA8MS1S7BUWJGsSo3E7GC3/9/WA1f/LJF7I+NXQjLaxzh08Czec7wTfp2pb02t2Q2BBU4WG40dC7viQ/eh3ZdXvoKEUHyNeFIASfKNA6CMospM34aLnafgVe8JnBpxpV+aaIQG1tDLe2MENPvs406R7pXIkZOPBCZ4dDtOKGh6Ssv9Kz9YtzzJ86i0th52kJLoUj/z3n2se0Of5d11HcdRNiNeu/OceO+69rhMzU9UI259h9smXDd0t8pvFWsedEhbmeQJEOhf5MECB17mjZDaUMA/UZvj+XBUFhh4H6zdcLqtBQaqTtsBtHVKMEbR0iCje07KSHG1j00DSRvYEGVs0E73WgdHUJ5TRU0450jyGdi9WeytqKJgYaBas5m4MqU9Gqg7wXhHPSD2xCHbBUQ2Lqi0sUVQdQiqqjMCNBxQwIlyjKrgl+2DjZmlwiBa9wicGOQqnIOgjMB2MtXLsVI44XHS6p84Jp6P7QEFl2F0RKNyhZMd+3jl7XcUIfiyQOljAo50PJQ+/j+rq+sVrrKlCNT1WHohTK+ajISFiooXQr0ojQmqvnS1zlIvvCSkFduWj9qpXbI4wSZlLHG573oSbvVwEveNczm+Xk1kQ9ocfvT3lBygrfH4VArywNgjceW0nI6xTm40QdnrOuxx2sTImRvK45pl6VKRSsTwmr1yg8LgjZujlj/4WlAYONGHyHIdjOKsWW6RZzfUe7Y2lbj8aOicIg1+1eOcAmEh3rWyGal3YXJx0GVcJcMWxoXidFHCr1ij3EVXgKVMwvE8lRyjWrLNW5uuNrjIZyiGHJubD6Taw8pYLPVHLwTrBt3VDQxqWIryD1aGVZKKYYVilTqeL/Z+/P427NyvpO+LuGe9jTM51z6pwqKEZRWtROMN1J+n07nUQ7/aoxSYsoAoqKYhQRIUaCUQlGA5gBURRQDAIiKA4xn7YzD5pOYkIcMQpIATXXmZ7zDHu4hzW8f1xrrf0chIJCi5Rp78/nVJ3zDHvfe+/7Xte6ftdvOGhvcDocij90CMSV5mUv+y1Cpfjeb38q42pk2sxpbcvXvuxf8ePf91c4PL2KXznGaYfTTmDnBH8/3Ef8GAYR8Y/kNtsjuMD1jRNyx06LOVpLt9pWQvYwhh/6+WfRmikQ+aovepPs1uvtKhstjPPk0TsExkfvc/WPTZnfH5jdueL8L5/gdye4eUVMM1jfCoRshkA0CjcRONN0MlfT7iycZ3ATg/bCCBYZhtxV61tb5neu6M+1VKtAczjgJ9Jxr2+VnzV9pN9RLO6Ebl/zwZdVXHpTSLCiornhuO/PNNz6/4w88Pm3c+7dEpq+fsyCc7+1ZH3bhOl9G6591pz6BPbeLzpY38g5LO4Wqck4BTMIm9ZNYXaPEJiikRlnfYR0jVZ0okHL/ze3wMG7YZwb1hdh2Fe4lOISg2Kxu6GtHFfu2ke1ATZgjyx+Goh16iZ0cnOKFF9i0wNH4i8cKjmX/HmZQRjI9Q1FtUoQrBF419Xyu6aTLtK30BzJ7LU+FURBCq1iddEQrGwUqlWUTrWXAro5ZwROVtL51qeRahPod4RNq4dUFEMk1sLUVUHOIc+q81xaBRLULoUqJlRRBSFxZC9gldqakDph04UtmzdsYWY9eDmHPrF/z7B20bp0w2XOmg4VI0ELzKcIMMosGIAhaXS15mt+7Dn40UkXWZkztVPsBFFK+AwftiAaBROreNzcMK9kExkayze9/pn0/vc2vQ92qES2UroSRvHoif1A3PSoukI1FZX1qVtN6wGSOSqWGl7SqlJBlKQXzRj67ePHEWkskz8xhph8bU1CCESacwYCx+KjJjIREhQRozUTUzMzDZsg+tPODQIvZs9dtU0Osim4Q8wp5GtTOyNGhVUBHyqWTvSnJDKTnG9K8lEis8nzV6UVJPZvzpVV2GLvCLEEGUjXC1rXEIXEZLzlyj03sNYSPcwWE06PTnG9ZxwdO/sL1puRaEemk2NuedweJ+NVIGIwjEv4ju/+beE9WcUtF2/hOd/0T+X6iBEd4dnf/I8A+JkfeDpXr12DvcCxv0GMge7DIvgejmOMCvUgxXP8b9CxPmLJS//wX/1nDg72Ob+oeeyiYlFpvvgL38hZYoY56eUGHRxh1jDs1gJ/jpFxLvCtTt2C2Th8uy26pg+MO0IaOXmM4eA9g3S6jRgAiPAfhoUU3KiTdKPfLoa5wGYvYJM6ZWKG3mIhwUhXK9Cym5jk2yswZL+ryyzQdpGd951y/OQdVIhMLo+MC0N7beDkCROqlczd+l3pfMapYnIYqFaBbl/g0uWjpVvToxRNUidq+i28Wy3FBKI70HQH225y2Elwa7oqmiP5v5sKTDsuSHIieVw3i+jb1wSv8aMwEfWRBS/kIbtW1Cfbx8s6Wt9I12w66A9g3JXuDRPRvaa+oco5SXEEX4nrkt1EqpVoVm0XwEf8RORGvpIZqms1/Y7cUNn4QkXpiIedBMEGZI5tFNUqlM8220D6RqfNlXS8wUpRtZuA7SO6D+VzNp1LmyoxhQhVgnE3HuUykqFT9yvXlx7SxjF9PQc9ZIlOCX8Y0yI8isdw1rlKhyo8gjxvlRcssLAaPYTAS3/meVxfO3yMaCNN48T21EaxGmvGoMTmbnBgDBjxxRXDKcW8Urzi2T8GgJ9UECNv+amv5H3HI0YHfBgIWDZO03n1kIqsvDFpwhgC9I44jOhaMduJVHqg1ksqnS64fP/qJkGfmhibtA/ok2GCJqa0nZx+I12dSuQd6ehsyiqFbAcoloK13ufxix2sli7bjZ5V37NRgaVfo9RGnicGpPxCjIZIjVJroUMltq9W8Kjp7dRmwhAC17v7OR4PS1cd4gRQGNWhlcDDLoxSIJMZf0jJW9Jtyl4rRFFvhqRfFURfrBKtlvSZXGzX13pWRxt293fph55J1eLGyIjG2prgBmwTGX3H7KChp0NHzV/7W78l13DSeef6pD2FO1EY8An5eON3/wVO6xOc7VEobhzf4PP++Bc/rOSl5/ybZ1DPf++sPh/DcuDNf+4df0ReAoiDYwT+9tPeiJ/W6NGjY6S/MEUPAbsaRFTvhGQRKrEgPPwfWhb3JChnI1CrjgHTOczacecXLiTB5j7P8jZDtY7MHhDNabtyqOi3TjcarNWpA0zm9ka6lGyRF60slHblEkmFMqPDIjOqbJkHMtfVCtMHmms9fmKJpqI+8kSraK9sGA4midDkWT66YXp5pD9XY9fiJqQHKfDrixrTwzhRRC2dtZup4qwEcPKkwOxu+TkiNDekQAy7inGuaA9D8dAddkSWE2pQOfXmQNi8UQs0bAaokpmKQLCK8Z4pYeblvekMeiPwudlsP08zSIEUA3zpTokw7sr36yONm0b8NAqhyUmHmTvLYOV3XCvvaXOUZt7JIUl5YU8T5DoIVua741TjKukuRSssBd83abMxKJqjmKwMPWaQLjFUsiFCQXMjlMUjVhqz9mVmqUchwUlXKwuOHkK5hrIutfw/RPQQC8MXlSU2sZiYgLzGAvV6MUHPbk1RJYmOUqCiWCtqLd8fPaEV4h+15Ztf/6Wc9APTxlFZh1VL/s7T/6m86Vbzgrd8BWOAmM7XWs2F1nDbzFIpeM6z3yxs596Ly5IPQghUiu/81ncWhyvTR37ojV/AYdfywEbzYKJ8RS7a6ToCrNLsVJZqp+b62rG8dsK6mTFrYap16UoliDzgQy9ELTQQqBI06hLEmr/uosz5hEXssUrmcRL3V7NyNSFGGt0T4oBWGxpTAwuyp1NVGYZ+xdHyBqGuQQ2paCXDBTQwEuOAlL3kpKWc5DyriFXSfYodYSZQtbgwA9ZYE5jYKS6M6VElxzY7SDnyvFLjYgtxQKuebcZtelRlaUzDxE7ofIdRmumlKbdcuoRSGhcjEzNhfbzETizzyYSVO2E5nmC8YaQX28iljDqCFS2/HuJNiJxKBiq6D+XfKklrxjBiXYXqDJPx4S9kkgb8IDPWB/new3U8cgtrEF3YC9/2lTxmt+bRs4qn/x9vEHvAPu3gM9Q1eszpgNtvOfdbG8adiskDney2rp7QPfE8q0+ZM7ky0l90gKVaaw7emzFI6TqPnjRh73c3ic2pibWhOh0xG4WfWLQLhXFsNg6zcaIxTckp467GbALDnqVaenwyQ4+Voj4aiSrpR9Nzbm5tmd69pjVCfvITiz7taU86+kftUN3YsNP75O4D/W7F/K6Ok8e3qAB77xsZ9gzr85pqHZicyPkNOwblRZay+JCiXgbWFzTjAkBRn0YWdwfWt0jazd4HPP2uLprP9lAkOEQwfRoYdcJpCUY8fEEKk5tEodo7he41ZqOxmy3sm52b7Fp8f5FTkDShjTgn5YJpNgoOBcJtDuXn4ijd5rArjzU9TIYQRklRUxBqRX2cjfKtEIWGgJpIMIJKEGc25Rdyl6I+icKmRjZK1emYPt8qRdNpkScBuhcNqDnthYmbi1gj8TzRmq0cK32+JEhP2OSIV7CTolsKY4zozkkhhNL1iqOSk6KaBO7ZRKIU8nSdKihQcWglru773/wXecFzf4EnnBt54Rf/TIkxjBkCDoHveueXMYYTTocK7RQXdqYczGqe89y3FmhbZzg7kfCyLOiZz3wzk9MB31r0oAmV4vlf/X8RteJ7fvDpXN5s3wLJjhWZy06luTgxzKxO0XLSrVqt+PK/8qMEq/jWNzxLSE2rDabusT6At6hao7RP5UWjlMVHj1HhzNxTJU3mthMNhC0CY8S+sTY1jWmZGDgejnExGccrg1E+zVrzHDUQjcepnjgEVOUQVyexSZTXoFDKFRMIGYELv7fzPY1uSvcphV3R6IBVR1KIUtSdC07IR6L8xQWXsoFzkIDYHrowsN2up3tKaaZ2jlXyOirVYPUUFyg+xVp5Nv6Y2W5Da1tyMLwkIMm6Glzg2/7WuxnnEqepx5g2mmmkkYxEzBhJ+xc5BS9wdq0b9Kjpboy41cMPiI7BoB7UIOKjf+/hOh6xhRUFMUZarZhYzZf8768jzKTdX90+IVSKxQdUWXRCYzHLkWg19aHYBm7O1zQ7NcEo2uuO4yfU7L0blv/rium7Gkya4fpaY3rP/N5M+RU/Vz0K61ej0ScDKEV/IHDz5mJLe30QaY4Vz95gYJzJWxps+n+lmN3bozeOMLGS96WSXZ5WDOdaquOB0BomHzgUKZDRNPccE2vL3f/7jEv/aWD5qEoKSqXF49fCA3+6YueDkZ27HP2uodu3xeN394OO5W2W6TXPMNec++2OYDXDrsyQrz9FCtjy0Zr2WnrPo8DdwYj+U/mIm2q6PUW0JCJPgsUHoIFYR6ojTailk42JTJQJSSoZ8oekT8jXuKrkZ/ywfUwVpIg2N+RnmuPI6qLA2qEGm4rwOBOtrq+tnIsnuSEpgpXPkrSjFsP+WJ5fj2ku6tNsdOUJjU6bKwkU0E6M86sTJ1B+hmWjkNVIUO1ZbaiwfPVNXwOwmUinpRCKhGzcuiwFCK0txTT/ruTqxuQSpQmTSt6nTF7yCGTsIqGtbhpyxkrzjc/7J6AVL/iyn8MkKFnwQkWYWKJRfPszf6pocaPR5e82hb6W16gVYVYXjbcafWEto5XIx4wRgt/a85Jv+Rl+7AefmS8pjnqBX3cqw/Of/ubiThXOyIdUiJB8lR8zN5xr5rDpCb3nQF3gxmkH0x47H3HA6AeMNmfmpBatAlYbkejhGcOYIN8qLSkKHxxGG2rdiIRHj0QGieRTFqsqKl0jIenyONe6y6zGJdhAHHriALoCVLYZTOzb8l/5m+wbLPevH+CGOUQpxcZ1+CiOUrWqEQuLgMIyhpExjIDH6hpwheiUjSMAMbRIZT8n/9S6ZlbNkcDDkMK/K7l+WNOHNbWui5ey1hofA32QZKFKi4YtRhhWTjyyyfdzGo0ptghRiGnkkDpZIyiVVoaJmeBbRzUZiUcPv6Vh4GOwgn+fHesrX/lKXvrSl/LCF76Q7/u+7/u4fueRW1hjApOc5+u++E1oKLKD+Z0yPxl3GllEEZKSTReAm1n6PYvtpKNRIdKdr5hc81z5E4adfz2j34uoWEPYEk/0kPxgB7mG1OhR3UCYNITWyPw1PYddiZzCbALN2uGmluMn1vhayDLrS4r993jqTaA/qAi31DIPve4ZFprmyJfgcT+zBKPoHruPHrzIdKzGLSou/aeBYceWrNVxbhln8jj770Hg4MEUIo0ZkqH/0Ui9MPS7hmoZ6PdkYXYTBVExuSKFBSUaTjclbQwUZhRyaNQyX1QBqhN5/HGmSmC57ZAcVg1sBLrNBKS83Vcu5byaVJBzYXbbYlr8glX63TS/GeYCa5ue0gXn0HQVUvzbKHPScWFT+DyiYXaSW1ufiouWCpHmxpgY4qIhVT7iWpPsCWVhsKsRs5LC5xuZzykvcG+wOsHSWwyzsHih2F/qMZRGIjTZYL3oX6Rb1QphhKTfSdBwnsMDMuJQkhNb5lvJajPmCLrM7jlDlVAuSIjA4IoJBCFIx4EXhrdRUhjP3G/Zo1oeZNs5l8f0ybQibwoAgi78gnwvVivP13/xP5TFt+jQUzh8IvQoH1E6vXea8h4qF/nGL39reX9F/hT4/jd8Caf9iAsTfKgIdIkpLRmjMWrG6NGG4nBkVKTSmko3BKSbGkPAeYULN5KWVFNpS0Thg2GMLVe7Cde6no2PWKVY1A1KDTTWEo0jOiFXZoP/rCfTOST+zC5HJDORPnTEGHAhJChcYOzsgOSiIwQHiImEFFuN0VY6ydShg6x9Vhka01KbhjEM7NX7WDXnWrehtYZKRZQZ6NwJkUitKyqTTRQiq3GJUoraSCeNUmhl2Bx3fPNb3os5kHQs04sGXJ25NCC/ZNksqoA0BOmyEWtE6OOGkYGH+3g4vYLf9a538YY3vIHP+qzPeki/94gtrNpagvMcK8P3vvWZTCvFzFrcsOF5X/x2dD+iJ3KhRKNornZSCJ1Db0TzmY9ht2Z2T4dbVFz41cDk2kB3UOEa0XwGK5mbUYPuJGM1TCv0eiwFVqddtl35wtyMWlEdd6jNyOaWfXY+OHDjyTWuVZz/TcfVP2bZ/cCZTNNKsTlnMKMwbaUQBtQmJF9gQ3vVEWtTCC++FYjWDLmbVFIsasU409iVdGTjLGk6IzSncn7TyyPDrsVuEkS8a8944iLwUS9a2M5rooX1JYFpswZUyT0NSHHUg9xQwcpsst9RRU7jJ/L9YSd1nyNoIxBuXmsyREwQw5ZSgKP8rhkos8popXBGCTbBNakDTjKjbHpPs/XzNX1Im6SQR100h8M2JQbROBMjblGjfcScSAGSryNkIC35ttqLBjYahYoRX2kp1HGrh7Ubj5tbggLjtoU2m5XoFBene5d29waMQGdnCyIxloD0rbtS+lYiMp0lPxYLxCBwccwymZBsDiuzhelCEDVGlt2obSHjJgvG7f+V28bXFRenDGU3whw2CSJXPiRiVSbrmWLnWNygYlqkvbxWZbbPG41Ks21dXrecG+BhNm+5caI57VYMnEOpHXxjMVZhtUsvW2ESq9YoqE2fpDihEIkUIzHBrCF4tDYYJYU1qsgYOoxyuEgy3a9ROFrbMISeEA3OjmAiNqXSxMTkMVGQAx88QXmUCXKhpw/RJ1elHG2nlS3JKz5l5mYfY6lcmpmZ46Jj9CMuEbIUikrX7NQ7NLoFFC7U3LfxGNUwtwqrPWOwGCUCdTHVl5mzi1LAK12jlaY1ExSatXd8wzveI0WhbMKFhxBVIgE6ZBTik247EzjttniFEBj8KDC9PnPBPkzHw6VjXS6XPOtZz+JHfuRH+O7v/u6H9LuP2MKKNUQnc8pNuMZfe86/koVIKarBESuD7sWTlBAIkxpz71X8Y24hKsXmUsvkckc0isn7rxH255i1IzxqSnW4QXee9W0t9fHI8vYWMzfUp45QGSFKdZKTOexM8a1mnGmaQycFI8I4NUx/425hMi7mzO5aokbPbGcPN5UCetu/6yQdpTWosA0lD5Vic17THEc25yzz+wTKbY49oUq2dLWk59Qnrsgz6mtrrv5Pe1RrKdZ779tw/Ckt3b5mfr88xvSysJuHvZrmWp9SdGQB3NxScfBfrjPctkCNgWG/RruIXTpc2+BrRX2MLA6NvM76ZLtbda10tu0NAJnDVqvIuBCo2K63rOJQSVHMaThmI98vjEJS19kIOUpmOaQbOhX+CP1MGMHag09FNTN68446d75ijkGZw8dKnLViZSCIuYKwaDXjbs3qtormSF6c3QSUpD9Ld5qLdhRYVndZNmBLehGpA8uFVF7TVrMqGxdf5tWhtnK9GrV1TIJiuB8rg+qckIScwMZEShB67iJDsmLMlok6sYUVSZ6jkl5W2VSsBao9e565G1UuFJaxGmIxoFCjL5AtgMoaXavBBdmAJoZy7nhQCj+rQIPebOVC0eoSSECaT0ety9z3ZT/ybA57z/e/4B0JVk4ev3lN1ornPvutfO8bn8nydMEPfv1P8ao3fil3n5wQduYMIc8kNVpJDqhVjrWbU2tPYyJ9EKhYs0Yrh1YOq2oq0wKOMfT4KDux2niqGFLg9xKlKjbO4WK2UJRUnID4YyoVk7eFsI0bZfFjRRgVqhnxPqERCGtXRFFJbxslfccojQ9i36hKmLkX3m8QS8Za14QgMPC8WrCodggxsnQOzcjtM/H5DDhQEhpvtaU1LatxxXJcJqeqwBhEO9tSp7lvIPhYkCTfpHs/kgiTsqG+aaPnQkF+hMMgc9zVuBSHJtXQ8/DLbdzHmLG69L2Tk5Obvt40DU3TfNTfe/7zn88XfMEX8Lmf+7n/HRVWMqQTedlX/DNUbbDLge6WKXaZnFKsIiiDGhXmeE249RxqcCilmN29ksXGgz9YCGOtteg+4Kc1425NferpD2qqtXSMUcvzjfMK3dri2xusdLbRiA2hdoHpb9xN7HtUJf6netXjDmZljugbKaihUiUsPMtkbBfZ+eBIf2CZXvF0+4bFXT0qRO7/UxMe9UtLsS68c0V/cYIeIuuLFdc+Y4/mODK7d8BsHOOuzI+bE2H2qhDZXKhYfGBg+qFjQlvLTr6W5JqdO1ZgFM0Hr4PWjLvn6fYMtVUlJk4LGVE6Bk+ZYfpKIFszkOB12dFms3DTkfSbIsnRo3SwKrkp5YII2245d686xccFKGYP0chzNifI5j0IRyqaM5CrS7CsQrrFXtjYGfoVf94KnZAMIQyJOUOoU6SfVdheWOG5W9OD7MZ9qwVeTqSj0FjUGGiOxjPxcuCnpsyaSKMHux7LDFVBIXnEVPSUjjc1qzi2ZLxc3NL/QyVynMxKjlq6u1grdDKCyJ7XAkds3aPkvcyEqi0Um2MOVYyQNjvK+1LshByVPo+UrCOfnRRi39Tb89UkI4oUhxgEvsal76UZXJRhHt/wQ88ufVyIcDXl0X79a74U6aTg1S95Jy/9e09P+aGSt/nBTQTb8PVv/HK+5fk/wTe+6vNQMWB1oNYbuaZoaIzH6pEx1NJ9BgixZj02jHE3vUXiSVUPiouTDVp1UjQTPOzx+DjI34NhDON21gloLTFwIRq0CoTg8DiU0iitMJXBKksV5oxOOurY9BzfOKVf9dhavMWDClRNhQ8qzUehqWrWw4CdWHxwRVJTqYq2aQFKUR2CQmNpTaAyUpxB44JnDEL06uklCYfIalyjdUuMkRDhZDjBRYdVFf2qx01hciXbgApkr4dY5GXN5aXYcdbmJoMRNQZipen7gbEaMaVL/HAM+Q/++HhZwbfffvtNX3/Zy17G3/pbf+sj/s473vEOfvVXf5V3vetdn9A5PWILqzKa6AORipe/5f/Hd33RzwNQrdJqnAf5lfiFBtMSalM6FDetpDM9XhHnLcoFlo+do4fIyadMMZ3As1GLUX2wME5t+n+CZxoh8QDEASqvaK8PVPcfgzGo+QwqMazw84bQGKqlR/m0EOrU7YyiY63WSarQRzYXLGYUHantwLeScLJ3h2fYa+jOWZqpwS4dvtHM7h9ojgzjXHP8xIaoG1AwvewZZ7poMJtDh59UDHsN1dKhVwN6PRImlfgbm0mK+pJiUK1kDm3GyLBIxgeddKIqpjmoj/iZlmLagqpFK5rN9YPaynuqpXSY2UUpp+loB9Vavp5N86OWn/eNPKf2AnWHSn6uTppV16aiP27JPbLRkcc1o+hXQwUODUkepXwUiN9q8BGXjLqjVpIgFKHaBOzSkUPJoxJIPmoJLIhKMe42Nzki6TEU4wdiRC/TNRmEXKbGIBs8H2EUmUphCyuF2STCh9XCPq8EwlWrNI8KSA5oYwkp1UaSdCK4iFsYaAXFCNnMIXemZ4wdzHqUzeXZ2KxcWFNXDAi8C8L8nVRStM/AyCTHKMmv3f49L66Z5ZyZzwQ557/7U1/FtS7ggrB+Y4STMeDObCgUkdc/72284I3PpPcKq+A1L/pJlIJXveAnedUPP52NU5yOsEnNzxgiX/fqL2HoBjjyDE1F3+7KpkZB7R1Ta8RrmJEQLVZ1SPi4zNxiFKtG5+DKpubiZIJWkhLhckwbQmYSY4YREmtWPnaxERSrwR6lND5GKmWJCLSsq0BtFIvpjLH3jLHGr05QaI4un9A1ktQzupG+G/BeCvPuzi7rzYrHffrtECONrqispTE1i3qnaFx9MPhxxCrH6ANVU2O1xUXP2q2w2AIjx5FC2vIuEo2j92LQX1HTHfc8/23vkc2rTvffaSiFFUC7wLg/SWPkeGacLOMEcT2zhI3k3tqGT4rr0ccLBd9999036Vg/Wrd6991388IXvpB/8S/+BW3bfkLn9PsqrB+JLfVn/+yf5Rd/8Rdv+rmv+7qv4/Wvf/1DfPQz8JqqxAQiFUg3r2Uelo5oFONCFj/fTlFpxub2WqrBce1/PmB2n+P48Zb2UEgt4pwD9YnoR4PZRo1VmygFJIiPLkBz5CVA/KQnVhalFH53SqwNvjH4qWFzIEJ9PUrBqo9EjpDhEp+612rpMYNEtgUrpv8qRGI2j1ew874l/flWOqsuSW6MnGdmappeYGUxjYh4pXEzw+Gn19zyX9aMc0sFZOtFlHQgw4UpdjWiXWTYEY9dN1H0+zC5KnOUUHEmBzWWtJ/2RnJDslCfBNwkzXqT6b0KYp6vB6DefoqhFig3GDG1yO9/qFN3qiG6ZLlowM2gOhGylB6leBLBbGQjUJ/41MHJDW2GINFembGIdEpuaksRzJIZMZMIqF42PqESZrdKhdFNBFX48OtCjSKUzwW4WroE854xuA8B1fsSXF66uRCI1oJNhCAvlIv4YXaY5DzXlEeMBlyauUZVHJpUgGAUNr+2cSvjgVhmnhluJmYP49Stbm8fYkrXOctmlvdMoOHMcM86xlzAo93mFZP+nWmx3/fOr+a9RwPOC0xqtMrqzjP3uHBbv+GHn8HoZU752m98uyDASs7zbzz3p4oz1ct/6Jksx8DapcJvJ/K+diPueA3Wotoab2o2vsaohlo7tJLi6uJHXu5WznBls2BR9zRmwCqFUhU+9LgwSOoLKilLRWQjqLoXeFmplKZTpQI7AsLA9Ti0qalbg9sELl26na5bc+stFucdnVtzeOUGt1y4jb2dA7SVLrC2hqaucEEx9h4fQSvLxisaVTEMI6fLY1anJ1y+fJXRjZw7OMBaw+BGIoHNpmMyadHacP36dW659QKH129QNxX7j5unEIKa9dUlX/+Pfpuq36JJAONMAjxqH4R1rxJCkjgRZ8lt+R558fP/cUFGvv01n00w/Ud8z/8gDxc06kFyX1363s7OzsdlEPErv/IrXLlyhac+9anla957fumXfonXvva19H2PMQ8u4fmEC+uDsaW+9mu/lu/6ru8q/55Opw/58aP3qKoRKPhZ/5h4MMPef4S//YDqypLYWtzuFNPLzMF0UiDHuaW93IloPsBw24LmKHDX5xnsUnSZk0OBNYwVaFdFgTttH/CVrAw2mRs0hyOnj20YFobpOoVVA/2jd1IRsfS70jFe/t8c5/9jhV1H7vkczezuGZf+04YbT5gwOfQp2kwWx815I6xgBXbl6c5VVJuAazWTKz0qSGG+73+b8ah/c4q5f42+tIMKFdWJaDbdvBI3oFYzLCT5xbVSnHxraa5tpOtpDetLNaaLTO9bc/qYlt3f7dFDoD10HD65pjsP++8JHH2qZu99oUDD41ThWkO9CsmxyYuZxrGXqLtR0R56+j0t1HytxBdYJYlMR0m1cVORzLi5FO/mGJlDJl29m1EKa7Aw7IlzlHKUWapAymdubhexnd+Si2q9JeFkElEqUDLjDAy7prBqa8S/WUWNr4T8dNaEXzkppn6ipYgHsVDUQcg9Sm0LYJ47Kue2pJ86JbXn61opmaFGhxq9SGFCELjVavy0Kub7IJsBN7WlU4I0408sZpMKKl5YwDpGuUaVAgNBaWEcay2bshiTg5PE2GVtK2or8cnSI3SEkVT4zxCtknY2BnVTFF6eSeMjHzwe8L2jrcUxqB+TljRJdGTmKF9yUTyCp1bx8jc+i7/9jDcRalPOLUcsfufzf4K3v/UruNYNHPaK4yHSK4Oaii9w7EfCcoOyBjVr8Vg23qJoxHpw+ylwc4FXrJwlssfMDkzsiFHrojvtQ0+lKrSq0jwyptkoKBQ+SgCAIqZoN/BxQ/CWEAfG0Evcmo1Y27I3WdDWhn4ciUcKt7lCXDjOnZ+x8R0KxcS2dGOPtRY1GqgUTmlWo+E4RHYMzGcTJrXF+4A2Gq0VgxuZ1A2msqhKUduKSTsR+0cfpfOdNIQ+MPaevjvFrQPtYfpoh4jt2ZLYwha1UokVftZXX8VYUBLd+/LvH/zhv8T9w70S1P4wH3/Q5KXP+ZzP4d3vfvdNX/uqr/oqnvzkJ/OSl7zkYxZV+AQL68diS02nUy5duvSJPPT2UHLbKZVkLauBOGmwN9ayWAH1UV+gNN8I2adaeszxhjipcHsN9X2nBLtL3Ik0d9dMrofiqFPM01PCia9VsrkLuKkRU4WZZnLd4+uUmDKvUN7SnbOsL2jaQ4Eq+13Fp7yl5/5vXjOZrzG/civn3z0yzi27H+qpr65xu21ZhOzKMi4sk/tWor2tZXZrl47qgRPufPpFLr5r4PxvjKje487Nqe4/xjcHRKu48cQp537tmOHclGgi9VI6udNHGy78xsDJ42pmE019NLK6rUl+tkk2UsGVP7Fg9oAs+JPrkb0PyKz3/G947CawumSpl6LpJEY25w2z+x12NeKmDX6imd55ittpOH3cJElspIOuT0kUfYFnM+M3NSXYlRCZfE3JaXVT+WM2pCi9LaFJ+8g4FZYyxGIKoUfxdA7VmSLoohBtkhwAIFhdNiCml2xVYfVKAo5vzLabU2z/bhU6zZFyt2o2icDmPLo7M5ZIxTE/Z+kUB1fIQTER02LkDMPWg9HJhKAqXUCwoiuNSubBetxuJnwtc2GRHulCWFJB5sDZTrEEpVemsIGjUUJqSmYW8no/HCqOpcDqQSIWy3w2jThk55SY1rlm+SiwcWsYBs+FnZo+wvEQwQrRitGJCb9V5ERUq4WB++rnvlU2TamofvgRjeIZz3krMbli/cDrn8kdJw6HEj5GWxPrinDjFNXWErYhqwiKwNwu0cqxcQvGmIPfKD+zdi0xGqyWz2wM6X5VPQ6HDxU+hiShEUe3SJ/sBTVaR4gjGpOIUCM+GkZfiZ8vAUVHqCbU7GIrxaVb9rj1/FMJ2mO0Ya6lCRmCo/M9lZZxWNeDrg27tcDlRmmMroCWxc4CMaLY0PmOzvf0vme6mDC1Mxpbc/6WfTZuzWRZ0V0bmPe7WGX5sjf/a0AQocyDyBIbiFtvdC33QEzSKBkTReRCSiYi5RoBU1VUa4GdH+5DbqePXjwf6hksFgs+4zM+46avzWYzzp0793u+/tGOT6iwfiy21Nve9jZ+/Md/nEuXLvGFX/iFfMd3fMdH7Vr7vqfvt3BBYW5FWaisCpjT4Wb3GaOIVgg5egyYZY/yNXoImJVEwunRo3xguLRgfdEy+x3FwXsdzbWecafGN3prEJAILH4iC012UppdFl2kWXvUKAvzaK38/DowuSY3e3Mc2JwX3enFHzKMizm3nw5UJ1L4dT8y7rUCUSdYV/lAdSqQIBrs2jHOLMpENk844OJ/HqiOenQ/olYdmBkYTX24wS0azv36CW63xbeirTSdXNgH7/HYtWP/vZ5xp0L5yOJDG4b9WjJErWZx94BZOzYXZX6gQqTflYD2OkTsakRFy+acZnrVs7pohb3bWTFY8BHTBfqLM9xU2MzrC6YYPKCEEby6LUloNsks3wmpa3WbyHzcRJJu2msyY53dJzNWSGzhTRRNbSs3s6+jFPs+lBB5FGKnlvWdOsG3VU46CiWdyDcSqpAJT5kx7WYpiD6ZSsCZ4po1qk5iAvUYSt5pgVoT2ziSdvR5gfEhmagn2LQfy6YQq4mmInp7Uzh5dlDKn4v2cQvPJaJIe20oIwTtAqb3qEGgZ7MaMCSSVDJUyd2nGrNTUyJHuSDdcyAJ/xNEnTcK6XFUhvx8FChbI521VqW71mNi+P7DZ3J57Xn917yVv/uPvpY7TvLmA/A+FVWN1Z4QDa//mrfy7T/+HLrhzOtPXY5vk0Woi0melGDslFP8jd/4dv7Gq74ElxfvxFLGaBFi221n4aKmDw3nmjVGO456m4BoyAU2otj4Cju2LKolCodjIigAKyKjvHdpxhmhRNVJPJuk73hCcl5yaOURkEunj11jlGHtRjSO07BkXs1pdF0cm/phYL0Z8YMU2HXvmU8UloF1N5QcWY3B0jDk0Qc9ve/ofIeLDmVmjNpjzMCKkc5teMF3/CfMEOgODNpB6yK+TnyHtXyObipIlBmkCZGM4eQ+16c4zTNSsUycK7GGKL7ua3+WqOD7vu/zPuK6/wd5uJD0fg/2/U/y8ZAL68diSz3zmc/ksY99LLfddhu/+Zu/yUte8hLe+9738rM/+7Mf8edf8YpX8PKXv/z3fD06jzKathIWoloNhFmLWg+4W+YpEzPNkiqDOdmgK4MaPdYosVobA/X1NcOnNwx7ML3zFD+rkzWhSq42MicS3V7EzQRGsyuBNTYXKrSThdduQpE6mBQrNs7zPAyRzNwQI4L63mPCzkRmbVpjV8ISjZURMtFei9mM+EWNvbEGDc3GpbmqQgWFaQ26Hwn7c9ysIu62VCc9djkQrWacW9xESFF27dLsT6Cz9cVa0l5qTXVtxeS0E8OBxGxd3zZh8Z5D3MGM08e0uIl0gL7WXP/MKdVSFvQbTzKMC6iPYX1B0e/UYoKfJCfttZFhz9IcCbNWzBsi3V4iIVlQSzG+j4YS8+brbe5rnuW6iUpEp0hzLOQk5aEeJN4um+hTK4EPU4hBNIrxnMZ0271p9g/GKHyaa6qQAg9SUDpRy4xwBb42VOtQUELRGPuiq1TJFSnURpbIXIAykzbJR/ChFCW5kDWxsqJdBSnCgaRlVSgVi0+vLEqmMJrzgpX5BMVgIUaUls9LuQRJ++xdrVGbEVUZdO9uYvNGrYubWDn/TLLLSTt5o5C9jvNrMUKui41JDlWqkFgA3vxzX837jkeOXeTcjrze+9ZeiEpx26mixSpwaituncryo4nMao0eEqTvPNFYidUrzGaVOvjtpueHf+iZ/O7JuP3MQd7HysLopGsldyyKMdQcD+e4OFmjcKzGKf1Ni25Eq0jnG4w6oDEnWHXKTfPSZOq/NctPDB4FLnV5Som3sRCfNEbViVEsu87KVKK51TUTXRGJuODAw/qko+sCz3vp/y3XYOeLVhQQvXTyJydKA+AmIg/ztdxH/Z7M0G0XxaY0pE1qH7HpHs//zpnCoucH3wi5Uo8hbdYpG0iVso5j2igo5wtiWLJcnC5jC+0ik52HPgZ8qMcnI4/13/7bf/uQfv4hFdaPhy31vOc9r/z9Mz/zM7n11lv5nM/5HO644w6e+MQn/p6ff+lLX8qLX/zi8u+TkxOhRXvpWFFLQluhrxyhQyBOailuIZbwcpEeWDExNyaZ4Uf8xGDvPGZ5+z6P/ScdflaLo9HEFD1jNAqzCbKG1JpQK3EXSlCjHmJh94qURhixdu2wG8/lP9my+JBi9kCQhVkrqsMN/aP3UlCAeM9Kp5O6gBRNpzuZxSkv8y7lI915i+kitg8iqTk3xc0s7X1LTj51h1Ap2ntPiJOG6mRED4bNLRXNtU6co5IcY3JtRA+B6upSGMGzGje11McDtg90T5rg/8dztNdG+l0xvW9vSGjB+hKc+63IyRNkFz4+tmP/nzcMc8U4g9lleR0ZXs1QunaxMH9lwd3e1MOOFNpxLkb/zVGEKzDOFdVSFqYMdQarCFUiQ2kxz59c86kzSnO8vFtOBCM9gm8lhSYmaYtKEK4ZQyLmBKp16iwa0b26Sj5vu4kMC0N9GqmPnZhgVLp0wr6Wxct0AX0mqUh5WVywmhhV0VozjrIITZsSjQYyl8SoovHMBKdojBiDBICI6VLByNBydjxSMtfMXaLyQdCbBJ8qF2SD6UKRnoHAwSokv2ClJIzAhWJaAWylNgm2Fmg3wamNsH7F+lBvC7yP6I3jAyeOjYu85iveTKwN3/H2r+TyJnU1+T1Js9XWwPd+7dvk9dWG863hBU//MbGKTIiASa/XN+m1nUES8gz9rz73x/n2f/Cl4hIapG8MCkJliesB6yI2yXxCENqRjxUna8v+zDGvPIedwcfIxssTGBU5aAYmtkaxj9Un9N4TkxRGBHmSnpOdi8SPWKOUTzpUSc6RM4IcbycaW81qHNCqodYVRil633F6vMH2NV/3Lb8gM81k9OFrjbJgNq6Yb2CliNqOQjoTFm9MaJvGNYIaVettalMeDVQrj0+ZzdU63uwetvElNpEoTODsDnb2M48aYmNLqk1+bD8zheAG8Nzn/MRHrBN/kMcf+qDzT4Qt9Sf/5J8E4P3vf/9HLKwfTaSbYg6pTSWdyaUDQmUIrRhDbIX/lNkSUXbcvjXY5Yg+7aHrefzPr+jPNdiVShCxuOVcf3yL9rD7Ac/mQpVmBZH2mmN9qWJxdSgdjJsYVrdazv/ydTaP22V5e8uNJ2sWHxJThPpUMb1/4OhTJxw9fp+duz3VSS8SoM7JnHS/xZ4ODPst1elAaC161YMP9PsV9YkTNvGJIxjF+tEz6uMR12r0emB2b8fmYkv/mQc0h058gw97tI9cfeqcnQ+NtA+s8PMGvZLiEGuL6lxxQHHzin7XJqIPrC9VVOuI3UQOP82y94FAcwOWj9LUR3Dyx3sm72258j8F6htSgFcXhSh19OTIxf9kqI89bmFE65pmMN0BZYQVallgqqVoXNvrsXgK200s6SjRJFawEsi4WkYJHE9h4iqKUxUIPFhITJVmrFSZDZ01QvCNeNKqAONcp89eNgCri2IFKbv/xIBOu/LMEg51mnWm1+VmpuSvFpg0zyRzR6kUNM2WpJMJSskNqUhi0uy1pNqkea4evHSdqRBmW0KVgsTjtCqxXbIpM6nT23a00SjipLo5ZafoakN5zJihVnXGJhGETFXpgrhEo6UYDx41BkIrhdxs0nWmIq/+qrfIJkHDte5M1+5DyXhVwKu/6R1SONLxjc98i6DcGY7OGuEEM+du1XRiqhFSNCSIXIYxEAJp1gnttKYbhawzJARLa4XzAaMUWjUsKg1Kc74NxGi4ZwUnQ8RFwxBanjhT+DCycS0u1CjlaY1ExHUeNB2DD2gV8TEQoi9Endo0aBR96KWTUyHNkg2VqVBYah3p/UiFpjsKfMO3/svEERD4NVQC9UcNdi3jjBjSjN8bxqktUhgxrFFlhKUHyYKVhkC+Vh2PjLsVdunFgc1I5xlVyjgepEMtucDpXGLyEgCRNtp13oipMrYQGVosaoxcbH1jeOG3/UV+6c9tiawPx+GjftA8Vv8g33u4jodUWD8RttSv//qvA3Drrbc+pBNLHx1aSeqLWY6oGLGnEhju51KM80x0XFTURz3joi5dhr56DAd7jIuK5nBg2BUdY458O/dbG2Klk02gL3KRaBSTq47NhbrAkSDQynBpgV17Vpcsizsjpofplcjid48ZLkyZXfbYlZMuJ82hUAbV2CR7sVSnQ8nYDJOGcGBpbgjRSY+RYceyumSw64hdy821eeweduOLOYHpA2rjcTPxAN5/T091uMEvasxKAgNEEpG6ixRx5ieW7sAIUagY1MtN1hzJ4rZzp0+ELM3svzYSFbfSQjbS0J3PRCPFyWMUswek4KLAJXmS9rBzZ+DksZp+X4qoHpKRvpauNAeT50VSxYjupMA1x77E/tmVLCj58DObzEFkTu6N7KJ9rdBOJScmWYBNLwuGmOTLn3GWupMzxdwMSdIDnNXoKS+FP0tRTBfK7ClaiW/DIGSeGMFv74FQ22LyQJROT/VeRohKbfWiia0baoNZjxLUkI4SYZhOLbS1dHVQugrlgoiJ02KW7Rt1J3NXuQYE/o0pL1h7T/QCHVPJz0cjXa0QncLWUSmfi08F9QxreVzU2LXj5V/5ViEQxci3vvHLOc5OTWdMBMopK4WKYauH9NsO6SYf4gTfm85jOgpErnMXrhW21QQNSonrbozQEfFuhMZAY8meJ6ZSXJxqbp9batPQ+Y7er6lNxRN2NMfDBsWMxmhCGAkx4uKMyxuJyXvynqI2kd5HYJfl6Km0xyhH59fpHGTHo5XGhopIoDFiyGCUdMdS3BV9Hzg9HnjRS/9Feb1Rp5jJRALyTbLQ9FvWf9Z1h8rQHIfENZEXGYxkBmsfwVM2jt2FBjdRrC8Yplc8QcnGxVdgkhlEsNIlC9P8zGhAy3VVnYjO+rXv/Gq+8en/MJ2D4rVveQYvePbbiUbx0tc9g8HD6ALdquPo8MaHL+1/4Mcf+o71Y7Gl7rjjDn7iJ36Cz//8z+fcuXP85m/+Ji960Yv4M3/mzzxkE2O5sCLf9VX/t9j7nRPo2XS+3GDyBSEHVSEyLmSmIgu0h9mkkEXczCb4V1GdOoaDhvqwhyHg92qaqz1uUYkkISQYuQti8D7TNMdOiC+1pjoZxCd4HVIEGYwHk9IpDbsVegiMM1lk9SAXq680tvOYtSx4obHoXmajZuNL+LnpAs2R3Fyb85bmhi8ykOqop7s0xTea+kgizPTohQ06rUoBCnUKDOjkU85xZaEWlvNpK5Fq1Vo0q8HC4j5HVLA5J8SG2QOeYUdeQ0gbDDMkM4hIsR0EcUmqllKEmqNAvydkofa60O99K3PaahXp92UGlPWU0VIg3n5fukfTS2Sb7re5t8oLAUf3Yv2IFfg+GiGThTp5+nqRBRUTByXsWdsFfNBFm+zbxAIfU87sKmA2oilVqWCF2lCdig9x7sCLy5JWUox0LFaUQaliMRgrvdWAghREk/Smhu3clWR00rvtTNNqojIUxnH6WekgEalMKvZ55qhSkIRO56dSR5FhaLQWkhPIHDXdK/IGJztDreHM/jhrY1WKCqPiJnhaqRSj2HlA5sJdJn6lGTRGF0h6Xm21tRlSFNMNnyDNM3NguMkbWSUNcb7molUsXYqMy68j/T1qhRscutq+/4+ZKR63MCkHVjH4gTEMpSDOK4NRMjcdY2Bm53ReccvE05iBSldoDJUGowKVtlS6xkVo7VQkyCmyLhszGG2pdS2yoiB/ht5zerzhxd/5T7Fr8TYOVq4XlfJN5fMUKNdXqrxPk6tO5qnZr7oPmA6GHYN2kW5fPryxkVhEIRJGQojUo3S/fqKpTxx2pejOWSnELhYSIFBsO7P3tumkEXjzzz2X9x4Pwj1IMrPnf/VP8td/4OmMHm6sHNF7MfdJjPeH+4hRJb/mj/79T/bxB+q8VNc1//Jf/ku+7/u+j9Vqxe23387TnvY0vv3bv/0TejytwJxsMDFia4sanLCCK1OMv821lez6K0NzZcW41+Jbg64NsTLc/+cOqJaR2f1OFurkRdret2Tcm1AdbpisB9xuW6C+YS5MX5SIpFGKftfSHDt8pRn2aibXPZPLHetbW9rDUea2iWzgF7YUnvpYOkw9eoYdi59omiiWaGbZS4E1CnNGCzjsmhQoPnL8xJr20FNfPmW4tEANiun7D0Eputt3sStZjPVqEKlD2kiEWgwhwiQZwXeO0MqsNjQVdl1jVyOrR7W0ydJRIsg002ue5a2WyVXPud+JuEbjWyGO9HuKei2MXnEpgvUtism1SHtjRAVLqBWLu0bc1FCtpOiE7MZkFcvHBepDzeQKxJoyA9IuwVLp3+NcZp46dT+h0igj7MTCHm5TZmrS3JnOJ1mML/BtqEwid2jcRPJpzRBTh5ZcoZZe9Kxpzugbg8rRWUphxiTh8TJHB+l+Y2O2ur4g3sCh2lamKLCLFHwFYFE6iH3g6FEbR6wtOns5pm4uVlJUlYtijDK40lHmDYZZSzHyrZXnCNviorL8wUfR1SolutQYb5qRlu645Mgm0pTeFtX8epRJEDwRP7Fy/3WuwNDZdzhkDS6p3iXda6UVf/d5b0PHmAhcCabXYocHaWZoJZ9YBTnXLAeKmrRhEYLeN73i6eS9U2q2tgZ6lSX2yVZSKXZrxaNmFSH2YmylK6bVlDoIscgqMX0ZRim0UzvDast+49ipFSFqtII+KFxw1EY2EkOo2bhIbZy4IcWAD4ZAzRAkPes0aNZOoGbdDbRu5KXf/k8wOetWgQrbLjwTynwt/AEUJanLt1rUD326DpWw2ydX5VqorcK3krkskhj5nE0fqW90oBR6TNpjZahP5fnLZ+hlIyymMNt0sNzM3Ld2bJzHt4Zve80zcCEyOs9qCITBEfsR1daopkLNWnQO1HkYD/8xDCL8HwZW8IcfZ9lSt99+++9xXfqED6OolNouJpk5OXrcTiNa07nMRc3lI+zgCG1NdWMjm2qtUd3ILf9lzepRLWYIyTM2Oeq0lcw+B4c7P2PYqwr0p6Ji2NG0h55qFcQzduWxxwO6leH85K4Vp5+2j90EfNIZhkbjrZj5d/uVFOJGFqXq/hXKR06eMEV5S7AV9WmFXY5UyRJvdteSa398l/kDjubqhnG3oT6JTO48YvlpB8z/852MT7yEn+8w7Fjm//4ONp/9eNrjNbGtZc4MorEcsxE7jDsV4UJDc73H7TWMC0u/o2iOdTKul9fQ74sUZXp5ZHbZ4VvN6pL4GVfXPP2Bxa5lByyRcjI3nV4VRqGbiKVjqGU+lN2b8jzVdLI4zu7SmJ7EQpSv55lme0OWxmoTkjxEPJfzjjlUOrkMKfzUYJJMynTSgUWtUJ2QuOSP7O4zDGx66aqJ0N5ILk6nrhTqkuziI25uUjeVOlEn14buvfgvZ8bwGdF8ZmbnQ4++SICMS92aEWhYKo9JC6l0xCp1u5m1myPmMswarcZPqq19Yf6TFj89ipNUnNiSqBOxW8P/UrCDdJNQrp1MfDO9T6Qoma3mUHlhoYby+zG9x5LNqcAoXvijX0E3BNkohsikES1rGAOvfcHbirMUMRTWc2iEnCRSLrnPQ2OTRnZLnBFyWyRozbd879PpPezVinOt4aDRrF3kjhNH50FVlrjclJHSXq1pDfhoCpRslEFr6aZdEOeuD/7uvdRNzXw+o9IVUQWcl5SWfuzxY6Rpa06CY7ozQ1cNYxCDid7DxikaozloIrWGMcADm8hxD77riZuenXMLKYgJAhc0KRXBBNX7lBGc9ci+EtKk6YJoyWeVsNuBcWbwjaY69YRKMcw17eCFc5B2Hqbz+NamDZFc38HKqESuzVBm9iqmWWm+J/KIzGqurh1953jhK76IdTcy5iCKEFFGrmE9bbbQ/5l74eE64seAgv/Qd6x/kIfSmsZoIVigbyJ6VNdWhLaWFKxphX/8BXIqSX3lFL8zIVrN0Wfs0pwkLepGHGzyIhgTWSNUyTP2eGT5mDZ1jdBed+kio9j5ud26XJSb23eZXB0Q9rFIe0zvcRMhVE0fEJZuJon0tyZG75GnOhlRPjLsVIw7dSEJGKPYf+8asxrobptDiEyujoRZ2kg89mKZn+rOEx91C+0DK2Jbp4KQrOYS/JJzRaswok4EolY+0u3rYlOox8jhky31iejYooajJyYjDR+ZXkm6tXQu8ZYKuwlMrkc2BwYzRsaJdPiZsZlN8E0vz1GfJvJDIiupqBlnW3clM6hEoMi0/9R+KCVh9EoC5LMkJGeU+lol8wd5DDWGFP8nXY+bptzRVMdEniMd8TgXyYHtQpp1ptQYFzGnHbrX6NHiUxhD1CRPZENI72N1Mm5h18TOhW0nlkMJcAHD1nZQLBDPhI/7iN6Mcq2f8f4lE49UQiIyczM53KiYbDCXQ+lEo5FuNCff+Gki5Q3beLcMqapuu+AI0cUTGlOQgeJgpdJoQUsnKV1kTPC1Lyb73/q6ZzNEuUfHwdNYzTAEKqtxEV70A8/iVX/zpzBjIEwM8cxzAHitgBT9p0EZ2QBlC8lQa/7Oq5/B/RtP7+H8RPM3X/JT5TWYIfL9r30m7z8Zt8EDPoA1uBDFbP5MjJlCDPMVSqTDOrK/v8tyuebK5WsQYHdvh5OTU3yI2MmMk9MVprJs+pHJ+YpxNsUHxH+YPEeOPLCG1kKtNSdDxI+OsOowu3NGFPXxuNWChu3aYjaiq69dstosqEk5ady8Kt2r6YIkRrlYIiabI9Gi2o0QHKuTsax1WcLkW11mstpt7S5DrXnLjz2bkzFQacXpEFj2nqPeE3xguR7TvigQHfh1hzIGXRmRjTX172/h/wSONKp/0O9/so9HbmG1lnmdqf96K6LXEG1VjMHPupOFSglc6mQhaQ8d48yUcOjNLRXTywO+1mWRikaLFV1jqE88m3OG5kRmsVpLATOddBHDjqU+coy7tuzoxrmQhzJhSaVdps7QYfJatasBP6mw1ztCZejPN7hWC3yanE38xGJPR9Ca5uoG3Tn8vJEZ4sYXO7owrcX7VzcCAQPRGvzEpESfxC7UgJbilLtZ32qqdWR6/4CbG7p9TXMs3YJrZBbaHEuB9Y0WEtHKY9cjvrW0hw43NQQL8/tk1tzo7axP/HlNIhIJ2ULeD7Ahe81GbKfod0hOLzJ7tZtQZkamz/pQ+X27dgUuVCDm9l6jKzHUj+m1FnYtJHtDiutU/hpKZDnVqUt6zCTJUQodAn6nkYW8MaXIi2wodZMmFX6tiFp296KDHpNsCplrj6H8rgoBvRnIeefFD7gW5m7WCka9Nd0vgehhSyCR9zlZDCY9KmdN8JOBQdZon3VGOpsHqzdbXXU28s+LOCp1KdkHOGlPczJPIUlptt7FLnLb+Yb3HY/o1lA1hjiOOKvwGpTR/L1vfjt2DLLBzY1olMcPmfXrY5nvVYNsqmI6Hz1GppViPip2a81LXvwOrM+bJpk37tU6R9IKHDw6lDUEkjvSGT8+pVRaPpQk1BC5cPGA/Vt2sKGisTI/vef+y5zqCceqIc48wzCi2pFNqPCnm5vWoPwGeiLDmRU99iN6NgGjGfJIId0zblbdpFXVYyA0JkkKw/baPrP5C1WCa0fZLFaniT3vZXTTHAtypIdQrqEM6XqjCwqnxy3MGyvNT7zl2fz2jZFlH7BEBudx+TqIkZhMT2KMMDjMQhK9CAFVS9IXn4Qu9ezhc2rAg33/k3w8YgurMYqDSdptd4PMVq0UQYH1dJkN5GKi0g5MpdlDdyAvT2LBDNUqlLgvs5YLz81M6Riz6D1bHUYFvtLUx0PqwAy+NTTXeoa9Gpd23ZAISwkilR2hLVrbaBUEWST7cy3N9U6M+qNc9NXJBrfbUl3boDeSRCNJIuKoY043Eku3PyXOW0JjyuITF1Jk3dTgGk2/q6mX4gEMQtpxUysOPUPADGJkEWpNt2eKzrTfVeSc08l1L+b0KYLNN5rqyKGNpr3c0906k0XVKKqlKyEEdpXF+rLZEHF6xCSherUWFnB9GvGDQjmNuh6pT6SzNWPE9ALZ524/JDSg2OWlzkmFWObldq0oFoZpoXZTg+3DVgqQ5k3ZyUgPQf7e+bSwy/s5zix24xPhSYFWjBPRN+cgdXFzitKtpSIek5REtMQGs3Eyehh9KnoBvREEIdqKUKVzTq8hG5qEWhZUcWxKb2c2yNeyEJfOFyEziSY27y63BCfh6Ei3W+amMW7h5ioxiEMgKJ0ITNvuKFhdNJL53jL5I1YQGn1mNq+42ntcjFgliaXRB7EyLAQ3jcqkpAQ7Sri5dE0yjxb/43yomAg0iTX9oue/PZ1cxAS2bPG0EWiNojFKzBpCQKUOVVBXlawHE/zrXSbfQiq7xmicj9SNJUTNHccj94cpbgTfr8VNq7LQTMrvxvQ+l3NGvhjP9Eq6qTCVZbfWzCt1U4tlV2NKMlJlJpzh4bwJCVV6/ISYGS+jp+zIFSrFsGNKIIdL39ODbJC1F5tMHYSNbdcC5cdEltMugovcfTpyuh4ZR0/vfJnbq7S5UtbI7yiF2pnK+/tJLqQffoSoUH+YWcGfzGOvMcwbgz7ZlJnOeMsCc7wh7LZi6dZoqqXAPutba6b3C1tt2DHM7+yYXtbc97/WVKeWzVM3LP6fmvpUY4aInmiqVaBaOvr9Cl9runOa+iR1Tb0QM/SQSCb9iK4t8WAqcp+JQJHNkcw1iGCXo2gekzNNnsHFTA7wgSpFkTUPCOnKnG6ItaW++wasNwLzXh1k5zebYroRvz9Hd4NA4E2VZiAqQULb5+j2dfL8FDi1v9Rgu0B7/4ZxvxFB+NJRLwPXP73i4D0jZggcflrD8Z/omb6vob0Gh59qcTO48OuO6X3r1F1JRNi43wqDUYOvM0wqKUD97qSkzphOinWwad4zRDFrcNJ92U2gPfQl2ceuPWbjC5wNoAcxqs+zRTVs49jCJEXAGSkIGdIX68MEc6XPxQyxaPRUiGXH72tx0CmuPol5OS4s2Yg/JBTC9JFq5dPMdTv7U6MvcF4pfC4UC041etS63+pYbZ02iynxpjKghIyHy0iHzN7knNI8sHOocYu0FHnP2SxWL0b8QImqk4KautGY4/BcYd3mwp7fOyGYiXkAiAY5S4/Er1gRGk11PKAHuQd9q/m+l38u109O2NGakysPMNs/x/JkiZ20DMNAs3eOfj8v/BRnLDWKC1phOKdNj+T8ZhmIBtLsN8+Klfy73F9KNh7PfOaP8Z2veyar1SgVr7YoItPCwI7JsEGVepALoETBBXRULFcbHhgb7l0Hgm2IfkANI825HdpaM7WK2qjSAYcIQ4isxsDKxcwrKkdrFI+eWV78jDdJUUpyOJKmWHcjNFY2VtnsXglS5RsjnWuVRmMhFm/svNlzU7PNN/Zi9JCbjWSmW0wmfCPXVbXy8h4mktzfe9tX8MHjgaEbiT6g2xqV3LLKa/lvXEQ/0pHBzAf7/if7eMQW1kvzSnZ2RqeEEIXeONy5uXjgjpL+ApKfGYzCzQWitX1kdfsM7SMHvxOYXB653k9ojmMK8JUOKdSKUAlpwzfCZC3zBwBt0d2I2gzQ9yja5KUpetP6xKFG8fzV3UhoK8Z5hV27NNd1KVoLNhdrqlPxCda9x4SA3og5hNoMInOYJfuvSSswViKa6EGYo7HZzuRUjFTHPeNuQ78rTNzpNb/tclLnHYxAl2bjGG5paB/oaYziYIh0B5bFnRvO/dYGmKC9zD13P+QZ5on4MxWoUqm4nfElGFzCyFWxTRtnELUp3rb1Mkk4IqV4obY6YgA6GBZJ0mMT43EjhholrxTpwuJZ7Wc2O4jyWMrqbfh4ctQiJg9lEmSZF2Urc8toFaoLhZnpZlaCGHzuGqLAb8kC0U0kxShGcesiUqBbQtjOTSsDYxRyULLyi5VoWtWZLvas3CbbFuagdRl52CSpcOV5YpRFOFsiFu9fUsee2LwMAbCgk87ThaI/zWz02FT4abWFgAM3wcF5IxLMNh7OtwJFjinbVgVxqnr/+z+Ani4AWK9W4D3L4yPmOztsVmt29vb5ay99Gt//HT9d7PGiIpGZpMhm84GM9uROjMzuRhdjkHxkxAotHTFK0WpFWPXoWcturbg0hYsTia6DpAmOQXx+o5bZa5rJVrohjLBaLrHWcEttCEpRTyfUxrOzgK/8lp9O3tHJP3oQuFb5yI///NdwvfM0RiWitaTffO2XvVnOu5C3sgGJbKoyu1qPghSdDSHIrmYqhYOYMclzrNx33TlLc+iKKURB3ZLjmE73korg0/91YhlnuP/Vb/8K3nutw4VIdB69M5Ma+ggspB9+/Hcvt/mDPBaN5sv+P99/ZhENxLphnIuNVphsiSJZ75XnCeNEdKdRgWplQZrf62mvDcRKUnCyNWFUUkxUlAt0K/1QeDThwpSqrVDjVHaMad5XnfhCFDGnHaGp0L2jvTImwb7Al7G1hKaSompUmplk44ZanJEGJ16sRqFyYkplRAKUCR45XDueKQxKumSZoZrUxQskFI2iPnaERjPuiGlGfeoJkzqxP6WTWz26hQjz+zxuqpleHrCnA22ayUYF1eVT+XsraRpRKUhFW9YO+SzaG6IDFajJYZY9ft6IdCUXQh+KO1JM55GTWvL17ye25MfqbluEFVKQRP+oS7ZpNKrA3f5MtmqeS+leusVs/5alKFEJszjLedQYMEE2VkEJecauA3FQJVVGmM4ST1gf9aWbzpB1sS60WrrGti5kpRhVQV8E2kY++xopHkZIQT5lyGYmfKiN/LtzMjcP8l4QU0ZvJfIurSRUXfk0d6+2owoh5YkFol9Iaku+ZnLUlyIWrTdsNyU6huJAZVMn5Gtdim20ikc/7rFcsztEpdk3cs/un+9RdYWNkY2R6+nF3/3FfOZBzdd89Y/La7MUKRPJ6SrPH0OtpdinYqS0XEPRSJRh8YPOTXzK1j1QnqNasXfQ8ui5YZagV4WSGz3V5eVqw5133kMIgb29XbpNl7ICPG3Tsulu0K03HJw7IAbP0I1cOQ3Up6KRzlF6xdRCKZ79l98oBbPSom3O2mIoRSoaiu2qBD+IhCwaJddvowth0qe5aWatZzcwPUYYpTlor8l4TFzFtnKsaFVhG+fRgV07tNPbgmsUr33T0/nQYSe+IKNDVeYmZ6xH+uE/hgn/H0q5zcN1fMOXvplaKfy8LbCa7h3LT5uw86EBP5UbCy+LdHNd2LIuGzukhckMgX6vkq7xlgbRpiqqlQSOi2tJxCUo0LWK5kSIACY51Qy7NWYM2NNBdpfLnjCpxEx/WklxHP3Wii3BllSG5eMXTO/r0C4wTizaKZkN6mQXp5SwehN5BQ2qG/Gzrc1j2aWn+WEuEvmmVd2A35ngzjX4WjO9PApDcKLF0iwVZL3xECL1YceQIF1zKsYKw44p8zLf2tJB+UlFbCvpqp3oZS0y+ynz0EQOI4rVnxqT9VwjyELW6MqLkZ/TYyBEgfBcLcxe7cBVRqQFQ0oeqvXW2k7XpVuRZBpSUZSFTaQ5ZbgIyM4+GCOZqnUKOE+bEtMlWDJLW0zqZs50uX6SoD4j+kAi2EbMJqLW0qkODqUrWSDndTk/6XpT3E96DtWnIWVCEqJOBv1B3JAE/jyjgz0jdZFrISRS05Ypn+PfdCrqoanAysKer5dQa9xU/l0ILXELFUazHRjqMZZia/qcdUu5jtxUZvRshHEfGs2tF89z/SQ1yhl+1JXMfs+YZLgIz/mmt6OmWsw4XJr9uYCfCeKkEiN2m6ObYGsv5DIgSZ+SnETJvZCvsXoYeMqtU2YLu2240l989BglOk6jDbPplGEcuX79kHF07O8foE3Fsh9wURHrlhurjmEcUREak+wkI4k0daYA5c9ocOgzDlzFHSt/7jF/9imyMBGKdBo/ZBZ7hub1JhZ7QyGmAckDO+u8QqXwMyO2qMszvsIgRLrE4oatlEayViMPrAOno2wMovNCsvpDdPwRFPxQDiVep9EqfFULE9JFLvyb+3CX9gRmTW410RphTGrZPU/vOiUaxfoxC6GvV4p+R+Om0p1qD+2h33Y2iJ6yPhX5RXXqigbUbNJcbfCsbp8JG/ZOsPdcg7oiTHaFCWplMTAbJwk852fojWPx3hugNW4xZ1iYZOUn80qJEkti73R/qomV4jazaacpnY1vK+obHVHpIiXwSVM73jbl5HbL4l7PjU/TPOafdnSXpqLRPOrRq54wa3DTCuMl8US7QH0UGXcsvlLC/k0aVLsc0Rsp7nY5MJyf4ZsFzWGH3owo57FrOV+BLoXEM+zXxCHg2wp7OspCHwJq6eluW9Cdr9h976l0eOn9VTGW3TlIVygaWJkfnf1eZknatSszwP6gTbCcFB9jZAaYd/raRVyrk7E/RKVRNUVioIft4h6qLMFKaEAfy3xcx4heRpHwaHCNwrYG5RQoW7rymBgtsdKyqXDSifr9KgnvpfiZ9ZaVW1wNsvTGjUKma6148+YIt8oQjZXHSwzhmK5hs3ZioZnhOyXQepkVWymuupcUIgA9gmtTbFyMoLY5rtlndtypysYuJPvPUGtcqwjW4lrRBj/7xT/D93zP0+n7sL1/Ve4Ubz6GhcJ2ggrF5C+bybq+NUJqi1vf52rpbtJUZmmbFIdtXKBv00jIe4xKRQRDQDY3YpYfRbMaI7qpuPUxF9EKBjeycoqrXUUfYPARF6KEmg8Ov+mplGJ3p5FNWmuwq1CY0RJRmGDhKn82OhXVNK4YvQTHa0Cf0TsrRWzPaHldcmqrNVTJMMNF2XAmdMf0skmmkk1JfSzrT5FBpc2txFImn+Y8R0/e2MpHfuJnvoL3Xh/QdcRnedcfom4VcmF9MCj4k3gy6XjEFlY3r6ivjcSdRnZrxjD90DFhd4Y53YAxjHst426zpZXnmUEIxLYuusr1LZpxDtUpLO4PRAv9nuHwKfCoX5Jd9/xex+aCxW4ocg2A6toKtzcBpZh/aInqBtTREiYtcdpIxmZKJjGbrSVddccDKSbL4M/vUB336DGwuq0haikE2dPYTUyZM5kQia0ujEmxyUs3TBbNQ7kp+/2K9S2GyWGgvdJx27/TqG5gcrfH7bYyH90MbJ6wS3NDtHNutxYYqDHUNwQeL96gg+xcx/0J9eVT3MFMip+P9BcmKCfWktoFqhudzEBrg3Ke5prk6uouFYNcOJACrwL055JZRyeeuYGACTInz/Bijq3yjQTNBytyHJ3CxvPNHyqdPIO3vr8qSKfLzBSZBkDMV3qG/j2FVamztV7qEOTnREqjgsyjgKT9E09iFeVzM0OG90THeDbHVWkl2taYCnejoZOH16N0uno9SMeaZ6OZcakl/i3mmRyyUIcsFdOUmXIuenIeOnWYQqJyE5O0tty0SYladL5Zp5rlLzmQIMuTokKCxVMWqhgXpM1oTWKsyuMN+fy3z/J7VjWFFHRJIUrF3vvyOcmCv+3uCgkwd8wKfE6nsho7iD1k7nC1j7z/zg9ijOZPfPb/WAwKQowsR7i8iRwNIz4V/ErDTiUuRJc30PkgSTg+EIcxBdUr2knD7fstf/05b0UZhRldmcXn8y6vsffE1m5HDGFLZsPq7XtkcmFlOx5R201ftXQMu5Wgan3AJl4ILop8JkK1csLezmSzhPbIdazBUDah2WAlVAq7cigfeNZffjP/4Cefw8nYsXL8t6lCv8/jj1jBD+F4zeufxrd+9c/jJob6WAzqVTeijMftz4rzS74Yx7nBN4r6NLB80h7Xn2KoljC7P+AmEqI9veIKPd/NLJf+oxSUZiU3SXt9m54iDF+N25vIDDNJJtSNUyEaGQ2jR2FEdjCIG48e2N5ETUOYNkl7WkGINDcc41yKjV25EgKQdY2+NVJ4so1fIvzI3zXD+Rq7lqJ19Ck19TIyv88xvfNEIOkQCbOmeMmGyuBv3WV67xo3r+nPtdhklhErjfUp2KC12xuvlh3vcOvOVq87M7ipkHeqU3m/hoOJsFWTbESf9lvWZm1R/UiYt4x7E/QoM9ycH1v7KJ9pgmJFTxdY3mapVpE4lc2GS8QoY8WQ3U0MqjWMU9GoBiMLSb9nqNbC/o0GqhPpckKjU5CzKvPDYNPsysmsdpxJ99zc8MUv1deKMb1eW0wgItUqQdEpWkvcjTyGtDgmUlSoDEW5nhACnTSlygvcqTqXCqrbLtAJXs6Lr4piGhGtFFQpkgkqTUxo+cFtgZeLRTZfZpD5pQkRRvk6RnSdbqLIoeKuJaX7yGtyE1N8sKMC7bczPtMFfJR5fkQ0ylJhgxgy5FNKoddnD6ugPdx2oCCkI3MmVlGiA7WQkc48QjaKyOQ4sY9MPxMj3/ptf56NHzGzCReaMyQsb7h3PXLX0rM5w5vLReSwk3MNPoDzxNFJJ20M9c6UH/wGkfjkTZdOAtVspqGHgBkTAhYTQclH9JhkNI1F42S1VQq8IkzsTQUxr/2xUomXpzFegijy+5DJSpCLrzDo7Znc4MxdEDZXLEYlmWClB4/p5f8A3/3WZ3PHsWMcIWx61KTZvjd/CIhL8EfkpYd2RDGo167CTwz1Yc9w2y7V4VqKUa3ZnK9ojjzjTG5ylcTi6wuG9hos7nHUxyPT+2HYTySSIKSNLEbXPs2SNiP1GISBm9io/UHN5N41hICfNAL17S6ISV+L1sV8XY2pS/NJGqKUEAHClj2px4BdbT2LzUmP32m27Dsli6Gvs2PQVlJABHs6oEdPd77Brj2+BXUsi+lwywxfaarVdtEa55baBbE/awz11TX2VNNfmKKHgE+WaD6/ngTN4tnaIS6E6BWNEqlEpvBn04YEnRKtdFlnGLJR65Id6ie2GNmPM00wNWZMRJ68qBjF7LLMGX0qiNVGFrFqJRCmm+htV5h/T1PY3qTuWvkgu1iVmgSXfFeJxDrP00XzK/NDWbhcq0t6iBmkEMcOUUAmshvIAlgfjQUV0Z1HDy6R7CwmDjJjTgXS+K0JhHKJ5JSJeS6AjkJgy7P2eObfxYEpoQBaIPL6ZJRwiTRnJMYyG5fPdds1BZNmdCYVCKWwKbs2VJTOuxjjq5RT2yVCk6G4JPlWFzTANaBq+Lnv+WLec+yoK01MGwxGj9KaEBxBGyKKv/8334l1kRhEyqOHmCQf3OSWpGKUaznrwpNNpl2HZNKvCvz66tf9RWxV4ZoZvqporOJCa3AxcrjxXOk89689PgirGufEIN4F0WRmYlNtQGv0tGVSafYNfOc3/CRYmUuLa5Eu5MGzBK4Mv0aliOmazzKoLYqhC9lNUCq5DvNISMhGGQKX0HHtAqTr8exs/OzMXcUo601CXLLfr9h9bZ9f6PWyGQqV5jU//Je4MjgaZUQGHQJxHAmjk3u5rW8KUHjEHnmm/2Df/yQfj9jCej11llFBfShaz+qoQ7nA8RPakuGp54ajT9Gcf7d0Ttc/3dIcw94dA8OOTf61UmDt6UBoLPXVNadP2qU+cZi1Q3cj/YUpzbUNoba4uXj4tlf7RPU3VCe9mDsMjjHlqurTHvanqNWIX9RFv2p6j3VbcgshERpGD4tWOru0IJvVUKzoQm1Y31ZjN8KunX7oiO7Ru1snGmQxa68PKBfY/11NfTRy+pgW5Q3dgcGfbLuY6kR0uP5cg1Mas67ZXGqZ3blk3G+Z3HUiRWzeSnFLi3OoDT7ZSbo052yvDzIXTDdZTn65aU5UGxhkMSU61Ogwpx1Gybw7p2jYdSiyEuVkzludOAkUSMYIeV6kE/TtJgarYMiG8IEyC9WjPKZ2W6Zmhul8ck/K/sBRSwqPdjIv9XUKe45nYdBItFJY80YidyuhlvcjM2aV86nrTvNkFwAxzNejLN4lQSYEYpP0t0qMGaLWUGthBwcP2VULyHaYuSjm2Wcmr4nP7JbMtQ2kRghkyRcbJXNwksZXD5FQJzhWJWN3Q1msy+xSQ3bgEv1vOi2jCrRebQRmfsYLfoq//rzPZHZwCw/ccw/GGoKPGCNykumtt9NOp9uIQC/GITl7tMxN8+uD8tnJSYHZSNfl21RwFLhFhfeWWx+1L88VYQyRu5aOKxvH0qU5aYjEfiR2g2gzK4tqrdgmIiQz21YsKs3FqeaFz/lx+dzS9UXuBNMGwLfCJldxe/55JKWcL/aWshGC2Nit4UbWIEPRoZbfjen9zi5mSf2gU7qVW2iqU2F36/WA25uUdafIkCJlxh4ajU1e5GJrma8dxYu//GchBF76ms+lW49E57CTBWb/AsPg8Ccr9HxasnQfqUcMihA++vnFB/new3U8Ygvr5VPHy9/6dF72zJ9CdwMBWD1uQX00srhnYJwZNufEhP22f9cnRx44eI9LbkaDEHHWDt07zLFoRU0S0M/uXrG+bSqQ50FD+8C6JMPoFK+mx4DupAsJs4b2/iV+1mBWDnPSgQ/Yy8di4DAGyHILn3eTnthY0LHoFwU60gwHjRCjztjV6dFTn26xKncwozodQNXi2nRxIjdJ0oZO7loSWyvdXJsXX3GNcq1m2LNcf0rD3vuF0bi+tcWuA8O5ibiz7E3YivBVYffqMaATRF1tUhduxPgiQ07aaDH7B5kJJmhJeS8zQ2tFf6xlJlctncT17VXYdcDNDP2eFVj4WJiyMRVT3+iSxerbtLD4CKnQZd1s1FCfSlJN7nqKs5ZzRJPhQlUWm7wAmTHCJggZTEt6SDgDT+qR4kSVCT0hbQZy8kfuHnNngNaIXU4QOUwygIgR2VxpvU2T0RQdqxplJgdnoFwl3bUaHHFSl5lvqEzRWtulL3mZIelvzbLHz2qi3cqlyoYpM20BNabNR9KomtWZgIpaM04yRKwK+1UryR+WB6awVKu1aC8ff+stXFmN1Lt7zJuaq/ffx3T/EtFYTFXzd77lp4SV7WVGmK1K1bDVpsqGEyGZ+SjE5yTVKu5DUKDuH/rhZ3LHXYcsb8iYqPcRpSRoPcY0K+0H4uBQlUUvpqULyzPWVsOiCVzaq/mq5/64PK+WBVlFicXLZJ+ilzUKbyUcQg9Jn57gVj+rRf4St++VuCCF8hpCrctsVchPcj1US1eM8Yum2Mfk/SvXnow4EoltYrf3boJT9BhKp5qLar62hGktcLNKUX3f862/yN/43j/LaPfwSmPbikmlOQLCeoPenf8eAtoj6fgjKPghHC5EVNUSG0Owouec3rkEoL84FV1oYgwOexX1iRNjelODlgBmnRmKyMyvkIFqS7Qm2dN5kY/MKsbdCt0H6uOB/qChPh6TjlajOkeY1qLlO+llAUzFQw+uxM6FnZr2jmuSn2n0lmZPlEK8GiEEzMrJXKeW+Vl1uCE2hurUFQjITwy+yuHsqYOvpOM4y9wLlaLb01SblB17JO5HCpjfL7rRcS5eyMOuTV2bL0Hgyvubhv95VqSHUGwfY6/o98R83vQhze5MsRHUSfoQayuEnHqbpBFqg3KhQJPaBaqTKB242easuoXk2NqNZ9ypZCZ0hjUdptvuxTV5wddAQI3bTl3IOCmXMkX4aZ/Yll0oRVFPLHblGecmMcSTsN7HUjiK0UTv0YUIlbuO9NwBcmILIDv8NCfV62R0UVspFoMUXlKBzPKZs0hALqp5zlWYp0ptZ7qdL5FekORHRuMWzU1kND3Iwh9qkafZ5EMrUg+xaiwWj73HTywk1jQq5fXa1C2b1MXna8OqrWftEHnBS/8Fr/o7/wfHk30GFIvHLKBtqI3i77/4nZJal2bdKkRUnxKLEktcj9KJnY3dM912/qyzJCTBw8Eo3nfY0dmK1QMnqElD1Va4iBTUTU90HtVU6J2ZzKiVWB7u15pve/E7ysxSOeksxZY0bdCS1lf3QYIDMh8CRD4VpOCjVHKQigy71TYrNW3CtvepTtdhIOr0Gq1AsyooqhMn74uKRG1Qw3azlxm9bioNhOllHSikJbaQ79Z60xezlFKk06H7M+RGH3jl3/hFXvqmL2eZ5ty7jeakN4R+lM2/eQSX1mwo/WDf/yQfj9jCGmPkxoYijjdHa9h0hP0dme1ZTXM04mvZyWWtmPIRezqKM4xRqJjYulrL1ZkM78dFVWYO3bkauxK3IWsUoRZo1DfJXix1uWr0mMGJhnWTikKST/jWYE9H7FFHnKX8zOQIk2ceyujkqCIFN9Ypw/V0kE4vGMxy3DoIKelEqpUvC4y+sREmbivGErofqY9r9GjodzXTM7FrhFh8Qqtl0jhaGOa6zB3a62MpbtmgPR/KRXQMVC7iJklrGoUoFnoxT1Bj6nKiFhKF1vh5k5xzxIBBuYhZDfI5xEhoK5EmrcZC4iAnmCS4TKUCF7UUxwzFulYcn8rjV6AmEpmVvYPzbZQNOUKtpUMLscgUcgGLZzYomfWaF/+zEXLKha1rToIGyUSa/HjI9SRM3rTpGAY5Hx22EGCCA4VRrbfhAiGWLqKwe30sxhHZ5lDsGU2BfHNySZlR5lPJPsY2p9qcMbDIJLVhW4ABlA+YtXDz3NQAUcLtjUIN6eEN0unm90FLYYmV5q+/7J/zva98GidBUbUt3/HtP4vtxfs4owrKy6xQJ2vJ7MQkTkumFIs806QU5O1nFqzmjT/yZVwbI9f7mk3neNX3/zwvee5f2JL6mwo9a2VGqBS1hu/9zp8usL82itCIUUzVCUkof0ZF2zxKZ+3ypqrabkRyt2k6kZsVh6RwxgTFyD2c9cElhCF1scXmU1HMU7IuN8P9paNNRE0Q1naopYD6Jp13Th/QCjpfTCdyIEMedXz/657Bi776J1Ah8uM//1wubzx//UvexKfsWJ77tDcRNfztN315+rC389xH6hHDdk/70b7/yT4esYXVrzuWLmBWgyRxnK5gHNHWoq8dQVPTP/5csfQCsBu5kPp9y+5vHxEmlUC23QBtLakwk6pYplVLgSCrUymc/a7smvtdzf57VulEEkSViEloDZ0UiBImHaC57wS16gn7M+luZ80ZaUwKjDaGcVHT3HtCnNboZV/gQpJsRUzlnXRjLqL89iNa3zZh/v5Bbtxlhxod3/ULz+PbvuodaRGUTg7ERjGnu5zu1ey9dy3wsY+oUOGmimophInoVSJtmbRA6KQnjGWOpIJEu+Vc06hlQxOSjs4uc8rONgO2Wgp7eHl7Q3tdJBL9vmV+5wa7HFCDI+R5WYyEqWVcGJHOWFXs4oJVdBeErVitIr5VDAuJx8qFUc7LFLvEkGDGbG6QZ2WSDhKIlUVvHCpG7FLiB8eZxSSfZcgew75oT/PmQ1xpYurYdClKsmnI9pujWBpmssnoIbkPkYzL8/nJ7+a5tS3/jkYTGlVY4/kYF5XM4lqNmtlkPpE7JJ+kMbkYZw/krYZWjCAi1el4UyeTC5qKUWDQ1G35Vjowk23wkAKDk/enFAsv7Ohve+E7C3u3VmeKkNVFk02MxLThLEU9yuOoYQtJRyVMfRW3IRsxOW499+vejpvIzPtVr34Gf/fbvpjlEOi8ePW2VgzvfYDKKG6bbu02q3UomxKgOLrJKEURk+xLvHp1QQFUkrJkTTCQvm+xS5fkXo5Q6wK9Z6SkMICNYnOLpCDZTub91YnwC9xku4kMlXzuwlBPZhFO0ATfCPScUSffamkalGSvFvvRZLYB8vm98Sf+ClfWci6v/sEv4XdujKy9oB3vvbrhG37gSwgR7jvuhSWtleyyHsHHH0HBD+FQVuQKf/9nv4YXPest2NERT5eoxVy8dIHmnmP83pT6cIO+fsL9X3A7k8NAc8PT3ToHwEwqWcS7Ic0CHd2jJkyuCmlonFvMkNJv1nKR73xoSN2mwl6+QdyZorpRZhM24s7Pqa4tBe4NAax0ruHcAtXJ47qdpqSfmOtLhotzqhsdzf0nMk/Lov+mSp2Jw5xs8Iu2dB/drRWTy7002ouayf2dJPxsxsI+rGzFN7z8/8urX/Ofufq/ePZ+01ItI81JIv00ivo00t3S0l7tS4Dy8jbF4m5Z4O1KlQKW55yEpG/0krLB3CZihZJMVR+TF7I8XkiQeO7EJ/etGPdbCWS/q8NPLM21Dc01SvQdiHWfn1jM0mGsMD/dVCdXLF2gZNuFUvCE/Svnngk8mVFZYuZSFq2EjFNcom7KK03a09wBaReFHRkpsHImARWtodka1McUv6UrTTWGkvQR058MEWeCl/Kx+F7n+LmYyFoqhALZ5aAAPXgCYi+XjdmjEQKSGgWuFm9j6WYseR68ZUhvNbCK6JI+NuR8VoUOMbFs9ZkiDAq5F/xEF4mNSih1SO91aDRmLdd4RBWTB0jQuz9DrAKUCuDBnGHSZtRIuvUUSWaUMNONXI8e+fyy33QurioiGyGjeOKi4v/8hrfxk699JieDpzaB53zzOwvpK1iol0G6w/RZCLlNF7tKUQlADkHI38sm9bmL9Sm6Lc+HMyvct4nlPTFlDhuMGNKc9V1WIVKfpqI4BHyKg4ta/Khz8Qe533yltiQuItpRWPPCkg5JEiWbfHGhCoXNq1SyqbSK+44Nh73nBa/8In732KFNZH8qsqE+gA+RSokG27vteTzij0dYU61ifGT1+ScnJ+zu7vKj//yXObhwjtc9961SSNJOXh2dEmfCVFPLDWExlVi5JF2ITSVFrfO4hRiMBwPVymNPB3L+oZtamhtCerLHHf3FGaHWNJc38jw+pdosO+KkQQ0jWINfTEoiTRbzh7YWMsNEWMiTu09wexOqD12Vc9pflMxNsiuLEn1iNlIocV8ghJfaMu7UydNYOrPmvhMhbWR5TOoUojF8/T/8cl71yp8DwDUwLhTjFHY/JIUxGpjf3dGdrxkWhigoX5G01Kceu/YpPi/peTPhJ8Gbm1sq6hOfUnJ80bBmIooePL61uKlhnBvaa2Ni6iarvtEXb2Q/y4ScBHuprYFB2bE3EtM3TlKuag5uSV3pOJO5oUkyBOmMKK48vhISlNmMlDDptMhng3KV0nZIs+KcBFNYywni3ELlqrB2z5oa2LUTl6TRy+eYCncmb2XrwXwdxCTTypBwltiE2uBmlcixNvK+uVlVilRxdzozBwSKHjgXzbzQqJAC2EMuBG7bYZ49ElyWDT3CxG5DtpPbUUkdGv3WrSm9/rzxKISuBD0WP9/sAxzT3DptUtAy78uvIWq2rOh0n2QtbfbqzgSgTMbJ4fX5ufJcM19TvhWZVp6h2l7kQ/Ja5LzGqUp6XBI5Ld5k+J9nnHnTkjdEwaok2WO7QXARnzKJ8+xeTihikv45Bxu4VtK2ZGMRy8w7s6PdJDPft5u9HAph+rzhibz+R5/FlbVn9IEQQoE/e9nLEDph9CutGCOEVSfd7axFK0XIGzGjmaZR1KpzxH5A7c0/YcnNennKV/7pz+L4+JidnZ1P6DE+2pFrxe2vfxk6NVsf6Qibjrv/6ssflnP4aMcjtmMlJv1hW0m82pUTwrkF4dI+5topnI4wadEPXCM8+haZxa5H3LwuMy+7HNlcarcEACdEoNPHNFTryPET5uz/7oDuLWbjaO84Iiym4rM6qaGN2G5E9YPAeoDe9CKZSO5OomdFoLXDDVWM4CPV3ddhNgHnUb0TOCW5rmToV296KdTr1D3vTqluSGE315f4ZpfYStaq6YSZrDtHSFCa7qVARaPwKL7lb3wRP/jin8RPNOFIZnFiyA/KiykGyHym303mGgY2B5Jp2u1XTK70ZfFTPohxBOBmBrsJjHNNtUwdiI9FJK9cFCP8VJDtRuC7zYWaydVBClQrvsva18V1KlhVQsZRAbMR/2XJoxQo2uoUUA7bIIIqdas+plxYYcgGI92nn+gSqzXuTMg+yMaJhEG6MC+pPcXYPJQCa5djiVTDUQojbAuBOAdtw8ezZjW09XbDpLfz8lJIa/GqjSkDVWZlWzZ4Jqplm86sFxZmb3JpGgPVypWCnJN1SoScRv6u1Laojl7ORyPM5Yya2ORbneRhoZaiGqycl0pkLoW8V1LEEyvaSBHNZgWCBHCzAcTElI1PdkfLAfM4CtEqF978fHpI5KZKF3Z4tp3MxWqcqeRtDHaVrgErqIcZtub1pk9jC59/T6MdBCtFtD2Ucwu1jFFySgxKFZ9eKdoyItCJzGTXYvKikNlzVBCmybJUZROS7Ogl2mDlIVoIXuITS+JTIBH9olgZpoIKFImXCrJRCEbxo6/+Eq73gaPO876rHV6BUoraal710p/m77zmS9Au0rnIWFvJqPWB0I+iUdUKvxHFhczKNQyOZZZdAXo++UPQtCoevLX+Iyi4HLJBSskePdDWkonaO6grGEayiB4XUFbj9trtvEvDsFdjuoBBXI5UlAt/fs+AdoHpvQHdjylkfMV4254I/buBOK2o7j/ZLo61BK37eYvuR7rbdkoAuuoc/cUpdm2wRxvpbqtKIsOcA+dhZ4463UjXO29TMbWYVS/w7vEacyYqKk5qugsN1anDtZp+1zALEaN1cUeq0i5zdWvD617wdqJWvPDv/iW+/yX/WB5Dy453fu9I1IrVpSpJUCL1aWR9UWE6gcnWFwyzy0KQWt0m7k6mE11ddaNnXEw5fpxh90Oe1UWRydiF7Mq1E3s7M4B2mtVFw+4HhzQvDtjjDrXqCHszgfDGwLBrGWea9sjjrDwOylIf6xRSkLokLQSkfkcW1mZIUNcANqawhF40kMFqYqXo9+Vncw5r1uLGRtEdGJojXxy2SHrSbKyQ4dZodAp40PjWbnWGiUCjncT56SGUmWWobSqemhikCxWGdypIqbCp0UvRthmKH0tXK7C2dG8mbeYIEZ20kWX+mbprMrEqdcZqFKtKQObmWqNMIr6k88tELNFZc4a5Tpn9mrXDpusrb65yl5o785uIeRl2ToVMipQhW3OiKBuaArMnVq2f2DL/LQb3VjG2dUEzooJhIU5YuQsMFslPzizuBO3nuWtIhvbFhzt1n+K6lTpkowhKEY08hhmTf3RCNHyVAw620HZOAgIhLRbyUkIaVDfiFlUhGOWinAmAgIydxm1XHIxAtdVK2Pqql/ezGrY66OzqpfvAa17/Zay8Z1ZrZk3FN339O8jkth/6wafxqtd8CSoG3BDoe48fPcE5lDGotkYlPbVqannDz3akIQKxhMQ/kjWsAH9kEPEQDtPU3DK3dOcqtK+YXzlG3Vjjnngbw25Fe18lN/akpr84pT7sMatRTAqC3ASTe5cCYT5K5q32xprTT9uXv68848JQLWuBEisjZg3GECtDdccDhFvPoa8eFeg5tLIAxMow/eANwrQu7NLmeodaDwLTplkuSsFyJUXWeYgBTIU53jDctqC551gK2eN3mP9Oj96MJcDb7bbYlefoSTVEmBxKB+cnEo+me5FQDLsVs/sHsX48GZnM5kVUXp06du/oyLKBxZ0dm4sN9bHDTwzNkSxy06temMepA9r5nU46ntpy+rgpx0+oqU8CB+9zdHuGxd0DfmKK3eI4TXFqMTK9t6M6sVv7uYgQeuq5WCiuPFf/WMP8/kC/q6iXWwaukDNSJ7AcS0EjRqqVmOXblehSi2GBVdi1L7ClmFm4kldZYtMi9DuyyFUrhQ8pLs5tYeowqQk1Qm7zEZO612KWYKXbEMj5jJTLKMlOdWekIhqR1xS2aOoMMxTrt6HdmUkcK5NMCM6SmuJWzkPqllPhgW0njI8JaUla7OR8BUjxzY/lt7PXqDVKR6KT8yXDu/k507hBj4JcRCiWoFm3myPTgjYFUo9pNpo79GBl85OatgKp+kpju6TlVqrMrPNRogQTxFqtZJPka1VGA1FH9FpGAOPcpNmoIni1NaMIeaYqRTXP2HOAfYZmIXXPGa4mzS37UBbnEpWXZFjFbjSPohLZR7kooRuVEJR8rQqjnShfM33YQuMIScx0W0h8mxolCIUi4hvLW37kGXz5N/ykwMh9SHagW3j67iPPZnC40RNGITKpukJPGiHenS2Uiu2LKIvvI7yQfvjxB1xYX/e61/G6172OD33oQwA85SlP4Tu/8zv5vM/7vI/7MR6xhXV/ovmOL3kT02wPNm1kt+U8zWEgNhKdFXYN7d0nhB3B2HOShJ9YmFaY1cD0rlOWT9xJloJeoJRa0R6O1FdWpQhGo9BOSE7UNXrVS1FNeka9GWUxQouPbufRpNlF2nHrVc9ZE3/aRvxTT06hrkvAdX11XWZr89++Job9IYvnA65tiZV0lPUqMLunKx1cNimXeLdQOrXufM3f/8o3U6Uoqv5cU1IxZnctGQ4mNEdSdIJV1Kce04lu108soU3m5vOKqCUcvV4G6mPZkfcHlvbIlwI5zg11t51X9XuG1aMnVCuBD80QGOdWouesEHZ8q1ncEzh9tJA01ucNk+ue+kRcdzYXaswgcJcKpI5YFo7qRN7r6tSJO9TCypwqGc1n+DYXiZDSf5QXO8XsuBQqwfky/Opbi6q3sXk5cFs2Wqpo/Uq4AFCkSakbNL3MVXWf9MbJTavM3Qp0Kr9TpDuZOV7b0hkKGczIDNtLZyxs5FR0rRbpS67tSsl5JD/h/DPlyF1qlgxBmdNGJSQbAmLtFRBTFM4U7QHMabfV28ZYcnEh/c6Ywtc15HxeX8ts2qZZsZ+mLinBozptqDBKLA6TkUexCbRSbCUekpJGpaKQm/Qo+aPisa0K+Ud7SakqRfnM4+msV/Uy08w1pU5QbJZjZV9e32yzSfPsHrjJGcknJq/OjHK7JaHVy63spl4FXCObrGotFp3Z3cu3smGQ9jZ9bokwhpdr+Ye///9k5T1XD4/5wVf9RZyuWAXYdD1udIx2Qtc5jo8HqZ3Woud/SGwJfx9HDOpB3ZUeqvPSox/9aF75ylfypCc9iRgjb37zm/nLf/kv82u/9ms85SlP+bge4/fFo37lK1+JUopv/uZvLl/ruo7nP//5nDt3jvl8ztOe9jQuX778kB/7oBUZgc4G04mlaw5XDHsNqvdFt7p60h7johbT6WRGkDV9UWs2ty+Y3rdJMxtYX5R5YXWjk4LY9dANMjNViuHiAtpaFsfWykw1ueaoGIX5axRm1RdHJTWI4UOx9oM0txCjCKZTScQxRh5TCTQXJhVYU2Zvaj3gdloJKE9G83ZzpoOIlMVPRZl9arcVkg97DW5qufFpU/odzV1/QSezdVVs17IVYJYTSOKFMKSloPoEb8kiGGox4mgOHfVhX4z5M2kjWElKybDbODNsLiStavJAdRPDsGPYnDd0e5r99zvqkyhetFEkAiY502y9VaE+cjTXeumoe58MBHSxPMxHtp9T3ovVZCpcQoDSmFHclvIszldieOGmtph0KCfXlFn2Mr+e1mUmqTsvLM/Gig63rcrnXFivecZaW9GoWi3zxTMdgMqdavoTG0OYVEWXmtNrTO8TG1mVP2r0qM2IOenQa9E+l1luLnhnpDkZci7EpLQZze9XPCOjkEALfdPGQYUgfr+Dk3txLVaaanASH9iP6PUgbHAfzzxfzljNZhuJWDQGseZLCECGgrNRfDboiOl9KHF3dussVQwd0kcfrZgmFEnJkNKRBoFaTQpmj3rb/Yp5QkjmKGl2Oco4IKcc5d9RPsi1mUYN8gFTxjHqzCbaTWW2X+6vQc4jqz1MH2mPAu2R3wZvaLYmGw7cRFjPduW32axG8YLnPYHf/O3/yqmD99xxF7/zvg/w3t95L/e85z0c3XMPd/7X30QPHdRW5qKLKWpSo6z577qoAtuO9cH+PITjC7/wC/n8z/98nvSkJ/Gpn/qpfM/3fA/z+Zxf/uVf/rgf4xPuWN/1rnfxhje8gc/6rM+66esvetGL+IVf+AXe+c53sru7yzd+4zfyRV/0Rfz7f//vH9LjLweZdXKyRM9n+INZwfzbe08I05pxpyE0muaG6PE2t02SBlIX0onuBiZ3CcTqFjV27Zle1vS7ltPbd7jw765IRxk9qhenpfrO65w89RKL9x0VGHn6wSPGCzPqOy6DUtRIl6FPO2JbiWnEjRVUljiboIYNbDqYTmTRPl0XbRle2Jknn3HA7O4NsTL051ra+1bEiRSk9krH8ZOmgMw/g2mY3bsRfSSyeAeraa/2jIuK2d0rulsmRYQ/7Fasntpx6z9qaI5FFqN7T3vay+IXJYjczyvZqac50dZdQRYWuxqpr3v0qsccI8koVZKEnET68w12E3DKUCc25fHjDDt3eeora/xOwz1/dsItv+bo9zTtoayMdumZ94GQDBkyfN3ccBCRkPYxlkKacyYLcQZQUUOXNYUSsJ5Z0/kxx7mhSzPX5lgco6IVUwDTpRltttlT2fC9KaiDn1bShRrpuHXvytxd2L1pA2e2Bg03ZYemx86oiPJRTOCTFaJyAUUgBvGKVmc6rHy9hMrIvFQpmFQpyizNR2OyTUxz4WC1BFsHjapNCRFXuZtOrF3lPXodytY6z39jZZKrUNgSnTyo0QmqcoaQJfCzKtej5CHLKKaEaWemt9lCs7kbzDIpnT6TnA6kAqLJtArNtphmZMRuQmHVFjZ5jMXuzyToVvlEdrKqFNq8yMbUJZs+FGi6QKTps3ezqui45U0Cn4qr7TzjQrKMVdgWeqBct5lJrJ0YtEQjcLB2grpELelLOkHCynm0kw2qmwoKk4l9P/AjHyRaxWu+/4+z+6jHETYdTjmadoKqaqrzF1DTCVpVjzTlycN/fJzOSycnJzd9uWkamqZ50If23vPOd76T1WrFn/7Tf/rjPqVPqGNdLpc861nP4kd+5EfY398vXz8+PuZHf/RH+Qf/4B/w5//8n+ezP/uzedOb3sR/+A//4SFVe4CrS8e3/6OvLZrVaDR+UZ9hMoq1V3UyMu5U9HuymPZ7BjcxbM5XdOdr+lsXqNHjZnVKIJF5YrXy7Nw50D12XzrKqhLSwd4Ef3GX+Z0riJH6aGBy34rY1tjTXualRqM2A/pkIxC1C+jrJ4SDuRBM1sIi9pf2GS/MUScr4mIqmtXGlGSTyZVB4KRFTXvfijCpuPGUHUznJI3mNJQ/w0LjplLA/aLm5Ekz7Hpk9aiW6mQoqRvj3LK+tYYA01+bSHD7jX4LB8aI22kYzs9QITDs2JQ8k03DEwSXdu1mPQoTelIRJo1k4O5UDHsiXalOHc1hXzqwYa6pVjBONVf/5z2On9iiAlz7LMvkeqDf09i1Z/Womsldx7SXNyIRyYvsGMUxy6dc1fTZx+ySFNLcM3dALhR9KYBf1Lh5TagNodZCeBmjZIba1FWkTNFsYpDZqqGWGaewcZNWMmsDOycIxZk83BzGXULAK+lQ3VRkV5nNGqrEMofCLlcpAUiVsAYpNKZPVoWZoZx+Vrq+DyMqxSiz2vQ48j6G1P0JxKhd2G6kEpRbft657d8z6jJsmcZZXhMrQ5i1YsuYtbpaWO6xtsJMr6Ub1r1omU3vE3lLzBUyq1teT9xu4lLRLMktUAqZHoRAR7KjzHm8Et+XZs16qxUloRGSRCP3ugQ0+DRO2MLMINBuITS1VhAbq/EzCeIQw39BckLSWMfkAZwZ9tn6MSYCm9nIJsFPDOPMMM4E2s2bw/rYF0MaFbJtaEqISo+R3x9fp/B2m/W7sBoDm2jobEvYv8hmssPatozzA9b/byyqpBn6x/gDcPvtt7O7u1v+vOIVr/ioj/nud7+b+XxO0zT81b/6V/m5n/s5Pv3TP/3jPqdPqGN9/vOfzxd8wRfwuZ/7uXz3d393+fqv/MqvMI4jn/u5n1u+9uQnP5nHPOYx/Mf/+B/5U3/qT/2ex+r7nr7vy7/zrmJYd9x7Moo94OiLuThKJUvBgfa0IzQVYb+iPk4LwjEsb6+xG7mh7DJb9oWSk2k68X3VvRd27nRS9IH2cMV4YZ5yYMXoOlYJXq6t7NpTTJffnwuDWCnCpX1U7wkLkcRE00AAe7jCX9ovJCe9HghtTXe+pb26EZ/gaxs2t8+plo79/3oicprEdLQbMZ3v9xXTKxoVZaG2m8iw1zC5LL7Fw17NMNdJ2xaZ3y8dw+acIeoJk8ud3PBTi0+zx+Gx8zJz1l6JY0uCy2TOpAmqEp1bgktD8jOOVjHuSQi98pHZvZviDewbw52fV2E3ML9LUZ/COIduX867O1+x/5tHhEmF6kU/q3xEn4o9m2tTR5wgRAl6lsUxk3tyl4o68710jsWK0El+aqhl0VKORFgJJTbQt1vNarCqdIlZ3uKmFqNBGyUbJpCuuNWyiEUEOkwGB97aslhnLWIurkaa1C0LN89LU8pNmaXWAslnoxDrkpTGUIhe5LmRtUlzLR2XGT1qtFt5TSYspdeUZTl5rCGb+VjGGGUO3FRSZH0kqmTvl4lKxqZOVm/NL8o5qvI4ykVMNopIIwhI880QhWRILEXqrKezDtvkmGxMkrtchaAUvkmzzyFuEYbEAC/FTgnrN4eH5yIlj2nESCSn6BjF2CT7y0QQyx2ndpJBmz/XrLVWUT4KiR6Uwu8rkbq5SZIPha3WGhVLJ5sZ8jq9HnlvKCMV7cXgxQyIHhu40UXC6FFJsvWIZ+x+Mo6Ps2O9++67b9KxPli3+mmf9mn8+q//OsfHx/z0T/80z3nOc/jFX/zFj7u4PuTC+o53vINf/dVf5V3vetfv+d4DDzxAXdfs7e3d9PWLFy/ywAMPfMTHe8UrXsHLX/7y3/N1PZ8QuoGvfuOzmbUbXvulP4Xtx1TQJmhrWD2qZXVRtGnzeyXn1C0MvlK0N6RgCCFkQnVjg9oMxMqyedwu3YEQDvbeJzdxVFJAo9YQ5UYwyx53cUZ1OJRFCqVg0iZ7RCtkpTxD00jhnNZkw//YVDKPGj1+d0JUaXZbiS5SSDh1Ij5oulumNDf6MgtzE8U400wvB1a3Wsxg8RW0N3JShsWuRprDnvZK2JpWNCndxGrGmaU/3zIsRP82e0C0azm+TebFDpUM2s0mwZaJtDPuSRKPGkMxcVc+yu7di1YVKJ7N/b5hfpdi+TgR89s1LO7yxQVnes9KOjdjGc9P6HeteBkrmS3GtXQjrpW5Y2Y9Cnt3C1fLuXoUW61k1Gc2CMnZptpAc5jYn5UqrjVmiKWYxrksluNMFsNqGYolY7Qab7IGNxYYMpNzdNJl6pTGo/sgBKikjxXTe4F0VROJU5n9qhRWrRKXgESIiYnFa3qPb6RjJ4h8BigSF1LhjhjpHpX4JOtRknUgQc2d2CuqEAWdyXNbfcZXOcO+GebNzOHMdk1dqu6TsHIkeXFHVJ/gaK3Iwekh2Q6GyqBJs8xUZEN632K2/PPZYESQg2FHXL7MJpT1slr5klMssHagHjiT8Zu0yWPEJUQCEC9ko/DZtSt3rF6uzeGgEY7AJBGnRtkE5M1XMAo/0QyLmvo4WQUmm0Lf6sJ4DomwRAwpli9JomIuxFuIX49BOni/tYvMs2VIsLmTsIUq/Y7ZeP7eW76Y+5eBKnpC1f5RUc3Hx8kK3tnZ+bgNIuq65lM+5VMA+OzP/mze9a538ZrXvIY3vOENH9fvPyQo+O677+aFL3whb3vb22jbj+508VCOl770pRwfH5c/d999t3zDGvRsQtj0bIaWv/Zzf0EIIbWlur5CdyOTyz3n392x9/5BmKiJ/FBtYsngzPINv2gZb93F709pH1ix/6vXOfiNo23BzDt8RJhuktF/v5cclnwQXWqMEsQ8euy1FSoE3N4Ec7wpczS96jF3Xy7/9vNGvINHj+5HVIy0V8TmT4T4snsVIpJ0fP2BRE/5WgLGTx4vgnbTRyaHgWzlZ7qUnqJUYRXngqhG8VpWUYz3fa3o9gUuzvrJ+sbA7K5VmTGSd9jrET+1rG+bypxuNWDW4ts87gj5yk20EJIuGEKlWN1qiZVi2NHsfcDRXlVsbhG9Ybafs5uAn1eEWcOVP7XH+paqxGFBYpIG2aH7iU4zs+xxq0paR1RiBJE7B1/rpF8MxUTCrH3S40qhzZ2KSouq+KqGokWVRTLKbC6Fa+c82DwXBHl/glHJzWcbwj0ubFmwg1WEZGogfsNpXlwbKbRKnl/8gA2hsfidRghTZ8hOZ+FKQAxGjNrORs8ERAjLN10HiWSUr2mUgkzCS0U1b96yveJNEHMQDkGsbWIAJ87D2RkrqSCn+bebJ6ezWp4jRzmW58ibo2wPmF2wUqGUjfCZJUlRzBWGhRVim0uuSHEL8QWjCtTr2kSaSjNV32qR2KTHE59ryuYsd5+5qGnPTd1tcWJK/sX5Z7OJhWyYtsYTGNnYqVFGGboPQkLMH6nOEZGJ2JXuOZIsy9diYZiJa7LpEkLYXb/7Ify1+zm6531U+v+NoO9HOcLH8ef3+xQh3ISsfqzjIXWsv/Irv8KVK1d46lOfWr7mveeXfumXeO1rX8s/+2f/jGEYODo6uqlrvXz5MpcuXfqIj/nRBshKKXEqQqGURlPhdydFqK83I7411Ec9btKio3SIeS6nfKS9loK+G4Ob5gt1eAAAy6BJREFUWerr4mrk5w1qUmNOO04+dUF9GmgubzCnG8zg2Dxun6jg8H+Ycdu/PhLnJJfvnECcNuJQs9Ni7j+kuhzxBzNJ4HGjFOHJRAwhdqYopdBLkStsHrtLVDD7/7P353GXZmV9L/xda93THp6hhq7qGVRQVCQ5ekzSb3KMr3EIJh6NwOsREdAWhQMooIagUUCjkmhEVECjqChpMGrQnBhC1HPQozGJQYlTRBm7m+7qmp5pD/ewhvePa61176fpbrqgaRus9flUd9Uz7H3vaV3r+l2/4Q/vwj72LO2JMs8YbaPQvaLct5jGsLyuyIzgnfcIVT9tJv1cM4u2gmm+aLcllcdOjOhqo74xKGhPapo9T7WAan+gOGxRrUV1PfbsjsyJW4cuNbodGE5OWF9TSt7p2mJ3G+xc3i7VfsxP1QXNJUvQBbaRg8z6lGF2Tli3yXqtPQXTCyrbIR7dXNNcLti+3dKcW9GfkFjA8iBCrVphZ4WwOlvPMCuoDnp0Z7NEyayG3GW5aYlpfXaEShtngte8ju45Srr0svVURzHxwwirlCBh6WnzlbB5GzfYIv+sGcR1x9XR2afW2EblqD5fqVzkg5HbSfFqxdrnKDFjXdb5QuzwlFjOYb1EqqXPgh+lMsGYLGuRJByTZ5IqzjVx0Ri/0ALjgiQpdUJAGufDsasFUoxZUAplbWbFS+dq5L0SQoy/U6joIoYGPy3jHJwN/9/4UsbOXrsg3nqbXVY0AQHAiPtQOiz5SjPMpQtOM1IhH0U418SZZPxjJxEW7iIUm567OEpIYRrpd4MZw+rlcKSiZWZkEJuNIt57XLRULVYOu8H0rhYeb8YiryKRqlwMUSokWm15bsnmE6n7DlryXYeZyu+F5MWd9jFC4Dt//B+xWLZ0R0u2z1ybkYGriwcNBT/Y9ZKXvIQnPvGJ3HzzzRwdHXHbbbfxtre9jbe+9a0P+jauqLD+vb/39/ijP/qjY1/7mq/5Gh73uMfx4he/mJtuuomyLPmN3/gNnvSkJwHwzne+k9tvv/2KGFV5+UAgoLViUsqlmk7IGm6rotrv8HVBfbHF7ggcGQpFv23wBqp9mX+W+2JejwtCgHIhO+Fs//kR/akJGMXh409jes/0Pfuoc5eY/umEsDPH7c4wFw/H+Vtp0HtLzGItchoQm0WlZOOqStT+IdQ1OIdufT7ZT99xp3Qd15zIbEQfmYXVoUCge48XJvL2e3uObqpo9qQbN63cf7GMfr17coJSTrSlrhEY1zVaSFR2QHlPdTiw/V6oDnrMUYuf1fi6RBmDBooLRwzXbosLVdNIULNR1JctpnWSXKOSrEFi9mZ3LJlfXNLdsE23qzGtdHrTc5b1mYLJJceZt1uac2vW109AKYa5aEXrAzG7qC+3HHzynOn5QTYrXWaGri8Uw1xj2girbh7QQxCNcWKwJnOH2JGm+SQILG1rRX0ogehpvheivjTEgluupMsVj+MOs7bZ7EEPDmyEemsh7Wjr6eYaPUSjgshu1SuRe/RbJhsASAZs7JDj49Nrm034Zc4qZvgJDk4e0BlRgVyUxAowfk0TU01UZvDKm2SDZJTmrJspJdEYQ7rPEItknPdWKSRdpGNq8EJei9/PDOViA1ZWIzHomBtTgCK9pqXOowpXm2OM7GOezKjsVpSgY5lHC0qhIoEtuTQpF9DpdyKsSoTo1QBGjeQfbUPOLh3Z21At5GA7TCVkQqc4REV8jWUEIJI0CHGUgA9URzZfu4v+1kGLVSeQ04fSTNvVhn/5Y0/lBS94U3aR+oV/9mT+jxf/YjQUiRKciF694seewrkjTx8UbE/RswnDle+mH7dLhfGAen/fv5J1/vx5nv70p3P33Xezs7PDE57wBN761rfyBV/wBQ/6Nq6osG5tbfH4xz/+2NdmsxmnTp3KX7/11lt50YtexMmTJ9ne3ub5z38+t9xyy30Slz7kivNOawPBzdGDw5dGAnp9YNiJUU+1YdgyuFoxTKRzKtrA6rpGUlKSHV10lDFHol8NkUxkZlXevMzaozrL6rM/kepw4NLjp5z+/SMOP/Natt9xD2FSoS8cjNKZSSX2itaC84TdOWp/IZrVuiLUJWo9oKwjNCVhW4qmn5SRrAHBJCbuqIGb32U5/ISKoKDaEwOH9cmS3T9fMmxXNBe6CNnF1BOvIYgest4b6LdLSjM6D2kbOHjslMmlOibexKDzrQrTOcxRT3LcUb2jSDBUZ2V+phTl0YCdFvQ7Bf3JhqI0lPsdZ/5bi51XBK2oLi7Rbh4NGSzDbi0bvBLy0tbtA91ugVkH7Kxi+y+WhEJj1oIs+EJjnKPa7zF9QXHQy4ysNqAK9GoQh6GZ3K5a9ePpPhJSXCPP4zDVNJctFVLcTGvRnaU/ORFBfyuB65tZn9VByD7GOfXFxcI5pI5W028X0enGj11YgD5aL5bLaJsYZ+269/IeKCTjN1Tyf907SBaBbMCyxE41d43j7pBmqbngWo8arKA8SfKTutENByeUkjEGjAURhGF/L/OHfP8x4STP7NFQpc+nyiYOaIFkg1b4eZw9RxvA8qiP+taYtRo7WrHMjFBnCIQAw6zIDkpE6DVpPIulFHRXx4NInHcL7Dx2hZtFHoT4ZKc6F8hiJd2/q0YEKFkNmp48RpKxgMzmEzkpz0u9mFGIQcU4EjD9KAWyE5PlRgC/8K+/mjuWnruWlhc95zaoZJ8ya8/XPvM2fuA1T+Ko8+zM4CXf+O9wjeKfff+Xcceexba9JBNN6ocC2fz4Wg9yxvpg1+te97qP5GqAj4Lz0itf+Uq01jzpSU+i6zq+6Iu+iNe85jUf1m0pBaos8M6xHib83Ftu5Wn/8KdEjlIZ+YDZwOpssWF2LSfJ6iimWMT5V7H2VOdXmLbPsyOI85lOBO/NJdmkL3zOWXFdaaQQhMqw/T/OS5e7vxDJDcAwSNZr8NIBFAZ1sITpRAgOyxWYWexMTHTG0dgTjVgSFop+LptE+oDJTEc205139zmbNSiY3S2ev8oGhu0SPXjUoAhV7HxKjep8DAZXHJ1uKBc+k2uUi1mNXp63ovfYuVgkhqYAK9KCYkWWbyQDDLtdozyURwOm8xRHHfpwjTs5Q9+1R9lvsb5RpE3lQYepZE4snq6yUQ1T2fwmF6SI51DoLqbeeJ2ZmG5eEhQMJ+o4I5UNNNRGIM/eQmmkk2pKmSnHTSzJlUxv4sYu53sdC1ixGMgh4cUYNI6PiTJskFxCACUyErtV5Ri5YuUpj2L2awwS0L2n6DTJqN4bJZfde1QvM1C97qXYAhTiG0zK+k0doAsx4ShqQqPMJjFuJbFGgxJ9q8AOZmTobsC8GQaLjF1FCsXWmVuA1rhZlaPQgOwWlGbv2bXIqPEgghDIkp2edlIciaYgQYEO0Ws4MrwzXAy5wxYDGCGrDVtjsk2SfpUrn7vTlKKTCG1FL85jpg30O6OncdDynrMTTT/X+FKyfMtlkMyMSKQT/Wt8iqL5vi+E9GcngiKVC5tntabzlGuReXUnykhui1F20Vs47TfZX1jJe8FjMUpLxF58WYo4zhm2Sk5Op5xfrlkcCFv4n7/my/nAPthli5o2qLr8+Dd7+DCW4kN0rA/blYzrIy6sb3vb2479u2kaXv3qV/PqV7/6I71p2USMkB4GF/jqJ76OUMuHtNxbo4eag8dMSPFnwcDepweu/c+B5kKXSSx2qxRob1Jm5qOvC9zEYJaW4tICd2JKt1uK2USpYtRaTF4xiju/9Dpu/KU7orn+MG5KQ/xUFgaKQuZbXZf1t4CwkadxjlxoisMoHUI+yM3+SOIIWshKKkC119KdauT0OzNiI7hd4SslPqFzEbCXe2u51rbg3GfXNJdg6y6LL2BxvWH7doudKHb+YiGerxNDvyOQVrkYoUZfymzW10XubuxOg2sMdqIpl060wjsFjVaUTiDZ/pPORocsRX/tFr7UVJfWzA473LTCzktM59j+c5nT2XkVWY82x6ip1tJdN2FyrsVuldhpSqARIo6OiUUZYgQx9j81x06FGQ0Ks4yB61rlbi0l0Jgj8U1Osha73WQTdfFejuzbLr6+kZ1LdMUyKxtlR0KKK476GBMXMsSpe8ewJYlD5aG8N5K8RnUSKZd0pfjx9zAahgAm6lTzZr+hdVUqZsyOh4GUz4uJ8Gt8bCFm2YploMnFNDl0yRNDlvukAoFX8WAQyTPRJQmi/Cdqe+20GN2P9IYRRIxRM0tJ5PGlxjeaZOCwWbjT/xNByU4EofKldI5BQX3oMGufk26SQ5MwZ0eLz2A01b5o2n2hcNNkfg/TizLzN1HTuhlSLkk5Ka4twcMqS3naUwXtyQLTiclDkoEFJZIa08u81LQeBjF2SKHzxUrUAMNOQ6g1CsXKejEFcyEb7Ke0nuc9/ed4+b96Kuf3W/7x9z+Juw8Cw7qTgnq1qN7/eohnrA/FesRPwFVTE6zjcDXwLT/9NPSyR6+GrDPc/bMFs3MD2+9t2XlXy9n/Kj6hwqiTcOvyoJMg4onY0YVIkNDdBn2+c/mDs/3enmv+80WqA5uJLfMPeEnS6SMzsiwydIaNhvs+wEoIUlzcI2zPUIdLKb5KiUtT2hzjyXvr9o5iYSmOBtHVdk5mx5VIcRKcWB3a6Imq8yk+hSb72LX1WwU3vG3J1p1DNE+Qwr33mCIeMCqCEYhW5n6x0xiEDKZ7i68LKXi9w81KupMV9T1LJnetKS+u8+vSnio5euw293zOadrTFetrGyb3tDlSDaXwTYFZtHS7Bd2JkvbaSZT2DKjeoRetQNkR8mwudgzbggYELUxfHVNoXFPEjjEaGQzChtXLjuryetRPRla0WVnKo0E2+dbGYG8jRSYaG4iJQOzM4++YRZv9e4+9D61HrwbMcqC6tPFc6HFumCQuKDGrV1ae1zSXTHm78p5x2SwiMc1x8lonO0HdW7nmDd0riXgUi3Motegwq0I6XqPGopq6fKPwdTn6B0c5VoiGGMnTOD/WdKjox9cyzVFVSuqJXWFmAWtI8Yk5aSaxzF3Ijle+iOb8qctLI5XIGjeDoDdyHUQDDzeSnOJ7Q0UtczoA6EFCKdLow/RyO0Urz1PRjZFruPQ8kme1cj8he/emCDhxSgoM8zgjb2O8W+RFrK+JWbmRkV0eDPk9hRN/ZDsXSPgpz3wTKxsE6VfxsQf5e7GymM7xmF3D6XnBsvN0Ry2qKKRbvVpU7389DKzgK12P/MKqFXp7ireOy4ctL/jZp+cZlJika+k4etkYq4WP9HiXT/hJi5g/iBkaTYJx2ZDKw47i4lKKWWQd9lsGc9QzvaeXwllKVxoOjghtK0VV62iL6AUGVgq25qh1D1UF04n8vTDodQeRUFVfakmsxv5ElWn+NnaibiqOL3YWnaROFhw8WrrHo+sL7FRjJ4b2moZhu6I6sHTX1CyvK0S6MwRMBzvvc9R7Vnx/o/Y0hT/L5jLCnsq6PE8rLy6Yvecgk1j8rKI+t6DoBF52jWJy0eMLYdsubprSna7xleboE2WWPJycMr9jRXO+ozyyAvvGLslPZbat2gG9t6C8uJQoPhsojxzTu1uqe44w+2tMayn2WpSN2aSFEei9s+jDNcX+Gp26VSOweL9TiWNObQTK3W2wOw26tehlh24HykPxBVbDKCfJhaWLLOXIzFSRNKUPViKbio5FUqhKQiNpR8XRgFnZTEJKetBQFfLz0ZA/r5yb6lHLFWrVyZ9uEJ00ZH9everl753N7kJCTFL5wOBnNW4enZKMya5PEqJeMWxVkTyks0OUshueulqkQqGKrlFRdpIISL4WJrLpHGYlvtKp80wsXHne5XflUDN2pqLJ9RnWTWlFuhfZjVl7ilV0KPIB1xjctMBOxVVt9EIeSVHSQYf8GRK/6wjPr3zUFrts/mA6QSmylCmSnRJruFzFnNY9T7H2TC6Kd2+/W+KmgoAMM830rk6KLWQXsHSI+PYf/FxcU1CsXB4VLG9/D6vb38N3fMfnCNmtc4KyxKCGZzzxdZRZzhRQ0/pqUf0QK5GXHujPw70esek2eSkl7NXtKf5wxeFRx3N/4qu4ebfmxU9+nZg47DS4WUFx1FNEgk2CMoHjnq5aycZqzdjlGBNnXOC3G7rdkvKyFOyt91lCbXCVZrjpJOV7YqBACNDbUVlgjHQhdSV5sTBmxoaNeZYX6Y1YyyGd9KyQzSumapj1vVI0nMwK+22D6RSuFAlL0Ynk4/BRBcVK9K3trsB9B48yXPM/Orbf1eFLw+qGCSjZSOwkwlU2zrzqItP6lfXoo05mrlqj9o5Q86nM9UoxjJ/92SX8vObgU3dwtaK5ZFmfLiTX9UyBthJF56Lvccq2NOsBt11jDsVUQ6/j86MVYTLJZvRmbTGxgPg6+jCvRx6k6p1oio2Wg01ZojqLMtL1+e0Jw1YZu9U4B603HJGMgrKMjztZC8Y4tzQrd158n6tCvpeIYl2fX980fwaEWJL00AmuvleaTHJYOqZLTe+lFCtonfwp41wysuGTqb/4/AaJH/PEwPd4H0bnEIqUoOOjX7CKZhVqI90lWUhKJ1fkLkrpMY9UZq1R1hQ1xrmIqjAGzyuVnZXQYsigot7U1yZrTYHM8k2fx01PXZ3MKFI3qxX4GPemVSYQ+dSdJ9OFRBbKDFwJq0/3l+bFJs+e5aAh5KVo5GFUNLYQkpOJ2b/CNpdOXA8ylgkTTb0fgzDi5yloJRIno3jZS/4G3/WdvyPZuClWt9K0h/tMd07wvd/2f0fpjcufu2Rd2QT3IaO7r66N9RCTlx6K9YjvWNNSgN6egtGslh3v2+941S9/HX5aYY566jsP0MuO4qhj+qd3U1xaoJzjF3/91vwogyaftvW6zzMxu11LHuthCy5Q7w1c+sxdIV8se8zlJc0dh3KyLAxhtSb0cYN1iVbopYsyQiLxs5qwUWRDLUL74WxkBcdurbj7snjuLhy6t5QXlpjDtXj09g697gmFotrrKVcePcD8roFT/9MxuSBd6PQej3aiL53dPVCupFMaog+wbwz1/iBMx7WlWNnsZFS0Y6SXGiSIIAVY4z1hZ5YhyCTb8FsNflKx8ycHEBDymAs0e476YEwSaU8JTLY+2wg0OjhcY6TYJIKO1mAdarFGLzvKCwvx5D1YwLpFrzrMwTrO1tIs0EBTjfBpCIS6kCK8PYEQqC+sMrtXDdEsYzWIYUaMRcNvzCVBAurj1zFaGN0J5k2rKrPpvVr3Wd+srEV1A2rdY/YW8vd+jF8DROJkR1ck+cU4X61LQTcKE/9fjAVTSxEhhDxDlVGHE5Z0gmCjP3CCR/udSuwUq9g9xv+jhGTjjUC5dlpIClCtcVMxsHDxaxIuIIEGycwkMdc3rRLtzGQUxNbS4fo6/nsiH0DpKH1ObEkRbuNMNxK+wsbjiAeAFPCtrThipSSfDC2nbjjIYSO5WvkYV5gMHbLhR2Q0E2HgYukojgYm97SUa3E1q/Z61BCynjr7+hZCwBMv4dHxyxsx1Vcu8N0v+12U9bz+X/0fEB+vsoFPfNynUFz3aLQNfOfPPl2uJSIZyfb0slU4Jwzyq+tBrPAg/jzM65HfsaaVJAbTmrDX01vPhbXoVLX3hLrkn//qMznbVHzNLT/Cv/rtW7n1H76RJz3xp0HryBb2sXs1Yi83+MiwLHDzUj6gpUY5j+nh8BMbTv1+C22H6nuGa66humONamoYDAwWNZ0IlDdpCFVJmApxxeytIAT8rEFZi5/UoKG8uJQN2wXUpQOYTSmOOin4Q/QaPuqylytKiqFZtFSFojnfSlD6tVuZlbi8TrP9fsvyhhpfQHtCMb/LU18WqLzfkeJe7cV/75bc+XmKG//vkPWIupNgbJXmxnleKJ20rwqxsGstflriakPQFfMPiFfx+hoxadBTTbMvZJDqyOe0kaAUq0dvMXv/QhJjWsfBJ++w+0d7hEIMN9SiheBRqyCFJXWMyxZKeX6yxZ42UBWoxZpQldgTU5krR2hWOjtPcSDdsRqcFLYNkwOTYNZ1L53vYKVTrKqxcCadaYxDwzkpjnHTC3Xs7BPEax146TjCtJYCm57Hzed1czabzEe0Fl20T/+OqEuCBnXEUdPsNAWVb8S9KetyMQxGyZ6ihYynhpiikuLa4mhkkw3sYjF3TdSvliMMTOwqE4rtS5WzSINWOWnGF4Kq6MiyNW3I95nkUNqNetL0PtORzZ1Dx+N8Npk7pJQe5YJIuebFqFtOrNzJmN8rXTgy//QKbZ0c8EojUHeh0OvRbS05YxVLi2lVjr1TMWFGIQYU5XKQYl9q+mnMVE3aWo3IhIzB+MDXfvUb+Kk3fDVHvWfZOZZa44Pi63/sq7jYeb7z57+Wlz7zZynWclD41p97BvtrS+itxL9dhYE/5FJeoR4gc/WBvvfRWh87hTWtEAg+gNbsrx3f87NP46Wf90Mwm9AOBc/84h+HpuTWf3Ab6+umVHu9yFKcR3dyKlaDoz8zoToYZIMOAVcXQIUvNfU9S6Z3G6pLKyHg9D3+xjNUf3ansH2nE7j7vMC/dZWj4UJpcFORibAzFbKK1uAUeh2TUdyYNsJsKpve4KjvWY7C/Em5MUeS+ZU9Mc0h2nZ3ilkMVBEu23mvfL0+cAwTTWVgck+cAQLFUucOwNeSLnPzW2TjMG20YWwHgTwBP6ulS0xQellkWQwhoFsESmsEZixWlq139fFgMqU8HDCHorP1TcGFz9xiVmuKlac/NUFZYZVu//mCg0/fZeePLst9ugCHC3nsEVZUy1aK2WId4XObCxbR+F0NluLiUuQ3pZHv1SWh1NjdhuJIvJd1F4PqeysdpvVSTNtuJKAVkp+bmb7dkDe3MJ2IM9JgofeCRnhQ65Ycbh91raGStCSMHgtz1MpmVrk2YLvx64nI4wO4AZo6drQqF9OMHAxSvH1TCJvXxVFHvD9f6MxYlQNkLB4+SUBGVq0wduMhCOmuTGLPxnl8gnJ99FlWnrGQGnXM5xZisUPIQCBeznY2EoV8odARWpWiHg+1NqBj5JqrTb7m7F09eCmUWlMeDvIeLOU69cJl05VNHNVEhCZB5em2mvNrVCdmM77U+FmZTSsg3X+SFYnByTDXTM6L/KbfkqJKCJRHNs+jUydut4Sh/DXPemPW0Qel+NYfejJKvEBY4vnBn3oqL/z6N/E9P/Z/cO5wwFknKMbVjvXBratQ8EOweouKIvjWa25fOp7375/Hd/77r4eg+Klf/3qZtzmR3JjWYpa9/Fm0QmLZrqkvd7iJwcUc0Gq/wybnonktkVezCr0eCP0ghJ4TO3Ej7oWtZ4xsiv3A+sZt7FaNWfZi+O8iqaU0+GmVPVf9zlT+P49ynNR9REN++fAX+NJInNu0EmLHWuz8hMFJjOmS3aPIp26BlHfe3Y5P125F0FCsBtk8I1NTu5CzW5V1kqgTOyO97OT6Nj7YOia7hKpA9TIDNWtLud+h1z3DrhS7fi4OUOub5/hKQgrO/vYlTMriVGKcHuKBolx4uuu35bHfq3gIJGtE4rRcQdcTZg2hNNiTM+zZHfzOFHdyRphW+KiXDFVBd6rJc+M0G07GBxiFWnawWMkcXGu5j9lUil0IkqWbXh/roj90LL5lEefyXuDjVJCTCX1Zytedg9UaterkNrQa5VkgRRgi/FvKNaQCm4p5kTp0nWdxWC8wfdTBJsZsIhb5lEeMOD2JwYLPxJ7NJcx5P+qAY2eZ5CzeqMw+T37KrlbZ9m+Y6UiiEyN726hsQJ/MF2yUvpRHjvrASuB8clWqk4aYaCE4QrWJDZwPBRvMYBSEGNWXN87Y4fpK5xi/xKMQSVA8WETSVyKVqdjhFosB08phwyxtPIT4jHY1F3vmd/T4WgxI5HHEuWtjone3z3PeZGEYFPzcG5+BWQ0Uq4Gz8wIVEYeFC7zw697Ia372aVxqHUMIhH5Azx4aL/a/CuuRSF762CusSdjuPcF5nPMsHXgX+I6n/gx3LBCHo0KE+kFrurMzACm4vY0+szGEevD0Jypwcd6o4qwGCIWmvW7O/hd/Ku2ZhsuffQ3upmtguSQEL6fKXma1vlKYlUUftah2gzFK3By1xjeSE9qdnTNs14RJJYU6GqYXeytJo9mpZINMcXUmQo1a0Z2qc2D1MI/60otryoWlPOxHDd1Rn+Gp9nRJe6ahPdOIjnQmJ3HXGOxWiW6jZWAIhEKgTb1oM5FGdb3A3usevb+MFHaPPmzFcacuad53mVAatt63QneO+kKHOb+H2jsCF5jccUS110bjcZm/hdqwPFvQnipY3tDQX7+FP7NLOLGF352JQUKy4dveIpzYwm7XuGnJsFXS75TYrTrKHwy+MvSnJvSnJlQHPeXFZfZSTsbw2Ug+ZvDSRH2xUpBYwNZFMlqcxZYlFAWhlMNRKGMRTV2FUoRYbMOkHmeyPozFMh1SzKYBQuxaQYp1WQgiUte5W00z3kRskfuO1+tGl6SkOdW9ZKGazuWQdVdr7Kyg3y6xc3nuUhpQvpTC5IQZHbW5rjHYmbggbSa1mC4wxGKa49kY3YuKteT0Vgd2DHeAaLJvslxnmEkxcrEAitUk48EqrgTRosmErBQP6GqdDxbi4iQsZV9F43s/kpfkoBt1u9F5LbH/XSOBGCFahfrGUCx6ORzoBGGL/rs6GKj3LMXKU7RS+IvWZVtKbb3AyZ3P5LCn//9+mp/4lVsJWrHwBm8Mymhe/U3/BoDbD3oWa4tbd+i5jJeuwsAPcnk5xN1vFutfgtzmYwIKNm4QiKqsohRkgl13FAR8P8B8hvUec3nJdz7ldbzu157D133+a0RqMKuEoLHdUPY26xxVEd1rdCIpOAglZtmjVz1uZyIU/EozuTBw7m9UKAe7/zPA9hacvwiTiVzgMFDvRR3oVoPqR7N4HaPu+lMTlA+Uey1VLyShUBWE7cmYgrPdYJY97ekqkzXsVkV1aRXTXBTNBemkivefZ2tvLifudsA0ElZeXWqlIMVVrCQ7dX3aMLnkJNi8UrhrKsq1p1hYkaB08tzotpUCkj7Y3seuTpi0xMcVAjJP1vIc2jPbmEWHWvWYfQvLNeHgELWzjbq0h7/hGrpTDcXSShaulfD5M2+7mzBr8E0RO5gSzRBJVJqAF7OOSP4qDsUjeJiXlAuLnRbSicf6W11uM7knBXPrdsDYsTCpw6UUPa3Esq8q5THWVewY4+GtH+Txx6Kp1p3MfRvpfnO2aZTihLrI0pwwqbLEKnkaoxSqKsEZMRGBKBuKlprOy0w3mqDkDSG6I2X3JDcWnmTEjwqkELg0XwViIZGCFYqYnOLBmciQDVJwZMZIzoD1pXjrZvOQYmT15hW7MjPIAa5oZSPTQ6BYxwD1YPIsN5noq9gYF63HTnWMDCQbdCgXQ9sjwuImosNOMrDEinaVdMJ2asSof/C4FCUYZTgyZ1bSIRZRFx1drpT1MmvVkqAkNoxDPpS7aSnkKBcIJTJjdhIqEEqdE5lCofBO59sQ9rdwI1JAhvKBW5/yM8mpEQXURrT23/v6p/GB/Z7QD6jZBMrialG9kvUIhIIf8YW1UDBcuIvppKF3Hmctzjnq7RO4doXq1/jLB+wdal562//Oy5/yb3nW3/h+/HUnAfmQNncvY+ESg4Ics6aTnk5OruX5BX67kc192YELmFJz9AlTtt8fuPQZ0J9sqABdGOgGgfMmDcX+mrBBMvGzCtVHr1kF9bmFyEeaCgx5npoKgIqJJqE0lEeO5s4DcYpSYrSgW2EMoxG5yfZcuknnpZhbj4m6SV9qdAgyN62MGNm3mtU1hqQPKpeiGdSDp7i0ELi6KbCnphSHnWh1TSQspY7LeUJTjp1tkO5z2BJnpbDTQAhCEKlL2ebXLRiN/sAF7CduS2e9J4SioBT27E6EFTXlpaVIVVyCPAdxrDI6E1jwnqAKitiVaBs3085JYV+2hIl4NEvBsNG1KIiLUbqd1K0ZLUXLxCKZmMZlIYV2GOLBYiQsuVkt89qULBM3adXZ3MVKZ9nIfDh+PclIKEuoTCa0oVQOFUjwNUBoBOnA+g3PYCUQc5rBR0JPcPI+ErhYnk/XRImRlu5WRf12YqnKn/iYIlt+jLNTaBft/RSjHMZKekzRRtlOJCsRIbf68pAtDkNl5LVpkyVhiIXXoxXRLEVFKDrka1JDyDAyimw6kmfV8RspPDxJXooQsqzIVVL4fJQjpYAG3TrsbpO1tTqaYKSIO4Heyd7Rx+waI4lLD4EQPCnMwRfxOqNlZkIR5LZdPKhofvQnn0zf95w7dxfFzln+5Yt+nle8/uncddgzJNlWdbWoXvG6Wlg/jKUUs61t9i/ewzAMlEazfeI0SnlWbsAOAn8GSs6dX4gM4+BIYq6sxZ6YUiw76X4mRX6TjyQKHUkcmhAzU/2kRPmoBwwwv6Nl75Mn2Lnj7r9Vce1/U0zOXcZfexKsR5+7iKorwjW7mcQUNGjv0Ssr3dgqEmSaapz71QVm2edkFrOy+ElBfc9C5Dob8BUeTG8lHHlnmhm6wCjHgOyGo3zAN2V+fJN7BsyudIUHn1Awv3PIusuUFRsKjTkSprVKRaBIcz89zvqMisQfj7GeYauk2xXdaLFwInOZlqhpRXHhUF5Ha8WZqXfodSeFuSlwhZhUuMZgphWqc/J8GYXeW0rXp5S8U+P8VJAAJ89L9LQ1R21k8eoYlacyG9gspMtPshcmjUDwkWQUqgKddMZFdNcakNdqE9ZFxgxm2ZHDD6LvtJ/G4rqht/VVIazTBGsaOdzpzkZNqsCaunPxwKWkiCYLxGjYkOViyRw/hQOk10PrnMSj4vdBTBBSAEXqBn1JnmsmuQkQ9aJjQRMILWC0SGBco7Ak2Qw5uSeZ5PtCieVlcgMrdTaR8IWO0XSJ2evjgVFnMpWwimPoudH4WmHWZI/loHWesaaA9FSYiQVfAuVV1GZrfBXJilYkO6rzGe51xXiw9ZWmiDFvWI+dleg+8hdWg3TMFjnl59dWUywsSm3Ez8XPiYxtdHa6esG3/3V0UfG8Z/0S3/gtT2AZDJOdswQFR51lcB6/7tFbk6va1Q9jPdTpNg/FesQXVucD/XSH+uZt6hDQWjMoTaGgMiXFNTfg1h1hcBTTipf98qN52Ze+Ab2UGaHamuC2J5hFF8O7S8qDYdTgFZHoMCmyJq44kjQZDTJvOlgzPVnB7xtW18KFv15y0907PPW2t3LbV34h7lFnGbZr6nNHYA3DyQnV+SMpHs5hPnAgH+BrJPdUtRa3OxVdrBNcrFiI7tHNSty8Fgcjo5ica8cuK2ogzYUWf3JLHqP30qFVhUhhZrXYI64HQlNkKExs9mQDuPZ3jtC9kLRE5uOhlEJgVn30eB0Dt5O3L6kjKMXv2NdlzAiVn+t2DGbtxTnKituNOzHPAe9mNUQiUS2weSTp2EZTn1vKgUa7XLDsdbu4pqC+c1/ml3HmbGelMJpXMcg7ajzDtCY5OZm9BX5nOjJ/y0IKVOdGspB1ke08jHNSzfizkUilID/P+GSor/BNJdeUCxwQZUnZb3mJSK5iHJs5auN8UKD7RNYh+uoqHbNOAdKMPnXGCWZMLGEYIWEriTne6EycUNZhrFj9FYsBOy/ltU1kpGKckZpuJJdhVNbE6i7gp0bci1y6r5FZTOxalRsLWjK4D0oJw1clOcr4+6iAWYcsDUr3R/YOTs8Ho51hPETZicle0sEo4XoNnoBERrpInjKtlxSnSourUyraRUrfkefSVZqwVeEmYoDhSgUxucaFghSE4HU6nMj12qmR96EV4ldOQwoqa2t9pfmh7/0fEAKv/Nmv4IW3/gK+Njz/Bx/H8//5UzhcWfy6R1XFaJN6dV3ZutqxXvkKgE2hvmr8Yh+AWswWQjMh+JZhZflAKPnGX7iV2aTke578U0CERuNmpfsU3RUzJV1Ah6j9awwuGbavBiE01IZwWqQ5xcqhfEmzJ+b0b/iaf4BWFvOBS+jlnLu+4DTX//SfUL0PVBWh0O0t6VStQ9/Zyb/V6L5kdyfYWSnz3WgN1+9WFCsXnW587hLdyVl2+1HWSyEAkXV4GM7MKY46zL5krrraRMcjmUUqH8QcwkmB1useZZOmr4wzpwLXFJjWolpLf80U12jJtjWyoTX3rLA7DcO8EJgv2sDVBy7LFXyhYSrReMWhw08r7Fwi6kJlWJ9uKFaW7kTJ7L1HuO0aHU0kwKEGLWSpeY2f11k8b+dVLu5UGrOW6D9lPbQt/sQsSmYK9MFK/p6ep8V6tBNMs9OqkuexMoSiyKYOqeNQweaCGopCyE8ZRhaTBl9HE5D43vFNJDQpCKemAnWuhzx795NKusHW5lHBaLIvGaAm6opDYr0mZ57oSyuzVSVzWJXkKA5lyZuzuDUpMXxoCtGd1kI6KleRFBShUm0FafCVlvn5BvxbrH0svlKIVBglNsEonJFC5soRNUlm9alTFkMH0RbLYxL9rG6HY7m0yRBCckoVoHHJKrESOD0ZVbhG5wOBJAaFmMAjYeG6l0D6+lIn4RNGyayU+PwaxbBVoGLH7aMTlXYCd4dC4WMSVNqbVXwcvpRYuWIxZPcuVESR4qhJmNYRVnaBb3nam/iBn386CoNRioN24FwfCM6ht+ZXIeAPc13tWD9KSylg1hDanv5ojZtPsdrzul/7Or76q26TZJtGPlEptstNhPSieosvy+iXGnBzhatKukfXTC469j9JYtR23+UpDzq2kJlPsb/G1yUHn7LFbifw35m3r1FFQQheiAgndkUjOZ/J5hw7ILsdM0q1ws4LmruX+KrAzYpociAwV7XfZxLU6roJk/Nd7OZU7FCkOwoTKYrl5ZXAiG2PUooCOe33u1U+XeshoOpSNKNxtqdbg5tWcbYWWZYeQi2djuk0w7wUhijQXTMV5vHa0e+UuEpMIMza4yYaW6QcSikabl5T7K3QfUG/U8WOWLE43VDvO4bTk2hc7gUSjT4IYVZlRuimCfv6TJ2j51QrxdjPaun0IoszE4islzmv0lJUo9wlDIMcMJxHefHSVT4SioyGtYdJneHkUBqU99gTMzHUTz6+aTNMloOlFEgbZVzl0YBqbdxoBSI0R21mF6s+slNJ4eCy6aeZsnJeghHSrLggPsYId1dyOEzogshMTIRP49cKKajDbCTSQDSIcMKk9YXcdp7xxqKqQkD1UWvq42uq42ZmQwxZl9vUcZaZPHe1A4KMRGRcg3SdXghMxDlsdl6Khi2uqWPghHyvWLnoC14RSil+xohXNUhnKmYVsYNc+whVS3H1pYxDVBfoTkk8XkpscrWm9J5uWzO7Wzx7dTxgyBtlfL7SKhfi05zlTxsQcHby0hocmJZcaHGBf/Kkn8kcjx/7pa/m0lJhUceNQK6uK1uBB2b+Xi2sH+ZKcF1VEJbSUFw/ha9+6m1CrpnL/E/3HjeZUO61FHudkEc8QnqpS9y0oL7U4ytDuXDYqWF6IbA+JZZtptWUBx37j5vjPnnC6bfvs/Nnh/g0Gyy0EF6WK4F+z19AnzwB1qJskSE85YXJ6GOeLCHQ71b4WsdAbpdP8L7SdLtltn7LRBYQchPIxqZjkHsYcoeG9fh5lYOhXaloOieQVZzJpflqcu5xjRw48hwVD5YcFxaMCOW1lWuwkwTdCaSe5oKqUAQTstOP2xLGs90qGaaGYabEU/j2I/ykpN+t5XUYnHgzx1iyNEd1hcZE79f6wMoBpJPQ89ALc9SABJ9HiUowCAwMOWEIEw0CikK61ntrVkEMQIpomu9cNLNXuFklRUuJDjjUaiQPKbEbVOl2gsymzbIfSUcRLvZNFUlEKsOmKTBcpZQWRT5s6N7hqyKjF35isvbUl5ow0cc2DxUCLoZvSzB7nBe2KQJO7k+5EGefERIulLgkBSDqQbOfrZJ5cCY4ITPT1A2kWb52UnBNgnY3CpOOzOwc/p3Q7OiApIikqcGPFoXIe8DOhC8wzEyGpKsjP3IlIkO4WKWvCdQr0YSKYbtGRQ6AnZvcZdd78v6YnnfoNtoKGumUiaYSpNcimrv4yuRQhOQEhh4JkdLey2ciHXxSPBydvG/9tGKxHjABVGEI3ZB9oa+uK1tXO9aP9lLSLXgfILQ077vMcN0OhfUcPXpCsRZYy27VFIlQUmgC4sojMV0qB2eXh4q61MzuVAzbJd3pGtN6XKWoDzyrm7fEhOJgxXB6TnnQ4m66BnPnRfzePno2FSJMUYBbwZZoM4sPXMJMJxLSXRWSWuICQynwl3Jxk+osatBUkamp10OUusTZUicQsMTGCaNUW48ynjCtRBt7JLm0/XYJkwih1bXo7fpxhgdAZGz65DgTJM1FtQPrs2dwtcJV0sl02xpXR0akBuUUxSpQH8qGG5BOgoDoFOdlNIRXuEoKMgHW18+pL7ZU+53c/7LFmyhjCgFfF0K28SLCT/O/oEvUrKDcE7tDyYM1GKNktu29QOTJQD+93tHcXt4vSmQvqSPZ2YrviegFHA8b4m5kjmeQ1gbd2sysTSEPejUAIafOJEY3STtZVPEGokyjGiPe0lxO955Q6YiquPz2drX8rp2anNKStMo6Eu2kkEZyT/T1dbU816YPaCuQreTheszgcfFAlCIK0zw0RCZxYt2mIiaEOjVGyMXr2JSYxCTb7JyUZCcp8i2zZ11Ar9zGTFt+zqxtdEkSyVjqOk0rmvGU71rkYHqNadlIuJFC6KaC5iQSlZsaiYfbuH2Qw4CbSCiDXLf4DAskH1+ypHsNcq3pwCW/kAxexsNUzrqN7z9lQ+QkCInQKYcpC7Q1uLYnhHAVDv5w1tUZ60d5KVBVgbeO/bWYC5QXREoyu6vPbFlXa9pP3GZ6d4veW0FpwHuZS06lCywOZCamioJQC1Gi35X53uycpVhH+7TecfD4k2y9d0l7Zsr0D96fTQDCYFHbczEXmFTRfAHs9Scp7roMGhafvAVMcJV8YIuWCM95dJxx1ueOALC7k2huofO8Tbc9lz5zh8klx/ydl+HyPuH0STFyAPyJOco6ygVoWzBslwKlrS2hkDi1NKtLRC5C7KDqCqM1xdGKem9g75MbXAOTS5F9XEAoYHljQA2K6kAxzBTNvmz2/kSBHgLN5QGztAw7FV382vwuyzDTMRAgPpZuiLIe2eR07yVLddAUix5fir8rkMkzSU9qDtbSnaZghNWabDSQjBycF2g+xbQ5d8zsnn6Qf4eQD2lJTyqet6PLUbY8NBvSiih3Uq08Jl+XWUKlBvCzYmTzxmKmuzibI2TpiK9iIlAsVom040otUGgfsuF8Mm0QD+wR+pV0mDgnHUQz6kXuihlGkpIPY9pOgq9VQAhATljCiVSUbps4f1XR4lB5KGPcH5Ch7iSpArId51icBMYPTYGLHbzyIWtIpQsJ+M3ONSbaoESPiwq4eI0m2m2mDtNHP3A3NdntSw8+z4uJzk5oJRF6RXzO4+tCiMiR0SgXO+l00HDxvkozphZFnaxcg3T2ObEmLl+LHldZDxr+yVPFHOLZr/lKXAg5WekqgenKVjaCeIDvP9zr46qwKoBJjT9ccukQvunffB2v+vIfx01nBK1YnSmZnh8wncc1on/UEWJTvUPT5ZlmOpEm7F7HPMVyr2WYzeh2S7b+4gC70zB//5pgtJyeo8mA3tkmxM09TCqGUzP5MLcOOyulY20qpud6PvB3G+rLML9LZkXFapDTdAiUF9e5eJQXl7idCd3JmuaeFeub5wQF9aGI1g8+4zSzu+YUt1/A3XAKc25PyDWFmPVXl9e4WZxxxhmS7uIH3QVCnGVKnFYALfMzf2Kb8vyC6oaa5UzRnpCiKpsuTO9U2DmUC9E9NpfElMJVmtUZzfpUzfRCyeqMZn6XdBj9lqG5OFDuRQ/gdX/M2KI8GjLUmboIs2gJdTna1KlI4qkK6U61luIIo2OTLuTvXZ8hu1wQi423fwgiw4mwtszIRIOqQ0C5MVpvjAAE6vh+8UkKMj6GZGyfiEah0LhJiVkPmSiUYaqQzPQFwkxGDUS5S3qDq1jkc8FDbAtDIhPFTlWg5EAwITsjAdkgImiwjY5a0EgmSozXAMNUC5SOyGnK5Rgjl/SsGJVlOcojGbUuwOBylxbi3DvFDqaYtHQoCsmXOXIOfCGQrumlkxayXSDoMTUJoFz7/HPJNUysCUVSY2cm2wq6WlMeiRNSes4lY1hna8WU05YOtfJ8x9GNdaCEAKacz+z2RMZKF5WVBpXBa8mLzhadjEgAGr7357+WC+seowzOOmxd4Vctent2VXJzpetqx/pRXkqJGcHODL9oOThq+aZ/+w380Fe/nlAattdWZB5NSXkkEFV7/Yz6Uos5XKIGjfHgTkzzSRTIetPqcoc+XDO9I87MBjEl6K6ZYjpPcdjiT+8I2WQ1oC8dSDJOCPjrtkUqMJM0kKNPPUFzeaDfKdn9c08/1xTLUazuC42b1XINHpnhVHIiL5aW9uxUNlwln2tfgumF2GNO3BAtC6/BNSLpUFHnZyeGYW4wvYRBoxQ6zl1TMoruZGP0pPlohe4NO39ywOL6XboZBCOFVDnpcCbnZQM2PXQnCuo9i1ae3XdZvFEUraNcSLJJP9f4Epq7F/KyrTr8rBFkIDoJ6VY6c9P2eY7lmwpzYV+yVHemuHmFWfViZlGZEfoFgXe9B6KZQjTXp+3EoGGjGG7aFwatJQQhdkIUIvFRth87WKXy+0MdrgWN2DBbyJaQzkdzCw8xbFwbKTTaudGu0HqBsX3U5hbSLYtPrRjMi7eyDJPS/FF54oweeY8YMINHtSHDwSAWg0CGqzfj0pIJv3xtLACJbZsMIIJJcLLPsq00ewTiLNNn3XGA3F2GWqPaMJp8wGiWEWIKDWQ7wGAU3YmS6jDaUW50cL5Q0SrRZ026Wdv8/g5a4aaG9WlDe0Kx817H/L1H+KbM1qUYhfFi+5hmpuKDnJ4fnSFs3UqcYygDeHGREp16DHAvxJ9ZPrdyLZKEo7I+XfnAz/3SMzjfer71ST/Dd//812CUw2jFDzz99bz4Z7+aqi5ouwF6K5Ktq13rg16PxBnrxx0NTakYjL41ITjP4Wrgxbc9E33PHsXeUkgHnRhst6crinWEEaNJulp3UYbiZa62VUlSy1pYpG53RndmBkoxXDNjODkRQ/vlkE/eynnsbkM4uY171FkoS8qjHtM6ioWlWEQz8rWlvtTRXHZsv7+nWDtcI92D6RzDjrBazaJFrXp8VVBcXjJsl1k20e0I9JVE+9rKiTvpALtdw6VPr6OEQWQCdqLotjV2OkKrbhpdnkotrNfejhsvYLcqDj5tG19KUTXRvs5O4htXwTBLMOG4aSsfqA56mQP2kqVpG0W5kG7GT0pJk4lFzm7VwrYNArmF5AhUaPS6kyJopOss99bZuD8kSHc6ieSjIsK/Mf90M5oN5GupsHax2Pa9QLmRwJJmaMkaMZOQGLvRMKlEAjKpMuEr6WIliF2SSkIpEJ9eyfvIzquMSuB9dhSSGLdo6WdDJGk5YaIvh0hoCqOdXtSkmrWNbFWffz/Nkl2jY/CBvC7ahRytlqz/XK3ktdVkyYmvpIAX0fPWDNL9+kJRrKzopTuHWQ/Z1GJkScvsXg1OZtGFjl+LBVyTncpU7OKy6YNSVIc2M7zF53l8j6uYfiM8gygTiik3KZjc9OAmESYv5XvVXk/RSgJUQgGSiYOQtLw8rsUQvZadvAcTqxckDSrIYSbEg5bq5VBaHHZZ+qXiaEBYypZnfvHr+Nan/AwA3/mU17FTrfiBp/1cfMoGtFHoRrrWv4Q68LG9woP48zCvj6+OdWMppdBbU/zRiosL+Ke/9k38sye+GrVcw4ktyQAFuhMlxVGD0hq1XAms1VpoIEQNW39mmsXk3ihWZwvqC4HV9TW2USgH5U5BdSidnis1ixtK2pMNJ99paYzGTYvR3QU54fu6oLz7gLKQBBy73TC9a4U+6jj4ayfZ+ZP9DZtE2WDsiSnlwtKeqmguR7P0ic7uL4QIWw8Ce03OD0zOQ7m/ltP5zdtoC/2WilaAHuXE/Ycg2srsPuXi7EgLrKsCbL8/djJDoN9SlIto/j5AGSR7s1yKAfz0UrvR9UuBbHdKTB+Y375EWS/MyrS5tRa96gmxg1HWixbVGOlIXRCo14nhBEYLo7LQ6L1Defw+Cu21gj7OUI2W/9skg3DyB+T/W3PxANY6d1xqU/pg4vwrBImD64ecFeumkYyUCmL0fcbFwq31B8PDDilGiV2brQgdeB0lLiLd0EMQBCM+/77UmFaSXhKcHxSEStjTCUrNhSd2tFJA1djlGpVvIyjQAzn/NAWTm9ZjUsh3tBVUASn2vXSoQSmJG4xFMBQmPo78QYzvIT1KgnSyFSWb+yeyXDCRrBQ1q8oGlJJZdDCKMkbD+VKxuKFkfheRdBQYtgzlQuQw9WXP1nv9aEkYURhXFRSdZ9gSUpxZ+5HA5AN63ecZaWbxW4/CQysIg69LQRzSa51GA6nQDi63LCk8Qf5Ofp6e/Y9+MWuY107ToyW1ywd571yNjHvQ65E4Y72ijvW1r30tT3jCE9je3mZ7e5tbbrmFt7zlLfn7n/u5nysd48afZz/72Q/5RT+olWDhWYNrez6w1/Kif/dsmE2ERRtP+sVS5A329Ax/egeqEjXYGMcVT6020O+UFEc9ixtK9j9ZofeXbL1niavkpF8dOVw8CYdC0ew5JhcDh48qRFtoFMOWRLjpTnSQxfvPy7WuW/Tt91DddSDxbKVheleXC0YoRfohTkOefrugWMUOxnomdy6kG15a8cxtBSor9lqKZS9FNZ60XTRXd5X86bfFz1VgNC2yoaiLFeZl3FC9SBmGqWxuvoD6IDC55NCWvIEPM4EMlQ8MJ2rsdk13eiIQJwJLTi7HUPU+WvvFbjMUGp8KFYxz08GK3240qZcuz2VfX5X0pDHCT2DgMHang40F2UtxTX9Pc1YtcK3qItw7DJEt7Ee5TjSUyPP3eK0C58b5Yi/vGzHsiBtqjMdL32OQAAYgG33gxPBdYPgha3N1b8VAIQTKPdEwF6uYI6uT8YOwlX1tMrvZ14JGANEPWmDtYu3HTjcVEyedqIpzykTQMZ1IZ3Qn3IJsJj+MhJxs31mXspOkgIYikncSIlDo0eEskuNSV538evVaipSJBTxpW5XzFIedjGLuOhIHtdZilpbt93d4oyiP5PksVj6Ty3TvBB1o7WiFGF2evBHUpp/LLDbLc2KUnIqHrpRQpXqbXbCwHt32o1FLb8duPbF/4/z9WFGNjmuql0NIIja98HVfxdoaaaoiqerqusL1sd6x3njjjbziFa/gsY99LCEEXv/61/OlX/ql/MEf/AGf/umfDsCznvUsvuu7viv/znQ6fWiv+AqWUmJTp3dm+KM1l48Cz33TrTzh7JRv+DuvxJ3cEt/RZHDuAmE+iQ49QTSRRSM0/7Vjfd2U6UUhMvQ3ncSsB2b3OIqVE23nEOhOiMPN6oyi34HqAI4e3VCsJfQ5bRxqcITtOW53IgzhppbUFC0zNhVAH65BG9TRGmY11LKhz95zwDG6v9aYxShXoe0IO7OYyDIwnJyi5vFD74M0dcvAMBf5jJ1G8kpkK+roEoRS+FktczYX0E4xueioDiy6l1mtAgjCIt1+b4tpLcNOTXEozFBfGexuiek85d7AsFXQ7RiCrkeGr4/GHYA5WMtGHcI4N02z0URIsmluujGL2vyac+SsU2slgi0EaPuR9ZuITCEIBGxjKH1VjvNZH+TfkW0clJL5Z3zeE2SdO5XIfM2ElViwUWo06I+QtI4+z74phC0aZTOhjDKegHS7WlMsB9HPBik0blKS0mCCIqMVrhllP+Whzd2aCkLwCUVyOIrw/yTaAiZQxCX4Xv5uWhuTYvxIrkpSpWivSBFJXMaQMmLREWpNHXmULgVS9qnMjlMSDIF8xA9RdhNMTIuJSVDZiMEFaC3UBjBM7lrgm4LuRCPvy9ZFXawUW7sdbTuTpjYeGvot6fCLpZWDqGfsQJXKBXRklscZesmxbhyI2l6dHztxlLB5ez/yludwqXMshoBWgcYoLnWBZWRSawI+vy+vFtcrWY/EGesVFdYv+ZIvOfbv7/me7+G1r30t/+W//JdcWKfTKddee+1Dd4Uf4VLRFEDPJ7iDJV1V8A3/2w9JMdpbEKoStzPZ2DBcNHSIJ+ggTkWEir3HVZgOZucc5/5mQ7loqA8C/VzTXLYsry2oDzymD7SnDMMNHdX/qPEFuFqkKGYtHWIF0rXurSK5pYmFSJJuglb43Zl0OqtudHYpjRS7VS8f/n48FftkGh/1jkRzg+KoixBWwfLagiGSj4qVdJoCBYaxGAQXN3ovxQPQpWhgtYJ+p8B0kRmqRB+JgmLRY7drMZWfVBSXFui6ZCtKnoIxktPaltiJiP6Ty1CIoejijuQinCgdaZjU8npEFm/YmsoMy0g3i49M07KUgpoDu738zmDHgPEQxuI7vknk/9GIPnWnYToRKdbGz+a4OC+bvBo2imkIo042SVQ84ywXxsNB9DhOTNLsLLW5aVsPtcEXheSnqlQQpetL2ai+EKlNYuiixO4vzVGJBXPTdCHrL0NCG0I2ADG9SE1M50bD/1REEoKxwXjOa8MkIZiYnxq7M18V6DbNuRmdnOKoIT1/uTN2MqfMn0sfBO4eHMoohtkEPThWj9rCVTo6ccmPFgctvi6F5Z70xMm9KwTstKBayGfMzgxuoqkvdNmdLRRaGL3x/RI2xgKqt3KIiOQzCVOI8jojEqOs043/JgSe+2U/yWt+5VYudzYW03Csw9Uh4OIh7Cpx6QpXgtgf6PsP8/qwyUvOOd70pjexXC655ZZb8tf/9b/+15w+fZrHP/7xvOQlL2G1Wj3g7XRdx+Hh4bE/H5VlNHpSMyxbvvaNX8d3/F/Pxm9PCFVBe7bh4LEz/EwK0vCoawg7c6gq7MkZ/TVTCRjv4fTbjximAv8uHhU4epRifVpmYdUi0J4wHN1kaC7B2z//R+lOwuqsYnGDojqUmZbpnHi/RvtBjBYSTHT1OXzsDF9qljfP6K6dY6/ZRh0sBKpb9RIw7j3K2myNJ0zaFNQt0KnqIvwYN283MdgJtKdheZOn34H2pMZONcN2EWU4RpyBKpO9iIUBOx77XK3pt6LmMUKM5cKLsUYU4ycto68K2pt25fq6QVyftPispi5Cr20sRBq/1eQZK0OcoyYot+thGGQOmnJiE3w7m0LsdNEx73QYCItllj1l7WqWy/hR3wrjPHbSwKRBDdFP2pjYkYHeX6JWnSADGsmJrQt5vmZyOMoIiHXSDacNMxUTyNAp3o9aYkUmauXDUl0IMeaop982DFtpE5fH054qcI3OcySdDPK1QJ4uwq+ulj++VAwzjW3SSECg+/JIyE/VwSAkqMHnbNk8FohzYYGvY5HcnDF6n2HUJLNJcLHAnESDD3KMnepttq1UNhlrREhXMybFTCpCU+Fnwo0oViJZau5eM3/fArMYKC8tJUSiNOjeYhadmK9EIxQ7ldm7SMHGQ4arNP2JCjsT9zWZUwvU76eVREmmiL9YVIlz400Jll53Avd28h5NkiMA3VsuR6Z1GV9n5Tz0Frfq6BYtvhvQs+aq3OYKl3oQf65kfd/3fR+f/dmfzdbWFmfOnOHLvuzLeOc733lFt3HF5KU/+qM/4pZbbqFtW+bzOW9+85v5tE/7NACe+tSn8qhHPYrrr7+eP/zDP+TFL34x73znO/m3//bfPuCDePnLX36ll3HFSykFk4owWLx1eAraa2cCcxqwjXQr7/yGk9z8VtlI/OkZq+sqmksWXyi277DYrYp631EdaFRQ6B76HTj/v4jH7eKTLPW5gvmd8L/+0gsJJxy+MLiZ58Q7BbZT0TLQ7k4p7pZgbtVb+uvm+EqzvkajQoGycHRTyewuhTmYjjmPBwspKJMJqh0kKDzlu1YBCnEuUhHuVN7jqpLy4prZPSXdCU21L5IXPchjH6KQvt4HrRS0CnSIGlgHFKL/RWcJRpISaCsbtK80xUE7bqjxmqoLqygbkg64rAv0MjJwkwQjzS6NyTFvmXAEUNex61Ty2FPnlzZ472Edv64FEg6ddOrKGPFuNoYQPMqYsbuEDc2rlpDxjA7ElJthZO3mbsJL/mr+mVgk5SDj8+0lJ6FNgksoynjKlnBxucYo9YgJPok8o5zIUczKiv2ehm63FBZvNJsXIwg55Lhai1l+kuWUChftC0WCpSPrV+anyckqFbQM996LhKNXEskXiEW9rORwmLJhXYhpORsdl1EyY+5Gu8KRyONzJxuMzgQsbQNmmVj50qGGphCzjQix2hNTzGGH9hvXm6wF4/X4pohdo7w+yWgkGEV5ZKn2Pa6RQ4kO4jqVOvakm/aT0ata+AYKeosKAvfmQ9DmY9aI1jpq4JULvO7XnsPKCgS8W2vuOHTsLR2u6wnWoZoK3VTyPrzasV75+lBz1CuEgn/zN3+T5z73uXz2Z3821lq+7du+jS/8wi/kT//0T5nNZg/qNq64sH7Kp3wK73jHOzg4OOAXf/EXecYznsFv/uZv8mmf9ml8/dd/ff65z/iMz+C6667j7/29v8e73/1uPumTPuk+b+8lL3kJL3rRi/K/Dw8Puemmm670sh7UUiAsUufobLRD84FSgRkCdl7y2H+9wlw4xF2zLdFopcJHgXlKitFWc/B4BVbxN/+Xd7EYKi7+xKNRXmCm7lrLMhSUB5qd9wT6bVif1vRbgcm5lmJvCc6LprGS7tCenKGCkIkWNwr8pAfRp9b7mvWjd5i+dz9GxwXp0LoegkEdLNDziXygKdCrTroolGxMk1JMzAvNzh/vsfPH4LaaqKstjxNGIolFSEPCvk1xbTrBcgq0EcamTl1nHz1uq4LuZE213wt5JAQxf5hUqMUad3YXfMDPqqydNK3NLlJ62UkXnwpqUcTONcB8CotVlM9YgbyT/GbdRuKRlT/GoJomdo6SYxs2565ay/OX4OLkIeyCzHPT+2XdQV2KPV3vclIRwwBlier1BgwcvZvT86dVnKtaYQvFa81exukwFLuXkAs8BK+yfaW2gFES6t6Ij3V1EGHb1uXfzTNUJeiEWTt0G6F+F6KDVHIq8hRLm5nFvtRQ6hhM4XKXSoqHUypC2jKv9Cb6c6fDQlWMZvMJ6k1SlEEydoE45tACu/oEJ3t0kCc8FbUMuQN4MMsux+0V++tRqhMJQqrzec6ru4GwQRySk4eQh1Kkn5sWJAlPsRQWc1AKsxSte0J5Ehs9JdTk56KIh4zIiQgxrEENjp//zefz5H/wE3Jtg2M9BFrrsSGw6D37iwG7lvGO3pnJof9qMf2w10PNCv6P//E/Hvv3z/zMz3DmzBne/va38zmf8zkP6jauuLBWVcVjHvMYAD7rsz6L3/u93+NVr3oVP/7jP/5BP/s3/+bfBOBd73rX/RbWuq6p6/pKL+PDW0rl968LUbvWRdjrSAzofWVQW1ORgShFc8chITJVh+1aIsECnPnPhsufqrhnNef8b9yAfRyceCec+DNPf2fB+ixsv1dmXLO7AtWholiLiD1Dg90ATRXZhx5VaYqVZ3LesLw+4GYe3Wmay5rJ+S6HfNPUhLIQ027nJVf0aIVaxwKhlRCAvEfpuLkMbuwuQqC4uJBi5+MmvBKyi2rtOCDQSHH2fjRSVx61DgKXmREiDjHYWg1C5tLtIBIhI4Hm5tICylKIUSlUXWuG3QZfasqDpWyEaR5alrEgbUgP2g2yUFpajczd9PV6TBJiEGaxUorQD/LzaWYWtcsZIvYR4tQbXaZWYvIxbEgr0vOYu2Y//j3CvaGOH61GozoVIWEnHWyE/tPrghECk+5s9hXOZhOxW0pdXdJbZpJPapQGj0csD1VASEeBHPcm3ahCBY3qfbYfTAYPOfoMcgRaLkzRqSqkGWrKi43PeZolikmGjnCxy11+2Jglp/cKG6MFEFZ1et6z3KUqUMqN8DFkJnmaXasuBtYXRkYjkYGc59obEhhfC/oiZvqB9kwphKd4sDRri2p76VwjhJ2eN/kBNZpcpMNTei4SMbgqeMoX/Th6cHzPL97K+WXPH961wIcgB2mlsG0PhUbPJsfft1fXh78eRFd67zHjg609BwcHAJw8efJBX85HrGP13tN13X1+7x3veAcA11133Ud6Nw/dqkpC27O/HPjm134F00ojmc+Bf/qCX5Ksx0pTnTuCppKOcHC4WYUKQczIC8X6pKJcwuK265lo2Pr9nsk77wGgfexZJpcFOg1aAsCn5yxF6+h3Sw4+6SzTC47p+w7zB99XmvZkSbcjEK3pFO60Y+udEoVV7K8F9q0L1LqVbqEwsmFXFawHaMUfmK15lgKEQotjD6Au7BGsRc2jtEiJ17GB7JyTiEN+WqO0GDi4qXQXvjJZI5kE9q4UK0flA2YlbOLykh0Zt4CvKkIVuzkbJTLOE5oy+8O6nYkY/id2bzLPLyWQnK6TmarR8hjq+vjmnKwKlZJ0oaRXzZ0WqKqMBdHk+S1VNcLCiUFsnRTxOH8Ni6UcYuparsc7+b+KBTNtvKlLVQrKaOSfmKFVNRbyRHDykYW96iPJx2aZRupmdWeju0+MOYx62TQPVxwnQJm15AgnoxJlR7Z3DlmoxnScdH1CyNokWZl8Den+slaVkR2cNbrxIKPSbDR1d+k1iZpeZT1audFEY2NG62PIgmqtFNbkxZuuzWt5joykywhbd9QJByL7OulkiyLOckcZTTDSgZZ76+yulIhbmX3svBS+bpCs3Y3iLHcUH3vs0PWyy2hOKA3/4ldu5QOHPe+9uMQN7tjzoLQWFGI64arh/kOzHiwr+N5I6Etf+lJe9rKXPeBte+95wQtewN/+23+bxz/+8Q/6mq6osL7kJS/hiU98IjfffDNHR0fcdtttvO1tb+Otb30r7373u7ntttv44i/+Yk6dOsUf/uEf8sIXvpDP+ZzP4QlPeMKV3M1HdxmNnja4wyWH9TZHHfGDo3juK54ch92BqQ5837e/OYckp81i8oGFSF7+rCXEaDHd9vhZTbi8D8bQ/AXU8wl+VnP4mDnVUZRDVJrJuTXFqqLbLVg9aptimXxVoTqwFGuNcrJRTP+rpjxqWd5Q018zp/6Lc6jCjJt6YrguV7JZDwjxxlrUsiWZzYvcIkjI+sXL0Hbo/SX+xDyL9lUS/MdAAmJKTNAaXwjByU50tjBMhhmjMUUQSUhlJP4tJgWhC3GyigzfBNv6M7tinr8axBTCiF9wKp6UpRjpr9uxOzBaNtVUlMoiGzewbo93jdYJ9JvmnUYLNLzRxYqGVeVin7rTY3PRYUAlyDl1cKkYwyj5ifPZTCRLgenGgPaxM9XCNlapA4txYloKxmZXl7Su8sYp0H6EV4OOHVuCrkP8HqIhzUUzpuYkl6NQqfFxpWJWlzkWLs1K5WCVwgji+yM5Q7XhWJHN1zwMqCFJ11TOJk3ZuOmg5SciWzKxSIV4CBEpmIchjPDuSljtfiIzaZ26SdxY3BIkbDcOBT4c05GmDlzsKg3BB0w3xIxXNUp5kI4zfxYKHTtcN5KUYuC9sha1HqSgDlLkQ13x0l+4lb+4sMK2PaoQNcLIBBcZlS7N1aL6EK4HCwXfcccdbG9v568/mG71uc99Ln/8x3/Mb//2b1/RNV1RYT1//jxPf/rTufvuu9nZ2eEJT3gCb33rW/mCL/gC7rjjDn7913+dH/qhH2K5XHLTTTfxpCc9iX/6T//pFV3QR3spwA8W3dQo6zAptzIECqXyPruw8OLv+jJuPmko1ZIX/P03yQbVCGnDnZxJh+UcLNfi3HT2mnwyTZKYE2+/gD05i7T8ZBnoaS4OhEJh54ZiIeYSyUd32FIUS1hdY1CnDfW+x84N6jFnYyKKdDZ63aGchvlMOielZAaZnIbKArX2uVCFukCdOiGFxTn0osU3FarQ8v8gp3baDqbiq2pPNjEVCMqlZ5jJbElbhelHSzxKTbEY0KthhNF6gTWH3QmVC5lopJoa1Q15EwNQR6sonfHQhxHehTGFpixzccI6WLeEuKmpZKhvjJCWNiz9JNQ8EolSRwnynEGcJ0f4WWvwNhfVcXYQr8E7cXTSRv4eO2A/rTMsKCYPAyoaEoQy6n2tEJuUVsfcdZQVr+NgVCZEqc4SmhLfVNIRrTpCIRIWFWeJYjgfma6JLxUZxkEnC0O/URyDzMejBCUVPl8XaO9BGZSWTlF3ozwpEYQSzDoW03in6d/OjYeeRCpy4vGcPntAvu5M0EpGGak4mrHICRwbcnEOJshrHAv7sfsHeY+n20k+2+l+nUMveynUEdJXRKi9NHKDIeAnE/l8RdOPsCnP8qAX6+Pxg8Ab/uu3cMdhx7svtwyrDrM1kc/fZgGtyquM34/GepDkpWRs9GDX8573PP79v//3/NZv/RY33njjFV3SFRXW173udff7vZtuuonf/M3fvKI7/8taqirwqw6CQQO7leb5P/HL/Mtbv5RZqVl3lsXgWXv483t6yrLim9741Sjg9KTgnz759dja4JoZ5eUV1BVhWhFsgZ+W6HYQkX9kB67PNkzOtZR7S4YzWyJ7qHROEnFTwzDVuErR7SiGuczG6gPRKZouQn+FRnt37PSeCTtBNhxmU+neiigRSWkvEYlFxyIbodnEGFY+oFZRyjKIQ0xoKorFwPpsI3pXoyhXHt2Ljyw+SIpIzOwMuqQoI9yXzBI8VBfEbD8dSkQuA3rRjVpUJ5txWLeoSSPXP9hRHpPsAXe3pBhHaVEmfoSNzV1pgutl8/NB7AlTd+qDmJx7L4V0GMbOLGllu34swKkwZTZwup9hY85WCGHGbsxvYyejBsbbz5Ib8LNGrt8JYzZ1xKEpM8SJikEQScKTTRJiB6U9GntsgwegKKItYjy0xO5LrBMj9AwiT0rs24RspGt3I/knzdEzWWmjWw1Rtzk+5niYSZFxmkgGctLpJbg5jUAjczYdFEKK9FPxdjdYxynflCFqSNFShEtNSM+JO87UVenwFAu4sHvjc5GY3CFJZyJkHJ9nCX+IebmFhN6jZWzw+l97Dk//4n8lyFA/sN857l4M2HWPntYfXFSvro/aeqgNIkIIPP/5z+fNb34zb3vb2/iET/iEK76mj1uv4PtdSsnJ0Qdc2+MUXLQlL3/qF7N/1HEAmOVlymaCbVdgLb1SmJ1TLPf3uLC4xPe8/h/xkuf86ggxNSV62bH45BOY1lMYiYfTy47++i26XY2dTDixvxLN5kQirUwvFoNq8BRrWJ8ucDV4A+0p6QoJsDpbMD1nqS6vxeZwKWSaMKlih+BG56CuFxP6NHPUWswnKiObw8FSYLv5TDqiSRk9UmWepIMUInUQ81xnM+q9gaOba2bnRDu4urakXEoXHQzUe17cfJTCNQZltQR+a01oCvQ9S/zJuTCQV4ntG6/PRqZt6qqmkwzlAlJwujhHhrHQdp08zsVyhH0BlWBcY6TAai/uSSDdLaB6RHaTGMFps09zYaPH4pLmp4kQleB3PxY/TAwTiDId1dsxLD35G3e9XEf8eRWZyXk+GLvdbEBgPWrVoVInnXI6Bz/et/eobsOXd4NTFEpDdgHyHjVEHWp8DkIlRVXFwrdZCFHp8YdscIDfeM00G1IjTVDh+IxbqUxyEvlRfG/qsYiGqsgsW18ZlFNA9BzegFxRapzH9hEmTnNRIhQczTbSezDF9GVzjkTyi+zrZC6SH68H7bvjh6J0aFIKBsfP/7/P4yv/9g8LMa0yvPeo50VveAbtII5Jf3p+Rec83jrM9vRqUX04l+cYMnGf37+C9dznPpfbbruNX/mVX2Fra4tz584BsLOzw2QyeVC38VevsCJdjmpEcM5gsd0Q4UTxW3XBUwwrQrvA+/gB7ibgOnRZcfvdF3jhKz6P7mifH3vxf455oGtm794X2Ndo+pMF4XTD4aNLTv/hin4nFjHnYvcpH7xiLdpCX2pxaJpA+5iO+n1RCN8G2hM6k3x0lAwEU4rdXyoAhRmDkrt+lKkMA4RmPHFPmhFOBfRRhzsxxU0rTHRZCo1AVqEu5TRoPfO7eumYg8d0gX7b0Fy0+EoM0fUgesput2BycWA4OaG8LNaQ/uQcnNg5qkgUCoUWmDoE2ciH7njnNWnG+amOc9GmloIf3bFYreV6g8+dZAgjezdYO26sCHkpWCtfB4KPELIxI9kpuT1ZK7PV3AnHT2cZZSJlMRaMRChK6plk55cgzE0GMeQZ4CbJR2bSZmTGRkZqNmXf7MojFL65dYc4b83F3LsRgpYn5njBMGoslCGI3rNkDImAceaeft+FEWZNTO08m40FPkbMKRdg1edin7rIYAAVfamDmJco/FjUxg+pFNHN2alGyEdJCpRm1ZpIcApiJJECx6ti5BBsvobp8Ww8Z6I5dfmAg4nEqeiw9JV/4wf58bc8m0WpePeB5317nWhQjSaksUMAPalHdOPqeljWQ92xvva1rwXE+35z/fRP/zTPfOYzH9Rt/JUsrIB8qADKAlMWhBDwB0uCUpTNDtZZzGyKmU+AgC1KJlu7bBejKsN4w9e98vN59KOu49u/6k3CHI4fVD0EfCmFUTnP9J0XxIe4G5jc4bC7E9GBDo7u9IRuV1EdBZRX6D+umVwK1AcywzzxF130bI0wFzrndKo+Ftcu+t12sRur65GgE2Ln4eMHvqllfpUgQOvGwPBVDwb8lhB9kgTEHEkXsb55BxWgOnTi/7v0WXoTCk259KO/rI4yihBY37TN5I5DMQWYVtGQfpCitl6TvXlnE+lO+56wXo+EI++lkKZuDaAfxqKa4OK0Njv2uEIXYcGkcTRGoOeyECmO0TK/LIwwiOP7JBekRHxKEXMmsrKLIhsGpMKVGaRKSSJOfK8RrRqVV9BvdJ/9IJB17IJ9XUIToW7nxg6+MOO1hJAPFAInR9hSeSHhuVHykuPrJtWIDkSLzFDErlUpqMnEqM24NLl9BIFYD9nxa2TsEj1zY8daxLzaZMdpY5caX8ucHgNSBAst0LQL+T0T6lJeo8Su1ht+vImY5II8j/F2iKYWynrwdrScLIwcGHub833RWvSuSoEOIi1Lr7lz0clLE4rAq//NrRw5xXtWnuVRiyoNensGOu4j1suTZPTVbvXhXg9yxvqgb+7eo5UPY/3VLaxppQ9B3PD0tEGkmxW2tyJVCQF/tMRMG4rSY7Rn0Rr8UKAnp3n/keLbfu4r+c5v+RVM66O7S09Qip2VZf+TZ6jHzNh+z4oims0X+9HoPwSabsCXO3Q7BtPC1p1SRIu1JOuY9SBSl0KP8gFkI8tGClqLicKkQfUD4ZoTqMuHshFrjd6PUpzoARwiOclPCkKpMZE8kmZXqotFz8eN0HrcvKFcWAgiJdKDiwxUMcbQnWxww7zAtI5y2eGnFW5SMswMTWlkBpbkEk2dZ6u5cKTipxSqLMd5p9bZxCEVlrBef1BRDRtxcCptwKkQb2x4wfu8AYb489J9xeOvc8cNH9JzPWkEet8gSwnz1BKIHVKSp0RYMhVVmUfqD9bjppNaP+QcWbWh3RxtENV4KAgBomsThdlgx0af5VigQ5onK0Uyks+dYHDjLDPEVJaknDNj1FtQKr83EttXDWLLKa2tkqLrkPeNN7mYyuzaRWtKl0MjgHxQVMMG63Zjlp3NJjbSY/R6GA8J6X2T4d74GKJGN89+0yEhZuLm7tqobCqRZU5agxlfV98U6BYmZ3Z436U1q5W4e6lpc7yAbkQDXl0P71LpvfsA33+4l/7QP/JXZBkjrkzWYbSiKAxKK5nLGaHHB+dZuJqjviIMDrU1JUxrhlXHPYee7/qXX4pOVmcRygqFZnZuoD2lOPzEKXd86VnU/gKVbPviZtKcW4up+hAYZkJsUi5QHHWozolZf5IkJMs9pUbpTdo8B9n81cX9DGviPSEZ8y+XElN34QC9lLzUoJBot2mJPTETiHCzO4gbrzlYUZ47ZPoXFymOpAAGJVaGprXRtEDqkonpLUJGgebSwOqmOcPZOf2phvXNO2NiTV3LDDNdY1plKYUyFTjnpJgmz2ClM0NWZnha5sNmY5NLcohUnJI+NkHF6WcSuSnNV9NKm3ZZSFEFua3k3mSMfG+jQIUmwssJYUjvBxs71AQ/b3aeRbHBOu5Ry07QCO+lS7Y2OkhtWCamoho39byBxKKTY92qQmwBZ/WYdZuKyUY27QiDijtRqEy+bp0i8QYnXWBEJDbfw5LHmqQlLnevGD2SoTx57qrWPfpwjTpaj0SrDX2qsnbMuE2/l2bgg5UDRHIiu/dKc14QNnUIY2FPkq14DWrdS2SgdaMrVmJ4r3p+/v95Lked5cgGgvfourzalT6CVpLbPNCfh3tdLaxxKa1QW1MI0C472mVL8EEsxyKDsKgLCu9w7UCwDj1taOqCsgpMbE/XKX78jV9NdWFFe6bGTcrs6nLd2/bY/Z+HrD9zzZv+x0tk7hilGKHQ+MYwPW+ZXHIszyjaE5put2TYaeTnolB9ONFg5xVuKzKRE7SXiklhRjKQUgKtxmQXd3IrSlbMaAGIpNKY3nP06EkW5mPT7E1uW6QWJnd/Koinq1kJO7k4aOObOOAa+RnfVDnP1bQW00qWrJ1q6kttJOmMkOmxrtQJsUhNJ2PXo2WDDkFmoCHI31WzMddSaiyYMFrbxblshv6UkvlqhoyVEJ+MySQnfCQ+aSN/UvHLbxpx/JHs13EzTqSZ0IhfbN6wiZv8JtFn3Y6ErM057BAJTylkIPvI6nG+mcg1KX4NYnjC6Fwk7617EasS49Uk2LYYE1yiu5DkELsxV9X7D5qvKutHZnoiOKXXIUl9jJY4xEkl96E3iFUmPpZYeCXbNBbKFJZuheCmNt8nKWvXxc48HSSSRjhej8oFOkLiPl5vPJyoXg4xGSUBKdjrXrSssdi/d7/jL/Z7unXM+jVXu9NH1AoP4s/DvK5CwRtLKQVbk+zGgtFC4omvTgiBibGEiaH3ntAPlBPD4V23s3XmNPbSHpfZYTg5obkgBvBuKo45i0/aptq3TH6/5h++6WeppyVFEubrqBM96HGTgmbf0G8rtNWgCsy6yJo63UuwtXJaLNiG6OaDHmdxacMF6daKAtX1mH60jWOnkc61LgjG4CqZj+p1lNyY0VUmw3R2vF59sJKZ1eAo9gNYT7GyuNpQX+oJhaG4vBR4c3YCs78WO0eg3y5GWYW1o32hjoSfbGKv8rxVNl93nBjSC1s0+JAN9rPecANWDMl5SWuBl70Y8atJkwu1/IokBqnUOadClqQ36b5TVxvijDsSmDIUqVxk1JKDELBOZq2b0pTN2/JhhFU3H39aubv1wgxWmmiAPHZPqVAaMakIhZa0okpm4MX+erzfyEhORvsixRldmpIWNnfhiTQUO0G1eW35NYkQvdbRPUrnnw+1QR91I/SaXucNi8ljZKvI7hbmthm70nRIKovxgBFCZvcCY3eckJwQwIsTVaiJRbmX2+yHjQJtxmAGrfFVwTf/9NN416UW1w9y0I5z1avrkbM+5vNYP+5XIjSZe31wNKhpg121LELcdCO816uC+cmTBFNwsHc3tm/FMCGQDc6X11WsziiqA8P0fAyfdgEXI7B0hLi+6Z98KtedvZ4Xfdf/y+Siiqb/LnoJO4mwKsRsnSBOR6oqULYa53Tx2rKO1QeBF0E2nES+UUr0t6XBNyWh1BJ0XRrUoQWv0SvGjUfprPkMO1uycUYWa1AKVYo9oo5pKZvzrWLRx3zVQCg103MpvSZujGnzS9KM1AGtXe7mErkIEAcb52J6jRa2L1I4wya06YPoG6syF9QE7SoVrRGTPCd1nYMUeCExbaTrNPXxa9VmY9bp4kxRDjlim2c3OrAE3yc3Jg0hzgc3u+Y8L1eQSkwiN5XJ1MCPxTjJSMwINyfGb+qeE0EodZbJ4CFEwpkMFMkdZzKcSM+HN5L+gifbWArxLOR5aTaQmFZy+Ft1IocqCsKsER1rN8i1HhyN78HpJLJ6Ve68QxnD7VPxjqMMucY0Mzdye6njjazsfChJr0uW5vj8POX5szGiSR0SSqLzgTSUhu/9pa/hAwvH/lErY5+6RDcVVw3zH3nroTbhfyjW1cL6IJZSShiCCrEqQ6EmNaousQHK09fjnWWy20Ex5WUv+//yz77lPwHwk6/5crz3OO+p6wKtxC90QEPo0Vpx+x0f4MLFSwQM7/zzd1GsHN3JkvaEZna3xzeGUDTZVKI4GghGC5EjFdGgQU2OW/NNmpFJuxnsHU/zbncmszMngentqQLdNVTeo49i8YtaRelUY4dpFKEssbtNvj1fG4qldKxlZ0fNZEwF6W/YES9hL+kqdl5SXApjsbeWECFrFW9zJCL5EQJ0TqBe51BFSbDDaOwA0rmmx+kcuqmzjlUIUaJBDcFLcU2mCM7F5zBCxOm6plOyTjgdUFKnnT4+hRmNJqpKCgtENyw9/l7Sv6ZuqjBjsXcbbk5paXFaOka+2uzSEkQcvxeaqCvNkhuPWQn8HHQqmoi1oRuDzQEx+a8ksUj1DjcvR1lLmm9urGx9aT1UOo8PpOjamBwUzTnSda7W+L19VC0+1EBOj8nX3G6EHeSEnXiwU7Gz93HebAEXO9fkvrSpSdZaimcMNpDXQB8vvGVJ9m9Wih98y7M5v7a8/9DSrXpQyDjo3nKgq+uRsz4U3Hu1Y33kLqWUGEukTTp+LSAOfO2yx+ycwYfAvHD8zJueyrRp0JG8s0l28AEutI5ZOWVeaubzOf1gBW5yS/7WZ34qX/eCX0dbwzATKG912tDsOXypYlKOy84wx64RK5tEHwubFv/eHAyutXRfyxW6KaW7Ghy690wuDCMpaSIuSaEucdu1mKtDjtQKTYFrDK5W2InG9IHq/IrCB4l+8+BOzVGdo7t2RnPnAaEoKFa9GKWfnsuGGYspxsBqjYpGECE5KPW9FNggcG+ej1b3IjodIxwFKaCpG0yFGQiDjalAGy9G0qMm28IQohm/FSlQXcXZNaN+Nc1aQ5BDTFWOUHwqtE4kH1n25MNYGBOhJ9kpJnRBqdF/eLNIRGheJUg+zRNjQRp1oimIPIw6WZz4GBcR1g6xOw+MEpn8JgKMkkOQ9TnUPBfhexcYoyRVxpTRFUmKXliuUFvzcXYcXx99zSk58CUryphOo4I6zn52QaDzRExLxXCjm8Z5Obz442xxomQqFFpuP702MVkIrcdDj1a88fe+mcut5c8vdvzJpQ7XDdKlTipUU121IfwYWH8ZcO8DravHsCtYSqljf46tusKuWgJwZGqOrEEbkU0IfDQWV4+jMorWyty2qkrqomDSwOmThmvPVvzyz/59fumVn5ffMPWhxFc1l6xAwSCC9ghd+Wl1nGVqdOwaks4wSIFIEhalUJcPo2lFQHeO4iAW1arg4NN38bNaHIJCoN+tsFsl6+tn9NdM6XdrfKkY5ob1aU27K+5Dxd6S7NKDdDbN7Qdyf72Vjc6I4QXOScbqdCLmD9eeGZ/rNDOFja5HZmB6MhGSUS484ww0pHkZbHQ7Edp1Tgp1L0UvOCdFNkGx6eCUinbqenyIetUI/yYjh3RdyUt2iDF361aKbSIoFQU0FWFWj/DlpllB8ijWG0U1zWYTyScReFKBGexIWIrG/75J7OkgrxvI+8OM/r7iHxwdiLyXOXp0NjKrAd0Omf2bDS4iAStHtUXmrnIhS2X0qhcIN4bQq+2t7Keb5+nJPWqTB5A+RwmKLzdQgARpp2KYYP5N5ODYTNqMc1LnRwOV+BqEST0+zyCvlQ985d/+Yd6733LUO+xC7ED17kyK6lXo9xG/BAV74D8P97rasT4USymZdeopftXSDpb3qgknp5a6igzKSIOyYeBCe55T9VnRPcaljaa3nhACWiuq2lBWml//sS9gsIauK+g6Jc1SVfC05/xCNigP8UQfSiM2ctbHDXoD5izHTnuT7GSOxL1Ix83Sx/nr7M52JLUoCXvvG3GM6h5VoAdoLotvcHUEzZ7DzQrMgY6mFQUm5q6qwcL+inB6N+eI6kW7QaRR+K2ZbNKFEdP8MkbKJT/X9P+iiN2e5KtmBCHJZ2JnkkTeKhtk6CzHyZ1gZHeqSmQ92YUJSJaB6bbxSGeZOtUkwwkbm27yN9Z6lA75QJjU+FlNcghK88A0k02ZupI9W4yz1HSb/XDM9jFfu4rdqvcwMehldDrS4Cdyf0GLq5e8xpHtO8QiqZG8XqUwRxspQsn6MbHCIxwtHWliCG/MwjP5Kv57sRrtG9UoO1NNjPrbmHVnApXzhAh9BxPnrKn7XrfHNcXxMycMZn+8UDpGZCAfbGJB1/H3O5sDHb7r3309H1haLu73hMFKRmp11ef3Y2pdhYI/fpdSMqfRW1P8/oKV87z3csvpyjKb1Mym4jGpMUzNLCbpjB9epRXeVzgMijUwsj2r0lOWPZOtbayr6NuBn3v1k7CD5xue/kbR59WiV1TdkOG4TRu+1AmowkQDewe6yOxQkA3NTQt05zBLMcp3W5XIaqYFthGP48lFj+kDdqLRQ8D0AV8I0QqjsGe2KS4uZANeb8Sn+Shx2GQYxy5M9WbcNJOcQvvjEhSQLtYK0UfPph9EaMos3vEXyBIc56QIxedFz6tMDlIp9zURgNI1p2uKxg2bkHNI2lmlxm6q3LBITGzkaKyQM0y1RoeIJIRYjHycsaZrDpH5m2Qm2pAjbNJzROxWtc7Qbza3j05CuhtQ3pCdkTKc6yPJSops0JI/GlQYI/5CQHE8Pi4fNjbm2rlomSidaerj/sbpdxOrORViF006EgSeWNHx/nI2aiKKJQLXJuyfYP70uqcCHz+POLFlzLD2xvvi+97yTN5/qaNdC2FN786vdqgfg+sqeenjdGnA4PFK47RGlQWud9zpFaujJY+9tiBScjDasFXuCInpmGJBUZQll/ccZVmwNenjvqQIKAIVgQJTGJqZppnVeBd4w698Lf16wA6WZz3zTej9PsJlaSal8Tsz9KrDz2vU4Vo2t9iZqnZIFwClyjPWBB2W9xwRCpOL6PKUpj6Ij3sI9HMlSTeAbRq23g/FXXvjLDGxcZXO87pM/kms29VaIFmAuhK5i5UuW2z+vLB1Y/EK0UZQR8P+0HaRDewheMIQhFGaYNVITNosqiQNbNSukmQdqajW9UhwUQq/PclGBZkAo6IDkdEjASYV5wS/x81etxuOUptM18RSjddESEWhHAuItXE+eLxg+7rMDkm6t9A7VC/zVLw4Y4VCo1ornWBR4CcVxcHYnfpayDt63UdLy2689jQHTm9yiMYX8QCTCmR63iJ5K5GVwqYbUUYJ9Hh7iTEdu8qcgZpIS9H/N0e0paKXbitqneX2HWBG+U48tIRJYswff75/8G3P5V2XOtpeDi56Pj0uIbq6PmbW1cL6cbr0+oiju97PtTfezLK3qKAwvWfoHHVdcLRYobVhsVhSVSV3330P11xzGq0Vp0+dyDPbsiq42AXuPoCTk5JHzwd2p4H1YGj9hGljMHrsZE2hMKamnlSEEHjjL99K3/YMreVZT/vX6IsHYB162Y5JJE2JcoV0rYURw4Iow/ClBHT7WjpfP6uhkk643h84uqlmds7hK0W3o/m33/QP2D41F6glNSU4TDiCYFEEAprD1nO0cLzwq96MartxM0wZskUhM8lNo4dU1KzIakLUnmbzhhAI6zbP1FQI0ZoQ1KZ+P8G9CeKtEqMXgWl1TLmxbiS5gHTAk/qYPSBKESqTjT1Ub0etJ0ghaHQm5CRdKTAWXBiJZInRnTqzPFs1Y9edDAk2jQmiGYIKQepNjtYjFsM4Y0264NjJKucoLq3y/Bvv0WufIepj3WAiHKUucIMAluL45DbsODNO7ObUuaaOPeejhuPz7wTdpmCDTXQizbJdzyhx0uN9bKIbm/CwHkceoRS9tHxe3Ph4rOX8kWe9cgTn0VfTaD62171RjPv6/sO8rhbWh2A5a9Eh0B3s4YeB4BxHyyWL5ZJw6iTtYsJdd53jwsULzOdbEAJ7BwfYoed/+zu3UMQNc7Cei0Gzrmo+4ODyQcnZ9cCyVxyGntOV5ZNPNVTFhtG3kvmtUoqq0ZR1ATvwxv/w9fTrnr4dhCBVlzzzKa8X84fFUmQkIcgm61w2Pvd1iVn2GV5U7YDbFhi72XOsTxnqQ8/8bktRaC7u7bFardna2mJrPkMpxaoz3HPuPDdcdwqtDcuVp6wafugNT6GeVPyfX/iTcu2JXASEo4XMZkEKR9dJIbWjpWTaGJWpRrZwfO5yJJwxYzFIK0R5TVGMvxN1sKqux441EaSiS5PqhAmewrjTTNtOK5E7KSWd4uDznDAXh3jduZPr+vGwoMeON89T0/2nma0ujnW88kaLbGBtZG6dEm7SfTpPKMxIcvJAwQi/+xhUHt2XUsELcd4b8ixS50KWDOtzuLl18qZLhX9zruw3ip11qH6j0KaVkoqSdjS9D7wwfOXxbHTFm3B8dl8Spr1YGw7yb+eP3U/KG86B7fF+Xv9fns9Br/mzCy2+t+hZc1VK8zG+rhpEfJyuYraNvvYmiumUQhu8FZej6aplMp9R1CXX1p5H3XwDVV0z9D1eeUpTYjY+1J31dIxdzjoY3tfHzULBuT4w22u5ZrumLhRlshfcnNXGv5dVQVEaptsTnHX064HXvfFpuAiJOW9lf8TglccwbkpCs5KCHQj4lNyBwhgR7tveoQvDPbffw4033sBdd9/DHdZio23g4dER91w4oO97irLg+uvO4By8/wOH/OOf+Pv8i2f/JynwIeAPjsQFCSRtZjpBlaWk0fgY4ZY2TR/TW6pq1LmqaCZwL7OHTQee3O1uSDJU8gdOHWwyLkiF1ooeU8V5oVKKUBeYo14OJNZLgkw7SDYuCBKQ81w3YO94nRlqTt1X6tTSqXuTZaz0OHtMc2frUKn7yjPl2KWlYpfut+9RHcdmtypFDG6c4hM0rSwbRfp4Bzka4scvpCKXVmJEQ2Siq7GbTK9HMs3fJIhtErWcjxaSGwV1c359bAYf57Xp+SrYeG43fJuj33X6hHTBc2HpaTt5/1Nd3QI/1tdVKPjjdA3awHyXo/SFYgLFhFDNODhasVAwa2oec3qaCUtCLTkOP7kgocnHyB6b3wfe1QZu7zsmGm5oNDecaO73ulKRLUqZzU62GrwLkTEbolVj7HhRm4huJtKlItsuOwjQzOt8WVprHnXzTSxXK66/7lqWq3W+/jNnz7DsLVvTkjBYTpzY4tw9F7nhhuvw3vHdb/hyvuMf/gzUFXp7Tli3+INDKWKpwG0WG6QrDU66tJDkMiYySX0AnAQn+CC6yI00nKSFPdZB6Zigs0lWSs4+ST6TzO8jW1cNlcyDjY4+vz7Hxkk6jRmLjvMCZcIIYaa5r1ZS8AYbmax+lKBEyQp4gZerSmDlFFEXwgglmwCDGoMAuj5esxv1uSYWojT33pT6bBxO5DpHWDWn2IAUKB9/LhX5RELTqYM1ct9JSpW7cg9eS+sQ4sy0GyBsdKCJEQ3jbDePAzYOJmkUkL2bI2Kx2VlvIB8KhIkeofiVdRx2AW+jI9f9fnquro+ZdRUK/iu2jIaqwPWWlS3wLqAiIeneRRVgWhp2dOCiDx9UVAEh0ShFC7QuUB51XLdTxzrxwFvE5lw2hMDSLqhNAwG88lS6ut/fDSEwmdcsD9bS7BVjd3vixA4nTuwAcPLkrvx8PDSsXaDUUGm5z+l0i7IQKYN3np/43W/lWZ/7Krm+aQwAGKyYOBSFQLfRr/lYR7QBjwbnUGGjY9VKOjoYN/hk/ec3Nm8SbLyhp8xexbH4JvOKTeJMHwtXSp2Juki17uT6UmGDLOnIsGwqRjBqRGGcIaa/35uZmgp1CKPxhLyo0SGqhd4cM2JA69H3FsbDRLrd3CVvwNLpccfOd9OWEq1lljvYcea82bVuFugqdtxpLqsVMuQ1I8HLRF1QksuoSGRTxfEOdpMJfe/A98SyTjPj9FxVI/HrWGyel2510QkxSk2b+/6cXV0fU+sqFPxXbKkEQfYdlzrPe/ZaHrVbH5+Rbqyq1HzSTsXR3iCQ8IdY29NSvHkBjom1PlSRhYmZCCP2wewrAbpVTz2t0PeSv2wuvfEO9kGKqg+wtp7GKKpyZEdro9g6Oecn3vaNrI9avvEfvY5wuJBiZ3ScUWoUcROPLN10ub5fxwcj1xN8EL9iI1FnmSEcO065XSOh5tHVKUOzuSsqjxOMjhXGMLJRow9ulpSA/H4f56ibrkxp7rrZyW5m6G6iE6lrTUVq87aT3ESe3OMv5qYzkbrX+yEdHow+PrPdnAc7P94HkL2JM1nIo6wZyWbR5CN3rCFE4tdGQUy3kx/fvX7e+QgZB9H8ZrKSH804qkog5eQT7SPE3USjh8KM6UtpDt7EourH11FZL85TpcF7hY/GGOoB3stX18fQCnBVx/pXbKlaNpz2YMX7mFJpeNTJyX3/rFJMKkOhhpw3/UDLoziG3+a1CeTe99eN/tAv/bF9WkFRmvs44N/ffcW9UsHKiauiOfZdhdawfWqLelLzml/9Bpx1PP+Lf0w286YeCT/pN6YTQj+I3CbBh0QYOCbbBNjokoRNm+a3qpRiqIrig7vE9P/U5W0Si1LA+CCxYcFaIbwkNmtRQLce3ZySVCcVFhdh4FSs722huNlNpgKTZSkGbM9ofRilPalAZRg7Fs7U4aXZo9bZj1cKGeNjTHmm1o7dd7peho0ZqR8D0NM1bnbGEB9HGK9BxcMRYSyKSaubZsEbUYCCFrhjr3c+aCQTkAS7x6IKRIOUIB7H1mfbx2T3SAofMIYf+TdfyfuPHMGKEcnVXvXjYykXxOjkAb7/cK8rOrK99rWv5QlPeALb29tsb29zyy238Ja3vCV/v21bnvvc53Lq1Cnm8zlPetKTuOeeex7yi/5YWrVSNJMKoxSF0QRRwcuebX3cR1Q2ozFKMzMqjq0UpVZUWt1nUtU9nWd/NeTbeChXCGB9nMcqqOqSfj0wdI4Q7u+NqvIfBZQaCgXT4r6vH+Qw0cxqTl13gtnOjB/5D8+JM8s0HxQnJqw9FkyutPgFK2PGjXxzxfmrijaFqipjAYxFantr1FxurrYb/6xb6U7X7fh7hRGd7SYcOQzSdRnRMOcTyWDldoZhLKKpwN47sDwVi6qKnVq8/WE4TjZKxTARfHJ3uVGwQIpRKeQsyR0dxoLY9uKO1PfyZxiOQ9CpSCcv5xyw7saAd4j6VcX3/va3bMC0aTa6qc+N157IYsmWMBX4dB9Ky+NIPs+VGJuEWSN5rluz4102I9Sb9dgg3WvKjy0NflISasPzv+JNVI25n8Po1fUxu8KD+PMwryvqWG+88UZe8YpX8NjHPpYQAq9//ev50i/9Uv7gD/6AT//0T+eFL3whv/qrv8ov/MIvsLOzw/Oe9zy+/Mu/nN/5nd/5aF3/I3oVCmaXDymcg8IwdR4WHZe9o6kLuvVAURYMXY+zHjs4TGHYRaEduMFS1yUqwMo5jiYN/Qa5ZBngnfs9Tyg0k+re3eR97RxXspuEDZRSUVQGbTSrw5aimhwjPt3Xkjmy/Eyp0k52//evtGK2M6Fdtsdhy43fUkDwdjTgd47g7fGiGueEajIZpTzrVn6nqWXTTqYVVTlCvInYFItiGIaRiawShYsNWUwYLQ5z0oo/XtySPhZGi71o3hEicUelQpakPibJVzZuR6kRSk4dLYywrmaEl9NtpazRY7Pa+DOpMNuNDjEVy00bx1T8NyHdZCm50dHvdRvwbSqwRvPNb/0mlPL8wBNfAz7w4v/4XGwITAv47s/7kePQc3ocWoHdgEqiyUTWBqfnK16jWvcS7l6NebHZ5jONSTwShN4YJhXoQuP6RG++uj7Wl+JDzFgftivZuM9w/+3Hg1onT57k+7//+3nyk5/MNddcw2233caTn/xkAP7sz/6MT/3UT+V3f/d3+Vt/6289qNs7PDxkZ2eHn/ndP2Q63/pILu0vfTUKpucvUyBEEO0DXimqec3ZnQllYTjaX+KdpygLXNyEOxfoqgrb9pRa0fcDvdYsTu7S3+vlMt7zuLnhxhPNQypy9/F+Nm0XQwgs9pZMt6foFATwgG/bdFy898/c9++EEBi6gUt37fFNT3yNbOJ1zEHt+6g9jf/vB5J1ncqzR58LhEpzzk0HqLTqaiTRJI/eZOCQOsqiIKxljptJTol0E8PRRYZTjGzdzXScbNqwUTwi4SdE318VU1ho6ntBoOH4zDQVnhx9ZsbbrauRSJSL74amM3WqKVA+HQiqaoR/gZf91rM5WGtMUFw/K3nR3/1hsJZX//eX8L6jgdYGunhJlZFD09AO6LqMLoqKs41GO8ellcWVBZ2NbGwrRgxKKVRhqGrD7kzzfX//x8b57mag+eZc2+jYwSfimh4PQkmSUxh8XQq5SilhaCfrxsxMFunNq37lGfzJuYFh1VOeFAvDwPGx9dX10K3V4ohn3vIEDg4O2N7efkhvO9WKv/N5L6Mo7l8dYW3Lb//fL/uoXMP9rQ97xuqc4xd+4RdYLpfccsstvP3tb2cYBj7/8z8//8zjHvc4br755gcsrF3X0XXjRPHw8PDDvaRH3BqA9vQJ0IqpUvi2Y9UNFNMJN84rZnXBbEcKoveBfj1QT0suLnrOrzxh2qAQsoUDhvs4AzmluNB5rvOB4t4B7R/Bur+CWZRmgzD14G7pg9d9z2WVUpR1SdVUObBc9UMOKz/WXSUNb5LUJH/YpF9NYdZVOc5jQ5BCHbvBMK3FW7kb5JMwbJCKQkCpGJyuAuCliEVHI4UZ5TlpXpqKYSoCCGsZrcRucHN+m52V/Hi/m4U5me6nUHq30bHlF2MjECB4MchXmqx/3TSeyD8XxgME5C72/HvuZrlqcc7yAy/6TZ73M1/C9k2fwJ/vtbROiRQskp7WybjDBxi6/EreuYBgHT52wkFrgeyjPCn4AL1ltWxZ72ue9fNfx9as4gc//5W89g+ex3P++o+MnXBh5H2iND/229/Afm/5J5//U/JcZcOMHiZNNLgYJTkqBDH0H5wUWD8eNPywYl4UdAVM7ZphvYSyYignWFPirmLEH3vr44G89Ed/9EfccssttG3LfD7nzW9+M5/2aZ/GO97xDqqqYnd399jPnz17lnPnzt3v7X3f930fL3/5y6/4wj8WlguwUkIwWocARcmwaGl8YDk4tmflKINBUVbSnZ2Yl8yXS+7ulLjhfIjVOk83OIy+jzi7D3N9qJt54E6V+4CK5d0flINQ3O9vK6WEeZxM9SspZkErlNJSYGMXpxIEnDqcMnaVlRm7s6Q11UpyQI9Z6kXIcN7IjC45CCWItzASWpC60nt3lTAW0QyNxqKSzCi8JwWob9oxqui7GJyTFJ+UOVskXageb2/jPv7l217AN/+dH5B/b6a6bHbKKVAARnh2M+M1kbc2/Ixf88xfOWZVeOLaM3z33/1BAJ73/3zrSGR2Drfu8asO1QhzOIRos6kVNBU6zl7Tm0il5wdBJRRAb+kPV1xe9TznP3wj51eMB5XEHo6v1e2HcM9C87U/90wmE82rv/RfjV39ai23V8dIPueEKTxIzJ6PnykJQvDc8Re3sxoU3eBpVWAYhOm8XLeceeyn4me7fxn78NX1ESwVwigNu5/vP9zrivnmn/Ipn8I73vEO/ut//a885znP4RnPeAZ/+qd/+mFfwEte8hIODg7ynzvuuOPDvq1H8pKeR+CtAcVdK8sQY+LuvapC80mnJpzSnnKTvXpfSymOguaOg146io/mCmAHj980GLiyX98Yhtx/YZ7tTCViDCIDOP6sjnPIopCimkwPlMouTCF4fuQ/PV+6S6350V97PsE5KWraZCOBrG+MzjzHklgS8zTBqXajo9yUkqSuL+WmQmYGA8dNH/TGH6MJQYp9tmBMz1HW6urjHadSvOq3XsQ3/61/PprXb1r8DQOv/u0X8arf+ZbRtCF4vvs3v+X4TFSpEXpNs9sIr37XbzwLQuDHf/+5fPcX/gSEwD/7by+UM4hcnPzdB9S0Rm9N0bMGM5+gZw162qCbShi30aP33mkxOc+4KtAnt0DB+vKSuxZ6vM5CSFn/+Nefyzf8u/+Te/Z67N4Ce7hmcWHFrW/6umN+z/d+bZT10rVWYh6S3LFUO/DKb/1drrvxLOV0yvzEaU5cdyO7197AiWuvo5rOrhbVj8GlXPiQfx7udcUda1VVPOYxjwHgsz7rs/i93/s9XvWqV/EVX/EV9H3P/v7+sa71nnvu4dprr73f26vrmjrN0T7eV9TOhbZnryl556WWG+cl25MCvdFtKqWYNgWfce2M/bXl3UeWw8RZSlKCeHsgm95dfWB30XN2u77frjX4gLX+fmQzD7yk+fLoaGn4gD97H9uTTFoVwX9ot5uyLvjJ3/kW+m7g2f/r98h8Ll5/dmZK6TUA3vOjv/ECplsN9aSiqAve+F9eFJvSwBv+5KW4wbF3/pAXfM2b8E2FziSp6JEbghTj1CEmODLBvFrkI9JZqhGCBugHUlJO2DQ0KItjVoz5uUhdLcgBweis3/2RP/h23r+w/MDn/Ave8Gcv52l//Xt57e+9mEut56524Bvf+iJaH/AuSkuASV1wclrgnWfwgFb81O9+M39+0PEdn/sveeF/ej7bZcnLP++VY/can7d8mPAeVZX86O99C9/wGa8AY/jHv/2PuWsBrUtvgIAfLH6wmO3ph4Y1Hmilojub4C8dYnvHC/7j86mNZ2U1vYOL+wNusZSfndbopiJ0A/ZwxbP+3XO5YRde9nk/LrenRyQiE5eUGpN9GiGshdLw0lv/Hc//ya9iuegw2zPQCrMDqw//0Vxdf5nrEQgFf8QKae89XdfxWZ/1WZRlyW/8xm/k773zne/k9ttv55ZbbvlI7+aRsUIg+NEdKGzq+R7EUoDenhKcoz9YcedBxx9cbPnzSy3L1uL82MEqpairgjPbNZ92SrNbrNDBcxbLyXubXypFj+I9R5a2FzlM/rPxrmpXA5fvPmDvniMunzvknvdf5vK5Qy6dO+TyuSMufmCf5WF7fw8e7zzaHDe3CCHQZ5vEB3zqZNMP6Zl4gOdJKeYn5zSzmlf/7j/hp//k5eL8k6wGYZSDxCJYVgXzEzOKpkQpjSkMRWkoq4J6UjHZatg6s80rXvcVfP/PPVWK87oVKPFoOcpr2u6DX9MEoWYJinRLYRgIXQwD8CloPXWcG89R7myVFN4EEW8wvMVEoqDSis7BP/6tF/Mn+z3f/Gsv5A8+sOBdd+xx7twhh0ct7apjCGCdZ3Cew8M17z+/4H984Ij3XFzxol9+Nn90z5L9Rc+L/uOtwMBdS8u3/foL+P7//MLx/u7lPPUd/58fJQTDD/33bwPgX3zeD8lrBtKJW4tftuhZM5LCPtJlNGo+wR0s2T93xPkLHYuDjvbiEW7Zorcm6JNb6EktXXBToaYN/d6SiysNdflBsh4VIf1QaEEmMqFplC3tTDReK4ZVh/MBx1/K/nt1PRQr7cMP9OcK12/91m/xJV/yJVx//fUopfjlX/7lK/r9K+pYX/KSl/DEJz6Rm2++maOjI2677Tbe9ra38da3vpWdnR1uvfVWXvSiF3Hy5Em2t7d5/vOfzy233PKgGcGP6BUCwXn80SrCbIDW6K3Jg6c7RCao2ZpKgV53rA9WvH+oOd86rp0YPmG3ptxwZlJKMZ1obiwOuGevI/RbnCmhax0rbcbuFVj7wF17K3a3LNoMGF2xVe7mOqa0xg4Wax1aK7TWrJfi8TTZmtAeddSzOr4Pwwd1vt6FY3aGIH4DFzvHmcZQpPvJDsMbD53xFDf4gPXRNOJ+uh6tFbOdKfWk4uDC0TFCEETItHeiKVWKybzJ93PfT71ia6thOq04vLTgtW95Ns/5wtfAMIxynFQMc4asIoeHa00II4v23uk58rWRlSz3qUeIOpGR5BuZoBS0QiXDehP4hs/8PgCe9+vfzGrR4RZrmfU2FdoIocfEQIDMdg2B0Ftsbxl6y9KHfDddX8bHNXBucKwmYlDxyt99CS/829/PD/7Ot3LP2vHPP/8HwXkO+sCdy4Hn/8YLKZWi1BqtYLFyLNw4M32oKD5KKZjWUiCdI7QDeIeaNaI/VnwQlMy0JnQDi8trnvOLX8drv/wnxg10sIS6wlcFaNCtPO9hsrHVhcDZecHFRUm3aAlNhXoIiX9X18O7lA+oBxiDPdD37m8tl0v+2l/7a3zt134tX/7lX37Fv39FhfX8+fM8/elP5+6772ZnZ4cnPOEJvPWtb+ULvuALAHjlK1+J1ponPelJdF3HF33RF/Ga17zmii/qkbpC26OqkkllGJRiOFzFDfEKP5RKyQd51qDqEr/uWKw73tc39NbzmJMNTWVyYSuomJYNJ7aW3HG+wYeKm2t4d+/pk+UfUPk1B6sFXT8w3XY05Q7zcoe0HdZNwXWfcI38KzFjQwwDULBzSmCxo0EsCAsdjsltnHWUTXms4Grgmsbcx1MwkpYE8lQYJTM6DaM09D6furEwFFXByet3ecOffRergxXf8Pk/Kt8LQTSs21v88JueRjUpP+gg8MFPu8IYzYlrtlkeRktEJ25LIXgYgjBYU1FNea/RFEEVBcFHs4rk0rSpxUyvbYSEw+ZsNq0Nr+LNQhuc5cd+/6XcuRzYXztW+ytcN6C3plJ04vXfx4OSmWVdEuoIs6drGhy+7Uh6EmU0qxB44X96IXcedLzgrS/kPVFK86xf/SZ+4ot+kGVnGXpHH5+Dn/pHr+alb3sRZ7cq1pelCPl+wNTlB1/Lh7nUxlxVVeXmN+735/XuHL+/oD3qed6vfAM/+uU/IUhCVQqZxXtwQYhMfmO+rBS4wPP/95/i297wDM51hrBsYWvykBH/rq6Hd3000m2e+MQn8sQnPvHDv6aPVMf6UK9HrI41BPyqhQCnG0OvNIeH63yy/khuN4Bsgos1ZlZztjF86ukJdSyugcCaQ/b83Zz7QM2lfpd5oeldoE1yjOC5Tl1gXi1ZHpVsnQicmV/LrNr5EBdwfDMJIdA6Idgm96f09X49YApN8RFFbX1wNd2Ev0mpO5k9rI79jBsci/0VX/+Fr4Z1y6t//Rs5ed3uB0HUH/IqQuDgwhFf/3k/PFoVOpdtDzcTVULXj2YMG7rITEqKzFpVjAbyo8xGHIFCCv2uquOSlyQdGizf9vaXc/6gxR4uoSwy5Pphb/hhYxAQIKw7Qj+gtEJXJbos4sgA0IqKwNBbbB/tDLWmnDXMa+mUD9cWt+pQkxpdl/db+B6WFbt0f7DA7M5RxrDVKH7oH75Wvt2UAgNHYlYwRpjBvZWCWxW47ZpvfNVTWB2s0VtTVGn+ch/Tx+F6OHSsn/s3vv1D6ljf9t++hzvuuOPYNTxYfo9Sije/+c182Zd92YO+tqtewVewVFXij1YcNKVIJMIHw6VXfqMROC0Nej7BHi25hwn+wprHnWqYNpIGUzGlUBU7Ox1qsc/+sM1gRms95TwYj3WGPXUCv1pxomkJ1ZYYEwVFDtF+IAckpWjMZqEblzYKZz2m/NCP2/aOdj2ggHpaYzuLMoqqlrecc14yXY1GlyaSkzymVKCtHDNdgp1HYlcRZ6k/9f98I6YwlE15xUU1P855zQ//X1/PNz7l9WLUn6LWstGA22D4BnL6zb3PolEKlLSdqizEPcgFKajp51NBvhfT+7V//HLuOBq459ICt+pyl/pQvbfk76CmNWFS4Rdrkcy0EmkX4nWtA2A0etrIqGK5JjjP4coTvMd3A6osxP/6L7sAKQVVgZo2uH0hOC1Ob+eDirIe5Qb8rCZUMSWpi2xwJx2tWQ1sTRRdX+OWa/TO7GrX+jG4HiwUfNNNNx37+ktf+lJe9rKXfVSu6WphfbBLqZzvOaz7cQP9cEkccWMN6T8KKA1mPsUt1lwIDeVeyyedbJjWBUYVNGqG3e6opi3TpeXOg2uwnbBXTQhc4iS6H2iLCYNrONVqtidKFC7hwW8Y97W5KKUwpaHvOkpffMiZ1P7FI6qmYu+efUwhjFXvPZNZg/eeoZNZb1Fo6mmDdw7bW84+6hTlRMv1Kg/hXjPd+LvNvMHcT0rQg131pKKe1oS6gvkkax9Zt6OWMhlOgHw/2imGlHADY1E1G/PXVETj+sn3vIJnPfbb+cl3fjdf99hv58f+/Hu43HkOe887PnBEv2wFJj+xFTW6H4UNPhZavTUVMpKPbkiZM6DGYhwgdAPDqhNoNc55VVM9YoqPAhmnNBXu0qEYU6SAgkL4B6obCKpCBUcotLCEjZjyq8Gx3VR0w8DBYPELIUs9Uh7f1fUg14ciKMXv3VfH+tFaVwvrFSylQG/PRg/WDycoOcJzoe0JVrxjk4RGzydQFeitKe5oxV2qob/U8mmn6+gXLwb+pgjM5pb5quXQTwjWYwsNuiSYCnf5CKsU71FTZpXlxKx8SBoMpRRlJdaL6kOYUUy3GobeMzt7kkqNvKBu3WGKiqrx1JNq/FpTEqZi7Xh/vp8JjtZGfcRFNa357owffsNX8qxv/w9U+z3mYI2aTWRep8TMnWEYSUh9n7W0yR0pRElOGAZUWWbXqBzEHgIHQ+Cb//tL+ZO9gRf/95fxP/d6lsseuxQWtpo16KqUzvKjubGnwlkYcY+6vx8joLen4yFBcczo4f/f3nnHV1GlDfg5M3N7OiQQJCGAFBGWxYKwgoiLsmsDO4KKIiqIyqqs6Nr7WsGK2NAVC6vY5XMVEQVUbAgqNXRICCGk3Nw6d+Z8f8y9NwmEooYEyDy/3xUz9Zxz58573ve8Zb8gYe1RFSuMLRp3EIunOASsOFbdsBLxawJFqohI/LtUBalOgSvdSUQ3CVaF4uFIDeTxbNM4WEkCdr8fksVjGgNbsP4WEk5Hnj8205HBiFXM26khnC6rupUew6y2zFE4VJRUD0ZVkHLVS3G0hBRnFIN4GS4si1errEq8/hAlgUyi5QHr5ex2WnUmYwaBQITlCuRGDXJTHbgclmD+La9GmcwOEA8XM02rUtqu66IDlmAFy3KqJF7KQErGzmsh9W2rDzMe6O10N4CZFEuAaU4Vb6rHMifFTCvmEcXShBJpCjXNMv2rIFxOSzuN6jWZgkyzxuRb21EJkmt8Ew6/FRSFK768mapgBCMUsUzIcQe2/U5LSgjgA8FbNp6LWNEUTI/DSrrvUq0JjwARjxlSolbMsuHWUKImSkjnqjOmgRCMmzLMekj3L5cTm71gf8y8ZAvWpsA0rbUqVUU4NdIjYYJOjUBYT3pvJl8KmJgiTEzsUI1DgNNlkiqjlIdiRIXAjGs/mCZKqgczFKWiIoQ/4iQSidGplRslWYdV1r3Ybgj6Q0gJqmrlfnW49qaWq6WZ70qUJ0J6kprQnlIkSkksGvuDjlP140v38sKDpzFmzNuYPhdCj1eeSVSbSVTMiURqZV5KVJipycBUO2lEQsOdsuxuxnb+FxO+vxN/SCdS7gchLMuH4w84JtlYSIkZjKC4nfh8TiuzlmlpsaZDQUjQ05zWykL8kVeiJqZbIDWB6VK5b+r5bCoLW/tVW1s94DDl7l1/f0e4TXV1NYWFhcm/165dy08//URWVhb5+fl7PP8PJ4iw+e0IjxWHZ0Z1hGHg0eK2UiktE3E0hhkMIxwaKiBNFRmj3o+mSNyqbmm/QiBjBorPA06Hpf06NWLBCJujki3lUUxD1niC7oCUEsPcOdmDoip4fC7cKS5cXudeOQtJLG11d0fEZN2/d4dpmEhkg5mAEwhhmZUzctJ59rmzEbphfWLxcJraDkeJ/MFuNzVJI+KlympnYpKSKYX/5s6f72VL0OCab25ne1k1ke1+hMOBkp6CsIVqwxFfA/Y5FCt9nQJKJIYSkzU+e7U0bxkPuJaadfyN42bg0OrWebU5gDD34vMb+f777+nVqxe9evUC4LrrrqNXr17cdttte3W+LVgbG2GlNVTSfaAbGJEYW6RGVAo0nxsRD+sRQuDyumjhUGkhssnQD6n3k2m0IUPxWMniVQUlxZMUsslcrYogKgUrq02Wb6mmuCzIVn+UqoCOUUv6mYA/JncQiNa6qh6vX5m85h67KdD2cKwW11Yle856EwlG9/revxWrqo5GenYaT714nrUtGquVwD9e3s3lskJxEqE0tVHVZKpCVJUrO/+LqCnZFoziL62yslZlpSJS3JazkC1UGxYp8WkKj74zGhEzkZpiCVfdxLUtjIhJZMK3TBPEPCpmXJhKARleFcWpYYbCe8wiZrN/kTAF7+7zWzn++OPrZrCLf1566aW9Ot82BTcFQiAUK72hUVGNoSm4BLTxaWgOlYAhUQU4VQVTU3G6NDwOEc9SlHhIauI7s40oxZEIwWgMszKA4nXFPValVTYtFMWsDhEUgg0OjaKwCZpJuhmjR5tUPKpIXk8VdZfVhMDyBg7rSVPsjsJNSokhDQQCRcSTr9c0cRdDkNgp68nTVP/x+0rDk6ZEj8RAgDfNU+MRnHBQcjgs7TUQrPFANKw11doOSsLp5D8r72a1P4ZuSKojBsHt1eDUcKR6kMnS7zYNimJZD4IxiUsV3DxjFPcOm4ZUBVIVmA5rTVWYEqkIUMBwKhhuBTNmPfCtUhQqgg5CtgPTgYe5hwwRZuNbIWyNtakQAlQFNdWLGQgTMSTbYxKvJji8pYdu2V7aZ7lp4bYE7a4mXUIIMrxOuqQ7yc7w4PA4MSoDmOV+zIoAMhRGSfehJJKYxwyi/hC6buBwajidSlx5kqgKpDrqfyRcPhexqJF0IKoPQ8Z2sWdnnVRKScyURBMpc/cgcTSnatXzbCCklJjxj67XtFsRgmdmjGTyGxda31EiWUTEyiEs4/8mwq+Ey1WT7EFKLmx3AxkihhHTMQJBHDKG1+fEUVWGNxZGM6J2xc+GRAgUtwsjHGVrMMaEU57hvrOeR4SjVmWTmESNGCgxEyVi4KiKoIYM1LCJEjXRQgaaX2fciNfI9GgITUVG9L279+/MQ2vTwOyDXMF/FFtjbUKEEEinhqL6MP1ByqMKEQmBmKRtmhO3U6Wla1dznxrNVQhone4iy+dgxbYQm0UKWBNzYtUhcBhWphwpwalBSEFGdMJulUhMojlBxJNCSFPUcTaynkmBolhVZ/SojqLWxDImzGaqUFHFb5vlR01J2LBMeM49TPEUVcE0Yjsl5aide6H2tuRyZ/w/9Sm7ft1EmuCOmVZKxHg8p6IquFI0KyF/Yh01ntpQJOq8KiKeQ1gAak0pNuAf3W/n4lfORBMaVcEAKf5UQoEATqcTxeXGfUiBldzDpmFQFZBYcaymiTAk0mHFqQrV+p7UQDRpIsaUKDETIS0HJiViooQNMjwqW50asVAU6a2/SlTCS15GdUsA14rx3Wfxxza7x2T3vo9NsGxuC9YmRsQ1VyU9BRkME6gIsjrmQQXat6wvWL3GhFrnGlh1XNv4NMqiOhEhMBNhCIn1wISJVlFAxgjEJCXVOgWZDstJKu6la3l7WFkrJNaaqyZA0VTMSF2tNCZjKAhUZedHqXZlnR09g4UQeFSBR002rc459R2/Y71ZwzCpKK3G5XZafRQQ0w0iwSipWb5kkQEzZuJ0a3hS3TU58iU4YwamKVE0JRmX63BrmCGJhiMZq4xhxRsnEkLISMRKCqHEf7GJcnKm5J+zx1JeUYXL5UU43eD14vF4EA4nDqcLQ0przdam4VAEis+NURXEjIfCCSktwWpIDK8DoZsoxCxve7AyM+lgulWkqoBicO0lr3L95HOpCkeRUd2KU6/lkCalRIatikaoCorHBQLL2dAftLRdpyOZGtEWso2DME3EbkzBoglMwbZg3R8QltaJz42iCMxwlGKHQCsLkeLWSPdqqMqOKt3OP1ohBBk+J20DOsWhGNWJml87rhc5NGQwQjSis7bSKj+W7dPwuARuhwDFRErFmo0TT5GbjPGLz9jjAlATf+AREjVCtL4arnUOVUTcOVeixheBY1EDM2YSDetUVwSIxfP7Ol0OQhtClplQVTFjBqZp0rZTa5T4OOpRq8Sb2+O0aszGX4JCCDRNwYiZTPl4LGNPf95qQCKjTzxtYZ3cCmo8p3MsRpuCAmJ+ncC2KqTXg9YiBx2Bs0Vc0UWi29bDBsWqeONGRmOMfuxsnrv+7WTIlOlUrQpC8Z+LEtGRUsN0qJhxM4mim1Zsa9igVYpGIOywciLHc4BLaVWikmEd4VCtzFW1tFOhqUi30yohGIkiA/Gc017bUa1RMCW7zCqT2N/I2IJ1P0IIAW4nZjRAZXWEal3iDBrkh2K08GqkeRxJ7dOIPyzqDt6pqiLokONDbAuyOhSvHVsdAp8nmdVHKMKqCxuKEKoKURhxsKFaI8Uh6NHKhc+lIoREmlasglNJBABa96osq0YoApfbgcu76xR3vykVRSKt427HB6RhJlMHai4NX5YPh6rgS/dgShMTE1UVCNOSfKqmYsYTOKhazeREUQV6RBIJRnH5nElhnbiRaZqoDhUiUStJvxr3Ck5k+4nFrKT7UkI8paHQNAK6SShmoutGIoKKxGTEZt8hBFbsdrmffzw7nMcv/g8vz76Ci/7+PEI3azxD46b9Vz+4nI3VBpsCMZ4a9R+0sIlUFFqlCLZWa1QGIzVLANEYMhy1Yo/rM/fGE8cIr9t6NgwTMxTB9ActR0LHzg5/Ng3IXqY0bEwOCOclr0MlZS8SA6hCkO5yoO0YCnEAIRLJAzSVWDBMsCJAYWWUxWURyqqj6DGT6nCM8ohBsB5HIiEEiiLITnWR44DUNA8AZkW19YKIL0AKTUWkeFBSPVZFm8ogFRGT7QEjnjoxrk0mhHH8xaA5NDSXA83jtDyFdWOvwxMSSR6iEd1yRJK1hG9tuVbL4zka0jFilmaaSKVYUw0HHG4Nzani8mj4Ujz4vB5cTgcenwO3z4nmEDhdKi5P3bSOqqbiTXNb/dqh/UbMIBrW8aa4mfTB5TUxq7oO0Sg4HFbqwkRqy2TJMyd+PW56FyJZ0camEUh8Dy4n1RVBbnz9Yi4Y+pK15mqaiIiO4g9jelxIh8qI01+gMhZCN6VVsxUQhsGoU18i1alY14prvYmqR2IPa6gq4FQEXpeKK82D4nNjBsJIf6huMQabhkWaNb4Q9X2kbQreia7Z6fRolQnAmu1+fiwuoyAjhfaZKbTwWqnwykMRtlaH6dgiFS1u6pu1chOB6M5eqj6nRucWaeSl+3BpKoFojPUV1awqqyK6j4LD01wODs/JIMfnxqmphGMGZcEIhWVVpLoc+Jwaxf4QpYFwcm1GeFxIjwsZ1YkFowSiCssAn1/Hb4JPgfx0FymaqFk7jSOEIDPVS/fUdPRolMWby3G6XfRonYXTqREyTL7fvI1ANEan1ll0yExBANuqAqwq3Q4yRKg6THa6l/QUy4lDSolpSIIhHZfPhduhYGgKkbCO5ti7NcOYbhCsCuH2OQj6owhFweWpP+GElNIy80Z0XKobl8eD5vQQrPajaSqqQ4nHygJI3N50HM6dUyNGQtVEI8Gdrh2LGugR3ZqIqErcKUrB6fLgdHmRZiUSSWZ2WjItYSI3MOGItaYaq5mooAhkNEq2WyUQswo0yIhurbnZ2kqjIIRASXFjbKuirDrGdc+P4LGznkvm4kYRlik4brn49wVvIIXAzHCjhmMoIcsb2KkpCEWpZUJMhI8JVGFtdiqSDBfETNWS6UJQrZtUxySqhCyXQrVwENZUjEDYCoOzq+fsG/YUVtAEpuD9WmP1OjR6tMrkkUceYc6cOWT73Bxf0Jo/t8rg6zmzGT9+POPHj+f/3plJQZobTVG46qqrWLt2LT1bZ+10vWyfm5M7t8UXDTDp4Ye48soreem5qbR1K5x0aJu90op/KxluJ4M7HUJ18Ubuvfsuxo4dy0P330dJ4XIGtG/NYZleHFVlDChohVOt9XXEBawSz6AkAX9lkJLKEIHKINuCOoXlYbb4oxiGWUdrFELBl5rJ9pItZKT4OKxVOt3btGDtyqVMeXwy1SVF9GiVic+h8efcLGa9+zZTn3yc9jmZeITGz1vDFIYESyt1AhErP3E0rBMMRNA1LWkSFglb514+t4Zu4E114/S48KS4EQjCgQiRYIRoWEeP6Na/0RjSlEQjOp5UB+ktsvAHQkRiBpnZVqH2SDAa76z1cTjd3H777bz//vsAPPDAA7z++utojpq8zokgbz0SwzRMHC4NxS0xMYhJHbcvDX8gTEVVgMyc7KRG/fCsK+vEr8po1PokSszVimv9Z/db8agCp88V9xr9vU+Oze9CURAOFTOiW4lOFOJJO6xiCSIaAxNLS5WSaIbTsi4oipUOkUTZXZksCFVn0gqkOgQtPQJFGJgSwjFJRdRMvr8NCZVRkxSHQkuPhpbisarthKK21rovkOaeP43Mfq2xdm6RRklJCS+88AJLlixBVVWEHuHYYweQkpLCyJEjcTqdfPzxxyxatIiHHnqIk046idtuu41XXnmFVKcDf7zQtCoEffKy+fTTTxk+fDhjx45l8ODBfPLJJ3Tt2pU5c+ZwfMdDKQ9FaZPmTbbBH9FZV1HN8tJKNEXQpWU67TJS8Dk1ykMRCrf7KQ9F6Nk6i1YpnuR5VRGdNdv9tEpxs3jxYk444QT+9a9/ceSRR7Jq1So++ugjjjjiCJYtW8bo0aP58ccfGXKYlYMypMfwOKyvxjQlWwNhdNPkkDQvUkq2VAVZsnYLFVUhyrweWnvSSfN6ME2TmB5JzopPPvlkPvjgA7p06QLAqwsWcMcdd1BcXMykSZMIxwwqKiq46qqrqKqqYsKECbRrncWhiiA3IwWAQCiMGQ1g6BGyWuXgdtf00TRiOBwBdD0UrzhW8wpSVA2ny4vmsDReI6ZjGlUoqsTjS0XVnJAl0aMRqisrcTiduL0pOBJl2aQkpkeJxSKoqpP777+f9u3b849//IOM7Nb1Jow45phjkjUXN23ahMfjQdUcpGbkENOjRMLVGLokvYVlAYmEqtFlBK83A0VR0VQn06Y9TklJCQ8//DAZ2a0IB6opSE3j/Q2TcTid/PL1Kt585ANK1pdyxQMj6HVC9+T9I6EoxWu3kndoG1RFIRiOstkf5JfSSmJNMGtujghA8Xkw/UGiHidX/3c0j418BdUfgogO8ao3RoqLmFdDasJybjJNMCT/+exiVpTEJ0oJh8H4/FFgldkNxCQhA3RTo75YDgHoppVopbVXpTJqYHjdmFVBpNthacO25tpwGHsQnrZXcA0CaJfh49GHn+aMM85A0zRMUzJp0iS8Xi+zZ8/GH9GJGCbDhg2jvLwcsITJ2LFjKS0tpV2mj19KKgBok+bFpSpcccUVPPLII1x00UWUBsIMGTKElJQUJkyYwIcffkjV9jJe+/Bd2rVrxzvvvEPnzp0ZNWoU6S4HaS4nih7mPy88x+rVq+nduzfnnHMOQggKCwv5dtkyfD4fH330Ed26dePiiy9GVVWee+89zjzzTK6//vqd+jlz5ky2bt3K5MmTSU9P55JLLuGN6a/Qv39/ZsyYQU5ODpdddhm//vorU19/HVVVOe+88/h7r26sLCmnc6tM5s+fz3vvvUdWVhYXX3wxubm5zJkzh/Lycl5++WVycnIYNmwYAH/729949913eeCBB+jUIo1nn32Wk08+mTfeeAOA/KxUvvjiC56ePZtIJMKxxx7L6aefjjclnUAgyKuvvkavXr144403aNu2LZdffjmay0mwqtxyilIUVIcDX2oWS5cuZcaMGfj9fvr168eZZ54JwM8//8zMmTNRVZVhw4bRqVMnAP73v/+Rm5vLV199xZo1azjttNPo378/a9asYdGiRWzYsAGAPn36kJ+fz7x588jLy+Ptt9/moosuQtM01FpJ1HVd55lnnmHt2rWcfvrpHHvssQDMmTOHli1b0u2wLrhECt9//yMAHTp0YN68efj9fiZPnkz37t0ZNGgQFRUVPPvUU2zdupWBAwdy51vXAbBq1So+/PDD5OTummuuQXok995zD2VlZRQUFHDZZZcRyUxh9bYKK2QI0PdvQ9GBjRBWAXSXk2iZH92hcv3LFzH5tKdAVayi5y4VqYAwJGrETNrtpFtDkS4iZhikaVWJqgdD7j4PtiKs/VFTUhoy4pqzQLgcVs3XNK+dJKQhsZ2X9p4Mr7UeOWvWLAYMGIAej8f873//y+WXX05VROd/hUXMXbuFz9cUUy41Fm4sRdM0evfuzWeffUa2t2bNrXWKh0WLFrFlyxZGjBjB4uLtzF27hbXlfi677DI++eQT/H4/GzduZNy4cTz++OP079+fjz/+mMsvv5z8jBS8KvTv35+NGzfSv39/Xn31VW6++WbAEhaXX345b775Jn369OHZZ59l0qRJALRv355PPvmEDz74gKqqqjr9bNGiBQ6Hg9zcXLLjZs577rmHCy+8kNatW9OhQwc+//xzhgwZQqdOnejQoQOnnHIKS5cupXOrTKZOncq1115L79698fl89OvXj4qKCtLT09E0jezsbHJzc3E4rJl6amoq/fv35//+7/8AmDZtGiNHjqzTpvnz59OzZ0/69u3Lww8/zOOPP46qapSXlzN+/HjuvPNO/vKXv/Djjz9yzjnn4HJ7UFQH0ZBOOBjB7U3j888/58QTTyQ3N5eBAweycuVKABYuXMjgwYPJz8+nRYsW9O/fn2XLlgHw2muvce655xIOh+nSpQtDhw5lxYoVuN1ufD4faWlp5ObmkpKSwtq1axk3bhyPPfYYRx11FF6vl9dee41vv/022Y9JkyYRCATo2bMnw4cPZ86cOQC89dZbLFiwIG5CtwT6xx9/jMPhIDU1FZ/PR25uLunp6YRCIY455hi2bt3KEUccwYQJE3j66acBWLJkCaNHj2bGjBkcc8wxCCEYMGAAOTk5nHLKKQBUVVWhBSsxNq9FLSvGv3ZlfF3YZl8hhECkuFGyUjGjMcLRmJWSUrPK/CkhHUW3BKowJYZDwXBrYEgMUxDRDetdrFhr79Iw9+ixXhtTgkMBryYoDVuCVQhhJZEwTIjGbJNwQyLZQ+alxm/SfquxpsRNNsuXL6dDhw5EDAOHqrB+/Xry8/MpD0WTx24LRtgWjABwRJsWdOjQgeXLlzPkrJruuTSFdevWccghh6CqKuVh6/yKUJRueXnouk5xcTFgaTovvvgiPp+Pv/71r7Rp04YHH3yQTz75hPbt23PfffcB8Ne//pW2bdty7733ApaQfPrppxFC4PV6eeKJJ5gwYQIjRoxgy5YtTJw4kRUrViQFVp8+fTj++OOZPn065513Xp3+T5w4kaFDhwIwcOBAHnvsseTL2u/3JwX3bbfdxjfffEP79u2T45WYfKSmpnLyySfTqdOhKLWSElxyySU8/vjjdOnSBcMwOPzww+vc++abb2br1q0UFRUxZswYnnrqKcaPHw9AMBjkueeeIycnh1NPPZX8/HxWrFhBQbs8hGIiTYGqatx11108/PDDnH/++UQjYU477TTAEnYTJ05k1KhRABQXF/PEE08khdXZZ5/NP/7xDwC+/vprPv/8c8aMGUPnzp1p3749Z599NqqqsmDBAgBeeeUVAJzOnTMZDRo0KGkl0HWdyZMnc8IJJyT3h8IR3O6ayVdmZiZ//vOfKSkp4dxzzkEoCq+++ip5eXncf//9ALRr144zzzyTK6+8EoCMjAyef/55hBCUl5dTXV3NiSeeSMeOHTnppJMAWLtoCbphEK6qQnM4bW2lEUgkXhFuB5GQzsQPLuPfQ16oKQtnWA5NMa+CEpVIh4Lh1YjEDGKGtNwIBPE19ZhV9H0vsZZ2BY4dzL1CgJJieQorjhTbGtxQ2Brr3qPEn7poNIrD4SAas+zkLVu2pLS0FF8tRyOPptIxKxWfQ8OU0jo+Gk1eA0A3ZPJcKWXyfJ9To7S0FICsLMvhqV27dvh8PpZsKSclJYW8vDzWr1/PsmXL+O677+jbty99+vRh0KBBtGnThoqKCgA6duyIEIKiqiCZmZlUVlYCUBHWue76CSxdupSSkhKOO+44Tj31VKLRmskBwOLi7cn/P+yww/DHc5YuW7aMW2+9lT59+tCnTx+mTZuGYRiUl5dTWlrK8OHDk/u++uorQqFQneuGQyGikZp7DRgwgF9//ZWHHnqIiy++uM6xhmEwfPhwhgwZwhNPPMFHH31ESUlJcn/Lli3JyckhEqpG0zQ6d+7M2rVrURTLS9cRD6pfuXIlvXr1IhIOUllWSsU26xpr1qyhe/fu6NEQMT1K9+7dWbNmTfL6HTt2xIjpSNMkMzNzJw0/EgmzZUtR8lin08n3339HfXTr1g3TiBGNhOjWrVud+wC43S60XSRbl0h0XU+2V0pJOOSnR48ebN68mUjEmsh17doVIQRBfwWZmZncfffdnHjiiXTr1o277roLXdfJaJOHq11nvO274snrYCeIaCyEQPG4MEMRtlWbjPnvpZYXsFNLxrVKVaDqppVTOBhjc/FWdF1HJjyBQxGE24G6h6T8AupYIiKmZGMghl57eU8IK6ZVVZHhiK21NhQJJ8LdfRqZ/VZjDcUTo+fl5VFcXIyWmY1hSoYMGcKbb77J0KFDOaZtNhHDoENmKkiTzi3TcGkqW7Zs4ZhjjiEcqxnQ0mCYvn37oqoqc+bM4dgBx5PhdnJoVipPPPEyf/nLX2jZsiXr1q2jpKQEwzDo2jINwzAoKSkhJyeHVq1aMWDAAF577bV625zMn0tdR54sr4twzKA6atCyZUtuvvlm7r//fkpLS+Op+qxfX8/cGk9mVVWJGgbgoFWrVjzyyCMMHDiwzv0ikQg+n4933nmH1q1b19se0zRxe7zJjEMAiqJw/vnn88ADD/DQQw/VEfCLFi3i119/5aeffkIIwZw5c1i4cGFyf3l5OcFgEI/bcqQqKioiJycHGXceMOP/5ubmsn79ejp1OhS3NwVvaioArVq1YvPmzXFvXcHmzZvJycmp0+ZkWsNaY5joi9frw+v1sXr12uR6aoeC+gsPFxUVoagaDqEk2wngdrsJBoNJR6zS0lJatmxZ5z6KoqIoKq1atWLx4sUIIXC6vKxevYaMjAxcLlfye7JOtNo8btw4xo0bx6pVq7jgggvIy8tj6LDhLC21Jlm2l3Aj49AQHhex8mpiCEa/cAHPXfk6D789mKsu+xKpCAyHgmYY6BkuqqSGU0hiGjgwcGomYZeLXZWXAHBEQxAN4/G40RUHJvEYZiHQFAXTMFA0K0mELgW6z2UVyHA6rHVcW3X9Y9ga695TFrC0ruOPP56FCxeS5XFS5A9y/fXXM3fuXK6//noqN67B3FbME48/xh133EFKXFv65ptvGDBgAGVx8zDA5soAiqpy7733MmrUKGa9/x7O6nKef/557rrrLu66667ksX6/n3vuuYey0q3cc889HH744bRt25Zzzz2X2bNn89JLL1FSUsLKlSuTpsjd8dJLL/HKtBfZsn4tK1eu5NZbb6Vz587k5ubStm1bNm7cyOeff84vv/xS57xtwQjRmMHYsWO57rrr+P7779m2bRtffvkl8+fPx+Vycckll3DppZeyfPlytm7dykcffcTSpUsBKCgo4L333mPRokUEAoE61/7Xv/5FUVFRUktPkJ6ezpYtW/j1119ZuXIld9999079+de//sWWkhKefPJJnE4nPXv2xIhZ2rVpxDBNq80TJ05k8eIlBCNRPvnkUwAuuugi/v3vf/Prr0v54YcfeOyxx3Za462P9u3b8+WXX/Ltt98mTfYJfD5PvefMmDGDefPmsWbtWu655x4uuOACAI488kjeeOMNCgsL+d///sfMmTOT5xQUFLBw4UIWLlzI+vXrGTp0KF988QXvvPMOmzZt5p///Ge97dUcLoqLi/nvf/9LSUkJbrcbp9OJz+fDtDWTJkMIgfC5UbLSEF4XRkU1Vz43jPEXzkWJSbSggSMQI+ZRueOOfmzfuJ5Q8TqqNxUSXL+KYGkR6Ppu50PR6iq2rl5B2bpCwpvWEFy7nOjmNcSK1uKo2Er12uVE1q/EUb4FJeRHqCrC47KSRzTaSBzEmHLPn0Zmv9VYDVOyuSrIqFGjuPrqqxk/fjxb/BUc3qo1P/74I8899xzjxo0DoG/fvlxzzTWA5USUkZFBt27dmLeuxoQZMUwWFW9nzJgxdOnShalTp/LQQw/RvXt35syZw5/+9Ceq4uuu3bt3Jysri3PPPZfOnTvz1ltvEdQNMlq0ZN68eUyaNIlnnnmGzMzM5NphXl4eAwYMACBmmrRs2ZLBgwcD0LNnT5577jleeeUVVFXlT3/6E59++imKopCdnc1zzz3H66+/TkpKCo8++mjSU7nMlPyytYIrrriCzMxMbr/9dsrKyujUqRPXXWd5pj766KM888wzjBs3jnA4TI8ePZIOVU8++SRTpkxh0qRJ3HXXXXTp0iWpaf1aWoVDEQRKK0h1uzn//PMB6NSpE/fffz9XXXUVGRkZ3HDDDXz66afJcczNzaVXr14MGzaMvLw8Zs2ahZQmetR6SZgSqssrGDVqFE6nkxtvvJFgMMigQYP4+9//ztlnn00oFGL8+PF4vV4mT57MX//61+T32KFDByvhOZJevXqRGtd0R48ejd/v56mnnmLIkCF07949Ob6W74KsOR846qij6Nu3Ly+++CLr1q3jwgsv5JJLLkHXI5x33nmsWLGCSy65hCOOOIKHHnoIr9daQxsyZAjr169nypQp9O/fn0svvZRZs2bx0EMP8fjjj3PCCScwceLE5Hd+3HHHxb9zidPp5LPPPuPxxx/H7XZz1llncc455/BjUY2J36bxsdZbBXhdyFCEWMTkrmdP5/bL3kMNmZgOFWFIgpEopmniS0klPScHhCAWiaAHI0iH0wqTqQdPSireDp2o2r6NqGHgS0lFj8XQHA78gQCmUFBdLiqq/Hhbp1n1jj1OjEgUGY1ZXsy21vq7kaaBlLs29+5u375CyL3NR9dIVFZWkpGRwZTZX9E+txWDu3XgjDPO4IYbbqDdYd2Zt3oTPQ/JoVNOZp3E9Fv9AXJSfYwcOZIRI0bQ97gBvP3Typ2uf0hGKn86JJucVF9y28byKhZv2kqnnEz8G9dyxRVX8MMPPyT3b9hexYLVm3A7VI7KzyUvKy25zzBNtlWHSPe4cGoqq7Zup7C0nIGd2+F1OqiORKmORGmdllKnHWu2lPHdmiKyW6RyZH4u6R5Xnf3+cJTPlq+jMhyhY3YGPQ9pRaq7xkFnW3WQb9cV0zrNR/c22ThrrQGVVvoxQlWkeFNJSUurc10pJUVbtzFn1SZMIfAKwUk9u5Duc1MWCFFYWs6Rea3R6gk1WL9+Pf3790+GvQAEQn42bCnEKzxINIIxE680SUlNJ7NlNqpWM3er9lei61HS0rOSJlTDiFGxfStOl4uU1CykNCkv24qmOUjLyEJKqKooQ3U4SElJ3+kFFAz42b6thPSMFqSkZSBNk1hMx+mqm4VJSsmG9WtZvXo1bfPz6dypy077N5YU4nOlkpmenXT2ClZXo2oqrlrxu1UV29H1CJlZOQhFodpfxbaK7fgyssnZ4Xv+fn0xvxZv22ksbRofKSVmmR/V62TaLe8jTDA1wa1ThhKJqUSjENJNzFAUxeeyvIglRCsD4HYh6kkgI4AWLgUQVOqGlRbaiFG9eQ2Kw4m3dX48RahF4hXvUgShsI7hD6GkeJIVcQ42QoFqxg76SzJSoSGpqqoiPT2dv6ZfiCZ2XYYxJqN8VvkKlZWVpO3wPtxX7Hcaq9/vB2DsoL8A8NFHHzF9+nQMw2DJksUM698fsLxACwoKAFi3bh2dO3fm559/5oEHHqB169aceuqpfPTRR7u8T6tWrWjRogXFxcXJGNgpU6bQu3fvpPYybNgwPv7446QTUoL09HTatm2bDM+RUlrxm6qKrlsmUatKipb82+VyUVBQQCwWY/PmzYTD4TrXVBQFTdOIRqM4nU7LgWKHOU+7du1ISUlh06ZNddqkKAodOnTA4XCwfv16gsG6KfwS10s4GCWqwOx4TGKt1eFwUFBQQDAYpKioCIfDwS233MLIkSPx+awJyVVXXcXrr7/O9u271saEEMl2rV27NunwoygKHTt2JBgMsnnz5uTxVqyymVxz1jQNKSVGLecDh8ORPKb2+O54fuLczMxMsrKyWL16dZ3ruN1uCgoKKC4uprq6GqDOfi0+IUiMVZs2bfD5fKxduza5TVEUFEWpM54ej4d27doRiUTYuHFjvWNts39x4p92Xu6waVj8fn+DC9Ykpgm7KRvXFJmX9juN1TRNioqKSE1NrakzGg+lqE/Y1EZVVVTVqmbyW19oVVVV3HTTTck1U9M0ky/c5kJVVRV5eXls3Lhxp5mdqqpJoSqlpLq6eq+T7x8o7K7/zYXmPgbNvf/QsGMgpcTv99OmTZs6DpQNQUJjPcE7bI8a65zgG81bY1UUhbZt29a7r3bM4b5g+vTpTJkyhZSUFBRFabY/rLS0tN32XQiRXPs8GNlT/5sDzX0Mmnv/oeHGYJ9pqgkSdaJ3u79x2e8Ea1NjNkFeSRsbGxub38meCp3bgtXGxsbGxmbvkYaJFLvzCraT8DcZLpeL22+/PRmO0hxp7mPQ3PsP9hg09/7DATgG0qS+KkN19zcu+53zko2NjY2NzZ5IOC/1E6ei4djlcTF05ssPm7fzko2NjY2NzZ5wOp20bt2a+Vs+3OOxrVu3rrdQx77C1lhtbGxsbA5IwuHwTsVM6sPpdO7zqJLa2ILVxsbGxsamAdlvk/Db2NjY2NgciNiC1cbGxsbGpgFpFoJ1x9y5zZFEMfbmiv0M2NjYNBYHtVfw8uXLmTBhAk6nk/bt23PZZZfRtWvXpm5Wo7JixQquvvpqYrEY7dq1Y8SIEQwaNKipm9Vo2M8AbNq0iZkzZ9KpUyd69OhBXl4eUspmVarMHgPYvHkzs2fP5tBDD6VHjx6kpaU1uzFoLA5ajfXLL7+kX79+ZGVlcfTRR/P2229z0UUXMW/ePKB5pC788ccfGThwIG3btmX48OHJGqQffPBBUzetUbCfAXjwwQfp2LEjb7/9NiNHjuTUU09l4cKFzeplao8B3HXXXXTo0IFnn32Wk046iQsvvJClS5c2qzFoVORByrXXXivPOOMMaZqmlFLKpUuXyrPPPlseeuihTdyyxuO+++6Txx13nAwGg1JKKbdu3SrHjh0rs7Oz5ebNm5u4dfue5v4MlJSUyB49esiXXnpJSinlt99+K88//3yZl5cnV65c2cStaxzsMZBy5cqVslu3bvLNN9+UUkr5/vvvy8GDB8vu3btLXdebuHUHJwedxirj0UOFhYU4HI7kjOywww7j5ptvpqKigjvvvBM4+DWWlStXIoTA47GKdGdnZ3PPPfeQnp6eHAN5EEdbNbdnYMfvcs6cORQXF3PqqacCcPTRR/PCCy+gKAr33XdfsvbxwUxzHYPaJS//7//+j/Lycs466ywATjvtNB577DGKi4u54447mqiFBzcHvGAtLi7mjTfe4Ouvv2b79u0IIYhGo+Tn5xMIBCgqKkoe2717d6677joeffRRgsFgg9cHbCpKSkooLCwE6hbrPvzww6moqGDVqlWAJUSysrK48847eeGFFyguLj4oTEGbNm3iscceY9asWWzcuBGASCTSrJ6B6upqysvL62xr3749FRUVSeERjUbxeDw88cQTTJ8+nSVLljRFU/cZFRUVLFy4MPkMABQUFDSrMSgrK+Pss8/m0ksvTW7Lz89H13XKysoA6z3QpUsX7rzzTiZNmkRxcXFTNfeg5YB+q9xwww107tyZqVOnMmjQIC6//HJWrVqF0+mkR48ebNiwgYULFyaP1zSNwYMH07ZtW6ZPn96ELW847rvvPtq0aZP8ISUKvQN07doVt9vNhx9aKb8URUFKyaBBgzjssMOYOnVqk7X7j5LQzupbP/v6669xuVz06tWLdevWHfTPwC233ELPnj0ZOnQow4YNY8WKFQBkZGTQu3dvnnrqKcDKPiOl5LTTTuOII47gueeeAw4Orf22226jc+fOXHHFFXTv3p0333wTsGqB9unTp1mMwcSJE8nNzeWzzz7jq6++oqqqCgCfz0fHjh154403AJKTyQsuuIA2bdowefJk4OAYg/2FA1KwlpeXM3r0aObPn8+sWbP4+OOPmTZtGhUVFTz//PMAXHHFFbhcLmbOnJnU5gA6dOhALBZr1LyR+4JoNMqNN97IBx98wIgRI6ioqOCll14Can4gp556Ku3ateOTTz7hu+++A2qKlGdmZiKlPGBNwUIItm7dyvTp03n22Wf54osvmDVrFocffjjnnHMOGzZs4NJLL8Xr9fLWW28dtM/AhRdeyKxZs5g6dSqjR4+mqqqKwYMHs2TJEjp16sQxxxzD/Pnz+f777wGIxWIADB8+nG+//ZZAIHBAa+2GYTBmzBg++OADZs6cyZtvvsl5553HP//5T8D6ro866igWLFhw0I7BtGnTaNmyJbNmzeLLL79kypQppKSksGXLFgD69euXFLgrV64ErIlpWloaQ4YM4eeffyYajR7QY7C/cUCO5LZt2xBCMHHiRPr374/L5eLcc88lJSWFaDSaFCw333wzixYt4tlnn02eG4lEiMViZGRkNFHrGwan00nHjh0ZNWoUt956K7179+bpp5/G7/ejaVoyf+aVV15JMBjkgQceSJ5rmibbt2+noKDggDYF72r9TNM0brrpJsDSZA7WZ2DlypUsWrSIRx99lEGDBnHRRRfx9ttvU15ezt1338327du54IIL8Hg8PPjggwA4HFYVkBUrVpCbm4vL5TpgJ1dgLQN89dVXXHvttfTv359OnTpx4YUXkp2dTVVVFS6Xi6FDhx60Y7Bp0ybeeOMNbrnlFn7++Wf69OnDEUccwYoVK5Kx2x6Ph4suuohNmzbx4osvAtbEVAhBYWEhXq83qcnbNBBN4jL1GzEMQ0opZTQalVJK6ff75S+//LLT/uHDh8srr7yyzrn33HOP7NKli+zfv7984okn5LHHHit79+4ti4qKGqn1DUOij7quJ71cE9uklPKDDz6QRx55pLz11lt32vfqq6/KQw89VPbo0UPeeuutsl+/frJ79+5y1apVjdiDP0Z9/f/mm2+kpmlyzZo1UkopI5GIlNIaC0VR5Pz586WUUt59990HxTOwI/Pnz5eapsnt27cnt61bt04WFBTINm3ayKlTp0oppXz55ZflIYccIseNGyd/+OEHuXTpUnnMMcfIO+64o6ma3mBs2rRJCiHkf//73+S2QYMGyTPPPFM+/fTTsqKiQkop5SuvvCLbtGlz0I2BaZoyFovV+Xv16tXy8MMPl5MmTapz7G233SY7duwo77zzTrlhwwa5ZMkSedRRR8mnnnqqkVt98LPfC9Y77rhDnnzyycm/Ey/VBIkXbiwWkwUFBfLVV1+VUta8ZCORiPzmm2/k8OHD5cCBA+XYsWOTAvpAYccxqI+qqip50003yW7dusmlS5dKKWWdfhYWFsrx48fL008/XV599dXJ8TkQ2FX/ly5dKvv16ycnTJiQ3JZ4Pnr37i1HjBghpZQyEAgc8M9AfSxZskT26tWrzmTypptukmPGjJF9+/aVgwYNklJKGQwG5fvvvy/btWsnu3btKtPT0+Xw4cNlKBRqqqY3CInf/qWXXipbt24tTzvtNOlyueSxxx4rr732Wpmfny+PP/54+c0330gppXz33XcPujGoj6qqKtm5c2d53333SSlr3gPbtm2TU6dOlampqbJHjx7S5/PJiy66SIbD4aZs7kHJfitYly9fLocMGSKzs7OlEEL+5z//kVLKOrOz2vzyyy8yPz9frlixYpfXPNB+RLsagx1jzxLC5KuvvpIDBw6UF154YXLfjgLkQBIou+p/og/RaFRee+21sm/fvvLbb7+ts2/y5MnysMMOk36/v841D7RnYHeEQiE5bdo06XA45DHHHCNbtGgh27RpI9etWyfnzJkjNU2TVVVVyePLysrkokWLDihLxe6o/S5Ys2aNHDp0qLz66quT27Zt2ya7du0qH3300aQQPtjGYFeKxtlnny0HDx5c7znr16+XX375pVy2bNk+b19zZb9dY/3pp5/wer08//zzjBs3jltuuQXTNFFVtd61gF9//ZXWrVvTuXNnwIrd+ve//13nmMasx9cQ7GoMNE2rMwaJddI+ffpw+umn8/333/Phhx8yY8YMLr/88johOIn1pQOBXfXf4XAQi8VwOBycccYZeL1eHn74YaCmf8uXLyc3Nxe3213H2/FAewbqI+F843a7ufjii1mwYAGjRo1iypQpbN68mXbt2lFWVsahhx5aJ0d0VlYWf/7znzn00EObqOUNRywWQ1XV5N9ut5vly5czatQoAHRdp0WLFqiqyrJly5KOOQfbGOzoI6EoCoZh0L59e6qrqyktLd3pvPz8fPr379/sUns2Kk0t2XckMQOrrKyU3333nZRSyu+++0527NhR3nDDDVLK+rXWESNGyIkTJ8qSkhI5aNAg6XA4kqaQA43fMwaJc1asWCEHDBgghRDS6XTKm2++uRFb3jDsTf9ra+3Tpk2Tbdu2PejWz3akdp+j0ai87rrrdql5XXPNNfL0009vrKY1GrXHQNf15BhUVFTIjIwMOX369OT+b775Rh555JHyo48+aoqm7jN2NQZS1vx2Jk2aJAsKCg4qC82BxH4nWOujurpaPvDAAzI9PV2uW7dOSllXsJSWlsr8/HxZUFAgHQ6HPOuss2RlZWVTNXefsKcxkFLKoqIieckll0ghhBw7duxOZtADmfr6X3sd/WBcQ0wQi8XqmPwmTZok09LSZMeOHWVhYWFy++rVq+Xq1avlP//5T9mmTRv5zjvvSCl3NhceiOxqDDp06CDXrFkjA4GAvOGGG6QQQo4cOVKOGTNGZmRkyMsuu6xZPQeJ/T/88IMUQsiFCxc2SVubO/ulYK398CT+f/ny5fLYY4+VZ5xxxk7Hr1u3Tubn58t+/frJH3/8sdHauS/5rWMgpZQvvfSSPO644+T333/fKG3cl/yW/if2b9u27aBaP5Oy7uRp9uzZsmPHjrJVq1by+eef32mt/dVXX5Xdu3eXPXr0SHpEHwzs7RiYpinvvvtuOXr0aHnOOec0yzFI8Nlnn8kRI0bIjRs3NmYzbeLsd4J1V0mhdV2X06dPl2lpaXLOnDlSSinnzp0rKyoqZCAQkIsXL27MZu5TfssYfPHFF3LLli1SyoNDM5Hy9/f/YGXDhg3yb3/7m3Q4HHLChAmyrKyszv7E9x4IBORXX33VFE3c5+ztGEhZN9TsYGJPY2Cz/7DfCNbdrRskKCoqksOHD5edOnWSJ510khRCJL1BDwZ+7xgk1iEPdJp7/+vjzTfflJqmyVNOOaXZenHaY2CPwYFGk3sFG4aBlBJNs2quT548mRYtWvDee+/t5PFmGAalpaUUFhaSlZVFUVERRx99dFM0u0H5o2Nw1FFHNUWzG4zm3v/dccQRR/Dll1/y4YcfNlsvTnsM7DE44GhKqf5b1g2WLVsmjzzySNmxY0f59ddfN3ZT9xnNfQyae/9tbGwOPprcFLy36waBQEB+/vnnjdu4RqK5j0Fz77+Njc3BRZOagt966y06dOiAqqosWbKEhx56iKysrHqP9Xq9HH/88Y3bwEaguY9Bc++/jY3NwYeQsulKGqxZs4aSkhL69u3bVE1ocpr7GDT3/tvY2Bx8NKlgtbGxsbGxOdhocq9gGxsbGxubgwlbsNrY2NjY2DQgtmC1sbGxsbFpQGzBamNjY2Nj04DYgtXGxsbGxqYBsQWrjY2NjY1NA2ILVhsbGxsbmwbEFqw2NjY2NjYNiC1YbWxsbGxsGhBbsNrY2NjY2DQgtmC1sbGxsbFpQGzBamPTBKxbtw4hBD/99NM+ub4QgnfffXefXNvGxmb32ILVplly8cUXM3To0Ca7f15eHsXFxXTv3h2AuXPnIoSgoqKiydpkY2PTMGhN3QAbm+aIqqq0bt26qZthY2OzD7A1VhubHfjiiy/o3bs3LpeL3NxcbrzxRmKxWHL/8ccfzzXXXMMNN9xAVlYWrVu35o477qhzjeXLl9OvXz/cbjfdunVj9uzZdcyztU3B69atY+DAgQBkZmYihODiiy8GoKCggMmTJ9e59p///Oc691u1ahXHHXdc8l6ffvrpTn3auHEj5557LhkZGWRlZTFkyBDWrVv3R4fKxsamHmzBamNTi82bN3PyySdz9NFHs3jxYqZMmcILL7zAPffcU+e4l19+GZ/Px8KFC3nwwQe56667kgLNMAyGDh2K1+tl4cKFPPvss9x88827vGdeXh4zZ84EYMWKFRQXF/PYY4/tVXtN0+TMM8/E6XSycOFCnnnmGSZOnFjnGF3XGTx4MKmpqcybN48FCxaQkpLC3/72N6LR6G8ZHhsbm73ANgXb2NTi6aefJi8vjyeffBIhBF27dqWoqIiJEydy2223oSjWXPRPf/oTt99+OwCdOnXiySef5LPPPuPEE0/k008/ZfXq1cydOzdp7r333ns58cQT672nqqpkZWUBkJOTQ0ZGxl63d/bs2Sxfvpz//e9/tGnTBoD77ruPv//978ljZsyYgWmaPP/88wghAJg2bRoZGRnMnTuXk0466bcNko2NzW6xBauNTS2WLVtG3759kwII4Nhjj6W6uppNmzaRn58PWIK1Nrm5uWzduhWwtM68vLw6a6i9e/feZ+3Ny8tLClWAvn371jlm8eLFFBYWkpqaWmd7OBxm9erV+6RdNjbNGVuw2tj8DhwOR52/hRCYptng91EUBSllnW26rv+ma1RXV3PkkUfy6quv7rQvOzv7D7XPxsZmZ2zBamNTi8MOO4yZM2cipUxqrQsWLCA1NZW2bdvu1TW6dOnCxo0bKSkpoVWrVgB89913uz3H6XQC1vpsbbKzsykuLk7+XVVVxdq1a+u0d+PGjRQXF5ObmwvAN998U+caRxxxBDNmzCAnJ4e0tLS96oONjc3vx3Zesmm2VFZW8tNPP9X5XH755WzcuJGrr76a5cuX895773H77bdz3XXXJddX98SJJ55Ix44dGTlyJEuWLGHBggXccsstAHVMzLVp164dQgg+/PBDSktLqa6uBuCEE07glVdeYd68efz888+MHDkSVVWT5w0aNIjOnTszcuRIFi9ezLx583ZylBoxYgQtW7ZkyJAhzJs3j7Vr1zJ37lyuueYaNm3a9HuGzsbGZjfYgtWm2TJ37lx69epV53P33Xcza9Ysvv32W3r27MmYMWO49NJLk4Jxb1BVlXfffZfq6mqOPvpoRo8enRR2bre73nMOOeQQ7rzzTm688UZatWrFVVddBcBNN93EgAEDOPXUUznllFMYOnQoHTt2TJ6nKArvvPMOoVCI3r17M3r0aO6999461/Z6vXz55Zfk5+dz5plncthhh3HppZcSDodtDdbGZh8g5I4LODY2Ng3OggUL6NevH4WFhXUEo42NzcGHLVhtbPYB77zzDikpKXTq1InCwkLGjx9PZmYm8+fPb+qm2djY7GNs5yUbm32A3+9n4sSJbNiwgZYtWzJo0CAeeeSRpm6WjY1NI2BrrDY2NjY2Ng2I7bxkY2NjY2PTgNiC1cbGxsbGpgGxBauNjY2NjU0DYgtWGxsbGxubBsQWrDY2NjY2Ng2ILVhtbGxsbGwaEFuw2tjY2NjYNCC2YLWxsbGxsWlA/h/9Fu4c2TDKbQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from gval import Comparison\n", + "from numbers import Number\n", + "\n", + "@Comparison.register_function(name='divide', vectorize_func=True)\n", + "def multiply(c: Number, b: Number) -> Number:\n", + " return c / b\n", + "\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"divide\",\n", + " continuous=True\n", + ")\n", + "\n", + "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "48861d2d", + "metadata": {}, + "source": [ + "### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "b7059f3b", + "metadata": {}, + "source": [ + "Like in cateogrical compare, all metrics are computed by default if no argument is provided, `metrics` can also take a list of the desired metrics and will only return metrics in this list." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "255f3d40", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandmean_absolute_errormean_squared_error
01215.10623289814.117188
\n", + "
" + ], + "text/plain": [ + " band mean_absolute_error mean_squared_error\n", + "0 1 215.106232 89814.117188" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['mean_absolute_error', 'mean_squared_error']\n", + ")\n", + "\n", + "metric_table" + ] + }, + { + "cell_type": "markdown", + "id": "693f4447", + "metadata": {}, + "source": [ + "Just like registering comparison functions, you are able to register a metric function on both a method and a class of functions. Below is registering a metric function:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "295e1fe0", + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Union\n", + "import numpy as np\n", + "import xarray as xr\n", + "from gval import ContStats\n", + "\n", + "@ContStats.register_function(name=\"min_error\")\n", + "def min_error(error: Union[xr.Dataset, xr.DataArray]) -> float:\n", + " return error.min().values" + ] + }, + { + "cell_type": "markdown", + "id": "f05c8bab", + "metadata": {}, + "source": [ + "The following is registering a class of metric functions. In this case, the names associated with each function will respond to each method's name." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c3e9ebf1", + "metadata": {}, + "outputs": [], + "source": [ + "@ContStats.register_function_class()\n", + "class MetricFunctions:\n", + " \n", + " @staticmethod\n", + " def median_error(error: Union[xr.Dataset, xr.DataArray]) -> float:\n", + " return error.median().values\n", + " \n", + " @staticmethod\n", + " def max_error(error: Union[xr.Dataset, xr.DataArray]) -> float:\n", + " return error.max().values" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "66a0ec92", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandmin_errormedian_errormax_error
01-3035.65527325.8582084263.23291
\n", + "
" + ], + "text/plain": [ + " band min_error median_error max_error\n", + "0 1 -3035.655273 25.858208 4263.23291" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['min_error', 'median_error', 'max_error']\n", + ")\n", + "\n", + "metric_table" + ] + }, + { + "cell_type": "markdown", + "id": "2d91a3c2", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "markdown", + "id": "27c889fb", + "metadata": {}, + "source": [ + "Finally, a user can take the results and save them to a directory of their choice. The following is an example of saving the agreement map and then the metric table:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "78505603", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'continuous_agreement_map.tif'\n", + "metric_file = 'continuous_metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "metric_table.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.doctrees/nbsphinx/SphinxContinuousTutorial_11_1.png b/.doctrees/nbsphinx/SphinxContinuousTutorial_11_1.png new file mode 100644 index 00000000..283f8f13 Binary files /dev/null and b/.doctrees/nbsphinx/SphinxContinuousTutorial_11_1.png differ diff --git a/.doctrees/nbsphinx/SphinxContinuousTutorial_13_1.png b/.doctrees/nbsphinx/SphinxContinuousTutorial_13_1.png new file mode 100644 index 00000000..4a83ba1c Binary files /dev/null and b/.doctrees/nbsphinx/SphinxContinuousTutorial_13_1.png differ diff --git a/.doctrees/nbsphinx/SphinxContinuousTutorial_25_1.png b/.doctrees/nbsphinx/SphinxContinuousTutorial_25_1.png new file mode 100644 index 00000000..7dc8bb21 Binary files /dev/null and b/.doctrees/nbsphinx/SphinxContinuousTutorial_25_1.png differ diff --git a/.doctrees/nbsphinx/SphinxContinuousTutorial_27_1.png b/.doctrees/nbsphinx/SphinxContinuousTutorial_27_1.png new file mode 100644 index 00000000..20c206b8 Binary files /dev/null and b/.doctrees/nbsphinx/SphinxContinuousTutorial_27_1.png differ diff --git a/.doctrees/nbsphinx/SphinxMulticatTutorial.ipynb b/.doctrees/nbsphinx/SphinxMulticatTutorial.ipynb new file mode 100644 index 00000000..e2885293 --- /dev/null +++ b/.doctrees/nbsphinx/SphinxMulticatTutorial.ipynb @@ -0,0 +1,1168 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "05d93248", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "4744f004", + "metadata": {}, + "source": [ + "# Multi-Class Categorical Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "275a7087", + "metadata": { + "tags": [ + "hide-output" + ] + }, + "outputs": [], + "source": [ + "import rioxarray as rxr\n", + "import gval\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "from itertools import product\n", + "\n", + "pd.set_option('display.max_columns', None)" + ] + }, + { + "cell_type": "markdown", + "id": "34069943", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "38473c06", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(\n", + " \"./candidate_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " \"./benchmark_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "depth_raster = rxr.open_rasterio(\n", + " \"./candidate_raw_elevation_multi_categorical.tif\", mask_and_scale=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "fa522035", + "metadata": {}, + "source": [ + "## Homogenize Datasets and Make Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e3e5ca15", + "metadata": {}, + "source": [ + "Although one can call `candidate.gval.categorical_compare` to run the entire workflow, in this case homogenization and creation of an agreement map will be done separately to show more options for multi-class comparisons." + ] + }, + { + "cell_type": "markdown", + "id": "2ac66a26", + "metadata": {}, + "source": [ + "#### Homogenize" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "29375e17", + "metadata": {}, + "outputs": [], + "source": [ + "candidate_r, benchmark_r = candidate.gval.homogenize(benchmark)\n", + "depth_raster_r, arb = depth_raster.gval.homogenize(benchmark_r)\n", + "del arb" + ] + }, + { + "cell_type": "markdown", + "id": "4e9e1be1", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e2851c9b", + "metadata": {}, + "source": [ + "The following makes a pairing dictionary which maps combinations of values in the candidate and benchmark maps to unique values in the agreement map. In this case we will encode each value as concatenation of what the values are. Instead of making a pairing dictionary one can use the `szudzik` or `cantor` pairing functions to make unique values for each combination of candidate and benchmark map values. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "de894568", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 1): 11\n", + "(1, 2): 12\n", + "(1, 3): 13\n", + "(1, 4): 14\n", + "(1, 5): 15\n", + "(2, 1): 21\n" + ] + } + ], + "source": [ + "classes = [1, 2, 3, 4, 5]\n", + "pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in product(*([classes]*2))}\n", + "\n", + "# Showing the first 6 entries\n", + "print('\\n'.join([f'{k}: {v}' for k,v in pairing_dictionary.items()][:6]))" + ] + }, + { + "cell_type": "markdown", + "id": "44328dcf", + "metadata": {}, + "source": [ + "The benchmark map has an extra class 0 which is very similar to nodata so it will not be included in `allow_benchmark_values` in the following methods." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "1dc16dd7", + "metadata": {}, + "outputs": [], + "source": [ + "agreement_map = candidate_r.gval.compute_agreement_map(\n", + " benchmark_r,\n", + " nodata=255,\n", + " encode_nodata=True,\n", + " comparison_function=\"pairing_dict\",\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes,\n", + ")\n", + "\n", + "crosstab = agreement_map.gval.compute_crosstab()" + ] + }, + { + "cell_type": "markdown", + "id": "93fe86df", + "metadata": {}, + "source": [ + "The following only shows a small subset of the map for memory purposes:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "55606165", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAIvCAYAAAD9IEb7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZxN9f/Hn+duM2NW+xBJlkGFSaNQomTJEolI32wh2bVoX6SkFBJjSfRLaGGEihahRYVIvjRJtpjBYBaz3e38/rjOdZdzZ+4smOn7fj66j5n7OZ/zOZ9zZnRf814VVVVVBEEQBEEQhHKL4XJvQBAEQRAEQSgZIugEQRAEQRDKOSLoBEEQBEEQyjki6ARBEARBEMo5IugEQRAEQRDKOSLoBEEQBEEQyjki6ARBEARBEMo5IugEQRAEQRDKOSLoBEEQBEEQyjki6IQyxy+//IKiKCiKwuTJky/3doRSZNCgQe6f7YgRIwLOy8/Pp1KlSu65mzZtunSbLCJDhgwhPDyckydPeo1rey/oNWjQIK9zrrrqKr85UVFRJCQkMH36dKxWq9/18/PzmTFjBq1atSI6OhqLxUKNGjW44YYbGDNmDJ999lnAvZ85c4ZXXnmFtm3bUq1aNcxmM9HR0TRv3pyRI0eycePGEj+f06dPU61aNRRFoX79+n7HnU4n3333HY8//jgtWrQgMjKSkJAQ6tWrx0MPPcTBgwcLvcbq1avp3LkzVatWJTQ0lNq1a9OrVy++//573fk//fQTd911F1WqVCE0NJSGDRvy9NNPk52d7TdXVVXi4+O57rrrcDqdRX8AgnCpUAWhjDF69GgVUAG1YcOGl3s7gg/PP/+8CqiLFy8u8rkDBw50/2wrVqyo5ufn685buXKlex6gfvvttyXb9EVi9+7dqsFgUB977DG/Y9reBw4cGPC1cOFCr3Pq1KmjAmrv3r3VgQMHqg888IDatm1b1Ww2q4Datm1br2d29uxZ9frrr1cB1Ww2q23btlX79eunduvWTa1Ro4YKqHFxcbp7X7VqlRoVFaUCakREhHr77ber/fv3V3v06KE2aNDAvf8777yzRM9o4MCBqqIoKqDWq1fP7/j+/fvd14qNjVV79Oih9urVS73iiitUQI2MjFS/++473bUdDoc6ZMgQFVDDw8PVTp06qffee6/aqlUr1WKxqC+99JLfOUuXLlWNRqMKqNdff73aq1cv9corr1QBtWnTpmpGRobuswLURYsWlehZCMLFRASdUKawWq1qlSpV3P9zB9Sffvrpcm9L8KA0BF18fLwKqElJSbrzevXqpRqNRrVZs2ZlWtD16NFDNZvN6okTJ/yOaSKlKGiC7uDBg17jO3fuVKOjo1VAnT17tnt8zJgxKqA2b95c/eeff/zW+/nnn9UXX3zRb3zt2rWqoiiqyWRSX3vtNTUvL89vzr59+9SBAweqDRo0KNI9ePL111+rgDp8+PCAgu6vv/5S77jjDvWbb75RnU6nezwvL08dNGiQCqhXXnmlarVa/c7Vfhe7d++unj592uvYmTNn1D///NNr7OjRo2poaKifOMvPz1f79+/v3qsvTqdTbdSokXrFFVeoNputyM9BEC4FIuiEMsWaNWtUQG3Tpo06efJkFVBHjRp1ubcleFAagu61115TDQaDes899/jNOXv2rBoSEqJ27NhR7dSpU5kVdEeOHFENBoParVs33eOlKehUVVVffPFFFVBvv/1291jNmjVVQP3qq6+CvkZWVpb7j6b333+/0Pnbt28Pem1PcnJy1Hr16qlNmjRR//zzz4CCrrA1NCG7adMmr2NHjx5VLRaLeuWVV6o5OTlBrffSSy+pgHrHHXf4HTt9+rQaGRmpmkwmNS0tLeC5K1euLNI9CMKlQmLohDLF0qVLAbj//vu5//77Afjwww+x2WwBz9m9ezfdu3cnJiaGyMhI2rZty1dffcWmTZt045S0OK5NmzaxYcMG2rdvT0xMDIqikJ6e7p63fv16unbtStWqVQkJCeHqq69m4sSJnD59WncfqqqyfPlybrvtNipWrEhoaCiNGzfmhRdeICcnx29+u3btUBSFQ4cO8eGHH5KQkECFChW44oorePzxx93xUgcOHKB///5Uq1aNChUq0L59e3bv3h3weRRl357PYsuWLdx2221ERkYSFRVF165d2bt3r9f8q666ihdffBGAwYMHe8V6FSXOrUaNGtx2222sW7eOjIwMr2MfffQR+fn57p+/Hrt27XLHXHne58MPP8zx48f95h86dAhFUWjXrh2ZmZmMGzeO2rVru39GM2bMKHJ81LvvvovT6aR///5FOq+4xMfHA3D06FH32KlTpwCoWrVq0OssWbKEtLQ0WrduXeAz1mjRokURd+rixRdf5O+//2bevHmYzeZirREWFkbDhg0B/H6u7733HlarlQcffJCwsLCg1tuxYwfg+rfnS6VKlWjatCl2u1037vC+++4DYOHChUW5BUG4ZIigE8oMGRkZrFmzBovFQt++falbty6tW7cmLS2N9evX656zdetWWrVqxbp166hTpw7dunUjLy+Pzp07s2rVqgKvt2zZMrp06UJ2djZdunQhISEBRVEAeOKJJ+jSpQtff/01cXFx9OjRA5PJxIwZM7jxxhs5ceKE11pOp5MBAwZw3333sW3bNpo3b86dd95JdnY2L774Iu3btyc3N1d3H7NmzeL+++8nJiaGzp07Y7Vaef311xk2bBj79+/npptuYteuXdx2223Ur1+fTZs20b59e789FGffGmvXruW2224jJyeHO++8kxo1avD555/Ttm1bUlNT3fPuuecemjVrBkCbNm0YOHCg+xUbG1vg8/ZlwIAB5OXlsXLlSq/xDz74gAoVKtCrV6+A57766qvMmDEDgJtvvpk777wTVVVJTEzkhhtu0BV14EoguO222/i///s/WrZsyR133MHhw4eZOHEiQ4YMKdL+161bB+iLg4tBVlYWACEhIe6x2rVrAzBv3jxUVQ1qnS+++AKgREL0hRde0P1jSWP37t288cYbDB48mFtuuaXY13E6nRw+fBjA7/dLS9ho3bo1KSkpTJ8+nYceeohJkyaxfv163eehJT1UrFhR93qVK1cG4LfffvM7dvXVV1O7dm02btwY8N+yIFxWLq+BUBAu8M4776iAetddd7nH5s6dqwJqnz59/OY7HA61YcOGKqC+/PLLumtxPijdE8/A/BUrVvit+9FHH6mAeu2116r79+93jzudTvW5555TAfXee+/1Oue1115TAbVdu3ZqSkqKezw/P18dOnSoCqiTJk3yOufWW291B6Rv27bNPZ6SkqJWr15dVRRFbdy4sfrEE0+4Y4ucTqf6n//8RwXU5557rsT71p6FwWDwimez2+1q7969VUB99tlnvc4pDZfr+++/r2ZmZqphYWFq+/bt3ccPHz6sKoqi9u/fX1VVNaDLdePGjWpqaqrXmMPhcLslBw8e7HXs4MGD7p9506ZN1VOnTrmP/fXXX27XZaCYPl+ysrJUo9Go1qxZM+Ac7XpFoSCXa79+/VRAHTBggHts6tSp7us0atRIfeKJJ9SkpCT16NGjAa+hJRt8//33RdqbJ9rvgO+/LVV1/RwSEhLUKlWquF2X2vMvqst16dKlKqBWrVrVL85Pi7F966233G5Zz1e7du3Us2fPep1z33336f5b1LjuuuvcSSl6aP8mNm7cWKT7EIRLgQg6ocygCZyPP/7YPZaWlqaazWY1NDRUTU9P95r/1VdfqYDaoEED1eFw+K3Xpk2bAgVd165ddfehBeL//vvvfsecTqfavHlz1Wg0ukWBzWZTq1SpooaHh/uJDFV1xQHFxsaqFStW9Nqndr/PPPOM3zkTJkxQAfXqq6/2Cwb/7bffVEC99dZbS7Rvz2fhKRI0tm/frnud0hJ0qqqqffv2VQ0Ggzug/5VXXlEB9bPPPlNVNbCgK4grrrhCrVy5steYp6D78ssv/c5JTEz0i08riJ9//lkFvMSoL74CQ+/lKyB9BZ3T6VQPHTqkTpo0SQVURVHULVu2uOc7HA718ccfd2fBer6uueYaNTEx0e/fhpYU8Mcff/jt+cyZM7rZuPv27fOaN3v2bDUuLk594okn/NaYOXOm3+9HcQTdkSNH3LF+iYmJfsdDQkJUQDWZTOott9yi/vrrr2pmZqb69ddfq3Xr1lUBvxjNefPmuZMsfDOst23b5n52HTt21N3T008/rQLqm2++GfR9CMKlwlQUa54gXCyOHDnCli1biImJoXv37u7xypUrc+edd/Lpp5/y8ccf8+CDD7qP/fDDDwD07t0bg8E/euDee+91z9GjR48efmMnT57kt99+o0GDBlx77bV+xxVFoU2bNuzatYsdO3bQqVMnfv31V9LS0rjjjjuoXr263zlhYWG0aNGCzz77jP379xMXF+d1vGPHjn7nXH311YDLnecbf6QdS0lJKdG+C9uDFrvkeZ3S5v777+ejjz5i2bJlPPbYY3zwwQdUq1ZNdz++nD59mjVr1rBnzx7S09NxOBwA2Gw2Tp8+zZkzZ6hUqZLXOZUqVeKOO+7wW6t///6MHDmSH3/8EafTqfv75IlWcy6Q686TgQMHBjx25ZVX6o7XrVvXb8xisTBz5kwvF6bBYGDatGmMGzeOTz75hC1btrBt2zaOHDnCf//7X0aOHMmGDRtYuXJlofcELpfke++95zc+aNAgGjVq5H4/evRoRo8e7TfvyJEjPPPMM9x6660B3bHBkJ2dzd13301aWho9e/bkoYce8pujxTxWrFiRL774gvDwcABuv/121qxZQ9OmTfnkk0/4888/3b/LAwYMYMqUKRw5coQePXowffp06tSpw9atWxk2bBgmkwm73R7wWWm/T1rsoiCUJUTQCWWCDz74AFVVueeee7xihMD1of/pp5+ydOlSL0GnCQ0tjsiXQB+WBR0/dOgQAPv373fH0wUiLS3N65yvvvoqqHN8Bd0VV1zhNy8iIqLQY/n5+SXatye1atXyG4uMjPS7TmnTuXNnKleuzAcffECHDh3473//y5gxYzCZCv5f0/Llyxk+fDjnzp0LOCcrK8tP0NWpU0d3bnR0NDExMaSnp3P27Fl3LFUgtEQO7RkVxJIlSwqd40vv3r2JiIhAURQiIiJo1KgRvXr1ombNmrrza9asydixYxk7diwA+/btY/r06bz77rusXr2a5cuXM2DAAMD1R9KxY8d0fxdr1arlFXvWuXNnNmzYEPS+R40ahdVqZd68eUW9ZTc2m40+ffqwfft2br75ZpYtW6Y7LyIigrNnz9KnTx+3mNO49tprSUhI4JdffmHLli1uQRcREcG6devo1q0bGzZs8Lq3+vXr88gjjzBt2rSAQj0qKgrAK3lKEMoKIuiEMsH7778PwKZNm7j55pu9jmnZnlu2bOHw4cMBP5SLSmhoqN+Y9ld/bGysnxXLF20f2jn169enTZs2BZ6jJxQKspwEY1Xx3ENR9l2c65Q2ZrOZvn37kpiYyFNPPQVQaObl4cOH3dafmTNn0rVrV6644gp3pmPr1q3ZunVr0EkCxSE6Ohq4kKhQ2kyfPp2rrrqq2Oc3btyYRYsWcfbsWZKSkvjss8/cgq5Zs2YcO3aMnTt3Fvr7WlTWrVtHTEyMn0UtLy8PgGPHjrmTSFasWOGX6OB0Ohk4cCBffPEFzZs3Z+3atQEzWOvUqcPZs2cDPqerrrqKX375xa+DR7NmzUhOTuajjz7i119/xeFwcP3119OvXz+mTp0KwDXXXKO7pibkY2JiAj4DQbhciKATLjs7duxg3759APz111/89ddfuvNUVeWDDz5wf/DXqFED8C7j4Emg8YLQLFVVqlQJ2rKindOoUaNiWWNKg+Lsu6xw//33k5iYyPr162nYsCEtW7YscP7nn3+O1Wrl0UcfZdy4cX7H//7774DnHjlyRHc8MzOT9PR0wsLCgvqwrlatGuBqnVWWue2220hKSvKyynbp0oXPP/+cFStW6LpNS0p6ejqbN2/WPZaXl+c+pok8T8aMGcPy5ctp2LAhGzZsKPBnER8fz65duzh79qzuce1no1m0PalQoQKDBg3ycwv/+OOPQODMZe1aRSkTIwiXCilbIlx2tNpzjz76KKorUcfvpdU40+YCbutCUlKSrjXmo48+KvJeatWqRaNGjdi7dy9//vlnUOckJCQQHR3N5s2bL9sHfHH2XVwsFgsAdru9VNZr3bo1zZo1o3LlykGVDtE+VPXcxFu2bAlYmgVccXfffPON3/iKFSsAaNWqFUajsdA9XHPNNZhMJpKTkwudezEpzAqp/XHk6bofNGgQlStX5ocffvD691Ra+9F7af1Y69Wr5x7ztaw988wzzJ07lyuvvJKvvvrKLZoDocXA6onHc+fO8euvvwIX6vcVxu7du9m8eTPXXHNNQMul9odn8+bNg1pTEC4lIuiEy4rD4WD58uVAwXWxbrnlFq644gr27dvnLg5622230aBBA5KTk3nttde85i9ZsoTvvvuuWHt69tlncTqd9O7dm127dvkdP336tFdx0ZCQEB5//HGysrK4++67dS1Ex44dc7uVLxZF3Xdx0eK4SlPM7Nq1i7S0NCZNmlToXC0eaunSpV7N1I8dO6YbPO/Lo48+6lVk+eDBg0yePBlwxYAFQ3h4OPHx8aSkpHDs2LGgzrkYtG7dmsWLF+s2lV+3bp07lu2ee+5xj0dERLB48WIURWHw4MG8/vrrutayf/75J6CV++2336ZRo0Y8+eSTpXIfM2bM4OWXXyY2Npavv/660PhXgO7du9O4cWN+/PFH5s6d6x53OBxMnDiRM2fOcO211/qFcOzatcvvj5F9+/bRu3dvVFVl9uzZAa/5yy+/YLFYuOmmm4p4h4Jw8RGXq3BZ+fLLLzlx4gQNGzbk+uuvDzjPYDBw77338uabb/L+++/TokULDAYD7733Hh06dOCJJ55g+fLlNGnShAMHDrBt2zZGjRrFnDlz3BalYLnvvvv473//yyuvvEKLFi1o3ry527Jw4MABdu/eTUREBMOGDXOf88QTT/DHH3/w/vvv07hxY+Lj46lbty5Wq5Xk5GT27t1L06ZN+c9//lPsZ3Ux9l0cOnbsSGhoKDNmzGDPnj3UrFkTRVF47LHH/ILsLwY9evTgmmuuYfv27e64xby8PL799luaN29O69at3a4zX2666SasViv169fntttuw2az8c0335CTk8P999/P3XffHfQ+unbtyrZt29i0aZM7Pk2PgrI9r7zySreYLA779u1jyJAhPPzww1x//fVceeWV5ObmkpyczB9//AHAQw89RNeuXb3O6969OytXrmTQoEE8/vjjTJ48mRtvvJFq1aqRlZXF0aNH+f3333E6ndx44400aNDA6/y0tDSSk5NLJQN6165dPPLII4Aru/fll1/Wnffggw96iTOj0ciyZcu49dZbGTVqFAsWLKB+/frs3LmTv//+m8qVK7Ns2TK/JKHx48ezd+9emjVrRtWqVTl69Chbt25FURTmz59P+/btda9/4MAB/vnnHzp37hx0ZwpBuKRcwhIpguCH1hD7+eefL3SuVieqWrVqXg2yd+3apXbr1k2NiopSw8PD1TZt2qhffPGFuyipb60srRZaYbXNNm/erPbp00etWbOmajab1cqVK6tNmzZVR48erW7evFn3nE8//VTt2rWrWq1aNdVsNqvVqlVTW7RooT7++OPqjh07vOZqdej0isguXry4wOcCqHXq1Cnxvgt7FoGus2HDBrVNmzZqRESEu3ZXMLXifOvQFUagOnRnzpxRR44cqV511VVqSEiIevXVV6uTJk1Ss7OzdZ+rVgft1ltvVdPT09WHH35YrVmzpmqxWNS4uDh1+vTpqt1uD2pPGkeOHFGNRqN655136h6HwuvQNWvWzOucggoL6/Hbb7+p06ZNUzt27KjWq1dPrVChghoSEqJeeeWV6j333KN+/vnnBZ5/+vRp9eWXX1bbtGmjVqlSRTWZTGpUVJR67bXXqg8++KD69ddfu4tae1JQYWE9CqpD9+233wb1rALVPfz777/VBx54QI2NjVXNZrNaq1Yt9cEHH1QPHTqkO3/hwoXqrbfeqlatWlU1m81qzZo11fvuu0/duXNngfeg9ZaWXq5CWUVR1YuYCiYIl5GHHnqI+fPns2LFCu69997LvR3hMnLo0CHq1q3LrbfeWqSes4XRq1cv1q1bx9GjR4vc+kwoP6iqSuPGjTl37hyHDh0qtKyOIFwOJIZOKNecOXPGXYPNkw8//JB33nmHmJgYunXrduk3JvxP8NJLL+F0Opk+ffrl3opwEVm9ejXJyclMnjxZxJxQZhELnVCu+emnn2jVqhVNmzZ1d1DYt28fycnJ7hibvn37XuZdCpebi2WhAxgyZAgffvghBw8eLDQzUyh/qKrK9ddfj91u57fffrtsNRsFoTBE0AnlmpMnTzJ58mQ2btzI8ePHyc7OpkqVKrRu3ZpHH32UVq1aXe4tCmWAiynoBEEQygIi6ARBEARBEMo5YjsWBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEoVzywgsvoCjK5d6GIAhCmUAEnSAIBbJkyRIURfF6VatWjfbt2/PFF19c7u0VSnJyMhMmTKB169aEhoaiKAqHDh263NsSBEEoVUyXewOCIJQPJk+eTN26dVFVlRMnTrBkyRLuvPNO1q5dS7du3S739gKydetW3nrrLZo0aULjxo3ZtWvX5d6SIAhCqSOCThCEoOjSpQs33HCD+/3QoUOpXr06y5cvL9OCrkePHqSnpxMZGcn06dNF0AmC8K9EXK6CIBSLmJgYwsLCMJm8/y6cPn06rVu3pnLlyoSFhdGiRQs++eQTv/MVRWH06NGsXr2aa6+9lpCQEK655hrWr1/vN/f7778nISGB0NBQ6tWrx/z584PeZ6VKlYiMjCz6DQqCIJQjxEInCEJQZGRkkJaWhqqqnDx5ktmzZ3Pu3Dnuv/9+r3mzZs2iR48eDBgwAKvVyooVK+jTpw/r1q2ja9euXnO///57Vq1axcMPP0xkZCRvvfUWvXv35siRI1SuXBmA33//nY4dO1K1alVeeOEF7HY7zz//PNWrV79k9y4IglDWEUEnCEJQdOjQwet9SEgI7777LnfccYfX+J9//klYWJj7/ejRo7n++ut58803/QTdvn372Lt3L/Xq1QOgffv2NGvWjOXLlzN69GgAnnvuOVRV5bvvvuPKK68EoHfv3lx33XWlfo+CIAjlFRF0giAExZw5c2jYsCEAJ06cYOnSpTz44INERkZy9913u+d5irmzZ8/icDi45ZZbWL58ud+aHTp0cIs5gKZNmxIVFcXff/8NgMPhYMOGDfTs2dMt5gAaN25Mp06d+Pzzz0v9PgVBEMojIugEQQiKli1beiVF9O/fn/j4eEaPHk23bt2wWCwArFu3jilTprBr1y7y8/Pd8/VqxnmKNI2KFSty9uxZAE6dOkVubi4NGjTwmxcXFyeCThAE4TySFCEIQrEwGAy0b9+elJQU9u/fD8B3331Hjx49CA0NZe7cuXz++ed89dVX3Hfffaiq6reG0WjUXVtvriAIghAYsdAJglBs7HY7AOfOnQNg5cqVhIaGsmHDBkJCQtzzFi9eXKz1q1atSlhYmFswepKcnFysNQVBEP6NiIVOEIRiYbPZ+PLLL7FYLDRu3BhwWdwURcHhcLjnHTp0iNWrVxfrGkajkU6dOrF69WqOHDniHt+3bx8bNmwo0f4FQRD+TYiFThCEoPjiiy/4448/ADh58iTLli1j//79PPHEE0RFRQHQtWtX3nzzTTp37sx9993HyZMnmTNnDvXr12f37t3Fuu6LL77I+vXrueWWW3j44Yex2+3Mnj2ba665Jqg1MzIymD17NgA//PADAG+//TYxMTHExMS4s2kFQRDKMyLoBEEIiueee879fWhoKI0aNSIxMZERI0a4x2+77TYWLVrEq6++yvjx46lbty7Tpk3j0KFDxRZ0TZs2ZcOGDUycOJHnnnuOWrVq8eKLL5KSkhLUmmfPnuXZZ5/1GnvjjTcAqFOnjgg6QRD+FSiqRB8LgiAIgiCUaySGThAEQRAEoZwjgk4QBEEQBKGcI4JOEARBEAShnCOCThAEQRAEoZwjgk4QBEEQBKGcI4JOEARBEAShnCN16IqJ0+nk+PHjREZG6jYdFwRBEISygqqqZGVlUbNmTQwGseX8GxFBV0yOHz9O7dq1L/c2BEEQBCFojh49Sq1atS73NoSLgAi6YhIZGQnAiunX80/zF7k65gqqh9g4lZvKqTwbDqcFVQnDoIRhMlbAoBjFkneZiTApXFsphAjTpfvrVFVVVCDbrnL0nI2TeQ7sUspbEIRLTG72OUZ2aO3+7BL+fYigKyaaOEuJf4KG1WszdcSH7mP/9+EAcmy5ZFpzOJ2XxWmrg7CQWhgUMXNfLgzAVZEmqkWaMRkujbBWVRWrU+V4joOjNjs5RjOWcLBckqsLgiD4I4aFfy8i6EqIzQnVwkIB2LBuPACdus3ki7VjsTntpOWcZvfpY+TbzxFikni7y0XFEAO1w00YL9HjV1WVc3aV/Rk20vIcOC/NZQVBEIT/US6ryWjq1KkkJCQQGRlJtWrV6NmzJ8nJyV5zDhw4QK9evahatSpRUVH07duXEydOFLjuVVddhaIofq9Ro0YBcObMGcaMGUNcXBxhYWFceeWVjB07loyMjCLfg0kBq9PO+rXj6NRtJp26zQTgnXWjsBjMVAqLoUaFCtgdZwDxtV0OQo0KV0WaCDUql0RQq6pKjsMl5k6JmBMEQRAuAZdV0G3evJlRo0bx008/8dVXX2Gz2ejYsSPZ2dkAZGdn07FjRxRFYePGjfzwww9YrVa6d++O0xn4Y3Lbtm2kpKS4X1999RUAffr0AVwJDcePH2f69Ons2bOHJUuWsH79eoYOHVrke6if/DrnrDZULljoeo9IZuX8ODp3n4XFYCEmJAKjkodDtRd5faHkVA01UslyaWIYVVUl30PMiYQXBEEQLgWKqqpl5jPn1KlTVKtWjc2bN9O2bVu+/PJLunTpwtmzZ4mKigIgIyODihUr8uWXX9KhQ4eg1h0/fjzr1q1j//79AT/UP/74Y+6//36ys7MxmQr3RGdmZhIdHU3CjRN5bEE/bruiNhajwW2h82TpR/ez89Qhsp21CBW36yUn2mygaSULFUwX10LnipmD5AwrKTki5gRBKDvknMtiUKumZGRkuD9PLwWqqmK323E4HJfsmv8mzGYzRqMxqLllKoZOc3lWqlQJgPz8fBRFISQkxD0nNDQUg8HA999/H5Sgs1qtLF26lIkTJxb4Ya79kgcSc/n5+eTn57vfZ2ZmXjg3P4fud70VcO37+y4FYOSsduTb1fOxdJIgcanItDk5nmPn6igzwf2zKDpaAsSBTDupIuYEQRCwWq2kpKSQk5NzubdSblEUhVq1ahEREVHo3DIj6JxOJ+PHj6dNmzZce+21ANx0002Eh4czadIkXnnlFVRV5YknnsDhcJCSkhLUuqtXryY9PZ1BgwYFnJOWlsZLL73E8OHDA86ZOnUqL774ou6xdyds4I3/G8QjDywpcC+J4zYx7u225NjyCTVVxqAYxFp3CVCB4zkOqoQaibGU/jNXVRW7CgezbBzLkZg5QRAEp9PJwYMHMRqN1KxZE4vFIp93RURVVU6dOsU///xDgwYNCrXUlRlBN2rUKPbs2cP333/vHqtatSoff/wxI0eO5K233sJgMNC/f3+uv/76oCtdL1q0iC5dulCzZk3d45mZmXTt2pUmTZrwwgsvBFznySefZOLEiV7neRYW/jvjDFOGbuKZRe28ztPi6QA+Xf0Qd/Wcx1Pz2pGWlwWKGUUJwWgIw6CEYDSYUbg0gfv/a+Q6VA6fs1MhxozFoFBaj1gTc4eybBzNduAQ05wgCAJWqxWn00nt2rWpUKHC5d5OuaVq1aocOnQIm81WPgTd6NGjWbduHVu2bPGrYN2xY0cOHDhAWloaJpOJmJgYYmNjufrqqwtd9/Dhw3z99desWrVK93hWVhadO3cmMjKSpKQkzGZzwLVCQkK8XL++pOdncP0dH8CihfQe4crUXTk/zi3mAO7qOQ+AVx7axNylvbA77WTbcsm0ZpBtV8m1V8BsqoLZ4CqDIsKudEnLc3Ai10CtcAWFkj9bVVXJd6ocPWfn8Dm7iDlBEAQfpM1YySiKDrisgk5VVcaMGUNSUhKbNm2ibt26AedWqVIFgI0bN3Ly5El69OhR6PqLFy+mWrVqdO3a1e9YZmYmnTp1IiQkhDVr1hAaGlqse7hryH5Cw8w41DZk2y8EfXoKOT0evj+Jz9aMxuF0kO+wkm3L4Xh2Gsezj5LrqESIKQYD0l2iNLGrcDTbTsUQI5Hmkj1XVVXJsqn8neXq/uAUMScIgiBcRi6rdB41ahRLly5l2bJlREZGkpqaSmpqKrm5ue45ixcv5qeffuLAgQMsXbqUPn36MGHCBOLiLgim22+/nbfffttrbafTyeLFixk4cKBfokNmZqa7PMqiRYvIzMx0X7uomTifvtvAJd5UA8bziQ56Yq73iGS35U6ja4+3CTGFEBUSSfXwqjSqdBXXVqpEFcsZ8mxHyLWnY3daKUOJyOWeczaV1Bw7zmI+U1UFh6pyMs/BnrP5pOaKmBMEQfg3cOjQIRRFYdeuXQBs2rQJRVFIT0+/rPsKlssq6BITE8nIyKBdu3bUqFHD/frwwwtttJKTk+nZsyeNGzdm8uTJPP3000yfPt1rHc0l68nXX3/NkSNHGDJkiN91f/31V37++Wd+//136tev73Xto0ePFvNunOTYbXyxdpy7Hp0nw7snsnJ+nFvUaV+1YsQKChVMFagdVZNrKl9Jo+gQKplO4bQfJsd2UoRdKaECp/Od2IqRueCKl1M5lGVn71kbmTb5eQiCIBSHQYMG6TYA6Ny58+XempvWrVuTkpJCdHT05d5KUJSpOnTlCc86dCaTK7ZuwtzeHPntFT8Lnadlbnj3RBasHekl7rT5G9aNd4s2u9NOrj2XM3kZpGSfJTVXxWi6ArMhTNywJcSkQNNKFqqGBu/S1goG/51l558cu1jlBEEoV1zqOnR5eXkcPHiQunXr6oY0DRo0iBMnTrB48WKv8ZCQECpWrHjR96fHoUOHqFu3Ljt37qR58+aXZQ++FPYcPZFoxVJiytBN2J0KK+fHsejD0UwZugmA9WvHAS4hB7Bg7Uiv8zyFXaduM91/pZiNZiItkdSOrEnjyldRO9yI1XYCpyrFGUuKXYW0PCcOFRxO1fuler9sTpeQy7Sp/JFh459sEXOCIAilQUhICLGxsV4vTcwpisI777xDr169qFChAg0aNGDNmjVe5//3v/+lW7duREVFERkZyS233MKBAwcAV9jV5MmTqVWrFiEhITRv3pz169d7nf/LL78QHx9PaGgoN9xwAzt37vQ67utyXbJkCTExMWzYsIHGjRsTERFB586dvcqo2e12xo4dS0xMDJUrV2bSpEkMHDiQnj17uud88sknXHfddYSFhVG5cmU6dOjg7pBVEkTQlRJ/NH6e6jtHs3bNOIbe+zZR7T9i3vJRLFz3MCvnx/kJOV/Xq4ZnP1iADBtk2UOpFl6ZCFMeVkfJf+gCnMxz8PtZq//rjJU9Hq/fz+Sz63Q+v53J50Su1JgTBEG4VLz44ov07duX3bt3c+eddzJgwADOnDkDwLFjx2jbti0hISFs3LiRHTt2MGTIEOx2V4vNWbNm8cYbbzB9+nR2795Np06d6NGjB/v37wfg3LlzdOvWjSZNmrBjxw5eeOEFHn300UL3lJOTw/Tp03n//ffZsmULR44c8Tpv2rRpfPDBByxevJgffviBzMxMVq9e7T6ekpJC//79GTJkCPv27WPTpk3cfffdpRJSVSbKlpRnnn3gO/5pMZn3H9kMtINFs5gydBN1I8fR/a5ZQBxvLX2YCLOBzzaOAbytcoHo1G0mSavH8lemDQWoFxlJ5VALh7PPoapR4nYtIXkOlbxcsXYKgiBcLtatW+fXAeGpp57iqaeeAlxu2f79+wPwyiuv8NZbb/HLL7/QuXNn5syZQ3R0NCtWrHCXHGvYsKF7nenTpzNp0iT69esHuITWt99+y8yZM5kzZw7Lli3D6XSyaNEiQkNDueaaa/jnn38YOdLb+OKLzWZj3rx51KtXD3CVXZs8ebL7+OzZs3nyySfp1asXAG+//Taff/65+3hKSgp2u527776bOnXqAHDdddcV/eHpIIKuhPzVaBIfP7LF/X7K0E3sNNVg5+cP03uES7xt/m6c+3j7tm9xVweFI+vv8SpC7BtPB7D0i1Fc0/JNGkaZibSYqBgSwbHsTJyqA6MiPzpBEASh/NK+fXsSExO9xrTWnwBNmzZ1fx8eHk5UVBQnT54EYNeuXdxyyy269WMzMzM5fvw4bdq08Rpv06YNv/32GwD79u2jadOmXnFprVq1KnTPFSpUcIs5gBo1arj3lJGRwYkTJ2jZsqX7uNFopEWLFjidLv9Os2bNuP3227nuuuvo1KkTHTt25J577imVuEFxuZaQ5U/96PV+p6mG1/veI5Ld8XMA324ZywN93ibivEtWT8hpY21vmcnkofOpHGrEpBiJtERQweTA5syVjFdBEAShXBMeHk79+vW9Xp6CzlesKYriFkZhYWGXdK8aensqyuex0Wjkq6++4osvvqBJkybMnj2buLg4Dh48WOK9iaC7iOglQmjCbfz9c3mo/xwAZi59mMUfjQbg8zXjWDk/jhnvP8y4+13nd+k+i87dZxFuDiPKYsLuOHcpb0MQBEEQyhRNmzblu+++w2az+R2LioqiZs2a/PDDD17jP/zwA02aNAGgcePG7N69m7y8PPfxn376qUR7io6Opnr16mzbts095nA4+PXXX73mKYpCmzZtePHFF9m5cycWi4WkpKQSXRtE0JWYVR+OdNed860/5yvk9AoOr5wfx3ffjWNw37e5qc1M9qZbeWnxQ3z/vctN6xlr1/vud6gUEo6BTOzOfLHSCYIgCOWW/Px8d1F/7eVbUzYQo0ePJjMzk379+rF9+3b279/P+++/T3Ky6zPzscceY9q0aXz44YckJyfzxBNPsGvXLsaNc3223nfffSiKwrBhw9i7dy+ff/65X43b4jBmzBimTp3Kp59+SnJyMuPGjePs2bPuuPeff/6ZV155he3bt3PkyBFWrVrFqVOnaNy4cYmvLYFYJeTuexMxmUKYMnQTnbpB7xH683qPSA7YQUJLkvjph/F0v302aXkOWt88Cxjnd86YB9byyqI7OHzuH1RTTcyGMFAold6kgiAIgnCpWL9+PTVqeIcpxcXF8ccffxR6buXKldm4cSOPPfYYt956K0ajkebNm7vj5saOHUtGRgaPPPIIJ0+epEmTJqxZs4YGDRoAEBERwdq1a3nooYeIj4+nSZMmTJs2jd69e5foniZNmkRqaioPPPAARqOR4cOH06lTJ4xGI+CyHm7ZsoWZM2eSmZlJnTp1eOONN+jSpUuJrgtSWLjYeBYWfnXEVneCg14RYU/0ig4XVIi49c0zCTEofLvlQmLFyvlxvLqoIwfPWTEar8BsDDsv5xTJfhUEQRD8KGuFhf9XcDqdNG7cmL59+/LSSy8V+fyiPEex0JUCemLOFz1x5zvf02Wrzf3x+wtjN988kyiLERjDE0Ph9cWdOZT1D/kOC3bViNlUmRBjBRF1giAIgnAZOHz4MF9++SW33nor+fn5vP322xw8eJD77rvvol9bLHTFRLPQ/XP4L/rct6jQunK+aG5WzToX6Pxh3eYCsHDdw17nzlw6ku++Gw/AbTdPIt2awz/n8sFYgxBjpIg6QRAEwY1Y6C4NR48epV+/fuzZswdVVbn22mt59dVXadu2bbHWk9Zfl5BefV2CK96eohsj51myxHee73y9xImF6x72E2e9RyRzNt9Jgxve4La2Mxn1n9U0rnQVjStGYVaPk2s7g6pKTwNBEARBuJTUrl2bH374gYyMDDIzM/nxxx+LLeaKigi6UmDDuvHsNNXwsritnB9HvD3Fz80K+tY4TyHnK+oWrB3J8O6JXuN7fpnImvfvY+OW8fQekcwH6x+hTlQtmlSqQoTxFDm2UzhF1AmCIAjC/wQi6EoBT8HlGQfnW2QYIKHXasAl6rSXRqD+rto1fMcbN/Ze/66eiVwREUvjitUJN5wm354lpU0EQRAE4X8AEXQl5K4hrka/muDSxF1hCRLaV19r3IZ14xnePdHPVVsQnnO73zWXqhUqUzM8HIfjDKq0kxcEQRCEfz2S5XoR0HOz6h1bsHYkG9bpCzdtnpY8occFMTjSK8nirp7zmDJ0ExHxz5LvyMYiSRKCIAiC8K9GBN1lZsHakV6ZroEsc77CzvO9b8YsaKVUvmPs7PbYHEbMUs5EEARBEP61iMu1DKEn5jzj6jwFW6DYO19rXrVdz+N0HCPfIfF0giAIgvBvRSx0ZYCC4u08LXHaV61I8fDuiXTqNrPAbhM7qUH87hdIbfYceWp1Qk0x0ipMEARBuGykpqaTkZF9ya4XHR1ObGzMJbve5UIEXSmhWdc8Y+T0xgpCE2me54L/uRfctCPdvWN93bGeYu+ZRe2YMnQyp5o/R45NpYK5IqLnBEEQhEtNamo6/e57E6vVfsmuabGYWLFsYpFE3ZYtW3j99dfZsWMHKSkpJCUl0bNnTwBsNhvPPPMMn3/+OX///TfR0dF06NCBV199lZo1axa47pw5c3j99ddJTU2lWbNmzJ49m5YtW5bg7i4gLtdSQLOY+Qo3vbFg0BOFhV1frygxXEic2GmqQdVdk8mzncSh2oq8J0EQBEEoKRkZ2ZdUzAFYrfYiWwSzs7Np1qwZc+bM8TuWk5PDr7/+yrPPPsuvv/7KqlWrSE5OpkePHgWu+eGHHzJx4kSef/55fv31V5o1a0anTp04efJkkfYWCBF0JWRQ5xlBzw2mHEmnbjO9vvri2yps5fw4d8mUgly3w7rNZaepBtl/LsTutEo8nSAIgiAEoEuXLkyZMoVevXr5HYuOjuarr76ib9++xMXFcdNNN/H222+zY8cOjhw5EnDNN998k2HDhjF48GCaNGnCvHnzqFChAu+++26p7FkEXQlZsn5CoVY4TcgFY63zFGWahc9TCOrFy+lZ53wFYefus9zfO+wnsDqyUVXV/RIEQRAEoXhkZGSgKAoxMTG6x61WKzt27KBDhw7uMYPBQIcOHdi6dWup7EEE3SXAU5hBcG5U3/PB1QcWAme4anh2q/BEE36n983lxO/Pk2M9Tp7tNFZHDk7VKcJOEARBEIpIXl4ekyZNon///kRFRenOSUtLw+FwUL16da/x6tWrk5qaWir7EEFXCgQSakXt+OCJnvt0p6mGW5RpFjmtK4Xne09LYEFFib9f+Rjzxq4iTPmHPOsR8uwZOJx2EXaCIAiCEAQ2m42+ffuiqiqJicX7vC8tJMu1hAzqPMMtoPSSIvTee4q8YF2x2hxfgaY37kqSmOk1zzcL9vM1Y7A7R9JjSyJvjNpM7xHJ1Gs2nLPWdEItV2DEJIWIBUEQBCEAmpg7fPgwGzduDGidA6hSpQpGo5ETJ054jZ84cYLY2NhS2Y9Y6C4Dvu2/gkXP2qdZ5rSvmntXS5Lw7Sihseiz0fTo6R2Xd+C3BdSsYCPXehynKpY6QRAEQdBDE3P79+/n66+/pnLlygXOt1gstGjRgm+++cY95nQ6+eabb2jVqlWp7EkEXQlZsn5Csc8dUERRvmDtSAbEep+nlyQB/okSnsJOi7HzFH0ae3bMo1poLrm2k4AIOkEQBOF/j3PnzrFr1y527doFwMGDB9m1axdHjhzBZrNxzz33sH37dj744AMcDgepqamkpqZitVrda9x+++28/fbb7vcTJ05k4cKFvPfee+zbt4+RI0eSnZ3N4MGDS2XP4nItIYM6z2DF5seLde4HxYiD1DtHL07Od8z3vVZ42JMLJVEWUrXJYOzOypiNoUXfpCAIgiCUY7Zv30779u3d7ydOnAjAwIEDeeGFF1izZg0AzZs39zrv22+/pV27dgAcOHCAtLQ097F7772XU6dO8dxzz5Gamkrz5s1Zv369X6JEcRFBV0KWrJ9AaJiZAbEusaV99URvDFyialtST3aaapTafrRMWC2BQk/sXYi7uzCmzR1851t0u2sOvUcsptI1T2IyhEgsnSAIglAqREeHY7GYLnmniOjo8CKd065duwLDjoIJSTp06JDf2OjRoxk9enSR9hIsIuhKCU2waV89RVx4QiLoxMotWDsSzou5eHtKqQg7zzU8Y+h8v2r4umtdYs51vM5vYznRYglGzCLqBEEQhBITGxvDimUTpZfrRUAEXQkZ1HkGUVGRfskNBblTA/V49c14DWTZ86UgMehZp04v1q4g1+xOUw347UmqX/ciBsWM0WACFBQUXP+JyBMEQRCKRmxszP+EwLrUiKArIUvWT2Bs33cKnOOKVbtgGdPLbE3otdpv7INUfbGml+26c+1I3bmercK06+/bl0LjxjW85vha8bRzAE78/jwAlRqPAMwYjDGEmqIBxHInCIIgCGUAyXItBQoqPeKbaQr6BYh9v4+3pzAgFl3Lm159u+HdE9lpqsHw7onE21Pc15oydBMb1o13x9YB7N3Szut8TxGn11ZM48y++dSLAoPzKLm2swHvWRAEQRCES4sIuhIyqPMMrzIivsLI16Wp5/YEfVEYnuBviYu3p3gJwG1JPVk5P86ruPFOUw33dRN6rXaPafjWpYu3pwR0vfq6ap8Y8hUn976H05GG3WmVWnWCIAiCUAa4rIJu6tSpJCQkEBkZSbVq1ejZsyfJyd7C4sCBA/Tq1YuqVasSFRVF3759/Sot+3LVVVehKIrfa9SoUe45eXl5jBo1isqVKxMREUHv3r0LXVePJesneMW5eQqhQG2/PMuFBGobttNUIyjXbEKv1ax6Xr+9l2aV01qQeVrpNFbOj3OLPc+9x9/wIP06TvMa9/z+7B8LyLOdwKleukwlQRAEQRD0uawxdJs3b2bUqFEkJCRgt9t56qmn6NixI3v37iU8PJzs7Gw6duxIs2bN2LhxIwDPPvss3bt356effsJg0Nej27Ztw+FwuN/v2bOHO+64gz59+rjHJkyYwGeffcbHH39MdHQ0o0eP5u677+aHH34o0T15JjZ06jaT3iPOCySf+DbtfbbVlenzwYZHvdYZ0Gm611i8PYUmtS7M9zxnQKfpkOr63isObgQ0tp5j2YbHXCecv76v9VA7p3+n1wHX3J3b32FngHtcOT+ORcv7MrT/RwybdScVLDVQMBQYT+ey5Kmoqnp+niLxd4IgCIJQSihqGfKZnTp1imrVqrF582batm3Ll19+SZcuXTh79qy7R1pGRgYVK1bkyy+/pEOHDkGtO378eNatW8f+/ftRFIWMjAyqVq3KsmXLuOeeewD4448/aNy4MVu3buWmm24qdM3MzEyio6OZMr87oWHmgPMK6tV6S+tx5NhyQYEdvyzwO94iYTgAO7YtcH+vsWPbAq952vtAtecCoTdfG7u346t8+OUT7vsAl0hdv3YcDtXBu5+NAaByk0cJNVfFoBj9RJr262V3Wsm0phGi5KEoIZiMMViM4SLqBEEQLgE557IY1KopGRkZBfYcLS3y8vI4ePAgdevWJTRUCtQXl6I8xzIVQ5eRkQFApUqVAMjPz0dRFEJCQtxzQkNDMRgMfP/990GtabVaWbp0KUOGDHGLhx07dmCz2bwEYaNGjbjyyivZunWr7jr5+flkZmZ6vYKhoISJc+etbeGmCrrHd2xb4BZqO7YtIMISfv4V4TdPQ7POFdQOzPNY7xHJtGvzCO3aPOJnufvwyyfc7lrQLI7JKIqCUTEy6M5ZrJwfx+m906m24wHy7OnYHPluEaeqKipOzlnTSTl3EKstk/pRFagX6cCg/kOO7QxO1SFxeP9SVFXF5sjH6sjF4ZSfsyAIwsWkzJQtcTqdjB8/njZt2nDttdcCcNNNNxEeHs6kSZN45ZVXUFWVJ554AofDQUqKfzyYHqtXryY9PZ1Bgwa5x1JTU7FYLMTExHjNrV69Oqmp+oXfpk6dyosvvlisewvEzu3vcEvr8VwVXYctAeYM6TobgHc/G8PmH2YwpOtst2VMY+X8OKYM3eTuDuF7TC8GzlO8bfrhjfPfXzjvwW5z6NL9LYZ3v5BFq523cr5L2A3rNvfCGHHAx+71q1/3Ik4gPfckefYcKpijqBdTlUaVonGqViLMJziclUaGNQMMMViMkRgV169jebbauUSsilN14FTtOJ35ONU8wInLzWzBZAjHaLCcn+90zVPtKIrR3ZlDr8afryBScbmxz7/xqA144dyL/Sz99+TE6bRjV/NwOM4RYjiHWYF8hxGHagLFjEGJwGQMw6CYUFBQcbpd8qBgUAyIS14Q/r2kpqZLYeGLQJlxuY4cOZIvvviC77//nlq1arnHv/zyS0aOHMnBgwcxGAz079+fvXv30rJlSxIT9ZMOPOnUqRMWi4W1a9e6x5YtW8bgwYPJz8/3mtuyZUvat2/PtGnT/NbJz8/3mp+ZmUnt2rULdbkWxIBYOHr1eLb8ODPgnIJcttoaH6R6Czc9N2qgYsaex7VkjQ3rxvv1efUkUOau7/XN9YbgwEJ0SGXCLVHERYdydaTrWdmddjKsmaTlniU1J4sMqwE7ERgNFTAoFoyKCYNiRBMnZf3DXVVVVNWJ1XEOpzMdiyEfs6ISbjYQYbZgVFzG8CxbHun5TvKcFleJZsWBxWAn1AB5Dic5zoqEW6p73a/2T9Sh2rDaM0C1Ag4UHCiK6npCqooTBRUjKiYUxYLBEIJRsaAoBleMI4CioJw3zBfnmWpWV7szH1V1nLew5gN2VFXFoFixKDYizAoVQ0KpFBpFqCmEPHs++Q4rObZ8zuTnkm5VsauhKIoRVBtGxY5BAYdTwYkZxRCB2RiJUZEuJYJQGpQVl2tqajr97nvzkrf+WrFsYpFE3ZYtW3j99dfZsWMHKSkpJCUl0bNnT/fxF154gRUrVnD06FEsFgstWrTg5Zdf5sYbbyxw3Tlz5vD666+TmppKs2bNmD17Ni1btgw4vygu1zJhoRs9ejTr1q1jy5YtXmIOoGPHju4GtyaTiZiYGGJjY7n66qsLXffw4cN8/fXXrFq1yms8NjYWq9VKenq6l5XuxIkTxMbGokdISIiX6zcQhQkwT/ZcMZTffpxJvD3FXV4kEIFi43w7SRRUFkVzny44X4RYu+bK+XEM7+6a13tEMgvWjvTr8+pLYfcZb0/hdER1rGo4ZkMoYSYDD98312vO+rXjiLZEERueQ3peJmfyssiynSPX7sTqUMhXw0AJxWgIxWQI043RKwu4hFwODscposxWakSGUzE0llCjBcv5l8sSpWJ12MiynuOcLRsFA2aDkVBTCGaDidTsU/z3bDo2ZzRGxXzecuVEBeyObAzqGaqGQowlFJPBhMUYikExuKSaouB0OrGpdqwOO3n2c2Tbz5JjV3E4we40gQJODKhKFEYlFKNixmgoXDC5Xeg4sTlycThOU8GYS6jRiMkAYSYzFoMRg6JQwRRJBXMYYaYwQk0hmAwm972rgMNpJ8+eT6Y1i0xrNqqqEmoKJ8RoQQHsqpNcWx6ncs9wKv8MJtMVWIz6IQmCIJQ/MjKyL6mYA7Ba7WRkZBdJ0GVnZ9OsWTOGDBnC3Xff7Xe8YcOGvP3221x99dXk5uYyY8YMOnbsyF9//UXVqlV11/zwww+ZOHEi8+bN48Ybb2TmzJl06tSJ5ORkqlWrVtzbc3NZLXSqqjJmzBiSkpLYtGkTDRo0KPScjRs30qFDB/bt20dcnL540XjhhReYP38+R48exWS6oF21pIjly5fTu3dvAJKTk2nUqFGxkyI0S5kmdIZ3TyR7m0vweIqu4d0T2ZbU053xemvrCWz+cUbA6xRFIBa0Bnhb57R1NXetxg09k8hzqNhVV4BlqEnB7oTda3oB+oWOAa+SKFU6fExKjp1suxMFhQizgSsjTAzu+3bAPWqxf5+sehCbw0qOPZ9M6znOWfPJstnItBtxEomCEafqwGyMxGIM5XK65lRVxe7Mx2pPI9x4jloR4cSGVyHKEonZ4LJEBkoScapO9zFN8JzJO8vf6cc5lWfDqRowGlSMKDhRiTAZqBEeRdUKlQkznRdyin8IrKqqOHHidDqxOq3k2/Nxqiq59jwURSHPnk9aXjY5did5DpV8ZzhmUyXMhjAURXFb4BxOKw7VjsORDdgBBwYcRJhsVA0LpUZ4ZSqYwzBgwGQwufaigFExut3FgX4umlvaoToBFaNi9HoOTtXJ6dwz7E47SpYzlgrmiqXw0xKE/23KioUuOfkYg4fOuejX92XxolHExV1RrHMVRfGz0PmiaYKvv/6a22+/XXfOjTfeSEJCAm+/7fosdDqd1K5dmzFjxvDEE0/onlNuLHSjRo1i2bJlfPrpp0RGRrrj16KjowkLCwNg8eLFNG7cmKpVq7J161bGjRvHhAkTvMTc7bffTq9evRg9erR7zOl0snjxYgYOHOgl5rT1hw4dysSJE6lUqRJRUVGMGTOGVq1aBSXmfPF0V8KFeDOtMPCAbSO9RN0NPZOom3uGsP8+wz+FiJEFAVp6gUtEPbOoXaEuUD1BqJVU0cRc9Ts+xqHCwXN20vIc5NpVjApUCzNyzqai3ryC2DAj8V+5Sr/sNNXwEnFRt31Els1Jrl1lf6YNpwpmg8KBHY8A8HwAy6Hvnu+5+0IbtXVrRuFwOsix5XImL4Oz+dnkO+wowFnrWbKtYSiYURQDKCGEGCMwXII4PE305NnOYlHOUCfcxBURNakUWhGL0VLg9bVxTcRcWBQqhVYkpLKFq+x5OJwOjAYjRsWIiorFYKGCOeyC+Al0fwoYMaIqKhajhQhzxPnlLwjJMT1c/zPxbPdWuckEDIZwVNWBomYRZrTy9ujNTHmnA888+DUA85b2ItISQYQl3G119L2vYNBiBPUEKZzfPyp2JxgVS9DrCoIgXA6sVisLFiwgOjqaZs2aBZyzY8cOnnzySfeYwWCgQ4cOAZMxi8plFXRaDFy7du28xhcvXuxOYkhOTubJJ5/kzJkzXHXVVTz99NNMmDDBa77mkvXk66+/5siRIwwZMkT32jNmzMBgMNC7d2/y8/Pp1KkTc+fO1Z1bGL4uym1JPb0KAIcnJIJHJwctmeD3Kwaz+4c3C11fE0++om6nqQYb1o13rwvnLWUjArfw0kTelKGbaHZnEmn5Do5nO/gj3YZT59rnsi6YxjOtTurc9iEqCgl2FbvTJROy7Sqns7xN6Aq4xZxvVq025tuFwvf44s/Geu37gS4zcagOVNVJljWbTOs5bE4Hdqed9PxMzljPoCqRmI2RmA2hpS7qNMuSzZGL3XGKKiFW6kRWOm81CzsfE1e8a2rnRZgj3CIs0JyC2JbU0/19IGsqeHczcX39XHfmzm1z0PoQf/Xdq+7xQEWzS4wK52zZnMw5Q47DRKhFBJ0gCGWTdevW0a9fP3JycqhRowZfffUVVapU0Z2blpaGw+GgevXqXuPVq1fnjz/+KJX9lJmkiPKGZl5NuHEi9446pDvH80NPz0rWtMVgdu9YHNT1CnO9erp64UI3Cj3RNGXoJpr2SOJMvkvI5TuD/xVQcOdVFohJgasizWzcPBbwFnCBhJxvYkcgtDlDu76NE1cyQo4th5M5Z0jLyyI1VwWlCmZjBUwGCyV1y2oWOVec3FnCDDnUDA+jVmQ1YkKiXW7Gi+z2DcbtrsVFBnOeXhJNIHFdGKUp7pyqk2PnjrPr1D9YuYIK5oouC6wgCCVCXK6l73LNzs4mJSWFtLQ0Fi5cyMaNG/n555914+GOHz/OFVdcwY8//kirVq3c448//jibN2/m559/1r12uXG5/hu4a8h+4EKWq2/ygqfI0uLstHmMCE7Maevo4Rkf51lSRLOqeKK5V5t0X0VyhpVTeQ5sema5AihMzGmyxq7C4XM2t2XRV8z5CjjwFp+BxJ/n+KLPRrNyfhwb1o2n+10uq+eKTwYRk32KU7mnybKeItseQai5KkaKly2pqipO1U6eLZVIUzbVIsOoXuEKokNc2Zslscpp+P5sC8tIDsROUw0SgjgvUCkb3++DxTc2syQoKISbwrkiPJJ/sk+TZzcSaoouk8kwgiD8bxMeHk79+vWpX78+N910Ew0aNGDRokVeblWNKlWqYDQa/VqMFpSMWVRE0JWQQZ1nsGLz48CFD0pNxCzwcLOCf0ZqoNi44uD6IB3p3ofnfjQh17THKk7mOvjttJUsmzMoS1tRMICX29bmhPxWy2HbRB/3nr4FTnMXe+IrPvSsSJ4lVvrds8Tr+PML2nM85x8s5hqYDaEetdoKxyXmHOTZTlA9NJd60TWpGBrjjh8rTGQUN5lFO684CTHBzPd9np49fEtKaYi7mNBo4kwWKphTOJBxgny7isUUHTDmThAEoSzgdDr9yqFpaKVNvvnmG7elz+l08s0333jF/5cE+T9kCVmy/kI8n/aB6Ov20kMrBFxcArkkAwmgq7usZPcZK/vSbWSWspjTStnqGftyHSq33/qW7nmlISACuQm1ry8O/5aF478mdfcz5NpO4nTaC+xY4Konp+Jw2sl3nCPPdoTqoTk0iKlBtQpVCTGFYFAMdO4+iwVrR9Kp20w6dZvp/l4jkLDyTCQJhgGl84dbQErjZxCIBWtHFlmQKoorWaKCqQJXRdXimkqVqWBIJdd2RjpNCIJwyTh37hy7du1i165dABw8eJBdu3Zx5MgRsrOzeeqpp/jpp584fPgwO3bsYMiQIRw7dsyrZ/ztt9/uzmgFmDhxIgsXLuS9995j3759jBw5kuzsbAYPHlwqexYLXSkwINaV+JB9Pps1mA+x4og5T4uNZwbrBVETp+u2vL5nEsnpNk7nF9G/GgQG8OxX4IdDhbQ8B6tXj6VnT29h5xczN8I/nkvPmuTZvixYQeI69zUqNxlLiLmGlwv2QikRBzZnLg5HFkYll8Sx3wRcL1DMmfbzCVQ3sCg/d7e7Pog4uEtJsPGcGp7PREviKQxFUQgxhlC9QlXO5p8jIzMbqARBWlcFQRBKwvbt22nfvr37/cSJEwEYOHAg8+bN448//uC9994jLS2NypUrk5CQwHfffcc111zjPsc3YfPee+/l1KlTPPfcc6SmptK8eXPWr1/vlyhRXMRCVwpo5Um0rxcb356sBX2oTxm6iWybSpa9dMWcp1WuMLtJhtXJ/kwbK1a6WpYF86Hee0Syl2jydSNrczyPeZ6rh6vv7Fvk2Y7jVB3ucbsznxzrMez2QySOXs73Kx/1EnNfrB0bcH3PfRaUyFFcgklqKC5FsRbG21P8Yvu0833X8cy09UQTvEWx3DlUB1aHHRQzIuYEofwTHR2OxXJpbUkWi4no6PAindOuXTu3x8bztWTJEkJDQ1m1ahXHjh0jPz+f48eP8+mnn5KQkOC1xqFDh3jhhRe8xkaPHs3hw4fJz8/n559/LrSzRFGQLNdi4llYeGxfV+00vQ+p4hYG1qwZvi249D7E9ZIM4u0pXNN9Fak5Dk7mOciwlp6bVftYLcp6ChBhVvjvLxMDipFA5U083weiIIHj+yx7j0imUpPHCbdUw6HayLce5fS+uUELMj3rnN7xkmSOBkNRRZ1nzGZR4zcL62ZS0gLYevF2DtVByrkT/JaWgsNQx138WBCEolNWslxBerkWhaJkuYqgKyaaoPszqTtrsorXy7Ug9ATDlKGbeGZRO68xvXIfvUckM7TbXA5n2fkry1Xkt6REmhUsP/bH0WZFscVhBZPCyw/OL1B4gX6v2KIIF1+XM/j3p50ydBP/NE/E5jhH+r43/c71Pb8wijrXkwGxsPefFL96g4FEUjDPw1ew6Qk437GiiLLSTOjxRBN2qqqSY8vhj7MH+TvLSHhIbUmKEIQSUJYEnRA8RXmO8n/IEvLRyYKPB5Pp5ykEhndP9BIkvUck88XacXy4agxVOnzMqtVjmTJ0k58Fy1dMnLM5OZ5jLxUxd2TnI1h+7E9c15WYDUWzzHmiqrD04zHu9573WhCercmCJVDm5vq14/hk1YPsNNXg1J7JhBsz/M4LVjx6XiPQfQSyRHrO/yD1Qmydp5jz/Op5bjAEI7Z852hiLphEjMLWj7enFCuhQ3PHdu4+izN5ZzmZk4/FVFnEnCAIQiGIha6Y+PZyLQ183XRThm6iVqdPOJvv5Ey+gzyHyhXhJiJMBjTPk0mBiiFGjArs/LQXO001uKvD2xzItJJlU0vsZrUYIPLn+7i2+yoOZtn5p4QiMdKsMHnofPf7QAkQBaG5UD2tSb4Wo8IKGWtZxvv2pfDKxOW8/8VELwtVSeLh9GrswYUWcZq1sKD7LczFWRjBWtD05unVAizNvQXCs7+wds3KTR4hzFIdg2+rNEEQioRY6MonUli4HBGoRRcAN6/gv2et2D0E1JFzdq/QcJMBoswGjIqCpe2H9AgzkmVzkmkruU43K1A/ykxI55XsS7eRlufQLU1SFM757Ks4wklLqvAUYL6ixFfE+bpctfl7t7Tj/cauuL54e0+GBylUihMfp13fNy7yYhCsO1RPzBXkEu89IpmdphrsLKKYK8xN7CnmNOLtKZw0V0MRR4IgCEKhyP8pS4GC3KrDuycGPF6QmJkydBOn851eYg5c7k6nx8vqhLR8JyfyHKTkOvhvupVDWbai3oI+ikuA7c+wcrIUxFxJ2bcvpUiZmb1HJLvFn2YZ014r58cxvHsiG9aNZ3j3RL8yMMFYC9evHedXViVQuRWNYMt2+FLU+nXFXVsrjB3s9YIR5MHM6dRtptezi7encLLFexguQVs1QRCEfwNioSshgzrPKNCi43tM78Pti7Vj6dL9LS8RkJ+wHD81FwRFbeVVEA4nHMm2l96CgFnnTwi9JAhfl6ovgZIFfNfznecp7Dzdn+Cqgze8eyL79vUEXO3K9u1LoXHjGl7rg0sEbV/di/a3fUSbmyHcpHDq6z66iQcriQuYtax3D71HJLuLU3taxS4WvskYetcK9DPR6wcbqOVcQvfV7rFtST3d1/FNRIm3p5B6/buYFJOIOUEQhCARC10J8ewUAUVrd/T8/JuY/8HddOn+lttqFG9PoWXrmWQXQ8yVJoE6P5QUo6LoCjhf9ARb48Y1vFqq+a5RWEKDnsvTU+CtnB9Hp24zua+BJuxS3N/DBfEyZegmzG0/JPPGZRzIsnM0286fGTZsrVfQ/fbZ7p/jyvlxLNuP37U81yqMgtqelSZ6yRielkvPosmB9qn9DLRzB8S6EiwSeq32657iKVi183uPSGZALByPX4DJECJiThAEoQiIha6UKchypIfWV9QdJH/TClJzHQHn/xsoTJjoWYIKC/KfMnSTlwUIPDotACvnz/Q7pnXW8BRagKs0zKKZbFi32l0kd1i3RFRU4u29cLbx/xk5gUybk+QMGwtXjGJYP9f4jMdX02nLTPd9aT9nPUuWdwKH/+9RSWrYFZbooKHX4cETvcQFz/VdbueZXpa7Dev8r6PlYmn7iben8E+z1/nWVBWLYhYxJwiCUEQky7WYBJPlWphweX7+TdSKvIL1m1/xymw9nbCstLcbNAag4rb7LtoewowKydsn6hb79SRQTTS9cS3r0pdAbj1PPIWcp7DThJdmpdPIvWk5OY6C/8mEmxRaVAkhzGigc/eZXseKUiD5Yrb2KiyzOJiadMHWrfP8+aiooILNaWPJ5+PcsXrHms/FYoqS8iSCcJEoS1muUlg4eCTL9RLj2xIJChdz7yzvwz+Z/3jN7T0iGUo3ZK1IaCVK0lsuK36xuSBZv3ZcQDEH+taheHtKkUplJPRaTUKAtfTwjKsDzbqUiFNV2bG6F+ktl+EoRMwBRJoNhBgVPzGnrVmQSPNtK3axCCbjtDCCfa47TTVIwGWVU3EVDE7NPkm8PYWU5tMxGCsToljEKicI/wOkpqbT7743sVov3YedxWJixbKJRRJ1W7Zs4fXXX2fHjh2kpKSQlJREz549dec+9NBDzJ8/nxkzZjB+/PgC150zZw6vv/46qampNGvWjNmzZ9OyZcvgb6YA5M/hUsCzN2WwPT0f7P/x+e8Ur16hzyxqhwIYFAg1XroPOKPiEnMZLZcRhGYpNg5VZeX8OC+9GOwz8+2SESyeMXC+BYcXrB1Jp24z3S/fxIVO3WbSpfssdppqBFV/TwEmDUzkzu6z3LF5nlxMkVYUCspiLUioBRsj6tlvWItNXLjuYd5ZN4p9n93PH+mZHGv+NiZTrMTLCcL/EBkZ2ZdUzAFYrfYiWwSzs7Np1qwZc+bMKXBeUlISP/30EzVr1ix0zQ8//JCJEyfy/PPP8+uvv9KsWTM6derEyZOFdCgIEhF0pYheL9JAvLP8HuBCX1TPumYmA4QY4M/tE4kwXZoPukizAWvr5cVJrC0SyvmkiC7dZ7nHfLte6OEZoK8F3WviIpgMUE+rm6+o04SeFk/nOd/z53h45yNU3nZfgf9oKoZ4H/WNzysr7DTVKFaSRWExor5JDhqePYaPNn0VjHUIMVUUF6sgCGWSLl26MGXKFHr16hVwzrFjxxgzZgwffPABZnPhDQbefPNNhg0bxuDBg2nSpAnz5s2jQoUKvPvuu6WyZ/m/aQn59N0Guh+MhbnWtMhFg2KgS/e3vARLRYsRqxPa3DyLvdsmEmMxcDGNdSYFjD/0K5U2YYVROSTwr5yn8PEtEaKxb1+K2yJa1E4F+/alBGUh04SdlrHpS9UwIybF9Y/HqECIUSHarDDjoQU8O3ieV/07wMu1XJhoLSlFEWmBhGZR96EX86dZ5nqPSGbK0E3E21Oo1uQh/mk+h1BLLYziYhUEoRzjdDr5z3/+w2OPPcY111xT6Hyr1cqOHTvo0KGDe8xgMNChQwe2bt1aKnsSQVdKFFZQ1l9IqLwwYiuKorB+3Tiv+du3jqdSiJGUHDu33foWu3+ewMFfH+HITtfLUIqfg0YFon+5D4C8i+lrPU/OeROgnivSU6B5Pi/PUiVaTThfghF3gc713Yfn1wVrR/rtpXGMhb9/fYQ3HlrA9BELeHXYfF7waGcG+Fn6wDcT1N/NHKxA9e3fWxTLMLgEckE9You6D89r+95XvD2FI01f4Z/mczCZ6xBqisGgGETMCYJQrpk2bRomk4mxY8cWPhlIS0vD4XBQvXp1r/Hq1auTmppaKnsSQVdCkj562Ot9IAuJ7/iw+1YCsO7byYC/FWfH1vGEGBUOn7PR9bbZXuce+rVkwk7BVeA30qwwfcQC9/gl0HPYnKo7pkpDz2Wnh2apCxT/pZUYKQ779qW4X4URalTcFlW92ndaBi8U3uZLT5QVhqelz9cqVhSyt3kL6ALb0Pmgt29fYbnq+WRS4mcTZqlNqCkGk0GscoIglH927NjBrFmzWLJkSZn6f5pkuZYCwXQA8ET7AG7aYjDPD4eV8y/Ekw3vnsiwbgAqC9c9zNXXv0FKrl23DtuhXx8B4JqWb2J1gF1VUXEJNpPiildznPfthhgUQowKYSYDP34/zmMvgB2yb1p+0RWdSQHLed+xb625YAoDF9TJQBvf6VF7zpPCrE7BWO8KwjNGTLMo6rX88vw98XwGRU2W0JsfzBor57s6YiQAd78Y5y7mG56QyPDuLlF8oQRMwYWEtfV8rdPx9hSwwzdV52M2RgCUqf/pCYIglITvvvuOkydPcuWVV7rHHA4HjzzyCDNnzuTQoUN+51SpUgWj0ciJEye8xk+cOEFsbGyp7EsEXSlQnGbrK+fHsZIfA661/nzngt4jHqHhDW+SUKsGOwNYZf/7y8QiX9+Xi/1xa1KgYbSZ9d+OpfcI7T4vdBYoSDwUhJ7QXeAj6oJxIXq2+PL83pfC4ss89+Jp9fK1wH62Ztz5OL1Ct+aFd/HhoglBT2uey5XsGg9PuHBPCb1We2VsByp+rH2v4SnmjjefgdlYCbO07hIE4V/If/7zH69YOIBOnTrxn//8h8GDB+ueY7FYaNGiBd988427/InT6eSbb75h9OjRpbIvEXQlpFffuZhMIUU6x/eDclj3uXTuNstrTPGY+1gLlfQmsyF1TGlsWReTAbiIDSqqhBoZ1m8O4BIBvlZNrfZZYULM99lpAspX2GnnBhPgrwk4zd1aUmud57pN2l4oTBzW7kOybCrXtFT57YyVBStGM7zf2wFFma94CzQHilaw2Lfbg+9zd7u0R/ifH6h3a7w9hVPxU0ihGhZjuAg5QRDKNefOneOvv/5yvz948CC7du2iUqVKXHnllVSuXNlrvtlsJjY2lri4C/+/vv322+nVq5dbsE2cOJGBAwdyww030LJlS2bOnEl2dnZAEVhURNBdJjw/pId11zs2kg3rEunUbSYGlItd5/d8CzLvqxgVBcWhoigKTgNu923R174gUDUh5ynmfMVXYT1DIbCw0ygsy1gTLU17JMGd8N7nD3NfA2jRM4l31j0c0EpXlMzaxo1dTe+zb1qO1aFyOvuCYs6yOTib72DW0ocZd//cgC5UXyuYZ/ZocTtJ6LXucreeAzj/LD0LDPteZ8rQTVzbeTkw8XzbrjexGCphlrZdgiD8C9i+fTvt27d3v5840eUJGzhwIEuWLAlqjQMHDpCWluZ+f++993Lq1Cmee+45UlNTad68OevXr/dLlCgu0vqrmGitvxJunBi0ha6osXYaT78zgqsjzXy+8eJY6OLtKeS1Wk62TxE6owNys6xUignD7nRiczoxGA047U5CLSbsDicmo4LdoWKzO0EBk9mA066iABaLkfx8O04gOtzIc0Pmudf27MrgKTD0LHTFdS+CS3jE35WECpyzOTlrdZJjV8m1O3GoF4SmxagQbnLJ2iiLAYtBYfKs3sW21mnWvm4DlmEr4F+YSYEG0WaG95uje3+e9x5vT6Hy7R+TaXOS51CxOVV32GOkWaFGBROD+wa2+BWEb/s0zWoXqPuJp4v1n+azCTFVREERMScIZZSy0vqrvHSKKCsUpfWXCLpiUhxB50th7jRN9Dy36CGuijDx2UUUdDk3LSfXIylCAew5Ds5l5VMpMoQzWflEhpmxO1UMBpfwsTqcRIVbyMm1kW9zEB5qRlVd/TqtVgdmowFVUbDaHVxZIxx+uJdl+10N6z3xrPmmZz3yJFBclydewflAtTs+Ji3PQbZNJdehBrR2ajZKgwIVTApNK4bw/My7geK5YRsnvOknkvUINSr8uf1CHKSeO1O5eQXpVpcIDbSiSYFa4SYvi19RxLCWHAHeVlPfBA9trQGx8E3V5zEbI0XICUIZp6wIOpBerkVBerleQu4asp/P/u/aoK1vviUnCuLCeiohF7kNmG9RYYOiYDIoVKsWjt3uJCzERJWKFUg9nY1TVQkPMRNiBBSFqIgQ8m0OTEYDDoeTvHw7BqMBi8VIaKiJrFwbOQ6VqLYf8lgnI2fzHfTr7SrF4tnBYeV8V5JAQc3pC3I1eo7F21No0n0Vx7MdHD1n51wQwkqb4VQh26by33QrD4/4iG+3jCvwPD3i7SmkB5k1nOdQaXvLLLZ8N87vd+PmW2aRkmPHlu8sdB27Cv9kF/+v3g9SYTjebmU9MRdvTyGl2UtsNNbEbAgVMScIQpGIjY0ptwKrLCMWumLiaaG7d9QhoOh1wApDE4nPvjOCvduKnsnqmWhQUOyXFueV52OhMxsMOFQVVVVRnGA0KjjPW+gMioID9Xx8nOIul6KqKk6nitFgQFFcIsmpqtjO/5qZDa7ihyFGA3t+mQB4W5EKKpKr1XfzdcV6zo23p9Ck2ypSch2cyXeQnu+kcCkUGKMC1UKN/Pzj+CKdF29P4UzCsqBjH2uFm7zKyWhrnE1YVuT9VzAq/LG95JnPesTbUzjW7BVMphrS7UEQyhFlyUInBE9RnqMUFi4hK5Y/FHRzeQ09q5Pn99rL6RZBSpHF4sr5cV4irrBsz/Cf+nu9VwGr04lDVXECDgNYVRXF4BJveU4nNqcrjovzsWj5TidWVcWuQL7qJM/pJN/pdIs5AJsT8p2ueLbb2s5i4J1z+WKtd6eMQHh2k/As3gsuodHrjreJuu0j9py18nemjTMlFHPgKs13Ms9Bp/ZvFfncovylpKoqD3aby/DuiaycH0e8PYWMlkUXcwC5DtW935L8kaH3e/1Ps9cwm64QMScIglDGEEFXQvalW1n1vL/7b8O68QF7ZQZbkb9L91k8+84IqoUZi7yvogTGaxmihX08GxUFa44dHComQLE6CXEq5GVZUWxOIhQj5DkwBaFknMDBc3Z+PZ1PcoatwJg5vfea9XLK0E18tmYc9e9cyYFMGwez7Jy1llzIeeJQISWn6DVdgpU7Crhd6lo8obX1coLwEuuiAml5riewfm1w7mK9jg++Luwq10wixFwDg9SXEwRBKHOIy7WYaC7XJVt3U7NSNM8Pmcf6tePo3H2W7vziZLi+9n8jUYCffhgfMG6sIIpSXDfensK5G5eT7xtM54FJUcg+m09MpVCyMvIxGRTy8x1k5VipGBmK3eHE4VSJignFXsToTIsBGsdYGNT37QLneQq563smkWVzcjLXQWqugzy7WqpCzpNQo0KTGAurvy5aAcgr498Iam0tKSLenkJ+q+VBxfwVhPF8IedA2bN6DO+e6PU76pXJ2mw2IeaKGBT5G1AQyiPici2fiMv1EpNudfLykpEsXPew233oaZ0rTmuw6f/3MCZF4bEHEt1jwTK8e6Kfi1VvzJOdphpE/Nw/4HEARQWrzYFqdWJAwW53EhpiIiYqFLPZiGJQiI4MwRxS9F8rqxOOZttZ/NFo1nwa2KqkibkGXVfxZ4aN305bOZhlJ+ciijmAfIdKWl7RrXRHdj6CuYDHoYm5oV3nurONSyrmwGVV1Kx0xUH7fat17TCONZ9LqLmSiDlBEIQyjFjoiomnha5CRCQAUWYDLw6dV8iZBbPq+WT+qDuTGIuBbzaPLfL5BYm2whIk9JIjPDEqCorTVWhYUUBVwWi4UPRYPZ9A4VSK3xbWbIBoi4EQg8KjD3jfi5ZhWe/Olew9ayXbHrgESWmjAPWjzLw9r0+JOknE3zQDRYFft07wGh/adS57060cK4ZrNxAVLQZ++3lCofMCWX/j7Skca55IiMn117y4WQWh/CIWuvKJWOguMUd2PsKMhxaQZXPy5vsPF3udlxcP4+96M9mxdTwP3zenWGsUpZOBLztNNQj/qT+RZoNu/JfjfMKDDRWrqmJDdSc+aAkRNoov5sCVNJGW5yQlx8GcZaOAC4ki8fYUrum+ipQcxyUVcwAWg0K4WSlxW7CdP03wE3MAiz57mLzN95ZobV9sHu7zQHGanmVStNeAWKjSZCTHms8jxBR1XsCLmBMEQSjLXFYL3dSpU1m1ahV//PEHYWFhtG7dmmnTpnn1Qjtw4ACPPvoo33//Pfn5+XTu3JnZs2cX2irj2LFjTJo0iS+++IKcnBzq16/P4sWLueGGGwBXn7YnnniC1atXc/r0aerWrcvYsWN56KGHgtq7noUOXNalF853RNDKcPiW2vB1wa56PpnVUUP5v0e+1y02XJzK/76WuqIKvRtazeRkMVyMpYnZADUrmIgyG0jLc5Blc7kQcx1qiURjUTHg6uZQO9zEu58VX7AXRHFLlBSExQB/7XjE/d7XErdyfhyfrRnNu5+Nce/hn6ZTwFAJizECg2IUIScI/xLKkoXu1KlssrLyLvoeNCIjQ6laNfySXa80KTedIjp37ky/fv1ISEjAbrfz1FNPsWfPHvbu3Ut4eDjZ2dk0bdqUZs2a8eKLLwLw7LPPcvz4cX766ScMBn0D49mzZ4mPj6d9+/aMHDmSqlWrsn//furVq0e9evUAGD58OBs3buSdd97hqquu4ssvv+Thhx9m1apV9OjRo9C9a4JuyvzuNGx9oaRFsG5X7YP1pjbT2Xf6AO9O2BiwA4KnIAwW34SIoiRIeNLwhjcDumAvBVofWJWilQEpTQwKNImxUCPMiEGBhetKV9RpJUpKIXTOCwW4OtLEt1vG+dXs82yNBnC06csYDJUxGyuIkBOEfyFlRdCdOpXNmHGfYrNdzKhnb8xmA7Nn3VUkUbdlyxZef/11duzYQUpKCklJSfTs2dN9fNCgQbz33nte53Tq1In169cXuO6cOXN4/fXXSU1NpVmzZsyePZuWLVsGnF9uOkX43viSJUuoVq0aO3bsoG3btvzwww8cOnSInTt3un8B33vvPSpWrMjGjRvp0KGD7rrTpk2jdu3aLF682D1Wt25drzk//vgjAwcOpF27doBL4M2fP59ffvklKEGnUavpy17vs+1OEpeP4ooKJt77/MIHv+cHauLyUaTnu/px2p0qjWIiC+yAUJgAK0i8+R4vKn9un+jOvLSrXHJxdzmFnIZJUfgn287ZfAfRltKNUoi3pxDZ/iNOnyv9voYqgX9e7t8zOxxtNoMQU2URcoIgXHSysvIuqZgDsNmcZGXlFUnQZWdn06xZM4YMGcLdd9+tO6dz585eOiMkpOA2oB9++CETJ05k3rx53HjjjcycOZNOnTqRnJxMtWrVgt5bIMpUDF1GRgYAlSpVAiA/Px9FUbweUmhoKAaDge+//z7gOmvWrOGGG26gT58+VKtWjfj4eBYuXOg1p3Xr1qxZs4Zjx46hqirffvstf/75Jx07dtRdMz8/n8zMTK+XHq2PP8LBLBs70vJoduMMrr9pBje0msmUxQ/x9DsjeHLhCE7kOqhgUmgYbebJQfP5+afXgIILDhdGUaxuRRV4O0012LttIlOHzafytvuCrq/2b+GvHRPZ/fMEtv4wngOZdm67tehFhjXi7Slez79O509Iyb14rm2DcqEo9Rdrx/Lp6gutvGpcM5LU6xcQZq6G0SC15QRBEDS6dOnClClT6NWrV8A5ISEhxMbGul8VK1YscM0333yTYcOGMXjwYJo0acK8efOoUKEC7777bqnsucwIOqfTyfjx42nTpg3XXnstADfddBPh4eFMmjSJnJwcsrOzefTRR3E4HKSkpARc6++//yYxMZEGDRqwYcMGRo4cydixY73Mo7Nnz6ZJkybUqlULi8VC586dmTNnDm3bttVdc+rUqURHR7tftWvX1p33XY03sDkh06by288TeHrwPE7lOciyqVS0GGkSYyG+soWG0WYG3DO70OeiNa0vqOK/Jub0rHOlSe8Ryew01eDwzkc4cv5Vedt9Xq+qoUZK2Yh12Wmc8Kb7+4bRZrJtTvp0LLheXiCeWdTOR3wr7N8+kcrb7uNitOvNtl8Qi126v8VdPROZMnQTVZpMQDHWxmQIFyEnCIJQDDZt2kS1atWIi4tj5MiRnD59OuBcq9XKjh07vDyLBoOBDh06sHXr1lLZT5n56B01ahR79uxhxYoV7rGqVavy8ccfs3btWiIiIoiOjiY9PZ3rr78+YPwcuMTh9ddfzyuvvEJ8fDzDhw9n2LBhzJt3IbZt9uzZ/PTTT6xZs4YdO3bwxhtvMGrUKL7++mvdNZ988kkyMjLcr6NHjxZ6T1fGv8GEecOpGGJg2vD5PPrAXP7TZzZ33fUW76x72J29WVh7pgVrRwZlrSusZInn19ISfjtNNbxeO7aO568dLqFXwaT8K8Rdvofb8rONY2gYbcZsUBjWbW6R1/LtHvKfPi5Rv9NUg4O/PkKUWcFcSvpKVVWyrHm8+m5npgzdxOi32vPQW51JiZ9PqKUmRoO07xIEQSgOnTt35v/+7//45ptvmDZtGps3b6ZLly44HPoel7S0NBwOh19CZ/Xq1UlNTS2VPV3WGDqN0aNHs27dOrZs2UKtWrW8jnXs2JEDBw6QlpaGyWQiJiaG2NhYrr766oDr1ahRgyZNmniNNW7cmJUrVwKQm5vLU089RVJSEl27dgWgadOm7Nq1i+nTp+vG5oWEhAT0jx/Z+YhXR4BbUh7huxqu99EWA42iLX7n6LVXKg6FCTNfV2xBdehKk52mGqx8cD4Azy96iBy7s9SD/i8VvmFo73/hKqcyrFtikZ6n3s/K9+e/55eJ7u8btHizwM4dhaNic+Rg/+UJDl43nXBTNUIVAyBlSARBEEpCv3793N9fd911NG3alHr16rFp0yZuv/32y7KnyyroVFVlzJgxJCUlsWnTJr/EBU+qVKkCwMaNGzl58mSBiQtt2rQhOdn7g/LPP/+kTp06ANhsNmw2m5+Vz2g04nQWPVjTU8zNeGgBFd55k2omA+lWJ7//PIEXdCxwnh/kJRF1C9aOdCdT6AmGwsYuprjT7kvL+n1lyUisTpWsUu61ejExAOEBTGYXUxPF21Pg5/4oNy7HrqpFEsOqqqLiJMeWQZ3fRnO82RQqSNKDIAjCRePqq6+mSpUq/PXXX7qCrkqVKhiNRk6cOOE1fuLECWJjY0tlD5fVITZq1CiWLl3KsmXLiIyMJDU1ldTUVHJzc91zFi9ezE8//cSBAwdYunQpffr0YcKECV616m6//XbefvtCTNOECRP46aefeOWVV/jrr79YtmwZCxYsYNQol2UlKiqKW2+9lccee4xNmzZx8OBBlixZwv/93/8VGABZGCEGhdfeG8m1MRauqWhh2vD53NHOFUDv62orjGHd5gbtFg0k5gLhKeIKawlWGmiu5R1bx/PCkHm88dACokrLr3gRMRvgyggT8ZVDGHjnXB48/zPxfWZFfX6+8+PtKS4B54Hmwv5zx0SaVw7hyM5HMAXxyFRVxak6OJd/hnzbCY41m4rJVAujIu5VQRCEi8U///zD6dOnqVFDv/i8xWKhRYsWfPPNN+4xp9PJN998Q6tWrUplD5fVQpeY6Ppg00qHaCxevJhBgwYBkJyczJNPPsmZM2e46qqrePrpp5kwwbvSvuaS1UhISCApKYknn3ySyZMnU7duXWbOnMmAAQPcc1asWMGTTz7JgAEDOHPmDHXq1OHll18OurCwRqTZQKVQI08N8v9QnzJ0E+dsLvHk28s1UIkSjYXrHg5KKPi6/AIlRviKON+xQOuVNhesdvPdYy8tfoiz+c7LXp7EkwomhasjzcSGGTEqhbe9Kspz852301Rw94nK53vj/v2rq0jwtS3fJNPm/7RUVcWh2snKP43NkUaUpSIh5uooSpmIrBAEQSg3nDt3jr/++sv9/uDBg+zatYtKlSpRqVIlXnzxRXr37k1sbCwHDhzg8ccfp379+nTq1Ml9zu23306vXr0YPXo0ABMnTmTgwIHccMMNtGzZkpkzZ5Kdnc3gwYNLZc+X3eVaGK+++iqvvvpqgXMOHTrkN9atWze6desW8JzY2Fiv+jHF5dVR72Iy+cfW9R6RjOPGFTz6QCLr146jc/dZuuff22kOH24YpXusqLFZnbrNZMO64K1FnsKuIJF3MdCE3cr5cTw7eB69RyRTJ/6NMiHqjAr8sW0if+CylHqKuU7dZnoJ8eJaRjXi7SmFCjpfMXlFuInsDJs7tk9FBRXsThtZ+aewOc4SYamIxVwdMAa9P0EQBMHF9u3bad++vfv9xImu+OaBAweSmJjI7t27ee+990hPT6dmzZp07NiRl156ySvW3tfYdO+993Lq1Cmee+45UlNTad68OevXry+081WwXNZOEeUZrVNEwo0TdQUdwNQlI3lSx3KnUZzYOU/LnmYVCkZUBGO5u9x0bv8W678dS/ObZpBudVKifIASYFTg6kgzV0WaMAawzAVr8SyMQILON/NZc9l7XqNRwpvk2R3YnFYUbDid6VTfOYljzWZgMVdBwSBuVkEQAOkUUdROEWWFctMp4t+GbwmSfKfKlKGbeGZRO935hbldA13DF82d6xtL55kwoYfrPO+WUJcqC1aPYf3mnN/PBBJaz+RkruOyWOwcKmScF5RabTjfci+l9ZwCWec8LZi9RyT7WQbBZUUE2LcvhQ59nqH6rimciH+bEGMMivIvqBcjCMK/jqpVw5k96y7p5XoREAtdMfHs5RoaZvY65inqChJ0GsWx1OkJt0CJF57Hgy1j4mvNu5giTxMt2tdh3eaycN3DtGw9kxOXQdTFWAw0ijETbTbo9m31tch5PvviPKe7W01h1dZnAh73fD7g/fsSb0/hSNPXUZQKmAxmzEbX/7TEMicIgidlxUInFA2x0F1mPMVJrds/gUXF6ypQEL7CwfND3tOa5LLs+ItGvfg5vXVLs45dINekp9B0iZaHWTk/jpXzE5m6ZCRnrQ4ulXVeAaqHGflow2i/Y/H2FG7ouZocu5N8h8rAO+diVGBwV7A6VHcZE1936ZShmwCXNW7fvhQaN67hdrUO6jSL7nfPZdrLI/nlSKKfRdXzva8FWBNzYZZYlPMJ6yLkBEEQ/jcRQXcRubblDAb1LVzMFcf16oueWHIlSYwPeI4m5jy/BlrL85yS4hv757um5/PYvnU88fYUziYsK1LtOgOuOnEBetMXyFebxuqOJ/RazYK1I7mv8xxScx1k2+0YAIeq4lDBoMD1N71Oi5tshBoNhJmMhBpNWAwPYzEqPHP3HHqPcK3VomcS11lt5FttTBm6iabXjaVZ07nABYug3u+F9r72dcM47IgmzFwVgyKJD4IgCP/riMu1mBTkcvWkVZuZPPpA4UkLJRF0hQXlBxO0r5dgUdh6enFdhe3Rl0BiztMS5XmN+i3ewFqAsjMprlIyzw2Zx5Shm8i+aTl5RVB1CnBVpInNW8Z5jcfbU0jotdorXlFvj9rY4DdvQcWAqhpQFCNmgwmz0Uyo0UJ0SDjRIeGYUTn7bT+u676KEKPiV6om0POPt6dwtNkcQs3RKNL1QRCEIBCXa/mkKM9RIqcvMo8+kMispf5xWL4U1s81EMGItQVrRxZqWQsmjs7zWp5iTq/YbkHreO7H91gggbhyfhzx9hQqhRjxlS9GBSpaDBzZ+Qivj1jAc0NcnSmeWdSO8J/6+80vCBVIzdHvxee7H0+0vq7a/hdP/I4lEzfz3iPf0qxyBFdHmahkySPPdow8+1nyHU4y7ArcvII9Z62cyHVd0/fZ6P1eHG/+OmHmaAyKZLEKgiAILsTlehFZOT+OR+cPZ8t34/DMJvVFs/YU1fV6MWvH6ZXl0L7XrFSa2Fg5v2BLnV5nCt8x7xg6bwuYp6i5KsLEOZuTc+d7YVUwKbz8oFak2NtitnJ+HM8sakdv0yNc23IGWbbgihcXp1yKq85gHDPf68LK+V8ArthAFZXO3S7UIHzlnbbEhocxpP989z4BHDfOoMOtb1E7woRJUdyCWXPRghYz9ypGY1XJYhUEQRC8EEF3EfAUZtNHLADieOuDhxk7YG7AcxKXjeLrzWP9zi+IYGvQFYXg4uYu9I7VMmhLsr4evq5XV+JEMtdbDFwdZeZkroNJA/3vvUnbTTRu7CoF8sXacThVsKuQaXWSmmsnNcdRaCyeQfGvD7fTVIMEnbkb1o13C9ykpOH06rXAfcy3OwjAUw9uAfAqNr1yfhw9O5hIzrDhxCVaPRNr4u0pHG36Iv8YqhJminQnQAiCIAiChsTQFZPCYugKEzlvvv8wE/9zQeA9t+ghJp9vYl/SBIlLgafQKkosXSB84/L0np92rSlDNxF/VxIAXXv4d+BYvnIMOXaVXLuTbLtKnkNFBX7/eQLx9hQyb1wWMGvWqEDML/fR7K4klnzm7SqPt6fwzKJ27n14ijkN3wxVT977sB8D712he90PPh7CztO55NpVaoWbuDLCzKqvnwCgcpNRhJivkH6sgiAUG4mhK58U5TmKoCsmhdWh860b1ijhTQwKvDR0Ps8tGsHkoRdcbr5uxmffeZAT5w6Ta0vn/ce2lVgsDYiF8ITCg+2DRbu/YAL4g0WvHIqeqJsydJNXcoIvvUck06Tlm2TbVC/3qgFoFGM+X7wYJi9+iCyrE7vPb3/1UCPbto7XXVsTdIEEZyD0hJ/vnus1G8HBLBs2FYyKQo0wA7G/TeZI06lYTNUxGUJEzAmCUGzKkqA7nZ7KueyMi74HjYjwaCrHxF6y65UmIuguAcFa6AJ9+K/9dBzd75rlnqN3fp9Xr+fjJ34tlQxYT0oj5s5T1HkG8V+MeD7Pwr3bknqS0Gu1+5hn1ilA/85z+DUtn1ydzNZaFYz8+MN4hnWbS45D5e6eb9F7RDLNb5oBgN3pislrGG0m7HzWqYaW5eoZ61eYsFuVNIy7ey10v5+++A4eHfyV+/2a1SPp0TORKUM3caTZW5gMWiVzFRUnoGIxVpAWXoIglJiyIuhOp6fy9Jv9sNutF30PGiaThZcnrgha1E2dOpVVq1bxxx9/EBYWRuvWrZk2bRpxca7/3585c4bnn3+eL7/8kiNHjlC1alV69uzJSy+9RHR0dMB1VVXl+eefZ+HChaSnp9OmTRsSExNp0KBBwHNE0F0CfAVdURIafDsjBMJ49f04/l5arP35WuV8Ka16cqW5ni+BxFJBVrqlH49hz1kr+TqZDdEWAy+cz4AFV4xdl+6zvMS1xvq141AUhQVrR/qVLAH/NmsFWeCmvXsbk4ZsZOo7t/Lkg5u91hgQC+srP0kFcyVJdBAE4aJRVgTd4WPJvDRn8EW/vi/PjlpMnSuC86x07tyZfv36kZCQgN1u56mnnmLPnj3s3buX8PBw9uzZw/PPP8+gQYNo0qQJhw8f5qGHHqJp06Z88sknAdedNm0aU6dO5b333qNu3bo8++yz/P777+zduzegWBNBdwnQs9D5WuVK6ipdOT+O/q+1YvnjW4u8VmHJEpoA04Tf5erf6oleayvPcU3IAX7iyvPcete/gc3nt9psgMohRn75cbx7TV8L2/q14+ncfSbr1433K3WiPZ94e4p7TEua0FqVee5V4+OVQ+nTe5Hu/U4ZuonDTd+ggqU6BhFzgiBcRETQBS/ofDl16hTVqlVj8+bNtG3bVnfOxx9/zP333092djYmk3++qaqq1KxZk0ceeYRHH30UgIyMDKpXr86SJUvo16+f7rpSh+4S4ykmPNs0lZTeI5KLJeaKQkFWvEuNb3Fez8SLgvAVUQd+fYRQo4ICRJgU6kSYaFYphEkDEwOKRoDO3We6vp4Xi518vvbvPAdT2w/JvHEZ6S2XcV3LGbRv+xbbV/ei9x1v+7XpWr92nFvMrV/rXai4SdtNHG36IqHmyihFqpQnCIIgXEoyMlzxfpUqVSpwTlRUlK6YAzh48CCpqal06NDBPRYdHc2NN97I1q1bS2WfIuhKgYshuLS6dL5jwZK9rWCLm2cNu8tpnfO8J73vfe+5U7eZAd2bG9aNd8+vYFJ486EFvPTgfMbfP5fKId6/6oU9S88sVm3de3q9hX3LvdicrpZiGTYnf2fZOJuwjOQMm5+Y18qSgH+P1fsagJNIjIpZ4uMEQRDKKE6nk/Hjx9OmTRuuvfZa3TlpaWm89NJLDB8+POA6qampAFSvXt1rvHr16u5jJUUEXRnAU7xo3z+7aITfvKJkV34Q4PdDE3AFxXxdKjzdnr735WmV00SVVjJEb57vV7vTe44mrrTjwTxL7RmpqsqUoZuYu2wUGS2Xec1RASeQaXNy9fVvEHfDm1zbcga33DKLlUlj/e4FXK7W1GbPYjEFDp4VBEEQLj+jRo1iz549rFihX3IqMzOTrl270qRJE1544YVLuzkfRNCVEsVt3QX4WXZWzo/jpaHz3ccD9TUtDM3ypok4T0tccTpSlCYFJYb0HpHsFnEamrjaltTTS7wFqgcXZlJY9skYr7HCyocEYvvqXhhv+ZADWTa/Miee2FXIdahk2pwcOWfnv2etfLRqrNf+k5JcQj3PGY5ZSpEIgiCUWUaPHs26dev49ttvqVWrlt/xrKwsOnfuTGRkJElJSZjNgfu6x8a6MmxPnDjhNX7ixAn3sZIigq6UCCSQNDFUkCjytFAV1MtU7/vCWLB2JAMC/K4UJtQGxOrP8UwMKA6+sWYFuZY3rBuv+0xcnSO8XcWaO3bl/DgaRZuJthh0xWFhz2/DuvGsXzuOKUM3MWXoJvJaLedknqNILcFUXC7Zczanl4hcun4iACZjNEjsnCAIQplDVVVGjx5NUlISGzdupG7dun5zMjMz6dixIxaLhTVr1hSasFC3bl1iY2P55ptvvNb4+eefadWqVansWwRdKVCYQPAUdXpN7DXBck3LGbRvO0v3mG/CQDDX1duDJ4XFznkmTHien9Brte59FAVNxHrWmPNEE2yaQPMVdZ26zfTqLqGhJab07PkW757v9KCJOs95gZ7dhnXjUVXV3Ss2veUysgsyyxWAqrpi7Tzvz9XG6wVXfTmxzgmCIJQ5Ro0axdKlS1m2bBmRkZGkpqaSmppKbm4ucEHMZWdns2jRIjIzM91zHA6He51GjRqRlOTqaqQoCuPHj2fKlCmsWbOG33//nQceeICaNWvSs2fPUtm39HItBUoro/W/v0xgso971VPM+Frxgr2uZ1mSkhb/LQ3rnC96blBXCzDX954tv7SyJZ7uVn0u3GOwwnfDuvGouJIZpgzdxOmEZVCCoj5GBdZ/O8ZP+DrUMAyK/NMTBEEoiyQmuv6f3a5dO6/xxYsXM2jQIH799Vd+/vlnAOrXr+815+DBg1x11VUAJCcnuzNkAR5//HGys7MZPnw46enp3Hzzzaxfv77UWqPJp8pFoiDrlZ6g0rNC6WV6FiTiPF2rnkkRC9aOLLI1LZCb1rNbQlEIti6fZ5ybywqoxc2tBsbrztUTdZ4lT4Z3d415dpUIJPI6nxeOWTcup0g+Vh2qhBq55U5Xv971a8e5EzOMhogSrSsIglBeiQiPxmSyXPJOERHhwSehFVaet127doXO0VtHURQmT57M5MmTg95LURBBd5HwFD3BiqlgLUmBxJGXi5QL8XPFKRzsW59OE4Ulse4Fc38FW930CdQOzPf7gvbhec3w9h9x+py9SHvwRAFiLAYmDUx015/z7CxrMoaKu1UQhP9JKsfE8vLEFdLL9SIggu4SEKwY8hRpg7vOpVuPWX5z9MRIIMHoOR5oTqA9ZW8bWWpFhwvra1sQLoG32uu9xoZ1488LsfFe5+jFGwZ7rd4jkknLcxQ+OQAmBV4fseB8YeG5buHWpftbHrNEzAmC8L9L5ZjY/wmBdamRpIhLRDBizlOApOYULipKmpigraE35ivmimudC5TEEShzFbw7NEwZuslrzBPfTg56SQ++1r7C3L779qWQ5yi+qzUmxMDaT8excn4cnbvPolO3mV7P7XjTp1FVZwErCIIgCELREUFXhvAUG8dzCnb5rZwfF5QPPxgKE4bZ2/y7SXiWWinIEqbnPg0kqnxFm+e5egWF9erUafvUjvuuGWiv2ry9W9oV235mAKqEGOl+l7dl1dNFriigIoJOEARBKF1E0JVRrIUE5PcekczpfAcOp4qqls5rWDdXAL/veIUb5jKs21z3cc89eH7VQ1VVdxyZpytUT1hp89avHYeqqnTqNpMbeiZ57UWb06nbTPeY5/W1faqqilN1sn7tOK8+qp79dgNhNhRP0lmMCiP6z/Ea04TlyvlxLPv4AWr89jJOsdAJgiAIpYzE0JVBrr9pBk8PnlfovF2nUnl95Cde7lrfUic92r+ge+6ab/XHARauezjgedragbo8gKu0yU5TDXq0f57tq3tR+4557vlLVvRjUD/9FipaFmhq9oVK2p7fe563ZMW9Hr1SL3SdSM1OdacfDO73oe7+C+KzNePY+WkvDK2Wk1PE+nORZn8h6GkhvK/P/zFl6AXBLIkRgiAIQmkhgq6UKWrygR65DjVgAkHvEckMiIW7X4yj/2uHvQSVnsVME256nSg8BVnzFkO45ti7/PeKIQAcyTzid+1nh//gJeT0yqz0HpHMTlMNmt8wlCNZ/8BNz3Ak6x/39Y9m/eO1X997fGnhze45nt8/O+x7Xlp4M88O+961TuYx15wFN5/fm+v7o5nHeHb4935717t3veOPTe/FG48l0aX7LF5a/BDp+c6gHKRRZoUdWycAgQXjRyuH8Ofnm3Cqxc+gFQRBEAQ9FLW0ArH+x8jMzCQ6Opop87sTGubq3+Yr5kpS4gPguhtnEGU2MPE/F1ydI2f34eSeKQDUavoss0Z9BFCglQ78BYzenHs6vMwnXz/t/loS4u0p1O+yGIB+97zntb8Vnwyk3z3v+Z3Te0Qyfe6YGnDNfvcsOX/+IPf3gfC8r753TCU6JNrDoufCs31YQZm4zy0awTmbqltj2ICr3tz2reMLtf71HpFMvD2FQ03fJMJSXSx0giBcMnLOZTGoVVMyMjKIioq66NfLy8vj4MGD1K1bt9QK5/4vUpTnKDF0JWRQ5xkBkwoCtfrypCAR8MKQeZzJ98521cTcyvlxzBr1kZ+FzleQFLS+r4Xtk6+fZuX8OC8xV1Cf1UAM755IQq/VVAyt6CfmALeY03PX9rtnCRVDY+h3zxL++mIQFUNj3C8tCaJiaEyhe9Cu1+wGl8XRV8z1HpHsLiej/XwCWUUnD53Pmw8tYMZDC6gaaqRKqIHKIQYqhRg4tPMRnhyU6BdfWNCeVOc5yXQVBEEQShWx0BUTzUKXcONE7h11yG3t0nqTajXN9PAsAVJQj1VPcTFl8UOogEGBpwd5x9cFss4F6j4RyO1aEMHO85xb1DpwvUckF1qGRa98iSeema2B6tEFaqXm+9yKuv9gmDJ0E0euewaz+WosRvmrVRCES0NZstBlZp8iNy/rou9BIyw0kqjwqpfseqVJUSx0EkNXCniW79AsPwXFUkFwsXaeouLaihZ69nzrvPjwt5oFEiCBxIzvNQoTa4XN066z6vlkhuuUCwmGlfPjGN7du1uE7/eFEYyY0579yvkzdedcTHaaahD/+xSONEsUQScIwv8cmdmneHf1GBxO2yW7ptFgZkjP2UGLuqlTp7Jq1Sr++OMPwsLCaN26NdOmTSMu7sJnxYgRI/j66685fvw4ERER7jmNGjUKuK6qqjz//PMsXLiQ9PR02rRpQ2JiIg0aNCjxPYK4XEvMXUP2Ay7LULAdChas9a/rVlC8Xe8Rybz/xagC1w4U5O/70purJ9L0XK0FiT5t/fCERC/hFYxVz3eOVkzYEz0xp7e2nmDV+76w9Yoi8oK1XGrr7jTVwO7MLbU6goIgCOWF3LysSyrmABxOW5Esgps3b2bUqFH89NNPfPXVV9hsNjp27Eh2drZ7TosWLVi8eDH79u1jw4YNqKpKx44dcTgCNwV47bXXeOutt5g3bx4///wz4eHhdOrUiby8vBLdn4a4XIuJ5nL95/BfREVFusdLo+epJ5oLd8HakX6dFgqzmHnOKc09+aJZvDxdxb4Ww2BcmBvWjffrywqFi6/h3RMDurhXzo/j45VD6NP7Xd1CxMVtE+a5D8+fQzDr9B6RTEyjUUSE1sGgGIt1XUEQhKJQVlyuJ07/zdLPH7vo1/fl/jtfp3rlq4t17qlTp6hWrRqbN2+mbdu2unN2795Ns2bN+Ouvv6hXr57fcVVVqVmzJo888giPPvooABkZGVSvXp0lS5bQr18/3XXLTVLE1KlTSUhIIDIykmrVqtGzZ0+Sk70/lA8cOECvXr2oWrUqUVFR9O3blxMnTgRY8QLHjh3j/vvvp3LlyoSFhXHdddexfft2rzn79u2jR48eREdHEx4eTkJCAkeO+JfrKAqauCmNtlwanbrNLLShvOe19Qgk5oJx0wYqBKx3XqDuEcEKJk8x16nbzKBdt1rxXr29rvhyktd6vmJuePfEIlnZPAk2AcX3nLp7niHfniNWOkEQhDJORkYGAJUqVdI9np2dzeLFi6lbty61a9fWnXPw4EFSU1Pp0KGDeyw6Opobb7yRrVu3lso+L6ugK8ysmZ2dTceOHVEUhY0bN/LDDz9gtVrp3r07TmfgLMGzZ8/Spk0bzGYzX3zxBXv37uWNN96gYsWK7jkHDhzg5ptvplGjRmzatIndu3fz7LPPFju92lN4aC7VkljEgslO9V0/e9tIr4xNz6+eQqswy5me27IgwaPtI5guDIEoSpwcXLgfTxFbWJsxz+O++9QTw0W9l2BcwFrXip2mGuTb03CqhffsFQRBEC4PTqeT8ePH06ZNG6699lqvY3PnziUiIoKIiAi++OILvvrqKywWi+46qampAFSvXt1rvHr16u5jJeWyCrr169czaNAgrrnmGpo1a8aSJUs4cuQIO3bsAOCHH37g0KFDLFmyhOuuu47rrruO9957j+3bt7Nx48aA606bNo3atWuzePFiWrZsSd26denYsaOXGfTpp5/mzjvv5LXXXiM+Pp569erRo0cPqlWrVqx70dyixUkGCESguLhAfJCqb83zdYEWFGfmK2yK4op0JTUEb5X0FFjbknq6x4J5hoGeg56o0/Bd19OKqnfNot57MLGJC9c97B7vnv42ObZ0sdIJgiCUUUaNGsWePXtYscK/w9GAAQPYuXMnmzdvpmHDhvTt27fU4uGKQ5lKivA1a+bn56MoCiEhIe45oaGhGAwGvv9evxsAwJo1a7jhhhvo06cP1apVIz4+noULF7qPO51OPvvsMxo2bEinTp2oVq0aN954I6tXrw64Zn5+PpmZmV4vXwK57krT/eq7ru97rXeo5zFPa11BsWx6cXaFWakGxHrHsC1YOzJoy5YmoqYM3URCr9Vud2hBos7TCuh5j9q5vtcvSJRp87W9B5PpG2g/el06PEWe77MfdOcsPkgFpyMNmzO/wOsKgiAIl57Ro0ezbt06vv32W2rVquV3PDo6mgYNGtC2bVs++eQT/vjjD5KSknTXio2NBfALGTtx4oT7WEkpM4JOz6x50003ER4ezqRJk8jJySE7O5tHH30Uh8NBSkpKwLX+/vtvdyrwhg0bGDlyJGPHjuW991wFbU+ePMm5c+d49dVX6dy5M19++SW9evXi7rvvZvPmzbprTp06lejoaPdL85MvWT/BPediJR144ilQCsuUHd49kQGxLtHlSaAAft/Ei0DxcJ584GEpDhTDVhCamIMLjewLs9B5JmFoL19B5muN1Mv09a05F2wRZt91AsUO+lo+Ped0v2suK+fHcfV/J5NnOy1WOkEQhDKCqqqMHj2apKQkNm7cSN26dYM6R1VV8vP1/0CvW7cusbGxfPPNN+6xzMxMfv75Z1q1alUq+y4zgk7PrFm1alU+/vhj1q5dS0REBNHR0aSnp3P99ddjMATeutPp5Prrr+eVV14hPj6e4cOHM2zYMObNm+c+DnDXXXcxYcIEmjdvzhNPPEG3bt3cc3x58sknycjIcL+OHj0KuDpFQMFiTrMEFRdfUVIQvtcJT0gkPEHfQlhQ/Jxn5mZhGarB3pvv3lc9n+y2zGkUZJnT9hUoSUQ77nstvbhBLYkikFALloLi5jyvGei+dppqUMGYSa49Q7pHCIIglAFGjRrF0qVLWbZsGZGRkaSmppKamkpubi7gMhpNnTqVHTt2cOTIEX788Uf69OlDWFgYd955p3udRo0auS12iqIwfvx4pkyZwpo1a/j999954IEHqFmzJj179iyVfZcJQVeQWbNjx44cOHCAkydPkpaWxvvvv8+xY8e4+urA6cc1atSgSZMmXmONGzd2Z7BWqVIFk8lU4BxfQkJCiIqK8nppFCZoipMoUJDbsCBxVdCxQK7fYGL1CrqHYNzJmoDSmDJ0E+EJ3ucVZJkLFP/nee1A965nTfMtc6In7DwFrd51CisZEyyzx3xH2p6XyLGexKk60e8aKwiCIFwKEhMTycjIoF27dtSoUcP9+vDDDwFX6Nd3333HnXfeSf369bn33nuJjIzkxx9/9IrDT05OdoeSATz++OOMGTOG4cOHk5CQwLlz51i/fn2p9bq9rIKuKGbNKlWqEBMTw8aNGzl58iQ9evQIOLdNmzZ+5U/+/PNP6tSpA4DFYiEhIaHAOZcbvRi4YGucFYWSZKZqZG8r3EIXSKxp4wWJOT2BFSjT19ea6BvDplnnNDxFru/XgvBMANF7hoFcr75j2rzOtz7NlbsnkmM95TbdC4Ig/NsIC43EaDBf0msaDWbCQiMLn3ge7f/Bvq9BgwYBULNmTT7//HNOnDiB1Wrl6NGjfPDBB16dJLR1tHPAZaWbPHkyqamp5OXl8fXXX9OwYcPSuEXgMrf+GjVqFMuWLePTTz91mzXBFWgYFhYGwOLFi2ncuDFVq1Zl69atjBs3jgkTJng9uNtvv51evXoxevRoACZMmEDr1q155ZVX6Nu3L7/88gsLFixgwYIF7nMee+wx7r33Xtq2bUv79u1Zv349a9euZdOmTUW6hyXrJxAaVvq/nHrJAcEU5w2GwooM61mYBsR6x8t58kFq6e3NE8/YNl+LZSAB5duGTc+FvGDtSDasuyDaPJ+Fp6jzHHdZ9LwLCfv23NW7VkGxeZ7PbNh9nwDtgE8ZNusuwsyVMWBEUZQgn5YgCELZJyq8KkN6zpZerheByyroEhNdH57t2rXzGl+8eLFb1SYnJ/Pkk09y5swZrrrqKp5++mkmTJjgNf/AgQOkpaW53yckJJCUlMSTTz7J5MmTqVu3LjNnzmTAgAHuOb169WLevHlMnTqVsWPHEhcXx8qVK7n55ptLfF+FlQkJlkA9YQtaT+uHWhgFiTo9MReekMhwr315Hw8k9vRwdYTY5P7e1zpXWJKCnpgryEKmd452TU9rndbl48LxC102YKT7OtqetXO1nrC++/cVlJ7X0xJQ9KyvC8d9yrBZnQk1x2LELKJOEIR/FVHhVf8nBNal5rK7XAsyawK8+uqrpKamYrVa+fPPP5k4caLfB9yhQ4d44YUXvMa6devG77//Tl5eHvv27WPYsGF+1x8yZAj79+8nNzeXXbt2cdddd5XavQUT2xUIX4GilSMpzBXo24KrKHsMhkDFkrVYuKKUK9lpqhHwuK+7srAyJIUJXD3rnYZeprBn1qzeM/ItjRJMQWFPOnWbWWB3ivc+7M+ZvbOw2VNRVae4XwVBEIRCKRNJEf82eo9ILlGBYU1IaMLDt2WVZ5cEbd7K+XFeLsDSFHW+yQsavuVQisLK+XFBxd4F6myh1ynC8xy9eDvtuepZ8wKJbk3gaefpzdOOef7M9PD8vfD8/fA9Z+C9y1k5P47Kllzy7GkgSRKCIAhCIVxWl+u/gUGdZxAV5Qq29HTZaS46DU/3azCu2EDuVg3PYr69R1y4RmnHsnmKtv9n78zjo6jv//+c2SM34QokyKkigqCC4gHiiSAICuVbq02L+rWCHCp48xOlKhbvIirhqPVoUVuLWOGroIIiWqQooFEwCoIKJBDIfew1M78/NrOZnczszm42F8zTRyQ785nPfGY2ybz2fapuWnWb1g2rdbtaXcOvHurHW/MiX6eK2T1ThavehWwl09SoLIt+Hq1gVF2v9euZFrZffT+0117v0jUv2GyW9NIrozPVpYfxBNwkO9vbrlcbGxsbG1NsC10C0cZfRauTpn5vZB2yIoa04sFKyykr69afW42d06PWttNvi+fcv3qoX8R2XXqMRDLUW7xUa5lZtqvecqmNbdMmRGjviXqM9lj1OkePW8jWVRPCLHjajFq9VdXsWrRzqkzJXUnvjHY4lEPU2i3CbGxsbGwiICj2UyIuKioqyMzMZP9Pu0MWOhV9xwU9+g4FZhYtK10TjLI/VeudVaGkuj7NXKv6sUbj1HVGi3czYtLUgpB41F6vun79Nr0lTpukYJRsoLeAWX0N1uISI40xchfrzxnNovn8367m+7ISauROpLk7ISDa1jobG5uYqKmq5IbzT6e8vDysjmpT4fF42Lt3L3369ElYnbXjkVjuo22hawKixaVFCtKPBSPhAdGTIvSxa0YWNzPMxsViZdOzcmk/fvVQvaVMK+RUoabdrh6jWsW0cWlG3R+MzqffZ+aiVWPo9DF7WuuqPllEazXVunX1a9CLei3a173ancCgTl3p4DxKje+QXXjYxsbGxqYBtqBrAuJJiDB68Otr0GkFjdbdqlrkoF4ovDXP3PVpVbzF2rJMLzCNCgJHO5/K/Js+NlyHKtqiWS+1YlkvsIwEn15Y6d21Wsundh6ja9KKzynj80LXEk24a+fUrsUlushJ68opHbqS7ijHGyi33a82NjY2NmHYLtc4MXO5Nia7FWLrCqFi5HJ8a16BZeEWD3rXq/pau93MBRnJxai39G1dNYGhE98O22bVDW2lxImV5An9XNpyJtoWYlrhp6K33FlZ5/ybPg4r67JyaT/Wrr4dr+RjX8Uv7CqtwuXqjVN0R123jY2NDbQul2tFdbFdWNgisbhc7SzXBKG13MTjQtUepxcZZnFY+nNruxmoGaTBfwsMxZf+tX67mtFqlhhh9Fq7XWvRMsv21KMK0noL3MWsmxi+f92ahrF2kcqA/PvtW7h6wpK4xRzUizitQAvWozMWjkZiVi9W1TH693ruixc3WJcgCCQ53HRJ6URhdQUl/kpEV3sA/FItkuxHEARcYgoO0W3H2NnY2LRKKqqL+evbtyLJ/mY7p0N08b8TnrMs6hYsWMBbb73Fd999R0pKCsOGDePxxx9v0NoLgvV0x44dy9q1a1m1ahUTJkwwnVdRFObNm8fy5cspKytj+PDh5OXl0bdv33gvLQzb5ZpAYukOYbY/WsZrNLGojc1aURQUEWbiS2VFkbHVa8p449g6fQyeWT256q3TeGteQchyGCnjU7t+MBZEakHerasmhLapIkl1SetF09MvXQ6Eixur75HebauKTb2LW12Hvviz1t0bKa5SL9iN9o0etxAESHEl0ykpBReH8Pr2UevbRzK/0DXpCB1dh/D4f0ZSAhGvy8bGxqalqPVUNquYA5Bkf0wWwY0bNzJjxgw+//xzPvjgA/x+P6NGjaK6urrB2IULF1r+AP3EE0+waNEilixZwpYtW0hLS2P06NF4PB7La4uE7XKNE63L9de/fdEwI9MIqy5Vq5Y+rXVKn+FqtBa9tW70uIVRLXhm26xQvXVaqD6dWqtuyvi8sO1gfD/01xBsGVbvgjW6PrP+tw1KgozPazBOv9+sHp0+o1e1KBrt11+X/v1SMVqj0bGyIlPlq6YmUIM34MMvB8hwp5HuTuNQdTH5R0twOE/E6bDdsTY2NvW0FpfroaM/8vd3727y8+v53dgn6drpxLiOLS4upkuXLmzcuJELL7wwtH3Hjh2MGzeOL774gpycnIgWOkVR6NatG3feeSd33XUXAOXl5XTt2pWXX36Za6+91vA42+XajEy8ZjHr194b8SGud6fqt0UqZ6HFSPToXY1Txtd3JHhrXkGDHqsriiC3Tpyp7ksrHRtiFXNqbJm2MLG6FlUcTtGMNZtDn/Gqd8EaHbN29e0sXzM9tC1SWRL1tfZ+azNZ1W3aLhxaURZmQdMR6f1S5zBKGDET8uq1ZbjTyXCnoxBslScIIpIcwBPw4VfcuESHyd2xsbGxsYmV8vJyADp27BjaVlNTw29/+1teeOEFsrOjt03au3cvRUVFjBw5MrQtMzOTc889l82bN5sKuliwBV0jWfXP6WEWMaNMSSPhZlYgV30dTz03qG8qb4Q6rxpfpwoXbf23eJIpjKx3WouVKtzMYvIiWTcbxuBFrvM3aWoBV4x/NtQ9QyXSeD31sW3G49XYOaN5rNSVU8+h7/ARaU3qfFrTvoAAAigo+GQflX4PCOkIdiSFjY2NTUKQZZlZs2YxfPhwBg4cGNo+e/Zshg0bZrkHfFFR0KLRtWvXsO1du3YN7Wss9l/+BKJ9qOvdcPqHvFnJi0i16aI99PVjVxSFx3Gpa1i3ZlYDy512PdVb6+PdrMTLmQlAtT6btk6b/rzacVq0905rEYvUhWPdmlkNhLKR21Ib96a9N9rjVLTWOi3qdu19M8tiNXut9n41E/qRjtUjyTI+SUIQXBHH2djY2NhYZ8aMGXzzzTe88cYboW3vvPMOGzZsYOHChS23MANsC10CUF2cWquNtuAtxF48ONID3IoFKJIwqN46LcwVqo5XRaA6Lmh5NE+oUMMvVdefFs+XM7npyucN11C9dRrJZ4Xv069XkqWwdbz7zq1IssS779zK2KueM5xX7/bW1urTj4nmIq9f0zRuHp/HlPGErlX9V1+exKqVTXuMak01c6/rxaJZB5B6w50dEmtjY2OTCGbOnMmaNWv45JNP6N69e2j7hg0b2LNnD+3btw8bP2nSJEaMGMHHH3/cYC7VLXvo0CFycurLUh06dIgzzzwzIeu1LXQJwMiKY5a5qLfiaTErVhtPbTozVi7tx4qihlY1bfyYXgCp1jMj61xtoJaDVYXsrzwQ9nXklDkNtpntM0IVbSuX9mPZil+xv/IA2/49yXS8/jqsFjOO5PpWj12usTJeMe5Zlq+ezvLV0/HKfip8lciKHDpmzCVzY1qT2Xsdk8tdCVroJEWx3a02NjY2jURRFGbOnMmqVavYsGEDffr0Cdt/33338fXXX7Njx47QF8Cf//xnXnrpJcM5+/TpQ3Z2NuvXrw9tq6ioYMuWLZx//vkJWbf9178ZMIqh07JuzaxQhqq+xIVRIH+0shvqfHqmjM9rUFpDu0/dro7RluIYPW5hqD2Xlmp/DYVVRVT7q/FK3pi+1n2ygCm5b5mK3+devZLnXr2Swxtu4/CG28i86Emm5L5leM3PvXpl6NguA24Nxur1nRzmXtWiF1Vm5WHMRN7gc6fw7z3/xz++f4u/rJkRGrer9HtWLu3H4EBhg/Po5zbarhX6ZkJQ755WUKjyV1HpV3A6UgzntrGxsbGxxowZM/j73//Oa6+9RkZGBkVFRRQVFVFbWwsErW0DBw4M+wLo2bNnmPg79dRTWbVqFRCMf541axbz58/nnXfeIT8/n8mTJ9OtW7eItetiwXa5NpKJ1yzG6UyKyQ2qH6t1beqbz1uxzumzNM0SI/RJB/quBvVrMS55oq5NLTuSevZiZEVGFEV67V1E6tmLw8bXfDG9wTYttxpck3qda1ffHpqj74RVpnOoY68Y/ywQvAd5t7/PCTcV4hrYjjlLRvH99ucaXI+ZaFIxKneycmk/7sg7g3JPGQFFYnfZHoZ0PZNzRz3GlPGZrP9lI1sKtzJn2TC2fxnu9rXy86G33poVQlbFIgQ/SfokP2WeSjxyEmmuJLuosI2NjU0jyMsLPhcvvvjisO0vvfQSN9xwg+V5CgoKQhmyAPfccw/V1dVMmTKFsrIyLrjgAtauXRu1HIlV4rbQ7dmzh7lz53Lddddx+PBhAN577z2+/fbbhCysrbDqn9PDXmsL3aoYWWn0+/VWl2gWIiOLnVYIqIV2zTCz1GnbiOnRrjFtaB4KQeuQgIBw5jMIgkDNF9MRBAFBEEgbmhf6Xvu1fM30sLIi+utbt2YWgiDwxdvB+iSCIHDF+GfrRFtDglmt4cJ3uzOHF2d/wNDC5/jV5X82vQ9ai5iR4NLumzS1gE7JHVGA/P++SPeME/j5q3+R7kpj2epp7NnxBp0P7WHBlP9aTnawivb6tG3BAHySlzJfLaKYEcx8tbGxsWmlpCRn4BCbN3nLIbpISc6IPrAORVEMvyKJOUVRGlja9McIgsDDDz9MUVERHo+HDz/8kFNOOSXGqzEnLgvdxo0bGTNmDMOHD+eTTz7h0UcfpUuXLnz11Ve8+OKL/Otf/0rYAls7qoVOzR7VtoPSBuVbebgb1SXTW4qsWnuC511ouO+tecauWrXYr761lnbOIEFh94dxQeubVkKsKKovU2KGvsl9w8zU4H1Y+eLFrFszqy52L9yiNjhQSMYl/8QnK6Q5RTJcAnArECxgXHzqs/Q+fQ9rfCMp/2A2ZqVczDBLqtj2+RL+Z9QC/vXd+3h+2Mi1o5/AKYTXfbMa83j92EW88u5tltainRcIWUoB/HIAT0BGFOyWXzY2Nq2bdmlZ/O+E5+xerk1AXILuvvvuY/78+dxxxx1kZNSr3ksvvZTnnzfObDwe0NZHM3LZAcx9voL5M9s1sLCZude0c+n3RYrF0mNFBGqL/WrH6+vEqdtzs6eTAVz/UD8mTV0aEhjaunR6a5+2xluk9agCOVhMdzGr3lYo9crUBBRqAjKVfpmSqkBdTqeEQ4D+Q58h2SHwX7+Ct8zHwZoAInDFJc8AdxjeN7M4xEgW1n+9Pyf0/Rvr7jG9BrN51S4UWjFn9H5rra3qmPk3fdyg16tSZyvVtzizsbGxaY20S8s6LgRWcxOXoMvPz+e1115rsL1Lly4cOXKk0YtqaxhZZPTWuKCLU20u/yBgXmZDv037Wns+o3VES8AAa10f1HOr5U30VjI1W/aqS+YBb/D7K54Jxe5N0dWQg4aB/EYi1gizeD712J6DnwZAUqA6oFAdCEq8YN6pgqxApb8+C1X7fmhr2qnCycgaCvVWRbPyItp1RROqMK2BqDTLdtVv205OaD3LVk/j5nGLcTvcpDgdlHk8KEqGbaWzsbGxOQ6JK4auffv2FBYWNti+fft2TjjhhEYvqi2hxtBZjZHSxq2pWaRGYk5FH8MVCb1FTWsZUy1ekeLqQNtiK3jMrx7qZ5pQsHJpP66/9g0ee/ESJkxc2mDtKmqHCCD0r5lbMlrsn34NIwrvpGOSiCuChvFJSmhu9cuonyrU3zPt+6SKJysCNNL79OyK8WFr11+L0Vxm21RrsCAIOAQRhyigylgbGxsbm+OPuATdtddey7333ktRURGCICDLMp999hl33XUXkydPTvQaWzUvr50NmFtZ9ALCCG0ihZF1yChbUi8cFv19XNhrffP5aGi7Q+iZNLXAsGTJe6tva3DN2oLF1VvrO0Boj1fFklFSxsql4QIy0jWogvP0jkmcd/BOk1ECPrmh9dRMdKnrVa1x+vUYzRPNaqfy7ZGdQPB+vr7yhtD3+g4XRtepjeXTfggYPW5hKGBXEOykdRsbG5vjFUHRl/i3gM/nY8aMGbz88stIkoTT6USSJH7729/y8ssv43Ac+83BKyoqyMzMZP7S8SSnNMzY0caAQcM6aFr07kiAAWffwM4vXg6bT4tW4LlPGsG4E8eQ+z+vhMVo5WbXCymt61CPFeGnFZfa63r5jWtZ/dFDUeP21B6x6rVGE5xWYv70YydNLaD3kKdRFBCQKffso3TXC6FxepGsP4+ZIDYTbJHmuubxTkg//gf3yReS5kqlsKqQ/5vrMZxLvZ+RxLz6nupZubQfr705ma+K91Iu5ZDiam/pntnY2Bxf1FRVcsP5p1NeXk67du2a/Hwej4e9e/fSp0+fhJXlOB6J5T7GJehUfv75Z7755huqqqoYPHgwffv2jXeqNkckQdd/UA678sNd0kZCSmX0uIWsXTOLb47u4kjtEUZ0G0ZloJo3v18Fez8PjdMKnLvyzmRkj4v4ufIAnx7czKCsgXz+2aIGcV/q/EZJDvo1WEU710uv/4Ybr/uH6di35gWte1atWKp4iWVdRsLK7DxaMapehzbOTyucos1nVXRacZWr1639AGAk4IyOffH1X7OtuBAcJ+J22H84bWxsGmILurZJLPexUZ0ievbsydixY7nmmmuOKzEXDb2Yi/TQV2Ozlq+exomZvTg3+2wcooP2rgzGnXhFgzkmTS1g5dtT2bvjHyxfPZ0vDm2n+vsN3D15Xf3+pf3CXJ/6UihqnFw0sWRmVdRez5qPH454vCrm1E4U+h6yeqy4io3EYbRkEO21669DK5y05UDM5otUliRSRwoz1DHqz8KkqQWhGLlognHS1ALe/Xg+AVlEFI59y7iNjY2NjTGWg27uuOMOy5M+88wzcS3mWEX7wNZb6kwtd4JAt9SuYRYjdZ7X3guW4Hj737fwt3dnNzhUXyZEa7XTWn708WF69JY9IyJZ2rTJFbnZwRp3kY7RnzvaOY3WFktpEnWf/j3Qlp8xKyljNk8sls5oaK/DLMNZXZ9LlJCVANC8BTttbGxsbFoHll2ul1xySdjrbdu2EQgE6Ncv+KD5/vvvcTgcnHXWWWzYsCHxK21lRIuh06IVZVrxoNZrU4Veua+SrYe2keRwc3rngbRzpwNwxbhnG4iUtWtmAepbJ3BFnfi6eXxeg2pkWhej1g1rRmPESSTrlVXMSpWYnceK6zMWt6yZaDJzt0Y7vxUrXbxo19DptP9HqqujXbbExsamAa3J5VrrK8EXqG7yNai4nWmkuDs22/kSSSwuV8sWuo8++ij0/TPPPENGRgavvPIKHTp0AKC0tJQbb7yRESNGxLnsto1Z0DrUu/T6Dwpv2aTWg5syPthG68fyfRRVHwpmDitKqOm6Khie+ftYPtsUbGN1xbiFPPPqFXz2WbAd1qSphLZD5CSM4Hhz4RV09S2MdskxzanutxI7F01sqgTHN7znZpY7/Rxm5Ui0NefMRJyRmDMSokZibnCgkAHdc0IWy2gYJWFo3eiqa/YPC73WJrSxsbFpIWp9JWzc9XCdR6F5EAUnF/V/0LKoW7BgAW+99RbfffcdKSkpDBs2jMcffzxkwIJgn9eNGzeGHTd16lSWLFliOq+iKMybN4/ly5dTVlbG8OHDycvLS1jIWlwxdE8//TQLFiwIiTmADh06MH/+fJ5++umELKytYSWAfUTvB033LV89jb0V+/ip4meq/TV4ZR/l3nIkWQo90H8q/zns4f727tWsXNqPzFNHhW3Xijl99qTWDRqrFU0rTszKdUwZn9dgnPpvpPOpIsoss1R7DvVfrevY6nlWvzOzwXn18weLP9eXBol03dr7ropDo36+RkSLJ9Rfm3YNeoLbPNRbbW1sbGxaH75AdbOKOQBZCcRkEdy4cSMzZszg888/54MPPsDv9zNq1Ciqq8PnuPnmmyksLAx9PfHEExHnfeKJJ1i0aBFLlixhy5YtpKWlMXr0aDweT1zXpSeuwlUVFRUUFxc32F5cXExlZfP1Z2vNqEJBGzdnFEOncsOVi3hr92pG9r6Ur7YsZx+fkz3wKg5UHuTOvDMp95bjCXh44pXLOfnHArZl5UD+jzz04h/ISc/mr/wUEhdTxtcLOW1fVqO6atHQisFIdfDCkw7MO2YY8dY84zp90WLfzLYZ7fv9mD/zt/dmM/6q54F+IQGmonUxq++R0TzRBFZQ1JouG4Dtzhy266xzWnFnZrnT3n+jez+29AU2dPkTTtHu6WpjY2MTL2vXrg17/fLLL9OlSxe+/PJLLrzwwtD21NRUsrMtfDInaJ1buHAhc+fO5eqrrwbg1VdfpWvXrrz99ttce+21jV53XGVLJk+ezKZNm3j66ac555xzANiyZQt33303I0aM4JVXXmn0wlo7VmLojMqX6FHFQ0CROFRTTOeUjhTXHuXdDeHZo1ePfARJkWiflEmJpzRsv1lNtcbEsZkRyXIWKS5NP0ck12tToF3flZfNo1tKVwRBsFSqRO9O18fU6ccatQizgirqtIIuUv1Bo+vrfNr9pLg62ILOxsYmjNYSQ1de8wufff94k59fz/BT7iUztUdcx+7evZu+ffuSn5/PwIEDgaDL9dtvv0VRFLKzsxk/fjwPPPAAqamphnP8+OOPnHTSSWzfvp0zzzwztP2iiy7izDPP5NlnnzU8rsnLlixZsoQxY8bw29/+ll69etGrVy9++9vfcsUVV7B48eJ4pjxm0Frg9GJOH0MHQavdstXTcAoOuqV15aqrFnNCWg43j8/j5rpSHwBdkjuRk9qFFEcSJ6TWfyLIHftnHn4x+IkhN5uw9l5WWmhFQ2v10lrntC7b886tb3+mtd6ZWbIiJSFo9xmJvkhdJqxcB8DWom0sXzM9bB6tONPG2IGxO91onYMDhWEu7XiJ5oo1u48rl/ZDlqtQbLerjY2NTUKQZZlZs2YxfPjwkJgD+O1vf8vf//53PvroI+bMmcPf/vY3fve735nOU1QU/KTetWvXsO1du3YN7WsscblcU1NTWbx4MU8++SR79uwB4KSTTiItLS0hi2rL6BMgtKIukrXuQHURmUntWP7G/1BcewRREHnrg/sBGHbBLMr8FXRwZ3LUW8qhmqC7++rLH+FXVy9h6euTgg/5wc+ELE6NETzRRJWez7csRnWz6q1VarkSveVKXZ+a6WuUhGFm5YqUgGKF3u17c7jue22JEj16d7mREB0cKGTuixcH9021tnbt/FpUy5yRoNOKafW1kZXQIVyIrPgRhSTD89vY2NjYWGfGjBl88803fPrpp2Hbp0yZEvp+0KBB5OTkcNlll7Fnzx5OOumk5l4m0MhOEcczqst1/0+7eWPjPQ32RxJU+gf5H8Yt5v/2reOEjG58/PMmTus8gNpADYe/XcO5w2/lq0Nfc363cymuKeanip/JTG7PoerDDM05i9pALZ/88imndR5A19QubN0c3upKj1mh3JVL+1kqF2J03KSpBdww9lncDrfh9WkxEmPRyoZYmSNe9HFpZvXeIq1TFXWRjte7SWO5Bqvua3X+TqfdS6ory3a72tjYhLBdrrG7XGfOnMm///1vPvnkE/r06RNxbHV1Nenp6axdu5bRo0c32N9qXa6XXHIJl156qemXVRYsWMDQoUPJyMigS5cuTJgwgYKC8Afhnj17mDhxIllZWbRr145rrrmGQ4cORZ37wIED/O53v6NTp06kpKQwaNAgvvjiC8Oxt9xyC4IgsHDhQstrV3l5bcPCvlDvSlW/tNv1/GXNdAq/+TdfF39Dp5SOHKwqRFJkACq8FSgofPTJE3glH0drS9j/9Ur8ezbxn08X4gl4yDjwLT9/9SYf/LS+gTtUj94dqnXPasWc3tWqRW8dAnj53dsbXKvZfYlGNKtgY8RctOxe7fVqEzrMy7v0Y+6LF4deW3Era6/BSqarUbJHpMzbnl/Nwi/XRp/YxsbGxqYBiqIwc+ZMVq1axYYNG6KKOYAdO3YAkJPTMLQKoE+fPmRnZ7N+/frQtoqKCrZs2cL555+fkHXHJejOPPNMzjjjjNDXgAED8Pl8bNu2jUGDBlmeJ1pqcHV1NaNGjUIQBDZs2MBnn32Gz+dj/PjxyLJsOm9paSnDhw/H5XLx3nvvsXPnTp5++umwMisqq1at4vPPP6dbt26x34gYiCZ2cgZezdHaEry7P2FP6R6O7nwXgF1fvIJ39ycAJDmTQkJPZcj+V+jYfwwAmW7rn7pUwTF63ELDGm2RxIx+2/nnzbB8Xi252fXN6c3Wp2LFjWyUUWtUN87IqmV03SrRsm3n3/Qxb82LngRhJAqjdc/QZxdHsxyuXNqP7c4ccrb9AVmRoq7JxsbGxiacGTNm8Pe//53XXnuNjIwMioqKKCoqorY2+EF5z549PPLII3z55Zfs27ePd955h8mTJ3PhhRdy+umnh+Y59dRTWbVqFQCCIDBr1izmz5/PO++8Q35+PpMnT6Zbt25MmDAhIetOqMv1j3/8I1VVVTz11FNxHV9cXEyXLl3YuHEjF154Ie+//z5jxoyhtLQ0ZCIuLy+nQ4cOvP/++4wcOdJwnvvuu4/PPvuMTZs2RTzfgQMHOPfcc1m3bh1XXnkls2bNYtasWZbWGkuniKZixIg7+KVyPxmudPp37Mc/193LBcNnMXvye3HNF6mQrtHYxqLvRhFJtOi7bRjVoDMjFsuZ9hgr6Gv+GaG/rkjuVqvnNSoyrKfTaXNIdXWyXa82Nja2yzUGl6vZ38yXXnqJG264gV9++YXf/e53fPPNN1RXV9OjRw8mTpzI3Llzw+6tIAihY6C+sPCyZcsoKyvjggsuYPHixZxyyimma2lyl6sZv/vd7/jrX/8a9/Hl5eUAdOwYrObs9XoRBIGkpPoA7+TkZERRbBCgqOWdd97h7LPP5te//jVdunRh8ODBLF++PGyMLMv8/ve/5+677+a0006Lujav10tFRUXYV6K52cACpWa73jx+MTePr88gnjI+j25p2QgInP7LX2nvbsfKpf3o3/GUBlYnq+LLzIqlJ1GlRaq3Gnd5MFqTaknUFhSOtpZo4ihStmgkl7OK2hd39LiFoWLE+vm182itjGbWRv15zVzeVmL9jn67AE+gEjtM1sbGprXgdqYhCnHlY8aNKDhxO60nbSqKYvilCrMePXqwceNGjh49isfj4YcffuCJJ55oIJS1x0BQ4D388MMUFRXh8Xj48MMPI4q5WEnoXd28eXNUBWmGUWrweeedR1paGvfeey9/+tOfUBSF++67D0mSKCw0zxj98ccfycvL44477uD//b//x9atW7nttttwu91cf/31ADz++OM4nU5uu+02S+tbsGABDz30kOE+o4zWeFius9qEP/SD7cD+d9zzOAUHABnOdPbu+AcjxwWFnioojAQKxFabzsjNt3JpP+Y+X8Gu/FivzJgVReGxe0Y13Iyshvo1mq39rXkFrCiCNe/M4KX/uy1sDn3GqNGcVur6accHhWa/kNDTZ7Tqt1lJENGvWbsOo9p/egE46shDrO/yKG5HfL+XNjY2Nokkxd2Ri/o/aPdybQLicrn+6le/CnutKAqFhYV88cUXPPDAA8ybNy/mhUybNo333nuPTz/9lO7du4e2v//++0ybNo29e/ciiiLXXXcdO3fu5JxzziEvz9jK4Xa7Ofvss/nPf/4T2nbbbbexdetWNm/ezJdffsmVV17Jtm3bQrFzvXv3juhy9Xq9eL3e0OuKigp69OjBm5tuJjXdHdquF3WRapmZMe7SeZR4SxEROSmzDz9X7ScgBzjqKaHSV8UZWYNo50qnJuDh97/+W+gh/8qbuUiyRJW/io2bnub6sc9S4i2lU3JHxl/1gqFFKpq1p6nJzYZfPRRZxJhhJDi113DB+bfz6eZnueHKRbxcJ+isCFqzEi76MbFm7Krr03cOUUuiRBOrZnObuXPV7R37zyDF3RNRcNjuVxub45TW4nK1iY1Y7mNcgu6GG24IezCIokhWVhaXXnopo0aNinnBVlKDjxw5gtPppH379mRnZ3PnnXdy9913G47t1asXl19+OX/5y19C2/Ly8pg/fz4HDhxg4cKF3HHHHYhivcdZkiREUaRHjx7s27cv6prVGDpV0O3KL4y7nMbIi+/j0/2bSXOlcXTXu0i9zqZrWhf2lf/M2TlDKK4uZmDn0/js4Of0ateTwzXFnJtzNlsKt/LyHb+E5nlrXgEvu89iYNYA9pT+yKCsgfxc8TNj+4xiwtVLDC1OWtGgtTQmyupoFSPhq7dIGRGPCI0UU6ed08yCN/+mjxk68W3TjhCxlELRHqMfE0usYLT9nU67n1S7g4SNzXGLLejaJrHcx7hcri+//HI8hzVAURRuvfVWVq1axccffxwxNbhz584AbNiwgcOHD3PVVVeZjh0+fHiD8ifff/89vXr1AuD3v/99g4SK0aNH8/vf/54bb7wx3sth076H6T8ohxG9HzQUdmbWum2Hv6Z9UiYeyUPWaeMorinm9KxBHKkt4VD1Ybqnd6NrahYOQaRXu+7sKfuRUk8pL9/xS5hw+KTr/9Cu5ggFX/6N3GxYur+M9APfMmHWj1HrooH1IshNgWqlWrdG65IM/mtUdDgSU8bnIckSBSXf43K4+ejT8CQdM5EYSRDVx74BzAq5V43Qi2Wrlje9mIs0p1ktQbPrkOUyFDIRcJheo42NjY1N2yUuQXfiiSeydetWOnXqFLa9rKyMIUOG8OOPP1qaZ8aMGbz22mv8+9//DqUGA2RmZpKSkgIEs0r69+9PVlYWmzdv5vbbb2f27Nn061f/QLvsssuYOHEiM2fOBGD27NkMGzaMP/3pT1xzzTX897//ZdmyZSxbtgyATp06NVi7y+UiOzs7bN5Y0D6AN+17uME+bQLAzeMXs3z19NDrkp3vcsKgiXRwdaR3Zi+qfJW0c2dwXs5Q0l1pfFdSwBFPCb3b9cQvB1h5Xykr+ahBPNXi106md0ZPZt1VSI/nB/L1ozLDrvrW1NWaCHKzzZvJx0qk5INoBY9zsyFtaEMXvCrmtOtUhZG6TX3v9OfQujG1BMc1jGMzE3GRrlFrxTNKlNC6ZI2OiZbtWi/yXsA16I8kOdJtK52NjY3NMUhcgm7fvn1IUsMaV16vlwMHDlieR42Bu/jii8O2a9N8CwoKmDNnDiUlJfTu3Zv777+f2bPDi/nu2bOHI0eOhF4PHTqUVatWMWfOHB5++GH69OnDwoULyc3Ntby2WNGLuAb7snIYEWHcFb0uQ0AIPmwVQICspGAQZ8/07oiCQJ+Mnowdv8jQwvTe6ttRD500tYBf8gsYdlXDB30siRFWSJSYUxk9bqFhXbpo615RBOiSDhrs17ByaT9Whl6p1sGGwtFoPjXpwWoJlMYSXEPDzN5oLnT9+vyBEtyOVNtKZ2NjY3MMEpOge+edd0Lfr1u3jszMzNBrSZJYv349vXv3tjyflfC9xx57jMceeyziGKOYt3HjxjFu3DjLa7ESNxcL/QflNHBbmsXXNRANQv2/2tprKkbFb8U6q8tygxg0lbnPVzCid1AcaK1U27KaN17ODFVU6bNB1X1W0B976QV3scHE5aoXYMtWT2PS1NjW3BgRZ8WiZzZeRRWhRpmvests7/w5HBy8jCRnetxrtrGxsbFpncRUh27ChAlMmDABQRC4/vrrQ68nTJjAtddeywcffMDTTz/dVGttc6iJBSN6PxiXWNI3h9ejPrBVi5Z+jCrYICgId+UXhsaoomZFUfzrawrU9am13VSMarGBcUcJFfXjwuSxCxucx0hAqfdKW9LEjCnj8xptkYsUMxftfNqadpFcrep+tYOET6qw69LZ2NjYHIPEJOhkWUaWZXr27Mnhw4dDr2VZxuv1UlBQEJNV7HhAFXX9B+WEvrTbox1rZKFT0Rbd1WZDav9VrW96sZebXS8EI7mLmxNtfTitSKlPmJgVqrNmJLhys/Ut1uqFy6BzbjLsm6oVb0YxeI0lN1ubUGFcVFh7Ler6Vdev9n2bMj4vFGunbtcKdKP59IwtedpuCWZjY2NzDJLQ1l/HE2rZkv0/7earkj+bjhvR+8HQ99Vbp5E2NJggsS0rJ1TqJBKb9j0cNk590OuD4Vcu7cdb8wr41UNq8d/IFjfV1doYy5yaVJDIxAiIXoLj0gvuYsbvV4dtU8dfesGdKATd+aWeMjqmBBNNSn3lbDv8FT9/9abhufQZomqRY6N4PiBUssRorfo6cyqxlrRRRazZ+cF6PJ+6zsGBQvafuYxkZ5qdHGFjcxzRmsqWVJQUUltd1uRrUElJa0+7jtGNKK2RJilbsmjRIqZMmUJycjKLFi2KONZq94Vjgc0/P05qupsRvR9sYOnSijmwbgHatO9h09In+oK22nipFUWEiTmzWnL9B+WwIr+Q/lmWlmOIdg1FJ98NRU/GP1kd2k4HeoGl7rt8xL3c8ru3Tct0bPj0aUZdeB9eyYekSICCpEgc9ZSi0PCzi5nw0VrIjLNc6483E6DqPYpWn9BMEE+aWmB4fnWf1uKnLe0SqXvEdmcOmVIlyTG0wbGxsbFJFBUlhfx1/kSkgK/Zzulwuvnfuassi7q8vDzy8vJCsfWnnXYaDz74IGPGjAFg2bJlvPbaa2zbto3KykpKS0tp37591HlfeOEFnnzySYqKijjjjDN47rnnOOecc+K9rAZYttD16dOHL774gk6dOkWsFycIguWyJW0ZfWFhPVpBprW0aEWfKrT0D3wjd6xeHBoJBKPjIhUJNkrcaEnMRJyWm658nhf/b2bEOnI3Xfk8Rz0lvL3+wQZjrJxfP59+bUaFg83i4axa5SJZOaNZcVW01lujoszqGgcHCjl81is4RJeleW1sbNo+rcVCd+iXXfz9yaarOGHG7+5eQdce/S2NXb16NQ6Hg759+6IoCq+88gpPPvkk27dv57TTTmPhwoV4PB4A5syZY0nQ/eMf/2Dy5MksWbKEc889l4ULF/Lmm29SUFBAly5dTI+LxUJnOYZu7969odpte/fuNf06HsScESN6PxgmuvQB/Zv2PRwSc1oLmjZODiI/vJetnhaawygeTEUr0tRCx0ZiTvtvayJSgdwX/29mg31aCxSAKIi8vf5BBp11Q8TzaBML9BidO5KYM4qDi6driBHR5tGfy8yNrF2jX/YmZG02NjY2xxrjx49n7Nix9O3bl1NOOYVHH32U9PR0Pv/8cwBmzZrFfffdx3nnnWd5zmeeeYabb76ZG2+8kQEDBrBkyRJSU1P561//mrB1x5QUofLwww9TU1PTYHttbS0PP9w6AuybG61gA2PBpAo+vYjSjjVLUNBuX7Y6GIOnTbTQZtRqv1ePNRobiZYQetFKeGiL7+oL7WpZvqa+aPNlI+7mxiufY+DQ/w1tyx3zjKkbUy8O9fObdYEwW3Mk4R1pnx4r4lBfn87sWrY7cwhIlXa2q42NjU0UJEnijTfeoLq6mvPPPz+uOXw+H19++WVYhypRFBk5ciSbN29O1FLjKyz80EMPccstt5Camhq2vaamhoceeogHH4zN1XWsoQqpEb2Dr4cUT2NFfiFgLnZjEVmRxmqFn5k4HFJcGMp+1c+nWvLMXLFWEyAilVuJRKRkCKPSJWbxaxMue5g9ZT+iFvXrkNyBjgPGoCgyK967o1FriqVcidG9GhwoZLszJ2yf2T3V3m+r9zJSD1x17SU7n8I16GGS7Fg6Gxsbmwbk5+dz/vnn4/F4SE9PZ9WqVQwYMCCuuY4cOYIkSXTt2jVse9euXfnuu+8SsVwgTgudoiiGGXJfffUVHTt2bPSijhVUQZU21Ny1Fw+qe1cfV2cVrZjTzgdEtODFks0ar7tRPbdR8WQIxonFci8FQUAAspI7MqLb+YztPdpwXCLfn0QS6X4b3SMzV7H2GPXLHziEJAcSt1gbGxubY4R+/fqxY8cOtmzZwrRp07j++uvZuXNnSy8rIjEJug4dOtCxY0cEQeCUU06hY8eOoa/MzEwuv/xyrrnmmqZaa5tBdb/GK7iszK/9NxJWhJ8+vk9vncvNNu+VGoloiR5G7MovjNiXVM38VDGzlr29/kEEBEQEBEHE7XCzs6SA3RV7Y7qGpmC7MzHu7EjuXiOXtH5cya4XqPUftV2vNjY2Njrcbjcnn3wyZ511FgsWLOCMM87g2WefjWuuzp0743A4OHToUNj2Q4cOkZ0dQ+xNFGJyuS5cuBBFUfjf//1fHnroobDWX263m969e8ftYz4W0QouvagyKnMS79yRUGveadcQ6Vi9+7X/oBzS6ta6Kwarm5q5q53PLAtXj1Hv2UlTC3RtwayvRQD8coDDtUc46ikNrU+LFYtitPp48RDLnFYtpEY1CtXXDc/9BM5B80hyZNh16WxsbGxMUBsoxIPb7eass85i/fr1TJgwITTf+vXrmTlzZsLWGJOgu/7664FgCZNhw4bhctllD/Roy4RoRZwqovTxa40Vdmao82rPpZ7HyjnV6zCrhxcNvZhrDKpA0XdHgMiCSEFBqIuhK/WW0T4pE5fDTQkNOzDEso5EcM6whQRkhcsuctAhSeRf70f/pVaLOKvfazEqZqytTaeij61bubQf0xcdwEcP3A672LCNjaIoKMjIioQoOBDqHFn278bxw5w5cxgzZgw9e/aksrKS1157jY8//ph169YBUFRURFFREbt37waC8XYZGRn07NkzFHZ22WWXMXHixJBgu+OOO7j++us5++yzOeecc1i4cCHV1dXceOONCVt3XEkRF110Ueh7j8eDzxdeILA5aty0VrQiRiugVFSB1dTttiLNb7ZPK/TUGnW78s3FnFZEqOO1/yYSM+EWWWQFXYm1X8wg9bQ/8tOOfxqOSlR5kWgMDhSiXPAG5T6Zotpg+60jXhmXCOcOW8iW/8yKOodeyOkzZbXFjMH4vukteItvg7fmFfBx18cQcdoPLpvjEkWRCcg+ZEVClo/ipBav4kIRkhCENJxiCk7Rbf9+HAccPnyYyZMnU1hYSGZmJqeffjrr1q3j8ssvB2DJkiU89NBDofEXXnghAC+99BI33HADAHv27OHIkSOhMb/5zW8oLi7mwQcfpKioiDPPPJO1a9c2SJRoDHG1/qqpqeGee+7hn//8J0ePHm2wX5KO/V6RamHhb3cXcELHTD776ZGY5zCy4LUGtMIulsLDVsVcpGLHRkTrtKBH75psqtZkgwP1a+95xUq8koJXUuj2/W2Gwmt7z2eo8hv/uglATqqDfpluXnl3uuEYI4yuTd8mDqL3elUtd7cuvgGH4LIfWjbHFIqihHoYi4Kjwc+3oij4AqU4OUyXHQ+HxbkOGTqdEo+XioATQeyAy5GOS0xGUrwIOBCFtvEhqLUUFm4LnSJaE7EUFo5L0M2YMYOPPvqIRx55hN///ve88MILHDhwgKVLl/LYY4+Rm9v8VaCbG1XQjb96GYuWjGPlBzNjtkpFi2nTCqtoblIr8XHqOKvuUK3FTcWou0Ss121VJMYq5LTkZsNX3a7nm22vxHV8NAYHCpGHv4FHUggoCrICshK0CToF6JLi4PPPZoXGnz98IQdqIn/QEQUY1MHN6vW3Wl6HmVjVWk/1Vjp91wst82/6mKIhL9mWCJtjBgUFSfbj8R1EUhTSkk4I+9ASFHsyVd6fKf/uecM5rr70IQ7XlFDh81DilZBIQlG8SEoyKe7uiKIzFN7RWmktgg7sXq6x0CS9XLWsXr2aV199lYsvvpgbb7yRESNGcPLJJ9OrVy9WrFhxXAg6lcl3bWVn0VfkZoOjx1y2/jLf8rHahIVoRBNqkfZr4/bUIsNazMSiUQFkvbjTE81Cp3fLNlXrsRVFMLBb4ucdHCgk6aJ/cKhWQvLJhmMCChyskeh71jOcc+AOVhTB5s9m0XPw0xHndgiQ7Ij9oaBmIGvFr7btnFFHCzNX9dwXL2Y+N7L/zMW4HemG1gwbmzaFAt5AKR3d1XgkP9W+AC5HFi5HGoLgQFYkanwHTcUcwL83zAPgutFPUOWrxi/78Uk+fqosozxQQYqrI61cz7Uq2nXMabMCqzUTVx26kpISTjzxRCAYL1dSUgLABRdcwCeffJK41bUhVhTBq+/OYPAJc4FwK5SZaNmWZS5oduUXBjNL68qI6L+MGFJsvF0tN6Luj7WcirY2Xf9BOUwZn2cq2qyINCvFi6HxsW2Jts4NDhQSGP4GhTUSkgW7tldW2Nr9mdBrZ5Q/+KlOkTctJEdAfSkZaFhORtvSLJJlziwucbszhyW3/hOPfz9+ubYuSNwubWLT9lATHAKyhySHg94ZHSndtYTD3zzCga/u46Kiu6n1/ULZrkWW5hO/uofstK50zziB7hkn0C2tHYJSgqT47fI/Ni1OXC7X008/neeee46LLrqIkSNHcuaZZ/LUU0+xaNEiHn/8cQ4cONAUa21VqC7XNzfdTGq6OyRO/mfU84iCwD/XzQiLE4vHHavPxIxH4GiPsxLbFo3GZL5GQitOEjF3ouPmBgcK8Q17nUqTGLhIdE9z8p9Pbyc3GzblmFvpeqU72bTpdtP96jVpEyHMrtGoU4dR7BwYu15Vbnn2IgQxhySnXdbEpm2hxs35A4fIcFay56vlCfu7MGV8HoqiUOYt47uSnzlQm0KquxuiEJeNpFloTS5XG+vEch/j+um78cYb+eqrrwC47777eOGFF0hOTmb27Nncc8898UzZZinYWRQmhP71/kzyD85n0uXPM39m8JfGaryaFn3/VSsY9QY1E3NGVjor54n3OCO0600bmseKoubLOI2VAd1zqAnE9wm82BOMnYv0IHGJ0DnZYbhPe5/UB5L6ZUb11uB9tFKSxUzMASy5fSPIB/HLHtsCYdMmUBQFSQ7gDZTjD/zM4W+fYc9Xy4HIvzM3jVts+Rzq36kMdwZdUjMRlCpkxe66YtOyxCXoZs+ezW233QbAyJEj+e6773jttdf46KOP+PbbbxO6wLbKzqJHeWteAWd3f8DSeK0osuISNRJRsXzyNIu504pIo3MsWz2tgegys+xp59CKEnWbdr2tVcip/HDiQktuViN8ksLQYQvJzTYPs2nnEln1Qb27VW+FM6s/Z4Qq+tR7aiT0o6F1xXZKEvAFKmKfxMammVEUBUnxU+vbz+FvHuHwty+E7Y/0AefFNdOjjtGyfM10REFEFAQUFOzPOzYtTVwuVzO++uorhgwZclyVLZm/dDyDz+nZYL/qZp0/sx3/WnUbOw5YT5aIhF48qX981FZjWmGkPtgTWRMulmQGo/Ih2nivxvR7bapkCiNys+GL7s9QG6+iIyjkBECfRiEAGS6Rb/472/TcKkalUIwEXjS3UjTXq1HyRKcBd5LqzrHdrjatGlmRqPX9wtGdzzV6LqsfosZd8iDbiw/g5QRSnO1a7e+I7XJtmzS5y9Wmnn//ta+huFBF1NznK9hxYD4Dc+5nWC9r1jowt9JpPz1q46SM1qC17Jj1dLWaIKGO0yZHRCI3mwYZvOofRiMrX6R5tDS3mFPxNkLMQbCciV7MJYkCPdKcfPPf2QwOFFq2DKjo4+kai1GLsPrv7T8VNq0bRVHwS7UJEXMQHtYQ6fdszUcPk52aisd/BKXBb7mNTfNh/5VuJPc8VWlaJPfFR88LfT975npKvbJlMaJ3iarZrWoXAL2wU1/rRYH6B2nTvocN3axWChrr6+Gp6N2yWldtpAzeWNiWVZ9Va1VMJppEJldAsDRJt1QHp3Vw82ldssTQiW9TvXWa6fsH8Ym3RAk+BTs+yKb1I8lVYQW/48Hod0afSa7ny/8+R6bLiydQZcea2rQYtss1TrQu1+QUl2WR0a/r/fz+188xaWpB1GP0Qkpv1dJnMurbPlnNbjU7Z6RtsWLUHcKoHp36x9RKfT599vCQ4sKEiy8IWqnmv3QLR72N+/QtCrBv250A/O+Vi3EIgBAsR6q+b4nK8NVjdl8iJUSoTJpaQKf+00hJ6oMoGCdu2Ni0FOojTJK9CPJ+DnwT/Ps3OFAY1vEhXrQhDJHCGQYHCvlp0B9Jdvduld1WWpPL1VNVhN9T3uRrUHElZ5KcnkB3RjPSZIWFf/WrX0XcX1ZWFst0xwT9BmSHypaYCacXHz2Pm+7/HICCQ48C7bh29At8ddA8rk7bR9VsXq2Q077Wi4LGCDKrx2qvX1vIWEUr3vRWvSHFhQypi69TszOtkJsNK7T1/iwfGRuTphbQO8NFTcAXdxydUwiWL9lX9/qv/xfe3qspxZx+fzTRq4+lW7m0H/NvepADg5eS5EhvdQ8qm+MXtTRJrb+YMSVPsXN/IRd3z2FFEWFiTl/yx+oHv1jKnGx35jA4/4/sGfgnMpK64xDiqtt/zOOpKuLzt65Flpqv9ZfocHPer96wLOry8vLIy8tj3759AJx22mk8+OCDjBkzhpKSEubNm8f777/Pzz//TFZWFhMmTOCRRx4hMzPTdE5FUZg3bx7Lly+nrKyM4cOHk5eXR9++fRNxiUCMLtfMzMyIX7169WLy5MkJW1xbwii2S32tijmVuc9X8NXBuri6ng9ELRystWhFsraprlftQ33K+DzLblUId8HGWoBYLVy8osg881U7p3aM6tJIG5rXQAyaFUw2suIlyh27cmm/sPvY0S1yQpozrhgFlxisMfdJhBpzWnEeaywdhD+oIj2A9PsmTS0I+wIMEyPmvngxfqkM7ALDNq2EYEZrAI//AGNKngqJOKPkIZVovx969DF00Y7d7syh4rvnqPUfQVYk2/1qgN9T3qxiDkCWfDFZBLt3785jjz3Gl19+yRdffMGll17K1VdfzbfffsvBgwc5ePAgTz31FN988w0vv/wya9eu5aabboo45xNPPMGiRYtYsmQJW7ZsIS0tjdGjR+PxeBp7eSES6nI9ntAXFraCkRWvX9f7ae8WedlCQ3aj0iZ6V51RQdnmiDnTu1G15zWy2GkxE47RWqMZicZEFxQ2Ysj5C6kJyHglxbSUiVOAZKdApktks6anq1W07bysXpPeNQSxWSW07letuFOZuWgEstgDtyPNttLZtCiqmKv2HqD8u8QkQZhh9PsX7XdycKCQn89YRKqrU6v5XWktLtfKIwVsXX1jk59fz9DxL5HROXqIiRkdO3bkySefNBRub775Jr/73e+orq7G6WxomVUUhW7dunHnnXdy1113AVBeXk7Xrl15+eWXufbaa03Pa2e5tlKMhFXBoUfxb4su5vRUb51m6GJVM0gjWXlG9H6QXfmFppmv6hh1n9W6eEZiDswDiocUF5pa39TjjM6tHtNUSRLRLGTbNs/iu613MOzgnYwovJOcVAcZLpEUh0AHt8iIwjv5cdud7PzvHXGJORX1fbUqUPVxPrEKW32bMH1rsOdv20S37VMIyD7b8mDTIqguVq9Ugce3n3Fl4WKusQkRRlgVc+rvzMql/djuzMGhlBKQvfbvShtHkiTeeOMNqqurOf/88w3HqCLZSMwB7N27l6KiIkaOHBnalpmZybnnnsvmzZsTtlZb0DUhRhYkbR9T9Xu1Vty1o4NFMI0Eil5kqNmfRm7W/oNyQrFoRjFVm/Y9HOaKHVJc2EC86bNirYi6IcUNY+QiYSXxIdpxele31iKVyJIeRvzqoX786qF+bPlsFt/+dzYFX9zBV1tmN8pCmJsdfK/jncPoYROLuFMFnN79qrLdmYM3UISsHPuJTzatC0VRCMg+vP6DHM5/mJJdzzcYs92Z0+S/91ZiUAEO71zCpYfvxydVB3vK2sKuTZGfn096ejpJSUnccsstrFq1igEDBjQYd+TIER555BGmTJliOldRUfCHpmvXrmHbu3btGtqXCGxB1wTo3Y9awaG1KuktTL/+1SImjXo+otVKi2rBqd46LeyPzIjeD4ZET6Q/PmrCw7asnJB4M4u3sxKHZybQ1KLHWnblR7bOmWHlmEgxNEbo91tNTtDGnbUWEuFu1iZFGPV57fX1HGr9h1EUu+aWTfOgKAp+2YPX/wvdv7o3tN3o572pQy7MMPp7sHN/IYfy51HtK0RS/Laoa0P069ePHTt2sGXLFqZNm8b111/Pzp07w8ZUVFRw5ZVXMmDAAP74xz+2zEI12IKuCdBncQKGyQ5aduUXMvf5CnYWPkr1wOcbPETV4sFaV6m2ob3+vOq5zNyHm/Y9HLLi6cWWOr9RokS86EWdGiMWrb6Tfn2xJEKof9ij1XJrqQeAEWrLrpVL+8WVHKFFLVaszhPLnNoHkz5pYrszh15f30Wtv8x+QNk0GcF2WgqyIuOVKin6ei4lu/ISUoqkuVDX2uvru/D4fsYTKCMg28KuLeB2uzn55JM566yzWLBgAWeccQbPPvtsaH9lZSVXXHEFGRkZrFq1CpfLZTpXdnbwwXPo0KGw7YcOHQrtSwS2oGtm9MLOSOgVHHo0ouVHdYeqQfPVW4OB8+o8aiC9FiPLliqOVGGnHWNWiLglieT2teLmbWpXTCKZNLWArasmAPVu2FgZOvHtBnOOHrewUUIxPEboED6pxn446VDda9qv451Y7oU6zheoptZ/FI/vZ07YfkszrLLxGNV1vGnc88EPQfkPUvzNfPz+n/AGKlEU2f7ZaEPIsozX6wWClrlRo0bhdrt55513oiYr9OnTh+zsbNavXx/aVlFRwZYtW0zj8uLBFnSNpGCndfNOpCB+/bb+g4KxINeMep7+g3K4eVwwTs5onN7CpMZgaePkIsWrqfu0As8sGSHWUiZaNu17uMEcWkuhGaoLVD1eux4t6j3Tb1PRxpJpt7dWobfdmRN6L6MluhihJsiowhDChaIWbUC3EUb7Du38C92232zH09Whxnj5pFo8gVI8gaN4A2X45Vqk49QqExRnMgHZi0+qwi978EseArIPSQ4gKxKyItf9KyHJAfyyhxp/MYfy53Hk2wUc2flcA6uclYLYLYH6QVz7u+qoK8atXkPxzjwOf/MQtf6jKNiirjUyZ84cPvnkE/bt20d+fj5z5szh448/Jjc3NyTmqqurefHFF6moqKCoqIiioqKwpgqnnnoqq1atAkAQBGbNmsX8+fN55513yM/PZ/LkyXTr1o0JEyYkbN122ZI40XeK0JeGUH+hVUFllP2pbleL60LQDam3jJ2aHSxt4vsymA2rCi9tORB9pwW9cDErEByppIh6zJDiwtC6opUgsYLWlasVZUbuV6210ag+XbS16K2f2h6z+thGdb6W6BVrlVgLEJuNnzI+j62rJjSw4kHDGEJ9XToVddvURf9DiqtDqynP0NyomZeeQCkOSnHiJ9PtJMXpwifJVAckqgMOJKEdbkcmTjFY5uhYvl+KoqAgI8l+fIESen59l6GrNFHdHNoiwc4Sj5Hszm6WzhJ22RLrZUtuuukm1q9fT2FhIZmZmZx++unce++9XH755Xz88cdccsklhsft3buX3r17A8Hf75deeokbbrgBqC8svGzZMsrKyrjgggtYvHgxp5xySsS1xFK2xBZ0caIXdGBcg81IHBjt01uJtKKtdtDz1ARkuqU62fzzI6ZCZld+MGZKnyShou7THqudSxVX27JyTPu3JsINqxWIZtvVc2qtd/EISa1I07cJ25aVEyYo1QzZ1hRTp8foAai+ryqqKz6S+NNnr+rnMzrOzCryh4WXk5bUCwHhmBYpWrR/Nr2BaryBw3RO8tMzI5Nkh5tkZzLprjRkRcYjeSn1VFBUU85Rr4JfScflbI9bTAaM71drvo/1166grj8Y7xZMkpGUAL5AJYJSxVGDTFQ9kX4WI+07FhgcKOTHQU+QkZSDoDrMBBBMfi4aQ2sRdG2hU0Rros0IugULFvDWW2/x3XffkZKSwrBhw3j88cfp16/+wbFnzx7uuusuPv30U7xeL1dccQXPPfdcg/RfPQcOHODee+/lvffeo6amhpNPPpmXXnqJs88+G7/fz9y5c3n33Xf58ccfyczMZOTIkTz22GN069bN0tqNBJ1K/0E5oXZfu/ILw8Sa1jqkF3Fq6yutcDk1+35S82eajtMKE23JDqNxWguY1e4RqriKNl67jsZa8NRzqyJFW2DXTIyarQXMhaBezKrlY7TWztYo7vSFpCMVlY4HvWjUPlS1ou691bcxZvwiJk0toPNp9x8XVrqQC1HxIcs+JLmKZLGSHmlpnJCRRbukdjgEscEDWVIkagO1lHrKKa6t4IjHS63kRiYFp6MdouDC6z8KgkKyqwsiYqu6l+pjQkEOupUD5QhKFYIgoCDiQOLykuDPn/o7c6yLsUSRmw3vdrgVUXAiiqk4xVQcojvhH5Bai6ADu5drLDRZL9dEs3HjRmbMmMHQoUMJBAL8v//3/xg1ahQ7d+4kLS2N6upqRo0axRlnnMGGDRsAeOCBBxg/fjyff/45omgcAlhaWsrw4cO55JJLeO+998jKyuKHH36gQ4cOANTU1LBt2zYeeOABzjjjDEpLS7n99tu56qqr+OKLL2K6Bm0vV5Vd+YWmYk4VGUN07Whys4PWKOeQxex6dzpXjXyOjG9uheKZYZaj/oNyYN/DoBVpdaVHKAq3NlEngkb0fhB6h1u7RujEnV7c6MWfmUhSt1sRWuo+7b0wE2T0rn+tFShaoad9rZ1Hu84VRZCL8XnCXK+DcuifFW411RbqNXLTtjRTxucxetxCJk2t3xZLL1wjVi7tx0r6Mf+mjxk68W2WrZ7WQMytWzOLZaun8Zc1M4Dgth5fzeTQWS/jFKx1TWlrqC5Eb6AC5BJSHH5SXSLt3clkpXajQ3IHkhxu0wewU3CS7k4nzZVGl9TOVPmqqfBVcqi6hF9qKpBx09ldRUCBGp8XhAxcjnScogta0PKpXrdfqiUglSNSS5IYoGjn8gZjV2i+1wp/W9hFZuf+QkqLnmPEsDs46jlKue8QtYF2uJ1ZOMWmd8W2BMnp2W1WYLVmWpXLtbi4mC5durBx40YuvPBC3n//fcaMGUNpaWnoE0V5eTkdOnTg/fffD6u6rOW+++7js88+Y9OmTZbPvXXrVs455xx++uknevbsGXW8vvWXapHTYvbwVwWC6gZU/zWyxmlRj9FbqiBchKkPda0gUa1c6mtVJBpZBY3EndZCZxZTF80iFm2M3sqnnkcbR2dkMdOKXTPBaPS9Nn4xJJbr0L932jZmLW21Uy1xQTFXELa9sdY5o3Opc2pj6fQib/5NH7P/zBdIdrZv0w+gektUMC5Olv0AyEj4AiW0d9XSKyOTjsmZJNW5Vp2iMyZriqIoLF8zPcwCPDhQiHD+fLZtfSE0bnCgkJ9PfxJRTMMhJuEU3SG3nIICKPVuujoSee8VRcEv1eCXjnBFySJLreP03UYivbZpyHWjn6DCW8neimKKal2kuE9AFJwJeV9bk4XOxjptxuWqZ/fu3fTt25f8/HwGDhzI6tWrmThxItXV1SQlJQHg9XpJS0tj7ty5poX8BgwYwOjRo9m/fz8bN27khBNOYPr06dx8882m5/7www8ZNWoUZWVlhj/sXq83lLIMQUHXo0cP3tx0Mz/tPWqafBAthi43GypPe46Mb28FaOA21WLFlalNrtAKuEgYiTkjoaaO1Z5DFY9q3B0Yu3P1gjNSgoM+e1VfR04rbFWMYvK0cxlZBPX7tOfTCm0V7WsrlrpEuUBbEvUhbJRhO3rcwtD3k6YW0LH/raQm9UQU2m7yfLATQQkCNbiEAEkOBUEQcAjQMSmZbmmdaJ+ciUsMhlksXxN72z4zrLj4Ow2YhUIyJTsfq3t9K+BCEJw4xFRcjrRGu+pUq5xPqkGRCineubRRa7aJjZuufJ4STynfle7nsCcFt7NLUMw3UtTZgq5t0iYFnSzLXHXVVZSVlfHpp58CQYvdySefzI033sif/vQnFEXhvvvu4/nnn2fKlCksXWr8h0a96DvuuINf//rXbN26ldtvv50lS5Zw/fXXNxjv8XgYPnw4p556KitWrGiwH+CPf/wjDz30UIPt85eO57Zr/hK2bdO+hxskPGgtQLvyC5l4+fMRrXFmGIk6fQKBWrJE3aZv8q5a5tT9euuUij5JIVISg367mUjUXodeUKkCUb82vXCD+uxXrajUfq+9V0bnV/erwlA9Tyzxf5FEnVYANYWgawlrh3rOwYFChk58O2QhVK10MxaNAEdv3I6UhJ0zmEEawBsoB8WPILoRhWREwQEIiKIDkWBZiMaKGL9cixQoJDtFIf/LxhV1joc/jFvMXxopEDsNuA2HowOi4ARFQRTdIYGtteYFkxgkgu7cYMyfavXzBqpAOULxt4sbtRabxjH+kj9ysPoIB6p9SEIOyc6MRv2M24KubdImBd20adN47733+PTTT+nevXto+/vvv8+0adPYu3cvoihy3XXXsXPnTs455xzy8oz/6Lrdbs4++2z+85//hLbddtttbN26tUEjXL/fz6RJk9i/fz8ff/yx6Q+6mYVOTYowK1OisnJpP/6x8lY8shKMjdOgjVeLFAOlFV6qSNFmoGrFm+oq03eTUFFFmpG1TEUvFKPGvWFcUsXIEhbJZaxFvSb9fdGP1Y+LtkajmEAzF60efbkTK8KuLVvpoGFixPybPma7M4eVS/uxdvXtlHnLuPZ/XuHmZ8eT5s5OmOsv6ParxeP/iRTRQ5rLhV92EFCCaQd+xYVMOxyOdJxiUoNkBCvrUBQFn1SDLO2neOeyhKxbSyylORrjNleFtZHQzxowE5kUBCEYkyfJVZTuCla97zjgNgQcyAQQkTm684UGx1s9//HiUm2uciu/Hf0ke8v38125lxR3bxyNcL/agq5tEst9bBW+kZkzZ7JmzRo++uijMDEHMGrUKPbs2cPhw4c5cuQIf/vb3zhw4AAnnnii6Xw5OTkNmuj279+fn3/+OWyb3+/nmmuu4aeffuKDDz6I+EOelJREu3btwr4gmBRh5tJU+7VOvPx5XnlzJq6vZ9IpyRESCmlD65uwV2+dFjWgPTe7oSjRWse2ZeVQvXVaqIyFmTtE27dVK2D0Fixtt4i0oXmmLkvt+Y2269HPEWm8KtyMBJzROKN16M+h3W62LZqlzorrVftz0dg2Xi2Feg36B/V2Zw5/GLeYSVMLuGL8s6S50oI7lJo6S09iEAQBlyOFFHcf/EIPKvxOslLcDOzYmbO6dGdghwyyk8tRAnup8f5EbaAUn1SFN1CJJPssFW2VFQl/4CB9MpIavd7BgcIGr41q/SUao5Iy2m3FO5/n6M4nOfLtnxh99NGQmAMo2bmIozv/TOnO58LE3M3jghY6o79vRtuOFTGnv7bcbPN70NRFyV9bdzc5aVlkJUl47ELENlFoUUGnKAozZ85k1apVbNiwgT59+piO7dy5M+3bt2fDhg0cPnyYq666ynTs8OHDKSgI/+Py/fff06tXr9BrVcz98MMPfPjhh3Tq1CmuayjYWRRqbn/Dze8DwYf8yqX96Nv1/zGkuJDU/Jkhq5zvy+kh0aCKL6uo2aSqQNGKOqP4MVXkrCgKnkv95K8er+3XGq2ThLb8iRb98aqlTW/9CsvwjSKetGJNX19NjyqE9VbEThm/MXWzRkO9P2ZC0yi+7ljFLD5q5dJ+jBn/LFde+hx//9etjL86KO565T9AQPYaHxQnQVGXTIqrEzi683OVn+LacgKyxAkZOQzsfCJDsnLo395JZ9cR2jkKaecsJBDYS42/xLR3ZtD656HWX0jJriX8d8tzCVmv9nd6uzOHrasmMGV8XpM+/LX9drVdPfTZpmA95m1f1X7T8cdK3JwqyrRf27vdwiln3sIpg29hwJBbDI8b0D2Hz7r8oUF8byLe48GB8Pjgt9bPpU+7LNo7y6j1HSAgVyErki3sbBrQoi7X6dOn89prr/Hvf/87rPZcZmYmKSnBOJyXXnqJ/v37k5WVxebNm7n99tu54YYbePrpp0PjL7vsMiZOnMjMmcGYtK1btzJs2DAeeughrrnmGv773/9y8803s2zZMnJzc/H7/fzP//wP27ZtY82aNWE17Tp27IjbHb30gj7LFeCs7nOpDiis+mAmudngOmsxrjrreM0XxrExRu7EaGhjzlQhpy8KDA17umq7WKgCzUqNORVtnFuk+DQjd6p2u1HsHER2N0cbo+7XZ+PqMRJ5+v1G12VWyBkaWuui1YbTxuxB4x6OLRmUrhULk6YW0H3gTVQHnCS7e+FyNN7a1RAFRQGfVIM/UEyXZC+nduxOp+SOCIJAQA7gCXhRUJBkiUM1RzhQVUGZ3wliB9yO9LpMUQE1VuzwNw3jYqNhxd0Wr6s9EZnKZh091O9VjpeEBv3vG8CObtM46g3gV5JwiMkoihOxLltZQUCueyoKKIhCABQ/khJAJBDcLmYgCCkI+JHkGhTFA4oPv+IgSRTwKwJpDj8jipeH3eNYXbXa8Vdf+hCHao5SXFtLqS8JUUzH7czEIQQTdKK5Ym2Xa9ukzcTQmf0Aattl3Hfffbz88suUlJTQu3dvbrnlFmbPnh12bO/evbnhhhvCsl7XrFnDnDlz+OGHH+jTpw933HFHKMt13759ptbAjz76iIsvvjjq2rWC7pn7OvPKP2fyzvpbLX9C05b9sCJotGjjvfRxcGYJANpadvr4OnU9Ruc3E0pmNenMyqBox+nR15Yzwsg6B8YWPL21Tk80UWc0XotRmRM9kUrWQOSuFNoHULQHrjbrtznRCgQ1dqpj/z/gcvbG7Uhu0tIloVZb/gP0SpPo26EH7dztqNNpIYwyUDv2n44guBGQ8Aaq6ZgU4Kf8V2M6f1OUh0nk3JFi6Y4X9CLu+163caTWQ2UAJMWFIGSQ5MwIFfBV0f/cKiiERxAodf0xgpnE2jI3iiIhaDK8A7KPgFSBk3LSnMFxe75qXIzm9WMWUuoto8xTSYWvlqNeCZ/SAaejfdTyJq1J0NmFha3TZgRdW0YVdN+vGk9GmivqeL1gipTJGQtai5yRkNIKIe2DQn1waN1DWmuf1vqnb/1lJXkgksVOuz9SbJxeoJm5XNV96vfOIQvZXbqH3nufM0yAMEM/1mqx5EhEK5WiF256EdcYK56+/mCi0Vvoegz6Ax6lG8nOdk1ei05RFAKyFynwEwM6ZNInswdO0RlXGZE+p1/P3q9fiThGjYXbumpCkwbDR2rdZ5VE139ra5a83Gz4ImcqXklBALyyQq2UjtPRDqeYjCPGuoGNQVEUJCVAQPYiALLiQZYr6OAKsPurpQ08KEOGzqT/L8+HbdNz05XPIyPjC/g46inhYFUphz0gCZ1wOdJx1GWA66+vtQi6ttD6Ky8vj7y8PPbt2wfAaaedxoMPPsiYMWMAmDp1Kh9++CEHDx4kPT091OXq1FNPNZ1T7eW6fPlyysrKGD58OHl5efTt2zfiWmxB1wxoW3/d1MdY0OldimAezB+L29XIMgcNLWd6K6D+wa7vARqpVpvZfv259cfo122lvp26ditEu29mwtOquIs2n1l2b6TSLUaCDRr+8bb6INULQqgXuFqLbFOgd+/d8uxFIAZLLEDT9iRVFIVqXxElO58KW0884qXbabkc/Na4ZFFLEKuIMir6rN2eaCJZAZtTAGqTUAZ0z2F7t6nUBAJUBNrjcmQCIAqOJmmlFQ+qddknVSDLNSC4EAFZCeASqvEpyTjFFFA8SHKAnvn3M6B7Dju6TSHJ4aT/L4vZub+Q3qP/QoY7A4cgUhOoobCqmAPVFVT6HQRIRhTScDlScYiuULma2uqqViHoKo8UsHX1jU1+fj1Dx79ERueGyUNGrF69GofDQd++fVEUhVdeeYUnn3yS7du3c9ppp7Fs2TJOPfVUevbsSUlJCX/84x/ZsWMHe/fuxeFwGM75+OOPs2DBAl555RX69OnDAw88QH5+Pjt37owo1GxB1wxoBd3/vTqQSVML4rayxRNHB+YCSy/oAEMrnjZ+LpLg0XeFiCbqzMSM1rUaSTBpLYJ6zMqYqBhZO1WXpLaThNF5Y3HDqseoRKp1F03s6q21kTASbyp6oWgkihMp7IwyK9UHfMcBd5Dk7IRTTGqyZuMAfsmD1/8TJbvqXVmJbPZuRQwnIhaysfM1l6CLNp/R2lXRlWjL5uBAIQO65/D1CTM54vHiU5JxiJmIogunmILQyvrhamn42A0KvWBNQLHutYw3cASUagQhWIPOoZQhKX5SnQInpKWT6kohw5WKAlT4KvEEvPgkieqAnyq/QlXAAUIqLkcG/lqJ/x022BZ0cdKxY0eefPJJbrrppgb7vv76a8444wx2797NSSed1GC/oih069aNO++8k7vuugsIdr3q2rUrL7/8Mtdee63pedtML9djhXVrZjW6h2YsmFmD1H+NRJEqyLTHqS5XfQxe2tA8NvFwmPgY0ftBqovNa7yp20MWSV2yxpDiwtDxRtcBQQEygnrRZkQk1zUEH8CegIcfSvfgCXg4tVM/hnx1N0OyIa3uGoyEl9G9NLs+baaxfp9+rUO21mcWa8eZCc9cGrYWM7PiqdY3/c9eSITohEhTl1gArcj7P2597kJqpA4kOTvgEJqmJ6VTTMIjZIZtMxIcVuPKGrY1m9Zgu55ImcBqvb5I6C1akYScmfVLXVuixZx+jmjzGa1tuzMnmD2aAMGrtchVnv1H1ngUlJpkUpxdSXUk05J9b2Oh4RoFHGEdVgREBFJcXcNGyUoHUGQqpUoKyqsRhTIyXcUEZBGfrJDmFEh3OUlzOWnvFgkoMn65hipfOYU+f5Nf17GIJEm8+eabVFdXc/755zfYX11dzUsvvUSfPn3o0aOH4Rx79+6lqKgorF1pZmYm5557Lps3b44o6GKhVdSha8v0G5DNstWNi3mJVwzqrT9aoWVU1y5taF5Y7bv+g3IMkx20tedU69ymfQ+HxJNeLGpfq2MiJUKkDc0LHRPJYqVHvSZ1XWbXGST4CVgAUs9eHDanmSVOL3i1GN3jSPvMrIjqOfQFn6u3Tgvbpy+BoLXKqV9q/KP2foC5Fa4546DeWjWFg98s5+i3T+Dz/4JXqkJWmqaGVoqrE+37B8sCGVkNtUTbbzYmHmE0aWqBpRp0+p93/XuvvtdTxucZvofaMiX68zeWRFn3EvGzl5sddKuWDpnHT4MeocTfkbSkPmQmZeN2pAStW21AzFlFEIQGXw7RiVN0kerqSIq7Oy5nTyoCOdQo3QkIPSnxd+an6lT2Vgrsq6zm56pafFKAzCQ3PdJb+oraFvn5+aSnp5OUlMQtt9zCqlWrwurbLl68mPT0dNLT03nvvff44IMPTCtkFBUFfwG0FTXU1+q+RGALukZyfs97Q3+ArcZ96Yn3OIjsulT3jej9YNiY3GwaCKoRvR80TTrQ9mhV695pj1XFiOpS1e6P5MZUz6kKITNxZrQ9kghW6v4L/mkP/wNvdI3qtkguZ+21GNXi01+rWf087Tm0DzmjdWkTJvTWNb1lUv3XihUuUfWyjB72ai20X01cFhIaS29fz+H8P1LjOxDsD5pAUScIAk7RhdORycln/KHBmtQ1GFmwImFUxy0ejOJWjdCLd62AV+NfI7l+WyKjtTksvrnZ0H/ILWSfNpV1HW9lXad7qFVOIMXdizRXp1CP02NJyEWjXuCJOEQ3Sa72JDnTSHKmkuruRKo7m2R3T3CchCz04LC3E/urQbKjq2KiX79+7Nixgy1btjBt2jSuv/56du7cGdqfm5vL9u3b2bhxI6eccgrXXHMNHo+nBVdsx9DFjTbLNfvivzRwE0aL9TIjUiannniTE6IJBH0LLaNkBb1lTxtnZzSnHrNEkXiSRPTz1gZq+b5kN37Jz6md+pHmTm0Qw2WUOWt0TqMae1oXsZEV1Oi9j/SzEC1716jEDJjXGYwWg5WomC9t3FYsTHvuWpIa2ZdSi6IoVPuP0tF5mN1fvXhMtqAyi407Fq9V/fn8tscMDlb7kYSOJDnbIwqOVpHY0NZQM8Kry3cx5aJf2TF0cTJy5EhOOukkwx7yPp+PDh068Je//IXrrruuwf4ff/yRk046ie3bt3PmmWeGtl900UWceeaZPPvssw2OUWlzrb/aOnorSTQBEy9Grj3VMqR2fdDu25aVY2gdUj/168WM6lbVirkRvR80ffCr596WlRPmMtRa3CKhWt4iuYojWdTMhJAS7DEeDMY3+dsfySqotRoaxdppz2V0fv26otX403a7MFrPlPEN3yu1tZsWI9GnnUP90r/3jSEeC9blRx5CVqSEnB/qLLJyJZ1Tgu3HYhU4baEtm1Y4N9Zq2BbY0W0qP1e7cDh7kerqjEN0Ih5jLtXmImjFTgIhvm5INkFkWQ7r565FURQURTHd36dPH7Kzs1m/fn1oW0VFBVu2bDGMy4sXOykiQYQySvc9DHVWHLMWVpHmMLL0qehdflpxoc9WDe3rXT+vlQxPfYsvrXDQCpMhmuMilejQdqQwEzUjICxhIiw2cN/DDIlyz/T3KajmlIiZlfp7sUnzvmn3x2sxjPTeq/fRqIZetLm0mCVPqGtWhYra9i3R2ZhG7k2r+KRakoX0BD6gFRyC2KA2nlWaq9RGLEWj9RglJzSHda6p7o3RvFdf+hDfVByiqAaSXV1xitG79thERxAEnM6mt8odK8yZM4cxY8bQs2dPKisree211/j4449Zt24dP/74I//4xz8YNWoUWVlZ7N+/n8cee4yUlBTGjh0bmuPUU09lwYIFTJw4EUEQmDVrFvPnz6dv376hsiXdunVjwoQJCVu3baFrJF91Dj4l1VizaHFjkbDipjXLMDU6r2o5i2Tx0icL6OPJ9NazaMV1owkis9gv7Zq1c5jdy2iuUgWlLnwusmAwu/7GxENasUxCwySKSGO1mJUtSRuaF2ZtMrL2NZVoMWo3ZcaKIhDkg3gDFQmJp1MUGZEATtER1tNUu7ZIYrOxSU2xxJKp52nM+eJxczcm3q2pxJz6b9aAqeQMvIXep09hx5ED7K9x4HZ2D7W0skkMomBcH625cSVnIjqaV6iLDjeu5MzoA+s4fPgwkydPpl+/flx22WVs3bqVdevWcfnll5OcnMymTZsYO3YsJ598Mr/5zW/IyMjgP//5D126dAnNUVBQQHl5fTeMe+65h1tvvZUpU6YwdOhQqqqqWLt2bULbotkxdHGibf01euB8wwK9esziq4wwsgxFio2LFOtlFOyvF0RG5U8iWfS08+nPpT+vlfpzVq/HUozhmU/zQ8kPyMic2rEfKa6UkLVOawHVW8hiOgfWxFss12iEvuervg6d/lr08ZHNldmqj6cz+15l0tQCsgbcDGJX3I6M0MNG207JqvXOL3kJ+PdwZlZXPvjkT4m6pDCsxqpFsmbFW+C5MefW/yy0ZNcHdS07TpjO4doACmmIYhpOR9BVLivBPqkOwR2Ml7PdqwmltXSKALv1VyzYhYWbAa2gu6D2aGh7PAVqG4tWiKiCJVqTehUjS5fVjg/6bfpjzDopNAat+9ZMmHHGU3xfuhvFRNAZYUXEaQVctCQHqwkR6jUZ3ZdIljij9UU6vjke4voabtqgfSNXqLpt2rOXIJGKw5GBQ0xCkaX66v5RHuqKouCVaiiu3kPf9ifw/baGgq6prz+SK1ubpdrWWmglCvX+7Oo5k1+qvPiVTFJcHUPuVFu4NQ+tSdDZWMdOimhGzjhSZKmlVKKC0COhijg1Xs6q+1frmjNrlQX1iRRGnRy05zISb41xRRutV++uDHOVfnUXoRg6iw8LK5Y2fVxcpPc0mkvYCtryItZq79VjVKg2HrdbLMdEKkCrj/lShd6kqQUc3rmEozuf4fLihxCln3Ao+/D69+HxF+MJlBOQfaGg4/ovGVmRUJCp8pWi4KRGSuGa0fV9MAcHChkcKGTn/sLQ9/pr0haqjQez+2Mk8prjb4AZiSpVEy+fdZnC/mo3DmcvMpKycTmSjrtyIzY2TY1toYsTIwudFXdlotC7CbXn16/FKCEh2vFG54PI4qSpr3tbVg5DNg8m7brxDSxlZlYwcfAzJDuTI7pcVfQPXKtCrLGu10ShWoK0tEarkJH71ayTQ7/BU6nwC3jlDEQhCZBQlADgRySAhECltxKnoz1Zad04vWMKa9YHiwyrraH07Nxfv33n/sJQJ4dY7lWksfp9WitdS6GuaXCgMCEtuKLdK1U8ftN9OgdrFERHV9yONNpKJ4djEdtC1zaxW3+1EGp7rMbGz5mhb+lllCGqR225pT+vupYhmm36GnKxrjNWMWdVAKpCawRA7/BtKtq1Kmc8xfel3yMKIn2330FNTKtqOJ+Vsa1B1G3a97DpgzZWsdIcAsRKS6mC7UsBOG3ILQTkCgp2LA3bPzhQSOXQp6kMZJLkcJLiiC4WtCJPK27M4s+M7luke6nft6KIBm3YmgojwaZNQFhRFF3Mmf2sWBWD6vm+zJlKUbWDVFeOJfe5jY1N47AtdHGitdClpgdjQXbl14uTRLs3agY+T+o3M2MqPBwNqxZFq0kciRY0ZoV7tZids6DHFPr9sqzB9nitcNr16MvLtLSQ06+rtVnk9CSyGG5uNnzZ/WlqJeiR7qRfOxcv/t/0sP1WiCSCWyLJpKmJReCrbmkrPWlV3u94C7KQSbKzo53g0EqwLXRtEzspohnQdorISDNPr0/EQ39bVg6ndL2f9G9mhs2pxSwLU9+9wayJvFGXh0QKlUS4Y63Epanr/q7HFJyik5N/WtzgeKv139oKRtfRGCGiz6RtqexIK+e84IJn+aU6QKpTYNfWO0zniUaieo3qs5K1bl91n/pzqCgKy9dMN5uuUWuI9Rh1ffHMr17jZ11upiKQjENoj9uZhig460JYbTHXGrAFXdvEFnTNgF7QbcvKYVd+YYMSE4miauDzpH8z01SQQfS2XbHE+CVC7MQyRyJc0rHSEha25ro+M5EXDfVnVuve37Tv4dDPdnO4YqNZ8FTXX242FPRZyGGPRI80J7133x4WE6ei/z3U98jVx7tFs9YlIs6uNROr9W5A9xw+6PgHZKELya72CNgdHVojtqBrm9hZri3AkOLgAy91aNAiZFZqIh70WbTajE7tvPrvtckO2kLBVjNfG0Os12tWaFg7n/5Lvy/e9VnNVo1lTjNiva/xXJvReaw+oNWfk135haEOE0OKC8O6TjQ1k6YWhMV9qf+qrr8B3XNC26VNv0EUoNIvs6LI2C1oJXlBzQJVRZv29zc8Bi36BzX9h7pYMkz14wYHCk2PjeUDo1mbOKPrVO+JNjPYaL7cbKgd+kfWdZyOInYnxWW7V21sWhJb0CWYmq2xu1CsPLAdQr0hVSt+zFyt6r96AacvORKt80Os47RrNHv4m80V6RyRrlP/Wjr9CdN5jASSlfhAo/eoMfF4VrFSokRLJPGif619qIdqheUXsqII+g/KadDVIG1oXkikJKr/qZEo0ZYXKX09h8svXsSPJy0k89J/MnHk8+zcX//zPKB7DlnJDip8Mmec+2cmXf58wwmjnN9oDXrXqfqlvo6EvmSM9lij82vXoR+33ZljemykIsKRxloVptudOYYCWXtcsTedJFdPkp2JbONmY2MTD3aWa4Ixc6mZlQ3Rt5oye3g74vxjqa0np2a86vdDdMudUSHhWGLitPfF7Dh9DB9E74lqdJ4Kb2XE88eLUaZwUxJrLTur1iO9MDESDPoEH62bdUUR5G6dFnfnA/2aI1Ey914Ky/2oH2ccQoD0YW9wONVBl+9uA+CUH2dR2/MZSn0yu8p8DebQXvPgQCG53XPCLHNGazJzxTaVG1VrzYsn3jGa69jofY/0fbTz5Zw2BZ/SgRR3p1bTUsqm7SDVFiP7G/6dbipEVwaOlKxmO19LYcfQxYlRUkS8QffRxNy2rBwG5szF/fWMiMcDYckNWtGlPYfeEmYlw7W5EwisJkBo98d6v7VEOi4RRYIbg1F2bbRrNhJ3apwnmAsZI5pCxESKVVMtcDmbhlBw11345YbjBCDDJXDGz3eExnvPf52qgEKnJJGe6S4y3SL570w0rTMXLd7VrMWaPgZPO1YlnnpvVpITGpNxa3TPY02IANjYeTqy2A2HmGxb5doQrSWGTqotpvg/t4Lsb/I1hBBdZA17zrKoy8vLIy8vj3379gFw2mmn8eCDDzJmzJiwcYqiMHbsWNauXcuqVauYMGGC6ZyKojBv3jyWL19OWVkZw4cPJy8vj759+0Zcix1D10Lo3WNWH/5GbrV446b03RmM3IXarg3RrGzNLWAidUOw4i6NJ3ZP36bLbEy07hBNTSwWXSOBosZ5QkPLTNrQPPoPyjE8tiksUqoIM7Mopl78T743EXMAClDhV/j+xIWhLNLBv9xBkihQ6pPxSjKvvjud7c4cxn4U/IqlnpyRBW/Z6mkNrFyqO1V/HU0h5qzsjza/flskd7AR6ztNQ3bYYs4mfmR/ZfOKueBJY7IIdu/enccee4wvv/ySL774gksvvZSrr76ab7/9NmzcwoULLf8ePPHEEyxatIglS5awZcsW0tLSGD16NB6PJ6ZLiYQt6NoQqWcvNhUUWouNaoEzEj/abUbtvcA4ls1IOMxYNtH64i0SLVYuUv03vTjb1+e2iPPEk6DQ3Bm4EP06Y8UsQF4V93orViKztdW5VMGjiiE1AL9swHNwwRvsrw7gMxFzWo54JIpPXRQSdeccuAMRWPvRbaFYvMIR2ygcsS2m8iXa615RVO9y1icRxGLhinZeq5nx2rGREjiMiGfN6jEfdb4F0dEdh2CLOZtjm/HjxzN27Fj69u3LKaecwqOPPkp6ejqff/55aMyOHTt4+umn+etf/xp1PkVRWLhwIXPnzuXqq6/m9NNP59VXX+XgwYO8/fbbCVu3HUPXzFgVBUZjar6YHnrQa92pWjdc9dZpDKkbr68tZzSvUXswq8WGX6BlXLBm2/TX1nvvItP9+hhGdX+k96YlxFxTrUH/wN+072F2xWDBihdtLBtAykX/4JuAgr+HgldWOFraMAYuEooCv1QHkE9dhFsUOFgTIMsh8GPd/qALty7AX2d1M3P56terH69atlLOfoG/rDEOgzAjktvT7LXZWiNh5FqOdR71uPwTprO/RsIlnECSIwm7rpzN8YQkSbz55ptUV1dz/vnnA1BTU8Nvf/tbXnjhBbKzo38K27t3L0VFRYwcOTK0LTMzk3PPPZfNmzdz7bXXJmSttoWumdFa0iJhllmpTyzQWtP0f6zVjNZopS+041T3m77FmH7NTSlutOs1Eln6EidmQuyXE2eZnsOoTIrZPYq3dEi8GLl3E31+/c+KNgmiqek/KIfUi/+J5/zX2V8jUeqTqQoopu5VIxwCZLpE0lwCClBcK1Hmkzlt32x8G38TVtBX2+pLFSnaTFlVXO7cX2iYJGAm/Gq/mBFTORIrYk5/brPzm53DzK0crzD/rMsf+KU2mSRXT9yOFGwxZ3O8kJ+fT3p6OklJSdxyyy2sWrWKAQMGADB79myGDRvG1VdfbWmuoqLgL2DXrl3Dtnft2jW0LxHYFroWIpogMovX0lvOtFY6/cPBqE1VNMweMNEsi41NntAeZyVL2NraBNxnPYfvy1tN57Ky3pbqJqG3vCYCfZ21WDNjG8vYj3L46Zy7+aU60Kh5clId/OfTWUCE+LX9QVGnF0e52UGRN6B+ttBxRu5L9Tjtv5FcmnpLntFxestfJCtdtDn11xYpWcMq6vFl/hTSkrIR7WLBNscZ/fr1Y8eOHZSXl/Ovf/2L66+/no0bN7J79242bNjA9u3bW3qJDbAtdK0Yo4f4iN4PxmQxilawV92nFQ16C1Es9eT0Y63Wr2uKhIMeP/65gZgzoiUTHZobs0zPSCRMzF36HPvvu4cav9LgD4+AddtPMMNVNHVNqsV4VcucvuaeOk5/nNF2s236fdHEmRW3aiT0Fj59/Jz+uoyEZyQXs5GQfa/DdJJdXW0xZ3Nc4na7OfnkkznrrLNYsGABZ5xxBs8++ywbNmxgz549tG/fHqfTidMZtItNmjSJiy++2HAu1S176NChsO2HDh2y5LK1im2ha2NYddlawcg6FSnhQH+c1lJoJvpiqVXXUhm16vctZYmLRFOsySxOLFq5jHjKZOzcX0jOpiGUPXAv35X5QIJATYCkFCeKCKIoIiggSzIOh4ikKDhEAVlRQAHRIeALyCgiqB5Ztwidd91mui6ti1V7jWb3wGoygn6+aJZOIytcNGuc2fHaazC6ZrPzm43Xn1c7dmv2FI543SS5cnCKSbaYs7EBZFnG6/Xy0EMP8Yc//CFs36BBg/jzn//M+PHjDY/t06cP2dnZrF+/njPPPBMIlj7bsmUL06Yl7m+8baFrBuKNwVKPMRJFiXjQm7k2o1n1jOLOEmXlirUjhX4djeF4stRp0VppjLIm1dfRukPoj11RFBRX0kNzKKyRkBXw1AZQFJC8MrJHJlATwFvjJ+CVkb0SgdoAVWVeArUSNZU+qsu8YAIU5wAAi9lJREFU+KoDODWiwiEI+E5/PuYA/1itkUbZvvrr08an6WPVYsk+NVuz2etI61G/j3Yuo/V+3Plmjvjak+LuYYs5m+OWOXPm8Mknn7Bv3z7y8/OZM2cOH3/8Mbm5uWRnZzNw4MCwL4CePXvSp0+f0Bynnnoqq1atAkAQBGbNmsX8+fN55513yM/PZ/LkyXTr1i1i7bpYsQVdgrAiBo4FwaAXp1ZcurGgF69GYtgsOaOxNehao4UukZi5GY0wEkD6OE2jMfo5ywc8x/6aAJICoiCQmuQktZ0bh1tEVhSS3A6SU5yITgGnK9hxIC3FhSTJKAo4nCLt0t0oGl1RIykU1UpRryHaNUerQae9Tu32SEItkfGGRuvSx9BFcwdHEpLafaefNY0POk4nIHQnzd0Fh+i0xZxNkyC6MkB0NfdJg+e1yOHDh5k8eTL9+vXjsssuY+vWraxbt47LL7/c8hwFBQWUl5eHXt9zzz3ceuutTJkyhaFDh1JVVcXatWujFguOBbtTRJwYdYpoSrynP0/S1zObZG5VCG3a93BY+RIV9cFgxS2ZNjTPdJ5ErdMo+SKWLhFtQbg15zrN4q2sWpPM3Hn7+z7L/uoA/rq/MAJB65qkKAiAUxAQBIGA+loUEBFwigK11X4UhwBOARQIEP5nqnOyyLbNs8POp1+LPubMKmbXbnadetdmJJd2ItZhtM/q2tTvVb7IvoWqgIxHySDJ2RmH4LKF3DFKa+kUAXbrr1iIpVOELejiJFZB15gHdOnrOST/6X5S8ptG0IH1LNZEzGVjDSstvmIhmqBQM6itiiAjS5Z6jtIBz7GrzIcU4a+LWxEQxaDAEwkKPGQQXCIBScaPgmTy56lnmpNeu29vcF3RskdjGWN0ber3iSCe2D39cVbjH/V81GkKNXIyDrEdSc40HIITBAHBLktyzNKaBJ2NdezWX8cYHYYODnvdFK7bSC204nFlNjfHgjtbTyLFHEQWLiuKCBNzVufTuxrV1z9X+SOKOVEAvzeAoEDAI1Fb4aOy3EtJmYeaCi+VZV4itXwXhfp1G1nErJbuMBNURm5VPVayX422JUIY6q9Rj1nM4Medp7Ku090ojl5kJPUkzd0Bp+hGEERbzNnYtHFsQddMNPaBLGr+1lot8aHGn0WKQTM7zux7/Zza/U0VO2SFY9ki2JiSLqWvR04yMSuxES02Tn+Mur/09RwKTlxIhT+y4V9EQJIURFlBVMDhEElKcpKS5EBRIDPdjSCaCwxPnVqM5HY0Ez1WhZRRqRD9uczi2IzOMThQyJc9nmH8Zc8Zni9aTJw6xmqChXbshk5TeL/TvSiOXqS4utoJDzY2xyC2oGsj6D1P8bYPi3askZvPqCODPo5tW1ZOKM4uEseiJa05iFewvnuJtbIx8bjtwFiEHPVIUc8nKQruNBd+BzhSHbjTXThSHbjSXbjSnfgc4JOMW0c4BOiUFG6/MxM68VrBtNcVqRxIrMgKlGma1Bpl0sazRi36+/B+xxnI4gkku7JCQs4WczY2xx4tKugWLFjA0KFDycjIoEuXLkyYMIGCgoKwMXv27GHixIlkZWXRrl07rrnmmgbF+Yw4cOAAv/vd7+jUqRMpKSkMGjSIL774IrRfURQefPBBcnJySElJYeTIkfzwww8Jv8amxIo4irXLgFl3Ar3I0ws/bceKSGttaUtac7fxamliybrUiwn1PuldhXqxMzhQyOBAIaMvWcTuu++O6GpVUQgmOviU4JdXkfFIMl5ZxqcoBFAwm8YtCnTc1bBgdDwuzVizZKMlIkSab7szhzSnwJGyxxoco35Fs6iancPIsrq+08283/l+ktw9cTvSbBFnY3OM06KCbuPGjcyYMYPPP/+cDz74AL/fz6hRo6iurgagurqaUaNGIQgCGzZs4LPPPsPn8zF+/Hhk2bzxY2lpKcOHD8flcvHee++xc+dOnn76aTp06BAa88QTT7Bo0SKWLFnCli1bSEtLY/To0Xg8nia/bhWrwqJ0q3GLkaYSR5FEWSxtuWJ19cbDtqycNhHj15LEa6Vatnpa2PFqz1O9cMjZNATHiH/wQ7k/5AptSjomiWEiSLXO6evpaVHH6UMFEiH6tPNHIrdqLDkLniCr/X1holP71eE6Y4uqkbCMZNH7sOMfkIRuJDs7IAp2CRIbm+OBVpXlWlxcTJcuXdi4cSMXXngh77//PmPGjKG0tDSUlVNeXk6HDh14//33GTlypOE89913H5999hmbNm0y3K8oCt26dePOO+/krrvuCs3btWtXXn75Za699tqoa23WsiW7x+KZOJbkJsxybSoSlamp72HbmLGtNQu3Na8LwmP5qrdOI/XsxdR8MZ2vej6DVwJZUQgEGzw0GR2TRHZ8PjtibTij9S9bPS0sJEBRFGoCNbDjLtPjjEqDGJUf0W+PlKxQ+noOxfffyyk/zrJwtQ3XoxLperd0/QMlgc6kuTrbQs4mhJ3l2jZps1muahG+jh07AuD1ehEEgaSkpNCY5ORkRFHk008/NZ3nnXfe4eyzz+bXv/41Xbp0YfDgwSxfvjy0f+/evRQVFYUJwszMTM4991w2b95sOKfX66WioiLsy4h4Ox1EI9Lf5ZZwIZolXOhJVOHeWFqIRRvbGkUTtO51VW+dxoqicBf+gTsf4Wj/RfRId3JW5yT2bLuTCwrv5IRUB8kOAUeCtYQInLYvWHvOyCKmtdjpmTI++LOqKArVW6dR4aswFXNmc6v/qqItkpjU7teuq3DENhQlvgQiI6ucdh7VXVvqE0h2trfFnI3NcUarEXSyLDNr1iyGDx8eaqVx3nnnkZaWxr333ktNTQ3V1dXcddddSJJEYaH5Q/vHH38kLy+Pvn37sm7dOqZNm8Ztt93GK6+8AkBRUfCvYNeuXcOO69q1a2ifngULFpCZmRn66tGjBwCpQ/4cNk4VE4WnLIrjLsRHIoSAPoM1mlhTH+xN2QbseIp1awvorWIdrivkhDQn7224jTfWzQiN2/zZLIbuv4NhB+9kxKb1uBKgK0QBhhfeGbYOvcAx69ag/Vmt+WI6AM6v7wu7FqPrNNtvVKxXf5y+Tpz6td2ZQ5c/PR7RghcL6jxf5kxh0y0TWZP5B2QyEIVIRV9sjkdseX/s42zpBajMmDGDb775JszylpWVxZtvvsm0adNYtGgRoihy3XXXMWTIEETRXIvKsszZZ5/Nn/70JwAGDx7MN998w5IlS7j++uvjWt+cOXO44447Qq8rKipCok7Ltqwckrdvo7p7gIyBz5H+TcPg7Xhojl/GeDov6McnsuF9a7VYxYtZyzL9mNZ+3WGlPL6YHtnNePK79O8whqMeiVKfTG3APNnBDKcA5x+8s8Ea9Fh1SRodZ1TaxIoLNdJ+vSVPpXDENir7/pOeP9ze4JgO1xXGVXC4xCuT6s7BIboQ7ZpyNjrcgkCKo9XYb+xOEU1EqxB0M2fOZM2aNXzyySd07949bN+oUaPYs2cPR44cwel00r59e7KzsznxxBNN58vJyWHAgAFh2/r378/KlSsByM4O/rU8dOgQOTn1n4gPHTrEmWeeaThnUlJSmOtXZdua6xjatwc79wctc8n7CxnQPYdtAgkTc02JPqPVyCpmRWQY9XRt7cKkuYl2j9sSWsGxc38hud1zDPetKIJcbiVTd/zuExeS5BD4ZNPt9Dv7GUQBfJKiaxMGaU6R03+eTVNj5D7Vi7VIQiua+AsXiDmcIynsrPtbYTRWP2+kc+7oNpVArUiy6MLZ3D0ybVo9blGgiwKeSk9LLwUIirni/9wKsr/5Tiq6yBr2nGVRl5eXR15eHvv27QPgtNNO48EHH2TMmDEAXHzxxWzcuDHsmKlTp7JkyRLTORVFYd68eSxfvpyysjKGDx8e8iQmihYVdIqicOutt7Jq1So+/vhj+vTpYzq2c+fOAGzYsIHDhw9z1VVXmY4dPnx4g/In33//Pb169QKgT58+ZGdns379+pCAq6ioYMuWLUybFpsIcQ97mR8yMnCfBLUBBa+ksEVR2L31DobE+Ck74nmaqI+rlazVphBmraWMSUsQS6ZwW2DoxLdDSQd6AWImck6uSwrIzQapUxKOr2agJ1ZLVWM6L1iZM5ZCvtpj9GJx5dJ+nDMs6H4N/9hpfP4VRdB/UH2iz4qiYEzg9QEvge2zOFAjkuLuHmzfZWOjQQCSFXAGJBR/MwqoCMj+yuYVc8GTIvsrLQu67t2789hjj9G3b18UReGVV17h6quvZvv27Zx22mkA3HzzzTz88MOhY1JTUyPOqVbWeOWVV+jTpw8PPPAAo0ePZufOnQlLGmnRvwAzZszgtdde49///jcZGRmh+LXMzExSUlIAeOmll+jfvz9ZWVls3ryZ22+/ndmzZ9OvX7/QPJdddhkTJ05k5syg6Jk9ezbDhg3jT3/6E9dccw3//e9/WbZsGcuWLQNAEARmzZrF/Pnz6du3b+jmduvWjQkTJsR0DSfuuy8sy1X9o35uEzxcopEod128je9joS0LmESS6H6tLUH11mlMGZ8XVdRp0e5v5xapNpjXakmReISc2XrM5ovmdjWaU3uc9vhJUwv4739m0X9QDlhI9snNJmxcbnb978+OblNwejMRBAFZCSBilyixCeISIM0bIKmqFr9DBKcdV2mV8ePHh71+9NFHycvL4/PPPw8JutTU1JC3LxqKorBw4ULmzp3L1VdfDcCrr75K165defvtty1V1rBCizrV8/LyKC8v5+KLLyYnJyf09Y9//CM0pqCggAkTJtC/f38efvhh7r//fp566qmweVSXrMrQoUNZtWoVr7/+OgMHDuSRRx5h4cKF5Obmhsbcc8893HrrrUyZMoWhQ4dSVVXF2rVrG62Um8JKYJVEiAG9+7UtiYy25raE6C7qxvTUbU5UMQfGsWP6xAV90oL2tb5AsB41k1zvDrVKvBmmscynbzumF4wrl/ajc/v7Yl+IDocg4pfKCfj3Isp78QRKaEWVqGxaAFGANCDLL5FcUYPgFFHapVKVkdLSS2uTSJLEG2+8QXV1Neeff35o+4oVK+jcuTMDBw5kzpw51NTUmM4RT2WNeGhVdejaEs1dh46T323ac7QS2pKAPB5pqvdHK360dQTNar6p43blF8b8IcpIaFqJVbM6r1FChd7tuqIIzhm2EP8nvzGMo4uG+j6U93+QzF1Bt09Bz+nsroCM5D4IQusJgLdpekQB0hRwCgKix0eSz48sikgCOFKTqRQFjpSXc/2wM1q8Dp2/4keObrm7yc+vp9O5T+JqZx57ryc/P5/zzz8fj8dDeno6r732GmPHjgVg2bJl9OrVi27duvH1119z7733cs455/DWW28ZzvWf//yH4cOHc/DgwbC4/WuuuQZBEMKMWHpiqUNnB10cY1h94BqNay1xbbaoa73o35d4XZ5mc6woAooKGWLgum0gjigMxanGk+FqNT4uWqar0TUYlVJpcO4fZ7HT2lJNUcUcQL+fF7Ov4wzsAhXHF2miQLIvgCMg4/b58VbU4OqYgd8hUpXiDrbXk2QC5UaBDTZm9OvXjx07dlBeXs6//vUvrr/+ejZu3MiAAQOYMmVKaNygQYPIycnhsssuY8+ePZx00kkttmb7Y9wxhr50SKRxrZFYe8/atDzxuDDN0NeV0xf0VbdHOm5FkXmBb32bMKtrjyYS1bZoRuczO8fO/YU4LzT/ZB6J6tdXm+yRI3TBtTkW8SoKsiSjVFTjVxSU9mlUu52UpSZRLcl4fQHkihoEt22/iQW3283JJ5/MWWedxYIFCzjjjDN49tlnDceee+65AOzevdtwv7ayhpZDhw5ZjsOzgi3ojkGsijqzY23aBq0hpk4rjuJZT9rQPNN6ber86r9G4s5sPWbdQgwtZTRelA4wKNuiF49Gxxz1SPGd++R3De9ZQA4gK1IcE9q0VQIKlCe5qGmfTm1qMmUZqRx1iFRV1eI/XIZ0tAIh2Y2Q0rDslo11ZFnG6/Ua7tuxYwdAmDtVi7ayhopaWUMbl9dYbEF3jBKp5llLY6VlmE10Wpv4XrZ6Wtyt7yIJH4huoYuEFcFklImrHqvt3qBt42WUvBGtJZgRK5f2M90XqQ3ZFZcsYsLI58O2OQQJSfbbiRHHGTJQ7XZS6RTxe3z4D5cGhZzbiaNTO3Db2c+xMGfOHD755BP27dtHfn4+c+bM4eOPPyY3N5c9e/bwyCOP8OWXX7Jv3z7eeecdJk+ezIUXXsjpp58emuPUU09l1apVQHhljXfeeYf8/HwmT54cV2WNSNg22GMc1Vpn5eHfHALBqKOETey0dJyhWc01igtNC+bqjweYEnGUbu4Y1hbpmEjFf/Xjrh+7mPzzvOytfiJk9YtU+DdWsekUBSZNLTDdH6nky2GPhEcKkHnSQkafKnIgUMEVu+fyZvoUMpKySXVlAIL9ID/GURQFZAXFH4CABIqCmJqMkJKE4BAjNwJvAURXBoiuZi8sLLoyLA8/fPgwkydPprCwkMzMTE4//XTWrVvH5Zdfzi+//MKHH37IwoULqa6upkePHkyaNIm5c+eGzVFQUBDqTw/ByhrV1dVMmTKFsrIyLrjggoRU1tBiZ7nGiZ3lGj8tLUZsmo5YkiR27i9kuzMn4aV+rLTssjoPQL+zn+Hs/XdEHhwne05ayEl7ZjV6HrX4sMd5CweqDlPjr6Z9UhaZyZ0RBYct6o5BFEUBSUau8SBX1iI4HTg6pIPTWa/hNO97TVUlN5x/eotnuYLd+isW7CxXm6i0lKjSWuhsUXdsUfp6DlwSHrtmVrajKbHimo1V7CUim9cIMUEZqblVY/k+YxQBn0SXVBcVvhLKPUfwybV0SM7G7Ui2LOoURUFBRlGUUPkTQft/Wxy2LIqCIivgDxAoqQBBwNE+HSHFHXxv2sD740jJarMCqzVjC7rjlKbuBBHtvLaYO/bocF0hU4bmNSgyrKJ3VU6Z+DYDWuHPgV587nQKjbb0GR1f+noOytzYHCRa9+vlFy+i1CtR4VeQTlBw+WWc3qfYr6vNt9Y5BVnJJtmZEbU+naIoVPlKqfYdAWREwQEIiIKIU3TgEN3IioBLTMLtTMUhuOyad82EoigQkJBrvUHh5hBxdsoElxNBbP0izqbpsX8Tm4ltWTkxB4yrx5Ru3R41sFs/t5XX6px6cWdjEy/VW6dx87jFhnFf+m0tGe0RTaBpM1XjfVYaWSUb3AMLc6jHlL6ew8iLF3H2+Qvpd/Yz/FwV4IvNs0n7/DrOO3AnZ/1yh2F27xWlyxDlg1T5CvFJNab3XS13IiDUiTQFWfGhKDVI0hHGly2ie0oVSRThCRwhINU2WYkURVGQFSloLTzOo4IUJRgfJ5VUECgqRfEFQlmrgtsWczb12Ba6RlLU9wmqMjIMHScCQeu3ApxQt+1QJ+N51L9ZCvV/5LPrNpTMlblAkDkgmv9h6woc6GD8WlEUshSZXzI1+wUH3S5yQsHtYfPY7tDEo5zxFMJXd7X0Mpoc1RJV88X0sNcq+nIexbVHSGuBdUbCqDSKgGDZZRytwLF+m9FvtHru0tdzyB06mF/GjOZbv4znHgVvhZ9kh0Dq59cxoHsOBdAgAcXovCNL/sL2bjdzxBsAsafh2hVFwReowCFUkuYEmQ4IAsgKjCt9EoDTDyzhy+w/4Pem4na2Q2iCIsaKohCQvXj8+xGENFLdXRA4PvuQKkrQtSodKQe3C2eX9sGMVWgTrlWb5sUWdI0k+4d7wpIitG2L1Nd61P3qWP0Y7X7tayPUYGh1nl35wbHabUYMKS4kv+fjGD2fbDGXWHYd/Y4BLb2IJsZIvJlZlUN16759sEnO3Vgi1bizcj4ji5zZ+CRRCIszHPtRUMTtPnEU1fcq/IRCmqSw4/PZQLCAsTz8jZCIs7omgMEHl/Nhp5vxSdU4RBeiEPzzH5BqEQSBgOwjRThIz4x2+GUnJ/8UFHGr0n8XNs9ZRX9hXYepyHIAh9g0CWE+qYoOLg8eyUdAbo/bcfz1IQ25WGu8ODrXuVZtEWcTATvLNU6aNcu1CdiWlUOfRcG4p2jYFjsbqzRV8kCsa7h53GJqvpgesRdspG1avj9xIaf8OMvSefXzqDXs3r2ksME6xn6UQ/W8+0h76DFq582h3CfhlRVcooDw6bWGpV9WFAWzbv9081Lemmde7iTSda3rcCOjS1/i/9rPxCHAFaXBWnZvt7uJCRUvNjj+n6m/we1IY0LlX8Pm+b8Os0lxZeEQXXVu2saLDUVR8MsefP4DjCnN48OOf8DhCrZSCgpId11cH4CCpAQISB5EQcTlSOVYKdOiKApKtQe5xoOjQwY4G5+pXF1ZwY2toJerTWzYWa42CcUWczZWaU4xpxUspa/nUDL3XkQERvSFYo+E7/UcxgKlhH9w+dVD/cJqv0Vc8+6xCBb7eWvnKX09hw7XFbLv3rsRETjfJVA6//H6sUMH89W9I/FUB0i59x78tQFSHQLu/wRdqZjU8cvNBj7+kOdXTGfFJ7dbqrWnF3ajS18C4Mqy58OOcQsNy0is63ADroDChMq/8uNJT3HinvrQgStL/wzAmva3k5aUg4P4LUhqZm2tv4wu4ksMKQ2+X1UBGbdyiLGlC/m4803U+jJJdndGlmvwS5W4BQ/tnAqyolAV6Ijb2blJ3MDNTl0Gq7NjO2tiTrXLGIwLurD9VHpLmmChNq0JW9C1AfRuXBub1koiLHRW59CO6XBdIe9+Nouzz19IQFKoCci4HwgKPAGoEQVEAS4/FXKr1lL6UUXo2FLNHFo38f9euZii1x9BvnyU4RrVNejr3q0ogv63QYdi6P140G353Z13UXrP3bhFAUmBQhHO2Dc7VIR55/5CUi/5J72650S//pPfpdR3ueXCyVbu5cedfsvYo6+FbcvNBkpfDl5rNmFiTkuGs5QanxdR7IxTdCPUZcYG5FpkxY9DcOMSUxHFoOBTxZskeQjItSgEW5UJShVXlCwOzbs28zrSHX5GliwE4OIjL/JOuxtwByrpmuKknTuV9knZJDuTKfeWs6v0CD4plSRnevQLbsUoioJUXo2Y5EZIDS83oygytf5qJCUQrC8IeKVafJIHAZkkp4iCm1RXB1xiEjX+Siq8RwjINXibse6bTctgC7o2QGsVc7Yr1kZPIix08c6Rmw3snRVxzM79hRxJhgHXhVvAvuuzkEPA0D6AEExo+rbUR/W99+D3yxSfuog0p4j3/kcBGFt3XCkweMQ2Sl8fQu51haFEhp/bjyY/VcZ7t4JThFQEXP9p6EZVX2935nCOpEQUc+o+YfALKCW+kKUxVpeyaj3UcrFOzMXCRUdebbDtw443M6pkeej1mswZpCf3RMRBQPbi9RcxpvQ50znXtb+OK8peD2b5Elz/Z1nXo3hq6Z6WzkmZ3Ulzp+Goc78KQKqzhFqfL+7raBXUFQsWFAWxfVrI4BbM9pWp8pVRXHMAUVBwOWX8AZHJnldZkTaV3OqloWleS51Cu6ROlNQeIsmp8Nual6is9vP/WuiybJoHW9DZxI0t5mzaGmYtyU7VCcEVRdB/6DMApH5+HcVAMfVCcFefP4dcew6g5CIoFwR89yv84JMRaiWG7r8jvA1ahHZo/QflIEeJZlZF2cQJi/jTy9N49u/T6ZvpwlOXVawdo16DfhtYi5ttTO9cgJEaMQcwrvwF1oqzcDgzubz4oajnlepciOq5v8y5keGFQVcxlZBy9guIdfXvFEXBJ/sJyFITFVFpXhSfHyEtBdwuqLNoSoqfozWF1PgrSXOl8+uqF1hRFPzZIxtyq5eG7t2XJ96I4zCU1BaRnqTwq/KXW/iKGlJz+DDeioroAxNEUrt2pHbp0mznaylsQXcc02HoYCBx1r+Wttjpa+jZgrPlaA3JEY3FIUCm20EN4UJwRRHkMjuU2HD0/nvxbvxNaH/I4dc9J2pPW3W+sa/DL/dakyOTphbglWS8ksDY8c/y1rwYLsoiTfHeSXIJQqDa0nnHlr8Rtt2piw2r/WJG2O970IIFoiCG1a1rawkSii+AUu1B7FhfCktBqRNzVXRMySY9KQWqzJN9Ul2ptE/pgl+S6ZTqg/IGp2lRag4f5v2bpyD7m6+Xq+hyMWr5srhF3WOPPcacOXO4/fbbWbhwISUlJcybN4/333+fn3/+maysLCZMmMAjjzxCZmam6TyKojBv3jyWL19OWVkZw4cPJy8vj759+8Z7aWHYhYWPU1589LyEz2kkoFLPXmy5qHLa0LxGFTau3jot7Mum5WjrYi5oJQK3KJjWecutGkvp3HvpkCQyoE68ab9iOde7lxTikcIFXaSyL1Ltk3gkmbfmFRiOs7ot0vZEM2zJB4wuXR59IPXZwSpnHPxrgzHLVgd/xxUUJFkioMgEpEpq/fup8R3AL9W2qaLEwdi5qqCVURRD1jlfwEO1r5x2SZl0befkwI4HQwWnjayw/QteYHTxPMaVPMT5+xeQf1Kw5M3Xfa5t9msywltR0axiDkD2++O2CG7dupWlS5dy+umnh7YdPHiQgwcP8tRTT/HNN9/w8ssvs3btWm666aaIcz3xxBMsWrSIJUuWsGXLFtLS0hg9ejQejyeutemxBd1xyLasHG66/3O2XjSCn/sujDiusXz60yOWx9pCzKY1MeSXO+j2/W2G+1YUQenW7Rz1yqz9yHhMrIgCjLp4Uei1USxcaG3FhZx74E7DcdptVpIjWqP4Lrh9ZNQxudnBvxkCAu2SMuid0ZE+6X4GZDroneYjEPgJn1TbDKtNDIrHh1zrw5GZFmZZrAlUouDH4Shi6E+PkJtN2JdekOtfD9oTzEY+fW+41dMmOlVVVeTm5rJ8+XI6dKiv3D9w4EBWrlzJ+PHjOemkk7j00kt59NFHWb16NYFAwHAuRVFYuHAhc+fO5eqrr+b000/n1Vdf5eDBg7z99tsJWa/tcj0OqeA6Li5+BnZvYkX6u+YDiwrZZbA5UtFYozkGDH2GgAIHT3GaPiBt2g5hcWHHKbnZwNDBKIqSuESQ/XdEH6MhWtHi1iTUSl/P4b/TLmJ0mTVRcd7hv1meu+aL6QjAiUMWISkSLtFJqaeUct9PlAW8KEpK63e9KgpytQexXSq4wh/LggKS7GV8yUpWdriQSaWfhO3XJ7zkWoiRtLHGjBkzuPLKKxk5ciTz58+POFat7+d0GsuqvXv3UlRUxMiR9R9WMjMzOffcc9m8eTPXXtt4C6ot6I5D0tV3/eR3yY1zjpgeFr/UPah2j4WT4zyhTashHjGndaF1qMsG1X7fYehgtl3YC7foINnhotNj4Q9+K4H8zc7J73LOgQgfiJqYaB+srLYra2p29ZhO/+sWWxZzsaLGj/m33Uba0DwURSHJkUy6y8VRXwXQvknOmzAUBSUgIbqdCGkpDaropbjTcXrSeTnpf6A2sgu5Vf6etFHeeOMNtm3bxtatW6OOPXLkCI888ghTpkwxHVNUFPyF7Nq1a9j2rl27hvY1FlvQHY+01IfVk1vu4aelpZM32jy7xzbY9OWInkiKjKQEY89kRUBShNC/ygwHCgIBqYLhS9bx5YzL8crJuEUReYYDhAwEnxO/5ENSvIjTJuIUBYKdVCWcgoxLVHCJkCSKDNn0c/gCWsnPlkpzJYVYbUEGzbMmo5Io/X9ZbDI6MWivqXrrNFLPXoxf9uMJ+FGU5CY9dyJQFAWl1ovgdiGIQlhxYEEQSHKk0j3zFGRZ4mjtL7zTaTxXHV0d83m+6tyKTLatnF9++YXbb7+dDz74IGp3hoqKCq688koGDBjAH//4x+ZZoAm2oDvOSERcXFun1Yq53WPrhYn2+8bMFwNbhnevF2SIyHXfK4goigMEEQUROjkQcIIgIiAGC8kGgv8GXwfbLwkIOAURV90nCAUFv1TDf2fegCA4SHWl15WeEEKto5KdDS0QCsEaXAFk/IpEld/PuvOyUBQZRZEBGUU5FUXx4RT8jC4N1uNqyUxbo/M2xweJSNfcHPeiNViIar6YTslJd1HqE0l2d269fSMUBUVRkCtqkKtqceZ0Muz0IAgCbkcyiqjQJa0P1f5M/pmeiR8vuVVvhsZFeu9LX8/hjKt+Nt5p04Avv/ySw4cPM2TIkNA2SZL45JNPeP755/F6vTgcDiorK7niiivIyMhg1apVuFzmbUCzs4NvzqFDh8jJqX8OHzp0iDPPPDMh67YF3XFIW8r8agrcZz+H74tbW3oZQXaP5ZPzexCQBaRODhTlVhAUhE4yIrfgEMAhKIgCDP/PL8YiTyfcPhvWIyjKOqvCTAgKMUQUpU6UCQ6COVEOhDphJipOCAmyYI8FJ0Ko3pfetBtrXJKAUFfF37ySv9GcAgIIImoHT3SN2ut/nhUkRWJdp7sYvWUnY7duZ8UlQYHRlGKmObtjRKOl3atWaMy1RjtWtRB2W7eT/HPPJEVMNhRJLY6ioMgKUmkliseHo3Nm0DoXgYDsp6T2ICAj0J5AoIx/tBvPbyqC1rpI96XDdYVURq4YY6PhsssuIz8/P2zbjTfeyKmnnsq9996Lw+GgoqKC0aNHk5SUxDvvvBPVktenTx+ys7NZv359SMBVVFSwZcsWpk1LzAc9W9AdZwwpLmRrzvEt6OIRc5bbr+nE1abze+BXQFIcKIoTGQeC4EIQnIiCC6GLM2jVcjpw11mrggStUgoKfkVGQWb9+ScgczaKIqEoEqAgIELnekuZ2nZJEAQEUURExBF6oKmlcOv+3xofdHEgaK7PKYiIrq68f14Syjkn0sPh48LN+2F3MCtVS6KsSVbFSTTrXHNaFFuj9dIKU1D7vipU+6sp91aiKDKCIFDj91B8ZxXfSRIVndJIdrVvtT/jiqyg1HhAknF26QAuR1ThWRuowq8UcV3Vv0Lb3k65ns973Ea/J94Mta7T319V5Jb9qw2o/VZCRkYGAwcODNuWlpZGp06dGDhwIBUVFYwaNYqamhr+/ve/U1FRQUVdWZSsrCwcjuDHz1NPPZUFCxYwceJEBEFg1qxZzJ8/n759+9KnTx8eeOABunXrxoQJExKyblvQ2Rx3bMiayKXFq0KvTcWaRpwN2Q0wODj+wp74JBm/DH5ZQEJEVpwguKCTE0FwBkUbTkRBRBQdOAS1q2gMYkpwRB9j0wBREEl2dkChPQHZz4fnnxAUweedCYqErAQQCCAgEbR2yAC4RImcVDddUjuS5HAjIOAQRRyCE6foxCU6cYiOelmcQLGgDaVetnpak4utsR/lhHrYquy7cxwgIgoiPZ9621TwJp31HIqihO5FS4imcm8Fe8p+4WBNgOBjTEFSRBA64nCkkOxKCn7YaU0oCgqg+APg9YMo4sjKDN4/C/dQCLOWB5lQ+gqUQv4D99Jh9+PkZtcLuNLXcyidP5Gj9yn4ArX4ZpfCCmt1AJuSpHbtEF2uZi8snNSuXcLm27ZtG1u2bAHg5JPDM/327t1L7969ASgoKKC8vL6y8z333EN1dTVTpkyhrKyMCy64gLVr10a17llFUI53/1ucVFRUkJmZyferxpORZu43b21sy8pBcv6GoYULW3opLcJPfWfTzt2OvYeXAZo+uRrx9vkFPfBLSrhYw1UnsFyIogtRcCLgQBTEkHuyoUuSBttsmh/jP3FKXZuo+n2yHECSjyJSiVjXz1UEXKJAskOgnTuZdu5U0lyppDiTcYhqH9F6gScKDgQBRI2YSLTg0V6PgoKsKEhyAFmR8co+Kr1VVPiqkRQZjxTAG5AQBKgNBJNWaiWBgOJGFJNACYpaRXEgCw7cYjLBK/eiyJW0cwVo53bjEARqAn7SXC6SRBeSIpOZlEan5A4kO5NDQiO8kXz4OkP3I8LvhNG9UhQFGQW/5Au9PlxTzLclhwiIfXCKSZqZo4vt0LoUQJJAVkCWg69dDnBoLOXaf2J9HxXNVUsyis+PXOtFrvHi7NgOITUppnlr/VUUVX1HWrLEpLJ/Go7ZecpsqrwpyAigiJz3c30d0K3dbuKqgVeGyms0NR6Ph71799KnT58GgsVu/WWdSPdRj22hO84IulxbehUtR2d3R9K+fYAOdQJu43nj8SoulE7JCLiDljXJGXwwOx241JiyFrJE2DQe4/etoawQHQ4cYjaS0hm57qEfQMYrS1RIPg55a3FSRorjKKlOEZeo/mwEtYCASJrLhdvhJM2VQoozGZfoJsnhrj+HgfAxQy9Eg+JNRpIlPAEPtZIHnxSg2u+hJuAlIEvUBCQq/SCRgowTgRREwY2CUvchRMTlcpFc55o3u0+KoiArHamUaymvqUVWAjjEdhR7fSiKH0kBp1BM15RSuqW1p3NKB1JdqaDUrzMgB/AEPPhlPz7Jj08OICCQ4kwiyZGEy+HEL/mRUXCJLlyiM/S7pn+HyrzlHKg6TECWcYoCJR4vHjmDZGcSYiyWbEUBWUGp9oAoECivRgj2DAuGKKQmBa9BUZA9XgSHA8HlREhyIdT1VhUEzEWYKuIkGcUfCP5sSDJyrTf4OsmNM6t9cL4Y/564HclkJnWnxlfOGxm/4drKfwDh7vMB3//Z9PhTf1gS0/maktQuXdqswGrN2ILO5phG6079ststVB/ej6fjDJRzUxCFVBxiEkmiK5SdaXN8IwgiTsFtuC8ocmRqFR9VPg+KImnyd8EvB3AIARx4SXaUkiRCO7eLDknpSIqMKAikuVLqxIwLURDwSwHEuqxghxB06wIEFIlafy3eOquUpMj4JB8eyUe130eZ14dXBr8s4lfciEIyouBAFJNwOlNwCc5G/Tyr63GIGUBG2D1QCcheDtSUcaj2CD3SyujdLockRxKl3nJqA15q/F7KfT48MoADSXHgl2XcYoBkByQ7RGoDEgEl+H2yw4FTEOssncGvoJsRSjzVHPKAIGTiEAMIQieS3WkxizklICGVVCJmpCAku3GluAnGnBJstVU3TpBkBJcTJSCh+AMokoQYkEAByeevt6wJICS7EUQxWBy41ovs9YMkIzgdONqlIridOFKSoovBKDhEJx1SuiIIIsXV5fy7w2/o0ymDXP4S13w2xx62oDsOkRWppZfQbFQzng86OZCVFERfGg4xmSS3KxRfY4s4G6sERY4DUUnGJTZ0fai5twoyAdmPV/JxtKqMfVWVBGPTZNxiOW5RIdkh4BIFagIyCsHm8xkuJxnuFGRFxiP5KPf5qPAFI/xkRUBWHME4TSEVh9AJh5iE2+EgKeTyr19nU94DFaeYRHpSVwJyew7UHCQg7wdEjnolvLIbUUjB4eiMKLhDYQluByiKRJXkpyLgq4s3dVAbCKD4/aFkH/VLUWQEFCQySHJ1qLvvQXtoLNepKApIMoHisqDFTRVh+usLXiSIIoLLGe42rbPuiaKA7JcQNG7k4HIVEAQcGalBa55TrBNxiXs/JCVAhfco7VICXF26Ekrhs+7XMXz/6wk7h03bxRZ0xyHaeJa2zLasHHbl///27js8yipt4PDvnZ7eKzXU0NtC6EU6iLQFxShiAxVEUBZUQERRXNeCWILyKYKiNAVxF1EQKVIiIggIRAgJJKT3TJJJJjPn+yNkYEgCAULqua9rLsjb5jzzTibPnHplWor0rwP465lR5Fk0WIQelcoJjeKAVqOxfZOXCZx0u270HlJQo1Kr0aj06DXOl3/fihpmrcJKvigsSmCwoKC5XCtkId1sQslJLko+VF5o1D4oGj1qQFM8cvkO9s27WcXPr1HpsSj1uWRKA1To1W4YNNqy+7MpatQqLUI42vaXtyt30bVuIW6rFUtKZlGtmadr+V875apUuahzJIqToczhFmoH/ZVjK5gQgjyzEYvIZ0LWN7btVydz1WV1EKlqyISugsjVByrHuMUtARg/LQIS4mnUfip5hSq244DytCMaHNFpZROqVPWKk4+r34WqywNrSiOEC6ZCHQoq9JqbSDqqmKIoaBQdGt3NZBGKXc5zJ2MVVisirwDFoEPl4oiivs3Rr1V4X3IKMnHQAqbS98tErm6TCV0FkclcxfrDJ4AlM4pGYo2fFgEUfVg992E/8ixqLGI4KI7kCwe0Wh16WQMn1XgKBo17VReidhECCgpBCFSujjX+80GlqMm3VnUppOpKJnRSlSsteRvxNXwb2pQDPeuTaxmARRj4SeWIWjig0WjRXTWBriTVBvK9XPGEVWBOyyqaJqSc871VR0IITIU5mApzCM37gv/5DsYqFEYl/1TVRZOqEZnQSVXm6ubTBR8UTamy33cqeRY1v7U2oKgcUXN1Aif/6EmSVD5CCKw5JhQBik5Tc5M5ipK5uOxI1Op8PjNMxCHXESHKaHeV6qwqnUp76dKldO3aFRcXF3x9fRkzZgwRERF2x0RGRjJ27Fh8fHxwdXVl4sSJJCYmXve6L7/88pUFwi8/goOD7Y5JSEjgwQcfxN/fHycnJzp37sw333xTxhVrjz98qmYSuj98Apj+yVjWJlzpuPttaFOe+7Affm2eIMkykR+9XsREA7TaIBx09TBoPNCpDaiL56eqoR/IkiRVASGwZuegcnGssclcMbVKi6PWFY3ihk5xptCazv0569jkNpQ9gY9wqsXs655f/Jkr1W5VWkO3Z88epk+fTteuXSksLOTFF19kyJAhnDp1CicnJ3JychgyZAgdOnRg165dACxcuJBRo0Zx6NAhVKUMOy/Wpk0bdu7caftZo7EPdfLkyWRkZLB161a8vb356quvmDhxIr///judOnW6MwHfoqigFwmKer3CrleZi4OsTYBvPm7J+GkRPDr/EJ0PjmBnSEN+xABeDpebUPW2dUxl0iZJ0m0TAgotKFoNKid9jV6vRUFBq9Lh41SftNx4sswp6LVFcyX+M/NHyLzBBSjqf5ydc4cLehPMqWkUGiuvQBpnJ7RenpX2fFWlShO67du32/38+eef4+vry5EjR+jbty/79+8nOjqao0eP2pYqWb16NR4eHuzatYtBgwaVeW2NRoO/f9lDfg4cOEBYWBjdunUDYMGCBbz77rscOXKk2iV0FZnMFTVrVnxCVzyB77VTiTRuP5WnlqsoFMNJEY783MMBjUonm1AlSbpjBCBMBaidHYvmm6vhnzOKomAuNJFdkMLDBWv5n/Nkdjk/iFaTR59Lm6q6eDfFnJpG5IuvFK1pW0kUrYamr790y0ndG2+8wQsvvMAzzzzDsmXLAJg2bRo7d+4kLi4OZ2dnevbsyb///e8SrYFXE0KwaNEiVq5cSUZGBr169SIsLIzmzZvfUrmuVa1WLy5exNbTs+hFz8/PR1EU9Hq97RiDwYBKpeLXX3+97rXOnj1LYGAgTZo0ITQ0lIsXL9rt79mzJ+vXryctLQ2r1cq6deswmUz079+/1Ovl5+eTlZVl96iRrlqztKJM/2SsLYnLU0bh1+ZJvFvP4ievFzGJBmg0QTjq6mHQeKJVO8gmVEmS7hwhoMBclDAYtDU+mSumVelx1Liy0XUUI9PWcFfiFzUumQMoNOZUajIHIMyFt1wjePjwYT7++GPat29vt71Lly6sWrWK06dP8+OPPyKEYMiQIVgsZU/c/+abb7J8+XJWrFhBeHg4Tk5ODB06FJOpYvpDVpuEzmq1MmvWLHr16kXbtm0B6N69O05OTsybN4/c3FxycnKYM2cOFouF+Pj4Mq8VEhLC559/zvbt2wkLCyMqKoo+ffqQnZ1tO2bDhg2YzWa8vLzQ6/VMmzaNzZs306xZs1KvuXTpUtzc3GyPBg0aVOwLcKcVJ3LNttEr6aMKueTahKKBDY/OP0SocQQ/ez6K0eqPRtMYB119DDpPdBrHywmcSiZxkiTdcQKwZOQUTedciz5vBGAVkGMufWk6qeIZjUZCQ0NZuXIlHh4edvumTp1K3759ady4MZ07d2bJkiXExMQQHR1d6rWEECxbtowFCxYwevRo2rdvz5o1a4iLi2PLli0VUt5qk9BNnz6dkydPsm7dOts2Hx8fNm7cyPfff4+zszNubm5kZGTQuXPn6/afGz58OBMmTKB9+/YMHTqUbdu2kZGRwYYNG2zHLFy4kIyMDHbu3Mnvv//Os88+y8SJEzlx4kSp13zhhRfIzMy0PWJiYiou+MrQbFuFXKZ4UMUfPgGEGkfwxfrQorVSm22jAA8cNK5XauBqdM8VSZJqGiEEIt+MNb8AtYtTramdQwgswozJkktOfu1Y6acmmD59OiNHjrxu9y6AnJwcVq1aRVBQUJmVPVFRUSQkJNhdy83NjZCQEA4ePFgh5a0W05bMmDGD//73v+zdu5f69evb7RsyZAiRkZGkpKSg0Whwd3fH39+fJk2alPv67u7utGjRgnPnzgFFI2c/+OADTp48SZs2bQDo0KED+/bt48MPP2TFihUlrqHX6+2afqurqxejr0jjFhcNbAg914nCcc/Q+fjzQCeOJseS4/k0isoVB3XNmd1ekqTayWrMQ+3sAFp1VRfllgkhEFhRlFwEVkyFCiZzDi46dyzWAja5PMI/Mz8r17XWJsgVJG7FunXr+OOPPzh8+HCZx3z00UfMnTuXnJwcWrZsyY4dO9DpSq9BTUgoGmrs5+dnt93Pz8+273ZVaUInhODpp59m8+bN7N69m6CgoDKP9fb2BmDXrl0kJSVxzz33lPt5jEYjkZGRPPjggwDk5uYClKjlU6vVWK01bxruq5O4ikrm7NYEPDeCb0MBY1OiB7ckOSmKTK8nsHi5oFFcMej0cqktSZKqXqEFlV6L4mio0e0DVmEhJfci/8z+0G77asNIVCrXcidzIJO5WxETE8MzzzzDjh07MBgMZR4XGhrK4MGDiY+P56233mLixIns37//uufcSVWa0E2fPp2vvvqK7777DhcXF1uW6ubmhoODAwCrVq2iVatW+Pj4cPDgQZ555hlmz55Ny5YtbdcZOHAgY8eOZcaMGQDMmTOHUaNG0ahRI+Li4li0aBFqtZpJkyYBEBwcTLNmzZg2bRpvvfUWXl5ebNmyhR07dvDf//63YoI7N6LCmjlvpCKSuOKm1NMn4gk1jiC0eMc5iBvWluS8bNLyLeRnWlGr/NBqnNApapnESZJUPVxubkWlQlFV/KoQV6Z7Etz5KZYUNCoDXzpMAgpxdshnTNpWHjL9jzWGoewLfII+cSVbkqSKceTIEZKSkujcubNtm8ViYe/evXzwwQfk5+ejVqttfeqbN29O9+7d8fDwYPPmzbZc42rFs24kJiYSEHBlPtjExEQ6duxYIeWu0oQuLCwMoMTI0lWrVjFlyhQAIiIieOGFF0hLS6Nx48bMnz+f2bPtJ1EsbpItFhsby6RJk0hNTcXHx4fevXtz6NAhfHx8ANBqtWzbto3nn3+eUaNGYTQaadasGatXr2bEiJscBXp+CFxOPq91JPAphIB/7IvmSJ8guuyLKtret6i5uPjj4OoeEYrdVgUBdIl7/+bKdJPWJkAol2v4jCNIGdEBixBkFuSSYjJhTDNiVdzQqV1w1OiQ88VJklTtCLBm56I4O9yRvnMCQYYpmfzCXBx1rjhonNCotCiXu6JX1GeiEFaMBemYLfkgdORbTVhzr3T3mWz6kcPaGZxtNZPmp5eXeo071fWmrhg4cGCJ/vQPP/wwwcHBzJs3D7W6ZHO+EAIhBPn5+aVeMygoCH9/f37++WdbApeVlUV4eDhPPlkxa8FXeZPrjbzxxhu88cYb1z3m2lElVw+sKEvz5s0rZmWIJj+Bk7bUXV3iLv+nGXSJL/rXbnsZbvWXsbznFdfGFR8bahxBXLNWCAH1zp0mPjeX9HwLeRYdanUgOq0DKlkbJ0lSdSdE0eMOyS/MJSs/DVNhDjo16FRaNGoXDBpXDBqnCvmMNFvNZJhieSDvC7vtR4Nm0SlqGQBdL3xw3WvIZO72uLi42GbbKObk5ISXlxdt27bl/PnzrF+/niFDhuDj40NsbCxvvPEGDg4OdpVCwcHBLF26lLFjx6IoCrNmzWLJkiU0b96coKAgFi5cSGBgIGPGjKmQcleLQRGSvVv9ZSzrvGsTvc7J8XBuBA73LQQE1i7gVyhIz7dwalA9jAVWUAsc1AooyNGqkiTVIHfm80pBwVnrRk5BFu4GHwxqFU6aFArEOXLMLmhULbAKFWqVBrWiuaXkTghBbkEWKHnsazCGPjFbbPvyLW7lvk51HgihcXZC0WoqfWJhjbNThV3PYDCwb98+li1bRnp6On5+fvTt25cDBw7g6+trOy4iIsI2vy5gG0AxdepUMjIy6N27N9u3b6+wPneKqMx1oGqRrKws3Nzc+HvzKFzKqKGrKLdTfV68ckPx4IZr5YwZTpLJQprJSp5FIN8MkiTVSEJgSc1CcdCjcroDndKFIN+SR2zWOdwNPng4+KJV5WHmKMk5+SiKHotVR6HFGVedLwaNMzq1nuIuKkUjVwUWayFWUWjbbrbko1Xr0ar0WISFXHMWGXkJKKps7s+5MtXW8WZzUClW2p5955aKn51jpsXY78nMzLStvHQnmUwmoqKiCAoKKpGwyKW/yu96r+O1ZA1dDXAzyZzd4AZ/6HywE53pBOfA8b67sQjIKbSSarKSbLKQnVZAocziJEmqBRS9FuVOTVeiKEWJl1pPXqERV6snOrUWa6EvijoJZ70OH6dC0nNSyDKlk53niKPGCxedP1p1UR+4TFMKWfkJqFSFWK0aFMWE2WrBVdcAZ507aXlJFFjyEFjAWsjXzhOZZCxK6tqfe+uWix4eNJPWJ9+ukJehImi9PGtsglWdyYSulrElcsYRcA6cJo0i5+vvUU0YSXyehaS8QjIKBPmyNk6SpFpGWKwgxB3rJKKgwlHrQqYplRxzFmqVB26OXjR2zsFi1WIq1NHIM4dmf621nbPO6TF0ale0ah0ZpmTcHfO5J+1KP++1LoMxWQvJNjoihBYXvTvjs94rd5nK07zq55LNxTYPAN/fbMhSDVJtVoqQbt3ahMvzxp0bQahxhF3Talp+IbEjhnI0tYC/0gtIyLNiksmcJEm1jQCRa0KYy15LsyK4G3wwaBzIMKWQX2jCVKglJccTs1UHqFApV2oIN7kNQ63AuKx3yDRdQqWo7JI5gNDsHTjpPfBy9MDP2R8vhwAO1l90U2UqbpkpS+Pjq0g0utzUNaWaRyZ0NcwfPgH84RPA9E/GXpn811iUyDnedzeGe+9G/HMkKaOGcWrQYI6mFhCVXUiW2YpFZnGSJNV2d7BbuKIoqBUNHg6+WKxmCq1GPBwz8XYy4qI34emYS5OTa2zH/zNzO029i/qrPZD3BY08/Dja5F8lrjs6dRW+Tn4EumlwMeTTI3ZxucsU6l/ULae0pO5Is+m2/9dzy7iJSKWaSDa51iBrE+Cbxa6MnxbBh1M3F9XEFa1mhnri3SSZLCTlWUkvsJBXKGvhJEmqOwQCIe7UGNcrFEVBpagRCFTqdISiIiW3aARl18iS04l0jr4yiKFP3GtlXteKgtWqwaDN42SzF2l77vVylae4ybW0vtZdzl1ZaSLw+Nflup5Uc8mErporHqVabP23T5Oeb+FMviCvgRUnrQqDWiErNZ9ss1UOcJAkqW5SFFQOOhTtnf+zplXpcdA4kVNgREGDh8GCVZSdSka1fYKgk1dWdjjW7Gk6nrOfML57zEJbcnai2Ry72Q3slmLEvt9caf3n5MTCdZNM6KqhP3wCWDKjqCaOhHhatQugntcLpJksHEstsBvQYCy8s/1FJEmSagpFq0FR3fmeRCpFfXlUah7xmU54OFvpdPajMo+/OpkDSiRzxYqTs3ZljGgtTuSuTuLspqa6TCZzdZNM6KqJ6Z+MJT7+lC2J+za0E6kDZpBsKiSzwMrZTLNsQpUkSboOYS4EraZSml0dtS5kmJJJMZq5a1+MbSWg23Vtq0xprq6hKz726m1l/V+q3WRCV0X+8Ang09e60/OezQC2PnG5g58mOc/CH/kW8jIKsFZxOSVJkmoEIbDmFaDS6yrl6TQqHV6OgaTkXuKbzgGM/2MENNt23XOuTbSg5M8kFNW2Xbv/aldvK3F+GduqEzmx8J0hE7oq0jk5ntP3bKZVu6K+DknBy0lpbCErLR+zzOIkSZJuWmUufKQoCk5aVxRHhcScC2zq3IR/3iCpuzYRuzYJK/756u1lJWrXq3UrrWm2ujCnphH54iuVvvRX09dfqvVJnZy2pJL84RNgmy+ueHj5PQPfx911Hr/Xf4e/M82k5ltlMidJklRDFDW9OuNu8CUn38juPi04FfxEuc4tLXkrreattPPKqrW7Xq3ehqRyFeuOKzTmVGoyB0VN8bdTI/jGG2+gKAqzZs0qeW0hGD58OIqisGXLluuXQwheeuklAgICcHBwYNCgQZw9e/aWy3UtmdDdYcWJXHGn1VDjCPw9X+DPhu9yIr2AS7kWuYaqJEnS7VIU1M4Od27pr7KfGBedByqVmtQcCwUFrsR0eLjMo4u/2F9bg3b19uKfS3O9Wrdr9119jYm+SLfg8OHDfPzxx7Rv377U/cuWLUNRytdr880332T58uWsWLGC8PBwnJycGDp0KCaTqULKKptcb9Of3v70zku123Z1p9ZQ4ulsHEHGPcOJyLOQWd9KQZYc4CBJklTRFJWCcseHRFzznIqCRqXBSetGTkEGKUYPCqxexAXNJCRqebmvc71+cbfadHr1edWlhq4mMRqNhIaGsnLlSpYsWVJi/7Fjx3j77bf5/fffCQi4/modQgiWLVvGggULGD16NABr1qzBz8+PLVu2cN999912eWUNXQVw6hrGuMUtbd+wgpYX1cSNG/wBF5u/x9EBg/gro4Akk0WuoSpJknQnCLCaChCWqpjKScFJ54pFWMgtMKFRgY+Tkej2U+yOurZmrrQauWubYMubzJXV7674Z1lDd/OmT5/OyJEjGTRoUIl9ubm53H///Xz44Yf4+9/4JkVFRZGQkGB3LTc3N0JCQjh48GCFlFfW0N2mHg3nMfTuZYyfFlH0i3duBCmvDON0noVMOcBBkiSpkgisBYUo1qr5yqxXO16eyiQFfZYHLnoNimLi96bTEUJF1/Pvl0jOSquVu5nauLImGC7tebIrb1BprbBu3Tr++OMPDh8+XOr+2bNn07NnT1tt240kJBRl2X5+fnbb/fz8bPtul0zoblPuph/4NrQpxkEziMqzkFrfSn6GWU43IkmSVEcoioIKFT5O9UnOiSUpJwON2hUPRxMuhgyc9GoudZxMvWNrSpx7O/PEVcdRrLVBTEwMzzzzDDt27MBgMJTYv3XrVnbt2sXRo0eroHRlkwndbYoZPBCzzomctAIssi1VkiSp6ijc+cVcy3pqRUGjaPFyDCQuO5JkowmrNQCrsJJdkI+LPpeodg9jESqanfwUKL2Ztdjt9qOTEwrfuiNHjpCUlETnzp1t2ywWC3v37uWDDz7gySefJDIyEnd3d7vzxo8fT58+fdi9e3eJaxY3yyYmJtr1t0tMTKRjx44VUm6Z0N2mmJxCHBVZHydJklSlFAW1kwOKprJHudrTqnR4O9YjJfcSKblZCOGHl4sKvTobrdqCEFZiOzxE/T9XlyvhKp6O5GYTNJnM3bqBAwdy4sQJu20PP/wwwcHBzJs3D29vb6ZNm2a3v127drz77ruMGjWq1GsGBQXh7+/Pzz//bEvgsrKyCA8P58knn6yQcsuETpIkSaoVFJVS7ikk7lgZLk84rHJSkZwTS7opGZ3GGxe9MwWWPFJynQAwtnqc4NMrr3ut6jxBcG3m4uJC27Zt7bY5OTnh5eVl217aQIiGDRsSFBRk+zk4OJilS5cyduxY2zx2S5YsoXnz5gQFBbFw4UICAwMZM2ZMhZRbJnSSJElSzScEltx81FoNirZq/7QpioKDxhkfp/ok5cSQkJ2MwIVADwv1XbNAERRY1Bxs/Aw9ot8r8zq1MZHTODuhaDWVvlKExtmp0p6vWEREBJmZmbaf586dS05ODlOnTiUjI4PevXuzffv2Uvvp3QpFVOZaKbVIVlYWbm5ufH7wOI7OLlVdHEmSpDpNWK2Y41LReLqgcqyYP5C3SwhBXqGR1Nx4LKIQDwdHvJw06DU6XAw5WJV8cgp0KAg6nfvojpYlO8dMi7Hfk5mZiaur6x19LgCTyURUVBRBQUElEha5lmv5Xe91vJasoZMkSZKkO6C4ps7fuTGZ+Smk52WQngtOOlfcHTxwcShEp81Bq84nuv3D7P9p1U3NO1dTa/C0Xp41NsGqzuTEwpIkSVLtoFThMNcyKIqCRq3FyyGAei5NcTN4k2s2EpcVT3xGIdk5bqiEAbUC/YdN5lybR8p13ZqazEl3jqyhkyRJkmq+KlvL9cYUFFBAo9LhbvDBWedGZn4qGaZUjAVaUnMd8Xb2xM0hD1eHXC60n8KvP31uO18mb1J5yBo6SZIkqZao3l3CFUW5vParDi+HAPydG6HXOJKVn835lHQiEgUXUw1kmzR07DftxheUpKvIGjpJkiSp5hMCS44JRaet8lGuN1I8tYqD1hmDxolCawE55mxyzVmcT81Fm6nD3dGB4J5P0eX8R7c8ubBUt8gaOkmSJKl2sAqoYRM3KIqCVq3HTe+Fv3MjfJ0aglBIyc7gYpqJAw0fokWPfzLilwDGLW4JlL6yhCTJhE6SJEmSqpiiKKgUNY5aF/ydG+PlWB9zoSPnkxWiUnSEP9OTT1tklUjmZHInFave9dKSJEmSVE6KWgWqml1PUbwmrLPWHWetG2ZrATnmLNJz0tny8EAcdRaGfLybcX+7Mn5ahGyGlWxkQidJkiTVfIqC2tFQlNTVAsrlKVi0aj3uKh9cdZ7kFRrJKUjh5yd68+mKX/Hwr5nz0VmyjVhNpkp7PpXBgNrFudKer6rIhE6SJEmq+UTRygzVaxa621c85Yla0eCkdcNR40JeoQ87p7qh1iQx4uvDrB0Qf92kbm0C3FNNFjSyZBtJ/noTWCyV96RqNT6T/lnrk7ra8VVGkiRJquMEFmMeorASE4VKpigKKpUaR60rPo7N0Stt2PZoP1zaDK7qopWb1WSq3GQOwGK5rRrBN954A0VRmDVrlm1b//79bdPQFD+eeOKJ615HCMFLL71EQEAADg4ODBo0iLNnz95yua4lEzpJkiSpVqgrS5MXJ3YuOi/8nNpiKqgP50aUOE5Od3L7Dh8+zMcff0z79u1L7Hv88ceJj4+3Pd58883rXuvNN99k+fLlrFixgvDwcJycnBg6dCimCmp+rtKEbunSpXTt2hUXFxd8fX0ZM2YMERERdsdERkYyduxYfHx8cHV1ZeLEiSQmJl73ui+//HKJzDk4OLjEcQcPHuSuu+7CyckJV1dX+vbtS15eXoXGKEmSJEkVTaHob5tObcDLoRnfdKlH+tcBrE0ofeTrhqTKL2NNZzQaCQ0NZeXKlXh4eJTY7+joiL+/v+3h6upa5rWEECxbtowFCxYwevRo2rdvz5o1a4iLi2PLli0VUt4qTej27NnD9OnTOXToEDt27MBsNjNkyBBycnIAyMnJYciQISiKwq5du9i/fz8FBQWMGjUKq9V63Wu3adPGLnP+9ddf7fYfPHiQYcOGMWTIEH777TcOHz7MjBkzUNXwEVKSJEl1lUqvRVHVtl5016coClqVHk9DE355YiTqlqP55uOWjFvckm8+bllmgifd2PTp0xk5ciSDBg0qdf/atWvx9vambdu2vPDCC+Tm5pZ5raioKBISEuyu5ebmRkhICAcPHqyQ8lbpoIjt27fb/fz555/j6+vLkSNH6Nu3L/v37yc6OpqjR4/aMt/Vq1fj4eHBrl27ynyRATQaDf7+Zdczz549m5kzZ/L888/btrVs2fI2I5IkSZKqhKKg1utq/LQlt0JRFNRocdc3Ic2kI/RdDRbMDA47zDbgm49bMnLyyaouZo2ybt06/vjjDw4fPlzq/vvvv59GjRoRGBjI8ePHmTdvHhEREXz77belHp+QUJRV+/n52W338/Oz7btd1eqdn5mZCYCnpycA+fn5KIqCXq+3HWMwGFCpVCVq3K519uxZAgMDadKkCaGhoVy8eNG2LykpifDwcHx9fenZsyd+fn7069fvutfMz88nKyvL7iFJkiRVEwLEDVpuarPiNWJ9HINw13XCWd2BX54Yi67lOD5tIf9e3YyYmBieeeYZ1q5di8FgKPWYqVOnMnToUNq1a0doaChr1qxh8+bNREZGVnJpr6g2CZ3VamXWrFn06tWLtm3bAtC9e3ecnJyYN28eubm55OTkMGfOHCwWC/Hx8WVeKyQkhM8//5zt27cTFhZGVFQUffr0ITs7G4Dz588DRX3tHn/8cbZv307nzp0ZOHBgmSNOli5dipubm+3RoEGDCn4FJEmSpFsnsOTU7lGuN1K02oQKndoBF5073g5N8NB1Ys8TE9A2m1jVxasxjhw5QlJSEp07d0aj0aDRaNizZw/Lly9Ho9FgKWWUbkhICADnzp0r9ZrFLYbXjgFITEy8bmvizag2Cd306dM5efIk69ats23z8fFh48aNfP/99zg7O+Pm5kZGRgadO3e+bl+34cOHM2HCBNq3b8/QoUPZtm0bGRkZbNiwAcDW/27atGk8/PDDdOrUiXfffZeWLVvy2WeflXrNF154gczMTNsjJiamxDEGjRpn3Y1bsRXAVa9FU8f6ekhFnHQaHC8vHu6k1eBUjveMJEnlodS6eehuR9GgCQc8HRriqW9d1cWpMQYOHMiJEyc4duyY7fGPf/yD0NBQjh07hlqtLnHOsWPHAAgICCj1mkFBQfj7+/Pzzz/btmVlZREeHk6PHj0qpNzV4i/JjBkz+O9//8vevXupX7++3b4hQ4YQGRlJSkoKGo0Gd3d3/P39adKkSbmv7+7uTosWLWyZc/EL3rq1/Ru8VatWdk2zV9Pr9XZNv9dq7OFM13reAFzKyuXAxSQauDkR5OGMj5MBlaKQkVdAgjGPIA9n9JqiN8SOc3FkmApKXM+gUdPcy5WG7k44ajXkmQu5mJHD2dQs8u7QN1AnrYbWvu74ORtw0GrIL7SQmptPZFo2Bo0aV72WpBwTCcaKGwns6aCnnqsjeeZCojKMuOq1dPD3RK9WUWCx8kd8GpmmAhq5O9PCyxWVApn5Zo5cSsVczZpXHLRqGrs7oygK0elGcs2FJY7pFOBJM6+SI6HOpmRxLCGtXM+jU6sI8nBGq1JxMTOHrHzzbZddkqTaqWjFCdCqtVVckprDxcXF1lJYzMnJCS8vL9q2bUtkZCRfffUVI0aMwMvLi+PHjzN79mz69u1rN71JcHAwS5cuZezYsbZ57JYsWULz5s0JCgpi4cKFBAYGMmbMmAopd5XW0AkhmDFjBps3b2bXrl0EBQWVeay3tzfu7u7s2rWLpKQk7rnnnnI/j9FoJDIy0pbINW7cmMDAwBJTpPz99980atTopuPQqVV0refN6tWr2bRpE16Oeno29KVbPS9OHT7E3H/9i5kzZ7Jl/Vc0dNKi16h56aWXOHr0KJ0DvUpcz82gY1jzeviqLaz86ENmzJjBxx9+gI/awtDm9XA36G66jDfiqNUwuFkgquw03nnz30yfPp03XltC9Mlj9GnsR0c/NzRZKfRp7FeuWsjy0KgU+gf54ZiXSUt3B5p7uRLs7UbKxSg++WA5CVHn6BTgiValolt9b379+Sc++WA5Pno19d0cK6QMFekfgd4EaKz4KmZC6nuXekwDNyfef/991qxZA8D//d//ERYWdlPxtPf3oJGDGndLHr0b+d34BEmqExRUBh3UkqW/aiuVwQCl1HDdUWp10fNWEJ1Ox86dOxkyZAjBwcE899xzjB8/nu+//97uuIiICNvYAIC5c+fy9NNPM3XqVLp27YrRaGT79u1l9tO7WVVaQzd9+nS++uorvvvuO1xcXGwjPdzc3HBwcABg1apVtGrVCh8fHw4ePMgzzzzD7Nmz7UakDhw4kLFjxzJjxgwA5syZw6hRo2jUqBFxcXEsWrQItVrNpEmTgKJvLP/6179YtGgRHTp0oGPHjqxevZozZ86wadOmm46jiacLubm5LFmyhKNHj6JXq/B10DJy5EjS0tJ47LHHcHV1ZdeuXezdu5fPPvuMESNG8Pzzz/Pjjz/i7agnJTffdr0eDXz48+gfjBgxgtDQUAYOHMivv/5KcHAw//vf/+jXqTOJOSYauDnZzjEWmInJyOGv5AwUFJp7udDY3RlXg46MvAKiMrKJz86jo78nga5XkofsfDMXMow467TExcbwj3/8g6effprBgwdz4cIFvv32W3r27EliYiJ9+/bl0qVLDG9R3/aczrqib31WqyAl10Su2UI9V0dUikJSTh4nEzPIMBXg5ainpbcbAS4OFFqtJGTnYSq0oFapCA0N5bXXXqNv374AfL3tmC3hXbt2La183TCbzTz99NNER0fz6KOPEujiSICLI37OBjQqFel5RTWJMZk5dArwooGbI+rLzfK5BYXEZuVyMjEdyzUTj7rotbT0diXQxRG9Rk1GXgHn07NJMObR1tcDP2fD5VhM/JWYjpNOQ7CPG16ORb+AViFIz8vnQkYO/i4OvP76u2RnZ7N06VLublkfB+2VXzGrVaBSKbRt29b2/o6Pjyc/Px8HrYYJbRuTnGPiTHImAmjt4wbA6eRMzFYrbX3dcdBqcNFrWbNmDTt37mTNmjUMa16PyLRs9BoV9V2dcNFrSc01cS41m9S8fLt7LoSg0CrIMxei16jRa9TkmQuJz87jRGI6BZbqVespSeWmFE1bUhdHudYkahdnfCb9s8at5bp7927b/xs0aMCePXtueM61E10risIrr7zCK6+8cltlKUuVJnRhYWFA0RIaV1u1ahVTpkwBijLcF154gbS0NBo3bsz8+fOZPXu23fHFTbLFYmNjmTRpEqmpqfj4+NC7d28OHTqEj4+P7ZhZs2ZhMpmYPXs2aWlpdOjQgR07dtC0adObjqORuzPrv/qSvn374uzsjMVqZdWqVcTExHD06FEKhEKuuZB7772XtLSiZrWQkBAuXLhQVCvoHWBL6HycDLjotcyYMYM5c+Ywd+5cUnJMjB07loCAAGbMmEF4eDjuKiufffYZXbp04euvv6Z+/fo89thjuDv4olIU3DQK69d/zcmTJ2nfvj33338/nQK8iI+PZ8P2/xIUFMTGjRtp3Lgxjz/+OFqtlhXrv6RHjx689NJLJWLcvHkzRqOR5cuXo9VqefLJJ9m2ZTMdO3bk+++/R61WM2vWLKKionjjgy8xm82MHTuWwZ06EZGcSUsfN44ePcqHGzfi5OREaGgoLRo3Jjw8nEuXLrFp0yaOHTvGqFGjAOjZsycHDx4kMzOTlt5ubN26ld69exMdHQ1AoKsjhw8f5tMffsBoNNKlSxcmTJhAKx939CpYERbG4MGDWb16NZ6enkydOhXPID92n0+g+FfMzaBlSLN6REdH83bY+6SkpNClSxdCQ0Nt76u3P1qP2Wxm3LhxDGnXDoBff/0VvV5PREQEx48fZ9CgQQwZMoTExEQOHDhAfn4+y5cvp127dnTq1InvvvuOTp068fXXXzNq1Ch0Oh1a7ZXmDyEEX375JSdOnGDw4MG26XjCw8MBaN+hE6ZCC4lR50hJSaFr16789NNPREREsHz5coKCghg1ahS5ubl8/ulKYmJi6N69O/fccw+KonDp0iU2/vg/6tevz+bNm5k8eTLe3t6ErV5NfHw89evX5+GHHybY243jiek3/f6XpGpBgLXQgrqOrBZRk6ldnGv9uqpVocqbXEt7FCdzULSGWkJCAgUFBfz99988++yztj4BxaKjo3n55ZdtP69bt464uDjy8/OJjY1l3bp1pSZqzz//PDExMeTk5HDgwAF69+590zEYtBpc9Vq2bdvGgAEDMFusqFUqNm7cyGOPPUYhCtvPxrI7KoGd5+LIQMuhmGQURaF///788MMP+DhdqW71d3YgJiaG8PBwpk6dSkRyJr9EJXAmOZPHH3+c3377jZiYGDIyMnj66adZuHAh3bp14/Dhw0yYMIEAF0d8nQyMGDGC8PBwevXqxY8//mhbYy4qKorp06fz/vvv06VLF7799lvmz58PFDVFHzhwgE2bNpGebv+H3c3NDZVKhY+PD97eRc2Jy5YtY8KECej1epo1a8bx48fp378/Pj4+BAcHc++997J//35a+rixZcsWQkNDad26Nd7e3vTv35/Y2FgcHR3RarW4u7vj4+ODTlfUnKzRaBg/frxtIMuqVat4+OGH7cq0b98+mjVrRs+ePfn8889ZuHAhTjoNhYWFzJw5k1mzZtG5c2eioqIYMmQIngYdDdyv1Gp2Dijq+9C9e3f0ej39+/fnzJkzQNG0N7169cLZ2Zn69eszbNgw2+SPW7du5d577+XChQu0adOGhx56iAMHDqDRaHBycsLBwQEfHx9cXFxISUmx3ae2bdvi4uLC1q1b7TrGfvbZZ5w9e5bOnTszffp0Nm7cCBTN0/jDDz+gVavQqlXs37+fDRs2oFKpcHFxwWAw4OPjg5ubGxaLhbvuuovjx4/TuXNn/v3vf7N48WKgaFT3U089xbJly+jYsSMGg4HBgwejUqkYNmwYBoOB5ORkdBpZsyHVZAJrjgnq8ChXqW6rFoMiajJnfVFNy5kzZ5g9ezb5FgtatYro6GgaNmxIpsmM9fIXxnRTAUfiUgFo4+tOkyZNOHPmjN0oR71GxcWLF3FxccHd3Z0zMclF5+blE+zji5ubGxcuXKBRo0bk5ubyySef4O/vzz333EPDhg05c+YMly5dIi8vjw8//BBFURg5ciSBgYG88847AKjVaj777DM0Gg1NmjRh2rRpAAwdOpRXXnmFV199lXvvvZcuXbrw+uuvM2jQIO666y4cHR2ZNGkSVuuVb8BPPfWU7fz77ruPRYsW8cgjj9ie54MPPqBXr1689NJLfPbZZ3Tv3h2AuLg4Vq1axcKFC/H19WXQoEF069ELg/ZK34qHHnqIadOmMWbMGP766y/69etn99o/++yzpKenc+nSJWbNmsX06dN57bXXgKKRzG+++SZt27Zl3LhxtG3blv3799OoXWcuZuSgU6vwdjIw4/XXmTdvHrNnzyYhO4+7L9cQfvDBBzzyyCPMnDkTgNzcXN5++21bk/zAgQNtifDff//Nzp076dmzJx06dCA7O5t777sPlaJw7tw5TCYTq1evxtHFBV0pfUc6duxoS75cXV15+eWXmTBhQpnvOUdHR3r06EFOTo6tG8HPP/+M0WgkLCwMRVHo2rUrrVu3ZsGCBbbzvvjiC3Q6HVarlejoaIYPH27X8ffXC9dfUk+SJEmqvmRCd5tUl2sLCwoK0Gg0FBRaQVc0iCM5OdkuWdOpi/o4JeeasAqBVqslPz/fdg2AQovAy8uL7OxsTCbTlektdBrb5MZeXkUDKby8vPD39+d4Qjrt/T1o0aIF58+f5/z580RGRtKzZ09bG763t7dt/pvGjRuj0WiIy8rF09PT1mkzw1TA1Cee4KmnniI9PZ2VK1cyevToEiN/TySm0yGgaPLn4OBgsvPNuOi1nD59mr/++ouVK1cW9dUqLKRZs2YIITh9+jQzZ860TTeTn5/PyJEj7a6bYMzD4aqErm3btpjNZhYtWsSkSZPspqoRQjBr1iz27t1Lhw4dUKlUJeb3adWqle21ad26NefPn6dV565Fr+fl1/Xvv//mqaee4mJGDuGxyTho1dzdsgGRkZGEhoaSnGMiz1xIu3bt7Ka0adq0KcYCM1arwMPDo8S8iGaLlah0IxqKRlW7u7uzJyqB7g18uFabNm0wW6ycS82idevWREVFlTjmelMxZOQVEBkZSbt27VAUhSOXUuly+R4Xl6tp06bodDr2X0iiVyNfPvroI9vIq/Hjxxcl1k4G4rPlWsZSDaYAipy4RKqbZEJ3m/IuT03RoEEDEhISaNS6HfmFFu655x6++eYbpk2bRq+GvmQXmAnycEGNoMAq0KpVJCQk0KBBA0xXNREk55ro0bIlTZs2ZfPmzfxz4r0YNGqCPJz5dtNGmjRpQnBwMLGxsWRkZJCbm0uwtytCCOLj4/H19cVoNNK+fXt27txZorxJSUm2JmsBds3XHg568gst5BQU4OHhwb/+9S9eeeUVLly4gJ+fn23+vnb+VxYp1mg0FFgsgBZfX18ee+wx7r333hLP6+vry6effkq7y/3QrqYoClarlcYeJftUTJkyhenTp5eYffvSpUts3LiRixcvotFo+Ouvv2xNlcUSExNp5Vc0YWPxa5N/udO/6fLEkAEBAVy4cIGQnr1o5VM0aAOKlmO5dOkSng56LAYd+y5dsluyRVEUirvqXP0aFsei16gJ9nHjXGYyGo3G9nqXJj4+Hq1aRRNPF47+fsbW19NgMJCamoqjtmjeuuTk5BLPA+DuoLOVF6C1rxuZmZnk5ubi4+NDdHS0rQzWy4V+8MEHefDBB4mOjubxxx9n+fLlzHxuDn8myD50Uk2loHY0yFGuUp0l3/m3KdtUQH6hhf79+xMeHo6Pk4FLWblMmzaN8+fPM23aNBIjI9BmpbJm1Wc8++yzOGg1aFQqwsPD6d+/P2lXjXCNz86jwGJl6dKlzJ49m43r1+GQl8k3Gzcwa9YsXnvtNVsCoSgK8+fPJz01hbCwMNRqNZ06deLuu++2dZhPTEzkwoULrFq16oaxbN68mZUrwoiPPk9UVBSvv/46Li4utGzZEh8fH3Jzc/npp584eeKE3XlZ+Way88088cQTLFiwgAMHDpCens5vv/1mSyqfeOIJ2+TRaWlp7Nq1iyNHjgDQqFEjtm/fztGjR+2GeAM8/vjjJCYmlph30MHBgby8PI4dO8bFixdtzZ9XW7hwIanJSXz99ddER0fTv39/UnOLRlblmS0YC4rKvHjxYo7+fpgAjZXw3buAooRn+fLlHP3jCJF/R7B06VImT558w9ewcePGHDp0iMOHDxMbG3vD4wH+97//8eOPP5KcEM9LL71kG5TRuXNnvvvuOyIiIti/fz+rV6+2ndOoUSOOHTtGeHg458+fZ+DAgURGRvLFF1+QlpTInDlz+Oc//1liOHygqyNGo5Evv/yShIQEHB0dcXJywtHR0ZbsSVKNpICi0cgaOqnOkjV0FeBSVi4PPvggw4cPZ8mSJWSaCvD2cuW3337j008/Zfbs2RQUFNClSxdbn6z4+HguXbpEv379+D3uyoSyViE4EpfKhAkTaNCgAR9++CHvvfcezZs359tvv6VHjx5kXp6I2M/Pj44dO/LPf/6T+vXr88MPP2AWoGh1/Prrr7zzzjvcc889ODs7M3DgQKCo6XXw4MEAFFqtODk52UaWtmrVil27drFhwwaEEAQHB/PLL7/g5FQ0kGDDhg1s2rSJwsJCPvvsMwYPHoy3tzdWAScT0xk/fjxarZZ///vfxMfH07hxY9tUMvPnzycwMJDZs2eTlZVFq1atmDdvHgCvv/467733Hm+99RbPPfccjRo1so18Pp2ajaJoyU030sjdiUmTJqHVanF2dmblypXMmTMHBwcHnnnmGdsawFA0T9DIkSO577778PLyYseOHSgaHZFpSbZj/oxPZ9SoURQUFLB48WLS09Pp1q0bI0aMoH///rz77ru8+OKLQNFUOMX91Tp27IizszNWIRCiqNm5uPZu/PjxxMTE8P777zNgwACGDx9ue32tVoFVCNv5UNTc+s4777BlyxaWLFnC4MGDmTdvHpmmAgYNGsQjjzzCY489RvPmzXn99dcxGo0A9OnThyeeeIKwsDDatWvHc889x48//sjSpUv55JNP6NmzJ8uWLQOKVlwpHjlbaLGiVus4ePAgK1asQK1Wc9ddd/Hkk0/yd3rOrf4KSFLVEwKrKR+1Xk6gK9VNirh2ohSpXLKysnBzc+Pzg8cJ8PZkSLN6TJ06lbvvvpu+g4exOzqB1j5uNPFwQXNVE0CSMQ9fZwfmzZtHmzZtCH3gQb47fbHE/Gg+TgZa+bjh5+xgd+6p5Ex8nAy45mfTo0cPu1qgpBwTv8UkgwId/D3t5qkDSMkx4aIvmtg4NjOHk0kZ9GnkV9Q/r9BChqnA7vkA4rNzORafhqNWQ8cAT9yumdQ4z1zIwYvJpOblU8/Vkba+7rhedUxWvplj8Wm46DW08nHHoLnSRy4l18RfiRk09XSh/jVlFUIQnWHk90tFg0h0ahX9g/xxM+jIzjdzLi2LNj7u6DQlBxmYTCbc3NzIz79S85mWm094bDLGAvvVGxq4OdHWz902nx7AhQwjiUYTbX3dcbzcB9JssXIsPg29Rk0bX3cEgj/j0xBAxwBPFBROJ2egVhSae7uiuWYurCRjHnujE2nh7UobXw8EgpyCwhKvJ8CppAz+Ssqgpbcr7f09S91fYLHSysfNtuJIco4JIQS+V92/c6lZXMrKJaS+DwatmpjMHP6IS+Uf9byp52o/kfHp5AxOJmaUeC5JqimEuZDCuFQ0fh4od2Dy9Zou15jNlB7tyczMxNW15Go1Fc1kMhEVFUVQUFCFTZxbF93M6ygTuluUmZmJu7s7YTsP4ODkTK+m9annbCAvLw+NgxOb//wbKBo04azXoVIgO78AvVrN+E7BJCUl4uvry6GoOM4ml91vyaBRY9BqMBVaMF3ur9ehvi/emBkwYABnz57lt+g4zqdkkH/NcH2tWoWzXkehxYoxv6CozxyX+19dddvVimJLKIvKq0VBIafATOE1y2spl4+xCIFKUYqmmrmmzE46LTqNmtwCc4kyuRh0qJWia5uvmcRWfVW5ri1jaWVVLl/PKgTGfHNRMuXrSYcATwICAkhPT+fP2CQiElNtfR3L4qLXoVYpGPPtY3a96vrFVIqCQFzVh65oBcmry1s80MUqhF2Zrz2/+FytWoWDVkOWqaDEdVwMOkzmQgoslus+D4CDVoNOoyb7quuUdc+d9ToERbHJ5lapphPmQgoT0tD4eKAYZC3dtfJyjDw5qCcZGRm4ubnd8ee7XiJSaDRjMV3/M7kiqQ0aNM418z1xMwmdbHK9RdnZ2QA8OagnUNSB/fHHH8fFxYWNGzdy9uzZMs/t06cPd911FxEREaxbt+6mn3vo0KFs376ds2fPYjKZGNm1g93EynVZ586dOXLkCOnp6VitVsb371liQIUkSVJdlZ2dXSkJXVkKjWZiv41EWCrvS6SiVqg/rmmNTerKS9bQ3SKr1UpcXBwuLi4lJjquDCqVCpVKhcViKbG8yO3IysqiQYMGxMTEVEq1/J1wo9emNsRYHnUhzroQI9SNOOtCjFB1cQohyM7OJjAw0G4KqDulrJql/JQ84r6PvuPPf63AUY3Rezvc+EDg5Zdfts0NWqxly5a2ieenTZvGzp07iYuLw9nZmZ49e/Lvf/+b4ODgMq8phGDRokWsXLmSjIwMevXqRVhYGM2bN79uWWQNXSVQqVTUr1+/qotxx7i6utbqD1WoGzFC3YizLsQIdSPOuhAjVE2cVVkzV9O0adPGbuqv4qmfANsSkQ0bNiQtLY2XX36ZIUOGEBUVhbqUyeMB3nzzTZYvX87q1asJCgpi4cKFDB06lFOnTlVYH0OZ0EmSJEmSJF1Fo9Hg7+9f6r6pU6fa/t+4cWOWLFlChw4diI6OLnWZUSEEy5YtY8GCBYwePRqANWvW4Ofnx5YtW7jvvvsqpMxyHjpJkiRJkqSrnD17lsDAQJo0aUJoaGiJFZOK5eTksGrVKoKCgmjQoEGpx0RFRZGQkGCbPgqKaktDQkJsa4RXBJnQSXb0ej2LFi1Cr9dXdVHumLoQI9SNOOtCjFA34qwLMULdibMmCwkJ4fPPP2f79u2EhYURFRVFnz59bIMhAT766COcnZ1xdnbmhx9+YMeOHeh0pU+Xk5CQAGC32lDxz8X7KoIcFCFJkiRJUoWqyYMirpWRkUGjRo145513ePTRR4GiqcuSkpKIj4/nrbfe4tKlS+zfv7/U/nAHDhygV69exMXFERAQYNs+ceJEFEVh/fr1ZT73zQyKkDV0kiRJkiRJZXB3d6dFixacO3fOts3NzY3mzZvTt29fNm3axJkzZ9i8eXOp5xf3xUtMTLTbnpiYWGY/vVshEzpJkiRJkqQyGI1GIiMj7WrXriaEQAhhtzrR1YKCgvD39+fnn3+2bcvKyiI8PJwePXpUWDllQidJkiRJknTZnDlz2LNnD9HR0Rw4cICxY8eiVquZNGkS58+fZ+nSpRw5coSLFy9y4MABJkyYgIODAyNGjLBdIzg42FZjpygKs2bNYsmSJWzdupUTJ04wefJkAgMDGTNmTIWVW05bIkmSJElSpVAbNChqpdJXilAbyp/uxMbGMmnSJFJTU/Hx8aF3794cOnQIHx8fzGYz+/btY9myZaSnp+Pn50ffvn05cOAAvr6+tmtERESQmZlp+3nu3Lnk5OQwdepUMjIy6N27N9u3b6/QdW7loAhJkqRqQAhRJavOSBVP3ku5lmtFkStFSKXavn07wcHBNG7cuKqLcsfk5ubi6OhY1cW44+S9rD127NhBr169an2shYWFdrPt10Z15V7eLo2ztsYmWNWZ7ENXB5w/f56BAwcyYsQITp48WdXFuSOio6MZO3YsoaGhPP3005w6daqqi3RHyHtZexTfy6FDh3LgwIGqLs4dEx0dzX333ce0adNYvHgxaWlpVV2kCldX7qVUvcmErpabMWMGwcHB+Pr6kpSUxN13313VRapwhw8fpnv37uj1enr37s22bduYPHkyP/zwAwBWq7WKS1gx5L2svffy6hnka5Ndu3bRpUsXLBYLXl5evPPOOzz44IO22fFrw/2sK/dSqgGEVGv98MMPQlEU8cknn9i2nT59WqSlpVVhqSrewoULxdChQ4XZbBZCCHH27Fnx4IMPinr16gmLxVLFpasY8l7WjntpNpvFypUrhaIoYv369bbtUVFRIj8/vwpLdmdMmzZN3H///bafDx06JO6++27Rs2fPKixVxbBYLHXqXt6svLw8cerUKZGXl1fVRanRbuZ1lDV0tcxvv/1GREQEAF27dmX06NFs2LCBP//8k759+zJx4kTatm3L9OnTOXLkCFDzviUnJydjsVhsP58/fx5FUWz9c5o1a8a8efNQFIV//etfQM2L8VohISG18l4WE5fHZtXWe3n48GFSUlLQaDR0796dAQMG8P333/P3339z1113MXbsWNq0acMrr7zChQsXgJoZ59VLIwFcuHDBriN3SEgITz75JLGxsfz73/8GamacACqVip49e9baeynVQHc+v5QqQ3x8vJgwYYJQFEVMmjTJtv3gwYNCq9UKT09PsWDBAvHTTz+J9957T3Tv3l0MGDBApKenV12hb1J8fLzo06ePGD16tEhJSRFCFH1LnjNnjhg8eLCIjo62HVtYWCiWL18uHBwcRHJyclUV+ZYkJyeLr7/+Wuzbt08kJSXZtteme5mYmCjee+89sXXrVtt9M5vNte5exsXFiXvvvVcoiiKeffZZIURRPF9//bXQarXC29tbzJ8/X2zcuFEsWrRIBAUFiUceeUQYjcYqLvnNiY+PFz179hSPPPKIMJlMQgghCgoKxPjx48WUKVNEamqq7diMjAwxb9480bx58xr1nk1OThbbtm0Tx44ds8VYG+9lRZE1dBXjZl5HmdDVAnPnzhUqlUqMGjVKDBs2TDz44IO2D5Hc3FwRFhYmVqxYYddktWnTJtGhQwcRFhZWVcW+KS+88ILQaDRi5MiR4uLFi0IIIaxWqxBCiK+//lq0bt1afPXVV3bnnDhxQnTo0EG89dZblV7eW/XSSy8JFxcX0a9fP+Hk5CRGjx4tjh8/LoQQIisrq1bcy/fff1/o9XrRu3dv4ePjI9q2bSt++uknIYQQ69atE61ataoV97L49/Luu+8Wbdq0EQsXLrTdt9jYWLFkyRLxxRdf2J3z7rvvio4dO4qtW7dWRZFvybx584RWqxUjRoyw/W4Wx7l8+XJRv359cfDgQbtztm3bJjp27CjWrVtX6eW9FQsXLhTu7u6iZ8+eQqvVipkzZ4rIyEghhBAXLlyoNfeyIsmErmLIhK6O+PPPP4Wrq6to06aN+OWXX4QQQsyfP1+0bNnS7rj09HTbN8riJCgnJ0fUr19ffPTRR5Va5puVm5srGjRoIJydncWOHTts2wsKCuyO6927txg/frw4deqU3bnt2rUTy5cvr7Ty3qrMzEwxY8YM8Y9//EPs2LFD5Ofni2+//VYMGzZMPP3007bj0tLSauy9FKKodqZLly7iww8/FEIIceTIEfHYY48Jb29vERERIYQQom/fvmLcuHE19l4eOHBAuLm5ibZt24pdu3YJIYR49NFHS/Qbi42NtfW1Kk6A0tLShJOTU41IAlJTU0XDhg2Fj4+P2LNnT5nH1atXTzzyyCN2tc1ZWVnC19dXbN68uRJKeutSUlLEww8/LLp06SJ27twp0tPTRVhYmOjevbt4++23bcfV9Ht5J8iErmLIPnR1yNq1azl58iT9+/cHoHPnzqSlpXH27FnbMe7u7uj1egDbZJcREREoilKt5zGzWq04ODgwZMgQGjduTL9+/Th+/DiPP/44M2fO5O233+bEiRMAvPjii5w+fZqPP/7Ydn5+fj4FBQV4eHhUVQjllpaWhtlsZs6cOQwaNAidTsfYsWPx8PAgLy/PdpyHh0eNvJfF9u3bR2RkJKNHjwaK3q9hYWH4+Pgwd+5cABYvXlzj7qW4an727OxsPv30U06cOMGAAQMQQtCqVSsyMjKIi4uzHVevXj10Oh1Q1B8L4I8//sDFxQUvL6/KDaCciuMUQuDp6UnHjh1p06YNffv25c8//2TGjBnMnz+fL774gtjYWADefvttvvvuO9atW2e7TlpaGk5OTrb3cnVy9b2MiYnBYrHw6quvMnDgQNzd3XniiSdQq9VkZGTYjquJ97IqFRrN5KfkVdqj0Giu6pArRe2e5bGWsVqtqFQqzGYzWq2W9u3b0759e7t9arUaBwcHuyVHrj7fbDZz7tw55s6dS8eOHenVq1dlh3FdxXEUFhbaPhjDwsLw8PCgQ4cOZGdn069fP/Lz8/nll19YsWIFx44dY/jw4Rw/fpwvvviC7t2788ADD7B582Z0Oh19+/at4qhKuvZe+vn5MX36dNq1a2e3383Njdzc3FLPr0n3Uq1W25JOo9FIWloa9erVIz8/H71ez0cffcRdd93Fjh07GDx4MFOmTGHNmjU14l6aTCays7Px8fEBYNCgQbb3bvFr4OrqSmZmZqkT61qtVhRF4dSpUyxdupT+/fvzj3/8o1JjKI+r4yz+MvHWW2/Rtm1bunfvTlxcHCEhIZw6dYrVq1fTunVr/ve//3HvvfeyZ88ePv30U3766SceeOABVqxYgZ+fH926daviqOxdey8bN27MU089RUhICAAWiwW1Wo2fnx+FhSVXOqgp97IqFRrNxH4bWelLf9Uf17Tckxm//PLLLF682G5by5YtOXPmjN02IQQjRoxg+/btbN68+brrsgohWLRoEStXriQjI4NevXoRFhZG8+bNbzqessgauhriP//5D0OGDAFAqy35piz+gO3fvz/JycnExMQAV0ZX5efnExYWxpQpUwgJCaF+/fqsW7cOV1fXSorgxq6OUaPR2JIBrVbLsmXLMJlMfPXVV6xZs4aNGzfyzTffoNFoeOqppwCYOXMmX375Jc2aNeO7776jUaNGHDx4kIYNG1ZlWCVcey+FEDg4OJRI5gD27NlDz549AWwjewsKCmrcvSzm4OBA3759WbFiBQB6vR6r1Ur//v0ZMGAA77//PlBz7uWrr75Kq1atGDZsGPfffz+nT5+23Tu48ns5aNAgkpKS+Pvvv4ErtUAmk4n//Oc/PPDAA3Tt2pWGDRvy2Wef2Wp7qotr4yye7Ll58+YsWLCA7Oxs1q1bx1dffcWuXbv4+OOPiY2NZf78+QAsXbqU119/HbPZzLJly2jYsCE7d+6sVrVX18b4119/4e7ubkvmrFYrarWa/Px8Dhw4QNeuXYGady+rmsVUWKnJHICwiJteaqxNmzbEx8fbHr/++muJY5YtW1buJd7efPNNli9fzooVKwgPD8fJyYmhQ4diMpluqlzXI2voqrnz58/z4osvsmvXLlJSUvjwww+ZPn267ZtiseI3ldlspkuXLhw8eJCxY8fa/rjo9Xpat25NWloaCxYsoE2bNlUST2muF2NxMvDYY4/RtGlTQkJCbLG2adOGhx56iFWrVpGeno6HhwcdO3bkyy+/JC8vDwcHh6oMq4Sy4iz+Q1FMpVIhhCAqKgqj0Uj37t0BbMfodDpatmxZo+5lcWLepEkTunXrxi+//MLevXvp27cvFosFlUpFaGgor732GmlpabbmvOp6L6GoafjLL7/kvffe4/z582zevJlhw4bxww8/0Lp1a+DK72VeXh7BwcGcPHmS3r1727YbDAaaN29OUlIShw8frlb3slhpcQ4fPpxt27bRpk0bZs+eTb9+/ejWrZvt82bgwIH079+fEydOkJOTg5ubGyNGjGDIkCHk5eXh4uJSxVHZKy3GkSNHsm3bthL38sSJE2i1Wluid/W9bNKkSbW+l1L5aTQa/P39y9x/7Ngx3n77bX7//XcCAgKuey0hBMuWLWPBggW27iZr1qzBz8+PLVu2cN9991VImWUNXTVXvLzTxx9/zL/+9S+WLFlCTk4OarW61LmNvL29MZvNtn5XVx8zYMAAFi5cWO0+aMob44ABA9DpdCiKYtt+/Phx/Pz8MBgMdn1fqmMCcDP3UlEUIiIi8PT0tDWr79q1i0WLFgFFNT416V5qtVrMZjOKojBu3Djc3d155513gCs1zqdPn8bX1xdHR8dqfS+tVismk4ndu3czYcIE7rnnHmbNmsXu3bvR6/UsXry4xPxjrVu3Jjs727bslcViscU4btw43n777Wp3L28UZ/E8a87OzvTt29dWq261WjEYDJw+fRqtVouDg4MtVo1GU62SuevFqNPp7O5lcQx//fUXzZo1IzAwEIC9e/fywQcfADBhwoRqeS+lm3f27FkCAwNp0qQJoaGhXLx40bYvNzeX+++/nw8//PC6SV+xqKgoEhIS7FYRcXNzIyQkxLZqSkWQCV01VfzhMXjwYGbPns3YsWN54IEH8PLysnUev1Zxk1y/fv3YvXs3gF3zT3VzKzEWU6lUHDt2jEuXLjF58mQcHBzKXfVd2W41zu+++47evXuTkZHBqFGjGDJkiO0eX53wVAflibH4vdi1a1cmT57M8ePHeeSRRzhy5Ahnz54lPDycPn36YDAYqu29BGx9H//66y9b/yiTyYSiKHzwwQf88ssv7Nq1y9Z0XnzP+vfvzy+//AJg61NYnd1MnNeeFx4eTn5+Pg8//DAqlaraxnqz9xKKfi/79etHcnIyo0aNYsCAAeTn5wPV7/dSujUhISF8/vnnbN++nbCwMKKioujTp49t4uzZs2fTs2dPW23bjSQkJADg5+dnt93Pz8+2ryJU37/2dVzxB6CDg4Otar9Zs2ZMmzaNL774gr/++svujwVg12wnhLD1o6uubiXGixcvsmnTJqZPn07fvn1p1qwZ999/f5WUv7xuJc6srCx2797N999/T0BAAFarlfj4eJYsWWJ3zeqiPDGq1WoKCgqAopqMTz75hN27d/PAAw/QrVs3vL29WbhwYZXFUF5WqxUXFxe6du3KZ599BhR1aRBCMGTIEHr06MHq1attf+SLfy+zs7MpKCggNTW1ysp+M8obZ3EfoMjISH744QdmzpzJ0KFDad++PcOHD6/KEG7oZmNMSEjgt99+4/vvv6dBgwYIIUhISOC5554Dqt/vpXRrhg8fzoQJE2jfvj1Dhw5l27ZtZGRksGHDBrZu3cquXbtYtmxZVRezBJnQ1RDFHedHjhxJt27dmD17NlAyiYOiJpx169bRoEGDKinrrSpPjGlpaezYsYOIiAh++uknPv30UxwdHauqyLekPHHm5ORgsVjw8/Njz549/O9//7ONvKsJyoqxuIO4RqNh0KBB/P7772zYsIGDBw/y7bffVqvmuLIU93EcPXo0x48fZ9++fSiKYkvgXn75Zfbu3UtiYiKAbTTkE088wfLly6vVQIDrudk4z58/z+rVq/nzzz/54YcfWLFihd2yX9XRzcaYmJho60Lwyy+/8N///rdG/V5Kt8bd3Z0WLVpw7tw5du3aRWRkJO7u7mg0Gls/7/Hjx9umD7tWcbNs8fuoWGJiYrmabMtLJnRVKD4+nnXr1nHw4EFb35qyquyLv/k1btyYJ598ksOHD/Pdd98B8Ouvv5KQkGA7JiQkhLZt21ZCBDdWUTHu3buXlJQUOnbsyKuvvsrOnTttgwWqg4qKc9++faSkpODl5cXGjRv57bffbDVeVa2i368Anp6etGvXjuDg4EqIoHxuFKcQAkVR6NWrFx07duSVV14BsCUvBoMBf39/W3/C4g/8QYMG0aFDh8oM5boqKs7iuSAHDBjAm2++yZ49e+jRo0clR1O6io6xadOmfP/99xw8eLDaxCjdeUajkcjISAICAnj++ec5fvw4x44dsz0A3n33XVatWlXq+UFBQfj7+/Pzzz/btmVlZREeHl6h7yOZ0FWRuXPn0qJFCz7++GMGDRrE1KlTiYyMtOvwXxqVSkWfPn0YP348s2bNYtSoUfTt29duIuHqoiJj7N+/P6dPnwbA19e3skIol4qMs1+/fpw6dQqdTkfHjh0rL4gbqOj367lz5yqx9OVXnjivHmUdGhrKX3/9xSuvvGJrMj99+jQeHh7V6gvHtSoyzuJpdTQaTbWaVuZOxOjs7Ezv3r2rJiCp0syZM4c9e/YQHR3NgQMHGDt2LGq1mkmTJuHv70/btm3tHgANGzYkKCjIdo3g4GA2b94MFL3PZs2axZIlS9i6dSsnTpxg8uTJBAYGXnfuupslE7pKlp6ezmOPPcavv/7Ktm3b2L59O59//jkZGRn83//9H1C+gQzJyclcuHABrVbL+fPn6dOnz50uernVhRjhzsVZnSbPlfey9DiL/+CPGTOGpUuX8sYbb9C7d28efvhhJk+ezIgRI3B3d692neTrQpx1IUbpzoqNjWXSpEm0bNmSiRMn4uXlxaFDh26qeT0iIsJugv+5c+fy9NNPM3XqVLp27YrRaGT79u0V2i1BzkNXCYqr9QFSUlJQFIV58+bZ/qhNmDCBtWvX2jreXn38tSIjI5k8eTKxsbH88ssv9OvXr3KCuIG6ECPUjTjrQoxwe3EW93fU6/U89NBD+Pv78+eff3Lq1Cm2bNliNz1BVasLcdaFGGsLtUGDolYqfaUItaH86c7Vy9SVR2nJ/rXbFEXhlVdesTXr3wkyobvDjEYjBQUFeHp6AuDj48OsWbNs8xQVD4d3cnKyjQC8+o9jbm4u27dvZ9y4cUBRte6rr77KXXfdVcmRlK0uxAh1I866ECNUfJxDhw5l6NChlRzFjdWFOOtCjLWJxllL/XFNb3rlhtuhNmjKvexXjSakO2b+/PmiSZMmok+fPuLee+8VZ86csdtvsViEEEIUFhaKxo0bi7Vr19ptF0KIn376SSiKInbs2FF5Bb8JdSFGIepGnHUhRiFknMVqQ5x1IcaaKi8vT5w6dUrk5eVVdVFqtJt5HWUfujugoKCABx98kG3btvHxxx/z2GOPkZ2dzfDhwzly5IjtuOJ+HGfOnMFqtdomtry6f0eXLl149dVXbcvPVBd1IUaoG3HWhRhBxlmb4qwLMUrSTauEBLPOOXHihGjTpo345ZdfbNvy8vKEq6uruPfee8XZs2eFEFe+Ja5fv15069bNduy2bdvE66+/Xqllvll1IUYh6kacdSFGIWSctSnOuhBjTSdr6CqGrKGrYpmZmURERNjNOZWYmIinpye//vorO3fuRAhh+5a4detWBgwYQFJSEoMHDy73ciJVqS7ECHUjzroQI8g4a1OcdSFGSbpZMqG7A1xdXWnXrh0LFiywbfv4448ZNmwYDRs2ZMuWLVitVoQQpKSksG/fPtavX0/9+vVxc3MjJSWFF154oQojuLG6ECPUjTjrQowg46xNcdaFGCXppt2ROsI6Li8vT6xatUpotVoREhIivLy8RGBgoIiOjha7du0SGo1GZGVlCSGEOH/+vGjUqJHo3bu3+OOPP6q45OVXF2IUom7EWRdiFELGWZvirAsx1nSyybVi3MzrKKctqUCFhYVoNBoMBgNTpkyhTZs2HD16FA8PDyZMmADA4cOHadasGenp6bi4uODj48PWrVtp3759FZe+fOpCjFA34qwLMYKMszbFWRdilKRbVgkJZq1nNptt/y8oKBDPPvusrVPutWbOnCnuueeeyipahakLMQpRN+KsCzEKIeMsTU2Nsy7EWNvIGrqKIQdFVBKLxYIQwrb49rJly/D29ua7776zm7jy/PnznD9/nrlz57Jp0yYefvhhoOyFzauTuhAj1I0460KMIOOsTXHWhRjrokKjmfyUvEp7FBrNVR1ypZBNrrfIYrHYloz5+eefmTZtGkajkXfeeYeHHnrI9gEEcOjQIZYuXYqiKGzYsIFevXoBlLlcUnVRF2KEuhFnXYgRZJy1Kc66EGNdVGg0E/ttZKUv/VV/XNNyrxbx8ssvs3jxYrttLVu25MyZMwD079+fPXv22O2fNm0aK1asKPOaQggWLVrEypUrycjIoFevXoSFhdG8efObjKZsMqG7RWq1mpiYGKZOncrPP//MM888wwsvvGBbfgaurBc4ZswYgoKC6NGjRxWW+ObVhRihbsRZF2IEGWdtirMuxFgXWUyFlZrMAQiLwGIqvKnlv9q0acPOnTttP1/9BQLg8ccft1uX1dHR8brXe/PNN1m+fDmrV68mKCiIhQsXMnToUE6dOoXBYCh3ua5HNrneok2bNtGkSRPUajXHjx/nP//5j90HDVz5dujo6FgjP2jqQoxQN+KsCzGCjPNqNT3OuhCjVH1pNBr8/f1tD29vb7v9jo6OdvtdXV3LvJYQgmXLlrFgwQJGjx5N+/btWbNmDXFxcWzZsqXiylxhV6pjOnfuzN69e2v1h0hdiBHqRpx1IUaQcdYmdSFGqfo6e/YsgYGBGAwGevTowdKlS2nYsKFt/9q1a/nyyy/x9/dn1KhRLFy4sMxauqioKBISEhg0aJBtm5ubGyEhIRw8eJD77ruvQsqsCNlrVJIkSZKkCmQymYiKiiIoKMiuSTE/JY+476MrvTyBoxqj93Yo17E//PADRqORli1bEh8fz+LFi7l06RInT57ExcWFTz75hEaNGhEYGMjx48eZN28e3bp149tvvy31egcOHKBXr17ExcUREBBg2z5x4kQURWH9+vVllqWs17E0soZOkiRJkiTpsuHDh9v+3759e0JCQmjUqBEbNmzg0UcfZerUqbb97dq1IyAggIEDBxIZGUnTpk2rosiA7EMnSZIkSZJUJnd3d1q0aMG5c+dK3R8SEgJQ5n5/f3+gaL3hqyUmJtr2VQSZ0EmSJEmSJJXBaDQSGRlp11x6tWPHjgGUuT8oKAh/f39+/vln27asrCzCw8MrtI+oTOgkSZIkSZIumzNnDnv27CE6OpoDBw4wduxY1Go1kyZNIjIykldffZUjR44QHR3N1q1bmTx5Mn379rVbXi44OJjNmzcDRaOxZ82axZIlS9i6dSsnTpxg8uTJBAYGMmbMmAort+xDJ0mSJEmSdFlsbCyTJk0iNTUVHx8fevfuzaFDh/Dx8cFkMrFz506WLVtGTk4ODRo0YPz48SxYsMDuGhEREWRmZtp+njt3Ljk5OUydOpWMjAx69+7N9u3bK2wOOpCjXCVJkiRJqmBljc6sCStFVCdylKskSZIkSdWOxllL/XFNsZgKK+051QZNjUzmbpZM6CRJkiRJqjQaZ22dSLAqmxwUIUmSJEmSVMPJhE6SJEmSJKmGkwmdJEnVRnR0NIqi2OZ1qmiKolToYtiSJEnVhUzoJEmymTJlSoXOi3SzGjRoQHx8PG3btgVg9+7dKIpCRkZGlZVJkqRbJyfSuD038/rJhE6SpGpDrVbj7++PRiPHa0lSTabVFg16yM3NreKS1GwFBQVA0WfjjciETpKkctmzZw/dunVDr9cTEBDA888/T2HhlakH+vfvz8yZM5k7dy6enp74+/vz8ssv213jzJkz9O7dG4PBQOvWrdm5c6ddM+jVTa7R0dEMGDAAAA8PDxRFYcqUKQA0btyYZcuW2V27Y8eOds939uxZ+vbta3uuHTt2lIgpJiaGiRMn4u7ujqenJ6NHjyY6Ovp2XypJqvPUajXu7u4kJSWRmppKXl4eJpNJPm7ikZubS3JyMo6OjuX6kiu/BkuSdEOXLl1ixIgRTJkyhTVr1nDmzBkef/xxDAaDXRK1evVqnn32WcLDwzl48CBTpkyhV69eDB48GIvFwpgxY2jYsCHh4eFkZ2fz3HPPlfmcDRo04JtvvmH8+PFERETg6uqKg4NDucprtVoZN24cfn5+hIeHk5mZyaxZs+yOMZvNDB06lB49erBv3z40Gg1Llixh2LBhHD9+HJ1OdysvlSRJlxUvPJ+UlFTFJam5VCoVDRs2RFGUGx4rEzpJkm7oo48+okGDBnzwwQcoikJwcDBxcXHMmzePl156CZWqqLK/ffv2LFq0CIDmzZvzwQcf8PPPPzN48GB27NhBZGQku3fvtn3Qv/baawwePLjU51Sr1Xh6egLg6+uLu7t7ucu7c+dOzpw5w48//khgYCAAr7/+OsOHD7cds379eqxWK//3f/9n+7BctWoV7u7u7N69myFDhtzciyRJkh1FUQgICMDX1xez2VzVxamRdDqd7fP1RmRCJ0nSDZ0+fZoePXrYfUvs1asXRqOR2NhYGjZsCGC3ODVAQECA7dt5REQEDRo0sCVzAN26dbtj5W3QoIEtmQPo0aOH3TF//vkn586dw8XFxW67yWQiMjLyjpRLkuoitVpdrj5g0u2RCZ0kSRWmuCN0MUVRsFqtFf48KpWqxOivm60BMBqNdOnShbVr15bY5+Pjc1vlkyRJqmwyoZMk6YZatWrFN998gxDCVku3f/9+XFxcqF+/frmu0bJlS2JiYkhMTMTPzw+Aw4cPX/ec4n5sFovFbruPjw/x8fG2n7OysoiKirIrb0xMDPHx8QQEBABw6NAhu2t07tyZ9evX4+vri6ura7likCRJqq7kKFdJkuxkZmZy7Ngxu8fUqVOJiYnh6aef5syZM3z33XcsWrSIZ599ttz9OwYPHkzTpk156KGHOH78OPv372fBggUAZXb4bdSoEYqi8N///pfk5GSMRiMAd911F1988QX79u3jxIkTPPTQQ3ZNOoMGDaJFixY89NBD/Pnnn+zbt4/58+fbXTs0NBRvb29Gjx7Nvn37iIqKYvfu3cycOZPY2NhbeekkSZKqjEzoJEmys3v3bjp16mT3ePXVV9m2bRu//fYbHTp04IknnuDRRx+1JWTloVar2bJlC0ajka5du/LYY4/ZkiyDwVDqOfXq1WPx4sU8//zz+Pn5MWPGDABeeOEF+vXrx913383IkSMZM2YMTZs2tZ2nUqnYvHkzeXl5dOvWjccee4zXXnvN7tqOjo7s3buXhg0bMm7cOFq1asWjjz6KyWSSNXaSJNU4ipDTOEuSVEX2799P7969OXfunF1CJkmSJN0cmdBJklRpNm/ejLOzM82bN+fcuXM888wzeHh48Ouvv1Z10SRJkmo0OShCkqRKk52dzbx587h48SLe3t4MGjSIt99+u6qLJUmSVOPJGjpJkiRJkqQaTg6KkCRJkiRJquFkQidJkiRJklTDyYROkiRJkiSphpMJnSRJkiRJUg0nEzpJkiRJkqQaTiZ0kiRJkiRJNZxM6CRJkiRJkmo4mdBJkiRJkiTVcDKhkyRJkiRJquH+HwblriCDvorrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map.gval.cat_plot(\n", + " title='Agreement Map', \n", + " figsize=(8, 6),\n", + " colormap='tab20b'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "bdcbfb8e", + "metadata": {}, + "source": [ + "## Comparisons" + ] + }, + { + "cell_type": "markdown", + "id": "4a1f3ecc", + "metadata": {}, + "source": [ + "For multi-categorical statistics GVAL offers 4 methods of averaging:\n", + "\n", + "1. No Averaging which provides one vs. all metrics on a class basis\n", + "1. Micro Averaging which sums up the contingencies of each class defined as either positive or negative\n", + "3. Macro Averaging which sums up the contingencies of one class vs all and then averages them\n", + "4. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category." + ] + }, + { + "cell_type": "markdown", + "id": "66235a0a", + "metadata": {}, + "source": [ + "### No Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "4f258087", + "metadata": {}, + "source": [ + "Using `None` for the averaging argument runs a one class vs. all methodology for each class and reports their metrics on a class basis:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "936f2dea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
band11111
positive_categories12345
fn6.01043.0318274.0516572.0364147.0
fp172762.0561004.0462496.03775.05.0
tn1043592.0653360.0422623.0693617.0852206.0
tp0.0953.012967.02396.02.0
accuracy0.8579630.5379270.3581090.572210.700622
balanced_accuracy0.4289840.5077410.2583110.4996020.5
critical_success_index0.00.0016930.0163370.0045840.000005
equitable_threat_score-0.0000050.000055-0.175401-0.000455-0.0
f_score0.00.003380.0321480.0091250.000011
false_discovery_rate1.00.9983040.9727280.6117320.714286
false_negative_rate1.00.5225450.9608530.9953830.999995
false_omission_rate0.0000060.0015940.4295790.4268520.299376
false_positive_rate0.1420330.4619740.5225240.0054130.000006
fowlkes_mallows_index0.00.0284550.0326750.0423390.001253
matthews_correlation_coefficient-0.0009040.001257-0.440983-0.005543-0.000072
negative_likelihood_ratio1.1655460.9712262.012361.0008011.0
negative_predictive_value0.9999940.9984060.5704210.5731480.700624
overall_bias28793.666667281.5415831.4353990.0118910.000019
positive_likelihood_ratio0.01.0335110.0749190.8529160.936112
positive_predictive_value0.00.0016960.0272720.3882680.285714
prevalence0.0000050.0016410.2723220.4266570.299376
prevalence_threshold1.00.495880.7851070.5198760.508252
true_negative_rate0.8579670.5380260.4774760.9945870.999994
true_positive_rate0.00.4774550.0391470.0046170.000005
\n", + "
" + ], + "text/plain": [ + " 0 1 2 \\\n", + "band 1 1 1 \n", + "positive_categories 1 2 3 \n", + "fn 6.0 1043.0 318274.0 \n", + "fp 172762.0 561004.0 462496.0 \n", + "tn 1043592.0 653360.0 422623.0 \n", + "tp 0.0 953.0 12967.0 \n", + "accuracy 0.857963 0.537927 0.358109 \n", + "balanced_accuracy 0.428984 0.507741 0.258311 \n", + "critical_success_index 0.0 0.001693 0.016337 \n", + "equitable_threat_score -0.000005 0.000055 -0.175401 \n", + "f_score 0.0 0.00338 0.032148 \n", + "false_discovery_rate 1.0 0.998304 0.972728 \n", + "false_negative_rate 1.0 0.522545 0.960853 \n", + "false_omission_rate 0.000006 0.001594 0.429579 \n", + "false_positive_rate 0.142033 0.461974 0.522524 \n", + "fowlkes_mallows_index 0.0 0.028455 0.032675 \n", + "matthews_correlation_coefficient -0.000904 0.001257 -0.440983 \n", + "negative_likelihood_ratio 1.165546 0.971226 2.01236 \n", + "negative_predictive_value 0.999994 0.998406 0.570421 \n", + "overall_bias 28793.666667 281.541583 1.435399 \n", + "positive_likelihood_ratio 0.0 1.033511 0.074919 \n", + "positive_predictive_value 0.0 0.001696 0.027272 \n", + "prevalence 0.000005 0.001641 0.272322 \n", + "prevalence_threshold 1.0 0.49588 0.785107 \n", + "true_negative_rate 0.857967 0.538026 0.477476 \n", + "true_positive_rate 0.0 0.477455 0.039147 \n", + "\n", + " 3 4 \n", + "band 1 1 \n", + "positive_categories 4 5 \n", + "fn 516572.0 364147.0 \n", + "fp 3775.0 5.0 \n", + "tn 693617.0 852206.0 \n", + "tp 2396.0 2.0 \n", + "accuracy 0.57221 0.700622 \n", + "balanced_accuracy 0.499602 0.5 \n", + "critical_success_index 0.004584 0.000005 \n", + "equitable_threat_score -0.000455 -0.0 \n", + "f_score 0.009125 0.000011 \n", + "false_discovery_rate 0.611732 0.714286 \n", + "false_negative_rate 0.995383 0.999995 \n", + "false_omission_rate 0.426852 0.299376 \n", + "false_positive_rate 0.005413 0.000006 \n", + "fowlkes_mallows_index 0.042339 0.001253 \n", + "matthews_correlation_coefficient -0.005543 -0.000072 \n", + "negative_likelihood_ratio 1.000801 1.0 \n", + "negative_predictive_value 0.573148 0.700624 \n", + "overall_bias 0.011891 0.000019 \n", + "positive_likelihood_ratio 0.852916 0.936112 \n", + "positive_predictive_value 0.388268 0.285714 \n", + "prevalence 0.426657 0.299376 \n", + "prevalence_threshold 0.519876 0.508252 \n", + "true_negative_rate 0.994587 0.999994 \n", + "true_positive_rate 0.004617 0.000005 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "no_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2, 3, 4, 5],\n", + " negative_categories=None,\n", + " average=None\n", + ")\n", + "no_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "d722dc68", + "metadata": {}, + "source": [ + "### Micro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "3bbb83cf", + "metadata": {}, + "source": [ + "The following is an example of a using micro averaging to combine classes to process two-class categorical statistics. In this example we will use classes 1 and 2 as positive classes and classes 3, 4, and 5 as negative classes:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "538dfc49", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
fn382.0
fp733099.0
tn481259.0
tp1620.0
accuracy0.396987
balanced_accuracy0.602749
critical_success_index0.002204
equitable_threat_score0.00056
f_score0.004398
false_discovery_rate0.997795
false_negative_rate0.190809
false_omission_rate0.000793
false_positive_rate0.603693
fowlkes_mallows_index0.04224
matthews_correlation_coefficient0.017033
negative_likelihood_ratio0.481468
negative_predictive_value0.999207
overall_bias366.992507
positive_likelihood_ratio1.340402
positive_predictive_value0.002205
prevalence0.001646
prevalence_threshold0.463444
true_negative_rate0.396307
true_positive_rate0.809191
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "fn 382.0\n", + "fp 733099.0\n", + "tn 481259.0\n", + "tp 1620.0\n", + "accuracy 0.396987\n", + "balanced_accuracy 0.602749\n", + "critical_success_index 0.002204\n", + "equitable_threat_score 0.00056\n", + "f_score 0.004398\n", + "false_discovery_rate 0.997795\n", + "false_negative_rate 0.190809\n", + "false_omission_rate 0.000793\n", + "false_positive_rate 0.603693\n", + "fowlkes_mallows_index 0.04224\n", + "matthews_correlation_coefficient 0.017033\n", + "negative_likelihood_ratio 0.481468\n", + "negative_predictive_value 0.999207\n", + "overall_bias 366.992507\n", + "positive_likelihood_ratio 1.340402\n", + "positive_predictive_value 0.002205\n", + "prevalence 0.001646\n", + "prevalence_threshold 0.463444\n", + "true_negative_rate 0.396307\n", + "true_positive_rate 0.809191" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2],\n", + " negative_categories=[3, 4, 5],\n", + " average=\"micro\"\n", + ")\n", + "micro_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "79761a73", + "metadata": {}, + "source": [ + "### Macro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "790c56df", + "metadata": {}, + "source": [ + "The following shows macro averaging and is equivalent to the values of shared columns in `no_averaged_comps.mean()`:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "7e64eb9b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
accuracy0.605366
balanced_accuracy0.438927
critical_success_index0.004524
equitable_threat_score-0.035161
f_score0.008933
false_discovery_rate0.85941
false_negative_rate0.895755
false_omission_rate0.231481
false_positive_rate0.22639
fowlkes_mallows_index0.020944
matthews_correlation_coefficient-0.089249
negative_likelihood_ratio1.229986
negative_predictive_value0.768519
overall_bias5815.331112
positive_likelihood_ratio0.579492
positive_predictive_value0.14059
prevalence0.2
prevalence_threshold0.661823
true_negative_rate0.77361
true_positive_rate0.104245
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "accuracy 0.605366\n", + "balanced_accuracy 0.438927\n", + "critical_success_index 0.004524\n", + "equitable_threat_score -0.035161\n", + "f_score 0.008933\n", + "false_discovery_rate 0.85941\n", + "false_negative_rate 0.895755\n", + "false_omission_rate 0.231481\n", + "false_positive_rate 0.22639\n", + "fowlkes_mallows_index 0.020944\n", + "matthews_correlation_coefficient -0.089249\n", + "negative_likelihood_ratio 1.229986\n", + "negative_predictive_value 0.768519\n", + "overall_bias 5815.331112\n", + "positive_likelihood_ratio 0.579492\n", + "positive_predictive_value 0.14059\n", + "prevalence 0.2\n", + "prevalence_threshold 0.661823\n", + "true_negative_rate 0.77361\n", + "true_positive_rate 0.104245" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " negative_categories=None,\n", + " average=\"macro\"\n", + ")\n", + "macro_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "ef8f72ab", + "metadata": {}, + "source": [ + "### Weighted Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "e182a6f7", + "metadata": {}, + "source": [ + "To further enhance `macro-averaging`, we can apply weights to the classes of interest in order to appropriately change the strength of evaluations for each class. For instance, if we applied the following vector the classes uses in this notebook, `[1, 4, 1, 5, 1]`, classes 2 and 4 would have greater influence on the final averaging of the scores for all classes. (All weight values are in reference to the other weight values respectively. e.g. the vector `[5, 5, 5, 5, 5]` would cause no change in the averaging because each weight value is equivalent to a ll other weight values.) Let's use the first weight vector mentioned in weighted averaging:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0eae1cbc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
accuracy0.577454
balanced_accuracy0.476356
critical_success_index0.003836
equitable_threat_score-0.014789
f_score0.007609
false_discovery_rate0.811574
false_negative_rate0.835662
false_omission_rate0.239133
false_positive_rate0.211627
fowlkes_mallows_index0.029953
matthews_correlation_coefficient-0.03872
negative_likelihood_ratio1.088901
negative_predictive_value0.760867
overall_bias2493.443989
positive_likelihood_ratio0.784138
positive_predictive_value0.188426
prevalence0.225962
prevalence_threshold0.573022
true_negative_rate0.788373
true_positive_rate0.164338
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "accuracy 0.577454\n", + "balanced_accuracy 0.476356\n", + "critical_success_index 0.003836\n", + "equitable_threat_score -0.014789\n", + "f_score 0.007609\n", + "false_discovery_rate 0.811574\n", + "false_negative_rate 0.835662\n", + "false_omission_rate 0.239133\n", + "false_positive_rate 0.211627\n", + "fowlkes_mallows_index 0.029953\n", + "matthews_correlation_coefficient -0.03872\n", + "negative_likelihood_ratio 1.088901\n", + "negative_predictive_value 0.760867\n", + "overall_bias 2493.443989\n", + "positive_likelihood_ratio 0.784138\n", + "positive_predictive_value 0.188426\n", + "prevalence 0.225962\n", + "prevalence_threshold 0.573022\n", + "true_negative_rate 0.788373\n", + "true_positive_rate 0.164338" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " weights=[1, 4, 1, 5, 1],\n", + " negative_categories=None,\n", + " average=\"weighted\"\n", + ")\n", + "weight_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "8c567b77", + "metadata": {}, + "source": [ + "Regardless of the averaging methodology it seems as though the candidate does not agree with the benchmark. We can now save the output." + ] + }, + { + "cell_type": "markdown", + "id": "0d5f7be8", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "dff8f8a0", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'multi_categorical_agreement_map.tif'\n", + "metric_file = 'macro_averaged_metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "macro_averaged_metrics.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.doctrees/nbsphinx/SphinxMulticatTutorial_15_1.png b/.doctrees/nbsphinx/SphinxMulticatTutorial_15_1.png new file mode 100644 index 00000000..0ae1ed69 Binary files /dev/null and b/.doctrees/nbsphinx/SphinxMulticatTutorial_15_1.png differ diff --git a/.doctrees/nbsphinx/SphinxTutorial.ipynb b/.doctrees/nbsphinx/SphinxTutorial.ipynb new file mode 100644 index 00000000..7a61e360 --- /dev/null +++ b/.doctrees/nbsphinx/SphinxTutorial.ipynb @@ -0,0 +1,1166 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a1702330", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "a403ee30", + "metadata": {}, + "source": [ + "# Two-Class Categorical Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a9fa8470", + "metadata": {}, + "outputs": [], + "source": [ + "import rioxarray as rxr\n", + "import gval" + ] + }, + { + "cell_type": "markdown", + "id": "e14713f5", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "markdown", + "id": "64da5e7b", + "metadata": {}, + "source": [ + "It is preferred to use masking and scaling by default. If your original data does not have nodata or does not have nodata assigned, please assign using: `rio.set_nodata()`" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f91c0b8c", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(\n", + " 'candidate_map_two_class_categorical.tif', mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " 'benchmark_map_two_class_categorical.tif', mask_and_scale=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "1d496084", + "metadata": {}, + "source": [ + "## Run GVAL Categorical Compare" + ] + }, + { + "cell_type": "markdown", + "id": "3d293073", + "metadata": {}, + "source": [ + "An example of running the entire process with one command using minimal arguments is deomnstrated below." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "541857a7", + "metadata": {}, + "outputs": [], + "source": [ + "agreement_map, crosstab_table, metric_table = candidate.gval.categorical_compare(\n", + " benchmark,\n", + " positive_categories=[2],\n", + " negative_categories=[0, 1]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "6555af46", + "metadata": {}, + "source": [ + "## Output" + ] + }, + { + "cell_type": "markdown", + "id": "b2eaeeea", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "c24dfc06", + "metadata": {}, + "source": [ + "The agreement map compares the encodings of the benchmark map and candidate map using a \"comparison function\" to then output unique encodings. In this particular case the \"Szudzik\" comparison function was used by default since no argument was passed in for the `comparison_function` argument. First, a negative value transformation (nvt) is used to support negative numbers encodings:" + ] + }, + { + "cell_type": "markdown", + "id": "6b2dec44", + "metadata": {}, + "source": [ + "$$\n", + "c = \\text{candidate value} \\\\\n", + "b = \\text{benchmark value} \\\\\n", + "nvt(x)= \n", + "\\begin{cases}\n", + " 2 * x,& \\text{if } x \\geq 0\\\\\n", + " -2 * x -1, & \\text{otherwise}\n", + "\\end{cases} \\\\\n", + "ct = nvt(c) \\\\\n", + "bt = nvt(b) \\\\\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "5ba5f9b0", + "metadata": {}, + "source": [ + "Then the szudzik function is applied to the transformed values:" + ] + }, + { + "cell_type": "markdown", + "id": "94e6bfbd", + "metadata": {}, + "source": [ + "$$\n", + "szudzik(ct, bt)= \n", + "\\begin{cases}\n", + " ct^{2} + ct + bt,& \\text{if } ct\\geq bt\\\\\n", + " bt^{2} + ct, & \\text{otherwise}\n", + "\\end{cases}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "4e41ff59", + "metadata": {}, + "source": [ + "The resulting map allows a user to visualize these encodings as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b1ef13a0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFnCAYAAABgqKpGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0UElEQVR4nOy9d5wU9f34/5y25fYaHO1OBFGQYgE9NSL2GFE0iQqxJmJJ/JqABWPNzxSN0WhULDEa/SRirIlGjRqUGA2aGDB6ESwooqIovV3b2zYz798fe7M3Oze7O1sOODNPH/uQm533e95Tdl7v1+v9KpIQQuDj4+Pj4+PTL5C39wB8fHx8fHx8vOMLbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC+5+zH/+8x8kSUKSJK699trtPRyfCnLWWWdl7u3/+3//L+d+iUSCgQMHZvZduHDhthtkkZxzzjlEIhE2bNiQtd0ae77PWWedldVml1126bVPbW0t+++/PzfffDPJZLLX8ROJBHPnzmXy5MnU1dURCARobGxkv/3244ILLuCvf/1rzrFv2bKF66+/nkMPPZQhQ4agaRp1dXVMmjSJ73//+7z88stlX5/NmzczZMgQJEli9OjRrvs888wzzJw5k7322otBgwahaRpDhgxh2rRpPPfcc65tPvjgA2688UaOOOKITJthw4Zx0kkn8c9//rPguJYuXcp3vvMdhg8fTjAYZOjQoRx++OHcf//9WfvFYjEaGxuZNm1a8SfvUxzCp98ye/ZsAQhA7L777tt7OD4OfvrTnwpA3H///UW3nTlzZubeDhgwQCQSCdf9/vznP2f2A8Q//vGP8gbdR7z99ttClmVx2WWX9frOGvvMmTNzfu67776sNiNHjhSAmD59upg5c6Y488wzxaGHHio0TROAOPTQQ7Ou2datW8W+++4rAKFpmjj00EPFqaeeKo4//njR2NgoADF27FjXsT/55JOitrZWAKK6ulp89atfFaeddpr4xje+IcaMGZMZ/7Rp08q6RjNnzhSSJAlA7Lbbbq77TJ8+XUiSJPbcc08xbdo0ccopp4ivfOUrmTFcddVVvdrstNNOmbEfddRR4uSTTxZ77rmnAIQkSWLu3Lk5x3TfffcJVVWFoihiypQp4tRTTxVHHHGEGDBggPjqV7/aa/9bb71VAOKll14q+Tr4FMYX3P2UZDIpBg0aJAAxbNgwAYjFixdv72H52KiE4N5nn30EIJ566inX/U488UShKIqYOHHiDi24v/GNbwhN08T69et7fWcJnWKwBPfKlSuztr/11luirq5OAOLOO+/MbL/gggsEICZNmiS++OKLXv29/vrr4pprrum1/dlnnxWSJAlVVcVNN90k4vF4r33ef/99MXPmTDFmzJiizsHO3//+dwGI8847L6/g/u9//ys2bdrUa/vixYtFdXW1kCRJvP3221nfffWrXxV/+MMfRCwWy9p+zz33CEAoiiLee++9Xn2+9NJLQpIkMXr0aLFs2bKs7xKJhPjvf//bq01XV5eor68XBxxwQMFz9ikdX3D3U5555hkBiClTpohrr71WAGLWrFnbe1g+NiohuG+66SYhy7KYMWNGr322bt0qgsGgOProo8XUqVN3WMG9atUqIcuyOP74412/r6TgFkKIa665RgBZGmFTU5MAxIsvvuj5GB0dHZnJ8YMPPlhw/zfffNNz33a6urrEbrvtJiZMmCA+/PDDvII7H+eee64AxO233+65zdFHHy0A8bOf/azXdxMmTBCyLPeaCHgdh5tg96kM/hp3P+Whhx4C4Nvf/jbf/va3AfjjH/9IKpXK2ebtt9/m61//OvX19dTU1HDooYfy4osvsnDhQtd1RGuddeHChSxYsIAjjjiC+vp6JEmitbU1s98LL7zAcccdx+DBgwkGg+y6665ccsklbN682XUcQggeffRRjjzySAYMGEAoFGL8+PH87Gc/o6urq9f+hx9+OJIk8emnn/LHP/6R/fffn6qqKnbaaScuv/zyzHrmxx9/zGmnncaQIUOoqqriiCOO4O233855PYoZt/1avPrqqxx55JHU1NRQW1vLcccdx7Jly7L232WXXbjmmmsAOPvss7PWYotZh25sbOTII4/kueeeo62tLeu7P/3pTyQSicz9d2PJkiVcfvnlNDc3Z53nD37wA9asWdNr/08//RRJkjj88MNpb2/noosuYuedd87co7lz52KapufxA/z+97/HNE1OO+20otqVyj777APA559/ntm2ceNGAAYPHuy5n3nz5rFp0yYOOuigvNfYorm5uciRprnmmmv45JNPuOeee9A0raQ+gEzbQCDguc3EiRMBej0Lr732GsuWLePwww9nr732Kmocp59+OgD33ntvUe18imB7zxx8iqe1tVWEQiERCATE5s2bhRBCHHTQQQIQzzzzjGubf//736KqqkoAYu+99xannnqq2H///YUsyxkz4syZM7PaWFrf9773PSFJkth///0z7VpbW4UQQlxxxRUCEIFAQEyZMkXMmDEjs+632267iXXr1mX1aRiGOO200zJrbocffrg48cQTxc477ywAccABB4iurq6sNocddpgAxMUXXyxUVRVHHXWUOPHEEzPa0Jlnnik+/PBDMWjQIDFu3DhxyimniL322ksAYuDAgb3GUMq4rWtxySWXCEVRxFe+8hVx8skni913310AoqGhQaxduzaz/w9/+MOM+XrKlClZ67Xvv/9+wXtsHe/BBx8U999/vwDE7373u6x9Dj30UFFVVSU6OjpyatynnHKKUFVV7LvvvuKEE04QJ5xwgthll10EIBobG8Xq1auz9l+5cqUAxIEHHiiam5tFfX29OOmkk8Txxx8vwuGw63NSiP32208AvY5lQYU17ocfflgAYq+99sps23XXXQUgzj//fGGapqdjTJs2rZfJvVgsq0uua7Z06VKhqqo455xzhBA9179Yjfvtt98WAwYMEJqmiY8++shzu+nTpwtA/OQnP8nablnxrr76atHV1SV+//vfi1mzZokLL7xQPPDAA71+o3ZisZjQNE3svPPORZ2Dj3d8wd0P+b//+z8BiG9+85uZbb/5zW8EIL71rW/12t8wjIyA+cUvfuHaVz7BDYjHHnusV79/+tOfBCD23HNPsWLFisx20zTFT37yEwGIU045JavNTTfdJABx+OGHZwm6RCKRMbFdccUVWW0swV1dXS3eeOONzPa1a9eKoUOHCkmSxPjx48WVV16ZeSmbpim+853vuL6UShm3dS1kWc5ab9Z1PfPy+/GPf5zVphKm8gcffFC0t7eLcDgsjjjiiMz3n332mZAkSZx22mlCCJFTcL/88suukyfLnHz22WdnfWcJDmuCt3Hjxsx3H330UcbknGvN3UlHR4dQFEU0NTXl3KfSgvvUU08VgDjjjDMy22644YbMccaNGyeuvPJK8dRTT4nPP/885zEsp65//etfRY3NTj7BbRiG2H///cWgQYMy69ZeBfczzzwjZs6cKU4//XRx8MEHC1mWRTAYFPPmzfM8to8++kgEg0EB9DLzW9fwRz/6kRg7dmyWAyQgRowYkdeE3tzcLADxySefeB6Pj3d8wd0PsQTZ448/ntm2adMmoWmaCIVCGW3Y4sUXXxSAGDNmjDAMo1d/U6ZMySu4jzvuONdxWBrlO++80+s70zTFpEmThKIomZd/KpUSgwYNEpFIxFUL7urqEsOGDRMDBgzIGqd1vldffXWvNnPmzBGA2HXXXUUymcz6bunSpQIQhx12WFnjtl8LuzCwePPNN12PUynBLYQQJ598spBlOeNYdf311wtA/PWvfxVC5Bbc+dhpp51EQ0ND1ja74P7b3/7Wq83dd9/da/04H6+//roAsiYdTpxCwe3jnCg4BbdpmuLTTz/NWFIkSRKvvvpqZn/DMMTll1+e8Tq3f/bYYw9x99139/pthEIhAYgPPvig15i3bNni6v3utKbceeedYuzYseLKK6/s1cdtt93W6/nwKrh//vOfZ51DOBwW9957r+vv241UKiUOPvhg10mqED3Pk6qqYvjw4WL+/Pmira1NvPPOO+JrX/uaAMTIkSNFNBp17f+MM84QgHjyySc9jcenOHzB3c+wNK36+vpeHq7f/OY3BdArdOZnP/uZAFxfHkIIcccdd+QV3L/97W97tVm/fn1mMpCLWbNmCUC88MILQoiel/jXvva1nG2OO+64Xi9LS3DbX8QWd955pwAypkY7HR0dArJD5UoZtxA91+KBBx7otX97e3uv4whRWcFtOSPedNNNQggh9thjDzFkyBCRSqWEEPkF96ZNm8Tvf/97cckll4hzzjknI2SGDBkigMxyixA9gmPgwIGu42ptbc0ICi9C4tlnnxWAOOmkk3LuY7f45Pq0tLRktbEEt9snEAiI3/zmN67HWr16tbj99tvF9OnTxYgRI7LanXDCCVnnlE9wf/75567H9jpx+uyzz0R1dXWvyV6xpvJYLCbeeecd8YMf/EAA4vjjj88ZOmjn+9//fmbCa7//FpZwBsTrr7+e9V08HhfDhw8XgLj33ntd+7eW39zeHT7lo+LTr3j44YcRQjBjxgyCwWDWd9/+9rf5y1/+wkMPPcR3v/vdzPa1a9cCsPPOO7v2OWLEiLzHdPv+008/BWDFihVIkpS3/aZNm7LavPjii57ajB07NmvbTjvt1Gu/6urqgt8lEomyxm1n+PDhvbbV1NT0Ok6lOeaYY2hoaODhhx/mqKOO4r333uOCCy5AVfP/hB999FHOO+88Ojs7c+7T0dHBwIEDs7aNHDnSdd+6ujrq6+tpbW1l69atNDQ05D2+5VBnXaN8zJs3r+A+TqZPn051dTWSJFFdXc24ceM48cQTaWpqct2/qamJCy+8kAsvvBCA999/n5tvvpnf//73PP300zz66KOcccYZADQ0NLB69WrXZ3H48OEIITJ/H3PMMSxYsMDzuGfNmkUymeSee+4p9pSzCIVC7Lnnntx1110oisKdd97JnXfeyQ9/+MOcbX7xi19w9913M3ToUBYsWNDr3kPPb2fChAkccMABWd8Fg0FOP/10brrpJl555RW+973v9WpfW1sLkOXE6lM5fMHdz3jwwQcBWLhwIQcffHDWd5Z39auvvspnn32W8+VbLKFQqNc2y7N42LBhTJ06NW97axxWm9GjRzNlypS8bdwEgiznDoLI952dUsZdynEqjaZpnHzyydx999386Ec/Aijo6fzZZ59lIgVuu+02jjvuOHbaaSfC4TAABx10EIsWLcoSQJWmrq4OSE8O+oKbb76ZXXbZpeT248eP53e/+x1bt27lqaee4q9//WtGcE+cOJHVq1fz1ltvFXxei+W5556jvr6e888/P2t7PB4HYPXq1Rx++OEAPPbYYwwbNqxgn9/5zne48847+ctf/pJTcN9zzz1cffXV1NXV8cILL+TM0GY9+7murbXdmQXPwpqw1dfXFxy3T/H4grsf0dLSwvvvvw/ARx99xEcffeS6nxCChx9+OPOCb2xsBLLDY+zk2p4PS/McNGiQZ03JajNu3LiStKtKUMq4dxS+/e1vc/fdd/PCCy+w++6799KEnMyfP59kMsmll17KRRdd1Ov7Tz75JGfbVatWuW5vb2+ntbWVcDjs6aU8ZMgQIJ0ydEfmyCOP5Kmnnsqyshx77LHMnz+fxx57jNmzZ1f8mK2trbzyyiuu38Xj8cx3ljAvxKBBg4Ce0Dcnjz32GLNmzaKqqoq//vWvTJo0KWdfVkjd1q1bXb+37qelmTux2hUTfufjHT+Oux9hxW5feumliLR/Qq+PFSNs7QtktIWnnnrKVbv605/+VPRYhg8fzrhx41i2bBkffvihpzb7778/dXV1vPLKK9vtRV7KuEvFiqfVdb0i/R100EFMnDiRhoYGzjnnnIL7Wy9PN/P+q6++yvr163O23bx5My+99FKv7Y899hgAkydPRlGUgmPYY489UFWV5cuXF9y3LylkVbAmwfYll7POOouGhgZee+21rN9Tpcbj9lm5ciUAu+22W2abV4uCJeh32223Xt/Nnz+fM888E1VVeeqppwpaEKZNm4aqqrzzzjuuv1XrWJaAd2IpGPkmBz6l4wvufoJhGDz66KMAeRNZHHLIIey00068//77tLS0AGltYsyYMSxfvpybbropa/958+Z5KjTgxo9//GNM02T69OksWbKk1/ebN2/mvvvuy/wdDAa5/PLL6ejo4KSTTnLV+FavXp1ZDugrih13qVjrrJUUWkuWLGHTpk1cccUVBffdfffdgfQkLhqNZravXr26l4nWjUsvvTQrGc3KlSszxWxmzZrlabyRSIR99tmHtWvXsnr1ak9t+oKDDjqI+++/P+s6WDz33HOZteYZM2ZktldXV3P//fcjSRJnn302v/rVr1y13y+++CKn1erXv/4148aN46qrrir7HDZu3Mh9993nmqToxRdf5PLLLwfSCX/svPbaa8yYMQMhBH/84x85+uijCx5r0KBBnH322XR2dnLhhRdmFW154IEHePHFFwmFQr2SNkHaQvDOO++w8847M2rUqCLP0scLvqm8n/C3v/2N9evXs/vuu7Pvvvvm3E+WZU455RRuvfVWHnzwQZqbm5FlmQceeICjjjqKK6+8kkcffZQJEybw8ccf88YbbzBr1izuuuuuojIuQTpD0nvvvcf1119Pc3MzkyZNymgKH3/8MW+//TbV1dVZzitXXnklH3zwAQ8++CDjx49nn332YdSoUSSTSZYvX86yZcvYe++9+c53vlPyteqLcZfC0UcfTSgUYu7cubz77rs0NTUhSRKXXXZZL2envuAb3/gGe+yxB2+++WbGryAej/OPf/yDSZMmcdBBB/Hvf//bte2BBx5IMplk9OjRHHnkkaRSKV566SW6urr49re/zUknneR5HMcddxxvvPEGCxcuzKwfu+EmBCxGjBhRVgW8999/n3POOYcf/OAH7LvvvowYMYJYLMby5cv54IMPADj//PM57rjjstp9/etf589//jNnnXUWl19+Oddeey1f+cpXGDJkCB0dHXz++ee88847mKbJV77yFcaMGZPVftOmTSxfvjzjIFoO0WiU8847j4svvpjm5maGDx9ONBrlww8/zJzDnDlzmD59ela7448/nlgsxqhRo3j66ad5+umne/V98MEHZzm0AvzqV79i8eLFPPzww/zzn/9kv/32Y9WqVbz55psoisK9997r6vD62muvkUqlel1LnwqyDT3YfcrAyjb205/+tOC+b7zxhgCywoWEEGLJkiXi+OOPF7W1tSISiYgpU6aI559/Xjz00EOu4WJWSFKhEJdXXnlFfOtb3xJNTU1C0zTR0NAg9t57bzF79mzxyiuvuLb5y1/+Io477jgxZMgQoWmaGDJkiGhubhaXX355r9AfKxzMLdmGlVUs13WhO9603HEXuha5jrNgwQIxZcoUUV1dXVTIkDMcrBC5wsG2bNkivv/974tddtlFBINBseuuu4orrrhCRKNR1+tqhSMddthhorW1VfzgBz8QTU1NIhAIiLFjx4qbb75Z6LruaUwWq1atEoqi5KyehUtYlfMzceLErDb5ErC4sXTpUnHjjTeKo48+Wuy2226iqqpKBINBMWLECDFjxgwxf/78vO03b94sfvGLX4gpU6aIQYMGCVVVRW1trdhzzz3Fd7/7XfH3v//dNSNbocxpTvKFg0WjUXHTTTeJadOmiZEjR4pwOCyCwaDYZZddxKmnnpr32Sz0yTW+zs5O8aMf/UiMHj1aBAIBMXDgQHH88cfnTUpzzjnnCKDX79inckhC9KFLqU+/4Pzzz+e3v/0tjz32GKeccsr2Ho7PduTTTz9l1KhRHHbYYRWt7X3iiSfy3HPP8fnnn3vykPbpn8RiMZqamth99915/fXXt/dwvrT4a9z/I2zZsiUTw2znj3/8I//3f/9HfX09xx9//LYfmM//BD//+c8xTZObb755ew/Fpw+55557aG1t5YYbbtjeQ/lS469x/4/w4YcfMnnyZPbee2923XVXIL3ut3z5chRF4be//S2RSGQ7j9Lny8qee+7JzJkzufvuu7n88sszYWI+Xx5isRg33XQTxx57LEceeeT2Hs6XGt9U/j/Chg0buPbaa3n55ZdZs2YN0WiUQYMGcdBBB3HppZcyefLk7T1Enx2AvjKV+/j4VA5fcPv4+Pj4+PQj/DVuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh+ffsLPfvYzJEna3sPw8fHZzviC28fHwbx585AkKeszZMgQjjjiCJ5//vntPbyCLF++nDlz5nDQQQcRCoWQJIlPP/10ew/Lx8enQqjbewA+Pjsq1157LaNGjUIIwfr165k3bx7Tpk3j2Wef5fjjj9/ew8vJokWLuOOOO5gwYQLjx49nyZIl23tIPj4+FcQX3D4+OTj22GPZb7/9Mn+fe+65DB06lEcffXSHFtzf+MY3aG1tpaamhptvvtkX3D4+XzJ8U7mPj0fq6+sJh8OoavZ89+abb+aggw6ioaGBcDhMc3MzTzzxRK/2kiQxe/Zsnn76afbcc0+CwSB77LEHL7zwQq99//Wvf7H//vsTCoXYbbfd+O1vf+t5nAMHDqSmpqb4E/Tx8ekX+Bq3j08O2tra2LRpE0IINmzYwJ133klnZyff/va3s/a7/fbb+cY3vsEZZ5xBMpnkscce41vf+hbPPfccxx13XNa+//rXv3jyySf5wQ9+QE1NDXfccQfTp09n1apVNDQ0APDOO+9w9NFHM3jwYH72s5+h6zo//elPGTp06DY7dx8fnx0XX3D7+OTgqKOOyvo7GAzy+9//nq997WtZ2z/88EPC4XDm79mzZ7Pvvvty66239hLc77//PsuWLWO33XYD4IgjjmDixIk8+uijzJ49G4Cf/OQnCCH45z//yYgRIwCYPn06e+21V8XP0cfHp//hC24fnxzcdddd7L777gCsX7+ehx56iO9+97vU1NRw0kknZfazC+2tW7diGAaHHHIIjz76aK8+jzrqqIzQBth7772pra3lk08+AcAwDBYsWMAJJ5yQEdoA48ePZ+rUqcyfP7/i5+nj49O/8AW3j08ODjjggCzntNNOO4199tmH2bNnc/zxxxMIBAB47rnnuO6661iyZAmJRCKzv1vMtV0YWwwYMICtW7cCsHHjRmKxGGPGjOm139ixY33B7ePj4zun+fh4RZZljjjiCNauXcuKFSsA+Oc//8k3vvENQqEQv/nNb5g/fz4vvvgip59+OkKIXn0oiuLat9u+Pj4+Pm74GrePTxHoug5AZ2cnAH/+858JhUIsWLCAYDCY2e/+++8vqf/BgwcTDoczEwM7y5cvL6lPHx+fLxe+xu3j45FUKsXf/vY3AoEA48ePB9IatCRJGIaR2e/TTz/l6aefLukYiqIwdepUnn76aVatWpXZ/v7777NgwYKyxu/j4/PlwNe4fXxy8Pzzz/PBBx8AsGHDBh555BFWrFjBlVdeSW1tLQDHHXcct956K8cccwynn346GzZs4K677mL06NG8/fbbJR33mmuu4YUXXuCQQw7hBz/4Abquc+edd7LHHnt46rOtrY0777wTgNdeew2AX//619TX11NfX5/xXvfx8emnCB8fnyzuv/9+AWR9QqGQmDRpkrj77ruFaZpZ+//ud78TY8aMEcFgUIwbN07cf//94qc//alw/rwAMWvWrF7HGzlypJg5c2bWtldeeUU0NzeLQCAgdt11V3HPPfe49unGypUre43f+owcObLo6+Hj47NjIQnhe8X4+Pj4+Pj0F/w1bh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6UdsV8F99913Z1I+1tbWMnnyZJ5//vnM9/F4nFmzZtHQ0EB1dTXTp09n/fr1eft88sknOfroo2loaECSJL+koY+Pj4/Pl4rtKriHDx/OL3/5S1paWnjzzTc58sgj+eY3v8l7770HwJw5c3j22Wd5/PHHeeWVV1izZk1Wjmg3otEoBx98MDfeeOO2OAUfHx8fH59tyg7nVT5w4EB+9atfMWPGDAYPHswjjzzCjBkzAPjggw8YP348ixYt4sADD8zbz6effsqoUaN46623mDRp0jYYuY+Pj4+PT9+zwyRgMQyDxx9/nGg0yuTJk2lpaSGVSmWVVhw3bhwjRozwJLiLIZFIZBWHME2TLVu2ZMztPj4+Pv0dIQQdHR00NTUhy757U39muwvud955h8mTJxOPx6muruapp55iwoQJLFmyhEAgQH19fdb+Q4cOZd26dRUdww033MA111xT0T59fHx8dkQ+//xzhg8fvr2H4VMG211wjx07liVLltDW1sYTTzzBzJkzeeWVV7bpGK666iouueSSzN9tbW2MGDGC99/+LzV1tQgBhjBIJlKYpiCgqaiqiiz3aOMpwyAeSxCpCmdtd0MIQZwOOtiEImmERS0BwqiJJMoXKzF23QNkGdMUtEejxEUHalWKmjUgXl+JsVMd0bE1RCIDCAfqPc6eBQIBkgFCASFhCBM9paNpKrIkI0kSQgiEELS1bWXzpk1oIRlZVVCUahQ5SEBTiFQF6YrFMQ1BbW2EWKyD1vbNCCEIBoJoWghJkqiurkOV1YzVwhQm7al21kQ/J27GC45YQcGgJwe4iorZ/Z+ERH1gAMMjI9BkrWBfKUNnS3w9ZlUUJAECZDOE1F4LpkKkKkA8nkI3zHQDCSJVQSKhEJIECAFmHCm2AVKdiFADBAeBXNmf0LdH/jDr76c+fAeAr759ArUzPu713Ym771VU/+1P7Jbpp/2JdF1wZ7/2fd14ae+nM/8+cfe9GPtq+hosP1QvaixulHJOFvZzy7Vt7Ksqvxz2FkDmOG7t8m0vZpzlnI/V3iJXP9Y+zu+t+/LLYW8RDf6Njo4Oxu+5DzU1NSWPx2fHYLsL7kAgwOjRowFobm7mjTfe4Pbbb+eUU04hmUzS2tqapXWvX7+eYcOGVXQMwWAwq7KTRei9z4mMG4U8dABSSEMApilIJFPoukEgoBHQVCQJOjpj1AyuRlPTlzSfhV0IgYKOIIIpTEwjgWRUoZohqsIhqK0GWUEIQXV1hFi8DmnjVuTXlyLX15Hcf1dSSiu6FEUKhokEBqKbSWRZRZW0POZ9uzuDlJZFpkkymULVFFRFwTRNtrZtQmhxBgyuAQkk0v2pqoqiBFFVjcZhdZiGSVdXFwKDSKTK1reOAFKpLqrrBhEIpK/t9IbeObIXrFnK1KaJuS9Wifva21h8b7fcbResWQp1ZPXfNn8MddNW5Pw735js+7q1y9WHKmVPQr41dl8WrFnKG1OeZao0sdd3apErOQO/tYoFa5cxtWkiSiSYHlf3Ma1xts1P1wK3CpAunvREVh9z1h6Q+bcq6QSrVZY1673GXgo/7TwAVXKfAExoSR8nFwO/tSpzLrm2/WbMUkBhatPEzLVTIkHXsbv1B9b98nbtS7lHdn7aeQBzG1uA3s+G/RgL1iwl+vyErOfs48PS/69do6CEeoS1v/zX/9nugtuJaZokEgmam5vRNI2XXnqJ6dOnA+myhqtWrWLy5MnbZCzS4Dr0FV8gln6M3FCHulsT8qBawqEApilIpnQ6ozEMw0RCkErpJBIpFEUmGNCQZYnpDbMzL0LA84u/FOxCqpAwybdtwZqlUOXehxuFBFPP2Lyfp1uf1ngmtKjMbWzJ/O3l+IWY2jSRCS0q0CMYnH1aQs2+fWrTRNd7WOx47PfO6te+3XmupTw39utmfyZ7jyN7LHPWNgOwrFnvNc70Navcczy3sYWpOZ6TZc16QeGdbyI1eehK1zblPjvlUOh8ljXrsKZwP3PWNrN40hM5r53Pl4vtKrivuuoqjj32WEaMGEFHRwePPPIICxcuZMGCBdTV1XHuuedyySWXMHDgQGpra7nggguYPHlylmPauHHjuOGGGzjxxBMB2LJlC6tWrWLNmvTTbtUwHjZsWNGa+llHzc2rRSxYs5SpIwv/UOwvhgVrljJnbXPmJQSFf7z5sPqwZuXF4vbSsr/4vIwtn2ZZSPMsRfAta9aZins757GdQigf1nla19TtvHONK99YSnmhWs+J2/Hb5o9halNR3dE2fwzLmldkxrF40hO9rAsABy6Zkfnefvx8z8DcxpZ0u/nZ4yyWSgj/XO3rpq1g7hrvz0KlKOe3XQyWgHdeQ+tZhrSlz+fLwXZ1LdywYQNnnnkmY8eO5atf/SpvvPEGCxYs4Gtf+xoAc+fO5fjjj2f69OkceuihDBs2jCeffDKrj+XLl9PW1pb5+5lnnmGfffbhuOOOA+DUU09ln3324Z577qn4+C2hY328MGdtM3MbW1iwZmlG2BYjdK3jTGhRixLaC9YsLellak0w7C8Ar9i1uqlNEzOaYqF9K4WrJcEDy5r1jHbp/ED62rtZN9z6d7tu9v3yXddc99V+Hb3el1wTJkhfe8scvnjSE72EtnWcXMeytD3rOPkmN31NvutRKctWMZaoUifUdqx7Uej6WZMuO/bj67aa8T79mx0ujntHoL29nbq6Og7nm57W7Zw/KEujzrePtZ/9h1XohWDXwnK9ENz6cJpb+xJLAHtd03Xb5tTSndoh9DaXW33Yr73bNXc7rnN7sZMwuxD02sYNr/3YrRSVWCawC25rjLmY29iS9b3zHuQjn0bt9XzKOd9CS0l9QaWWELyO3Xk8q11H8J+sX7+RseP3oq2tLVNPvtKkfWaSfdL3lx1N01AUpfCO7IBr3Ds6udYioeelPLexxXVdqvcPrsfkW4h82rXbRCEflXjZ58JLv7nM49a47H1YQjvXi8tpisx17S2s4y5Ys7RbQ1maWd+2+vEqQK17UYwmWWjClWtiYce+rgxLy17XrJu2wtM6qpNihDbkFzjWd4WeHy/PVyFhWa4grbRfipe+7M9kvjb235bd+mAaJqZpVmTMuUgmk6xcubLPj/Nlpr6+nmHDhhV0IPQ1bhdyady5NEXIr7F50aRz7ZdPKOQSgIX6KMapK996bznkOrb9WhRrWs2nzZaKNSnyqglbloBiKPb+ldqPl2Pk07btWJq33S+gnGdkWwjDSmnclRyrV+xOiRb5rBfW99a/N/ES7e0djBm7R59o3EIIVq1aRSqV8hO8lIAQgq6uLjZs2EB9fT2NjY159/cFtwt2wR19fkLGjJjvh1Ks1utsb2HX/ryYenPh1NDtQqWUsVpjqpSzjaXx5hPebpQi0Esl1/igOCHg3LfUF7/XdfVy+nYKbq+TEPvzlUto5hvXtnLiyjVJLsYKVWpY4vYymU9oUbl80PUYRoqRo8b2ieBOpVJ89NFHNDU1UVdXV9G+/5fYvHkzGzZsYPfdd89rNvenRXlof2K3jKm2EkLb7uRkN2M5tXXLec1OvjHYsZyILAcreztrjKW8IMtp68bUpolMHroy6zwLCWSnOdk6t6lNEz1rim79uW23nOkKtfVyXLdxl4L9fAsdq5S+gSyHyVKcJvNd03yUcqxSv7fjxSejLyl2Emq//4XaWue2rFlHlmVkqe9e90a341sgEOizY/wvUFWVzoeRSqXy7ucL7jy8tPfTnl6EXoX2gUtmZH54lvZaSLuc2jTR1Vs031jcxtM2f0zmh+x2zFK8ur160+fq2+1lnas/533wui7ots3+8nP72wvpkKyJnicyubTQfFEJpVgWyvHOdwrvOWubM5MiLxOUuY0trl7dbmNy7jdnbXPJz1Ix52wXeqVGWlTSTF6J9fZcVhe7w2E6UVTfJ17xk7uUh9fr5zun5eGrb5/AQFbl3cfrD29q00TqyH5J2OOR7euzTnOwW+IPyB03bcf63vr/gfNnsHjSE1n95zMJFzonL+Qyh1vnWQnTdy7vfLu5sJLr37nuSSHsmmkuXwPr77Sw9G7hcHvG3Pov1EfPWNPJUKzJyZyWbG9yN+zOgfmeK/vaeMa87sFBrm7aiixnvPRzVLhdJSnF7O22fzlOos7nOteYrGNomkq8cJZhn36Cv8btQr5wMPtaoNt6Xi5ntXw/dK9CuRD5+nH+v5IhYl5eZE6TZCFBWuz1cwsZKzSefBOKUvCS2hSKu+b2CQ6khaEzBamTSjp5WceE3klbnNi1aOveWm29+jLYfTzKGXeh9V/rWKX0Uc4zYg/prOSafr4xTWhR+fkut9PR0cHwkaP7ZI07Ho+zcuVKRo0aRSgUqmjffYWz9PPChQs54ogj2Lp1a6/iVtsKr9fRN5UXwYQWNcvUnQ+7CbTQj7xS62tu/TiFtp1iTPD5cHMYs0zzdoFdSODY+8v3tx1LWBTrmV3uNXcTOpUS2s7ENdb/neZPLxRrOnfb30rKAvTyzwD35CyWcLLa2vu1LxFZZnh7kpFSLCOVdlh0c16rVL9zG1v6xBHP7d5AeoKwvS3YZ511FpIk9focc8wx23dgNg466CDWrl3bL5zrfFN5GVhpHnPl1C4Wu8ZWSWeZvujT6zGdFFrTb5s/xtXcm4tF60dV9Ly8mqdL0ZqLPbdCx/UirIq9Ntb++fqe29iSZTZ3w1oGsli85glYk/7NLFoP5MhHYI+NL9fRrpJ4yU+/PbF79bNm2yWYKYZjjjmG+++/P2ubW3Gn7UUgEKh4Aau+wte4y8BKFuJ0MCp19r8tBWsp2ltfYTntFYubc1Euzchr/5XWhJy+CpXEft3s52dZOhasWVqy06ETpxOf0+vc+tu+zc1yYNfeLcuV85p7TfHpHJ8Xf4ltFUqYD7sjXiVT/dqz2pWSorivCQaDmZoR1mfAgAFA2inr//7v/zjxxBOpqqpizJgxPPPMM1nt33vvPY4//nhqa2upqanhkEMO4eOP02VXTdPk2muvZfjw4QSDQSZNmsQLL7yQ1f4///kP++yzD6FQiP3224+33nor6/uFCxciSRKtra0AzJs3j/r6ehYsWMD48eOprq7mmGOOYe3atZk2uq5z4YUXUl9fT0NDA1dccQUzZ87khBNOyOzzxBNPsNdeexEOh2loaOCoo44iGo2WdS19wV0BLM9bL+E6fcWO9EN1ekvne6HOWducJdDchFsxL7dKCMdSr6V94mY/Z7sTmhe8nkPG4bB7ycNNOJZbpczev0UuAe6WjtcpvJ1jhewYbi9JdPJdx0K+EM6/vd4T+37latvWuVYqg6E1STtwyYxM35bD2o4wUfHKNddcw8knn8zbb7/NtGnTOOOMM9iyZQsAq1ev5tBDDyUYDPLyyy/T0tLCOeecg66nz/f222/nlltu4eabb+btt99m6tSpfOMb32DFivT17ezs5Pjjj2fChAm0tLTws5/9jEsvvbTgmLq6urj55pt58MEHefXVV1m1alVWuxtvvJGHH36Y+++/n9dee4329naefvrpzPdr167ltNNO45xzzuH9999n4cKFnHTSSWUXfPEFdx7uW/aLrL8Llt/bjpRyfK8hOF4p9kVRTtIaKLwOWYoAXrBmqeuY8vVlX7N1eo3bx1jOSzqfgCm0tl6Je+x2fPs5Ov0+8h3zwCUzXNfJLZxr3k6KuY72EMhcFqZcAtxpLbFbMPqiKI5X3PxH7HkHdkQzOcBzzz1HdXV11uf666/PfH/WWWdx2mmnMXr0aK6//no6Ozv5z3/+A8Bdd91FXV0djz32GPvttx+77747Z599NmPHjgXg5ptv5oorruDUU09l7Nix3HjjjUyaNInbbrsNgEceeQTTNPnd737HHnvswfHHH89ll11WcMypVIp77rmH/fbbj3333ZfZs2fz0ksvZb6/8847ueqqqzjxxBMZN24cv/71r7Mc29auXYuu65x00knssssu7LXXXvzgBz+gurq6rGu546hpOyCK6i3hO3jP/PTklrsAOGngLM9t+iqrU6XCo0oVDF6FdrEaaLH92ynlpVdszu5iqVQhESht8mAJvAPn9w7vchYosWM5RDrHXzdtBcvoPRlyFjCB4u6HPUbb+nfdtBWuky43x8xctdbt2M+1L3P+58JZgCcXznj18gyzleGII47g7rvvzto2cODAzL/33nvvzL8jkQi1tbVs2LABgCVLlnDIIYegab2LPrW3t7NmzRqmTJmStX3KlCksXZq+f++//z577713lqf25MmTC465qqqK3XbbLfN3Y2NjZkxtbW2sX7+eAw44IPO9oig0Nzdn8rVPnDiRr371q+y1115MnTqVo48+mhkzZmSWCErF17jzoAVUHlt7G3cv+ykAt350fs59LSEx7/Prs7Y/vul2/rz51zy55a6M0Ia0AC9UQcx64RR6ObitJRaikJezZX7L9Z31fTmZn4oxVW4rShlPX2s4lRAOdu9u6565CbR852LF/9s/hfwk7ELG6VnunDgWk/0u131y+w15maDalxfsuC19eYnG8PIcuR2vULtcy0p2S8CO+LuCtDAePXp01scuuJ1CWZKkjAAMh8PbdKwWbmMqxsytKAovvvgizz//PBMmTODOO+9k7NixrFy5sqxx+Rp3HoQQdOlRksFWfvX+eXRtSfGr989DDcqABGTfQAmJpBnj0bW3oQXk7i1Szmw4T265i5MGzsr8bZ/hW2Ejlodovtm9Mz7ba1axtIm3J+mLRXoM2ZWI7NaBfHW1Cx3Twrm2XWntpdRYYLcxbCv/gVIKutivmxWuaH8GcmmMmefMpbKYm6ZZLPYEIbCy1zktWj+KOY427oLcvYhJrgQ4zufamgzkWjvPtO9O/uL8/Tivg1No53pu8/lq1E1b4RqPbxe2xf4eckWOWOfy5BbPXe2Q7L333jzwwAOkUqlewrS2tpampiZee+01DjvssMz21157LaMNjx8/ngcffJB4PJ7RuhcvXlzWmOrq6hg6dChvvPEGhx56KJBO/frf//6XSZMmZfaTJIkpU6YwZcoUfvKTnzBy5EieeuopLrnkkpKP7WvceUjpKaKJrZhSEiUgEaxR0OMmRkp0z7p6BLKETHVwIPWRBgSCVMpEQsraxw2nJm6f4dtffpUod+hkWbOecaqzyJV600pn6UXLtpz17H87JxNOByYv49+eWoRT8LjFLpc7vlzpavNhv272sqQWxca3e22XD0u42a+PM71v3bQVec/V6f+Qa1/7Grb1b6eznJvQXjzpiZyhb/a/rT6sZ9r5nHqJ3bfvaxewdk94+298e5jgtwWJRIJ169ZlfTZt2uSp7ezZs2lvb+fUU0/lzTffZMWKFTz44IMsX74cgMsuu4wbb7yRP/7xjyxfvpwrr7ySJUuWcNFFFwFw+umnI0kS3/ve91i2bBnz58/n5ptvLvucLrjgAm644Qb+8pe/sHz5ci666CK2bt2aUdZef/11rr/+et58801WrVrFk08+ycaNGxk/fnxZx/U17jxIkoxq1mAKgSlHUQKgaAp6UpDo1AnVqMiqjCTJ1AQGUhschCwpKAFIpXQSyRQBTSuYfzaf6SX9424pquay/YVRyMt2WXOP9mwXtm4vu2LWxJ1xvPkodQ270PG9kk87z/Wdtc3y5i12fIWoZJxwrux+0J2WlNzaq3N/Lyye9ERGg7U/R84YebdMaxb5BHWPxad7XGt6jnvg/BnMWWvdM1sftvHY+891bllLSWuyLRRe1pi9kM533zMxnootRLPCsdhCCLZ3jswXXnihV7nKsWPH8sEHHxRs29DQwMsvv8xll13GYYcdhqIoTJo0KbOufeGFF9LW1sYPf/hDNmzYwIQJE3jmmWcYMyZ9j6qrq3n22Wc5//zz2WeffZgwYQI33ngj06dPL+ucrrjiCtatW8eZZ56Joiicd955TJ06NVPZq7a2lldffZXbbruN9vZ2Ro4cyS233MKxxx5b1nH9lKcuWClPl7z1X8JVEQQmptKJIXcAZlqj7jIxkoJwbYC6yGBqgw1IyBkhLYRANwwM3UgLb9ndZC6EIKXrmIYgENCYMWh2r30sByC33M/2F65z3dr5UiomeYfTXJrPfOrm3f1l0RjKSb9ZidSYfRmt4GYGLtZju5hcAM7zcZaetSjFSuA0Pc9Z25xJzuPUoL3WV7ePJ9dkuNCznu/7Qtevkvf/tlW3Ua3H2GXUGD/laR9imibjx4/n5JNP5uc//3nR7f2UpxXA7J7TSMjIRg2qMQCEhoREoEohUh8iIg1CjoXBzBbKkiShKgqappJIpjDN3jNeIQTJlI4wIRjUkITggdcu4nfzv5vZx/rh50qYYk8A48T5ArTMu6UIbev/XtKRFnr570ixpYXWr8uJhy1HY7LCq6x71hfLBOVqdNZzWYxTmf16uwmlYsqk2nH+NuY2tmQlegGy4pyd5HM4syZgbiFqhZ5157is39+EFpXFk57Ie75zG1sqct/b5o9BF2CW3ZOPk88++4z77ruPDz/8kHfeeYfvf//7rFy5ktNPP71Pj+ubyvMQCQeRJBAi7WaGGUYVCobShqJCfXgoIbmaaFuM9i2d1AyoRlYApExuYFmWkVVBe2wrkWAtmtpzyZNJHSQIBNIl95JbtrJ16bvItjSAbuEpbppRrpewXfu2azb5tCu7puiWptNrvu1c/feFF3apWn4hjaYSjlrlYGmHU/tI87afn2XiLlbzLiescFmzzpwWe8EebyVy7VjjddNgc/lsOKmbtiJvdTLLAmKZ/otxArU7eNqvlZdJyuShK1lWcC937EJ/RERlU6tvXK00siwzb948Lr30UoQQ7Lnnnvz9738vew27EL6p3AXLVL5q5YeYKCSS9peJQNWgpjpIUA1nwgP0pEEqqSPLEsFwAEmWMIVBNNlGZ3ILhmlQow4lrEVQVYVkKr2vpvbUyRWGid7eSdeWds7e/wbXseUTIoVM1vYXh9u+Tg0lVz/2bf3JLF7OWMs1ezuFYTFjmdCiVjwnuxtefSPytStELvNvrglpMcezoi/APdQqF26TMzdB69y/2NBLO3ahnWvi4zTrlzPhfXLLXWxqbWdX31S+Q+ObyiuBBMGgimxbm9Y0lbrqmozQhm6zeEAhGNaIdcZp39KJaZikjASt8fUYpk59aDA1VbUIINoVR5ayhTaAKSClBFDzVKdxZqvyWuGrbf6YnEIbesyexeJWdSwffZWG0csYtofQBjJZrez5qYvVaIu9zl6w3wdn317vUbGhclZ0Qq5jeTmu87m3/m0/h2Iq3+U6phV14dSMc6W2LQZ7BIHbMeyavf24pR5PCEFA3s4lwnwqhi+48xCjjWRwK9XVQRRZJqCp1FWH0VSll6OZJEnIikLd4BoC4QDxaJJUUkeRNOrDw4gE6pGldB/BYADDFN2enumPoRu0bmzDNE3CdVWex5hLSwb3ZA2VMlMXyi/uhiUAi9FU3F5W+QRYqd9VAnvii3ypMZ3Xq1CiG+vfVgIUJ/le5m3zx+RML9rLTO6hX3viHefyi4Xb/bVvc3NQcx7XCwcumZER0F48+0spY2sJ2Hxm7ULPs7U+7tZHrqUar2WDveKbVb9c+GvceQgQJigHCIU0AqqKJMsoObzDASQpHUIWqgpgpAxaN3cRDg6kSq3FiueWJAlNVZAliUQiRTCoIUxBvCtJVU2YUCQIAuY9PJOzzngg7/iKMaF50YwqGYLkRrF95w5jWpq1Hpl+IZa+FuhlHIWujVtaT/v/LZz3LC2Y3V/Adi3bLlhzOQ7m6mMZLsLQFh5lJSux+skV15zLQdKOFfJVzLWycDvH3BES2W3t98fNOjG1aWLaVyPPOnY+7GvxTgr9Dt1M7oWS7XgVyl5/s/F4suzCFj47Dr7GnQeVEEGjBl0XKIqCosgFY7LBMp2rDBhST0AJk+hKYhomQghMU2AKgaLIaJpKR1sXHVuiBEIaoUgw3b8koQd75+S1U+y619zGloIaRy5HrGLMum4ThEppus5lAutjVajykqimHPK9TL0c1+7dbGnTuQSyV43KbrZ1tvXSh335pNDzUaivdK3tUTnvt6Vx2i0HhRzbcp1DvlBHt3F52a8QhTRv+5isaIBc6+TWNmdxlVKwXyP7cowd0zSJxxMl9e+z4+E7p7lgOaet/OgDtEAQRZExTUFVOP3vXFiXUtdNVLVnv1RCp3NrlGB1EANI6QbhkIaCxNaN7dQ1VBOuCiKZSdC7INXBiSNuzLR3FogoxVmlGG06nzPajox1XXI5OZUTc2v1X86L3z4+b5przwveS5tyKCbZSr6ELha5TNe5YrdLOT/7mN3uixWD79RuvYRDuuE173l2utce7EVUnNnd7PuUi9v4/7z512zavIXdxkzwndN2YLxeR19wu2AJ7g+WvcPQIYOQZQldN4jFk4RDQVRVdk02LwR0xRJ0xZKEQhrVVcGMhp5K6mzd2I6OAEVGpFLUV2uEtSRCjxKQEqDHQA5wwuh7co7NenmU4vVbzNpyX5rM+5JC12d7epbviLidTzGRC842TgHsnETZE9pU6prkEtoWxQhDt77clivy1Q239+FmgXLLyV7MGL1Mcpzn8eSWu2hra2fnXXyv8h0Zr9fRX+POQ6QqlNGwNS3tAd4VixMMaAQCGoZhkkzpBAPptKbRrjjRWAIhIJUyMAUoUve6dkBlwJA6tm7cSmLjamrDCSLVERQpjAjXY6pVoARAUnhyy11EP13Pd/a9tteYShHaxWR62h5UckxWqtVcoU3b69wrqTHbhaEzK1g+AWAPxco3CSmkyTpxi6u2kovkKrU6oUUtWmDlO74VvmWn2L6dKVmhp0hKMel/i5ngFSqCYmF/fkp9jrws8/UFG1ZtpG1TxzY7Xt2gGoaMGLzNjrc98AV3HpwPuqLIRKrCdMXipHSDRNIgldIJhXSqq0IYpkBTVVRFTpvVsxzZBHKylYixlvphVQTrR4IWwZSsSmPZBCPZsy2v2omzWpSTHU1op19yle/Xvl7v5UVaTr3qfFjHdr5snYLc7gBX6F47q4H1oGc5Xzk1P3u1Oa/JQ4oh4wCGVXWsdwyy9XxmCqKQPUnw8pxb184yxy+e9ETJGrZFrvhy5zitsXrBi0NoIWENuUuOQu4ljh3FarZh1UbOGncRqXhqmx1TC2nM++D2ooT36tWrueKKK3j++efp6upi9OjR3H///ey333452yxcuJBLLrmE9957j5133pmrr76as846qwJnUBjfOa0I0iFfaeFtCkEylQIJZElGlmVqq8PU11VRWxPOmNMRAlNPEl33KcmOTUSG7UZw8G4QqAVJIWf1ML13yIyXF67lUWuF6hT747V+8MU4lDn39drW7eXiVnWrVOzXq1CN4mKcy7zi5jhmP57dwc7efz5P8VxhVYXGuaxZLyoUzwvFhqFBz/Pp5vVt/d8KnXKGetnDvyBb8yxHc5/aNLGonOBermOuZ7jQOJ35GfIJbPsY3BwLd4Sa3G2bOrap0AZIxVNFafhbt25lypQpaJrG888/z7Jly7jlllsYMGBAzjYrV67kuOOO44gjjmDJkiVcfPHFfPe732XBggWVOIWC+GvcLlhr3F989hG1tTWZ7dalsta3u2JJ4okkdTVVKIpCL0uUEJiJdmJbvkDS6gk3NCLJ3uZKifc+47RDbgJ6F7rIZVp2y2Zmb+vFJO1lH+c6cimmbi8aQa61+VKPZ1FKqJK9H6/Cr5Azk5fzLzZL17ZYCnET1m73CMjSjIuNTljWrPfyvC93ySHfGn2xk5p899dLZrR848qXHS4Xbilfrf2f3HIX7e0dDB85epuuca/47yf8YL8rKnosL/zmzRsZs++unva98soree211/jnP//puf8rrriCv/71r7z77ruZbaeeeiqtra288MILRY/Xws+cVmGEECSSOqmUgRACSZKoCgeorgoRiycwzewU/sI0iW1eR2zjF4QG7ER4UJNnoW0mU5jRWOZv5w8/VxYttxej3avWS/GPQhm6FqxZmtHe7G36ArtWYQ9vKuXF7ewrF8VmKLPva69X7kxOks/pKd+Yrf+7JULJNf6+xl6jOp/2WUySHqf2bp+o2vsvVWgXuv/FWpmsMeY6dytEsRShnWsfL9Y2p+a9I2jdOzrPPPMM++23H9/61rcYMmQI++yzD/fdd1/eNosWLeKoo47K2jZ16lQWLVrUl0PN4AvuPFhZzUxTEI0laevoorWji0RS79a+JQIBjVAwQLQrlq70JQQiFSe28RNS8SihoaNRQnWeHUPMeILNi9+kfXPPYqVbfGe+UoHO77y8PJwJLHLhfHlYQiVX/GilcMZu5xK+bjHMzr/tY85lznXGRdvH4ZbNLFcWMec52P+/eNITnq+X0/nKq4Au9X7Y23nJlubEKbQLTQYLCaZyTPxuz6wbpU56Sh1brmxqUFqWN9jxfFj6A5988gl33303Y8aMYcGCBXz/+9/nwgsv5IEHcifAWrduHUOHDs3aNnToUNrb24nFYjlaVQ7fOS0PiWSK9s44IIjFkghA6167jhsQVASyJKGqClVVIbq64qRSUaTYOtSaoYSHDEaSipsbGV0x9GgnktqTgMXL+ls5zlWlOrLYS45aQnBZs7ciEW4evMVQSHu2C/d8a8UL1vQ4bNlxZhTrlT1sDeTKeOY8hts2a3yLJz2R5fiUj0ylsCLuVSnPg1sWOMtTv1QhVcxk0D4Ot/3yWUzcnP6c9IXjlqsjoA1357fcz3+hc8hHX8f8f9kwTZP99tuP66+/HoB99tmHd999l3vuuYeZM2du59G542vceWjvjGfisgWkc5XXhNE0hfUxnfZk2jwuSRKKJFBim4hv3YA2cBRazZCihTaANrCOYUcfxsC9xmW2efFirZu2IufLsdSMTBa5HG2cJUctweJlvMU4A+XDqYm7OXvlwn5eTg3dnlHMGU7nPL7b315etpZWVUw8c7Ev8VI07kJr/JVyHvSK2zW3Xwf7fZ88dCWQ/5kvxSxeCnPWNmec7Qo9785n0U4xz4dV59vCF+CFaWxsZMKECVnbxo8fz6pVq3K2GTZsGOvXr8/atn79emprawmHw30yTjvbVXDffffd7L333tTW1lJbW8vkyZN5/vnnM9/H43FmzZpFQ0MD1dXVTJ8+vdfFciKE4Cc/+QmNjY2Ew2GOOuooVqwozXxk99uz1rRVVSFuCNZ1GazpMjCFwIhHSWz4CEWBqp12JirFEHnS+gshMLrN8K4oGpIW4oHfpF/slpm01BdmvpdG75Ci4to7cavUZGdHCVNpmz/GNYWlXbN2Cgfo/SJsmz8my6xZzEvWXpHNa7tik5ZU0nRqjdWrB3e59zpXvnf7eJz9W+vOlZoY2sm1fOLEuj7WGLyMpVLjdcvItmDNUj9PeR6mTJnC8uXLs7Z9+OGHjBw5MmebyZMn89JLL2Vte/HFF5k8eXKfjNHJdhXcw4cP55e//CUtLS28+eabHHnkkXzzm9/kvffeA2DOnDk8++yzPP7447zyyiusWbOGk046KW+fN910E3fccQf33HMPr7/+OpFIhKlTpxKPx0sYYc/DLoQglTKAdABXXUBGlQSx1g10rPsUqhpIVVezJbmOrmQbpjDy9ropZtCpmy4/KAkJCTkUyooUs5cBfHLLXZlPPuzfuwl+p7e68zu3Nl5ijC1zspvwTpuge/fhXFPtayxh4CzdaGlJbuQS5E6zZrEandWXl4lZudaTYnFLrpLPx6CSlOshn2/SkCsqw2t/uSZc1j2cs7Z5m1sm7Cxr1rMmlAkzj6LwP86cOXNYvHgx119/PR999BGPPPII9957L7Nmzcrsc9VVV3HmmWdm/j7//PP55JNPuPzyy/nggw/4zW9+w5/+9CfmzJmzTca8w4WDDRw4kF/96lfMmDGDwYMH88gjjzBjRvoB/OCDDxg/fjyLFi3iwAMP7NVWCEFTUxM//OEPufTSSwFoa2tj6NChzJs3j1NPPdXTGKxwsNf/+w/qqoYiSwrhUIDqSAi5u6ataaRItq7C1E0CA4YTNTvoSG7GFAaypDIkMpKg6l6eM5oyWR/TMQTsWquhuDiumYkU0Sf/ibTf7pz5lRsy2wsJ60IIYPrA9ANZSHCXqwU4ncHsLztnKkz7S3pHzO4GvXOhO1/a9hd7KWlmIXciECgt3W05FFpLLjdsrtA+5T4H+fqvpOXH+WxblNp/KaFg9nbW5M5augJ4N/UP6s0YI7dxytP+koDlueee46qrrmLFihWMGjWKSy65hO9973uZ78866yw+/fRTFi5cmNm2cOFC5syZw7Jlyxg+fDg//vGPy07A0u9SnhqGweOPP040GmXy5Mm0tLSQSqWyXO7HjRvHiBEjcgrulStXsm7duqw2dXV1fOUrX2HRokU5BXcikSCR6Kmc097eDoCpdKArYSLqwIzQloBUrJ2uDZ8TrB1I1ZChCAnMWCshtRpV1tCUEKocAHqb2wHaUiabEgYNQSVX+hUkVYFICLm9iz+tv52UbhAIaJlQtFKxWhYSzJUw3TlfZvYXUo+DV4/Dl1cnrW2N80VqH3su7Ofu5QVupby0ZzdzYpWWtJzmtoUAtyYS9hhhLx7PXkOcclGJePpC31dygmh3SJuztplF60fB/G3n5e0m7O3bBJAwtr2ONmTEYOZ9cPsOn/L0+OOP5/jjj8/5/bx583ptO/zww3nrrbeKHV5F2O6C+5133mHy5MnE43Gqq6t56qmnmDBhAkuWLCEQCFBfX5+1/9ChQ1m3bp1rX9Z2Nzf9XG0AbrjhBq655preX0gCoXQSM020mExYDUB8E4loG6HBIwhU1WSyo9WHhyHZxLBduMYMgSZLqKSF7tCwwqCggiLnyJsmBMlNWzCqFczOdpQNm9G7ujAbh6AFA2iqWpbwntCict2o2xGbRXdOdUEwoDK9YXbm+0quEbol58hVzhJ6woecyWSstjuSNu5FeLhZGJxYOdYLJW2x9gNvWnqpOCtqWZ7l1r3blkKxFAodf2pTT3rWcvtPXwudA+envbnnNrZw4PpRJfedD+dv001guz0/NarM5s7cy3d9yZARg7/0ucO3Ndvdq3zs2LEsWbKE119/ne9///vMnDmTZcuWbdMxXHXVVbS1tWU+n3/+OUAmhrurs4Mtaz+m/bOlJGJdVA0dTSBSAxIZDViW0mFi1sdOR8pkS6InQYsiSQQUCcVlXwC9M8qmxW/Q2bqRaNsmEpu2kNi4kYRoY2vXBlIpvaz1qutG3Q50Fz/RFBRZIpEoz5TlZc3TSlBivfidL397rPDkoSsz+zrjl/tqDdy+rm8fi13DtK8xe9V4pzZN9CzESkm9WUy6T6/rrrn6tJJ85LvfxaS8LTWRTKG62F6udznPUT6HOau4SjFx+rn6srCXA3XmJbC+dwtptKjVJKKdpfj5+OyIbHeNOxAIMHr0aACam5t54403uP322znllFNIJpO0trZmad3r169n2LBhrn1Z29evX09jY2NWm0mTJuUcQzAYJBgM9v5CSOhtBrXEaagNoNTsSkKqRlI0YnRgCp0I9eTMN07aRBU3BEnTZHBIzrNnD3IwSP1eExC6QfKT1ZgK6A0BdKOdcKAW00xXJQto6dtXlum8Ow7d3oeVbc2rEHGawp0aYL51v1zxr3bBYZmPe9p4GpbncRciVxpJL5Sydn/gkhksXvNEQS3dopiYePu6p0WuePP0BKb3mnqhEKNiNO2+0Mq3Z9RC2/wxzG3sWUqxllWK9XWA7BoF1v11cwx0ft9DT6W8VCyJULa7nuZTIba74HZimiaJRILm5mY0TeOll15i+vTpACxfvpxVq1bldLkfNWoUw4YN46WXXsoI6vb29ow2XyxaXKepShCpb4TITghJRSSSGMIgTgc6ScLUoOQxXEjAsLCCIfKJ92zkgEZk15EIw4RPNpHsSqBMGIgmK9QGG1DlAKmUTiKRIhBIJ2opp2KfZSL3ilMA9dacW3qtAXt5cdnNwE7cQnH6wkRsx63UovN4hdZaS1m7r5u2AtZ4F2rFJGZpmz+m18TH7vRmn7DZ19SdHtVeJj35JippTbR0z/RK3PdKThqsc82X0Q9yO/XlMnm7WaXsePUlmPeRTjAYKLivT/9guwruq666imOPPZYRI0bQ0dHBI488wsKFC1mwYAF1dXWce+65XHLJJQwcOJDa2louuOACJk+enOWYNm7cOG644QZOPPFEJEni4osv5rrrrmPMmDGMGjWKH//4xzQ1NXHCCScUPb4aPYE2YCIi0pBZy0YStIsNJKQoAAY6MmrW+rYdSZIIKiVIVSFIrN+AUa0iJwxqjQHEvliHupuCpEhomoquGySSKQIBFRl3s3shTho4y3V7PmGQ74XnJhgqgZvX7tzGFua0NJdcBa1QDeS5jS2ZyUGpnr7WsYoxl9vblVKgIxe5BKl9fd2tsIdbPwcuGVOW85V9zbySAnR75QnIXu/Obc2ZPHQlcwtMegoJa7d9ClFTH2Ew22eN26fybFfBvWHDBs4880zWrl1LXV0de++9NwsWLOBrX/saAHPnzkWWZaZPn04ikWDq1Kn85je/yepj+fLltLW1Zf6+/PLLiUajnHfeebS2tnLwwQfzwgsv5HWtz0UiPJL2ZJABYYGiWOvXgoSIYUpG2pROCo3i+y5Eqq2Djf/+T3r9XNNIvBEl1dlJZNddkLCZuGWJZDKFpqkoslyW2dyJpVkVo9n2pUOSPVmMpSWWU87RDftaItjqMRfpJW5RasyzPSUqUBGP+0L3xjpXL6bwTLhbmeOqdDSBdW8qOSGwa8uTh6709FvI9YxMaMldcCbfunmxYWa9lrokCJeiQPjskOxwcdw7AlYcd0tLCzU11QysqyYQSM9xUnqKTcZqzGAMBNQwiBoGVVRgQrpCWHztBhAmiQ9XodbVou40iFDTMCS551hWIZR4IkkoGED2WIHMjhAir7k8l7Aq1fu8kl7r9nVxZ2rSXGvLbp7bzrX2XOMrRaMrRwu0v7C9rnmXi1Pjdhu7F0/5fOVnAU/e6dsa57NRqfGVE4NfiaWh7VXW06c4/LKeFUII0I10KU+BQJZkFKFlkqrpJPOmNy0VOaBRNXInqkbuTFXDEOQtMUKNQ7OENqQ1b1mWUWQZ0yx9HA+vvjXnd9bapxN7ydBiqOS6tL0vLznVcx3f3rbS6+a5ssXlwxJudu97p4d9X5HPf8G+vVQnNXte/XIysOVqW+w1sqIIoCdlqlvUA5Tmib5gTXYp3GLbWvSlP4dP/2KHc07bkRCyjggkiEspVCJohNNCUgTQu+c8AhP6QHBnkEDdeTDJD1dhdMZQ6yLdx80+pqIopFI6pmm6eornwzDNXhMCJ9Y6r13LKlZzdu7vpX0xVc+sNW+ARXlS2pcjLKyqYcWYZHM5eeXD2adlLp3b2NIna8O5KGQt8KJ558Me526xLeO/rWfQq7ne69gqkUGtWLZ37Hwu1sVaaU1Gt9nx6gMRhoXrt9nxtge+4M6DqO5E1MaJSQIZnTqRrvoSkqoImQFUWUNBRepjw4VUG0FSVYzN7VmCu4s2EIIwtSiKgiSlb6dhim6PcxVJzh+CJoTA0A0UDyb2qU0TWbymZ03SEiJecQppu8aeS4B7CaWyrwFmzJzdQtzZby5vZq8TELsQLkZgLWvWYU3lXq6F+ijnOF6FTrk5y+2pcK1kKNsiT72dSqX1tZNLW69E37mw14jfkYT3ulgrM/55K0lz21kLArLKE4dc8qUW3r6pPA9hNYQqaUjI6OgIqVublQMERISgVIUqBSq+vu1ECqgoA2pIbtxMTHSkY8gxSNBJp7Ql7eEupbVuRVHQVAVVlUkkU5iGSS4vBiEEumFwWuMcThl6UZ+eA7ibMO3FU/KVBC2UeMV6WdqTTixyZK+yO3uVgz2bWLE4s8DZyXd+lagKVqxQ9Cp8yr2mpQrrXOMrtIRTqcmBNelwfoppn2t7Ofe7bf6YbV60Jxetyeg2FdoASVMvSsN/9dVX+frXv05TUxOSJPH0009nfd/Z2cns2bMZPnw44XCYCRMmcM899xTs9/HHH2fcuHGEQiH22msv5s+fX+yp5MQX3HmokRpoYGcGsFPaAa37csllricXjQTy4Hr0jZvoMloxRAqEoFYMoYHhBIlk7y5JKIpCQNNIplIY3Wv0dtLVznROGeJdYDvNps7sVfZZv3ObF7O49eIrJLydLyY71jEOXJJOP1lMuUy3jFT5xlrKC9ZOPiGea9vUptJrSXuZaHgtXWkfT7E4x2/V0IbiJ0OlXH/7Uk+xlGICd8vVb/2WnFn6nGVi7eS777men+0ptPsL0WiUiRMnctdd7gWcLrnkEl544QUeeugh3n//fS6++GJmz57NM888k7PPf//735x22mmce+65vPXWW5xwwgmccMIJvPvuuxUZsy+486BIKqoUICxVE5TCmVhtWZIwTTPj0W19+gpJkpAbapE6U+iJLjqkzSSkKKoUQCPUba53d1oLBjRSuo6udzvYCTBNQSJZmWo9bi9O+8u3EuZaZ99256ZcOHOhO/uzylPm0pi81D93i9nN96LMl6bT7XxyCZhyTaETWtTMOPNNWPqqhKjzvOY2tmSdo1dhUwmhVIzgz1UFLB/2EEa7QLa22Z3WrKWXXPc3XwpVq5313FfiN/i/wrHHHst1113HiSee6Pr9v//9b2bOnMnhhx/OLrvswnnnncfEiRP5z3/+k7PP22+/nWOOOYbLLruM8ePH8/Of/5x9992XX//61xUZsy+4S0CWpUwe83giRWdXos9r3cp1ESRFQ+4wkZE9ratLEkiSTDAYwOhOk2qaJolkCkWR0TQ1Uya00EvQzUnJqUHnM5kWm4PbOmY+co3ZiyZUyLxrjxFfsGZpTiFuH2uhHNmFYs5ztXULdysGp3Ce29iSsUZMbZrIgUtm9NLypjZNLHr9t1hBumj9qMw52a9NMXnGy1lLtmqxFyI79Siej2t5k1vkWr5IJy3ynqCn0HW2+vEywfUpzEEHHcQzzzzD6tWrEULwj3/8gw8//JCjjz46Z5tFixZlVakEmDp1KosWLarImHzntBIxTcGWtk4MQyBLEA5qlBBC7Rk5HECur6GqLURw2E4owluFMEkCCYlgQCOZ1OmKxQmHgihKdrIW+xqy88eez7PYmZjELV61lDhmL45Phao/5WpvaTa5HHnsbe1Ob7kc8YrVwvqKXGk3cycDUZnQAsuac6fq9Er6Hnvf337tC2WwczvWgUsq44RVyMGynFwFXp75Ys8hU1p1vntGPWcug8wENX4w7Txf1LF80tx5552cd955DB8+HFVVkWWZ++67j0MPPTRnm3Xr1hVdpbIYfI27BNJryDK6biBJEAqVlvjEK8I0iX76OUZIwmiPklq1ieS6TUVFoaVN5+lUqU6hbWHN0EsxQdo1J69CutBxismJXQqFBL+94pKbZuZcQyw03lzx8F7xomm5OUzlYlmznqk2VQn6ej3VHm/tNQucE+c9K6RxF1Nop5Ix1/b75rbmvXjSEwV9OOqmrdjhEtz0R+68804WL17MM888Q0tLC7fccguzZs3i73//+3Ybk69xl4iqKAQ1lUgklKnSVQppE7sAScqZ7zy+Zh2b33gTJRBCrapC//xTasfsRnDYkKKOo+sGwaDWS2hb5nIrb3k+7TsfpXjCeqmbXCjtql1geRmH13Oya2NumpmV+ctZmzmfhaGcF3qhcRdj2XBzssqkMS3SM9rav5j61sVqmpYlp9zCMs7jzs0RNljMuOzr1OVkSHPi1RFxe1t6vszEYjF+9KMf8dRTT3HccccBsPfee7NkyRJuvvnmXuZwi2HDhrF+fXYyiXyVLYvF17hLRFUVwuFAJv652JAwgcAUBjoJOtiCKXIXAAgMHMCgA/ZjwF57ECRAzS6jCA71LrQBdN1ALpDL3BLg0KN9W0LTC5aWWoy3tRcNf2pT4ZrT+by856xtznzA+4vOqW3b+88SWB6rPVlsi+xnhXATLNZ6d7H9lCs4vK41l7Lungu75u10jisG53js6/blUmkLRlt7e0X7+18glUqRSqV6WVQVRcE0zZztJk+ezEsvvZS17cUXX8xZ2bJYtv8bpJ8gRDpHWsoQaEraNSwY0EgkU8hyoKSymlGplShbQECICDKKq9atVIWJ7LoLZiyB+fpHhHYbhTakwfu482jbTuzC+6SBs7pfzN6zdZWibRSjeefKR+7mEd3zUrW9XB3lRkuhkKDyIsyKXTstdE29rqm6UWgSUko/xVKoNGmxNeILkbGQYFkbiksmVKjfYrALaOdEthJ5ByxUw68O5kZnZycfffRR5u+VK1eyZMkSBg4cyIgRIzjssMO47LLLCIfDjBw5kldeeYU//OEP3HprT5roM888k5122okbbrgBgIsuuojDDjuMW265heOOO47HHnuMN998k3vvvbciY/Y1bo+YGKyPR3lrc4LVUR1BOp7bCg0rBQUVAwMheVisltKJWKQBNeib23LuZoWmGYaZrtmdTJHsLv1ZrFXALsTdkpd4NeNVcp3N+ZKDbA3WWpfO94IvdjyWKdSuFRbSEPMJb3vSmWIoRwNzi3/PdR3KSYhSrpZYqdjjYjVoez55e+6BvsS+HGW3cFnr15nKcGX8fuy+DrWdmysy7mKoD0QIyNtWPwzIKvWBSOEdu3nzzTfZZ5992GeffYB03PY+++zDT37yEwAee+wx9t9/f8444wwmTJjAL3/5S37xi19w/vnnZ/pYtWoVa9euzfx90EEH8cgjj3DvvfcyceJEnnjiCZ5++mn23HPPipyjr3F7QCBISjGSyhYMBrAhJjEsrBJQQJJlzO746GLkooSUSZeqEkhnYMubnBQkRUEbPhh9zSaEKUDq0aiFEAhTZMYiS+mJhaapyFJ5tbqdXtaWNpvPI7vY/NWLJz0Ba3LXIs44WrkkH7Kb0b0IxFInE1a607mNLduk4IOzSleu6+lVE3W2dwtzsvbzmjrTOTmxynSWGkkwuWVlpia4fcyV1LbdWLR+FHNIa96wNGOZqWTJUegtrO3ksxoVqgvvBWlLngT+fcSwcD1PHHLJDp2r/PDDD88bzjts2DDuv//+vH0sXLiw17ZvfetbfOtb3/I8jmLwy3q6YJX1/OKzj6itrUnnBRdtxOnE0KvQzDrqAmlt2zBMUrpOMFC8udxAJyq2ppO8UOMpNju1ZjPxf7+HenQzUlADuj3GJQlJljL/traXiyW8LXI5NXnxqHYTBqW8iJyhZm7b3ahE4Ydi+shVctQL1rWqpLOTnUoXwcj3XBRDIQHtVYBXStDnctjLVzY217ZSj2XHrexooTK1Fn9ouYimfQ/xy3ruwHi9jr7gdsFNcAOY6JjCQCWYEYrpLGTpWtilOKhZIV3ppoXbm9E40Wf+TfDwSWjDBvR5nnSn4M4VK+yVYmN2veI1IYZz32JfsKXWa7aObTl/FVNlqi/qcFdScNsFtFOgOZdXyvUKt1Po3lVaeEPfVfoqZQJa7FjmrbyB4buM8QX3Doxfj7uCSN3/KWhoUihLWKazk6U175L6zZixvQlgKRRAro1grtvisUV52Ne5IVvgWEIoV/pQN9yEtrUu7WzjJRbZ2s8LbuFixcatOwVBsR7qxWSzsscs92WMtJUju9S2dpypNq37Z3n1e/Hg9joeL9exEuvUuSw85WLPU27hxbu+2OiIDH08yffZdpQsuD/++GOuvvpqTjvtNDZs2ADA888/z3vvvVexwfUHJCmd1CSl632e9hQAWULZaRDmms3pde7tgD1FY75UjXaBnotcjmRuQtxtn2KSmjhjvYsVjPYEIHa8OlQVm2HNngAmX7rMUnBeT3uhj3L7chuT5ZBn3W+3a2Dlh7eeqXInK5VMMGOfRNoLgpSC9Ry5mbe9WAhKWX7xY72/XJQkuF955RX22msvXn/9dZ588kk6OzsBWLp0KT/96U8rOsD+gGwzm/c1EhLqsAGY7VFEojKFQgqRT+t2wxIoTu3c/vKzCyV7u1Jiie3OTF5wy4Zmrzzmpb19QmL3APZ6fC9FTLzkNi9HwPVVEREvOH0iLLN2odzebhQq92r3GC/Uppj7by0ZuVXFy9Vv2/wxWffVskSU4sjnlUpHdvhsf0oS3FdeeSXXXXcdL774IoFAILP9yCOPZPHixRUbXP8hXYnLLELjNkwD3SwhrlICKRzEFCZmPFl8+21AucUNcrXN9/Ip5XhOwZhv3G4akjUma6JRjBbmRbPy+rK1rykXgz3jVyl+B+VqcXZrSV96jFvn6VwicaPY52hq00TXilzOe2Ev/OEcW7FpVX0h7FOS4H7nnXdcS6ANGTKETZs2lT2o/oYkpSuGFRPPLeVJcZoPkdIxkymoCiJ0HSMWh21gon9yy12uHzvlrBV7dRLzsubtBUvb9Gpmt/Z301LdSih6uRaFXtjFrs8WYzWw+i/V0SmXACnW2c9uNvd6vs5z9Hrelcjylmsc9qWXCS1q3tA9+3i8YoVhlnKffL58lCS46+vrs4LNLd566y122mmnsgfVH5ElGWF6r8stS3ImXapXzHiCTYvfYOu775EaoNHx0cdsffMtRAmOcZXCmSbViT1uNd+LtZhSjlD8S88paCyh6VXTLLS/fSKwYE3+8p59iZvVwJ58xboWdgtCKRMhext7fe9iTff2jG/FaN3Oc7RPmAod3xqvl3E697GbvJ3X2poY2NfV7Q5oTquNV6FqPbvFWiVKnZT57PiU5HJ56qmncsUVV/D4448jdWcOe+2117j00ks588wzKz3GfoEsS0WZyksh1dpOYvNWZEnGrAoRqKpD1pR0tpXtyJNb7uoVNga9ta9iEnsU6strP+kXbW/t0K75eDU/5gtlW9asdyce6anhXe4Ls1Aa0HzY47+t625fh6+k9rlo/ShXq4OXMZZiIvdi5s5XshV06ugOaXRJ+uPs096X9f/JQ1cy1yYYc+XJz7W8UmicFuXc/x2FLclNRPWObXa8iFrDwMCgbXa87UFJd/f6669n1qxZ7LzzzhiGwYQJEzAMg9NPP52rr7660mPsN0gSmEKg9FHYRXDoIBr225/4f94jOXYIIhKmvmYnpL4sBO4BIQQPr7kVTVM5efCFQM8LqVRB7SSXhlUIq4KXk1K0TS/auTPLXDnCu5z8407NbmoTWUIqV9a0YrDO08qWBt7ve18LFq/576HwfcqVD9/exi1kzBmbXexEpZznZ25jS5/E/xfLluQmfrHsEnSxbRxpAVRJ4/+bcOuXWniX9MYPBALcd999fPzxxzz33HM89NBDfPDBBzz44IMoilLpMW43ignvSmcskysSomXlG9dNHUOYmXEIINHZhTlsAMGGBoI19UhllBStBFa5UEmSegltN8otwpBvm5Pt5chjedBb3sx2D3K7wHLLH26nVIct67ytc3f+3+q7WO99J9bygL3fXE5Ydtw8yHNRTkiYV7O9F+uDc23aS24B535u5+tlYlEq21toA0T1jm0qtAF0kSpKw7/hhhvYf//9qampYciQIZxwwgksX748a594PM6sWbNoaGigurqa6dOn9yrb6UQIwU9+8hMaGxsJh8McddRRrFhRmXtSlqo2YsQIpk2bxsknn8yYMX2XIGJ7EU8kXIS3sH2yURS55IIjFqYw6dK7WBdbyycdH9OebO05smEif7SGyMAB1EWGENHqS3JwKxcrP7ppmhiGiW4YaKqaWe/OZTZ9ZM2tvfr6/Sc3uB6jkFDbkbHO2f6ittY9LU3YWgcv1wPfSTGTlXIrT1n1sYs1ubsJMGtyY18PhvKFT7EOe06ssVilR71kNXOu/xcjgCthifAd0orjlVdeYdasWSxevJgXX3yRVCrF0UcfTTTak199zpw5PPvsszz++OO88sorrFmzhpNOOilvvzfddBN33HEH99xzD6+//jqRSISpU6cSj8fLHrPnp+SSSy7x3Km93Fl/RgiIxROEwwFAgGSm/48EQu0lMmVZIqWnNeRSU5HG9BifdHxMwogTUkKElHDmOz2lo4cChIcMSAvsbSSzRUZIC0xh9sxZuo+v6zrxeDxv9ri7P/gZ7R2d3Lvi55w35sdZ3z34+a+QZSuLnMxpjXMKvrDz5YmGwgKsnDVeL8LRPi5r/dvt+MWsd1r7QG+BZqVGndpUuXMoNI6pTVZRjvKxynY6Tc5Tm/KXk/Vyzbxo3vb7YQlPa5KVtiwUthC4jbdYq0k5YXFOZzQ/dMwbL7zwQtbf8+bNY8iQIbS0tHDooYfS1tbG7373Ox555BGOPPJIAO6//37Gjx/P4sWLOfDAA3v1KYTgtttu4+qrr+ab3/wmAH/4wx8YOnQoTz/9NKeeempZY/YsuN96662sv//73/+i6zpjx44F4MMPP0RRFJqbt19Sh0oTDgURQtCViBKusuu2ChjpSydsmrfU7SRWjuAWmOhmCoGgWqtGk1VSZhIFGT0Wx2wcgFQdLusYRY2n2xRuGCaqqqDKPeVBU6kUW7e2oSgy4XAYJazw2PrbuhPSSOkMi5JE0kgRUnvi/f+8+deARCqVNqFpWnbJ0VzObm7kKu6Q1gQLF+fwIhysfi0nNy8C3+orX9/OsXnRLu0aZD7P6kJ9uU0cisFt4lBuHvJSHdXcSr267WcXzE6HOui5H5YloWdb73G5XeNyhWQpznr2SYaXbIM+hWlrS5dNHjhwIAAtLS2kUimOOuqozD7jxo1jxIgRLFq0yFVwr1y5knXr1mW1qaur4ytf+QqLFi3adoL7H//4R+bft956KzU1NTzwwAMMGDAAgK1bt3L22WdzyCGHlDWgHQlJkqgKh4jGYsS6UoSrlLQwEpbmTVoLl1Igpc3nsgqGoSCX6DCmSCqKrGAaJjVaDV2pdmKtm5A/70ALRBCt7XTEOgjv3ERoyOA+1botTVs3DILBQCZDnBCCWDxBa2sbdbU1VFWFc04ihBAZoe3cR1VVkskkqZTeS3g7sQvzeZ/9imBA47TGi3vtl6XprPF+rl5jyC0BXozQK+QoVUxflpCyO4S5Hc8r9uInxbSzzsc+kZnb2JJxgKtsxaylectreo02sCZzAHSP1Q1LWHs5pluVsFKcMkv1sLfa2Mfqh4GVjmmaXHzxxUyZMiVTO3vdunUEAgHq6+uz9h06dCjr1q1z7cfaPnToUM9tiqEk6XLLLbdwww03ZIQ2wIABA7juuuu45ZZbyh7UjoQkSUTCYTA04jGzO9eJAMlIa9tyEiQdJAMkE1kx0ubkEgnIAYaFG9kpMpwarRYMA33ZFyRXb0QkUqjBAEZXF2Y8UbFzdGI5x5mmSTKlE9C0zFq6EIJotIvW1jYGDqjPK7SBTBEVt31kWSIYDCCEIJnKzvVurZdbiV6EEDy27nbmfXYT4VCAQEDtlQDGSTEFGwrhxenKS3snlqZaTD/2vkrNpmWlly00vlxtnfHLFta52DVhp4XAq7NhKcl28mUvc6YadR6j3ON52Z6LSmWOczom7khhYf2BWbNm8e677/LYY49t76HkpSTB3d7ezsaNG3tt37hxIx0d2y5eb1uR1rzDmLpKPGakdW2p+4fWveRtISsSRimpTK32kszg0BCGhoehyhopkUIdvTM1g5oIyio1Y0cTGTWSUNOwimnbljk8ldJJJFMkkiniiSSplEEwoHVbD9IOaW3tHXRGowwe1ECwhFKmTiRJIhBITwwSyRSmKTKJ4CzBLIQgHk+SSCaJVIVR1R7t3C68ndncrHVTN7K0xBIpZo3czUGqHPOypdWWmknObsovta0dy0PdLde4c7Lh1t7N9G5hj5P2mmXNXn7WLS+8Pd2rdYxyqFTYo1fczt/teezLVLJfNmbPns1zzz3HP/7xD4YPH57ZPmzYMJLJJK2trVn7r1+/nmHDhrn2ZW13ep7na1MMJQnuE088kbPPPpsnn3ySL774gi+++II///nPnHvuuQU97forluZt6hrxLsDUSEtOJcvBPC1PzKJCyZzHyWioAuRNCUIffEGwdQNabQS1rprwzk3IFQwDSyRTGccyVVEIaCqhYKBbMMtIUlp4btmylWQyyeBBDaiqUrE19nSFNQVFkdPCW5hpv30hSOkG0a4YQggiVWFkWe5VndApsO3/dgpmS3ha4VpecNMGiw2lsptQLcpZE65kdja7YCzVA3vxpCdcr6eXAhxu+7qt11rbrEId+SZOddNWZK3/2h3NKm1CroTQtiYXXorPWF7uzm25JnH9MTJjWyKEYPbs2Tz11FO8/PLLjBo1Kuv75uZmNE3jpZdeymxbvnw5q1atYvLkya59jho1imHDhmW1aW9v5/XXX8/ZphhKevvfc889XHrppZx++ukZByNVVTn33HP51a9+VfagdkwESFBVpdHVFSMeNwgFFRBSt7S2S28T0xQoSomCTaTXWqKfb0B6cxVasp1QbQLqw4gKO6RZJvFwKOgqiC1tfMvWVhRFYVDDQCRZrvjSuiRJqEp6MpBI6Mgy6HrachEMBEqeKORzAFu0fhR014d2c1ZytnFm0EpnSituPbGSwrYvKDZlKTgcpHC/3l4d7wrta63F26+9G7mTpVReAy3nnuaLabeve1uZ8KD3vS8UclbKPf1fYtasWTzyyCP85S9/oaamJrMGXVdXRzgcpq6ujnPPPZdLLrmEgQMHUltbywUXXMDkyZOzHNPGjRvHDTfcwIknnogkSVx88cVcd911jBkzhlGjRvHjH/+YpqYmTjjhhLLHXJLgrqqq4je/+Q2/+tWv+PjjjwHYbbfdiEQiZQ9ox0R0r2enkCSdcLVMtCOOoitoge7vu9e+DYN02JRsoij5DRqWVp4RSN19mNE48aWfoH+2Gn38YJLDdyb82UrkcKhyZ9R9rGQylTNpjmmaRLu66OiIUlMdobo60mee7EKkP4ZhkkqlMAyDSFWYQCC/01ouLGe2fE4/Vg3qZc3pFJiFyOUZbmmrXh28rAmAZcovNpuW/dil4BZSZncy8+qpbVGsI2A55Bpzrm392UHLei4KTQ7dJkxO6qatgE8rOjxPRNQaVEnb5pnTImqN5/3vvvtuAA4//PCs7ffffz9nnXUWAHPnzkWWZaZPn04ikWDq1Kn85je/ydp/+fLlGY90gMsvv5xoNMp5551Ha2srBx98MC+88AKhUPnvcUmUatP9EtPe3k5dXR1ffPYRNbXVacczOQUYgAxCxjB1ujpNgsEASkDH0E1MQ0ZGAyEhgGBAQ5KkjIA2hcAwDQzTIGXomJJBdSCCKqsYsTiJ9ZvAMNE3bEFfswlz0hC27lRDIhli9OrPCI+YgIjUVuQcTZEW2rIso6lpwW0JSCEEqVSK1rZ2JEmivq42a125kliOcMmkTkrXUWSZQFAjlTLQVAVVLT0Tn+WFns95qxQP3Fz92QVGX6WbrET8dbHe7V5NwX01Ni/5vO1Yyxh9teZcqge4Wz9QeB26Us/vvE9/yfCRo2lra6O2tjLvEYt4PM7KlSsZNWpUL8Hk5yr3Tr7raKckjfuII47I+xJ/+eWXPfVzww038OSTT/LBBx8QDoc56KCDuPHGGzOx4QAff/wxl156Kf/6179IJBIcc8wx3Hnnnb3c7O10dHTw4x//mKeeeooNGzawzz77cPvtt7P//vt7P0k7UrfQFgoIDYSMIkNVtU48ppNMQiolqAppBILp0Kd4IkkypYPloY1gU2wjUSOKTgpDGGgiwMi6kURk2PLmEvRNWwkNGEhK0mFICCkkMyhYhRYIEgpGIBEHm+A2hCAdMW0bap77Yk0gDMMkpeuoitLLBJ0O9YqnQ73qaqkK5/caLxUh0lnikokUKV1HU1WqwqGMI1wKA7P72pV7fC8vvVyJTYrBEtYL1izNG65VClaRkEqnwWybPyZdMKMMJ71KUaqHtl3Lnto00ZP1ZEfALfbajXzPb3+wKAwMDOq3gnRHpSTBPWnSpKy/U6kUS5Ys4d1332XmzJme+7FSze2///7ous6PfvQjjj76aJYtW0YkEiEajXL00UczceLEzGTgxz/+MV//+tdZvHhxzljp7373u7z77rs8+OCDNDU18dBDD3HUUUexbNmy0sqOmoG01i3UnrAoM4giKUTC6XVu0xREu2IoqoKqpJ27TLPHFC4wMZIpTHSCskZQriYoh0GX0LdsQW1Poo4ejhigIskG5qYo8qAINdJAFElFrolBZxtiwGCQJEwM4nRhkMKUEshCpZqBSKQ11IyW311q1BQCYaYzn8mynLEGOIV2tCtGe3sHDQ0D02FgfbCmbhgmyVTaIU7TVKoj4ayxCCERCmokknp3OFrx2r49gUsuDenAJTO6zeW651hgO27Vz6BvMlfZ13Ur+bJ2Vgzra+yRApD2Y9ANkzOa5uRtl8t07zah2RYe3qVo3ZUel5XRzed/j4qayn/2s5/R2dnJzTffXFL7jRs3MmTIEF555RUOPfRQ/va3v3HssceydevWjGmnra2NAQMG8Le//S0rK41FLBajpqaGv/zlLxx33HGZ7c3NzRx77LFcd911BcdhN5XX1tZksqP1uKCZ3QlXurcKGYSEruvE4gmqq6u6PZ9FJjELQiFlpJAlCZHQkU2BmUyRWLsV8dEqkqNrEGMbkBWFFHFMDCRkBtBEgDByrAs+XY45Zi8kVSNFnM2sxiAJgIxKHYMJU4dE2jyfSKbXlWRZRu4WjHJ3djenIBRC0NEZJRqNMqhhYMVN45aTWyKZQghBMKAVTLrSE9+dzgMvd4+/mHHlW+e2a5uVMJXnwukYVOrLu9hELV4nH3bhXaqJ34vJ1i3u3nKO/FZ3gRovOK0E/UHrdKOcSVgpE4ftZSr38U6fmspz8e1vf5sDDjigZMHtTDWXSCSQJIlgMJjZJxRKm1P/9a9/uQpuXdcxDKPXSYfDYf71r3+5HjeRSJBI9CQ0aW9vz/peQup2TzNB1rtjuG2C2wwAajolqKoQT8QIRyTAltvcDBBQAqRa29n8nxZqdh5BbN0GJAmMiXXoO4eok2sJU0NCdCEwUSQNjWBa7gdCyJKMFOtEVNejSgGqqMMgiUYAVVZQJRlMAyHSWrdpCsKh/LHW1hpze0cH8XiCQYMaMt7d5WI5wKV0g0QimYnZ1jx6iEuSREBT0XWTVEpHgu6wMe/js4TFSbinUO2po115s2OPMKtcX8XgJY1r3bQVWeU+3czMXpcR8qVRzZUsJz2ZlHl84518a/AFefu3xmJNNPpqrd/Lfvmel77U+L2ui/t8ualoIedFixaVPNtySzV34IEHEolEuOKKK+jq6iIajXLppZdiGAZr16517aempobJkyfz85//nDVr1mAYBg899BCLFi3K2eaGG26grq4u89l5550de6Q9ylHiPelNM4vLVvY0A0mCUCjYLWjS+cbT+3Xvg0F8zXqMrR0YXXFqxo5GGzYIsyGIkE1MTCQhE6SaoFmDnAqQiBtEu+LEkjrxmgHoaz4kabRjmoKIGEA9w4jQQFDUoKCClM7ulkzqOb3aLS0nHk+wtbWN9Rs2YpoiHZ9dAaGd7l+QTCbpjMZIpXTCoSCRqpBnoW0hSRKqKhMOpePKk0mj5Bj5QlQ6y1QxGdHykS9G104xmr21r9uEwK2ffCFF9nCkYoS2hd0SlGsczslDX2jZlQqZ8iK0S33WvJZD9flyU5LgPumkk7I+J554IgceeCBnn302/+///b+SBuKWam7w4ME8/vjjPPvss1RXV1NXV0drayv77rtv3lzgDz74IEIIdtppJ4LBIHfccQennXZazjZXXXUVbW1tmc/nn3/eeyfR3dZV5vRslCWJqlCYWJfoSR0qTAQmpoijtSYZMHAnIruPItg4iKpdR6IodZBSSKTiRJOdRBOd6LqeyQkeS6TQAhrKkJ0w1RoCX3xBLBHFMM10HLkAYSoIPYiRUkgkUsiy1GttOG0+T9LW3s7GjZvp6OhE0zSGDB7EgPq6ojRZN0R3/HkikSLaFcMwTarCIarCoYwTXCn99ySlSV/qUsPDnALE/oKds7bZs4NWpQRypSmUncy5TmzXXJ0C3K2saiGBlMsq4KVgjCRJPL7xzqxtzvMpNb2rRTHn4qWPYvbLl361r/HTnn75KOmO1tbWZr08ZVlm7NixXHvttRx99NFF92elmnv11VezUs0BHH300Xz88cds2rQJVVWpr69n2LBh7Lrrrjn722233XjllVeIRqO0t7fT2NjIKaeckrNNMBjMMsf3Rur2KFeBlG2xW0pvM1XSc6D0NVEUhYAaJNaVQKsy6RKdRKRqxCdbSa1aR/jwvVGqwyBJKJpGRKkhaXSRkKIk1E6q5FrCBEkQRa/qJGTUIUwDWVEwhu1CcPMXVK/9go4hw+kwQVJlFE0iYKZThwY0NbMWnHYGM+jqihHrrgMbCoUYOLC+ouvYppmeFOi6gZrxEC9NUOdFWCZ4K0tdZSjGZL6sWfe036L1o5haRmY0Cy+Cymt5S+idzCPXuXgVbplCFznGWUjj9kIlljLsVgOvhUDyfV8ocU8+vFSZK2YdO9++1vO6JuFH/n5ZKElwz5s3ryIHF0JwwQUX8NRTT7Fw4cJeqebsDBqUDid4+eWX2bBhA9/4xjcK9h+JRIhEImzdupUFCxZw0003lTzWdFEwDRQzXR3MJrAtOS7oDs+SJELBIJ1Rg65EFzGtCyORIvj2Z6gTR8CwECkzhtAVDEOgGwa6mSJlptJRZ2aChLGVlEiik8KUu4gRxzQFhmkSqxlE3brP2LLpM+JDB6KFwwQDMoNTQTTTWt82icXjxLo131AoRH19HVq3sK6UQE2nJdWJx5MENI1IVSiTJrUv0AIqyWQKSZYyZnev52Kagnmf3kS4KtS9JNBbGyy23GW+l78945qXUC7ruPbje13b9hpnbcc5Hnt1K68UEi7FCG1TmDy67jYCmsb0huyogEp651eC9H1q4cD1vd9ZXiYEXrTgYhL0eEnC4vPloSTBveuuu/LGG2/Q0NCQtd0yY3/yySee+imUag56CpYPHjyYRYsWcdFFFzFnzpysWO+vfvWrnHjiicyePRuABQsWIIRg7NixfPTRR1x22WWMGzeOs88+u5TT7aZbOBjBzN89AlvHJO0tbeoapmFimiaGYbBlQztmKInemUKJG3RVq+jrW1EU0b22p6IoMtVSHWpARlM1FEIoUgBZUbIs84Zh0NEZxTAM4rJKlQ56SKMajZpkELU7FCwWj9Ha2kYwGKKmpjrLmlBJDdg0BfF4AsM0iVSFkGWlzwQ29KRFVRUZwzBJJHVkWUJVlbTjXp5jpwuVJNA0FVXp2TfjvGYT4HPWNjOhJb8DkBWK4zWVp5eXqptwqpTAyuf1feCSGSXFPlfSBCsEmIbottL03JerV17kun8lHMCcWne+2Hu3kp1z1janlxvWFH+fvEYyfBkEsjDWgLl12x1QHoCkVMAjdAempF/ep59+imH0roCVSCRYvXq15368pJpbvnw5V111FVu2bGGXXXbh//v//j/mzMmO+bRM6RZtbW1cddVVfPHFFwwcOJDp06fzi1/8Ak3TPI8NINm2loTpnvEnZcokU0l0I4HAAEkGWUaWgshSAFmWkGWF+mANwqwhpMcRgU1UDRpAwpSpqrYccgRdUUE8LgiGZYJBGYSCqYNpmFmZw0wJhCRTW1OFEatFi3dhdiTQwlUElXTMdSwR55P1K2kcNIyBkfo+y3am6wbxRBJNVQmH3fOc9wXpw0goSrooiWGYJJM6cnehklzavm6k64pXR6pcx2oX4JamU6kMWRZeNfm+8273kBYzD3/e8msgPWW1JjqVuz5ph0nnb/S6Ube7rpE7x1qqt7UleC1yXSs357xF60dx4PpRWeF0xVCq+d85abHOvVB/2+o3akcYaxAbj4busNVtQwAG/82z8PaSCMxCCMG0adN44YUXeOqpp/LmHRdC8NOf/pT77ruP1tZWpkyZwt13382YMeU7QRYluJ955pnMvxcsWEBdXV3mb8MweOmll9hll1089+fFO/iXv/wlv/zlL/Pu8+mnn2b9ffLJJ3PyySd7HkcupFQnQYKkUgkQoBs6VZFqEJCKbiYSCiOrIEsgSyaSZCJJBkgJMFPpIDIZDFMgKYI4OsHOtQRUkKMBhBZGaCEUQNJ1jK503LcsVDZtihGPJ6murmbdhi1URSIkkgk2b97EwNoa1q1dz6D6AUSCtXz8ySeoskwimQRZ0LTbEGrC1X2QPAWEMInFk3TF4tTXVle0Slgx9AhwOUuAp73Qlaz1dSEEsViCcCjo6r3shr24Q6WEkxdNvi8otJ7qZb33z1vnghTvDn1UeHLLXVy98qJepnC7kC3OTG4lK+rtQOpmFXFirePatd98ZVOd8etOcrVdPOmJrJSqTu/8dBtv6+del06cOPu1+2fkYs7aZi5vyPl132FuZdsKbdLHM7eCR8FdKBGYndtuu83z++6mm27ijjvu4IEHHsgUGZk6dSrLli0rO9a9KMFtzS4kSeqVIU3TNHbZZRduueWWsga0I/HZJx8isxufrHifnXYeRVvrZkaP3YtAMIgarifQsEvvRCZZ/xbpaDFAhGKYqQ0Y+iCU+iowOpATndC1mSoEYUVBTwnim9LR38moYPPWKG2trXTF46zbsInGYUNJJk02tnZRM3AwejLOF6u+oL2jg0h1iJqBtQTkII3VTSh5vO5LIZ2/XCeeSKFpCqHu1K7bQ2jbsY6vqj0aeCqVLcDj8WR3jH3+x10IwZ83/xpJytYo3YS3mzCwCptY/4ZsYWOfDOTqIx+lTCIsAVSIQkJGEkp3ZEXPc7WsWYct2fvZr4GFfYKe63kxjXRRnnyPkxcBPrVpYpbz3dzGlhwFUHI7/1nte7dNt7Gb1OumreDA+T0lXi0N/sAlvUPZLLz4LUxoUXNmRisl3/yyZn27FBnpD7zwwgtZf8+bN48hQ4bQ0tLCoYcemtm+ZMkSbrnlFt58800aGxvz9imE4LbbbuPqq6/mm9/8JgB/+MMfGDp0KE8//TSnnnpqWWMuSnCbZrpm86hRo3jjjTcyDmNfVmpr6ol1dWEYOlu3bESWFWS5mKIXUk+kWFUIpWkQifdWoTePJFwfQY3UAXp3grUgZsqgfWsbiUQUtSrIoOAg6urrSCaThMMhEvEEO++8MwKBLMuoG76gK1SDCKbXl9s7OkklU2zcuJXamghVVaGyBatpmiRTekYYVoWDKIpCnAS6YaBVsC54uVjC2i7ArfHX1lTlFQpgFV7RUVWFxzfeSTKZ4oydLskIb0i/AN20TGub8zs3YXPtyLkkYilSH3QSDJoomsbJw/+/gudXjLOS9XJPv8TT1btKNc3m0pyL2Z5MxIklBKGQRjDQO0zRSn/rdTxuwts6N0sDdWJ5gUOP5uwmAK32Tq3cHjJoTYjSf2cXl8n0Pz93FrpC9yHfGrjTO97eZymJenyycSYCA+jq6uL000/nrrvuYtiwYQX7WLlyJevWrctKElZXV8dXvvIVFi1atG0Ft31Q/wsMGrYT9XW1DG0cTiqVxDQNJFnCNMyi+5IkGW2PXYi9+CbG55uIy/VE6tNmGElWMIAUAjAIBMLpjxYiHApSHQkjgHA4lOWsppgpQgEZs74OwzDTmqWidmuaac3IMNPZ2xSPE4507DnohkEqlcI0BaqqEA4HUWS5R8NVlEz60u2tdTuxC/D2ji4UWSaVMlBVcoaoCQGGbiDLEqZpkjJMAprKnzff5ep9bqeQSVgIwe8++RW6btIwMIIkQTAcQE+EiCUMaqur+fPmXzO9Yban8/MivO0vdLsZ12tu60qEcNlRtSByKsGWLZ1IskIkHCAc1lBVOe3gKYTnZQwozvpgL6PK/B5nwXwOeXYt2bJYLGvWmdOS/ndGI3dgF/Q96+fd17/Fe66AQvg1tvsGt0RgAHPmzOGggw7KaM+FsBytncWwhg4dmvmuHDwL7jvuuIPzzjuPUCjEHXfckXffCy/0nnd4R0aXgyTQQNGQlDAKYIVCKpH6ovszJZPOapPw1k6S0Xb0oIZSV0dgl53p0lLElRjhUDWRYBWapqaTmSTT4txUJSJqt+OOBCY6ad+29IBkWWJQQz1SJkFJ2vFNN3R0wySgirTntSxlQtbs9BT/SKeMlWWZQEDLmUlNUeSMBWZHxeyeVESqw2lhnHJfA08j0A2TUDCQ1sw1AKmX93kppFLpcLlBg2psueKhekAVyXiKeDRJIKRmzPR2nBMGu/bvBbuz1YI128dDWZIkFEWipjpEdSRAMmUSjSbp3JRAU6G6OohU5NJOMdaHXIlp3EzOPRprd7Y6ui0Wtu8OXDIj45TmprXn0nq95lbPdX/ditrkOof+mr99e2MlArOnx37mmWd4+eWXeeutt7bjyLLx/AaYO3cuZ5xxBqFQiLlz5+bcT5KkL43gDtQ1Eqz1XpA9P4LOTz7F0JMgS2hotH36OeEJtSQ64gSCKuFAELVaR5e6UEV1RmuWJQmhC7pSie561TLtbKZaxAla2dnMtFeuYZqZf1vasCxJJJPpTGyIdBpWWZKRFRkJCVOY6LqBJElomkoo2LtymBPrO9M0UZTSa2b3Jamkjqqmz1FVFBRZxjDTJU0lQFXVbkEqYRhmdyGWyq/bK4pMw8AIqiMFrSRJBEIauqzTtrGDSH0Vwar8ueUhLQAOnD/Dc85uS9MulI7UuT5fadLPlEIoqBAMqBhGuia8ECbC9rwWwln5zaLY9f9iBZ5lis6kXc2htReThc+JdT65nNIKOb2Vc+z/dXIlAnv55Zf5+OOPqa+vz9p/+vTpHHLIISxcuLBXX5Y5ff369Vnr4evXr+9VXbMUPAtuu3n8f8VUXlkk6ifuSe343THXt5F6/1MGH34QKTWIGggSDKiYkklKinVHiEt0xRMkUykCqko4GCCZMhASpHQT1YiACBKNdpFQoxktUpbk7n+ryJJkW2a3PKx7cpVbJT9lWcpkOkOS8CK20lqUgm7smILb6LZWVFeHM1qzFQduF+AgoSoyyZSembBUGlmWkW3LDHYkSUINqNQ0VJPoSqIoCmqwx8rhtkaeqTnt6nTVg6X55RJoudbjtwVpy4eEoqSdHA0jnSo3VKAoDvSscTud/cqlUqF61vq03UnOTr4JQkYrL9EysqxZL/hc+GRTKBHYlVdeyXe/+92sbXvttRdz587l61//umufo0aNYtiwYbz00ksZQd3e3s7rr7/O97///bLHXJLr8bXXXktXV1ev7bFYjGuvvbbsQX0pkUDSVJRIFdKAahKaipCCRKojBIMqSamLdtaTIEqAMCY6cXUroqYNSUvXrlYVmWQyQauxDj0QRQpASFUIBjTC4SChsIYaAqElSSpROuXNtLKWDint+msVc1AUGU1TCQY1QqEAwUCg26PXm9C2UBUZXe8dz7+9EUIQ60oQCgZcvestAR7srlSm60Z3XvfKeuLbj1fIeqEFVSL1YZKJFJ1bo5iGiT1a0sq1bs+5bg97sn8mtKgZ56lcHuXbUkjnw7o21vNXyvLLsmY9S0CWsvabzzxdDG3zx2Q5yeW6/tZ9csNycHOj0Nq2n5e8eGbNmsVDDz3EI488kkkEtm7dOmKxGJDWnvfcc8+sD8CIESOyhPy4ceN46qmngPRzffHFF3PdddfxzDPP8M4773DmmWfS1NSUN/bbKyW9qa655ho6Ozt7be/q6uKaa64pe1BfdiTdRN3aSUBR0OUEbdI6trKGmNROgk50KYqhRElqHSSkLkw5RTyZQDdMDAOEoaBLcYQCSnfmsPbUFraI1Wzmc7bwBVtZQwebiEntxEUnJpUXsJqmYhjGDrXWLUR6TVkgCATyv8QsgREKBbrj0bfRIHOMRZIkwtVBTEMQbY9lHAXdsAtve2UuS1BMbZrY/6pISeQ832KoRFpTr6VM3drYsYS3mwDPZdIu5pi+k1r53H333bS1tXH44YfT2NiY+fzxj38sqp/ly5dnPNIBLr/8ci644ALOO+889t9/fzo7O3nhhRcqUq+8pOlZrrWopUuXZrnQ+zgQAiOewOiIIlQJIxYjFkwQC3YgIRGWIlRJEVRJQqASNmswUwoKVYSrgsiSlPaQNjSCKATktWAYqKqCiEkkRRxJAhkFlSAqGioBVIIUp0t7I10vW6MrlqCqO3va9vcwFySSqW4ns+09luKQ0jeP2oZqUkmdeGcCLaSiau4OgvawKLuWZ8f+946iZbth+WkogdKsHuUmt7G3KyWdar42Vt9uXuXFOpK5HccS3qVmcOtT5AFAgG2eOU0e4HnvUsoEu7VxbpMkiWuvvbZPrNBFCe4BAwZkXs6777571svEMAw6Ozs5//zzKz7ILwVCkNi4mS1vvkV1wzD0IVW0f7iC6vG7EQg0ISOjSTJIBqYhoacgZA5A07TuPNzpa61pCpqmpMuESjIilSCZ1AkQRksNIxjUUFCRUJCElKkb3leCOxjUMOOCjmiMgJoWMkp3jvXtkmKxWwDYU8X2J6RuvwQtmI4qaNvYQc3ACIFQ36y/7whYyX20HBMUJ/b1fnuo14I1S5nTkjtTGnjTZitViMTJ3MYWV+cxu/Au1RvcCnGz1tV3FM9ySWmCwX/zc5VXmKIE92233YYQgnPOOYdrrrkmK+VpIBBgl112YfLkyRUf5JeFxPqNiHgKgaB6993oWr0GkiZhqSYtcIwUKcNAGAoBVUNWXRyaJNBJ0i42EjFihEwTVVPQAiqJeBLV1HrydW+D97wkSYRDAYJCQ9cNkskUpplEUWQCmpZZu9wWCCuBSonHFGyTS+YJSZIIhgPIskwqoWfWwZ3nlSsZSX/CNAWmEARKcHJ0Fv3IVZSjFGGcS4t2mwR46d9KhpNP8y5X4NqTz3jNUd/XSEqT5/SjPt4oSnBbaU5HjRrFQQcdVHTRjv9VhBCQNAgRQgoNQIwcjF4fRAk1olXXYwpBXE9iCpOQHO42F0o511wFJkliaHKSsBJAkSWESKf9TKZ0NE1FEn0T2uSGJEkokoQSkAloak8RkngCJIlgQOvxqpayhWMly4smEilSKZ1IpPcaUtqKlY5VTwsKE2GmtXPRnahWlqSMB3i6SIyVgrMn9npbYglrVVPo3NpFoitBpL6q15KEF+G9o5rJrbKwmqpS6rSpbtoKT6ldizWBO/d1VggrVchant9O7dsStJXMj7+9hbZP31DSgtJhhx2WEdrxeJz29vasj083AoRuYHyxidhLLSQ/W8PG3UN8rK5hecdyPtE/Z11sA1v1DraEo+gRgaLKaeGW6x0mQKRk9NYqVCWAJIx0ytTuxCKGYRBLRImnutANo9vBSdhCwMyS1nS8InULv0BAIxIJEwxoJFM6sXiCrlicaDRGtCtOtCtOPJGsiGObVURENwwikVAm/r3n+3S8ebQrTjyexDDNzPUKhQKEQ0HCoSCBgIYkSximQSKRJNoVpzMapysWJx5PdFsTBH139XojSRKSLFE9oAohIN6ZzIT02cmXfnTHFdrpMDAEBfOU23E7J7uA6ivParsgt9aTF6xZmhHi4N0L3RpvLse1XOdQzMRjztpmPwXql5SSBHdXVxezZ89myJAhRCIRBgwYkPXxAYTAbI+SWLSM5JvLUUcOI3zUfmjDGjCEgYmJEBIxxaCzJokRFHRqcTq0eMGuUwmd+GYN1ahCMrMLOKQrYMloQRNdxIknEySSKRKJFMmUTjKpk0ymw8v6UoBb49E0lUhViOpImEhViEgkTFU4mClSEu2Ko+tGyQ4ium7Q0dlFLJ5OTqPrRta5pffR6eqKo6kqkUgobdoPaGiamqkupijp+PdgQCMcChKJhKmOhIhUBQkGtHTMum4Q7YqRSCQxzW0nvtPCW6ZmYCStfW+JYqR6X7Mnu8tu9vy9YwrsHrq1ba33EoAXnOdnaanFJCBpmz+mKK9su5C2sAvxYhzEcmnVznSqTiHuVRj3u6gCH8+UNDW97LLL+Mc//sHdd9/Nd77zHe666y5Wr17Nb3/724IlOP8nMAXGJ+tIfvAZ5k4NhCbuhlwTBmCoNhRFUggpYTr0OAwIgJK2HxsI2rU4AUMlaKo5HcokSSGZMumM6oRsGqugW+NFJZWIE6pSEKaBZGpItjmaYZokUylUJV0xa1uZgDNx4pKELKe1LF0xiMUSKKqcibnuLRKl7gSu6W+FAMM0MA1BKpVCliWqI1UgQSyeSGvc3VYIIQSSLBEKB7vTtxY53u6xQtox0DTT2b6i0Vh3PnQFWZG6HQh72lUay2SvhVQM3aBtUwd1g2pQ7A5deoynV5yHqN0VoVVXfAyVxMqHL0tSUTnKnTy55S6EKZg+KJ3n3TI/F7O+61bb2yn0LOE5t/EJ13Kf9mQrxZjQC3mcW9q41X86xru34N5RnNH6Whn4suP1+pUkuJ999ln+8Ic/cPjhh3P22WdzyCGHMHr0aEaOHMnDDz/MGWecUUq3Xw6EwFy5jtTbHxE4cAJGQw2GlBabkiShyQEaq5rSCVXkEDF04qTSbSUwERiyma7tmYN0mlEIhgIQFVjCzDRNYvEondF2JFlB0arRNJCkFJg9IWGqoiBLMvFEstusnDb/Kjmye/UVaXO1SiSioBt6JoZXcnt2Mw7yUjp7nBDd1aQE1ZGqzMvfNAUBTe0uFiK6hW9lhKmVczsUCqQFj25050A3MvWkZTk9AbES3eTKmFbOGELVQbSgSjKuo+gmgbCGJAzkjpWIqkaEWs2O42aXi7S1JBgoz1teiB6hDflrU9vLcVrkK4/pJqAz1dYcOJ3C7Fp8rrVya598WrpTmNu1e7cx24V3uv9tYyq3siemKxmGt8kxv4xYic0K+Y+VJLi3bNnCrrvuCkBtbS1btqQzcx188MEVSefWnxGdcVJLPiKw3+7IjQORgXgiiWKmU4sKQE/pmKYgEggRTgg2hzpJyNbLQJCQdcIEcr56TdNEVRWqAibEFUwTEqkU0a524vF2gsEqqiO1GEmBqgokSQdJRQglI7ytNd5USu+peKap2zyMyhKqAbk4R0dFl+mKxYlUhbM0NutflpDtC6zJgD3BS48fgcAwzXTBlmQKbMsXlZLfkiShaApBWaZ9cwepRJIaZQOoVYjQ4G3vRVckVvhXeqJYWty2EAJhCjpbe2dwhGzN20s9cjs9wr8lK8TKq0Y7tWkii9c8kcmAZneKSwvcpZmqYQcumcGBS2YweejKzLHLWZe2WwusELFtoY2rqkpVVRUbN25Mh7AWWTTmfx0hBF1dXWzYsIH6+vqCaaRLEty77rorK1euZMSIEYwbN44//elPHHDAATz77LNZIWL/cwiBsfwLpAE1yMO7X6AirQEmkqmM85iqKASDaS9aWQga4hESioEuG6imQsjQ8upLiiITDslIiSi6GqC1owtdN9BUlYYBQwkGw0iShGEYJBMxgiEJSU6CYXlbpwWPpiqgKoCELusYponKjh//bJomXbE44VAQxVa4wzKLpy0S2/bFYTerW9cw7TFt0NUVT2vfSlobV7orrpUjXyVJQlbSyVoSm1eTFF2og8emv6vECfUhViW6oFWJrYT2Qgg6tkSRcpjZ7Tm7nZ7b9lSxhYqK5Cv64Vwbt7RoSwhb2vGBS2b0SpBiVRWzipQscxzXTjGCPFc43II1S1nbhzlQJEmisbGRlStX8tlnn/Xdgb7k1NfXe6r3LYkSFiXmzp2LoihceOGF/P3vf+frX/969yw6xa233spFF11U0qB3FNrb26mrq+OLzz6itojqYKK9i8SLLQQO2Rt5SF3mBZNK6SRTOrIkpWtq20y3GScqerLR5UuW0uMlbqJ9upxYdQNdoRrCoUB3vm2639wC5BSJZBJJhoAmgdDADLj2bxjpspfBPiq0USlMU6QdzTQ17QXuGKrlnBYM7hihipYHuGGkzemGkR5fKBS0VQsrVYgLpFQntK8kHhhJVxSqux3YduR7mEymMsskxQ5TCIGhmyTjSRRVySSmyRcOl0vwuZnCy8Fu+rZPDtxwCudcoWrO9XZrIpFPM7c0fWsc1n5rk88zfORo2traqK2tLebUPGOaJsnktsyS9uVB0zTPBZtKEtxOPvvsM1paWhg0aBAPPfQQ9957b7ldbldKEtymif7mCkQ0jnboXghZSlegShloqoKiyMQTqcy/LcephJFgS2IzJiaN4UZkyeNL1zBQPnoXfcQYRDDsENg6SDpgYgpIxExC4e61VjOIJBScepkVBy0rcloTZ/tkPsuHFfZFd9IXt/Gla5jrPXW1dzAsp6xEvPvl1r12r6pqxrva87iNJHLbh4hIE2ZgALHOOKm4TqS+CsUtec8OgBCCeDxJMFi8OVUIgZ7Uad/cSaTOvQSql2Q0doG3LRy6Cmn2peRFz3UcJ9tacPtsGypiTxw5ciQnnXQSdXV1/O53v6tEl/0LU2B+tgHjiw2oe++KkCVSukEqZRAMqN1mW4mAppJM6VhlsVNmii+iq1jT9QWb4huJ6lHPdk5JT4FpIAWCyLL1sjdBiYOUTP9bKMgihEQA01BA5JvNpdOXIgTxRBK9W0MUYtvGLefCmliYQuQU2kD3+q7AzTd9R0CS0s6BkUiIqqog4XCQYDCQjjOPxkgkk93lVgt0JEykzs8QwXpEYEB3gZIQkfoqEl1JEl3JHdLD1zAsh8HihbZpmCTjqZxCG7yFwPV24OpbCgltK6lLJXCu5/tx3F9OfA+CctENjA+/ILXkY7TmsUgDqzEME8Mwuus7yxktSpbl7uxmKUCgyRqNVTvRWLUTI6pHUqVGvB83HgUtAL20FpEW0Gao+6OgSApC15Ay2nZvLPO9pqkEAxrCFCQTqXTSkW0Q850Pa7khpetUhUN5NUkp02bbjK0UrGtteaBbiWCqIiGEKbJixV3PQwikrrVICERVY8YZTZIkFFUhWKXR1R6jqz2+QwnvTJY0rTgTuRCCRDRBtLWLUFUwp9C2U0iAF+OwZhfuO3rZTD92+3+DHfsp3JERAhFLoi/5GLGlHW3yBOSh9QjSZSUD3Wus9veL5RCWSKS9jhVFoUqtokqt6v7e+9tMikUR4YjtABIggxnMaNZStx02Xec4LQQKHcNysgoE5IwTUTKVzv+dLn25bc2vQgh0wySeSPbyIC/Qkm3ppiWEQOhJJEVFkot38LPSxoZCQUxhkkykiHbF0mv5mpZlQpf0KFJiM2bdWJAURz+gqAp1g2tJxpIkosl0uJi8fSu3pcPnzEw6We/tBPFogq62GDWDqt3z9zsoJvHM4klPwJr8WrFdG17WrFc0JWklC5rkK1Tia95fLnyNuxSEQGxuJ7VwKegG2uETkYfWgyShGwaSLCFL7i/KtFBU0zWjhcgIymJeqgIDEWuFcLaGLgFSd8iX3QFNURUM0+w2fXs/zXRIlUIwqKVN59swW5iFaQpiXXGqwiHPnuKW/8C2QgiBSCVofedvxNatKOvYkpSOpw+FglRV2TTwZE+2NimxGREcCEogRx8SsiITqg5iGCatG9sx9G1vNbEc86wQOd0wCBThOCeEoKs9RjyaoG5ILVqgtAxrbpQjeC3hvaPg1+P+36Oop++kk07K+31ra2s5Y+kf6AbGynXo732KuvvOKLvv1B1S1ZOC09KQctETQ53q9ozuva8wTYSecn3ZSsJExBKYA1TMRHaKVEmSkFQNbJMBWUqvr6eSere3dRGavZTW3FVVJaXryPK28zo3TZOurjihUMCztyWkJ02mKSih2FTJpDo2kmpbjyQrhIbsiqS6C1WvSBIokuyqgYeTHVA9gnz30cq0VlUbQpIh0ZUgFAkhK33vdChEutqXaZjoRncmIZGOe/dybOuZT3QlMXST2oaadA7/IrE073Krp7l5fDuF9/Y0UXutTPa7leXXBfDZMShKcBeK0a6rq+PMM88sa0A7ElboVYZYEn3px5gb29AOGIc0bCBCIrOgahgmEoVTOFqCO5FIv9g0l6QnekcbonULspTObJY1LsAMRKBtK7S32nvGFCbU1qPWD8xqoyhyt5d7abmhVUXOJI6R5W3z8u/qSqAF1CLXRNNWhXLSaJZCYEATgw/+TnrCpFQuFC1LgJsmyUScZDyKqFLQRHo5IN+1sZzWDN0k2taFFlQJRYJ9dv/SGfxEJm9BMCtkz5vQFub/396Zx0lRXvv7eWvrffZhAEFZBAThp2LcokGNgjvigkZNXK5el2iMSW5cYtQQNBiNMbliEhINwSsmRhHcNSoRBQSNBgKiRBAM+zrM0mst7++P6upZmKVnmBXryWcM011ddbqmu06d857zPZJ4VQJV14gWRzqtO8Dr025tfnVzjtFz1qM+1Dpc5KStk8zyoTJV06H78+k+2uS4Z86c2Vl29EhSG7ehR+PuLxLkrmrs3VVoQyqwMxnYsLXB9rbtIFQFvaIUNdhKxJVNmafTZk4isz4yk0FXVaSEmj17UBSV6srdBIJBSvv2Y/uuSkKRCJU7dhAtLCQVj9P3oEFoqkbGTDdxODfqdlXcnHZJcRqGTiZj5qL2zrqgSilJJNMoqmiXJKYjHfR2rDO3F3dcqdqute38j5EV3jHAUXWq0w4ik8DIqt2pmorSzHlyi9YUQtEgNZW1CMWd9d05ztsVnTHaqcInJTk1tGDE2GehmsbUTyvnMxCkIxxoe/bR0U4bICT2LQvk03Pw17hbwKxKkt5ZQ2pnNWZ1AidgkCyKYiMQGdt9fE8C1ZSopsRwBErCxEokW923IBt5626VeXPrj7ZtsWvrVnZv30q8uorqyt2uY6utYc+unWz5Yh3J2lp2b99GJtX6ZDFDd8dsttptlM022LaDZdmYlo1lWdm1ys5LuUnpSsRKKQkF2xMZ9rze5Y5EmLUII0IsGiEaCaGoChnTIh5PUht3x6UmkmlS6QwZ08rWJrh/L81QKSovAAnJmlS2W6DjbJNSYjvu56atynWusIpNqjaFETKIFUc6TCa2cbGa1351Wv/DGlSXN9YY92htDbm1NHlbnXBbJpa1ZX07aATaZIdPz8V33C2QrKll7T9XsfHTz9m+bhOWabFl7X/YunYDGz/9nPX/+pSdG7a46VFFQSgKKCLvFmIhBFp2Iba50Za6ESBWVISRjbTD0RhCUSjv15+i0jIGDDmYQChEad++6IGWv5huC5I7/MIrjqs/q9u2bUzTcseAZkxSaRPLsnAcB0UItKxamVtU1+bT2SpSSjKmiWXZrbZ9tbCXDrer5yARVi2OFsn9HQOGTjjkjksNBnV3XKlW95lKpby54kkSyTS2lBghA9tyqNpRk3PeTf20ybJsEZppWlkFv7ZVjtumTdX2ahRVIZCtgu8o6q9xN7VW3ZSKWX3ydbz5Vm63dnPQFkffFttUXz98v6HnlEb2SCR6VuFJURWMYIBYaRFWxsQ2LfRAAC2wr0VIAkPXSaczrpa115Or61iJWoQjKa6oyE66yrZ2JeMEo+4EqHA9BSSJpCZTiwgW0dwqqxACXXNT5um0SW5eptdbnL2ZaNB+1OginMmYuYr4jsKbtpXOtn2158LtZQgE3dv61GlIwEqgRsoa3J54BYRKvWo87+/fYC657ZBOu4ptWljHQVJTFccI6pDVeAdy508oAlVxOwuUVtrJvHGnhtE2RTRPwjRZmybcgrDKvvDc7kdbLVDzFMZy+uKvXNimY+Srf94cTU0u8/FpDt9xt0C4sICKfv0gK56iqAp9Bw/AcdzWGm+d2LHtOuEPx2mz01EUV/gkk7Gyoi0CraAIJxR2K3Oz0biuayiOjbJuFU6/UUi14Z8vZSdZV7OG0mAMwzHRm6kA924Wkqm0W7GdvdDmc8FUhOgUcRPbsUmm0oRDQRRVaVfC23EcTMtVq9s/HbcNjgVq/tmInP69EBiKK2drZ6u9AxEDx3So2V1LuCBEKBLMtdJ5leGW7UrIgvs5DRh6TrI3Z5aUZDJW1mnnvyYtpXR7zRMZwgWhhrPFO5i2OO/6LDn8WY595cK8I9vG+2jKiRee+dlew07clH1dyr2tjrypG4b6M8J99i86RKt8f8PTKl/74QfEotGWN5aQyaYHESAUBb0wiqK37Z7ITRNb2YhYzaqFubKjnr45CISZQV3zL+zhh4HWMK5OWHFW7/kEVdEoD/ahb6hvs9KS3uQqx3HaXACWTGUwdK1DJnBJ3Jud2niSYDCA3o7BE1Aniap3kF09EWHFEdVrcYpHQzvHYTbG0/+OVycJx0LoAfdzWzcEB7xKfct2MyKGrjdo7bJsm3TGJNyGmgQpJZmUSXxPglhJBK0LbrbyaQtrydl5E73yxXPgTTnvpo6zr0NPPOfdXMre1yrff9g/r3AdRKCsmGCfkhZ/1NJCjPJiAn3cbQNlRW122lBX9W1b7kUwk7FQVYVgQG84BlJV3TV1y2xuTzjSJqq7qfSWjqdrKkiw2likpNZLq+4rrsBIioBhoGvqPq2du1mQ/TDS9jDjoIY6dN62EALN0CgoiWKbNvE9CTe9Lr3n62ojDF0jEg5i2TbxeMrVjnfc9i03a5O/004nMlimTWF5rEucNuSnqNaR/dj1I2qv59trHWvq5sBrS2vK8Tb1WP11ce95XyHty4GfKt9HbNtBUztuEpNhaNi2jd6cMIuiYKs6SjKBDIYbPevqpdnSYU+6El0xCKrBvfaR2zrbkpbKtqTl+x4URcG27Ta8q6Zx275S2LaDEty3e8ieO1ako5AIK4HUI3R05bwQAqEKAmGDmso4NbvjxEoiTdYKKIpCOBRwNQEyFvFEMruNIGC0LjMrpaR2TwI7Y1FQFutyKdZ9kSv15FHbEnl/b8uRPNzvQ9dRb87/WPk57+Wt7tOrml91pMWf1ud/fJ+ejR9x7yOqqmDZTVeEtwUp3Tm2qXQGidsG1tQ+pZSkVQMSNc2W/jrSptqsxnZav0AJoaC30pLWGEURuclh7cUb7yiAWCycm6O9DzvcvxvBsoVptGUQTRtRVIWCkijBSIBUbRrbbPpz7XVDBIMBIpEQuq5hWVaLWRtPWCWdyICkW5w2wL2Df72XXKkXuXr/37hNrDFtSZfns8b8vS1H7pN4y/e2HNmkvV7q3R88sv/RrY572rRpHHXUUcRiMfr06cOkSZNYvXp1g23Wrl3LeeedR3l5OQUFBVx00UVs27atxf3ats1dd93F4MGDCYVCDB06lKlTp3aKVrOmKiiKkqu0bi+2bWGaDrsq02Qy4DhNR7RSApECRDK+13MCgaboVIT6MSQ2NK9pY0K4Yya9dp58EPtYoOYWM5lYtk0oFERVFAxdw7LaF8W7Fc0Wmt6FGqddjWOCtJAtZFA6AqEIjKCOqqtU7aghk2z+cy2EW6zo1iU074C9z1b17locRxItCrvtk91UQNhYrtRzxI2HiTTnTL10dv2fUR9quZ/6jzfFaf0Pa/DjOVbv98aO/LT+h3Hssuar3D3n3Pg1vsPef+lWx71gwQJuvPFGlixZwhtvvIFpmkyYMIF43HVK8XicCRMmIIRg/vz5LFq0iEwmwznnnNPiGuvPf/5zfvvb3zJ9+nQ++eQTfv7zn/PAAw/wyCOPdPh7qCsmA3sf1n1VVcMwFAqiBqlUEqUZFS4pJSIcgUwaGqWrDUWnKFBMWbCcoBpqU+WxpqmYllUnuGJa7khPx9krBb0vrWBSgpldxw+Hgw1aztp64+PKazqkMyaqpuba2PY/JCK9G7QQKJ2vfiWE67xjpVHMjIWVaTmjZNt2s9XkUmbrGPbEUVSFUCSQjbQ78Q00g8T9vDzxn18A+a0He8702GUXtug8vXR4SxF2vpH1qiOtvQrbjqtY12D6V1OTwLybkeaOYTcTDPj0Prp1jfu1115r8Puf/vQn+vTpw4cffsi4ceNYtGgR69ev55///GeuCnLWrFkUFxczf/58Tj311Cb3u3jxYs4991zOOussAAYNGsSf//xn3n///U55H940JseW0O6gT6DrOlFFoCgBvDnejXGkRARCoGko8WqcwjpNckWo9An2aZfzcoVgBJZlu5FUtkUsnW1Rq3+l3Zdo27Ztksk0kUiw2Qlq+eCJxngV/e2RcO01OBYitR0ZG9KhhWktIYRAD2houkqiOkmyVhItDtN4kp2UklQ6QyBg0Hh921NDSydMAuEARrDrBtQ0RgKO7RBPJLnyoFvz7reuL1eaj0Rqc7jHyi8CbqoavX5U3hyrjrRaXPO+YvCteR3fp+fTo9a4q6qqACgpcZ1ROp1GCEGgniJYMBhEURQWLlzY7H6++tWv8tZbb/Hvf/8bgOXLl7Nw4ULOOOOMJrdPp9NUV1c3+GkLXt/rvlyTvAuipuktOiHHcRCaiuxzAGzfBPXuooUQGGoAXWm7iIWXOQgEdAxDR9NUV2u6KS/dzvdpOw6JZIpwKICqNIyORVZwzrad3Pq543g/DrbjzjD3fizLdp220fL52h8QqZ1ILYzsxPXtJo+bFWEJF4SQjiRZk9pLVc2y3CxT444At83MpnpHLaqmdKvTzhpEIul2L0DdgJGWUtoe7Rmb6UXX9aPjfPBsaWmNvSXbOnLQiU/PpcdUlTuOwy233MLxxx/P6NGjATj22GOJRCLcdttt/OxnP0NKye23345t22zZsqXZfd1+++1UV1dzyCGHoKoqtm1z3333cdlllzW5/bRp05gyZUq7bZfSvZvX91FFLS+PKN21bKegGHX7ZkT1HmRR6T4et8XDYWUr5yF7MYc2p7UdR5LItn1pzbR9BQx3dKiU2TNRb5vcfPF6qfWAYezf7V8Ajuk67tjgLou26+NVnBeURTHTFomqJIGIkasnSKXTBAPGXlG4bTlkkhkiRWGMUDc77SyOIzEMLSfGsupIi9M4LOe86zu9Ome+t1P3tmvci9348bYKqHjOOt/ovKXUvc/+TY9x3DfeeCMrV65sEEmXl5fzzDPPcMMNN/C///u/KIrCJZdcwtixY1uUVfzrX//K7Nmzeeqppzj00ENZtmwZt9xyC/379+eKK67Ya/s77riD73//+7nfq6urGThwYN62W7aNqnXR+qp3CEXFqTgAZftG7FghqJ3zpwwEdFfz2rIIZm9MvOyA7Tg5rfWW8Nq+NE1tdiaz2yusEDDyTwL1BGfQuUhEaidooS6Pthvjpc5ty6Z6Zw0FpVFXlx8aTAHzerTTCddpq1pPyoY0fbPpiZY0jrwbC6I0nvLlOX7w1pet3OPHvnIhhbRtuMjD/T5scPPQGaM9ffYPeoTjvummm3jppZd45513GDBgQIPnJkyYwNq1a9m5cyeaplFUVETfvn0ZMmRIs/v74Q9/yO233843vvENAMaMGcMXX3zBtGnTmnTcgUCgQTq+rdiWjdFg7nDnktOfjhUhd2xBqdqNU1ze4RGZEAJVCFRDIZnK4DgSVRU5TfN8GqellCRT7pJH48isqeP51MOxEKkdXbq23RJCCIKRAJquYaZN0qZJJBaup7LmqqEla1JEiyM9zGlne/0lXFC6t4Ja0ynm5p12Y9pbwd2aPGpLFJ75WbvS+D69n25d45ZSctNNNzF37lzmz5/P4MGDm922rKyMoqIi5s+fz/bt25k4cWKz2yYSib0iclVVO0ztqzGqpmZ7uTtl9znq1tKzF0NFRZb3R+zc0mCtuzPY6/KbT1ZfQibjVqqHQ+0Z0fnlRqR3gdr90XZ9XKU1FSNkkKhJkqpJIbOjPNPxDFbGpqAsimb0xAp/157ndj+al4paW2nrhK/6LWntXZv2I/IvJ93quG+88UaefPJJnnrqKWKxGFu3bmXr1q0kk3XzrGfOnMmSJUtYu3YtTz75JJMnT+Z73/seI0aMyG1zyimnMH369Nzv55xzDvfddx8vv/wy69evZ+7cufzyl7/kvPPO6/D3UH/6Umdqd3la5oqiNFjXlbEiUDWUPbv2rdy7PTa19JyUmKZJOpMhEg6yv8/J7nCkjUhsR4b79Yhouz5CCFRNIVIUQQKpRIbaygSpRJpQNOAOielhNsPen8B8nXc+Keu2prWrXhnGe9sGt+iw8zmmH3F/OenWVPlvf/tbAE466aQGj8+cOZMrr7wSgNWrV3PHHXewe/duBg0axJ133sn3vve9Btt7qXSPRx55hLvuuotvf/vbbN++nf79+3Pddddx9913d6j9njOVUmZT5Z1zsfIGgkgp9x4Ioig4FQNQNn4OhaWgdeaftM5VC9ewZre0bYdU2nXabRnz6OMirCQIelS03RhNV9GCKonKBKqmUlAa7RY1tH2hvvPOZwhJc+TrtD1H23j7to4DbW4/Pl8O/OlgTeBNB9v4xRoKCmJ7Pe+lrNMZE1VVs60wDatqTcdEV7Rmp3O1Bdt2yJhm82vE0kFZtxoKinDK+u3z8ZrCsmxMy0JVXKU423HcgqVsdbGoF8842WlfoaC7Htp7LuM9B5HZg4hvxika2eMibu+SkYinqNkTR1c0YiUR9EDPHacqpaS6JkEsGm61E2FfHHhLNI7Kverztk4da0t0X/XKMHdEaP/DGLpAMmPcHH862H6AHwq1Abe4xZtRbGLo2l5O28MbvNAxx5V7CV80PJiCrDjAXetudmrYvqGqCoFsz7SdFT5xz4WNabuFOa6SmSSRTBPI9oL3zMu4T3vwbljNtEn1zlocSxKIBCgsj5GsSRHfk8jNqu+p5GNb/Si8I1PRjZ2t10rWVqed73aeg29p1KdP78R33HniSTdmTAvbtrM9xM0U4AjQlA6MPmTrtwAyHINgGGXX1k5Z6/batTRNxdB1ArqOAFRFQc1lFdy2L1VVOnXp4EuBlD0q0pZS4lgOqdo0ieoUwUiAaEHIrRxXBNHiCI7jkKrN5IrVehztOJ2dlYquL7SSr1P1HHG+6+2Nt7u/7z/bZ6xPj8N33HkgpcS2XX1tRYhs5Nm83rLI/q+jcBwH0do6sRA4fQYgdm1vYVZ3x+FlARShoCrukJJkMr+2r/Ycy+7hkVzHIwGl22v6PNnS2so4tXsSqLpKYVkMI+TK4KqqimXZqJpCrCSKHtCo3ZMgk8z0qL+X47gzxkWegj31o+6OrkCv76hbGmbiUT96zgd/3Xv/p0f0cfdUXHlHiWlaOFISyIqHdHUkKRSFjGk2m5b3kKEIhCOIPbuQ5Z2z1g3gSAfHcdANwy1Xy+pVO1ISCQc75fzY0gZU1B4UhXYqTcnHdenh3TGcZsbCTFsoqkK4MJi9Ya2zSddUEsl0LsOiGSrBSIDayjhSQiBcJ9rTXe/DdhwSiTTBoOHqD+RJU867/vq3t34Me4u1NEdzfdstOeZ9dcR+mnz/wy9OawKvOO0/6/5NMBhCUQS6rgHdNNVISlJpE01zC+FaQuzZhbJrK/aQUZ2Wak2lMmi6mo20HZIpN7oKh4KdJkHqfUy/LOl3kdqJSO/GKRzepceV0o1MU4k0ydoUwXCAYHaiF+x9/tNpk9p4ksKCSE5BzXP6mZSJbdkEwoFuE2NxHEltPEEwGGj1xrctCLOW8ypuAxr2Y7fkvD0H2lwxWkcrpTV22Kf0G8XbPO8Xp+0H+BF3C2RMk2g0itrNfalCCDRVwbEdaMVx28EQIpMC6YDonPnUjuOgKjqmZZFKZTAMbe82tQ7my+Kwc0iHro62pZSYKRPLdJDSIVbcupCKqiqoquK2/qkhhKjTNw+EDZI1Kap2VFNQGusWURa3+0HpUKcNdW16ntP2HHb9teumRnx+b8uRbpV3G3TMWyMfh+/qoCdb3Man9+A77hbQdb3bnbY3JcttPWu9JEFoBgIQloU0OsdxSyCRTCMd6U766qGCG72eLjinXibDthziexJIKYkWRVD1uqEyLaGqCtFIiNp4cq857UIIQrEgWkDDTFvuIJ6gnnPuXYKUe6X3O4Ts/pqLsD2n7Q0OqdvO1Tdvytl6EqYdEXXXzwK0ZKdP78QvTmuBfZkX3RF47VaZrNNW8xjoIVQVFBUyqc6xx3LtsW2bcNh32p1H569gSSmxTZtEdYp0IkMoFqSwPIaqK3nXcohsgZqmqbnJbo2f1w2NYDRAOpGhemcNTldWnYu2T7LLlzm7pvPcrkcaPOatW3vjPFcdaTXpNJvTGW/Oabe1Lc131Ps3vuNuge522hnTwrYcAgEdIK+IGyEgEEKkO9ZxO9kCtFQ6QzQSIhgMkM5YWFlFN5+OReT+2/HnVkqJY7utXdW7alEUQTgWzAmotH2WOwQMnUzGbNJet5VQEC2JYAR10vE0ttVVXQLeAJRO2LMQIBSe2zW9weNdPRO78MzPeH3z8gZRtl+Qtn/jp8p7GJ7IRSZjoSgCI+u0keRdESsDwQ6NuB3HIZ5Ioaoq4XAw1+qmqRLLtkilMxi6K87S2fc6DS/23VMs2DXIDnfZXtFYKp7GsSV6QKOwPNYh2uKapiJTMjdBrikUxU2d25ZD7e44elAjHAtBJ6bOBfXnCHTOMc4vvandr+2o1HhuTX3z3s919Y2ET+fjR9w9iPrr2ZqmoutuBCTbes1RVYSZ6TCbkqkMmqYSyrbTuGuU7oVY1zQMXSfdTLTV0UigKuNQbTpdcrzuQ0IHyOVCncO2MjY1lXEs0yYUC2CE9A6bI+/K37oFi61tp2oKsdIIVsYmlcjkbla/DMzdcHvu3/mIqeRLc6lxb43dZ//Cj7h7CN4gEdt2stFro5RlW65riupKn3aA+pbjSGzbIRQMNSvtqqoiF9l09vKC6cDaGhNNCA4tNtD214g7d7e2b29QSkkmaZKKp9GDOpHC8D61ZkkpqTElQVVgNIqsFUW4nQ+t4DpvlYKyKGbKomZ3nFA0gB7onWp7LQ0qyT0nJTgZSG5j3tobmDT0t206RmsOvn5qvH5Fu7/WvX/iR9w9AG9giZSSQMBLOdevznUvdna+88Q1A9FK5JMvpmm5muOtXVC76HqrCegf1ugbVsm3ZdyL6HpXVNf+1K73Xm3TJlWbJhVPEYwGCEX3vZ/adGBHym7yPtK2nbyVySAbpQc1AmGD2soEZtrqkL+TJ7pimu4yDrg3oE4XfwYaKK4JAWoAGRmIjA5i3rqbmbfuu3nvq/4admvr176z3v/xI+5uxlNmE0Jg6O6fo/F11YtQbNtBy6OyHFUFM73PEbdXIBcOBfLaTVdcExUBfUNtbXOTpLb8GzVchF5Y0Tuiunb6bVei1CFRnXTb9QpCBKMBoGPWkR2gPKhiNHHLb9sOuqa3aX9CCAIhAyOgk0mZWR10o93r7t5NcCbj3nCqioKiKti2g23a6JrWqZ0QrcqjCoHUo8iCYYj0rmY3a8o511/D9p5vPECkflV71SvD4BX3cV8Gdf/Cd9zdiOe0baeJOduNaMtlRuoGUoh99qS27biBQj7940J0QjlV08dpK1btbir/9TeM4n6UHDkRoQU6wbKOpm3n0quPcAVUbDRdzSmedaSTMhQINLNPNesg9bb57gaCLfGqBFU7aigojSIFWLZT7yamUWFi7hGZe8y2bQCikYZz4KWUaFIhnTYBDVVVu7ewUSjIYBlzt93PeRV1697eqE9wne+oD7VmI+jXNy/fy2nXd+ies/a0zu14Gi7srDfk05X4qfJuwnFkLo0XzGNtz0vx5ZXqUxQ30pZ5ptabIWOauQK51hE9tlZMMUKUjD2H2MHHIjpJTa4zyGdQTf1K8art1TiOJBwLEooFO6RavDEtaRsYupYb99oehBBECsNEiyPEa5LUVMVRsjeOquJOp/N+vN8bPu4OuImEGzptb9+KohAI6JiWjeP0hDZGN/qeu/0BoM5pez3g4Ka9G/dwe4742GUXcuyyCxtUjXv/ru/QO7IIzqdn4DvuVpBSYjk2Vgd+0V0hEwtVUXKOsbXrq6oqOI6Tn3iFBLfHpv1/Xk9sxUvft4ZowW939xqzGogQ7DOYQOlAhNo7kkyylfxFfT3wZDyN40gKyqKEoh0fZedLh1WnB3S0oIaVtknVpNFU93sSMPTcj2HoGIaGUe+x3Az4ljJXQiFgaGRMG6fbHTeAQKphntv+i2YnhTXldD1nXP+5+tF2/d999j98x50HGdukOh1v9+sdKXGyYynd9LiN7Ug0Lf+Z3UJRMHRX5KI1Bygd26toa7fNGdO9scjXPkWI3HtsCtNp34Wy9xWVdQxCNu8IvcKzql01JGtTGEGdcCyIpnfP9DrPJq+Ncd+P79ZmFJRG0XSNdCKDY3eMYIv7tXC1y02zJ0TdWaO0IM/teCivzZuLnpuKvOtTcOHa9tnn0+PwHXcrCCEIaAZBzdinTLAXP3n9zvmkxxvYgdtu40pL2i1vK519ctqOI0ml0gQCBvmurmua2uLFVVfUNo1UzNkiJVa+1fT7EZ5kSO737A2MlbFIVKfIpCzCsRCFpbFum7xVZ5u7Fm1ZNsGA0QF7FEgp3VGiBa7WefXOWpK1qQ5z3qqqQDarVD8j1H2O3K06f277L5p8tn66vHHq3Iusm4qw2yqV6tM78B13SzhuUYiCIKQF2t3xJABFuKluJO0eEerpQtutRR9O+8U7JGBaFqqqZqtv87YOXdfIZPZe4/SiwPY4F0UINOXL+DGtKyvPrWPXpqneXYuiimzfs9ZtafGcldJV1ksmU4RCgQ4Z6+oV2nkZH01XiZVEMFOWG313iNa5wDB0pHRHk3qV6KZluz+mlftp9fvWYbiR99ztD+71TP0ou/6/vbVuaDrK9uaF++xffBmviHkjUtsgKyqSj+ORsunUrvfa+gpo7b3WCgGqIjDN5ntehWO7fVPtOYaUpNPuUBMvisrnopWLYgR7vcZrK0tn3AukbdvZ9fp6P42iHu+nu1K/3YvMflZcQZNkTYpETQpFVSgqL+iUavF2Wyol8USSQMBAy0dLPw/M7DKNV2AmhEAzNArKogghqNlVi9XEDWJb8JT/DEMjEDAw9Hrr494XNXt+Tcvap6K7NlqG1ELM3fbzVrf0omm/8OzLh++4W0BkqhFmTetrytJVF7Ntm5raFIlkppHjctPPpmXnNeGrFaswDB1HSmpSiSZLmKTjuOpp7fDcjiOz87bVNreTub3oOpbd2HHjFuOpCooQZExr75+06UY+e/1kSKXSpNIZ0t5P1vn3iPXJzkCCwG4gURqMuBKlnVEp3l6kJDu5TsXIu/ugtX26a+WBgN6knoER0jFCOjW741iZ7GdgHz8GnhNXVXftW9c1dF3N/Ttg6ChCkEqb2C3UcXQcAqlHmLv1Z8xbc12rW3sOvHGq3Jc73X/pHSW23YSM9EdWr8eKHYxmNC35CXXzqW3HwbYc9EZ9whJJOpNB0zS0fbzwui8VBAwdmXbnKItGup+KZSLbUT3tOA6JbMrTMNr30RACdM1tC/J60z3lN1VREKrILhU0pKmLoWz4n3p2ugV+QthomtY585a7Ae8cZFIm6coMRiRMpCic66Pvie/RtCyCwUCH2Waads6JNoUQwr2JCRpkkiaZlEkwGujUz4AQbm2JoggyGbNDvsd5HBWpF0BkYItb1R8P2jhVvupICzbTYi+4T+/Ed9wtILUChOqgxDeAMYzmIlgBhEOus5bIvaqxLctGVZQO/bILIQgYGqlsJa9lO1TXpCkpCkG8GsKxNuXjbdshmUph6FreLWDN2aWqiis5Wa+drLUgpUkd9Ib/yaEo1B3DtFBUZZ9s7gl4imeZlImZMgkHBUZIQ2o9u+9cStmuosPm9pVOZwgGjVZaugSKCoGIQXxPnOodNRSURTs1G+HVlwSEQsY0cRynw7IMLRwUaRQ1+ZQ3VazqlWEtrmO7oiyu4top/UZ1kqE+XY2fKm8JIZDh/uiKRE1szharNT1vWFUVVFVBU+vaYbwUuW07WaWmjv6S15PokBCPZ7AtG5GMIyOxvPfiOA7xZArDMDBaUXDLyyoh0DUVq0H1e8emF4UQaKqbynR6cdW567BtanbHqd0TR9Pd4RuB0N6p4p6Ipmm5eot9QWZrK0S2c6I1cjO+iyNECsOkk2ZO67wzEYqb7QK3Q8StzejMA+79IWg8CtSLtOvP466P9/zcf6/oBAN9uoPeHaZ0MlJKUDScgqGIxGaUqn8jA4XIQCkogRYj2vqDDrw0W0fjiZ5IKVEUt4VGWrarmJanZrSUkEpn0DUNXdM6zFl4a/6uxGQnp3l74VK3lBLHdtu7zIyFqilEo+F6RWcSKXu+51YVBdOyCNBGndN6eO1k6YxJLBqiLbUZ3qAS1Vao2RVH0RSixZHc8kxH4yaA3LkCluV+vg1DQ6HzUvXP7X4UHIvzy9yhJI2L0apeGcb3trR8KT+t/2EMXSCBzzvFRp+uxY+4W8DyRhQqOjJyIE7BEHAclOo1KPH/IKzEXjlgr1AtnTZd5TFDbxCFdzSa4lZ/CyGIRQOomtomuVNHOpimnV2P7ji7bNshGAy4RT662kH9vb0fr/MgFU9TtaMa27IJx4KEC0INU737OCCma/AKyVpObbe4B6+dLJEinJUqbU+bpKIqFJRFUTWFdCLdLsGWtvRye+veuq6SyZgtig91CIrWZI+358Tf2zaYh/t92KJa2upx/jr3/oLvuFtArR8lCwFqEBkZgFM4HKkEEDXrUGrWIszqBo4ynTHRdDVbjdrJ626aim3bCAHFRe7FH6FAHnORpZSkU5lserxjbZO4a5+ejnRXt3U5Vob07o1uhX0PIKealzZJ1qSQjiRWGm1FU7ynO24Xy7Lb5bg8px1PpAgG962dzHPe4YIQmq5RtbOGVDzdZptMx8aSLQsc1T+m6ikadkW/txZk7paf7vWw57w93XJv+Igvebr/4qfKW6DJi6kQIAxkuC8yWIbIVCLimxBCRYbKsUTUVTjb57av/FCy+XIpyabjhVu9ZZutvtYbdBIJh4A8B5jkST4DMjoLKSWJjR9TtWo+ZcdchFEyIO+bBk/8w20R2vf7Wu+c2pZD7Z44SIgUhdF09/PRrF29IuIWRCMh0hmT2ngqO9wjvxS1pJ7TDhhZzf4OsEgINEMlVhwlUZ1EURSMoJ5ty279ALrStu+tu9YOAUPPrnm7bWSIzvgGCKRRwnMb7qRm5waMogO5ZPC9za55+457/8V33C1QXZtGKCkiYaPp9hRFQwbLkYFShFmNSG5HmFswYgcCOl0VMSmKyEbdbkpeRgoQ1ZU40cIW9a5T6QyhkNvKk0pnmt624SRF9yYh+2BOVKaJRWbLspts++pwRHYgR1asBQDpoBohYkOPabOCnONIMqZJwNj31L5XeJZOuOc2HA2iB/JxIhJ38nXPdtzeOnIwoKMqCvFEyh38oevuWn0Lr7Vth0Q20u7I2grXLtd5F5RGyaRMqnfVEC50b5Zaq1Zv7/EAggEjJzRk6LrrvDu8HlVAuB+iQMOq2cjcDbdz3sD7m9z0e1uOZNSH+K1g+yG+426BmpQJpKisSVNeGiGoq00XvQgFaRQh9QK09G5EfD3SLkWG+kAnj5EUQqDrOql0JjdjWJb0gc9XQVlfCISafJ3jSCzbJhYMu73XqE1E3I3fZ8NHGjjLRqRpPeLvCJTszUM9UTqEohLqfwhNv/Pm8eajG/q+LR14EqXpZIZkTYpQNEgwEsg76gPAMUHpHXUB7mdQQ1UVMhmTeCKJrmm5DoX6b1lKsB0767QDHe6069uEACOk49gOtbvjRIsjaEbn1Jt4+zR0LVto5xZ8qp3RoiYEjhrGDg5ApDY3u5k3ItRn/8N33C1QURKmpKiQeMpiZ02aTE2SirIYkYiBA1imja4pdeIPQkEGy5B6DBHfgKj6DBkZiNTCeR2vvV9wRXHX2hzHQVFUZCCEEitG3bUNp99Be6VcvWg7oGsNqt3bevyWtm95KGXH4a4zutKgyj72PMtsNqG9Yh7eOnYqnnaFeAydwj4Fbd+fY4FjIrVgm23oLoRwe+uDwQBSusWZtfFkdgRnXb+zI91IOxQMZKfjdbZdgmDUVZ1LJ1zBls4cfeq2KSqoirvubdk2mqaiKh0roqOqChkUUNpfze/Te/Eddwto2aKqSFAjY0vWbq8htbGSaGEIoWuYiTQBXaF/3wLUel9IRyqYdgCRqoXkvyFQQktpTwkooUK0YME+OW/bcdBw19dkeT+UdZ9CacVeUbcXbYeC+d1Q9HQ0TSWTsfY5upHSabfDBrAyNomapJvNLAi3e2qXsOJutC1630XZzUgpBIMGhpTE40nXcaluu2IymXY7LbrAadfZ5BauBaMGtZUJqnfWEiuNoqid1DIm3FqTgKG73zXLxpQ2mqZ0WIeJEAJHghQac7dMRQZK9trm2CW/ohBfx3x/xK8qbwHvC6YoKmVFMUYP68eBA4roVxblgJIQgw8swQiHMe2606jpATRdRxMOoWgZih7FScdRpYkubAIaCDuFKtw78VA4TFAT2MnqfbJVVd2xmhnTcqcnBULIgiKUHVvqtawJhKJiORAMdMwkp/rk00rTXHW5m7Fo702LgqqppPOYVd4SThuHmnitXWbapGpnDUiFkr5lFJUXYwQDGIEwqtpW5yshUw1G25TvXHtkF2lpt45Xca2qdUI83vzrjm49zNceRVGIlUQIF4RIJzOdKtjiLampquIOMjF0d8Jb2sT0vqP7cGxFUXAc6c4kcJpew37r2FuaFWXx6d34f9VWEEIhWlhGJpOhLBwjnawBJEYggqrpFBW727nRmpKdfBUmFCkitXUVu3ftYMe2TeiGgW4E6Nt/ECmCDBz6FUS9qmW1ajvWPlxDhIBA0HBFIbLra3pZf5S1H0PFAIIFpejZyDuafY1tmVhmGlU33KlgqTiO3f5CFtOxMR2LsB5AUVTC0SJUVcU0U5jpJKFoEZpm5I6dqK1EKCrhaHGugjuTTpBO1rbxvbtKbaYpyWSsBqnZtuA4stlK8kAwiqrp2LZFOlmLlI57o5Q0yaQyRItiFJX1IZFIECkoBCAejxOOFpGM78G28lvzNwJhtOBwHCCdziDz7Mf3yNgmAU3v1qr++mhZBT1DaiSSbuV5d2que4ItiqVQvasW3VCJFkUQnSCQVP+YQoCu62jSzXalM6Y7sraeOFNbzouiuktjEhUh9/7OejcGq460XAEXoLq6hgEHPd8xb8qnW+nWiHvatGkcddRRxGIx+vTpw6RJk1i9enWDbdauXct5551HeXk5BQUFXHTRRWzbtq3F/Q4aNCgXOdX/ufHGG9tsoxGMsH37do477jhs28YIuE75rfl/54ILLmD06NGceOKJ/OpXvyadTrNz5053WynQouXECoooLCpFUVQcy6HowP9HYb8R3P/zn3PUUUcxduxY7rnnHuKmQjjmpdS9L7KC0kx7iqKoiHrPCSEQeKMQVRwpkEYAwlFC4QJq4kluueUWvvKVr3D44Ydz6aWXsv6L/xAIRVmy5H0+Xf0ZwVB9mVQv26AhvMpsIVDUpp2iOxnMyDmNcCTK7so9vPjSywRDMTcToRncfPPNXHzxxSAUVC2AboTYsGED55xzDo8++ii6EcK2HTeaQEFKkVNhq//jZGeO10X5boGUI73X1r0PRdUanKvc44qai2qlBJmdAd34/KqajhEMM+uJ/0OioGkBairj1FYm0AyVwrJCIgXuuYtGo7kjVFRUEI/H0fRgg5s071w2/l1RVAKhGM8+/yo1CQsj0HApQyhq3d+i0d9JCAVF1QhqRvZzoDb72WmJ+qNpPble7+/RnghRy86Pz2QsLMvukBa7fcXVP1AoLI+haiqpRAbb6vxMhdti6N5kBgM6qqZgWTaprFiTbIN8qqIoWWVHHeHsfVNomjY7dsZ5duf0Dn4XPj2Bbo24FyxYwI033shRRx2FZVn86Ec/YsKECaxatYpIJEI8HmfChAkcdthhzJ8/H4C77rqLc845hyVLljR7Efjggw+w7ToRhZUrVzJ+/HgmT57cJvsURcEIhHjwwbu5+uqr0XU37fnrX/+aX//61zz00EOccMIJbNu2jd/85jd8/PHHjB07lqOPPpqnnnqKb132DYLBjVT0PQAJBIsOQKohThl3PKNGjeLPf/4zhmHwwAMPcMIJJ/DBBx8QKypv0pZUshYznUA3QgRCkdwFXEpJKlGDpuvoRsO1bCkllqKhRQq47srJxGIx5s6di2EYLFy4kHQ6DcBf/vIXRowYwejRo4kV9cnr3FhWhlSiBoBgKIqm101Es8w0mh7gn8tW8MADDzBp0iRCETcKfeedd9i6dSvz58/npJNORNcNZs2axQcffED//v3dmoJYMbpRtz/HcaitrkRVNSKxwr1siddWk07Fs4NcNEzLQlUNAqEYRr31ffdcVaNqRoPHLTNNvLaa4rIKtEZSsY5toWQnrd1yyy1ccMEFFBYWckC0YC87pJQsXrx4r8eNQAgjEMKxLVLJGgKhGKqq4dg2idpKQpFC1HrHnTJlCqNHj+bQQw9FDwSxzAy6UVeo5jg2qUQNuhFs8HhzNM5iSOmWDjq2g5W9CXIc10Fblkkm4zoSu1H2Rdd1QqEgkXAIPY+WLyAXTdYkkyha21XROgs3jS0IxYKYGYuqHdWEC0IEwu1XgWvLscG9qVEVBSmzM7+z2aJ82gC9LRyho9ipvZ7XdRVHShLJDJEueE8+XYuQPWFBLMuOHTvo06cPCxYsYNy4cfztb3/jjDPOoLKykoIC90JZVVVFcXExf/vb3zj11FPz2u8tt9zCSy+9xGeffZbXB7i6uprCwkJ279xGQVEp/fr145NPPqGkpBjTtKioqOCFF17guOOOo7K6lsJIwL0wOw6KovDOO+9w55138u6771K1bS1WJglAYcVQ5sx9gbvvvpuPP/4YJ1MDZgK9oD/HHnssV111Fddffz1/+MMf0HWd119/nS+++ILzzz+fH/zgBzknMnPmTJ544gkUReHyyy/niiuuQAjBtGnTGD58OH/5y1/YtGkTl112WS7LMHDgQJ5++mm++tWvNniv77//PpdccgnRaJSDDz6YSy65hFGjRjF79myKiop45plneOCBBxg5ciTTpk1j0aJFDBkyhKlTpzJsmDtOcPXq1dx///2sWrWKww8/nPvuu4/y8nImTJjAP/7xD04++WQGDhzIr371Kw4//HBOPfVUtmzZwuzZs3Ech5EjR3LGGWeQTCaZMWMGW7du5fbbb2flypUUFxdzzTXXuFE68PTTT7Nnzx6WLl3KqlWrOP300/nxj39MJpUgXluNIyWZjEnffgewu3IPP//5z1mwYAGFhYXccccdjB8/nt27d3P33Xfz4YcfMnToUKZOncrgwYNxHIfJkydzzTXXcP/99xMIBJg6dSrHHHMMDz74IHfccQdnnnkmuq4zY8YM/vrXv1JQUMCrr77Khg0bWLBgARdeeCFz5swB3Oh75syZTJ8+nUgkwt13382xxx4LwCWXXMKsWbMQOOhGkOuvv56pU6fywgsvcMstt3DsscdSUFDAz372M4YNG8YjjzzC3LlzCYfD3HjjjZx11lkA3HfffQwbNoynn34ax3F4+umnueuuu1iwYAEA55xzDnfeeSc1VTuwLZtkKkU8niCVclXF3FStkuvH1zR3OpxhGOi6ntMv8PrbE/EEyVTK7UsPh4lGwq0OprEsm52VVRi6RnGhm5noSY5ESlczPlGTyo4MdW+iutJGb8iKpqmomtqq63Ych63bdtCnQMEwd+IUjay3L7d6v7Y2TSKRpqwsChKqa2oYPPQQqqqqctdTn95Jj1rjrqqqAqCkxK2QTKfTCCEIBOqir2DQ1TNeuHBhXo47k8nw5JNP8v3vf7/5nuN0Ohd9guu4AYxAkBUrVlBcXExpaSnScVi0aBGKovC1r32NXTt3ois2qUQaM5PMplcVjj76aP7xj3+QSCQIxPqgZB23ZoR45ZVXOPvss1FVlWQ6jcjUokdNJk6cyMsvv8z111/PsmXLmDt3Li+88AJ9+/blggsuoLi4mKuvvpo//vGPzJo1i5kzZ6IoChdffDFlZWWcffbZvPfeezz77LP86U9/QlEUTj31VMaNG8eYMWM4+eSTue666/jv//5vTjjhBI444giEEIwZM4Zx48YxdOhQ/uu//otYLMY///lPHnzwQaZNm8a8efMIh8OceeaZTJ48mbvvvptFixZx1llnsWLFCkzT5IwzzuChhx7i4Ycf5oknnuAb3/gGb731FjfddBM//elPeeSRR9C0uo/a6aefzrXXXktVVRXLli1jxIgRVFRUsH79esC9KF199dUcfvjhfPHFF1xwwQWMGDGCww8/nE8++YRf//rXzJ07l5EjR3L55Zfz4IMPcvvtt2OZKUASDIZRNZ1Jkybx9a9/nddee41EIkFlZSVSSi6++GKOOOIIXnjhBebOncspp5zCJ598gq7rPPfcc/Tt25ennnqK+fPn881vfpPPPvuMq6++milTpvDAAw9QUFBAcXExH330EW+99RZPPvkkBx54IADPPfdcg8/Ws88+y7PPPstHH33EOeecw6effkppaSnz5s3DcRxU1f1Mvvbaa9xxxx1ceOGF3H///fzoRz9ixIgRlJWV8eijj/KXv/yFv/zlL2zbto2JEyfy0ksv8ZWvfIXFixfz9NNP86c//YmKigpmzZrFmjVrePXVVxFC8MknnwCwddsukskEhq4RDoUoiEUbFCcqitqgKr/xd0VVQdc1wqFgbvxmPJFg2/YdgCASDhOJhDAMo4nebYmCIBQMUmNKQppA7wF+W0rp9QCiaSqxojDpZIaq7UmiRWFX99+jHe1j9WOi5hXy3P8I6faAp9MmyLpai72yGhKs2jhC0whYNjKjYGZUFMtGCIEdT5KpqibjOAgEWjxBWtgohoFVk2iT/T49lx7juB3H4ZZbbuH4449n9OjRABx77LFEIhFuu+02fvaznyGl5Pbbb8e2bbZs2ZLXfufNm8eePXu48sorm91m2rRpTJkyZa/HVVVl/fr19O/fH3AL0Hbv3k1paSkA1TUJdF1QEDGwLRNHWKiaQTgaIxaLsXnzZgYO6AfUfXF3797NiBEj3KIjoSADxThSUFpaSmVlZe7Yl156KV/5yleQjs0dd9zBI488wtVXX83vfvc7rr/+empr3dTnueeey9y5czn77LMB+Pa3v82YMWMAOPXUU1m2bBljxozh8ccfZ+bMmbz88stMmTKFiooKnn/+eYYNG0YkEqGwsJC+fSty66IDBgzI3ewsX76cjRs3csopp7Bx40YOOuggCgoKWLZsGevWrWPQoEEcfPDBbNiwgZNOOomf/OQnVFVVUVpaimEY9O/fH9vK5N6bpmlccMEF/PWvf2Xx4sVcddVVfPrpp7nn+/fvTzKZZM6cOVRVVdGvXz/effddDj/8cAAmTpzISSedhOM43HPPPVx//fXccccdqJqGbVkEgu4N16ZNm5g6dSq2laGwIMJBBx3E9u3bWbx4MS+99BK6rnHttdcyffp0Fi9ezIknngjAT3/6U0pLS/nmN7/JDTfcQE1NDSUlJSiKQr9+/YiEg6hZSdsrrriC448/vllN9Lvuuouy0lJOO+00TjjhBF5++WUuv/zyZj+LhYWF6LpOnz596NevH0IIZs+ezT333MPAgQM56KCDuOaaa5g9ezZf+cpXALjxxhsZO3Zs7txu2rSJlStXcswxx3DcccchpSQY0CgtrsjdQO2LSpgQglAoSDAYoKS4iEzGpDaeYNuOnQgEkUiYSDiUjcSVnF49QECRDVonuxOrNkF6WyWiXs5RIpFJk8TuPTnHLQUY5UUYhdFm9tQ0yaSFRBIO1Vt+cUehIRNpZGUtzq5qZE3SfVxTUZGkLdvNhWsqaiyClsp4YwAxNUl15Xb0aBQ7niAZiWHFawk51QhVoTq9BwwVMxEn1qcfSm0t2vZaVFui1cb3+Zz59Ax6jOO+8cYbWblyJQsXLsw9Vl5ezjPPPMMNN9zA//7v/6IoCpdccgljx47Nu8jl8ccf54wzzsg536a44447+P73v5/7vbq6moEDB7rfJU3LrZdL6TBkyBA2btyIZVmUlRTwxbbd2EBFaTGqqmJb7rqgbdsNokyv4GfIkCGsW7fOjc6F4gp+qBrr169nyJAhue379u2LYyaxU3vo27cvO3bsAGDDhg28+uqrLFmyJLet59AAysrKyGTS6LpBKBQilXLXv0QqzjVXX821116LaZp885vf5J577uGpp56qZ6ODmXEdrLfebNsWGzZsIJPJMH16XaHLkUceSTAYZMOGDWzZsqXBc5MnT84d1yOTThHS6pTArrjiCi6//HIqKyuZMWNGA8f92muv8d3vfpfrr7+ePn36EIvFclkQ79y4tiYbnBshlGwBkMq2bds44IADUBSFZDqBY1sIIdixYwelpaUEAgFSiWqC4QL69+/P9u3bc/svLS0llUgQDIdz5zAWqyvcs6xMbk3fvSkxMTNJAqG9Z6D37duXTDqBEYw0sNX7THjxVFMzxR3HQlV1duzYQb9+/bDMFKrm3ggtWrQot13//v1JJRMkEnEuv/xyUqkUP/nJT1ixYgXf/e53ufPOOykpKdmnjoGm8Jx4MBio58QzJBJJduzchW07hMNuFB4MGqi6gm3aZCybQNCoW6fNFmWp2dG0tgRV1Knh5X2T4QqgQ/3ixMYvrbcvO55CtSWKppGOJ3OOWlMEVioDmkogHMKxbex4Eppy3N4xvXbGesdLZyyk4xDRFGQ8hdxVnXXUCfd1AR0RCqBUFCHCQQjooIBm10kBWhLMZMpV81MVRKIWJa7jOBaWppAKqxT2KUEvGUgybaLviqAiCVgWRmkpBhAoK0GoKnpNTX7n0afH0yMc90033cRLL73EO++8w4ABAxo8N2HCBNauXcvOnTvRNI2ioiL69u3bwMk1xxdffMGbb765V/qyMYFAoEE63sO2TYYNG1YvhWtz+OGHM2DAAB5//HGuu+46hgdD6IZBOp0mkUxTUFBAdXU16XSa/v3741h1Dsy2MkyePJmzzjqLadOmUVpSgkQSj8d54oknmDFjRm7blStXoughFD3EypUvc/DBBwMwZswYzj33XL75zW82+36cJsoWlIgr7uI4Nrquc8wxx+QK/nRdx7JcJ+H1HXsXS+nYjB49Gtu2efjhh4lEIg32u2XLFqLRKDNmzNjrAvvFF19gZW9kQpGGa2qjR49mwIABnHPOORiNdMHnzJnDD37wA6699loAnnzyyQbPr1y5EiEUAsEIK1euZOjQoVlbXecnpc3w4cNZvXo1tbW1hMOFkL1BOvDAA9m5cyc7duygvLwcy7L4+OOPc+fXQ9X2vjH0zlNhYWnusdacysqVKznppJNy/z799NMBKCgoYNeuXQwYMIDq6uoGnRL1/x4AQ4cOZcWKFbkbtOXLlzewVwhBxjTRdQNVVbnhhhu44YYb2Lp1KwceeCA333wzuqZ3uONujKK4TjwQMCgqKnAj8do427btQDd0opEIwYDh/r2lRCJwXPH7BhXVbgZfYDsSTfFSzu55tqREE2DXxN0by2QKLRzG2lONsrUKWZ2om4wnBOia61jtrHNV6hysjYNS4f4td23aRqQohm3ZVO+sxDYtVEPjoNHDEYD9+Vas9TvqHLSqQDKNzFjIZNpNpQcN0DVEQAdFQU+ZkDExHcd9PhZGKStEDDsAIkGErnl3Js2eU11KhGWTsR0MXSMgijEG9gVFYev27TiGSUCLQ3EMmUgRLRuKrqn1JICz+xa458Jnv6Bb/5JSSr7zne8wd+5c3n77bQYPHtzstmVlZQDMnz+f7du3M3HixFb3P3PmTPr06ZMr5Gkr6VSK4cOHo6oqX3zxBf379kFKh5kzZ3L++efzwQcfMG7cOLZs2cKsWbN49tlnKSwsZOHChZx44okYhkE8VXeXm0knOeGEE7jyyis57rjj+M53voNhGDz66KOMHz8+l+723ue0adPo168fU6ZMyUXGP/rRj7jsssvYtm0bQ4YM4ZNPPuGggw7isssuy722qVTk1772NU466SRGjhzJxo0b+cUvfsHvfvc7AMaOHcsvf/lLpJSccMIJDV5nmmkGDRrExIkTOeuss7j22msRQjB//nweeOABxo8fz89+9jMuvfRSzjvvPBKJBO+99x4zZsxg2LBhrFu3Llf81fhm44UXXmjyvB922GH84Q9/oLS0lMWLF7NixYoGdi1btowf//jHjBw5krvvvpuHHnoIx7FxskIUVsa1efLkyUycOJH//u//Jh6PU1JSwvnnn891113HRRddxLXXXsuLL77ImDFjGDt2bMN2oCbO4RFHHMGtt97KmDFjuPrqq5u0vTE//elP2bJlCx999BGVlZWceeaZgLvO/53vfIcLLriAefPmNbhxPOKII5g6dSonnHACF198MbfeeitXXHEFmUyGbdu28eKLL/Lhhx82OI47YSvA73//e6qrqxkxYgTLly9n6NChRKNRUol9E/hpC/UjcUVVCQSDGLpGPJ5g9549OLZDIBggGAyi6QaqIrBMKzshTNQNspESr/LE9eWuvLCdSLLn/Q+JDjiA5MbNFBxwINXbt1Ay4hDUgw9wnWqdMV6PW91j2XVlq7Ia0u5nxhutGi6IkkmlSdUmUDUNgTvuxYqGUAui6AG9LqhOm27aO20ibduNiIOB3PHDQrhRdSyECBnZx8XeWYBWzqVXQJjJmK4mfMAgkUghNJ0+hTGUeI17A1T/7Xnv3We/pFuryr/97W/z1FNP8fzzzzNixIjc44WFhYRCbrvOzJkzGTlyJOXl5bz33nt897vf5corr+Shhx7KbX/KKadw3nnncdNNN+UecxyHwYMHc8kll3D//U1Pz2mOqqoqioqK+PTjZQwf+f948MEHyWQy/PjHP2bn9s2UlPWltraWZ555htWrV1NWVsbEiRM55JBDALdi+LLLLmPChPHs2Lqxwb4LikqJFRTlCtBs22bixIkcffTRxGurCUdi3HTTTQwfPpxYLMb69es5++yzOfroo6nes5uCohLWr1/PX//6V3bu3MnBBx/MpEmT6NOnD6+//jojRoygvKyEYCjCokWLKC8vZ+TIkXz88ce89dZbbNiwgbKyMk4//XQOO+wwUskEgWCIBQsWsGbNGsaOHUu/fv344IMPmDhxIls2rqegqIRQOMr8+fN56623MAyDY445htNOOw1VVUmn07z44ou8//77FBQUcPLJJ3P88ccDbh/+4sWLCQaDTJ48mTlz5nDcccdREIuQiNcgpaS4pJyPV31CbW0tX/va13Ach7/85S+sWLGCo48+mgEDBqCqKmPHjuUnP/kJjuNwyCGHsGrVKsaPH8+JJ57Irh1bSSXr1vAKi0oJRWK8+uqrvPPOOxQXF3PxxRczZMgQbNvmxRdfZOnSpYwYMYLLLrsMXdeRUvKHP/yBa6+9lprqSmIFxTzxxBNMnjyZUChEdXU1r7/+OpWVlVx66aV8+OGH9OnTh8GDDiReW0NJWUXu9QB//OMfOfnkk3nyyScJh8NcddVVRKMRV4xFqDz22GNs376db37zm3z44Yecc845xGIxUqkUr732Gtu3b+fcc8+loqKC5cuX8+yzz1JcXMw3vvEN+vbti6IovPrqq4waNYqy0mIMI8gX//kPL774oltfMXAgl112GQUFMbZv3djQeXUBUkIimcQwdPTsspGUEtMyqa1NkkgksCybUCjorpkHXA1xhNg7RS4lTiKNvXkX5uYdpOxawhUVmPE4RlkJqdoawsOHoWgqQnFV0gSehkPT9mV2VWHtqkJRFCzTdjXlFYF06ka7qprqCp3EwmQUHSOgES4Md3jFueNIbMfGMk1XqyBrg+M4ONLJzS6XjqtpsH3HTvoURyjRq7EyaVLRodiWQygUzGU0hKJk5WZVFCGoqalh5Ogj2LNnD4WFe7dV+vQiZDdCtuSi8c/MmTNz29x2222yoqJC6rouhw0bJh966CHpOE6D/Rx00EHynnvuafDY66+/LgG5evXqNtu1YcOGnC333nuvrK2tlaeffrpMp9Py+uuvl3379pV33XWXXLFihaytrZXr1q2TTzzxhHzvvffk5s2b5fnnny8dx5GXXHJJk+/v61//upwzZ47csWOH3L17t3zppZfkmWeeKQGZSqXkt7/9bfnII49IKaWsra2Vr776qjzmmGMkIEeOHClnzJghN23aJKWUcsWKFfKhhx6St912m1y4cKGcN2+ePOSQQ+QFF1wgFyxYIF955RV58803yz/+8Y/yk08+kclkUq5Zs0Y+++yz8rjjjpOAnDx5snzuuefke++9J9esWSN37NghFy9eLL/zne/kbL700kvlW2+9JdPptKytrZVvvPGGvPLKK6VhGPLmm2+WS5culVJKuXPnTjlv3jx5+umnyxEjRsjf//738p133pFLliyRVVVVcsmSJfKZZ56RgwcPzu37xBNPlG+88YZcsGCBPP/88+X1118vly9f3uBv8sYbb0gppbznnnvk3XffLaWUMplMyrfeekuecsope51jIYS84oor5MKFC6VlWXLHjh1y9uzZcujQofKqq66SS5culZlMRn700Ufytttuk5FIRD766KNy6dKlcvr06dIwDPnzn/9cLl26VD7++ONywIABcsqUKfKNN96QS5culbW1tXLFihXylVdekUceeaQ0DCP3+t/85jdy+vTpcuPGjTn7169fL6dPny4LCgpkIBCQ9957r/z3v/8ta2pqpJRS7tmzR86aNUv269dP3nrrrfLVV1+VS5culU8//bS86KKL5HPPPSdramrkF198IR977DHZt29fefXVV8tFixbJuXPnyhEjRsgRI0bIWbNmyc8//1xKKeXnn38uf/nLX8qSkpJmv2v+z5fvZ8OGDW2+Jvr0LHpUH3dPwXEcNm/eTCwWQwiR+38gGyU0vVboFuG4ghiWZZFI5Nd+4RXDbdiwgQMOOIDf/va3DBw4kDPPPJN4vOdWgta3uyv6QqPRKH/+85+RUnLppZfmKuvbQlfb3FH4dnct+6PdUkpqamro379/j1Cw82k/vuPuAXiCL71NGKE32t0bbQbf7q7Gt9unJ+Pfdvn4+Pj4+PQifMft4+Pj4+PTi/Addw8gEAhwzz33NNlL3pPpjXb3RpvBt7ur8e326cn4a9w+Pj4+Pj69CD/i9vHx8fHx6UX4jtvHx8fHx6cX4TtuHx8fHx+fXoTvuH18fHx8fHoRvuP28fHx8fHpRfiOuwtojzRnT8JvPPDZn/A/zz69Hd9xdyI1NTV861vf4tJLLwVcDfTeQE1NDT/84Q+ZNWsW0PrM6Z5CVVUVP/3pT/nggw+625S8qa2tZd68ec3q3/dUUqkUGzZswDRNoPd8tjOZTAP9/97ixL3z29s+Jz6dg++4O4mf/OQnlJeX8/LLL7NkyRJ27NjRK4T9p0+fTv/+/Vm+fDlSStLpdOsv6gFMmTKF4uJilixZwtChQ7vbnLyorKxk+PDhnH/++SxdurS7zcmb++67j8MPP5wLLriAk08+mY8//hhFUXq8E5w2bRrjxo1j4sSJ/M///A+bNm1CCNHj7X7wwQeZMGECAFp2PKrPl5zuGEm2P/P000/LiooKOXz4cPn3v/9dPv/883LYsGFyxYoV3W1aq6xcuVJ+9atflU888UR3m5I38+fPl4MGDZKDBw+Wr732Wneb0yZ27dolJ06cKEeOHClPPPFEmUwmu9ukFlm6dKk8+uij5ahRo+TcuXPlk08+KU8++WR57LHHdrdpLbJy5Up5/PHHy1GjRsnZs2fLH/zgB/IrX/mKnDRpUneb1iJr166VF198sSwvL5dCCDl9+nQppZSWZXWzZT7djX/71oFs27aN//u//+OWW27h9ttvB2DTpk2sWbOGyspKwE159dTI+9lnn0UIwbe+9S0+++wznnjiCQYNGsTo0aM55phjADe12JNS58899xw7duzgnXfeYezYsXzxxResWrWKoUOHUlFRQWFhYY8956tXr2br1q28+OKLjBw5kqeffporrrgC6HnnGWDx4sWMGjWKhx9+mKKiIgC2bNnC3//+d0zTRNf1Hme3ZVnMmzeP8vJy5s6dS3l5OZdeeilPPvkkDz/8MOvWrWPw4MHdbWaTrFy5EoAZM2awZMkS7r33Xq688koikUiP/Uz7dBHdfOOwX+E4jjRNs8HvGzdulGPHjpVTp07tRstax7Ztefnll8upU6fKOXPmyLKyMnnmmWfKww47TEYiEfn444/LTCbT3WbmsG1bSulGrSNHjpTf/e535TXXXCMHDBggx44dK8vKyuRpp50mHcfpZkubZ8mSJfLCCy+UUkp57bXXysGDB0sp3YiqJ51r7xwmk0m5atWqBo9PmDBB3nzzzXLhwoXdZV6LZDIZOWfOHPm3v/1NSln3ufnrX/8qBwwYIPfs2dOd5jWJd74TiYRcsmSJlFLKf/3rX/LQQw+VN9xwg5Sy7n34fDnxb9k6ECFEgzUoIQTl5eVYlkUikQB6ZhGPd/deUFDA7NmzeeONN3j44Yd54YUXWLZsGd/61reYOXMmCxcu7G5TcyiKgm3blJSUcN111/Hoo4+yefNmZs2axezZs3nsscdYtWoV//Vf/wX0zCKkdevWsX37dsCNqmprazn11FM54ogj+Pvf/97N1tXhRdDBYJCRI0cC8PLLL1NcXMzmzZtZtWoVF198MZdccgl79uzpRkv3Rtd1zjvvPMaPH9/g8T179jBw4EBCoVA3WdY83vkOhUK5TNfBBx/Mddddx5NPPpmrKbBtuzvN9OlOuvvOoTfy7rvvynXr1kkpZYsRnXdXfNVVV8njjz++K0xrkdbsfvfdd2VpaakMBoPyo48+yj2+detWOWjQIPn44483+9rOpDm76//77rvvbmCzlFLOnTtXCiHkxo0bu8TO+uTzGZkyZYq8//77pZRSvvnmm7JPnz5SCCGnTp3abeuY+X62586dK59//nlpmqbMZDLy448/lkKIXGTb1bT1O3nllVfKb3/72w0e6w7ysdt7fO3atfKUU06R48eP7yrzfHoofsTdBr744gsmTZrEuHHjeOCBB4CWW6W8StuDDjqIdDrNpk2busrUBuRr98EHH8ykSZPQdT33vOM4VFRUEI1G+fTTT5t9bXfYLYTIZTBuu+02jjjiiAavLy8vp7i4OLdW2BNshrqsi67rLFy4kPPOO4+zzz6bb33rWxx66KH8+9//7vJ14nw/IzKbuZg0aRITJ05E0zR0XWfw4MGUl5fz0Ucf9Ui7Pbzv5Ntvv81JJ52Ue2zdunVA12XE2mK39/igQYO4/vrr+eCDD3j++ecBWLhwIVu3bu0Sm316Dr7jzpObb76ZIUOGoKoqX//617Ftu9VWKZkt1BkwYACbNm0iFot1kbV1tMXuvn37cu2111JUVMS0adNYu3YtiqLwz3/+k2AwyOTJk3uc3V6BTjgc3uu5JUuWMHz4cI4//vhOtxfabnNlZSULFixAVVX+8Y9/8Itf/IKHHnqIJ598kvnz53eJzW2xG5p3Lq+88goHHnggF154YWea2oD2fCcB3nvvPTKZDOPHj2fLli1ceumlDB06lI0bN3ZJwVd77VYUhXHjxnHBBRdwyy23cM455zBu3Dg+++yzTrfZp4fRvQF/z2fp0qUyEAjII488Ur733ntSSilvuukmeeSRR0op80sbf/rpp1JRFPnmm292qq31aavd9dOF8+fPlwMGDJAHHXSQvOiii2RRUZG86qqrZCKR6HF2N2bTpk3yP//5j5wyZYrs37+/fOSRR6TjOJ2a3m+rzV4B42effSaXLl3aoKBRSil/+ctfyp07d3aave21uzGbN2+W69evl1OmTJF9+/aVd999tzRNs9OXUvbV7scee0yecMIJ8t5775XhcFhOmDBBfv75551qc0fYLaWU27ZtkxMnTpRCCHneeefl0uw+Xy58x90E9b9AH374oXz11VcbPD9r1izZr18/uWHDhrz2t2jRIvmNb3xDrl27tkPtbExH2O3tY/ny5XLWrFny1ltvlX//+987xd7Gx5Ry3873xo0b5b333isPOuggOWrUqE69Ueroz0hX0VF2b9q0ST7wwANy+PDhcvTo0Z1+U9qR53vSpElSCCEPPfRQ+corr3S4rfXpSLvXrFkjv/rVr8oDDzxQvv322x1uq0/vwXfcjaipqZG7du3K/V4/EvW+hE899ZQcNGhQk6Iq8Xhczpkzp8H2XUFH2t2VdKTdmUxGvv/++/KFF17o8TY/99xznWpjU3TkuTZNUy5btqzTHZ+UHf8ZmTFjhpw1a1YnW93x38lMJiPfeuutTrTYp7fgO+563HnnnXLIkCHya1/7mrz44ovl6tWrc8/VT7du3rxZ6rqeizLqfyH/9re/SSGEfOONN3q93Z1949GRdndVNbP/GenayvGOtPv111/vlXZ35efEp3fgF6fhDh741re+xSuvvMKMGTO45pprqKmp4fTTT+fDDz8E3KIcrzBHSslhhx2W62uuX9By9NFHM3XqVEaNGtXr7e6syubOsPvQQw/tFFs70+be+hnp7HPdWXaPHj26V9rdFZ8Tn15GN9409BhWrFghDz300AZruclkUhYUFMiLL75YfvbZZ1LKurthy7LkmDFj5B133NHg8a7Gt9u3uTV8u7uW3mq3T+/Cj7hxx0GuXr2aww47LPfYtm3bKCkpYeHChbz55ptIKVEUBcuyUFWV448/Ptey012awb7dvs2+3b7dPl8+/E8JUFBQwJgxY/jxj3+ce2zGjBmcfvrpHHjggcybNw/p1gPkJE29L962bdu6y2zfbt/mVvHt7lp6q90+vYwuje97KMlkUs6cOVPqui6POeYYWVpaKvv37y/Xr18v58+fLzVNkzU1NVLKulTWO++806DgpDvw7fZtbg3f7q6lt9rt07v4Uo/1tCwLTdMIBoNceeWVHHroofzzn/+kuLg4pxL2wQcfcPDBB1NZWUk0Gs2lsr72ta/5dn8J7O6NNvt2+3b77Od0951Dd1BfqSqTycjvf//7uaKRxtx8881y4sSJXWVai/h2dx290WYpfbu7mt5qt0/v5kvluC3LatCb/PDDD8uCggI5dOhQuWbNmtzja9eulWvXrpU//OEPZf/+/eXcuXOllF0/FcvDt7vr6I02S+nb3dX0Vrt99g++NI67/pjEN998Uw4dOlRWVFTIxx57bC+t6NmzZ8vRo0fLMWPGyIULF3a1qQ3w7e46eqPNUvp2dzW91W6f/YcvjeOWUsr//Oc/8vTTT5e6rsv/+Z//aSBHKGXdXXA8HpeLFy/uDhObxLe76+iNNkvp293V9Fa7ffYPvjSO+5lnnpGapsmzzjpLfvLJJ91tTt74dncdvdFmKX27u5rearfP/oOQUsruLpDrCj7//HO2bdvGcccd192mtAnf7q6jN9oMvt1dTW+122f/4UvjuH18fHx8fPYHfOU0Hx8fHx+fXoTvuH18fHx8fHoRvuP28fHx8fHpRfiO28fHx8fHpxfhO24fHx8fH59ehO+4fXx8fHx8ehG+4/bx8fHx8elF+I7bx8fHx8enF+E7bh8fHx8fn16E77h9fHx8fHx6Eb7j9vHpRtavX48QgmXLlnXK/oUQzJs3r1P27ePj0z34jtvnS82VV17JpEmTuu34AwcOZMuWLYwePRqAt99+GyEEe/bs6TabfHx8ejZadxvg4/NlRlVV+vbt291m+Pj49CL8iNvHpxkWLFjA0UcfTSAQoF+/ftx+++1YlpV7/qSTTuLmm2/m1ltvpaSkhL59+/KTn/ykwT4+/fRTTjjhBILBIKNGjeLNN99skL6unypfv349J598MgDFxcUIIbjyyisBGDRoEL/61a8a7Pvwww9vcLzPPvuMcePG5Y71xhtv7PWeNmzYwEUXXURRURElJSWce+65rF+/fl9PlY+PTxfiO24fnybYtGkTZ555JkcddRTLly/nt7/9LY8//jj33ntvg+1mzZpFJBJh6dKlPPDAA/z0pz/NOUzbtpk0aRLhcJilS5fy+9//njvvvLPZYw4cOJA5c+YAsHr1arZs2cKvf/3rvOx1HIfzzz8fwzBYunQpv/vd77jtttsabGOaJqeddhqxWIx3332XRYsWEY1GOf3008lkMm05PT4+Pt2Inyr38WmC3/zmNwwcOJDp06cjhOCQQw5h8+bN3Hbbbdx9990oinvP+//+3//jnnvuAWDYsGFMnz6dt956i/Hjx/PGG2+wdu1a3n777Vw6/L777mP8+PFNHlNVVUpKSgDo06cPRUVFedv75ptv8umnn/L666/Tv39/AH72s59xxhln5LZ5+umncRyHxx57DCEEADNnzqSoqIi3336bCRMmtO0k+fj4dAu+4/bxaYJPPvmE4447LufgAI4//nhqa2vZuHEjBx54IOA67vr069eP7du3A27UPHDgwAZr2EcffXSn2Ttw4MCc0wY47rjjGmyzfPly1qxZQywWa/B4KpVi7dq1nWKXj49Px+M7bh+ffUDX9Qa/CyFwHKfDj6MoClLKBo+ZptmmfdTW1nLkkUcye/bsvZ4rLy/fJ/t8fHy6Dt9x+/g0wciRI5kzZw5SylzUvWjRImKxGAMGDMhrHyNGjGDDhg1s27aNiooKAD744IMWX2MYBuCuj9envLycLVu25H6vrq5m3bp1DezdsGEDW7ZsoV+/fgAsWbKkwT7Gjh3L008/TZ8+fSgoKMjrPfj4+PQ8/OI0ny89VVVVLFu2rMHPtddey4YNG/jOd77Dp59+yvPPP88999zD97///dz6dmuMHz+eoUOHcsUVV/Cvf/2LRYsW8eMf/xigQQq+PgcddBBCCF566SV27NhBbW0tAF//+tf5v//7P959911WrFjBFVdcgaqqudedeuqpDB8+nCuuuILly5fz7rvv7lUId9lll1FWVsa5557Lu+++y7p163j77be5+eab2bhxY3tOnY+PTzfgO26fLz1vv/02RxxxRIOfqVOn8sorr/D+++9z2GGHcf3113P11VfnHG8+qKrKvHnzqK2t5aijjuKaa67JOdNgMNjkaw444ACmTJnC7bffTkVFBTfddBMAd9xxByeeeCJnn302Z511FpMmTWLo0KG51ymKwty5c0kmkxx99NFcc8013HfffQ32HQ6HeeeddzjwwAM5//zzGTlyJFdffTWpVMqPwH18ehFCNl448/Hx6TQWLVrECSecwJo1axo4Xh8fH5988R23j08nMnfuXKLRKMOGDWPNmjV897vfpbi4mIULF3a3aT4+Pr0UvzjNx6cTqamp4bbbbuM///kPZWVlnHrqqTz00EPdbZaPj08vxo+4fXx8fHx8ehF+cZqPj4+Pj08vwnfcPj4+Pj4+vQjfcfv4+Pj4+PQifMft4+Pj4+PTi/Adt4+Pj4+PTy/Cd9w+Pj4+Pj69CN9x+/j4+Pj49CJ8x+3j4+Pj49OL8B23j4+Pj49PL+L/A4QSMSURagwyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "3c9c9c19", + "metadata": {}, + "source": [ + "#### Cross-tabulation Table" + ] + }, + { + "cell_type": "markdown", + "id": "ec6ca1f3", + "metadata": {}, + "source": [ + "A cross-tabulation table displays the frequency of each class in the presence of another within the spatial unit of interest. The sample indices are denoted by the band column. The combination of candidate and benchmark map values are denoted. Additionally, the resulting agreement map values for each combination are shown. The counts column denotes the frequencies of occurrence and can then be used to compute categorical metrics." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fdc9df2b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandcandidate_valuesbenchmark_valuesagreement_valuescounts
011.00.06.010345720.0
111.02.018.0639227.0
212.00.020.0512277.0
312.02.024.02473405.0
\n", + "
" + ], + "text/plain": [ + " band candidate_values benchmark_values agreement_values counts\n", + "0 1 1.0 0.0 6.0 10345720.0\n", + "1 1 1.0 2.0 18.0 639227.0\n", + "2 1 2.0 0.0 20.0 512277.0\n", + "3 1 2.0 2.0 24.0 2473405.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "crosstab_table" + ] + }, + { + "cell_type": "markdown", + "id": "c2b000f2", + "metadata": {}, + "source": [ + "#### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "d6e5d48d", + "metadata": {}, + "source": [ + "A metric table contains information about the unit of analysis, (a single band in this case), and selected categorical metrics. This is done by specifying the positive and negative categories of each dataset and then choosing the statistics of interest. Since we did not provide the `metrics` argument GVAL computed all of the available categorical statistics. (Note: if there is no negative class encoding all statistics requiring true negatives will be skipped.)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "16cb3626", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
fn639227.0
fp512277.0
tn10345720.0
tp2473405.0
accuracy0.917577
balanced_accuracy0.873727
critical_success_index0.682336
equitable_threat_score0.610939
f_score0.811177
false_discovery_rate0.171578
false_negative_rate0.205365
false_omission_rate0.058191
false_positive_rate0.04718
fowlkes_mallows_index0.811352
matthews_correlation_coefficient0.758757
negative_likelihood_ratio0.215534
negative_predictive_value0.941809
overall_bias0.959215
positive_likelihood_ratio16.842723
positive_predictive_value0.828422
prevalence0.222798
prevalence_threshold0.195925
true_negative_rate0.95282
true_positive_rate0.794635
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "fn 639227.0\n", + "fp 512277.0\n", + "tn 10345720.0\n", + "tp 2473405.0\n", + "accuracy 0.917577\n", + "balanced_accuracy 0.873727\n", + "critical_success_index 0.682336\n", + "equitable_threat_score 0.610939\n", + "f_score 0.811177\n", + "false_discovery_rate 0.171578\n", + "false_negative_rate 0.205365\n", + "false_omission_rate 0.058191\n", + "false_positive_rate 0.04718\n", + "fowlkes_mallows_index 0.811352\n", + "matthews_correlation_coefficient 0.758757\n", + "negative_likelihood_ratio 0.215534\n", + "negative_predictive_value 0.941809\n", + "overall_bias 0.959215\n", + "positive_likelihood_ratio 16.842723\n", + "positive_predictive_value 0.828422\n", + "prevalence 0.222798\n", + "prevalence_threshold 0.195925\n", + "true_negative_rate 0.95282\n", + "true_positive_rate 0.794635" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "7a3eb3af", + "metadata": {}, + "source": [ + "## Access to Individual GVAL Operations" + ] + }, + { + "cell_type": "markdown", + "id": "8caf6a67", + "metadata": {}, + "source": [ + "Aside form running the entire process, it is possible to run each of the following steps individually: homogenizing maps, computing an agreement map, computing a cross-tabulation table, and computing a metric table. This allows for flexibility in workflows so that a user may use as much or as little functionality as needed." + ] + }, + { + "cell_type": "markdown", + "id": "8c7c6d3f", + "metadata": {}, + "source": [ + "### Homogenize Maps" + ] + }, + { + "cell_type": "markdown", + "id": "df6070e8", + "metadata": {}, + "source": [ + "Homogenization is intended to help prepare two disparate maps for comparison. Currently, homogenization handles three sets of functionality:\n", + "\n", + "1) *Spatial alignment:* matching the CRS's and coordinates of candidate and benchmark xarray maps. By default, the benchmark map is used as the target of this alignment but the candidate map can also be selected.\n", + "2) *Data type alignment:* in order to avoid precision warnings in the comparisons, dtypes are set to the highest precision dtype of the two maps.\n", + "3) *Data format conversion:* a vector data format benchmark map as a Geopanda's DataFrame can be passed which will be converted to the same xarray object as the candidate map with the same CRS and coordinates." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "7264ffc9", + "metadata": {}, + "outputs": [], + "source": [ + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a1a4bd1a", + "metadata": {}, + "source": [ + "The `target_map` can also be an alternate map:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e3917e34", + "metadata": {}, + "outputs": [], + "source": [ + "target_map = rxr.open_rasterio('target_map_two_class_categorical.tif')\n", + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = target_map\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "686cdd37", + "metadata": {}, + "source": [ + "The default is to resample using the \"nearest\" method. Although not applicable for this case of categorical comparisons, one can change the `resampling` argument to use alternative resampling methods such as bilinear or cubic resampling. These methods would be relevant in the case of continuous datasets." + ] + }, + { + "cell_type": "markdown", + "id": "3376c8a9", + "metadata": {}, + "source": [ + "### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "22ae6d51", + "metadata": {}, + "source": [ + "The \"szudzik\" comparison function is run by default if the `comparison_function` argument is not provided, but one may use the \"cantor\" pairing function, or a custom callable." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c6e3c35c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAF/CAYAAAA2D9EJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd4AU5fn4PzOz9fpxcBynSFGaDQGVACqo4KmY2AtoFCSxBCwxRo0/NWr8xmjU2EsSBaOiRqNYYiSoARM1RGk2RFQQ9ejH9ds28/7+2HuX2d3Z3dlyd6jzMRtuZ955552y7/u8z/sURQghcHBwcHBwcPheo/Z0AxwcHBwcHBx6HkcgcHBwcHBwcHAEAgcHBwcHBwdHIHBwcHBwcHDAEQgcHBwcHBwccAQCBwcHBwcHBxyBwMHBwcHBwQFHIHBwcHBwcHDAEQgcHBwcHBwccAQChwT+97//oSgKiqJw44039nRzHArIjBkzYs/2/PPPT1kuGAzSq1evWNnFixd3XyOz5Nxzz6W4uJgtW7bEbZdtT/eZMWNG3DEDBw5MKlNWVsZBBx3EbbfdRigUSjp/MBjkD3/4A+PGjaO8vByPx0O/fv048MADueiii/j73/+esu0NDQ389re/5bDDDqO6uhq32015eTkHHHAAF154IW+88UbW92PSpElpr/nVV19Neey8efM4+OCDKSkpoVevXhx77LG8/fbbOZ1HURRU1Xp4+frrr5k5cya1tbX4fD6GDh3Kr3/9awKBQFLZjRs34vf7+dnPfpb1vXDIHldPN8Bh1+Kxxx6L/f3EE09w3XXX9WBrHBK5/vrrueGGG5g7d27SgJYNzzzzDPfccw8ejydp39///nd27NiRRyu7hw8++IBHH32UX/ziF1RXV1uWOeecc1Ief8ghh1huP/nkkykpKUEIwfr163nnnXd47733eOmll1i0aFHsnjU2NnLkkUeyfPly3G4348aNo7a2ltbWVpYtW8a9997LokWLmDp1atI5nn/+eWbMmEFzczMlJSWMHTuW6upq2traWL16NQ8++CAPPvggxx57bFqhIhXyGhLZbbfdLMtfeuml3HXXXfj9fo466igCgQCLFi3in//8J88++ywnnHBCXPmjjz6agQMHWta1bNkyPvzwQw499NCkfZ999hnjxo1j27Zt7Lvvvhx66KG899573Hjjjbz++uu8/vrreL3eWPl+/fpx3nnncf/993PppZcydOhQ+zfBIXuEg0MnoVBI9O7dWwCipqZGAOK///1vTzfLwcSvf/1rAYi5c+dmfew555wjADFq1CgBiOeff96y3Iknnig0TRMjR44UgPjXv/6VV5u7ih/96EfC7XaLzZs3J+0DRLbd24ABAwQg1q1bF7d9xYoVory8XADinnvuiW2/6KKLBCAOOOAA8fXXXyfVt3TpUnHDDTckbX/ppZeEoijC5XKJW2+9VQQCgaQyq1evFuecc44YMmRIVtcwceJEy2tIx6JFiwQgqqqqxKeffhrb/vbbbwuPxyMqKirEjh07bNd38MEHC0D86U9/Sto3YcIEAYiLL744ti0cDosTTzxRAOLXv/510jFff/21UFVVnHbaabbb4JAbjkDgEOPFF18UgJgwYYK48cYbBSBmz57d081yMFEIgeDWW28VqqqKU045JanMjh07hNfrFUcddZSoq6vbZQWCDRs2CFVVxXHHHWe5v5ACgRBC3HDDDQIQRx55ZGxbbW2tAMSiRYtsn6OlpSUmdD/22GMZy7/33nu26xYiN4HgmGOOEYD4wx/+kLTv4osvFoC47bbbbNX16aefCkD4fD7R2NgYt2/p0qUCENXV1UlC0KZNm4Tb7RaVlZUiHA4n1XvkkUcKt9stNm3aZPu6HLLHsSFwiPH4448DcNZZZ3HWWWcB8PTTTxMOh1Me8/777/PDH/6QiooKSktLOeyww1i0aBGLFy+2XKeV69iLFy9m4cKFHH744VRUVKAoCo2NjbFyr776KlOnTqVPnz54vV4GDx7MZZddxvbt2y3bIYTgySef5IgjjqCyshKfz8eIESO4/vrraW9vTyov10DXr1/P008/zUEHHURRURG77bYbV1xxRWy9+PPPP2fatGlUV1dTVFTE4Ycfzvvvv5/yfmTTbvO9ePPNNzniiCMoLS2lrKyMqVOn8vHHH8eVHzhwIDfccAMAM2fOjFuvzWadv1+/fhxxxBG8/PLLNDU1xe3761//SjAYjD1/K1auXMkVV1zBmDFj4q7zZz/7GfX19Unl169fj6IoTJo0iebmZi655BL69+8fe0Z/+MMfMAzDdvsBHnnkEQzDYNq0aVkdlyujRo0C4Kuvvopt27p1KwB9+vSxXc+8efPYtm0b48ePT3uPJWPGjMmypdnR0dERs1U45ZRTkvbLbS+99JKt+mQf8sMf/pDy8vK4fXLp44c//GHcsgBA3759OfTQQ9mxYwf/+c9/kuqdPn064XCYefPm2WqHQ470tETisGvQ2NgofD6f8Hg8Yvv27UIIIcaPHy8A8eKLL1oe8/bbb4uioiIBiP3331+cccYZ4qCDDhKqqsbUqeecc07cMXKW+tOf/lQoiiIOOuig2HFyRnHllVcKQHg8HjFhwgRxyimniCFDhghA7LnnnkmzBF3XxbRp0wQgSkpKxKRJk8SJJ54o+vfvLwBx8MEHi/b29rhj5Ezq0ksvFS6XS0yePFmceOKJsdnb2WefLT799FPRu3dvMXz4cHH66aeL/fbbTwCiV69eljOVbNst78Vll10mNE0TY8eOFaeddpoYOnRoTIW7cePGWPlf/OIXMTX+hAkTxDnnnBP7rF69OuMzlud77LHHxNy5cwUgHn744bgyhx12mCgqKhItLS0pNQSnn366cLlcYvTo0eKEE04QJ5xwghg4cKAARL9+/cQ333wTV37dunUCED/4wQ/EmDFjREVFhTjppJPEcccdJ/x+v+V7kokDDzxQAEnnklBgDcETTzwhALHffvvFtg0ePFgA4oILLhCGYdg6x7HHHpu09JAtUktkdc/ke33NNdeICy+8UMyePVvcdddd4ssvv7Ssa8WKFQIQffr0sdzf2toqAFFZWWmrbXvuuacAxAsvvJC07/jjjxeAuO+++yyPvfzyywUg7rrrrqR9n3/+uQDEoYceaqsdDrnhCAQOQggh/vznPwtAHH/88bFt999/vwDEqaeemlRe1/XYwPV///d/lnWlEwgA8dRTTyXV+9e//lUAYt999xVr166NbTcMQ1x33XUCEKeffnrcMbfeeqsAxKRJk+IG0GAwKGbNmiUAceWVV8YdIzvOkpIS8e6778a2b9y4UfTt21coiiJGjBghrrrqqlhnbxiG+PGPfywAcd111+XdbnkvVFWNW8+PRCLi5JNPFoC49tpr444pxJLBY489Jpqbm4Xf7xeHH354bP+XX34pFEUR06ZNE0KIlALBG2+8YSmUSbX6zJkz4/ZJgUAKjlu3bo3t++yzz2Kq91Q2DYm0tLQITdNEbW1tyjKFFgjOOOMMAYgzzzwztu3mm2+OnWf48OHiqquuEs8//7z46quvUp5jt912E4D4z3/+k1XbzNgRCBI/brdb3HjjjUnlX3jhhZhdSSoqKioEIJqbm9O26+23344JsqFQKGm/tF2xEhaEEOLOO++MCchW9O7dW3i9XtHR0ZG2HQ654wgEDkKInR3JM888E9u2bds24Xa7LdcDpSHSkCFDhK7rSfVJ46FUAsHUqVMt2yFnwB988EHSPsMwxAEHHCA0TYsNKuFwWPTu3VsUFxdbztrb29tFTU2NqKysjGuneSaVyM9//nMBiMGDByd1bKtWrRKAmDhxYl7tNt8L8yAjee+99yzPUyiBQAghTjvtNKGqaswg7re//a0AxN///nchRGqBIB277babqKqqittmFgj++c9/Jh3zwAMPJK3Pp0OuRZuFmUSsBsXET6IAkigQGIYh1q9fH9P8KIoi3nzzzVh5XdfFFVdcIdxud1Ld++yzj3jggQeSfhs+n08A4pNPPklqc0NDQ5zWJ5X255577hHDhg0TV111VVId1157rXjsscfE559/Ltrb28WaNWvE//3f/8U0MXfeeWdcean5mDBhQsp7KYWYVNoYyYUXXiggtd2R1Jalsrn405/+FNMeWiH7lOXLl6dth0PuOG6HDmzYsIE333yTiooKfvjDH8a2V1VVceyxx/LCCy/wzDPP8JOf/CS276233gKi7k1W/sann356rIwVP/rRj5K2bdmyhVWrVjFkyBD23XffpP2KojBhwgRWrlzJsmXLqKurY/ny5Wzbto0pU6bQt2/fpGP8fj9jxozh73//O2vXrmXYsGFx+4866qikYwYPHgxE7Qzcbrflvo0bN+bV7kxtkO5V5vMUmrPOOou//vWvzJ8/n1/+8pc88cQTVFdXW7Ynke3bt/Piiy/y4Ycf0tjYiK7rAITDYbZv305DQwO9evWKO6ZXr15MmTIlqa5p06Zx4YUX8vbbb2MYRkr/dYmMOVBZWZmxnencDvfYYw/L7YMGDUra5vF4uPPOO+Nc6VRV5ZZbbuGSSy7h2Wef5c033+Tdd99lw4YNfPTRR1x44YUsXLiQv/3tbxmvCaCtrY1HH300afuMGTMYPnx47PucOXOYM2eOZR2JsUOGDh3K1VdfzYEHHkhdXR3XX3895513Hn6/P2N7siEcDvPXv/4VgB//+McFrVsi3ydpu+FQeByBwIEnnngCIQSnnHJKkrHPWWedxQsvvMDjjz8eJxDIgap///6WdabqbNPtX79+PQBr165FUZS0x2/bti3umEWLFtk6JlEgsPLLlv7b6fYFg8G82m1m9913T9pWWlqadJ5Cc/TRR1NVVcUTTzzB5MmT+eijj7joootwudJ3C08++STnnXcera2tKcu0tLQkCQQDBgywLFteXk5FRQWNjY3s2LGDqqqqtOeXhpDyHqUjFyM06cOvKAolJSUMHz6cE088kdraWsvytbW1XHzxxVx88cUArF69mttuu41HHnmEBQsW8OSTT3LmmWcCUSH7m2++sXwXd999d4QQse9HH300CxcuzLr9Vhx11FEceOCBvPfeeyxdupRJkyYBO99nK8NbSVtbG5D+fv/jH/9g+/btDBkyhLFjx1qWyXSuTOcpKysDiDM+digsjkDgEAtGtHjx4qRgLdLa/s033+TLL79M2alni8/nS9omLc1ramqSZtGJyHbIY/baay8mTJiQ9hirgSbdzM3OrM7chmzanct5Co3b7ea0007jgQce4OqrrwbIaPn+5ZdfxjxH7rzzTqZOncpuu+0Wm3GOHz+ed955J25gKzTSer2lpaVL6r/ttttSBt2xw4gRI3j44YfZsWMHzz//PH//+99jAsHIkSP55ptvWLFiRcb3tdAMGTKE9957L07rJAXzr7/+2vKYtrY2GhsbqaysTCsQmD2UUrHHHnuwYsWKlOeS21P1MVIQrKioSHkOh/xwBILvOcuWLWP16tVANIrYZ599ZllOCMETTzwRGzj69esHxLthmUm1PR1ypty7d2/bMzt5zPDhw3vMJSmXdu8qnHXWWTzwwAO8+uqrDB06lIMPPjht+VdeeYVQKMTll1/OJZdckrT/iy++SHnshg0bLLc3NzfT2NiI3++31dnLqIQNDQ0Zy/YkRxxxBM8//3ycVuiYY47hlVde4amnnkqp9u8qZPTJ4uLi2LZhw4bh9XrZunUr33zzTZJWbPny5QDsv//+Kettbm6OuSWmEwhGjhzJCy+8EKszkUznku3Pxs3TITucOATfc6Rkf/nllyOiRqZJH+njLssCsdnN888/bzkblOuJ2bD77rszfPhwPv74Yz799FNbxxx00EGUl5ezZMmSHhsgcml3rsiwuZFIpCD1jR8/npEjR1JVVcW5556bsbzslK2WOd588002b96c8tjt27fz+uuvJ21/6qmnABg3bhyapmVswz777IPL5WLNmjUZy3YlmbQgUrg2D7IzZsygqqqKt956K+731NVs3bqVf//73wCMHj06tt3v93PEEUcA0XDWiTz77LMAcbZFVmUCgQATJkyI2dhYIUM4v/TSS0lLYZs3b+bf//43lZWVKTUnn3zyCV6vlxEjRqQ8h0N+OALB9xhd13nyyScB0gZ4OfTQQ9ltt91YvXo1y5YtA6KznyFDhrBmzRpuvfXWuPLz5s2LdT7Zcu2112IYBieffDIrV65M2r99+3b+9Kc/xb57vV6uuOIKWlpaOOmkkyxnqN98801cjoauINt254pcxy7kYLhy5Uq2bdvGlVdembGsNHZ8/PHHY2u+EL3HF1xwQcbjL7/88rggTevWrYsZws2ePdtWe4uLixk1ahQbN27km2++sXVMVzB+/Hjmzp0bdx8kL7/8Mg8++CAQH/CnpKSEuXPnoigKM2fO5Pe//71lUp+vv/46pZbt3nvvZfjw4fzqV7+K2/7222+zYMGCmIGnZP369Zx44om0tbXxox/9KEmYu+yyywC46aabWLt2bWz7O++8w0MPPURFRQWzZs1KeR+kYJPJmPDggw9mwoQJbNmyJe5di0Qi/OxnPyMcDnPxxRcnGfJCNEDY9u3bOfjggy2XGx0KRM84NzjsCrzyyisCEEOHDs1Y9rLLLhOAuOSSS2LbzIGJRo4cKaZNmyYOPvhgoSiKmD17tqULkXR9S+fKdvXVV8f880ePHi1OPfVUccopp4hRo0YJTdNEeXl5XHld12PxATwejxg7dqw444wzxEknnST22WcfoSiKGDlyZNwx6UK8yqA9VnHVhYi6tA0YMCDvdme6F1bn+eabb4TP5xOapomjjz5anHvuuWLWrFmWbmyJJLodZsLK7TAYDIp99tlHQDTfxcknnyymTp0qioqKxPjx42PBrMz31RyYaPTo0bHARD/84Q9j789ZZ51lq02S66+/XgDi8ccft9yPKQ5Gqk9ijId0cQiskPkNfD6fGD9+vDjjjDPE8ccfL4YPHx47/wUXXGB57HPPPSfKyspisTCOPPJIMW3aNHHccceJkSNHClVVBSDGjh2blCchVRwC+d7W1NSIY489VkyfPl1MmDAh5uq4zz77WOZ9EEKISy65RACiqKhIHH/88eKYY44RLpdLaJqWNj7EV199JVRVFR6PRzQ0NGS8Z59++qmoqqoSEA3ydPrpp8cCPI0fP94yr4MQO2Ob/O53v8t4DofccQSC7zEyul+qgc/Mu+++KyAah9wca3zlypXiuOOOE2VlZaK4uFhMmDBB/OMf/xCPP/64AJJ8pe0IBEIIsWTJEnHqqaeK2tpa4Xa7RVVVldh///3FnDlzxJIlSyyPeeGFF8TUqVNFdXW1cLvdorq6WowZM0ZcccUVYtmyZXFlu0IgyLbduQgEQgixcOFCMWHCBFFSUhIbeOzECiiEQCBE1F/+wgsvFAMHDhRer1cMHjxYXHnllaKtrc3yvkqBYOLEiaKxsVH87Gc/E7W1tcLj8Yhhw4aJ2267TUQiEVttkmzYsEFomiaOPfZYy/3yvqT7JAqJ2QoEq1atErfccos46qijxJ577imKioqE1+sVe+yxhzjllFPEK6+8kvb47du3i//7v/8TEyZMEL179xYul0uUlZWJfffdV/zkJz8Rr732mmUExFQCwccffywuvPBCMXr0aNGnTx/hcrlEeXm5+MEPfiBuv/32pGidicydO1eMGTNGFBUViYqKCnH00UeLt956K+0xt9xyiwDEiSeemLacmQ0bNogZM2aImpoa4fF4xF577SWuvfbatAGHjjjiCCeXQTegCNGF5sAO31suuOACHnroIZ566ilOP/30nm6OQw+yfv16Bg0axMSJE7PKuZCJE088kZdffpmvvvqKmpqagtXrsGvx9ddfM2DAAE455RSefvrpnm7OdxrHhsAhZxoaGmI++Gaefvpp/vznP1NRUcFxxx3X/Q1z+F7wm9/8BsMwuO2223q6KQ5dyO9//3tUVU0KuuRQeBy3Q4ec+fTTTxk3bhz7779/zLp49erVrFmzBk3TeOihh+JcnBwcCsm+++7LOeecwwMPPMAVV1wRc0d0+O6wceNG/vjHP/LTn/40KZCTQ+FxlgwccmbLli3ceOONvPHGG9TX19PW1kbv3r0ZP348l19+OePGjevpJjrsAnTVkoGDg0NhcQQCBwcHBwcHB8eGwMHBwcHBwcERCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAweF7z/XXX4+iKD3dDAcHhx7GEQgcHLqJefPmoShK3Ke6uprDDz+cf/zjHz3dvIysWbOGn//854wfPx6fz4eiKKxfv76nm+Xg4FAgXD3dAAeH7xs33ngjgwYNQgjB5s2bmTdvHsceeywvvfQSxx13XE83LyXvvPMOd999N3vvvTcjRoxg5cqVPd0kBweHAuIIBA4O3cwxxxzDgQceGPs+a9Ys+vbty5NPPrlLCwQ/+tGPaGxspLS0lNtuu80RCBwcvmM4SwYODj1MRUUFfr8flytePr/tttsYP348VVVV+P1+xowZw7PPPpt0vKIozJkzhwULFrDvvvvi9XrZZ599ePXVV5PK/uc//+Gggw7C5/Ox55578tBDD9luZ69evSgtLc3+Ah0cHL4VOBoCB4dupqmpiW3btiGEYMuWLdxzzz20trZy1llnxZW76667+NGPfsSZZ55JKBTiqaee4tRTT+Xll19m6tSpcWX/85//8Nxzz/Gzn/2M0tJS7r77bk4++WQ2bNhAVVUVAB988AFHHXUUffr04frrrycSifDrX/+avn37dtu1Ozg47Lo4AoGDQzczefLkuO9er5dHHnmEKVOmxG3/9NNP8fv9se9z5sxh9OjR3HHHHUkCwerVq/n444/Zc889ATj88MMZOXIkTz75JHPmzAHguuuuQwjBv//9b/bYYw8ATj75ZPbbb7+CX6ODg8O3D0cgcHDoZu677z6GDh0KwObNm3n88cf5yU9+QmlpKSeddFKsnFkY2LFjB7quc+ihh/Lkk08m1Tl58uSYMACw//77U1ZWxhdffAGArussXLiQE044ISYMAIwYMYK6ujpeeeWVgl+ng4PDtwtHIHBw6GYOPvjgOKPCadOmMWrUKObMmcNxxx2Hx+MB4OWXX+amm25i5cqVBIPBWHmrmAHmQV5SWVnJjh07ANi6dSsdHR0MGTIkqdywYcMcgcDBwcExKnRw6GlUVeXwww9n48aNrF27FoB///vf/OhHP8Ln83H//ffzyiuvsGjRIqZPn44QIqkOTdMs67Yq6+Dg4GCFoyFwcNgFiEQiALS2tgLwt7/9DZ/Px8KFC/F6vbFyc+fOzan+Pn364Pf7YwKHmTVr1uRUp4ODw3cLR0Pg4NDDhMNh/vnPf+LxeBgxYgQQnfErioKu67Fy69evZ8GCBTmdQ9M06urqWLBgARs2bIhtX716NQsXLsyr/Q4ODt8NHA2Bg0M3849//INPPvkEgC1btjB//nzWrl3LVVddRVlZGQBTp07ljjvu4Oijj2b69Ols2bKF++67j7322ov3338/p/PecMMNvPrqqxx66KH87Gc/IxKJcM8997DPPvvYqrOpqYl77rkHgLfeeguAe++9l4qKCioqKmLeDA4ODt9OHIHAwaGbue6662J/+3w+hg8fzgMPPMD5558f237EEUfw8MMP87vf/Y5LL72UQYMGccstt7B+/fqcBYL999+fhQsXctlll3Hdddex++67c8MNN7Bx40Zbde7YsYNrr702btvtt98OwIABAxyBwMHhW44iHKsjBwcHBweH7z2ODYGDg4ODg4ODIxA4ODg4ODg4OAKBg4ODg4ODA45A4ODg4ODg4IAjEDg4ODg4ODjgCAQODg4ODg4OOHEIuhXDMKivr6e0tNQyQY2Dg4PDtw0hBC0tLdTW1qKqzhzz24wjEHQj9fX19O/fv6eb4eDg4FBwvvrqK3bfffeeboZDHjgCQTdSWloKwCEcy9cPj2HgLOvocM9/+gEnDt0vq7qf//SDpG3Z1iExDhmJ+p9VGIeM5IVHHo/bd/y5Z6H+Z1XctvUP75/yWtK11U777NSd6n6l2p6uTuOQkWyYKVLuNx+bzXXk8kzl/U88LrEN6epNfC9k2VTbs32WVuc7ceh+KetZ//D+SdtWHPpE7O/jzz0rab/VPUhEvrN225crme5Pod5tu+3M93rM70GqetJd0/OffkBzq8GA0etj/ZvDt5ce1e8MHDgQRVGSPrNnzwZg06ZN/PjHP6ampobi4mJGjx7N3/72t7g6GhoaOPPMMykrK6OiooJZs2bFMsZJ3n//fQ499FB8Ph/9+/fn1ltvTWrLM888w/Dhw/H5fOy3335J+eGFEFx33XX069cPv9/P5MmTLTPHpUMuE7hws9dPVuNS3JafU4eN5vWNH8d9UpV1KW7USWMpK9WSPuqksWmPM3/izuHyoU4ay7+eeTKpTs9b8W3Z8OTBqEU+2+eR13fqsNG22rfXT1az4cmDM1671T0qK9WS2upS3Gnb63nrY/b6yeqU91w+t9c3fhy7J3auWbYx3fNMvE7PW9FzJG43ty/T+ROfnzz/qcNGx7adOmx07Pzprt3OOySf6+fHPmW5//Njn0r6mNvncvmSPnbu8b+eedL2u5fuXcp0vNW7I59Ptu9Eqj5A3kc7dZx83k9yelbm4zO1Wb4rVr/DU4eNpqxEjevfHL699KhA8O6777Jx48bYZ9GiRQCceuqpAJx99tmsWbOGF198kQ8++ICTTjqJ0047jRUrVsTqOPPMM/noo49YtGgRL7/8Mm+++SbnnXdebH9zczNHHXUUAwYMYNmyZfz+97/n+uuv549//GOszNtvv820adOYNWsWK1as4IQTTuCEE07gww8/jJW59dZbufvuu3nwwQdZunQpxcXF1NXVEQgEuuTeTJk2k7rakbHvC+tXsbA+fgYkty16Mj4lrjwucbsVX8wfxcL6VUyZNhNj4uhYfVbHmtsjWTtpHoOnr0jabgd1yXJb5RLr/2L+KL6YPypWh1W7INrexHuWiKwn2/1Tps2M/Z3pHLIt8iOPWVi/CmPi6FgZeZ3mbXW1I1k7aZ5lfcbE0XHtSGxvunZZ7bPzHM31y+cg6zK/d4nPZGH9KoYsnhH7TJk2M/aR92XKtJlJ7538Ls+b6nnYedaZ9tt5H62exeDpK9K+R5nesWwx12f3N1QIrK7d4btFjwoEffr0oaamJvZ5+eWX2XPPPZk4cSIQHagvuugiDj74YAYPHsw111xDRUUFy5YtA6KpW1999VX+/Oc/M3bsWA455BDuuecennrqKerr6wF44oknCIVCPPLII+yzzz6cccYZXHzxxdxxxx2xdtx1110cffTR/PKXv2TEiBH85je/YfTo0dx7771AVDtw5513cs0113D88cez//7785e//IX6+vqc0tFaqU3lAGEe5OUPP3HwSRQOzJ2q7IjlMZk6wcHTV8Q6YishwNxpW7W5O5H3Y/D0FUmDlxwQ7LTJ3IHLeszH2akj8V7Z6fSNiaMxJo6ODX6yHnO7jYmjLZ+DuU1mgSGxrLnTThQWCoH5vsvnkPhupBIGZPsGPhQ/kzRfjxWyvnT3eGH9qpSCYap2WZGpLakw35fE8+QqMKc7l7wXmd7VTNdjV6BIde9yvV8Ouya7jEloKBTi8ccf59xzz42pnsaPH8/TTz9NQ0MDhmHw1FNPEQgEmDRpEgDvvPMOFRUVHHjggbF6Jk+ejKqqLF26NFbmsMMOw+PxxMrU1dWxZs0aduzYESszefLkuPbU1dXxzjvvALBu3To2bdoUV6a8vJyxY8fGylgRDAZpbm6O+yQiBwPzgC478rWT5lFXOxJ1yXLLzl2Wt/pRZ/qhy8HJSsMAO4UMdcnylHWZhQ5j4uiCz4QSydSxWnVa5pmj7Ei/mD/KcraTODOXx8j7ZL5niVjVl1hOXbI8JgCkGvTldqvzmIVFc9lEIdHquaYbDBfWr4rTuqRqf7bIeiXpZpjy3ie+51JzJYWPXAdXuwOXHa1aKuwK4emwI9gUGruC45RpM5OuLZ/75bDrscsYFS5YsIDGxkZmzJgR2/bXv/6V008/naqqKlwuF0VFRTz//PPstddeQNTGoLq6Oq4el8tFr1692LRpU6zMoEGD4sr07ds3tq+yspJNmzbFtpnLmOswH2dVxoqbb76ZG264IWn7wFnvs3Djx4B1Ry0H4CnTZsJEYoNyvh2FMXE06pLlnT9q605LnkMl88whsTOQM78v5o/K2HHLDro7VJ5moaCutnNjfXLHbb4eq1l4ps5PXreVtsGsubHTiZoH+2xJtYRkNXOXyMF6ysSZwKrYMpJ8D+w800TqakcymBVQb6o/zeCz6Mm5cfutlh7SnSsdduvKR8tQiMHRfM/TkfiepcLO70uWiT3zFMd05/JEIrquEw6He+z832bcbjeaptkqu8sIBA8//DDHHHMMtbW1sW3XXnstjY2NvPbaa/Tu3ZsFCxZw2mmn8e9//5v99svdsra7+NWvfsVll10W+97c3Ez//v07lww+ttVB2fkRyoE+EbMava52pKnDXZVUzi5yoJSdn1zLNn+3M3DI9qZqe7aYByyrwStxSSHTmnMunfvaSfOg3nrfznPFCwh2B3w7a+SpjsumTvN1x2sYsj513sjBsVDvSCYKNTvvrhl+ru9EOuwITrkIh7kihGDTpk00NjZ2y/m+q1RUVFBTU5PR8HOXEAi+/PJLXnvtNZ577rnYts8//5x7772XDz/8kH322QeAkSNH8u9//5v77ruPBx98kJqaGrZs2RJXVyQSoaGhgZqaGgBqamrYvHlzXBn5PVMZ8365rV+/fnFlDjjggJTX5fV68Xq9lvsKKQzIgT6dilhK/7KM/Ntu55U4ozcfZ7XNLuZrzKdDlh1UXe1IBk5ULOtKNOhLta87SWxjog1BvHYj3sg0U712jR2765rtqqbNwqVdulPV3pXn6qlZuPk9SHd9dbUjYX73tUsKA9XV1RQVFTmeDFkihKC9vT02TprHLyt2CYFg7ty5VFdXM3Xq1Ni29vZ2gKTIV5qmYRgGAOPGjaOxsZFly5YxZswYAN544w0Mw2Ds2LGxMv/v//0/wuEwbrcbgEWLFjFs2DAqKytjZV5//XUuvfTS2HkWLVrEuHHjABg0aBA1NTW8/vrrMQGgubmZpUuXcuGFF2Z9vQNnvQ+KO+X+bDocOair7FxSMCaOZlF98mBv7mhVljNk8YyoStcGdjqqfGcOslMasnhGXvWkamuqgc98nwplPJlqoM30XKW9SCZhLVGAMX9PtURgt61WwlEmdXIuWGlhzNvMWhWzYaHVu1EIg8J8BvmowFwYwSqb37/dJYZMfDF/FHW19t71tZPmMWR+fr9RO+i6HhMGqqqquvRc32X8fj8AW7Zsobq6Ou3yQY8bFRqGwdy5cznnnHNwuXbKJ8OHD2evvfbi/PPP53//+x+ff/45t99+O4sWLeKEE04AYMSIERx99NH89Kc/5X//+x9vvfUWc+bM4YwzzogtPUyfPh2Px8OsWbP46KOPePrpp7nrrrviVPmXXHIJr776KrfffjuffPIJ119/Pe+99x5z5swBov61l156KTfddFPMBfLss8+mtrY21pYuv08WRlGpOg5pbyA7cYnZCyEd2RgHmo3R1k6al2Tglq2hoVxyKOSs1a73QTakMmA03+O62pEx6/pUx1iRKAxkEgwSn3EiVp4pmdpuRa7CgNkdUZLNkow0ZltYv8pyELJjMGj3+ef6nti9N5l+D9la7atLludt6W8lZKW7D1OmzYzZhHSlVkbaDBQVFXXZOb4vyHuYyQ6jxwWC1157jQ0bNnDuuefGbXe73bzyyiv06dOHH/7whzFXv0cffZRjjz02Vu6JJ55g+PDhHHnkkRx77LEccsghcTEGysvL+ec//8m6desYM2YMv/jFL7juuuviYhWMHz+e+fPn88c//pGRI0fy7LPPsmDBAvbdd99YmSuuuIKLLrqI8847j4MOOojW1lZeffVVfD5f3vfA3GGn+nFLy/JskHYDdgUBsDfLNwsBZtczq8Ev11lEIToaO4JALuexmoGnqkfem2zOk22bEgcj6WUgP0MWz4i1IZ2nRCrMzzVfEt1b7SwjZFpCKKTWIp/3zurYRAEg0+8hl2vJVyhIdJnM5OaZ2MZ8IiXawVkmyB+791ARQogubotDJ83NzZSXlzOJ43GZlgwSjaasZv521N1mUg3shTQIsursrNa7c8WYOJr154u07U2MJwD21tdluUztTDSYtMJOPXbVwLk+N3M706n2zZ4QdtosyXcZJ7H95vPHe7+kJ5tlC/PvKhs1fKay6fZbLb1kSy42CoW2a8j0OzafLyLCLOYFmpqaKCsrK1gbAoEA69atY9CgQQWZeH2fsXsve1xD4JBMqhmZWa2badaZqvPOVxiw0g4kUqgZpbpkeZLvujx/4lKFXeyq4iHa6a0/X2Q9w8903nSkWi7J9Nzi7ENsDJhmuwGr+ANWbbCaMdpdEkol5MDOGa5c/kj8mJGaskyBecwGconbMpHO+DTTwCv35RsUKp8lLrtBi+y2I5UtTHcb4H4bWL9+PYqisHLlSgAWL16MoijfGi+JXcKo0CEeGUBHBibalX54Vh17IY2LrGb8GffVp47wJ0k1w003866rHWnb6LInSTWby6RVyMZrIbZmTPw58nn20jgt+vfclMKMXOqQLHpyrunYzK6juf5+rH57mYz4pHFhNh48qc6dL4U4v/xdpRKEvpg/ij2m/S/n8+TDjBkzePTRR5O219XV8eqrr/ZAi5IZP348GzdupLy8vKebYgtHQ7ALYNUJypDCcuZUVzuyyyMBFoIhi2fkFfM8XTS6dPvSCQO5dIzZGKHZ1YjYqTNb1W861a7dwdps55CNdqcQ7+PaSfNi70s6Gxrzb8QcydOMPNZ8nxNn6vkamBbKXqHQIX/NWg1p3FsIMuUKGTx9hWWm1e7i6KOPjsuHs3HjRp588skea08iHo/Hlv//roIjEPQg0sArFYmdT3cFA8mHfNeZsyHdAALxBlLZLqFYzbatzl9oK+tsVM3y/IUUFgdPXxETCnJdlspEpoBQ8neR+JHIQco8CH4xf1SSHYL5Xuaqwk/UTmS77JCKroo3IK+zkO+leQnC6vfW1UaF6fB6vXH5cGpqamLu5Iqi8Oc//5kTTzyRoqIihgwZwosvvhh3/EcffcRxxx1HWVkZpaWlHHrooXz++edA1APuxhtvZPfdd8fr9XLAAQckaR7+97//MWrUKHw+HwceeGBc4j1IXjKYN28eFRUVLFy4kBEjRlBSUhITaiSRSISLL76YiooKqqqquPLKKznnnHPiPNqeffZZ9ttvP/x+P1VVVUyePJm2tra876cjEPQA96+8EdgZknhXp7sSmKQaYBKt5s2zvFSaATsDQKpBtCeXaOy+D13ZRnPCoqh/+s7BJTHDYbakWo82n8Nulk55rNRKpdLWyHch2wyV5vbYFbjsLlN01W/K6v3JRVg0Z5c0/y6lwPZt4YYbbuC0007j/fff59hjj+XMM8+koaEBgG+++YbDDjsMr9fLG2+8wbJlyzj33HOJRCJANOnd7bffzm233cb7779PXV0dP/rRj2Jp71tbWznuuOPYe++9WbZsGddffz2XX355xja1t7dz22238dhjj/Hmm2+yYcOGuONuueUWnnjiCebOnctbb71Fc3NzXBK9jRs3Mm3aNM4991xWr17N4sWLOemkkyiEf4DjZdCNSC+Dzz/5iPNH/LqgdT/XcB8n9ZrdrTkCUlFIT4NcBp58Auh0ZRS6XEPwZuthkguZ7A2s2pCt54HdOjL5wKtLlmf0Lkm8N1a5KQppyW+VxyLde5jJUyGfZ5vv8eneBavfdk95GcyYMYPHH388ad/VV1/N1VdfjaIoXHPNNfzmN78BoK2tjZKSEv7xj39w9NFHc/XVV/PUU0+xZs2aWNA6M7vtthuzZ8/m6quvjm07+OCDOeigg7jvvvv44x//yNVXX83XX38da8ODDz7IhRdeyIoVKzjggANYvHgxhx9+ODt27KCiooJ58+Yxc+ZMPvvsM/bcc08A7r//fm688cZYXpyamhouv/zymJCg6zqDBw9m1KhRLFiwgOXLlzNmzBjWr1/PgAEDCnIvJY6GoAfw+Dw8/vVtANy22l6kw/kbb4/7/uz2u/nb9nt5ruE+nmu4D4gKBVLrYKVqNZMpf3uuKuieFgYgP2GoKwOtWLUr02wr8X7a8TDJFjvPujttC+T1WWl5MtmKJKbqlr8BKxsEK7INyiWRWTHNrD+/8HMtu7PzfJ5BOmHAbGy4K3D44YezcuXKuM8FF1wQ27///jtTzRcXF1NWVhYL47ty5UoOPfRQS2GgubmZ+vp6JkyYELd9woQJrF69GoDVq1ez//77xw2wMrptOoqKimLCAETDCcs2NTU1sXnzZg4++ODYfk3TYpF4IRrC/8gjj2S//fbj1FNP5U9/+lMsc2++OF4GPUDE0AmG2/jDZz8j0BLit8tm4St3ocTCNMd3JAoq7cE2nt12DwYRVEVDQbU0VJGagsS4BhBvNT1kceoOI12SoHz5Yv4oBj6kpFVt5mqUKK8vnadCprYlHmO1LZeZfrqokqnqMyaOZsq0nfu6Qlix+4wHT1+RlLhJJnNKbFc29z1dGNxEgzazxbvV+xt97oKBjE4K1mM30qddr4zEstHfVXzcBtkm6TWUGAAose2yXDrPCWknkcn1cW194cILS48nc6hzs2B2ZL+98z5HrhQXF8ey31qRONgrihILfS9D+nY3Vm3KRlGvaRqLFi3i7bff5p///Cf33HMP/+///T+WLl2alNk3WxwNQQ/Q2t5MwGgC1cBToiEEhNp1ROeLCuaBXqHIU06xv4RgMIymuFMKAxKz1gDi12jlv2snzcs4i9jZQdlHniuVD/faSfNSRl3MtfMyzwozGRGmIlVY3FQDVbak6sDTCRfdYWOSzX3KFKwnV+T6v3ndWv5rthkxD0JmoTUROWia712+qYkTbVfkue3YU9j5DZk9A4YsntGjHkWJcT6kTYk5gdh3gf33359///vfluF8y8rKqK2t5a233orb/tZbb7H33lEBaMSIEbz//vsEAoHY/v/+9795tam8vJy+ffvy7rvvxrbpus7y5fH9gKIoTJgwgRtuuIEVK1bg8Xh4/vnn8zo3OAJBj+DRvGh6EQgFVVXwV7pweTTCHQIjYhYKFIo95VT4+uJxedBcGoFgCCGwJVGahQIz2QyaUijIpcM3q5mtjpdWy2ajwWy1A4m+66lm+Xbq6QqyVa12lSo2k0dLIuYBQT4nO0GArAICSTLdYzkomv9Nh1kosNIKZbrebJ55KrfOgQ9ldieTrpWJ76FZ4JHYqS+bCJPZIO+jvIeZtCW7gmAQDAbZtGlT3Gfbtm22jp0zZw7Nzc2cccYZvPfee6xdu5bHHnuMNWvWAPDLX/6SW265haeffpo1a9Zw1VVXsXLlSi655BIgmidHURR++tOf8vHHH/PKK69w22235X1NF110ETfffDMvvPACa9as4ZJLLmHHjh2xSeDSpUv57W9/y3vvvceGDRt47rnn2Lp1KyNGjMj73M6SQQ/Q0aHjLy5BU0BXW1AwUN0CPSxo2xamqMqDy61R5C6jwleDprhQFAW3K5qlKhgM4fV6AJFWU5BOaJCzeDs/aqkuzsY+QKotE9XMiWQzczNbvqfqrNZOmhcLniPLWalszXRnfnczVtqBrtIIZBvv3jzY1tUSy6ZpvleZBISuwryOPfAhYkaGmdolyVVbkKj5klkppU2CrDeVvYX53YROF8/58XE7zHYHXbVkZ8cFN11gMPP+KdNm8vynf6ZyaEGbaZtXX301KaXvsGHD+OSTTzIeW1VVxRtvvMEvf/lLJk6ciKZpHHDAATG7gYsvvpimpiZ+8YtfsGXLFvbee29efPFFhgwZAkBJSQkvvfQSF1xwAaNGjWLvvffmlltu4eSTT87rmq688ko2bdrE2WefjaZpnHfeedTV1cWyFJaVlfHmm29y55130tzczIABA7j99ts55phj8jovOF4G3Yr0Mli2bBklJSUIDAy1HV1rAgwEgkhAIHQoLS2nqqQWl+qOG/SFEEQiOpGIjtfrQVWtBQIhBMFgGEVV8LhdnFwVzdyYLqa8FYmW24mdrdWx6TrkbCMvmjtdO4NlV3oJFJp0ywXyOsxq5F0tDoWd55jt+5EJeR+shBurJE9mEpMq5SJ8yfV0WYd8NxOFDPPzMl9vqu1yXyLmZ27+7Vq9O1ZCUaLLaC7vUKbjnlmznMqhXzi5DLoIwzAYMWIEp512WsxjIlscL4NvAQoqqlGMplcAKgoKbr9GeXklnlA5oTY9+RhFweXScLk0QqEwhoU8J4QgGAqjdgoDGAaPvhVVc8nZstmPO5uZXjoL8ExR4BLPlU7tKPdJwzKzq1k6CpmZL1/yUf8nBgeSLm35eIDk26ZEzB4PVs/SrNGxOi4fElMpp5v1W2VYzCQ8mNfRze+1VOmbYxtYCRayXOLvwWwrkBg4KdNgbXe/OXaEebknnd1FPuftycBE30W+/PJL/vSnP/Hpp5/ywQcfcOGFF7Ju3TqmT5/e5ed2NATdiNQQfPD+SjzenRauAoGhtmG4WijylFLhq0ZEVJq3teAv8eEv9SUtDQgh6Ah2oBsGxb5iVFWJ+iZIYUBRcLtdKCi0fbGere/8D1dRERf/5B9J7ZIBXez6dEsy5Q9IRM6k5GBnZb2fq4847HragUzeCLnGJejJY+2SrfupeeadC+kG+cR3NJP/fyqh1qydsPLike2AndqKbAVkiR1PmUxxEcCUg8IkICSeK1+cbIeF5auvvuKMM87gww8/RAjBvvvuy+9+9zsOO+ywnOt0NAS7MEV+D+bxXUFBM4opddVQ6euLprhxuTUqqstAUQm0hTD0qLGhEAJD6LSFG2kK19Mc2kJHsAPDEFFhIGgSBjpP4q4op2zoELy9+1i2p652ZFL8czsdhrpkeZKmwGrWKD8y4UuqTi4xJK0V6WY3u5J2ANLbA5hd6Apdt91juyMio5xd2/FoSadtyBW7woDcl06DsnbSvLRCsFkYyKQtg+QB3Vy+UMtD8jeR+AxShSF26Hn69+/PW2+9RVNTE83Nzbz99tt5CQPZ4AgEPYCmabg6DUQkPq+HMn85aqcBoaIoqJqGv9iDHtbZsaWJSDi6hNAa2sGOjo1EjBAlvjLcmotAMEQgGEJR44UBFHD3qqR0/31RK/smtUWqRc0zCDudmcQ8MKWbeSV2fqlcGhNdz3oaO+3Ipa3pksZ0J10lFCQO6nbcXK3qyCYHQaYBzk5diYJWopCZLjSxdBPN5p7K30XiDB4yu/2m09xJzFqXRA+Gb0PYdIfuxREIeoB2dQe+YgWXFr39Pq+bshI/qqrELQ0oUc9Disv9eH0e2lsCGLpBRA8BUO6tptTbC7fbjUtTiUT0mCeCRAhBR2uAYCBMUa+SpLaYMwhazc5yHbTyHdCzTUbUFfSU94Fd8h3Mu0MgyVcoyCd+QKIGK5PGJhWpNE/Z3P902is5W5dtzUZTYBXrY9GTcxk8fUXSEkzivSyUMLj+4f0zF3L4VuAIBD2AThjVY1BW6qe4yGspDEgURUFRFYorivAXe2lr7kAPQpm3DyXeXihEj3O7Xfi8HoKhMEKI2Ke9JUBrYxu+Ig/uIm/ebU/VoSd2eLkOpIlW1XaQnbmdc2YzIOUSmKk7sQoAZW7vrtJ287uRj51AOlIJDlIIyLScJMslCgayvUMWz7CsI/HepzLEzXTdqWxnsnmG5nObBYx05LpskBi8yOG7gSMQ9ADlSjU+pQSP20VpsS+lMGBGURRcHg2Pz41o8+COlMSEgdh+V3QpIhSKgIBwMIIwBL1qytHcGrjshZ1IZ3iUKhFNOh//VHVlws4An22HJq31U0We604KMUOrqx0ZN1BlI4h9MX9U2oHSHJgoW8z3MnEw7A7bBSvsnNdKi7B20ryYJi3d/Uo16Fu56qbK0/DF/FFx+zI9zynTZqZd4ksnFCQmisoGeT8GT1/BwFnvZ328w66JIxD0AIYOgY5wdOCGjMKARFEUvH4PldUVCB1CgTDCiGoCDCPqLOJyaYCgqaGFYEeIolIfmkuLxsvOcB5zx5JtFLdUnUpXqtyltXe2a6GJxmvmKImJxle5umrZbYcdUs3G5LZEg1BJuntvtuq3ipgnjzcmjrbdzlQR9zLNrFO1L9toh1ZagkSBMdvYCeacBPL+F8J4VdqQJA7YayfNY/35wrYdj5UtSqLHhZVQID1+zO99NrZDDt9NHIGgB2hvD6AoCqFwmEAwnDEMsRACXTfQOz0NXG4Nf4mXUHuIpu0thEIRmlraaW0LoOsG4Y4IHa1B/CU+VE2NBkE2wiii3Vb7Cj2bT+XKlY2wYCcQTa6YhYMhi2fErMllB7krWGObbT0St1kZpEHqQdWMDKsrSRwYMq3hW61hy3Vsed8yzZxlObshrM15K9IZHpo9AhKvMZOAZ14iMLvJFlrAtfLUyXZZJXF5QF5zut9Hun2OYPD9xQld3AP4/V58XjfC46KtPUBAgM/nttQUCCHQDUFLawcApcU+NE1FURWKKopo2trM9i1N4OkMa9wRosjrpqLKgxrZgRpohmAjih7ktBGPW7bHPFvMRhiIduT5dRx2Dfe6yyJ68PQV1DEyFqpXDm5AXNjZbEh3jXZCSGe7DAByUEl+NjuFGxETflIh22X2u7cKLJVq8Fh/vmDtk9F90offSoDY2U7775L5fiXGBLDzDpuzLFqp9DPZspjvXaprywaraIeQXdyAVHXkSlfELCgkWzZspWlbS7ecq7x3KdV7WLttf5dwBIIewKVpMdfC4iIfrW0BCAh8Pg8AEd1AVaKJj4xOYSAQjGbkcrs0iou8KIqCpimUVZWiN7QQaA8S6WjFVxSmSA2jiAhEfODyQ8nuGK5intl0B6fWXJbUnoEPKTApux9+fEeemVQD365sxQ/xAV1SDTaZciV0F1YD/JDFM6I5JTqZMm3nrNmO6ls+550zUKsB3RqzkCnT5ubDkMUzYL71O2MWTORzyjQ4yvTNiSQ+57WT5qV1mTV76eQiFJjTW6eLGpr47qUKvGTelyqHxbddA7Blw1ZmDL+EcCA5U2FX4Pa5mffJXVkJBQ888AAPPPAA69evB2CfffbhuuuuS5tz4JlnnuHaa69l/fr1DBkyhFtuuYVjjz023+bbxlky6AHMmgBVVSkp9hGORAgEQgRDYRqb2mhu7UA3BB2BUDQngQJejxufNz6XtuZSKSt1obXX08e7hV6VHpTSPRC99kVUDMcoHYjhq0a4ilFcHsv2yIBBdpEdjFSx27E27u4OqNBr/lYuYbsKsk1Ws/10rmfZqKatwgNnux5vh3TBicxZA7N53/JZ88+kcRiyeEbcgJvPbNquZ4Asmy3ZxHQwY2eJpbtp2tbSbcIAQDgQzlobsfvuu/O73/2OZcuW8d5773HEEUdw/PHH89FHH1mWf/vtt5k2bRqzZs1ixYoVnHDCCZxwwgl8+OGHhbgEWzgCwS5AVCgoIhSO0NjcTkQ3CIbChMMRfF43JcU+KsqKKS/1R5cLOgUKIQSR1u0Y29fSp7aKkoFjoHwQwlMOqhsSliBUVWH+SxfGbVtYvypjR5HYGSQKEF2xtpovXbHWmxgfvivP11MUUj2cizCQjkTXP6tBKpUgkS1SoEj12xj4kEJd7cg448l0KaLN7Uvki/mjYvYO6bQadjwJzJkXE/M35LOckMpw1SE1P/zhDzn22GMZMmQIQ4cO5f/+7/8oKSnhv//9r2X5u+66i6OPPppf/vKXjBgxgt/85jeMHj2ae++9t9va7AgEuwiqqlBaUhRNRoSgyOfF63GhaSrFRTv/jgkDhk7H1q9p21qPt3ov3BX9QfMAqT0JhBAYHaHYdzn7seN6ZHZBy8Ytykx3rUXa6ZhzRV6D2WiuJ8nkOpgLdp5TYvCqKdNm2go9bN5nt7xEvmtrJ81j4ENK0rsnVe6Fei5m+xEzsn65X1rrZxpwUwkXg6eviEt7nKlNqeq2qj/dskIqUsVcSHd+h/Tous5TTz1FW1sb48aNsyzzzjvvMHny5LhtdXV1vPPOO93RRMCxIehxzB4GqqpQUVZMc0s7bpcaszNIOAChhwntWI8eEpTuPgzVYy/gkIjo6I3Waq90A7s5pWpdbdTgzq7xlvm4rkSu4cuZVqr11kIYJ0pDO5moKV/tgB3DQjPxKXjjY+vLjjyVkWi6Dn3I4hlxa/2pjpXl4gMj7Wy/nWuxc63m65S2EHW1xIw+rZI0yfcznTGkXcweJ2ZymWlnyrC4dlJ2daayDbAiW2Egk0alO37P3xU++OADxo0bRyAQoKSkhOeff569997bsuymTZvo2zc+vHzfvn3ZtGlTdzQVcDQEPUo0TXGEto4QQkS/q6pCWWkRYV2PRR00HUAk0E7L15+C6qWkdi80m8IAgAhGUDrzIVitV2bSEnR1J5BP1D05KKeyhzDHK0jlVpXNOql0F7OjSrUT8TCb9V1zh23V2ZtdEa1I9LOXM3SzYGN1vCxnPn+qctlidX9ke6TQZa5XCmTmQTHRtsD8vO0uR5g/hYqqOGTxDEtBVL6T5pgEua7zSxLfh3TCgPlaJVZGqQ65M2zYMFauXMnSpUu58MILOeecc/j44497ulkpcQSCHkCGFQ4EwzS3dtDa1kFbR7BzX1RTUFzkIxQK7xQKhCDS0UhL/We4y6rx9OqPomoZzrQTvT1A0wcfEe4VFSAWPTk3qZPKFMgmF7KZTZhVxwvrV3XZurzZXc68vJDtAJBoV5AP2aaRToWdwXph/aokTYKZbIWXdCp/u1hFwEz3XOT9Mt+3VEGkzEsUctA1xxiwGvTWTpoX224+Ry7agWzeY6u4BFbksyySSQiQSCHR6v7sakaGuyoej4e99tqLMWPGcPPNNzNy5Ejuuusuy7I1NTVs3rw5btvmzZupqanpjqYCjkDQI7S2B2jvCNHSGogFG1KAiABBVCOgKirFRX6CwTDBYIhw0zcEt39Fab9B+Cr7oCj2H53QDXYsX0XzZ58xa9r8nNqc2KnZ7bTyGSi6er1S2k/kO5iZhYJ0ERtzjUsvv5uD/qTDjqYnkxYhHV0ZE8JKe5PYTrPdhFUOjXQDsGx74kBnHhTl34maGDvCQKJdxJRpM20/d9m2TEJBKmEgU/vMgpvVNVqVg+R7JY9zhILsMQyDYDBouW/cuHG8/vrrcdsWLVqU0uagK3BsCHqA9o4QqhYNNKQoCiVFXor8XnaEDBSg0hu1H9BUhWKfi4avPsPrhtJ+Q1FcXtuhjiWKqlAyeA9cpX7gzYJcg51BIdeBI5qOOfr3zuAomY+TM99cfd7NfuCyQzRHuzNjpVKuqx0Z9fmv3/ndjAxek27mXlcrw0DvjHuQOECaLcYT1+1llD+7QZSsrtkOXRl3wY5dxuDpK6De3uw78foS38t0g6NdzO+LuX51yXIGL8m+PimophOKFz0517b3QGJcBfmv+T1O9/wHT1/BkPmFW0b5PvCrX/2KY445hj322IOWlhbmz5/P4sWLWbhwIQBnn302u+22GzfffDMAl1xyCRMnTuT2229n6tSpPPXUU7z33nv88Y9/7LY2OxqCHqbI76GoyAsKNIYMvmmPYAhACIxwO6HtX+Dz+/H3GwwuT9bCAAAK+GprKNtvaGzTlGkzbasdc5kJ5DO7t1rLttuGQhj4mY3lzJ2teeYkZ9iJVvJyVgjWMzlz3fJjvrbEsL1W91EOBImW/uZ/s3lmVoJLJgohDEh3u8Slm0xLV4lRBNNdayYtlR1NSaZ1dPPxhdaeWLXNrK3IRitgRbYRShPvxRfzR/VI+uPy3qW4fe7MBQuE2+emvHdpVsds2bKFs88+m2HDhnHkkUfy7rvvsnDhQqZMmQLAhg0b2LhxY6z8+PHjmT9/Pn/84x8ZOXIkzz77LAsWLGDfffct6LWkQxGZAuk7FIzm5mbKy8tZtmwZJSUlAPh9bspK/ISFwsrtQSKG4IAqD+5AI8HtX+HtVUPEX0RLcDuV/ho8mt+ybiEEugBViS4/JAsOAkM36PjXSn582iNA7pb3zzXcxwknPpxX52dlIZ6KxHC56crsKtbP5jZLC/NEbUPi7CzxOlMJVXauMVtL8GyeB+SuIUh1nN32mo8320Jk2xYpRJiPy0WI7a73LZe2WXk2QLz3BtjTyKQ6tq52JBERZjEv0NTURFlZWdbtTEUgEGDdunUMGjQIn8+XtN8JXWyfTPdS4iwZ9CAK0aBEoOBWYVCpm5AeQW/aSKhlB0V9BhB0GzR11GMIHd2IQBo7wtawQcgQ9PZpFtEIFBRVRS3eKVAkdhbPNdwHwEm9Zqc8hyyT6PaUbTx5c/lMg4tUo2dSV/aUMJAu1S+YZ3HxQstgonkT7CSTydY1caebnr3y2Qp3uWoIMh2XSTCxSvBUKNIZiKZaIsqGfJZZrDwsEpGaKfNv0+p+ynwddjQyicilGskX80exx7T/2T6+kFTv0edbPUjvijhLBj2AIUIoChT5vZQUeVEUUBWFPm6dPh0bcIVbKdttL4Jug8bAZnQj6mkQMUIp69QFhAzBtoBOQE+t9BGqwtz55yRtlwO9/DvxY1VmwfOzUJcs5/nnzuWZbffE9qXLPmelRreTGMY8K0ylIu6pQEHm3PBmNz4rsok1YPXd7kxx8PQVTJk203bmul3BQGxh/aqctEa5YsfQ0+ySKd/rbCN7dhVyeUq20exaa3ZptEoBnetvxZg4Os6g07Ep+G7haAh6AF1rRnNVxpIUKQrowXZaN36By1dCUfUgUDWMYDNuzYemuHCrXrxaUco62yIGnzWHcalR10UrFEVBK/IR2dTAU9/cgQ54ve5OLUV6zMKA1fZTq+YA6Wd4+a6vxiyk63dmqpNYGdol0t0JiHLRWJgNA80kzursYMcwTWLO/tcTxELu1tvPq5GpXDqNSrqEVKmOkfdTJbf32K4BZKbrkjYkKstt/aasyuQaxjjXXBgO3w4cDUEPINQAQdFAe7AdwzAwOhrp2PIZrtI+FFXvgaJF5bRSb2/6FA2gd9HulPuqcWs7137ChiBi7Bz5i1wqw8o9DCv34HelMDwUgN8L4QhaMIxmGAQ6ghiGUZDrMgsDf91yN3/b3jUxuGVwHLNhnjn0a6oZUHcMdvmcI9VAkGjIlY1QYHcmmBiYqKtJNKxcf75g/fnC5GWRHjtCQ7oymYTDQhnFms9nhdSamROGZSqfD4XOfOgELvpu0aMCwcCBA2Phec2f2bNns379est9iqLwzDPPxOrYsGEDU6dOpaioiOrqan75y18SiUTizrN48WJGjx6N1+tlr732Yt68eUltue+++xg4cCA+n4+xY8fyv//Fr4sFAgFmz55NVVUVJSUlnHzyyUlBJOwiEARDbWzZuIGtn35I6+b1+KoGUNSrGlQFQedsXtHQVA1FSQ5jHNQFLWEjFsnQrSpU+TTKPRqqlSeCgNC27TR+9gnBEghu3U7L+x+hhIK0drShG0ZKzYJd1CXLea7hPp7ddg/hcCQWYwEyd2TZzqYTrfutsvoldnS7glrcTKI6P9VySKLXhd1ZP+yc0dlZOihkHoBM50lEZjK0E5DKzrXnu6SQaVkg3UCYrRbHrOqXpLoHMe1AF8aCSIVVVse1k+b1iJeBQ9fQowLBu+++y8aNG2OfRYsWAXDqqafSv3//uH0bN27khhtuoKSkJJZPWtd1pk6dSigU4u233+bRRx9l3rx5XHfddbFzrFu3jqlTp3L44YezcuVKLr30Un7yk5/EfEEBnn76aS677DJ+/etfs3z5ckaOHEldXR1btmyJlfn5z3/OSy+9xDPPPMOSJUuor6/npJNOyum6Q60GoilEb9d2evd24eo9GM1fhqHohAml1vmb6NAFmzt00pgLxCEiERrf/4hAQwPB1mZCjY2ISIRAoInm8Gba2lsRwiBXpxOzrYGqqni9bsIJglk2ZOs2l877wGw8laqz3lWEBXPsfkgvKNkZeLIRtOQ6dFcHhJLRAuVzSxVkKBWZykXjWKS/7kzagUIPuLlqXxJDM0Pu6n7IfdnObMgoXZblc1hx6BM5t8dh12KXcju89NJLefnll1m7dq2lv/2oUaMYPXo0Dz/8MAD/+Mc/OO6446ivr48lhXjwwQe58sor2bp1Kx6PhyuvvJK///3vcTmlzzjjDBobG3n11VcBGDt2LAcddFAszaRhGPTv35+LLrqIq666iqamJvr06cP8+fM55ZRTAPjkk08YMWIE77zzDj/4wQ9sXZ90O3x3yV8Z2MeDt3wgwldNIBTB6/XQwjbCdFBJLZqS2rxDCMH2oMG2oM7gEjcezUZsAiEIN7UQaW0jtO4b8HoIFhtE+nrB46LSuxsYGl6v2zqpUg7ohsGpvS+Kfbfr2mYul0m1myqZkXlfIlb2BlZuaIXEqi2pjLLsDuLZeB2ku0+p6s6mLdmQqm6758z0rDLdFzvLBZkEsXT7s3XhTMfC+lVJwYdydbWU9Vlhxx4D4jUn688XrJ00jz1fOYP1s37T7W6HDvaxey93GRuCUCjE448/zrnnnms5GC1btoyVK1cya9as2LZ33nmH/fbbLy5DVF1dHc3NzXz00UexMulSSoZCIZYtWxZXRlVVJk+eHCuzbNkywuFwXJnhw4ezxx57pE1NGQwGaW5ujvsAVJdo+HrvB/4aUDWEgIgIoRMiQgiDzDPrSo/KoBI3LrtPUFFwV5Th370fnrJK9I07ELuVoXjdlHqr8Hn8uNwawWA4lmshX8zCQCZkJ//F/FExdb80rrNSd8tANukGOXPSGDPmztV8nkIKA7JeY+LolNoHszAg2yiXAwq1jg7Re5pt1j+r+5aJfJcb7GgI7AhumZZUMj3nbAIRWVFo7YK6ZLmt3AP5kMoDKPG3J4MiLXpybqwdjobgu8Mu42WwYMECGhsbmTFjhuX+hx9+mBEjRjB+/PjYtlTpIuW+dGWam5vp6Ohgx44d6LpuWeaTTz6J1eHxeKioqEgqky415c0338wNN9yQtD1UtCeGqzg6EwcUVdAkthBW2gEFHZ10Mbii9gVpQxKkxAiFEW4Fl8dDCVWIiIHL5UdRFFyaBgKCoTBejwcQOWsKrGIZSBcoqw5TdtLSmj6p3RNHs6jePEsaFTe7zxS/PrETl+1IXMMHbNebisQOFIBJ6Y8xt1FqDtKFHzbPUjO1U+7LxvZAtikbLYRdDUSqdkgf93TXk21OiGyJtmtVyntv935kGxjKTh3mOANWnjb5YBYYYx4fJsHZbojk7mTz5iaamjq65Vzl5X769i3vlnP1JLuMQPDwww9zzDHHUFubHLS+o6OD+fPnc+211/ZAy3LnV7/6FZdddlnse3NzM/3796ctYGAYAq1T1a8oEBahzsRGAoMIAoFiEV4oH4Su0/T+R7Rv+AZF01A3b6dpzaf0/sGBaH5fVChwRcWMQDCEz+shF3kgXWAjyK2zTBzUc81XYK4PrAenRKHFKlxuqo44OstKP+hm6lwHT1/BlIkzc3Zvy0Q2go50b7NDYh6JdEsAU6bNTOliaCuPQReRSWjKJjBUPu+o1W9EetKsfXJVTGgshFCQeJ7Ed1MaMdbVjoxb+spWwCwkmzc3MePshwiF9G45n8ejMe8v53/nhYJdYsngyy+/5LXXXuMnP/mJ5f5nn32W9vZ2zj777LjtqdJFyn3pypSVleH3++nduzeapqVNO1lTU0MoFKKxsTFlGSu8Xi9lZWVxHwBDRNfXJZqqoegacvyPEIIusOwQEZ1wSxuKxw0KtH2xHiMYRPN6Y2WkUOB2aQSDIQwj+4akilkAZK26tkOhBgjZMcolC6kSzSY6XqqB3qx+lzNpszFkorrWjto5l0hz0mWz0LNsKyFDLjuY8xRI5OCWuH3I4hk5vxsyr0G+11YIu4lCD9KSxERMcknNDonlzAadqUj0aJCCgWxftstKhaKpqaPbhAGAUEjPWhvx5ptv8sMf/pDa2loURWHBggVx+4UQXHfddfTr1w+/38/kyZNZu3ZtxnozecTlwy4hEMydO5fq6mqmTp1quf/hhx/mRz/6EX36xIepHDduHB988EGcN8CiRYsoKytj7733jpVJl1LS4/EwZsyYuDKGYfD666/HyowZMwa32x1XZs2aNWzYsCGn1JRCRPMKSBRFRRWumBCgE866TjuoHg99DhtHv6MOp3LgXhQrJdQecxSuspK4clIoUDU1yYXTLs813MczW++23JcuRCx0f8TBbDo4O4NNqjpSRbrLRR1biEHLzrXYaZeVMCDrNrvUmeMOZEqqk8ugbo4Y2RVkI6jkKpRYncOORsd8b6UAlvgxY2WYaCUwZBJMe8L98dtCW1sbI0eO5L77rCdIt956K3fffTcPPvggS5cupbi4mLq6OgKBQMo67XjE5UOPCwSGYTB37lzOOeccXK7kFYzPPvuMN99801J7cNRRR7H33nvz4x//mFWrVrFw4UKuueYaZs+ejbdz1nvBBRfwxRdfcMUVV/DJJ59w//3389e//pWf//znsXouu+wy/vSnP/Hoo4+yevVqLrzwQtra2pg5M9pxl5eXM2vWLC677DL+9a9/sWzZMmbOnMm4ceNsexjEoRiERAhDRAdbTVVRjU6rAQX0ziWDgqOAoqkoHjfu6irElsbO7cnrAtH0yypGjsaFQoi4OASJZBIKciVfYSLREDGb9smyZvesxLCyVp1sLp1qvtdp9vtPh1QTp8NqsLLSFliReH6zLUlPYjWgZyOE2Wm/3XPE2ddY7De7qA5ZPCOlEGcOqy3rlMaEVsKAXY4/9yzbZb9PHHPMMdx0002ceOKJSfuEENx5551cc801HH/88ey///785S9/ob6+PkmTYOaOO+7gpz/9KTNnzmTvvffmwQcfpKioiEceeaQgbe5xgeC1115jw4YNnHvuuZb7H3nkEXbffXeOOuqopH2apvHyyy+jaRrjxo3jrLPO4uyzz+bGG2+MlRk0aBB///vfWbRoESNHjuT222/nz3/+M3V1dbEyp59+OrfddhvXXXcdBxxwACtXruTVV1+NMzT8wx/+wHHHHcfJJ5/MYYcdRk1NDc8991xO12yU76DNu4kOpSU28Ltw4xZ+fKIEL0UFth5IRqsoQXG70Bvis4UJ03+qqqLrBqFwmHA4giFEVsGLMi03pOp0CmW81N2xBazWYs2DaSE1H+qS5bFcBdmSuFyR6T4VahaYeH/SxY/IFfO15Pr8jYmju0UgGfiQEvMokamg7WB+fnJwl4JbYj6NxHKJWAVFytq+5z89Y0fwbWbdunVs2rQpznOtvLycsWPHpvRcs+MRly89LhAcddRRCCEYOnSo5f7f/va3bNiwIWW8/QEDBvDKK6/Q3t7O1q1bue2225I0DZMmTWLFihUEg0E+//xzS0+GOXPm8OWXXxIMBlm6dCljx46N2+/z+bjvvvtoaGigra2N5557Lq39QFpcYQwlTFgEY8sEXrWYClFLJbtRQhV0tUjgcaFWlBCRWgKiwkCIAB20YAgdRQGvxw0iOriHgqFOl8TM1QuBLddFK8OkfNYlzZ4DqTp1O+vMidkb5Uwqm3C3ideRaWDNdnCXQkE2WF231BR0hwCVjxdCJhJV67kO6l2lBk9U50uNkVzmyOe85mBKqZZv0h0rySauhUPuSO80K++2VJ5r27ZtS+kRl87bLRt6XCD4PuIVxWi4o9oBRXS6EaqoQkO1CFPcFSiKglZVjtHQRFiEiBDEQKeDZhrFRtrYAYDLpeHxuPF4XGiaRjAUyhinILpcoHPmbpelLFNIEjunTGpu2QHbyXQnkb7XsvNMPNZqAMtG05GrEJRtZMF0qvyudumDrh1I5LVZZYbM9roKuZRl9rZINMorVP3p6rMrxGbzDjq2A99NHIGgB6igH73YnVJ6IzUBiqoWLMmQLRRQKkuINDfTHNlMm2hCF2G8oogipQKX4olTUkhDQ1dMKLCuVtoOnN73kpyaZeXyZ/W3JFWY2URDNiuySX+bK3Y7zmwyE1qR6TrsDoh2175zERxkICmwF4Qo13thNlgshNdBrm1KTFhUaKS2oRD1D1k8wxnkuxGpXU7n3ZaIHY+4fHEEgh5AVTQ8ig+X4o7FGlAVJWcDvpzbUVYMgQhGIIhQDHQlgo9iyqnGT3II0mShIL69QggiEZ3Tqi+23Qa7HVoqS+tMsxppIJiPUGAm0To7U9Igua+r/bXldVgNgIVO+2y25M91sM3UnlwHucQ8BoU2UuzuWbTZ4C/Ra8Aq4FY2mN/JTPen0ILV951BgwZRU1MT57nW3NzM0qVLU3qu2fGIy5ddJjDR9x1VVTAiIjaoGkLgcbu6dOlAKfaiKiqiLUhbadTV0aeUpA2IJIUCgTAFL1IQQkQzHOap5UjMMSAj9qXLX58Js7YgnRW3nbC4ayfNg3pibbQzq89GGJABe2T92ZAuul8h2pau7kILHZJc65XPZcjiGQVtY3fNonc+l1Wxayn0MoND19La2spnn30W+75u3TpWrlxJr1692GOPPbj00ku56aabGDJkCIMGDeLaa6+ltraWE044IXbMkUceyYknnsicOXOAqEfcOeecw4EHHsjBBx/MnXfeGecRly+OhmAXQVEU9IhOS2uAxuZ2WtsCXa4xUL1uKC9BbRG48ePGm/mgzra6XS40TSUYDEcNDju9EHxeD3/bHk0SZceYycry3A5fzB+VVVY6Oxb1meLjm5EBdKz8uxOtu+U2aVSWDvOsLzHTXbpZWrrrKmRehFTYmWFmiwyilEs75L3rCfdF+W7mi3xvIPvnY2UkKtuVKtaBHazewZ5If1xe7sfjySV4e254PBrl5f6sjnnvvfcYNWoUo0ZF79dll13GqFGjYtl4r7jiCi666CLOO+88DjroIFpbW3n11Vfjkg99/vnnbNu2LfbdjkdcPuxS2Q6/68hsh19/+RllZaVx+4SAppZWOgLR2AQej4vKsqKU3hWFQAhB+1sfgd+Fb/ReqIqWVbhkIQThSIRQKIJL25kpEXaGL04165YddqoBPTHdamK5XGdMdo5LN5O009Hb8bm3M+tLF/o3sVyu90JinknninlGbie+gd0687k287tTKC2GnWyGmcpYtUVeq8wnYDdaZap3yep9M2fYTPw73b1JJzDsMe1/LOaFbs926OQysI/dbIfOksEuhNvlIqBE8HrcFPu9XetpIASBjZvRPUA4iLG9hUgkgre6N6j2zhtNiOQihI7HY728kUpdmykRTtz66MTCJIuB9DH0zW1OZ7OQynsgU/vMx8rOOt3AEYsdn6G9+VJXOzLruPtSoFv05NzYdU2ZNpO1T86F+p0GfZCcna+rhQEz5vcsn2WnXMiUpAni0xubrzUbYQCi79b6+SLufObgX1Hbis4cIJ1LXubnkikvgrx3ayfNs2UQ2h307Vv+rR6kd0WcJYNdBEUBl6ZS5PNQVurH7dZyFgikW2C6aIehbQ1se2spLd9soKN5B9v+t4zApuzCX0btHSKWbU3MZ5CPS5tV55hriGHzbLFQbcnm2KyDvtgIQNTV8eTlvTL70C96cm5c5EUrl7rB01cw8CElrn3ZXH8+8QjM0SbNdMXShhXqkuUMfCjz79ecOEhi5x4lCkvqkuUpry2be57u+tdOmhcXNwF6PqKkQ2FxBIJdCLfbhculgiAnYUBGGJTxBNKuBqkqnsoKPL0qIaRHlyZUJeuAybpu4HZZCy+FEgqynSlmmgXKtelM9gSJ+61CvOaKOZVtIonrtHbiyefi3y9nepmeyeDpK2KajMQoh6kwCw75RJ40axrskM19syJbm4V057dz3bkKmIUyODUjrz3V/U4U0Bxh4LuHIxD0IEIIdEMQMaIzekVR8LjdhCMRW1H+rGhjBzuop5WGWBplKzxVlVQffihVB46iKOimYq/hlI0YimJzuUB6Qyhq+iBKzzXcFycYyPXlbMPuJhpDZUofbCe+gB2hwOzyVaiQyubO3Gogt0rQk2m2nI/mIlPHbrbnsEOhgg/JZ57NwJNPciO772O6e90dg2ShPQTMSwAyx0U6ocDcjoX1q3j+0w8K2h6HnsMRCHoQnQjr24K83xCiNRIduDVNxTByT22kEyGotKETxiB9elBFU0FTIRCCxlYUi+RSicjlCKPToNBt0zXSLBjU1Y6MrZlmYwGfalZkVUc2QkEmzAZq8jhz4qLEcnaQA6yMfmg3XkEhI/3ZnQ2ns/dI1GZ8MX9UnOuo+R7lYg/QlbYTEqn5MVv150MhvAzkc7bKXphvG83Hmw0Lzchw1pmuY8q0mU5yo+8QjkDQQwgEHbTQKprYFoiwpWPn4K0oIDIkBkqFRjRroqa40ZTMA7zicaH2rURvT51yUwoBum4QjugEg2GCwTAetxs1y6UNs7ZgYf2qpM4oVTTCdO6J+c7KUgkOiZ1hYl74RLLpqK3Wt6XmJBVSkEpFT8SXT5yRD56+wjJTZD6BhvLBriYqVfKfXDBnJcxVMJDvV6JtRqEM+rKpKzEgkllQWPTkXF545PGCtMmh53EEgh7CIEKINqqKAuxWAh4tOrBG8xioOS0ZKCi4hBtFqGi4UcnsRqioKq4+lYimNoRhRGf/RjQXQSSiEwqFCYbCBAIhQuEwCIHb7cLv8+BKYTuQDumOaB74zAOZHXe/fGZfiQOMXS1BPrNcK1LFtM+k+s/kmZGtUJDJIDGXGWmhllYgf2GvJ8PxWsWTyIdCeEjI99+JOuhghSMQ9BAqGiVUUaYVMbgMdivaGWRDVXMPY+xWvJTRhxJRid2MiWqvUoxgmEB7gEAwRDAYikYd1I1O10INr9eDz+vB43GjaWrOHhBSQ2DO1GdOGiQxd1jmoEJ2OjJz7IPEes2Z/QrVUXeHWttMIW0J1CXL095TOx4MVkKW1XHZDkbSbsKO6jodU6bNLNgAmO07k0mrkw25CgNWyzpmdhU3Qoeex4lD0EMoqHgUPx58CKJDtxxkVUUhoqdf/0+FiotiKjvPYVMgKCuCcBgtGMFV7Iu1o6szLspZsjRaM89GUw3mElnWPGsy/51Jo7B20jyYJAe8+P3ZqrrzXS9OF9ugK5D+5JJ0A00mAcNq1prKCDHbOADm98F8j7OdKatLlrP2yVXUkfpZ2gk2lCtWsS+6Oh6CWSg2R29cOyn5uUyZNhMm5XaeutqRREQY+CLHluZOfVsTDcHuCUzUy+untvi7H/PAiVTYjaSLVGjGEIJgIITX60G1afWfD0YoQvsLb+EePQTvnrVdfj65bJBIrgOrOVKbuY58B9pchIFcIv4l1pEo6KQ7JlvthKw31+MzUQi7Adg5QKd6J3IJ5WvWNJnvbbbCQDblUwmpULh7b1e4SDy/jIGQ6V6nQrY/IsLdHqmwvq2JyX9/kKCR28QpW7yqxmtTL/jWCgV2IxU6Swa7IAqgaRqRSKR7zufSUHuVIbY1pUxrXEgS4xOYkepLq5wAmUICJwoDqQIB2fGjt4s5UpzZMC0bFXWiit2Oq528BqlOL2R643woVJCkxAE38X1IJJMqP50RaldpBswDtTkVslnrUQgXwmyFAfmuyus2GzDapbuXyRJpCHZ0mzAAEDT0rLURN998MwcddBClpaVUV1dzwgknsGbNmrgykyZN6rQb2/m54IIL0tYrhOC6666jX79++P1+Jk+ezNq1a7O+JiscgWAXRFEUNE1F7zTy6/rzgdqnHGNbE+SZrTBXZHS5wdNXpJ1lmwfgVJg7O/Mx6f7Otc1ma+vEoC35rFtns84uz5ctXdGpF3LpQ87qrdqZaPFu57yFjEJoB/MzsYpGaMeNNl0yK7vXYxaWEn8b6UjVxp4WBr4tLFmyhNmzZ/Pf//6XRYsWEQ6HOeqoo2hra4sr99Of/pSNGzfGPrfeemvaem+99VbuvvtuHnzwQZYuXUpxcTF1dXUEAqk9xeziLBl0I3aXDCAqBQYCIXw+j621fPNjzGXtP/zVVoL//Zii48ah+j1ZH58LqZYOUpFO1ZtJjZvKWt5qhmaewdnp/BLX5M2qach+BmeuJxt1sN2OulB5IdLVbybXcyW2007SqXTnyua6M933QtocpGu7nedvFgwy2XNkun5ZPptn1hNLBh82bOL4fz5SsHPZ4YWjzmXfXjU5H79161aqq6tZsmQJhx12GBDVEBxwwAHceeedtuoQQlBbW8svfvELLr/8cgCampro27cv8+bN44wzzrA8zlky+C6gkJWGIGyEMURuM3zF48IwdESk+9Rw2ZLY2a0/f+e9SdU5y84yVQeXqGnIRYMgY7wPWTwjrj67UfPMA0KiStnuzF8aZxaCbGafXYUxcXTWKux00RwTbQgykasQlwvmtie2zU475HuWKCwnak6yWc4pdDREh+jADdCrV6+47U888QS9e/dm33335Ve/+hXt7e0p61i3bh2bNm1i8uTJsW3l5eWMHTuWd955J+82OgLBLoyiKFkJBG7Vjapk/0iFbiDCOorfC0Ig9O5ZNpDRC82fRLp6YDILErmuf0u7h7WT5rHoybkpB2arazGvLZvJJbBNujgE2dxHObjkeu/N15LrPU3npZDp3In3LFEzYPfa0qnu5Xtj9/nYOd+UaTNtRwhMhZUgAPaXCnKxJzAOcZYQMmEYBpdeeikTJkxg3333jW2fPn06jz/+OP/617/41a9+xWOPPcZZZ6WO/Lhp0yYA+vbtG7e9b9++sX354AgEuyjSwMRuPAKzUUo2GMEQ25cuo+WrL9F7F9H8yRqaP/6EbrEutMAsFKRTl8p96TrabFy7cvUXN8/iZSeaqh6rttg5ZzYz/1Sdfi42BvkYIGa6F3ZIfLZ2n2eiEJJL1kM75VNpJXINpZ2YPKoQs/RsDWizXU5aWL/KiVRog9mzZ/Phhx/y1FNPxW0/77zzqKurY7/99uPMM8/kL3/5C88//zyff/55j7QzZ4Hg888/55prrmHatGls2RJNm/uPf/yDjz76qGCN+76jKgpGjiGM7dL6+XpaPvuctq+/JtjeQri1jVBjc5eeMxNSKMgkDGQi27X3bNe6C6Giz2QcCfGDak+p8rM9r7w3+Xgd5JJ58Iv5o7KevaeqxzyIZ7r+dOv4mbanwiwU2DE0BLKyF0hE5nPIlhOH7pf1Md8n5syZw8svv8y//vUvdt9997Rlx44dC8Bnn31mub+mJmrDsHnz5rjtmzdvju3Lh5wEgiVLlrDffvuxdOlSnnvuOVpbWwFYtWoVv/71r/NulEMURVVieQS6iuKB/em13/4UlfTCVVuJd7c+VOwzHLtRDruKdK6JZvJ1ozN3mtkOINkaX1mRbvD6Yv6o2IBqTBzd5cFs0iEHx0z2BYlW/4UyvDMPzJkyVCaSTRtk/eZ6skmSlY3gkA12A0nlcj7zEkUu75eT7dAaIQRz5szh+eef54033mDQoEEZj1m5ciUA/fr1s9w/aNAgampqeP3112PbmpubWbp0KePGjcu7zTkJBFdddRU33XQTixYtwuPZaZF+xBFH8N///jfvRjlEUbO0IbBDooCh+n0g3KAoBGrcGHuU4aos62l5ACEET226k6c23Rnblspqv1Cz5mxmR11tqQ/R65Qhnhc9OTenGbMVU6bNzEm7kWi8Zr7vVuve+d4f8wxZnjMbQ81czm+VrMlObAnZ1kxtMwtWdjDfg1S2BebMiBIpSNod4GVsgmyQ53M0BNbMnj2bxx9/nPnz51NaWsqmTZvYtGkTHR3ReAaff/45v/nNb1i2bBnr16/nxRdf5Oyzz+awww5j//33j9UzfPhwnn/+eSC6NHzppZdy00038eKLL/LBBx9w9tlnU1tbywknnJB3m3MKXfzBBx8wf/78pO3V1dVs27Yt70Y5RJH2AIL8xmcpAEREmKAewq/50ZRo7gQjHCHc3o576AAqS8pxad48z1YYhBBEdIOzdrsMiF8mSJzBWXV6mWbT+cy2Mw02WRlkTRwNRLMcqljPZOXasnlAKJRmIlviB6RVUB/9S6bRNUeNzBcrY0A7RD0U8j59HIlCgVVbhiyewdr6ebHvqe5BpvfSfB+tSI7KmVzOrvZK1pXq3UuFfG97il5eP15V69ZIhb28/qyOeeCBB4Coa6GZuXPnMmPGDDweD6+99hp33nknbW1t9O/fn5NPPplrrrkmrvyaNWtiHgoAV1xxBW1tbZx33nk0NjZyyCGH8Oqrr6Z1J7RLTgJBRUUFGzduTFKBrFixgt122y3vRn3XEUIgkLN00flRk3IPRAUCJZoKWcttkBZCEDSC7Ag20BRqxBAGg0r3xK9GX26jLYDny60UDR+Iy1M4H+JciQkvER2XpvK37fdyctWcghiBFYpMEROzITFaXDpS5a6Hro+ND+n95Qezgjqiro9DFo9iMLm3Jd197MllE0hvHDh4+opYvoRc7Rfk8zXfa6u67IR0thv+Oheky2/0fOGc68mV2uJyXpt6wS6dyyCTdrd///4sWbIk63oUReHGG2/kxhtvzKo9dshJIDjjjDO48soreeaZZ6KW8IbBW2+9xeWXX87ZZ59d6DZ+5wiGO0D1gCIAA1BA9xJdwYkf+DVVQTcMVFUl11xDO4INfNP2NQJBta8aj7ZzmSccDKP364VaWpTr5eSMfNENI7qMYQgDIUB0fvd43RgWkRPNndy8L29hxoAr4/bf9/Gvmb33DVm3Jx9VdHS9PzlJU6GR8QYW1Sda70dn6+Yoj6kGhHQxG1LdAzkjzHRd688XBbHrSHUPM9UtAwZ1ZbIiO0masg1ulS4HhPyeKmmUfCcSrzeTMJBPwCg770JXU1tc/q3NLbCrkpMNwW9/+1uGDx9O//79aW1tZe+99+awww5j/PjxSeoOh2RCIZ1QOIRA3ykUKNHBUcT+MxAYqJrSOSjmbktgCAOBQEWl1FMGQqAbEQxhEAqFEAP7oni6N/GlEIJQKEwgECIUjnRmd1RQVQVFgfaOdjZv3srmLdu496NruffD5PfqoU9vJBwO8/AXv43b7vf7mV9/B09t+gNPb76Tp7fclXRsJrWtFelmVHK9H7JT55vXh+2uK5vd02Dn+q/ZuE22KRvSzX7tqqCtslTmwpRpMwuucTEmji5Y8KZ8Q1ObSQwtnA6zW6K5bLbJmXp6MHfYNckrdPGGDRv48MMPaW1tZdSoUQwZMqSQbfvOIUMXr1+3BlVTKC5VcbmU6FhveKLGfQhQQ6BEhQAhFAJtCn6fL+sYAxAdeLd0bGZD25d4VA97lQ2hI9yEaO7AH/IQrN+Ou7wczeemaPd+KO6uFwyEEARDYVRFwd15PhmEKRAMsn37DoqL/BQVF6GpKoqyUzsi70EwEsbjciUFYopEdCK6jtfjTrpf2YZKNmPOEpgpPC7YFwpyzQ6YaoaaTxZEsBYicgnhnM+AIwfIQnhxWNVXSA2OnSUMq/OlyjyYbT09hbktPRG62CE7uiV08R577MGxxx7Laaed5ggDWaApGkW+YtpbDQy9Ux5TOo1j1AgokahAoAhQjKgmIQ98Lj8lrhIqvJV4VA+iI0j70tWENm7DCAYIbd5Ex1dfE0kTMrNQCAERPbo04Ha7YsGUorkbgmzb1kBVr0oqKsrxejy4XC40TUVV1c5lk+gg73W5k2wuADRNRQhBOKIXzEOju9atCxmIJtu6UlnSZzMIyTpy8WWXyDgChUySpC5Zbpn5shDJp3LRFCRqBLJJOGQm22dcCO2INGzdVQQTh8Jiezp42WWX2a70jjvuyKkx3xcUBdwuDcPw09bWTkmpC0UxAMPSpUDRouvsWg6GhYqiUOouZUj5MBQUdBEGw8BVVIQmVFzl5RhCxwiF0PzZWdFmgxycdd0gHI7g8+6cwQsh6OgIsL1hB316V+H1pk/olGmf1+MhGAyhAC6Xy9L2QsY5EAJC4ejSRXGRD01TOblqTlxZszCQzhsgW6IZHuNn1tkEXUpXNpd2FkLoqasdGbW0r89NS5DYhoX1q2Jul+mSPWUjtGVzb1JpTjJ5uZhJFtBy0+IkXv+QxTNsG2/ma1ORqHlyhILvJraXDA4//PC478uXLycSiTBs2DAAPv30UzRNY8yYMbzxxhuFb+l3gMRsh0II2jsCoIYpKvKA4Y4W1DotZ5XOASsgcClFuFxa3m0IRTrYtuNrfNsNPF824du7P2rf3iAEqrcwWQ6jb5TAMAwMIWJGg8IQoIDX40ZV1c6ygrb2DnbsaKS6T288Fqr+XDCEIBgM4dJcuFyapVAghCAYDBMKhyku8qNqakwWMy8vPNdwn+3lhlxV9vmo+lOp+adMmxmzBrc7WJrry7XTz3UZxOr8EnktayfNS5se2277rJYO0gkbkNlITwouYDL+tNB0pFseSIyQmCj4daeXhd2lG2fJYNfH7r20rSH417/+Ffv7jjvuoLS0lEcffZTKykoAduzYwcyZMzn00EPzaPb3C0WBIr+X1vYIwQ4Fr0ftNC5UiXofRMsoGhi6AeQnEAgh0Nsj+D7aQknDViivwlVVAR53vpeSeCYCwRCgoCoKqqagKCpqQr4FIQStbe00NTVTXd0bj7swwgBEgzr5vB4CgRAgOoWCnXULIegIhIhEdEqK/TEBRZIYKdEsFKTzNMjXN7sQMy+zb/ngzF5NcaydNC/mrZCrL7+cyWYbSClxsEucWcfc+ubbCxWcDit1e6aQw5k0MubB32yJbxZAhiyeweA0M3VzACYz8ty5XGuu2oFURrKOduC7S042BLfffjs333xzTBgAqKys5KabbuL2228vWOO+23TGItDCFJUoBMMBdF16E+xU2ggRFQpyTWu8sx5BuKWDjmWf4V6/A0WJ4PMGoEBagaTzGQKfz4PH68btcuHStDgbACEELa1tNDe3UN2nqqDCgERRFLxeT9TQMNLp0igEkYhOa1sHhmFYCgO5Mnj6Ctux+wthoW6V4Mkc7jhX6mpH5j0LLVQyJWmPYB7QzBETczlPVNiJpqu2k5gocf8X80fFjrPKLmjlBSC3p8vPkYpcrzNXUnljJNoPOCmSv3vkZFLe3NzM1q1bk7Zv3bqVlpaWvBv1XUe6FaKFACM6m/WrtHd0UFLsR6FTJBCCSATCQRCGAbmO3YZA/3orgffWACECRwxBNVrxNYdBy38ZwowccFVVtYx3KEMnNzW30NERoE/vqphxYVegqlGhIBgMoxs6kYiOYRh4vR48WZ5XagnSzY7kwCVnZalmlamy54H95QOr2eTg6SsK5lqXL4kz/FxmlYUK1yyx0kKAeXBbldL+Ie44RnYuE2R2GbTrrtlVZKsdSLdEYN6ejQ1DVyD0ejB2dM/J1EoUrcDhL3dBcpoanXjiicycOZPnnnuOr7/+mq+//pq//e1vzJo1i5NOOqnQbfzuoURAC4D0HjDcuD0qmtugvSNAJAKhoEGgXUGEPHhdRajE5zWQA6uuG4QjETpCAVqDbXREOqLlBIR3NBHe1kj7Z1/S8dHnGF6DwKTdqa8oZauvAqPARoRSGIhEdDwWyxBCCELhMJu3bCMcDlPdp2uFgeg5o7nII3qElpZ2FEWhpLgoL42EnZmR7IRz6ehzGTh7KguiHeRsuScyJppJF/LaHMvBDvIdkJoBqzbuas8kV0FRakES700hYzFki9DrEVuPQmw/sXs+W4+KCiA58rvf/S6Wh0ASCASYPXs2VVVVlJSUcPLJJydlMUy6biG47rrr6NevH36/n8mTJ7N27dqc25VITgLBgw8+yDHHHMP06dMZMGAAAwYMYPr06Rx99NHcf//9tusZOHBgbE3Z/Jk9e6cB1zvvvMMRRxxBcXExZWVlHHbYYbHkEAANDQ2ceeaZlJWVUVFRwaxZs2LZFyXvv/8+hx56KD6fj/79+3PrrbcmteWZZ55h+PDh+Hw+9ttvP1555ZW4/QV9EIpcFlDB8IJwowg3fr+K6jLoaBO0txjoYRWPx4OmqWgujUAwHA3mEwwRCIbY1tLA+sYv+bzxMz5r+ox1zetpbI/GvA41NLJl8X/o+OQLWtatp8MbIdBLQyt1UV2sU1nsQtF1aQEYu8ZcsivKY2IxALweVFVJKtPS2sq2bdspKSmmT++qTg+AwgsDsaUBXaetvYO29gAet5uy0mJcLi0W/ChXcnHry8SUaTMtXf5yDc6TS+ffVSrgXDPpFTrSYLrzm8+V6fnKfVIISOU2mO+sP9/B1vwOyL/TBWdKNfAXKh5EQTF2AKFuPGEoZ23Eu+++y0MPPRSXsAjg5z//OS+99BLPPPMMS5Ysob6+PuOE+tZbb+Xuu+/mwQcfZOnSpRQXF1NXV0cgEMipbYnkJBAUFRVx//33s337dlasWMGKFStoaGjg/vvvp7i42HY97777Lhs3box9Fi1aBMCpp54KRIWBo48+mqOOOor//e9/vPvuu8yZMyduzffMM8/ko48+YtGiRbz88su8+eabnHfeebH9zc3NHHXUUQwYMIBly5bx+9//nuuvv54//vGPsTJvv/0206ZNY9asWaxYsYITTjiBE044gQ8//DBWpqAPwnBFAxHpPhBa1J/ecKMIL36vn9LiYirKywEIhSOAgsftwt1pGOdyaXg9boQ7QpPYTjutGGoYVRMgorkPgl9twgiGEC4F1569EZqBWuajROtFtdaPcm/fqEAQicYhl7kVwkZ0OUMX4bR2C3LQFZ1eBIFgGF038HqshYGmpmba2tqp7tObkuKiLtMKCCHQDZ229gBtbR24XS7KSovweFzohoGmqmQp71iSatZq7nizQV2yPE49bp6t2hEMEgefbAbTQvqWJw5iVr7/2WT7AwoakyAbvpg/Kuk5moUBq9gGVnXkSr4ChfkdkLEY5EcO/vLfhfWrUl5PumvsybwS3wZaW1s588wz+dOf/hRnc9fU1MTDDz/MHXfcwRFHHMGYMWOYO3cub7/9dsqMwUII7rzzTq655hqOP/549t9/f/7yl79QX1/PggULCtLevCIVFppLL72Ul19+mbVr16IoCj/4wQ+YMmUKv/nNbyzLr169mr333pt3332XAw88EIBXX32VY489lq+//pra2loeeOAB/t//+39s2rQplqr5qquuYsGCBXzyyScAnH766bS1tfHyyy/H6v7BD37AAQccwIMPPogQgtraWn7xi19w+eWXA9EH2rdvX+bNm8cZZ5xh6/p2uh2upaysNLZdmP4/ioKCQiQSHdhKS/yxQdZcKhDpoEMP4FJceDQPmqKhd0Qw1m1C/+RLjDG1RGo8RDxhaAojijSKfJWU0gfFEGiff4heMwBREk133EELHaIVQwljoFMsKiimMs4QMDrgCkSnS6F8fdydAYQSB/qd9gId9Ond27JMIYgKJgaBYNRzwOvx4I2LdQC6YRAKhWNuj7k0I5P7oXQ1k52oHZc1SbpBOd+1+FzPmwtSNW92u0vlldGVqYzzJZUQZieqYE8jBRk70Q/TuXHaufc94XYowh8htp9YsHPZQal6HsW9T1bHnHPOOfTq1Ys//OEPTJo0iQMOOIA777yTN954gyOPPJIdO3ZQUVERKz9gwAAuvfRSfv7znyfV9cUXX7DnnnuyYsUKDjjggNj2iRMncsABB3DXXXelbEeXRio8/PDDOeKII1J+ciEUCvH4449z7rnnoigKW7ZsYenSpVRXVzN+/Hj69u3LxIkT+c9//hM75p133qGioiImDABMnjwZVVVZunRprMxhhx0WEwYA6urqWLNmDTt27IiVmTx5clx76urqeOeddwBYt24dmzZtiitTXl7O2LFjY2WsCAaDNDc3x32i7BzchaKDGozaFMiPogMCTdNwuTQCwRBC0RFqeGdZRcfn8tPL0wtfcwQ2NhJYsx59fT2hb74hNKYXof4e3L5ifFoZRqULfK7o7FgIUFWErwjR2hhrT4QgAaWJEO1ECNGhNBFRQkgxRGoCDMNAURTcLhdejwef15Pk1gfRQbq5uYWO9g769K7qEmFALg20dwRpaw+gaRqlJUX4fPHBjRQlmijK43YRDKXXfqTCLAyk0gCoS5YzZdrM2P5sLcRTzSizWd/uaewIA98GpCeCRHondJUwUMhcC4uenGu7nemEgULZb3wfeeqpp1i+fDk333xz0j45QTULAwB9+/Zl06ZNlvXJ7X379rV9TLbk5GVglk4AwuEwK1eu5MMPP+Scc87JqSELFiygsbGRGTNmAFFpCOD666/ntttu44ADDuAvf/kLRx55JB9++CFDhgxh06ZNVFdXx9Xjcrno1atX7AZt2rQpKU2zvKGbNm2isrKSTZs2pb3JuT6Im2++mRtuuMFiT6eXgRqODf4xk3wBqGGEHp3B+n0eWtra8BBBU81lAF0l0tzK1rf+S0ltf8KtrbhLSujorSAGePEqLkqoQmDgowRVuFAVDToNFI3icrTtG9HRQaj4lFIihNBw4VbcuFQFTRgII9o8o1Pl7s0Qt0BqDZpbWmhrb+/UDCQLDPkgjQWDwRBhXcfjduP3eZOWK8woioKmqXhwEQyGYwGLXDbbJmMTpNMSfDF/FAMfyn7dVc7E7Fpt93Qa4ExIYaC7LNHNcSOEEITDEXTD4Mxa+xFWrTDnZujq68jV9sMKO9EYZaRMK8yxLByy56uvvuKSSy5h0aJF36qgSjkJBH/4wx8st19//fVJBn12efjhhznmmGOorY2+oTLt7fnnn8/MmVEpddSoUbz++us88sgjllLXrsavfvWruJDPzc3N9O/fP/pF0TtzFiQcpABCBzWEMLyoqorX4yXQ3kFRSWfEvViZCELXUdEgolM0sD+qz0tQVwmrBgZRYUMVGm7hxzAEumEQiASjAY/cPjztLYRav8FTUotLeKigX3RwFAIIdiZZMjCESkTXcblSvzJySSEQDNLa2oau653Gg4UTBqTNQjAUJhKO4Pa4KPX5UVK4OSZiFgpCoTDSxzObNu4UDHZ2luYBWmoJFtV3nTFWYjS7riZbAUQa5g18SMmolk6HTLucDUpn0iwlkj4HSLr7t1NT073LFYUw4LMrVKR7HoUM0f19ZNmyZWzZsoXRo3c+C13XefPNN7n33ntZuHAhoVCIxsbGOC3B5s2bqampsaxTbt+8eTP9+vWLOyZxkp4rhYnI0slZZ53FI488kvVxX375Ja+99ho/+clPYtvkBe+9995xZUeMGMGGDRuA6A3asmVL3P5IJEJDQ0Ps5tXU1CS5csjvmcqY95uPsypjhdfrpaysLO4TQ7iwvP2C6Haxc+D1etwYEZVIZKcXQNQIMIzY1kRp0EvxwD3wD9gNb3UvPL1qUMIudF0nEA7QFmyPrq3rOsFwhNa2AEKAr6SESJ/+eL6uJxJooyXUjrRfAAV0DxheDAOCwVB0CUNLbnN0RhamqbmFTZu30NTUjN/no7pPn4J6EhiGQUdHkNb2dhQFSkr8+LzelDEPUiGFAr/fi8/rIRyOYBj5mdLkY9SXDYlpgfMVBux6FkgBxGwQmGp5w7xdGqrlEpAHogOkXIJJVTYxqiQQM759anPqdVWr5RxpZCf3ZZuoqSvd8L4NhpgOUY488kg++OADVq5cGfsceOCBnHnmmbG/3W43r7/+euyYNWvWsGHDBsaNG2dZ56BBg6ipqYk7prm5maVLl6Y8JlsKKhC88847OalH5s6dS3V1NVOnTo1tGzhwILW1taxZsyau7KeffsqAAQMAGDduHI2NjSxbtiy2/4033sAwDMaOHRsr8+abbxIOh2NlFi1axLBhw2JWn+PGjYu7ybKMvMmFfxCdA67h3mklGDUoiKZA1r07vQ+Idm4+n49Am44uBM1GEyFC6M0dhN77FNewWrS+FSiqAqpKkbcUVfcSCRs0is20ubfi9iloHoHwBHAXiVjaYVFZjVraB983GyhR3Oi6QSgcJhgKEw4ZhIKCUDCC27XTy2Gnd4FBe3sHW7duY8vWbei6TlWvXtT0raakpLggNgMCKQgEaGlth844Aj6vJ2fDQHlPo5/C2jVYJefpKvL1A8/WWC8xOmC6mbXVdefaVmkZb3U+K2FAErVzsRd4Swo6+c7Qd+VlHDtIO4Zd3WhyV6e0tJR999037lNcXExVVRX77rsv5eXlzJo1i8suu4x//etfLFu2jJkzZzJu3Dh+8IMfxOoZPnw4zz//PEAsjsFNN93Eiy++yAcffMDZZ59NbW0tJ5xwQkHandOSQaKvpBCCjRs38t5773HttddmVZdhGMydO5dzzjknTh2tKAq//OUv+fWvf83IkSM54IADePTRR/nkk0949tlngai24Oijj+anP/0pDz74IOFwmDlz5nDGGWfElh6mT5/ODTfcwKxZs7jyyiv58MMPueuuu+KWPS655BImTpzI7bffztSpU3nqqad47733Yq6J5gcxZMgQBg0axLXXXpvXg1BQEEIDtKj6X7g6kxupsUiFAiFFAtwuF8Ggh0AgTMDTQVgP41/diFJZgmf/fqCFEUbUcFJTVTQPhIwgEV3gDvto1wME9QBtRiOa7kVv13G53WiaC6OqhqL69bR9+SlbKivxefwopSplwodPd+P2emIDr1yfbWtro72jA03TKCkpxu/zxYUmzhcpdARDYUKhCG63i5KSolg+hEIiIK3tQSoy2RRkE68gXSY/M4kdda4DkFkYSDcAZkqsY7XfmDgaJiXXmy5joBXGxNFxa9y52E1kelfMywZ2kx1lqs/OManKTZk2EyZaa5hSZbhM3Ca1Ktmq/O16JjgUhj/84Q+oqsrJJ59MMBikrq4uKY7PmjVraGpqin2/4ooraGtr47zzzqOxsZFDDjmEV199tWB2CjkJBGVlZXE/NFVVGTZsGDfeeCNHHXVUVnW99tprbNiwgXPPPTdp36WXXkogEODnP/85DQ0NjBw5kkWLFrHnnnvGyjzxxBPMmTOHI488MnZz77777tj+8vJy/vnPfzJ79mzGjBlD7969ue666+JiFYwfP5758+dzzTXXcPXVVzNkyBAWLFjAvvvuGyvTNQ9CicYjQHRqBHYKAlH7AoHQo/uFEHg8bra17iBSHEaNRHBtaIChtQRb2tD1ZgwdDF2NGtuJAIaq4FbdoLgJEsbl8lKp1qB5NVRF7VTzNxHWw/TylaNu+5JwnxLUXj40oaCrAlc4qqkwDIP2jg7a2tqJRHSKivz06d07pmkorMFg1HOgoz2Iy6VRWhK1EUCQV0ChdITDesyOoJDnkEKBHVe1gQ/ZO7FVpj67yKRDmYz9rGbzmVzT5IC1dtJOdbWVwGDX9kHO1s3158Lftt+blNI6sQ2pIvFlS6a01Jko1GCcTzKjbwVqJdFY7t0VnMjTec7cWbx4cdx3n8/Hfffdx333pdZyJUYFUBSFG2+8kRtvvDGvtqRil4pD8F1HxiFYt/q9nXEIFAUFFaG50Q1BRA9jECSiRzAMA6F70CNgGFEDqY5AEF0JUaRoFL+zDuXQIQQ8XvxFGi53VDhTVQ1Dj8563R4VxZBLEPErRIYRDSUcCobQQu0oX33O1qGDUMu89AoW4XO5UVEwdIOt27YBCqUlJfj8vi6ZqYMpJXEohN/v67RBKPhpTOfr1HpEIui6gdvt6rSTsCcYRDM2duBxuztTN1trDOwM4JnyHyTWB5ld+hKT0eQjTNhpjyRd3AE712dHbZ1uucCMECJJIDCfpxCGfOk0KXZm9fJ7pudqp65cU2nngjFxNMbipT2S/tjJZWCfgqc/NjN48GDeffddqqqq4rY3NjYyevTomMuggzVasBEtENoZZEhAc/MO9EgQRRFomorL5UbzuNE0D5q3CFUBRXUhStx0BBX8hkaHMPAXefB4PHhLXKiqggACHQYtzQY+H7g9dHojKLS1BSkpLkIIA1AwEHSEQ2gKaB4fwusn0tyB1+3Co2poqBiGoH7bJtr0Fvaq2QtNKaz7oBlpNGgIQXFxEZqFAWOhUZSo1O1xuzC0TsEgouN2uzpDHKe/1nA4AkLg8ewUXKyWEtKpgiVyYLIzu7RrtW/WUEj1eyEHCnO8Abt15zJ77io3y0KF5TULA6n2JW4zX5P817zMlM812xU+80VdspzIISPhPy/kXVe2KFotfIsH6V2RnDQEqqpaxgDYvHkze+yxB8FgsGAN/C4hNQTLFj5KVVUVHe2t7LbHYDTNRVtbC76KWsBAwei0KzBQOvMfCz2IIqLbhQGEDdqXrMd3cA1qkYHiUhDeYoS3jLBw0doUQUOnpFSgKSqhoIuPPlnH3iOG8Pn6evxFRQSDQUKREHqgHV0Hva2VPfbej03btlJWXEIoHGbr1q1UD6yivLyUvkV9uyz3QCQSob0jkBRhsLuJJYwKR1A1FbfLldK+wDAELa3tFBX50hqvScGgK9Zo0832u9o4zG7woWwHNjv3ya52AHZGqPT7vMDO59GVERDzFWBSuWra0T7Yva5ClXtmzXIqh37R7RoCB/t0iYbgxRdfjP29cOFCyjvj7UPUx/L1119n4MCB2bf2e8bnn35I2Zgf0N7WgqHraJoLVDfCUxq14jeVjf9bxDaIiI6hbSISqMS9e1+ItKKEGlGa6/GIMJXChSEg3AAhFCLCQ2tLI5vrv6J5RwNffxOkrKyC4pIS1q6vZ8CAAWheP1+uW8/Whh243BrlvctoaW/h4OrRuAqcJjl2TZ1LBO0dAZTOVMU9JAsA0iVRQ9NUwmGdQDCE26VZxikIBkO4XNaumOlINVDnMoDX1Y7sMatwu5EIMw2MzzXcCyhxGpVCXo+hG3H5T55ruI8TTnyYKdNGZzS8y/Xerp00jzpGZqwj3VKDXZsSB4dCkZVAIC3qFUVJikjodrsZOHAgt99+e8Ea912lV+9qtm3diNvjjRrL2baWU3YGMnJpuPr3Jbz2awLVRXjLXLj9NSD6AAaK4cHQDZob2wkEWnBpLqpqBuAqraDaVc7A4iLa29rx+/2MG9cr6s5HmMbGFrxFRZSVluLyuvEoPtpaAvh8ntgMqxDIAEMdgQCgUF5WQnNrW8Hqz4foo4gGt3G5VELhCJGggccttQVRI8tQOExpSeZETYlLCOnCHheSnjQSyyZoklAiIDSea7gvY64IyE47AKDrBi53vEC74PlZts4FuQsFO+0qUuehSJWOecjiGXC+YO2TPZPHQZJLYCiHby9ZCQQyeuCgQYN499136d27d5c06rvO8H1GU1TkQxjRmYswomv62aAoCu7B/Qh/tI7wFxsxhvbGVS798lWECorwoKltUW8FVPrV9KW0tGTn2nyfeBsQdftmepW60XcfDgK2NzTSu1cVLS1thEKhzkyG8W3IBgHQmSY5GAqjd6ZK9nqiSwSqEvWQ6A7bATtE7QuioZr1TgFAUVQ8bhcdgWCnNiN9W61W5GSIWjuDjFmYSOXmaA55m+3A1VXaBbvq8r813gFEUER0wJZCQeKgb3fwTkS6r5o1BBI7oajVJcuTMhxmUqGnG0RTeZyYbQ/i7Arqd6rsU9knmDULdgfwVNeQqKWQ7eypBFNg/RtyyA6799DxMuhGpA3B5yv/RWlJMTv1/wLVV467uDKrQVaEIjS/sxLF6yHs1indczf0YBhfvz6EgGY6iGxtw6v6KfIXoWoqhi5wuTUMwKWqqOYEQA1bUJsa0AcOQwDt7QE6AkHcbhcejxufNxrnIKiH8Wr21/llpxwKRwiFwlEjPo87aX2+rS2A2+PC487J1rVLkT+TSEQnEAgRikSoLC/N6KZoGIJAIBiN8ujWCAbDnLVbNJy1eRBPNQCmmw2bB7Jnt93DKb0v4rEvbkEJbuOsEb+3fW35CAV2XSoTiV6XYOeimIzJjaVAILfvPDaxk7N+DtIeJJNdSiqhIDFOQTqGLJ4Rl8Ia4jUCicdPmTYzFjMASMqSmViXPIdsT2L7zOfIJLBkY0yZqXxowt68+Z8bC25DoOs6n376KdXV1UkG7A7ZsX37drZs2cLQoUPR0iz/2hYI7r77bs477zx8Pl+cn78VF198cXat/Z6wM/3xZzG3Qys/U1sIQcunn9OwfBUVffsT8QhCLc1ovXrh3X8fwh6dEEFKIh6K3X7UzplsIBjCMAQRVaHY40btPGdYCeLavh13Syv6gKEkvhQyQqEhBO2hAF7Ng6YqsZlXcqZDgGg8gVAwTEQ3cLk0vB53ygiGgU7PC7/Pk7RvV6KlpR1FVdBUFbfbOu2zJBzR0XUDVVUIhyO4XVo0zr4Sv2aerRocooPd5i0tzNnnav62/V4A2psDBNqClPcpRXOpKd3tEslFKEicOSeSzrAul+tNJBokK0goJPB6Pbhcaqcb705CoQgAbrc975hsNRGJXhZSKEhn6Ln+fGE52EvMngbm0Mmx+BFpjArtCAS5zPbTCX5dlf4YYOPGjTQ2NlJdXU1RUeblOYd4hBC0t7ezZcsWKioq4nIgWGFbIBg0aBDvvfceVVVVSdkD4ypUFMftMAVWAkHOCEH7hm/o+Loer68Epbmddi2AWl2DUV2N3+dB8SpEtHYgTLGoQMMdTf1rCAwAI7qOX1LipZUG1G1bKGtT0QcMi2YTFAaGbqAb0X+Nzpm+nBVH4/8rqCqoatS4TgoIEV2PJg8iqg3wuGXQn9Q/6HA4QjAUpqTYn9+96UKkZ0FZaVFnHIcICnS6HcZfnxAQDIVwdRopSgrRqQkhaGruIBTS6V1VEtO0CCFoa+wAoKjMh6IqcUJBqnX6bAWCXNMbF0IQkETtUHR2NAbo6Ajh93spLfHi8cgZkEIgGMTjdttehjrhxIdz0pZkYzOROPu3G9FSChtmLYHZGyGX2BSp2pcqBLfVcV0pEAgh2LRpE42NjQWt9/tGRUUFNTU1GfseZ8mgGymoQCAxBPqWRjreeh/XlJHoLg8ulzvqV49BhCBCEXiEn0Ag3DlAqRT5fUR0g4ghcLkUwpEQ2o5taE3NtNcMjA7sioKqRhMBaaqKqqmoSnz+AEOIqNCg61HBoTNJkKappo7YXpAfXTdobeugrLS4Rz0NUiEEhEJhwpEIxUV+okkhRfQ+hiNomhqb/UPnckEwFBXOCh1uWQh27GihuLgIj0dLEEQEoUCEcCCMv8SL6orXYKSaBWeTlTCX4DeFFAYksvsKBIK0t0foCEbwuDVKij14vS5CoQg+m/f/pF6zsxKMEtf07dpNSIFALhXI8yVqG6yQwoDV0oTd4Ffmc6Zro113xq4UCCS6rsflo3Gwj9vtTrtMYCYngeDGG2/k8ssvp6ioKG57R0cHv//977nuuuuyrfJ7QZcIBIDe3E7T/z7GP3oo3oqS2BJAG9EoXuVUIwS0RBox1AB+UYJqFOF2abQHg7QbTbi9KqXNIdSGJjr6Dcbr9eycVSnR7Io6EXTCGBj4KI6mXU5Avk65DIBCCJpb2igtKc4pt0BXYwhBa0s07oDLFHdALo+EwvHRDqX2wO12F1zAidplGKRKzhTVFLQTaA9S2bccVdPi2pAoFGQTYCiTMJBoGGjHHiJfdtp4GLS1BWnvCFJS7MLtduPzeW2/j9kKBXZJF8kxcY0+lWCWSYtgx5YjV5sP2UarY7tDIHDoHnISCDRNY+PGjUmBibZv3051dTW6nj4P+feVLhMItrfQ/s93KTpmLKLcQ4fSRJtoRFfCqGhUUoOiwg5jMwYGZfTCaPOjKRqBYJiQpxmK2ilpjFDeCKHdhxLUg6henbASJEIInTA6EQx0FKFSRX88SmGDhcgwwH6fN27A3RWQ8RJ0w6DIbz3ASBuLcCiC0fmz6grtgF2EELQ3d6AoKr4SbywqI6TXEkD+AkFPIl1aDUMnFNbxuF2WcSQSSeUWWgjhwI6QYWeGn04osCsQ2PEuyOZYRyD47pCTObdcR05k1apV9OrVK+9GOdhHGAaiIxid/anQxg5aaQAEGi78ShEuVaCg4FV8hMIGkYiKz+XG43ajqhoiYOAziilWgyiiAU3TCIWDdIhtCCVeuFNQUVExiHTB1XRmdQyFC5I6uZAYhojZN6RqV9R1UsHrjbopqoqCkqU7aSFRFIWiMj+hQISWhlZKKqKeJoqipBy063rNjqq06+dFv6ewkt9VhQGQwaWiBq+a5iIQDNl6n6Rmw+zGmS9SEEg3UMvBOJMwEF2iSC0QZPIcSCdMfNvTNjsUhqwEgsrKypjh1NChQ+N+YLqu09raygUXXFDwRjpYo3cEaVz1IR6Xj0CFSnjNWtyDqvFXlaKgUKQW41aia/iGIXAHS3EbbvxuX6fxX3TwcrvLoh4DNHSqXgUexUcw4kXx6Gi4ceHGLbxoijv6EYV3DVSUqHFeS2sHum7sMkJB1Dgw3BmYKL1xWjSmkdJlkR2zRVEUPD4XoQ6Fxi3NVPYtB9X+ko6VqjvVwLIrCANmpEZE01R0Q5Dh0cVRKP97O4JANoOxbEsqe4NU7TV7LaTKcploGJmoNZgybSaL6guT+8Fh1ySrXv3OO+9ECMG5557LDTfcEBe62OPxMHDgQMaNG1fwRjpYYAiaPviY9vUbcPcfSPGeA+nYsgVXSKNI6QOAQhhDhImEFIyIhs/lR0twv1JQUFTQCSMwIBIhGAyhKholeh/8wo2iRFMgR/+nyAO7BEVR8fs8tLZ14PPKDILStbFrzpkZQcRkSPhtQ1EUSiqLCbQFCXaE8Ra5Y9sTkbNkGXbXiinTZiaF/N3VhAEzCnQG/8pPSMslP4HVUkEugkCiAWM6QSOVUGDHYDRV5EQoXCIoh12XrAQCGa540KBBjB8/Hrfb3SWNcrCBAkV9+6I0duCqKsfbry96JILm96GiRq3fQwphXUFT3Pi8qQcBXQmzQ2zCF4lQCtEARIpCMBhG6Cqaq/siByoKuN0uSlSVYChEa1sHmqri8bhtrQN3BXpnJMld0dDRLoqi4Cv2EuoI07ytlZLKYjRXbhqYxMFoVxYGZLIqjydzX5VrNMRsyEWoSOXSaDZCtNqeuG1t/by0gp6dtvZU3gyH7iGnnn7ixIkxYSAQCNDc3Bz3cehahBDo21sQH30FAtpqfDS52okMrEQtL8EwDFrDAQJCx+v243G7M8YA0AkTUYLg2hkvwOXWiET0WKTB7kJRFFwujSK/n5JiPy6XRiAYoqW1nVAo3K1tEZ1Ggq4cB89dCUVR8PjdaC6Nlu2tCKN7n2tPoOtGzH02E1aCzZRpM2P2BKkGcquQwqnK5bpWn+446b4oWVi/ioX1q/K2g5Bhkb+YPyrmnZDJLdLh201OAkF7eztz5syhurqa4uJiKisr4z4OXYQAIxAi9P46Aq8tI1KksXlfP1+Gv2Zdyxesb1vPxraNNERaaCxqxygSqGp6QUAIgTAUjHYvmqqhCgMZTlZTo7kFWtvb6AgG0HWjmwWDaKptr9dDSbEfv99LIBjVGoRCYSKRaOyDrmqTECIadyAcweuxjp4oiNoYyJloJBINyBT9RIhEdAxDsKuMu4qiUFJRhL/UR6A9ZCkUPNdwn+1Z/66uHQhHInhMsSHSYdYQyEFeXbKcRU/OzXlwNc+mcxEG7AgR6pLlSUIBUJDBWy5t1NWOdISB7wE5CQS//OUveeONN3jggQfwer38+c9/5oYbbqC2tpa//OUvhW6jA4AQ6NuaCLy2HP3zb/D8YARFE0biKS1DdP6nCI2AS9BWFsbwQqs7SIcWiqZNTkM4EKF9sxtvpCxqIxALL6/g8bpRNYHLGyEQ7iCi67H48MFQmGAwFBMUulJYUBQFl+aitKQIj8dNKByhIxCira2D5pZ2WlrbaWvvIByJFKQdQkS9CgLBMMXFPktjQhmoqKW1jaaWNlrbOugIBAlH9OgnHKEjEKSltZ2W1jba2gMEg2GTkCBi9XQniqrgLfKgqgo7NjejR6yFql15sM+EFNByXeqRs2Og4DNjOeu2sz1f63+5nFAIr4lUSxQO3x1yMhV/6aWX+Mtf/sKkSZOYOXMmhx56KHvttRcDBgzgiSee4Mwzzyx0O7/fGAaRT74m+OlXKAP64hvWH8UfnbH29fdFICh2ldCqB3H38oMaNQCMYNDk6cATcOES6QyqFCIRCIcFQjdMW6NaAk3xIEQIr98gHAqi6C5URY2lAg6Fw6iKgtvjtp/JOQdkWmKPO2psiGlANYSBHtHp6Aji8XjweuzNCq2QXgWBQIiSkiJUVU26JiEEgWBUe1Dk90Xd+aLma8RbXIpODYIR1SDo0ayJQkRdQTVNxeON5oXoziUJRYkKBZGwTuuONsqqSrLyPvg2CAvhiG47h4EVMhzwlGmFcUE01yuxEgxy8WxQlyxP6QES3VaYbIVmocAxMPzukZNA0NDQwODBgwEoKyujoaEBgEMOOYQLL7ywcK1ziGoGPt9E5IMv8B2yL6HKEoTXHctSWOQqZlDpIAwDXEYbHWoEQ07xFQirBmFVx6VnEggMWlrDlBo7Z4o7Z42CjrYIpeUufD4BhooiXMiBz6VpUY1BMNSZEbFrB7ZY/975h6KAioZLiyYOamvrQBhGp4fCzmvE9KdVCw0hiIR1AsEgHR0BvF4vbW0dKIoSjT7o0lDVqAtnKBjCEIKSYn/CDDSxZhm2WUPTNOTCgwyeEw5HaGvrwO124fO6OyMP5nd/7KIoCsXlfsKBCB2tQXxFnqQwx1a5D3Z1YWCndiAq0NrFKh1yXe1IFtVHtQOpDOrymcVbHlu/M1phtvXX1Y6M0waYNRu5psh2+P6Q05LB4MGDWbduHQDDhw/nr3/9KxDVHJhdER3yRIBoaieyYi2esXuj1Vbh9riT1OJCKIRDEcrUIspD/oQhSRBRjLTLBrqu4/Fo9O5VjKKqoMhOVaepuYHtDZvoaG8jFOysRQ3H1SYHTFDQdTkT1nvEYE1VVYqL/RhC0NbeQWtbgNa2Dlpbo8sKLW3ttLS009LaYfq009jcSmNzK6FwmHBYp7KynPLykliiJSGiaYzb2jro6AiiuTSKk4QB+0j/eJ/PQ2lJNAR4a2sHgWAozu6gq2+hoii4fS4UFRq3NKOHE5+b4LnNt8a+7erCgCQcieSsHUi8RjkTTrVskMqo0K6xoRnzDH/tpHmsnTQvZiRol+4a8HO5Poddm5w0BDNnzmTVqlVMnDiRq/5/e2ceH1V59fHfc9fZMtkIOxEBQRAUxQUUFXBBARVEXFCLCFqVYsXW7dVK69bWqtUW1FotaLXULipW3EAFF1CRXQXZN0PYQjLJLHc97x937s1MMkkm6yThfj+fUTJzlzN3Zu5znvOc8zv33otLLrkEc+bMgaZpeOqpp5raxqMXIhg/7AHrkA2uRwcgPohouu4I92iaAcM0rDa8HAde46ByOqKCBgKBJw7Eah9VTNNqzyuQDgg8TBOIqSrCkXLEYmXweHzICuTANAimaYLnTIDpQEKUwKoM4KCqGhjHQAQIAg9JbHoBo7rgOA4+r4x4i4EEkq+D8zqLLzmQCV0x4Pd7nEQ04qz3YbVkZs4xmjK8z3EMXo8MU7K6UUZjStKSgiBY0YW6EkQbCmMM3oAHpkGIVijwZ1vLTowBMA1wFbvw5t77Qd7aW6e2BoisygJ7uaupaUxzoNpK9tIZ8Bvah8DGdmhqOsaWEfUrS6zv9i6tnwb9YmbNmoXbb78dAHD++edj06ZN+Mc//oFPPvkE3333XZMaeDRDFVHoew5A6F+IRJk1URAQjSmIxqyEQasXvDUb4sCQq/jRMZqFPCWADrEsZGm19xzgOQaflwNTItBFD0rLIyiviIHjeOTldkRebkfIkgeSIENTkBAlSB5gBZ6H1yvDI0uQJTGjPS1sGWGOS3xwSQ+e45xOjgInwFZj9sip+w/YynfNMyhbHSJ9XhkBvw8Bvw9er+w4feFIDOUVEVSEo9C0pkmcTD6/tXwg+yREyxUYug4QgUX3A4wHeTtlUhmqHhA03YCQZmVBTdQWJdj50+RrX7XzYH1J7A1R08Mm3eRGe8BPtc5ftWrCPPcU5++qs/6aogBu/kD7pElc6GOOOQaXX345srOz8dJLLzXFIV2IYOwoBpflB9ch2wnj64YBVbNGLo5jlpxu4o2PAI4YJEOAX5cgmZbKYG2a+j6fBx07ZIGLRaGKHhimiYDfg5xgNnzeAHiOBxjAC9aN0NAJgAlwOhJn3fZgaT9aIuTdVOiGAUXV4E3RuIgBLbr8YZVbWloMsizB5/MgK+CF3++FKAqIxlTEYmqzOAWibC8flMOIloHFDsLMKgRY65Biro2mjA6QWf3a2oPglhHz6wyX17TuXzX8bw/EdQ2wVR2Dus7/QdE6cMtW1xh5WLxgnmPL4gXzHEfDXqKw7er5F1ZLoqJLe6PlJOhc6gVVxGBsK4LQrzsg8FZNvKZD1014ZBF+nydeQ15ZB09EUAwFRZEiHFIOWRn/dST4McbA8TwEjgczdUhZQeQG/fB5rbI0qwrRADgV4BWIMkHT4mmLTI9HCarfPK3ZtJVd39rFb0yTEInE4PPKyc4VKp0cM4PvwdHk5zhIooiA3wvTJITKI06po2GYtWSJ1OdcDN4sD3wBEerhHTC83QCuabtaNh+W7oDQiMoCIoJpmCg7VJ7ydbvef8uI+Ukz63SwKwESaYgcsO0MpJrNJzociYN2Kp2C2rAdBttRqPo+3RLE9onrELRGNAP62m3gsv3guuWDYNXEExE8shgvg+PAC1Z2vz0gR/Qwtpdvxb7IXhyI7INixpBqsE4F0zXAMMB5POB53ooOMwBMA/iY9X8QeMaDkQDTACqjBKkRBB6KoiXV3Lc2iCxnwGqRmzrMzHEczBQzxkxgRw98PhkBvxdyXJK3IhyJLyVUOogNPgcAP3cYoteP8ogHWrVEw9aJFR1gDY4OEBFAQPmRcI3LI4lr74kz68SBsa5B8oJrpqaVKFhTFCBxiSJRSTDx+apLDonOSEPC/anEmS64Zqq7dNDOaPmML5eaIQCqBn3NVpiHQ5BGnASKD/oMDFJCbT1jgCjwiMZUmKalSCjxMrKlHACEoJgNvj5hXiUK8ALA8QllffHIgPUHYIoACeCYDjLiggM16BvYQkIcsxINOZ6DmCCL3BogIqtfAwgej1TjEjnHsXg/g9aD3eKX5zmIogBREBCJxqAwSxOCcVauSUP6PzC1FEwthZDbH3zYQNnBEHI6Zje490FLoetGg6MDToQtokHySpC9qZUpgcrSvqrr+fYAn6r5UyKpIgVA9Z4FieJIQLIjYP/bLk2sal/V49rHTHQK6ju7T4xm2AmSHxStw3ldBtTrOC6tF0b1cP0vv/zyWl8vLS3FsmXLMppM1poJhULIzs7G3l1bEQxmJb9IBArHoH+1CRRRIJ55AlheAGZ80LIGrOo3Oj2uimc1L2IgmNBJh8AEK3MgzZsjt38vmBKD0aN3fHZEVvdDXrEGfVMAwIEBUDXr85VEHuloDlgSsgYM3QDjrBJFrgXr7VPaBEDXdESiMWTFxYdqwjDsa1zzINEaMOOlomRaVRNaPNfE65HTbyVtqOBKN4ECPUByjiXSFFFh6iZkvwyObz0OXSJWWaha4++krn3JJIQOV0CQBPizvc4x0m14VNVBaO6Zc02DeUPOW1VkqDZH4bilNzjOiO1UnNdlAJZiIcrKyhAMBut9fpfWQ70cgqlT01uHmjfP1bxORY0OARHocDm05d+BBbwQTj8ezC/HAwa6lexVw0zPVswTBR6C0JDELytMyu3eAviyYBZ0SXglnjwYdwTswV/TdZgGQZbT73Zpf810w4CmGZBEIf1BqhkwDBMV4Sh8Pg/EOq6baZpWwqFHbiHrmgarF4OOmKJAFMV49UQtJZNkgpVvB2MizEChEzYnImiKjnBZBIEcH4RGqEA2F7puQDdMyEliVOlBJiEcisLQdGTlBcDx1Z3DdByDRKegJULpdakFpttMKR3VwdqchFC5gdy+212HoB1QryUDd6BvBkyC+eMhaF9tBN+zM/gTe4GJQoI4kFljGRwQ72AnClBVrcEDLEEDKeVAfqfkY1v52tW25zkemla5VJEOtl0Cz4PjOCiKBpkTwWdgYCEiRKIxyLIIgU/TicrQErrtSDXkc2WMQZZFiGJlt0iPR6qx2Q9TSsD0KMycY5LW0O3qA9krIXSoAjkdg9UUDTMJEVlOpiTU2xkwTRNKRIUg8vAFvdWSSutDYn5BXYNxYzof2tQ1iKd7fDcPwMXGTSrMJLoJ44e9UFd8D2HgsRBO7gMmCU4U3tAN8Cl09KvCcQyMY/FWxdVft0KiJkxNsx66/dBh6gag6GA6gXgRZBog07QelLppEWOAEBdIqm+yma0PIAhWa+WWhogQjSnWYFmf2SRr2dJDID7DL/kRphJGYzwSjuPg9cjw+zxQVR0V4Wj174qpg4V/BAWOAbjq8wS7+iCQ57eWEFq482Vt6IbpJFvWB9MwUXawHFpMc5o91bQCZneArEupMbEKoTaq5gc0RfOhRJpaRXB015PqXang0vZwHYIMYOo6zKgKbdUP0NZvg3j68eD6dAUxOO1o7XV3axmg7tJBSRSg6TVng2uHD0Av2p3yoRX/CAU81AP7oO7dBXXvTuuxZyfUH3fBjEWrnU8UBZim2aDWvlbCIdfigwoRoGlWS2Kf15P2DJcxZq2stOD4R0QwwkdQ8s2bCO9a0+jrxOJOWMDvgSSJCEeiiMZiTjkl0ysATgCJWajp+8YYg+QRIcgCjuwPQVczX31gmgRdt6ID6WL1kTBRcSQMxhgCuf5miXbUlbSXOIPnlq1uUqegsdGHROz30dhKBZfWj1tlkAGiO/dBkDwwwxGwYztBVxRg+4/Wi/aNiQGGaYLlZMFTkIu6nQLOmbVXCwkTgWJReEQJhmHANAwrUU6JQZAkeLw+xCQDPBG0aBSCKIJME15/AIahQ4+EwXt9Vc8IURCgalqDGhoxxsA4zupI14BM+PpCsJIDozE13s64ISH4prerNvRoCGJ2J5iaCjJ0MKHxSY12ZEQUBMQUBeXlEXg9EmS13HIG6niT9vKBL+hF+ZEKZBcEwdWjS2JTkNi8SNdNZ6ksHRtsZ7v8cAUAINgh0LQy1I3sI1CbvHEm2P6PkzG6a/JziU6Bee4p+O8LL2bAMpfmwI0QZAClPApekqAGfNAFHgIvADrBiGoQwEHkBIhMgIcTYRwpB6VR8sYYrFm7YcKkFLN2ssoEK8pKcXh/MXZv+QE7Nn6PSHk5VEXBzk0bsW/nDvywZjUOFxdj23ffVlaLpLhf2lK7DKxBjYzsqIahGy1S0kemlTfg9UiW8mJ99o1fu5aEMQZPQU90GHolsk8YBcann8CZDlb/BA/8Pg8UVUWs4ghMzpNWFMTqfSAjKzcAJaxCbyGdAitXQLfaTseraxAvv03XGQABSlgF4zhk5Qfimh71+2zTWTpIh6phfdsRaOrlg8ZQV6SBW7Yal914XQtZ49LcuA5BBijetgfR8jAO7i7C/h17UfTDDhRt3oldG36AElWS5H+ButUGbRhjEEQBmposKZwIx/EIh0Ig00QwLw9lhw9BkER4/QHomgbTNAAQDF2HGR+oazo/YwyiJFjCNbXYRaicmZmmNbvTdN2qVjDNZs8lsPIGYhAEAaJY/8QzorhGU4aS6Jq3fwKPLL8HIqejPAZEozEYZt1LOYwxCBIPXuRQeiAETWn6/gpVUTUdumFCEnl4ZBEeWYScZsWD/f0Ll0UAAFm5fjDWPLe/xoTTuWWrnfr+RAnhTJBOHsIHRevAfe6qFbYXXIcgAzAAjOPgzwnCNE2Ey8oROlQC06Skobcht1eB50CoDKlWHsw6mj87G/mdu6Bbr97I6VCAToXHgOd4dOrRA50Lj8Gx/U+AN5CF7r37QBDjs9Jabrgcs8Rx9ISGO5WDvxkvM9ShqDpiMRWKokLTLPVCLu7A2Ps0B0Rw1BK9DahRd2gdCfVNDmMATAOMAEH2wTBNhMNRhCMxKKoG06xMLK2eXGrlFARyfIhWxJo1J6Sy4kaMK2my+jlKBJSXhKFrBmS/BGZ3c2xmasojqKvKwFYYrK2ZUUMSB+uzTzp5CKmEkVzaLhl1CHr27Jn0w7YfM2ZYNb8jRoyo9tott9ySdIzdu3dj7Nix8Pl86NixI+666y7oerKc7tKlS3HKKadAlmX06dMH8+fPr2bL3Llz0bNnT3g8Hpxxxhn4+uuvk16PxWKYMWMG8vPzEQgEMHHiROzfv79B7zu/sDO8AT9yOuajS+9C5HXtiGMG9UO3fj0heqqsE7OaM59TYYXiRaiJHfEYAzweKKoCTdfgDWaBl2R4g0GIoggtHAIvihA9HmTn5yMrJwfBvDyoagxhNQydr3nAtjQSBGvg1w2oqgZF1RBTVCiq5sz+BZ6DLIvweCTIsgRJFCGKlpJec84sdUOHomr1SiKsStWuju0NZsTABBFenw8BvxcBv89KUtWsioTyCusRjsQQjSlQNav9tv25efwyfEEvohVKs0QKiABNN8DzHBrimRERlKgKjucQzG/anAEbW0I41YD7QdG6lM/XNTjXFR1oysTBhtIabHBpOjLqEKxcuRL79u1zHosXLwYATJo0ydnmpptuStrm8ccfd14zDANjx46FqqpYvnw5Xn75ZcyfPx8PPvigs82OHTswduxYjBw5EmvXrsUdd9yB6dOn44MPPnC2ef3113HnnXdi9uzZWL16NU466SSMHj0aBw4ccLaZNWsW/ve//+Hf//43li1bhqKiojqVG2sikJsFw9DASzwkn4yczvnwZfvhyw7ANAxoigJNVaGrqqVJUE84ztJzT6w6kAo6Q+jaA+jYFVpuR1BBF/Cdu0HIyoJgqOA6dQXXqQtYx/ijoDMqcnzY4a1ATKp9ULTKEK1ad8Sz2WVJgke2HlJ84LfXa61H3FbGmi173zRNRKPxpkWN0Lc3dLPR3fNaNXoYJu8BxZUtOY5BkqwGWgG/D36/lWsgiSJAgKpqCEdi8eZKsXi7YR6CyKPsYNMuHziRJt2AKDRgucckVBwJwzBM+LN98chA0zgEiXkEvSavcR5Aes2E0lmfbwoSHY90B/CmLlt0aRtk9C5XUFCAzp07O4933nkHvXv3xrnnnuts4/P5krZJVML68MMP8f333+PVV1/F4MGDcfHFF+Phhx/G3LlzoaqWBv/zzz+PY489Fk8++ST69++Pn/3sZ7jiiivwxz/+0TnOU089hZtuuglTp07FgAED8Pzzz8Pn8+Fvf/sbAKCsrAwvvfQSnnrqKYwaNQpDhgzBvHnzsHz5cnz55Zf1ft/yMZ3h6Wk95GM6Qz6mE+TCTpALOwKdc8F3zYfULR9S9w7wdC2od0KbXRaYWGtugkE1AINxkP0+eAJ+8LLVyIiXZPAeL3iPD7zXenBeH8gjQxUZStQShNSyOs8n8Dx4jgPP8ZY2Qhp229s0/aySEI7EIIlSXM+/YcfQNKujY8NUINsCBKZHwMvBanNv2zngOQ48z0GSBHi9lp5BVsCLrIDVXCkWU1ERjoGTePhyfFakQLMiRoqiWe2aFQ2qapV8pluqSkSWdLeqxjUj0v8Q7SWOiiNh6KoBr19O+zuZLrWpF3LLVldzCho6yKbbcyDdNf90SdfeNzdvSPuYLq2bVjPtUVUVr776Km688cakH+1rr72GDh06YODAgbjvvvsQiUSc11asWIFBgwahU6dKhb3Ro0cjFArhu+++c7Y5//zzk841evRorFixwjnvqlWrkrbhOA7nn3++s82qVaugaVrSNscffzwKCwudbeoDL0ngPTJ4jwzBK0PweiD4POA8HjCPDDnoh5hlPXi5fjdCG8asboOqqkHVdKiKBkHg4ZElCHxlVjbxIqDrNSYsEAhhrQJcHQlYjFnNl1TN6opYHziONWk3QSuJUHWU+ho6CJgmwTDNeEfBdppEQAQYUYD3pn2d7CgPx3EQJcFxDBRFgwGCyQMl+0tRXhaGHl9aME0TqqYjGlNQXhFBRTiCaEyNO62pP3siQFU0SKIYH8zTfUsJ1QQ8h+yCLLAGlJnWRV2VBolOgS1UVNOyQk00ts3wB0XrGhTWT4x21HZst/1x+6LVOARvvfUWSktLccMNNzjPTZ48Ga+++io++eQT3Hffffj73/+O666rLHEpLi5OcgYAOH8XFxfXuk0oFEI0GsWhQ4dgGEbKbRKPIUkScnJyatwmFYqiIBQKJT1qwzTNBpVBpcLuf0CwEhU9Hil15ztRAgwN8X7GSdjLBCInwcN765zF85xdhli/MkKO4xyBnMbSUPGhVBimmZDA1iTmtT7IAAwNJHgatLtdfSHFHYNglg+5uQHk5GXBiGiQeEsl0eeVEfBbSxDBLB88Htly3KIKKiqi1RqiEVl9Lziecz6DtN5OvOS2/IiVQOgLesFlsGcGt2y1k3hXVb0wXccg0SmobQBuyfV889xTXOXCdkirESZ66aWXcPHFF6Nr10oVjJtvvtn596BBg9ClSxecd9552LZtG3r37p0JM+vFb3/7W/zmN79Je3vGMZiapSPQGE11EMVL/UwIHMBYTTMwgs448JoGztBBNej6R40I9oZ3o4e/ECJfsziOPTDEFA1CPW7CHLO0DJoCwzRQEY4iEPA1ehAgogbnHrQVmKEAHA+wpr0VyD4JjGVBjengOM7pfWB9JJazKsYTSlVNRzgSg9crJ0SvKC6ylb68tO2wRkJRGLqBQAdfgwSo6sMbJXPrbHzUa/IaoCj5Oad98T9uSGsgr+oU1FTamPialZTY9DN4yylxIwPtkVZxt9u1axeWLFmC6dOn17rdGWecAQDYunUrAKBz587VMv3tvzt37lzrNsFgEF6vFx06dADP8ym3STyGqqooLS2tcZtU3HfffSgrK3Mee/bsqfX92Rr/qqo1ak3dau2r4nBJGKrOYBJAKSIAgJVbQLwAqEr14ySWEQJp5TKweBmipulpJwsyjqUsa6svpkmIRGLwyFI8FN1IwaP2XVxgYUQBXgaauCafMQbJK0LyiigvCUONpf5O21UxXo+MaFRFJKI4lSkMDHyaA7qzTBBRwXEMwQ5ZKbsWZorEpYPESMGWEfPrvYRgtx2u6Ty202CXLJrnntIoPYPEc7lLBO2bVvGLmTdvHjp27IixY8fWut3atWsBAF26WC16hw0bhg0bNiRVAyxevBjBYBADBgxwtvnoo4+SjrN48WIMGzYMACBJEoYMGZK0jWma+Oijj5xthgwZAlEUk7b54YcfsHv3bmebVMiyjGAwmPSoDTvMD6DeYfck4slYHMfjSGkUum7WOLYRY2CSB0yNpTAI8PJe9Agcg8LAMRDSmEVWliGaaZfrcYyBGplDYIWfYxB4Hl6vDFEUoKoNz3a3HZR2u1QQh2lhkBBonmMzBkHk4QnIlgZADb0PrHwXAQG/F7zAIxJVEI7EnF4ZaUFAeWkYalSFJyA3e2QgkXRVC1OF2BtTx58oXGSee0qSE5DI4gXzsHjBPCd6UJdzkMoBqG25wlUqbD9kfMnANE3MmzcPU6ZMgSBUmrNt2zb84x//wJgxY5Cfn4/169dj1qxZOOecc3DiiScCAC688EIMGDAA119/PR5//HEUFxfjgQcewIwZMyDLVu/6W265BXPmzMHdd9+NG2+8ER9//DH+9a9/YdGiRc657rzzTkyZMgWnnnoqTj/9dDz99NMIh8OYOtX6AWdnZ2PatGm48847kZeXh2AwiJkzZ2LYsGEYOnRok14Pq/EPD90w4uHTBh0EgiDA74OlPEgmuJRyvVb0gHl8QDRc7VUv70O2lIt8TwdwjKuHYqI1yJuGCS4eFk6URKgayidCo6SBiQBF1WCYhKyAB3bzJE3T6965huPpugECte9yQxCgRwB/17o3bSCMMauTIM9BjWmWOqJYPSfA/l7IkqU+qGo6IpEYBIGvs8KDiBALK9BVHdkdsppN2bE2UvUgSBQfstUHq2JHC0bjpHq1RLajBJUOQHoz93TD/XVFAi64ZmqtokkubZOMOwRLlizB7t27ceONNyY9L0kSlixZ4gzOPXr0wMSJE/HAAw842/A8j3feeQe33norhg0bBr/fjylTpuChhx5ytjn22GOxaNEizJo1C8888wy6d++OF198EaNHj3a2ueqqq3Dw4EE8+OCDKC4uxuDBg/H+++8nJRr+8Y9/BMdxmDhxIhRFwejRo/Hss882yzVhTm0+oSHZ7VYGOA9RJOTleMHxNX3M8RZ+gSDYwSLANIH4AMgYg0/wwSA9PlOunx2iKEBRLc15gJz3I4qiEwVxrCCzwTM6gpV8FoupyKqaN9CA6ACR1T1PNwzIUv2bNrUpTB0wVYD3Nutp7IZIjGMoO1SOQI4fkjd19YedYyBLYlwlsfZjE5HVjtkk5BQEm1RnoD7Y3QoTnQJ7cLcHent2nmogtWbv6Z+vufID6sMF10y1pJbJXUZoLzDKdP/So4hQKITs7Gzs3bUVwWBWjdtpug7TIEhp6rTXhB2yZwn/TcQ0CYqiwity4Ld+C7N7L1Agu3L/hK9Gfe2wowJ22J0xq7RQ1XR4q6gxGnGVw/rWmlvvwUR5RQQ+rwdCgnCNncHu9cr1ylDXdKsTpCxLYGjH1QUAWPQAmFICM7tfizRvIiKoUQ0VpRFkd8gCL9aceEoERKKxuMhV6sZOZFq9CTQ7MpAhZ8Bm/ISX0hYTSmcGbmMfM931e3ugbsh5E0lMXLQdmVTH1knDUixEWVlZncuiLq2bjEcIXJKxZ6hWdnXjbm51hfidNX5BBOXkgx3eD/IHncGhMedPzCivfA41z9ob4Jba4kOyVIP4EENSdMMKUtR8Ik3TYZgEj9yIngdtBTLAosWgQGGLdXK0Ew2zxSyoUQ2CyVuRgxTnJ7LUCa3W2tWxIwO6qltyxBl0Buzv1WuvXYtrr01fYTAxf6BqSWJ9w/GJAzWHms+fGOq3lx3s5+xjpHIaanIGXNoXrkPQyjBMa5mgRZKiElYkKLcA3PbvwZQYyNM8IWTGKpvUJKvGsXr3C0hHfEgUBCiKZpUO2i8nnCbxnLbj4GmEkFFbgqllAONAYsvO6Bhj4AUOoiyg7GAIgVx/vESx8poTWZ0NBZ6r9jsgq54WsbACkwjBVhAZsFtr/6THL7G4lpLAREZ3PQm9YC0pNDZzf3TXk2p1AhKp6mjY+1Yd7I9beoNjH1B71MGl/eA6BK0MwzAgCC0ppBKfPUsekC8LrPQgqFOPZps1SpIIRdUsKVxRcORxyaS0cxXs2nVd1xHwp1bYY/ESTo7jaq40YJXLKfayxtHgDIAILLof5O3UYtGBROzWyVl5AUQrYhBEvkqiIUFVdfhSLvcQKkoj0FQN2R0ylzPgWEOEmKLiJz1+Wa/9kksN6+cQ2MsJ9RmgE3MXUjksice64Jqp2LJgHkajcrvFC+Y1qq2zS9ugPadQt0kYEB8cW+hkiNf/MwbK7wx25BBgNCw7v87TxQdpr0dKas/MGAPjuLRiBESAYZiIxVT4fB7U1tPe1kSwM9WrPXje6uXAc02mENkWYHqFpU4o5SJTSZP28kEg1w8lokKNVuoUaJrhfHaJ2DkIRITsDlng+Mw7cLYypo2dOFhbmV6iM1B1qaAmbCfASeSr52y9NmegKqmO7ToDRweuQ9DKEOKthFtCFcc0zORQrS8ACCK40JEGZeg3DkpraCKywrNejwSea2BZ5tEMEVikGOQtsBQKM4izfOARETpcASWiWrkBqlpt6YaIEC2PQdcMBHJ8GZUjTsSOav338BznucQBNdEpsB0FW5wo0Rk4bukNjuhQVWwnoCFSwY0RJHI5+nCXDFoJdlmeqmktIpdrmlZGfdKNl+NAHTqDHdoH5HRo4XBy3W2QrbwBBYIgQBTr3wrXBYAZA/QKUNYxaA0llXZJYrBDwJr9x0tuE7UHiAiRUBSxsIKcjplfJkiH1P0HrP/bA7x57inY+VPClhHzq+kPJO7vJAvGE/7qM1tPzBmw90tH76BqDoHL0YHrELQCbGlgVdFg9wNozhueNQvT4oNq8nnMYB744t1gkXKQP7sZx4z6JhECiqLBNM0a8wZc6oAIXGQ/IOcBXOpSvkzAGIPkESGIAkoOlkH2VNpGRFBjGkyDkF0QbDWRgWRq/i4nDt72QGwnAHLLVqPXMiSt1Vfdp7bj1UaiJkLVfepyBhraptml7eMuGWQYp+d7TAUX7zlfNVSqmxrMxuryO8ezVP14jqVuQMTzoLxOYAf3oTWJ+RuGAUVVG93B8KiGNEAthenpiNYQHUjEXj4QZAHhsoizfBApj0GNavBne8G3aLJt+ti/krokjFMNxHUNvg1du0+UKq7vOVuya6JL68J1CDKIXYKnKNZsXRRSRwaMJnIG4meFaVLK6ICNmdcRLBwCS9HwqKngeR6xmApN02GaZtyy1A6IGS/r8no91RLNXNKHaRUgTgb4hrU6bglkr4RAXgCGbqLiSASxihi8WZ5WvUxg6X1YtqXb1wBIL3TfkNl6XWWM7oDvUhPu3TVD2Kp4qqZDlsR4z/fq2zHGIHFS2n0EmgRBBAVzwUr2171tA7A63AmQJAEmEWKKZmVqE6AZOgyz0gGykwgthymzSXBtHkMBEzwZKTVMF4HnwHirD4YaVS1Fw1YaGXCoYlp9nIKm5oOidU6CYkNxlwyOXtwcggxgmtYaPgBHFa+2+11T3gzTKh5gDNShK7gd3wMduwE19kJoOFZZGW81XRIJkahiKQuCYJIJHpxT4w3g6FAPbGYYCNSKr6GdsV9RGgZnMGTl+lM2Qmp1pOg7kugUXJ43o9ou6TYySnc2bw/io7siKRmwvkmI9nF6TV5Tr2ZLLu0DN0KQARRVBc9xkCUxrtjXcudOt6UveX2A5AFXWtKs9tiCQBzHgQEQOQECxzv13ZpWk0CNS70hE60tdwAAQFZPikgohliFAk7gkNMpaC0blEYa3Ro707xRMrdZowb2wJ04eNvLBg11BhL/XxfmcFejoL3gOgQZQJSEuPZ+JlTiAMM0YaYRKjALuoCVFDe7JoHVCMkEi4sDMcZgmAaiMSWeRNj0X1OTzJoVDNsl8c6WrPUsu1ifO0HXdIQOVkCNqfAGZPgCXoBj8AZkaDENFWWRpBbarQqGBn2PmnLmXfVYTeEM1IV9jg+K1oH7vHHSyy6tB9chyAA8y9yaKGMMAs9D143ab2SMWY2OVAVMU5vNHiKCqmoQeAF27yPDNBGOxOD1yOB5rlkiKJphNHGyZlug9UQIiAimYSJSFkUsosIX9CKnIAheEMDzPAzdAC/yyOkYhCDwiIVVkNn6nDiW4l810RK5BQ0RIqqPM1C5NFHpbLy5eUO9z+nSOnFzCDJAJsPfjDGIogA1nsNQK7wAEiVAjQGS3Cz2EBEMk+D1WDNX3TAQjcbgkaRaKyEai9QMeRGtHjKBFhC9qtWE+ICuxjRUlFRA8srwZ3uTqggEgUckGoOHZHA8B09ARrQ8hiMHQvEkw9ahUEmA06irNWD3K0gUNaotSpCYPJiuM+DmFLRvGLU2l7sdEwqFkJ2djb27tiIYzMqIDUQE3TCgKBr8vtpr+k2TwO3YCC6vAGZuQbPYYxgmNE2HLFtNjxRFg88rZ2xJpd1CBK58B0j0W02NMmICQVd1KFENjGOQZAFCChEuwzRx5EgIuTlBp8yUiBAui8DQTQRy/VW6ZWYGwzBREY7C65Ut5zXN/S7Pm1EtWpAq8bA+VC01bIneA/Y5Q+UGcvtuR1lZGYLBlu2e6dK0HIXTpKOXRGcgnZspxwBOlgEl1qx2mUSIRGIwiRDwe12tgWYjM0sGdq5ANBRDNKzAn+2Fx29FnFJ9D02DwHE8NE0Hz0vOdv5sHzRFR7Q8BkkWIXqaV9GzNkyTUBGOwiNLEAW+Xlc11dLBGyVzASJcnv+zRg/uqdQRXVzSwb3zHiXYuge6bkAUhSSt+JphgChbSwbNYpOVXR6ORMEYc52B5oZMoBkSNGs8HRHIJChRDdGQAsZxyOkYhMcv19pqmuOsrpgxRUnKGbD7HoiSgLJDIUfNMBOomgZB4JtWZjx+HLvJkd3MqC6hIfv1VPoDdvlgU2I3abK57MbrmvT4LpnDjRC0c5ymSaoOIoIsSdbNjE8jJM8ASDJYOBTPUG9KPQSCqulQFBV+ryWWYxhmPInQXSpoHpr2M6z1TEQwdRPlJWGYpoms/AAE0XJC6/p8OY7B7/MgVB6GaRJ4PiF1L942ObsgCDWqghd4CFLLLy+ZhmlFBpr4vG+UzMHleT9zehHY7ZQXF82rdb8LrpmKLQvmVeuL0Bhqii4kNkwC4FYZtCPc6Vg7hghxcR8NYIAsi2DxMql0E6FIEAFDb7LSQysqYC0RqKoGv88Lr1eGLInQdB2KqjlSxi5NDBGa+ydvVw/EwgqiFQo8fhk5nYIQ4gJD6Qygti6FFP9OpHpdlAV4s7yIhRWESyPOskRLQZYhzXBk65iJLZRtxyCRC66Z6kQQRnc9ydmmpVUGWyJXwaXlcB2CdortDCiKCoHnIDU0Y5/nAcNoSssQicYABmeJwB4APLIEnuOcroYuTQgDqqrpNSX2gKzGNBzZXwZN0eELeiD7JUt0qp7fPcYASRSgaXrKgZ4xBo5n8GZ5oERVRMqiTfVWMs5/D8/BG4eeqfa8vZQAWE5CKkchFU25bFDX8oVL28Z1CNohRATTNBFTVAiCAEGo2kER9ZjdMMDQmixCoBsmTNOs1rXQViwUBB68wEPTm9IJqRkigmqY0MyWnWFmBDKbZVZLRDB0A9EKBVpMRyDXj6w8f6NbFfM8D9O0mnGlwuqQyCO3UzYYzyEWVmEaZssIGNmiGc1xaMYALnk1N3FAr80JsAf/qg5ATYmFtTkKW0bMz0j1gkvmcB2CdgYRQdcNqKoGSRIgCNWFfRgAMtNUfuM4MHBgTSTio6oa5Fr6EjDGwHNci8nVqibwQ5mGXRU62n9MgkBNmFRoOZ6ESCiKsgPlYAzwZXshecQmWVu3HUS9FueQMYDjOXgDMgzdQOmBEEyjDtGtpoBarjl4QyoFmqKywE5s/KBoHcxzT6mWTGgvWbi0H9ykwnaGYZjQDSM+6FZP4LJnVbphQOIq27bWCOOsmWUThPBN03JWvB6p7o1ZZbOb5oRAiBkEjrX36ACaNIfA0hQwoMY0kAkEC7KcPIGmgjFAFARoug6JxDqDG76gFxTvieDL9oLjMisC1lRksmzQzmWomkhov2aeewqw9KuWNsulmXAjBO0Iu7RQFIRahVs4jks/2slxTZZUqOtG+lUELTQ+SxzDCbkSemUJ9foxtHQSW5PQBEsG9vJA6HAFKo6EIXlE+HO8jXIGiAgh1UTMqC5NzDgWf672a213DA3k+iH7JERDMWhK6vyDpqFFG5LXyVs7bnf+3ZIORCpHwaXt4kYI2gF26FZVNXA8l0Ytv3WDTecGThxvVRo0wQitalrayY0tNdRyjMEn1O/WTkRQDu4AJ/shBju2oVlo48oOTZOgKTq0mAZe4BDI8YPjG68YqBNwIGagq6+6NoZpmOBYGpEsVEYDRFmAaZgoO1SOYF4AkrdpljCSaAFnsKYWyknCRkQA6UB0P97aMh3jj3uxSW2oKYnQziWw/p+GDLpLm8CNEGSApp61mCZBUTWIkpDWgEtUj/kNYwDHQI3MITBNE4ZhQhDS8EGdjPjWiREtw5G17yK06TOQUb0srnVCDWp/nFg9ULq/DGpEgTcgw5/taxJnAAAMkxAUOXhSHM8wzHhyYvrHY4xB9kkI5gegqTp0rWlyCuxE3XAkhpiiWA5S/NgtFS2qpnLIGMCJMH3dQFm98NaWm5vt3G7OQPvHdQgyQFN22bOWCXSIAg+eSy9sy3NWe2Ez3cRCQqMV7jTdgJDmckFrn2+TacDXfSCkvG6A2VYcApv0r66jNBhREa2IwRvwWH0EhMo21U2BwDHke7iUljV0mGWMQfKI8AY8iJbHEC6LOomqRFUf5LRXrul5XTdQEY464llZAR94nnOchJbwB2rtlsgYSMqGmdsfb+24o9bjJCYIVq0k+KBoXcqoQKLWgb2dS/vDXTLIALqpN0j4j8hKggOsULet9kdE8WZA6R3H7nioqCo8soRaB4l4QiHj+EbN2e3qgjQtrHUkqCpn29KIgXxkDxjR4udtHPFrlub1IiLEwgoioSh8QR+ycv1JHQmbEqEWkSxR5KEqGkiqf4KppVUA+IIelB0st5wEn+j8ZuzvPUtaSkkohY0/b1fueD3xJkYJZhBZUQLr+90MSxNx0m6dzEkwg71TvlQ5iFcfzKtWD1RVRkzsnOgIIP0jswmPLk2P6xBkAK4Rs207dE/goKgaGBg8tZTxpYIxBoHnYRqm09ugRsx4IloDbbbzG4goLvWajn32vqnHLwKgGfrR2cK4mbGVBpWoBiWiICsvAFHOXBMhgecRJaXBytl2VU1Op2zEwgqOHA4hK9sPQRQsFykeAajmE9vONwGM4+D1SGAsRQkvY5bTolrOeYMFwJoSxuGNw3/G5fkzAVS2RQbSa3xU1RkY3fUkJ3Jg72/vt/0fJ8OMxIBpC5vlrbi0LO6SQQYQuYYNZNZyPgeOcdDj6oENba5i1XgLznFq3M60GuJQI+5xkagCSazf7InjrfeYUqUOgMCl05wpGSKCbhowjkYVROc6pv4MiMhq51saQXlJBQSRR05BMKPOAFAZEWvMOpKlhMkgekSQQYiWRcExBlHgIUkiZFmELFV5yCI8sgSPR4Isi3G1xZqPL0kCyCToKSolMgLj8MbhZ6yyQCSrHNqkcga2/+NkHLf0hqRGSdv/cXKNSwVuhKB94ToEGcAukaoLey2z+r7MavrSAEnYRLh4SVetNzA7QtDAOzIRwTANSFL6ThBjDKIgQNeNlGuztnhRgxwhNE/Yu/VDKT9H+/PXNQPhsghMw0QgNx4VaKYlgnQhAlQl3oirkZkl1vsg+LN9ECUR0QolLs7VNIO37RRYUstNcsjGw6zfXGJfhNqwIwb2w2bLiPkA4OYPHAW4DkErw75Bm6adH1B9xtGUWc08zzudEFMe0zQsLYIG3I+JAE0znM6K9bGb4xgEnoOmV68lr0z2qkz6SgfbkeCOVocALOlzJCIYmoGyQ+VQIip8AS+C+QHwQuvoOGmaJlRNj+e5NB4iS9cgkOuD5JEQLos2qVYBYxx4joNhpHZkM8Fbb05Le9vEZYBEEiMLxy29odp+Paetb5hxLq0O1yFoRdidAGMxDeFIDKFQBIqqV9nGEh8iIvB8/cPmyTBIogCTTJTHIpXh2URsh6BBMzSCoqowTRPRmIJoTK1Rlz4VoijASBGC1Q0Dkah1vGhMhW7o0HUDum7AMAwY8X4JyY+qTkTyo93jLJQzp3pAjWkoLwlDlAT4gh7wYtNWDzQGIqsJlixLtYbr64Npmk6jJVG22iaXHQxBizWNU8CYlQRpfw8rv3ONt70x1JaQWHXwT8wrSBUJ6PmXzH83XJoPNyurlWESQdGsZEHZI0KqkvCnGyYMw4AsSY2+SVqtkAFZkmAqVlSCcckZ/MzQAY5vUEaXYZgACAG/v4GDjLXOq2o6ZKkyB8E0CaIoQIw3QTINAmBWujNUXeuB7PcDa13a+nc8y5yzzgOkt5TTNiEniU6NaYiGY5A9EoIdsppMT6CpICJEo4qlJyAJTfKZ2I60z+cBYH0XPH4ZHM9BVXQwDhAamI+TCEto20yaDsTzFzhLRxx2EwTGmCMg1hLX/o2SOWCxw5jQdXbS84lLAzUlGSYmE9rLD4nPubQfXIcgI6SeMjAGCDyHYMDn/G393/qHXf4kiSK4Wkq16oN9bFkSoWkGeJmLCx3p8HpEIBoGebz1cggIgGEYiERj8HjktHMmqtsGq7lNzEoEFOIREXsWyxir5jABNQs/Vc7WKMl5MAwT0ZgKSRRa9CbdopAJMgmRcgXRsAZ/theyr37VKS0Bwar513QDwSxfk9mn6wYYLA0OG0urQIIgmlYipcTDH4yfs4GnZQB4ngPPS070yTAJZFqRLvuwhmlC03RIkthCPRcYSM6vdYuqSwbHLT0ZW0bMr3Hgd52C9oe7ZJABmFYeV41L8Zo9o+AqBz0gvpwQzzJsKmeg8pyIr6tbw6RumDhSGgOZBBYOAf7seh3P0A1Eowo8Hgmi0LgZnpWsJTp5DgBSZ1tW2SfVg+O4+M2ah2A/BB6SJECWBOi6DkXVWrFGYv2xW2FHyhVURABe5JHbKdgqnQEAVgRD1etdSlsXipK6yyZjAMczBHJ8UCKalWzYhImGHMdVVjNIIqT4Q5ZEiJIARdVgmC1UmcAY3jj8p6S+Bw3BVix0nYH2R0Ydgp49e6a8cc+YMSNpOyLCxRdfDMYY3nrrraTXdu/ejbFjx8Ln86Fjx4646667oOvJ6+5Lly7FKaecAlmW0adPH8yfP7+aLXPnzkXPnj3h8Xhwxhln4Ouvv056PRaLYcaMGcjPz0cgEMDEiROxf//+Br1vFt4LLrQNTA+npYlu5RYYUBStds2AJoJjDLpmwFA1QNOsCEGamKa19uuRbWeg8Td1ew25PvkH9cEK3/KOcJJRS7vdtoTViMhERUkEaiQGr4dB9kpxKeBW6AzE0Q0DgtDY/JhKDMOEYZoQxdTHZIw5jhLjGGJhBWYzlw8637m4s9ti5YqMhxnoibe2/jTly1VzCgC3quBoIqMOwcqVK7Fv3z7nsXjxYgDApEmTkrZ7+umnU97ADMPA2LFjoaoqli9fjpdffhnz58/Hgw8+6GyzY8cOjB07FiNHjsTatWtxxx13YPr06fjggw+cbV5//XXceeedmD17NlavXo2TTjoJo0ePxoEDB5xtZs2ahf/973/497//jWXLlqGoqAiXX355g963GewDErxgZVvAKnaBGUpKx8Ce3amaBlW11tHT7hZYTxKXJRhjYBwDZ8+V61Hzr6qaNQNvUoEWgmkQDCOeONhMOgKMsXZRgWB3JKwojSBWocATkJFTEKhxQGyNNHV0QJJq18GwVA05eHwSdE1H6YFQ8zsFsPQ2PLIIXdOdZOFmh5dBWb1q3aTX5DXYMmJ+kh6BTbpljC5tD0atKMX6jjvuwDvvvIMtW7Y4P961a9di3Lhx+Oabb9ClSxe8+eabGD9+PADgvffew7hx41BUVIROnToBAJ5//nncc889OHjwICRJwj333INFixbh22+/dc5z9dVXo7S0FO+//z4A4IwzzsBpp52GOXPmALCykXv06IGZM2fi3nvvRVlZGQoKCvCPf/wDV1xxBQBg06ZN6N+/P1asWIGhQ4em9f5CoRCys7Oxd9dWBLMCgKmAixQDainI0wHk7QRwAuwFTMM0oSgqBEGIJ70131ojkdWNkIvPXMpCMWT7eIjbvoXZawBI9qRxDEKoPAK/3+Os9zcF1hq/AtFujMTgtHhuahTVugYtEYlpDoisjoTlJRUQZdFpQsTpYbCKXTBz+je6L0VzQkQIR2KQRAGSJDb6eIZhoiIcQVbAn/b3hUxCRVkEjDH4sjwtosdgEkFRNPA8F1f0bGbHlAiX5/+s2tOpqgxSLQ0kqh+e12UAlmIhysrKEAwGm9Fol+am1dwZVFXFq6++ihtvvNH5MUQiEUyePBlz585F586dq+2zYsUKDBo0yHEGAGD06NEIhUL47rvvnG3OP//8pP1Gjx6NFStWOOddtWpV0jYcx+H88893tlm1ahU0TUva5vjjj0dhYaGzTb1hDOA9MAPHgLL7ghlRcEe+BYseAMgKWeu6AVEQnNB7c94kGINVQ22aYAzIyfaAs9sop+kzqppurdFzTfu1Mk0ToihYinJxVbnmcAbaMrYjUFEagabqCOZnISsvoT1xEzbUalaYJautNcGyjV266JFlsHp8Xxhn5RTIXsm6nk2oVVATHGPwyCIMw3Q6KDYrKe4licsFieqEqUhsdPTm5g1Nb59LRmg1DsFbb72F0tJS3HDDDc5zs2bNwplnnonLLrss5T7FxcVJzgAA5+/i4uJatwmFQohGozh06BAMw0i5TeIxJElCTk5OjdukQlEUhEKhpEc1GAMJPphZfUDB3mBKCbgjGwHlCAxDB8+n37SosXAcczrCWZnWtkNQ92Bil4pJoojm6FfYYsN/Cl17IoKpKzCUSKvTLLBFrKIVMZQdDIEXOPgCHggSX8WJNOOfZyt3pIigaXqjIzRE1lIBYCkI1vddM8YgSDwkj4jSA2Ut4hQw2ymICzI19/lS6RNULTusq+Wxm1jYvmg1DsFLL72Eiy++GF27dgUAvP322/j444/x9NNPZ9awRvDb3/4W2dnZzqNHjx41b8wYSAzCzO4H8ncFKnZDjhWBQ8sluNnlVo5YD2OAIAJKrM597RmdbhjQdR1GNWGg6kJBzqMWwaDEm2JLjcXVZHKJEN65BmXffwIy6t/uuDnEj5zWxFEVkVAUAENOp2x4AzWEuFN28Gl9WGV6ZqOWnIis76GiavB55QZH1hhjkH0ScjpmQ1N06GrDZu71EcCynQLTpLgMcnM7BXOcf1d1BuyIgd0PoSYm9B3U9Ia5ZIRW4RDs2rULS5YswfTp053nPv74Y2zbtg05OTkQBAFCfP144sSJGDFiBACgc+fO1TL97b/tJYaatgkGg/B6vejQoQN4nk+5TeIxVFVFaWlpjduk4r777kNZWZnz2LNnDwBAqy1ZiXEgOQ/I7Q+RM8CVbQEz6h6QmwI781nV7EGPgbLzgJL9oFoS+YgIiqLC5/NAjt/MVFWD4jz0+CP+t6JBUVUoioqYoiIWq1QdTPWIKapVctlCVFVsNJUwovs2Qzm0E3q4pH7Hoqa/sVsdCQmhw+UIl0YheUR4A3IdksNmyjBxa8NuzR2ORGvsZVEbRHENjEgMPq8HXCOXryxVQwEev4xwWQTh0vpHiQiEmKHW65x2pCCVdHfTEi9F3HZb0rN2P4OdPyUsXjDP6XZYl3Pg0rZpFQ7BvHnz0LFjR4wdO9Z57t5778X69euxdu1a5wEAf/zjHzFvnpXMMmzYMGzYsCGpGmDx4sUIBoMYMGCAs81HH32UdL7Fixdj2LBhAABJkjBkyJCkbUzTxEcffeRsM2TIEIiimLTNDz/8gN27dzvbpEKWZQSDwaQHAOz+sQz7D1Y40qa6YVYvO+IkqxpBCoKV/gCmhlpkiiwKVltkAFa0IKcDuGgFmFqzU2LbLgo8eI6DJAlWpzjnIcYfktNBzv6/1yPD65HhkUV4PVLKhyyJLZb9z3GsWnkjJ/uQf+oEFJx1HQR/XtrHspwBw6ncaCx2a+JYhYJYRQyyT0Zup8qOhLWegwit5OdeKwwMPq8MWZIQjsRgmma9vvamaSIcicHrlSGk2W67TpsYs7QKcv1QYxpi9dQqYGCQ+fomSDLIkmTlFDR39QHjQYFjqj1dKVBUWWlgOwcu7ZOMp1Kbpol58+ZhypQpThQAsGblqWbfhYWFOPbYYwEAF154IQYMGIDrr78ejz/+OIqLi/HAAw9gxowZkGUZAHDLLbdgzpw5uPvuu3HjjTfi448/xr/+9S8sWrTIOeadd96JKVOm4NRTT8Xpp5+Op59+GuFwGFOnWutn2dnZmDZtGu68807k5eUhGAxi5syZGDZsWNoVBomoBOw7UI6YokPwyojFNHC6jsLuuRCEyjsYgcEQc0FKFDiwAQj2AgleOKHf+N2OOU1rGBjHgxM9jQqTMs5SK+R5BhIlICsXXMlBmF2OSbm+rihqUkZ4/c9dx2Bmv88W8Ak4joMRn9HbNjGOB+/Nqvex7NlqKkGc+h+LoKs6QocrIEgCAjn++kkOky1B3Sgzmh9mfZ9FkQeRhIpwFB5ZSqvNt2GaCEeiTSKIVc0sxsALHHI6Bi3p5/IYPH45rQqERJns9M8H2E6BomoAWXLdzVZlJPjx5o8PovzAdvzk5Fed5xOXEdxuh+2fjDsES5Yswe7du3HjjTfWe1+e5/HOO+/g1ltvxbBhw+D3+zFlyhQ89NBDzjbHHnssFi1ahFmzZuGZZ55B9+7d8eKLL2L06NHONldddRUOHjyIBx98EMXFxRg8eDDef//9pETDP/7xj+A4DhMnToSiKBg9ejSeffbZBr3n7CwZHl5CVkCG5BGRnyXh0OEwjpQrKMhNEAEiglZ+ABLjwLwdQXoE0KOVL1f9FwG6aULI7gZe8jXINsDKeDbJBEdWCNrM7wxu1w9Ax26AkPyVMU0ThmHC5224E1InTTTDTgeOY/GchsY7ILZT0ZiKCFtcSI1ajaECOX5I3tpr6lPB9AiIT3AmWzl2O2Ge5xBTVKiqBo9His/6q78H0ySEwzFLCVBsWmcg0SZwVl5BeUkYpQdCyC7IAt+EIkrJ57P+75FFZ7lNrkNPoTEnI09HUBbh1fVTcN2JL6fsawC4iYTtmValQ9DesXUI9uzcgmDQmnHaP+7yqIaysIZu+d5KkSDTgFqyCz6PDEWJ4UDxXng8Pnh9fkiSDE1ToapKXJJXQCArG6oSA/k7QvDUf0ZrYxgmFNWa9fMcBwYCv+07mLkdQfmVThIREI3GwDhmlXY101ijqpqzttzcEFn5D1bDo8bNyKzcAUCS6m83kdUEJxpWEAlF4MvywhPwgLEGRGCIwJWsBwV7g8RAvW3JNHYPj2jM+q57vXJSaSsRoSIchSAI8MjNNGBWsQcEhENRMAZ4Ah5Harw5z6lqOkyT4k5B82iSlJaFAK0CeewAxh/315TbVO1hoJPm6hC0E1r/omI7xF7vFUUZkuwDL4jgQNBiVuIRxwvgBQkcbw0kjJfgze0GMVCASDSC9WuWIxaLYNf2H/Dduq+xbfO3+HHPdhiGDk6QIUg+8PVes6yE46xQpabpUBQNBAbK7wzu8H4gIbmQyEp68nq8EEQJvNB0N2M72zxdf5XjeLAqCWTW7Lx+Ii/W5yJC181GacwT2RGC+u4XzytRDUQqYjBNQkH3zsguyIcgihAlLyTZ53w30sJUATLiy01tD9sZzAr4wPM8IpGY87nY5YV2Il5LRJJsJU9/theiLKKiJAwtpjW71LEkChB4HjFFjSdcNn1rZZ7jYDAZYG1H1dKl6cj4ksHRiiDK8PiCOHjwIAoKChAOx9CpIA9ZOXlgCUpyvkAuOF5AKBRCl75nwIgcRsnBIhiGAcZxEEUJDAzeQB68HftC8FY2IiIiqEoEaixcL9usgdTqgKioGjTdAJeVA7ZvF5gaA3l81oBtAJ26dIcoSkn767oKMgzwggjTNBCLlIPqKYxjkImwFkVQ8ic9zwsSZI8fYIAai8A0dPiycp1rpqkxxCIhCJIHXl/QuQ5KtBxaLYmRiVgOkfXerSY79TI9DsXbNNfsczOOg8cbBMdx0DQFStRKNA2XRqApGrJyA/DnZANMQHl5OQoKCqCqKo4cOYKOHTuiInQorURTZsQgdz0VnJwDXdegRMvTfxeUoEuRYexBv1zTnBwX0zShqBoCfm+L22hXIJi6iNDhCgTzsyB6mm+dnzEGQeDA8SI0TYeuGFYFFm/pSzRNAiWsFUiOx5vFj4GkbFyeZ/WWeaNkrvNvl/aJGyHIELI3gIULF+LBBx8EYwzZufkIBv34wx+ewMknn4yuXbvirLPOwvyXXwFg9X246aabEMjvjkGnjYTfn4XCnn1w/MBT0HfQ6eg39BJ8v2UXJk+ejMLCQgwcOBC///3vQeDhiQ+MzOqzCo4XUs4wrcQpEVy8d0EkqiIcUazZLi+Cy+8CXq8sSczOK8Datetw0UUX4ZhjjkG/fv1w9dVXg4hBlL3427z5KDlSBtkbgJ04aCctWtEE6+vHcXzS3wDAMw5+0WtFS8TKpDyPN4Cvvl6Jzz9fDo8vCEHyoKIijLPOOgu/+MUvIEoeMMZB9vjxr3/9C2eddRaWLFkCQZTjM3brhsoYl1wfzhgIldeG47i4Yl7qsi/bZq5KnwfG8eATjs+YfbPmql1fSfLi0OESzH/5FcgeP8jkES2PQZQl5HTKhuz3QJK9WLFiBa688koAwPr16zF27FhrMJI8YEnnZ9WjJBwHURShkBd/njMXkuyFIFXKUDPGWfZWex+W3SazHs57E8T4dydzDgLHcTDilS0xxWpbnSnlSsYYZL+M7IIs6Kre7AJGjDHwHGd1ThQtZcOYosEwmqYSgTEOJgBinKOY+kbJXEfE6I2SuW4OQTvGzSFoQewcgkMH9iGvQycMHjwY//3vf9G7d28QEUaPHo1AIIDHHnsMffv2xffff48nn3wS8+fPBxHh1FNPxWuvvYZjuxeg/MD2eC4hIdilLzZv34uzzz4bjz/+OKZMmYKioiL8/Oc/BxFh4cKFKWctRIRYJARdU+HxBSBKlSFl0zRRHjoCfyA7qfoDAMg0oWoKAA7dunXDnDlzMHHiREQiEbz77ruYOHEiJEnCwIEDsWDBAgwalL5wiabGEIuWQxAkeLxZSQOcpdwo4NFHH0U4HMZjjz0GACgtLUVubi569+6Nr776CllZAUiSjOHDh2PXrl14/PHHcc0111Qr/zN0HWVlJQhkZUOS5Gq2RMMhhEKl8HoqxW14XoTsywKf4FCRaUKJVVQL5ceiEZCpweMLVrv+9ntZvXo1pk2bhjVrUidwAUA4HMbhw4dRWFiIb775Brfccgu++eabhPehQVWj1vViDIauIRYthy+Q4zhZBw4cwAknnICDBw9aNhPBMDQIQmV0xzB0KNFyeHzBao5OKmKRcmhqtM7tmppoTAWIIEkiykIVyA4GwPOZndvY2hDlJRXgBR6BHF+95JIbc17DtOSOGQOEeOlvQ6MU0WgMofIKdJYOA558kKdDyu3GT3gJdpMjN4eg/eBGCDKA1+fHqlWrIAgC+vTpA9MkrFixAuvXr8ff//53HNenNzQlgv7H93U0FxhjuOKKKzBv3jxI/jxIuT0g5fWAnNcTki8HTz/9NK699lrcdNNNIC2M7t26YP78+Vi2bJnT2Gnq1Kl46aWXMHToUJxyyilYsGABvP5s+IN5qAjHMHPmTPTr1w/Dhw/HkiVLkJ2TD0EQMG7cOPzzn//EKaecgpNPPhnvLFoEWfZi7969qKiowMSJEyGKIrKzs3HNNddAkiTMnTsXO3bswLRp0zBq1Chs2LABr7zyCp544glcddVVOPbYYxEKhbBs2TJceOGFOP744/GTn/wEpWXlCAQ7wOvPxr//8x+ceeaZGDhwIO68806oqoaNGzfipZdewmuvvYZRo0bhT3/6k3Ndr7rqKvzzn/+EJMnYvHkzFEVx9CgAYNmyZTj33HPRr18/jBw5El8sX468/I6QJBmzZs3CX//6VwwfPhwnnXQSnn32WXj9QUiSB7puWPXwYPBl5eKLL5ZjzJgx6NOnD8455xxs274dHl8QX6/8Bueffz4GDBiAadOmIRKNwevPdrpsPvDAA+jbty8uvvhi/PhjEQDgrrvuwpYtWzBq1Chce+21AIDrrrsOr7zyCk4//XRMnz4dmzdvTlLsJCLcf//96N+/P8aOHYvde/bC6wti06ZNmDFjBnhBhCT7sH//AUyePBkA8Mtf/hKlpaUYNWoURo8eDcYYjhwpw5QpUzBgwABceOGFWLNmrbVExfEYM2YMXn31VQwePBj/93//h61bt2LcuHHo378/Bg8ebF1nT+pKlqpKk6ZJMAwTum7E81JUaJpeb40BG563em4oqtZkGg+NJVGrQFd1xCKKIwPe3OcVeB4eWbQiWpqBmKI2WLuA4ziYpmnlEJABVBHpsjuwcstWO5GDV3c92UTvxiXTuDkEGUCSPFi6dCnOOOMMJ/HsvffewznnnINAIICKskNWwp4atWacBEgeH4YOHYr77rsvHnqWYBo6+PgM7/3338df/vIX6LEy6PtXwZCykNv9DAwdOhTvvfceBg0ahK+//hpFRUVYvHgxiouLce6552LgwIE48cQTcdNNN2HAgAHYsGEDtm/fjosuugiffvopCgsL8emnn6J79+747LPPsHr1akyYMAH79u3DMcccg+OOOw4jR450FCQHDx4MxhhuvvlmzJ07F88++ywGDhwISZLw5ptv4s9//jPeeecdDBw4EAcPHsR1112HN954AyeffDKeeeYZ3HTTTXjrrbfw+eef49e//jXeeecddOvWDbfffjsefvhhPPLII/jJT36CSCSChx56CDzPIxy2ciSmTJmCa6+9FjNmzMDLL7+MG264AW+//bZz3Tt16oR//vOf6Ny5M7766itceeWV2LRpE3w+H9asWYPly5fj3XffRTQaxciRI3H88cdj+Fln4tDBYgiCgKxgFnbt2oWJEyfin//8J0aOHIk9e/bA4/Hg0KFDGDduHF5//XUMHz4c99xzD6ZPn4433ngDR44cwdy5c7FgwQL86le/wuzZs/GrX/0KL7/8Mh599FH89Kc/xbvvvusMbF9++SVCoRAWLVoEj8eDb775JimCsHbtWtx0003YsGEDXnjhBUyaNAkrV65EKBTCqlWrrI0YQywWc5pvPfbYY3j33Xfx7rvvOseZMmUKTjzxRKxZswYff/wxxowZg82bNyMnJwfLli1D586dsXTpUgiCgBtvvBHjxo3DT3/6U4TDYauHR5KsdFxgS9OhG4ajwaBpGlTVKhs0TRMmmeB5HqZpgIHB45GRHQzC5/OmPcvnOc5qgw0dfBOJDzUFtlZBdkEW1JiGSFyrgBeaf95l5Rfw4HlrQNfizpcoWjkG6TpNljCXaXVdNavLdKuqgVB5DP85NCfF3i5tHTdCkAE4nseePXvQuXNn6Ia1ThcKhZCTkxOfVVUm4JmGDtPUQaaJzp07O/LHdijY/qE7+zMJZs4AmJKlqJeTk5PUVGnWrFkI+P047rjjMHnyZLz55psoLy/H22+/jXPPPRfLly9HcXExBg4ciI8//tjZ77777oPf78fZZ58Nn8+HoqIiCIKA5cuX45prrsGnn36K8847D2effTYqKiogiiI4joMsy1YiVDz0P2HCBJxxxhnw+/2OIxCJRPD5559j8ODB+PDDD2EYBubPn4/zzz8fe/bswYoVKzBs2DAsWrQIXHxNXBAEyLKUtHbct29fSJKE9evX4/XXX8c111yTdN379euHNWvW4Pe//z3ee+89aJqGrVu3Oq//7Gc/Q15eHrp164abbroJ//3vfyFKMsR4OZsky/jvf/+LcePG4bzzzoMSq0DnTgXo1KkTFi9ejNNOOw3nnXceBIHHQw89hIULF0JRFADAwIEDccUVV0CSJFx55ZXYsMHqECdJEjiOg8fjiSeHWdx9993Iz8tDVlb18tGOHTvipz/9KTiO4ZZbbsGePXuwa9euWr9zkmTlYXg8Hng8HlRUVODDDz/E7NmzIQo8Lr74YgwYMACffPKJs8/999+PYFYAgUAAOTk5WLJkCT777DNIkoQ+ffpA11REYwoOHDyMnbv2YufO3Sg+cABlZWUIhUIoLy+HrmvwemQUdMhFjx5d0PvYQhx7THf06lmIwh7dEPD7UFJaip279mD/gcOIKWqd2fMcxyDLImKxmJPK0FoWPu0KBNknwTQMlB4og9HcSoNVzs/zPGTJ6gyqaXpcSTTtAwAgECdYYlZVEAQOimpAbYmOjC4tjhshyAgESZKgaRp4zmpN27dvX7zxxhvO7N/QVTCOt5LNiAAQNE2DJEnOMQA4PQb69u2LrVu3YtjQMwBOAO8rAABs27YtSRI6Pz8fulIBXvKjQ4cO2LdvnzO4L1682Nlu4MCBjiIkYDkWSiwK2eOFx+OBqlo3br/Pi1tvvQUzZsxARUUFhg4dildeeQW33VapjW4aOsz4mnTHjh2t2SFjKCoqwsGDB/Hee+85295+++1QVRVFRUXgeT7pNTuxzrmKhGpr2FOnTsW0adNwyimnIC8vWWZ41qxZ2LXLSrwMBoNYsGAByssrM+7z8/Ot6844dOjQAWvXrgVjzAmaMsbh8OHD6NSpE4hM6PGqBVHyoKSkBAUF1jXXlCiysrIgiiLKysqc6wcA0YowZFl2HIVENC0GXhCd66RpMXBG9bX8vLw8MMagxqKQvQHk5eWhpKQkfk3iVQGw8kBSYRgajhw5gkAgAK/Xi1ikHB5fFgoKCnD48GFnu44dO0JVoxAEGX/84x/x/PPP46GHHsKGDRvwpz/9CVdccQX27z8IWZZQUJAPMS7QY7VRYhBEwZGcTjVD5XkeohhEdnYQiqIiFCrHj0X7IPACsrODCPi98W6fyfsyxsAxDiInQBYlKCZB4lI0pcoQjDEQWSJSkfIYYhEVHp8Erh4z9aawgWeW46QomlOJUOd+YIClPAKOFFCVfTiOwesRUF4ehZwfaJbGXS6Zw3UIMoCu6zj++OPx8ccfg+N4aEoUV1xxBX75y1/im2++wamnnuokne3cuRM9e/YEAGzfvh39+vUDUHmzNwwrFHvVVVdhzpw5mDx5MvzBDuA4Dp9//jm+//57XHrppc6516xZg9NOOw0AsHr1aowYMQI9e/aE1+vF9OnT0adPnxrtrprJreu6c8MmIgQCARQWFlozN8BxeiS5cq3ZviGahoEhQ4Zg9erV+O1vf1vtRjlkyBAcOXIEv/vd76rZIUkSSktLrZm1NwsxpdR57corr8T8+fNxyy23VNtv0aJFePfdd9G3b1+Ul5dXa2i1Zs0ajBkzxrk2ffv2hWma8cGVQKaBgQMH4rnnngPA4M/KA4vrHBx//PF49tlnQUTw+LKwYcMG+P1+x0mwEauIFNnXCAA8CfLItQ0c27dvR2lpKXJycnDkyBH8+OOP6NWrFw4cOIADBw6AiCCIMr777ruU5+F5EV27doVpmti6dSv69OkDwzCwevVq/PznP69iA4EXBPhFCb/4xS/wi1/8Au+99x7uv/9+XHXVVeh5TCGIjAYPdE71iEeGLEvIz89FOBxBWagcJSVH4PV6kR3MgscjxSs1rP3s778oCqjQCaLUOpwBW7TIdth9WTJ01UB5SRjegAzJI1Ubl5vTSeA5DjzPQdMMiGKlc5nynETgGLOcOMYAYkmvGaoGzTAhMhMRTbP0IABEoi3TfM2l+XEdggygxqIYPXo0Hn74YWddtVOnTnjhhRcwZswYXHHFFejbty82btyIzz//3LmxL126FGPGjIFpGiCzsi2ypkZx++234+OPP8bQoUNx7bXX4scff8Srr76KefPmObNTAPjLX/6CiooKFBUVYfXq1XjppZcgyzIeeughXHTRRbjtttsQCASwYsUKzJw5E6ecktDdrMpNZOfOnbjkkktw+eWXo0uXLli1ahVWrVqFv/zlLwCsxlL33nsvhg4dimnTpiXtq2kxTJgwAX/6059w5ZVX4sILL0RpaSk2bdqEl156CbfddhuGDx+OW2+9Faeddhr27t0LTdPw8MMP44wzzsD1118PSZJw5pln4qyzznKOGwwG8fnnn6e87sOGDcPdd9+NMWPG4I033oDfn6xxsGDBgrjwTQQLFy7EypUroWuWOp6VyR3DpEmT8Mwzz+Cqq67ChRdeiO3bt2PSpEkYNWoUOnTogKuvvhpnn302nn32WTzyyCPVb7xVnKpevXqhpKQEd9xxB3r27Ik77rgjpe2JBINBTJ48GZdeeikWLFiAm2++GTk5OcjKyoLf78eMGTMcyW6b7OxsdO7cGTfffDO6d++OBx98EA8++CAmTJiAW265BR999BGOP/74pGtpfU4mPF4Ot9xyC3r37o2CggL85z//wYh4x1HGmq6tsh3uDgazkJUVgKpqCJWXo/jAQQiCAL/Pi6yAH6IogOPj5ZSaCh8vgAFNIjfdWEjTESs+DIq3A7cNoqiKigPkqE0CDFzACzmvfln5RARFNSCJfOpSS5MA3QDFVEDRAAJExhDTNJg8B8ZzYDwPURadT43IiuJF9xVDCgbhKSmDEpNAhg5JC4HjeUQPH4IeiUJTVchZQfCHDoF16gLBI0MM1U/nxKX14pYdtiBlZWXIycnB9q2bcGzvfrj88ssxY8YMnHP2cJSHSpHXoRNKSkrw5ptv4sCBA+jVqxfGjh2LQCAARVEwaNAgfPXVVxA4IFSW3IY3r6AzPB4fvvzyS3z22WfIzs7GxIkT0aFDB5SHSpEVzMEJJ5yAv/3tb1i/fj0Mw8AVV1yBnOwsREr3I1hQiB9++AGLFi2CaZoYPHgwRowYAUEQ8Oabb2LcuHGIRsoRzM7De++9h+HDhyMQCGDDhg1Yvnw5SktL0b17d1xyySUI+P3QNAWi5MHnn3+OAwcOYOTIkThw4ABM00TfvsfhYPGP6NCxCzhewIcffoh169YhPz8fo0aNwnHHHQfTNBGLxfD2229j+/bt6NatGy688EJ06dIFALBp0yZs3LgRxxxzDAYOHIiFCxdi0qRJOHywGLpmLWd06lqIzz77DD179kRhYSEURcGCBQtw6NAhXHrppdi7dy9OPPFEdOjQASNGjMC9996L4uJihMNhjB8/Hp07d8KBYssR0TQNsiSjoFNXMM7qobFp0yYce+yxuOyyy+Dz+aCqKt566y3s2bMHw4cPxxlnnAHTNHHo0CF8//33GDFiBMrLjsAEhy+//NLpp3Hw4EF8/fXXYIxhzJgxePfdd3H22WfD0BUIvIBITHX2LykpwerVq9GtWze888476NevHy655BKEK8ogyz6UhUJ4/fXXIUkSxo8fj6+//tpZMiorK8Py5csRiUQwceJEEBG++uorLFu2DH369MFll10GjrPUHd944w3rGu3ZhZ7H9sb69evx+eefo7y8HIMGDcJFF12ESEUIZaWH0ZwQEUwyocQUlJaFEIspVr6FKCInmAUmcDBUAxyfLDVtxGfqfLw3hUkAz+zljHrMyqveHevYTauIQCs6BEEQQSaBQE4EzT6gnf+jkwHvsV3B8emrApomYf+BcnTo4LeWaIgAwwRFYqAjFTAPloEOh0AVEYBxYB4JEHln0CcCIEkgiYcQjlnXgXEI8yoUw1p+43gRkiSD6QbEKAMEAWWxw+D8HuiRCLI6d4VWXoGAJwimGiiPRHDibT9BaWkpsrOza38DLq0a1yFoQfbu3YsePXoAsFowd+/eHS+88AKeeuopDBo0COFwGNOnT8dFF12E7OxsFBUV4f3338ftt9+OVatWYfv27fjZz36Gbt26oaioKOnYjDFccsklmD59Oo4//nhEIhEsXrwYzz77LDp16oQVK1bghBNOwOuvv46BAwdi3bp1WLp0KR566CGUlJTgjDPOcJpE8TyP77//HgsXLkS3bt1w5plnYt26dZg9ezZuuukmjBkzBlu2bMHy5ctx4YUXYvDgwQgGg9i3bx+WLVuGZ555BiUlJZg6dSpGjRqFvLw8dOnSBeXl5SguLsaTTz6JFStWQBRFTJ06FVdffbUzU165ciWeffZZ7NixA7feeismTJiALl26YN++ffj888/xpz/9CV27dsUNN9yAHj16gOd5FBQU4ODBg1i5ciV+/etfw4gnal599dW47rrrUFJSgt///ve47LLLMGHCBOTk5KBPnz7YtWsXtm3bhlGjRmHEiBGYPXs2Ro4ciW+//Raff/45HnroIezbty/pOsuyjOnTp+Oaa65B9+7d8eOPP2LRokX485//jKlTp+Kaa65Bbm4uvv/+e8yZMwebN2/G7Nmz0bVrVyxYsADvvvsufvOb36BPnz54++23sXDhQsycORP9+/eHLMvo168ffvjhB2zZsgUPPvgg/H4/fv3rX6Nr16746KOPcNxxx2Hs2LHo0aMHtmzZgh9//BGvvPIK5s2bh7y8PPzmN7/BOeecg2AwiJ49e2LZsmVYuHAh5s+fj5kzZ2Lw4MHw+SzHceXKlbjllltw/PHHY/fu3Vi4cCGeffZZ/N///R/OPPNMrF27FrNnz8aQIUNw880345RTTkF2djY2b96MV199Fa+88oq7fuzisGfPHnTv3j3TZrg0AtchaEFM00RRURGysrLA8zwCgYDzfDgcrvHm6vV6IYpWslksFoOqqvU6L8dxCAQCuPvuuzFz5kx07NgxZVJbKkKhEHr06IE9e/a0SdGRuuxnjCErKwuPPPIILr/8cvTp08fJgWgNtPfr39px7a8bIkJ5eTm6du3qVBO5tE1ch8ClVmx1xbaqQuban1lc+zNLW7ffpWVx3TkXFxcXFxcX1yFwcXFxcXFxcR0ClzqQZRmzZ8+GLFdv/tMWcO3PLK79maWt2+/Ssrg5BC4uLi4uLi5uhMDFxcXFxcXFdQhcXFxcXFxc4DoELi4uLi4uLnAdAhcXFxcXFxe4DoGLi4uLi4sLXIfgqKetF5m49meOtmw74Nrv4lIV1yE4itE0Dfv373f+bms3GF3XUVZWlmkzGkxbtr8t2w60ffvb+m/XpXXiOgRHKU8++ST69euHMWPG4Oqrr8bq1avTbwnbCnjiiSdw0kknYcyYMbj77ruxbds2AG3nxtiW7W/LtgNt3/62/tt1ab24wkRHIU888QTmzp2LP/zhDyguLsbbb7+N9evX4/3338fgwYMzbV6dPPDAA/j73/+O3/72t/juu++wZMkShEIhfPHFF8jLy8u0eXXSlu1vy7YDbd/+tv7bdWnlkMtRg2EYpGkaXXzxxTRz5syk10488US69NJLacuWLRmyrm5M06RQKETDhg2j3/3ud87ze/bsocLCQpo6dSqVlZVl0MLaacv2t2Xbidq+/W39t+vSNnCXDI4iOI6DaZrYsGEDTj75ZABALBYDADz//PNYsWIFPvzwQ+i6nkkza4QxBo7jsHbtWpxyyikArLXg7t274/nnn8fLL7+Mzz//PMNW1kxbtr8t2w60ffvb+m/XpW3gLhm0Y+bNm4cVK1bgpJNOwqWXXooePXoAACZNmoRDhw7hk08+AQCYpgmO43Dddddh8+bNWLJkSavonf73v/8d3377LYYMGYLzzz8feXl5iEajGDduHLp164ZXXnkFQKX9F1xwAQRBwHvvvec859p/9NneHuxv679dlzZKpkMULk3P4cOHaezYsdS1a1eaPHky9erVi3r27EnvvfceERG9+uqr1L17d3r33XeJiCgajRIR0ZYtW4gxRhs2bMiY7URE+/bto1GjRlG3bt1o3Lhx1K1bNxo8eDBt3ryZiIgefvhhGjJkCC1fvpyIiBRFISKixYsXkyAItHfv3ozZTtS27W/LthO1ffvb+m/XpW3jLhm0Q7755hts2bIFK1aswGuvvYZt27ahT58+eOKJJ/D111/joosuwqmnnorHHnsMAODxeAAAPM+jW7du+O677zJpPj799FMUFxdj7dq1eOutt7B27VpEo1Hce++92LNnDyZMmIBAIIDnn38eACBJEgDA5/OhS5cuTtZ4pmjL9rdl24G2b39b/+26tG1ch6AdQfHVn++++w6yLMPv9zuv/fa3v4Vpmpg7dy5ycnJw8803Y+fOnbjrrrtgGAYAYMuWLfB6vTjrrLMyZj8R4YsvvkDnzp0RCATAcRw6dOiA5557Dhs3bsTf/vY3nHDCCbjiiiuwcuVKPPnkk87+P/74I/x+PwYOHOjafxTZ3l7sB9rub9elfSBk2gCXxvHFF18gGAzimGOOcdYOTdNEOBwGYN1oGGM49dRTcfHFF+M///kPPvzwQ1x88cV44okncOONN+LTTz/FwIED8Z///AfXXXcdCgoKnP2am2+++QadO3dGx44dndmaLMsoLi6Gx+OBYRjgeR4jR47Eeeedhw8++ABXXHEFbrjhBoTDYdx1111YunQpCgsL8Y9//AM333wzgsGga387t7092N/Wf7su7ZCWXqNwaRo2b95Mp512GnXs2JF69epFp512Gr311ltERLR//37yeDz08ssvExGRpmlERLR792468cQT6ZFHHiHDMIiI6KOPPqInnniCpkyZQu+8806L2b9x40YaMmQIderUifr06UMXXnghrVq1ioiIVq1aRTzP0+LFi4mIKBaLERHR1q1bKT8/n1577TXnOP/617/ovvvuo/Hjx9P//vc/1/52bnt7sL+t/3Zd2i+uQ9AG0TSNpk2bRldccQXt2rWLVq9eTZdccgmdeOKJ9PbbbxMR0U033USFhYUUiUSIyKrDJiKaNGkSjR07NmO2ExGVl5fThAkT6Cc/+Qlt3ryZli5dSoMGDaJRo0bRihUriIjo0ksvpUGDBjn76LpOREQjR46kqVOnZsRum7Zsf1u2najt29/Wf7su7RvXIWhD2DeG/fv3U1ZWFr3yyivOaz/88AP95Cc/oQEDBhCRJbjSqVMnmjFjhpOJbJomjR8/nn7605+2vPFUaf/WrVspEAjQokWLnNdWrFhB48aNo3HjxhER0WeffUbBYJAeffRRZ5twOExnnnkmPfjggy1reJy2bH9btp2o/djfVn+7LkcHbg5BG6C0tBQ5OTnOumBFRQX69esHTdOcbfr27YspU6bg008/xWOPPYb/+7//w3PPPYfrr78eR44cwVVXXYVdu3ZhxYoVeOmll1rU/kgkAp/P59h/4MAB9OzZ08mQBoChQ4diwoQJeOqpp/Dyyy9jypQpePTRR3H77bejrKwMY8eOxfr167F7926cf/75rv1Hge3twf62/tt1OcrItEfiUjObNm2iCy64gEaOHEk33HADffjhh0REFIlEaMiQIXTHHXckya2WlpbSL3/5SzrttNPo0KFDRET02muv0SWXXEKDBw+mXr160euvv95i9m/cuJHGjh1LEyZMoDvvvJO+++47IrLCvvn5+fT73//emTkREf344480efJkmjRpEpWXlxMR0eOPP07Dhw+n448/ngoLC+nf//63a387t7092N/Wf7suRyeuQ9BKWbVqFXXp0oWmTp1Kf/3rX2nYsGHUvXt3+s9//kNERE888QTl5eU5Ais2r776Kp100knODdRmx44dLWU6EREtW7aM8vPz6frrr6fHHnuMevbsSaeddhp99NFHRET0i1/8gnr06EF79uxJ2u+xxx6jk08+mQ4ePOg8Z5omffvtt679R4Ht7cH+tv7bdTl6cR2CVoY963nsscfonHPOcRKLDhw4QLfddhvl5eXR/v37iYiod+/eNHnyZNq+fbuz/yeffEKMMdq6dSsRkZOR3NLMmjWLxo8f77yf77//niZNmkS9evUiIqKysjIqKCigO+64g0KhkLPfm2++SR6Px7mpu/YfXbYTtX372/pv1+XoxRUmaiVs27YNmqY5a42bN28GYwxerxcAUFBQgIceegh5eXm49957AQBz5szB8uXL8Yc//AE7duyAqqp47733cMkll6BLly4A0GKa7AcOHEjqJ79161ZIkuS8n/79++O+++5DKBTC7NmzEQwG8eSTT+KFF17AX/7yFxQXF4OI8O677+KKK65Afn5+i9pv226aZpu0P5G2arv9GbRV+23a2m/XxcUhg86IC1n1xWPHjqXTTz+d3n//fef5P/zhD3TSSSc5Guz2bOG1114jnuedcOlf/vIXGjJkCHXv3p1OOOEE6tChQ4vWVO/atYtOP/10uuaaS8a6ZwAAEIlJREFUa+jIkSNEZJVWzZgxg8aOHUs//vijs62mafTYY49RVlaWs877wAMPUP/+/alv37500kknUceOHZ311ubGNE06fPgwnXfeefTAAw84z7UV+/fu3UuPP/44/fOf/3Tq8GOxWJuwnYioqKiIFixYQMuXL6fDhw8TkdVboK3YX1xc7LQctksbidrOb9fFpSquQ5AB7FDo4sWLqWvXrjRx4kRau3ZtUmOVt99+m8444wx66qmnkvbbv38/DRw40BnAiKxSpvfff5/mz5/fcm+CiO644w4SBIEuv/xyJxRqv7cXX3yRBg0aRG+88UbSPqtWraIBAwbQ3LlziYhIVVXasmULvfLKK/Tcc8+1qP1ERIsWLSLGGMmynBS+/etf/0oDBw5stfbfdddd5PV6afTo0XTcccfRscceS2vWrCEioueff77VX/u77rqLAoEAjRgxgnw+H02cONEZQNuC/Y8++ihxHEfnnHOO85w98P/vf/9r9b9dF5dUuA5BBpk6dSrdeeedzt/2oGozadIkGj16NH311VfOc5FIhM4++2z61a9+RaZpZmSdsaysjHJzc6lDhw702WefOc/bqmo2p556Kk2ePNmZRRERHTlyhPr27Ut/+9vfiCjz66SzZ8+m2267jS6++GIaPXp00mut0f4jR47QZZddRmeddZZz7desWUNnnnkm3XPPPa3adiKikpISmjZtGg0bNow+/fRTisVi9K9//YvOO+88uvvuu1u9/Yqi0D333ENDhw6l66+/nk488UTHnsTv/5VXXtkqf7suLrXhLlJliKKiImzYsAETJkzAunXrcN5552Hs2LE466yz8MILLwAAZs2ahXA4jMcff9zZzzRNlJSU4NhjjwVjLCPrvMFgEBdccAF69eqFs846CytXrsS0adMwc+ZMPPPMM9i4cSMA4O6778batWud9wMAiqJA13Xk5uYCyNw6qd0URhRF5OTk4K677sKHH36I9957z9nmwQcfxOrVq1uV/Tk5Objsssvw+OOPY/jw4QCAwYMHQ5ZljB8/3tnu3nvvbZXX/tChQ2CM4Z577sHZZ58NWZYxadIkBAIBqKrq5HDcf//9rdJ+SZLQu3dv3HjjjfjVr36F008/Hc899xzKy8shCAJUVQUA3HbbbYhGo63qt+viUieZ9kiOBuyZQOIMoqysjDweD/3nP/+hSZMm0S9/+Ut6/fXXaebMmSSKoqNl/s9//pN69+5NgwYNol/96lc0fPhwGjhwYNLMqSXtt9dKS0tLSRRFOuGEE6h79+50ww030Pjx46lfv37Uv39/Z5+HHnqI+vXrR2effTb9+c9/prPOOotOP/10Kioqyoj9VRk7diy9+uqrREQ0efJkOvHEE6mkpIQWLFhARES/+93vqG/fvhmzP5Xttj4/EdHBgwdp3LhxlJOTQxdeeCHdcccdVFFRQUREjzzySEZtT7RfVVUisnQEEssA7dcnT55Mt912W9K+jzzySKv67tjLYYkz+//97380ZMgQ+tWvflXttddee4369OmT0d+ui0t9cB2CZubXv/41jRkzJuk5+6YxduxYKigooBEjRiSJlEyePJlOP/1057mtW7fSz3/+c7r00ktp5syZpChKRu23B6ennnqK+vbtS19//bVzs1y9ejUVFhbSzJkziciSjP3yyy9p8uTJNHLkSLr11ludwSFT9hNVJoFNnDiRPvjgAyIi+vbbb8nj8RBjjGbOnEmqqlIsFsuY/TXZblNcXEznnXcejR07lt555x164oknqG/fvjR+/HgiskLUrenaJwoJEVX+DnRdp549ezqNh+zvt6Iorcr+VIRCIbrvvvtowIAB9P333xMRJdmYyd+ui0t9cR2CZmLTpk102WWXUUFBATHGHO1yezA1DIPmzJlDubm5dMMNNyS9tm3btqR6ZJuWvBnWZn/ijf3jjz+u9tz9999PJ554ojNTtbF12VuCuq6/zTnnnEPfffcdLVq0iDp27EgFBQXk8/mcionE7PGWsj9d24mqi9a888475PP5aN++fUnPt4Zrn3gtE/n222+psLCQfvjhhxqP2Rrsr3r97e/88uXLaeTIkXT99dc7r1X9rbbkb9fFpaG4i1jNxNq1a+Hz+fDiiy9ixowZeOCBB2CaJgRBgK7r4DgOF1xwAYYOHYoPPvgAJSUlEASrtcTGjRtx3HHHgSyHzTmmKIqtwv5ERo4cCUEQwBhzbF2/fj26du0KSZKS7E/Un8+k/bZNe/bsgaIoOOecc3D11Vdj1qxZWLp0KQoLC/GLX/wCAJL6yreU/enYbtOzZ08AlTX8a9asQY8ePWAYRqu79jzPV7MfAL777jt07twZffv2BQC89957+N3vfpe0TWuwv+r1t78bQ4cOxaWXXopvvvkG77zzDl5//XXcfPPNTp4K0LK/XReXBpMpT6S9Ys8aysrKaOXKlUREtHLlSurdu7eTRZ040/j000+pW7duNGbMGFqwYAF9++23dMEFF9B1111XLcTaWuyvaaZHRPTll1/SmWeemdR3viWpr/3XXHMNzZo1K6nk8LnnnqOsrCynNr6laOy1X7duHY0aNYoefvjh5jc2BQ21/9prr6V77rmH9u/fT+effz6JokiPPfZYyxkepyH22/v88MMPdO655xJjjCRJovvvv78FLXdxaRpch6AFqKiooN///veUnZ1NO3fuJKLkEOI333xDI0aMoAEDBlDnzp3p2muvpXA4nClzq5HK/sQb4/bt2+n111+n6dOnUyAQoJ/97Getaq00lf12Yl7VZQ0ia+29JUPUtVHXtd+xYwf9+9//pptvvpl8Ph/dfPPNrcZ2orrtP3jwIBUWFlLPnj1JFEWaOHFiUj5NpqnLfiJLYGnq1KnEGKNbb73VEU5ycWlruA5BM5A4s7f/vWnTJjrrrLNowoQJSdvaiVWxWIx27dpFu3btajlDa6A+9hNZs6ipU6fS6NGjafXq1S1mZ03U1/7WRH1tX716Nd122200bty4Nnntd+7cSYWFhTR8+PA2aT8R0fz58+mcc86hb775pkVsdHFpLlyHoIlJlfhlP//qq69SMBikjz/+mIisrm5VxYgyTX3sX7p0KZWUlDgqbK2B+l7/AwcOtKR5tdKQa09ETrvcTFNf+0tLSykcDtO6deta0swaqe93p7i4mIiqV0+4uLRVXIegiUi8mWiaRnfeeWe1euOioiKaPHkyHXfccXThhRcSY8xZq8w0DbX/66+/bmlTU9KWr//Reu3buv2t4bvj4tKUuFUGjcTO5raz759++mnk5+dj4cKFSRnq9rYHDx7E1q1bkZeXh6KiIpx66qmZMDvJpsbYf9ppp2XC7CSb2ur1P9qvfVu3P9O/XReXJieT3khbJzG5aMmSJdS7d2/q1KkTvfjii9XCjxs3bqQhQ4ZQ7969acWKFS1takpc+zNHW7adyLXfxaU94joEjWT37t100UUXkSiK9Mtf/rLGUrVwOEyffPJJyxqXBq79maMt207k2u/i0t5wHYJG8O9//5sEQaCxY8fSxo0bM21OvXHtzxxt2XYi134Xl/YII0ohHeaSFtu3b8f+/fsxbNiwTJvSIFz7M0dbth1w7XdxaY+4DoGLi4uLi4sL3CoDFxcXFxcXF9chcHFxcXFxcXEdAhcXFxcXFxe4DoGLi4uLi4sLXIfAxcXFxcXFBa5D4OLi4uLi4gLXIXBxcXFxcXGB6xC4uLi4uLi4wHUIXFxcXFxcXOA6BC4uLi4uLi5wHQIXl3bJzp07wRjD2rVrm+X4jDG89dZbzXJsFxeXzOA6BC4uzcANN9yA8ePHZ+z8PXr0wL59+zBw4EAAwNKlS8EYQ2lpacZscnFxad0ImTbAxcWl6eF5Hp07d860GS4uLm0IN0Lg4tLCLFu2DKeffjpkWUaXLl1w7733Qtd15/URI0bg9ttvx9133428vDx07twZv/71r5OOsWnTJgwfPhwejwcDBgzAkiVLksL4iUsGO3fuxMiRIwEAubm5YIzhhhtuAAD07NkTTz/9dNKxBw8enHS+LVu24JxzznHOtXjx4mrvac+ePbjyyiuRk5ODvLw8XHbZZdi5c2djL5WLi0sL4joELi4tyI8//ogxY8bgtNNOw7p16/Dcc8/hpZdewiOPPJK03csvvwy/34+vvvoKjz/+OB566CFnIDYMA+PHj4fP58NXX32FF154Affff3+N5+zRowf++9//AgB++OEH7Nu3D88880xa9pqmicsvvxySJOGrr77C888/j3vuuSdpG03TMHr0aGRlZeGzzz7DF198gUAggIsuugiqqtbn8ri4uGQQd8nAxaUFefbZZ9GjRw/MmTMHjDEcf/zxKCoqwj333IMHH3wQHGf56CeeeCJmz54NADjuuOMwZ84cfPTRR7jggguwePFibNu2DUuXLnWWBR599FFccMEFKc/J8zzy8vIAAB07dkROTk7a9i5ZsgSbNm3CBx98gK5duwIAHnvsMVx88cXONq+//jpM08SLL74IxhgAYN68ecjJycHSpUtx4YUX1u8iubi4ZATXIXBxaUE2btyIYcOGOQMnAJx11lmoqKjA3r17UVhYCMByCBLp0qULDhw4AMCa5ffo0SMpR+D0009vNnt79OjhOAMAMGzYsKRt1q1bh61btyIrKyvp+Vgshm3btjWLXS4uLk2P6xC4uLRCRFFM+psxBtM0m/w8HMeBiJKe0zStXseoqKjAkCFD8Nprr1V7raCgoFH2ubi4tByuQ+Di0oL0798f//3vf0FETpTgiy++QFZWFrp3757WMfr164c9e/Zg//796NSpEwBg5cqVte4jSRIAK/8gkYKCAuzbt8/5OxQKYceOHUn27tmzB/v27UOXLl0AAF9++WXSMU455RS8/vrr6NixI4LBYFrvwcXFpfXhJhW6uDQTZWVlWLt2bdLj5ptvxp49ezBz5kxs2rQJCxcuxOzZs3HnnXc6+QN1ccEFF6B3796YMmUK1q9fjy+++AIPPPAAACQtRSRyzDHHgDGGd955BwcPHkRFRQUAYNSoUfj73/+Ozz77DBs2bMCUKVPA87yz3/nnn4++fftiypQpWLduHT777LNqCYzXXnstOnTogMsuuwyfffYZduzYgaVLl+L222/H3r17G3LpXFxcMoDrELi4NBNLly7FySefnPR4+OGH8e677+Lrr7/GSSedhFtuuQXTpk1zBvR04Hkeb731FioqKnDaaadh+vTpziDt8XhS7tOtWzf85je/wb333otOnTrhZz/7GQDgvvvuw7nnnotx48Zh7NixGD9+PHr37u3sx3Ec3nzzTUSjUZx++umYPn06Hn300aRj+3w+fPrppygsLMTll1+O/v37Y9q0aYjFYm7EwMWlDcGo6gKii4tLm+OLL77A8OHDsXXr1qQB3cXFxSVdXIfAxaUN8uabbyIQCOC4447D1q1b8fOf/xy5ubn4/PPPM22ai4tLG8VNKnRxaYOUl5fjnnvuwe7du9GhQwecf/75ePLJJzNtlouLSxvGjRC4uLi4uLi4uEmFLi4uLi4uLq5D4OLi4uLi4gLXIXBxcXFxcXGB6xC4uLi4uLi4wHUIXFxcXFxcXOA6BC4uLi4uLi5wHQIXFxcXFxcXuA6Bi4uLi4uLC1yHwMXFxcXFxQXA/wNp+xruzx8m7AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='cantor'\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "253162e4", + "metadata": {}, + "source": [ + "#### Pairing Dictionary\n", + "\n", + "A pairing dictionary can be provided by the user to allow more control when specifying the agreement value outputs.\n", + "\n", + "A pairing dictionary has keys that are tuples corresponding to every unique combination of values in the candidate and benchmark, respectively. The values represent the agreement values for each combination. An example pairing dictionary for the candidate values [1,2] and benchmark values [0, 2] is provided below. A user has full control over the encodings including the combinations of nodata values (which are in this case np.nan)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "a2310a98", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGVCAYAAACB0OntAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9L0lEQVR4nOydeXxM1/vHP5OdkIQQERLSUktIEKLhp9YKohVCUS1iaSmKtLavWltbS1GULkRbUdu30qKNBlVKagkpUlsVY0nsEYKE5Pz+yPdcd+7cdeZOZhLn/XrNi9x77rnnnrlzznOe8ywGQggBg8FgMBiMZxonezeAwWAwGAyG/WECAYPBYDAYDCYQMBgMBoPBYAIBg8FgMBgMMIGAwWAwGAwGmEDAYDAYDAYDTCBgMBgMBoMBJhAwGAwGg8EAEwgYDAaDwWCACQQMAQcPHoTBYIDBYMDMmTPt3RyGjgwcOJD7bt9++23Jcnl5eahYsSJXdvfu3cXXSI0MGjQInp6euH79uslx2na5z8CBA02uqVmzplkZLy8vNGvWDPPnz0d+fr7Z/fPy8rBw4UJERkbC29sbbm5uqFq1Kpo2bYpRo0Zh27Ztkm2/ffs2Zs+ejZdeegl+fn5wdXWFt7c3GjVqhOHDh2PXrl2a+6NNmzayz5ycnCx57erVqxEREYFy5cqhYsWK6NKlC/bv32/RfQwGA5ycxKeXy5cvIy4uDgEBAfDw8MALL7yAadOm4dGjR2ZlMzMzUaZMGbzzzjua+4KhHRd7N4DhWHz33Xfc/xMTEzF16lQ7toYhZPr06ZgxYwYSEhLMJjQtbNy4EUuWLIGbm5vZuW3btuHOnTtWtLJ4OH78OL755hu899578PPzEy0zYMAAyev/7//+T/R4bGwsypUrB0IILly4gNTUVBw+fBhbtmxBSkoK12fZ2dlo3749jhw5AldXV0RGRiIgIAD3799HWloali5dipSUFERHR5vdY/PmzRg4cCBycnJQrlw5NG/eHH5+fsjNzcXJkyexYsUKrFixAl26dJEVKqSgzyCkWrVqouXHjBmDxYsXo0yZMujYsSMePXqElJQU/Prrr9i0aRNiYmJMynfq1Ak1a9YUrSstLQ0nTpxAq1atzM79888/iIyMxM2bN9GgQQO0atUKhw8fxsyZM7Fz507s3LkT7u7uXPmqVavirbfewueff44xY8bghRdeUN8JDO0QBuN/5Ofnk0qVKhEAxN/fnwAgf/75p72bxeAxbdo0AoAkJCRovnbAgAEEAGncuDEBQDZv3ixarnv37sTZ2ZmEhYURAOS3336zqs224tVXXyWurq7k2rVrZucAEK3DW40aNQgAcv78eZPjR48eJd7e3gQAWbJkCXd81KhRBABp1KgRuXz5sll9Bw4cIDNmzDA7vmXLFmIwGIiLiwv5+OOPyaNHj8zKnDx5kgwYMIDUrl1b0zO0bt1a9BnkSElJIQCIr68vOXPmDHd8//79xM3Njfj4+JA7d+6ori8iIoIAIF999ZXZuZYtWxIA5N133+WOPX78mHTv3p0AINOmTTO75vLly8TJyYm89tprqtvAsAwmEDA4fvrpJwKAtGzZksycOZMAICNGjLB3sxg89BAIPv74Y+Lk5ER69uxpVubOnTvE3d2ddOzYkURFRTmsQGA0GomTkxPp2rWr6Hk9BQJCCJkxYwYBQNq3b88dCwgIIABISkqK6nvcu3ePE7q/++47xfKHDx9WXTchlgkEnTt3JgDIwoULzc69++67BACZP3++qrrOnDlDABAPDw+SnZ1tcu7AgQMEAPHz8zMTgrKysoirqyupUKECefz4sVm97du3J66uriQrK0v1czG0w2wIGBxr1qwBALzxxht44403AADr16/H48ePJa85duwYXnnlFfj4+KB8+fJ46aWXkJKSgt27d4vu09J97N27d2P79u1o27YtfHx8YDAYkJ2dzZVLTk5GdHQ0KleuDHd3dzz33HOIj4/HrVu3RNtBCMH333+Pdu3aoUKFCvDw8EC9evUwffp0PHjwwKw83QO9cOEC1q9fj2bNmqFs2bKoVq0axo8fz+0Xnzt3Dn379oWfnx/Kli2Ltm3b4tixY5L9oaXd/L7Ys2cP2rVrh/Lly8PLywvR0dH4+++/TcrXrFkTM2bMAADExcWZ7Ndq2eevWrUq2rVrh61bt+Lu3bsm5zZs2IC8vDzu+xcjPT0d48ePR3h4uMlzvvPOO7h69apZ+QsXLsBgMKBNmzbIycnB6NGjERgYyH1HCxcuRGFhoer2A8CqVatQWFiIvn37arrOUho3bgwAuHTpEnfsxo0bAIDKlSurrmf16tW4efMmWrRoIdvHlPDwcI0t1cbDhw85W4WePXuanafHtmzZoqo+Ooa88sor8Pb2NjlHtz5eeeUVk20BAKhSpQpatWqFO3fu4I8//jCr9/XXX8fjx4+xevVqVe1gWIi9JRKGY5CdnU08PDyIm5sbuXXrFiGEkBYtWhAA5KeffhK9Zv/+/aRs2bIEAAkNDSV9+vQhzZo1I05OTpw6dcCAASbX0FXq0KFDicFgIM2aNeOuoyuKCRMmEADEzc2NtGzZkvTs2ZPUrl2bACDPP/+82SqhoKCA9O3blwAg5cqVI23atCHdu3cngYGBBACJiIggDx48MLmGrqTGjBlDXFxcSIcOHUj37t251Vv//v3JmTNnSKVKlUjdunVJ7969ScOGDQkAUrFiRdGVitZ2076Ij48nzs7OpHnz5uS1114jL7zwAqfCzczM5Mq/9957nBq/ZcuWZMCAAdzn5MmTit8xvd93331HEhISCACycuVKkzIvvfQSKVu2LLl3756khqB3797ExcWFNGnShMTExJCYmBhSs2ZNAoBUrVqVXLlyxaT8+fPnCQDy4osvkvDwcOLj40N69OhBunbtSsqUKSP6nijRtGlTAsDsXhTorCFITEwkAEjDhg25Y8899xwBQIYNG0YKCwtV3aNLly5mWw9aoVoisT6j7/UHH3xAhg8fTkaMGEEWL15MLl68KFrX0aNHCQBSuXJl0fP3798nAEiFChVUte35558nAMiPP/5odq5bt24EAFm2bJnote+//z4BQBYvXmx27ty5cwQAadWqlap2MCyDCQQMQgghX3/9NQFAunXrxh37/PPPCQDSq1cvs/IFBQXcxDVr1izRuuQEAgBk3bp1ZvVu2LCBACANGjQgZ8+e5Y4XFhaSqVOnEgCkd+/eJtd8/PHHBABp06aNyQSal5dHBg8eTACQCRMmmFxDB85y5cqRQ4cOccczMzNJlSpViMFgIPXq1SMTJ07kBvvCwkLy5ptvEgBk6tSpVreb9oWTk5PJfv6TJ09IbGwsAUCmTJlico0eWwbfffcdycnJIWXKlCFt27blzl+8eJEYDAbSt29fQgiRFAh27dolKpRRtXpcXJzJOSoQUMHxxo0b3Ll//vmHU71L2TQIuXfvHnF2diYBAQGSZfQWCPr06UMAkH79+nHH5syZw92nbt26ZOLEiWTz5s3k0qVLkveoVq0aAUD++OMPTW3jo0YgEH5cXV3JzJkzzcr/+OOPnF2JFD4+PgQAycnJkW3X/v37OUE2Pz/f7Dy1XRETFgghZNGiRZyALEalSpWIu7s7efjwoWw7GJbDBAIGIeTpQLJx40bu2M2bN4mrq6vofiA1RKpduzYpKCgwq48aD0kJBNHR0aLtoCvg48ePm50rLCwkjRo1Is7Oztyk8vjxY1KpUiXi6ekpump/8OAB8ff3JxUqVDBpJ38lJWTs2LEEAHnuuefMBra//vqLACCtW7e2qt38vuBPMpTDhw+L3kcvgYAQQl577TXi5OTEGcTNnj2bACDbtm0jhEgLBHJUq1aN+Pr6mhzjCwS//vqr2TXLly8325+Xg+5F84UZIWKTovAjFECEAkFhYSG5cOECp/kxGAxkz549XPmCggIyfvx44urqalZ3SEgIWb58udlvw8PDgwAgp06dMmvz7du3TbQ+UtqfJUuWkDp16pCJEyea1TFlyhTy3XffkXPnzpEHDx6Q06dPk1mzZnGamEWLFpmUp5qPli1bSvYlFWKktDGU4cOHE0Da7ohqy6RsLr766itOeygGHVOOHDki2w6G5TC3QwaMRiP27NkDHx8fvPLKK9xxX19fdOnSBT/++CM2btyIIUOGcOf27dsHoMi9SczfuHfv3lwZMV599VWzY9evX8dff/2F2rVro0GDBmbnDQYDWrZsifT0dKSlpSEqKgpHjhzBzZs38fLLL6NKlSpm15QpUwbh4eHYtm0bzp49izp16pic79ixo9k1zz33HIAiOwNXV1fRc5mZmVa1W6kN1L2Kfx+9eeONN7BhwwasXbsW48aNQ2JiIvz8/ETbI+TWrVv46aefcOLECWRnZ6OgoAAA8PjxY9y6dQu3b99GxYoVTa6pWLEiXn75ZbO6+vbti+HDh2P//v0oLCyU9F+n0JgDFSpUUGynnNthUFCQ6PHg4GCzY25ubli0aJGJK52TkxPmzZuH0aNHY9OmTdizZw8OHToEo9GIjIwMDB8+HNu3b8d///tfxWcCgNzcXHzzzTdmxwcOHIi6detyf48cORIjR44UrUMYO+SFF17Af/7zHzRt2hRRUVGYPn063nrrLZQpU0axPVp4/PgxNmzYAAB48803da2bQt8narvB0B8mEDCQmJgIQgh69uxpZuzzxhtv4Mcff8SaNWtMBAI6UQUGBorWKTXYyp2/cOECAODs2bMwGAyy19+8edPkmpSUFFXXCAUCMb9s6r8tdy4vL8+qdvOpXr262bHy5cub3UdvOnXqBF9fXyQmJqJDhw7IyMjAqFGj4OIiPyx8//33eOutt3D//n3JMvfu3TMTCGrUqCFa1tvbGz4+PsjOzsadO3fg6+sre39qCEn7SA5LjNCoD7/BYEC5cuVQt25ddO/eHQEBAaLlAwIC8O677+Ldd98FAJw8eRLz58/HqlWrkJSUhO+//x79+vUDUCRkX7lyRfRdrF69Oggh3N+dOnXC9u3bNbdfjI4dO6Jp06Y4fPgwDhw4gDZt2gB4+j6LGd5ScnNzAcj39y+//IJbt26hdu3aaN68uWgZpXsp3cfLywsATIyPGfrCBAIGF4xo9+7dZsFaqLX9nj17cPHiRclBXSseHh5mx6ilub+/v9kqWghtB72mVq1aaNmypew1YhON3MpNzaqO3wYt7bbkPnrj6uqK1157DcuXL8d//vMfAFC0fL948SLnObJo0SJER0ejWrVq3IqzRYsWSE1NNZnY9IZar9+7d88m9c+fP18y6I4a6tWrh5UrV+LOnTvYvHkztm3bxgkEYWFhuHLlCo4ePar4vupN7dq1cfjwYROtExXML1++LHpNbm4usrOzUaFCBVmBgO+hJEVQUBCOHj0qeS96XGqMoYKgj4+P5D0Y1sEEgmectLQ0nDx5EkBRFLF//vlHtBwhBImJidzEUbVqVQCmblh8pI7LQVfKlSpVUr2yo9fUrVvXbi5JlrTbUXjjjTewfPlyJCcn44UXXkBERIRs+Z9//hn5+fl4//33MXr0aLPz//77r+S1RqNR9HhOTg6ys7NRpkwZVYM9jUp4+/ZtxbL2pF27dti8ebOJVqhz5874+eefsW7dOkm1v62g0Sc9PT25Y3Xq1IG7uztu3LiBK1eumGnFjhw5AgAIDQ2VrDcnJ4dzS5QTCMLCwvDjjz9ydQpRuhdtvxY3T4Y2WByCZxwq2b///vsgRUamZh/q407LAuBWN5s3bxZdDdL9RC1Ur14ddevWxd9//40zZ86ouqZZs2bw9vbG77//brcJwpJ2WwoNm/vkyRNd6mvRogXCwsLg6+uLQYMGKZang7LYNseePXtw7do1yWtv3bqFnTt3mh1ft24dACAyMhLOzs6KbQgJCYGLiwtOnz6tWNaWKGlBqHDNn2QHDhwIX19f7Nu3z+T3ZGtu3LiBvXv3AgCaNGnCHS9TpgzatWsHoCictZBNmzYBgIltkViZR48eoWXLlpyNjRg0hPOWLVvMtsKuXbuGvXv3okKFCpKak1OnTsHd3R316tWTvAfDOphA8AxTUFCA77//HgBkA7y0atUK1apVw8mTJ5GWlgagaPVTu3ZtnD59Gh9//LFJ+dWrV3ODj1amTJmCwsJCxMbGIj093ez8rVu38NVXX3F/u7u7Y/z48bh37x569OghukK9cuWKSY4GW6C13ZZC97H1nAzT09Nx8+ZNTJgwQbEsNXZcs2YNt+cLFPXxsGHDFK9///33TYI0nT9/njOEGzFihKr2enp6onHjxsjMzMSVK1dUXWMLWrRogYSEBJN+oGzduhUrVqwAYBrwp1y5ckhISIDBYEBcXBw++eQT0aQ+ly9fltSyLV26FHXr1sWkSZNMju/fvx9JSUmcgSflwoUL6N69O3Jzc/Hqq6+aCXPx8fEAgI8++ghnz57ljqempuKLL76Aj48PBg8eLNkPVLBRMiaMiIhAy5Ytcf36dZN37cmTJ3jnnXfw+PFjvPvuu2aGvEBRgLBbt24hIiJCdLuRoRP2cW5gOAI///wzAUBeeOEFxbLx8fEEABk9ejR3jB+YKCwsjPTt25dEREQQg8FARowYIepCRF3f5FzZ/vOf/3D++U2aNCG9evUiPXv2JI0bNybOzs7E29vbpHxBQQEXH8DNzY00b96c9OnTh/To0YOEhIQQg8FAwsLCTK6RC/FKg/aIxVUnpMilrUaNGla3W6kvxO5z5coV4uHhQZydnUmnTp3IoEGDyODBg0Xd2IQI3Q6VEHM7zMvLIyEhIQQoyncRGxtLoqOjSdmyZUmLFi24YFb8fuUHJmrSpAkXmOiVV17h3p833nhDVZso06dPJwDImjVrRM+DFwdD6iOM8SAXh0AMmt/Aw8ODtGjRgvTp04d069aN1K1bl7v/sGHDRK/94YcfiJeXFxcLo3379qRv376ka9euJCwsjDg5OREApHnz5mZ5EqTiEND31t/fn3Tp0oW8/vrrpGXLlpyrY0hIiGjeB0IIGT16NAFAypYtS7p160Y6d+5MXFxciLOzs2x8iEuXLhEnJyfi5uZGbt++rdhnZ86cIb6+vgQoCvLUu3dvLsBTixYtRPM6EPI0tsncuXMV78GwHCYQPMPQ6H5SEx+fQ4cOEaAoDjk/1nh6ejrp2rUr8fLyIp6enqRly5bkl19+IWvWrCEAzHyl1QgEhBDy+++/k169epGAgADi6upKfH19SWhoKBk5ciT5/fffRa/58ccfSXR0NPHz8yOurq7Ez8+PhIeHk/Hjx5O0tDSTsrYQCLS22xKBgBBCtm/fTlq2bEnKlSvHTTxqYgXoIRAQUuQvP3z4cFKzZk3i7u5OnnvuOTJhwgSSm5sr2q9UIGjdujXJzs4m77zzDgkICCBubm6kTp06ZP78+eTJkyeq2kQxGo3E2dmZdOnSRfQ87Re5j1BI1CoQ/PXXX2TevHmkY8eO5Pnnnydly5Yl7u7uJCgoiPTs2ZP8/PPPstffunWLzJo1i7Rs2ZJUqlSJuLi4EC8vL9KgQQMyZMgQsmPHDtEIiFICwd9//02GDx9OmjRpQipXrkxcXFyIt7c3efHFF8mCBQvMonUKSUhIIOHh4aRs2bLEx8eHdOrUiezbt0/2mnnz5hEApHv37rLl+BiNRjJw4EDi7+9P3NzcSK1atciUKVNkAw61a9eO5TIoBgyE2NAcmPHMMmzYMHzxxRdYt24devfube/mMOzIhQsXEBwcjNatW2vKuaBE9+7dsXXrVly6dAn+/v661ctwLC5fvowaNWqgZ8+eWL9+vb2bU6phNgQMi7l9+zbng89n/fr1+Prrr+Hj44OuXbsWf8MYzwQffvghCgsLMX/+fHs3hWFDPvnkEzg5OZkFXWLoD3M7ZFjMmTNnEBkZidDQUM66+OTJkzh9+jScnZ3xxRdfmLg4MRh60qBBAwwYMADLly/H+PHjOXdERukhMzMTX375JYYOHWoWyImhP2zLgGEx169fx8yZM7Fr1y5cvXoVubm5qFSpElq0aIH3338fkZGR9m4iwwGw1ZYBg8HQFyYQMBgMBoPBYDYEDAaDwWAwmEDAYDAYDAYDTCBgMBgMBoMBJhAwGAwGg8EAEwgYDAaDwWCACQQMBoPBYDDABAIGg8FgMBhgAgGDwWAwGAwwgYDBYDAYDAaYQMBgPPNMnz4dBoPB3s1gMBh2hgkEDEYxsXr1ahgMBpOPn58f2rZti19++cXezVPk9OnTGDt2LFq0aAEPDw8YDAbRbJcMBqNkwrIdMhjFzMyZMxEcHAxCCK5du4bVq1ejS5cu2LJli0Oni05NTcVnn32G+vXro169ekhPT7d3kxgMho4wgYDBKGY6d+6Mpk2bcn8PHjwYVapUwffff+/QAsGrr76K7OxslC9fHvPnz2cCAYNRymBbBgyGnfHx8UGZMmXg4mIqn8+fPx8tWrSAr68vypQpg/DwcGzatMnseoPBgJEjRyIpKQkNGjSAu7s7QkJCkJycbFb2jz/+QLNmzeDh4YHnn38eX3zxhep2VqxYEeXLl9f+gAwGo0TANAQMRjFz9+5d3Lx5E4QQXL9+HUuWLMH9+/fxxhtvmJRbvHgxXn31VfTr1w/5+flYt24devXqha1btyI6Otqk7B9//IEffvgB77zzDsqXL4/PPvsMsbGxMBqN8PX1BQAcP34cHTt2ROXKlTF9+nQ8efIE06ZNQ5UqVYrt2RkMhuPCBAIGo5jp0KGDyd/u7u5YtWoVXn75ZZPjZ86cQZkyZbi/R44ciSZNmuDTTz81EwhOnjyJv//+G88//zwAoG3btggLC8P333+PkSNHAgCmTp0KQgj27t2LoKAgAEBsbCwaNmyo+zMyGIySBxMIGIxiZtmyZXjhhRcAANeuXcOaNWswZMgQlC9fHj169ODK8YWBO3fuoKCgAK1atcL3339vVmeHDh04YQAAQkND4eXlhX///RcAUFBQgO3btyMmJoYTBgCgXr16iIqKws8//6z7czIYjJIFEwgYjGImIiLCxKiwb9++aNy4MUaOHImuXbvCzc0NALB161Z89NFHSE9PR15eHldeLGYAf5KnVKhQAXfu3AEA3LhxAw8fPkTt2rXNytWpU4cJBAwGgxkVMhj2xsnJCW3btkVmZibOnj0LANi7dy9effVVeHh44PPPP8fPP/+MlJQUvP766yCEmNXh7OwsWrdYWQaDwRCDaQgYDAfgyZMnAID79+8DAP773//Cw8MD27dvh7u7O1cuISHBovorV66MMmXKcAIHn9OnT1tUJ4PBKF0wDQGDYWceP36MX3/9FW5ubqhXrx6AohW/wWBAQUEBV+7ChQtISkqy6B7Ozs6IiopCUlISjEYjd/zkyZPYvn27Ve1nMBilA6YhYDCKmV9++QWnTp0CAFy/fh1r167F2bNnMXHiRHh5eQEAoqOj8emnn6JTp054/fXXcf36dSxbtgy1atXCsWPHLLrvjBkzkJycjFatWuGdd97BkydPsGTJEoSEhKiq8+7du1iyZAkAYN++fQCApUuXwsfHBz4+Ppw3A4PBKJkwgYDBKGamTp3K/d/DwwN169bF8uXL8fbbb3PH27Vrh5UrV2Lu3LkYM2YMgoODMW/ePFy4cMFigSA0NBTbt29HfHw8pk6diurVq2PGjBnIzMxUVeedO3cwZcoUk2MLFiwAANSoUYMJBAxGCcdAmNURg8FgMBjPPMyGgMFgMBgMBhMIGAwGg8FgMIGAwWAwGAwGmEDAYDAYDAYDTCBgMBgMBoMB5nZYrBQWFuLq1asoX768aDx6BoPBKGkQQnDv3j0EBATAyYmtMUsyTCAoRq5evYrAwEB7N4PBYDB059KlS6hevbq9m8GwAiYQFCPly5cHADz35Vg4l3WXLHcwYgMiDr6mut7wqpexPHC/yTVTQ7ahq2eupnrEoPVQxOoLr3oZaZnqBgL6bGqeMbzqZQBQXbfUvbSUB8Sf0ZryasqJ9aHW9ltyX6kyWr5TPlNDtmFmRrTod0frpOfEWB64HwCwNdcTADAzI5qrUw5r+0orUu8mvz/p75L+Lbxern+L63loewHp9+RgxAYMv9RCtL0HIzYg534hajS5wI1vjJILEwiKEbpN4FzWHZG1r+PgFfOUtQDgVd4ZzmU9AAAR1YyS5Sjpd2vBq/4BnGr/X5PjIan94VxWeztnhSYBAGI4QeBpJj3aLj5u5dxEj4sReaI/5r6YhF3wUrwm/W6t/91Tvs6MyESEpPYzO87vRz5SfRp5oj8A4FR78frE6i9qn/xzRJ7oj4zIRMx9MRmTj8WIlkm/W8vsOSNP9BdtC7/9Us/Ovy//vaBlMyIT/3fE9Blo3WLtUcPr/o9QtnwyfrzVBAevBJnUkX63FiJrGwG4cccSgvaaXJ+UWxS6uez/5pa5LyYjxvMRZp2X7+NdTsrvEyDfX2rg9w9g+m7OCk2Cl+fT/ky/WwuREu8w7Qup33bkCXW/XWufh77DtM1SZRLrH0DI/56Fzy4nL7QrlwNAPC03o2TBNnzshNwkH5LaDxmRiciITERC0F7e4K0NOrGrwdJ7RFQzKhcSMPlYDCYfi1HdPjX3sKQdUoSk9lOsz5L+ivHM5b5Xazh4JYjrO62TAb0//zr6fzrZWdo+Wm+MZ67ZRE/P0+MJQXtFy9gauf7S8nvhQ9+VGJ4mTQ1SY4CW/k/6nybFUtRcby5EPkVKwGWUTOwqENSsWRMGg8HsM2LECABAVlYW3nzzTfj7+8PT0xNNmjTBf/9rugq+ffs2+vXrBy8vL/j4+GDw4MFcClnKsWPH0KpVK3h4eCAwMBAff/yxWVs2btyIunXrwsPDAw0bNsTPP/9scp4QgqlTp6Jq1aooU6YMOnToIJpKVi+Scj1NfqxiP8ZZoUmiE4zSdXwiqhkxKzSJu2ZWaBJiPHNFBzexwTQhaK+iBkMKtUKBsP6IakaTCTsktZ/o5EIFK/51QqQm/oSgvbJCgZY+pm2hH3qN8Nml6pEaiGeFJpnUYemERtEqDND+iahmlBQyKBmRiYgztkKcsRX3XdF3PCnXEyGp/ZCU66l5UqWomZiUnk1NHWLvmdL7r6ewKqxv8rEYq+pnEzqDj10FgkOHDiEzM5P7pKSkAAB69eoFAOjfvz9Onz6Nn376CcePH0ePHj3w2muv4ejRo1wd/fr1Q0ZGBlJSUrB161bs2bMHb731Fnc+JycHHTt2RI0aNZCWloZPPvkE06dPx5dffsmV2b9/P/r27YvBgwfj6NGjiImJQUxMDE6cOMGV+fjjj/HZZ59hxYoVOHDgADw9PREVFYVHjx5pfm6xPVQ6sdNBa/KxGLPBkX8+IzLR5Dx/cKU/cjWDKx3M6OpV7Bo6YPOhk4C1qB2Q+JPPwStBZoNwUq6nRZMZX/Uu5OCVIDPhQw9oXwo1BnzNkLAs/xj9v1Bwm3wsRrIPhCtBqXJaNA607w5eCZK9LqKaEXHGVpLtkXsH6PPR70Hqu1D67meFJlmlWteC8D6WCsxS8OubFZokW7+1QiKluPqOYV/sakNQuXJlk7/nzp2L559/Hq1btwZQNFEvX74cERERAIAPPvgACxcuRFpaGho3boyTJ08iOTkZhw4dQtOmTQEAS5YsQZcuXTB//nwEBAQgMTER+fn5WLVqFdzc3BASEoL09HR8+umnnOCwePFidOrUCePGjQMAfPjhh0hJScHSpUuxYsUKEEKwaNEifPDBB+jWrRsA4Ntvv0WVKlWQlJSEPn36aHrutMzqJvuDchNCnLEVuvkeMRn4xSYMIcLVsRRUIyAGX7gQcvBKECAYh9TYO1gKf/IRY/KxGEyG8p4qbaPcJM+vgy8w0P4Q6zOpZ+cf518nXA2r+a5oG4Tl1ewjS33HccZWZm2kzApNsmgFSbdcaJ0JQXvNNAN8+PcUU2Hzt3Ckvn+l56fCklI5S59ZL9QKtbR/YzxzMdnGbRK7L2VWaBJQaPv7FhQU4PHjx7a/USnE1dUVzs7OygXhQEaF+fn5WLNmDeLj4znjlBYtWmD9+vWIjo6Gj48PNmzYgEePHqFNmzYAgNTUVPj4+HDCAAB06NABTk5OOHDgALp3747U1FS89NJLcHN7asgUFRWFefPm4c6dO6hQoQJSU1MRHx9v0p6oqCgkJSUBAM6fP4+srCx06NCBO+/t7Y3mzZsjNTVVUiDIy8tDXl4e93dOTpHxTXjVy5xREl8Y4P9Lj3fzPWIy2VHUSuxSe4R0cpHaGsiITFQ9MNK6frzVBIBtBQOt0GcJSe3HtSmimrFokoKpsMWfMPgTA3/CkhqwE4L2IuSKuZqc/z1NPhaDGN7qXg4qPAi/Z6nrxDQIlDhjK8ntAE4FHlRUTthG/mSj5XuVup/WPW9aXum+SpO9WuM7PSZYaw39ins1TscBpe83KddT9D23JYQQZGVlITs7u9juWRrx8fGBv7+/ouGnwwgESUlJyM7OxsCBA7ljGzZsQO/eveHr6wsXFxeULVsWmzdvRq1aRZNpVlYW/Pz8TOpxcXFBxYoVkZWVxZUJDg42KVOlShXuXIUKFZCVlcUd45fh18G/TqyMGHPmzMGMGTPMjqdlVsep9qaCgBjCwdOSgYI/wNFJLkNmUhIKJlro5ntE9YRBJ9niWI3xtSWcYBAkvh/Mn8SE3hZKk7iYUZ5Q4FO7T84XUqyFfidi+/p8EoL2Isn3qQaC//5ZIuTxhVs1BoQxnrkm9xQTiJTuZS1K9dh6slYrMKm191Dz+6JCIP3+pa7hC4uUGM9c5NxT02LLoMKAn58fypYtyzwZNEIIwYMHD3D9+nUAQNWqVWXLO4xAsHLlSnTu3BkBAQHcsSlTpiA7Oxs7duxApUqVkJSUhNdeew179+5Fw4YN7dhadUyaNMlE85CTk4PAwEDOhkDN4KLHhClc+QrRMsgJJ8mQ1H7calbtag7QXxDgT1hik5dwO0ZpS8US47aEoL1m2ygUoUZGznJbDLVbQFoQq5P/3FSYtJcanW/oqnR/a1flau+jBjVbVnpgi3dCjYakuDSABQUFnDDg6+tr8/uVVsqUKQMAuH79Ovz8/GS3DxzC7fDixYvYsWMHhgwZwh07d+4cli5dilWrVqF9+/YICwvDtGnT0LRpUyxbtgwA4O/vz0k+lCdPnuD27dvw9/fnyly7ds2kDP1bqQz/PP86sTJiuLu7w8vLy+QDFAVf0UsY4Hsa0I+YSxo1GBROdFLtEO6xCy3a+YaGtJ2WDqa0bmsGN/4qWMpVU9gffIRGb7ZA2PfU0I1+pPbPhf/XMvEplVV6bilDU0tQu/ql72lxCyF6PaccShOpvewX+N+N2KKBjgfWujlqgdoMlC1rQUAMhgm0D5XsMBxCIEhISICfnx+io59GI3vw4AEAmMXGdnZ2RmFhkRVLZGQksrOzkZaWxp3ftWsXCgsL0bx5c67Mnj17TDoiJSUFderUQYUKFbgyO3fuNLlPSkoKIiMjAQDBwcHw9/c3KZOTk4MDBw5wZbQw/FILxTJqB33+ipPvuiW3f8t3f5NCOHDR2AH8j17Q+tT4/6tBrZBDoXvswn5R009SqBk4hX1I+4B/fyF8oUB4XnhOTdulPASKcx9bqJWgiLlmSqGHQGfLyU7Le633ql8N/HdRTDCi48HkYzGKLrl6w7YJrEdtH9pdICgsLERCQgIGDBgAF5enOxh169ZFrVq18Pbbb+PgwYM4d+4cFixYgJSUFMTExAAA6tWrh06dOmHo0KE4ePAg9u3bh5EjR6JPnz7c1sPrr78ONzc3DB48GBkZGVi/fj0WL15sosofPXo0kpOTsWDBApw6dQrTp0/H4cOHMXLkSABFnTlmzBh89NFHnAtk//79ERAQwLVFT9QOCNS3W2i4plYdrccgyncF02OQULs3qvVecvvYYtsL1k6IUgKTmrotub81th+A6WQoVocek5Rw4udrrKRW53xNgZxwoIcKW4sRrVZspWK3dttAGM+DolSnPYJKMWyP3QWCHTt2wGg0YtCgQSbHXV1d8fPPP6Ny5cp45ZVXEBoaim+//RbffPMNunTpwpVLTExE3bp10b59e3Tp0gX/93//ZxJjwNvbG7/++ivOnz+P8PBwvPfee5g6dapJrIIWLVpg7dq1+PLLLxEWFoZNmzYhKSkJDRo04MqMHz8eo0aNwltvvYVmzZrh/v37SE5OhoeHupC9fCyJES+14lfrhkVd5sTiCQiRmmzFfMH596eqevqxVEBQM8ipHWCV4iVYOoFKrdD5x8U0DmoQ9pvcdWqEB+GWklSgI7m6rBEe1XpKSKEU3dEeK2o5pFTutlpVWyMUWCuosPgEply4cAEGgwHp6ekAgN27d8NgMJQYLwkDIYTYuxHPCjk5OfD29kbtNRNN4obzf8xU5S9lES6U4tVMBnIqdLEogGojr4ldS1cO9h4otBjraa1LbCVl7+flI4yTQLdE6DlAnQU/fTYaQ8CaZ5QLmKRWQLD2/np9R3J1Cc9ZYoBnSVv1Nvyk2ke58Mq0jQUPHuHsG3Nx9+5dzk5KDx49eoTz588jODhYdOE1cOBAfPPNN2bHo6KikJycrFs7tHDhwgUEBwfj6NGjaNSoEfLz83H79m1UqVLFrlsfSn1JsbuGgPHUQI/vmiaErtDkVnliyK3sxH7sagYvGilQuF2gt1pUzf6x2MpLTd/QvlZatdE20K0ZqX17sXZpbZMcalaX9L2gk31Iaj+zQf3HW000Txx6qIdp/wnDFQPmYbql0EsTIKcB0wO+hqy44nHQGCB6ovS9F6cdgRSdOnUyiXabmZmJ77//3t7N4nBzc1Pl/+8oMIHAwZh8LEb0x01XaMKPEmKreD0Ri/qnl8W+WCheMZsFLYOuUKWvdC2dXLXcQ8rtUe21YqgJzEPvo+ZeSgaccloRPmrfJ75RGg3LHVHNaGKgKuVpIWwXfztKLpSxUPOmdRtKSvBW2sKh9yvO4FxKMTUsRcqwk3rz2Bt3d3f4+/ubfKixuMFgwNdff43u3bujbNmyqF27Nn766SeT6zMyMtC1a1d4eXmhfPnyaNWqFc6dOwegyL5t5syZqF69Otzd3dGoUSMzzcPBgwfRuHFjeHh4oGnTpiZh9QHzLYPVq1fDx8cH27dvR7169VCuXDlOqKE8efIE7777Lnx8fODr64sJEyZgwIABJvZqmzZtQsOGDVGmTBn4+vqiQ4cOyM213kuGCQQOhthAp1c8ckBf4yZ+OGG9Bz+xlT//b35OA7FgQmKIDeRqQxhrwZq+sCTboNS2hdIKVWjzIad9kjpu7fcuzBTIt2Xge86ICQr8LSop+FoTLXEyAPH3Rem3aJ46vPihfaqX3YeU11JJYMaMGXjttddw7NgxdOnSBf369cPt27cBAFeuXMFLL70Ed3d37Nq1C2lpaRg0aBCePHkCoCik/YIFCzB//nwcO3YMUVFRePXVV7mkdvfv30fXrl1Rv359pKWlYfr06Xj//fcV2/TgwQPMnz8f3333Hfbs2QOj0Why3bx585CYmIiEhATs27cPOTk5XNRcAMjMzETfvn0xaNAgnDx5Ert370aPHj2gx+6/wwQmYhTBH6zEVseOEhLY1nDPGWR6TKoP5AYsSwZGLclw1Nav9P3R83rtdSu9K1qsym0Bnczj8HQ7TOzZuS0O3mTrCKtTR0LYb3rYFNA65fKdZEQmou7OWKvuYw1bt25FuXLlTI795z//wX/+8x8ARXYGffv2BQDMnj0bn332GQ4ePIhOnTph2bJl8Pb2xrp16+Dq6goAeOGFF7h65s+fjwkTJnCh6efNm4fffvsNixYtwrJly7B27VoUFhZi5cqV8PDwQEhICC5fvozhw4fLtvnx48dYsWIFnn/+eQDAyJEjMXPmTO78kiVLMGnSJHTv3h0AsHTpUpPsu5mZmXjy5Al69OiBGjVqAIBugfqYhsABkPrh8m0LHMloTQ5bqxK1CkRyhlFyqF3haZlIlfrl4JUgzdogvYwaLXnPtG4/SVna8/tF+Pw0aJVcAiTaB2IBroShkC0RfPjXqJ1k1Wx92IJZoUlICNqrq4ZCyYX2YMQG3e6llbZt2yI9Pd3kM2zYMO58aGgo939PT094eXlxwezS09PRqlUrThjgk5OTg6tXr6Jly5Ymx1u2bImTJ08CAE6ePInQ0FATIz01cWnKli3LCQNAUThh2qa7d+/i2rVrXEI/oCj2Tnh4OPd3WFgY2rdvj4YNG6JXr1746quvcOfOHcX7qoEJBHZEONAJoZn1KKVdO2BJbAGlLQKlLIlq3TbF2qan5bol0PvrFdCJQjUeSgKC1vdRbItHSIxnrqgQwEfMRZLaIwhTgov9X8tkLLRrUHutkuBg6/dGz/rpuyX1e4s4+Jpu99KKp6cnatWqZfKpWLEid1442RsMBi6wHQ3pW9yItUmLut/Z2RkpKSn45ZdfUL9+fSxZsgR16tTB+fPnrW4bEwjsQLU3iiRMvSP+lXTkXJzov8J9bmtWQnIGaWrbphUlDYDa90Fv41BhbAl+cCsx4cjS+4v1bZyxleZtHXp/6klB7SHE6qGujZYKBVreMVpW6Xu2lYZAr/GEH3Pk4JUgru+owFYaCA0Nxd69e0XD+Xp5eSEgIAD79u0zOb5v3z7Ur18fQFFgvGPHjuHRo0fc+T///NOqNnl7e6NKlSo4dOgQd6ygoABHjhwxKWcwGNCyZUvMmDEDR48ehZubGzZv3mzVvQEmEJQ6HOHHaosQsFoHUEs8MChik4qYGyG9h1phgQaHsgT+Kk0s6qKWtMRaEIuHkRC0V7fwtXRLhy+E8KMYCj98+F4m9Dvjx8HgC9xiQoFa+IF/1Aou9jIq1EvQoN8J3zuELxQ4Cnl5ecjKyjL53Lx5U9W1I0eORE5ODvr06YPDhw/j7Nmz+O6773D69GkAwLhx4zBv3jysX78ep0+fxsSJE5Geno7Ro0cDKIqCazAYMHToUPz999/4+eefMX/+fKufadSoUZgzZw5+/PFHnD59GqNHj8adO3c418UDBw5g9uzZOHz4MIxGI3744QfcuHED9erVs/reTCCwE9VjT6gqJzWB8K+vHnuC+9BtBrqXqpeAoHagoQZIxeF3L4Zan3a5e6gJ1qSXSlbNSpJOwnKugPbwCZcSLrRoXoRIbVMoTUZ8oUD4/QuFAkugQoFW99PiRs1Wlx44itdBcnIyqlatavL5v//7P1XX+vr6YteuXbh//z5at26N8PBwfPXVV5xK/91330V8fDzee+89NGzYEMnJyfjpp59Qu3ZtAEC5cuWwZcsWHD9+HI0bN8bkyZMxb948q59pwoQJ6Nu3L/r374/IyEiUK1cOUVFRnK2Cl5cX9uzZgy5duuCFF17ABx98gAULFqBz585W35tFKixGaKTCNugGF4PpPtLl/zaQuKqI6rEnuDJKwgS/LjpBF9det1KEM4qUxT3/uKWDjqXPqtYmwBILbqm6lepS25+WoiWWg9T3IWyfFk8QuWeTc+Gjk7/wvsJjYgIXrU+rxkbp/RA+n1gb9biPGiyJ0SEHv00ZkYkmfWevSIXPCoWFhahXrx5ee+01fPjhhxbVobYvmduhg6BGY6BWq8AXHiYfiwH+py3gqz7VDDiWujkmBO1Fkq/4YEt9x6Xub4kfPoU+n6WDodRWgS2NOalGR6yvtLg+WoO1zye8Xkt9CUF7gSDx95FLqw151zchSloXqimI8czFZNUtlf/NSAkDgLrJmf4u1GxJqBEY1NalBrFopDGeuYj53zPb0+2wNHLx4kX8+uuvaN26NfLy8rB06VKcP38er7/+us3vzbYMSil84YG//8eX8pXUiWJRCJWgKl+xbQP+3rfUpG9NQiT6Lz+0slqk1MFixyyxA5AawOU0BMVhcKo1yqMU1qqQpd5HfmAhPrTdYtdwgoRCSl+t7ZML2qQnccZWdg0LLExiRu07aJ+XFBfokoqTkxNWr16NZs2aoWXLljh+/Dh27Nihi42A4r1tfgeG3RAKBRQtxnB0YrV20BNbtVEbB2rvIGYspwQ/Jr4QLZOdXqspIY5g5EmxtC1aLOb5HiFC1Kxq6bumlK9jVmiSiVAgXIXrbQ0vZdug5h5SRpj8Z6XvvZr3X6kfrXlutRqxkhQbpaQRGBiIffv24e7du8jJycH+/fvx0ksvFcu9mUDAUIS/p69WMBAOFnL57rVku+NrOqglOR9++9Susp6FCJCWThLUv5+P1GQgJwyoRe2ESNukNWol8PRd1DqhCeuVC5YkhtizCQVRsa0GrdDnk7LRkUMpHLnY9fYMTMTQFyYQPKPw7QmUENodKK3g+IOGWJIZa6BBadQgZnCmVK44kbMdEOZtsBZLY17o7V2h56qSape6+R7hPsDTzIpyWOp+SNEjDgbVHFCUtFTC35XUeT2DSdF6+RoYa+JQMBwbJhCUcqg7IoX/Q5YTCvh+73yUBlpqHEUtkfnEGVtpTtOqV+hme0z6Sh4EcrYDtA+p9sIRBmApLwGtWPNd0vsJNR4xnrmyWgNahp9EiY9Y3hCp+wsFXCl3RrFVtpithCXCidQ1UkKDcBLX+j7xn4P/XGzboHTBBIJnBCoUCCV8KaFAztqfr7oXDkD8FY+YIRj/vNxEL3ZOzSBmK1sAWyCnxqerXL4Kl2pbrBEOrNlfFn4ftH1KQptYe62dSPjvltIqXXhebDKVyqYo1IbR74NfXkywk3Odpb8BfmwFmi5ZTnDln5MTQCKqGc20efzrtW6RKboQ2zF0MUNfWByCYkQuDkFxIRbvQMyNie/mJTV4a9kr5g9+Uv7Z/PosmTDsnVtAiB4Z52xBcfST1qRL1hqtisUUkIpjIPc+K22lhaT2M/texbbE6Hm5uvjRE4WxQtS6KioFh+JHbuS3R8/vn8UhcHzU9qVdNQQ1a9aEwWAw+4wYMQIXLlwQPWcwGLBx40auDrHz69atM7nP7t270aRJE7i7u6NWrVpYvXq1WVuWLVuGmjVrwsPDA82bN8fBgwdNzj969AgjRoyAr68vypUrh9jYWFy7ds0m/VLciA2Ccqsuub1K/mqRfuhgLWfsJLxW6d5i2NtdSwvWRpK0dqWvZxRLOdR6qIi9N3qgVhhQOkeRi4fAFwbUGOBSIUBqta+EFo8EoWapuL5/RsnCroGJDh06hIKCAu7vEydO4OWXX0avXr0QGBiIzMxMk/JffvklPvnkE7MQjQkJCejUqRP3t4+PD/f/8+fPIzo6GsOGDUNiYiJ27tyJIUOGoGrVqoiKigIArF+/HvHx8VixYgWaN2+ORYsWISoqCqdPn4afnx8AYOzYsdi2bRs2btwIb29vjBw5Ej169DBLflFSoXujNFGMHPzBSmlFRa3U9VqZyA2UcgGPbInUSk3RfuB/k4uW4Dj868U0EFrcxjIiEwEbaTHoqpe+S5Z4cmgxfFXTj3rk2KCTt5SWhf+uq4GvlRD+Rqj6X6rf5J5HzF3YlmnJHYHrxhu4e/Nesd3Pu1J5+AVVLrb7FQcOtWUwZswYbN26FWfPnuUSOfBp3LgxmjRpgpUrV3LHDAYDNm/ejJiYGNE6J0yYgG3btuHEiaeGdX369EF2djaSk5MBAM2bN0ezZs2wdOlSAEWhIgMDAzFq1ChMnDgRd+/eReXKlbF27Vr07NkTAHDq1CnUq1cPqampePHFF0XvnZeXh7y8PO7vnJwcBAYGOtSWgXDAEVObKk2yUpM9rVvpvNIxR8eaNttCfa+lPbbePtBqlMpHLnSxEKGqnl+H1lDF/DYrCchi0T+lYjDI2eTwrxNuHch9l0KhkPbZ5GMxnIEvRWj8GJLaT5ffmyNsGVw33sDAuqPx+JF55kJb4erhitWnFmsWCpYtW4ZPPvkEWVlZCAsLw5IlSxARESFZfuPGjZgyZQouXLiA2rVrY968eejSpYume5aILQM++fn5WLNmDQYNGiQqDKSlpSE9PR2DBw82OzdixAhUqlQJERERWLVqlUlu6dTUVHTo0MGkfFRUFFJTU7n7pqWlmZRxcnJChw4duDJpaWl4/PixSZm6desiKCiIKyPGnDlz4O3tzX0CAwNV9kbxoeRWpsarQOp4cU/sjpJwpbiQel5HEqiE6n8t3xF/m8lS+ImNLNWEhKT2kzRWVfM8SoauagQKKYT9Qz0pZoUmmQkywrJS0Tm1El71stV1WMvdm/eKVRgAgMePHmvWSFBt9LRp03DkyBGEhYUhKioK169fFy2/f/9+9O3bF4MHD8bRo0cRExODmJgYkwWunjiMQJCUlITs7GwMHDhQ9PzKlStRr149tGjRwuT4zJkzsWHDBqSkpCA2NhbvvPMOlixZwp3PyspClSpVTK6pUqUKcnJy8PDhQ9y8eRMFBQWiZbKysrg63NzcTLYihGXEmDRpEu7evct9Ll26pNQNDo9QAKADinDQs3SgseQ6uipSs/rUKjQ4sk2C2ASid/wCPbC0HVr2uJUEB7XursJ78iMMqpnYtXrs8K+1NneF8B5qtkisCVjF4hFo59NPP8XQoUMRFxeH+vXrY8WKFShbtixWrVolWn7x4sXo1KkTxo0bh3r16uHDDz9EkyZNOG223jiMQLBy5Up07twZAQEBZucePnyItWvXimoHpkyZgpYtW6Jx48aYMGECxo8fj08++aQ4mqyIu7s7vLy8TD4lAbn9finPACVrZ1uqpbWsIvn7tVoiL9oCve7Nn6j434PSnjG1GZFCKhaFVoTtUFuf3rYNau4rds+EoL2Sgq8l9+W77fKJ8cxFRDUjknI9FX9XFFrWku/IGq0JdXE8eCUIaZnVLarjWUONNlqIkoZbbxxCILh48SJ27NiBIUOGiJ7ftGkTHjx4gP79+yvW1bx5c1y+fJnbu/f39zfzBrh27Rq8vLxQpkwZVKpUCc7OzqJl/P39uTry8/ORnZ0tWaa0YInxn16R0axNbKSlPH9QpgOq2GpJLomOtahtN381xs88R6FBjITHlbw16OTG97fnY0naXrH/WyoMap3kxARDYR2Wqvj5/apHrAuacEwoGCQE7dUk4EpF7uRvlchdKxSOn7Vtt+JEjTZaiJSGW04zbQ0OIRAkJCTAz88P0dHRoudXrlyJV199FZUrKxtvpKeno0KFCnB3dwcAREZGYufOnSZlUlJSEBkZCQBwc3NDeHi4SZnCwkLs3LmTKxMeHg5XV1eTMqdPn4bRaOTKlAboYKCHNTYfueBHcn8rYc3gRb0f+MIBzdDoiAMkf0VG/6bwJ3YxI00hQh91PsJnVjI6lJtw5fpQ6biSAZ7SMUCfxFJxxlaScTOsRauBoxSzQpNMfrNCA0ux37OckaOjvPOM4seubodA0eSbkJCAAQMGwMXFvDn//PMP9uzZg59//tns3JYtW3Dt2jW8+OKL8PDwQEpKCmbPno3333+fKzNs2DAsXboU48ePx6BBg7Br1y5s2LAB27Zt48rEx8djwIABaNq0KSIiIrBo0SLk5uYiLi4OAODt7Y3BgwcjPj4eFStWhJeXF0aNGoXIyEhJDwNHhO9hwA+JK3QjdFSEVufWtFU4uE8+FmPmtkYHxlmhSZpDLquFDsxWP0tQ0QQfh1YmoY4TgvYi5MrTusX2yMWQClZFV5X0nNjEwtcyCTUFcpON0kQkTOHNb5cS/OcU04LRY3HGov6Lw1MhgC9U0b/VuOeqge9+KkTL1gq/D/gumMJzanG0IF+lATXaaCFSGm5baabtriHYsWMHjEYjBg0aJHp+1apVqF69Ojp27Gh2ztXVFcuWLUNkZCQaNWqEL774Ap9++immTZvGlQkODsa2bduQkpKCsLAwLFiwAF9//TUXgwAAevfujfnz52Pq1Klo1KgR0tPTkZycbKKqWbhwIbp27YrY2Fi89NJL8Pf3xw8//KBjT9gWobuhWEhcrSjtQfOhLk5CtBgm0QQ9egaukYPeg/rTSw2siqFdrdxu0LIypUZwwsQ5/DbEeObix1tNVLmTxhlbmbiy0fdEzfuiZttAiyZGSpUuFTVQbfvEfPWFYYTlvgMaZlrtOyl8j+j2gVI75eoT9g29h9Q7q/b7Y0aD+qFGGy1EScOtNw4Vh6C046ihi+mAomWStWSPuCSvOpRsK5TCyMpNKNb2CxUA1Kxa+b7oWla5Ygl81AYOstTtUAy6ghdDizZCCaVYAHwff63Pp2ULRu46uTgN/G0DueiKalB6Nx0hDsHZI//inaYTdLu3Wj4/PA+1mzynuvz69esxYMAAfPHFF5w2esOGDTh16hSqVKmC/v37o1q1apgzZw6AIrfD1q1bY+7cuYiOjsa6deswe/ZsHDlyBA0amI/lUpS4OAQM+6FVGOC7+akNF1zS9yX5BoiOiprJnT8xaFF5W6rS5r9XalTXSqGLqQZEKWGSMLiQpSj56vM1KMI2aEVoC6BUtrjyZDBNgX4oaaONRqNJhN4WLVpg7dq1+PLLLxEWFoZNmzYhKSlJkzCgBSYQPOOoGdSFgwFNyEJRo9JOyvUsUbkGhPCtudUYSDLMjdmUJjCxoFjCY/zJXW0WRUv2+pV+F918jyAktR+6+R7RdJ1UVkXAND2zmjZRQUTMoFAsw6M1xsJ8TxZHFIq9K5WHq0fxal1dPVzhXam85utGjhyJixcvIi8vDwcOHEDz5s25c7t37zbLtdOrVy+cPn0aeXl5OHHihOYohVpgWwbFiCNsGQBPtw0yIhNV+yIrhSFWori3C2x5P7V9IGW4KVafngFprMGSaHn0Ovo+qdE48d89pdWulJGi2u0DWlarYCD3DFrCKivVqRRiWIjSxM6/ll/W2qiPFOEzOMKWAcByGcihti/t7mXAsC90IFazB26JWyK/3uIKZyxnIa8HfBdFpRgMajUilggFWvaGLdlT50/uYhOxWGS8ycdiEKNxK0GNMACYagSScj1lhQHhpGqNlkBq20PrBCv1uxELMSwnFFjiOaC2rVQDUxITIfkFVS4xE7SjwgSCZxThgKLWII6/glQzgdGJw9baAdpOuYFSL6GAuijy91al+k+NUKB1spYry1epC7M/KhkUCvfa+a6YYm3kvwu2+I6FroAR1YxmdgJycQn4bqRahSH+xCh8pyxZaUtp4qjdgFhOAjmkhAKx6/QWBkqycTBDHiYQPMMIVyxiK/jijFEgXJFp0S7Qc1LqajHXNDXZF+VIyvV8aml+RVlTIFe3nsGguPsIbkdX7/zJXUrtLjfRZkQmyj6vJe+JWP8IhRD+eb5bHV/LJSzHtVdB6BIzPNRrlSy3tUHbPhmWb0PIIVeXUHgUe1694i0wSgbMqPAZJcYz12zFYgt1Pk3YorRKpoN2SGo/zApNsqnhEr0PP/AQoH0CsNT/XQyt+Rik4D+D1KQu5nfPR6vhJ/XDtwaxSZy2U9jGiGpGrr/4/SYVZpofREloXMePRMiHunEK72HJNoHa3xWNs6EGa6MwCoUBMUJS+xUFadIhVDOjZMAEgmcMsTgElqA1k5oWozo6KPIHKlsIK1T4oPYAltahxhBPiz2BVF1qg/io2aKwJriT8Do9vxux5xO7Hz1maZZN6jJL4b9rYjEdlDwApNCyRcV355X7fVkqDPADKNFnkxMGKGJ96oieBgzrYQIBQxKxRDoUqYFOGBFPaUBU2gfWa29dCmE+A7k6aBIg/jOK/a1UhxhS1ucAFDUmwklRq6bDEQd3OaFFSeCREwqEq3C+qlz4f0vanJTradZ2LSGIxf6vBBVW5AQWutrnt0fsGaX6XEyTUlJdiBnSMIHgGUXNCl/N3rfUNdTSWwm5VaqWAdVSd0g+k4/FIM7YysTfmv/hTxZUEOCvtpQi1h28EmTit54RaZphUejnTetVM9ALB3K1g7Vw+4S2s7gQ6yel79CS9km9Q3rZxah5j/Wqky8A0HdD7rem9v5KHjPMlqD0wwSCZxg1qkdLBl96jR4W/XwDQzXlrIWvjqYIV330Q5+TPxkrrQz5KWcBmG1XCK+Rm8jkLP8ddfDmf49UoOILXUr2JnLZG8VQIyha++6odaG0tm45pIRGqdW+JfeRsiUIr3pZ8VpGyYB5GTxjVI89gcv/bcC5LVniilc99gSGn/1H9jqlAUbrfROC9gJB8kly9EYPIUMYgIc/cMtZcMtZxfPbpcZwUA1avRz0iCnBF6j4W0d6aiikvkMxw0NL3qHicL+ztG1qv1O1RoM0CyRfUxZypR/SMqtrbpstyLyTgzu5D4vtfhU8y6BqBf0CMTkCTCB4hqETMn9ypgKDJddS1PgpaxEG6KpRadVrL99o/uQi1sYYz1yzYD2cRuFKPxONgRR0UtBi8a1lG0WrUGjppK2XEKFXfXzkNDtiPvpa3zdrhChhcCQpjQA/3oGUwH/wShCSfJ/GPtC6Jch3Z42oZkTqWT/V19uKzDs56Dp3NfKfFBTbPd1cnLF14kDVQsHy5cuxfPlyXLhwAQAQEhKCqVOnonPnzpLXbNy4EVOmTMGFCxdQu3ZtzJs3z6ahi9mWwTNI9dgTJn9PPhaD6rEnuOP0//xjwmuFx/koWUgLtyqEe+lC+AOpoxnA0bbRj5ILnlrr/ohqRpPJnz63msFbGMBHLfY2ErPHd6v0zPT7FO6hy/VvcT0H3crib2mpMUy0xmWRf60juSPeyX1YrMIAAOQ/KdCkkahevTrmzp2LtLQ0HD58GO3atUO3bt2QkZEhWn7//v3o27cvBg8ejKNHjyImJgYxMTE4cUJ67LUWJhAwZCd3el5KOFheu5bJ8YzIRMWBSHg+JLWfrOEcX7VM7yGG0uBuiwlPaoKWskNQUxYwDxSj5Iom1iatRpmOkKBJ7WSqNlqeVH30WcViF4jZiQCmtiRyWKOpUvOO0t+KmjwQYhENLXWhpPC1JY5qq+KIvPLKK+jSpQtq166NF154AbNmzUK5cuXw559/ipZfvHgxOnXqhHHjxqFevXr48MMP0aRJEyxdutRmbWQCwTOK1CRvDTQIkRRaAq9IIZzk6ABKrf3trUEQRnYUW7lJoTTZUINELegZAVFv+M+idrKlqBUG1NanRhhSG4hKalJXisVBy6j5julzqXmv+GWsDWgU45lrIgQ4kpagJFFQUIB169YhNzcXkZGRomVSU1PRoUMHk2NRUVFITU21WbuYQMCwCXoLG3z4QgEVAviDv9IWhKMhFG6ECAddvYUetS6iet+T/psRmYgfbzXRXYMjJwxYaxSp5KKnBv47qmQoKnaNXqh9n8TayzQE2jh+/DjKlSsHd3d3DBs2DJs3b0b9+vVFy2ZlZaFKlSomx6pUqYKsrCybtc+uAkHNmjVhMBjMPiNGjMCFCxdEzxkMBmzcuJGrw2g0Ijo6GmXLloWfnx/GjRuHJ0+emNxn9+7daNKkCdzd3VGrVi2zfNMAsGzZMtSsWRMeHh5o3rw5Dh48aHL+0aNHGDFiBHx9fVGuXDnExsbi2rVrNumXkorQFoGP0kCmVc0qFriGP7BZE32wuBAaEyYE7RWdFMW0DmqfjaqG5QwXqQajuAQpsXZQ9bOWmBPWlpFDqR/UuDoqlbdEW0YzIToSzO1QPXXq1EF6ejoOHDiA4cOHY8CAAfj777/t3SwOuwoEhw4dQmZmJvdJSUkBAPTq1QuBgYEm5zIzMzFjxgyUK1eOs8osKChAdHQ08vPzsX//fnzzzTdYvXo1pk6dyt3j/PnziI6ORtu2bZGeno4xY8ZgyJAh2L59O1dm/fr1iI+Px7Rp03DkyBGEhYUhKioK169f58qMHTsWW7ZswcaNG/H777/j6tWr6NGjRzH1lOOjh0aAPwhrWS3KqZr5kxx/YrW3AZ0UwhWXnj7yasoWhyBFJzRLIxGqQUmVrbSKV5qsta6MLdVGiMWosGb/35otO34QJP5vdXngfovrfNZwc3NDrVq1EB4ejjlz5iAsLAyLFy8WLevv72+26Lx27Rr8/f1t1j67CgSVK1eGv78/99m6dSuef/55tG7dGs7Ozibn/P39sXnzZrz22msoV64cAODXX3/F33//jTVr1qBRo0bo3LkzPvzwQyxbtgz5+fkAgBUrViA4OBgLFixAvXr1MHLkSPTs2RMLFy7k2vHpp59i6NChiIuLQ/369bFixQqULVsWq1atAgDcvXsXK1euxKeffop27dohPDwcCQkJ2L9/v6RBCMMUNTnc+YOVlgFUuGUgnGToQEZDAM8KTTLbqy0OAUHt/WiYWCVvBWHYZLmyWvfmLREK1GoXhKtc2j61+9FxxlaKwYvk3h81ibaUKE4XVzHtjqXvq9SzKX13cq6YDMspLCxEXl6e6LnIyEjs3LnT5FhKSoqkzYEeOIwNQX5+PtasWYNBgwbBYDCYnU9LS0N6ejoGDx7MHUtNTUXDhg1N9lmioqKQk5PDuXIoGWbk5+cjLS3NpIyTkxM6dOjAlUlLS8Pjx49NytStWxdBQUGyBh55eXnIyckx+TDE4Q9wdHDiR7ATc1WkH/7kKRYxkJbnZ8iTChOsJ9TFkn5orgRq+8AfUIVqYDUCkVxaXbG2AOonO0uC4VhrMEq/AzXPpCYVtqXnlVATM8JSxCZ6obBUnBOxXB4NZj+gjUmTJmHPnj24cOECjh8/jkmTJmH37t3o16/ofenfvz8mTZrElR89ejSSk5OxYMECnDp1CtOnT8fhw4cxcuRIm7XRYQSCpKQkZGdnY+DAgaLnV65ciXr16qFFixbcMSmjC3pOrkxOTg4ePnyImzdvoqCgQNZ4IysrC25ubvDx8ZEsI8acOXPg7e3NfQIDA6U7oJRx+b8NNGdWjKhmREQ1I7efzZ/UYzxzRVcxQtcwsfOAvLW9klGfJQgFEDFXL7HtAeotoaZ+tRMb7VOtaNmr1io8iKm91WgJ1H5HarUnYii1QU0UTksRfqf8e/G/j+KajMW+J2vdFp9Vrl+/jv79+6NOnTpo3749Dh06hO3bt+Pll18GUGQPl5mZyZVv0aIF1q5diy+//BJhYWHYtGkTkpKS0KCBPhlrxXCYSIUrV65E586dERAQYHbu4cOHWLt2LaZMmWKHllnOpEmTEB8fz/2dk5PzTAkFQuT8puUGwpDUp2mKacQ//nklFTHnoiVyTmjUh6Cn0d4stUQXGjeqgd8nekfAE4YIVuuOxxfMlKDfkVr3StlVp0yIai1ppC357mhEzJAr0iGP1dgfaHF5lEIYzvnglSDgf9tdCLLOU0IYNpsfWpsKHvx3NynX06GFgAqeZeDm4lzskQoreJZRXX7lypWy53fv3m12rFevXujVq5fWplmMQwgEFy9exI4dO/DDDz+Int+0aRMePHiA/v37mxz39/c38wagRhjU8ELKMMPLywtlypSBs7MznJ2dZY03/P39kZ+fj+zsbBMtgZKBh7u7O9zd3WWevHSipBmwZLCcfCxGdEK3FjWqceHAKzcQq1kdqhlcLckxoRYtKmctWoIfbzUx+VsudDLdPpHKxSCHLQMoCUPzWnpva9X6wr6hQtCPt5pw22QJQXsRB/XbRnzEoi5OPhaDGJ5mi0IF5MkwFXYtzbFgC6pW8MLWiQNZLgMrcYgtg4SEBPj5+SE6Olr0/MqVK/Hqq6+icuXKJscjIyNx/PhxE2+AlJQUeHl5cb6dSoYZbm5uCA8PNylTWFiInTt3cmXCw8Ph6upqUub06dMwGo02NfAoqch5G9BJTs+BxNoJgk56/JVRRmQil6pYS/x8NasougpTCkKkhJZwxnxsoW4WE5JodEUxGxBbvAd0y8narR975MSQylophJ9YiP6rJbqj0JhTDfzcCEJ3X0dygaxawQv1q1cptk9pEwYABxAICgsLkZCQgAEDBsDFxVxh8c8//2DPnj0YMmSI2bmOHTuifv36ePPNN/HXX39h+/bt+OCDDzBixAhuZT5s2DD8+++/GD9+PE6dOoXPP/8cGzZswNixY7l64uPj8dVXX+Gbb77ByZMnMXz4cOTm5iIuLg4A4O3tjcGDByM+Ph6//fYb0tLSEBcXh8jISLz44os26pnSiy33YC1h8rEY0WiCYpO73GQj127+wMlPQMOfNLXUZyl8LwItYXLlkNKYUNsFfmjqiGpG2ZgIccZWFgsJ/JwS1mKtUKG1DWqCKMkJckrfp5TLojBpkly7xIRUW2mxGPbB7gLBjh07YDQaMWjQINHzq1atQvXq1dGxY0ezc87Ozti6dSucnZ0RGRmJN954A/3798fMmTO5MsHBwdi2bRtSUlIQFhaGBQsW4Ouvv0ZUVBRXpnfv3pg/fz6mTp2KRo0aIT09HcnJySaGhgsXLkTXrl0RGxuLl156Cf7+/pJbHAzluARS6kZrE69YO4nS1Q+dwC2pT2gIxhc2+MIARWpQlRts9ViZJQTtVXw+pfvIbZ8Ij1PvCj7CiVDP7QBrJnWxdhSHelzs+xDmppCD733D/wgRbmkIMygqabAYpRMDIYTYuxHPCjk5OfD29kYbdIOLwdXezSkW5OwJpPaYrdk/12vvnT9AajFgFMbnV9sWS+wqLDVcE04QdHKQs4vQo0+lUlgLn4HukVsjHOhh1CfElnYdWusX7uXT91IqNbJcfwrfBy3vLQBMDv4v3mx8HHfv3oWXl35q9EePHuH8+fMIDg6Gh4eHbvU+i6jtS4cwKmQ8m0hpCWI8cy02IFQayKyNYa+FGM9cgDfI22JCsWTiEwv3LNcnerVZaLCnRz4APlQjwM9gqOd3rfd3JyV0qkFMs0LfL62/HaGRq9bnnJkRDeC4xrsyHBG7bxkwnm3EhAJr1eFyanDqtqakThZmtqMBWtRqBwDzlZbcQGvJ3rklK2Cx5y7OLJFqXRjVeH6Iwf9+HCGdMx/6DtH3idpX8GNtWEpGpHTacaV3nX9ftk3wbMMEAobN0BqYSC+UwiRTwzOlgZI/OPKTBAHmg6yUpkPtRGup5b+UQaJahBOArUM4a7XJ0JJKmK8ZsBapOiztazphUwFASq1vad1yaNniYjzbMIGAYRMsFQaEanX+wKwlSh2djOUGS61CgRxSg7mtcwhoUe+qUaHbelWtZRVMc05IIfXdUeGKWt5b4oooJaBpmbSl0htHVDOKvheWBsHSkqtCDuYxwGA2BIwSg5Tlt3AwFLpSWWtgJqbCFrZFD99+awK92GOy17pHLzSEk4P2hdx+uNK96T301HpoeV6pCVaP70EYVdAS+N9HaUhUdOVeDu48LMbARGXKoFr50hWLgAkEDN3Roh2wdrJWGhD5EdakVmX8CUNpsOZn2qNl5SZxel+5qH16IBdJUW7ijqhmtDgsLe07/r96YY1gRMMo89ukVxtt4b2g5p7874gfOVAvlPpF+M47Glfu5aDDt6uQV1B8oYvdnZ2xo/8gi4WCuXPnYtKkSRg9ejQWLVokWW7jxo2YMmUKLly4gNq1a2PevHno0qWLha2Wh20ZMBwOs/wC/0NspadFzSk1yfCD2SitJhOC9nIfMcRWWvS+alZz/HwDlqIlsmJC0F6rjNlsNUFYk4YZKHovEoL26i6oFJcwwI8hIMzgqead1yPFc0nizsOHxSoMAEBeQYHFGolDhw7hiy++QGhoqGy5/fv3o2/fvhg8eDCOHj2KmJgYxMTE4MQJ6Rgv1sAEAobNUDMoCQdYtRN8RDWjJgM1NQO5mgRJFOoVIDaw8sO78gdztRMvvYb/fEr74JaeE97TUtSuMLWgx+RrjxUtjcao9Roh/PdH6/4+FYaESL2zar8fsfcwvOplTW171rl//z769euHr776ChUqVJAtu3jxYnTq1Anjxo1DvXr18OGHH6JJkyZYunSpTdrGBAKG7tAIhZZafauxnO/me0TzIKlmj17tBKLFZkDo908nejmBhgoQ/JC0ajIaakHv0MjCyYK2XSxCoa0QbuNY84yW2h5Y8l0It66UhCHa11LvM02jzX9/aMAniha7AeEz6ZU34llkxIgRiI6ORocOHRTLpqammpWLiopCamqqTdrGBAKGzRGz5pfbi6XuWfz9d2EMAGt9ti2BH9LYGuhEH+OZq2rCSgjaKzvJKLVJ6lpLg+Lw4au26VYKf6JKCNprNvGovZ8e+/X8PtaSOjkktZ9VGS0B5fdMKDwdvBKkervo4JUgdPM9YqJNEoYqphoG+p0IoxUKhTRLtUxpmdUV28soYt26dThy5AjmzJmjqnxWVpZJCH0AqFKlCrKysmzRPGZUyHBcbLFfq9aS35K9Z7WW83zkojKq3Ue3JLKjNSs7OW8BWi8/nK4W7wI94Lv1KXmHiKFH6GRq2CgHv2/4W0tq4WvIfrzVBJOPWa5BEhPcxNpK+4VpBrRz6dIljB49GikpKQ4biplpCBg2QZjcyJpBRK+IfFrOS2GNrzZNHws8fSY1GgelLRSlyUfsWS31eReuPsXqpWF0hcKAVqxxwwSeruS1Gp5aIwxYsj2mRz4KOS8SKpwpIWV3IHYfPTNLPiukpaXh+vXraNKkCVxcXODi4oLff/8dn332GVxcXFAgYhTp7++Pa9eumRy7du0a/P39bdJGJhAwig1LhQIx1bHcRKq0uuerUbW0laplLYU/MclNVsK9WWsDxuhh8EeFGbVBcLREaZRD7WRG0aPf9JrklLa1rMltoVaI4E/gapHqbyqgFXd68tJC+/btcfz4caSnp3Ofpk2bol+/fkhPT4ezs7PZNZGRkdi5c6fJsZSUFERGRtqkjUwgYNgUMU0B9avWMrAI91atsSEA1AsF9J50z18KLbYFSjnoxUIrK62WrREalCYLpWe3FWK2I0pYs2ql76UScn2tR+AiJWzpMsi3AxGD7/bIfT8RG2zWntJE+fLl0aBBA5OPp6cnfH190aBBUeyW/v37Y9KkSdw1o0ePRnJyMhYsWIBTp05h+vTpOHz4MEaOHGmTNjKBgFEs8AUDakGvdkDUur+q1rshKddTlfW7VPKlpFxP7v9aQ/Lyy/OFHf69bKmO1aqpkep7MWNRftwF/nVaVOO2DuTEh2p+4oytdEvzrNceO99YkP5tbZ/wr5eyG1CzfSCsi2E9RqMRmZmZ3N8tWrTA2rVr8eWXXyIsLAybNm1CUlISJ0DoDRMIGMUKX1tAo8nxKU5jJaXBX7h65/uE05XS5GMxnFAg9jxK9+ULBkoaEyUtgRaNi17ChlD44nti0Oe0JNa+nhON2hW1nn2iV3hifkIkoSBpDWq+E+q2SD/Cd9uRhIEKZcrAXUTlbkvcnZ1RoUwZq+rYvXu3SZTC3bt3Y/Xq1SZlevXqhdOnTyMvLw8nTpywWZRCgHkZMOxIjGcuYjz3IuTK04FFTb4CPcPHUoM9sfrEBl+5clpWl3wreBqWNsYzt9gHWaX7zQpNUqVGF3MJtUeYXyFqDRNt1U5r+kD4PukdrtiihE8ick7OPZ0aZAXVynthR/9BLJeBlTANAaNYoXkO5PbRpSKsaUVMuBDWrXXbQm+EEQyVVvlyk7Ml6m6l+2nZ2nkWsCQ6ph5GeHppzmg9/PpKQ2IjoEgoaOBXpdg+pU0YAOwsENSsWRMGg8HsM2LECK5Mamoq2rVrB09PT3h5eeGll17CQ54UKFbH3LlzTe5z7NgxtGrVCh4eHggMDMTHH39s1paNGzeibt268PDwQMOGDfHzzz+bnCeEYOrUqahatSrKlCmDDh064OzZszr3SOmHv2XA338X7p2LRW1TuzcrDPjChx+9TS9raT2FBaXJd/KxGF2NyiYfi5HtUzXaATFVsth1YpORHPygVNY8c1Kup9385rWErJbDmi0I4e+GxRBgSGHXLYNDhw6Z+F6eOHECL7/8Mnr16gWgSBjo1KkTJk2ahCVLlsDFxQV//fUXnJxM5ZiZM2di6NCh3N/ly5fn/p+Tk4OOHTuiQ4cOWLFiBY4fP45BgwbBx8cHb731FoCnCSTmzJmDrl27Yu3atYiJicGRI0c4442PP/4Yn332Gb755hsEBwdjypQpiIqKwt9//+2wQSYcHX4mQsBUvSrmw843AKRl+S6G/P/zrxWbTLi6QpPMVkhaA+lYO0Fb62+vFS3BepQEFCkXT7FJUGvGQf77wG+z1qBRVIgKudJP8lprXACVkNuWsiX0Wenz6mmDQIkztkLqWT8AcxXLMhwfu2oIKleuDH9/f+6zdetWPP/882jdujUAYOzYsXj33XcxceJEhISEoE6dOnjttdfg7u5uUk/58uVN6vH0fLo6SUxMRH5+PlatWoWQkBD06dMH7777Lj799FOujFICCUIIFi1ahA8++ADdunVDaGgovv32W1y9ehVJSUm276hSTpyxlcnAr3ZFKIyRT4UILXHzYzxzkRC0l7PmtlZrYO319Lltma1O7cSk5lmEkyu/D6UCF6lBzOuC9ok1eRGkYmHYQhig96GGp/x325YCoFTuCymbGL63jBbkwjszSiYOY0OQn5+PNWvWYNCgQTAYDLh+/ToOHDgAPz8/tGjRAlWqVEHr1q3xxx9/mF07d+5c+Pr6onHjxvjkk0/w5MkT7lxqaipeeukluLm5cceioqJw+vRp3Llzhysjl0Di/PnzyMrKMinj7e2N5s2byyaZyMvLQ05OjsmHYY5SECGlCUxskKWDnNrJjw6W/EHTkhWdkgpeDWq8DfjqdEuFEKW9Y0smSWogaQ10NS3UDlBBQOx70WJ7Yc0kNvlYjOr+VnJ/1VsooFsDUoa5fIS/Db63DOPZxWEEgqSkJGRnZ2PgwIEAgH///RcAMH36dAwdOhTJyclo0qQJ2rdvb7J3/+6772LdunX47bff8Pbbb2P27NkYP348d14qOQQ9J1eGf55/nVgZMebMmQNvb2/uExgYqLo/SjN8OwI+wnTBQh92Le5r1CUQMN8Ht8QNTgvWxnqP8cxVNWnR1R19Tq3+7918j1jaREmsFQb4eQgoIan9TLRItBx9VjUTtJxwY0vtAFD0PvDdB/lhq8WEAiVXXKnvWI27IxUE+M9syfPb23uEYRscRiBYuXIlOnfujICAAABAYWEhAODtt99GXFwcGjdujIULF6JOnTpYtWoVd118fDzatGmD0NBQDBs2DAsWLMCSJUuQl5dnl+fgM2nSJNy9e5f7XLp0yd5Ncli0WD0rTejCc/wBz9JAOWKIBeWhWKtKVTux840M1fq/WxLjv7jgt19oU8KHRtSjz84XRGy9IlfTb0rfg3BSlrtW7G8twh//udV+51RwEPuNMGGg9OIQAsHFixexY8cODBkyhDtWtWpVAED9+vVNytarVw9Go/QPoXnz5njy5AkuXLgAQDo5BD0nV4Z/nn+dWBkx3N3d4eXlZfJhFCHUEvAHPblELXz4g5bcAEZRO5DxVfJy0HbyBRjhnrelmgKqHlcbLU7LZGfLeAfCeBF6qsWFnif0ww+lC+gTYEip3/X0UJHrJzXaAPqeiZXV0k7+toFQiNaqoWOUTBwiMFFCQgL8/PwQHR3NHatZsyYCAgJw+vRpk7JnzpxB586dJetKT0+Hk5MT/Pz8ABQlh5g8eTIeP34MV1dXAEXJIerUqYMKFSpwZXbu3IkxY8Zw9fATSAQHB8Pf3x87d+5Eo0aNABR5Lxw4cADDhw+3+vkZ6hAO9D/easL9X2rlQ/dUtQgDYv+XIyFoL+fxIDRyVDOx0NWtcM9ci2U6jWQntwJUa50vZZRmCdbsS2uZfPg+/2J9wA+wpKYfitNYjtpdiH3fatoh5TVhzfaNIwSV0srVB3dxJ/9Bsd2vgltZBJT1Lrb7FQd2FwgKCwuRkJCAAQMGwMXlaXMMBgPGjRuHadOmISwsDI0aNcI333yDU6dOYdOmTQCKjAEPHDiAtm3bonz58khNTcXYsWPxxhtvcJP966+/jhkzZmDw4MGYMGECTpw4gcWLF2PhwoXcvUaPHo3WrVtjwYIFiI6Oxrp163D48GF8+eWXXFvGjBmDjz76CLVr1+bcDgMCAhATE1N8nVXKqB57Apf/24D71x7wQ8JK+c6rnRyoMMCflIRCgVRdQkHEEqGAGrxJZVBU+xxibpzFjdTkqNQmatTJLyPcIlH7TFIurbQuLd+NXLv57rdiORy0umpKGXaqaevkYzGI0SgMTA3ZhjdVl7YNVx/cReeUpcgvfKJcWCfcnFzwy8sjVQsF06dPx4wZM0yO1alTB6dOnZK8ZuPGjZgyZQouXLiA2rVrY968eTYNXWz3LYMdO3bAaDRi0KBBZufGjBmDSZMmYezYsQgLC8POnTuRkpKC559/HkCRSn7dunVo3bo1QkJCMGvWLIwdO5abyIEib4Bff/0V58+fR3h4ON577z1MnTqVi0EAqEsgMX78eIwaNQpvvfUWmjVrhvv37yM5OZnFILASunVAkx8JtxKKI4gKNfgSQ8uEKLUalssdL7WKE7ZHi02BVBuU2il2jSX9z2+7tatUsTYpIXRLFIu2qOa5lLaxpLZqxOpWayQqdL9Vey3FGmGA3rckcif/QbEKAwCQX/hEs0YiJCQEmZmZ3EfMa45C4+MMHjwYR48eRUxMDGJiYnDihLhRth4YCCHEZrUzTMjJyYG3tzfaoBtcDK72bo7DQrUFcisjes6eq1hAPM8CoH0AFitPtyCEngRKz6u0daBVHWxJH4tthWiBZh/k31dtO+i9lbYRlFDb12ptMrT2I/97UvotUPjCkJg9gJZ7qi2fc68AFV74F3fv3tXVTurRo0c4f/48goODFRdeGdmZ6Pnbl7JlbMGmtm8hxKeqqrLTp09HUlIS0tPTVZXv3bs3cnNzsXXrVu7Yiy++iEaNGmHFihWa2qm2L+2uIWAwhFAtgZIwoAfWaCD0WE3JrdbpM2pdZevtPaDVqp1vyMbPBKkVsQBEarNJClfvWu/PFzjl7is0aJRD6zurVgMhpYHiu96qwVK7gYiDr2m+5lnl7NmzCAgIwHPPPYd+/frJGsgrxcexBUwgYDgkUrEKhFgrGAjd3LRireGV3IQSUc1ollrZXtoQoUW7FBmRiVzmRuDp81krpFgTi1/LxCgW3EfpfsL9fqX6LUForKoWNfez1hvkYMQGi699lmjevDlWr16N5ORkLF++HOfPn0erVq1w7554ukil+Di2gAkEDIdFzKYAMB8QpQY9rYOvlqxvSqspPbQHNKAN3Re2JmQvH0st/4UrUb67m9ikYq2wRFfI/AlabawFS1e7wvrVCgZxxlbIiExU7b2gdqLmawloeG258hT6HavpK1pWa39RrQvTEKijc+fO6NWrF0JDQxEVFYWff/4Z2dnZ2LDBcQQqJhAwHBox7wMxlakYtlxNixn9aU2KBKiPskcHbb2Mviz1oxczduMLKnq7qhVnvHy1Pv9SZYCnmhwl1E7UfBsT4dbRrNAkTkgQvhd8l1w5qEbHku9N70RJzxo+Pj544YUX8M8//4ieV4qPYwuYQMAoEWhZ7WtNkawVKet3fthltag1vOOrvPUQCqxV4dNJiJ9fQM8okPQeljArNMli7YCa81LvDg2SxI+gqIRYXbRv+ROuMHtnRDWjydYMhQbo0qJNsshu4H/tLmmxChyJ+/fv49y5c1wQPiE0Pg4ffnwcW2BxHIJz584hISEB586dw+LFi+Hn54dffvkFQUFBCAkJ0bONjGcYGqNATSRDteetvU5qELTUBkHtdUKXNL4FOmA+Ycn5vVuCGg8KSydjMcS2cJSeTa8IglKoccXkf09CTwmx+viIaZlk03f/D6FHAQ2UJXdvS7dVSqpror15//338corr6BGjRq4evUqpk2bBmdnZ/Tt2xcA0L9/f1SrVg1z5swBoBwfxxZYpCH4/fff0bBhQxw4cAA//PAD7t+/DwD466+/MG3aNF0byGDIIWZjoNYg0RLkQsxaE5VPy0TG3z6gq3S6KqX72JbEEFAyFgSUV4Q/3mqiW+wIsRj+cjYE/ABEthQM1Pat1pU6v4/FEntJvV9UMyEU9GwhDAjvy1DP5cuX0bdvX9SpUwevvfYafH198eeff6Jy5coAAKPRiMzMTK68mvg4emORQDBx4kR89NFHSElJMUkr3K5dO/z555+6NY7BoMhN/FLnpIIdAfKDpSUTGjUA1Ao/OY9aC3V+5jyKWJx5rZoSNQl51NShh/FjUq6nRZO6kleDXoKCtRkt+fCNBZX6mJ+zw9IJWU8tjqNQwa0s3JyKN/Cum5MLKriVVV1+3bp1uHr1KvLy8nD58mWsW7eOC7IHALt378bq1atNrunVqxdOnz6NvLw8nDhxwqZRCgELtwyOHz+OtWvXmh338/PDzZs3rW4Ug8FHbuIXlpE7rzY8srVGbNZYuKs9L5WjgRqiWbovLNYGLfXpMeGahN/VEFRITgige+3W9I8QNYGx6JaQ2P2E+QaU2iRm/CflGSPVLkuDNPHRmkyrOAgo641fXh7JchlYiUUCgY+PDzIzMxEcHGxy/OjRo6hWrZouDWMwHAVL/P8tmXT0mKj4cfH1MuzTaiRpzX0jqhkRZ2yFbr5HAOgXZMkknPL/JjM94jpYGi2TrxFQO0kL+1Xuu7GVMEDbrcVFt7gIKOtd6ibo4saiLYM+ffpgwoQJyMrKgsFgQGFhIfbt24f3338f/fv317uNDIZN4GsVqseewMnu4vYvlkwaaoPVhKT2kzWek0PvPA9KanBbpGIWq//glSBu5axW4yDXNksnQb36l/YJ302Qj1L7qG2INem01dxHCb4Qo1dMDIZjYZFAMHv2bNStWxeBgYG4f/8+6tevj5deegktWrTABx98oHcbGQxdECZSEv7/ZadeilsPlhgOWuIVYa0nhdZ26uU7T7FEKOAbDNL207TAShOiHkmoxOpUMwkrGe/Re1I3Qb4dgBjC+8UZW4nGYyhOOwCqjaD3dEQNAcN6LBII3Nzc8NVXX+HcuXPYunUr1qxZg1OnTuG7776Ds7Oz3m1kMHRDjQeCsAz/b73zBFiD3IqevzdtyWQvdG20BDqJa4FvOMmHPyFau3KnfSNc5UplKVRjQEg1APwgQfx/1cab4OdQ0FNLZIltB30WqVTUjNKHVYGJgoKC0KVLF7z22muoXbu2Xm1iMOyO0JCRLxTIuR5aix7GWsIB3Jr9ba1EVDOabINY4+nAvz+d0MTCJluC1tTKSkKBMO2wVBjnjMhEWaFSLEQz/96WTMSW2g6IeTPQiJzFkZacUfyoNiqMj49XXemnn35qUWMYDEdCbTwD/mCd5Cuej17qGnqd2HmlwV8qBbQ18RASgvZapRXgT2LQOHeJPTOdaPkTmrWrUxosyFItCE1LbWKoKOItQCdiMQFLLIGSlgBGSsetQUogFB63d+pxhv6oFgiOHj1q8veRI0fw5MkT1KlTBwBw5swZODs7Izw8XN8WMhgOjiUW3WLXUOMztZOUyeTrgNDnUYrWRxEro3e8fH7f8vub/g1IT3T8lTqNk8Cf8IXwowbKoTSxWjvxatUOyLXXGs0Tw/FRvWXw22+/cZ9XXnkFrVu3xuXLl3HkyBEcOXIEly5dQtu2bREdHW3L9jIYdkONxoAmlVETaEgMuXC1cvDv5Uh2DhRr1PtiGg9al9o66f2Fq3S+SlyYn0EMvio/xjPXZG9eS7AgtaG47bEKF7M3sHVIaIZjYFEcggULFuDXX39FhQoVuGMVKlTARx99hI4dO+K9997TrYEMRkmCqsqTcj0tHsjF0v5qQQ9/cz2x1BhQTijSqh1R8uTgT+RKfc8PKKRkLGjthK6HMMCfzJXei1mhSaKZEsXiS9DvM/Wsn9Vt1INbebdw78n9YrtfeZdy8HX3Lbb7FQcWCQQ5OTm4ceOG2fEbN27g3r17quupWbMmLl68aHb8nXfewbJlywAAqampmDx5Mg4cOABnZ2c0atQI27dvR5kyZQAAt2/fxqhRo7BlyxY4OTkhNjYWixcvRrly5bj6jh07hhEjRuDQoUOoXLkyRo0ahfHjx5vcc+PGjZgyZQouXLiA2rVrY968eSZhIgkhmDZtGr766itkZ2ejZcuWWL58OTOmfAaRiz5H0TohJ+V6mk0eCUF7gSDtxn00lr+WNgij5ukJ7Sutkxvt5+IQbvh9z32/V8T7nR/1UCkQkz3V6vQd4Od2kBMO6Dsw+Zi5x4nYM+oZvtlabuXdwoRjk/GYPC62e7oaXDEvdJYmoeDKlSuYMGECfvnlFzx48AC1atVCQkICmjZtKnnN7t27ER8fj4yMDAQGBuKDDz7AwIEDdXgCcyzyMujevTvi4uLwww8/4PLly7h8+TL++9//YvDgwejRo4fqeg4dOoTMzEzuk5KSAqAofjNQJAx06tQJHTt2xMGDB3Ho0CGMHDkSTk5Pm92vXz9kZGQgJSUFW7duxZ49e/DWW29x53NyctCxY0fUqFEDaWlp+OSTTzB9+nSTjFH79+9H3759MXjwYBw9ehQxMTGIiYnBiRNPVcQff/wxPvvsM6xYsQIHDhyAp6cnoqKi8OjRI0u6kFFKoQOuVpX/j7eamKiqxVTZcggnHi2TKHWLs9avXWxbQGxVqXX7QA/PC6WAS1Ihm4Wqcn5cAZpTwtL72hr+O0AFA34SJP67mhGZiB9vNRH9vpQEnvCql/VuumbuPblfrMIAADwmjzVpJO7cuYOWLVvC1dUVv/zyC/7++28sWLDARNMu5Pz584iOjkbbtm2Rnp6OMWPGYMiQIdi+fbsej2CGgRBCtF704MEDvP/++1i1ahUePy76ElxcXDB48GB88skn8PS0zMp5zJgx2Lp1K86ePQuDwYAXX3wRL7/8Mj788EPR8idPnkT9+vVx6NAhTsJKTk5Gly5dcPnyZQQEBGD58uWYPHkysrKyuERMEydORFJSEk6dOgUA6N27N3Jzc7F161au7hdffBGNGjXCihUrQAhBQEAA3nvvPbz//vsAgLt376JKlSpYvXo1+vTpo+r5cnJy4O3tjTboBheDq0V9xLAv/HwIYqtwuspKyvU0Ub2qWSlKrcT4E6JaAz0tCO+r97611HOpvY8Ww0StyLVBThBx9ORA/MyPcmXou6qUB0LueQsePMLZN+bi7t278PLysqLVpjx69Ajnz59HcHAwPDw8ZMteyL2IaRkzdbu3WmaETEVNzxqqyk6cOBH79u3D3r3qozxOmDAB27ZtM1mc9unTB9nZ2UhOTlZdj9q+tEhDULZsWXz++ee4desWjh49iqNHj+L27dv4/PPPLRYG8vPzsWbNGgwaNAgGgwHXr1/HgQMH4OfnhxYtWqBKlSpo3bo1/vjjD+6a1NRU+Pj4mKhbOnToACcnJxw4cIAr89JLL5lkZYyKisLp06dx584drkyHDh1M2hMVFYXU1FQARVJaVlaWSRlvb280b96cKyNGXl4ecnJyTD6MkoswOZLYIEoHWMDUAM2alSJfW6B3yFipYDx61Kmk2dByn+IWBoAiLYAwIp81WQaLE7F0yGJl+P+KoYfmiFHETz/9hKZNm6JXr17w8/ND48aN8dVXX8leozQ36Y1VgYk8PT0RGhqK0NBQiwUBSlJSErKzs7m9kX///RcAMH36dAwdOhTJyclo0qQJ2rdvj7NnzwIAsrKy4OdnatDi4uKCihUrIisriytTpUoVkzL0b6Uy/PP868TKiDFnzhx4e3tzn8DAQHWdwXBI+F4GUlbXYiFd+YKBFGpcDW0xMNtioqU+/hS1IXqtRSrVtRRKz86fKIsjVC/NdaBXXXrAhAH9+Pfffzm7s+3bt2P48OF499138c0330heIzU35eTk4OHDh7q30SKjwrZt28JgMEie37Vrl+Y6V65cic6dOyMgIAAAUFhYCAB4++23ERcXBwBo3Lgxdu7ciVWrVmHOnDkWtLx4mTRpkklAp5ycHCYUlHC4CeesfLkYz1xMtmE7SkpQGGuCJGlBmKiKojbltRg0ABFQJDxIGRnqBd/4r7iQmvD1ypbJeEphYSGaNm2K2bNnAyiaz06cOIEVK1ZgwIABdm5dERZpCBo1aoSwsDDuU79+feTn5+PIkSNo2LCh5vouXryIHTt2YMiQIdyxqlWrAgDq169vUrZevXowGotWFv7+/rh+/brJ+SdPnuD27dvw9/fnyly7ds2kDP1bqQz/PP86sTJiuLu7w8vLy+TDKB0sr11L8hw1NrNlzngt8e7tgZgbnyWo6UOpLJVKqM3sqGVi1CvPgjXoIVQUlyD3LFG1alXZ+UwMqbnJy8uL87TTE4sEgoULF5p8li5dij/++ANjxoyBq6t2Y7mEhAT4+fmZBDWqWbMmAgICcPr0aZOyZ86cQY0aRUYckZGRyM7ORlpaGnd+165dKCwsRPPmzbkye/bs4YwfASAlJQV16tThrDsjIyOxc+dOk/ukpKQgMjISABAcHAx/f3+TMjk5OThw4ABXhsEoDpJyPU0mSWu1BFqEFqGHgNTkJwySJOdyqGYCVZqcXnbqJXlObgtBKsIkDU508EqQzbYKbC3I2cqFlGE5LVu2lJ3PxFCam/TGKhsCIW+88QZWrVql6ZrCwkIkJCRgwIABcHF5uoNhMBgwbtw4fPbZZ9i0aRP++ecfTJkyBadOncLgwYMBFElXnTp1wtChQ3Hw4EHs27cPI0eORJ8+fbith9dffx1ubm4YPHgwMjIysH79eixevNhElT969GgkJydjwYIFOHXqFKZPn47Dhw9j5MiRXFvGjBmDjz76CD/99BOOHz+O/v37IyAgADExMVb2GqM0IZxk9FYB6xnTX61amAoBWoIBiQkalk6CckZvWmwGlOC7X9paXW6JD78aAUwPHC2wVWlh7Nix+PPPPzF79mz8888/WLt2Lb788kuMGDGCKzNp0iT079+f+3vYsGH4999/MX78eJw6dQqff/45NmzYgLFjx9qkjboKBKmpqYruIUJ27NgBo9GIQYMGmZ0bM2YMJk2ahLFjxyIsLAw7d+5ESkoKnn/+ea5MYmIi6tati/bt26NLly74v//7P5MYA97e3vj1119x/vx5hIeH47333sPUqVNNYhW0aNGC+3LCwsKwadMmJCUloUGDp/uP48ePx6hRo/DWW2+hWbNmuH//PpKTkzU/L6P0oDQZCTPgKaFmYBcKGHpMBkqTnzDzHv+4EL7goLSyV/LAmBWaJNs2PYUBQLy91mRrpIg9nyU2IMVhM8KEAdvRrFkzbN68Gd9//z0aNGiADz/8EIsWLUK/fk/f8czMTJMthODgYGzbtg0pKSkICwvDggUL8PXXXyMqKsombbQoDoEw+BAhBJmZmTh8+DCmTJmCadMs29Mr7bA4BKUTOcM1LamE1a7Y9TD40qId4E/cwklJLC2vGt91NRMiP3mQVF1qhALh98NvM78dehnSaclUqUfdwmOWPIeauAVSOEIcgpISqdBeqO1Li7wMvLy8TLwMnJycUKdOHcycORMdO3a0pEoGo1SiJYOhGkMuGjnO0slLrYCiNT4BbU9ENaOJVkRMoFCr1dDLU6N67AkToUBMy2GNMKCHx4e9vUZKulbA190X80JnsVwGVmKRQLB69Wqdm8FglFyEq1ThilSrx4Hc5KB1JcgvQ/+vpi2akwYFQTT2gJrnEIO/XWCNdkAJNdoMJYSaBiFaJnstGiWleorDbXBWaBIm/tnJ5vdRg6+7b6mboIsbi2wInnvuOdy6dcvseHZ2Np577jmrG8VglGTEAuQk5XoqGhjSlbWaySPO2ErVgC+modBrouBHJBTek39euK1gqarcFugViU/OHkIq0yK/LD+xkpr7KKFUD0tnzBDDIoHgwoULKCgoMDuel5eHK1euWN0oBqM0oHUFa4nvt9Jqn660pVLXWoNYREL+fSwVAMQmK2EdWvtWTEiTMlq0pm+oAaaaOqT6hbqWShkj6oVarZVcucnHYnAwYoNeTWLYGU1bBj/99BP3/+3bt8Pb25v7u6CgADt37kTNmjV1axyDUdKh+9c0Cp1eVtxqLPnl1MZ67FfTidsWqmlbuRrSa4ef/UeyjB59kxC0V1VkQ7HthMnHYhATmaiqHZbaHtB7MBh8NAkE1OfeYDCYhVp0dXVFzZo1sWDBAt0ax2CUJvhpZ/Uy4pKzwrd1tDkpl0q+8aCayUprqOHL/21gtf3A8tq1RO8lbLM13xXN0pgQtFc2o6CUJ0dGZKLsdQyG3mjaMigsLERhYSGCgoJw/fp17u/CwkLk5eXh9OnT6Nq1q63aymCUSNQm3bF04A9J7edQe8JatgrE+oX2g1S/6R1/gI9Ym60JQU1zIcR45orWwxcE+DYXccZWiDO2snvEQUd6rxi2xyIbgvPnz6NSpUp6t4XBeCbQksSGPykqCRbCOtUIGI424POfVXjMFvdSqpv2YUZkItdXauw2pODXQxEKIUKBit5PymCRf1zt9ymlVRLeg//8jNKP6i2Dzz77DG+99RY8PDzw2WefyZZ99913rW4Yg1HaoJMP36YAMF0RU4TqbLEJkl9GWIfaLH+0HVq0E1StTSMxWqpWt+VKXwvCOAV86Gq9m+8RxHjmcvvuwgkyKdcTP95qwmkEKMIkT8D/tlp4QZf4ES3FytP/03sItxj4qNEoyAkNYhoSrRE3GSUX1ZEKg4ODcfjwYfj6+iI4OFi6QoMB//77r24NLE2wSIUMCp2A6GRq6eRI65G6Xo1goCVKHX8yssaH31GEASFa0iUrrZrF+kXpGr7NALVBAJ5uPdDgT1LRI9XEMbAkRoHcNY4QqRAAHjzORF5htm73V8LdyQdlXasW2/2sQfdIhefPnxf9P4PB0A7f+8Daeiy5Lx8tWxj8yedZXzXSCXJWaBJ+vNUEgOnELXUNXdULtQnAU+0Bv28TgvZyxol8IYGeo94MtF5rvD7kDEGLK9iRJTx4nIlfL8WgkOQX2z2dDG7oGJikWiioWbMmLl68aHb8nXfewbJly0Sv2bhxI6ZMmYILFy6gdu3amDdvHrp06WJVu+WwyIZg5syZePDggdnxhw8fYubMmVY3isF4FqB72LZcLQttEPTC0j1lWz+vtVhiU8EX6tRkSjx4JYgTBpJyPRGS2s/EI0QoDNB/+dqCiGpGM9sCMQFDiNLzUZsE4VaErT1WrCWvMLtYhQEAKCT5mjQShw4dQmZmJvdJSUkBAPTqJZ6+e//+/ejbty8GDx6Mo0ePIiYmBjExMThxwna/H4sEghkzZuD+ffOY0Q8ePMCMGTOsbhSDwdAXNcZzNKKhFrSsGB1ZEKBo0ZbQiVMswZMYtF5ank6ydNuILxzwtQC0LJ3wqbaAkhC0V3VMiBjPXNVZKPkw10frqVy5Mvz9/bnP1q1b8fzzz6N169ai5RcvXoxOnTph3LhxqFevHj788EM0adIES5cutVkbLcplQAgxSW5E+euvv1CxYkWrG8VgMGyH2LYBfxJUUg0r7VPT+rUaOJY0tAQE4gwKRfpuVmiSSZ/HeObix1vm/Uuvldpq0HMVL3w2+n6w9Mj6kJ+fjzVr1iA+Pl50LgWA1NRUxMfHmxyLiopCUlKSzdqlSSCoUKECDAYDDAYDXnjhBZMHKSgowP379zFs2DDdG8lgMGzL5GMxmAz93MtKgjZACF9w0XPimxWaJBtgSNj3cvYHenw/Yu1QCiJFIxsyYUAfkpKSkJ2djYEDB0qWycrKQpUqVUyOValSBVlZWTZrlyaBYNGiRSCEYNCgQZgxY4ZJ6GI3NzfUrFkTkZGRujeSwWDoi9TqnU46YhPiLJ6xm9RqtLgDCemJWJhpwHp1uRpPDJrWWgk5F0CldNFywoQ9Uy8/i6xcuRKdO3dGQECAvZtigiaBgIYrDg4ORosWLeDqylznGIySjFjqZrpHLRbrnk5IpX2lyHf9k5tklYioZpRV5dOVudq8BVS4YIGCSi4XL17Ejh078MMPP8iW8/f3x7Vr10yOXbt2Df7+/jZrm0VGha1bt+aEgUePHiEnJ8fkw2AwSi406BCFv3K1VdKhkoAlmQYPXgmSVNHT82pJCNrLfRdSQoaUYSg9JjRWFLZJ7hlpFkaGdSQkJMDPzw/R0dGy5SIjI7Fz506TYykpKTbVwlskEDx48AAjR46En58fPD09UaFCBZOPWmrWrMnZJPA/I0aMAAC0adPG7JzQRkHs+nXr1pmU2b17N5o0aQJ3d3fUqlULq1evNmvLsmXLULNmTXh4eKB58+Y4ePCgyflHjx5hxIgR8PX1Rbly5RAbG2smvTEYJR06qU8+FmPiQsf/v3AycnRXQnsi5rFgSYZCGjGRQr0StBBnbKV4X7nzlgahYjylsLAQCQkJGDBgAFxcTBX0/fv3x6RJk7i/R48ejeTkZCxYsACnTp3C9OnTcfjwYYwcOdJm7bNIIBg3bhx27dqF5cuXw93dHV9//TVmzJiBgIAAfPvtt6rrUeOXOXToUJMyH3/8sVk9CQkJJmVoVkagKIhSdHQ02rZti/T0dIwZMwZDhgzB9u3buTLr169HfHw8pk2bhiNHjiAsLAxRUVG4fv06V2bs2LHYsmULNm7ciN9//x1Xr15Fjx49tHQbg1EqKK3bBcXhDWGpMACYT9ZSQoGYFiAktZ+qOAVi9+XjaLkvSho7duyA0WjEoEGDzM4ZjUZkZmZyf7do0QJr167Fl19+ibCwMGzatAlJSUlo0MB276lFbodbtmzBt99+izZt2iAuLg6tWrVCrVq1UKNGDSQmJqJfP3VSZOXKlU3+njt3rplfZtmyZRX3THx8fCTLrFixAsHBwVxa5nr16uGPP/7AwoULERUVBQD49NNPMXToUMTFxXHXbNu2DatWrcLEiRNx9+5drFy5EmvXrkW7du0AFAkh9erVw59//okXX3xR1fMyGAzHRcwdMynXkzOwlJrI1U7ylggDFKnrqPU/n4SgvUCQdREL6T2FwgiNyOhouDv5wMngVuyRCt2dfDRd07FjR0hlC9i9e7fZsV69ekkGLrIFFgkEt2/fxnPPPQcA8PLywu3btwEA//d//4fhw4db1BApv8zExESsWbMG/v7+eOWVVzBlyhSULVvW5NoRI0ZgyJAheO655zBs2DDExcVxdaSmpqJDhw4m5aOiojBmzBjuvmlpaSaqGicnJ3To0AGpqakAgLS0NDx+/Niknrp16yIoKAipqamSAkFeXh7y8vK4v5l9BaMkIJfspzTDf2Y6efM9DuRsAaTgX2OJMKBGiJAyMtQj1LAw4yI/VLIjUda1KjoGJrFcBlZikUDw3HPP4fz58wgKCkLdunWxYcMGREREYMuWLSauiFoQ88t8/fXXUaNGDQQEBODYsWOYMGECTp8+bWKdOXPmTLRr1w5ly5bFr7/+infeeQf379/nMi5K+XLm5OTg4cOHuHPnDgoKCkTLnDp1iqvDzc0NPj4+ZmXkfELnzJnDIjcySiRqhYLSajtAV8cHrwTJBv0Rph+2RTvUYOuMhHyhw1FzGpR1rYqyKF0TdHFjkQ1BXFwc/vrrLwDAxIkTsWzZMnh4eGDs2LEYP368RQ0R88t86623EBUVhYYNG6Jfv3749ttvsXnzZpw7d44rM2XKFLRs2RKNGzfGhAkTMH78eHzyyScWtUFvJk2ahLt373KfS5cu2btJDIZq5Cb70ioIiKH3ZEsFCKEgoWTlr4SY0MKfxK1FTZ4GRsnGIoFg7Nix3Aq8Q4cOOHXqFNauXYvffvsNGRkZmuujfplDhgyRLde8eXMAwD///CNb5vLly5yqXsqX08vLC2XKlEGlSpXg7Ows6+/p7++P/Px8ZGdnS5YRw93dHV5eXiYfBqO0UNqFgoNXgmziZkdX/fxEQnxBwJJ7Tj4WI2nsSevTK7Qxi4NQerFIIBBSo0YN9OjRA97e3li5cqXm69X6ZaanpwMAqlaVVgulp6ejQoUKcHd3B6Dsy+nm5obw8HCTMoWFhdi5cydXJjw8HK6uriZlTp8+DaPRyCIzMko1JTnyoFbE3CdDUvspagesifJHgxLxP4DlK3qaHIl+hDAvAYYcuggE1iDll3nu3Dl8+OGHSEtLw4ULF/DTTz+hf//+eOmllxAaGgqgyNvh66+/xokTJ/DPP/9g+fLlmD17NkaNGsXVM2zYMPz7778YP348Tp06hc8//xwbNmzA2LFjuTLx8fH46quv8M033+DkyZMYPnw4cnNzOa8Db29vDB48GPHx8fjtt9+QlpaGuLg4REZGMg8DRqmHP0mWVmGAj5hQAEhPpnraEPAFARpkiIaSVktxuYUyLUHpwyKjQj2R8st0c3PDjh07sGjRIuTm5iIwMBCxsbH44IMPuDKurq5YtmwZxo4dC0IIatWqxbkQUoKDg7Ft2zaMHTsWixcvRvXq1fH1119zLocA0Lt3b9y4cQNTp05FVlYWGjVqhOTkZBNDw4ULF8LJyQmxsbHIy8tDVFQUPv/8cxv2DIPhODwLgoASSrkC+FgSiVBugtVybz58+wdO0yHhMeGoHgSM4sNApJwiLeCvv/5CkyZNUFBQoFeVpYqcnBx4e3ujDbrBxcDyQDAYjg71tOAndgJMffzFrO7F3AWlXBeFdQPg8kkIkcuaKKyTIqxbqg5hm+WEGtrmOGMrpJ71w9k35uLu3bu62kk9evQI58+fR3BwMDw8PHSr91lEbV9q0hAoReYTGt0xGAxGSYXvdjn5WAzAmwT5iEUGlNIMiAkP1K1ROEnzV+tUe6BWU8CvSxi4KMYzFzGRiSY2BlRoiINpeGOp56Dli84/UtEiRklAk0CgFGPA29sb/fv3t6pBDAaD4YjQqIDCSIBqVe1UqOALBbNCk1St+mn5jMhEE5sFJcFDaRtCCH02ek96fUlwNyQFV4HCO8V3Q6cKMDg7Vvpia9EkECQkJNiqHQwGg1GisMRiXxhqWM+EQRHVjCbbDGLuhlriKagxGsyITETdnbEaWmkbSMFVkBsdARRf6GLADaj8q2qhoKCgANOnT8eaNWuQlZWFgIAADBw4EB988IFJdF4hu3fvRnx8PDIyMhAYGIgPPvjAJICfntjdqJDBYDBKCqJGegKUIvlZm0Y4IWgvt01B9/2F9fEzG/LbI9w+UEvG/7YYqCbD9PkcYMug8A6KVxhA0f0K7wAqBYJ58+Zh+fLl+OabbxASEoLDhw8jLi4O3t7eXFwfITQ537Bhw5CYmIidO3diyJAhqFq1qolhvF4wgYDBYDBUwrcl4KNlgp98LAaTIW5kKOfCyF/9C4UCPkJhhG/jwN+q0Bp9UWi/QOtwBA1BSWD//v3o1q0bF2+nZs2a+P7773Hw4EHJa9Qk59MTu8chYDAYDEdEytVy8rEYbmIV0wSojQgoZjcgFahIrO6EoL3chyLWHjE7A37q5KRcT9VhianwwRdmDkZsULyOUZTOeOfOnThz5gyAIq+8P/74A507d5a8Rio5H028pzdMIGAwGAwJxKIXUvhCAX8y1TvJEBUMQlL7ccKIWqFDTuPAF2wowrrFhISMyETEeOZyWpGIg6+pasuzzsSJE9GnTx/UrVsXrq6uaNy4McaMGYN+/aQFMaXkfHrDtgwYDAZDB2ydcZAPNU6UW9WrSZ0MmG8F0C0NCt/bgGoj+HESDkZsQAXNT/DssWHDBiQmJmLt2rUICQlBeno6xowZg4CAAAwYMMDezQPANAQMBoOhC/wtAFumRKYoqfjVRkm0xMtBLGgSQ55x48ZxWoKGDRvizTffxNixYzFnzhzJa5SS8+kNEwgYDAZDBXLbBxQtGQX5QoPeSYf0Fki0bFMwxHnw4AGcnEynXGdnZxQWFkpeo5ScT2+YQMBgMBgKqM3lQLcM1KygrcmSWJxQYYVviMjQziuvvIJZs2Zh27ZtuHDhAjZv3oxPP/0U3bt358pMmjTJJLifmuR8esIEAgaDwbABWjMU6qkl0FPY+PFWE+7/1BCRbjMwAUE9S5YsQc+ePfHOO++gXr16eP/99/H222/jww8/5MpkZmbCaHyq3aHJ+VJSUhAWFoYFCxaYJefTE12TGzHkYcmNGIySDz/HgRj8mARa9+elEiDZCyXDxFmhSWhXmIMKL/xr1+RG9opUaNAQqdCe2CS5EYPBYDzr0O0DJcFACanJ1pGEAiVNw+RjMZgc/N9iao00BucAoPKvLJeBlTCBgMFgMHREKamQHFQQcISkQmrcFmeFJmHin9EAjhdPo2QwOAeoDiPMEIfZEDAYDIaO8G0B5AQDucmWWvVbk/NADC3eB2rsEPj2BYySDxMIGAwGQyciqhlVTZIR1YyKk7OjbBvIUVI8JRjqYAIBg8FgWAl/gj94JcjE+j4jMtGiuAB6aweAkjmBM7t361Hbh3YVCGrWrAmDwWD2GTFiBACgTZs2ZueGDRtmUofRaER0dDTKli0LPz8/jBs3Dk+ePDEps3v3bjRp0gTu7u6oVasWVq9ebdaWZcuWoWbNmvDw8EDz5s3NMlA9evQII0aMgK+vL8qVK4fY2FizCFIMBuPZgR+bQJiMSM3qXmly1st+gC+MFEcERb1wdS3yxHrw4IGdW1LyoX1I+1QKuxoVHjp0CAUFBdzfJ06cwMsvv4xevXpxx4YOHYqZM2dyf5ctW5b7f0FBAaKjo+Hv74/9+/cjMzMT/fv3h6urK2bPng1AXT7p9evXIz4+HitWrEDz5s2xaNEiREVF4fTp0/Dz8wMAjB07Ftu2bcPGjRvh7e2NkSNHokePHti3b59N+4jBYDgmSl4GwtwGanMLCMlQyFmgpf6EoL0IuaI+q6Ga9toql4GzszN8fHxw/fp1AEVjv8FgsMGdSi+EEDx48ADXr1+Hj48PnJ2dZcs7VByCMWPGYOvWrTh79iwMBgPatGmDRo0aYdGiRaLlf/nlF3Tt2hVXr17lMkKtWLECEyZMwI0bN+Dm5oYJEyZg27ZtOHHiqTTfp08fZGdnIzk5GQDQvHlzNGvWDEuXLgUAFBYWIjAwEKNGjcLEiRNx9+5dVK5cGWvXrkXPnj0BAKdOnUK9evWQmpqKF198UdXzsTgEDEbpQY3b4azQJE4oiDO2MjmnVjhQ63EgJhBkRCYiztiKOy78Wwk5ISOimhEJQXuRc6/AJnEIgKIJLSsrC9nZ2brW+6zh4+MDf39/RYHKYdwO8/PzsWbNGsTHx5s0OjExEWvWrIG/vz9eeeUVTJkyhdMSpKamomHDhibpIaOiojB8+HBkZGSgcePGkvmkx4wZw903LS0NkyZN4s47OTmhQ4cOXM7ptLQ0PH782KSeunXrIigoSFYgyMvLQ15eHvd3Tk6Ohb3DYDAcjeqxJxSFApqVEChanQuFAjVQN8aIakZ08z2i2dhQOKFr0VLIlT14JQiwsUmCwWBA1apV4efnh8ePH9v2ZqUUV1dXRc0AxWEEgqSkJGRnZ2PgwIHcsddffx01atRAQEAAjh07hgkTJuD06dP44YcfAEjniqbn5MrQfNJ37txBQUGBaJlTp05xdbi5ucHHx8esDL2PGHPmzMGMGTPUdwKDwShRqBEKpOISaNlC4NfBT3vMr+PglSCz7QVbhBa2hbGjEs7OzqonNYblOIxAsHLlSnTu3BkBAU8DS7z11lvc/xs2bIiqVauiffv2OHfuHJ5//nl7NFMTkyZNQnx8PPd3Tk4OAgMD7dgiBoNhD4T2BDT5URzUq+/5QoHcNgKNg0DvN9niVoO7V0hqP4eKoMiwDQ4hEFy8eBE7duzgVv5SNG/eHADwzz//4Pnnn4e/v7+ZNwC1/Pf39+f+lcsnTSVPsTL8OvLz85GdnW2iJeCXEcPd3R3u7u6yz8RgMJ4dhFkQE4L2ahYKgKJJWmz1LxQ8aFn+tZYy+ViMXbQDjOLDIeIQJCQkwM/PD9HR0bLl0tPTAQBVq1YFUJQr+vjx45wVKlCUK9rLywv169fnysjlk3Zzc0N4eLhJmcLCQuzcuZMrEx4eDldXV5Myp0+fhtFotFleagaDUTJQmxpZbAK3xKaAEuOZy2kDZoUmISMy0UwY4MNf6cvBn/T5GgkpYWAry3hYarC7l0FhYSGCg4PRt29fzJ07lzt+7tw5rF27Fl26dIGvry+OHTuGsWPHonr16vj9998BFLkdNmrUCAEBAfj444+RlZWFN998E0OGDDFxO2zQoAFGjBiBQYMGYdeuXXj33Xexbds2E7fDAQMG4IsvvkBERAQWLVqEDRs24NSpU5xtwfDhw/Hzzz9j9erV8PLywqhRowAA+/fvV/2szMuAwSidDD/7j6I6XW51bcnq3RardbotoSUfw9osD7zZ+LhNvAwYxYvdtwx27NgBo9GIQYMGmRx3c3PDjh07sGjRIuTm5iIwMBCxsbH44IMPuDLOzs7YunUrhg8fjsjISHh6emLAgAEmcQtoPumxY8di8eLFqF69ulk+6d69e+PGjRuYOnUqsrKy0KhRIyQnJ5sYGi5cuBBOTk6IjY1FXl4eoqKi8Pnnn9uwZxgMRmmBvzoXW8WrjTVga4Q2CkqEpPZDwYNHcITkRgzrsbuG4FmCaQgYjNKLGi0B8NR/XwgVCNQY7ylN2Em5nlwdUkKIGqhNAt82gV83ABQ8eISzb8xlGoJSABMIihEmEDAYpZfL/22g2hJfbkIXTr4UpUmdlpW7P20f39BQqi18jYWcYSITCEoPdt8yYDAYjNJA9dgTwFl1ZZNyPbmsiEJtAX/iV7uy17LdwJ/cI6oZTewG+OfF2swo3TCBgMFgMHTg8n8bIMbzL1V+/yareCuj/WkRBoQCBnV3FE72wjqF2wSM0gkTCBgMBsNK1OQ14KNH1kGtRoj8lb/wWuFkLzRyjPHMtTrAEcPxYQIBg8Fg6ERSrqdiICBrhQFLXRTV2BjQ+oXbBo7gAcGwPQ4RmIjBYDBKMjQ40eRjMYp78ZSEoL1m9gNSE29Iaj8k5XpaPDFTQ0VrDR4ZpRumIWAwGAwbQVXvUq6GccZWSAjaazbR82MW8M9pSYgEmOY1UCtM0PYynj2YQMBgMBg6w9cSyKnfI6oZzcIX0/P81Mn0b0smahpHgH9POaGCCQPPLkwgYDAYDBtBV9taVvV6QOMNiGkGirstjJIDsyFgMBgMG6I0Acudt3Qyj/HMtdgWgAkMzy5MIGAwGAwdqB57QnXmQ8B2qnt+NkMxuwG2JcCQggkEDAaDoSNahAI5Dl4JsthmQKleOZjA8OzCBAIGg8HQGSVtgS0m3YhqRs5IkcUNYFgCEwgYDAbDRsgJBWr26tXu51MB4+CVIJNrMiITNQkf/HoYzx7My4DBYDBsCBUKtIY3VouYLYJStESpegDtwsDBiA2ooOkKhqPCBAIGg8EoweghDEjVJQXfg6HuztcAzNV8L4bjwbYMGAwGoxjgbx/YSiXP9zDQgtZthZDUfpzAcTBig0X3ZDgeTEPAYDAYpQTqYSBMZyyH2q0CZl9Q+rGrhqBmzZowGAxmnxEjRpiUI4Sgc+fOMBgMSEpKMjkndv26detMyuzevRtNmjSBu7s7atWqhdWrV5u1ZdmyZahZsyY8PDzQvHlzHDx40OT8o0ePMGLECPj6+qJcuXKIjY3FtWvXdOkHBoPBsBaqxk/K9cTkYzGKgYmoVwKgfpJnwkDpxq4CwaFDh5CZmcl9UlJSAAC9evUyKbdo0SIYDAbJehISEkzqiYmJ4c6dP38e0dHRaNu2LdLT0zFmzBgMGTIE27dv58qsX78e8fHxmDZtGo4cOYKwsDBERUXh+vXrXJmxY8diy5Yt2LhxI37//XdcvXoVPXr00KknGAzGswDdNqBuiVqDGUnBn/yplkDJhoB6JFgqDLCsiKUPAyGE2LsRlDFjxmDr1q04e/YsJwCkp6eja9euOHz4MKpWrYrNmzebTPgGg8HsGJ8JEyZg27ZtOHHi6Y+uT58+yM7ORnJyMgCgefPmaNasGZYuXQoAKCwsRGBgIEaNGoWJEyfi7t27qFy5MtauXYuePXsCAE6dOoV69eohNTUVL774oqrny8nJgbe3N9qgG1wMrlq7h8FglGKoFwI/MyJd7SvBn5ytyY6oBXrPnHsFqPDCv7h79y68vLxsci9G8eAwRoX5+flYs2YNBg0axAkDDx48wOuvv45ly5bB399f8toRI0agUqVKiIiIwKpVq8CXcVJTU9GhQweT8lFRUUhNTeXum5aWZlLGyckJHTp04MqkpaXh8ePHJmXq1q2LoKAgrowYeXl5yMnJMfkwGAyGGFRTcPBKEDepx3jmKhoKyoUqtjTaoRwZkYkm99yqwV6B4dg4jECQlJSE7OxsDBw4kDs2duxYtGjRAt26dZO8bubMmdiwYQNSUlIQGxuLd955B0uWLOHOZ2VloUqVKibXVKlSBTk5OXj48CFu3ryJgoIC0TJZWVlcHW5ubvDx8ZEsI8acOXPg7e3NfQIDA5W6gcFgPMNQoWBWaBKScj0RktpPVCiYFZqEWaFJyIhMVL1FoBe0TZSZGdHFcl+G7XEYL4OVK1eic+fOCAgIAAD89NNP2LVrF44ePSp73ZQpU7j/N27cGLm5ufjkk0/w7rvv2rS9apg0aRLi4+O5v3NycphQwGAwVEG3CkJS+xVN/BJ79nwjwjhjK922CKS2G5jtQOnFITQEFy9exI4dOzBkyBDu2K5du3Du3Dn4+PjAxcUFLi5FsktsbCzatGkjWVfz5s1x+fJl5OXlAQD8/f3NvAGuXbsGLy8vlClTBpUqVYKzs7NoGbpN4e/vj/z8fGRnZ0uWEcPd3R1eXl4mHwaDwVBCaDcQktrPxJWQag/4ZUNS+0kKA7ZKWMRyJpQuHEIgSEhIgJ+fH6Kjn6qeJk6ciGPHjiE9PZ37AMDChQuRkJAgWVd6ejoqVKgAd3d3AEBkZCR27txpUiYlJQWRkZEAADc3N4SHh5uUKSwsxM6dO7ky4eHhcHV1NSlz+vRpGI1GrgyDwWDogZTnweRjMaJCAB+xiV9Po0KmHSjd2H3LoLCwEAkJCRgwYACnBQCKVuViq++goCAEBwcDALZs2YJr167hxRdfhIeHB1JSUjB79my8//77XPlhw4Zh6dKlGD9+PAYNGoRdu3Zhw4YN2LZtG1cmPj4eAwYMQNOmTREREYFFixYhNzcXcXFxAABvb28MHjwY8fHxqFixIry8vDBq1ChERkaq9jBgMBgMa6AqfLlVOTUiFAoBcpoDLQID3b5glE7sLhDs2LEDRqMRgwYN0nytq6srli1bhrFjx4IQglq1auHTTz/F0KFDuTLBwcHYtm0bxo4di8WLF6N69er4+uuvERUVxZXp3bs3bty4galTpyIrKwuNGjVCcnKyiaHhwoUL4eTkhNjYWOTl5SEqKgqff/65dQ/PYDAYKrCl+6AUB68EISMy0cT10dLQyIySgUPFISjtsDgEDAZDLfy4BFqEAS3l1ZSV0ghQbUHdnbE4+8ZcFoegFOAQNgQMBoPBEEdzOmIWXphhIUwgYDAYDAdFKqwxPwSyXDlbw7wMShdMIGAwGAwHRGqylxIGbCEUyG0XMEofTCBgMBiMUoItNQVaUiozSiZMIGAwGIwSgpoJX00ZGvo4IWgv5zkg505IPQ2oUGCrQEcM+8K8DIoR5mXAYDCKA+qhIERtDAFhvAHhFgE/THLBg0fMy6CUwDQEDAaDUcoQagloIiTAVPUvnOjpOaHgIMxwGGdsBYBpCkobdg9MxGAwGAzbMSs0ySwj4mQ8ncyFQoEwiRKXXMkzF5P/d4y6NkZUMyK86mWctV3zGcUI0xAwGAxGKYWu6vnJkChi8QoiqhkRZ2yFOGMrk/L0/0LNAYt5ULpgAgGDwWCUQvjbBsLsiVIcvBLEfShUCJASChilByYQMBgMRillee1aqoQBvi2A0C6ArymgtgN80jKrW95AhkPBBAIGg8EoxSi5IQrzGfDtA4SwLYLSDRMIGAwG4xlFLrlRQtBeAKZbBNQmgXkXlE6YQMBgMBilnOqxJ0Q1BXLaADHo9gMVFhilCyYQMBgMxjMOX0sQUc3IeRsA0nkLmJag9MEEAgaDwXhG0JLrQMlegNkTlD6YQMBgMBjPEGqFAikNAEtyVHphAgGDwWA8Y0gJBVQIOHgliNkJPIPYVSCoWbMmDAaD2WfEiBEm5Qgh6Ny5MwwGA5KSkkzOGY1GREdHo2zZsvDz88O4cePw5MkTkzK7d+9GkyZN4O7ujlq1amH16tVmbVm2bBlq1qwJDw8PNG/eHAcPHjQ5/+jRI4wYMQK+vr4oV64cYmNjce3aNV36gcFgMEoK1LCQBSgqfdhVIDh06BAyMzO5T0pKCgCgV69eJuUWLVoEg8Fgdn1BQQGio6ORn5+P/fv345tvvsHq1asxdepUrsz58+cRHR2Ntm3bIj09HWPGjMGQIUOwfft2rsz69esRHx+PadOm4ciRIwgLC0NUVBSuX7/OlRk7diy2bNmCjRs34vfff8fVq1fRo0cPvbuEwWAw7MrBK0GKBoNSSZAYJRuHSn88ZswYbN26FWfPnuUEgPT0dHTt2hWHDx9G1apVsXnzZsTExAAAfvnlF3Tt2hVXr15FlSpVAAArVqzAhAkTcOPGDbi5uWHChAnYtm0bTpx4qiLr06cPsrOzkZycDABo3rw5mjVrhqVLlwIACgsLERgYiFGjRmHixIm4e/cuKleujLVr16Jnz54AgFOnTqFevXpITU3Fiy++qOr5WPpjBoPhKIilSKZxCei/GZGJkl4GQJFAkHOvABVe+JelPy4FOIwNQX5+PtasWYNBgwZxwsCDBw/w+uuvY9myZfD39ze7JjU1FQ0bNuSEAQCIiopCTk4OMjIyuDIdOnQwuS4qKgqpqancfdPS0kzKODk5oUOHDlyZtLQ0PH782KRM3bp1ERQUxJURIy8vDzk5OSYfBoPBcASEdgRyQYoYzwYOIxAkJSUhOzsbAwcO5I6NHTsWLVq0QLdu3USvycrKMhEGAHB/Z2VlyZbJycnBw4cPcfPmTRQUFIiW4dfh5uYGHx8fyTJizJkzB97e3twnMDBQugMYDAajmOELBUJhIKKaESGp/bjohGKEpPbDVuZ1UGpwGIFg5cqV6Ny5MwICAgAAP/30E3bt2oVFixbZt2FWMGnSJNy9e5f7XLp0yd5NYjAYDBPkIhgCQIxnruz1MzOidW8Twz44hEBw8eJF7NixA0OGDOGO7dq1C+fOnYOPjw9cXFzg4uICAIiNjUWbNm0AAP7+/maW/vRvusUgVcbLywtlypRBpUqV4OzsLFqGX0d+fj6ys7Mly4jh7u4OLy8vkw+DwWA4GlJCATUuzIhMREZkoqy2gFHycQiBICEhAX5+foiOfippTpw4EceOHUN6ejr3AYCFCxciISEBABAZGYnjx4+beAOkpKTAy8sL9evX58rs3LnT5H4pKSmIjIwEALi5uSE8PNykTGFhIXbu3MmVCQ8Ph6urq0mZ06dPw2g0cmUYDAajNEGFgThjK4Sk9kNSridiPHOZZ0EpxsXeDSgsLERCQgIGDBjAaQGAolW52Oo7KCgIwcHBAICOHTuifv36ePPNN/Hxxx8jKysLH3zwAUaMGAF3d3cAwLBhw7B06VKMHz8egwYNwq5du7BhwwZs27aNqzM+Ph4DBgxA06ZNERERgUWLFiE3NxdxcXEAAG9vbwwePBjx8fGoWLEivLy8MGrUKERGRqr2MGAwGAxHhmoJ+N4H/K2DycdiMBnM1bA0Y3eBYMeOHTAajRg0aJDma52dnbF161YMHz4ckZGR8PT0xIABAzBz5kyuTHBwMLZt24axY8di8eLFqF69Or7++mtERUVxZXr37o0bN25g6tSpyMrKQqNGjZCcnGxiaLhw4UI4OTkhNjYWeXl5iIqKwueff27dwzMYDIaDUT32hKhLIqP041BxCEo7LA4Bg8EoCcgJBMLYBAUPHuHsG3NZHIJSgEPYEDAYDAbDcdCSFZFRemACAYPBYDAYDCYQMBgMBsOc6rEnTDQFTGtQ+rG7USGDwWAwHBehUBDyX+ncBoySDdMQMBgMBkMTLEBR6YQJBAwGg8FQTfXYE5h8LMbezWDYALZlwGAwGAxN8LcRnpDHOGvHtjD0g2kIGAwGg8FgMIGAwWAwGAwGEwgYDAaDwWCACQQMBoPBYDDABAIGg8FgMBhgAgGDwWAwGAwwt8NihSaWfILHAMsxyWAwSgFP8BjA0/GNUXJhAkExcu/ePQDAH/jZzi1hMBgMfbl37x68vb3t3QyGFRgIE+uKjcLCQly9ehXly5eHwWCwd3NUkZOTg8DAQFy6dKlE5jpn7bcvrP32pTjaTwjBvXv3EBAQACcntgtdkmEagmLEyckJ1atXt3czLMLLy6tEDogU1n77wtpvX2zdfqYZKB0wcY7BYDAYDAYTCBgMBoPBYDCBgKGAu7s7pk2bBnd3d3s3xSJY++0La799KentZxQvzKiQwWAwGAwG0xAwGAwGg8FgAgGDwWAwGAwwgYDBYDAYDAaYQMBgMBgMBgNMIGAwGAwGgwEmEDzzlHQnE9Z++1GS2w6w9jMYQphA8Azz+PFjXLt2jfu7pA0wT548wd27d+3dDIspye0vyW0HSn77S/pvl+GYMIHgGWXBggWoU6cOunTpgj59+uDIkSMlJuESAMyfPx9hYWHo0qULxo8fj3PnzgEoOQNjSW5/SW47UPLbX9J/uwzHhQUmegaZP38+li1bhk8++QRZWVn46aefcOzYMSQnJ6NRo0b2bp4iH3zwAb777jvMmTMHGRkZ2LFjB3JycrBv3z5UrFjR3s1TpCS3vyS3HSj57S/pv12Gg0MYzwwFBQXk8ePHpHPnzmTUqFEm50JDQ8mrr75Kzp49a6fWKVNYWEhycnJIZGQkmTt3Lnf80qVLJCgoiMTFxZG7d+/asYXylOT2l+S2E1Ly21/Sf7uMkgHbMniGcHJyQmFhIY4fP47GjRsDAB49egQAWLFiBVJTU/Hrr7/iyZMn9mymJAaDAU5OTkhPT0eTJk0AFO0FV69eHStWrMA333yDP/74w86tlKYkt78ktx0o+e0v6b9dRsmAbRmUYhISEpCamoqwsDC8+uqrCAwMBAD06tULN2/exG+//QYAKCwshJOTE9544w2cOXMGO3bscIjc79999x1OnDiB8PBwdOjQARUrVsTDhw/RtWtXVKtWDd9++y2Ap+1/+eWX4eLigl9++YU7xtr/7LW9NLS/pP92GSUUe6soGPpz69YtEh0dTQICAsjrr79OnnvuOVKzZk3yyy+/EEIIWbNmDalevTr5+eefCSGEPHz4kBBCyNmzZ4nBYCDHjx+3W9sJISQzM5O0a9eOVKtWjXTt2pVUq1aNNGrUiJw5c4YQQsiHH35IwsPDyf79+wkhhOTl5RFCCElJSSEuLi7k8uXLdms7ISW7/SW57YSU/PaX9N8uo2TDtgxKIYcPH8bZs2eRmpqKxMREnDt3DrVq1cL8+fNx8OBBdOrUCU2bNsXs2bMBAB4eHgAAZ2dnVKtWDRkZGfZsPvbs2YOsrCykp6cjKSkJ6enpePjwISZOnIhLly6he/fuKFeuHFasWAEAcHNzAwCULVsWVatW5azG7UVJbn9JbjtQ8ttf0n+7jJINEwhKEeR/uz8ZGRlwd3eHp6cnd27OnDkoLCzEsmXL4OPjg7feegsXLlzAuHHjUFBQAAA4e/YsypQpg5YtW9qt/YQQ7Nu3D/7+/ihXrhycnJxQqVIlLF++HCdPnsSqVasQEhKCnj174tChQ1iwYAF3/ZUrV+Dp6YkGDRqw9j9DbS8t7QdK7m+XUTpwsXcDGNaxb98+eHl5oUaNGtzeYWFhIXJzcwEUDTQGgwFNmzZF586dsWnTJvz666/o3Lkz5s+fj0GDBmHPnj1o0KABNm3ahDfeeAOVK1fmrrM1hw8fhr+/P/z8/LjVmru7O7KysuDh4YGCggI4Ozujbdu2aN++PbZv346ePXti4MCByM3Nxbhx47B7924EBQVh7dq1eOutt+Dl5cXaX8rbXhraX9J/u4xSSHHvUTD04cyZM6RZs2bEz8+PPPfcc6RZs2YkKSmJEELItWvXiIeHB/nmm28IIYQ8fvyYEEKI0WgkoaGh5KOPPiIFBQWEEEJ27txJ5s+fTwYMGEC2bt1abO0/efIkCQ8PJ1WqVCG1atUiHTt2JGlpaYQQQtLS0oizszNJSUkhhBDy6NEjQggh//zzD/H19SWJiYlcPRs2bCCTJk0iMTExZMuWLaz9pbztpaH9Jf23yyi9MIGgBPL48WMyePBg0rNnT3Lx4kVy5MgR8sorr5DQ0FDy008/EUIIGTp0KAkKCiIPHjwghBT5YRNCSK9evUh0dLTd2k4IIffu3SPdu3cn/fv3J2fOnCG7d+8mDRs2JO3atSOpqamEEEJeffVV0rBhQ+6aJ0+eEEIIadu2LYmLi7NLuykluf0lue2ElPz2l/TfLqN0wwSCEgQdGK5du0bKly9Pvv32W+7c6dOnSf/+/Un9+vUJIUUBV6pUqUJGjBjBWSIXFhaSmJgY8vbbbxd/48nT9v/zzz+kXLlyZNu2bdy51NRU0rVrV9K1a1dCCCF79+4lXl5eZNasWVyZ3Nxc0qJFCzJ16tTibfj/KMntL8ltJ6T0tL+k/nYZzwbMhqAEkJ2dDR8fH25f8P79+6hTpw4eP37MlXnhhRcwYMAA7NmzB7Nnz8Z//vOf/2/v3oOqKP8/gL+Xm0hggKJiQiiBYl5DSAJJVEQ9KqhhiTliOk6SmJqKjpplyiheRieL8lJaOkZmVlpq3lDyfgNvYKGgKAgUiqJx0fP+/cHv7JfjJUXlXPTzmnEm9uzueZ+ns2c/u/vss0hMTMTgwYNx5coVvPnmmzh//jz27duH5cuXGzT/zZs3YWdnp+YvKCiAh4eH2kMaADp06IC+fftiwYIFWLlyJYYMGYJZs2Zh9OjRKC4uhkajwfHjx3HhwgV07dpV8j8D2Z+G/Oa+7YpnjLErEnF/GRkZDA0NZUhICKOjo/n777+TJG/evElfX1+OGTNGb7jVq1evcvz48fTz8+Pff/9Nkly9ejV79+7Ntm3bsmnTpkxKSjJY/vT0dGo0Gvbt25fjxo3jqVOnSFae9q1bty7nzJmjHjmR5KVLlxgVFcXIyEhev36dJJmQkMCgoCA2b96c7u7uXLt2reR/yrM/DfnNfdsVzyYpCEzUkSNH6OrqyqFDh3Lp0qUMCAhg48aN+cMPP5Ak582bR2dnZ3WAFZ1Vq1axTZs26g+oTlZWlqGikyR37drFunXrcvDgwYyPj6eHhwf9/Py4fft2kuQHH3xANzc35uTk6C0XHx/Pdu3asbCwUJ2m1Wp58uRJyf8MZH8a8pv7tiueXVIQmBjdUU98fDyDg4PVjkUFBQWMiYmhs7Mz8/PzSZKenp6MioriuXPn1OV37txJRVGYmZlJkmqPZEMbO3YsIyIi1M9z+vRpRkZGsmnTpiTJ4uJiuri4cMyYMbx27Zq63Pr162lra6v+qEv+Zys7af75zX3bFc8uGZjIRJw9exYVFRXqtcY///wTiqKgdu3aAAAXFxfMmDEDzs7OmDRpEgBg8eLF2Lt3L+bOnYusrCyUl5dj06ZN6N27N1xdXQHAYGOyFxQU6D1PPjMzEzY2Nurn8fHxweTJk3Ht2jVMnz4dderUwfz587FkyRJ8+eWXuHz5Mkjit99+wxtvvIG6desaNL8uu1arNcv8VZlrdt3/A3PNr2Nu264QKiMWI4KV9xdrNBr6+/tz8+bN6vS5c+eyTZs26hjsuqOF1atX09LSUj1d+uWXX9LX15eNGzfmyy+/zHr16hn0nurz58/T39+fAwcO5JUrV0hW3lr13nvvUaPR8NKlS+q8FRUVjI+Pp4ODg3qdd+rUqfTx8aG3tzfbtGnD+vXrq9dba5pWq+U///zDLl26cOrUqeo0c8l/8eJFJiQk8LvvvlPvwy8tLTWL7CSZm5vLNWvWcO/evfznn39IVj5bwFzyX758WX3ksO7WRtJ8tl0h7iQFgRHoToVu3bqVjRo1Yv/+/Zmamqr3YJVffvmFr776KhcsWKC3XH5+Plu2bKnuwMjKW5k2b97MFStWGO5DkBwzZgytrKzYr18/9VSo7rMtW7aMrVq14o8//qi3zJEjR9iiRQt+9tlnJMny8nL+9ddf/Oabb5iYmGjQ/CT566+/UlEU1qpVS+/07dKlS9myZUuTzT9hwgTWrl2bYWFh9PLyYpMmTXjs2DGS5BdffGHybT9hwgTa29uzU6dOtLOzY//+/dUdqDnknzVrFi0sLBgcHKxO0+34N2zYYPLbrhD3IgWBEQ0dOpTjxo1T/9btVHUiIyMZFhbGAwcOqNNu3rzJjh07ctq0adRqtUa5zlhcXEwnJyfWq1ePKSkp6nTdqGo67du3Z1RUlHoURZJXrlyht7c3v/rqK5LGv046ffp0xsTEsEePHgwLC9N7zRTzX7lyheHh4QwMDFTb/tixY3zttdcYFxdn0tlJsqioiMOGDWNAQAB3797N0tJSfv/99+zSpQsnTpxo8vnLysoYFxfHDh06cPDgwWzdurWap+r3f8CAASa57QrxX+QilZHk5ubixIkT6Nu3L9LS0tClSxdoNBoEBgZiyZIlAICxY8fixo0bSEhIUJfTarUoKipCkyZNoCiKUa7z1qlTB6GhoWjatCkCAwNx6NAhDBs2DLGxsVi0aBHS09MBABMnTkRqaqr6eQCgrKwMt27dgpOTEwDjXSfVPRTG2toajo6OmDBhAn7//Xds2rRJnefDDz/E0aNHTSq/o6MjwsPDkZCQgKCgIABA27ZtUatWLURERKjzTZo0ySTb/u+//4aiKIiLi0PHjh1Rq1YtREZGwt7eHuXl5WofjilTpphkfhsbG3h6euKdd97BtGnT4O/vj8TERFy/fh1WVlYoLy8HAMTExODff/81qW1XiAcydkXyLNAdCVQ9giguLqatrS1/+OEHRkZGcvz48UxKSmJsbCytra3Vscy/++47enp6slWrVpw2bRqDgoLYsmVLvSMnQ+bXXSu9evUqra2t+fLLL7Nx48aMjo5mREQEmzVrRh8fH3WZGTNmsFmzZuzYsSM//fRTBgYG0t/fn7m5uUbJfyeNRsNVq1aRJKOioti6dWsWFRVxzZo1JMnZs2fT29vbaPnvlV03Pj9JFhYWslevXnR0dGS3bt04ZswYlpSUkCRnzpxp1OxV85eXl5OsHEeg6m2AutejoqIYExOjt+zMmTNN6rujuxxW9ch+w4YN9PX15bRp0+56bfXq1XzppZeMuu0KUR1SENSwjz76iD179tSbpvvR0Gg0dHFxYadOnfQGKYmKiqK/v786LTMzk++//z779OnD2NhYlpWVGTW/bue0YMECent78+DBg+qP5dGjR+nu7s7Y2FiSlUPG7t+/n1FRUQwJCeHIkSPVnYOx8pP/6wTWv39/btmyhSR58uRJ2traUlEUxsbGsry8nKWlpUbLf7/sOpcvX2aXLl2o0Wi4ceNGzps3j97e3oyIiCBZeYralNq+6kBC5P+2g1u3btHDw0N98JDu+11WVmZS+e/l2rVrnDx5Mlu0aMHTp0+TpF5GY267QlSXFAQ1JCMjg+Hh4XRxcaGiKOrY5bqd6e3bt7l48WI6OTkxOjpa77WzZ8/q3Y+sY8gfw//KX/WHfceOHXdNmzJlClu3bq0eqeroxmU3hAe1v05wcDBPnTrFX3/9lfXr16eLiwvt7OzUOyaq9h43VP6HzU7ePWjNxo0baWdnx7y8PL3pptD2VduyqpMnT9Ld3Z1nzpy57zpNIf+d7a/7zu/du5chISEcPHiw+tqd26oht10hHpVcxKohqampsLOzw7Jly/Dee+9h6tSp0Gq1sLKywq1bt2BhYYHQ0FB06NABW7ZsQVFREaysKh8tkZ6eDi8vL7CyYFPXaW1tbRL5qwoJCYGVlRUURVGzHj9+HI0aNYKNjY1e/qrjzxszvy5TTk4OysrKEBwcjLfeegtjx45FcnIy3N3d8cEHHwCA3nPlDZX/YbLreHh4APjfPfzHjh2Dm5sbbt++bXJtb2lpeVd+ADh16hQaNmwIb29vAMCmTZswe/ZsvXlMIf+d7a/7bnTo0AF9+vTB4cOHsXHjRiQlJWHEiBFqPxXAsNuuEI/MWJXI00p31FBcXMxDhw6RJA8dOkRPT0+1F3XVI43du3fzhRdeYM+ePblmzRqePHmSoaGhfPvtt+86xWoq+e93pEeS+/fv52uvvab33HlDqm7+gQMHcuzYsXq3HCYmJtLBwUG9N95QHrft09LS2LlzZ37yySc1H/YeHjX/oEGDGBcXx/z8fHbt2pXW1taMj483XPD/9yj5dcucOXOGr7/+OhVFoY2NDadMmWLA5EI8GVIQGEBJSQnnzJnD559/ntnZ2ST1TyEePnyYnTp1YosWLdiwYUMOGjSIN27cMFbcu9wrf9UfxnPnzjEpKYnDhw+nvb09R40aZVLXSu+VX9cx787LGmTltXdDnqL+Lw9q+6ysLK5du5YjRoygnZ0dR4wYYTLZyQfnLywspLu7Oz08PGhtbc3+/fvr9acxtgflJysHWBo6dCgVReHIkSPVgZOEMDdSENSAqkf2uv/OyMhgYGAg+/btqzevrmNVaWkpz58/z/Pnzxsu6H1UJz9ZeRQ1dOhQhoWF8ejRowbLeT/VzW9Kqpv96NGjjImJYa9evcyy7bOzs+nu7s6goCCzzE+SK1asYHBwMA8fPmyQjELUFCkInrB7dfzSTV+1ahXr1KnDHTt2kKx8qtudgxEZW3XyJycns6ioSB2FzRRUt/0LCgoMGe8/PUrbk1Qfl2ts1c1/9epV3rhxg2lpaYaMeV/V/e5cvnyZ5N13TwhhrqQgeEKq/phUVFRw3Lhxd91vnJuby6ioKHp5ebFbt25UFEW9Vmlsj5r/4MGDho56T+bc/s9q25t7flP47gjxJMldBo9J15tb1/t+4cKFqFu3Ln7++We9Huq6eQsLC5GZmQlnZ2fk5uaiffv2xoitl+lx8vv5+Rkjtl4mc23/Z73tzT2/sbddIZ44Y1Yj5q5q56Jt27bR09OTDRo04LJly+46/Zienk5fX196enpy3759ho56T5LfeMw5Oyn5hXgaSUHwmC5cuMDu3bvT2tqa48ePv++tajdu3ODOnTsNG+4hSH7jMefspOQX4mkjBcFjWLt2La2srKjRaJienm7sONUm+Y3HnLOTkl+Ip5FC3mPoMPFQzp07h/z8fAQEBBg7yiOR/MZjztkByS/E00gKAiGEEEJA7jIQQgghhBQEQgghhJCCQAghhBCQgkAIIYQQkIJACCGEEJCCQAghhBCQgkAIIYQQkIJACCGEEJCCQAghhBCQgkAIIYQQkIJACCGEEJCCQIinUnZ2NhRFQWpqao2sX1EU/PTTTzWybiGEcUhBIEQNiI6ORkREhNHe383NDXl5eWjZsiUAIDk5GYqi4OrVq0bLJIQwbVbGDiCEePIsLS3RsGFDY8cQQpgROUMghIHt2rUL/v7+qFWrFlxdXTFp0iTcunVLfb1Tp04YPXo0Jk6cCGdnZzRs2BAfffSR3joyMjIQFBQEW1tbtGjRAtu2bdM7jV/1kkF2djZCQkIAAE5OTlAUBdHR0QAADw8PLFy4UG/dbdu21Xu/v/76C8HBwep7bd269a7PlJOTgwEDBsDR0RHOzs4IDw9Hdnb24zaVEMKApCAQwoAuXbqEnj17ws/PD2lpaUhMTMTy5csxc+ZMvflWrlyJ5557DgcOHEBCQgJmzJih7ohv376NiIgI2NnZ4cCBA1iyZAmmTJly3/d0c3PDunXrAABnzpxBXl4eFi1a9FB5tVot+vXrBxsbGxw4cABffPEF4uLi9OapqKhAWFgYHBwckJKSgj179sDe3h7du3dHeXl5dZpHCGFEcslACAP6/PPP4ebmhsWLF0NRFDRv3hy5ubmIi4vDhx9+CAuLyhq9devWmD59OgDAy8sLixcvxvbt2xEaGoqtW7fi7NmzSE5OVi8LzJo1C6Ghofd8T0tLSzg7OwMA6tevD0dHx4fOu23bNmRkZGDLli1o1KgRACA+Ph49evRQ50lKSoJWq8WyZcugKAoA4Ouvv4ajoyOSk5PRrVu36jWSEMIopCAQwoDS09MREBCg7jgBIDAwECUlJbh48SLc3d0BVBYEVbm6uqKgoABA5VG+m5ubXh8Bf3//Gsvr5uamFgMAEBAQoDdPWloaMjMz4eDgoDe9tLQUZ8+erZFcQognTwoCIUyQtbW13t+KokCr1T7x97GwsABJvWkVFRXVWkdJSQl8fX2xevXqu15zcXF5rHxCCMORgkAIA/Lx8cG6detAUj1LsGfPHjg4OKBx48YPtY5mzZohJycH+fn5aNCgAQDg0KFD/7mMjY0NgMr+B1W5uLggLy9P/fvatWvIysrSy5uTk4O8vDy4uroCAPbv36+3jldeeQVJSUmoX78+6tSp81CfQQhheqRToRA1pLi4GKmpqXr/RowYgZycHMTGxiIjIwM///wzpk+fjnHjxqn9Bx4kNDQUnp6eGDJkCI4fP449e/Zg6tSpAKB3KaKqF198EYqiYOPGjSgsLERJSQkAoHPnzvj222+RkpKCEydOYMiQIbC0tFSX69q1K7y9vTFkyBCkpaUhJSXlrg6MgwYNQr169RAeHo6UlBRkZWUhOTkZo0ePxsWLFx+l6YQQRiAFgRA1JDk5Ge3atdP798knn+C3337DwYMH0aZNG7z77rsYNmyYukN/GJaWlvjpp59QUlICPz8/DB8+XN1J29ra3nOZF154AR9//DEmTZqEBg0aYNSoUQCAyZMn4/XXX0evXr2g0WgQEREBT09PdTkLCwusX78e//77L/z9/TF8+HDMmjVLb912dnbYvXs33N3d0a9fP/j4+GDYsGEoLS2VMwZCmBGFd15AFEKYnT179iAoKAiZmZl6O3QhhHhYUhAIYYbWr18Pe3t7eHl5ITMzE++//z6cnJzwxx9/GDuaEMJMSadCIczQ9evXERcXhwsXLqBevXro2rUr5s+fb+xYQggzJmcIhBBCCCGdCoUQQgghBYEQQgghIAWBEEIIISAFgRBCCCEgBYEQQgghIAWBEEIIISAFgRBCCCEgBYEQQgghAPwfxwhy8CIFrSIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "\n", + "pairing_dict = {\n", + " (np.nan,np.nan): 0,\n", + " (np.nan, 0): np.nan,\n", + " (np.nan, 2): np.nan,\n", + " (1, np.nan): 3,\n", + " (2, np.nan): 4,\n", + " (1, 0): 5,\n", + " (1, 2): 6, \n", + " (2, 0): 7,\n", + " (2, 2): 8\n", + "}\n", + "\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dict\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\", basemap=None)" + ] + }, + { + "cell_type": "markdown", + "id": "7bf7b2aa", + "metadata": {}, + "source": [ + "Instead of building a pairing dictionary, a user can pass the unique candidate and benchmark values to use and a pairing dictionary will be built for the user. In this case nodata values are not included and will automatically become the nodata value instead of an encoding." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f6567376", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAF/CAYAAAA2D9EJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeYAUxbnAf909994sLOsqAioIXqCgcsSbuAoeqHgbz0QlEjXG+6mIyYvPRIxGDWKiaOIZiWI0CEGNmggaQcELEA9E5WbZe87uen/M1tAz0zPTMzt7qP3LmyfbXV1dXdNT9dVX36EIIQQODg4ODg4O32vUnm6Ag4ODg4ODQ8/jCAQODg4ODg4OjkDg4ODg4ODg4AgEDg4ODg4ODjgCgYODg4ODgwOOQODg4ODg4OCAIxA4ODg4ODg44AgEDg4ODg4ODjgCgYODg4ODgwOOQOCQwn//+18URUFRFG677baebo5DETn//PMT3+0ll1ySsVw4HKZPnz6Jsq+99lr3NTJPLrzwQkpKSti8eXPScdn2bJ/zzz8/6ZpBgwallSkvL+fAAw/kzjvvJBKJpN0/HA7zu9/9jrFjx1JRUYHH42GnnXZi9OjR/OxnP+Mf//hHxrY3NDTw61//mkMPPZSamhrcbjcVFRWMHDmSqVOn8uqrr+bdH4cffnjWZ16wYEHGax955BEOOuggSktL6dOnDxMnTmTx4sUF3UdRFFTVenr5+uuvueCCC6irq8Pn8zF06FCmT59OKBRKK7thwwb8fj8//elP8+4Lh/xx9XQDHHoXf/nLXxL/fvzxx7nlllt6sDUOqdx6663MmDGDOXPmpE1o+fDMM89w77334vF40s794x//YPv27Z1oZffwwQcf8Oijj/KLX/yCmpoayzLnnXdexut/8IMfWB4/5ZRTKC0tRQjB2rVrWbJkCUuXLuWFF15g0aJFiT5rbGzkqKOO4t1338XtdjN27Fjq6upobW1l2bJl3HfffSxatIhJkyal3eO5557j/PPPp7m5mdLSUg4++GBqampoa2tj5cqVPPDAAzzwwANMnDgxq1CRCfkMqey8886W5a+88kruuece/H4/Rx99NKFQiEWLFvHPf/6TuXPnMnny5KTyxxxzDIMGDbKsa9myZXz44Ycccsghaec+/fRTxo4dy9atW9lnn3045JBDWLp0KbfddhuvvPIKr7zyCl6vN1F+p5124uKLL+YPf/gDV155JUOHDrXfCQ75IxwcOohEIqJv374CELW1tQIQb731Vk83y8HE9OnTBSDmzJmT97XnnXeeAMT+++8vAPHcc89ZljvppJOEpmlixIgRAhD/+te/OtXmruKEE04QbrdbbNq0Ke0cIPId3gYOHCgA8cUXXyQdf++990RFRYUAxL333ps4/rOf/UwAYuTIkeLrr79Oq+/tt98WM2bMSDv+wgsvCEVRhMvlEr/5zW9EKBRKK7Ny5Upx3nnniSFDhuT1DIcddpjlM2Rj0aJFAhDV1dXik08+SRxfvHix8Hg8orKyUmzfvt12fQcddJAAxB//+Me0c+PHjxeAuPzyyxPHotGoOOmkkwQgpk+fnnbN119/LVRVFaeddprtNjgUhiMQOCT4+9//LgAxfvx4cdtttwlAXHbZZT3dLAcTxRAIfvOb3whVVcWUKVPSymzfvl14vV5x9NFHi/r6+l4rEKxbt06oqiqOO+44y/PFFAiEEGLGjBkCEEcddVTiWF1dnQDEokWLbN+jpaUlIXT/5S9/yVl+6dKltusWojCB4NhjjxWA+N3vfpd27vLLLxeAuPPOO23V9cknnwhA+Hw+0djYmHTu7bffFoCoqalJE4I2btwo3G63qKqqEtFoNK3eo446SrjdbrFx40bbz+WQP44NgUOCxx57DIBzzjmHc845B4Cnn36aaDSa8Zr333+f448/nsrKSsrKyjj00ENZtGgRr732muU+rdzHfu2111i4cCFHHHEElZWVKIpCY2NjotyCBQuYNGkS/fr1w+v1sttuu3HVVVexbds2y3YIIXjyySc58sgjqaqqwufzMXz4cG699Vba29vTyss90LVr1/L0009z4IEHEggE2Hnnnbn22msT+8WfffYZZ555JjU1NQQCAY444gjef//9jP2RT7vNffHGG29w5JFHUlZWRnl5OZMmTeLjjz9OKj9o0CBmzJgBwAUXXJC0X5vPPv9OO+3EkUceyYsvvkhTU1PSub/+9a+Ew+HE92/F8uXLufbaaxk1alTSc/70pz9l/fr1aeXXrl2LoigcfvjhNDc3c8UVVzBgwIDEd/S73/0OwzBstx/g4YcfxjAMzjzzzLyuK5T9998fgK+++ipxbMuWLQD069fPdj2PPPIIW7duZdy4cVn7WDJq1Kg8W5ofwWAwYaswZcqUtPPy2AsvvGCrPjmGHH/88VRUVCSdk1sfxx9/fNK2AED//v055JBD2L59O//5z3/S6j3rrLOIRqM88sgjttrhUCA9LZE49A4aGxuFz+cTHo9HbNu2TQghxLhx4wQg/v73v1tes3jxYhEIBAQg9ttvP3HGGWeIAw88UKiqmlCnnnfeeUnXyFXqT37yE6EoijjwwAMT18kVxXXXXScA4fF4xPjx48WUKVPEkCFDBCB23333tFWCruvizDPPFIAoLS0Vhx9+uDjppJPEgAEDBCAOOugg0d7ennSNXEldeeWVwuVyiQkTJoiTTjopsXo799xzxSeffCL69u0rhg0bJk4//XSx7777CkD06dPHcqWSb7tlX1x11VVC0zRx8MEHi9NOO00MHTo0ocLdsGFDovwvfvGLhBp//Pjx4rzzzkt8Vq5cmfM7lvf7y1/+IubMmSMA8dBDDyWVOfTQQ0UgEBAtLS0ZNQSnn366cLlc4oADDhCTJ08WkydPFoMGDRKA2GmnncQ333yTVP6LL74QgBgzZowYNWqUqKysFCeffLI47rjjhN/vt3xPcjF69GgBpN1LQpE1BI8//rgAxL777ps4tttuuwlAXHrppcIwDFv3mDhxYtrWQ75ILZFVn8n3+qabbhJTp04Vl112mbjnnnvEl19+aVnXe++9JwDRr18/y/Otra0CEFVVVbbatvvuuwtAPP/882nnTjzxRAGI+++/3/Laq6++WgDinnvuSTv32WefCUAccsghttrhUBiOQOAghBDiT3/6kwDEiSeemDj2hz/8QQDi1FNPTSuv63pi4vrf//1fy7qyCQSAeOqpp9Lq/etf/yoAsc8++4g1a9YkjhuGIW655RYBiNNPPz3pmt/85jcCEIcffnjSBBoOh8VFF10kAHHdddclXSMHztLSUvHOO+8kjm/YsEH0799fKIoihg8fLq6//vrEYG8YhvjRj34kAHHLLbd0ut2yL1RVTdrPj8Vi4pRTThGAuPnmm5OuKcaWwV/+8hfR3Nws/H6/OOKIIxLnv/zyS6EoijjzzDOFECKjQPDqq69aCmVSrX7BBRcknZMCgRQct2zZkjj36aefJlTvmWwaUmlpaRGapom6urqMZYotEJxxxhkCEGeffXbi2O233564z7Bhw8T1118vnnvuOfHVV19lvMfOO+8sAPGf//wnr7aZsSMQpH7cbre47bbb0so///zzCbuSTFRWVgpANDc3Z23X4sWLE4JsJBJJOy9tV6yEBSGEuPvuuxMCshV9+/YVXq9XBIPBrO1wKBxHIHAQQuwYSJ555pnEsa1btwq32225HygNkYYMGSJ0XU+rTxoPZRIIJk2aZNkOuQL+4IMP0s4ZhiFGjhwpNE1LTCrRaFT07dtXlJSUWK7a29vbRW1traiqqkpqp3kllcrPf/5zAYjddtstbWBbsWKFAMRhhx3WqXab+8I8yUiWLl1qeZ9iCQRCCHHaaacJVVUTBnG//vWvBSD+8Y9/CCEyCwTZ2HnnnUV1dXXSMbNA8M9//jPtmlmzZqXtz2dD7kWbhZlUrCbF1E+qAJIqEBiGIdauXZvQ/CiKIt54441EeV3XxbXXXivcbnda3XvvvbeYNWtW2m/D5/MJQKxatSqtzQ0NDUlan0zan3vvvVfsueee4vrrr0+r4+abbxZ/+ctfxGeffSba29vF6tWrxf/+7/8mNDF33313Unmp+Rg/fnzGvpRCTCZtjGTq1KkCMtsdSW1ZJpuLP/7xjwntoRVyTHn33XeztsOhcBy3QwfWrVvHG2+8QWVlJccff3zieHV1NRMnTuT555/nmWee4cc//nHi3JtvvgnE3Zus/I1PP/30RBkrTjjhhLRjmzdvZsWKFQwZMoR99tkn7byiKIwfP57ly5ezbNky6uvreffdd9m6dSs//OEP6d+/f9o1fr+fUaNG8Y9//IM1a9aw5557Jp0/+uij067ZbbfdgLidgdvttjy3YcOGTrU7Vxuke5X5PsXmnHPO4a9//StPPPEE11xzDY8//jg1NTWW7Ull27Zt/P3vf+fDDz+ksbERXdcBiEajbNu2jYaGBvr06ZN0TZ8+ffjhD3+YVteZZ57J1KlTWbx4MYZhZPRfl8iYA1VVVTnbmc3tcNddd7U8Pnjw4LRjHo+Hu+++O8mVTlVV7rjjDq644grmzp3LG2+8wTvvvMO6dev46KOPmDp1KgsXLuRvf/tbzmcCaGtr49FHH007fv755zNs2LDE39OmTWPatGmWdaTGDhk6dCg33ngjo0ePpr6+nltvvZWLL74Yv9+fsz35EI1G+etf/wrAj370o6LWLZHvk7TdcCg+jkDgwOOPP44QgilTpqQZ+5xzzjk8//zzPPbYY0kCgZyoBgwYYFlnpsE22/m1a9cCsGbNGhRFyXr91q1bk65ZtGiRrWtSBQIrv2zpv53tXDgc7lS7zeyyyy5px8rKytLuU2yOOeYYqqurefzxx5kwYQIfffQRP/vZz3C5sg8LTz75JBdffDGtra0Zy7S0tKQJBAMHDrQsW1FRQWVlJY2NjWzfvp3q6uqs95eGkLKPslGIEZr04VcUhdLSUoYNG8ZJJ51EXV2dZfm6ujouv/xyLr/8cgBWrlzJnXfeycMPP8y8efN48sknOfvss4G4kP3NN99Yvou77LILQojE38cccwwLFy7Mu/1WHH300YwePZqlS5fy9ttvc/jhhwM73mcrw1tJW1sbkL2/X3rpJbZt28aQIUM4+OCDLcvkuleu+5SXlwMkGR87FBdHIHBIBCN67bXX0oK1SGv7N954gy+//DLjoJ4vPp8v7Zi0NK+trU1bRaci2yGv2WOPPRg/fnzWa6wmmmwrNzurOnMb8ml3IfcpNm63m9NOO41Zs2Zx4403AuS0fP/yyy8TniN33303kyZNYuedd06sOMeNG8eSJUuSJrZiI63XW1pauqT+O++8M2PQHTsMHz6chx56iO3bt/Pcc8/xj3/8IyEQjBgxgm+++Yb33nsv5/tabIYMGcLSpUuTtE5SMP/6668tr2lra6OxsZGqqqqsAoHZQykTu+66K++9917Ge8njmcYYKQhWVlZmvIdD53AEgu85y5YtY+XKlUA8itinn35qWU4IweOPP56YOHbaaScg2Q3LTKbj2ZAr5b59+9pe2clrhg0b1mMuSYW0u7dwzjnnMGvWLBYsWMDQoUM56KCDspafP38+kUiEq6++miuuuCLt/Oeff57x2nXr1lkeb25uprGxEb/fb2uwl1EJGxoacpbtSY488kiee+65JK3Qsccey/z583nqqacyqv27Chl9sqSkJHFszz33xOv1smXLFr755ps0rdi7774LwH777Zex3ubm5oRbYjaBYMSIETz//POJOlPJdS/Z/nzcPB3yw4lD8D1HSvZXX301Im5kmvaRPu6yLJBY3Tz33HOWq0G5n5gPu+yyC8OGDePjjz/mk08+sXXNgQceSEVFBa+//nqPTRCFtLtQZNjcWCxWlPrGjRvHiBEjqK6u5sILL8xZXg7KVtscb7zxBps2bcp47bZt23jllVfSjj/11FMAjB07Fk3TcrZh7733xuVysXr16pxlu5JcWhApXJsn2fPPP5/q6mrefPPNpN9TV7Nlyxb+/e9/A3DAAQckjvv9fo488kggHs46lblz5wIk2RZZlQmFQowfPz5hY2OFDOH8wgsvpG2Fbdq0iX//+99UVVVl1JysWrUKr9fL8OHDM97DoXM4AsH3GF3XefLJJwGyBng55JBD2HnnnVm5ciXLli0D4qufIUOGsHr1an7zm98klX/kkUcSg0++3HzzzRiGwSmnnMLy5cvTzm/bto0//vGPib+9Xi/XXnstLS0tnHzyyZYr1G+++SYpR0NXkG+7C0XuYxdzMly+fDlbt27luuuuy1lWGjs+9thjiT1fiPfxpZdemvP6q6++OilI0xdffJEwhLvssststbekpIT999+fDRs28M0339i6pisYN24cc+bMSeoHyYsvvsgDDzwAJAf8KS0tZc6cOSiKwgUXXMBvf/tby6Q+X3/9dUYt23333cewYcO44YYbko4vXryYefPmJQw8JWvXruWkk06ira2NE044IU2Yu+qqqwD41a9+xZo1axLHlyxZwuzZs6msrOSiiy7K2A9SsMllTHjQQQcxfvx4Nm/enPSuxWIxfvrTnxKNRrn88svTDHkhHiBs27ZtHHTQQZbbjQ5FomecGxx6A/PnzxeAGDp0aM6yV111lQDEFVdckThmDkw0YsQIceaZZ4qDDjpIKIoiLrvsMksXIun6ls2V7cYbb0z45x9wwAHi1FNPFVOmTBH777+/0DRNVFRUJJXXdT0RH8Dj8YiDDz5YnHHGGeLkk08We++9t1AURYwYMSLpmmwhXmXQHqu46kLEXdoGDhzY6Xbn6gur+3zzzTfC5/MJTdPEMcccIy688EJx0UUXWbqxpZLqdpgLK7fDcDgs9t57bwHxfBennHKKmDRpkggEAmLcuHGJYFbmfjUHJjrggAMSgYmOP/74xPtzzjnn2GqT5NZbbxWAeOyxxyzPY4qDkemTGuMhWxwCK2R+A5/PJ8aNGyfOOOMMceKJJ4phw4Yl7n/ppZdaXvvss8+K8vLyRCyMo446Spx55pniuOOOEyNGjBCqqgpAHHzwwWl5EjLFIZDvbW1trZg4caI466yzxPjx4xOujnvvvbdl3gchhLjiiisEIAKBgDjxxBPFscceK1wul9A0LWt8iK+++kqoqio8Ho9oaGjI2WeffPKJqK6uFhAP8nT66acnAjyNGzfOMq+DEDtim/zf//1fzns4FI4jEHyPkdH9Mk18Zt555x0B8Tjk5ljjy5cvF8cdd5woLy8XJSUlYvz48eKll14Sjz32mADSfKXtCARCCPH666+LU089VdTV1Qm32y2qq6vFfvvtJ6ZNmyZef/11y2uef/55MWnSJFFTUyPcbreoqakRo0aNEtdee61YtmxZUtmuEAjybXchAoEQQixcuFCMHz9elJaWJiYeO7ECiiEQCBH3l586daoYNGiQ8Hq9YrfddhPXXXedaGtrs+xXKRAcdthhorGxUfz0pz8VdXV1wuPxiD333FPceeedIhaL2WqTZN26dULTNDFx4kTL87Jfsn1ShcR8BYIVK1aIO+64Qxx99NFi9913F4FAQHi9XrHrrruKKVOmiPnz52e9ftu2beJ///d/xfjx40Xfvn2Fy+US5eXlYp999hE//vGPxcsvv2wZATGTQPDxxx+LqVOnigMOOED069dPuFwuUVFRIcaMGSNmzpyZFq0zlTlz5ohRo0aJQCAgKisrxTHHHCPefPPNrNfccccdAhAnnXRS1nJm1q1bJ84//3xRW1srPB6P2GOPPcTNN9+cNeDQkUce6eQy6AYUIbrQHNjhe8ull17K7Nmzeeqppzj99NN7ujkOPcjatWsZPHgwhx12WF45F3Jx0kkn8eKLL/LVV19RW1tbtHodehdff/01AwcOZMqUKTz99NM93ZzvNI4NgUPBNDQ0JHzwzTz99NP86U9/orKykuOOO677G+bwveCXv/wlhmFw55139nRTHLqQ3/72t6iqmhZ0yaH4OG6HDgXzySefMHbsWPbbb7+EdfHKlStZvXo1mqYxe/bsJBcnB4diss8++3Deeecxa9Ysrr322oQ7osN3hw0bNvDggw/yk5/8JC2Qk0PxcbYMHApm8+bN3Hbbbbz66qusX7+etrY2+vbty7hx47j66qsZO3ZsTzfRoRfQVVsGDg4OxcURCBwcHBwcHBwcGwIHBwcHBwcHRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgeH7z233noriqL0dDMcHBx6GEcgcHDoJh555BEURUn61NTUcMQRR/DSSy/1dPNysnr1an7+858zbtw4fD4fiqKwdu3anm6Wg4NDkXD1dAMcHL5v3HbbbQwePBghBJs2beKRRx5h4sSJvPDCCxx33HE93byMLFmyhN///vfstddeDB8+nOXLl/d0kxwcHIqIIxA4OHQzxx57LKNHj078fdFFF9G/f3+efPLJXi0QnHDCCTQ2NlJWVsadd97pCAQODt8xnC0DB4ceprKyEr/fj8uVLJ/feeedjBs3jurqavx+P6NGjWLu3Llp1yuKwrRp05g3bx777LMPXq+XvffemwULFqSV/c9//sOBBx6Iz+dj9913Z/bs2bbb2adPH8rKyvJ/QAcHh28FjobAwaGbaWpqYuvWrQgh2Lx5M/feey+tra2cc845SeXuueceTjjhBM4++2wikQhPPfUUp556Ki+++CKTJk1KKvuf//yHZ599lp/+9KeUlZXx+9//nlNOOYV169ZRXV0NwAcffMDRRx9Nv379uPXWW4nFYkyfPp3+/ft327M7ODj0XhyBwMGhm5kwYULS316vl4cffpgf/vCHScc/+eQT/H5/4u9p06ZxwAEHcNddd6UJBCtXruTjjz9m9913B+CII45gxIgRPPnkk0ybNg2AW265BSEE//73v9l1110BOOWUU9h3332L/owODg7fPhyBwMGhm7n//vsZOnQoAJs2beKxxx7jxz/+MWVlZZx88smJcmZhYPv27ei6ziGHHMKTTz6ZVueECRMSwgDAfvvtR3l5OZ9//jkAuq6zcOFCJk+enBAGAIYPH059fT3z588v+nM6ODh8u3AEAgeHbuaggw5KMio888wz2X///Zk2bRrHHXccHo8HgBdffJFf/epXLF++nHA4nChvFTPAPMlLqqqq2L59OwBbtmwhGAwyZMiQtHJ77rmnIxA4ODg4RoUODj2NqqocccQRbNiwgTVr1gDw73//mxNOOAGfz8cf/vAH5s+fz6JFizjrrLMQQqTVoWmaZd1WZR0cHByscDQEDg69gFgsBkBraysAf/vb3/D5fCxcuBCv15soN2fOnILq79evH36/PyFwmFm9enVBdTo4OHy3cDQEDg49TDQa5Z///Ccej4fhw4cD8RW/oijoup4ot3btWubNm1fQPTRNo76+nnnz5rFu3brE8ZUrV7Jw4cJOtd/BweG7gaMhcHDoZl566SVWrVoFwObNm3niiSdYs2YN119/PeXl5QBMmjSJu+66i2OOOYazzjqLzZs3c//997PHHnvw/vvvF3TfGTNmsGDBAg455BB++tOfEovFuPfee9l7771t1dnU1MS9994LwJtvvgnAfffdR2VlJZWVlQlvBgcHh28njkDg4NDN3HLLLYl/+3w+hg0bxqxZs7jkkksSx4888kgeeugh/u///o8rr7ySwYMHc8cdd7B27dqCBYL99tuPhQsXctVVV3HLLbewyy67MGPGDDZs2GCrzu3bt3PzzTcnHZs5cyYAAwcOdAQCB4dvOYpwrI4cHBwcHBy+9zg2BA4ODg4ODg6OQODg4ODg4ODgCAQODg4ODg4OOAKBg4ODg4ODA45A4ODg4ODg4IAjEDg4ODg4ODjgxCHoVgzDYP369ZSVlVkmqHFwcHD4tiGEoKWlhbq6OlTVWWN+m3EEgm5k/fr1DBgwoKeb4eDg4FB0vvrqK3bZZZeeboZDJ3AEgm6krKwMgB8wkeYLf0Cfh9+2LPfcJx9w0tB986r7uU8+SDuWbx2S5rm7Uz7lM5rn7s4r+81LOnfU+5Mpn/JZ0rGGCw/O+CzZ2mqnfXbqztRfmY5nq7N57u7E5vfNeN58bT7PUch3Kvs/9brUNmSrN/W9kGUzHc/3u7S630lD981YT8OFB6cde/36PyX+fdT7k9POW/VBKvKdtdu+QsnVP8V6t+22s7PPY34PMtWT7Zme++QDmlsNBh6wNjG+OXx76VH9zqBBg1AUJe1z2WWXAbBx40Z+9KMfUVtbS0lJCQcccAB/+9vfkupoaGjg7LPPpry8nMrKSi666KJExjjJ+++/zyGHHILP52PAgAH85je/SWvLM888w7Bhw/D5fOy7775p+eGFENxyyy3stNNO+P1+JkyYYJk5Lhtym8CFm5o57+JS3JafU/c8gFc2fJz0yVTWpbhpe2kvysu0tE/bS3tlvc78Md9DK/HS9tJevDP+hbQ6+5y6Lum6pksPQ/P4bN9HPt+pex5gq301c96l6dLDcj67VR+Vl2lpbXUp7qzt7XPqOmrmvJuxz+X39sqGjxN9YueZZRuzfZ+pz9nn1HWUl2lpx83ty3X/1O9P3v/UPQ9IHDt1zwMS98/27HbeIfm9vve/cyzPv/e/c9I+5vZpJd60j50+fmf8C7bfvWzvUq7rrd4d+f3k+05kGgNkP9qp4+jPTi/ouzJfn6vN8l2x+h2euucBlJeqSeObw7eXHhUI3nnnHTZs2JD4LFq0CIBTTz0VgHPPPZfVq1fz97//nQ8++ICTTz6Z0047jffeey9Rx9lnn81HH33EokWLePHFF3njjTe4+OKLE+ebm5s5+uijGThwIMuWLeO3v/0tt956Kw8++GCizOLFiznzzDO56KKLeO+995g8eTKTJ0/mww8/TJT5zW9+w+9//3seeOAB3n77bUpKSqivrycUCnVJ34xZPoX6uhGJvxeuX8HC9SuSyshjb42cm3RcXpd63Iptl4xj4foVjFk+hab5QxL1WV1rbo9k6fRZVM9ebOuZUqmYaE+gSq1/2yXj2HbJuEQdVu2CeHtT+ywVWU++58csn5L4d657yLbIj7xm4foVNM0fkigjn9N8rL5uBEunz7Ksr2n+kKR2pLY3W7usztn5Hs31y+9B1mV+71K/k4XrVzB6xtTEZ8zyKYmP7Jcxy6ekvXfyb3nfTN+Hne8613k776PVd1E9e3HW9yjXO5Yv5vrs/oaKgdWzO3y36FGBoF+/ftTW1iY+L774IrvvvjuHHXYYEJ+of/azn3HQQQex2267cdNNN1FZWcmyZcuAeOrWBQsW8Kc//YmDDz6YH/zgB9x777089dRTrF+/HoDHH3+cSCTCww8/zN57780ZZ5zB5Zdfzl133ZVoxz333MMxxxzDNddcw/Dhw/nlL3/JAQccwH333QfEtQN33303N910EyeeeCL77bcff/7zn1m/fn1B6Wit1KZygjBP8vKHnzr5pAoH5kFVDsTymlyDYPXsxYmB2EoIMA/aVm3uTmR/VM9enDZ5yQnBTpvMA7isx3ydnTpS+8rOoN80fwhN84ckJj9Zj7ndTfOHWH4P5jaZBYbUsuZBO1VYKAbmfpffQ+q7kUkYkO1znbgl6bz5eayQ9WXr44XrV2QUDDO1y4pcbcmEuV9S71OowJztXrIvcr2ruZ7HrkCRqe8K7S+H3kmvMQmNRCI89thjXHjhhQnV07hx43j66adpaGjAMAyeeuopQqEQhx9+OABLliyhsrKS0aNHJ+qZMGECqqry9ttvJ8oceuiheDyeRJn6+npWr17N9u3bE2UmTJiQ1J76+nqWLFkCwBdffMHGjRuTylRUVHDwwQcnylgRDodpbm5O+qQiJwPzhC4H8qXTZ1FfN4KKiWssB3dZ3upHneuHLicnKw0D7BAyKiauyViXWehomj+k6CuhVHINrFaDlnnlKAfSbZeMs1ztpK7M5TWyn8x9lopVfanlKiauSQgAmSZ9edzqPmZh0Vw2VUi0+l6zTYYL169I0rpkan++yHol2VaYsu9T33OpuZLCR6GTq92Jy45WLRN2hfBs2BFsio1dwXHM8ilpz9aZ/nLoffQao8J58+bR2NjI+eefnzj217/+ldNPP53q6mpcLheBQIDnnnuOPfbYA4jbGNTU1CTV43K56NOnDxs3bkyUGTx4cFKZ/v37J85VVVWxcePGxDFzGXMd5uusylhx++23M2PGjLTjfR5+m4UbPgasB+qKiWtgfccPdT6JSbmezg0UTfOHUDFxTceP2nrQku2pIPfKIXUwcJ24BWbHV3K5Bm45QHeHytMsFNTXdRycnj5wvzVyLqxPbl/iOLkHP/ncVtoGs+bGziBqnuzzJdMWktXKXSIn6zEnTgFWJLaR5Htg5ztNpb5uBNUshumm+rNMPm+NnJt03mrrIdu9svHWyLm2fj+d0TIUY3I093k2Ut+zTNj5fcnxJvGdZ7hGlusJdF0nGo32zM2/5bjdbjRNs1W21wgEDz30EMceeyx1dXWJYzfffDONjY28/PLL9O3bl3nz5nHaaafx73//m333Ldyytru44YYbuOqqqxJ/Nzc3M2DAgI4tg49tDXZ2ftByok/FrEavrxsRH3Dnxwf81HJ2kROlHPzkXnbib0bYmjhkezO1PV/ME5bV5JW6pZBrz7mQwX3p9Fkw3frcjnslCwh2J3w7e+SZrsunTvNzmwWk+jq6HTk5FusdyUWxVufdtcIv9J3Ihh3BqRDhsFCEEGzcuJHGxsZuud93lcrKSmpra3MafvYKgeDLL7/k5Zdf5tlnn00c++yzz7jvvvv48MMP2XvvvQEYMWIE//73v7n//vt54IEHqK2tZfPmzUl1xWIxGhoaqK2tBaC2tpZNmzYllZF/5ypjPi+P7bTTTkllRo4cmfG5vF4vXq/X8lwxhQE50WdTEUvpX5aR/7Y7eKWu6M2Dhlw5FDIQmp+xMwOyHKDq60bgmr+FhdPT60o16Mt0rjtJbWOqDUGydiPZyDRXvXaNHbvrme2qps3Cpl26U9XelffqTiNBM+b3INvz1deNgEu6r11SGKipqSEQCDieDHkihKC9vT0xT5rnLyt6hUAwZ84campqmDRpUuJYe3s7QFrkK03TMAwDgLFjx9LY2MiyZcsYNWoUAK+++iqGYXDwwQcnyvzP//wP0WgUt9sNwKJFi9hzzz2pqqpKlHnllVe48sorE/dZtGgRY8eOBWDw4MHU1tbyyiuvJASA5uZm3n77baZOnZr38/Z5+G1Q3BnP5zPgyEm9gh1bCk3zh/DW+vTJ3jzQVrCG0ZdMjat0bWBnoOrsykEOSqNnTO1UPZlUm5kmPnM/Fct4MtNEm+t7rZi4JiHc5Vrdm9tm/jvTFoHdtloJR7nUyYVgpYUxHzNrVeS7nekdK4ZBYWcm+bjAXBzBKp/fv90thlxsu2Qc9XX23vWl02cxms79Ru2g63pCGKiuru7Se32X8fv9AGzevJmampqs2wc9blRoGAZz5szhvPPOw+XaIZ8MGzaMPfbYg0suuYT//ve/fPbZZ8ycOZNFixYxefJkAIYPH84xxxzDT37yE/773//y5ptvMm3aNM4444zE1sNZZ52Fx+Phoosu4qOPPuLpp5/mnnvuSVLlX3HFFSxYsICZM2eyatUqbr31VpYuXcq0adOAuH/tlVdeya9+9auEC+S5555LXV1doi1djZVRVKaBQ7riyUFcYvZCyEY+xoFmY7Sl02elGbjla2hYXzfC9v6oXex6H+RDJgNGcx/X141IWNdnusaKVGEgl2CQ+h2nYuWZkqvtVhQqDFi5weazJSON2RauX2E5CdkxGLT7/Rf6ntjtm1y/h3yt9ismrum0pb+VkJWtH8Ysn5KwCelKrYy0GQgEAl12j+8Lsg9z2WH0uEDw8ssvs27dOi688MKk4263m/nz59OvXz+OP/74hKvfo48+ysSJExPlHn/8cYYNG8ZRRx3FxIkT+cEPfpAUY6CiooJ//vOffPHFF4waNYpf/OIX3HLLLUmxCsaNG8cTTzzBgw8+yIgRI5g7dy7z5s1jn332SZS59tpr+dnPfsbFF1/MgQceSGtrKwsWLMDn83W6D8wDdqYft7QszwdpN2BXEAB7q3yzEGB2PbOa/ApdRRRjoLEjCBRyH6sVeKZ6ZN/kc59825Q6GUkvA/kZPWNqog3ZPCUyYf5eO0uqe6udbYRcWwjF1Fp05r2zujZVAMj1eyjkWTorFKS6TOZy80xtY2ciJdrB2SboPHb7UBFCiC5ui0MHzc3NVFRUcDgn4jJtGaQaTVmt/O2ou81kmtiLaRBkNdhZ7XcXStP8IcSe75e1vanxBMDe/rosl6udSQaTGcraqceuGrjQ783czmyqfbMnhJ02Szq7jZPafvP9k71fspPPtoX5d5WPGj5X2WznrbZe8qUQG4Vi2zXk+h2b7xcTUV7jeZqamigvLy9aG0KhEF988QWDBw8uysLr+4zdvuxxDYFDOplWZGa1bq5VZ6bBu7PCgJV2IJVirSgrJq5J812X90/dqrCLXVU8xAe92PP98l7h57pvNjJtl+T63pLsQ2xMmGa7Aav4A1ZtsFox2t0SyiTkwI4Vrtz+SP2YkZqyXIF5zAZyqcdykc34NNfEK891NihUZ7a47AYtstuOTLYw3W2A+21g7dq1KIrC8uXLAXjttddQFOVb4yXRK4wKHZKRAXRkYKLe9MOzGtiLaVxkteLPeW565gh/kkwr3Gwr7/q6EbaNLnuSTKu5XFqFfLwWEnvGs4sXhU8apwEsHTmLeqyFmXpGpMWF2HFtbtfRQn8/Vr+9XEZ80rjQbtyDbPfuLMXY/pC/q0yC0LZLxlHxwOsF36cznH/++Tz66KNpx+vr61mwYEEPtCidcePGsWHDBioqKnq6KbZwNAS9AKtBUIYUliun+roRXR4JsBiMnjG1UzHPs0Wjy3YumzBQyMCYjxGaXY2InTrzVf1mU+3anazNdg75aHeK8T4unT4r8b5ks6Ex/0bMkTzNyGvN/Zy6Uu+sgWmx7BWKHfLXrNWQxr3FIFeukOrZiy0zrXYXxxxzTFI+nA0bNvDkk0/2WHtS8Xg8tvz/ewuOQNCDSAOvTKQOPt0VDKQzdHafOR+yTSCQbCCV7xaK1Wrb6v7FtrLOR9Us719MYbF69uKEUFDotlQucgWEkr+L1I9ETlLmSXDbJePS7BDMfVmoCl8aYtppe+p12eiqeAPyOYv5Xpq3IKx+b11tVJgNr9eblA+ntrY24U6uKAp/+tOfOOmkkwgEAgwZMoS///3vSdd/9NFHHHfccZSXl1NWVsYhhxzCZ5/F02gbhsFtt93GLrvsgtfrZeTIkWmah//+97/sv//++Hw+Ro8enZR4D9K3DB555BEqKytZuHAhw4cPp7S0NCHUSGKxGJdffjmVlZVUV1dz3XXXcd555yV5tM2dO5d9990Xv99PdXU1EyZMoK2trdP96QgEPcAflt8G7AhJ3NvprgQmmSaYVKt58yovk2bAzgSQaRLtyS0au+9DV7bRnLAo7p++Y3JJzXCYL5n2o833sJulU14rtVKZtDXyXcg3Q6W5PXYFLrvbFF31m7J6fwoRFs3ZJc2/SymwfVuYMWMGp512Gu+//z4TJ07k7LPPpqGhAYBvvvmGQw89FK/Xy6uvvsqyZcu48MILicViQDzp3cyZM7nzzjt5//33qa+v54QTTkikvW9tbeW4445jr732YtmyZdx6661cffXVOdvU3t7OnXfeyV/+8hfeeOMN1q1bl3TdHXfcweOPP86cOXN48803aW5uTkqit2HDBs4880wuvPBCVq5cyWuvvcbJJ59MMfwDHC+DbkR6GXy26iMuGZ4hxm2BPNtwPyf3uaxbcwRkopieBoVMPJ0JoNOVUegKDcGbr4dJIeSyN7BqQ76eB3bryOUDXzFxTU7vktS+scpNUUxLfqs8Ftnew1yeCp35bjt7fbZ3weq33VNeBueffz6PPfZY2rkbb7yRG2+8EUVRuOmmm/jlL38JQFtbG6Wlpbz00kscc8wx3HjjjTz11FOsXr06EbTOzM4778xll13GjTfemDh20EEHceCBB3L//ffz4IMPcuONN/L1118n2vDAAw8wdepU3nvvPUaOHMlrr73GEUccwfbt26msrOSRRx7hggsu4NNPP2X33XcH4A9/+AO33XZbIi9ObW0tV199dUJI0HWd3Xbbjf3335958+bx7rvvMmrUKNauXcvAgQOL0pcSR0PQA3h8Hh77+k4A7lxpb8/2iQ0zk/6eu+33/G3bfTzbcD/PNtwPxIUCqXWwUrWayZW/vVAVdE8LA9A5YagrA61YtSvXaiu1P+14mOSLne+6O20L5PNZaXly2YqkpuqWvwErGwQr8g3KJZFZMc3Enu9nuy672F2dd+Y7yCYMmI0NewNHHHEEy5cvT/pceumlifP77bdf4t8lJSWUl5cnwvguX76cQw45xFIYaG5uZv369YwfPz7p+Pjx41m5ciUAK1euZL/99kuaYGV022wEAoGEMADxcMKyTU1NTWzatImDDjoocV7TtEQkXoiH8D/qqKPYd999OfXUU/njH/+YyNzbWRwvgx4gZuiEo2387tOfEmqJ8OtlF+GrcKEkwjQnK20UVNrDbczdei8GMVRFQ0G1NFSRmoLUuAaQbDU9ekbmASNbkqDOsu2ScbhO3JJVtVmoUaJ8vmyeCrnalnqN1bFCVvrZokpmqq9p/hDGLN9xriuEFbvfcfXsxWmJm2Qyp9R25dPv2cLgpmb4NFu8W72/2y4ZB89D0/z0YD12I33a9cpILRv/XSXHbZBtkl5DqQGAUtsuy2XznJB2ErlcH5euL154YenxNHrGjlDn5sRXR+20V6fvUSglJSWJ7LdWpE72iqIkQt/LkL7djVWb8lHUa5rGokWLWLx4Mf/85z+59957+Z//+R/efvvttMy++eJoCHqA1vZmQkYTqAaeUg0hINKuIzpeVDBP9AoBTwUl/lLC4Sia4s4oDEjMWgNI3qOV/106fVbOVcSOAco+8l6ZfLiXTp+VMepioYOXeVVYaITETGFxM01U+ZJpAM8mXHSHjUk+/ZQrWE+hyP1/8761/K/ZZsSsHTALranISdPcd51NTZxquyLvbceews5vyOwZMHrG1B71KEqN8yFtSswJxL4L7Lfffvz73/+2DOdbXl5OXV0db775ZtLxN998k732igtAw4cP5/333ycUCiXOv/XWW51qU0VFBf379+edd95JHNN1nXfffTepnKIojB8/nhkzZvDee+/h8Xh47rnnOnVvcASCHsGjedH0AAgFVVXwV7lweTSiQYERMwsFCiWeCip9/fG4PGgujVA4ghDYkijNQoGZfCZNKRQUMuCb1cxW10urZbPRYL7agdRAPJlW+Xbq6QryVa12lSo2l0dLKuYJQX5PdoIAWQUEkuTqYzkpmv+bDbNQYKUVyvW8nQ0nXT17Ma4Tt+S8VrpWpr6HZoFHYqe+fCJM5oPsR9mHubQlvUEwCIfDbNy4MemzdetWW9dOmzaN5uZmzjjjDJYuXcqaNWv4y1/+wurVqwG45ppruOOOO3j66adZvXo1119/PcuXL+eKK64A4nlyFEXhJz/5CR9//DHz58/nzjvv7PQz/exnP+P222/n+eefZ/Xq1VxxxRVs3749sQh8++23+fWvf83SpUtZt24dzz77LFu2bGH48OGdvrezZdADBIM6/pJSNAV0tQUFA9Ut0KOCtq1RAtUeXG6NgLucSl8tmuJCURTcrniWqnA4gtfrAURWTUE2oUGu4u38qKW6OB/7AKm2TFUzp5LPys1s+Z5psFo6fVYieI4sZ6WyNdOd+d3NWGkHukojkG+8e/NkW19HIpumua9yCQhdhXkf28WWhJFhrnZJCtUWpGq+ZApxaZMg681kb2F+N6HDxZPkuB1mu4Ou2rKz44KbLTCY+fyY5VP45ydPUzW0qM20zYIFC9JS+u65556sWrUq57XV1dW8+uqrXHPNNRx22GFomsbIkSMTdgOXX345TU1N/OIXv2Dz5s3stdde/P3vf2fIkPjvqLS0lBdeeIFLL72U/fffn7322os77riDU045pVPPdN1117Fx40bOPfdcNE3j4osvpr6+PpGlsLy8nDfeeIO7776b5uZmBg4cyMyZMzn22GM7dV9wvAy6FellsGzZMkpLSxEYGGo7utYEGAgEsZBA6FBWVkF1aR0u1Z006QshiMV0YjEdr9eDqloLBEIIwuEoiqrgcbs4pTqeuTFbTHkrUi23Uwdbq2uzDcj5Rl40D7p2Jsuu9BIoNtm2C+RzmNXIvS0OhZ3vMd/3IxeyH6yEG6skT2ZSkyoVInzJ/XRZh3w3U4UM8/dlft5Mx+W5VMzfufm3a/XuWAlFqS6jhbxDua57ZvW7VA393Mll0EUYhsHw4cM57bTTEh4T+eJ4GXwLUFBRjRI0vRJQUVBw+zUqKqrwRCqItOnp1ygKLpeGy6URiUQxLOQ5IQThSBS1QxjAMHj0zbiaS66WzX7c+az0slmA54oCl3qvbGpHeU4GoTG7mmWjmJn5Oktn1P+pwYGkS1tnPEA626ZUzB4PVt+lWaNjdV1nSE2lnG3Vb5VhMZfwYN5HN7/XUqVvjm1gJVjIcqm/B7OtQGrgpFyTtd3z5tgR5u2ebHYXnblvTwYm+i7y5Zdf8sc//pFPPvmEDz74gKlTp/LFF19w1llndfm9HQ1BNyI1BB+8vxyPd4eFq0BgqG0YrhYCnjIqfTWImErz1hb8pT78Zb60rQEhBMFwEN0wKPGVoKpK3DdBCgOKgtvtQkGh7fO1bFnyX1yBAJf/+KW0dsmALnZ9uiW58gekIldScrKzst4v1Eccep92IJc3QqFxCXryWrvk635qXnkXQrZJPvUdzeX/n0moNWsnrLx4ZDtgh7YiXwFZYsdTJldcBDDloDAJCKn36ixOtsPi8tVXX3HGGWfw4YcfIoRgn3324f/+7/849NBDC67Tbl86AkE3kghMtOZjdBH3LtiBwBeA8kApqhI37TB0g3AwhqKA1+9G1VSEEAgM2qPNtIS3Yegqld5a/F4/igLhcFwz4HbH7Q4QEGnYTutna9FDES6Z/GfLtlkNFHYGj1ShINf2gx07gGz0RluAQuis8FMMulKAslKHF+L5YZdMAoFdYSDbNan3eWvkXMvfiVkYyCfEcTahoLMCAewQClLzjHQmgJcZRyDo/ThbBr0YTdNwdRiISHxeD+X+CtQOA0JFUVA1DX+JBz2qs31zE7FofAuhNbKd7cENxIwIpb5y3JqLUDhCKBxBMQsDAAq4+1RRtt8+qFX909oi1aLmFUQu1b8Z84CSbeWVOnhlcmlMdT3raey0o5C2Zksa0510lQFg6raAHTdXqzryyUGQazvETl2pE2TqFlS20MTSTTSfPpW/i9QVPOR2+82muZOYBYBUD4ZvQ9h0h+7FEQh6gHZ1O74SBZcW736f1015qR9VVZK2BpS45yElFX68Pg/tLSEM3SCmRwCo8NZQ5u2D2+3GpanEYnrCE0EihCDYGiIcihLoU5rWFnMGQau94EInrc5O6PkmI+oKervGobOTeXcIJJ0VCjoTP6Bi4pokISDX9k0mMtml5NP/2Wxb5D6/bGuqUJANq1gfb42cS/XsxWlbMKl9WSxhsOHCg4tSj0PP4wgEPYBOFNVjUF7mpyTgtRQGJIqioKgKJZUB/CVe2pqD6GEo9/aj1NsHhfh1brcLn9dDOBKNbyt0fNpbQrQ2tuELeHAHvJ1ue6YBPXXAK3QiTbWqtoMczO3cM58JqZDATN2JVQAoc3t7S9vN70Zn7ASykUlwkEJALmNTWS5VMDCr263qSO37TIa4uZ470/ZRPt+h+d5mASMbhRqZpgYvcvhu4AgEPUCFUoNPKcXjdlFW4ssoDJhRFAWXR8PjcyPaPLhjpQlhIHHeFd+KiERiICAajiEMQZ/aCjS3Bi57YSey2Q5kSkSTbV8/U125sDPB5zugSWv9TJHnupNirNDq60YkTVT5CGLbLhmXdaI0BybKF6s9bElXxynIhJ37WmkRlk6fldCkZeuvTJO+latupjwN2y4Zl3Qu1/c5ZvmUrFt82YSC1ERR+SD7o3r2Yvo8/Hbe1zv0ThyBoAcwdAgFo/GJG3IKAxJFUfD6PVTVVCJ0iISiCCOuCTCMuIWiy6UBgqaGFsLBCIEyH5pLi8fLznEf88CSbxS3TINKV6rcpbV3vnuhqa5y5iiJ5hC6kD1EbmfJxwLfajUmj5ld2cxk63uzVb9VxDx5fdP8IbbbmSniXq6Vdab25Rvt0EpLkCow5hs7wZyTQPZ/MVxbpQ1J6oS9dPosYs/3s23HY2WLkmosaCUUSONI83ufj+2Qw3cTRyDoAdrbQyiKQiQaJRSO5gxDLIRA1w10PR7W2OXW8Jd6ibRHaNrWQiQSo6mlnda2ELpuEA3GCLaG8Zf6UDU1HgTZiKKIdlvtK/ZqPpMrVz7Cgp1ANIViFg6kJbY5nHJvyOxmtvVIPWZlkAaZJ1UzMqyuJHViyLWHb7WHLfexZb/lWjnLcnZDWJvzVmQzPDR7DKQ+Yy4Bz7xFYHaTLbaAm2rnkNpWO6RuD8hnzvb7yHbOEQy+vzihi3sAv9+Lz+tGeFy0tYcICfD53JaaAiEEuiFoaQ0CUFbiQ9NUFFUhUBmgaUsz2zY3gacjrHEwQsDrprLagxrbjhpqhnAjih7mtOGPWbbHvFrMRxiID+SdGzjsGu51l0V09ezF1M8ekQjVKyc3RpIUdjYfsj2jnRDS+W4DgJxU0r+bhHDzfLobWiqyXWa/e6vAUpkmj/hKd0c4X7ldk3oPWNGROc/+u2Tur4qJaxKZ9+y6UpqzLFqp9HPZspj7LtOz5YNVtEPIL25ApjoKpStiFnQlm9dtoWlrS7fdr6JvGTW7Fj/FdU/iCAQ9gEvTEq6FJQEfrW0hCAl8Pg8AMd1AVeKJj4wOYSAUjmfkcrs0SgJeFEVB0xTKq8vQG1oItYeJBVvxBaIE1CiKiEHMBy4/lO6C4SrhmY13cWrtVent6VDv5vPDTwzkNsk08fVmK35IDuiSabLJlSuhu7Ca4EfPmBrPKdHBmOVDEgKOHdW3/J7HzJcrUKsJ3RqzkCnT5naG0TOmwiXW74xZMJHfU67JUaZvTiX1e146fVZWl1mzl04hQkEivTXZo4amvnuZAi+Zz2XKYfFd0wBsXreF84ddQTSUnrmwq3D73Dyy6p68hYL777+f3/72t2zcuJERI0Zw7733ctBBB2Us/8wzz3DzzTezdu1ahgwZwh133MHEiRM723xLnC2DHsCsCVBVldISH9FYjFAoQjgSpbGpjebWILohCIYi8ZwECng9bnze5FzamkulvMyF1r6eft7N9KnyoJTtiuizD6JyGEbZIAxfDcJVguLyWLYnNdBKLuQAI1XsdqyNu3sAKvaev5VLWG9BtslqtZ/N9Swf1bRVeOB89+PtkC0UsjlrYD7vW2f2/HNpHEbPmJo04XZmNW3XM0CWzZd8YjqYsbPF0tM0bW3pVmEAIBqK5q2RePrpp7nqqquYPn067777LiNGjKC+vp7Nmzdbll+8eDFnnnkmF110Ee+99x6TJ09m8uTJfPjhh8V4hDQcgaAXEBcKAkSiMRqb24npBuFIlGg0hs/rprTER2V5CRVl/vh2QYdAIYQg1roNY9sa+tVVUzpoFFQMRngqQHV3BDIw30fhiReSB8eF61fkHChSB4NUAaIr9lY7S1fs9abGh+/K+/UUxVQPFyIMZCPV9c9qksokSOSLVb4BM64Tt1BfNyLJeDJbimhz+1LZdsm4hL1DNq2GHU8Cc+bF1PwNndlOyGS46pAfd911Fz/5yU+44IIL2GuvvXjggQcIBAI8/PDDluXvuecejjnmGK655hqGDx/OL3/5Sw444ADuu+++LmmfIxD0ElRVoaw0EE9GhCDg8+L1uNA0lZLAjn8nhAFDJ7jla9q2rMdbswfuygGgeYDMngRCCIxgJPG3XP3YcT0yu6Dl4xZlprv2Iu0MzIUin8FsNNeT5HIdLAQ731Nq8Koxy6dkXd2by6YaBeYqL5Hv2tLps3CduCXt3ZMq+2J9Lwn7kRRk/fK8tNbPNeFmEi6qZy9OSnucq02Z6raqP9u2QiYyxVzIdn+H3EQiEZYtW8aECRMSx1RVZcKECSxZssTymiVLliSVB6ivr89YvrM4NgQ9jNnDQFUVKstLaG5px+1SE3YGKRcg9CiR7WvRI4KyXfZE9dgLOCRiOnqjtYor28RuTqlaXxc3uMsnDn5XxsyXyD18udLKtN9aDONEaWj31si5jL6k82mJ7RgWmklOwZsce18O5JmMRLMN6KNnTE3a6890rSyXHBhpBfXs0KDkehY7z2p+TmkLUV9HwujTKkmTfD/ryWwMaRezx4mZQlbauTIsLh2ZnxYjk22AFfkKA7k0Kt3xe/4usnXrVnRdp3//5BDy/fv3Z9WqVZbXbNy40bL8xo0bu6SNjoagB4mnKY7RFowgRPxvVVUoLwsQ1fVE1EHTBcRC7bR8/QmoXkrr9kCzKQwAiHAMpSMfgtV+ZS4tQVcPAp2Juicn5Uz2EOZ4BZncqvLZJ5XuYnZUqXYiHuazv2sesK0Ge7MrohWpfvZyhW4WbKyul+XM989ULl+s+ke2R1rxm+uVApl5Uky1LTB/33a3I8yfYkVVHD1jqqUgKt9Jc0yCQvf5JanvQzZhwPysEiujVIfvD45A0APIsMKhcJTm1iCtbUHaguGOc3FNQUnARyQS3SEUCEEs2EjL+k9xl9fg6TMARdVy3GkHenuIpg8+ItonLkC8NXJu2iCVK5BNIeSzmkhN8tJV+/Jmdznz9kK+E0CqXUFnyDeNdCbsTNYL169I0ySYyVd4yabyt4tVBMxs34vsL3O/ZQoiZd6ikJOuOcaA1aS3dPqsxHHzPQrRDuTzHlvFJbCiM9siuYQAiRQSrfqntxsZ9kb69u2Lpmls2rQp6fimTZuora21vKa2tjav8p3FEQh6gNb2EO3BCC2toUSwIQWICRDENQKqolIS8BMORwmHI0SbviG87SvKdhqMr6ofimL/qxO6wfZ3V9D86adcdOYTBbU5dVCzO2h1ZqLo6v1KaT/R2cnMLBRki9hYaFx6+bc56E827Gh6cmkRstGVMSGstDep7TTbTVjl0Mg2Acu2p0505klR/jtVE2NHGEi1ixizfIrt7122LZdQkEkYyNU+s+Bm9YxW5SC9r+R1jlCQHx6Ph1GjRvHKK68kjhmGwSuvvMLYsWMtrxk7dmxSeYBFixZlLN9ZHBuCHqA9GEHV4oGGFEWhNOAl4PeyPWKgAFXeuP2ApiqU+Fw0fPUpXjeU7TQUxeW1HepYoqgKpbvtiqvMD7xRlGewMykUOnHE0zHH/70jOEru6+TKt1Cfd7MfuRwQzdHuzFiplOvrRsR9/qfv+NuMDF6TbeVeXyfDQO+Ie5A6QZotxs3CiCy7dPos20GUrJ7ZDl0Zd0FuEWSjevZimG5v9Z36fKnvZbbJ0S7m98Vcf/zf+f8OKiauyRqXAOICgF3vgdS4CvK/5vc4V3Cs0RRvG+X7ylVXXcV5553H6NGjOeigg7j77rtpa2vjggsuAODcc89l55135vbbbwfgiiuu4LDDDmPmzJlMmjSJp556iqVLl/Lggw92SfscDUEPE/B7CAS8oEBjxOCb9hiGAITAiLYT2fY5Pr8f/067gcuTtzAAgAK+ulrK9x2aODRm+RTbasdCVgKdWd1b7WXbbUMxDPzMxnLmwda8cpIr7FQrebkqBOuVnLlu+TE/W2rYXqt+lBNBqqW/+b/5fGdWgksuiiEMSHe71K2bXFtXqVEEsz1rLi2VHU1Jrn108/XF1p5Ytc2srchHK2BFvhFKU/ti2yXjekX644q+Zbh97twFi4jb56aib1le15x++unceeed3HLLLYwcOZLly5ezYMGChOHgunXr2LBhQ6L8uHHjeOKJJ3jwwQcZMWIEc+fOZd68eeyzzz5FfRaJInIF0ncoGs3NzVRUVLBs2TJKS0sB8PvclJf6iQqF5dvCxAzByGoP7lAj4W1f4e1TS8wfoCW8jSp/LR7Nb1m3EAJdgKrEtx/SBQeBoRsE/7WcH50W93kt1PL+2Yb7Oeqtuzs1+FlZiGciNVxutjK9xfrZ3GZpYZ6qbUhdnaU+Zyahys4z5msJns/3AYVrCDJdZ7e95uvNthD5tkUKEebrChFiu+t9K6RtVp4NkOy9AfY0Mpmura8bQUxEeY3naWpqory8PO92ZiIUCvHFF18wePBgfD5fzvJO6OLM2O1LZ8ugB1GI+6GCgluFwWVuInoMvWkDkZbtBPoNJOw2aAquxxA6uhGDLHaErVGDiCHo69MsohEoKKqKWrJDoEgdLJ5tuB+Ak/tclvEeskyq25O5LjuDu7l8rslFqtFzqSt7ShjIluoXOlZxplj9CS0D8bwJdpLJ5OuauMNNz175fIW7QjUEua7LJZhYJXgqFtkMRDNtEeVDZ7ZZrDwsUpGaKfNv06o/Zb4OOxqZVORWjWTbJeOoeOB129d3JTW79vvWTNC9FWfLoAcwRARFgYDfS2nAi6KAqij0c+v0C67DFW2lfOc9CLsNGkOb0I24p0HMiGSsUxcQMQRbQzohPbPSR6gKc544L+24nOjlv1M/VmVeGXMlFRPX8PLBV/DM1nsT57Jln7NSo9tJDGNeFWZSEfdUoCBzbnizG58V+cQasPrb7kqxevZixiyfYjtzXW8wEFu4fkVBWqNCsWPoaXbJlO91vpE9uwq5PSXbaHatNbs0WqWALvS30jR/SJJBp2NT8N3C0RD0ALrWjOaqSiQpUhTQw+20bvgcl6+UQM1gUDWMcDNuzYemuHCrXrxaIGOdbTGDT5ujuNS466IViqKgBXzENjbw1Dd3oQNer7tDS5EdszBgdfzU6mlA9hVeZ/dXExbS63dkqpMkjKvWZ550uzsBUSEaC7NhoJnUVZ0d7BimSczZ/3qCRMjd9fbzauQql02jki0hVaZrZH9WsCO7Yj7YNYDM9VzShqSCNQUb9xYaxlgmxoLOGWE69E4cDUEPINQQYdFAe7gdwzAwgo0EN3+Kq6wfgZpdUbS4nFbm7Uu/wED6BnahwleDW9ux9xM1BDFjx8wfcKnsWeFhzwoPflcGw0MB+L0QjaGFo2iGQSgYxjCMojyXWRj46+bf87dtXRNvWwbHMRvmmUO/ZloBdcdk15l7ZJoIUg258hEK7K4EUwMTdTWphpWx5/sRe76fycsiO3aEhmxlcgmHxTKKNd/PCqk1MycMy1W+MxQ786ETuOi7RY8KBIMGDUqE5zV/LrvsMtauXWt5TlEUnnnmmUQd69atY9KkSQQCAWpqarjmmmuIxWJJ93nttdc44IAD8Hq97LHHHjzyyCNpbbn//vsZNGgQPp+Pgw8+mP/+979J50OhEJdddhnV1dWUlpZyyimnpAWMsItAEI60sXnDOrZ88iGtm9biqx5IoE8NqAqCjtW8oqGpGoqSHsY4rAtaokYikqFbVaj2aVR4NFQrTwQBka3baPx0FeFSCG/ZRsv7H6FEwrQG29ANI6NmwS4VE9fwbMP9zN16L9FoLBFjAXIPZPmuplOt+62y+qUOdL1BLW4mVZ2faTsk1esim8FhKnIlaGfroJh5AHLdJxWZydBOQCo7z97ZLYVc2wLZJsJ8tThmVb8kUx8ktANdGAsiE1ZZHZdOn9UrvAwcikOPCgTvvPMOGzZsSHwWLVoEwKmnnsqAAQOSzm3YsIEZM2ZQWlrKscceC4Cu60yaNIlIJMLixYt59NFHeeSRR7jlllsS9/jiiy+YNGkSRxxxBMuXL+fKK6/kxz/+MQsXLkyUsZOS8uc//zkvvPACzzzzDK+//jrr16/n5JNPLui5I60GoilCX9c2+vZ14eq7G5q/HEPRiRLJrPM3EdQFm4I6WcwFkhCxGI3vf0SooYFwazORxkZELEYo1ERzdBNt7a0IYVCo04nZ1kBVVbxeN9EUwSwf8nWby+Z9YDaeyjRY9xZhwRy7H7ILSnYmnnwELbkP3dUBoWS0QPm9ZQoylIlc5eJxLLI/dy7tQLEn3EK1L6mhmaFwdT8Uvm1nNmSULsvye3j9+j8V3B6H3kWvcju88sorefHFF1mzZo2lv/3+++/PAQccwEMPPQTASy+9xHHHHcf69esTfpwPPPAA1113HVu2bMHj8XDdddfxj3/8Iyl/9BlnnEFjYyMLFiwA4OCDD+bAAw9MpJQ0DIMBAwbws5/9jOuvv56mpib69evHE088wZQp8ZXDqlWrGD58OEuWLGHMmDG2nk+6Hb7z+l8Z1M+Dt2IQwldDKBLD6/XQwlaiBKmiDk3JbN4hhGBb2GBrWGe3UjcezUZsAiGINrUQa20j8sU34PUQLjGI9feCx0WVd2cwNLxet3VSpQLQDYNT+/4s8bdd1zZzuVyq3UzJjMznUrEK7GPlhlZMrNqSySjL7iSej9dBtn7KVHc+bcmHTHXbvWeu7ypXv9jZLsgliGU7n68LZzYWrl+RFnyoUFdLWZ8VduwxIFlzEnu+H0unz2L//7mA9x++scfdDh0yY7cve40NQSQS4bHHHuPCCy+0nIyWLVvG8uXLueiiixLHlixZwr777puUDaq+vp7m5mY++uijRJls6SPtpKRctmwZ0Wg0qcywYcPYdddds6ahDIfDNDc3J30Aako1fH33BX8tqBpCQExE0IkQI4JB7pV1lUdlcKkbl91vUFFwV5bj32UnPOVV6Bu2I3YuR/G6KfNW4/P4cbk1wuFoItdCZzELA7mQg/y2S8Yl1P3SuM5K3S0D2WSb5MxJY8yYB1fzfYopDMh6m+YPyah9MAsDso1yO6BY++jQ4RqWZ9Y/q37LRWe3G+xoCOwIbrm2VHJ9z/kEIrKi2NqFiolrbOUe6AyZPIBSf3syKNJbI+cm2uFoCL479Bovg3nz5tHY2Mj5559vef6hhx5i+PDhjBu3Y6DMlBpSnstWprm5mWAwyPbt23OmpNy4cSMej4fKysq0MtnSUN5+++3MmDEj7XgksDuGqyS+EgcUVdAkNhNV2gEFHZ1sMbfi9gVZQxJkxIhEEW4Fl8dDKdWImIHL5UdRFFyaBgLCkShejwcQBWsKrGIZSBcoqwFTDtLSmj6VpvlDeGu9eZU0jvqJO1b3ueLXy9S85vpS1eOpK9RCvRJSB1BplZ0Ncxul5iBb+GHzKjVXO+W5fGwPZJvy0UK8NXJuWj9bkakd0sc92/PkmxMiX+LtWpGx7+32R76BoezUYY4zYOVp0xnMAmPC48MkONsNkdyTbGhoprE12G33qyz1s1Of4mlEegO9RiB46KGHOPbYY6mrSw9aHwwGeeKJJ7j55pt7oGWFc8MNN3DVVVcl/m5ubmbAgAG0hQwMQ6B1qPoVBaIi0pHYSGAQQyBQLMILdQah6zS9/xHt675B0TTUTdtoWv0JfceMRvP74kKBKy5mhMIRfF4PhcgD2QIbQWGDZeqkXmi+AnN9YD05pQotVuFyMw3E8VVW9kk31+BaPXsxY06Mu5V1BfkIOtK9zQ6peSSybQGMWT4lo4uhrTwGXUQuoSmfwFCdeUetfiPSk2bh+rkJobEYQkHqfVLfTWnEWM+IpK2vfAXMrmRDQzMnTX+ESEzvtnt6XBrPzTj/OyUU9Iotgy+//JKXX36ZH//4x5bn586dS3t7O+eee27S8UypIeW5bGXKy8vx+/22UlLW1tYSiURobGzMWMYKr9dLeXl50gfAEPH9dYmmaii6hpz/Y0SgCyw7REwn2tKG4nGDAm2fr8UIh9G83kQZKRS4XRrhcATDyL8hmWIWAHmrru1QrAlCDoxyy0KqRPOJjpdpojer3+U2h9kYMlVda0ftXEikOemyWexVtpWQIbcdzHkKJDsmt+Tjo2dMLfjdkHkNOvtsxbCbKPYkLUlNxCS31OyQWs5s0JmJVI8GuQ0n25fvtlJX0dga7FZhACAS0/PSSLzxxhscf/zx1NXVoSgK8+bNy3mNHQ+5YtIrBII5c+ZQU1PDpEmTLM8/9NBDnHDCCfTrlxyWcuzYsXzwwQdJ3gCLFi2ivLycvfbaK1EmW/pIOykpR40ahdvtTiqzevVq1q1bV1AaSiHieQUkiqKiCldCCNCJ5l2nHVSPh36HjmWno4+gatAelCil1B17NK7y0qRyUihQNTXNhdMuzzbczzNbfm95LluIWOj+iIP5DHB2JptMdWSKdFeIOrYYk5adZ7HTLithQNZtdqkzxx3IlVSnkEndHDGyK8hHUClUKLG6hx2NjrlvpQCW+jFjZZhoJTDkEkx7wv3x20pbWxsjRozg/vszL5jM2PGQKzY9LhAYhsGcOXM477zzcLnSdzA+/fRT3njjDUvtwdFHH81ee+3Fj370I1asWMHChQu56aabuOyyy/B2rHovvfRSPv/8c6699lpWrVrFH/7wB/7617/y85//PFHPVVddxR//+EceffRRVq5cydSpU5NSUlZUVHDRRRdx1VVX8a9//Ytly5ZxwQUXMHbsWNseBkkoBhERwRDxyVZTVVSjw2pAAb1jy6DoKKBoKorHjbumGrG5seO4ReYDRUFTVYwCjQuFEElxCFLJJRQUSmeFiVRDxHzaJ8ua3bNSw8paDbKFDKqdfU6z33826utG5LyX1WRlpS2wIvX+ZluSnsRqQs9HCLPTfrv3SLKvsThvdlEdPWNqRiHOHFZb1imNCa2EAbsc9f5k22W/zxx77LH86le/4qSTTrJV/oEHHmDw4MHMnDmT4cOHM23aNKZMmcLvfve7LmtjjwsEL7/8MuvWrePCCy+0PP/www+zyy67cPTRR6ed0zSNF198EU3TGDt2LOeccw7nnnsut912W6LM4MGD+cc//sGiRYsYMWIEM2fO5E9/+hP19fWJMrlSUgL87ne/47jjjuOUU07h0EMPpba2lmeffbagZzYqttPm3UhQaUlM/C7cuIUfnyjFS6DI1gPpaJWlKG4XekNydjBh+p+qqui6QSQaJRqNYQiRV/CiXNsNmQadYhkvdXdsAau9WPNkWkzNR8XENYlcBfmSul2Rq5+KtQpM7Z9s8SMKxfwshX7/TfOHdItA4jpxS8KjRKaCtoP5+5OTuxTcUvNppJZLxSooUr7fSfmUz/Iq72CPXB5yXUGvikPwXScRh+DLf1BaVkIJVVQQFzqC4TAut4pLdSWMCYsRCyATwhAEF74D/SoJjB4aP4YgQgidKF4RQEVD1w2MjiiGQhh4PJ5E/oVsGIYgHI5w9s5XZS9IugFVZ/247fihQ+5VnHmyNVt42ylv95rUa/MdjDubttjc5nzS4HYGO89aiOFpamrkroih0BlSYwoUs33ZnjefMM35xLWQ711vSH+8ct0mzr79iaLd2y6P33AWw3ftn7tgCoqi8NxzzzF58uSMZYYOHcoFF1zADTfckDg2f/58Jk2aRHt7O36/P+O1qXzr4hB8n/CKEjTcce2AIjrcCFVUoaFahCnuChRFQauuwGhoIioixAhjoBOkmUaxgTa2A+ByaXg8bjweF5qmEY5EcsYpiG8X6LaEgWKQurLKpeaW+8x2Mt1JpO+1HDxTr7Vaqeej6SjUOCvfyILZVPld7dIHXWsfIp/NKjNkvs9VzK0sswCUapRXrPqz1WdXGMjnHXRsB76bOAJBD1DJTvRhF8roi3QtUFS1aEmGbKGAUlVKrLmZ5tgm2kQTuohrBgJKJS7Fg3nfQhoauhJCgXW10nbg9P5XFNQsK5c/q39LMoWZTTVksyKf9LeFYnfglBNFZyzsO3NeYnfvuxDBQQaSAntBiArtC7PBYjG8DgptU2rComIj9/6LUf/oGVOdSb6XkctDritwBIIeQFU0PIoPl+JObA+oilKwAV/B7SgvgVAMIxRGKAa6EsNHCRXU4Cdd9ZcuFCS3VwhBLKZzWs3ltttgd0DLpPbMtaqRBoKdEQrMpFpn50oaJM91tb+2fA6rCbDYaZ/NlvyFTra52lPoJJeax6DYRordvYo2G/yleg1IIbJQzO9krv4ptmDlkJtcHnJdgSMQ9BJUVekw2hNEozHCkWhRwgdnQynxoioqoi1MG9sJ0waKgvl/add0CAWaphIK7xAKZLtjeud8gVOzFJpjARQ6IOWKfWCe3HLdIzWUst2odXaRwkshAkQmt7uuSvNrrrurJotC6zWHgC5mG7trFS3fARmzQgrOqQahnanfoXtpbW1l+fLlLF++HIi7FS5fvpx169YB8UB25lg7djzkio0jEPQSFEVBj+m0tIZobG6ntS3U5RoD1euGilLUFoEbP268uS/qaKvb5ULTVMLhKIYhiHR4Ifi8Hv62LZ4kKtcAbKUdyCc+fz5Z6exY1OeKj29GBtCx8u9OHbjlMekjng3zqi810102gSXbcxUzL0Im7Kww80UGUSqkHbLvesJ9Ub6bnUW+N5D/92OVD0O2K1OsAztYvYO9If1xZakfj6uQYO6F43FpVJbaV90vXbqU/fffn/333x+Iu7vvv//+iey8GzZsSAgHYM9Drtg4XgbdiPQy+PrLTykvL0s6JwQ0tbQSDMVjE3g8LqrKA6hq18lsQgja3/wI/C58B+yBqmh5hUsWQhCNxYhEYri0HZkSYUf44kwW/XLAzjShp6ZbTS1X6N6pneuyqdjtDPR2fO7Nq75sbc1Wn7lcoX0hKYaHwcL1KxL12IlvYLfOzjyb+d0p1taJHc+OXGWs2iKfVXoj2PVOyfQuWb1v5gybqf/O1jfZBIaKB17vcS8DcHIZZMNuX/aaXAYO4Ha5CCkxvB43JX5v13oaCEFowyZ0DxANY2xrIRaL4a3pC6q9+8YTIrmIoOPxuCzba1bXmgecXKl4k3IXzC+eG1m2GPrmNmezWcjkPZCrfeZr5WCdbeKQ3hK52ttZ6utG5B13Xwp0b42cm3iuMcunxCeY6TsM+iA9O19XCwNmzAmXsn2vXUGuJE2Q7IpoftZ8hAGIv1uxS/ol3c8c/CtuW9GRA2R6/Lz5e8mVF0H23dLps2wZhPYEO/Up/9ZM0L0VZ8ugl6Ao4NJUAj4P5WV+3G6tYIFAugVmi3YY2drA1jffpuWbdQSbt7P1v8sIbdycsXym+8RiMcu2puYzKIYNgJlCQwybV4vFaks+1+Y7wdkJQNTV8eRlX5lD4r41cm5S5EUrl7rq2YtxnbglqX35PH+hXhfSsNCqX7pia8OKiolrcJ24JWe5ROIgU7/YtUtJFSAyPVs+fZ7t+ZdOn5UIcNRbIko6FBdHIOhFuN0uXC4VRGFBiWSEQRlPIOtukKriqarE06cKInp8a0JV8g6YrOsGbpe18FIsoSDflWKuVaDcm85lT5B63irEa6FkC1qUuk9rJ558If79cqWX6zupnr04ocmwa9RmFhw6E3nSrGmwQz79ZkW+NgvZ7m/nuQsVMPMVLO1M3PLZM/V3qoDmCAPfPRyBoAcRQqAbgpgRX9ErioLH7SYaixXsYdDGdraznlYaEmmUrfBUV1FzxCFUj96fQNhN5R7DKB8+FMXmdoF0MVTU7EGUnm24P0kwkPvL+YbdTTWGypU+2E58ATtCgdnlq1ghlVOjMlrd1yqAULb+6ozmItfAbrbnsEOxgg/J7zyfiaczyY3svo/Z+ro7Iz0WC/MWgMxxkU0oMLdj4foVPPfJB0Vtj0PP4QgEPYhOjLVtYd5viNAai0/cmqZiGIWnNtKJEVba0IlikN0FUNFU0FQIRaCxFcUiuVQqcjvC6DAodLutbQdSMQsG9XUjEnum+VjAZwvNmko+QkEuzAZq8jpz4qLUcnaQE6x0s7Qbr6CYkf7sroaz2XukajO2XTIuKTSvuY8KsQfojvDDUvNjturvDMXwMpDfs/RMMccf6GwbzdebDQvNpLrXZmLM8ilOcqPvEI5A0EMIBEFaaBVNbA3F2BzcMXkrSjzXQCFoxLMmaoobTck9wSseF2r/KvT2UOa2dggBum4QjemEw1HC4Sgetxs1z60Ns7Zg4foVaYNRpmiE2dwTO7sqyyQ4pA6GqXnhU8lnoLba35aak0xIQSoT3Z02GtJX5NWzF1tmiuxMoKHOYFcTlSn5TyGYsxIWKhjI9yvVNqNYBn351JUaEMksKLw1ci6v7DevKG1y6HkcgaCHMIgRoY3qQIidS8Gj7UhopChqQVsGCgou4UYRKhpuVHK7ESqqiqtfFaKpDWEY8dW/Ec9FEIvpRCJRwpEooVCESDQKQuB2u/D7PLgy2A5kQ7ojmic+80Rmx92vM6uv1AnGrpagM6tcKzLFtM+l+s/lmZGvUJDLILGQFWmxtlag88JeT4bjtYon0RmK4SEh338n6qCDFY5A0EOoaJRSTbkWYLdy2DmwI6iGjFpYCG7FSzn9KBVVYDOmgNqnDCMcJdQeIhSOEA5HiEZj6LrR4Vqo4fV68Hk9eDxuNE0t2ANCagik9TykRyeE5AHLHFTIzkBmjn2QWq9UheaTbjYX3aHWNlNMW4KKiWuy9qkdDwYrIcvqunwnI2k3UWjkRsmY5VOKNgHm+87k0urkQ6HCgNW2jpne6kbo0P04cQh6CAUVj+LHgw9BfOqWk6yqKAWHAFZxUUJVxz1sCgTlAYhG0cIxXCW+RDu6OuOijDUgjdbMq9FMk7lElk0NTWv27zaXTUXWNWb+FCD5fL6q7s7uF2eLbdAVSH9ySbaJJpeAYbVqzWSEmG8cAPP7YO7jfFfK8YyQc6mfnfm77GzK7WxYxb7o6ngIZqHYHL1x6ch0bVhn3Fbr60YQE1Hg84LrKBYbg400Rtq67X6VnhJq/ZXddr/uwIlU2I1ki1RoxhCCcCiC1+tBtWn13xmMSIz259/EfcAQvLvXdfn95LZBKoVOrOZIbeY6OjvRFiIMFBLxL7WOVEEn2zX5aidkvYVen4ti2A3Ajgk60ztRSChfs6bJ3Lf5CgP5lM8kpELx+t6ucJF6fxkDIVdfZ0K2PyaiPR6pcGOwkSn/vouIESva/XPhUV3MPeSqb4VQYLcvnS2DXogCaJpGLNY9L7fi0lD7lCO2NmVMa1xMUuMTmJHqS6ucALlCAqcKA5kCAdnxo7eLOVKc2TAtHxV1qordjqudfAapTi9meuPOUKwgSakTbur7kEouVX42I9Su0gyYJ2pzKmSz1qMYLoT5CgPyXZXPbTZgtEt3b5PlojHS1q3CAEDEiOWlkbj99ts58MADKSsro6amhsmTJ7N69eqc1z3zzDMMGzYMn8/Hvvvuy/z58zvT7Kw4AkEvRFEUNE1F7zDy6/r7gdqvAmNrExhGl9/PChldrnr24qyrbPMEnAnzYGe+Jtu/C22z2do6NWhLZ/at89lnl/fLl64Y1Iu59WHO8Gd1zvyxc99iRiG0g/k7sYpGaMeNNlsyK7vPYxaWUn8b2cjUxt4mDHxbeP3117nssst46623WLRoEdFolKOPPpq2tsxCxeLFiznzzDO56KKLeO+995g8eTKTJ0/mww8/7JI2OlsG3YjdLQOIu/qFQhF8Po+tvXzz11jI3n/0qy2E3/qYwHFjUf2evK8vhExbB5nIpurNpcbNZC1vtUIzr+DsDH6pe/Jm1TTkv4Iz15OPOtjuQF2svBDZ6jdT6L1S22kn6VS2e+Xz3Ln6vZg2B9nabuf7NwsGuew5cj2/LJ/Pd9YbtgxWNX3DuUsyax67ij+PvYxhFTsXdO2WLVuoqanh9ddf59BDD7Usc/rpp9PW1saLL76YODZmzBhGjhzJAw88YPtezpbBdwGFvDQEUSOKIQpb4SseF4ahI2KFGTN2B6mDXez5fol/Zxqc5WCZaYBL1TQUokGQMd5Hz5iaVJ/dqHnmCSFVpWx35V9fN6Ko7m097ZbWNH9I3irsbNEcU20IclGoEFcI5rants1OO+R7liosp2pO8tnOKXY0RId0mpqaAOjTp0/GMkuWLGHChAlJx+rr61myZEmXtMkRCHoxiqLkJRC4VTeqkv9XKnQDEdVR/F4QAqF3z7aBjF5o/qTS1ROTWZAodP9b2j0snT6Lt0bOzTgxWz2LeW/ZTCGBbbLFIcinH+XkUmjfm5+l0D7N5qWQ696pfZaqGbD7bNlU9/K9sfv92LmfzBbZGdsCK0EA7G8VFGJP0Dx39/wa6YBhGFx55ZWMHz+effbZJ2O5jRs30r9//6Rj/fv3Z+PGjV3SLkcg6KXEAxTZj0cgy+e7XWCEI2x7exktX32J3jdA86rVNH+8im6xLrTALBRkU5fKc9kG2nxcuwr1Fzev4uUgmqkeq7bYuWc+K/9Mg34hNgadMUDM1Rd2SP1u7X6fqUJIIVkP7ZTPpJUoNJR2avKoYqzS8zWgzXc7aeH6FU6kwgK47LLL+PDDD3nqqad6uilJFCwQfPbZZ9x0002ceeaZbN4cT5v70ksv8dFHHxWtcd93VEXBKDCEsV1aP1tLy6ef0fb114TbW4i2thFpbO7Se+ZCCgW5hIFc5Lv3nu9edzFU9LmMIyF5Uu0pVX6+95V90xmvg0IyD267ZFzeq/dM9Zgn8VzPn20fP9fxTJiFAjuGhkBe9gKpyHwO+XLS0H3zvub7zLRp03jxxRf517/+xS677JK1bG1tLZs2bUo6tmnTJmpra7ukbQUJBK+//jr77rsvb7/9Ns8++yytra0ArFixgunTpxe1gd9nFFVJ5BHoKkoGDaDPvvsRKO2Dq64K7879qNx7GHajHHYV2VwTzXTWjc48aOY7geRrfGVFtslr2yXjEhNq0/whXR7MJhtycsxlX5Bq9V8swzvzxJwrQ2Uq+bRB1m+uJ58kWfkIDvlgN5BUIfczb1EU8n452Q7tIYRg2rRpPPfcc7z66qsMHjw45zVjx47llVdeSTq2aNEixo4d2yVtLEgguP766/nVr37FokWL8Hh2WKQfeeSRvPXWW0Vr3PcdNU8bAjukChiq3wfCDYpCqNaNsWs5rqrynpYHEELw1Ma7eWrj3Yljmaz2i7Vqzmd11NWW+hB/Thni+a2RcwtaMVsxZvmUgrQbqcZr5n632vfubP+YV8jynvkYahZyf6tkTXZiS8i25mqbWbCyg7kPMtkWmDMjSqQgaXeCl7EJ8kHez9EQ2OOyyy7jscce44knnqCsrIyNGzeyceNGgsFgosy5557LDTfckPj7iiuuYMGCBcycOZNVq1Zx6623snTpUqZNm9YlbSxIIPjggw846aST0o7X1NSwdevWTjfKIY60B+isSCCFgKgRoS3WluSJYERjRNvbcQ0dSFVpHSWePvS4NEC8zTHd4IzaK4HkbQI7lthdtVKD3JNNPgOrHdW62Ye9WMFsCl25m33/zQZwUpgqdPsl072yBRTKRL4eCnYwG1pmendGz5hqK/dCNqHGHNsiUz2p561ygdi13ZB9nO/70BOZNbNR6SnBo3ZvJH6P6qLSU2K7/KxZs2hqauLwww9np512SnyefvrpRJl169axYcOGxN/jxo3jiSee4MEHH2TEiBHMnTuXefPmZTVE7AwF9WBlZSUbNmxIU3m899577LxzYT6Z3yeEEIjENC86Pmpa7oG4QKDEUyFrhU3SQgjCRpjt4QaaIo0YwmBw2e74VT8ARlsIz5dbCAwbhMtTPB/iQpHai1hMx6Wp/G3bfZxSPa0oRmDFIlfExHyomLgG1tuboDPlroeuj40P2f3lq1lM/ey46+PoGeOopvC2ZOvHntw2gezGgdWzFyfyJRQqtMnv19zX2YSCVPLJl9AZwTL2fD8YKe8XLbieYlHrr2TuIVf16lwGdrS9r732WtqxU089lVNPPTWPlhVOQQLBGWecwXXXXcczzzwTt4Q3DN58802uvvpqzj333GK38TtHOBoE1QOKAAxAAd1LXGGTPPFrqoJuGKiqSqG5hraHG/im7WsEghpfDR5txzZPNBxF36kPalmg0McpGPkDMYy4BsMQBkKA6Pjb43VjWERONA9yj3x5B+cPvC7p/P0fT+eyvWbk3Z7OqKLj+/3pSZqKjYw38Nb61BXgCpienEsh04SQLWZDpj6IrwhzP1fs+X5FsevI1Ie56pYBg7oyWZGdJE35BrfKlgNC/p0paZR8J1KfN5cw0JmAUXbehe6m1l/5rcgr0JspaMvg17/+NcOGDWPAgAG0tray1157ceihhzJu3DhuuummYrfxO0ckohOJRhDoO4QCJT45isT/DAQGqqZ0TIqFbxwYwkAgUFEp85SDEOhGDEMYRCIRxKD+KJ7uVbcJIYhEooRCESLRWEd2RwVVVVAUaA+2s2nTFjZt3sp9H93MfR+mv1ezP7mNaDTKQ5//Oum43+/nifV38dTG3/H0prt5evM9addmGywzrQBzqYEL8eE2q3/tbmOY3dNgx/6v2bhNtikfsq1+7RpQWmWpLIQxy6cUrnHBWuhpmj+kaKruzoamNpMaWjgbZrdEc9l8kzP1tsncoXfQqdDF69at48MPP6S1tZX999+fIUN6175Sb0OGLl77xWpUTaGkTMXlUuJzveGJG/chQI2AEhcChFAItSn4fb6CQhILIdgc3MS6ti/xqB72KB9CMNqEaA7ij3gIr9+Gu6ICzecmsMtOKO6uFwyEEIQjUVRFwd1xPxmEKRQOs23bdkoCfgIlATRVRVF2aEdkH4RjUTwuV1ogplhMJ6breD3utP7KN1SyGXOWwFzhccG+UFBodsBMK9TOZEEEayGikBDOnZlw5ARZDC8Oq/qKqcGxs4Vhdb9MmQfzraenMLelN4QudshOt4Qu3nXXXZk4cSKnnXaaIwzkgaZoBHwltLcaGHqHPKZ0hAxWY6DE4gKBIkAx4pqETuBz+Sl1lVLprcKjehDBMO1vrySyYStGOERk00aCX31NrL29k0+WGyEgpse3BtxuVyKYUjx3Q5itWxuo7lNFZWUFXo8Hl8uFpqmoqtqxbRKf5L0ud5rNBYCmqXEDypheNA+N7tq3LmYgmnzrymSwmc8kJOsoxJddIuMIFDNJUsXENZaZL4uRfKoQTUGqRqAQoz7I/30phnZEGjL2FsHEobjYXg5eddVVtiu96667CmrM9wVFAbdLwzD8tLW1U1rmQlEMwIhrC1LmOUWL77NrBRgWKopCmbuMIRV7oqCgiygYBq5AAE2ouCoqMISOEYmg+f1FeT4r5OSs6wbRaAyfd8cKXghBMBhiW8N2+vWtxuvNntAp1zmvx0M4HEEBXC6Xpe2FjHMgBESi8a2LkoAPTVM5pTrZpccsDIxZPoUKiudbX1+XvLLOJ+hStrKFtLMYQk993QiWrp8F0wvTEqS2YeH6FQm3y2zJnvIR2vLpm0yak1TXxGykC2iFaXFSn3/0jKm2jTc7a1ORqnlyhILvJra3DI444oikv999911isRh77rknAJ988gmapjFq1CheffXV4rf0O0BqtkMhBO3BEKhRAgEPGO54Qa3DL1XpmLBCApcSwOXSOt2GSCzI1u1f49tm4PmyCd9eA1D79wUhUL3FyXIYf6MEhmFgCJEwGhSGAAW8HjeqqnaUFbS1B9m+vZGafn3xWKj6C8EQgnA4gktz4XJplkKBEIJwOEokGqUk4EfV1IQsZt5eeLbhftvbDYWq7Duj6s+k5h+zfEoiAZTdydJcX6GDfqHbIFb3l8hnWTp9Vtb02HbbZ7V1kE3YgNxGelJwAZPxp4WmI9v2QGqExFTBrzu9LOxu3ThbBr0fu31ZkA3BXXfdxWuvvcajjz5KVVUVANu3b+eCCy7gkEMO4Re/+EXhLf8Ok57+OD5Rtra34XZ58Ho6PA+0EHFDw/h1kYhA0X143O5O3V8IQailleC771PasAUqqvGMHQ2B4moG4rYAEUBBVRRULb4toKbkWxBC0NrWTlNTM/36VeNxF0cYSGpHKILLpXUIBUrSuWAoQiymU1riSwgo2ZBCQTZPg0L30ItpS9B5C3I6PenKvijGs0DyJFpIRkCrOqE4dhuQ3QPALIAU0q/5pNHO1LZielykvl+OQND76VIbgpkzZ3L77bcnhAGAqqoqfvWrXzFz5sxCqvwe0hGLQIsSKFUIR0PouvQm2CGjCRHfYig0rfGOegTRliDBZZ/iXrsdRYnh84agSFqBtPsZAp/Pg8frxu1y4dK0JBsAIQQtrW00N7dQ0wXCAHRsH3g9cUPDWIdLoxDEYjqtbUEMw6C0xG9LGLBD9ezFtmP3F8NC3SrBkznccaHU143o9Cq0WMmUpD2CeUIzR0ws5D6jZ0xNpKu2k5go9bw5eJBVdkErLwB5PFtAokwU+pyFkskbI9V+wEmR/N2jIJPy5uZmtmzZknZ8y5YttLS0dLpR33WkWyFaBDBQFQWfX6U9GKS0xI9Ch0ggBLEYRMMgDAMKnbsNgf71FkJLVwMRQkcOQTVa8TVHQev8NoQZOeGqqmoZ71BGTWxqbiEYDNGvb3XCuLArUNW4UBAOR9ENnVhMxzAMvF4PnjzvK7cOsq0qZaAhuSrLtKrMlD0P7G8fmMP5mo81ndg7DHxT984L0VoUK1yzJPX7SJ/cVmS0f0i6bvaIjm2C3C6Ddt01u4p8tQPZtgjMx/OxYegOhL4ejO3dd0O1CkWr6777dQMFCQQnnXQSF1xwATNnzuSggw4C4O233+aaa67h5JNPLmoDv5MosY5tgQ4LQsON2xMlFtNpD4bw+uPGd4auouHG63IRiUQRQiStsCFubGgIg5gRQxc6mqbi03woKEQbm0AXRBsa0T/bgOE1CI3dhS2uMiraXZRGW4v6WFIYiMV0vBaaByEEkWiUhoZGNE2lpl81mqZ1mTAQv2c893hMjxFqixAI+CgtCXRsXRRWpx2VvByECxnoC/ES6OkIftmQfZVvG2UwpGIZcqbeP81YNI8sibKM1AxYtbG3fSeFbh3I7ZDUd15qpyoeeL1YTSwYoa9HbDkaiHTjXT3Q75+2hYJZs2Yxa9Ys1q5dC8Dee+/NLbfcwrHHHpvxmmeeeYabb76ZtWvXMmTIEO644w4mTpxYjMZbUpCu9IEHHuDYY4/lrLPOYuDAgQwcOJCzzjqLY445hj/84Q+26xk0aFBiT9n8ueyyHQZcS5Ys4cgjj6SkpITy8nIOPfTQpGQQDQ0NnH322ZSXl1NZWclFF12UyL4oef/99znkkEPw+XwMGDCA3/zmN2lteeaZZxg2bBg+n499992X+fPnJ50XQnDLLbew00474ff7mTBhAmvWFDhIKTvCFWN4QbhRhBu/X0V1GQTbBO0tBnpUxePxoGkqmksjFI7Gg/mEI4TCEba2NLC28Us+a/yUT5s+5YvmtTS2NwEQaWhk82v/Ibjqc1q+WEvQGyPUR0Mrc1FTolNV4kLRdWkBmHjGQrIrymsSMQC8HlRVSSvT0trK1q3bKC0toV/f6g4PgOILA4mtAV2nrT1IW3sIj9tNeVkJLpeWCH5UKMXKVW9mzPIpli5/hQbnKcTFrKtUwIVm0it2pMFs9zffK9f3a7ZrkOWt2tpZYaCz20rmd0D+O1twJrn9kTrxFyseRJdibKd7hQHi98tDI7HLLrvwf//3fyxbtoylS5dy5JFHcuKJJ/LRRx9Zll+8eDFnnnkmF110Ee+99x6TJ09m8uTJfPjhh8V6gDQ6FZiora2Nzz77DIDdd9+dkhL7iR4gvsWg6zt87D/88EN++MMf8q9//YvDDz+cJUuWcMwxx3DDDTdw/PHH43K5WLFiBSeeeCJerxeAY489lg0bNjB79myi0SgXXHABBx54IE888QQQ394YOnQoEyZM4IYbbuCDDz7gwgsv5O677+biiy8G4h1/6KGHcvvtt3PcccfxxBNPcMcdd/Duu+8mkkjccccd3H777Tz66KMMHjyYm2++mQ8++ICPP/7YtsGLNCr86stPKK/wg3ABCgpK3J5AiRHXGGgIAW3tQTwed4cxoUDXjbiWQI0b6G0Nb+Hrtq+AeGwDl+Kmj9aP/qX9aPvgExpXraR80CBifd3EvtmG0reEkuG741PL0CIxtDUfoA8dAW5P/P4CoobApca3NBS0tMA/EulJAHEtRSQaQwE8HrelMNDU1EwwFKJvdZ8uEwTkvXTDIBSKoOs6Pq8XT0cUxmAogsft6tBKFFa/NCzMtNqSqyk7gWZSyRXApqsG5dS4+Z25Ty4jR/MkZzdUtGxbdyINAF0nbkn6Hq2MHLPR27QEEvN7avaMKITeYFQooh8htqUn3OtqlOrnUNx7F3x9nz59+O1vf8tFF12Udu7000+nra2NF198MXFszJgxjBw5kgceeCCv+3Spl0FXceWVV/Liiy+yZs0aFEVhzJgx/PCHP+SXv/ylZfmVK1ey11578c477zB69GgAFixYwMSJE/n666+pq6tj1qxZ/M///A8bN25MpGq+/vrrmTdvHqtWrQJyd7wQgrq6On7xi19w9dVXA9DU1ET//v155JFHOOOMM2w93w4vgzUdXgZxhOn/x4kLCbGYTlt7iLJSf2KSNZcKxYIE9RAuxYVH86ApGnowhvHFRvRVX2KMqiNW6yHmiUJTFBHQCPiqKKMfiiHQPvsQvXYgojSe7jhIC0HRiqFEMdApEZWUUJW0TRGfcAWiw6VQvj7ujgBCqRP9DnuBIP369rUsUwyEiLs5hsJxzwGvx4M3KdYB6IZBJBJNuD0W0oxc7oep6tV8LMSzTcZdKRgU26dcToJmy/tMXhldmcq4s2TSEhQi7HU3UgtgJ/phNs8HO33vCAT5CwS6rvPMM89w3nnn8d5777HXXnulldl111256qqruPLKKxPHpk+fzrx581ixIj9tXpd6GRxxxBEceeSRGT+FEIlEeOyxx7jwwgtRFIXNmzfz9ttvU1NTw7hx4+jfvz+HHXYY//nPfxLXLFmyhMrKyoQwADBhwgRUVeXtt99OlDn00EMTwgBAfX09q1evZvv27YkyEyZMSGpPfX09S5YsAeCLL75g48aNSWUqKio4+OCDE2WsCIfDNDc3J33i7JjchaKDGo7bFMiPogMCTYu7y4XCEYSiI9TojrKKjs/lp4+nD77mGGxoJLR6Lfra9US++YbIqD5EBnhw+0rwaeUYVS7wueIreyFAVRG+AKK1MdGeGGFCShMR2okRIag0EVMimDUBoXAUwzBQFAW3y4XX48Hn9aS59UF8km5ubiHYHqRf3+ouEQbk1kB7MExbewhN0ygrDeDzJQc3UpR4oiiP20U4Ei3Ia8MsDGRSu1ZMXMOY5VMS5/O1EM+kJrayWu+t2BEGvg1ITwSJ9E7oKmGgmLkW3ho513Y7swkDnfVYcUjmgw8+oLS0FK/Xy6WXXspzzz1nKQwAbNy4kf79+ycd69+/Pxs3buyy9hVkVDhy5Mikv6PRKMuXL+fDDz/kvPPOK6gh8+bNo7GxkfPPPx+Azz//HIBbb72VO++8k5EjR/LnP/+Zo446ig8//JAhQ4awceNGampqkupxuVz06dMn0WkbN25MS9MsO3njxo1UVVXl7Hj533y/nNtvv50ZM6yy7nV4GajRxOSfMMkXgBpF6PEVrN/noaWtDQ8xNNVcBtBVYs2tbHnzLUrrBhBtbcVdWkqwr4IY6MWruCilGoGBj1JU4UJVNCAeKtgoqUDbtgEdHYSKTykjRgQNF27FjUtV0ISB6AiJYBgGmqri9WSPhyC1Bs0tLbS1t3doBoprPCiNBcPhCFFdx+N24/d507YrzCiKgqapeHARDkcTAYtcNtsmoxtm0xJsu2QcLrbEtQTYnwjlSsyu1XZvVUVLpDDQXZbo8ruBDhfbaAzdMDi7zn6EVSvMcSW6+jkKtf2wwo4hpoyUaYV8H4sVldMhzp577sny5ctpampi7ty5nHfeebz++usZhYLupiCB4He/+53l8VtvvTXNoM8uDz30EMceeyx1dfE3VKa9veSSS7jgggsA2H///XnllVd4+OGHuf322wu6T3dyww03JIV8bm5uZsCAAfE/FL0jZ0HKRQogdFAjCMOLqqp4PV5C7UECpR1734kyMYSuo6JBTCcwaACqz0tYV4mqBgZxYUMVGm7hxzA69tdjYRQFFLcPT3sLkdZv8JTW4RIeKtkpPjkKAYQ7kiwZGEIlpuu4XJlfGbmlEAqHaW1tQ9f1DuPB4gkDoiPyYTgSJRaN4fa4KPP5UTK4OaZiFgoikSjSxzOfNiYEA3YIBuYJumLiGsbMn8Jb67vOGCs1ml1Xk68AIu0RXCduYeH0wgLywA5Pg3xQOpJmKbHsOUCy9d8OTU33blfkK0haYVeoyPZ9FDNEt8MOPB4Pe+yxBwCjRo3inXfe4Z577mH27NlpZWtra9m0aVPSsU2bNlFbW9tl7StORJYOzjnnHB5++OG8r/vyyy95+eWX+fGPf5w4ttNOOwGkSU7Dhw9n3bp1QLzDNm/enHQ+FovR0NCQ6LRMnSrPZStjPm++zqqMFV6vl/Ly8qRPAuHCsvsF8eNix8Tr9bgxYiqx2A4vAIEAooitTZSFvZQM2hX/wJ3x1vTB06cWJepC13VC0RBt4fb43rquE47GaG0LIQT4SkuJ9RuA5+v1xEJttETakfYLoIDuAcOLYUA4HIlvYWjpbY6vyKI0NbewcdNmmpqa8ft81PTrV1QDQsMwCAbDtLa3oyhQWurH5/VmjHmQCSkU+P1efF4P0WgMw+icKU3q4NpVauXUtMCdFQbsehZIAUR+IPP2hvm4TCpUSEAeIGH41jR/SMayZu2ARFEUXC6Npzbdk7Fuq+0caWkvz+WbqKlYKZE7W3cxk0M5dB1xLWfY8tzYsWN55ZVXko4tWrSIsWPHdll7iioQLFmypKAQk3PmzKGmpoZJkyYljg0aNIi6ujpWr16dVPaTTz5h4MCBQLzDGhsbWbZsWeL8q6++imEYHHzwwYkyb7zxBtFoNFFm0aJF7LnnnolIi7k6fvDgwdTW1iaVaW5u5u233y7wy+mYcA33DivBuEFBPAWy7gWhJbL5KYqCz+cj1KajC0Gz0USECHpzkMjST3DtWYfWvxJFVUBVCXjLUHUvsahBo9hEm3sLbp+C5hEITwh3QCTSDouqGtSyfvi+WUep4kbXDSLRKOFIlGjEIBIWRMIx3C4X7o5VtBRKDMOgvT3Ili1b2bxlK7quU92nD7X9aygtLSmKzYBACgIhWlrbQVEoLQng83oKNgyUfRr/FNeuIVPo3a6gkEx7ZvI11kuNDphtZW313IW2VWYrtLqflTAgidu52Au8JQWdzrrY9eZtHDtIO4bebjT5beSGG27gjTfeYO3atXzwwQfccMMNvPbaa5x99tkAnHvuudxwww2J8ldccQULFixg5syZrFq1iltvvZWlS5cybdq0TLfoNAVtGaQGHxJCsGHDBpYuXcrNN9+cV12GYTBnzhzOO++8JHW0oihcc801TJ8+nREjRjBy5EgeffRRVq1axdy5cel3+PDhHHPMMfzkJz/hgQceIBqNMm3aNM4444zE1sNZZ53FjBkzuOiii7juuuv48MMPueeee5K2Pa644goOO+wwZs6cyaRJk3jqqadYunQpDz74YKItV155Jb/61a8YMmRIwu2wrq6OyZMnF9KFcVdDoQFaXP0vXB3JjdREpEKBkCIBbpeLcNhDKBQl5AkS1aP4VzaiVJXi2W8n0KIII244qakqmgciRpiYLnBHfbTrIcJ6iDajEU33orfruNxuNM2FUV1LYP1a2r78hM1VVfg8fpQylXLhw6e7cXs9iYlX7s+2tbXRHgyiaRqlpSX4fb6k0MSdRQod4UiUSCSG2+2itDSQyIdQTARktT3IRC6bgnziFWTL5GdGRkKUFDoBmYWBbBNgrsQ6VuelytoqkE22v1Npmj8kaY+7ELuJXO+KedvAbrKjXPXZuSZTuTHLp8B8aw1TpgyXqccSbq95qvzteiY4FMbmzZs599xz2bBhAxUVFey3334sXLiQH/7whwCsW7cuKYz6uHHjeOKJJ7jpppu48cYbGTJkCPPmzUu4wncFBQkE5eXlST80VVXZc889ue222zj66KPzquvll19m3bp1XHjhhWnnrrzySkKhED//+c9paGhgxIgRLFq0iN133z1R5vHHH2fatGkcddRRqKrKKaecwu9///vE+YqKCv75z39y2WWXMWrUKPr27cstt9ySiEEA9jr+2muvpa2tjYsvvpjGxkZ+8IMfsGDBgk4m3VDA8ACiQyOwQxCI2xcIhB4/L4TA43GztXU7sZIoaiyGa10DDK0j3NKGrjdj6GDoalwNJUIYqoJbdYPiJkwUl8tLlVqL5o3HF4ir+ZuI6lH6+CpQt35JtF8pah8fmlDQVYErGtdUGIZBezBIW1s7sZhOIOCnX9++CU1DsZMSxXSdYHsYl0ujrDRuI0BHXoeuIBrVE3YExbyHFArsuKq5TtwC6VuJGessZCUrkw7lMvazWs3nck2TE9bSkTvCDVsJDHZtH+R+urn+QvjbtvvSUlqntsGqPwvNx9AZg89iTcaF1POtFgTUKuKx3bs5UqFalbtYBw899FDW86+99lrasVNPPZVTTz0134YVTK+KQ/BdR8Yh+GLl0h1xCBQFBRWhudENQUyPYhAmpscwDAOhe9BjYBhxA6lgKIyuRAgoGiVLvkA5ZAghjxd/QMPljgtnqqph6PFVr9ujohhyCyJ5hygeUChKJBxBi7SjfPUZW4YORi330iccwOdyo6Jg6AZbtm4FFMpKS/H5fV2yUgdTSuJIBL/f12GDUPTbmO7XofWIxdB1A7fb1WEnYU8wiGdsDOJxuztSN1trDOxM4LnyH6TWB7ld+lKT0RQj+FC29kiyxR2w83x21NbZtgvMCCHSBALzfYoRiS+bJsXOql7+net7tVNXdwZzapo/hJJjP+7xOATg5DLIht2+LEhDsNtuu/HOO+9QXV2ddLyxsZEDDjgg4TLoYI0WbkQLRXYEGRLQ3LwdPRZGUQSapuJyudE8bjTNg+YNoCqgqC5EqZtgWMFvaASFgT/gwePx4C11oaoKAggFDVqaDXw+cHvo8EZQaGsLU1oSQAgDUDAQBKMRNAU0jw/h9RNrDuJ1u/CoGhoqhiFYv3UjbXoLe9TugaZ0Xe4BaTRoCEFJSQDNwoCx2ChKXLvhcbswtA7BIKbjdrs6Qhxnf9ZoNAZC4PHsEFysthKyqYIlckVsZ3Vp12rfrKGQ6vdiThSpaX+7KpFPV7lZFissr1kYyHQu9Zj5meR/zdtMnXlmu8JnZ6mYuIaGubtDLwhXoGh18C2ZoHsrBQkEa9euTQo5LAmHw3zzzTedbtR3nS2bvsGIVRNsb2XnXXdD01wEAqX4KocCBgpGh12BgdKR/1joYRQRA6HjcgHRMJob1JYtlAQMlKiC8JYgvOW4NRceNYYS0SEkUBWVSNjFp6u+YK/hQ/hs7Xr8gQDhcJhILIIeakfXQW9rZdfqndm4ZjORknYi0ShbtmyhZlA1lRWVXSYMCBH3DmkPhvB6PAS8xU+FnIu454GCqnYYVkaiqJqK2+XKaF9gGIJgKJ4wyaq9ZsFA+phnG4jzNfCD7JoHea+u8ie3G3xITmx2Jzcrt7nUa+1qBwAMIXh8/V34ffFw51JQ6wpNSTZ7i0xlU5FCwegZuY0wCxUaKiausf38ucq9st887CvOHXozeQkEf//73xP/XrhwIRUVFYm/dV3nlVdeYdCgQUVr3HeVzz75kPJRY2hva8HQdTTNBaob4SmLW/Gbyib/WyQOiJiOoW0kFqrCvUt/iLWiRBpRmtfjEVGqhAtDQLQBIijEhIfWlkY2rf+K5u0NfP1NmPLySkpKS1mzdj0DBw5E8/r58ou1bGnYjsutUdG3nJb2Fg6qOQBXkdMkJ56pY4ugPRhC6UhV3M2yQBJxwUBD01SiUZ1QOILbpVnGKQiHI7hc1q6Y2ciWByHfVVt93Ygeswq3G4kw14T1bMN9gJKkUSnm8xi6kWSs9WzD/Rz11t2MWT4kp6BUaN8unT6L+tkjctaRbavBrk2Jg0OxyEsgkBb1iqKkRSR0u90MGjSImTNnFq1x31X69K1h65YNuD3euLGcbWs5ZUcgI5eGa0B/omu+JlQTwFvuwu2vBdEPMFAMD4Zu0NzYTijUgktzUV07EFdZJTWuCgaVBGhva8fv9zN2bJ+4Ox9RGhtb8AYClJeV4fK68Sg+2lpC+HyexAqrGMgAQ8FQCFCoKC+lubWtaPV3hvhXEQ9u43KpRKIxYmEDj1tqC+JGlpFolLLSQE5tRuoWQrawx8WkJ43E8gmaJJQYCI1nG+7PmSsC8tMOQDyVuMudLNC+MuZKW/eCwoWCHXYVKxKeIdkMF83/lvEPFnZhcCs7FBIYyuHbS14CgYweOHjwYN555x369u3bJY36rjNs7wMIBHwII75yEUZ8Tz8fFEXBvdtORD/6gujnGzCG9sVVIf3yVYQKivCgqW1xbwVUdqrtT1lZ6Y69+X7JNiDqtk30KXOj7zIMBGxraKRvn2paWtqIRCJ4PR5MC6281frxBInxNMnhSBS9I1Wy1xPfIlCVuIdEd9gO2CFuXxAP1ax3CACKouJxuwiGwh3ajOxttbLZldsHdiYZszCRyc3RHPI234mrq7QLdtXYf2u8C4ihiPiELYWC1Enf7uSdinRfNWsIJHZCUUvVOut3JDXKpULPNolm8jixygJZPXsxTN+hss9kn2DWLNidwDM9Q6qWQrq59lSCKbD+DTnkh90+LMiG4IsvvijkMocOwoaKBzeogmDUACFQfRW5L0xBKfWjD6rGFdGJrl5PbPed0cNRfDv1IwI0a23EjCgl/ioC/gCqphKNxhBoGIBLVVFNk7pQFNRoFEXE4yBKjYDb7UpKaxzWo3i17PkMzMhBORKNEYlE40Z8HjcBvy9pf96laei9SCCQKIoSj+3g9cQzULYFicRiBPw2LJ8FhEJhNE3jma33Eg5HOWfnq9Im8VwToPm81US26KDLmdL3Z/zl8ztQwls5Z/hvbT1bPsJJKnKvu5Dr488gIBEhMreWJbVPkgc5a68QwxBxV9I865Zsu2Qco2fEJ8m31s9NrPSt4kuMnjG1I/eBdWZKec1bI+cmBAwZMyCR/8Ki/I5/x0NAp24zmLEToTCb0JApNkK2eo96fzJwV8775ovbHR9j2tvjmkyHwmlvbwd29GkmbLsd/v73v+fiiy/G5/Ml+flbcfnll9ts5veLHemPP024HaZ2v+1VtxC0fPIZDe+uoLL/AGIeQaSlGa1PH7z77U3UoxMhTGnMQ4nbj9qxkg2FIxiGIKYqlHjcqB33jCphXNu24W5pRR84lNSXQkYoNISgPRLCq3nQVCWx8krPdAgQjycQCUeJ6QYul4bX484YwTDU4Xnh93nSzvUmWlraUdS4kOB2W6d9lkRjOrpuoKoK0WgMt0uLx9lXkvfM81WDQ1wVvmlzC9P2vpG/bbsPgPbmEKG2MBX9ytBcakZ3u1QKmdTlhJUpxkI2g7dCnjeVeJCsMJGIwOv14HKpHW68O4hEYgC43fYMYvPVRKR6WUihIJuhZ+z5fomkSVaYPQ3MoZMT8SOyuDTacTksZLWfLZZGV6U/BtiwYQONjY3U1NQQCOTennNIRghBe3s7mzdvprKyMpESIBO2BYLBgwezdOlSqqur07IHJlWoKI7bYQasBIKCEYL2dd8Q/Ho9Xl8pSnM77VoItaYWo6YGv8+D4lWIae1AlBJRiYY7nvrXEBgARnwfv7TUSysNqFs3U96mog/cM55NUBgYuoFuxP9rdKz0ZfCeePx/BVUFVY0b10kBIabr8eRBxLUBHrcM+pP5Bx2NxghHopSW9N7VgGEIWlrbKS8LdMRxiKFAh9th8vMJAeFIBFeHkaKkGIOaEIKm5iCRiE7f6tKEpkUIQVtjEIBAuQ9FVZKEgkyr4XwFgkLTGxdDEJDE7VB0tjeGCAYj+P1eykq9eDzSXkAhFA7jcbtta52OeuvugrQl+dhMyOBQErsRLaWwIYUEGbdACgmFxKbI1L5MIbitrutKgUAIwcaNG2lsbCxqvd83Kisrqa2tzTn2OIGJupGiCgQSQ6BvbiT45vu4fjgC3eXB5XLH/eoxiBFGKAKP8BMKRTsmKJWA30dMN4gZApdLIRqLoG3fitbUTHvtoPjEriioajwRkKaqqJqKqiTnDzCEiAsNuh4XHDpUwJqmmgZie0F+dN2gtS1IeVlJj3oaZEIIiESiRGMxSgJ+4kkhRbwfozE0TU2s/iEuPITCkbhwVuxwy0KwfXsLJSUBPB4tRRARREIxoqEo/lIvqitZg5FpFWyeXHJRSPCbYgoDEjl8hUJh2ttjBMMxPG6N0hIPXq+LSCSGz2b/n9znsrwEo1R1vV27CSkQjFked96X90vVNlghhYFUDYPdgFN2bU0yCQXdLRBIdF1PykfjYB+3241m00usIIHgtttu4+qrryYQCCQdDwaD/Pa3v+WWW27Jt8rvBV0iEAB6cztN//0Y/wFD8VaWJrYA2ohH7aqgBiGgJdaIoYbwi1JUI4DbpdEeDtNuNOH2qpQ1R1AbmgjutBter2fHqkqJZ1fUiaETxcDAR0k87XIK8nUqZAIUQtDc0kZZaUlBuQW6GkMIWlvaCQR8uExJc+T2SCSaHO1Qag/cbnfRBZy4XYaRMTlTXFPQTqg9TFX/ClRNS2pDqlCQT4ChXMJAqmGgvFdXCAQS+d7FYgZtbWHag2FKS1y43W58Pq/t9zFfocAu2SI5pkZLzCSY5dIi2AmPbTeMdiqyjVbXdodA4NA9FCQQaJrGhg0bqKmpSTq+bds2ampqLIMWOXShQLCthfZ/vkPg2IMRFR6CShNtohFdiaKiUUUtigrbjU0YGJTTB6PNj6ZohMJRIp5mCLRT2hijohEiuwwlrIdRvTpRJUyMCDpRdGIY6ChCpZoBeJTO5HFIR4YB9vu8SRNub0DGS9ANg4DfeoKRNhbRSAyj42fVFdoBuwghaG8OoigqvlJvIiojZNcSQOcFgp5EurQahk4kquNxuyzjSKSSyS20GMKBHSHDzgo/m1BgVyCw412Qz7WOQPDdoSAvA7mPnMqKFSvo06dPpxvlYB9hGIhgOL76U6GN7bTSAAg0XPiVAC5VoKDgVXxEogaxmIrP5cbjdqOqGiJk4DNKKFHDKKIBTdOIRMMExVaEkizcKaioqBjEuuBpOrI6RqJFSZ1cTAxDJOwbMrUr7jqp4PXG3RRVRSG7fXvXoigKgXI/kVCMloZWSivjniaKomSctOv7XBZXaa+Pq6QzWb33VmEAzFEnVTTNRSgcsfU+Sc2G2QOks0hBINtELSfjXMJAfIsis0AgQ19nIpsw8W1P2+xQHPISCKqqqhKGU0OHDk36gem6TmtrK5deemnRG+lgjR4M07jiQzwuH6FKlejqNbgH1+CvLkNBIaCW4Fbie/iGIXCHy3AbbvxuX4fxX3zycrvL4x4DNHSoXgUexUc45kXx6Gi4ceHGLbxoijv+EQXJkllRlLhxXktrEF03eo1QEDcOjHYEJspunBaPaaR0WWTHfFEUBY/PRSSo0Li5mar+FaDa39KxUnVnmlh6gzBgRmpENE1FNwQ5vrok5AS+cP2KrJOs3XqsyDekM+wQxDLZG2RaxZu9FjJluUw1jEzVGoxZPoW3ejhQkkPXkteofvfddyOE4MILL2TGjBlJoYs9Hg+DBg1i7NixRW+kgwWGoOmDj2lfuw73gEGU7D6I4ObNuCIaAaUfAApRDBElFlEwYho+lx8txf1KQUFRQSeKwIBYjHA4gqpolOr98As3ihJPgRz/P0Ve2CUoiorf56G1LYjPKzMIStfGrrlnbgQxkyHhtw1FUSitKiHUFiYcjOINuBPHU5GrZBl214oxy6ekhfztbcKAGQU6gn91TkgrJG+A1VZBIYJAqgGjDBhkRSahwI7BaKbIiVC8RFAOvZe8BAIZrnjw4MGMGzcuZ5ADhy5EgUD//iiNQVzVFXh36o8ei6H5faiocev3iEJUV9AUNz5v5klAV6JsFxvxxWKUAT6vBxSFcDiK0FU0V/cFClKUeCCkUlUlHInQ2hZEU1U8HretfeCuQO+IJNkbDR3toigKvhIvkWCU5q2tlFaVoLkK08CkTnC9WRgQQqDrBh5P7rGq0GiI+VCIUJHJpdFshGh1PPXY0vWzsgp6dtraU3kzHLqHgkb6ww47LCEMhEIhmpubkz4OXYsQAn1bC+Kjr0BAW62PJlc7sUFVqBWlGIZBazRESOh43X48bnfOGAA6UWJKGFw74gW43BqxmJ6INNhdKIqCy6UR8PspLfHjcmmEwhFaWtuJRKLd2hbRYSToKnDy7E0oioLH70ZzabRsa0UY3fu99gS6biTcZ3NhJdiMWT4lYU+QaSK3CimcqVyhe/XZrpPui5KF61ckIkh2BhkWedsl4xLeCXYiITp8eylIIGhvb2fatGnU1NRQUlJCVVVV0sehixBghCJE3v+C0MvLiAU0Nu3j58vo13zR8jlr29ayoW0DDbEWGgPtGAGBqmYXBIQQCEPBaPeiqRqqMJApFTU1nlugtb2NYDiErhvdLBiAqqp4vR5KS/z4/V5C4bjWIBKJEovFYx90VZuEEPG4A9EYXo919ERB3MZArkRjsXhApvgnRiymYxiC3jLvKopCaWUAf5mPUHvEUih4tuF+26v+3q4diMZieEyxIbJh1hDISb5i4hreGjm34MnVvJouRBiwI0RUTFyTJhSAvTDGuZBbG/V1Ixxh4HtAQQLBNddcw6uvvsqsWbPwer386U9/YsaMGdTV1fHnP/+52G10ABACfWsToZffRf/sGzxjhhMYPwJPWTmi43+K0Ai5BG3lUQwvtLrDBLVIPG1yFqKhGO2b3Hhj5XEbgUR4eQWP142qCVzeGKFokJgeD8UrowqGw5GEoNCVwoKiKLg0F2WlATweN5FojGAoQltbkOaWdlpa22lrDxKNxYrSDiHiXgWhcJSSEp+lMaEMVNTS2kZTSxutbUGCoTDRmB7/RGMEQ2FaWttpaW2jrT1EOBw1CQkiUU93oqgK3oAHVVXYvqkZPWYtVPXmyT4XUkArdKtHro4hdyz/fJGrbjvHO2v9L7cTiuE1kWmLwuG7Q0Gm4i+88AJ//vOfOfzww7ngggs45JBD2GOPPRg4cCCPP/44Z599drHb+f3GMIit+prwJ1+hDOyPb88BKP74irW/vz8CQYmrlFY9jLuPH9S4AWAMgyZPEE/IhUtkM6hSiMUgGhUI3TAdjWsJNMWDEBG8foNoJIyiu1AVNZEKOBKNoioKbo/bfibnApBpiT3uuLEhpgnVEAZ6TCcYDOPxePB67K0KrZBeBaFQhNLSAKqqpj2TEIJQOK49CPh9cXe+uPkayRaXokODYMQ1CHo8a6IQcVdQTVPxeON5IbpzS0JR4kJBLKrTur2N8urSvLwPvg3CQjSm285hYIUMBzxmeXFcEM31SqwEg0JyDVRMXEM91h4gMjFSMQwCzUKBY2D43aMggaChoYHddtsNgPLychoaGgD4wQ9+wNSpU7Nd6pAvQqB/tpHYB5/j+8E+RKpKEV53IkthwFXC4LLBGAa4jDaCagxDLvEViKoGUVXHpecSCAxaWqOUGTtWijtWjYJgW4yyChc+nwBDRREu5MTn0rS4xiAciRskdrHvfWJ87/iHooCKhkuLJw5qawsiDKPDQ2HHM2L6p1ULDSGIRXVC4TDBYAiv10tbWzCearojuI2qxl04I+EIhhCUlvhTVqCpNcuwzRqapiE3HmTwnGg0RltbELfbhc/r7og82Ln+sYuiKJRU+ImGYgRbw/gCnrQwx1a5D3q7MLBDOxAXaO1ilUWyvm5EPMshmQ3qOrOKt7x2+o5ohfnWX183IkkbYNZsFJoi2+H7Q0FbBrvttlsiBfKwYcP461//CsQ1B2ZXRIdOIkA0tRN7bw2eg/dCq6vG7XGnqcWFUIhGYpSrASoi/pQpSRBTjKzbBrqu4/Fo9O1TgqKqoMhBVaepuYFtDRsJtrcRCXfUokaTapMTJijoulwJ6z1isKaqKiUlfgwhaGsP0toWorUtSGtrfFuhpa2dlpZ2WlqDpk87jc2tNDa3EolGiUZ1qqoqqKgoTSRaEkIQCoVpawsSDIbRXBolacKAfaR/vM/noaw0HgK8tTVIKBxJsjvo6i5UFAW3z4WiQuPmZvRo6vcmeHbTbxJ/9XZhQBKNxQrWDqQ+o1wJZ9o2yGRUaNfY0Ix5hb90+iyWTp+VMBK0S3dN+IU8n0PvpiANwQUXXMCKFSs47LDDuP766zn++OO57777iEaj3HVX8fNif28RAn31Vyh9K1AH9IWOSSQaiyUC90SjOrqhx9PwqipaVCWixgi6oggEmlARSvZZxTDi6XldIgYuDcOAUCRCW3sLoVATPl+AstJKDF1gGAaaaoASA5OWIO4ZoBKJRFFUBSHA5dLwuIsfwCgXqqoS8HvpSDFgIrkfEueVji0HYRAL65SU+BKGaEKNP0c8JbOSqKOY6n1VVfD7vBieeDbKYCictKXgcsW1C7kMRAtFURT8pT4MXRBsDVNSEd92UhTA0FFbv+S5r/8H4c+eOrU3IETcs0BudxWbziQHyuayZ2fCLzQPgUQKNGPmW9exdHp+bon5lnfo/RT0i/n5z3/O5ZdfDsCECRNYtWoVTzzxBP/617/46KOPitrA7zOiNUjsq824hu+KOcya2+UiGAoTDMUNBuO54OOrIRWFqnAJNcEy+oRL6RsqoyyaPeeApioE/CpKuJ2Y20djSzstrSFUVaNPVQ19qmrwenx4XF6iYUxaguQJ1qVp+P1efF4PXo+7R3NayDDCqmr+qEkfTVUTmRxdqgsZjdnntc4/ICPfdc2kHM8QGfB7KS0JUFoSwO/3JoS+tvYQLa3ttLYFiUaLYziZfP/49oE34CHYEkaPxUAIlOAmUDSEv39PRobKA0E0puOy6VmQiWxagtjz/ZLOpWYezBdzbohMH4ld40Y54Vvt86d6TTTNH5L4O3XVn0kL4NgPfDcpigg9cOBATj75ZCoqKnjooYeKUaWDEOhfbEQtK0HtW5FQ48d0nUg0PnOpqhIPp2se+ASoQsGju/6/vfOOj6rM+vjvuXVaJiEhdCJIFUFRLKBYwIICKghYUBdRrIgr7tpeC2tjd111dde6qyu6ui67rooLWEAXLKBSpKggvYbQQjLJlFvP+8edezOTTJJJnSTe7+czSmZuOXNn5j7nOc85vwO/LkEyLZXBmjT1fT4POrTPAheLQhU9MEwTAb8HOcFs+LwB8BwPMIAXrEHI0AmACXA6Emfd9mBpP5oj5N1Y6IYBRdXgTdG4iAHNuvxhlVtaWgyyLMHn8yAr4IXf74UoCojGVMRiapM4BaJsLx+UwYiWgsUOwswqAFjLkGKuicaMDpBZ9drag+DKWS/WGi6vbt2/cvjfHohrG2ArOwa1nf/jwrXIHr252sjD14PfcWz5evA7jqNhL1HYdgmXHKwhUdGlrdF8EnQudYLKYzC2FkLo1w0QeKsmXtOh6yY8sgi/zxOvIa+ogyciKIaCwkghDimHrIz/WhL8GGPgeB4Cx4OZOqSsINoF/fB5rbI0qwrRADgV4BWIMkHT4mmLTI9HCarePK3ZtJVd39LFb0yTEInE4PPKyc4VKpwcM4PvwdHk5zhIooiA3wvTJITKIk6po2GYNWSJ1OVcDN4sD3wBEerh7TC8XQGucbtaNh2W7oDQgMoCIoJpmCg9VJbydbvef+WsF5Nm1umQPXpzlYG/PnLAtjOQajaf6HAkDtqpdApqwnYYbEeh8vt0SxDbJq5D0BLRDOhrtoLL9oPrmgeCVRNPRPDIYrwMjgMvWNn99oAc0cPYVrYF+yJ7cCCyD4oZQ6rBOhVM1wDDAOfxgOd5KzrMADAN4GPW/0HgGQ9GAkwDqIgSpEYQeCiKllRz39IgspwBq0Vu6jAzx3EwU8wYM4EdPfD5ZAT8XshxSd7ycCS+lFDhINb7HAD83GGIXj/KIh5oVRINWyZWdIDVOzpARAABZUfC1S6PJK69J86sEwfG2gbJoWsmppUoWF0UIHGJIlFJMPH5yksOic5IfcL9qcSZhq6Z6C4dtDFch6AlQQAUDfqqTTAPhyAM6QuKD/oMDLIkOgMWY4Ao8DBM0xmsJF5GtpQDn+BDtpQDvi5hXiUK8ALA8QllffHIgJN5JwGmBxwTQYYY/zv1OWwhIUkSLdU+TYfZhKqC9YGIrH4NIHg8UrVL5BzHWpTdQEWVgigK8Hpk+H1exGIKysNRRCIxSyCpnrkGTC0BU0sgtOsBXhJQerB68aKWhK4b9Y4O2BG2WESF5JUsXYZqGNXl+JQzbnuQr202bg/OqZYBEp2AROlge9C3sSsQqrMvkcRjNtQpsLETJN0IQduCUR1+5ZdeemmNr5eUlGDp0qUZTSZryYRCIWRnZ2PPzi0IBrOSXyQChWPQv9kIiigQTzsWLDcAMz5oWQNW1RudHlfFs5oXMRBM6KRDYIKVOZDmzZHbvwdMicHo3is+OyKr+yGvAMQDpgCAAwOgatbnK4k80tEcsCRkDRi6AcZZJYpcM9bbp7QJgK7piERjyIqLD1WHYdjXOLV8cUvBjJeKkmlVTWjxXBOvR06/lbShgivZCAp0B8k5lkhTRIWpm5D9Mji+eQWU0sUqC1Wr/Z3Uti+ZhNDhcgiSAH+21zlGug2PKrcjbuqZc3UDcX3OW1lkqKZB/qSHb3EcEbsV9jmdB2AJ5qG0tBTBYLDO53dpOdTJIZg6dWpa27322mv1NqgtU61DQAQ6XAZt2Q9gAS+EU/qD+a2yOVXTrWSvajr92Yp5osBDEOqT+GWFSbldmwFfFsz8zgmvxJMH446APfhrug7TIMhy+t0u7a+ZbhjQNAOSKKQ/SDUBhmGiPByFz+eBWMt1M03TSjj0yM1kXeNg9WLQEVMUiKIYr56ooWSSTLCybWBMhBkocMLmRARN0REujSCQ44PQABXIpkLXDeiGGY+i1W1fMgnhUBSGpiMrNwCOr+ocpuMYJDoFzRFKr00tMN1mSumoDtbkJITKDLTru811CNoAdSoSdwf6JsAkmHsPQftmA/gencAfdzSYKCSIA5nVlsEB8Q52ogBV1eo9wBI0kFIG5HVMPraVr11le57joWkqTJPSFuax7RJ4HhzHQVE0yJwIPgMDCxEhEo1BlkUIfJpOVIai5bYjVZ/PlTEGWRYhihXdIj0eqdpmP0wpBtOjMHOOSlpDt6sPZK+E0KFy5HQIVlE0zCREZDmZklBnZ8A0TSgRFYLIwxf0VkkqrQvZozcDhda/axuMG9L50Ka2QTzd47t5AC42bg5BJtFNGD/tgbr8RwgDe0I4oTeYJDhReEM3wKfQ0a8MxzEwjsVbFVd93QqJmjA1zXro9kOHqRuAooPpBOJFkGmATNN6UOqmRYwBQlwgqa7ryrY+gCBYrZWbGyJCNKZYg2VdZpOseUsPgfgMv3gvTCWMhngkHMfF8ww8UFUd5eFo1e+KqYOF94ICRwFc1XmCXX0QyPVbSwjN3PmyJnTDdJIt64JpmCg9WAYtpjnNnqpbAbM7QNam1JhYhVATic2TgMZpPpRIY6sIVpc34dK2cB2CDGDqOsyoCm3VT9DWbYV4Sn9wvbuAGJx2tPa6u7UMUHvpoCQK0PTqs8G1wwegF+5K+dCK9kIBD/XAPqh7dkLds8N67N4Bde9OmLFolfOJogAzntBY13HBSjjkmn1QIQI0zWpJ7PN60p7hMsaslZVmHP+ICEb4CIpXvofwzu8afJ1Y3AkL+D2QJBHhSBTRWMwpp2R6OcAJIDEL1X3fGGOQPCIEWcCR/SHoauarD0yToOtWdCBdrD4SJsqPhK120O38TRLtqC3hLnEGnz16c6M6BQ2NPiRiv4+GViq4tHyaX1fWBdEd+yBIHpjhCFjPjtAVBdi213rRvjExwDBNsJwsePLboXangHNm7VVCwkSgWBQeUYJhGDANw0qUU2IQJAkerw8xyQBPBC0ahSCKINOE1x+AYejQI2HwXl/lM0IUBKiaVq+GRowxMI6zOtJVkx/RmBCs5MBoTI23M65PCL7x7aoJPRqCmN0RpqaCDB1MaHhSox0ZEQUBMUVBWVkEXo8EWS2znIFa3qS9fOALelF2pBzZ+UFwdeiS2BgkNi/SddNZKkvHBtvZLjtcDgAItg80qu2Jywb1oSZ540xw+KbTMKpL8nOJTkHpwj74pNfcDFjm0hS4EYIMoJRFwUsS1IAPusBD4AVAJxhRDQI4iJwAkQnwcCKMI2Ug06z1mIzBmrUbJkxKMWsnAhhDeWkJDu8vwq7NP2H7hh8RKSuDqijYsXED9u3Yjp++W43DRUXY+sP3FdUiKe6XttQuA6tXIyM7qmHoBow03l9DIdPKG/B6JEt5sS77xq9dc8IYgye/B9oPvQzZx44E49NP4EwHq3+CB36fB4qqIlZ+BCbnSSsKYvU+kJHVLgAlrEJvJp0CK1dAt9pOx6trEC+/TdcZAAFKWAXjOGTlBeKaHnX7bNNZOkiHymF92xFo7OWDhlBbpCF79Gacs25c8xjj0uS4DkEGKNq6G9GyMA7uKsT+7XtQ+NN2FG7agZ3rf4ISVZLkf4Ha1QZtGGMQRAGamiwpnAjH8QiHQiDTRDA3F6WHD0GQRHj9AeiaBtM0ABAM3dINqOn8jDGIkmAJ19RgF6FiZmaa1uxO03WrWsE0mzyXwMobiEEQBIhi3RPPiOIaTRlKomva/gk8svweiJyOshgQjcZgpKEXwRiDIPHgRQ4lB0LQlMbvr1AZVdOhGyYkkYdHFuGRRchpVjzY379waQQAkNXOD8aa5vbXkHB69ujNTn1/ooRwJkgnD+HjwrUITtzaDNa4NAeuQ5ABGADGcfDnBGGaJsKlZQgdKoZpUtLQW5/bq8BzIFSEVCsOZh3Nn52NvE6d0fXoXshpn4+OBUeB53h07N4dnQqOQs9jjoU3kIVuvXpDEOOz0hpuuFxcIEdPEMGpGPzNeJmhDkXVEYupUBQVmmapF3JxB8bepykggqOW6K1HjbpDy0iob3TsjoaMAEH2wTBNhMNRhCMxKKrmiEmlTi61cgoCOT5Ey2NNmhNSUXEjxpU0Wd0cJQLKisPQNQOyXwKzuzk2MdXlEdRWZWCLFtXUzKg+iYN12SedPISTHr6lzja4tFwy6hD06NGjSkMcxhimT7dqfs8+++wqr918881Jx9i1axfGjBkDn8+HDh064K677oKuJ8vpLlmyBCeeeCJkWUbv3r0xZ86cKrY8//zz6NGjBzweD0499VR8++23Sa/HYjFMnz4deXl5CAQCmDBhAvbv31+v951X0AnegB85HfLQuVcBcrt0wFGD+qFrvx4QPZXWiVn1mc+psELxItRElTrGAI8HiqpA0zV4g1ngJRneYBCiKEILh8CLIkSPB9l5ecjKyUEwNxeqGkNYDUPnqx+wLY0EwRr4dQOqqkFRNcQUFYqqObN/gecgyyI8HgmyLEESRYiiACHep6Gp0A0diqrVKYmwMpW7OrY1mBEDE0R4fT4E/F4E/D4rSVWzKhLKyq1HOK6AqGpW+237c/P4ZfiCXkTLlSaJFBABmm6A5znUxzMjIihRFRzPIZjXuDkDNomKgpX5uHBtyudrG5xriw40ZuJgfWkJNrg0Hhl1CFasWIF9+/Y5j0WLFgEAJk2a5Gxzww03JG3zxBNPOK8ZhoExY8ZAVVUsW7YMr7/+OubMmYOHHnrI2Wb79u0YM2YMRowYgTVr1uCOO+7AtGnT8PHHHzvbzJ07F3feeSdmzZqF1atX4/jjj8eoUaNw4MABZ5uZM2fiv//9L/79739j6dKlKCwsrFW5sToC7bJgGBp4iYfkk5HTKQ++bD982QGYhgFNUaCpKnRVtTQJ6gjHWXruiVUHUn4nCF26Ax26QGvXAZTfGXynrhCysiAYKriOXcB17AzWIf7I74TyHB+2e8sRk2oeFK0yRKvWHfFsdlmS4JGthxQf+O31WusRt5WxJsveN00T0Wi8aVED9O0N3Wxw97wWjR6GyXtAcWVLjmOQJKuBVsDvg99v5RpIoggQoKoawpFYvLlSLN5umIcg8ig92LjLB06kSTcgCvVY7jEJ5UfCMAwT/mxfPDLQOA5BYh5B3svLnAeQXjOhdNbnG4PKcsh13cfl50NG73L5+fno1KmT85g/fz569eqFs846y9nG5/MlbZOohPXJJ5/gxx9/xJtvvonBgwfjwgsvxKOPPornn38eqqoCAF566SX07NkTTz31FI455hjcdtttmDhxIv74xz86x3n66adxww03YOrUqRgwYABeeukl+Hw+/O1vfwMAlJaW4tVXX8XTTz+NkSNHYsiQIXjttdewbNkyfP3113V+3/JRneDpYT3kozpBPqoj5IKOkAs6AJ3age+SB6lrHqRu7eHpkl/nhDa7LDCx1twEg2oABuMg+33wBPzgZauRES/J4D1e8B4feK/14Lw+kEeGKjIUq8UIqaW1nk/gefAcB57jLW2ENOy2t2n8WSUhHIlBEiUIAl+v8LCdxEageqpAtgYITI+Al4NV5t62c8BzHHiegyQJ8HotPYOsgBdZAau5UiymojwcAyfx8OX4rEiBZkWMFEWz2jUrGlTVKvlMt1SViCzpblVN6uOR1ruKL3GUHwlDVw14/XLa38l0qUm9MHv05ipOQX0H2XT7BaS75p8u6dr73qb1aR/TpWXTYqY9qqrizTffxHXXXZf0o33rrbfQvn17DBw4EPfddx8ikYjz2vLlyzFo0CB07FihsDdq1CiEQiH88MMPzjbnnntu0rlGjRqF5cuXO+ddtWpV0jYcx+Hcc891tlm1ahU0TUvapn///igoKHC2qQu8JIH3yOA9MgSvDMHrgeDzgPN4wDwy5KAfYpb14OW63QhtGLO6DdqNhVRFgyDw8MgSBL4iK5t4EdD1ahMWCISwVg6ulgQsxhgkySpDrGv2A8exRu0maCURqo5SX30HAdMkGKYZ7yjYRpMIiAAjCvDetK+THeXhOA6iJDiOgaJoMEAweaB4fwnKSsPQ40sLpmlC1XREYwrKyiMoD0cQjalxpzX1Z08EqIoGSRTjg3m6bymhmoDnkJ2fBVaPMtPaqK3SINEpsIWKqltWqI6Gthn+uHBtvcL6idGOmo7tNjdqW7QYh+D9999HSUkJrr32Wue5yZMn480338T//vc/3Hffffj73/+Oq6++2nm9qKgoyRkA4PxdVFRU4zahUAjRaBSHDh2CYRgpt0k8hiRJyMnJqXabVCiKglAolPSoCdM061UGlQq7/wHBSlT0eOyZcqVjixJgaIj3M07CXiYQOQke3lvrLJ7n7DLEupURchznCOQ0lPqKD6XCMM2EBLZGMa/lQQZgaCDBU6/d7eoLKe4YBLN8aNcugJzcLBgRDRJvqST6vDICfmsJIpjlg8cjW45bVEF5ebRKQzQiq+8Fx3POZ5DW24mX3JYdsRIIfUEvuAz2zMgevdlJvKusXpiuY5DoFNQ0ADfnen7pwj6ucmEbpMUIE7366qu48MIL0aVLhQrGjTfe6Px70KBB6Ny5M8455xxs3boVvXr1yoSZdeK3v/0tHn744bS3ZxyDqVk6Ag3RVAdRvNTPhMABjFU3AyPojAOvaeAMHVSNrn/UiGBPeBe6+wsg8tWL49gDQ0zRINThJswxS8ugMTBMA+XhKAIBX4MHASKqd+5Ba4EZCsDxAGvcW4Hsk8BYFtSYDo7jnN4H1kdiOatiPKFU1XSEIzF4vXJC9IriIlvpy0vbDmskFIWhGwi099VLgKouvFv8fK2Nj/JeXgbMSn7Odg5Owi1pDeSVnYLqShsTX7OSEht/Bm85JW5koC3SIu52O3fuxOLFizFt2rQatzv11FMBAFu2bAEAdOrUqUqmv/13p06datwmGAzC6/Wiffv24Hk+5TaJx1BVFSUlJdVuk4r77rsPpaWlzmP37t01vj9b419VtQatqVutfVUcLg5D1RlMAihFBACwcguIFwBVqXqcxDJCIK1cBhYvQ9Q0Pe1kQcaxlGVtdcU0CZFIDB5ZioeiGyh41LaLCyyMKMDLQCPX5DPGIHlFSF4RZcVhqLHU32m7KsbrkRGNqohEFKcyhYGBT3NAd5YJIio4jiHYPitl18JMkbh0kBgpWDnrxTovIdhth6s7j+002CWLpQv7NEjPIPFc7hJB26ZF/GJee+01dOjQAWPGjKlxuzVr1gAAOne2WvQOGzYM69evT6oGWLRoEYLBIAYMGOBs8+mnnyYdZ9GiRRg2bBgAQJIkDBkyJGkb0zTx6aefOtsMGTIEoigmbfPTTz9h165dzjapkGUZwWAw6VETdpgfQJ3D7knEk7E4jseRkih03ax2bCPGwCQPmBpLYRDg5b3oHjgKBYGjIKQxi6woQzTTLtfjGAM1MIfACj/HIPA8vF4ZoihAVeuf7W47KG12qSAO08IgIdA0x2YMgsjDE5AtDYBqeh9Y+S4CAn4veIFHJKogHIk5vTLSgoCykjDUqApPQG7yyEAi6aoWpgqxN6SOP1G4qHRhnyQnIJGvB7+Drwe/40QPanMOUjkANS1XuEqFbQdGGe5OYpomevbsiSuvvBK/+93vnOe3bt2Kf/zjHxg9ejTy8vKwbt06zJw5E926dcPSpUsBWGWHgwcPRpcuXfDEE0+gqKgI11xzDaZNm4bZs2cDsMoOBw4ciOnTp+O6667DZ599httvvx0LFizAqFGjAFhlh1OmTMHLL7+MU045Bc888wz+9a9/YePGjU5uwS233IKFCxdizpw5CAaDmDFjBgBg2bL01+1CoRCys7OxZ+cWBINZ1W5n9XY3IEtSvbPjTdMSBCorV+H3CvD6qiaNEQExRYX34B4rsa9rz6RjhPUwjijF6OLvCo5xaSsmEhGUeBKjrTOQKIlQ2Q7TJMuOegoHEQGKqkJVdWQFrPdpJxbW55hEgK7r0A2jxtbTrR8Cd2QDyN8FJOU03VmIoCk6NEWH7BXBi9XnBFjfE2sZIRJfRrB6ZdR8/Fi5gmg4hux4ZKC5P7Nzvn6mSplgZfGhmmbXo7ocX+eWyJmcrQ9dM9FxPk7+6iKsnvg0SktLa530uLRsMp5DsHjxYuzatQvXXXdd0vOSJGHx4sV45plnEA6H0b17d0yYMAEPPPCAsw3P85g/fz5uueUWDBs2DH6/H1OmTMEjjzzibNOzZ08sWLAAM2fOxLPPPotu3brhlVdecZwBALj88stx8OBBPPTQQygqKsLgwYPx0UcfJSUa/vGPfwTHcZgwYQIURcGoUaPwwgsvNMk1YU5tPqE+2e1WBjgPUSTk5njB8dV9zPEWfoEg2MFCwDSB+Jo5Yww+wQeD9PhMuW52iKIARbU05wFy3o8oik4UxLGCzHrP6AhW8lkspiKrct5APXxdIkpyyNpsdQEAmDpgqgDvbdLT2A2RGMdQeqgMgRw/JG/q6g87x0CWxLhKYs3HJiKrHbNJyMkPNqrOQF2wuxUmOgX24G4P9PbsPNUs3pq9p3++psoPqAtD10xE9ujNCJIrXdxWyHiE4OdEuhECTddhGgQpTZ326rBD9izhv4mYJkFRVHhFDvyW72F2OxoUyK7YP+GrUfdZtuUE2GF3xqzSQlXT4a2kxmjEVQ7rWmtuvQcTZeUR+LweCAnCNXYGu9cr1ylDXdOtTpCyLIGhDVcXAGDRA2BKMczsfs3SvImIoEY1lJdEkN0+C7xY/UyeCIhEY3GRq9SNnci0ehNoqo7s9lkZcwZsUkUJqqO22X3i8oJ9zHQjAvZAXZ/zJpKYuGg7MqmOrZOGJZjnRgjaABmPELgkY89Qrezqht3cagvxO2v8ggjKyQM7vB/kDzqDQ0POn5hRXvEcqp+118MttcWHZKka8SGGpOiGFaSo/kSapsMwqY0vE8QhAyxaBAoUNFsnRzvRMFvMghrVIJi8FTlIcX4iS52wuuUCOzKgq7olR5xBZ8D+Xn1w3M24eOFLaTsFifkDlUsSk6IIabRTThyos1H9+RND/XZyov2cfYxUTkN1zoBL28J1CFoYhmktEzRLUlTCigS1ywe37UcwJQbyNE0ImbGKJjXJqnGszv0C0hEfEgUBiqJZpYP2ywmnSTyn7Th4GiBk1JpgainAOJDYvDM6xhh4gYMoCyg9GEKgnT9eolhxzYmszoYCz1X5HZBVT4tYWIFJhGALiAzYrbV/0f3X+LpwLUah9m6Ho7ocjzxYSwoNzQUY1eX4Gp2ARCovV9j7Dl2YPNif9PAtjn1AzVEHl7aD6xC0MAzDgCA0Z1JUfPYseUC+LLCSg6CO3Zts1ihJIhRVs6RwRcGRxyWT0s5VsGvXdV1HwJ9aYY/FSzg5jqu+0oBVLKfYyxo/B2cARGDR/SBvx2aLDiRit07Oyg0gWh6DIPKVEg0JqqrDl3K5h1BeEoGmashun7mcAccashJif9H913XaL7nUsG4Ogb2cUJcBOjF3IZWGQeKxhq6ZiJWzXsSolyu2+3rwO2k5Oi6tmxZRduhSAQPig2MznQzx+n/GQHmdwI4cAgy9tj3rd7r4IO31SEntmRljYByXVoyACDAME7GYCp/Pg5p62tuaCHa1Q5UHz1u9HHiu0RQiWwNML7fUCaV2yFTSpL18EGjnhxJRoUYrdAo0zXA+u0TsHAQiilcTZN6Bs5UxbezEwZrK9BKdgcpLBdVhOwH2TL2us/WanIHKpDp2Ovu5tH7cCEELQxAExBQFoiigqW/WpmEmh2p9AUAQwYWOwGxX96ZKDYPSerdEVnjW65HAc/VrWvSzhggsUgTy5lsKhRnEWT7wiCg9WIasXGv5QFHVKnkcRIRoWcwqislp3K6FDcGOav3n8HOYkHcbgPiAGl/3r6wcaA3MVR2Fkx6uUCys7EjYTsDQhXWXCq5c+eDiUhNuhKCFYGfkq5rWLHK5pmll1NthewAAx4HadwI7XFSvkr2GUXsbZCtvQIEgCBDFurfCdQFgxgC9HOTJQ0soqbRLEoPtA9AUHbGoBiIkdZckIkRCUUTLY/D4pRbjDNSErSgIoIpy4NA1EzGqy/EYumaik1hYWX8gcX8nWXD05pQlizVhCxLZxwTS66HQEMEkl9aLGyFoAdjSwKqiOf0AmvKGR0RQVC0+qFYSCQrmgi/aBRYpA/mzm3DMqGsSIaAoGkzTrDZvwKUWiMBF9gNyLsClLuXLBIwxSB4Rgiig+GApZE+FbUQENabBNAjZ+cGMNiqqnuq/y4mhdluPwE4AtAb6zUlr9ZX3qel4NZEYGai8T23iR/Vt0+zS+nEjBBnG6fkeU8HFe85XDpXqpgazobr8zvFgJfVxLHUDIp4H5XYEO7gPLUnM3zAMKKra4A6GP2tIA9QSmJ4OaAnRgUTs5QNBFhAujUCJqFZkoCwGNarBn+0F36zJtulj/0pqkzBONRDXNvjWd+0+Uaq4rudszq6JLi0L1yHIIHYJnqJYs3VRSB0ZMBrJGYifFaZJKaMDNmZuB7BwCCxFw6PGgud5xGIqNE2HaZpxy1I7IGa8rMvr9VRJNHNJH6aVgzgZ4OvX6rg5kL0SArkBGLqJ8iMRxMpj8GZ5WvQygaX3YdmWbl8DoKq0cXXb1JXayhjdAd+lOty7a4awVfFUTYcsifGe71W3Y4xB4qS0+wg0CoIICrYDK95f+7b1wOpwJ0CSBJhEiCmalalNgGboMMwKB8hOIrQcpswmwbV6DAVM8GSk1DBdBJ4D4xlMw4QaVS1FwxYaGXCoZFpdnILG5uPCtTjp4VsaVBXgLhn8fHFzCDKAaVpr+ACcbOqa7neNeTNMK1eQMVD7LuC2/wh06ApU2wuh/lhlZTw4jgdEQiSqWMqCIJhkggfn1HgD+HmoBzYxDARqwdfQztgvLwmDMxiy2vlrbITUYkjRdyTRKbg0d3qVXdJtZJTubN4exEd1QZKgUHXLBrUdJ+/lZXVutuTS+nEdggygqCr8fl9cbrd5b3bptvQlrw+QPOBKimHmdWgye2x5Y47jwACInBC306rv1rTqxYdc6giZaGm5AwAAAkwyES1TYJomOIFDTvssqBGr70Eg2yozbK3YzkEqx6AxSDVwV64sSPc4QIUTkq4zEHqnF1D3ikiXFoi7ZJABREnIiDMAWAOwYZow0wgVmPmdwYqbvgTRaoRkgsXFgRhjMEwD0ZgSTyJs/K+pSWb1CoZtknhnS9Zyll2sz52gazpCB8uhxlR4AzJ8AS/AMXgDMrSYhvLSSFIL7RYFQ72+R405824KZ6A27HN8XLgWwYlut8O2gusQZACeZW5NlDEGgeeh60bNNzLGrEZHqgKmqU1mDxFBVTUIvAC795FhmghHYvB6ZPA81yRL3pphNHKyZmug5UQIiAimYSJSGkUsosIX9CInPwheEMDzPAzdAC/yyOkQhCDwiIVVkNnynDiW4l/V0Ry5BVZb5LpRF2egYmmiwtl4b9P6Op/TpWXiLhlkgEyGvxljEEUBajyHoUZ4ASRKgBoDJLlJ7CEiGCbB67FmrrphIBqNwSNJNVZCNBSpCfIiWjxkAs0gelWjCfEBXY1pKC8uh+SV4c/2JlURCAKPSDQGD8ngeA6egIxoWQxHDoTiSYYtQ6GSAKdRV0vAVkJMFESqKUqQmDyYrjPg5hS0bRi1NJe7DRMKhZCdnY09O7cgGMzKiA1EBN0woCga/L6aa/pNk8Bt3wAuN9+SMm4CDMOEpumQZavpkaJo8HnljC2ptFmIwJVtB4l+q6lRRkwg6KoOJaqBcQySLEBIIcJlmCaOHAmhXU7QKTMlIoRLIzB0E4F2/krdMjODYZgoD0fh9cqW85rmfpfmTq8SLWhofkHlUsPm6D1gnzNUZqBd320oLS1FMNi83TNdGpef4TTp50uiM5DOzZRjACfLgBJrUrtMIkQiMZhECPi9rtZAk5GZJQM7VyAaiiEaVuDP9sLjtyJOqb6HpkHgOB6apoPnJWc7f7YPmqIjWhaDJIsQPU2r6FkTpkkoD0fhkSWIAl+nq5pq6eDd4ucBIlyad1uDB/dU6oguLung3nl/Jti6B7puQBSFJK346mGAKFtLBk1iE2CaJsKRKBhjrjPQ1JAJNEGCZrWnIwKZBCWqIRpSwDgOOR2C8PjlGltNc5zVFTOmKEk5A3bfA1ESUHoo5KgZZgJV0yAIfOPKjMePY/cxsDsc1iY0ZL+eSn/ALh9sTOxujjbnrBvXqMd3yRxuhKCNQ/EaaVXVQUSQJcm6mfFphOQZAEkGC4fiGeqNqYdAUDUdiqLC77XEcgzDjCcRuksFTUPjfoY1nokIpm6irDgM0zSRlReAIFpOaG2fL8cx+H0ehMrCME0Czyek7sXbJmfnB6FGVfACD0Fq/uUl0zCtyEAjn/fd4udwae5tTi+CUbDaKX9dWHNTo6FrJmLlrBer9EVoCNVFFyo3WHKrDNoO7nSsDWN3UIwpGsAAWRbB4mVS6SZCkSACht5opYdWVMBaIlBVDX6fF16vDFkSoek6FFVzpIxdGhkiNPVP3q4eiIUVRMsVePwycjoGIcQFhtIZQBmzdCmk+Hci1euiLMCb5UUsrCBcEnGWJZoLsgxpgiNbx0xsWZw9enOVmf/QNROdCMKoLsc72zS3ymBz5Cq4NB+uQ9BGsZ0BRVEh8Fxym+O6wPOAYTSmZYhEYwCDs0RgDwAeWQLPcU5XQ5dGhAGV1fQaE3tAVmMajuwvhabo8AU9kP2SJTpVx+8eY4AkCtA0PeVAzxgDxzN4szxQoioipdHGeisZ5z+Hn8O7h56t8nzllsipHIVUNOayQW3LFy6tG9chaIMQEUzTRExRIQgCBKFyB0XUYXbDAENrtAiBbpgwTbNK10LG4hoJAg9e4KHpjemEVA8RQTVMaGbzzjAzAplNMqslIhi6gWi5Ai2mI9DOj6xcf4NbFfM8D9O0mnGlwuqQyKNdx2wwnkMsrMI0zOYRMLJFM5ri0IwBXPJqbuKAXpMTYA/+lR2A6hILa3IUVs56MSPVCy6Zw3UI2hhEBF03oKoaJEmAIFQV9mEAyExT+Y3jwMCBNZKIj6pqkGvoS8AYA89xoGoGgcZGNYGfSjXsLNfR9mMSBGrEpELL8SREQlGUHigDY4Av2wvJIzbK2rrtIOo1OIeMARzPwRuQYegGSg6EYBq1iG41BtR8zcHrUynQGJUFdmLjx4VrUbqwT5VkQnvJwqXt4CYVtjEMw4RuGPFBt2oClz2r0g0DElfRtrVaGGfNLBshhG+alrPi9Ui1b8wqmt00JQRCzCBwrK1HB9CoOQSWpoABNaaBTCCYn+XkCTQWjAGiIEDTdUgk1hrc8AW9INNEJBSDL9sLjsusCFhjkcmywezRm4HCqomE9mulC/vAf+GPGbDMpSlwIwRtCLu0UBSEGoVbOI5LP9rJcY2WVKjrRvpVBM00Pkscw7HtJBydJdTpx9DcSWyNQiMsGdjLA6HD5Sg/EobkEeHP8TbIGSAihFQTMaOqNDHjWPy5mq+13TE00M4P2SchGopBU1LnHzQOzdqQvFbe33678+/mdCBSOQourRc3QtAGsEO3qqqB47k0avmtG2w6N3DieKvSoBFGaFXT0k5ubK6hlmMMPqFut3YignJwOzjZDzHYoRXNQhtWdmiaBE3RocU08AKHQI4fHN9wxUCdgAMxA118VbUxTMMEx9KIZKEiGiDKAkzDROmhMgRzA5C8jbOEkUQzOIPVtVBOEjYiAkgHovvx/uZpGNfnlUa1obokQjuXwPp/GjLoLq0CN0KQARp71mKaBEXVIEpCWgMuUR3mN4wBHAM1MIfANE0YhglBSMMHdTLiWyZGtBRH1ixEaOMXIKNqWVzLhOrV/jixeqBkfynUiAJvQIY/29cozgAAGCYhKHLwpDieYZjx5MT0j8cYg+yTEMwLQFN16Frj5BTYibrhSAwxRbEcpPixmytaVEXlkDGAE2H6uoKyjsb7m29ssnO7OQNtH9chyACN2WXPWibQIQo8eC69sC3PWe2FzXQTCwkNVrjTdANCmssFLX2+TaYBX7eBkHK7AmZrcQhs0r+6jtJgREW0PAZvwGP1ERAq2lQ3BgLHkOfhUlpW32GWMQbJI8Ib8CBaFkO4NOokqhJVfpDTXrm653XdQHk46ohnZQV84HnOcRKawx+osVsiYyApG2a7Y/D+9jtqPE5igmDlSoKPC9emjAokah3Y27m0Pdwlgwygm3q9hP+IrCQ4wAp122p/RBRvBpTeceyOh4qqwiNLqHGQiCcUMo5v0Jzdri5I08IaR4LKcrbNjRjIQ/aAs5v9vA0jfs3SvF5EhFhYQSQUhS/oQ1Y7f1JHwsZEqEEkSxR5qIoGkuqeYGppFQC+oAelB8ssJ8EnOr8Z+3vPkpZSEhsaW8/blTteT7yJUYIZRFaUwPp+N8HSRJy0WydzEsxgr5QvVQziVQfzytUDlZUREzsnOgJIN2U24dGl8XEdggzANWC2bYfuCRwUVQMDg6eGMr5UMMYg8DxMw3R6G1SLGU9Eq6fNdn4DEcWlXtOxz9439fhFADRD/3m2MG5ibKVBJapBiSjIyg1AlDPXREjgeURJqbdytl1Vk9MxG7GwgiOHQ8jK9kMQBctFikcAqvjEtvNNAOM4eD0SGEtRwsuY5bSolnNebwGwxoRxePfwn3Fp3gwAFW2RgfQaH1V2BkZ1Od6JHNj72/sdvuk0GGoM+Nu8JnkrLs2Lu2SQAUSufgOZtZzPgWMc9Lh6YH2bq1g13oJznGq3M62GONSAe1wkqkAS6zZ74njrPaZUqQMgcOk0Z0qGiKCbBoyfowqicx1TfwZEZLXzLYmgrLgcgsgjJz+YUWcAqIiINWQdyVLCZBA9IsggREuj4BiDKPCQJBGyLEKWKj1kER5ZgscjQZbFuNpi9ceXJAFkEvQUlRIZgXF49/CzKF3YB0CyyqFNKmfg8E2n4aSHb0lqlHT4ptOqXSpwIwRtC9chyAB2iVRt2GuZVfdlVtOXekjCJsLFS7pqvIHZEYJ63pGJCIZpQJLSd4IYYxAFAbpupFybtcWL6uUIoWnC3i0fSvk52p+/rhkIl0ZgGiYC7eJRgSZaIkgXIkBV4o24GphZYr0Pgj/bB1ESES1X4uJcjTN4206BJbXcKIdsOMz6zSX2RagJO2JgP2xWznoRANz8gZ8BrkPQwrBv0KZp5wdUnXE0ZlYzz/NOJ8SUxzQNS4ugHvdjIkDTDKezYl3s5jgGgeeg6VVrySuSvSqSvtLBdiS4n6tDAJb0ORIRDM1A6aEyKBEVvoAXwbwAeKFldJw0TROqpsfzXBoOkaVrEGjng+SREC6NNqpWAWMceI6DYaR2ZDPBp0PvSHvbxGWARBIjCyc9fEuV/XL/9k39jHNpcbgOQQvC7gQYi2kIR2IIhSJQVL3SNpb4EBGB5+seNk+GQRIFmGSiLBapCM8mYjsE9ZqhERRVhWmaiMYURGNqtbr0qRBFAUaKEKxuGIhEreNFYyp0Q4euG9B1A4ZhwIj3S0h+VHYikh9tHmehnDnVA2pMQ1lxGKIkwBf0gBcbt3qgIRBZTbBkWaoxXF8XTNN0Gi2JstU2ufRgCFqscZwCxqwkSPt7WPGda7jtDaGmhMTKg39iXkGqSIBwycHGNc6lReFmZbUwTCIompUsKHtESJUS/nTDhGEYkCWpwTdJqxUyIEsSTMWKSjAuOYOfGTrA8fXK6DIMEwAh4PfXc5Cx1nlVTYcsVeQgmCZBFAWI8SZIpkEAzAp3hqpqPZD9fmCtS1v/jmeZc9Z5gPSWclon5CTRqTEN0XAMskdCsH1Wo+kJNBZEhGhUsfQEJKFRPhPbkfb5PACs74LHL4PjOaiKDsYBQj3zcRJhCW2bSdOBeP4CZ+mIw26CwBhzBMSa49q/W/wcWOwwxneZlfR84tJAdUmGicmEtpRx4nMubQfXIcgI1XVvAwSeQzDgc/62/m/9wy5/kkQRXA2lWnXBPrYsidA0A7zMxYWOdHg9IhANgzzeOjkEBMAwDESiMXg8cto5E1Vtg9XcJmYlAgrxiIg9i2WMVXGYgOqFnypma5TkPBiGiWhMhSQKzXqTblbIBJmESJmCaFiDP9sL2Ve36pTmgGDV/Gu6gWCWr9Hs03UDDJYGh42lVSBBEE0rkVLi4Q/Gz1nP0zIAPM+B5yUn+mSYBDKtSJd9WMM0oWk6JElspp4LDCTn1bhF5SWDkx4+DStnvVjtwO86BW0Pd8kgAzCtLK4al+I1e0bBVQx6QHw5IZ5l2FjOQMU5EV9Xt4ZJ3TBxpCQGMgksHAL82XU6nqEbiEYVeDwSRKFhMzwrWUt08hwApM62rLRPqgfHcfGbNQ/Bfgg8JEmALAnQdR2KqrVgjcS6Y7fCjpQpKI8AvMijXcdgi3QGAFgRDFWvcyltbShK6i6bjAEczxDI8UGJaFayYSMmGnIcV1HNIImQ4g9ZEiFKAhRVg2E2U2UCY3j38J+S+h7UB1ux0HUG2h4ZdQh69OiR8sY9ffr0pO2ICBdeeCEYY3j//feTXtu1axfGjBkDn8+HDh064K677oKuJ6+7L1myBCeeeCJkWUbv3r0xZ86cKrY8//zz6NGjBzweD0499VR8++23Sa/HYjFMnz4deXl5CAQCmDBhAvbv31+v983Ce8CFtoLp4bQ00a3cAgOKotWsGdBIcIxB1wwYqgZomhUhSBPTtNZ+PbLtDDT8pm6vIdcl/6AuWOFb3hFOMmpot9uasBoRmSgvjkCNxOD1MMheKS4F3AKdgTi6YUAQGpofU4FhmDBME6KY+piMMcdRYhxDLKzAbOLyQec7F3d2m61ckfEwAz3w/pabUr5cOacAcKsKfk5k1CFYsWIF9u3b5zwWLVoEAJg0aVLSds8880zKG5hhGBgzZgxUVcWyZcvw+uuvY86cOXjooYecbbZv344xY8ZgxIgRWLNmDe644w5MmzYNH3/8sbPN3Llzceedd2LWrFlYvXo1jj/+eIwaNQoHDhxwtpk5cyb++9//4t///jeWLl2KwsJCXHrppfV632awN0jwgpVuBivfCWYoKR0De3anahpU1VpHT7tbYB1JXJZgjIFxDJw9V65Dzb+qatYMvFEFWgimQTCMeOJgE+kIMMbaRAWC3ZGwvCSCWLkCT0BGTn6g2gGxJdLY0QFJqlkHw1I15ODxSdA1HSUHQk3vFMDS2/DIInRNd5KFmxxeBmUdXeMmeS8vw8pZLybpEdikW8bo0vpg1IJSrO+44w7Mnz8fmzdvdn68a9aswdixY7Fy5Up07twZ7733HsaNGwcA+PDDDzF27FgUFhaiY8eOAICXXnoJ99xzDw4ePAhJknDPPfdgwYIF+P77753zXHHFFSgpKcFHH30EADj11FNx8skn47nnngNgZSN3794dM2bMwL333ovS0lLk5+fjH//4ByZOtMJlGzduxDHHHIPly5dj6NChab2/UCiE7Oxs7Nm5BcGsAGAq4CJFgFoC8rQHeTsCnAB7AdMwTSiKCkEQ4klvTbfWSGR1I+TiM5fSUAzZPh7i1u9hHj0AJHvSOAYhVBaB3+9x1vsbA2uNX4FoN0ZicFo8NzaKal2D5ojENAVEVkfCsuJyiLLoNCHi9DBY+U6YOcc0uC9FU0JECEdikEQBkiQ2+HiGYaI8HEFWwJ/294VMQnlpBIwx+LI8zaLHYBJBUTTwPBdX9Gxix5QIl+bdVuXpVFUGqZYGEtUPz+k8AEswD6WlpQgGg01otEtT02LuDKqq4s0338R1113n/BgikQgmT56M559/Hp06daqyz/LlyzFo0CDHGQCAUaNGIRQK4YcffnC2Offcc5P2GzVqFJYvX+6cd9WqVUnbcByHc88919lm1apV0DQtaZv+/fujoKDA2abOMAbwHpiBo0DZfcGMKLgj34NFDwBkhax13YAoCE7ovSlvEozBqqE2TTAG5GR7wNltlNP0GVVNt9boucb9WpmmCVEULEW5uKpcUzgDrRnbESgviUBTdQTzspCVm9CeuBEbajUpzJLV1hph2cYuXfTIMlgdvi+Ms3IKZK9kXc9G1CqoDo4xeGQRhmE6HRSblBT3ksTlgkR1wlQkNjp6b9P6xrfPJSO0GIfg/fffR0lJCa699lrnuZkzZ+K0007DJZdcknKfoqKiJGcAgPN3UVFRjduEQiFEo1EcOnQIhmGk3CbxGJIkIScnp9ptUqEoCkKhUNKjCoyBBB/MrN6gYC8wpRjckQ2AcgSGoYPn029a1FA4jjkd4axMa9shqH0wsUvFJFFEU/QrbLbhP4WuPRHB1BUYSqTFaRbYIlbR8hhKD4bACxx8AQ8Eia/kRJrxz7OFO1JE0DS9wREaImupALAUBOv6rhljECQekkdEyYHSZnEKmO0UxAWZmvp8qfQJKpcd1tby2E0sbFu0GIfg1VdfxYUXXoguXboAAD744AN89tlneOaZZzJrWAP47W9/i+zsbOfRvXv36jdmDCQGYWb3A/m7AOW7IMcKwaH5EtzscitHrIcxQBABJVbrvvaMTjcM6LoOo4owUFWhIOdRg2BQ4k2xucbiKjK5RAjv+A6lP/4PZNS93XFTiB85rYmjKiKhKACGnI7Z8AaqCXGn7ODT8rDK9MwGLTkRWd9DRdXg88r1jqwxxiD7JOR0yIam6NDV+s3c6yKAZTsFpklxGeSmdgqec/5d2RmwIwZ2P4TqGN93UOMb5pIRWoRDsHPnTixevBjTpk1znvvss8+wdetW5OTkQBAECPH14wkTJuDss88GAHTq1KlKpr/9t73EUN02wWAQXq8X7du3B8/zKbdJPIaqqigpKal2m1Tcd999KC0tdR67d+8GAGg1JSsxDiTnAu2OgcgZ4Eo3gxm1D8iNgZ35rGr2oMdA2blA8X5QDYl8RARFUeHzeSDHb2aqqkFxHnr8Ef9b0aCoKhRFRUxREYtVqA6mesQU1Sq5bCYqKzaaShjRfZugHNoBPVxct2NR49/YrY6EhNDhMoRLopA8IrwBuRbJYTNlmLilYbfmDkei1fayqAmiuAZGJAaf1wOugctXlqqhAI9fRrg0gnBJ3aNEBELMUOt0TjtSkEq6u3GJlyJuvTXpWbufgT4vH18Pfsfpdlibc+DSumkRDsFrr72GDh06YMyYMc5z9957L9atW4c1a9Y4DwD44x//iNdeew0AMGzYMKxfvz6pGmDRokUIBoMYMGCAs82nn36adL5FixZh2LBhAABJkjBkyJCkbUzTxKeffupsM2TIEIiimLTNTz/9hF27djnbpEKWZQSDwaQHAOzaW4r9B8sdaVPdMKuWHXGSVY0gBcFKfgJTQ80yRRYFqy0yACtakNMeXLQcTK3eKbFtFwUePMdBkgSrU5zzEOMPyekgZ//f65Hh9cjwyCK8HinlQ5bEZsv+5zhWpbyRk33IO2k88k+/GoI/N+1jWc6A4VRuNBS7NXGsXEGsPAbZJ6Ndx4qOhDWegwgt5OdeIwwMPq8MWZIQjsRgmmadvvamaSIcicHrlSGk2W67VpsYs7QK2vmhxjTE6qhVwMAg83VNkGSQJcnKKWjq6gPGgwJHVXm6QqCootLAdg5c2iYZT6U2TROvvfYapkyZ4kQBAGtWnmr2XVBQgJ49ewIAzj//fAwYMADXXHMNnnjiCRQVFeGBBx7A9OnTIcsyAODmm2/Gc889h7vvvhvXXXcdPvvsM/zrX//CggULnGPeeeedmDJlCk466SSccsopeOaZZxAOhzF16lQAQHZ2Nq6//nrceeedyM3NRTAYxIwZMzBs2LC0KwwSUQnYd6AMMUWH4JURi2ngdB0F3dpBECruYAQGQ2wHUqLAgfVA8GiQ4IUT+o3f7ZjTtIaBcTw40dOgMCnjLLVCnmcgUQKy2oErPgiz81Ep19cVRU3KCK/7uWsZzOz32Qw+AcdxMOIzetsmxvHgvVl1PpY9W00liFP3YxF0VUfocDkESUAgx183yWGyJagbZEbTw6zvsyjyIJJQHo7CI0tptfk2TBPhSLRRBLGqmMUYeIFDToegJf1cFoPHL6dVgZAok53++QDbKVBUDSBLrrvJqowEP97b+xDKDmzDL05403k+cRnB7XbY9sm4Q7B48WLs2rUL1113XZ335Xke8+fPxy233IJhw4bB7/djypQpeOSRR5xtevbsiQULFmDmzJl49tln0a1bN7zyyisYNWqUs83ll1+OgwcP4qGHHkJRUREGDx6Mjz76KCnR8I9//CM4jsOECROgKApGjRqFF154oV7vOTtLhoeXkBWQIXlE5GVJOHQ4jCNlCvLbJYgAEUErOwCJcWDeDiA9AujRipcr/4sA3TQhZHcFL/nqZRtgZTybZIIjKwRt5nUCt/MnoENXQEj+ypimCcMw4fPW3wmplUaaYacDx7F4TkPDHRDbqWhIRYQtLqRGrcZQgRw/JG/NNfWpYHoExCc4ky0cu50wz3OIKSpUVYPHI8Vn/VXfg2kSwuGYpQQoNq4zkGgTOCuvoKw4jJIDIWTnZ4FvRBGl5PNZ//fIorPcJteip9CQk5GnAyiL8Oa6Kbj6uNdT9jUA3ETCtkyL0iFo69g6BLt3bEYwaM047R93WVRDaVhD1zxvhUiQaUAt3gmfR4aixHCgaA88Hh+8Pj8kSYamqVBVJS7JKyCQlQ1ViYH8HSB46j6jtTEME4pqzfp5jgMDgd/6A8x2HUB5FU4SERCNxsA4ZpV2NdFYo6qas7bc1BBZ+Q9Ww6OGzcis3AFAkupuN5HVBCcaVhAJReDL8sIT8ICxekRgiMAVrwMFe4HEQJ1tyTR2D49ozPque71yUmkrEaE8HIUgCPDITTRgVrIHBIRDUTAGeAIeR2q8Kc+pajpMk+JOQdNokpSUhgCtHLnsAMb1+WvKbSr3MNBJc3UI2ggtf1GxDWKv94qiDEn2gRdEcCBoMSvxiOMF8IIEjrcGEsZL8LbrCjGQj0g0gnXfLUMsFsHObT/hh7XfYuum77F39zYYhg5OkCFIPvB1XrOsgOOsUKWm6VAUDQQGyusE7vB+ICG5kMhKevJ6vBBECbzQeDdjO9s8XX+V43iwSglk1uy8biIv1uciQtfNBmnME9kRgrruF88rUQ1EymMwTUJ+t07Izs+DIIoQJS8k2ed8N9LCVAEy4stNrQ/bGcwK+MDzPCKRmPO52OWFdiJec0SSbCVPf7YXoiyivDgMLaY1udSxJAoQeB4xRY0nXDZ+a2We42AwGWCtR9XSpfHI+JLBzxVBlOHxBXHw4EHk5+cjHI6hY34usnJywRKU5HyBduB4AaFQCJ37ngojchjFBwthGAYYx0EUJTAweAO58HboC8Fb0YiIiKAqEaixcJ1sswZSqwOiomrQdANcVg7Yvp1gagzk8VkDtgF07NwNoigl7a/rKsgwwAsiTNNALFIGqqMwjkEmwloUQcmf9DwvSJA9foABaiwC09Dhy2rnXDNNjSEWCUGQPPD6gs51UKJl0GpIjEzEcois92412amT6XEo3qa5ep+bcRw83iA4joOmKVCiVqJpuCQCTdGQ1S4Af042wASUlZUhPz8fqqriyJEj6NChA8pDh9JKNGVGDHKXk8DJOdB1DUq0LP13QQm6FBnGHvTLNM3JcTFNE4qqIeD3NruNdgWCqYsIHS5HMC8Loqfp1vkZYxAEDhwvQtN06IphVWDxlr5E4yRQwlqB5Hi8VzQbJGXj0lyrt8y7xc87/3Zpm7gRggwhewOYN28eHnroITDGkN0uD8GgH3/4w5M44YQT0KVLF5x++umY8/obAKy+DzfccAMCed0w6OQR8PuzUNCjN/oPPBF9B52CfkMvwo+bd2Ly5MkoKCjAwIED8fvf/x4EHp74wMisPqvgeCHlDNNKnBLBxXsXRKIqwhHFmu3yIri8zuD1ipLE7Nx8rFmzFhdccAGOOuoo9OvXD1dccQWIGETZi7+9NgfFR0ohewOwEwftpEUrmmB9/TiOT/obAHjGwS96rWiJWJGU5/EG8M23K/Dll8vg8QUhSB6Ul4dx+umn41e/+hVEyQPGOMgeP/71r3/h9NNPx+LFiyGIcnzGbt1QGeOS68MZA6Hi2nAcF1fMS132ZdvMVerzwDgefMLxGbNv1lyV6ytJXhw6XIw5r78B2eMHmTyiZTGIsoScjtmQ/R5IshfLly/HZZddBgBYt24dxowZYw1Gkgcs6fysapSE4yCKIhTy4s/PPQ9J9kKQKmSoGeMse6u8D8tuk1kP570JYvy7kzkHgeM4GPHKlphita3OlHIlYwyyX0Z2fhZ0VW9yASPGGHiOszonipayYUzRYBiNU4nAGAcTADHOUUx9t/h5R8To3eLn3RyCNoybQ9CM2DkEhw7sQ277jhg8eDD+85//oFevXiAijBo1CoFAALNnz0bfvn3x448/4qmnnsKcOXNARDjppJPw1ltvoWe3fJQd2BbPJSQEO/fFpm17cMYZZ+CJJ57AlClTUFhYiF/+8pcgIsybNy/lrIWIEIuEoGsqPL4ARKkipGyaJspCR+APZCdVfwAAmSZUTQHAoWvXrnjuuecwYcIERCIRLFy4EBMmTIAkSRg4cCDefvttDBqUvnCJpsYQi5ZBECR4vFlJA5yl3Cjg8ccfRzgcxuzZswEAJSUlaNeuHXr16oVvvvkGWVkBSJKM4cOHY+fOnXjiiSdw5ZVXVin/M3QdpaXFCGRlQ5LkKrZEwyGEQiXweirEbXhehOzLAp/gUJFpQomVVwnlx6IRkKnB4wtWuf72e1m9ejWuv/56fPfdd9Vek3A4jMOHD6OgoAArV67EzTffjJUrVya8Dw2qGrWuF2MwdA2xaBl8gRzHyTpw4ACOPfZYHDx40LKZCIahQRAqojuGoUOJlsHjC1ZxdFIRi5RBU6O1btfYRGMqQARJElEaKkd2MACez+zcxtaGKCsuBy/wCOT46iSX3JDzGqYld8wYIMRLf+sbpYhGYwiVlaOTdBjw5IE87VNud87XzzhNjtwcgraDGyHIAF6fH6tWrYIgCOjduzdMk7B8+XKsW7cOf//739Gndy9oSgTH9O/raC4wxjBx4kS89tprkPy5kNp1h5TbHXJuD0i+HDzzzDO46qqrcMMNN4C0MLp17Yw5c+Zg6dKlTmOnqVOn4tVXX8XQoUNx4okn4u2334bXnw1/MBfl4RhmzJiBfv36Yfjw4Vi8eDGyc/IgCALGjh2Lf/7znzjxxBNxwgknYP6CBZBlL/bs2YPy8nJMmDABoigiOzsbV155JSRJwvPPP4/t27fj+uuvx8iRI7F+/Xq88cYbePLJJ3H55ZejZ8+eCIVCWLp0Kc4//3z0798fv/jFL1BSWoZAsD28/mz8+513cNppp2HgwIG48847oaoaNmzYgFdffRVvvfUWRo4ciT/96U/Odb388svxz3/+E5IkY9OmTVAUxdGjAIClS5firLPOQr9+/TBixAh8tWwZcvM6QJJkzJw5E3/9618xfPhwHH/88XjhhRfg9QchSR7oumHVw4PBl9UOX321DKNHj0bv3r1x5plnYuu2bfD4gvh2xUqce+65GDBgAK6//npEojF4/dlOl80HHngAffv2xYUXXoi9ewsBAHfddRc2b96MkSNH4qqrrgIAXH311XjjjTdwyimnYNq0adi0aVOSYicR4f7778cxxxyDMWPGYNfuPfD6gti4cSOmT58OXhAhyT7s338AkydPBgD8+te/RklJCUaOHIlRo0aBMYYjR0oxZcoUDBgwAOeffz6++26NtUTF8Rg9ejTefPNNDB48GP/3f/+HLVu2YOzYsTjmmGMwePBg6zp7UleyVFaaNE2CYZjQdSOel6JC0/Q6awzY8LzVc0NRtUbTeGgoiVoFuqojFlEcGfCmPq/A8/DIohXR0gzEFLXe2gUcx8E0TSuHgAygkkiX3YE1e/RmJ3Lw5s6nGunduGQaN4cgA0iSB0uWLMGpp57qJJ59+OGHOPPMMxEIBFBeeshK2FOj1oyTAMnjw9ChQ3HffffFQ88STEMHH5/hffTRR3j55Zehx0qh718FQ8pCu26nYujQofjwww8xaNAgfPvttygsLMSiRYtQVFSEs846CwMHDsRxxx2HG264AQMGDMD69euxbds2XHDBBfj8889RUFCAzz//HN26dcMXX3yB1atXY/z48di3bx+OOuoo9OnTByNGjHAUJAcPHgzGGG688UY8//zzeOGFFzBw4EBIkoT33nsPf/7znzF//nwMHDgQBw8exNVXX413330XJ5xwAp599lnccMMNeP/99/Hll1/iN7/5DebPn4+uXbvi9ttvx6OPPorHHnsMv/jFLxCJRPDII4+A53mEw1aOxJQpU3DVVVdh+vTpeP3113Httdfigw8+cK57x44d8c9//hOdOnXCN998g8suuwwbN26Ez+fDd999h2XLlmHhwoWIRqMYMWIE+vfvj+Gnn4ZDB4sgCAKyglnYuXMnJkyYgH/+858YMWIEdu/eDY/Hg0OHDmHs2LGYO3cuhg8fjnvuuQfTpk3Du+++iyNHjuD555/H22+/jQcffBCzZs3Cgw8+iNdffx2PP/44brrpJixcuNAZ2L7++muEQiEsWLAAHo8HK1euTIogrFmzBjfccAPWr1+Pv/zlL5g0aRJWrFiBUCiEVatWWRsxhlgs5jTfmj17NhYuXIiFCxc6x5kyZQqOO+44fPfdd/jss88wevRobNq0CTk5OVi6dCk6deqEJUuWQBAEXHfddRg7dixuuukmhMNhq4dHkqx0XGBL06EbhqPBoGkaVNUqGzRNEyaZ4HkepmmAgcHjkZEdDMLn86Y9y+c5zmqDDR18I4kPNQa2VkF2fhbUmIZIXKuAF5p+3mXlF/DgeWtA1+LOlyhaOQbpOk2WMJdpdV01q8p0q6qBUFkM7xx6LsXeLq0dN0KQATiex+7du9GpUyfohrVOFwqFkJOTE59VVSTgmYYO09RBpolOnTo58sd2KNj+oTv7MwlmzgCYkqWol5OTk9RUaebMmQj4/ejTpw8mT56M9957D2VlZfjggw9w1llnYdmyZSgqKsLAgQPx2WefOfvdd9998Pv9OOOMM+Dz+VBYWAhBELBs2TJceeWV+Pzzz3HOOefgjDPOQHl5OURRBMdxkGXZSoSKh/7Hjx+PU089FX6/33EEIpEIvvzySwwePBiffPIJDMPAnDlzcO6552L37t1Yvnw5hg0bhgULFoCLr4kLggBZlpLWjvv27QtJkrBu3TrMnTsXV155ZdJ179evH7777jv8/ve/x4cffghN07Blyxbn9dtuuw25ubno2rUrbrjhBvznP/+BKMkQ4+VskizjP//5D8aOHYtzzjkHSqwcnTrmo2PHjli0aBFOPvlknHPOORAEHo888gjmzZsHRVEAAAMHDsTEiRMhSRIuu+wyrF9vdYiTJAkcx8Hj8cSTwyzuvvtu5OXmIiuravlohw4dcNNNN4HjGG6++Wbs3r0bO3furPE7J0lWHobH44HH40F5eTk++eQTzJo1C6LA48ILL8SAAQPwv//9z9nn/vvvRzArgEAggJycHCxevBhffPEFJElC7969oWsqojEFBw4exo6de7Bjxy4UHTiA0tJShEIhlJWVQdc1eD0y8tu3Q/fundGrZwF6HtUNR/coQEH3rgj4fSguKcGOnbux/8BhxBS11ux5jmOQZRGxWMxJZWgpC592BYLsk2AaBkoOlMJoaqXBSufneR6yZHUG1TQ9riSa9gEAEIgTLDGrSggCB0U1oDZHR0aXZseNEGQEgiRJ0DQNPGe1pu3bty/effddZ/Zv6CoYx1vJZkQACJqmQZIk5xgAnB4Dffv2xZYtWzBs6KkAJ4D35QMAtm7dmiQJnZeXB10pBy/50b59e+zbt88Z3BctWuRsN3DgQEcRErAcCyUWhezxwuPxQFWtG7ff58Utt9yM6dOno7y8HEOHDsUbb7yBW2+t0EY3DR1mfE26Q4cO1uyQMRQWFuLgwYP48MMPnW1vv/12qKqKwsJC8Dyf9JqdWOdcRUKVNeypU6fi+uuvx4knnojc3GSZ4ZkzZ2LnTivxMhgM4u2330ZZWUXGfV5ennXdGYf27dtjzZo1YIw5QVPGOBw+fBgdO3YEkQk9XrUgSh4UFxcjP9+65poSRVZWFkRRRGlpqXP9ACBaHoYsy46jkIimxcALonOdNC0Gzqi6lp+bmwvGGNRYFLI3gNzcXBQXF8evSbwqAFYeSCoMQ8ORI0cQCATg9XoRi5TB48tCfn4+Dh8+7GzXoUMHqGoUgiDjj3/8I1566SU88sgjWL9+Pf70pz9h4sSJ2L//IGRZQn5+HsS4QI/VRolBEAVHcjrVDJXneYhiENnZQSiKilCoDHsL90HgBWRnBxHwe+PdPpP3ZYyBYxxEToAsSlBMgsSlaEqVIRhjILJEpCJlMcQiKjw+CVwdZuqNYQPPLMdJUTSnEqHW/cAAS3kEHCmgSvtwHIPXI6CsLAo5L9AkjbtcMofrEGQAXdfRv39/fPbZZ+A4HpoSxcSJE/HrX/8aK1euxEknneQkne3YsQM9evQAAGzbtg39+vUDUHGzNwwrFHv55Zfjueeew+TJk+EPtgfHcfjyyy/x448/4uKLL3bO/d133+Hkk08GAKxevRpnn302evToAa/Xi2nTpqF3797V2l05k1vXdeeGTUQIBAIoKCiwZm6A4/RIcsVas31DNA0DQ4YMwerVq/Hb3/62yo1yyJAhOHLkCH73u99VsUOSJJSUlFgza28WYkqJ89pll12GOXPm4Oabb66y34IFC7Bw4UL07dsXZWVlVRpafffddxg9erRzbfr27QvTNOODK4FMAwMHDsSLL74IgMGflQsW1zno378/XnjhBRARPL4srF+/Hn6/33ESbMRKIkX2NQIAT4I8ck0Dx7Zt21BSUoKcnBwcOXIEe/fuxdFHH40DBw7gwIEDICIIoowffvgh5Xl4XkSXLl1gmia2bNmC3r17wzAMrF69Gr/85S8r2UDgBQF+UcKvfvUr/OpXv8KHH36I+++/H5dffjl6HFUAIqPeA51TPeKRIcsS8vLaIRyOoDRUhuLiI/B6vcgOZsHjkeKVGtZ+9vdfFAWU6wRRahnOgC1aZDvsviwZumqgrDgMb0CG5JGqjMtN6STwHAee56BpBkSxwrlMeU4icIxZThxjALGk1wxVg2aYEJmJiKZZehAAItHmab7m0vS4DkEGUGNRjBo1Co8++qizrtqxY0f85S9/wejRozFx4kT07dsXGzZswJdffunc2JcsWYLRo0fDNA2QWdEWWVOjuP322/HZZ59h6NChuOqqq7B37168+eabeO2115zZKQC8/PLLKC8vR2FhIVavXo1XX30VsizjkUcewQUXXIBbb70VgUAAy5cvx4wZM3DiiSdWGF7pJrJjxw5cdNFFuPTSS9G5c2esWrUKq1atwssvvwzAaix17733YujQobj++uuT9tW0GMaPH48//elPuOyyy3D++eejpKQEGzduxKuvvopbb70Vw4cPxy233IKTTz4Ze/bsgaZpePTRR3HqqafimmuugSRJOO2003D66ac7xw0Gg/jyyy9TXvdhw4bh7rvvxujRo/Huu+/C70/WOHj77bfjwjcRzJs3DytWrICuWep4ViZ3DJMmTcKzzz6Lyy+/HOeffz62bduGSZMmYeTIkWjfvj2uuOIKnHHGGXjhhRfw2GOPVb3xVnKqjj76aBQXF+OOO+5Ajx49cMcdd6S0PZFgMIjJkyfj4osvxttvv40bb7wROTk5yMrKgt/vx/Tp0x3Jbpvs7Gx06tQJN954I7p164aHHnoIDz30EMaPH4+bb74Zn376Kfr37590La3PyYTHy+Hmm29Gr169kJ+fj3feeQdnxzuOMtZ4bZXtcHcwmIWsrABUVUOorAxFBw5CEAT4fV5kBfwQRQEcHy+n1FT4eAEMaBS56YZCmo5Y0WFQvB24bRBFVZQfIEdtEmDgAl7IuXXLyiciKKoBSeRTl1qaBOgGKKYCigYQIDKGmKbB5DkwngPjeYiy6HxqRFYUL7qvCFIwCE9xKZSYBDJ0SFoIHM8jevgQ9EgUmqpCzgqCP3QIrGNnCB4ZYqhuOicuLRe37LAZKS0tRU5ODrZt2Yievfrh0ksvxfTp03HmGcNRFipBbvuOKC4uxnvvvYcDBw7g6KOPxpgxYxAIBKAoCgYNGoRvvvkGAgeESpPb8Obmd4LH48PXX3+NL774AtnZ2ZgwYQLat2+PslAJsoI5OPbYY/G3v/0N69atg2EYmDhxInKysxAp2Y9gfgF++uknLFiwAKZpYvDgwTj77LMhCALee+89jB07FtFIGYLZufjwww8xfPhwBAIBrF+/HsuWLUNJSQm6deuGiy66CAG/H5qmQJQ8+PLLL3HgwAGMGDECBw4cgGma6Nu3Dw4W7UX7Dp3B8QI++eQTrF27Fnl5eRg5ciT69OkD0zQRi8XwwQcfYNu2bejatSvOP/98dO7cGQCwceNGbNiwAUcddRQGDhyIefPmYdKkSTh8sAi6Zi1ndOxSgC+++AI9evRAQUEBFEXB22+/jUOHDuHiiy/Gnj17cNxxx6F9+/Y4++yzce+996KoqAjhcBjjxo1Dp04dcaDIckQ0TYMsycjv2AWMs3pobNy4ET179sQll1wCn88HVVXx/vvvY/fu3Rg+fDhOPfVUmKaJQ4cO4ccff8TZZ5+NstIjMMHh66+/dvppHDx4EN9++y0YYxg9ejQWLlyIM844A4auQOAFRGKqs39xcTFWr16Nrl27Yv78+ejXrx8uuugihMtLIcs+lIZCmDt3LiRJwrhx4/Dtt986S0alpaVYtmwZIpEIJkyYACLCN998g6VLl6J379645JJLwHGWuuO7775rXaPdO9GjZy+sW7cOX375JcrKyjBo0CBccMEFiJSHUFpyGE0JEcEkE0pMQUlpCLGYYuVbiCJygllgAgdDNcDxyVLTRnymzsd7U5gE8MxezqjDrLzy3bGW3bTyCLTCQxAEEWQSCORE0OwD2vk/Ohnw9uwCjk9fFdA0CfsPlKF9e7+1REMEGCYoEgMdKYd5sBR0OAQqjwCMA/NIgMg7gz4RAEkCSTyEcMy6DoxDmFehGNbyG8eLkCQZTDcgRhkgCCiNHQbn90CPRJDVqQu0snIEPEEw1UBZJILjbv0FSkpKkJ2dXfMbcGnRuA5BM7Jnzx50794dgNWCuVu3bvjLX/6Cp59+GoMGDUI4HMa0adNwwQUXIDs7G4WFhfjoo49w++23Y9WqVdi2bRtuu+02dO3aFYWFhUnHZozhoosuwrRp09C/f39EIhEsWrQIL7zwAjp27Ijly5fj2GOPxdy5czFw4ECsXbsWS5YswSOPPILi4mKceuqpTpMonufx448/Yt68eejatStOO+00rF27FrNmzcINN9yA0aNHY/PmzVi2bBnOP/98DB48GMFgEPv27cPSpUvx7LPPori4GFOnTsXIkSORm5uLzp07o6ysDEVFRXjqqaewfPlyiKKIqVOn4oorrnBmyitWrMALL7yA7du345ZbbsH48ePRuXNn7Nu3D19++SX+9Kc/oUuXLrj22mvRvXt38DyP/Px8HDx4ECtWrMBvfvMbGPFEzSuuuAJXX301iouL8fvf/x6XXHIJxo8fj5ycHPTu3Rs7d+7E1q1bMXLkSJx99tmYNWsWRowYge+//x5ffvklHnnkEezbty/pOsuyjGnTpuHKK69Et27dsHfvXixYsAB//vOfMXXqVFx55ZVo164dfvzxRzz33HPYtGkTZs2ahS5duuDtt9/GwoUL8fDDD6N379744IMPMG/ePMyYMQPHHHMMZFlGv3798NNPP2Hz5s146KGH4Pf78Zvf/AZdunTBp59+ij59+mDMmDHo3r07Nm/ejL179+KNN97Aa6+9htzcXDz88MM488wzEQwG0aNHDyxduhTz5s3DnDlzMGPGDAwePBg+n+U4rlixAjfffDP69++PXbt2Yd68eXjhhRfwf//3fzjttNOwZs0azJo1C0OGDMGNN96IE088EdnZ2di0aRPefPNNvPHGG+76sYvD7t270a1bt0yb4dIAXIegGTFNE4WFhcjKygLP8wgEAs7z4XC42pur1+uFKFrJZrFYDKqq1um8HMchEAjg7rvvxowZM9ChQ4eUSW2pCIVC6N69O3bv3t0qRUdqs58xhqysLDz22GO49NJL0bt3bycHoiXQ1q9/S8e1v3aICGVlZejSpYtTTeTSOnEdApcasdUVW6sKmWt/ZnHtzyyt3X6X5sV151xcXFxcXFxch8DFxcXFxcXFdQhcakGWZcyaNQuyXLX5T2vAtT+zuPZnltZuv0vz4uYQuLi4uLi4uLgRAhcXFxcXFxfXIXBxcXFxcXGB6xC4uLi4uLi4wHUIXFxcXFxcXOA6BC4uLi4uLi5wHYKfPa29yMS1P3O0ZtsB134Xl8q4DsHPGE3TsH//fufv1naD0XUdpaWlmTaj3rRm+1uz7UDrt7+1/3ZdWiauQ/Az5amnnkK/fv0wevRoXHHFFVi9enX6LWFbAE8++SSOP/54jB49GnfffTe2bt0KoPXcGFuz/a3ZdqD129/af7suLRdXmOhnyJNPPonnn38ef/jDH1BUVIQPPvgA69atw0cffYTBgwdn2rxaeeCBB/D3v/8dv/3tb/HDDz9g8eLFCIVC+Oqrr5Cbm5tp82qlNdvfmm0HWr/9rf2369LCIZefDYZhkKZpdOGFF9KMGTOSXjvuuOPo4osvps2bN2fIutoxTZNCoRANGzaMfve73znP7969mwoKCmjq1KlUWlqaQQtrpjXb35ptJ2r99rf2365L68BdMvgZwXEcTNPE+vXrccIJJwAAYrEYAOCll17C8uXL8cknn0DX9UyaWS2MMXAchzVr1uDEE08EYK0Fd+vWDS+99BJef/11fPnllxm2snpas/2t2Xag9dvf2n+7Lq0Dd8mgDfPaa69h+fLlOP7443HxxReje/fuAIBJkybh0KFD+N///gcAME0THMfh6quvxqZNm7B48eIW0Tv973//O77//nsMGTIE5557LnJzcxGNRjF27Fh07doVb7zxBoAK+8877zwIgoAPP/zQec61/+dne1uwv7X/dl1aKZkOUbg0PocPH6YxY8ZQly5daPLkyXT00UdTjx496MMPPyQiojfffJO6detGCxcuJCKiaDRKRESbN28mxhitX78+Y7YTEe3bt49GjhxJXbt2pbFjx1LXrl1p8ODBtGnTJiIievTRR2nIkCG0bNkyIiJSFIWIiBYtWkSCINCePXsyZjtR67a/NdtO1Prtb+2/XZfWjbtk0AZZuXIlNm/ejOXLl+Ott97C1q1b0bt3bzz55JP49ttvccEFF+Ckk07C7NmzAQAejwcAwPM8unbtih9++CGT5uPzzz9HUVER1qxZg/fffx9r1qxBNBrFvffei927d2P8+PEIBAJ46aWXAACSJAEAfD4fOnfu7GSNZ4rWbH9rth1o/fa39t+uS+vGdQjaEBRf/fnhhx8gyzL8fr/z2m9/+1uYponnn38eOTk5uPHGG7Fjxw7cddddMAwDALB582Z4vV6cfvrpGbOfiPDVV1+hU6dOCAQC4DgO7du3x4svvogNGzbgb3/7G4499lhMnDgRK1aswFNPPeXsv3fvXvj9fgwcONC1/2dke1uxH2i9v12XtoGQaQNcGsZXX32FYDCIo446ylk7NE0T4XAYgHWjYYzhpJNOwoUXXoh33nkHn3zyCS688EI8+eSTuO666/D5559j4MCBeOedd3D11VcjPz/f2a+pWblyJTp16oQOHTo4szVZllFUVASPxwPDMMDzPEaMGIFzzjkHH3/8MSZOnIhrr70W4XAYd911F5YsWYKCggL84x//wI033ohgMOja38Ztbwv2t/bfrksbpLnXKFwah02bNtHJJ59MHTp0oKOPPppOPvlkev/994mIaP/+/eTxeOj1118nIiJN04iIaNeuXXTcccfRY489RoZhEBHRp59+Sk8++SRNmTKF5s+f32z2b9iwgYYMGUIdO3ak3r170/nnn0+rVq0iIqJVq1YRz/O0aNEiIiKKxWJERLRlyxbKy8ujt956yznOv/71L7rvvvto3Lhx9N///te1v43b3hbsb+2/XZe2i+sQtEI0TaPrr7+eJk6cSDt37qTVq1fTRRddRMcddxx98MEHRER0ww03UEFBAUUiESKy6rCJiCZNmkRjxozJmO1ERGVlZTR+/Hj6xS9+QZs2baIlS5bQoEGDaOTIkbR8+XIiIrr44otp0KBBzj66rhMR0YgRI2jq1KkZsdumNdvfmm0nav32t/bfrkvbxnUIWhH2jWH//v2UlZVFb7zxhvPaTz/9RL/4xS9owIABRGQJrnTs2JGmT5/uZCKbpknjxo2jm266qfmNpwr7t2zZQoFAgBYsWOC8tnz5cho7diyNHTuWiIi++OILCgaD9PjjjzvbhMNhOu200+ihhx5qXsPjtGb7W7PtRG3H/tb623X5eeDmELQCSkpKkJOT46wLlpeXo1+/ftA0zdmmb9++mDJlCj7//HPMnj0b//d//4cXX3wR11xzDY4cOYLLL78cO3fuxPLly/Hqq682q/2RSAQ+n8+x/8CBA+jRo4eTIQ0AQ4cOxfjx4/H000/j9ddfx5QpU/D444/j9ttvR2lpKcaMGYN169Zh165dOPfcc137fwa2twX7W/tv1+VnRqY9Epfq2bhxI5133nk0YsQIuvbaa+mTTz4hIqJIJEJDhgyhO+64I0lutaSkhH7961/TySefTIcOHSIiorfeeosuuugiGjx4MB199NE0d+7cZrN/w4YNNGbMGBo/fjzdeeed9MMPPxCRFfbNy8uj3//+987MiYho7969NHnyZJo0aRKVlZUREdETTzxBw4cPp/79+1NBQQH9+9//du1v47a3Bftb+2/X5eeJ6xC0UFatWkWdO3emqVOn0l//+lcaNmwYdevWjd555x0iInryyScpNzfXEVixefPNN+n44493bqA227dvby7TiYho6dKllJeXR9dccw3Nnj2bevToQSeffDJ9+umnRET0q1/9irp37067d+9O2m/27Nl0wgkn0MGDB53nTNOk77//3rX/Z2B7W7C/tf92XX6+uA5BC8Oe9cyePZvOPPNMJ7HowIEDdOutt1Jubi7t37+fiIh69epFkydPpm3btjn7/+9//yPGGG3ZsoWIyMlIbm5mzpxJ48aNc97Pjz/+SJMmTaKjjz6aiIhKS0spPz+f7rjjDgqFQs5+7733Hnk8Huem7tr/87KdqPXb39p/uy4/X1xhohbC1q1boWmas9a4adMmMMbg9XoBAPn5+XjkkUeQm5uLe++9FwDw3HPPYdmyZfjDH/6A7du3Q1VVfPjhh7jooovQuXNnAGg2TfYDBw4k9ZPfsmULJEly3s8xxxyD++67D6FQCLNmzUIwGMRTTz2Fv/zlL3j55ZdRVFQEIsLChQsxceJE5OXlNav9tu2mabZK+xNprbbbn0Frtd+mtf12XVwcMuiMuJBVXzxmzBg65ZRT6KOPPnKe/8Mf/kDHH3+8o8Fuzxbeeust4nneCZe+/PLLNGTIEOrWrRsde+yx1L59+2atqd65cyedcsopdOWVV9KRI0eIyCqtmj59Oo0ZM4b27t3rbKtpGs2ePZuysrKcdd4HHniAjjnmGOrbty8df/zx1KFDB2e9takxTZMOHz5M55xzDj3wwAPOc63F/j179tATTzxB//znP506/Fgs1ipsJyIqLCykt99+m5YtW0aHDx8mIqu3QGuxv6ioyGk5bJc2ErWe366LS2VchyAD2KHQRYsWUZcuXWjChAm0Zs2apMYqH3zwAZ166qn09NNPJ+23f/9+GjhwoDOAEVmlTB999BHNmTOn+d4EEd1xxx0kCAJdeumlTijUfm+vvPIKDRo0iN59992kfVatWkUDBgyg559/noiIVFWlzZs30xtvvEEvvvhis9pPRLRgwQJijJEsy0nh27/+9a80cODAFmv/XXfdRV6vl0aNGkV9+vShnj170nfffUdERC+99FKLv/Z33XUXBQIBOvvss8nn89GECROcAbQ12P/4448Tx3F05plnOs/ZA/9///vfFv/bdXFJhesQZJCpU6fSnXfe6fxtD6o2kyZNolGjRtE333zjPBeJROiMM86gBx98kEzTzMg6Y2lpKbVr147at29PX3zxhfO8rapmc9JJJ9HkyZOdWRQR0ZEjR6hv3770t7/9jYgyv046a9YsuvXWW+nCCy+kUaNGJb3WEu0/cuQIXXLJJXT66ac71/67776j0047je65554WbTsRUXFxMV1//fU0bNgw+vzzzykWi9G//vUvOuecc+juu+9u8fYrikL33HMPDR06lK655ho67rjjHHsSv/+XXXZZi/zturjUhLtIlSEKC8mIdwAADjNJREFUCwuxfv16jB8/HmvXrsU555yDMWPG4PTTT8df/vIXAMDMmTMRDofxxBNPOPuZponi4mL07NkTjLGMrPMGg0Gcd955OProo3H66adjxYoVuP766zFjxgw8++yz2LBhAwDg7rvvxpo1a5z3AwCKokDXdbRr1w5A5tZJ7aYwoigiJycHd911Fz755BN8+OGHzjYPPfQQVq9e3aLsz8nJwSWXXIInnngCw4cPBwAMHjwYsixj3Lhxznb33ntvi7z2hw4dAmMM99xzD8444wzIsoxJkyYhEAhAVVUnh+P+++9vkfZLkoRevXrhuuuuw4MPPohTTjkFL774IsrKyiAIAlRVBQDceuutiEajLeq36+JSK5n2SH4O2DOBxBlEaWkpeTweeuedd2jSpEn061//mubOnUszZswgURQdLfN//vOf1KtXLxo0aBA9+OCDNHz4cBo4cGDSzKk57bfXSktKSkgURTr22GOpW7dudO2119K4ceOoX79+dMwxxzj7PPLII9SvXz8644wz6M9//jOdfvrpdMopp1BhYWFG7K/MmDFj6M033yQiosmTJ9Nxxx1HxcXF9PbbbxMR0e9+9zvq27dvxuxPZbutz09EdPDgQRo7dizl5OTQ+eefT3fccQeVl5cTEdFjjz2WUdsT7VdVlYgsHYHEMkD79cmTJ9Ott96atO9jjz3Wor479nJY4sz+v//9Lw0ZMoQefPDBKq+99dZb1Lt374z+dl1c6oLrEDQxv/nNb2j06NFJz9k3jTFjxlB+fj6dffbZSSIlkydPplNOOcV5bsuWLfTLX/6SLr74YpoxYwYpipJR++3B6emnn6a+ffvSt99+69wsV69eTQUFBTRjxgwisiRjv/76a5o8eTKNGDGCbrnlFmdwyJT9RBVJYBMmTKCPP/6YiIi+//578ng8xBijGTNmkKqqFIvFMmZ/dbbbFBUV0TnnnENjxoyh+fPn05NPPkl9+/alcePGEZEVom5J1z5RSIio4neg6zr16NHDaTxkf78VRWlR9qciFArRfffdRwMGDKAff/yRiCjJxkz+dl1c6orrEDQRGzdupEsuuYTy8/OJMeZol9uDqWEY9Nxzz1G7du3o2muvTXpt69atSfXINs15M6zJ/sQb+2effVblufvvv5+OO+44Z6ZqY+uyNwe1XX+bM888k3744QdasGABdejQgfLz88nn8zkVE4nZ481lf7q2E1UVrZk/fz75fD7at29f0vMt4donXstEvv/+eyooKKCffvqp2mO2BPsrX3/7O79s2TIaMWIEXXPNNc5rlX+rzfnbdXGpL+4iVhOxZs0a+Hw+vPLKK5g+fToeeOABmKYJQRCg6zo4jsN5552HoUOH4uOPP0ZxcTEEwWotsWHDBvTp0wdkOWzOMUVRbBH2JzJixAgIggDGmGPrunXr0KVLF0iSlGR/ov58Ju23bdq9ezcURcGZZ56JK664AjNnzsSSJUtQUFCAX/3qVwCQ1Fe+uexPx3abHj16AKio4f/uu+/QvXt3GIbR4q49z/NV7AeAH374AZ06dULfvn0BAB9++CF+97vfJW3TEuyvfP3t78bQoUNx8cUXY+XKlZg/fz7mzp2LG2+80clTAZr3t+viUm8y5Ym0VexZQ2lpKa1YsYKIiFasWEG9evVysqgTZxqff/45de3alUaPHk1vv/02ff/993TeeefR1VdfXSXE2lLsr26mR0T09ddf02mnnZbUd745qav9V155Jc2cOTOp5PDFF1+krKwspza+uWjotV+7di2NHDmSHn300aY3NgX1tf+qq66ie+65h/bv30/nnnsuiaJIs2fPbj7D49THfnufn376ic466yxijJEkSXT//fc3o+UuLo2D6xA0A+Xl5fT73/+esrOzaceOHUSUHEJcuXIlnX322TRgwADq1KkTXXXVVRQOhzNlbhVS2Z94Y9y2bRvNnTuXpk2bRoFAgG677bYWtVaayn47Ma/ysgaRtfbenCHqmqjt2m/fvp3+/e9/04033kg+n49uvPHGFmM7Ue32Hzx4kAoKCqhHjx4kiiJNmDAhKZ8m09RmP5ElsDR16lRijNEtt9ziCCe5uLQ2XIegCUic2dv/3rhxI51++uk0fvz4pG3txKpYLEY7d+6knTt3Np+h1VAX+4msWdTUqVNp1KhRtHr16mazszrqan9Loq62r169mm699VYaO3Zsq7z2O3bsoIKCAho+fHirtJ+IaM6cOXTmmWfSypUrm8VGF5emwnUIGplUiV/282+++SYFg0H67LPPiMjq6lZZjCjT1MX+JUuWUHFxsaPC1hKo6/U/cOBAc5pXI/W59kTktMvNNHW1v6SkhMLhMK1du7Y5zayWun53ioqKiKhq9YSLS2vFdQgaicSbiaZpdOedd1apNy4sLKTJkydTnz596PzzzyfGmLNWmWnqa/+3337b3KampDVf/5/rtW/t9reE746LS2PiVhk0EDub286+f+aZZ5CXl4d58+YlZajb2x48eBBbtmxBbm4uCgsLcdJJJ2XC7CSbGmL/ySefnAmzk2xqrdf/537tW7v9mf7turg0Opn0Rlo7iclFixcvpl69elHHjh3plVdeqRJ+3LBhAw0ZMoR69epFy5cvb25TU+Lanzlas+1Erv0uLm0R1yFoILt27aILLriARFGkX//619WWqoXDYfrf//7XvMalgWt/5mjNthO59ru4tDVch6AB/Pvf/yZBEGjMmDG0YcOGTJtTZ1z7M0drtp3Itd/FpS3CiFJIh7mkxbZt27B//34MGzYs06bUC9f+zNGabQdc+11c2iKuQ+Di4uLi4uICt8rAxcXFxcXFxXUIXFxcXFxcXFyHwMXFxcXFxQWuQ+Di4uLi4uIC1yFwcXFxcXFxgesQuLi4uLi4uMB1CFxcXFxcXFzgOgQuLi4uLi4ucB0CFxcXFxcXF7gOgYuLi4uLiwtch8DFpU2yY8cOMMawZs2aJjk+Ywzvv/9+kxzbxcUlM7gOgYtLE3Dttddi3LhxGTt/9+7dsW/fPgwcOBAAsGTJEjDGUFJSkjGbXFxcWjZCpg1wcXFpfHieR6dOnTJthouLSyvCjRC4uDQzS5cuxSmnnAJZltG5c2fce++90HXdef3ss8/G7bffjrvvvhu5ubno1KkTfvOb3yQdY+PGjRg+fDg8Hg8GDBiAxYsXJ4XxE5cMduzYgREjRgAA2rVrB8YYrr32WgBAjx498MwzzyQde/DgwUnn27x5M84880znXIsWLarynnbv3o3LLrsMOTk5yM3NxSWXXIIdO3Y09FK5uLg0I65D4OLSjOzduxejR4/GySefjLVr1+LFF1/Eq6++isceeyxpu9dffx1+vx/ffPMNnnjiCTzyyCPOQGwYBsaNGwefz4dvvvkGf/nLX3D//fdXe87u3bvjP//5DwDgp59+wr59+/Dss8+mZa9pmrj00kshSRK++eYbvPTSS7jnnnuSttE0DaNGjUJWVha++OILfPXVVwgEArjgggugqmpdLo+Li0sGcZcMXFyakRdeeAHdu3fHc889B8YY+vfvj8LCQtxzzz146KGHwHGWj37cccdh1qxZAIA+ffrgueeew6efforzzjsPixYtwtatW7FkyRJnWeDxxx/Heeedl/KcPM8jNzcXANChQwfk5OSkbe/ixYuxceNGfPzxx+jSpQsAYPbs2bjwwgudbebOnQvTNPHKK6+AMQYAeO2115CTk4MlS5bg/PPPr9tFcnFxyQiuQ+Di0oxs2LABw4YNcwZOADj99NNRXl6OPXv2oKCgAIDlECTSuXNnHDhwAIA1y+/evXtSjsApp5zSZPZ2797dcQYAYNiwYUnbrF27Flu2bEFWVlbS87FYDFu3bm0Su1xcXBof1yFwcWmBiKKY9DdjDKZpNvp5OI4DESU9p2lanY5RXl6OIUOG4K233qryWn5+foPsc3FxaT5ch8DFpRk55phj8J///AdE5EQJvvrqK2RlZaFbt25pHaNfv37YvXs39u/fj44dOwIAVqxYUeM+kiQBsPIPEsnPz8e+ffucv0OhELZv355k7+7du7Fv3z507twZAPD1118nHePEE0/E3Llz0aFDBwSDwbTeg4uLS8vDTSp0cWkiSktLsWbNmqTHjTfeiN27d2PGjBnYuHEj5s2bh1mzZuHOO+908gdq47zzzkOvXr0wZcoUrFu3Dl999RUeeOABAEhaikjkqKOOAmMM8+fPx8GDB1FeXg4AGDlyJP7+97/jiy++wPr16zFlyhTwPO/sd+6556Jv376YMmUK1q5diy+++KJKAuNVV12F9u3b45JLLsEXX3yB7du3Y8mSJbj99tuxZ8+e+lw6FxeXDOA6BC4uTcSSJUtwwgknJD0effRRLFy4EN9++y2OP/543Hzzzbj++uudAT0deJ7H+++/j/Lycpx88smYNm2aM0h7PJ6U+3Tt2hUPP/ww7r33XnTs2BG33XYbAOC+++7DWWedhbFjx2LMmDEYN24cevXq5ezHcRzee+89RKNRnHLKKZg2bRoef/zxpGP7fD58/vnnKCgowKWXXopjjjkG119/PWKxmBsxcHFpRTCqvIDo4uLS6vjqq68wfPhwbNmyJWlAd3FxcUkX1yFwcWmFvPfeewgEAujTpw+2bNmCX/7yl2jXrh2+/PLLTJvm4uLSSnGTCl1cWiFlZWW45557sGvXLrRv3x7nnnsunnrqqUyb5eLi0opxIwQuLi4uLi4ublKhi4uLi4uLi+sQuLi4uLi4uMB1CFxcXFxcXFzgOgQuLi4uLi4ucB0CFxcXFxcXF7gOgYuLi4uLiwtch8DFxcXFxcUFrkPg4uLi4uLiAtchcHFxcXFxcQHw/456XTjaTBhCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='pairing_dict',\n", + " allow_candidate_values=[1, 2],\n", + " allow_benchmark_values=[0, 2]\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "8e4c5a2d", + "metadata": {}, + "source": [ + "#### Registration of Custom Functions" + ] + }, + { + "cell_type": "markdown", + "id": "1b259d70", + "metadata": {}, + "source": [ + "In this case we register the arbitrary pairing function `multiply` with the name \"multi\" and then vectorize it. `Multiply` can also be passed in as a function in the `comparison_function` argument" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "972f07aa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAF/CAYAAAA2D9EJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd4AU5fn4P1O23l7j4IBTBBQUbNgViN2IijHYUNTYozEQJcaoMdGIyS9Go4m9JUZN7BrFGhT1a4lgQ7GLgiIinePa3pYp7++PvVlm92Z3Z8sVcT5mw93MO+/7zrtz8z7v8z5FEkIIPDw8PDw8PL7XyH3dAQ8PDw8PD4++xxMIPDw8PDw8PDyBwMPDw8PDw8MTCDw8PDw8PDzwBAIPDw8PDw8PPIHAw8PDw8PDA08g8PDw8PDw8MATCDw8PDw8PDzwBAIPDw8PDw8PPIHAI4u33noLSZKQJIkrrriir7vjUUFOPfXU9Hd79tln5yyXSCQYMGBAuuzLL7/ce50sktNPP52qqirWrFmTcdzqe77PqaeemnHNiBEjupWpqalh991355prriGZTHZrP5FI8Le//Y3x48dTW1uL3+9n6NCh7LbbbvziF7/gmWeeydn35uZm/vSnP7HPPvvQ2NiIz+ejtraWnXbaiXPOOYeXXnqp6PHYb7/98t7znDlzcl579913s8ceexCJRBgwYACHHXYY8+bNK6kdSZKQZefpZfny5Zx22mk0NTURDAbZeuut+f3vf088Hu9WduXKlYRCIX7+858XPRYexaP2dQc8+hf//ve/0z/fd999XHbZZX3YG49sLr/8cmbNmsVdd93VbUIrhkceeYQbb7wRv9/f7dwzzzzDhg0byuhl7/Dhhx9yzz338Ktf/YrGxkbHMqecckrO63/wgx84Hj/66KOJRCIIIVi6dCnz58/nnXfe4amnnmLu3LnpMWtpaeHAAw/k3XffxefzMX78eJqamujo6GDBggXcdNNNzJ07l8mTJ3dr4/HHH+fUU0+lra2NSCTCnnvuSWNjI9FolE8//ZTbbruN2267jcMOOyyvUJEL6x6y2WyzzRzLz5w5k+uvv55QKMTBBx9MPB5n7ty5PP/88zz66KNMmTIlo/whhxzCiBEjHOtasGABH330EXvvvXe3c4sXL2b8+PGsW7eO7bffnr333pt33nmHK664ghdffJEXX3yRQCCQLj906FDOOussbrnlFmbOnMnWW2/tfhA8ikd4eHSRTCbFwIEDBSCGDBkiAPHGG2/0dbc8bPz+978XgLjrrruKvvaUU04RgNh5550FIB5//HHHckceeaRQFEWMGzdOAOL//u//yupzT3HEEUcIn88nVq9e3e0cIIp9vQ0fPlwA4quvvso4/t5774na2loBiBtvvDF9/Be/+IUAxE477SSWL1/erb4333xTzJo1q9vxp556SkiSJFRVFVdffbWIx+Pdynz66afilFNOEaNHjy7qHvbdd1/He8jH3LlzBSAaGhrE559/nj4+b9484ff7RV1dndiwYYPr+vbYYw8BiL///e/dzk2cOFEA4txzz00f0zRNHHnkkQIQv//977tds3z5ciHLspg6darrPniUhicQeKR58sknBSAmTpworrjiCgGI6dOn93W3PGxUQiC4+uqrhSzL4phjjulWZsOGDSIQCIiDDz5YTJo0qd8KBMuWLROyLIvDDz/c8XwlBQIhhJg1a5YAxIEHHpg+1tTUJAAxd+5c1220t7enhe5///vfBcu/8847rusWojSB4NBDDxWA+Nvf/tbt3LnnnisAcc0117iq6/PPPxeACAaDoqWlJePcm2++KQDR2NjYTQhatWqV8Pl8or6+Xmia1q3eAw88UPh8PrFq1SrX9+VRPJ4NgUeae++9F4CTTjqJk046CYCHHnoITdNyXvPBBx/wox/9iLq6Oqqrq9lnn32YO3cuL7/8suM+rbWP/fLLL/Pcc8+x//77U1dXhyRJtLS0pMvNmTOHyZMnM2jQIAKBAFtuuSXnn38+69evd+yHEIIHHniAAw44gPr6eoLBIGPHjuXyyy+ns7OzW3lrD3Tp0qU89NBD7L777oTDYTbbbDMuvPDC9H7xkiVLmDZtGo2NjYTDYfbff38++OCDnONRTL/tY/Hqq69ywAEHUF1dTU1NDZMnT+aTTz7JKD9ixAhmzZoFwGmnnZaxX1vMPv/QoUM54IADePrpp2ltbc049/DDD5NIJNLfvxMLFy7kwgsvZNddd824z5///OesWLGiW/mlS5ciSRL77bcfbW1tnHfeeQwbNiz9Hf3tb3/DNE3X/Qf45z//iWmaTJs2rajrSmXnnXcG4JtvvkkfW7t2LQCDBg1yXc/dd9/NunXrmDBhQt4xtth1112L7GlxxGKxtK3CMccc0+28deypp55yVZ/1DvnRj35EbW1txjlr6+NHP/pRxrYAwODBg9l7773ZsGED//vf/7rVe8IJJ6BpGnfffberfniUSF9LJB79g5aWFhEMBoXf7xfr168XQggxYcIEAYgnn3zS8Zp58+aJcDgsALHjjjuK448/Xuy+++5CluW0OvWUU07JuMZapf70pz8VkiSJ3XffPX2dtaK46KKLBCD8fr+YOHGiOOaYY8To0aMFILbaaqtuqwTDMMS0adMEICKRiNhvv/3EkUceKYYNGyYAsccee4jOzs6Ma6yV1MyZM4WqquKggw4SRx55ZHr1dvLJJ4vPP/9cDBw4UIwZM0Ycd9xxYocddhCAGDBggONKpdh+W2Nx/vnnC0VRxJ577immTp0qtt5667QKd+XKlenyv/rVr9Jq/IkTJ4pTTjkl/fn0008LfsdWe//+97/FXXfdJQBx5513ZpTZZ599RDgcFu3t7Tk1BMcdd5xQVVXssssuYsqUKWLKlClixIgRAhBDhw4V3377bUb5r776SgBir732Ervuuquoq6sTRx11lDj88MNFKBRyfE4KsdtuuwmgW1sWVFhDcN999wlA7LDDDuljW265pQDEz372M2Gapqs2DjvssG5bD8ViaYmcxsx6rn/3u9+Jc845R0yfPl1cf/314uuvv3as67333hOAGDRokOP5jo4OAYj6+npXfdtqq60EIJ544olu53784x8LQNx8882O115wwQUCENdff323c0uWLBGA2HvvvV31w6M0PIHAQwghxD/+8Q8BiB//+MfpY7fccosAxLHHHtutvGEY6Ynr//2//+dYVz6BABAPPvhgt3offvhhAYjtt99efPHFF+njpmmKyy67TADiuOOOy7jm6quvFoDYb7/9MibQRCIhzjjjDAGIiy66KOMa68UZiUTE22+/nT6+cuVKMXjwYCFJkhg7dqy4+OKL0y970zTFT37yEwGIyy67rOx+W2Mhy3LGfr6u6+Loo48WgLj00kszrqnElsG///1v0dbWJkKhkNh///3T57/++mshSZKYNm2aEELkFAheeuklR6HMUqufdtppGecsgcASHNeuXZs+t3jx4rTqPZdNQzbt7e1CURTR1NSUs0ylBYLjjz9eAOLEE09MH7vyyivT7YwZM0ZcfPHF4vHHHxfffPNNzjY222wzAYj//e9/RfXNjhuBIPvj8/nEFVdc0a38E088kbYryUVdXZ0ARFtbW95+zZs3Ly3IJpPJbuct2xUnYUEIIa677rq0gOzEwIEDRSAQELFYLG8/PErHEwg8hBAbXySPPPJI+ti6deuEz+dz3A+0DJFGjx4tDMPoVp9lPJRLIJg8ebJjP6wV8IcfftjtnGmaYqeddhKKoqQnFU3TxMCBA0VVVZXjqr2zs1MMGTJE1NfXZ/TTvpLK5pe//KUAxJZbbtntxfb+++8LQOy7775l9ds+FvZJxuKdd95xbKdSAoEQQkydOlXIspw2iPvTn/4kAPHMM88IIXILBPnYbLPNRENDQ8Yxu0Dw/PPPd7vm1ltv7bY/nw9rL9ouzGTjNClmf7IFkGyBwDRNsXTp0rTmR5Ik8eqrr6bLG4YhLrzwQuHz+brVvd1224lbb721299GMBgUgPjss8+69bm5uTlD65NL+3PjjTeKbbbZRlx88cXd6rj00kvFv//9b7FkyRLR2dkpFi1aJP7f//t/aU3Mddddl1He0nxMnDgx51haQkwubYzFOeecIyC33ZGlLctlc/H3v/89rT10wnqnvPvuu3n74VE6ntuhB8uWLePVV1+lrq6OH/3oR+njDQ0NHHbYYTzxxBM88sgjnHnmmelzr7/+OpByb3LyNz7uuOPSZZw44ogjuh1bs2YN77//PqNHj2b77bfvdl6SJCZOnMjChQtZsGABkyZN4t1332XdunX88Ic/ZPDgwd2uCYVC7LrrrjzzzDN88cUXbLPNNhnnDz744G7XbLnllkDKzsDn8zmeW7lyZVn9LtQHy73K3k6lOemkk3j44Ye5//77+fWvf819991HY2OjY3+yWb9+PU8++SQfffQRLS0tGIYBgKZprF+/nubmZgYMGJBxzYABA/jhD3/Yra5p06ZxzjnnMG/ePEzTzOm/bmHFHKivry/Yz3xuh1tssYXj8ZEjR3Y75vf7ue666zJc6WRZ5qqrruK8887j0Ucf5dVXX+Xtt99m2bJlfPzxx5xzzjk899xz/Oc//yl4TwDRaJR77rmn2/FTTz2VMWPGpH+fMWMGM2bMcKwjO3bI1ltvzSWXXMJuu+3GpEmTuPzyyznrrLMIhUIF+1MMmqbx8MMPA/CTn/ykonVbWM+TZbvhUXk8gcCD++67DyEExxxzTDdjn5NOOoknnniCe++9N0MgsCaqYcOGOdaZ62Wb7/zSpUsB+OKLL5AkKe/169aty7hm7ty5rq7JFgic/LIt/+185xKJRFn9trP55pt3O1ZdXd2tnUpzyCGH0NDQwH333cdBBx3Exx9/zC9+8QtUNf9r4YEHHuCss86io6MjZ5n29vZuAsHw4cMdy9bW1lJXV0dLSwsbNmygoaEhb/uWIaQ1RvkoxQjN8uGXJIlIJMKYMWM48sgjaWpqcizf1NTEueeey7nnngvAp59+yjXXXMM///lPZs+ezQMPPMCJJ54IpITsb7/91vFZ3HzzzRFCpH8/5JBDeO6554ruvxMHH3wwu+22G++88w5vvvkm++23H7DxeXYyvLWIRqNA/vH+73//y/r16xk9ejR77rmnY5lCbRVqp6amBiDD+NijsngCgUc6GNHLL7/cLViLZW3/6quv8vXXX+d8qRdLMBjsdsyyNB8yZEi3VXQ2Vj+sa0aNGsXEiRPzXuM00eRbublZ1dn7UEy/S2mn0vh8PqZOncqtt97KJZdcAlDQ8v3rr79Oe45cd911TJ48mc022yy94pwwYQLz58/PmNgqjWW93t7e3iP1X3PNNTmD7rhh7Nix3HnnnWzYsIHHH3+cZ555Ji0QjBs3jm+//Zb33nuv4PNaaUaPHs0777yToXWyBPPly5c7XhONRmlpaaG+vj6vQGD3UMrFFltswXvvvZezLet4rneMJQjW1dXlbMOjPDyB4HvOggUL+PTTT4FUFLHFixc7lhNCcN9996UnjqFDhwKZblh2ch3Ph7VSHjhwoOuVnXXNmDFj+swlqZR+9xdOOukkbr31VubMmcPWW2/NHnvskbf8s88+SzKZ5IILLuC8887rdv7LL7/Mee2yZcscj7e1tdHS0kIoFHL1sreiEjY3Nxcs25cccMABPP744xlaoUMPPZRnn32WBx98MKfav6ewok9WVVWlj22zzTYEAgHWrl3Lt99+200r9u677wKw44475qy3ra0t7ZaYTyAYN24cTzzxRLrObAq1ZfW/GDdPj+Lw4hB8z7Ek+wsuuACRMjLt9rF83K2yQHp18/jjjzuuBq39xGLYfPPNGTNmDJ988gmff/65q2t23313amtreeWVV/psgiil36Vihc3Vdb0i9U2YMIFx48bR0NDA6aefXrC89VJ22uZ49dVXWb16dc5r169fz4svvtjt+IMPPgjA+PHjURSlYB+22247VFVl0aJFBcv2JIW0IJZwbZ9kTz31VBoaGnj99dcz/p56mrVr1/Laa68BsMsuu6SPh0IhDjjgACAVzjqbRx99FCDDtsipTDweZ+LEiWkbGyesEM5PPfVUt62w1atX89prr1FfX59Tc/LZZ58RCAQYO3ZszjY8ysMTCL7HGIbBAw88AJA3wMvee+/NZpttxqeffsqCBQuA1Opn9OjRLFq0iKuvvjqj/N13351++RTLpZdeimmaHH300SxcuLDb+fXr1/P3v/89/XsgEODCCy+kvb2do446ynGF+u2332bkaOgJiu13qVj72JWcDBcuXMi6deu46KKLCpa1jB3vvffe9J4vpMb4Zz/7WcHrL7jggowgTV999VXaEG769Omu+ltVVcXOO+/MypUr+fbbb11d0xNMmDCBu+66K2McLJ5++mluu+02IDPgTyQS4a677kKSJE477TT+8pe/OCb1Wb58eU4t20033cSYMWP4zW9+k3F83rx5zJ49O23gabF06VKOPPJIotEoRxxxRDdh7vzzzwfgj3/8I1988UX6+Pz587n99tupq6vjjDPOyDkOlmBTyJhwjz32YOLEiaxZsybjWdN1nZ///Odomsa5557bzZAXUgHC1q9fzx577OG43ehRIfrGucGjP/Dss88KQGy99dYFy55//vkCEOedd176mD0w0bhx48S0adPEHnvsISRJEtOnT3d0IbJc3/K5sl1yySVp//xddtlFHHvsseKYY44RO++8s1AURdTW1maUNwwjHR/A7/eLPffcUxx//PHiqKOOEtttt52QJEmMGzcu45p8IV6toD1OcdWFSLm0DR8+vOx+FxoLp3a+/fZbEQwGhaIo4pBDDhGnn366OOOMMxzd2LLJdjsshJPbYSKRENttt52AVL6Lo48+WkyePFmEw2ExYcKEdDAr+7jaAxPtsssu6cBEP/rRj9LPz0knneSqTxaXX365AMS9997reB5bHIxcn+wYD/niEDhh5TcIBoNiwoQJ4vjjjxc//vGPxZgxY9Lt/+xnP3O89rHHHhM1NTXpWBgHHnigmDZtmjj88MPFuHHjhCzLAhB77rlntzwJueIQWM/tkCFDxGGHHSZOOOEEMXHixLSr43bbbeeY90EIIc477zwBiHA4LH784x+LQw89VKiqKhRFyRsf4ptvvhGyLAu/3y+am5sLjtnnn38uGhoaBKSCPB133HHpAE8TJkxwzOsgxMbYJn/+858LtuFROp5A8D3Giu6Xa+Kz8/bbbwtIxSG3xxpfuHChOPzww0VNTY2oqqoSEydOFP/973/FvffeK4BuvtJuBAIhhHjllVfEscceK5qamoTP5xMNDQ1ixx13FDNmzBCvvPKK4zVPPPGEmDx5smhsbBQ+n080NjaKXXfdVVx44YViwYIFGWV7QiAott+lCARCCPHcc8+JiRMnikgkkp543MQKqIRAIETKX/6cc84RI0aMEIFAQGy55ZbioosuEtFo1HFcLYFg3333FS0tLeLnP/+5aGpqEn6/X2yzzTbimmuuEbquu+qTxbJly4SiKOKwww5zPG+NS75PtpBYrEDw/vvvi6uuukocfPDBYqutthLhcFgEAgGxxRZbiGOOOUY8++yzea9fv369+H//7/+JiRMnioEDBwpVVUVNTY3YfvvtxZlnnileeOEFxwiIuQSCTz75RJxzzjlil112EYMGDRKqqora2lqx1157iWuvvbZbtM5s7rrrLrHrrruKcDgs6urqxCGHHCJef/31vNdcddVVAhBHHnlk3nJ2li1bJk499VQxZMgQ4ff7xahRo8Sll16aN+DQAQcc4OUy6AUkIXrQHNjje8vPfvYzbr/9dh588EGOO+64vu6ORx+ydOlSRo4cyb777ltUzoVCHHnkkTz99NN88803DBkypGL1evQvli9fzvDhwznmmGN46KGH+ro7mzSeDYFHyTQ3N6d98O089NBD/OMf/6Curo7DDz+89zvm8b3gD3/4A6Zpcs011/R1Vzx6kL/85S/Istwt6JJH5fHcDj1K5vPPP2f8+PHsuOOOaeviTz/9lEWLFqEoCrfffnuGi5OHRyXZfvvtOeWUU7j11lu58MIL0+6IHpsOK1eu5I477uCnP/1pt0BOHpXH2zLwKJk1a9ZwxRVX8NJLL7FixQqi0SgDBw5kwoQJXHDBBYwfP76vu+jRD+ipLQMPD4/K4gkEHh4eHh4eHp4NgYeHh4eHh4cnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh8f3nssvvxxJkvq6Gx4eHn2MJxB4ePQSd999N5IkZXwaGxvZf//9+e9//9vX3SvIokWL+OUvf8mECRMIBoNIksTSpUv7ulseHh4VQu3rDnh4fN+44oorGDlyJEIIVq9ezd13381hhx3GU089xeGHH97X3cvJ/PnzueGGG9h2220ZO3YsCxcu7OsueXh4VBBPIPDw6GUOPfRQdtttt/TvZ5xxBoMHD+aBBx7o1wLBEUccQUtLC9XV1VxzzTWeQODhsYnhbRl4ePQxdXV1hEIhVDVTPr/mmmuYMGECDQ0NhEIhdt11Vx599NFu10uSxIwZM5g9ezbbb789gUCA7bbbjjlz5nQr+7///Y/dd9+dYDDIVlttxe233+66nwMGDKC6urr4G/Tw8PhO4GkIPDx6mdbWVtatW4cQgjVr1nDjjTfS0dHBSSedlFHu+uuv54gjjuDEE08kmUzy4IMPcuyxx/L0008zefLkjLL/+9//eOyxx/j5z39OdXU1N9xwA0cffTTLli2joaEBgA8//JCDDz6YQYMGcfnll6PrOr///e8ZPHhwr927h4dH/8UTCDw8epmDDjoo4/dAIMA///lPfvjDH2Yc//zzzwmFQunfZ8yYwS677MJf//rXbgLBp59+yieffMJWW20FwP7778+4ceN44IEHmDFjBgCXXXYZQghee+01tthiCwCOPvpodthhh4rfo4eHx3cPTyDw8Ohlbr75ZrbeemsAVq9ezb333suZZ55JdXU1Rx11VLqcXRjYsGEDhmGw995788ADD3Sr86CDDkoLAwA77rgjNTU1fPnllwAYhsFzzz3HlClT0sIAwNixY5k0aRLPPvtsxe/Tw8Pju4UnEHh49DJ77LFHhlHhtGnT2HnnnZkxYwaHH344fr8fgKeffpo//vGPLFy4kEQikS7vFDPAPslb1NfXs2HDBgDWrl1LLBZj9OjR3cpts802nkDg4eHhGRV6ePQ1siyz//77s3LlSr744gsAXnvtNY444giCwSC33HILzz77LHPnzuWEE05ACNGtDkVRHOt2Kuvh4eHhhKch8PDoB+i6DkBHRwcA//nPfwgGgzz33HMEAoF0ubvuuquk+gcNGkQoFEoLHHYWLVpUUp0eHh6bFp6GwMOjj9E0jeeffx6/38/YsWOB1IpfkiQMw0iXW7p0KbNnzy6pDUVRmDRpErNnz2bZsmXp459++inPPfdcWf338PDYNPA0BB4evcx///tfPvvsMwDWrFnD/fffzxdffMHFF19MTU0NAJMnT+avf/0rhxxyCCeccAJr1qzh5ptvZtSoUXzwwQcltTtr1izmzJnD3nvvzc9//nN0XefGG29ku+22c1Vna2srN954IwCvv/46ADfddBN1dXXU1dWlvRk8PDy+m3gCgYdHL3PZZZelfw4Gg4wZM4Zbb72Vs88+O338gAMO4M477+TPf/4zM2fOZOTIkVx11VUsXbq0ZIFgxx135LnnnuP888/nsssuY/PNN2fWrFmsXLnSVZ0bNmzg0ksvzTh27bXXAjB8+HBPIPDw+I4jCc/qyMPDw8PD43uPZ0Pg4eHh4eHh4QkEHh4eHh4eHp5A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB14cgl7FNE1WrFhBdXW1Y4IaDw8Pj+8aQgja29tpampClr015ncZTyDoRVasWMGwYcP6uhseHh4eFeebb75h88037+tueJSBJxD0ItXV1QD8gMP45qoJjLzobcdyj3/+IUduvUNRdT/++YfdjhVbh5t6ner86qrdc95Lvjrd9M9N3bnGK9fxQnXmO28/V8x9lPKd5rouuw/56s31/eU6Xux3mau/uer56qrdux1beOQ/u/XDqc5KUG5dhcanUs+2236Wez/25yBXPfnu6fHPP6Stw2T4LkvT7zeP7y59qt8ZMWIEkiR1+0yfPh2AVatW8ZOf/IQhQ4ZQVVXFLrvswn/+85+MOpqbmznxxBOpqamhrq6OM844I50xzuKDDz5g7733JhgMMmzYMK6++upufXnkkUcYM2YMwWCQHXbYoVt+eCEEl112GUOHDiUUCnHQQQc5Zo7Lh7VNoOJj9MULUSWf4+fYbXbhxZWfZHxylbU+NdVKt0+ha+wfpzZeXPlJwTq/vn5v5GCwqLaO3WYXjt1mF1dlR1+8kK+v37vgvTv1P7u/Vj2F+jv64oU5x9z63uxj4+Y+rD7m+z6d7rOmWul23N6/Qu1nf39W+8dus0v6mPVdfH393nnv3c0zZNX15cn3OJ7/8uR7un0KPbNuxthtn90+d7k+Ts+O9f0U+0zkegfYx7Gn78f+HBQq4/R8HrvNLtRE5Iz3m8d3lz4VCN5++21WrlyZ/sydOxeAY489FoCTTz6ZRYsW8eSTT/Lhhx9y1FFHMXXqVN577710HSeeeCIff/wxc+fO5emnn+bVV1/lrLPOSp9va2vj4IMPZvjw4SxYsIC//OUvXH755dxxxx3pMvPmzWPatGmcccYZvPfee0yZMoUpU6bw0UcfpctcffXV3HDDDdx22228+eabVFVVMWnSJOLxeI+MzaSmcUxqGpf+/bkV7/PcivczyljHso9b12Ufd2LJdXvx3Ir3M65xqtNer53FU29nq5lvFL6hMsiuf8l1e7Hkur3y9ss6XmgM7PUUcz77uymE9X1mj7Mdp3Gc1DSOxVNvz9l+9r3b+5uvX07n3HyP9vqt78Gqy35v2f16bsX7jHr47PTHPh72j9Mzbm833/dR6Htw8z0Vwum72GrmG3mfo0LPWLFUuj63ON27x6ZFv8plMHPmTJ5++mm++OILJEkiEolw66238pOf/CRdpqGhgauuuoozzzyTTz/9lG233Za3336b3XbbDYA5c+Zw2GGHsXz5cpqamrj11lv57W9/y6pVq/D7/QBcfPHFzJ49O51x7rjjjiMajfL000+n29lrr73YaaeduO222xBC0NTUxK9+9SsuuOACIJX5bfDgwdx9990cf/zxru6vra2N2tpahl/1R0ZfvDDjnNPLatTDZ7N46u0FX3a5JsTsF3U+ctWf79pi6q8ES67bK++k5dQf++Rkvz67rmyhyKonV5vZ4zXq4bOLFozyCXJOAofTODuVLUVYyVdnuVjCAJB+nvOVdbof+ySY6/vojecwXzuV+ntwcy/Wc1mJ+3bb71xtPbLoXeq3/pLW1tZ0tk6P7yb9xiQ0mUxy7733cvrpp6dVTxMmTOChhx6iubkZ0zR58MEHicfj7LfffgDMnz+furq6tDAAcNBBByHLMm+++Wa6zD777JMWBgAmTZrEokWL2LBhQ7rMQQcdlNGfSZMmMX/+fAC++uorVq1alVGmtraWPffcM13GiUQiQVtbW8YnG2ulmL1SgsyXp9MfYrYWoRTyaQMK1Z09gfb0yqXQhJtrjKz+WSu5JdftVXC1Y9VltWkfI6fxcqrPqVw+DUz28XwaIXtZpzqzfy80CWdrXXL1vxisei3crDCz+2n/HqxPT1LOPRejmcvXfm8J2BZu28unwfHYNOg3RoWzZ8+mpaWFU089NX3s4Ycf5rjjjqOhoQFVVQmHwzz++OOMGjUKSNkYNDY2ZtSjqioDBgxg1apV6TIjR47MKDN48OD0ufr6elatWpU+Zi9jr8N+nVMZJ6688kpmzZrV7fjIi97muZWfAPn/GHO9HMulFG2Dm3pyrb77GvuLbFJT18GpzhOuE/aJNx/2VVv2tXbBzs1L1G2b+a61yCVU2stZk/Wkmc5ailK+00lN49iKN2Cqrf4StANu28qH27rcCsG52igXt/eb/ZxVgr4QRtxiGAaapvV1N76T+Hw+FEVxVbbfCAR33nknhx56KE1NTeljl156KS0tLbzwwgsMHDiQ2bNnM3XqVF577TV22KEyVsc9yW9+8xvOP//89O9tbW0MGzasy9L6kx7/47MmH+sPPdcffCn9cNo3tn7vC2Eg33aA1S/7qrnQxFzKy3bx1Nthqrv6il1NuhUknK4rps5cGopJTfQ6vT05VWpC7K1+l/pM5KOY7YreQAjBqlWraGlp6ZX2NlXq6uoYMmRIQcPPfiEQfP3117zwwgs89thj6WNLlizhpptu4qOPPmK77bYDYNy4cbz22mvcfPPN3HbbbQwZMoQ1a9Zk1KXrOs3NzQwZMgSAIUOGsHr16owy1u+FytjPW8eGDh2aUWannXbKeV+BQIBAIOB4rtJ7tNkvh1z7wtkTYqn9qJRg4dTHUrBeUNaq1KmufAZ9lVD3lkIuuwD7+Vy2EYXqdWs/0Fv37Pa7LWUvvjdXt/15JV0q9ucg3/1NahoH1/VevyxhoLGxkXA47HkyFIkQgs7OzvQ8aZ+/nOgXAsFdd91FY2MjkydPTh/r7OwE6Bb5SlEUTNMEYPz48bS0tLBgwQJ23XVXAF566SVM02TPPfdMl/ntb3+Lpmn4fD4A5s6dyzbbbEN9fX26zIsvvsjMmTPT7cydO5fx48cDMHLkSIYMGcKLL76YFgDa2tp48803Oeecc4q+35EXvQ2SL+f5Yl449rKF1K3ZL9pRD5+dUulWiHJXDtZLqRQDPTe4MZwsNEG7JddE61ZtXegZcNLMWL/nsztx01cn4agnJsFcdhROPzsZhtopR9VfTJneoJJbJW5Zct1eTGpy96wvnno7o+iZv1E7hmGkhYGGhoYebWtTJhQKAbBmzRoaGxvzbh/0uVGhaZrcddddnHLKKajqRvlkzJgxjBo1irPPPpu33nqLJUuWcO211zJ37lymTJkCwNixYznkkEP46U9/yltvvcXrr7/OjBkzOP7449NbDyeccAJ+v58zzjiDjz/+mIceeojrr78+Q5V/3nnnMWfOHK699lo+++wzLr/8ct555x1mzJgBpPxrZ86cyR//+Me0C+TJJ59MU1NTui99QSFJPvu8WyPEYowD7cZoi6fe3s3ArVhDQ2vLoZKr1lxGfOWQz8jTPiFb1vW5rnHC6XvL1w83Ak2hMcjueyXJJWAUc73V/1InIbft9bS2pK9cBvPhJGQVelbc2ISUi2UzEA6He6yN7wvWGBayw+hzgeCFF15g2bJlnH766RnHfT4fzz77LIMGDeJHP/oRO+64I//617+45557OOyww9Ll7rvvPsaMGcOBBx7IYYcdxg9+8IOMGAO1tbU8//zzfPXVV+y666786le/4rLLLsuIVTBhwgTuv/9+7rjjDsaNG8ejjz7K7Nmz2X777dNlLrzwQn7xi19w1llnsfvuu9PR0cGcOXMIBoNlj4GbF3Ypk5pdKHD7h+tmlW8XAizL71yTX6kv8Eq8aNyMWSntOK3Ac9VjjU0x7VTy3i2NS3YfinmW7N9rpfpl4eZeS9lCKJVy2nC6NlsA6E/Gthb2PtmfE7fCS6WiSObC2yYoH7dj2K/iEGzqWHEI9uPHqEVuGbhRd9vJNbFX0iDI6WVX6Zd3of7aBRMLt0KAW9VsoXtyU4/btsr53tyMfTH+6/ZxLHcbJ1/cB6f2clHqc1XqNlyx54sVdkppv1LXFKoP3D3zutB4mScqHocgHo/z1VdfMXLkyIosvL7PuB3LPtcQeHQn14rMrtYttOrM9fIuVxhw0g5kU8kVZbbvutV+9laFW9yq4mGjH30lVOlur8+1XVIJYSC7P7m2dXJpVpxWjG5XkbmEnOw+FXrGrb5Z1+YSIuwGctnHCpHP+NStbUe5z0s5WxeFxqbYfuSyheltA9zvAkuXLkWSJBYuXAjAyy+/jCRJ3xkviX5hVOiRiRVAx02Uwt7G6cVeSTWo04q/4LkuV79845RrhZtv5T2paVxFjS57ilzCQCGtQjFbCNlxCizK+e4t4zTr57yW7TaeW/G+7drCrqOl/v04/e1VSsvgpu1yqVT7llCQa0tk+HmvldxOOZx66qncc8893Y5PmjSJOXPm9EGPujNhwgRWrlxJbW1tX3fFFZ6GoJ9i7T3DxpVTfzRIysYKt1wq+aLR5TtXyAiqWIoxQnOrEXFTZ7ETST7NgNvJ2m7nUIx2pxLP4+Kpt6efl2JX8Lmes3xq+54wMO0P2LUalnFvpet2Or7VzDccM632FoccckhGPpyVK1fywAMP9Fl/svH7/a78//sLnkDwHaI/GiRlU+4+czG4sRUoZNyYTztQqG894YpXrDBQaWFxq5lvpIWCUrelClHIeNYN9r7l2kIoZnsoXzul9q8vqNSWhZ1CWxA9bVSYj0AgwJAhQzI+lju5JEn84x//4MgjjyQcDjN69GiefPLJjOs//vhjDj/8cGpqaqiurmbvvfdmyZIlQMoD7oorrmDzzTcnEAiw0047ddM8vPXWW+y8884Eg0F22223jMR70H3L4O6776auro7nnnuOsWPHEolE0kKNha7rnHvuudTV1dHQ0MBFF13EKaeckuHR9uijj7LDDjsQCoVoaGjgoIMOIhqNlj2enkDQB9yy8Iq+7kK/pFDiouyPddyJctwrvwsryJ7so107ZdlQWGRnOCyWXPvRxXpAWN+dpdWwVsVOGg6nSbKY/tsFDjdli62/pylFWLRnlyzGYLe/MWvWLKZOncoHH3zAYYcdxoknnkhzczMA3377Lfvssw+BQICXXnqJBQsWcPrpp6PrOgDXX3891157Lddccw0ffPABkyZN4ogjjkinve/o6ODwww9n2223ZcGCBVx++eXp5Hf56Ozs5JprruHf//43r776KsuWLcu47qqrruK+++7jrrvu4vXXX6etrY3Zs2enz69cuZJp06Zx+umn8+mnn/Lyyy9z1FFHUQn/AM/LoBexvAyWfPYxZ4/9fUXrfqz5Zo4aML2idZZKJT0NSnkBldNuT6z6y6UcocctbjNJ2inW88BtHW62fwp5lxTyEihUJtd1hbx6iulDOV4rpfbTDfmeBaex6ysvg1NPPZV7772327lLLrmESy65BEmS+N3vfscf/vAHAKLRKJFIhP/+978ccsghXHLJJTz44IMsWrQoHbTOzmabbcb06dO55JJL0sf22GMPdt99d26++WbuuOMOLrnkEpYvX57uw2233cY555zDe++9x0477cTLL7/M/vvvz4YNG6irq+Puu+/mtNNOY/HixWy11VYA3HLLLVxxxRXpvDhDhgzhggsuSAsJhmGw5ZZbsvPOOzN79mzeffdddt11V5YuXcrw4cMrMpYWnoagD/AH/dy7/BoArvnUXaTD+1dem/H7o+tv4D/rb+Kx5pt5rPlmgPS/biiUv71UFXRfCwPl0l+FgWx7kp5QCeejN20L8t1jIWHBzdgUcst0S6GUzH1p81NO2/mEgf7297H//vuzcOHCjM/Pfvaz9Pkdd9wx/XNVVRU1NTXpML4LFy5k7733dhQG2traWLFiBRMnTsw4PnHiRD799FMAPv30U3bccceMCdaKbpuPcDicFgYgFU7Y6lNrayurV69mjz32SJ9XFCUdiRdSIfwPPPBAdthhB4499lj+/ve/pzP3lovnZdAH6KZBQovyt8U/J96e5E8LziBYqyKlwzRnKm0kZDoTUR5ddyMmOrKkICE7Gqo4aQrsk4r186iHc78wejJrYb46S3EjtGPdXz5PhWL7VqkxKPVlWol98Hy4vb+tZr7RLXGTlcwpu1/FjFehMLi5jAKdnt9iv3en78StV0Z22WxBxRKgrPHNHudcHiGpe8gvCLtxfVy8onLhhS2PJ3uoc/v9Hjh027LbKJWqqqp09lsnsid7SZLSoe+tkL69jVOfilHUK4rC3LlzmTdvHs8//zw33ngjv/3tb3nzzTe7ZfYtFk9D0Ad0dLYRN1tBNvFHFISAZKeB6HpQwT7RS4T9tVSFIiQSGorkyykMWNi1BpC5R2u30C60itj4gnKP1VYuH257eGOn9krB6f6Kreu5Fc5hcSslEPW3lZVFMffnRg1fCtYzYd+3tv51shuBTKHVTX/K1TY59cGtPYWbvyG7Z8Coh8/uc+1CdrwRy6MA+u+zXCw77rgjr732mmM435qaGpqamnj99dczjr/++utsu21KABo7diwffPAB8Xg8ff6NN8p7X9TW1jJ48GDefvvt9DHDMHj33XczykmSxMSJE5k1axbvvfcefr+fxx9/vKy2wRMI+gS/EkAxwiAkZFkiVK+i+hW0mMDU7UKBRJW/lrrgYPyqH0VViCeSCIEriTLXFkIxk6YlFJTyQrWrmZ2uzw4aYwkMxeDG997Ny3VTeclVCvuEUMhQzn4+X9lCY2xNivZ/82EXCkrRChXznedy63TTnuVamf0c2gUee52l9MVOqcKPNY5WHwppS/rD30wikWDVqlUZn3Xr1rm6dsaMGbS1tXH88cfzzjvv8MUXX/Dvf/+bRYsWAfDrX/+aq666ioceeohFixZx8cUXs3DhQs477zwglSdHkiR++tOf8sknn/Dss89yzTXXlH1Pv/jFL7jyyit54oknWLRoEeeddx4bNmxILwLffPNN/vSnP/HOO++wbNkyHnvsMdauXcvYsWPLbtsTCPqAWMxANiMoZg0gIyEh+wAE0XVJDM1EQqLKV0tdcAiKpCJJEj5VQVEUEi6Fgnzniwl4ZL0YivHhntQ0Lq82wKLYOi2r8lwvJPskYp8kCtlMeGRiTXZ2L4NCY2/R07Yf9rbtk7L9Oc1HOYGKrOvtgk/2eOSyt8gWcOwunhb2Z7Ennst8dTqNZfa12fZFk5rG9Wkcgjlz5jB06NCMzw9+8ANX1zY0NPDSSy/R0dHBvvvuy6677srf//73tEr/3HPP5fzzz+dXv/oVO+ywA3PmzOHJJ59k9OjRAEQiEZ566ik+/PBDdt55Z377299y1VVXlX1PF110EdOmTePkk09m/PjxRCIRJk2alLZVqKmp4dVXX+Wwww5j66235ne/+x3XXnsthx56aNlte14GvYjlZbBgwQIikQgCE1PuxFBaAROBQI8LhAHV1bU0RJpQZV/G9oAQAl030HWDQMCPLDtvHQghSCQ0JFnC71M5uiGVudFNTHk72VbTbiK3FTL8KuaFbJXvrQhx/QXrPuxq5P4Wh8LN91js81GIcsbBrQdAPqz9dKuO7O/JqZ/2c7mOW+eysd+rm7we2XVnu4yWMnaFrntk0bvUb/2ll8ughzBNk7FjxzJ16tS0x0SxuB1LTyDoRbIFAgCB6BIKWgATJImQUoMaryYQCBKuDnazF7CEAsMw8Qd8yA7nE0kNWZLw+VQwTTo+X8IpE68Huhtf5ZpEC03+2de5CRTk9FJ2q152m4mxv02cpZArJa01afTXe3T6fnN9J6VuQ2UnZyrk2eJGiM3GvgrOTvXr9PeSq41CLqPZfa9EdsRsF8hsobrSfyNecqPK8vXXX/P888+z7777kkgkuOmmm7jrrrt4//33S94W8ASCfoglEHz4wUL8gY0WrimhIIqpthP2V1MXbEToMm3r2glFgoRyCAWxRAzDNKkKViHLUso3IUsYkJCIfrmUtfPfQg2HOffM/3brlzXRlOPT7QbrxZRvUivHbXFT0Q5sChT7PdpX3qVQzDNayP8/1zOdSzuR72+lGG1Z9moeCgfryhcXAZyFGad+loMnEFSWb775huOPP56PPvoIIQTbb789f/7zn9lnn31KrtOLQ9CPCYf82Od3CQnFrKJaHUJ9cDCK5EP1KdQ11oAkE48mMY2UsaEQAlMYRLUWWrUVtCXXEEvEME2REgYSNmGgqxFfXS01W48mMHCQY3/s+/32Y27ILmf3Bc/+WC+wcoyV8u2BVjLLYm9QjP1ET7XfG23YPQhyYc+nUEmDtWK0A26MHp3qdLrezXebT8NWqRW89TeR/R305XPnkZ9hw4bx+uuv09raSltbG/PmzStLGCgGTyDoAxRFQVWUjGPBgJ+aUC1ylwGhJEnIikKoyo+hGWxY04quGQB0JDewIbYS3UwSCdbgU1TiiSTxRBJJzhQGkMA3oJ7qHbdHrh/crS+WkVC2wVQpL4x8K6/sl18uQ79s17O+xk0/Su1rf9Bm9NTEkD2pu3FzLVRHJfpULNlCZiGPi0LnnMra7zNbKMg3Zm7ux6516a/bTB79B08g6AM65Q0EqyRUJTX8wYCPmkgIWZYytgaklOchVbUhAkE/ne1xTMNEN5IA1AYaqQ4MwOfzoSoyum7gUzMFDSEEsY44ibhGeECkW1/slsVOq7NyjK/KodhkRD1Bf7dHKHcy7w2BpFyhoD/cYy7NUzF9y6e9ylbjF6MpcIq3YMXUyN6CqXRsBouvrtq9IvV49D2eQNAHGGjIfpOa6hBV4YCjMGAhSRKSLFFVFyZUFSDaFsNIQE1gEJHAACRS1/l8KsGAn0RSQwiR/nS2x+loiRIM+/GFA2X3PdcLPfuFV+pEmm1VXeq1uSimzlICM/UmTgGgetptrRTsz0Y5dgL5KDS5lbqdZPV31MNnO9aRPfa5DGQL3Xeuvf1ivsNSjCdLxckF0eO7jycQ9AG1UiNBKYLfp1JdFcwpDNiRJAnVr+AP+hBRPz49khYG0ufV1FZEMqmDAC2hI0zBgCG1KD4FVHeRqvMZHuVKRFMoHHEpL6eeWJ1b1tdOWyO9/XKrxArNig1gUcyYLblur7wTZaG0t4Xqtii0Uu0tSm138dTb05q0fOOVa9J3mqhzefVkZ5cs9H3migpqP5/vWijtubfGY6uZbzDyorcLX+DxncATCPoA04B4TEtN3FBQGLCQJIlAyE99Yx3CgGRcQ5gpTYBpppxFVFUBBK3N7SRiScLVQRRVScXLLtCO/cVSbBS3XC+V/qhydzJ2tEfIc0pa0xPCQjEW+E6rMetYtkGoRSGfdWsCc4qYZ7++mBgQTm0XWlnn6p9bd1S3dbot4xRkyD7+lTJedRIMrG2VYgN2FfO7dSz7ue9rI1ePvscTCPqAzs44kiSR1DTiCc1VxEHDMDG6PA1Un0IoEiDZmaR1fTvJpE5reycd0TiGYaLFdGIdCUKRILIip4IgmxqS6HTVv0qv5nO5cvUXYcEuHIx6+OwMa/L+8oJ0CpNrHcvl8+4m5LQVVtcie2JwYymf/Xv2uLldOduvz6dit+7XjUeC1Ub2PRYS8OxbBHY32Z54Zp2EgnLqKPeZ7U/PvUfv4mU77ANCoQDBgA/hV4l2xokLCAZ9jpoCIQSGKWjviAFQXRVEUWQkWSJcF6Z1bRvr17SCP2VMmIglCQd81DX4kfUNyPE2SLQgGQmmjr3XsT/Z0dd6k/5muLfVzDeYNHPjhLPx5fh++nix5LtHN5EYi90GAGtSKbyvnm/yKRSAx65hydUX+x68PViOU33FUCiWQCHsWRadVPqFbFnsY5fr3ooh1zgWo7HL912UQk/ELOhJ1ixbS+u69l5rr3ZgNY1bOLtyf1fxAhP1IlZgom+WfkFtbSqAh2madETj+FSFYNAPgG6YyFIq8ZFpCto6YsQTqYxc1VVBqsKBtPCgawYbmtuJdybQYx3UhjUGVGtIQgcliKSGwBdGqFXopsqxQ8537FuxQX1KiVnwXQ4cVOjlWCitc6kBZorpn9MEn33MPmkUEgjsOGkh3E5AlVq9ForSWErfcpHdZydjPychutjxyCbf9fmEoEJlKzUWTvSHwERrlq3l1DHnocW7Zy7sKXxBH3d/dn3RQsHNN9/MX/7yF1atWsW4ceO48cYb2WOPPXKWf+SRR7j00ktZunQpo0eP5qqrruKwww4rqk0vMFE/xq4JkGWZSFUQTdeJx5MkkhotrVHaOmIYpiAWT6ZyEkgQ8PsIBjJzaSuqTE21itK5gkGBNQyo9yNVb4EYsD2ibgxm9QjMYCNCrUJS/Y79KXVCslTsbqyNe1sFWek9/1xq+f6Ak1rcIp9BXzGqaSc1crmTX67yubYC7FkDi3neytnzL/S3kV13uYJdTwrMpdbtZoulr2ld196rwgCAFteK1kg89NBDnH/++fz+97/n3XffZdy4cUyaNIk1a9Y4lp83bx7Tpk3jjDPO4L333mPKlClMmTKFjz76qBK30A1PIOgHpISCMElNp6WtE90wSSQ1NE0nGPARqQpSV1NFbXUotV3QJVAIIdA71mOu/4JBTQ1ERuwKtSMR/lqQfZC1BSHLEvc/dU7GMTfCQPbLwCnIUH9S+0PP2CfkEwr62/2XSl8GAipUPtv1z2mSyiVIFEshjZBlu5HL6yYXTvXZvTlKCXjkFDcku65yNSa5DFc9iuOvf/0rP/3pTznttNPYdtttue222wiHw/zzn/90LH/99ddzyCGH8Otf/5qxY8fyhz/8gV122YWbbrqpR/rnCQT9BFmWqI6E8ftUQBAOBgj4VRRFpiq88ee0MGAaxNYuJ7p2BYHGUfjqhoHiB3J7EgghMGPJ9O/2ib3QCsD+0irGLcpOb24X9NTLq79pCgq5DpaC2/1q+89On1zXORkF5itvYT1rdjfA7LKV3kMvNEHncmF1Ip9w4XYFnk8oKNcDwyJXzIVi6/HIJJlMsmDBAg466KD0MVmWOeigg5g/f77jNfPnz88oDzBp0qSc5cvFMyrsY+wmHLIsUVdTRVt7Jz5VTocwzroAYWgkNyzFSAqqN98G2e8u4JDQDYwWZxVXvondKStiMdsMvWE7kJ36tTdUr9a+fbnaATeGhXYy96+d1eO5jETzvdBHPXw2W7HxXnJda5XL9oEv5tlwc6/ZRomLV9zOpCbyGnfahQ2nvhdDLhuLUuoqdL89FbAJihcG3ARR+q7aAvUl69atwzAMBg/ODCE/ePBgPvvsM8drVq1a5Vh+1apVPdJHT0PQh6TSFOtEY0mESP0uyxI11WE0w0hHHbRdgB7vpH355yAHiDSNQnEpDACIhI7UlQ8Bio+K1tMvgexVVjFR94oRBnKt5kqJte9GlepmBVjM2Ga70Dm1l6++bD97a3VpF2xy+a5b91yoXLE4jY/VH0voKjTJ57ItcPNMWKti+6dSk7QbDY4bF0o3FGPnYb9XCyejVI/vD55A0AdYYYXjCY22jhgd0RjRWKLrXEpTUBUOkkxqG4UCIdBjLbSvWIyvphH/gGFIslKgpY0YnXFaP/wYbUBKgCh2H7xUo6JiVhP2F+JzK97vsX35bHe5fEZ5buqy11EqxVyfbzzdTNaWZiO7vEWxwkslJjKnvfh834tTnIRcQaSctijsMQacJr3FU2/PyBSY3W4xFPsc97TgXUgIsPcjV3TG/m5k2B8ZOHAgiqKwevXqjOOrV69myJAhjtcMGTKkqPLl4gkEfUBHZ5zOWJL2jng62JAE6AIEKY2ALMlUhUMkEhqJRBKt9VsS67+heuhIgvWDkCT3X50wTDa8+z5tixdzxrT7S+qz036tG8p5ufX0fmUu9XKp9eSzxi42L0K+gD+FxsXNhF5Ii9BXON2fkyYrO2iQhVsD1+yJzj4pWj87BWwqhJMtRSmTZynfjRsbBqtep3t0Kgfdx8q6zhMKisPv97Prrrvy4osvpo+ZpsmLL77I+PHjHa8ZP358RnmAuXPn5ixfLp4NQR/QGUsiK6lAQ5IkEQkHCIcCbEiaSEB9IGU/oMgSVUGV5m8WE/BB9dCtkdSA61DHFpIsEdlyC9TqEPBq5W+owqTiuad+3rg/Xfi69J4+pWkW7FqDQr7lTirlSU3jWLzidpi68Xc7VvCafCv3jRPIxpTRThNkrn3751akovy5DaKU654L0ZMBpdzYZWw18w2Y6m71Xej+8k2Obsk3dqWOUyEjyVzPR6H+2e/X/hwXuodRVG4b5fvK+eefzymnnMJuu+3GHnvswXXXXUc0GuW0004D4OSTT2azzTbjyiuvBOC8885j33335dprr2Xy5Mk8+OCDvPPOO9xxxx090j9PQ9DHhEN+wuEASNCSNPm2U8cUgBCYWifJ9V8SDIUIDd0SVH/RwgAAEgSbhlCzw9bpQ8W+/IulnNW901622z5UwsDPbiyX7bpl9cdaYWfv/RZSn2fXna1VsCZ0++/ZWBNBtqW//d9ivjMnwaUQlRAGspMnWf8W2rrKjiJYjn2GG01JoX303jBgtWN/LovRCjhRbITS7LFYct1e/SL9ce3AanxBX+GCFcQX9FE7sLqoa4477jiuueYaLrvsMnbaaScWLlzInDlz0oaDy5YtY+XKlenyEyZM4P777+eOO+5g3LhxPProo8yePZvtt9++ovdi4UUq7EWsSIULFiwgEokAEAr6qImE0ITEwvUJdFOwU4MfX7yFxPpvCAwYgh4K055YT31oCH4l5Fi3EAJDgCylth+6Cw4C0zCJ/d9CfjLV2efVLY8138xRA6aXVUcxZE/K+cr0FzV4rj5newTYX8hu/cbd3GNPW4KXqiHIdZ3b/mZ7kxSKXpivnuzresJ7oFJUsm927w1wp5HJde2kpnH9IlIheKGL8+F2LL0tgz5EIuWHChI+GUZW+0gaOkbrSpLtGwgPGk7CZ9IaW4EpDAxThzx2hB2aSdIUDAwqDtEIJCRZRq5yFiggNdEDeSd7q0w+ip2MCk0ulhq9kLqyr4SBfKl+ofvLPK1lIJU3wa0PezHjutFNr2fGpFQNQbmaBacET5Uin4Fori2iYihnm8WNG6Xb/lj5OtxoZJyutbbEIHVPw897zfX1PUnjFoO+MxN0f8XbMugDTJFEkiAcChAJB5AkkCWJQT6DQbFlqFoHNZuNIuEzaYmvxjBTnga6mcxZpyEgaQrWxQ3iRm6lj5Al7rr/lG7H7RP9Y803d/vkKgPwn/U38ci6G9Pnin1RukkMY18V9jdjJntueLsbnxNux8Yp1TG4XylaqnC3xnD9YUyLWQVXwuDUrTtothFmoe+wt8bSacvKDeWOnd2g07Mp2LTwNAR9gKG0oaj16SRFkgRGopOOlV+iBiOEG0eCrGAm2vApQRRJxScHCCjhnHVGdZPFbRqqnHJddEKSJJRwEH1VMw9++1cMIBDwdWkp8pNLM2AdP7ZhRsE6yiVtIb1iY6Y6+7lC2wa9nVmxlNW53TDQTvaqrtj6CmHP/tcXZBtHFnNNLvLVZQkDTvdbyAakVNwaQJZzX24pVShIXVe6m65H/8bTEPQBQo6TEM10JjoxTRMz1kJszWLU6kGEG7dAUlJyWnVgIIPCwxkY3pzaYCM+ZePej2YKdHPjzB9WZbap9bNNrZ+QmsPwUAChAGg6SkJDMU3isQSmaVb8Hh9ecwP/Wd8z8bYnNW0MCJTLMM+J3pjsymkj10s+25CrJ9wxrVVwb+FkWJnyLnHnpudmQsxXxk0GylJxqtet1qAUo9ByKedevcBFmxZ9KhCMGDEiHZ7X/pk+fTpLly51PCdJEo888ki6jmXLljF58mTC4TCNjY38+te/Rtf1jHZefvlldtllFwKBAKNGjeLuu+/u1pebb76ZESNGEAwG2XPPPXnrrbcyzsfjcaZPn05DQwORSISjjz66W8AItwgEiWSUNSuXsfbzj+hYvZRgw3DCAxpBlhB0reYlBUVWkKTuYYwThqBdM9ORDH2yRENQodavIDt5IghIrltPy+LPSEQgsXY97R98jJRM0BGLYphmTs1CMTzWfDOPrrsRTdPTMRbcUOyKJ1tV6pTVzymSXX8iu4+5tkOyNSFuV/1WnU5t5Svb0zi1Y2UydBOQyk0/y72XcjwPKrWdkavu/mA4a/+76w9eBh6VoU8FgrfffpuVK1emP3PnzgXg2GOPZdiwYRnnVq5cyaxZs4hEIhx66KEAGIbB5MmTSSaTzJs3j3vuuYe7776byy67LN3GV199xeTJk9l///1ZuHAhM2fO5Mwzz+S5555Ll3GTkvKXv/wlTz31FI888givvPIKK1as4KijjirpvpMdJqI1yUB1PQMHqqgDt0QJ1WBKBhrJ3Dp/GzFDsDpmkMdcIAOh67R88DHx5mYSHW0kW1oQuk483kqbtppoZwdCmJTqdGK3KZBlmUDAh5YlmBVDsW5z+bwP7MZTuV7W/UVYsMfuh/wTU7H+527L9kZAKPsnV5ChXBQqZ2ka8tFT2oFS2nNLsXYklSZ7S876HhYeWZ7Xkkf/oV+5Hc6cOZOnn36aL774wtHffuedd2aXXXbhzjvvBOC///0vhx9+OCtWrEj7cd52221cdNFFrF27Fr/fz0UXXcQzzzyTkT/6+OOPp6WlhTlz5gCw5557svvuu6dTSpqmybBhw/jFL37BxRdfTGtrK4MGDeL+++/nmGOOAeCzzz5j7NixzJ8/n732cjeZWG6Hb7/yMCMG+QnUjkAEG4kndQIBP+2sQyNGPU0oUm7zDiEE6xMm6xIGW0Z8+BUXsQmEQGttR++IkvzqWwj4SVSZ6IMD4FepD2wGpkIg4HNOqlQChmly7MBflFWHm33/fKumXNbY2S83Jze0SpPdl1xGWW4n8WJXi8WU70k3zlx1u22z0HdV6D7dbBcUEsR6090wWyNUqqulVZ8TbuwWsstZnj9b/usUvr7od33uduiRG7dj2W9sCJLJJPfeey+nn36642S0YMECFi5cyBlnnJE+Nn/+fHbYYYeMbFCTJk2ira2Njz/+OF0mX/pINykpFyxYgKZpGWXGjBnDFltskTcNZSKRoK2tLeMD0BhRCA7cAUJDQFYQAnSRxCCJThKTwivrer/MyIgP1e03KEn46moIbT4Uf009xsoNiM1qkAI+qgMNBP0hVJ9CIqGlcy2USzHCgPWSX3LdXhl7y3ZbgWys44WMwPK5bNnbqaQwYO9zLu2DU94B6+VfqX307Pbdri6LtVyvBG40BG4Et0JbKoW+574MRJQLN7kHegKnbS373wx4GoJNiX7jZTB79mxaWlo49dRTHc/feeedjB07lgkTJqSP5UoNaZ3LV6atrY1YLMaGDRsKpqRctWoVfr+furq6bmXypaG88sormTVrVrfjyfBWmGpVaiUOSLKgVaxBkzoBCQODfDG3UvYFeUMS5MRMagifhOr3E6EBoZuoaghJklAVBQQkkhoBvx8QJWsKig1cZL2kLWt6J7JXSVY4YzdaBDcaBCetQbmrsLRV9tTc5bP7aGkO8oUftgtChfppnSvG9sCpnUqVzdUPy8c93/0UmxOiWKzvK98z2FuBobLrsP/s5GlTCextug2U1V/4tr2NDbFYr7VXHwqxWXXlNCL9gX4jENx5550ceuihNDV1D1ofi8W4//77ufTSS/ugZ6Xzm9/8hvPPPz/9e1tbG8OGDSMaNzFNgdKl6pck0ESyK7GRwERHIJAcwguVgzAMWj/4mM5l3yIpCvLq9bQu+pyBe+2GEgqmhAI1JWbEE0mCAT+lyAOFhIFSX5b2a0rNV+BUZ6EXnVO43HK9CQqtYN3mIiiFYvpfzPeUnUci3xZAvkBLrvIY9BCFvptiAkOV84w6jY0lCNlzEFRCKCgU9Cg7/oL9e+0vQsK37W0c9K9/kjCMwoUrREBReOHk0zcpoaBfbBl8/fXXvPDCC5x55pmO5x999FE6Ozs5+eSTM47nSg1pnctXpqamhlAo5Col5ZAhQ0gmk7S0tOQs40QgEKCmpibjA2CK1P66hSIrSIaCNf/rJKEHLDuEbqC1R5H8PpAg+uVSzEQCJRBIl7GEAp+qkEgkMc3iO+I2mmGlqNQEYX/h2VWixUTHc7NHa73sy1XLlxJpznLZrPQq20nIsN9fLo8PJ7uKUp8Ny3Wx3HurxJZApSdpi+xETNaWmhucJvpStkfs32t/8HgA2BCL9aowAJAwjKI0EldeeSW777471dXVNDY2MmXKFBYtWlTwukceeYQxY8YQDAbZYYcdePbZZ8vpdl76hUBw11130djYyOTJkx3P33nnnRxxxBEMGpQZlnL8+PF8+OGHGd4Ac+fOpaamhm233TZdJl/6SDcpKXfddVd8Pl9GmUWLFrFs2bKS0lAKkcorYCFJMrJQ00KAgVZ0nW6Q/X4G7TOeoQfvT/2IUVRJEZoOPRi1JpJRzhIKZEXu5sLplseab+aRtTc4nusta3a3FPOCK2dvP1cbpay0KvEidnMvbqMcZk+ATnU77T/nCyJVLPaIkT1BMd9RqUKJUxtuDWvt+/3ZcR6cBC/In8uhv0z2mwqvvPIK06dP54033mDu3LlomsbBBx9MNBrNec28efOYNm0aZ5xxBu+99x5TpkxhypQpGUbylaTPvQxM02TkyJFMmzaNP//5z93OL168mK233ppnn32WQw45JOOcYRjstNNONDU1cfXVV7Nq1Sp+8pOfcOaZZ/KnP/0JSLkdbr/99kyfPp3TTz+dl156iXPPPZdnnnmGSZMmASm3w1NOOYXbb789nZLy4Ycf5rPPPkvbFpxzzjk8++yz3H333dTU1PCLX6QM5ubNm+f6XtPJjd59m8FDBhAJBpElFSEE62KrSYY2gAQBUcUANkeWek5e01dtIPb824SP2hsl4pzfQNcNdMMgGPAXXb8QAk3TOX7IzJxletKSvRLksqzOZ91up6c8AMq5xrrOTm9azDvhpLKu9P57sfRGVMtK2KiAzeakKX/Oj3xJjMp5JvpDcqOP1qzmiAfvrVjbbnny+JPYvnFw4YIOrF27lsbGRl555RX22WcfxzLHHXcc0WiUp59+On1sr732YqedduK2225z3dZ3xsvghRdeYNmyZZx++umO5//5z3+y+eabc/DBB3c7pygKTz/9NIqiMH78eE466SROPvlkrrjiinSZkSNH8swzzzB37lzGjRvHtddeyz/+8Y+0MACFU1IC/O1vf+Pwww/n6KOPZp999mHIkCE89thjJd2zWbuBaGAVMam9y24AVHz4RIigiBAgXGHrge4odREkn4rRnJkdTNj+k2UZwzBJahqapmMKUVTwokLbDcW4CpZCb8cWKLQX2xPtldJG9nZFb8bed+pHJbHfSzn31VtRLS2PklLiblgfe56F7Hwa2eXc1u/R87S2tgIwYMCAnGUKeclVmj7XEHyfSMch+PoZItVVVFFPLSmhI5ZIoPpkVFlNGxNWIhZALoQpiD33NgyqI7zb1qljCJLEMdAIiDAyCoZhYnZFMRTCxO/3p/Mv5MM0BYlEkhM3Oz9/QSrv1+3GDx0Kv/SzrazdtGunWA1BsdeUQvaqNNtzozcmQjf3WsozkZ0aub9NbNkxBXrrmS8mTHMpffI0BMVrCEzT5IgjjqClpYX//e9/Ocv5/X7uuecepk2blj52yy23MGvWrKIi5X5nNATfRwKiCgVfSjsgiS43QhlZKMgOYYp7AkmSUBpqMZtb0UQSnQQmBjHaaBEribIBAFVV8Pt9+P0qiqKQSCYLxikQQmAYhithoCdwE6XObaY7i+y92Oxrc8VJcEsljAvd4GT4Zz/XXyI2loJ1b04Gi8XeVyW1O9kCQKU1I4WEn54UBjxKY/r06Xz00Uc8+OCDfd2VDDyBoA+oYygD2JxqBmK5Fkiy3CNJhnIigVQfQW9ro01fTVS0YoiUZiAs1aFKfuz7FpahoZoWCpyrTQkDJscNPq8i3SykAi704s4V1AiKS3/bG5TjxlXoPtxOiG40BKVa8tu/CzdBiEodC7vBYiW8DsrtU08+P5XShHhJinqPGTNm8PTTT/N///d/bL755nnL5vKSy+fdVg6eQNAHyJKCXwqiSr709oAsSZi9vHsj11RBXMeMJxCSiSHpBKmilkZCdFf9dRcKMvsrhEDXDaY2nuu6D25faKWkqrXO55toi10VZ1tn5xM4rPP2f3sK6z6cJsBKG8jZLflLnWxLDSRViOw8BvaAV5WgL1bRuTwHyu2P/ZksND6VFqy+jwghmDFjBo8//jgvvfQSI0eOLHhNIS+5SuMJBP0EWZa6jPZS1vmJpFaR8MH5kKoCyJKMiCaIsoEEUZAk7P91u6ZLKFAUmXhio1Bg9Vsv0xc4e4K1xwIo94WUTygAdy+97FDKpdgW5MMSXkoRIHK53fVkIp9yBYNClFqvNY52Yei7NKHZJ357EKdKxK+w6vfoXaZPn869997L/fffT3V1NatWrWLVqlXEbLEMTj75ZH7zm9+kfz/vvPOYM2cO1157LZ999hmXX34577zzDjNmzOiRPnoCQT9BkiQM3aC9I05LWycd0XiPawzkgA9qI8jtAh8hfAQKX9TVV5+qoigyiYSGaQqSXV4IwYCf/6xPJYkq9AJ20g64fdFZOQ/c4saivlB8fDtWAB0nF7DsF7d1zG1/ncagUNCdfPdVybwIuXCzwiwWK4hSOf3oDSPJbIp9NnNhPTdQ/PdjCUNO/coV68ANTs9gf0h/XB8KEVBKCeZeOgFFoT7k7LLtxK233kprayv77bcfQ4cOTX8eeuihdJlly5axcuXK9O8TJkzg/vvv54477mDcuHE8+uijzJ49m+23376i92LheRn0IpaXwfKvF1NTU51xTghobe8gFk8FAvL7Veprwshyz8lsQgg6X/8YQirBXUYhS0pR4ZKFEGi6TjKpoyobMyXCxvDF5WQRzLcKL8cH303wIbf+2k64cafMF7o3u3yh/lYiHkElPAyeW/F+up5C4+S2v+Xem9sYEr2NU1+ytQFuyHeN0/Nmz7CZ/XO+scknMAw/77U+9zIAL5dBPtyOpScQ9CKFBILOWJz2aJyA30dVKIDPp/Sct4EQxFauRlu+DkyD0KgtMHWdQONAkN23aZqCzliCcMifIbxk5zNwcncrJ3BPOcZUPSUU9JRrohvBoVKTZil12Ccke5322Pt2eloYsK51aq83hYJiUnfb79XtfWeXy9WeXVCzfnfCjVBg5VGw018EAo/ceG6H3zEkCVRFJhz0U1MdKksYsNwCRZ6ECMl1zax7/U3av11GrG0D695aQHzVmpzlc7Wj67pjX7PzGVTapc3NhF7O+Z6ilAmu0HZDb8QusMhl1ObkUmfZM9j7V0xfS/W6sAwLndrqia2NXLgRPJy2BEoVEnO1V8yY57t/Kxqi3U6lv2hcPCqDJxD0I3w+FVWVQZQWlMiKMGjFE8ir/JFl/PV1+AfUQ9JIre5lqeicSoZh4lOdhZdKCQXFrhQLrcysvelC9gSluDm6pVDgpN4QWKyVXqG27GPp1qjNySK+FOyaBjeUO27F2izka78nDfeKFQLdTNzWvecaw2wBzRMGNj08gaAPEUJgmALdTK3oJUnC7/Oh6XrJHgZRNrCBFXTQnE6j7IS/oZ7G/femYbedCSd81I0aQ83YrZFcbhdYLoaSnD+I0mPNN2cIBtb+crGrv+yJJd+1buMLuBEKsl2+KoHbwEnZ1/TUBOPmxd4XVunWmBcz8ZST3KgS99ibkR4rhX0LYPHU2/P+XTgF63r88w8r2h+PvsMTCPoQA52l0QQfNCfp0FMTt6LImGY+ZX/hOhNSFAMNk/wugJIigyJDPAktHUiqWrB+azvC7DIo9PlUV9oMu2Bg3zMtxgI+X2jWbIoRCgqRK9Jc9kq5WAHH+tcubPTmxOt2NZxPQ5OtzbBb2GePUanbJb2Btc9eifYq5WUAzs9JuX20X283LLST7V6br64jt96hrP549B88gaCPEAhitNMhWlkX11kT2zh5S1Iq10ApKPhS/0o+FKnwBC/5VeTB9Rid8dx97RICDMNE0w0SCY1EQsPv8yEXubVh1xY8t+L9bi+jXGr6fO6J5a7KcgkOxb7Ui90fd2ovXx09qSUolewVud1mIJdhXzGUuwXgdsysvfFKkGsMSiFbCK1URMFi6sre/skWYD0NwaaDJxD0ESY6SaI0hONsFgG/sjGhkSTJJW0ZSEiowockZBR8yBR2I5RkGXVQPaI1ijDN1OrfTOUi0HWDZFIjkdSIx5MkNQ2EwOdTCQX9qDlsB/JheR/kmiDcWPaX85LNnmDcagnKWeXmq7PY+iq9Yu4Jl8ZKCi3f5X3qSn9XlfCQsJ7/71KQJo/ewxMI+ggZhQgN1ChhtqyBzcIbg2pYUQtLwScFqGEQEVEPLmMKyAOqMRMa8c448USSRCKJpukYhpmKTKgoBAJ+ggE/fr8PRZFL9oCwawjsq6jsScT+wrIHFXLzIrPHPsiu11KF9qbHQ6WptJYg31i4uTcnIStXcKVC7WXX0xeGiZWkklqdUoUBp20dO14eAw+Lwjpljx5BQsYvhfATRJCauq1JVpakkkMAy6hUUd/VhkuBoCYMmoaS0FGrgul+9HTGReguFNhd1pwmcwu7DYI9NK2Tr7XTC3nx1Ntham7VfXb/8lEJtXBvbgVY/uQW5aw68/m+Z2PZdbhtL9s3v1Cb+Vg89XYmzeybbH5OgYN6Oh6CXSi2t+OkDZvUNA6mltbOpKZx6EIDviytggoijBVgbui9BuV6JKWp99rrBbzARL1IvsBEdkwhSMSTBAJ+5CKCBJWKmdTpfOJ1fLuMJrBVzz/g2UGLLEqdFJ0C49iPl0opwkApEf+cghW5zWFfrHbCqrcSQYny9atSdZcTBCq7HrumqS+CE5USlKrYNvJRqP1SbWZ0ofV5YCJhrECsPRhIVqz9wviRBj3/nRAKvMBE32EkQFEUdF3vnfZUBXlADWJda860xpUkOz6BHUt96ZQTINcL1MlCP9+efyl797nINvoqJZGOk7eCm2yAdpV6JdMbl0NPbZ9kPw/FUkkjVLc4TdT2/lfKlbVYYSDXGJZrFNunmBvoXWGAVHtlaCT+/Oc/I0kSM2fOzFvukUceYcyYMQSDQXbYYQeeffbZktsshCcQ9EMkSUJRZIwuI7+ebw/kQbWY61rBNHu8PSes6HJbzXwj7yrbjXFfPo+EXD+Xgt29LPvlXm5kxmL22a32iqUnXuqV3PqwVvW5tnWKDX7U23YETsKA/Wc3brT5klmVmjCqmLLlCg4ezrz99tvcfvvt7LjjjnnLzZs3j2nTpnHGGWfw3nvvMWXKFKZMmcJHH33UI/3ytgx6EbdbBpBy9YvHkwSDfld7+favsZS9f+2btSTe+ITw4eORQ/6iry+FXFsHuShH1ZvLWt5pIrGv4Nwa1dn3Zu2qaSg98I+brQP79W5f1JXwZS9Uv51S2ypm393NFkgx992b2wr5+u6mH3bBoJA9h9ttsGK+s36xZaB9jFh/ZMXadovU8DiSb7uiruno6GCXXXbhlltu4Y9//CM77bQT1113nWPZ4447jmg0ytNPP50+ttdee7HTTjtx2223uW7T2zLYFJAoSkOgmRqmKG2FL/lVTNNA6KUZM/YG2S+7YjwOcr3g3GoT8mHFeM8ObOM2al6uQD7FROmr5ATfW6GTC1HKajaXpiDbhqAQvRm90d737L656Yf1nDllTyzVpqO/xbvYlJg+fTqTJ0/moIMOKlh2/vz53cpNmjSJ+fPn90jfPIGgHyNJUlECgU/2IUvFf6XCMBGagRQKgBAIo3e2DazohfZPNr05MZU6qVp2D5ZLYy6Kce+rVGAbN21nY00upY59JbZl8nkpFGo7+9rsFa/be3Ojunf7/biNyOk2QmA+nK7v63gXHikefPBB3n33Xa688kpX5VetWsXgwYMzjg0ePJhVq1b1RPc8gaC/kgpQ5D4egVW+2O0CM5Fk/ZsLaP/ma4yBYdo+W0TbJ5/RK9aFDtiFgnzqUutcvhdtMWrfUj0S7Kv4QpO4W/e8nqAU9Xc5KvNKCDTZ363b7zOf1sei2HtzKp9LK1FqKG17nZVyRS3WCLPY7QIvUqF7vvnmG8477zzuu+++fpvOuWSBYMmSJfzud79j2rRprFmTSpv73//+l48//rhinfu+I0sSZokhjN3SsWQp7YuXEF2+nERnO1pHlGRLW4+2WQhLKCgkDBSi2L33vlgVuTGOzPbB7wsqoS0ollIyD1Yq22C2wFlMOu1cz12xQohdKHCjrYDy3D6tfA7F4uUycMeCBQtYs2YNu+yyC6qqoqoqr7zyCjfccAOqqmI4xJ4ZMmQIq1evzji2evVqhgwZ0iN9LEkgeOWVV9hhhx148803eeyxx+jo6ADg/fff5/e//31FO/h9RpKldB6BnqJqxDAG7LAj4cgA1KZ6ApsNom67MbiNcthT5HNNtFOu4Ve2u18xVNI4z6lty/PC/ntfhfK1JsdC9gWViCzohH1iLpShstx2sse5mCRZxQgOxVBqICk37dm/r1LGz9MQuOPAAw/kww8/ZOHChenPbrvtxoknnsjChQtRFKXbNePHj+fFF1/MODZ37lzGjx/fI30syctg/PjxHHvssZx//vlUV1fz/vvvs+WWW/LWW29x1FFHsXz58p7o63eeYrwMAEzTJJHUCAbceRq4wfq6rfqEELS9txh9zWriewwkHKqlLjgYqQRbhEoihEDTUnEYjh8yE8g9IVZqoiw1il72cSjNgKuQhXyx9fY0+YLuQHl9tQeaKiWgUKU9Kdx4jBTjlVKorux67RSKx5GvTK7rShkrq70Dh27reRmUyH777ZfhZXDyySez2WabpW0M5s2bx7777suf//xnJk+ezIMPPsif/vQn3n33XbbffnvX7bgdy5JCF3/44Yfcf//93Y43Njaybt26Uqr0cCA9aVPeet0SAnShkTCShJQQipSSRk1NR+vsxLf1cOojtahKoMzWKoMQAt0wOWmz84HMySB7YihFSOgJF0aLcgPn5DpvX8n1lWCQOTm9nw55a6XRzZ7Ey22r1IBClR6f7IBTTn0Z9fDZLF7R3f00V11OWC6sbjwm8mlh3H4HPe2C2mvI9YCf3o5UmGq3cixbtgxZ3rgYmzBhAvfffz+/+93vuOSSSxg9ejSzZ88uShgohpIEgrq6OlauXMnIkSMzjr/33ntsttlmFenYpowQAoGlmBFdH7lb7oGUQCClUiErpU3SQggSZoINiWZaky2YwmRk9VaE5BAAZjSO/+u1hMeMQPVXTrovlbTwohuoisx/1t/E0Q0zKmIEVincrNB6gly566F3thPyCSNb8UY6V8Coh89mK0rvSyFPjb7MgJjPOHCrmRvHoNRnwfp+7WPtVJebkM5uw1+XQmoMLGFCK7meSiEpTTDo+e9cLoOXX3457+8Axx57LMcee2xZ7bilJIHg+OOP56KLLuKRRx5JWcKbJq+//joXXHABJ598cqX7uMmR0GIg+0ESgAlIYARImXRkTvyKLGGYJrIsU+quwYZEM99GlyMQNAYb8SsbAw9pCQ1j6ADk6nCpt1My1uRvmik7CVOYCAGi63d/wIfpEDnR/pK7++urOHX4RRnnb/7k90zfdlbR/SknAFBqv797kqZKk9t6P7Vat0d5LHbydFO+0H1VYsLOp2XoD+mQ3SRpKja4VT51fyE7l1I0EeU8o6k+9D/NgqQ0wXcgr0B/pqSN4j/96U+MGTOGYcOG0dHRwbbbbss+++zDhAkT+N3vflfpPm5yJJMGSS2JwNgoFEipyVGk/zMRmMiK1DUplm5YaAoTgUBGptpfA0JgmDqmMEkmk4gRg5H8vZv4UghBMqkRjydJanpXdkcJWZaQJOiMdbJ69VpWr1nHTR9fyk0fdX+ubv/8CjRN484v/5RxPBQKcf+Kv/Lgqr/x0OrreGjN9d2uLaS2dSLfispeXyn2A8XkI7DasHtHWJ9yshjmW/26nUCcslSWQqXc7nqKckNT58LN1lF2AKueaMfj+0lZoYuXLVvGRx99REdHBzvvvDOjR4+uZN82OSyjwqVfLUJWJKqqZVRVSs31ph+EDxAgJ0FKCQFCSMSjEqFgsCTDQiEEa2KrWRb9Gr/sZ1TNaGJaK6ItRijpJ7FiPb7aWpSgj/DmQ5F8PS8YCCFIJDVkScLX1Z4VhCmeSLB+/QaqwiHCVWEUWUaSNmpHrDFI6Bp+Ve0WiEnXDXTDIOD3dRuvYkMl27FnCayk8V+phmCF0g4X+8LPtzdeSgjnnrAhqFR9lazXjUbEqb1SAgf1p/1+e1/6Q+hij/z0SujiLbbYgsMOO4ypU6d6wkARKJJCOFhFZ4eJaXTJY1KXD6qsg6SnBAJJgGSmNAllEFRDRNQIdYF6/LIfEUvQ+eanJFeuw0zESa5eReyb5eidnWXeWWGEAN1IbQ34fGo6mFIqd0OCdeuaaRhQT11dLQG/H1VVURQZWZa7tk1Sk3xA9XWzuQBQFDnloaAbFXPX7K1960oGoim2rlxZGouZhKw6SvFlt7Da7wntQPZ9VCL5VLmagnJW+n2hQenpLTGPvsX1cvD88893Xelf//rXkjrzfUGSwKcqmGaIaLSTSLWKJJmA6ehSICmpfXalBMNCSZKo9lUzunYbJCQMoYFpoobDKEJGra3FFAZmMokSClXk/pywJmfDMNE0nWDAl+H6GIvFWd+8gUEDGwgUcLMsdC7g95NIJJEAVVUdbS+sOAdCQFJLbV1UhYMoiszRDTMyypa6HVAIy+7AvrIuJuhSvrKl9LMSQs+kpnEpS/uplelD9qq+Eq6nxWpinPpVyMslu71KuGVm33+5xpvFkK156k2hwMu/Vz5ux9C1huC9997L+Nx5553cfvvtvPzyy7z88svccccd3HnnnSxcuLDUPn+vSE1cPhQCxKImiK6gFOl/N5aVpfKCE8mSjCqrKLICQqAhCA3bHKU1SbihnprtxlC30w7Ifl8Zd7QRIVIPoGEYaLpOIqmR6LIX0PSUMGC51gghiHbGWN+8gcZBAwsKA26QZYlA0I9uGOi6kY7CnJ0zQQhBIpEkkUgSqQqhqAqSJHULiuQ2SFKxWC/2YiaX7OsL2TsUm6goO9JfubEEisUpGZVdGFg89facoYGL7Ve2x0a+eguNod0WxH7fufIK5BpXpwBM+bwaegNr/CuRo6IYfL7U+6izFzSXmzrWGFpjmouSbAj++te/8vLLL3PPPfdQX5/yw9ywYQOnnXYae++9N7/61a9K6PKmT/fARKmJvqMzik/1E/B3eR4ocVKGhqnrkkmBZATxF/gyCyGEIN7eQezdD4g0r4XaBvzjd4NwZTUDKVuAJCAhSxKyktoWkLPyLQgh6Ih20traxqBBDfh93ff9y+5HPImqKqhdk739XCyeRNcNIlXBDN/fXFg2CPk8DUrdQ6+kLUH5FuSZ3gqlYPenL+Yap3uB7u50dortZ6XtNpzqtddv13KUMq7FBjLqabKfr56yIQBYuXIlLS0tNDY2Eg6HK/p++D4ghKCzs5M1a9ZQV1fH0KFD85YvyYLs2muv5fnnn08LAwD19fX88Y9/5OCDD/YEAld0xSJQNMIRiY72OKqioqipc+lSIrXFUGpa4431CLT2GLEFi/F9vQGpVicQiGMG/IUvLqU9UxAKBwDnMEdCCNo7orS3d9A4qAFfhYUB6NLCBFLbByChqgogMAyTWDyBJElEqkLIcmXatfzQ3ayMK2GXYI+3b1/JTirT82pS07iyVdFbzXwjHbSoqGuycIq9UO64WZPykuv2YvGK27sJG248UOzCjlsDwXzjmq/d/iQIQO9uG1gx+618OR6lUVdX5yr/QUkCQVtbG2vXru12fO3atbS3t5dS5fcKy60QJQmYyJJEMCTTGYsRqQoh0SUSCIGug5YAYZqpQFylYAqM5WuJv7MISBI/YDSy2UGwTQOH+NnlIIRA142UAWCO80IIWtvaicXiDBrYkDYu7Alk2RIKNAwztYVgmiaBgB9/ke0+1nwzRw2YXpFVZa7seeDeU6DcLYeeJnvvvJTJo5QER/nI/j66T+rv57R/yLhuZndvhXyCQCH60/eWb6K3H+8NGwZJkhg6dCiNjY1oWt8HQPou4vP5HPMkOFGSQHDkkUdy2mmnce2117LHHnsA8Oabb/LrX/+ao446qpQqv19Iete2QJcFoenD59fQdYPOWJxAKGV8ZxoyCj4CqkoyqSGEyFC3Q8rY0BQmuqljCANFkQkqQSQktJZWMARacwvGkpWYAZP4+M1Zq1ZT26kS0ToqeluWMKDrBgEHzYMQgqSm0dzcgqLINA5qQFGUHlUDCpHKCaEbOvFoknA4SKQq3LV1UVqdpVjeF0MpXgJ9HcEvH6XkInC6vlzyhbwuFPwnG7vNQK4+9ufvpFicnnlLyzL8vNd6vH1FUVxPah6lU5Lb4W233cahhx7KCSecwPDhwxk+fDgnnHAChxxyCLfccovrekaMGJHeU7Z/pk/f6C8+f/58DjjgAKqqqqipqWGfffYhFoulzzc3N3PiiSdSU1NDXV0dZ5xxRjr7osUHH3zA3nvvTTAYZNiwYVx99dXd+vLII48wZswYgsEgO+ywA88++2zGeSEEl112GUOHDiUUCnHQQQfxxRdfuL7XDKSN4YoxAyB8SMJHKCQjqyaxqKCz3cTQZPx+P4oio6gK8YSWCuaTSBJPJFnX3szSlq9Z0rKYxa2L+aptKS2drQAkm1tY8/L/iH32Je1fLSUW0IkPUFCqVRqrDOqrVCTDAGHfnhAlZVe0rknHAAj4u6nhU1sEHaxbt55IpIpBAxu6PAAqLwxYRo26YRDtjBHtjOP3+aiprkJVlXTwo1LpiaA5ltGcnZ7IGpiPnmqrnEx6laQYL4RCeQKscvZ/S20vF32R6jpXzATPzfD7QUkCQTgc5pZbbmH9+vVpr4Pm5mZuueUWqqqqXNfz9ttvs3LlyvRn7ty5AOm4zfPnz+eQQw7h4IMP5q233uLtt99mxowZGQZgJ554Ih9//DFz587l6aef5tVXX+Wss85Kn29ra+Pggw9m+PDhLFiwgL/85S9cfvnl3HHHHeky8+bNY9q0aZxxxhm89957TJkyhSlTpvDRRx+ly1x99dXccMMN3Hbbbbz55ptUVVUxadIk4vF48QNoqqlAREYQhJLypzd9SCJAKBCiuqqKutpaAJKaDkj4fSq+LsM4VVUI+H0In06rWE8nHZiyhqwIEKncB4lvVmEmkghVQt1qIEIxkWuCRJQBNCpDqQ0MTgkEekoNZ+VW0MzUdoYhtLx2C9akK4TANAXxhIZhmAT8zsJAa2sb0WgnjYMGplfoPYEQAsM0iHbGiUZj+FSVmuowfr+KYZooskyR8o4jPfGCtKvH7VbdbgSDciafSvqWZ09iTr7/xXo+9FXEQqc+uhUG8tXhlt7KTVEoaVa+e+xrIc+jspQVqbDSzJw5k6effpovvvgCSZLYa6+9+OEPf8gf/vAHx/Kffvop2267LW+//Ta77bYbAHPmzOGwww5j+fLlNDU1ceutt/Lb3/6WVatW4fen1NgXX3wxs2fP5rPPPgPguOOOIxqN8vTTT6fr3muvvdhpp5247bbbEELQ1NTEr371Ky644AIAWltbGTx4MHfffTfHH3+8q/vb6GXwRUb6Y2H7/xQSEhK6nprYqiMbDd/speJ6jJgRR5VU/IofRVIwYjrmV6swPvsac9cm9CF+dL8GrRoirBAO1lPNICRToCz5CGPIcESkBiSI0U5MdGBKGiYGVaKOKuoztilSE65AmCamTZvg6woglD3Rb7QXiDFo4EDHMpUgJZiYxBMpz4GA308gI9YBGKZJMqkR8PtKzg3hJtphdspeKC9PgnXOotLCSE+kCs5Oi1yOSr2vVqhuEgh91ynk+eBm7HvSy8CjdylJQ7D//vtzwAEH5PyUQjKZ5N577+X0009HkiTWrFnDm2++SWNjIxMmTGDw4MHsu+++/O9//0tfM3/+fOrq6tLCAMBBBx2ELMu8+eab6TL77LNPWhgAmDRpEosWLWLDhg3pMgcddFBGfyZNmsT8+fMB+Oqrr1i1alVGmdraWvbcc890GScSiQRtbW0ZnxQbJ3chGSAnUjYF1kcyAIGipNzl4okkQjIQsraxrGQQVEMM8A8g2KbDyhbii5ZiLF1B8ttvSe46gOQwP75gFUGlBrNehaCaWh0LAbKMCIYRHS3p/ugkiEutJOlEJ0lMakWXklhiiKUJME0TSZLwqSoBv59gwN/NrQ9Sk3RbWzuxzhiDBjb0iDBgbQ10xhJEO+MoikJ1JEwwmBnPQJJSiaL8PpVEMr/2IxduQx/bX6BbzXyj6ARDuer8rkxEboSB7wKTmsZlRF0c9fDZ35l7KUarUo4w4LFpUZJR4U477ZTxu6ZpLFy4kI8++ohTTjmlpI7Mnj2blpYWTj31VAC+/PJLAC6//HKuueYadtppJ/71r39x4IEH8tFHHzF69GhWrVpFY2NjRj2qqjJgwABWrVoFwKpVq7qlaR48eHD6XH19PatWrUofs5ex12G/zqmME1deeSWzZjll3evyMpC19OSfNskXgKwhjNQKNhT00x6N4kdHke1lAENGb+tg7etvEGkahtbRgS8SITZQQgwPEJBUIjQgMAkSQRYqsqQAqVDBZlUtyvqVGBggZIJSNTpJFFR8kg9VllCEiegKiWB2qdwDBQIYWVqDtvZ2op2dXZqByhoPWsaCiUQSzTDw+3yEgoG8LoSSJKEoMn5UEgmtS4gB1WXfrABF+QQDtzkPsrHKu7Xa7u8GaxnxDHohmp49eJQQAk3TMUyTE5vcR1h1wh5XoreiAlYCt7kncrmoesLA95OSBIK//e1vjscvv/zybgZ9brnzzjs59NBDaWpKPaFW2tuzzz6b0047DYCdd96ZF198kX/+859ceeWVJbXTm/zmN7/JCPnc1tbGsGHDUr9IRlfOgqyLJEAYICcRZgBZlgn4A8Q7Y4QjqQlsYxkdYRjIKKAbhEcMQw4GSBgymmxikhI2ZKHgEyFMU2CYJnE9gSSB5Avi72wn2fEt/kgTqvBTx9DU5CgEkOhKsmRiChndMFDV3I+MtaUQTyTo6IhiGEaX8WDlhAHLZiGR1NA1HZ9fpToYQsrh5piNXShIJjUsH89i+ugkGDi5s/XkS9UepbA3BINiBRDr/i3hqNxAR8UgdSXNkvT8OUDyjd9GTU3vToy9ORG7Sd/s8f2irORG2Zx00kn885//LPq6r7/+mhdeeIEzzzwzfcyKqLTttttmlB07dizLli0DUkErsgNW6LpOc3NzOgjDkCFDWL16dUYZ6/dCZezn7dc5lXEiEAhQU1OT8UkjVByHX5A6LjZOvAG/D1OX0fWNXgApI0ANsa6V6kSAqhFbEBq+GYHGAfgHDEHSVAzDIK7FiSY6U3vrhkFC0+mIxhECgpEI+qBh+JevQI9HaU92YtkvgASGH8wApgmJRDK1haF073NqRabR2tbOqtVraG1tIxQM0jhoUEU9CUzTJBZL0NHZiSRBJBIiGAjkjHmQC0soCIUCBAN+NE3HNMszpemtyS7bAr7cdt2qli0BxE1IXSfDwlz9dBMSONseIxun0NKW8e2Dq6/PWXeu7RxLkNlq5htFJ2rqSc+A74Ihpsd3m4oKBPPnzy8pTeVdd91FY2MjkydPTh8bMWIETU1NLFq0KKPs559/zvDhwwEYP348LS0tLFiwIH3+pZdewjRN9txzz3SZV199NSOoxdy5c9lmm23SkRbHjx/Piy++mNHO3LlzGT9+PAAjR45kyJAhGWXa2tp4880302WKo2vCNX0brQRTBgWpFMhGYKP3AamXWzAYJB41MISgzWwlSRKjLUbync9Rt2lCGVyHJEsgy4QD1chGAF0zaRGrifrW4gtKKH6B8MfxhUU67bCob0SuHkTw22VEJB+GYZLUUrkHtKRJMiFIJnR86kYvh43eBSadnTHWrl3HmrXrMAyDhgEDGDK4kUikqiI2AwJLEIjT3tEJkkSkKkww4C/ZMNAa09SnsnYNuULv9gTlZtordjVqTZJOAZEs8mUrLHeydGovX56JlJ2LO991S9Apd4Xen7dxPDwKUZJAcNRRR2V8jjzySPbaay9OO+00zj67OInaNE3uuusuTjnllAx1tCRJ/PrXv+aGG27g0UcfZfHixVx66aV89tlnnHHGGUBKW3DIIYfw05/+lLfeeovXX3+dGTNmcPzxx6e3Hk444QT8fj9nnHEGH3/8MQ899BDXX399hir/vPPOY86cOVx77bV89tlnXH755bzzzjvMmDEj3ZeZM2fyxz/+kSeffJIPP/yQk08+maamJqZMmVLKEKYme6EASpcwoKbcEE0/UtfXktICbLTil/ATjwviIka70Ub802+Q6iP4dxwKqpZ2HVRkGcUPppogKTrRNZ3Ozjgb2ltYH11DR7yV1pYWWlrbSOoGsYYhCEkm+vXnfN2ykjWxNtb7oiRUHbkr/K+ibExGpGk6LS2trFy1mrb2dsJVYYYMbmRAfV06OVHZgoDlNRBP0N4RQyARiYQJBf0ocmUncQElhS+2J0pyopiJxSkOgRtKnYDsE1++ftr75NS/7PN2gcEpkE32724yBeZrvxCFnhNLENhq5hvdci+UYqfhto/5jEdzkUsALCdltYeHnZJsCGpqajL+0GRZZptttuGKK67g4IMPLqquF154gWXLlnH66ad3Ozdz5kzi8Ti//OUvaW5uZty4ccydO5etttoqXea+++5jxowZHHjggciyzNFHH80NN9yQPl9bW8vzzz/P9OnT2XXXXRk4cCCXXXZZRqyCCRMmcP/99/O73/2OSy65hNGjRzN79my23377dJkLL7yQaDTKWWedRUtLCz/4wQ+YM2dOSRqRjUipeASILo1Al2yA6LIvEAgjdV4Igd/vY13HBvQqDVnXUZc1w9ZNJNqjGEYbpgGmIaeM7UQcU5bwyT6QfCTQUNUA9fIQlICCLMldav5WNENjQLAWed3XaIMiyAOCKELCkAWqltJUmKZJZyxGNNqJrhuEwyEGDRyY1jRUOimRbhjEOhOoqkJ1JGUjQFdeh55A04y0HUEl2yjGlqDYwDmlvPStpEOFjP2KySiYNoi08gPY4ilk51koxvYhO/VxqcLPf9bf1C2ldXYfckXiK5ZCaak9PPoz/SoOwaaOFYfgq0/f2RiHQJKQkBGKD8MU6IaGSQLd0DFNE2H4MXQwzZSBVCyewJCShCWFqvlfIe09mrg/QCisoPpSwpksK5hGatXr88tIprUFkakQMs1UKOFkIomS7ET6Zglrtx6JXBNgQCJMUPUhI2EaJmvXrQMkqiMRgqFgOnNhpUmlJNZIJpOEQsEuG4SKN2Nrr0vroesYhonPp3bZSbgTDFIZG2P4fT78fh+S5OyFUMwE7mZCcevSZ283e4KtJG4S/DglYyoHt2mphRDdBAI7lRgPJ8HH6VyuY3bvFMj9vbqpq7fdPb04BJsOJW0ZbLnllqxfv77b8ZaWFrbccsuyO7WpoyRaUOLrkePrkWPrkDrX0P7tR7R/8y7xlR9grPkCtXU5ocRaqsVaGgJRBofjDInojBjooykSYGgogE+YVIf91IT9RCIBwqEggYAfQ5doaxXEY12ynqwjMOmIxrBcDoUAE0FMS4IEij+IFAiht8WQYgZ+FBRkhAkr1q2ixdjAwEEDCIdDFVfZW6RsEuJouk5VVbgr6VHFm8lAklKCk9+nEvD7MAyDRFesBTeysqbpIAR+/8a+Om0luHk5FxPi161PvN0I0W10vWLJDprkNilTMfSUsV6lhCO7MJDrXPYxe1mnbZZy7tnbMvAohZI0BLIsO8YAWL16NVtssQWJRKJiHdyUsDQEC567h4aGBmKdHWy2xZYoiko02k6wrgkwkTBTboXCROrKfyyMBJJIHRcmoJl0vrKU4B5DkMMmkiohAlWIQA2aUOlo1VEwiFQLFEkmmVD5+LOv2HbsaJYsXUEoHCaRSJDUkxjxTgwDjGgHW2y7A6vWraWmKkJS01i7di2NIxqora1mcHhwj+Ue0HU9ldgpK8JgbyNEKj2ypunIioxPVXPaF5imoL2jk3A4mNd4zW1Ao1Lo6/1iN6vRnlChu9UOwMYIlaFgKh239X305NiVe8+5XDXdaB/c3lelyj2y6F3qt/7S0xBsAhRlQ/Dkk0+mf37uueeo7Yq3D2AYBi+++CIjRoyoWOc2VZZ8/hE1u+5FZ7Qd0zBQFBVkH8JfnbLit5XN/FmkDwjdwFRWocfr8W0+GPQOpGQLUtsK/EKjXqiYArRmSCKhCz8d7S2sXvENbRuaWf5tgpqaOqoiEb5YuoLhw4ejBEJ8/dVS1jZvQPUp1A6sob2znT0ad0HtoUxj1hZBZyyO1JWquI9kAcBySVRQFBlNM4gnkvhUxTFOQSKRRFWdXTF7i/4uDEBhjcBjzTcBUo8JTqZhZuQ/KSWNdbEsnno7k2a6Cw6Ua6vBs0Pw6G2KEggsi3pJkrpFJPT5fIwYMYJrr722Yp3bVBkwsJF1a1fi8wdSxnKureWkjYGMVAV12GC0L5YTbwwTqFHxhYaAGASYSKYf0zBpa+kkHm9HVVQahgxHra6jUa1lRFWYzmgnoVCI8eMHpNz50GhpaScQDlNTXY0a8OGXgkTb4wSD/vQKqxJYAYZi8TggUVsToa0jWrH6yyH1VaSC26iqTFLT0RMmfp+lLUgZWSY1jepI4URNbiIcbmoUEzRJSDoIJT1RF6IY7QCkUomrvkyB1m1b5eDkepnPcNH+86iHz4br6Ob54OHRkxQlEFjRA0eOHMnbb7/NwIEDe6RTmzpjttuFcDiIMFMrF2GadA9ZmB9JkvBtORTt46/QvlyJufVA1FrLL19GyCAJP4ocTXkrIDN0yGCqqyNpF0IGNWTUKa9fzYBqH8bmY0DA+uYWBg5ooL09SjKZ7MpkmNmHYhAAXWmSE0kNoytVcsCf2iKQpZSHhNKHK247kgSSlArVbHQJAJIk4/epxOKJLm1G/r6Wa7NrFya+S4KF29Xtf1r+CuhIIjVhWxN19qRf6j1bMTPsGgILt+OZrQkpZ6sh17VO9gRbzXwDpm68Jpd9QinbE/n6kStYkyeYbPp4Xga9iGVDsGTh/1EdqWKj/l8gB2vxVdUXNcmKpE7b/IVIAT+az6B6q80wEhrBoYNIAm3E0NdGCcghwqEwsiJjGgLVp2ACqiwj2xMANa9Bbm3GGLENAujsjBOLJ/D5VPx+H8FAKkFUwtAIKO73+a2XclLTSSY1JEnC7/d125+PRuP4/Cp+X0nesD2K9Wei6wbxeJKkrlNfW13QTdE0BfF4IhXl0aeQSGictFn3+Pq5JsB8q2H7RPbouhs5ZuAv+PeXVyEl1nHS2L8Uc3slU+pEkbqvjXE20sG6wFEgsI5vvDZb2HL+Hix7kEJ2KbmEArumo1CQqVEPn53hcgmZGgEnTwwnLxCr3ey6rDas/mT3z95GMd4nbshX3vMy2HRwLRDccMMNnHXWWQSDwQw/fyfOPffcinRuU2Nj+uPFabfD7OF3LRAIQfvnS2h+933qBg9D9wuS7W0oAwYQ2HE7NL9BkgQR3U+VL4TctZKNJ5KYpkCXJar8PuSuNjUpgbp+Pb72DozhW5P9UFgRCk0h6EzGCSh+FFlKr7y6ZzoESMUTSCY0dMNEVRUCfl/OCIbxeBJBKqFTf6a9vRNJllBkGZ/POe2zhaYbGIaJLEtomo5PVbq8JzL3zItVg0Nqslu9pp0Z213Cf9bfBEBnW5x4NEHtoGoUVc7rblcupbjIWZRyv9mkgmQlSCYFgYAfVZW73Hg3kkzqAPh87nJVlKKJsE/0llBQyMjSabK3sHuG2EMnp+NH5DEqdCMQlCLEeQLB9wPXAsHIkSN55513aGho6JY9MKNCSUpnKvTIxEkgKBkh6Fz2LbHlKwgEI0htnXQqceTGIZiNjYSCfqSAhK50AhpVog4FXyr1rykwAczUPn4kEqCDZuR1a6iJyhjDt0m5JQoT0zAxzNS/ZtdK31oVp+L/S8gyyHLKuM4SEHTDSCUPIqUN8PusoD+5X8qappNIakSqQuWNTQ9ieRbUVIe74jjoSNDldph5f0JAIplE7TJStKiEB4UQgta2GMmkwcCGSFrTIoQg2hIDIFwTRJKlDKGgknvnpfi7V0IQsEjZoRhsaIkTiyUJhQJURwL4/Za9gEQ8kcDv87nehip1bIqxmcgWCLLzU+TCEjbsWgK7N0KltAO5PBdy1e0JBJsO3pZBL1JRgcDCFBhrWoi9/gHqD8dhqH5U1Yffp2JiopNASAK/CBGPa10TlEw4FEQ3THRToKoSmp5E2bAOpbWNziEjUhO7JCHLqURAiiwjKzKylJk/wBQiJTQYRkpw6EoSpCiy7UXsLsiPYaRiJdRUV/Wpp0EuhIBkUkvFSQiHSCWFFKlx1HQURU6v/qFruyCRTAlnFb4hIQQbNrRTVRXG71eyBBFBMq6jxTVCkQCymqnByDXpFZOVsK+FAQvr9RWPJ+js1IkldPw+hUiVn0BAJZnUCboc/2KFgew9fbf7+JZA4DR2brYlAMetiUru8xfjzugJBJsOJQkEV1xxBRdccAHhcDjjeCwW4y9/+QuXXXZZxTq4KdEjAgFgtHXS+tYnhHbZmkBdJL0FEGUDALU0IgS06y2YcpyQiCCbYXyqQmciQafZii8gU92WRG5uJTZ0y4z8BSmjRIGBjoGGiUmQqlTa5Sysx6mUCVAIQVt7lOpIVUm5BXoaUwg62lNxB1Rb3AFreySpZUY7tLQHPp+v4gJOyi7DzJmcKaUp6CTemaB+cC2yomT0IVc0RYtCKud8ZbINA93YQ5TLRhsPk2g0QWcsQaRKxefzEQwGXD+PPWWwWSiSY7YtgZNgVkhYqGTsgWKu9QSCTYeSzLlnzZpFR0dHt+OdnZ3MmjWr7E55FIlm4Fvbhl9WMCWDDmk9zWI5nbQQp50kUXQlStzXTFzpwFCTJLQEsXiCRFzDQCeutBCT2lAViYDfR0KPE6eddmkdG1jJer5hPd/QzLe0itXoQnPsSrmJjWRZTnuz9CeEECQTGoqqdFM/p7wRuqIdBnwYukEsnkwLBz2h7ZAkCVnOvS8uSRJVdWFCkSCJTi1t2JmPSlqR2yf/QkmgKoH13Pl8CrW1IQY31hIKBTFFyhDUzbqnJ703rAiOuSI5ZkeUdNI29KSVf0+mbfb47lCSObe1j5zN+++/z4ABA8rulId7hGkiYonUpCNDlA100AwIFFRCUhhVFkhIBKQgSc1E12WCqg+/z4csK4i4SdCsokpOIIlmFEUhqSWIiXUIychoT0JGRsZE74G7kfCpKomkVpHUyZXENEXaviHfJJzKDplyU5QlCalId9JKIkkS4ZoQybhOe3MHkbqUp4kkSTkn6EkDpqdU2itSKulcVvL5tAN9TSq4VMrgVVFU4omkq+epN2ITOGGp5wtN+KlJO7eWoNDqP5+GwQuC5AFFagjq6+sZMGAAkiSx9dZbM2DAgPSntraWH/7wh0ydOrWn+uqRhRFL0PzWe8RWrSZWJ9O26AuU9TohUU2YWurlRqrlGmQUhCnhS1RTpQ+k2ldHwJ/yoQ8EfNRV11Al1yHj61pJCfxSEFkPoBIgQIQq6qkTQxjAZgyQNsdP5Q3/JCllnKd3Web3F/OWlHGg1hWYKP+fjERqQlIVpcsOo3f6mLM/koQ/mHLvbFnThjALawrsPLfi/fQH8q9S+4MwYMfKU6EoMoZZ2rPkxtivVIoxRLTIp2WA3P118lpw6k++dNdujR89vrsUpSG47rrrEEJw+umnM2vWrIzQxX6/nxEjRjB+/PiKd9LDAVPQ+uEndC5dhm/YCKq2GkFszRrUpEJYGgSAhIYpNPSkhKkrBNUQSpb7lYSEJIOBhsAEXSeRSCJLChFjECHhQ5JSKZBT/5OsC3sESZIJBf10RGMEA1YGQcu1sWfaLIxAtxkSfteQJIlIfRXxaIJETCMQ9qWPZ5MO65sn7K7TZNTfhAE7EnQF/yov/HalcjJY9RRTVzEq/VyaAjcGo/lCJ3vBiTZ9ihIIrHDFI0eOZMKECfh8vh7plIcLJAgPHozUEkNtqCUwdDCGrqOEgsjIKev3pIRmSCiSj2Ag9yRgSBobxCqCuk41pAIQSRKJhIYwZBS19yIHShL4fCoRWSaRTNIRjaHIMn6/zzGfQG9gdEWS7I+Gjm6RJIlgVYBkTKNtXQeR+ioUtTLbMv1ZGLCSVfn9hd9VvbFdUIpQkUuTYDdCdDqefWzxCnf5Fcrpq8d3m5Le9Pvuu29aGIjH47S1tWV8PHoWIQTG+nbEx9+AgOiQIK1qJ/qIeuTaCKZp0qHFiQuDgC+E3+craOxnoKFLCVA3xgtQfUraIKs31feSJKGqCuFQiEhVCFVViCeStHd0kkxqvdoXIQRaUket0OTZl0iShD/kQ1EV2td3FL198F3EMMy0+2whnAQb++Saa3J0u3ovZ4LNd52Tx0IlVPtWWOQl1+2V1g54WwabNiUJBJ2dncyYMYPGxkaqqqqor6/P+Hj0EALMeJLkB18Rf2EBelhh9fYhvtaW81X7lyyNLmVldCXNejst4U7MsECW8wsCQgiEKWF2BlBkBVmYWOFklS6L/47OKLFEvNf39VN7wDKBgJ9IVYhQKEA8kdIaJJNaytbA7Lk+CSFScQc0nYDfOXqiIGVjYK1EdT0VkCn10dF1A9MU9Jd5V5IkInVhQtVB4p1JR6GgGK+A/q4d0HQdvy02RD7sGgL7JF+pSbAUYcCtEFFKTAM3WFsbnjDw/aAkgeDXv/41L730ErfeeiuBQIB//OMfzJo1i6amJv71r39Vuo8eAEJgrGsl/sK7GEu+xb/XWMITx+GvrkF0/ScJhbgqiNZomAHo8CWIKclU2uQ8aHGdztU+AnpNykYgHV5ewh/wISsCNaAT12LohpGOD59IaiQSybSg0JPCQspQT6U6Esbv95HUdGLxJNFojLb2Tto7Ool2xtB0vSL9ECLlVRBPaFRVBR2NCa1ARe0dUVrbo3REY8TiCTTdSH00nVg8QXtHJ+0dUaKdcRIJzSYkiHQ9vYkkSwTCfmRZYsPqNgzdWajqz5N9ISwBrdStHmt1DJU3pss23st3vFyVfSX7nWuLwmPToSS3w6eeeop//etf7Lfffpx22mnsvffejBo1iuHDh3Pfffdx4oknVrqf329ME/2z5SQ+/wZp+GCC2wxDCqVWrINDgxEIqtQIHUYC34AQyCkDQB2TVn8Mf1xFFfkMqiR0HTRNIAzTdjSlJVAkP0IkCYRMtGQCyVCRJTmdCjipaciShM/vc5/JuQSstMR+X8rYENuEagoz5f8fS+D3+wn43a0KnbC8CuLxJJFIGFmWu92TEIJ4IqU9CIeCKXe+lPkamRaXokuDYKY0CEYqa6IQKVdQRZHxB1J5IXpzS0KSUkKBrhl0bIhS0xAB2X1Aqe+CsKDphuscBk5Y4YArbUiXnYsgm1LbzCW4lBJVMl8bVp2egeGmR0kCQXNzM1tuuSUANTU1NDc3A/CDH/yAc845p3K980hpBpasQv/wS4I/2J5kfQQR8KWzFIbVKkZWj8Q0QTWjxGQd01riS6DJJppsoBqFBAKT9g6Napt71sZVoyAW1amuVQkGBZgyklCxJj5VUVIag0SyKyNiz05s6fd71w+SBDIKqpJKHBSNxhCm2eWhsPEesf3o1ENTCHTNIJ5IEIvFCQQCRKOxroA3KqqqIMtSKodBIokpBJGqUNYKNLtmK2yzgqIoWBsPqTj8Ak3TiUZj+HwqwYCvK/JgeePjFkmSqKoNocV1Yh0JgmF/tzDHTr75/V0Y2KgdSAm0bnFKh+xGO1DOKt7x2qkboxUWW7+TPYGHh1tK2jLYcsst+eqrrwAYM2YMDz/8MJDSHNhdET3KRIBo7UR/7wv8e26L0tSAz+/rphYXQkJL6tTIYWqToawpSaBLZt5tA8Mw8PsVBg6oQurynU+9VA1a25pZ37yKWGeUZKKrFlnLqM2aMEHCMKyVsLvocJVGlmWqqkKYQhDtjNERjdMRjdHRkdpWaI920t7eSXtHzPbppKWtg5a2DpKahqYZ1NfXUlsbSSdaEiKVxjgajRGLJVBUhapuwoB7UsFzZIJBP9WRVAjwjo4Y8UQyw+6gp4dQkiR8QRVJhpY1bRha9vcmeGz11enf+rswYKHpesnagex7LKQqz2VUWEr0P3sbi6fezuKpt1fMSLDSeNENNz1K0hCcdtppvP/+++y7775cfPHF/OhHP+Kmm25C0zT++te/VrqP31+EwFj0DdLAWuRhA6FrEtH0VMx8RZHRNAPDNFJpeGUZRZNJyjoxVUMgUISMkPLPKqaZSs+rCh1UBdOEeDJJtLOdeLyVYDBMdaQO0xCYpokimyDpYNMSpDwDZJJJDUmWEAJUVcHvK+kRKwtZlgmHAnSlGLCROQ7p81LXloMw0RMGVVXBtCGakFP3kUrJLKXrqKR6X5YlQsEApj+VjTIWT2RsKahqSrtQyEC0VCRJIhQJYhqCWEeCqtrUtpMkAaaB3PE1jy//LSI0tOJtVxohUp4F1nZXX1GsR4GbCb9cNX2hrYPFU4tzSyy2vEf/p6S/mF/+8pece+65ABx00EF89tln3H///fzf//0fH3/8cUU7+H1GdMTQv1mDOnYLsL3cfKpKLJ4gFk8ZDKZywadWQzIS9YkqGmPVDEhEGBivploL5m1HkSXCIRkp0YnuC9LS3kl7RxxZVhhQ38iA+kYC/iB+NYCWwKYlyJxgVUUhFAoQDPgJ+H0YhuHYXm9ghRGWZftHzvgospzO5KjKKlY05mDAOTuelbOgZyblVIbIcChApCpMpCpMKBRIC33RzjjtHZ10RGNoWmUMJzPbT20fBMJ+Yu0JDF0HIZBiq0FSEKHBfRkZqggEmm6guvQsyEU+LUH2yjg782Cx2CfqXJ/ssm4p1vsg+95yaQE8+4FNk4qI0MOHD+eoo46itraWO++8sxJVegiB8dUq5Ooq5IG1aTW+bhgktdTMJcuphDqy/cUnQBYSfkOlSvfjN1NRBvPF1A+HgzQOrEaOx0j6ghimSaQqSF1NLeFQBEVWQAJFTU1Chi4AE2Qd+6rbmiytT2+ovCuFbhgkkhqhUPfMeBL06vaHFXJXVRUCAT/hcJDqSIiqqhA+n0osniQeT/aIUOALWNsH7RixVqT4WszqLUAqL8pfb1BJ7YBwCHVsTYKLp95eUF2eSzuQS/1faILNFgwKtW+1kS+UcfYHSG9R2O8jn6Gix6ZF3+nUPPIiOuIYS1agbrM5qErKJ17T0XWTYMBHVTjY5UO+0Q9eCEHCSLCicwXrEutSFv8FDPwkSUJWFFRZQTJ1/NU11NdUEQ6l3NJSXogGyElQEvgCAk3rMluU9C4tQfeXZ2o1nbKu7+/Bb0xT0NkZJxwKZApXbBRyzD68B0szocgyfp+PSFUI0xS0tXemXR0Nw8xjJVJMWxKh6iDhiI/k+q8wQpuBnF/D1H9IxR1Qy/AsEEJgGiat69odz9uFglLIl/bYLZYw4LSat0/ubtNZO5EtKGTjuSBumvT+Bq9HYTQDfeES5Noq5M0aEKR84oEuS/TU6ltRU9b9fn/qa+zUo3zdsZROPUpICVHtixBUgrix+pd0DQwDORhEUhQkqWtDQNJA1kgHK5IUJCFjGgJF6dISmM5hYVVVIZHQ8Pt9yEW4tPUmQqSEAb9PRVWdUxWnUjKLckPhVwRLOAiHA5hmyqZDNww6op2EQkF8qvUn7ZyR1FUbQJW8Hi1URXtnkJBqlDXJ9hYp7YBUsnZACAEC2jdEXW2P2CdD+8ReaJJ3G9cglx3C4qm3pz0QLKEgJaDkFwCsdkuJq+B0Txt/d06F7vHdwxMI+hMCSGro7y3GXN+Gf79xiK5JX0LCb/OtlyTwqQqxeBLTTEUk9CsBav11gKDGV4tSjJo3EQNFBVmxufV1aQZSv6QmfqEiSzrC6Ao4kCO+gRVISJZShoayIuOzhUXuDwghUvkaEASD/pxzgCxLXfkM+g9Wil9FkfH5VHyqSmcsTkJKxYSQ5JStSSn5H6RkC1KyBbV+LErUoHVtG3WNtRXLfdBT6Hrpgktaw9ap4Q/5CYScI1NC7tVxMf7+TmWycxbYgyNBplbC+tkpe2F23XbBwjpXKaHguRXvc+DQbYuqx6P/Ioki9LlHHXVU3vMtLS288sorfWpM1p9pa2ujtraW5V8vpqamOvOkEIhoHP3NzxCdCXwTtkMaEMHsmrRSE1b3F53eFRUvlbxIQmCiCx1VUlOWAy5fjvLq5UiJOMawrbpWRyKV/VBJpCZ9UwVkJCCppb5fv0/BjfYhFULWwNANJDnloij3or+9Y58AXdPpjMWp7go+lAvDsMY49yTRHzC7XEWFmfKa0LpsTULBlHGiq2fBSCK3fIaIDEME6lJBmjqTmLpJoCqArPQfgc5Oyi00mfPvpNC1whS0re9A9atU1YbSdRST8KgcFX2xFFLlF1uXW8PFUQ+fnRZGLKHiwKHb8jJP0NraSk1NTdHte/QfihIITjvtNFfl7rrrrpI7tCmTUyAQArG+HW3ex0iREOoeY5CqAl0KAz1l7JVjpWdFzPOpCqpaik47pSaVl30B4WrMQUNtZ7qMB7sEAWvy13Qd0xAEAu6zXVqPmW4YaJqB36e6n6R6AMMw6YjGCIeD+AqMm2maKYPDYKCXelcZUrkYdOKJBD6fr8t7Is/WjTCR2r9EknyYkS3SanMhBFpCJ9raSaQujFpGFMieQtcNdMMkkBGMyh3CFETbYhiaTvWACLLSXTh0KxhUMiqgm7bytePW9dGNHUM+IaGt3aB+6y89gWAToKgtA2+i7wFMgfntOrQ3P0UZMQRlxy2RfKotOJCZ0w0OujLY+VSSSa3kCVagIRLt0DA4s+6UvXa38oqsoGkbtyrcYPVLVRRkWSaR0AjIPpQ+mFiEEHTG4gQCPlTFpRDVRzaFliBVyvcqSRKBgA+fb2O2yGDQnzPZj5RoRtJjmHXDM/bQLe+DQMhP27oO6hprukU07EuEECkh0+9sA5IP0zRJdCZRfQrhmlA3o9JSKTQZVyK1cKFJ3G39nguhh4XnZdCX6CbGouUk53+Cuv1I1J1HIfnVtBbe0A0Uhzj62ciyhCRLXamKu59PqURNTE1LfXTro2PqBiR0JF0gFB/CNBCmmfoI56RFkgRqV4CkYj0IrPgAqppKrdzbCCGIxROpybKY1aTUu66H0LXCb/4WMxGlHIlElmVCwQBV4SDJpE5HNNb9WTF1pOi3iMhwkLuvEyzvg8iAqtQWQi9nvsyHbphpV81iMA2T1rXtaHEtnewp1w6YlQGyUKRGt14I2fYBlabSdWe7PXpsmngCQR9g6jpmLIm2YBHaB0vw7TEGeVQTQiKdjtbad09tAxR2HfT7VDQ9d7hgbf0a9BXLHD/aqm9JoJBcs5Lk8q9JLl+a+nyzlOS3X2PGY93a8/lUTNMsKbVvyuBQ7vVJRQjQtFRK4nAo6HqFK0lSamelF+c/IQRGdAPN7zxO9Ov3yh4nqUsIi1QF8ft9RDtjxOLxtDulpHeArCJ81eR63iRJwh/0oQZUNqxuQ0/2TXhqO6Yp0HUj7WnjhlQeCZOODdFUOuj6qh7RdvRkDoRCVLJuJ9sITzjYNPG8DPqA2NKVqP4gZrQTaeRg9EQCvvw2ddJ6MUlgmCZSXTXBQfUUFgrk9Kq9m0pYCEQ8RtDnxzAMTMNIGcol4qh+P8FQmLjfQBECLRZD9fkQpkmoKoJh6OidUZRQOLtFfKpKUtNKSmgkSRKSLKcy0pVgCV8sgpRxYCye7EpnXIoKvvL9yocea8NXOxhTSyIMHUkt36jR0oz4VJV4IkF7eyehoJ9Asj0lDBS4SWv74P+3d97xUZVZH/89t07LJCQEQosoSBMQRQQEFVBBCSoIWLAgghVxxbW+FnYt7K6rru6CbXUti6vYcUFU0EVFUBFEUEGqFCG0kEwy7bbz/nFnbjJpTOok4fl+PqNk5pYzd2buc57znPM7Hr8bxYdLkJ7tb/SS0rLNiwzDcpbKkrEh7mwXHyoBAPhb+5rM0kdTZOuTgzCqfeJz5Z2Ct35Z09hmcRoI7hCkgGhxGBnt/Ij4PBAlEW5RgqHpMHUDqsdlNxgCIAsE/XAxKCsd7Ahr3YwBsiwhEtFgSQTB6bIXg+wywZKiQoSDQQQOFyASDKLDcV0gCCJ+3bgBHp8PB/fuRU7uMTh8YD969h8QO3jl5xNFAYbBYJgmJLFmg3o8qhGNarYqX7Jr+bWELDtvwO1SbOXFmuwbu3aNCWMMruzOcGV3bpBZuN0/wQVFNhGOREAlh6H4c5JqX233PlAhKxKiQQ2yS2oUnQIicpIHy9qSrEMZ1xmIBjUwQYCvVfXVJVVRWVfE2lAfeQQNTTL2jevWB8C2hjeG0+DwJYMUkL91F8LFQRzYuQf7tu/Gnl+2Y8+mX7Fj/S+IhqMJ8r/AkdUG4zDGIMkSdC1RUrgsgiAiGAiALAv+zEwUHToISZHh9vpg6DosywRAMA0DVqz2vqrzM8YgKxJ03ax2hZtQOjOzLHt2pxuGXa1gWQ2eS2DnDUQgSRJkueaJZ0S2T5SqmWTD9k8QkeZ1QRYMFEeAcDgC0zryUg5jDJIiQpQFFO4PQI/Wf3+F8mi6AcO0oMgiXKoMlypDTbLiIf79CxaFAABprbxgrGFuf/URTm8KHQ6TyUNItY2c+oU7BCmAAWCCAG+GH5ZlIVhUjMDBAlgWJQy9tbm9SqIAQmlItfRg9tG86enIymmHDsd1QUbrbLTNPQaiIKJtp07IyT0Gx/Y8AW5fGjp26QpJjpUVVnPDFZgtjmOUabhTOvhbsTJDA1HNQCSiIRrVoOu6XaEQc2Di+zQEREA0ap/PXYsadYcWGlVmDIBlghEgqR6YloVgMIxgKIKopsOyShNLKyaX2jkFvgwPwiWRBs0JKa24kSGKYgWn+cgHAIoLgjB0E6pXARNYowR9qmuZXN3sO57EV5NGRMlQk32SiQ5UJozEab6k1CHo3LlzhYY4jDFMn26H4oYNG1bhtRtuuCHhGDt37kReXh48Hg/atGmDO+64A4ZhJGyzbNkynHzyyVBVFV27dsXLL79cwZa5c+eic+fOcLlcGDhwIL799tuE1yORCKZPn46srCz4fD6MHz8e+/btq9X7zsrNgdvnRUabLLTrkovM9m1wTJ/u6NC9M2RXuXViVnXmc2XYoXgZWtmOeIwBLheiWhS6ocPtT4OoqHD7/ZBlGXowAFGWIbtcSM/KQlpGBvyZmdC0CIJaEIZY9YBth2wle+A3TGiajqimIxLVENV0Z/YviQJUVYbLpUBVFSiyDFm2lfQacmZpmAaiml6jJMLylO/q2NJgZgRMkuH2eODzuuHzeuwkVd2uSCgusR/BUAThSBSabrffjn9uLq8Kj9+NcEm0QSIFRIBumBBFAbXxzIgI0bAGQRTgz2qYnIGtTw5yHuWprENifJ+60BSWG5qCDZz6I6U5BKtWrUpQNfzxxx9xzjnnYOLEic5z1157LR588EHnb4+nNLnNNE3k5eUhJycHK1aswN69e3HVVVdBlmXMnj0bALB9+3bk5eXhhhtuwGuvvYZPP/0U06ZNQ7t27TBq1CgAwPz583Hbbbfh2WefxcCBA/Hkk09i1KhR+OWXX9CmTRsAdsvnRYsW4a233kJ6ejpuvvlmXHTRRfjqq69q/L59rdJgmjpERYSoiFA8pYI3Vizpz5YFJjBX8uI/cQTB1nOPJ+wBgJKdAzJNW9lQN+yZvSJBKC4EO7gXZtvjEBcpAgAQoUQrxO7QIXRSABVUzdKBrS8QiWpwqQokUXCUCI908xUYa7DsfcuyEA5H4HG7arVWDMRmpoZV5+55TRojCCvW80Jg9sxZUWyHzV52t78XpmnBNG2nz4pVwwiC4GgdmLKIogMBpGf77a6J9TDwxpeZjJhSZG1Eh0oKgxAkEd50T1LfyWR5t2Cuk0dQfmBMRhq4sQbTstGIZM/ZHPIbOPVPSu9y2dnZyMnJcR4LFy5Ely5dcOaZZzrbeDyehG3KKmF98skn+PnnnzFv3jz069cP5513Hh566CHMnTsXmmZr8D/77LM49thj8fjjj6Nnz564+eabMWHCBPztb39zjvPEE0/g2muvxZQpU9CrVy88++yz8Hg8+Ne//gUAKCoqwosvvognnngCI0aMQP/+/fHSSy9hxYoV+Prrmv9o1GNy4OpsP9RjcqAe0xZqbluouW2AnFYQ22dB6ZAFpWNruNpn1zihLV4WWLbW3AKDZgImE6B6PXD5vBBVF0RRhKioEF1uiC4PRLf9ENwekEuFJjMUaAUIaEVHPJ8kihAFAaIg2toISdgd36b+Z5WEYCgCRVZiev61O4au2x0da6cC2RwgMCMEUfVXcPcYY45zKYoCFEWC223rGaT53EjzuaEqMiIRDSXBCARFhCfDY0cKdDtiFI3qdrvmqA5Ns0s+ky1VJSJbulvTYpoRyX+I8SWOksNBGJoJt1dN+juZLEdKKqysp0BtSHadvr7X/JO1971N65M+Jqdp02SmPZqmYd68ebjmmmsSfrSvvfYaWrdujd69e+Oee+5BKBRyXlu5ciX69OmDtm1LFfZGjRqFQCCAn376ydnm7LPPTjjXqFGjsHLlSue8q1evTthGEAScffbZzjarV6+GrusJ2/To0QO5ubnONjVBVBSILhWiS4XkViG5XZA8LrvToEuF6vdCTrMfolqzG2Ecxuxug5qmQ9MNaFEdkiTGZvClWdkkyoBhVJmwQCAE9RIIR0jAYsxuvqTppZ0Rk0UQmN1NsJ6wkwg1R6mvtoOAZRFMy5bDbbFJBESAGQZEd9LXKb58JwgCZEVyHINoVIcJgiUCBfsKUVwUhBFbWrAsC5puIByJorgkhJJgCOGIFnNaK//siQAtqkOR5dhgnuxbKlNNIApIz04Dq0WZ6ZE4kkgRUFGoqKplhSPtX9vkvY/3/FCrmX6XW78+4n5NIfGRU780GYfg/fffR2FhIa6++mrnuUmTJmHevHn43//+h3vuuQf//ve/ccUVVziv5+fnJzgDAJy/8/Pzq90mEAggHA7j4MGDME2z0m3KHkNRFGRkZFS5TWVEo1EEAoGER3VYlgVBqB9J2Hg5FsFOVHS5lMo738kKYOqAVTHTP752LgsKXKL7iLN4URDAwBLKwpJBEARHIKeu1FZ8qDJMyyqTwFYv5jU9yARMHSS5arV7vPpCiTkG/jQPWrXyISMzDWZIhyLaKoketwqf1wWf1wN/mgcul2o7buEoSkrCFRqiEdl9LwRRcD6DpN4O2dGH4sN2AqHH74aQwp4ZQGniXXn1wmQdg7JOQXUDcGOH+Lk4UcujyegQvPjiizjvvPPQvn2pCsZ1113n/LtPnz5o164dzjrrLGzduhVdunRJhZk14k9/+hP++Mc/Jr09Exgs3YJFVDdNdaJYqZ8FSQAYq2oGRjCYAFHXIZgGqAotgLAZwu7gTnTy5kIWqxbHiQ8MkagOqQY3YYHZWgb1gWmZKAmG4fN56jwIxNfIWzLMjAKCCLD6vRWoHgWMpUGLGBAEwel9YH8ktrMqxxJKNd1AMBSB262WiV5RTGQreXnpuMMaCoRhGiZ8rT21EqCqCWXzCKqiy61fAxcnPue0L8b1SQ3k5Z2CqgbjZBoV1RUeFWi5NIm73Y4dO7B06VJMmzat2u0GDhwIANiyZQsAICcnp0Kmf/zvnJycarfx+/1wu91o3bo1RFGsdJuyx9A0DYWFhVVuUxn33HMPioqKnMeuXbuqfX9xjX9N0+u0pm639tVwqCAIzWCwCKBKIgCAnVtAogRo0YrHKVtGCCSVy8BiZYi6biSdLMgEVmlZW02xLEIoFIFLVWKh6JpFKirQsosLbMwwIKpAPdfkM8aguGUobhnFBUFokcq/0/GqGLdLRTisIRSKOpUpDAxikgO6s0wQsoWu/K3TKu1amCrKLh2UjRRsufi5Gi8hVJewGH+tPsP5ZY/DnYGWTZP4xbz00kto06YN8vLyqt1u7dq1AIB27ewWvYMHD8b69euxf/9+Z5slS5bA7/ejV69ezjaffvppwnGWLFmCwYMHAwAURUH//v0TtrEsC59++qmzTf/+/SHLcsI2v/zyC3bu3OlsUxmqqsLv9yc8qiMe5gdQ47B7ArFkLEEQcbgwDMOwqhzbiDEwxQWmRSoxCHCLbnTyHYNc3zGQkphFlpYhWkmX6wmMgeqYQ2CHnyOQRBFutwpZlqBptS+BizsoLXapIAbTgyDJ1zDHZgySLMLlU20NgCp6H9j5LhJ8XjdESUQoHEUwFHF6ZSQFAcWFQWhhDS6f2uCRgbIkk0sAVB5ir0sdf/nBuSonoKyDkEz0oDIHoDoHw1Yq5LQEUr5kYFkWXnrpJUyePBmSVGrO1q1b8Z///AejR49GVlYW1q1bh5kzZ+KMM85A3759AQAjR45Er169cOWVV+LRRx9Ffn4+7rvvPkyfPh2qapfy3XDDDZgzZw7uvPNOXHPNNfjss8/w5ptvYtGiRc65brvtNkyePBmnnHIKTj31VDz55JMIBoOYMmUKACA9PR1Tp07FbbfdhszMTPj9fsyYMQODBw/GoEH121XMbvwjlpEDrtVBIEkSvB7YyoNkQahUrteOHjCXBwgHK7zqFj1IV1ohy9XaLiNMWjHRHuQt04IQCwuXlUQoH8onQp2kgYmAqKbDtAhpPhfizZN03TjyzlUczzBMEKhllxuCACMEeNsfedNawhizOwmKArSIbqsjViJzHP9eqIqtPqjpBkKhCCRJPGKFBxEhEozC0Aykt05rMGXHmlK+dK+yATUeLRh164k1KvUrGwmoCcluf6Ttkimr5DQ/Uu4QLF26FDt37sQ111yT8LyiKFi6dKkzOHfq1Anjx4/Hfffd52wjiiIWLlyIG2+8EYMHD4bX68XkyZMTdAuOPfZYLFq0CDNnzsRTTz2Fjh074oUXXnA0CADgkksuwYEDB/DAAw8gPz8f/fr1w0cffZSQaPi3v/0NgiBg/PjxiEajGDVqFJ5++ukGuSbMqc0n1Ca73c4AFyHLhMwMNwSxqo851sLP5wc7sAewLCA2ADLG4JE8MMmIzZRrZocsS4hqOnTDlkKOvx9Zlp0oiGMFWbWe0RHs5LNIRENa+byBWkQHSvXyTahKzZs2NSssA7A0QHQ36GniDZGYwFB0sBi+DC8Ud+XVH/EcA1WRYyqJ1R+biOx2zBYhI9sfUyBsGp9ZfHCPD/TVVQzYs/dGNa/OlEYb9JTawak/GKW6f+lRRCAQQHp6Onbv2AK/P63K7XTDgGUSlCR12qsiHrJnZf5bFssiRKMa3LIAccuPsDoeB/Kll+5f5qtRUzviUYF42J0xu7RQ0w24y6kxmjGVw5rWmtvvwUJxSQgetwuSVNqnIJ7B7narNcpQ1w27E6SqKmDlG0S1MFh4P1i0AFZ690Zp3kRE0MI6SgpDSG+dBlGuOvGUCAiF7QiBXfZZyTaW3ZtAj0cGUuwM1KTZUTIz8JruU92+NT1GZcepasnBIB3LsABFRUVHXBblNG1SHiHgJBKfodrZ1XW7uR0pxO+s8UsyKCML7NA+kNfvDA51OX/ZjPLS51D1rL0WbmlcfEhVqhAfYkiIbthBiqpPpOsGTItiingt2BMAADLBwvkgX26jdXKMJxqmy2nQwjokS6xS0ZDIctQJKyMeGTA0w5YjTqEzEP9e/Xv347iy4++T3q9s/kD5ksSahuOTrSwoG+qP/7vs/6s6d2NUL3BSD3cImhimZS8TNEpSVJkVCWqVDWHbz2DRCMjVMCFkxkqb1CSqxrEa9wtIRnxIliREo7pdOhh/ucxpyp4z7ji46iBk1JxgWhHABJDcuDM6xhhESYCsSig6EICvlTdWolh6zYnszoaSKFT4HZBdT4tIMAqLCP4mEBmIt9a+qtPtSQ+co9qfiC6wlxTquhZfk4G6/Lni+5Y/Rtc3r3fsq+k5OM0X7hA0MUzThCQ1ppBKbPasuECeNLDCA6C2nRps1qgoMqKabkvhypIjj0sWJZ2rEK9dNwwDPm/lCnssVsIpCELVlQasdDklvqxxNDgDIAIL7wO52zZadKAs8dbJaZk+hEsikGSxXKIhQdMMeCpd7iGUFIagazrSW6c+Z4CIEIlquKrT7TXaL7HUsGGiAeUpGxk40vG37HkOo24t3Y5HCI4OWnIKdbOEAbHBsZFOhlj9P2OgrBywwwcBs3bZ+Uc8XWyQdruUhPbMjDEwQUgqRkCxJjuRiAaPx4XqetrHNRHimeoVHqJo93IQhXpTiGwOMKPEVidUWiFVSZPx5QNfKy+iIQ1auFSnQNdN57MrSzwHgYiQ3joNgph6By6ujBknGVXBss5A+aWCqqhqJp8syToDRzo/p2XDIwRNDEmSEIlGIcsSGvpmbZlWYqjW4wMkGULgMKxWNW+qVDcoqXdLZIdn3S4FolDLssyjGSKwUD7InW0rFKYQZ/nAJaPoQDHSMu3lg6imVcjjICKEiyN2UUyGJ+WRgbJ2McbwzqE5GJ91c4XXy8+s7YG5oqPQ9c1SxcJkw/ocTn3DHYImQrwsT9P1RpHLtSw7oz5hzVwQQK1zwA7uBTJaN7JDcOQ2yHbeQBSSJEGWJe4M1AYrAhgloLRj0BRKKuMlif7WPnv2Hyu5Las9QEQIBcKIBKPIaJP6ZYJkqC5SUHZg3/rkIGy5+LlK2yfH9y9LTUP3ZfeP75eM3kH5HALO0QF3CJoAcWlgLao7/QAa8oZHRIhqemxQTTyP5c+EmL8TLFQM8qY34JhR0yRCIBrVYVlWlXkDnCNABCG0D1AzAaHyUr5UwBiD4pIhyRIKDhRBdZXaRkTQIjosk5Ce7U95o6LKqfq7XH7wLz8Qd7n164S1+vL7VHe8ZCm/z5Gcgdq2aeY0f3gOQYpxer5HNAixnvPlQ6WGpcOqqy6/czxb1U8UWOUNiEQRlNkW7MBeNCUxf9M0EdW0OncwPKohHdAKYbnaoClEB8oSXz6QVAnBohCiIc2ODBRHoIV1eNPdEBs12TZ54r+SI0kYVzYQH2nwrUvOQFXRhCOds7G7JnKaDtwhSCHxErxo1J6ty1LlkQGznpyB2FlhWVRpdCCOldkGLBgAq6ThUX0hiiIiEQ26bsCyrJhllTsgVqysy+12VUg04yQP00tAggqItWt13BiobgW+TB9Mw0LJ4RAiJRG401xNepnA1vuwbUu2rwGQXOi+NrP1I5Ux8gGfUxX87poi4qp4mm5AVeRYz/eK2zHGoAhK0n0E6gVJBvlbgRXsO/K2tcDucCdBUSRYRIhEdTtTmwDdNGBapQ5QPInQdphSmwTX7DGjYJIrJaWGySKJApho98HQwpqtaNhEIwMO5UyriVNQ33y85wd0ffP6OiUg8iWDoxeeQ5ACLMtewwfgZFNXd7+rz5thUuWMjIFat4ew/WegTQegyl4ItccuKxPtpksyIRSO2sqCIFhkQYTg1HgDODrUAxsYBgI14WsYz9gvKQxCMBnSWnkrbYTU5Kik70hZp6AySeNkGxklO5uPD+Kj2iMhGbCmSYjx43S59esaNVvitAy4Q5ACopoGr9cTk9tt3Jtdsi19ye0BFBeEwgJYWW0azJ64vLEgCGAAZEGK2WnXd+t61eJDnBpCFppa7gAAgACLLISLo7AsC4IkIKN1GrSQ3ffAl26XGTZX4s5BTXod1ITKBu7a6A6UdQbK/p9z9MCXDFKArEgpcQYAewA2LQtWEqECK7sdWEF+rboG1gS7EZIFFhMHYozBtEyEI9FYEmH9f00tsqpWMGyRxDpbsqaz7GJ/7gRDNxA4UAItosHtU+HxuQGBwe1ToUd0lBSFElpoNykYavU9qs/BtiGcgSMRPwdvgdyy4A5BChBZ6tZEGWOQRBGGYVZ/I2PMbnSkRcF0rcHsISJomg5JlBDvfWRaFoKhCNwuFaIoNMiSt26a9Zys2RxoOhECIoJlWggVhREJafD43cjI9kOUJIiiCNMwIcoiMtr4IUkiIkENZDU9J45V8q+qSGVuQXXUxBkoXZoodTbe27S+YQzjNDp8ySAFpDL8zRiDLEvQtCR6mIsSSFYALQIoaoPYQ0QwLYLbZc9cDdNEOByBS1GqrYSoK0oD5EU0ecgCGkH0qloTYgO6FtFRUlACxa3Cm+5OqCKQJBGhcAQuUiGIAlw+FeHiCA7vD8SSDJuGQiUBTqOupkL5roXVRQnKJg8m6wzwZYSWDaOm5nK3YAKBANLT07F7xxb4/WkpsYGIYJgmolEdXk/1Nf2WRRC2b4CQmW1LGTcApmlB1w2oqt30KBrV4XGrKVtSabEQQSjeDpK9dlOjlJhAMDQD0bAOJjAoqgSpEhEu07Jw+HAArTL8TpkpESFYFIJpWPC18pbrlpkaTNNCSTAMt1u1ndck97soc3qFaEFd8wuqU0NsKOLnDBSbaNVtG4qKiuD3N273TE79chROk45eyjoDydxMBQYIqgpEIw1ql0WEUCgCiwg+r5trDTQYqVkyiOcKhAMRhINReNPdcHntiFNl30PLJAiCCF03IIqKs5033QM9aiBcHIGiypBdDavoWR2WRSgJhuFSFciSWKOrWtnSwbsFcwEiXJR1c50H9yOpI3I4VcHvvEcJcd0DwzAhy1KCVnzVMEBW7SWDBrEJsCwLwVAYjDHuDDQ0ZAENkKBZ5emIQBYhGtYRDkTBBAEZbfxwedVqW00Lgt0VMxKNJuQMxPseyIqEooMBR80wFWi6DkkS61dmPHacUe1PdB7AkRP34q9Xpj8QLx+sb8raNK5bn3o/Pic18AhBC8dpmqQZICKoimLfzMQkQvIMgKKCBQOxDPX61EMgaLqBaFSD122L5ZimFUsi5EsFDUP9fobVnokIlmGhuCAIy7KQluWDJNtO6JE+X0Fg8HpcCBQHYVkEUSyTuhdrm5ye7YcW1iBKIiSl8ZeXLNOyIwP1fN53C+bgoszSronJOgWj2p+ILXueq9AXoS5UFV3glQUtFz4da8EQISbuowMMUFUZLFYmlWwiFEkyYBr1VnpoRwXsJQJN0+H1uOF2q1AVGbphIKrpjpQxp54hQkP/5OPVA5FgFOGSKFxeFRlt/ZBiAkPJDKCM2boUSuw7UdnrsirBneZGJBhFsDDkLEs0FmQb0gBHrvyY5Wf+ZSMIZf/f2CqDvCVzy4I7BC2UuDMQjWqQRAFKbTP2RREwzfq0DKFwBGBwlgjiA4BLVSAKgtPVkFOPMKC8ml59Eh+QtYiOw/uKoEcNePwuqF7FFp2q4XePMUCRJei6UelAzxiDIDK401yIhjWEisL19VZSzjuH5uDdg09VeL6sE1D2uSNRn8sGPDrQsuEOQQuEiGBZFiJRDZIkQZLKd1BEDWY3DDD1eosQGKYFy7IqdC1kLKaRIIkQJRG6UZ9OSNUQETTTgm417gwzJZDVILNaIoJpmAiXRKFHDPhaeZGW6a1zq2JRFGFZdjOuyrA7JIpo1TYdTBQQCWqwTKtxBIziohkNcWjGACFxNbfsgF6dExAf/Ms7AFUlFlbnKGy5+LmUVC9wUgd3CFoYRATDMKFpOhRFgiRVFPZhAMhKUvlNEMAggNWTiI+m6VCr6UvAGIMoCKAqBoH6RrOAX4p07Cgx0PJjEgSqx6RC2/EkhAJhFO0vBmOAJ90NxSXXy9p63EE0qnEOGQMEUYDbp8I0TBTuD8AyjyC6VR9Q4zUHr02lQH1UFsQjEmWdgrL/5s5By4MnFbYwTNOCYZqxQbdiAld8VmWYJhShtG1rlTDBnlnWQwjfsmxnxe1SjrwxK21205AQCBGTILCWHh1AveYQ2JoCJrSIDrIAf3aakydQXzAGyJIE3TCgkHzE4IbH7wZZFkKBCDzpbghCakXA6oumUDbIlwqODniEoAURLy2UJala4RZBEJKPdgpCvSUVGoaZfBVBI43PisBwQisFx6VJNfoxNHYSW71QD0sG8eWBwKESlBwOQnHJ8Ga46+QMEBECmoWIWVGamAks9lz11zreMdTXygvVoyAciECPVp5/UD80akPyI/L+9lucfzemA8EdhZYFjxC0AOKhW03TIYhCErX89g02mRs4CaJdaVAPI7Sm60knNzbWUCswBo9Us1s7ESF6YDsE1QvZ36YZzULrVnZoWQQ9akCP6BAlAb4MLwSx7oqBBgH7IybaeypqY1imBYElEclCaTRAViVYpoWig8XwZ/qguOtnCSOBRnAGq2qhnCBsRASQAYT34f3N0zD2+Bfq1YaqBvzECockZNA5zQIeIUgB9T1rsSxCVNMhK1JSAy5RDeY3jAECA9Uxh8CyLJimBUlKwgd1MuKbJma4CIfXfojAxi9BZsWyuKYJ1ar9cdnqgcJ9RdBCUbh9KrzpnnpxBgDAtAh+WYCrkuOZphVLTkz+eIwxqB4F/iwfdM2AoddPTkE8UTcYiiASjdoOUuzYjRUtqqByyBggyLA8HUBpx+H9zdc12Ll5zkDLhzsEKaA+u+zZywQGZEmEKCQXthUFu72wlWxiIaHOCne6YUJKcrmgqc+3yTLh6dgbSmYHwGouDkGc5K+uozQY0hAuicDtc9l9BKTSNtX1gSQwZLmESi2r7TDLGIPikuH2uRAujiBYFHYSVYnKP8hpr1zV84ZhoiQYdsSz0nweiKLgOAmN4Q9U2y2RMZCSDqtVT7y//dakjvfxnh8qVBJ8vOeHSqMC5TUP+FJBy4QvGaQAwzJqJfxHZCfBAXaoO672R0SxZkDJHSfe8TCqaXCpCqodJGIJhUwQ6zRnj1cXJGlhtSNBeTnbxkb2ZSG917BGP2/diF2zJK8XESESjCIUCMPj9yCtlTehI2F9IlUjkiXLIrSoDlJqnmBqaxUAHr8LRQeKbSfBIzu/mfj3niUspZQphY09H6/ccbtiTYzKmEFkRwns73cDLE3ESLp1sqDA8nep9KXqBvHy1QPlty3bOdERQHqyaSQ8cuoP7hCkAKEOs+146J4gIKrpYGBwVVPGVxmMMUiiCMu0nN4GVWLFEtFqaXM8v4GIYlKvydgX37fy8YsA6KZxdLYwbmDiSoPRsI5oKIq0TB9kNXVNhCRRRJiitVbOjlfVZLRNRyQYxeFDAaSleyHJku0ixSIAFXziuPNNABMEuF0KGKukhJcx22nRbOe81gJg9QkT8O6hf+CirBnOU/EBPpnGR5VpD8QjB/H94/ttfXIQrEgEuGtBvb8NTuPDlwxSgCzUbiCzl/MFCEyAEVMPrG1zFbvGW3KOU+V2lt0Qh+pwjwuFo1Dkms2eBNF+j5Wq1AGQhGSaMyVCRDAsE+bRqILoXMfKPwMistv5FoZQXFACSRaRke1PqTMAlEbE6rKOZCthMsguGWQSwkVhCIxBlkQoigxVlaEq5R6qDJeqwOVSoKpyTG2x6uMrigSyCEYllRIpgQl491Cp2mFlKoeVOQNbnxyErm9en9AoaeuTg6pcKuARgpYFdwhSQLxE6kjE1zIr7svspi+1kIQtixAr6ar2BhaPENTyjkxEMC0TipK8E8QYgyxJMAyz0rXZuHhRrRwhNEzYu+lDlX6O8c/f0E0Ei0KwTAu+VrGoQAMtESQLEaBFY4246phZYr8PgjfdA1mRES6JxsS56mfwjjsFttRyvRyy7rCaTTziEYP4I86Wi58DwPMHjga4Q9DEiN+gLSueH1BxxlGfWc2iKDqdECs9pmXaWgS1uB8TAbpuOp0Va2K3IDBIogDdqFhLXprsVZr0lQxxR0I4Wh0CsITPkYhg6iaKDhYjGtLg8bnhz/JBlJpGx0nLsqDpRizPpe4Q2boGvlYeKC4FwaJwvWoVMCZAFASYZuWObCpIOvcAicsAZSkbWej65vUV9jv2rlW1tI7T1OAOQRMi3gkwEtERDEUQCIQQ1Yxy29jiQ0QEUax52DwRBkWWYJGF4kioNDxblrhDUKsZGiGqabAsC+FIFOGIVqUufWXIsgSzkhCsYZoIhe3jhSMaDNOAYZgwDBOmacKM9UtIfJR3IhIfLR5noZw51QNaREdxQRCyIsHjd0GU67d6oC4Q2U2wVFWpNlxfEyzLchotyardNrnoQAB6pH6cAsbsJMj497D0O1d32+tCdU5B+cG/bF5BZZEAvkTQsuFZWU0MiwhR3U4WVF0ylHIJf4ZpwTRNqIpS55uk3QoZUBUFVtSOSjAhMYOfmQYgiLXK6DJNCwDB5/XWcpCx13k13YCqlOYgWBZBliXIsSZIlkkArFJ3hipqPVD8/cBel7b/HcsyF+zzAMkt5TRPyEmi0yI6wsEIVJcCf+u0etMTqC+ICOFw1NYTUKR6+UzijrTH4wJgfxdcXhWCKECLGmACINUyH6csrEzbZtINIJa/INg64og3QWCMOQJijXHt3y2YAxY5hHHtZyU8X3aAry7JsHz+QWXPcZo/3CFICVV1bwMkUYDf53H+tv9v/yNe/qTIMoRqSrVqQvzYqiJD102IqhATOjLgdslAOAhyuWvkEBAA0zQRCkfgcqlJ50xUtA12c5uInQgoxSIi8VksY6yCwwRULfxUOlujBOfBNC2EIxoUWWrUm3SjQhbIIoSKowgHdXjT3VA9NatOaQwIds2/bpjwp3nqzT7DMMFga3DEsbUKFEiyZSdSKiK8/tg5a3laBkAUBYii4kSfTItAlh3pih/WtCzougFFkRup5wIDqVnVblF+yaDrm4Ow5eLnqhz4uVPQ8uBLBimA6cUx1bhKXovPKITSQQ+ILSfEsgzryxkoPSdi6+r2MGmYFg4XRkAWgQUDgDe9RsczDRPhcBQulwJZqtsMz07Wkp08BwCVZ1uW26eyhyAIsZu1CCn+kEQoigRVkWAYBqKa3oQ1EmtOvBV2qDiKkhAgyiJatfU3SWcAgB3B0Iwal9IeiWi08i6bjAGCyODL8CAa0u1kw3pMNBQEobSaQZGhxB6qIkNWJEQ1HabVSJUJjOHdQ39P6HtQG8qLFHFaDil1CDp37lzpjXv69OkJ2xERzjvvPDDG8P777ye8tnPnTuTl5cHj8aBNmza44447YBiJ6+7Lli3DySefDFVV0bVrV7z88ssVbJk7dy46d+4Ml8uFgQMH4ttvv014PRKJYPr06cjKyoLP58P48eOxb9++Wr1vFtwNIbAVzAgmpYlu5xaYiEb16jUD6gmBMRi6CVPTAV23IwRJYln22q9LjTsDdb+px9eQa5J/UBPs8K3oCCeZ1bTbbU7YjYgslBSEoIUicLsYVLcSkwJugs5ADMM0IUl1zY8pxTQtmJYFWa78mIwxx1FiAkMkGIXVwOWDzncu5uw2WrkiE2H5OuP9LRWTA4GKOQUAryo4mkipQ7Bq1Srs3bvXeSxZsgQAMHHixITtnnzyyUpvYKZpIi8vD5qmYcWKFXjllVfw8ssv44EHHnC22b59O/Ly8jB8+HCsXbsWt956K6ZNm4aPP/7Y2Wb+/Pm47bbbMGvWLKxZswYnnngiRo0ahf379zvbzJw5E//973/x1ltv4fPPP8eePXtw0UUX1ep9W/6uIMkNVrQZrGQHmBmt1DGIz+40XYem2evoSXcLrCFllyUYY2ACgxCfK9eg5l/TdHsGXq8CLQTLJJhmLHGwgXQEGGMtogIh3pGwpDCESEkULp+KjGxflQNiU6S+owOKUr0Ohq1qKMDlUWDoBgr3BxreKYCtt+FSZRi64SQLNziiCko7rtpNutz6NbZc/FyCHgGn5cOoCaVY33rrrVi4cCE2b97s/HjXrl2LMWPG4LvvvkO7du3w3nvvYezYsQCAxYsXY8yYMdizZw/atm0LAHj22Wdx11134cCBA1AUBXfddRcWLVqEH3/80TnPpZdeisLCQnz00UcAgIEDB2LAgAGYM2cOADsbuVOnTpgxYwbuvvtuFBUVITs7G//5z38wYcIEAMDGjRvRs2dPrFy5EoMGVfSqKyMQCCA9PR27d2yBP80HWFEIoXxAKwS5WoPcbQFBQnwB07QsRKMaJEmKJb013Fojkd2NUIjNXIoCEaR7RMhbf4R1XC+Q6kriGIRAcQher8tZ768P7DX+KOR4YyQGp8VzfRPV7GvQGJGYhoDI7khYXFACWZWdJkSCEQQr2QEro2ed+1I0JESEYCgCRZagKHKdj2eaFkqCIaT5vEl/X8gilBSFwBiDJ83VKHoMFhGiUR2iKMQUPRvYMSXCRVk3V3i6siqD6nIIAOCsdr2wDAtQVFQEv9/fQAZzGoMmc2fQNA3z5s3DNddc4/wYQqEQJk2ahLlz5yInJ6fCPitXrkSfPn0cZwAARo0ahUAggJ9++snZ5uyzz07Yb9SoUVi5cqVz3tWrVydsIwgCzj77bGeb1atXQ9f1hG169OiB3NxcZ5sawxggumD5jgGldwMzwxAO/wgW3g+QHbI2DBOyJDmh94a8STAGu4bassAYkJHughBvo5ykz6jphr1GL9Tv18qyLMiyZCvKxVTlGsIZaM7EHYGSwhB0zYA/Kw1pmWXaE9djQ60Ghdmy2no9LNvESxddqgpWg+8LE+ycAtWt2NezHrUKqkJgDC5VhmlaTgfFBqWSe0nZ5YKy6oRVEX/9vU3r69c2TspoMg7B+++/j8LCQlx99dXOczNnzsRpp52GCy+8sNJ98vPzE5wBAM7f+fn51W4TCAQQDodx8OBBmKZZ6TZlj6EoCjIyMqrcpjKi0SgCgUDCowKMgSQPrLSuIH8XsGgBhMMbgOhhmKYBUUy+aVFdEQTmdISzM63jDsGRB5N4qZgiy2iIfoWNNvxXomtPRLCMKMxoqMlpFsRFrMIlERQdCECUBHh8LkiKWM6JtGKfZxN3pIig60adIzRE9lIBYCsI1vRdM8YgKSIUl4zC/UWN4hSwuFMQE2Rq6PNVpk9QvuwwWaeA0zJoMg7Biy++iPPOOw/t27cHAHzwwQf47LPP8OSTT6bWsDrwpz/9Cenp6c6jU6dOVW/MGEj2w0rvDvK2B0p2Qo3sgYDGS3CLl1s5Yj2MAZIMRCNH3Dc+ozNME4ZhwKwgDFRRKMh5VCMYVPam2FhjcQWZXCIEf/0eRT//D2TWvN1xQ4gfOa2JwxpCgTAAhoy26XD7qghxV9rBp+lhl+lZdVpyIrK/h1FNh8et1jqyxhiD6lGQ0SYdetSAodVu5l4TAay4U2BZFJNBbminYI7z7/LOQGUJhpUxrluferWJkzqahEOwY8cOLF26FNOmTXOe++yzz7B161ZkZGRAkiRIsfXj8ePHY9iwYQCAnJycCpn+8b/jSwxVbeP3++F2u9G6dWuIoljpNmWPoWkaCgsLq9ymMu655x4UFRU5j127dgEA9OqSlZgAUjOBVj0hCyaEos1g5pEH5Pognvms6fFBj4HSM4GCfaBqEvmICNGoBo/HBTV2M9M0HVHnYcQesb+jOqKahmhUQySqIRIpVR2s7BGJanbJZSNRXrHRigYR3rsJ0YO/wggW1OxYVP83drsjISFwqBjBwjAUlwy3Tz2C5LBVaZi4qRFvzR0MhavsZVEdRDENjFAEHrcLQh2Xr2xVQwkur4pgUQjBwppHiQiEiKnV6JzxSEFl0t31S6wUcetNCc/G+xlsfXKQ0+mQVxu0fJqEQ/DSSy+hTZs2yMvLc567++67sW7dOqxdu9Z5AMDf/vY3vPTSSwCAwYMHY/369QnVAEuWLIHf70evXr2cbT799NOE8y1ZsgSDBw8GACiKgv79+ydsY1kWPv30U2eb/v37Q5blhG1++eUX7Ny509mmMlRVhd/vT3gAwM7firDvQIkjbWqYVsWyI0GxqxEUP1jhL2BaoFGmyLJkt0UGYEcLMlpDCJeAaVU7JXHbZUmEKAhQFMnuFOc85NhDcTrIxf/vdqlwu1S4VBlul1LpQ1XkRsv+FwRWobxRUD3IOmUcsodcAcmbmfSxbGfAdCo36kq8NXGkJIpISQSqR0WrtqUdCas9BxGayM+9WhgYPG4VqqIgGIrAsqwafe0ty0IwFIHbrUJKst32EW1izNYqaOWFFtERqaFWAQODKtY0QZJBVRQ7p6Chqw+YCPIdU+HpUoGi6xMaG3HHoOWS8lRqy7Lw0ksvYfLkyU4UALBn5ZXNvnNzc3HssccCAEaOHIlevXrhyiuvxKOPPor8/Hzcd999mD59OlRVBQDccMMNmDNnDu68805cc801+Oyzz/Dmm29i0aJFzjFvu+02TJ48GaeccgpOPfVUPPnkkwgGg5gyZQoAID09HVOnTsVtt92GzMxM+P1+zJgxA4MHD066wqAsGgF79xcjEjUguVVEIjoEw0Bux1aQpNI7GIHBlFuBomFg/3rAfxxIcsMJ/cbudsxpWsPABBGC7KpTmJQJtlqhKDKQrABprSAUHIDV7phK19ejUS0hI7zm5z7CYBZ/n43gEwiCADM2o4/bxAQRojutxseKz1YrE8Sp+bEIhmYgcKgEkiLBl+GtmeQwxSWo62RGw8Ps77MsiyBSUBIMw6UqSbX5Ni0LwVC4XgSxKpjFGERJQEYbvy39XByBy6smVYFQViY7+fMBcacgqukA2XLdDVZlJHnx3m8PoHj/Nlx10jzn+bLLCLzbYcsn5Q7B0qVLsXPnTlxzzTU13lcURSxcuBA33ngjBg8eDK/Xi8mTJ+PBBx90tjn22GOxaNEizJw5E0899RQ6duyIF154AaNGjXK2ueSSS3DgwAE88MADyM/PR79+/fDRRx8lJBr+7W9/gyAIGD9+PKLRKEaNGoWnn366Vu85PU2FS1SQ5lOhuGRkpSk4eCiIw8VRZLcqIwJEBL14PxQmgLnbgIwQYIRLXy7/LwIMy4KU3gGi4qmVbYCd8WyRBYHsELSVlQNhxy9Amw6AlPiVsSwLpmnB4669E3JE6mmGnQyCwGI5DXV3QOJORV0qIuLiQlrYbgzly/BCcVdfU18ZzAiBxDLOZBMn3k5YFAVEoho0TYfLpcRm/RXfg2URgsGIrQQo168zUNYmCHZeQXFBEIX7A0jPToNYjyJKieez/+9SZWe5TT2CnkJdTkauNqA0wrx1k3FF31eqbGTEEwlbLk1Kh6ClE9ch2PXrZvj99owz/uMuDusoCurokOUuFQmyTGgFO+BxqYhGI9ifvxsulwdujxeKokLXNWhaNCbJK8GXlg4tGgF520By1XxGG8c0LUQ1e9YvCgIYCOLWn2C1agPKKnWSiIBwOAImMLu0q4HGGk3TnbXlhobIzn+wGx7VbUZm5w4AilJzu4nsJjjhYBShQAieNDdcPhcYq0UEhghCwTqQvwtI9tXYllQT7+ERjtjfdbdbTShtJSKUBMOQJAkutYEGzHL2gIBgIAzGAJfP5UiNN+Q5Nd2AZVHMKWgYTZLCogCglyCT7cfY4/9Z6TblexgYpHMdghZC019UbIHE13tlWYWieiBKMgQQ9IideCSIEkRJgSDaAwkTFbhbdYDsy0YoHMK671cgEglhx7Zf8NMP32Lrph/x265tME0DgqRCUjwQa7xmWYog2KFKXTcQjeogMFBWDoRD+4AyyYVEdtKT2+WGJCsQpfq7GcezzZP1VwVBBCuXQGbPzmsm8mJ/LjIMw6qTxjxRPEJQ0/1ieSWaiVBJBJZFyO6Yg/TsLEiyDFlxQ1E9zncjKSwNIDO23NT8iDuDaT4PRFFEKBRxPpd4eWE8Ea8xIklxJU9vuhuyKqOkIAg9oje41LEiS5BEEZGoFku4rP/WyqIgwGQqwJqPqiWn/kj5ksHRiiSrcHn8OHDgALKzsxEMRtA2OxNpGZlgZZTkPL5WEEQJgUAA7boNhBk6hIIDe2CaJpggQJYVMDC4fZlwt+kGyV3aiIiIoEVD0CLBGtlmD6R2B8SopkM3TAhpGWB7d4BpEZDLYw/YJtC2XUfIspKwv2FoINOEKMmwLBORUDGohsI4JlkI6mH4FW/C86KkQHV5AQZokRAs04AnrZVzzXQtgkgoAElxwe3xO9chGi6GXk1iZFlsh8h+73aTnRqZHoNibZqr9rmZIMDl9kMQBOh6FNGwnWgaLAxBj+pIa+WDNyMdYBKKi4uRnZ0NTdNw+PBhtGnTBiWBg0klmjIzArX9KRDUDBiGjmi4OPl3QWV0KVJMfNAv1nUnx8WyLEQ1HT6vu9FtjFcgWIaMwKES+LPSILsabp2fMQZJEiCIMnTdgBE17Qos0daXqJ8EStgrkIKI9/Jng5R0XJRp95Z5t2Cu829Oy4RHCFKE6vZhwYIFeOCBB8AYQ3qrLPj9Xvz1r4/hpJNOQvv27TFkyBC8/MqrAOy+D9deey18WR3RZ8BweL1pyO3cFT16n4xufU5F90Hn4+fNOzBp0iTk5uaid+/e+Mtf/gKCCFdsYGR2n1UIolTpDNNOnJIhxHoXhMIagqGoPdsVZQhZ7SAapSWJ6ZnZWLv2B5x77rk45phj0L17d1x66aUgYpBVN/710ssoOFwE1e1DPHEwnrRoRxPsr58giAl/A4DIBHhltx0tkUuT8lxuH775dhWWL18Bl8cPSXGhpCSIIUOG4Pe//z1kxQXGBKguL958800MGTIES5cuhSSrsRm7fUNlTEisD2cMhNJrIwhCTDGv8rKvuM1CuT4PTBAhljk+Y/GbtVDh+iqKGwcPFeDlV16F6vKCLBHh4ghkVUFG23SoXhcU1Y2VK1fi4osvBgCsW7cOeXl59mCkuMASzs8qRkkEAbIsI0pu/GPOXCiqG5JSKkPNmGDbW+F92HZbzH44702SY9+d1DkIgiDAjFW2RKJ22+pUKVcyxqB6VaRnp8HQjAYXMGKMQRQEu3OibCsbRqI6TLN+KhEYE2ABICY4iqnvFsx1RIzeLZjLcwhaMDyHoBGJ5xAc3L8Xma3bol+/fnjnnXfQpUsXEBFGjRoFn8+H2bNno1u3bvj555/x+OOP4+WXXwYR4ZRTTsFrr72GYztmo3j/tlguIcHfrhs2bduN008/HY8++igmT56MPXv24He/+x2ICAsWLKh01kJEiIQCMHQNLo8PslIaUrYsC8WBw/D60hOqPwCALAuaHgUgoEOHDpgzZw7Gjx+PUCiEDz/8EOPHj4eiKOjduzdef/119OmTvHCJrkUQCRdDkhS43GkJA5yt3CjhkUceQTAYxOzZswEAhYWFaNWqFbp06YJvvvkGaWk+KIqKoUOHYseOHXj00Udx2WWXVSj/Mw0DRUUF8KWlQ1HUCraEgwEEAoVwu0rFbURRhupJg1jGoSLLQjRSUiGUHwmHQJYOl8df4frH38uaNWswdepUfP/991Vek2AwiEOHDiE3NxffffcdbrjhBnz33Xdl3ocOTQvb14sxmIaOSLgYHl+G42Tt378fJ5xwAg4cOGDbTATT1CFJpdEd0zQQDRfD5fFXcHQqIxIqhq6Fj7hdfROOaAARFEVGUaAE6X4fRDG1c5u4NkRxQQlESYQvw1MjueS6nNe0bLljxgApVvpb2yhFOBxBoLgEOcohwJUFcrWudLuykQKeQ9By4BGCFOD2eLF69WpIkoSuXbvCsggrV67EunXr8O9//xvHd+0CPRpCzx7dHM0FxhgmTJiAl156CYo3E0qrTlAyO0HN7AzFk4Enn3wSl19+Oa699lqQHkTHDu3w8ssv4/PPP3caO02ZMgUvvvgiBg0ahJNPPhmvv/463N50eP2ZKAlGMGPGDHTv3h1Dhw7F0qVLkZ6RBUmSMGbMGLzxxhs4+eSTcdJJJ2HhokVQVTd2796NkpISjB8/HrIsIz09HZdddhkURcHcuXOxfft2TJ06FSNGjMD69evx6quv4rHHHsMll1yCY489FoFAAJ9//jlGjhyJHj164KqrrkJhUTF8/tZwe9Px1ttv47TTTkPv3r1x2223QdN0bNiwAS+++CJee+01jBgxAn//+9+d63rJJZfgjTfegKKo2LRpE6LRqKNHAQCff/45zjzzTHTv3h3Dhw/HVytWIDOrDRRFxcyZM/HPf/4TQ4cOxYknnoinn34abq8fiuKCYZh2PTwYPGmt8NVXKzB69Gh07doVZ5xxBrZu2waXx49vV32Hs88+G7169cLUqVMRCkfg9qY7XTbvu+8+dOvWDeeddx5++20PAOCOO+7A5s2bMWLECFx++eUAgCuuuAKvvvoqTj31VEybNg2bNm1KUOwkItx7773o2bMn8vLysHPXbrg9fmzcuBHTp0+HKMlQVA/27duPSZMmAQBuv/12FBYWYsSIERg1ahQYYzh8uAiTJ09Gr169MHLkSHz//Vp7iUoQMXr0aMybNw/9+vXD//3f/2HLli0YM2YMevbsiX79+tnX2VV5JUt5pUnLIpimBcMwY3kpGnTdqLHGQBxRtHtuRDW93jQe6kpZrQJDMxAJRR0Z8IY+rySKcKmyHdHSTUSiWq21CwRBgGVZdg4BmUA5ka54B1agNHIwb8fj9fFWOE0AnkOQAhTFhWXLlmHgwIFO4tnixYtxxhlnwOfzoaTooJ2wp4XtGScBisuDQYMG4Z577omFnhVYpgExNsP76KOP8Nxzz8GIFMHYtxqmkoZWHQdi0KBBWLx4Mfr06YNvv/0We/bswZIlS5Cfn48zzzwTvXv3Rt++fXHttdeiV69eWL9+PbZt24Zzzz0XX3zxBXJzc/HFF1+gY8eO+PLLL7FmzRqMGzcOe/fuxTHHHIPjjz8ew4cPdxQk+/XrB8YYrrvuOsydOxdPP/00evfuDUVR8N577+Ef//gHFi5ciN69e+PAgQO44oor8O677+Kkk07CU089hWuvvRbvv/8+li9fjj/84Q9YuHAhOnTogFtuuQUPPfQQHn74YVx11VUIhUJ48MEHIYoigkE7R2Ly5Mm4/PLLMX36dLzyyiu4+uqr8cEHHzjXvW3btnjjjTeQk5ODb775BhdffDE2btwIj8eD77//HitWrMCHH36IcDiM4cOHo0ePHhg65DQcPJAPSZKQ5k/Djh07MH78eLzxxhsYPnw4du3aBZfLhYMHD2LMmDGYP38+hg4dirvuugvTpk3Du+++i8OHD2Pu3Ll4/fXXcf/992PWrFm4//778corr+CRRx7B9ddfjw8//NAZ2L7++msEAgEsWrQILpcL3333XUIEYe3atbj22muxfv16PP/885g4cSJWrVqFQCCA1atX2xsxhkgk4jTfmj17Nj788EN8+OGHznEmT56Mvn374vvvv8dnn32G0aNHY9OmTcjIyMDnn3+OnJwcLFu2DJIk4ZprrsGYMWNw/fXXIxgM2j08EmSlYwJbugHDNB0NBl3XoWl22aBlWbDIgiiKsCwTDAwul4p0vx8ejzvpWb4oCHYbbBgQ60l8qD6IaxWkZ6dBi+gIxbQKRKnh5112foEIUbQHdD3mfMmynWOQrNNkC3NZdtdVq6JMt6aZCBRH8PbBOZXszWnu8AhBChBEEbt27UJOTg4M016nCwQCyMjIiM2qShPwLNOAZRkgy0JOTo4jfxwPBcd/6M7+TIGV0QuWYivqZWRkJDRVmjlzJnxeL44//nhMmjQJ7733HoqLi/HBBx/gzDPPxIoVK5Cfn4/evXvjs88+c/a755574PV6cfrpp8Pj8WDPnj2QJAkrVqzAZZddhi+++AJnnXUWTj/9dJSUlECWZQiCAFVV7USoWOh/3LhxGDhwILxer+MIhEIhLF++HP369cMnn3wC0zTx8ssv4+yzz8auXbuwcuVKDB48GIsWLYIQWxOXJAmqqiSsHXfr1g2KomDdunWYP38+LrvssoTr3r17d3z//ff4y1/+gsWLF0PXdWzZssV5/eabb0ZmZiY6dOiAa6+9Fu+88w5kRYUcK2dTVBXvvPMOxowZg7POOgvRSAly2majbdu2WLJkCQYMGICzzjoLkiTiwQcfxIIFCxCNRgEAvXv3xoQJE6AoCi6++GKsX293iFMUBYIgwOVyxZLDbO68805kZWYiLa1i+WibNm1w/fXXQxAYbrjhBuzatQs7duyo9junKHYehsvlgsvlQklJCT755BPMmjULsiTivPPOQ69evfC///3P2efee++FP80Hn8+HjIwMLF26FF9++SUURUHXrl1h6BrCkSj2HziEX3fsxq+/7kT+/v0oKipCIBBAcXExDEOH26Uiu3UrdOrUDl2OzcWxx3TEcZ1zkdupA3xeDwoKC/Hrjl3Yt/8QIlHtiNnzgsCgqjIikYiTytBUFj7jFQiqR4FlmijcXwSzoZUGy51fFEWoit0ZVNeNmJJo0gcAQCBBssWsyiFJAqKaCa0xOjJyGh0eIUgJBEVRoOs6RMFuTdutWze8++67zuzfNDQwQbSTzYgAEHRdh6IozjEAOD0GunXrhi1btmDwoIGAIEH0ZAMAtm7dmiAJnZWVBSNaAlHxonXr1ti7d68zuC9ZssTZrnfv3o4iJGA7FtFIGKrLDZfLBU2zb9xejxs33ngDpk+fjpKSEgwaNAivvvoqbrqpVBvdMg1YsTXpNm3a2LNDxrBnzx4cOHAAixcvdra95ZZboGka9uzZA1EUE16LJ9Y5V5FQYQ17ypQpmDp1Kk4++WRkZibKDM+cORM7dtiJl36/H6+//jqKi0sz7rOysuzrzgS0bt0aa9euBWPMCZoyJuDQoUNo27YtiCwYsaoFWXGhoKAA2dn2NdejYaSlpUGWZRQVFTnXDwDCJUGoquo4CmXR9QhESXauk65HIJgV1/IzMzPBGIMWCUN1+5CZmYmCgoLYNYlVBQBOaLc8pqnj8OHD8Pl8cLvdiISK4fKkITs7G4cOHXK2a9OmDTQtDElS8be//Q3PPvssHnzwQaxfvx5///vfMWHCBOzbdwCqqiA7OwtyTKDHbqPEIMmSIzld2QxVFEXIsh/p6X5EoxoCgWL8tmcvJFFCerofPq871u0zcV/GGAQmQBYkqLKCqEVQhEqaUqUIxhiIbBGpUHEEkZAGl0eBUIOZen3YIDLbcYpGdacS4Yj7gQG28ggEioLK7SMIDG6XhOLiMNQsX4M07uKkDu4QpADDMNCjRw989tlnEAQRejSMCRMm4Pbbb8d3332HU045xUk6+/XXX9G5c2cAwLZt29C9e3cApTd707RDsZdccgnmzJmDSZMmwetvDUEQsHz5cvz888+44IILnHN///33GDBgAABgzZo1GDZsGDp37gy3241p06aha9euVdpdPpPbMAznhk1E8Pl8yM3NtWdugOP0KGrpWnP8hmiZJvr37481a9bgT3/6U4UbZf/+/XH48GH8+c9/rmCHoigoLCy0Z9buNESihc5rF198MV5++WXccMMNFfZbtGgRPvzwQ3Tr1g3FxcUVGlp9//33GD16tHNtunXrBsuyYoMrgSwTvXv3xjPPPAOAwZuWCRbTOejRoweefvppEBFcnjSsX78eXq/XcRLiyOVEiuLXCABcZeSRqxs4tm3bhsLCQmRkZODw4cP47bffcNxxx2H//v3Yv38/iAiSrOKnn36q9DyiKKN9+/awLAtbtmxB165dYZom1qxZg9/97nflbCCIkgSvrOD3v/89fv/732Px4sW49957cckll6DzMbkgMms90DnVIy4VqqogK6sVgsEQigLFKCg4DLfbjXR/GlwuJVapYe8X//7LsoQSgyArTcMZiIsWxR12T5oKQzNRXBCE26dCcSkVxuWGdBJEQYAoCtB1E7Jc6lxWek4iCIzZThxjALGE10xNh25akJmFkK7behAAQuHGab7GaXi4Q5ACtEgYo0aNwkMPPeSsq7Zt2xbPP/88Ro8ejQkTJqBbt27YsGEDli9f7tzYly1bhtGjR8OyTJBV2hZZ18K45ZZb8Nlnn2HQoEG4/PLL8dtvv2HevHl46aWXnNkpADz33HMoKSnBnj17sGbNGrz44otQVRUPPvggzj33XNx0003w+XxYuXIlZsyYgZNPPrnU8HI3kV9//RXnn38+LrroIrRr1w6rV6/G6tWr8dxzzwGwG0vdfffdGDRoEKZOnZqwr65HMG7cOPz973/HxRdfjJEjR6KwsBAbN27Eiy++iJtuuglDhw7FjTfeiAEDBmD37t3QdR0PPfQQBg4ciCuvvBKKouC0007DkCFDnOP6/X4sX7680us+ePBg3HnnnRg9ejTeffddeL2JGgevv/56TPgmhAULFmDVqlUwdFsdz87kjmDixIl46qmncMkll2DkyJHYtm0bJk6ciBEjRqB169a49NJLcfrpp+Ppp5/Gww8/XPHGW86pOu6441BQUIBbb70VnTt3xq233lqp7WXx+/2YNGkSLrjgArz++uu47rrrkJGRgbS0NHi9XkyfPt2R7I6Tnp6OnJwcXHfddejYsSMeeOABPPDAAxg3bhxuuOEGfPrpp+jRo0fCtbQ/Jwsut4AbbrgBXbp0QXZ2Nt5++20Mi3UcZaz+2irHw91+fxrS0nzQNB2B4mLk7z8ASZLg9biR5vNCliUIYqycUtfgESUwoF7kpusK6QYi+YdAsXbgcYMorKFkPzlqkwCD4HNDzaxZVj4RIaqZUGSx8lJLiwDDBEU0IKoDBMiMIaLrsEQBTBTARBGyKjufGpEdxQvvzYfi98NVUIRoRAGZBhQ9AEEUET50EEYoDF3ToKb5IR48CNa2HSSXCjlQM50TTtOFlx02IkVFRcjIyMC2LRtxbJfuuOiiizB9+nSccfpQFAcKkdm6LQoKCvDee+9h//79OO6445CXlwefz4doNIo+ffrgm2++gSQAgaLENryZ2TlwuTz4+uuv8eWXXyI9PR3jx49H69atURwoRJo/AyeccAL+9a9/Yd26dTBNExMmTEBGehpChfvgz87FL7/8gkWLFsGyLPTr1w/Dhg2DJEl47733MGbMGIRDxfCnZ2Lx4sUYOnQofD4f1q9fjxUrVqCwsBAdO3bE+eefD5/XC12PQlZcWL58Ofbv34/hw4dj//79sCwL3bodjwP5v6F1m3YQRAmffPIJfvjhB2RlZWHEiBE4/vjjYVkWIpEIPvjgA2zbtg0dOnTAyJEj0a5dOwDAxo0bsWHDBhxzzDHo3bs3FixYgIkTJ+LQgXwYur2c0bZ9Lr788kt07twZubm5iEajeP3113Hw4EFccMEF2L17N/r27YvWrVtj2LBhuPvuu5Gfn49gMIixY8ciJ6ct9ufbjoiu61AVFdlt24MJdg+NjRs34thjj8WFF14Ij8cDTdPw/vvvY9euXRg6dCgGDhwIy7Jw8OBB/Pzzzxg2bBiKiw7DgoCvv/7a6adx4MABfPvtt2CMYfTo0fjwww9x+umnwzSikEQJoYjm7F9QUIA1a9agQ4cOWLhwIbp3747zzz8fwZIiqKoHRYEA5s+fD0VRMHbsWHz77bfOklFRURFWrFiBUCiE8ePHg4jwzTff4PPPP0fXrl1x4YUXQhBsdcd3333Xvka7dqDzsV2wbt06LF++HMXFxejTpw/OPfdchEoCKCo8hIaEiGCRhWgkisKiACKRqJ1vIcvI8KeBSQJMzYQgJkpNm7GZuhjrTWERILL4ckYNZuXl745H2E0vCUHfcxCSJIMsAoGcCFr8gPH8H4NMuI9tD0FMXhXQsgj79hejdWuvvURDBJgWKBQBHS6BdaAIdCgAKgkBTABzKYAsOoM+EQBFASkipGDEvg5MQFDUEDXt5TdBlKEoKphhQg4zQJJQFDkEweuCEQohLac99OIS+Fx+MM1EcSiEvjddhcLCQqSnp1f/BjhNGu4QNCK7d+9Gp06dANgtmDt27Ijnn38eTzzxBPr06YNgMIhp06bh3HPPRXp6Ovbs2YOPPvoIt9xyC1avXo1t27bh5ptvRocOHbBnz56EYzPGcP7552PatGno0aMHQqEQlixZgqeffhpt27bFypUrccIJJ2D+/Pno3bs3fvjhByxbtgwPPvggCgoKMHDgQKdJlCiK+Pnnn7FgwQJ06NABp512Gn744QfMmjUL1157LUaPHo3NmzdjxYoVGDlyJPr16we/34+9e/fi888/x1NPPYWCggJMmTIFI0aMQGZmJtq1a4fi4mLk5+fj8ccfx8qVKyHLMqZMmYJLL73UmSmvWrUKTz/9NLZv344bb7wR48aNQ7t27bB3714sX74cf//739G+fXtcffXV6NSpE0RRRHZ2Ng4cOIBVq1bhD3/4A8xYouall16KK664AgUFBfjLX/6CCy+8EOPGjUNGRga6du2KHTt2YOvWrRgxYgSGDRuGWbNmYfjw4fjxxx+xfPlyPPjgg9i7d2/CdVZVFdOmTcNll12Gjh074rfffsOiRYvwj3/8A1OmTMFll12GVq1a4eeff8acOXOwadMmzJo1C+3bt8frr7+ODz/8EH/84x/RtWtXfPDBB1iwYAFmzJiBnj17QlVVdO/eHb/88gs2b96MBx54AF6vF3/4wx/Qvn17fPrppzj++OORl5eHTp06YfPmzfjtt9/w6quv4qWXXkJmZib++Mc/4owzzoDf70fnzp3x+eefY8GCBXj55ZcxY8YM9OvXDx6P7TiuWrUKN9xwA3r06IGdO3diwYIFePrpp/F///d/OO2007B27VrMmjUL/fv3x3XXXYeTTz4Z6enp2LRpE+bNm4dXX32Vrx9zHHbt2oWOHTum2gxOHeAOQSNiWRb27NmDtLQ0iKIIn8/nPB8MBqu8ubrdbsiynWwWiUSgaVqNzisIAnw+H+68807MmDEDbdq0qTSprTICgQA6deqEXbt2NUvRkSPZzxhDWloaHn74YVx00UXo2rWrkwPRFGjp17+pw+0/MkSE4uJitG/f3qkm4jRPuEPAqZa4umJzVSHj9qcWbn9qae72cxoX7s5xOBwOh8PhDgGHw+FwOBzuEHCOgKqqmDVrFlS1YvOf5gC3P7Vw+1NLc7ef07jwHAIOh8PhcDg8QsDhcDgcDoc7BBwOh8PhcMAdAg6Hw+FwOOAOAYfD4XA4HHCHgMPhcDgcDrhDcNTT3ItMuP2poznbDnD7OZzycIfgKEbXdezbt8/5u7ndYAzDQFFRUarNqDXN2f7mbDvQ/O1v7r9dTtOEOwRHKY8//ji6d++O0aNH49JLL8WaNWuSbwnbBHjsscdw4oknYvTo0bjzzjuxdetWAM3nxtic7W/OtgPN3/7m/tvlNF24MNFRyGOPPYa5c+fir3/9K/Lz8/HBBx9g3bp1+Oijj9CvX79Um3dE7rvvPvz73//Gn/70J/z0009YunQpAoEAvvrqK2RmZqbavCPSnO1vzrYDzd/+5v7b5TRxiHPUYJom6bpO5513Hs2YMSPhtb59+9IFF1xAmzdvTpF1R8ayLAoEAjR48GD685//7Dy/a9cuys3NpSlTplBRUVEKLaye5mx/c7adqPnb39x/u5zmAV8yOIoQBAGWZWH9+vU46aSTAACRSAQA8Oyzz2LlypX45JNPYBhGKs2sEsYYBEHA2rVrcfLJJwOw14I7duyIZ599Fq+88gqWL1+eYiurpjnb35xtB5q//c39t8tpHvAlgxbMSy+9hJUrV+LEE0/EBRdcgE6dOgEAJk6ciIMHD+J///sfAMCyLAiCgCuuuAKbNm3C0qVLm0Tv9H//+9/48ccf0b9/f5x99tnIzMxEOBzGmDFj0KFDB7z66qsASu0/55xzIEkSFi9e7DzH7T/6bG8J9jf33y6nmZLqEAWn/jl06BDl5eVR+/btadKkSXTcccdR586dafHixURENG/ePOrYsSN9+OGHREQUDoeJiGjz5s3EGKP169enzHYior1799KIESOoQ4cONGbMGOrQoQP169ePNm3aREREDz30EPXv359WrFhBRETRaJSIiJYsWUKSJNHu3btTZjtR87a/OdtO1Pztb+6/XU7zhi8ZtEC+++47bN68GStXrsRrr72GrVu3omvXrnjsscfw7bff4txzz8Upp5yC2bNnAwBcLhcAQBRFdOjQAT/99FMqzccXX3yB/Px8rF27Fu+//z7Wrl2LcDiMu+++G7t27cK4cePg8/nw7LPPAgAURQEAeDwetGvXzskaTxXN2f7mbDvQ/O1v7r9dTvOGOwQtCIqt/vz0009QVRVer9d57U9/+hMsy8LcuXORkZGB6667Dr/++ivuuOMOmKYJANi8eTPcbjeGDBmSMvuJCF999RVycnLg8/kgCAJat26NZ555Bhs2bMC//vUvnHDCCZgwYQJWrVqFxx9/3Nn/t99+g9frRe/evbn9R5HtLcV+oPn+djktAynVBnDqxldffQW/349jjjnGWTu0LAvBYBCAfaNhjOGUU07Beeedh7fffhuffPIJzjvvPDz22GO45ppr8MUXX6B37954++23ccUVVyA7O9vZr6H57rvvkJOTgzZt2jizNVVVkZ+fD5fLBdM0IYoihg8fjrPOOgsff/wxJkyYgKuvvhrBYBB33HEHli1bhtzcXPznP//BddddB7/fz+1v4ba3BPub+2+X0wJp7DUKTv2wadMmGjBgALVp04aOO+44GjBgAL3//vtERLRv3z5yuVz0yiuvEBGRrutERLRz507q27cvPfzww2SaJhERffrpp/TYY4/R5MmTaeHChY1m/4YNG6h///7Utm1b6tq1K40cOZJWr15NRESrV68mURRpyZIlREQUiUSIiGjLli2UlZVFr732mnOcN998k+655x4aO3Ys/fe//+X2t3DbW4L9zf23y2m5cIegGaLrOk2dOpUmTJhAO3bsoDVr1tD5559Pffv2pQ8++ICIiK699lrKzc2lUChERHYdNhHRxIkTKS8vL2W2ExEVFxfTuHHj6KqrrqJNmzbRsmXLqE+fPjRixAhauXIlERFdcMEF1KdPH2cfwzCIiGj48OE0ZcqUlNgdpznb35xtJ2r+9jf33y6nZcMdgmZE/Mawb98+SktLo1dffdV57ZdffqGrrrqKevXqRUS24Erbtm1p+vTpTiayZVk0duxYuv766xvfeCq1f8uWLeTz+WjRokXOaytXrqQxY8bQmDFjiIjoyy+/JL/fT4888oizTTAYpNNOO40eeOCBxjU8RnO2vznbTtRy7G+uv13O0QHPIWgGFBYWIiMjw1kXLCkpQffu3aHrurNNt27dMHnyZHzxxReYPXs2/u///g/PPPMMrrzyShw+fBiXXHIJduzYgZUrV+LFF19sVPtDoRA8Ho9j//79+9G5c2cnQxoABg0ahHHjxuGJJ57AK6+8gsmTJ+ORRx7BLbfcgqKiIuTl5WHdunXYuXMnzj77bG7/UWB7S7C/uf92OUcZqfZIOFWzceNGOuecc2j48OF09dVX0yeffEJERKFQiPr370+33nprgtxqYWEh3X777TRgwAA6ePAgERG99tprdP7551O/fv3ouOOOo/nz5zea/Rs2bKC8vDwaN24c3XbbbfTTTz8RkR32zcrKor/85S/OzImI6LfffqNJkybRxIkTqbi4mIiIHn30URo6dCj16NGDcnNz6a233uL2t3DbW4L9zf23yzk64Q5BE2X16tXUrl07mjJlCv3zn/+kwYMHU8eOHentt98mIqLHHnuMMjMzHYGVOPPmzaMTTzzRuYHG2b59e2OZTkREn3/+OWVlZdGVV15Js2fPps6dO9OAAQPo008/JSKi3//+99SpUyfatWtXwn6zZ8+mk046iQ4cOOA8Z1kW/fjjj9z+o8D2lmB/c//tco5euEPQxIjPembPnk1nnHGGk1i0f/9+uummmygzM5P27dtHRERdunShSZMm0bZt25z9//e//xFjjLZs2UJE5GQkNzYzZ86ksWPHOu/n559/pokTJ9Jxxx1HRERFRUWUnZ1Nt956KwUCAWe/9957j1wul3NT5/YfXbYTNX/7m/tvl3P0woWJmghbt26FruvOWuOmTZvAGIPb7QYAZGdn48EHH0RmZibuvvtuAMCcOXOwYsUK/PWvf8X27duhaRoWL16M888/H+3atQOARtNk379/f0I/+S1btkBRFOf99OzZE/fccw8CgQBmzZoFv9+Pxx9/HM8//zyee+455Ofng4jw4YcfYsKECcjKympU++O2W5bVLO0vS3O1Pf4ZNFf74zS33y6H45BCZ4RDdn1xXl4enXrqqfTRRx85z//1r3+lE0880dFgj88WXnvtNRJF0QmXPvfcc9S/f3/q2LEjnXDCCdS6detGranesWMHnXrqqXTZZZfR4cOHicgurZo+fTrl5eXRb7/95myr6zrNnj2b0tLSnHXe++67j3r27EndunWjE088kdq0aeOstzY0lmXRoUOH6KyzzqL77rvPea652L9792569NFH6Y033nDq8CORSLOwnYhoz5499Prrr9OKFSvo0KFDRGT3Fmgu9ufn5zsth+OljUTN57fL4ZSHOwQpIB4KXbJkCbVv357Gjx9Pa9euTWis8sEHH9DAgQPpiSeeSNhv37591Lt3b2cAI7JLmT766CN6+eWXG+9NENGtt95KkiTRRRdd5IRC4+/thRdeoD59+tC7776bsM/q1aupV69eNHfuXCIi0jSNNm/eTK+++io988wzjWo/EdGiRYuIMUaqqiaEb//5z39S7969m6z9d9xxB7ndbho1ahQdf/zxdOyxx9L3339PRETPPvtsk7/2d9xxB/l8Pho2bBh5PB4aP368M4A2B/sfeeQREgSBzjjjDOe5+MD/3//+t8n/djmcyuAOQQqZMmUK3Xbbbc7f8UE1zsSJE2nUqFH0zTffOM+FQiE6/fTT6f777yfLslKyzlhUVEStWrWi1q1b05dffuk8H1dVi3PKKafQpEmTnFkUEdHhw4epW7du9K9//YuIUr9OOmvWLLrpppvovPPOo1GjRiW81hTtP3z4MF144YU0ZMgQ59p///33dNppp9Fdd93VpG0nIiooKKCpU6fS4MGD6YsvvqBIJEJvvvkmnXXWWXTnnXc2efuj0SjdddddNGjQILryyiupb9++jj1lv/8XX3xxk/ztcjjVwRepUsSePXuwfv16jBs3Dj/88APOOuss5OXlYciQIXj++ecBADNnzkQwGMSjjz7q7GdZFgoKCnDssceCMZaSdV6/349zzjkHxx13HIYMGYJVq1Zh6tSpmDFjBp566ils2LABAHDnnXdi7dq1zvsBgGg0CsMw0KpVKwCpWyeNN4WRZRkZGRm444478Mknn2Dx4sXONg888ADWrFnTpOzPyMjAhRdeiEcffRRDhw4FAPTr1w+qqmLs2LHOdnfffXeTvPYHDx4EYwx33XUXTj/9dKiqiokTJ8Ln80HTNCeH4957722S9iuKgi5duuCaa67B/fffj1NPPRXPPPMMiouLIUkSNE0DANx0000Ih8NN6rfL4RyRVHskRwPxmUDZGURRURG5XC56++23aeLEiXT77bfT/PnzacaMGSTLsqNl/sYbb1CXLl2oT58+dP/999PQoUOpd+/eCTOnxrQ/vlZaWFhIsizTCSecQB07dqSrr76axo4dS927d6eePXs6+zz44IPUvXt3Ov300+kf//gHDRkyhE499VTas2dPSuwvT15eHs2bN4+IiCZNmkR9+/algoICev3114mI6M9//jN169YtZfZXZntcn5+I6MCBAzRmzBjKyMigkSNH0q233kolJSVERPTwww+n1Pay9muaRkS2jkDZMsD465MmTaKbbropYd+HH364SX134sthZWf2//3vf6l///50//33V3jttddeo65du6b0t8vh1ATuEDQwf/jDH2j06NEJz8VvGnl5eZSdnU3Dhg1LECmZNGkSnXrqqc5zW7Zsod/97nd0wQUX0IwZMygajabU/vjg9MQTT1C3bt3o22+/dW6Wa9asodzcXJoxYwYR2ZKxX3/9NU2aNImGDx9ON954ozM4pMp+otIksPHjx9PHH39MREQ//vgjuVwuYozRjBkzSNM0ikQiKbO/Ktvj5Ofn01lnnUV5eXm0cOFCeuyxx6hbt240duxYIrJD1E3p2pcVEiIq/R0YhkGdO3d2Gg/Fv9/RaLRJ2V8ZgUCA7rnnHurVqxf9/PPPREQJNqbyt8vh1BTuEDQQGzdupAsvvJCys7OJMeZol8cHU9M0ac6cOdSqVSu6+uqrE17bunVrQj1ynMa8GVZnf9kb+2effVbhuXvvvZf69u3rzFTjxHXZG4MjXf84Z5xxBv3000+0aNEiatOmDWVnZ5PH43EqJspmjzeW/cnaTlRRtGbhwoXk8Xho7969Cc83hWtf9lqW5ccff6Tc3Fz65ZdfqjxmU7C//PWPf+dXrFhBw4cPpyuvvNJ5rfxvtTF/uxxObeGLWA3E2rVr4fF48MILL2D69Om47777YFkWJEmCYRgQBAHnnHMOBg0ahI8//hgFBQWQJLu1xIYNG3D88ceDbIfNOaYsy03C/rIMHz4ckiSBMebYum7dOrRv3x6KoiTYX1Z/PpX2x23atWsXotEozjjjDFx66aWYOXMmli1bhtzcXPz+978HgIS+8o1lfzK2x+ncuTOA0hr+77//Hp06dYJpmk3u2ouiWMF+APjpp5+Qk5ODbt26AQAWL16MP//5zwnbNAX7y1//+Hdj0KBBuOCCC/Ddd99h4cKFmD9/Pq677jonTwVo3N8uh1NrUuWJtFTis4aioiJatWoVERGtWrWKunTp4mRRl51pfPHFF9ShQwcaPXo0vf766/Tjjz/SOeecQ1dccUWFEGtTsb+qmR4R0ddff02nnXZaQt/5xqSm9l922WU0c+bMhJLDZ555htLS0pza+Mairtf+hx9+oBEjRtBDDz3U8MZWQm3tv/zyy+muu+6iffv20dlnn02yLNPs2bMbz/AYtbE/vs8vv/xCZ555JjHGSFEUuvfeexvRcg6nfuAOQSNQUlJCf/nLXyg9PZ1+/fVXIkoMIX733Xc0bNgw6tWrF+Xk5NDll19OwWAwVeZWoDL7y94Yt23bRvPnz6dp06aRz+ejm2++uUmtlVZmfzwxr/yyBpG99t6YIerqONK13759O7311lt03XXXkcfjoeuuu67J2E50ZPsPHDhAubm51LlzZ5JlmcaPH5+QT5NqjmQ/kS2wNGXKFGKM0Y033ugIJ3E4zQ3uEDQAZWf28X9v3LiRhgwZQuPGjUvYNp5YFYlEaMeOHbRjx47GM7QKamI/kT2LmjJlCo0aNYrWrFnTaHZWRU3tb0rU1PY1a9bQTTfdRGPGjGmW1/7XX3+l3NxcGjp0aLO0n4jo5ZdfpjPOOIO+++67RrGRw2kouENQz1SW+BV/ft68eeT3++mzzz4jIrurW3kxolRTE/uXLVtGBQUFjgpbU6Cm13///v2NaV611ObaE5HTLjfV1NT+wsJCCgaD9MMPPzSmmVVS0+9Ofn4+EVWsnuBwmivcIagnyt5MdF2n2267rUK98Z49e2jSpEl0/PHH08iRI4kx5qxVppra2v/tt982tqmV0pyv/9F67Zu7/U3hu8Ph1Ce8yqCOxLO549n3Tz75JLKysrBgwYKEDPX4tgcOHMCWLVuQmZmJPXv24JRTTkmF2Qk21cX+AQMGpMLsBJua6/U/2q99c7c/1b9dDqfeSaU30twpm1y0dOlS6tKlC7Vt25ZeeOGFCuHHDRs2UP/+/alLly60cuXKxja1Urj9qaM5207E7edwWiLcIagjO3fupHPPPZdkWabbb7+9ylK1YDBI//vf/xrXuCTg9qeO5mw7Ebefw2lpcIegDrz11lskSRLl5eXRhg0bUm1OjeH2p47mbDsRt5/DaYkwokqkwzhJsW3bNuzbtw+DBw9OtSm1gtufOpqz7QC3n8NpiXCHgMPhcDgcDniVAYfD4XA4HO4QcDgcDofD4Q4Bh8PhcDgccIeAw+FwOBwOuEPA4XA4HA4H3CHgcDgcDocD7hBwOBwOh8MBdwg4HA6Hw+GAOwQcDofD4XDAHQIOh8PhcDjgDgGH0yL59ddfwRjD2rVrG+T4jDG8//77DXJsDoeTGrhDwOE0AFdffTXGjh2bsvN36tQJe/fuRe/evQEAy5YtA2MMhYWFKbOJw+E0baRUG8DhcOofURSRk5OTajM4HE4zgkcIOJxG5vPPP8epp54KVVXRrl073H333TAMw3l92LBhuOWWW3DnnXciMzMTOTk5+MMf/pBwjI0bN2Lo0KFwuVzo1asXli5dmhDGL7tk8Ouvv2L48OEAgFatWoExhquvvhoA0LlzZzz55JMJx+7Xr1/C+TZv3owzzjjDOdeSJUsqvKddu3bh4osvRkZGBjIzM3HhhRfi119/reul4nA4jQh3CDicRuS3337D6NGjMWDAAPzwww945pln8OKLL+Lhhx9O2O6VV16B1+vFN998g0cffRQPPvigMxCbpomxY8fC4/Hgm2++wfPPP4977723ynN26tQJ77zzDgDgl19+wd69e/HUU08lZa9lWbjooougKAq++eYbPPvss7jrrrsSttF1HaNGjUJaWhq+/PJLfPXVV/D5fDj33HOhaVpNLg+Hw0khfMmAw2lEnn76aXTq1Alz5swBYww9evTAnj17cNddd+GBBx6AINg+et++fTFr1iwAwPHHH485c+bg008/xTnnnIMlS5Zg69atWLZsmbMs8Mgjj+Ccc86p9JyiKCIzMxMA0KZNG2RkZCRt79KlS7Fx40Z8/PHHaN++PQBg9uzZOO+885xt5s+fD8uy8MILL4AxBgB46aWXkJGRgWXLlmHkyJE1u0gcDiclcIeAw2lENmzYgMGDBzsDJwAMGTIEJSUl2L17N3JzcwHYDkFZ2rVrh/379wOwZ/mdOnVKyBE49dRTG8zeTp06Oc4AAAwePDhhmx9++AFbtmxBWlpawvORSARbt25tELs4HE79wx0CDqcJIstywt+MMViWVe/nEQQBRJTwnK7rNTpGSUkJ+vfvj9dee63Ca9nZ2XWyj8PhNB7cIeBwGpGePXvinXfeARE5UYKvvvoKaWlp6NixY1LH6N69O3bt2oV9+/ahbdu2AIBVq1ZVu4+iKADs/IOyZGdnY+/evc7fgUAA27dvT7B3165d2Lt3L9q1awcA+PrrrxOOcfLJJ2P+/Plo06YN/H5/Uu+Bw+E0PXhSIYfTQBQVFWHt2rUJj+uuuw67du3CjBkzsHHjRixYsACzZs3Cbbfd5uQPHIlzzjkHXbp0weTJk7Fu3Tp89dVXuO+++wAgYSmiLMcccwwYY1i4cCEOHDiAkpISAMCIESPw73//G19++SXWr1+PyZMnQxRFZ7+zzz4b3bp1w+TJk/HDDz/gyy+/rJDAePnll6N169a48MIL8eWXX2L79u1YtmwZbrnlFuzevbs2l47D4aQA7hBwOA3EsmXLcNJJJyU8HnroIXz44Yf49ttvceKJJ+KGG27A1KlTnQE9GURRxPvvv4+SkhIMGDAA06ZNcwZpl8tV6T4dOnTAH//4R9x9991o27Ytbr75ZgDAPffcgzPPPBNjxoxBXl4exo4diy5dujj7CYKA9957D+FwGKeeeiqmTZuGRx55JOHYHo8HX3zxBXJzc3HRRRehZ8+emDp1KiKRCI8YcDjNCEblFxA5HE6z46uvvsLQoUOxZcuWhAGdw+FwkoU7BBxOM+S9996Dz+fD8ccfjy1btuB3v/sdWrVqheXLl6faNA6H00zhSYUcTjOkuLgYd911F3bu3InWrVvj7LPPxuOPP55qszgcTjOGRwg4HA6Hw+HwkwcgbQAAAFZJREFUpEIOh8PhcDjcIeBwOBwOhwPuEHA4HA6HwwF3CDgcDofD4YA7BBwOh8PhcMAdAg6Hw+FwOOAOAYfD4XA4HHCHgMPhcDgcDrhDwOFwOBwOB8D/A+nj9RX5/IRoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from gval import Comparison\n", + "from numbers import Number\n", + "\n", + "@Comparison.register_function(name='multi', vectorize_func=True)\n", + "def multiply(c: Number, b: Number) -> Number:\n", + " return c * b\n", + "\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"multi\"\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "6c7e8929", + "metadata": {}, + "source": [ + "A user can also pick which candidate values or benchmark values to use by providing lists to the `allow_candidate_values` and `allow_benchmark_values` arguments. Finally, a user can choose to write nodata to unmasked datasets with the `nodata` value, or to masked/scaled datasets with `encode_nodata`. " + ] + }, + { + "cell_type": "markdown", + "id": "5181e51a", + "metadata": {}, + "source": [ + "### Cross-tabulation Table" + ] + }, + { + "cell_type": "markdown", + "id": "3906909f", + "metadata": {}, + "source": [ + "A cross-tabulation table can be made using an agreement map as follows. (In this particular case the table reflects agreement values made in the previous example.)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "18b9c315", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandcandidate_valuesbenchmark_valuesagreement_valuescounts
011.00.00.011526204.0
111.02.02.0679211.0
212.02.04.02624301.0
\n", + "
" + ], + "text/plain": [ + " band candidate_values benchmark_values agreement_values counts\n", + "0 1 1.0 0.0 0.0 11526204.0\n", + "1 1 1.0 2.0 2.0 679211.0\n", + "2 1 2.0 2.0 4.0 2624301.0" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "crosstab_table_allow = agreement_map.gval.compute_crosstab()\n", + "crosstab_table_allow" + ] + }, + { + "cell_type": "markdown", + "id": "0d94c67e", + "metadata": {}, + "source": [ + "### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "3a9aa1cc", + "metadata": {}, + "source": [ + "Although all categorical metrics are computed by default if no argument is provided, `metrics` can also take a list of the desired metrics and will only return metrics in this list." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "2ba3fc06", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandfnfptntptrue_positive_rateprevalence
01639227.0512277.010345720.02473405.00.7946350.222798
\n", + "
" + ], + "text/plain": [ + " band fn fp tn tp true_positive_rate \\\n", + "0 1 639227.0 512277.0 10345720.0 2473405.0 0.794635 \n", + "\n", + " prevalence \n", + "0 0.222798 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table_select = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= [0, 1],\n", + " positive_categories = [2],\n", + " metrics=['true_positive_rate', 'prevalence']\n", + ")\n", + "metric_table_select" + ] + }, + { + "cell_type": "markdown", + "id": "382b1a13", + "metadata": {}, + "source": [ + "Just like registering comparison functions, you are able to register a metric function on both a method and a class of functions. Below is registering a metric function:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "67938408", + "metadata": {}, + "outputs": [], + "source": [ + "from gval import CatStats\n", + "\n", + "@CatStats.register_function(name=\"error_balance\", vectorize_func=True)\n", + "def error_balance(fp: Number, fn: Number) -> float:\n", + " return fp / fn" + ] + }, + { + "cell_type": "markdown", + "id": "bf6e16f4", + "metadata": {}, + "source": [ + "The following is registering a class of metric functions. In this case, the names associated with each function will respond to each method's name." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "1e8eeb59", + "metadata": {}, + "outputs": [], + "source": [ + "@CatStats.register_function_class(vectorize_func=True)\n", + "class MetricFunctions:\n", + " \n", + " @staticmethod\n", + " def arbitrary1(tp: Number, tn: Number) -> float:\n", + " return tp + tn\n", + " \n", + " @staticmethod\n", + " def arbitrary2(tp: Number, tn: Number) -> float:\n", + " return tp - tn" + ] + }, + { + "cell_type": "markdown", + "id": "75deed2d", + "metadata": {}, + "source": [ + "All of these functions are now callable as metrics:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "6a41eee3", + "metadata": {}, + "outputs": [], + "source": [ + "metric_table_register = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= None,\n", + " positive_categories = [2],\n", + " metrics=['error_balance', 'arbitrary1', 'arbitrary2']\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "6ab884b7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandfnfptntperror_balance
01639227.0512277.0NaN2473405.00.801401
\n", + "
" + ], + "text/plain": [ + " band fn fp tn tp error_balance\n", + "0 1 639227.0 512277.0 NaN 2473405.0 0.801401" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table_register" + ] + }, + { + "cell_type": "markdown", + "id": "6f930bbd", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "markdown", + "id": "b3c625d6", + "metadata": {}, + "source": [ + "Finally, a user can take the results and save them to a directory of their choice. The following is an example of saving the agreement map and then the metric table:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "899a1da9", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'agreement_map.tif'\n", + "metric_file = 'metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "metric_table.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.doctrees/nbsphinx/SphinxTutorial_16_1.png b/.doctrees/nbsphinx/SphinxTutorial_16_1.png new file mode 100644 index 00000000..516ce189 Binary files /dev/null and b/.doctrees/nbsphinx/SphinxTutorial_16_1.png differ diff --git a/.doctrees/nbsphinx/SphinxTutorial_33_1.png b/.doctrees/nbsphinx/SphinxTutorial_33_1.png new file mode 100644 index 00000000..f53dc218 Binary files /dev/null and b/.doctrees/nbsphinx/SphinxTutorial_33_1.png differ diff --git a/.doctrees/nbsphinx/SphinxTutorial_35_1.png b/.doctrees/nbsphinx/SphinxTutorial_35_1.png new file mode 100644 index 00000000..0e3d417b Binary files /dev/null and b/.doctrees/nbsphinx/SphinxTutorial_35_1.png differ diff --git a/.doctrees/nbsphinx/SphinxTutorial_37_1.png b/.doctrees/nbsphinx/SphinxTutorial_37_1.png new file mode 100644 index 00000000..0e7f15a7 Binary files /dev/null and b/.doctrees/nbsphinx/SphinxTutorial_37_1.png differ diff --git a/.doctrees/nbsphinx/SphinxTutorial_40_1.png b/.doctrees/nbsphinx/SphinxTutorial_40_1.png new file mode 100644 index 00000000..a595e23d Binary files /dev/null and b/.doctrees/nbsphinx/SphinxTutorial_40_1.png differ diff --git a/.doctrees/pairing_functions.doctree b/.doctrees/pairing_functions.doctree new file mode 100644 index 00000000..45f11764 Binary files /dev/null and b/.doctrees/pairing_functions.doctree differ diff --git a/.doctrees/schemas.doctree b/.doctrees/schemas.doctree new file mode 100644 index 00000000..dbd391fc Binary files /dev/null and b/.doctrees/schemas.doctree differ diff --git a/.doctrees/statistics.doctree b/.doctrees/statistics.doctree new file mode 100644 index 00000000..a82fee81 Binary files /dev/null and b/.doctrees/statistics.doctree differ diff --git a/.doctrees/tutorials.doctree b/.doctrees/tutorials.doctree new file mode 100644 index 00000000..0100dc93 Binary files /dev/null and b/.doctrees/tutorials.doctree differ diff --git a/.doctrees/utils.doctree b/.doctrees/utils.doctree new file mode 100644 index 00000000..228314ba Binary files /dev/null and b/.doctrees/utils.doctree differ diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/SphinxContinuousTutorial.html b/SphinxContinuousTutorial.html new file mode 100644 index 00000000..bd13621c --- /dev/null +++ b/SphinxContinuousTutorial.html @@ -0,0 +1,573 @@ + + + + + + + Continuous Comparisons — GVAL documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

4915e3d022a849e59083f270b879c645

+
+

Continuous Comparisons

+
+
[1]:
+
+
+
import numpy as np
+import xarray as xr
+import rioxarray as rxr
+import gval
+
+
+
+
+

Load Datasets

+

In this example, the comparisons output of Variable Infiltration Capacity Model total annual CONUS precipitation in 2011 with that of the model output of PRISM, also total annual CONUS precipitation in 2011.

+ +
+
[2]:
+
+
+
candidate = rxr.open_rasterio(
+    './livneh_2011_precip.tif', mask_and_scale=True
+) # VIC
+benchmark = rxr.open_rasterio(
+    './prism_2011_precip.tif', mask_and_scale=True
+) # PRISM
+
+
+
+
+
+

Run GVAL Continuous Compare

+
+
[3]:
+
+
+
agreement, metric_table = candidate.gval.continuous_compare(benchmark)
+
+
+
+
+
+

Output

+
+

Agreement Map

+

The agreement map in this case will be simply the difference between the two modeling outputs.

+
+
[4]:
+
+
+
agreement.gval.cont_plot(title="Agreement Map", figsize=(6, 3))
+
+
+
+
+
[4]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f01f38bba60>
+
+
+
+
+
+
+_images/SphinxContinuousTutorial_11_1.png +
+
+

In this case it is a bit difficult to see the variability of the precipitation difference, but if extreme values are masked out the map will look like the following:

+
+
[5]:
+
+
+
agreement.data = xr.where(
+    (agreement < np.nanquantile(agreement.values, 0.0001)) |
+    (agreement > np.nanquantile(agreement.values, 0.9999)),
+    np.nan,
+    agreement
+)
+agreement.gval.cont_plot(title="Agreement Map", figsize=(6, 3))
+
+
+
+
+
[5]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f01f385b430>
+
+
+
+
+
+
+_images/SphinxContinuousTutorial_13_1.png +
+
+
+
+

Metric Table

+

A metric table contains information about the unit of analysis, (a single band in this case), and selected continuous metrics. Since we did not provide the metrics argument GVAL computed all of the available continuous statistics.

+
+
[6]:
+
+
+
metric_table.transpose()
+
+
+
+
+
[6]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0
band1
coefficient_of_determination0.685261
mean_absolute_error216.089706
mean_absolute_percentage_error0.319234
mean_normalized_mean_absolute_error0.267845
mean_normalized_root_mean_squared_error0.372578
mean_percentage_error0.010022
mean_signed_error8.085411
mean_squared_error90351.664062
range_normalized_mean_absolute_error0.033065
range_normalized_root_mean_squared_error0.045995
root_mean_squared_error300.585541
symmetric_mean_absolute_percentage_error0.269394
+
+
+
+
+
+

Alternative Uses of GVAL Continuous Operations

+

Aside form running the entire process, it is possible to run each of the following steps individually: homogenizing maps, computing an agreement map. This allows for flexibility in workflows so that a user may use as much or as little functionality as needed.

+

Just like in continuous comparisons, homogenizing can be done as follows:

+
+
[7]:
+
+
+
candidate, benchmark = candidate.gval.homogenize(
+    benchmark_map=benchmark,
+    target_map = "candidate"
+)
+
+
+
+

The “difference” comparison function is the default used for the comparison_function argument in gval.continuous_compare and is the only continuous comparison function available by default. It would be advised not to use a categorical comparison function such as ‘cantor’, ‘szudzik’, or a pairing dicitonary because it could result in a very large number of classes.

+

Using difference in comparison:

+
+
[8]:
+
+
+
agreement_map = candidate.gval.compute_agreement_map(
+    benchmark_map=benchmark,
+    comparison_function="difference",
+    continuous=True
+)
+
+agreement_map.gval.cont_plot(title="Agreement Map", figsize=(6, 3))
+
+
+
+
+
[8]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f01f37525c0>
+
+
+
+
+
+
+_images/SphinxContinuousTutorial_25_1.png +
+
+

The following uses an abritrary custom registered function for use in a continuous agreement map:

+
+
[9]:
+
+
+
from gval import Comparison
+from numbers import Number
+
+@Comparison.register_function(name='divide', vectorize_func=True)
+def multiply(c: Number, b: Number) -> Number:
+    return c / b
+
+agreement_map = candidate.gval.compute_agreement_map(
+    benchmark_map=benchmark,
+    comparison_function="divide",
+    continuous=True
+)
+
+agreement_map.gval.cont_plot(title="Agreement Map", figsize=(6, 3))
+
+
+
+
+
[9]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f01f3635cc0>
+
+
+
+
+
+
+_images/SphinxContinuousTutorial_27_1.png +
+
+

Like in cateogrical compare, all metrics are computed by default if no argument is provided, metrics can also take a list of the desired metrics and will only return metrics in this list.

+
+
[10]:
+
+
+
_, metric_table = candidate.gval.continuous_compare(
+    benchmark,
+    metrics=['mean_absolute_error', 'mean_squared_error']
+)
+
+metric_table
+
+
+
+
+
[10]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
bandmean_absolute_errormean_squared_error
01215.10623289814.117188
+
+
+

Just like registering comparison functions, you are able to register a metric function on both a method and a class of functions. Below is registering a metric function:

+
+
[11]:
+
+
+
from typing import Union
+import numpy as np
+import xarray as xr
+from gval import ContStats
+
+@ContStats.register_function(name="min_error")
+def min_error(error: Union[xr.Dataset, xr.DataArray]) -> float:
+    return error.min().values
+
+
+
+

The following is registering a class of metric functions. In this case, the names associated with each function will respond to each method’s name.

+
+
[12]:
+
+
+
@ContStats.register_function_class()
+class MetricFunctions:
+
+    @staticmethod
+    def median_error(error: Union[xr.Dataset, xr.DataArray]) -> float:
+        return error.median().values
+
+    @staticmethod
+    def max_error(error: Union[xr.Dataset, xr.DataArray]) -> float:
+        return error.max().values
+
+
+
+
+
[13]:
+
+
+
_, metric_table = candidate.gval.continuous_compare(
+    benchmark,
+    metrics=['min_error', 'median_error', 'max_error']
+)
+
+metric_table
+
+
+
+
+
[13]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + +
bandmin_errormedian_errormax_error
01-3035.65527325.8582084263.23291
+
+
+
+
+

Save Output

+

Finally, a user can take the results and save them to a directory of their choice. The following is an example of saving the agreement map and then the metric table:

+
+
[14]:
+
+
+
# output agreement map
+agreement_file = 'continuous_agreement_map.tif'
+metric_file = 'continuous_metric_file.csv'
+
+agreement_map.rio.to_raster(agreement_file)
+metric_table.to_csv(metric_file)
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/SphinxContinuousTutorial.ipynb b/SphinxContinuousTutorial.ipynb new file mode 100644 index 00000000..51b5c92b --- /dev/null +++ b/SphinxContinuousTutorial.ipynb @@ -0,0 +1,718 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d9c0d99", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "40183645", + "metadata": {}, + "source": [ + "# Continuous Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4bbfe0e8", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import xarray as xr\n", + "import rioxarray as rxr\n", + "import gval" + ] + }, + { + "cell_type": "markdown", + "id": "3e5c08fe", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "markdown", + "id": "33d00a22", + "metadata": {}, + "source": [ + "In this example, the comparisons output of Variable Infiltration Capacity Model total annual CONUS precipitation in 2011 with that of the model output of PRISM, also total annual CONUS precipitation in 2011. \n", + "\n", + "- Livneh B., E.A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K.M. Andreadis, E.P. Maurer, and D.P. Lettenmaier, 2013: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions, Journal of Climate, 26, 9384⦣8364;⬓9392. https://psl.noaa.gov/data/gridded/data.livneh.html\n", + "- PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu, data created 4 Feb 2014, accessed 16 Dec 2020. https://prism.oregonstate.edu/recent/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "271aa18e", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(\n", + " './livneh_2011_precip.tif', mask_and_scale=True\n", + ") # VIC\n", + "benchmark = rxr.open_rasterio(\n", + " './prism_2011_precip.tif', mask_and_scale=True\n", + ") # PRISM" + ] + }, + { + "cell_type": "markdown", + "id": "4331a54f", + "metadata": {}, + "source": [ + "## Run GVAL Continuous Compare" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ad35fb26", + "metadata": {}, + "outputs": [], + "source": [ + "agreement, metric_table = candidate.gval.continuous_compare(benchmark)" + ] + }, + { + "cell_type": "markdown", + "id": "c601b584", + "metadata": {}, + "source": [ + "## Output" + ] + }, + { + "cell_type": "markdown", + "id": "ddc2cb91", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "d38aaeeb", + "metadata": {}, + "source": [ + "The agreement map in this case will be simply the difference between the two modeling outputs." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "810a5cbb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAErCAYAAAA7aTGEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydedwkRX3/31XV3TPzXHuy3AiCCoiKICpgEFBBWeLBIqcKEpOgoFET0V9exjOahBCNJ3iC8QBRBBWQQwx4oEZJECKIGkGQe49nn2tmurvq+/ujqnp65nl2FxB0kfnowz5Pn9XV1fX53qVERBhiiCGGGGKIIf6kof/YDRhiiCGGGGKIIR55DAl/iCGGGGKIIR4DGBL+EEMMMcQQQzwGMCT8IYYYYoghhngMYEj4QwwxxBBDDPEYwJDwhxhiiCGGGOIxgCHhDzHEEEMMMcRjAEPCH2KIIYYYYojHAIaEP8QQQwwxxBCPAQwJ/08I//Vf/4VSCqUU73nPe/7YzRniYcSJJ55Yvdu//uu/3uBx3W6XpUuXVsdeffXVf7hGPkicdNJJjI6Oct999/Vtj23f2M+JJ57Yd86OO+4475iJiQn22WcfzjjjDPI8n3f/brfLBz/4Qfbdd18WLVpElmVsvfXWPOMZz+D1r389l1xyyQbbvnbtWt7//vdzwAEHsGLFCtI0ZdGiRey555689rWv5Tvf+c7v3T9r1qxhxYoVKKXYZZddFjzmG9/4BieccAJPecpTWL58OWmasmLFCg477DAuvvjiBc/5xS9+wb/8y79w0EEHVedstdVWHHHEEXzve9/bZLt+9rOf8cpXvpLtttuORqPBlltuyYEHHsjZZ5/dd1y73WbrrbfmsMMOe/APP8QjAxniTwannnqqAALIE5/4xD92c4YYwDvf+U4B5Oyzz37Q555wwgnVu12yZIl0u90Fj7vggguq4wD5z//8z9+v0Y8QbrjhBtFay1ve8pZ5+2LbTzjhhA3+fOpTn+o753GPe5wAsmrVKjnhhBPkVa96lRxwwAGSpqkAcsABB/T12bp162SvvfYSQNI0lQMOOECOOeYYOfzww2XrrbcWQJ70pCct2Pavfe1rMjExIYCMjY3J8573PDn22GPlxS9+sTzhCU+o2n/YYYf9Xn10wgkniFJKANl5550XPGbVqlWilJI99thDDjvsMDn66KPlWc96VtWG//f//t+8c7bddtuq7c9//vPlqKOOkj322EMAUUrJBz/4wQ226VOf+pQkSSLGGNl///3lmGOOkYMOOkiWLFkiz3ve8+Yd/4EPfEAAueqqqx5yPwzx8GFI+H8iyPNcli9fLoBstdVWAsiPfvSjP3azhqjh4SD8pz/96QLIhRdeuOBxL3vZy8QYI0972tM2a8J/8YtfLGmayr333jtvXySrB4NI+Lfeemvf9v/5n/+RRYsWCSAf+chHqu2vf/3rBZA999xTfve738273o9//GN597vfPW/7N7/5TVFKSZIkcvrpp0un05l3zM033ywnnHCCPOEJT3hQz1DHt7/9bQHkr/7qrzZK+P/93/8tq1evnrf9Rz/6kYyNjYlSSm644Ya+fc973vPkP/7jP6TdbvdtP+usswQQY4z8/Oc/n3fNq666SpRSsssuu8hNN93Ut6/b7cp///d/zztnbm5OFi9eLM985jM3+cxDPPIYEv6fCL7xjW8IIPvvv7+85z3vEUBOOeWUP3azhqjh4SD8008/XbTWcuSRR847Zt26ddJoNOSQQw6RQw89dLMl/Ntvv1201nL44YcvuP/hJHwRkXe/+90C9Gmg22yzjQBy5ZVXPuB7TE9PV0L15z//+U0e/9Of/vQBX7uOubk52XnnnWX33XeXX/7ylxsl/I3hL/7iLwSQD33oQw/4nEMOOUQAede73jVv3+677y5a63kCxANtx0ICwRB/WAx9+H8i+MIXvgDAK17xCl7xilcA8OUvf5miKDZ4zg033MCf//mfs3jxYsbHxznggAO48sorufrqqxf0k0Y/8tVXX83ll1/OQQcdxOLFi1FKMTk5WR132WWXsXLlSrbYYgsajQaPf/zjefOb38yaNWsWbIeIcO6553LwwQezZMkSms0mu+22G+9617uYm5ubd/yBBx6IUorbbruNL3/5y+yzzz6MjIyw7bbbctppp1X+2v/7v//j2GOPZcWKFYyMjHDQQQdxww03bLA/Hky7633x3e9+l4MPPpjx8XEmJiZYuXIlN910U9/xO+64I+9+97sBePWrX93na34wfvatt96agw8+mIsvvpj169f37Tv//PPpdrvV+18I119/Paeddhp7771333O+7nWv46677pp3/G233YZSigMPPJCpqSn+5m/+hu233756Rx/84Adxzj3g9gN89rOfxTnHscce+6DOe6h4+tOfDsAdd9xRbbv//vsB2GKLLR7wdc455xxWr17Nfvvtt9E+jth7770fZEs93v3ud/Ob3/yGs846izRNH9I1gOrcLMse8DlPe9rTAOaNhR/84AfcdNNNHHjggTzlKU95UO047rjjAPjkJz/5oM4b4hHAH1viGOL3x+TkpDSbTcmyTNasWSMiIvvtt58A8o1vfGPBc6699loZGRkRQJ761KfKMcccI/vss49orStz5wknnNB3TtQy//Iv/1KUUrLPPvtU501OToqIyFvf+lYBJMsy2X///eXII4+s/Jo777yz3HPPPX3XtNbKscceW/kUDzzwQHnZy14m22+/vQDyzGc+U+bm5vrOee5znyuAvPGNb5QkSeT5z3++vOxlL6u0r1e96lXyy1/+UpYvXy677rqrHH300fKUpzxFAFm6dOm8NjyUdse+ePOb3yzGGHnWs54lRx11lDzxiU8UQJYtWyZ33313dfzf/u3fVmb2/fffv88fffPNN2/yHcf7ff7zn5ezzz5bAPnMZz7Td8wBBxwgIyMjMj09vUEN/+ijj5YkSWSvvfaSl770pfLSl75UdtxxRwFk6623ljvvvLPv+FtvvVUAefazny177723LF68WI444gg5/PDDpdVqLThONoVnPOMZAsy7VwQPs4b/xS9+UQB5ylOeUm17/OMfL4CcfPLJ4px7QPc47LDD5rkGHiyilWdDffazn/1MkiSRk046SUR6/f9gNfwbbrhBlixZImmayq9//esHfN6qVasEkHe84x1926PV8O1vf7vMzc3JZz/7WTnllFPkDW94g3zuc5+b943W0W63JU1T2X777R/UMwzx8GNI+H8C+PSnPy2AvOQlL6m2ffzjHxdAXv7yl8873lpbEdP73ve+Ba+1McIH5Lzzzpt33fPPP18A2WOPPeRXv/pVtd05J+94xzsEkKOPPrrvnNNPP10AOfDAA/sIstvtVqbAt771rX3nRMIfGxuTn/zkJ9X2u+++W7bccktRSsluu+0mb3vb26rJ3Dknr3zlKxeczB5Ku2NfaK37/OllWVaT5j/8wz/0nfNwmPQ///nPy9TUlLRaLTnooIOq/b/97W9FKSXHHnusiMgGCf873/nOgkJXNHu/+tWv7tsXCScKhvfff3+179e//nVlGt9QTMEgpqenxRgj22yzzQaPebgJ/5hjjhFAjj/++GrbP/3TP1X32XXXXeVtb3ubXHjhhXLHHXds8B4x2O373//+g2pbHRsjfGut7LPPPrJ8+fLKL/9ACf8b3/iGnHDCCXLcccfJc57zHNFaS6PRkHPOOecBt+3Xv/61NBoNAea5I2If/v3f/7086UlP6gsMBWSHHXbYqKl/7733FkB+85vfPOD2DPHwY0j4fwKIBPiVr3yl2rZ69WpJ01SazWalfUdceeWVAsgTnvAEsdbOu97++++/UcJfuXLlgu2IGuyNN944b59zTvbcc08xxlSkURSFLF++XEZHRxfUuufm5mSrrbaSJUuW9LUzPu/b3/72eee86U1vEkAe//jHS57nfft+9rOfCSDPfe5zf6921/uiTiIRP/3pTxe8z8NF+CIiRx11lGitq4Cz97///QLIJZdcIiIbJvyNYdttt5Vly5b1basT/hVXXDHvnDPPPHOef3xj+PGPfyxAn7AyiEEyWehnUMAYJHznnNx2222V5UYpJd/97ner4621ctppp1VR/PWfJz/5yXLmmWfO+zaazaYA8otf/GJem9euXbtgNsGg9eYjH/mIPOlJT5K3ve1t867x7//+7/PGxwMl/Pe+9719z9BqteSTn/zkgt/3QiiKQp7znOcsKNyK9MZTkiSy3XbbyaWXXirr16+XG2+8UV7wghcIII973ONkdnZ2wesff/zxAsjXvva1B9SeIR4ZDAn/UY6o2S1evHhexPBLXvISAealML3rXe8SYMFJR0Tkwx/+8EYJ/xOf+MS8c+69995KiNgQTjnlFAHksssuE5He5P+CF7xgg+esXLly3iQbCb8+gUd85CMfEaAyidYxPT0t0J+y+FDaLdLri8997nPzjp+ampp3H5GHl/BjkObpp58uIiJPfvKTZcWKFVIUhYhsnPBXr14tn/3sZ+XNb36znHTSSRU5rVixQoDKLSTSI5ylS5cu2K7JycmKYB4IuXzzm98UQI444ogNHlO3MG3o57rrrus7JxL+Qj9ZlsnHP/7xBe915513yoc+9CFZtWqV7LDDDn3nvfSlL+17po0R/h133LHgvR+owPXb3/5WxsbG5gmJD9ak32635cYbb5TXve51Asjhhx++wRTOOl772tdWgnL9/UdEUgfkxz/+cd++Tqcj2223nQDyyU9+csHrRzfhQnPHEH84JAzxqMYXv/hFRIQjjzySRqPRt+8Vr3gFX//61/nCF77Aa17zmmr73XffDcD222+/4DV32GGHjd5zof233XYbAL/61a9QSm30/NWrV/edc+WVVz6gc570pCf1bdt2223nHTc2NrbJfd1u9/dqdx3bbbfdvG3j4+Pz7vNw44UvfCHLli3ji1/8Is9//vP5+c9/zutf/3qSZOOf9Lnnnstf/dVfMTMzs8FjpqenWbp0ad+2xz3ucQseu2jRIhYvXszk5CTr1q1j2bJlG71/DDSMfbQxnHPOOZs8ZhCrVq1ibGwMpRRjY2PsuuuuvOxlL2ObbbZZ8PhtttmGN7zhDbzhDW8A4Oabb+aMM87gs5/9LBdddBHnnnsuxx9/PADLli3jzjvvXHAsbrfddohI9fcLX/hCLr/88gfc7lNOOYU8zznrrLMe7CP3odlssscee/Cxj30MYwwf+chH+MhHPsLf/u3fbvCc973vfZx55plsueWWXH755fPePfS+nd13351nPvOZffsajQbHHXccp59+Otdccw1/+Zd/Oe/8iYkJgL7g3iH+8BgS/qMcn//85wG4+uqrec5zntO3L0arf/e73+W3v/3tBiftB4tmszlvW4zU3mqrrTj00EM3en5sRzxnl112Yf/999/oOQsRidYbTjLZ2L46Hkq7H8p9Hm6kacpRRx3FmWeeyd///d8DbDJy/Le//W2VefHv//7vrFy5km233ZZWqwXAfvvtxw9/+MM+4nq4sWjRIsALFY8EzjjjDHbccceHfP5uu+3GZz7zGdatW8eFF17IJZdcUhH+0572NO68807+53/+Z5Pj9cHi4osvZvHixZx88sl92zudDgB33nknBx54IADnnXceW2211Sav+cpXvpKPfOQjfP3rX98g4Z911lm8/e1vZ9GiRVx22WUbrOgXx/6G+jZuH6yaGBEFvcWLF2+y3UM8chgS/qMY1113HTfffDMAv/71r/n1r3+94HEiwhe/+MWKGLbeemugP02pjg1t3xiiprt8+fIHrJnFc3bdddeHpM09HHgo7d5c8IpXvIIzzzyTyy67jCc+8YnzNK9BXHrppeR5zt/93d/xN3/zN/P2/+Y3v9ngubfffvuC26emppicnKTVaj2gyXzFihWAL027OePggw/mwgsv7LPqvOhFL+LSSy/lvPPO49RTT33Y7zk5Ock111yz4L5Op1Pti0LAprB8+XKgl4I4iPPOO49TTjmFkZERLrnkEvbcc88NXiumNq5bt27B/fF9RkvAIOJ5DyYNcoiHH8M8/EcxYu793/3d3yE+HmPeT8zxjscClXZy4YUXLqjNnX/++Q+6Ldtttx277rorN910E7/85S8f0Dn77LMPixYt4pprrvmjEcBDafdDRcyHLsvyYbnefvvtx9Oe9jSWLVvGSSedtMnj46S7kBviu9/9Lvfee+8Gz12zZg1XXXXVvO3nnXceAPvuuy/GmE224clPfjJJknDLLbds8thHEpuyYkThue4aOvHEE1m2bBk/+MEP+r6nh6s9C/3ceuutAOy8887VtgdqwYgCws477zxv36WXXsqrXvUqkiThwgsv3KTF4rDDDiNJEm688cYFv9V4rygYDCIqJhsTKoZ45DEk/EcprLWce+65ABstYPJnf/ZnbLvtttx8881cd911gNdenvCEJ3DLLbdw+umn9x1/zjnnPKAFNBbCP/zDP+CcY9WqVVx//fXz9q9Zs4ZPfepT1d+NRoPTTjuN6elpjjjiiAU1zDvvvLNyWzxSeLDtfqiIfuSHk+yuv/56Vq9ezVvf+tZNHvvEJz4R8MLf7Oxstf3OO++cZ0peCH/3d3/XV4To1ltvrRZpOuWUUx5Qe0dHR3n605/O3XffzZ133vmAznkksN9++3H22Wf39UPExRdfXPnSjzzyyGr72NgYZ599NkopXv3qV/Ov//qvC2rbv/vd7zZoJfvoRz/Krrvuyv/7f//v936G+++/n0996lMLFqe68sorOe200wBf6KmOH/zgBxx55JGICF/+8pc55JBDNnmv5cuX8+pXv5qZmRne8IY39C1G9LnPfY4rr7ySZrM5r1gXeIvEjTfeyPbbb89OO+30IJ9yiIcTQ5P+oxRXXHEF9957L0984hPZa6+9Nnic1pqjjz6aD3zgA3z+859n7733RmvN5z73OZ7//Ofztre9jXPPPZfdd9+d//u//+MnP/kJp5xyCh/72MceVIUu8BW1fv7zn/P+97+fvffemz333LPSTP7v//6PG264gbGxsb6gnre97W384he/4POf/zy77bYbT3/609lpp53I85xbbrmFm266iac+9am88pWvfMh99Ui0+6HgkEMOodls8sEPfpD//d//ZZtttkEpxVve8pZ5QWCPBF784hfz5Cc/mZ/+9KdV3ESn0+E///M/2XPPPdlvv/249tprFzz32c9+Nnmes8suu3DwwQdTFAVXXXUVc3NzvOIVr+CII454wO1YuXIlP/nJT7j66qsr//hCWIg8InbYYYffa0XIm2++mZNOOonXve517LXXXuywww60221uueUWfvGLXwBw8skns3Llyr7z/vzP/5wLLriAE088kdNOO433vOc9POtZz2LFihVMT09zxx13cOONN+Kc41nPehZPeMIT+s5fvXo1t9xySxU4+/tgdnaWv/qrv+KNb3wje++9N9tttx2zs7P88pe/rJ7hTW96E6tWreo77/DDD6fdbrPTTjtx0UUXcdFFF8279nOe85y+QF+Af/3Xf+VHP/oRX/ziF/ne977HM57xDG6//XZ++tOfYozhk5/85IKBwD/4wQ8oimJeXw7xR8AfMCNgiIcRsTrdO9/5zk0e+5Of/ESAvrQtEZHrr79eDj/8cJmYmJDR0VHZf//95Vvf+pZ84QtfWDBtL6aGbSrV6JprrpGXv/zlss0220iaprJs2TJ56lOfKqeeeqpcc801C57z9a9/XVauXCkrVqyQNE1lxYoVsvfee8tpp502LwUrpuUtVGQlVqHbUL8Q8oV/33Zvqi82dJ/LL79c9t9/fxkbG3tQqVuDaXmbwobS8tauXSuvfe1rZccdd5RGoyGPf/zj5a1vfavMzs4u2K8xLey5z32uTE5Oyute9zrZZpttJMsyedKTniRnnHGGlGX5gNoUcfvtt4sxZoOrybFAetvgz9Oe9rS+czZWeGch/OxnP5N/+Zd/kUMOOUR23nlnGRkZkUajITvssIMceeSRcumll270/DVr1sj73vc+2X///WX58uWSJIlMTEzIHnvsIa95zWvk29/+9oIV/DZVaW8QG0vLm52dldNPP10OO+wwedzjHietVksajYbsuOOOcswxx2x0bG7qZ0Ptm5mZkb//+7+XXXbZRbIsk6VLl8rhhx++0WJEJ510kgDzvuMh/vBQIo9gSO4Qj0qcfPLJfOITn+C8887j6KOP/mM3Z4g/Im677TZ22mknnvvc5z6omv+bwste9jIuvvhi7rjjjgcUcT7EoxPtdpttttmGJz7xifz4xz/+YzfnMY+hD/8xirVr11Y56HV8+ctf5tOf/jSLFy/m8MMP/8M3bIjHBN773vfinOOMM874YzdliEcQZ511FpOTk/zTP/3TH7spQzD04T9m8ctf/pJ9992Xpz71qTz+8Y8HvF/zlltuwRjDJz7xCUZHR//IrRziTxV77LEHJ5xwAmeeeSannXZala43xJ8O2u02p59+Oi960Ys4+OCD/9jNGQIYmvQfo7jvvvt4z3vew3e+8x3uuusuZmdnWb58Ofvttx9/93d/x7777vvHbuIQmwEeKZP+EEMM8YfHkPCHGGKIIYYY4jGAoQ9/iCGGGGKIIR4DGBL+EEMMMcQQQzwGMCT8IYYYYoghhngMYEj4QwwxxBBDDPEYwJDwhxhiiCGGGOIxgCHhDzHEEEMMMcRjAEPCH2KIIYYYYojHAIaEP8QQQwwxxBCPAQwJf4ghhhhiiCEeAxgS/hBDDDHEEEM8BjAk/CGGGGKIIYZ4DGBI+EMMsZnjXe96F0qpP3YzhhhiiEc5hoQ/xBAB55xzDkqpvp8VK1Zw0EEH8a1vfeuP3bxN4pZbbuFNb3oT++23H81mE6UUt9122x+7WUMMMcRmguSP3YAhhtjc8J73vIeddtoJEeHee+/lnHPO4bDDDuOb3/wmhx9++B+7eRvED3/4Qz784Q+z++67s9tuu3H99df/sZs0xBBDbEYYEv4QQwzgRS96Ec94xjOqv//iL/6CLbfcknPPPXezJvwXv/jFTE5OMj4+zhlnnDEk/CGGGKIPQ5P+EENsAosXL6bVapEk/fLxGWecwX777ceyZctotVrsvffefPWrX513vlKKU089lYsuuog99tiDRqPBk5/8ZC677LJ5x37/+99nn332odlssvPOO/OJT3ziAbdz6dKljI+PP/gHHGKIIR4TGGr4QwwxgPXr17N69WpEhPvuu4+PfOQjzMzM8IpXvKLvuA996EO8+MUv5vjjjyfPc8477zxe/vKXc/HFF7Ny5cq+Y7///e/zta99jde97nWMj4/z4Q9/mFWrVnH77bezbNkyAG688UYOOeQQtthiC971rndRliXvfOc72XLLLf9gzz7EEEP86WJI+EMMMYDnP//5fX83Gg0++9nP8oIXvKBv+y9/+UtarVb196mnnspee+3FBz7wgXmEf/PNN3PTTTex8847A3DQQQfxtKc9jXPPPZdTTz0VgHe84x2ICN/73vfYYYcdAFi1ahVPecpTHvZnHGKIPwV0Oh3yPN/kcVmW0Ww2/wAt2rwxJPwhhhjAxz72MZ74xCcCcO+99/KFL3yB17zmNYyPj3PEEUdUx9XJft26dVhr+bM/+zPOPffcedd8/vOfX5E9wFOf+lQmJib4zW9+A4C1lssvv5yXvvSlFdkD7Lbbbhx66KFceumlD/tzDjHEoxmdToedHjfGPffZTR671VZbceuttz7mSX9I+EMMMYBnPvOZfUF7xx57LE9/+tM59dRTOfzww8myDICLL76Yf/zHf+T666+n2+1Wxy+UM18n8YglS5awbt06AO6//37a7TZPeMIT5h33pCc9aUj4QwwxgDzPuec+y69/uj0T4xsOR5uaduzyjDvI8/wxT/jDoL0hhtgEtNYcdNBB3H333fzqV78C4Hvf+x4vfvGLaTabfPzjH+fSSy/lyiuv5LjjjkNE5l3DGLPgtRc6doghhnjgGBtXm/z5ffDP//zPKKV44xvfWG3rdDqccsopLFu2jLGxMVatWsW9997bd97tt9/OypUrGRkZYcWKFbzlLW+hLMu+Y66++mr22msvGo0Gu+yyC+ecc87v1dZNYajhDzHEA0D8UGdmZgC44IILaDabXH755TQajeq4s88++yFdf4sttqDValUCRR233HLLQ7rmEEM8FuBwuE3sf6j4yU9+wic+8Qme+tSn9m1/05vexCWXXMJXvvIVFi1axKmnnsoRRxzBD37wA8C76FauXMlWW23Ftddey913382rXvUq0jTl/e9/PwC33norK1eu5OSTT+aLX/wiV111Fa95zWvYeuutOfTQQx9ymzeGoYY/xBCbQFEUXHHFFWRZxm677QZ4jV0phbU9/+Ftt93GRRdd9JDuYYzh0EMP5aKLLuL222+vtt98881cfvnlv1f7hxjiTxmFuE3+PBTMzMxw/PHH86lPfYolS5ZU29evX89nPvMZPvCBD3DwwQez9957c/bZZ3Pttdfyox/9CIArrriCm266iS984QvsueeevOhFL+K9730vH/vYx6ogw7POOouddtqJf/u3f2O33Xbj1FNP5cgjj+SDH/zg798pG8CQ8IcYYgDf+ta3+MIXvsAXvvAFPvCBD7Dvvvvyq1/9ije/+c1MTEwAsHLlSubm5njhC1/IWWedxXve8x6e9axnscsuuzzk+7773e8G4M/+7M/4l3/5F973vvdx0EEH8eQnP/kBnb9+/Xr+8R//kX/8x3/kqquuAuCjH/0o//iP/8hHP/rRh9yuIYbYnOEQ7EZ+HN5tNjU11fdTj7tZCKeccgorV66cl7Vz3XXXURRF3/Zdd92VHXbYgR/+8IeAr3r5lKc8pS+l9tBDD2Vqaoqf//zn1TGD1z700EOrazwSGJr0hxhiAO94xzuq35vNJrvuuitnnnkmf/3Xf11tP/jgg/nMZz7DP//zP/PGN76RnXbaiX/5l3/htttu44YbbnhI933qU5/K5Zdfzpvf/Gbe8Y53sN122/Hud7+bu++++wFdc926dfzDP/xD37Z/+7d/A+Bxj3tclf43xBB/SnA1Ut/QfoDtt9++b/s73/lO3vWudy14znnnncd///d/85Of/GTevnvuuYcsy1i8eHHf9i233JJ77rmnOmawfkb8e1PHTE1N0W63+7KAHi4MCX+IIQJOPPFETjzxxAd8/EknncRJJ500b/vgJLKhwLyFFrY54IAD+OlPf7rJay6EHXfccRgEOMRjDoUIxUbGfdx3xx13VBY6oC/2po477riDv/mbv+HKK6/8k4vqH5r0hxhiiCGGeNRiY+b8+AMwMTHR97Mhwr/uuuu477772GuvvUiShCRJuOaaa/jwhz9MkiRsueWW5HnO5ORk33n33nsvW221FeDz/gej9uPfmzpmYmLiEdHuYUj4QwwxxBBDPIphZdM/DwbPe97zuPHGG7n++uurn2c84xkcf/zx1e9pmlZxMuAzaW6//Xb23XdfAPbdd19uvPFG7rvvvuqYK6+8komJCXbffffqmPo14jHxGo8Ehib9IYYYYoghHrUoURRsONe+3Mi+hTA+Ps4ee+zRt210dJRly5ZV2//iL/6CN7/5zSxdupSJiQle//rXs++++/LsZz8bgEMOOYTdd9+dV77ylZx++uncc889vP3tb+eUU06pLAsnn3wyH/3oRznttNM46aST+M53vsP555/PJZdc8qDa+2AwJPwhhhhiiCEetXDifza2/+HGBz/4QbTWrFq1im63y6GHHsrHP/7xar8xhosvvpjXvva17LvvvoyOjnLCCSfwnve8pzpmp5124pJLLuFNb3oTH/rQh9huu+349Kc//Yjl4AMoGUb5DDHEEEMM8SjD1NQUixYt4sc/34qxjZTWnZl2POvJ97B+/fq+oL3HIoYa/hBDDDHEEI9aWBR2I2b7je17rGGzI3znHHfddRfj4+MLLkIyxBBDDDHEowMiwvT0NNtssw1aPzIx4oVoCtnwtYuhDbvCZkf4d91117wCCUMMMcQQQzx6cccdd7Dddts9Ite2aOxGEs42vXjuYwebHeGPj48DcManP8eyFcuZWNEiSUZpamgkXXLXxSgLlKAUWjURydGqRekEpUZJ9SSF7SJkGJUidDBaIaIoXU5iUkqbY8XixNdhcuJQwfRjlAYm8DWaphFAK0WqUpQyOCmxYmmYJksa22NlhnXd+wGFE4d1JanOMDrDqGXMlfehVY4CEp1hxaKVRqHQSiMilFICglGJb0fHkGQalSq2am1FovySrEpRGaiUBkKOqYhCaVAINpSO1sFCopSglEIEnPVniMRrqXC+v87s7CyNkQyjEqwUaOWHiA4flCAo1O9tfRERrIBRcTnZuhj+8Ft2rHOUnYKs5fvRimOyyGloS8OkJCpFoSgkr/7t2pzC5eQ2RxBGklFG0xE0fuW7deum+PWvbkUBY+MTpIlBG42IQymNOId1FqUVk1OTNEYatDtzLF4xztiiUebKGaw4Mp2BbVA6hUk1pTRxklFIwqiZxeg2IiWCxommlSQ0zXJmC4dSjvFUKJ1/T6Opwijfr4KicIKgmc4nmS4m8dNjhtEpILSSBls0tyRVOowRqYKcjPbvoWMd97Ytt88U897Njq0u3XI1Wms/pgS/VIkCUQnOCqIsVndwUuKnnJJY/0yFsSC1K2ulUSqOUf+NWGdRSpGoJHy34MQCglYKrQyCYJRBoSnFhivaMF4NpfM1zP33rasMbQUoNKPpBNuPbo9WmryTo1OD0boa6/47ddw2/RvmyhmofQsimkWNpWzV2hpQGKVYXzicwHgq/G72bpzMIYB1Fhvarqpxr8K3ZdCqgVIaP5+UJNqS6pTC5ThnSXRG7LGtRrZmIu33Swswma/ldzO3o5QBcWFrisMvAuXE90EhE2EOcOwwNsYWjSUU4r/zVCmswGw5x+3T95OaOaxLKESRqgKRDMSEPihDbyTMloux0qAQYWZ6mr96wX7VvP5IQEThZMNzhmxk32MNmx3hx4/rSU97Em5kCxyCWX8vMzNz6JGMTienkWqUNjiVkCaKolvQbCSkSlGW6+i4kvZcTqtlMOMtsokVNMws1jkcCaPJCIUryJ0n/YZuULiC0vkJzWjDWDIBtIBxwLOjAj+RB3I0yjCWTtAuhU46g4gnVhsm2UynbNFcxp1zJUZNkWjf3VYsmc5ItCd3ESF3BYk2aKWZyqdIjKFpmqQtw8TIBIlOcQJGDxC+ciAg+EkS8d93DMUc5GUJ/6kmutpkJghGGxojvm2lOHRF7v6CUUB4KITvJ0xPRuCjZ+OV47ZHyo3jrCNPC5qjDQRPao0yRylHw2RoNIJggzCnGPPCGFJ73wlKeeGw67ps0xohSzKU0rSaTcqyJGs0yPOcNE2Ynplh3bp1LFm6mNGJEVSiuOuuu2m0MlyjIGtkVb8o6yiKFTRHJ9BKkVtP7qkZoaFnfK+rUVLdpWUMK5rLERRzZcFMuZaGbjKaTpCoKLRCKTBTOIyChk0YsyOAJnczdG0HK45GkrJ4bDwIoJ6snUCieu9ixAllw6JajqncoRTkVhhLNVuMznFvZ11F2kZ5+hRxlAJaDEY7FKM4LCIWSML4U+ggiPp+NhgNWpkwPspqnLqwAIqII8GgVRII37dThe/WKEPhHKlY3xalA+FpHC1ESowyCEkgWO/h1UozmowyEfqim+YkqRfg6t+IE2HrbGva5RwgdGw7CIQwko2yeMy/g1JKKKYRUUwVijJbhFE5RjkSNYGIQysLWJwISpkgiMR2eSEk0RaF80qCeIXCz0HOf+NNh0vKsCKcqr7pxBjG1BgQBf/wzJLjpEEpLURSUoRMz+JkBNMcJ2mNMaYVSvUUhqyASS2IjGCUpm2bZLrLunXjiGgSrVBKaKQK5zIaqgVoOqXFJr139EghF0O6EZN+PiT8Cpsd4Ue00rVkjRTHGHbREspSMeM0BUI2MoG1DnElDSkZScfRJgEpcYkgpCRO0RhJSUaFZjJKpmFOZtHiaNs2Iq7S6l343WhTTTatJCEBljQfh1YbHkxOFO1S+8kqTJKiCgSLVoZWosj0OLmbprSdSrMvXIEVL+lrDCiDiFBI4YWAhqXb7eJyw2p9PxPZBKPJmP+klaCNJ/XCKhLlP1Bn/YRtmE/0PTFBKBysyy3LGoakTrQCRieVYGLCc6v6+TWrwEOBrp0a2+icJ5lU9/T8B3KHDR+7gLXAz6CVZUMrGEmy6ujCQaIVRiVoDIVYShEybUCBE6EUi0FhlCFRKSbV7LDdtqFPwk2UF5yUhsVLR9liq8UorRgrm6xtr2HF6BLS1FC4AsRrmQDWlqiZNXRzhU3H2GJxxmjSxtFistuimWgWZ/59udB5BhhNUmALBGhoReEgd0LL+Lc0kXnNeyxdDCwGvPZ399xdfuwDuXOUThhNA3GqaAWS8M6EJZmiaTRbtjSIouuE8VRTOkASIFrIJJC/RqFROifQeSBuCQRde1NhTDlJsS4H7fskCqFSXTMKCUEQw5OfExe+K79dK02iDKXkUGn6jkQ18Hq1AwpUHwnaSoDoR290Sej3rVtb4UJ77mn/jvva91XPXjqH0pp2OccdM7cH66HC6AaQolSOUKBCDThoIaTh7wLrMoyaA1ViZQxxGq063moU/lfrNNZ217C2uyZYlbzwlOggUKlgcRSHVrE/HUoJmZ7xVhEpvaVD2hROWN9tkrUaKIHSeSuPE8GPOqGQhET7Pl66qMRJGAMkaGUpbYITP5dlaUJemgX69OGFQ+E2YtLfWJ39xxo2W8JXStBqDamapDk2xtKxMbp2lHU5zJUKK/7zXqTm2GY8ozXSItGKtp1jOp/DiaWUglYyhogltxatBKUSlFKUrsSJ4MRRUFSThjcJKhKdYm0bJyVGN2qauJ/AvMlbSHXCksYIRi0l0Skd2w5asdcM7u/cjVJCKxmla6cBP/2VUqJFo5XCYVGi0XoEaDOSjmKURrSgi5TZuTkSElrJCAbjp5ZAkkqi9uH7TVe20ToNCnUS1ArGU72AUFCzHqjfh9Zrd65MDf6ahp6mr5XXCLXutc0Ge7LRG7+/iASdxl980wqE8ooe4vtKUZmNO9YxU1gWZ5pEa7TWZChKZylciS9IaUlUQuFyRDkSZXC4QDAqqqGhXYJ2ngCU1qQ6JVE5aZJSUnryUwoYBTogOU4y/vqnfoGcf9vzBTRaGdOFwiihlfgxmVshSTQto7xJGyicYJSilXiJJtUSxpTvSytRkPF94ML7iEJup5zhvvbvAMWarkMrhUKjVYoKz1e43PcfmpZpMJEuZUJroGTGBfdaeBvefBpN00XNLqQRnA/ckoU0PkOibRgvgkJXE7UK5Cbiny1SfxTOpdZOrzkb0EllcfPHApQkygAGKyVCWd0vWhl6oyX8q3pjWMUfpdDhiUVUJZTMlZPcOZujlL++C0Tr7W8Cygazd5foGhPJ0TgUhT9OTQaBRGNUgVYGKykiBSgThB3nn61qq0LCe1NRHqisBBBdliIaEBJdhPMsSiXh3Zbkrs2svZvODKE/E1KtsNLBicWoqAgkKNdk7WwDIUMZRak0tmMxOqF0JWlq/HOUD30t+geKYZT+A8dmS/gd28E4KCno2g6pThlNJ1iqWqyWUTpWU3ZL5kiYTGCy3WF5U2O0YRFjwfeaUnTazJVzgcwzL/U6B+IwJCTiTYGFLTDamwmVUszmbVqmyVxRkGovXQvC+nyS2XKWhmkyU86yZXMrSsnpljnWOCa7k8FyoDFK07VdLJYl2VKMjDFdTld2da2V/+yVJ350AmJwYkmMprA5qTYYa2hPdpkr25WFIGKeLrvRsa2qewN0B2QCAfJuibPzP1JVTbQDN93E7RY8Xm1gG16IqZv4q7bFybt2zUrDDxqibKJhRV7grO1ZKZT35XfKOQpXcM9MSaJTxpPxYN0IflXlApEXOIQ5OxMsQglaae+DrzdXHNG/Yp3D0qG0lsw2MaR+TLgShaBUk67VTM2M8a97H4peNIpbN0vZLVHNBiuaCa3ECzQjwZ/jXHCNaEXDKHqvS6oyogqYs0LpYCz1WpBGUMq7opqmSeEsWim6rhtMH1HTjNq6ItVJFcOg0BS2zfp8Eu+LNlhxQWvES6HBvK6Vd5v4vkgQvJnfv2MXzOpS3adHVjro7gI0g1k5R8S31QssGqMztFJYl6NUEOLQlQXJuuCaCdtFKZRypDr171W8tSFaEaKlz9ZieSJi9+oFheD4TUhwC05564bKyMxijOpgxVK6stcHKroJfHu9q6OsXw0lDlFtrCShHy3gcGIACXE5pvrmU1ISnQZFpCR33UpgkiDQ+H5qYSX3yg8ahQRrhWBdG+s6RFHaKEPu/LeX6AzQdMtFWDeKdQk5/jmcFUyq0Q0vzBkBo3NS3YFs7Ua/yYcDhRgK2bAlYRil38NmS/jxw1UkCBlOHFP5OrSaYzw1NI2m4xRT67pMzij0WAuTwUsvvAgxgqQCVnkX9+ICNZmSrtdIAsuefh/3rR0HgSSztJo5U7ctZsnj17H2/nGvJrcNOIUqgg4pIEFk1l2FaJBUUGE2UIXCNXrOcZkoYDolmVPYpuBGLMopdNubnsycphx11e+SCpIIomHkd5rZJxWQONT6FN1RmB1nsaXBpN5S0Z5sohsW1zHotvEEqH07YxsiRPvGV/sIbaxUhBpLVCcNvBAFGN8+VM35Hvc5VfXFPNR9aPXrir8mKrQxXMsrZdJb6UEWODdcV2L/OwVOzT/W88P88yvVp9cvdTegGmxnbbuo2M/R9l27phYWchnGa1d9tJDQE7aftd/hNG3BjotGGU2CGTeIM06g42BN17JF09A0ipnS0TSKZpCSYqzHiNGI8Tdpl0KiIdWKkWSC7UZHmS0dc6VgFCzKNA1jiPpq1/r7NbRG1Tpjupji9pl7KJ3QsRM4yUh0h0QLRnVJlSXR/ho66t7iBYJoNYpEpUj961HOm5ZFVSKAoLAyjlYdjCorTbu6sjhveVBUvaOVD9rz95TgipPK9x7deDoIcwqF0jFotsn9nQlSXbLDmPECVe21WAdaSxXjUI85icJj9bsILZOx4/i2GKXp2Jzfzd5G11qUKlGYoFn7NmlsEEgUSlQQGIIGryxeV/bP4ihCQJ8gYlHaB5uOpuMszhbTdT7QNHUpnbJD6UJhWeXdGnEAauK4SkHliHO1UebJProylTLkLqNtx5jKx3q2g8TP06rrMNabzluJ8q5LOjSzDq5Yt8Agf3jhNhGlPzTp97DZEj5kaGVwUuDXQ4qTRMlYOsdcmWFNE2korFU0Win3lwrTUdgGSCKQOVq/TeiUGa17FPkzZkluGOXuO5egAtGUwPq5MbSDNXdPYEZKXCdBEkG1dR8xSCqQCFIqT87K38d0NHbEQcsiTmGmE6SdgBbKcUF3NenahGJZiTOgS08UyazGNoO5sFS4QPpz2znMmgTXEGRxgTUJcucorulI7zEct+o/+dxlB2K3DIFMWnpkbQfIVQUyjH/HXX3kHhhsoe+iOlA8Oargja0LCTJwfCUdEYSDOmMu0ACpnUdQNlE+n0YNNKp2nkj/39V96yQsqldbU1TweQy2pfZ7bAMDAlLt/ioEPdeFwL7r0d8FfYJU7K8F+jq+gl2WC8VUTr5+ko4Io60RkpABoBPvx+/klt/MFSxqaBKjSRoJhYJMx4A9oW2nyV0nmKu9WyDVGU2T0kwaaAWZFnInJFr7GJTQlvXWE0DTaBIVTbwF08UsM8VynFiaZj2ljFNKRrdMEFmMomcy9hYHQSuLUZaRZD2aPFiLQEhQOCRkyyhliBKa98hPhcj+6Mf3mqe3HhTxLXkClBIn0TrRI/po9VGBELwFLyVR3nVTuOC7D5aA2VJx95xl7XTBVuOKMRSpVpTiPe2KnjKigdFkMVu2fLtz12Uqnwx9lWHF0NCGTEcTvA1krYEMyPFzmwApIk1KSXDSwqguiV4H0hOBpBpLUvnVrQOlNF2b07Zd2mXCZDerYnFaiWBdl1JyrOjw/A6HxuDN9eBqgYlhTgk0aVTGVLGEqXwEW2nR/thECSOJkNLFuhwfcqjQOsdaQCxWNqQFPHyworEbCdqzw2KyFTZbwl8/NY5ppBhTolUbSxHSc3Io1zOabIvoFGdzXv/TK/jqS45mfeE4c9XL2GGsZNW/fpNyFDpbCEtvgPv3Lxi5YZTOCkey1pMpS3KSzFLe10RZ0HMGq0ClDtU2Pa4JxK4ckAeyzxwUGl16bV+VynNWIriJ0pOWVZBrXOZwKehZgzQczihw2n/3ShADtiUkc4rSeGuApJpk0lBmiSeXLTuo+xuIhnN/tTds14HJzLfJUNkdxXhiDs2uaaP9/VvXVKXvQCqmqp5fAKWQwEhRu/WWg97xFeK1VO1yNQZckEjxgknU9CVo3qJUf2PpCTCVIBMb6mozsev9HY+r2lsnerylBtXrw4UsAb2x0LvAPE2+ZiXoF6iqebp3iartYYMNWqLAIV+5tLJMDN7jmpe+mKIoOfry3gIb5/7ZStpGsXi8ydKJZhWbsC6fpV3OABalsiD3dBlNWmzV2oqGaQbCDM0Uqt8nUsFhmSlmcaKZKjp0bMlskVNKk0Qp2nY5XdvCDRi6uy6JPYTU9okYxtJ7A2lqFJ7MlTJo0VVAnyfrFKMtPtCthGAKj6ynlfFjQ5RPGVXi42bC83gXULQK+EA2TRbM16NAl4bJMKokVw7t2kxk0yzKFtO1bVJdUAoUkvnQPg0dJ/6TjZo8irG0xWjSQCnFuu5a1ufrAE2qfRCl7wUFyqCU9QGxkuIT8hQO46Pm3ThCFoQzP4i0jKHVjB8mIdvAx1f0LAAi/hm7do7ZUmPdItYXLboWWskIu0wonKyn63TltsiDFSBmyYCquTIi8Xshcbocq5G9d5y1EmFZQxhLHd08R2cd2qXDGJ8x1LUF2gilddhylEcaQ5P+A8dmS/idboOZqSZONCaZoNEoyLICY3IEn85j0oS50vHxg18aAo5gi6bmhV/+BmwP6YzCLS7oLspo3ZFiG6AL5SfSRGj+uknn8V1oOBixqKnEa/51SG+CliQQngMplQ8mFoVrBKaYSWCigNygGha62muUTnnTtQWVe/O9G3HojvaafUPQFsoJ5yeuwp9XTlgoPQu4+xtIIuRLHHLXmL/PaImaTD0RuwHtdVOQnkAAzNek6ZcB+jZGywHRuhAJOVxYVE8gqBF/ta8iZqncEMoFsgw37TMSVBaKqL3XLQy9a6AHNPyaQKJcTXioI6rVG3RH+Get+D4IJdVlohshujoWQEXwdQGq7/qxM2vyhFrAQiDw3K9/g+j2iPuP/d4lfOsFL2FyzQzSLRgdazCXlyhlybTBkkIICnOS0rY564v1LNeZ1+y16hlEFXRtl/X5JFZKOla4Z26UubLFSDKDlUU4lzDnWjgfirZgylXUq+to21EynZKaDj4wVhP951obSmexEoWAMvitUxQJqAJxCQ6DEodWZSB631k9slc48RkyKjTBiSNRGUoJzlpyp0l1yXTeRikfVGmxGCWMJF3ub99KWTrKToO1RYNEh3sh3hqgEhQJqdYoDHPlJKluULguqU4RSVB0K2OOFVdZJ0pXIlKE4GGNUinWjaFCkF5i5shtKwRdgqgRjCq8K0AFawa1oR2i50vnmM7XY9QsE+kYhRlhJMloGsO6bk7HOpY2FpOahJkiZ113BihRyqGQkJkhvYBjNB27iMnukspm0kyExZllcaMDtME1me1AXmqcS2mmCShHYXOs8xJ03l3wk3hYsenCO0PGj9hsCT9tGZYum8ZaRafboNNJmJ1uoDUkCdwnlqKYhjSldBqVO7YeMbzswvP55suP4vCvnQ8o1FTC9M6O8f/TzOzkMB0/CS3afj0zs0vQkymN1Zq5xzkYs5BrVKtEnOqZax1gJJCGb58uQiGa+OURuGMqhdTBnKkmbk/iwRLggMyR3J96k713J+JMOMa79nrEhbcUSHBBJDOaYolFr8l8rILx1gbdNv5atteWSrOEHoHU2hv9+vM0/JqLQLR4oSNaW+N+Bgg5kUpDFKndI8569XtUBKZQwdwWfc1RWPDXrd0kQqi0YRIZ5JT50P4ZNmjVC/08YNyYZ66vZJnBZw8++z4T/gK3qIg8CDf1dteNBwu6CGpCQH3uqssXh13xdQAuO/Aw9v2WFwoufO7zGB9r0RrJyHWXubLElQWduYLV6+eQpW2WtEZItI/qd+GaqU5JdEKn6DCVJ3SswTrN7GwD2xWcKzxpaY1qpEhqQG26GJMVQ8ctwqg2Vluf1YDX9nWItI8P6PPM/fsVyfDTtvJm8VA8pvdx6iqC3LsAFNb5D0ErjQ7ZFeAoXYlRRRVYK6Lp2k4QEBTtco7c5YholEDCHIoGVoRCOuG6o2jl6FqfJ5/oRtC8E7pOIdJFi2OymATxKbgE1wWAw6FDqogTIVUlTmXhdXdJ9CyKFFQoMERZvetYZ8HXkojmd6qg2tJZUj1Lqn1G0D3txNcfEc267jpSA5oErQoIfSwqBVK0kpCmq5grR1nXncChGEksi7M5mqYN5ORW0bVdtJpFZZYshVg1N1GaBBfuaSnc7EbHxMMBJzoUEtrQ/iHhR2y2hO+lfOHkC36KKG/yli26uG7Ik1/coTObwVQK0BcM1S4VPzjmOPb/8pfQuSfaxpTg7tIoCzM7W6bWj9CYUdiGov2ELqptSCe65NMZajLzk68Rb5YPE60oUKW3EPRNvMFvLkYgFVRXe5O/U9C0qJnEXytYCUTApYIdKzGtEjeXolIHU0lPS40pwdqb/FWpSKY0xZYFjd+ldB+X+8BCJahSo5Z1cbMpyinUQDpx5ePXQOaQEMyIpQpsrAQCRRWMWGnOBupBdPUAO0I/zROiIzkNaLXKhf6MGq/rZ0s1cHz1e5zb64KEq50z+L1HAUVq59evVRdeXI+oqjCAKBzF00K7+4LuiMLSwmRf90Qo20/8FbHXBIAo/M2XPuoNC22vFzSoWSdeeNW3qnf3smuuAiVctP+hNEYyxtMmB37rol6f1RGu/YMjVtFVc0wXs6zLSybzUbrtAsoSnSlaY45CjVBKgpQWyQuk00UlBrIUkqhZL0T+ik45QaZzUjUTIvuFWGnSa5he43Y4EJ81YFQX0GhxISagF3QnNT+MDxMMnnaVV0FnPpXP/+5z1H3aYCyiJfiCPUanNE2LxdkKnAgd3cUoT4SCoCS4P2Q2vJSUltmSxY1tGUs06/LV3D13H06a5K7LHTO/rdIIYxYChIqdxO2x/TmKeuVAL7jooJ+6mG5Y68s4jGPmjidvhcNr7VrpUEzMf/+F69K1jkSnJEphifULfNqlVglWMia7E8yWPs15q2bJRDZFu1xH7rwboaoUWBv01ucI4/A1EBKtKKxgNqJ5P1wo0OQbM+kPNfwKmy3hWzE4lyIKkrYnitatTXQJ657Vpb2uSXNJh9bSWdZPjiBWoSdTPn/oSznqovP50sEvQDlPrOm0pr0cWvcLxZgnzrKlSWfAtKFYblAjJcV9LfSiHMm9qX2hYDfl6PnJowAAPcKxwfSvQDJXmb2V9YIHTqFnDW7Uooyg7m6ilhcw6zV00WDmQhaAFh8bEK5dbJ2jphO6Sx1qfYKMl6SjBc4p0tSSjXWYumNio1qvxKC+GnlU8Xoxh9oq0FIjt55WqxLn260EKbW/Xp2Eo7lbQtHQSOjhOtGnq+J/gsa/oIa8UHR/PKceeb+h51UD++ukX/97wXNrL1167RTlx2IlEDhVaf/1GIT+KP/wDrWwUJlPSWonRGmj+psewUutn+rXj+6EGKsQ577wHl5y7eXz71m7Rd2atP8FF/Cp5z6bmU5CyRhWwdv+6zIQ+PChL6SUBtb5WhakCSpNwDmkKJF2F1CoRoKkCWqBxVIchqliBVZGyfQc4LCicOKJuGmERLd9vIGU+EgCRaIaGJUgRHdAEopWhQA9pHIB9HLcey9asJiQDue19CAwVJUq/UAZS8cZTSeYYj13dH+LSloUzrGssZQslLQV8cGrThSJbjGWGAoRxtNF6JEGoChczuru3VVAoNfA/YsTqdfF870ioaqgt1bEEsdlZTXxZK9CPn1MJYypjRIsFuGaokKsqreaOBeDBf1T+hog0VLQ+3Fi6bgRZssmE5li+1GLMFVZJmKJ47K0iBXECsGw4usbafE1NZRGS+INhe4PUXhHb6LwziMvdDxasPkSvlWsn1vsic9AOo3/cCyM3dhg5oklY60ua1aP0xjNKX43yuk7PJ7Ofb/j/dvvxDHfvQJCRHwx7rBNxdy2QvN+hcug9euM7lKwTSFZl2A7Gu0Usi7z/0atNWphUcFKgwk3kn7U9uMx8W+rPHFGIjD+AkrwAkHhMwBsy6HXJ7gsXCD4teMEXGnZAapQyIiDXIERbKFxuWHReJtOngRNcQH2VPgYgpi+Vouyrw6N5v5YDD1uo/d80fogFftR9VNVgbd+70iKtSapSKCD9x9k/XpsQB/h156rbhEY3K6lp2nWzxf63CQoqdwa80iwzwXRezYV3nH92lK3COh6n9XaFW8Qz9X959VftqJ+b9WzJNSfs+qbWlsq1c9fr4ohWGhcSO1Y4BOHrWKyWyLiSExCYuCjB7+QskxxRYoTX+hHOzCpxjnBisLqBDOaebrtFuSdDqaVYY3GBmtELIIjIuQ2oWsXUbisJgQKmvvJtC9VW7oy5L4rnHR8qhh+PPjCWd7fn+q00vpFCiD4+kPJlVggp3r3feV8e/2daRNfiT9UHF1bolE0zAijyWhlWCkcdK2j64RChEwr2mXCeDpOqhWz5Qz3d1x47hi/DhKKfIEBpX3+vapVkBDBYiFkVUisDRBKHwNolVA6g0+uczi8eV6FNQic2GCNUOH5/XWMTgBf3MgpQhEfQh8oCmkwnU/QNJptRwtydz+FK8L7gkT7tEYpvStRJaB0EJwSQaxPk811F6VyxAiFbvNIY9NR+kPCj9hsCd+1u3QXTfDRww/nb752McUYNNbD2mfnLP9+ivnfhLWdpTTWaYqJDASe8rSn0HaCaY3A3b+BsRLXMUjikFyz5H8N6/YsSRd3KbqjZFNQtjyJA9XkWPfLV5N5v6Lqt9UC/PqsAUEFk9T57aUnfyXeImBHxZvdOxo3anFGoG388YlDjLcwVDetR6MbgYZFWqAmU9SKDjqzrLlrEWbW+PgBHRoivfaosvccfWQbn6EeVAb95uxIMjFKHxVS4vq12sE0ucr6Ef+JPvlIovEaVZepvkA130zpb1sf2Qmhckmf4NXX8Fof9JH3IIlrf2B/dP0gOdZy9uvBnfWYg2pbTV5ZKOYhZmgMEHg1zgZln7rfv3oXAyRff65KaKz1XYxXiBkdGj618khmCkfpfDdOdh0UDp0YxIG2ik7ZxImgrSNteFLMS++Dtza+QCFr+IpvZZJiktRr57Mdr4U2UiRNCAn5WAnFeGoSnFEFDTNXdWCMZYyR92UoO+1z1aUaQnlYFKfKuydE7hOFDBeuF7PPVeXzjmloWumwoE3sx4TRbJy2E6z4RXDu6/j9W7W8Zj1TSkiDVJWcXApIKIwkYryGggmxLSXetN/AG9TLSh7VoYhN5aJQodiXJGgV0hfJewtiIWiV+4qcaO8CUSAkQEG0prm4cE6t0A+KqlJf0zQBw0wxxvp8hIZJ2XY0J7f3M52vRytDohMy08IX/umgcL60dxioEvrZpAalfMxCFKbqn+MjBV9aV210/xAemy3hk2iksHTwueo6V+hCWPTfGYiQT8DInRrThcv+ahWHfvZrrPzqNxAFX3rpS73pfdbAiGVsSZv8pkV0lwBWoX/hU0Wc8dp21PQiYfVHjfea1GdpHVBEq5SxOFlbhS6MJ3qHT70LZnzmDDJqYc6guhrGSsa3mWZ67QjYGAzoL1b5vMVbFVxD0JMpblnOyA7TzN45BuMlKnG4JNQNGIw4j6b0OtHGebbhfFAe4rVOoa+gEPVnDuQh8UEjQUdirVkDgJ5Vo3KzzifdeRbuWgdHMlRKQuDgBqaP+nsa1PJV/Y9wSBQgqgjMngDUt70mGAG+8JCj904qrhJwvn+U63Fxxcd1olfSHwMxcLvBgL7qvHhOvIYKFoDYFnx/V9r8IMRzz09efTx3z5XcMVsyUwhru7XBIuJDw1E4oxEThlLSW1inG/oxGzGMp5pXX3E+ysFHnn8knVCsh6zqMEhbKOuQbo60c+8CaKSUJgnt7rXVSsJMsYzRdD2JaqNQVTVDH65XEle3NMr4NL5wH6HoVWOUIogDPso2yBhYZysiiqvwofyiFNYJZSCowgr3ty3jY4sxdpa29f79pYkm1rlMtWKLphd+EkUoFa2wIqzpOkRSHItRkgOaws2hlaul1EnPlUYMeIzVBhWKBCcZVhoYNRuOiQPdZymoUGbXqLR6yQpBaV/L3ooNzx4sIxDq6nthJ1EZTkaYLTMmu2MsbymWN+eYzu+nY9soq3FzUCQlyWgbTQKFI4nlyYN33L9G72bxcQNl1R49OJgfAeSSYGTDVJb/IaSORwk2W8LXWYbkBUXS4LwjjuSYCy5g6vGKrX5cMreFIVvvtfOyBS/4/AW4Ubjs5Uf7DzYUWlFOIYVmdl0LNeYoFgnpOkM54v3UWtPzrYcJVXd7RXUWEk8rzpL5Ezr0CD8qYSi8uV4gXZsg2pM2MwYZs2CE5miO1g7TKrFrG95vbwTGStSarIoJUPc3/DS2tICOoZ1kmKU5KMGVGhktoWv6g9tiTnokr0iaKhCy88+uQuxBRTr0hI5KA66TYZ28F0oJHAzC69tHn+DRZ/ZWPS0/xhJg1fygvHoee59WT2/7QiZs6BHuoKBQke2AYLTQfQafRzbwrAvdF/pcNfWgyXnyj603ILZjoChQdJsslPoXrh3v9YvJnLvnrC8v7eoXCb9aB420/lh9D6qBv/3eBT7GReBbq47ljtmCuVLmyZkQNOzEgGmixJv73WzHm4KzFNIkCHVe25+z4xTSZCK9h6xmDrahiEvUTEspUSoJ5XbLcC+DwgSfrQbaOFy1/oQvbxu+8zCgvBaq0IzgxFCGIkSLGil5WZAaDRRkWqq8eoCulbAMcW9byyhKR6iOKHSspXQtuq4B5GhVBCuDN407BKriQI1gWi9RyhDr3hnVRVFUlgAX1hOIOfXhN5z4f7XuRe+rmnXH4frO88+QMZkvxolhScMykU4x2V1L13aRQnHi936OJMI5T3wK1nVJtENbw7HXXcc39zmYaTeJjDicLnHO0hUf5JiEEuVhYeIFRsXDCycbXx53Y/sea9hsCZ8sfLzdgrtmFOWYJZs0rN4jwXSgHAXbANsQrnnV0UwXMFc6jrjofFzIiBPtI+bpaGRRAaKwuUZ3Fa4puDSQ3ojPmde515BVXYtagDMGFcBqm+qfIL2FoBLjKcd8ZKs0XGUVkFzTmWqgFvlAuNZWs3R/O15F3bslRUXikgoq96mGAK6poQxFRxKHlLpyGwA1H/VA+01UQcNzxGh3q/oeqvLZZ87XFFhII48HDpKd6r/Hgp03SPZRylKBBCPZ912XmoVC+rXZegR9zEyIx6jaMTUBr2pP3B7Pj+Rf77/4jpMo/IQfN0DAtcef1x0LuRMj2deuUfV9XbisfqQnHcQCQ3F7FMDqAkjol0/8+ZHcNVMgsfi+jnnsAUXpyXnhJjKRwV9f/jW09SV7/+Pwl3PzZF7V798YVFSzmxmqmUFpkU6OtLuozGv9aK/haixGeXKOMQOROKK27wksvqRA4opAZllFkr4OfW3NCqJwEavVRSuB/90obxFYNNpgZs4x1hyncIIixYqv2ubXI+iRvbc4+JYkWrEoMzhRZHorSoGp3DKZ+1701QA9GYs4pHqyAuUHPb5aYBvCMsC959ZAFG4U4qwXDkIsg0/380JMd32J7Tqy0ZS0aRALxaxf2yEdMRiTMp23wBVsOSFkyX1M5dPefZELJ/7w55XAML50jFXX/qjvm/nz//pPLj3wYOycpdOYo0hycpejiDULYhbFI49Nl9Yd+vAjNlvCV0qhmhl2/SxFM+XcQ4/iFV//KuUoqAJMV+ESsIssz/nquZg5jckVtDxBSSrQCFWUZ5LgRxXsRIkrNOlag3KQL3GombDqVsi136h2WsP8qPLY+N5+HUrmVh9L4gvuSOZ8LXwNplFSloYsK2k1Cvba92au/a9dSeY0riG4VkjxCxkC2aShu6JETYfXp4Fx560X485bDrRAx0DD+gBBq7z5vqtRTetdB8GSoFolUpiw6FlPcxftl3mlG0u+SVQwe4QEDKbp9XVOjYCqvxcSEIBYh75HVKqnpQ9KV1K7bi3YTmqmb0l6Vo0YQFkvkOPrItQEgtj+agzUniu+3+qYnjQYCzBFIbFyRQzWEVC1tRdqhC5G0PVj+yIca11X1YFQA4IPfQIq4o+N9//iy4/knpmCdTM5aIVOFCakLcbHdaV4Qjb9QoAGxjPNkkxz1MVfRgl859hV3DGjWN2JGvcDn9irXP008Sl8ziHdAplpgzGoRko20gkBZylCWEJaaQx++WqjTPC9+2A4p7qhYI9viQnuAEGHRZA0Vgxa9aLNY46/T//zQX7WjVA4IdG+sFemE8QacoGOnQNKbKjLr6P5Lqb7qZhj7yPqNYqmGSdVitFUmC0NebQ8olBkqBB0pyvfva4Nt36hppfG51+8xOcIxxuVQViJMdMZ69bNolDMrunSGGnQne2Q5zlaJzSaLaam19IanWVkJGV0yRKmymkUisSmHPfD/wHC92EVq679UTWWet+6cNjV3+G/Dz+Wu+65l5FllvXFJArvw0+0waiUTD/yFFOIwWy00t4fQux4dGCzJXwAtKqk9JluibL4xWy0UI4IbmmBWZNi5hTonk9eFYqRHWaYXd9kZKKDu20R+VLBTWVkaw3FhMM9fg5XavT9DVzD9bRixbzpayEtfx7qpBD+VeDJ2tJLr4vzeFdjdQpKSH47Qr5Th3w6o9Mq+cHtT8LkCpf52vq0StT6FEkEXSjyrQtfsa/heoQ6k1IuspCKJ2iApkVKjRktsHNpqCEgXgByCrW0i7MaWZ8hLVtpxSr4y1Uaro/2woAN2+vabJQA+h661lnBktF78IGPb7BfVW9a61N3K3NL7e9Aun3vpxZPMKAA9prUR/qBrpzydQlCzIEXBlSv8FBsh6JnZne1MRMFj3CzyOeKXuOi5ag6NwoGNeGpumC9/wa7ra7tRzgfOS+Bg0TBV1a9nLtnCu6Y7KA1NJuWv7n80qq/Pn7YS+hYhbMKSgupz58eS339/Fdf8RV0+ObEcyvOgJOUV17xpZ4A5eCzL3gZk7nGPgjzqVLKk/yI8QlmhaWcnmNGWpStFs1klpaZ9JHqMbo8xHb44DUfnZ+qjEQMhYuFaPxiPQaNX6rWoYLZX6NJVUqJCtYDX39fQgqb0coXn1GKkVbGmun1zNChLQ6lOoANdfzDCoqSgDJAO7x7n8/eMg0eNzaO1+p9Xr03qRtKaVG4EVI9g1G+xG/hckrnV+r08QnOpxGiQ9yCxsdH+hJJkfCj0JFoaJoxHELpSrZ+3Bbk0yWjY6MUtmC8Oc7cVE6hNY1mE6MKOm6adjHHnJ3yQkehOP6710MY+z0LYByT0gtODv/u/fXzuOiZf0a3aJMpn7bowmA12oTMgEcWmy68M9TwIzZvwg+5vq50dAvF+Ue9nO1GU/Y950u4MYsUvpCOy+j5QZuO0RWzPje9VZLnCXZpMKFbKJaXqFaJMQ67ttHT/mCj5ueFgvXCrl4KVi1S36XBphoFiVBlTwg+6sz5Aj0tS3epw9zjqwi6WUMypynHQ8RwK0j4TuEyi3MGNWMCGXn3gI85EFSu0R3tgwO7Gjp+PQA3naGqgjteOJLUIdOZb1/qqjQ1X5tfPLlPp2gLdsz2CKdOWrHPBoin2l3X9uuRbPXAvUozH+j7wTr59XOCtaMvQK2m3Q6+J+8vDzvsAimCEq434D7oBdvFLeHZYkxB3G5qbRzAoHGiEkjqGvpAXf3qnEFXwUJEHzX6eIyGa172Yg74+teZac8y0dC8/jvfnGfFOOfFK5ktvctelZZGZhhtJpx01flVH6nQ1xJd4uFZD77wSzULh9930hUXgRI+8NxVA6Tfa3yiYDT1deZT1Ss5c8Kl5wNw4UuO4dfOYWe72EaDRJUkSvkytCgKCvySwlHL7gRzvY+wF2xV7dEvS2xJtRe6GsbgQ8g0DdPE2pTSOTI1BxQY1aFh2iFlzRvPtVbYpM3s1DpUo4FT3aBbe4nQl8fNEcrKWiIhp97pFPB+/lRDXHJWKe2XDFI50KGZNNFocnyanUhBKaFUjPQyC/xU7QvzqBgKp7zur1VKwzQYSVt0yjYj2QiSGmwr8S/HWZzWtCZgUZrQbDSY7M7hioLEKJ+d4OD47/2sz/JUoQocVr34oDh+haqKpVtnoKvITCPUnHAktOZ9Ew83LBtf895ucM9jD5s14SulUMYg1mLF0C6FZ533RYzT6BmD2rqDbXvS13kIdLOKudvHkUxYtO161t+5CO0UbjLzpKkE5hJKLb5+/vpkHknMm6RrG+f57aHSCGONda8NxYvGf6kK7wCeNBJfN18J2BUFBCK3I45kxvjrzfqZ1jXEl88N+f+ig/ZfKq+RK8CEaaXUnsArkgas9opIy8J00vONp1EtDIF7UcMPgX7OKFRHzyea2AeV33tACJh3YL+W3NfH9d/jZBN/lOr546lt18GwWRcCwkQkKmjn1r+HStOvZzzE9xBWLlRRGFIDboWBSDoBn2kRt8eUuw2sYxBjNeZp7VW76evb6rBYARF6hLuhtsX5OfTNAV//OkrghG9f0qu7ENosRkDDiRf7xXf+4/ADeOV/XlMTuOYLGX3pp7Xlop3xVR2roFenePy44d62N4vnTsitkCjH4kbKKy75SnXNvjES/m4aaLQybFmSzE7REkviWuRSkizyvv2o7folcnuFaYwyKBJElSEgzneej1T3EfmJThhJRmiYFhMi3Ne+l67roNFhOdgYEOdN/R3bJifHJSXSdajMobQnXN/nZSik5KP/tVLhb03uLKu7qxlLxihcQelssCgIqSkBH3lvVErHtrHOuySMNqE6nn+xGkXpLEZ3qvLDsUhQbPdoMooOEkeiR7CuiVIOJ3MI0DSG0nVoNUdoJQ1yl1OG1Dkblgsu8yDUxwqhtW8lCqIxi6c+lpXz1QsbyQTlqKWrcmxpSZOUbqfEmpJHGoVLMG7DVBaDuIfYzAkfqAadBpakQQu10FyvmMsapLOaYmkJyhMk0RybK6anWmy902rWzYyQdxLsXIpu+o80bZZ01zX6eWhgXIgOJqwFI71ryppQFeqpzPaRfIKLIZr0q2NreeOSCsz6FD5ZXPhFeKJC2hQk88F6YsRP3GUI/OtqZHHh09Ymw0pbTYeqgg/BjQS/5ZzxBXPKxAsoMfCsVEgs+qPwC/dQf4bBTok7Y78toFIPaO+1g3u/OvpdHJFD+3zZ4eB5aWlheySp0E4xPSKvE6c/3o8N77rpXUPiZKbAJX4Ro75SybWmx/Z6Q4X0t3uA0yuL0MCGXkqf9LSmSripHarpdz3U5QXVf8151w0HVSWWgxAnQSNE9VIDX3npNb4rbf+1e8KY1N5Nv+anJX4jvRNf9o2v+L+d4tpXHEfhhOee96WqHb6tzLfoAC+68Dy+f9RxPOeqC/j2nx/BC77xNUTBl559AEY5tErp2jmsOFLtA+NKydCUpFqRKOOHtCsD0TUr95ATS+ksXdv12r9YHI5UZ2gMqW4iMsZ0Yelav6TvbLmGdjmLTkJFvlyDcThtQbma1h5dDJ7s/bLesLp9H2v1akQkuBtsiKb3xwlCbouKfHWop6+Uz6KI9fQI7Y+lhxPtS/OmOmVxYylWHIVzOBoUzqGYRaRL6YpQpjgJkfOO2WK2eg9puE6RF7gpPNlDEJ5rUpmDelzHYICqRvuUxFaHIp2jdCWl0iTNBnL/hjXvhwu+QPGG7yMb2fdYw+ZP+OLHWlE61s3kfP2QI30UbaIQlXPI5y8mmUywIw6ZKJDc0LjXIAak3eK+e5roroJRRzarKRb5l9/JNSoNZm7b89rXtScVbaWDqr8ob26Lc6v2E6qZ05RLyr7FZnRH41rWR0TXJrpIJiqQrl6c4yYzpGtIZjW6gHypxUwZX3s/EnShcSPWt7nh/Gp5SW9Iq0JXBKIEzHTSXyRGCVXKqsa7NIz0SuTW0++qvgj/utp5kaDi2gK1zpOazFBfGa9PA4f+uvRR4FpIcKj3fX1FPFU7Lpga+8zw1XvzB1XXV1JZSbwGrvrvXyfOePvwzBL6DPBllGtDYnAirLd/0P1QPdMAKrdCrQ2D9SDi9XrP2s/SVYAiVK6HnjCFj1vQMk+I2KDrAaogwBiQGAWwPhOw7gUtKi3s98UvUbdKVALDwFioP+/+X/kSaHj+xV8DBdcefRy33X4vM7MzdNQ41k1gEiHRjkR3SBTkLsM6MFpQZH7VOSVVcJ5SGicJXQuFa6PULIlKyLRfprawhplSUVjL3XPTFE6BMixvthhJFA6LJAU2ddjSxxKIVcF8r0LZW4szPi0OypBv7z8EX9BHwkI+KUY3EKsR6YaFegSlTFi4Rsh0A1EuLLpjwrAREuUtFK1kBCslTTOKdaPc27ZMZMKSBqS6TW6FQhStZIRUJzgRSldQuDaJTkhVRqozn5oJvPK6n4a1IvzLUIm3olTfkKYXx0Lvu62/O6UUzrlqtUMUZK7BXLeYN8Yfbgwr7T1wbPaErxopbrJL2UjpKMdx11xQmbCTdQnlIhc0BoF2gioVjTVgWz5tL9+5i1uboazCNoVsraEcD7K5VXWFqO/feXHHA47fumCQTil0CS6FZDLx6XfRFy6qN4kPTtw6aOwpuK7xaXelwraCBcApdKEoRl1FrkpAtY0P2CsVruXQ7QGtPJEeGbHwUrNRC5NEkLSM9Ue8FhOXta1sxfQm/0GOUrV9NbfHPC20InPpJ9466tr7A8E8C4LfVkXCD6as1UhMtPTSE+vNXCjjoHav6LbumXZq11S1blO1dlTSJD2haaHgNhkg1fr2AQtCda9owagfXyPzepEgl/S7pCpBod6FUmvjQNukZpWqlwaOD121uy64RcG51vj464+OOZ675yxzZcFx37qgFyQpcezCfl/21oFPPuPPOPkn3+YLB6zk/ilLMTaCUqNxiYGgGeNN5rpEK0fLlCGq34V15XPfPFEonaKVD/RTqkRLzkiaV8vYKgwt4x84t357KQXa+EBAJRaHkCjj8/wlwVrBFhYShyhble2NhO4zCBTOCb7IToqIryzo8+N952c6wei0V/dfQou0YTydoJX45XO7pabrCrZoKUZThVGCD2RUjKpRRByz5RwxBNZFwRdFZjIER17kXvhzqvq3bwzFqSDGKdWE3NDwYDlo05WuTyNU+AV0soTG4j9MlL7eaJT+QgP6sYnNnvDrnFO4GRqLurhfj5HOQHe5kMxoXBYmsq4imVPki/3qerqraPyqSb7I+7tVqShjWdtE9V17cILt/V4rHRuD2uIpAjoHXYCyYEe9Wdm0NXbcB85Jw/VM0mGdewhaWOIvphsWN5P6fYG7bQPSdQbTATersSOuqvSGwS9Hq7wFQcZLX7UvTsIhqlrXossrwoizY72YTScULkhcrx/6rBkD/aJqf9f7rW5iHjy2fv4g2Q0eW0WM1Y6va9+DRFwnGnq/R02zUjv77kGYxKSn9S70nHXNX6jiRGIzRdGzaNTOn+ciqiZSepaFwX11oSJMzn0m/bpQUT1f7cZhpwy+E1W7rurfVe/H6I+vW15iM/qCFNXAObEGbl/fDdSxUMLXXnIUk13hpMu+wqdf+HL+Z02X2UJwCGc8dxWJhjde/VW+svLl3N12ZDrSk/fDnnnokbzi8q/ysb2fS6Jz0E2M7uLD/0ZJtCJRbQrXQCmLVrA+T7GicdIIxF+SaBhJUsbSOZzMYJ2PBci0wYqQ2y5KQdcmoUysDoKAgFJVtT+NxkoZSuRqGo0GSdlECoNSjrKw6NRR6C4uD1UamxqlQYu3BojypnYdVu+z0qUMRYasK0l0SqYaWCkZT8cZTUexIswWJYl2LG96s3zXdVEk5K5AxJEmKR2bU9iCQvxyv6V4Rcdr+963bsteSJvE7ySM9SgQ6rbuc8H03qnvkrIs6JZz6EQjeHdGokfp3mPprnnkffjDwjsPHI8Cwg/yqYBWCeOXjZEvAvXcdSzKCu67ZXnwb4MkQjnqCbgcczQ6Pte+eb+iu8z7w3WhsFltEjWCznUv4K6nmBBv3KdZhQlRCahcYdreV1qOgqSA8gV9KnIKdfRRQXBwCsZKpOw9l+skPnjOho9NCzQtpUsox+idFwIBdVsjuYJMkIng808Euj3fvs//d5UVo2/Mi69jIBrsiFRam8p1z1wtDKTXqf5qeoPEW99eO6U/AEz6Ne7BA+vSV73oTp2kB++9AaJBVM8kGfdFrUVRFSVSZb1j6GmyodPqvuyK2AeEvnnPHzQhZalIuu+QQbP9BoTNeYGAUnuG0LZKeKixq1e4e+eKolrmuSpoJKqX6RC7ycT7Mr/P6fVb36ur9W/U0HurLSrOOfzlGAWvuPR8fjfr6Fjh9INWsbZrMUpoJkKnDOFoovj8oUcBQsuU5M7SsVlvwrbCP+//YqZm26gZg26mJInB6BIVctYTU9IwYKWgdIqGKZkrm+SuGVqcAYqpHJY1FUsaOaGqPqWTqoiNUSlKpUBBFQOuvIQlTuNQaJXjF7sRUmX8ErE6p9FskckYogRbWrKkwW/vuAOTGO6fnaTZaDI6McL09AxaQ6fbZfGixRR5QXNpRjJuEEqM9iVsJ7IJUp2G+gNgXUJDK9KoPACZTmlbv5KgAzq2U9UaKGyBUU0UFiclHVd6gdLC8T/9L5RWXrMX5a1+jt4aIDH2o56HX1lt/FiZ65TYUYvRDpTPGtDKopcpsuZwtbzNCZs/4YMvBiKCE8OafUpadyTIdUuYelyBKZQnWquQUYs4hRsVdNvX4F/+7Hu56xcryNZpzONmKe8c9eRY9gihCrgbmNyA3lrytYkcqFKmXBoq/o24/qC8GBjnQJrR7O4/GJ1ZnDJIrv32MJGmM5pykfV+/0L3r+iWeCKPJXDjAj9Sami4XrBdiPp3i0KFvvo67PSesVhWojpB0BkvkBkfC2BGQs4+0hf5Pk+rrmvDsX/q/vo62UfNNEak19EXHzFwj8G/57WhproOYJ6Jvu+eVKl9gz73KuK8Oj9quQMCgPQ0HTXQT96VEC4ZnzkG4YVtg75rXxq3d8+4auK8uIAoeKlgho39EPs5CgA1oaKyNoTaLtUSvVEYCW3o686av73PKrBQJkNNgFMClx11DL9cX1A4YXXHMpIo/vXAVXTmleQTjCpxZGgUb7rmq30fYey7s15wJNNFrNOfoNIxpFtgZ7o4DarZgMTQsTBTNGmanKYpg2/X+/h7Da1eH+u6Bq1GaeoCo0sEi9EGG1aD1Pjo/1JK34/eNAbYqqa+94X5aHkrPhPAaTCJMJq0mJ3rUrqUpYuWU9qc8ZEJUEJRlNjCMjo2QaZbGDJECUuzpaQqxTnBaEPaSGmYFKMSNIpOXtItcu696w7GxsZAFOPjo6CE6c40zvomaa2ZmZqlNdFElynt2TbN5YbcFWS6SdEpOPa/rwXARaE3Cm7xG6hSdeOaGf3vL1oMX/E/PwbgnGfshVlaYJOCLhkm65J3Z3mkUTiNdhsm9WIj+x5reHQQvvOSY6IVes6vG59NQT7ZWw5WEiqTuR4rcA2NA+789RahiA3kk00Y9SasqNn1Tb51VBN4GNW1/HPlVLX6nG2Jz7k3PhpfJrx5HTzhq9y3GQFJ/Op5bm0DXfTIPAbVleO1xijxrgqremkyob0ukIwQSgc3XZ/f1RlgNvHuBO2JxDWkl5Cq8Gb/UMjHWY1Z0kUpQRvBrc/6NbyQolcn2UEyRyT4c/v7ry9gMGruDGj/g+Qetd5ILIN1Egb87oN+9PrtFrJC1NskulZoJ5L4QK2BullaiBo0FelXwkDoX2V7RCr1/qhIufe3qk229YBAUT5y3hl6hCo1a020+sQGhjFSPf5AvEjU2nWJ/1Z0TZil9iy1/o1xJPM/j5p1oZKM/FHfP+44bljdod0uSLXfO11AVca3Wu3NB1NNF17jNgp0ofsEjyj4/PV3fDrffxxyFOtzS241rtVAmhnkJa7d9e1vZrgsoZQms2UTrbwVYUOFV6wo1nZGmMhyRpIuDQ0KCxRYZ7H0lucVvOtBS3iUIOU651Aq8QWB6FC6BMhCZT7xGTglLFuxJUb5ysVzeZc7f3cHebvNNk/YhfGJUQoKGknmeVYErKbdzsmtout8jf6GcnSnZ8iMYu3qSVbfv5as0SBdnVKWBVkzZW62TZqlNJtN7r3nPpYuW8qaNWtojTXZcukSSltiXZfOvV3Eec1exfEjoFIbqm6GdN+Bb7NvjNRchUpghIy27Xp3I22sgHOPfBa8bKLwjgyD9io8Ogi/GnQF6bSidb9fNEfHnGADYlxFji4U1InFVFwmpFOKxr0J+XZ+KU2KYL5aiOxrqLSdQP5igu9ceWKoCuwokIkSsQqzOPc+eUAvzuH+Jm5xAbMh3c5Iz3wa0vZ0rrCjnrWdAd3VvWV701CON4xb0w5WjfjxzfTMZlXKkwnCgBZUqaEIRNd0vjiJ9fn1LhPoGF8PXRQqs6iJAtdOfM71IPnVtdCgtVdyUa0ve9qp6ttW9Wl8r4PveEAjV4NaeO0C1TrqUYuuCHjg+jXiVYMTWE0T7yP9oBpHU3il3UctKFoI6PVDvGcvYK72+ANzTtS4eyvoUVXIG2xz3ScjRqpFjjA10o/n1KPnqxfT2+9S+lF7nr7YAi19wshgrISYBQQEJfxqXZeZdsF4M8FpxVwpYAVK54XCLAjpoUEKYUmm+MvLvtp76D6fQa/tr7r8fFDwtcOO4fbZ0kfTN1J/zdLipubQ4yOQJQiEJXiFTIecc5cE826vk0sR1ueLKF2XiWyOVOcISViYxmvZIhk2LMHrlEVJTLGTYLwRLAajNFYKCltinaFTdqsXn+g5ljUXo7UiSZs0d9iJzopZxhY1SRONOINWiq7Nycuchhoh0SnoBJTGACMJLN1iKQoY32cvxPnUwrl8DqcdVhztYg6jMkabI2y17XIcjsVbjdKZ6uLWQepaHH3TD/3YNvg5UIJJPwoAcdXMulAeBdhqcNELAA7CX5KlGOfL3Crl6wTETIVHEha1icI7m5jkH0PY/Ak/Tkjgl4S0sG4PSzJtPFnpnhaoBFzTV57TDYvM+QIzuqvo7NyFucRX54vS66ZuHTWg0AYd1qiXpl8fO0a5q5gbbxUqEexsikoEnVrsXEpjRlGYxBcHCu4EFF4Dtz4PXsVI+9JH5kcNzS+Y45lAuZhrTo/cpDdRR9JVDk/ywewr2rsAVKmQrq6CCjGC7mpcI7BVR/c+aCUwZr2GN51UGmjPNRBINyEUdqG3MxKgqBA0R5W66Duy5neOBB9TyQYC2PqIJlobpGf+7kN8VwPkRHyNNUKsiCv6JBcSKlRNCAhChaq1cUOlewe3VdHnA2SudK8f+y0csY/p/yVo9brTWyfA1zsPk64Lmmdd7QrCxEJrCdQftfo3WCokauI1l1CM54oBo73m9q63eiZny4kGJ3zzq5xxyBFecNJ40tdem0yUpZSURZmia+EvL/tqEAYHAg7js9dXNwSO+NZ5fP4FR3NPO1jrwop8KkuQovCL8cTTBbQumMgmaZeLmS5G5r0sK4rZskGqc0gcpWsiJGg1Q7ecw2HCWvZUA0JC7X4/hToESykqFNCRsGpc6rVnFFoyZos2rXQEKznJiGbZ+DJfyjf453NXUpQWsYqZoqRbCA1lGUk1mgJrYdZCqhqIaEQZnBQ4XdIpO3RcByFBaY04RzNr0LUdSptz/E0/obIEif9epewJ9ErRH79joyCqFp5v6uMpYNnSZZhJgy1hfaYYHdHh+R9ZONl4YN6w7k4Pmz/huxgIAs1UKCaEbJ3xmsqKDqxu+Im49BOVtoakrQCvyuTLS8gNel3m8+HBF8KpaWLzECfkWqER7zf3GpaeMbiWQ7JQ5CZXkAh61iATJapUJGsTVFCnignX0/ycT+HTpaII6XONtZpyRNC5qiL6q/k6bFMOxATiiEtzOZ+WF6vF1QPRXCJI03r3Q0eju6Gin6ZK/2PMwhq/T0pfW1+cQq3NfExCoTGtEiGpluh1+LZUxWl01I79ZCK1hWr8OXWVl36yiUKDom/Rtj7fei04jZpVof6uqmvUhJJ5PvL68XWtWwAR756U2tK8Nc25rulUbZXes/e1x/XGVlj8rIoJGNT4JT5rdaP+f1V9W7x21MRrFe/qlipVgA8Q9f/2hK/QLxKu7PD1F+pWgFhS1/b6pio2FH830t+3Aj867njumiu4fbrkjVdeCAIfP2wV00W4YVH6OByt0Qoyk7I81SxpKO6cCwJX4E+lxLsx6GmOVZ+E+333Zcdz0/qcPoQy3NLxgXRxQAmKjh0hKTRLm74OftcmlH0mKV+jf6YYQaucTM/5QjfSwqgS7wvzL94oHSL3o32pDCvyhdQ7ZVB4s5evvOcfJDMpqcnolj4DoLQ+At+QYq1lanqW9qzjRd+/1H/Pdcta2hsE0bWknPILY4X30BzNsVZTdBK0CZZCq6HUXhFJwzgJSkmFKJCHcaQK1T/mau85vhQV5prBOfS5l1yEcvCfLzuS++9czwwjTLU3rVj9vig3kZZXbmTfYw2bv3OjtGC098fpnJG7FIt+LZSjDlnTwCXitfpgJvf58H5xHRyo3K84l0wraNlezvqGEAb3YD50Fa0aXASqUH5xGfAHWq/5q2mvybtMcIlgm/7j7OXi+8p5xWKLzhWmqyhCLQHEa27OgIxZb8EIqFddQ/fI3VsLer5+Vfh76ZgdkPvnjZqaLoLEbhVSKuy4xY1YJHO4qQyZTXFNV93KdU1FtnEN9P7+El8dMJC7ciChX6KlQdna8/cRu6r6uiK+OtnXyTr0cX+Ee2+X7yPp/VsLIov3r7SSOsnGWggh1TFOaJUroabdV+RX19aJloNaO1QUgoKgGOebSksaeM7aO43GlThmVLD46PBe60GIVdcEM7//obICecGsd5++6PvQ/5Wfthax75Ja/0bNPmTB9AnJoW9vnS743azjjd++ELTwHy95OTOR7EvryTf48P/2P7/GKVdewKsu/iqZgZMv+0rvPQTNMhSy6wkjsTJlwAFf+yInf+crJPjXlooiVQqTGIwTUhQNFIlSGMCg6JQtuoVjWWOaxY0yZOX2+jLTltG0BMZxTJCZkkR3KtO0Vn6p2p4ZPwThhop5AiAOrfzKdYlqIBgf84HBOktuHZAykoyS6YxO2WHd+mn2Ov98DrzsYk/2YSzELIdK8IyBuvUYmNpYKPIEG4puudLgcoMUuhecDCE2xb93KRV0DBItk7GUcxx7C1QYrY/zvvEe56MwVp77ja+SakU+08Y6HnFYUZv8eTD4p3/6J/bZZx/Gx8dZsWIFL33pS7nlllv6jul0OpxyyiksW7aMsbExVq1axb333tt3zO23387KlSsZGRlhxYoVvOUtb6Es+9MUr776avbaay8ajQa77LIL55xzzkPqgweKzZ/wnYRa2KCVMLe1sPbJXkN2I5ZkxmDmdEUE5bjzhWsU5Cu8ti2pkMyBXuujdQdJS4xU/vJqMMfgqUistROVw5vnuyF/fbyEEdvTsp3CTpTYMeer4sV3rPGmMus1LKyPAVCFFyaSaYVkPt+erg5+fetJJly3PunHsqZVNH9NGxItVXpe3X0hJlgqmsFcHzW2zLtC1GjhXSKjRU+gaXk2iBO+6N4PomAqRc2Gvmj6lcokc4HwXOjDMKHHiSQSTewPoKorH4kpTPh9/vcFfpTQ7/uvxw2EvoukWL3LGIhIvFdk2rC7CpaLz+r7t7rWgIm+al88LhJw/QurCQ3Vl6fj8/b85z6mA3Q3BALGOIOyNnbrwk5dWQ3tkqQ3lhdEOCcKN/O+iSjcGELMifQLbnhiuPKYY5jMHW+44gIAvnnEMdzXtj0qtc5HqinFW665oNYPwiFfPb/PbdFzkdQm6OAuq76ZiowgKUHmLJ3pHDdXYpxCpynFXInrWEzXkRSgu4LqCjPTLUZ0k61awk7jip0nFE0DCkXuDJqEncZTthsdZ1E2QdMspmnGaSVjNJNREtUk0QmJbtBMRkh1k0w3SHVGqlNaySgN0wiL++SI5F4A0A20ygLxlL5WvlO01xa84FuX+ecqtBfOXS0zJ3ZirqHt8/e9EKir4FIpNNI1lHOJ1+jxZC6lRrV9sDCB3CEYPoyr5qpqDYnat1l1f/27jWOmsvoMCJ4qCISZ8KUDX8KaqZwscyT6kWf8uFrexn4eDK655hpOOeUUfvSjH3HllVdSFAWHHHIIs7O9jIM3velNfPOb3+QrX/kK11xzDXfddRdHHHFEtd9ay8qVK8nznGuvvZbPfe5znHPOObzjHe+ojrn11ltZuXIlBx10ENdffz1vfOMbec1rXsPll1/++3fKBrDZm/RjLmmiFFZKxIBbWjAy0aZz+ziuEQgrpI8wUtL8VYNiQnCLHC5Ivd2lvfrhgwJfNJO6luv596X2EUA10UVJ2GWC7gS7bJ70mbfEiC/3O2a9b7+mvaEVruG8id0Fzgrj0TWivz5o+I0gkMcFLVRtPfVYZa9b+0Dj9xnL9gZ/L8rXJkjmoLPCp+zpxIWKY4K0k2D2c96kX2hkrlFV7PMXmy/49F5SaINV1XE6XIuO6ZFOjCyX+BJqhFtdi962aC5XvcPrCn/t9pUrpE9tHjx4Xl57fGHzN/e7BaRm/qdWyjYQYuz3eEx43r6SuLVnGDSR9jUxWmCCLz0GilbLpUttHEiMH6cnTAj0yj4HjS7m3ceHCv0ahYJKYHG9JlXCwoAwUz9etDCSKF57+VerwNbbZ0qq7Dtf77bXsbGiW40Dotnej1vVE24iz9SLHNF7X1859BjualuMMRiV+GfWnuzSBCTR/tPVfhGlsUyxw1jKRCPFYbHSIVEpizLD6k6X3GWMJAmpcRS2QMhY221i1Dg7jfu69l0LYEPRmxIxBbltk2i/TG+iUpTyOfCJ8mYSX/3PBxGmugQMs50u+XrhJdde1RsP0cIRh2wSBPhSee3eiNfoE3xpAAHJDaphYS5BNb1WoRKHLcJ81LR+PhkvkVz787X4VN4YG2F1EKSoiL/+vcZ03+8edSzP/fK5RB9+HLD/+fKjOfDC8/jCIUcxOVfSnm5z+z1TkKZ0zDi5neaRhkVTbqy07oPUay+77LK+v8855xxWrFjBddddxwEHHMD69ev5zGc+w5e+9CUOPvhgAM4++2x22203fvSjH/HsZz+bK664gptuuolvf/vbbLnlluy55568973v5a1vfSvvete7yLKMs846i5122ol/+7d/A2C33Xbj+9//Ph/84Ac59NBDH2QvPDBs3oQvQoi6AZVzzDU/hIZBacfc/aPo6DOWQJYdBV1Dd7e2N2lZ5VPymtIXVVz5ZOPvwW8VzeExIEqVque7T12VUx9N+7RKsBo9barJtppT0yAQhMA+As+hvK/eNRxKh+j8pr+fC4WBAKSt0YXGNR06194nbwRR3uSJAj2nvak9ThTGP1Ay5wlYUi/EiAqlhpuq0iZEQTpSYEuNCotmSKFQWkHD4pLgGsgVblEJ7WCX7tOkw7/BpyhWQdv4PsuN1yYGJvheZHs4OZLUgBAWzcWVD7qm0ar68VFmCBpPXwRxncgVvn0D5vi+dkn/eT1tuqLVniAYDwhEVxFhXWBRUh1eXcup2gpzteYFIUii9i8y3wRfe16pk0Tsr/rzhglZlSA6ShMDF6tlKFQxCVLb5oJAE+rXVumMsf8V7Hv+F/2qluFZ5iLb+woxkBr6AzQGn2dgfAy+5/q7UL2fNkJOfJfhX+f8SvHtLnpRmNrEMdGAXRYZFmU+e366WM+cnSPTDZRSLGkUZFowytAtuzTMKFOFRuFoGEtmUhIFTePr5zeN0DAKh/Olb5WEqnsWK76OfsM0aehG5b1xTlGWlpmpnJdcc0XvWU1vDBE1+yhcBzeKigW5lHhtP0wyqlFCqdHjeVUS17aT3vFafMpux6/CiXbQ1ahm8O91dE3Q6M1TsXZHrOnxg2OP5/+mCkTBFUcewwsu+hKI4rOHruIXq3POeNZLuHuyg1iHbed+hVPnsJ0cN9PZ8Lt/mPBIV9pbv349AEuXLgXguuuuoygKnv/851fH7Lrrruywww788Ic/5NnPfjY//OEPecpTnsKWW25ZHXPooYfy2te+lp///Oc8/elP54c//GHfNeIxb3zjG3+v9m4MmzXhC3gfYCNFqRKzJvX+89UNZEmBE3y6moJ0rfGV9GYMzBhfxl77qH3d6UWiL1Q/n6h9i+qbtCWtFRgpVWUmr0xYNulpezWy74torufaB+EiCgOS+Fx7HTQ5l4Wcfqc8yWfB9BZ80rqIBTB8kFPdN1xNDPgiQPXnUwPPo+cMziqKWGEw8YuBxDKtseqWyjV2zJcI7pnQaxdVvW1xZUGxtbxtp/q0fn9er8/7aucreib9+Fj1oh81gq/6Fnraa9WcXvrcvPdcOanD3zF4qYolUBusy7BQ3XlRtWvUbxH7Q/qPHTTH+7x9VVkJqvNVP/n2CRNRKFGVCDK/rTV/LITc+xiEV+vvuiZfLY5TFzIq14pvVN/xoS0xd773oOGfEBodl69tmp5rqf+5/LWr/orvoibL9FschE8//yjua9v+G6JAKVSa4NpxQRrvx99+LGE8EwrJSVRKalJG1CggpDoF08RKiZWCZjJCU2csbVgWZyBYFJq5MsFKScM4Uq2wkjBbKppGkfgPB43BSYNMj+BE0baaudIxU4Dp5Lz82ot6ZBybHa0auvc41fLL9GQl5ajqe4DycYQd4wN3takK5aj4PsJ3IdaPF932dUl8LY6wzHYoN15lyNTGT1Vi2SnubpdMFZbPvPDl/G625JPPO5K8LFk9U+DyErEuZEpozNLx6jlEHJI/8ovnbMpsH/dNTU31bW80GjQajY1f2zne+MY3sv/++7PHHnsAcM8995BlGYsXL+47dsstt+See+6pjqmTfdwf923smKmpKdrtNq1Wa6NteyjYrAkfQJxDK8V41sB0FKYT6sR3M1yzN6vblp8hGmt9kR0xgPNBZ0kbusv6J5vB37FqXgSypGHWCbXpK7N+NK+XIUgmkz6i6COMMFGrUoVALK/8VIFWqUN1DCrUdNfBVG9bwbzvQBoOM2VwDU/6yYxfYMc1ernS9ZS32AiF9JFj9Nm5zCGpIx3PKaYagFRxAJVWXvjYB9XR3ocf2l/xfT3VrE5ywSdfuVlkoD+i6d0NTHT1FLdwvUGCrJvDK1N/YK5YC7+uFUaiHKyWWFkVam6aPg9DEBZF1y9EnyAxT6OndmiMfB4UciKZR4Kvn6v7O6q6R82VEH39ooJwIrU21t5JDGCNxF+t0KhqzxADuVJ/77iceP/yxL17RfeWjn0TrVY1webDh6wiL5wPpAMkS3xWB/CGb3+1r7+c8fcVAAmCHSw4Zuq/f/mwo/ndrK+TP5ooljQMWsHdc75sL8bEPC0wiiUNzYqmQSRHBRN7qjO0Mij8gjVKNHf97j6yLGPRRAJGI1JibYnSipmyjS0hbRhmOwWNZobSKUZ5M/9MoehYT/6NEMoyXQj3tx2zBRSzHVJbVt9Gn9XL0osfSoLZXuFTLE2UelQVsBpN/ZUVMrwbbRyuDC/RhhLbbROChB0u8/ci5N5XwlUNcVGyutB91THH8Kv1Ba4smSn8zsI6nPPvTkqLMho11vKn1a05IqixwTTIhx+laNRGCD+a+7fffvu+7e985zt517vetdFrn3LKKfzv//4v3//+93/vdm4O2LwJX/CSulZMZCNE06kufTnbZFZRjgIq+N8LRWeFXzTHdBR2RLAjDpN7iVYXulc4J2jVfaZl6tqE0Fs/3ROxVAJBiBcIk/tCtdX7VhajpyHaECeACoF/RajKl/qceNGBZI1UdfFpWaz1kdq25bAjoNva52OnPrjLpdLz8dZQETP0isgoUKngSl+TAKchFZRx0DXe5Jcpb/JLCKY/L6hUJFNJErH/pH8CGfBJ9qUZRdIfNFlL77iK7Gv92adI1v9WcbAMaOHxPS6EmqAxSC4VKYb+ippoJD8XtZ8Nqdg1waT+DPX+qcZMFHRqE+U8gWCwGFHcVxO+ejt6v0qMbo+EXSfc+OXXhZH4/CyQD19Lu5znpgE+fsDLKC3ksyUIJKlBJT5KvrQulJn25O9CFHq1II+i77p1YaoeIPbhA4/k9hlLouDxixJe8q1zq/Fy6WHHcfP6wstwRkFZgslwAlZKEq1RwTWjUKQqrkYnoLwmvHbNeu69ZzW2dIyPj9Fpd7DOkWQZU1MztEZHaBcli7bZjk4mFE77KHDn01WbBlINSxuarvWkX3YKXCdHLR7jUwcexV9e+dXai6TPfYhWNfeLQK4rAVIR+j4GjIoPuCVzXmArjF+lL2bGdHzArk+lrGkiuuaSFLylLVgdRMPVq45lrnTMFY772pb/vb9Dp3AocYj1grXrdFGpz/f3QYB6PtnjrTsq+wPU0n+AJv077riDiYmJavumtPtTTz2Viy++mO9+97tst9121fatttqKPM+ZnJzs0/Lvvfdettpqq+qY//qv/+q7Xozirx8zGNl/7733MjEx8Yho97C5E761KK1JtOKIC74GTe8bT6f9bG8z/ISd0DNhNRxlC1hvfOU6B92lfhaJqSM++Ej1TZDRDx3JRuhp9NGs6aOZe4Vsqn0Dk2n1Qc1TVUDH6ne58gGHWsDg/04E0l7NfNU2QSjIvGXA+OC7yt8WpHXX6H+O+i0rn2zQ4CXxD5c0vanNOXyGQWx45nyBosRVpKi7QcN1NS1eRdKqTSZ1Xqo0Unoacs1C0DMbh5Pq5t7Ba9WeI/Z1n3UmkkPVpl6T+toT21QRsD+oihHYkMZOTcuN5K97pDdY1GaetaC6Rr9A4Sf82j3r49KpvjK78/oiXrNaEdH/pycE9c6NdQMqMtW9fordDT0hqt7+ioyJz03Vrro1ZemilLvaluZY5iVD57AGjNZkSlfZJZUwEwWuMB6r+hMxBz+SVSUYehN9Qwtv+P5XelKBEigVy5qG5kzJrBNUmiB5iWpkflEeFDoEGXgtX/V+1+CwbLXtFhRlgRTQzJpoY7jn3vtoJyNMqQZ6PKdjLbabsyZPsHnee4kBbXxswdRM6E8Bme2gx1uIVvz1ty4gUGP1HcVVPBG8RS/60cvw/mPgXHQN1r4/Pe3rgcTOlFL16uC7MJ8k0lulc6T00fu1jAeA/3r58fxqqmR91/J/kzmzuSUvHVLVpxAvjChw7S6q6d+xOIdqZL7a4QagNha/8TDhgRL+xMREH+FvCCLC61//ei688EKuvvpqdtppp779e++9N2mactVVV7Fq1SoAbrnlFm6//Xb23XdfAPbdd1/e9773cd9997FixQoArrzySiYmJth9992rYy699NK+a1955ZXVNR4JbLaELyJIt0AlhpGk9zLHfquZ3VYqU2X0gbvS58FDmAPCIjR+3fhwckVUNU2rzsl1sqyTTkUmqu+cup+xz4wMPVNn/eA6N2a9SGtJnHcPJOKDalxvIgN6WqhQpRlWqXi11cvqEzeEST1O/NEfXlVl07j7G9DwWj3ghY3E+YC9sNJg5dqIq79BFczY/8L8feMqfZi4LWgjtW4AfABdvfNrsRCxj/tOqGmxfVwvtX11qN6zV52jpOe/j2bNgb6rxxLU4wQkbhfVNw56bF67bj2uIMzHVU68DiRfe9a+vgxtVro25uoxEPXnlQGC7hMyQixFRdaBnsJxC9Ui6ROWIiFvKBAhWHyikDRVOkrxLiEnDqyFRFOIN/EP1i7AMb808ALPVgVFGnj9NV/ptSNaGZR/sFR7k/pc4Z89LvRiw78KjdH+oZ24nuAYNP5GI0UljpGxUSDh9umCO12Tdq6xZYnkPj1WpSPBDx4/hoGxV19gRkCPtTBZSisJwnKoZaEK/1xkvfdWfd9RyIGeNSwKBzGtVbzykyzqUkw1UIlDxfoJpQrnS2/sKHzAX03gVQJYxX3tkjUzOZ3CMWMtYp2PwVD+eXzlPk/6eqzlqxr+AYj8gaJ0GrWRBXLKB7l4zimnnMKXvvQlvv71rzM+Pl753BctWkSr1WLRokX8xV/8BW9+85tZunQpExMTvP71r2fffffl2c9+NgCHHHIIu+++O6985Ss5/fTTueeee3j729/OKaecUlkWTj75ZD760Y9y2mmncdJJJ/Gd73yH888/n0suueQh9sSmsdkSPoVFlCIdbbJsJOXHJx7Lfmeeh0uo6s8DYAQ3UaLWp34cj1r0ZOL93Vt0ULe3sE3xde6d8iavUF4XaopMjXsiOcbtvR3hR/f84wyO+4H5sXcR5pFeNHHqKeO1925NQ4slPE1tktZhc9B+5gWlQUV0sf0uLqmb615tAQXlTIrKpPIpMlGQNktfqath0WMFNjeo9amvACiqUqgqgopE0+NiHxxpw4Rb7ZP+Poyb60F7YZ/aEAFU91I9Dbdm6h7sgz6CqZNDbE7w0fdbHaJwxDwhrUpbqj1D9XttwgaqinWxmI3OVdXGuIJiX7qh6p07T0PXPctTheg+iUJgPDeOae2JNz5HvS/qfDQvvqJqT40kBp9Nhfu4Xh9f/IIX87tOzqi1FHMzmNYYnW4brRo455DmqBdwy16bCWQTr9n37uvfUBjnVf0Jme9OQMFe536Brx5+NGvbJdLJ0YtCUJ6K69pJ5R5EgnsmPKSCUDtf0clzVueOW2csRTqKa3eRuQ7J4jHSTNMwfhGv2HEC5E7oWmFwMUAFtIzi1G9/tfdKQ/xrtJCZOe3dfHGMhn9dIlUGjiTS+0wEb30TBYlQdmpTeMjj7zPVxzGRiBcKuqZnURC4fNXR/GJNh06nxOUlKktQjRRlQjACKv4/PNTmQ/QR/lPbcLtkg3sWxplnngnAgQce2Lf97LPP5sQTTwTggx/8IFprVq1aRbfb5dBDD+XjH/94dawxhosvvpjXvva17LvvvoyOjnLCCSfwnve8pzpmp5124pJLLuFNb3oTH/rQh9huu+349Kc//Yil5MFmTPhSlKjRJmOZ5rjzLggSLXSW90gr+u1lNkG0YOY0ZeZw49ZnBbWTXhpwOwz0aNYfGAV9ZvBacZHo06w0NpkvJPSZ7x3VKnSVFhX21YPcRNHTBAmkoKVH6i5O+LVGxvlwYKYenLgr33PmXQfScDhcFejlI3P95OBNgoJan1IIPkdXgZ1KqXyMRSTZwU6Ded9ZDISLlQkXIJV5JNmTJ3rxBrUYicraErWTuvZTcUZtlbX6/QKJ1IW4qs01QSUKE1XRE1eTzlRso1RCWhXcFomxTkIaxMWyAL3YD+XCOgk1oSlqWX1wA/sjQ4R99XtW6aC1FLtqCWVDL8c9XEvlIfgy8Rkh82KdBgMcY9OESsCqBD4BVShu+J+f0ZhYgitLJicnWbp0KVPr12PSFJNmTOy8G/++78t507Vf6RfyogstBqTFgLVIdPHveK+agFC3vvx/9v48XrejKhPHn1W1937f94x3SEhAEgalobtt2ha/rXEEBBKGkIkQAjggrV9poFFsB5zw1367waHBCYGmEeluIJAAQUSGEASVSY3SKJMCBkKSe5M7nekd9lDr90fVWrX2e869uTcEuRdOfT7n3nPed+/atWvXrjU961ny2UJBwLQGCo+yKrB3wDhviVA6AsFFr2GnTn503Kn8qlyFSR1w5NgGNoplLHiHzhGqaoQSLX7gpjdHZSMJUZsqmsfFGdAo75l5tMGb97rifE8SJiwQU+cAoGStS09FAHPy/CWFuliq0R0ZAK2k2SGOSwCouj45hgxTOi4M8+J7rrgKn7hjglnHCLMGbmUBJFUNz6B2T6fl8VwZ4J3acDjEy172MrzsZS877jH3u9/9trns59vDH/5w/O3f/u0pje/LaaevwG87UOGxMvDRqk8vv58Syg3C7KyUeiZMdUVErYMJmEY0Lpehx5onFqNaCCJo5tLB5jc6sXqip5CM9bVd2MOJNQIVAlwgFjhJm1eO45J+v53UJI8x/j9vPvCOf7KcW4WUs4scwwPAqw3cHRW6AafUPhMe2ChBKUYo9MDUJjbANg1mHkVtLD8dR/rMhR2+O07b9p0Jr6hFP3/MHIreXsv2I27Qbe+9CBU2nhWJnYtLVHL350+luTFb93T6PALjkuDujDJjhk0dYignkBGoeUnZGHxPSZI5UWUkddxlZcuGkPTeCArwPCEB2Q5WdH/xyu/AOeffHxvlIkoinHvfB4LA2Lt3BjccgJnRgNAx8OqHX4Vn3vim/Iys8m29KchzZbMUFMA3v/ZSW/bAqGlQ7l3EeXsK3GtEcEiZJ+bgWd3g1i8dAIOxsrKMtmnBzGi7DoUvUa3dgdGsxp59e0CB0WAa11BHPet4XgfW0IoIau4PMdbDMC8PmXdVng/S3yl0FN/PyLLHjPguA2i3Svg9dSzUNfaxlkdDUalgQHwCcdxQZVYU6fc+4RJ88eg0xurbEN30Z6CwB5LL/h506X8tt9NW4ANA6QlP++O3oNoitAuEdinANYR6D4OXohVPUkY2vUxa0rUM8Fte492a/iKWWkcxD3Xmcs4pEL9PL+W861AFf7JM/CSmAPbiuPNWb9LiBXQ3jxmQTbMXU7VC9ERSUpq1XIlVgPAgROvcuPboWJnCBw7dckwVcjOXefuTSzDIvFGeG2Kk2DsiQ5/d+81w1AWdbpS2Seq5OeVs1anwMgJuJ6S9Tp3kpIvg66UKwjxPZFS4cQWQnWudT/O3VRYTIIoleyNZ/Hrs3Jz0whhpfHoeZGzIz0/CSPo4rTRBP08+PWtdemLZOcR0VZtiCijV77ZHMe+Gmc8koHwIGLlkc7Jq2TP279+Do9NChQyYgYIAX2YtF8Az/+IacAWTnmbGFiKhVPb0mLlPg4gCE6p45HmOxxdNg3+xr8Ses4co9X0iECJJjkMUaBwYk8kUHQccPbqG8XiCvXv3ggho2g4dM5qmxaxp0bYt2qZT/I+dNv2fWEM3nHg0NESjmTGs3kCuOK+BhNXQmg7y/Blxf7LrOYUjxV0fGg+/2EShn56/0iTrHmPGkeYKAA5OOxzeCmDvwU0Dt7J4Rgp74J638L+W22kr8N2ggneEMAwIlUe73AFLLZqiANWE6rYS7IB2KQH10osVRpEjnh1Qrjk0y2zctAAWuui2FlCdefdUYKTNxe6DVu7GErwB6Aq4OoYa1BVqNnkKSXCG6N63wDDtzsT3gTnrn/qbth4n4QFpEpuXKnjDDrReQJjVFJVL6MXfi2NFxDeUnBUZOx/isUhAwUAp9JDu0wokO/55S1aEQ0igSiUQghHc1no1z2HbvadjdJptrJ6RY/Jq/aOf/ieWu3wtqWAm/cuSoPQEpACiZR4lRATTP5DT9ojVSlM0fsl9N74Ib4Yy8IlyqAtF5kTI43welHqoXGb1s5a7Yi4S8EvnQsHdMhdzmoBkv+y03hxr+IkCcOmfXo/f++4nY5KC2AwkQc99cJePcXKWqRYAWlp0miooD1eyH0SRJVLvWY99MSHbuyZgNCpQuOiyF3gnI6DjDgwCc6zb/k0Pvj8AxqyeYRYIa+0Asw7o2oAmAIEZk6ZFO5mhAsH94ydiCMRnLIJSWEvZ7PSOz69n10B5IiBhdqKMwpf1kLgp2JCEoYykWDFEkAAAgl+qC4TC9wQ8pT7IyTuEzCmRwicfffKV+PThGqh8Lm7kz1wrmJmi5/UE3++22E5bgR+mNWYd4xXfcyGe95b3RnALl7j3g+7EnX97jsbKik2HbpSJKCJClUGeFeCn+ciOI11kRwr6E++ApFbZ+L003ZzSpuqmDn4cmf10k5oHoAFAyEC8UEEFqhSwAZDTo+athzmg3/YBye/QHGZJ4XGHY5qMxmgljtfEDT9UIY61iudTnaSOEdoAooUR4jnURMskLCbmPdmnbQ54oGwkGCVKflwTUwhDwTFH2N4XG+vVDoJY3bocqHfrNpbb3/SgSl/2vWL780knsqPMGyBjN4JYrV6biglsA07Ojy0ew/l/7mcrUJvuy9A+50wIZMUDWSERgaKKhuEK0HUj1ykkrSofJ+slCwSTrUDImSFyD4SIZ/BGwIk3TRD0jhFijdj+ufOxUE70y+nZkFnnwNw8y7MTV3pAtIwj5ATEUXHggvGGb/0ubExm+Meb/wmz2RQPfei/xtLiCIE7BA6oA3B0Rrhz2qIN8WZLB6xWDKISt09iznxgjmj0pgVPGzAzqkGF53z0jzVUl6v4mT0jRA8edUnZE44Pua0yfkYc4/iqgPVeeijwX7AN7CL5FnHM5LG8IMToKyBpGgWkq8BOKapVMmjTgzrCd7zhOrzjyiuxdXSKjZBiBeb9OdNaAJ0QtHei777e2mkr8NFFl/2oWMTsrPQmLHY4+Kl7oWjiptNWAA9YLT61jMsA+BA17qUW5WKDem0QrXYpFxsI1ETsmrSw0MUwgN3zpO/0groG8BNKZW+NNbXTC5xe/mDTsHScdz0FKgRM19myhW4+XAW4sY+xPAeEFIenluBCVGrCIG7acu+qeFQBwVGmDDbXUKBekJQgxEpcgpxm9DdsoB/7TRujtUiltDhTUraaPGckx6rgnRM+6aOeTiB4CmvhyCkJmd+rktdz5yALFhHs8rufe57zsQuL3eA8H7oOCb1n3FMkCUZwpePmlYz0M58eF5VPqPtexzQvPNMYt4WQfJ7nKHCDueYcEl5uxuUJJoNpyMdStBSThU9A5NF3c1ZjnWmpATPHjKyAizdOFLB0X8Kcab04sq5qGmJtNsXCwiL2Li3D63Udjs4YN2+2ODbjvDSTInJwnB5Fx0BXR5rYNnJ/lIsD/NSfv00VGnl+sYoi955nJqKCps/l50XqDdGlqd6RPI8UKPFqICrUSVBHxSq/s0qkxZFeO4dyWJUwnUNZyy1FQycN4K2XXYHPrnWY1YgkOoMqK2hnoFu/u4u0vG43hq/t9BX4hQd3AUCB6oiHnwHThzRgx3AdYXqvLlr3w1iSkZr0IqS60TTzCOdNwJMCzR0j+BQfVKIL4liNzgioyBmfnI7zvvz0Qocqk4PE79P/kidrLSn7/Vzr4QPmzEMr3EWJUcAPrABN1lnrTJoZIkPf1GVefrEak4VAjAjaC6QgoPlr934X0g+yg9t+HIlVIf9zmm/ZD038WWmLZY7k92CElBGyurFJmIOz4NHx7OS6SwIyW/jpPOnbpgFay1KaHYfFJqRNX/+U/GojpHvrgZGVQgkXyQYvxUrs8NPfOhc2VJTyufUca3Eij6HvceCeMqHENnIdAtgIeRZkt1ibWu0xCTLxOATgTy+8Gp9ca2OVusRchzpEshYEdEI3Y1PGkutZ2fVU+FMfeFgwMAqxRoMoBWle3n/hE7GxuQWuljE6az/KwuOckUflCRt1wOFZhy9stph2iMjrLgBtB+46IOWaEwMooruBygLDxQH2FIQf+sBbYlnumsCiNMoaIUAyNkDIIZWkGOkaMFuHLuVhMNkHac04qGey9zJUIVr3jKyAIQp9agGiBKhF0mFcGpeuib7WyZ7xjkdfiANbMziOlf1c28XntDUBOxeFvyOcTnn2d9V2Y/gn305bgU9VCa4brM+K6BILAI8LDA87NCux+Ay1BHf2FOHOQeSbX2nQHalAVYjL/M5BNDKM5UUNKW8+hUgSIxs3pVx1fTlTfM0ahZLSJGlE8vKpgLfArWBS89j83zNTYTqfs9AI2wpbAICfxFgeVzFKKdS6JORDdQLhESISnxCr/TkCTRw6ofEtYiqjMpqhPwSLOQCQLY3jgRvkvtL/1CGlCsVNLZSsm5w9PYhwMnNNRltSodobk7EAOVtAdki999wKVLHOUix6G/mLuhNgnlcanAMQTIofZ7xHr7QrIRexkb6CEbIGXNUTDr2wBnrradv9MHa+Z6Z+VkD6olcbgNPz8fGaLOM2niomRG+ZCaXksEGe4Ie/8xr8zgO+Dcure3HrLbdgMByha2oU1QBcFBje+3zsGxZZ+dKHD50EUVZUWRJwIBCBp/YZhqiQTCYd9u3bi6WlURwOA4emHT633uHorNNYPDctwiQy41FZAN6DqkitS20HN6ywWBLOHnpc8cdvzJOdFFaZ31CwAuYE16LgxfS8exlBgIIl7eck4ElKgrqjSHpFiMRYDsAggOuMNeIigoT9JL7r3WLIz9/K9cSmKWVte2yhAC5+x3uAAPzh93wX2nGNUDfwvAC3sh910yKsb8EtL8SY/hki9Hdj+CffTmOBX4CbDtPAeOVjH4f9ow1ced2fI1RAtxjz75v9DdzBIejsKXB4ALplCBoysFHktCO7IcqD9/lFVX59ALyngT8SUezWVbxNDidefWJE0N6AM9lKcvsDefPa1jgK4m7EytGvX1ECtSXXtub0Wrlq8qclLVBzfiX7oMluz+KsKfjwEChyNT4uoiAJJW+7v53Gq3PYl8jzv+YPOCk7aQy9Y1n3+egi3aHtFMZQIWMt+53IWuafGVOMQ9v3XvuyF0U+RrwCcrvJjUytOV8Gmqw1eGhcnlIfOeQTBayGYYwiSAB2Yr6zzXoAZG1s44tgI7R3Ol/GnVzjcEgV1kxeeaqixo615C07TlamUXI0WyFqa8/7/F/j5f/qezBcWsbAEY5srGO0uhdclHjeB69Ti97WXN+WDos8fjLATosDEaXqg096Gj598xEcog6LocFWyygccMekQx0ADgyuG/C0jmWohxVQFUmGETwBz7/pjdEzJ4paR7HqT4iSmJOO0vMQUZw3LthUgpQ8+jh3PV4FeRaCtRCFQUB0HuAGCvyjQXL3zHIqLeIlIoC5TGMYdtHrIetSFIfGgZo8l3rNtJaZIs7mhz76F3j5Qx+GcnEJwRV47of+CK94+KU4BiBsTWNO/g7r8HRsgQldOP5ody383E5bgW8pHafO48rr/hzdiFGMCdWdHs2ekDYroJsVUdYN+xvd8UqdKsDOWCvEAI+9At2UwMTGn1WQJcu/puh9EKrZZEVxFfkCALPhW008XdslEgzqCG5KCMOU2OSMEE4xO2sRM2F7SCDF8Hrc3IiCqGt8EowGYbwDCv6ELRvQ89Ohv/fGo4j2rDjpPCD/bvWH3j26/nEyBrUunfk7xep3CjP00PcitEx/HJDzwe31jPUkhXKsp8deRzZWAdwBUOEWEfeGUKkDnChcgsOwa8S2pJQoWE6Upbb/3ETRnK/vIF4mcUNTMGyLJt3L4g+iUE1eGKvgIX2e7g0dgWyowzEGoxEmy/cC2garq/cCBgM8/yNvzlSvRoBryp8oL5JdYdaLS1kLSp4k8+QZn7xjjKPwCIe24LZaFKMSTISui5TcqGvAe7jFoVLBVg5YKR1++M+ugXQoHvAMakwKXJnortuoQPeyPuQH0JAND8VCp1zlLgEORbFCCjmSVd5aisC8LmYkqQJrU/RKBooQi+PUTnklyAEM1rg+NTF8JziDHoVzAgBqOe5A+PG/uwmvvuhKbDYBv/v9T8JCwdioC7T1FGdSPD/mfpxA4J8xqstXvp2+aAbnYpnKusEsMK67+nKExQ7sgMXbgcFhB9r0Ebk7dRlIFkhJL6zrsBfOmtuw5W8/SdMhMTYr7AF9GZUdK9WMkE2JXba8w06qlBVItlpZSOmFAerylHCm3cSV7jdQTmlKFpvG57tsQQFJHs5i6o6buDwXyY3P7iTl/najcXu838Y/PGNe2FOySPT5wMji+b7mNtbeOM0zU0zADlat7V8mlFQQJ6UoCS+NL9tujJLSV2jm+hcFx44tKRpSZ17d/kCuusiIlr0gqV3uQ8snm7BSb44sgn+ntWrvgckgyeU+qRdD17UknA1MyoCn8yU3nNasnpOu8yM3vQf7CqCqSuxdGuAnP/LmrFwLaY0Zl6SNyXqH5wws5YRoN+x7cREz/uziq7B3scTK6gjl3iX8zGfeCl4fo1vbAm+MgRBASwuxZGtZoHCEn77pjXjeX70Rz/jwG0AOoDJm8vQELLGG0BT8VsUHJ++jVaB0/n1yoTfpHiUVswypGA5npZKiLOXGgRsXwbKioKdzAYA8o1hoAR8FPRFHF7+sv4RDIgfNugCixw5SWIuyEfCOx16VLH3GR572VLz9SU8GdYRvWinwvBvfjOe+9zqUkpoX5hTg07yJS/9EP7stttPWwicC3NICwtoWmtrhzq0OxTGP5S8AS7e2mNyrwOItDs0yMDuvBm0USZAlIZNiZ8WajyVyJy6W1R2yupplB9bUOJNiJxuQqw36yYDRek1e5EGA2/K5P4fMFAb0LXyxStPnmt9uLG+xdKmLla9IzXu5YDz+vVdejUe96Zo8TrWIkkVRMMIwRNyDWFYERQXn+yDMC+mTfl4iRDhuOmqdyZAWOrVkRGFSL4VkAFjLh+aEpE4IzX2Yx94jUIK5TzNG7j33tNGqFZ4ekBX0FvVvFTY7Tqu0pHsW139PSMw3q25bwTOvqBrrUnPjKf0u7nkggwjNGC0ttG00J7C3FbeR4+UZGjCq5vSLR4Og6Xw//IG39Na3KqAphAQPzdTA/NxKKIug6bLb3jUHfO+fXKPjvf7RT8NrvuOpmLUBm00AEaH0hOXSxdeDgHNHokUA3BCozZ4O+Cj4BbCoWIzagcqgc6LrSgR3KlzFMtEpvCH7jnoHxbIP8d6LhTYW+goErr16B5BSKCnVWhAtr1ps0KbiVlQyMPGZHdMAQhnGIJe69xw9oH96xeNxaNwBDvij778MnznWYL0JYM/47OEpfut7LkHHjFvXZghdiOV0nV0Mp3frxAA60fe7DcBpLPBBBHHTknfoAuMjP/JUfNfvvwELB+MDrPcAfgJUX6rQrMaX02+5SNLjGGgJ3UKIXPKcYjnEOYZdmlghA65NFleyPFxDWesH0kuM3iZgQVZunGvbiyQICe0sAl3Ti2TzFNe3CHphstNdGykzYW4D1xgz4VFvvAYv+47vw2T9KJ7/+Y8las54+vCsCaaHRzl2KtZS6hsFg8XCkDShE70forRgzurVD3Kuso0ru3GsZVBMCO2iUaAglp4RVoRtwrVX/KajzHdt0taUf18EtYDs2FhtNlyivnjOf1rXuDnPKhuimIgw5gA4yYWWH5rbhJEVQKmgp2tL4vcSuiHDfw9o/Lwn/FOYgEQgC2nL3CPp9Sf3Y4FcZgrY5SItnAQUhBVPnlfon2sVIlUa5H0xXg+17kM6TixZmS+ZH+mbWMs/a31EwwUgA730Pa9LLnTqcymo8pjed8sR4bKQJ3NNcvFKcU7Ne6Y3iOSeR1aWxTsj75WuaWTlaBCiu2LUgQNiidoigIat/s5B0mLjfbtk1cvYOBBc0SGMItWuvP/UUUxtTe/Ph696CtrAaDvGZGuKsWtw+5rHkVnAS/79pfjHtQ7wjD2jAm943OU4vBXQdAElAeQcunmypDOg7YL2Tr6dvgJfWoolrQw8vv0PX4/RBuHABQ5+ChRjoF6NHNJuRjEHvWJUxzy6AWtM300Taj1ZJE42Pc4biPLfp83TyQaluy62pePNF7ahVqwuYW+LcU5X59x1FfCykUgfcxuppvzAuBOBbJXJZhK1ADz7ox/Ab37/ZcA//t9sqTlG0/hkYUXtxNVJMNjsgQTKUiklt8THEf4yHz3FJAlDzzmXvmRQCpOIMO4GRpKl0+YvYrEXPD/PaVxSIMZuyD3nh+Y6o8c70DtOOpP/7L3YORAlwQh7bRKeSIokcRZucQx50xYsgJ6vCor5P2ExlGwmjUfGLAAztJRjwXNkUTR/H5QVquO6agMiHS4jp6CJJW7v1cy3enWkfwtAFYVA1pBdMyaXfNt603fDXFhSOK3AFuUiZEuXatfrjx3USte0QySFQwF36fmnsJzFzqjSQHNjFaNAFzGyclAxXNll5aqKtMFS9CawR7HQoGs8wqQAlQHceOPFkfkEQufQzmICPxXibYj3SwD+9LFPw8Fxh3HTKWnQ3x2cog6xInhXx6I73gE1OoStaZy+hSGObTU4ImRJzqEobIxo+/I4nduuwD/5dvoLfDAIjGHpwAUwPZsjfz0Y3TCR4AyAap3QjiQWHolxUDBoHOPW8DmNRVN/xDIoojJgwXh2c+kJWbtpiqUi771Wx4MqD64x1s78pq1CvHe7qgTEDID8lQof66IyLnimtCGL14KA7vAgKQ5xI+emvylzEQdDnsFbRQxjzOU7a/8u733bYu8WGCc53gktHIYhxiq7WJBnvnaBnuqSsLTu7yQot2U8UP/3eYZEay2GMmsQ2ld6jvY+rFdBwX1G6cqd51u2SqK0MOgrIgAUpd8LJ0mKpwgMM38gqHeI5taLllJNg5YYsF1/+UbSYI0SJYJf5kL7D1D2NgWaGaGt8tF0NL8e7ZwopSuQlaG0hhVPYRUCmVsmuDqdn0IBhHxenE+jSDVeP2MpRCTjaxOILg2M0nrnpPxzm8JcQmEr8fjUV2II7mUYxBi6S8C6PDFcmrUgj5Pj9alsEdq4KNtpmZ/D1AODSAc+Dx4NrYtxe6aECwh47/dchWOBcHjS4hN3TFJdHIL3Ds/+8Jvxhkc+GUXHGDcMwKNuGRwCeNaCqhIoPMK0jpdxLrrvmxabE9lHCG5x2FtCp3vbdemffDu9BX7Ivu+OA8JqA6yVKDYIcEBXCXUseoK83tdFASCCm6CMblYwKFHJTF4o1hz9nkZvrQtCTxu3ZVd7ZUMtKQtyPz235Zwmrfn8xupnMmhuEUpzcXbZZP/z+94MAHjp912Kn/iz6zOCeKkFtpI1UXFO6akdXPrdlSEWnBp7BYFRyGz5lDYcdb2nQkSWDCW70AEMAzgAYTFuur4mVWZ4uQXWCvBSB9r0+ozYcXZvy33ZP1ThIp0fPUgHmvoRoRMo/Z7mTNzUPSXLpKUxTNEWJKFmFC0j7Hs4BLkHEgEVx6bPTKz0kK+p1RbN2POY5gQsGaVD11WfgIckJEVQXn51dcualnUE9NYV8mU0RSzOF/cUowgsQ1JKCT2MigFW2lQwOABliM9CnyFnfIMK/XROosVGh8yVoFS+ydINFGtiANHaB7KAnsdLcCKv0ZoacRxRmKc9RLAlwvxYQFH3AOYIlBBR8ylPHgWANlWYXOiy8EnjKKpOWYaj0OcI2EvYDk2vM0pF4CJ6MprIrcEd4V2Pfjo26haVB+6zUuLid71R5/mdF16ONz7yShAz2rrDdNqhazqEtgN5F1MSE6MeDUpsQ+GncB5J7P4Mcusz4y4s/H/GwZzm7bQV+MwMHs9AgxJLA4cr/+TNQBVddsUUmJ4VF3oziMQ5s7PzS+/HLv0e9wc3I9DAqRUkrvcwDKCW0C1EfnjXSjpS5sZmR3OxRUDivJK6FzeRtMlLXA/W+oOmJfVAc9JtQAQWbrksvCh+ptagvIDGIkX6ap6b/ifff330WuhBcUx+08cywuRAVXIxTgr4sYt9GNY9jbm62D+XIVuJYlVibnNN8+BaQggevotzLDzkYZAE4HoB2j8Dz4ptlru1OPtWtVi15jMyn+tx0OqIOs+isKnSFgF66uK28fn0nNSNLx2QEYgWuGmJlpCP6aHrk3Wv33cw107XM4j0+eeswrabu1f5PlnqYcB6XA+nYRj4suVt5tKuR1F01YAmHVd02WdlQbxf8xkCqnDJ2m3TTaoFaxQ2OVVi4cY6h48DozZNVZkXRk8Qp3rwGo8XwpokTNmCJkWwCnBUlAxZ73bNpdoTWnxK5pMBSplB1uvHUt1OvCMBoCKgLCOCczqpYhdt1Iy4CCA5p6MUVkhrsU3zI16vKuCid78ebtCBA+HPLvpBvPsJT8G4CdiqW3zxaMCkrtE2HbpUEIeqEm40wI7MefN/+zNHwM+3XZf+ybd5R+kptRe/+MUgIvzET/yEfjadTvHsZz8b+/fvx9LSEq644gocPHjwlPvmaQPuAqphif/4/utjrvrER256DwyOpBc+aeuywbmpi5tnETeeUDK6Ud6QwkIH9ogFZEK0RNzYw0l6DKBUp6FEfqlV2McfterncqQ1pposrngM+oIK5ljEa41u83Ej1vKfeaPP4DH5nYzgiT9qWTl7XhI8PkTmLtnoAwG1Aw+7qDBUnAmIDOGPcIJTQCRn6XJamwoFG39O1k9I5zGlTbAK6EZBlQN2DFcE+FELLHSp9kHmJ98252TmN821Cb/2lAZN+2tlrFBAW8wflz7zAxGPRhbo6esuKX5tqkugaVfYJniR3IqUUvyU792sGa205xEtWGeEL+z/nNNMOSkLInQkhVByvGHmSZooDubz+bBAPE7ek/y5q+O6jcps/NtPXFSaA4znIE1cgM5LDwzoOFLkSirZTmmDgvmQWgdmY47u/KCYBrJrLD3TTMkr/ceQlTyP6K4nVSSYkYV9uj7Eqg/5+WqJbRhhn95Xfe+HIa5bee8q7nn4lMzHM2bTCtNxhdCkeLwNRwg4zyG+p8jnchnABeP6730i3vjvLsJ133YR3vJtl+H/fNvl+Ifbj+Efbz6A249McfvhGmtrNeppg+Ac3OIIbnkBblCCvDvjQHin2oRa90Q/uy22u23h/9Vf/RVe+cpX4qEPfWjv85/8yZ/EO97xDlx77bVYXV3Fc57zHFx++eX44Ac/eEr9c93ALS9h4GOZW3C0YEIVN6ng4+bTDUNMnUP6jDIRhWsoxySJUGwSQJFcR6xeVAG0Vmbrx9SzlvSXDI6T/6H9i4AWK84C+yTNz1Y+s8xrFq0/22usuySQgu8LIHHjqiRJm5Bw5UdrK4CJ8n14IMw8/GYRPRpNcj2WgFtsQXcMNAdZ3bsuz6E2MsLTZTe3WiAwyorkAANwWz67//fNEDZjWeNmo4oWzdTp5t1z4YtCxObezXB68Wg7PkYGT8p8q+WYrTwlKqJs6SvPgQg1gwHTDABV0lgBaL1wgCFJ0qmzyop6SUTQ9oGA0QNgOjDYA+UOYOQ1LN4jM1/xHpGtbCCn883NrVVk1ZMg8yHjSL/L2tb0UHO/BBh8ArLyI4I6ID9IGYM1N0QhEfIosc6Pt1cTAxWD7LvQxZQ7S/pki1tp+MQAZHshFXk+Dqk2Rxq7hAKQFAxLcFR1aTiUaxE0ac9w8d0DIZe4TeuRfLy/MPMJWMgI0zm6xUB48fJ9cXhtDeOWsH7gVhRFiRACqsEAh+68A/c6/wFwe+4Fdn5nS/7roZn367jf7zYAd9PC39zcxNOe9jS86lWvwt69e/XztbU1vPrVr8ZLXvISPPKRj8TDHvYwvOY1r8GHPvQhfOQjHzm1gQ0qhEmNWYpLujZa9dQB7QKj3IiCxo8j8lyquYGi9c6eFSAGRLc++yxwNb7dEcIgA/qoydz4riEFAdlUInD+TjfFeeFoCtZIbLPnrjbu27DY9dJ7NEYbsvWpZS+lzXkItC2mDagmoGAUe6eRYWsQ4Ooo3NzUxZz8Q4PjrwDingAgSc9KG6YIIGpIxyvWJ5chIqtFQLQEXmkQjg4ieK+hCIyaOmCxVbe33DOZe9t2f3l4+UW33gYk4UZZeYkx1zkr0m4SIuwEfGWq62WUvSgLUEtbaI21GM/x9tq5a4oSly3VrPBsU2pM7F6UV10LsrY88hoTVr8iHqdeG+S1F0maoBa7LdMrF1bvhDnPDlALxlCcb06lqPW+5JnK3CSBHLWVPO/5geZrU+PUOldPVgLgKeGUjJPjO8y1i3S0qsT0GTNtCVkdS4cd11akrk4Hi7BPefdCq8tCQRxMeCF5zmQtsjAMusiFAQBo4+ecMD7UEbiJ51DJ8Ue8RQy8YP1LOO/e+1As78HSOfdHeda9sXjeAzC87wNw72/+dyj3nhXrAnwdWPLHbXwXpDu7Fr62uyXwn/3sZ+Pxj388HvWoR/U+v+mmm9A0Te/zhzzkITj//PPx4Q9/eMe+ZrMZ1tfXez8AgEEBeId61uAlFz0B1/zwZeiGadANYbo/bz6hSqlvKX1HhXkVgMUWXDLa5S4Le7E+OlIBFAacFQKHTFObLHwyVgGArP2n91gEerx+tuIAY/kgCSMnFlPcTPy6zwAmyMZJKhjUdU8pnp6ATLKZWiFB68Zp0wHtkWGOlabF3+xr0a22kZu7yGl/1onRa8ZdD8/q/lZ3cVKAQNHr4WUMoza6OgfZ/y1IfErx0fK2Qbbe54T8Nrf5XLMCUgS2CDhVqNSSTQeqAOpvBHYORFDlfHwkz4hRSKzVp+ex1jtnWUPpf3jznBiwxXNUiTJucftMe255yn2Iu58SRbNrsrWra6elzCMQANeYzxtSj4+rSTnY7XVDEUNigr9gH3+i8pFwA9S/fs9lnt4nvQ8LfpP/7bNnxFCAuNXlUSWAHpoY65BqfTrUljJngIRVasqhD6ZeSMvWDuBhiCWkK05FpzhW6KvifsJFyAp/8hSQUWQE7KfMfCUbvAEiEn/qovcByGOXdzmFH7ilGJKoQvxJdTQaKjBpgUnn0C3vwWy4hLErMRssYlIMpCrx122LoL0T/+y22E5Z4F9zzTX4m7/5G7zoRS/a9t2BAwdQVRX27NnT+/ycc87BgQMHduzvRS96EVZXV/XnvPPOAxDfRbe0AADY2pzh80cbvOrqR4Ha6KZ3DSEUQLcUEAYhgsOAHsI90mLGztwsMu2VG4TqGMUYfpc3fZJ4rVrmRgICKmR7TTYqUQgIGhdVlPhxLej8axjkOtbKmy8xcHO+phEiyypr+ducb9cmLgEJSVD+3m/5aGFb7vc0T8cV+mmD67mcrTWaWAk1Jiux21EbrZomYgYAaCU0N3W5bzb9ifAm9AWfkcrzSop8vc1CNha59D1P7WsxA5lrPv0tgrvM4ST2sW9RlgDkiosiTNnMU+pPhKSC9AigJlvZUfAilwKWe+rMGNmOFQmEGgU2OD33JMj92MFPY4U1v+Xgk2CXeLxrjR7UxnM1I6Gj+H16L+Y9SnptUaYI/UJP6f6j4M7nAul5+KSQD9MP5bWrIQrHRklHtPwpDSCtZYvQ50HIwtJzFNgm1U0VROE60GswuAoGt4KMwDc8HahCXndt9kL0QmzyvIVit3GZrlhKdEt4RtITZe2LUi4KWnqHDo2BtguRavzr1Yo/QePg7vJnt8V2SjNxyy234HnPex5e97rXYTgc3iMDeMELXoC1tTX9ueWWW+IXRCBHoMUhaFCi3pzhjq0KYcDws7gxhSqWycVCh+FZk+hKBrJF1zhg7JPrk9EsB7QjRrOU3sxFs+MR6yamm63L1m/8YO5l000uCWHZRJIF14v5JotQq61pH7nUrvRpL6UxX8mNluuWeSOy8ey8ySagWUso13xkp/McUxvvNVUlReL/ymuOHQSnxOzn7kXuP1TRSgqj+MMFw63UwGahVpQbdpGJ0MVnFoUS0Kx0PSGWrfI0p7LhyzPdPn15vuYUJEobqLpIu/ychFdcgYSiqBRx8++5rhHxIaGMHpFQRgCkejs8a9ElHW+bXfVi/YtC0Q0i1TGXjDDkqESUcT1LDQarlGipWOvxMNaxPAMJJbFRDChZ9VF49z+3mJFQWSEY++wG2ZujKXyJG0C9FCk7RO4/lJyKtyC7vgkpVEbQuDmg/POQSo8pG4TLEBUCOdbE4omhCqROhYTDzPvKRkHlKmRsBafrVNGKx7ADVQHkIrgUQA49QO47TVTywJDnnM8vygMQqXUNOJKEtrcMGlYSr07kxHB5SZv3HbWLabQ1RRDybIJBqFFW/uvXbX+Ctmvhn3w7JYF/00034Y477sC3fuu3oigKFEWBD3zgA/id3/kdFEWBc845B3Vd49ixY73zDh48iHPPPXfHPgeDAVZWVno/thERaFgBjtDWAb/9iIfHTaWK9aHhGG6tQP3FJZTLtTLkacwZyGlyFevGCgaKgxWqYz7nMssmLlZzeu8F9d2LFwNqxQBQEJ+OOx3n6jTRkq9uEPs53S8LULHSVJmQviTVTE5p564lLcWsoyCKX3YDzgh/xwhHBqCpy2GNjuDS5jNvUUtceN4yFmpiOMQNrYnjc1MXBcjRCiw1vYddJPVJcyZCpN2bUPpp/tIl07V6yyDrWklI61itW96Z+ZLnY56XddHr3Mk9mU193ovSCwXJNY1LXwFiwq9eMkIVIpbExJFjJ2mAIV+DnYm3G/yAFpyx2REGiGeVSym9G9cPcj631LsXZSgpJSGh8zXk0Jts+Txey7UEP5UMBPQUNF0fVUjrgbNlLO58MnMv8yDKx5y3Rj8TshwRwtYLJMqfnGRi5Kq/O2TCnTRGMngGADHM4lgpbLkRjgnR8ihyVyTPmq6HgBi3F8+eZBLUCZtSu/g/cQ9xD0rrS5RPxxHpPwiZIwBQxU74ENZv/xKO/tNnEGYb2G07ND6Jn90G4BRR+t///d+Pv/u7v+t99oxnPAMPechD8LM/+7M477zzUJYlbrzxRlxxxRUAgM985jP44he/iAsuuOBuD5KACEoBofQFuiFHEF6qXc2e4RugOzjq46bkpRR6yhpqUbuG0C530cqtCcGk1/EwgCYuU4USg0B54ehGnzZuSiA+B3W/qsWZsgl6tLziWp9G3IG6plOakaZnDQKo9eClFrQRkWg2f5qrOA+2OIuGA0qOhEIp9q/XnRQxM2HikM0N9DMSrPWorGtJMI2CWmtqfTUeYRTJjhgJLIX4vV+t0U0KVPunqI8MM9ipI9DYoxgn/ESaM9f2Lbpek/g0MPcs4jmi7GXlIP1u06BsOEK+T4RLkSGQc3347NpBf2EhI8GtAJbn4GAIhDiFeDgpE+iRMjlBhSugjjSspCA/waTMubi1UI94gURR4uwxopAyMiRFNJ3jmqR3lAAT5eccsmIgx/coiZNnQDIhVDkWnIgNqUmT+0214rkS4R+PF/ImJCWVinhDvTQ6UYDJrE8LqOycrolISZyUo+SuovRekKNM6JPWhIybiIE6eYTSmDFgVRqJ81zkdZT2mDZjiHRtWAs+3cNbH3M5Lv3AdUAR8I5vfRwu/tg7QJ4RGhc58tNxb//+R2ILI6xNAtqtCVZGq/Are1Bjt8035sS1cILvd1tspyTwl5eX8c3f/M29zxYXF7F//379/JnPfCae//znY9++fVhZWcFzn/tcXHDBBfiO7/iOL2ugHALgPSofhywEOkibVruU0vPE+gCyFZY2fdlkiQXo59Qy8hOnYQItRhFkwzSbg7U8DWo/gtGMYE8biYLbrKapaX+5K40lI1ulqpim8rYWyEaMyCQoAl2wCGAzXtb7AEUQk7VWFHxmLQ4TW1TQohLFRJBjJhZKczoISlzEhMhQlu67G0ca0frwMLr6x16pdoGYceGnUQjEOeiDEPMmbix5YV2TjViE3E653uKmTml5Gj6xQoPznIswtvSoOcZqzp23tOefMZCt4ZZAnNcK2Xsi430xoezefdtxpAwSq4D02fqM4ipCzhLxIAtttagTiBQdcvggucPhkHnhJTxRmGdvsQUybgWapq7EYyWWv3g4CFkZSMozCcBT1kHKn9exty677pvoXgfSMTLHLYF8unwS9rFQTjrOsxYdUoS9S5z280soAe2sshFBei6v185lfn2btZP6+usrno5jdYuDE8al73sjyAPoHJ7w4Xfj7Y9+Ei5+/1sUS0CpYFAzXMGhdca4bsEYwO1dRLfrzt+x7RLvnHy7x5n2XvrSl8I5hyuuuAKz2QwXXnghfv/3f//L7pfKAjxrMJlVaph2oxAJY5LAoXMnaLcST7VW56K+ZZQ2GDeh3mfgmM4nufVhGOIGWHGqI582qWQFAdCNXt3P2l8U5q6J3PE9LnirjABqIagADqRWtNtKZTHraHFoDDCdR9t2pyT/073HPP5M4hJS7fUeHW4ai4KPxIOgwjRv3FHQQlOG1A0bCK52CKstyoMlii1gcu8OtNKAN8s4XyXDVR24YJQHS3TDvsDIAipdjvNnvfi9tdLRP8/+DiQh0pGxnl2fOAb9vrZPJrZ5Tmzc26IbFUth50/y+kUA2j4F5JUsep0LUQSlL2SFRPElxppXciFVdGUCKdHMIueWm/hy8IDrUuxdcQNmnRogh4TAZK3LulEugKRQq4LhEEM5HSKQ06aUUp6XXjGekiOnPJCBeCF2TnU6vmAVqvoe1BTBevI8QnxPuIjrzZUh0tl2LqbtqcLGOgZ4jsAuHwBHGdnfpocgIQNT6548R+VB+pLsA2/6Tc962jG+sMl45p++Uel6JUR48bvfht+74HL4gvGsP/sjwDOuvfBi3Hw0oB7PQORAywvzK3O32TavaO/0/W4DcA8I/Pe///29v4fDIV72spfhZS972ZfbdW5EoLJAmMwwC07dsJRy6P3YoVvq0M18ttIWWvBGuZ2rXIxijvn27VKIQpmBYsuhG6Z4XEPgKqBcmaGbjOI5VoNH2oSRN8AImkPcI+oo7AGokHEtlGFtvhMCshASyx1RUIRByAxfqhgg5Zsnq0OwC5yQ+wux/jVv+hiimEWgXDfIAr8/x1kBEReqTUWc5yfXcXSE0UGHdgg03qMbMkKJWLFw7BJmIkRmv9KBNorkqUjWreAnOgK5OHYdiriV0zz00N5GCPYE73Fce9lKRyaEIe4LQkCFkNyfWAcEpPi3CB2AOpfxFZ6TAyjdl7Vw0++UWP56TG4S4/UAWNIxE4DUjKtH6GSFSoMeh4H0qWEllng995QGCkAruFtjzfeeryjL3ghSKQ2rB6YfKVITXH5OHpFjAsjAPFVMEJUECXekOLa4ZjmlqiFQP5qiWBrSPqhxCWgZLXEqAyIRjgN3HPtJiHd9j6QPSuQ9xIAH/KAFmNChiILZxzg8TZ1iNeLcIyogCRAKzzEdb8vn+XexT0cdKuGoZyhzIwhgZuxdHOC2YzNQQ7j2oktx2xqjHtcg7yNoedeyP3FTy+ME3+82AKcI2vuqtsQiFbqAN1x0eQQRtZT45wl+o4iu75mLm4+4apN1pSxlIW4KYRjQLQSNm4vrO6y2QEp1Yge0W5UOQeO98ndPcMs4AaHsFQUjFP3/hXDFAoF6Vqu1fJJQjBsTtHqYBXdto00dBWDq4Y5loBx8vGc/duohkR/rNej1k64v/yljHveFzOScgGY1aIwzVIx6bxdjtSFaebGKX1Q6uJQOKVtc/cv107HEwjdzapHi/RORFTyjo6j72igM6mUn5GehSkH+3zLpESOlvrlMxcpRiFNtYv+ieFqgm/TXxewI1+b7i2j6rCRY+ACAXmw9zxEDgoyv+il/pAoRqxUfyqQ4eFa3fJ54qLcmvgtmPfaAdlm73VYgJ63tzErImawpWbuaEgcYcKmx6AOBO8HcOLiJ2+6FYdL7U0s6kKLiNWTWUmR2lNQ4ud1O7jE99y7HgENC2vtRi2K5BnzIYMm0hmnm4to2ghtMKRSI7MFIilHLwEYT8D8fflUeh7ml81cc9i4WeMl3XoxbjjIm40iIQAu7wv6kGp/Ez24DcAYJfCKCWxiinczwpWM1/uDiy/Dhpz815efGY9zYx820dghHB3Omd88Q7AvrpOEzAcUdJYq15EovAtyGj5bOMBbpCUXuS4UR0BMgFs3uZpT/t0InbYhybG/zZfQ3OSsELQGQEQ42h5+2cuYBpY2Q56w3eRF6yvFOL4Zx7bpZ5FRXlyrFsIps/IL6Jo6YCAkRBMlvVhYy5I3absQyNoLGQEUY5++4N4fC898DiRnhLP/3LH9jeZNxD2txmnmFwQp+k/0R087yfbPxl+m1E4ArA/GyALTgPCXESSA1V6d8+s782LHJqWkMAHpo/1CY5yprPq0RSTFUK1TukUX5BZQK1857UhbsTXIREg4EGpdnQdYj9dNSPJdJgY1KUZueJzcU4+UyVlkfaW0jkRkJ4922injEMfedEddZ7XpV/3qudkAVfSpDzqLoCESM0Dl0GyXajQqY+Th+EeyelR0SiWSJJLUweY5CGTkBBO0/nrWgpoYLnQmfQbNjvu//vAnnrxZwnlBPIizPLY/OpIJ1X90mm9iJfnYbgDNI4IMIqAq4pRHaaY0D6zN8+tAkfhUyS5jQeyq/vDSxAtIm0mM1C8lKSulrmpM8i4KzW+xUWCkS3OV1JMJAFIpQRre2vPz2/x7gSuO6fYsqdjo3fAfwYpet87Q5C8hKindwybESXcHA3joKiamPFQTN2s/AMR3CtmvGMQLFhtM4qtDWgvPGLt4TLuJmGEYh3i/HCzkhgZmRpm4pratRnKiJ80vqFaBcjlWEczs/MciCtYthmoih6LPdyfgU0ChCTdaFSWvreT6MRQ1EK9wl+uXomjUegLSuhPCopwymebPMeNaLIdkcxTgKf82dN3H6uGahqZTCLxCfS0w55TJa8rKeg+TSy3wUrEJHvQB5GarQV09SxTnezciguzZa4DH9DFEg2/VYBlX4en0AWthIFVLxdgWA68g4R10MqcWfjENRrxCyIqCen2StI1AW0gEZAyPKliHc4qQUiJcvHKtynD5AvSjwhiNg6qOL33JYAPp+SZgnHkP4/Kc+g7XPfhJbX/onvOqbvjV7c4xn7rFvuBYVERAYVBYg57Ar8U+ucbjrn90W25kj8BGtfCoLuOUFhLrFwbUJfufCJ+I9T78yHhCQisYgAsmEorMj/O0PPTVbD2I1yAZX5EI4XETU+OBIfKG7xYDyqI8KhLWwRcgAWQBai0qsaPu/cQ3rcUC2WuVPtUJIlQHqCG4jmnLCCqbXdYgEIgI+PFpFDEJIZW8nEvbw+XLWIBZrWJpY4ToeM/70uasJxdEibuhltr44pLzqktXVHAYhCh/5zCPXNqAs+NRCTvF6LSNrjXMDuMsDhCLcc4w6KQ5i9aXUqR5FsliZ1uI2z04VBQWyIVm1cQAaiw2ITHlTUoHeU6TMWhHe+951fL624EB6uAKCYhV28vxY61yyCOKcR+8LV4Z1bk5ZjO7+ZJEOQ1YQROlFer6iUIp1LoqTywpFBLcFYBgiCj4JbBKvASUSmkEGSVjCJ3HVg3M2hK3YKM+RhTgnMftJSql4cqimbN2LLBbFEYjnAaAmKSxpzVHVgVYbYOaU+lrz6YvMpqmFdeQZeuTKecS45oKH4/UPe7h6AJpZjT3792OwvIrh0krPGyV0ze998uXomONwdwX9qbVdC/+k2z2O0v9nad7BrSwirG9hc9Li80drpaf1CSj2lz94BS545VvUsvl3//t1aZMxwo1SznUS5NEVSigaoFlmuJlDcf4Wuo1FLZUKIFOKAioQegLTNsnVB4yAz1+zS3UAiv644pdkLE7Oloe4KwUZDQDrheZSy4bkjhUxBJHmICykdLjjjXVeE0gbZLPM25WbIlpx1KYCQ44zsClRmwKAm7geKyBx3Hy7hchY56cJhClo8zlPg+AEdvJAMAEuzQmXZsxpvrbhI0T4qjAn/VuAYJT4BnpKm17Q/C/PZM5j4pIVroWbDPKe5tjuAGR3PEWLvquglqLExu19CNeDXUvKDy/LRqxSGaO2uXVolSmJu3MesxZ+EUS6CDwJa0gIRyxci3y3a7jJx/fWsUO0yAnZc2NCBpJCSW18wWgWU2cpUdzKNSmte1v6VioRAqI45zniQegp7m4W+w9NGcfYElCGeF3B/ojSOIkgWKuk6DpIgManfOj9YAf8n0deAXKA72ZwoxFumwCtI7z6CVfimX/yJh3DjU+7DF9cj2h+hACUc1XzdtsJ2zaDZYfvd1tsZ6TAJ0qbRFUg1C0mbRSAf/NDT8W3v+wN+MOnX461GrjhGZejoSmW/SIueP0bY8lNs+mDI+mL3fhCxWiM9VwfWIB3YnXlgjeY20f1T7FWJY84KRnxQ/M/pT7bXGJ3m/SYVwAIhkkQvZg5V0ERzEwADzsEsVSS0KQtbwRFRqirG5IJx1MGegJX9koB7iXUPzHgtxxaiWsCUdlI/YcykuOIW901CdGdqGWBaCVHIcbb/E82JYw9gGBCJVZZIHtO3tjl+eR6C+m+jaCw51NDPeVBQGKaztbDgUBd7z3AoXi2Z3mO5NpI8087hJ+y8pete3aU5yUgWt0igM0csBX2dq12WWmwa0riyaIwchnUVS8WOEk/6TNK9MOZ/Y+z0uCgOAfqKHoDymSpW0VKwJwhptZRivdLbn1UBJLrnPL8ce1S8RpoNcs4b1Gx0Fh/eq4CqpSsFu4IbuaityJRJcvagEnnVSQ+kAl3quihYEX9Z6UPKXVPwKpPf/+bAQdc9/DLcXgSEAJh3AU0xksTCuC2NeDQZouubkGDCrsW/ik2E9o67ve7DcAZKvABgJnBdQsqC8wC4bcf+UR87ugsCjwQHvO/rwMFQrsYch40A//3h5+Kb3nt63UTdNMk9AEICEyvIRaOjfmlTRqMGC838Uhbl1wFaG/Q6AmjXm7+vPUImHxtsSJYfxcBqTnWM5fTCT2Dpl6tTWoJ3SikzIXMwuaMQMuSFLlaX2fuFzAhE8qCjdJnPqYktUsdMOqAOi4tapKA1Ip5OYcfxOhWA1AFuKMlqMu54RrlSIJMU85EAIqwttYyzDNgUnBXrssOFczZjU+9Z2KVLfaJvY8pumclBGCAhooUt8+U4vVdEzf0XvfiJSKoxR/vOX2W3PnsgSAJIolHglIxG2Gi4S7l2ifXtlr1LgoceGQLtbNxc4Ad6fypIssUY8iNy9csozXMgeLvDtEjBuR0NABEc8BQjmNDEb0D5POEkWNwKHKGhkMvFVWr0kkIRsYp60YAfKpsknojlOa44IhbkXsr8lqJyH+AKBLxCBAXOvex3kNUTDmvEwBcRPAuFSGm+0kJXKS5ljoL8g7NHK684a14x+Mvxxc3Gmw0kTvp5Y+4FD/+gesBBo5NOnRtALcd3MouMv+Um+wDJ/p+twE4gwV+dNEFkI+5tlPn8fnNFr97+cV4+tuvxduuugqXXfMmFFtOAUhwwLf84euzkCDEUECXNxj2hkoTAAeKufllQLHhAM/oysTSJwQ2JsarLHDb3PgMONEERIAjW9XGggKMriBuSUOvqtayWNGLLbiJKUxS7ENc/uAo7LVPyoyDeq/iYlUQI2mRn15cm5Dz5hOIjIchAvvWCoRRFAiYOfAwwG16RUD7qUc34h54iylmVoQmcQ0Y4as6TrJaleVNU894mwOEzfRar0WuB5+UGO2b8njsvKfvVEBCPkuCuMwxZSZk5LVZCyK4XQsFy6lL3igwXABdkRQDjn+7lFtv14Ok/wFQK5a6lMfO6AlbVcisV6NM89Xle7NzB7McZSLIh0hYY3yi5IKuVQ4OLhWRIYpKeKh9BMIBOVbOSTlxDO4cqOqiQsHIoD85XsGJMp+sYSDx5ihjX4qvb/OgpXc5FByrADaUnlnyABQx9172hZ7njpBZJ8mQVAnpD1OU2MjYGk3DBaKHouA0IXFMriEsLw4iEygF/NSfvxkUCDdc8WR8/nCNtUmLblrDLQ4j9e9uO7W2K/BPup1RoD3AyE8CqCoRpjU4MHgyRTet0XLklz9aB9z4g1fFqmTenmh+BzLYiaDFTgDEDU82rmRJtOc0CKttAjsFSGlSO7CdQqbSX3ajsn60ze16ontPmxdS6qFsjO5YCb/mIRXy2PTH5RxVLcymDiP4jYKi1fGkemByIfdohdM8uZmDqx26hZBc1w5+w6M4Fnnyyw3KbmsRwPb6LgKwXHKR2opzKvREQRH1VIT1caYXgAIe1bo1/aiw1hAPqRdnG45CxiHSMOTzxenikldFK9YlAcwesTJemZ93jwuf8nGU5jeUjK4yio3MhU8pd07miFURkrx+VSTE2k6WpoITiYGSI+hT+jVKoCL/gZxuJ+BWys/cl5HBjlyIMXgGQksIjYsV4KYebuyj29t4QITGlhufKs5lAKSGJMzzVKeTg5JYydqTQkXy7KimPj4l/R/KWDwKiO8PkoAPpTADpsu3pGswEg7FQYRRF8NlnnusjTrOBEh0DSWPWsxe0DS9NIajM8YsAKB4zJ9e+RQcmXRYn3Vot6Zwi0OgKrDrzr8bjU/i5260l73sZbj//e+P4XCIb//2b8df/uVf3jPj/Sq2M0rgF20Nd+wOrFKHKjQYjTwGlUPZ1RjNxqjqKdB2eNuTLsQz3nodurbDXzzp8p6g3amuvWzcmuuc3IiuJhRbLocEJh6uiqlxkj4mZDTa5i17exFpaTdTS3z+eAEXSkwUyFacjDWlhUXQEWV3LgN+Nu8mMFawHDd/TVE81MLJx0TA0g73JH0YwSTu1FBG4dMuAOV67MNPSV3x9sdN0kbbGWtcBLSWWkV2Aff1pr6g5rzR9l50A74iM4Y4J0Iik4WACJxoIfavaavOiddBc7lV2MdsBC2Uk1zOoeLIRljkczU0knjU2UWLv6uygBdBHAsNcX/tAD3QHoC8xk34QbkaPEfXs1ilTOrl4SqmnpHnZM2nOTdgutC5SFDDkcM8tD7Xh5+57D0oIriN0zslYxYlQdDwvVCRCE1JfxXPk8yrYApS2h7KdA2x0AVQSMjKjnhXClmrfcQ9zDqQ/0Vx6oUZgCzIjTfMfp+LE5GSd33k6qfgkuuvwWLq/5qLn4xD0w53bLbomg5UFUBV7Lry72aT1M4T/Zxqe+Mb34jnP//5eOELX4i/+Zu/wb/9t/8WF154Ie64446vwB3887UzyqVfImDz2GHUzRSHDx7EwuIiiuEI1Z792Dh4OwBCWC/wuQPR7fi4//lmNMsMeNLYq+PkkrUId9PUdcpAN+KY3y+KQBV5uc++71Hccete+M05NK211Bk7W/jibhV0tlDDagfx7wgy4rypp41EBGtkrEsblOS8p+MYpk/rtga2oe01Bi1jTWAyOxyJmQvQkIdswE1QSxNATLlL3zXLYllRVgyEOnebSR43V6k6KKj2XkrcnDKlwtm4fa1iZKsZWiBc77lr/FUEK9TtyyUjEOX0QIZSI7NgCNI9xY5zNoOwCUr+PHwWKADQLrNa4tTNhRoMIFOenQId63gDcs+ujiEnEXZEWXFSIShEL84UGEoCMd7j3NwwRQpdJ+4IViHKLLXozQJPGo2kuPEgxOMl5U3mW6oFEoDO5zRPNjwaLj5sqWjJZnCuQwQuClCPOVffS0oDe87rDdC/ZT40rJLiHVrrQrJKkpBmJEEyzZiXHiBRUhYJcIn/AQ7wXa6pEGtHAv/4uVvw0m/8V1g/egR+eR8cgIObHSZNQJjV8KtLO+rSu+0k211Z8XfDwn/JS16CH/3RH8UznvEMAMArXvEKvOMd78Af/MEf4Od+7ufu1jBPh3ZGCXwqKwz2nY2GGXvucx4WlpZAvkBoZhjt3Q+Gw8AX6LjFq77r2/D//ulN8JPIaR+KZLUmt7jm1WrnrPFYra5EDK6gVhdtevAK4/CxJbhRC2xF7v5QBSVbETejxvt2aH1K3h2OS/1obBHQeLOgskPFWQmYVzQASOxaKtdRiqGmr3qI995uczyfj1yrRN+yNL8KN0Cg5KJPc9AuMfyE0Kx0sSqh6EkSX09GlpRwlT7DIKYs9uLLVnkRJcC88KooCGAtKSl638lboa79PBRkj4J0JoKA9HfJmVehLOEiEsGSnwMXAE1N7FmYjtNas7gJReJ3UTlQ93ZAn+yIzPiQAGeIygSXrJkPxOjVfejlyXMkuVFXfQAYcX1JGVlOljcIcd0UMf6OBFTT1EUgWqZSmEZc7w4xHc8orWq1O5k/g30ANPSQS51mzY4E+FmyPjtqXX7fRh1AgPMJTNdEqU2JVle4A0LFoJoQvJBwMcIoP4fgOVU3zGuqp5yKEtWmMEpSEMKAjbLK+rwA4Ol//UHAM373XvdFy8DhaYdZ3aKbNnDDCjENaFfkf6Xb+vp67+/BYIDBYLDtuLqucdNNN+EFL3iBfuacw6Me9Sh8+MMf/oqP8yvZziiBP2YHrJwFIL5PG+l/7wfg4Qq6wNhc3wJVi/Ajj2ue8nhUpcelb3obgGRhlcgpYwb1DiZo9TmJgSarsGcVTTy6LqYO+WmsbIdRADZ8X1ga1LueO48Inz9O85mNwiFWpwXvSZ9z8cReH+LKSvFZW5FPLOyc9879Tc3Mic5Tuof5r+avnwVYnksKMe/ej42wJ2PxclRo1HIzKWtAEnhyr+bCmvooH3E+XhUa60QI+e/e8Ak6Lg1f2EsRq+fAVrbjOQePKAMs1jxFpL26uKUmvWRYdOY5y7WKaBWKwOZKMi/i+RoeSAauKDs5NJRM6LSeFTcgCkZC8FNwPZc+NaS7AYvwSQKbg4+/p2O5sJpSmswkcCFxdI73oiGFuVLQulbsM5L5SHn/NgzFgyREBwFEDOcDuknKBBGEvw9adEcVHskkYAC1g5PsEhexFRo+8DlUggJgScO1CpZDDCGkctW6RjgZEXIvFJVfV8d5ffuVV+DYhNHCYaNhjGcNmroFmEGjXVT+l9uIT+y2l9LU5513Xu/zF77whfiVX/mVbccfOnQIXdfhnHPO6X1+zjnn4NOf/vSXP+CvYjujBL5t1qBt1dQAaGURPJ5hY73GuBnAVw5/cvWT8Nhrr1UBaIF5O0kva/kGBwjYSS7otrzSj4IJGAtlnAyC+25yGSihv8HZ48QjkCSyytodBF2/j/mJISMcYTIDjGE4L63V7W01gu3zsaNL3IzJotD1Y9OVCmLf719ZzaxVFWKndhOVDudBf2LpK8I+6xpZ+CSrcHtIpQ/eEmE7/5mGJEx4QxXCtA6UHc48Z05CT5D3VrHoRTXS+NhFN724oUOJWMxJQH4yX4ZcRxWKOlmYEupJwDYp50ouhbI4Wd4SD7ekO/PrrqG8puSeW6fKAwNa7pUpKR6CaJfJYwK6fohBwY6i5KXLaMjHghNTrXn2HJVyJrgiRP1Zq86lccnzF2EvY0ihApYbHMYS1D0F2XhEpFJgPF/6YWDsNVWTmtSvKs7peTSxFoLwazzxjW+OREzpef/vx1yG2yYACpOhsNvufrP7xvG+B3DLLbdgZWVFP97Juv9ab2eswN+xEUVteXEIPrIBDgFDxxh619PUyZnNVmLcgtIikwMupxAhpHQkiVNSF9PdXOJOt+7Jncc297sI+7lNRdO25hZwGIaIRJYNdCehz+jH2uctVT3cmLnWw2CFvj1eFCWjCPVesDx1fXCg9JvipW4WK+X1hOliB3ck+ayNm9h6JLLy00f461wE9OZXBbQV9HbakoCmVP2NzLX0mRB6HpuMC0C29NVyz3Fb6Ujy/2MBnDwf1EFDRDYODI74BxH6POA+RW+R14u17AFoXroKKIn9i4BOgp8SAI98AFN0/bOEoYpMI6teAvG2mOesefcMLSijqZMiWOW8pExYKmJ5QMrrnx5oxCKkhV9FJYkHDExj8RoexPEx4v204zITrgw7dd1nit38zKh1kVxHQHyJE0LCMW7L5/WlXg/kNFWZZ/EGGCUyr8OsiBGnNEvl2ocSL4WK4R3gCo92awpa6K/d3XY32kkK/JWVlZ7AP14766yz4L3HwYMHe58fPHgQ55577t0f52nQziiU/ik1F9X+PVWHR7zuTQBEa0+xQMobZE8gpk1Ei4skzd+nCnRIVLLKSjb30mfTDb1NYacFKdYlm2O2lQJNA3SzORT2nLDX7AOJiZsna6v3bWuCwk5KSL9kqlg/c3NkhLoVNLzDaupZ4wJkY6TUPwYmDn5CefNsc//zzpdtFdLm21xOvb0FLW4kQlZcumnOhZFQCGfmUfhIMXJO6W3qJher3claSSlaQn9s5kU8IKHMPPXB8ArIs+AipuAFY6nH1LRY0jmMusiVvxC0UFEfWJbGVwZgGBS8yF10t3PKR48FoZK1KuuuTelt1jr2rIA4wR6weX8UGChpeEAOKSFavGQr/wXKVrIUH5LnVbvoMQM0Do8ycTQMu6ictaRlasGIFe0Ec5DGLN4G4pRum2oBIFDE3mwWoNaBJr7/DsGsuTndl5MibUGoYKQ6EUmBcTGMY3dWLbWcAJxNE1A4RKWqm6dZ3G2n2noFpo7zcyqtqio87GEPw4033qifhRBw44034oILLriHR//P274mBT4BoEEJbjts1QF+SvCTVEhGCmsgbaxVQFjoNN3HCj9tYvk1ESQkObeuttIoCy09R/43Fq1tro6CPDLecdqosxLA1uLufWhu1F5SBJAw6Ql3e/rSuuR7Atzc6/aqfVGJ8FORyDvcj1h+MnZnBG2y5kTBYieWbE6ZaVdCFPQWZGa8BtKP9SDQ3PzqRizWVjD3b6bP5tuLRSceh56CIf2YOdvWrEIHs7FLVTvKz0QBgIReumVm/RNhmMcPQHPvwzBE9LsoaKmojObKA9Cqbvat7tLNyX0E1xs0mWtpGVqpbpdCWRoSsKEBmfeU1UB1HLvfSjXs5T6SkJd3RYoMuWkcE5eMbhj6VQyBGEoQQKag7MXiTsA6VfCkMI5ZMDwI6JY6hD2RN0OzJaR/mTNJVRTPTUgpt5zXTfQixX0jVH1OAC5E6TPKe0B09xsMCptyxT98w9vgSw8qPXjWIDMk7ba71fgkfk6xPf/5z8erXvUqvPa1r8WnPvUpPOtZz8LW1pai9s/U9rXl0pdGpKQ8a5MCr7n8UjzjLddH13si+yCTJ+vGPls41nKe2+VdB6BNikNjUn1sXhMA2Q0FwNX/PDcBo2la186H9fEAImRSGKIfNxZKXOoLxIDsip0fK8x97uDOl49CGS3XHgFKb3widFgVJALASy2wVfRSDHvoeB+LFCkwz2SCybgkbqvhinllw/5pYs0aOpBN2M4J7D0jx/VFPoo7eK6Ofa8PtWaNYsNx8EzmPjn23auyZ5SBHge/Fb6U5oNCCjOZmxVhmO4Vkl2Q1oau54RaJ1kz0rzNv4wyR/jpnQHlscS2UwxcaXalUl1yV/uxS3F5oBukp+ZYUzRDETM1AECIdJQSmKD0zDnrIj5v6iLPPgR/IELfQVNDXQcwpTBJwUrj7IYd+FgVQxlyqxrCy1Oh6yxhPDRE1UlBLc6IfEZUEqw/X3SVhD9QkKUqDHKPwNsufxIOzaZoWo9ZVaDdmoJHA5DfSaPcbSfTdoAdbfv+VNtVV12FO++8E7/8y7+MAwcO4Fu+5Vvwrne9axuQ70xrX5sCH4gV9ZZGaLemuK0N+B+XXIIff/Pb0C4mY6DIPPgwf8c/MJe/njYqFapxYwtsyE88MK8gzKO4twlU4rRRo79528PBfdlk4ukiZObBeFxk2lmmpKiYa26Lg1vTdm6M+qvLm/FOrns9l/O4XAfwNNLrMsx3cn2Clq+VnHstJNTz5affRSDKXJEdoHl2nDdrG79XJ4yxrtnJnJAqCJYNT4SwFfQatQkEmiHzIBilTFIMRaBLvn2P7MblkIIdqwp6mXPx2sjztfdhFBIesBIAsRORlNaoWNAioARrkDwefZBd+lW8PYJyB2W2vGDoeRMo0QmXgGQqeICT9doDZIr1LP3Kj6QmJjxBVARZr8FCNpQUOHkooUSmwy0ZruqiknO4AgVTKyMNRBR9JEWAktJtnWkalw/xpRQwpKD6lSPB4H6kaZEemeZAuO6yK7FeM+6YMjabEiNPWBwUWK8L8HgKLI120fp3twmW40Tf3432nOc8B895znPu5qBOz/Y16dIHEF+esohldOsGhzZr/MFVl6FcpwymkhzgtPH04j3ytpogvTCFRWrO6Gbtgbvmhfk2/3Nuva7TJj1vdfTcyZzT7OwClnj48a5BIbrQBSXcA94BPbm6zefP/YPUEyF4gXk/u+lDN84mI7ItoE9d6XKfas3OCR77E6zFbW4yUKbdlfi7MCD2JhoaNrHXcQkMOe/lUYtfLHf7POTyae2o50PHG93YfpY3IwoJvKWeoXRtIfYRhSPNGwSINnNwEw83zXTKvUkWoVNHWld1Qxu3PIgzQ5ys+45AJcc68EXQHHjuXH/uWhc59TsCtWksEwc3dXBjH5kIjWIkoQ3XImdPpPkMJStfAwnnAJJgFd6EOobOItV1HLesZZLwF9CrvUAdAQXDDVp89zd9LiqTU5e9HQkDIIqPS5UD9ZptxnGIla4hGoM90P1BlDFAWfX0PZGwiigoDDzpzdfimddfh3uNZvjJd78VS9UG/uOfvhV+UIKbFuhOMdC827TZbeh4P7sttq9ZgQ9EoU+O4JYX0E0b3L42w+t+4PIIrJo6dZ9qyVDMWczakfkgxfzCQmdAWdsF3nH/NtJC3dbiVraueHOoVgyTZihA8/c5/mvj2HI/InhtjF5j69ZSnn9DzHhtPBphTimQe5onwhFgI+Xz5b4lRY+9KDXILl0AijLv0Lt/4ea39eUV7GeEcuaVZ+1LxigKllaqS8A0IdXZCeyjILQgdLms8VlKyPReDJ6jspWBgumeJFbfZVZBQYALL77eZ0jXMehxjVk3Lmd0cPIEFIYWNglRseKZESlwu8SWR9JhVuxIKIa79ELMXPyZOGDqIni0IfhpxJ/4SRZqGqc27nMBsjElK7rI7nylyZUUuI5i7J6Q8/4p9kMzB7QU8Tae4VZrhMVOQ1Xixg+tw1989huBjSIq5EhrP2UkyDiCh8b2xWuT14VY8GatyRpMx0fsDeDqnEYpcyOYBVv2mDj2d8l1fwx4Ruk6vOSRl8c9qizA0xq7sfy72XYyDuZ/dhuAr3GBDwAgAgoPtzhAO5nh5qNT/OHjL+2RtoSFyI8vaGytsW6tSEABdQAikKjMK0kFG7BNyEdB11c3bYw6CyIkohLqd8PznRmlIQkF12GbzKYgGw9la2anPoG+3N4RodZvEgpQJSJZ6ho3R/xfXeoy30YZoZYMCZIZk5wfYKwsYwXP61TB/C/99xQEUsESwXHxGAEQirdB6W1DGpcBemnuu0yRR8o6SJMhIME2gTCNHBX0viD4xerXIj7C6eAYrka01AUUSsiFktJ4nAifBLALozQ5jsGCzAeih6BJJDSCkk/gNolXcyuaLmWsiKTVSRGYtFZdLalvae6KrGDkWgpQwKJkC3DBCMP0XlnMCce69H6SkPtdX7l1tUOx7lGtOVTHYpEmv1mAGoewVcKvF1ERkHAcA+5wBX/bIOIFRHgnCmEAscTvqAOqoM9IvAuSMUBdfJZCnCOeBfEEiYCnllRB7WUaiIKAeGwxjv2IEvrWyy7FkdkSWgbYuVjxM+xa+He73RVCf3dqtX3tC3wguverEm5xhGZS4/a1GV5x0SUxzjylCNozC6NHHWuEfk+Om/g9MTQFSDayOW/4tt+1b2tM7/Q0WNyG/WOBLMAAqMUtpXnjhiT9soIV51PWTijbj6cdq1dg7nCJSRvPyXGcBfFvsf4E62Bc59l1ar63Y7HzO2e9I3k07EVzqD+n1FlFoTeXIgikz9bE3tO4FWsgKHUrSNP1BLgl/W9nIZz7AbJHRoVeuh8RLukYiPAUl7WpEc9tdO2jdmoZw1xbMBagiLrvPee0KCRWL+5uwVpYnIIorQpQS3H7WO0vpzeGIlvyouhYRbAbsj6q/DxTBkvy4uTqgRzZ9qYupSZ2GOyfRMFcR48HU1TGIqU26/yqMpEAf64hfe97iqXJECCGeipyOmIWJpEciZXiWObmwz/yVNz4tKvBnvGapzwpKnMJp/KFzQLrtdxQAAcGua+Lrfgr03Yt/JNuX7ugvblGROCqgPML6I5tYr0slKrUj2OsL1R5w91ZKyQQojsQgFoOVFOPkGTH/H70rc7UXerIXG8nAUzRmtJjCTnmn2KFgNkYzSInRrbsk9WlG6eNbac/e16F3njjlyLYFOMAc15IBU8EMZ6OsVgkQTxrqppY/gLqSyj7HnAKyMpA+t1SH1ulTN3nhrlPatFDriO/unxenqysCDGhVyUOjJ6glxi1NNeZ5xTMGEU4GMuW2lQrYWCEIXF/TQDqfoag4suIGyEf89GpycC2eN3UQaotzxbkKF3bEIcIbcmAmMacdl/HVDtRuNhlkKs8awmjWM9OSEqcNGoAB5dJaFL4RrwN1GX8g+Iuugw09TPAT4FmGWCKFM2Spz88Z4x6WmB2cAEYBJTrkQGzG6bCQmadUR1Jn9B6YNTFokEFR7pdjuMmBmjq4nP0+b7lfWMXs3PiHCKHAUV2MyeGPcZ3vOb1aVEACwXhNx9/Obr0mGZd9C749JzbtgMNK+zy6d+9dldx+t0Yfm5fNwIfSJa+d3CjCu14hv/+yItx9oLHD7zz+mz9mo12RxIcZCHDHso21osxG1na67MvV+wv5mT0V6iaepSVAmd28JB/tWldKvDF+rPjENe055y/vO0ms5CyFq/FOvSambeeN0TngSPFrFGOtrnnKW+ekZEuH2NdpqEwf4vQckCwSHdAx0ENbRtvfoachaTMo88WvH2O0SUf+82sdvkGOssXH3Iuvt4D5/mR6/RCLCwx5qhMhApxzjqgSzn41DpwEevQk0NkjVPPlMtcCARNs+ulmkn+vgHuqWeiM14rwacQknITtSQv3BNp/cs96vMWJkWZbxGaRjHy03hNBfDJ3MhaJI6sjJ7RjgjNYpxnWwUvLHaYHBnFdEACyg2XhDvFioJAzsCQAjsEZdlDogWmghEoKl/BRUWqM4Jc10lKMdTsk/R+wEEzTFwT4/rtQjo3hQK2GkZgIDAQKyoGcBvQdl105YcAKr+utuLd9lVqX3+rjAi0METYGGM2a1APnaZVKfd4oLgxbPp+XNpuzkiuP8p7CWAExNyx8YT57+ZdAP0/e18Tg8Q0ZerFCWWDVVR5yJuV4A4oJAsqCQotYeoQc7Dt0EjcvsYzYP+XsZKhE942P5SVF4M7iBv7HE9AGrMVjlFg5T6Vwx75vnVqAkVhbwVsshQlVi9xZ8uNoK514TRI8xgoClx57ooNMA9FEeKUlQOJi2chAXXjxnFCK7eJ54VCLMGbPRKUlUmOgs2NIypePEpu2MVjUtydEC10LkMeGxAVPREyHRn3PfUEPc0SK6BkSYiygijMJA0tMgDGeXOJaAdpTkOJvF4VtAcNd3GimmW5RzmkzGlybubgZ/E5uDbOfTvinELrWUGCdMzpmKRwDfvopdOyyvL8ZD4aAproBaDC4HE4U2NzwnTosk3ri5r0uQD/vJ6q1wkVJyUozt/bn/ZkNAFwLuAZ174Vv3XxZRjXLbq6BbcdqPCA93CrA2jBrN12yu2u2PROlWnva7l9XQaOKBHzcBcw69ggnZER0NM4NZI/DfQNb7V0E9hKaVeln7QBqetPBKIoEOoWhxGi2Te1k9Hd61+6IChCXH9cX84qGY2kIDUEt+UzKGluHNtcYDu4xHqphNw/hr2hehXfPOd4tCoCCWgGAFoIxiLkjYVv3dIC3pMu4mYNFc7CuqeWOuVzgTmFQWL35qZV2COPuV8bIFr6roGC6wQcKcfY68r1gqDYxboWLIDBECiRkgdCFSLwTuYoCT7eKMHjAph40HoBTGItehIXv+hXtYtx7VQuliVunlL9qKFU6ha6fiMhFZJSmRU1l5QpZ4VpWmPdIKfbKd5C4uIS2hB0e4NIRTvIglzmLCpjGTkfyijM/TSu0WKL8tz52K+fUlJCkoVdm/WTvDvKZmmUVQlRoIsLSvLrKaXrqZIm50imAcm10/2WUDDlX/3wU6Li4xgfeebVWC09lgrCwBFeffllmExrdONZdP0vL8AtDuFGA5D3uzn4X27jE/zsNm1ffxZ+akQERrSAcqyV1I2tlkl68d00xgB7AgbILnQpp+nMZmMQx7Jx9K129Dah+dYjbTFCTz+T/lLnsqlpTDcJHAtS0/UvFiZB3cDZ6rbS0Q4oYhiww2G9uWXznQp45BBBAECkfYt1palP5pzePWecU+5LlAAbIye5cLbKNN4P6SdashJ3p04qt+V7kPGLxabKRJp/m9Yo9yzKo3hKgo8elSgUjKJIpAJOlENF5jOiW3/mVCUnMDgh7blgVQSE6ZEZqhgoziKFUTTEEgjMOXVMn29a68TQGLUi79P7IaGdYHaMkGoexbTB/LvOl3hX0vvAJcAcFRk3jeyKfkrq/pa5DENWLAh10ZsQqlQ5MN2Wq6GZAiLghZ7XFrEB4nVFkIeSI+hPMkSSB8DVQK9wkmRlzJO2SKaOeNT0Hhnf9r+uAXXA9Vdeif97cIJJ0yEw4ByhbgPa8Qw0KEGjwa6AvyfbXQn2XaGv7etW4MM7UGBszTq85pGXYe8CITDBO8Ylf/SWhPQ1G4hQv8p7qpYnRcsrxTaFSlSJOYzluKOA3EnQGyEG5C4E8a2KgAhMdSnHzd+PCe1CX+iLIHN1RD53A46bFoBcM9woKKb/7CY/vvdBbzOFCaIVbtwMDEVjx07MNTTWanKXrdBP19TvUkw6qmxzCoaZNxF6GaRmnkcSgqGMz2m+ZK+mqFEULqI4iYCRWLxr5V6hCG4GlLktegGQY7qcAGGGZY8CK4ucCL5ArIxtQdD+KeuBZrE8LYOU4hmOIyJfFDwA1DmTkggETils0o+J1yszoNyDWfuCdJc6Dfoc7JrwIuhFkQGEGjdUMSYvCk458alevFPSnnbB9Its3VPISoYA66TaoC1gJB6kUKCfVivrrIx9uJYQJg5Sx0E8ETIH3VDWXlYYFMkv104gQ6EKBuIY3nH5lbhlo8Zn7hijmzWRZTAw3KgCdyFa8rvC/h5vuy79k29f3wJ/cYRmbRN3FMu4s427BgF4yfddKh5m7KmAH3rv9T0BqMh3AG6GeKRYQz66HrsBUtwy8c/PWfpWeM670HcSYPPCvVcNzxDTsGcEZMGBVg7K31Md3aRcJCEs1pBYpxI71zhoLjBzvCaCNyPfAaGFnb8vuV+J3/ZYBm0sX/7Wi4jrpf+nhjWMNyAPiownRBQH0rlgQvRysCHTEecDJRe6uOfTPFrgXTCWrc0e0CG7qMiI+1srtgHGesxAM9fGtDZXE2iG6CEoDQ5DwjViFYviIPXou6w46Px49IrTaA6+UVR769DyTbgM2LN0stYr5pJglwqSriGzhqIgZwHodQQ3AToXreluIfXTQr08cm+h4qh3dcgFbeQZOGg54ZgtgRwRUxBjekYV60KhBiikSiBxUp5T2p2kDYKVf8CmW4Yyptb5WQx7CB/CXzz3anz2yBSfvGOMZjoDOQdaHIK8B9oOXDdxvxlWJ3qFdtvdbLso/ZNvX7cCn4jACR1LXYhCwTkwx81OQOIHJ4xXPeJSPHC/x6Pe9Obs9gPUTanWc7JQugH3BI+fUGZzs4L8LhaqNHuOuL9FCNt4I4zQjgIgd05CFOSSkE/ubNcAoRRNBipY/Cx5CZLA0HEYt7fgAbYPGFlApk0fhAgyM/djsyCiBQt1Hdt4ffY0sM6BntNGgSMx3Z0adcng89COVWkT5UKVhTwmAYPpfUCeKfW8LOrSTsdRCu+IpRkKA24MmbwlGFe2hmyQvAKcrN4QFchQ5r5DhXjPCUAna02IepigpX9lzmXNCAWsa4BQZXd6TJdLXouGetY2IN/nZ5bDVvFz3wGhEKUpZRn47DGQwjjEQLPEapXFOH+0riWPP1r1nOe4AJgzYM6GcahDTh2UwaZ3tAembAz9MrJHAsTqjZHnJex5NoODAnIZZ/HoOOAv/uPV+OJajS8dm6EZz+CXRkBVZCu+KkDV1+02+8/TzLtz3O93G4CvY4EPADBkF6UDFkvCf/jgm/E/v+tJWCoJm7MOGx3j6CTg/97a4mWPeBwqH0AgnLu4gCe89S1xZ07UqLJhAcgWhUGF71h6dq4dLy6+7TxJywJ0ExJrNQyMUJbLJEAWl9mqFcUEDHXp94Ru6ptC7JMairXIYaxoe30HxLQj6n2eJXweh8SpNd6tAjUD13peEVEWvCCh8/ci7IUIhV1OiZN7nccUZKXD/G08BCKoqIV6Kaz1LrF8ETbzbkMKGVMxn5HA8oyShSzhI9dQtO6b/rVUKKdruTopacQA9cMgIlxdYgqUeY/WeQSwRUWV9bkLJkIEsq1Rv12RQeYiMPdKIRbgi/cCZTAkRs6BT8qNpLXF+c1EPKLU9IiRWJ51zgqwxyjwT55h8k54wUL4qJTqeJIiFhUt7ntkON+3EOmI3Oak54e01qqNePz6LODWjRrttIabF/a77Z+l7br0T759fQv8qgB1FbrJDNOZQxiV+L3/51Ic3aqxxgw/WYcvK3Bbg5sO08KhXVjGdP0YNvigujcBaHqblLvVUHEiTpFNDthB8Js2787f6Xu53k6aqwL8stcyU3SnrAGtnmetaTZuW9ko27h5s8uWPBkhAph7YjkvW9+9Ij+9dDgjsAOy4gIYdH++H41Ta1wjfx9K7rno8wWhFlov/GEwECIIFe1vhL1aj2mOQpnP7c0bcj/Sv3hdNLXNggwdjFIIDfewsLBwTmHzsyzILGBQYtoWTCgtIMb2RUDZzIFIFxs9BEEFn8uhjZSbDqLe/fQ8TD6S4YQUExfgHrVzc5Ty1qmNih2M0NY1msIz7NK54s63hDkcrxFBdcgehHQMy/OVZ5dCDOp1a+L/vksTTmlekYR4HcehIY3kHSAG/vo/PBX/zyvegL/88avw71/xRoQCuPbyJ2I9EMZNXGv/cHiCaR3zDWlX2H912q6Ff9Lt61rgExEwqkDDEly3mI1rzMCgoogg9nqKITdoN9bBIZJkDLzHbP0Ixm2N33zgv0Q5GICaGf7TP3469plcxeyzaafWE5DDAcfx5Z9I2OumNH+Q6XI+ZCAocy3/KRsyuLepsiDPBFhWsaZSUUNRWaBsJQlTn2IFjDUvaVhkS+p6M0CeE7TIgkmyACxwUYS9KAPicmaXLTCxlnvnGoZBsf6U4U0UFEmVk+fRJSCeEe7zHg/5n9P/86hwjYETlOM9fm6eoayRNAeRHIgjEDHxH/gk5IJmh+Q5mU+PE8yF3F8oDRYhWa7iOQipgI0sEukn+Dz31JEWE5Ixu6SABN8flyDyYyGi+MzlWKXWJQkfsT4bJigJk0vuchZlM+Rn7Jo030VWoiQcQoCy9YUiro1QMsiRXlPWgAh/VSpKUZYog1YT/z+1hH//8jfg3Zc8HpONGn/01Cfin9YD/uFYVP4ZAAJHHvwuRDAedttXpe0K/JNuX9cCH0hCnwg0KIFBGTeczTFCF1AOltFxh2r5bPiFIRiMtqiw935L8J4QmOECMD18EL/5kH+Db7z/vXHZO9+zDfEt6GZXU4wbW2tVB3LXq3KbsO9Z6PFH6UTNMZq/LwJHrC75nqCC2brSuYBmG2Rilh2UEmtYC2DKZigYa90qCJSAalplDshhEeNeZUrALGMhWpa33ng4Czm5jioAyfWr8XLKfQiRjqLUvekD+Vb0/lI6n2slrc/cLmWgWygZjqIiZa1+naM01oiSJ7V2Q5VSFUP/2lb5EJe3Pked57jWBAEvQrsdmbVhnpnMbajSV0U+IKcRxjBEZMAzykebxxe8ZDFwFOCp74j0T0oHKPM0iPeCI67EJ+588RqIl8a64YXYRj1mch9JoZZQiiVOYsms8HktqDKn6yYrpqJIsgPqSY2p9/j8jLG5MQP5BMgrPBAYaFqQd0DhsUuN+9Vpuy79k2/HgTl9HbYk+BECuGnhRgPwwgLawSImfoAxe0xCga3NGcYdwRUtnvP+P8HapMMMiwjL98EXJgO86eLH9bs1xUKkgM2OVryAq+bkvljBx9UH7KYHY/URei50EbYSB1USHOlD4ua9MaFXYU9eHKlqJsJovkhOHIdRany/vKslZOm5iyn+M0+MowC4VMlQBIa6xs28kVEUVPO3m7wcb0BnylpohKt4IaynQSxEDXmwmVdb5VDK3hasaZrBIO3lmq4x1zZzrMRBDv3NKil0ZMYtAk1c7L5GFpwDVoueJV1NvCRKeGOUjgaaPqdAuDKD50Rhcm36SS54IRTyM2glOXbJ9Z+ekQhyUS4lhc9JFTrJMgiitLIqPQCUgMeZrAJNiWTz3GXti0D3UXnqkkdDMhusUu66fK7iCVLhnZXz9uG2jrC1NQMVHrQ0ikBfoij8h5X+vdu+Os3ukcf72W2x7Qr8+eYc4D247VB6QjUo4LzXetXUBYS2w3o7wG98z+PBHIDlRXTeY7w+wReOAdc9/gm68ahbfyf2rvl2V/78bf569ASaRcZbIJmNUUvcXPOpKf6tfOvCDkimP+RzxUsRXcdiosUD7MulMdp5RaCQGvJJkEj83fWvp9d0mbWvh4GwQlzKsEpanJ0LqxBR3yruue0L6NtgLWqNQhgFSqfe5e8syl5rvYcsxKRKnApgZyxZE9cXd726n0kUAGSrlfN4pC85184lE5TuNTLh5fFTiMA2ZZaTsInnnEKXBqBI+iYKcTLKmoYa0ty7BkqL21V5XiKQLgtU6cvPzHOSORYlMilDUdlAT2ES3oCeZ8XiWsRTIx4OAyIEx+p/rs1hE5kYScF0s7ieN2YdNlqOFe2G1a5gPx0bn8TPbgOw69Lf3ghwywsImxNMNtuYvscMt7oUrf+2Q1EVQGA046gEuIUBSmJ0oUZZt1ibjHLKT9qEQhXgJ85Qru7g1pchmK9UmOx0vMTdU+vJfmMlW0uRi7h5yvhgQgAs8UvmvotfhIwViIZMRvOzTcpi3JxJwwi2aexaLDLtNI9XnoVF11tFqW/5ZivVuqwVJ2AVH3u/VgGQ51QkIeD7CsS8ta/C3aeiKjblUoZTpDBOAib2PBLiLWmxTVlRIZbS8wSkx6ZvO08yHitgu0FSrBz3mf5EP5Pr2XmX59JmIJwtUStC3HUSBogAQLn+NoWoANpBFOrsgWDXT1I05ZnYWLvckwBFQ4VUWk7Wrnns8lxEqTXPK/aBSOjkMrjTNVnpYB/7oAZAypIgBt73jKdgbdri82s1mlkDMGOX7/70bHdlxe9a+LntCvy5FivqEdzKAtAFgCMwJ1LxAqn6BxZ9g61RiWarBrqAilocvv1mnHv22eiOrqtVqqjvjtAtd4AQzQARoDZvtauEz633kXVR0/Y+VIjZvcl2a9PZxPpNAk/j7nNVAnvsdyIcETdftZpTWqLchv7SEUhzmjJQrZfidrwX0gj7bfNg7s1u9PY4DWGwGaeZj1BlgSvHaT64ESQAMtiSaU7QZje+PhfkmvMWQR6kkqA8H4ay6PWsEKM4BDtuoJcSZ5UFaVKeNuIQkrXeRgpbceOzS/H4Wtz9CS8gXoV0rlwvUHwvVGGS+/HmuDTp1MX3JAygSp2EG8Qy73kiUp+C8BdQoFjwQAbtSRgoKGtexk/EZyAnoIcLAcfxi7VPIaLz/TQy63Gi7GUXPSLve8pV+NShKTamDdq6BXcBbmURuzH607TdlRW/K/C17Qr84zQiikAc21LMrhnX2BqVGSTFjLassLRnL2Ztg81jh3sALgDZRVrG1CeNoc6Z869/2L9BFwr8wMf+Rs/vgfXuYs+RmLpytJvLZFf2XCfJ0hMh5+ucr7+jILIClua+Z4NYF2EYAJ7bLCX+q2EFaUzIeYRmzEag5uPyr5r2Zyx6TdWy7uKEYZAYcM/7IEqIxHPNGJhI+1algKBFZSRWLWxz6FI8WwS/zKt4TIwiYj0NPQWlBVAkoWY3NXFXJ6ta71e8K8LGKFZ0+l6oaW3qpc4tQyljtVm3eOrbT6PC0pXmuaVQALUUXf6ptG+XKtcJcHBwNGUIlLHgDpAVHr0/7ieyiGJhhbefZUVKnmEvlNSZ30PuR9aAPPNuCPW4SQGet1xyGf7+zgnG4wahaUFVCbc4VHDvbjv92q6Ff/JtV+CfQotpfAOACM20iTi/hQFQFmhAKO/1DShmUww6h9/6t+fheR//gMrz9z38YnRtCwZjMKhSeXtCR4TQTcFM+NRnPoNbbz8KbxQNNfp3MHN7Vr9pIuzjQX0LMQqTaG0TQ8lOIDBvz+gWQy+drGeN2wvNu4R7ygVtGxcw9/JJKMC45EnGksbYCyukDshYqlYobMMzpPuzFr/GscOcoJhTDMSt3g3QA9qpdd3A0Oom93CR7mFGvT6UzMhkKcy7423IQhDlUixGQyrGmpX5kznoqmzZyzgjIj5NrfzvWIGY4tkQi16eW6hCj1FP69BTBgEqxsCRhi7UNZ/mSgQzdUC5gR6hUDeA8kEEZwCRyApQxD4ghkNEuQqS/mfWpcsKg+AJtilnyl2QrlnmeWEHvOPpV+COcYub11pMx3VUJlajVb8btz/N266Ff9JtV+CfYiMiYFiBhlXvswBgxoTJuIPfdw7atsMbv+8inL9/EYOqivza8WA1FCYdY70O2D9YgiNgZfXbUE8bEBrc8KDz8Oj3/bleg43Ag/1VgrLmOJs7bVPbyPaVKv7ZCm4AEvOZ8SaIEBXr0Qhn0FzcmgHltDeCmgmQKmrRl97/TjEKhJiPTvaG+1Yvpyp7En9mpj54jFIeuwzJzo0RcDJ/Nh4s36li0EXXLwswLl1DBI7Mg1qxQa6awGtdvm4PByHTG/KPYjJdUjK6rOzZNEFCtrrZoZfGZl3kFvwmxXVUIbPhD5M1Ioqlm7kkvCNQT2PlzoQjED9zLdCla7kWoAbwDTAb9ddFNwCaZejc+NqsUYs3Seuiq/ruf7HWgfg/tVDmOy38k4S3KCTi/reIfamyBwAffe7VODZr8Y+Ha/z9oRmaaRPr1Kf3W97X3XZ6N7vPHe/73RbbrsC/G+2EGn9Vot2awi0McNSVuDcKLBQ+C8R0buAAl1ZiHYDF0mE0HIA6xmjYolgZ4eNPeRTqaYd6FtB0JahYxPe88216qW0x7XmhYgRvjqubz+d89kpUoxtkLi2r4QHJ6Z+bgm3WshFsCND87f5J6WvhfU/XVB7z5CUwiQBRcNmLythMjN3epw2tOJN+J8doVbc0b9YD0Iv9m9/Fspd7sMJIU7yMNyGUyFStkmaWhNRO7vpedoBY07zdSrUYAfUuiJAnjkC3uedkq+dJlgSXYqGTKmZWEIv3ggQZL0I4gfHKVIGRmhS7JyjXg4xPqtBFb4QoeVnREk4D6/1QxUi4EmSOjMKi65JMCmCdv1ZPCed5pgD86XOuwhc3axzeqnFsGtBtzUCjCm5xiF2r/gxruxb+SbddgX9PNqLo4i88wniKta7EFzzhm4dFREonKcQMbDYbmIUZ9g3OAkAatiZHCKEDCqAoHPwSYbQIhECY1S0+9ISLUc8A5x2+911v60u07P/vL3Ir7O3HLrnHfU5HEtctYLRmc74U71GmPdlEbb/GWtbPTJEWnS6TR72NEMaUp7VWHvcwAlDLtVfURe5V3NZynPEG9ICLEts317fhAgX1GRc6m/mUPhStTgAn0BoopcRpyCGeHHzmLiADULPjIwBUZ4tdjyMzPgaC5wi4E+Ep19MSzYjgSaCf85/u10+c3qeXrALOFjPUW5CFv+V7sOVyy82cVSDPQzIflB0R+RhnPExSR0AonSUdUefGIPAVYS8tAC4Y8F8aj+T+S2ZBqOLnt6/V+NJGi8mkBjdtJNOpyl1Bfwa23Rj+ybddgX8PN0qsfewIYWOCw8MSXzi8hWVfY3VlGVVZAgRUPtbFLp1I2XSu82i6BZTFFEATlQQCvAdGowbDUYUWq2jqFh+8+HI00waPeM/boTFvoGfN9IQ95w1XBVthhP28ppxyx10dy/2GxYiQoimpcLHWt7jmKeQqbD23sgiauUpslvCGXbTQulHmNxeqWe0/eScUIAeAIYpIukbI/7PL9yIxYHEzWze/utdNSp5a01ISl/MGo2xxyVKOwj3fVi8WPad0KSZAD05W+pzCIoLXgu1s3N1qWgq+K+JcU6qe5xrKbv+kCFAS7HHOEzOfWPVy3TlPjZLTtNA0OQk3BA+QT2A8Z7wgeXnn+XTZpW/vU76jNufsq3KR5kiVmuSJUtyFrj8Tn0/PVD0H6dzrfuhxuPnwFOOtFnAEt7qUqHh3hf2Z2PQdO8H3uy22XYF/DzYPhuOA4Dy6woMIqDvG59ca3LessbIMINn5AzdAgRJSr11aWXlsbbbY3HRYWCAsDULch4jAKBBoCAKhGlYoByV4Bfjrq65GPW1Qzxo8/J1/tOMCVyuVkIVKahawhiQce9arHDf1QJHR+2Ll2zg+x6H2rDkVTHKeUQaE/xzEavW1S6xx/ngtUxq1NyC5OfQ+692/dQWrRZw/61nwxp0cKV0BqWUfi7uwWvA2XCGKxnxGhNAcKxOhEToi3HpKlsFbAMj54alvxWFwfla5P4pC1ANIsfdQQCloHQPdKETBPnVKxCPCPpRAuZUFvnozQh6P4BrmXft5zqCgOVvUyBnPRG/MyLn5io9oTL/CEGkKL+l8uXy85NLL966N3gI7Rpfm5u3PvAL/eHiG8TSiBN3Sgr5fu+0Mbbsu/ZNuuwL/Hmzh2J2o149iz9nnYNoGhK7GcNZhsrUJt3cRdx46isWFEbbGYzAz1o6tY9++vVhZWcLS4gKAaOWz9/iH9YBuXOG8hRr3XQ7wHjgyqTAclBhWADFHjwABblCgqDwWMMRNT70azazBbFKDA8OXHt/7lut7YCt1B3fpXbHxdqTfKQvZbsAKSmMW4Rgt7L94zKVYXF2I9crTpklo4MMGOOEUAgoc2qzRjAmPu+HGfA0ZQ7KUbYYidVFKqUvejCtONvXSD+N9SQEb6t+P3KMoGwbUqFajuM3Fa5Hi2ZojJn0AOTtBFCMNK8hCyKx6IuRdQBSWMNYsZYHW88qY5zCfQqcAPsTzVNcSD0DI7HVZ4Yjfu3UXnyUAahPXPiiXw+V8TfEs9LIHUlxect8F/W5pgrthvE/HRthznjvrSQGSnBVlxvI9UBbmMgdCACSC3tL12gqE+TlxvEAAPvq8qzFuO3z+aIOtcQduO7jVxZRuh912JrddgX/SbVfg34MttC0KIszWjgLMqCdjTA+3mEynuK3eg5WFIaaTMQ4fOYqzzzoLs9kMBw4exAPufz6WHnh/7Wet7rBeDcAAPjMtcEfdYEQBd9aMqpjim1ZK3Gu56l1bhG1RehSlx3BxgNAxmlmDP7v0ErRNF4X/H78tkY9Y07dvyQHIlrsKw3SsJeUJBOcIt9x2GwiEhcVFLC8tIgTG2rEZ2naG1eUhvC9x9OgU55x9Nq797u/Ckz70QY2Ja7w4jYE4VfYrWXPVmRBLt9rxFbw9pU1AftYVb2LxPTxAsrJFYJAIZ5kLAbSJQiFCj4EgpEoSI9cwQVJ4EnBPwGLOWsXz1iqMsBXLVsZklAAhp5HjfQdwIsPpFfHh6BVQxckg3UMJFBPKCogoXYKtoGhxy9gVdyChGZkH9QRF8poejXNKgysm2RNisRw29q73Iyl8ovSJR8PMk7MKiQc4xOwA6pLSYZRF6/WQ+5t0U0zbEmvTFqFuY3U7Z9F/u+1Mbbsu/ZNvuwL/HmzVvrOBegXVMCJ93awGMzDc3EKxsoRB5XH+CCi8i4YHB3Shw/LCUu6Ega021yUPIByWMmYemDHwhbUZCMDiwGNQOHi3HVVMRPAFwRcDDBYqcGA0dYu/eOKlkT2MGR3H6umeHAIYDg50HHOn67po3RPBF5F5sG06wBOOHj2G+51/Hj7/T1+AL0psbW2BwGBmjLc2MBwNAQD79y7iziOH8Op/81A0TYMf/9Snkos6uqNj3nmUgkxGwMg98XahEL8QWRAPmE+9U8VlDswlQl5d7EbwqSs85aArEryIFeOsO17GY4Ur2PDEi5BE7l/z9OfCDyq0TYhBBLIIcwXKUUK8i9u6NS7xf1E2vQAAaGdJREFUkAFxwrnvk3Igfcda8Ok+m3yPoBT2SIpKKKE4DVGmJOUQMPn1SJ+nMbCg40VYu3wcU3azx7K56bo2XII0p+YZ2TCCnNMjXBLlqEpLJzqn0DLjzkmDrVmHWLvegC122xndiBlkybp2+H63xbYr8O/B1rgSGJZogLjbVCOAGbxcYG1jgsnKAs5aqrB/dQCKIhEAekKWAYQwt0CtMGfGEXisrbWoqMVez/gX+0cYVvM5b/Z0AnnCYFSiGpbRCk4COV6TQUhKgxFO879Pt6IEGy4O0ucxpPCA+5+PtunwoG/6RmyOx/DFuWibBt4XWJvOsH+pQtd0KKsBztq/DysrK2AGrtu7D1f+xQfBntEZ4Ju9rmYEIP8dww1pWGKlioWf0PjiclcFQScXOWfeuMylCE0vpi/nMABNj4seCEhBmS73IYJZq7jZZ5CUAbHegeyaFite6ssrT4FEL4psAYOSm1w8FkmhCUW2qotpPldDFhytYlEIei50Q0wD+Y6RqZOt0mVCQ+IhsTz3Vlj7mfEUyHCcKViTvARsvQqUlQnliEjXd7WkOObrzNcnkHtTNr50/+Mu4OiYEdoOVPrdkP3XUtt16Z902xX4X+lGBJQFmAhdx5i0ARwQhdYOuw4RcNbQ42DdYsbAtp0p/d0BmDCDpx2atsOwmktO3nkwGjMFA5NujMKV8OTRcYuSqohW3qExM8phicnGFADgjDt0757VeAyAlZUlyBsWGNgTGANP8EQIzPjGb1yBdw5goN2/D+9d2oNHvesdyVJjBV8pyE249ykKe9ck680hkgSl2404AJOuJ+51Rk+Ai1DthTB2uGUF9tkIRkr5omThCxZAhDwAOFNNrjd/c6CznnU/F26wx1KbjO6Qx6057gCqNUO8k7wiImTFC6LxfXMfACKmIDHcuRpK+mOR80rwUydkvYD5EphQct5F2REPgp+m3yXOXuR7APLfFhgo32sBI/OZuvjNfcTrcSQIEka9ZO2HipUhkFrg6CRgo0asX7/Li/811XZd+iffdgX+P0MjAFR4hFmNf9p0IJriG1YHKPzOm87+5QHuPetw82zHr3ttVPkdrPs5SbXTmAgYFQkoCIKn43sIAIAZqCcNRstDuOOMmwCQMQcZQOkIk5ZROmDgkTdaAorSYe85K7jhwscCDDz6hndm69Z6GfQCjFBGyWbd0ZIKqNIkxdZt/FuteYJasSok5Rhn+8wubAuoE8Q7wwjDLgtwPQc5tq6UuAZ8xn7bren5boZeFTpxsYsrX5jy2CWXvtQjMNgFagBOVeaUODF5D+Zd8FSb+Q4pVz2FKFwNuBSTDz5iBySbwo/j/81inkMv2ReiVKRwQRDFqI5jc4x+zjwSHiApG5qTL8oRx3GJ8qDWe3oG1kNDSMpgwj2EEYMDgUMXp3M3dv811Xbz8E++ndLKf/nLX46HPvShWFlZwcrKCi644AK8853v1O+n0yme/exnY//+/VhaWsIVV1yBgwcP3uODPuMakTJ4jdfH+Nxmi61Ze5xDCY6AUXFyj6ZloJ0PAQA4vp8rf+7IwZFLaP/tOADm/EMAnCM4ImwPie10LYIMq3SEOvAOoyH4wmP/ffZiae8i3vOoi6Jred6pERLdr0Wy2T9bSpZvqkQYTNEaj1SfHmq5qiUo/YvAtEqBKAtilSZBraVixXMg3gdTsMWmkwFJaDb9vjXWbixwsdS7UexDGOkkZu6a9JMqvflpPD5UWVEQcGA3SgIyKQp+BgW4CX7AT2J/xTR5DeIjgatjil61DozuZIzujIQ6xSRb+hQSXe5SFKrtosl/Fys/jcc1QDFO49Vnmu+F2qwE6fdJIegG/f4VmyEZCMm6J/N8VGFL9/7uyx+L2bgDtwFw7q504d12pjU+iZ/dBuAUBf5973tfvPjFL8ZNN92Ev/7rv8YjH/lIXHLJJfjEJz4BAPjJn/xJvP3tb8e1116LD3zgA7jttttw+eWXf0UGfiY1D2AJwEJVYlAWWCyyb7JrA+pZ9A2HDuhaRlMHLFcFRg6oHKFyhCXvMHCEnnFNhE0mfOHYDE3LSRDfs7tZEzjG+B2hGpWoZw2aWavx/+0tm+cFAYUDKgcsFPLp9vE55zBcHOCsb9iH9z/24j4aP6XAzVPnalnWuUiG0u96o/Yndj6tIJh+V45560IXa537lnuvbG4SmJJypgxuxnVOIQpGEbTajLdAiWKSEA6VCRuETE7TS91LOIBuAI27S+47W2vX536ozT/lBlBsReHt6xxPt8LWtVE4RyWFdMP0s3Rd8TgAeOWPPCkqH5MscBGAa553uSoAb/mp78dbn/94vO0/PS7z3huQo00BtCRDEppoR9CN26b5yXOxPBLWvRsqRjcKeMwfvROjRV2Au+1rrOk6P8HPbovtlFz6F198ce/v//pf/yte/vKX4yMf+Qjue9/74tWvfjVe//rX45GPfCQA4DWveQ3+5b/8l/jIRz6C7/iO77jnRn2GtQEHlLcfwvKwRCDCwhZwx+YYOHsJzXiGwcIARw+uo2ujqVlPa1QLA+yrQ6yo13YYVgWmTYfZ4ghrxiXJAG6ZMZY2ZviGPcO5K++0w538rsdgOMpn+MKhGlaYbExRDoodQYe9KwnMnhTXddxGFOPiy3sX8c7vfRQe94H35nGIMHA8dw5UcIqLXc9RARDd+64lhIJzeqEIZ3ELi7fApJfJtS3hjcab0zXE7S6AMkHIyzWksE6Qgjjitpc0OxlHuhcp/GJz8kOVLGFkFL8i6UMU3oBJc5PYf0jpbICmQapnId1L8AAK4I3/+XI85dffAjeJfbsOKCeM637zKZi0DdYbAtBhoWR4BsYTYDCqcPNGh1f9v0/Cj73iOrz7+U/GnWtbaAYj3Lwe8Fs/eikGvsPtmx7jluCEQ4AAN0WPRc+mMloufX0exgui4LzEky8cADInsQ9Oz4UQKsawALx36I7jWdttZ3b7arjtb775Zvzqr/4q3ve+9+HAgQO4z33ug6c//en4hV/4BVRVTpv++Mc/jmc/+9n4q7/6K5x99tl47nOfi5/5mZ/p9XXttdfil37pl3DzzTfjQQ96EH7t134Nj3vc4/R7ZsYLX/hCvOpVr8KxY8fwXd/1XXj5y1+OBz3oQac05rsdzOq6Dtdccw22trZwwQUX4KabbkLTNHjUox6lxzzkIQ/B+eefjw9/+MN39zJfE60A4IcluCjguoB6a4L1SY0jkyZanIHRtp2WxV1YHoEDo/AOvixQFh4cGNy26OY7J0IHwoFxh6Y1eWf3kDkTGUczus25KJmOb+HPNznOBuV3PpeI4EuPpT2LeO+Fj9PDNC7ucjf6gjtGKDkxx3HffQ+xyOP3VoD0wYHJ8vesQDebI66kPOKit/SzJm1OAGxapEfcyoAi2N0speuJUJbCMCkX3c+y1T3PEtdDpqfrhyqS3bSj/DmQhH1ylxcixFNIQGLwcp8vf/Zj8IUDx/Cipz0Cr/oPj9I4+qv/f1fg7w5O8Mk7G9x8tMEXjnb4h0PApw4FfH6txWcOzzCtW9y51eDlz7wMnziwhZu3gC8cmWK8McWRQxPcdusEt9+2gY07N7B+ZIwXX/kEvPxHLkG7mO/NZg64Orr/q7X4v/L3C+agMf8nxYUdEAasylv8PoZ1XE1wM8JiySh9zI0pCRg4oNy1+L82mo09Hu/nK9A+/elPI4SAV77ylfjEJz6Bl770pXjFK16Bn//5n9dj1tfX8ZjHPAb3u9/9cNNNN+E3fuM38Cu/8iv4H//jf+gxH/rQh3D11Vfjmc98Jv72b/8Wl156KS699FL8/d//vR7z67/+6/id3/kdvOIVr8BHP/pRLC4u4sILL8R0OsWptFMG7f3d3/0dLrjgAkynUywtLeGtb30r/tW/+lf42Mc+hqqqsGfPnt7x55xzDg4cOHDc/mazGWazjE5bX18/1SGd9m3LOfiz9gJEWCKgHs8w6wI8CPc9exmFd1jeOwI5Qj1t4QuHwIwjhyY41AEYRG2RF0doj7N2NwIwbQOq8q5s6ZNv7jhIZl/6GPO/C6VC0v16TeLj2xSB9BcRRksjbK1PshAwghVAzsEXcMH2brZfE9AUMKsMKCI9eQKAbF1LjrgF8FnEu6V9VcFtxuhSwRiSfUdIdywDXhqTr6HCy7WAb6Mg5yK64SW+rymGLnsIgNxPGGY3t5ISilWcYvhOQhaphO+zfu89aBcyOv7FF/9bjO77ANw6bdESoSMCM4O7gK4L4Fnyqyd62hbAbQC4jTnu8A7wDlT4WJAG8VmFtsN4bYLJGvBfL3s8Xvi6d+ANP3UpnvZr16u3QQGPJfDe51yCA+O4rp/5urfnEEAS+nAmhW+WQj2UU/I4MSG6hrC1toaFUMIVjMH4GKZbG/C+AA0XEQYLaP1uXv6Z2r5aoL2LLroIF110kf79wAc+EJ/5zGfw8pe/HL/5m78JAHjd616Huq7xB3/wB6iqCv/6X/9rfOxjH8NLXvIS/NiP/RgA4Ld/+7dx0UUX4ad/+qcBAL/6q7+KG264Ab/3e7+HV7ziFWBm/NZv/RZ+8Rd/EZdccgkA4H/9r/+Fc845B9dffz2e8pSnnPSYT9nCf/CDH4yPfexj+OhHP4pnPetZ+KEf+iF88pOfPNVutL3oRS/C6uqq/px33nl3u6/TtXUM1AzUgXGkY6wHYNp2WG8ZW3UbK+k5AGBUQw9fEIqCcP5KiWHbYtYFzLqAmrO3uNeI0DJwbNxsz+G/h1tPVp/s8UYaMzrwtuo5/eY8gUO8U0ucI2A7iVUrql4UgNTef/ET8cErInbkL596VXYquCxQxKUtgr3XRDHg5B5OaHubFtcD9JmbFYu0SDFtO77esWnsFCJATmLmAsILg3h+sRXPf/9/fgpe9yOXarxcJzdhAK79sSf3094c8LZnXaypg5K/3pWI/PU2lBGAV191AYo0hl988//FT//G9bj3aojKp3NA4eEKD04141EWwKCMP8MKNBrA7VmC278Cv2cZfmURbmEIGpTxZ1jBLY3g9i6DFkeo1yf4xcsejZvXGK/9mcejK/Mcv+k/fS/e9OzH4QvrjC+tAbcemOH/u+ixeMlVT+h5KqpjfaUKLt9/N8o4DWLgiuv/DJM7bsXRWz+Ho7ffis2jR7B+xwEc+NTH4cYbu+H9M7gp7uYEP0A0Ju2PNTTvqba2toZ9+/bp3x/+8Ifxvd/7vT0X/4UXXojPfOYzOHr0qB5jPeNyjHjG/+mf/gkHDhzoHbO6uopv//ZvP2Xv+Slb+FVV4Zu+6ZsAAA972MPwV3/1V/jt3/5tXHXVVajrGseOHetZ+QcPHsS555573P5e8IIX4PnPf77+vb6+/jUp9HvNAQiMCQh3bDVYHBQofB8lT0RYWSjxjXs6fGmzwRH2aCPV3Y5ddkT4wjhgz6jF8qhIh30FtjGOjH1VV8EXJ+r/OFqBBsSB443PeYelPYs94hR7OmAUAeS/b3j0Y9G1HUIbMOtq3PCYx2Lt0Abe8+iL0NYtHvvn740CGNAUOYvc1/x5w0YHY7EDUAGqZV0pW/cAehqZDUX0itKY8IDEoPVcBR5GxULS8x75omvwuh+/FG/8ySdh2jLGbUBBhNWhx2WvuhZPfuWbcP2zrgIDuOwVb8Rbf/wq3DLp8L+edyWe+j+vhUu16/0seyGaxTiOt/zC9+PQ5hBv/s8XYzgAwB7H6oD1GaBRImaELoBDgFsYgIZ9aueTbUQErgq4fcsIRzYw3qxxRzEECHj9T1+IrcbhwNhjY+ZRb80QkhehawM2xjP8xlUX4+de+3adW9cAXfJ2aPqe/N6legEcU/Pu/y/OxxcOTuHYwY0qMBEWZ1P4pVXUd+tudttp0Y4fJczfA9vkygtf+EL8yq/8yj02jM9+9rP43d/9XbXuAeDAgQN4wAMe0DvunHPO0e/27t2LAwcO6Gf2GPGMy/8nOuZk25edkBpCwGw2w8Me9jCUZYkbb7xRv/vMZz6DL37xi7jggguOe/5gMNA0P/k5Y9rdjA9RUQCB0Y1n+MJWh0/cOcbhzRptF7bFxs9eHeLfnLuEBy85jBAAZriuQxG6/rWJsAXC59Zq1O2OfgAAQOgY440ZupYRAqPr4v/xJ35/vFvitOmXVdHLxWfeHtPPDvvkamVJ53Po+dV3mh+iGMe/6PH5sLt6qQGMloc4+7z92HvuKvaes4qzvmEfzrrPXpz1Dftwzv3Pxnsf83gZlLrT1TpkQAvlSFxYGOhEcFsg3VyKWM99n7wRISHpQ/JMCEOypKMpUE+s7yHwymdcAQrAHz/3KQglcP2zr8Irn3kFfv0Zl+Cf1mr8/e2b+Ifb1vGlO7dw8x0b+LtbN/Cblz8Bf/BDl2HWdOi6gPc8+yk4MmnwrNdeh6e98lr81tMuj+EBF6/RDRLBDuK4rvj/bsRCRXBuhItf+HY8/r9ej9s3Cxwce9QBcZ21HcIsaSZfJi2tpoEuDhHGM2yMW/z6DzwRN6+NcOvGAEfWGNPDm5HzfnEIt3cZbs8S2DlsHZng15/xRC3cI0RBoqBpbYSWlBZYGPwufdu7Ua2sYoNLbGCAzXIBzdI+TO4SUrrbTuemmbon+AGAW265BWtra/rzghe8YMf+fu7nfq6XqrzTz6c//eneObfeeisuuugiXHnllfjRH/3Rr/Qt3+12Shb+C17wAjz2sY/F+eefj42NDbz+9a/H+9//frz73e/G6uoqnvnMZ+L5z38+9u2L9KnPfe5zccEFF3zNIfSZGWg6cBNp0GhQgfzJ607kCG51ATxtUG9OcNvU4/As4D6TDucsFlgdFfDOqcVfFoRvWB0glGv4wpqHDxXuM3D4p5pRW8FJhENtwJHNGuesDgAKCBzgqdC+ujbgyIE1+NKja1qELihY0HmPrm2xtGcRe85e2jZuOd8Vfc79wMCkYywW2JE9UFqbXj5/EhXKyBH2nbuKv7j8Mmwe28JF73tPjmHPWfnEwLu//yIsrCxovzoOikoHM2PPvVbwrsc8AeNJgyv+9N2JiIZyP0kB2FbTPvUDZGuekVzQwrBneOttLr4NHQg3vaYLpZg6kM/dM3D4zR+4HJ9ba/DrT70EH79lDd20zkqYd6DRQO8ttB02NqbY3JzBFQ6F93AOaJjw4ic9FmVJ2Jh1+O9XXYa9Q4cfe8Wb4/0VwPuffzXW6g4dE67872/EdT91Ff7nf74Sz/ida7FcAbOOomLadOAugCc13L7le4akjih6CbqAdm0LG4FBhQd3MVfeLY2AKq9bMMOtLiIcWsfWZoOX/cjF+PHXv12VJstSGCqGFM/RfP0E0Th70WNtXKAbT+HKxROu1912ZjQKHDE4J/gewEkblD/1Uz+FH/7hHz7hMQ984AP199tuuw2PeMQj8J3f+Z09MB4AnHvuudu4aORv8Xwf7xj7vXx273vfu3fMt3zLt9zl/dh2SgL/jjvuwA/+4A/i9ttvx+rqKh760Ifi3e9+Nx796EcDAF760pfCOYcrrrgCs9kMF154IX7/93//lAZ02jdm8LQGT2u4QQnuAsLmBG5l4eQ3DyKQ98CCA40q8LTGdH2Mm2clbh+XuN9SgfvtGcIbNz85wp5Fh644igOH9qDuhrg3BRzsAqY+P8bAwJfWJpjUR7G4FIPCZ43uk5j0COQcFpZj+p5bHMIXHm0TLbfhwgDjjSmGiwO0geF7CP3Yui6gHPRzmhnApGUsGhf/PFiPyC42xlYT/ekLx1EShP9/cc8CykGB9z3uCejaDo+68Z3Z0g8APHDDYx6LalidUBAREYrC49x7r2I2rvHexz4ej37Hn/RpZym79vsn5/9DykMXQQKp2OahDHmaY+4AatBTKJSUJwl8cSp88BeuRt0F3D6Orvq1rRnata0IelteiF4hxJAOyYQC4IpBo2SBtx3qtouligOjmwLTwgOYYavwCF2B1zzrSpQ+kjvdOu5w56RDHVKc+6VvxH/5ocvwX37kUhzaClgeeIwKhw1iHJkEoPTgpgMV94xFTETA4hBYHIK6EGlvCw8UvneP6WAQALe6iG5tC4cwwu9ffQn+4zVvy4WEBibcYih2pbmGcOV1b8XvXvhErE1qoGkjFmFX6J/Z7SRd+ifbzj77bJx99tkndeytt96KRzziEXjYwx6G17zmNT3KcQC44IIL8Au/8AtomgZlGS2JG264AQ9+8IOxd+9ePebGG2/ET/zET+h5N9xwg3rGH/CAB+Dcc8/FjTfeqAJ+fX1dcXSn0ohPPr/qn6Wtr69jdXUVf/jhj2NhafmrPZztjRlhYwyqSuz1jA3yqNcnsbb2KVj5/S4Z6AK4bsDTGuXSCOcteDxw/whVqkzHYDSY4BB/CYcOlzi0sRfnDjzGbcAhSpsWM0ZhgrOLw2imhJW9DYbVCu61eG9DnXvXmxszsN4EDDyhchmtz8yYbEwxWKjUK6Djl963bZ6s/6p3PiHNmXPan3QRT2dzBmn/bdNh69gY9bTBYKHC9/3R2/D+JzwR9bTGvnP3oKhOTn9ljlbrkQPHcOE7390j6JBcb0m9Yw/Npd9Wt15i/JRTyyTlTRjffJ1j9BSAZiH+L6l7Em9+7y9cjX9Yb3Bk3GC6Ponu7IUhaFSduhXKAIPBswYxTsPguoGrSlRVAU9AqEoEBro0t+eOPKazDkenDbiLD2ZQefzsm/8Ir/3hJ+GWo1O0kxpU+Mga+VVqzAzULcLaFor9y1geOSyWHZ75v9+uCls3TFDRXmGjbO13iwG/8e1PQDuZwe1ZPm79iN325bfx5gZ++IKHYm1t7R4P14qs+I7H/yqK8vhrsm2m+Mg7fukeH8Ott96Khz/84bjf/e6H1772tfA+74lila+treHBD34wHvOYx+Bnf/Zn8fd///f4kR/5Ebz0pS9VlP6HPvQhfN/3fR9e/OIX4/GPfzyuueYa/Lf/9t/wN3/zN/jmb/5mAMCv/dqv4cUvfjFe+9rX4gEPeAB+6Zd+CR//+MfxyU9+EsPhyb+Pu1z6d6d5B246sPcoAdS4e7F8aUQEFD66a71HsznFFzEEeIwH7B9hkNLgCgwwoBEWh1s4dnQTt7kVFB0DRb72ADVGwxqz6RCz2mPvyMMJ+brmdOmVjzMixkIRWf3mj/CF33arxxNIzACYoqWb/iZKP+ny0ldgzooFkJKvCxCb0EZVYPXsZYQ24Ogda/iT7300mlmD/ffZC3cqIRWT7w/HYDN+Tf8zADrVQQD1CEhuuBTOsfF5JIvezzKJjngRClPFTWrDhxL40laLO9ZmqNe2QGUBt2cproe7Y32mMIYA65g5e5I2JnDDCtSxfgci3D6ZIaSyyZKK0bkRfuPyJ+L2tRlC0wFdAH0VhT0ABf2h9OjWxlibldgcVqpwdUOAGkoIfaOwEYMS46KbEVYWHI7WHjyZAQuDXdf+GdxO1qV/T7cbbrgBn/3sZ/HZz34W973vfXvfiZGyurqK97znPXj2s5+Nhz3sYTjrrLPwy7/8yyrsAeA7v/M78frXvx6/+Iu/iJ//+Z/Hgx70IFx//fUq7AHgZ37mZ7C1tYUf+7Efw7Fjx/Dd3/3deNe73nVKwh7YtfDvVuOmRdgYo1hZBHcduq0p3J6le6QoB3O0zMLWFOXSCN+w4PDgsxZQFFFqjnEMR7uDmE0YRzcWcKxZQRsKsHcgZix3G1gtN3G42QM4wgOXG9xn79nwPkmvHm/t8Tc5WRbzG2Eza9A1AYPFu7Y81w5tggPQNi0WlheweWwruehLdG2Htm4x2ZhiZf8yyBO6pgURYbjigEQxRKHqjVMAgtOtGtWwhPM71wE4mda1HQ7ddhQX3vAutdapo8zuZhjdNA1P3P2C4heloOsf72bRii8m2UPAlEFmrk6kOQPg959xOQ6tTdFsTkBLI9Cw2u7Svicac1y7kxmk0AF5Fz0AzsWysYMS6ALC2hbcaBBj6szgtoNbWYju9tNAOEZMwQxhcwK/Zwm/+K53aN0BdpKWB4QyCnhpAuD631dcgtuOBTSbk4gXKIvT4r6+1to/h4V/wUX/5S4t/A+/65e/ImM409quhX93WuFBZYF2fRw376XR3dqcVddKKGgwgLTpeiK0mxPcRiPQoTG+MVn6FS2g8AWw2OCc0RjhzgJHJstw4ymoKjHGIrbaRQRmcAvcMRlg/yKwMJhXRk483uNtfkVVoK1n4MCg41TNAwAOwGRzhtHyCJO1GtNxjRAY9SyawF0b0LUB1bDEoduOgENACIzR4gCj5b3gXlF6O2fAbKtGOSjgi7tpAafmvMPynkXccOFj8aj3/QmE5SfWjSflc3c1esKEU9lXIH/uUrnYYN4oCRFwBbz+565AGxxK51AQcGja4disw3hzhttvOwZ4B7e6FJ//V0rwEEXvQdl/7cl8DwBMBFoaIdQNyDlQWcbYurt7itVXopF3GvvnulGmw1CmuH0gwMcqit1igJu6CNxLy2p1UIGXO9zWdmg3o8K+m4x/Zrbdankn33YF/t1oRAQsjUC8HUR1so0N+I85gvLIEXgc4FYWQVUBWhyi2ZziFgxBR8e439mMlqZghOgW98De5QlmXYUpipinzwyqSnTjMcLmBHfsWcKwcHjg3kEKDXz5+5ovHbq2O6EbnRyw/96r6EDYuzjE0FOCGTC6tlOr3BceXdfFuDFFvn5wYvHj/khj7L2F8w7FPSAYI6vfEFvr4+S6T754l4RGiv2GMjO6KUOeBQ4SNG/eJ/Y610bh0pXx66v++5vx3370chA6tE2HZjJDN6mjoF9ZjIIe98DDueubvstLkCDoE8Pj6SwIyTtg1mh1QSEuQuCIufBJeStytUbXEJ5w7bUAAb/ziCdic9pEhfskMSC77TRrHWf06/G+320AdgX+3W4kwei725jBkxncwjBu+o4waFqMZy141oAWBtG9WrcIdYvN0QxHsR6FkmmjhQbnFYdx66E9WFsrEGY1irNWQUUBvzBEmNT4kiMcqwMesFTg3L0FgEKy4+0dnWCokWxHTmlmLcrBXedil4MCBYABc4+PvyitosBJcdjp+tsFftsGDEblPWdpErC8bykz1An3vbjvU6Wa4NOeIi58+d2ncrHCua+0v7FwTXDAa3/iyWgC4+C4xXh9gjCtgbJQQQ8c36PyVW2n4ZB6rQsI4ymKlUWEkkFCnuQjpXMoGJK2l9P34gN0DeN1T3oSbj06zejR3XZGNsJdWPj/bCM5/duuwP9qNSLAOXDbgUqPAQfsKwkTLhJ4KgGuug6uSrVXsTMpTlEylgYzrFcD8EaL7tgmwAy3vABioJvOcGzW4HNhiIUSWD1BqdDjIe7rSYOi9HA+lrI9GZBcGxgEwB9nMw0crS6vqLgTKx1t3d0jlr1tRITBsMIHHnsJvu+db9NYvtLthmj5UzDWN2UwmPD8S4qg0tsScO3PXIXNJgr6ybRBvTEBB/7yAHm7TZukCA4WqpzymLIX2TO4EjAGUvU8Skx8BAqEUWFArLsC/8xtd0WAdnrB1L6q7ctHme22u93c8gjcduBJjS5Ejn04AuoGvD5GWNsCHGHoHUZcwE9H8NPh9p/ZECN28I7ghLN8z1LEGlRFJGppO2wy4R+O1Di2WaNuOrSJVW/+fajDds7+ovQoqiLFzk9O6Dq6631Uvk7qzHGPEy/DyV77VBo5wur+ZXzwiVfgxkdFNj5qItqbAimNazfgWH41CZX55hpoTfg3/cxVODDpcOekxcbRLcyObgKDEm7vrrC/x1qy2itHuPHpT1HBTh1Fa37mgJaSx4VAbfwcPh73xHe9CQuDiE3gWbMrGM7QZtNqj/ez22LbtfC/So2IAO/hVhYQjm1i5h0a5zDygN+/jKYL6AJjWHoMHHDu6j7srdxxowiLCy1un9RoCNFr4F22l5PU5bbDYUfYPDTFMgJcWWCJGOfvH2E4iCjlkHLw9xmQHxGhGpaYbs0wXNo5hWknz8Dxqu3lYYm/9a5baCOP+1dCTjIzGIzR0hD1tDbu+mTZwwgSiKu/n0svKWDv/umrsVYHTDvGVh2wcWQToQtw+1ZivveuoL9HGxEw8IQ2AG+45Mm4+q1vymZMmmpqKWdUpCJVlJSDs5cctqYVmnENHtyDoaLd9s/WiDniqU7w/W6LbdfC/yo3IoJbWgBPZuAQUBHwwCWPb73XCN96zgK+5V4jnLM6xJgJW4HgnIP39sfDe4/FUYlvGDkMVxYi69raFsKkRtiaAl2AWxqBpzXCeIbJ5hR3zgLuaIHDLUfAYNrnnAP2Ddy2hUGO4AqHetJs482XVocZWm6P+/18E/KdTLFz/M3WeXePpD3u1ELHmI0b1LMGg9EA73zEY1RYsOMsOAxhTvwOPZa+bgA8+r+/AUdnAXdMOky2pkDbYbB3CQsuoHB3DZjbbSffqPAIbYdj4wZ3TDrUHccKhYxs5QeCmzlQTfoDx6rMXf6+a7EySiEuwanstjOrhZP42W0Adi38r34jAspk6W9McKz1qEH4JiKcs1yh8A4LA2DWMaoT+McdEe6/b4S9wxZf2HA4uFkjzGpQVSJsTeEWhnCri/HgLiBsTcFbU7jVIZwI/OT78mHn6wxGFWbjGl3TwZtYugj40p2ogpooAbnvEBhbbYzzL5Z0Qvc/OYJzkXXvnrDCmDmGLpjhmw5lFfEJs3GN5b1LuOHCx+LR73yn8u0L+Z/Q6KJNrv0ip+YJXe7s4JcwbRk0rqN35cgWjh25E0v77wU/GKFbXD1Vts/dtlNLSmDTdPjBa68DEAU8UV5r7CNanxpCGKQ4fhPJ9Wnm4DrC3lGBY2URiwOdwMrnFP/itovKaeFi1sOuV+Cr2nYt/JNvuwL/NGhEBPYebnURvDXF1voEn+oYR6YdHnLWCFXpsbBjKdrM8UpEKDxh31IJAuNYy6hHA1AX0IUAblq4KlHwFh5uYYCwMcZWBxyZdji3IhCFGBYl8X3Gvq3FXg4KNLMWPqHLmRkdd3DkMqNfb4SJ4GWH0TsCRkWk1aW5c3ayhYloWwSgqTt0TcznJxc9Bs2sRTUoQI7QdRHsVw68svxJa7uA6azFAgFF2uirUYV6UmNpz2IW9uLOpyjkxeVvOf2pA172mH8HBuHmz38OS0t7MGtaFFWBekpoZzVm60dBgymKpdXdTKF7qNGwQhhPI61xmdJkuyTcAbjaECm1kfWRA8AupuoBwJXvuA6/9d1PxGRjAgqxeI9dKMwcyYmmNbhuItNmiJ/RoASGlYbNdoX/V6GlZ3HC73cb/v/tnXecFdX5uJ9pt+3u3cayBZYiXQGRJiBYEhRUVCCWKCGgqLErxoAGUYlKFBUlGg3GRP2i/hQkIigxIkZFFEQEkV6Xuixsv/1OOb8/ZvfChUXQ0Jadh898lnunnXfmzrznnLeBo/BPGhJhfqleiOnEqsOUKilUhnUyfXZ8+uFs4rXHSfdp5AXi7Iro6JKEFY6hZPuTtV2N8tRNwbaqOF4F/F4FSRFIsrBfaDXxZQJ7hsGtJI/oE4eq+XeYltXZVlWq7RDUBgrW/XBKkp2nwDSsRISAEFBRUo03xUN5SRWSBPFoHNOw8PjcuL1uolF7RkKSIKdJFp4UO5zQMgVK3CDdrdjV/xJ5ASRUl4JlCj66aCADPvnIVuyqsG3B1Izy9wvNq+Wu2ct4+cZLyUtvjBGM40rxoNR0QlIAC4Elq+jO++eoIEkS+NyImM7jFwzk/sX/RghRk7JYIDT7nsnxmo6izL74LVkkVUrM8KpEIwoiHIdUT00qaAGWXSVQ6IadtMjvs01LEgjTDq21qoIgy7byd2mOr8Zxxkm8c+Q4Cv8kQ5Ik25s7rhMNx1klwBcwyPcp5KW50FQ5sd0+vZs8zS3LEi2zvbjKI2yOCixNsUv57u8drshIPjdmMExpTCVsWKS7FfwuieZZLjTFNq4LS0o4RkkAsoRlWsQicSRs5aj8SPW0n2K1/jEvfbA7PXrMRHXtMydoXs0u9OK1QxclFdw+Nxh2sR1fqhdJAj2uo7r2tdOyLDu3gESiQFHi+ikKpqFz0X8/QrZIjPItTSDXKv2aLHpSjSKx07mC5PERjseI6zEU9WcUvnH4SUiSZJfNLQ8w5RdXcM+89+2CRJaEFLNz59sV9CR7Ol6TWPDra9lQpXPDRzMSHbdCv0pl2EU4EEYRHrsjV5NiWPK47JwJB2QalBQJKcWD8HnANLEicbuEcIonubSvw7HFCcs7YhyFfxIiAaR6sUJRwtURIqpMQHezO2JSmKqS53djWQITCOkW6a7kqXRJkvC4FBqneyjRo4TTvMRDMTAt8LprnPTsbGrCrSHCMUJVEUKKTGmKmzSXTF6GrUCFJCEJKWnAoqgK0bAOsoQaN0jxe4+44lhtLvz969UfvNG+70VtzncZTMPiQKtBSlYKmiQhZdi5tO3YftvEIFGb0OfgB17VFHx+D/GogWUK9vcHNOIGeszgq6G/ou87M+3zmxIo9nES0/q1qXMle/AoBFTFrX3Fdn48tYDD0UCS7M6rx0WkKoKlCeZdeSUXzXi3Joe+lCh5LBT4cthVrKuMUBaTkfV9JiKvy8DvUYgEJTAMcGl2AiyXZifBOpTyliRUGRRVRbhUdN2urUFMtxX/SZSO+FRFMsV+fht1r3ewcRT+yUjN9LKc6k2UzY0FwpRqKjHLjWkJArqFJEmkeTT8LrlOvZLqUTkt0004ZrBdlgiH41hVQTt1r6rsczhK8SD5BCIURY/E2R2S8XsU9Ggcj9uNpikkFKcA3bDw+j0oiowR1RPlao8EPWYQi8RRNRlFVVA1tWYKdL/ZgFplLwSxaBxTt1BUGcuysEwLVbPz6AOoCe26fyhgTbWbA50D2HdcIexpfSHsKAVRs62EZPspxA1cbo35Q67glzNn1yTXqYnpVgRSTEookdpqeJJpz4SEFdnOiGia2OnfnBf+saT2N2yWVfP0OZezNWghx2qm8gEEGCn2S7/vGzMQak1BHclOoSyZEv3+MYs3hw62nwuz1q1bJDrHtSgSuOSabK6ShCpB1BSYAtyyhM+nUa3ImDVT/XKqF+EU5jm21Hauf2y9A+CE5Z3USJJk1x/3upEzUhFCUF0VYXV5jK3VcbYGdLZVRakMG1hWchY+2yZtK32f10WhV0HxuJA01U4ycuB5ZBnJ50HoBruq4nyzK8K3JTE2lUXRTfuJMg2LaDhGBAkh1yT6UWRM0zqiUDwhBHpMx5PixuXVMHSTYEUII25gmRaWZSEsgVVzPNOwP3tSVVxeFY/PjcfnxjRMYuF4zUwBdSh1CTu5/cEvWSFs/4R4JI4eM5AVe/ZAYCVeDJIsoblUDN3A63Pzr4sGJPLnyyYoUSnhkS+ZgLALtygxuO21d3EpMpJLQ0R1511znJBkCcmtYUTihHQJhGTXM1DBcouE855UUxHRctsmGiCRV0E64Mdk13Owt3HJ4FUgx2OR7zNp7FVId8l4VRm3ImEKW/HLQLpbwZPqRU71YgWjzpTyMabWS//HFgcbR+HXB2oUspzms19qUR0rZmCEolQEYvxQGmVrZRTjAMUrSRKpqkQjr0K+34VfgURR+joeAkmWkP0pmIZJoDJMKBhjW8RkbzCGaVmEA1EMScbnc6HVlKVVNSUx7X44hCWQZLvwjaIoeFM9pGT4MAyTSDBKNBQnHIgQC8eJhePoMd0ugavaIXmyIqG6VFweDVOSMPVaJS1hCYF1mAe7thMRj+pobhVvmhtcJnEzTFCvQrdiCXOD2+dC1VRkCfw+bV+OfRO7SE5N+VslZmfWq62s9+4t15Cmybh8bkQ8foQ32OF/RpLscr66gWFYTB0yBD1FIAlQIpKdBTFekzVREQi3heUzbUVv2h7+uikQpomowzylW/ZjEzZktgZldoRMSiIme6MmYaPG1AMEdItMt0y+T0F2aUgu1Xb6c5TOscMS9pTLoRbHSz+Bo/DrEbV2d8nvQ/L77HKqkkSwOsyGihir94YpC8aJ6WZSPXtNlvC6VfI89ktIRGJY0TpeQpKEpNgdCzk9FUmSbU/4oE44rONJcZHiVUlRJZSa0bMk20rf1E2EJQ75YhNCYOhmYireDiW0HfG8KW58fi/eVDfeNA+eVDeKajsDyoqMJGpNClAzFicsJHTdTBw/ZkHU/PHBlCTZDoeyIic8/RVZI2ZGiBkhquPlVMfLiZvRxOyBqVukpHn5aPBlfHjJQBA1xXIMkor51YZ+/WrqO8iyhMutIWMbF2TJngpWJMekf0zR7LLV8fIA5eXRxNe10RSW2zbbCNV25KvNnGipsHjE1cRM7FA7+WAnVAGEDajWwTywimPNX1mydcu+2BaQvG47lM8wcTg2OCP8I8ex4dczkmyBErb9XTfQgxF2xlX2Ri1yvQbtG3lQD8jZnuFTcQUN4iluuzQr9gvpgBMgCWHXQlck/C6Z/Ew3qktQoZfjxUuqlpa0i+ZWiYbjENORkFA0Bc2dbLcUlsAyLNwph7D1y7YHnFwzrZrwqJfs0buUkN02XUhCICtSIrxQrY2EOoRGDUeilJVXoKkqWBKpaT40l0okHiIWt1A0D5alU2aU4lFCZHhy7Glhl0w8ZoLHTXqGj89HDiUWjhEORRg661M7+Y7EvmI6Btz02gweP68rLkvG3FOFrKr4fD7C4TBqih/dk3q42+zwM5AA/D6I6hjVIZ66YBAPzP0QSwNLwXay1MS+THwmdmy+CZYlEzNqOsrKvtwTP8XvsmZXgrqgLGbaKl+WkNwuO/lVeopjyz8WCA7jpX/cWnLS4yj8eo4kSeDSUDIUrGicWHWY3fjwVsY5LcuTCEKVJAmXIuOWBJphEFDt7SW3VmfKWhGNo/rcNEvV8LoMqmKVuBQXXtV70PmFDJrPjSrZXvJ6VMc0bEc7O3zQLnwjK/scoPbNQMD+T2TtC7Z2u7husHrNOrKzsvD701AVBcuyUEyDcExgCouSvaX40jNxSRapqSkIpH0j6prjhMNhVq1aA0BaWhqKomIJE1VVCIZCeNweotEoiibhdrvZKVVQUVFJWloaKT4fbVq2RMQMZFkmJd2HN93D+9f+kpKSMqqCAYy4jqqojF28mcm92yOERVWgEknTcGka5RVlRKJR/AUykifVeQcdCyTb7VPyaGC4MaI6r1w3mFHvzLJXC5B1CdMl9pXQTTGRojKGJaEblt3hrDF5WfEaT/sjRAB+l0yqJrE3WtskCbwuRFy3R/ouJ1//Ucc8jNee46WfoF4ofFWWkCWJuHn4pMgeVbF76sehXScLXkCzLIxUL5JbQzUMKuIKMd1EMoVtM1dlMKGRIhNJ8WAKCSsURYrE0NJ8qLJE1BLErOTceHFLoMleclP2KfoDY+utWi0tSyhIdnhSTAe0xBS+aVjJnvxJ3vV26J+oYzylaSouTaO0rJxdu3YTN+L409LQ9TglJXvJzMxElmUi23aS5vfTuLAQxe3Go6n4VQmt5nA+n4+2bVpjWhYul4uqqmq8PjcpKT6qqgNYhkVmRjpp/jRkRUKWFLweDwIJj0vD43MDAssSGDEdr8+D15tHTuMc21xhmkQiMf6enUWT/Dz2GDJ6ZRhLllA9bhTLwmdZ4HLjWPaPMTWmL6syxN6gxZShl3Pn7NlYKolQPEm1wFBAl5B1ib1lFcQNKZGfxwrH7EQ7Lu2w75L9Az8rYxZxMzmjhATIKR6sYARJ0xy7zlHGSa175Jz0Cr9VVhpdC7IBWFdaxYrdFTTx+2iRkUqG14UEVMd0dgcitGnkx6epGJbFRxt2EtEPtpu5VYXWWWk08fvwqAoh3WBbZYgtFQGMY+Tc4dNUOuSk08jnxq0qRAyTikiMjWUB0twaKZpKcTBCVfSnqwIJcIciSGWV+PwpKBKo2OFCspyOGY8RCIYxDUFOQWM6+DOIxnQ2bS3GlCwy01IoaNoISZKorA6xoipM2AJJlbFMi+3VOrqQaJyq4VYkPIr9UqwdpNh15gwUSUl0BGwlrxGujuDyanb4nm7gsjTbqE1tp2G/KX9hdy5gX0a/WvkKC5vidvuIRKPE4xFUVSIYCJHiSyUzM4NIJELzlqeRnp5ZM3MgavwPBLFIED0ewef1cFrLZonjRnOzqA5V4vKqqK40otE4ebl5+DxpgCAWi5Cb04id5QEa1STvqSumX61JOqRpKh63m4z0NAzTYsPeCOG4QE7zosuq4y1zvFEVJI9GvCKIrqk8cdFljPnvbN4b3otBH35pR2aodj5902uxNxRDslx2GWhZQpEFutttO/kd4rWgGXEURUZTZCJCtp8LIYgaArXWMbZmxsDQVCRVQUSi4PM4o/yjiZN454g5qRW+R1XoWpDNK6+8QuvWrena+xz8bo28VC+LFi3ilXnzEEJw9tlnc+GFF6IoCmPGjOGee+6hc24mi3eUJh0v0+vivBZ5REJB3pn2Olu3bqVjx44MHTqU1llpfFa0u85Owv9CqkvlwtYFlBQX8+q0d9mzZw9NmjShf//+XNi2LbquU11dzemn5TFn7Q5066eVdpIl23tdSbensmUhEIrEWWe1paysjOz8HCr2lJHiT2XL1iIWLVrEwIEDadkin+17K2nfoQX//ve/2b17N9dffz07jBLCgYhddCccJSRJbA3ECcVN/F6NFJdMY+8+5W4JiFs6mmShKa7E97FwDJdXQ5ZlO+Ndmmc/h726USQpafZNCIGFRW5eAaFwFI8vBZcmU121l+rKapo3a4LP57WnUtMzeeqpp+jcuTMDBgzghRdeoEmTJlx+2SD0eCTJmTAWj2MJC0mTqaoIoXgg5grj9fmxTDvePzU1i3Cwgpz0FDQ5uQNiGnaWPvWAAkICMIHSkE51xKC2boHD8UeqTVPt0hDROEZFkMn9B3HZv+YgqRLCqKmcpwqm9/wFO8qqkCxBJBTGE0pBVRQUdz7xQ+gKWYJA8XascJCs7CxM3Tb3KKqKrutkZmVTsruYrKwshKwQ9aUT93mwqoJIbpfzuziaWIcpev8T36mnMie1wm+T7ae8vJxnnnmG5cuX43KpuITJwIEDKS0t5Te/+Q1ut5sXX3yRL774gokTJ9K9e3ceeeQRXn75ZVaWVBLS7ZKXsiTRu7Ax336zmMGDB3PllVfSrVs3Zs2axbhx4/j000/p1zyfikicgjQvLlUhohuE4gZbK4NsrggiSxKnZaXSPD0Vr6ZQFdPZVBagOhanY24mealeNEUmFDeI6AabKwIUpPnYuH49ffv25eabb6ZNmzZs2LCBV155hUmTJvHDDz9w44038t1333Fpu6YIIQjqBlleNxHdwBKCkmAUAeSmehACSsNRVu2pJKKbpHtctGvaiCyfG8O0qAxGMA0TSZLo06cPc+bMoV27dgB88sknjBkzhtGjR/PEE09QISSCwSDDhw+nurqa66+/ntw0H03SU8j0ulEkqAxGWb+rlMq4RbOcNPLSU/BoKqZpIoSFHo8Qj0SQ7GB2BHZ4nKyo+LOy0DSX7XhnGsRjESzLwO1OQVbtnPamEScWDaFpGj6XF1Vz18TKW5iWjh6PoKguxo//Ay1btuSee+4hPSOf9Ix8ZEVBlmUs0+6kNW/enOzsmtmgdetsW7+qkeLPxjR0QuFyJEkhJTUDU5hIcYU0dxZurw9ZlfF50njqqacoKSnh6aefxpeagRaPIisqak2aXNMwsMwqJAW8Kemomp2FzTRNTCGIxHWa+BRaNlEIxHV2ByOsLa0+bMigw9FHkuzYfOFSsSqC6GGTaQMvZvgnc5HiMtQUz9mzZy9V5ZWk+FJITUtFkiRisSgEIwh/6iFH46l+P3FJUFVRjqEbpKen2/sBpcU7iQQCBLAwAV+zdGRFRnjdtgOf3+eM8o8WNXkUfnS9A3CSK/wWmam8+JcpDBo0CLfbTif7l7/8hcrKShYvXowhJOKmyW233UZxcTEAV1xxBffccw8VFRU0z0xl9Z5KAPLTvPg0hRtuuIFHHnmEW2+9leponBtuuIE77riD3//+97z77rsYoQDz/vM5zZs3Z86cObRt25ahQ4fi97jI8LjwqxLvv/8+mzZtomfPnvzyl78EYNu2bSxcthm/389HH33E6aefzhVXXIEkSTz6lxlcfvnlTJw48SAZ582bR1lZGdOmTSM1NZUhQ4bw+ZzZnH322cyePZuMjAx+/etfs337dv7++rsoisLgwYO5pG0hq/dU0jE3k9WrV/PG7NlkZWVx9dVXk9Eoi8WLF1NdXc37779Pfn4+F198MQADBgxg+vTpPP7447TNSef111/nl7/8Je+99x4Ap2WlsXz5cmb+97/EYjHOOecczu/Xj4pgBA2TD2e/z5lnnsnMmTNp2rQp11xzDamyRHl1MWman7gpISkajZvmsWPHDmbOnEkwGKRPnz5ccMEFABQVFTFnzpyELPn5eUiSzMKFC8nNzWXZsmVs3ryZiy++mM6dO7Njxw7WrFlDaWkp06ZNo3PnzuTn5/Pdd99RWFjI7NmzGTJkCE2aNCEzMzNxbS3LYsaMGWzZsoWLL76YTp06AbB48WIyMjLIzW2M5tLYuGkTAIWFhSxdupSqqiqmTZtGmzZt6NWrF+FwmHfe+n/s2bOH8847jx49egCwdetWioqK8Pl8fPzxx4wYMQKXy8WMGTMoKyujefPmXH311eiWYENZ9dF+PBx+AlJNhbvh/5mbqHw487KBxA034ahEdiMdSbfsNLqKgiIEkcqwnXWvrtG4gPScxsSzGxM3DLvIjmlglBWjpWbiTvHjSfikCHRJRpVA8bqIxQ1EKGpH2DhK/3/GseEfOSetZTHd68ajKnzwwQf84he/QDctZFni7bff5o477iBiCj5Yv53/bNzFl1tLsFL8LNtVhtvtpnv37syfP5/G+3nY5qd5WblyJUVFRYwaNYqVJRX8Z+MutlWGuOOOO/jwww8JhUJs2bKFkSNHcv/995OXl8eLL77I6NGjaZPtJ8ujccEFFzB//nzy8vJ47LHHePLJJwFYunQpI0aM4JlnniErK4vx48fz0ksv2efOz+fLL7/kq6++wjCMJDkjkQiWZREIBAiFQgDcd999DB06lOrqajweD4sXL6Zfv34AmKbJ+eefT9GWLXTMzeStt97iqquuIjMzk507d9K7d2+CwSCxWAzLsgiFQgQCAayaaa3MzEx69OjBvHnzAHjttdcYOXJkUpveeustfD4fjRo14q677uKf//wnmaleysrKuP7667njjjvIyclh+vTpjBgxAp8nDbfmAwSqLMhI87N48WK6d+9OMBikSZMmfPTRRwCsWLGCPn36EI1GKSsro0ePHhQVbQXg5ZdfZvDgwaxYsQJZljn//PPZsmULhmGg6zqxWIxAIEA8HmfDhg2MHDmSsWPHkp6ejmVZ/P3vf2fBggUJOaZMmcKyZcvw+XxcfPHFLFq0CIDXX3+dTz/9FLAzBc6aNYv33nsP0zSJxWLE43ECgQDRaJR4PE7fvn358ssvSU1N5brrrmPatGkAfPvttwwfPpwnn3ySzMxM4vE4ffr0obKykrZt27JhwwZKS0vxONO3J4TamSIRjmFFYgjdZHLfITz3yyFMvmAo24KplERUKnWI6BDSBWEUwkIiLCSsw5RdbexTyPUpxFGIyRqxWJhg8RYCVeXEJIWYpCb+1uZ/0RQZOc0Lhukk5DlamNbhFwfgJB7hp7ltj+7Vq1fTunVr4qaFpshs2rSJli1bUh6JJXwxigMRigMRADrlZtK6dWtWrVrFJVcMThzPoyos37iRpk2b4nK5KA2XA1AWjtKhRQui0Si7du0CIBQK8eabb5Kens6QIUNo1qwZDz/8MPPnzyc9PZ2pU6cCMGTIEFq1asWYMWPsc3g8TJs2DVmWyc/P5+WXX+a2225jxIgRbNy4MaHE+/fvz5///GfOOOMMLr/8cmbPns1tt92WJP+9997L1VdfDdij8smTJzN06FDAfpG9+OKLPP3004wdO5Z58+bRvn17AHbu3Mn06dO54YYbyMjI4LrrrqNtmzZJoXfXX389r732Gm3btqWiooIuXboknXvSpEnEYjH27NlDTk4OTz/9NDfccAMAgUCAV155haZNmzJs2DAKCwvZtGkTBQWNiUdD6IaBqmo89NBD/PnPf+b666/HNHSUmin8p556itGjR/OHP/whcbznnnuOKVOmAHDJJZfw6KOPArBq1So++eQTbrrpJjp37kzLli0T12nhwoXEYjFmzJiBx1P3SKl3796JWRWXy8VTTz3FzJkz9/0m3G5Udd8jkJOTQ58+fSgpKUmcZ/r06aSkpPDyyy8D0LFjR377298yfPhwADRN45133kFRFMrKyqioqODmm28mJycncdz/bi4+qG0O/yM19RBELA66AYqC5LXNRximXb/eMBGRmB09kpkGiowhJEzL9tSXLRNLN7EMExHTa+LkazoK0bidnOcQnTVVhlRVQZZgh2LaaXVTMkhp2wPZVXcon0uWkCU7WRV+H1Z12HYo87r3S+3r8JNxnPaOmJN2hK/UOEpFIhHcbjfxGjtteno65eXlSaMmTZEpTE/BrciYQuB2u+2Y6v0eIMMSZGRkUF5uK3qvptT8VamoqEgcG6BFixakp6fzQ0kFGRkZNG3alM2bN7NixQq+//57evXqRa9evRg4cCCaplFZWQlAu3btkGWZ4kCYnJycxLkCusUTTzxBcXExy5cvp6CggIsuughdT85p/31xeeL/nTp1IlCT837FihX86U9/Spz31VdfTSiXHTt2MHLkyMS6BQsWsGfPnqTjxuMRTHPfuS688EKWLFnClClTGDFiRHKCHCG488476datG3feeSdTp05NmEsAGjVqRNOmTflhRylut5sOHTqwYcMGFNlW6HJNObtVq1bZ0+HBABWlewgFbNnWrVvHWWedhR6PYhhxunbtyvr16xPHb9++fWJ2IicnJ3FvajENHT1md+5at26N1+ulYk8JdXHmmWdimQbRcIguXboknQdsD/vajHsHYlkWpmGwfv16unbtihCCSDBA165d2bJlC/GatLlnnHEGiqJQsqeU7Oxs7rnnHjp27Ejfvn3561//immaZHiOrLCQw5EjACsQRoRjSLKMiMQQoag9mq8MYgUjoBvIaT5cWX47HbRmK2jZtCBuYETidmU7QE5PAcX2tCduICIxO5V1HTpYkSDTrZCqyaRqMk1TVBQJhKSgpfhRtIPvtwRocq1TqoQiy7jTfQjTwqoK2m03TGfE/7MQ+5R+XUuDCtL+cU7aEX60xtmuSZMmlJSUoGQ0It0jGDRoEHPmzOHyyy/nrPwsYqZFq6w03IpMdUzHrSqUlJRw1llnEdsvnWVpOEqfPn0wDIOFCxfSpcfZpLo0Wmel8eo/p9O9e3caN27Mtm3bKCsrw7IsWmelYVkWpaX2yzwzM5OLLrqI1157rc42yzWjaEsk99azfLYDXty0aNu2Lc888wxTp06lpKQkkZgG4IzGGYl9NE1DN/dNw//1r3/lnHPOSTpfJBLB6/Xy4YcfJpzV9qf22KrLi7LfCF9RFK666iomT57Mjh07EtP9AN9//z3z58/nhx9+QFEUFixYkDTlX11dTSwWo3Wu3da9e/eSnZ1NdTDElk1bKSxsAtij5d27d3PaaS0xUdBcPsDuMOzdu7emVvy+/fe/hkbMQFGUpGtYK4uiaonZAk2r+eup+2dcWlqKrKi4PFLSeWo7hGrNi7miwu7Y7X8eWZZBlsnOzmbVqlV24iKvlx07duL3+/edu+ZvWNjXcPz48TzwwAN8++23/O53vyMjI4OLh1zJxvJAnW10+PkI3UDxuEBTkXQDYVqIaBzF50F2awhFRpNAQWDGzZoCUwIzbtSUvlUTil6qCaMTpmU71aX6QKm7AJNPlUl32YMLRZLI9SoUhw1CRh31KdhXzC2oW3aUHvZhvZqC6fdiGXa7rWDEnolza+Cyf9POqP8IcEb4R8xJO8Ivq+l5n3vuuSxZsoR0j8buQIR7772XWbNmMXHiRLzRAI0lnRn/7y3+/Oc/k14zklqyZAn9+vWjPLIvrn1HVRjN5eKPf/wjo0aN4tuvF9LcpzL7/Vk8+OCDjB8/PrFtaWkpL7zwArJl8vzzz9O8efOEA9YHH3zAnDlziMfjlJWVMWfOnMPKMn36dP49ZzZ6sJqysjImT55MYWEhBQUF5Ofns337dlasWEHJ7uSp39JwDMO0GDVqFGPGjGHLli1YlsWqVatYunQpXq+Xa6+9ljvuuIO9e/ei6zqLFi1i48aNgN1Z+u9//8v2bduIxWJJxx43bhxr166lcePGSd+73W4qKyspKSmhtLSUxx9/PGm9YRhMnDgRyTR48803icfjdOnShU1bt1O0o5gVK9ei6zojR45k3Lhx7N5dQlZ2Nt8tWw7ANddcw9NPP83u3bspKtrK888/zzXXXJN0DpdHrUmxu4+mTZuyZMkSNm3alJhRqSUWSpatlrfeeovVq1dTVVXNpEmTuOqqqwDo3Lkz7733HhUVFXz77bdMnz49sU+TJk1Yvnw5GzdupKysjMsuu4yPP/6YL774gkgkyvjx47nmmmsOehF73F727NnD/PnzsSyLjh070rhxY0zTyaF+rJBTPHYZ2lAUIcvIqV67WI1hYEbtVM96JE4kEica09FDUYxABGGY9vR9qhdJVfYpe0tgVYeRfW47L3/NPZYlO8qnNj1EULfYEzEpjVpETEFV3Er8XmvyTyXYX9VY2EnfRM3fsCHQZLsippTiQfangEvFCsewqkK2WcFRVofHNA+/OAAn8QjfsCx2ByKMGDGCBx98kNtuu401e6o4s0VLFi9ezPPPP89FF10E2LbaWjv6unXrUBSFM888k6+27U0cL2qY/LC7gjFjxtC6dWsee+yxRBz+u+++S79+/QjXzCqceeaZVFRU0K1bN1q3bs3MmTMxLEF+QQEfffQRTz75JPfddx8ZGRkMHjyYyy67jNzcXLp27QrY6WUzMjLo1asXYCurKVOmMH78eBRFoXPnznz88cfIskxeXh6TJk1iwoQJpKen889//pPzzjsPn89HpWWxZm8Vo0ePTij3iooKWrduzYMPPgjACy+8wKRJk7jwwguJx+OcccYZPPHEEwA8++yzTJ48mdmzZzNlyhSaN2+eMCPEYxGyMtOpDgRwuVwMGDAAgA4dOvD73/+egQMHkpGRwe23385//vOfxHWs9YTv2bMnTZo04YMPPkA3LYorQ/jzm2MJky1FW7nzzjsRQjB06FCi0SgXXnghvXr1Yvjw4ZSXl3PppZfi9XoZM2YMgwYNAmwzRpMmTRI58du1a4ff7wfgxhtvZMKECdx9991ce+21dOnSJXF9PSnupP1r5Rg3bhz3338/W7duZfDgwdxyyy1YlsmwYcNYunQp55xzDl27dmXcuHEJc87QoUNZuXIlo0ePpn///tx9991Mnz6dP/3pT+zdu5cLLrgg0QnKzc3lrLPOAkCT7Bf6Sy+9xF133YXb7ebSSy9l2LBhrNxT9T8+DQ4HIkkSeFwobs3WoLKdAUJO89llieO6rfQlyV6nqUgeF7JLTaTgFWBPoxum7UQX15E8LnDvS3/rlSXUskq7AJKqEE3xYcoykahBkSkIlceIB8NkZGdgCgtVCIjFifu8tVN9yNjOg5Yk2/Z7y0rUgHBrCm4hCOjYdnyPC+HWwDSxQjHbHyHV64z0fwxnhH/ESOIk60JWVVWRkZHBS598RZsm+fyiXXMuvvhinnjiCbKbn8aSomLOapZLy+yMpP0qwlEyfR5uueUWBg4cyEWXXMq73609yHpzWqMMOjfJId27z7FmTyDEsu0ltMhOJ7B9C7/73e9YunRpYn1JdYgvNmzDo6mc3bKAxmkpSccMxuJ4NBVVltlSVsn6knIuaNscV42fQW3b9mdXVZBFW3aSm5ZCj+b5iW1rieoGH6/ZQkU4yun5jejSNBdtP3tzOK7z1ead5PtTOKMgJ2nfslCEFTv20LGgETkHtBVg+94yQhV7SXWryKpGTm4TNFVFj8cpLq+kWV7jg/YBOwytX79+bNu2LfFdeSjC5xu2UR2MIMK2g5RLkenWrDFtTytMelGFQwF0PU56xr4pfCEEleV7cbk9pKT6EcKiomwPQoKsrFwAAlXlqJqGL8V/UJui0TBle4rJyGxESlp6wjNbVg52tqquLGfvrt00blpAmj/j4PVV5ciSTOp+6/R4rKYM8D67bDBQRTweJTMzB0mWCYcCrNpWzGlNm5Kd5ks65g+79vLdtt11Xk+HY0RNEqRE6br9Rt+1/xdCIMIxhG7YjnmKgqTKdoa+/X6zigTe6gAqECuvRvW4EKYgHouhtWiCWVKGUh2goEU+pWXVmJKMHovhy0zH1HWsuG2XN3Ud1evGm5pCoLQCl8+N5PUgsvwYpkXwAHOAT7XL9UarovYMgNdVL5V+JBTk1v525Eptp/poUV1dTXp6Ov2b3IIquw+5nWHF+GTn36iqqkoMIBoqJ90IPxCwbZ239u8DwIIFC3jrrbfQdZ2i9Wv4Vc2oLiMjg/bt2yNJEmvXrqVFixZ899133HPPPbRr145rr72Wd95555DnOf3008nOzmbHjh1s2bIFsEdn3bt3T2xz++23M3fuXIqKipL2bdasGS1atCAQCLB69WpisRgpKSn4fD727rVnFTweD+np6ZSU2A5lOTk5tGnTBsMwKCoqOsixLjMzE7fbTUlJCbm5uZSXlyccw4DErEVqairbtm1LapPX66Vz585omsbGjRvZvXt30rqMjAwqKipwuVxomkZZWVnSuTVNo1GjRpSUlGBZFn6/n9NPP51wOMyGDRtIT0/n9ttvT3imAzz88MO89dZbCfNBXbjdbs4880w0TWPt2rWJ83o8Hrp06UI4HGbNmjWJWYfs7GxisRjBYDBxTSzLoqqqKnENGjVqRCwWIxaL4ff7E9f3wP2zsrIwDIPc3FwaNWrEypUrE78tgMaNG9OmTRu2b99OdbUdI19rKpBlmUaNGmEYRsLxsmPHjqSmprJmzZpEe1JSUvB6vZSW7svomJeXR6tWrYjFYqxbty7pnA4ODZVAIHDUFX4CS/Cj2XWOUcr0+shJN8K3LItdu3aRlpZmZ8qSJFwue3Sl63qSg9mBqKqKUlNN7UAP+CNB0zTcbjemaaIoSkLxNCSqq6spLCxk+/btSb1hVVXxer3ouo6maQSDwVPOvngo2RsKDVn+hiw7HDv5hRAEAgEKCgoSTs1Hi8QIP+9mVPnQkTCGFeeT3S87I3xOwhG+LMs0bdq0znVu96GnbQ7E6/UefqM6CIfD3HvvvTz11FMN+sfh9/vrlL+285WWlna8m3TcOJTsDYWGLH9Dlh2OjfzHbGRfi2Xx4yN8J/FOLSetl/6JwjAMpk6desqNXh0cHBxOSSzr8IsD4Ch8BwcHB4f6TG0K5B9bjjGxWIwuXbogSRLLly9PWrdixQr69euHx+OhsLCQSZMmHbT/jBkzaN++PR6Ph06dOjF37tyk9UIIHnroIfLz8/F6vfTv358NGzb85HY6Cv8A3G43Dz/88E8yH5xKNGT5G7Ls0LDlb8iyQ/2WXwjrsMuxZsyYMRQUFBz0fXV1NRdddBHNmzdn6dKlPPXUU4lqrrV89dVXXHvttYwaNYply5YxePBgBg8ezMqVKxPbTJo0ib/85S/87W9/Y/HixaSkpDBgwACi0ehPaudJ57Tn4ODg4OBwOGqd9n6ZPhxV+hGnPRFnftW0Y+a09+9//5t7772XmTNncsYZZ7Bs2bJEfZKXXnqpJgHZ7oT/0/3338+sWbNYu3YtYCcjC4VCfPDBB4lj9urViy5duvC3v/0NIQQFBQX8/ve/57777gPs8PXc3Fxee+01fv3rXx9xW50RvoODg4ND/eUE2vBLSkq46aabmDZtGj6f76D1X3/9Neeee25C2YNdDG3dunWJOiFff/01/fv3T9pvwIABfP311wBs2bKF3bt3J22Tnp7O2WefndjmSHEUvoODg4ND/eXHCufsl4Wvuro6aTkw3fhPP61g5MiR3HLLLUn5W/Zn9+7d5ObmJn1X+7k2X8qhttl//f771bXNkeIofAcHBweHeoswzcMuAIWFhaSnpyeWP//5z3Ue7/7770/kgDnUsnbtWp5//nkCgQAPPPDA8RT3f+Kki8N3cHBwcHA4YiwB0uFz6R+YVOhQDoq///3vkyqE1sVpp53Gp59+ytdff33Qcbp3786wYcN4/fXXycvLS8oGCiQ+5+XlJf7Wtc3+62u/y8/PT9qm1lfgSHEUvoODg4ND/UUcJrVujcI/0qRCOTk55OTkHHa7v/zlLzz22GOJz7t27WLAgAG88847nH322YBd2G3cuHGJDKUA8+bNo127dmRmZia2mT9/Pvfcc0/iWPPmzaN3794AtGzZkry8PObPn59Q8NXV1SxevJhbb731sO3cnwal8MPhcJ2OFQ2FysrKRN33hkZDv/cODqcqwhKIHxnhH6tAtGbNmiV9Tk1NBaBVq1aJbLHXXXcdEyZMYNSoUYwdO5aVK1cyZcoUnn322cR+d999N+eddx7PPPMMl156KW+//TbffvttInRPkiTuueceHnvsMdq0aUPLli0ZP348BQUFDB48+Ce1uUEo/LVr13Lffffhcrlo2bIlN910E+3btz/RzTpurFu3jjvvvBPDMGjevDnDhg07yCv0VKWh3/sdO3Ywc+ZM2rRpQ6dOnSgsLEQIUS8rr/0cGrr8O3fu5JNPPqF169Z06tQJv99/yskvTBMhHdodTQjzOLYmmfT0dD7++GNuv/12unXrRqNGjXjooYe4+eabE9v06dOHt956iwcffJA//vGPtGnThlmzZtGxY8fENmPGjCEUCnHzzTdTWVlJ3759+eijj/B4PHWd9tCIU5zPP/9cZGdni+HDh4uJEyeKFi1aiB49eogvvvhCCCGEaZonuIXHlqVLl4r8/Hxx/fXXi7///e+id+/eomnTpmL27NknumnHnIZ+75988knhcrnEueeeKxo1aiQ6d+4sFi1adKKbddxo6PJPmDBBuFwu0adPH+Hz+cTll18uVq1adaKbddSoqqoSgOjLJeJ8rjjk0pdLBCCqqqpOdJNPOKe8wh89erQYMmSIsCxLCCHE6tWrxZVXXilat259glt2fJg4caI499xzRTgcFkIIsWfPHnHrrbeKnJwcsXPnzhPcumNLQ773JSUlolOnTuK1114TQgjxzTffiGuvvVYUFhaK9evXn+DWHXsauvzr168Xp59+upgxY4YQQojZs2eLAQMGiI4dOwpd109w644OkUhE5OXlCeCwS15enohEIie6ySecUzYsT9TYbTZu3IimaYkprA4dOjBu3DgqKyuZMGECwI+W3K3vrF+/HkmSEtUDc3JyeOyxx0hPT0/IL07RZIsN6d4feA8//fRTiouLGTRoEAA9evTgH//4B7IsM3HiRAKBwIlo5nGjIcq/fznvf//731RUVPCrX/0KgMsuu4wpU6ZQXFzMI488coJaeHTxeDxs2bKFqqqqwy5btmz56dPfpyCnjMIvLi7m7bff5uuvv6a8vBxJkojH4zRr1oxQKMSuXbsS23bs2JF7772XyZMnEw6Hj3qd5hNBSUkJGzduBMA099mszjjjDCorKxOFFizLIisriwkTJvCPf/yD4uLiem/P27FjB1OmTGHu3Lls374dsItZNJR7HwwGE1m7amnZsiWVlZUJxRaPx/F6vTz//PO88cYbrFix4kQ09ZhQWVnJ4sWLE/ceoEWLFg1G/rKyMq688kpGjRqV+K5Zs2bouk5ZWRlgP/ft2rVjwoQJPPvssxQXF5+o5h5VPB5Pwvv+xxZH2dvU/7cdtkND27ZtmTp1Kv379+fmm29mw4YNuFwuOnXqxLZt21i8eHFie1VVGTBgAE2bNuWNN944gS0/OkycOJGCgoLEA68oSmLkWluBqTZPsyzLCCHo378/HTp0YOrUqSes3f8LtSPaSZMm0apVK/71r38xYsQIBg0alIiNPeussygqKjql7/2DDz7ImWeeyeDBg/n1r3/NunXrAMjIyKBnz5789a9/BcDlciGE4LLLLqNr1678/e9/B+r/DMdDDz1E27Zt+d3vfkfHjh2ZMWMGYDtL9erV65SXf+zYseTn5zN//ny++uorqqurAUhJSaFVq1a8/fbbAImO7W9+8xsKCgp47rnngPovv8NPo14r/IqKCm688Ua+/PJL5s6dy0cffcSrr75KZWUlr7zyCgC/+93vcLvdzJw5MzECBjtxgmEYSTmO6xvxeJz777+fOXPmMGzYMCorK3nttdeAfQ/yoEGDaN68OR9//DFLliwB7DCPtLQ0MjMzEbYfx4kS4WcjSRJ79uzhjTfe4OWXX+bzzz9n7ty5nHHGGVx11VVs27aNUaNG4fP5ePfdd0/Jez98+HDmzp3L1KlTufHGG6murmbAgAGsWLGCNm3acPbZZ/Pll1/y7bffAmAYBmCHCn3zzTeEQqF6O8Nhmia33HILc+bMYebMmcyYMYNrrrmGP/zhD4B9j7t3787ChQtPSflfffVVGjVqxNy5c/niiy946aWXSE1NTaRa7du3b6IjsH79esDuJPv9fq644gp++OEH4vF4vZXf4edRr+92aWkpkiQxduxY+vXrh9vt5uqrryY1NZV4PJ5QeuPGjWPZsmVJJQljsRiGYdTruHSXy0WrVq244YYbGD9+PD179uTFF18kEAigqirxeByA2267jXA4zJNPPpnY17IsysvLadGiRb2d0j+UnVZV1US6y4ceeuiUvPfr169n2bJlTJ48mf79+/Pb3/6Wf/3rX1RUVPDoo49SXl7Ob37zG7xeb6L+dm3ij3Xr1pGfn4/b7a6XnT2wzThfffUVo0ePpl+/frRp04bhw4eTk5NDdXU1brebwYMHn5Ly79ixg7fffpsHH3yQH374gV69etG1a1fWrVtHOBwGwOv18tvf/pYdO3bwz3/+EyCRFnbjxo34fL7ErIdDA+KEuAr+TGrDqOLxuBBCiEAgIFauXHnQ+uuuu07cdtttSfs+9thjol27dqJfv37i+eefF+ecc47o2bOn2LVr13Fq/f9OrXy6ric8z/cPLZszZ47o1q2bGD9+/EHr3nzzTdG6dWvRqVMnMX78eNG3b1/RsWNHsWHDhuMowc+nLtkXLVokVFUVmzdvFkIIEYvFhBD2dZBlWXz55ZdCCCEeffTRen/vD+TLL78UqqqK8vLyxHdFRUWiRYsWoqCgQEydOlUIIcTrr78umjRpIm6//XaxdOlSsXr1anH22WeLRx555EQ1/aiwY8cOIUmSmD59euK7/v37i6FDh4oXX3xRVFZWCiGEmDZtmigoKDil5LcsSxiGkfR506ZN4owzzhDPPvts0rYPPfSQaNWqlZgwYYLYtm2bWLFihejevbv461//epxb7XAyUG8U/iOPPCIuueSSxOfal34ttQrBMAzRokUL8eabbwoh9imBWCwmFi1aJK677jpxwQUXiFtvvTXRcagPHCh/XVRXV4sHHnhAnH766WL16tVCCJEk48aNG8Xdd98tLr/8cnHnnXcmrs3JzqFkX716tejbt6+47777Et/V/i569uwphg0bJoQQIhQK1et7XxcrVqwQZ511VlLH9oEHHhC33HKL6N27t+jfv78QQohwOCxmz54tmjdvLtq3by/S09PFddddV69DlGqf9VGjRom8vDxx2WWXCbfbLc455xwxevRo0axZM3H++ecnYu5nzZp1SslfF9XV1aJt27Zi4sSJQoh9z31paamYOnWqSEtLE506dRIpKSnit7/9rYhGoyeyuQ4niJNe4a9du1ZcccUVIicnR0iSJP7v//5PCCGSerj7s3LlStGsWTOxbt26Qx6zPj3sh5L/wFjaWkX31VdfiQsuuEAMHz48se5A5VZflN2hZK9tfzweF6NHjxa9e/cW33zzTdK65557TnTo0EEEAoGkY9ane/9jRCIR8eqrrwpN08TZZ58tsrOzRUFBgSgqKhKffvqpUFVVVFdXJ7YvKysTy5YtqzczOj/G/s/+5s2bxeDBg8Wdd96Z+K60tFS0b99eTJ48OdE5OJXkP9Rg58orrxQDBgyoc5+tW7eKL774QqxZs+aYt8/h5OWkt+EvX74cn8/HK6+8wu23386DDz6IZVkoilKn/WnVqlXk5eXRtm1bwI5HfeKJJ5K2qU8hGoeSX1XVJPlr7fC9evXi8ssv59tvv+WDDz7gnXfe4eabb04K1au1ZZ7sHEp2TdMwDANN0xgyZAg+n4+nn34a2Cfb2rVryc/Px+PxJHki16d7Xxe1jmcej4eRI0eycOFCbrjhBl566SV27txJ8+bNKSsro3Xr1lRWVib2y8rKokuXLrRu3foEtfzoYBgGiqIkPns8HtauXcsNN9wAgK7rZGdnoygKa9asSTilnUryH+hzI8sypmnSsmVLgsEge/fuPWi/Zs2a0a9fvwaVVtqhDk50j+NQ1PZiq6qqxJIlS4QQQixZskS0atVKjBkzRghR9yh/2LBhYuzYsaKkpET0799faJqWmOaqT/wc+Wv3WbdunTjvvPOEJEnC5XKJcePGHceW/+8ciez7z3C8+uqromnTpqeUnfZA9pc3Ho+Le++995Cj1bvuuktcfvnlx6tpx4X95dd1PSF/ZWWlyMjIEG+88UZi/aJFi0S3bt3Ehx9+eCKaekw4lPxC7Htenn32WdGiRYtTZhbL4ehz0ir8uggGg+LJJ58U6enpoqioSAiRrPT27t0rmjVrJlq0aCE0TRO/+tWvTqn8yYeTXwghdu3aJa6//nohSZK49dZbD5rSrq/UJfv+/hmnmp26FsMwkqZwn332WeH3+0WrVq3Exo0bE99v2rRJbNq0SfzhD38QBQUF4r333hNCHDz9W984lPynnXaa2Lx5swiFQmLMmDFCkiQxYsQIccstt4iMjAxx0003NZj7X7t+6dKlQpIksXjx4hPSVoeTn5Na4e//Q6/9/9q1a8U555wjhgwZctD2RUVFolmzZqJv377iu+++O27tPFb8VPmFEOK1114T5557rvj222+PSxuPFT9F9tr1paWlp4ydVojkztwnn3wiWrVqJXJzc8Urr7xykA/Hm2++KTp27Cg6deqUiE6o7xyp/JZliUcffVTceOON4qqrrmpw8tcyf/58MWzYMLF9+/bj2UyHesRJq/APVeBB13XxxhtvCL/fLz799FMhhBCfffaZqKysFKFQSHz//ffHs5nHjJ8i/+effy52794thKj/Izohfr7spyLbtm0TAwcOFJqmifvuu0+UlZUlra+936FQSHz11VcnoonHlCOVX4hTs/rh4eR3cPgpnHQK/8dsVbXs2rVLXHfddaJNmzbioosuEpIkJby06zs/V/5aW3d9piHLXhczZswQqqqKSy+9tEF6VzvyN2z5HY4+J42XvmmaCCFQVRWA5557juzsbN5///2DvFJN02Tv3r1s3LiRrKwsdu3aRY8ePU5Es48a/6v83bt3PxHNPio0ZNl/jK5du/LFF1/wwQcfNEjvakf+hi2/wzHgBHc4hBA/zVa1Zs0a0a1bN9GqVSvx9ddfH++mHhMasvwNWXYHBweH48lJofCFOHJbVSgUEv/973+Pb+OOAw1Z/oYsu4ODg8Px4qSY0n/33Xc57bTTUBSFFStW8NRTT5GVlVXntj6fj/PPP//4NvAY05Dlb8iyOzg4OBxPJCFOfLmkzZs3U1JSQu/evU90U04IDVn+hiy7g4ODw/HkpFD4Dg4ODg4ODseWk2JK38HBwcHBweHY4ih8BwcHBweHBoCj8B0cHBwcHBoAjsJ3cHBwcHBoADgK38HBwcHBoQHgKHwHBwcHB4cGgKPwHRwcHBwcGgCOwndwcHBwcGgAOArfwcHBwcGhAeAofAcHBwcHhwaAo/AdHE4ARUVFSJLE8uXLj8nxJUli1qxZx+TYDg4O9RNH4Ts0SEaOHMngwYNP2PkLCwspLi6mY8eOAHz22WdIkkRlZeUJa5ODg8OpjXqiG+Dg0BBRFIW8vLwT3QwHB4cGhDPCd3A4gM8//5yePXvidrvJz8/n/vvvxzCMxPrzzz+fu+66izFjxpCVlUVeXh6PPPJI0jHWrl1L37598Xg8nH766XzyySdJ0+z7T+kXFRVxwQUXAJCZmYkkSYwcORKAFi1a8NxzzyUdu0uXLknn27BhA+eee27iXPPmzTtIpu3bt3P11VeTkZFBVlYWV1xxBUVFRf/rpXJwcKhHOArfwWE/du7cySWXXEKPHj34/vvveemll/jHP/7BY489lrTd66+/TkpKCosXL2bSpEn86U9/Siha0zQZPHgwPp+PxYsX8/LLLzNu3LhDnrOwsJCZM2cCsG7dOoqLi5kyZcoRtdeyLIYOHYrL5WLx4sX87W9/Y+zYsUnb6LrOgAEDSEtLY8GCBSxcuJDU1FQGDhxIPB7/KZfHwcGhHuNM6Ts47MeLL75IYWEhL7zwApIk0b59e3bt2sXYsWN56KGHkGW7j9y5c2cefvhhANq0acMLL7zA/PnzufDCC5k3bx6bNm3is88+S0zbP/7441x44YV1nlNRFLKysgBo3LgxGRkZR9zeTz75hLVr1/Kf//yHgoICACZOnMjFF1+c2Oadd97BsixeeeUVJEkC4NVXXyUjI4PPPvuMiy666KddJAcHh3qJo/AdHPZjzZo19O7dO6EYAc455xyCwSA7duygWbNmgK3w9yc/P589e/YA9ii9sLAwyUbfs2fPY9bewsLChLIH6N27d9I233//PRs3biQtLS3p+2g0yqZNm45JuxwcHE4+HIXv4PAz0DQt6bMkSViWddTPI8syQoik73Rd/0nHCAaDdOvWjTfffPOgdTk5Of9T+xwcHOoPjsJ3cNiPDh06MHPmTIQQiVH+woULSUtLo2nTpkd0jHbt2rF9+3ZKSkrIzc0FYMmSJT+6j8vlAmz7//7k5ORQXFyc+FxdXc2WLVuS2rt9+3aKi4vJz88HYNGiRUnH6Nq1K++88w6NGzfG7/cfkQwODg6nHo7TnkODpaqqiuXLlyctN998M9u3b+fOO+9k7dq1vP/++zz88MPce++9Cfv94bjwwgtp1aoVI0aMYMWKFSxcuJAHH3wQIMlUsD/NmzdHkiQ++OAD9u7dSzAYBOAXv/gF06ZNY8GCBfzwww+MGDECRVES+/Xv35+2bdsyYsQIvv/+exYsWHCQg+CwYcNo1KgRV1xxBQsWLGDLli189tln3HXXXezYsePnXDoHB4d6iKPwHRosn332GWeddVbS8uijjzJ37ly++eYbzjzzTG655RZGjRqVUNhHgqIozJo1i2AwSI8ePbjxxhsTStjj8dS5T5MmTZgwYQL3338/ubm53HHHHQA88MADnHfeeQwaNIhLL72UwYMH06pVq8R+sizz3nvvEYlE6NmzJzfeeCOPP/540rF9Ph9ffPEFzZo1Y+jQoXTo0IFRo0YRjUadEb+DQwNCEgcaCB0cHI46CxcupG/fvmzcuDFJYTs4ODgcLxyF7+BwDHjvvfdITU2lTZs2bNy4kbvvvpvMzEy+/PLLE900BweHBorjtOfgcAwIBAKMHTuWbdu20ahRI/r3788zzzxzopvl4ODQgHFG+A4ODg4ODg0Ax2nPwcHBwcGhAeAofAcHBwcHhwaAo/AdHBwcHBwaAI7Cd3BwcHBwaAA4Ct/BwcHBwaEB4Ch8BwcHBweHBoCj8B0cHBwcHBoAjsJ3cHBwcHBoADgK38HBwcHBoQHw/wF0kxkTS/qm2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "6de1bc13", + "metadata": {}, + "source": [ + "In this case it is a bit difficult to see the variability of the precipitation difference, but if extreme values are masked out the map will look like the following:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f23a3282", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAErCAYAAAA7aTGEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgtRXX3/1lV3b2HM96Rey+zzIKCIhpBERAnICiDgqBBSWKMGmNMQnzzOGd4Xwk/NRLjlDhEERxBRQSJc4wxmgQhyigz3PneM++9u7tq/f6o6t77cAcGQVH2l+dw7umxurq61lrfNZSoqjLEEEMMMcQQQ/xGw/yqGzDEEEMMMcQQQzzyGAr8IYYYYoghhngMYCjwhxhiiCGGGOIxgKHAH2KIIYYYYojHAIYCf4ghhhhiiCEeAxgK/CGGGGKIIYZ4DGAo8IcYYoghhhjiMYChwB9iiCGGGGKIxwCGAn+IIYYYYoghHgMYCvzfIPznf/4nIoKI8M53vvNX3ZwhHka84hWvqN/tH/zBH+zwuF6vx9KlS+tjv/3tb//yGvkgce655zIyMsKGDRsWba/avrOfV7ziFYvO2WuvvbY5Znx8nCOOOIILLriAPM+3uX+v1+M973kPT3/605mYmCDLMlavXs1TnvIU/uiP/oivfvWrO2z7li1b+Nu//VuOPvpoVq5cSZqmTExMcNhhh/GHf/iHfPOb3/yF+2fz5s2sXLkSEWHffffd7jFf/vKXOeecc3jCE57A8uXLSdOUlStXcsIJJ3D55Zdv95wbbriBd73rXRx77LH1OatWreLUU0/le9/73v226yc/+Qkvf/nL2W233Wg0Guyyyy4cc8wxfOxjH1t0XKfTYfXq1ZxwwgkP/uGHeGSgQ/zG4HWve50CCuj+++//q27OEPfB2972NgX0Yx/72IM+95xzzqnf7ZIlS7TX6233uC984Qv1cYB+61vf+sUa/Qjh2muvVWOM/vmf//k2+6q2n3POOTv8+chHPrLonD333FMBPe200/Scc87R3/md39Gjjz5a0zRVQI8++uhFfbZ161Z98pOfrICmaapHH320nnnmmXrSSSfp6tWrFdADDjhgu23/4he/qOPj4wro6OioPvvZz9aXvvSlevLJJ+t+++1Xt/+EE074hfronHPOURFRQPfZZ5/tHnPaaaepiOghhxyiJ5xwgp5xxhn6tKc9rW7D//k//2ebc3bddde67ccff7y+5CUv0UMOOUQBFRF9z3ves8M2feQjH9EkSdRaq0cddZSeeeaZeuyxx+qSJUv02c9+9jbHv/vd71ZAv/GNbzzkfhji4cNQ4P+GIM9zXb58uQK6atUqBfQ//uM/ftXNGmIAD4fAf9KTnqSAXnrppds97pRTTlFrrR566KGPaoF/8skna5qmun79+m32VcLqwaAS+Lfddtui7f/zP/+jExMTCuiFF15Yb/+jP/ojBfSwww7Tu+++e5vr/fCHP9R3vOMd22z/yle+oiKiSZLo+eefr91ud5tjrr/+ej3nnHN0v/32e1DPMIh//dd/VUBf9apX7VTg//d//7du2rRpm+3/8R//oaOjoyoieu211y7a9+xnP1v/5V/+RTudzqLtH/zgBxVQa63+9Kc/3eaa3/jGN1REdN9999Wf/exni/b1ej397//+723OWVhY0MnJSX3qU596v888xCOPocD/DcGXv/xlBfSoo47Sd77znQroa1/72l91s4YYwMMh8M8//3w1xujpp5++zTFbt27VRqOhz33uc/V5z3veo1bg33nnnWqM0ZNOOmm7+x9Oga+q+o53vEOBRRbomjVrFNCrr776Ad9jdna2Vqo/+clP3u/xP/7xjx/wtQexsLCg++yzjz7+8Y/Xm266aacCf2f43d/9XQX07//+7x/wOc997nMV0Le//e3b7Hv84x+vxphtFIgH2o7tKQRD/HIx9OH/huBTn/oUAC972ct42cteBsBnPvMZiqLY4TnXXnstv/3bv83k5CRjY2McffTRXH311Xz729/erp+08iN/+9vf5qqrruLYY49lcnISEWFqaqo+7sorr+TEE09kxYoVNBoNHve4x/HGN76RzZs3b7cdqsrFF1/Mcccdx5IlS2g2mxx00EG8/e1vZ2FhYZvjjznmGESE22+/nc985jMcccQRtNttdt11V84777zaX/vzn/+cl770paxcuZJ2u82xxx7Ltddeu8P+eDDtHuyL7373uxx33HGMjY0xPj7OiSeeyM9+9rNFx++111684x3vAOCVr3zlIl/zg/Gzr169muOOO47LL7+c6enpRfs++9nP0uv16ve/PVxzzTWcd955HH744Yue8zWveQ333nvvNsfffvvtiAjHHHMMMzMz/PEf/zG77757/Y7e85734L1/wO0H+OhHP4r3npe+9KUP6ryHiic96UkA3HXXXfW2jRs3ArBixYoHfJ2Pf/zjbNq0iSOPPHKnfVzh8MMPf5AtDXjHO97Brbfeygc/+EHSNH1I1wDqc7Mse8DnHHrooQDbjIXvf//7/OxnP+OYY47hCU94woNqx1lnnQXAhz/84Qd13hCPAH7VGscQvzimpqa02WxqlmW6efNmVVU98sgjFdAvf/nL2z3n3//937XdbiugT3ziE/XMM8/UI444Qo0xNd15zjnnLDqnsjJ///d/X0VEjzjiiPq8qakpVVX9i7/4CwU0yzI96qij9PTTT6/9mvvss4+uW7du0TWdc/rSl7609ikec8wxesopp+juu++ugD71qU/VhYWFRec861nPUkDf8IY3aJIkevzxx+spp5xSW1+/8zu/ozfddJMuX75cDzzwQD3jjDP0CU94ggK6dOnSbdrwUNpd9cUb3/hGtdbq0572NH3JS16i+++/vwK6bNkyXbt2bX38n/7pn9Y0+1FHHbXIH3399dff7zuu7vfJT35SP/axjymg//zP/7zomKOPPlrb7bbOzs7u0MI/44wzNEkSffKTn6wvetGL9EUvepHutddeCujq1av1nnvuWXT8bbfdpoD+1m/9lh5++OE6OTmpp556qp500knaarW2O07uD095ylMU2OZeFXiYLfyLLrpIAX3CE55Qb3vc4x6ngL761a9W7/0DuscJJ5ywjWvgwaJieXbUZz/5yU80SRI999xzVbXf/w/Wwr/22mt1yZIlmqap3nLLLQ/4vNNOO00Bfetb37poe8UavvnNb9aFhQX96Ec/qq997Wv19a9/vX7iE5/Y5hsdRKfT0TRNdffdd39QzzDEw4+hwP8NwD/90z8poC984Qvrbf/4j/+ogL74xS/e5njnXC2Y/uZv/ma719qZwAf0kksu2ea6n/3sZxXQQw45RG+++eZ6u/de3/rWtyqgZ5xxxqJzzj//fAX0mGOOWSQge71eTQX+xV/8xaJzKoE/OjqqP/rRj+rta9eu1V122UVFRA866CB905veVE/m3nt9+ctfvt3J7KG0u+oLY8wif3pZlvWk+Za3vGXROQ8Hpf/JT35SZ2ZmtNVq6bHHHlvvv+OOO1RE9KUvfamq6g4F/je/+c3tKl0V7f3KV75y0b5K4FSK4caNG+t9t9xyS02N7yim4L6YnZ1Va62uWbNmh8c83AL/zDPPVEDPPvvsetv//b//t77PgQceqG9605v00ksv1bvuumuH96iC3f7t3/7tQbVtEDsT+M45PeKII3T58uW1X/6BCvwvf/nLes455+hZZ52lz3jGM9QYo41GQz/+8Y8/4Lbdcsst2mg0FNjGHVH14V/+5V/qAQccsCgwFNA99thjp1T/4YcfroDeeuutD7g9Qzz8GAr83wBUAvBzn/tcvW3Tpk2apqk2m83a+q5w9dVXK6D77befOue2ud5RRx21U4F/4oknbrcdlQV73XXXbbPPe6+HHXaYWmtroVEUhS5fvlxHRka2a3UvLCzoqlWrdMmSJYvaWT3vm9/85m3O+ZM/+RMF9HGPe5zmeb5o309+8hMF9FnPetYv1O7BvhgUIhV+/OMfb/c+D5fAV1V9yUteosaYOuDsb//2bxXQr371q6q6Y4G/M+y66666bNmyRdsGBf7Xv/71bc75wAc+sI1/fGf44Q9/qMAiZeW+uK8w2d7PfRWM+wp8773efvvtNXMjIvrd7363Pt45p+edd14dxT/4c/DBB+sHPvCBbb6NZrOpgN5www3btHnLli3bzSa4L3tz4YUX6gEHHKBvetObtrnGe9/73m3GxwMV+H/1V3+16BlarZZ++MMf3u73vT0URaHPeMYztqvcqvbHU5Ikuttuu+kVV1yh09PTet111+lznvMcBXTPPffU+fn57V7/7LPPVkC/+MUvPqD2DPHIYCjwf81RWXaTk5PbRAy/8IUvVGCbFKa3v/3tCmx30lFVfd/73rdTgf+hD31om3PWr19fKxE7wmtf+1oF9Morr1TV/uT/nOc8Z4fnnHjiidtMspXAH5zAK1x44YUK1JToIGZnZxUWpyw+lHar9vviE5/4xDbHz8zMbHMf1YdX4FdBmueff76qqh588MG6cuVKLYpCVXcu8Ddt2qQf/ehH9Y1vfKOee+65tXBauXKlArVbSLUvcJYuXbrddk1NTdUC5oEIl6985SsK6KmnnrrDYwYZph39/Nd//deicyqBv72fLMv0H//xH7d7r3vuuUf//u//Xk877TTdY489Fp33ohe9aNEz7Uzg33XXXdu99wNVuO644w4dHR3dRkl8sJR+p9PR6667Tl/zmtcooCeddNIOUzgH8Yd/+Ie1ojz4/itUQh3QH/7wh4v2dbtd3W233RTQD3/4w9u9fuUm3N7cMcQvDwlD/FrjoosuQlU5/fTTaTQai/a97GUv40tf+hKf+tSn+L3f+716+9q1awHYfffdt3vNPfbYY6f33N7+22+/HYCbb74ZEdnp+Zs2bVp0ztVXX/2AzjnggAMWbdt11123OW50dPR+9/V6vV+o3YPYbbfdttk2Nja2zX0ebjz/+c9n2bJlXHTRRRx//PH89Kc/5Y/+6I9Ikp1/0hdffDGvetWrmJub2+Exs7OzLF26dNG2Pffcc7vHTkxMMDk5ydTUFFu3bmXZsmU7vX8VaFj10c7w8Y9//H6PuS9OO+00RkdHERFGR0c58MADOeWUU1izZs12j1+zZg2vf/3ref3rXw/A9ddfzwUXXMBHP/pRLrvsMi6++GLOPvtsAJYtW8Y999yz3bG42267oar1389//vO56qqrHnC7X/va15LnOR/84Acf7CMvQrPZ5JBDDuH9738/1louvPBCLrzwQv70T/90h+f8zd/8DR/4wAfYZZdduOqqq7Z599D/dh7/+Mfz1Kc+ddG+RqPBWWedxfnnn893vvMdfv/3f3+b88fHxwEWBfcO8cvHUOD/muOTn/wkAN/+9rd5xjOesWhfFa3+3e9+lzvuuGOHk/aDRbPZ3GZbFam9atUqnve85+30/Kod1Tn77rsvRx111E7P2Z4gMWbHSSY72zeIh9Luh3KfhxtpmvKSl7yED3zgA/zlX/4lwP1Gjt9xxx115sV73/teTjzxRHbddVdarRYARx55JD/4wQ8WCa6HGxMTE0BQKh4JXHDBBey1114P+fyDDjqIf/7nf2br1q1ceumlfPWrX60F/qGHHso999zD//zP/9zveH2wuPzyy5mcnOTVr371ou3dbheAe+65h2OOOQaASy65hFWrVt3vNV/+8pdz4YUX8qUvfWmHAv+DH/wgb37zm5mYmODKK6/cYUW/auzvqG+r7fetmlihUvQmJyfvt91DPHIYCvxfY/zXf/0X119/PQC33HILt9xyy3aPU1UuuuiiWjCsXr0aWJymNIgdbd8ZKkt3+fLlD9gyq8458MADH5I193DgobT70YKXvexlfOADH+DKK69k//3338byui+uuOIK8jznz/7sz/jjP/7jbfbfeuutOzz3zjvv3O72mZkZpqamaLVaD2gyX7lyJRBK0z6acdxxx3HppZcuYnVe8IIXcMUVV3DJJZfwute97mG/59TUFN/5zne2u6/b7db7KiXg/rB8+XKgn4J4X1xyySW89rWvpd1u89WvfpXDDjtsh9eqUhu3bt263f3V+6yYgPuiOu/BpEEO8fBjmIf/a4wq9/7P/uzP0BCPsc1PleNdHQvU1smll166XWvus5/97INuy2677caBBx7Iz372M2666aYHdM4RRxzBxMQE3/nOd35lAuChtPuhosqHLsvyYbnekUceyaGHHsqyZcs499xz7/f4atLdnhviu9/9LuvXr9/huZs3b+Yb3/jGNtsvueQSAJ7+9Kdjrb3fNhx88MEkScKNN954v8c+krg/FqNSngddQ694xStYtmwZ3//+9xd9Tw9Xe7b3c9tttwGwzz771NseKINRKQj77LPPNvuuuOIKfud3fockSbj00kvvl7E44YQTSJKE6667brvfanWvSjG4LyrDZGdKxRCPPIYC/9cUzjkuvvhigJ0WMHnmM5/JrrvuyvXXX89//dd/AcF62W+//bjxxhs5//zzFx3/8Y9//AEtoLE9vOUtb8F7z2mnncY111yzzf7NmzfzkY98pP670Whw3nnnMTs7y6mnnrpdC/Oee+6p3RaPFB5sux8qKj/ywynsrrnmGjZt2sRf/MVf3O+x+++/PxCUv/n5+Xr7Pffcsw2VvD382Z/92aIiRLfddlu9SNNrX/vaB9TekZERnvSkJ7F27VruueeeB3TOI4EjjzySj33sY4v6ocLll19e+9JPP/30evvo6Cgf+9jHEBFe+cpX8nd/93fbtbbvvvvuHbJk//AP/8CBBx7I//k//+cXfoaNGzfykY98ZLvFqa6++mrOO+88IBR6GsT3v/99Tj/9dFSVz3zmMzz3uc+933stX76cV77ylczNzfH6179+0WJEn/jEJ7j66qtpNpvbFOuCwEhcd9117L777uy9994P8imHeDgxpPR/TfH1r3+d9evXs//++/PkJz95h8cZYzjjjDN497vfzSc/+UkOP/xwjDF84hOf4Pjjj+dNb3oTF198MY9//OP5+c9/zo9+9CNe+9rX8v73v/9BVeiCUFHrpz/9KX/7t3/L4YcfzmGHHVZbJj//+c+59tprGR0dXRTU86Y3vYkbbriBT37ykxx00EE86UlPYu+99ybPc2688UZ+9rOf8cQnPpGXv/zlD7mvHol2PxQ897nPpdls8p73vIf//d//Zc2aNYgIf/7nf75NENgjgZNPPpmDDz6YH//4x3XcRLfb5Vvf+haHHXYYRx55JP/+7/++3XN/67d+izzP2XfffTnuuOMoioJvfOMbLCws8LKXvYxTTz31AbfjxBNP5Ec/+hHf/va3a//49rA94VFhjz32+IVWhLz++us599xzec1rXsOTn/xk9thjDzqdDjfeeCM33HADAK9+9as58cQTF53327/923zhC1/gFa94Beeddx7vfOc7edrTnsbKlSuZnZ3lrrvu4rrrrsN7z9Oe9jT222+/Redv2rSJG2+8sQ6c/UUwPz/Pq171Kt7whjdw+OGHs9tuuzE/P89NN91UP8Of/MmfcNpppy0676STTqLT6bD33ntz2WWXcdlll21z7Wc84xmLAn0B/u7v/o7/+I//4KKLLuJ73/seT3nKU7jzzjv58Y9/jLWWD3/4w9sNBP7+979PURTb9OUQvwL8EjMChngYUVWne9vb3na/x/7oRz9SYFHalqrqNddcoyeddJKOj4/ryMiIHnXUUfq1r31NP/WpT203ba9KDbu/VKPvfOc7+uIXv1jXrFmjaZrqsmXL9IlPfKK+7nWv0+985zvbPedLX/qSnnjiibpy5UpN01RXrlyphx9+uJ533nnbpGBVaXnbK7JSVaHbUb8Q84V/0XbfX1/s6D5XXXWVHnXUUTo6OvqgUrfum5Z3f9hRWt6WLVv0D//wD3WvvfbSRqOhj3vc4/Qv/uIvdH5+frv9WqWFPetZz9KpqSl9zWteo2vWrNEsy/SAAw7QCy64QMuyfEBtqnDnnXeqtXaHq8mxnfS2+/4ceuihi87ZWeGd7eEnP/mJvutd79LnPve5us8++2i73dZGo6F77LGHnn766XrFFVfs9PzNmzfr3/zN3+hRRx2ly5cv1yRJdHx8XA855BD9vd/7Pf3Xf/3X7Vbwu79Ke/fFztLy5ufn9fzzz9cTTjhB99xzT221WtpoNHSvvfbSM888c6dj8/5+dtS+ubk5/cu//Evdd999NcsyXbp0qZ500kk7LUZ07rnnKrDNdzzELx+i+giG5A7xa4lXv/rVfOhDH+KSSy7hjDPO+FU3Z4hfIW6//Xb23ntvnvWsZz2omv/3h1NOOYXLL7+cu+666wFFnA/x64lOp8OaNWvYf//9+eEPf/irbs5jHkMf/mMUW7ZsqXPQB/GZz3yGf/qnf2JycpKTTjrpl9+wIR4T+Ku/+iu891xwwQW/6qYM8Qjigx/8IFNTU/zf//t/f9VNGYKhD/8xi5tuuomnP/3pPPGJT+Rxj3scEPyaN954I9ZaPvShDzEyMvIrbuUQv6k45JBDOOecc/jABz7AeeedV6frDfGbg06nw/nnn88LXvACjjvuuF91c4YAhpT+YxQbNmzgne98J9/85je59957mZ+fZ/ny5Rx55JH82Z/9GU9/+tN/1U0c4lGAR4rSH2KIIX75GAr8IYYYYoghhngMYOjDH2KIIYYYYojHAIYCf4ghhhhiiCEeAxgK/CGGGGKIIYZ4DGAo8IcYYoghhhjiMYChwB9iiCGGGGKIxwCGAn+IIYYYYoghHgMYCvwhhhhiiCGGeAxgKPCHGGKIIYYY4jGAocAfYoghhhhiiMcAhgJ/iCGGGGKIIR4DGAr8IYYYYoghhngMYCjwhxjiUY63v/3tiMivuhlDDDHErzmGAn+IISI+/vGPIyKLflauXMmxxx7L1772tV918+4XN954I3/yJ3/CkUceSbPZRES4/fbbf9XNGmKIIR4lSH7VDRhiiEcb3vnOd7L33nujqqxfv56Pf/zjnHDCCXzlK1/hpJNO+lU3b4f4wQ9+wPve9z4e//jHc9BBB3HNNdf8qps0xBBDPIowFPhDDHEfvOAFL+ApT3lK/ffv/u7vsssuu3DxxRc/qgX+ySefzNTUFGNjY1xwwQVDgT/EEEMswpDSH2KI+8Hk5CStVoskWawfX3DBBRx55JEsW7aMVqvF4Ycfzuc///ltzhcRXve613HZZZdxyCGH0Gg0OPjgg7nyyiu3Ofbf/u3fOOKII2g2m+yzzz586EMfesDtXLp0KWNjYw/+AYcYYojHBIYW/hBD3AfT09Ns2rQJVWXDhg1ceOGFzM3N8bKXvWzRcX//93/PySefzNlnn02e51xyySW8+MUv5vLLL+fEE09cdOy//du/8cUvfpHXvOY1jI2N8b73vY/TTjuNO++8k2XLlgFw3XXX8dznPpcVK1bw9re/nbIsedvb3sYuu+zyS3v2IYYY4jcXQ4E/xBD3wfHHH7/o70ajwUc/+lGe85znLNp+00030Wq16r9f97rX8eQnP5l3v/vd2wj866+/np/97Gfss88+ABx77LEceuihXHzxxbzuda8D4K1vfSuqyve+9z322GMPAE477TSe8IQnPOzPOMQQvwnodrvkeX6/x2VZRrPZ/CW06NGNocAfYoj74P3vfz/7778/AOvXr+dTn/oUv/d7v8fY2BinnnpqfdygsN+6dSvOOZ75zGdy8cUXb3PN448/vhb2AE984hMZHx/n1ltvBcA5x1VXXcWLXvSiWtgDHHTQQTzvec/jiiuueNifc4ghfp3R7XbZe89R1m1w93vsqlWruO222x7zQn8o8IcY4j546lOfuiho76UvfSlPetKTeN3rXsdJJ51ElmUAXH755fz1X/8111xzDb1erz5+eznzg0K8wpIlS9i6dSsAGzdupNPpsN9++21z3AEHHDAU+EMMcR/kec66DY5bfrw742M7DkebmfXs+5S7yPP8MS/wh0F7QwxxPzDGcOyxx7J27VpuvvlmAL73ve9x8skn02w2+cd//EeuuOIKrr76as466yxUdZtrWGu3e+3tHTvEEEM8cIyOyf3+DBEwtPCHGOIBoCxLAObm5gD4whe+QLPZ5KqrrqLRaNTHfexjH3tI11+xYgWtVqtWKAZx4403PqRrDjHEYwEej7+f/UMEDC38IYa4HxRFwde//nWyLOOggw4CgsUuIjjX9x/efvvtXHbZZQ/pHtZanve853HZZZdx55131tuvv/56rrrqql+o/UMM8ZuMQv39/gwRMLTwhxjiPvja177GDTfcAMCGDRv49Kc/zc0338yb3vQmxsfHATjxxBN597vfzfOf/3zOOussNmzYwPvf/3723Xdfrr322od033e84x1ceeWVPPOZz+Q1r3kNZVly4YUXcvDBBz+ga05PT3PhhRcC8P3vfx+Af/iHf2BycpLJyck6G2CIIX6T4FEcO3aN+Z3se6xhKPCHGOI+eOtb31r/u9lscuCBB/KBD3yAP/iDP6i3H3fccfzzP/8z/+///T/e8IY3sPfee/Oud72L22+//SEL/Cc+8YlcddVVvPGNb+Stb30ru+22G+94xztYu3btA7rm1q1bectb3rJo2//3//1/AOy5555DgT/EbyQ8ulOhPhT4fYgOo4aGGGKIIYb4NcPMzAwTExPccP0ujO0kSn921nPgQeuZnp6uGbrHKoYW/hBDDDHEEL+2cPdD6e9s32MNQ4E/xBBDDDHEry2chp+d7R8iYCjwhxhiiCGG+LVFiVCw41z7cif7HmsYCvwhhhhiiCF+beE1/Oxs/xABQ4E/xBBDDDHEry0cgtuJFb+zfY81DAX+EEMMMcQQv7YYCvwHjkedwPfec++99zI2NrbdRUiGGGKIIYb49YCqMjs7y5o1azDmkSnsWqih0B1fuxhS+jUedQL/3nvvZffdd/9VN2OIIYYYYoiHCXfddRe77bbbI3Jth8HtpEr8/S+e+9jBo07gj42NAXDBP32CZSuXM76yRZKM0DTQSHrkvocVB5QggpEmqjlGWpReERkhNVMUroeSYSVF6WKNoCqUPiexKaXLcerwGuowefVIpH6sGGCcUKNpFgWMCKmkiFi8ljh1NGyTJY3dcTrH1t5GQPDqcb4kNRnWZFhZxkK5ASM5AiQmw6nDiEEQjBhUlVJLQLGShHZ0LUlmkFRY1VpFImFJVhFqgkoMEHNMVQUxICgulo42kSERUUQEVfAunKFaXUvi+eE68/PzNNoZVhKcFhgJQ8TED0pRBPmF2RdVxSlYqZaTHVTDH35mx3lP2S3IWqEfnXqmipyGcTRsSiIpglBoXv/uuZzC5+QuR1HayQgjaRtDWPlu69YZbrn5NgQYHRsnTSzGGlQ9Igb1HucdYoSpmSka7Qad7gKTK8cYnRhhoZzDqSczGbgGpRdsaii1ideMQhNG7DzWdFAtUQxeDa0koWmXM194RDxjqVL68J5GUsFK6FdFKLyiGGbzKWaLKcL0mGFNCiitpMGK5i6kYuIY0TrIyZrwHrrOs77juHOu2Obd7NXq0Ss3YYwJY0oJS5UIqCR4p6g4nOnitSRMOSVV/TOJY0EHrmzEIFKN0fCNOO8QERJJ4ncLXh2gGBGMWBTFikUwlOriFV0cr5bS5+G5xACmzt4WQDCMpOPsPrI7Rgx5N8ekFmtMPdbDd+q5ffZWFso5GPgWVA0TjaWsaq0GBCvCdOHxCmOpcvf8WrwuoIDzDhfbLvW4l/htWYw0EDGE+aQkMY7UpBQ+x3tHYjKqHlvVXs14uriYjAJT+RbunrsTEQvq49YUT1gEymvog0LH4xzg2WN0lBWNJRQavvNUBKcwXy5w5+xGUruA8wmFCqkUqGagNvZBGXsjYb6cxGmDQpW52Vle9Zwj63n9kYCq4HXHc4buZN9jDY86gV99XAccegC+vQKPYqfXMze3gGlndLs5jdQgxuIlIU2EolfQbCSkIpTlVrq+pLOQ02pZ7FiLbHwlDTuP8x5PwkjSpvAFuQ9Cv2EaFL6g9GFCs8YymowDLWAMCNJRIEzkUThasYym43RKpZvOoRoEq4uTbGZSVjSXcc9CiZUZEhO626kjMxmJCcJdVcl9QWIsRgwz+QyJtTRtk7RlGW+Pk5gUr2DNfQS+eFBQwiSJhu+7qp94X7ms8X/1RDcwmSmKNZZGO7StVI+phXu4YKUgPBSBHybMIIwgRM9WV662PVJuHO88eVrQHGmgBKHWKHNEPA2bYTAoiovKnDAalDF04H0niATlsOd7rGm1yZIMEUOr2aQsS7JGgzzPSdOE2bk5tm7dypKlk4yMt5FEuPfetTRaGb5RkDWyul/EeYpiJc2RcYwIuQvCPbVtGmYu9LqMkJoeLWtZ2VyOIiyUBXPlFhqmyUg6TiKV0gqlwlzhsQINlzDq2oAh93P0XBennkaSMjk6FhXQIKy9QiL9d9H2StlwSMszk3tEIHfKaGpYMbLA+u7WWmhbCeJT1VMqGLVY4xFG8DhUHZDE8SeYqIiGfrZYA0ZsHB9lPU59XABF1ZNgMZJEgR/aKfG7tWIpvCdVF9oiJgo8g6eFaokVi5JEARs8vEYMI8kI47EvemlOkgYFbvAb8aqszlbTKRcApes6USGEdjbC5Gh4B6WWUMyiKswUQplNYCXHiieRcVQ9Rhzg8KqI2KiIVO0KSkhiHIIPRoIGgyLMQT58402PT8q4IpzU33RiLaMyClSKf3xmzfHaoNQWqikpSmbm8drGNsdIWqOMGkGkbzBkBUwZRbWNFUPHNclMj61bx1A1JEYQURqp4H1GQ1qAoVs6XNJ/R48UcrWkO6H086HAr/GoE/gVWukWskaKZxQ3sYSyFOa8oUDJ2uM451Ff0tCSdjqGsQloiU8UJSXxQqOdkowozWSEzMCCzmPU03EdVH1t1fv4b2tsPdm0koQEWNLcEyM7HkxehU5pwmQVJ0mVAsVhxNJKhMyMkftZStetLfvCFzgNmr7BglhUlUKLoAQ0HL1eD59bNpmNjGfjjCSj4ZMWxdgg1AsnJBI+UO/ChG3ZVtD31QSl8LA1dyxrWJJBQatgTVIrJjY+twyeP8AKPBSYgVOrNnofhExq+nb+A7nDjo/dDlsQZtCa2TAC7SSrjy48JEawkmCwFOooVcmMBQGvSqkOi2DFkkiKTQ177LZr7JN4EwmKkxiYXDrCilWTiBFGyyZbOptZObKENLUUvgANViaAcyUyt5leLrh0lBWTGSNJB0+LqV6LZmKYzML78rHzLDCSpMAKFGgYofCQe6Vlw1saz4LlPZpOApNAsP7WLtwbxj6Qe0/plZE0Ck6pWCCN70xZkglNa9ilZUCFnlfGUkPpAU2AiiHTKPwNgkFMThTnUXBrFNADbyqOKa8pzudgQp9USqjW16yUhKiIEYSfVx+/q7DdiCERS6k51Ja+J5EGwa72QIEsEoKuViAWoz+6NPb76tYqfGzPus7dbOhsqJ+99B4xhk65wF1zd0b2ULCmAaSI5CgFEuvDQQsljX8XOJ9hZQGkxOko6g1GuoE1iv8NdBpbepvZ0tscWaWgPCUmKlQSGUf1GKn60yOiZGYusCJaBqZDOxReme41yVoNRKH0geXxqoRRpxSakJjQx0snSrzGMUCCEUfpEryGuSxLE/LSbqdPH154BL8TSn9YS7+PR63AF1GMbCaVKZqjoywdHaXnRtiaw0IpOA2f94QssGYso9VukRih4xaYzRfw6ii1oJWMourIncOIIpIgIpS+xKvi1VNQ1JNGoASFxKQ418FriTWNAUs8TGCB8lZSk7Ck0cbKUhKT0nWdaBUHy2Bjdy0iSisZoedmgTD9lVpi1GBE8DhEDca0gQ7tdAQrBjWKKVLmFxZISGglbSw2TC1RSIpW1kfoN1Nzo4NiUBkUgkZgLDXbUQoG2AP5RcT6wJ1rqiFc09K39I0Ei9CYfttc5JOt2fn9VTXaNOHi929ASDD00NBXQk0bd51nrnBMZobEGIwxZAildxS+JKwi7UgkofA5Kp5ELB4fBYxUZmhsl2J8EABiDKlJSSQnTVJKyiD8RIARoAua4zXjVdf8BBTe/YTn0mhlzBaCFaWVhDGZOyVJDC0rgdIGCq9YEVpJ0GhSo3FMhb50WikyoQ98fB+Vktst59jQuRsQNvc8RgTBYCRF4vMVPg/9h6FlG4ynSxk3BiiZ89G9Ft9GoE8raroY4IUMig+BW7o9i8+SGBfHiyKYeqKWKNxUw7NVor9SznWgncFytmCSmnELxwKUJGIBi9MSpazvV7EM/dESf0t/DEv1I4KJT6wqtVKyUE5xz3yOSLi+j4I28G8K4iLt3aNyjanmGDxCEY6TqaiQGKwUGLE4TVEtQGxUdnx4trqtgsb3JpU+ULMEULksVQ2gJKaI5zlEkvhuS3LfYd6tpTtH7M+E1AhOu3h1WKkMgQTxTbbMN1AyxAqlGFzXYU1C6UvS1IbnKB/5pWmHUfoPHI9agd91XayHkoKe65KalJF0nKXSYpOO0HWGsleyQMJUAlOdLsubBmssE4xG32tK0e2wUC5EYZ4Frdd7UI8lIdFABRauwJpAE4oI83mHlm2yUBSkJmjXijKdTzFfztOwTebKeXZprqLUnF6Z46xnqjcVmQODFUPP9XA4lmRLsTrKbDlb8+rGSPjsJQh+TAJq8epIrKFwOamxWGfpTPVYKDs1Q1BhG1t2p2Nb6nsD9O6jEyiQ90q82/YjlXqivc9N7+d22z1edrCNoMQMUvx126rJe+CatYUfLUS9n4YVeYF3rs9SSPDld8sFCl+wbq4kMSljyVhkN6JfVXwU5AUeZcHNRUYowYgJPvjB5qqn8q8473F0KZ0jc00saRgTvkRQRJr0nGFmbpQLDn0+ZmIEv3WeslcizQYrmwmtJCg07ejP8T66RozQsEL/dWldRlSABaeUHkbTYAUZFJHgimraJoV3GBF6vhepj8rSrKx1ITVJHcMgGArXYTqfIviiLU59tBoJWmik140Et0noiwQl0PzhHftIq2t9n76wMtF2V6AZaeUc1dDWoLAYrMkwIjifIxKVOEzNIDkfXTNxu4og4klNGt6rBrahYhEqps8NxPJUqLrXbFcJrr4JjW7BmcBuSEZmJ7HSxamj9GW/D6RyE4T2BldHOXg1RD0qHZwmsR8d4PFqAY1xObb+5lNSEpNGQ6Qk971aYdKo0IR+auE0D8YPBkEjW6E438H5LpUqbcWS+/DtJSYDDL1yAudHcD4hJzyHd4pNDaYRlDmrYE1OarqQbdnpN/lwoFBLoTtmEoZR+n08agV+9eEKCUqGV89MvhUjC4yllqY1dL0ws7XH1JxgRlvYDE75wmX4VNGJEroGSmHl47aw4efLGL3d4Frw9t/5NP909zMovWG3kWmeMHYP//jdZ3PecV/lgzc9k2ZasnHzGFoYZC5BrSKlEOJclHTa4hPFjXpMHhpqFwzFRIyIM7Bsz61svnMJjQ2WfNKTrOrgSoNuCnRZY5Ohs8ohXmhsMpQtcG2Ppsrq7wpbT59ncqTDutuXkW2yPO34n7Jp8wjLG/NMph2+fvsBrBifY92Wccotzfq+VOxbkFdBMCaKOKlYOVCBREGCE71ycYntfxmqA8dKoKgldZhEEeNrq9z7YKG70uJL6d9Tg18vXEv6Mxn9f6sTTOYQo9g0TKtiFGs8ifUY4+vzBwNzKlree8E5g/eCeoMrDHip2109g9gYLOCrB60aIFBK2O6IfRKbWV+n6pB4qutP+eJDn0pkgtWGvq76VBTUxGtaDRsr1ji2RzxU7kdRUKt86Gm/TdMV7DUxwkgiNV0cLDXoetjcc6xoWppWmCs9TSs0o5ZUxXq0rUHjO+2USmIgNUI7GWe3kRHmS89CqViBiczQsJbKXu25cL+GMfV7BJgtZrhzbh2lV7puHK8ZiemSGMVKj1QciQnXMJXtrUEhqFijSlAJaRi24gO1rFKrAIrgdAwjXayUtaVdX1l9YB7qIacYCUF74Z4aXXFa+94rN56JypwgiKmCZpts7I6TmpI9Rm1QqOjDeTBG6xiHwZiTSnms/61Ky2bsNbYrVgxdl3P3/O30nEOkRLDRsg5tMriokAiiEhWGaMGLI9jK4Vk8RQzoU1QdYkKw6Ug6xmQ2Sc+HQNPUp3TLLqWPhWUluDWQ8E0ZqnGVguSo9wOjLAj7ypUpYsl9RseNMpOP9rmDJMzT0vNYF6jzViLBdUmXZtbFF1t5pOHvJ0p/SOn38agV+JBhxOK1IKx3VE0SJaPpAgtlhrNNtCE4JzRaKRtLIZsS8nFwTjBjBcu+3mRzZzlrfqjs+oabuPVj+/OWn5xMq5HXd/rp5lWYQnjvdcex5/It3LllCWmzJJ9vomngTk0huFEHTYfvGFzbgw1CP92cUOxS0F6yQOks5V0jbN44Bpmnt6fDbEkxN4xgDp6l10iRjkU8tNZaeksjhd2DchRoOdY+y5JdP8b6iRFW7beJdY1Jvv+Dx+OX5kz+Z4NvvvMMrrryM+RP7mKMBiFjgvVGz/S5RwfYKKSUxQIvCnuqX0KkvCOicBUPVNZ9aVDjYrAgqO/T8WI8iEWdIEajBS7RElGq7zFYyxKOS+J1VPDOIMaHKG8VitJGt0i8fqTfve9/2EoQ+hqFu0j0FMfrV+3X+DyiBKEOoT0+cvsDClKt/IguUh4QRbyEnzL2S9yulXJl+g2TyrUyaBKaeM0o6GslYkCxkFLYd7lSzOTk01N0VRlptUliBoBJgh+/mztuXSiYaBgSa0gaCYVAZqqAPaXjZsl9N9LVwS2QmoymTWkmDYxAZpTcK4kxIQYlNnXaBQHQtIZEKoq3YLaYZ65YjldH005T6hilZvTKBNVJZIAyDoyDYsRhxdFOpjHkkS0CJUHwaMyWEbFUmmvwyM/EyP7Kjx8sz8AeBApcIkOGlnit2Im+oK9YH4kvJzB4KYkE103ho+8+MgHzpbB2wbFltmDVmDCKkBqh1OBpF/rGiAFGkkl2aYV2577HTD4V+yrDqaVhLJmpKHgXhbUBMiAnzG0KpKg2KTXBawsrPRKzFbSvAinVeNLar+48iBh6LqfjenTKhKleVsfitBLF+R6l5jg18fk9HoMl0PXgBwITo5IdxaSVjJliCTN5G1db0eHYRJR2oqT0cD4nhBwKxuQ4B6jDLZpUHhk4NbidBO254QrwNR61An96ZgzbSLG2xEgHRxHTc3IopxlJdkVNinc5f/Tjr/P5F57BdOG58OWnsMdoye//7heZ27XF5kOVA957F7e+ewn5R/djy2Ge9PpRZiY8qw7YyG4j09x5za7YXMg3trhDlrJ0dIH1G8f7AtKAG/FIbiA3uJZHRgt0IcHMW3wCMm+xy5Qszent6XHeUOYWP5fiJ0q6YyDr2sh4gW94emWKWsAoPhPyFSWNdQndptBY1iFvZTR/nrFufAL1wn5PupMbf7obPoO33f7n7PeMZfz0tl3RUpCGAyeoF6ThoZC+FK8E1+B3V1m71ewuGi3NASFPPD8yBiICTY96wRU20HiJr4V1OJ5agIvVIPgJVnugEyu+FbRyNtaCUeN1gi1TOhOVh6BMqA8KARCO0/5vsVHB8DHqL4kTWBEtlCIoQWoVnBDkivale8sFYRyvF9okNWMiBcHyiu3USjIOxCdoNKAw0crXwABUjEC1v/rbFNX1whiQ+M7EwfMu/hrGgbehzVI1VeDbp55MUZS85Oqv1kzFJUeeRMcKk2NNlo43a+Voaz5Pp5wDHCJZTLfrMZK0WNVaRcM2o8CMry8yJwDjqeJxzBXzeDXMFF26rmS+yCm1SSJCxy2n51r4+xDdPZ/ELVWoXnV9y2i6PgpNgxCEuYjFqKkD+oKwTrHGEQLdyuguqKI6YxqehI43mDCGo7urYgP6rEAIZDNkkb4eAXo0bIaVklw8xncYz2aZyCbpuQ6pKSgVCs1CaJ+BrtegF1aWPMJo2mIkaSAibO1tYTrfChhSE4IoQy8IiEXEhYBYTQO9j+CxIWrej6FkUTkL49boKEbmwhCL2QYhvqLPAKiGZ+y5BeZLg/MTTBcteg5aSZt9xwWv0/S8qd0WeWQBqiwZkAFXRp9FUyyz5eiAsA+Os1aiLGsoo6mnl+eYrEun9FgbtOueKzBWKZ3HlSM80hhS+g8cj1qB3+01mJtp4tVgk3EajYIsK7A2RwnpPDZNWCg9/3jci2LAEaxoGl5w8Zfh2Qnte2F0nykWHr+a1rdSukvAzgs+BT/i6F62Czf8tqGcLBlfPk9x9xitRh6o4wErWZwgpeDbHkoJ1n43wfQM4gU/Gfxvs+tGWbXnFqa2jNAe65J3G7U7QFIfLM+5FNolbkURLP+ekE94pGvo7dXDGCXvpJjU0d2rgK4FAzf+7+5oyzGzH3zlx4exas8trFo1xfqblgcLMzeQhlSdaAQEDD6LRNdEtOxr2p8+rVybpvF4Kgq7Oi4KVY3C3CY+CGSNgtQHql69YKxirMfYaNX7IKRrBUEUE/vFlwZjtbbW1UtkEjTcM97bO1nEIohRTOKDRS8+TK7VMUn0XRaC5AIN5b6GgBoNwjwf5NUHlBEPmmqQNy6yB9V1laBAxNQINfH6laJYdakH6Zq+IhV/19mOlclYsQaAT/p9XDMICs+67MsgYExQ0FTgzO9/lSuf/UKmNs+hvYKR0QYLeYmIIzMWRwoxKMxrSsflTBfTLDdZsOyN9AlRgZ7rMZ1P4bSk65R1CyMslC3ayRxOJ/A+YcG38CEUbbspV5VdPYiOGyEzKantEgJjDZX/3BhL6R1OKyWgjH7rFCEBKVCf4LGIeoyUUdCHwd0X9oLXkCEjsQlePYlkiCjeOXJvSE3JbN5BJARVOhxWlHbSY2PnNsrSU3YbbCkaJCbeCw1sgCQICakxCJaFcorUNCh8j9SkqCYIveqVhTiHyE6UvkS1iMHDBpEU50eRGKSX2AVy14pBl6DSxkoRXAES2QyCfhqGaKCKSu+ZzaexMs94Okph27STjKa1bO3ldJ1naWOS1CbMFTlbe3NAiYhH0JiZof2AYwxdN8FUb0nNmTQTZTJzTDa6QAd8k/ku5KXB+5RmmoB4CpfjfNBw8942Q+Nhx/0X3hlK/AqPWoGftixLl83inNDtNeh2E+ZnGxgDSQIb1FEUs5CmlN4guWd123LKpZ/lK2e8hJMu/SzihZm7x5k5Rdnz0oI7TjI0NgdN8NVP/wYfXvt8iluWsex/DbPHpzRWLTA706K9fAYtTPiqBHCCzzQIjTiH2bmYrpXoAH0srLtjKdIumd/cDlZuTJ+T+QRSD4WhNdbDXzdOMaHByreKb3pkPkFbDrz0BRtgugbfdkiitG6zdPbL2fjTFbimR1uebDSn2NJEUh8EV2xzbT1Xwt0ovuFrmroSWKHt0QJWgVTrGUXaHt+1QWGpIs+TvrDVaFmnWbnodpVQF6ORrle8l0DbV5aPD4oBQJK5aK0IPlLplW8+HAx153cN3iqm6aLgj++lEqgDckaMBjdMKgzG/KHxvZThPYsbUIwI/YOJjtxo8StBoAfffLVZawWq8peLi/EeGq19JPrnCe6A6l4a3knFeoqTRTEAVVvCu4ntWuR2gUh6cMLXv4QKXPWsEzjyq19GDVx6zLMZG23RamfkpsdCWeLLgu5CwabpBXRphyWtNokJUf2e8GypSUlMQrfoMpMndJ3FecP8fAPXU7wvgtAyBmmkaGpBZLuCfxBOLV0/gZUOzriQ1UCw9k2MtK9UhZBnHvtCM8K0LYEWj8Vj+i/d1BHkwQUgOB+CJYwYTMyuAE/pS6wUdWCtqqHnulFBEDrlArnPUTWIQsICQgOnSqHdeN0RjHh6LuTJJ6YRLe+EnhdUexj1TBVToCEFl+i6CK/QY2KqiFcllRIvWXzdPRIzj5CCxAJDlHXYSVVnIdSSqOh36qDa0jtSM09qQkbQuk4S6o+oYWtvK6kFQ4KRAmIfq6RAihGNabrCQjnC1t44HqGdOCazBZq2A+TkTui5HkbmkcyRpUEBDe0zJPh4T0fh53c6Jh4OeDWxkNCO9g8FfoVHrcAPWr7yuk/8OFgdy5TVT1zHhulQsen4vW/kv7fszro7lobDq4CxFDql8P0zzuLIz19EMmtRq7Svv5tVS3cj6TjufqHjy/c+kZF7obdgyE7dQLlpnN/a507+6+7dWXvr8jBZp4Fqrfz4iGC6giZxEpZIfxeBuvUth22X+OkMM1qgpaE93mFh3Sja8OFaLRcCzVqKXbPAHsu3cPuGZYy0e8zcORGVDEXzmHKUKDRKpGtp3WbRJ80y/r0xkudsZsumUYxRim7CAQfezS3rVuBKA13TDxiL1xCrYD3N0ZyysPjCoIUNAr/qOwOSeGzT4Z1gUxeEdeYDLZ94xICxIZe3ElqSlHVAXUXdi9FFAl19kGLeBb++L2MlsTLQkz5aLlWgnQ5a2ZVAH1CCxCpaBgsTL5BULyQK3TQm7XlC8GUUxuqCIK+p39T3A/HiO67fQVLRwkFQV0XiNPYVsYmU8ZqVzz+Oi0EGwOTVeJG+eyFS+CYGhGoaFIqKxq+s/cCmavD9u/jPJDIgVdsIzX7B178Wnscqp3znG6hRvnTk82i0M8bSJsdceVmf/RlAFefx/dNOoycLzBbzbM1LpvIRep0CyhKTCa1RTyFtSk3Q0qF5gXZ7SGIhSyGpLOvtCX+hW46TmZxU5iLDoVSVJoOFGSxuH6gVBIeVHmAw6mNMQD/oTmsNqAoTjJ52yeugs5DKF/4dctRD2mBVREsJBXusSWnaFpPZSrwqXdPDShCESmCCQpvnqSablt2FycaujCaGrfkm1i5swGuT3Pe4a+6OOo2wykKAWLGTanvV/hxhsHJgUFxMtE99lW440Jd9giiwG0F4C55gtRsxsZhYGGuF79FznsSkJCI4qvoFIe3SSILTjKneOPNlSHNe1SwZz2bolFvJfXAj1JUCBwrauJAjjCfUQEiMUDjF7sTyfrhQYMh3RukPLfwaj1qB79TifQoCzU3B59n48iR7zxdsemfO1285kOMedzOn7/HffPneJzLXa7D150v41HNfxEsu/SyffvZzMIVQjjrad1umfmtXlvzHWnp7LqNxR4PppU0m7i5pbTKsO2SMVSum+cG1+7Hb4zZy93wGXYtUgtBJzfSKE3zDh32WEKXfi0pA16ILFh1xGKukzRAYqKnHLNgg9EshX99G1vRopSV3/nB3Rg7eyvSGUST12NSjGxr4TIMw6pkQaKaQPW0L03dP0D2oRH6+hPbusxy8cj2lGla3pjl6+S18+IdH11R2uPnifi3zJNLkgWIX37dIKyHq8kCTu8LWljyE/Y1GwUgjp5GWbJ1vk+dJEMJRAUgTh4uBdF6EsrB1YJ+xHh/9rpXfoe/fD/vxlRCnVhaIfyORMYlt7SsD8eVQ85zR/x5M8Tr7oOJBvaCVwnLfPoqWdaUsVfvr/rFaswKVu4ZI40sZ6f6+3hHPF9SCT7VP6w/Ap7pIyIuX6GoICkFgD6Kwj/uqPqmYA2xgmgYVPYnuqBf++1UDLhtqhaR+5EpRAZ7x2S/w4eN+i7luQskoTuBN/3kleHjf859PqQ2cD7UsSBMkTcB7tCjRTg8QpJGgaYJsZ7EUj2WmWInTETKzAHicCl6DIG5aJTGdEG+gJSGSQEikgZUEpXIHJLFoVQzQQ2sXQD/HvXoJguKwMR0uWOlRYagrVQZNbTQdYyQdZ4Zp7urdgSQtCu9Z1lhKFkvaVhkoXoXEtBhNLIUqY+kEpt0AhMLnbOqtrQMCgwUexqjqYF280CsaqwoGtqIqcVzWrEkQ9hLz6atUwiq1USNjEa8Z401C2XDF+ypYMDxlqAFSMQX9H6+Orm8zXzYZz4TdRxzKTM1MVCWOy9KhTlGnRGIl1DcyGr51MRhNgt7sfxmFd8z9FN555JWOXxc8egW+E6YXJoO/PYPxOzziFekVtD6yhK2n5zx1/FY+fOszOWz5Pfzrvz+Rv9vjcXQ33M3f7rE3Z/7gSmiC6Vg6azz5hGHdkatYeq2hGFNGvrKUzQdBbwmkt7RYu6WBKYW7b1qJKQy+6fuUeGVdaUidA9As+sNtFJrxJ7ABgs8teW7JvSCFwbd8mGS9wEiJLiR0RXHLS8rbJ5CJElKPTR15Q0OEfZU+FylgVcHOG9zKHC2F0WbOll6LtdPjPPvA67m9tyK0zfYFy6BvXgtDWZrY7igkLUH4mYrSB5zpxysm8Xmjta4qzPcyukUaKXqthYWI4rzgvaktfWs93sco/HjNkK4dhVKVXRBRpwMO0uvVBh8kaeVSqK1+pR8VD7UAxmisRES/jYmiRVTOGj4I7kT7GUuRWZCKmajcOjLoxydG2stA8xTfCK4BiewQRXXswPNVgjy6hzQJ/a4S3oPc59i+TBhoj+krFJXrYFHkf9WsgaA/yYMyMshCUCkU8VgUPnjyaUz1SlQ9iU1ILPzDcc+nLFN8keI1FPoxHmxq8F5xKjiTYEeyIG57BXm3i21lOGtwVTBoXXZXyV1Cz01Q+IwqsC/Y4RvJTChVW/oy5r4LXrshVYzQb6FwVvD3pyatrX7VAoi+/lhypSqQUz/zonK+fc0sM7YePoF88PRciUFo2DYjyUgdblF46DlPzyuFKpkROmXCWDpGaoT5co6N3ZhqKlX8Omgs8hXSZ0zIv5eBChKquJheE5SWWBsglj4GMJJQektIrvN4Aj0vcQ0Cry6yERKfP1zHmgQIxY28EIv4EPtAKLTBbD5O0xp2HSnI/UYKX8T3BYkJaY1aRgU1ATFRcYquTfWQmx4iOWqVwnR4pHH/UfpDgV/hUSvwfadHb2Kc9774JM7758uZ2cMwfmOPu/4qYY833MveW1fw19MvZOJGy7/uuRxx8IRDn0DHK7bVhs23MLbLHLPTLdJmSTGXsf8HutzyhoQj9r6Ta2YPYPxWpbscylYlMMKErTZS+dLfVvNn9A1KzfrW3CAtXE3aSasIQWoLIffeFILpGMqRErqCbmnQXDNPIy2Z2TpCNlIw2uqxOW0gpUVUg4AoAzWdJg6fKe2xLukSx4afL2P1obexemKG91xzPLq+CaMlkkWrpfLPFwZcRbVqLezFap8Kr/LRo7VtbaUxBKGvJubbR398WYZrl4XFJv3AvLK0sa+EohuGV2X9+yqTwAQXQ035Dwj96jpGPL6sAvz6FmhtpUu4rtr4fmyk8J0EZUm03we+z9BQ+fyrOgTVPtv3xVcvuRLotUJS5+xLUBaqQyuhWw60cyBfHzuQUhWteE1CW3yi/XS+iuqHMP5MpQQIJq5bo1VWV/1AQWhrxXzcRxGoFBTx1O4FcQSlNFM+fPLpzBWe0gfBONXzUHhMYlEPxgndsolXxThP2ghCMS+DD945raQjWSNUfCuTFJukwTqf7wYrtJGiaUJMyMdpLMYzoNlZKWjYBaqBV8VcVO6XMpadFq3o8NCdeVwUp867J0buUykZPl6vyj6X2uddpaEZMXFBm+pdJIxkY3S84jQsgrOhG/avagXLeq7UmAYptV5XKmgsjKRqY2fb6BoqI7XfIBDqZX/cxyI2tYtCYrEvTTAS0xfJ+wtioRjJQ0VOTHCBCCgJUEQlQqJyoXEQx8JEAlWlvqZtApa5YpTpvE3Dpuw6kpO7jczm0xixJCYhsy1C4Z8ugg+lvWM+qcZ+tqlFJMQsVMrUINH1SCGU1pWd7h8i4FEr8EkMWji6mGCFz4LMdVjzd5OgytS+TVZ/19PcnHPZm87kpPd+kZM/9RVU4JNnvhDpGWY2jDKyfJ6TH/e/fPmzR7H14ARfFlz/uQPIANcUXMujzZBb7j2BrgVMT9Csb10PonZd6eAEGy2pUvAG6BnKhSa2Y0hc9Lmu6ZBmJeXGNs2VC3Q3t+hNN5lYPcWpT/53vnDrYSx0Y9W21Edhb2pBMZb12DxR0Lt1nNHHb+LsZ36fT/3ot9hl1ymarZz5VhoEaSGLGqqJrxWZvuMvWL/NsR55N4Em+OjTt62yLqIjpvK3E7MXAvtQWfCmsuC9jRH7QZB7LyRZiAHQgcj9isJHwdjF04FqUCqM8UGxsKEIj3rwuUWyKl+aAQVM+0VtotLWp+qDUqNQuwdEqAVzrcgluuhyEi3mRZkLVcZAGayoEBMxMACcBMnv++1QUylQUiuFGl0BKsTzGRhEQlUvuK4H4EJ8iKaD94nZAKqYvN9OnynGhTHY79TYJbGWxA9fdRZrF0rumi+ZK5QtvUFKQUNoOIK3JrghAJL+wjq9+AKytmUsNbzyW5dAKfzDsS+mG4v1kFX3t5C2EOfRXo528uACaKSUNonvqd9WpwlzxTJG0mkS6SBIXc0whOuVVKtbWrEhjS/eRymoqzFqEdWBoMxGHQPnXS2IqlX4qqha55UyCqjCKRs7jrHRSaybp+OCf39pYqjqXKZGWNEMyk8ixFLRglNlc8+jmuKZRDQHDIVfwIgfSKnTSicFqoDHqtqgICR4zXDawMp8PKamczBShhgEPFbS+mULiphQy96pi88emRGIdfWDspNIhtc282XGVG+U5S1heXOB2XwjXddBnMEvQJGUJCMdDAkUnqQqTx694xI/rCS+q9KXdXvML0HY5ppgdceiLP9laB2/JnjUCnyTZWheUCQNLjrrNM6+6Avc8ZI1/Mefn8UZR1zAkhsXWFjdZGFVyvM/8kWKVcqVLzkjfLC+b/l1OxlfvvUQFtY45h/nGbkxo7MyBlElYLuCy6S2dO2swY14vKX23d9XyAwYV4tQ+24rijUGY7l28N1nN7RxKTDh6d07Eqz7rOApK++kbXL2WrKF627ZHekEunnlmim2/u9yyrZCotx1zRqswNgBW9m0dZQft/bgkP3uJjGezUkbs0qZnWrVxV2CzztSbSY00DTCxyhWSVKH94JNPWVusY0yCOsqV9xqnQNvU1cLcompclXwnvdReGuccqrUshgnUPviKz0kCn7vJKbiVcdE33W0wl1hsKnH57ZPzVd9PZDax+D1Y99TtV1lsVyJwXgAUrEbEK4fg/uqlL5K+NZC2dznpUdmFpWgCERhXwXr1db6gFKolXWeaL8+QkU322iJRQGtJgjvMN6iIhHfY7DSoyUfYwlM5UKAvlVf90to+w1TOWsXXCgv7QcHd/yn89BI6z/v0+sY4E9/9DnoGMQJXzv1bO6aL1go++FzgxARSCzYZmCsegV+vhuo4CyFNIlsTbD2F9wYhTYZT9eRDdDBLhZxqSzTUktEklhuN45psQg2+mwN0MHj6/UnQnnb8ET1cs9aMQJtvFrKWIRoopGSlwWpNUBBZrTOqwfoOY3LEPe3taxQemJ1RKXrHKVv0fMNIMdIEVmGQI17FOriQI1IrZeIWKq6d1Z6CEXNBPi4nkCVUx//hdfw25h+9L4MMGMev+i88AwZU/kkXi1LGo7xdIap3hZ6rocWwiv/6yekzZIPrXoKzvdIjMc4yytu+Xc+v/8LmPVTaNvjTYn3jp6GIMckliiPCxNvZ1Q8vPC68+Vxd7bvsYZHrcAnix9vr+DeOaG7a8HIz1OOf8NFtA5ayeyahN4kFBPwzd97CbMFLJSeU7702UC3eoNmDj+d0dncYMU+m+kWKfPTE6Ea31KlbAdh3FzWoTvXwM4kYMDkZnHQFvStrsrUuQ/qdKrKT281WGWVoWGVzq4hvcaO56gP/u35hQbfu3sf0t0dTVvywsP+h698+wj2fvxablu3nJEDppmdaoMT3MoSmU6ZunsCgK1L2sx2GogoS0Y6LHQyQEKAoNXAUMTqblUKHQJpo6xL0oayuGHyc7mtA/QgGHxaGkbHusxMtYOAj7nytRSL1lOYu6KwGiiyU0fpx30aJ6E6WC8qBINrVosQlQGPi3UIamXLVmmQ2hdk8bk0FtrBhPx/MYpoLEtaW+Ix6yAWCanbWYTtENpWFf2pIvZjjwQlIaGvKJQGyqDcbcNfqiwO0hMgulsWbauUgKpUb3QzSNGPyqdKzVOCYhCj/SXGeqjts0wUUgdj1scIfODU07h3rkCr4vumymOPKMognLcDAcYzeNW/fgHbTfCZ8skTX8z1U3ldv39nkMrMbmZIM4PSod0c7fSQLFj9GBPrHTmsBOFcxQxUgqOy9oMAqzSyKMSFKMyyWkj6+I41WshV4Zzq2nFEUqk3VgIjMDHSYG7BM9oco/CKkOI0VG0TYZGwD4xDJIuMMJFZvAqZWUWpMJM7pvLQi6EaIFT+ea2frEAkpBiGaoEdiMsA95/bAJVyI6h3QTmIsQwh3S8oMb3pEtfzZCMpadOiDor5sLZD2rZYmzKbt8AX7DKuZMkGZvLZ4L7Ild//3/8J7AcwtnSUM679HkkW7u294dQbruRLT34BbsHRbSxQJDm5zxGqmgVVFsUjj/svrTv04Vd41Ap8EUGaGW56nqKZcskxZ/LyLZ9n0y6QzCekM+CaUO7d4agvf5rG+oRkHsxSwU14pF0yNt7FGM/02nEaaUmWOPI9Ld1lGe2bGkgBc0s83bWhGpRvhtS5Ohjrvm3ahk4e+Bv6ikAlNK1iFgxuzNeR9pI53FQDGSlYNT7D1k6b3cenWNedYM+RLRzYupd3nvMeDrvoIhqbDfMTTVhWhACwwuJbjtFbUrqHdlh/z2S4vVWWj81jb27j9shp7jpHmjhmtrYZm+wwP9fA55b2ZJfObJOJkQ5z3Qa9ToppOHZZNsPWuTZ5NwlpcjYwA8Z6ksQzO9MConB01EuMO18xAb6m4yFY9nXXxDz8WkAqkTXoKwJV+d3Kt18Xn3EGidX8BtMANTIY1e+Kgg/BcjHIsDSYRlgoxxrfr7Of+Dpg0CSKLwlV/KqSu0qoXljFciB9l8GgfCmDv1o8SCzAVKdBSlAApZRFEfA+1VAgCfoCWQmKocriQEEnMZCSygUdMkKiy6Tui2jM1gF+8V6mlLoE8L+8/HTWzRVsncvBCCYRbFQeoi6BLyO7YBcrAQYYywxLMsOLr7wEccI3zj6Nu+aETd3K4n7gE3udq58mIYXPe7RXoHMdsBZppGTtbgw4S1HiEtJisITlq63Y6HsPwXBeerFgT2iJje4AxcRFkAxOLUb60eZVjn9I/wtBfs63KbySmFDYKzMJ6iy5QtctACUu1uU3dZRoTPeTKsc+RNQbhKYdIxVhJFXmS0vuawIfIUNi0J2pffdxbMT/Dyo1/TS+8JK1eo54vJUM4kqMmcnYunUeQZjf3KPRbtCb75LnOcYkNJotZma30BqZp91OGVmyhJlyNjgSXMorfvrD0E9WKXoJZ1z3XbwzFL2EJHX1t37yj6/iP4/5He5dt572Msd0MYUQfPiJsVhJycwjL2IKtdidVtobcvoVHrUCHwAjtZY+1yuxXSGZB59Ad4UyesBWyuuX0N4gdTS/aynMWc56xg+58p6DOHbNLfzrVb9Fa7+Cm+9cRfumDPYs2e/5P2dzt0332lW4JXGhHaUf1XyfMaJwn2p0gzsrWjhYZVXUNwhueR6sx04QKmojlTibcvv65djEces39mH8+eu4Zu0afrJ0DX/9H58gnc8oRhXf9ixbMcPmW5dC22HmLO6IWdxcRjaeY6ynzBPuvGcZsneXZqugM9OkA7QnOiwsNNhz1Wbu2rSEXjdFrGfDPUsQJ+y17zoWioy1dyyjsayDTT0m8ZSdFMkcE2MdrCizovQ6Kb60SNIvkFNb81UlPPF9637Awq9XMxP6grt6xXaxxWtMcBHU7koGLG67OMdfXAysjHnnQFzQJkygvqyYjQHKHzBpf/EfRILQL0yk5QONThLiJ0Lqna2Fq9gotDUI7G3S20Tr9M3+WImKUSmLYj3qADztC39MvE613Q/sj91an1cPzHA9kwclRRNwRvn8mS9m7VzBXVNdjIFm0/GGr11RKzPvP+mFdF104ZQO0pA/PZqG+vmv/PZnkK4hmTchpTATtOnxmvKy73wq3DdRtBQ+dvRpTOUG9yDoUxEJQr5tQ4JZ4ShnF5jTFmWrRTOZp2WnQqR6FV0eU85C8FqIzk8lI1FL4aOyR1isx2IIS9V6JNL+BkMqKSUS2YNQf19jCps1EorPiNBuZWyenWaOLh31iHQBF+v4xxUUNYmWcCeqPSGfvWUb7Dk6RrDqQ159oNQtpbYofJvUzGEllPgtfE7pw0qdIT7BhzRCTIxbMIT4SB/uTRWkGJSOxEDTjuJRSl+yes8V5LMlI6MjFK5grDnGwkxOYQyNZhMrBV0/S6dYYMHNBKWjEF7+Xz/CJEHZrmtkFKb+hspYH6SMrODhV3+Kyw45ll7RIZOQtujj/GiNjZkBjyzuv/DO0MKv8OgW+DHX15eeXiFc/Duns9tIyjM+fDG6usvcXAvbE8pRkDJMhGZpj5cc/N8s+Ix9Jzdzx/xSpg5yLNMwoLsHd9h1+TTjaZef3LI7NDQUqonC477500A/r7me3PuTr3HRcgNMNwTYmQXBjbkgIHo2XDPVECzWi1r8WIGbTUmWlcweWNL7z1X4TLl57QjNjYbO7mEBktaSLs4bTCnY0ZyibNBd18b0DGWawmRO1i6widCbadDbkpGtXqA33WBhugUKt929guZoTqGx0E3iMW3H7fesCIpOy1H0EtJGSdFNMKnD55bNd00iPUO263y/fn0MIqxXwqvsuyjUQwld6VvisLgQT/x35TrQmiXoXwPifVRC/fwBFwAESrES+ItYXS9B4bIaRraEH5u4fuBhGRf4qcr9xmBCdYLkwcoOr137TE0RXraJee9BqaMueFMF1NXjRPs6TF2cqZL/tU+e2k9vimqcsciVJNFVMBjTN1gOuRL2ZqDwnFr4zqknc/SXvsRcZ57xhuGPvvmVOoUUE9r9sRedyHwZXPZSOhqZZaSZcO6/XxzGaIypMIWEOgFJYC3IPMd97VN1AGIl9M/99hdRgfc8/fT7CP0+LZYIjKShznwq/ZIz53zts6hRLjvppdziPW6+h2s0SKQkEUEkCZYjBYLGHHjFSDfS9SHCXgnKaAjQC0pCakBQGtbGEDJDwzZxLqX0nkwWgAIrXRq2E1PWAnlujOCSDvMzW5FGAy+9aFuHFxfK4+YoZc2WaMyp9yYluAggNVAtOStiwpJBkgNdmkkTgyEnvBzVglJjqRjtZxaEAe3iFxdD4STY/kZSGrZBO23RLTu0szaaWlwrCS/cO7wxtMZhIk1oNhpM9RbwRUFiJWQneDjnmh+hGoR7JezDNxpcYuoEVdPP5qm+8+qb3WqhJ2S2EZgo9SS0eKTh2Pma926Hex57eFQLfBFBrEWdw6mlUypP/dynaDiLrG1y4BG389PNe2JyIZ0VfAa+Z/nMd56OTha87inf4h9+dBwmN9zy89WBrh9V7t0wSTMpGFu6wPzMeD+CO1pxaoMgr9uhBD/pwIReWWMqYcL2DcVnHlMKrq3QDNWuKl9rHQhWxI+lNNDw9OYz8EL7sC1sXTeGFIbuCk/znrC4jl+bsgAw7ik2NaHpoQgpVdpy0LN0eyEVzmQOD+QLKSYG/lWcXydvIQ3H5NJ5pu4dx1fUcrushXTRSxCruG6CVgVlmp7u1mbfn81iK70S1IGWJ0bl92ns2kceA9MqwV25BWq/vIbJy1dUvUpogw0KSnVPjfXsxYbCRHUMQUxd1ERDEFthgsLVKOvYhCD0g4uhDMXFcN0ktCE3mCLGbgz6yON7RmPAnQvZG3X53CqHvso4qHKqpc8AhLoIUr+LsBRv/NPRr5Vf/WjIEjExLkATDbX1K7dDNQbjS/BZHI9x5j36S18C4JxvfLUO5vONoGVoorhEecXlXwXgX046mpd999sh+LB62DqVrx8bUOf7z9s+e9HwYa2HROuKhY8bs6zvBFo890rulEQ8k42Ul331c3WsS6Ws9GWZ0LTQaGW4siSZn6GljsS3yLUkmQi+/craDUvk9gvTWLEICSplDIgL6kSIVA8R+YlJaCdtGrbFuCobOuvp+S4GE5eDrQLiAtXfdR1ycnxSoj3frzhJUHqVMo7vEP1vpIpFMeTesam3idFklMIXlN5FRkFJbQmEyHsrKV3XwfngkrDGxup4UeFCKL3Dmm5dfrgqElS1eyQZwUSNIzFtnG8i4vG6gAJNayl9l1azTStpkPucMqbOubhccJmHoNzRsS55aYPAr9xHUclSF1mwOPYEoAjR+Y1knHLE0ZMcVzrSJKXXLXG20kYfORQ+wfodi7LCDyn9Co9qgQ/0J0BgSRryn23HMvFz+OnoHrTWGboHdimkESyR0gShOJtw+b1P4O+fcTFf2/oEbp5ZwR0bl7LLklkKZ9lvfCM/v2X1IuoYFgt6rWqsV/nOA5aWZpH3l2ClahqCufxI3B4FnG2VuIU0VMyLgkSzEPyGj9Hd7ZKpDWNIz7Bqn82su3cJsjGkRRWTHh0vYTaBlgslY+csLMmRqYwV+24mS0ru/vlKvBcaS7rk81mYWHNDsqKDCBQbWtAzTHXG+3nkXtCeJRkp6zXu8066qN9ri7MyW/U+/toqn77SADQoAeqjZU81aQSruoJ3gomleivrARMnlSp4rYr8dybk2Xv6tfVFkRTqinxGIetT35VyEiL8CT5bZwKj4QUfry02Ru0bwnoFXROYGli8tr0Plny9rSpiH62d2q1QGRp1lL4sttqdLCqIU8UB1P74aoyl4Kq2Db6PmH0SCpj1mSepfP7Rly9OQiZKpcB2TWQ+Qnt9Eu7/squ+Hc511U3695L4/qugQfGmLtQDoD4Eh5JXfgZ40RWfDYp1Kfz7y8+i8MrRn/l0rUssilsYdEsY5fmXX8z3Tzmbo779eb5xwmk858uBNfj0bx2NFY+RlJ5bwKknNSEwrtQMQ0lqhERsCK/wZRR0zdrr7dVRekfP9YL1rw6PJzUZBktqmqiOMls4ei4s6TtfbqZTzmOSWJEvD+PQG0dYqKmy2isXQxD2YVlv2NTZwBazCVWN7gYXo+nDcYqSu6IWvibW0xcJWRRVPT1i+5VQejgxoTRvalImG0tx6im8x9Og8B5hHtUepS9imeIkRs575ov5+jWn8TpFXuBnYGSkF4pnlQNKuxDm1MEUWh/GSxVzYjAhJbHVpUgXKH1JKYak2UA37tjyfrgQChTv+D66k32PNTz6BX6k6IrSs3Uu58vPeglyDEwkgkrOie+/nMYtTbq7OFbsuYUtMyM0/7uNz2Dtpl350x+fQzYLnV08rXWGu/dugCjfmG2HRVWshmVvK2usmvN8pKpjlHtFGVc104NLME72qSJdQ3O9pbd/F9+zdcqX29ogW94ht1kUCiE31qa+FnS+l7Df3mu5+bbVbJwaJbs3JZmHhSd1SO5ohTWyWz5EhOeGdFWHsmdhMmfDz5ehLVcrI/lCGovPCMaB3t3GpVpTgN4qkkZhl3pM5kizkqKwuDKk2oX88SjpopAH+oV8iNushij6yn8eGyHWh4A4Z/Axct4kwYIQG4vs+H5+v5igHGgp9T2CMIgvHwYK9vg6WK9KlZMY5Ka+L0QkN2hVFGYgvVKiYkFh8JkPEfbVPWMVQqLFrhWr4WMevBKCL2NgIIXpC/uqImKVZhcr4qn2q+/VY6z66qp0vMGxXuXQS1A4RAnWeTXBamAW6rS9GNUflBCtXQ614mAC5a9Gw5K8ZVAmZFB7rV5qVDokWvexlktgj4KMq69Z1wWIbTYxdsUnWsc6HPmpT/eZD2Lfe8J4qao9VumJkSk56kufggSefdUXIIUfnHY2t9+5nrn5OboyhvPj2ERJjCcxXRKB3Gc4D9YoQhZWnROtg/NEDF4Teg4K30FknkQSMhOWqS2cZa4UCudYuzBL4QXEsrzZop0IHocmBS71uDLEEqiTSN9LLHvr8LaKDSljvn3MftGqRr7BSIo1jaDYai8u1KOI2LhwjZKZBio+LrpjY9apkkhgKFpJG6clTTuC8yOs7zjGM2VJA1LTIXdKoUIraZOaBK9K6QsK3yExCalkpCYLqZnAO9deQadMaaZB2S+zSOsX0XWWRCan+uR6Uo+DauyICN77erVDBDLfYKFX8EhjWGnvgeNRL/ClkeKnepSNlK54XnnNpym6CWKU9OYWvX3KMHkkysaNE9AzLP/fgoWVCfmEMPHb93LX9aswuZBPKmM3JizspmG5iDz4xmsqfyBSu75/RTtWgj9uNHHtCCkN7duFZAHycchubdJdXQbLPQ1R/8Fq1j5VHK1am3ia7YKybbhnaoJkJKdcSHErS3wWaLXGAhRryjBB9yyoUGxuYsZzfC8hWdGh3BhKBVZKhmmW+NzgTd+Iqo23KIBtHpQC37bYVaFSmVchn8uQKv2uKu9LFPbSt7rDCfG6lU+PKkdfakEtAxN+FeWv8d99oRN+aut9MYcQdw5srn3EMtCOqBwo/cI6Vbqc6bM1laD0DR+YlooRKKoo/8gqZBrD16VfErkieyKFXjNAFWxfeNV5/YNpeSa0tapxv81Yg9qCrhhKlcUCvF+PILTL9Krn6xNL1SI8lTLgoyu3bPhFNSRCUR/6FHtkMmRgjh4sHa0Dr6deOTIJz60aWQcLkvffUZ29MODXr/75wxe/jLULjoWy4Kx//Vy9WqBU/WLg6Z+/CFT4yJOfyR/8+F+56JknsnHGUYy2EQmlbqtPNKTLKakpMeJp2TJG9fu4rnweHlUFMSlGQqCfSInRnHaaUy1jK1haNlAuuQvbSy0wNgQCijo8SiI25PlrgnOKKxwkHhVXl+2tBHrIIBC8Dw8nkqK6UL3NmCboyUyCNSl13X+NLTKWsXScVhKWz+2Vhp4vWNESRlLBhmAhjAgjMoKqZ75cqMj3UHaBmCNgMxRPXuQ0bcl8kdFISzpFijVhbhosi+2dCW7JQmomqirzHJiDDj3thTRCISygkyU0Jn85Ufpmp1H626sQ8djEo17gMzDXFX6Oo/a4lR989YmM3q1seYLSvCehGNNQZWzK0togTO0LnRWQzcDMpWuweyqupZie0F0Zfvu21FaUxskFoPJd1hPjgO9eRxzSM3XNeXFCOiek82B7ysIawWVKtjGh2K0XaPglecj9Tjy6kMRUL8XllnYrR1XYdXKan69dQZK6aC17yglo3dKguRnKkYxiVR6q75UGyRyNVkFuoNzSZGS3WeY2jiDdMOi9t3FhnyrNZ6C0a7RwTS8KAoX5rS2wStosqaiCas35ENhG1Rl9a6wM22Sg3ntdV78SHgKLKt9VXVyllVUyT6Wf219dk+o8rf32lT9xESqLvSIDNCpUFfVsNVr4lRVMHfwmcaEbvCBpVHCgToMDqJfOrQKUjA6k1sU2V4pixYCUob2LAkBrfz79hXIGn4G+sA/nau0W0PsqEl5CyV0naEr9zvp1nuOfkSWp1ytS8LZ/eCVUq0V4TE/qdMKK5ZAyKB+a0g9SjEoACqbKL69mkkqBEK3rBlTPcOlJZzDVU8696nP80/NezP9s7jFfKB7lgiNfTGLgj3/wWT53/Jms7XgyU4mn4If94HNP5+yvf55/fPKzSEwOpok1PUL43wiJERLpUPgGIg4jMJ2nODV4bUTBX5IYaCcpo+kCXudwPsQCZMbiVMldDxHouSSWiTVREQiDrKr2ZzA4LWOJXEOj0SApm2hhEfGUhcOknsL08Hlwc0nThBUnNbABKoFqN3H1Pqc9ylhkyPmSxKRk0sBpyVg6xkg6glNlvihJjGd5M9DyPd9DSMh9gaonTVK6LqdwBYWG5X5LDU6IYO2Hl+lKVxemycuEvEgoSot6CfU5FNjUgKxSxAaVzzB2yrKgVy5gEoMS3BmJGaG3ztHb/Mj78IeFdx44fg0EvtQav5GEdWevZMXjS57z19/jkNZd/OkVLyOdNfgsCPXOKrALQr5bTuN/M2wOy66FLY83FMtK7JzFjcSZ1QZ61kynIeCukEhJxslKCKKyElwQrMI8WG7JnKG5KQj7uV2FciSc68ZisJwNQYTStUGxiBXRxlbN08uTkGKkcOeWJTRbOXkeA8gST2uyw0IxRmd1KOAjeYimpwS7KaM7k6LjBcv23MqmeycwrRKdTpHxAp3OMF3BjZaYju2bQBqeWVwMckyh1wwCWFTIZ7OQu66ASh3YVwuvSolW6hiERYLbSyx4Qx0tXcU4hFfZT+ET6QcUVuxBvUCMN3WmQDi4f4/wd3UitbAfLCMMhCospSCFqen8KpsiLDkcKtpIXBGw7iNPCEKrAu2qNRUG/PNS+fir9LgqhqD6rSFnPqTJhfb2a9v321oX3DED94/Cv8rlX1QAqnIHGO1b80ZjcF+Q6DLQ1/V1TGhPlVVSMRHBmpdaKPtGPCcqcYuIFI3KSlRuap7B9YsDmTxkL1T0vjjh4ye9GCtw9lWf4e55T9cp5x9zGlt6DitKM1G6ZQxHU+FTx5wJKC1bkntH12X9Cdsp7zryZGbmO8icxTRTksRiTYnEnPXEljQsOC0ovdCwJQtlk9w3Y4tDcaqZHJY1hSWNPCrESum1LmJjJUUkBQrqGHAREIN6g0cwkhMWu1FSsWGJWJPTaLbIdBQVxZWOLGlwx113YRPLxvkpmo0mI+NtZmfnMAa6vR6TE5MUeUFzaUYyZlFKrAklbMezcVKTxvoD4HxCwwhpFUQLZCal48JKgh7oum5da6BwBVaaCA6vJV1fBiPHwZvvuYLMmiDsnaUoLWUZUvJcN8Es2DrduF7FcXC9kUxZ6Ja4EYc1HiRkDRhxmGVC1hyulvdowqNf4EMoBqKKV8sNb5tk6bcTLv3AsVz07FmSOUPZDjXF/aoerjDoaofZ2CCfgAte+xFe/dXfZfwm4fHH3swPf3ggtMpAjxcCztbL3S5aybGSdTZS5UTBmAcL3+QGPBRj0FsidFf44NtVCcLESxDQucEs6cGmBr4RBNKaiWk2zo8yPdPGbW7UUc7Ne1Lc3l3YmrHQSbC9kHlA0yMth05l2FxwIz7Ux/fCXKdBOpZTdmM51E6CcdDcc4aF2Saam1gApm+kq1F6B3bwUxmaedbstoW165aQNEr2WLGFOzcujWUEQmyDGg00OVGQxzQ24naJ0eqo4AvbdwlUgXtxcZxQnz+KikpJqKntgX3V9rrYTvDvhwVI4u/Kd82gYBqgjuNvn3rEDhxXBzuYKGDjjkqwpkEJrBe/SYLCVafXVRR1FSjnpc79r4S/KeJiN0QBL0G5qtYyMGXfUNIktMkU/RRDTUKwXhVYyUC/Bda2rvAUAhE1CF2fUiscthvTTA31YjnWRWs9Cuhqyd7Kmq9Q1QkQT8gGie4B6LMa9TYhpvv12/e1M8/kpumCwiubuo52IlzwzNPpblOST7FS4skwCG/4wecWl7KOgYgfOubFzBZVnf4ESUfRXoGb6+ENSLMBiaXrYK5o0rSBpg6+3eDjXzTo4i229ixGRmiaAmtKFIc1FucgxuJjxVJqGRiresC4uqZ+tV6zFYvTkAngDdhEGUlazC/0KH3K0onllC5nrD0OohRFiSscI6PjZKaFJUNFWZotJZUU7xVrLGkjpWFTrCQYhG5e0ity1t97F6Ojo6DC2NgIiDLbncW70CRjDHMz87TGm5gypTPfobnckvuCzDQpugV/ee+X8SrM5o3Q3bFcdZJ4SDzd3IZiZFWgpeu/c1HCwk8ezv7JDxGFjx/+ZOzSApcU9MiwWY+8N88jjcIbjN+xUC92su+xhl+PnvBBc0yMIBsaaAITtxaUt46GSSvzuHGHziegwj6rN7Jkvy2MPmUTr/rWK0hmDfkk/Ofte2FWL2Ab1ZqgwSdFVcBlkGeNh4gLkfQUpp6ITG6wnTB5dJcp3TUljJVQGMbXzNSrwNkszqwbmiEPOvVIabjxxl2ZunEpbktWC3uA3u55P3ddoJwoQ7tygy4kgYqPaX1SBp9ab7pJkni0EmBe8E3PwoaREBgYg8/8ZIFvu7DCX9PjFlK06bHzlvlexhP2vpsn7nYve4xO4TpJiIwfsKA1CnBxUpeSNQs2xASUsY+gnvir50gbJUnqsEmscmbDynomLrQTexlqJoV+pb/Uh2eIHV+tfEdVwa4SuGV4j5U1X7/GmO6mRvvvV0OWRG09JxomscqCdxLeNfQFT10Bj3608uCXI1pT4qaMNLdUFnE4r1rXHvr+eXFBMNsFUy+C45u+X+u/Gx3zqQ8xBVWAmxDjNSqyI7yjqh9C7nwUxNUjZIpraKTgiYWqFN/0YSloqR8l9FFkBqQUbC+wFaaQOiixqltRLQYU/hD+7aVnc+t0TqeTI0UJRclsp0C9p07Yjm/cqWG2CBa3FbDzFumaOoiWmHr5Bz+4hD/9z8+yS8vQSsAag2k1kPE2ZBm+08PPLOB7JYU3zJVNNveWMlOM0XWjOyy84lTY0m0zV7YpfANDGsW8x/k8WMlUgp7IQoQ1360h0vuKSIJXg9Kl9F1KX9J1C8yXC2hagi1ZtnIX1qzZnd12XcPS5cspXUHe6bBm9Uoe//h92GvfVRz8hP3YZcUSJkZHWDIyTqopuRNmCmFjN6xkOD0zh8+7bNk0xe233cm9a9dx6213ctNNt7J5wxT33LmW9fdsYuvGGe6+Yy2b753mtuvvZmrLDOqhLEo6nR5z6zsU3jKfN3De0CstzgvLxuYRUfJeAj0b5sfKmzHoCo9jQMqKWYI2Gd55PCVKJ2RC+Ec+C15j4Z0d/ehDCNr77ne/y2//9m+zZs0aRITLLrvsPvdU3vrWt7J69WparRbHH388N99886JjtmzZwtlnn834+DiTk5P87u/+LnNzc4uOufbaa3nmM59Js9lk99135/zzz3/QbX0w+PWw8Cu6k4KRu4QVP5qmu3qEJApdnxlcoww+bKfcfNMaaPhQ4a5nKEc9Y3ca7H+3sEdvQVWYnk9jbrf0LcNBX0+VhibUKXXipI7sL0yYpP2oi8HWyvge03TzlP0ft5af3xvWpt97rw3c+b9raDxuBrdhJFhr7Tipq0CjROYT0lkT/PSElLlk2uJGg3NVRgrYmtWR0dmmhHJEg0WnQrfT7tsunvBWGx43m6KJYjuCX0gg87SWdEI6U8/itzbw42Fp3lu9wTnDyolZ9tp9I3dtWkI5n/aj2itUK/GlQWBKbsI8bqNppoChXhTHlRUtr0EBgjo6v7buwwGgiqko+dj3vhzg8yuaOv5dKwyVa6GKkI/6Q02xV9S5RMt8UJ5Xx5fSd1lUMRyRyqxL8cfCPhC2V5Z6RXki1P5vFExBfyW7akGz6mljFoWU8TmToBz4Kk99gOavgwMFyBy24QJ70vB1PEHdhVZrPUW0r3hVXhDX6itWVfxCFaewyH1gNaQnxom+CtqrggNdYyA2oMpiMcrNW3vMdQrGmgneCAulglMoo8DPQlBXRUYLypJM+P0rPx/+9hItR6nLUWss9/zyb1+CGPjicWdx53wZoukbabhm6fAzC5ixNmQJCnEJXiUzMefcJ5HerSkhSlWm8wlK32M8WyA1OUoSF6YJVrZqhotL8HpxiFYpdhpfleKwWDE4LShcifOWbtmj0gwTs8Cy5iTGCEnapLnH3nRXzjM60SRNDOotRoSey8nLnIa0SUwKJgExWKCdwNIVSxFg7Ignoz6kFi7kC3jjcerpFAtYyRhptlm163I8nslVI3RnevitkPoWv7f2G6SJY7QBnTzF+bCstXOGjaWlLGw/1bWML7zKzKiCN0UxRTU+wjtLshTrQ5lbkVAnoMpUeCThkPspvLPjfTvC/Pw8hx56KOeeey6nnnrqNvvPP/983ve+9/GJT3yCvffem7e85S0873nP42c/+xnNZnAfnX322axdu5arr76aoih45Stfyate9So+/elPAzAzM8Nzn/tcjj/+eD74wQ9y3XXXce655zI5OcmrXvWqB93mB4JHv8AfYICNlCQ9uOHVI7TuSihGI/VpQLo2VL0bL8laBauWzHD3hiVot0E6a5CTNzG3cZxkoUHZScMCMwMT1qK4jsqqTaM/OlLCdsHgXYJZ0kNbgvMG2yhJU0feS+jmKaOtHreuX07aLFk+Ns/dmydp3yPMZaMksxbXCnn0mihmMg9+6rECs6URHrJrMPM2UL0OGHXoXIrxguTBKqvqpJs44/qEusALBMtQFmxNvfrMo6nHzFu6toHdmCK7d0JNg+kUPxH45+50kw2AMaHQzepdtzLfy5i9dywI07Qfle4b0SrMSshjRkJFO0tYCa/y6YdldKHshuFWV7nzgkmDperLkIHgq1XwIp1bBeVJtMC1or4rKx/6PvZKSFY58bVCQCwsE+jyqoiPaHCxBH+DLMrEqJcSjqvhkZuYkkmf7o+pghQDSgYsosCRIPirSPna45CEim51nIMdGOjVWKyCESuFJvVQGFzPBrcRQehLx9RBdCD9+APRutRunUoVXQj99FPqd1pZ9yYHrQraxFz++tlsYAoqRSYoAn1FYdNczi7jDV7xpc/zd88/NShnhiD0TcjMSMRRaspEJvQc/P6Vn8fXdS0G+gHqyH1V6vUOTv3WRXzymWexruPieJNQlz9L0KIIi/FEqIIxBePZFJ1yktmizWIIToX5skFqckg8pW+iJBiZo1cu4LGhyE/9chWNtfvDFOpRHKVKLKCjcdW4aFQgGM2YLzq00jZOc5K2YdnYslDKN/rnc19SlA51wlxR0iuUhjjaqcFQ4BzMO0ilESriicVrgTcl3bJL13dREsQY1HuaWYOe61K6nFev/Q5ZWtLppaE9XphaaFG6UFHP2hCVX1efLML8KNG9JYX02R/TF/b1gk5GWbZ0GXbK4kqYzoSRdr9a3yMJrzsPzHsodXde8IIX8IIXvGC7+1SV9773vbz5zW/mhS98IQD/8i//wi677MJll13GmWeeyfXXX8+VV17Jj370I57ylKcAcOGFF3LCCSdwwQUXsGbNGi666CLyPOejH/0oWZZx8MEHc8011/Dud7/7MSzwfRUIAs1Umd1LGb05oRyBvQ+7m9uu2zUIzwWD7QmSZyRbGmzWUZoCnYO76FyTrTctQ5b3gg94NqkjpqvJrw5IqYS/DbS5FIHQ09ESn8WiOfc28SsLGqM9erMNytkM0yzJ17Updi9xvYTkpjZbijFShbm9XE2Lm0KwnTCpdlsWCsPYDQndFWCmkxBLUJXqLQWN20wuMQZAcQ1iaddQq59eKBdLI1L4CxY1nnRJL0Tabm6QbEnAC2XDBOagk7BszTTT1y/FTKXMdyx7H7CW3CXce8NKzIoeW+db7LF0K7P3jqFNX1fEowi0q7jQH7gg2H1psFlcqEaFpBlXLBtIZ6zT9JTatx8siUpgS3CxVELIA2pCzEIlhKsAvdp6p8/SLLLow30GGb0qHiN0cN9KRftCEiG4KipmqbpmHBv16oC2r3xR3bLsW8Om7FvuEFmASnExxCI69O8ThW+IyicEHtashSK9pN6vzvYZBdfPzbdzgto4hkxkJ2r/OyEtUkKZYJ8NMCRQpzGaInwbooGZWKSkZAMUfnQX/eeLX8a9CwV3zpb8yVWXIg7ef/JpzBYaJG5RhjgcYzACmU1ZnhqWNIR7FsK1TEfqe2gzBnSqhPduqkyNsO27L3g5P5vOF88TsQy3dkMgXV2/AaHr2iSFYWkz1MHvuYRSBzWrUKN/rmhjJCczC6HQjbawUlKnHohgxcTI/YpnKuOKfDH1TmwImxNi5b0wMDKbktqMXhkyAEoXIvAtKc45Zmbn6cx7TvyfLwUjoDB1v9uRfp6kicWrvDMsmZzHxCyMJ6+4i635CLdNL2Ws0cWrMJ83mO00KApLu6V0eillaWk2quV2lcR6nA/GiytscOf5ga6p2CaphmkYM645kNIah9HRV16KKYRvnXI6G++ZZo42M50Hb10/WJT3k5ZXxn0zMzOLtjcaDRqNxoO+32233ca6des4/vjj620TExM87WlP4wc/+AFnnnkmP/jBD5icnKyFPcDxxx+PMYYf/vCHnHLKKfzgBz/g6KOPJsuy+pjnPe95vOtd72Lr1q0sWbLkQbft/vDoF/ilA2sw4rAmZ/X3HaM/upPr374HP79hDdr2JGM5zjUQNSTzgmtB2VZa6wSdSykmHKO3WVr7z7Lp58vCZD04DqPPMkwwMfrUEvzrQYGHTighKrnBTTiYtyzZpcO62UaQNaXBLO0xe88YpggR+7YjMaDQ1LSobyjlmOInSsx0gukJc3t5sqmw8IgbCTR+a8UCnelmrZxUE60aRZPgpzddE4S9UexcKNARllQNX2fZtmgniVZmEAJ2zoaKhMYw12nArt3wwZaG2+5cGRSdJXldF/+eqYmg5CQKC/GjGvTrG1i952am5lv0FlK8E7J2QT6b4XJbL7JTW2xVnj6gzoQSqLWFTRBecZIMk0wQqIsC5CBY3rUVXQlRravDVZuDj59aGags10p5kMRTr3OvBDdQYWqKvgp0DAuz+VDuV6r2xPtHqrvKsVfbF/auRd+HL/TTCGExKxDT9WpffFX3oKDPZESBWwm+Kjpekz6NX817VVS+DPSLr9YXqLqt7AcK1tkDAq6p9Riqxh4mBPjVLJICURG9bbZgY9fzhqsvhUT5xItewroFFwRv6UIj4lK8b/zu5+vnu+qMF/MHV30upEzGqG/TleB7TTR8b06QRlyiMb6jZ371k4hV3vOUM6JxGcZOmVjUa/TES6gQHFdt6pYtesUMyxqzLLgxpnopTvtiOzOOkbQExvAkZHamXoHPaGg7YvDqogw0MbnDEErrgqjHGIshw0iCRrLfYHDekTuPlZR2klH4Ht2yy/xcl+d85/JYkCq+RRsUJemZ+n1ljRIfGaWqQFZmHWVkxO6YX0ruQhT/1k6bbp5QOkvZi99gC5wP1yvKUKWwN5+RtYqQax+r66kHqdLxqnGqlXIaSnrjwven1TEx7VLy8N6edeVn+dihz2duroMb0K8fKTiVnS7aVO3bfffdF21/29vextvf/vYHfb9169YBsMsuuyzavssuu9T71q1bx8qVKxftT5KEpUuXLjpm77333uYa1b7HpsD3GmthgxFl7dMTzFMfh5lX7K4LmOtHKCYNNhaE6O2ZQ8diOob5Q7vYDQ3cipyRdYaNNy7vV4VT6lxm33ZBACzYevDW1n7mw/KnLghMASiEdMaycWoURJlYHTTHmel2KOvbTUj2mqM320CsJ7m7GQKkUuqCJVoKphcUgmQu1H1v3yPMH1qghaEz08TMJJhVHfzadrAme4IaCXS6Rn9vHhbS8K1A2+NjbEGqMJVhXBR48cPzWYg6TyZ7uMLWVfbaY13yPGHF5BybZ0fYdckU83mD+V5Ge0mH7kKGtgkLqwxQZKKw7o6lITp9PGdsvEMvT2mMB3bBGMXFlbfUmUDdo2huI4UeJJRWbK6EOvvblKyt/MRl/8Ou3Rgi/cj6yrAfSJMLFrb2iwb5EPVvmuUit0Mt2IW4DkG8l9F+ydokuCukZzAVGxQVA+P6AtfZaN1X1jBB8FfsTS3sYy2EwSh3O2/Cgjjav55PQoCfT+9TAVAIvtWo7Gn0fwehHTuquqX2X11Vvz8UJrqvBhyvGddsqNL1QqU+qZVPkxu+ftaZ3DJd8PqrvgDAV049kxuni/4QcT742UX48x98DkyoWqhWec5lnwkBcZViFul7tMoqUUh9SG2tUsFiTQXFk5SQ545u6clSg7WCT1OKhZLUGmysGOkjpzuXt1iyzIaqdFmwVe+eh54Tcm8ZQ9l7zKCEqnwLpQF6VAK99IpKD6/BX1/6yhSulqUNVTxLX+I1jyVnLdY0MJLiVLBSUsasjs7WghP/8+vB0OgFYU3TYxtlEFIVATOT0UkSWku6FHmCy01Y1dIZpudbeC9MLzRZMtLBqWG+m1EWtl6G2/csM74dFtkynlajYGauiU19WD8jKuFhtcg4HiJjqIWplccg1EOMUbWKZL1iZcwqkcTz6cNP59610zSXJ/TyR17iP9DV8u666y7Gx8fr7Q/Fuv91x6Ne4Fe5pIkITks0UUafsIXjdr2ZL3z3qchEoOR9M9Cry1bMwBeXM7cH2L16LCwk4IStB0pI0apSiaD2jUpuYMRhl/VwnRidWpWnjXOhFIIYwXZDmlsx7mBLAymF6fmJEIUffYy+6XG3jCG7dvHdYFG7ZlhYRxPBLymwU2kso6pgFJ9BPh4YCSmExpp5GOuFiWY8VBN0aVASKgrUL8uR6bR+nipi3TWC9DS5IZsKz2gXYOQW2PQkobXbLBPtsApflpSs3TRJWYZCQKUz5PMpt21aDU0XS2pq9H3Hd1LT8tFaBrCKzy2NxFE6y2S7Q15aNm0ew1RR5zZMIGh0BxAndaG/UEdMu8NoSMXLTQjeEo1++3jrSjBUFHgp/UI61dip/MzBFAsWY/XuhboAULUC4KCAH8yp1yqGAEJBoipl0EiMqQin+TSmsg3EC1RFbapFaAZL4mp8zqor1YQaEhLTn0weo+nToEz4JDILaM12VCmC2CCkg4XWt8A1jfct+4qTKYjZHNqPVSDGJ1R9arSu2FfBV2sJxJfuE6WdCH941efrYMU750rq7LtQ77b/PqrYAjdQ2IrQ7sAkRKbBD7yfIq4M56t6HIFZ+fwxZ3Fvx2GtxUoSLGITFJI0AU1M8FSYUDhqNBP2GE0Zb6R4HE67JJIykVk2dXvkPqOdJKTWU7gCJWNLr4mVMfYeC3Xtew7AxaI3JWoLctchMWGZ3kRSREIOfCKBTgnV/0IQYWpKwDLf7ZFPKy/8n6/3FdvUh7EV+8pmDieK9iymWZJkjiwNFTe7ZYZ6YcvMCMsm5tmwYZwVq6YwoixrdJmZa6JeyJZ1yGcb7LLrFFtm2iTW0cxK5joN1Bts6nB5GpiI3NTsoGZVLYsg4FH43otfytGfvTiMuXruVL512pkc87VPc9HRZzK1UNKZ7XDnuhlIU7p2jNzN8kjDYSh3Vlo3Bk6Oj48vEvgPFatWrQJg/fr1rF69ut6+fv16DjvssPqYDRs2LDqvLEu2bNlSn79q1SrWr1+/6Jjq7+qYhxuPboEfeOVIB+ac+5Nv4pa2aSQlX/zZocHfncWJaixEsk9Nj7DXWXfRmR4nzxPsjMUtU1ym9cI4gwFLKiEYz3nBzYbcd9cOPjjbiauMNTx+NAgrnewGKzC3LFsxw3ynQe+ekSiAot9doBx1yJYMW8ZrWMI60T746v2SAjUxOn9pDPfOPDIXTLrOlhZ23uKX5uH4EQeZD4FecYlduyELldY0ULiuESyg5sbgkijbSr7UB2GyUsmXWKRUet2Mees5YNlGZooGY2MdAOYXGvRswshEl6JtKboJ5Anje08zvWU0ROha+oLfh1lbK4o7N2zcNEbaKtk4M4o1HvUG16O2aOs6+IlfLOiFvgVe0eNd2590qptWMFAT2RIFdBVHxX0o90p4F3F9+4EiOuFgoDR9OnOgbn0Ilvv/2fvzqN2yqrwb/q21dnM3T3fOqR6qBIlRosEGOxJjE0lsEhEoEAVj86JmGElM8E2MI9/Q6HC8yZc3wy7BT2NsYgeCfYJRkUSjEUVBI6IgXVFUd+p0T3c3e+/VfH/MudbeTwFlgcFUyVmjnnHqee5ud/eec17zuq6ZSMjFYhLj42p0k5xeU3UOmqgcr9TT42ZnQ54qFVVAyTPU5CdVsulxyVlnvIlyRCr7OLr6DZPPM0iFlq/hYtOr6JImHCUxyC6CLo0Qv/byw0w+0ETp2+ZjmxRy/+Sf/xFMLWgHBtY52otDDNTu7LmbtmoSxbO/7J4dTyeJMppYEiUjyZ+FDYk+wzn53xhlUvymw+7nnY7stfCX9h37jajnT4Yj1mFNY1uMMZxrBxqbcMbR+Y7WLTkeLIZI6wKNq6kMzJwgCzOXaJ0hEsX61iR13QuEJD76rZvR2lbAC4TH4n3g9Ljn81/7X8sOmzoWCaydBYwVAp2xiaoBluD7qlhRb07bUpHfeHDK0XrGEx9/ia2vicnwzivnCYOT96wDs/0tl6/uEL2lqiKHhwtuOH9K5x3HhwusJho4+U4ml0Ti6xJmK4XPb37hC3jb8QAGfum5X8jTdTzyDz79Obzpcs+//ehncf/hlhQiYdPLhNMYCdueeLrlA73+vJ32nvjEJ3LLLbfw6le/ugT44+Njfvu3f5uv/uqvBuBpT3sah4eHvO51r+OpT30qAP/tv/03Yox80id9UnnOv/gX/4JhGKh1jsGrXvUqPvzDP/wDAufDozzgJ5AeYFtjjGd40z7sRi6+8SaWTzri9CaDvdIQ68TiTS3dhQT3zrjr3seXijvcMOCu1PgD1YFvRkh6WmFY7WEmh84OT9JPz3CyDomJJ03pYV2+90D6kbq91o8+06XC0/en0VJvI0x9d6UmLiKDHVsGoY6wE2AwuBNH2PMSUFQzbk9dgTXd1ujNWG7eYRll3wx0N8QRas4e8l4SmWTBXJxxfM7xupMZVRNoG0/XV4WpO6hEJ61qmtvWHB8uJNiX6lZjofrtZ7a78TI+c9jIZdUHKx4CE/tdOVAJ2wR13ZsS96xW15oYzIK8Z3U2kBXtuRsDRJ72lgfpEMfkK8PXKScYOvTGqtIgDaNPuM1e4fkaNEjykX0G0uQxK8iSbNsIRRfUIU0gfZPK9ZEtiG0vb1KS1kQZuxvnE0WES8XO1nqIZqzW301xlMb9yGhItTGEBg3m47Es22kEAbA+W/nKU0LFhNhqxuM5i2Q/BLetxvfMSAqaDEIZXztzpjgU5mFC0SF9a6uIApL0lGMcx+cmCzRyXX//pz6PBzcP6Vcoqc7UFXGTB9IYKmO4fadit0kMqacyNbWrWZglkKhtDW5GSJ6QBmbVgpltON8GDhpIBAyWta8IydO6SG0NIVWsvGHmDJWMfMTiiKmlsQtiMmyCZe0jpwO4bc8Xv/EnZK5GVClrtNAEQbKyBDEa6jrI908veTGwshxd3hmTPW958Oou0Vuu1gvmted409KvGh1eJe8RowyxcpcatgZSb7l8bYeqCdQzz9BVwsiPYJQkajpF1ZTEef/GczwEvv+znss9K8/3fcoX0HvP5dOB2HtSiKqUsLjzu+W0pBRJ/Qd+eM4jhfTfl3V6espb3/rW8vs73vEOfv/3f5/z589zxx138I//8T/mW7/1W/mwD/uwIsu77bbbeOYznwnAk5/8ZD77sz+br/zKr+R7vud7GIaBF73oRXzhF34ht912GwDPf/7z+eZv/mZe+MIX8vVf//X84R/+Id/5nd/Jt3/7t7/P2/tI16M64AOkGLHGsNu0NNegOdSxsccHmP1UYNftjQKt7v+Jod+FMJMBMcNxw/wyHD55POnl/mQm979Beosx6+MtsPByY9PevpBoRJKSQsINMi7U7wfRo+eYYBmNSWrte3knDmydIc61QpoF6sXAcK0tc+PtiYMbOqoLW+JJIzeDg5727hn9fqQ6dSzvge2NMMwjbq3VwdoqqzqNldMEN01VItYJu7GEXU89G/jYx9/L6+++HRqP7x1VG6R9p2xdFp7usGV+bsvm6nyEhfX9k0mlci5Bf+NIRifoKYO/sOgZg0zyeRIXpcIufeksFXtIZp6TuJSlcRZMHKezkdGDHFC0ik4q0csIgqklYMXeSbKxteO44oxETODr4kWgicQYKPNFOl5YyQqzPB8jE03xT0jKPYs1hTGfV6zTmDxq4MekAnOboJX/pH8OyMQ/RVnsIMlVbGTbbS8JWmhy9azXQxKpoEnglwrVz6Mcz94UXX0h6BUCn8EGQxqMyEutXFMmCHT9XX/7Tvoh4oAaSE1FlC49/+jVP6kSR91fNRiKhjPISnBjolOulXyco+Hln/U87lmJT/6yMpxrHdbA/Wux7cW5rNMCZzjXWm6aOVLqMQqx17bBGodBjXOS5b57HqRpGvb3KnCWlDwheIw1nPoNwUPdOlbbgXbWYGyNMwLznw6GbZDg34p4gpMhcWkTWQ0wrLbUQYIr3qrls8LnvcEsAxioZ56qCliT8ECjZlW9qUidE2noTPz53VzscaO3xGhZNh1H65lcg72j3uvor8xIVaLe6RkOJPk2TSQOjiEYQQFg9EPS+1yWoppoePUXfSFvORqI3nM6SBUxhEiMkqAlHzDOYnbmcu1O0ZyUMDsPlUH+718+WczDBPWHg/vf2/rd3/1dPuMzPqP8/uIXvxiAL/3SL+WHfuiH+Gf/7J+xWq34qq/6Kg4PD/mUT/kUfvEXf7Fo8AF+7Md+jBe96EV85md+JtZa7rzzTr7ru76rPL6/v88v//Iv8zVf8zU89alP5YYbbuAbv/EbP2CSPHi0B/yEZOrWsNcsChvabSC0MH/AsLlFnhgv9MRNxZWPg+aKozmSATr+5p7muCHOA+6kkilpaiqSb+RCOqFA03nYhwka7JPBdrY4kqWgUG4mYamEJveKjQYM403RaFvtcQ43DuIBUCfMccVwqqdg6UUTXyU4bOiaRLPf0Z803HDhhEuDw5w6/I0DRzcnqgdrmqsOv0jUx0L+SzUji13XOK1MMvdUJ0yV2Fl2XN4uCFvHqZ/RLgaW845rh0tuOn/CZqfi6NoSOwtsj1ths0erfWEhhBlvSzAVb+2RVVxc4YKRVkUYg2lhoOfePBTZG8W4Riu9oHBuIy5npezJAV6DvRx/fU1OdAxjBVuCs54oJxO0k7dF3y2ZklbG6sAoEHK+RtSgpoqynWrQk69VJh+Bg4T2rHUiYx59axLFwMdqGyIrFzCi5ChyvUkSV66xLFHTxHIaoKckwdgkTFLVSX6+wvixTSP6wYhqZVQIRugf5HgnTGkjWN3+vE3f/anPwgfoVx4SVLXDVAYH+BBJO+JESdTPaVTmqdeMeF6Y0cJZK95s8ATw7572Bdx9GqgMfOh+xbP+xw8TVUf+yk//Ev74aBCLBGfAe3ANMUFInspajDFyTjDUJk+jk3OeAly9csTFBy4TfGR3d4ftZkuIkappOD4+Zb5csBk8+7c9nm2TGKIqayJEDDMHtYXzraULEvT9diBue8zBDv/hE57PV/yPl5eEPDVJZzoAa0dvakLtMDbiqsjqtMVYcFUUdWYdcXWQ36OhacQDpKk9D57ssr/YMgwOnyq6oxa3ccQ6ElqBbEwwZSx36FxpreVrlDryq894AWsfWQ+RBzeBP7y0ZTtETIqkIAlt3HaYWvT+xgDOvnuwR9Ad0/w5eOl/ACD9T//0Ty/TDt/TMsbwLd/yLXzLt3zLe33O+fPni8nOe1tPecpT+PVf//X3efve3/XoDvghYKylsoY7f+Jn4LwMyJnfp/KSXbmBsRAb1ngi1XA419PdNcff2pG85fjJXlj28yg6ZDdhOpPvj6kERyGUJfHbz9Wplf4rGWLPJK48B71K0I8XllU0oAQuvXbcUSVZ9zXHcC5IoGwC5qgmzgNm6UmHDaYzDFdn1IeOK8c3UPXKBTh1mGjwOzLsxwyGYW9SbZpxUIv+Cgbc1koltxsgwpPOXcGSeLu33HjzEQCdr9jd3fDAxX2qmcc1AWMS/kj6S7a3441YPy9XlaVnnuVvwUglnQljTFEHyr/ZWS+qpMgoOSsHxLKm3z3DCGeX99Lj7W3pQ+dgDVJFEs2IBFgEPclWutobTpNDWYxgMmFMGe2p1mTFQ/bOJzJOrsvoh253Pge2N2fY+MkKzyKz6eW6olw3RSePohUwqhUM0rbIx8nKsS8tF5uKVJBK2weD0ap8ApXrdiat7DKJksjYTsruf1Grv7lmAXrOUzKc36+5bxOY7TRyEGMkOLHBbYwFHSBl2lCuERI4VUqkDGE3Mokuy2CpMudCIPrWJv7R616mX1qLsYnYOS7MHLNTzyomTF2Reo9pG7HDxWBV1idVvhn/30IkcMvjbmTwA2mAWTPDOscDFx9kUy04Ni12t2cbAqHrudJXhL7nzBcB2CDcgmN1T00J0mqL3Z2TrOHv/9efwkkmKAjM1hJnQfY1GDitdLCXxSPW3K4O9OsaUwesS1R1KMz67l07kL1FTOLy0ZKqihLkvSUuArRqOV4lFjet6LYNoavKtZ+S5Xee8fd4y7HnqAu87bBn1Qd6H0lJfTdSkraLgbjpMDM5xylGTNuICuO9LPNQ7s0HYF2flvfI16M24KeUSN2AqRyLSm9O0fD4Xwnc9ymmTOQK+wGztcTGYc938toI6UNXcHVGddDj1+rwppK4PBNenqxxw+ovMJKXJpPNohur9Pw9N9rXFrh3rEpMVEWAwrImVzWMBa3fibI91mBmHtsZgjOkw0b2zSXsiSQ2YoQigcFtLH4ZcRsN4M1Y/eX+Ho0alwwS+ZNNhJm2IrZSZW19xRvfeAd2b+DK4Q4As3nP/mLLeu4ZrrWj292O3JSMtm6rlWxDXiZqBVkLjyDsBEyGmps4+t5PIOVMoItRe8DKxi7WtRqg83GzWztWn6VaR4hcYVJpo8dBB94UU5n80blXPthxuwrKIAlCxCq0qX/XqihVUk3nBCZPqcsVvU4cIiskigmPk/1yPYRGA3mdr5UJDyBR0ASbrzFtNaHnlzBBCgIjShXH3JQ08hCSJg3ixpj5HBSpXb7e5aI0hUMhrP84tgFMtt/VQ1xFwe2Rzzv2EZ8ESYkpQghQWYYkEH+qY9mHPPjIVFGcFacoiRJSczKREZ/URP7ha18m5zyKUgY/cm5qK5D6ekDIiVqdBf3XYHFWx0enOH6HteJv2xpTRRY7S6Di7pOBe+OMTW8J3pN6qcRNvdBWTB628dDEdHIhJrA7c1xTM6/UoU7bLHatAXSfUcmRgLUmRnWUvCkYbBWJvcNWAd+L7W1KhrQT+Pgn3MPv3/14ZvOexbzHWvHBN1UEI62q6ATV26xarJtsn7acHtx4rpz2bIfIaQikEIWDYWR/xLlPgr7dmYur4Z9DIH+ky0eLeZgBOf768JyyHrUBnyGQjKFezriwqHnNV34hn/7/fRl+bonZGASgjtzw+Gtceud5YjIc3HTC0dsP8AcDf/Uj38mbf+1DCecDu48/wQfxi+/XDWnjGIdCZBYwcvNs4hgQ9HGBonXb3KS3OGWWT25cGfIvvdOcIEyCVWZlV3fPCE2iuTrCX1ZvrqEFklF7VkEWcrAvQWwa7O3oHIhNgmokcMfVGDhc4k333QJLL4S13nLrE67w+J0j3nl8jhv2T7nltvu5/3SPB+66gD2sShARtnaGDybBAtnOeDAI10H76UbZ9IX1nvMEJckVp7zEaDijS5jkZgx2SSsGDaKpUrJl5ktkuVtGYHI1Hcw41c+bcr5Spb4Ken4Ky92FsQVh5TlC6tMbR+YYQJGRle3TxNQEOWdZXgd6fak+vhDgdBof0/69XjPJQGojdrDl2jFaHYp+nhJgTDS4rpwGYq2JRTTS58+BekJKLEhIzjByeyZfry5pLpTKcCTjEmblSLW64FWJ//Ipz+Sebc8yBIb1KW6+w7bbYE1LjJE0W1ItPaF3YwIcDEk9GDLqUgxfpsmbtoZMbwX2j6aYIpXlEh/3kz/MT37WF3F140nbHruvpDyT59ql0h4k6XdELywBL4RtsO17LveRd5wGhnpJ3HSk9ZbqYIe6sbROhngVbgzQx0QXEg8dBmiAuTN8zX9/hXyH03jdJiff//qBhv4GX5I7MxjoE2EByUVCcDSLgQEk6YyWeqYmPDPPXUfnJME0idPTGXGQY2qrIJNDN5JQuybQznrWJzNJ3vUa/KU7n8ebrmzZbj2x95imwrQ1xim6icn/6U49egJ9XglpqTzc49eXrEdtwE+Dxyxn7DSWL/mPPyWBZgFXPlJxSpvwNw6wqrj04D6pSjQXa9a7DbPHnxKi5e1XLxRb05NrC4HOWtW7TkaOnhkakihysJThX6bOY+aMk1tC4PusMTaDVE9ubccqyiRQ457sKIbJiIBcqPWJEVKWjlGN2h/ORi1Fy50AO80cdLMnv5Yb4jJgTh1mbyDsK7IRDW5liVsxKwo39lAn7n/HDfg7LMebGdYk7rv7glQJs0AaKglsE9nX1IL4TMKTK7SNG+euTytoDfo5YJbBO3Zkh0/Z6hS9vVbKSl7DTJIB9D2MvoeVA2YMY084cypy8qDVfHb5M4ORfnGjVq5ZgpeDvoFkVAZHNjMyo4HNCHgooz6VRDI2YzLitvLaMINse2u3EwWAYazAczskAuq7bwbZ5OTQ9hRkEh5JOAEmSLch1RRSXTJi61ydiKmPnyMoTa689bOLbLF4EVCStIxgpUWQYxsMrC1/8Hv/i3bvHNF7Dg8POX/+PMdHR7i6xtUNe096Mv/2rz6fr/tfPy4VvUmlX59sEqOsrR3nM7gkCZluS+ZumDwoyFLQl+T0PBvxBGDbQ+Wom4pzbeL2Han+DVZQw1BAfkIKJX41tmHTR64ennBS7bJwlmANTTOnxvPCt7yUGKzYRm/dOD/BUtQxyQrixkzHY29sSbQKwTGrVvYiXhnxOUllEcCKCdR82YuUr3fszDuO9bN39rZ0Q8VTbruf3/uTD+HKtmLv3FqKmU1VktKgaFQyYOpIDIbtphFdvxYav3zn83jjgxu6kIjdgN1bYNQR8bG0rkP6j3w9egO+D5jKsdc6You6lkFzDXbutVz7SL057HrMUQU7geEg4IKlP2m1uh0km1bYm1zpTfueatpSlqT74//rv7FOWCtwZNLKJ7bCes83ZuuVga1scqNuaWEObgDjKEEim5yQpGLO09RK0JtorjEQi20soyxt/EcCoVZrqU7Y3Z64quXGua7K5LEbP+Qqh79/I+GcJ2wsro74Qdi7l+45Vywy62OH3w24jSXsBuyRusk0qn7P1WauyPOG5B4zeiMEohsPZCY2luOb93NKsosGk0Z29tSsZrxA5NwVNAN9jwkRMFt/Gm/HSn76em0ZyA1X90khclNP2iK16J5NThCStniyXa4V9CUH57ydYZZKVV7kfpNLLdmE69U5MTsKArGlIB75OGUSX7ksMtlPA35U6RwGnKcQXMvrVWKVHAwzdR9spgdU3z8H/3xetV0jEkwzog+ZsGjh5juewEm9pDaGWx7/oRgS58512FlLSokBQ0jwfZ/wxbzwNS8t/XvqVK6X0cxJ/8kzD/L58Xa0cNWELqk6ICUwFnYdzIeB+tyS2w8qbpqb4jU/rfO6fuDeex4gkdjb28UPnpQSPgQqV9McPci86zk4f4CJiYEtYbDicd85sRQOek1qolXOqxfzHzNkc6k0WiNHscTO8L2xcgzsUjTuuTpf7Ip2vd821DPPettQVYEYDetNA8nwxgdu4cM/9D7e+sCNHF3awc28DN1Sh8iCQHkDXa33wVjuTa/+7Gdy97Wt9Op9FJj+MRjsQSH765D+I1qP2oAPUDvDF//cT7N30bC5CbY3eqp1xdGTErPHSRXfnzSkPS8e543MeccbzCIQH5gTc6+8d7D0clOdQRosbuaJR438TbXZ0i/UHn4maekXNuuGM/msfdAJYU6DVcw2qYr4ZW2124puvvSV89ISMo8dLTcNzWVkwtr4mqmM8ExF78dqNLYR5l6MNvY7/KoROU4nlezlt13Atgl3rcLdsaLf1FTXKsJuGANeMPhlFOTCUEawCsGNkihNt6dAnFYnaU0kgeYh46rOMNvT6FBY9r+OxMoUZ73cvsicvylGV6bC5W3K1Wl+S4vot+MkaOW+fk66JpA8SYOLTRLgNSiaAnlLb5qtlb79pAWBS0XvbqrJMYljQlZtJ+faypjZwkHIAT4b8jwkQck6+RLMM+yvBDBcItYGP5ckN+UEKgHzSAB8OHsRZXviMuJ2MPLmNsn/O4q3gUlAru51+h5t4MKFA65tK1I+gSlBZcDVJUEC+Jo3/BDNUkczeyffWYBZlCmIipSRNLmqZAJjNulhsFIBq/GR0XNn1R2uGgb+8vmagxtn1KU7ZjCISY5FAlqKic1mS0iRa9eOWK83nDt3DmNg8IGQEsPg6QaP9x4/BAnGimIZTfiyP0FGsAq3pbflO5lNssheCoOBHY8tZElpNbk6YFpPSoZKvTCamaeuAtZGYrR4mxjWNbaRXv6l1Q4fevNl3v7AjYTeqqxSEAPhbCj/I0lhEjWJTDZxcRu4sook50jDgN1bPiaDPVyv8N+X9agN+LZtcNYQLnj6SzWb2wduuu2QS7M9OK2wv72HqaB/XCimIRhIN3SkocK6xOIuy+r2VPqkyVuWByu6rsa0fiQMTSqplMl2kwEmwBhAEsRzPc1iIHRLqhNDmKeitZ6y8s0gZjcmmFLtFTZ07iWn9O7Vq4VsRnLm80tQmty09YYfLbDjYePYPdhwevcefquSwo0tE9DCIkKvScZbd+CCJ+yIJtp0440KpIpMtSQsYSeCS7gj7e3FsSKdHh/SyG/IfvBuq3yEC4PczE/cWH2mh/zkP1dRZVSTt09abeZjZxj709O/O6QqTxpsq1wVSsImD+h7BQrj/4xenxG9KFVkPjcmwSwSk9XhNIiXeEn2NLHQoT+pTgzqUhcW8p5uawr3grzZW1P087n/bhKSkNiROxHbsSePTZitqCdim8SDvZ72Fwy0QQhyvRMypaoZUJ13UU/klxm5Ps08FYJdUuTEAMZFmEdRxnjLs1/7Cr7rY1/ARpvYaXLQpuSuxUzIDKepZUiG1OvUSiSZSsr+F/Y4GG+JmexpJGEznZUkLHMYDKRlAJsIQ2Q+r6isQPbZiTERCSmQMKQkc9v/0oc/AUh0fUcXDUe+pQsQfGSIEFNiM3j8pqPBYN76RuIyYNoIgygIsgWtWYlyJrSacDr5ZDMI6iczEAxVlETBW7lGUO/5lMD3jjiIcRX7cp0OXYW1ka5vBN7vZOJlUBLy1dN9rs52yv3AJDl2YugkxOE81jrWQUms8No7v4A3XemhceNwo4kF8mNtpWSKj8l7e/z6kvWoDfhx29OFxPd8wufw9f/rV2gv1lzy5/l3f+uH+ac/8uViHTuDxb2O7ry64oEYVFSJph0I87kMlWnki+XqyHbTEDsnxBVvYNfLzVmJZrl/j/Zwc8Cx/Vih22sN1Z+0dOfkJpssE4MZShVgA9gTMecZdkfHu1QnGUChyUYm+AEUNvRDIM5SPBkKEgEUAx96Kw5bq5rNHx/gjIoMGvEdCA4Z0lMZ/J4EgKAyNXNcQWY+588AUpt15zLQJewF4i0d6UT8+wlGpWa6TUGJcbr/uQWRsiPeSUXa94RlwK4lcZD4qxE1m9nojav0lHPv3zNW1JroTAe/FKTAC0phcsVfkpMkNzc9sQVarZBWQNa3a+DOiACDKXPrIY4GMg/xmkcfJnvp58dNKmqFBNICCDIm2SQITSr7m2V2bmOkzaPZV1Qv/oxk0Gp0Vm8FuUgTyakqIkqgJxn1pHdyHEm4OpIq0XrHYNXJzWDqRNxOxqNqfzwBpo5UM0+KlugNVRsIXjTwthIjljMMdcPZ35Epbd1QEaPBuqQGRaacFnpFa+qIqYVLwWAFYRqsfFfV/8B5HSTURl72V/4GJ5uOt9z1Drpuy1Oe8pHsLOfEFIgp0ke41hkubT0+yjGoLew3CWNq7t+IZj6mJGz0wZO2Ayklmrbha17/n6GR6tn2ZmzfJL1nBDHUsgMMlSkjizMS45fC2zER4kK+r6aK48hfEOa9jpXOx9VVkc2qFfe9mRfJ6amagAVh6bs6iqZej2OcB+JCr+fBiN9BHZkterb37mB7wyf/+E/yyi94LqtrW06i1QR4vMc81lbEPCxp7+Ee+2Bbj9qATwikBPNqyeFHiVvI/k2nfO3PfxmLU+mJD7vQ7zJWJmiGuzuwM+s4nsHy1lOecvN9vPadHyIs4VMdF9vLKN1+Zkck+aYN/oH5SMZiRKaT9hurrWF2GbpznBmYk6qJcsACOh7VdeDnkwCjFqmlesz/wtiDz336NH4++rhB/p6Z3bhEtRjw6xn2YktyUvUarzeh0wq/jKSDgUFtwEwwmE1Fmkfq3R5fRTgcZzJPUQWZiqUeAIMhmkoq4GyIU6UzL8u8hfwHEygmL4BAt0rIYhFI6/FmRRRotqApEz5A6Vnkc5EYIfwcWFImY+o2DBaTkpqbyHOMkX5Jyla8dSJT4E1mzgeDbcOEuGfGY5/1/70tfyskyVzh52sgf2w0QmbMz4kUyV5Obsp1pteHUfQh1jlxSuPfjBEouKBK+rkPTT56CSCm+E0Y0blHcXUzQF0LbOyD2CkHTQKiNyJ/qyIym0Z+z5PajEkyZTBaQcp8INPUDYiPvj27QatVK8m1JhKmisoFMPq9TKRGEBl5b6OqASRIBkMeEBWrEVXrzYyjbstiseTczi6ufK7lWpe469Rz2KXxNqHXy8W1glUhQejFJtaL90e9bPm63/g5QavqVKD5OJMEmgyhq69HbOR6dVtph2WTJqzyeapEWOp32EWsSwS9lqo64AdBX9JgCceNVP8uUrfighl01oMtvBMDK0fotP1SiyLHBANNkGQjgkmGuHVs1gusJhg/c+edvPUo0PWIiU7bjAnaYxDWD3+KLC9c7+GX9egN+JUjhQhU7L2por2W2Hn+muN6n2pruPaxA7N7a7rzUQbnbCrRrs891kWuXNvhSX/jbt555TyvecOHiY+3RZiwW2HK9gdxZNsmQ3/c4DJpK//dSEsg98aG3UhoR9g7w7IZhp16sYvz2eRmPtm9qbFMGf05rebT+K+JwlLPs9DjXCKCHaQP6rdCygt7Wukf9HClIRwEgjey7wkIBrcWMpE/J2ZEw6Y+u2HwbqhCdhjEplHKFd/9xpCqNOrGg2xzbmkYBG0oRL1FZhkykukSwjLOAUz7uSnq320qZK6pt0HenhxAp8eUwDiFTIsZq3IyIUrZscpySQLcFF2ZcCjwRoKmBmC7ceW1tjPqejcqK2Izyueyb0Q+LhkCtl70+ckxEjYZkZGpGZTst4IUqtcu0H46y/ZPTRpRJzjTHkrR0K9rbB2x1soNE/AqvbMuYh2EQXzYjZVqM0U5dhiwNlFpovBLn/xl/NGRlyl16lxHHyXYEQnoCOdBpLDGqWRMiW14I6NVM+Fxa4lRVR5tYHFhTd/V4qdhZJ+Nt/zqZzyDk9MVqdllfsMF6spx89zROMNJH7nSBd556tkGhOkfIvhACgFUa24SwslQH/7ZsuWgMnzJb/0kprZUR058LBaaLtSKOFm5d6RGmfdVwu8oiqdtnGmLhHzNHPS4OmJdBCOaeueinI8qEhMkxKp6vhRTneBkvHS+BuxgcRtDsga/I5B8inLt4swowdTWSL4mYhP5hc/+bB5Yddgkk/2sD3KeVhuStRL8reHRpLP/09b1Hv4jX4/agG+amtQPHHcVw67cMO9+8Dzn3mg5+RCorla4Dp78V+/mj//wdszewEfecT9/+JbHs7O7ZdvVvPUNj9cbn9xAbYB06sbg3ItJjN3IF8wcVYRZLN7guaoqNqJ6447ziNW+qfGm9KhBpDeZPW0HhR1zAAc12TBnbtTA6NeOEk4NUCXsqR0rfb3xN5ek9znsqUzsqCbtBNhY7LmOeFqT9tVDdS30/2Y54OtIGlr8OU91WBGWkeqBZnRTm6wpqlASj86+u0d/DiQpB2FKFWwHA2srPcw24a1C470d2yZBbvaEs9V5cmni4qdzCrLvfv7chKAF+bXxLCpQprrlfdAHolcPBqdwtHI5jLrdpExsy14COWGzUqllFnY5b0nQHpuZ9Apa2GE06TEBUkaELGN/32kVrx4PsUmjxDGjGPl3I2oNYHxOGPc5b2f2M8hDl0hCXMvHOWEhIm5sdcRq/zYlCsyPES5D0w4EaTrLfriEtUluskESnqf/xg/zbTf8NXb3z3Hvu95FO5sThp6qaUlVxezWOzg/k1tNikbkY0qKFHdFi90qZyVfh4sRldmuGkFbdNxwSoY0D2w2gfPnz7GzM890GC5vA287DlzrQunFp8ETN+KMZ+oKnMM0Yq1rfMDOGpa14caZ485ffqmc5yiJSJjwCuI8YusgXIithaWMj85tI9fJ8zPxNdlEmktya6qgtgmGxbzDB1fy+r6raXd6DDAMjlRFDg7WHJ3MJdEKAun7Sy3tVYOfw3BrPybDlpF46iLNYqBfyfc+m41lkugzfv6Xsb3h+5/+1/DrntgPuLTA7l2gHzzxeIXdXUhP/zES9K/38B/5ehQH/Io0BLYx8ZJnfS4X5ic8/z/9Ot0B+Fs7WFfUH3HEm1//ITzpo+/h7X/4ON5y1xOx+5HTd+5JoNdgT9KbsVqkplqIUSRwp076/N6w/JBjujfvC3xdNPpoMKMEI7cW4xuS6Of7gygOWkk+y21GUxWgwPOFaxdlgll/o0hp4mKEsbFJ/jYTYlKukKd9bb8TC5yZLXzTRljjcXDS019L6yLNAk998l387pueQLXwMrbXG+E8mIRfxgIhnzn+STfJUG4mWQ6YeQRTtv0Z5r0GmTCTYOv34pkquXjsO+nB5go997tLIuDGcyBtEL255TZKQhANdBvTxCwn6/jTWOkYa8bz6gXuj9PtNpP/yRwChdtN1qRvx89LhlFKh1IFthOyZxivgZwAoi6KOTHM/gJZlpl5BRiKs2FJqnR/UiMPmJKI5mOmecrEfbFUm6qrT/mB7HTXCUokxjaJUEeReFWJSqF7Kg3UUQJ/DIbaiflLv64xNvFPLr6Gl8z+JrOdXVpruHpyzHz/HKmq+ce/9zKxzs0VfaBwJvKkxKSub0nbRGbjyrmKWYqXORXAb37e3+NNd13lsgks48DKJyoLD24CfRSkIfUDadtjrMHOGmgqjWEGZ+Bb7vp+Nl0tCQ7gO4dZoKw6QReSoQx2ykmKyd4F/ei/kdqInyfc3It8L38vsnX0IPvj2sC2r3E2Ym2kqQOrYOk3NSkYlvtbYjQcHi2o6lBG4VqTiOd71rvinrc8t6HvK8JgC9ckDsJN6jd53KEpjon5OcnK8LEv/e3f4P/3lKdSL3eItuJFr/05vvdTnsUhEFdb0eTz2FgxGWmPPMzj15esR23An1o6bq2TYH8+0V427Lyh5fRDA11fU60M9147ILlEfyGU4IgVKUrSfnHSYA9o9s1INotS/Z9eXmDnUYLQoASdNooCAEowCq1A2/WJxS/U+U5HhqYqMewm2quWqL9ndmxJmDMCsJU2gV1bmmNDfyBRNlWpmGOYwRbnuGLk4qSFMB4rRQeaiGsDoXejF0A0XNos5cYfkcpEJ8iN41JNeZspZ6DsMvL+xc/9IYTG6WvL4x6FqcfE4EzrIqE6eEpCNu1hF1dArWJzwEtq/WqyQYzTihvL1OqsDJGpJvyB7JYXjXgXNQmsGa2IFXmZkqmMS3LDnyo2HjIPJB/C6TmxuUffGUJLCfKuM5jOEGaM/Ihmsq9Jq31NBozTyhwUcaAEw4fKC2Nm5+fWhSIMKSmfZFBzGxgJjxnF0ENgKoHxc8/eulhauzFYSWIG6eVPEZGUEu18zmb3JvAD+/s3Qdvyf7/hZcSuGs9XSYb0WKvfgVE0pyR9Vq7VVKfR4bCO8h1qIn/04JprOOLlFXblqeY1yRhCEEtu+h6cwy5nxQq2sbBXW77q939YDmecjZLbQZiY4rWQaJaDjLLdilmXVUVD0mQ1t4mMklbbgy3WJoa+ktHPwUiSk6dA9la3X5QOTpGa9aahP2kwg8Xt9/ggUySrRhUUQLsY2Fts2VtsOTydC6NfWwEgSI2tImFbycyMmY7BngnkZJIRZcWmFuLt1mIHw99/4+v4gb/9XE6HyL//tOeyqBInfYXvtzyW+vnikfgwAf8xk7p84NejN+BbC8aS+oHO1rz0K57Ns17zY6TDOY971TEXt3schSXsRdJxK/D3doQeM5u3MNq1Ypo6oyWQIGbkZc2lmmE/SKBMiThhw6NQaTLgOlPYt0QNQlpJpUbm24ep/W++mU9WllilSuDd7a0edzzaWcY2lglmyeoNcJD9KTPDFcozUarXFC3BSXDKVSDR8MDhngTXK20ZKGMalewYW6xpH1rlywZmhGLaM89DNcxZhzmbxufW45tFLdaEqSzbfmb0qqEkZqXSn7xvcT1EP1O16HlbjIOUtAVgzr4u91MK7K2qiOIeZ00p6gsJz1CMUZLuv+ynbqsiHWcCptfjoihCctLXtx5cD7E2ZduymyJJzXmq0RjKBEiTx4vKQNEE43Ufi3e/XsMT74FyXGFMqHpVVCS1Zc4GR0GRgmQkYVIeQJoFQpRq3pikSgpGF76gsrecY7jIV7zplfzAx3whG1szq+CFr3+Z9J4zye0hSpZisqTtFRrV3eepek1SeaZuk5WK+X88/fk82CdCXbGaNfy/938f/3R4gYB5CQnwOwJLGyPV/De/4/uJ0eJcpKoqmtrTDxWbkxm2DtgqCFNeeQy+d6JmcOJ8l3kd0Ts1ZTIj/6eN9BtBOpIXcmY9HwDlKkQjcwmyOgEJ9ABhXUsCZxNhK5lk1Xja2vO4/SMeXO3gTKJ2gYvXdrHqAtltaubLXhIIm3A2MkRD3A1ynQDGinSSZPj5v/7FfO6rZBbBa5//fC5tAp/3ipfzl/YqPvUnXwrAyz7nuXpBPSSbf5Sv65D+I1+P2oBvDNidBfFoxdBbLq0C9Vvn3PGfD/nuX7iTO/+fV/O4/544vsPhP23D+v4dqRCze9g8EBeB2V0N2xsizTVLtYbuQFnjboRCs9d5mI83QZmKlnAnVcG3Y53KZLRpELdeA9ZBj3ugLYhAVFlWIfiN5GFx6LKjFtudOLk558o0u3NVwjWI8zD2Fkugkcd/5TlfxNN/4mXj+xc72YhtA4tZT9h3hMNG5IXBSAxpQgmwxYRmEvWLCUquyNPkOXn/J8chk9bCrgw0EkKTvL66ecNw2kBnFdlQFMAKKdDkBC1P47NChsoJR6xGox/RxJ+FIkxiVC7kPxhGQiCcTVp06IrxQO8kwarTOAwJCllwOtZ2hP5NSVJM1vEbrZy1ZSMvkoSOijFJAUVyJr/nAN2M+5XUijnbx6YEaSHnzDjtDytyQzIFMcrtJklg9H/yYcjHsJegmo9XnBIAoSQZmUmfx9iShByWBifvocc5dhUpwZf99k9KwhMMxlaiTojAXNjtpo7lvTLrvvAl1m4kds7D6FURGR0UXeLTf+1HsCorfNknvJB/Nf9qOh85HcS7oXaG3Vqm71kDt8wdKRmsjVJRb2r6WnoorgnUjbQnQpBxt3hLPGlg4YWkmCBmQqMmBqYOMkxJIXeCgaMalgG3GPC9o2qk32+bIIlTHfmwGy9x1M/YDDWHxwtBIs93NK0nJsO87Rm8o608jQ181IUHuPv0AGsSeztbrl7exbWe0DkGdeZLyRCyWZJJooSpJVHxq5pf/bufx+V1wNSRn3/ac3nz4cDxEIlN4q1XtnznX/98Qkrce9QRQyb+PXaCZMgy1Id7/PoCHsUBX6jIuaqwhJj4n//gi/iMay/lXHsBgKsf7lhcTKTf2IcnSl97dr9jc8cgZKxNxfamgNkdGELDsKs38yAWlyw9nFbimpWgOhHIs5BwToWh67ZywdiVVO7k+9wgcGzUo2gvtmDQvrjcyOJMKv7q1KpkLmmw1xty1CpMg7jpTYG1Ae1FqyzIUIJ+tlbFG/7Wj7+Ml/z1T2NzfI0X3/867M5QWhif9RF/xKve8mTxAA+jnz8gGzD30AlbmD4fe/0nM+Ef6lkfctV89pTJPHWpfIoTXCXQsr84x3WG2SXD5hZNoHKvuYkY77BB4bfSbxYydFRNcdH4B1MkW8UkJzPZNeBa9SzPhjm5so91HDkVuf+ak4KsJsjzC7T6Lc/RjKOw400SOVQljH3x16e46mXtfkaVUiV+CNKyoExPK4HWadvEjDa9qF0uWmmTOQ9VxGXoOGb42JQxwGVwk4FkpS2VHf/KYCCviIImfOV0GiRgN1HtZLXCrhIjBVwOrFF5Wt7+ZAWCNyC6+kxA3eS/Wankp/JJb8eEDbRXHjEtJC8e+BhBpapWvABypfu83/4BqkoklCIvlI2pnKAFjQus+4bB11hFKmwVadoB7x1On4cx1LX6FlSR1Mhxjb0bt1OvmTSIXJFgxc+gEa/6tD8I+x5RM1gnGvid3S3Hw5KDCyvWvubq6YJzyw23nD/meDNjZ9axGWqB6W1iPu/Yn21obMCaSGUjG1+z125xN0ZOty3bQVoqw7YSEqRyIH7r2V+EjwkfEpvVlrUduP/IcbWLfNtHPYe3HAkCcDCveNlnP5srq8gQIrUBYy3hIWZJj4V1vcJ/5OvRG/Dz0l7SXut42n94KTe9K/LJ3/1y2gYWFxMnTzBUK2iOLLECv5NYvq2m369J57wE0asNcc8Xi1i71mEdqVLdt7jR5erMBINdCQPZQCF/helI0Ql5LN9Y7SCue8YbZehTgn2sJbjYQVnZHu2l6xtOIFgTKYEfm4qNp1TQphC9skogOfia3/o1/u3TnwV3/Z4ku6qTvnd9QPTC8h2SwRxJJUY76VvX2QTkrPlOmVanqwS+bNc6Wfmx2ESpzqLBzTxcbuVx3b/uHGUAzpRYNv3Mkq0bDfaT9kD2XjeDIbXpTL99ijbI64SVbjtBCgrPIiMa+eTp9hmvxXWy5diYDD0nxsTATj5v2jpS6NzpqPRUUeyWZT8nwTZNJJy5l5B1541Qr80gJDtTFB1aaQNEK+x5k8SUZoqy5OORq3RFAAq/ZZK/oTmazQN9khBFMZA6V0hnuSI3K1denMmMBXnK3Asy0jEmpiLVRPTpShDMbYx87oGiuhAto7zWLQei9qlTMlSNx9mIs4nBO7yXL1G3qc/c3K1LLJdbKic+9MPgZF9dpO9qXBVwLmJNKhB/yq2ewZahTlLFT45xpS6DSHISvQYcb2mWPRd2VwzBEZJhtrui947ZbkfXV1yJS55804Nc2iy59/IBO8st104XtM1ASobBOyob6YPjMM145/E5Nn3NueUaZyMhWfpebtv/9Wkv5OI6sB5CMQ16w8UtfVSPqj6SksVZ6AnElXj028WMw9XA1WyWZC1VNYF3HvLdfrSv6wH/ka9Hf8AnYUjMakuYJy59tBW9azL0B2qCcwC774DNzbC5WW6k/ryHNkhf3IJtpCeZSXGglWUwMhGuNwR1sLJrWyrw6Y0rWYp8KhPLxJsaCU7NGBCEMEchDuZxqGAwmVymFWB571xFaJAQBUAah7ugQSdO7tgus+YRjXgnPUNcIhjHH7z5DkwVxaOn9YTKnXFmq+cegKbxrB5ckmYBc1K9Wz8/GSSAZlzdn/0SlXHBCVhVGJ1r4IB0vofDRvT/u0Fu+rlqrCUaJnXZy3JHPfVjUM0ufCW7UgAoKwhy0Muvya0dC2EnnGlLpFp70lnKl8aAkz/XDnasfjnrqGcmMs08137qADjsJrEy1vOSn1tkmhnRyQx6GOWEwUhPt0okVWowqGqh0Up3sOP4ZpOKrDQ2E8+AjCpokuI6Ro6F9s1L4jXopqsMTZwpk/jl95kXk0Y//cK7SCOyknOe/P1Kcr2Ua21QyEP5JSbItWqScDxKG0XbQnbl5Puk3v22ilS1BG6AeSsbHaJhezwv34VmMUi1HS1GIfy29QURaPV1wyAw/3bTEIOhnQ8Mg6NqgygPqkg9k9fFaAjeETaVJDXBiFtnHUkoIS6BWwzEZNj6CmcSlkSIlnkzcDDfcNLNAHjH4XnZ12g4urpksbelH4RXkJIpPvtH2zmHp3OCdwzesTvf8vInfwWH0XBl43njgxvhsxqDc5av/cOX8iOf8MVUIbEeEuDofSLFSOo8pqmhcsRtLzHdWoHvB8/pRo+/Mdjl7DFFc7sO6T/y9egO+DE3yw0hReZPPGbz9j0W9xpSJU57QoBCSHaVBN+TJw8yOarPMDjyZYXRLMWA2TplUgtrNTYJ24lm3GQCFVqNowHZUoa5ZMa+1V5jWGYmILhgRzg+GnmfpBKjiA63GIOCSeDWsl+hENrksdREqYqypWYmeSGVrPXSovi//9tPkSx8x19/Fv/4NT+tcGticcOG9cUd4nKAHc/e/oaur+jXDbeeP2LVN5yfr7lUBQ4v70jyMpvMFEiKXrR6LJIRlzwLqEWuENWSuL8Fw/xgQwiW9ibPtqvhNPeXDfsfcsTROw5oblvRPbAQApoy+mOKpbLOJLuUtei57aFJFxNY2Oh8ALKioVbS4kD5/5TAzKJA1H5ynSV9z0lCp38mjzUVtvh4YzHaNkCDpVSxEK3KsIwprHOr0tCsjJBgK6hPYfbrtVWQh37MFgqnJG+Ufi2SFYVIUh9/tzWERgmDfU5WtO3UalYzSFWaFLYtrSG9QE0SBCyjAXE+QYJStpA1glwY1Hdh/P/Svqjj6JFQR8wykBRuL60GF1Q1weg3oGqTqAN1rIu4OjBrBvqhoqoCzia2fU3XVcUNEAN1K5W/ZPihjDkOQRQzdR2wRlABY5NO0ktUTWIYHKGrCGv5MpomFtY9IMNpnCKAVcTOI/GkFiOeKpG8I6wr3A0bNp2Y2iwa6ZHdujghaiC/tllgTOLoZE4cLLaO9H1FDBbvxVHvJM7F7bGKhE1Fu98x9BU//In/gJPe0zi4ba/mGb/+Y7g6YG3iZ5/2RfzYJ7wAkxK+D2y3gTAEog8YZ0WSqI56pq15Nxa+6lNN7t0/hmD9lB6+in+Iw/MH9XrUBvyUEmndYdqandbynF/+ScxOK3yeK4krfxUw0B9E3NZy9SmJZBJpHmguCiEnLOQG214z9F0tAacRaVSYJcKFgbR1NBc2dEet3Oi0+rGDsqx7c0ZLnSFoCb4jY1/mkdvyGcKkltdZtdlNRit9CyaOhD4TwN80YLuGPAYVC92FqG59aaxws0GLWndab4o3fa5C/8mv/izsxhKcKicwu7tvRphHTk1ivtPRd5Z7L50jXmq5vNjHnVaCVieoDl1JluIykHbjGX9ws3WlWi7aeYvcpNeOTb/E9Ib+YMDVkWpAJgsCh3fv86SPvJf7DveVjMWYoWcPcDhToebko1TS+e+Jom2Xkw7GW/VlR5UMehPP89xtwtRI0M+PKV8hVbpPOmJWpG/KFUhg1FGvsPzdZDsmK1ZjcM+JpHy2XDPZbS9pAR1n2g7J961JJZ5bAnY7MkALgdEmDcCJYTcq2jGiTiS5jssxzNtcnPdGvkV+YxPkmgWgs9IeqRLuVP39lSwqlfxZRQZQdN9YxKhmq8l2o0z4YGRUdGfHbZ3JVLiSFNgItTx32FYYk9hfbLEmsRkqum1TrH73zq0J0dLWstFHxwuB623Ea3WcNe2DFwth37sSVAHCVjX6E1VPt6nFAjerBrIio4nEa41cqyr5TcFg5oG29jgX6fqKVddwbrnhtvkhziT+17XbADjdtMI5mHsW84557Vl1jTjuDY4YLf1WkgBTyRCd+bLjGa/5IW7YP6UPjp956tfwi5/xxayHyKr33H0tsul7/BAIOhDHNDV23vIenfMe+rt7yO+PoXUd0n/k688U8P/1v/7XfMM3fANf+7Vfy3d8x3cAsN1u+bqv+zpe9rKX0XUdn/VZn8V3f/d3c/PNN79P7522A6m2tDszvvo3fkb6sF0rVUwLB2+Cw7+SlJylN9XeUF2tJOBauRmGOWwrvYFFQ7y5gwda/F6Q6rWJ9BcXVJtRMmY7o69NI6lOb9ZFK62Vb7FPTQajDDG3NcRGKvYwS2eGo7y3deE3Gg4/XF5fkAVFed9NUqarQKm56kyCBtDlfoQEr91Zx7Dr6K7U2qKwrE9mVPsdKVrSrscd1UWj7da2WImOgVacwTJDfAxICWpg0ESgEk9vACpolz3LWc/V8225maYmstd0NBeu8g6VGKXBYtZOIHJlGL9bLzGM1bUJRhwJszvbYEfOgZWgJwZKkGwmsZnSAkh2JCfFPAJW35tBzXb6zJmQqW1mMBONvHosIAE0tygKt8+M0LZRZUdu1QTV3Zs8fjnzOLIsMScL2jaxvSmIRN4Xq9eh/I2RHJch9XysdHunls/5Oow1UqHmTk2E+tiMiW0C28lxizWlpRXz+OiYkwNbHA3DXJMONfXB1+Jo2ITJ+dTEo0pS5WuWmXKryoCtElYteF0tSmofLc7IqNjgnQwgaiIhWhZNT0iW03WLsZEYDV1XF027H4SgF6MhDMrPcUnUBdpGMHkQUTDEXUnyQu+KWsBUSfX0YM/1Euh1m6udQT43yTUTgqWuA7Nq4E+Ob2Lta462cwbvJBFBUIb9+ZYQLdZGdtqOq8OCEASZbOYDwTt+6mPupOu2WAxV27CKlj+5/5DtaoWd77HqorDrDVBX2GUjkkR4TFXq7++KyWAeJqhfN94Z1/sd8H/nd36H7/3e7+UpT3nKmb//k3/yT3jlK1/JK17xCvb393nRi17Es5/9bP7n//yf79P7p37A7u7QOlje5bBeevV+JzEsBVK0nWE476mO5Y4ZZxGcLb7lbm3xO4HUANYwvwzJzmRanEuYOrDY7dgc7RUynN+Jak0qNy+3HQl3mPFGGptEtVYmeRCYP1vI5usrzOX/q7UpTmpFMuXGm3Gs4PAjtHIrN+8Mw8qNqGjFM0tfb1JSbWtVNBjiXKoON/eEocY0ot+N9y2I5wfMSQVHFWkncNttR9z7e7diS2/YlG20gy0mOSlJYLK9GLnEWm/WMzmOdHoDrcSx0DQCp0bj6O9b0u2I/v+JH3Y/d913A66OvOHeW6mqyPZoJgmFjjjO/Vyj0wl5KHEww8EGsrtekd9FCdRuZUafA1VdmGDI41Izmz81UeRHyZCCQvTIYKZYCUSfFA/MiURuwcQmFm5GZpznYUJllkKWfQaKU6M8N6kcUY77tIed9330zpdjL0RQipuen8s1ZP3kmlISZ0aoSrsrit6/DOuJShzV6yfD8uU4a+zI5EOTwG2Rlk6C1I3IQ4b2CWZMZFwiBSstJf3aRGWVp6x0yPr8lF8v6IWpZWBMVQW8d0WFYYzY+eYkzbpIO/MFsu+Do+tr+nUt76WVu1MzIucifnBntPaYVNp5xRBK/fFZVyNKM8twDmWoTd6mxV5XIOUQLCFYNuuGqg7UVeD+oz0qF9n2dfHNr6tA03j6ruaBwz3O76yZ156L1/bkY/RSiNHwreaJXDk6Yu0Nxw/cS1XVxBhp2pbLlx7kpjueiD24iWTde67kPxjWJPl9r49fX8BZ5e0jXqenp7zgBS/g+77v+zh37lz5+9HREd///d/Pt33bt/E3/+bf5KlPfSo/+IM/yG/+5m/yW7/1W+/bhrUNcdPTeYgNVBu48EcR2xm2N8DuPQnXQXuxoj4xYier5K6474mzKAQxhRvrY0NsGeHHTm5AXVcRzw0Ffq1OrWioLVQrqXQlyMUzeuxqZYmttAfk7qjVpMLIVued294Uo5U861z6nSM0y81bIZJN7VYN6uKVZOTlPI4s8QzzPvTsWdi/6RSSwZ/WMIt87JPehV/XxHMD9kg8+NurFnel4p433CoQdt7u6TJnKz+7tQINR4qDm107WLvRr1tHDjfLgdmyl35+AraO87cf8o633UI6rgnrGr+p2RzOOH/zcdHfxypJyyJ7ziuKINtDOV5Gg1Cx6M0e9plLMVOER6FoU0WZCZ818wlhgueKUhEDrEDd2RIYpglaThakP16MbFSmJ62X8TgWu9uHQPNnKuNekjTbS1+cvE2axGSUKsPzfiFT2UKrp1tbRbFS9MCJDDS2YpkcF4E4i6IuSYwkxKCjeQfpybuNbE9OVk1OLhV5sBO5ZpkiqUoRrBxvP5cE1QxG5IFBvovFaTIZ0uBEApfbMvncJor/RApi19t1tQToMI6L3XQ1275mUFZ+jJaYDENfcXo6Z3valgvEmETVeqI3+M4xbKtR0RGN2OJmJj5nUTIWXpUSScifJmGrgK0DuEg999Stp5n5ohJIyeAHx/a0ETlfNKy3DXUVmNWexUxMcvptxbar6buaFCEMjqunC/rgWC46FvOO6C1xkIE5/5/0Dm6/9TzV7gE7Nz+B+oZbWd7+RGaPfyK3ftTHUp+7QeYCqMnQB+VSSP+9/bz7ze2Dd71fAf9rvuZr+Dt/5+/w9Kc//czfX/e61zEMw5m/f8RHfAR33HEHr3nNa97je3Vdx/Hx8ZkfANoKnKXvBv7Ns/8uP/hPn8X6BqkY3AauPnk0rRl2klSuiyDBsJPqwewOLG5cwY5n+7hBAq+RSs52ltg7hpMGVo7hIAi5qRZdfSY62a3cFGyWQ2XYNBvk5Bjsxr6t7bWnnNn7kx6nOKsxjpw14O6ea7CTG31YiI5fYOXMyNb3WobSPxXG90jgI8HxPXsj43kw/N5b75AKPI7BZPjwDdWHnhLP98RFKKS4aQIx/Y7kIBlrCQpBrTsLwzyBXYsm2a4c4Z1LUjLceOMR6WDA7svNjoTA7zlRqCOb11wojPUzlrU2lRniZTsyhJ1jYibAKeKBS8QmEdqJVj4H3pwsVeMxmxIDgWKUJA5vE028JnjViQbmNLHDhcKziJXMBogLUSKkVhjvcRalws7QsCZNAt9rAuONJlUZHpgcC/2cQpaDwrJ3HYq8iHmTiQiPQVnwdmOFN6J2zdVKkALXSRJdbaA+FUVItZ5I+vQYhzlsb4B+X66PoAmHn8u13B8E8Vrw0grKiaDRRMXobPtMCkyDkjwVuSBlWFxPSDSk3hHWNVFd6iQxF4hss26wNoqczsZijRs6Jy6BnYVBLG2Hk4YULNFLZW/riK2StPI6K62ENmIudKRdL4XCgcfYxOLchnq3L7PoqyYQg5DsfC+wvFN2/rCt6DY1VR2Y7fTMFj3LRSfXVLRcOdzh6NqCfi2kOedEo9/MPK4KBC+tiE1Xs9k2LHc62p2eeuaJwTCYio2HTbCE3QO62Q5rW9O1SzZVO3WU/qBcgrA8/M/1Jet9hvRf9rKX8frXv57f+Z3febfHHnjgAZqm4eDg4Mzfb775Zh544IH3+H7/6l/9K775m7/53f5uALuzIK23rE473p7g37/o6XzFy36FMIN6Bd1BItw0iFyoCaJH1n47g2F+rhPCmk24qzXVGmZXpJo5/LhBBq/km+nGluo7VmMQKJW4S2I+lSFkJpC8sq2Tk99DJnjl4SlaGWWWv3ygwvMYhoMgvgCtGva4VGDfMvsdYBalgsrJhknERZQb7KQKxcjNF4RlLYxpSRCsN6QHZnTne1Lvirwtk7iSQsKF/Z6DbFYGGLC515nnxxsJktVRJQlTkwirhuW848Ybjrn0wAHHp3Pqcx3DtRZ2PZw67JWmoB3Fdpexqi05R/6fNAak6bjX0svOv5tE9v9PBaZ28sXPyUGitAHyFDksxCaIfW0+7naSQGTpnF4PeeaCiSO5MyVl7lcJ0xmRMiLn0e/EQthLur3V6Wi0lBUCfqlJom5fSSCjzhzQazwHf9eB2RqGZRKPiV4+w/VMFCbKP9DCNTZgBvm3vEeUzx5JqxBbec2UgY8RpEECvaIcbnIcQecWGOidjL6t5aJKHgm4baCZDzi1ru3WtRw7NatJweCqKNr7KByKrne4JhCjpak9IVqqKhC8w7VBht1Mr10rN/uo46NT5tHUUaYOBoOtg5BK21CmAqYIm9OWZj5gWyX7dZUSXWuMjXRdLW0GnTswtYJOybDZNlLl+4awdYXwZ2cD3lvC4Jjv9azWraIhyIAi7/Au0lSBk6M5xiQur8EHaVcmYx5Tkrk/j5WiFZ+Eh3n8+pL1PgX8d73rXXzt134tr3rVq5jNZv9bNuAbvuEbePGLX1x+Pz4+5vbbbwdjRCKynMG2pz/teJCGYT8xuyjwfNgPuMs1yw875NMe9zZ+6e0fQT9ITzhZRGOrDOFUJda3JepjHaiTYHnTitXlJTbr1mdjXzO/pniZ2yQJxWQJuzrqxDrKPHhgJPvpio3OPt+IlG9aHdrOjoxnhbJjdtvLk8VaSVzoK0lq5hI0TWfP+APYrT0rMQuO9qphc4cnzQKzC2sed3DE2+67kbiqCsM71Umh+RGBSJNtxE0CfJOKo11qYyFlhcEKiap3POnxD/LWd9zCrY+7hmkCN5875p4/uYk0i7grtcLYsL5DI5KdJCz5+GUGf+ErjANjipSMyTYaeZ8sJUzhISTHpO+pMG2GnU0wMA+SzLgIs0DcOmH7K7GuoCnRjLB3oyoKIDWa+Vg5TnYt10TECglRE5jYQGqiXCu9JexIslnOV87ZVPOerCI+vcGpQyNMEkiUK6IITW4zZIMfp9X8VJ+fLMXtMV/HYUkxB8oEvdBQEJbMWRnm2XkygQfjpe0Vd4J+T7S/bREDpqAOiSuZ3mhmAXNakeqoFa8YRBmbMDNPVYtr3rCpMRZ8V9HMB8ARlA3fx4phcLTtgDHICN8osL/vBTKxapgTvKPe6bUtANEbbBNE119FFrOexgWONy3ztud0NSP2VZmIZ528B0lY+9FbZjvKxO8qqjoQbCJ0jn5dU808VZYJ6r5YmxjWwqeJ3lLPPK4Sj4BCVNQVBstmaGVoj7Z5UrehjR7fVMQPVtj+YdafVsVfr/DH9T6lPq973et48MEH+biP+ziqqqKqKn7t136N7/qu76KqKm6++Wb6vufw8PDM6y5evMgtt9zyHt+zbVv29vbO/EyXMQYza8AafB/5zs/4dMJcYPzmolSUJ3ft8wu/+lT+6m33S185CmQXO50q1ojxSjoYhPR3IDen+Pv77Ly1Ula+3uRmqcC1eZqZ9UbgyjC5KWv1a9XvPVVJeqF6g8xVZHUqX9BqJc8rDGeQKjBDndpvJokOmioRl1mDZ2TududGclfWv0OZNGcS2jdltPx1iX4/lVn2y7bnLW+5jXjYSHIwiBOdO3FCQNM+skmMsjEd5GNK9Z+gDbDjxaBkMRBWwrQPhw2QeOvbb6He6bl6suD8+VPufeBcOSap1t7uh69Y3rAqzHQiWtVyhqhYpFLk6n9EPUpAT6bMUbBBEQDtm4s7SRrlldmaNxkJ6tEUt7q4rcpjlNkF+ln6XBO0cteIa7J0sonyMw+EPU/Y8zIhrbeSTKH7rn10kPMTW4X95+JvnpEi06vuvZNrME9KLN4NfmwPZE6BiSon1Ws1zEfyXqy1599AWIy9/9jwkBaOIAxhJtvittBekZkTJkySWf2OxHnE7g5iVV0nYf7XQY6fIhUFMcmWxxOjJGPBVrG0XWKwuCbgqkC7FAKBq3Xug7YAxBDH4oOlcpGduUDo2SlPhuSEkkxUTaBpB1wjiV2KlsWsp62ydh/WG6m26+Ug10Iw4tTXePnMPOpWXfusSwLvq70upxV+W7NdNfQrQQCCygybZY+xibCt8IPD9xWuiszmPbu7G9rGyzm1ScfzgttIi+T4/nu49o43E7sTrq/3sNIj+Lm+gPexwv/Mz/xM3vCGN5z525d/+ZfzER/xEXz91389t99+O3Vd8+pXv5o777wTgDe/+c3cfffdPO1pT3u/N9KAkFIw1K6iuyHQXHP4nVTcy6qV4fWvf1IJoID08lzCXGsEatRBOG5jMSeGze0DxluqQ0fcDzI32xvMTR3pwVZc37JXehqJV3mjirWtFQi9GKlkZMDIzdT2D+n51kJkqq9U+B2lRKtfflwGkZuZRLvf0W/nLG45ZX3fjgScOo7w4dJjD2vZhmxpqn3rtOsxh7VWXfr8KnHp0p547V9uiwwsE7aMF8ldqkQiZT2kXSG7pd5ABfaGDr+uMJ0TF0GXGNYVzYWt6KXbgGsC3lSEwfHkO+7j7Vcv8Kl/+a38+tuexKz1zG8Z2HY128tz7MUl9iCWQTF2JUlNnNgYZ67EdOBObqegbZbkpLWRj4HJSYRLOpBGq05NJEywo4dAG0Vu1Tk5Jop8FIKfQb4p03Mfjdjc5/fwAuWnCkwVC7scY0lz8ViPvRN2ejdyMkyvXI5M5otmopsf4fWkNsz52rFe4HZJSClcADtQjJ1AnjfsSK9ezG7k8Wol7+8XCJxcSUJgPYWAKO2tRGxMOa5WDY7c1uDniZSVBgqHZxKcjIXVY9ZZkU3NgxzjHY/ByJAXh0LeFbYVE5l21pOSkTnnCn8bK7Pkrfa/Y7DUlcDtlYust2O1HAeLNwnrDDFYKicokjGJug5sB2kNhGioXSAm8eGvXOR0mMmEO2/x0TDbW4s/fzSaiOhQml59KJIhhigcgh3hECXvME1ku2lKGyH1cm397Kc9h+f9/o+xu9jyn25/Hl9534+z1265vF6yOm2JnSgT/vOn/i1WzDnaRPxqw958H7d3UMZdXF/jykngwz1+fcl6nwL+7u4uH/VRH3Xmb8vlkgsXLpS/v/CFL+TFL34x58+fZ29vj3/4D/8hT3va0/jkT/7kP9OGphjBORpXQRQJkNtKEA47ge3jAu64IpvWYJAhHTaRarnJWy/wddUZ/L4833USRJrLIsMJe4F0WuOiErR6Iw56hjPQedFXk2HQRLVRaZJugzCZtQqMUKbsBanAinRs2kvOfWIdlmKCYX08GyvC3hYpYDoSFmIOcJkYFZdiR5ptT40XWNUcV8RGtMgaJ6Ui0+ekSqWF6hsQlmMQzQE3HNeYNkKPyhXB7vf0R61A04BvpKqLBt5y6UYA/sdb/hLNfKC7tMDv94QTIWF1N3tJfHaVCJhJiLm618p27O8rLG/HnrQQ6XTWe4bV8+vrKMEmiNOe66xI6tQ1LdXI48kUspv10n9OKjkzEVCpXFIynsktBDRpegiJUw6EFUjbO2IUW1arKIdJFFWJqB/kOizeCtnCeTLcBsBtzCilU8hfTJ84Aw0XyZ0Vln1OAPLzk0EmBgZNSr38+IU+T1ELYw1hYkaVXG4hqGSzFUe9qbVpGsRlshxPTRJCFQXSt5N+erburSLJW2a76vduFdo37gzTethWBQ1YbxrqOtAP+pXRajr2jhQtrhVSnNHHrBGr26oJVDrfftPXRAyLZuBwNR8Dh0gLOF5L67JaDMWHf9hWpHUl11SVGHorznwuyvhcNyZBxiR+57O/jMPec3GTeM5rf5SqSaw2Lc94w3/h5572Qp7/Bz9KXQmXIKVAGizDbI/Lx4l170m02HNLwnU4/z2u68Y7j3z9b3fa+/Zv/3astdx5551njHf+rMvUFakb2HSNWJVa6G/wuJXD7feE44aP/oS38UcXb9YeoPbuo7DHsxe90bGg7YOuaIhdDynIfHu7csLQPt8Teke128OlWXE0K97j+RoyYyU2kqhEB16fGlEQBEEhbBJIFpCqE61E8wS7aDADuPMdYV3T3b+UKvKoFsvfmUL+qj83pLM3ekUdxHVPvNhTMHpD1wmBbcQcV6M23SCtBa0uY4NA6lESmsIsTxrgO6s36fHcxMFSHTvqJ5zC/9pl557Epb/mefwdV7j3vvNCwJp7bthdsZn1rF53gXAhyDbpqGKpuk1BF/Ln5lUc94wE+PwdLhP9JjB5loulSuB0tFVho8DSyZnx/XRGfPE0yBW9leNQJgsaxAnPQXHnsxOzmE7UHCZzMXILRIOaze6B2v7JATJb1ebeuYkypEkSG9lhExDyWaPHweZrTrX5HpzmOiVBUa19qhg98zWoJyuPuV5IemGux8Kboigp58Ilkbfmaz3PEche/1YuDgnCEhCdi2xXDalzuGOdMJkPrI2l+i+mTgbc3HPu3AqAxokF7tZXIntbSXKYe++xd+X4+VhT7/ZC8LMJ7y22CdRzz4XdFbcsT7iyXXC8nXF8PJfnuUilZMFV17Az69kMNYtZT+UiPlg2h3PoHFsabBVp5wPdpmbYVEIQbIShbwwYp+OCrcj3qCGquQ8usQ2Jd54mvuK3fwzjwA+OoDLBz/v1n+Lff/QX46rEV//uz2CrwMs/7ZncdS3SrzuMsZjdxXu8J15fuv402P46pF/Wnzng/+qv/uqZ32ezGS95yUt4yUte8md963EZg6kr4qaji2r16RAI/NyAeXBGc9uau48PSFGsOG+56Yj77z0vxhpeb/A5EGg15jrYPs4z7MoNf/agpTsvPUmzrrA7A095/H383tUnlj5z7sVO58eX4JMk2McmUR8bsZI1QpqKtcCgaZ5IasIjhH+Fc40pA2n8SVO6EsYb4rmBdFifPSRerYO9wLxurZX/IFa7OzesaWvPlfv3aPc7uuMWd+qwBx3+tMofPtGLp7JRthAB844JtDs6teUEQQLmuV9r6M4ZTusldj9xNDPsvLXm0gO3YJfqi3BSc20+Z33/Do1DZI4mKbltVDlklCMHNkAQkexyp9uTDWhim0YzoiTbb3SccWwfchnlirOToI9NZVyx6OUVIu+z770Y8hg9t7ExRKIka4OFrYz0NUNuqRhiUpRiGCcP5rkM+Xd3aoqHvfUg3gFyTk2SKl6MmlK5mWU2vZjuSLCxWklnLwWbWfiZyW/0OplJkKfJSYAc7/6cnnMr5j9mapFrKIOM4jLIts8icTBjGyPpE5ExsqaOhK6m1/Gxpg2kWwfJndQetxBg0WPcRmwV2NvfMK8HfHAl2J+sZoUwl6/X2Ik2vxgT1Qm/rbHLXqRu88jefMsQHZ2vOO5brq0WrFZyMYTBEgZLrK1Y19rIcbQ4F5nNPLedu0pMhrdzgb6vaBqP904SgMwz0ITOtkEKimAxTWC26NlcXEpSpDwV2wSsCTTqUZ+ikXG2Gyce/AnOLVvuO+zg1PHyz72T+44S/brHOIdZzj549fWPdP1pWvvrFX5Zjx29grpIxRB52d+6k+aaxW0M9b0Nxhv83UuuXVvSHbfE3jGrhiINMsHgtlYgVR2OMxxEugsRs7UCS2ovu33CCaYJItOrEn988eZCYssM9SINc2Owz0cyOwBmZ71kwc8l8PvFONgEZZCLntyc8Uk33ohkMGpysnXlBhuXgeiEuT0yrsfADDA/t2V1OOfa285BEhMQ2wTS+Z5wcS7JSvZCdxooYPxi2PG9CvsdYMeDDutJ2WluMFz5mMTpE2TOfJhFhoPA6YcNDHtRqsqjCgZLt22oTi1+oQFDq8iMjEwZ+WX08JClaEnJfpSZBBKc83FOxX1vKiuU5EB3QI9nhsjPWM3m1ogmEk4JcK434/yDnDBsLO60olqJzt14g1vJGORMjkT9GMwgqE2GxF0//us2ihYlCczVdgz6Z2YFWIqjXmzGxCG5RKwFhvc7idDIPoVW31OrfL9IhEXCL4UbkWqxjS6SUUMxjjKKhuTWQnKiJgCk5x7lwOaeenGfdDpGVtshWEQKqp71KSKafBfL60wdca2XqXQm0fuKdV9z2jVs+5p+1RCutIIqTUwYMrE0G+igBjZNFWiqwFZny5+uW95+342s1y1RTXwwEL0jRlOm6nkv5D+Aa92cta95woWr/JXbHmAxE4Y/LpIGS1pXhOOaamcQBdBGOCcpGLbrpozGxoBpRX/pE5wMke/7xBdILz9Lb7VouGPPcm5Z8e2f9AzedS2xWctEJrO4Huwf0UqP4Of6Ah5DAd8Yg13M8JuOew57/uNznslvfunzsZ7ijMeDM+zaUR1WvOOtt4xseKOBVqHgVE2Y+Pleokzw9Ad7tHdJNbBYdPT3LCW4nO+kel5E8gzzfHMEtEqf3KQBDDRHkiw0R2NvtkwayyzwhDj55arFmzKUBwBl4ScdmEOufnX/5Cafit3r9sGF3Ij0vdrWCzuZcbtMb868Hig98fIFiRos1XzGHtbU19RZT1sR/Y2+mPfEzND2hvpyXarPuAikeZD+fw7ouq9ZM14+01JY/GcMjtBjkHvHOdkJRgLvMN4Yk83wtZnIJHMGY0YnQzW7yRC47Uc2vLxm/NcOozNdHoQT5pE4kwAaG3GbK/75OmAnt4FKEMjtkiABPl8T9Yluc5CEoFoZ6pVRVz/RxNvJOctz6Auz3whsn1n5papXmD9fP6kSN76wEyRpy5yJiYIiuwBmlKME/jqOY4cBaxP1zEv/fcgVM5g9HSGYkL9vZVyyeM9bXBWpWi8MepNkQtxqxvF6JklDkrnwGRJPbRRCXxWF/a+yRtkIRahsZNvVxGRYnbacnswYuqr05G0lUE3MaozB4urAcrkl9I6hqzjetFQmsupb3nzPzfzRvbdy7XApap9NJb35JrK8eSWf2Yj2n3UlKppe2oFhGbG7Pc1iwFhYdx4z9NgYMLWiJVEUPu7U8en/6eXcsV9hnaHfSAZrd+cfDDb4/3tWMQN5mJ/rC3gUT8t7t2UMNBXWzvGnGx5IAocJjC3yN79MpGXArGsxspnFUpkLHKwsdMCtJMqFhTC0w06g7wzNkWF7QW6KJ4dzqo0lPWFNOG5wiTLfXjBeufG6rVb0emP0c0r1nav6YZkmyQWlmkIr/NwzhfEaNdObe5WY37Jic3Epr4+Mc8vXDpZeeqNV4km3X+Rt77yZWz70Gg+8+UZWh3Ox1b2hy1yk8X1JBdYv6d8EtTADzB+09PvCcQizpPp+gznoSZtKRg4Dac+z3N+wWTX4a60EKJeklaDELb+UnXJb3Wc7bo/rwOfJMJ1OWOv1WFhTqtaSCKkbXyZQ2qgtlUrOa04cjDeYjdFhSKojV5a/JAcTrsLE2Cb31Z1uA0aTy9xPd+j4Xkrvuzq1xdQmJ2dGCZpmMFQbCd5AQYHsxD66WgurPsvoplPvqq3M9k6VJjxuVI5I4qGnLydQhnFyo0kF1TEuybRD9LX5f10qvAqQ5IodL970Wo3aWibexU1Fr4xyWwfQ3jitaOer2YDfVpgq4mZBOAg6Cjfza2wtbHsSqmqwrNat6OWDpdnpGWqRrxmTBD5PRox5vBU7bSv7I3p5yzA4McPJsj8DvrfartDrvLekWcIY2GwbUjI07UBKhne88yb2bzylagLDtqJqRTtPG6jmA9YmVtfm4iWwCEWSWYoG5eLE3tGta0wdefsfv5njVcdyd5f/cNsn8vf/8PfVeyEVyeTn/ugr+Hd/+xlsY8LMaox9zNRi/8dXihQ55nt7/PqS9Zi6qoz28u3ugth7Lh5t+I5nfB6/8JXPlcc9uMWA9WP15lbioPd7X/b8M/Bl1jsbb0jzgDt1xae8vWY4+CNHGiz+1g73loVK0ChadBMoVWVSWHxq/pLlT3kwSR6WM2VcF1lZ6Yei0iqFRJW8JtC1pXvXjtwcdwfpdefg7RJ759YyWzwY3vq2W2EjPcy4DLhLIs+z98xLhQw5qZigFDkRCXIss6ogB8FMTsRIYGvfMpOBOXteqrA64IMVvfKul/bDvscfeIZzQQxaloHURprDbEA0ShizakFUA2C3iiRMGOnFzCj3dZG/W4Xbo9rimqgVuULuWYGQ2yhF4qb6fxMm8jejp0Q/KwfmPFsgzOTz3VZ4INbLgKTm8Kxuvqw0wvChGQN5bhOEVj/bgvUyI2LKvM+fmRTaL+dqClUmxEe/iSQH/kCOe5wH2B1EMpbVBdGQ6ghzT9oJsAiYgx570BMPFLHZ02sM+U5VS49Ti9mqDThlrRsnLnV1K2YybevZP7eiqiLz3Y5mp6dWHbtxiXo5sLu/KYY0lSYQIEE+/2T9fD0Tk5swODHNqaJY3e6ICx7JULcer719PzjMUS098qxcSQbWbhyaMxOofVjXDBs5uX5w3Lx3wu13XObkaI7vHVUbxADIyDCqqLA/aydIiEESjiZq8iFJ0k98/Gfw4x/5mZhG2hdD13Nw4QLt7j6znb2S6CcrhYrtDa/6omcTko53ul7av2/reoX/iNdjp8KfLmexe0vi8YrTjeft13r6c0HIZg/OSMvEa7/kTj7lO35abtYJPuZHf4wyQjEzq22iOrUM6pAXW6nOZyvD6R2J6lrFp3zqG3nNPR9V2NRCsEqFJZxNSkrQhFJFl95oZo9rtZYyHK+IQHVihSldYG0dYpLfU3u6xhtoE+mkxm3GkaQgHvqpThgXMZ1YiR6+9RwshGQW6wQ393DUlGo1Ew5zcMoyvryy1n31ePUXyEEwQWoT3SIJvyB7x19u6WY1bnfAVoE4A3epFlkjwm0w0WG3lu2NibDrsVe12hsoDonT72f2gD8j13vIMUr1yJMwJSCOiEre9pLMZDRF4f0ytyBKZZ6DcU7aymsnEH9xY5wmIAgaUJ+A35HWTZ4fHxuR37luPK7JjsqOMJMKv9/PY3/12jLjZ+SExA5CJkx6DZdENF9nlaoFVEmQN1AsRtNo+JQzG5D+dLaEzsemEvZ9XYtWPagPfuhlDgVOvOnrSlj1tUrdBu/K/8ektrmDK6S3wTtcLYiAHwQlCJ1Iam0dyjU9bCuqJtBr0OWwITYRv4NY7gYhB1aV6PfznHsSAvtnHkRGcJxU93avJ+oAHoLBHtckk7hrc6OUQJ2FhZdkYGtJDYRksC7SX53JaNzMcQjSTjBWRu2aOvG83/pVqCM/+je+AGPBhQ47n3PfBrw1/MdnPJf/67++vIzY/pUveyZ3Hwubnxihng6VuL7+tGUSYxv1vTx+fcl6TAZ8YxQKbypi79l4i9tYXvflz+dvfOtL+Q//8Nkc9fCL/+DZDGbLrlvytJf+xDi6tJA5DMP5oP70EnzDfmS1MKVH/mu//xFUFcXFLCqcmtm6pQrLPeesd3aTm+qkR57bC1kPbbZW+AS57wsS3KfBLZMDLUXr7jpD0OloRINZDuLEh8Do9UFHbxvsxslQH28w982wun0xO/sNttz3p0YzJebql2maXJS+sI7V5VT5AgmaByq6WYDTCvGmT6XPGvYCdu2kjQK4U3E5DIuE35Fj0FxTyNop1KzHIU+Zy74GsUYZ6EL6ywz+AoFD0e8XBru+Lk9QzLp368eKeuoZX63H4F/67wFMJ0S5nEyi728VGUn1eJ6rlSQx9oQz/gLWS7WfCXzloYjILvU6Ff36uO05SbA9hL1IdJQZEDkhiG0swV5G1Wpw6sVZkWraxpHk1fRGPe8T9XxgWNdkuV1MBmsSPoI14lo3291SuUg3VFQu0FaBTV+XwTZdX0kvflvRLgZAfPNzYhCCpTttxIjIG9x+L1PiukosaIOY7fTrWnrjVmStREM8rQmVEgfnwqI3NhGjESi/Va6Bt0KGTYJIhSC8h9g77GEtvJNlIKijpbGawBpNgILBzCQBceqsaHcH9vY2nJzMwSRikqmbGLCtl0Ro10MwfPFvvQJc5Cc/6Qu4shH/i3WIDJmrE6Xld98RXD71hN5j2uZ6hf++rkzgfLjHry/gMRrwAVJKpN5j6oouGr7j6c/gbdc6gdYxfM73/xR2gO2tXo1uxBr39/6v5/MxP/jjgAaoK47+XBgNTzqrFebY83QdJfhmSZNJ0ie2G5VGWWGQF9OdCeRctPL5Ro78Hisk6GZ4dgq1K1SfL2ZjRy93jDCuTaKoDNJxXTT2cR4YrrW4jcMq7NyfUze7LC+MYFauIB1TxCLMI3YQFURySTy9NeDlccGSJBkJ+ksZHWoemLG91XNwbsXx4QGgY4Q7gz/nx4Qh76dN+Cdt2dnZcvrWA1xnRBte6bHKxjcJ1csjsqZZUltZMwmQE3mkJgfSi1Z53TR58OOMeps9FfI50nNT+vdb+fwMxVNR3OzyZ03tlnPCYAO4tVjYZgtcGIfUJCcDoAS+T/iFbKPrx8/u9ziDBLhOEYw0HhNnEQQl996z7NSLVCx2MrjFTLwAUjQCQ0cDvcEOYkZkoiH1hiHWmCpi68jezpZuqPDBMl/2tLWMhDUm0Q0Vy1atb21k3gz63YRNqjFAOx+IydDWAr3UVaBxgaMwx9Y6i6AyIkVVnkDympTk6YGJgsSkXscXV9K/D5sKH41sbxXlO9MKlB4vVaWdkyWs1GAv17jekIwhJAjLIIN2eocZ5PvkrtUyHwC5loLO0ahaT9dXtLOebtuIM17+Dm8cZmfAqidAGCzxpOE5//2n+YXPupO7TwZOBvDA93z6M/n7v/kz4A2Hm0DwkeQDdu86M/99XtPi6L09fn0Bj+GATwJixDhLComtdbz91PP/fuXn8YL/8gp+/u89j+f80CtoL1aElmIX+rE/8ONl4liy0O/Hoje2G7FbtQHtKxoYoD+IpF1P+65G/MV3PPaoKsS/WGemM+qVb6QPnWF97e1Rq77caBRzFFi59PgzgUqhbTOR6pl8M08iz7MrR7KwuGnFdt2QrrQC63vhLuRedndj0OMlAdwGrfB15ZtiJq7lYI/C4cWlzSDHSt8jdYawFClW8/Y5/YWIaSInJ3PMDZ0gCoO8R3tY051LxQK4BNmLM45WNebAE3tLMpN5AaqEUL8WCXw6eCi2ExwvoxB6WHNCb4O8R57JXjT2WbeviM30tZnhbyJqMysBzASwRkfD6tTBqZudCYAfFRh2kME1rAX1CTOK450dKPr7YQkmGfxcK76ZIAvZhOfMRLycNOj7uF6SH7wpRjCFDOpNcWA2VYLKy31xsMWMKE/fA0YCZaVyz2RoGs9Gp8Jlt7J5PbDXbulCRecT5+ZrfLRU6kd///GeEuFgZ9lhjUD4276mcoFuqDi/s8ZVwtqXHrqiQE2S9tfGYrbjd0u8DqwQPl0i1VFkpptKzpuTHc/baJxY3aaFIEpua/ALtcceMnnTEOY61MhbceWsonxvlWyaDJiNunfOg/BVoqVTlC2qTTIDQqC1ibiphBthZZIeAapTx+6ylbkbJvLi174C4y2/8ozn8fYrPUcbT9j22OVMyKnX1/u2rgf8R7weU6Q9mBRhBkxTE7c9KSbSZkvY9viUqI8s1/rIL3/VFzDsq2wp98/deBMlSVDIj4c9XwawZPY9RoPU2jH/uKvsPfEQtxgIu57YJtx2fN/Cwi8VLCWwZRlVYfNCYU/nIJN7/xJ4RvlZXnYrQ3xsZ3AnFW5jcZ2he/se1V1z7CB68KwgAKn+JJDn8ldMVpjcV9KUg2AlGYjVZLa8SwJ7h7wvlGl+7lpFdVjR3RAlMF+rse+aU791zuxBw/IeCW42oyTTBr2RG3q912HVFjkPl4ExkcoVsV+kApWfaT+8h39HrTYj0TJSHBMzAS8fh4ziZFLi9LhnEqYkQCr382NlX62FZT/sUJztYi3Be9gTN7t8PeSWT4HfK3leHszkl/KaPOimEAcbSRpiNf49Jxq2NxIgBwtDDtwCedtW0BfXCGHPzb3I5rTHH+txGJEMUxor2bbxNLXH2YSzkbb2xGS4MF9zw3zFvB447maEaDnuZlxdL1itW4bDFn95xumqxQcrEjug72Xnr50umDUDs3agmg2SpNjxmi1f9JzANQm/H0YzKpdEZtqICoetxRxVgnIVmaz8G5cBvy9ZTbYltl7ktQXdAthY7GGt59jKbIkE9fmtVO2NWN5GP+l35bZWMKJEWQs/JZ3WhE0l8xUAvxO41iW6CBiD3Th+9ZlfxNVN4LgL+NUWu5xBU12H89+flR7Bz/uxXvKSl/CEJzyB2WzGJ33SJ/Ha1772f8/2/h9cj6mAX/kee/gg+ybQxIH53NE2ljr0zLs1Tb8FH/iZF/xtvuKlP0Xwgd94zrNLTzxZCWS54stf3Azvmq0rvvImQH1smD/gdBKZ5fDqklt2T2SwzNrJDXpnUiknpEeqVf3ZnncaK/6kMH023GG8sedKvFRq2RBFTWNysHPrkQBWHxuZopY5WYcV2UymbJu+nmzji96scqWt2v5k1BGw4uxNtxrlW3kVcptFbFaNHuNZlIpqgPUtsHeXbHd7TUxoyn5qgA0PzkvAiXUqx83kZKxSGHdqAjRd2WUPCfTFiCj/Lep5UV+B6Vz4kgQ2Z/ensKjXapCjHjNyLFIJyFip+o3yALKNbZ5KZycQfapg2IX+HPj5+Jx8rDMvIVYS+P3OGPgzlD/sp4IGuW48BDmJKRlPredzYnxTNaH8mIWX868qDaPWy2Z3oJ4PtK1n2fS0VRAYvvaEaHA2cjo0HPUzhiA+98fdjNNty/FmRjhudNKhIARBjW2CyuX6Tc0wOEK0nB7P8FsJjG4WYLCYlcN2ktQm5ajYTirl1ERRF6BGO8seM/eCeC2EJc+QCYWa7DQBZkE4L0rszOTUVCXcSnkNyYh1MsKBMIoEZWZ+1EQobiti79Q614zSy0x8baS9YlcOs3KkJvHbX/BFPOM/v5SlJhcv+7tfwOVt4MFTTxgCpqmgqa5D+e/nyrbgD/fzvq6f+Imf4MUvfjHf9E3fxOtf/3o++qM/ms/6rM/iwQcf/ADswZ/fekxB+jWR08Mr9MOWKxcvslguqWZzmoMLnFy8HzDE44q3PSDSpGf/65/i9PFAa8bee+SMy1hZGnzsxhbXve6GRHWq8q7e0O50XF0v+OaP/3n+5eueQbpPBmtM4eBpIMv2pqq1AZOKgUvWOhdSW34j5IbkVlJluPUkIUgQVcJXbQQGFie/AhqoE106y1B2I6RNmNjWZpOZPMiEMWDJdlA+2w46KrUz0gbZ2LF/bRDHMyTwZ27A6nbhCqxuHge+5MopW6wWRYOOInZrITGmBtx69HYnMVZv+XeDSCxR0tzWliRBCJTjNMMcsEsyBqIN1yTGaTulDJGZUbwVbIbT0xi4jZpAJANxNp7z/Dl+ITJA64UHUBQOeppXj0+qw04S4PqxH2EH/RyXMJXss9exytWJwPCxRoL4qSlJgM0jePuK2MYy2CZFS/ICQVcznRxnE3bmMQsl9kUjOaqR49J1FadO/HzbKtANDc5GfHBc6ndwJjJER0owrz3rbUN32sh5OehJvWO7kdeLxC7iT5vSVlr1IntFWys+VfJVabRP4g3VsRN/gdyC0cFO1IHkLalRS98djwnCrK9aj99mHaWM1fVbGaMd51GSkVocNkkQ9oPwdrIEUadeApjBEo4aks63B4T7sFVioMJxtnPFDtl2VeHz5HkVb3nbu/iOJ3wkx9eu4nbPY4GLp4HNEIldj9vfeY957PX1CNcHANL/tm/7Nr7yK7+SL//yLwfge77ne3jlK1/JD/zAD/DP//k/f78289GwHlMB39QN7fkbGVLi4LbbWezsYFxFHDrm5y6QsLSuIiTP937GU3nRf3kd7VXwOxoca7Brg1sJpHdGSqdM29imcnNPNuF3Uxkqsrl/SXOH50fv+2Ruv/Eqd1+8DSKE3VCg9thqIKhyOT+uzH5P0yA2ZfuDBBgdmSrDbMbAjVqp2l6G8hQimnpyF828EdhSkglKsD/jApelYUZRxBx4pza3OUBCGarjl5qETB6T5yfSQnqswSbccSWfFwybWxPtVcP6QwaaS7Xo75GqO+bKPcrNlsm2DAeB6kSQFJyeI5dK352EVH8K14OcP7cRjb9UX1rd2/FbL0qLNGrlbSomNqGdaN2T/J4ThlhrT1nJhbFCvfzl5u62QmQsyMUi4a4Z/ELeIyxSOedR5wYYZdjnxM/0EI0E/eAENRArYkqyErPqI1HmBSQrChO3cqPpT68eBE4G3VSzQNN4YrSS49WpDJzBygx5p+533jt8cDgbcTZysNhwsm25tpozdBXVRD7XDxXbk1b883cUoq8iYV1hZwG/lcBvOiW4NlGMleo4zhswSUinNpJaS1rp4IuYKzhkwqW610UvA7LEz96wOLemcpFl23O8mbFZy2hav6mhs8RFkHbGbsKfNKJu0YTN3bhVhQvENghTP5iSYBprigTSVoE4TzJHYaNIhBWeT3Vq1bY4FpUPJvHFv/8bMA/8u5s+F5/gyjbQ9Z6wHbCzBpy9DuX/Oazj4+Mzv7dtS9u27/a8vu953etexzd8wzeUv1lrefrTn85rXvOaD/h2fiDXYyrgr5OFvRsAudec6L/OtaTZHiEmTo9XmGaJmzt+5IV/h6Z2POvHfr5AeWEp5LzSS9dKM7Pfkz4v1XpzzlPmACwcXdlh0zXM257m0NCfiywurNludsqAkzO96kl2meVTZQem8H1kdNqrxko/1UnGjNrJe2QUYWrCYnJQGuWAxYaX8b3zyha3WY5o4vjcUSaQy5r8HhSou0yWm2j3UwTTOXFKa6Ma4Qjjf3tDor1Yl5G6Mn89lV66HayoHoYJiTGb1cxT8ZjPc+jlYKRyfKc8iDBPZySQxX41lF0p2VfS6XchJ1Ypy+00UCZINhP8Ek7tbWNNScbGXjPYPhFbPXdVYtixxVbXbSRwBJ0lYLd2vN6sfrgDTNQhP4ZhL6p7nzoEKlKQNEZMbYHF1zYho4NNaT9QSz+/ajzzdmDT1fTbinqmRL5oCZuK1Hq8cUW773tHOx+4OizoN9LfTslQteN8+RSFLLd7bo1zkeNjHTEbdbhMLyiA0QmByUoSKEmnQO/lO7K1pBnYOhBmRmRxSY/zPGBMYm9/w6zyLJuOd105R4wGv66J0bKYd/TB0XUyiS72Tq4hVSTEVS2olrb16p0Ov60I2wpb6yS+YIktxDxDQM8PSRz+Zoue9fFM9iVfh0nUKJlQiwFmQdwtN5aff96dHG4SHsvJkFh3A0PvISXM/Dor/8+6THp42D77r9x+++1n/v5N3/RN/Mt/+S/f7fmXL18mhMDNN9985u8333wzb3rTm/7sG/x/cD2mAv50pcm/vgQmMHtL0rrj5LhnPbS4xvLKL7mTz3nFKwpxLmu5pzrk94ipGanCkktUSy8Wjskw3L+gm7c0jbzH5tICmwOoNQWezuYpBbaekPgA+eyskc4jU20ao5JhhN0fQnYb3+PsATHqUiewuSYPbsIfgPLlyNtlM9FLI9fUjY98w1VkoLQKMgkxa+N1eiHVuE8o0pC32c+lrZITqIyquI2Vilwh8UJGG/QzcttAj9n0Rpv9DnLPtwT1NBL1CvtetfK21wEzSNDMcxUAQT6SKUFYOiiptGeyyVIhWAYjkK/KHSVYUFCLMBeUxa3VXyAPBVJWfNk+lwqyUx06mbDYQNiNgvaoV4QJo3ogOnm/fIztYIhVIuxogtqK97xrpLJftj1NFeiHimbmqSsx1OkzepRdEhH4HxD1RzRCQNMhMT7JiNjGeYIxeG/pu0pY6ttKXOnUzzRlL4QEzMSKFlUJVGuxvyaooqASMl6KghCkxkrgbQK2jlRNwNnI1lfcvnvIuzhH6FU3DxythUAYgy36ftkGDfKMX63FuQ3btYy+xcj+lpG2Fkxvx3OVHfuiYXVlIfwdb6g2omBxE7MmDLhTizly5Xvz+T/+U/jdWBLPH/2MZ3PfBqjse77vXF/v29IC6GEfB971rnext7dX/vyeqvu/6OsxG/Df4zIyUY/ljHT1hBQjM5uYOenL5Yo4ZWi2NyPUHQXfLs5keaRuNBh12bJNlD6lkeDW3zwIO3cjQzPyeNuyphfhtLI3yJ1HiUOlp63BdUo6sxmqPt9jjmrK2Fo7ef8c9HPAdAhUPKnq40Mr/PyrViqld58M5iHfHtvZAkMLBpoK1Jpn0ZeompnWVivXBEQJkvXKyryDzJ8wML9pxfAne1hNeoqCwqU8dl6Mg+Io0ctVl1X1gQx60aI9J1h5HyLjebGAn1jj9loQ+9HTP/fPMaMcUa4Z2efYAEkIidl5MUsVU5ZZJiGHmsFQnViB/7P6bND9qBNhJpKA3HKJsyhGSHViUBmf7ZQnoP4H2ZuhOAAiEwqLTbBRr/w6lgq8bSXY106r5PmWVd8weKmGqzZgrKdfSxXvnEjmoreFaZ4SYnSjUH4Khr6TXnkYJFFI0YCLoln3alzjjQR6gwx06mW7UxuJet2bJMY4w3kZqLPc7dh2NXZvy/pI5tKbJtKvGk6AWTPwR5duJgQZTbvYl+AdByfJhBI38zlzayeujm2AFnZ2t4CQGK2LdA8syvUV2xGOF+8HU5IytrbwREyiGENlhYXtTVFpCGlVrrtYJ+prkpgMewFnwVYOv9piFlwP+n/W9QgD/t7e3pmA/97WDTfcgHOOixcvnvn7xYsXueWWW97/7XwUrL9YAX+6rIGUOGgCf/NHXo5pBPaJC5kSxsYR64iN9oycLgcVE8Ao3EuC0M0Zzg3Q6aCaIGS46EZNNQmppstQHM46+5nx36TogdzNR3hWZtGPV68EMYM5rM/uX8qVof6aWfbkqnMCN+tNNWkQPnuccuIBRSIYM+ItG2sGhaH1/fKY2cL2z8evjuV4CaVd9zdIQPRLRQ+8Ic7lLrq+smD3Cqxvk5dUa+EehAlxMLvl4SbT6HKiMkVQ6lR64g9Ntuygh7oZkyI/16AaxsdStsO147HIBLpS8XmjPg1plNpptW87A8aMk+2Mvt5A1Ukg8Dtj7zq1ig7UsiOmEg4EVln7Qc2NKiGdVTsDUeFqXD7epgwIMRYZO1sH2laqeGcj26Fiq0Y5na/YdjXdusZq5ZvUabAMfdHpiikYTCvMfkmIY7GxzQNtbBUlOdi6kcw2SKJMAnNaleNTriH9PDF30uslGYbThsNNzXx3K6S/KAlDGCy7B2tiMmy2jZjanNakKgnEroY9BiTYWxmQFZtE3PdUiwFXRfrThuNLS6na2yg2ug4huk6T8ezmmQf/6aZnP4TQjt/nYV9QipwAxmVGxPQ12xFtcmvLMEQqC94YCIFif3l9vV8rH9uHe/x9WU3T8NSnPpVXv/rVPPOZzwQgxsirX/1qXvSiF73/G/ooWH8hrzQDmLYm+cCqN7TXDKExdLd43JEj7GhQmEdCG2n3O4b7FxNomwL7ZylWCkYqlCaKZhwN2hrQpQc+2YgJJP6eMniToDpyJaDEWSys8OnrM7cgOwGWHdQAnp+bGcGpSdBTIMfQ5l6zJEACxVOSEJMoBj3AGdgetEpvob3ixK2vSmfRBYPAtHm+96DN5akLjiYCeaY9pe8vn7l+fCzDicpx1f3J+5kNYrLffklKlIfgOq0mJx77dhi3MR+rjAYUYmZFITDm9xpbKKnsxzTYl3PoDakdEyGZFZBRAoHnkyYFrjNqACVJXZyr9GvSGmCwxQeAbPI2F6252x1kGp3sBWmmA2nqKLI7dXwrjnO6tl0tM92jxZrEZqgFdcnnV9tUxiRcEwVO1+l2KRrsYsDVQubLy6kHftUGulUlLZy1QCz1lUpHNct5tjqvPrcr3NYU74phR0bJhmUYJy5qIr1V0l2KQOeodga6oaKuAnXt6U8WmDoJ2a9zZ6R2xoDZ7+FCYn9XbHDjYHVan16btV4AbRTLYYt8PzqL0QQ1w/RWZbok2WaTORMIaTPWSV6vrRbj5XwDOrlRWk3i6wFf9qqf4zs/45mY2pG6AVM5rpP2/gzrEVb478t68YtfzJd+6Zfy8R//8XziJ34i3/Ed38FqtSqs/cfq+gsZ8DGmmPIcbSr+w997Jl/1wz+LXYvMh0WAU9HJ0kaGBxYFfiv9Yksuc0fkfGsFGVgE3LEj6ghWvCMT/qaWuGbQAJxXJtDp8zIZLc7GEaa5X2imF2kO9mlS0eYxnHVUoldS/bBVTfZYARsPqRnnnptJHzwjCIVA6N7zt2PYEXa+38vWbPpAQoJw0MSkSqSgcGg0LG49Zf3gEuaBtHGSFEwqvVQn3MoR5mmE00FJhXpOkh5PLxVs8bZP4/+XU58tkiPkEcV5ylw+t8XRMB8DfTy6MYkrcHAnB8l4OyYCen5y5WDFXVZu/A6xHLapeDJIRZgkAXByHE2v7ZBKqmG8BKGkQ3DiQuxejYs5VyNOiEky132SMOTBSTaVgJwSLOcdJ+sZzkbqRobcRAyLWV9cHAFCtLS1L5B/pTu39TUn27YgBZuuZvCOphXCn2sC4UrL7KKTJHYlA4AwahW80fefQ31VK+Aahl1BLEh6Tne82OHm/QoGgpVE4KDHVYHKBfq+whhJbNjKSbRbW8iJtg3Uex0pGW49f8Tdb7tJksd8Xfciy0tR0IB8HQES7P2YuNte0KY4F+me29hCpI35OzqxpfYLlU6e2lEloiZYIp9N/NxznsPlbivtlKbCr7akeYtx1wP++7vMQ++X7+Hx93U973nP49KlS3zjN34jDzzwAB/zMR/DL/7iL74bke+xtv5iBnyQiXo7c/xqy30+8pIXfD7/6Pt/js3NhpAqGQt66iRYOWXvr63cBDQwTglWoIHAJMzWUq0nZWOGiqdMUcNoIlOqfQ2KaQzaeUwreWRmDmRaAJuYFHKU39EqNuoUOTL/IAduK373mXyEVcvgvGnuLGnRBkamvTm7jdOVqgS9JjGzOCIXk+eZ7GwXjZD4eiM92GAg30xLkJZj49YSSEXHnCQx8ZMkJB9MINUCsRZrZMdEbmdKMM+2uLHShCfvQ0YG8mnznFEeZEe9fN6tl1aH9VLt5vfP+2492GMjcw2C0aE0lGouGxblbbHDxO42mDLbwHZWesfKSUiN9uHVytVW0mtOaXKB6IWaNECaCHYvEL3B43Ba5ftgRb62GGTwjY2EZIoffna/sy4R1E46REsyhq2XATjLticlGKJjGOT5Q7QC4ydwW0u1hmqb0RaBvKcEx9znJoHR80IbNbBPElqXqNuBftXgrlXiFIkoBkKwhK2aSuW2EhB2VEvvEvNFz417pxxtZtzzxluwwRD2s5wFUhUxitRlhARvYBYlkVe76gzJW2+IWFKT8C7gNuJGmNSNMs+5mCbpYZ6/Y3KejDf85LOfy3GfeHCbOB1q5s6wbCuO+4q03sLO/Dpb//1dqgp52Mffj/WiF73oMQ/hP3TZP/0pj81ljIG6kjG6/cDl057v+fvPYvcuufHaE6eua2Z0x1JCVTFQyfIhw2gMs5HK0y8S4YKXIJF14WqKU3rYObDahwT+spH6T28KgTAThLL2uNzjs4PcxNULkMSkjiNMH8++dx6qknbHm15pP5jRxlZQjTQ+rj9lW5LAy1lznnTimkCfqez7lEGPAZTR7E7duP+1jOwt1ZG2FVLNyI7P7odxEigmUOk0icr+6GiAzWOOUzW+x1ROmL0GMvpRnerNXQllhe/XCBJSEofcVrDlo0uf3S9jqebzT7WC5nh8nfGG+kQMleIsCqnvWOyRba4snR6XVUXaVKIhP27wV2eEw5bQO0LnyvE16pSXLPjTmnRai/IgWGaNp60C7UIm1W26mk1fs+3FH38YKnaWHXs7W3bmHctWoP9V14gWX21xTzbiotf1FcO2Yrg6I16awdUG+2BbFAh2oKAiwkcxBWkBIUv6hQwiwiA+Aa1OqlOWvLGJ7rjF1gG/70lVJA1OtfcWVk5QD7Qi1w6S7S1u5rl574RXPvWfYgzURzpPYrAwWBYHG9xCJCx2oz74Kr0T/35XEJPqVM5LJuPZjcX2dkz+qxHBcWsriWuWESqJ0niD1f79c1/+Cr7qZT/FTfOOF//Cz7DTnPDVv/7TuLYmDR7C+9hovr7KyhX+w/1cX7L+4lb4aNC3YHcXhJMN9x8Z/uPXPZsvfPlPY1cGP1eb0q1k/KhxRu4Flyp5IpOLrQQ7c2Eos+WL/haEtJfh9MQoYysVsSmBNg93yZ9jh8mgl2klqr3sQvbTyik2GmQGYdFnlCAHfRO0Go8Gc1KNf1PiGxl+9+/u80/uZUzkgLEStGFqZXuGS6CJSe6J5+MhKIo+zyWtSKVfGueR2LsxyE/69rmitoM67qXxM+wAKbPzrZjtlO1RbwG3ycnaWeTEqJueSSrRWwicHxsJVinkzztbGeRzYrMMy8l43kwszNuapXPWi79+bCjSu6TEvogExFhJVWsGg1X1RZYrkgfIzGOBsJOX9gIZFRoUTQkGZgEaiN7gGhlU0wHDINV8iJa+q7Euso01rpJxtfJdSWyHmrYWot9p1xLV/jYFK5/rEuZERhq7rRybakO55vycYlAEcpzCnFH9WkugDG3SSZRxVF/U4oIXBoupI2Fdj+jNYAiDKFTqG4Rh//hbrnDf4T7DthKP+4MBC5z0LZ/zu/+Ww3tvxBzIF8GdWsI8SjvAJphH8cSvhbybvxf5HGaUJ+Vzmq/fSmZKJCvJRF5WVRiuM8TGQBRzpnLONWmONTzz5f+F2CZqG/j2T72T2AdMXZG2PWY543ov//1YkyT9vT5+fQF/wQM+IF+gymGXLX615a5r8APP+nxe+NM/V6r7+vxWqha18aRWC9yEkIasSNWKhj8aGYu54zGXhQSVmlQ082nSq5dtUIQgjoEnj3A9A4mr3/v0rBT1QA5Wk7pj0wAAlqpJREFUCpunaiS1yfNGyVqBF5PBHrszJDXMQ67/vG1hTFLezZcgB+CciUBBFoy3o7lNMe8xEuQrCeow7n/WuJsgLmV05t0+xzBWyZlb4bam+PkXAp++9Az/Ij+Q478GeCbHwPWQzXOopOLMwT+pu50kGfLaWCsRrxnfM8ySSvRk300vJEkzGTJUiIJD3m/x5scY+gMNJCmJk54O9amPLMkZlZEahvOB6sgRW2l9pEEd4VyQWe0t1HNPf9JgXaSeeXYWHSerGZtVdoKCzWkrbYFopFpWb/jVtmHWyIzgwTtm7cC2l4i9WTXEbSUOetFgTytBWXoJgGLyZKhWgpqkQY6z7Si2z7EWAp+vk/BHIgXFMNFgDyuqE0N/oyZATdKxyInqsKI+MdhOkqfNLYm4WhAPBu6+eB7zwEy+qxc64olY4B7+0QVO14bGajKmds4sA9YmZm2Pbwe2GxltC0KilFkI2YZZbZF7xFejAtPLdVXO4USBIdLOSaLTmTIcqTo15doZdiSx+9nnfj4PbMAnMNZinCX6cvFeX+/r+lNY+lwHT8r6CwvpT5cxBpoau5wzbHruP+p4yTOeQaoTzWXH8OBcMnJFvYsn+RSezgSyDHMraz/f1N3KlovOTAJmkcJNCsYSWHOwzpDzZHAMk+Ar8PAkUudWwGAKxCjtAKPVrxCZ3Dq76SXCIhYb2PI+xehnUqXnlR4CY5eDSWHlm+l7oUhHHi9qxCO+IBtMEAtl7Atagk5soxjLnLHKrUYuxJgoTY6lthfM5FiaoDflybHN25ms6qcnzH+rg29yoC7nJcuqso4+5zrzVH43HmnJZE1+GD83tHoctX/tekqQyNdDyiY9VhOJZvzcZKE6dCM8nqV8tUy9szqz3vdOp+IJae900zKcNsTTmnjSELtxcptrAtFbrDLv21qsdn0QFGBWeWI00ts3CLKwcTIMRk2R8uChnHAKf0Uh+zkM+7mal59MzpMpgypZ7K0mRYlBK3FBkORYmGioTwxuDfVaEwhFbma7HfFaSzjnqW9d8/S//GbciUyps5qM+GUi7AbiMhRliO8dPljqKhA2Feakku+NJjFGk8FqZco5y9dcaOQn2UmLx8u++/no7ZCT7f/51V/Eq778C4ktfN9XPIdYyfyLVCfeeVpx3CtrNEVSTBj7QXEr/sCs9Ah+ri/gg6HC12WMITUV1i0Ih6cc15X242F2SSRhw64wcJNOVCvBwkyqa6PsYoB5IC48nFaELCODsxB/bg1Mgg7o+2nATFarSzt+XnmNGaFjkJtMtp3NFrV2kOq8VEjTQJ1UntYZ1XYLMS7DqePnyP8kI6BIDryQ47W2InQAT2Hb59dGCXpubctgIHm9GRMhQ2E8Z2ShMOrTCIlnmN5osJxWvCA32XyMjR/bCyaNVVZsxxt20Ao9Jx+pUnDFcqa/N7ZQNGBZlTROCHuxTSXQu+1E+melsg0zDRKWghBkqV5OakiU/vCgSYHd2pHrwRhMwzKKIc9M+iT1fMDYRFt7Ntsav6lxeSCOSXhFAOzME504zqFSt3wOqqyxTwYfLDFaopLPHry6K5a0x5XwDepUoHizNThFvkwnNgDj3Il8nUpAzAe2OpULOKMcOem0vQHvsJ0R5UcCdiTjSr0rUyTbQ5hfCSQjAbK7IbG9LNOiPvej/4A/PryZX/qDj4TznsVdNbEWX3tAiHy19tqHmrjrWR/OWRxsqBaeNPfEY3ES7JcB4w3NNSukQx1HnFtRGcqvNihhcEwCw0zPWwP1iSG28Ne/96VkTsmiMvybZz+LoNdaFyQBcsix8z5gZg3X4fz3b30gWPp/UdcHTcAHrfSdxc4b/Lrj33zO3+XGheNLXvmzQtBS2BGFbF33EPw7w7RZctdGMeJxjH3rnFGasQo1wYx+9fo+pV9u5P1yn7kE0Px6ZczHxowmIJknAAWVMMhNOQcgQQe0j9pKJZ/11ynrtFXDXbZrWglPoPOUiVeTap3pACAYdeM6lKT4F2iAy9ax7lhGhk7b41M9fZglDZ6mBEmppkxpa8QJzyJXYNHJNpU2x6RKrzbjdkzljUIWHP8/r9BKYC8WuhOL1Yy0FM+AyTfI7+h7ItP33JZCFMwJ5LQSHMmAus3qgeDnkkz4Xe0FDw72RIc/bCqaxUDXV9R1oKqiOM4l8NsK10j5nTX7ySZSkGTCWJjPeioXGbwjRMMwVOIfHwxpsGKSYxNuY8sxsQMYnT9Rn4zHNbTCeYharMqgn4y66D6qA2DKvBiguSbBPMyEvEiU6j9UIyJUH1liBdsbYH2LI1XKr9Drrr1lzS/9yV8hXmoxFpb32IKcVCvlPlSJoIZFQh5MzHdkprCr5ILtF14+d5CJebGxDHqt5EFYeS6D28o5c90kCXBSuYcG6pUQQDcLTZAUmVsNIuOLCcQLI5J8xIdAihFixNQfVLfi6+v/0Prgu8qMwSxmxJM1XTfQzyxhKTed1ESsQp6zvY7t/UuVrVF02SAQLoA5rhSGT2BNge7PfJwG+zMVbbHOHaPemX7/QxL9qANVLNJrzI5uTvXfSatJqd4RZ7xmRByy0U2YRbFqrS12rxdWdJUgJEQ3nUrglmBtxiSnBHZTUItMVpsmOAZKZV/kd5gS1Ew0pCABPUPDOSBOK+zkRC9eoP16hNxdpx8UxvfIvIscfJIVmZgJKonrlZS3HYNu6cm7MTmJddKbuylV2xlVhJ4j2yOISa70GNsCuaqPtQb9anw8OYXtNRmT60OQBEGURpicCOHWDnuxJVxt8LNIvdNzy7ljIeB5Rx8c/VDhvaPdkQti6ERO184HQpDqPfSOOs+nD1YCvdrnpqNaNOY6RdBtpcrNqFGlgc7PR5Z9czI5tp4yERAYnQezvLKTqYgyWS6VhDcZiHse1uI7Xx056mM57jlZ6s8Jx6FaG8IM2ksOtwXztl1cJefSbeS5oQG/k5TvkZRwS7E+ZlWxWVekOuJmviBsRp0OzSD6+aRDnbKs0IT/P3vnHS9ZVabrZ62dKp3UOdKEJogEQVRQdGQEAclIEBRQdFQEZsCAchWzKIgoo+jA6IiXkasgBlBEEB0DCCrKICA5NA0dT6xTYae17h9rrV11OqMgNNTrrzxN1a6da3/p/d5P4E8KMxyp6xq6357LzKVVe80TIBH88ORjSBVIqfiXy37ABW86gmaSkScZOsuN4I7nIQcikL3o/m/F062093zGC8/gYyJ9EQbodkKcd7TrtaYg8rTHS+ZHH5nZ9Llty9N20hZumlbJpiM9bdTOUoETsHHLuSjeGVOzMVHUqov6eZfojdP377DhbZYg7RhBF7WK3AbgNtOgfWwtU9vIy/zba1vJ0UmJbpWQTk3MDbxhHekvFw276F+Bdkn+3B6XY3oXGQTr2OTGC9COkFY3D20is7D2ra9gMxxAJ0ORdfWxWzJYd6SsrGY52PetJHKRutfWUeoy6s4x8Wz5pCgZyK5roIUR27H/7R70KjTEPMchCBp233zQCZ0WSrteFXYcN69touGsbNbr+vJViaKc4xZ27V4q1Ka/vOUXXRmyZGa9L3liBkKaDg09HqBLyqjsWVKeFyiQmtZkREEYaXtkYY7nKdLUJ6nbE2MHy+Q1VWj/u/vLi7ucmQQoG25EXtJoYTUcAkgqFCqRuSt5KAomvxn+Y7MtiSAd0NapUSajAGhh70/fnC+ZQTxopJZNqQrKyyHtM/uTl8z2wjFIBuy1agK434wpA/l1aQR0fKNPoUMjDuWHOUkjNJkHTyMbnuG+JIIcwztwuhEmU8EUeWZtCaQq1ASTApHALacfy8u++R28WHDLu44jyaGdK3IEl5xwBCvrCXkrMVnGvgpCil4a/+lCL22/SXhBGnwwRl9jx5/aOp9IZaHDbcRgJCozEV846hklrXxqPVm76M+2FzktfY0oot0pPfVucAwUkShQkLaK/bMdBDqVJqWsKdrbZGLIPwrjgLixu74l6eVdz3nlWTKUsEbU/jJEZtbn0sqF2IimICi6en7H2FuREdthUNTA12T1O7jUuuykQDNfWza8KCIwp3EgE1HU3QvjqZxB7xDBulXznKMgMrufopNiBjtTPnPRtH3P9oEL+76KKCbouXY97Yhpynzm9s2LKRQBtU9HJwEKhr9QoO02jAANVoynE+2bAUfGeDhpZdmSxuBqY1T9ca9TMhDaEM3aHlRydOwbh86qK5JpsIJLKhNoJc30usRIxaJNNN/WgVlPy6Y1rLPktYyj6ltlPJl2Sg7K75znrNK5T4sat2XCmwyJshkC0TnOTJiuUatEp/oz/NU+qqLxhz3jEGRySqujmakAJKaMkNUgq3bOW2nY1tnLnWubl9fYd/vbzCqmnU5kpk213NcmbgWmp18aln4wITodGVKANKp63RwRsNfcZXYi87vMbeS/x7e+g5cIrn7zUfzvihatNEdps74kU2TNGBEFiHLUE9l5OtFVwlvv5z0AL2CDjycRStOIcy57zZEMVQRKCzypOeza75t+4YoJdWQsyEu6SOcBpg3P1V9LOdQDYyBsu5PwtJl85gbMWGPU3UrXbfjXhBYUqnp0RdjSTgETXTXRvGT7gzMTdZVXQGsWxbS3gv0uNf6k0TJP+50h0mjMiFdpW+hEd+bBpfQtka6AwETptgWuEAxKO4bcDeZxaf94SHe+a+u2hWa5Z0bLythkQtz2C4OuKUoYhTSu7qyru99EOl6DW4c0hndKNsUa87zcSb+79906nPxuUDd/lSNy+R0GfjeJC9E553mErYUbI5qXOuc1Dzv3g3EgBDIxqWqZOkfCiAlpqY2WQiYQsTQlg1Gf3GnsT3pmWp4PYiyEQKM847mJpodn2zhlKsiTCFXLjeCNMlPkwOyDM/TaM8eQVs1/e9YRcpmgzDOMdnN93X3Q4VV4bRNR56GZZujFkPRrwnFBGBtCW/RgQF4Cv+HjN0AFhoxXaDAI08LmN01rXG5m45hrZdnzedghVjoehj/Z6RRw97xQIHMjlIUA2fRojpQRqUSm0jhzqflN+C2Ih9x9oju/Bfu7ch0gWdnyCIY7jq7y4SdvPIbH6wn3rWySxylam8K9LIfoXCE8r2fsnwH0Uvqbjhe2wa+WSccnWen3sSoz1k0AF77m8OJZNhjCib/8QdGX7YybnJSWtSsAH+W5VK6mtEKQ9lsnIZFkfXlhnIp6sA0birq1Zmo6XYGWopO29nWxfjSd0be2pu0Mbh4Cta6HnStXuAdTaAxYOGYejskQJiuRC2Mole2fz0zd1RnuYsa7i/bdM6tgAtqHtVOxyzEkNGeYMZmOQsZXGwa6azdzRtqxod33ikmEdBls0Yk8nTMkXGQumNJOVdSV7TqLFLpLzXqddRfLdaoURQ91t4ORd43RdlPTVGAjYV93eAVY56BknRQfspI9Jsvqx57KYNLeltYZCyYhHBfkkSCryIKHoZ1wUWZmzLs6s2yajItsSrvfnXOtStrcg2CEf6yqoyor/ElZHHdBZHQZEtHhP8gcVNy5nq6kInOQTZCJNNkK39TUpd8RsfHagqxs0uQytnPkA/NZewY4aWWXQVGhibbTPmNcvdgYZFeq0cKUQ1xNXcRdUb491zKzcxAwzosjuvoNQTARFNfSZAI6okGuPOY1TabFlZhkapYJYnNdvLZ11jK48VPH8eBIm3tWNknbsemtr5YQngdZjk5S87wphetMhPXw96HH0t90vGANvhACbdmxIjd63VpKtDYpfNeVtqKl+fprjmDr6R6vu+pqk/K3KXJDVtJFbc+ovQnTh+zUz4QmHPbIqma4TdGTzvpvRJfONjtq/1jGuA4VMulM85KJVYWjKxLRhrCW2egbAZ59YKnAGHknJes3BFkFQ0DzzZ6ZensnKnUtgUgNpRydSZPql9qkRZ38sFjDaDj2u2fOqS7S8MZpEbZ33ZUFvKRjbJ0hLrIbdM6Ji6JNndgci0uN486rO7fuoa1N6t4ZMxetFc6F6nrf/ttrdbZdOATKGj+bpi+MvSX7GWlZ48CkVd3prbffl5bQF9Q7JQTttmlvD79httGaaT4vr4CsalLLMhZkNZCZJCtblrsAUoFvnVAtNbltHXWyxDKRBZcCa/iymiF3+rlJn7uMjt8090bhQGnjqJhyEh0HS3VIbMFEJ1uSh7bWbx0l7WubITM3SXOuxrRxUrxcFkSFZt15mcLxNKWAjpiNcGS8rMMzUE7zQHeyM65tTmaGuZ+XOz84FXSWyz1z07Qt8dCfFAQNe92cI5pCZMmBUrnjghs+dhxLxhOWjsWkzRivVobQ70TxoY8IX7CP2X8Mein9TcYL+07sErsIJFQDwbvu/A6X7HIctUAwGefUc81oS/G/T2R89bVvIPQUAsGcaoVDrv6+iX6jTtq/GHErTDq7UGyzD92p2+8M0ulI8bLuG9RFuTbKk7EAW0MWYNPaGq0FSV8nrW2+Q6EQZtqmzPrSfgrtcCd5K2NRKO8VUrKJQA2m0PSh7Rljn3TS/0U7ox0eIx3ZycFOJnMiM25gTl5y7YVThXNcndRF6t3G2xh2q4RojWgxdjbtRNpeTFFfdmNL3YOhEPmx9XmtO9tz403dd73YOhjWCZGWK+C1O8s5PX1BJ5MiMggaJp3ujstdXy0h6Z9qnNLIEAGTPvM3DzoOYZEh8Mzx+w1zHT0pQMhCKMpkPYzOgteSRXbEdR/gGeKksKx6R0rVdkyvc0b8Ziez4joaZAbYkoNzBN35dLwGzzq+jsXutBD82Nzgrs1SWoKlif47nAzneBXX395HXlsUjpubUud4BXlk2+W6Syq2DOPaIL2m5VJYUaOsojviWk4B0v6GpM3AueN25YLi/rLKjLUl5nsTseKJekLWTpBrGvse/iHopfQ3HS9sgx/6iDwkb8W0Y4kqB1y0w9GMNhLGtcZrTeAFITpL0GlO25dklT7aE2PU9QqTTrUENxV0okblRtFKQ8ZSJWVag4pocWqafQpcutyl/B3r2Blmt5iLMNeAsrPtlY+JwG0fMQJ0aKOmLp3vom7q+o0tQTAvmUg1q5h53zTtlLLUMvVsSUE7LQFnTMs5umHC86J3HpNiVnZUsAp1QYLrlqyFTmTfrbTntygcqc45NP/Oyh2iXVGHFy69TkHEcue2mFyXUejnu2jVGT1n2KXtty5q/XnH0IicYlRvITNrOR2uDu+iYZl0DNqaLV1p1e27JrNlkaxith2M2/MhKVjunu11B7NeJ+DTcYoMy9yl893oXqEFwSQEk5q432SCsnKn3UwwlfNRSDPY8oNzDPPIlIPSmvVpy0bEz4vtfjtCozSG2LcqeW6gjlOnE5qio8SJIDnipFM2dMeVlwwT3qXtVWivjev1t5wImYK059s5vMGkve5d0rjhWCcj5Tdc+2hn/7Rv9u22047jlV/4f9z8vmN51QXfJQ/hihMPZUIJmqk54fcPt2gnOWiN6Bn7Zwe9CH+T8YI2+EIIKIeIUoBOMuJmQoxG+L7RQUnalHRKVp9AKyOSEXke8cQIzSzhC1u9iCCKEGnMv953rzUYwj40dEGqw7L/haBIv68rn98tvbtWKtnrYgy7enmR7qfzvtumACfL66IyYwToSLs6qS8l0NLksV2LWFbtRF5eQxYKabqUG5ESFxm5KW8CQ9CzTGjRliaVb9v9lJuOZ/fdGUjH/ncp5O5zoWWXrC2dqNxriOL9bqfJ1Vvde9K1y1lRIx10UshCmdRsXsJO6TPbF4kxVF5iouzuToAi4usqObg0t8kg2GOzUabyOmQ4oSG377vasDN8IgfP8h3c9REKwnGzXNJnywi2jVEmptzgDKuwaes8dMcsiqE+hihqDJnXAuUL8nKHlOf6zR3xzjibhszmDDg2+xFMgLYG10uM0TcROEWJyDlG4bh1qHx371njX6WI1pH2HGNY964rwMkLe21r3BtWLrfcucZOl0ELs960z2zHb5ltOI6AP0lRogkmKTQrZIItjVA4DW69LvPwqvP+Hz8+4SBa9YSr33koj0wo7h8zzr8GUBrhSUPIK0e9+vyzhZ7B32S8oA0+WKMvBCIKILKDcCabqFwRRH3kOifsm4lXKaHRZH7I0KIanidQWiMVtIdXcMGOO7PNlnM54rob7OjYro0EijwAb8JIierQRt7dN6LQHSa/puDCARgRk25vAFxtvpvBjzY8goJ0BVNYzEVNM7EtUtY4Ca0L4lzR9y60ZaQ79rWJhHJfWvKeNufNpeTthEBSaQlzorDgpkPAGACXEtfSErW0JX5lnf0thtmkHefHb3bqri6t6vrpu8sgIsdOj+t85j53Yi5FvVx2Uv/S/kWY85WGnagfKNr+XFratwI+TsjHTcnTwhyrjM1xZRVbFsg6UX8xLtcxv7XlC1jDk1WMkTca7xSOkZd0onD33+6zQpcgdMbV8jCs2BAS2tM7hq3QVoBCYjqr2vNfMtcW6LQRSksmnOiSz8VcF3cMRlfelFtKq8FX4Lc1cSIKUpy7ji7boT1zH8ZDgnBiatnJdQyI3Oybl3SIeu7aF7oNTvAoM+tw1xps655j+zvSYdi5Vt3OteF5aJCmFJe0Etqex8OxZrIeIzxLyPM9U19IM4Qnwffo9dQ/O+il9DcdcuOLvEBgDT9KodMMWY7QlQpZVKXlRTS1R0v5NCZjmrlA+hmn/+I6xls5MVVU3zwea0VceegbOv3pwrQmiVhCZtqs8rLu1M27atOFA1DUsjvtbKLrtTE43XMjEGKiahWYKX8ytezswGh+Fz3vlljlFOccsUDkdCb4QZH+ly0jRSpiU4uX9m/3PhZsclsnLjIbmmJQUVFjd6fBnhfPzqXvdgacEcjKnXS9S42jO0bUOEd2f+06tKQgJTojIC0rU2TGGPhxp4Ztzn8nfQ+W+DWJMfq5rU/bc+eiW7fNQo0t6rzvlOhkahwAr20iTpl06thgjt21ybmSRPcDq7te7mRts4qNnAWEE8Yoe00jSKN9yCudZZyh9uKue007YywIxx3vxAw3yivKZpc6RtRvWKMam/PgIvhoFALb9qk9iCY0WckYQUfK685ImOO0Q3IcYTPvZEzSWqdcEzTM+n2bonclA+fwiG6n0WZXtDDbTKtWsMdlVvwuxwl7/t32bb9+0m8c3v6F03gyFzQaMcL3ELWyIfoKYYx/KSz+u4dnB0Jv/NWDQc/grwkpwfPQWU7gCcLIR3oeum3YXSJXqCxnIos4/58OQmsFfVVyz6M50eKxMbj6wIMLJr+WlsgWSzN/e01MieRF5701b1ItOoVVmHoXi85fx3g36mb2O44zIHWHWe1TDN0RqXnIOYlXx/TWa94dGvxxk6UwI0W79smms6e81vilac+wtfOyLpwA2TWqtkiTu1XaNjqXIu9m2BeKdtb4u9a57ojU/XURPbZEUCjBJZ11Zl1Ra8Fsd2QyW6d3RC4Xybttu5T3miTC7qyAzDqGLKt0Ut3YFHNWNpdRpiba9xvuHFrD2O5IyLoyRVYy0avbb5naU98VQadVKzlbhrzcmT0gU+NweDFFXb3IMFRVpzPDDkWSqTG6pdFOlsWR7MxEQ/Pqjq6Tvs4QKuUbR6Rg5VsDHo6a7WqbWXHlDJl0nJtOOaJzLh0nwLUMAgW50mkEaLtPRktAF6Q9oew5bXbKJu5ecWWScNw4q/U4p55pM9GuFPYM+3MRaz531vXqAeil9NeGANlXQU22aE1mpn1Pa+RAzUT/WY4f+qA0adM4AbISEQhNrhKCJGO8VS70u7WVZM0HMsKVgZEelRR9wWtt3j78ijY33DPMPckMisE6iE76X+niSyYtb5d19XYBeUXjNbv63hNRkAyVp9GRQitp6vGOOS0xfYpCF1wBr4lVSDNtikp2/u0cHZHIwmg7Qpv2tenvz4Vha8vO8bijK1LronMuphDTmJruL06NNSzSevXK6xg3sP/ukostmPpZx9DkEUVLoiuHFL6W28HMGJncppydTr+rmbsSQl4yRlVkIJyBj+3xWGfAtX9pz9aztck2dDPHjYiP+azbqLl/u2vpiHRC2Zp22WR2dGCGPbmyjFtPwQFwtt12BngtWdTzg7rAa1EMjEn6Ow6IUBAPdLIlecme57zjbCT9JuugQlDlznUoMi1Zx/g6noLjSkg74jjt6+yjZ3v1ncOlAnNuhM3sFEQ+WwoI6q7H3maVhM1QxNaJCM219RvmlfaZ/bvhtDcx3s54eDwhjVPQJs3fw3MPvT78TUfP4K8BM1FPIPsrkCsT1XvSSvFifvhoql5KoxyQNhLIFaHIGF72KHNmziQfnSjS6iKxErSxJFvYRrU9ZMuzbXjOuruN2zQ4eqp5d0YNWFNVzli2buaaNbxe13vOD7APvULAxHeG2P7bfs/p9RdENquJ7lK/jjHvtZwBMWNTHQvf1NQESDvtLTefyVQYRrZ1LMSYnHIY3YI3BalQdA0BstH9lGVV17LOebDRdTHIxkbpLqIXyqbCa3RG2qadyK97LCp0zo/TGXCkR5mBdnV4p8KoOt9RfscRkKmNxp0DYg2vE+Jx/d1A0bLWbRS7ORmufOGIi3nYuT/yyEbfge3Rr2TkbY9g2De1fMx30n5tZhvYbIvIBH7TlG+0bydHalCBKGrdosvYytRmRazEMFaMSGTm0JJKx5kqugpyK8pTTH00h+XFxllRtiMgDzuiOWiTxp/SFufWZ0sKTmfBET+d1K2XdtZhvmCzNpkx7uXhnPaQJK0ZDX/tmeE7P3/Lsfx1dZt6OyVLMnSukP1VejX65yg2FsX3DH6BnsFfD4QQhojTDVuzS5sJjXLQEZnTmiwIqQ0OEWcpk2PDuBo0WCNhpVD9akYGyKY1+t10ey244qU7kyufE+74k7lPi3q/YKoX0L2zXR9ZgRLX6uTmyrt6+pr1bpf6RGhjsD3TApWVzL51dwxozPKu3xvXouYOQRpDX2QUtHV28o5ioFuR15RmQlpTFD9I0f3XGU573IWssduWW8buX3crl8tuaAle1jGgeYlOm56tAbt1CucAWbW1woeyDkbudfgEJrthjbR1Jtx0O6cT4OWmDa7gAvgm2nSp9qIV0IPcOgTS7rtztvy2JiuLome+KC+ITkbCpakd2RBs5kVhUh254Y8gOv387jw5xUCRmoxPVlMdPQgBBBrd1jZ9b05IOGYCXecUOedRBcZIR6OmXp/0m2jZkfS8Nky/JyHp80hrknjA7pOVPMZmJlDg5x0nybXhudHQuPkHhdPZceLcb823gkkis86SMsZfSXPdHNrTJFlJFOWVPILvvfEI7lrVotlMUWmGCANktVSQe3t47qEX4W86egb/KcC08UUgBGk7NTy/SgSBT4ogmDUfP24T5ZKLdlnIv935q+Lh+cu9DiPPMjSaKAqRAhSCXAhU3kZrwV/vu48nlo3idTsa2kXaGqfsMkXT3i5T3NSik6otvICuWtaaRjWramtIBGiTAm7PzpFOuAUT8RXja0XHQJuoSK/tQDsHw6XhXTO+24eiVQ+0TQ0XkrjWiLko0hm/7kE6LvpT3QbaGlzXQ+06ArJyx5CTmeiwMJ6i62/Wifxd+57IIB0w35OWtObOqd/opLBVaFL3aRXbTic6Uao2kagjDbo6vvZB684xu9G/ADIzZLe0asb9Ks/a7kpX5Otq3j54ykbIVvFPuql+k54hbEpTwwbA65oO6a6rb4y9yAxRNO/LDNFUm6yPbwltRQeDbX/DZRisaJBMIGhoy6YXRYrei6FvqcKvp2RlQ/CMBykmG+aBJePZa5wHtmSQddL8yoogeQnIVJNVBLltzXPdG87x6O5G8WLzA8xLNoMSm78m62AcW+3DD9/9RlY2Mx4dz2g3ExAgB0xU36vbP8fRi/A3GT2D/xQhhIBSiCiFU95TQKwFrWaON202WZbz3X86gC2mV4nC0Ohrm4WLQKGVayYSxfSohhTQP7AHSTtFkHLjtgvZ7xe/6aSRbRSjA9VJcWtMKCqN8XCCPUVLnIvqAaQZaYrqPLwN81pMEY2h5RVqY90RtSrpTrugdtGpLtj4TuvdqaM5zoD27G6GZvypE6aZQsTTzpkw0bOWdKb0QcHALlqqHLtfdNZRGH3M58BU2VywRMVOJCx0h0WvvY5SHDb6laJTA1Y+iLBjwFya2inTuTZBZc+PY7E7I5R7nX93zwmQLk1u38sj06LmvqttBiZzYjV0MgbOCDqSoNHVt+9ZB0gmtiffcSvMpepy2pwksChOij/m47VN7T5oUJDZnO68cGURS9Jz7wcNCCc14XhGa2Zorrt1cuIBwcQWVdBmuaBOUdbw2vY6qs59EA9Y0p6T8nUsfGGvUxv8pkYFZjiR6Uqx59qq6xkypCj2XQUQ1u39IeFXHzuOsTjjgeGEu1bHpO3UzKm3v2/3e+3huQ3HW9nQ5z0Y9Az+34ANevxhQNZoIysRozJgLj4V3ysibfddpRXS3omJgmogKZciRK4plzL8/jJ3vmlfknZOEivSPED4Vfb+2Y/W2Jmuf0uMQbc6+8JG093ktkKy1rXkdf0YRNqZcQ6QV5Rl41ujHazDlbZOBsKMGhZaFON7C+GXFMJxSW5Tzd2CQWiKscPa0+SRSYW76M1tw9W0nYgOTP18Sn+5TXu7SN4ZOi+hUGhz2YI86qSO82Aq8UzaTIHITRTtFPjc9LhuMqGb5CddFJpDWjbLZBWK0a2uZdBvUqS087BTxy8Il9aBy8tWW99lK6BoYcOdE98Q9Nz0RpGB9IyT4YSCAOtkuBKJHZIUS7KaIqjLomwiY4r2Que8ZGUb1WtQtmQSjZl9D8fBb2mCpibul2jpGzEcO842L0HbF0W/dNLfcWKBYs6DY+Kr0N1XZj8K/YS8kxHA3naF1oLtWgBbOrH3QFa2MsLd2RQN133yWJZMJgw3EsbairwRI8ohslrqRfWbG3oR/iajZ/CfTghhUvy+h2q2Gc8DHvMEO5V8hASrto7WMJnWiVXMtGgGdDHthRQolYMPvi/xaoJyFZQSxEnG795wCEkM0pO85mc/YkouX2iTmodOKh3RibZlZ9Gixt02RjoPNdjIR0tt0qtpd/He/tPOX3fT+3C6+W67rgMhFUZ+1z60XapZRY5TQGfKn2Xvd09sKwalQEeoxh2HNdiunQ86THX3t5he6DgGviHMFVr5zgmy9XfHmhdd2QDljL5L/bve/yLDQXHMjvgn7bba/RSCQ1nF1NVRIO0ERFdPdwbNHVvRWZCbmnM43lH9Kwyu33UOsJH2pCiIbXnZpvA9DblAR9poJ2gKSWMwJSWhobRaFtyGoE6RSs9DW2PXHTZ90DDlhkLlUICX6MLx7Hs8Ia15RUlJZJ1ShGedLZlb4yw62RG0qfkH1rlJqya6910ZxV4TDehQEDRMdO8cWWkzDGm1w+FQ0pwL7YFsm8/jAXPfLxtPWFrPaLUSdJoZMZ0w6Bn6zRC9Gv6mo2fwn2YIq9qnpUDVWwyXAh4bbtDnJQz09xEGAQgIPTMXO5Cd3LUQAiE90rxC4LeB1DgJAjwPyuWUUjkkY4A0ybj54CNJ2ymvvfFaQ/7LO+I9Qom1ItxCRlULm660zPFwqrEF+yPKDGM/aBgRF29ukzzzyNMQ4WkzQMc32zVFZsMvkLlE2/nori3OkcywRqe788BMjBM2kteEE4L2DOuguG4Bp5dvU99oQ8Byx+OMtbLHJVPzXamn1vqdsI1QZva5smQ8l+6HTh3Ype8RHUnY7oE+zvA6QyuElZvFOTk2bZ8Zp6bQpBe2vmwjdZepyKJOFOpY+wW5zp0HS0BL+5kiDOScJJGDKmuz3aZpi/QbnlXPs9fa1/iTneE6yodwstOuVigAdnUraGF0+JUPfqzJEAiljVRvKGymQtAeCk0q3Rr07oyMtudT+RCmnXW7Fkd3n/gtK0qUmixJ4dTZjIuXQG7JdkXWx2YAtLQiO5YLUnAvrIMrM7jiX9/Ao8Ntmo0MpEAO1BBS0Evfb57oKe1tOnoG/2mEh0ZqhZIeuW+myiW55uHxlAVBQn8fuDg/khE+gckKdK0jCD0akxmTk5JKRVCLlK1nCzQ+SpQQCMJSSBAF6H64/ZjjSNopSZzy2uuumTqtzq7cTZhzETdQGM4Ouc4ZL9GlFW8NqoZ4rIQIc8MHyIUhgClMJGlOAI7CJxNhmPyIgkRY9KdHVoFQGRlXNw0ttzyBxnwKCdtOKYSpbXu49YkpP2hnfLv/23EGC815xwxXtgpijX1hQIV1UJwgDYbcKGNhBub4XYbbOhaFip+N/l1U7LT2u8mHjo3v2PLK7nORnbBtf/gQWHa5M2zSOQSeJTdKcy5lboRtzHuiIBUWWvhaEE9T+JOScEzYMoNG+ZqgLslqUF0KXmp4AHkIMhdFXV1IyCqGWyBzjdDGqXAZErBMd6spUOjw25IAmOMQfsfwOrGdgjxpyXtOnCePzOd+25Yzuso0Tqc/mLRSv0GX85RasqXNMKBN7T6P4Or3vpEHhmOabXOTyFql+H31sJmil9LfZPQM/tMINbaKZGKUwZmzaWcKlSeU4pxWYxI5VGXV6lGqlTKNZhOtNeNjE0ybNkR/f41a1bDAhBBoz+P+CUXeDFlYSVjQp/A8GGmFlKKAUghCa5MRECAjHz/0qFDi9jcfRxqnxK0ErTRe4LHPd35k6uqupctO1CvY7t3POpf6t/3vRkNdm+l8iYBAQCoQHhDl/Hbvo6gOVNB2f8wqUjxVR1uegsJn9WRC2hQc9NNfYEoPNnXs9styDtxDvdsAr1WSgKL9rkgtu55515cvO9910rraN/Vj6aR7rdEXtgXMRYTFWNzADrzBrtPXnb5zl9HwbPQu3Lx3CgU4XARqHYOihz3raMG7QS4uyi967jVTtOTzkjk/WQmE1fk3108UBtM5KeG4PV+uJp+An5mZ8E5i1mubSXFgpHC91NxTygPsecsiCrlhjanTZ2VBVhZWvc7sj5e4iFwTDwp0bocpahOtd18D1yMvE4q59m46n7BERadh4Dc6RDyR23S/JV0Gkxq/pcgqEu2LDq8C4zgUHRuYc/s/nz6OZpbz8GhKo5mjsxw5ULXtdn/7b76H5wB6Bn+T0TP4TyNUluELQTw+ClqTtJq0hzNa7TZPJoP0V0q0W02GR0aZOWMGcRyzfMUKttpyC2pbb1msZzzJmQgjNHBf22dlklIWilWJJvTbLO4PmNUXTtm2M7Z+4OEHHqVqhMo1aZzyy2MOJUtzvMDjn675EV4sivGwBRM+M2l53f3fxYFZK6wFJLLotSeVSCl4/MknEQgq1Sp9tSpKacbHYrIsZqCvhOcFjI62mT1zJle+9pUcdfPNhbHu1q+XbTvEpdw19taS8BQURh1t68J2EI0Q4ORyRVd6XtCpiTsnoBBpyTps++60MGB6vq2hLBT0CmdEoDxl1mXfNA6KKE6Rk4TNqma/nDKd4S109b/b/TLHobt098WUaFbYCDWr2LKEcx4cs79sDHgemevpNSiMq5v8hzD17WjE/FtmJuKW1jnJSqA8U3YQliCYlwzvwZ1nbfkHWhpOgZdAacSKB9lxsX7bbLc06iSabYbHXrpwwkbr0g7rsd8JY91xdKTJpLj2TKHA72rRdETLrOSZ8kKZwtFyTqLMQSSdrE4rb9POAsbbGSrJzHQ72eVB9rDZopfS33T0DP7TiHDaTEj6CUuG6SvjBK2hNNnA768RhR5blMH3pJnToxW5yumr1Dor0dDIbGJcCBSCYZcz9SDW8Nh4jACqkUfkSzy5NqtYCIHnCzw/IqqEaKVJk4zfHH64UQ/TmlwrNBpPSBQaiUSsJ9zJ89yw8IXA843yYJbm4AlGR8dYtMVCHn7kMTw/oNFoGNEerWk26pTKhj49fajKqpHVfGOXXUjTlFPu+qup/2uTjs5qXVG8NATEgpOggbxjfLsjfu3KrzbS7x4BXMyht++bdXcp0nmdOm+3KI8jfvlN+31PdIxNJju8AN3ZntcyQj9gHjLBhN2cZeALrGCNMOtxY2VNhsKuv9QxUsVwIdtBIHKIbJucF5vzEw900ta+1eD3UpNury1VqFCQRYK8ZNj7abWjQBfWO+cwnOxkI4TozLAPmp1Ruqb1z/XD68KKl5tdjPu2NtF+rkmqEqE6mQ83UEhoc47DCduV0dSkVTGlC0ML44w4SV8zIc8cV6oFyhckfdCWwpAurXNk+CBdXArrhGVas6qV0ohzzOz6YN0/4h42OwhtSkwb+rwHg57BfxqRygBKASmYh2FYBq3RfT7j9Rat/gozaiHTByI6ArpMMbIaUGqNG7TbmGvNCB7j4xmhyBjyNNtNL1MK11AFnPJ1gfAEUTkgLJlwS1uDbLZpNPmFE9Vxm1vj3+2GqQGUqhGO9ScEbLXlFmRpzraLt2Gy2cTz55ClKZ7nM96OmV4LydOcIIyYMX0a/f39aA1XDU3j2F/cgg4h9boMo0tPQxFROrjMhJNRnUI21B2j5VrmdFeE72RVCwJhV9rfDbRx7PhCqx8bTdqec5de9xwJ0Pa8S23JZ5GtWbuSgYWL+vMIk+rHsuInLechh7QqinZAd1wqMKn1aMzurzSpdXOuTP1eCbNPpdXmuMvDOSLTIAXKOhQqEEhtDLvrSPASXUjRZiWT2i66I3Jj7AvtfjrnwhllP9akFVOL0QKCllNmNPdRaTQn6ZOdjgnrkIX1jpCTK92IDPKqc2YosiHuWmkB0bgiqUmji2BvdxV19s+LO46SmOg6hz40c8VoU6OyHBF4vZL98wm9lP4mo2fwn2kIAYGPFoI817QyhVaA0GtF5W7xGSWPFUlGrGGtJ5P97xxoaY1u56RZTinsTk+u72kmOpGwhlbexJcBnvDIdUYgQsNWXge01gSlgFbdCLLLrnTo0OCAWQbo76/hfmFKw6DSRJ7AEwKlNdts048nJWjIpk/jhtogr7/2ukKIx5UZhK2P21NVtNN5LdBVWw6wUbnuYmt3dya4zEAxuQ6TRi60712GYB2+kiP2aReB606ZIRy327dtZi4TACYC75Z+dVBWOMdpH/ixSYNrKfBjXdT5wdbpbZrSb1kRH0um81KN19ZkFbPzA49kpo4tbBZCQFp1krGdYTmFUBEd0SAvAX/SCDJV6goVCOIBUZDfXApdBcbhiCYUeWjU/0LL2I8mjFcjUxOtZxVTLiqPK9KyJGho8pIoZga4h29WEshM20yJ6GRV7HmOLA/BkBnN6OY8FAVj32kv5GFnkmBuR/WiTYTvt61j0oLRlqKeYObX93Txn1fopfQ3HT2D/w+AAITvoeKERyYlQrSZPxDhe+t+6Ezvi5gb5zwar/PjKSiH3jqi++7QfD37JKDsW6IgAk+sP0MAxkglrZRyXwm5nv02wV3HndZAIAWtTBNIiDw6D1oBfiAZmt3Pzw4+ADS8/qfXF+z8QuNeTd2Aa48LJm3q19XdnZGHjia+Tbe7aNIx6bujVJfSFylmrKzoWq+go2NvX9oDks52CtJd2iHiubR1VjJp+6xqjI+LdL22KzmYqDrDGD+Rmzp2aQzifhftG4Och8Z4qwTywDp9oYB+D79ljK1pWTNORNDQJH02crftjWDS+X6TYqqcHyuiMVXIJnuxRzwgUIHAizVh3fTdV5dn5CVJNJKR1jyEhvKKBIRgckGEzDRerJGp6dxIK7I4h2HdHkNk/h1MaqJckfRJtJt7AJRGFFqaKYpJvyUCZtoQCtuaeEAWQjrKCgqpEDN0p9zJ0IjcOgFtY/jb00ErgVa5+WX0avfPK/T68DcdT+nO/9rXvsYuu+xCf38//f397LXXXvz0pz8tPm+325x66qlMnz6dWq3GG9/4RlasWPG07/RmByEKBa/mRJOHJjMacbaeRQVSQNnftEuTacjWLAEA689zdd6XQiKFtGz/tXkAWndeApBSIIVg7ZLYurYlcLsVSEGi1qG5j8DzPabPG6I2VOVnB+xvR7pOWWQKsQ86afuiLz3u1OGdBr5jeudRR0/fZQDcoJRucRjXI1+MW3WsedvbLhTFnHq/DU70x5UG/FbnVKjQKgW6WvmEbR9zMwJyo0pX6PgrIyKTRwItBa3pZnpb2mfLBokxpkHDvKIJRXl1Rnk4R0uKqDwaV/htc8FaMyRxv6lvK5tG92LjhOSRcVIqq3OCiYxoZYNgMivOaTSuqT2ZMXh/g8GbH2fGzSsoPzpKeVmTcCymNJIiM017Rkh9UURaEdTnm6E4CEFWkchMU16d4rc0flNRWZlTGrUlLG0yAmFdETbMPntt47S4ay5sHb49JEiqguZsaQx90LkujsnvhIu8dmeYjnO8tAc/fdMBxM0cnSmQcmO+cA+bG/QmvHoAnqLBX7BgAZ/73Oe4/fbb+eMf/8g///M/c9hhh3H33XcDcOaZZ3Lttddy1VVX8atf/Yonn3ySI4888hnZ8c0JHlADKmFAFPhUfStpB+SZIonNk1/lkGeaNFH0hT5lCaEUhFJQ8ySRFEwJroVgUgseG4tJM20N8dP7NEuVNjV+KQjLAUmcksZZUf9fG65mAL4AX0IooeK7d9fePyklpWrEjPnT+OVBh1AMB5K6GJzS7QS4yM6ldYv6fZfUbCHPSqeO694rtOGDrmXter2Eom9eWi33YkKeHUWblU1K3m9hWPitjlxs0QqWmrR0aVTjt7UL5gs+QRG9SyMik0dmoEzS3+EauOl6KrBtc8oYyrQqaU/zyUsmNFaB04sXKM+0zeW2pU4mphYfNDRBS9O3VNH3RE5lVUY4EhOMtiDPySqdZJ/fVkSrYuREG0qRoeorjTc8STyzjPIleWiM+xfOOZryiKKyShE0FOFEhkw0//HvR5P0m3X+11dfz2VfOZRvn3cQfssecyjwWgovNhmBPLS6DFZkSPmGLKgiaM+w11h1znk32dIR+7D1f2FLA2kfxNMUr//hTylX/Z6hf56iOwO3vlcPBk8ppX/IIYdM+e/PfOYzfO1rX+PWW29lwYIFfOMb3+CKK67gn//5nwH45je/yYte9CJuvfVW9txzz6dvrzczRFoRLFtNXylACUGlASsnmzCzRtqMiSoRoysmyDOTl07aCWElYlqizES9LKcU+rTTnLhaZrwrJamBx2NNrR4zf7C0xpbX9YTb9KeeRiNF5xueLwlLIa16myDy10k6nLIl4QrpxunZEIQwqee+oSrX7bMvB/38JrOvQqPCLnEd57E7Y553ftCF8adTFnARusw6kT10GWdjy6a2wVkjDh1tfbdt1ydv9AysIbbkvbRqjWzqtqHxY43yBOlQJxNhshaapGTkbru7BXJX63YlBCFIaxDWlW1ZlAVZMY1MvbyyMi9q9y46dtkOLzVseplrdAbRWIpIFTLTyCRHlQO0CPnqN9/EaW+5Ar+Vm/1rpbB0GZc+8GlaWcpEKoCcSqDxNDRbEJVDHq3nfP68Y/jAWd/luxcfx6rxBmlU5tEJxcc/90YiL2fZpEczE0hr6LWE8uqctCrN2F2tDachg6Qmpjhuok0xHCUPOloJuAyO5SO4ITtZ2bznevf9SUleVZR88DxJvp7MWg+bN3pp+03D31zDz/Ocq666ikajwV577cXtt99Omqbsu+++xTI77LADW2yxBb/73e9e0AbfB7xSgPZ9ZJKSNFqkQuK3UvoEaKXJshzf98gzRaWvTJrm+J4kl54ZKqY0OsvI11y5EOQaljdzZtUUYdDFznoaYBRH3frMQxvL8N803XFnnbup/6xzH4UQeIFHbbDKjQcfyOuv+Sla2p5/YYxf9xAUV1NPqxQp+TU3rQKMOp6tJztCnWurKyRrreEtDEfNqL55bQpVO7/dYfC7LoA8gND2wId1IwXrUsxamjG5QkHQNLXwaFwhco32BEFLW716I37j264CLzZOjpfoYsJbHpmaOsKWC2yZI+kTZJHXxazvEACjcYXQENRN3T2YVPiTKe2ZJaKRBBV45FWfz3z5EB5bPsb7zjuQGWWPD733JwiluOCOj/GXFS0Spcm06SsxhEtFnilk07h8q1LB5z5zFHcvb9BUkDXaqEzRzI3AjdYaKQQi8DjnjEMYqHq873M/pDSq8Os5KhTG+EtBNKGNM5JCc5YsOBJ5ZNv03CCfppF7NoJI5rxHYx0hJqc0GNYhyyTVQBN4ghRNIMCTxtFLe4Zi84erO27o8x6Av8Hg/+Uvf2Gvvfai3W5Tq9X4wQ9+wI477sgdd9xBGIYMDg5OWX727NksX758veuL45g47rDTJiYmnuouPefRkBJvxhAIQU1A0oyJc4WHYMHMPnxP0jdURkhB0s7wfInSmpHVLVbnQGRyzrpaJlvPvVtX0M6cwX96INdj0L3AMzX/jTgWrt1vCmzQvz7DL4SgXCvTmGh1pvolomOg6aTui2lpYp2r6uyHZ3rC3Ox0V7tXoR0LnJnxxo4w6IypiozhcONylR1Y4+rITvddhZ3vuql5xlDroqYulMRLtEllx4ZM57e1dUAEYd0Q3vLQvO83MtozfLKSoP/xjLQiTWtdZvXr7ejXgpxoiYjt6QK/aTIIQpm2u6zqWXa/IqsE+A3Ti+6Nt/CaHh9769U0FlTIKpJoPOeDZ7+c8oKteKKdkQlBLgRaa3SuyHOFji3d3srTZsCTgM7MevEkeBLhe2YgDYA2LXHN8Ratcfg/7zmYL338R1z8n0dzxnFX4Ld8sopHHhinLqkJrv3EYSxvmvv6lK9ci98yxxU0REG4dGqRoW3D07LTReHImn4TGuPjVFSA9DVRc4x2o47n+YhSFRVVyLxeX/7mih5pb9PxlOmq22+/PXfccQe33XYbp5xyCieddBL33HPP37wDn/3sZxkYGCheCxcu/JvX9VxFriHRkCjNSK6ZUNDOciYyTSPJzCQ9GzmHJQ/PF/i+YIv+gFKWEeeKOFckuiBbT4UQZBrGmunaPfxPM6bY6k1dforOQI4Wa+UppkB6Aq3Mkbq2OlfLVpEZ/mJkbu0IXqnNy/6yf3nEIfz22CNAaG478ZhiiI/RXzcpbkMcE4jcTPBzEJbE54R70pphhbvasUxNTdyl7l3rmisHeImpl5eHbe1eUrTLiVxPPSZpCHnVZRmVFQlBU6E9w9CPhzz8pqK6PCcPJdd8+Xj+42NHUFqdUVmVdzIc0kS83/roMcbIFwNxBP/384cXrX9JTZLWPNJ+nzySiFxB4KE9gUhzLjx7byorUoLxlH//4G/4/EFfY+6AMs6nlOB7SN9D25nxBD5EgXmVQkQ5Qg7WkNP78Qb78PqryEoJEQXmVQqRtTJyqA9RLZNMtDj1rAN5dFxzwRVHEw/6BJMZMtdc+qXX8s3PHMRjE5ql4/DE8piPHncgn/7Xg00HQlMT1RWDD+SEE4Zr4Yy740jEQ5a3YYmVx37717RWPsHoEw8xuuwJJkdHmFi5nOV/vRPZrPfK+5sxisBgA68eDJ6ywQ/DkMWLF/PSl76Uz372s+y6665cdNFFzJkzhyRJGBsbm7L8ihUrmDNnznrXd/bZZzM+Pl68Hn/88ad8EJsdJKA0LQQrGylpptYiwQkh6K8EbDMYMkvkJhWzgdRULgSPNRWTbUeoe4YMvzaKfSrf2PrX87nuTu+v+zErPUltsFow64sI3kr/dqfutZMD1oIbDjiQn+63HypTxK2EGw48kPHVda4/aH9+vN/rrGNA4SyoQKNCXaT+wdaFyxTiNG6QiwooZGjBatFbuVyZdJwSoWxLgzb7lYfCCOrojrBQVhKF3G3SJ1G+IK16iEx3BGV8k5FI+iR5CEeddDkS+OrXj+dLFx3Ll84+kv8480i+88Gj8Vvw1o9/l29/4k185+xjEVrz7Y8dy+N5xEVfOY72kLRDgwR+Mzd1eqC5qI9keoWLf/ZG9PRpXPrNN3LZ1cfw9Z+eyPm/ehf1WJIV3AmNyhVaKWQlQpYjZClElkJj0EMf4cmNatMLISD0kdP60FlOczJhZTNES/j3bx3KFy48mOXNfh4cCXhiVUJ7ZBKd5uStlPqqJp/4t0Pw2sp0YdgxuTI316yQS652piJGIybCVyFsud0WDM1fRG3GfIa23JZp2+zA7O1fjNc30CNyb854Fln6n/nMZ3jlK19JpVJZK7vtsGTJEg466CAqlQqzZs3iAx/4AFk2lUvyP//zP+y+++5EUcTixYu57LLL1lrPxRdfzJZbbkmpVOIVr3gFv//975/y/v7dDalKKeI45qUvfSlBEHDTTTcVn913330sWbKEvfbaa73fj6KoaPNzr80GG6sdrQfC90Fp8mbMY42cu1c1GZ5MyPK1Df/MgRI7z6mxfU1SRoHWyDzHV/nUbQtBA8FD4wlJts48AAAq1zTrMXmmUUqT5+aveZnP13dI2j70g9Cf0ouvtV5rvzsJe2GXce18XQX19Z0fIagNVrnhkDd0tP0VCDf+121jjVWU+0rMXDidoTkDDM0eYMb8acyYN8SM+dOYveVMbnjDQQWlQKbCvGIT5RckPlub176dB1+ykaLf2Q8X+bv3/LbpLffanVa7PBLEg5K0YsfHhhD3G1KdYbPnhTZ9WpNkZUlzls8X/89RyBy+c95xJH2Sb3/mTVzwiaP50HlH8ch4wl3LJrn/yQmWrmrw6Mo6f3miziffczBf+dCRxGlOnit+8OnjGGmlvP+zV/Guj17Jue87kvY041i0Zvi0Z4TE00ugIS9J3nXMT6iEAinLvP2gKzjpuO+ybNJnRdMjUZj7LMtRsesz/PvS30UbaLWEasbUmxkf+cjhPDpe5ol6xMi4pj08aTTvqyXkUB9ysIaWksZIiw9/6ggj8hMZoSCEKWkoO6VPe9Yhaxmmfmolm4+4+gbC/gHqOqBOxGRQIa1No7VRSmkPz2W4lP6GXs8UkiTh6KOP5pRTTlnn53mec9BBB5EkCbfccgvf+ta3uOyyy/joRz9aLPPII49w0EEHsc8++3DHHXdwxhln8I53vIOf/exnxTLf/e53ee9738vHPvYx/vSnP7Hrrruy//77s3Llyqe0v0Kvv79qLZx99tkceOCBbLHFFtTrda644grOO+88fvazn7HffvtxyimncN1113HZZZfR39/P6aefDsAtt9yyyTs0MTHBwMAAl/3uTiq1vqd0MP8oaK0hzdFpZh42UYjwnoLvpDVaKZMeTVKE7xGVQ+ZVfGZXfQbKviFHdUEpxePNlTw27uFlIfNKkkcSQSKmLudpxU41j9kDRv1FaYUn/IJgl8Y5K5YM4wUeeZqhcoXnmwee9DzyLKM2WGVwZo01obUmaZmpNFEpLGx2rjStXFP1O738azL4tTZ65gLw7JS/jZ1jrTTNiRaTYw0OvOFG7ArRni6G/ZiFBdfvvz8zF0431wPWoSmgyTLF6lV1mq2UY66/wUTnbpSuJeNJO1CnOwnhW/16vw2lEUO+S2umt95vm30IGsoadvPFPLQa7zkFCU1Lo1DnxQq/lZP0+4VAjZO4/ebHj+HxyZxACOI0o92IydtJxwnzJKIcFftGlqOTzOg3+BLf85DS6M0HgSIIBM0soOxLhkqSD5x1JWlNInK49ovHM57k5FrwzlO+zX/+x5upJ4r3nXoFn7v4WFa3TFtmnmToXKEmmshpfeZefxqU6rTW6EYbYjPZUfgeOje98rJagrBz32KdSrV6Aq+vxIwhnzO+fG2HcClNBibpg2RQIxNRTCh0A5CyiuZ7Rx7Bg6ti8iTrTMvr4RlDc7LOW/fahfHx8ac9mHO24hWHfAo/WLNDqYMsbXPbtec8I/vgcNlll3HGGWesleH+6U9/ysEHH8yTTz7J7NmzAfiP//gPPvjBD7Jq1SrCMOSDH/wgP/nJT7jrrruK773pTW9ibGyM66+/HoBXvOIVvOxlL+MrX/kKYOzBwoULOf300/nQhz60yfv5lEh7K1eu5MQTT2TZsmUMDAywyy67FMYe4Itf/CJSSt74xjcSxzH7778/X/3qV5/KJp770BrdTtDtBBkF5kE42UL2Vzb94SEEwvOgIhHlEN1OaE80eTQOWNYMWFTzWTRYwvM6BlRIwWBVkvujLF89SJKXmCsUK3JF2+tcRqVh6XiLVjJKtWbo5DPK86ySnkBISaXP/DhktYTne2SpsXqlSkSz3qZUjciUxhNrG848VwTR1J5mDbQyY/CLQ1yLjNd9s2kaqQm1K/7a2zDLG/3/6mCFIPK56dCDyLOc/W746ZQoPQ81Nx54AGEp3KANEkLg+x5z5g4QNxN+dvgbOPB7103pnde2r1/mdJoLoFD9A1NfnzI+1wr/ZCVBNJaT1jxDzEtMqjmYNOQ5oyBnxGWEEui2MOIzkyYb8+NvvoUkVyxrKnwhGG/EZOMNQ3rrq5isENrcO+6EAjrUiLKNwLOcxLLihdLkbWj7HhDT8D1U7vOlz7+JwDPiTk80c1a1chKlkYniHadewZmfOoozzjua1Q1FX+RR9iV1oRlp2Zp/miP8pyciFkJAtQTVkuEUpJlZt+9NOUa7sBF/GqiSjzdYTZkLTzuM9178I9OCKCGeZnkRLVHU7tNa5zr6DcGb/vuHfOmwQxhvJZBmhovQM/qbNzaWtn8W6zW/+93v2HnnnQtjD7D//vtzyimncPfdd7Pbbrvxu9/9bkp3m1vmjDPOAEwW4fbbb+fss88uPpdSsu+++/K73/3uKe3PUzL43/jGNzb4ealU4uKLL+biiy9+Sjux2SHNkOWIIU9TD0OSiZaxtOuRnF0fTL1TQDlChAE6SWlNNHlIlUkyxdbTy4R2Mh1AWdQoRWPUSg2eqIfMiTxqStE2Y+xAa0q6TTUYpj4pEEFKKezvMs4aPxBMm7Oml9vxjsu1EK1hIlVEniCUeipbX2vkGnr7noAZpfVlOHTx/13BGmV/qmKf+7dZxv2CjcMTlkPCckiW5vzPIYeStFOiSshrf/Aj/ufQQ0naCdX+8kYdLvOxIKqE+IHHT47Yn4O+/7NCGldmpuUtL3cGuKjAOADKt1GkG8YDVq7X6MSHkxAPesUQGr9tjslvK4K6qdfJJKc5r1w4E0E9IxnwCRo5cQb3T+SMNFPaEy2bzi4jyuGUtsi1j8neQ6HsTIDTJsOi47QQzVHNNq0s4Ik0xxOgwgClIbcn/tNfOY52nDPaTtC5JpUClSve+7Vr+NpZRzHWzgx5Tz29KibFsVlDv5GFTf3fGv3R0Of89xxONcg59YvX4jfsaOWa6cpQXSUap5WgQjjldz/kgt0PIZtsIQf7evZ+M8emsvTX7ACLoogoip7BPYPly5dPMfZA8d+ue219y0xMTNBqtRgdHSXP83Uuc++99z6l/emJSv8t8CQ6zdEIzCP2b6vlOwghTAtTOUJWy6STbZY0cx5e3SRObcSGwCciEmWqpRg/m+TJVDOZ6SlcgoiEcilBIYgTj7LnIV3a382a3QSXuOILwnWokHq+t9ahblCaVxmSnkCgLWHPyAcLPNkh8KmulWpAyxRtC+Zu3UHoMzCzj+lzB0njlJ/ssx9pnDJ93hDeU2hH7O73156t01sVPe163C3b3Wn1y4xCKU8FFPK9eckQxOJ+QXua7JDzBJSGM8LxFGlHsiIE0UiK3zJG059o47UV8YDP0kbGyvGY5uo6WoMcrK1h7J8CbGZGlkLDlK+WkANVtIB2vUUryUlaCVk7QbUTVJyybKTJ8GiDvBmb95pt8kzxiXcfyrLxGJXmkCtE9Oy2rznSH4FHPt5kfCxmRV0SNDWlESMf7E/aFswQ8pLutHHaroZg1KO/IhGeh27FG1CN7GFzgFB6oy+AhQsXTukI++xnP7vO9X3oQx+a8kxb1+upGtrnCnrDc54qhECEAareZKIconMnuv73hwlCCHToI3REWm+xRJfJabH9jAq+LxFCUqJGVG4wf26d0XrOWNoPygi5CK3JlaDRKjEhB5mIBdVWSl9J4Xlr0Ns3sh++q8F3GRwhBNITZLHRCtiYMZoYnkQryNKMSl+FybGGTdEH5FlOlmS06m36p/chPEGemlp0qd85KBnocO398wSV/gqDswKkt25nY1OOMaqE/OSw/Tnwup+ZEbdZJ9J39fegbmfUuzQ/tu5vuYciNzV/r+163yGLBKVRhfYFspXhTbbRoY/2pZGw1ZpgIiGZUSGe5vO5jx/FIysbpJMtRK2MKIVrp7T/DgghwPMQlRI68FGt2PSJgqnHK42SEhEFyMjUKdR4gyzNSdupKWNlObK/Ynrsn2UIIZD9VXQrJp9ogpTEg4YA6bdMRqY9HfAs3yM3WZe0j6K1sq8sqcehOeeBhw78v8256uHZxyam9B9//PEpNfz1Rffve9/7eOtb37rBTW699dabtGtz5sxZi03v5su47rU5c+asNXNmxYoV9Pf3Uy6X8TwPz/PWucyGOuDWhZ7B/1vge4jAJ5tomlpyrfw3PZyLyMKyoM14OQ8RBXhCkE22eFKUEaubbDO9TBR4hKKC7/lQTZldbqJW+Yy0+pDNNiIMaFKlkVVR2kiprmxFTK9CJVrzQb2x9Pe6P/dDnyyJDclqAyUMraA1GVPuK9MaT2g3E5TSJLEROs8zo9YWlgJWPzmCVgqlNOVqRLlvCF00Va95ziBuJASRv0lOx4YgPUnfYJWfHXwAr/vldajcsPZl3pkol1SMqIvIrbiObwbQ+C3MKbQ1/HBSGzGcUqctzWsrdCDJhipcdOWJZEoSSIkvYHU7ZyzOaU7GLHtyDDyJHKiZ6/9MGR4hEIGPDKb+7EXX54BRNKyVUUmKkBIRBKa2Lp+6Y/VMQXiyqP3rJCWPjHOW9BmVRJEBIYhckMxL8YZ9hBKoQCNTwUAUovtynsxyssk2crC2sZ9ED89RbGpKf1O7wGbOnMnMmTOfln3ba6+9+MxnPsPKlSuZNWsWADfeeCP9/f3suOOOxTLXXXfdlO/deOONRXdbGIa89KUv5aabbuLwww8HDGnvpptu4rTTTntK+9Mz+H8DhBBQKyP02iSqTYXuIv9pbUh5Qgp0UyH7q6avuVoinWzzOCXEaJNFMzWZaKNRCAHCg6G+FnEe0sYns6l9EQbkzSZqssXKwRolX7L1UEQUeGykTXqT4AWSPMuRG4j2hITpcwfIEQxVS5Q8YWkGmjzLi6jc8z3yPEfb0bCeb6TzhBOsX+Oc5WmG9CT+02AYjapficZE06jxAUKbMbNpzTHsjXSvF1NM0ysEd4TR0tfC1P6Dpplm5yVmiEweeSSDISLXnPIv3+H9XzgWQW4i51ZM3kqMoe+vGkPP03BxNn7QG92EEAJRCguFx+eyIRSehNgYfDcYKe0zAkReYhUU6x55uZPa9SYFh3z3KrSAf3/doUy2U+Nwh73H4WaJXHc6dtb3+TOEJUuWMDIywpIlS8jznDvuuAOAxYsXU6vVeP3rX8+OO+7ICSecwPnnn8/y5cv5yEc+wqmnnlpkGN797nfzla98hbPOOouTTz6ZX/ziF1x55ZX85Cc/Kbbz3ve+l5NOOok99tiDl7/85XzpS1+i0Wjwtre97Sntb+8O/xtRkKX+VmiNbsXISsk89KUgSjOacYaOU0QlMvXSJEMlGZPlmFEmEGvkrsqVlIX+ME+sHmR83EfFCf6MAYTv41VKqFbCUikYSxRb1XzmDPmA75rluo9oA7tqxHbcV9I4I9iEWm4Q+fhANEV3X+AH3Y6Cto7Dura/7ta6qBw8fZGmgL5ptaLHP4+MHC2pKKR7ETatryiMisgBaer+Yd3MbPcSI3uLEGCZ73kk+eKlbyFVmhXNjOZEC9VOIPALQw/rz6g8q3gO7tIU5ArVbOP3V8mq2koPgyopZEuSDJpBQGjM9KZUFKqLXlNw+ZvfyBOjll35NJTkenh2INhIhP8MbvujH/0o3/rWt4r/3m233QD45S9/yWtf+1o8z+PHP/4xp5xyCnvttRfVapWTTjqJT37yk8V3ttpqK37yk59w5plnctFFF7FgwQK+/vWvs//++xfLHHvssaxatYqPfvSjLF++nJe85CVcf/31axH5NoaewX+2IARIic5yROARacW0QNDSPirJ0LZ2rfMcGXZmwK6LX+QHmloUMxFG6HpGPjZp2PR9FWPE2jFjccpDqkQlgIENjArtJjB1G6GkleIHHtIzo2w3FN07ZMr23a/nYaq06db3Cmb+hp2OLMmflsi+G0IIolLIrw84jNdc/yPjw+VYuV2T3kd1VPKAQs42aAIpKE/gYXTwRW6yLNqT/MflJzKZGkPfaqck9RZaaZM+9v6+ckQPFC2CUSVEJkYiOS8BuUBVFKJqNCOE1EhPoZU0paY+H5FKylZmGegZ/M0Zz+LwnMsuu2ydqnjdWLRo0Vop+zXx2te+lj//+c8bXOa00057yin8NfHsM3BewJB9ZTNNrJWQK6OxjxSQpOiJJmq8AVJQ8iRl7eO1y3jt0tqvuERZSzxpmdm1sjEqvmdKA+UIspxJLbh/JGFsMiFJczKrqrfm7yFRa2v2+4GHH/q2dr5pRleKjT9H3cfWnVnvci7LsKnbfioQUjAwvY9bDnkjN+13EAB+U+C3KCR2lQ9pvxmik1e6evWhGNoSTOYEkznhRMbXLj+R5a2cVa2M+miDeHQSogA51DP2Txts9B5KwY0nH2uuQ6Dx2gJyYCxEtT2E1GglyWMPrQUiVOhQcfhvv00lMtwEHafPqGHo4ZlD99z79b16MOhF+M8SHHNa9ldQY5PEniSVkrIH3vQ+0lyRK00p8IgkzBmYxlAo11tFqFYylrUSUoHJGniyEy9bq6uznGEpmFzdpg+FDHxqQrPF9DKlyLCUle3Bn9ZF8hNCEJYC2o2YUi1ap7FaV2ZgfdP2Orvl8q0bh8qMjvszYSe11mg05VqJpJ0gclGI8DiDr/0OO18mFINvvFiTViVZJMhLkiv/4y2MJ4p2rmkkivrIJCpXyGn9CPl3loF6WAtCQOQJMgX/7/BjOP7qK61Qkih4GXnbNzlfqZGeBl+hpMYPcmbWJI12SNpM0NHTWCrq4R8GobXhU23g8x4MehH+swwhBLJWMf3AShEK2LrmsfusMrvPrvCSWWVmD5RoakFDCaSUeF73y7RsVMsB88uSUn/FqK6NN1CtBNVoQ66QtTK6naCaMa3JNqtixcoMhjNtCIP2OSclTIvkWjeGkEa6NWml6+1bTlRMprP1fr4mNDYbh63DbSClLz2JkM/M7apyTdxMSeKUqBxx3ev3Q9t0b/fwHpEb6V03kjUPBCoQxQG0hyRv/LdvMxorVrZyWo02ZDnRUI2KVPhy44S5HjYdwvdQWc5YM2VlKyfJNV5LWJEdc11EJpFjAWLcvLLJAM9X+GFOlnoc/6fL6S/bEpfjqfSweUFtwqsHoBfhP/sQAgIb6ddbjGUeCYLFQjC7L8T3JJUI4lwTbiA/LoVgy2llhkoZj9UlKyYTVJwYzYBGG1kx4iuAITs12uhGGzlQQjqDb3Nfnlr3dqJySNxMyNMcr6uW7gx8INfume/AOQGddSulaWSmzl8NxAbT/0IKpDRz2Z+OKExrbUoXWuOlOUFo+AlxM6FvqMYNbziQA354PeiOEI8bf6sC07aXlyAviULFTabgtzTxiqW0M41oJia7MtJgbGQVtemz8KIyebU3ne1pgXUC0zTn5G99DwT4GV11JIkKNbItkJkg7VcIBUkjQHgaPRaStUsMvcRnLPDNcKANRPna1r90lhvn1DczBXpZgWcXvQh/09Ez+M8BCCHQnmfU0BptGhMt/pprRto5O8woEwYeFX9dD5WpErS+J5hWCxBoxjJNUo4QuSJXCp1myNDqhvseshKh6k0aOYy0c+aEAiGUKYsKS0W36+6O2IPIJ42zQtlOa02uc6SQHUW/KXto293WsfdSdCR2xRrfWVcsLIRYqwKQJjl5avr5hTQZgzTOCCMfIQV5bsh+QWRbErtWm+WKdpxREeDbB31YDklaCbXBamHstdf560R4lH0PaceypprzTt4djeDRhx+iVhskTjP80CdpC7I4IZ4YRURt/NrAM9kp9IKCKIWoZhuZmbG4WposTDJoW/Aa0owiBmQs0MpDxxJdUuhyjtIeR1/3Pb70qkNp1VsIZYb3dN8oWmsjbtVO0ElqlDaVeU9EAZTCwsnoGf9nAfZabPDzHoCewX/OoGjzq5UhToknmqz2qow1U4Yqpj99YzVxt56BSsCcesKTrZRUCFQzxpveP9XaWeOZ5pol4wllD/rLHsLTluSkbS7bmOw410Te1Ii+WJX930b2bJ376gvnELhGwXX/OIUwOgV5pooOAa1hdMUE5WqJkRXjCAFJOyHPFKVKRFSOaLdNRkIImDl/GqWqaSdUucZLMgYiD2kFfIwugMAPPVSuue4Qo8IntGHl+22zLzI2xh/VJRWg4WNf+APnnXcYcwZmkU0mhNUSnnVCqoBCo6RP2nv+PC0QQkAlQscpHz/kAD50qxmsFEwKtK/R/Rmq5UFdGl6GD1pqU67x7cRFDdrXDJZ92i0P3UygVjKOr9agFLqVoNPMiBb1V0xpSYDOTWutGp8Eq1RIGPS4Gv9gbKrwTg89g/+cgxDCsLmTlHYz4W4NlXrG3IrHnL6QwJfFch27OzXNLaVgq+llwpEWD7c1KvDMKN9udrgnEZWIfLLJ6tinmSkGIo/+ULBoWkjg2Rq2EgUxSgDYoSpxKzH6/qFXjNdd5/E8har1hlj6YJyeNM7xw045ISgHIAVR2bQuCh+iSgQZZGlOpVZGCEiTFD/s7KdSymgLCKYMKAI3Jjhl/59fj5eLIrp3EroCY/SV7ZZUAeS5oDXDQ5QqNJOYJI3x/L9RC7+HTYYQAjlQRY3Uueh1h3HmddeQVTVCCcRYgAqUEUhKQChBVobfHHs8D4ynnHz9VWYdmWBhv89YM6RZb+LpkrnIVmJYlEKjmbCG0qDwBKJaQldKkOeoVoJuJWuP9u3hmcWz2Ja3uaFn8J+DEAC1MqrRpjnRouVL6mnE8lbOwprPnP4IpTQ50EgVA+HUVLoQglLoMWugxIq0TbOvTNKIzSzXcmRJekZNTUcBuhnTGG/R8CSrqxF9oWTOoLFmWgiEnjq/3vM92s0UpMBPMjOpbhP7mLWda148DNdXqbDva5uOExLyTLFm1aA6rUogBGLQTPwzvf2mxCBwgj5r/+D9wKPSXyJpZ6hc080HzJKMNM64+eg38pr/+32T2k9MSx4Ywy+yjtqe689XuWA8MWWRrmpLD88khDDOaymkNd4iryhuPOooXn/V9/AnJEJ7xZyENILfnnA09421GI4lXlMWYkrlMKO/5NGaFJBlEAZGACsMjAjW+oy3EPgSPN9Hhz5pmpM32hCnxvA/h+SIn68QuUZsIIwXvfpZgZ7Bfy7CppdlrQxWKzyuN1kd+MQqIleaeqoQQtBXCugP5TrtSq3ks/VQRDPOeFwKms0ENT5ppHt9r0M4qpYQFY1utElbCcsbkv6SR9pOKEURQeBRGE4NaaYo95fwPEnWTotxtZuCNM6IWwl+IPF8Dz/wbQq0KxvgjL3WxO2EPFV4vkQphcoVfmB09AH8wrp2twLaAfZrkgPorFdrk9bX2nQpaLusQBieQpIRRgE3vulQ9v/va4oxuVqaiD6ITdSYlU1NPw/Az00mpOlJo4iY5yC8Xnr3GYa7h/PhCS541aE8NqnwJyThhNVHmIDWHDPYaO/Lr0KVFcGYBxKyPoWMBft8+Yd86y2Hm99F7mjdunCOHTwBobRqrkLgC2jnmlxDJAWVSsCEJ8ltql/Wyr3BPM80nHO9oc97AHptec9puLG5shwhB2torZkYb3HPSMxjEwmP1VOWjLcZa2YoNVWFz9SkjdGvlEMWlj28UogIfCMysuZ2pDTT1NKMJ8cTfv9kiz+uiHlouE2am19UninazZgWAi2t0I8nyXO1Sa14WmvSOKVUjQjLAVmaMznaIEsyVK5QSqGVRtn15Zn571LNJyz7lCoRpUpEnuXEzcRmCliHUReAXKeh1drwE5JWQhpnZr69BI0qHgxCmlG8WZpRrkRcedj+eLGJ6r0YolFj7L3YsPVlDtGEJprQvP+zVxF6Zja9bqe9Z80/CEIKRBSQtRIaqVFI9NomK5P2Q1AXiFwgE4FsS9LBnKxmJl2KTNjbZerNZOY5mCsYSih7MLOkmFvJmVX2GAglZV8SeYJcG8MvgYHIo1QrI2tl1GS7l1J+huFY+ht69WDQM/ibA6xBln0V81Brp6g4I2u0Ga3H/GV1m8fG2mRrGF4hBDVfMKPsMbc/pN8DN5d9XQ8hIc3Y0TzLqY81aUzGLGnlrJqMyZWiWW+TCUmlEhLYsbR+4BVp941BK42QZvCN53mUayWqgxWyLKc12abdSGjWW8TNhLiZkMYpYSlA+qYlT3oCP/QJSwG5EOSpM9ICpTVqIz9s50Qk7ZQg8in3RRDmJHmTyXScVMVFuSGqhPiBjxTQXwmK4SwyNpPyonGNTDXRuMZrgwoEaUXwfz/xJvoCSViJ0Emy6de4h78PQiDLETrNyDLFxccfQWu2IWyVhiGYNNP0tKdRkUL2J/gz2kaZL4G0qklzjc5z9DrKU6kyP5tmJnlsUrK0kbOilbOqndPMzH2ngHqqGIokcyseMgwQoW9Ifz2j88xBaZNyWd+rx9Iv0DP4mxFc3V30VxD9FTNOVQgmJ5o8MBpzz6omw5MJcZoXDxghBIEUlCOfOSXzENKtGNVex0NICIRnHAs5UEMIaZjwkynNZkqpGlIt+1R9gWejZyGN0c/THK30eh9sWmuyNC9S8aaV0BDxytWISn+Zci2i3FeiVIvwfEMGlJ6pw3YiL40CmlqQpnmx/lhBO99wMCWEIRxKTxZMf08GxHmLOGswkYwwkYyQ5O0ie5CnimpfmZ+86RB+dNQByBzCCUXQ0GgpzCAdDdJS70/8+HeQUhBGARJTXJDCpII90SvpP6MIzNjqZKTOyEi7eNu1USYDtruikiN9RZ56oCAra249+RjiHNNqJ9cmoWqgmcFECvmaUxztXymMben0toAoR6aVL8vp4ZlBL8LfdPRq+JsZptQCBab+nmakky2eSHxWtRWzyxk7zCjhr6HZPljxCSczkmpkRrNiHkhrbAChtZmF7gn6Q8ncoQg/1IymI5QpUwv6pnwliHzazQTiFIHACzyCaGrdUiuNyhRRdT21fqlAu9ZD0WHUCxO9i+LYTelCaI30RNFe6IbUrc+iNltthkdGCXwflKDWVyEIfVpJgzhReEEJpVKGs9WUvAaDpZmgBTKUJHEOpYiBwQo/e9+RxM2YZqPFCV+7ibxkZHjzSOC3Tevev553FR85ZndCJclXjiN9n0qlQrPZxK/2k5ZqG73OPTx1CID+CrRTsokGnzvgID727Z+QViEvY3v1NShBFvvo2MNrS7xYoJQkzqyj7HW0J54K79J+lclUMxznxuRLgYhCI341UO3V8p8JOMnODX3eA9Az+Js9hBAQBniDHqqdEE80WU6F8ljC1tNKRROqEILQk0RCE2QZdd8sL6JgnZK1up3gVyK2qAWUw4zxeIzQCyn75bW2ryUElQhfGJZ82k7JM0O0M+2DZvCN9DoEqE4GArp/ke4B65ZL0ox7/nof06dNo7+/D9/zUErh5RnNWJNrxYpVq6kMDBEKRa1WRSM6EbVdT7PZ5O67/wpAX18fnuejdI7ve0w2GpSiEu12Gy8QRFHEE2KU0dEx+vr6qFYqbLvVVug4Q0pJdaBCeaDEFe/dlxUrhhmfrJMlKb7n8+nvPcS5h++A1orx+hgiCAiDgJHRYVrtNv3zJKJU6z2DngkIQ/sUpQCyiKyd8tVTD+fdX/8hKBPp+w1J1pfiBYocoJqSro7IlCDNlHE4bclLJZZpv4nQQH8oqQWCVW23SwLKITpJTaQf9vT6n3bkG2Ht9Vj6BTYLg+9LgRSCJN+4KHLJ94yn/g/Yr+cKykCgFFmtjIgC/CxjNPGI0xyRa1Mz9yXkMMOTtKolci1QjTaiFRP0VfCloK00sZqqjZcoTSDLzK52DP2avfXKWWkp8BCmPSlOgaBI4eeZmsrkn8KuN61/eh3xVBD4hEHA6uERnnxyOUmW0N/XR5omrFixiqGhIaSUtJY8QV9/P7MWLsSLIkqBT78vCOzqKpUK2227mFwpwjBkfHyCciWiWq0wPlFHZYqhwQH6+vuQnkAKj3KphEZQCgNKlQjQKKXJ4pRypUS5PIeZs2aackWe02rFXDh9GvPnzmFlJknHmigp8EsRnlJUlIIwolfZf4ZhS19qrMGqScUFJx3KGVddQ1bW+C1BpgWlckIjKZM3fYKWZNXwKEkm0Jg6p2rGRmgnDDb6LOlu/ByLFUk+VVFCALJaQk22EEHQq+s8zehJ6246nvMGf5tpfew+bzoA960e587lo8zvr7DlYI3BcogAJuKU5fUW287opxL4ZEpx/QNP0ErXrptFvsfiaX3M769Q8j0aacaSsQaPjNbJniFyRyXwedHMAWZUIiLfo5XljLZiHhyu0xcFVAOfZZMtxttP3RQIIGq0EMNjVPqreAJ8TLuQlAPkSUx9skmeaWbOm8WL+gdpxykPPbaMXCiG+qrMWzADIQRjEw3uHG/SVCB8icoVj0+kpFowqxYQeYKSZx6KLkgxc+YyPOEVjoAx8gHNiRZhOTDte2lGqAJT1MY5DV0pf22cC+go+rnjW7hwAVFUodVukyQtfF8wWW9QrdQYGhqk1WqxaKutGRgYspkDbfkHmrg1SZq0qJRLbL3VFsV627OnMdEYIyz7+GEf7XbCnNlzqJT6AE0ct5g9cwZPjNSZYcV71tXT71vRoSDwKUURgwN9ZLnigVUtmolG9pVJpd9jy/yj4XuIUkAyOkka+HzmkEP40I3X8L137Mnhv/olgZ/jRRl5HJLOSFnViBEqNGOgpcCTmjSKjM7Ceh4LQZbgeZLAk7S0NL8LrWlnGt8RY23GIAt8hO+hW22olHpR/tOJnvDOJuM5bfBLvsfu86bz9a9/ncWLF7P7Xq+iPwqYUytz66238vUbb0RrzSte8Qr2228/PM/jrLPO4owzzmCX2UPctnT1lPUNlUP+acs5tBqTfPfyb/HYY4+x0047ceSRR7J4Wh//8+jydToJfw9qoc9+i+exYtkyvnn591i5ciXz589n3333Zb/ttiNNUyYmJthx6zlce+9SUvXURjtJYdjr3oBJZUut0Z5gt922Y3h4mOlzZzK6cphqf41HHnuUW2+9lQMOOICttpzL46vG2OFFW/LTn/6U5cuX87a3vY2l2Qqa9ZYZutNs0xCCx+oJjSSnvxxQDSWzyh3jrjQkKiUQisALi/fjZkxYDpBSGsW7vlIXYW/d8ISYkn3TWqNQzJ4zj0azTalSJQwkE+OrmBibYNEW86lUyiaVOjDE5z//eXbZZRf2339/vvKVrzB//nwOPeRg0qQ1hUwYJwlKK0QgGR9t4JUgDpuUK/2o3PT712rTaE6OMnOgSiCnOiB5ZlT6/DUGCGnMGPbVjZSJVoabW9DDPx7CyVSHAbqdkI1OcsEBB3PItT+CkqTZDskmA0SkuGrn/Vg6PI5QmlajSalRxfc8vGguyXpshRRQX/Y4qjnJtOnTyFNT7vF8nzRNGZo2nRXLlzFt2jS09GhXBkgqJdT4JCIKe/fF0wm1kaH3T/GZ+nzGc9rgbzu9n5GREb7whS9wxx13EIY+oc454IADWL16NW95y1uIooivfvWr/PrXv+bcc89ljz324OMf/ziXXnopd60Yo5GakZdSCPZaOIs//v42Dj/8cI466ihe+tKX8sMf/pAPf/jD/OIXv+DVi+Yy2kqY11cm9D1aaUYjyXhsbJKHRyeRQrD1tBqLBmqUA4/xOOWh4ToTccJOs4eYUysTeJJGktFKMx4erTOvr8KD99/P3nvvzTvf+U623XZbHnjgAb7+9a9z/vnn85e//IV3vOMd/OlPf+Kg7RegtWYyzZhWjmilGUprVky20cDsWgmtYXWzzd0rx2ilOQOlkO0XzGBaJSLLFWOTLfIsRwjBK1/5Sq699lq23357AH7+859z1llnceaZZ/K5z32OUS2YnJzkhBNOYGJigre97W3M7qswf6DKUDnCEzA22eb+J1czlii2mNnHnIEqpcAnz3O0VqRJi6TVQphmdjSmPU56Pv3TphEEoSHe5RlJ3EKpjCiqIn2jaZ9nCXG7QRAEVMIyfhDZXnlFrlLSpIXnh5xzzgfYaqutOOOMMxgYnMvA4Fyk5yGlROXGSVu0aBHTp9ts0H33mVq/H1Dtn06epTSaIwjhUa0NkusckXj0RdOIyhWkL6mU+vj85z/PihUruOCCC6jUBgmSNtLz8a1Mbp5lqHwc4UG5OoAfGBW2PM/JtaaVpMyveGw136OepCyfbHHv6omNtgz28PRDCNObr0MfNTpJ2sy5/HUHccLN15LUQ0SoEFKzcuUqxkfGqFaq1PpqCCGI4zZMttD9tfVG47X+fhKhGR8dIUszBgYGzPeA1cueoFWvU8dwBSpbDCA9iS5HhsDXX+lF+U8XrFriBj/vAXiOG/wth2p89d8v4uCDDyaKjJzsv//7vzM2NsZtt91GpgVJnvOe97yHZcuWAXDYYYdxxhlnMDo6yqKhGvesHANgbl+ZSuBx8skn8/GPf5xTTjmFiXbCySefzGmnncb73vc+vve975E16tz4s1+xaNEirr32WrbbbjuOPPJI+kshg6WQfl/wox/9iIceeoiXv/zlvO51rwNgyZIl3Pznh+nv7+f6669nxx135LDDDkMIwaf+/SoOPfRQzj333LWO8cYbb2R4eJjLL7+cWq3GEUccwa+uvYZXvOIVXHPNNQwODvKmN72Jxx9/nP/81vfwPI/DDz+cN2y3kHtWjrHT7CHuuece/vuaa5g2bRrHHHMMgzOmcdtttzExMcGPfvQj5s6dy4EHHgjA/vvvz5VXXslnPvMZtps5wLe+9S1e97rX8YMf/ACAraf1cccdd3D1L39JHMe86lWv4rWvfjWjky0Ccn5yzY/Yddddufrqq1mwYAHHHnssNSkYmVhGX9BPkguEFzBrwRyWLl3K1VdfzeTkJK985SvZZ599AHj00Ue59tpri2OZO3cOQkhuvvlmZs+ezZ///GcefvhhDjzwQHbZZReWLl3KX//6V1avXs3ll1/OLrvswty5c/nTn/7EwoULueaaazjiiCOYP38+Q0NDxblVSnHVVVfxyCOPcOCBB7LzzjsDcNtttzE4OMjs2bMIwoAHH3oIgIULF3L77bczPj7O5Zdfzrbbbsuee+5Js9nku1f8P1auXMk//dM/8bKXvQyAxx57jEcffZRKpcINN9zASSedRBiGXHXVVQwPD7No0SKOOeYYUqV5YHji6f559PAUIOyEu7f8z48RbR98zfcPOIAki2i2BdNnpIhUGRldz8PTmtZY06jurSsa1zAwcxbJ9FkkWWaG7OQZ2fAygtoQUbWfUsFJ0aRC4gvwyiFxkqEbbdNh0zP6fzd6NfxNx3O2sjhQjij5Hj/+8Y/553/+Z9JcIaXgO9/5DqeddhqtXPPj+x/nZw8+yW8fW4Gq9vPnJ4eJoog99tiDm266iVldDNu5fWXuuusuHn30Ud7+9rdz14pRfvbgkywZa3Daaafxk5/8hEajwSOPPMJb3/pWPvShDzFnzhy++tWvcuaZZ7Lt9H6mlQL22WcfbrrpJubMmcOnP/1pzjvvPABuv/12TjrpJL7whS8wbdo0zjnnHL72ta+Zbc+dy29/+1tuueUWsiybcpytVgulFPV6nUajAcD73/9+jjzySCYmJiiVStx22228+tWvBiDPc1772tfy6COPsNPsIa644gqOPvpohoaGeOKJJ9hrr72YnJwkjmOUUjQaDer1OsqmtYaGhnjZy17GjTfeCMBll13GW9/61in7dMUVV1CpVJgxYwb/+q//yn/9138xVCszPDzM2972Nk477TRmzpzJlVdeyUknnUSl1EcUVACNLzWDff3cdttt7LHHHkxOTjJ//nyuv/56AO68805e+cpX0m63GR4e5mUvexmPPvoYAJdeeimHH344d955J1JKXvva1/LII4+QZRlpmhLHMfV6nSRJeOCBB3jrW9/KBz/4QQYGBlBK8Z//+Z/85je/KY7joosu4s9//jOVSoUDDzyQW2+9FYBvfetb/OIXvwCMUuAPf/hDfvCDH5DnOXEckyQJ9XqddrtNkiTsvffe/Pa3v6VWq3H88cdz+eWXA/DHP/6RE044gfPOO4+hoSGSJOGVr3wlY2NjbLfddjzwwAOsXr2aUi99+6zAZYp0M0a1YnSa88WXvZGL9jmCL+79RpZM1ljR8hlLoZVCI9U08WhqQVML1EbGrs6qeMyueCR4xDIgjptMLnuE+vgIsfCIhV/8dfovgSeRfWXI8p4gz9OFXG381QPwHI7w+yLD6L7nnntYvHgxSa4IPMlDDz3EVlttxUgrLrgYy+otltVbAOw8e4jFixdz991384bDDi/WV/I97njwQRYsWEAYhqxujgAw3Gzzoi23pN1u8+STTwLQaDT49re/zcDAAEcccQRbbLEFH/vYx7jpppsYGBjgkksuAeCII45gm2224ayzzjLbKJW4/PLLkVIyd+5cLr30Ut7znvdw0kkn8eCDDxZGfN999+Wzn/0sL37xizn00EO55ppreM973jPl+N/73vdyzDHHACYqv/DCCznyyCMB8yD76le/ygUXXMAHP/hBbrzxRnbYYQcAnnjiCa688kpOPvlkBgcHOf7449lu222ntN697W1v47LLLmO77bZjdHSUl7zkJVO2ff755xPHMStXrmTmzJlccMEFnHzyyQDU63W+/vWvs2DBAt785jezcOFCHnroIebNm0XSbpBmGb4f8NGPfpTPfvazvO1tbyPPUjybwv/85z/PmWeeyQc+8IFifV/60pe46KKLAHjDG97Apz71KQDuvvtufv7zn/Mv//Iv7LLLLmy11VbFebr55puJ45irrrqKUmndkdJee+1VZFXCMOTzn/88V199deeeiCJ8v/MTmDlzJq985StZsWJFsZ0rr7ySarXKpZdeCsBOO+3EiSeeyAknnABAEAR897vfxfM8hoeHGR0d5Z3vfCczZ84s1vvLh5ettW89/J2w8xB0nECagechyqZ8RJab+fVZjm7FpntkqA88SaYFuTLaDVLlqDRHZTk6Tm2fvHUU2glaYLT11wFfQs33kAKWermR1a0OUt3uZchw3a18oRRIYcSq6K+gJpqGUFaOzByHXrT/t6FH2ttkPGcjfM8SpVqtFlEUkdg67cDAACMjI1OipsCTLByoEnmSXGuiKDI91V0/oExpBgcHGRkxhr4cePavz+joaLFugC233JKBgQH+smKUwcFBFixYwMMPP8ydd97J//7v/7Lnnnuy5557csABBxAEAWNjYwBsv/32SClZVm8yc+bMYlv1VPG5z32OZcuWcccddzBv3jxe//rXk6ZTNe3/d9lI8e+dd96ZutW8v/POO/nkJz9ZbPeb3/xmYVyWLl3KW9/61uKz3/zmN6xcuXLKepOkRZ53trXffvvxhz/8gYsuuoiTTjppqkCO1px++um89KUv5fTTT+eSSy4pyiUAM2bMYMGCBfxl6WqiKOJFL3oRDzzwAJ40Bl3acXZ33323SYdP1hldvZJG3Rzbfffdx2677UaatMmyhN13353777+/WP8OO+xQZCdmzpxZXBuHPEtJY+PcLV68mHK5zOjKFawLu+66KyrPaDcbvOQlL5myHTAMe6e4tyaUUuRZxv3338/uu++O1prWZJ3dd9+dRx55hMTK5r74xS/G8zxWrFzN9OnTOeOMM9hpp53Ye++9ufjii8nznMHSpg0W6mHToQFVb6KbMUJKdCtGN9ommh+bRE22IM2QfRXCaf1GDjowBlrmCpKMrJWYyXaAHKiCZ5j2JBm6FRsp63XYYE/AUORRCyS1QLKg6uMJ0MIjqPbjBWtfbwEE0pFSBZ6URAMVdK5Q45Nm37O8F/H/TdAdo7+u1wuqSXvDeM5G+G1Ltps/fz4rVqzAG5zBQElz8MEHc+2113LooYey29xpxLlim2l9RJ5kIk6JfI8VK1aw2267EXfJWa5utnnlK19JlmXcfPPNvORlr6AWBiye1sc3/+tK9thjD2bNmsWSJUsYHh5GKcXiaX0opVi92jzMh4aGeP3rX89ll122zn2WNopWeqq3Pq1iCHhJrthuu+34whe+wCWXXMKKFSsKYRqAF88aLL4TBAFp3knDX3zxxbzqVa+asr1Wq0W5XOYnP/lJQVbrhlu3H5bxuiJ8z/M4+uijufDCC1m6dGmR7gf43//9X2666Sb+8pe/4Hkev/nNb6ak/CcmJojjmMWzzb6uWrWK6dOnMzHZ4JGHHmPhwvmAiZaXL1/O1ltvRY5HEFYA4zCsWrXKzorvfL/7HGZxhud5U86hOxbPD4psQRDYv6V138arV69Gej5hSUzZjnMIfftgHh01jl33dqSUICXTp0/n7rvvNsJF5TJLlz5Bf39/Z9v2b1Obc3jOOedw9tln88c//pF3vetdDA4OcuARR/HgSH2d+9jD3w6dZnilEAIfkWboXKHbCV6lhIwCtCcJBHho8iS3A6Y0eZLZ0bd+YeiFbaPTuTKkuloFvHUPYKr4koHQBBeeEMwueyxrZjSydcynoDPMbTJVpksPs9py4JH3l1GZ2W812TKZuCiA0NzTvah/E9CL8DcZz9kIf9h63q95zWv4wx/+wEApYHm9xXvf+15++MMfcu6551Ju15klUq76f1fw2c9+lgEbSf3hD3/g1a9+NSOtTl/70vEmQRjyf/7P/+Htb387f/zdzSyq+Fzzox/ykY98hHPOOadYdvXq1XzlK19Bqpwvf/nLLFq0qCBg/fjHP+baa68lSRKGh4e59tprN3osV155JT+99hrSyQmGh4e58MILWbhwIfPmzWPu3Lk8/vjj3HnnnaxYPjX1u7oZk+WKt7/97Zx11lk88sgjKKW4++67uf322ymXyxx33HGcdtpprFq1ijRNufXWW3nwwQcB4yz98pe/5PElS4jjeMq6P/zhD3Pvvfcya9asKe9HUcTY2BgrVqxg9erVfOYzn5nyeZZlnHvuuYg849vf/jZJkvCSl7yEhx57nEeXLuPOu+4lTVPe+ta38uEPf5jly1cwbfp0/vTnOwA49thjueCCC1i+fDmPPvoYX/7ylzn22GOnbCMs+VZit4MFCxbwhz/8gYceeqjIqDjEjanH5nDFFVdwzz33MD4+wfnnn8/RRx8NwC677MIPfvADRkdH+eMf/8iVV15ZfGf+/PnccccdPPjggwwPD3PIIYdwww038Otf/5pWq80555zDscceu9aDuBSVWblyJTfddBNKKXbaaSdmzZpFnvc01J8pyGrJjKFttNFSImtlM6wmy8jbRuo5bSW0WgntOCVttMnqLXSWm/R9rYzwvY6xVxo10URWIqPLb6+xFKbLx8lDTKaKla2c1W1FK9eMJ6q4X63+VIFuU6Mwom/a/m1mmkCaiZiiWkL2VyH0Uc0YNd4wZYWesdo48nzjrx6A53CEnynF8nqLk046iY985CO85z3v4a8rx9l1y6247bbb+PKXv8zrX/96wNRqXR39vvvuw/M8dt11V25ZsqpYXzvL+cvyUc466ywWL17Mpz/96aIP/3vf+x6vfvWradqswq677sro6CgvfelLWbx4MVdffTWZ0sydN4/rr7+e8847j/e///0MDg5y+OGHc8ghhzB79mx23313wMjLDg4OsueeewLGWF100UWcc845eJ7HLrvswg033ICUkjlz5nD++efziU98goGBAf7rv/6Lf/qnf6JSqTCmFH9dNc6ZZ55ZGPfR0VEWL17MRz7yEQC+8pWvcP7557PffvuRJAkvfvGL+dznPgfAF7/4RS688EKuueYaLrroIhYtWlSUEZK4xbShASbqdcIwZP/99wfgRS96Ee973/s44IADGBwc5NRTT+VnP/tZcR4dE/7lL3858+fP58c//jFprlg21qB/7iKUznnk0cc4/fTT0Vpz5JFH0m632W+//dhzzz054YQTGBkZ4aCDDqJcLnPWWWdx8MEHA6aMMX/+/EITf/vtt6e/vx+Ad7zjHXziE5/g3/7t3zjuuON4yUteUpzfUjWa8n13HB/+8If50Ic+xGOPPcbhhx/Ou9/9bpTKefOb38ztt9/Oq171KnbffXc+/OEPF+WcI488krvuuoszzzyTfffdl3/7t3/jyiuv5JOf/CSrVq1in332KZyg2bNns9tuuwEQCPNA/9rXvsa//uu/EkURBx10EG9+85u5a+X43/lr6GFNCCGgFOJFgbGg0ihAyL6KGUucpMboC2E+C3xEKUSGfiHBq8Gk0bPckOiSFFEKIerI35alwB8eMwOQfI92tUIuJa12xqO5pjESk0w2GZw+SK4VvtYQJySVskv1ITHkQSWkqd8rVcyAiAKPSGvqKaaOXwrRUQB5jmrEho9QK/ci/Q2hF+FvMoR+jrmQ4+PjDA4O8rWf38K28+fyz9sv4sADD+Rzn/sc0xdtzR8eXcZuW8xmq+mDU7432mwzVCnx7ne/mwMOOIDXv+Egvvene9eq3mw9Y5Bd5s9koNwh1qysN/jz4yvYcvoA9ccf4V3vehe333578fmKiQa/fmAJpcDnFVvNY1Zfdco6J+OEUuDjS8kjw2Pcv2KEfbZbRGh5Bm7fuvHk+CS3PvIEs/uqvGzR3GJZh3aaccNfH2G02WbHuTN4yYLZBF315maScsvDTzC3v8qL582c8t3hRos7l65kp3kzmLnGvgI8vmqYxugqapGP9ANmzp5P4PukScKykTG2mDNrre+AaUN79atfzZIlS4r3RhotfvXAEiYmW+imIUiFnuSlW8xiu60XTnlQNRt10jRhYLCTwtdaMzayijAqUa31o7VidHglWsC0abMBqI+P4AcBlWr/WvvUbjcZXrmMwaEZVPsGCma29NYmW02MjbDqyeXMWjCPvv7BtT8fH0EKSa3rszSJ7RjgTl12sj5OkrQZGpqJkJJmo87dS5ax9YIFTO+rTFnnX55cxZ+WLF/n+ezhGYIVQSpG13VF3+7fWmt0M0anmSHmeR7Cl0ahr+ue9QSUJ+r4QDwygV8K0bkmiWOCLeeTrxjGm6gzb8u5rB6eIBeSNI6pDA2QpykqMXX5PE3xyxHlWpX66lHCSoQol9DT+slyxeQa5YCKb8b1tsfbJgNQDjdLo99qTHLKvqZzxTnVTxcmJiYYGBhg3/nvxpfRepfLVMzPn/gPxsfHiwDihYrnXIRfr5ta5yn7vhKA3/zmN1xxxRWkacqj9/+VN9qobnBwkB122AEhBPfeey9bbrklf/rTnzjjjDPYfvvtOe644/jud7+73u3suOOOTJ8+naVLl/LII48AJjrbY489imVOPfVUrrvuOh599NEp391iiy3Ycsstqdfr3HPPPcRxTLVapVKpsGqVySqUSiUGBgZYscIQymbOnMm2225LlmU8+uijaxHrhoaGiKKIFStWMHv2bEZGRgpiGFBkLWq1GkuWLJmyT+VymV122YUgCHjwwQdZvnz5lM8GBwcZHR0lDEOCIGB4eHjKtoMgYMaMGaxYsQKlFP39/ey44440m00eeOABBgYGOPXUUwtmOsDHPvYxrrjiiqJ8sC5EUcSuu+5KEATce++9xXZLpRIveclLaDab/PWvfy2yDtOnTyeOYyYnJ4tzopRifHy8OAczZswgjmPiOKa/v784v2t+f9q0aWRZxuzZs5kxYwZ33XVXcW8BzJo1i2233ZbHH3+ciQnTI+9KBVJKZsyYQZZlBfFyp512olar8de//rXYn2q1SrlcZvXqjqLjnDlz2GabbYjjmPvuu2/KNnvo4YWKer3+tBv8AkqzQXWdZ0gyfXPEcy7CV0rx5JNP0tfXZ5SyhCAMTXSVpukUgtma8H0fz05TW5MBvykIgoAoisjzHM/zCsPzQsLExAQLFy7k8ccfn+IN+75PuVwmTVOCIGBycvJ5V19c37G/UPBCPv4X8rHDM3f8Wmvq9Trz5s0rSM1PF4oIf8478eX6O2EylfDz5Zf2InyegxG+lJIFCxas87MoWn/aZk2Uy+WNL7QONJtN3vve9/L5z3/+BX1z9Pf3r/P4nfPV19f3j96lfxjWd+wvFLyQj/+FfOzwzBz/MxbZOyjFhiP8nvCOw3OWpf9sIcsyLrnkkudd9NpDDz308LyEUht/9QA8ByP8HnrooYceethkqI2I6/Rq+AV6Bn8NRFHExz72sadUPng+4YV8/C/kY4cX9vG/kI8dNu/j11qh9fqj+A199kLDc46010MPPfTQQw8bgyPtvW7gBHyxAdKeTrhp/PIeaY9ehN9DDz300MPmDKVAbCCK70X4BXoGv4ceeuihh80XGxuQ00tiF+gZ/B566KGHHjZb6DxHi/Xr5Wvd09J36Bn8HnrooYceNl8oDaIX4W8Kega/hx566KGHzRd6I9K6PYNf4AUlvNNsNp/tXXhWseZY2RcSXujXvocenq/QSm/01YPBCyLCv/fee3n/+99PGIZstdVW/Mu//As77LDDs71b/zDcd999nH766WRZxqJFi3jzm9/Mvvvu+2zv1j8EL/Rrv3TpUq6++mq23XZbdt55ZxYuXIjWerOcvPa34IV+/E888QQ///nPWbx4MTvvvDP9/f3Pu+M3Nfz1x669Gn4Hz/sI/9e//jV7770306ZN42Uvexnf//73OfHEE/nNb34DsMFhPM8H/OlPf2KfffZhwYIFHH/88dx333287W1v49prr322d+0Zxwv92p9//vlss802fP/73+ekk07i4IMP5rbbbntePew3hBf68X/yk59k66235tJLL+X1r389J5xwAvfcc8/z7vgzHZOpDbx0/Gzv4nMH+nmOM888Ux9xxBFaKaW11vqee+7RRx11lF68ePGzvGf/GJx77rn6Na95jW42m1prrVeuXKlPOeUUPXPmTP3EE088y3v3zOKFfO1XrFihd955Z33ZZZdprbX+/e9/r4877ji9cOFCff/99z/Le/fM44V+/Pfff7/ecccd9VVXXaW11vqaa67R+++/v95pp510mqbP8t49PWi1WnrOnDmuJ2+Drzlz5uhWq/Vs7/KzjudthK8tUePBBx8kCILCq33Ri17Ehz/8YcbGxvjEJz4BPL8jvfvvvx8hRDE9cObMmXz6059mYGCgOH79PCW1vJCu/ZrX8Be/+AXLli3j4IMPBuBlL3sZ3/jGN5BScu6551Kv15+N3fyH4YV4/N3jvH/6058yOjrKG9/4RgAOOeQQLrroIpYtW8bHP/7xZ2kPn16USiUeeeQRxsfHN/p65JFHKJVKz/YuP+t43hj8ZcuW8Z3vfIff/e53jIyMIIQgSRK22GILGo0GTz75ZLHsTjvtxHvf+14uvPBCms3m0z6n+dnAihUrePDBBwHI807N6sUvfjFjY2M88MADgDFw06ZN4xOf+ATf+MY3WLZs2Waf4lu6dCkXXXQR1113HY8//jgAcRy/YK795OQko6OjU97baqutGBsbKwxbkiSUy2W+/OUv89///d/ceeedz8auPiMYGxvjtttuK649wJZbbvmCOf7h4WGOOuoo3v72txfvbbHFFqRpyvDwMGB+99tvvz2f+MQn+OIXv8iyZcuerd19WlEqlYqRvht69Yy9web/tAPOOusstttuOy655BL23Xdf3vnOd/LAAw8QhiE777wzS5Ys4bbbbiuW932f/fffnwULFvDf//3fz+KePz0499xzmTdvXvGD9zyviFx32GEHSqUSP/7xjwGQUqK1Zt999+VFL3oRl1xyybO2338PXES7rjrt7373O6IoYrfdduPRRx99Xl/7j3zkI+y6664cfvjhvOlNb+K+++4DYHBwkJe//OVcfPHFAIRhiNaaQw45hN13353//M//BDb/DMdHP/pRtttuO971rnex0047cdVVVwFmBvuee+75vD/+D37wg8ydO5ebbrqJW265hYmJCQCq1SrbbLMN3/nOdwAKx/Ytb3kL8+bN40tf+hKw+R9/D08Nm7XBHx0d5R3veAe//e1vue6667j++uv55je/ydjYGF//+tcBeNe73kUURVx99dVFBAyw9dZbk2UZYbj+oQvPdSRJwoc+9CGuvfZa3vzmNzM2NsZll10GdH7IBx98MIsWLeKGG27gD3/4AwBCCPr6+hgaGkJrvVmm9IUQrFy5kv/+7//m0ksv5Ve/+hXXXXcdL37xizn66KNZsmQJb3/726lUKnzve997Xl77E044geuuu45LLrmEd7zjHUxMTLD//vtz5513su222/KKV7yC3/72t/zxj38EIMsyAI4//nh+//vf02g0NtsMR57nvPvd7+baa6/l6quv5qqrruLYY4/lAx/4AGCu8R577MHNN9/8vDz+b37zm8yYMYPrrruOX//613zta1+jVquxfPlyAPbee+/CEbj//vsB4yT39/dz2GGH8Ze//IUkSTbb4+/hb8NmfbVXr16NEIIPfvCDvPrVryaKIo455hhqtRpJkhRG78Mf/jB//vOfufTSS4vvxnFMlmUMDg4+S3v/9yMMQ7bZZhtOPvlkzjnnHF7+8pfz1a9+lXq9ju/7JEkCwHve8x6azSbnnXde8V2lFCMjI2y55ZabbUp/fXVa3/c5++yzARMBPh+v/f3338+f//xnLrzwQvbdd19OPPFEvv/97zM6OsqnPvUpRkZGeMtb3kK5XOb8888HIAgCwLRpzp07lyiKNktnD0wZ55ZbbuHMM8/k1a9+Ndtuuy0nnHACM2fOZGJigiiKOPzww5+Xx7906VK+853v8JGPfIS//OUv7Lnnnuy+++7cd999hd5EuVzmxBNPZOnSpfzXf/0XYJxkIQQPPvgglUqlyHr08ALCs0IV/BuR57nWWuskSbTWWtfrdX3XXXet9fnxxx+v3/Oe90z57qc//Wm9/fbb61e/+tX6y1/+sn7Vq16lX/7yl+snn3zyH7T3fz/c8aVpWjDP3Xtaa33ttdfql770pfqcc85Z67Nvf/vbevHixXrnnXfW55xzjt577731TjvtpB944IF/4BH87VjXsd96663a93398MMPa621juNYa23Og5RS//a3v9Vaa/2pT31qs7/2a+K3v/2t9n1fj4yMFO89+uijesstt9Tz5s3Tl1xyidZa629961t6/vz5+tRTT9W33367vueee/QrXvEK/fGPf/zZ2vWnBUuXLtVCCH3llVcW7+277776yCOP1F/96lf12NiY1lrryy+/XM+bN+95dfxKKZ1l2ZT/fuihh/SLX/xi/cUvfnHKsh/96Ef1Nttsoz/xiU/oJUuW6DvvvFPvscce+uKLL/4H73UPzwVsNgb/4x//uH7DG95Q/Ld76Ds4g5Blmd5yyy31t7/9ba11xwjEcaxvvfVWffzxx+t99tlHn3LKKYXjsDlgzeNfFyYmJvTZZ5+td9xxR33PPfdorfWUY3zwwQf1v/3bv+lDDz1Un3766cW5ea5jfcd+zz336L333lu///3vL95z98XLX/5y/eY3v1lrrXWj0disr/26cOedd+rddtttimN79tln63e/+916r7320vvuu6/WWutms6mvueYavWjRIr3DDjvogYEBffzxx2/WLUrut/72t79dz5kzRx9yyCE6iiL9qle9Sp955pl6iy220K997Wv1rbfeqrXW+oc//OHz6vjXhYmJCb3ddtvpc889V2vd+d2vXr1aX3LJJbqvr0/vvPPOulqt6hNPPFG32+1nc3d7eJbwnDf49957rz7ssMP0zJkztRBC/9//+3+11nqKh9uNu+66S2+xxRb6vvvuW+86N6cf+/qOf81eWmfobrnlFr3PPvvoE044ofhsTeO2uRi79R272/8kSfSZZ56p99prL/373/9+ymdf+tKX9Ite9CJdr9enrHNzuvYbQqvV0t/85jd1EAT6Fa94hZ4+fbqeN2+efvTRR/UvfvEL7fu+npiYKJYfHh7Wf/7znzebjM6G0P3bf/jhh/Xhhx+uTz/99OK91atX6x122EFfeOGFhXPwfDr+9QU7Rx11lN5///3X+Z3HHntM//rXv9Z//etfn/H96+G5i+d8Df+OO+6gUqnw9a9/nVNPPZWPfOQjKKXwPG+d9ae7776bOXPmsN122wGmH/Vzn/vclGU2pxaN9R2/7/tTjt/V4ffcc08OPfRQ/vjHP/LjH/+Y7373u7zzne+c0qrnapnPdazv2IMgIMsygiDgiCOOoFKpcMEFFwCdY7v33nuZO3cupVJpChN5c7r264IjnpVKJd761rdy8803c/LJJ/O1r32NJ554gkWLFv3/9u49pub/jwP489OptKjvcVwSzhFHbnNPbU2uK/cRxh/6I5cYG9mMYsydDTNshhmL4Q/DYsNmwiEhYeKPjjlx5lASW3Eac6rX7w/r/M5RKDrndPo8H1tb53xur9cpe57P+/3OwadPn9C7d2+3z07Q6XQYOnQoevfu7aPKm0d1dTU0Go3zcUhICMxmMxYuXAgAcDgc6NChAzQaDYqKipyL0lpT/z+vuQkICEBNTQ169uwJu92O8vLyescZDAaMGjVKVf+tNDXA1+84fqXuXWxlZaUUFBSIiEhBQYEYjUbJyMgQkYbv8lNSUiQzM1PKysokMTFRgoKCnMNc/uRv+q875sWLFzJmzBhRFEWCg4Nl/fr1Xqz83zWmd9cRjqysLOnevXurmqf9mWu/379/l1WrVv3ybjU9PV2mT5/urdK8wrV/h8Ph7L+iokK0Wq2cPn3auf3BgwcSExMjV65c8UWpHvGr/kX+/+9l3759EhUV1WpGsaj5tdjAb4jdbpddu3bJf//9J1arVUTcQ6+8vFwMBoNERUVJUFCQzJ49WyorK31VbrP7U/8iIiUlJbJgwQJRFEWWLVtWb0jbXzXUu+v6jNY2T12nurrabQh33759Eh4eLkajUSwWi/P54uJiKS4uljVr1kjXrl0lOztbROoP//qbX/Xfq1cvefXqlVRVVUlGRoYoiiKpqamydOlS0Wq1snjxYtX8/Ou2P378WBRFkfz8fJ/USi1fiw5811/0uu/NZrOMHDlSZs6cWW9/q9UqBoNBEhIS5MmTJ16r01Oa2r+IyIkTJ2T06NHy6NEjr9ToKU3pvW77x48fW808rYj7m7mcnBwxGo0SEREhx44dq7eG48yZMzJw4EAZNGiQ868T/F1j+6+trZVt27ZJWlqazJkzR3X917lx44akpKSIzWbzZpnkR1ps4P/qAx4cDoecPn1awsPD5ebNmyIiYjKZpKKiQqqqqqSwsNCbZXpMU/q/ffu2vH//XkT8/45O5O97b43evHkjkyZNkqCgIFm9erV8+vTJbXvdz7uqqkru3bvnixI9qrH9i7j/GWpr8af+iZqixQX+7+aq6pSUlMi8efMkOjpaJkyYIIqiOFdp+7u/7b9urtufqbn3hpw7d04CAwNl6tSpqlxdzf7V3T81vxazSr+mpgYigsDAQADA/v370aFDB1y6dKneqtSamhqUl5fDYrFAp9OhpKQEsbGxvii72fxr/yNGjPBF2c1Czb3/zvDhw3Hnzh1cvnxZlaur2b+6+ycP8PEbDhFp2lxVUVGRxMTEiNFolPv373u7VI9Qc/9q7p2IyJtaROCLNH6uqqqqSm7duuXd4rxAzf2ruXciIm9pEUP658+fR69evaDRaPDs2TPs2bMHOp2uwX1DQ0MxduxY7xboYWruX829ExF5kyLi+49LevXqFcrKyhAfH+/rUnxCzf2ruXciIm9qEYFPREREntUihvSJiIjIsxj4REREKsDAJyIiUgEGPhERkQow8ImIiFSAgU9ERKQCDHwiIiIVYOATERGpAAOfiIhIBRj4REREKsDAJ/IBq9UKRVHw9OlTj5xfURRcvHjRI+cmIv/EwCdVmj9/PpKTk312fb1ej9LSUgwcOBAAYDKZoCgKKioqfFYTEbVugb4ugEiNNBoNunTp4usyiEhFeIdP9JPbt28jLi4Obdq0QWRkJNauXYvq6mrn9rFjxyI9PR0ZGRnQ6XTo0qULNm/e7HYOs9mMhIQEhISEYMCAAcjJyXEbZncd0rdarRg3bhwAoH379lAUBfPnzwcAREVFYf/+/W7nHjp0qNv1Xr58idGjRzuvdf369Xo92Ww2zJ07F1qtFjqdDjNmzIDVav3Xl4qI/AgDn8jFu3fvMGXKFMTGxqKwsBCHDx/G8ePHsX37drf9Tp48ibZt2yI/Px+7d+/G1q1bnUFbU1OD5ORkhIaGIj8/H0ePHsX69et/eU29Xo8LFy4AAF68eIHS0lIcOHCgUfXW1tZi1qxZCA4ORn5+Po4cOYLMzEy3fRwOByZOnIiwsDDk5uYiLy8P7dq1w6RJk/D9+/emvDxE5Mc4pE/k4tChQ9Dr9Th48CAURUG/fv1QUlKCzMxMbNy4EQEBP94jDx48GJs2bQIAREdH4+DBg7hx4waSkpJw/fp1FBcXw2QyOYftd+zYgaSkpAavqdFooNPpAACdO3eGVqttdL05OTkwm824du0aunbtCgDYuXMnJk+e7Nzn7NmzqK2txbFjx6AoCgAgKysLWq0WJpMJEyZMaNqLRER+iYFP5KKoqAjx8fHOYASAkSNHwm634+3btzAYDAB+BL6ryMhIfPjwAcCPu3S9Xu82Rx8XF+exevV6vTPsASA+Pt5tn8LCQlgsFoSFhbk9/+3bNxQXF3ukLiJqeRj4RH8hKCjI7bGiKKitrW326wQEBEBE3J5zOBxNOofdbkdMTAzOnDlTb1unTp3+qT4i8h8MfCIX/fv3x4ULFyAizrv8vLw8hIWFoXv37o06R9++fWGz2VBWVoaIiAgAQEFBwW+PCQ4OBvBj/t9Vp06dUFpa6nz8+fNnvH792q1em82G0tJSREZGAgAePHjgdo7hw4fj7Nmz6Ny5M8LDwxvVAxG1Ply0R6pVWVmJp0+fun0tWbIENpsNK1asgNlsxqVLl7Bp0yasWrXKOX//J0lJSTAajUhNTcWzZ8+Ql5eHDRs2AIDbVIGrHj16QFEUXL58GeXl5bDb7QCA8ePH49SpU8jNzcXz58+RmpoKjUbjPC4xMRF9+vRBamoqCgsLkZubW2+BYEpKCjp27IgZM2YgNzcXr1+/hslkQnp6Ot6+ffs3Lx0R+SEGPqmWyWTCsGHD3L62bduGq1ev4uHDhxgyZAiWLl2KRYsWOQO7MTQaDS5evAi73Y7Y2FikpaU5QzgkJKTBY7p164YtW7Zg7dq1iIiIwPLlywEA69atw5gxYzBt2jRMnToVycnJMBqNzuMCAgKQnZ2Nr1+/Ii4uDmlpadixY4fbuUNDQ3Hnzh0YDAbMmjUL/fv3x6JFi/Dt2zfe8ROpiCI/TxASUbPLy8tDQkICLBaLW2ATEXkLA5/IA7Kzs9GuXTtER0fDYrFg5cqVaN++Pe7evevr0ohIpbhoj8gDvnz5gszMTLx58wYdO3ZEYmIi9u7d6+uyiEjFeIdPRESkAly0R0REpAIMfCIiIhVg4BMREakAA5+IiEgFGPhEREQqwMAnIiJSAQY+ERGRCjDwiYiIVICBT0REpAL/A3b3dt247n2yAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement.data = xr.where(\n", + " (agreement < np.nanquantile(agreement.values, 0.0001)) | \n", + " (agreement > np.nanquantile(agreement.values, 0.9999)), \n", + " np.nan, \n", + " agreement\n", + ")\n", + "agreement.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "a3759b13", + "metadata": {}, + "source": [ + "#### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "7f9da249", + "metadata": {}, + "source": [ + "A metric table contains information about the unit of analysis, (a single band in this case), and selected continuous metrics. Since we did not provide the metrics argument GVAL computed all of the available continuous statistics. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "cb56e8bf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
coefficient_of_determination0.685261
mean_absolute_error216.089706
mean_absolute_percentage_error0.319234
mean_normalized_mean_absolute_error0.267845
mean_normalized_root_mean_squared_error0.372578
mean_percentage_error0.010022
mean_signed_error8.085411
mean_squared_error90351.664062
range_normalized_mean_absolute_error0.033065
range_normalized_root_mean_squared_error0.045995
root_mean_squared_error300.585541
symmetric_mean_absolute_percentage_error0.269394
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "coefficient_of_determination 0.685261\n", + "mean_absolute_error 216.089706\n", + "mean_absolute_percentage_error 0.319234\n", + "mean_normalized_mean_absolute_error 0.267845\n", + "mean_normalized_root_mean_squared_error 0.372578\n", + "mean_percentage_error 0.010022\n", + "mean_signed_error 8.085411\n", + "mean_squared_error 90351.664062\n", + "range_normalized_mean_absolute_error 0.033065\n", + "range_normalized_root_mean_squared_error 0.045995\n", + "root_mean_squared_error 300.585541\n", + "symmetric_mean_absolute_percentage_error 0.269394" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "ad610371", + "metadata": {}, + "source": [ + "## Alternative Uses of GVAL Continuous Operations" + ] + }, + { + "cell_type": "markdown", + "id": "247d5d33", + "metadata": {}, + "source": [ + "Aside form running the entire process, it is possible to run each of the following steps individually: homogenizing maps, computing an agreement map. This allows for flexibility in workflows so that a user may use as much or as little functionality as needed." + ] + }, + { + "cell_type": "markdown", + "id": "0789693a", + "metadata": {}, + "source": [ + "### Homogenize Maps" + ] + }, + { + "cell_type": "markdown", + "id": "1cf6aa4d", + "metadata": {}, + "source": [ + "Just like in continuous comparisons, homogenizing can be done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f22f9ceb", + "metadata": {}, + "outputs": [], + "source": [ + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "51129e9e", + "metadata": {}, + "source": [ + "### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "b430629f", + "metadata": {}, + "source": [ + "The \"difference\" comparison function is the default used for the `comparison_function` argument in `gval.continuous_compare` and is the only continuous comparison function available by default. It would be advised not to use a categorical comparison function such as 'cantor', 'szudzik', or a pairing dicitonary because it could result in a very large number of classes." + ] + }, + { + "cell_type": "markdown", + "id": "9900e890", + "metadata": {}, + "source": [ + "Using difference in comparison:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "c47e812a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAEyCAYAAAAfsGLXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wvRX3//5yZLZ92yq1cem9iQRAVsIAiKGDjYsESbMlPBY0agyYPY0uM3xAeGoPdKBgLqIkVEESNvcQSBRVRbPTLbad92u7OvH9/zOx+Pp9zzm0IivJ58Tjcc3ZnZ2dnZ+fd328lIsIYY4wxxhhjjPFnDf3HHsAYY4wxxhhjjHH3Y0zwxxhjjDHGGONegDHBH2OMMcYYY4x7AcYEf4wxxhhjjDHuBRgT/DHGGGOMMca4F2BM8McYY4wxxhjjXoAxwR9jjDHGGGOMewHGBH+MMcYYY4wx7gUYE/wxxhhjjDHGuBdgTPD/jPC///u/KKVQSvHGN77xjz2cMe5CPOc5z6ne7f/3//1/22zX7/dZuXJl1fYrX/nKH26Qu4jnPe95NJtN7rjjjpHj5di39/Oc5zxn5Jr99ttvSZvJyUmOOeYYLrjgArIsW3L/fr/PW9/6Vo499limpqZIkoTdd9+dBz3oQbzkJS/h8ssv3+bYt2zZwj//8z/ziEc8grVr1xLHMVNTUxx55JG86EUv4stf/vLvPT+bN29m7dq1KKU46KCDlm3z2c9+lrPPPpv73e9+rF69mjiOWbt2LaeeeiqXXXbZstf8/Oc/51/+5V848cQTq2vWrVvHGWecwde//vUdjuvHP/4xz372s9lrr71I05TddtuNE044gYsuumikXbfbZffdd+fUU0/d9Ycf4+6BjPFng3PPPVcAAeSQQw75Yw9njEV43eteJ4BcdNFFu3zt2WefXb3bFStWSL/fX7bdf//3f1ftAPmf//mf32/QdxOuueYa0VrL3/7t3y45V4797LPP3ubP+973vpFr9t13XwFk/fr1cvbZZ8tf/MVfyCMe8QiJ41gAecQjHjEyZ1u3bpWjjjpKAInjWB7xiEfI05/+dDn99NNl9913F0AOPfTQZcf+yU9+UiYnJwWQVqslj370o+Wss86SJzzhCXLwwQdX4z/11FN/rzk6++yzRSklgBx44IHLtlm/fr0opeS+972vnHrqqfK0pz1NHvKQh1Rj+Lu/+7sl1+y5557V2E866SR56lOfKve9730FEKWUvPWtb93mmN73vvdJFEVijJHjjz9env70p8uJJ54oK1askEc/+tFL2r/lLW8RQL70pS/d6XkY467DmOD/mSDLMlm9erUAsm7dOgHkO9/5zh97WGMM4a4g+A984AMFkE996lPLtnvyk58sxhh5wAMecI8m+E94whMkjmPZsGHDknMlsdoVlAT/N7/5zcjx//u//5OpqSkB5MILL6yOv+QlLxFAjjzySLn55puX9Pfd735X3vCGNyw5/rnPfU6UUhJFkZx//vnS6/WWtLnuuuvk7LPPloMPPniXnmEYX/ziFwWQv/qrv9ouwf/hD38omzZtWnL8O9/5jrRaLVFKyTXXXDNy7tGPfrT853/+p3S73ZHj7373uwUQY4z89Kc/XdLnl770JVFKyUEHHSQ/+9nPRs71+3354Q9/uOSaTqcj09PT8uAHP3iHzzzG3Y8xwf8zwWc/+1kB5Pjjj5c3vvGNAsg555zzxx7WGEO4Kwj++eefL1prOfPMM5e02bp1q6RpKieffLKccsop91iCf+ONN4rWWk4//fRlz9+VBF9E5A1veIMAIxLoHnvsIYBcffXVO32P+fn5iqn+0Ic+tMP23//+93e672F0Oh058MAD5T73uY/84he/2C7B3x6e//znCyBve9vbdvqak08+WQB5/etfv+Tcfe5zH9FaL2EgdnYcyzEEY/xhMbbh/5ngwx/+MADPetazeNazngXAxz72MfI83+Y111xzDY9//OOZnp5mYmKCRzziEVx99dV85StfWdZOWtqRv/KVr3DVVVdx4oknMj09jVKKmZmZqt2VV17Jaaedxpo1a0jTlAMOOIBXvOIVbN68edlxiAiXXHIJj3rUo1ixYgW1Wo3DDz+c17/+9XQ6nSXtTzjhBJRS/Pa3v+VjH/sYxxxzDI1Ggz333JPzzjuvstf+6le/4qyzzmLt2rU0Gg1OPPFErrnmmm3Ox66Me3guvva1r/GoRz2KiYkJJicnOe200/jZz3420n6//fbjDW94AwDPfe5zR2zNu2Jn33333XnUox7FZZddxuzs7Mi5j3/84/T7/er9L4cf/ehHnHfeeRx99NEjz/niF7+YW2+9dUn73/72tyilOOGEE5ibm+Ov//qv2Xvvvat39Na3vhXn3E6PH+ADH/gAzjnOOuusXbruzuKBD3wgADfddFN1bOPGjQCsWbNmp/u5+OKL2bRpE8cdd9x257jE0UcfvYsj9XjDG97Ar3/9a9797ncTx/Gd6gOork2SZKevecADHgCwZC1885vf5Gc/+xknnHAC97vf/XZpHM94xjMAeO9737tL141xN+CPzXGM8ftjZmZGarWaJEkimzdvFhGR4447TgD57Gc/u+w13/rWt6TRaAgg97///eXpT3+6HHPMMaK1rtSdZ5999sg1pZT5l3/5l6KUkmOOOaa6bmZmRkREXvWqVwkgSZLI8ccfL2eeeWZl1zzwwAPl9ttvH+nTWitnnXVWZVM84YQT5MlPfrLsvffeAsiDH/xg6XQ6I9c88pGPFEBe9rKXSRRFctJJJ8mTn/zkSvr6i7/4C/nFL34hq1evlsMOO0ye9rSnyf3udz8BZOXKlUvGcGfGXc7FK17xCjHGyEMe8hB56lOfKocccogAsmrVKrntttuq9n/zN39TqdmPP/74EXv0ddddt8N3XN7vQx/6kFx00UUCyPvf//6RNo94xCOk0WjI/Pz8NiX8pz3taRJFkRx11FHypCc9SZ70pCfJfvvtJ4Dsvvvucsstt4y0/81vfiOAPPShD5Wjjz5apqen5YwzzpDTTz9d6vX6sutkR3jQgx4kwJJ7leAulvA/8pGPCCD3u9/9qmMHHHCAAPLCF75QnHM7dY9TTz11iWlgV1FqebY1Zz/+8Y8liiJ53vOeJyKD+d9VCf+aa66RFStWSBzHcsMNN+z0devXrxdAXvva144cL7WGr3nNa6TT6cgHPvABOeecc+SlL32pfPCDH1zyjQ6j2+1KHMey995779IzjHHXY0zw/wzwH//xHwLIE5/4xOrYO9/5TgHkKU95ypL21tqKML3pTW9atq/tEXxALr300iX9fvzjHxdA7nvf+8ovf/nL6rhzTl772tcKIE972tNGrjn//PMFkBNOOGGEQPb7/UoV+KpXvWrkmpLgt1ot+d73vlcdv+2222S33XYTpZQcfvjh8upXv7razJ1z8uxnP3vZzezOjLucC631iD29KIpq0/yHf/iHkWvuCpX+hz70IZmbm5N6vS4nnnhidf53v/udKKXkrLPOEhHZJsH/8pe/vCzTVaq9n/vc546cKwlOyRhu3LixOnfDDTdUqvFt+RQsxvz8vBhjZI899thmm7ua4D/96U8XQJ75zGdWx9785jdX9znssMPk1a9+tXzqU5+Sm266aZv3KJ3dvvGNb+zS2IaxPYJvrZVjjjlGVq9eXdnld5bgf/azn5Wzzz5bnvGMZ8jDHvYw0VpLmqZy8cUX7/TYbrjhBknTVIAl5ohyDv/+7/9eDj300BHHUED22Wef7ar6jz76aAHk17/+9U6PZ4y7HmOC/2eAkgB+4hOfqI5t2rRJ4jiWWq1WSd8lrr76agHk4IMPFmvtkv6OP/747RL80047bdlxlBLstddeu+Scc06OPPJIMcZURCPPc1m9erU0m81lpe5OpyPr1q2TFStWjIyzfN7XvOY1S655+ctfLoAccMABkmXZyLkf//jHAsgjH/nI32vcw3MxTERKfP/731/2PncVwRcReepTnypa68rh7J//+Z8FkMsvv1xEtk3wt4c999xTVq1aNXJsmOB/4QtfWHLNu971riX28e3hu9/9rgAjzMpiLCYmy/0sZjAWE3znnPz2t7+tNDdKKfna175WtbfWynnnnVd58Q//HHHEEfKud71rybdRq9UEkJ///OdLxrxly5ZlowkWa28uvPBCOfTQQ+XVr371kj7+7d/+bcn62FmC/4//+I8jz1Cv1+W9733vst/3csjzXB72sIcty9yKDNZTFEWy1157yRVXXCGzs7Ny7bXXymMe8xgBZN9995V2u71s/8985jMFkE9+8pM7NZ4x7h6MCf6fOErJbnp6eonH8BOf+EQBloQwvf71rxdg2U1HROTf//3ft0vw3/Oe9yy5ZsOGDRUTsS2cc845AsiVV14pIoPN/zGPecw2rznttNOWbLIlwR/ewEtceOGFAlQq0WHMz88LjIYs3plxiwzm4oMf/OCS9nNzc0vuI3LXEvzSSfP8888XEZEjjjhC1q5dK3mei8j2Cf6mTZvkAx/4gLziFa+Q5z3veRVxWrt2rQCVWUhkQHBWrly57LhmZmYqArMzxOVzn/ucAHLGGWdss82whmlbPz/4wQ9GrikJ/nI/SZLIO9/5zmXvdcstt8jb3vY2Wb9+veyzzz4j1z3pSU8aeabtEfybbrpp2XvvLMP1u9/9Tlqt1hImcVdV+t1uV6699lp58YtfLICcfvrp2wzhHMaLXvSiilEefv8lSqIOyHe/+92Rc71eT/baay8B5L3vfe+y/ZdmwuX2jjH+cIgY408aH/nIRxARzjzzTNI0HTn3rGc9i8985jN8+MMf5gUveEF1/LbbbgNg7733XrbPffbZZ7v3XO78b3/7WwB++ctfopTa7vWbNm0auebqq6/eqWsOPfTQkWN77rnnknatVmuH5/r9/u817mHstddeS45NTEwsuc9djcc+9rGsWrWKj3zkI5x00kn89Kc/5SUveQlRtP1P+pJLLuGv/uqvWFhY2Gab+fl5Vq5cOXJs3333Xbbt1NQU09PTzMzMsHXrVlatWrXd+5eOhuUcbQ8XX3zxDtssxvr162m1WiilaLVaHHbYYTz5yU9mjz32WLb9HnvswUtf+lJe+tKXAnDddddxwQUX8IEPfIBPf/rTXHLJJTzzmc8EYNWqVdxyyy3LrsW99toLEan+fuxjH8tVV1210+M+55xzyLKMd7/73bv6yCOo1Wrc97735R3veAfGGC688EIuvPBC/uZv/mab17zpTW/iXe96F7vtthtXXXXVkncPg2/nPve5Dw9+8INHzqVpyjOe8QzOP/98vvrVr/KXf/mXS66fnJwEGHHuHeMPjzHB/xPHhz70IQC+8pWv8LCHPWzkXOmt/rWvfY3f/e5329y0dxW1Wm3JsdJTe926dZxyyinbvb4cR3nNQQcdxPHHH7/da5YjJFpvO8hke+eGcWfGfWfuc1cjjmOe+tSn8q53vYu///u/B9ih5/jvfve7KvLi3/7t3zjttNPYc889qdfrABx33HF8+9vfHiFcdzWmpqYAz1TcHbjgggvYb7/97vT1hx9+OO9///vZunUrn/rUp7j88ssrgv+ABzyAW265hf/7v//b4XrdVVx22WVMT0/zwhe+cOR4r9cD4JZbbuGEE04A4NJLL2XdunU77PPZz342F154IZ/5zGe2SfDf/e5385rXvIapqSmuvPLKbWb0K9f+tua2PL44a2KJktGbnp7e4bjHuPswJvh/wvjBD37AddddB8ANN9zADTfcsGw7EeEjH/lIRRh23313YDRMaRjbOr49lJLu6tWrd1oyK6857LDD7pQ0d1fgzoz7noJnPetZvOtd7+LKK6/kkEMOWSJ5LcYVV1xBlmW88pWv5K//+q+XnP/1r3+9zWtvvPHGZY/Pzc0xMzNDvV7fqc187dq1gE9Ne0/Gox71KD71qU+NaHUe97jHccUVV3DppZdy7rnn3uX3nJmZ4atf/eqy53q9XnWuZAJ2hNWrVwODEMTFuPTSSznnnHNoNBpcfvnlHHnkkdvsqwxt3Lp167Lny/dZagIWo7xuV8Igx7jrMY7D/xNGGXv/yle+EvH+GEt+yhjvsi1QSSef+tSnlpXmPv7xj+/yWPbaay8OO+wwfvazn/GLX/xip6455phjmJqa4qtf/eofjQDcmXHfWZTx0EVR3CX9HXfccTzgAQ9g1apVPO95z9th+3LTXc4M8bWvfY0NGzZs89rNmzfzpS99acnxSy+9FIBjjz0WY8wOx3DEEUcQRRHXX3/9DtvendiRFqNknodNQ895znNYtWoV3/zmN0e+p7tqPMv9/OY3vwHgwAMPrI7trAajZBAOPPDAJeeuuOIK/uIv/oIoivjUpz61Q43FqaeeShRFXHvttct+q+W9SsZgMUrBZHtMxRh3P8YE/08U1louueQSgO0mMHn4wx/OnnvuyXXXXccPfvADwEsvBx98MNdffz3nn3/+SPuLL754pwpoLId/+Id/wDnH+vXr+dGPfrTk/ObNm3nf+95X/Z2mKeeddx7z8/OcccYZy0qYt9xyS2W2uLuwq+O+syjtyHclsfvRj37Epk2beNWrXrXDtocccgjgmb92u10dv+WWW5aokpfDK1/5ypEkRL/5zW+qIk3nnHPOTo232WzywAc+kNtuu41bbrllp665O3Dcccdx0UUXjcxDicsuu6yypZ955pnV8VarxUUXXYRSiuc+97n867/+67LS9s0337xNLdnb3/52DjvsMP7u7/7u936GjRs38r73vW/Z5FRXX3015513HuATPQ3jm9/8JmeeeSYiwsc+9jFOPvnkHd5r9erVPPe5z2VhYYGXvvSlI8WIPvjBD3L11VdTq9WWJOsCr5G49tpr2Xvvvdl///138SnHuCsxVun/ieILX/gCGzZs4JBDDuGoo47aZjutNU972tN4y1vewoc+9CGOPvpotNZ88IMf5KSTTuLVr341l1xyCfe5z3341a9+xfe+9z3OOecc3vGOd+xShi7wGbV++tOf8s///M8cffTRHHnkkZVk8qtf/YprrrmGVqs14tTz6le/mp///Od86EMf4vDDD+eBD3wg+++/P1mWcf311/Ozn/2M+9///jz72c++03N1d4z7zuDkk0+mVqvx1re+lZ/85CfsscceKKX427/92yVOYHcHnvCEJ3DEEUfw/e9/v/Kb6PV6/M///A9HHnkkxx13HN/61reWvfahD30oWZZx0EEH8ahHPYo8z/nSl75Ep9PhWc96FmecccZOj+O0007je9/7Hl/5ylcq+/hyWI54lNhnn31+r4qQ1113Hc973vN48YtfzFFHHcU+++xDt9vl+uuv5+c//zkAL3zhCznttNNGrnv84x/Pf//3f/Oc5zyH8847jze+8Y085CEPYe3atczPz3PTTTdx7bXX4pzjIQ95CAcffPDI9Zs2beL666+vHGd/H7Tbbf7qr/6Kl73sZRx99NHstddetNttfvGLX1TP8PKXv5z169ePXHf66afT7XbZf//9+fSnP82nP/3pJX0/7GEPG3H0BfjXf/1XvvOd7/CRj3yEr3/96zzoQQ/ixhtv5Pvf/z7GGN773vcu6wj8zW9+kzzPl8zlGH8E/AEjAsa4C1Fmp3vd6163w7bf+973BBgJ2xIR+dGPfiSnn366TE5OSrPZlOOPP14+//nPy4c//OFlw/bK0LAdhRp99atflac85Smyxx57SBzHsmrVKrn//e8v5557rnz1q19d9prPfOYzctppp8natWsljmNZu3atHH300XLeeectCcEqw/KWS7JSZqHb1rwQ4oV/33HvaC62dZ+rrrpKjj/+eGm1WrsUurU4LG9H2FZY3pYtW+RFL3qR7LfffpKmqRxwwAHyqle9Strt9rLzWoaFPfKRj5SZmRl58YtfLHvssYckSSKHHnqoXHDBBVIUxU6NqcSNN94oxphtVpNjmfC2xT8PeMADRq7ZXuKd5fDjH/9Y/uVf/kVOPvlkOfDAA6XRaEiaprLPPvvImWeeKVdcccV2r9+8ebO86U1vkuOPP15Wr14tURTJ5OSk3Pe+95UXvOAF8sUvfnHZDH47yrS3GNsLy2u323L++efLqaeeKvvuu6/U63VJ01T2228/efrTn77dtbmjn22Nb2FhQf7+7/9eDjroIEmSRFauXCmnn376dpMRPe95zxNgyXc8xh8eSuRudMkd408SL3zhC3nPe97DpZdeytOe9rQ/9nDG+CPit7/9Lfvvvz+PfOQjdynn/47w5Cc/mcsuu4ybbrpppzzOx/jTRLfbZY899uCQQw7hu9/97h97OPd6jG3491Js2bKlikEfxsc+9jH+4z/+g+npaU4//fQ//MDGuFfgH//xH3HOccEFF/yxhzLG3Yh3v/vdzMzM8OY3v/mPPZQxGNvw77X4xS9+wbHHHsv9739/DjjgAMDbNa+//nqMMbznPe+h2Wz+kUc5xp8r7nvf+3L22Wfzrne9i/POO68K1xvjzwfdbpfzzz+fxz3ucTzqUY/6Yw9nDGCs0r+X4o477uCNb3wjX/7yl7n11ltpt9usXr2a4447jle+8pUce+yxf+whjnEPwN2l0h9jjDH+8BgT/DHGGGOMMca4F2Bswx9jjDHGGGOMewHGBH+MMcYYY4wx7gUYE/wxxhhjjDHGuBdgTPDHGGOMMcYY416AMcEfY4x7OF7/+tejlPpjD2OMMcb4E8eY4I8xRsDFF1+MUmrkZ+3atZx44ol8/vOf/2MPb4e4/vrrefnLX85xxx1HrVZDKbVscqUxxhjj3olx4p0xxliEN77xjey///6ICBs2bODiiy/m1FNP5XOf+9w9Ovvgt7/9bf793/+d+9znPhx++OHLVv4bY4wx7r0YE/wxxliExz3ucTzoQQ+q/n7+85/PbrvtxiWXXHKPJvhPeMITmJmZYWJiggsuuGBM8McYY4wRjFX6Y4yxA0xPT1Ov14miUf74ggsu4LjjjmPVqlXU63WOPvpo/uu//mvJ9Uopzj33XD796U9z3/velzRNOeKII7jyyiuXtP3GN77BMcccQ61W48ADD+Q973nPTo9z5cqVTExM7PoDjjHGGPcKjCX8McZYhNnZWTZt2oSIcMcdd3DhhReysLDAs571rJF2b3vb23jCE57AM5/5TLIs49JLL+UpT3kKl1122ZLa39/4xjf45Cc/yYtf/GImJib493//d9avX8+NN97IqlWrALj22ms5+eSTWbNmDa9//espioLXve517Lbbbn+wZx9jjDH+fDEm+GOMsQgnnXTSyN9pmvKBD3yAxzzmMSPHf/GLX1Cv16u/zz33XI466ije8pa3LCH41113HT/72c848MADATjxxBN5wAMewCWXXMK5554LwGtf+1pEhK9//evss88+AKxfv5773e9+d/kzjjHGGPc+jAn+GGMswjve8Q4OOeQQADZs2MCHP/xhXvCCFzAxMcEZZ5xRtRsm9lu3bsVay8Mf/nAuueSSJX2edNJJFbEHuP/978/k5CS//vWvAbDWctVVV/GkJz2pIvYAhx9+OKeccgpXXHHFXf6cY4wxxr0LY4I/xhiL8OAHP3jEae+ss87igQ98IOeeey6nn346SZIAcNlll/FP//RP/OhHP6Lf71ftl4uZHybiJVasWMHWrVsB2LhxI91ul4MPPnhJu0MPPXRM8McYY4zfG2OnvTHG2AG01px44oncdttt/PKXvwTg61//Ok94whOo1Wq8853v5IorruDqq6/mGc94BssVoDTGLNv3uFjlGGOM8YfCWMIfY4ydQFEUACwsLADw3//939RqNa666irSNK3aXXTRRXeq/zVr1lCv1yuGYhjXX3/9nepzjDHGGGMYYwl/jDF2gDzP+cIXvkCSJBx++OGAl9iVUlhrq3a//e1v+fSnP32n7mGM4ZRTTuHTn/40N954Y3X8uuuu46qrrvq9xj/GGGOMAWMJf4wxluDzn/88P//5zwG44447+OhHP8ovf/lLXv3qVzM5OQnAaaedxlve8hYe+9jH8oxnPIM77riDd7zjHRx00EFcc801d+q+b3jDG7jyyit5+MMfzotf/GKKouDCCy/kiCOO2Kk+Z2dnufDCCwH45je/CcDb3/52pqenmZ6erqIBxhjjzwW9Xo8sy3bYLkkSarXaH2BE93DIGGOMISIiF110kQAjP7VaTY488kh517veJc65kfbvf//75eCDD5Y0TeWwww6Tiy66SF73utfJ4s8KkHPOOWfJ/fbdd185++yzR4599atflaOPPlqSJJEDDjhA3v3udy/b53L4zW9+s2T85c++++67y/Mxxhj3ZHS7XVm31mxzzQ//rFu3Trrd7h97yH90KJGx19AYY4wxxhh/Wpibm2Nqaorf/GBfJie2bZ2em3fsf/TvmJ2drTR091aMVfpjjDHGGGP8yaLZ8j/bgh2LtBXGTntjjDHGGGP8ycIhO/z5ffD//t//QynFy172supYr9fjnHPOYdWqVbRaLdavX8+GDRtGrrvxxhs57bTTaDQarF27lr/927+ton1KfOUrX+Goo44iTVMOOuggLr744t9rrDvCmOCPMcYYY4zxJ4tc7A5/7iy+973v8Z73vIf73//+I8df/vKX87nPfY5PfOITfPWrX+XWW28dycJpreW0004jyzK+9a1v8cEPfpCLL76Y1772tVWb3/zmN5x22mmceOKJ/OhHP+JlL3sZL3jBC+7WqJyxDX+MMcYYY4w/OZQ2/N/9fI8d2vD3PexWbrrpphEbfpqmIzk0FmNhYYGjjjqKd77znfzTP/0TRx55JP/2b//G7Owsa9as4aMf/ShnnnkmAD//+c85/PDD+fa3v81DH/pQPv/5z3P66adz6623VsWv3v3ud/OqV72KjRs3kiQJr3rVq7j88sv5yU9+Ut3z6U9/OjMzM8tW0rwrMJbwxxhjjDHG+JOFQ7Db+SlV+nvvvTdTU1PVz5vf/Obt9nvOOedw2mmnLSmm9YMf/IA8z0eOH3bYYeyzzz58+9vfBuDb3/4297vf/UYqXZ5yyinMzc3x05/+tGqzuO9TTjml6uPuwD3Oac85x6233srExMSyOcnHGGOMMcb404CIMD8/zx577IHWd498mYsj346eOhcHsKyEvy1ceuml/PCHP+R73/veknO33347SZIwPT09cny33Xbj9ttvr9osLmtd/r2jNnNzc3S73ZHiXHcV7nEE/9Zbb2Xvvff+Yw9jjDHGGGOMuwg33XQTe+21193Stws/2zsPMDk5uVNheTfddBN//dd/zdVXX/1nl6znHkfwJyYmAPjZtT+sfheE2zq3sFAsMBlPEumYlekqjPIFSUSEQgQNOCy3dm5hIZ8DwIm/XqFRKsG6iJpxRDohcxkiEJuUwk2TGIiU0MkVzWQOJxmF82EdCkfNxCQ6hq7G1Aw96VBIQaJjlEpoF2toRJZm1GEhn6Odt3FisWJxSFUoxeFQeO1F+S8ojDLEJmJluoqpZAoQCnG0c8d0kgKD6zUKMIDGKN/L9jQilauGGr4n1fziYK49j0stENOKUiIVLWknCBqNhLlVCn9v8H+IkDkJxwWFwpSNBHIpMEqjlfbXMwibUXj1XLyd5yikoO/6REqjUFi8Q06v6GHDXOcuZyGfp3AFCEhfo1ONC0q+iWSSNbV9aReK1ammZ6HvBK3gp1szMiccOpWwKtVYgbpRPo2uE27vFtzYLugUA5FCVW/Gwyg4eDJmz0YU5s3PlVH+PkYpIjX6vkSErNsnqaUoPfr8VoROIcQaIqUwi6bHir/H4j6H+25boXDCRKzR4RoXxp45wShItEJvbw35zkaO5eKvz51QM4q4Gp+i7Gqpl5BU/y/XjQvf753R6o32L0vObWln/GYhZ9YpykEp/PtIjCJ3Qr4NiuH3lMEad05ozc1zxF6TtCbqS8YrIoPnqu4kFAK/W8jJwmJPjWZ13TAZqbtNk1mOpe86dIouCk2n6LCQt/3za/9UVhxaGRQRVjLAsiJdw6pkFVov3i22fa9M/HwNr8PZuTmOuN9R1V5+d6BU3W/v/K7gBz/4AXfccQdHHXXUoA9r+drXvsbb3/52rrrqKrIsY2ZmZkTK37BhA+vWrQNg3bp1/O///u9Iv6UX/3CbxZ79GzZsYHJy8m6R7uEeSPDLhdJoNZiYbKGVRkSotVLmslk2dG9nsjbJVH0ybE4KEfFcnIBWMDk5web+Jjb1NpJZT8AkPKqIQStLbBQ1FWGdoxG36Nkaic5oRprC1enYHIBIFJFaQ9/OEGuhESe4GmQ9TawmWFl35PQQozAWGnGL6aRGkkesUWvIXc5Mfyu55COV0fzHOPjbqIhVtTVMJhMYZTDKeIImkFhDI4JYg/9AC6w4FIb5TJNGmuYONo7yXmro/yPnnRBFEUkjRiuNHnLvGGzMI28Kwobi08ANiL8E5saKI9FRxQgMMwhDL7zqp1P4NhOJWsKUlHPWKbp0sg5GQ+4sC8W8n9fYt/HMFDRrTaxYFArpaVSisGSAsHtzHZFucNtcgdFd0rgFLmI6NewfFcz0HdMTEStqxjOE2q9LEWFqCnbPHD/dmrFQCImGVqzZ0h+lGFuUYu9GSmvovZQbsJWlxFlE6EcJaX0pwRcRJgLDUBIfHcZjA8F1Ao1odNbK/p0IRd/R0opmHBiwRf2XKMI3VBE4qWgkhPsuvq4cg1aKRLOE+SwZhdwN5nLk/qGvwvl7m20wLjuCH07JPQ7mYmpK2K1v+dWWHrdaNfpA+KUTb6PPYWau/D1uNbk5KzjYRaxc0VjyHLnzc14zqvp2CoHVUUFmoeeElYlmVc34+bobCb4TyPoZFA6tNImLmXSNivFXGAqxEIQIoY4CVtWnmE523qxa7sGLmbZyjdyd5tlc2IFKf9f6e/SjH8211147cuy5z30uhx12GK961avYe++9ieOYL33pS6xfvx7wBa5uvPFGjj32WACOPfZY3vSmN3HHHXewdu1aAK6++momJye5z33uU7VZXPb66quvrvq4O3CPI/glfrvwaw5uHkIr8hkVaqZGnEYYFdGIGnRtl0QnlRRacuJe0olYmawktzkd3SZ3ObnrISKBqxViVScxCV3p0bcZkcpwYukUKYVEpHqKXDL61pBJk8nE0Snm6FlHM06x4tiaTdPrZdQxpA1Fz9WZUgWgmIgmQClEHLmzzGTzKDKcuAEBCFtJpCJa8QT1qEZN1zDaUMoJWSE0IyHSqiKqXhrSCJapVBEFKipBol4OO8OnG2Wq+VRDBMUKYSNXo4xD2FRFvKjuACuu0gLEOiyvcjMY4ho8U+A3dwEyK6QmSL7bGWusa6xO1zCfz7BQzGCdBUWl7TFEiDiMNkQSkbscECKlqUVNJuIJppMVLBRtYr2Jdm5ZU2shGG6Y8xLYVKJZkeiK8HieRCrGZjLRHDwVc3vHsqXvggZoQBgakaJnhc09S6s1+MRUmK9F9LzqO+zCS99d0AiILPWyNcprIHpWWMi9pF6L1Eg7BaxMt20/HWZIokX3L8c6vGdWmirxhMwFDUQzolqBvo0aYgLB6NE+SmZRh2s29ixWhL2a0U5JlUufo3zaoTEHohfHhjU1zca5gtyYJUR/WxD8HJdaFIBcG+aU0M0tTmRkrOWaNsoz6+XzZ1ZYKAoaxrB3PaIRqWrtL6MCCc/z+xJJhVaCk5yu7aIxWLH+GxaN4NAIUirFlfb7Ewq7i6FsSimWKwD9h/DDcijsdlaM28XVNDExwX3ve9+RY81mk1WrVlXHn//85/OKV7yClStXMjk5yUte8hKOPfZYHvrQhwJw8sknc5/73IdnP/vZnH/++dx+++285jWv4Zxzzql8B174whfy9re/nfPOO4/nPe95fPnLX+bjH/84l19++S6Nd1dwjyX4nbzDfDaHdTCRNDF4bjnSEX3XR6OZKbbSilrUTD1spqWq0Htmrq3vRrtY4NbOzYDzkosiEEvBSoGTAussSlkUmkKgZiy5sxSSk2hDz0b07SoSXdAu+ogIyhTEcZfcriAv6qj5ggLD7VnEimaPZtyncAW5y8kcNKMmTgy5y+nb/oh0b8XSLdooJUTK0FBNAIzykntJyJWCzPXJXU6iE6yzOOUwRqNEV88+rEK+Mx/c8DWlxAUDwo7gTSjKS3xley2CVuU4GCKUgQAN07NFkmNsVCVZVk0GwtqgnVbEJGg1jVaaTtEmMSmJjtHK0Lf9ijHp2i6Ri5hoTNGsNYnjCKMjz8i4AmEBEYVRDhT0rbCQO/ZqRrQLYSZz7FY3DI+qnIu1NcOK1PDTrRkbupZEQ81outbRt56ZyVxgdES2+R5EhL71ZpBYZEidMpCaGCIcw/0ME2qlFJlzNCpiv7TdjrC8OcAPwBPmAXpWKkanHFs3HIu1J2ZayQinoKs+/cFS4i+xtm4onNwpYj/crx8xlTbFBe3DiomUvTPHLbmfbymfdzvzo/DPgxswuoUT6gjNelLdywXNyDAzN0zGa5Fi/1ZK7qAeKfpWuKNrcQLTqcaK0DCaxHhGO9JqCfO1qwjKMwgat1yysE96U6DCIRQ4KbVTft063MhcLodhbcqoRD+4t/97F8XrOwEn1evZ5vm7Gm9961vRWrN+/Xr6/T6nnHIK73znO6vzxhguu+wyXvSiF3HsscfSbDY5++yzeeMb31i12X///bn88st5+ctfztve9jb22msv/uM//oNTTjnlrh9wwD0uDr+Mrbzih59k91W70YparKqtJtIRhSvY3N/EXD5HqlMm4glacYtIeYWc//AsVgp0kFZ7tsctnZtZyBcoZYqSNTBK47chwYnFW53931qV9ueYRrSOzPWxbhalYlKTIOKACGECJxqjEqzrU3MFFk2SZmhVUIjFOotWmkZUp2d79GyPTtGmcMWA8AvEJqZuGqytryU1KYo42LsH0nUhPlOTiN/EtDKV+r0IquJSPd6IBjZZGfoSl9tHxAn9bkbaSJbd+F2QyEyQ/Eu6tK22XhXsyJ2QaF0xLGEQ23j7A+WpiFBqyW2wr9eMGrrWszZ955mnSEXhfXk5w2t1MnKXY/KYNE4xiaZbdJnLZtjS30zhLJH2PhOpaXBTO6FnNc3IsK4eIcDamgYUuWT0ii5OvGq0FU+gUGzuW67dkrMi1ezZjJjNHPO5q5iAQ6YS9miYbdrGRYTZzJEYhe1mNJpp0EINVLJey+I1INua89HPWG2Phu0SJEjwDioCZAXmc0c90qSaIf8UIXc5ThxWXAiHsmHOTHg3/rvSypCaeqUC3pZKeOfH6e3kIgOiO8pAek7VOaGdWeZ7Bbd1CjY774+y3IRFCtY1DCsSwy2dgpnMoZ1QK3L2a2j2WDOB1qqa+6JkspcZn1JBHAmvqWsdv1soKJwwGWtasSY1itSoqo+7QjoWEebzeebzBWCgXSz3E4WicBaUCjsfiFimkmkm4snq3QzxodV8FmF9JnrAp9qg9UmDqWJmdo599jv4bsljX9KKb/10d1rbicNfmHccd8Rt41z63IMl/D2ae7J7YzdqZuAlaZRhZbqKRKfEOqYZNUftowJKaWKVVERdq5jJeLoiAJ5w1QCHlTyoWAWjDFrpasNylHbknEh1ENUnF4VIl0QL9ahBZjVOclJjSUxG4TJibZjrtJhbMCTJHE2T0Eo9Q5KaFKUUWulgH3W0i3alltZoEpNQM3XvHBg+seEPPw7MzbD4UH6U5Yas8FLEiLRMqT69cyhJbR4cvJYjYKUJoJTuerZP5qyXakwDgx5w/v6CkWdYrI69rVPgBKYSP19pkH6y4CCmlKKma95Wr9TQJuY1QYCX+gtPrOeLWWaz2cBoOZTy72RrtgWjZoGV1MwKr0XQXvrsWv+8hRRs7G3E4aiZBkY3cE4xEcMDViVoBc1I0zCK6UQz03dkTri5XdCKlH+G5Zij8BMF08GIKl4pNN4BsrBeqk6NQslA4zM6f0vfhws78a4Q0oGJwRMGo71MOMxU1Iyfo1ygbzPa+RZi4yVeJ7bSbhXi/xUgVt6fI1YRqUmpmRpqSCNUlDb+nRrl0DMykOJKKXt5gqkwRjFZ10zUIlY2LLfM9rml5+iilxB9J7C179jS84wrTqjbgkOnE1ZO1arm/vvzDr/D12o1+DYl2ONKrVfdKA6diqtnLpn0zIr/du8qjk3BRDxBM5pYYkoqUe4NufOmmUqrMYTMeWfaIhD4UuvTKRxRrCvTx0Lu2NLPWVNPaEU7Z0r8feFE4WQ7Kv3tnLu34R5L8FckK4l1bYSzVEoRETGdTFd/D0MFSbg6LkKsDSvTldRMws2dm4O07dX51hWYQFhLVbQa+k8QnETM5nVqJiN3GVo5ClfQt30SPcFMNkXmbmcm61GPBKNTpho9NszVmO1O4aKMvouZqjsKJ0CdSHlP8b7t0rM9rLKV3SxWEXEYk5cKZKDSH/54Fq3hxY4yhSs/zEFztfSybWKYIKugtvfS0/ZVrjao+h1CpGNyV1QEefHAJdxiiSNfaLVH8HIffg5hsBmV78goM7JOHA4EjDb08i6b+xtx4uipTlB/a0QGBCzRCZnNqJsOMMVsJjjJyJxGYZiMNShhoWiyIlFkts4Ns/MottCMYY/GHtSM96qds37TTI1iMtG0YsVM5mjFeon0V2pCpsMD9kc1+tXcI1IxBMMq03LutoctfUccHAvNMirYYZTzMayiHjnPQH1qA5UwyjOuPZdhwzqNlMZoQ+6KyibspCATR6RTMikAgw1agfKZS0mxNFHsCCWD6QSiklHYhgZrMZRS1BLDAasbTM33+clsQT9cX8KJ0M6FRBwR3ha8IlJMNJPqmxj0B+Wbk/ANDI9RKW/aKc0M5Zov25VEdlPPawPrQ/r85UxbO4uB4LPtd6/COBOtsBp+OZezumbYszGwyhul6DuhW3jtZ+EsPVugVIxRisT4NpOJph4lVEEsfwBaa9m+DX975+5tuMcS/Jm8g8qT8CEXIxthtUEYHzo2kA6Xqp4UXnXfs31sEHd8OJgmNt7pz+Ftui44nJVcOQqUKlBsRESTmohCHEoZeraLwrAi9UShWxT0XM5s1iPWMdOtGooYRY2N8zGdfI56rcDRYir2H1Kq69RM3zvSBPu3xdEpOjSixg644+1/UckiUf5OqUmr3v1vSoFZdL+B0FcSz8EOlkaGWE8MjXJUwVoyNMtBKUW6jBeQXkS0ynfVt1JpAQwGlF8NiU69v4M4anHKfD5f2SyVUjhxrEhXspDP04qb1IyQmA5WvBanZiwbuhl9K1hpUDc5oIh0l9R4n3kZGsd0quk7SyNSHDgZ4wSun80wWrFXY9RZzIl35mqEzT1ahvEpxxlr7/1tNGQOlEjlHFZ9FyOOcOFfDfXIm4VyN0QYF2FxpMty/h/lX/0gTjtAide8dYuYXMNkHGGUIpecQnIKV2ADA5aYhLpJKVw+4szXK7zNunSOi9TAV2I5DEc72KA+Hl4TO4vSIXNlK2G3bsFNOUtWY9MWHDadkBWO2zJhQw7N2T57rWoE7csyBDQwx36OhHYIqYy133uG37NSAwkbBg6CRTBjVfZpNYgkGGhtds50s5gZWc4cVzqU1iLYqxlRN6PnInzY3e8WFnCyCSFDpMDKJKtq6zhgIkbwe1iiISkv/gNYjAsx5LJt3WUxlvAr3GMJfmbn2ZJpCpfTiBy5y+jZDEWZKlHYvb4n08n0IPSDgYQwDCuWubyNE0ekNU6sD2vC23qVMr6qUrA7KjQiMdDHiaMgp3AxRk0Air7tk5qImkmoRZrMGlITQXC669s+PfFEu3Bdppoa1Te4okeaOCI9Qeb6xDpmRbqK1NSYzWbAKu7YsJliSlhdV+T9giiOMFoTRYai8J6zxhi0VsRRtOwHP7oJ3XlWe2ifGPQmXoo31cmBVDh8SAlYt2Otgie6PkZ8W3Hki9svd6y2mDkYDI161CTCEKcRWmnmslmceK1OLapRj+pE2pDqOnN5xFxmacZt6qagXcyT6piFfBVaRURaWFuPSfVu1XOVfgMo0AKrUq8VSLTihvmcvhVuG1btV9dREXv/HCHSwcqyRNcor/bOy7nCU4Ryb7biHQ/bhWNFaoiUJ/zej0JVxH6xBD2iwi/5tUXzXJoHFNCMPOEaxKcLWmVktqCjYmomIXMWKwajU5ztI1gKl5ErTaITalHdO3ziGYxSlV+uoeVci0rCWI5DExiYO6n+rkJjNaxtxmydyeiKlxYFaOUZBzYjVjQTTKRZUzh+dfsC9aDCLsQzXiWDNWyuKv0vS+fZXmBIS+99zWj4owrPMpFouoXQszISaptZoQjtc1euHX+fvhPmMr8OWrHeYahf+a2W77Q0PYSpZ0Wql5iAvFOoJXdb0WpLOBrjpGAmy8lcTN0M7P3+uf8whHYs4e887rEEH1aTGq9CKlw/OP2kTCZ1NJqO7ZC5Prd1b62kY0/QY+pRg1bUHJGQC9fDSYYV/8hOIrSKQeX+I3TlpqdxkiJYVAgtEiK/meuElckEvWKGvstxOLpFl9xl1EyL+WKaJGpTi6BwlsxmCH5MSV2TZwnddo8s7dNImnSc1xI04wkKl9Pu9sjm+sStlGuu+Rlaa7TR5FlOo95gfmGeVStXglIYozns4AOBweZ4V4bAKGDAGI/2WzH/wQt7sVbFz6Kil4v3Pq78CZaXiHrWS+jTi9USuzLeYQI2JKdppTFGU2RCqgwT8SQ1UydzGY2oSd3UQXm1PigmY8NNCxM4qTMZZ/Rsj1grJuKCrjXc3I6JFKyuZXSLDg7HdLJi4FuB166kRjOXeU3CisQwk/X49XyXQ6YmaRjY2LuD3GUoFFPpClLdwknplDdQqTs3UA8XAt3C0Yw1m/uWrX1HqhV7h9C/zPqw0+nUVCFfU0lIkoRnwErnv1LyygIDocOhKDAGy0UW5CKkWlVx9z5RD4EB7wMF3SInc47COSJtMUoT6ShIpYpCLOJyjBuEf5bMWqldm88XyF1OpL0+yYpnxo0yTMQTPgx1mfe+K/Bz4tjan0OpBvVazAPXGvqFY6Znua1rWduIWdGKvTZCKeJIs266Rj31jPZMfyudwjsD102DlemqEem+fCYnkGpFEpwuBx79o2PXIjSMom6U18aogco/1apisKxkoBR9F3F7x7Kx501mdaOYtsKauiFmoAUpv9cyoqbkjX3OAKnGBUMe7ctMayMyrEpXsaVvgXkEg1IJqTaDOV3GFHR3w4rGbkfCt7LNU/c63GMJ/q8X6uyVxrSiOWKd0nNNUjMbEozEGG1o5wvMZXMYbUh0Qs/2cOKYTFYEpzchs3mIB5fgIFQGiVlK73yNwmiDEkXuEpQq0OQIGicRIglWuii3hV7Rx+Eqx8HM9mnGLdp5TO4myF2H1ESIEvou84Sv6FLonCiOMaJRufahebEQacGJJjUpRdMi2mFSOPSwA6mlKXOzC9x2+wb23WcP4jghTVO2bJ2h0SizfA1W84Dwj8r1FUfPsP19qRagvGY4tnhgZV20B6hgQVee7vtDvoXD+xAoBf3CUTgF9EiMom6WZiczi55jMKryvmrk7+Fjy0Ex8JyOdMREMsl83iUPORCMjpiM6t6cIy5IvJC7DJEeezYVTiKaUZO2adCzfRLdw4mhZjRGCT1rWSgWyF1GK5og1rEf09CwvF0TcoS+00zpmNT4jH/zeZu+7QBQjxrUTYvMeS/wSCtMZZP2DJHDq75dcFqsG0cWWRLtM8VpoGcdsRgaUVSpgkvJOQvJYMD3JwLtwvnYfe2d8JJAlGQ5Do6BuaaM/S9nu8wR4DfWHIMi1orEpDRMg3rkk9OIOHIpgvOspXB5xajPhwRKE/EE7WKOzGVEKibRNdrFHE4stahGM6oz7No48GwpfW5ccIoNa1Gc9+kYeiQvffvQOKNSUgOJtqhIkSaGybph3YSAUrh8NB59opmQOa+R6hRtZrIt3k4fF0zEk16y1d7Mp5Wfh25R+jFs31wxLGVHWpYcN/h3uKnXo11Ap0jJHKxKvTPsmpqhFWviRf1bcTixlJ/ZkIsTOmiNKjNmdU+DllFH00TDvhMtJpOUzf0+Cs3KNGEyNp6JhErz57VTyz/nXQ2Hwm3HHdkts7fcW3GPJfgN08HKNLd3V9GzCYWkrEzrrEzmmYgLDJF3ENMxiohI14icpes6zPQ3Y12OxdK3PeqmTuEKFAqNrtT3VnxYlla6Cp2LlEUpg1EtCmfJUWhlvWOYODq2QyuawIqmU/RpRCmJTslNn93MVjKXAYZCIiIVuHE8Me65LhhI4oTIJujckKfeE13wG0VU13TUPJPpFGnSYvWaFUxPT1BLa1Vmwd3WrkYFT1kYNmX4NJKJVohjEDfPQNU2sN8tZeWdeMkMpUbsg2X/Ph1rcMwqd45F2oWyfx0I1VRqQKBnoyHJbPTeiYZCKzIHiV76cQ4T+hHTwQ5QuV8qIUIRqxijEzZ0b6dve8GhqiDSMU5cFaHRiOpMxFNoNUE9agQpv0vfRRhVo10UFNKnZuo0oxalp/li9KywoWM9gRBN7rSPgFaGvVt7IeJCUqMYo7wUt5j18Zu/IrNCK9YhyY2jU2xkIZ9DKZjLy/traqZOI9odo/QgsUuYY4eqtClWvBZiIva25V4wI2zLrFLaeGHgbOid5fzbyWyKj3wofJgXmkIcsS5Qtkvhcqw4+rZP7jL6ts9CvjBInKX997W5vwUfXqlRWtO1C2S2R2oiDDCXz1CIIrNdYq1D+KpCKU3uCnpFJ5hoIqw45rN5n3QmfL8++VaEUSmFFDjJUPhojbpJEKBm6kwnqxCgkxVeBR80Hgaom/AdKA2BsHeKDr9d+A0iipqJacV7EOuY+dzRDiGya7QhMjvnga+XrASPwsFCkbKh66gbYW0tohV7U1GZAtrH3EMc3uem3mbm8rmQd2SQEdJL8wlK5WgV4VwORKBy1tZ2Y2W6askaiBWsqcXE2pBo5bV3y5h//L/bz3F/VyETQyzLpf0pz/8BBvEngnsswe+7FnPZBLlonIPYWIzymerm84K6AaNiYl3QMM2Q4c0Q6RoS8qkXkmOUT3aztr4bnaINStEtLIVz1IxhOp2kb3vM5bN+czURmctRZKSmjnI+t7RP0+rT3UbaUNMJm3vzZE5IdU6kPSddSI44y3y+mprJaEUdrBRVsh2fFMjhIotkIH2LSzSRiaiZKbb2t9Iu2kwl0z6/gPbx+R7+w9LVXqBQYcNVgRLGpV000AAnIK4ik9ugk75DrTSRXj58zLMagkGRhw9ZDzl6KaSS8vIqPjckD1GKlvbZpUriLQCBCbnttg3Mzs8zvXIVRiuSyGCtDZKmUEtTuv2cRqNGHEfE2sCQynlYheq1G1I9aEmmNJpEG7QyrKvvTu5yerZLu1igV2SBkfDS5lw2R99mtOIWE3Hpb5FgdI+N3ZQ7ugn1KGbflqKVQjRU06GE4NWlfSfB50HoFpbN/Xbwmp8g0ilWoGfb1bzEumS0VKUpceJrKmRFBygQDPOFwYryaz0klQJHpEdj9Us7rVFeLm4YRTPSwdERykRNw2l5h2Pih1fAsGSYOa9pKHLQOJRqo/C5LJxYBI04w9b+PJBVb6LK9IbQKTphXSlacQuH0Le9Shvl5XBDI4rRKObyLpHOKJwjd31iHdEpuhXTroP5IHMZM9lsSGjVIVIx2kQh26NBqxij/JdogpYnc5nP6SDCRAxTif8evKNdsHVXJimFltKB1AaGXZMXeZgjy1TiHUg7hU83vDI1REpV637UBAXWFXRtx2skxAX1uPGqf8RrIPFMYzuHqVizdysi1WoQATLs7zH05nz9iQGD6yQJnvaOQqbROLQSIl1gReFDlm21FjKX0c7bYRl4hr9TaApT5sooa4MYwo6AiEEpy2w2x90NL+Fvm4na1Ux7f864xxL8dfU2KyZ6zGeKtm2SuTqT8bxXgxbgpMBKTt3UcORBmohJVUTf9jE6wjmHBJWe39z9oi2zvxndItUp1hXUTB3rfGEWJwUFlprWtGLDQp6BGETFCJaFfIHd6i0aUY3ZzBElOcoZOkWPNIoQHCJtnBQolRIrXSX+SU3qs+9JnyROSVwN23M4U0DsnZl8MhlXfVxDysjw7+DvwjcbJBkZ4qq1VgzRPn/ldqSLHX0WZfKQmIG2oLT5iStD8pSXVNXAU3x4g3OhGFE8xJDML7SZm51ndtabZ1DQaXeYmJykUa/hnGPr1hkOOnB/Vq1Z6SXJkC2xlIlLW6Vb9LyVZ4bSKLx+OyIiiiLqps5UMk3f9kPRHUun6DGXbfKbXNFmMp5iOlkBStGMhXqkuX5GMZ8rbpiDg6ci1tV1RSQrL2hlKxU6QDOaIdI5m3o5ShWsA6aSaZSSEO5pKvNJSXpzJ2TWO8mBcFN7A7nr4iRGKQPkWFfHiiHSnng6cRTiEOffVc/6OZmIRwvjKKVIjGCD30C78LkNIuV9Bfoh5r9TCKn25gmv1FFDSZD8DPvURC4k4NEICQpLpNtVUp5hlbEKzIyIVCVT20UnEG3PMIDCOkdsIiIVk7mcwjn6tlup7MsQXKMMqUnY0t+KE0fd1IOpBiKdQuUDEKPRdIsFomAGNNqQ25xIReSSh1TMo9+ECet+cdZEYSC/SsnkSIEiZSLWRFqxKtXEwUbet4KRQSz+8Prsuz63dm6lZwWkQLAoYlRI1e0Jf0zXTpOaFew/ETMR6xHmbvjdDmfHLGtbCCrkISnC2rRo5shlgghLQ0dkzhPuYZNZO1/gxvZNFC4h0r3wPmuIOH8fVc6O8o66qszml9HptLm74dDYsUp/p7BLBP/1r389b3jDG0aOHXroofz85z8HoNfr8Td/8zdceumlI+kGF9f83RmkeguxbtKKa8zmdQoHW/s9em43GiZjgg2AQlzmk87oiDI2NtHNoK6L6LkOCkXP9vwiVp6D1QjdYoG28VXzOkXpxR8RKYNSmnqUUrgixMV7iGhESdUevPRudYRWqiIeThyz2RSFq7OqlpGaNHx4GhvsmN5xzBHHCbGOWeguoCNNK2qh1WhK120hK6SKg4XBJQu5wyhFPRqEjd0V8MLnQPVcLSAlxAzU+oXzWobM+hCjRhQ2goEVABXsmQcdsJ/XfFj/aW7avIV2u82+++xFZDzjlhc5aZoucXQqN85hu2ipz7BBM6NRlYPhcCOlFFo0NeOT96QGalHKVNKgXbSJdAwKUlMbeOLTZW3dcOOCpWfhhllLqg3TiY+3n050UItH1CNLI/L284kYWrH31ygkZmNvji39eSAPDqnz2J4wFU0xmUxDMM2kISdxagwr0908gRBhvmjTLQxKOURqdG2LRC/Qtz1uXLiFSBv6tk6iJ9mzGS+7knzMvM8b0C1GwwOjyDuOWfGq65nM0Yo0iQlrSXzymJrxCWO09kH0hSiclIWfNFAg4v3efWSM8WmNxVEaXYyKQqIkReF6FeOoFD7nhfPMU6Q14nQlzZuQZVIQ+tbvAwqNFV8Ns3D+3fSLPjYQp65dwEoBTihcUfVlxdJ3gkh9xIRUrlOtgo/CyERGXhWOQ1Gur3iELS9t2z4Ln6pC7XIJkUj9zYCf59w5rGvg03wD9AMDBNZZLIpEG5qRoREtT+y3BZ/zwBNFHaqOKIRIdzDSQymwEoc+R5+/GbfYvbE3G7uK6bTPbLbJa0XEoFXhmW8pK5kooMBRBGeJO++Iu7PIJSLfjko/H4flVdhlCf+II47gi1/84qCDaNDFy1/+ci6//HI+8YlPMDU1xbnnnssZZ5zBN7/5zV0emOAJrVaOmmlTM7mXGpRGq5TMTZPZPo1oLiQliUNZVaFdtH0hGG3QztvuMufNAeK8qk4QYp2iVUTu2kTK5+jvF/1gq2oR6yY9u5nUpKRGBQ2AlwDaRdt/oJLQtwWFFLSiFpH2sd5GOSJd4HB0ih7WFaCgb7vEuoZWhsJ5iaJQlshEqARs19GTPjVTo50vUI8aVercgZPe4INMTcgroMEYwTnvdNWIFUjYYLa53pfa8aszQwlDthVeo0YuHVJRBic48MSjvL8EZ8DFCYGiyMuIYrx4vse6tVjniIyX9g2aOC5Lzfr0whrt4+1DJ6WjXrkJivgCPv5dlwryIG2G/yrGA0WkIiQQJZSP9CD4LPiN2nhCIV6iLbUXSgk9W1CIoVNYJuKISHtNQiNSHDxlMEqwLmUqWcPWbAs9W9DOhY5bQKRPpCcxqsDmiqzXoV349LoNgzdfKMFnE4uoR74gSrvwhEuISMw82rXI3CR928QoS6QdiowkzekUDmsg1TFKDRMKPwGJUVWM+HCIVqwHkRONSBNrb16Yz/08Zy6nZ7fSs/NDqmiLoszZXsOJxkoTpXrh/CCznohPRuWUt6v7tNhUPhUqKM371ue26Nl+kCojrLL0pY9RhsSkIUpCBd+cgpquERnj828EhqNnu9Uz+9wXLhSqMp4RdxOgIlxIXz2y1pUfTanar74RVxZnLRdTipWU+VxYmRK0LF4TV2bQ0wiJgoU8YzafC2vSIFi0isJz5yiV48SryZ04UI7pOKuYDxH/jnZE9L1Zp8CbgwSRBIdBq06YD69RKZyvJikyVCRLKRKdEOtpUmNpRjUW8hmc5NiS+aoK0JYFsQeCwfa85+8qWFHBFLHt82N47DLBj6Koquc7jNnZWd7//vfz0Y9+lEc96lEAXHTRRRx++OF85zvfqaoI7SwWckstn8OoCOhSM45YGyTfgialEc1TMz60qnAFc9k8U8kEkTZEqoZQR2SOSMXkklVqwsQkvsqeTqiZFs04JdYRC/k8fdsHfMgeNL0aXoSVtVW0ogmcOK8pCJRua38rheuBMigcXdujjpcGa1GNpuoR6wKjErriib/npP0GYXQZjyS+6IvWRLGiXwhz+Rxd22VFupKaqZMGGzj+1gNI1YUnQDrEcItXn482HGzyy6G0wWtKwknlzV2LRsuqjnr0jn5QOkgy4Psq1b+Cz/w2nzumYu2TFg1xDZWXslaVqnd44xEEJWokBG4YI+MYEuoVoI3GOUGUnxSfe3/R9eG/MuuixbKQzxGpiEbU9OYKk7Jn0zCZ+EIvzciBamMlZV0jIRpK4K6VYkXiCUghdaxYZrMZvJOpz6xodEIrTon1JAtZB6FPz27EFpoZ6XsCrTRIjKOD6hPsr0U1vwpHrGe9BCz+qJMaRiu6xSb6NkcrxW71dTRMg0j7l507mM0cU4kv3tIthGakSQIRKR31RIQ4qPo3di03zOe+lrxWKGIS00cF9bZGI+F7gJzYpGjX8etKaRQWlEaJ/xaU8lXbekWXMmvisKq+dDIrXEFZgW/Y7GHF0rd9+tL3/jMi5E7RK3qoQLyteCnUv9uBKUCrqNKk+dz+bYxKMGrU32RoSQ0r8YEiMEg1tHJVaK9UcQFe0zWX+/DJ8vsp51UBsY59ciKRYJbzmkjBBs96V43X+3JE7NUwIX31sp/BNr+L8v8OQ+EapKaPVFXxfH4TrfSoU0x45sz69fKruYLUGM+4qZhISZDmHVBDiBHmKQuZoXat6t6dgd2BSt9uZ8+7t2GXCf4vf/lL9thjD2q1GsceeyxvfvOb2WefffjBD35AnuecdNJJVdvDDjuMffbZh29/+9vbJPj9fp9+v1/9PTcXnDwUwdbtMErIbB/NJI4miZlDKFDUMaqOqC5GQ991UapGLjmZVayqtYh1xGw2Q2b79F0/eOt76Mgx099Ku1gIMfMSpEVNzWj6bsFvrOKTq/ifIDEqQ8/CTHYLkYZE1+gUULgFIq1pRnW6dh4jeeDegz1NBB/2V6oyYxIdV9n2nHZEuf8bB+3CMx1pkjKg7n5+JMxTbIINPffERpff7NA69998SBISdhtnh7zeQ19VojzlHX9s+H25vWU4xndbGCHCIrRiReYUpQIQ2X62sGFb4uKwtx1jcLUXaKUKxcslJ1Eh93uoDualFV0ds2KpmTpz+azPyohPe5xoRbOs/IsGpqpNOUR+0s/6CJoo1iQqRlvNXD7r1cwmohW32NLrkUYpRgmpFkgU8/SDxFLHr0Rf/U/rAue8xFdIGVraRykvHVISQVXGa9cQgVwSvDNfh4V8hk7RwyhNqusolVTv3BdeUtskImXs/S2dovK+bhfeo2NKpkhdGyJHIRrcBEnURivBSIQjIpMMRxY2X+9kV74c54JmoPTzwAXJechXQ6kQwucJoQkaGa9OloFUXvaJRYfcdCWBHS7eU6ZldmLDvLlA0B1S5okbZqZlQP4H/5ZJdxqIdBGy4BPh+yq/j5WJIRdhPndMxLoyS/nnzMOIYhCft8OXqfVZGg0KpRMMFohDCKEa/W53Cn6kCtDKBR8QjVYSNFvG2/dlKXHU+EqGE4nmZ1sVuTOBOXE46Ye+DUVeI4oEcamfTyVoyZf0d1djrNLfeewSwX/IQx7CxRdfzKGHHsptt93GG97wBh7+8Ifzk5/8hNtvv50kSZienh65ZrfdduP222/fZp9vfvObl/gF+IEZMpuQOR8zHylfoGZa34pCyKxjLl8bNh1fYMfJFm/rUxHa9Ojbgm7h06t2i07Vd+ZyMpezkC/4OHxlKokGiYn1NDWjyF3IcR5K0vZdjzu6G2hETVamu+HEkWhCIZ0CJ5ZYayIV+7CgXBAlZFL4sr52EBpY2vQV0LM9r9LEopQm1jFWQT2qszJdOeL8VUmPOiS5MOJ15sOEnnBcQh5tvOrZWgUOnBa0lPy+Gum6UonjxWPNIOZ6cYKfHRH7xVDK26R3r3sGyI0wDNs2L9wZDDMHVSpWa9GxrsIwM8kqGy74DdhgELwH+Xw+S2pqaKW9t7eOwruNvR+GzUlVrZrDOB6YGBbaHSITUa+1vOd/7ov2mNDXZDLpCZgrEJ1QiK/EF4ccDrE4rLSIdRHCBXMfqqZ0UFF6IqFV5iVhvDSJFGgVYVQvzKkn/0bFzGYLCHMhn8Aqdm9ETCee9BmlSKJtl1S2ImzNHN3Kmc8FP42YpNvEZBbJHbEC5XJ0lCBOMPUYlQtGNGalJlPdQFx1cPi05eLwMrMUXjMjJSEimGfKb9Sn7vUqfz/fPipg4PDoHSADx6sSlPTCLQxOSrW2YzicsmS4lYr8PC67pgbrtVSpW1dQsICiQCtF7nz1TiuKrZmjZnxSr819x5qaqUIxwdvly3wV3sSYVAyNCwRMKYOIoW+nqrDC3OVs6t2BVoZVtdXooDbXavkIm1IzYnQSGIw+iZ4J2hY/Td4kkyDEGNWlzMRRfvN967P/rUwTtvQjIj0PJJRlxsTFdDs1GmlEbpt+79CwsPCHcNrbvtr+DxEa+KeCXSL4j3vc46rf73//+/OQhzyEfffdl49//OPU6/U7NYC/+7u/4xWveEX199zcHHvvvTezmaaZTNGMMtA9clejW+SgLJoEXyv+ZiLVolMomlGEYOjbDJ/0wuDES+0+LhjqIcOaBK9d71ktXq0lBPVeg8J12NjbiOCTeGzub2I2m6GQoqoCFuupwB1bukU32Akt4Dff3PlynZ2QXKUMHfIxwD6VL2FTy1xW5Z5WAkr8puVV+fVRhVQp3YtXbpYGcu8zFdKfivI/4HO9onDOawEEkDJH56KPupAC4zSRNuRSVI5qumIFBnLFnXUCLDORuWDnv4t8CXdwU5/jAMuQP4RhJsuomZyaiYmUT5yTuSxoNBSpTsltVvl/NKImzThCxKFRFF3Hz35xLVk/o9lq0Ww2AYcxPqxQKc3Nt9xOFGlmFmbRkfKpnCNo7d0GvPNn3/aJTZ2s70cnKsFJSu5StIppRAXg7filt/WKdIJu0aQQS8348rq5izBYmrFBq7LQM+TOv7+t/U20i3m0yilkC7d35tFKqJkaq2u7+bz8alCqFgGjg+ZCCdb59dUuvAQbG0XhhNpkjMsLlAlVIF1RaW5yY3FWeW2S9k6rBIZFyAcaGMrEQIM1ZlSZjc+r/lEK54qgitcUYkFUVZzJ+2x4ZtX7ZBDOlZEzttISDAw4Plm3v0/pNWCrv0eWUemdH749r6VyQDewF4ZYzVKLJmjF/g6RUvTxjEJq4LbuVjrFFsCHxfkuHYp+YARUYHR6KBUHZlSRmDZa5XSt5qb2QsgtoJnL5yA8717NvUlMymKooGAvmR2/LgJL5AhJazSFawEaS0Lp4Fc6bvqyvYpEC3O51wqlxpG7Olo5jNJMNH2+gzjJg/bOkNw5srBLcD6wcLvnx/D4vcLypqenOeSQQ7jhhht4zGMeQ5ZlzMzMjEj5GzZsWNbmXyJNU9J06SLtZxH2llvpRxFGZyHErAANOo5weRuRgskWuF6Pjtb0ej2sc2jdo75qDSaFWHvpXOHtrz43vrcHplGNrHTqCSrDZmQQGpVUXcVxK41WhkSnA7VvSN4znJs8d/7DWpEY5mjixIcAIYS8AD4KoFRpWnFovKf4fD5PkfdouBbKUtkzXaDrldKq3BMrz3MV1I4qcOulpM6Qx96gHnfQbo8Q20HojoSnNlBtiH47G9YG7CpGqoYNHbdOKpPBXZkaeBiD6IyB9kKLpqY1kfKmFVVttApbhniG9eKJhbe3lgV3Mten3khZuWKaKIqJ4xjnhFotpdvtMTlZo9PusHXrVqZXTJHECSbRtLd2ceS08zky5wm5dRm5zcjzSTBraMWRz2fgIoxy5C4m1hZIMSom0l2aUZ01tQZWhPmsTd/NMZ2sxKh6lfJW4SWzHF/hrCzPDJC7Nn3XrUKrqiQ9Mig3O6zBiZWiZnyY2XwuoQ/v2T9RU2xSPQrnJW0TBYIuzjvtqQST+KyTWvnQteGsj17DBt5hzDNjnvkwIdwtGIDEr1PrbEW0tQpZNEsVPVTJfKyURN54FbY4RHwWPO9cqPBe9bZSw3uzzo7gv/d6VCezk551kZzMZoDPaqfx8yUIfddhReqYyzQbewRNTwet6jhp4At0+eqdPpEPaJUEIu3XpFFee2jFkrkM6wqs8kWKHI5IRczn8yQhl0C1cym/73h23XnGVzSOCMThSHHSQCTCiiIxCzip0S0MXesjRYz2vg+JgUIckVrAOsFoC9RQ9Jmbr1NYnysgiiIi4/OH9Dp/CJW+IdquSn9swy/xexH8hYUFfvWrX/HsZz+bo48+mjiO+dKXvsT69esBuP7667nxxhs59thjd7nvOK1h+zm5itk806FZr9GamKLTblMnRvV7GJOyMNfDGMVcuw06QjmNicEkOc1oJVa2YFUG4j3rS+leD6nzopCQBaARRb4Eb+0AtvfpC4pNvRwn3g5mlA/X87ZETWp8OMtctpnM9oMdUeGTCFA5IykVYUKyECsWMY6MHqqvmItmUWgm4gl0SYC1oDWhPvfAEWi4UM0o3VQjo+47YSEXVqaDIi7elOEJWhmCqNVArq/6UKMmgF3F6LiC5gFfLGY4n/fvj6XmgcU6CqMVE3FpVik91L1mRaHJpSTynqA48ZudQQVfjgitNQcfeMDIw5XFnbzJZYrV66ZRWmGlYGt/KzKRew1NIG7leAWw/QWSImJOraA12WCflifU7XwVPeuYTgyt2ASGxBfHiZTCpE3mshoan22tG3TGNeM364lg823Fa6r52NS7g429O8I70CEJi6YRKcpCMJ4x9H1pBdOpJjGqKgTTKYTJRBOrHiIlg+jbSyWtRmiVoULx3PJph7/Bisksw/YkAvqVP3/5rZSqeFe1NzgGjihOLIYIo40Px1QxKB8Gq4IKXisJqm1fGEupDJ83MkIkq5j4YQw7lparywmsra1hdboaQZjpb+Hm9o2UTLILDK5QcEv7Jvo2DzHwCd6BMCQ2oIePBdEILQSDVr1Q4S1Cs4DDBp+OHMjDuHUQSvz9rAi3dm4BCOdDyKOOqr+H00iL5HjGBWK1gFYRQgZicapL7hwzWZ21tcT3P1TTQSkLYoMt349lsuUorAIs1kUY47xGKl7ewfauxI5z6Y8l/BK7RPBf+cpX8vjHP559992XW2+9lde97nUYYzjrrLOYmpri+c9/Pq94xStYuXIlk5OTvOQlL+HYY4/dZQ99gKn4DlYcsI6+rdFYu5auhTmnoLGKnuTsPdlg1YoJ4jhCa2G2P0e3yHDi1Un1qIlgcYV3oom0TxdTUFQ2q8z2w8ZjKmk61gnWtkEmMSHDnYgPBQOChOKJw1SS4lgZsvllFUGJlGEun8WJkIS0vsF4QCE2xAR75aFITqJaKCy1YC8mVujMYHvCTLGVtJVU+cj9eECc8ptY+RFWNG4x2ZSRXzWqKie6LQwX2Ph9UPoBLO7TF0PxaTq1gmjIR6B0dNqpUCNK/4SdYBVUSBJUOl+V9xBPuBYKG7Khaa9FEk3uLLnzDJxgiULWRlHi/SzEeru/1v4FVMZCH9oEgjY+5C/YWojTQWVGrWpYiVDMAxpXaJ77nW9xwVGPoVAGp3yoWiv2cfhWfGx8zfisbWXN8V7hC5uU0RA14wvc+B/fKFKKksUrI+BdiJ3uFfNs6t8GeLuzRgeNV0wZzpjbPESY6JA6dgWra55o9a0L7Yqgmjd485ZGK6/F8FNe2pq909hyLJ4PgczCJWUGNwlX+wAwT8y8d783W5UL2rNbfdvDiZdAjQol5VT5THjP91BrQ8TiKCMAyjqcyyyfoaGWtnwf4lgmWhowL7lrc0fv5kqIyFzfz7oKFfPwIXZQUNZ588mf+6GfLMxfJzxjRKzLxD668j8wqvRfGOjhRjVlZbIjwY80zKU4fCY8R6Sy0N6bI1GgxdJ3XXRxO7d2dHgmQ6w0VrqD/AUCWmsMCfP9lH6eEKeaHE1/wVKLYvrZ/DKzeddix176Y4JfYpcI/s0338xZZ53F5s2bWbNmDQ972MP4zne+w5o1XnJ461vfitaa9evXjyTeuTNYyGcxmaMZN1nbmGBTr4bNEjILkoNttZjp+LrjzQhaNKnrOpnt+9SbvR7dootGEZEGT2QLTnkHoKBezJ3PsmVDNa520SE1CV2XY3X5CQkz2QwLxQIN06BddFiRrvbRA1lGPWrQztpeMhAfR9wruuSS04xaTJopZvMZv8EGZsGGLHpKgdIKVIx1OVp79XwhOYlKydsFbemi0rBBDoupi3em7dC9Uo0Pvq52VoYah2MiQtZfGn8MBKei0T52iHIsy40x8AHDzjQqEORCJORVGDopS68vD5fC13LTMQoh6xWV30Q5l9ZZX3TJ9dnQtSQ6oRm3MMonkvG1A/w1NniNL1gfOVH6Y8S6NAmUdyqzyCnEQkbus8YVCRNEdPKOV9VKQU0JhaS085j5fhOAV/7wat5xzGNxEymCoRXq2adGUTMhZDDkEyhL7A4/uxv6Yy7zUlwrAj2kRVFKVetewNuCRfC51C2EhDsK739SRrEofFrV+WwWn7nNm0Dy4I3t6zd4lkIHAmedraR3oR/m1VXf4MAk5tPe+tkOFnLRKGoo5RmKkmkpJXgTvM1tlTxmUAfC55TPvSf+kJOeQhOrGEGRi3e2lWAu8PkZ3JB5a3heyyiX0Xkso29KrY2lYKa/hZAUF6OaGJ2hXA44nJKheRI8G+6984Xc+0BQoFRIaKOCICMJgsVn8/P5A6jCG031LUTBh6nMHZFXiY6k8ltSCE5qKHzJcaVMlWdAEJzr0pZeMJ0QTCeqipDQStF3TfrFBOISFnLvVJn3QcUaHRnsNmpM3NUoxGzXS78Yq/Qr7BLBv/TSS7d7vlar8Y53vIN3vOMdv9egABQJjph20QXpEKmVtOIJcq3otjN+c0sOtZRWUzjn6s8BIJF3DDI9/zkW0xZqFroGEge5Zs1eW2n3E1Y0u2ycbfGOoz/Ky655Gt12gtJgMwMLBmW9BF2VgxNVURSXOJQNKtwifPpGcJEMrgue8y4SdO6TyigB3VeoQmFr/m9loWg6dK79PmvATRaoxKI2pcRziv4ai+5rbwpYmUOmff+FQo1QTZbTZg8q2g2dEz2kHoDg3FdesORlQBRUtcPtyvuVHv/D1438rgbHymsc3ilBiU/GpaU6r7SMMjbD/Q2rNEQNwg9F+Xcii9oPj7Ua76Jxiipp1MiUlMeG+1OyuM3gnsqBlPO0iPkqtYqL38NyXMoHTjmT+Q0zTEewtpkMVaYL3uF4rUTPOtbWDdbBfOFzG1TphcMlzWhwbafwNtlIw3SykrqZYKFwVX31VuTrDfiHdN72KRAbXWlGFNC1XW5q3xJS3U6TuwaRrhHrgkjnGAriUPDBT68EJ82cKnyR0gSiQHknQ0+UvHRfMlBCitAkVnMEhXG4ztfOcFVoGNVxo2PKu0swHUjJtDkHWJx2Q86oqnL2c5KypV+jHuXs3kiXvB5PO4IJRgZ+Dt6x0bvDeSnbawKNMuzTWkvNJFhxbOxtYDabhzIWXyVVVIET734mpbe96NAuzJXOPTOCj9NnKJTRM5g+8+BUOkXdNMhdQeb69G2XzPraIqIUIp4ZK2esyk1AjFJ5CJNk4N2vtE9QJIJRMU4ierbJ1v4khXhGoEyNYaxgnEM0pBE00rvfR96Jxm1Hbb+9c/c23GNz6XsP3hDygaURdakT0c4jdDOi5yxOCTb2/u2iwcUhqUpbY1PAKig0umOwGpRVbNw0Sb3V55bbVjK1coEXfPm5qLhclAp6uvpVGKL1iUPlgZhHAiVhV36TL39UV+ESQfc8lTU9VW32LhV0T3uioDzxR/y4XOxQWqGcQrV92BpG6K9xSCTYyBJNZNCL/MDqFjpmkLlSAvFRS4nNCJG5cy8jMDBhMkqiXx7DP8MoxV88AIaYELW4MssyDIKMaixGmJlFzImowaEl/6oBMzFMwBcxK9W8lR3JNtQGJXOwDEMhZhEzUDIH29K8CEvMMqLgeVf9F5874WQmiz62XdCNDEmaeOct7dX6hYPb2wV54QvmpJGma3099bJOQeYcDq+C9VK/JncKoxISY6iZGkr5hDtWIDGaRAeVsAjtvg8hS42mjDh0OObyebrFCno2oma2EmuNw9C1KVL4+vGx9t+vv2+BE0WkM2LdJ9b9EaneSYqiGyRLhghnBFhEtoZqlgSCRyBQBc75JFYDfwAXEu0MCGWpWSs/WMEhrkDp1EfOKO8k6ZzFSkzfNZnJFDXj2LxQsLalqAcVetcKrahkVgZLKdIpk/EKvE7I0S06FGIRDIUk1ExtaJwumKIMQhRC8LpDCzQBichdgpCCnsUn5NGVT8VA41bOh6v2o8z6NNGdQtEpYiKt0SojURbB1yCxLkRJKO9YaZSmkAyvWfAzV/pOOAQVMhz27QRb+00yVzJDgeFAfIiyKrBZH60gRmHs3R+W5+OjtvWRsd1z9zbcYwk+aKzr4ZTfMdvFAok2tOLdWdjUZqJRY2K6gUXx7sevJ9aOs7/2CZRVRB2o3wHcbJh7RJ/zjruct17yJPIJQboJXaegr5m9ZQrT07hIkJpFBUJe7sCiAeWldoKzqUsE1fdEW2V6QCjqFh05VCeBQuFi/zlEPUUxnfu2jQLX0Zi+wrUsOte42O9Dpq0pJhwusTR+G5NNK+xqf1M1HxF1FG6hziOP+ymxtlz94/sM1N7BmC1KKq/8knhsk9gv5gqGCXrAMO0LXm0oFyRrPaBWSvBENWg90F5qX1ZqDhJStV2qsp2q7iUVJ7WIiagIsKoIryqPOzVK0IfyCSurBsR8WGswNKgRIWB4vkreQ5ZcMniuIcZg+Hh1Xpa5ZTk+JQNNUminHDzxC1cDcMmpR1FkPgGQFsNEPMHEZAuZ61LvOWbbPuSyFmta9ZhoskYtHkSR3NrZTOE8MVHUvGJF5UwlE6ytraFuImLlHfEk+FYEdpNWrABH7tpkTtEpenSKnJlslp6dRiuLlUm6tkXuFm8lPvLGKFc5TSkgNT2mktvRZIH4CZHqhfnxEnvFRAIGE1TOPi9/0NX780qFstWBBSiXX9gzSsu2QlVrqky+4/9qosmoR6lPzCU5Si0wERsaUYu5PKPvctqFQkeaZgSNiJD4KAwljHwibtIKfjY92+U3878K9zCkenih6DBuHaTlGFEWEeMjGqRBLhMoDFa8qt9IHaMcQl6FFZaakjJPQfm+QejaBaIiZj5vsqEbobBMJMI+LcjsVnKnvSZRLIUrQt2RQUIyOxR1VK5fAXouZabfou+SatFHSphIFCsSQVxOYrp0cp8DwmhFUSxwd2Ms4e887rEEf25uDSaOSZMcYzK/8JWjFUfUWzX68z2e/z+f4H2nn0kjUkwmhh+ecRYPffd/IQqKx87Qv3aaia83eOvPnkS2UlAF7HX/27jx12uhUJiuxjad96eJHSZx2J7xqvUhYlmqsYOmE6k5dMfgpnLUvJ9Ck1qKhRhVd6iehtRBpilaFpV7RzC6Brcqg80Juu8/OjG+72IyeO33Nd3dbTAVCHprgmihaDniWcOPN+7BQjv1968HR6AsLOhhwXdbTO02j8vo79vqYNjEoQbq61H1t0KJVAzTyOUMqd71Mt2Vm71TVfuhi0cZmBGKKt5EUBJSU0r1gQFyIJWbsVSXeTvLoJvhZxQGJpMR58ig1WFInV/2UUn0ixgArxVQA4aj0nSqQWL+xdoJ4KzP/3DJq/j0qcfzpC98Y+T41U94Cltvn6W/0GPdmhYmMnTznEgJouPgaGoR56X2uWyeuqn5Msxa0VSjWfZyl7FQzJO5jF6Rs6XfYD43xNqhmMBJTO7qFJXtdLn1IkMe0l5F37cp3aJO3fR8mmTtc8f70DLvCGlFgspaQsiaRZGglEWHkDLPN7rgAAgEbcAgkZI3I/joGSobe83UEawvXWxj0B0Wcs98JCbxORG0Y1VaeK97KVjIa7RdnUiHqoYhNbZCh5wAEOs6nXwGoyOKUG8j0SkOiwnpZX2Z3fDNiPfTKXN9eHt7jUKaGBSx6VA4ReHq5C5GdBrCGmE43W4589584X0R+kUP6+4gUjUm4ykyV6NhIupG0c49AzaVTAIwn/fI8g6+YI+glFSfgyoTkqGw0mJLb3VlKzdKaMXC2npOon0J4g1boas1C90m9SRGIfT7d39q3Vw0ZrtheePUOyXusQTfGEu302Jhro7SjjiGJFbckrfJ+xanDf9y0pOZzx0rkognfvJj/M/Tn4JtODot4MZJpm+B/jQ475CLGLjptpWIEdKNEUVDoG6RQqEWImyrqBLVjNA/qyrCDKB6GtGCmo+QRKBQ2JmE0tlVYn8MAA0qV0HiVbhIcImAFlShkNRVkrHKB39LIqi52N/HKbBgU2HmpikkEqJcQdjMqGzeg3GPEIlFUnZ1uFI5L7pIAUggVKMEd1jiFa0CIS0J4FBfVT+MXF8STMpxM2B6KuI+RBhHfBTK46V7vh5I5lW7ktiWDIgJ4W+lBmPJmILEuKjCUMVwLLK9j/gwBL+M4amr5olljpfjc4umfOgZ/bwyqi+Wod+BJ135TWAoBE7ByZ/5RNXH5447mcd/42pQ8KmTTmB6okmUaDp2gR6gxJH1c+7oz2In60yltYGFI9xGK+MrtImlW2jmsoTcGaRwFH0ocoe4PkQalSZglsvytnTRCYqenSTRs+DKWHivdLW6vMYGe76X6n0sehQkTR8Kq1SBUFAmyi2T5eggwZdpYi3DSXYietaHwRXOenu1+D6sCDk5Zb37ru3QLto4C7ZQGLpYiQGDlX6ImW8gqMAECUIPCo2oMj2vgPTJXB9lNblzSCjA5ELBHZ8lwYR3bEl0hpUaih6RyjFmAe/8V1QOgf45Q8EdsZSlhv378/8vXIFVXRpRTgMfvruxG9GzBU4Mmja1SBNrXza6THrkzSjel8CE7Me5qzPTX+Hj3ZUwleRMxD1i3ccoRzvveb+JxIdMNlu+sqHWGuv+AF7647C8ncY9luD/3VXfwu4Rc9GjH4aWJjVVpygc9cggzRpxbJgrfFGKMz/1cS550lOZz7QnrNYT1v5KaNwuzO2v0Lm3ocf1ArshpWiKt/n3DKpmkcA1U6gloW5iPNEVLehAyEWFjXnEaW5IX1w6ollG1MVmIdjdQz+qH8wCWgaMglvEcBTgIipmQNUsdgLviKgEFoZe45Bk6X9hlCkoUTIZEgitT/HnGY0hSVNKPfOQCrrqUwliQFXSraC014IsQam2hoFNveRThu6/xB4f/BIGf492uyxDELQH1TWB8I+o6od/XzTfMswgbc+mPyTgb08psmRsw10MazcEZPEXObSkBuNlwDTBiOMgwBO+dnXJ//Hkq7/ClY8+lUxBs7WKCaDf7XHKF67ks488mcz2mE8sUaQrD+16I8GpHJxirt9jc3+CrOdwfR+nHteEuJFQEONyi3SCTT6JUEnsTT/bDJVU5K5G366kGW+tHtAhiCsGCpPKtu7DBI3KBgp6XeafHzAZpU+AV3kTzg1y9PvWugq807pkNLz9WsTbqn2VTR91UTNNiBRO+0yNifaMQeFKD/4OKjACNTPNVHIgE7Ehcx1uWrglpOZW3Ny+KUQjBHu78vNQRin41+yCVsOg1RzgvLoenykQcZ6RCE57UCbW0ejA2Pj+FKgQaYDPU6Dx1eSsLcL3nNEpuizkPpVzpFWVF0GFnABGRTiJaRc1ZrMWVgwTsWNVrYNzmyikwPpwfHKbA12UViFkUJHjwCnykNb47oQvH7Xtj0+2c+7ehnsswUeDJI6//My3KFYX3plOwZp9tzDXrdGbqXmCETsuOf3pnPWZT/Dx08/gysc/mVP/69MoDelW2HKE/zfdopg/QMjaCY0tit5uDkSx5wF3cNt1a4n27JBt8Hkgl/M9U15QqHZn5bzamiLEYFuFMyE2PhB6NOjSnh8JBH8BWpbk5oRsysFEDn3jCbAWvxsYQYbt4UYRz2mKlsN0NLK6wEUacZ4yrTtwM7f/biVqxFju/5GS0Ed+DOI8Q+TTqQ0Rfe3vr8pxyOBZvXbEE2RlxGstHP7+BAKvAuFXEj58lhC3irqNSNNSTesosV+kWRj+l0VtFknAlfZgMZFdJE2X84tTo+4Ci50MZWge3SItStBCDF+/2AkPGCXSApUGstIcDN1vGGro2tC+Yg5YhgkZun95zWP/53K+eNoZuNwRJxEnf/HzoOHxX79qEcPh5+vzjz6ZO7KtzGdC3zXIUZioQ6MpqDjm3C9ezQUnPgkwaGOQNEZZh/Rz3HwHFRlIY4jKfPCjDyYo2sUqUCnNaB5F4cmdmJBpT9GIvPRLFX3v7fixqnnplZxIpV62F8FoCeF1ZcLbGio4/vp7ltylBMLmQ8wIBZOsstX3I2im0xW04mnanTa39m/CqJTcWRpRg1bcClkEvbe7E0ViWkwn3m+hZuqsqq0kd97/YD7fhA2V/EoNgn89w/NSZhzIQppu7/WvAwctuHCtH68gVYnf4T4JzxXS/4CUAoyrkhYNsgdICJnUQUMQBAixWApyFzGT+RDVvVtCI+oAPRZyqeaqKDLECS6XAeMfzHnKCNrd/dJ17nwZ9G2fH6v0S9xjCb5oqN8Y07wV+EXMil90ufXlGZ0socgNB+1/OzO9OptvXMGGX/yUdz3wGJ562Sd5932O8I51TjG/n7DiOkVvFfRXQrJVo+9IUAXorsZNWTZ+bx1u2pLf1kA7cGUCrLCRVjQqOOF5iVJVRD4kP69UvRJJkOy1l8xrriJyovESdF+TTzjvdLY18UyA8bZ4iWRw30CAJRLySUFnimLCQmZoTHjOub2lwcatE5DrpaF2Yah+V1ReOwAj0nalQq487xnaOxaLo+G6ymkq/Fq2N2FORlzPGXEIFAVqObW/jErZoyqKsg0DzckwsV/CWCzze9muJJDDFHpobOVYRsYw7Om/qO1izcBiVIQ0MCGVmaQcS8mcLHO9GtZwLHrmikFYrAGoROTReTnp8k8OmNXFYxweD3Dq1V/gLSefTi6CiWISA6/48qdBCW979HouOGE9SiAWH9vvlJewpGHACcZadG7Juhm6nkJkfJW8oYQwDugUDfo2QdChToAv9hvpHKNuJ9aCdV7trpXGKYeERDEG4wmbMl4tLppIR8E2XqBVH1/X3S9Sn5lOhanxPgMQ6gYoVzm+KRSJNuFfX6uwcFlgwDUT8RQT8YQv4INf/2VpYRFfXyB3MavS3YLkXNCbn8HaPGgavGe+SN9L9SI+94D46nLic2RXgSq+kqMn0S6k8dZlpcAyM6Hz8f7e18EnEVLaO8gIBCYncOSuCMvRJ5PyzIUEJsLnTPCXxMznk4Bm7xY0o1k6wQEvs0UIY7TYQhDnfPoGn40InCCFIH1Fnt8TyuOOVfol7rEE/8NnnsLz/uur5BN+L7r14XWSL9XpnTjP2hXz/O5/98bVvcPOy37zc/7z2BP4wDEP4bk//A6uYdEdQzEpzB5kUM7HugOkmzRFCyT2IXJFy6GDGr9yroJqs1yysQ9tzmrIrl+2GTkieCIeB4lfeWKvxN/ff2H4CAEjSLuquTpkEw9jmSxwXeNV/qLozNfYZ4/NdOZr2EwPVNalnTo8R5kvYAkN014dLyXhc2rQh1VeI+AUErlR4lpKqE4ttYtbFaR9T0Aq+7+EY8Pth4h4afJY7Bi3rAq+ZDqW9TtgiLCHA8NzONyOxceXeeHleIel+2FfAVVuzAPmaZhJXOLoVw674iKpHBdHxlTOi8K/k7KPMurBLGo/zMwMHxtmYKo5VaNMUmjz3lPPpGuF3PkQvSwv0JF/nwbNBcc9kSx3FB2HiRQm1mQ9XzAHF+zlTqglBm18ISujHJI5pJ/5oQepv0x6pJVDKyGzBsdA5VHTbTRZSIbjRsZpxUuUkfZEzzmvpi5L6uoQXS8iKJIhQgjeN0C8x77yOfdLT/4BwSdoCcJttaYeNeiHPp3AQi7k4tNT506YyVzIqmlKJYJXznvaHVLaUsXqKwpELXrxavDiyoRHPsmOQgUmzYmvCeAIDnYQmAfjE/uoEBdaSfw+9G44aU752k1wyPPZMH1yJl/gy5DZGjP9FoXU2asppHqGjd2NVVSEVnW8xsA7U6so7D/l+LXCJF470S3TQd6NcKIqZm5b58fwuMcS/F6WeKe6sMnmLb+W7fUT5L9q0ZiEbEKTrfDe962Vq7DdTrUBSyKIEVwqJFsVOtP0d7MD264DIkHlPgkOMGoP3gkMq0IVfvOX2KF6xifbicRL3WWSGcFz76XUljqkUOiuGRD5MrufXSTxCuie9hqDjjcB3BKvGIQRavHMwKK1XUr9i4lQJV2WlXaQRRI0lKaLEcc+8NJOxQQoRgfK8hL3MDMSjpWXjqi+g3d82aYypZRzCEvvtxwRl8V/qwFHVt5s2LRQOeMN9T0ivoexDXv6l32XTKAwCAFkiPBrqZ6zGkeQ9peT0kuFwCjDo0ZzF5Rjc4O5qvoo/d0WM0zh73Kdf/BJT2FT35I72JqV4Qji14QTJIkgWJuUMaT1UFeAEJtdM2itqGufKT9zhHQwgSkRA8rgXITKC6TnibVOY0giMolRKmExcknIXUpi+pW9uyyI4x/Phlh7HYodlUPXwZaNJ4zSH5rWkphC6e5oh8LbyglzhIycQCGwtSe00hVo16VT+NoASvmNU+HTGK9Mvd9AzXipP3e+3PDmvjdFFG4FMAMYrCsQfEVGjc+t4EJee8+n6qByh0H+xAgnKSIao/MyQhYArQqUDtoD5VAqDktDgdJE+EqBZYplE6rv+a1IqiyaWhlS06RbRGzpTxHriL2bFmQzM9mMNwf0FWIgTnKUiskL0E6jI7AhM6JQhgtqUlNjXt39YXm5GPTYS3+ncI8l+HOZxcWgLagcVv3ES6Rz+ykW9laYDnz+RU/kpI9+Gt1XPP2jn+KTf/EUbzNHe6ndCPGsore7xSxosJBNC8mMwjac/8Yj8VnsNAM7bbkxDgl9y9G1yv5ZimMinnhDcPTzF4uRQVY85dX8KlNEzQxnNS5PiNf0vKpbQZEZ3JZ0ZMOeWrXA3Nw0uqtR63rY+dhnBRTfTzGTDjb9xcROyUAFXNLp2A0k1mUebsQ7fTGxh6WTAaNpd0v1vRv8PaICUUPzJ6NzPTL3xkczlJn+RhiN4Wes7jt4xiUS/EAIGfhalO1KpmJ4rDB6XgAXmCCUl2qGpfWhWw0PceTxh7z8RQ+k/2GUmoLqb6sqjcISRmv42pL50MvMTfkuBD711Kfxu4WC2zreY3wJg1YUEHkJWoLqepQD8Rn79mhErKkZTvzER1FO8c7HrqefDyWkLcemFSqJIIlQhUX6OdLLULFBpQkSyuqWkmnPNilcjWa0mXo06zPBlc5twQ7tiVU59ijY0v0HpkK6XRCcRKB6KKEqNNW3/Uol7pXs4ZtFIZLiJKZwpQStAEPdGBQF9UjRMAPOK3dlut3B9NUj/zzzuS8KFWlBXEohLZx0Q1KioGavFo4KaXQ1ThIvPSsHJAg1nEQYlSFSDGUl9OvCayi8kt6n+vV58k3JPEv5JGWWQ/DGAkdZ88FJwu2dKXo2JtGavVo9CruZ+XwecQ63oEiI6Xdy3HQfYwpcLmhnSIsafdPFpRaUCxESllwV2y1AdldhLOHvPO7BBN/xySeeyZkf/2+SOVjYQ5HMQzoDNoH+CjjpI59GIrj0mWeyMjE+jagStPWEAoF8UojmNEVDqN9msHUoavhNu5XDQuST6BSDzFyyDZvq8LHFttuKGw8buJJgv3fKS/02cO2ZRmU+o17RTsA4pvedZeuGCaKtEcWURUUOs7qH7UWouQhWZvR/sBLZzfr73lzD7NXzqsMspujGXtKrW9RCNKAJITtgNS7jCYRoQWlvcxQdnA8Z0BCG6IiYIAWUjMHihy/7HulgmWbDxGqI6C3WqlQahfLvktgNScYjEvzicVREJjxEqU0ZYQQ887iEWFYMkQzvw0MPM7o+vGOmqsYzEsK43PCGGa6geVnObj/iXjDsge8WSfnDjEbFlKiRuSnDJocJ/w2zObawA+3OsFNdYX0xGh/wveQZjBKmEssLrvzMyPHzH31GVTZ3WZSEJo68Wt8Jkhe4ds8rL9LEMwShbSE+Ll2YDQTEP2hZr8JL5RI8623VRlfqcI1Igq+Gp3BYT/yraRj850sg+/frbdMFKF9waLfJGjNtS70RUY8cmmhkyoVQmGhoqkxYcitr3rueehMrDTpFzEzWDdcJVjL/GqsKgOH9S4ZSPg+BSB+lbFW1scw1MFzj3afl9aV1fTW9kGlQeZu89MFZIarroMJXGJsgroDEoVXEXDZBt0iYSBQra1uZz7b4+gnOIW3Nc7/3E8QIlxz1IPJ2TiNtUYtqPPZ/r+arjzmDLfMbse2CvNGj0AVWClyoEnp3Q3aQeEfGYXkV7rEE3xWOzd0CiYXeGqjdocibkE/6uHqXCFed9URqpgEID//YJZ7IV8mtBQxII/ccXk/T2w2YzpCFGN33DnwSj0pdKFlCzBf/vi0Jzp8M40/EJ8cJefdV39vyRQETheesrULHjk43YWrNAnsfNMNPf7IPGIWdSf1mvjKDrQnF4W1UiCKwDYfeUMM2LaZtcCusJ+Z9M8gXIKCyRZKxwpsxspCisySgwS9gxJnOKe+1n4csacNM0GLCXdnmF4nsi6XxarIG87Ssyr08N0zs1NC15bOUdnZZ1EcgfqXGpkoKVLY1DDnQMcjSN+w5z+L7qkVMAUP3pfKVqKa6JNiLaGDptLw4lG64TzXMPAyE6iUS+5Jrhx0d3eC5dU6l4fmXRz0Rmxde6o7NEE33aW19XlyzhNgbBfVIsV/L0CoZWCO87aT19O3y/Ne2oJQCo1A69h7+uUX6GdLto5IYlcbEkQ3SfZg3XGVzt1hf/TIQal85TpO7/qB/yfGCeMjfj0FC3ncT1q0P4RsyZRBhRSPUvfMfgtGauklompSu8/HzvSLzamIJOenVoBJhFExyPumPP9aImogoIuWwLmah8PHzBCc+FThqFRarHvrGlFYQvPG18jZ8RVSlGQapChB5LQFonYB45z1jI+64eStRFCEWmhN15mfmKfqWPC+YXDFBp5sjUU6jPsva/aaZyzcCgsGQL8Bzf/DTat2v3W0tj/78FSPf7SOv/iQo+N9TnsbGTZtg2jFrtyLi6Mnd77SXi0Jth6jnYwm/wj2W4Is4FjLHfz7xTPadiJmINUd+5MPVziKJ8Nj//KyXQK1C1bzdvsy3qls5LtdISbAKb1NnIQbniYGkoa9hxyiWCKpLx7a99VNu9GXBHKcgC2r9UjToRL6oT+RwuSZuZFinuXFmBWoqR21MsS3rw1y2JN4X4fY6UndI7omzq1uUVdimRXUj7/yXhDj4Iam8JCwSOVShEQsqcV5NLoEhiAVCFdNSzVymzq3szkOEuFI5l7n7hxmm4ZC+RXMyQjxLNULod7iPAd2SRdcMjaUa11AoZImQqGjkNVVMAqOFghRB8zHUrxvqs7SHl0xD+ftw7H5JoNWAKRpZI0Ocoi6zOI546g/NmQyNb5G+fyTrn4SxDD/PsD2/mgt4/xPXs7lT+JSpWkgiqEc9EqNo5wm5Uz5mvCh8KJ3yVfi08mrwVqx4/mX/5e8doki+8Yyz+MVsjtEO6zIcEd1C07Nq54n/sNQfG5Rz0C+Q+Q5FouiYlcQ6I9ELaN2rSlT7KdeVql8kRSmf898novEvSZFX1fS8Y5+qCLxCVSWxCa3BS4O59aljff9QT2PmO126yrFgOyjV9fcRh2cLQMQgJCjVQQWTg1YxWsGejb1JTJ0ERaStzxioDD46oQ4oYt1DK6/mL1wezAQ+z4ALlTy9dA6OolLOjFQdxKcVjrTxnvwikChWrJyiPdNlauUU/azP2tVrKHIhRxNFCY1GRpQKue3RK2YQBC2aZ379R94vxdsNUFZx0uWfpwpfLDNphnX74Cs/xhce+ljmszlMZHz+AO7+XPrj1Lo7j3suwc8KcuC5H/tviqagMzCisXv0kE6E7hhPD0KcuwRJNd29Q7+doI3DdiMvmfYNOtMgEO3dJuvGyFzsiV2hlqhit0fsd3r8etDPiG9A7LxEnWkfGhgJvTTGziaQOvTW2JsYHKhM4+qualepp8vMdJHzKnAjVQw8zqeuLVXGupXjelHI+++dFLEK1cy9lqETeU/8QAxVoXyIYGmfDinMK0l2mbkpkxL5QbGUI6oI+3IXl31QEf4qpe1yonJJBMP5AdEts/4FYl0S75LID/1dOSEqKkc7YOAoWUnT4f524PSIkkGlxGGtAoPfl9MAVQgOniNUccSGsbg9g3kfpv9V2mIVvOpCO4c3VxjvYHjhiY9nrp/RSAviqCBSCzzvs9/2XWv491OeTO5ACgdKEUWaNTXDHs2IWMHD/+ujKAe6NLWEWxqleO6XPjHCEF3xxMexpVfj9q4Pr9sWFCUzMXjESGkm44h4MmFzp2Bh0xydtEmzBg2tKyneicOKw7o+onyWOHDEQcVdBFV5ebwQb0f2Xv2WSHl7ry9rnNAuEpwIqe7jJEOrLqlJgAlKI18cG7J+m5mFrbgkAZUFiTokskEDOSKZn4iQDU+pInjDC5Hy0rpPi+uJqFCjcE2gQ2Qc9ahB4fLQq//oyoyBBaU9XFNIDSRDq354zqH6ASoiNSn1qE7P9jBK01jXYO26dSilKUSomzqd2QWiekSrXqddzLGQz2GsIafv0xcvALkaOH+OOIcOCUjDxws/ltzlREWM6hnq+eQ218FdBcf2E+9s79y9DfdY1kectzG/7YlP5HPrn8oPXvBMxIgn9iEJT+mEpDNF1NaQOPobGp7Yb6hj5iIav0w8Qduth0sdcWwHWeYyVfUBQ/vu0AY87FC25Hc32q4KLxsqkVrabVWhKtW+cv5fN1mgM+3V97mGTBMt+CQ7WIVpa0xHD+4V0vF6U17w7rfKE+dCoXrG95MrVO59BdzWxFfVi92AWFiQ2cRrGgJjMWJLz5VPdNQ1/t9CDaIBFhGnJZ7/gQiPVJRb5Fw2EkO+KAZclZJzpaofukFJhBfxAKVqfuAJP+i7GttQpkEVNB+q8PNUaQSG1OCDlzpgApTziZSUDT/F8Fx4plMWzclgTQ3GPnIdEMy1o0xRyWi4oec04SeSgWRVnQzvI/gmXP64RyNaOGBVzl9/+XO8+KrP85dXXM1zr/iWzweh4JInnc50Okcz6jJJxoGTMQ9clfKsqz7Go//rozzi4x+t5kpK7UbAQz/+UXRPj8zDqZ++kmdd9Sl2bzCkIfCDUzhiDatSzeHTMUetSnnQ6lr4SXnQmpSzP/9xnnHZx4lDul5pdzGuR2Qduh+hXIRSJmThM2gVB0nXVf+VGfVKdZoTT/S9dkBITUojajCRTDCZTLI6rZHqjEJ6Ie+99wnwtvxyah1iLIXqY7MezmVAP+gMSi2BQqmCQclaFSRPoWf7IWeAdyx0YVP4/9n78zBbsqpOGP6tHRHnnBxu3pqoASnE1n6aRqQVVKhWsWSUKsYaGFsUbRUb+ATe16bpx34dnrb18+sG7QaRdsIBKAoKpKSYUYoWsaVRXhxREKUYaq5782bmGSJir++PNewVkXmLusXgRXM/T96beU7Ejh07duw1/dZvTVPGen0MTdpVdj+gy52A7kQtRJfN9QYIv5/Q7yZaueJgaY5VSthsNjFJtSg0NMUkHUWiLWRM0LKED+b9cWwcrXF0fYZEGct+oRUVJSUmdxnf9cH/V5g8TZGPTJ1K+AU1HtCV34W/YIq6naC9I6O79QtgPX2O1ubqc/6cSvvpn/5pfNM3fROOHDmCc889F0984hPx0Y9+dHDMYrHAc57zHJx99tnY3NzE5ZdfjptuumlwzCc/+UlceumlWF9fx7nnnosf+ZEfQdd1g2Pe+9734oEPfCCm0ym+5mu+Bq961avu1hzc1XbaWvhifTFmibBWJzzof74G/ZkSD6rvuQdKjPZTG65h5oaRdiqxbG6bSp79uQvsbjWgmtHvNqjPWmG+NxELNmNsmB3shgX2W222oTMXoafHcY2S2manr2jIx28CLrFY8IuEPMmY3FJ7XvbkDqHgpfMWyDfPwJM83HQZ4M1OhPJeJdeb5KJxm6XeymZAu6WULjHAG72MN6vQYyqCByhubYKD/fbNzShWH+PYLtBHzzQ28YIU5citdevH4uqmMHDoJwEcP2cahPH9kmNPgR8EV5wiqU20YilYzoNbt+d4UA59tML1+paWJ+g0Vu4D6xCDvHqf2hEmwL06A8VJ+x3xQTABl7z9PQCAS974Ni+bbF+yPs+nvfktI/yK/hfGR6qEDCh/GUgZRQiEe6Oe8Ix3XYN3P/7pdiiOLTOIOmw1Fb7zDVcXZSiV5eOKFgP33qxw9nQTmC+Rlz3OonvgjhMLYH2JerNFB6DtV6hSFeLwNRJlcWczA+jRZonf16nR2yP0uUOVKhFKVAOpBWMlpYepRk0NmjQBs+TaAz1uXdyE3XYHqDN4tQSvgNTIw2Ul7YmYftbfBH9Q47N7N+KO6nYRtt0CPQuD4IQmIBgxbI02t2hzC6BHnSYAOu2vEPIAEKIgXWhWSXCSJthoNkFSQQodV2i5ATGDsYdl3sMkTbzWQEoJPWcss1QqbJIUHGEGVrudeA0BiXQlexe47C9mIITwF7Gk961Va+hnHZq1Fnzsi0+tK6EautPvT6Vdf/31eM5znoNv+qZvQtd1+I//8T/iUY96FP7iL/4CGxsbAIAXvOAFuO666/D6178eR48exXOf+1xcdtlleP/73w8A6Psel156Kc4//3z8wR/8AT772c/imc98JpqmwX/5L/8FAPCJT3wCl156KZ797Gfj1a9+Nd7znvfg3/7bf4sLLrgAj370o+/mbNx5IzbGidOkbW9v4+jRo/jl634fW+efi3Mawvde/2ahlFWyGGt5sxcueqjwWyUBx211WNtaYLVs0M9raLYL0BFmZ8+x+OzGwKI90IXvuxLcjXWyNWXWPU+UpCbL77RMRdgkOBOdoOdTeYEyJI7OANqEtBJhnWfSB9u5JPdg/AG80SPNOknhI+XBV1Q+dYppYBSkPqGQAJniUJX7cgAbsB+lbnMRfUJxwx//P56/ONHjeYzHRDehz/0Bk84H/H4ylLxVO9TwzTg1zl2U6lUwQT8QhmHcHhIYLQj3LpykUZyXfWg+KmMdAARPvu7utG9T4A64pCmtzgVwZ/3mYZ9jhWbfHEHmNPUYzM+g4qSvh31TOJyWsJ7e8qgn4MTydvCRhD43yFigIkKlNd4FPd9iWtXatRSQSZTQpKlb/23O6tJvNRc+qeVM6HMFYIZV3gChwbxn1EQ4MtkB8wmx9LkDdwIqtsI8jAwmEaKmBDPg1LgilCXtrstCk1unGrNqHT0Dy36BOtXILFZ2osaR/p1+xpw0Ji6V+CrNc59UU7R5hTMmZ6KmTdy6mGNWV8JSyCssum0wpEZAUynnAcvcEBEm1RTzbg+r3KLPHebHFvieP/uw03azerMG7yRQQmqjffRdj3wMFtM58iRje3UHto9v45IHXonjx49ja+sL6943WXHle56JZmM/n4O1dneF1z/8N+72GG655Race+65uP766/HQhz4Ux48fxz3ucQ+85jWvwRVXXAEA+Ku/+iv8y3/5L/GBD3wAD3nIQ/C2t70Nj33sY/GZz3wG5513HgDgF3/xF/GiF70It9xyCyaTCV70ohfhuuuuw5/92Z/5tZ761Kfi2LFjePvb337K47wr7bS18FNdI3c9jlOFN156GdYbwkZdo1vN8bBrfkdqyk/VKqsZ1W0NqgWhWgLdzgTLO0SrTwTkrQ60Uwni/7Y1jXPy0CK1Nto04+dGrhMbdYTUErozReFALUIwzSsB1nWpAL4AZ7PjJotwAWCAMU5iOXHN5SXTjRmA9sNS4EdBdXmncYXDY8uduqFXtH9zjkKUuAAWbS4qHqZ/8QH/W5/96DjtXzwJPKQh1l8PFNTx8zjBY/KY8TPZp2wEb0PciPohV36phBfGiCA0TaBHJUSvMaAhBvumx5ViD0YCcRB+sDCFzxkNjyOcXGkZz91oWuwGHRAI9RwMhxoAkeHcMJQ4xYNMAr2+AwercMzgJPZruWeMh/MbsS02X/u8bFRIn4iBjc0Z7thOOLHYxQpng2gL/bRGVRPq1Ml7zoRKUe4VAZNqqSl72QF0hBYsRL/IuUdKFSqqwSAwMdq8QEUdOoYWy5mA0GFWT7HKS2Su0NUtUDFqrXLHqkFV3AAsqXCZelAlFEU22b0Wz7ESvolqr+TW5zkASyskOY8SNqpNdNyh7Vt03OqjIDRpgq3JFqZpBoDQ5Qk+M+9R0RSbtYAD21yjok0ArMVwYnhD+kiUMKvWQEjY6zs86y//BMpO5M+P7VVgXQh9WWP2TDkojzlnrPoWPfeo0umTh7+9vT34fDqdYjqdfs7+jx8/DgA466yzAAAf+tCH0LYtHvGIR/gx973vfXHve9/bBf4HPvABfN3XfZ0LewB49KMfjR/6oR/Cn//5n+MbvuEb8IEPfGDQhx3z/Oc//3OO6e6201bgo67AXY++SZjnW/Gkd/2exIkyoW4r5Foq11FHoL2Efj3jK97X41PfIe7tdP4c/U1r4ATM/r7B6gwRonmWkVYErgm5UVrdIFhKPr1tmvK3lLfVYxjIFTC9PaGaA+0RIO3Ky58BsZwqScuzc8suqC/PVDpLax3yiQngVr8aUnVWT0DlbjNqCf1WJ0j8npBO1OBpdnIa5xPQ8aWQLmWbabWbkKcsuCIioRNjEjBhiI8H32RppihEBcZAW+atSDwSKjzsy33m4+uMrm1twCE/sjKsz2AxGnbAXcWdKCWFHEmfT0LxdgBKpoOhcoLS10Bw2tgitiC2MCYXYtGNDxws2Akgq65oCpT1MTpuoEgErgLS7wdZD6Y4Eg/7sXFQuEfW/T6PrG+jaNb3YOg9KPc2LCdMPhfmWSHw4JpMwK8/5sm4fdnjBb97zWC+oifgO974Orzhkiuwc+IIXnD9dbjmEY/FDdvbyFubWGWhzxXkvtRhr6nDXreJSeoxrRjLLC7/hD0k6pCoQ00TNNUMQIc2L9FrFsCk6tGwsNMR7YCowbzr0LGVoZUqexkVQJ1Q3xLkdxCmVKNvG+SWQNMWfd8BRvJDSZMrjAK4V8rahD5n5dRPWgCnd8pgImCSJshZ3PmbzREcabaQmbHTdUhoceFGA1BGRgdQJamMqcasmmG33cVOu6PMhFk8HWDMMFFcQUbuWZ+/gHZzV/n8l+UrC8TKdru3S9dkZsZuuyOMfDTFEl/8tLwuV6A7idN3+t2FF144+PzHfuzH8OM//uN32nfOGc9//vPxLd/yLbj//e8PALjxxhsxmUxwxhlnDI4977zzcOONN/oxUdjb9/bdnR2zvb2N+XyOtbW1Ox3b3Wmnr8AHlBWK8Yy3vg+8DkxvrrG69wq8p258glSAS0BzPOHT30aoFiKV+O/XkZJYIqsz2NHL1JHkw6tFzGMr0vodBIIxsESQgcmxhLQSTgCxyFWAmJtbgXQldUXPV0AfzStgkpEXjQj7Ha33fUaLdPsEuQaq47UUAmJRPPK6vPi0W4kngCBx+4XG5w2x3yakVscdbi5p+eDmeEKeMPo1Viv6JKbjQcIeo/9HczV2d7usG1j20ZyLpufQ7HSvxUHjGCsHsSv9msyadgu4PMOBtyNWywt9+2dBUQCrEhF0EBfocZjmMTHrKPYblSKEc6MiEz7fF4IIt81AydAIEz22lmPbF1UI/0eiHr+teGvWr3mCbDBG/MZxukMn9kwJeMkjL3OdMTNwy0IE7c9efBkAQpOA51//Bvziw67Q+u1S7/wTcwbqKf7bIy7DZb97DV7yzQ8DcUadMiZpDhCQMMW06lGnFm2eiLWegcwT7LVTtHxUlgExEoDJinDe2hyJFsqzD63P16PnlfyeK7S5ReTcTylpxbwKiTJy7tCjEx78RKiaCjXVaPIm2k48EDxd4vgdJ7DcXaKeNMgTKQjUTBv0WXLyAWDaTLC3WqFeq9HnTrnzCQ01mE1nAODCfpUJCTVmVUZTidIAJHS5R5ulbMwSS6msB8Zuu4eUZl4XYHu1jY471NRgubsEVSwMnlYrI6wL9ITmeIV+yrLnxfdE181yuULbtKh88Y2Ytb4I7a6i9G+44YaBS/+uWPfPec5z8Gd/9mf4/d///c9/oKdBO20FPlUJ3GcwGrz6km/H9/7G/0K1AFZqSVvLlby83SaQa0Z1jNCtM/qtDs3tNdKKkCdyQtZFmmvVTqM1os0QzP5FEE7ESvW7knPzBOinQK5RYuHRkjWLEyUP3xD1mGTBFkyy0NVqKICX4r3gWY9MqcScM4EWquhUAvajigW0Z0K2krGBGLnWOGrYlDmJJdKtowDO+rBpG/jLyufa5+62xVDgutQpLxsZeYt9zOWwQW37OL/2XflC/rV0wCjdcJLfwzMzt7Z8XL7cB1Bjue6gIA7gSppZxsbaOBhHsLAH68dkm2UNqMXuqcAUlBi9jnPtK9rdMSERGW3X05AP65xRuK8xLCAqHYPPgQG3QMzvZyV0s//thAg89N9j/n9QrMyb8qbLnoxbFxldZtRaMnm7zegGj4HxI+95I37ukU/CsifUBDz/vZLz/+x3X4OrL30S5h3hRAvM1VhsM+P/+61PwGqxAo71WE0bLGdH5V4ImPQd1utKuPjRInONmhZgTHQ6CMxCGdx1wM3zCc5bW0MiyRnvrBwtBMQnhDctoGQ5AEQ5YFLK2yWIEnpmNFSDISGC1GRMKsKR9Q20yx4tT9DvboOQcOymbSymUvmv7VosFyv0vSgMR7eOYm++i/vc70KAGdPUoKlrTKsJjky2hFyHRBHp2xY1dWj7jGY6QZ1qdNxjr9tFjdrDAdzCwYp9x+Cqw7JvUVGNBhMsji/xrD//k7DIIfH7uL4zodu0xQJ/z7yOCAGcauR5QgajnuJLwnJ3V136W1tbpxTDf+5zn4u3vOUteN/73od73ete/vn555+P1WqFY8eODaz8m266Ceeff74f80d/9EeD/gzFH48ZI/tvuukmbG1tfVGse+DzFPg/8zM/gxe/+MX44R/+Yfzcz/0cAODiiy/G9ddfPzjuB3/wB/GLv/iLp9h7ECLUYHICmJ8rm2K/kYX/HsUqyzNZiKt7CC0mdQndGT3q22vk85fgYxPxBvRwUNbJQFYuh0yQUhA+QUC2R9iBTwNgnW34Zi1Zq8SYNjKe1KplaS75JHzXIEa1XSNPBZnvFe8CExwlSEnciRTroVwM9X5DqgWyubIRjEgCeCIEMMQQr0GbwHVGmvaSs08IG3i5pv9vUq0j5W7HwFo2nMIgnj2az33zPlYEXNEYjcOEVE8jxSycH8Fids3xtSwGORb2hIJFGFvIPIzRD9ze1h+JkEcQop6iaEpWvJdExc3t4x3Nh12TR+tpgFmgkyphfriNqWStyd+aCTGAR4yBk+GaFrd3vIB9HxSqt1z+FHz02ApdL0pmlciy0wc3xgD+28OfgLaXm37h710Dp7gm4MnXvUkVIMZvPPop2Gkz9jqAmwqo14CcwYsW3fE9oK5Bswn6aoJ5P0FFU0xSh0Qi9Ds+eLvb7SrcPD+CI5MlptUKNRGIGvR5iS6vUKcGUuNORixEN4DQ3GYtgMMAGhX8LQBBxPfokKoJJrMK3Tzj/PMvxGKxhwvOrdH1HRbdHm6/+Q6ce4974oyts5BU8Z/UFaaTBl0mtMsePQOJasx7wpQarFYtTuwcx+6Jbdx00y1ouxZnn3UW6rrCqmvByJjPF1hbmyGlCrfddhvOveAeuP22OzCZNjjzPptaPGiCvVt28KyPfUiAevFRa6VMttRLC9uN39XQHv++d/qyfNW//lrkanngnH8hW5cTKJ9cseju5LuDGjPjec97Ht70pjfhve99L77qq75q8P2DHvQgNE2D97znPbj88ssBAB/96EfxyU9+EhdddBEA4KKLLsJP/dRP4eabb8a5554LAHjXu96Fra0t3O9+9/Nj3vrWtw76fte73uV9fDHa3Rb4H/zgB/HKV74SD3jAA/Z99/3f//34yZ/8Sf97fX39lPvnvgc1U3HpX/se8Fcxzv5/Cbd+I2N6S4VunZG3siDzGUX4bAh5TbUnm/PqXkvwsgId6YBl2o823XdhFGVALTGu2ePjUGHYbeayAW90QALOOHsHxz51FMhAOmOFvKpAJ2rwZi/57MRuxXGdQSstp6k1720TJtWsU0diye9VoB5exIQygBOVA8gojDmCEUnnhAnIG70ADOcV+EgLHG8AlnK91ZkrUMpodyagSZY0P2smMIOA3BcO6TFIn3O3eojz+dhMSBLKfNqziMVs7O+DnlcADLlCZP3QSKge8PswPZKKQmHjDKx50ar1C7ryYwqAKoX96NqQtbKvWJcKXDJMVww31Dw81tbYWGkxrofVkCeAxSc9nEebFwvJGk7AvFJBgfEWlS71PgwUYSZN2RrOk13vE8dX6JcdZhNhiFu28r6gSs7Tb1PVseSgr9eE33zMlXjmtW8oyrNdg4BnvvN1+MAVz8CtixVuXxKOrxhLqkDrwpvPyxZ5Zw6qK9DGDD1qzPsahKlQ4MZJHUot7HY1GGdgo15hrW5R0Z6z3C3zEg01mvdfisNY5b2eJb+ewOgVR9HzHLmvkXmFNi9RkXju6nqGM9aOYDapsGxb8DFCN78ZfKTD2edsYN4vQCCs1TMs2iXquhYcT0PoKGG3rXA8M7YqYHNjDWuTGn2fkaqElAirrsXaZIqqqUENYVI3WJutCQ1xz+IpWJsiLzPaZY/l4gS6vYzcGYkIeZlrK//tHquD3sUQrvHMDGK842GPwmdXn0ai08fCv6vtOc95Dl7zmtfgzW9+M44cOeIx96NHj2JtbQ1Hjx7F933f9+GFL3whzjrrLGxtbeF5z3seLrroIjzkIQ8BADzqUY/C/e53P3zXd30XfvZnfxY33ngjfvRHfxTPec5zPJTw7Gc/Gy972cvw7//9v8f3fu/34nd/93dx9dVX47rrrrubM/G5290S+Ds7O3jGM56BX/qlX8J//s//ed/36+vr7ra4202LYxAxcsNoTiTsnQ9Mb67QSxhLgHIKwELNwHoHLCpMbid0m4z2SMbkk1Oszu5lNSoL3cmvqf/bJmtANs1p58RipVeQeP0kA4sE7gmzrQWO/f1RfNuD/gofO34Obr7jCLBbSz/zhKRc+mb5cluBtVKflIpXyykDaUnozurk/laC8ueaUe8mdJti9XPDQkA0ro1es1j+ilNIPcAz3WxVS2ej5FVh0y8qYNVIeMGq+ikLoQk1s1TldwaINH0QEjJhHQBxyKkugrn8Eoh1Dpp7a3FzCRau9WOI+AFRjn0dBVcQ9vvi0SpMxmtCHAYm/W0cQbCqcKM+dhRuI+gGrgRgZJ3bcWYtA4OU0zLeAzwiCcHTJM9Cwg40SLO0r73Aj122Cv3HORo3u8fwvZVa348DoKBYMFarHvfYmmDJwPEVy3rKDLRC30s1qa1MqJMg4p/7zjcceA9xTi56w6t9Pq597FPx8e0OHUjwPrMJeNIg33ECNJsITTCg18nYrHeQqMO8O4KWrcAt/Ji9bgbmCnUSBb7NM1GKaYkOHfrcoOesVewIiTMYS2RmEBJSYoBbJFQKAGzRc4W2b5T6NoOwQG7WMMFR1A3h/HPPwAXnPBA59ahShc0kxtEqd1j0SzRJwpqLJZAmFY5OJOxRUUKVGgAzHNk6AgJj0c+x6BdY9Ess+yXWj6xhvd7AtJ7gnHPPxLzbw9pOg8WtK2wuj6KmGo/5m7fKc8sJ5r2zQllsaPyxoA/r0cNRo/e5aho0exI++GI30UdOvq+f6ghe8YpXABBvdWy/9mu/hu/5nu8BALz0pS9FSgmXX345lsslHv3oR+MXfuEX/NiqqvCWt7wFP/RDP4SLLroIGxsb+O7v/u6BIfxVX/VVuO666/CCF7wAP//zP4973ete+OVf/uUvWg4+ANytPPzv/u7vxllnnYWXvvSluPjii/H1X//1A5f+n//5n4OZcf755+Nxj3sc/tN/+k8ntfKXyyWWy+L22d7exoUXXohffc8fYX19E+trwP/1lre7ZdivSy5+LIzi9LoVo5on9BulShzXLBtIJaVr96GPB7Oh/0erSi3RQToWwd3W5uJKR1bo9xoRNtMM7FZIxuPfCzGQ/F6sbpAId2FQ4yGPPRNSJwqAAALh7my34k3ZGb2ItglbJgMQrq9lg5POmSCXsgj3qQj8tFchr4s0o0XhEhi4je2FtyyGCRdyDkA2DC2yAkD6tzGa5Z4KeNLmPVrqyOF3ezaR/vZOnuFYIA3oja0/UwwOcn8z9gtO29h4eL4x9MVMjnG/dn2v0heVBz+mzGfcv8bDo7AODINguACfG5K1P5iHA9yxg+9NaI/GFT+TkEdZT3EtEAO/8agn4aa9Hv/+vb+DN135ZBHIDBH2XQekBKoT6tQjc4X/+91vwqseewUWK8az3yUC36tVuicmKjdx/MAvXHwldoNQYWbkYztIa1MR+uEmmrTC2dM7sMxHcWw5C0uIwm+MI80ejjS3gpHQ8RoSliDa1bi9Ztcod33WFDegQkWSkw8IXiFzh0SEppq4pdukBhv1JlKaIqHDKrfYbDYxrSeYVA2YGcvVCnvzFt2qRZ8Je0vC5hph0iR0eaWueEJChRpTrLK+21hi2S+w6KXuAFUbmKUas0qY+xbdHI9///uATEizDtwnfw8BqLJPQJPFy2UGUl+mydfZOIRkz8fea33Hrv3Wh+EB3/DAL2oe/sVv+SHUGycH4HW7S7z3sa/4oozhy62dsoV/1VVX4Y//+I/xwQ9+8MDvn/70p+Mrv/Ircc973hMf+chH8KIXvQgf/ehH8cY3vvHA43/6p38aP/ETP7Hvc+56UJUwazI4ARufBvYuAJoThMU9+gJ8YhHG9W4Sgb8gcJWQp1IgptpL6LdUeLW0j5Vs33V1oUawnfPim+udUAQYQzbArlJAXgKdqJEWJELaLb0i8GhF4KmmCU5kzJmoKAYJ8pIRg5jAtQqMJC+aE8PYyxYEiN1DXu+9WE5qCdWKnJaVMiFPGWkvCcEPETDLoly0CXxEGL6QWDwMxoaXgtC3e+mF4MfCBz6PKoxMeaEoyBhDqk6Ez6x/Ux5MCDlwzqKoGGw4dp2Dn6d9xyPiIDvINCQaCPqDvAc+ByjHmBJpHhP/24Zf8TB+r2sGhML5j/D/6N5iOujga9t8g7D3cZDMoRe9i0pKzFwYC1UT9gHQZ++Egw8PINt5/1Ofjr8+3uJ4xzh7Szxbn9nrRdgzu2WPJKiS9brBBeu1PgbGxiR5eqGxUg5KJR8AYHz7456Gv9luy7MAACJQUwNt5wLfxGGbJzi+Ohvnre2B0GG3XcdyEN9lJGIs+ikqOgvTahs1ncAgHq/FeLzIjT1AArosvxMJ978A/hIqmkAQ/kLU01SNcAakCdZSA4YQ4aAH9rYXWCwyvvP336oWjq4pW5fGuGkhp0ziPamylrwmrG0usVrV6FcVUiXCmzMBKuCpzuAugbsEMsrtDFDDAIsHEEo9PQDZx/BcKgr+IK05CHswsLZ16uHcU21faJf+P+Z2SgL/hhtuwA//8A/jXe96F2az2YHH/MAP/ID//nVf93W44IIL8PCHPxwf//jH8dVf/dX7jn/xi1+MF77whf63WfjoM5ASQDvoNjOIE9Y/C+zeE1D2yMJJzgV5n2sVmgzktYzpbTX6e2RUx+rPKewB+ItkRVjiRujCqi/Ibj7SAcsK2Kn8WGpFoJZKdTxwY3Ojl2oB1KRKS5ZjKsULAECbBp4B+Z0F7BcAfOK6176t9OdcshncgzBVL0crrjve6JETC7fBRG9mISESqjN4pxELHRBmv+UBsbgoqIxQSC128nJeVKSfHctlI6FgIQ549d2a050uFqwJ1x68yy7xitSOz5BBKDXgMfTY2NzbRheftylXhknwuLXNOVx4W3zc0fm1eKTGVM6el2b3o6h8v78D7tevEzEIKH+7QpFMEQiPynP7w9zavdr0qZeCxWAdgE59vY02dFM4/na7w7xjPO/t1wCJ8arHXYmb5ook7bM8aI3dzyrgB9/xBr/vc2YVLrnmdfpeWxiBYBTVHN/b8Fy+882vxS9ffAU6VboILNlkTQ3eW6HuGHWVZLllZdPjBtt7Nc7c6LDZ9Lh9UaFnxlznuyLGWdMV1uoJCGeiTttY9j1YY2cCsUxgbp2pLnNGRgJRr3n0hDpJyED0HcmdF46AhN12hURTTFKDigjLfoETx+eolxM8+n+9zTQXud9Kb7q1da3rMEGwPyRClhKDO3l4850pUi1hvNxWIsDtPUgs9TbsWZqyaCygtrfZO2qhLAxfYwCDmiEOnjaDSGP+D3vjG/DFbocC/663UxL4H/rQh3DzzTfjgQ98oH/W9z3e97734WUvexmWyyWqakiA8OAHPxgA8LGPfexAgX8ytiMNTWJSNaBMOP7VQh2blSwlqcUq7iWIgGXZ6HkqFeaaWyukFZCO1fsWKwCJqUME9IBi1Sz5rix2kBxf7ST0MxkLpj2wSiIYc0LqgH6zR16HFLDZq5S3X14ebtjDD6kTyz0tVWjU7LzutBSXgnkp5AB4SlbWDc9c88hAnmQvZGLgOLDMEfWApxNVLAyAxIB6DggAr5JU1ltVSMTg9U40+Jneo4EKDWAGwLjTqSNRuGrBXHAikB4v1Jx6nm5Wykjq9zV88OEHGAruA44vLvsD+rLT7aB4TRN+44PD8/bnHhQQS9E7mKWxXItruGAcFGgaYy6onOf3mCWDw56xH5739zEE0g375hoDC43EgNMvy/UdZxD1MoIrKqbsmKeKAOfjN+8CE+M577jG5+vWRbhwn4FGyu4SgOf97jVF0SPgMW98nep2NFBsBs+NMMAtmJel6wC0GTlDY+nAbH2CRSsgtVXbo64IKRG6PqMiQqIpjjQJoIRzZhnMFT61C2yvGB1XWOUZvnqD0OcW826GLk9A1GNWSSncRQ8kLLDqMxIxes5KiSsLalJNkUBY5qV4AEhofetUoakaEGpMEmPZt2iQsDiWcen17ykKlPJpQEMyTo3NJGm3FYOn2Y0I1oXMWuCKEgkIjyBu+p7EU2eYo6lY9UQAqgxu1drvSaqL2loeC8pU9kRTLm3f5BRCS/Yoa8bPfeOjcDl+FF/M1nMC3Un6X38n3/1Ta6ck8B/+8IfjT//0TwefPetZz8J973tfvOhFL9on7AHgwx/+MADgggsuOKWB2X6UqEde61F1QgZR7Ykb3CxfTgBVYs1XuxX6Ta1GREC9CyzP4bHR583j/DFeHxHuNDqnk2tTlhcJfSWW0Dwpe5+y65lV6G5sLm7UVIQ0IIqKM+VNVDtusrjYl0nIeyJaVvEEpELH3c/KOui0vDoHADQUAIBI5nKtA7O6+axwTp3BWWoR5MWknB8sOd+Eg5VlwpBWBJ4ANM2oJmJa5hOTsoHYAzgI6TsW/rqRxVi9W+oh7jxYKPb/SOoPLPxxfDyi1qKwH7cYO84jJTAi4uOcxOvYsGI6XBwzyVjMTSrPSr6MKXByDyPF1Re3/mlrWdcHcVEQ2BQuvQ/3alSqkOoapXzgVBZBFJSLrKWcn3nd6y3Qglc++kocX9kC1+NV4dynJvHofmKKp03DPj6B0ks9S8gJICJhxWdgAUbftcC0Aqa1V3euGsJ56wkXbtaYVFMs+gWW/R4mVYN/tpVwfDUHYQPTKiHnFpkZHW/gprnE5+97BmFSMZY9AziKnbZHk3pU1GHR7+kY5IEmSqhzA0bGtBKim4rEmyBKB2G5zDhxfIXLPvCewcR42BAQy7sSkhwwxH2fJNSHisFtKmh6SztWNz4IBX+01oPqjOaMDqsTE5l3fU9LGEjXUTfc+AysTJoR8rYrnobHvOG1ei7jrU+4Apf89jXgBPzywy/DqgfaLmOxu8Cx2+8YP/EveDu08O96OyWBf+TIEacXtLaxsYGzzz4b97///fHxj38cr3nNa3DJJZfg7LPPxkc+8hG84AUvwEMf+tAD0/futJFsZM98++8CU6A/W2N182pfWdLUiobXb/QutIVwp6zbMQBrYPFnSKw8hf0z7T/W+NJTDymU09IQHAgMNquy+Ra+dQedAaWYjoLwuOIi1FdKvWnpgDZ2dSlzkrS9CJRBrA/ggpZK3rXeV24rpEkPSoxsKW2ZgKVuIjruNBfwHq2ChnyQpa2uQsFIJOnT0tiiJRwVh8GzDv3FuHqIlYtjYfzg4ErZgOYTGILnrFm6nQtpE/Tk8xMxCgVpX0iaBvdubiibbxY+dgfHjZQTUuva5XOcmhE+YsDQaMqCz6GlCeoHcTpivN/HX+YwpjQCahWOjh/S48IVkn3PPii2EbC56OV/Zgb6HqiSlowFNpsDFD5gf12Gk723QSFgAna6LDpUxB6zWJzdqkNqyhZ37w3CfY5UWrKXsOpXaPPKBfVmU6GiVivlZWzUm1j0hHPXekyrFZrUIKFCk4CKMppUo0kTdAzM6nUteCNofCO8qVKNSZqIHM3ys1r2OHF8jiv/99s1cwaFz2JUOtkUfssexVwzk2oOoDoC1jtwm1DNOglLqTJgHiYGgVcV2r0atNYD80pCAGu9KApK4uRr15RjE/5qR/3+056Bjx5fDYihLvmdN+AXvv2JaHvgjt0O3PdCmtbJs/9iN2bSegYn//6wSfuCMu1NJhO8+93vxs/93M9hd3cXF154IS6//HL86I/ePZdOIqGBpZzQzyCFcdbZQWyUtXY8Ad0mo7mtRnekd9c/9QSctwAfm7i1Y825vdVF6bSpgFjali/vG7lt/MJih1USwX8SV7L1NUg/S5CiOQtJxaOWNByhssNe9rUsNepbCU9wJvcgUAaqpTL9NUKgA7uObRwIG6UqEabQ1NsVuE7Ia0kQ+Ee6EsdTxcHphwlCAbwvFhKEbrAYKQM8T2KFmCIRkfthTPsESBT6JoxGBY4GrnVXzIbgLq94x+EcBAFqzysi1lWwuUU8FjZ2CwdMwwAXYm75oHiU7/Q2FSdgljSyWOAUpb+NV7uJGRo+VobP8bhiXcSLiCdI5yvMhc2fI/7H2R72Zyp/l3kgt+xTDzCFVEuSeLmdKl4FUV6bRHj2O98wdHy4AA9rJNlztIdc5tvCCyDgv33bFWhVwalJnAmu5zU1eNnKAIhwdEL4io0GmZfIAOrUYL1ZxyQLoK6mGkSEVSsKwHq9gTrVOHPaYWsite0TActM6HKHSSX5iqs8wbxjTCqpzNdzRp8rZEywyhMgM07khL1OQgZpscKsa/H0P3qH3OxBKW+mzDVyN0QQjyKJoUHmprd56wnYqVVvr4shkcOj6wlpLntlds8Pg02ZTzxk2Azu+agAf2avw7zrwQ3jf158JbrMaLseu6uMvOrAyxY0m4CmDWhjBq1M/EVt/ecg3ulPkXjnH3P7vAX+e9/7Xv/9wgsv3Meyd7dbRWhIrPTUyg8gQrFf6xXEltFtJKx/hpBWCd0aMDmmRWwaIK0Avm3qJCWDZpszYx8BiVxfBZ9+SApCcQS2CsWTCftxTDW1kqrTb2ZAUwhRS+qduearPUkpREtIiyQAmExSGXDCqHalSJCldjXbkpevBstAyhndpf4ppXYV+MfTjGq9Q0+NMsOpq3aq2kNXSZU/YvAsgxZpYEHvixu79NB7MXCQz3WYF6C4k00IRy9AKGZz4Ln6e7H2QiZANPKCkHJr2MZrm6pZwwfl4RP2pYVRvHbsLw7tIGEfpihiIBiA85KYZ2KEWSjhJj3JLKswNYOxG6hQFT0eCRTPODFhDyDXKK56u8eRl8K9DxrSSPqMx4rC/3jk5VisMipmUGasTSUXP7cZz//9a4Zz7IDAodIo4+SDptHn/n9cfAWWPXDGhHD2rMJZ04S9jvHx7Q6LHqCmBu/M/XGfMUmYVUDPFZLOZUUVUhLvQ5eF4voTf/NpTKYTbG5uoEkNmDK6Xqq+Ldsl+pYxnU2wnTusb20gNVO0WYh7lj0w7wjTKuGsKWOSgDYDN84Zx5dAv1iC50tsnX3E4+EgHlTG5FoNjDrLWlCPkSmK1CYJn1ndDkA4OWYdeC7CnqoM7it5ZuZBUFxSXlNmzYziESQGuiAUVfmNnkoDcN6y12G56PDSb34C9hYt2l7WJmcGVaJQpPWpr1fz7HwxG38Ol/6hhV/a6culnxKmlYLXanlgtjHUJyqp+AYBq+18ZdFYJ7dVaI9KKl93puaXj9KtBtcJ8fFsm+s4r9kXfjnWrG1gaPAWSxODC+ZGNlRaJtHQVyJ8ndef5BhaEahLyGvaeV82xryWBy9iv1b43ocX13Hm8LcJdSakWY/JtMPi2ERuepoFxMcEqjLSmT36E42Md5W8f3np9UWObm4K7ugo8BSZzlzGJpcJwkUtOnddx4cUBXjaP8eD2LpZIYFnYR9DXVTE3NIvfbo+0IV0NrMqScI58rfOVUDex0Uw8AyElD0K1xuU7wXEdUsYgvpiWiAVIeiKg93ziJs/Nq4sS4BcWspmD4wLmQ1Q+ZG3IPxNOTitqChLnBi/9NAnYcUE9Ix21WNaJ6xWGU2d0DHw8m+9HP/uf79BvBqmMMXnp2Mdx+zdg5GA33rkU/DZeY9lD5yzlvA973ldmC/Cb1/yNHxsuwWbK7nPQF2hyyxFYkK5VoIUuiEQkmYEnHnmUezs7OHmm24FMnD0jC1sb59Anxn12ga2T+yiamrMly3WzmnQbqyjN5e5GQdg3LgHzGpgkhK2V4y+7ZB3F6iObqIFyT6Qi0WdlRzLAMSUkyh3dUZUEgEo1oeBhiWsyCrUJhmUBIRHTQ9ua8mwWUjKMtf6Pifpg6KHwJZNAt73xKdju81oEuHEKmNn2ePYskfuM3b2WvE45AzugH5vAaoqpKYCdxmYnrwu/RerMXDS+l/2/WGTdvoK/LrG5iTJBpCCJU0QZjfCQODYBrI6W3PuNQ4eLVJuuCBeD7qmuVcj6M0EUfj7IFzAoJ+x4EKxvNIyAYnlHixFRgWRo+4Jcpxq4QOBbseGYiaDOYhjsF8yhX7EUljctC59zQJEOzHysgJnmW9zqZMScnj9eD28CK2RkLaN3LwCI+t7XxzfBKEdZ4KMgxwdC0hW5YMxzP+P/ZpCoJbpYBAZA3fqYDjmEaLQH0frsxw9sH4Ny2BrRD+zegaIIQO7dKxZH296LMBDKEPGyyX9LgDuABo8+8G82/UTvDaEvF+juTto3Y/mt6Czi3J5z3Om+OvjLdKsQjOtwG2Lrib0CaAq4d+99w2yjpo4KG3qhvY1zxjGs3VM6w1hsyUcnSQ8/V2vG2pqPeGMibjeM0Pc+m0HqitkKBteSM0gIl2KJBXvwLjHeWfhzHO3UOcG01ri85/67E04kdZwnKbgjR6rVQuatZjnBv2J+f71DCnWu4q65rJF2lgDqoRVLso4ZaCf8UDZdaWV416knCBGT23FuHoSD+ZuLSmgvWTI5IUK+94UiIAvqbPw5C+r4XuQGH9w2dPxF3e02Flm1GCsuh5db5oXg/sMSiT4jFWH6siGvusZNGmEa+FLYNXH1g+qU53k+8MG4DQW+FVFOGutAfVAvUdoN1RDVWIr5zYfWQqW886sWmwQ8IPfbV8tho92ELTdcKwduO/4oTHiXfgmH81/aNy9pWJdJQa1qpis0mjzhucle6rgOBFiJOidrQ8obn0T9uaObTJyTwI87CUTAE0W8A4BOFGLRUoyn5ZXbnHa6P71eUxwPMEgLss0FNw2J4M8fQyE/ViRiQoDB+XPFY68f4MZ56qXL8oYonIxtsoHnxlLHuHk47RmOAidK/eKsIZ1jIQnejWCAhfDJj7kkXI0iNHn0E/8Xm9mgDMwfTHG7cd7YbzuKNwwGAzxwDPDFeOWZY+OGTVJxXjuswgjO30cAkD5vAgdDJQ7uUfya1z21qsG43TciwrIWUWYViQkODmD1KLvWQS7UOCqG7/vlA9fOkhIqKqErmdMpjUyJ3z8eIvP5nV0LdAv94A+C7HPdM3PFT0r7C06Pg43mqYNqqbG0UkS4GJ4ZtVCAcbhWZAqPzzVuWny4NlTpgGaH4lRbbTo92pRBIxQRxUCjooUQ1JtK0X7K5aJGbjhRIsTey3atsey60X5B0TIA6C6AmfZHGhrXeb3Syzgxy0zeSjsZN8fNmmnrcA/Y1phc1phclxejoYJy3MyqnlCNxWXveTbV7IHHemAHaGQTFsr4MYZODP4SFdcyvPkmnUwgorVYjnzGAkn35hpwCRlrlprFKxI3xcx/DtpDnpaEZAI1IqVlRYlBctTAo1QxfKpzZ1PQZiH5nzq2rJaqsny6PXGu50GWO8l378j4EiHZtahXdSgOqM6p0W/qkDHG69KiDBHPoGmG5kSFFHWI6T+wHIP8zqIKQfFSm4A8iKbBcXh75EwGlr2+oEpB1wEr13LgWt2bhBqYnVTUSj1ng4uHhL+D5ZmjJMbOFOeafkccc6CnrkvdIHh2ho8DypDHORBG+o7PjcbYwh77At1UZiPoEgPlAoFdqKHKzDXXPRw3La9ja2UsH3zjdg482zsbO+gXpthtVphesbZCjhLpT+zLjMGykMMW/k8kCq9YfKjJ87m4SFXvxqvevSV2N1tpb9JDQJj3VOGWYlwStjG+jTq3MSEnd05bmyn+PReRq6n4H4FWrWYnr2F2SRhvSZMKnKPQWZglRm7bcZux8IxFKZ1VhHutVHj8b8tCguptuBTqmW8B0BVBshqcChLaPTsUYZwgHQJmPbIbQm/SQ2OcAGGeBNJib0Sg5aVk0wRA2+69Mn4xPEVVosW3Gek2QSk7Ih+L//Awv2gxow7d+nfyXf/1NppK/DP32yw2Shz3gRS976VeswGlqt2tTiGxbsb0Yb7eQ0c7eRlaRPSPEm1OC4vkrWBZTdGhGMojAbrRj8bx3CjvBq4U1UYuPWfyNOlqIeDseT8EYgwCrgwQBGyRYqOC1hAQX8uiBoG7SWkhbCPocki9I81aI/Cj+12JH5v1tlB4KnxPA7m0uYx5KwPwpBRbqlHo1hKAUxJ4ScK1EGKXHxQ4SN7YGwCMBziz5x94wSGnovBA7dlY+BABEXPB14+G1CN9oWeGUzOQshBGA/OJQzS+uQ78rF6zDXMzeAxkOXyk7OecRgjWBUQhlMtD/ARkcL2ZNY4MFAgqSN87GN/i7R+BACwt7sL9D12jh/D5tYW5rt72DrjTPzXBz8ZP/IHr4/asHYAd08T67se596UukSD1EX7nuPzIWCWCHl3ibQxw9EJ4fx14Lw1KdELkBoAGZll8XXcodaYf5OmyC2wu7ODuq5w7qRCJsJkfQ2TqsfWEeAR7369DElT4mIq5Aee/gzctugxraQoECDV9B52zWsH9+TZJXVgwKSyXgYKTy1CnTqSEJwBM9UzkrZW6Pdq8RQqex5lUciQUEpv6zMH4MLfJu/aJ1yJj966QJcZ3PVIWxtaKOn0E/DjdpiWd9fbaSvwj0wTHvyy1yLPAHGHauEcc2MlYZyzPHUv/ECivWK3lhfMDNSFptEFAb8vRhnXRdgAiXTRmIBwya0HuVAdunuph1jnEYMQL2Hx0yjcosUVUuxOJnR9o/YPymZMq6RphFxcv4OqfyxKEgDs1L45pL7QxwK6YZiVlfZ7FgZjicqOurfH4x+HRMb3Ft3QxepHEfZc5qZ0imIxn+RiRREIil3kxjfvQUy1i5Z1WDNe9MeenfKYx+/BGp+FCnSOv1sfug5CKMD4GEq4RMZIIQUuPu+yTiRem0wZCUqF6wshhu40ujbFHH/BENRn6zMHRTPM673u85W4td4CU8KZVQUw48xzlqBJg5oZ80q2mpd+y5X4urMmeMSbX6NjL9dxfIGuI/dYmYKXC3By4J62IWq46SzqcWxCOOOsGe61WWGjIYC1AkOYvJ3dOf7+7z+FnDPOOOMoFvOFOGj6HrPpDPPFHVjszXHW2WeBc4/VosXNJ7JzzB+UxnnRa14NsHJlmMeQnaZBD0TJY9dnl5usID1WRL7eU6Mxe+TyrtielwnUZOQTDWiawS1JWLAv2UQG+vV01ZYEqEtwT+LbLnk8/u72BXqG1CBoKlDAqZzurc9JEdd38v1hA3AaC/zvvPoazPo19FvlBU0tgc9Zgm+bupubVrJoaa6qa8PAsiqCd6UW1oRlTdgLE7nhddN2C24UQ/S4qm3+RhJihDfRAgWK8FEGwLRIB7rg/djx50FRAU4u7H1wXASxkfuAgnvQ5FUr5lDSDAEyNg8TeFoKNQpBDgKbIcdGoT/2fAw8Hm4R778BTx+zuacyDUX4BCE9Pp/HB9tchucRP7M5jc82YAPM0GQKxySM8uwhgl1d0eQSuVxnQFpj4wvnF554FbpWPQ8ocfm4HogHnhvHeIR1MzCYAbfaY5lZq8TH4P0ARvNOWQ+j6/nzsWfifOl6/xXjgvPOwW3bwCpiClKjILGyzXQMPPxtvwU0EFe0ufOzhKBciPo9cnjHilfM73kcZsmEyWqFr71gHRtH6pBtIb/03KOiGmBGlSpsrK9j1ba47bbb0bYdzjzzLKSqwc5yhY4JPJnhjt0FVm0LYmBaNWGhjB6vLcMOUHaf8rl5u5K9X3qP5oXzdyGsZbuvVZI9KzJ3Qpk1la4YpDH83cYV9Li2XcG0sE/o/8a9jBMtA0Ri3W+s4cupHbr073o7bQU+COjWZBPgmbC9UUeYfGwN7VFxRRtxjrtMdcOtt7VgxiyUZ00C+gMgL85ieK3IdBa19rgv5mkGN0Lhm5T8pliUVE7M8Kp0aU8kgJAFoWjeoeODrneQcjCmWY0n8ERPnPZIxxvJAjAmLt1UxVUYxtomBfQNWd5kg5JzqBeLMBMKJfBIiMcxD7ALJgzVquRJFurhsRDnA3SegUkUrjN6PiVOX+Zo4JY2Qe/H64c2Zsv9NoXPjyl96g0V4eSCnwaAOB+7KRw+3YzcICgigT0xus15NC2WMWJjDULQ0+f0UTpyG2VuiheFy7gzCi+F3Y9fwP4vx3Jt9xK8Pnr/UXg97G2vx69d/BQsl2aaijAC875nS7Xk9jEraCwoYaysb4NxmPsZQWh5BkiYF33uXd+jIpnYhApZizdIkRuWnHtmpGmDC+59HhIBq67Fbke4ZdFgmYFVz+gyIzODVx36+RINEY5uTYG/1DlckY8ZgLv3nco4eCsAVfZ6lPg9ARmpKKmAv68O0iUMQkTcJulT043RQP7frZGtwqAr+jq3FhqyuTKSsZ7wv5/6ZHz0thXShNF3itT9MrLuARP4Jx/zocAv7bQV+P1mh41PA90ZDJpkYJJRfWaKbp1F2BLAU8nDjxZ2cV3D08J4mkuxjo4kJ32WJU1uT6tgjYBC3kz7BsRS3xF3GFf2IgZJHVy61YIc0c6NWSK8bxNA6CK2GLIdbNyjxglezz61BF4JSjctFKjHstH0a9ktfKfyTdiXpuiXMOIhT1FT9sKYyuaxZN6nBAwsX5vfVRhTHpID2Sn7LONgsTP28ym4ZyBcOla0G94cypjs/8Ck6MeMm1nE8RjCAOR5kMJmwt7OGYQP1Kr1rJO4drV/6jDMNhoBRl0Impsb4Tv92sF6ozkCsbz9cb7j/YUa6DJfXOZrdB37fdVlIA9cKPt2W9L5ZCN88XBGGctA6Y3XtLk25D+hhBgUPIgMfOzvP4GqSvjGB/0rJ37JzNhpgZvmjGOrFr0qIk0CthoGUYWb5sCiz1JZr8/gVQusOiARZmtTXHjmDJe95Wrso8AN69y8EFxjkEXiv0cFLwA2i+YGB9ulRRJq6zoDbQK3uhcZUQ8AWlTOr2/eloJbMaUsPPMKgglYCDHPQ17zerz5siux3S6w2+HLUjoeovTvejttBf61j3wSLnvnO5GOrMC3T8FHOtR7QLdOyLPwwpuar/EvEKNfz8Baj2rWo9tpRNgskpOfSFx0SGZ6Ute0vUgUrhk3Ox4dAxV0ZtWGmLNbziMdIbaBnOMDvjNhBVFkAICWCWlBsskQ3PKy8edpUQCyUnNaNS5ozM+FR9zHmgCgg/aLIOSM+99aZKwLQtWOG1je3QEWEGO/oB6/q6ZvRMEz2vwBBLQ65AIDYa2CxjZGwzGYkHNlINy7Pd+YCqhrwnWBuGmPx81lTPZ36sryjUQ/Q+XFrLIyRz6vUWDbvIzXVgzXeKfsz8U/qiTti7MKkwEfxWihxlBW6BI5C9GNjz0sdm01QUJu8TlbuesxaHacgjoqkzuucfCK+3075n2LamMN95iW7JLcV/j0XotP7vSYx3lQ4Xb7Qsaa+wx0PbjtwJmRqgqTrXW84Po3DYbha6vSddRpqGH0DFNbQHkADbwsbGybo5ARV1zWEiA4HCuXreuNSXAaHmLsUvDuUCmxbQBAVexZFZXUVn4Pr33sZfj48Q5tC+T5ErQ2LXPzZQDYA3AI2juFdtoKfHCNejehPSMBmx2q2xosvqJDfUftm32eSXycG9tkRRhVZ67Q7dXob5ui0hc8jzYPinsRo1ioYcfMlbqxoXu5gZz2beYq5E3YjzbT0gEXvUGVgrjxjS1X2HE+5uCuNqFk/P5T7BMWDgqbMLCSl97K81ImBwYNcsAPuDVXrCwXf6SMiHHIxRUYlYTgii03EuZn7LaPFnNQsrxoEA378RYzFOKcMeQ+afRjX8bzTMgPzHTrhIKQ12cZQFte5Y6pWG7B2hooRozi+uXwk4bHRCG/v6yt8DnkKqzlsZJIw1sZKyNebTHmwfvihIel7DNX0GwNksaVmfD7j34q/up4h0mTJB2WCGh7UErIuUNOFRiE5//B6/VaVK5rJVcDiQ8Awd+YC1oFJ7VJrGtdC6kHrv32h6NuGnTTDfRNg2lNuMesQseM2+c9bl70+Oxejz5LNT10nRR26bLklBugb1IBKSGtz7DWJJxZAc/43TdJvr2lxUYablVUAHioweZNPGmj5R2scFbPJCcWemVTwn0tcKmhYCyHLe3fe/oQkvJ3Fd63Kxj+uWI1KsZbHvEo3LzqMKVKHknO4LZFbjtQSqDZZFD46LRtcb852feHDcBpLPBvm3cuJKY3TNBuMerjFaoV0H/FSgTlXiMvzlovZDEkZDL9tuaPUzC6gkZMHUmtecuX7qlsbigCMAVroDDNlf+pU+swoNEB3aCr0UuiSgUCVkA+H0r2uHGkFUn5XNu4ufwPQGrY93DaXvaiNbpBaKUrbnqgl9hfrtnz8ivHF3AcwmBYLhxy2YjLpPD+v01IsglbQspAP7XNJwjJAzbLYdf7lYF9HgBT1iIfwp3cB4DiiQipTX5MvK4L4yA5EwpYDeHa9nxial4ejguMIXWuXkoqH4piwnUYaxDuBypjMdVwLOwzwdM7bU5I5y9DlLNeL2XhKZRHOJg/A1/aujOliODx9m956+vw3y98ADbOOhc3fupTqOoKuWdUVQWuEtYvuBCz9fWS0WLKkQo0Zgw9ILaeA56CrDqk8VIQI0+Avq9xwVecKddioM2MT+50uHneYafTOHxm8LIFL1aSW97UoFkNqkRKUtejnjU40iSct57wuGuv8nFYaNCUG66zeMfMrW/FatSb5JZ1mE+39IlLhgGgJW0FbY9O4/ONAEOpIwlHVizAPUAIeBZioVcLQreRkc3TEAGTBFGSlFoXwMjrBTz+re8CMvArD/kmLPZacNehXjuC6sx7YLXq0G/vIm2uA82Xnj3vVBpnQh7vTaPvD5u001bg33Siw2897lH4rt9+J6o5kBtC+xVLdCdqYFcFvW1Ex5qyWasp74J5LBB0N0ut8ksD4PUslaQOAIpFlyl1Yr0RA9SiuMpqlA3xc2iaHh0YucMPsujZKv6F3Od4H6nFUIPXDmIJXT668nhdVje2bUa54X0y+6AxezsoxkAjil8XUsXiYLNCIycAwWPgB5WyPdDjEJ5FHMNJhlXOYcK+2KTm3g/K+EYLyc8ddTpWfBxjEHAAI8E/9NKU7uJn2d7E8T1nDF3bNq9VAP7pmFnXqDAy7n+wg5CKPw9ReKgL70xE+HtaqgrloByRvS+a5/1VF5yLm3dbTI6egc3pBLd89jNYP/N8cFWjaib4weuvVt72EYdEWAP+3M27Y0LMXOJ+M/Lf2x7zFHz8k7dj544WVPVY9jLeWxcCzOM+g5cr8KoDNTXSkXW3WgkSw58l4Mg04/wzJviOt7xaLeaynnkiY5ElxF5Cmhp2TJCx1QGKK1LvjT8Fghyr+AOu2XFFZMBZFebooBa+CnuGFLZaVqIcqALRr0txK1c+KFxH1yQtyedV1gDcyrf8/O/94z/CLz3wwWjrM9BTQj1rsNYkHAOQ9+ZIRzf3LcvTqR269O96O20FfpcZ1MzQzxThnIDJDVNwAtoze2BP4oCyaFHi84DGPcfWJ8rbF9y2xABWgeyCeagsxLVi5/XkoByLo3oMLQlgb8A6Z0NguHVpQtLdmKpMxHFHYJbd2wAMFhdyZZYbCk6AIdS5qtzYXI3BZp9T6JtAiTFtHZSfG617R7Pz4BpjIRcnN3jKFWOxf/6GoAv9X9HyB+IdgBA60NNioZAMj3keKOh1A6UodEbjOHD+Ql/J0kKr0hdZ1oRlbaRwzgHKT5wP81aN6YRdyauH92KhIwN7GYrbLXd9pkXxMi+ApB0ylIPdWlbsi7mXTenuCY//wHtw1UMeieNrZ2IFwpF7HwFmU0wqwnPf90adgDK/Bvpky6DJYvEPsAVRqYnUzaq8/PXtCyzqBrs3boPWpmhmDTqGCPr5Etz1oGmDtLUBJEIiod49c5LwjPe+1ifY3OIORA3WvKcPWl0P2JoI61fXlQlgNsUwFgKyd1TDPkys+e4sCsY8cNtrlk3UcZkAajJo2oO7hNwlAfQBQA0BQgJCsLWSSpxZx+w4FVsXHdBtZPFiZsK//ZP/jV/5ziuxo/WGj04TtpcV8rIVj9bYY3k6NabBszjw+8MG4DQW+MyMO+ZAnkhBmdlNhLVbgeNfY1Y1h8pSdpK4MaNwGWzIYSMcuC0dtV6E/eBcjueSb5KDdJkkIQCPOx50T6aBh859Q7Yhjt3WvkHScCzWctl8PAcf0JQ6wVEls05MgVDw3dgVftL2ORSC4RzzEBDnFiWVTAnL7Q9phvF57btmfJ9HWABFOO0TgH6I5/uromUbrippokiZUDnJjfJIYRkrcfZZfDZUzjNL2taLrwNCKQ5lNx+UpTivMRafcunD0jzH1e2GkwB/1q5oqQdoUL3PPCG2hmoUMFrsm1RARUtY21P/6J147bddju1MaGYzPOv3rylCtA/PwJTIsD5APCjmU9zkcs1YohkJePelT8GtLeO25QTzRYf/+09fj//6zx6LbOOcNkgbM02DI0wS8MMffF3pL2laag8pD1vxvowAc8+Tv/P23lAQ4lT2g0xAC3hpWyXgKaEfmTdbd9wD1Kt30dLxUlm3ZMoHNFvJ5ktz87FKwj1CDBK+I30k5EXGPHav47j2kU/BE956NcDAHzz9Gbhp3uNJ11yNr9mq8e1XixL0mkuu1HmwzeP0bZzheKSTfX/YpJ22Ar/fW2Cny6j3CNWcsHEjo14wmp2EtZsT+hmwd0GWDW+aleYSHiurjlfgWiwsMBQVC7cogKIouJuyZkl9qSTOPWhxYx/LFpbreLW9CMiKjUTIpCUViwahv+h1GF0WgFvpcSyve+wT8JS3/fb+uGtHDgzKs+zxerDykY+FQ5AuJ1WIx9Z2sMqjgB+4awFJLTKio0rTG4OAjMLMFbggMBkIG7F+F70NA0UqfIbhOAbuYqDwLignPLu1VfoakN6MnqcpKoPnpe53MhIj69IseR2bg6jiMssornjFe3jJ5vBMfEi6wUeswTisJE6XkZZr92+uXzvWwGFh3ADKXJvg1rGBScma7G8Z3NN+743l+YGK9auelJLbX27IPV4EpYTlMhfRmlZhDwCPeNtVbk2/9mFPw6suejp2VhmLXrjsZ7UUqukz0FSEe65XPufcJlBAt2OSNXSh44EqPp1Un7PQTOT1cMWokTg6LSpNtdR+KyoeAQUayvgJ1dYK3BNyr0jgeQUkIE97US6AUrq7yqiaHqli9F2S8+rg3WwJaFBSHa2kNevcKYiQVoTfveyxuHkvAwl488Mvw1/e0WKvz+CK8dFb5njJtz4emYHPHF9K1kIioBrthadZO3Tp3/V22gp8quXl/O0nX4nHXXs1VrclrN/SgymhPSKbZ7Od0K8zaK9Cc4Kw+IpWXpJ5hX4j6yZTNhzf9you6PuYC2sWiIGDgLLJhWaEP2Ww0re791WpcPxAJ54K6km8ElEZiH0rChgYWnByHA8EoZ3b1A3+29d+I174F/8HtNWCd2vfiLlmUM3AUsB/aWlSkAT800KEXB4K3cFzGH9u1+eRALRYsCkBgRM87VUCEpynoaWuwsPz08nS98p9+z5v1h3s/odCcCx4Sx36wDoWvx8oC0XRYow6ivepHcW54CSUuilaERoLGoeEXBGMczkw3cP9govrn1Dm1tzwdj2zMImL8OUyjIGnC3DuiJIXzoU5cqzRuLDAvprpNl4HrsV7dWETvkNRnjheO06brW8TvGTH6Ho2RS9gESwD46uPNHjwW34d/+uSZ2J71WNSZTzyXa8NFxchb++Gp6IaCY0pMIzy3OzeWeof+P1ENL3OnQhdWXTccKGw9r0hpKaC0S8r2asM8FtnUIK46O36DKRa4vgphDmMUhc1gFXle5QosLQPZ8K9jjkRPnO8wu3LHi/55ifgb453SBXjzPUKnIBlBvrMaIhAidB34Zme7o0/9yGH7TQW+EiEOhGeePXrMd1J2Dsf2L1XhclxoF0TwFm1lGpzqSX0E2B6Y4N+yuhn7Oh1y3e1giKAvOy51oIVrOlNCpCLlaoGzV5C2m8Z+SalbtKkZDZGaiP1x6kcG8/D6G8bo/UXBUa/v4/Lrn0DAOAlD78ML3jfNb4h8gSoN1r0xycBIEhFyBjZCUKa0UggjkNjB6Hp5QtyK5RJFCo+2oG2a3dj0sosI5vLoNggKkjBwLZ5PUAJ4UCI5C5LkHv4vRpeBpJZmLFUa7ymDcf25wAujNgCF/ZBiPrgLO5twsSUAxMOhIH3ItavHwtaY5szF3xk1XOr2lwftq4CX3hUUEzImBAzz4NPsgmGDiAmZ6OE4Q5srQfhTd3wWRRtQpWCtH9NDbwGesvmKR4rdwPchT0LJ5cp84HEIqgJ+OZrfwNgwrde+1thjcoi4FpKPxsAjiOK3upG6MIhzQDgkdAceDUiQM4VrjAh5o6PIQJ7dX1/IcmymXXIbSpofZvD+IyY0M7lwXAmUQLAyJ1WGaqAt1/yNNy816PtM3LOrlQtsyyXvGgBItxygtFyj7y7AAioNma4fSfj//fgx2G+7IAqoa4PWEunceNMd4rEP0Tpl3b6CnwG6gTkKWNVA2s3E+bnAotzGPUOoW4JuQEm24TlmaJRY0lerAQ9iSG0Jjssh52elb+63+iR5knc8IxCTuGWBYaWjY5rUPAmNFEY5PcUcmYHVnJQHGxzHFRH098tdjqw9P380KEKoR6E//rQK/Ajv3eNkAoRo79tqgQq5fBCWMMlHa9i8QxoyGAMoAOC0BkJ/egiH4xrXnkNA1pKWWKuueSN+6TB59ct8iCIXQiP5nLwPGDWTZnbaIXnpqQxmAdh4FIuU1mGFQrjmEt8HMP3vnxy5bvcABhhSaL1O07N23ft4H1iG4sdq5a4pYW6VRqyAgbXs7kBtPgOynoyhcZIdogVNIfCXKfzMFB84nwnLh6a2OL9Gl7ALVF7BuWZDMauSsTgnpo8uH9vnuJGkqPP+lnDCmLTZ9eRFqWRxUGTPMxPX1RBQbO50PerCQvWFAED8a3SkF7ZLHxTEHSBk425KQogAORFLcctkwj7ugN3ogAAKsxUweWV1AjJqqy/49ufhtuWGccWPf76loVMLxEmdcIP/eEb8JqHPRmpYyw6Rjup0WUG+oy8bCXHPhH6+UqcRYmAlIBVhx3VxBhA2lz7MjDygxZ+0u8PG3AaC3wHnlRAAqPdILHos2yo1SpsWhngROjWQ9oaAf16FssyujBRNtS0l2D0t57OxOFlPohuV7V8t5otdl2xo6fdnRyEyrAEafncLKdqj9Cvl8s4T7/2YYI1ChHvr2L8yO9dAwB46bc8Bi94/9ugkgq82QlHAQM8KZsXdYQ068E9ITVZDESlGc7KSWBDFGR3FvSv1ecOSPGB0E8AphmYq4ldMdJKaH/7mX63Ikl1SixMf2UafWIGCocpRigHupXvrojwdcx0ME+GbWL2XAdK3LCIjtUXcIUqYd/z9HBNDvduOADzXnDIwmB4PrcBLR15H3ECQVmJqWoIfdn9umMlrDfq4KGlYaEdLtwQuaxHiVnDFUd3WHTlj8E9QBVbc/dG6xYYhCX20fqaEIufsaQkDlkICV77IirWyp1RBgJx09v8maWucf19FRVt7QS0PJmCaO+F0dZ2CqTTFHQe4AhQ7qvJQJsUSyT3a5S43JJa+QDnhGrSI1UZlBjtvAbnJHPRJg2pCOWtYAz0PtumrDmCrM024U2PfAp2+x4bk4SNaYPHv+t1PgfXPeoKvO5hTwZxRrfKWC579G2P3HWgqgLNJqBpI31OJ7pYwvxneTCUUrjwadxGyvuB3x82AKexwK+mE5y7WYPXemH6vDWhuQ048c+yuOkVhNZPgH5DGPdSWwQxZaC5Q2JTvVr5qSWh3YUIPKnOhbKpuKUNpCUhT1BAYm7dqbJgsXj9PrrsBwKdMQBm2YZvZX0BAdVRTsPNzdyXAeE7trJsk7bNkhhY29gMggSg4+URS+VAxRE07DnReacBWpIQh90bybjzJIuwbxNoofMbvBfuDtVNMC0TsmERegjSugJ6pT2mFQFnrsDLSqyYlkZx8yDQQ78ulMNhPh9RmbOMBbcwg9AJIDCprV7OM8CcCUgGCguiKgGW/hcVveLmjzHacO3w3J2xjYdjtvvZx8wWTw73N/QcsM+N1FXQaxqLng+hCHvXkVIZi/9uSoBNgl7CmCrTeJ0Hb1f0zMRKiF4Cd/iIZY17WWvsp5q1UIH+zq0A6OJaIUJR4KZ6c4mFhGukRDDgOe9sgE1TwiI6P4/+7oJOMwbaWvdecwKleM20F69Cn0BJgHdVylpqG2ArgGMYkiaDKXlcf1DfQxUdbhjv+86n4tvfeRWokfQ87sMcMnDDsR7zVYeu7ZHbHkgEmjRIa1NJA4wCnA64mdM5Be+gdijw73I7bQX+mWsJT33zNagq2QXbDRHuFosX8JNs0M2xCv2avjT6IueGgUaEVzVP6M/qwCcqT3syq95c2AAGG2QeWxejzcpJa7TyFRjiMk1lA+XwbtFIcTAhnTqADMwW97oAarNNHryf/ndwPAM/9PY3CPiHxVLnicQS0/FalIwVlVKby8oFveSKq5KRSvekSGUAzs/t80FhwwSASrj6oVYjZQnJcDccJ68qpGmPVDO6jryGt31/ENhsbF2z33OY/yCISQ+0GvEgLoKBwg0ADoQrwlyvEyva2TOLm0d8niZA7Ptk1x+OK4ZG3LUOFDe6Ds1xJzaXjIGwGWzJLkCDQhiB1eF5RFd7PCce6zF6X5OEOkeuCuzLQiHN5/a4tv2fqVDnmmvcleEg6OOYIzgu3gPpd9Z/D+EDsLACccmf78IiDjgLNoDiiOwHGg7YV+PeQhvA0OPHev0GYuXr2Ixf31n5VrKwqGG0ixp9nQVDsKpAdZZxMgrGQOvegwGGoO2pF8a9dz30Cdjte9xy+3H8zkWPQ5ca7GZgvliiazu09RoWiw7Hj69k36lrpM0vE3rcz6MdxvDvevu88i1+5md+BkSE5z//+f7ZYrHAc57zHJx99tnY3NzE5ZdfjptuuumU+z5rpoCvCKohoN5RWtwOnv/antEjG4OVWRbaOAH9OS3Sdu1ANdpsYaVjfYMPG46TlwBlU48vuvVvC0mtNo8fW2rWSDicLJ7rlqxZS4EHYJ9b0m+s3B8AcWPq5skNC3YhAUfPO1EGwijVyVYJaKm4SPW+KPz4OXoIdfvz9geWZrhXGNGMURwnnddaGMV4XoNSEAD2MwrSe+64WmMHhTQGLUNYEBHnVU+Kz41Q6sb7sxWLi6yion0PDAlZ7Gfk6vb+g7DnAwRqUU7KvBhA01PjTLGNik9WBXZBngY6ALxFxRUmhMOlA4XuIEwC/V0tdP/JMo7UytylFWnambA8ppaQVhDGxyzXc+XUhHNcS0ZEY0qao/VR/g5pb76eU1BGR3PNCcNa8XoNq21AXRqGXUgV/T6MRf+OdTPKpJEoAxGoa++RKg5+aJOFGMe8CKYsmwDvEvq9Bv289kkigtTo6EVoVZMshEerUmCIK8ZLzroPPvIXf44THfBXH/8k/vKv/xYf/cuP4lN/9Vc49qlP4e///CNIqwUwqSXufmQdtDYB1dU/amEPYLh/nOznsAH4PCz8D37wg3jlK1+JBzzgAYPPX/CCF+C6667D61//ehw9ehTPfe5zcdlll+H973//KfW/s+pR7xE2PgPsXkBoj5bNtz5eIU8ZeSrasLmY8zQPNgLSTSrd3CBP4G50ntfgWY+8DlS318F6kP9TK6QVRj0JwCluqaPiRo+bllmZCnqSeD4Kw1qspqUtz7LyBFjWAA2sNN/blFDHLUUdLxOQFIiVFqmMVUMb9VkLbN+w5RsqMUB7QcdLGMRnD3Inu2WphgcIA1e34x6sMYA1ieFTS6KIHG2BE43wgi8TsFeDVoQuz4aefLWw/G/rcqRUxNi+CZeBFV3rQSZANXMh4g4sTDAOCTghTZj7ASBtnI5pm7KSpIzn0AXgIB4f7o+lT7KMiVQUE3eRB0Kl3PCgyp5b2zQau2EPAsjSAZlJ16NZu3pfwsIIB6ZxYn/mKVY3DDwWXvu9DvNl92tCX+8FYxIfy7QYAFLLsyEuYRRTfin06RgLe/YGTjSuCiKfE39ffb3pxSwF9wBFMk95VGWw3DvawHPPNFREFP9AhkXoCTkrOK/Osp5W4tWjiosHJFfo7R6a7EYJiPF/3fZ34Irx5n/1DTj6FfdBni/QUYfpbA3UTNCccw/Q+hoSNf/05FsEn5zs+8MG4G5a+Ds7O3jGM56BX/qlX8KZZ57pnx8/fhy/8iu/gpe85CV42MMehgc96EH4tV/7NfzBH/wB/vAP//CUrnHLTodfffIT0K3J31IRrsS1LN5nrHteMU9doyLQe3RbvQhw5aGnDLFsVwm0K4rDQBAnSUcydy6pZWnudV87tqmFeLlb67YRNxDQWhs25bDpeH36ZMJey9cWY0Rdj+ZO1Z/EBVgXwIAeV1drqDs+BWVCWpjrQg+oeFBT/E7fF1MwLF6biiABB8vIhGqjG/BaRt7owUc6VJMsm+O8Ak+yYwgmt1ZhbMH6jHM8GsrBYwzfaWjC78ljzNqZkZ8c1E0qVrldzwQ09eI5iKDQMj/BMnSrVH83Cz+SyOiYfT0G5SW6mYtiQ4NxDMdFbllb+Cdqi6ZwmOLAqnxaCip1JZUwdRBO/aiUkISGhOK6zKtRNOdawzbq8TDviCtuFipK5T5NoA+02oMAsjo+n6uehFWtJ7G6IdYxWUok6zsV7g1ZMCvmbRiwWvYhE0DDX1zJfWYDldYsxF4J4DoXD6JS1TpwVJ+pCXKuGZhkzy7w8MaiApbJ74kzvMiN92E/Fes1i0K522bMucKiniGfeR7ma1vYq2doN8/C3j9FYY/yHt3Zz2GTdrcE/nOe8xxceumleMQjHjH4/EMf+hDath18ft/73hf3vve98YEPfODAvpbLJba3twc/ALDaW+DT2y32LhCBXC10U63kZUwrQn2slpdaBT+1ku8txS4kTYfaoVs0awqSufWS5YebBawav21g+xqF/yNgyVKt0ujvrOC/KOxpaDmSuY9JQG+Dy9kQAqDLrFJJh9LPNI7pQrMjsUImGXlWpAjXoixwUo9IvCccIPzVUjapMVBoUrGi0zJJ+t1C/t84aw+0ISlG/Vytm0pR/jUjzRP6mSlhOg95/xgGkYLR49j3nY0vtvEjNOsxxHAP6tv6yaZAVqNj1QUe4x8ULc/QByftp+ah4qff+TjUfV6qNppipd+n8r8rFLWl6BGgLv/UShqk/C7vBK1IXfHB3W0/pjToO8EEL9xU8CMYrG2uFOdizym66k0JNc+QWdwJpRCQKyii/PE0D2saqIcsKrGy7oMCrGtq8NDVEHAjwI4BPP7vc2feCILn+fOEfRysCuzAkxefbfQq6NgMhBfz7c2LM15cTumd5XzzBph7H72CFBMLn/8q4Y4FCxCvqXG6U95+yZproXfyc9gA3A2X/lVXXYU//uM/xgc/+MF93914442YTCY444wzBp+fd955uPHGGw/s76d/+qfxEz/xE/s+T5tryIsV/svFl2JjNsfz3/J7aLbFom3XsvBGb3aYbC2x2m2EKhMobtBOkei1oPibEwnVUlL6lud2oGmPvEqoduqhWz6uDw454fHdsg3bTLC4noJl5McaMroq57nAJx5s6vFzt3orlmpZbe3r1wlcYJZh4PcGFVezumqzWdk9idDVjTUKVr+deK9xDgB39Yavxaqn7FYUN4zd7VnZ2Mzi000/LZK4lBOQJzzIWBjEfDEcn3+gf8SxDvARcfzBzcv2zJKyMvj8a4EYQhEOphSagpYYeT3UWnALNeIKVFHMw6yKgeeiYpkmE4r2Y9amCUYop4NZyKACpgsAUL9uyC5AENKUJaxlXAx+TlA4hp8HS5NUQTHXOSlKn3johu+FsGdfDQjIvTDUKu5RhLVZsKa8ViyFnoglvQ2QvHrrrk3leIbH4LkSy9dc4GYxu+A15WlcAlqv3xsPvaXl2Zq1OH+GCN3NXsrM6txRVmVLhTRZKC5ZXY7ROgScFZB6yM7LVPLyA0ZAkP2kSo/sa9QSfvvSx+KzOxkN98jNDKd9utyXqo3354O+P2wATtHCv+GGG/DDP/zDePWrX43ZbPYFGcCLX/xiHD9+3H9uuOEG+aKukDbWkOdLzFczvOKybwAgQrPe0814t0L72XXQdlM2y6h1q8XOSSpDLc7JaI9kNHdUmHxyivp47QJmbC2OY8v7mlkwdkJcdCx59f53tBB1jKlN7kIeb76Dz5ssWIAubH7hOi5sDjJRObhWSfeHaT/AJaQezgw4UIQ1fMHROjKBrp9xxbK5TlRjmmYBUE16YLsRITbpheREFQEHwzVAf2YX0gPDfOu9DQB19vFIqERBH1PLAAys2KjEDeK45i63lk2jKv2V2LKluqnU8UwRVSI8TKLzE8I9DtKLCkAYN9fiueJmeM+RIVL6oqJQssTW7RrWn8XQnTnSlIOqzKnH66n8PfBosVjwlj3g4D29fVdQTXFMxSVuQDu32G1cwa0+qCSXSfjn61zWmzXzWk1zwAfQ8H0zgBzgdLXmOfLsEzvOvTJ271zCAvb8dQ1YOIYNj5PCvbtyrfMXgYGal2/ZJ9RkDBZZza7gGXe/3aux87nnQT0klAmf/Ju/Q3/rZ3HsU3+N5mRg3n+KLd+Fn8MG4BQF/oc+9CHcfPPNeOADH4i6rlHXNa6//nr89//+31HXNc477zysViscO3ZscN5NN92E888//8A+p9Mptra2Bj8ABFlay+5ElJDQoDuS0W1kjeWLAKGOBpsEZYi2nEncy8HqNHRzt85otySWnM9s0a/n4lrNLislPz6moY3fMULJFgiCCixxzYESYhu+bobR4vL/R65hB+tpHH7gTvcUrpBWqGhmjwfqeCgjWK7JN2/qNL6ZynVtQ7VSq+6W1n6NgtjvvyVgkeQc+3xPWfsmPapJxmxzWVICEyPPsoQTFglpngrwLriaYdMxEsbGF+4xaEOyczlvYO1HYRbm1zZRmzfrH2bVdcGdPbJ+XbgahsM51/WaFUT4TbK7lnmSnebZ+2AM1xXBY8TUhZ8WSEv1JFQBQ4GhUiKxeBTXfMBb9FO4EuWCnsM4qMTnSbkTLHRgINTUwYWlp+VRiOGbEmR4DxVYlrHhSqyFXgzIZ+NvU1FwCMCsd2WSVYHxd0h/PO015vBbqMnuMT67BKGxjYqFClqyNWJ/s67JUEiLQggQgGS7ZAsRFQ2UlsmL7/CqcoXdswP0ORIBVGfQWoc07UVZJrjiYfvXrz/s0aiPnoO2B7bOPR9eYeewlQ37C+zSf/nLX4773Oc+mM1mePCDH4w/+qM/+gIP/EvfTmnVPPzhD8ef/umf4sMf/rD/fOM3fiOe8Yxn+O9N0+A973mPn/PRj34Un/zkJ3HRRRed+ugyg8FIibDWSPQhae58nrLS4vK+uLfHi3UjSy2h2hOtO0/YN/JqBdQ3N+6e7I52rkRUCxImPmAolOP/OWx8vnHCN9NiVZahVQuSanmGbh5Zc4DE1t3NHTf0KPzMYhp3AmhaIft1iSH59icqVHfUcp6i1w2gGIWr5Vu7AO7LxmP9Uy/8BmAAG53Md50L+Kon8PEGfOMMi9vWNMsBEt/VZ5hWwkjmlm8E25nwO6hF4WYAtAOUMb8XcyEH8FvBU7DPpa2XMT9DBI15n0wh5lyeg2zo2m/MCDALNA/ndOBZiqEPE6rA/nsDCtgvPvrwe/TCuDJr1r0qqqkr92ZzQ4yBwmix8jxldGviqUotStZJvH60vBkuzA1f42uSIEC1hsv6DtY+gFLMJpOmuekaicQ7hILQ9wGXMfh8tnbTGFQXLDTTQG5lsr14jRoSXGc5T9HyPFElytD2kBAVOhLhDxSgn71HASsBAKgY1zz6aQUHAuD3vuMZkk/ey8L051czrrr0Sbg9T7HDa2i37oF07r3QHgp8b7Zu7+znVNvrXvc6vPCFL8SP/diP4Y//+I/xr/7Vv8KjH/1o3HzzzV/4G/gStlOK4R85cgT3v//9B59tbGzg7LPP9s+/7/u+Dy984Qtx1llnYWtrC8973vNw0UUX4SEPecipjy6JQOk6Bvebrhn3MxE4Bjpzzna3PFnBciwWMikLmjJIVfMkaUaVCOB+Rr5BmFDr10QxsCI7pggAGKRYxVidIfWFpa9sJhEjkJuT324UJLRIsrnUGWlZ+WaXlqmg+v1E7dysmLZQEkdXdl7LEof0+dUNOGGIXs4Ru0BulZmr2F39SQXY7VKgh1cJ1VzZDBtJwTNkt6cj2earG27aq3ToQ8BdQZ2rkE3saOyBMIwMbjoNbo2rpeTxbJa/Bx6hCKZCUB7MyiKAwjwajbPRxMZrD4RlT8PQUra51GdsAq0nmd7odjTLVN3IIqyHu5bjOGBKMAqYD0UZjEqnnUM2T7p2nfSHyt/je8uGSgdAlQo/64O4ZGnY2rD3SVHy1EMEmq05Yi8uFQFueZbFyrWJA4ql26qGYR4VU1yhz8Se+eDGIZTQdS7u+lZi8SLcywSxhQPVa2Mof+uvkCTJZDolt3XRBIWXSQGVZTwfvOLpuGE34zO7HS5/52vleXUCLr742qvxW4+4HCeWGUc3gKe/+1pwxfjNhz4RN9zRoVusQCmB1qaHHupxC8bKSb8/xfaSl7wE3//9349nPetZAIBf/MVfxHXXXYdf/dVfxX/4D//hbg3zdGhfcDXxpS99KR772Mfi8ssvx0Mf+lCcf/75eOMb33i3+hIwTo3c95i3a/jD73oywJoGRiguvPXerTPfUDPcajACFeqBelduOdeyiXXrRsQBQZkzkDd7ccEmeB6sI43D4omxTN+cO3iqn1lQJV6IsiHaZqboeulDNxXbCFeEarfAw91KsmsHSyeqsbbpGxrfCG/2tZGgjMLShf3onolVwGRy9+bkDrX2dcNPrSD1eZaHhUUUyT1w2ds4XKKGeyB49sFgnC5AVTjpBuxsd2ZNWaqWueZDbNf/H02Lu2UP+jzok8LylhwdX+LTCN6eoBTY9z2pm97Og6bDhawBva9sZVY1Q8PZ+djmBo5PGJPqHJSWZDHoXImnK9cWp2cHT7Ih7zU8VDAiZf5zCPXASKpMQcpD3Aggx/dTdm8DHAgYxlWJVWwubYupp0rBeDaHcT41Tg4Fog6EfWJh9pv1qNZbTNZapKYvSi5UAbF9ok8lNEcsCupaJ2Q6Lfn7DRYXP2lqnStvNgf2vlFZgwYgzOhQEcDBLUJL5atIwFnr65h3FT59vAZ6wuse9kTcsgN0uwvQdALaXCv89ofNm+v3J/vR48bZYMvl8sD+VqsVPvShDw2yzVJKeMQjHnHSbLMvl/Z5U+u+973vHfw9m83w8pe/HC9/+cs/364BIrEmMqPtGQ/5zau9rnRaEDIn8FFBLbHG4Or1Ft1ts4Gbl82irNmygTy2mpYJzXFCuyXsdMlobisGhfWQZ8LXf5C26Bah/m7ZMi7D+mA1wYSHCXyUuGD8HvB0veiCHoDU9IKyweqmstHLZrmrj7bJSgQCtaaHQMGh0Ofh2ABExjPnQCCAMgsvdwaW52QXqFldnmklIQSuWTjDzeJTIe4KBco4WMmHYtjNXXLjsAXpvDYmO9jnDEABeIVTU4yb58KkN+and3yFTwN5vNXj3NlwBPFhAFwL5wOISwEaDv3qPAwIeVRgG36gWPPm/o8KEHwOARHetIJb96mlgefJ8Ase94/TyFzyw22ebA0EbwSBpbiSCTaGForRY2KhKfWumScKFSQOz3D+eltXhYpXlWtDyhN7ieK8rKXAUiwvbXFy8xiopU/zCjzrPZ6v7PnCbqd4GKxEMfVYuuIIvGaFhrqs7G4165Ardkvc1wVpqlwPUXrsWbuHRxXfHuhnWeh2QdjrslDVK47EWwYuefNr8ZuPfjJuPrbAL3zLE/HZ44x2vgRNG/k5ROUf3D5XnF6/u/DCCwcf/9iP/Rh+/Md/fN/ht956K/q+x3nnnTf4/LzzzsNf/dVffd7D/Ydsp726SLMpuOuxvdfilY98gqQYKbMeMZDuaIC9Cmm3Ap2o0R2flk3FYoC9gZhU+za3Z2vgNBSrC6J113eMdKFglUYBPxhrFnc+IJkE1q+P5wBfnB0/juXKlxzuxb6Eb7p+nm60nIBqpwJ262ItzjKw0SvKOLr4wyBCDNolHxfQl4D84qYrm2GeFLZDTmr5M4JrF06yIyh03dANeGdzY7qPlSc+oLmlr8cXtzv2ueXFwi1pbgNK3mCJuatd772UnB325bds3A1t4W/wkA4Nz3MPgwv5oliQ/d2X85w8x87PsnZ4FG4ZeBlgyquGiky/sDCA3qusewzedlayl33o/DiHB1LNwteHeQE8HBAPS+GzTCIQVZi64hoR84CmohG4N8GqFngn2STFo8V+D64cdyJsPbStVjuvpCIdt0raY3iOwQsH3yvYvBQGnjTU/yTDiYUQ5nLTmJC0q2Uq4ZssXhrhBQG++Y1XYa/jUpsmKi+6tr7mjArnbNbYXWYsTyxAdQ1anx0K+ztrdxGlf8MNNwwywl784hf/w4z3H7Cd/gI/EdLWOnLX4/btBV72qCe4UEhLEVCkVo1r7Qjvs23EJuzG7tpgNaVlEnCfWkacoKVgC5hqkGqVRxtvAroN+aBf043FUNFjocABYY4ia+Xa7J/5GA24ZKhldRtGsJu7HUkBUVbNb68aCMUDQSxRSTIsQKeCzTbIimXOuVjh8R5yU0h+/P8JeyXDAkiTufE4fC4Kl1f+y/CUQUPUR4yFCW+zgGPMPCpAbg2rRZ+1tK+d44BE+ywoWM62GAVxp+vOlYmyhqyca1Ig4SD8k+BlYOO6cQyFKi/1nuBKqgWhWsn/xDIPaSk/ZCEAA/4FLwE3gnHp1oxgSVnjyH6XDAlfT3VR6so7U7I9nMzJLP8K4jViCCXsKonlGwBoVlbWyGxg4FMT8vqu+tpXAiky0pmOpOztUmMQTZZ7aNRNb0vZ5thAcgwR6gwJi9kcrZJw6q9SeZYduecr4jNI7yN3FTgL9z33BCyk8iZr6ikAcfdv124oxLANEuPXvukbRSlR9j/0hN1P/i32Pvm3+JWv+1YhWrI1rjiFb/nN16Fxtz2D1qeHwv5ztLsK2htng02n0wP7O+ecc1BV1b4aMHeWbfbl0k57gS9u/Qppax3MwPaJJX7u4sfhmsuucIAcAHWjorx8gz6i8OTBBu4ANF0UeSZpY2b9pVXR3hGOO8iqs2t5fJUxENrlouHwaL2Ztj9erFy+M2GLulhWeb0HT7OA/DY0rWe9A60I6XgjlnNEXtslwwY/GJ9tXATUuypQzPqqgeZEknlJI+KUGEMOdQgsjOCkK+bKDZY613AOfBfu0SszmudBWhuCAtaX+R/c4zh/P2HA7DYA9tlP4hIbt+/7AvqzNE633u36Aaw3fv6e220KE2sfippPHVAttM8OxRMAFejByxHnVvoOlLCV5PTnmawTY/pza9QUS1Nkay6sgnFXMCGdirLp+JkwLzK+koPPTS6e1kayTjyebYpAtO7Vk0Fdcta+mDNvyocrmBUDmupoa9ar8ZkHaZEkXGahElVSvGiOzoeBIov3T6rcsSkFcc1ZKGiS3cXvtN6hj1d97Tfiuz/yR0XR0TEvto+hqQj/9o/fL14LU1q4POsZ937KYbsLje/Czym0yWSCBz3oQYNss5wz3vOe99y9bLPTqJ3+Al8bAUhb60CVsLe7xN8dW+K6K69EnoiGXO9UbvnUJyrlqQc+/KynDPpxbV5f5NQD/Uw29mqult4yoT9nJQf2JHnQysdt7thoGRwo1E2o0OgnujoZhbvcmm2Ktlta6o+5Vyu1hpap8IzPKxnnioC5go/6VKx90vulocYLhN+JD3w52k3GePfp10SgpEWSzdw3XbvHoEhBlLGYbmbWrM+dCjwHWtrmZ5u0xYfjczRPC5e/o5Vtzx9QpSqEdoaIeA7HDa+R6zg/8Pn39EJjjjOlQXPgq0WxwuO5sGfHsT8oQK/89FMU2lqCg/bAIWxCej1TSEfKIZN4WbjmYm0bURJQ8uUr9pALahYr2tz9xhuQxJrlOhDrRGU3AZhkUMPlhyD55U0uxEyq3Fh4xrgC/DkSe/aCu8V1zqmymHmpDWFcEaacWSEbi8sXkiL2eXFwZfRIZAH90bwCHa+BZQI1WTAv5kExxH5iKWVrY7A0QSrziQx8z5/9H1BPuP6SJ5c1z8A/u++/QH3BfQAGfv2SK7WPsP4JuL0j9H0PrgPw57CdvH2BBT4AvPCFL8Qv/dIv4dd//dfxl3/5l/ihH/oh7O7uOmr/y7V93qC9L1kjSV/C+hR8xwqrLuOW+crNKK4Zb3zKE3HebIJv+bWr8d7veTy+/beuxde/6irfXCNa2dmsMmkd91KZjDLAIPBWB7q9cSCec18HV7Rb8vsAUTbu0X2EgCh1JqCobEq2kYbz3QokoNqtQL3GBvXamGRAc9pplWTT2asCgls2bY87E8BHO9ncBnOM4csRxxOUFLfsK+HGB4r1yMTOC+6WrqfSGfCPgSSkR+n2RmL9jFIFzsaiP85IFscBFC4D22jt5oKC4opOhodW/FlZ+MBAelFAUBiPKSVsk1esYI9fq/Vnln6CVkDswrCYyrV0Xs1DYuMbcOurUHej3CxqhHGNnptVdZQ/grLmimR4xgMOCe3Mqt41XEIFUUGNx1YsGBEfi90Ql3ASQWivOfRrpaxRFCYmVdKU/969HxFAYHgNhgjcWS7rUUGVVGcFBxbwpHkinJSoKpkGUfH3lM1Vcnc/bI+wOesJ0FRSJBYvQ5tAHN5fUzwy8O3Xvh6/94Sn4MQqY3fZYzclZCb87HdcjluXGb/5hCvxb667GgR5yK98zJNwbN6BV52UuT1053/O5qRHd/L9qbanPOUpuOWWW/D//D//D2688UZ8/dd/Pd7+9rfvA/J9ubUvH4FvjRmcGUgJx+Y9rrrkcvybq94EroFFW+NbXnc1kIBv/61rS4U8DpuHClbZjMPmWLGwkSVGtZvQ71So9pII5EyK6CdHQ8dytwNhPzYJgZNqmBxmn6IVO1IcOKFYL4Ayn5Vd3rjx01zz9ac90qoqQzEyGIT9c3dkPegGBUCsV+Nttw3f+tINkAwTYQJL05RyLZ4Gp2GtgLzVgRfJ3fyGU0h3NAOh7xt6ABeagIwAt4FQRBFC/hwy3HdlJEHmSbDx2r2Ym3aA6A/zn0KetSg1FnJAce235XwPUVTs55qiYwqiKQEAkJbl3jhkB6ROrP2IrhdrWB5I6uSCckywkkNWhfFWDFICoxcjl/VgZZZZx0IteQjLCrggq0LnwDe41Vs0DuucAZJ4PACJ+08BCootwcZkCgQ81k12TmBEBAdgJwE0T566KCEg0RwJKIBXvRdH9BvepSekneRptKxeDFTslfgsz96ePU8y0rQH79byndFCA47+F04LfUxTqa73Hde9rpTZJeAV3/pEQe8zsIuMNz/mMjz+HW/EVY+8DDdut+i7HqgScGjh37X2uaz4u2HhA8Bzn/tcPPe5z717J5+m7cvGpe9t1YEqGfYiJ3xyt8dLH/84/MaVTwSY8L++60p3dSdz6/kP3KIXLnsEAKBYxsbiByYl89ENOqQk7aNwZRStwgOX2qKVBQws17Elvw9loi7OgbIyPsaub2AoBlIQ5gWQNBzXkEmOfJwWsuDRXlMoWOExfaeobUnqtLfkzGT9LIti0gPVHfUAaT5Afe/UxS1qgi1+b0qFciXEKnFWfY6V8z16I/bl7gelTDb8Eqax8ItbhDo/5hrfn88ux3m+P5V1xIRSkTELm2O1PFjYS19wlH2utZ9U5t+8Hxa/9ph+Jp/fWF3P4vC+3kzZCyDTQUgnF+tWcCs0EOaO4rclmRhUZZ1Plnz1KiPV8kNV1hx6ckVDEO4QCuZ5pWtBH7SFg8zTYB4gEsHrFn1PA7IpToI5cNKoYI27x8fWhB5v2AADPFq4xEIhqSUR9pUSWynAl0nGlfYq8HajKcBwBZkySsGeERGUpbm+/4pnIK0S0irhvM0aRAROCTs94wlvfyPe8YQn47ZFj5YZvGqRNr4wtUr+KbS7Cto7bF+OAj8lgBnIGdxn9H3Gbg/knvG0a1+PG3bE3R0tbrfEwqbg4D2GxwEHebGQF73fyFhduEJuGP1GLla5bYDR7clh44nNBThGKzH0ZeOCWZklq8CtU2CQpmWAtohkN3BcFPAOpEplHPt0k7C5mZAbKDg2ZCvWwgC1eu8NozkhZW+rnRoWa653JZ7NFJDI47lRNHhuSh1yi2tHhYobltQzFbYOfHNiH/ZnbRUHnS+f2NPEHACnAj7WIbe8+XjvMn9hPCaQw/qS/sRK9LWn57qVHsMP8Zn7fajgnwyFfwwbgYNiA1kTA8VMn5VjFQKKHQ2DZ1KHIs+U1z8sd6fgDeexFUKytQ2990yotE4ChQdqKXHcJxHuizhREOHe2CID0qyTUFmdByEgX4/WrwIlbR5doUlKfetMfXAF1BkAOa4RuIdJnjEXT5CTAgk2JVcIpbPZa9bzJIMWFbBIwo9v+fddyRSiTANkPpjwrVe/Br/3tKeAE2MnV8hVBaoSXvi/fhsA8MnjK+zMO/TzJdLmGpDSoTv/rragkB/0c0hNWNqXhcCv+haTvkWTCPW0xmRzDVi1qJdLVMdPIHU9utwhLQlPe/Pr8b5nPLVY8wDMxTqwHMMfyQBeumFUe8k5+5EB7FaYnDuXanDAII3J4qoDT/74OhFxHMF40fJ0q58GVi6H3F9zRQJAtZdQ72mNgK64LFNg4wPgm9A4v53DXjY+Pgx7v1IS48h1ObbbkLmhTjbK5nhCc0IEV71nCspI2hPLXC/F8vH4cxS2wSp3F7J+OAAc2q8xnmebvqH+g5Xt4Dku4zIGRPH8KMFTyI9P3SgG75Opjzag942AiBMKzXJSdrumDFu+17/VOiwMeGV92fjGee8G9hrEKQlFwUtlEplEuBY+CoZ5JywzwgowoVbXvV3I2SHLXLN9zUDuE/pWhCC3kgKXWgWSqvXOGZLi1kn6XV5VoCYXcJ0S5oA1FVHXdVbXuIEGvRnL3yTDCh6ZG54Cf754TBjZUfxFcTZuClNyLPuEVMkcKJTJUhO5hBHs/VHlwoU+owh99ThefPVVMmwd1rQS5fJ1l16BnVUGr1rQxhrQ1IfC/lQa34WfwwbgyyCGXxPQ3vIZrK/NsOoz+q5D3/eYbp2JfrEHWs2Rbz+OO7YTfuvhD8a/eff/xsW/fhWgm6i48FA2FAyNjiioU0uey5wUpI+K0G/0aOc1jt7jBLZ3ztBNaLSKePSCmnA3F/GIbnQfmG/QFxxs5kqBWS8sgqGflop7WYk9HBxHALkvMnRb8UAw+L0H5YNdKZFrMw+tTBe80cK1Tb8p99puMvqZZD5wLel9qzN44IIGFQvbvABM5JYqgIPBkFEJQJhmi62rFT64t7BvD5Wd8jw8sqH3K0qikr5Ea1zdt255p+jeLxSy2UJCreEARJhkgiPz7dppNVIeWVkLaTj/sdlxZCDCmsrmZpZweMZEDJCOJenvxpHf8KBjr9rnk64D7RNQZfRtckY8UmQ6QAoWpTJPDUtOvfVg4SDPzefCoWBemFEWha37iN3ICYMa8lC+DAfeRQwD4IoPdUCesQNaBwWRoOGYKCRsUfRhHem8y5qgkrVhNQO8zkPAehDw1u98HFarFW688TOoj56H513/elz12KfgM9srtK28zDQ5FPan3D6XUD8U+N5Oe4EPImwc2cKxW29C27ZoqoStM88BUcZe36JrV6pcN7jx5h0gMeo9QmsvcFPoWnEABsaFhW7C5srkVDbPtFeB1jqcu7mD7TPXwXdMyoYFFJfRQe+pWaMePoj3NlQK7HevLBePg4yHCeBJ6DoKLT+2/O5CrIcIUxVaabCp7h9v/M7j0/uOhcdcIyGRAcdyFQR5wyo4izJhg2MyAat9qieY1BIfeBmCsB4MNRDQjMfvVrk1FaymvIigLYqHeAlY3eeMjMLUZ9UFo8fD0wFzQeW7gAoeAasZb/wCNm+UBezogK8ent7lSHpEQYLATcBl7eo6cbpfIGSW6OSZMAQcwCZzwkWQ2USw3BOIBP2OcL02yeNILC78isWFb0qGjbtThcCGpKEWGbNK3RzfAZTUx1aVXFVQXNj7veq4jbOh4TKngU/AXzNVBp1MCDavhulRRWDCGouXuh25tmcd3tM6S7yfUQCuCNcxRYAYL/vqf4FUT/CYd/wOfv4+98UuV1g7eh5AwIllh7bPyPMV0pG1O7UDDtvB7XPF6Q9j+KWd9gK/z4zV+lFM772FKTNSSmgpoSZgUjWo7/EV6OdLcNujXp/g1V99H/yba94pFLy6MXLNhWyDhlYuAF8xbvnpBmnkL9WK0G7U+MTNZyM1GTh3Ab5xDfmMFulYUyyVaDoOAqQjSzUKPD8m/B5R6gcsVtu4XImA9QcgjeLk4w4YSOaKPMDFXi4cPo/HmQaRg1IShUZg3gOTkL9YWMIEso+1CAJxpcaxyMbL8Ts9r8Rhg/IADJWOrgjIaJ3TeAwYfubWr91qAlgn2QFe5n0w0Bjr3BGVWL8J05UiyVXZI72XnDg8Q1LFQQVdUiVRORrifVians97Lv8LfW6ZEKeUrlhKEU+Vs15z3R3XkNjrtUePjVSoS5J61qdy39H9b79r2qi72XUYtFI+CAux2ftHDKzSKNQVrm+KmNHnhvFikp2fn0h0NfegzTJSktQ8QhK2PnPFZ53jkBFi18iUC4NexUANUJvcwyXTr9eowjiMQtmeTYWSEaPhked+/KMgBq699PF4wtuuBdeMl3zVffFf//Xl2N7rkOcr0KQGmlon8bCdUju08O9yO+0FvhgJthmVD1cMYLopf87WwHmBdq/Dp7nBf3/c47Cx1uB7rr3GNwryDZ4OEMjBwgDc9e2u2VkGzSt0y5nw0i8TEjGS5bGrZeQ17M2NPBrzwBq3303RoP3FXvaNzSzteJzdDjBMwTIlJHSD4Ucn+RCD+RmkfOnfpO7Xfc6A6PYM54rgL2A6t8JUEUorQfm7ADdBbIIwUhNbfNXmLJwjCl6Yl1HNdurDrZoAAYpwMYUgzK3Mq/Rv1lu5YQxSAJEYjGH53X4twzj6LbSUGw5eFwyUTQDFKje0ORMio1+0VvfNv43LxkNQgJ7Of62pZ+oFsCIxZGj+2uYjhBPUJe+cBjpGIAh5RimSoxgXe+7+TNXN7umyPXmlOBPmrGGPWKnP14opE4o/qBoNLdQAWvh1OBNYGfu4FpyIMXHG8JhR5VLWsTVZFJ8QXnBmSJtjG5POWVqRh5JAECCrK55F8QIDT3zL7+CNT7oChAoVEY4vWty4YnDfIx3ZPHTl3812aOHf9XbaC/y70ogAbMzAixVWJ+boN9fRpYz3fdeV+LbXXu1xVgAlJWhfMNc608MmWV7UzU42kt0aaZmQzXUcBKK/2CGPfaBVBqGz73pAsXgO/lo2zorLdYMF5UKJUdKg3AokxFruw4ta3yjzcdDYDlBC3MIeT2EYU+kb6jIluLvWHoW5zJtwfHS1xpBHAJ4N4rxczts3bSqoBzHhEGIhjcNzKgVL7VJpZFm70Jmwhw/MlStTSK6Q2D0bLiRmNjAJV74h/0mtWlN+ADjAUCZJhFYymmFTfmxKzHo2ZdDY58JzMEGfNGVSziXPI+eOxEVdDfP0naMgYzDPvlzMajaFoStKnXgvgrKiOfwRjW8eDffWqAKXm6wueVUqFgLs7Cs5n3uSSo2q6XKnvBDqyaM+OWgvGf5B3428ll1BtiwEXlWoNlrkYxP3fg2YHMf68IqQcvK1ZUqJETW5otkDiYPXJwNXvOEaD7+868orcNsuoQMBfZYMpMN26o1x50j8Q4Hv7R+FwHcWvkkN3hWP6D3XgW977dVwN609dLMyoxWezXLhYskZIGhRieWiVlHqSNKaeon77Q8PhP9PYaGd1IVv1p9bpqNr+Ak0/D4ed2fNhfNJBjDyfozH667ycL19UQG1zqgj5x23Y6p50jz0PKLfVcEZWOMiAQuAISCPWB58DvpB1Px9mkwgl4GOCwtxXdL+oiC2e+/J7QAAkdlJREFUzymxlFyu4Wh/V7pAQ90ulD42ZSVPUJ6rHwjPFWfNIXeBq5aqFWUxqmLLzHDA3Sgs5M9GlQ8OWStGYes3TZD8+pVYuAR7ZhC3PrFzz5dnE+YskAuh17i7pXOOLN2xEskExT5oOMhCaib/akY/FeUAs7JO+oVsX65gEMSFT9Ip5fIe5zVF8q+EX8P5/Oe1RKiOT0a8DFzAkgj3od4A6oRfoZ8wknmt9j1PeDjDMR1afKlfA3bmrUQH6gq8bEHNP47t+EvdDi38u97+ca0wkrc+ZwZ4gWqexKXKknMNNrQvDzZ5FxocBX+xBHlVlfSqbKursMa5C9B3sFG/Y52gC6xwuhr3gdCAMgY3iUcH2JhTWPHmFnQvwwFW/oGxg/FcBuusJ6l/PronDuM3G/lkL5e5lgemNIA8Baz8rltM9UjPMKs0YAksTu4pXUHL8F/NMo23HJDetg5MaPcTLniIqLwEgJ3eLIxL34S4WfbO5WDWbw1Pt0sdlRQ968pc9u7NkPkwjoAYQuA1TQttslj+9vzNCmUdh64tTppaF8FmDA/9cCfFalCrENVngAygS4VRDxAhSeVv/y6H505CtexYBGCgmMSHRx08VBLph6FlfmmZBOGfGGmZNDMC4FWSsAQg41dqZzLUPsMZBSmTUwR7KWyj0DYKamsZHmrwtUNlrfhNprLO+gl7ZouFXxxzApTwgc2ZgQY1q6anHlVTI3UV+sUKzHzo1r87zdb+nX1/2AD8oxP4AE1q5K7Hsblwydc7Cf3acOMEAXmanbDGN/KBxQwXqKQqvrkGuQtWobvbddM+mcUfGtdcwFvN6Jr77iloAgOrDL7QswKbLC0ISayIQgJDrjQMDPmxljEah2EfSLnCrdLbPhxApQNhFCGEIqCdsyBeqqeChh5tsi5kTA6iWIknnSsl2fD0tVEWgvUVC9o4aVItFjsdYKkFGTfYvPdhMtRl7NYqQymQi5JhufkDl7ErnmUdFsETmO5UwfH4vj0HGwOjFMaxHHxTRpjUDR4UR/0upmp6tTkWgc7Ro0Lw98AnJpNz16dQgrnaU6BiwJF4SMdS2FSRzFNGv8YeGjPBLsrJSMk0qxzSh2Qz6Hi70D8ZAyM7ct/CF2QeAFKPE6EADU0xUcOAAvU2m1Jp6Yf6fG14fgwwUAyj0umeGMW6XHHtdQCA//rQx6NnBrpe6HQPhf4ptciCebLvD5u0f1QCnwBgbYq8vYvbtoH/cenj8by3XOvxVK9NrZaJW2/WfPMcCVWowNHiGzxlRz47AphGmxON+hwLUwVHjQWhAKVCf/FLTdfzzdHQwnpMnkjqm9EDU1c2QOuLMBzHXWl5opvjpNzjwDkwEq7ODU8Az8RNzOqOdhKhJFaXpUyOU+rIFAcqYEaJVR+goARLbNBP/D8oIt5MgVLL11n3ooLgiGsaug5HAt+9BmOWwDAmY4nzvPKD9nWWlEmhjdXnOxA6QemyDlTJG4dBDiIyivgSqrPk1TsSDa4UUJOHIZku6bsigp7N9R2UgrSCemtsEuE4BeoL/bLHvZuQ72/CtmLxirQ6V1qjYaxpchvu3cauih7XAGYZrPOeJj14XgMKEIzYkn3WIRePj68Dzec3Rcz4OjwrZfwIdR15ae2oEWi/Vz/pybhlvkJFFfquRzedIO8tkLY27lIk7rCFNn6GB31/2AAMxd2XfyMCqoR0dAO5zzh+YoH/8djHIy3Fkk/LVFiwbIOOaUSqCAx29iCsjUgjLZK7oAcbUbTEfUwYLDi3AozVbSS/3PIGMFYSbFO3sIRZ3IN+k1mS7P+XeHvIeTehHe81dqZWjoUMuBIBLdfg4dhcaFq6FnwTT3uVMgFiWC62YqQFuRXkgtJCHSZIArOekJtgkPdsLmh3revf/p39rdZsnPtYBS0N8uXL+R6DNU4A+9H7qxYUlILyf2rlu7QyJHfog6HgslCPwNZkuF23/nOZ233eEntG9n9PIGMttPuJlNEDZTRonOb+tyXQi5LGbXLhLuNOwCqJ10dd6rRIHv+u90RJSqtyP0Yv7JS9NJxnnmj4IlOZlyOt1JtP4XlBFZJ5BVpUWhkSLqAtDMLTjHpjhXPueVzAijdNpbqeeQj0PqmnwKipypEx+pli3VuGhRIwBcXNLPVS10E9bbko4HkilNG//11PxpsuuwJg4LVPuBIV9agS4dlvuwaThjCZ1lJNZ9XBPRuH7S4128Lu7OewSfvHJfABEBGoqpCOrIH7jO29Fr98yRPRnCARFhFhbxz6g3QtFAFG7C4+Ex7GxAcg0I2WPv33uMqCFT6Q5Uz7FuW4mzImuJCKAjwqF4N7CIqF5bPfWcj+pG9FsBrNPTr4Lg7eUrkGFhP2udQ4MRCE/MCNX4XwSxROwP48/ghC8/sNfRJ8Ay4ZFGWibehpBS94E69r/YzHGJuFTTx8EtH7hILYNnS7WbhG22rzE69t026KQUtCYLMij1NHgU4Mp7EtXPhl4qgJwtyAZ6p4sLHRmRJH+hmrcE1yDhuaX+PVtJK69GmVVJGGA9NsXFzJuNLKUlwPoKr1tW2KpE7DbuP9xNx+Dnnv0Lg9seJrdKySm0/4Z0dvV4GsCscyCU6hyW7pR7wHKQOg0TxbsaJYeMlCB/FdszmvFkkqaqpya/eWWsK3/NbVeNI1bwAAPP1Nr8fRyR6efd2bpE9qkSpCmomVfyifTrHxXfg5bAD+kbn0YyMipCPryCf2cOsO8KtPfiK++7d/G9Uc6Na5sNVZrDIuDBM06gL3kq4jgRl5zseOPbOe98W7o2SPMX87PqQsHVjH2cZiFpOdO1rUA+rQvhzrbkzbQPcJaBrcv3TGw+/9IkPhuU9o9Qccq/0mtTpjmWFP3wpqqOU1u4vdYuLRIqfyNwXL0chhxnM0UAAYXh7VwhGE0bOloih6yVSzBNV9a2lfno9tmIJQe92ey3huWJnc3AUf5p16BZxWEJd0Bbfgc6AldhezFcHJKClyQaiKgpFKGKUK69GeQSMncE7yTFsSa1tb1aviogj41JbnIkyEZe4io6AJWSMAiqEEA9pxkrCbe956eQDOk7+QGAHXwLlfeTtu+vQZ6NX7gWkvWTXLhH5vhv9z89cgaajAWB65yYVMiMjXbOTSH2J64Ch783DlWsbrlQ+5hCmINT0vAQxyRsuBMg7gEa97m4P85n3CCkmqgGaWFL3D0rh3uR3G8O96OyUL/xWveAUe8IAHYGtrC1tbW7jooovwtre9zb+/+OKLxcIOP89+9rO/4IO+S83c+xsz9IsVPn3HAq+49HHo1tjj5wBKvDygm/d1ZYJR4+Z5lodW1kGXP8BiH38Yq/NJERTad+iAPEbNdIvl+jEmPM1IMxdwZ1YKHazlmnyOHoPw+YEtFSVmUKgGw74s7OBeEj8gCD1VXAYbbBT2ZtGHF3rg9YjH2fC5/G8Klwtjlg4MNe/hDbumhQbMfW7nAgHQBZg7Oqb2ecWunjxObeO1UJAhxw3AZp8hq4dAhZ2FLUitegmNaBaDFqPhxFoFL4On2UlvAIg1P9W/uxA6OCiNlGmoqHG5X0Hrq1dBn2Ey9zfDqxz2My7zAVFgPETBpoyocl2XanVWiIY6QrUkx3X4WPSYai+h2kuY3Fyj3lWvwiLh5r87SxSOuYbX2uThnNRpuKVFwI2oB8Pc+pNcgI72rCmspyzPKHWhNK8+v2TPx8o2U1h3himIWSJK0lOtCisfMuHlj7wM866SwwhDjMphu2vt0MK/y+2ULPx73ete+Jmf+Rn883/+z8HM+PVf/3U84QlPwJ/8yZ/ga7/2awEA3//934+f/Mmf9HPW19e/sCM+hUZE4KaWmP6JOW4/wfj5Rz4eDzhvHQ/7zauQGxq6oQeWrvfigtDT+ZZDS8wVggO8AMABVrT27whss2rH51p/0ZUNDArrGLjIlA/SDIJoIXlRGxtDEPQUrrMPkAbsUwk9l3p0X2YxJrOqzeoPN+5AQ5TN15vnahcBzPH+MvYL+wMcCIPwQFDSIt6CEw0yAvbl/7syRcVaDoC+bCxzZslqwZ8UFLiY0eCeFhMmhKJ01HBWOfEgwF3gAMrfdUkBzcYZryElMlpcBcERIHHujELM4/MV+q7LsxmGjSCo/jZpCELnJw2fJXkqm/DNJ6WW5QT3PthzGHh9GErvC/Ee6Lvga8mQ/ArqrBbFms4Q4qJ+Jgc3tzbIE0ZzwR5WOxOkvUZT+WTy85S92JErhD0ptwaAORWFOXiNqAeqVcGjuGLoISE4e6c941wJ1iUpo2Jqi7fgbf/mKbht2WOnZSRizCrCbUvGbqeKFBiZGWA+FPqn2D5XnP4whl/aKQn8xz3ucYO/f+qnfgqveMUr8Id/+Icu8NfX13H++ed/4Ub4eTYiAqoKaXMN/fFdLCc1vuO3rpINpYO8XGPvmW3+9jvEtW+c6JRJkesYCMs7jZEjCrBwgUzD68WO3LIfjcvczfFzYL+/xjZSo7w112qU0rYRn+ylMGS8CsIB6ng0ZK9BYPfYE5wUSe/HBXdwOvh0mEVkL3AUAGGOPN1toKQEC3zQr6a4uWU7VNYGNxD/1M17rAy6AkBmAZJPpVuzwNDCz+Vcu3f/bPBsh5oX9ZBaBBY6UO2MzZonuKs7Fr9hZsCJjEZrydPaiuBiQKx4e0YK/Eux+psrm+UZASIUrfn9KcjT57MHeMKeny5KLLnQ5IqL4ulYg5LKZ33kRvAWSBC6647Qnb/EZL3F6vaZF3KqdxP6qfEYaIw/pO9xA8nnT5C5rAVcOq7c6PNjyjiXNZ4UiGoFogAUT0aS6+SAPXj0667CO5/6FNy+7FTIq3BnBjEjMaPvs0zIYVreqTXDpNzZ94cNwOcB2uv7HldddRV2d3dx0UUX+eevfvWrcc455+D+978/XvziF2Nvb+9O+1kul9je3h78fFFalZDWpmh3F/iZix+L33zskxzMk5ssbnrbBCMhh7mldZOyqloDZPhJWuRUP9DKtzbuJ3gUDEg1ALIFwTg4P6SkWVwr0qLaZowEUXJSiV0P3PonEerxXgbKDet1UrFUx7neRaCXjXTQIezYcG0TaqpkuTIQU/D099wEIUN2PDnXgs+TCUX7PQh/y2jItfYVhLZZammlwC5NJ8w16/GaFREpYVms3uiliPduysMgNBSUBjZh2EuGCdZ7YNbLHCSVC2u9pNeZYLTnredyrW7rmsFNlv4mGVQzyJD5gKLtK9C8Ai3SYN04cdCSXCGwksEclE/x8Oh9pPI/N2UOzZK3tZlaeMoeqUD1oj+m0CSg3QC6DUa/rhbxUsZY3TJB/3cbqHYqTG6vkObJ0/8sS8JCFsaUCCr3bbiMPMvITXmWnIB+pih7/d/mNBkPP6GUTgb0erJGquVQUUwrwu1L+aMhgJhBfQZWHfq9JZY7C+Rli7Qxu9OI2mHb3+gu/Bw2aacM2vvTP/1TXHTRRVgsFtjc3MSb3vQm3O9+9wMAPP3pT8dXfuVX4p73vCc+8pGP4EUvehE++tGP4o1vfONJ+/vpn/5p/MRP/MTdv4O72IgIWJuA2w6565FRlxKjugmAE/LRDrRTCX3qyMJ2UJGl4wSj0QVIPP4gNj9gJC3jIIuFMQj3E6uVbf3CAWnERt6jxycUNjHrVlHhTjI0yUUgh/EV/WHkZQjW9eD3eG/2VQQh+vWHlhrMwjtwDuDKFB2UM22KQ+i7MB4ivOWlAI1b2Xovlhue6+CNQFBQ7HgD8oVYrDdTQmi4TqJiYrSsjrmw9LFG5teK6Yh7XvuNIFJtuWFUSwL25CCaiZCnxMhdBeOjZw09ePnZJPS0rOBQ6knqxrPOvxHPAI5Qd0HNGDDgVfNAApQYfa2CX+/BLPCBMqhjEE8BDRVkVXQ8W4EYWfus5iW9s1qp4J2yp8GtjmbUu8mPMVIjUw6ZlTuiN6UZLqQBCMuesvdRrfNt+fwGnNXnNGAJJHlmTiNsngN7hsoQyVOpD2GK6vXPeir2OnHlnzFNuGG7xx27PfrlCtz1oNkEaTYBKtXiDi38U2vR+DnZ94cNwN0Q+P/iX/wLfPjDH8bx48fxhje8Ad/93d+N66+/Hve73/3wAz/wA37c133d1+GCCy7Awx/+cHz84x/HV3/1Vx/Y34tf/GK88IUv9L+3t7dx4YUX3o1b+dyNAOGt7nssO0YUzKzuxLRdIy0IecaOdB4Icf3f4uIWY48APKdLteODhT2Ik8cNMAj7KHy9zzrQAXPZdECM1GKQw06hNCyZxaibZVoRsKrci3EQ6H544TLGAl7EUIEZnxItfcAFsdHmAhiQyRRgHAYWvFy0nO/xUT2RI6NctPrt0vYcRuOMGQzuzQ/x6RTy/Kk1lzkKME/BXOLyJ0fx5yrM4Uh5kLi23Y9anMED5Aj9OE5bO3o+eioV3ZYVcsWeiufc89aHkUz1Kj/MylWL1HLordKdKYqphwMFTdEhCs9Px+pj1/XRT+GWcVQOUytphXnKel2IS34qrmxAY92muKliwGqliweBUO0KviFPGc12Gl6H5H5yww6qY7YHW7IWXBFSr4yva3Pfk9bHMPZHKvcZSzHLejGPBbsrnzq5l//zg0/HN/zmb0mJ3o4xbxmLLqNjxs4q49hOi26+BJJwhtChkP+82iFK/663Uxb4k8kEX/M1XwMAeNCDHoQPfvCD+Pmf/3m88pWv3Hfsgx/8YADAxz72sZMK/Ol0iul0eqrDuHuNyN+rnuEgKGPLY7VI8gSOvPVNR79zARlYzAZlYXn090nHciffBSHr5B+hL3f5plJmlToCUdhwDWxklxsAt+DWHVURtDgSjnGMZv2UffTktxaFPeCEOY49CF4A0rCFK0wm5IJ1H8MU+0IjB4zFnxcg5h5Dnv2IIGcwJ9msuzJ0YvjaoDaco3PgAj44RNwjobUbvIKbke6YbqMKo/Hru+u+lbEYFsIsRRewHUlFN4LzwwMqhF06Q8vF6mQp8M6eN3oq6WgGWMvk/AHJLH9TclWZMcIaSzMknbtcB2Fv66kP822VHkP4JWIvAAkXRN4DMitd7zF1hJwYaYWSCtkWD0Oubd5QsifMcaPvSG5Q8BwMYNYBy6rMgWYLeGw+UmaHteaKWKgZEO/tG171alBPeN2TrsDNuyt85DM7yMxIasF3ixVQJ6SNNe33UNh/3u3Qir9L7fPOw885Y7lcHvjdhz/8YQDABRdc8Ple5gvXJg14scKx3Ra/8B1PwPokITNQE+O73vXbAFAoeBOEntNebmsEsbQqBq2S52ZbXNdDBaENBPbYArbPBwIWRZkABuA+sxjlc3heuoGi+hm7pewbN2uMsRdrzFDOYKXbNZR8TKXSez0ZD8G++2Nyy2gwV8Tgqgj0QbjC/jdQVcQqhD4sjcnLq0a09GhsAwKdGKP3eyqWpHsazC2uikYyMFwmVCt42lmuw3E6//H6RRmz6+h3dVEwcvS+JDhZS3JSHaBX97Ag9iEWewaoT8W7YMxuNle9pPEZU5woiuTeHXH7p+KS7ktYwQB60YK1Qj9jTnlKZZ2I1yIIxF49HoGPgCko0GplVwu1tlN5hn0NzUpAUZbsHL2MhaWSKlADKmMKoL4azstfQKWmDGiIwiZZ3w9Pp8wAGkbqQrgsrk29V7tutSjPINfAGy+/Ap/eXuETt+6ib9XFkgWQRymBmZHW1w4L5XyB2iFK/663UxL4L37xi/GYxzwG9773vXHixAm85jWvwXvf+1684x3vwMc//nG85jWvwSWXXIKzzz4bH/nIR/CCF7wAD33oQ/GABzzgizX+U29VQlqfod/exfZ0CyeWkBeSCT/7bU9STyxjPTH+3fVvtq+8mTBJi8o3LOoBrguoKSs7l7jZx+ankvmQXCe2fUI1CrNUin1E1DBSSePKddmY3R3rnYuQp7ls8mk1qtwWrjVwS9vXqYxt8AKNXyYVkoNYfy4btoVAjGwGXCzBAeBM5/VAjwPBB+qyxrwq1o+1gKJ392wQ9hZS8GcRlRG21LOiEJgCVIB+egoFKzcIOpgXQBWzAeEMivKWuiJwgaK8kQpVL9IYlJIxLsQ8AZShBY+KIET0TnERUDwp68qwAKkD+qi0muLJECIZu39VvoRbACUdj6JnbFgUp19TxSEoRu69MNCfhhNSK2u0n8l9mvU9wKsEjIavyxga0vVFZMDOUGhqiUHWBSDHpBgm6eGkQL4eGgmjSegD6pUB+hnwm098Ev7mlj10ixWoluwgVKodtp1k3TXVobD/ArZDl/5db6ck8G+++WY885nPxGc/+1kcPXoUD3jAA/COd7wDj3zkI3HDDTfg3e9+N37u534Ou7u7uPDCC3H55ZfjR3/0R79YY79bjQDktkOaTUFdj6pK4EQAM2oiJAK6DOx0wMu+9fG491kVGtrFpVe/axA35AbD/GYOVjMwSvuL3gGO/33ONrCCnSSkbBYMFeQZLgCj6zv+jwR0awWU5LF+IlFQ1IpJLaE3i84KD1k/JjiC0LAhRU9BTB2MFd4G31GZwxg3Zwxf0uhWdZQ1Y4AWz7aSXSpjoAAQAxnDTZZ6KrqDciFEwGIEraW+CAcgVKvT751aFyghlmS1C2QwrsAwIXppUlcs1bTS9LMWyBOgmzHqXUGcZ2WbNTxHZjjy3BQW8zKhkgqAYwwGgELvG4WcghQ5E1CJ8mpryUIXuUbxsKAov0arK0RCBKNNtr+7dfbHYg+4nwbGyE6O81x7de3niQL5zOuk81VKCpd1aWucJ+V5+/2H552WquRkVe3tRMuuYMkGMNAideR5/Db2eo9KeECf/x/8f56OG7aX+PjtC7R7S1RH1oCmHgr2SXOnkbzDdjeb7jN3+v1hA3CKAv9XfuVXTvrdhRdeiOuvv/7zHtCXotGkRt5bAlwhAThjkvA9v/8G/M9/fTk2moT5ssNOmzHPwF/ftELTTPCyR14CAnDOWo0nX3ctDJXrlqW5eH3ngQPUXDhEV/QB7WQu8wPd6dEKj4K3Kn87wC7073tuE04K9QK8WEgNZ0zLuuE5wC5al9ELAJQSrGHA+yiA9byYzz4YpAHxzKoN/blnwIR4TOOzQ83rEoVyTEDVvh3MZYIwA5xE8DCVsQ26t2NVwJknx84ZCNcR9sKuYcIMgKcqWsZAP6PiqlaLOysNdOpU+FqxnV5uZp8F00ifhjtInRDjcCPjr+bkY+CeCs++CXAVdnavnmHXqRC1DAYDY5o1bWDGBE955Uot885i6MP1Qbq4U4ficrfnxQTqy1owQW/FmIygJ5vV3qN8TqIIVep1Yxt/IuQUFDTWY82jFNalhG9YFRh2pTDXwPu/6wr869e8HvWeeDeOLXt8dqdFN18hrU/3C/vD9kVrhy79u97+0XLpn7QRiaadGf1ihZ6AW7sGL/mGx+PYiSWOA6h2b0czW0O32AO6DisiVEfPxu6xO3DLzm14/cUX48rr3zsQJhQZ7UyiaTrcUDjTKa/AAagOGAjNQTMLyEBpwbK365ugcFS/bqy2iXPNope0ApIyAcMNl2p5McUPRYjZWP0zu2angjqaeVGgR4WGeJ/GbnNrx3os18Y0mE4qc6BfeYnWkUcmxpDLZMf5Lh+7ByEoOwMwpyoehgY3BLe5uyOBjYHarOKhVHHTrq0sbNZc7l1SNj59xCF2jSwejrHA7ykgxy2HviPQQt3PgANTBVCp3BKqrGUCaEIDAWygNzCAStLlcsgM6SfqBaEyr1xpSp4i82UtiLLST4qFb/OX1EVuIRATyrGE8oCuNoRDWNeujJXARKI3Rm+Drn0LN8TQmIcqALj3Sj00qSN88Aeeim9+xVW+Fj5xYoVf+M7HY9EKQ95f3LyHZZ+Rux7V1vqhsP9StgAIPen3hw3AP0WBDwjP/2wCnk2AtkO3bAFmUF0BmdFzRt3ugRc7yFlYwHi5BvRLpGaCT372Frz86x+M5YljeOHHPlpkWEcl3U0RvFwXhrEv7E3o/wdot8UqDvIzIViOHMasSkkifzEEjMQDxQFtuAezeALFr3sVzH1vaYMIVnkU9ijnACipeea6V08FAyq4xLWatOaAWNDDa0s/I6XDBLsqPo5tCHqYAQvN1e5pd8FD4+e4ucsB6CheidJfwQYMlD1rUZkwBcMohU3oViKEyI4PnggTYGncdy73aNgDEJwC1qbXwgcDd7kC0Mapgq6w6v07TiXG4FE8AmRx/EzuSSAG+sYwBFSUsJi5cJCXJhY5ciWiCO8YrpLrE/ope8hIsglkDKmDAHDjMwCG6ZQh3dBCWaTx+we/7Cq8+2mPx05D+PjxjL+7Yyk59FUCZ4Zlg6S1KQ5R91/admjh3/X2T1LgA4BTvjY1qqYGMyMf3wUToZkdRdd3qDbWUW2uAWB0dYO1I2dgqxbAbd8DVa7ws/f7BtznKy/Ak9/+1iKsxu97dIPa3zEATLz/nDjU8YI9QGDui1MFSysOY5CnTiaMaWC5AkXYWUzWZcrUoOYm7Ib36ymEFj8wC954BLgoHwflw7sr274PVphZh+ZuN8E/tsijYI737+DA4CExV3yhHy4C0ecsbCgmmMnj2Cr8ctAbEga8DB6TV775Mo7imk7t0DrODTvmIDLYDTwSo42uZA7IeWlVcAg219166aNgB8QSBzGyW7eAqTCewcBAnrKn0OWmUMx6BoKBO5XQpt4r66KflmebMCRM4lr6NgtcQhlc1oNVKExh/tWCT6bYcXmOqQeYNTylCk2elOcgE6SkOyhz72BQU3aIkSvCOx73GJzoCX+7l7F7YgFqKqStDSDpPtLpAqjSoXX/pW4jb9yB3x82AEUE/dNtRnrRZyBnpGkDzKbIa+tY1RMsWsZixZjfsYv5KoOpQ5VW2Gt77LY18to5+PsThF971KVFEAGeLiVo+KwpRnF3DgePAHA+NDvlzrQBPzj8HwW9uZDVQhTrlcLx43GF/4NlZ0LAK6/lMrbx2A1Y54Q5geQkjpUPWH1mUVlHHv9Xl3Ou5X+3xILu5CELLgJoABYLlmR0D5d7Gd77QJExNDYNlRwXYEEZcRKdVMIQZm1zKkLf3O02VnPXx/5s3L5cuIzb6W2pZBKAxd2eOvnehGauRfHIug4N9Bg9B8ilChxM6Gv+va8hK4nbaTpaiHcziZJRrUIVuarMm4cjzHNkTHnKPzColGeKXSrzgyx58vVcx8llHqM3ylMh7XGGNL2soYTiLWFfNzY+x5GwzBlXjLVzj+LGDOztrUSor89AKtyJCNRUoPoQff8P0UjrEdzZz2GTdijwrVXywnLXo0qEuq5AicBtJ98RgfuMnX6KE6sJuO1BR9bB61O0e0vctJ3xqkc+NmzSsmMxFWuvILYPaCcT6kEpOLDR/q/2AeEOOJ06EzhUXLmp0INa37F/y/VPCxq44A+EJZiF7zsrYOVRhdwokO0ETv9BF0mJcEZV2lzJICDmh5uAMHdz6SgMKaT6xbzqQeGTcC8m0MTq9lsun5tHQK1DUm+Ggc6iwHJXu5PDFCEdXexi5aIQ4bTlXFdUdExiaQ/v1axgu06eFE54NkBfHxQLC70oKM6ej1Xlo45CDQEItkDj/66AEFxBYLWw7Xl67F/nLrWqMCyBZodQz+FhLw9/URmbWfwWNnBkv9UpGOmstjbMas8aUnJshdE0qwJRLeE4CwHuFarjtCL88fc9AyeWHU50DFaj4FCwnz5t/G4c9HPYpB0KfG2UCHRkHWBgsbvEYncBzizUl5MaSAn1tEade/SLFtz1SOszzKY1mgljrVthuSS864onu+XiLktzWyt//Z888xkHDGBoeQDBUh4dV35QrGUaHhL78A0w1G+3sQDwDd8F5XgvCxbmgAMgU0Gi9wdsgOYiHd8GlWsOP+ehQmTxYO3HLNzBDTMN4s77Uf/Bah4B3NzDMJ6v4PqPQDsHeiHOKReFIo5dBT9QBJNbwhYzTio8zSUdFA4TipbfHn9yCDc4UNCyFprismYtKJQbLkJSQXvmKncB6NgJ1uurIqDhqNSjsNopGY0JXQ8zmAITvChcSRihWyvKQG6CMtKUe6hWcEXEvS/RGzLyXEVlzBQvnxe9JfOopNCvsQCmrsxxVAKrBXlpXjDwiWNL/M2xFZbzFsgMVGON8rD9gza+Cz+HDcA/5Rj+AY2IgCNrkjr0/2/vvOOsqM7//z7TbttOXaQjRQV7FCKIRhRjA7ti7D1YYvmKxl6isUQsiS0m6s8Se5dYiREbNuwCIqC0pW69dcr5/THlzl2WFqkyn7xuZGfOzJw5c+88/fNI6bruwItlSqSUJFQLmVApOA6yYKInVJrm/0R5x/ZYS+tZRmWRSpTiy6fY8xx2ePiREmG4MriGslzx2OUsa5a3lMOuYP/FHipd8xUH0foHIop/h+PeUHwBA8iQ8C4qGLKoDAhchSDcf11IXDYUL8GPFeQx+Baw0upY/8ZksEiexCsqMkH8PZyo5ycvilCmOsX7U+yi+70EYRdxWMjaolQJkAIcn6pZ4lvvwotTF09CUQmDEld3IDhD1w2set969veFn7d/36oMCfRi+EPJKiHlhKDRjhQEJXsl9MNeuaaQ7pqo4e9LaM4lVSHecVIIlz3Rey6OBkpWBGsRzuHwFQY7VnT/B99JJ5Rc6F3DT6gMPE/+c5XFefn3UJLg54AUHlOfxFVkCp5S5Sskviz3GgTdvc9oZizNYRdM1wDw4vYRNh5ESXurj0jgh+En8qmtftAKiGQcK5OjRXpF0dJ9qRWERllNDVLVaKxfgFXIubvDAkKXbhzUDMWkoVRwAXf07Eltpy4cPvn9YHNbMfzWceuS2DPF7eEX4nKWMWHefVk8L8UXZEl8N7h48eW6XAxehhnr3JPJ0DXDL16g6AFpazlCcxa+NyFolCOKFl7IrSyVIlkMAEoxKc8nFgpnpJdQpfqC0z8+SA4rHhMkiVml1xXST9zzFlABpCyxvEuu5wu0kMD0Lc7WzzFIOAuVFoYTEv25Bjqht0Yl9eyhk4WfXVAS6F9Tut9Vn+fIP5+jeWqv7+Y2QwyEKoFiYMfdMknFc5M7ui/EhUeXC0YjqDl3n5UM6b2eIiO1YgKjwF0jJZSp73//As+H91z8ksBw2V44YVGxi4pXsD7ev+2Yt4bePBwNnjzkYOa12DQ059zwXUxHiRtRo5uNEKty20cu/SIigb8aEEJATAeBS5mJQCRiiJiOJUFv3wXHtkhU5UFL8uDONZz48SSkgIkjDsBxHGzHIRbTUDw+bRMFZAFFEfw0Zx6LlyxFojJt+gyglYwvMZ1bCeHwv1sLYNHqy14i+ItWnWtmeUqJ6h1Yqov4pyuxEANq2tD03JeuKL0WnjUZorCV/ntTUpLxLhVKlQb/mq31JF/xaJW9XuKxcAhatgbCMmxRhxWnkAcjKHvz+g6ES/VK4v/+eKUoXByNIPksnOQnCAkZP5NdLZ7XF+QlSoji6hCBgBcEJY4idG3/4QQ920OKioII7jlIHPSVubDyoBa/W8ISOHGnRDlVCiFtEK/u3sIt61SEV4VRdJML2zWEw8qFlgO9uSik/fBAsfLBtbgDb1M4qTGkwCq2e13F8zwEMXpKx/rrHRYIgZclFAIJ8jAUeHHMoSzKWvzYZJHPFFxFpDKFUKLo50aLVu+aNvdHAKIY/mpDCIEwdJSKFKIiifC0fQkUJDSlC1iVHcklU9jxMiYdfDCfHXU0NR0raV9bTeeu7anuUEVl+0rKqsuxEnFilVVU11Sz9Vb9GTJ4F3YYNJBhQ7blzb2Gl3qthWsNB/8uUQaKn5L8vpClGxaCfuKcz37mDvBOZYWT8ULnV4vKgNTauF6oHMwv4/Nj0vi5DF5JHo4IyuuKc5OBtS8cd0y47M934/oc/cVcgmKZFlD0AHjzctTStWod3w9nefvXCrwFoaxz/x79xD0/9uyzyRUpiovnVzxXsh8f9oVsuNGLvwZBgpsvxDU33FD0wHjX0orbfAHlx+vDVQDhCgDXTe8tgio9vv+Qcud7BUJrhAJKXkHJC7QWJWCTcwV50VvjTr6YTCdsEQh8LUcQMgrCWgIKlZBrB3bS3eavj6/0hL9Xjn/PPsEPxf1SIXDJ+1UJfg5AOAkSCDwkwRqpoQRAAZPPPppXTzqcOw84iG+W5qmrz5FvziEMDaU8ItHZFFCS2tTqs64we/ZsTj75ZHr16kUikaBPnz5ceeWVFAqFknFffvklw4YNIx6P061bN2666ablzvXUU08xYMAA4vE4gwYNYsKECSX7pZRcccUV1NbWkkgkGDFiBN9///0azzkS+GuAoATH+5QgZmBlckigWY3RbKkoqopQvbGC4BgHG0MV5Cw3L8AwdGKaRiIO7WtUOncy+Pzwvfho/z2Wn0NbX+CQkCvZ5r/wZatx0rUGSxrOhCxt11p0Sr4dgdKhhISGNzZQKBQZuEnD81FalVv5Jwxc516GvJWQJS/2cPkb4Wu0pu9tdb1wKCNsCQcC3qeNdYpCoRh/DlmgwQmLbnzffR8Q1YTG+0JLLYCSJxA8voLgGMW5hM8fuMZFKKkv5O73wwF+TXmJgAyOl0Wmx1D5nPsASr80wleo/EfoeyQKrjteeJa7r6T5YQyfOlcpUOL1ELbLL6/mQc2687NjpQK32D++1XOFEuUvLJSDPAQ/BBO6np/0iCgqbMFYL+bvK2vLKVHeM/WVyV/d8y9mNeRoLthYLTnQVJSqVKDURy78jRvCkav8rAtMnToVx3G49957+eabbxg/fjz33HMPf/zjH4MxTU1N7LPPPvTo0YNPP/2Um2++mauuuor77rsvGPP+++9z9NFHc/LJJzNlyhRGjx7N6NGj+frrr4MxN910E3fccQf33HMPkydPJpVKMXLkSHK53BrNWUi5cRUpNjU1UVlZyYMffEmyrHxDT2e1IaUEy8bJ5BBCUFGeYKeOMWKG608VXn6A6Zgszi2iXawTEg1DAUUIbMumkG+mLJ4PcoL8R2NaKvm8Rj4vsG3QDI2hrzxXFNDBJCi+xEMu6hKXeHiMHeqY15Zw8JPifMKTkEvXT+YqubZ3zuUEtScwg/Ix37K1ii9zPw6t5F0r0TFkcP2SqgM1JB2gmAfgs++1utcgZq0WywDD4wLlIJTo5c87IG0JW5fhxDpf0IcUq5IQg3deO0ax1ayD52Yu8g0E4QJK5xNcO+TWDsaIULmb8M7vj/HnJorPzn82QWJeyEJHUiQ1UkJWd/gefS+IHXpuvmLke0W8qoMgfh8vWtdhhjx/vM8NoJgEiYH+M1ELxbCBlnX/HY7Ph0sCw9+fYD204poFioMohhwcTwl59PDRzEtb5LMm0rTcHvVGxIO/tpBpaeaEIdvS2NhIRUXFWj23Lyt2PvQ6ND2+wnGWmeOTZy5bJ3NojZtvvpm7776bmTNnAnD33Xdz6aWXUldXh2G4+V8XX3wxzz//PFOnTgXgyCOPJJ1O8/LLLwfnGTx4MNtvvz333HMPUkq6dOnCBRdcwIUXXghAY2MjnTp14sEHH+Soo45a7flFFv5agku+4boApWWTsR1mLcuxZFkj2WyuKE9RSaopNCGIKQIvTRChCBzHwCaJ9KLYvifB0B3KygpUtY9R2b4c3dCY9NtRTNznAPekrSz4kmx7P+mstaUMReEe2heM813zocY67rVEIOxbhxcCXSCUjR9OWvPnGhaMgTBrQ3nwSw/bDGXgCf9QaVnYIg4rPq47XZRaiOGseBESbOGyvRBXvC+4/CUAQt6O4hqGSW4Ct7Kk1M2u+FZ4aJs/T+/5leQW+POjdB39tXZ8+tvQfQfrb3ohFNN7nt79hhPXhPecFbNovQf/DpXEBSELQVC3Hlw3ZJXbcffjhEIQwXVD3gm/1K+14hiEOjz+AX/dgzBKqDFPWHELPDT+MwuHO6Akli8kPDlmP+Y35cm15N0e9VVliEjYb3JY3Tr8pqamkk8+n1/rc2lsbKSmpib4+4MPPmD33XcPhD3AyJEjmTZtGvX19cGYESNGlJxn5MiRfPDBBwDMmjWLurq6kjGVlZXsuuuuwZjVRSTw1wIUQMdBFSAUBaFr2AWbuVmbn5amsaziG1NVVMr1ShShEvYWCiHQdJ1l9VDfrGF57n7AUwBiSDRUTSWeilHRrpyqDhVMPvxwJh04mv+MdIV/Wxmpft13uF4aKEnu8uET2wR/F0SQTQ64Wd0iVEInZPCy9RP5fBdxiaD3X/bh6/sJdD6zm3QFmJ0I5Sv4ZWVhRaV1nkFYQPqu35ClL0LXba18QEiA+1arcOv/XWHqChw75v3tbzdk8dfj5RL49e5BHN0pXlvx6rqF5bnN/cY1ngD18xeCksGQshH2PgRrJr3r+daz415DyxbJarS0ez0t47bXdZnvPCIdv0WuXmzrbBuuZa3milZ3EDoInk9xzQJXv29RS9ebYSWLQt82igLXfz5B/b0sjaX75/I9DD4jYeCKl0WFzlfq/Dp+JeyNCbn/7Zj33K3iNqnA8ycdwpwmQa7gLq5SlnQT8yJhv8lhdQV+t27dqKysDD433HDDWp3HjBkzuPPOOzn99NODbXV1dXTq1KlknP93XV3dSseE94ePa2vM6iLK0l8LULLNNM//kc5du5MuWAgpUAsOZt4mFtNobsmgKCotLWkMQ2fBgoV06NAeRRG0b1cdWPK6obEkL1nQCDUJnZ5lJlVJSdZUyTkJknEVVZGBBaJqAlWNEUsYSCn5+MgjKeQKmDmLPV57qdicJBRXD+qVW1l7QQa2V/4WkAeFktGk7rmNpTvm7T0OoqJdWdHKAwQ2qmwGaSGQSBSacg7NLTb7v/l28NIO5gX4FLThGu/llRCK3oZA8HvjFbySu2IL06ARUEjhEKJY3uYHssIx8XB8Wfj8AE4rFsCQBYmDW2suvQk7FHsGtPZ+OME0SgWdWrSUw4lwrcMSgZveO4kdZq8LMwYqXhJgKHkwqFKwBXqzCCxm4YAogBQeyUzo5Rh0XgxVEgRNaULXVkxvTX3viXdMuAwxcOUTevYU1xpPWQjnTgS19QHdbfFYP9k0rJAESkA45KJRDPmIYt8CYcOiZodsxkbaDkrU3W7Thgz9oFe0H5gzZ06JSz8Wi7U5/OKLL+bGG29c6SW/++47BgwYEPw9b9489t13Xw4//HBOPfXUNZj8+kUk8NcCbMtCkZJ8Yz2OaSJtm+Z0mpZ0GtmuhlxLgvnz61i8ZDFlZeUgJfWNjVhmgWFDh6B5zF2m5bBEKmSNGPNsWNao0ylrki4ImmSB9oZFv3ZxDC3UoEOAwHP9xxX0mAaV8MnRR1HIFijkTDcxMKaz2wvPeS9IVwJISoUcXnIhjihJfAvi5rYAj0BIOgJNU1hSX08mk6W8vJzyshRCCDJ5lYV1i9iith2KopLOOOhGnAl7jSCWMBjx4oQSi18Kgk6Dfulc2BKXIYVAIAMBKGRR1pZ0pvMQvodAuIYy8f1GKlL15Kt3imK83KWZDRQepXQ9hLdWxbh40bPht4QN6uc9oe7Hv0sUmlClAJTO1Rd6/hz8MjQ3a16UCDnhkQYFvex9Pclj11O8tVX9ZLZQB8Rwy2Tfeg9nyAdlfqFxftxdLYQUF/95iGLWfLiSQnox+yD04o+XXgjBf86SEgpiYDnCIUfzdMAQsVFwrJcvovpUvd53YNLvD6WxoDB1cQ6nYKGk4lHJ3SaOVWXj+/sqKipWK4Z/wQUXcMIJJ6x0TO/evYN/z58/nz333JNf//rXJcl4AJ07d2bhwoUl2/y/O3fuvNIx4f3+ttra2pIx22+//SrvJ4xI4K8FaKkKlM7d0JJJNEXFsQqoBZNkJkeiLIUW0+kcc+jRfQuMWAyzUMARDrqqo4ZeNnnLIe+bokBWqswu+OYY1BUkqfocHSpixDSBrrrHhq0T/9+6oaHpKsmKhJsQmDV5Z/+DsG3XvLIdC4SbU+AIB5UiXagfChaeje74ncAQqKpAKAKrYKNoKgt/WkjXrlswf8FC5lgWlmUhHYem5mYWLm6kUCig6Rpdajti2/DjvCbu325bTv7yS/c6ArSs20kN3A1SSNdyDsVbW5cctrag/Xh/0EHPFwKB0hCy3ikVQoESYBGUHfpj1UKxd7prvcqgn7qvOPite4Uti73bJUjHM9ZDgiqIJ0MxvyKUP+CX/gWleiJ0L6q33fcI2MXx/nqElQ0/Bl+SLW8XlZCShMNQOZs7uLg+y30xJKhm6TglHxLWtnffoTn61w9Ii6Ak8Q5vnfzcB1o9t3BoIUjG8138WnFs+L9BpYOvjAjIS4fFaYdc3v3+Y0SvwE0dYbf9ivavCTp06ECHDh1Wa+y8efPYc8892WmnnXjggQdQWimPQ4YM4dJLL8U0TXTd1ULfeOMN+vfvT3V1dTDmrbfe4g9/+ENw3BtvvMGQIUMA6NWrF507d+att94KBHxTUxOTJ0/mzDPPXKN7i77tawGmokJZFc3+Bi0BWgJppGhsztAiIBWPsWX7JIonkCUySNjzYUuJIyWhwH7pfmBGTvJTIU9CgS3iCltUrzg71Rf+mu7G/hPlcRzbzw2Q+O1Phfe/kGe+JA9Q4vYXQEK8LBZMS1EUenTvRjqToUttZ9KZbDD/jp06ki5YlCd1pGlRXV1O3cIlbLFFLY5j8+Svf82Rk953y/GSblzZb4HqCw7fgx/cjyQIObiWuCiWB4ZK9MJ132EhFQi20G8yaGITsmQDEhjPNS4cEIovPF3hjifofZe56yoWgXs7IPUJWee+QhFOMAsy4kN5EmqBYizaO8bR3Oz3YlOX4gMK0wGrOQK62OCBegLS9pQoxfdgSAJyIH8+4I4JSG68vKbWQtXPgg+ocBXv0YQy/AkJcuF4qRee9R30EAgpboHi4nkPAgEfqmBQvWRBxyhNCvRzCII5EfJUOMX1zVg2TXmJY9kIQ2/1C4ywSWI1XfprG/PmzWOPPfagR48e3HLLLSxevDjY51vlY8aM4eqrr+bkk09m3LhxfP3119x+++2MHz8+GHvuuecyfPhw/vKXv7D//vvz+OOP88knnwTeAiEEf/jDH7juuuvo27cvvXr14vLLL6dLly6MHj16jeYcCfx1CVUBQ8MuWGQsDceWCBWvRG/5V01SV6lUJEuckNAPQwgcIcgBOVuiN+eprYx5vTxW/uoKx/2llKStFmJq3H0BCwdDMVZ4rJSSRFmMdGPWddVqRW9AdXUl1dWVANTUVLnjPWUma0t0BQzFvWYyWY6uuVnQju3w33YdGP7iC+4xYYpX/7p+7Nq/tXDDH1+A+zywItS1L+RaD4ctgjhxyIIPpwQUL+xawUrIzS4FQX03lgi42N1Fdd3r4UQzdwJF4QUhS96/z5D7OnhOvlUaOs5n/QtXGPjro5igZEKWsS9EVS/ZTXhlaFqpUhH2GvjzVQqe4tCqxM0n+PE75fnu8kBZ8K36kMUtrFbc+97H0bywgHePvifDj60Ha+wpKkGVqCw+syCEEVqrYIwVqoyQRaZE//jFaYeWvATTRiTjbf/OImxSWF2X/trGG2+8wYwZM5gxYwZdu3Yt2ecnXFdWVvL6668zduxYdtppJ9q3b88VV1zBaaedFoz99a9/zWOPPcZll13GH//4R/r27cvzzz/PwIEDgzEXXXQR6XSa0047jYaGBoYOHcqrr75KPL5ig68tRHX46xhOroDM5omXJ+iW0uhRFSuNwYcgpaQhXeDzepO8WEVcUUq2jEOfDsk2RP2qXmIS27ERoWsoK7medCTZlhyqrmLEV9YatPhVciRY0v2vlJK4Krx3a9GH4DjQvKyZbHOOkW+/XlL+FSRvhazNMO+A7xp2BUAryenX74ddeaIofEoEsq8v2EXruTRUQNFi9WPJIbd0IJhlMTYduKN9174nQH0FonWtfhBz90MRvuAMJ/Q5rqANEugkpS5xL4YdzNfPIQiVsQXrG1J+3D70IRc97jF2rKhQ+IJYy3qKUIhTwbfUC+VFy9pHiddEDSkTXna/7w2wkqXKh1LArR7whLWSd6/v/9fP2g/Ij1SW41kIlCJR9AhIVfLAgQdR12jjZAso1WVRst46xvqowx+y7zWrrMP/4NUr1ksd/saOyMJfxxAxHWyHXGOG2SQxFOhRk2h7rBAkDBVNmKxOhagTZJm13hN2yLe9XVVW/ejD0QUEaLrahkG0omu5x6sCMjYYKqEsAXe8okBFu3JiiRhv7bMftmUz8q3X3GPD2dy+HPczrmVpUqHfmlf6SYf+9f0kO99iFe4B0mM2CixJWfxvMRNeBopDIETtkHIgQlayUhTawnGFS8CZ723zSXwcnRJXd9AYJ2R9+wlp4Ao+NesJ5wKBaz3cGx6Kcwlz5NsGRea5MDOf7s5LsYrCXs0VhbKwiz3vA8HsQfHd7d7yBFz0mhsy8L0QUvNCCx7JjVLwPAihGL2vOPlhkUDx8R+Bvz6x4rNx9KKwD6x+lYDWN/jeiNJ/IyT/Hr0fPzbbSMtGaGrkzv+FQNgS0YpNsvX+CC7WKD317rvvZttttw2yHYcMGcK///3vYH8ul2Ps2LG0a9eOsrIyDj300OWyDzc3xIQgnjBQhUBTFaRXcyUl2JbjhZcEjgOOA6pQSKkCRYAiBLoiMBTRZkfOhXmHhowZnGNtQkqwHC/eL8CI6RSyJmbeZsVOoaLvVgC6ApqApNb2/MFVcuKpGO1qq0lVpnhtr33d7YGQJzC5Aws/5GoOyr/Cbj3hKQZhGmDFHSBs4W7XQlzyIaWm2H+9yAsfxMRD7u2wG9G3eAML2z+dJywDYR8SvGFuAP8+feHsN5SBopAM/+3H8n3KWicWEqRQdOf7CYjePfheBC3jdq3TMi7nvZojqADwhbjvsVALoOY9Uh4TtJwMhK6VcIX5w2cfHngP/AQqNU/gTfB70TsGQd6C4jHpgTsPNV+cu/S4DxzdnZOVcGv6zXJKlC9wzxlcj6KCJ+xiFYYdd+f82+cnYMTVFSjJETZZyNX4RADW0MLv2rUrf/7zn+nbty9SSh566CFGjRrFlClT2GabbTjvvPN45ZVXeOqpp6isrOSss87ikEMO4b333ltX89+ooQlILWtCs23QVJK2Ay15ljk28ZhGPmui6RpmvoBtOVimjaqpVOEmg9mmRSymIyRkbJvmRJyCzwstBGkJ0xoKbKspJIzW1ndbb7Q1ecvJUlIgQ0VRFTJNOTQjUZLw1xbcPAV3jB6w4Kz4+kIRpCoT5NK5onfel+8Bna53TS9pL6DXDZe5ecc5uvQsXuEXGLgkPposnjewClyPgRJmjguHF/y/oSRMEGSgS6/UzRPkvitDOMVSM9soCnjXK1G6JGFGvxLh6VvSBgELni+QA8+CXrTQwxnuQXMkD2rePSbsmvevFVjdNuDN2bX8JY5erEowkyK4F//4+rxTck6puPO9/cRDEMLh7IeeR9hw14kHY0lJUoNT730+6DBo6yFlzRfmXsjAz+3w+zEECY/eWDVPCUVv4DHwvQB+IocicVRIGKBoCnah1eJE2GThOXBWuj+Ci58dw6+pqeHmm2/msMMOo0OHDjz22GMcdthhgNtcYKuttuKDDz5g8ODBq3W+X1IMPy4guWgZGiCkRHEkjhAYZTE6VSbQNZXmhjSO7aDpGrblSpW8LckbBlaugK4ICgWTgqLQUlNFodXjUh2HAWUqXavjazUe6XjXUULnlFLSUp8mWZFE0Tyre6U/J1+9bj2m7WOklJh5k6Xz6/ntf94IhpYktvlCNeTTL8nGD59attruu6KV0N++AA+8CATC1K9X9xPFwvXw4cx+39Xuu6DDSWIljV1869YiCAmglCaWhecQFsYB4YwoJuAhCRryhGvwFbPoFfC9C4rpcdN77nrbcAW/n2R339n70JhVUKWgS0rnyDtfRMvC05cfzuxmk5wlyUtX5zJUV5kzcyZKTPciFIJOcQXFtlmasbB1jbwlkbYNlktwI4RAaCpGTKUqpXD6Qy8UKXxl0eIP8/dLz8JXQusYlBBqxefgGDJoGOR3LwxT77oeDMkrR43mmzoTM1NArykLOl6uo/4qmz3WRwx/6G+uQtNWEsO3crw78aoohs/PiOHbts1TTz1FOp1myJAhfPrpp5imWcL3O2DAALp3775SgZ/P50s4jZuamv7XKW10MIFc+2pQBEkhcHJ5MnkTLZmga5lBKqaRqnQFteNIClmTWFJnSUuBRRkHmYwjEDiOgw2YbehmthAszjvUOhJNXXsCf0WCXNNVlDW6Tltj2477CyHQYzpG3CgKZz8sH47Nh1X6kDs+lA8Y/N0W+U5wnpAlHrj7ZWi8v08BfCa+cNxcFPeHWw0Htf6exSxVzxL1XNolzH1+fN8JCWrPRe1b9gDC9I4N3a9fihdOJoRi/B8RWkNJCbtfQGNrAxYsmrmAdCaHbVuc+8EsbjxgEBXdejG9PkfOFm7JqCPBdsiqKtKyXClp5oPln9sC0rJxLBukRCoKQnF7TKAqSEdCwSKTzpFtUPjT6P0pTxlccM9zvPjH/Tno+lcCRchPCnQ0eOP00TQULA5/8OViOSLuGlkJX5EqegD8Z6sUis/Y9+w4ZoYyTSOvQdLKYmbToBuYegJL1bEje3DTw6rc9pEyF2CNBf5XX33FkCFDyOVylJWV8dxzz7H11lvz+eefYxgGVVVVJeNXxfd7ww03cPXVV6/xxDcF2BIywhUiWSlB0zFbcsQdSdq0qUgVM95VBLrhss9Ul+mUpdMsyAtkqARuRcjZDnnTRlXaaNv7P2JVp1m5ZU8bLn/3Vyk9s21FRwshUFS/2FsUmf18N24bB8pWgq0kjt4qUz80weBFEMTWvTGBhagUP2qBYla8Z32GY+uELE8/Cz1MFrMcY54n2P38ABF4Ltwxjk7QXEcxCUoInz55NEfc+7y7HiGSnCCvwJtX2LUuTLDixfuwtSILnm9FX/bSV8XYPVDduSNn3foiUoHrzjkYy1MmFNvGzhZwMnlEXAdFQUqP7lkREDdQNNX9t/C9QAT/llK6fxcsCk0ZlmUKXHfSQSzKuJ4OnyxIlUXPx09NsLBF4U8j9yORULjwqZcD74ne7F7AF/wBQZG3pna82E1RsWHO9z+RMQV50yEnJKZZACFIZ3N07LsVTqoqkg+bGISUiJU4qle2b3PDGiXtAfTv35/PP/88YPk5/vjj+fbbb//nCVxyySU0NjYGnzlz5vzP59qY4coBCY7ERDA/Y2FaTpsJcIam0KddgnaKg+44rJQ4QgiapcKcxoJrga1LSLBMB8deQ+qq4uEh3/yKFYZUZdK1Zr2mOWGLOtw1L/zvMF7ba9/gmNf3+W3xcuFz+eV0/vGtyXhCHgM/Kz9ws/uZ4aFs8IDdzQrlAvjnUorna53d7xihmLwXOihJDAyR6jx/6iEcfcfzQXMbtVC8jpqHCacfxQtnHBmEDIQD/+/UI4pleU6xnl4K14Vulnm8/AL++fuRKDa8/McDGPu3txA23H/JgS6vCbhWuwTpSEQyhlKeREnFUcsSKKk4SjKOEjfcDHhFCXpEhLVHf5swNJSachCQXZZmfosSkP/4a/K3Ew/khiNHsbC+gFXfgtWUpWVxhusO2C+w9H2FLui6J4qeDN9LIGzhJR/C2M+nUdu1E3oySVl1e6pru1LVeQuqO9diJFORsN8EIWy5yk8EF2ts4RuGwZZbbgnATjvtxMcff8ztt9/OkUceSaFQoKGhocTKD3MCt4VYLLbCJga/OAiBUBVkrkB9XGfa0hxdy3QqEhpKyDoXQpCMawzqnKIha/FDs0VT4GqWbvmZdz5wX8bzC5KqlgKdKmIrtPKlI7EsZwXldSuHlOA4DopHrbvSsW28Nt13sUA6q2Y302Ma7xw0ikLeZMSrE4pudkqFfRiv7bUvyfI4sYSBFtP47HdHewRcksljjsA2beoXNbHfu28U48AUz+u6ul2pG2SAh3jwg37uYfIa31Xeuv7ck3FB5rxslRAY7skuAD+rXoEXzz6CH1sszvnns7x9yRiG3foYE84+kqU5h/k5kz8fvz85R+LYDlK4/pNETKMmqeHYDqbHW/Cfs45memOeY+9/ktuPH0WFrnPiA08jLC9WLoqMfr77Wxg6z15yGKMvfxo7DreefzDzWyBn430BJI5p4ZgWakVy1W6glcFXBlIJnKVNWAWb8cePJqY6ZCyFgg1LGkzslrQ7NhlDiRvIvInVlOHaow5giyo48X63h3gg3EN0ugE1sqfcuHz7kmPeepvbf3Mg6ZY8akUKFIFaCZn//W4ibEhELv3Vxhpb+K3hOA75fJ6ddtoJXdd56623gn3Tpk3jp59+CjiBN3lIiXQk0rTcz6ooHVtBAEpFEmnbFBozzG3MM2VJjulLc6RzFrZTtPiFEMQMjY4VMbZup1ClZVCkQycsalqTQwtBAcHMZotcwS2bCz6hb3suY7JsQSP1C5tZVtfEwh+XsayuiaV1TSyra2bJvAbSTbkV3TyO7aCopaRBUkoKAV3vSpcOM0hMW7mgEEJQVlNGPBXjtb1GMumQ0cuPkaX/1g2NsuoUWlxHCAVVU9F0Fd3QiCUMEuVxyjtW8OyvR/D8iP0pJtWJYlmfV4q3XMZvKPHPZ73zM+SVcL267yYP5RBA0QqVHumM7472Y+5+5rnUXFbCvA1/PelQvmkocMexBzNlXgsz5tRTV9dEU3OOXCaPKcGyHUzboakpy4+LWvhiXjMzl2S48/CD+GphmoaWAnf8bh/AZH7a4r7jD+XJ3x/ieU9cy95Ri+Q8J972MlKq/OuyI0DAOfc85z4zANtBWhZOOoeSisNqhJpWC6qCKEtgN6ZpqGtm0eI8LY15ckuasdM5lPIESk05SiLmeg3iBiIZp1CfZklGwY4VmfX8tQxImVSJo7s7SpoWSahMKDiKwMzksR1JyCkTYVOD/x5e2ScCsIYW/iWXXMJvf/tbunfvTnNzM4899hhvv/02r732GpWVlZx88smcf/751NTUUFFRwdlnn82QIUNWO0N/o4aUSNvBac648UkJKApKeWL103yEQKgqannSVRyyebKNGX40YyzK2XROqPSqiqGHmPiEECQTCl21RhbW55GFcjrqkM/ZZBS1aO0DWUcyvz5DVbmFopqoikG5XlUUPIqCZVpYlo2iCBRFIZvOu1ZieYJcc55YKub9PuRyngLHliW0uuByyCzJ23SMq2j+dcKZZP6tU9QuTUdiOR4ZzwqsREURpCqTxBIGjYubA3d4yTllcVuiLB5cp+2lF5SXx0kmDZqWtvDWAQcw4qWXPcEvgtg6hLLgRdEoRwF8hrlW7v8w6U5ArhMOAUCQLR/ch5cw5+cPKCY4Cux75xMA3HzMwWRa8tgtWdBURNxAUV2JpWpq0VXuK3YFC6tgYRYs0o6vNEK+oLvfV0zqTJtMQkfNw5MXHMmhf32Cp886koVZm7F/fxrFhsaCZG7a5M+nj0YXAl1RUAS0ZGxa7GJMfm2ltgkhIBmDmA62jcyZ4NiIVNzluhcsFxIgGUPmTVqWZbn5kIP4v2dfdPd5ypTLS+CGg4TX/MgxQt9HCZ3KNJa06ORbcsi4gViLCa8R1i+E47axXtn+CC7WSOAvWrSI4447jgULFlBZWcm2227La6+9xt577w3A+PHjURSFQw89lHw+z8iRI7nrrrvWycQ3BGSugDB0EoaKKQRmU8bNVF7Tl4UQ7gsmFUfEdJxsnpZsntmFOAXLYcuaOHFDLTa/wSCpx6kuTzNnURxHGnSPwQ8FhwJK8EI0nCyNmRbyBZNkhU1cr6RMr8R/TcfiGrW93C5QvlveTaJyBV5lO9e92Ww6xFWBpsiSsjzbstFbUesqQIe42sYS+Bu8RjdCoAo3BqzgTblVgl1opf1lQjM0arpUMfnoI8g0Ztjj3y8vd5lX99gHI7Eyyl9/2QWqqlDdoYJ0U9bd5ll8QbOXEMNfQJXrs+apxXFKyM3fuqtcQPzij/Vc/gG3e8gFGWT52zDh7KOYmzZpyNpkGjLYeROlPOkKQ2/+bdyUGxOP6ciYFy7xLRrTxsnl8evOhKqQkZJbTh7F3MY8t55wKDO9krtrjzuYq/7xHOm8hVmwKTgOCMFVj7/EP848jE7lBtllrnB0CiaqN6e1ASGE6zFQFYShh3escLxSVYbT0EKuucCth4/mvGefDyh0g3JLicvO6LdO9jUVCb/91zP8c//R1OVVZDoH5YmIZncTxdrulvdLRsSlv7qQEieTAwnt4yoFodDUlA0skZ9zXgnuy7kli5qK0SmuslX7BDFP6EskWZqodxZQNy/G0kIVZZpCwZbkdN2z9BxqxWLKjDTpZp3yaknHss6kjMpVTKD0JSelJGe7LHk+25+/vZA1UTUF7We1FF1eyofDGK6C4AfOtSDL3x9jmzYtDRmGv+JadW+O+C01tVXLhRpWOQspaVzczJ7Pv1RKmeslzPl0r37WPlCSRR/m4w/obLXiWD9xTssRWPqKDWay6D1QTAI6W7UAd551GIsac1hNadC1wHX+PwsiGQroSJDZPLJgIhSBYugouuaFfgBFYCAxCxZWwXQVWUVBT8Upi7mehaashZ3JIxIxlJj+82L4PxeeV8NpbEGtKkOoKuVxwbmPPQ+4zHyOLoPKiqADoik8xUBiJyS3Dz2ITGMWpTyJ0NUNe0+/QKyPOvw9drl0lXX4b3/0p6gOn4hLf40gDB2nOUNjXEd4tLM/2yrwEq+krqKUJbCa0ywkgbM4y4B2cZJxt7ucQRJNGFRW5hEtDTSYFZiqEVhzwnZAdbBslXpRjZPJUB3PIY1yhE9PGy7iXuF0BHE1LICLUFSBbTmo+qrv2yrY5LImAoglY1h5C6EKjJj7lbNtB6tgo6gKiu7ymkvHQdW9IKxwvH6u7nwDb4cXq39v9MGomooe19dY2Af3WRbj33vvzb5vvY5whLdORWEftvr92G/Aze5DUqyP9136oTa0wvKy6UXx3EGpneK6/186/yjmNJssXNqCnckHVv3a+m65/waRjCETBk5L1i2ty7mp7tILDWQloCooybgbckpnkbZDU8ZBOg5O3kTomtsfYkMLRiHA0BDJOHaDm9jX0r6iSIZkgbAFdlJ6VQoSYQpXCdDcfUoByhOCfCGGnc6iVKYiK38TROTSX31EAn91IQSorgVgZguui1TX/vfkJU9QS///BKCrqGVJ7JYsi2UcvT5Hn5o4yZiGKjTiIoVVkcdI5kimLeY2dsDKS9BUVClZSg1KwSSnJTDtOO1yChUJUcpMt1q3uvxYIQSqrlLI59EdbZUxz4YlzRhxg/qFDaiam0HuOA6JVBzHcTDzbi6BpinEknEc28YqWHTq0Q494ZPke/VvIfjHxsviqCvoOri6iCUMYsmYWwqmySLDnd91zaubD7Pm+aQ2vnXuQzVLk8f8rnDuieCFq47kgD89wYSLj2L/6x/nuSuOZFneoang8Pm8ZgrpnBvuqC53XdvrQvB4CoBSnnST8ByP/S7ISRFFJUGCzJuYmbxb5+zlEYi4sdEIRQFuWCxuYC9tcgl/RJHACAWUgsCOSYQURTIexc3WF6agIm6QN00aTQunxU0S3FjuL8JqYlWJeRuXE3uDIhL4awAhQKlIQcH0LIxVl5gtB8/NKnMFpOWAbQeldkpZAgwNpTyJ3ZxhvohTWJpj6/YxDAOvna1A1SSpMouyTI4mJ4G0HCxNAUVHqgb2smYsIZgpkqQMi+qUvlYMMiEEuuFSAItVkPwky+OYBYdUpxoMQdA8J5/No2oGRtwhljCK2+I6MulSDK+IF9sPKyiq+NnC3kdZVYp/77kPI999zWPMEy4rmwTHT5wM8ej72d4+lW6Qn+iz4/nWpWfZS9X1jjeaklvOOphv6k1uG3so39UXSKcLWGm3KkKk4iiG7lri61Lg+AJdUxGsWFkVSJSKpDt54SU1esdvNPC9Y6rilrt6/PiODk7MU6i9/Aipu1a+o4sgp0KqknJDEKs0yJsOmaYs2M7aq0CIsH7ge+JWtj8CEAn8NYOfbJf4ebwBMpNHmhbC0BBGDFW4jXKcFtetiK6ilCewmzLUq0kWFBZSZhSwKfYPVRToVNNIsjnLwnQ1hfq0KzTiBkJVwLJJp/NMVaC2YFNbrhPTXYVhTV7ZMmBd8bzajoMjQTNWflyy3I2p2dIzHL3tZVXLx9ra2tYWHI9Aw4ivBXc3BE2BkuVeu+KAh9cTFNItAwgY3PyGLH4ins+853e/s4rJiGHud1uHMX95EkeDa48bTVMmj53NgyLcHJC14b5f2/AVg00he93j6lc0BSshi5USivS6KbrxGWELpCqxdFAs16W/7xNPgYDxww/0lLdIOmxqiJj2Vh8/uw4/wv8Ax3FjoaqKMDQqHYu4oSFtxw0VCOFKdAECB0fksEQBGVZjBRgxh/KyAobiShonnXPjso6DUp5A2g4NDVmm1+eZvSSL44TYZgK2ilX/GDLNWdJNWfLpPFK6xDirgpQSR0oUZJsKhk+KI1dzDlJKrIL1MxMG20aqMsmbw38LQgYxYH/S0muxGybRAYLGLe4fBOx74cY8SHjx/45CSLj1zEO59ncHka9vxi6YKBUplOpyV0Hb2IT9pgQpcTJ5lLhBKmW47YU113r3iY2chIMTd3CSNjLmgCJxDAc7IXHiDo8deCim6XidDiPrfpODIwn6i7f5iQS+j0jgbwCIhFtH7BRMhG2T0Dyft5Suq79g4WRyCF1DBaSjIi3a/GiKJK6arrdACKRlo6QSYOiut8DQsDJ55hUkdfUFHFsWM7NbQUqJ7SxPoqOoColUjHhZjFjSWK0kOYlr3a9shCVL/14ZHNtBIteaK9+HEG54oKpjJW/ttX+JHhTQ5XplXT6Frs/qFrbug0Y8Xoe658cdxb3nHU5dxubPpx7MsqUt5Jc1I3QdpbIMof+M7PsIpfByDFK6UqyAyAvXKyPw3C+h8T5Toup6r45680l0zdv4P9JGR9iAcFbjEwGIBP76h0evq1SmwLSx8xZ1UqMgBVoqjvDK/4QQxJIx2ukq7UQHqswt2vxU212oUhIIr45ZKUsEwj/gMlcEBSmY3uIwta6FBUszLGou0JQ2sUNS2QGaLdlKULtxe9OLjwbnXOVtCrRVjNVEiTG8UuQzhdW+9prC7dKnUdmhgtf33Nfd5rjxfOHVcqNIHE0WefD9LH7cyUutyOfuGDDqlscpOJIlmQLNi5tclsKackRZ3E2Si4T92oWUpDSFF484MmgIpJhuwxwlrZYocCgS6Zfs4W6vSqoohoaTza2SNTLCxgXfpb+yTwQXUQx/Q0C4JWBKRRK7oQVbU4gJ6JLS0HSVtC1RBRiqgqOpGDGNhC48Vjr/y1usT+9gF1iQz5MpWDiNaZRkDDTP52zokC3gtGTJCMFPusb8nAOaQ6VjMahLOQlVBOdTRWnYVgjc7PycGbjUWwtdKSW2tBEIFOE1TSlOcQVL4O+UbfDytT1+XVnE0pGYeQsEJCv8eL5rAQpHFGPBngIgQsQuill075speOfso/mh2cK0JS15m8yyFjA09PIEEhHlD60LKAIch4wliamCB0YfxokvPO16ZARIQ4LV6jupS6TmaW6KpFOZQkNGJxsl7m16cFbBvONEJr6PyMLfUBACVAW1PImTzpG3JcssSVITbNM+wdYdkvSqidMu7ioAK1JShRBUJQ36Vxp0qEqgJwzsxjROfTNOQxqZzaFUplD85iOWTaE5i2na6IaGYSiesSlRFSjX2/5KxFIxrIIdJM61BVtaK9izvA0vpcRyJAU/xLYKSagZqttPfS3BzzFwpMQ0i/NWhGDiyAOYsOfebvKeKgMmL79nfTiObyVLY/6/ufFfVAkL2zKx0xl0aZFMGehNS0laOTS7sNZoaSMAQqDEY9i5AosyFqMfe5KTnn0apSCCcItiCa9PgkDNKq7iVnC3iYJAZFX2ff4ZqhMaQlOReXPV14VVl4NFWD+IuPRXG5GFvwEhhEAaGoqawmnOUF9QyEtIW5KuFQZxQ6V9bEU6WdHSFwI6V8aoSelMW5Jlnihz45iA1ZIF3XaZ0aQEQ4Osgsyb5OIqeUuiGSA8sh3piJI8fve3IlAUN1nPLJgoajHRzHd/qkJFFWtmFRUcSc52XbHGKlRPRVVwbGs5siP/txw2/qUs/u3zHLTlHGg2HaQDcctxqXm9enRFVYiVaa7R4IiAs99vLxtw4vvX80q/fBf/4Xc9x6VDeqMJjaZMmrLmcrLpNIZhoMTixLfo6ZImRVg7UBWQ4Fi2p5gJt9Oh5VZY4At9v62xBByBtAAVhAnCFFQlVBYZGla2gEy23XXSr1qRBdNVDEIcBeuMPyHCytGaDKut/RGASOBvcAjP0lcqy5CZHOmGDD9YCVSgV/u2SECKrvCScwCGptAlpbG0YJIXAscvV/KL4H1Xu6KAtEhbkoUtJj2rdTc5EC+5yW/+jkvra0s33q5oKk6+1Iq3pIWCQFWW/yqFO/W1LgYUQpBQBQk/2U2UHtPWeKeVhW/bDg2LW4jFDfceBVimTT5ToLwmFTQHciwHI66RKI+j+IqFBMOycRyJoikBr4Ae13CyEg3dLcnzErtwRJFoJ8zEJ4p198KB20bvSn1DE7FYEmHEIZkkkUggdAPdiGFLCUrkLl6rUARKKo7dlMGOud9hnyhJOF7jHAfwFQDwwjEKDk7QzvigV57krqEH05QrIAumy7MRfDG9ZNecicwX3N9sIuYqfgULpznjegcMPaDojYT/+oFwHMRKXPoicukHiAT+xgDhWumk4iiKwMkVWKALtKVZyuIalUkNVWltAi//MhFCUJUy6Jo2WZC1aPF7m7aOR+oaMpOnkDeZ1ei2We2Q0kjEBHFdgOIgpeJaL7gudxnUKHsWjieYNfEzvkKiKNzlKnz6QhFuS3ZHonpJBlbBxrEcCjmTloY0luUqI0ZMJ/tT1nX3qiqOZeM4Dl37dkbx1tEsWGA7xBMGilp8OQsh0DQF23J484D92Ovfr7iqjyJd74eflR/SuxwVNyejAF169sRqNkkvaUImE2jtOmIiMNrhNQ6SmJGHca3C7aAXRxYs/jx4Xy7++N9I6aqMju7lX3hjlbzA8Txa0qeQdkBqEsUSdCrTSOd0t2eA1yNDSrezpcyZCF11mQpD1rzQVGTcQOYL7idtuyycyShBc73AkaEM2hXsjwBEAn+jghAC4gZOIU1jS54WU2JkbLpnLdolNSoSemCt296XWFVKXyaqIujdMYVYkuGHrESaFrIlC6kEPoubUARKRdJtz9uUZUZe56cWjTJdMKhTjFRMRQhXwCEFhuL9YLxrNS5tQSiCWFwnllxxHfkaUfx41vLK1weXq0B1hbYW00jVpNBVhVRlAkc6ODioqkA4rpKjaiqO49LIqlpRaVJUgZmX5DMFYikjUCL8CzmOg6qrnqUo3OQv1Z2k39I2qMUXgON2wkubDlnLwTRtv9ISX0mKsO4gBCjlCZz6Zu78zcGc89rzvHfikfz6/z1RUlHh52J8cNwY5rTYzE1bnPf6s0HlRacywaIWjcZM3k32UlUoWMhcwWXZbMtt7xFyiWTcdZDZDk42j9OccRNo9eUTXSOsRUTUuquNTSJpL6mrlK0G4YoqBJUxHU3ZdH9cQgj3xaKpWJkcmYY0MxoLfLE0z9KWAqbl0JKzqM/bZNpIoBNCoCiCDuUxOupQ7mWdOw0t7ovLC3ALTUWUJVyCHinJNWZoyDssS9seha9n/fhKgt+8RtfQYjpawnAz9017tcuYfPKcQt50E/BkSCkIy9tQBUIha2JbriXvU/oWu+uBHtfQDJVYQiNVliCVTBAzdBIpnXjKQNMFRkwlliilF1Y1lWRF3L2vVvO3LZtCziRZFuflvUcWCfgcEbTFDVPrOppXo6+5eQGKZ9XJyJW4/iCE68mKGbQ0ZLj/oEMY/K/Hg06GSkGgpQV23C2tHPzoYzRaWUxHohTchAxhw+6PPk25objnMl2iKmnbHlHWymP0KmAogmRMJVaRQEnFcdI5ZHPW/S5EgmfdQK6MdMdx90cANgELf0CHSgZ1qgZg5rJmPluwlJ5VZfSqLqNd0qVkrc/mWdSSo0+7cjTPZTth+lzSheWzxlOGRr92FXSrTBHTVNIFix8bWvh+aROFdUS6URHT2aZjFR1TcQxNJWfZLM3kmbG0ifKYTsrQWNCcZXE6F8T+RCKGTMSQBRMrUyBdUPgOSDWbNDuQUqB7ZYwyTRRj8x6EEFSXJxlYXolZKPDFvHqMeIxBnWswDI2s7fDJvCWkCxZ9O9fQu7oMASxpSvP94mUgs2RbcnSoTFJZ5iYvSSlxbEkmaxJLxYjrCramkM+ZaPrqxaQt0ybTlCWe0sk0FxCKQizRNpGPlNJ11+dNYmqcWCKBZiTItDSjaSqqrni1/gCSeLIS3VieojefbaGQzyx3bqtgY+ZNV0FSFS8ZUMGIJTBiSaTTiERS3cFtp+m3xpV+zN7regcEzWaEDR3iKmnLbawk86Yb042su/UCIQRKWRx7SRNLWyzu2vtQzn32OcArz1Pc2nypSKQmOOXll0BIZNJN8FMKrivA0BSEooRcwX5Jn0AV7mZDkVTFwHJUV9cQghbTocWSqBJqYgotQienqdjpnFsuG3XjWzdYVZlP5NIPsFFb+EldY1Cnav7yl78wceJEOqTi7NGzM9t3quKDiW9y7rnncu655/Lv556hZ0UcTVE466yzmDVrFtt1rlnufB1Scfbr15VUIc34W27m97//PQ/+/V66xhX22bLLankR1hRVcYORfbegZcEc/nTtNZx55pncfMP1LJwxleG9OrNVdRK9aSnDe3bCUEOPwxP8iseYJ4HmxgwLG7OkGzMsyZjMqM9R11zAtp0SK1sIhVR5NcsW1lFVlmKrTpUM7NKOWdO/5e47bqNl4XwGdaompWtsX1vDhOef5d6/3kGvjtUkhMZXi3LMyAq+bTRJ513+/kLOJJPOY2pa4NoXvs96NX9PtmmTLI9jJGIkyuIIBLl0nnwmTyFnYuZN978FC+lICnmTRLlOZbsamtNZ8pZNdYcOgEvE407C/ehGnCuvvJIXX3wRgBtvvJF//etfaHqx74H0Eq/MvIVjO+gxDSUucbCxpEk8VUFzOkdDU5rqjh0CD8QL++7rncBzCVtF17CwCerxFQuOuO9JEqrASMW8LO7/4UsT4X+HoiB0FSdvYvu5Fj7tseo+IyCw6p24m7SHIt2mSXg5K1KGWysEEEC5LmifECjCxpGQsyQNBSeQK7aExoJDma7QPqGhlSVAU5HZQmTlrwtIZ9WfCMBGbuH3a1fBwoUL+cc//sGXX36JqqoIM89uuw2nrKyM448/HsMwePXVV5kyZQo333wz++yzD1dccQUPP/ww5YZOc8GtqVWFYHC3DrzxxhuMGTOGM888k5EjR/L6668zYMAAJk6cyB59tqQ+W6BLRTKYQ3PeZHZDC1MXN6Ipgv7tK+lRVUbK0KjP5pmxrJn6bJ7tOtfQqSwRHNeUN5m5rJlOZXG++OILfvOb3/DHP/6RnXbaie+//55XXnmFHXfcke+++45TTjmFzz77jFFbdQcga1okdPfROI5kUTqH6ThsUZFESkldU4YvZ9XR0JRlaTJB50QlFckEjuNgmfnAithvv/146aWX6N+/PwCPvvceV111FQsWLGD8+PHkLJuGhgbOOussmpqauPDCC+nRuYYtFUFtVRkA6WwOp5DGNvPUdOpIPF68R8e20PU0ppn1OqsWX42KqmHEkmi66yGwLRPHbkJRJYlUOapmQI3ELORpaWxENwziyTJ0wy1Xk1JimQUsK4+qGtxwww306tWLP/zhD1R16NwmEc+uu+5Kt27dAJg7dy6JRAJV0ymv6ohlFsjnWrBNSWU712OUz7ZgyjzJZBWKoqKpBg88cAcLFy7klltuoapDJ3LpFnqWV/Dt+WPRDYNPfprHA29/Qt2yZi48cHeG9OkeXD9nWsxZ1kDvDjWoikImV2Bec4avFzdiRVbGeoEAlFQCpzlDIWFw2+jRnP3qc2hpt0ueE3MH2QkHqUu3pFJIcBRw4P2TDmbaQumS7/iJsp5eKwDLK5vN2mA6Gm3VfAnAdFwCq85JlcaCjZ2M4zRlkHHd9R5Elv7ag70KoR6F1gJstAJfAD2qUtx6y10cfPDBaJqG40jGjx9PMpnkzTffpDlvkrcdjjrqKOrr6wFXyJ155pksXryYHtUpvl7YAECXiiQxVeH000/nL3/5C8cddxyL0zlGjRpFWVkZF154IS+//DJNy5by2MvP06NHD5577jn69evHSSedRGVMpyJmoJg5/t8//s4PP/zALrvswuGHH44QghkzZvDRd9+RSqV45ZVX2HrrrTnhhBNQVZW/v/AChxxyCBdccMFy9/nMM8+waNEibrvtNiorKznxxBN5/JGHGTZsGE888QQdO3bk1FNP5ZtvvuHef/0LVVU58sgj+e0OWzN9YT39OlXz7rvv8sILL1BTU8MJJ5xAbW0tEydOpL6+noceeoiOHTty1FFHAbDvvvvy/PPPc+ONN9K3XQX33Xcf++23H48//jgA3WvK+e9//8tdb75JPp9nt91246CDDiJZVkk6neHRRx9jhx124PHHH6dr166cdtppaDGDTFO9mwyoKKi6Tqq8hm+//ZYnnniC5uZmhg4dyiGHHALAV199xTPPPIOqqhx11FH07dsXgNdee43a2lref/99Zs6cyYEHHsiwYcOYOXMmU6ZM4aeffgJg8ODBdO/enUmTJtGtWzeeffZZjjvuODRNQw01PzFNk3vuuYdZs2Zx0EEHsdtuuwEwceJE2rdvz9Zb9Scmyvjkk88A6N27N5MmTaK5uZnbbruNgQMHMmLECBoaGrjvb39j0aJF7LnnnvztuFEAfP/997z88suB0nnOOeegScmfrruLpUuX0rNnT0499VTy1WX8sKTBLS0EzI3bsbZpQwgwNETMoLC0GVNXuXvfQ/jDv57DCRrreGM9+uSgUZIOioyRd3IgHbfrZBuw5cr7RCjC3V9wJIuztjtWEYiYjtOSQ6lIRuRLaxNR0t5qY6N981Ql3Xj3hAkTGD58OKZXT/7kk09y2mmn0ZQ3eW3GfN6eVcd/Zi6gXmpMnrMYTdPYZZddeOutt+iQLMZ0O5clmDJlCnV1dRxzzDF8sWAZb8+qY1Z9M6eeeiqvv/46zc3NzJkzh7Fjx3LHHXcwbNgwXn31VU477TS6V5WRVGHYsGHMmTOHYcOG8eijj3LppZcCrhA77bTTeOqppxg8eDD33Xcf48ePB6BXr168/vrrvPTSSzQ1NZXcZ7t27dB1ndraWjp47urrrruOY489ls6dO9O7d2/+85//MGrUKPr27Uvv3r3Zf//9+fbbb+nXqZp7772X8847j1122YVUKsXQoUNpaGigsrISTdPo0KEDtbW16LpbYlReXs6wYcP497//DcADDzzA8ccfXzKnd999l+22244hQ4Zwyy23cMcdd6CqGvX19Zx77rlcffXV/PrXv+azzz7j8MMPJxZPoKg6haxJLpMnnqzgP//5D3vvvTe1tbXsueeeTJ8+HYDJkyczcuRIunfvTrt27Rg2bBjfffcdAI899hhHHHEEuVyO/v37M3r0aKZNm0Y8HieVSlFRUUFtbS1lZWXMmjWLsWPHcvvtt7PzzjuTTCZ57LHH+Oijj4L7GD9+POl0mu22244xY8YwceJEAJ5++mnee+89LxTiKhqvvvoquq5TXl5OKpWitraWyspKstksu+66K4sWLWLHHXfkwgsv5K677gLgyy+/5JRTTuGJJ55g1113RQjB8OHD6dixI/vvvz8ATU1NaJlG7HmzUJcuoHnWdC/vIMK6ghACURZHqSnHKVjkCpbb7dAjSHIb64ji20+TOLpE2GA7grxpuzJCcXM7pO2ssoIkDEeCrkBSEyzOuQJfCOGS89gOFKxICK1NSFbBtLehJ7jxYKO18MtiroCaOnUqvXv3Jm/b6KrCjz/+SPfu3anPFoKxSzJ5lmTyAOzYpR29e/dm6tSpjDq0eHsxTWH27NlsscUWqKpKfc49viFbYOtu3TBNkwULFgCuZfjPf/6TVCrFXnvtRZcuXbjpppt4/fXX6dWrF9dffz0Ae+21F127duVPf/oT4Arvu+66CyEEyWSSO++8kwsvvJBjjjmGuro6xo0bx7Rp0wJBOnjwYPbYYw8eeeQRjjzyyJL7HzduHKNHjwZgzz335Pbbbw+ESHNzc6BQXHHFFXz44Yf06tUrWC9fKSovL2e//fajb98tUUJkLyeeeCJ33HEH/fv3x7Ztttlmm5JrX3rppSxatIj58+dzxhln8Le//Y1zzz0XgEwmw9///nc6duzIAQccQPfu3Zk2bRo9e3RDKA7SEaiqxjXXXMMtt9zC0UcfTSGf48ADDwRcITxu3DhOOukkABYsWMCdd94ZCNHDDjuMP/zhDwB88MEH/Oc//+GMM86gX79+9OrVi8MOOwxVVXnvvfcAePjhhwEwjOWZ60aMGBF4VUzT5LbbbuM3v/lNsD+byxOPF5XC6upqtt9+exYuXMgRhx+OUBQeffRRunXrxg033ABAjx49OOSQQ/j9738PQFVVFffffz9CCOrr62lpaWHvvfemT58+7LPPPgDMmvIlpm2Ta2pC043IulsP8AmtRFwnnzW59+hRnPbkC0Gc3vfES8Nx2RRViR2DvGVj2dJNUxGA7SALFkoozLcqSEBBoLdy2wsBSpmbua/oZZFXf20hsvBXGxutha94v4ZCoYCu6xQs9xfavn17Fi9eTCqUYJfQVPrUlJPSNRwp3fGFQnAOANOWwbFSyuD4lKGxePFiAGpq3ES/Hj16kEql+LKunrKyMrp168aPP/7Id999x8cff8yQIUMYPHgwI0aMoEuXLjQ0NADQp08fhBDMb8pQXV1NY2MjAA05k/MvuJBvv/2WhQsXsvvuu3PAAQdQKBSVFoAvFiwL/r3VVlvR7HF6f/fdd1x++eUMHjyYwYMH88ADD2DbNvX19SxevJgxY8YE+95//32y2WzJeXPZLIV88VrDhw/nm2++4eabb+aEE04oGWvbNmPGjGHUqFHceeedvPLKKyxcuDDY3759ezp27Eg+24KmafTr149Zs2ahKG7WvO6RlUyfPp0ddtiBfC5D49LFNCxxzzFz5kwGDhyIWchimQUGDhzIzJkzg/P36dMH2zKRjkN1dfVyHpF8Pkdd3fxgrGEYfPLJx7SFrbfeGse2KOSzbL311iXXAYjHY2graJIikZimGcxXSkku28ygQYOYN28e+byrYA4YMAAhBJnmBqqrq7n22mvZe++92XrrrbnmmmswTZOqLt2I9ehHstcAEt16R8Q76wtCoCRiONk8S1ocbhrlhmICemRcQiVhCXBAzQvmLViEaZpIPzM/m0fEddRVNNMRUOK5yTuSOWkLMxw+FsKtyVdVZC4fCaK1Bdte9ScCsBFb+FmvoUm3bt1YsGABWnUHbEcyatQonnrqKUaPHs2uXTuQt216V5eDdOjXvoKYplJXV8euu+5Kzio+6MWZHEOGDEFVVSZOnMhuw/egKm6wZU05d975EL/+9a9p3749s2fPZuHChdi2zYD2Fdi2zcKFC+nYsSOdOnVi+PDhPPbYY23OOeCXpzSBrSYZI2fZtBRs2rdvz6WXXsoNN9zA4sWLPcpY962wXW2xskBVVQq2Deh06tSJv/zlL+y5554l18vn86RSKZ577jk6d+7c5nwcxyGeSAYMcwCKonD00Udz4403cvPNN5coHlOmTOGbb77h888/RwjBxIkTmTx5crC/vr6eTCZDIu4mEM6fP5+OHTsivaQZx/tvbW0tP/74I337bkk8WUayvByATp06MW/ePC97XjBv3jw6duxYMueAXje0hv69JJMpkskUP/wwK4jX9+5ZTJwLY/78+Siqhi6UYJ4A8XicTCYTJCAuXryY9u3bl1xHUVQURaVTp0588cUXCCEwYkl++GEmVVVVxGKx4Dm5B7pzHjt2LGPHjuX777/nd7/7Hd26dWP0UWP4drGr/EXuxfUMXUMkYlj1LVgIbtjrQMa98xLPH/lrDnxlkpuQp7lC3045NEkNQ0gsDXRsDM0hF4uxorZQAHohC4UciUQcU9Fx8DgYhEBTFBzbRtFc8h1TCsxUzG1sZehunkBk6v88RBb+amOjtfCXpl0rdY899mDy5MnUJAzmN2e44IILePvtt7ngggtonDMTZ8kC7rzjdq666irKPOvyww8/ZPjw4Sz13PwA8xrTKKrKn/70J0466SQmvPgCRks9999/P9dccw3XXHNNMLa5uZnrrruOpYsXcd1117HNNtvQtWtXjjjiCN58800efPBBFi5cyPTp0wOX8srw4IMP8vAD/6Tux1lMnz6dyy+/nH79+lFbW0vXrl2ZM2cO//nPf/j6669LjluSyVOwbM4880zOP/98PvnkE5YsWcI777zDu+++SywW48QTT+Tkk09m6tSpLFq0iFdeeYVvv/0WgJ49e/LCCy8wZcoU0ul0ybn/+Mc/Mn/+/MCr4aOyspK6ujq++eYbpk+fzrXXXrvc/fzxj3+kbuFC/vrXv2IYBttttx225XojHNvCcdw5jxs3ji+++JJMvsDrr78BwHHHHcef//xnvvnmWz799FNuv/325XII2kKvXr145513+Oijj4LQi49UKtHmMU888QSTJk1i5qxZXHfddfzud78DYKedduLxxx9nxowZvPbaazzzzDPBMT179mTy5MlMnjyZH3/8kdGjR/Pf//6X5557jrlz5/F///d/bc5X02MsWLCAJ598koULFxKPxzEMg1QqhRO9cDYYhBCIVBylpgKRjGE3tHDrXgdw4Avvuv0RTAWRV5Ca5KFBQ1g250eyC2bTMncGmR+/J7N4PpjmSvW0QksTi36YxtLZM8jNnUlm1lQK82ZizZ+F3rCIlllTyf84Hb2+DiXbjFBVRCLmkvKst5X4BcORq/6sY+TzebbffnuEEHz++ecl+7788kuGDRtGPB6nW7du3HTTTcsd/9RTTzFgwADi8TiDBg1iwoQJJfullFxxxRXU1taSSCQYMWIE33///RrPc6O18G1HMq8pw0knncTZZ5/NueeeS11zA9t06sxnn33G3//+d8aOHQvAkCFDOOeccwA3ea6qqoqtt96aSbOLrui87TBlwTLOOOMM+vfvz7333svNN9/MwIEDmThxIttuuy1NXlx/4MCB1NTUcMQRR9CvXz+efvppMqZNVbv2TJo0ifHjx3PPPfdQXV0dxKa7devG8OHDAbAch/bt2zNy5EgAtttuO/7+97/z8MMPo6oq2267LW+88QaKotChQwf+/ve/869//YuysjJuvfXWoHJgqSP5elEDp59+OtXV1Vx55ZUsXbqUvn37cv755wNw6623cs899zB27FhyuRyDBg0KEgn/+te/cvfddzN+/HiuueYa+vfvH1im3yxuQlcE6cUNlMfjHH300QD07duXG264gbPOOouqqiouuugi3njjjWAda2tr2WGHHTjqqKPo1q0bEyZMQEoHs+C+vBwJLfUNnHTSSRiGwcUXX0wmk2HEiBH89re/5bDDDiObzXLuueeSTCa57bbb2GuvvYLn2Lt3b7dRCZIddtiBcs8zcMopp9Dc3Mzf/vY3Ro0axcCBA4P1dXN2ZPF4YOedd2bIkCH885//ZPbs2Rx77LGceOKJmGaeI488kmnTpnHiiSey4447cvPNN5NMujHaUaNG8eOPP3L33XczbNgwTj75ZCZMmMDNN9/MHXfcwW9+8xvGjRsXPPPdd9/de+YSwzB46623uOOOO4jH4xx66KEcfvjhfDa/GKqJsP7hxvMFJGPIbB4r7/DIPvvxu9cmoBRcYS8cyOQLOI5Dqqycyo4dQQisfB4zk0fqhltO1wYSZeUke/eladkSCrZNqqwc07LQdJ3mdBpHKKixGA1NzSQ7V6AKIGFg5wvIguVWFURW/v8M6dhIuWK3/cr2rS1cdNFFdOnShS+++KJke1NTE/vssw8jRozgnnvu4auvvuKkk06iqqqK0047DYD333+fo48+mhtuuIEDDjiAxx57jNGjR/PZZ58xcOBAAG666SbuuOMOHnroIXr16sXll1/OyJEj+fbbb0vykFYFIVeXF3U9obGxkaqqKu5+83161XZi5Na9Ofjgg7nooovosdVAJv0wl+226EjfjtUlDWUWNafpWJ7i+OOP55hjjmHI7sN59vPpy51/i6pytt2iAx3LU8G2OfVNfDF3EX07VtM8Zxann346n376abD/p2VNvPfDXOK6ys7da+lWUxHssx2HJS1ZKhMxDE3l+0XLmLG4nj379SBp6LTkC7TkC3SuKCuZx8y6pXw8cz4d2pWzU/daKhOxkv3NuQJvTZ1NYy5Pnw5VbLdFJ8rjxcS0JS0ZPpq9gM4VKQZ26YARijEubmzGzjZRliynrKKi5LxSSuYvWsLE7+fiCEFSCPbZrj+VqThL01lmLK5np26d0dooSfrxxx8ZNmxYUB4HkM4281PdDJIigUQjYzkkpUNZeSXV7TugakWdsqW5EdMsUFFZE7jCbduiYdkijFiMsvIapHSoX7oITdOpqKpBSmhqWIqq65SVVS73Ysykm1m2ZCGVVe0oq6hCOg6WZWLESn8EUkp++nEWP/zwA127d6df3/7L7Z+zcAapWDnVlR2CJMdMSwuqphIL8Q80NSzDNPNU13REKAotzU0saVhGqqoDHVs9509+XMA3C5Yst5YR1j+klDhLm1GTBld88rq7UcA/9v0teUulUICs6eBkCyipmEuvK6HQmIZ4DNEGMZcA2sUUQNBo2i4bo23RMm8mim6Q7Nzdo6p24YuemCLI5kzs5ixKWSLosPdLQzbdwpkjfh1UDq1NNDU1UVlZyV6Vx6KJFbebtmSBtxofprGxkYpW78O1gX//+9+cf/75PPPMM2yzzTZMmTKF7bffHoC7776bSy+9lLq6uiCx+OKLL+b5559n6tSpABx55JGk02lefvnl4JyDBw9m++2355577kFKSZcuXbjgggu48MILAVdOdurUiQcffDAouV4tyI0Mc+bM8XkSJSBfeeUV2dLSIhsbG+WkSZOC7YZhyH79+sl+/fpJwzDkwIEDpZRSLliwQEop5f77719yntafTp06ya233lpWV1cH2+6++2756aefyqFDh0oppTzyyCNlZWXlcsdWVlbKbbbZRnbv3l0K4ZKuKooidV0PxgghSv6OxWKyf//+sk+fPjIejy93TkVRpGEYwb355w1/evToIbfZZpvl5qQoitxyyy3lVlttJZPJ5HLH+edTVVVqmtbmevjXBqSu67Jv375yiy22kEIIaRiGvOaaa+SPP/4oBwwYIKWUcuzYsbKmpmalayyEkH369JEDBgyQsVisZL7++cPjNU2TiqKU/K2qaskYXdelqqrLrW/r4/1j27dvL/v167fceeLxuBwwYICsrKyUqqout1/TtJK16tKli+zbt2/JNkVRllvPRCIhBwwYIHv16rXCtY4+0Wdz+8yZM2ety4rGxkYJyL3Kj5EjK05c4Wev8mOCOTQ2NgafXC73s+dQV1cnt9hiC/nxxx/LWbNmSUBOmTIl2H/sscfKUaNGlRwzceJECchly5ZJKaXs1q2bHD9+fMmYK664Qm677bZSSil/+OGH5c4rpZS77767POecc9ZovhudS79Lly7MmTOH8vLywJpTVRVVVdluu+2CzPe2kE6nqaqqIpPJrDCxbkVoamrikksu4YwzzmDSpEk4jsN99933s+5lU0NTUxPdunVj5syZy2nCqqqSSqX47rvvkFJyww03BOWJvxT49z9nzpx1YglsCtjc12Bzv39Yu2sgpaS5uZkuXbqspdm1cQ3bRopVu/R9Fk4fV155JVddddX/fl0pOeGEEzjjjDPYeeedmT179nJj6urqgpJpH506dQr2VVdXU1dXF2wLj6mrqwvGhY9ra8zqYqMT+Iqi0LVr1zb3rUms4n/BI488wt13301ZWRmKomy2P/iKioqV3rsQIoit/xKxqvvfHLC5r8Hmfv+w9tZgbbvyl4P0HQkr289yCoyfz9QaF198MTfeeONKL/ndd98FZG2XXHLJGk95Q2GjE/gbGk7EuxwhQoQImw4cWSRWaAuewF9dBeaCCy5Yjp+kNXr37s3EiRP54IMPllMcdt55Z4455hgeeughOnfuXMJjAgR/+6XUKxoT3u9vq62tLRnj5wqsLiKBHyFChAgRNllI21mFS3/NjLgOHToENOcrwx133MF1110X/D1//nxGjhwZUG2DW3l06aWXYppmQG/+xhtv0L9/f6qrq4Mxb731VsAw6o8ZMmQI4JYkd+7cmbfeeisQ8E1NTUyePJkzzzxzje4tEvgeYrEYV1555QrdPJsDNvc12NzvH6I12NzvHzbBNZAObXUtLN2/9tG9eynhV1mZW6HTp0+fICw9ZswYrr76ak4++WTGjRvH119/ze233x70WQE499xzGT58OH/5y1/Yf//9efzxx/nkk0+CHDIhBH/4wx+47rrr6Nu3b1CW16VLl4B+fXWx0ZXlRYgQIUKECKuCX5Y3VByAhr7CcRYm78qX11lZno/Zs2fTq1evkrI8cIl3xo4dy8cff0z79u05++yzAy4PH0899RSXXXYZs2fPpm/fvtx0003st99+wX4pJVdeeSX33XcfDQ0NDB06lLvuuot+/fqt0RwjgR8hQoQIETY55HI5evXqtVqZ6p07d2bWrFnrPPF7Y0ck8CNEiBAhwiaJXC63XBOytmAYxmYv7CES+BEiRIgQIcJmgY22eU6ECBEiRIgQYe0hEvgRIkSIECHCZoDNQuBnMpkNPYUNjoaGhg09hQ2K6DsQIUKEzR2/6Dr8qVOncuGFF2IYBr169eLUU09lwIABG3pa6xXTpk3j7LPPxrIsevTowTHHHMOIESM29LTWG6LvAMydO5dnnnmGvn37MmjQILp164aUcrNqyRqtAcybN48333yTLbfckkGDBlFRUbHZrcHmjl+shf/OO+8wdOhQampq+NWvfsWzzz7Lcccdx6RJk4DNg0L3s88+Y88996Rr166MGTMm6AH/0ksvbeiprRdE3wG3j3afPn149tlnOf744znggAOYPHnyZvWSj9YArrnmGnr37s19993HPvvsw7HHHsu33367Wa1BBNjo2uOuLZx33nny4IMPlo7jSCml/Pbbb+Vhhx0mt9xyyw08s/WH66+/Xu6+++4yk8lIKaVctGiRPPPMM2WHDh3kvHnzNvDs1j029+/AwoUL5aBBg+SDDz4opZTyo48+kkcffbTs1q2bnD59+gae3fpBtAZSTp8+XW699dbyqaeeklJK+eKLL8qRI0fKgQMHStM0N/DsIqxP/OIsfOlVGc6YMQNd1wMNdquttuLSSy+loaGBq6++GvjlW3jTp09HCEEikQBcjujrrruOysrKYA3kL7gqc3P7DrR+lhMnTmTBggUccMABAPzqV7/iH//4B4qicP3119Pc3LwhprlesbmuQUtLS/Dvf//739TX13PooYcCcOCBB3L77bezYMGCn9UeNsKmh01e4C9YsIDHH3+cDz74gGXLliGEoFAo0L17d9LpNPPnzw/GDhw4kPPPP59bb72VTCaDomzytw+4XZNmzJgBgG0Xm0hss802NDQ08P333wOucKupqeHqq6/mH//4BwsWLPhFuPTmzp3L7bffzoQJE5gzZw4A+Xx+s/oOtLS0UF9fX7KtV69eNDQ0BEKtUCiQSCS48847eeSRR/jyyy83xFTXGRoaGpg8eXLwHQDo2bPnZrUGS5cu5bDDDuPkk08OtnXv3h3TNFm6dCngvgf69+/P1Vdfzfjx41mwYMGGmm6E9YxN+m130UUX0a9fP+69915GjBjBaaedxvfff49hGAwaNIiffvqJyZMnB+M1TWPkyJF07dqVRx55ZAPOfO3h+uuvp0uXLsEPXFXVwGodMGAA8Xicl19+GQBFUZBSMmLECLbaaivuvffeDTbvnwvfmm0rPuu3rNxhhx2YPXv2L/47cNlll7HddtsxevRojjrqKKZNmwZAVVUVu+yyC3/7298Al21MSsmBBx7IjjvuyN///nfgl+HluOKKK+jXrx+nn346AwcO5KmnngLcXuyDBw/eLNZg3Lhx1NbW8tZbb/H+++/T1NQEQCqVok+fPjz++OMAgZL7u9/9ji5dunDbbbcBv4w1iLBybJICv76+nlNOOYV3332XCRMm8Oqrr/LAAw/Q0NDA/fffD8Dpp59OLBbjmWeeCaxfcPsYW5aFYRgbavprBYVCgYsvvpiXXnqJY445hoaGBh588EGg+MM94IAD6NGjB6+//joff/wx4HZeKi8vp7q6GinlJuvSF0KwaNEiHnnkEe677z7++9//MmHCBLbZZhsOP/xwfvrpJ04++WSSySRPP/30L/Y7cOyxxzJhwgTuvfdeTjnlFJqamhg5ciRffvklffv2Zdddd+Xdd9/lk08+AcCyLMDt4vXRRx+RTqc3aS+HbducccYZvPTSSzzzzDM89dRTHHnkkfzf//0f4D7rnXfemffee+8XuwYPPPAA7du3Z8KECbzzzjvcfffdlJWVBRzzQ4cODRSB6dOnA67CXFFRwahRo/jqq68oFAqb9BpEWD1skk94yZIlCCEYN24cw4YNIxaLccQRR1BWVkahUAgE3qWXXsqUKVOCNoPgunoty6KqqmoDzX7twDAM+vTpw0knncTll1/OLrvswl133UVzczOapgX80r///e/JZDLceOONwbGO47Bs2TJ69uy5Sbv0VxSf1TSNSy65BHAtv1/qd2D69OlMmTKFW2+9lREjRnDcccfx7LPPUl9fz7XXXsuyZcv43e9+RyKR4KabbgIIenJPmzaN2tpaYrHYJqv0gRvOef/99znvvPMYNmwYffv25dhjj6VDhw40NTURi8UYPXr0L3YN5s6dy+OPP85ll13GV199xeDBg9lxxx2ZNm1awD2RSCQ47rjjmDt3Lv/85z8BV2EWQjBjxgySyWTg+YjwC8cGSRVcQ9i2LaWUslAoSCmlbG5ull9//fVy+8eMGSN///vflxx73XXXyf79+8thw4bJO++8U+62225yl112kfPnz19Ps1878O/RNM0g69zfJqWUL730ktxpp53k5Zdfvty+Rx99VG655ZZy0KBB8vLLL5dDhw6VAwcOlN9///16vIOfh7bu/8MPP5SapsmZM2dKKaXM5/NSSnctFEWR7777rpRSymuvvfYX8R1ojXfffVdqmiaXLVsWbJs9e7bs2bOn7NKli7z33nullFI+9NBDcosttpBjx46Vn376qfz222/lrrvuKq+66qoNNfW1hrlz50ohhHzyySeDbSNGjJCHHHKIvOuuu2RDQ4OUUsqHH35YdunS5Re3Bo7jSMuySv7+4Ycf5DbbbCPHjx9fMvaKK66Qffr0kVdffbX86aef5Jdffil33nln+be//W09zzrChsJGL/Cvuuoqud9++wV/+y97H74gsCxL9uzZUz766KNSyuLLP5/Pyw8//FCOGTNG7rnnnvLMM88MFIdNBa3XoC00NTXJSy65RG699dby22+/lVLKkvucMWOGPPfcc+VBBx0kzz777GB9NgWs6P6//fZbOXToUHnhhRcG2/zvxy677CKPOeYYKaWU6XR6k/8OtIUvv/xS7rDDDiVK7iWXXCLPOOMMOWTIEDlixAgppZSZTEa++OKLskePHnLAgAGysrJSjhkzRmaz2Q019bUC/7d/8skny86dO8sDDzxQxmIxudtuu8nzzjtPdu/eXe6xxx7yww8/lFJK+fzzz//i1qAtNDU1yX79+snrr79eSll8DyxZskTee++9sry8XA4aNEimUil53HHHyVwutyGnG2E9YqMV+FOnTpWjRo2SHTp0kEII+f/+3/+TUsoSbTaMr7/+Wnbv3l1OmzZthefc1H7cK1qD1rWzvpB7//335Z577imPPfbYYF9rwbYpCboV3b9/D4VCQZ533nlyyJAh8qOPPirZd9ttt8mtttpKNjc3l5xzU/sOrAzZbFY+8MADUtd1ueuuu8p27drJLl26yNmzZ8uJEydKTdNkU1NTMH7p0qVyypQpm5RnZ2UIvwtmzpwpR48eLc8+++xg25IlS+SAAQPkrbfeGigHv7Q1WJEBdNhhh8mRI0e2ecyPP/4o33nnHfndd9+t8/lF2Liw0cbwP//8c5LJJPfffz9jx47lsssuw3EcVFVtM9b0zTff0LlzZ/r16we4tad//vOfS8Zsav2QV7QGmqaVrIEfhx88eDAHHXQQn3zyCS+//DJPPPEEp512Wkmpnh+/3BSwovvXdR3LstB1nYMPPphkMsktt9wCFO9v6tSp1NbWEo/HS7KPN7XvQFvwk87i8TgnnHAC7733HieddBJ333038+bNo0ePHixdupQtt9yypIdCTU0N22+/PVtuueUGmvnag2VZqKoa/B2Px5k6dSonnXQSAKZp0q5dO1RV5bvvvgsS0n5pa9A6B0dRFGzbplevXrS0tLB48eLljuvevTvDhg3b7CimI7DxxfB9jbWxsVF+/PHHUkopP/74Y9mnTx950UUXSSnbtvKPOeYYOW7cOLlw4UI5YsQIqet64NLa1PC/rIF/zLRp0+Tw4cOlEEIahiEvvfTS9TjztYPVuf+wl+OBBx6QXbt2/cXFZ1sjfM+FQkGef/75K7RUzznnHHnQQQetr6mtN4TXwDTNYA0aGhpkVVWVfOSRR4L9H374odxpp53kK6+8siGmus6wojWQsvjbGT9+vOzZs+cvyqMV4edjoxP4baGlpUXeeOONsrKyUs6ePVtKWSrwFi9eLLt37y579uwpdV2Xhx56qGxsbNxQ010nWNUaSCnl/Pnz5YknniiFEPLMM89czp29KaOt+w/nafwSY9Q+LMsqcd2OHz9eVlRUyD59+sgZM2YE23/44Qf5ww8/yP/7v/+TXbp0kc8995yUcnm376aIFa1B79695cyZM2U6nZYXXXSRFELI448/Xp5xxhmyqqpKnnrqqZvV98Df/+mnn0ohhJw8efIGmWuEjRMbpcAPf6n9f0+dOlXutttu8uCDD15u/OzZs2X37t3l0KFD5Weffbbe5rkusaZrIKWUDz74oNx9993lJ598sl7muC6xJvfv71+yZMkvKj4rZalS9+abb8o+ffrITp06yfvvv3+5XI5HH31UDhw4UA4aNCioUPglYHXXwHEcee2118pTTjlFHn744ZvlGvh466235DHHHCPnzJmzPqcZYSPHRifwV9TMwTRN+cgjj8iKigo5ceJEKaWUb7/9tmxoaJDpdFp+8cUX63Oa6xRrsgb//e9/ZV1dnZTyl2HJSfm/3/8vFT/99JPcd999pa7r8sILL5RLly4t2e8/93Q6Ld9///0NMcV1jtVdAylLS1J/SVjVGkSIsCpsNAJ/ZXEpH/Pnz5djxoyRffv2lfvss48UQgTZ2b8E/K9r4Me5N3Vs7vffFp566impaZrcf//9N9us6mgNojWIsHawwbP0bdtGSommaQDcdttttGvXjhdeeGG5DFTbtlm8eDEzZsygpqaG+fPn86tf/WpDTHut4ueuwc4777whpr3WsLnf/8qw44478s477/Dyyy9vtlnV0RpEaxBhLWFDahtrEpf67rvv5E477ST79OkjP/jgg/U91XWGzX0NNvf7jxAhQoT1hQ3u0l/duFQ6nZb/+c9/1u/k1hM29zXY3O8/QoQIEdYHNqhL/+mnn6Z3796oqsqXX37JzTffTE1NTZtjk8kke+yxx/qd4HrA5r4Gm/v9R4gQIcL6gpByw7VImjlzJgsXLmTIkCEbagobHJv7Gmzu9x8hQoQI6wsbVOBHiBAhQoQIEdYPNniWfoQIESJEiBBh3SMS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAaIBH6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAaIBH6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIcIGwOzZsxFC8Pnnn6+T8wsheP7559fJuSNEiLBpIhL4ETZLnHDCCYwePXqDXb9bt24sWLCAgQMHAvD2228jhKChoWGDzSlChAi/bGgbegIRImyOUFWVzp07b+hpRIgQYTNCZOFHiNAK//3vf9lll12IxWLU1tZy8cUXY1lWsH+PPfbgnHPO4aKLLqKmpobOnTtz1VVXlZxj6tSpDB06lHg8ztZbb82bb75Z4mYPu/Rnz57NnnvuCUB1dTVCCE444QQAevbsyW233VZy7u23377ket9//z277757cK033nhjuXuaM2cORxxxBFVVVdTU1DBq1Chmz579c5cqQoQImxAigR8hQgjz5s1jv/3241e/+hVffPEFd999N//4xz+47rrrSsY99NBDpFIpJk+ezE033cQ111wTCFrbthk9ejTJZJLJkydz3333cemll67wmt26deOZZ54BYNq0aSxYsIDbb799tebrOA6HHHIIhmEwefJk7rnnHsaNG1cyxjRNRo4cSXl5OZMmTeK9996jrKyMfffdl0KhsCbLEyFChE0YkUs/QoQQ7rrrLrp168Zf//pXhBAMGDCA+fPnM27cOK644goUxdWRt912W6688koA+vbty1//+lfeeust9t57b9544w1++OEH3n777cBt/6c//Ym99967zWuqqkpNTQ0AHTt2pKqqarXn++abbzJ16lRee+01unTpAsD111/Pb3/722DME088geM43H///QghAHjggQeoqqri7bffZp999lmzRYoQIcImiUjgR4gQwnfffceQIUMCwQiw22670dLSwty5c+nevTvgCvwwamtrWbRoEeBa6d26dSuJ0e+yyy7rbL7dunULhD3AkCFDSsZ88cUXzJgxg/Ly8pLtuVyOH374YZ3MK0KECBsfIoEfIcL/AF3XS/4WQuA4zlq/jqIoSClLtpmmuUbnaGlpYaedduLRRx9dbl+HDh1+1vwiRIiw6SAS+BEihLDVVlvxzDPPIKUMrPz33nuP8vJyunbtulrn6N+/P3PmzGHhwoV06tQJgI8//nilxxiGAbjx/zA6dOjAggULgr+bmpqYNWtWyXznzJnDggULqK2tBeDDDz8sOceOO+7IE088QceOHamoqFite4gQIcIvD1HSXoTNFo2NjXz++ecln9NOO405c+Zw9tlnM3XqVF544QWuvPJKzj///CB+vyrsvffe9OnTh+OPP54vv/yS9957j8suuwygJFQQRo8ePRBC8PLLL7N48WJaWloA+M1vfsPDDz/MpEmT+Oqrrzj++ONRVTU4bsSIEfTr14/jjz+eL774gkmTJi2XIHjMMcfQvn17Ro0axaRJk5g1axZvv/0255xzDnPnzv1fli5ChAibICKBH2Gzxdtvv80OO+xQ8rn22muZMGECH330Edtttx1nnHEGJ598ciCwVweqqvL888/T0tLCr371K0455ZRACMfj8TaP2WKLLbj66qu5+OKL6dSpE2eddRYAl1xyCcOHD+eAAw5g//33Z/To0fTp0yc4TlEUnnvuObLZLLvssgunnHIKf/rTn0rOnUwmeeedd+jevTuHHHIIW221FSeffDK5XC6y+CNE2IwgZOsAYYQIEdY63nvvPYYOHcqMGTNKBHaECBEirC9EAj9ChHWA5557jrKyMvr27cuMGTM499xzqa6u5t13393QU4sQIcJmiihpL0KEdYDm5mbGjRvHTz/9RPv27RkxYgR/+ctfNvS0IkSIsBkjsvAjRIgQIUKEzQBR0l6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAaIBH6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAb4/78IzNbnvB+PAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"difference\",\n", + " continuous=True\n", + ")\n", + "\n", + "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "a6197929", + "metadata": {}, + "source": [ + "The following uses an abritrary custom registered function for use in a continuous agreement map:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "858705fd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAEyCAYAAABHz/HOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7xuVXXv/Z1lrfW0XU4/wAEUpImKiiWCDWOJQIyKUbFhi1cFTSxBkzeJJTfxDfHVJMQeRa8a0NyoMWo0xsQSE71qYkcURemH03Z7yipzjvePOdfazz57n4YHBO/z47PZZ68611xzzTHGb5SpRESYYIIJJphgggkOC/QvugETTDDBBBNM8MuEiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWD9JcL/+T//B6UUSile//rX/6KbM8FhxLOf/ezm3f6P//E/9nlcnuesX7++Ofbzn//87dfIQ8Rzn/tcut0ut9xyy4rtddv39/PsZz97xTl3uctdVh0zPT3N/e9/f974xjdSFMWq++d5zpvf/GYe9KAHMTMzQ5qmHHHEEdzvfvfjJS95CZ/85Cf32fbdu3fzp3/6pzz0oQ9l8+bNJEnCzMwM9773vXnRi17Ev/7rv/7c/bNr1y42b96MUoq73e1uax7z8Y9/nAsuuIB73vOebNy4kSRJ2Lx5M2effTaf+MQn1jznBz/4AX/2Z3/GWWed1ZyzdetWnvjEJ/KlL33pgO361re+xTOf+Uy2bdtGlmVs2bKFhz/84Vx22WUrjhsOhxxxxBGcffbZh/7wd3bIBL80uOiiiwQQQE488cRfdHMm2Auvec1rBJDLLrvskM+94IILmne7bt06yfN8zeP+/u//vjkOkH/7t3/7+Rp9G+Hb3/62aK3ld3/3d1ftq9t+wQUX7PPnXe9614pzjj32WAHkvPPOkwsuuECe9axnyUMf+lBJkkQAeehDH7qiz/bs2SP3ve99BZAkSeShD32oPPWpT5Vzzz1XjjjiCAHkpJNOWrPtH/nIR2R6eloA6fV68qu/+qty/vnny+Me9zg54YQTmvafffbZP1cfXXDBBaKUEkCOP/74NY8577zzRCkl97jHPeTss8+WpzzlKfLABz6wacPv/d7vrTrnqKOOatr+yEc+Up785CfLPe5xDwFEKSVvfvOb99mmd73rXWKtFWOMnHnmmfLUpz5VzjrrLFm3bp386q/+6qrj3/SmNwkgn/vc5251P9wZMRGsvyQoikI2btwogGzdulUA+cpXvvKLbtYEYzgcgvU+97mPAPLRj350zeOe8IQniDFGTjvttDu0YH3c4x4nSZLI9u3bV+2rhcKhoBas11xzzYrt//3f/y0zMzMCyKWXXtpsf8lLXiKA3Pve95brr79+1fW++tWvyute97pV2//xH/9RlFJirZVLLrlERqPRqmOuvPJKueCCC+SEE044pGcYx7/8y78IIC94wQv2K1j/67/+S3bu3Llq+1e+8hXp9XqilJJvf/vbK/b96q/+qvyv//W/ZDgcrtj+9re/XQAxxsj3vve9Vdf83Oc+J0opudvd7ibf//73V+zL81z+67/+a9U5g8FAZmdn5QEPeMABn/mXCRPB+kuCj3/84wLImWeeKa9//esFkAsvvPAX3awJxnA4BOsll1wiWmt50pOetOqYPXv2SJZl8uhHP1oe85jH3GEF67XXXitaazn33HPX3H84BauIyOte9zoBVlhURx55pADy2c9+9qDvsbi42Civ73//+w94/Ne//vWDvvY4BoOBHH/88XL3u99dfvjDH+5XsO4Pz3ve8wSQv/zLvzzocx796EcLIK997WtX7bv73e8uWutVgvpg27GW4P1lxcTH+kuCD3zgAwA84xnP4BnPeAYAH/rQhyjLcp/nfPvb3+bXf/3XmZ2dZWpqioc+9KF89rOf5fOf//yafqzaz/f5z3+ez3zmM5x11lnMzs6ilGJubq457tOf/jTnnHMOmzZtIssyjjvuOF7+8peza9euNdshIlx++eU84hGPYN26dbRaLU455RRe+9rXMhgMVh3/8Ic/HKUUP/3pT/nQhz7E/e9/fzqdDkcddRQXX3xx40/78Y9/zPnnn8/mzZvpdDqcddZZfPvb395nfxxKu8f74otf/CKPeMQjmJqaYnp6mnPOOYfvf//7K46/y13uwute9zoAnvOc56zwBR6KH/SII47gEY94BJ/4xCeYn59fse/DH/4weZ43738tfPOb3+Tiiy/m9NNPX/GcL37xi7nxxhtXHf/Tn/4UpRQPf/jDWVhY4Ld/+7c5+uijm3f05je/Ge/9Qbcf4D3veQ/ee84///xDOu/W4j73uQ8A1113XbNtx44dAGzatOmgr/Pe976XnTt3csYZZ+y3j2ucfvrph9jSgNe97nX85Cc/4e1vfztJktyqawDNuWmaHvQ5p512GsCqsfDlL3+Z73//+zz84Q/nnve85yG142lPexoA73znOw/pvDs1ftGSfYKfH3Nzc9JqtSRNU9m1a5eIiJxxxhkCyMc//vE1z/mP//gP6XQ6Asi97nUveepTnyr3v//9RWvd0GQXXHDBinNqq+m3fuu3RCkl97///Zvz5ubmRETkVa96lQCSpqmceeaZ8qQnPanxOx1//PFy8803r7imc07OP//8xufz8Ic/XJ7whCfI0UcfLYA84AEPkMFgsOKchz3sYQLI7/zO74i1Vh75yEfKE57whMaaeNazniU//OEPZePGjXLyySfLU57yFLnnPe8pgKxfv35VG25Nu+u+ePnLXy7GGHngAx8oT37yk+XEE08UQDZs2CA33XRTc/wrXvGKhp4988wzV/gLr7zyygO+4/p+73//++Wyyy4TQN797nevOOahD32odDodWVxc3KfF+pSnPEWstXLf+95XHv/4x8vjH/94uctd7iKAHHHEEXLDDTesOP6aa64RQH7lV35FTj/9dJmdnZUnPvGJcu6550q73V5znBwI97vf/QRYda8aHGaL9YMf/KAAcs973rPZdtxxxwkgL3zhC8V7f1D3OPvss1dRyoeKmrXYV59961vfEmutPPe5zxWR5f4/VIv129/+tqxbt06SJJGrr776oM8777zzBJA/+qM/WrG9ZsH+4A/+QAaDgbznPe+RCy+8UF760pfK+973vlXf6DiGw6EkSSJHH330IT3DnRkTwfpLgL/5m78RQH7jN36j2fbWt75VAPnN3/zNVcc75xoB8Cd/8idrXmt/ghWQK664YtV1P/zhDwsg97jHPeRHP/pRs917L3/0R38kgDzlKU9Zcc4ll1wigDz84Q9fIYjyPG8opFe96lUrzqkFa6/Xk6997WvN9ptuukm2bNkiSik55ZRT5NWvfnUzaXrv5ZnPfOaak8ataXfdF1rrFf7OqqqayekP//APV5xzOKjg97///bKwsCDtdlvOOuusZv/PfvYzUUrJ+eefLyKyT8H6r//6r2sqNzVd+pznPGfFvnpirxWwHTt2NPuuvvrqhlLdl893bywuLooxRo488sh9HnO4BetTn/pUAeTpT396s+0Nb3hDc5+TTz5ZXv3qV8tHP/pRue666/Z5jzro59///d8PqW3j2J9gdc7J/e9/f9m4cWPjNz1Ywfrxj39cLrjgAnna054mD37wg0VrLVmWyXvf+96DbtvVV18tWZYJsIrGrvvw93//9+Wkk05aESAHyDHHHLNfivj0008XQH7yk58cdHvuzJgI1l8C1ILm7/7u75ptO3fulCRJpNVqNdZkjc9+9rMCyAknnCDOuVXXO/PMM/crWM8555w121FbZN/5zndW7fPey73vfW8xxjSTc1mWsnHjRul2u2takYPBQLZu3Srr1q1b0c76ef/gD/5g1Tkve9nLBJDjjjtOiqJYse9b3/qWAPKwhz3s52r3eF+MT9Y1vv71r695n8MlWEVEnvzkJ4vWugm8+dM//VMB5JOf/KSI7Fuw7g9HHXWUbNiwYcW2ccH6z//8z6vOedvb3rbKf7k/fPWrXxVghVKwN/aetNf62VuQ7y1Yvffy05/+tGEilFLyxS9+sTneOScXX3xxEzU8/nPqqafK2972tlXfRqvVEkB+8IMfrGrz7t2714xe3puNuPTSS+Wkk06SV7/61auu8Rd/8RerxsfBCtY//uM/XvEM7XZb3vnOd675fa+FsizlwQ9+8JpKpMjyeLLWyrZt2+RTn/qUzM/Py3e+8x151KMeJYAce+yx0u/317z+05/+dAHkIx/5yEG1586OiWC9k6O2VGZnZ1dFKP7Gb/yGAKtSE1772tcKsObHLSLyV3/1V/sVrO94xztWnbN9+/ZGWO8LF154oQDy6U9/WkSWJ9lHPepR+zznnHPOWTWZ1YJ1fKKscemllwrQUGnjWFxcFFiZinRr2i2y3Bfve9/7Vh2/sLCw6j4ih1ew1sFql1xyiYiInHrqqbJ582Ypy1JE9i9Yd+7cKe95z3vk5S9/uTz3uc9thMDmzZsFaNwJIssT+/r169ds19zcXDORH8wk/o//+I8CyBOf+MR9HjPOmOzr5xvf+MaKc2rButZPmqby1re+dc173XDDDfKXf/mXct5558kxxxyz4rzHP/7xK55pf4L1uuuuW/PeB6vY/OxnP5Ner7dKGTtUKng4HMp3vvMdefGLXyyAnHvuuftMzRrHi170okYhHX//NWrhCchXv/rVFftGo5Fs27ZNAHnnO9+55vVr99Jac8cvIywT3KnxwQ9+EBHhSU96ElmWrdj3jGc8g3/4h3/gAx/4AM9//vOb7TfddBMARx999JrXPOaYY/Z7z7X2//SnPwXgRz/6EUqp/Z6/c+fOFed89rOfPahzTjrppBXbjjrqqFXH9Xq9A+7L8/znavc4tm3btmrb1NTUqvscbvzar/0aGzZs4IMf/CCPfOQj+d73vsdLXvISrN3/J3355Zfzghe8gKWlpX0es7i4yPr161dsO/bYY9c8dmZmhtnZWebm5tizZw8bNmzY7/3rgKu6j/aH9773vQc8Zm+cd9559Ho9lFL0ej1OPvlknvCEJ3DkkUeuefyRRx7JS1/6Ul760pcCcOWVV/LGN76R97znPXzsYx/j8ssv5+lPfzoAGzZs4IYbblhzLG7btg0Raf7+tV/7NT7zmc8cdLsvvPBCiqLg7W9/+6E+8gq0Wi3ucY978Ja3vAVjDJdeeimXXnopr3jFK/Z5zp/8yZ/wtre9jS1btvCZz3xm1buH5W/n7ne/Ow94wANW7MuyjKc97WlccsklfOELX+C3fuu3Vp0/PT0NsCLI8ZcZE8F6J8f73/9+AD7/+c/z4Ac/eMW+Ojr2i1/8Ij/72c/2OTkeKlqt1qptdWTo1q1becxjHrPf8+t21Ofc7W5348wzz9zvOWtN2FrvO6h9f/vGcWvafWvuc7iRJAlPfvKTedvb3sbv//7vAxwwUvVnP/tZE+n9F3/xF5xzzjkcddRRtNttAM444wz+8z//c4WAONyYmZkBgvC+LfDGN76Ru9zlLrf6/FNOOYV3v/vd7Nmzh49+9KN88pOfbATraaedxg033MB///d/H3C8Hio+8YlPMDs7ywtf+MIV20ejEQA33HADD3/4wwG44oor2Lp16wGv+cxnPpNLL72Uf/iHf9inYH3729/OH/zBHzAzM8OnP/3pfVZ4qsf+vvq23r53Fa0atUI1Ozt7wHb/MmAiWO/E+MY3vsGVV14JwNVXX83VV1+95nEiwgc/+MFmAj7iiCOAlekH49jX9v2httw2btx40JZGfc7JJ598q6yTw4Fb0+47Cp7xjGfwtre9jU9/+tOceOKJqyyJvfGpT32Koih45StfyW//9m+v2v+Tn/xkn+dee+21a25fWFhgbm6Odrt9UJPm5s2bgVAS8I6MRzziEXz0ox9dwVI89rGP5VOf+hRXXHEFF1100WG/59zcHF/4whfW3DcajZp9tbA9EDZu3AgspxbtjSuuuIILL7yQTqfDJz/5Se5973vv81p1ytKePXvW3F+/z9qy3Rv1eYeS3nRnxiSP9U6MOnf1la98JRL85at+6hzJ+lig0bY/+tGPrmmdfPjDHz7ktmzbto2TTz6Z73//+/zwhz88qHPuf//7MzMzwxe+8IVf2ER7a9p9a1HnE1ZVdViud8YZZ3DaaaexYcMGnvvc5x7w+HpyW4u+/uIXv8j27dv3ee6uXbv43Oc+t2r7FVdcAcCDHvQgjDEHbMOpp56KtZarrrrqgMfeljiQVV4rqeMuhWc/+9ls2LCBL3/5yyu+p8PVnrV+rrnmGgCOP/74ZtvBWuS1ID7++ONX7fvUpz7Fs571LKy1fPSjHz2gBX722WdjreU73/nOmt9qfa9aAO+N2gDYn/D+ZcJEsN5J4Zzj8ssvB9hvov1DHvIQjjrqKK688kq+8Y1vAEEbP+GEE7jqqqu45JJLVhz/3ve+96AKca+FP/zDP8R7z3nnncc3v/nNVft37drFu971rubvLMu4+OKLWVxc5IlPfOKaFtMNN9zQ0N23FQ613bcWtZ/vcAqVb37zm+zcuZNXvepVBzz2xBNPBIKS1e/3m+033HDDKgpyLbzyla9cUSzjmmuuaRZ7uPDCCw+qvd1ul/vc5z7cdNNN3HDDDQd1zm2BM844g8suu2xFP9T4xCc+0fg6n/SkJzXbe70el112GUopnvOc5/Dnf/7na1qP119//T5Zn7/+67/m5JNP5vd+7/d+7mfYsWMH73rXu9YsovLZz36Wiy++GAgFScbx5S9/mSc96UmICB/60Id49KMffcB7bdy4kec85zksLS3x0pe+dMWiBu973/v47Gc/S6vVWlVUBoKF/Z3vfIejjz6au971rof4lHdOTKjgOyn++Z//me3bt3PiiSdy3/ved5/Haa15ylOewpve9Cbe//73c/rpp6O15n3vex+PfOQjefWrX83ll1/O3e9+d3784x/zta99jQsvvJC3vOUth1SxBUKFle9973v86Z/+Kaeffjr3vve9G037xz/+Md/+9rfp9Xorghte/epX84Mf/ID3v//9nHLKKdznPvfhrne9K0VRcNVVV/H973+fe93rXjzzmc+81X11W7T71uDRj340rVaLN7/5zXz3u9/lyCOPRCnF7/7u764Khrkt8LjHPY5TTz2Vr3/9641fezQa8W//9m/c+9735owzzuA//uM/1jz3V37lVyiKgrvd7W484hGPoCxLPve5zzEYDHjGM57BE5/4xINuxznnnMPXvvY1Pv/5zzf+y7Ww1iRd45hjjvm5VnC68soree5zn8uLX/xi7nvf+3LMMccwHA656qqr+MEPfgDAC1/4Qs4555wV5/36r/86f//3f8+zn/1sLr74Yl7/+tfzwAc+kM2bN7O4uMh1113Hd77zHbz3PPCBD+SEE05Ycf7OnTu56qqrmgDCnwf9fp8XvOAF/M7v/A6nn34627Zto9/v88Mf/rB5hpe97GWcd955K84799xzGQ6H3PWud+VjH/sYH/vYx1Zd+8EPfvCKgEeAP//zP+crX/kKH/zgB/nSl77E/e53P6699lq+/vWvY4zhne9855oBkV/+8pcpy3JVX/5S43aMQJ7gMKKuVvSa17zmgMd+7WtfE2BFOoaIyDe/+U0599xzZXp6Wrrdrpx55pnyT//0T/KBD3xgzXScOuXjQCkEX/jCF+Q3f/M35cgjj5QkSWTDhg1yr3vdSy666CL5whe+sOY5//AP/yDnnHOObN68WZIkkc2bN8vpp58uF1988arUijrdZq1iAHVVon31CzHf7udt94H6Yl/3+cxnPiNnnnmm9Hq9Q0rJ2Dvd5kDYV7rN7t275UUvepHc5S53kSzL5LjjjpNXvepV0u/31+zXOt3jYQ97mMzNzcmLX/xiOfLIIyVNUznppJPkjW98o1RVdVBtqnHttdeKMWafq7+wRtrK3j+nnXbainP2VyBiLXzrW9+SP/uzP5NHP/rRcvzxx0un05Esy+SYY46RJz3pSfKpT31qv+fv2rVL/uRP/kTOPPNM2bhxo1hrZXp6Wu5xj3vI85//fPmXf/mXNSs6Hajy0t7YX7pNv9+XSy65RM4++2w59thjpd1uS5Zlcpe73EWe+tSn7ndsHuhnX+1bWlqS3//935e73e1ukqaprF+/Xs4999z9Fs147nOfK8Cq7/iXGUrkNgwBnOBOiRe+8IW84x3v4IorruApT3nKL7o5E/wC8dOf/pS73vWuPOxhDzusa7s+4QlP4BOf+ATXXXfdQUW4TnDnxHA45Mgjj+TEE0/kq1/96i+6ObcbJj7W/0uxe/fuJodzHB/60If4m7/5G2ZnZzn33HNv/4ZN8H8F/viP/xjvPW984xt/0U2Z4DbE29/+dubm5njDG97wi27K7YqJj/X/Uvzwhz/kQQ96EPe617047rjjgOB3uuqqqzDG8I53vINut/sLbuUEv6y4xz3uwQUXXMDb3vY2Lr744iYNZ4JfHgyHQy655BIe+9jH8ohHPOIX3ZzbFRMq+P9S3HLLLbz+9a/nX//1X7nxxhvp9/ts3LiRM844g1e+8pU86EEP+kU3cYI7AG4rKniCCX6ZMRGsE0wwwQQTTHAYMfGxTjDBBBNMMMFhxESwTjDBBBNMMMFhxESwTjDBBBNMMMFhxESwTjDBBBNMMMFhxESwTjDBHRyvfe1rD7hW7AQTTHDHwUSwTjBBxHvf+16UUit+Nm/ezFlnncU//dM//aKbd0BcddVVvOxlL+OMM86g1WqhlFqzCMgEE0xw22JSIGKCCfbC61//eu5617siImzfvp33vve9nH322fzjP/7jHboa1X/+53/yV3/1V9z97nfnlFNOWXOlngkmmOC2x0SwTjDBXnjsYx/L/e53v+bv5z3veWzZsoXLL7/8Di1YH/e4xzE3N8fU1BRvfOMbJ4J1ggl+QZhQwRNMcADMzs7SbrexdqUe+sY3vpEzzjiDDRs20G63Of300/nf//t/rzpfKcVFF13Exz72Me5xj3uQZRmnnnoqn/70p1cd++///u/c//73p9Vqcfzxx/OOd7zjoNu5fv16pqamDv0BJ5hggsOKicU6wQR7YX5+np07dyIi3HLLLVx66aUsLS3xjGc8Y8Vxf/mXf8njHvc4nv70p1MUBVdccQW/+Zu/ySc+8YlVa0/++7//Ox/5yEd48YtfzNTUFH/1V3/Feeedx7XXXsuGDRsA+M53vsOjH/1oNm3axGtf+1qqquI1r3kNW7Zsud2efYIJJvj5MRGsE0ywFx75yEeu+DvLMt7znvfwqEc9asX2H/7wh7Tb7ebviy66iPve97686U1vWiVYr7zySr7//e9z/PHHA3DWWWdx2mmncfnll3PRRRcB8Ed/9EeICF/60pc45phjADjvvPO45z3vedifcYIJJrjtMBGsE0ywF97ylrdw4oknArB9+3Y+8IEP8PznP5+pqSme+MQnNseNC9U9e/bgnOMhD3kIl19++aprPvKRj2yEKsC97nUvpqen+clPfgKAc47PfOYzPP7xj2+EKsApp5zCYx7zGD71qU8d9uecYIIJbhtMBOsEE+yFBzzgASuCl84//3zuc5/7cNFFF3HuueeSpikAn/jEJ/if//N/8s1vfpM8z5vj18o5HReWNdatW8eePXsA2LFjB8PhkBNOOGHVcSeddNJEsE4wwZ0Ik+ClCSY4ALTWnHXWWdx000386Ec/AuBLX/oSj3vc42i1Wrz1rW/lU5/6FJ/97Gd52tOexloLRhlj1rz2ZHGpCSb45cPEYp1ggoNAVVUALC0tAfD3f//3tFotPvOZz5BlWXPcZZdddquuv2nTJtrtdiO4x3HVVVfdqmtOMMEEvxhMLNYJJjgAyrLkn//5n0nTlFNOOQUIFqhSCudcc9xPf/pTPvaxj92qexhjeMxjHsPHPvYxrr322mb7lVdeyWc+85mfq/0TTDDB7YuJxTrBBHvhn/7pn/jBD34AwC233MLf/u3f8qMf/YhXv/rVTE9PA3DOOefwpje9iV/7tV/jaU97GrfccgtvectbuNvd7sa3v/3tW3Xf173udXz605/mIQ95CC9+8YupqopLL72UU0899aCuOT8/z6WXXgrAl7/8ZQD++q//mtnZWWZnZ5vo4wkm+GXBaDSiKIoDHpemKa1W63ZoUYRMMMEEIiJy2WWXCbDip9Vqyb3vfW9529veJt77Fce/+93vlhNOOEGyLJOTTz5ZLrvsMnnNa14je39WgFx44YWr7nfsscfKBRdcsGLbF77wBTn99NMlTVM57rjj5O1vf/ua11wL11xzzar21z/HHnvsIffHBBPckTEcDmXrZrPPMT/+s3XrVhkOh7db25TIJHpiggkmmGCCOxcWFhaYmZnhmm8cy/TUvr2aC4ueu57+M+bn5xvG6bbGhAqeYIIJJpjgTotuL/zsC+4XYDpOBOsEE0wwwQR3WngEz76l5/723VaYCNYJJphgggnutCjFUe7Ho1mKvx1bEzARrBNMMMEEE9xpMbFYJ5hgggkmmOAwwiO4iWDdP7z33HjjjUxNTa1Zc3WCCSaYYII7B0SExcVFjjzySLS+beoRleIp9yM7J1QwcOONN3L00Uf/opsxwQQTTDDBYcJ1113Htm3bbpNr+/izv/23N+5wgnVqagqA73/nv5p/C8JNgxtYqpaYTqaxOmF9tgGjQmFzEaESQQMex42DG1gqFwDwEs5XaJRKcd7SMh6rUwpfIAKJyaj8LKkBq4RBqeimC3gpqHwI11Z4WiYh1QkMNaZlGMmASipSnaBUSr/aRMc6unbAUrlAv+zjxeHE4ZGm4LrHowjWeP0bFEYZEmNZn21gJp0BhEo8/dIzm2bA8vkaBRhAY1S4yv4s/CZdWY3fk6Z/8bDQX8RnDkjo2Qyr7KrjBEGjkdi3ShHuDeEPEQovcbugUJj6IIFSKozSaKXD+SyHwysCbZPs5zkqqch9jlUahcIRSgqOqhEu9nXpS5bKRSpfgYDkGp1pPA7BMZVOs6l1LP1KsTHTjBzkXtAKvrenoPDCSTMpGzKNE2gbFcoXeuHmYcW1/YpBtawiq+bNBBgFJ0wnHNWxsd9CXxkV7mOUwqqV70tEKIY5aStD6ZXP70QYVEKiwSqF2at7nIR77H3N8Wv3nVB5YSrR6HiOj20vvGAUpFqh9zeGwsVWbCslnF96oWUUSdM+RX2p1XEl0vy/Hjc+fr+3hqVaeX1ZtW93v+CapZJ5r6gbpQjvIzWK0gvlPmbfMKcsj3Hvhd7CIqdum6Y31V7VXhFZfq7mTkIl8LOlkiIO9sxoNrYN01bdZsxc3ZbcDxhUQxSaQTVgqeyH59fhqZx4tDIoLE4KwLEu28SGdANa7z1b7PtehYT+Gh+H8wsLnHrP+zZz+W0BdwAqeH/7bivc4QRr/UI6vQ5T0z200ogIrV7GQjHP9uHNTLemmWlPx0lAISJBKxHQCqanp9iV72TnaAeFC4JC4qOKGLRyJEbRUhbnPZ2kx8i1SHVB12oq32bgSgCsKKzaRO7mSLTQSVJ8C4qRJlFTrG97SkaIURgHnaTHbNoiLS2b1CZKXzKX76GUcsVKJmHQL/9tlGVDaxPT6RRGGYwyQXAIpM7QsZBoCB9ChROPwrBYaDKr6R7gA63vpcb+v2K/F6y1pJ0ErTR6rIz08gS44k1B/HBDWaBlIStRiXDiSbVtBO64IB574c11BlU4ZipVq4R/3WeDasigGGA0lN6xVC2Gfk3CMUFpgW6rixOHQiEjjUoVjgIQjuhuxeoONy1UGD0kS3rgLbOZ4a62Yi73zE5Z1rVMULx0GJciwswMHFF4vrenYKkSUg29RLM7Xzkz71aKozsZvbH3Uk90TlYLQREhtylZe7VgFRGmomCuJ3kd2+OiYPMCHbuy1+rrexGq3NPTim4SFZ29rl+jit9QI0ikkUUQ77v3eXUbtFKkmlVKXi2QS7/clyvuH69V+XBvsw8F4UAIzam1tOW+mJkRtuSOH+8ecaNTKx+IMHSSfVxzXGmq/530ulxfVJzgLevXdVY9R+lDn7eMar6dSmCjrSgcjLywPtVsaJnQX7ehYPUCRV5A5dFKk/qEad9pFGyFoRIHUVkX2ihgQ3uG2fTg3XH1HLy3clSPkdvSrVcKB6CCb7Nb7xN3OMFa46dLP+GE7on0bMj8bZkWSWYxytKxHYZuSKrTxqqqNcuguVvWp+spXclA9yl9SelHiEjU0oREtUlNylBG5K7AqgIvjkGVUYkl0zOUUpA7QyFdplPPoFpg5DzdJMOJZ08xy2hU0MaQdRQj32ZGVYBiyk6BUoh4Su+YKxZRFHjxyxNt/GStsvSSKdq2RUu3MNpQ671FJXStYLVqhFfQ7jWCYyZT2CitJFqIa+Fg9E6jTNOfamzidkKcMNVKAR0nL5FgenrAiW+s2kTH4VV/dGPSOQjfMIkKUDghM9GS209bE91iY7aJxXKOpWoO5x0oGvbCYBHxGG2wYil9CQhWaVq2y1QyxWy6jqWqT6J30i8dm1o9BMPVC8GimEk161LdTPBB9kujQEynmhNmEm4eOHbnPjIayxNwxypGTtg1cvR6y5+Yiv21l9xsrh1nu9XvLlq4IqtXzTAqWNQjJyyVwfJsWbXiOAWsz/bt3xoX/Hav+9dtHZ+bGuZFgsDw0aLuWpoRGI5RY8oWGL3yGrVSpuM5O0YOJ8K2rj0oK2n1c9RPO9bmKFySxLCppdmxUFEas0q47gtC6OOaFQAotWFBCcPS4UVWtLUe00YFpbh+/sIJS1VFxxiObls6VjVjfw2TPj7PzyuMFFoJXkqGbojG4MSFb1g0gkcjSE2mKh3mJxRO3AGvvndb11oY8faIk/Eo3H5GjL9Vo+nnwx1WsA7KAYvFAs7DVNrFELQ/qy25z9Fo5qo99GyPlmnHSaummEL49eb2FvrVEjcOrgd80MQVUSgJTiq8VDjvUMqh0FQCLeMovaOSklQbRs6Suw2kuqJf5YgIylQkyZDSraOs2qjFigrDzYVlXXdEN8mpfEXpSwoPXdvFi6H0JbnLV1irThzDqo9SglWGjuoCYFSwRGuBqRQUPqf0JalOcd7hlccYjRLdPPs49XhrBvb4ObUFAcsCFCFQ7ypYMPXxWgSt6nYwJpDiRD8uN/ayhBKjGkupOWTZ+Fg+TisSUrSaRSvNoOqTmoxUJ2hlyF3eKABDN8R6y1Rnhm6rS5JYjLZBYfAVwhIiCqM8KMidsFR6tnUt/UqYKzxb2obxVtV9sbllWJcZvrenYPvQkWpoGc3QeXIXlIbCR4VCZJ/vQUTIXaDPE5ExemDZCmBsgh6/zrhAVEpReE+nEaqrjzsQ1qaRQwOCAFzGyEmjUNRtG8ZtiQ5CQytZIZF1c82wsbZga2xuGyovt3oaXMEIxR8ngb7VSrFuKuPownNDGfpb6ufdT/8owvPglxXKygtthG47be7lo6U/rjSNi8uWVdy1l1F6aFtF7oRbhg4vMJtpnAgdo0lNUGitVquUnENFJIMgMkilFHGeDC4khUeo8E1wTxi3Hn/AdYLH2YGVFuryvcPft7256KV5Pfvcf3vjDitYQTN0Q4wy9KQNccIeuSEL5QKZzphKprC6pnhrLdrhpGqsL286tEyHyi9FKylYVJUbYrwGNEr5OLgEGDFygla1fxBm0nkKn1P5eVKdYHSgp6fsAmIFn2qMSnG+T8tXVIVmqBxauegzDDRMx25g5EaM3IhB1afyVeO3zF2Ox+O8Z3N7M5nJ8KKiP1I1wkIrQ2YMIkJqUrQyDW1bRYox9JOsoAZlbMQf7Peqxo710cIwTTtWG1fj1GPwn3pKL6Ras2yH1pbMyonfNPuW21uzqy76P1umJigh1Snrsw10kx6CYJVFoZhOZgAofUnXdyl9iSkTEpVitGZYDVko5tid70IErDbMFXvITE7bpiil2VM4MmPHBBeUUjKqhngJ77KXTJEoxdFdw1zuWZdpjupa5gvPYunZPnRc36/oWM2RHbPfPh85ITUqWH+wUvOPjIHzwaJnDSGtlCLTQtZYpWp/suKQ4WO7dFSUnIQ2t60m08EvnurQ2NIXVN6Ti49pDi72mYmsQviuwjhuN4JZomBqmVvncwxxFsvXIbY3UURtSIHWHL+pw9bCsTiquGlQscvrqDCuvqdVsLVjWJcabhhUzBUe5YVeVXKXjma6mzWUvFHh+zNj38X4FY1StKyiFYd4qYTcB793UgZ3goqC2RykX/Ng0bG9GMewzJbV84lCUXkHKihkgZVxZGZ5jeHVfuNwhSoKtFQv73eRxchq98lhfI59oUBT7GcF1AOvfbMSr33ta3nd6163YttJJ53UrHh1MLjDCtYju0dxRGcLLbO81I9RhvXZBlKdkeiEru2u9F8JKKVJVEptv2qVMJ3MRjq4iAKiBXiclJGaE4wyaKUpfYmXOrxIASVWDRCVU4pCZEiqhbbtUDiNl5LMOFJTUPmCRBsWBj0WlgxpukDXpPSy4MHJTIZSCq109F95+lW/oTM1mtSktEw7BEnFoTw+0SQqeoPGRmxN29ZCVRG04hXWHzXtdutQi7QyBrqsFeRST7q1tTJyOYV3QUs3HQx6WZMNJ6x4hr1pvJsGFV5gJg39lUVtvoiBMkopWroVfKljyoeCRuHSypBXBaNqyGI1z3wxHxUaj1LhnewpdmPUPLCellkXrGIdrKmhqyfNih2jHXg8LdPB6A7eK6YSOG1DilbQtZqOUcymmrncU3jh+n5Fz6rwDGv0WR3RaCPlvILCVQpNCASrXBBmmVEoWWYwVvbf6vfh44x3KIFBy9R0mICNDorPuPXRMqGPSoHcFfTL3SQmWHBeXMPWVBJ+C5Co4G9PlCUzGS3TQo0xHFXtgz2oVo49I8tWSW017m3d109jjGK6rZlqWdZ3HDfM59ww8gzRq4SrF9iTe3aPgoKIF9qu4qTZlPUzrebw8P2FwMfxc7Va/jZr4V2zOG2jOGkmaZ5ZCDEGhZPw7R4uzUjBVDJF106tckHUqOeG0gdKv7HSx1D4EFRYRbdQzWIMKo9NdEOZL5We3XnJpnZKzx6cC+rnhReFl33fZ3/79oVTTz2Vf/mXf2n+tvbQROUdVrCuS9eT6NYKTUkphcUym842f48jUFJjg1KERBvWZ+tpmZTrB9fjvEOrQAM7X2GiAKspTDX2nyB4scyXbVqmoPQFWnkqX5G7nFRPMVfMUPibmStGtK1gdMZMZ8T2hRbzwxm8Lch9wkzbU3kB2lgVIlNzN2TkRjjlGr9GoixJbFPQ+GSZCh4fpHuNlb0DBipffwDLh6vVp+0T44JPRbo3WAP7p+pcpIg9gtUJpa8awbd3w4WVQU8rngc4MkbVjj+HsPzR1+/IKLNinHg8CBhtGJVDduU78OIZqUGkTTUiy4Ii1SmFK2ibATDDfCF4KSi8RmGYTjQoYanqsi5VFK7N1fOLKHbTTeDIzpG0TBuABRcmp8woplNNL1HMFZ5eoldYM7Bs2c/GB8xXMsFN3yPSCN5xqm0fhtYK7M49SQywMmtQd+Oo+2Oc2lyxn2XazcXZ2KigII58gYvj1CqN0YbSV43PzktFIR6rMwqpAIOTcJH6mVO9HAB0MIKlVuS8gK0F8kEyMkopWqnhuI0dZhZzvjtfkcfza3gR+qWQiscSfHXrrGKqmzbfxPL1oH5zEr+B8TYqFVwCNT1dj/n6uFqY7Rw5tNK0x3jgtVwiB4tlA2Pf717FdqZa4TT8aKFkY8twVGeZOzFKkXthWAU2r/KOkatQKsEoRWrCMdOppm1TmqD5216u4ti/j3V/+/YFay1bt2691W26wwrWuXKAKtP4wVQrJpzmQzQhJWTZ2llNWQQmSDNyOS6q74Gm1CQmBD95gs/NR5q41jJRoFSFYgcimsxYKvEoZRi5IQrDuixMvsOqYuRL5osRiU6Y7bVQJCha7FhMGJQLtFsVnh4zSRiwmW7TMnkIKIj+SYdnUA3o2M4BtL39j9x0L9P0VtFrzdVr+jZQwSuOkfGjQ8pG3azMGhI9NdbKsYkIGsVhLSilyNaIhtB7CYf6XeVOGqvWYECF0ZDqLPijxdNKMhbLxcanpJTCi2ddtp6lcpFe0qVlhNQMcBJYiZZxbB8W5E5w0qFtSkBh9ZDMhBhdGWvHbKbJvaNjFcdPJ3iBq+YLjFZs66wMmvESglo6cRK1aygYdTsTHaJNjYbCg4r0oxkTJCsDguJvDW2r0Sr4NO0+LMK9I+vX8s/Xf+XRPPSAksAkDauEUsN0YjFKUUpJJSWVr3BR0UlNSttkVL5cEdQ0qoJPsQ4SsmrZl70WxqOrXaQdx8fEwaIOTFvfS9kyrLiuZNVo7LqKk2dTispzUyFsL6E7n7NtQyeyCWsIqqiEhj4S+jFVKtFh7hl/z0otW4ywHChVRfdH4z9Uy5HLyyzEwVH+ewv9+rve2x2jgJaFbV1L26zcZwnpND9bWsLLToQCkQon02xobeW4qSS6iDSphrQ++XbwsVZiKGXfXFwVLdaFhYUV27MsI8uytU7hRz/6EUceeSStVosHPehBvOENb+CYY4456DbdYQVr4RbZXWgqX9KxntIXjFyBoq4LKRzRPorZdHY5pJtljXccThwLZR8vHqs1XlzwjRB8cUqZUG8y+oUUGpEEyPHiqSipfIJRU4AidzmZsbRMSstqCmfIjIUYfJS7nJEE4Vj5ITNdjcoNvhqRpR6rpyh8TqIT1mUbyEyL+WIOnOKW7buoZoSNbUWZV9jEYrTGWkNVhUg9YwxaKxJr1/ywVn7st151HPsel68mwSo1zc5lK2d8kxJw/sBWchBuwde0rzzMvY9fa1trbyG83DTatovFkGQWrTQLxTxeAkvRsi3ato3Vhky3WSgtC4Wjm/Rpm4p+tUimE5bKDWhlsVrY3E7I9JbmueqIZBRogQ1ZsHJTrbh6sSR3wk3jlHBzHo1QDc8RI6udrCncjAp0aVn3FWHmredAJyEAq1951mUGq4KADX5u1QjVvS3CFdRvrRft1c81rayArlWN3zW8X0GrgsJVDFRCy6QU3uHEYHSGdzmCo/IFpdKkOqVl2zF2IPpC9dhYUWsHvdQCqG6HJioKt5I2bVLeNGzuJuyZKxhKsH4E6JUFx3ct67opxmo2VZ4f37xEO1KflQQFp1Zkxt0cdRxaHUQ4iopfHS2sWZnWpOKzTKWaYSWMnKxIoSucUMXjS1+PnXCf3AsLRRgHvUQfMIWn/lbrd1pT1rHrWZfpVa6DEBznKP0etNodtyZ4qZgrSgqf0I6umuXnvh3MVQ7eYt278NBrXvMaXvva1646/oEPfCDvfe97Oemkk7jpppt43etex0Me8hC++93vHnQ+7h1WsMJGMhOoh8rnMfghYzpto9EM3IDC59w0vLGx9oLgTGjbDj3bXWHxVX6ElwIn4ZG9WLRKQJVhsPt6ctF4yRAcKqYMCDZMmjplfTrFqJoj9yUez7AaUvqClumxWM2S2j4tC5V3FK5ACG1K25qySBn2RxRZTiftMvDB6u0mU1S+pD8cUSzkJL2Mb3/7+2it0UZTFiWddofFpUU2rF8PSmGM5uQTjgeWJ6HDGdqugGXXxMrrNspsjPrcmyUIvagYlRKiHRt/79oa/sgFi3N2bzP7UNo7LijG7A6tNMZoqkLIlGEqmaZl2hS+oGO7tE0bVKCDQTGdGK5bmsJLm+mkYORGJFoxlVQMneH6foJVsLFVMKwGeDyz6bpl3zeBLciMZqEIlvG61DBXjPjJ4pATZ6bpGNgxuoXSFygUM9k6Mt3DS13oY5mK9X6ZVqwEhpWnm2h25Y49uSfTiqNjSk/hQjrZbGaaVI6ZNBbzICg6TpaDoCBYv2W8RwjmCgJ4rUjmUoRMqyZvNRSUqGux5kDFsCopvKfyHqsdRmmsttHKUlTiEF9i/HJaV60U1WzRYrlE6UusDvyIk6D0GmVCwOJeE/6tQegTz558AaU6tFsJ99lsyCvP3Mhx09CxuZOwrpcE61opEqvZOtuinQWFdi7fw6AKQZFt02F9tmGFtVo/kxfItCI14f0uRxCvbLsWoWMUbaMCu6CWqeJMq0aRcVKAUuTecvPAsWMUXC1to5h1wqa2IWHZqq+/1zqCv9ZBQ86tNO2CsQjaNbq1Yw0bsg3szh2wiGBQKiXTy6GHa7kQbms40bj9WKx1AZrrrrtuxULn+7JWH/vYxzb/vte97sUDH/hAjj32WD784Q/zvOc976DadIcVrD9ZarMtS+jZBRKdMfJdMjMfE+ETjDb0yyUWigWMNqQ6ZeRGePFMp+ti8I9QuDLmU0oMlKiTPxwgwXpFYbRBiaL0KUpVaEoEjReLSIqTIcrvZlSF6N06gKpwOd2kR79MKP0UpR+QGYsoIfdFEDDVkEqX2CTBiEaVOqTcJILVghdNZjKqrkO0x2Rw0snH08oyFuaXuOnm7Rx7zJEkSUqWZezeM0enU1d9Wf6KlwXsSju10VAZ94+utmrrc8Zz85a9YHt9ayp6OFWQr2FTOMITfLxKQV55Kq+AEalRtM3qajVmr+dYblV9X7Xi7/Fta0Ghmr6w2jKVTrNYDiljDrHRlmnbDm4A8dGCg9IXiIw4qqvwYunaLn3TYeRyUj3Ci6FlNEYJI+dYqpYofUHPTpHoJLRprFnB7wQlQu41MzohM6EC1GLZJ3cDANq2Q9v0KLxH+0iLNj7DoHh4AmXqY/BW23gK60h1qBykgZHzJGLoWNtQiLUlWMSiBRCuJwL9yofcVx2CkdI4+ctamhLLNH+dO1v3dp1jGyawEoMi0YrUZHRMh7YNRRREPKVUMYjQUfmyUYgXY6GPqWSKfrVA4QusSkh1i361gBdHy7bo2jbjIV7LkQd1TISPwYFxLIoPPvexRwrWZEh5MSojM5Bqh7KKLDVMtw1bpwSUwpcr8zmnuilFjOYdVH3mit3Bj5pUTCXTwVLTwT2kVeiHYVX7mfdPc49bjVbLqu2G8A53jkb0KxhUGYWHDVkICtzUMvQSHSKhx+DE48VRf2ZjISjoyII07q/mngYtKwPuUg3HTvWYTjN25TkKzfosZToxQVmDhskKbMvaz3m44VH4/YRl1kX4p6enVwjWg8Xs7CwnnngiV1999UGfc4cVrB0zwMksNw83MHIplWSsz9qsTxeZSioMNgTK6ASFxeoW1juGfsBcvgvnSxyO3I1omzaVr1AoNLqhfZ04rA70YAhq0ljlUMpgVI/KO0oUWrkQICOegRvQs1M40QyqnI7NSHVGaXK2mD0UvgAMlVisitolQeiN/BAMpEmKdSm6NJRZiHwVwgdp25qBWmQ6myFLe2zctI7Z2SlaWaupNLVl88aYfbQ3BR7Kd6VaIZ7lvFOWKZpl/8pq1dRLsDRQaoX/pr5+KIMXA1TqL3Qva7m+vo4CYSYzIDBydszSWHnvVEOlFYUPoft7Y1ygrqCcD4AmDE0JFkWiEoxO2T68mdyNYmBJhdUJXnwTEd6xbaaSGbSaom070WodknuLUS36VUUlOS3Tpmt71JGte2PkhO0DFyZi0ZRehwxCZTi6tw0RH4tvJBgVrJK9VYwwySoKJ/QSHYsxeAbVDpbKBZSChbK+v6Zl2nTsERillwsQxD72qIYdcBKs6qkk+P5GkX7eFx2/d+pVLbhtTLUoXEaItK5C+gaaSjyJrlBuSOVLnHhyl1P6gtzlLJVLywVedPi+duW7CWluGqU1Q7dE4UZkxmKAhXKOShSFG5LooJCGd6wpfcWoGkRq3+LEs1gshuII8fsNRWIsRmVUUuGlQBGiw9smRYCWaTObbkCAQVEF6jZa8AZom/gdKA1RgA6qAT9dugYRRcsk9JIjSXTCYunpV4G12aQN9iDTifSqkRBQeViqMrYPPW0jbG5ZeklwMdSlN0POakg1sgp2jnaxUC7EvP3lCmHBOk1RqkQri/clYEGVbG5tYX22YdUYSBRsaiUk2pBqFdioNdwG4fftU6e3EEMia5WnqPf/fNdfWlrixz/+Mc985jMP+pw7rGDNfY+FYopSNN5DYhxGhcpFi2VF24BRCYmu6JhurPhjsLqFxHqxlZQYFYoybG5vYVD1QSmGlaPynpYxzGbT5G7EQjkfJjFjKXyJogh5dj7Uzgzl8UKZQasNLZ2ya7RI4YVMl1gdNMNKSsQ7FsuNtExBzw5wUjVFIULxCo+3DilAcodPNdZYWmaGPfke+lWfmXQWqxLQkJiaZgwDWDffnELVOWRR4iS13yrOtV5AfCOO9iGPwgW10li9dlpIEOmCQVHGD0aPBbwopLFayjjxpnWSu1L0dKBdaiEpAFHY33TTduYXF5ldvwGjFak1OOei5SS0soxhXtLptEgSS6IN4/mc49RbsNaledBaHGg0qTZoZdjaPoLSl4zckH61xKgqosAO1tNCsUDuCnpJj6mk9oenGD1ixzDjlmFK2yYc21P0MrBjNatrCIFmy71En7QwrBy78n6M0p3C6izmhPabfkl0rdCoxvL3EmpGF9UAqBAMi5XBiQpjPRY/AY/VNZ2smjbVfj4NdIyia3UM+IK6oMjeOc91ebrxETBu6RQ+WM5VCRqPUn0ULrRbHIJGvGFPvkjIJFSRxoyVfxAG1SCOK0Uv6eERcjdq2JVgVxo6NkGjWCiHWB3yZEufk2jLoBo2yrGOtHPhC+aK+Vh4ZYBVCdrYmItr0CrBqPAlmshaFL4g93m0mmEmDd9DCDiKvsjGlaHQUgfSuagYa8qqjH3kmElDIN2gCmUe12cGG+M69s5FFsD5iqEbBAtbfKRVTaCMkcCoEZSzfgkzieboniXTajnifNwfP/bmQn3tZUXSSxojez2VzKLxaCVYXeFEEVIRXTMWCl/QL/txGATFelBpKlPnmte1zw1xRkDEoJRjvlgZMHRbIFis+1ZWDrXy0itf+Up+/dd/nWOPPZYbb7yR17zmNRhjOP/88w/6GndYwbq13Wfd1IjFQtF3XQrfZjpZDPRZBV4qnJS0TQtPGbXjhExZcpdjtMV7j0QqKEyiYXDU1YCM7pHpDOcrWqaN86HAu5eKCkdLa3qJYaksQAyiEgTHUrnElnaPjm0xX3hsWqK8YVCNyKxF8Ij08VKhVEaiNEtl8MVkJgvVmCQnTTJS38KNPN5UkISgjtznYYCqukDc2pYeNeVaByDEQ2otUWvFmIwJZ+5HWz7Q8KsTvhOWrd/aJyO+TrVRwfJSy5Gp4xOJj4saJGOCf3Gpz8L8IvPzgdZHwaA/YGp6mk67hfeePXvmuNvxd2XDpvXBMorVs2obr/Yl+b2et/GcK40i8KIWi7WWtmkzk86SuzwW73cMqhELxc4wmVR9ppMZZtN1oBTdJBRFuGpOsVgqrl6AE2YsW9u6EUZN1KVyDfUK0LVzWF2yc1SiVMVWYCadRSmJaVymod1rEVd6oXAhWAiE6/rbKf0QLwlKGaDE+TZODFYHIeXFU4lHfHhXIxf6ZCpZWWBfKUVqBBf9uv0q5AZbFXy5ecyZHVRCpgOtHUgKNVasI/RwKP/h40ITGiFF4bC63yw+MU41qqg0iEizlFi/GkThGAQzKJz3JMZiVULhy1B4wg0bqrdOrTPKkJmU3fkevHjaph0pfrA6g8ZHm6DRDKslbHQfGW0oXYlVllLKWAJz5Tdh4rjfu4qWsGyPSa1MSIUiYyrRWK3YkGmS6MPMnWBkOZd1fHzmPufGwY2MnIBUCA5FgoolUoOATRi6WTKzjrtOJUwleoUSNf5ux6ul1bW7BRXz+Ks4Nh2aBUqZwuLoaEvhg4Acd7X0yyWu7V9H5VOsHsX32ULEx9obde+oELCo6upOBYNBn9saHo07CCr4YHH99ddz/vnns2vXLjZt2sSDH/xgvvKVr7Bp06aDvsYhCdYDVaQYjUa84hWv4IorriDPcx7zmMfw1re+lS1bthzKbQDI9G4S3aWXtJgv21Qe9uQjRn4LHVMwxXZAIb4IxRG0pc4tS3U30jyWkR+gUIzcKAwWFTQyjTCsluibsMrNoKqjhi1WGZTStG1G5auYVxogohElzfEQrFGnLVqpZpL24pkvZqh8mw2tgsxkcYBrXPQzhQAaT5KkJDphabiEtpqe7aHVylJ6+0JRSZNHBsunLJUeoxRtu5wOcjgQjKllyrIZQEpIWKaDKx+s5sKF1IGOjR/cMnuMiv6mux13l2DJu/AJ7Ny1m36/z7HHbMOaoCCVVUmWZasCPuoJatxvVdvnLjINGtUEWo0fpJRCi6ZlQpGJzEDLZsykHfpVH6sTUJCZ1nLkL0M2tw3XLjlGDq6ed2TaMJuGfNXZVEc61dK2jo4N/s2pBHpJ8KdXkrBjtMDufBEoY2DeIm4kzNgZptNZiJR+FmtBZsawPtsSJmIRFqs+w8qglEekxdD1SPUSuRtx7dINWG3IXZtUT3NUN1lzJIWc05B3O6xWpv1YGwJonATKc67w9KwmNXEsSShy0DKhsIHWIQm1EoWXegEJDVSIhDjbEIlvQjlJ8dRkvVE2FvRQVH7UKGhKEXLGfVBSrNaI1411amLVsVC5LMwDCo2TsHpV5cO7yascF4XA0C3hpAIvVL5qruXEkXtBpL3C9VCPU62iD3lFR9pAoeJR1OMrWaH+1r7HUJVJNSk0pcTMh3wXEPq59B7nO4TyqgB5VDTAeYdDkWpD1xo6dm2hui+EnOEgfHSsqq4QrB5gZIRS4CSJ11z5/N2kxxGdo9kxVMxmOfPFzmDli0GrKii5TeU6BVR4qujMvm3WYB1HKZZyP1RweYgFIq644oqft0mHbrHuryLFy172Mj75yU/yd3/3d8zMzHDRRRfxxCc+kS9/+cuH3DAhCDStPC3Tp2XKoAUrjVYZhZ+lcDkduxCT55O43JjQr/qhpKE2aB98K4UPNLL4QPEIQqIztLKUvo9VoQZxXuXRl9Aj0V1GbheZyciMihZt0Gj7VT98CJKSu4pKKnq2h9UhV9Ioj9UVHs+gGuF8BQpyNyTRLbQyVD5oyJVyWGNRKbihZyQ5LdOiXy7Rtp2mZOFysNLywM9MzMvVYIzgfQg+6SQKJH7I+xxXq/2szZ6xxPZ9hc2rFaeOUVsxGAjCJF3fX2JQ1N6FK6wNNo+YYG4euXUzznusCdarQZMk9RJsQiUVGh3yVeNF6oClerIRCQsBhHddE6vReor/NQIehVUWiZM/KkSWE33KYUI0YUKWYKHV1rhSwshVVGIYVI6pxGJ1sIw7VnHCjMEowfmMmXQTe4rdjFxFvxQGfgmRHKunMarClYpiNKBfZRit6BgC7a2EUF3G0rahsHq/CgJCsKRmEe17FH6a3HUxymG1R1GQZiWDyuMMZDpBqfEJOXRAalSTYzmeepHo5UjtjtUkOtDSi2Xo58KXjNweRm5xjMJ0KOqatC28aJx0UWoU9y9XWhIJRVO8Cn7PUI6UxuetItmau5AbPnJ5tJIsTjlyyTHKkJosRmWrGDtR0dItrDEhfz0K9pEbNs8ccsd9XPDCBIXXT4GyeKlWj3UVWlNTws034utFy+rBlOEkY7EU1mdE1iAwS3VFJY2QKlgqC+bLhTgmDYJDKxufu0SpEi+BXvXiQXlmk6IR8iLhHR1IuAZ3QEVwIwgiKR6DVoPYH4EhqHxY/UlkbLENpUh1SqJnyYyja1sslXN4KXG1ktMszFYvFLmsgO8vWvdwwYmKFPa+99/eOGTBuq+KFPPz87z73e/mb//2b3nEIx4BwGWXXcYpp5zCV77yFX7lV37lkO6zVDpa5QJGWWBIy3gSbZByN5qMjl2kZULKROUrFopFZtIprDZY1UJoI7KAVQmlFA29lJo0rIqjU1qmRzfJSLRlqVwkdzkQUnGgG+hbEda3NtCzU3jxwfKNEmVPvofKj0AZFJ6hG9EmWDct26KrRiS6wqiUoQQhGzTD8CEaXecZhFrBSmtsosgrYaFcYOiGrMvW0zJtMj0WGr6S66wvESZ6HXMgJdCuKw9cnkzXQu0j1dQCiiZ6tGVXLje2MoJw5cDVUTOHcK2aNhRCJaDF0jOT6FBcY0w6N1GRWjUU4fgHLghK1IrUlnGsaMeYkaoAbTTeC6JCp4TawnudH/+rq3A5HEvlAlZZOrYbaG6TcVTXMJ2GgvFd60H1cZKxtZNix4ooa6VYl4aJupI2ThzzxRwh2C5U2jI6pZdkJHqapWKAkDNyO3CVZk7yIAiVBknwDFA50T9WNf2r8CR6Plh0ErZ6aWG0YljtJHclWim2tLfSMR2sDi+79DBfeGbSUAR+WAldq0njZF0HLIkISaSIdwwdVy+W1Ou3KhJSk6MiLarRSPweoCQxGdoPwrhSGoUDpVESvgWlwioro2pIXUVrnOKtg20qX1GvmDNOlztx5C4nlzzEN4hQesWoGqGikHQSrKrwbpcpZK1swwyF2sV9jEoxamU8wNiQGid/gSoqIi208k3KnjRxyIG5WShDWlT9/dT9qoBEJ6GIhtT1twOzJrgYyeub9gZfu2Vbx8SyoWt+Bvv8Lur/ewyV75CZHGlWsQn1AbTSK4MW4jMXLoyXHy9UoVY5GlSCVRKtUw+0EBKERZoqwerQVsm5NXAHoILvFOux7qsixTe+8Q3KsuSRj3xkc+zJJ5/MMcccw3/+53/uU7DmeU6e583fTXUMRfRFeowSCpejmcbTJTULCBWKNka1ETXEaMj9EKValFJSOMWGVo9EW+aLOQqXk/s8RgcHaOuZy/fQr5ZizqlE60fTMprcLzWLZddrpJraAlKGkYO54gashlS3GFRQ+SWs1nRtm6FbxEgZtdHo7xAhpPPUFFhYPL2uvuS1x5bhbzz0qyDcs7GFzmtpIbGfEhN9nGWY1HX9bYyNp/BtxWT2+FV7NxZlG6/VFE5SIQDCxX+v9Q2P58jtCyuEnQi9RFF4RU0cIfuvHjPu69k7neXAWD47GGjSpNiUUpKqWNs2ruYxvg6tjwEcLdNmoZwPVboI5SZTrejWK+KhgZlm8osZXeRFjqCxiSZVCdppFsr5QE8aSy/psXs0IrMZRgmZFkgVi+RRA28TRmJYrUfrCu+DBVNJnTKWo1SwdqiFjarzHVuIQCkpIahpwFI5x6AaYZQm022USpt3HhZwUPucrOvc1RsGVRPt2a+Cx31GZsh8H6ynEg1+itT20UowYvFYCinwFHGSC8FG9cvxPlq6tR8eHy3BMV+6UjE1JwgcExmGQEPKspVZXxOHjrWKakE2vghAXQ7TxzV7UT4KTo/UdYPGlVZZFrPLv+viEB1EhghF9FmHa9Xfx/rUUIqwWPqw0PyK5yxjixKQkPcelm8LVbsMCqVTDGFd6ZAapFZ+tweF0FIFaOWjj16jlVAv7uHj/LQ3NGHloalU8/09itKbqAR4vOTx2oaqbGGtID4L/akELeWq6x1uHG4q+HDgkATr/ipS3HzzzaRpyuzs7IpztmzZws0337zPa77hDW9Y5bcNDTMULqXwIefUqlDoflbfiEIonGeh3Bw/7lCo38vu4ItRFm1G5K5iWIWydsNq0Fy78CWFL1kql0IeqzKNho4kJHqWllGUPtZwjUu15X7ELcPtdGyX9dkWvHhSTSzIX+HFkWiNVUkI9y8FUUIhVVjuzi2n/NQ+VwWM3ChQYTiU0iQ6wSlo2zbrs/UrgmAaa0jHZGwjgWsdF6jE7RLrhBIoS+cUePBa0FLrr2rFpRsqlWDuaZZzFvcuRHEgobo3lAo+wyPaQdHwKwTzvmnpW4NxIdyUwHMOnegmvaqQovGxQZjoDGEt3EE1YLGcJzMttNIhulTb+G6T4Cd3JZlqNX2YJMvU9FJ/gDWWdqsXIo3LUPzfxGtNp9NBUPgK0SmVhJVzkpgDnYjHSY9EVzENqAwpKEpHaitMxloVwbIjWEdIhVYWo0axT4OYNSphvlhCWIj5uBs4omOZTYOIMUqR2n0vNehE2FN4hk1Qk49+9IR02MUUDik9iQLlS7RNES+YdoIqBSMas15TqGEUYjoGvrl6cAQbUKrANEg94RNp/fobDSUTA1Uc+jtEIS8HfoVAsKhZqhQlo3gLg5eaDvWMp0nViq1SNvTjmmNqebzWVKzzFRVLKCq0UpS+h1UJThR7Ck/LhOIzu3LPppZpUqwg+E3rfO/gmkobxcFHQaGUQcSQu5kmXaj0JTtHt6CVYUNrIzrSrVqtHdFfW/pGp1GQ56R6LrIHoZsClZ8iJBg1pM5kr7/53IVqUOuzlN25xepFIKVerkR8wnDQopNZStcNc4eGpaXbI3hp/3Tv7ZHyszcOSbDuryJFu92+VQ34vd/7PV7+8pc3fy8sLHD00UczX2i66QxdW4AeUfoWw6oE5dCkhLVKr8eqHoNK0bUWwZC7gpCcbfASrNCQVwftWHFHYpRgiOSUQIcIkRbqUPkBO0Y7EEKy+a58J/PFHJVUzaodiZ6J2p5jWA2jH8cBYZIrfVjGahCLANQpASGHLpRQJE4ehS+a2ppKQEmYHAIF3F5JZNTWqgRSrHZghtiRWHZOVPiBUGMPhffBqhVA6tpoe308lVQYr7HaUMal96DWc9XyzVl78j0Y1JVpfPTDHqaYqgPcNOQI4xjzVxvmioKWKWmZBKtCgYfCF9FCV2Q6o3RF45/v2C7dJCykrlFUQ8/3f/gdiryg2+vR7XYBjzEhXUgpzfU33Iy1mrmlebRVoYSmhd7RfSAEweUuJzFtijy0TlSKl4zSZ2iV0LEVEPysdXTnumyKYdWlEkfLeFKjKL3F4OgmBq2k8QOXPry/PflO+tUiWpVUspubB4toJbRMi42tLaHucPRP12lURkdLXAnOh/HVr4JFlhhF5YXWdIIvK5SJqzb5qmEiSuPwTgV2RIfgPaJiIJTLjAJ1AYvlMWZUXZ0pUMYohfdVpHA1lTgQ1SzyEHzqQSkMPnPivjpS3zVW7zLxH4qkhvvUXl3X/L1iGNXRwPHbC6yLB4ZRjBsSNU/LTtFLwh2sUuQEgZwZuGm4h0G1GwjpLuGSHkUeBW69LOMIpZKo9ClS00erkqHTXNdfirm5moVyAeLzbuseTWpWVxNSkZitlYowLqLq4YnFFTSV7wEaR0od6FQHsGUmUNmpFhbKwHJkxlP6Nlp5jNJMdUO+cJKWkY0ypLdOLBwSfEgY2u/+2xs/V7rNeEWKRz3qURRFwdzc3Aqrdfv27ftdJWBfhZDzwuJuuJHcWowuYupIBRp0YvFlH5GK6R740YiB1oxGI5z3aD2ivWETJoNEB2tToeIap56K4K/JbIuiDm6IVFPXGoROYyU2eZBKo5Uh1dkyXRiLTIzXXi19GMDrUsMCXbyE0H6EmFcboo5rKsyJRxMiUxfLRapyRMf3UI7G3+Sj/GzIjnruaSJdVaSrVNQ+a8uTscilOocuikhZKdSWQ/IlPrWBZuIJ08a4dXuoWLHKx9h256Whmg9nScZxLEeDL1vjWjQtrbEqUPKqmdAUrk7diuMlTMrBH1YX7i98TruTsX7dLNYmJEmC90KrlTEcjpiebjHoD9izZw+z62ZIkxSTavp7hnhK+uUChQ8C0/mC0hWU5TSYTfQSG/KBvcUoT+kTEu2ADKMSrB7StW02tTo4ERaLPrlfYDZdj1HtptSgIlgaJWFFknrZQoDS98n9sEmZaIpJyPIybOOMRKIULRPSRxZLidcIkcRTLcVONaLywXI0NgpO8SF4SaWYNFQh0yqkpIxXAQuMEYTAmaD0BCFvYhpLdBxIGKfOu0Y4ahWrqtXULjRFJ5zUwtQE6lM8IqEqUgiyUoQoXtfQt8EdcCCE771t2xRuOqgIUlK4AghVjjShvwQh9wPWZZ6FQrNjRGQuBmjVxkuHsNBHWG0rFJwArdIoDMOYNCqwYU4chS9wvsKpsNiBx2OVZbFcJI25uM3MpcK8E9RiHxRM0XgsiMeT4aWDiMWJIjVLeGkxrAxDFyLTjQ6+6dRAJR6rlnBeMNoBLRQ5C4ttKhdyba21WBPy70eD24MKNtj9UsF3Ah/rOMYrUpx++ukkScLnPvc5zjvvPACuuuoqrr32Wh70oAcd8rWTrIXLS0qVsGtuQLfdojc1w6Dfp02CykcYk7G0MMIYxUK/D9qivMYkYNKSrl2Pk904VYCESN7aWtVjNJCNhQMAOtaGpelax7G/T0xQ7ByVeAl+CqNCGk7w9WgyE8LUF4pdFC6Pfh5FSMKlCcpQymJiUrsThxhPwQiVKxbsPArNVDKFrgWdFrQmrg+5HBAxXvB+pXxSK1qde2GpFNZny8XgAwUeBEedWlSvGavGr6FWUseHipXtipY0oej8eL3Snx+raeW9bW6jFVNJTcfXEbGBKVBoSqmFaZi4vYRJxaCir92iteaE449b8XD1IhGBqp9h49ZZlFY4qdiT70GmysA4RCFSt1cAly+RVpYFtY7edIdjekEg9ssNjJxnNjX0EhMFfyiyb5XCZF0WihaaUH1nGLnGlgmT4lT0yfWS5Ty8naNb2DG6Jb4DHYsFaDpWUReUDwpYuJZWMJtpUqOagvKDSphONYkaIVIrYuF4aawvi1YFKi4qVz/t+DfYKHN1Oo5YIG/ih+tvpaZwfXO8wbMcKODFYbAYbUKalUpAhfQ2FalbrSRSomGBDaUKQh0xi0jRKMvjGA+wq0eXF9jc2sTGbCOCMJfv5vr+tdTKqI+KpFBxQ/86clfGHNKUEEgVE4MZEWLPNUIPwaDVKK7IYtEs4XHR514CZWy3jsp/uJ8T4cbBDQBxf0xl0rb5e7x8p0hJUBAgUUtoZREKEIdXQ0rvmSvabG6Fta3dWM1qpRyIi77W0JbpnqdyCnA4bzHGB4YlWTvQ8HDiwLWC7+AW6/4qUszMzPC85z2Pl7/85axfv57p6Wle8pKX8KAHPeiQI4IBZpJbWHfcVnLXorN5M0MHC15BZwMjKTl6usOGdVMkiUVrYT5fYFgVeAk0RNt2ERy+CsEEVoeyBhVV41MoXB4/cNNYh4lOca4PMo2JFY9EQooHEDXuMAnPpBme9bG6U9FM3FYZFsp5vAhpLKcYSWcqcTGnLpBOIiWp6qFwtKI/j0ShC4MbCXPVHrJe2tRbDe0B8SpMFvVgb2TJ3uJJVvxTo5pltvaF8ULdPw9qP+3e1wxF1UN5NK3Ajvlw64CPg0oh4BAW8FaxmEUdhFLfQ4KAWKpcrI6jAysimtI7Sh8UJcFhYxUvURL84OKCX1br8AIaZ05IWQBBm5DKEzl6kmx5JSWtWjixKBYBja80r3/1F7jw9WdTKYNXIQWll4Q8Vicht7RlQhWfes3LURUKpNfR1y0TCuWHn3CQVYpalaozSH3MPRxVi+zMbwKCX1CjI4OTUKcpla6MEe06luxbx8ZWEA658/G4KlK6huAW0WgVrPLQ5bUvMATPrKVKhdSmIp5SV/SReHZI7AhCI0QTB3dHPaCDWpO7EV6CRWVUXAJG1c9EiLSNtcRFHJ464rheN2uN4TPW1NrXGlKX6oIgy0pC6fvcMrq+UdYLn4dej2sZG0LqDFTU67KEopt5vE4R+28Qn9GS6LoAhW78w0bV/uVlXmkl81MX5RBCS2NfiidURvJYVcTjgxsLBVocuR+iq5u5caDjMxkSpXEyXM7/FdBaY0hZzDPyMiXJNCWafMnRsgl5sbhGbx5eHDgq+A4uWA9UkeLNb34zWmvOO++8FQUibg2WynlM4ekmXTZ3ptg5auGKlMKBlOB6PeYGYd3LroUeXdq6TeHyUPJsNGJYDdEoLFmMfHTgVQiEiLRU6UPVFRdXz+hXAzKTMvQlTtdDVZgr5liqluiYDv1qwLpsY4hWLgratkO/6AdNV0Ie3qgaUkpJ1/aYNjPMl3NhIotC2cWqSkqB0gpUgvMlWgdat5KSVGWU/Yq+DFFZnIjGza69Z4D9yJea/oWwrmNRp+rFbSJCka/O3wNicMXKaxwQdVvWamOUt+NBBSoKvkqWF/VuIKvPrzfXxsRa3bESQjGqGr923ZfOu7B4g8/ZPnSkOqWb9DAqFDwItZHDOS5GqS65EKld+8sTXVPJ9Z3qqkIKcVBQhipCVcoUlkE5CBSfVLSUUElGv0xYzLug4a1/+Ele8aePw09lCIZeXE81M4qWialAMR+3Xnpu/Nn92B8LRbBKehb0GCuglGrGvUDw1YkQasU6iIUhFCE+oI6aV4RydovFPKGST6DOyxj9GepTB9GtoyBx3jXWqJDHfvXNN7jsSgnlBkNvRw+maBQtlAqCu1YOaovUxOhW1xQ5WK5zHWrmliHydyxYSaFJVIKgKCUEHUqkmUN+sx9zi4z3ax1Vv7If62j/moVwVMzlu4nFCDGqi9EFypeAxysZ6ychqLshGlgog4+aCqVi4QUVDQZJERyhulPIv6VJWzLNt2BjjEmde102BTmkiStRCF5aKMJSnEqZJk9XELwf0pdRpNyJlLtqIrK1UuS+S15NIT5lqQzBZWUOKtFoa3D7qKF9uBHWY923KVDd0angA1WkaLVavOUtb+Etb3nLz9UoAEWKJ6FfDUEGWLWeXjJFqRXDfsE1N5TQyuh1hTc/5wMASGoRrdB5BUpR9VJ8otGFa/JI5u7WwhRCPquwA9h9T086p9ElVG1o7YDeTZ7WrgozqtCFQ4xGOY+K4YKjLR3swKG8YBZi7msnwbUsSgQ9cqjKI1bjM4Ppl/i2RTnBLAxRpcP3WqgiTPTDo6dp3TJEVHB25esz8nWW6R/3MbuWKLbNYoYVqnQsHjfFaJ0mGQitOYcuPD5WzPGpRhdBeLt21KC1QnlBl0KyGARnMZsw2GRQTtBRluazKvRBC7QPcysCosFlMNwquI6HXoU2Hl8ZpFSoSmPnDboEXdFcQwm4NGxTHryFJMTrkM5Da07IZxRVG/JZ8JlgRoqqI/hM6By9SH93ByoFmYeRRvcNugiWuovH20G4px1CNi9N2pzJgzNZgksp9JEKz6UraSSxyQWTe8zI4xOF1LUWnaArwdvQfzUjYPsVrh36Di+YURXGhQiq8rhuBlrhMtM4k0UrXCsIal14VK1RKNBlpDmVCssUGsUfvP1pLG6fY9bC5m66YtFpF5WSQSWMnGdz2+A8LFYhN7gp6xhP6Y6t9zqoltdlnU3X0zZTLFW+Wd+zZ0M95UCF+OCbEkiMbix9BQzdkOv6N8QSg7OUvoPVLRJdYXWJoSKJBa0FootEUKqkSUuips4VqBBsFSb/IsYBqGg9ZghdErVAJBrjeaE2uG9SPmi2G51Q310i5Sy1cuQ94PDajwXlqSboyUvG7rxF25Yc0clWKWthjo7U/ZgfOgR4hbCgYDUGZssowzG9zbRMihPPjtF25otFqHNZVdpEMXsJYThSR/eKjsfFvtJlEPqEPFfGUpSCIhcqUc1kM7RNh9JXFD4nd0MKF2qni1KIBKWn7rEmt5cEpcqY/lS7AcKCCEaboEyqBC+WkeuyJ5+mkiBw69Ry4wTjPaIhs9DJbvuYXC8avx+6d3/7bivcYWsFh4jBGMqNo2OHtLH0S4vuWkbe4ZXgkhBPK8bgWuFxzMIQSW0QKJXH5A6XGZRAe5ej7Gimf1oxWmc46t+E+ePAjMC0obUnTLo+UYi2pIXDZ4bhpjbt7Tm69Iw2WHrDIDwximJDm2LKgFK0dhWU0wnp7vCx26UCMQoxirJnace2AahRCUaTLFUMjuqQzpWY3JEslohVlFMp+foNmJGnnEoZbbSYkZAtePIZjXYaURqXKUSFZxOjcJluKon5RGGHQTBUHROVZGmEai14lAPXAp+AXp6nguDVkCyoQKdtqGi3SpYWWqhBim97fMuTLGrEhOuYUMAFb2m2iYZiKgjBWrUWHe6nBMwomMViAr29tLMT/qEI+XC9Esk1uq8oZ8LH6jNQSwpdxOsShKbyYEpBNJhCKDsaXQVBWbXCfauWwhRgRwI6vB9JNN4EQWggpIvkHuUlKCghnJlkz2h5kUcIi10nBt82jWDWcbkxnzWLjdY8HbpyQZB6CYqbDVSyrgSfav74RZfzV39xDtNVjutXDK0hzdIQxKIDHVx5uLlfUVah8H5mNUMX1vOsdYPCezyBugtWrKb0CqNSUmNomRZKhcIQTiA1Y4tki9DPQ2pIZjR1JpHHs1AuMqzWMXKWltlDojUew9BlSBXWL010+H7DfSu8KKwuSHROovMVVqqXDMUwWkqMCSgLOET2xNWniIKl9ixWeB+KrSz7a30sCLEskGqmqF6pQvCIr1A6C5H6KgSLee9wkpD7LnOFomU8u5YqNvcU7Ui9Dp3Qs7VSQPPb6ozpZB2B4/AMq0FYexZDJSkt0xprp48uDINgY2rNkJqkhxTEUvoUIQM9TygcoRuf9zKDVPeHbxbiKFwozzmoFIMqwWqNVgWpcgihxrrzMSpbhQAzozSVFARLOfRc7dv2CCpWvMrdFHvyLoWvlY4o2JGQeqgqXJGjFSQojLvt020OdqHz2xN3WMEKGudHeBU0yn61RKoNveQIlnb2meq0mJrt4FC88vLnkmjPay/6MLoUVF6hCodeGDI4YSO7Tm2x9fM78d2Mzg0Vo81tzMjTKYRsT066mLD7pIxkANlCHEyJwrc1Ylpku3PaOwCt6B/VpnftiHx9SuemCtEa0YrBFkPVhs4NgQ4uZ7Ngve4sGR3ZA4H5u1ha2y16rk++dSPZoEA6KarydK9ZoH/cDGVXs+4LP8MM1rFw4hT5tGb2RznZ9iWSxZSrn9xFl4pN/+1xmcKlCl0Kxayi6liyuSBE7cBTtRV26NGVYAZhFR2fBsGrK1aUz9VlsCzNiMayS5cEkwtVW+GNwmeK6sYOi5lHTZdIy6OHIX0i3+TpXKcxRbBAR1s87e0an0C+yUHXoROH35GRzsdJ0AZhbvIgQ0ObFKIUutQ1o4jLLLqAsgfaQbZTY0bQ2h32V+1gedqB4FoKb8COfGO9pgsOnyrKTmifS4PwN4WgvOBSRdmxjdIBsT0SWAA7CMwFBCEKoOLyeqIUkhioAk2sSo8kOghLAeUEFZ2hvl5g3At2UIIG0eEcLYIqHTpXqNLxyqcFduj1H34UVREKVWgJC31PTfeQhSHtkWe+H1KpWomm106w0y1ayXLU+o2DXVQ+TNqKFh4wqmQmnWJzaxNtY0mUimu0Bt+3iaOilyjAU/o+hVcMqhGDqmSumGfkZtHK4WSaoetR+r2nkhDpb5RvgkcUkJkRM+nNaIooZASrRnHqCxZoTQ8EsWsiVamBKvol4n4VAsmaKNg4f9bLK9aeR4VCVG19Bb9w+KuLpqBts1BARkqUWmIqMXRsj4WyIPcl/UqhraZroWOJBTpqF0m46VTSpRfjIEZuyDWLP473MGR6XATr2G4drb8EUQ4REyKopUMpUygMTgJFbKSNUR6hXr/WNZZ/nedbv28Qhm4JWyUsll22Dy0Kx1QqHNODwu2h9EEJDmviVrGu+nLhHDeW5RA+hjBPjHzGXN4j9yk15WOVMJUq1qWC+JLUDBmUIYfaaEVVLXFbY2KxHgIWFjZhkoQsLTGmCANMeXqJpd1rkS+O+H9/6z1c/LfPoWMV06nh7694Gk9/6DugLNlzxlHMfneOzndvpP2zLm6mjao8u06bYuYnObrypLsL8o1tyinLYCtU0x6Ta9o7HS7VmMJjCk85naJLjy48ydCzdHSLmR8tcdMZU2z+5gifKhaOE7b8H2Hh+A7T1wwZbkrJ5iuqdS10IfhEMfvjkl2nTbPhm0IynyOppeomSKLpb2ujnNDeUdK/7zaSxQpVwcZvLeFTw+iIHq2bluhe32PqOk9ne87Oe7UppqF7UxCIugwWnzMgSmNHwTJVPggICJSorgTtgpXrk2Ap+kjl2JFQdhWmikLBCYjCtaDqCravqETjSaDtYKQRLWS7gpXsTaSEHQyPdKG2YssxPTtgVCQUqZAMwA6FURatVgtVB9IFKKYFkyvSOXCdIEyVD89lB+E57SgIY5sL3oSAF58oiulwXY2imDLoQrCjEC5tB1HKShBmVTsIVtEKl0ULxIOYoIyEZ1GY0iNa1dEqqMIF6zS16LxsHMWSGfDg2haX6WDpIoGqTzS2X6Eqh3ISFIeiClYrDmnZhk4OTjrXXPePnvq5RoDX+PMrzuYVz/+XQG9Ha/udf/M09tw8T740YuumHsYahmWJVYLoJAbcOcQHK3ShWKRtWmF5Qq3oqpVVl0pfsFQtUviCUVWyO++wWBoS7VFM4SWh9G2qxre1llUgYxGZgdrNXcawatM2o1CeUofauCFlJASEOZFIdUpMRXEoUpRy6JgqEhhZHwOhgGjdLhf8CPRziNan8YG2TBvBhSX9XAJ6wFIZhHxq0pBTrD0bsipE+UrFUtmi79tYHVchiiVJFTrm1EKi2wzKOYy2VLGeeKozPA4TNbyw/FxU3GIcRZ0rH/yhLSrphoXizYDKKyrfpvQJorOYrgTjZQ7rng+0d/AV59UI52/BqhbTyQyFb9ExlrZR9Mug6Myk0wAsliOKckAo/C+BHarfWF04B4WTHrtHGxtfplFCLxE2t0tSHZbm274HhlqzNOzSThMUQp7f9iUNS9GY/abb3P4lIu6wgtUYx3DQY2mhjdKeJIE0UdxQ9ilzh9eG57/nWSyWnnWp5eVPeS9/89Fn4XotmG4z9bMRqqiQmS4Y0/ivpq4r8Kkmu24PbkOPpW0J3ipmfyTsOk1RTClaexR6jOpLdw0pZ1pIdKj0rs+pplI2fSunf2RGtrti638GyzAZQLEuJRlGX2eqMSOHrhRm6IIA2NhBVYLOPMMtWaAvnZAuOspeGCDDjUEwu8xgcocxCp8lbPxuESb8fsGG7yqqjmG4yeLTYGEm/dCOsqtxKSiv8ApcJ1DG3gYB7G043idBgNihoF30rSIkg2gVSKBXszkVzTiwSwqfGPKNimRBU8x6ipOGsCPDW0FXCt/2ZBuGaCUk1rG02MLnFtPXVFkQ8MVs6N9ySvCpMEoUPgtBHMW60NZ0PrSp9vmmi5DNB2s8n1GU3UAzZ/PgYjKmKcCMgkU/mDaYHJL+GBMRlYmaKjY5mGF0NMb3rqNf1aUaUlDeYEYOn5ogaNWYT1sHBUGMRomQ9CtEK0SroNAIjeNTrEIPS/AeVUezjqrY11IPfiQL/jUxKgjdWrgaxSsv+EywfaIPTjS86Onvp05O/ou/eBwvf9FHEKv58785h9mpLjbVDNwSI0CJp8hLbsnncdNtZrJW7XJuKEatTFhRRRzDSrNQpJTeIJWnyqEqPeJzsBqVpWDWqvqzWtgKipGbJtXz4Otc0kDWOV2f46K/NVipIZfTRssppLgpVSFU1AUK66IOOlqkdXk+x3gxCMvIhfSWyrvgT5RwDSdCSUm93urQDehXfbwDVykMQ5wkgMFJHnNOOwgqKhuCMIJKI6ouiyggOYXPUU5Teo/EhRx8LNwfsoxNpI4cqS5w0kIxwqoSY5YIQVBVExgVnjMW7hdHvQRfeH/h/5WvcGpIx5Z0CGl5O4aWkavwYtD0aVlNosNyinVxjkC/B1+viVUnS99mLl8X8kWVMJOWTCUjEp1jlKdfjoJfOw2pUN1eWIlIa43zt0NU8J093eb2xDte/E+oddP8P+96BFq6tFSbqvK0rUG6LZLEsFCF4ta/96R38z//7rksFrqZ7MQqJEtQgxw/ZcEJYjWubehc38dt6FHMpExfU7DjtIzRBoWqIF0I1CAEq8gbRbmuhV0qcS0bfKdK4ZWmmLbYQbyXUagy0Hwu5rN4ozF58JuJClkBrVtyfGbQZbCKujeMKHuWqmvIZyw29+i8DmgBnxqSuRE+Nbhegi49ZTdhtKXDYLPFZYrODkfRMyEQZ+TRZfjtU02VKaquJp9RFFPB8jM5tHcE68jkYCX4HqtWsPqSPk0fuAyKGdBFCBByGfg0/Egq5EeUdNYN0Vror9PYrKLa1cLMG/Isoz01QkThC4PqG0yuKNYF61NVoT0ISCL4jkOVGrQgRqGrcJzLIk2dQ7rko9ITBG+yFIS/qoKQ1FVQBKp2sKDThWCBF9MaUyxz39qFa+IEMxK0E1Tp8XY56EsUiFW4RJEuBipd5yFiVrRGMh1oX62w/QqfBL+pRAGvxsJzVaR6G6sUln8rhXJhn29ndQ5R2OeC/3YcqnSgdey7YBXXljDAK5734SDSvOZ3n/MJ/vrdT6ZQ0O1tYArIhyNe/LyP8Oa3Pp7CjVhMHdbqJiK03UnxqgSvWMhH7MqnKEYen4c8z6QlJJ2UigRfOmQQfaapRaUJaLWGkG1aT+lb5G493WQPtSj3COKrZddE4/sM6T9GFcvErq7r6y4L89pnG6hS4r7lGsThaN0k1GhdC/TgXxQJvsSwKlaI8m6ZLliF16FyV6qDAK58HTE8QEWB2zKzzKTHM5UYCj/guqUbYklUxfX962L0c/SHxhiDOioagm9YYsqLVgtAWLw+tD8UcxDlm+Alag+y0uioQITrBWYlHBfyfDVh9RfnQmEOVMGgGrJUxvVutWryilXMqQ0LwCf0qxbzRQ8nhqnEs6E1wPudVFLhQjorpSuBIUqrmAqkKPHgFWUsJ3lbIixDsW8/quxn322FO6xgxQSN//99+mcoZ7NgGQBzJ7Qou4rOLZ6qFXyMb7n8Av7wqZfxpx98Fm9931N56Xn/C6+DUHXru+hBgR6WVOu72IFD75ynOmI9ZuT4i/e/lZc9/UVc/XzDpn9LmyhWXcXJPVowZm6A3zyFLhyuk2AGJa3chcm4Zch2CeV0inKCT4PFVLU1yWJBMZMEwbsErmtZ3Jay8cvbKY+Y4Zb7tels9yGIxkKVaaSjSRccykM5pUn3GJIb56i2zGB3LbH75M1kCzpaap7rH+fY9IUoOHTwhXoDKMVonaHqwHATlHcZwVxKtlPT3hGoVJtLzM8weBsCeoroy7RDyNcFwZVvENxAMTqqpLt+QLHYQu9J8JVh1O+hN4845dibsMqzY6bH9p3TMJ8wXOxBLyyZJ9MlVZnSvkWFIKccXBskAbGCyjVmpMGHACozCpZ1iOStqW4VhHsS2qd8oK9rGjpQ4YqipxohG3ypwVpNlnwINoqRwt4abN/VcVLB59oKwrIOZNJVUJZcqrCpRudBKXJtgy5CRLFrG8ygCkJVBaGsS49PTQhSGpZBQEar0ndC0J2qQiSSZEn0y8oK6lchIXpc60Adly74dwkTGDpQ9rBs8YZgKIVEi/jCF/5v3vG/no4vPUlqeeGLPoZKNL/z0n9YjlCW4G/GCZe++4ncUuxhsRBy36FEYeyATldQScKbX/gJXvSWpwAGbUxQYJ1H8hK/OEBZA1kCtq53u3JiExT9agOojK5dRFEFsSImPr6iY4M1R5O9GvysiWoFa4wSq7Jgq4pgtMS0mbrQYAsVAyDDPaWO9qFeKN1LWGlHo3HKoaQOxNHMZuvoJbP0B31uzK/DqIzSOzq2Qy/pxapSIbrWiyI1PWbT4FdumTYbWuspffAPL5Y7cXHlndoiDu92vF/qjN0ilkcNUcZhtZkQEBXODe0VhHrpu/FrEp8rlqkAUTHX3TfFNZazbyWmQulo8Ub/tjgcFaW3zBUh9ezontCxA2DEUilNX1VVgXjBl0KdXSPx+1JG0P62txZLH5YH3ff+CRW8DAXJ7gFqWJAtDGE4YvF+2zAFtPY4dt7LkCzAhu8VbP/h93jFJWfxe8/8AL/7uvvjM4tyHj/VwmyfQzptfDvBLOXYXUvgPHZuwOjoGS5+xNOYf3CbbR/zZHty+kdl2KEPAT6lR+eOYl1KedL6ECCzZ4C2Gp8a7NwQyRL0yOG6SQgMSg0mWhDpfMVga4Yd+ChwNa5l6GyvKI+YQTlhy1eXqHoJrmWwMcCoammUCxN8suQo1rfQUylmUJJvm6FqwfzJQu+nIRin972Uzs0lo40hAEd5ieVYVWMRtnZBe2crpMUUwReJF5KlimImoegGQW0HUGXBWi568VU40IUi3+DQfUM5ZYNlug5wCl9ptswu8VtHfZH/7yePZqY15BY1hYgi3Tqg2N6GRKDQ+FSoOqqJ4g0UqqBKhS6iUI2r9IgFVUbLVgWLNJ8JQjNbCO2ywxBgBTEYKgnKVs3+uCwIce1qS1bFwCUfjlPgWhpTCs5EAVWFScKl4T2YUqiy5YIcIZJaNf5rNEHBiqvN1ylOYlRM04pRw4nBpwkmj+lYSiFWI4kJrEc8r/kEav+tMYjVMSo5UPJidUNd1xRxaHsUJFYvJwoL/I8L/hZVhdSxZrH4xnKmiXBX3vPbz/wwL/rAMyhFMDYhNfDWF3wQMZqXvuPpvOivn4aS8Eq1UXgVLAbpmJCC5By6dBTDAt3OwJqwqs1Y4QIPDKoOuUsRdKyDHBbBs7rEqJtJtOB8oGu10njlkVjQwGCCAFEm0KmisdpG32WFVjlhXdEQ7BQqFYX76+jThVgXWfkmAEgRFhMPv8PaQpUvEBeE2lQyw1QyFfz6sQvrJfdEQv3k0idsyLZES7BitDiHc2W0nEMksEgerFSRkLsrYTUYiYxGrC9CWHkpiEIfy6fqemWfulKVD/mywRcdil0oHYIKJb7nYMlq8FVUIkPRk3qtWl1XSY511UUSFstpQHN0D7p2nkEMRCpcFdOTHK4SxPuQ/hyVSrwglSC5oizvCMvG3f5UsJK11gn6BWJhYYGZmRm+/N1v8PqnfwyVl0HzTgx4z/DoaYoZw/RVC/gsaSak17zpMfjRiP/5e1+gmEnIdgdfql0sAsWWBR3C7hnAcIRMd/HtpNHqi9kUnwXKtvYrQvTDjTy2X4UJNUZ7ouqIzzB7lVMJPtUU0waXQufmqvG1uZZpLG4VcwN9qpvJWUzIc9S5x2calwSBaIc+0ruO/lEZne0FuvDMndDC5LDz3tC5QdG7yWMKoZgK1K9PCD5SgdacD8LAhCAdMwr+urIbJhk7XE5LGa43Te7m0jFg+zA8QuLEGyxLu61Pr52z+/oZ7LyhmnG0Nw0oCkuaVoz6KUoLfiFFlQrb1+giCD0bI+/LKTDD0M9VG8oNVZilhxoz0OgqUKlJH4gUcHd7yMUdbAoRzT4JgiddjJHLrSCMk77gLZRd1UQ2Vy3VpOGICc9ic98Izhq6juCVQAGrShAbfLJVS5HNuUC1V56qY5E67SIep0qPjWlYrmOXc10jfeyzUAVIOUGPYkGF1OJaIf8awnsK7yPSu9Gfq0cOXVSN3zXceJkuVs4hdSzBuOVaC/44ziBauN4TQ4QRrbn4A89m6ITSh9QbyjB5Kq+wWlOVjqL0ZIlBWYVJNMWwwhqNeMFJKNLfSk0sjCFUziPRr1gBKlqxIXdVSHSJUY7ChYW3A4Qpu4desouwoHewtLTWjYUnIkGINr7F5Sjh5TreAmTB0sOxrEsE/18dLVxHDtfr2xqlmUlnOaJzFArF0qDPjfn15PHcbd0jMapHKbA+0xROmCs8XoR1Wah+lbtQ3iKLgvUni1eH9ZZVXds4VLNqyqZBpIEZS5+p/aV13i9xSbq6zrFHK4WXBOdNKEChDEgV6F9lCDWBy6YWtpOqKW9oVYI07QhC2uoErQyFazGX96ikwxEdoWvn2JPvaKKwvWSEmsgFrihD+LxZbnXM0EUrzcLCIufc9zeZn59nenp6f1P/IaOWFS/9998g6+27dGK+VPJXD/6H26QN+8Id1mIdFWmIvKypsxiF2bplSOeqJVAKnZS46RZ46K3fgBsOopUgVN2Qx+oTg+nnaCdUM1mYdMoKvEeMxizlzJ86i2hF98Ycn2hcK+QzKiH4TYWQB+ulCUJxmUEUJEslunDB8ptOKNuK3g0l2c4R1Uyk+2q/qwJdhtxa0YqqEwR5tqfCDiqK2SSktlhFuuDQRa25hsAmu1RSdRK6N1YoL0xdk5IuBWGTLUgM3FmeQEUT8l1LCbmsLkYBx33ehFQdMaopMlHEgCAzBBSYoaLqeXxLwCmKfsL8NV2sU/gsbAPYvG4REcVokOJLgyQeVZl6IZNw75QmZ9ZnUE57dK7QA4Nve8xQE5fewCdC2VNkuwINbEae4aaQi+xDNbrl4g9JEEbKQ9lRkcYOQsnbQBU3VjwKE4vI63K5WINLFc7oQF/FAhISi0pAuEYTWe1D2pKEXAewgSY2eRCIonSwep2PAUym8a02qTdRKfQxmrgWqCo64eqgpbp9SkKMQA3RYTypMlDb6NB3ojSqdGG/J9DGEq22WIyiVgb/4CMvYGfuKD3sKWrzOI5xLyHf2oRXrIwha8e6ycTcxlYQom0dKgEXnli2oPadG1AG7y2qrJBRoA11lkBqKSRBqZS9UUpK6bOwgHp8Z3VhfSDWzg2Ll4dFE+qm6+hrhLBEXD5GtsZJX0FdfMKNpa3UA88TK7QR1qjdMxJ62Tq0HzKoQu1jpcLEqQjlI9dnwa/bMnF5dx+W4duVuyi01wFzgMH5CiGsoKRJo3AMdXvDq9eRqoXleloWLxkiGqPLWNc67NGqQuloDSuPUknMVgoWqiWs7FOXtjRxtRyh9ksHOyEs9N5lWFl25zMk2nJ014HsYq6YCzRyHhT+JC1RKqGsQHuNtuBipSyhTgPSZKbForrt021KMehJVPDBYaFwgd7yQXM380tgbZh0ui3UqOSt//p8/sfjPoAe5vw/Z7+TP//nF2OGcWHyURUEZz+nmm2HakyAm+1g8pJi6xRV28CGjNmv34Jb32VwVIeiF6oa2b4LVo4IZddgRn5F8IuKlohYjVcKXYTjezeHgt++bRufm08MtvAoF63bmRTbr1g4NkEMpIuOnXdvs3SMUG0qMbsTtv1L/BDykPi9cIwlWbDYxYKlo3u0dzmUQLroWTrSkC0sCxk7jILBKHQu0dcao2GjkOsfBZ2bA1VadhRlj+bZXCvOxSZGELcdKvEoI8h8EijXjoOpCm09U+0c5zV5ZVBawHgYJiinsCEIs6lcpKNf1aWgKoUuFXoAsmTQLmwXDdmekOJTzMC6HwpL20ygdCOFbEbR0k+DIhX8w7VQDM/qkkD7ig4+oTodSVdBcLjOsoXuLSQDv8wi2GXqt2qF6+kKUidRICuKKR2irKPgV8JyihKCT3QQzk4ixe2bghGiVQx2IvRZDQljK1iYOoyzQRkFr27yZxtEYQpBYPpUw5ilWidPqFgZChEu+eSL+NlSxU2DKgr8vT6+qgIbLcJIeQYJVR8YKjgd2bFsahme99TLMLnj5e99Fnk5VgiwbqZWqNRCagMdnZfIqEAlBpWl4TkhPpdi5LpUvkXX7qJt54PlXAf5RD9hEAp12230dQZ6t17EGwQvFtQoFCGJ/Za7vKFSgw0Y3wkKkQwvCZWvK+sqwNA2BkVF2yo6ZlnBKX1d5nC5+9o2PM9iGRaXsFoQn1FJDy/DWDwj0rMNX69i+UKNlxSRAqU8kCK08GIxqkCkGqtSFV0mSKimVNPDsQ6wURKp8GVLsrZ+A8nsqWtae0m5eTDDyCWkWrOtN6Jyu1gsFxHv8UuKlIR8UOJnc4yp8KWgvSGrWuRmiM9CRGCIyHaUqtrvQiaHC15UQ/Pva//tjTuwYPVc8rcX8KrffA8MS1S7BUWJGsSo3E7GC3/9/WA1f/LJF7I+NXQjLaxzh08Czec7wTfp2pb02t2Q2BBU4WG40dC7viQ/eh3ZdXvoKEUHyNeFIASfKNA6CMospM34aLnafgVe8JnBpxpV+aaIQG1tDLe2MENPvs406R7pXIkZOPBCZ4dDtOKGh6Ssv9Kz9YtzzJ86i0th52kJLoUj/z3n2se0Of5d11HcdRNiNeu/OceO+69rhMzU9UI259h9smXDd0t8pvFWsedEhbmeQJEOhf5MECB17mjZDaUMA/UZvj+XBUFhh4H6zdcLqtBQaqTtsBtHVKMEbR0iCje07KSHG1j00DSRvYEGVs0E73WgdHUJ5TRU0450jyGdi9WeytqKJgYaBas5m4MqU9Gqg7wXhHPSD2xCHbBUQ2Lqi0sUVQdQiqqjMCNBxQwIlyjKrgl+2DjZmlwiBa9wicGOQqnIOgjMB2MtXLsVI44XHS6p84Jp6P7QEFl2F0RKNyhZMd+3jl7XcUIfiyQOljAo50PJQ+/j+rq+sVrrKlCNT1WHohTK+ajISFiooXQr0ojQmqvnS1zlIvvCSkFduWj9qpXbI4wSZlLHG573oSbvVwEveNczm+Xk1kQ9ocfvT3lBygrfH4VArywNgjceW0nI6xTm40QdnrOuxx2sTImRvK45pl6VKRSsTwmr1yg8LgjZujlj/4WlAYONGHyHIdjOKsWW6RZzfUe7Y2lbj8aOicIg1+1eOcAmEh3rWyGal3YXJx0GVcJcMWxoXidFHCr1ij3EVXgKVMwvE8lRyjWrLNW5uuNrjIZyiGHJubD6Taw8pYLPVHLwTrBt3VDQxqWIryD1aGVZKKYYVilTqeL/Z+/P427NyvpO+LuGe9jTM51z6pwqKEZRWtROMN1J+n07nUQ7/aoxSYsoAoqKYhQRIUaCUQlGA5gBURRQDAIiKA4xn7YzD5pOYkIcMQpIATXXmZ7zDHu4hzW8f1xrrf0chIJCi5Rp78/nVJ3zDHvfe+/7Xte6ftdvOGhvcDocij90CMSV5mUv+y1Cpfjeb38q42pk2sxpbcvXvuxf8ePf91c4PL2KXznGaYfTTmDnBH8/3Ef8GAYR8Y/kNtsjuMD1jRNyx06LOVpLt9pWQvYwhh/6+WfRmikQ+aovepPs1uvtKhstjPPk0TsExkfvc/WPTZnfH5jdueL8L5/gdye4eUVMM1jfCoRshkA0CjcRONN0MlfT7iycZ3ATg/bCCBYZhtxV61tb5neu6M+1VKtAczjgJ9Jxr2+VnzV9pN9RLO6Ebl/zwZdVXHpTSLCiornhuO/PNNz6/4w88Pm3c+7dEpq+fsyCc7+1ZH3bhOl9G6591pz6BPbeLzpY38g5LO4Wqck4BTMIm9ZNYXaPEJiikRlnfYR0jVZ0okHL/ze3wMG7YZwb1hdh2Fe4lOISg2Kxu6GtHFfu2ke1ATZgjyx+Goh16iZ0cnOKFF9i0wNH4i8cKjmX/HmZQRjI9Q1FtUoQrBF419Xyu6aTLtK30BzJ7LU+FURBCq1iddEQrGwUqlWUTrWXAro5ZwROVtL51qeRahPod4RNq4dUFEMk1sLUVUHOIc+q81xaBRLULoUqJlRRBSFxZC9gldqakDph04UtmzdsYWY9eDmHPrF/z7B20bp0w2XOmg4VI0ELzKcIMMosGIAhaXS15mt+7Dn40UkXWZkztVPsBFFK+AwftiAaBROreNzcMK9kExkayze9/pn0/vc2vQ92qES2UroSRvHoif1A3PSoukI1FZX1qVtN6wGSOSqWGl7SqlJBlKQXzRj67ePHEWkskz8xhph8bU1CCESacwYCx+KjJjIREhQRozUTUzMzDZsg+tPODQIvZs9dtU0Osim4Q8wp5GtTOyNGhVUBHyqWTvSnJDKTnG9K8lEis8nzV6UVJPZvzpVV2GLvCLEEGUjXC1rXEIXEZLzlyj03sNYSPcwWE06PTnG9ZxwdO/sL1puRaEemk2NuedweJ+NVIGIwjEv4ju/+beE9WcUtF2/hOd/0T+X6iBEd4dnf/I8A+JkfeDpXr12DvcCxv0GMge7DIvgejmOMCvUgxXP8b9CxPmLJS//wX/1nDg72Ob+oeeyiYlFpvvgL38hZYoY56eUGHRxh1jDs1gJ/jpFxLvCtTt2C2Th8uy26pg+MO0IaOXmM4eA9g3S6jRgAiPAfhoUU3KiTdKPfLoa5wGYvYJM6ZWKG3mIhwUhXK9Cym5jk2yswZL+ryyzQdpGd951y/OQdVIhMLo+MC0N7beDkCROqlczd+l3pfMapYnIYqFaBbl/g0uWjpVvToxRNUidq+i28Wy3FBKI70HQH225y2Elwa7oqmiP5v5sKTDsuSHIieVw3i+jb1wSv8aMwEfWRBS/kIbtW1Cfbx8s6Wt9I12w66A9g3JXuDRPRvaa+oco5SXEEX4nrkt1EqpVoVm0XwEf8RORGvpIZqms1/Y7cUNn4QkXpiIedBMEGZI5tFNUqlM8220D6RqfNlXS8wUpRtZuA7SO6D+VzNp1LmyoxhQhVgnE3HuUykqFT9yvXlx7SxjF9PQc9ZIlOCX8Y0yI8isdw1rlKhyo8gjxvlRcssLAaPYTAS3/meVxfO3yMaCNN48T21EaxGmvGoMTmbnBgDBjxxRXDKcW8Urzi2T8GgJ9UECNv+amv5H3HI0YHfBgIWDZO03n1kIqsvDFpwhgC9I44jOhaMduJVHqg1ksqnS64fP/qJkGfmhibtA/ok2GCJqa0nZx+I12dSuQd6ehsyiqFbAcoloK13ufxix2sli7bjZ5V37NRgaVfo9RGnicGpPxCjIZIjVJroUMltq9W8Kjp7dRmwhAC17v7OR4PS1cd4gRQGNWhlcDDLoxSIJMZf0jJW9Jtyl4rRFFvhqRfFURfrBKtlvSZXGzX13pWRxt293fph55J1eLGyIjG2prgBmwTGX3H7KChp0NHzV/7W78l13DSeef6pD2FO1EY8An5eON3/wVO6xOc7VEobhzf4PP++Bc/rOSl5/ybZ1DPf++sPh/DcuDNf+4df0ReAoiDYwT+9tPeiJ/W6NGjY6S/MEUPAbsaRFTvhGQRKrEgPPwfWhb3JChnI1CrjgHTOczacecXLiTB5j7P8jZDtY7MHhDNabtyqOi3TjcarNWpA0zm9ka6lGyRF60slHblEkmFMqPDIjOqbJkHMtfVCtMHmms9fmKJpqI+8kSraK9sGA4midDkWT66YXp5pD9XY9fiJqQHKfDrixrTwzhRRC2dtZup4qwEcPKkwOxu+TkiNDekQAy7inGuaA9D8dAddkSWE2pQOfXmQNi8UQs0bAaokpmKQLCK8Z4pYeblvekMeiPwudlsP08zSIEUA3zpTokw7sr36yONm0b8NAqhyUmHmTvLYOV3XCvvaXOUZt7JIUl5YU8T5DoIVua741TjKukuRSssBd83abMxKJqjmKwMPWaQLjFUsiFCQXMjlMUjVhqz9mVmqUchwUlXKwuOHkK5hrIutfw/RPQQC8MXlSU2sZiYgLzGAvV6MUHPbk1RJYmOUqCiWCtqLd8fPaEV4h+15Ztf/6Wc9APTxlFZh1VL/s7T/6m86Vbzgrd8BWOAmM7XWs2F1nDbzFIpeM6z3yxs596Ly5IPQghUiu/81ncWhyvTR37ojV/AYdfywEbzYKJ8RS7a6ToCrNLsVJZqp+b62rG8dsK6mTFrYap16UoliDzgQy9ELTQQqBI06hLEmr/uosz5hEXssUrmcRL3V7NyNSFGGt0T4oBWGxpTAwuyp1NVGYZ+xdHyBqGuQQ2paCXDBTQwEuOAlL3kpKWc5DyriFXSfYodYSZQtbgwA9ZYE5jYKS6M6VElxzY7SDnyvFLjYgtxQKuebcZtelRlaUzDxE7ofIdRmumlKbdcuoRSGhcjEzNhfbzETizzyYSVO2E5nmC8YaQX28iljDqCFS2/HuJNiJxKBiq6D+XfKklrxjBiXYXqDJPx4S9kkgb8IDPWB/new3U8cgtrEF3YC9/2lTxmt+bRs4qn/x9vEHvAPu3gM9Q1eszpgNtvOfdbG8adiskDney2rp7QPfE8q0+ZM7ky0l90gKVaaw7emzFI6TqPnjRh73c3ic2pibWhOh0xG4WfWLQLhXFsNg6zcaIxTckp467GbALDnqVaenwyQ4+Voj4aiSrpR9Nzbm5tmd69pjVCfvITiz7taU86+kftUN3YsNP75O4D/W7F/K6Ok8e3qAB77xsZ9gzr85pqHZicyPkNOwblRZay+JCiXgbWFzTjAkBRn0YWdwfWt0jazd4HPP2uLprP9lAkOEQwfRoYdcJpCUY8fEEKk5tEodo7he41ZqOxmy3sm52b7Fp8f5FTkDShjTgn5YJpNgoOBcJtDuXn4ijd5rArjzU9TIYQRklRUxBqRX2cjfKtEIWGgJpIMIJKEGc25Rdyl6I+icKmRjZK1emYPt8qRdNpkScBuhcNqDnthYmbi1gj8TzRmq0cK32+JEhP2OSIV7CTolsKY4zozkkhhNL1iqOSk6KaBO7ZRKIU8nSdKihQcWglru773/wXecFzf4EnnBt54Rf/TIkxjBkCDoHveueXMYYTTocK7RQXdqYczGqe89y3FmhbZzg7kfCyLOiZz3wzk9MB31r0oAmV4vlf/X8RteJ7fvDpXN5s3wLJjhWZy06luTgxzKxO0XLSrVqt+PK/8qMEq/jWNzxLSE2rDabusT6At6hao7RP5UWjlMVHj1HhzNxTJU3mthMNhC0CY8S+sTY1jWmZGDgejnExGccrg1E+zVrzHDUQjcepnjgEVOUQVyexSZTXoFDKFRMIGYELv7fzPY1uSvcphV3R6IBVR1KIUtSdC07IR6L8xQWXsoFzkIDYHrowsN2up3tKaaZ2jlXyOirVYPUUFyg+xVp5Nv6Y2W5Da1tyMLwkIMm6Glzg2/7WuxnnEqepx5g2mmmkkYxEzBhJ+xc5BS9wdq0b9Kjpboy41cMPiI7BoB7UIOKjf+/hOh6xhRUFMUZarZhYzZf8768jzKTdX90+IVSKxQdUWXRCYzHLkWg19aHYBm7O1zQ7NcEo2uuO4yfU7L0blv/rium7Gkya4fpaY3rP/N5M+RU/Vz0K61ej0ScDKEV/IHDz5mJLe30QaY4Vz95gYJzJWxps+n+lmN3bozeOMLGS96WSXZ5WDOdaquOB0BomHzgUKZDRNPccE2vL3f/7jEv/aWD5qEoKSqXF49fCA3+6YueDkZ27HP2uodu3xeN394OO5W2W6TXPMNec++2OYDXDrsyQrz9FCtjy0Zr2WnrPo8DdwYj+U/mIm2q6PUW0JCJPgsUHoIFYR6ojTailk42JTJQJSSoZ8oekT8jXuKrkZ/ywfUwVpIg2N+RnmuPI6qLA2qEGm4rwOBOtrq+tnIsnuSEpgpXPkrSjFsP+WJ5fj2ku6tNsdOUJjU6bKwkU0E6M86sTJ1B+hmWjkNVIUO1ZbaiwfPVNXwOwmUinpRCKhGzcuiwFCK0txTT/ruTqxuQSpQmTSt6nTF7yCGTsIqGtbhpyxkrzjc/7J6AVL/iyn8MkKFnwQkWYWKJRfPszf6pocaPR5e82hb6W16gVYVYXjbcafWEto5XIx4wRgt/a85Jv+Rl+7AefmS8pjnqBX3cqw/Of/ubiThXOyIdUiJB8lR8zN5xr5rDpCb3nQF3gxmkH0x47H3HA6AeMNmfmpBatAlYbkejhGcOYIN8qLSkKHxxGG2rdiIRHj0QGieRTFqsqKl0jIenyONe6y6zGJdhAHHriALoCVLYZTOzb8l/5m+wbLPevH+CGOUQpxcZ1+CiOUrWqEQuLgMIyhpExjIDH6hpwheiUjSMAMbRIZT8n/9S6ZlbNkcDDkMK/K7l+WNOHNbWui5ey1hofA32QZKFKi4YtRhhWTjyyyfdzGo0ptghRiGnkkDpZIyiVVoaJmeBbRzUZiUcPv6Vh4GOwgn+fHesrX/lKXvrSl/LCF76Q7/u+7/u4fueRW1hjApOc5+u++E1oKLKD+Z0yPxl3GllEEZKSTReAm1n6PYvtpKNRIdKdr5hc81z5E4adfz2j34uoWEPYEk/0kPxgB7mG1OhR3UCYNITWyPw1PYddiZzCbALN2uGmluMn1vhayDLrS4r993jqTaA/qAi31DIPve4ZFprmyJfgcT+zBKPoHruPHrzIdKzGLSou/aeBYceWrNVxbhln8jj770Hg4MEUIo0ZkqH/0Ui9MPS7hmoZ6PdkYXYTBVExuSKFBSUaTjclbQwUZhRyaNQyX1QBqhN5/HGmSmC57ZAcVg1sBLrNBKS83Vcu5byaVJBzYXbbYlr8glX63TS/GeYCa5ue0gXn0HQVUvzbKHPScWFT+DyiYXaSW1ufiouWCpHmxpgY4qIhVT7iWpPsCWVhsKsRs5LC5xuZzykvcG+wOsHSWwyzsHih2F/qMZRGIjTZYL3oX6Rb1QphhKTfSdBwnsMDMuJQkhNb5lvJajPmCLrM7jlDlVAuSIjA4IoJBCFIx4EXhrdRUhjP3G/Zo1oeZNs5l8f0ybQibwoAgi78gnwvVivP13/xP5TFt+jQUzh8IvQoH1E6vXea8h4qF/nGL39reX9F/hT4/jd8Caf9iAsTfKgIdIkpLRmjMWrG6NGG4nBkVKTSmko3BKSbGkPAeYULN5KWVFNpS0Thg2GMLVe7Cde6no2PWKVY1A1KDTTWEo0jOiFXZoP/rCfTOST+zC5HJDORPnTEGHAhJChcYOzsgOSiIwQHiImEFFuN0VY6ydShg6x9Vhka01KbhjEM7NX7WDXnWrehtYZKRZQZ6NwJkUitKyqTTRQiq3GJUoraSCeNUmhl2Bx3fPNb3os5kHQs04sGXJ25NCC/ZNksqoA0BOmyEWtE6OOGkYGH+3g4vYLf9a538YY3vIHP+qzPeki/94gtrNpagvMcK8P3vvWZTCvFzFrcsOF5X/x2dD+iJ3KhRKNornZSCJ1Db0TzmY9ht2Z2T4dbVFz41cDk2kB3UOEa0XwGK5mbUYPuJGM1TCv0eiwFVqddtl35wtyMWlEdd6jNyOaWfXY+OHDjyTWuVZz/TcfVP2bZ/cCZTNNKsTlnMKMwbaUQBtQmJF9gQ3vVEWtTCC++FYjWDLmbVFIsasU409iVdGTjLGk6IzSncn7TyyPDrsVuEkS8a8944iLwUS9a2M5rooX1JYFpswZUyT0NSHHUg9xQwcpsst9RRU7jJ/L9YSd1nyNoIxBuXmsyREwQw5ZSgKP8rhkos8popXBGCTbBNakDTjKjbHpPs/XzNX1Im6SQR100h8M2JQbROBMjblGjfcScSAGSryNkIC35ttqLBjYahYoRX2kp1HGrh7Ubj5tbggLjtoU2m5XoFBene5d29waMQGdnCyIxloD0rbtS+lYiMp0lPxYLxCBwccwymZBsDiuzhelCEDVGlt2obSHjJgvG7f+V28bXFRenDGU3whw2CSJXPiRiVSbrmWLnWNygYlqkvbxWZbbPG41Ks21dXrecG+BhNm+5caI57VYMnEOpHXxjMVZhtUsvW2ESq9YoqE2fpDihEIkUIzHBrCF4tDYYJYU1qsgYOoxyuEgy3a9ROFrbMISeEA3OjmAiNqXSxMTkMVGQAx88QXmUCXKhpw/RJ1elHG2nlS3JKz5l5mYfY6lcmpmZ46Jj9CMuEbIUikrX7NQ7NLoFFC7U3LfxGNUwtwqrPWOwGCUCdTHVl5mzi1LAK12jlaY1ExSatXd8wzveI0WhbMKFhxBVIgE6ZBTik247EzjttniFEBj8KDC9PnPBPkzHw6VjXS6XPOtZz+JHfuRH+O7v/u6H9LuP2MKKNUQnc8pNuMZfe86/koVIKarBESuD7sWTlBAIkxpz71X8Y24hKsXmUsvkckc0isn7rxH255i1IzxqSnW4QXee9W0t9fHI8vYWMzfUp45QGSFKdZKTOexM8a1mnGmaQycFI8I4NUx/425hMi7mzO5aokbPbGcPN5UCetu/6yQdpTWosA0lD5Vic17THEc25yzz+wTKbY49oUq2dLWk59Qnrsgz6mtrrv5Pe1RrKdZ779tw/Ckt3b5mfr88xvSysJuHvZrmWp9SdGQB3NxScfBfrjPctkCNgWG/RruIXTpc2+BrRX2MLA6NvM76ZLtbda10tu0NAJnDVqvIuBCo2K63rOJQSVHMaThmI98vjEJS19kIOUpmOaQbOhX+CP1MGMHag09FNTN68446d75ijkGZw8dKnLViZSCIuYKwaDXjbs3qtormSF6c3QSUpD9Ld5qLdhRYVndZNmBLehGpA8uFVF7TVrMqGxdf5tWhtnK9GrV1TIJiuB8rg+qckIScwMZEShB67iJDsmLMlok6sYUVSZ6jkl5W2VSsBao9e565G1UuFJaxGmIxoFCjL5AtgMoaXavBBdmAJoZy7nhQCj+rQIPebOVC0eoSSECaT0ety9z3ZT/ybA57z/e/4B0JVk4ev3lN1ornPvutfO8bn8nydMEPfv1P8ao3fil3n5wQduYMIc8kNVpJDqhVjrWbU2tPYyJ9EKhYs0Yrh1YOq2oq0wKOMfT4KDux2niqGFLg9xKlKjbO4WK2UJRUnID4YyoVk7eFsI0bZfFjRRgVqhnxPqERCGtXRFFJbxslfccojQ9i36hKmLkX3m8QS8Za14QgMPC8WrCodggxsnQOzcjtM/H5DDhQEhpvtaU1LatxxXJcJqeqwBhEO9tSp7lvIPhYkCTfpHs/kgiTsqG+aaPnQkF+hMMgc9zVuBSHJtXQ8/DLbdzHmLG69L2Tk5Obvt40DU3TfNTfe/7zn88XfMEX8Lmf+7n/HRVWMqQTedlX/DNUbbDLge6WKXaZnFKsIiiDGhXmeE249RxqcCilmN29ksXGgz9YCGOtteg+4Kc1425NferpD2qqtXSMUcvzjfMK3dri2xusdLbRiA2hdoHpb9xN7HtUJf6netXjDmZljugbKaihUiUsPMtkbBfZ+eBIf2CZXvF0+4bFXT0qRO7/UxMe9UtLsS68c0V/cYIeIuuLFdc+Y4/mODK7d8BsHOOuzI+bE2H2qhDZXKhYfGBg+qFjQlvLTr6W5JqdO1ZgFM0Hr4PWjLvn6fYMtVUlJk4LGVE6Bk+ZYfpKIFszkOB12dFms3DTkfSbIsnRo3SwKrkp5YII2245d686xccFKGYP0chzNifI5j0IRyqaM5CrS7CsQrrFXtjYGfoVf94KnZAMIQyJOUOoU6SfVdheWOG5W9OD7MZ9qwVeTqSj0FjUGGiOxjPxcuCnpsyaSKMHux7LDFVBIXnEVPSUjjc1qzi2ZLxc3NL/QyVynMxKjlq6u1grdDKCyJ7XAkds3aPkvcyEqi0Um2MOVYyQNjvK+1LshByVPo+UrCOfnRRi39Tb89UkI4oUhxgEvsal76UZXJRhHt/wQ88ufVyIcDXl0X79a74U6aTg1S95Jy/9e09P+aGSt/nBTQTb8PVv/HK+5fk/wTe+6vNQMWB1oNYbuaZoaIzH6pEx1NJ9BgixZj02jHE3vUXiSVUPiouTDVp1UjQTPOzx+DjI34NhDON21gloLTFwIRq0CoTg8DiU0iitMJXBKksV5oxOOurY9BzfOKVf9dhavMWDClRNhQ8qzUehqWrWw4CdWHxwRVJTqYq2aQFKUR2CQmNpTaAyUpxB44JnDEL06uklCYfIalyjdUuMkRDhZDjBRYdVFf2qx01hciXbgApkr4dY5GXN5aXYcdbmJoMRNQZipen7gbEaMaVL/HAM+Q/++HhZwbfffvtNX3/Zy17G3/pbf+sj/s473vEOfvVXf5V3vetdn9A5PWILqzKa6AORipe/5f/Hd33RzwNQrdJqnAf5lfiFBtMSalM6FDetpDM9XhHnLcoFlo+do4fIyadMMZ3As1GLUX2wME5t+n+CZxoh8QDEASqvaK8PVPcfgzGo+QwqMazw84bQGKqlR/m0EOrU7YyiY63WSarQRzYXLGYUHantwLeScLJ3h2fYa+jOWZqpwS4dvtHM7h9ojgzjXHP8xIaoG1AwvewZZ7poMJtDh59UDHsN1dKhVwN6PRImlfgbm0mK+pJiUK1kDm3GyLBIxgeddKIqpjmoj/iZlmLagqpFK5rN9YPaynuqpXSY2UUpp+loB9Vavp5N86OWn/eNPKf2AnWHSn6uTppV16aiP27JPbLRkcc1o+hXQwUODUkepXwUiN9q8BGXjLqjVpIgFKHaBOzSkUPJoxJIPmoJLIhKMe42Nzki6TEU4wdiRC/TNRmEXKbGIBs8H2EUmUphCyuF2STCh9XCPq8EwlWrNI8KSA5oYwkp1UaSdCK4iFsYaAXFCNnMIXemZ4wdzHqUzeXZ2KxcWFNXDAi8C8L8nVRStM/AyCTHKMmv3f49L66Z5ZyZzwQ557/7U1/FtS7ggrB+Y4STMeDObCgUkdc/72284I3PpPcKq+A1L/pJlIJXveAnedUPP52NU5yOsEnNzxgiX/fqL2HoBjjyDE1F3+7KpkZB7R1Ta8RrmJEQLVZ1SPi4zNxiFKtG5+DKpubiZIJWkhLhckwbQmYSY4YREmtWPnaxERSrwR6lND5GKmWJCLSsq0BtFIvpjLH3jLHGr05QaI4un9A1ktQzupG+G/BeCvPuzi7rzYrHffrtECONrqispTE1i3qnaFx9MPhxxCrH6ANVU2O1xUXP2q2w2AIjx5FC2vIuEo2j92LQX1HTHfc8/23vkc2rTvffaSiFFUC7wLg/SWPkeGacLOMEcT2zhI3k3tqGT4rr0ccLBd9999036Vg/Wrd6991388IXvpB/8S/+BW3bfkLn9PsqrB+JLfVn/+yf5Rd/8Rdv+rmv+7qv4/Wvf/1DfPQz8JqqxAQiFUg3r2Uelo5oFONCFj/fTlFpxub2WqrBce1/PmB2n+P48Zb2UEgt4pwD9YnoR4PZRo1VmygFJIiPLkBz5CVA/KQnVhalFH53SqwNvjH4qWFzIEJ9PUrBqo9EjpDhEp+612rpMYNEtgUrpv8qRGI2j1ew874l/flWOqsuSW6MnGdmappeYGUxjYh4pXEzw+Gn19zyX9aMc0sFZOtFlHQgw4UpdjWiXWTYEY9dN1H0+zC5KnOUUHEmBzWWtJ/2RnJDslCfBNwkzXqT6b0KYp6vB6DefoqhFig3GDG1yO9/qFN3qiG6ZLlowM2gOhGylB6leBLBbGQjUJ/41MHJDW2GINFembGIdEpuaksRzJIZMZMIqF42PqESZrdKhdFNBFX48OtCjSKUzwW4WroE854xuA8B1fsSXF66uRCI1oJNhCAvlIv4YXaY5DzXlEeMBlyauUZVHJpUgGAUNr+2cSvjgVhmnhluJmYP49Stbm8fYkrXOctmlvdMoOHMcM86xlzAo93mFZP+nWmx3/fOr+a9RwPOC0xqtMrqzjP3uHBbv+GHn8HoZU752m98uyDASs7zbzz3p4oz1ct/6Jksx8DapcJvJ/K+diPueA3Wotoab2o2vsaohlo7tJLi6uJHXu5WznBls2BR9zRmwCqFUhU+9LgwSOoLKilLRWQjqLoXeFmplKZTpQI7AsLA9Ti0qalbg9sELl26na5bc+stFucdnVtzeOUGt1y4jb2dA7SVLrC2hqaucEEx9h4fQSvLxisaVTEMI6fLY1anJ1y+fJXRjZw7OMBaw+BGIoHNpmMyadHacP36dW659QKH129QNxX7j5unEIKa9dUlX/+Pfpuq36JJAONMAjxqH4R1rxJCkjgRZ8lt+R558fP/cUFGvv01n00w/Ud8z/8gDxc06kFyX1363s7OzsdlEPErv/IrXLlyhac+9anla957fumXfonXvva19H2PMQ8u4fmEC+uDsaW+9mu/lu/6ru8q/55Opw/58aP3qKoRKPhZ/5h4MMPef4S//YDqypLYWtzuFNPLzMF0UiDHuaW93IloPsBw24LmKHDX5xnsUnSZk0OBNYwVaFdFgTttH/CVrAw2mRs0hyOnj20YFobpOoVVA/2jd1IRsfS70jFe/t8c5/9jhV1H7vkczezuGZf+04YbT5gwOfQp2kwWx815I6xgBXbl6c5VVJuAazWTKz0qSGG+73+b8ah/c4q5f42+tIMKFdWJaDbdvBI3oFYzLCT5xbVSnHxraa5tpOtpDetLNaaLTO9bc/qYlt3f7dFDoD10HD65pjsP++8JHH2qZu99oUDD41ThWkO9CsmxyYuZxrGXqLtR0R56+j0t1HytxBdYJYlMR0m1cVORzLi5FO/mGJlDJl29m1EKa7Aw7IlzlHKUWapAymdubhexnd+Si2q9JeFkElEqUDLjDAy7prBqa8S/WUWNr4T8dNaEXzkppn6ipYgHsVDUQcg9Sm0LYJ47Kue2pJ86JbXn61opmaFGhxq9SGFCELjVavy0Kub7IJsBN7WlU4I0408sZpMKKl5YwDpGuUaVAgNBaWEcay2bshiTg5PE2GVtK2or8cnSI3SEkVT4zxCtknY2BnVTFF6eSeMjHzwe8L2jrcUxqB+TljRJdGTmKF9yUTyCp1bx8jc+i7/9jDcRalPOLUcsfufzf4K3v/UruNYNHPaK4yHSK4Oaii9w7EfCcoOyBjVr8Vg23qJoxHpw+ylwc4FXrJwlssfMDkzsiFHrojvtQ0+lKrSq0jwyptkoKBQ+SgCAIqZoN/BxQ/CWEAfG0Evcmo1Y27I3WdDWhn4ciUcKt7lCXDjOnZ+x8R0KxcS2dGOPtRY1GqgUTmlWo+E4RHYMzGcTJrXF+4A2Gq0VgxuZ1A2msqhKUduKSTsR+0cfpfOdNIQ+MPaevjvFrQPtYfpoh4jt2ZLYwha1UokVftZXX8VYUBLd+/LvH/zhv8T9w70S1P4wH3/Q5KXP+ZzP4d3vfvdNX/uqr/oqnvzkJ/OSl7zkYxZV+AQL68diS02nUy5duvSJPPT2UHLbKZVkLauBOGmwN9ayWAH1UV+gNN8I2adaeszxhjipcHsN9X2nBLtL3Ik0d9dMrofiqFPM01PCia9VsrkLuKkRU4WZZnLd4+uUmDKvUN7SnbOsL2jaQ4Eq+13Fp7yl5/5vXjOZrzG/civn3z0yzi27H+qpr65xu21ZhOzKMi4sk/tWor2tZXZrl47qgRPufPpFLr5r4PxvjKje487Nqe4/xjcHRKu48cQp537tmOHclGgi9VI6udNHGy78xsDJ42pmE019NLK6rUl+tkk2UsGVP7Fg9oAs+JPrkb0PyKz3/G947CawumSpl6LpJEY25w2z+x12NeKmDX6imd55ittpOH3cJElspIOuT0kUfYFnM+M3NSXYlRCZfE3JaXVT+WM2pCi9LaFJ+8g4FZYyxGIKoUfxdA7VmSLoohBtkhwAIFhdNiCml2xVYfVKAo5vzLabU2z/bhU6zZFyt2o2icDmPLo7M5ZIxTE/Z+kUB1fIQTER02LkDMPWg9HJhKAqXUCwoiuNSubBetxuJnwtc2GRHulCWFJB5sDZTrEEpVemsIGjUUJqSmYW8no/HCqOpcDqQSIWy3w2jThk55SY1rlm+SiwcWsYBs+FnZo+wvEQwQrRitGJCb9V5ERUq4WB++rnvlU2TamofvgRjeIZz3krMbli/cDrn8kdJw6HEj5GWxPrinDjFNXWErYhqwiKwNwu0cqxcQvGmIPfKD+zdi0xGqyWz2wM6X5VPQ6HDxU+hiShEUe3SJ/sBTVaR4gjGpOIUCM+GkZfiZ8vAUVHqCbU7GIrxaVb9rj1/FMJ2mO0Ya6lCRmCo/M9lZZxWNeDrg27tcDlRmmMroCWxc4CMaLY0PmOzvf0vme6mDC1Mxpbc/6WfTZuzWRZ0V0bmPe7WGX5sjf/a0AQocyDyBIbiFtvdC33QEzSKBkTReRCSiYi5RoBU1VUa4GdH+5DbqePXjwf6hksFgs+4zM+46avzWYzzp0793u+/tGOT6iwfiy21Nve9jZ+/Md/nEuXLvGFX/iFfMd3fMdH7Vr7vqfvt3BBYW5FWaisCpjT4Wb3GaOIVgg5egyYZY/yNXoImJVEwunRo3xguLRgfdEy+x3FwXsdzbWecafGN3prEJAILH4iC012UppdFl2kWXvUKAvzaK38/DowuSY3e3Mc2JwX3enFHzKMizm3nw5UJ1L4dT8y7rUCUSdYV/lAdSqQIBrs2jHOLMpENk844OJ/HqiOenQ/olYdmBkYTX24wS0azv36CW63xbeirTSdXNgH7/HYtWP/vZ5xp0L5yOJDG4b9WjJErWZx94BZOzYXZX6gQqTflYD2OkTsakRFy+acZnrVs7pohb3bWTFY8BHTBfqLM9xU2MzrC6YYPKCEEby6LUloNsks3wmpa3WbyHzcRJJu2msyY53dJzNWSGzhTRRNbSs3s6+jFPs+lBB5FGKnlvWdOsG3VU46CiWdyDcSqpAJT5kx7WYpiD6ZSsCZ4po1qk5iAvUYSt5pgVoT2ziSdvR5gfEhmagn2LQfy6YQq4mmInp7Uzh5dlDKn4v2cQvPJaJIe20oIwTtAqb3qEGgZ7MaMCSSVDJUyd2nGrNTUyJHuSDdcyAJ/xNEnTcK6XFUhvx8FChbI521VqW71mNi+P7DZ3J57Xn917yVv/uPvpY7TvLmA/A+FVWN1Z4QDa//mrfy7T/+HLrhzOtPXY5vk0Woi0melGDslFP8jd/4dv7Gq74ElxfvxFLGaBFi221n4aKmDw3nmjVGO456m4BoyAU2otj4Cju2LKolCodjIigAKyKjvHdpxhmhRNVJPJuk73hCcl5yaOURkEunj11jlGHtRjSO07BkXs1pdF0cm/phYL0Z8YMU2HXvmU8UloF1N5QcWY3B0jDk0Qc9ve/ofIeLDmVmjNpjzMCKkc5teMF3/CfMEOgODNpB6yK+TnyHtXyObipIlBmkCZGM4eQ+16c4zTNSsUycK7GGKL7ua3+WqOD7vu/zPuK6/wd5uJD0fg/2/U/y8ZAL68diSz3zmc/ksY99LLfddhu/+Zu/yUte8hLe+9738rM/+7Mf8edf8YpX8PKXv/z3fD06jzKathIWoloNhFmLWg+4W+YpEzPNkiqDOdmgK4MaPdYosVobA/X1NcOnNwx7ML3zFD+rkzWhSq42MicS3V7EzQRGsyuBNTYXKrSThdduQpE6mBQrNs7zPAyRzNwQI4L63mPCzkRmbVpjV8ISjZURMtFei9mM+EWNvbEGDc3GpbmqQgWFaQ26Hwn7c9ysIu62VCc9djkQrWacW9xESFF27dLsT6Cz9cVa0l5qTXVtxeS0E8OBxGxd3zZh8Z5D3MGM08e0uIl0gL7WXP/MKdVSFvQbTzKMC6iPYX1B0e/UYoKfJCfttZFhz9IcCbNWzBsi3V4iIVlQSzG+j4YS8+brbe5rnuW6iUpEp0hzLOQk5aEeJN4um+hTK4EPU4hBNIrxnMZ0271p9g/GKHyaa6qQAg9SUDpRy4xwBb42VOtQUELRGPuiq1TJFSnURpbIXIAykzbJR/ChFCW5kDWxsqJdBSnCgaRlVSgVi0+vLEqmMJrzgpX5BMVgIUaUls9LuQRJ++xdrVGbEVUZdO9uYvNGrYubWDn/TLLLSTt5o5C9jvNrMUKui41JDlWqkFgA3vxzX837jkeOXeTcjrze+9ZeiEpx26mixSpwaituncryo4nMao0eEqTvPNFYidUrzGaVOvjtpueHf+iZ/O7JuP3MQd7HysLopGsldyyKMdQcD+e4OFmjcKzGKf1Ni25Eq0jnG4w6oDEnWHXKTfPSZOq/NctPDB4FLnV5Som3sRCfNEbViVEsu87KVKK51TUTXRGJuODAw/qko+sCz3vp/y3XYOeLVhQQvXTyJydKA+AmIg/ztdxH/Z7M0G0XxaY0pE1qH7HpHs//zpnCoucH3wi5Uo8hbdYpG0iVso5j2igo5wtiWLJcnC5jC+0ik52HPgZ8qMcnI4/13/7bf/uQfv4hFdaPhy31vOc9r/z9Mz/zM7n11lv5nM/5HO644w6e+MQn/p6ff+lLX8qLX/zi8u+TkxOhRXvpWFFLQluhrxyhQyBOailuIZbwcpEeWDExNyaZ4Uf8xGDvPGZ5+z6P/ScdflaLo9HEFD1jNAqzCbKG1JpQK3EXSlCjHmJh94qURhixdu2wG8/lP9my+JBi9kCQhVkrqsMN/aP3UlCAeM9Kp5O6gBRNpzuZxSkv8y7lI915i+kitg8iqTk3xc0s7X1LTj51h1Ap2ntPiJOG6mRED4bNLRXNtU6co5IcY3JtRA+B6upSGMGzGje11McDtg90T5rg/8dztNdG+l0xvW9vSGjB+hKc+63IyRNkFz4+tmP/nzcMc8U4g9lleR0ZXs1QunaxMH9lwd3e1MOOFNpxLkb/zVGEKzDOFdVSFqYMdQarCFUiQ2kxz59c86kzSnO8vFtOBCM9gm8lhSYmaYtKEK4ZQyLmBKp16iwa0b26Sj5vu4kMC0N9GqmPnZhgVLp0wr6Wxct0AX0mqUh5WVywmhhV0VozjrIITZsSjQYyl8SoovHMBKdojBiDBICI6VLByNBydjxSMtfMXaLyQdCbBJ8qF2SD6UKRnoHAwSokv2ClJIzAhWJaAWylNgm2Fmg3wamNsH7F+lBvC7yP6I3jAyeOjYu85iveTKwN3/H2r+TyJnU1+T1Js9XWwPd+7dvk9dWG863hBU//MbGKTIiASa/XN+m1nUES8gz9rz73x/n2f/Cl4hIapG8MCkJliesB6yI2yXxCENqRjxUna8v+zDGvPIedwcfIxssTGBU5aAYmtkaxj9Un9N4TkxRGBHmSnpOdi8SPWKOUTzpUSc6RM4IcbycaW81qHNCqodYVRil633F6vMH2NV/3Lb8gM81k9OFrjbJgNq6Yb2CliNqOQjoTFm9MaJvGNYIaVettalMeDVQrj0+ZzdU63uwetvElNpEoTODsDnb2M48aYmNLqk1+bD8zheAG8Nzn/MRHrBN/kMcf+qDzT4Qt9Sf/5J8E4P3vf/9HLKwfTaSbYg6pTSWdyaUDQmUIrRhDbIX/lNkSUXbcvjXY5Yg+7aHrefzPr+jPNdiVShCxuOVcf3yL9rD7Ac/mQpVmBZH2mmN9qWJxdSgdjJsYVrdazv/ydTaP22V5e8uNJ2sWHxJThPpUMb1/4OhTJxw9fp+duz3VSS8SoM7JnHS/xZ4ODPst1elAaC161YMP9PsV9YkTNvGJIxjF+tEz6uMR12r0emB2b8fmYkv/mQc0h058gw97tI9cfeqcnQ+NtA+s8PMGvZLiEGuL6lxxQHHzin7XJqIPrC9VVOuI3UQOP82y94FAcwOWj9LUR3Dyx3sm72258j8F6htSgFcXhSh19OTIxf9kqI89bmFE65pmMN0BZYQVallgqqVoXNvrsXgK200s6SjRJFawEsi4WkYJHE9h4iqKUxUIPFhITJVmrFSZDZ01QvCNeNKqAONcp89eNgCri2IFKbv/xIBOu/LMEg51mnWm1+VmpuSvFpg0zyRzR6kUNM2WpJMJSskNqUhi0uy1pNqkea4evHSdqRBmW0KVgsTjtCqxXbIpM6nT23a00SjipLo5ZafoakN5zJihVnXGJhGETFXpgrhEo6UYDx41BkIrhdxs0nWmIq/+qrfIJkHDte5M1+5DyXhVwKu/6R1SONLxjc98i6DcGY7OGuEEM+du1XRiqhFSNCSIXIYxEAJp1gnttKYbhawzJARLa4XzAaMUWjUsKg1Kc74NxGi4ZwUnQ8RFwxBanjhT+DCycS0u1CjlaY1ExHUeNB2DD2gV8TEQoi9Endo0aBR96KWTUyHNkg2VqVBYah3p/UiFpjsKfMO3/svEERD4NVQC9UcNdi3jjBjSjN8bxqktUhgxrFFlhKUHyYKVhkC+Vh2PjLsVdunFgc1I5xlVyjgepEMtucDpXGLyEgCRNtp13oipMrYQGVosaoxcbH1jeOG3/UV+6c9tiawPx+GjftA8Vv8g33u4jodUWD8RttSv//qvA3Drrbc+pBNLHx1aSeqLWY6oGLGnEhju51KM80x0XFTURz3joi5dhr56DAd7jIuK5nBg2BUdY458O/dbG2Klk02gL3KRaBSTq47NhbrAkSDQynBpgV17Vpcsizsjpofplcjid48ZLkyZXfbYlZMuJ82hUAbV2CR7sVSnQ8nYDJOGcGBpbgjRSY+RYceyumSw64hdy821eeweduOLOYHpA2rjcTPxAN5/T091uMEvasxKAgNEEpG6ixRx5ieW7sAIUagY1MtN1hzJ4rZzp0+ELM3svzYSFbfSQjbS0J3PRCPFyWMUswek4KLAJXmS9rBzZ+DksZp+X4qoHpKRvpauNAeT50VSxYjupMA1x77E/tmVLCj58DObzEFkTu6N7KJ9rdBOJScmWYBNLwuGmOTLn3GWupMzxdwMSdIDnNXoKS+FP0tRTBfK7ClaiW/DIGSeGMFv74FQ22LyQJROT/VeRohKbfWiia0baoNZjxLUkI4SYZhOLbS1dHVQugrlgoiJ02KW7Rt1J3NXuQYE/o0pL1h7T/QCHVPJz0cjXa0QncLWUSmfi08F9QxreVzU2LXj5V/5ViEQxci3vvHLOc5OTWdMBMopK4WKYauH9NsO6SYf4gTfm85jOgpErnMXrhW21QQNSonrbozQEfFuhMZAY8meJ6ZSXJxqbp9batPQ+Y7er6lNxRN2NMfDBsWMxmhCGAkx4uKMyxuJyXvynqI2kd5HYJfl6Km0xyhH59fpHGTHo5XGhopIoDFiyGCUdMdS3BV9Hzg9HnjRS/9Feb1Rp5jJRALyTbLQ9FvWf9Z1h8rQHIfENZEXGYxkBmsfwVM2jt2FBjdRrC8Yplc8QcnGxVdgkhlEsNIlC9P8zGhAy3VVnYjO+rXv/Gq+8en/MJ2D4rVveQYvePbbiUbx0tc9g8HD6ALdquPo8MaHL+1/4Mcf+o71Y7Gl7rjjDn7iJ36Cz//8z+fcuXP85m/+Ji960Yv4M3/mzzxkE2O5sCLf9VX/t9j7nRPo2XS+3GDyBSEHVSEyLmSmIgu0h9mkkEXczCb4V1GdOoaDhvqwhyHg92qaqz1uUYkkISQYuQti8D7TNMdOiC+1pjoZxCd4HVIEGYwHk9IpDbsVegiMM1lk9SAXq680tvOYtSx4obHoXmajZuNL+LnpAs2R3Fyb85bmhi8ykOqop7s0xTea+kgizPTohQ06rUoBCnUKDOjkU85xZaEWlvNpK5Fq1Vo0q8HC4j5HVLA5J8SG2QOeYUdeQ0gbDDMkM4hIsR0EcUmqllKEmqNAvydkofa60O99K3PaahXp92UGlPWU0VIg3n5fukfTS2Sb7re5t8oLAUf3Yv2IFfg+GiGThTp5+nqRBRUTByXsWdsFfNBFm+zbxAIfU87sKmA2oilVqWCF2lCdig9x7sCLy5JWUox0LFaUQaliMRgrvdWAghREk/Smhu3clWR00rvtTNNqojIUxnH6WekgEalMKvZ55qhSkIRO56dSR5FhaLQWkhPIHDXdK/IGJztDreHM/jhrY1WKCqPiJnhaqRSj2HlA5sJdJn6lGTRGF0h6Xm21tRlSFNMNnyDNM3NguMkbWSUNcb7molUsXYqMy68j/T1qhRscutq+/4+ZKR63MCkHVjH4gTEMpSDOK4NRMjcdY2Bm53ReccvE05iBSldoDJUGowKVtlS6xkVo7VQkyCmyLhszGG2pdS2yoiB/ht5zerzhxd/5T7Fr8TYOVq4XlfJN5fMUKNdXqrxPk6tO5qnZr7oPmA6GHYN2kW5fPryxkVhEIRJGQojUo3S/fqKpTxx2pejOWSnELhYSIFBsO7P3tumkEXjzzz2X9x4Pwj1IMrPnf/VP8td/4OmMHm6sHNF7MfdJjPeH+4hRJb/mj/79T/bxB+q8VNc1//Jf/ku+7/u+j9Vqxe23387TnvY0vv3bv/0TejytwJxsMDFia4sanLCCK1OMv821lez6K0NzZcW41+Jbg64NsTLc/+cOqJaR2f1OFurkRdret2Tcm1AdbpisB9xuW6C+YS5MX5SIpFGKftfSHDt8pRn2aibXPZPLHetbW9rDUea2iWzgF7YUnvpYOkw9eoYdi59omiiWaGbZS4E1CnNGCzjsmhQoPnL8xJr20FNfPmW4tEANiun7D0Eputt3sStZjPVqEKlD2kiEWgwhwiQZwXeO0MqsNjQVdl1jVyOrR7W0ydJRIsg002ue5a2WyVXPud+JuEbjWyGO9HuKei2MXnEpgvUtism1SHtjRAVLqBWLu0bc1FCtpOiE7MZkFcvHBepDzeQKxJoyA9IuwVLp3+NcZp46dT+h0igj7MTCHm5TZmrS3JnOJ1mML/BtqEwid2jcRPJpzRBTh5ZcoZZe9Kxpzugbg8rRWUphxiTh8TJHB+l+Y2O2ur4g3sCh2lamKLCLFHwFYFE6iH3g6FEbR6wtOns5pm4uVlJUlYtijDK40lHmDYZZSzHyrZXnCNviorL8wUfR1SolutQYb5qRlu645Mgm0pTeFtX8epRJEDwRP7Fy/3WuwNDZdzhkDS6p3iXda6UVf/d5b0PHmAhcCabXYocHaWZoJZ9YBTnXLAeKmrRhEYLeN73i6eS9U2q2tgZ6lSX2yVZSKXZrxaNmFSH2YmylK6bVlDoIscgqMX0ZRim0UzvDast+49ipFSFqtII+KFxw1EY2EkOo2bhIbZy4IcWAD4ZAzRAkPes0aNZOoGbdDbRu5KXf/k8wOetWgQrbLjwTynwt/AEUJanLt1rUD326DpWw2ydX5VqorcK3krkskhj5nE0fqW90oBR6TNpjZahP5fnLZ+hlIyymMNt0sNzM3Ld2bJzHt4Zve80zcCEyOs9qCITBEfsR1daopkLNWnQO1HkYD/8xDCL8HwZW8IcfZ9lSt99+++9xXfqED6OolNouJpk5OXrcTiNa07nMRc3lI+zgCG1NdWMjm2qtUd3ILf9lzepRLWYIyTM2Oeq0lcw+B4c7P2PYqwr0p6Ji2NG0h55qFcQzduWxxwO6leH85K4Vp5+2j90EfNIZhkbjrZj5d/uVFOJGFqXq/hXKR06eMEV5S7AV9WmFXY5UyRJvdteSa398l/kDjubqhnG3oT6JTO48YvlpB8z/852MT7yEn+8w7Fjm//4ONp/9eNrjNbGtZc4MorEcsxE7jDsV4UJDc73H7TWMC0u/o2iOdTKul9fQ74sUZXp5ZHbZ4VvN6pL4GVfXPP2Bxa5lByyRcjI3nV4VRqGbiKVjqGU+lN2b8jzVdLI4zu7SmJ7EQpSv55lme0OWxmoTkjxEPJfzjjlUOrkMKfzUYJJMynTSgUWtUJ2QuOSP7O4zDGx66aqJ0N5ILk6nrhTqkuziI25uUjeVOlEn14buvfgvZ8bwGdF8ZmbnQ4++SICMS92aEWhYKo9JC6l0xCp1u5m1myPmMswarcZPqq19Yf6TFj89ipNUnNiSqBOxW8P/UrCDdJNQrp1MfDO9T6Qoma3mUHlhoYby+zG9x5LNqcAoXvijX0E3BNkohsikES1rGAOvfcHbirMUMRTWc2iEnCRSLrnPQ2OTRnZLnBFyWyRozbd879PpPezVinOt4aDRrF3kjhNH50FVlrjclJHSXq1pDfhoCpRslEFr6aZdEOeuD/7uvdRNzXw+o9IVUQWcl5SWfuzxY6Rpa06CY7ozQ1cNYxCDid7DxikaozloIrWGMcADm8hxD77riZuenXMLKYgJAhc0KRXBBNX7lBGc9ci+EtKk6YJoyWeVsNuBcWbwjaY69YRKMcw17eCFc5B2Hqbz+NamDZFc38HKqESuzVBm9iqmWWm+J/KIzGqurh1953jhK76IdTcy5iCKEFFGrmE9bbbQ/5l74eE64seAgv/Qd6x/kIfSmsZoIVigbyJ6VNdWhLaWFKxphX/8BXIqSX3lFL8zIVrN0Wfs0pwkLepGHGzyIhgTWSNUyTP2eGT5mDZ1jdBed+kio9j5ud26XJSb23eZXB0Q9rFIe0zvcRMhVE0fEJZuJon0tyZG75GnOhlRPjLsVIw7dSEJGKPYf+8asxrobptDiEyujoRZ2kg89mKZn+rOEx91C+0DK2Jbp4KQrOYS/JJzRaswok4EolY+0u3rYlOox8jhky31iejYooajJyYjDR+ZXkm6tXQu8ZYKuwlMrkc2BwYzRsaJdPiZsZlN8E0vz1GfJvJDIiupqBlnW3clM6hEoMi0/9R+KCVh9EoC5LMkJGeU+lol8wd5DDWGFP8nXY+bptzRVMdEniMd8TgXyYHtQpp1ptQYFzGnHbrX6NHiUxhD1CRPZENI72N1Mm5h18TOhW0nlkMJcAHD1nZQLBDPhI/7iN6Mcq2f8f4lE49UQiIyczM53KiYbDCXQ+lEo5FuNCff+Gki5Q3beLcMqapuu+AI0cUTGlOQgeJgpdJoQUsnKV1kTPC1Lyb73/q6ZzNEuUfHwdNYzTAEKqtxEV70A8/iVX/zpzBjIEwM8cxzAHitgBT9p0EZ2QBlC8lQa/7Oq5/B/RtP7+H8RPM3X/JT5TWYIfL9r30m7z8Zt8EDPoA1uBDFbP5MjJlCDPMVSqTDOrK/v8tyuebK5WsQYHdvh5OTU3yI2MmMk9MVprJs+pHJ+YpxNsUHxH+YPEeOPLCG1kKtNSdDxI+OsOowu3NGFPXxuNWChu3aYjaiq69dstosqEk5ady8Kt2r6YIkRrlYIiabI9Gi2o0QHKuTsax1WcLkW11mstpt7S5DrXnLjz2bkzFQacXpEFj2nqPeE3xguR7TvigQHfh1hzIGXRmRjTX172/h/wSONKp/0O9/so9HbmG1lnmdqf96K6LXEG1VjMHPupOFSglc6mQhaQ8d48yUcOjNLRXTywO+1mWRikaLFV1jqE88m3OG5kRmsVpLATOddBHDjqU+coy7tuzoxrmQhzJhSaVdps7QYfJatasBP6mw1ztCZejPN7hWC3yanE38xGJPR9Ca5uoG3Tn8vJEZ4sYXO7owrcX7VzcCAQPRGvzEpESfxC7UgJbilLtZ32qqdWR6/4CbG7p9TXMs3YJrZBbaHEuB9Y0WEtHKY9cjvrW0hw43NQQL8/tk1tzo7axP/HlNIhIJ2ULeD7Ahe81GbKfod0hOLzJ7tZtQZkamz/pQ+X27dgUuVCDm9l6jKzHUj+m1FnYtJHtDiutU/hpKZDnVqUt6zCTJUQodAn6nkYW8MaXIi2wodZMmFX6tiFp296KDHpNsCplrj6H8rgoBvRnIeefFD7gW5m7WCka9Nd0vgehhSyCR9zlZDCY9KmdN8JOBQdZon3VGOpsHqzdbXXU28s+LOCp1KdkHOGlPczJPIUlptt7FLnLb+Yb3HY/o1lA1hjiOOKvwGpTR/L1vfjt2DLLBzY1olMcPmfXrY5nvVYNsqmI6Hz1GppViPip2a81LXvwOrM+bJpk37tU6R9IKHDw6lDUEkjvSGT8+pVRaPpQk1BC5cPGA/Vt2sKGisTI/vef+y5zqCceqIc48wzCi2pFNqPCnm5vWoPwGeiLDmRU99iN6NgGjGfJIId0zblbdpFXVYyA0JkkKw/baPrP5C1WCa0fZLFaniT3vZXTTHAtypIdQrqEM6XqjCwqnxy3MGyvNT7zl2fz2jZFlH7BEBudx+TqIkZhMT2KMMDjMQhK9CAFVS9IXn4Qu9ezhc2rAg33/k3w8YgurMYqDSdptd4PMVq0UQYH1dJkN5GKi0g5MpdlDdyAvT2LBDNUqlLgvs5YLz81M6Riz6D1bHUYFvtLUx0PqwAy+NTTXeoa9Gpd23ZAISwkilR2hLVrbaBUEWST7cy3N9U6M+qNc9NXJBrfbUl3boDeSRCNJIuKoY043Eku3PyXOW0JjyuITF1Jk3dTgGk2/q6mX4gEMQtpxUysOPUPADGJkEWpNt2eKzrTfVeSc08l1L+b0KYLNN5rqyKGNpr3c0906k0XVKKqlKyEEdpXF+rLZEHF6xCSherUWFnB9GvGDQjmNuh6pT6SzNWPE9ALZ524/JDSg2OWlzkmFWObldq0oFoZpoXZTg+3DVgqQ5k3ZyUgPQf7e+bSwy/s5zix24xPhSYFWjBPRN+cgdXFzitKtpSIek5REtMQGs3Eyehh9KnoBvREEIdqKUKVzTq8hG5qEWhZUcWxKb2c2yNeyEJfOFyEziSY27y63BCfh6Ei3W+amMW7h5ioxiEMgKJ0ITNvuKFhdNJL53jL5I1YQGn1mNq+42ntcjFgliaXRB7EyLAQ3jcqkpAQ7Sri5dE0yjxb/43yomAg0iTX9oue/PZ1cxAS2bPG0EWiNojFKzBpCQKUOVVBXlawHE/zrXSbfQiq7xmicj9SNJUTNHccj94cpbgTfr8VNq7LQTMrvxvQ+l3NGvhjP9Eq6qTCVZbfWzCt1U4tlV2NKMlJlJpzh4bwJCVV6/ISYGS+jp+zIFSrFsGNKIIdL39ODbJC1F5tMHYSNbdcC5cdEltMugovcfTpyuh4ZR0/vfJnbq7S5UtbI7yiF2pnK+/tJLqQffoSoUH+YWcGfzGOvMcwbgz7ZlJnOeMsCc7wh7LZi6dZoqqXAPutba6b3C1tt2DHM7+yYXtbc97/WVKeWzVM3LP6fmvpUY4aInmiqVaBaOvr9Cl9runOa+iR1Tb0QM/SQSCb9iK4t8WAqcp+JQJHNkcw1iGCXo2gekzNNnsHFTA7wgSpFkTUPCOnKnG6ItaW++wasNwLzXh1k5zebYroRvz9Hd4NA4E2VZiAqQULb5+j2dfL8FDi1v9Rgu0B7/4ZxvxFB+NJRLwPXP73i4D0jZggcflrD8Z/omb6vob0Gh59qcTO48OuO6X3r1F1JRNi43wqDUYOvM0wqKUD97qSkzphOinWwad4zRDFrcNJ92U2gPfQl2ceuPWbjC5wNoAcxqs+zRTVs49jCJEXAGSkIGdIX68MEc6XPxQyxaPRUiGXH72tx0CmuPol5OS4s2Yg/JBTC9JFq5dPMdTv7U6MvcF4pfC4UC041etS63+pYbZ02iynxpjKghIyHy0iHzN7knNI8sHOocYu0FHnP2SxWL0b8QImqk4KautGY4/BcYd3mwp7fOyGYiXkAiAY5S4/Er1gRGk11PKAHuQd9q/m+l38u109O2NGakysPMNs/x/JkiZ20DMNAs3eOfj8v/BRnLDWKC1phOKdNj+T8ZhmIBtLsN8+Klfy73F9KNh7PfOaP8Z2veyar1SgVr7YoItPCwI7JsEGVepALoETBBXRULFcbHhgb7l0Hgm2IfkANI825HdpaM7WK2qjSAYcIQ4isxsDKxcwrKkdrFI+eWV78jDdJUUpyOJKmWHcjNFY2VtnsXglS5RsjnWuVRmMhFm/svNlzU7PNN/Zi9JCbjWSmW0wmfCPXVbXy8h4mktzfe9tX8MHjgaEbiT6g2xqV3LLKa/lvXEQ/0pHBzAf7/if7eMQW1kvzSnZ2RqeEEIXeONy5uXjgjpL+ApKfGYzCzQWitX1kdfsM7SMHvxOYXB653k9ojmMK8JUOKdSKUAlpwzfCZC3zBwBt0d2I2gzQ9yja5KUpetP6xKFG8fzV3UhoK8Z5hV27NNd1KVoLNhdrqlPxCda9x4SA3og5hNoMInOYJfuvSSswViKa6EGYo7HZzuRUjFTHPeNuQ78rTNzpNb/tclLnHYxAl2bjGG5paB/oaYziYIh0B5bFnRvO/dYGmKC9zD13P+QZ5on4MxWoUqm4nfElGFzCyFWxTRtnELUp3rb1Mkk4IqV4obY6YgA6GBZJ0mMT43EjhholrxTpwuJZ7Wc2O4jyWMrqbfh4ctQiJg9lEmSZF2Urc8toFaoLhZnpZlaCGHzuGqLAb8kC0U0kxShGcesiUqBbQtjOTSsDYxRyULLyi5VoWtWZLvas3CbbFuagdRl52CSpcOV5YpRFOFsiFu9fUsee2LwMAbCgk87ThaI/zWz02FT4abWFgAM3wcF5IxLMNh7OtwJFjinbVgVxqnr/+z+Ani4AWK9W4D3L4yPmOztsVmt29vb5ay99Gt//HT9d7PGiIpGZpMhm84GM9uROjMzuRhdjkHxkxAotHTFK0WpFWPXoWcturbg0hYsTia6DpAmOQXx+o5bZa5rJVrohjLBaLrHWcEttCEpRTyfUxrOzgK/8lp9O3tHJP3oQuFb5yI///NdwvfM0RiWitaTffO2XvVnOu5C3sgGJbKoyu1qPghSdDSHIrmYqhYOYMclzrNx33TlLc+iKKURB3ZLjmE73korg0/91YhlnuP/Vb/8K3nutw4VIdB69M5Ma+ggspB9+/Hcvt/mDPBaN5sv+P99/ZhENxLphnIuNVphsiSJZ75XnCeNEdKdRgWplQZrf62mvDcRKUnCyNWFUUkxUlAt0K/1QeDThwpSqrVDjVHaMad5XnfhCFDGnHaGp0L2jvTImwb7Al7G1hKaSompUmplk44ZanJEGJ16sRqFyYkplRAKUCR45XDueKQxKumSZoZrUxQskFI2iPnaERjPuiGlGfeoJkzqxP6WTWz26hQjz+zxuqpleHrCnA22ayUYF1eVT+XsraRpRKUhFW9YO+SzaG6IDFajJYZY9ft6IdCUXQh+KO1JM55GTWvL17ye25MfqbluEFVKQRP+oS7ZpNKrA3f5MtmqeS+leusVs/5alKFEJszjLedQYMEE2VkEJecauA3FQJVVGmM4ST1gf9aWbzpB1sS60WrrGti5kpRhVQV8E2kY++xopHkZIQT5lyGYmfKiN/LtzMjcP8l4QU0ZvJfIurSRUXfk0d6+2owoh5YkFol9Iaku+ZnLUlyIWrTdsNyU6huJAZVMn5Gtdim20ikc/7rFcsztEpdk3cs/un+9RdYWNkY2R6+nF3/3FfOZBzdd89Y/La7MUKRPJ6SrPH0OtpdinYqS0XEPRSJRh8YPOTXzK1j1QnqNasXfQ8ui5YZagV4WSGz3V5eVqw5133kMIgb29XbpNl7ICPG3Tsulu0K03HJw7IAbP0I1cOQ3Up6KRzlF6xdRCKZ79l98oBbPSom3O2mIoRSoaiu2qBD+IhCwaJddvowth0qe5aWatZzcwPUYYpTlor8l4TFzFtnKsaFVhG+fRgV07tNPbgmsUr33T0/nQYSe+IKNDVeYmZ6xH+uE/hgn/H0q5zcN1fMOXvplaKfy8LbCa7h3LT5uw86EBP5UbCy+LdHNd2LIuGzukhckMgX6vkq7xlgbRpiqqlQSOi2tJxCUo0LWK5kSIACY51Qy7NWYM2NNBdpfLnjCpxEx/WklxHP3Wii3BllSG5eMXTO/r0C4wTizaKZkN6mQXp5SwehN5BQ2qG/Gzrc1j2aWn+WEuEvmmVd2A35ngzjX4WjO9PApDcKLF0iwVZL3xECL1YceQIF1zKsYKw44p8zLf2tJB+UlFbCvpqp3oZS0y+ynz0EQOI4rVnxqT9VwjyELW6MqLkZ/TYyBEgfBcLcxe7cBVRqQFQ0oeqvXW2k7XpVuRZBpSUZSFTaQ5ZbgIyM4+GCOZqnUKOE+bEtMlWDJLW0zqZs50uX6SoD4j+kAi2EbMJqLW0qkODqUrWSDndTk/6XpT3E96DtWnIWVCEqJOBv1B3JAE/jyjgz0jdZFrISRS05Ypn+PfdCrqoanAysKer5dQa9xU/l0ILXELFUazHRjqMZZia/qcdUu5jtxUZvRshHEfGs2tF89z/SQ1yhl+1JXMfs+YZLgIz/mmt6OmWsw4XJr9uYCfCeKkEiN2m6ObYGsv5DIgSZ+SnETJvZCvsXoYeMqtU2YLu2240l989BglOk6jDbPplGEcuX79kHF07O8foE3Fsh9wURHrlhurjmEcUREak+wkI4k0daYA5c9ocOgzDlzFHSt/7jF/9imyMBGKdBo/ZBZ7hub1JhZ7QyGmAckDO+u8QqXwMyO2qMszvsIgRLrE4oatlEayViMPrAOno2wMovNCsvpDdPwRFPxQDiVep9EqfFULE9JFLvyb+3CX9gRmTW410RphTGrZPU/vOiUaxfoxC6GvV4p+R+Om0p1qD+2h33Y2iJ6yPhX5RXXqigbUbNJcbfCsbp8JG/ZOsPdcg7oiTHaFCWplMTAbJwk852fojWPx3hugNW4xZ1iYZOUn80qJEkti73R/qomV4jazaacpnY1vK+obHVHpIiXwSVM73jbl5HbL4l7PjU/TPOafdnSXpqLRPOrRq54wa3DTCuMl8US7QH0UGXcsvlLC/k0aVLsc0Rsp7nY5MJyf4ZsFzWGH3owo57FrOV+BLoXEM+zXxCHg2wp7OspCHwJq6eluW9Cdr9h976l0eOn9VTGW3TlIVygaWJkfnf1eZknatSszwP6gTbCcFB9jZAaYd/raRVyrk7E/RKVRNUVioIft4h6qLMFKaEAfy3xcx4heRpHwaHCNwrYG5RQoW7rymBgtsdKyqXDSifr9KgnvpfiZ9ZaVW1wNsvTGjUKma6148+YIt8oQjZXHSwzhmK5hs3ZioZnhOyXQepkVWymuupcUIgA9gmtTbFyMoLY5rtlndtypysYuJPvPUGtcqwjW4lrRBj/7xT/D93zP0+n7sL1/Ve4Ubz6GhcJ2ggrF5C+bybq+NUJqi1vf52rpbtJUZmmbFIdtXKBv00jIe4xKRQRDQDY3YpYfRbMaI7qpuPUxF9EKBjeycoqrXUUfYPARF6KEmg8Ov+mplGJ3p5FNWmuwq1CY0RJRmGDhKn82OhXVNK4YvQTHa0Cf0TsrRWzPaHldcmqrNVTJMMNF2XAmdMf0skmmkk1JfSzrT5FBpc2txFImn+Y8R0/e2MpHfuJnvoL3Xh/QdcRnedcfom4VcmF9MCj4k3gy6XjEFlY3r6ivjcSdRnZrxjD90DFhd4Y53YAxjHst426zpZXnmUEIxLYuusr1LZpxDtUpLO4PRAv9nuHwKfCoX5Jd9/xex+aCxW4ocg2A6toKtzcBpZh/aInqBtTREiYtcdpIxmZKJjGbrSVddccDKSbL4M/vUB336DGwuq0haikE2dPYTUyZM5kQia0ujEmxyUs3TBbNQ7kp+/2K9S2GyWGgvdJx27/TqG5gcrfH7bYyH90MbJ6wS3NDtHNutxYYqDHUNwQeL96gg+xcx/0J9eVT3MFMip+P9BcmKCfWktoFqhudzEBrg3Ke5prk6uouFYNcOJACrwL055JZRyeeuYGACTInz/Bijq3yjQTNBytyHJ3CxvPNHyqdPIO3vr8qSKfLzBSZBkDMV3qG/j2FVamztV7qEOTnREqjgsyjgKT9E09iFeVzM0OG90THeDbHVWkl2taYCnejoZOH16N0uno9SMeaZ6OZcakl/i3mmRyyUIcsFdOUmXIuenIeOnWYQqJyE5O0tty0SYladL5Zp5rlLzmQIMuTokKCxVMWqhgXpM1oTWKsyuMN+fy3z/J7VjWFFHRJIUrF3vvyOcmCv+3uCgkwd8wKfE6nsho7iD1k7nC1j7z/zg9ijOZPfPb/WAwKQowsR7i8iRwNIz4V/ErDTiUuRJc30PkgSTg+EIcxBdUr2knD7fstf/05b0UZhRldmcXn8y6vsffE1m5HDGFLZsPq7XtkcmFlOx5R201ftXQMu5Wgan3AJl4ILop8JkK1csLezmSzhPbIdazBUDah2WAlVAq7cigfeNZffjP/4Cefw8nYsXL8t6lCv8/jj1jBD+F4zeufxrd+9c/jJob6WAzqVTeijMftz4rzS74Yx7nBN4r6NLB80h7Xn2KoljC7P+AmEqI9veIKPd/NLJf+oxSUZiU3SXt9m54iDF+N25vIDDNJJtSNUyEaGQ2jR2FEdjCIG48e2N5ETUOYNkl7WkGINDcc41yKjV25EgKQdY2+NVJ4so1fIvzI3zXD+Rq7lqJ19Ck19TIyv88xvfNEIOkQCbOmeMmGyuBv3WV67xo3r+nPtdhklhErjfUp2KC12xuvlh3vcOvOVq87M7ipkHeqU3m/hoOJsFWTbESf9lvWZm1R/UiYt4x7E/QoM9ycH1v7KJ9pgmJFTxdY3mapVpE4lc2GS8QoY8WQ3U0MqjWMU9GoBiMLSb9nqNbC/o0GqhPpckKjU5CzKvPDYNPsysmsdpxJ99zc8MUv1deKMb1eW0wgItUqQdEpWkvcjTyGtDgmUlSoDEW5nhACnTSlygvcqTqXCqrbLtAJXs6Lr4piGhGtFFQpkgkqTUxo+cFtgZeLRTZfZpD5pQkRRvk6RnSdbqLIoeKuJaX7yGtyE1N8sKMC7bczPtMFfJR5fkQ0ylJhgxgy5FNKoddnD6ugPdx2oCCkI3MmVlGiA7WQkc48QjaKyOQ4sY9MPxMj3/ptf56NHzGzCReaMyQsb7h3PXLX0rM5w5vLReSwk3MNPoDzxNFJJ20M9c6UH/wGkfjkTZdOAtVspqGHgBkTAhYTQclH9JhkNI1F42S1VQq8IkzsTQUxr/2xUomXpzFegijy+5DJSpCLrzDo7Znc4MxdEDZXLEYlmWClB4/p5f8A3/3WZ3PHsWMcIWx61KTZvjd/CIhL8EfkpYd2RDGo167CTwz1Yc9w2y7V4VqKUa3ZnK9ojjzjTG5ylcTi6wuG9hos7nHUxyPT+2HYTySSIKSNLEbXPs2SNiP1GISBm9io/UHN5N41hICfNAL17S6ISV+L1sV8XY2pS/NJGqKUEAHClj2px4BdbT2LzUmP32m27Dsli6Gvs2PQVlJABHs6oEdPd77Brj2+BXUsi+lwywxfaarVdtEa55baBbE/awz11TX2VNNfmKKHgE+WaD6/ngTN4tnaIS6E6BWNEqlEpvBn04YEnRKtdFlnGLJR65Id6ie2GNmPM00wNWZMRJ68qBjF7LLMGX0qiNVGFrFqJRCmm+htV5h/T1PY3qTuWvkgu1iVmgSXfFeJxDrP00XzK/NDWbhcq0t6iBmkEMcOUUAmshvIAlgfjQUV0Z1HDy6R7CwmDjJjTgXS+K0JhHKJ5JSJeS6AjkJgy7P2eObfxYEpoQBaIPL6ZJRwiTRnJMYyG5fPdds1BZNmdCYVCKWwKbs2VJTOuxjjq5RT2yVCk6G4JPlWFzTANaBq+Lnv+WLec+yoK01MGwxGj9KaEBxBGyKKv/8334l1kRhEyqOHmCQf3OSWpGKUaznrwpNNpl2HZNKvCvz66tf9RWxV4ZoZvqporOJCa3AxcrjxXOk89689PgirGufEIN4F0WRmYlNtQGv0tGVSafYNfOc3/CRYmUuLa5Eu5MGzBK4Mv0aliOmazzKoLYqhC9lNUCq5DvNISMhGGQKX0HHtAqTr8exs/OzMXcUo601CXLLfr9h9bZ9f6PWyGQqV5jU//Je4MjgaZUQGHQJxHAmjk3u5rW8KUHjEHnmm/2Df/yQfj9jCej11llFBfShaz+qoQ7nA8RPakuGp54ajT9Gcf7d0Ttc/3dIcw94dA8OOTf61UmDt6UBoLPXVNadP2qU+cZi1Q3cj/YUpzbUNoba4uXj4tlf7RPU3VCe9mDsMjjHlqurTHvanqNWIX9RFv2p6j3VbcgshERpGD4tWOru0IJvVUKzoQm1Y31ZjN8KunX7oiO7Ru1snGmQxa68PKBfY/11NfTRy+pgW5Q3dgcGfbLuY6kR0uP5cg1Mas67ZXGqZ3blk3G+Z3HUiRWzeSnFLi3OoDT7ZSbo052yvDzIXTDdZTn65aU5UGxhkMSU61Ogwpx1Gybw7p2jYdSiyEuVkzludOAkUSMYIeV6kE/TtJgarYMiG8IEyC9WjPKZ2W6Zmhul8ck/K/sBRSwqPdjIv9XUKe45nYdBItFJY80YidyuhlvcjM2aV86nrTvNkFwAxzNejLN4lQSYEYpP0t0qMGaLWUGthBwcP2VULyHaYuSjm2Wcmr4nP7JbMtQ2kRghkyRcbJXNwksZXD5FQJzhWJWN3Q1msy+xSQ3bgEv1vOi2jCrRebQRmfsYLfoq//rzPZHZwCw/ccw/GGoKPGCNykumtt9NOp9uIQC/GITl7tMxN8+uD8tnJSYHZSNfl21RwFLhFhfeWWx+1L88VYQyRu5aOKxvH0qU5aYjEfiR2g2gzK4tqrdgmIiQz21YsKs3FqeaFz/lx+dzS9UXuBNMGwLfCJldxe/55JKWcL/aWshGC2Nit4UbWIEPRoZbfjen9zi5mSf2gU7qVW2iqU2F36/WA25uUdafIkCJlxh4ajU1e5GJrma8dxYu//GchBF76ms+lW49E57CTBWb/AsPg8Ccr9HxasnQfqUcMihA++vnFB/new3U8Ygvr5VPHy9/6dF72zJ9CdwMBWD1uQX00srhnYJwZNufEhP22f9cnRx44eI9LbkaDEHHWDt07zLFoRU0S0M/uXrG+bSqQ50FD+8C6JMPoFK+mx4DupAsJs4b2/iV+1mBWDnPSgQ/Yy8di4DAGyHILn3eTnthY0LHoFwU60gwHjRCjztjV6dFTn26xKncwozodQNXi2nRxIjdJ0oZO7loSWyvdXJsXX3GNcq1m2LNcf0rD3vuF0bi+tcWuA8O5ibiz7E3YivBVYffqMaATRF1tUhduxPgiQ07aaDH7B5kJJmhJeS8zQ2tFf6xlJlctncT17VXYdcDNDP2eFVj4WJiyMRVT3+iSxerbtLD4CKnQZd1s1FCfSlJN7nqKs5ZzRJPhQlUWm7wAmTHCJggZTEt6SDgDT+qR4kSVCT0hbQZy8kfuHnNngNaIXU4QOUwygIgR2VxpvU2T0RQdqxplJgdnoFwl3bUaHHFSl5lvqEzRWtulL3mZIelvzbLHz2qi3cqlyoYpM20BNabNR9KomtWZgIpaM04yRKwK+1UryR+WB6awVKu1aC8ff+stXFmN1Lt7zJuaq/ffx3T/EtFYTFXzd77lp4SV7WVGmK1K1bDVpsqGEyGZ+SjE5yTVKu5DUKDuH/rhZ3LHXYcsb8iYqPcRpSRoPcY0K+0H4uBQlUUvpqULyzPWVsOiCVzaq/mq5/64PK+WBVlFicXLZJ+ilzUKbyUcQg9Jn57gVj+rRf4St++VuCCF8hpCrctsVchPcj1US1eM8Yum2Mfk/SvXnow4EoltYrf3boJT9BhKp5qLar62hGktcLNKUX3f862/yN/43j/LaPfwSmPbikmlOQLCeoPenf8eAtoj6fgjKPghHC5EVNUSG0Owouec3rkEoL84FV1oYgwOexX1iRNjelODlgBmnRmKyMyvkIFqS7Qm2dN5kY/MKsbdCt0H6uOB/qChPh6TjlajOkeY1qLlO+llAUzFQw+uxM6FnZr2jmuSn2n0lmZPlEK8GiEEzMrJXKeW+Vl1uCE2hurUFQjITwy+yuHsqYOvpOM4y9wLlaLb01SblB17JO5HCpjfL7rRcS5eyMOuTV2bL0Hgyvubhv95VqSHUGwfY6/o98R83vQhze5MsRHUSfoQayuEnHqbpBFqg3KhQJPaBaqTKB242easuoXk2NqNZ9ypZCZ0hjUdptvuxTV5wddAQI3bTl3IOCmXMkX4aZ/Yll0oRVFPLHblGecmMcSTsN7HUjiK0UTv0YUIlbuO9NwBcmILIDv8NCfV62R0UVspFoMUXlKBzPKZs0hALqp5zlWYp0ptZ7qdL5FekORHRuMWzU1kND3Iwh9qkafZ5EMrUg+xaiwWj73HTywk1jQq5fXa1C2b1MXna8OqrWftEHnBS/8Fr/o7/wfHk30GFIvHLKBtqI3i77/4nZJal2bdKkRUnxKLEktcj9KJnY3dM912/qyzJCTBw8Eo3nfY0dmK1QMnqElD1Va4iBTUTU90HtVU6J2ZzKiVWB7u15pve/E7ysxSOeksxZY0bdCS1lf3QYIDMh8CRD4VpOCjVHKQigy71TYrNW3CtvepTtdhIOr0Gq1AsyooqhMn74uKRG1Qw3azlxm9bioNhOllHSikJbaQ79Z60xezlFKk06H7M+RGH3jl3/hFXvqmL2eZ5ty7jeakN4R+lM2/eQSX1mwo/WDf/yQfj9jCGmPkxoYijjdHa9h0hP0dme1ZTXM04mvZyWWtmPIRezqKM4xRqJjYulrL1ZkM78dFVWYO3bkauxK3IWsUoRZo1DfJXix1uWr0mMGJhnWTikKST/jWYE9H7FFHnKX8zOQIk2ceyujkqCIFN9Ypw/V0kE4vGMxy3DoIKelEqpUvC4y+sREmbivGErofqY9r9GjodzXTM7FrhFh8Qqtl0jhaGOa6zB3a62MpbtmgPR/KRXQMVC7iJklrGoUoFnoxT1Bj6nKiFhKF1vh5k5xzxIBBuYhZDfI5xEhoK5EmrcZC4iAnmCS4TKUCF7UUxwzFulYcn8rjV6AmEpmVvYPzbZQNOUKtpUMLscgUcgGLZzYomfWaF/+zEXLKha1rToIGyUSa/HjI9SRM3rTpGAY5Hx22EGCCA4VRrbfhAiGWLqKwe30sxhHZ5lDsGU2BfHNySZlR5lPJPsY2p9qcMbDIJLVhW4ABlA+YtXDz3NQAUcLtjUIN6eEN0unm90FLYYmV5q+/7J/zva98GidBUbUt3/HtP4vtxfs4owrKy6xQJ2vJ7MQkTkumFIs806QU5O1nFqzmjT/yZVwbI9f7mk3neNX3/zwvee5f2JL6mwo9a2VGqBS1hu/9zp8usL82itCIUUzVCUkof0ZF2zxKZ+3ypqrabkRyt2k6kZsVh6RwxgTFyD2c9cElhCF1scXmU1HMU7IuN8P9paNNRE0Q1naopYD6Jp13Th/QCjpfTCdyIEMedXz/657Bi776J1Ah8uM//1wubzx//UvexKfsWJ77tDcRNfztN315+rC389xH6hHDdk/70b7/yT4esYXVrzuWLmBWgyRxnK5gHNHWoq8dQVPTP/5csfQCsBu5kPp9y+5vHxEmlUC23QBtLakwk6pYplVLgSCrUymc/a7smvtdzf57VulEEkSViEloDZ0UiBImHaC57wS16gn7M+luZ80ZaUwKjDaGcVHT3HtCnNboZV/gQpJsRUzlnXRjLqL89iNa3zZh/v5Bbtxlhxod3/ULz+PbvuodaRGUTg7ERjGnu5zu1ey9dy3wsY+oUOGmimophInoVSJtmbRA6KQnjGWOpIJEu+Vc06hlQxOSjs4uc8rONgO2Wgp7eHl7Q3tdJBL9vmV+5wa7HFCDI+R5WYyEqWVcGJHOWFXs4oJVdBeErVitIr5VDAuJx8qFUc7LFLvEkGDGbG6QZ2WSDhKIlUVvHCpG7FLiB8eZxSSfZcgew75oT/PmQ1xpYurYdClKsmnI9pujWBpmssnoIbkPkYzL8/nJ7+a5tS3/jkYTGlVY4/kYF5XM4lqNmtlkPpE7JJ+kMbkYZw/krYZWjCAi1el4UyeTC5qKUWDQ1G35Vjowk23wkAKDk/enFAsv7Ohve+E7C3u3VmeKkNVFk02MxLThLEU9yuOoYQtJRyVMfRW3IRsxOW499+vejpvIzPtVr34Gf/fbvpjlEOi8ePW2VgzvfYDKKG6bbu02q3UomxKgOLrJKEURk+xLvHp1QQFUkrJkTTCQvm+xS5fkXo5Q6wK9Z6SkMICNYnOLpCDZTub91YnwC9xku4kMlXzuwlBPZhFO0ATfCPScUSffamkalGSvFvvRZLYB8vm98Sf+ClfWci6v/sEv4XdujKy9oB3vvbrhG37gSwgR7jvuhSWtleyyHsHHH0HBD+FQVuQKf/9nv4YXPest2NERT5eoxVy8dIHmnmP83pT6cIO+fsL9X3A7k8NAc8PT3ToHwEwqWcS7Ic0CHd2jJkyuCmlonFvMkNJv1nKR73xoSN2mwl6+QdyZorpRZhM24s7Pqa4tBe4NAax0ruHcAtXJ47qdpqSfmOtLhotzqhsdzf0nMk/Lov+mSp2Jw5xs8Iu2dB/drRWTy7002ouayf2dJPxsxsI+rGzFN7z8/8urX/Ofufq/ePZ+01ItI81JIv00ivo00t3S0l7tS4Dy8jbF4m5Z4O1KlQKW55yEpG/0krLB3CZihZJMVR+TF7I8XkiQeO7EJ/etGPdbCWS/q8NPLM21Dc01SvQdiHWfn1jM0mGsMD/dVCdXLF2gZNuFUvCE/Svnngk8mVFZYuZSFq2EjFNcom7KK03a09wBaReFHRkpsHImARWtodka1McUv6UrTTWGkvQR058MEWeCl/Kx+F7n+LmYyFoqhALZ5aAAPXgCYi+XjdmjEQKSGgWuFm9j6WYseR68ZUhvNbCK6JI+NuR8VoUOMbFs9ZkiDAq5F/xEF4mNSih1SO91aDRmLdd4RBWTB0jQuz9DrAKUCuDBnGHSZtRIuvUUSWaUMNONXI8e+fyy33QurioiGyGjeOKi4v/8hrfxk699JieDpzaB53zzOwvpK1iol0G6w/RZCLlNF7tKUQlADkHI38sm9bmL9Sm6Lc+HMyvct4nlPTFlDhuMGNKc9V1WIVKfpqI4BHyKg4ta/Khz8Qe533yltiQuItpRWPPCkg5JEiWbfHGhCoXNq1SyqbSK+44Nh73nBa/8In732KFNZH8qsqE+gA+RSokG27vteTzij0dYU61ifGT1+ScnJ+zu7vKj//yXObhwjtc9961SSNJOXh2dEmfCVFPLDWExlVi5JF2ITSVFrfO4hRiMBwPVymNPB3L+oZtamhtCerLHHf3FGaHWNJc38jw+pdosO+KkQQ0jWINfTEoiTRbzh7YWMsNEWMiTu09wexOqD12Vc9pflMxNsiuLEn1iNlIocV8ghJfaMu7UydNYOrPmvhMhbWR5TOoUojF8/T/8cl71yp8DwDUwLhTjFHY/JIUxGpjf3dGdrxkWhigoX5G01Kceu/YpPi/peTPhJ8Gbm1sq6hOfUnJ80bBmIooePL61uKlhnBvaa2Ni6iarvtEXb2Q/y4ScBHuprYFB2bE3EtM3TlKuag5uSV3pOJO5oUkyBOmMKK48vhISlNmMlDDptMhng3KV0nZIs+KcBFNYywni3ELlqrB2z5oa2LUTl6TRy+eYCncmb2XrwXwdxCTTypBwltiE2uBmlcixNvK+uVlVilRxdzozBwSKHjgXzbzQqJAC2EMuBG7bYZ49ElyWDT3CxG5DtpPbUUkdGv3WrSm9/rzxKISuBD0WP9/sAxzT3DptUtAy78uvIWq2rOh0n2QtbfbqzgSgTMbJ4fX5ufJcM19TvhWZVp6h2l7kQ/Ja5LzGqUp6XBI5Ld5k+J9nnHnTkjdEwaok2WO7QXARnzKJ8+xeTihikv45Bxu4VtK2ZGMRy8w7s6PdJDPft5u9HAph+rzhibz+R5/FlbVn9IEQQoE/e9nLEDph9CutGCOEVSfd7axFK0XIGzGjmaZR1KpzxH5A7c0/YcnNennKV/7pz+L4+JidnZ1P6DE+2pFrxe2vfxk6NVsf6Qibjrv/6ssflnP4aMcjtmMlJv1hW0m82pUTwrkF4dI+5topnI4wadEPXCM8+haZxa5H3LwuMy+7HNlcarcEACdEoNPHNFTryPET5uz/7oDuLWbjaO84Iiym4rM6qaGN2G5E9YPAeoDe9CKZSO5OomdFoLXDDVWM4CPV3ddhNgHnUb0TOCW5rmToV296KdTr1D3vTqluSGE315f4ZpfYStaq6YSZrDtHSFCa7qVARaPwKL7lb3wRP/jin8RPNOFIZnFiyA/KiykGyHym303mGgY2B5Jp2u1XTK70ZfFTPohxBOBmBrsJjHNNtUwdiI9FJK9cFCP8VJDtRuC7zYWaydVBClQrvsva18V1KlhVQsZRAbMR/2XJoxQo2uoUUA7bIIIqdas+plxYYcgGI92nn+gSqzXuTMg+yMaJhEG6MC+pPcXYPJQCa5djiVTDUQojbAuBOAdtw8ezZjW09XbDpLfz8lJIa/GqjSkDVWZlWzZ4Jqplm86sFxZmb3JpGgPVypWCnJN1SoScRv6u1Laojl7ORyPM5Yya2ORbneRhoZaiGqycl0pkLoW8V1LEEyvaSBHNZgWCBHCzAcTElI1PdkfLAfM4CtEqF978fHpI5KZKF3Z4tp3MxWqcqeRtDHaVrgErqIcZtub1pk9jC59/T6MdBCtFtD2Ucwu1jFFySgxKFZ9eKdoyItCJzGTXYvKikNlzVBCmybJUZROS7Ogl2mDlIVoIXuITS+JTIBH9olgZpoIKFImXCrJRCEbxo6/+Eq73gaPO876rHV6BUoraal710p/m77zmS9Au0rnIWFvJqPWB0I+iUdUKvxHFhczKNQyOZZZdAXo++UPQtCoevLX+Iyi4HLJBSskePdDWkonaO6grGEayiB4XUFbj9trtvEvDsFdjuoBBXI5UlAt/fs+AdoHpvQHdjylkfMV4254I/buBOK2o7j/ZLo61BK37eYvuR7rbdkoAuuoc/cUpdm2wRxvpbqtKIsOcA+dhZ4463UjXO29TMbWYVS/w7vEacyYqKk5qugsN1anDtZp+1zALEaN1cUeq0i5zdWvD617wdqJWvPDv/iW+/yX/WB5Dy453fu9I1IrVpSpJUCL1aWR9UWE6gcnWFwyzy0KQWt0m7k6mE11ddaNnXEw5fpxh90Oe1UWRydiF7Mq1E3s7M4B2mtVFw+4HhzQvDtjjDrXqCHszgfDGwLBrGWea9sjjrDwOylIf6xRSkLokLQSkfkcW1mZIUNcANqawhF40kMFqYqXo9+Vncw5r1uLGRtEdGJojXxy2SHrSbKyQ4dZodAp40PjWbnWGiUCjncT56SGUmWWobSqemhikCxWGdypIqbCp0UvRthmKH0tXK7C2dG8mbeYIEZ20kWX+mbprMrEqdcZqFKtKQObmWqNMIr6k88tELNFZc4a5Tpn9mrXDpusrb65yl5o785uIeRl2ToVMipQhW3OiKBuaArMnVq2f2DL/LQb3VjG2dUEzooJhIU5YuQsMFslPzizuBO3nuWtIhvbFhzt1n+K6lTpkowhKEY08hhmTf3RCNHyVAw620HZOAgIhLRbyUkIaVDfiFlUhGOWinAmAgIydxm1XHIxAtdVK2Pqql/ezGrY66OzqpfvAa17/Zay8Z1ZrZk3FN339O8jkth/6wafxqtd8CSoG3BDoe48fPcE5lDGotkYlPbVqannDz3akIQKxhMQ/kjWsAH9kEPEQDtPU3DK3dOcqtK+YXzlG3Vjjnngbw25Fe18lN/akpr84pT7sMatRTAqC3ASTe5cCYT5K5q32xprTT9uXv68848JQLWuBEisjZg3GECtDdccDhFvPoa8eFeg5tLIAxMow/eANwrQu7NLmeodaDwLTplkuSsFyJUXWeYgBTIU53jDctqC551gK2eN3mP9Oj96MJcDb7bbYlefoSTVEmBxKB+cnEo+me5FQDLsVs/sHsX48GZnM5kVUXp06du/oyLKBxZ0dm4sN9bHDTwzNkSxy06temMepA9r5nU46ntpy+rgpx0+oqU8CB+9zdHuGxd0DfmKK3eI4TXFqMTK9t6M6sVv7uYgQeuq5WCiuPFf/WMP8/kC/q6iXWwaukDNSJ7AcS0EjRqqVmOXblehSi2GBVdi1L7ClmFm4kldZYtMi9DuyyFUrhQ8pLs5tYeowqQk1Qm7zEZO612KWYKXbEMj5jJTLKMlOdWekIhqR1xS2aOoMMxTrt6HdmUkcK5NMCM6SmuJWzkPqllPhgW0njI8JaUla7OR8BUjxzY/lt7PXqDVKR6KT8yXDu/k507hBj4JcRCiWoFm3myPTgjYFUo9pNpo79GBl85OatgKp+kpju6TlVqrMrPNRogQTxFqtZJPka1VGA1FH9FpGAOPcpNmoIni1NaMIeaYqRTXP2HOAfYZmIXXPGa4mzS37UBbnEpWXZFjFbjSPohLZR7kooRuVEJR8rQqjnShfM33YQuMIScx0W0h8mxolCIUi4hvLW37kGXz5N/ykwMh9SHagW3j67iPPZnC40RNGITKpukJPGiHenS2Uiu2LKIvvI7yQfvjxB1xYX/e61/G6172OD33oQwA85SlP4Tu/8zv5vM/7vI/7MR6xhXV/ovmOL3kT02wPNm1kt+U8zWEgNhKdFXYN7d0nhB3B2HOShJ9YmFaY1cD0rlOWT9xJloJeoJRa0R6O1FdWpQhGo9BOSE7UNXrVS1FNeka9GWUxQouPbufRpNlF2nHrVc9ZE3/aRvxTT06hrkvAdX11XWZr89++Job9IYvnA65tiZV0lPUqMLunKx1cNimXeLdQOrXufM3f/8o3U6Uoqv5cU1IxZnctGQ4mNEdSdIJV1Kce04lu108soU3m5vOKqCUcvV4G6mPZkfcHlvbIlwI5zg11t51X9XuG1aMnVCuBD80QGOdWouesEHZ8q1ncEzh9tJA01ucNk+ue+kRcdzYXaswgcJcKpI5YFo7qRN7r6tSJO9TCypwqGc1n+DYXiZDSf5QXO8XsuBQqwfky/Opbi6q3sXk5cFs2Wqpo/Uq4AFCkSakbNL3MVXWf9MbJTavM3Qp0Kr9TpDuZOV7b0hkKGczIDNtLZyxs5FR0rRbpS67tSsl5JD/h/DPlyF1qlgxBmdNGJSQbAmLtFRBTFM4U7QHMabfV28ZYcnEh/c6Ywtc15HxeX8ts2qZZsZ+mLinBozptqDBKLA6TkUexCbRSbCUekpJGpaKQm/Qo+aPisa0K+Ud7SakqRfnM4+msV/Uy08w1pU5QbJZjZV9e32yzSfPsHrjJGcknJq/OjHK7JaHVy63spl4FXCObrGotFp3Z3cu3smGQ9jZ9bokwhpdr+Ye///9k5T1XD4/5wVf9RZyuWAXYdD1udIx2Qtc5jo8HqZ3Woud/SGwJfx9HDOpB3ZUeqvPSox/9aF75ylfypCc9iRgjb37zm/nLf/kv82u/9ms85SlP+bge4/fFo37lK1+JUopv/uZvLl/ruo7nP//5nDt3jvl8ztOe9jQuX778kB/7oBUZgc4G04mlaw5XDHsNqvdFt7p60h7johbT6WRGkDV9UWs2ty+Y3rdJMxtYX5R5YXWjk4LY9dANMjNViuHiAtpaFsfWykw1ueaoGIX5axRm1RdHJTWI4UOx9oM0txCjCKZTScQxRh5TCTQXJhVYU2Zvaj3gdloJKE9G83ZzpoOIlMVPRZl9arcVkg97DW5qufFpU/odzV1/QSezdVVs17IVYJYTSOKFMKSloPoEb8kiGGox4mgOHfVhX4z5M2kjWElKybDbODNsLiStavJAdRPDsGPYnDd0e5r99zvqkyhetFEkAiY502y9VaE+cjTXeumoe58MBHSxPMxHtp9T3ovVZCpcQoDSmFHclvIszldieOGmtph0KCfXlFn2Mr+e1mUmqTsvLM/Gig63rcrnXFivecZaW9GoWi3zxTMdgMqdavoTG0OYVEWXmtNrTO8TG1mVP2r0qM2IOenQa9E+l1luLnhnpDkZci7EpLQZze9XPCOjkEALfdPGQYUgfr+Dk3txLVaaanASH9iP6PUgbHAfzzxfzljNZhuJWDQGseZLCECGgrNRfDboiOl9KHF3dussVQwd0kcfrZgmFEnJkNKRBoFaTQpmj3rb/Yp5QkjmKGl2Oco4IKcc5d9RPsi1mUYN8gFTxjHqzCbaTWW2X+6vQc4jqz1MH2mPAu2R3wZvaLYmGw7cRFjPduW32axG8YLnPYHf/O3/yqmD99xxF7/zvg/w3t95L/e85z0c3XMPd/7X30QPHdRW5qKLKWpSo6z577qoAtuO9cH+PITjC7/wC/n8z/98nvSkJ/Gpn/qpfM/3fA/z+Zxf/uVf/rgf4xPuWN/1rnfxhje8gc/6rM+66esvetGL+IVf+AXe+c53sru7yzd+4zfyRV/0Rfz7f//vH9LjLweZdXKyRM9n+INZwfzbe08I05pxpyE0muaG6PE2t02SBlIX0onuBiZ3CcTqFjV27Zle1vS7ltPbd7jw765IRxk9qhenpfrO65w89RKL9x0VGHn6wSPGCzPqOy6DUtRIl6FPO2JbiWnEjRVUljiboIYNbDqYTmTRPl0XbRle2Jknn3HA7O4NsTL051ra+1bEiRSk9krH8ZOmgMw/g2mY3bsRfSSyeAeraa/2jIuK2d0rulsmRYQ/7Fasntpx6z9qaI5FFqN7T3vay+IXJYjczyvZqac50dZdQRYWuxqpr3v0qsccI8koVZKEnET68w12E3DKUCc25fHjDDt3eeora/xOwz1/dsItv+bo9zTtoayMdumZ94GQDBkyfN3ccBCRkPYxlkKacyYLcQZQUUOXNYUSsJ5Z0/kxx7mhSzPX5lgco6IVUwDTpRltttlT2fC9KaiDn1bShRrpuHXvytxd2L1pA2e2Bg03ZYemx86oiPJRTOCTFaJyAUUgBvGKVmc6rHy9hMrIvFQpmFQpyizNR2OyTUxz4WC1BFsHjapNCRFXuZtOrF3lPXodytY6z39jZZKrUNgSnTyo0QmqcoaQJfCzKtej5CHLKKaEaWemt9lCs7kbzDIpnT6TnA6kAqLJtArNtphmZMRuQmHVFjZ5jMXuzyToVvlEdrKqFNq8yMbUJZs+FGi6QKTps3ezqui45U0Cn4qr7TzjQrKMVdgWeqBct5lJrJ0YtEQjcLB2grpELelLOkHCynm0kw2qmwoKk4l9P/AjHyRaxWu+/4+z+6jHETYdTjmadoKqaqrzF1DTCVpVjzTlycN/fJzOSycnJzd9uWkamqZ50If23vPOd76T1WrFn/7Tf/rjPqVPqGNdLpc861nP4kd+5EfY398vXz8+PuZHf/RH+Qf/4B/w5//8n+ezP/uzedOb3sR/+A//4SFVe4CrS8e3/6OvLZrVaDR+UZ9hMoq1V3UyMu5U9HuymPZ7BjcxbM5XdOdr+lsXqNHjZnVKIJF5YrXy7Nw50D12XzrKqhLSwd4Ef3GX+Z0riJH6aGBy34rY1tjTXualRqM2A/pkIxC1C+jrJ4SDuRBM1sIi9pf2GS/MUScr4mIqmtXGlGSTyZVB4KRFTXvfijCpuPGUHUznJI3mNJQ/w0LjplLA/aLm5Ekz7Hpk9aiW6mQoqRvj3LK+tYYA01+bSHD7jX4LB8aI22kYzs9QITDs2JQ8k03DEwSXdu1mPQoTelIRJo1k4O5UDHsiXalOHc1hXzqwYa6pVjBONVf/5z2On9iiAlz7LMvkeqDf09i1Z/Womsldx7SXNyIRyYvsGMUxy6dc1fTZx+ySFNLcM3dALhR9KYBf1Lh5TagNodZCeBmjZIba1FWkTNFsYpDZqqGWGaewcZNWMmsDOycIxZk83BzGXULAK+lQ3VRkV5nNGqrEMofCLlcpAUiVsAYpNKZPVoWZoZx+Vrq+DyMqxSiz2vQ48j6G1P0JxKhd2G6kEpRbft657d8z6jJsmcZZXhMrQ5i1YsuYtbpaWO6xtsJMr6Ub1r1omU3vE3lLzBUyq1teT9xu4lLRLMktUAqZHoRAR7KjzHm8Et+XZs16qxUloRGSRCP3ugQ0+DRO2MLMINBuITS1VhAbq/EzCeIQw39BckLSWMfkAZwZ9tn6MSYCm9nIJsFPDOPMMM4E2s2bw/rYF0MaFbJtaEqISo+R3x9fp/B2m/W7sBoDm2jobEvYv8hmssPatozzA9b/byyqpBn6x/gDcPvtt7O7u1v+vOIVr/ioj/nud7+b+XxO0zT81b/6V/m5n/s5Pv3TP/3jPqdPqGN9/vOfzxd8wRfwuZ/7uXz3d393+fqv/MqvMI4jn/u5n1u+9uQnP5nHPOYx/Mf/+B/5U3/qT/2ex+r7nr7vy7/zrmJYd9x7Moo94OiLuThKJUvBgfa0IzQVYb+iPk4LwjEsb6+xG7mh7DJb9oWSk2k68X3VvRd27nRS9IH2cMV4YZ5yYMXoOlYJXq6t7NpTTJffnwuDWCnCpX1U7wkLkcRE00AAe7jCX9ovJCe9HghtTXe+pb26EZ/gaxs2t8+plo79/3oicprEdLQbMZ3v9xXTKxoVZaG2m8iw1zC5LL7Fw17NMNdJ2xaZ3y8dw+acIeoJk8ud3PBTi0+zx+Gx8zJz1l6JY0uCy2TOpAmqEp1bgktD8jOOVjHuSQi98pHZvZviDewbw52fV2E3ML9LUZ/COIduX867O1+x/5tHhEmF6kU/q3xEn4o9m2tTR5wgRAl6lsUxk3tyl4o68710jsWK0El+aqhl0VKORFgJJTbQt1vNarCqdIlZ3uKmFqNBGyUbJpCuuNWyiEUEOkwGB97aslhnLWIurkaa1C0LN89LU8pNmaXWAslnoxDrkpTGUIhe5LmRtUlzLR2XGT1qtFt5TSYspdeUZTl5rCGb+VjGGGUO3FRSZH0kqmTvl4lKxqZOVm/NL8o5qvI4ykVMNopIIwhI880QhWRILEXqrKezDtvkmGxMkrtchaAUvkmzzyFuEYbEAC/FTgnrN4eH5yIlj2nESCSn6BjF2CT7y0QQyx2ndpJBmz/XrLVWUT4KiR6Uwu8rkbq5SZIPha3WGhVLJ5sZ8jq9HnlvKCMV7cXgxQyIHhu40UXC6FFJsvWIZ+x+Mo6Ps2O9++67b9KxPli3+mmf9mn8+q//OsfHx/z0T/80z3nOc/jFX/zFj7u4PuTC+o53vINf/dVf5V3vetfv+d4DDzxAXdfs7e3d9PWLFy/ywAMPfMTHe8UrXsHLX/7y3/N1PZ8QuoGvfuOzmbUbXvulP4Xtx1TQJmhrWD2qZXVRtGnzeyXn1C0MvlK0N6RgCCFkQnVjg9oMxMqyedwu3YEQDvbeJzdxVFJAo9YQ5UYwyx53cUZ1OJRFCqVg0iZ7RCtkpTxD00jhnNZkw//YVDKPGj1+d0JUaXZbiS5SSDh1Ij5oulumNDf6MgtzE8U400wvB1a3Wsxg8RW0N3JShsWuRprDnvZK2JpWNCndxGrGmaU/3zIsRP82e0C0azm+TebFDpUM2s0mwZaJtDPuSRKPGkMxcVc+yu7di1YVKJ7N/b5hfpdi+TgR89s1LO7yxQVnes9KOjdjGc9P6HeteBkrmS3GtXQjrpW5Y2Y9Cnt3C1fLuXoUW61k1Gc2CMnZptpAc5jYn5UqrjVmiKWYxrksluNMFsNqGYolY7Qab7IGNxYYMpNzdNJl6pTGo/sgBKikjxXTe4F0VROJU5n9qhRWrRKXgESIiYnFa3qPb6RjJ4h8BigSF1LhjhjpHpX4JOtRknUgQc2d2CuqEAWdyXNbfcZXOcO+GebNzOHMdk1dqu6TsHIkeXFHVJ/gaK3Iwekh2Q6GyqBJs8xUZEN632K2/PPZYESQg2FHXL7MJpT1slr5klMssHagHjiT8Zu0yWPEJUQCEC9ko/DZtSt3rF6uzeGgEY7AJBGnRtkE5M1XMAo/0QyLmvo4WQUmm0Lf6sJ4DomwRAwpli9JomIuxFuIX49BOni/tYvMs2VIsLmTsIUq/Y7ZeP7eW76Y+5eBKnpC1f5RUc3Hx8kK3tnZ+bgNIuq65lM+5VMA+OzP/mze9a538ZrXvIY3vOENH9fvPyQo+O677+aFL3whb3vb22jbj+508VCOl770pRwfH5c/d999t3zDGvRsQtj0bIaWv/Zzf0EIIbWlur5CdyOTyz3n392x9/5BmKiJ/FBtYsngzPINv2gZb93F709pH1ix/6vXOfiNo23BzDt8RJhuktF/v5cclnwQXWqMEsQ8euy1FSoE3N4Ec7wpczS96jF3Xy7/9vNGvINHj+5HVIy0V8TmT4T4snsVIpJ0fP2BRE/5WgLGTx4vgnbTRyaHgWzlZ7qUnqJUYRXngqhG8VpWUYz3fa3o9gUuzvrJ+sbA7K5VmTGSd9jrET+1rG+bypxuNWDW4ts87gj5yk20EJIuGEKlWN1qiZVi2NHsfcDRXlVsbhG9Ybafs5uAn1eEWcOVP7XH+paqxGFBYpIG2aH7iU4zs+xxq0paR1RiBJE7B1/rpF8MxUTCrH3S40qhzZ2KSouq+KqGokWVRTLKbC6Fa+c82DwXBHl/glHJzWcbwj0ubFmwg1WEZGogfsNpXlwbKbRKnl/8gA2hsfidRghTZ8hOZ+FKQAxGjNrORs8ERAjLN10HiWSUr2mUgkzCS0U1b96yveJNEHMQDkGsbWIAJ87D2RkrqSCn+bebJ6ezWp4jRzmW58ibo2wPmF2wUqGUjfCZJUlRzBWGhRVim0uuSHEL8QWjCtTr2kSaSjNV32qR2KTHE59ryuYsd5+5qGnPTd1tcWJK/sX5Z7OJhWyYtsYTGNnYqVFGGboPQkLMH6nOEZGJ2JXuOZIsy9diYZiJa7LpEkLYXb/7Ify1+zm6531U+v+NoO9HOcLH8ef3+xQh3ISsfqzjIXWsv/Irv8KVK1d46lOfWr7mveeXfumXeO1rX8s/+2f/jGEYODo6uqlrvXz5MpcuXfqIj/nRBshKKXEqQqGURlPhdydFqK83I7411Ec9btKio3SIeS6nfKS9loK+G4Ob5gt1eAAAy6BJREFUWerr4mrk5w1qUmNOO04+dUF9GmgubzCnG8zg2Dxun6jg8H+Ycdu/PhLnJJfvnECcNuJQs9Ni7j+kuhzxBzNJ4HGjFOHJRAwhdqYopdBLkStsHrtLVDD7/7P353GXZmV9L/xda93THp6hhq7qGVRQVCQ5ekzSb3KMr3EIJh6NwOsREdAWhQMooIagUUCjkmhEVECjqChpMGrQnBhC1HPQozGJQYlTRBm7m+7qmp5pD/ewhvePa61176fpbrqgaRus9flUd9Uz7H3vaV3r+l2/4Q/vwj72LO2JMs8YbaPQvaLct5jGsLyuyIzgnfcIVT9tJv1cM4u2gmm+aLcllcdOjOhqo74xKGhPapo9T7WAan+gOGxRrUV1PfbsjsyJW4cuNbodGE5OWF9TSt7p2mJ3G+xc3i7VfsxP1QXNJUvQBbaRg8z6lGF2Tli3yXqtPQXTCyrbIR7dXNNcLti+3dKcW9GfkFjA8iBCrVphZ4WwOlvPMCuoDnp0Z7NEyayG3GW5aYlpfXaEShtngte8ju45Srr0svVURzHxwwirlCBh6WnzlbB5GzfYIv+sGcR1x9XR2afW2EblqD5fqVzkg5HbSfFqxdrnKDFjXdb5QuzwlFjOYb1EqqXPgh+lMsGYLGuRJByTZ5IqzjVx0Ri/0ALjgiQpdUJAGufDsasFUoxZUAplbWbFS+dq5L0SQoy/U6joIoYGPy3jHJwN/9/4UsbOXrsg3nqbXVY0AQHAiPtQOiz5SjPMpQtOM1IhH0U418SZZPxjJxEW7iIUm567OEpIYRrpd4MZw+rlcKSiZWZkEJuNIt57XLRULVYOu8H0rhYeb8YiryKRqlwMUSokWm15bsnmE6n7DlryXYeZyu+F5MWd9jFC4Dt//B+xWLZ0R0u2z1ybkYGriwcNBT/Y9ZKXvIQnPvGJ3HzzzRwdHXHbbbfxtre9jbe+9a0P+jauqLD+vb/39/ijP/qjY1/7mq/5Gh73uMfx4he/mJtuuomyLPmN3/gNnvSkJwHwzne+k9tvv/2KGFV5+UAgoLViUsqlmk7IGm6rotrv8HVBfbHF7ggcGQpFv23wBqp9mX+W+2JejwtCgHIhO+Fs//kR/akJGMXh409jes/0Pfuoc5eY/umEsDPH7c4wFw/H+Vtp0HtLzGItchoQm0WlZOOqStT+IdQ1OIdufT7ZT99xp3Qd15zIbEQfmYXVoUCge48XJvL2e3uObqpo9qQbN63cf7GMfr17coJSTrSlrhEY1zVaSFR2QHlPdTiw/V6oDnrMUYuf1fi6RBmDBooLRwzXbosLVdNIULNR1JctpnWSXKOSrEFi9mZ3LJlfXNLdsE23qzGtdHrTc5b1mYLJJceZt1uac2vW109AKYa5aEXrAzG7qC+3HHzynOn5QTYrXWaGri8Uw1xj2girbh7QQxCNcWKwJnOH2JGm+SQILG1rRX0ogehpvheivjTEgluupMsVj+MOs7bZ7EEPDmyEemsh7Wjr6eYaPUSjgshu1SuRe/RbJhsASAZs7JDj49Nrm034Zc4qZvgJDk4e0BlRgVyUxAowfk0TU01UZvDKm2SDZJTmrJspJdEYQ7rPEItknPdWKSRdpGNq8EJei9/PDOViA1ZWIzHomBtTgCK9pqXOowpXm2OM7GOezKjsVpSgY5lHC0qhIoEtuTQpF9DpdyKsSoTo1QBGjeQfbUPOLh3Z21At5GA7TCVkQqc4REV8jWUEIJI0CHGUgA9URzZfu4v+1kGLVSeQ04fSTNvVhn/5Y0/lBS94U3aR+oV/9mT+jxf/YjQUiRKciF694seewrkjTx8UbE/RswnDle+mH7dLhfGAen/fv5J1/vx5nv70p3P33Xezs7PDE57wBN761rfyBV/wBQ/6Nq6osG5tbfH4xz/+2NdmsxmnTp3KX7/11lt50YtexMmTJ9ne3ub5z38+t9xyy30Slz7kivNOawPBzdGDw5dGAnp9YNiJUU+1YdgyuFoxTKRzKtrA6rpGUlKSHV10lDFHol8NkUxkZlXevMzaozrL6rM/kepw4NLjp5z+/SMOP/Natt9xD2FSoS8cjNKZSSX2itaC84TdOWp/IZrVuiLUJWo9oKwjNCVhW4qmn5SRrAHBJCbuqIGb32U5/ISKoKDaEwOH9cmS3T9fMmxXNBe6CNnF1BOvIYgest4b6LdLSjM6D2kbOHjslMmlOibexKDzrQrTOcxRT3LcUb2jSDBUZ2V+phTl0YCdFvQ7Bf3JhqI0lPsdZ/5bi51XBK2oLi7Rbh4NGSzDbi0bvBLy0tbtA91ugVkH7Kxi+y+WhEJj1oIs+EJjnKPa7zF9QXHQy4ysNqAK9GoQh6GZ3K5a9ePpPhJSXCPP4zDVNJctFVLcTGvRnaU/ORFBfyuB65tZn9VByD7GOfXFxcI5pI5W028X0enGj11YgD5aL5bLaJsYZ+269/IeKCTjN1Tyf907SBaBbMCyxE41d43j7pBmqbngWo8arKA8SfKTutENByeUkjEGjAURhGF/L/OHfP8x4STP7NFQpc+nyiYOaIFkg1b4eZw9RxvA8qiP+taYtRo7WrHMjFBnCIQAw6zIDkpE6DVpPIulFHRXx4NInHcL7Dx2hZtFHoT4ZKc6F8hiJd2/q0YEKFkNmp48RpKxgMzmEzkpz0u9mFGIQcU4EjD9KAWyE5PlRgC/8K+/mjuWnruWlhc95zaoZJ8ya8/XPvM2fuA1T+Ko8+zM4CXf+O9wjeKfff+Xcceexba9JBNN6ocC2fz4Wg9yxvpg1+te97qP5GqAj4Lz0itf+Uq01jzpSU+i6zq+6Iu+iNe85jUf1m0pBaos8M6xHib83Ftu5Wn/8KdEjlIZ+YDZwOpssWF2LSfJ6iimWMT5V7H2VOdXmLbPsyOI85lOBO/NJdmkL3zOWXFdaaQQhMqw/T/OS5e7vxDJDcAwSNZr8NIBFAZ1sITpRAgOyxWYWexMTHTG0dgTjVgSFop+LptE+oDJTEc205139zmbNSiY3S2ev8oGhu0SPXjUoAhV7HxKjep8DAZXHJ1uKBc+k2uUi1mNXp63ovfYuVgkhqYAK9KCYkWWbyQDDLtdozyURwOm8xRHHfpwjTs5Q9+1R9lvsb5RpE3lQYepZE4snq6yUQ1T2fwmF6SI51DoLqbeeJ2ZmG5eEhQMJ+o4I5UNNNRGIM/eQmmkk2pKmSnHTSzJlUxv4sYu53sdC1ixGMgh4cUYNI6PiTJskFxCACUyErtV5Ri5YuUpj2L2awwS0L2n6DTJqN4bJZfde1QvM1C97qXYAhTiG0zK+k0doAsx4ShqQqPMJjFuJbFGgxJ9q8AOZmTobsC8GQaLjF1FCsXWmVuA1rhZlaPQgOwWlGbv2bXIqPEgghDIkp2edlIciaYgQYEO0Ws4MrwzXAy5wxYDGCGrDVtjsk2SfpUrn7vTlKKTCG1FL85jpg30O6OncdDynrMTTT/X+FKyfMtlkMyMSKQT/Wt8iqL5vi+E9GcngiKVC5tntabzlGuReXUnykhui1F20Vs47TfZX1jJe8FjMUpLxF58WYo4zhm2Sk5Op5xfrlkcCFv4n7/my/nAPthli5o2qLr8+Dd7+DCW4kN0rA/blYzrIy6sb3vb2479u2kaXv3qV/PqV7/6I71p2USMkB4GF/jqJ76OUMuHtNxbo4eag8dMSPFnwcDepweu/c+B5kKXSSx2qxRob1Jm5qOvC9zEYJaW4tICd2JKt1uK2USpYtRaTF4xiju/9Dpu/KU7orn+MG5KQ/xUFgaKQuZbXZf1t4CwkadxjlxoisMoHUI+yM3+SOIIWshKKkC119KdauT0OzNiI7hd4SslPqFzEbCXe2u51rbg3GfXNJdg6y6LL2BxvWH7doudKHb+YiGerxNDvyOQVrkYoUZfymzW10XubuxOg2sMdqIpl060wjsFjVaUTiDZ/pPORocsRX/tFr7UVJfWzA473LTCzktM59j+c5nT2XkVWY82x6ip1tJdN2FyrsVuldhpSqARIo6OiUUZYgQx9j81x06FGQ0Ks4yB61rlbi0l0Jgj8U1Osha73WQTdfFejuzbLr6+kZ1LdMUyKxtlR0KKK476GBMXMsSpe8ewJYlD5aG8N5K8RnUSKZd0pfjx9zAahgAm6lTzZr+hdVUqZsyOh4GUz4uJ8Gt8bCFm2YploMnFNDl0yRNDlvukAoFX8WAQyTPRJQmi/Cdqe+20GN2P9IYRRIxRM0tJ5PGlxjeaZOCwWbjT/xNByU4EofKldI5BQX3oMGufk26SQ5MwZ0eLz2A01b5o2n2hcNNkfg/TizLzN1HTuhlSLkk5Ka4twcMqS3naUwXtyQLTiclDkoEFJZIa08u81LQeBjF2SKHzxUrUAMNOQ6g1CsXKejEFcyEb7Ke0nuc9/ed4+b96Kuf3W/7x9z+Juw8Cw7qTgnq1qN7/eohnrA/FesRPwFVTE6zjcDXwLT/9NPSyR6+GrDPc/bMFs3MD2+9t2XlXy9n/Kj6hwqiTcOvyoJMg4onY0YVIkNDdBn2+c/mDs/3enmv+80WqA5uJLfMPeEnS6SMzsiwydIaNhvs+wEoIUlzcI2zPUIdLKb5KiUtT2hzjyXvr9o5iYSmOBtHVdk5mx5VIcRKcWB3a6Imq8yk+hSb72LX1WwU3vG3J1p1DNE+Qwr33mCIeMCqCEYhW5n6x0xiEDKZ7i68LKXi9w81KupMV9T1LJnetKS+u8+vSnio5euw293zOadrTFetrGyb3tDlSDaXwTYFZtHS7Bd2JkvbaSZT2DKjeoRetQNkR8mwudgzbggYELUxfHVNoXFPEjjEaGQzChtXLjuryetRPRla0WVnKo0E2+dbGYG8jRSYaG4iJQOzM4++YRZv9e4+9D61HrwbMcqC6tPFc6HFumCQuKDGrV1ae1zSXTHm78p5x2SwiMc1x8lonO0HdW7nmDd0riXgUi3Motegwq0I6XqPGopq6fKPwdTn6B0c5VoiGGMnTOD/WdKjox9cyzVFVSuqJXWFmAWtI8Yk5aSaxzF3Ijle+iOb8qctLI5XIGjeDoDdyHUQDDzeSnOJ7Q0UtczoA6EFCKdLow/RyO0Urz1PRjZFruPQ8kme1cj8he/emCDhxSgoM8zgjb2O8W+RFrK+JWbmRkV0eDPk9hRN/ZDsXSPgpz3wTKxsE6VfxsQf5e7GymM7xmF3D6XnBsvN0Ry2qKKRbvVpU7389DKzgK12P/MKqFXp7ireOy4ctL/jZp+cZlJika+k4etkYq4WP9HiXT/hJi5g/iBkaTYJx2ZDKw47i4lKKWWQd9lsGc9QzvaeXwllKVxoOjghtK0VV62iL6AUGVgq25qh1D1UF04n8vTDodQeRUFVfakmsxv5ElWn+NnaibiqOL3YWnaROFhw8WrrHo+sL7FRjJ4b2moZhu6I6sHTX1CyvK0S6MwRMBzvvc9R7Vnx/o/Y0hT/L5jLCnsq6PE8rLy6Yvecgk1j8rKI+t6DoBF52jWJy0eMLYdsubprSna7xleboE2WWPJycMr9jRXO+ozyyAvvGLslPZbat2gG9t6C8uJQoPhsojxzTu1uqe44w+2tMayn2WpSN2aSFEei9s+jDNcX+Gp26VSOweL9TiWNObQTK3W2wOw26tehlh24HykPxBVbDKCfJhaWLLOXIzFSRNKUPViKbio5FUqhKQiNpR8XRgFnZTEJKetBQFfLz0ZA/r5yb6lHLFWrVyZ9uEJ00ZH9everl753N7kJCTFL5wOBnNW4enZKMya5PEqJeMWxVkTyks0OUshueulqkQqGKrlFRdpIISL4WJrLpHGYlvtKp80wsXHne5XflUDN2pqLJ9RnWTWlFuhfZjVl7ilV0KPIB1xjctMBOxVVt9EIeSVHSQYf8GRK/6wjPr3zUFrts/mA6QSmylCmSnRJruFzFnNY9T7H2TC6Kd2+/W+KmgoAMM830rk6KLWQXsHSI+PYf/FxcU1CsXB4VLG9/D6vb38N3fMfnCNmtc4KyxKCGZzzxdZRZzhRQ0/pqUf0QK5GXHujPw70esek2eSkl7NXtKf5wxeFRx3N/4qu4ebfmxU9+nZg47DS4WUFx1FNEgk2CMoHjnq5aycZqzdjlGBNnXOC3G7rdkvKyFOyt91lCbXCVZrjpJOV7YqBACNDbUVlgjHQhdSV5sTBmxoaNeZYX6Y1YyyGd9KyQzSumapj1vVI0nMwK+22D6RSuFAlL0Ynk4/BRBcVK9K3trsB9B48yXPM/Orbf1eFLw+qGCSjZSOwkwlU2zrzqItP6lfXoo05mrlqj9o5Q86nM9UoxjJ/92SX8vObgU3dwtaK5ZFmfLiTX9UyBthJF56Lvccq2NOsBt11jDsVUQ6/j86MVYTLJZvRmbTGxgPg6+jCvRx6k6p1oio2Wg01ZojqLMtL1+e0Jw1YZu9U4B603HJGMgrKMjztZC8Y4tzQrd158n6tCvpeIYl2fX980fwaEWJL00AmuvleaTHJYOqZLTe+lFCtonfwp41wysuGTqb/4/AaJH/PEwPd4H0bnEIqUoOOjX7CKZhVqI90lWUhKJ1fkLkrpMY9UZq1R1hQ1xrmIqjAGzyuVnZXQYsigot7U1yZrTYHM8k2fx01PXZ3MKFI3qxX4GPemVSYQ+dSdJ9OFRBbKDFwJq0/3l+bFJs+e5aAh5KVo5GFUNLYQkpOJ2b/CNpdOXA8ylgkTTb0fgzDi5yloJRIno3jZS/4G3/WdvyPZuClWt9K0h/tMd07wvd/2f0fpjcufu2Rd2QT3IaO7r66N9RCTlx6K9YjvWNNSgN6egtGslh3v2+941S9/HX5aYY566jsP0MuO4qhj+qd3U1xaoJzjF3/91vwogyaftvW6zzMxu11LHuthCy5Q7w1c+sxdIV8se8zlJc0dh3KyLAxhtSb0cYN1iVbopYsyQiLxs5qwUWRDLUL74WxkBcdurbj7snjuLhy6t5QXlpjDtXj09g697gmFotrrKVcePcD8roFT/9MxuSBd6PQej3aiL53dPVCupFMaog+wbwz1/iBMx7WlWNnsZFS0Y6SXGiSIIAVY4z1hZ5YhyCTb8FsNflKx8ycHEBDymAs0e476YEwSaU8JTLY+2wg0OjhcY6TYJIKO1mAdarFGLzvKCwvx5D1YwLpFrzrMwTrO1tIs0EBTjfBpCIS6kCK8PYEQqC+sMrtXDdEsYzWIYUaMRcNvzCVBAurj1zFaGN0J5k2rKrPpvVr3Wd+srEV1A2rdY/YW8vd+jF8DROJkR1ck+cU4X61LQTcKE/9fjAVTSxEhhDxDlVGHE5Z0gmCjP3CCR/udSuwUq9g9xv+jhGTjjUC5dlpIClCtcVMxsHDxaxIuIIEGycwkMdc3rRLtzGQUxNbS4fo6/nsiH0DpKH1ObEkRbuNMNxK+wsbjiAeAFPCtrThipSSfDC2nbjjIYSO5WvkYV5gMHbLhR2Q0E2HgYukojgYm97SUa3E1q/Z61BCynjr7+hZCwBMv4dHxyxsx1Vcu8N0v+12U9bz+X/0fEB+vsoFPfNynUFz3aLQNfOfPPl2uJSIZyfb0slU4Jwzyq+tBrPAg/jzM65HfsaaVJAbTmrDX01vPhbXoVLX3hLrkn//qMznbVHzNLT/Cv/rtW7n1H76RJz3xp0HryBb2sXs1Yi83+MiwLHDzUj6gpUY5j+nh8BMbTv1+C22H6nuGa66humONamoYDAwWNZ0IlDdpCFVJmApxxeytIAT8rEFZi5/UoKG8uJQN2wXUpQOYTSmOOin4Q/QaPuqylytKiqFZtFSFojnfSlD6tVuZlbi8TrP9fsvyhhpfQHtCMb/LU18WqLzfkeJe7cV/75bc+XmKG//vkPWIupNgbJXmxnleKJ20rwqxsGstflriakPQFfMPiFfx+hoxadBTTbMvZJDqyOe0kaAUq0dvMXv/QhJjWsfBJ++w+0d7hEIMN9SiheBRqyCFJXWMyxZKeX6yxZ42UBWoxZpQldgTU5krR2hWOjtPcSDdsRqcFLYNkwOTYNZ1L53vYKVTrKqxcCadaYxDwzkpjnHTC3Xs7BPEax146TjCtJYCm57Hzed1czabzEe0Fl20T/+OqEuCBnXEUdPsNAWVb8S9KetyMQxGyZ6ihYynhpiikuLa4mhkkw3sYjF3TdSvliMMTOwqE4rtS5WzSINWOWnGF4Kq6MiyNW3I95nkUNqNetL0PtORzZ1Dx+N8Npk7pJQe5YJIuebFqFtOrNzJmN8rXTgy//QKbZ0c8EojUHeh0OvRbS05YxVLi2lVjr1TMWFGIQYU5XKQYl9q+mnMVE3aWo3IhIzB+MDXfvUb+Kk3fDVHvWfZOZZa44Pi63/sq7jYeb7z57+Wlz7zZynWclD41p97BvtrS+itxL9dhYE/5FJeoR4gc/WBvvfRWh87hTWtEAg+gNbsrx3f87NP46Wf90Mwm9AOBc/84h+HpuTWf3Ab6+umVHu9yFKcR3dyKlaDoz8zoToYZIMOAVcXQIUvNfU9S6Z3G6pLKyHg9D3+xjNUf3ansH2nE7j7vMC/dZWj4UJpcFORibAzFbKK1uAUeh2TUdyYNsJsKpve4KjvWY7C/Em5MUeS+ZU9Mc0h2nZ3ilkMVBEu23mvfL0+cAwTTWVgck+cAQLFUucOwNeSLnPzW2TjMG20YWwHgTwBP6ulS0xQellkWQwhoFsESmsEZixWlq139fFgMqU8HDCHorP1TcGFz9xiVmuKlac/NUFZYZVu//mCg0/fZeePLst9ugCHC3nsEVZUy1aK2WId4XObCxbR+F0NluLiUuQ3pZHv1SWh1NjdhuJIvJd1F4PqeysdpvVSTNtuJKAVkp+bmb7dkDe3MJ2IM9JgofeCRnhQ65Ycbh91raGStCSMHgtz1MpmVrk2YLvx64nI4wO4AZo6drQqF9OMHAxSvH1TCJvXxVFHvD9f6MxYlQNkLB4+SUBGVq0wduMhCOmuTGLPxnl8gnJ99FlWnrGQGnXM5xZisUPIQCBeznY2EoV8odARWpWiHg+1NqBj5JqrTb7m7F09eCmUWlMeDvIeLOU69cJl05VNHNVEhCZB5em2mvNrVCdmM77U+FmZTSsg3X+SFYnByTDXTM6L/KbfkqJKCJRHNs+jUydut4Sh/DXPemPW0Qel+NYfejJKvEBY4vnBn3oqL/z6N/E9P/Z/cO5wwFknKMbVjvXBratQ8EOweouKIvjWa25fOp7375/Hd/77r4eg+Klf/3qZtzmR3JjWYpa9/Fm0QmLZrqkvd7iJwcUc0Gq/wybnonktkVezCr0eCP0ghJ4TO3Ej7oWtZ4xsiv3A+sZt7FaNWfZi+O8iqaU0+GmVPVf9zlT+P49ynNR9REN++fAX+NJInNu0EmLHWuz8hMFJjOmS3aPIp26BlHfe3Y5P125F0FCsBtk8I1NTu5CzW5V1kqgTOyO97OT6Nj7YOia7hKpA9TIDNWtLud+h1z3DrhS7fi4OUOub5/hKQgrO/vYlTMriVGKcHuKBolx4uuu35bHfq3gIJGtE4rRcQdcTZg2hNNiTM+zZHfzOFHdyRphW+KiXDFVBd6rJc+M0G07GBxiFWnawWMkcXGu5j9lUil0IkqWbXh/roj90LL5lEefyXuDjVJCTCX1Zytedg9UaterkNrQa5VkgRRgi/FvKNaQCm4p5kTp0nWdxWC8wfdTBJsZsIhb5lEeMOD2JwYLPxJ7NJcx5P+qAY2eZ5CzeqMw+T37KrlbZ9m+Y6UiiEyN726hsQJ/MF2yUvpRHjvrASuB8clWqk4aYaCE4QrWJDZwPBRvMYBSEGNWXN87Y4fpK5xi/xKMQSVA8WETSVyKVqdjhFosB08phwyxtPIT4jHY1F3vmd/T4WgxI5HHEuWtjone3z3PeZGEYFPzcG5+BWQ0Uq4Gz8wIVEYeFC7zw697Ia372aVxqHUMIhH5Azx4aL/a/CuuRSF762CusSdjuPcF5nPMsHXgX+I6n/gx3LBCHo0KE+kFrurMzACm4vY0+szGEevD0Jypwcd6o4qwGCIWmvW7O/hd/Ku2ZhsuffQ3upmtguSQEL6fKXma1vlKYlUUftah2gzFK3By1xjeSE9qdnTNs14RJJYU6GqYXeytJo9mpZINMcXUmQo1a0Z2qc2D1MI/60otryoWlPOxHDd1Rn+Gp9nRJe6ahPdOIjnQmJ3HXGOxWiW6jZWAIhEKgTb1oM5FGdb3A3usevb+MFHaPPmzFcacuad53mVAatt63QneO+kKHOb+H2jsCF5jccUS110bjcZm/hdqwPFvQnipY3tDQX7+FP7NLOLGF352JQUKy4dveIpzYwm7XuGnJsFXS75TYrTrKHwy+MvSnJvSnJlQHPeXFZfZSTsbw2Ug+ZvDSRH2xUpBYwNZFMlqcxZYlFAWhlMNRKGMRTV2FUoRYbMOkHmeyPozFMh1SzKYBQuxaQYp1WQgiUte5W00z3kRskfuO1+tGl6SkOdW9ZKGazuWQdVdr7Kyg3y6xc3nuUhpQvpTC5IQZHbW5rjHYmbggbSa1mC4wxGKa49kY3YuKteT0Vgd2DHeAaLJvslxnmEkxcrEAitUk48EqrgTRosmErBQP6GqdDxbi4iQsZV9F43s/kpfkoBt1u9F5LbH/XSOBGCFahfrGUCx6ORzoBGGL/rs6GKj3LMXKU7RS+IvWZVtKbb3AyZ3P5LCn//9+mp/4lVsJWrHwBm8Mymhe/U3/BoDbD3oWa4tbd+i5jJeuwsAPcnk5xN1vFutfgtzmYwIKNm4QiKqsohRkgl13FAR8P8B8hvUec3nJdz7ldbzu157D133+a0RqMKuEoLHdUPY26xxVEd1rdCIpOAglZtmjVz1uZyIU/EozuTBw7m9UKAe7/zPA9hacvwiTiVzgMFDvRR3oVoPqR7N4HaPu+lMTlA+Uey1VLyShUBWE7cmYgrPdYJY97ekqkzXsVkV1aRXTXBTNBemkivefZ2tvLifudsA0ElZeXWqlIMVVrCQ7dX3aMLnkJNi8UrhrKsq1p1hYkaB08tzotpUCkj7Y3seuTpi0xMcVAjJP1vIc2jPbmEWHWvWYfQvLNeHgELWzjbq0h7/hGrpTDcXSShaulfD5M2+7mzBr8E0RO5gSzRBJVJqAF7OOSP4qDsUjeJiXlAuLnRbSicf6W11uM7knBXPrdsDYsTCpw6UUPa3Esq8q5THWVewY4+GtH+Txx6Kp1p3MfRvpfnO2aZTihLrI0pwwqbLEKnkaoxSqKsEZMRGBKBuKlprOy0w3mqDkDSG6I2X3JDcWnmTEjwqkELg0XwViIZGCFYqYnOLBmciQDVJwZMZIzoD1pXjrZvOQYmT15hW7MjPIAa5oZSPTQ6BYxwD1YPIsN5noq9gYF63HTnWMDCQbdCgXQ9sjwuImosNOMrDEinaVdMJ2asSof/C4FCUYZTgyZ1bSIRZRFx1drpT1MmvVkqAkNoxDPpS7aSnkKBcIJTJjdhIqEEqdE5lCofBO59sQ9rdwI1JAhvKBW5/yM8mpEQXURrT23/v6p/GB/Z7QD6jZBMrialG9kvUIhIIf8YW1UDBcuIvppKF3Hmctzjnq7RO4doXq1/jLB+wdal562//Oy5/yb3nW3/h+/HUnAfmQNncvY+ESg4Ics6aTnk5OruX5BX67kc192YELmFJz9AlTtt8fuPQZ0J9sqABdGOgGgfMmDcX+mrBBMvGzCtVHr1kF9bmFyEeaCgx5npoKgIqJJqE0lEeO5s4DcYpSYrSgW2EMoxG5yfZcuknnpZhbj4m6SV9qdAgyN62MGNm3mtU1hqQPKpeiGdSDp7i0ELi6KbCnphSHnWh1TSQspY7LeUJTjp1tkO5z2BJnpbDTQAhCEKlL2ebXLRiN/sAF7CduS2e9J4SioBT27E6EFTXlpaVIVVyCPAdxrDI6E1jwnqAKitiVaBs3085JYV+2hIl4NEvBsNG1KIiLUbqd1K0ZLUXLxCKZmMZlIYV2GOLBYiQsuVkt89qULBM3adXZ3MVKZ9nIfDh+PclIKEuoTCa0oVQOFUjwNUBoBOnA+g3PYCUQc5rBR0JPcPI+ErhYnk/XRImRlu5WRf12YqnKn/iYIlt+jLNTaBft/RSjHMZKekzRRtlOJCsRIbf68pAtDkNl5LVpkyVhiIXXoxXRLEVFKDrka1JDyDAyimw6kmfV8RspPDxJXooQsqzIVVL4fJQjpYAG3TrsbpO1tTqaYKSIO4Heyd7Rx+waI4lLD4EQPCnMwRfxOqNlZkIR5LZdPKhofvQnn0zf95w7dxfFzln+5Yt+nle8/uncddgzJNlWdbWoXvG6Wlg/jKUUs61t9i/ewzAMlEazfeI0SnlWbsAOAn8GSs6dX4gM4+BIYq6sxZ6YUiw76X4mRX6TjyQKHUkcmhAzU/2kRPmoBwwwv6Nl75Mn2Lnj7r9Vce1/U0zOXcZfexKsR5+7iKorwjW7mcQUNGjv0Ssr3dgqEmSaapz71QVm2edkFrOy+ElBfc9C5Dob8BUeTG8lHHlnmhm6wCjHgOyGo3zAN2V+fJN7BsyudIUHn1Awv3PIusuUFRsKjTkSprVKRaBIcz89zvqMisQfj7GeYauk2xXdaLFwInOZlqhpRXHhUF5Ha8WZqXfodSeFuSlwhZhUuMZgphWqc/J8GYXeW0rXp5S8U+P8VJAAJ89L9LQ1R21k8eoYlacyG9gspMtPshcmjUDwkWQUqgKddMZFdNcakNdqE9ZFxgxm2ZHDD6LvtJ/G4rqht/VVIazTBGsaOdzpzkZNqsCaunPxwKWkiCYLxGjYkOViyRw/hQOk10PrnMSj4vdBTBBSAEXqBn1JnmsmuQkQ9aJjQRMILWC0SGBco7Ak2Qw5uSeZ5PtCieVlcgMrdTaR8IWO0XSJ2evjgVFnMpWwimPoudH4WmHWZI/loHWesaaA9FSYiQVfAuVV1GZrfBXJilYkO6rzGe51xXiw9ZWmiDFvWI+dleg+8hdWg3TMFjnl59dWUywsSm3Ez8XPiYxtdHa6esG3/3V0UfG8Z/0S3/gtT2AZDJOdswQFR51lcB6/7tFbk6va1Q9jPdTpNg/FesQXVucD/XSH+uZt6hDQWjMoTaGgMiXFNTfg1h1hcBTTipf98qN52Ze+Ab2UGaHamuC2J5hFF8O7S8qDYdTgFZHoMCmyJq44kjQZDTJvOlgzPVnB7xtW18KFv15y0907PPW2t3LbV34h7lFnGbZr6nNHYA3DyQnV+SMpHs5hPnAgH+BrJPdUtRa3OxVdrBNcrFiI7tHNSty8Fgcjo5ica8cuK2ogzYUWf3JLHqP30qFVhUhhZrXYI64HQlNkKExs9mQDuPZ3jtC9kLRE5uOhlEJgVn30eB0Dt5O3L6kjKMXv2NdlzAiVn+t2DGbtxTnKituNOzHPAe9mNUQiUS2weSTp2EZTn1vKgUa7XLDsdbu4pqC+c1/ml3HmbGelMJpXMcg7ajzDtCY5OZm9BX5nOjJ/y0IKVOdGspB1ke08jHNSzfizkUilID/P+GSor/BNJdeUCxwQZUnZb3mJSK5iHJs5auN8UKD7RNYh+uoqHbNOAdKMPnXGCWZMLGEYIWEriTne6EycUNZhrFj9FYsBOy/ltU1kpGKckZpuJJdhVNbE6i7gp0bci1y6r5FZTOxalRsLWjK4D0oJw1clOcr4+6iAWYcsDUr3R/YOTs8Ho51hPETZicle0sEo4XoNnoBERrpInjKtlxSnSourUyraRUrfkefSVZqwVeEmYoDhSgUxucaFghSE4HU6nMj12qmR96EV4ldOQwoqa2t9pfmh7/0fEAKv/Nmv4IW3/gK+Njz/Bx/H8//5UzhcWfy6R1XFaJN6dV3ZutqxXvkKgE2hvmr8Yh+AWswWQjMh+JZhZflAKPnGX7iV2aTke578U0CERuNmpfsU3RUzJV1Ah6j9awwuGbavBiE01IZwWqQ5xcqhfEmzJ+b0b/iaf4BWFvOBS+jlnLu+4DTX//SfUL0PVBWh0O0t6VStQ9/Zyb/V6L5kdyfYWSnz3WgN1+9WFCsXnW587hLdyVl2+1HWSyEAkXV4GM7MKY46zL5krrraRMcjmUUqH8QcwkmB1useZZOmr4wzpwLXFJjWolpLf80U12jJtjWyoTX3rLA7DcO8EJgv2sDVBy7LFXyhYSrReMWhw08r7Fwi6kJlWJ9uKFaW7kTJ7L1HuO0aHU0kwKEGLWSpeY2f11k8b+dVLu5UGrOW6D9lPbQt/sQsSmYK9MFK/p6ep8V6tBNMs9OqkuexMoSiyKYOqeNQweaCGopCyE8ZRhaTBl9HE5D43vFNJDQpCKemAnWuhzx795NKusHW5lHBaLIvGaAm6opDYr0mZ57oSyuzVSVzWJXkKA5lyZuzuDUpMXxoCtGd1kI6KleRFBShUm0FafCVlvn5BvxbrH0svlKIVBglNsEonJFC5soRNUlm9alTFkMH0RbLYxL9rG6HY7m0yRBCckoVoHHJKrESOD0ZVbhG5wOBJAaFmMAjYeG6l0D6+lIn4RNGyayU+PwaxbBVoGLH7aMTlXYCd4dC4WMSVNqbVXwcvpRYuWIxZPcuVESR4qhJmNYRVnaBb3nam/iBn386CoNRioN24FwfCM6ht+ZXIeAPc13tWD9KSylg1hDanv5ojZtPsdrzul/7Or76q26TZJtGPlEptstNhPSieosvy+iXGnBzhatKukfXTC469j9JYtR23+UpDzq2kJlPsb/G1yUHn7LFbifw35m3r1FFQQheiAgndkUjOZ/J5hw7ILsdM0q1ws4LmruX+KrAzYpociAwV7XfZxLU6roJk/Nd7OZU7FCkOwoTKYrl5ZXAiG2PUooCOe33u1U+XeshoOpSNKNxtqdbg5tWcbYWWZYeQi2djuk0w7wUhijQXTMV5vHa0e+UuEpMIMza4yYaW6QcSikabl5T7K3QfUG/U8WOWLE43VDvO4bTk2hc7gUSjT4IYVZlRuimCfv6TJ2j51QrxdjPaun0IoszE4islzmv0lJUo9wlDIMcMJxHefHSVT4SioyGtYdJneHkUBqU99gTMzHUTz6+aTNMloOlFEgbZVzl0YBqbdxoBSI0R21mF6s+slNJ4eCy6aeZsnJeghHSrLggPsYId1dyOEzogshMTIRP49cKKajDbCTSQDSIcMKk9YXcdp7xxqKqQkD1UWvq42uq42ZmQwxZl9vUcZaZPHe1A4KMRGRcg3SdXghMxDlsdl6Khi2uqWPghHyvWLnoC14RSil+xohXNUhnKmYVsYNc+whVS3H1pYxDVBfoTkk8XkpscrWm9J5uWzO7Wzx7dTxgyBtlfL7SKhfi05zlTxsQcHby0hocmJZcaHGBf/Kkn8kcjx/7pa/m0lJhUceNQK6uK1uBB2b+Xi2sH+ZKcF1VEJbSUFw/ha9+6m1CrpnL/E/3HjeZUO61FHudkEc8QnqpS9y0oL7U4ytDuXDYqWF6IbA+JZZtptWUBx37j5vjPnnC6bfvs/Nnh/g0Gyy0EF6WK4F+z19AnzwB1qJskSE85YXJ6GOeLCHQ71b4WsdAbpdP8L7SdLtltn7LRBYQchPIxqZjkHsYcoeG9fh5lYOhXaloOieQVZzJpflqcu5xjRw48hwVD5YcFxaMCOW1lWuwkwTdCaSe5oKqUAQTstOP2xLGs90qGaaGYabEU/j2I/ykpN+t5XUYnHgzx1iyNEd1hcZE79f6wMoBpJPQ89ALc9SABJ9HiUowCAwMOWEIEw0CikK61ntrVkEMQIpomu9cNLNXuFklRUuJDjjUaiQPKbEbVOl2gsymzbIfSUcRLvZNFUlEKsOmKTBcpZQWRT5s6N7hqyKjF35isvbUl5ow0cc2DxUCLoZvSzB7nBe2KQJO7k+5EGefERIulLgkBSDqQbOfrZJ5cCY4ITPT1A2kWb52UnBNgnY3CpOOzOwc/p3Q7OiApIikqcGPFoXIe8DOhC8wzEyGpKsjP3IlIkO4WKWvCdQr0YSKYbtGRQ6AnZvcZdd78v6YnnfoNtoKGumUiaYSpNcimrv4yuRQhOQEhh4JkdLey2ciHXxSPBydvG/9tGKxHjABVGEI3ZB9oa+uK1tXO9aP9lLSLXgfILQ077vMcN0OhfUcPXpCsRZYy27VFIlQUmgC4sojMV0qB2eXh4q61MzuVAzbJd3pGtN6XKWoDzyrm7fEhOJgxXB6TnnQ4m66BnPnRfzePno2FSJMUYBbwZZoM4sPXMJMJxLSXRWSWuICQynwl3Jxk+osatBUkamp10OUusTZUicQsMTGCaNUW48ynjCtRBt7JLm0/XYJkwih1bXo7fpxhgdAZGz65DgTJM1FtQPrs2dwtcJV0sl02xpXR0akBuUUxSpQH8qGG5BOgoDoFOdlNIRXuEoKMgHW18+pL7ZU+53c/7LFmyhjCgFfF0K28SLCT/O/oEvUrKDcE7tDyYM1GKNktu29QOTJQD+93tHcXt4vSmQvqSPZ2YrviegFHA8b4m5kjmeQ1gbd2sysTSEPejUAIafOJEY3STtZVPEGokyjGiPe0lxO955Q6YiquPz2drX8rp2anNKStMo6Eu2kkEZyT/T1dbU816YPaCuQreTheszgcfFAlCIK0zw0RCZxYt2mIiaEOjVGyMXr2JSYxCTb7JyUZCcp8i2zZ11Ar9zGTFt+zqxtdEkSyVjqOk0rmvGU71rkYHqNadlIuJFC6KaC5iQSlZsaiYfbuH2Qw4CbSCiDXLf4DAskH1+ypHsNcq3pwCW/kAxexsNUzrqN7z9lQ+QkCInQKYcpC7Q1uLYnhHAVDv5w1tUZ60d5KVBVgbeO/bWYC5QXREoyu6vPbFlXa9pP3GZ6d4veW0FpwHuZS06lCywOZCamioJQC1Gi35X53uycpVhH+7TecfD4k2y9d0l7Zsr0D96fTQDCYFHbczEXmFTRfAHs9Scp7roMGhafvAVMcJV8YIuWCM95dJxx1ueOALC7k2huofO8Tbc9lz5zh8klx/ydl+HyPuH0STFyAPyJOco6ygVoWzBslwKlrS2hkDi1NKtLRC5C7KDqCqM1xdGKem9g75MbXAOTS5F9XEAoYHljQA2K6kAxzBTNvmz2/kSBHgLN5QGztAw7FV382vwuyzDTMRAgPpZuiLIe2eR07yVLddAUix5fir8rkMkzSU9qDtbSnaZghNWabDSQjBycF2g+xbQ5d8zsnn6Qf4eQD2lJTyqet6PLUbY8NBvSiih3Uq08Jl+XWUKlBvCzYmTzxmKmuzibI2TpiK9iIlAsVom040otUGgfsuF8Mm0QD+wR+pV0mDgnHUQz6kXuihlGkpIPY9pOgq9VQAhATljCiVSUbps4f1XR4lB5KGPcH5Ch7iSpArId51icBMYPTYGLHbzyIWtIpQsJ+M3ONSbaoESPiwq4eI0m2m2mDtNHP3A3NdntSw8+z4uJzk5oJRF6RXzO4+tCiMiR0SgXO+l00HDxvkozphZFnaxcg3T2ObEmLl+LHldZDxr+yVPFHOLZr/lKXAg5WekqgenKVjaCeIDvP9zr46qwKoBJjT9ccukQvunffB2v+vIfx01nBK1YnSmZnh8wncc1on/UEWJTvUPT5ZlmOpEm7F7HPMVyr2WYzeh2S7b+4gC70zB//5pgtJyeo8mA3tkmxM09TCqGUzP5MLcOOyulY20qpud6PvB3G+rLML9LZkXFapDTdAiUF9e5eJQXl7idCd3JmuaeFeub5wQF9aGI1g8+4zSzu+YUt1/A3XAKc25PyDWFmPVXl9e4WZxxxhmS7uIH3QVCnGVKnFYALfMzf2Kb8vyC6oaa5UzRnpCiKpsuTO9U2DmUC9E9NpfElMJVmtUZzfpUzfRCyeqMZn6XdBj9lqG5OFDuRQ/gdX/M2KI8GjLUmboIs2gJdTna1KlI4qkK6U61luIIo2OTLuTvXZ8hu1wQi423fwgiw4mwtszIRIOqQ0C5MVpvjAAE6vh+8UkKMj6GZGyfiEah0LhJiVkPmSiUYaqQzPQFwkxGDUS5S3qDq1jkc8FDbAtDIhPFTlWg5EAwITsjAdkgImiwjY5a0EgmSozXAMNUC5SOyGnK5Rgjl/SsGJVlOcojGbUuwOBylxbi3DvFDqaYtHQoCsmXOXIOfCGQrumlkxayXSDoMTUJoFz7/HPJNUysCUVSY2cm2wq6WlMeiRNSes4lY1hna8WU05YOtfJ8x9GNdaCEAKacz+z2RMZKF5WVBpXBa8mLzhadjEgAGr7357+WC+seowzOOmxd4Vctent2VXJzpetqx/pRXkqJGcHODL9oOThq+aZ/+w380Fe/nlAattdWZB5NSXkkEFV7/Yz6Uos5XKIGjfHgTkzzSRTIetPqcoc+XDO9I87MBjEl6K6ZYjpPcdjiT+8I2WQ1oC8dSDJOCPjrtkUqMJM0kKNPPUFzeaDfKdn9c08/1xTLUazuC42b1XINHpnhVHIiL5aW9uxUNlwln2tfgumF2GNO3BAtC6/BNSLpUFHnZyeGYW4wvYRBoxQ6zl1TMoruZGP0pPlohe4NO39ywOL6XboZBCOFVDnpcCbnZQM2PXQnCuo9i1ae3XdZvFEUraNcSLJJP9f4Epq7F/KyrTr8rBFkIDoJ6VY6c9P2eY7lmwpzYV+yVHemuHmFWfViZlGZEfoFgXe9B6KZQjTXp+3EoGGjGG7aFwatJQQhdkIUIvFRth87WKXy+0MdrgWN2DBbyJaQzkdzCw8xbFwbKTTaudGu0HqBsX3U5hbSLYtPrRjMi7eyDJPS/FF54oweeY8YMINHtSHDwSAWg0CGqzfj0pIJv3xtLACJbZsMIIJJcLLPsq00ewTiLNNn3XGA3F2GWqPaMJp8wGiWEWIKDWQ7wGAU3YmS6jDaUW50cL5Q0SrRZ026Wdv8/g5a4aaG9WlDe0Kx817H/L1H+KbM1qUYhfFi+5hmpuKDnJ4fnSFs3UqcYygDeHGREp16DHAvxJ9ZPrdyLZKEo7I+XfnAz/3SMzjfer71ST/Dd//812CUw2jFDzz99bz4Z7+aqi5ouwF6K5Ktq13rg16PxBnrxx0NTakYjL41ITjP4Wrgxbc9E33PHsXeUkgHnRhst6crinWEEaNJulp3UYbiZa62VUlSy1pYpG53RndmBkoxXDNjODkRQ/vlkE/eynnsbkM4uY171FkoS8qjHtM6ioWlWEQz8rWlvtTRXHZsv7+nWDtcI92D6RzDjrBazaJFrXp8VVBcXjJsl1k20e0I9JVE+9rKiTvpALtdw6VPr6OEQWQCdqLotjV2OkKrbhpdnkotrNfejhsvYLcqDj5tG19KUTXRvs5O4htXwTBLMOG4aSsfqA56mQP2kqVpG0W5kG7GT0pJk4lFzm7VwrYNArmF5AhUaPS6kyJopOss99bZuD8kSHc6ieSjIsK/Mf90M5oN5GupsHax2Pa9QLmRwJJmaMkaMZOQGLvRMKlEAjKpMuEr6WIliF2SSkIpEJ9eyfvIzquMSuB9dhSSGLdo6WdDJGk5YaIvh0hoCqOdXtSkmrWNbFWffz/Nkl2jY/CBvC7ahRytlqz/XK3ktdVkyYmvpIAX0fPWDNL9+kJRrKzopTuHWQ/Z1GJkScvsXg1OZtGFjl+LBVyTncpU7OKy6YNSVIc2M7zF53l8j6uYfiM8gygTiik3KZjc9OAmESYv5XvVXk/RSgJUQgGSiYOQtLw8rsUQvZadvAcTqxckDSrIYSbEg5bq5VBaHHZZ+qXiaEBYypZnfvHr+Nan/AwA3/mU17FTrfiBp/1cfMoGtFHoRrrWv4Q68LG9woP48zCvj6+OdWMppdBbU/zRiosL+Ke/9k38sye+GrVcw4ktyQAFuhMlxVGD0hq1XAms1VpoIEQNW39mmsXk3ihWZwvqC4HV9TW2USgH5U5BdSidnis1ixtK2pMNJ99paYzGTYvR3QU54fu6oLz7gLKQBBy73TC9a4U+6jj4ayfZ+ZP9DZtE2WDsiSnlwtKeqmguR7P0ic7uL4QIWw8Ce03OD0zOQ7m/ltP5zdtoC/2WilaAHuXE/Ycg2srsPuXi7EgLrKsCbL8/djJDoN9SlIto/j5AGSR7s1yKAfz0UrvR9UuBbHdKTB+Y375EWS/MyrS5tRa96gmxg1HWixbVGOlIXRCo14nhBEYLo7LQ6L1Defw+Cu21gj7OUI2W/9skg3DyB+T/W3PxANY6d1xqU/pg4vwrBImD64ecFeumkYyUCmL0fcbFwq31B8PDDilGiV2brQgdeB0lLiLd0EMQBCM+/77UmFaSXhKcHxSEStjTCUrNhSd2tFJA1djlGpVvIyjQAzn/NAWTm9ZjUsh3tBVUASn2vXSoQSmJG4xFMBQmPo78QYzvIT1KgnSyFSWb+yeyXDCRrBQ1q8oGlJJZdDCKMkbD+VKxuKFkfheRdBQYtgzlQuQw9WXP1nv9aEkYURhXFRSdZ9gSUpxZ+5HA5AN63ecZaWbxW4/CQysIg69LQRzSa51GA6nQDi63LCk8Qf5Ofp6e/Y9+MWuY107ToyW1ywd571yNjHvQ65E4Y72ijvW1r30tT3jCE9je3mZ7e5tbbrmFt7zlLfn7n/u5nysd48afZz/72Q/5RT+olWDhWYNrez6w1/Kif/dsmE2ERRtP+sVS5A329Ax/egeqEjXYGMcVT6020O+UFEc9ixtK9j9ZofeXbL1niavkpF8dOVw8CYdC0ew5JhcDh48qRFtoFMOWRLjpTnSQxfvPy7WuW/Tt91DddSDxbKVheleXC0YoRfohTkOefrugWMUOxnomdy6kG15a8cxtBSor9lqKZS9FNZ60XTRXd5X86bfFz1VgNC2yoaiLFeZl3FC9SBmGqWxuvoD6IDC55NCWvIEPM4EMlQ8MJ2rsdk13eiIQJwJLTi7HUPU+WvvFbjMUGp8KFYxz08GK3240qZcuz2VfX5X0pDHCT2DgMHang40F2UtxTX9Pc1YtcK3qItw7DJEt7Ee5TjSUyPP3eK0C58b5Yi/vGzHsiBtqjMdL32OQAAYgG33gxPBdYPgha3N1b8VAIQTKPdEwF6uYI6uT8YOwlX1tMrvZ14JGANEPWmDtYu3HTjcVEyedqIpzykTQMZ1IZ3Qn3IJsJj+MhJxs31mXspOkgIYikncSIlDo0eEskuNSV538evVaipSJBTxpW5XzFIedjGLuOhIHtdZilpbt93d4oyiP5PksVj6Ty3TvBB1o7WiFGF2evBHUpp/LLDbLc2KUnIqHrpRQpXqbXbCwHt32o1FLb8duPbF/4/z9WFGNjmuql0NIIja98HVfxdoaaaoiqerqusL1sd6x3njjjbziFa/gsY99LCEEXv/61/OlX/ql/MEf/AGf/umfDsCznvUsvuu7viv/znQ6fWiv+AqWUmJTp3dm+KM1l48Cz33TrTzh7JRv+DuvxJ3cEt/RZHDuAmE+iQ49QTSRRSM0/7Vjfd2U6UUhMvQ3ncSsB2b3OIqVE23nEOhOiMPN6oyi34HqAI4e3VCsJfQ5bRxqcITtOW53IgzhppbUFC0zNhVAH65BG9TRGmY11LKhz95zwDG6v9aYxShXoe0IO7OYyDIwnJyi5vFD74M0dcvAMBf5jJ1G8kpkK+roEoRS+FktczYX0E4xueioDiy6l1mtAgjCIt1+b4tpLcNOTXEozFBfGexuiek85d7AsFXQ7RiCrkeGr4/GHYA5WMtGHcI4N02z0URIsmluujGL2vyac+SsU2slgi0EaPuR9ZuITCEIBGxjKH1VjvNZH+TfkW0clJL5Z3zeE2SdO5XIfM2ElViwUWo06I+QtI4+z74phC0aZTOhjDKegHS7WlMsB9HPBik0blKS0mCCIqMVrhllP+Whzd2aCkLwCUVyOIrw/yTaAiZQxCX4Xv5uWhuTYvxIrkpSpWivSBFJXMaQMmLREWpNHXmULgVS9qnMjlMSDIF8xA9RdhNMTIuJSVDZiMEFaC3UBjBM7lrgm4LuRCPvy9ZFXawUW7sdbTuTpjYeGvot6fCLpZWDqGfsQJXKBXRklscZesmxbhyI2l6dHztxlLB5ez/yludwqXMshoBWgcYoLnWBZWRSawI+vy+vFtcrWY/EGesVFdYv+ZIvOfbv7/me7+G1r30t/+W//JdcWKfTKddee+1Dd4Uf4VLRFEDPJ7iDJV1V8A3/2w9JMdpbEKoStzPZ2DBcNHSIJ+ggTkWEir3HVZgOZucc5/5mQ7loqA8C/VzTXLYsry2oDzymD7SnDMMNHdX/qPEFuFqkKGYtHWIF0rXurSK5pYmFSJJuglb43Zl0OqtudHYpjRS7VS8f/n48FftkGh/1jkRzg+KoixBWwfLagiGSj4qVdJoCBYaxGAQXN3ovxQPQpWhgtYJ+p8B0kRmqRB+JgmLRY7drMZWfVBSXFui6ZCtKnoIxktPaltiJiP6Ty1CIoejijuQinCgdaZjU8npEFm/YmsoMy0g3i49M07KUgpoDu738zmDHgPEQxuI7vknk/9GIPnWnYToRKdbGz+a4OC+bvBo2imkIo042SVQ84ywXxsNB9DhOTNLsLLW5aVsPtcEXheSnqlQQpetL2ai+EKlNYuiixO4vzVGJBXPTdCHrL0NCG0I2ADG9SE1M50bD/1REEoKxwXjOa8MkIZiYnxq7M18V6DbNuRmdnOKoIT1/uTN2MqfMn0sfBO4eHMoohtkEPThWj9rCVTo6ccmPFgctvi6F5Z70xMm9KwTstKBayGfMzgxuoqkvdNmdLRRaGL3x/RI2xgKqt3KIiOQzCVOI8jojEqOs043/JgSe+2U/yWt+5VYudzYW03Csw9Uh4OIh7Cpx6QpXgtgf6PsP8/qwyUvOOd70pjexXC655ZZb8tf/9b/+15w+fZrHP/7xvOQlL2G1Wj3g7XRdx+Hh4bE/H5VlNHpSMyxbvvaNX8d3/F/Pxm9PCFVBe7bh4LEz/EwK0vCoawg7c6gq7MkZ/TVTCRjv4fTbjximAv8uHhU4epRifVpmYdUi0J4wHN1kaC7B2z//R+lOwuqsYnGDojqUmZbpnHi/RvtBjBYSTHT1OXzsDF9qljfP6K6dY6/ZRh0sBKpb9RIw7j3K2myNJ0zaFNQt0KnqIvwYN283MdgJtKdheZOn34H2pMZONcN2EWU4RpyBKpO9iIUBOx77XK3pt6LmMUKM5cKLsUYU4ycto68K2pt25fq6QVyftPispi5Cr20sRBq/1eQZK0OcoyYot+thGGQOmnJiE3w7m0LsdNEx73QYCItllj1l7WqWy/hR3wrjPHbSwKRBDdFP2pjYkYHeX6JWnSADGsmJrQt5vmZyOMoIiHXSDacNMxUTyNAp3o9aYkUmauXDUl0IMeaop982DFtpE5fH054qcI3OcySdDPK1QJ4uwq+ulj++VAwzjW3SSECg+/JIyE/VwSAkqMHnbNk8FohzYYGvY5HcnDF6n2HUJLNJcLHAnESDD3KMnepttq1UNhlrREhXMybFTCpCU+Fnwo0oViJZau5eM3/fArMYKC8tJUSiNOjeYhadmK9EIxQ7ldm7SMHGQ4arNP2JCjsT9zWZUwvU76eVREmmiL9YVIlz400Jll53Avd28h5NkiMA3VsuR6Z1GV9n5Tz0Frfq6BYtvhvQs+aq3OYKl3oQf65kfd/3fR+f/dmfzdbWFmfOnOHLvuzLeOc733lFt3HF5KU/+qM/4pZbbqFtW+bzOW9+85v5tE/7NACe+tSn8qhHPYrrr7+eP/zDP+TFL34x73znO/m3//bfPuCDePnLX36ll3HFSykFk4owWLx1eAraa2cCcxqwjXQr7/yGk9z8VtlI/OkZq+sqmksWXyi277DYrYp631EdaFRQ6B76HTj/v4jH7eKTLPW5gvmd8L/+0gsJJxy+MLiZ58Q7BbZT0TLQ7k4p7pZgbtVb+uvm+EqzvkajQoGycHRTyewuhTmYjjmPBwspKJMJqh0kKDzlu1YBCnEuUhHuVN7jqpLy4prZPSXdCU21L5IXPchjH6KQvt4HrRS0CnSIGlgHFKL/RWcJRpISaCsbtK80xUE7bqjxmqoLqygbkg64rAv0MjJwkwQjzS6NyTFvmXAEUNex61Ty2FPnlzZ472Edv64FEg6ddOrKGPFuNoYQPMqYsbuEDc2rlpDxjA7ElJthZO3mbsJL/mr+mVgk5SDj8+0lJ6FNgksoynjKlnBxucYo9YgJPok8o5zIUczKiv2ehm63FBZvNJsXIwg55Lhai1l+kuWUChftC0WCpSPrV+anyckqFbQM996LhKNXEskXiEW9rORwmLJhXYhpORsdl1EyY+5Gu8KRyONzJxuMzgQsbQNmmVj50qGGphCzjQix2hNTzGGH9hvXm6wF4/X4pohdo7w+yWgkGEV5ZKn2Pa6RQ4kO4jqVOvakm/aT0ata+AYKeosKAvfmQ9DmY9aI1jpq4JULvO7XnsPKCgS8W2vuOHTsLR2u6wnWoZoK3VTyPrzasV75+lBz1CuEgn/zN3+T5z73uXz2Z3821lq+7du+jS/8wi/kT//0T5nNZg/qNq64sH7Kp3wK73jHOzg4OOAXf/EXecYznsFv/uZv8mmf9ml8/dd/ff65z/iMz+C6667j7/29v8e73/1uPumTPuk+b+8lL3kJL3rRi/K/Dw8Puemmm670sh7UUiAsUufobLRD84FSgRkCdl7y2H+9wlw4xF2zLdFopcJHgXlKitFWc/B4BVbxN/+Xd7EYKi7+xKNRXmCm7lrLMhSUB5qd9wT6bVif1vRbgcm5lmJvCc6LprGS7tCenKGCkIkWNwr8pAfRp9b7mvWjd5i+dz9GxwXp0LoegkEdLNDziXygKdCrTroolGxMk1JMzAvNzh/vsfPH4LaaqKstjxNGIolFSEPCvk1xbTrBcgq0EcamTl1nHz1uq4LuZE213wt5JAQxf5hUqMUad3YXfMDPqqydNK3NLlJ62UkXnwpqUcTONcB8CotVlM9YgbyT/GbdRuKRlT/GoJomdo6SYxs2565ay/OX4OLkIeyCzHPT+2XdQV2KPV3vclIRwwBlier1BgwcvZvT86dVnKtaYQvFa81exukwFLuXkAs8BK+yfaW2gFES6t6Ij3V1EGHb1uXfzTNUJeiEWTt0G6F+F6KDVHIq8hRLm5nFvtRQ6hhM4XKXSoqHUypC2jKv9Cb6c6fDQlWMZvMJ6k1SlEEydoE45tACu/oEJ3t0kCc8FbUMuQN4MMsux+0V++tRqhMJQqrzec6ru4GwQRySk4eQh1Kkn5sWJAlPsRQWc1AKsxSte0J5Ehs9JdTk56KIh4zIiQgxrEENjp//zefz5H/wE3Jtg2M9BFrrsSGw6D37iwG7lvGO3pnJof9qMf2w10PNCv6P//E/Hvv3z/zMz3DmzBne/va38zmf8zkP6jauuLBWVcVjHvMYAD7rsz6L3/u93+NVr3oVP/7jP/5BP/s3/+bfBOBd73rX/RbWuq6p6/pKL+PDW0rl968LUbvWRdjrSAzofWVQW1ORgShFc8chITJVh+1aIsECnPnPhsufqrhnNef8b9yAfRyceCec+DNPf2fB+ixsv1dmXLO7AtWholiLiD1Dg90ATRXZhx5VaYqVZ3LesLw+4GYe3Wmay5rJ+S6HfNPUhLIQ027nJVf0aIVaxwKhlRCAvEfpuLkMbuwuQqC4uJBi5+MmvBKyi2rtOCDQSHH2fjRSVx61DgKXmREiDjHYWg1C5tLtIBIhI4Hm5tICylKIUSlUXWuG3QZfasqDpWyEaR5alrEgbUgP2g2yUFpajczd9PV6TBJiEGaxUorQD/LzaWYWtcsZIvYR4tQbXaZWYvIxbEgr0vOYu2Y//j3CvaGOH61GozoVIWEnHWyE/tPrghECk+5s9hXOZhOxW0pdXdJbZpJPapQGj0csD1VASEeBHPcm3ahCBY3qfbYfTAYPOfoMcgRaLkzRqSqkGWrKi43PeZolikmGjnCxy11+2Jglp/cKG6MFEFZ1et6z3KUqUMqN8DFkJnmaXasuBtYXRkYjkYGc59obEhhfC/oiZvqB9kwphKd4sDRri2p76VwjhJ2eN/kBNZpcpMNTei4SMbgqeMoX/Th6cHzPL97K+WXPH961wIcgB2mlsG0PhUbPJsfft1fXh78eRFd67zHjg609BwcHAJw8efJBX85HrGP13tN13X1+7x3veAcA11133Ud6Nw/dqkpC27O/HPjm134F00ojmc+Bf/qCX5Ksx0pTnTuCppKOcHC4WYUKQczIC8X6pKJcwuK265lo2Pr9nsk77wGgfexZJpcFOg1aAsCn5yxF6+h3Sw4+6SzTC47p+w7zB99XmvZkSbcjEK3pFO60Y+udEoVV7K8F9q0L1LqVbqEwsmFXFawHaMUfmK15lgKEQotjD6Au7BGsRc2jtEiJ17GB7JyTiEN+WqO0GDi4qXQXvjJZI5kE9q4UK0flA2YlbOLykh0Zt4CvKkIVuzkbJTLOE5oy+8O6nYkY/id2bzLPLyWQnK6TmarR8hjq+vjmnKwKlZJ0oaRXzZ0WqKqMBdHk+S1VNcLCiUFsnRTxOH8Ni6UcYuparsc7+b+KBTNtvKlLVQrKaOSfmKFVNRbyRHDykYW96iPJx2aZRupmdWeju0+MOYx62TQPVxwnQJm15AgnoxJlR7Z3DlmoxnScdH1CyNokWZl8Den+slaVkR2cNbrxIKPSbDR1d+k1iZpeZT1audFEY2NG62PIgmqtFNbkxZuuzWt5joykywhbd9QJByL7OulkiyLOckcZTTDSgZZ76+yulIhbmX3svBS+bpCs3Y3iLHcUH3vs0PWyy2hOKA3/4ldu5QOHPe+9uMQN7tjzoLQWFGI64arh/kOzHiwr+N5I6Etf+lJe9rKXPeBte+95wQtewN/+23+bxz/+8Q/6mq6osL7kJS/hiU98IjfffDNHR0fcdtttvO1tb+Otb30r7373u7ntttv44i/+Yk6dOsUf/uEf8sIXvpDP+ZzP4QlPeMKV3M1HdxmNnja4wyWH9TZHHfGDo3juK54ch92BqQ5837e/OYckp81i8oGFSF7+rCXEaDHd9vhZTbi8D8bQ/AXU8wl+VnP4mDnVUZRDVJrJuTXFqqLbLVg9aptimXxVoTqwFGuNcrJRTP+rpjxqWd5Q018zp/6Lc6jCjJt6YrguV7JZDwjxxlrUsiWZzYvcIkjI+sXL0Hbo/SX+xDyL9lUS/MdAAmJKTNAaXwjByU50tjBMhhmjMUUQSUhlJP4tJgWhC3GyigzfBNv6M7tinr8axBTCiF9wKp6UpRjpr9uxOzBaNtVUlMoiGzewbo93jdYJ9JvmnUYLNLzRxYqGVeVin7rTY3PRYUAlyDl1cKkYwyj5ifPZTCRLgenGgPaxM9XCNlapA4txYloKxmZXl7Su8sYp0H6EV4OOHVuCrkP8HqIhzUUzpuYkl6NQqfFxpWJWlzkWLs1K5WCVwgji+yM5Q7XhWJHN1zwMqCFJ11TOJk3ZuOmg5SciWzKxSIV4CBEpmIchjPDuSljtfiIzaZ26SdxY3BIkbDcOBT4c05GmDlzsKg3BB0w3xIxXNUp5kI4zfxYKHTtcN5KUYuC9sha1HqSgDlLkQ13x0l+4lb+4sMK2PaoQNcLIBBcZlS7N1aL6EK4HCwXfcccdbG9v568/mG71uc99Ln/8x3/Mb//2b1/RNV1RYT1//jxPf/rTufvuu9nZ2eEJT3gCb33rW/mCL/gC7rjjDn7913+dH/qhH2K5XHLTTTfxpCc9iX/6T//pFV3QR3spwA8W3dQo6zAptzIECqXyPruw8OLv+jJuPmko1ZIX/P03yQbVCGnDnZxJh+UcLNfi3HT2mnwyTZKYE2+/gD05i7T8ZBnoaS4OhEJh54ZiIeYSyUd32FIUS1hdY1CnDfW+x84N6jFnYyKKdDZ63aGchvlMOielZAaZnIbKArX2uVCFukCdOiGFxTn0osU3FarQ8v8gp3baDqbiq2pPNjEVCMqlZ5jJbElbhelHSzxKTbEY0KthhNF6gTWH3QmVC5lopJoa1Q15EwNQR6sonfHQhxHehTGFpixzccI6WLeEuKmpZKhvjJCWNiz9JNQ8EolSRwnynEGcJ0f4WWvwNhfVcXYQr8E7cXTSRv4eO2A/rTMsKCYPAyoaEoQy6n2tEJuUVsfcdZQVr+NgVCZEqc4SmhLfVNIRrTpCIRIWFWeJYjgfma6JLxUZxkEnC0O/URyDzMejBCUVPl8XaO9BGZSWTlF3ozwpEYQSzDoW03in6d/OjYeeRCpy4vGcPntAvu5M0EpGGak4mrHICRwbcnEOJshrHAv7sfsHeY+n20k+2+l+nUMveynUEdJXRKi9NHKDIeAnE/l8RdOPsCnP8qAX6+Pxg8Ab/uu3cMdhx7svtwyrDrM1kc/fZgGtyquM34/GepDkpWRs9GDX8573PP79v//3/NZv/RY33njjFV3SFRXW173udff7vZtuuonf/M3fvKI7/8taqirwqw6CQQO7leb5P/HL/Mtbv5RZqVl3lsXgWXv483t6yrLim9741Sjg9KTgnz759dja4JoZ5eUV1BVhWhFsgZ+W6HYQkX9kB67PNkzOtZR7S4YzWyJ7qHROEnFTwzDVuErR7SiGuczG6gPRKZouQn+FRnt37PSeCTtBNhxmU+neiigRSWkvEYlFxyIbodnEGFY+oFZRyjKIQ0xoKorFwPpsI3pXoyhXHt2Ljyw+SIpIzOwMuqQoI9yXzBI8VBfEbD8dSkQuA3rRjVpUJ5txWLeoSSPXP9hRHpPsAXe3pBhHaVEmfoSNzV1pgutl8/NB7AlTd+qDmJx7L4V0GMbOLGllu34swKkwZTZwup9hY85WCGHGbsxvYyejBsbbz5Ib8LNGrt8JYzZ1xKEpM8SJikEQScKTTRJiB6U9GntsgwegKKItYjy0xO5LrBMj9AwiT0rs24RspGt3I/knzdEzWWmjWw1Rtzk+5niYSZFxmkgGctLpJbg5jUAjczYdFEKK9FPxdjdYxynflCFqSNFShEtNSM+JO87UVenwFAu4sHvjc5GY3CFJZyJkHJ9nCX+IebmFhN6jZWzw+l97Dk//4n8lyFA/sN857l4M2HWPntYfXFSvro/aeqgNIkIIPP/5z+fNb34zb3vb2/iET/iEK76mj1uv4PtdSsnJ0Qdc2+MUXLQlL3/qF7N/1HEAmOVlymaCbVdgLb1SmJ1TLPf3uLC4xPe8/h/xkuf86ggxNSV62bH45BOY1lMYiYfTy47++i26XY2dTDixvxLN5kQirUwvFoNq8BRrWJ8ucDV4A+0p6QoJsDpbMD1nqS6vxeZwKWSaMKlih+BG56CuFxP6NHPUWswnKiObw8FSYLv5TDqiSRk9UmWepIMUInUQ81xnM+q9gaOba2bnRDu4urakXEoXHQzUe17cfJTCNQZltQR+a01oCvQ9S/zJuTCQV4ntG6/PRqZt6qqmkwzlAlJwujhHhrHQdp08zsVyhH0BlWBcY6TAai/uSSDdLaB6RHaTGMFps09zYaPH4pLmp4kQleB3PxY/TAwTiDId1dsxLD35G3e9XEf8eRWZyXk+GLvdbEBgPWrVoVInnXI6Bz/et/eobsOXd4NTFEpDdgHyHjVEHWp8DkIlRVXFwrdZCFHp8YdscIDfeM00G1IjTVDh+IxbqUxyEvlRfG/qsYiGqsgsW18ZlFNA9BzegFxRapzH9hEmTnNRIhQczTbSezDF9GVzjkTyi+zrZC6SH68H7bvjh6J0aFIKBsfP/7/P4yv/9g8LMa0yvPeo50VveAbtII5Jf3p+Rec83jrM9vRqUX04l+cYMnGf37+C9dznPpfbbruNX/mVX2Fra4tz584BsLOzw2QyeVC38VevsCJdjmpEcM5gsd0Q4UTxW3XBUwwrQrvA+/gB7ibgOnRZcfvdF3jhKz6P7mifH3vxf455oGtm794X2Ndo+pMF4XTD4aNLTv/hin4nFjHnYvcpH7xiLdpCX2pxaJpA+5iO+n1RCN8G2hM6k3x0lAwEU4rdXyoAhRmDkrt+lKkMA4RmPHFPmhFOBfRRhzsxxU0rTHRZCo1AVqEu5TRoPfO7eumYg8d0gX7b0Fy0+EoM0fUgesput2BycWA4OaG8LNaQ/uQcnNg5qkgUCoUWmDoE2ciH7njnNWnG+amOc9GmloIf3bFYreV6g8+dZAgjezdYO26sCHkpWCtfB4KPELIxI9kpuT1ZK7PV3AnHT2cZZSJlMRaMRChK6plk55cgzE0GMeQZ4CbJR2bSZmTGRkZqNmXf7MojFL65dYc4b83F3LsRgpYn5njBMGoslCGI3rNkDImAceaeft+FEWZNTO08m40FPkbMKRdg1edin7rIYAAVfamDmJco/FjUxg+pFNHN2alGyEdJCpRm1ZpIcApiJJECx6ti5BBsvobp8Ww8Z6I5dfmAg4nEqeiw9JV/4wf58bc8m0WpePeB5317nWhQjSaksUMAPalHdOPqeljWQ92xvva1rwXE+35z/fRP/zTPfOYzH9Rt/JUsrIB8qADKAlMWhBDwB0uCUpTNDtZZzGyKmU+AgC1KJlu7bBejKsN4w9e98vN59KOu49u/6k3CHI4fVD0EfCmFUTnP9J0XxIe4G5jc4bC7E9GBDo7u9IRuV1EdBZRX6D+umVwK1AcywzzxF130bI0wFzrndKo+Ftcu+t12sRur65GgE2Ln4eMHvqllfpUgQOvGwPBVDwb8lhB9kgTEHEkXsb55BxWgOnTi/7v0WXoTCk259KO/rI4yihBY37TN5I5DMQWYVtGQfpCitl6TvXlnE+lO+56wXo+EI++lkKZuDaAfxqKa4OK0Njv2uEIXYcGkcTRGoOeyECmO0TK/LIwwiOP7JBekRHxKEXMmsrKLIhsGpMKVGaRKSSJOfK8RrRqVV9BvdJ/9IJB17IJ9XUIToW7nxg6+MOO1hJAPFAInR9hSeSHhuVHykuPrJtWIDkSLzFDErlUpqMnEqM24NLl9BIFYD9nxa2TsEj1zY8daxLzaZMdpY5caX8ucHgNSBAst0LQL+T0T6lJeo8Su1ht+vImY5II8j/F2iKYWynrwdrScLIwcGHub833RWvSuSoEOIi1Lr7lz0clLE4rAq//NrRw5xXtWnuVRiyoNensGOu4j1suTZPTVbvXhXg9yxvqgb+7eo5UPY/3VLaxppQ9B3PD0tEGkmxW2tyJVCQF/tMRMG4rSY7Rn0Rr8UKAnp3n/keLbfu4r+c5v+RVM66O7S09Qip2VZf+TZ6jHzNh+z4oims0X+9HoPwSabsCXO3Q7BtPC1p1SRIu1JOuY9SBSl0KP8gFkI8tGClqLicKkQfUD4ZoTqMuHshFrjd6PUpzoARwiOclPCkKpMZE8kmZXqotFz8eN0HrcvKFcWAgiJdKDiwxUMcbQnWxww7zAtI5y2eGnFW5SMswMTWlkBpbkEk2dZ6u5cKTipxSqLMd5p9bZxCEVlrBef1BRDRtxcCptwKkQb2x4wfu8AYb489J9xeOvc8cNH9JzPWkEet8gSwnz1BKIHVKSp0RYMhVVmUfqD9bjppNaP+QcWbWh3RxtENV4KAgBomsThdlgx0af5VigQ5onK0Uyks+dYHDjLDPEVJaknDNj1FtQKr83EttXDWLLKa2tkqLrkPeNN7mYyuzaRWtKl0MjgHxQVMMG63Zjlp3NJjbSY/R6GA8J6X2T4d74GKJGN89+0yEhZuLm7tqobCqRZU5agxlfV98U6BYmZ3Z436U1q5W4e6lpc7yAbkQDXl0P71LpvfsA33+4l/7QP/JXZBkjrkzWYbSiKAxKK5nLGaHHB+dZuJqjviIMDrU1JUxrhlXHPYee7/qXX4pOVmcRygqFZnZuoD2lOPzEKXd86VnU/gKVbPviZtKcW4up+hAYZkJsUi5QHHWozolZf5IkJMs9pUbpTdo8B9n81cX9DGviPSEZ8y+XElN34QC9lLzUoJBot2mJPTETiHCzO4gbrzlYUZ47ZPoXFymOpAAGJVaGprXRtEDqkonpLUJGgebSwOqmOcPZOf2phvXNO2NiTV3LDDNdY1plKYUyFTjnpJgmz2ClM0NWZnha5sNmY5NLcohUnJI+NkHF6WcSuSnNV9NKm3ZZSFEFua3k3mSMfG+jQIUmwssJYUjvBxs71AQ/b3aeRbHBOu5Ry07QCO+lS7Y2OkhtWCamoho39byBxKKTY92qQmwBZ/WYdZuKyUY27QiDijtRqEy+bp0i8QYnXWBEJDbfw5LHmqQlLnevGD2SoTx57qrWPfpwjTpaj0SrDX2qsnbMuE2/l2bgg5UDRHIiu/dKc14QNnUIY2FPkq14DWrdS2SgdaMrVmJ4r3p+/v95Lked5cgGgvfourzalT6CVpLbPNCfh3tdLaxxKa1QW1MI0C472mVL8EEsxyKDsKgLCu9w7UCwDj1taOqCsgpMbE/XKX78jV9NdWFFe6bGTcrs6nLd2/bY/Z+HrD9zzZv+x0tk7hilGKHQ+MYwPW+ZXHIszyjaE5put2TYaeTnolB9ONFg5xVuKzKRE7SXiklhRjKQUgKtxmQXd3IrSlbMaAGIpNKY3nP06EkW5mPT7E1uW6QWJnd/Koinq1kJO7k4aOObOOAa+RnfVDnP1bQW00qWrJ1q6kttJOmMkOmxrtQJsUhNJ2PXo2WDDkFmoCHI31WzMddSaiyYMFrbxblshv6UkvlqhoyVEJ+MySQnfCQ+aSN/UvHLbxpx/JHs13EzTqSZ0IhfbN6wiZv8JtFn3Y6ErM057BAJTylkIPvI6nG+mcg1KX4NYnjC6Fwk7617EasS49Uk2LYYE1yiu5DkELsxV9X7D5qvKutHZnoiOKXXIUl9jJY4xEkl96E3iFUmPpZYeCXbNBbKFJZuheCmNt8nKWvXxc48HSSSRjhej8oFOkLiPl5vPJyoXg4xGSUBKdjrXrSssdi/d7/jL/Z7unXM+jVXu9NH1AoP4s/DvK5CwRtLKQVbk+zGgtFC4omvTgiBibGEiaH3ntAPlBPD4V23s3XmNPbSHpfZYTg5obkgBvBuKo45i0/aptq3TH6/5h++6WeppyVFEubrqBM96HGTgmbf0G8rtNWgCsy6yJo63UuwtXJaLNiG6OaDHmdxacMF6daKAtX1mH60jWOnkc61LgjG4CqZj+p1lNyY0VUmw3R2vF59sJKZ1eAo9gNYT7GyuNpQX+oJhaG4vBR4c3YCs78WO0eg3y5GWYW1o32hjoSfbGKv8rxVNl93nBjSC1s0+JAN9rPecANWDMl5SWuBl70Y8atJkwu1/IokBqnUOadClqQ36b5TVxvijDsSmDIUqVxk1JKDELBOZq2b0pTN2/JhhFU3H39aubv1wgxWmmiAPHZPqVAaMakIhZa0okpm4MX+erzfyEhORvsixRldmpIWNnfhiTQUO0G1eW35NYkQvdbRPUrnnw+1QR91I/SaXucNi8ljZKvI7hbmthm70nRIKovxgBFCZvcCY3eckJwQwIsTVaiJRbmX2+yHjQJtxmAGrfFVwTf/9NN416UW1w9y0I5z1avrkbM+5vNYP+5XIjSZe31wNKhpg121LELcdCO816uC+cmTBFNwsHc3tm/FMCGQDc6X11WsziiqA8P0fAyfdgEXI7B0hLi+6Z98KtedvZ4Xfdf/y+Siiqb/LnoJO4mwKsRsnSBOR6oqULYa53Tx2rKO1QeBF0E2nES+UUr0t6XBNyWh1BJ0XRrUoQWv0SvGjUfprPkMO1uycUYWa1AKVYo9oo5pKZvzrWLRx3zVQCg103MpvSZujGnzS9KM1AGtXe7mErkIEAcb52J6jRa2L1I4wya06YPoG6syF9QE7SoVrRGTPCd1nYMUeCExbaTrNPXxa9VmY9bp4kxRDjlim2c3OrAE3yc3Jg0hzgc3u+Y8L1eQSkwiN5XJ1MCPxTjJSMwINyfGb+qeE0EodZbJ4CFEwpkMFMkdZzKcSM+HN5L+gifbWArxLOR5aTaQmFZy+Ft1IocqCsKsER1rN8i1HhyN78HpJLJ6Ve68QxnD7VPxjqMMucY0Mzdye6njjazsfChJr0uW5vj8POX5szGiSR0SSqLzgTSUhu/9pa/hAwvH/lErY5+6RDcVVw3zH3nroTbhfyjW1cL6IJZSShiCCrEqQ6EmNaousQHK09fjnWWy20Ex5WUv+//yz77lPwHwk6/5crz3OO+p6wKtxC90QEPo0Vpx+x0f4MLFSwQM7/zzd1GsHN3JkvaEZna3xzeGUDTZVKI4GghGC5EjFdGgQU2OW/NNmpFJuxnsHU/zbncmszMngentqQLdNVTeo49i8YtaRelUY4dpFKEssbtNvj1fG4qldKxlZ0fNZEwF6W/YES9hL+kqdl5SXApjsbeWECFrFW9zJCL5EQJ0TqBe51BFSbDDaOwA0rmmx+kcuqmzjlUIUaJBDcFLcU2mCM7F5zBCxOm6plOyTjgdUFKnnT4+hRmNJqpKCgtENyw9/l7Sv6ZuqjBjsXcbbk5paXFaOka+2uzSEkQcvxeaqCvNkhuPWQn8HHQqmoi1oRuDzQEx+a8ksUj1DjcvR1lLmm9urGx9aT1UOo8PpOjamBwUzTnSda7W+L19VC0+1EBOj8nX3G6EHeSEnXiwU7Gz93HebAEXO9fkvrSpSdZaimcMNpDXQB8vvGVJ9m9Wih98y7M5v7a8/9DSrXpQyDjo3nKgq+uRsz4U3Hu1Y33kLqWUGEukTTp+LSAOfO2yx+ycwYfAvHD8zJueyrRp0JG8s0l28AEutI5ZOWVeaubzOf1gBW5yS/7WZ34qX/eCX0dbwzATKG912tDsOXypYlKOy84wx64RK5tEHwubFv/eHAyutXRfyxW6KaW7Ghy690wuDCMpaSIuSaEucdu1mKtDjtQKTYFrDK5W2InG9IHq/IrCB4l+8+BOzVGdo7t2RnPnAaEoKFa9GKWfnsuGGYspxsBqjYpGECE5KPW9FNggcG+ej1b3IjodIxwFKaCpG0yFGQiDjalAGy9G0qMm28IQohm/FSlQXcXZNaN+Nc1aQ5BDTFWOUHwqtE4kH1n25MNYGBOhJ9kpJnRBqdF/eLNIRGheJUg+zRNjQRp1oimIPIw6WZz4GBcR1g6xOw+MEpn8JgKMkkOQ9TnUPBfhexcYoyRVxpTRFUmKXliuUFvzcXYcXx99zSk58CUryphOo4I6zn52QaDzRExLxXCjm8Z5Obz442xxomQqFFpuP702MVkIrcdDj1a88fe+mcut5c8vdvzJpQ7XDdKlTipUU121IfwYWH8ZcO8DravHsCtYSqljf46tusKuWgJwZGqOrEEbkU0IfDQWV4+jMorWyty2qkrqomDSwOmThmvPVvzyz/59fumVn5ffMPWhxFc1l6xAwSCC9ghd+Wl1nGVqdOwaks4wSIFIEhalUJcPo2lFQHeO4iAW1arg4NN38bNaHIJCoN+tsFsl6+tn9NdM6XdrfKkY5ob1aU27K+5Dxd6S7NKDdDbN7Qdyf72Vjc6I4QXOScbqdCLmD9eeGZ/rNDOFja5HZmB6MhGSUS484ww0pHkZbHQ7Edp1Tgp1L0UvOCdFNkGx6eCUinbqenyIetUI/yYjh3RdyUt2iDF361aKbSIoFQU0FWFWj/DlpllB8ijWG0U1zWYTyScReFKBGexIWIrG/75J7OkgrxvI+8OM/r7iHxwdiLyXOXp0NjKrAd0Omf2bDS4iAStHtUXmrnIhS2X0qhcIN4bQq+2t7Keb5+nJPWqTB5A+RwmKLzdQgARpp2KYYP5N5ODYTNqMc1LnRwOV+BqEST0+zyCvlQ985d/+Yd6733LUO+xC7ED17kyK6lXo9xG/BAV74D8P97rasT4USymZdeopftXSDpb3qgknp5a6igzKSIOyYeBCe55T9VnRPcaljaa3nhACWiuq2lBWml//sS9gsIauK+g6Jc1SVfC05/xCNigP8UQfSiM2ctbHDXoD5izHTnuT7GSOxL1Ix83Sx/nr7M52JLUoCXvvG3GM6h5VoAdoLotvcHUEzZ7DzQrMgY6mFQUm5q6qwcL+inB6N+eI6kW7QaRR+K2ZbNKFEdP8MkbKJT/X9P+iiN2e5KtmBCHJZ2JnkkTeKhtk6CzHyZ1gZHeqSmQ92YUJSJaB6bbxSGeZOtUkwwkbm27yN9Z6lA75QJjU+FlNcghK88A0k02ZupI9W4yz1HSb/XDM9jFfu4rdqvcwMehldDrS4Cdyf0GLq5e8xpHtO8QiqZG8XqUwRxspQsn6MbHCIxwtHWliCG/MwjP5Kv57sRrtG9UoO1NNjPrbmHVnApXzhAh9BxPnrKn7XrfHNcXxMycMZn+8UDpGZCAfbGJB1/H3O5sDHb7r3309H1haLu73hMFKRmp11ef3Y2pdhYI/fpdSMqfRW1P8/oKV87z3csvpyjKb1Mym4jGpMUzNLCbpjB9epRXeVzgMijUwsj2r0lOWPZOtbayr6NuBn3v1k7CD5xue/kbR59WiV1TdkOG4TRu+1AmowkQDewe6yOxQkA3NTQt05zBLMcp3W5XIaqYFthGP48lFj+kDdqLRQ8D0AV8I0QqjsGe2KS4uZANeb8Sn+Shx2GQYxy5M9WbcNJOcQvvjEhSQLtYK0UfPph9EaMos3vEXyBIc56QIxedFz6tMDlIp9zURgNI1p2uKxg2bkHNI2lmlxm6q3LBITGzkaKyQM0y1RoeIJIRYjHycsaZrDpH5m2Qm2pAjbNJzROxWtc7Qbza3j05CuhtQ3pCdkTKc6yPJSops0JI/GlQYI/5CQHE8Pi4fNjbm2rlomSidaerj/sbpdxOrORViF006EgSeWNHx/nI2aiKKJQLXJuyfYP70uqcCHz+POLFlzLD2xvvi+97yTN5/qaNdC2FN786vdqgfg+sqeenjdGnA4PFK47RGlQWud9zpFaujJY+9tiBScjDasFXuCInpmGJBUZQll/ccZVmwNenjvqQIKAIVgQJTGJqZppnVeBd4w698Lf16wA6WZz3zTej9PsJlaSal8Tsz9KrDz2vU4Vo2t9iZqnZIFwClyjPWBB2W9xwRCpOL6PKUpj6Ij3sI9HMlSTeAbRq23g/FXXvjLDGxcZXO87pM/kms29VaIFmAuhK5i5UuW2z+vLB1Y/EK0UZQR8P+0HaRDewheMIQhFGaYNVITNosqiQNbNSukmQdqajW9UhwUQq/PclGBZkAo6IDkdEjASYV5wS/x81etxuOUptM18RSjddESEWhHAuItXE+eLxg+7rMDkm6t9A7VC/zVLw4Y4VCo1ornWBR4CcVxcHYnfpayDt63UdLy2689jQHTm9yiMYX8QCTCmR63iJ5K5GVwqYbUUYJ9Hh7iTEdu8qcgZpIS9H/N0e0paKXbitqneX2HWBG+U48tIRJYswff75/8G3P5V2XOtpeDi56Pj0uIbq6PmbW1cL6cbr0+oiju97PtTfezLK3qKAwvWfoHHVdcLRYobVhsVhSVSV3330P11xzGq0Vp0+dyDPbsiq42AXuPoCTk5JHzwd2p4H1YGj9hGljMHrsZE2hMKamnlSEEHjjL99K3/YMreVZT/vX6IsHYB162Y5JJE2JcoV0rYURw4Iow/ClBHT7WjpfP6uhkk643h84uqlmds7hK0W3o/m33/QP2D41F6glNSU4TDiCYFEEAprD1nO0cLzwq96MartxM0wZskUhM8lNo4dU1KzIakLUnmbzhhAI6zbP1FQI0ZoQ1KZ+P8G9CeKtEqMXgWl1TLmxbiS5gHTAk/qYPSBKESqTjT1Ub0etJ0ghaHQm5CRdKTAWXBiJZInRnTqzPFs1Y9edDAk2jQmiGYIKQepNjtYjFsM4Y0264NjJKucoLq3y/Bvv0WufIepj3WAiHKUucIMAluL45DbsODNO7ObUuaaOPeejhuPz7wTdpmCDTXQizbJdzyhx0uN9bKIbm/CwHkceoRS9tHxe3Ph4rOX8kWe9cgTn0VfTaD62171RjPv6/sO8rhbWh2A5a9Eh0B3s4YeB4BxHyyWL5ZJw6iTtYsJdd53jwsULzOdbEAJ7BwfYoed/+zu3UMQNc7Cei0Gzrmo+4ODyQcnZ9cCyVxyGntOV5ZNPNVTFhtG3kvmtUoqq0ZR1ATvwxv/w9fTrnr4dhCBVlzzzKa8X84fFUmQkIcgm61w2Pvd1iVn2GV5U7YDbFhi72XOsTxnqQ8/8bktRaC7u7bFardna2mJrPkMpxaoz3HPuPDdcdwqtDcuVp6wafugNT6GeVPyfX/iTcu2JXASEo4XMZkEKR9dJIbWjpWTaGJWpRrZwfO5yJJwxYzFIK0R5TVGMvxN1sKqux441EaSiS5PqhAmewrjTTNtOK5E7KSWd4uDznDAXh3jduZPr+vGwoMeON89T0/2nma0ujnW88kaLbGBtZG6dEm7SfTpPKMxIcvJAwQi/+xhUHt2XUsELcd4b8ixS50KWDOtzuLl18qZLhX9zruw3ip11qH6j0KaVkoqSdjS9D7wwfOXxbHTFm3B8dl8Spr1YGw7yb+eP3U/KG86B7fF+Xv9fns9Br/mzCy2+t+hZc1VK8zG+rhpEfJyuYraNvvYmiumUQhu8FZej6aplMp9R1CXX1p5H3XwDVV0z9D1eeUpTYjY+1J31dIxdzjoY3tfHzULBuT4w22u5ZrumLhRlshfcnNXGv5dVQVEaptsTnHX064HXvfFpuAiJOW9lf8TglccwbkpCs5KCHQj4lNyBwhgR7tveoQvDPbffw4033sBdd9/DHdZio23g4dER91w4oO97irLg+uvO4By8/wOH/OOf+Pv8i2f/JynwIeAPjsQFCSRtZjpBlaWk0fgY4ZY2TR/TW6pq1LmqaCZwL7OHTQee3O1uSDJU8gdOHWwyLkiF1ooeU8V5oVKKUBeYo14OJNZLgkw7SDYuCBKQ81w3YO94nRlqTt1X6tTSqXuTZaz0OHtMc2frUKn7yjPl2KWlYpfut+9RHcdmtypFDG6c4hM0rSwbRfp4Bzka4scvpCKXVmJEQ2Siq7GbTK9HMs3fJIhtErWcjxaSGwV1c359bAYf57Xp+SrYeG43fJuj33X6hHTBc2HpaTt5/1Nd3QI/1tdVKPjjdA3awHyXo/SFYgLFhFDNODhasVAwa2oec3qaCUtCLTkOP7kgocnHyB6b3wfe1QZu7zsmGm5oNDecaO73ulKRLUqZzU62GrwLkTEbolVj7HhRm4huJtKlItsuOwjQzOt8WVprHnXzTSxXK66/7lqWq3W+/jNnz7DsLVvTkjBYTpzY4tw9F7nhhuvw3vHdb/hyvuMf/gzUFXp7Tli3+INDKWKpwG0WG6QrDU66tJDkMiYySX0AnAQn+CC6yI00nKSFPdZB6Zigs0lWSs4+ST6TzO8jW1cNlcyDjY4+vz7Hxkk6jRmLjvMCZcIIYaa5r1ZS8AYbmax+lKBEyQp4gZerSmDlFFEXwgglmwCDGoMAuj5esxv1uSYWojT33pT6bBxO5DpHWDWn2IAUKB9/LhX5RELTqYM1ct9JSpW7cg9eS+sQ4sy0GyBsdKCJEQ3jbDePAzYOJmkUkL2bI2Kx2VlvIB8KhIkeofiVdRx2AW+jI9f9fnquro+ZdRUK/iu2jIaqwPWWlS3wLqAiIeneRRVgWhp2dOCiDx9UVAEh0ShFC7QuUB51XLdTxzrxwFvE5lw2hMDSLqhNAwG88lS6ut/fDSEwmdcsD9bS7BVjd3vixA4nTuwAcPLkrvx8PDSsXaDUUGm5z+l0i7IQKYN3np/43W/lWZ/7Krm+aQwAGKyYOBSFQLfRr/lYR7QBjwbnUGGjY9VKOjoYN/hk/ec3Nm8SbLyhp8xexbH4JvOKTeJMHwtXSp2Juki17uT6UmGDLOnIsGwqRjBqRGGcIaa/35uZmgp1CKPxhLyo0SGqhd4cM2JA69H3FsbDRLrd3CVvwNLpccfOd9OWEq1lljvYcea82bVuFugqdtxpLqsVMuQ1I8HLRF1QksuoSGRTxfEOdpMJfe/A98SyTjPj9FxVI/HrWGyel2510QkxSk2b+/6cXV0fU+sqFPxXbKkEQfYdlzrPe/ZaHrVbH5+Rbqyq1HzSTsXR3iCQ8IdY29NSvHkBjom1PlSRhYmZCCP2wewrAbpVTz2t0PeSv2wuvfEO9kGKqg+wtp7GKKpyZEdro9g6Oecn3vaNrI9avvEfvY5wuJBiZ3ScUWoUcROPLN10ub5fxwcj1xN8EL9iI1FnmSEcO065XSOh5tHVKUOzuSsqjxOMjhXGMLJRow9ulpSA/H4f56ibrkxp7rrZyW5m6G6iE6lrTUVq87aT3ESe3OMv5qYzkbrX+yEdHow+PrPdnAc7P94HkL2JM1nIo6wZyWbR5CN3rCFE4tdGQUy3kx/fvX7e+QgZB9H8ZrKSH804qkog5eQT7SPE3USjh8KM6UtpDt7EourH11FZL85TpcF7hY/GGOoB3stX18fQCnBVx/pXbKlaNpz2YMX7mFJpeNTJyX3/rFJMKkOhhpw3/UDLoziG3+a1CeTe99eN/tAv/bF9WkFRmvs44N/ffcW9UsHKiauiOfZdhdawfWqLelLzml/9Bpx1PP+Lf0w286YeCT/pN6YTQj+I3CbBh0QYOCbbBNjokoRNm+a3qpRiqIrig7vE9P/U5W0Si1LA+CCxYcFaIbwkNmtRQLce3ZySVCcVFhdh4FSs722huNlNpgKTZSkGbM9ofRilPalAZRg7Fs7U4aXZo9bZj1cKGeNjTHmm1o7dd7peho0ZqR8D0NM1bnbGEB9HGK9BxcMRYSyKSaubZsEbUYCCFrhjr3c+aCQTkAS7x6IKRIOUIB7H1mfbx2T3SAofMIYf+TdfyfuPHMGKEcnVXvXjYykXxOjkAb7/cK8rOrK99rWv5QlPeALb29tsb29zyy238Ja3vCV/v21bnvvc53Lq1Cnm8zlPetKTuOeeex7yi/5YWrVSNJMKoxSF0QRRwcuebX3cR1Q2ozFKMzMqjq0UpVZUWt1nUtU9nWd/NeTbeChXCGB9nMcqqOqSfj0wdI4Q7u+NqvIfBZQaCgXT4r6vH+Qw0cxqTl13gtnOjB/5D8+JM8s0HxQnJqw9FkyutPgFK2PGjXxzxfmrijaFqipjAYxFantr1FxurrYb/6xb6U7X7fh7hRGd7SYcOQzSdRnRMOcTyWDldoZhLKKpwN47sDwVi6qKnVq8/WE4TjZKxTARfHJ3uVGwQIpRKeQsyR0dxoLY9uKO1PfyZxiOQ9CpSCcv5xyw7saAd4j6VcX3/va3bMC0aTa6qc+N157IYsmWMBX4dB9Ky+NIPs+VGJuEWSN5rluz4102I9Sb9dgg3WvKjy0NflISasPzv+JNVI25n8Po1fUxu8KD+PMwryvqWG+88UZe8YpX8NjHPpYQAq9//ev50i/9Uv7gD/6AT//0T+eFL3whv/qrv8ov/MIvsLOzw/Oe9zy+/Mu/nN/5nd/5aF3/I3oVCmaXDymcg8IwdR4WHZe9o6kLuvVAURYMXY+zHjs4TGHYRaEduMFS1yUqwMo5jiYN/Qa5ZBngnfs9Tyg0k+re3eR97RxXspuEDZRSUVQGbTSrw5aimhwjPt3Xkjmy/Eyp0k52//evtGK2M6Fdtsdhy43fUkDwdjTgd47g7fGiGueEajIZpTzrVn6nqWXTTqYVVTlCvInYFItiGIaRiawShYsNWUwYLQ5z0oo/XtySPhZGi71o3hEicUelQpakPibJVzZuR6kRSk4dLYywrmaEl9NtpazRY7Pa+DOpMNuNDjEVy00bx1T8NyHdZCm50dHvdRvwbSqwRvPNb/0mlPL8wBNfAz7w4v/4XGwITAv47s/7kePQc3ocWoHdgEqiyUTWBqfnK16jWvcS7l6NebHZ5jONSTwShN4YJhXoQuP6RG++uj7Wl+JDzFgftivZuM9w/+3Hg1onT57k+7//+3nyk5/MNddcw2233caTn/xkAP7sz/6MT/3UT+V3f/d3+Vt/6289qNs7PDxkZ2eHn/ndP2Q63/pILu0vfTUKpucvUyBEEO0DXimqec3ZnQllYTjaX+KdpygLXNyEOxfoqgrb9pRa0fcDvdYsTu7S3+vlMt7zuLnhxhPNQypy9/F+Nm0XQwgs9pZMt6foFATwgG/bdFy898/c9++EEBi6gUt37fFNT3yNbOJ1zEHt+6g9jf/vB5J1ncqzR58LhEpzzk0HqLTqaiTRJI/eZOCQOsqiIKxljptJTol0E8PRRYZTjGzdzXScbNqwUTwi4SdE318VU1ho6ntBoOH4zDQVnhx9ZsbbrauRSJSL74amM3WqKVA+HQiqaoR/gZf91rM5WGtMUFw/K3nR3/1hsJZX//eX8L6jgdYGunhJlZFD09AO6LqMLoqKs41GO8ellcWVBZ2NbGwrRgxKKVRhqGrD7kzzfX//x8b57mag+eZc2+jYwSfimh4PQkmSUxh8XQq5SilhaCfrxsxMFunNq37lGfzJuYFh1VOeFAvDwPGx9dX10K3V4ohn3vIEDg4O2N7efkhvO9WKv/N5L6Mo7l8dYW3Lb//fL/uoXMP9rQ97xuqc4xd+4RdYLpfccsstvP3tb2cYBj7/8z8//8zjHvc4br755gcsrF3X0XXjRPHw8PDDvaRH3BqA9vQJ0IqpUvi2Y9UNFNMJN84rZnXBbEcKoveBfj1QT0suLnrOrzxh2qAQsoUDhvs4AzmluNB5rvOB4t4B7R/Bur+CWZRmgzD14G7pg9d9z2WVUpR1SdVUObBc9UMOKz/WXSUNb5LUJH/YpF9NYdZVOc5jQ5BCHbvBMK3FW7kb5JMwbJCKQkCpGJyuAuCliEVHI4UZ5TlpXpqKYSoCCGsZrcRucHN+m52V/Hi/m4U5me6nUHq30bHlF2MjECB4MchXmqx/3TSeyD8XxgME5C72/HvuZrlqcc7yAy/6TZ73M1/C9k2fwJ/vtbROiRQskp7WybjDBxi6/EreuYBgHT52wkFrgeyjPCn4AL1ltWxZ72ue9fNfx9as4gc//5W89g+ex3P++o+MnXBh5H2iND/229/Afm/5J5//U/JcZcOMHiZNNLgYJTkqBDH0H5wUWD8eNPywYl4UdAVM7ZphvYSyYignWFPirmLEH3vr44G89Ed/9EfccssttG3LfD7nzW9+M5/2aZ/GO97xDqqqYnd399jPnz17lnPnzt3v7X3f930fL3/5y6/4wj8WlguwUkIwWocARcmwaGl8YDk4tmflKINBUVbSnZ2Yl8yXS+7ulLjhfIjVOk83OIy+jzi7D3N9qJt54E6V+4CK5d0flINQ3O9vK6WEeZxM9SspZkErlNJSYGMXpxIEnDqcMnaVlRm7s6Q11UpyQI9Z6kXIcN7IjC45CCWItzASWpC60nt3lTAW0QyNxqKSzCi8JwWob9oxqui7GJyTFJ+UOVskXageb2/jPv7l217AN/+dH5B/b6a6bHbKKVAARnh2M+M1kbc2/Ixf88xfOWZVeOLaM3z33/1BAJ73/3zrSGR2Drfu8asO1QhzOIRos6kVNBU6zl7Tm0il5wdBJRRAb+kPV1xe9TznP3wj51eMB5XEHo6v1e2HcM9C87U/90wmE82rv/RfjV39ai23V8dIPueEKTxIzJ6PnykJQvDc8Re3sxoU3eBpVWAYhOm8XLeceeyn4me7fxn78NX1ESwVwigNu5/vP9zrivnmn/Ipn8I73vEO/ut//a885znP4RnPeAZ/+qd/+mFfwEte8hIODg7ynzvuuOPDvq1H8pKeR+CtAcVdK8sQY+LuvapC80mnJpzSnnKTvXpfSymOguaOg146io/mCmAHj980GLiyX98Yhtx/YZ7tTCViDCIDOP6sjnPIopCimkwPlMouTCF4fuQ/PV+6S6350V97PsE5KWraZCOBrG+MzjzHklgS8zTBqXajo9yUkqSuL+WmQmYGA8dNH/TGH6MJQYp9tmBMz1HW6urjHadSvOq3XsQ3/61/PprXb1r8DQOv/u0X8arf+ZbRtCF4vvs3v+X4TFSpEXpNs9sIr37XbzwLQuDHf/+5fPcX/gSEwD/7by+UM4hcnPzdB9S0Rm9N0bMGM5+gZw162qCbShi30aP33mkxOc+4KtAnt0DB+vKSuxZ6vM5CSFn/+Nefyzf8u/+Te/Z67N4Ce7hmcWHFrW/6umN+z/d+bZT10rVWYh6S3LFUO/DKb/1drrvxLOV0yvzEaU5cdyO7197AiWuvo5rOrhbVj8GlXPiQfx7udcUda1VVPOYxjwHgsz7rs/i93/s9XvWqV/EVX/EV9H3P/v7+sa71nnvu4dprr73f26vrmjrN0T7eV9TOhbZnryl556WWG+cl25MCvdFtKqWYNgWfce2M/bXl3UeWw8RZSlKCeHsgm95dfWB30XN2u77frjX4gLX+fmQzD7yk+fLoaGn4gD97H9uTTFoVwX9ot5uyLvjJ3/kW+m7g2f/r98h8Ll5/dmZK6TUA3vOjv/ECplsN9aSiqAve+F9eFJvSwBv+5KW4wbF3/pAXfM2b8E2FziSp6JEbghTj1CEmODLBvFrkI9JZqhGCBugHUlJO2DQ0KItjVoz5uUhdLcgBweis3/2RP/h23r+w/MDn/Ave8Gcv52l//Xt57e+9mEut56524Bvf+iJaH/AuSkuASV1wclrgnWfwgFb81O9+M39+0PEdn/sveeF/ej7bZcnLP++VY/can7d8mPAeVZX86O99C9/wGa8AY/jHv/2PuWsBrUtvgIAfLH6wmO3ph4Y1Hmilojub4C8dYnvHC/7j86mNZ2U1vYOL+wNusZSfndbopiJ0A/ZwxbP+3XO5YRde9nk/LrenRyQiE5eUGpN9GiGshdLw0lv/Hc//ya9iuegw2zPQCrMDqw//0Vxdf5nrEQgFf8QKae89XdfxWZ/1WZRlyW/8xm/k773zne/k9ttv55ZbbvlI7+aRsUIg+NEdKGzq+R7EUoDenhKcoz9YcedBxx9cbPnzSy3L1uL82MEqpairgjPbNZ92SrNbrNDBcxbLyXubXypFj+I9R5a2FzlM/rPxrmpXA5fvPmDvniMunzvknvdf5vK5Qy6dO+TyuSMufmCf5WF7fw8e7zzaHDe3CCHQZ5vEB3zqZNMP6Zl4gOdJKeYn5zSzmlf/7j/hp//k5eL8k6wGYZSDxCJYVgXzEzOKpkQpjSkMRWkoq4J6UjHZatg6s80rXvcVfP/PPVWK87oVKPFoOcpr2u6DX9MEoWYJinRLYRgIXQwD8CloPXWcG89R7myVFN4EEW8wvMVEoqDSis7BP/6tF/Mn+z3f/Gsv5A8+sOBdd+xx7twhh0ct7apjCGCdZ3Cew8M17z+/4H984Ij3XFzxol9+Nn90z5L9Rc+L/uOtwMBdS8u3/foL+P7//MLx/u7lPPUd/58fJQTDD/33bwPgX3zeD8lrBtKJW4tftuhZM5LCPtJlNGo+wR0s2T93xPkLHYuDjvbiEW7Zorcm6JNb6EktXXBToaYN/d6SiysNdflBsh4VIf1QaEEmMqFplC3tTDReK4ZVh/MBx1/K/nt1PRQr7cMP9OcK12/91m/xJV/yJVx//fUopfjlX/7lK/r9K+pYX/KSl/DEJz6Rm2++maOjI2677Tbe9ra38da3vpWdnR1uvfVWXvSiF3Hy5Em2t7d5/vOfzy233PKgGcGP6BUCwXn80SrCbIDW6K3Jg6c7RCao2ZpKgV53rA9WvH+oOd86rp0YPmG3ptxwZlJKMZ1obiwOuGevI/RbnCmhax0rbcbuFVj7wF17K3a3LNoMGF2xVe7mOqa0xg4Wax1aK7TWrJfi8TTZmtAeddSzOr4Pwwd1vt6FY3aGIH4DFzvHmcZQpPvJDsMbD53xFDf4gPXRNOJ+uh6tFbOdKfWk4uDC0TFCEETItHeiKVWKybzJ93PfT71ia6thOq04vLTgtW95Ns/5wtfAMIxynFQMc4asIoeHa00II4v23uk58rWRlSz3qUeIOpGR5BuZoBS0QiXDehP4hs/8PgCe9+vfzGrR4RZrmfU2FdoIocfEQIDMdg2B0Ftsbxl6y9KHfDddX8bHNXBucKwmYlDxyt99CS/829/PD/7Ot3LP2vHPP/8HwXkO+sCdy4Hn/8YLKZWi1BqtYLFyLNw4M32oKD5KKZjWUiCdI7QDeIeaNaI/VnwQlMy0JnQDi8trnvOLX8drv/wnxg10sIS6wlcFaNCtPO9hsrHVhcDZecHFRUm3aAlNhXoIiX9X18O7lA+oBxiDPdD37m8tl0v+2l/7a3zt134tX/7lX37Fv39FhfX8+fM8/elP5+6772ZnZ4cnPOEJvPWtb+ULvuALAHjlK1+J1ponPelJdF3HF33RF/Ga17zmii/qkbpC26OqkkllGJRiOFzFDfEKP5RKyQd51qDqEr/uWKw73tc39NbzmJMNTWVyYSuomJYNJ7aW3HG+wYeKm2t4d+/pk+UfUPk1B6sFXT8w3XY05Q7zcoe0HdZNwXWfcI38KzFjQwwDULBzSmCxo0EsCAsdjsltnHWUTXms4Grgmsbcx1MwkpYE8lQYJTM6DaM09D6furEwFFXByet3ecOffRergxXf8Pk/Kt8LQTSs21v88JueRjUpP+gg8MFPu8IYzYlrtlkeRktEJ25LIXgYgjBYU1FNea/RFEEVBcFHs4rk0rSpxUyvbYSEw+ZsNq0Nr+LNQhuc5cd+/6XcuRzYXztW+ytcN6C3plJ04vXfx4OSmWVdEuoIs6drGhy+7Uh6EmU0qxB44X96IXcedLzgrS/kPVFK86xf/SZ+4ot+kGVnGXpHH5+Dn/pHr+alb3sRZ7cq1pelCPl+wNTlB1/Lh7nUxlxVVeXmN+735/XuHL+/oD3qed6vfAM/+uU/IUhCVQqZxXtwQYhMfmO+rBS4wPP/95/i297wDM51hrBsYWvykBH/rq6Hd3000m2e+MQn8sQnPvHDv6aPVMf6UK9HrI41BPyqhQCnG0OvNIeH63yy/khuN4Bsgos1ZlZztjF86ukJdSyugcCaQ/b83Zz7QM2lfpd5oeldoE1yjOC5Tl1gXi1ZHpVsnQicmV/LrNr5EBdwfDMJIdA6Idgm96f09X49YApN8RFFbX1wNd2Ev0mpO5k9rI79jBsci/0VX/+Fr4Z1y6t//Rs5ed3uB0HUH/IqQuDgwhFf/3k/PFoVOpdtDzcTVULXj2YMG7rITEqKzFpVjAbyo8xGHIFCCv2uquOSlyQdGizf9vaXc/6gxR4uoSwy5Pphb/hhYxAQIKw7Qj+gtEJXJbos4sgA0IqKwNBbbB/tDLWmnDXMa+mUD9cWt+pQkxpdl/db+B6WFbt0f7DA7M5RxrDVKH7oH75Wvt2UAgNHYlYwRpjBvZWCWxW47ZpvfNVTWB2s0VtTVGn+ch/Tx+F6OHSsn/s3vv1D6ljf9t++hzvuuOPYNTxYfo9Sije/+c182Zd92YO+tqtewVewVFXij1YcNKVIJMIHw6VXfqMROC0Nej7BHi25hwn+wprHnWqYNpIGUzGlUBU7Ox1qsc/+sM1gRms95TwYj3WGPXUCv1pxomkJ1ZYYEwVFDtF+IAckpWjMZqEblzYKZz2m/NCP2/aOdj2ggHpaYzuLMoqqlrecc14yXY1GlyaSkzymVKCtHDNdgp1HYlcRZ6k/9f98I6YwlE15xUU1P855zQ//X1/PNz7l9WLUn6LWstGA22D4BnL6zb3PolEKlLSdqizEPcgFKajp51NBvhfT+7V//HLuOBq459ICt+pyl/pQvbfk76CmNWFS4Rdrkcy0EmkX4nWtA2A0etrIqGK5JjjP4coTvMd3A6osxP/6L7sAKQVVgZo2uH0hOC1Ob+eDirIe5Qb8rCZUMSWpi2xwJx2tWQ1sTRRdX+OWa/TO7GrX+jG4HiwUfNNNNx37+ktf+lJe9rKXfVSu6WphfbBLqZzvOaz7cQP9cEkccWMN6T8KKA1mPsUt1lwIDeVeyyedbJjWBUYVNGqG3e6opi3TpeXOg2uwnbBXTQhc4iS6H2iLCYNrONVqtidKFC7hwW8Y97W5KKUwpaHvOkpffMiZ1P7FI6qmYu+efUwhjFXvPZNZg/eeoZNZb1Fo6mmDdw7bW84+6hTlRMv1Kg/hXjPd+LvNvMHcT0rQg131pKKe1oS6gvkkax9Zt6OWMhlOgHw/2imGlHADY1E1G/PXVETj+sn3vIJnPfbb+cl3fjdf99hv58f+/Hu43HkOe887PnBEv2wFJj+xFTW6H4UNPhZavTUVMpKPbkiZM6DGYhwgdAPDqhNoNc55VVM9YoqPAhmnNBXu0qEYU6SAgkL4B6obCKpCBUcotLCEjZjyq8Gx3VR0w8DBYPELIUs9Uh7f1fUg14ciKMXv3VfH+tFaVwvrFSylQG/PRg/WDycoOcJzoe0JVrxjk4RGzydQFeitKe5oxV2qob/U8mmn6+gXLwb+pgjM5pb5quXQTwjWYwsNuiSYCnf5CKsU71FTZpXlxKx8SBoMpRRlJdaL6kOYUUy3GobeMzt7kkqNvKBu3WGKiqrx1JNq/FpTEqZi7Xh/vp8JjtZGfcRFNa357owffsNX8qxv/w9U+z3mYI2aTWRep8TMnWEYSUh9n7W0yR0pRElOGAZUWWbXqBzEHgIHQ+Cb//tL+ZO9gRf/95fxP/d6lsseuxQWtpo16KqUzvKjubGnwlkYcY+6vx8joLen4yFBcczo4f/f3nnHV1GlDfg5M3N7OiQQJCGAFBGWxYKwgoiLsmsDO4KKIiqIyqqs6Nr7WsGK2NAVC6vY5XMVEQVUbAgqNXRICCGk3Nw6d+Z8f8y9NwmEooYEyDy/3xUz9Zxz58573ve8Zb8gYe1RFSuMLRp3EIunOASsOFbdsBLxawJFqohI/LtUBalOgSvdSUQ3CVaF4uFIDeTxbNM4WEkCdr8fksVjGgNbsP4WEk5Hnj8205HBiFXM26khnC6rupUew6y2zFE4VJRUD0ZVkHLVS3G0hBRnFIN4GS4si1errEq8/hAlgUyi5QHr5ex2WnUmYwaBQITlCuRGDXJTHbgclmD+La9GmcwOEA8XM02rUtqu66IDlmAFy3KqJF7KQErGzmsh9W2rDzMe6O10N4CZFEuAaU4Vb6rHMifFTCvmEcXShBJpCjXNMv2rIFxOSzuN6jWZgkyzxuRb21EJkmt8Ew6/FRSFK768mapgBCMUsUzIcQe2/U5LSgjgA8FbNp6LWNEUTI/DSrrvUq0JjwARjxlSolbMsuHWUKImSkjnqjOmgRCMmzLMekj3L5cTm71gf8y8ZAvWpsA0rbUqVUU4NdIjYYJOjUBYT3pvJl8KmJgiTEzsUI1DgNNlkiqjlIdiRIXAjGs/mCZKqgczFKWiIoQ/4iQSidGplRslWYdV1r3Ybgj6Q0gJqmrlfnW49qaWq6WZ70qUJ0J6kprQnlIkSkksGvuDjlP140v38sKDpzFmzNuYPhdCj1eeSVSbSVTMiURqZV5KVJipycBUO2lEQsOdsuxuxnb+FxO+vxN/SCdS7gchLMuH4w84JtlYSIkZjKC4nfh8TiuzlmlpsaZDQUjQ05zWykL8kVeiJqZbIDWB6VK5b+r5bCoLW/tVW1s94DDl7l1/f0e4TXV1NYWFhcm/165dy08//URWVhb5+fl7PP8PJ4iw+e0IjxWHZ0Z1hGHg0eK2UiktE3E0hhkMIxwaKiBNFRmj3o+mSNyqbmm/QiBjBorPA06Hpf06NWLBCJujki3lUUxD1niC7oCUEsPcOdmDoip4fC7cKS5cXudeOQtJLG11d0fEZN2/d4dpmEhkg5mAEwhhmZUzctJ59rmzEbphfWLxcJraDkeJ/MFuNzVJI+KlympnYpKSKYX/5s6f72VL0OCab25ne1k1ke1+hMOBkp6CsIVqwxFfA/Y5FCt9nQJKJIYSkzU+e7U0bxkPuJaadfyN42bg0OrWebU5gDD34vMb+f777+nVqxe9evUC4LrrrqNXr17cdttte3W+LVgbG2GlNVTSfaAbGJEYW6RGVAo0nxsRD+sRQuDyumjhUGkhssnQD6n3k2m0IUPxWMniVQUlxZMUsslcrYogKgUrq02Wb6mmuCzIVn+UqoCOUUv6mYA/JncQiNa6qh6vX5m85h67KdD2cKwW11Yle856EwlG9/revxWrqo5GenYaT714nrUtGquVwD9e3s3lskJxEqE0tVHVZKpCVJUrO/+LqCnZFoziL62yslZlpSJS3JazkC1UGxYp8WkKj74zGhEzkZpiCVfdxLUtjIhJZMK3TBPEPCpmXJhKARleFcWpYYbCe8wiZrN/kTAF7+7zWzn++OPrZrCLf1566aW9Ot82BTcFQiAUK72hUVGNoSm4BLTxaWgOlYAhUQU4VQVTU3G6NDwOEc9SlHhIauI7s40oxZEIwWgMszKA4nXFPValVTYtFMWsDhEUgg0OjaKwCZpJuhmjR5tUPKpIXk8VdZfVhMDyBg7rSVPsjsJNSokhDQQCRcSTr9c0cRdDkNgp68nTVP/x+0rDk6ZEj8RAgDfNU+MRnHBQcjgs7TUQrPFANKw11doOSsLp5D8r72a1P4ZuSKojBsHt1eDUcKR6kMnS7zYNimJZD4IxiUsV3DxjFPcOm4ZUBVIVmA5rTVWYEqkIUMBwKhhuBTNmPfCtUhQqgg5CtgPTgYe5hwwRZuNbIWyNtakQAlQFNdWLGQgTMSTbYxKvJji8pYdu2V7aZ7lp4bYE7a4mXUIIMrxOuqQ7yc7w4PA4MSoDmOV+zIoAMhRGSfehJJKYxwyi/hC6buBwajidSlx5kqgKpDrqfyRcPhexqJF0IKoPQ8Z2sWdnnVRKScyURBMpc/cgcTSnatXzbCCklJjxj67XtFsRgmdmjGTyGxda31EiWUTEyiEs4/8mwq+Ey1WT7EFKLmx3AxkihhHTMQJBHDKG1+fEUVWGNxZGM6J2xc+GRAgUtwsjHGVrMMaEU57hvrOeR4SjVmWTmESNGCgxEyVi4KiKoIYM1LCJEjXRQgaaX2fciNfI9GgITUVG9L279+/MQ2vTwOyDXMF/FFtjbUKEEEinhqL6MP1ByqMKEQmBmKRtmhO3U6Wla1dznxrNVQhone4iy+dgxbYQm0UKWBNzYtUhcBhWphwpwalBSEFGdMJulUhMojlBxJNCSFPUcTaynkmBolhVZ/SojqLWxDImzGaqUFHFb5vlR01J2LBMeM49TPEUVcE0Yjsl5aide6H2tuRyZ/w/9Sm7ft1EmuCOmVZKxHg8p6IquFI0KyF/Yh01ntpQJOq8KiKeQ1gAak0pNuAf3W/n4lfORBMaVcEAKf5UQoEATqcTxeXGfUiBldzDpmFQFZBYcaymiTAk0mHFqQrV+p7UQDRpIsaUKDETIS0HJiViooQNMjwqW50asVAU6a2/SlTCS15GdUsA14rx3Wfxxza7x2T3vo9NsGxuC9YmRsQ1VyU9BRkME6gIsjrmQQXat6wvWL3GhFrnGlh1XNv4NMqiOhEhMBNhCIn1wISJVlFAxgjEJCXVOgWZDstJKu6la3l7WFkrJNaaqyZA0VTMSF2tNCZjKAhUZedHqXZlnR09g4UQeFSBR002rc459R2/Y71ZwzCpKK3G5XZafRQQ0w0iwSipWb5kkQEzZuJ0a3hS3TU58iU4YwamKVE0JRmX63BrmCGJhiMZq4xhxRsnEkLISMRKCqHEf7GJcnKm5J+zx1JeUYXL5UU43eD14vF4EA4nDqcLQ0przdam4VAEis+NURXEjIfCCSktwWpIDK8DoZsoxCxve7AyM+lgulWkqoBicO0lr3L95HOpCkeRUd2KU6/lkCalRIatikaoCorHBQLL2dAftLRdpyOZGtEWso2DME3EbkzBoglMwbZg3R8QltaJz42iCMxwlGKHQCsLkeLWSPdqqMqOKt3OP1ohBBk+J20DOsWhGNWJml87rhc5NGQwQjSis7bSKj+W7dPwuARuhwDFRErFmo0TT5GbjPGLz9jjAlATf+AREjVCtL4arnUOVUTcOVeixheBY1EDM2YSDetUVwSIxfP7Ol0OQhtClplQVTFjBqZp0rZTa5T4OOpRq8Sb2+O0aszGX4JCCDRNwYiZTPl4LGNPf95qQCKjTzxtYZ3cCmo8p3MsRpuCAmJ+ncC2KqTXg9YiBx2Bs0Vc0UWi29bDBsWqeONGRmOMfuxsnrv+7WTIlOlUrQpC8Z+LEtGRUsN0qJhxM4mim1Zsa9igVYpGIOywciLHc4BLaVWikmEd4VCtzFW1tFOhqUi30yohGIkiA/Gc017bUa1RMCW7zCqT2N/I2IJ1P0IIAW4nZjRAZXWEal3iDBrkh2K08GqkeRxJ7dOIPyzqDt6pqiLokONDbAuyOhSvHVsdAp8nmdVHKMKqCxuKEKoKURhxsKFaI8Uh6NHKhc+lIoREmlasglNJBABa96osq0YoApfbgcu76xR3vykVRSKt427HB6RhJlMHai4NX5YPh6rgS/dgShMTE1UVCNOSfKqmYsYTOKhazeREUQV6RBIJRnH5nElhnbiRaZqoDhUiUStJvxr3Ck5k+4nFrKT7UkI8paHQNAK6SShmoutGIoKKxGTEZt8hBFbsdrmffzw7nMcv/g8vz76Ci/7+PEI3azxD46b9Vz+4nI3VBpsCMZ4a9R+0sIlUFFqlCLZWa1QGIzVLANEYMhy1Yo/rM/fGE8cIr9t6NgwTMxTB9ActR0LHzg5/Ng3IXqY0bEwOCOclr0MlZS8SA6hCkO5yoO0YCnEAIRLJAzSVWDBMsCJAYWWUxWURyqqj6DGT6nCM8ohBsB5HIiEEiiLITnWR44DUNA8AZkW19YKIL0AKTUWkeFBSPVZFm8ogFRGT7QEjnjoxrk0mhHH8xaA5NDSXA83jtDyFdWOvwxMSSR6iEd1yRJK1hG9tuVbL4zka0jFilmaaSKVYUw0HHG4Nzani8mj4Ujz4vB5cTgcenwO3z4nmEDhdKi5P3bSOqqbiTXNb/dqh/UbMIBrW8aa4mfTB5TUxq7oO0Sg4HFbqwkRqy2TJMyd+PW56FyJZ0camEUh8Dy4n1RVBbnz9Yi4Y+pK15mqaiIiO4g9jelxIh8qI01+gMhZCN6VVsxUQhsGoU18i1alY14prvYmqR2IPa6gq4FQEXpeKK82D4nNjBsJIf6huMQabhkWaNb4Q9X2kbQreia7Z6fRolQnAmu1+fiwuoyAjhfaZKbTwWqnwykMRtlaH6dgiFS1u6pu1chOB6M5eqj6nRucWaeSl+3BpKoFojPUV1awqqyK6j4LD01wODs/JIMfnxqmphGMGZcEIhWVVpLoc+Jwaxf4QpYFwcm1GeFxIjwsZ1YkFowSiCssAn1/Hb4JPgfx0FymaqFk7jSOEIDPVS/fUdPRolMWby3G6XfRonYXTqREyTL7fvI1ANEan1ll0yExBANuqAqwq3Q4yRKg6THa6l/QUy4lDSolpSIIhHZfPhduhYGgKkbCO5ti7NcOYbhCsCuH2OQj6owhFweWpP+GElNIy80Z0XKobl8eD5vQQrPajaSqqQ4nHygJI3N50HM6dUyNGQtVEI8Gdrh2LGugR3ZqIqErcKUrB6fLgdHmRZiUSSWZ2WjItYSI3MOGItaYaq5mooAhkNEq2WyUQswo0yIhurbnZ2kqjIIRASXFjbKuirDrGdc+P4LGznkvm4kYRlik4brn49wVvIIXAzHCjhmMoIcsb2KkpCEWpZUJMhI8JVGFtdiqSDBfETNWS6UJQrZtUxySqhCyXQrVwENZUjEDYCoOzq+fsG/YUVtAEpuD9WmP1OjR6tMrkkUceYc6cOWT73Bxf0Jo/t8rg6zmzGT9+POPHj+f/3plJQZobTVG46qqrWLt2LT1bZ+10vWyfm5M7t8UXDTDp4Ye48soreem5qbR1K5x0aJu90op/KxluJ4M7HUJ18Ubuvfsuxo4dy0P330dJ4XIGtG/NYZleHFVlDChohVOt9XXEBawSz6AkAX9lkJLKEIHKINuCOoXlYbb4oxiGWUdrFELBl5rJ9pItZKT4OKxVOt3btGDtyqVMeXwy1SVF9GiVic+h8efcLGa9+zZTn3yc9jmZeITGz1vDFIYESyt1AhErP3E0rBMMRNA1LWkSFglb514+t4Zu4E114/S48KS4EQjCgQiRYIRoWEeP6Na/0RjSlEQjOp5UB+ktsvAHQkRiBpnZVqH2SDAa76z1cTjd3H777bz//vsAPPDAA7z++utojpq8zokgbz0SwzRMHC4NxS0xMYhJHbcvDX8gTEVVgMyc7KRG/fCsK+vEr8po1PokSszVimv9Z/db8agCp88V9xr9vU+Oze9CURAOFTOiW4lOFOJJO6xiCSIaAxNLS5WSaIbTsi4oipUOkUTZXZksCFVn0gqkOgQtPQJFGJgSwjFJRdRMvr8NCZVRkxSHQkuPhpbisarthKK21rovkOaeP43Mfq2xdm6RRklJCS+88AJLlixBVVWEHuHYYweQkpLCyJEjcTqdfPzxxyxatIiHHnqIk046idtuu41XXnmFVKcDf7zQtCoEffKy+fTTTxk+fDhjx45l8ODBfPLJJ3Tt2pU5c+ZwfMdDKQ9FaZPmTbbBH9FZV1HN8tJKNEXQpWU67TJS8Dk1ykMRCrf7KQ9F6Nk6i1YpnuR5VRGdNdv9tEpxs3jxYk444QT+9a9/ceSRR7Jq1So++ugjjjjiCJYtW8bo0aP58ccfGXKYlYMypMfwOKyvxjQlWwNhdNPkkDQvUkq2VAVZsnYLFVUhyrweWnvSSfN6ME2TmB5JzopPPvlkPvjgA7p06QLAqwsWcMcdd1BcXMykSZMIxwwqKiq46qqrqKqqYsKECbRrncWhiiA3IwWAQCiMGQ1g6BGyWuXgdtf00TRiOBwBdD0UrzhW8wpSVA2ny4vmsDReI6ZjGlUoqsTjS0XVnJAl0aMRqisrcTiduL0pOBJl2aQkpkeJxSKoqpP777+f9u3b849//IOM7Nb1Jow45phjkjUXN23ahMfjQdUcpGbkENOjRMLVGLokvYVlAYmEqtFlBK83A0VR0VQn06Y9TklJCQ8//DAZ2a0IB6opSE3j/Q2TcTid/PL1Kt585ANK1pdyxQMj6HVC9+T9I6EoxWu3kndoG1RFIRiOstkf5JfSSmJNMGtujghA8Xkw/UGiHidX/3c0j418BdUfgogO8ao3RoqLmFdDasJybjJNMCT/+exiVpTEJ0oJh8H4/FFgldkNxCQhA3RTo75YDgHoppVopbVXpTJqYHjdmFVBpNthacO25tpwGHsQnrZXcA0CaJfh49GHn+aMM85A0zRMUzJp0iS8Xi+zZ8/GH9GJGCbDhg2jvLwcsITJ2LFjKS0tpV2mj19KKgBok+bFpSpcccUVPPLII1x00UWUBsIMGTKElJQUJkyYwIcffkjV9jJe+/Bd2rVrxzvvvEPnzp0ZNWoU6S4HaS4nih7mPy88x+rVq+nduzfnnHMOQggKCwv5dtkyfD4fH330Ed26dePiiy9GVVWee+89zjzzTK6//vqd+jlz5ky2bt3K5MmTSU9P55JLLuGN6a/Qv39/ZsyYQU5ODpdddhm//vorU19/HVVVOe+88/h7r26sLCmnc6tM5s+fz3vvvUdWVhYXX3wxubm5zJkzh/Lycl5++WVycnIYNmwYAH/729949913eeCBB+jUIo1nn32Wk08+mTfeeAOA/KxUvvjiC56ePZtIJMKxxx7L6aefjjclnUAgyKuvvkavXr144403aNu2LZdffjmay0mwqtxyilIUVIcDX2oWS5cuZcaMGfj9fvr168eZZ54JwM8//8zMmTNRVZVhw4bRqVMnAP73v/+Rm5vLV199xZo1azjttNPo378/a9asYdGiRWzYsAGAPn36kJ+fz7x588jLy+Ptt9/moosuQtM01FpJ1HVd55lnnmHt2rWcfvrpHHvssQDMmTOHli1b0u2wLrhECt9//yMAHTp0YN68efj9fiZPnkz37t0ZNGgQFRUVPPvUU2zdupWBAwdy51vXAbBq1So+/PDD5OTummuuQXok995zD2VlZRQUFHDZZZcRyUxh9bYKK2QI0PdvQ9GBjRBWAXSXk2iZH92hcv3LFzH5tKdAVayi5y4VqYAwJGrETNrtpFtDkS4iZhikaVWJqgdD7j4PtiKs/VFTUhoy4pqzQLgcVs3XNK+dJKQhsZ2X9p4Mr7UeOWvWLAYMGIAej8f873//y+WXX05VROd/hUXMXbuFz9cUUy41Fm4sRdM0evfuzWeffUa2t2bNrXWKh0WLFrFlyxZGjBjB4uLtzF27hbXlfi677DI++eQT/H4/GzduZNy4cTz++OP079+fjz/+mMsvv5z8jBS8KvTv35+NGzfSv39/Xn31VW6++WbAEhaXX345b775Jn369OHZZ59l0qRJALRv355PPvmEDz74gKqqqjr9bNGiBQ6Hg9zcXLLjZs577rmHCy+8kNatW9OhQwc+//xzhgwZQqdOnejQoQOnnHIKS5cupXOrTKZOncq1115L79698fl89OvXj4qKCtLT09E0jezsbHJzc3E4rJl6amoq/fv35//+7/8AmDZtGiNHjqzTpvnz59OzZ0/69u3Lww8/zOOPP46qapSXlzN+/HjuvPNO/vKXv/Djjz9yzjnn4HJ7UFQH0ZBOOBjB7U3j888/58QTTyQ3N5eBAweycuVKABYuXMjgwYPJz8+nRYsW9O/fn2XLlgHw2muvce655xIOh+nSpQtDhw5lxYoVuN1ufD4faWlp5ObmkpKSwtq1axk3bhyPPfYYRx11FF6vl9dee41vv/022Y9JkyYRCATo2bMnw4cPZ86cOQC89dZbLFiwIG5CtwT6xx9/jMPhIDU1FZ/PR25uLunp6YRCIY455hi2bt3KEUccwYQJE3j66acBWLJkCaNHj2bGjBkcc8wxCCEYMGAAOTk5nHLKKQBUVVWhBSsxNq9FLSvGv3ZlfF3YZl8hhECkuFGyUjGjMcLRmJWSUrPK/CkhHUW3BKowJYZDwXBrYEgMUxDRDetdrFhr79Iw9+ixXhtTgkMBryYoDVuCVQhhJZEwTIjGbJNwQyLZQ+alxm/SfquxpsRNNsuXL6dDhw5EDAOHqrB+/Xry8/MpD0WTx24LRtgWjABwRJsWdOjQgeXLlzPkrJruuTSFdevWccghh6CqKuVh6/yKUJRueXnouk5xcTFgaTovvvgiPp+Pv/71r7Rp04YHH3yQTz75hPbt23PfffcB8Ne//pW2bdty7733ApaQfPrppxFC4PV6eeKJJ5gwYQIjRoxgy5YtTJw4kRUrViQFVp8+fTj++OOZPn065513Xp3+T5w4kaFDhwIwcOBAHnvsseTL2u/3JwX3bbfdxjfffEP79u2T45WYfKSmpnLyySfTqdOhKLWSElxyySU8/vjjdOnSBcMwOPzww+vc++abb2br1q0UFRUxZswYnnrqKcaPHw9AMBjkueeeIycnh1NPPZX8/HxWrFhBQbs8hGIiTYGqatx11108/PDDnH/++UQjYU477TTAEnYTJ05k1KhRABQXF/PEE08khdXZZ5/NP/7xDwC+/vprPv/8c8aMGUPnzp1p3749Z599NqqqsmDBAgBeeeUVAJzOnTMZDRo0KGkl0HWdyZMnc8IJJyT3h8IR3O6ayVdmZiZ//vOfKSkp4dxzzkEoCq+++ip5eXncf//9ALRr144zzzyTK6+8EoCMjAyef/55hBCUl5dTXV3NiSeeSMeOHTnppJMAWLtoCbphEK6qQnM4bW2lEUgkXhFuB5GQzsQPLuPfQ16oKQtnWA5NMa+CEpVIh4Lh1YjEDGKGtNwIBPE19ZhV9H0vsZZ2BY4dzL1CgJJieQorjhTbGtxQ2Brr3qPEn7poNIrD4SAas+zkLVu2pLS0FF8tRyOPptIxKxWfQ8OU0jo+Gk1eA0A3ZPJcKWXyfJ9To7S0FICsLMvhqV27dvh8PpZsKSclJYW8vDzWr1/PsmXL+O677+jbty99+vRh0KBBtGnThoqKCgA6duyIEIKiqiCZmZlUVlYCUBHWue76CSxdupSSkhKOO+44Tj31VKLRmskBwOLi7cn/P+yww/DHc5YuW7aMW2+9lT59+tCnTx+mTZuGYRiUl5dTWlrK8OHDk/u++uorQqFQneuGQyGikZp7DRgwgF9//ZWHHnqIiy++uM6xhmEwfPhwhgwZwhNPPMFHH31ESUlJcn/Lli3JyckhEqpG0zQ6d+7M2rVrURTLS9cRD6pfuXIlvXr1IhIOUllWSsU26xpr1qyhe/fu6NEQMT1K9+7dWbNmTfL6HTt2xIjpSNMkMzNzJw0/EgmzZUtR8lin08n3339HfXTr1g3TiBGNhOjWrVud+wC43S60XSRbl0h0XU+2V0pJOOSnR48ebN68mUjEmsh17doVIQRBfwWZmZncfffdnHjiiXTr1o277roLXdfJaJOHq11nvO274snrYCeIaCyEQPG4MEMRtlWbjPnvpZYXsFNLxrVKVaDqppVTOBhjc/FWdF1HJjyBQxGE24G6h6T8AupYIiKmZGMghl57eU8IK6ZVVZHhiK21NhQJJ8LdfRqZ/VZjDcUTo+fl5VFcXIyWmY1hSoYMGcKbb77J0KFDOaZtNhHDoENmKkiTzi3TcGkqW7Zs4ZhjjiEcqxnQ0mCYvn37oqoqc+bM4dgBx5PhdnJoVipPPPEyf/nLX2jZsiXr1q2jpKQEwzDo2jINwzAoKSkhJyeHVq1aMWDAAF577bV625zMn0tdR54sr4twzKA6atCyZUtuvvlm7r//fkpLS+Op+qxfX8/cGk9mVVWJGgbgoFWrVjzyyCMMHDiwzv0ikQg+n4933nmH1q1b19se0zRxe7zJjEMAiqJw/vnn88ADD/DQQw/VEfCLFi3i119/5aeffkIIwZw5c1i4cGFyf3l5OcFgEI/bcqQqKioiJycHGXceMOP/5ubmsn79ejp1OhS3NwVvaioArVq1YvPmzXFvXcHmzZvJycmp0+ZkWsNaY5joi9frw+v1sXr12uR6aoeC+gsPFxUVoagaDqEk2wngdrsJBoNJR6zS0lJatmxZ5z6KoqIoKq1atWLx4sUIIXC6vKxevYaMjAxcLlfye7JOtNo8btw4xo0bx6pVq7jgggvIy8tj6LDhLC21Jlm2l3Aj49AQHhex8mpiCEa/cAHPXfk6D789mKsu+xKpCAyHgmYY6BkuqqSGU0hiGjgwcGomYZeLXZWXAHBEQxAN4/G40RUHJvEYZiHQFAXTMFA0K0mELgW6z2UVyHA6rHVcW3X9Y9ga695TFrC0ruOPP56FCxeS5XFS5A9y/fXXM3fuXK6//noqN67B3FbME48/xh133EFKXFv65ptvGDBgAGVx8zDA5soAiqpy7733MmrUKGa9/x7O6nKef/557rrrLu66667ksX6/n3vuuYey0q3cc889HH744bRt25Zzzz2X2bNn89JLL1FSUsLKlSuTpsjd8dJLL/HKtBfZsn4tK1eu5NZbb6Vz587k5ubStm1bNm7cyOeff84vv/xS57xtwQjRmMHYsWO57rrr+P7779m2bRtffvkl8+fPx+Vycckll3DppZeyfPlytm7dykcffcTSpUsBKCgo4L333mPRokUEAoE61/7Xv/5FUVFRUktPkJ6ezpYtW/j1119ZuXIld9999079+de//sWWkhKefPJJnE4nPXv2xIhZ2rVpxDBNq80TJ05k8eIlBCNRPvnkUwAuuugi/v3vf/Prr0v54YcfeOyxx3Za462P9u3b8+WXX/Ltt98mTfYJfD5PvefMmDGDefPmsWbtWu655x4uuOACAI488kjeeOMNCgsL+d///sfMmTOT5xQUFLBw4UIWLlzI+vXrGTp0KF988QXvvPMOmzZt5p///Ge97dUcLoqLi/nvf/9LSUkJbrcbp9OJz+fDtDWTJkMIgfC5UbLSEF4XRkU1Vz43jPEXzkWJSbSggSMQI+ZRueOOfmzfuJ5Q8TqqNxUSXL+KYGkR6Ppu50PR6iq2rl5B2bpCwpvWEFy7nOjmNcSK1uKo2Er12uVE1q/EUb4FJeRHqCrC47KSRzTaSBzEmHLPn0Zmv9VYDVOyuSrIqFGjuPrqqxk/fjxb/BUc3qo1P/74I8899xzjxo0DoG/fvlxzzTWA5USUkZFBt27dmLeuxoQZMUwWFW9nzJgxdOnShalTp/LQQw/RvXt35syZw5/+9Ceq4uuu3bt3Jysri3PPPZfOnTvz1ltvEdQNMlq0ZN68eUyaNIlnnnmGzMzM5NphXl4eAwYMACBmmrRs2ZLBgwcD0LNnT5577jleeeUVVFXlT3/6E59++imKopCdnc1zzz3H66+/TkpKCo8++mjSU7nMlPyytYIrrriCzMxMbr/9dsrKyujUqRPXXWd5pj766KM888wzjBs3jnA4TI8ePZIOVU8++SRTpkxh0qRJ3HXXXXTp0iWpaf1aWoVDEQRKK0h1uzn//PMB6NSpE/fffz9XXXUVGRkZ3HDDDXz66afJcczNzaVXr14MGzaMvLw8Zs2ahZQmetR6SZgSqssrGDVqFE6nkxtvvJFgMMigQYP4+9//ztlnn00oFGL8+PF4vV4mT57MX//61+T32KFDByvhOZJevXqRGtd0R48ejd/v56mnnmLIkCF07949Ob6W74KsOR846qij6Nu3Ly+++CLr1q3jwgsv5JJLLkHXI5x33nmsWLGCSy65hCOOOIKHHnoIr9daQxsyZAjr169nypQp9O/fn0svvZRZs2bx0EMP8fjjj3PCCScwceLE5Hd+3HHHxb9zidPp5LPPPuPxxx/H7XZz1llncc455/BjUY2J36bxsdZbBXhdyFCEWMTkrmdP5/bL3kMNmZgOFWFIgpEopmniS0klPScHhCAWiaAHI0iH0wqTqQdPSireDp2o2r6NqGHgS0lFj8XQHA78gQCmUFBdLiqq/Hhbp1n1jj1OjEgUGY1ZXsy21vq7kaaBlLs29+5u375CyL3NR9dIVFZWkpGRwZTZX9E+txWDu3XgjDPO4IYbbqDdYd2Zt3oTPQ/JoVNOZp3E9Fv9AXJSfYwcOZIRI0bQ97gBvP3Typ2uf0hGKn86JJucVF9y28byKhZv2kqnnEz8G9dyxRVX8MMPPyT3b9hexYLVm3A7VI7KzyUvKy25zzBNtlWHSPe4cGoqq7Zup7C0nIGd2+F1OqiORKmORGmdllKnHWu2lPHdmiKyW6RyZH4u6R5Xnf3+cJTPlq+jMhyhY3YGPQ9pRaq7xkFnW3WQb9cV0zrNR/c22ThrrQGVVvoxQlWkeFNJSUurc10pJUVbtzFn1SZMIfAKwUk9u5Duc1MWCFFYWs6Rea3R6gk1WL9+Pf3790+GvQAEQn42bCnEKzxINIIxE680SUlNJ7NlNqpWM3er9lei61HS0rOSJlTDiFGxfStOl4uU1CykNCkv24qmOUjLyEJKqKooQ3U4SElJ3+kFFAz42b6thPSMFqSkZSBNk1hMx+mqm4VJSsmG9WtZvXo1bfPz6dypy077N5YU4nOlkpmenXT2ClZXo2oqrlrxu1UV29H1CJlZOQhFodpfxbaK7fgyssnZ4Xv+fn0xvxZv22ksbRofKSVmmR/V62TaLe8jTDA1wa1ThhKJqUSjENJNzFAUxeeyvIglRCsD4HYh6kkgI4AWLgUQVOqGlRbaiFG9eQ2Kw4m3dX48RahF4hXvUgShsI7hD6GkeJIVcQ42QoFqxg76SzJSoSGpqqoiPT2dv6ZfiCZ2XYYxJqN8VvkKlZWVpO3wPtxX7Hcaq9/vB2DsoL8A8NFHHzF9+nQMw2DJksUM698fsLxACwoKAFi3bh2dO3fm559/5oEHHqB169aceuqpfPTRR7u8T6tWrWjRogXFxcXJGNgpU6bQu3fvpPYybNgwPv7446QTUoL09HTatm2bDM+RUlrxm6qKrlsmUatKipb82+VyUVBQQCwWY/PmzYTD4TrXVBQFTdOIRqM4nU7LgWKHOU+7du1ISUlh06ZNddqkKAodOnTA4XCwfv16gsG6KfwS10s4GCWqwOx4TGKt1eFwUFBQQDAYpKioCIfDwS233MLIkSPx+awJyVVXXcXrr7/O9u271saEEMl2rV27NunwoygKHTt2JBgMsnnz5uTxVqyymVxz1jQNKSVGLecDh8ORPKb2+O54fuLczMxMsrKyWL16dZ3ruN1uCgoKKC4uprq6GqDOfi0+IUiMVZs2bfD5fKxduza5TVEUFEWpM54ej4d27doRiUTYuHFjvWNts39x4p92Xu6waVj8fn+DC9Ykpgm7KRvXFJmX9juN1TRNioqKSE1NrakzGg+lqE/Y1EZVVVTVqmbyW19oVVVV3HTTTck1U9M0ky/c5kJVVRV5eXls3Lhxp5mdqqpJoSqlpLq6eq+T7x8o7K7/zYXmPgbNvf/QsGMgpcTv99OmTZs6DpQNQUJjPcE7bI8a65zgG81bY1UUhbZt29a7r3bM4b5g+vTpTJkyhZSUFBRFabY/rLS0tN32XQiRXPs8GNlT/5sDzX0Mmnv/oeHGYJ9pqgkSdaJ3u79x2e8Ea1NjNkFeSRsbGxub38meCp3bgtXGxsbGxmbvkYaJFLvzCraT8DcZLpeL22+/PRmO0hxp7mPQ3PsP9hg09/7DATgG0qS+KkN19zcu+53zko2NjY2NzZ5IOC/1E6ei4djlcTF05ssPm7fzko2NjY2NzZ5wOp20bt2a+Vs+3OOxrVu3rrdQx77C1lhtbGxsbA5IwuHwTsVM6sPpdO7zqJLa2ILVxsbGxsamAdlvk/Db2NjY2NgciNiC1cbGxsbGpgFpFoJ1x9y5zZFEMfbmiv0M2NjYNBYHtVfw8uXLmTBhAk6nk/bt23PZZZfRtWvXpm5Wo7JixQquvvpqYrEY7dq1Y8SIEQwaNKipm9Vo2M8AbNq0iZkzZ9KpUyd69OhBXl4eUspmVarMHgPYvHkzs2fP5tBDD6VHjx6kpaU1uzFoLA5ajfXLL7+kX79+ZGVlcfTRR/P2229z0UUXMW/ePKB5pC788ccfGThwIG3btmX48OHJGqQffPBBUzetUbCfAXjwwQfp2LEjb7/9NiNHjuTUU09l4cKFzeplao8B3HXXXXTo0IFnn32Wk046iQsvvJClS5c2qzFoVORByrXXXivPOOMMaZqmlFLKpUuXyrPPPlseeuihTdyyxuO+++6Txx13nAwGg1JKKbdu3SrHjh0rs7Oz5ebNm5u4dfue5v4MlJSUyB49esiXXnpJSinlt99+K88//3yZl5cnV65c2cStaxzsMZBy5cqVslu3bvLNN9+UUkr5/vvvy8GDB8vu3btLXdebuHUHJwedxirj0UOFhYU4HI7kjOywww7j5ptvpqKigjvvvBM4+DWWlStXIoTA47GKdGdnZ3PPPfeQnp6eHAN5EEdbNbdnYMfvcs6cORQXF3PqqacCcPTRR/PCCy+gKAr33XdfsvbxwUxzHYPaJS//7//+j/Lycs466ywATjvtNB577DGKi4u54447mqiFBzcHvGAtLi7mjTfe4Ouvv2b79u0IIYhGo+Tn5xMIBCgqKkoe2717d6677joeffRRgsFgg9cHbCpKSkooLCwE6hbrPvzww6moqGDVqlWAJUSysrK48847eeGFFyguLj4oTEGbNm3iscceY9asWWzcuBGASCTSrJ6B6upqysvL62xr3749FRUVSeERjUbxeDw88cQTTJ8+nSVLljRFU/cZFRUVLFy4MPkMABQUFDSrMSgrK+Pss8/m0ksvTW7Lz89H13XKysoA6z3QpUsX7rzzTiZNmkRxcXFTNfeg5YB+q9xwww107tyZqVOnMmjQIC6//HJWrVqF0+mkR48ebNiwgYULFyaP1zSNwYMH07ZtW6ZPn96ELW847rvvPtq0aZP8ISUKvQN07doVt9vNhx9aKb8URUFKyaBBgzjssMOYOnVqk7X7j5LQzupbP/v6669xuVz06tWLdevWHfTPwC233ELPnj0ZOnQow4YNY8WKFQBkZGTQu3dvnnrqKcDKPiOl5LTTTuOII47gueeeAw4Orf22226jc+fOXHHFFXTv3p0333wTsGqB9unTp1mMwcSJE8nNzeWzzz7jq6++oqqqCgCfz0fHjh154403AJKTyQsuuIA2bdowefJk4OAYg/2FA1KwlpeXM3r0aObPn8+sWbP4+OOPmTZtGhUVFTz//PMAXHHFFbhcLmbOnJnU5gA6dOhALBZr1LyR+4JoNMqNN97IBx98wIgRI6ioqOCll14Can4gp556Ku3ateOTTz7hu+++A2qKlGdmZiKlPGBNwUIItm7dyvTp03n22Wf54osvmDVrFocffjjnnHMOGzZs4NJLL8Xr9fLWW28dtM/AhRdeyKxZs5g6dSqjR4+mqqqKwYMHs2TJEjp16sQxxxzD/Pnz+f777wGIxWIADB8+nG+//ZZAIHBAa+2GYTBmzBg++OADZs6cyZtvvsl5553HP//5T8D6ro866igWLFhw0I7BtGnTaNmyJbNmzeLLL79kypQppKSksGXLFgD69euXFLgrV64ErIlpWloaQ4YM4eeffyYajR7QY7C/cUCO5LZt2xBCMHHiRPr374/L5eLcc88lJSWFaDSaFCw333wzixYt4tlnn02eG4lEiMViZGRkNFHrGwan00nHjh0ZNWoUt956K7179+bpp5/G7/ejaVoyf+aVV15JMBjkgQceSJ5rmibbt2+noKDggDYF72r9TNM0brrpJsDSZA7WZ2DlypUsWrSIRx99lEGDBnHRRRfx9ttvU15ezt1338327du54IIL8Hg8PPjggwA4HFYVkBUrVpCbm4vL5TpgJ1dgLQN89dVXXHvttfTv359OnTpx4YUXkp2dTVVVFS6Xi6FDhx60Y7Bp0ybeeOMNbrnlFn7++Wf69OnDEUccwYoVK5Kx2x6Ph4suuohNmzbx4osvAtbEVAhBYWEhXq83qcnbNBBN4jL1GzEMQ0opZTQalVJK6ff75S+//LLT/uHDh8srr7yyzrn33HOP7NKli+zfv7984okn5LHHHit79+4ti4qKGqn1DUOij7quJ71cE9uklPKDDz6QRx55pLz11lt32vfqq6/KQw89VPbo0UPeeuutsl+/frJ79+5y1apVjdiDP0Z9/f/mm2+kpmlyzZo1UkopI5GIlNIaC0VR5Pz586WUUt59990HxTOwI/Pnz5eapsnt27cnt61bt04WFBTINm3ayKlTp0oppXz55ZflIYccIseNGyd/+OEHuXTpUnnMMcfIO+64o6ma3mBs2rRJCiHkf//73+S2QYMGyTPPPFM+/fTTsqKiQkop5SuvvCLbtGlz0I2BaZoyFovV+Xv16tXy8MMPl5MmTapz7G233SY7duwo77zzTrlhwwa5ZMkSedRRR8mnnnqqkVt98LPfC9Y77rhDnnzyycm/Ey/VBIkXbiwWkwUFBfLVV1+VUta8ZCORiPzmm2/k8OHD5cCBA+XYsWOTAvpAYccxqI+qqip50003yW7dusmlS5dKKWWdfhYWFsrx48fL008/XV599dXJ8TkQ2FX/ly5dKvv16ycnTJiQ3JZ4Pnr37i1HjBghpZQyEAgc8M9AfSxZskT26tWrzmTypptukmPGjJF9+/aVgwYNklJKGQwG5fvvvy/btWsnu3btKtPT0+Xw4cNlKBRqqqY3CInf/qWXXipbt24tTzvtNOlyueSxxx4rr732Wpmfny+PP/54+c0330gppXz33XcPujGoj6qqKtm5c2d53333SSlr3gPbtm2TU6dOlampqbJHjx7S5/PJiy66SIbD4aZs7kHJfitYly9fLocMGSKzs7OlEEL+5z//kVLKOrOz2vzyyy8yPz9frlixYpfXPNB+RLsagx1jzxLC5KuvvpIDBw6UF154YXLfjgLkQBIou+p/og/RaFRee+21sm/fvvLbb7+ts2/y5MnysMMOk36/v841D7RnYHeEQiE5bdo06XA45DHHHCNbtGgh27RpI9etWyfnzJkjNU2TVVVVyePLysrkokWLDihLxe6o/S5Ys2aNHDp0qLz66quT27Zt2ya7du0qH3300aQQPtjGYFeKxtlnny0HDx5c7znr16+XX375pVy2bNk+b19zZb9dY/3pp5/wer08//zzjBs3jltuuQXTNFFVtd61gF9//ZXWrVvTuXNnwIrd+ve//13nmMasx9cQ7GoMNE2rMwaJddI+ffpw+umn8/333/Phhx8yY8YMLr/88johOIn1pQOBXfXf4XAQi8VwOBycccYZeL1eHn74YaCmf8uXLyc3Nxe3213H2/FAewbqI+F843a7ufjii1mwYAGjRo1iypQpbN68mXbt2lFWVsahhx5aJ0d0VlYWf/7znzn00EObqOUNRywWQ1XV5N9ut5vly5czatQoAHRdp0WLFqiqyrJly5KOOQfbGOzoI6EoCoZh0L59e6qrqyktLd3pvPz8fPr379/sUns2Kk0t2XckMQOrrKyU3333nZRSyu+++0527NhR3nDDDVLK+rXWESNGyIkTJ8qSkhI5aNAg6XA4kqaQA43fMwaJc1asWCEHDBgghRDS6XTKm2++uRFb3jDsTf9ra+3Tpk2Tbdu2PejWz3akdp+j0ai87rrrdql5XXPNNfL0009vrKY1GrXHQNf15BhUVFTIjIwMOX369OT+b775Rh555JHyo48+aoqm7jN2NQZS1vx2Jk2aJAsKCg4qC82BxH4nWOujurpaPvDAAzI9PV2uW7dOSllXsJSWlsr8/HxZUFAgHQ6HPOuss2RlZWVTNXefsKcxkFLKoqIieckll0ghhBw7duxOZtADmfr6X3sd/WBcQ0wQi8XqmPwmTZok09LSZMeOHWVhYWFy++rVq+Xq1avlP//5T9mmTRv5zjvvSCl3NhceiOxqDDp06CDXrFkjA4GAvOGGG6QQQo4cOVKOGTNGZmRkyMsuu6xZPQeJ/T/88IMUQsiFCxc2SVubO/ulYK398CT+f/ny5fLYY4+VZ5xxxk7Hr1u3Tubn58t+/frJH3/8sdHauS/5rWMgpZQvvfSSPO644+T333/fKG3cl/yW/if2b9u27aBaP5Oy7uRp9uzZsmPHjrJVq1by+eef32mt/dVXX5Xdu3eXPXr0SHpEHwzs7RiYpinvvvtuOXr0aHnOOec0yzFI8Nlnn8kRI0bIjRs3NmYzbeLsd4J1V0mhdV2X06dPl2lpaXLOnDlSSinnzp0rKyoqZCAQkIsXL27MZu5TfssYfPHFF3LLli1SyoNDM5Hy9/f/YGXDhg3yb3/7m3Q4HHLChAmyrKyszv7E9x4IBORXX33VFE3c5+ztGEhZN9TsYGJPY2Cz/7DfCNbdrRskKCoqksOHD5edOnWSJ510khRCJL1BDwZ+7xgk1iEPdJp7/+vjzTfflJqmyVNOOaXZenHaY2CPwYFGk3sFG4aBlBJNs2quT548mRYtWvDee+/t5PFmGAalpaUUFhaSlZVFUVERRx99dFM0u0H5o2Nw1FFHNUWzG4zm3v/dccQRR/Dll1/y4YcfNlsvTnsM7DE44GhKqf5b1g2WLVsmjzzySNmxY0f59ddfN3ZT9xnNfQyae/9tbGwOPprcFLy36waBQEB+/vnnjdu4RqK5j0Fz77+Njc3BRZOagt966y06dOiAqqosWbKEhx56iKysrHqP9Xq9HH/88Y3bwEaguY9Bc++/jY3NwYeQsulKGqxZs4aSkhL69u3bVE1ocpr7GDT3/tvY2Bx8NKlgtbGxsbGxOdhocq9gGxsbGxubgwlbsNrY2NjY2DQgtmC1sbGxsbFpQGzBamNjY2Nj04DYgtXGxsbGxqYBsQWrjY2NjY1NA2ILVhsbGxsbmwbEFqw2NjY2NjYNiC1YbWxsbGxsGhBbsNrY2NjY2DQgtmC1sbGxsbFpQGzBamPTBKxbtw4hBD/99NM+ub4QgnfffXefXNvGxmb32ILVplly8cUXM3To0Ca7f15eHsXFxXTv3h2AuXPnIoSgoqKiydpkY2PTMGhN3QAbm+aIqqq0bt26qZthY2OzD7A1VhubHfjiiy/o3bs3LpeL3NxcbrzxRmKxWHL/8ccfzzXXXMMNN9xAVlYWrVu35o477qhzjeXLl9OvXz/cbjfdunVj9uzZdcyztU3B69atY+DAgQBkZmYihODiiy8GoKCggMmTJ9e59p///Oc691u1ahXHHXdc8l6ffvrpTn3auHEj5557LhkZGWRlZTFkyBDWrVv3R4fKxsamHmzBamNTi82bN3PyySdz9NFHs3jxYqZMmcILL7zAPffcU+e4l19+GZ/Px8KFC3nwwQe56667kgLNMAyGDh2K1+tl4cKFPPvss9x88827vGdeXh4zZ84EYMWKFRQXF/PYY4/tVXtN0+TMM8/E6XSycOFCnnnmGSZOnFjnGF3XGTx4MKmpqcybN48FCxaQkpLC3/72N6LR6G8ZHhsbm73ANgXb2NTi6aefJi8vjyeffBIhBF27dqWoqIiJEydy2223oSjWXPRPf/oTt99+OwCdOnXiySef5LPPPuPEE0/k008/ZfXq1cydOzdp7r333ns58cQT672nqqpkZWUBkJOTQ0ZGxl63d/bs2Sxfvpz//e9/tGnTBoD77ruPv//978ljZsyYgWmaPP/88wghAJg2bRoZGRnMnTuXk0466bcNko2NzW6xBauNTS2WLVtG3759kwII4Nhjj6W6uppNmzaRn58PWIK1Nrm5uWzduhWwtM68vLw6a6i9e/feZ+3Ny8tLClWAvn371jlm8eLFFBYWkpqaWmd7OBxm9erV+6RdNjbNGVuw2tj8DhwOR52/hRCYptng91EUBSllnW26rv+ma1RXV3PkkUfy6quv7rQvOzv7D7XPxsZmZ2zBamNTi8MOO4yZM2cipUxqrQsWLCA1NZW2bdvu1TW6dOnCxo0bKSkpoVWrVgB89913uz3H6XQC1vpsbbKzsykuLk7+XVVVxdq1a+u0d+PGjRQXF5ObmwvAN998U+caRxxxBDNmzCAnJ4e0tLS96oONjc3vx3Zesmm2VFZW8tNPP9X5XH755WzcuJGrr76a5cuX895773H77bdz3XXXJddX98SJJ55Ix44dGTlyJEuWLGHBggXccsstAHVMzLVp164dQgg+/PBDSktLqa6uBuCEE07glVdeYd68efz888+MHDkSVVWT5w0aNIjOnTszcuRIFi9ezLx583ZylBoxYgQtW7ZkyJAhzJs3j7Vr1zJ37lyuueYaNm3a9HuGzsbGZjfYgtWm2TJ37lx69epV53P33Xcza9Ysvv32W3r27MmYMWO49NJLk4Jxb1BVlXfffZfq6mqOPvpoRo8enRR2bre73nMOOeQQ7rzzTm688UZatWrFVVddBcBNN93EgAEDOPXUUznllFMYOnQoHTt2TJ6nKArvvPMOoVCI3r17M3r0aO6999461/Z6vXz55Zfk5+dz5plncthhh3HppZcSDodtDdbGZh8g5I4LODY2Ng3OggUL6NevH4WFhXUEo42NzcGHLVhtbPYB77zzDikpKXTq1InCwkLGjx9PZmYm8+fPb+qm2djY7GNs5yUbm32A3+9n4sSJbNiwgZYtWzJo0CAeeeSRpm6WjY1NI2BrrDY2NjY2Ng2I7bxkY2NjY2PTgNiC1cbGxsbGpgGxBauNjY2NjU0DYgtWGxsbGxubBsQWrDY2NjY2Ng2ILVhtbGxsbGwaEFuw2tjY2NjYNCC2YLWxsbGxsWlA/h/9Fu4c2TDKbQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from gval import Comparison\n", + "from numbers import Number\n", + "\n", + "@Comparison.register_function(name='divide', vectorize_func=True)\n", + "def multiply(c: Number, b: Number) -> Number:\n", + " return c / b\n", + "\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"divide\",\n", + " continuous=True\n", + ")\n", + "\n", + "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "48861d2d", + "metadata": {}, + "source": [ + "### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "b7059f3b", + "metadata": {}, + "source": [ + "Like in cateogrical compare, all metrics are computed by default if no argument is provided, `metrics` can also take a list of the desired metrics and will only return metrics in this list." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "255f3d40", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandmean_absolute_errormean_squared_error
01215.10623289814.117188
\n", + "
" + ], + "text/plain": [ + " band mean_absolute_error mean_squared_error\n", + "0 1 215.106232 89814.117188" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['mean_absolute_error', 'mean_squared_error']\n", + ")\n", + "\n", + "metric_table" + ] + }, + { + "cell_type": "markdown", + "id": "693f4447", + "metadata": {}, + "source": [ + "Just like registering comparison functions, you are able to register a metric function on both a method and a class of functions. Below is registering a metric function:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "295e1fe0", + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Union\n", + "import numpy as np\n", + "import xarray as xr\n", + "from gval import ContStats\n", + "\n", + "@ContStats.register_function(name=\"min_error\")\n", + "def min_error(error: Union[xr.Dataset, xr.DataArray]) -> float:\n", + " return error.min().values" + ] + }, + { + "cell_type": "markdown", + "id": "f05c8bab", + "metadata": {}, + "source": [ + "The following is registering a class of metric functions. In this case, the names associated with each function will respond to each method's name." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c3e9ebf1", + "metadata": {}, + "outputs": [], + "source": [ + "@ContStats.register_function_class()\n", + "class MetricFunctions:\n", + " \n", + " @staticmethod\n", + " def median_error(error: Union[xr.Dataset, xr.DataArray]) -> float:\n", + " return error.median().values\n", + " \n", + " @staticmethod\n", + " def max_error(error: Union[xr.Dataset, xr.DataArray]) -> float:\n", + " return error.max().values" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "66a0ec92", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandmin_errormedian_errormax_error
01-3035.65527325.8582084263.23291
\n", + "
" + ], + "text/plain": [ + " band min_error median_error max_error\n", + "0 1 -3035.655273 25.858208 4263.23291" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['min_error', 'median_error', 'max_error']\n", + ")\n", + "\n", + "metric_table" + ] + }, + { + "cell_type": "markdown", + "id": "2d91a3c2", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "markdown", + "id": "27c889fb", + "metadata": {}, + "source": [ + "Finally, a user can take the results and save them to a directory of their choice. The following is an example of saving the agreement map and then the metric table:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "78505603", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'continuous_agreement_map.tif'\n", + "metric_file = 'continuous_metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "metric_table.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/SphinxMulticatTutorial.html b/SphinxMulticatTutorial.html new file mode 100644 index 00000000..ef76b14a --- /dev/null +++ b/SphinxMulticatTutorial.html @@ -0,0 +1,945 @@ + + + + + + + Multi-Class Categorical Comparisons — GVAL documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

50e136b71b15415f819850e1b7509460

+
+

Multi-Class Categorical Comparisons

+
+
[1]:
+
+
+
import rioxarray as rxr
+import gval
+import numpy as np
+import pandas as pd
+import xarray as xr
+from itertools import product
+
+pd.set_option('display.max_columns', None)
+
+
+
+
+

Load Datasets

+
+
[2]:
+
+
+
candidate = rxr.open_rasterio(
+    "./candidate_map_multi_categorical.tif", mask_and_scale=True
+)
+benchmark = rxr.open_rasterio(
+    "./benchmark_map_multi_categorical.tif", mask_and_scale=True
+)
+depth_raster = rxr.open_rasterio(
+    "./candidate_raw_elevation_multi_categorical.tif", mask_and_scale=True
+)
+
+
+
+
+
+

Homogenize Datasets and Make Agreement Map

+

Although one can call candidate.gval.categorical_compare to run the entire workflow, in this case homogenization and creation of an agreement map will be done separately to show more options for multi-class comparisons.

+
+

Homogenize

+
+
[3]:
+
+
+
candidate_r, benchmark_r = candidate.gval.homogenize(benchmark)
+depth_raster_r, arb = depth_raster.gval.homogenize(benchmark_r)
+del arb
+
+
+
+
+
+

Agreement Map

+

The following makes a pairing dictionary which maps combinations of values in the candidate and benchmark maps to unique values in the agreement map. In this case we will encode each value as concatenation of what the values are. Instead of making a pairing dictionary one can use the szudzik or cantor pairing functions to make unique values for each combination of candidate and benchmark map values. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark.

+
+
[4]:
+
+
+
classes = [1, 2, 3, 4, 5]
+pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in product(*([classes]*2))}
+
+# Showing the first 6 entries
+print('\n'.join([f'{k}: {v}' for k,v  in pairing_dictionary.items()][:6]))
+
+
+
+
+
+
+
+
+(1, 1): 11
+(1, 2): 12
+(1, 3): 13
+(1, 4): 14
+(1, 5): 15
+(2, 1): 21
+
+
+

The benchmark map has an extra class 0 which is very similar to nodata so it will not be included in allow_benchmark_values in the following methods.

+
+
[5]:
+
+
+
agreement_map = candidate_r.gval.compute_agreement_map(
+    benchmark_r,
+    nodata=255,
+    encode_nodata=True,
+    comparison_function="pairing_dict",
+    pairing_dict=pairing_dictionary,
+    allow_candidate_values=classes,
+    allow_benchmark_values=classes,
+)
+
+crosstab = agreement_map.gval.compute_crosstab()
+
+
+
+

The following only shows a small subset of the map for memory purposes:

+
+
[7]:
+
+
+
agreement_map.gval.cat_plot(
+    title='Agreement Map',
+    figsize=(8, 6),
+    colormap='tab20b'
+)
+
+
+
+
+
[7]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f99a1e34b50>
+
+
+
+
+
+
+_images/SphinxMulticatTutorial_15_1.png +
+
+
+
+
+

Comparisons

+

For multi-categorical statistics GVAL offers 4 methods of averaging:

+
    +
  1. No Averaging which provides one vs. all metrics on a class basis

  2. +
  3. Micro Averaging which sums up the contingencies of each class defined as either positive or negative

  4. +
  5. Macro Averaging which sums up the contingencies of one class vs all and then averages them

  6. +
  7. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category.

  8. +
+

Using None for the averaging argument runs a one class vs. all methodology for each class and reports their metrics on a class basis:

+
+
[8]:
+
+
+
no_averaged_metrics = crosstab.gval.compute_categorical_metrics(
+    positive_categories=[1, 2, 3, 4, 5],
+    negative_categories=None,
+    average=None
+)
+no_averaged_metrics.transpose()
+
+
+
+
+
[8]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
01234
band11111
positive_categories12345
fn6.01043.0318274.0516572.0364147.0
fp172762.0561004.0462496.03775.05.0
tn1043592.0653360.0422623.0693617.0852206.0
tp0.0953.012967.02396.02.0
accuracy0.8579630.5379270.3581090.572210.700622
balanced_accuracy0.4289840.5077410.2583110.4996020.5
critical_success_index0.00.0016930.0163370.0045840.000005
equitable_threat_score-0.0000050.000055-0.175401-0.000455-0.0
f_score0.00.003380.0321480.0091250.000011
false_discovery_rate1.00.9983040.9727280.6117320.714286
false_negative_rate1.00.5225450.9608530.9953830.999995
false_omission_rate0.0000060.0015940.4295790.4268520.299376
false_positive_rate0.1420330.4619740.5225240.0054130.000006
fowlkes_mallows_index0.00.0284550.0326750.0423390.001253
matthews_correlation_coefficient-0.0009040.001257-0.440983-0.005543-0.000072
negative_likelihood_ratio1.1655460.9712262.012361.0008011.0
negative_predictive_value0.9999940.9984060.5704210.5731480.700624
overall_bias28793.666667281.5415831.4353990.0118910.000019
positive_likelihood_ratio0.01.0335110.0749190.8529160.936112
positive_predictive_value0.00.0016960.0272720.3882680.285714
prevalence0.0000050.0016410.2723220.4266570.299376
prevalence_threshold1.00.495880.7851070.5198760.508252
true_negative_rate0.8579670.5380260.4774760.9945870.999994
true_positive_rate0.00.4774550.0391470.0046170.000005
+
+
+

The following is an example of a using micro averaging to combine classes to process two-class categorical statistics. In this example we will use classes 1 and 2 as positive classes and classes 3, 4, and 5 as negative classes:

+
+
[9]:
+
+
+
micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(
+    positive_categories=[1, 2],
+    negative_categories=[3, 4, 5],
+    average="micro"
+)
+micro_averaged_metrics.transpose()
+
+
+
+
+
[9]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0
band1
fn382.0
fp733099.0
tn481259.0
tp1620.0
accuracy0.396987
balanced_accuracy0.602749
critical_success_index0.002204
equitable_threat_score0.00056
f_score0.004398
false_discovery_rate0.997795
false_negative_rate0.190809
false_omission_rate0.000793
false_positive_rate0.603693
fowlkes_mallows_index0.04224
matthews_correlation_coefficient0.017033
negative_likelihood_ratio0.481468
negative_predictive_value0.999207
overall_bias366.992507
positive_likelihood_ratio1.340402
positive_predictive_value0.002205
prevalence0.001646
prevalence_threshold0.463444
true_negative_rate0.396307
true_positive_rate0.809191
+
+
+

The following shows macro averaging and is equivalent to the values of shared columns in no_averaged_comps.mean():

+
+
[10]:
+
+
+
macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(
+    positive_categories=classes,
+    negative_categories=None,
+    average="macro"
+)
+macro_averaged_metrics.transpose()
+
+
+
+
+
[10]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0
band1
accuracy0.605366
balanced_accuracy0.438927
critical_success_index0.004524
equitable_threat_score-0.035161
f_score0.008933
false_discovery_rate0.85941
false_negative_rate0.895755
false_omission_rate0.231481
false_positive_rate0.22639
fowlkes_mallows_index0.020944
matthews_correlation_coefficient-0.089249
negative_likelihood_ratio1.229986
negative_predictive_value0.768519
overall_bias5815.331112
positive_likelihood_ratio0.579492
positive_predictive_value0.14059
prevalence0.2
prevalence_threshold0.661823
true_negative_rate0.77361
true_positive_rate0.104245
+
+
+

To further enhance macro-averaging, we can apply weights to the classes of interest in order to appropriately change the strength of evaluations for each class. For instance, if we applied the following vector the classes uses in this notebook, [1, 4, 1, 5, 1], classes 2 and 4 would have greater influence on the final averaging of the scores for all classes. (All weight values are in reference to the other weight values respectively. e.g. the vector [5, 5, 5, 5, 5] would cause no +change in the averaging because each weight value is equivalent to a ll other weight values.) Let’s use the first weight vector mentioned in weighted averaging:

+
+
[11]:
+
+
+
weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(
+    positive_categories=classes,
+    weights=[1, 4, 1, 5, 1],
+    negative_categories=None,
+    average="weighted"
+)
+weight_averaged_metrics.transpose()
+
+
+
+
+
[11]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0
band1
accuracy0.577454
balanced_accuracy0.476356
critical_success_index0.003836
equitable_threat_score-0.014789
f_score0.007609
false_discovery_rate0.811574
false_negative_rate0.835662
false_omission_rate0.239133
false_positive_rate0.211627
fowlkes_mallows_index0.029953
matthews_correlation_coefficient-0.03872
negative_likelihood_ratio1.088901
negative_predictive_value0.760867
overall_bias2493.443989
positive_likelihood_ratio0.784138
positive_predictive_value0.188426
prevalence0.225962
prevalence_threshold0.573022
true_negative_rate0.788373
true_positive_rate0.164338
+
+
+

Regardless of the averaging methodology it seems as though the candidate does not agree with the benchmark. We can now save the output.

+
+
+

Save Output

+
+
[12]:
+
+
+
# output agreement map
+agreement_file = 'multi_categorical_agreement_map.tif'
+metric_file = 'macro_averaged_metric_file.csv'
+
+agreement_map.rio.to_raster(agreement_file)
+macro_averaged_metrics.to_csv(metric_file)
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/SphinxMulticatTutorial.ipynb b/SphinxMulticatTutorial.ipynb new file mode 100644 index 00000000..e2885293 --- /dev/null +++ b/SphinxMulticatTutorial.ipynb @@ -0,0 +1,1168 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "05d93248", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "4744f004", + "metadata": {}, + "source": [ + "# Multi-Class Categorical Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "275a7087", + "metadata": { + "tags": [ + "hide-output" + ] + }, + "outputs": [], + "source": [ + "import rioxarray as rxr\n", + "import gval\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "from itertools import product\n", + "\n", + "pd.set_option('display.max_columns', None)" + ] + }, + { + "cell_type": "markdown", + "id": "34069943", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "38473c06", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(\n", + " \"./candidate_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " \"./benchmark_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "depth_raster = rxr.open_rasterio(\n", + " \"./candidate_raw_elevation_multi_categorical.tif\", mask_and_scale=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "fa522035", + "metadata": {}, + "source": [ + "## Homogenize Datasets and Make Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e3e5ca15", + "metadata": {}, + "source": [ + "Although one can call `candidate.gval.categorical_compare` to run the entire workflow, in this case homogenization and creation of an agreement map will be done separately to show more options for multi-class comparisons." + ] + }, + { + "cell_type": "markdown", + "id": "2ac66a26", + "metadata": {}, + "source": [ + "#### Homogenize" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "29375e17", + "metadata": {}, + "outputs": [], + "source": [ + "candidate_r, benchmark_r = candidate.gval.homogenize(benchmark)\n", + "depth_raster_r, arb = depth_raster.gval.homogenize(benchmark_r)\n", + "del arb" + ] + }, + { + "cell_type": "markdown", + "id": "4e9e1be1", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e2851c9b", + "metadata": {}, + "source": [ + "The following makes a pairing dictionary which maps combinations of values in the candidate and benchmark maps to unique values in the agreement map. In this case we will encode each value as concatenation of what the values are. Instead of making a pairing dictionary one can use the `szudzik` or `cantor` pairing functions to make unique values for each combination of candidate and benchmark map values. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "de894568", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 1): 11\n", + "(1, 2): 12\n", + "(1, 3): 13\n", + "(1, 4): 14\n", + "(1, 5): 15\n", + "(2, 1): 21\n" + ] + } + ], + "source": [ + "classes = [1, 2, 3, 4, 5]\n", + "pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in product(*([classes]*2))}\n", + "\n", + "# Showing the first 6 entries\n", + "print('\\n'.join([f'{k}: {v}' for k,v in pairing_dictionary.items()][:6]))" + ] + }, + { + "cell_type": "markdown", + "id": "44328dcf", + "metadata": {}, + "source": [ + "The benchmark map has an extra class 0 which is very similar to nodata so it will not be included in `allow_benchmark_values` in the following methods." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "1dc16dd7", + "metadata": {}, + "outputs": [], + "source": [ + "agreement_map = candidate_r.gval.compute_agreement_map(\n", + " benchmark_r,\n", + " nodata=255,\n", + " encode_nodata=True,\n", + " comparison_function=\"pairing_dict\",\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes,\n", + ")\n", + "\n", + "crosstab = agreement_map.gval.compute_crosstab()" + ] + }, + { + "cell_type": "markdown", + "id": "93fe86df", + "metadata": {}, + "source": [ + "The following only shows a small subset of the map for memory purposes:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "55606165", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAIvCAYAAAD9IEb7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZxN9f/Hn+duM2NW+xBJlkGFSaNQomTJEolI32wh2bVoX6SkFBJjSfRLaGGEihahRYVIvjRJtpjBYBaz3e38/rjOdZdzZ+4smOn7fj66j5n7OZ/zOZ9zZnRf814VVVVVBEEQBEEQhHKL4XJvQBAEQRAEQSgZIugEQRAEQRDKOSLoBEEQBEEQyjki6ARBEARBEMo5IugEQRAEQRDKOSLoBEEQBEEQyjki6ARBEARBEMo5IugEQRAEQRDKOSLoBEEQBEEQyjki6IQyxy+//IKiKCiKwuTJky/3doRSZNCgQe6f7YgRIwLOy8/Pp1KlSu65mzZtunSbLCJDhgwhPDyckydPeo1rey/oNWjQIK9zrrrqKr85UVFRJCQkMH36dKxWq9/18/PzmTFjBq1atSI6OhqLxUKNGjW44YYbGDNmDJ999lnAvZ85c4ZXXnmFtm3bUq1aNcxmM9HR0TRv3pyRI0eycePGEj+f06dPU61aNRRFoX79+n7HnU4n3333HY8//jgtWrQgMjKSkJAQ6tWrx0MPPcTBgwcLvcbq1avp3LkzVatWJTQ0lNq1a9OrVy++//573fk//fQTd911F1WqVCE0NJSGDRvy9NNPk52d7TdXVVXi4+O57rrrcDqdRX8AgnCpUAWhjDF69GgVUAG1YcOGl3s7gg/PP/+8CqiLFy8u8rkDBw50/2wrVqyo5ufn685buXKlex6gfvvttyXb9EVi9+7dqsFgUB977DG/Y9reBw4cGPC1cOFCr3Pq1KmjAmrv3r3VgQMHqg888IDatm1b1Ww2q4Datm1br2d29uxZ9frrr1cB1Ww2q23btlX79eunduvWTa1Ro4YKqHFxcbp7X7VqlRoVFaUCakREhHr77ber/fv3V3v06KE2aNDAvf8777yzRM9o4MCBqqIoKqDWq1fP7/j+/fvd14qNjVV79Oih9urVS73iiitUQI2MjFS/++473bUdDoc6ZMgQFVDDw8PVTp06qffee6/aqlUr1WKxqC+99JLfOUuXLlWNRqMKqNdff73aq1cv9corr1QBtWnTpmpGRobuswLURYsWlehZCMLFRASdUKawWq1qlSpV3P9zB9Sffvrpcm9L8KA0BF18fLwKqElJSbrzevXqpRqNRrVZs2ZlWtD16NFDNZvN6okTJ/yOaSKlKGiC7uDBg17jO3fuVKOjo1VAnT17tnt8zJgxKqA2b95c/eeff/zW+/nnn9UXX3zRb3zt2rWqoiiqyWRSX3vtNTUvL89vzr59+9SBAweqDRo0KNI9ePL111+rgDp8+PCAgu6vv/5S77jjDvWbb75RnU6nezwvL08dNGiQCqhXXnmlarVa/c7Vfhe7d++unj592uvYmTNn1D///NNr7OjRo2poaKifOMvPz1f79+/v3qsvTqdTbdSokXrFFVeoNputyM9BEC4FIuiEMsWaNWtUQG3Tpo06efJkFVBHjRp1ubcleFAagu61115TDQaDes899/jNOXv2rBoSEqJ27NhR7dSpU5kVdEeOHFENBoParVs33eOlKehUVVVffPFFFVBvv/1291jNmjVVQP3qq6+CvkZWVpb7j6b333+/0Pnbt28Pem1PcnJy1Hr16qlNmjRR//zzz4CCrrA1NCG7adMmr2NHjx5VLRaLeuWVV6o5OTlBrffSSy+pgHrHHXf4HTt9+rQaGRmpmkwmNS0tLeC5K1euLNI9CMKlQmLohDLF0qVLAbj//vu5//77Afjwww+x2WwBz9m9ezfdu3cnJiaGyMhI2rZty1dffcWmTZt045S0OK5NmzaxYcMG2rdvT0xMDIqikJ6e7p63fv16unbtStWqVQkJCeHqq69m4sSJnD59WncfqqqyfPlybrvtNipWrEhoaCiNGzfmhRdeICcnx29+u3btUBSFQ4cO8eGHH5KQkECFChW44oorePzxx93xUgcOHKB///5Uq1aNChUq0L59e3bv3h3weRRl357PYsuWLdx2221ERkYSFRVF165d2bt3r9f8q666ihdffBGAwYMHe8V6FSXOrUaNGtx2222sW7eOjIwMr2MfffQR+fn57p+/Hrt27XLHXHne58MPP8zx48f95h86dAhFUWjXrh2ZmZmMGzeO2rVru39GM2bMKHJ81LvvvovT6aR///5FOq+4xMfHA3D06FH32KlTpwCoWrVq0OssWbKEtLQ0WrduXeAz1mjRokURd+rixRdf5O+//2bevHmYzeZirREWFkbDhg0B/H6u7733HlarlQcffJCwsLCg1tuxYwfg+rfnS6VKlWjatCl2u1037vC+++4DYOHChUW5BUG4ZIigE8oMGRkZrFmzBovFQt++falbty6tW7cmLS2N9evX656zdetWWrVqxbp166hTpw7dunUjLy+Pzp07s2rVqgKvt2zZMrp06UJ2djZdunQhISEBRVEAeOKJJ+jSpQtff/01cXFx9OjRA5PJxIwZM7jxxhs5ceKE11pOp5MBAwZw3333sW3bNpo3b86dd95JdnY2L774Iu3btyc3N1d3H7NmzeL+++8nJiaGzp07Y7Vaef311xk2bBj79+/npptuYteuXdx2223Ur1+fTZs20b59e789FGffGmvXruW2224jJyeHO++8kxo1avD555/Ttm1bUlNT3fPuuecemjVrBkCbNm0YOHCg+xUbG1vg8/ZlwIAB5OXlsXLlSq/xDz74gAoVKtCrV6+A57766qvMmDEDgJtvvpk777wTVVVJTEzkhhtu0BV14EoguO222/i///s/WrZsyR133MHhw4eZOHEiQ4YMKdL+161bB+iLg4tBVlYWACEhIe6x2rVrAzBv3jxUVQ1qnS+++AKgREL0hRde0P1jSWP37t288cYbDB48mFtuuaXY13E6nRw+fBjA7/dLS9ho3bo1KSkpTJ8+nYceeohJkyaxfv163eehJT1UrFhR93qVK1cG4LfffvM7dvXVV1O7dm02btwY8N+yIFxWLq+BUBAu8M4776iAetddd7nH5s6dqwJqnz59/OY7HA61YcOGKqC+/PLLumtxPijdE8/A/BUrVvit+9FHH6mAeu2116r79+93jzudTvW5555TAfXee+/1Oue1115TAbVdu3ZqSkqKezw/P18dOnSoCqiTJk3yOufWW291B6Rv27bNPZ6SkqJWr15dVRRFbdy4sfrEE0+4Y4ucTqf6n//8RwXU5557rsT71p6FwWDwimez2+1q7969VUB99tlnvc4pDZfr+++/r2ZmZqphYWFq+/bt3ccPHz6sKoqi9u/fX1VVNaDLdePGjWpqaqrXmMPhcLslBw8e7HXs4MGD7p9506ZN1VOnTrmP/fXXX27XZaCYPl+ysrJUo9Go1qxZM+Ac7XpFoSCXa79+/VRAHTBggHts6tSp7us0atRIfeKJJ9SkpCT16NGjAa+hJRt8//33RdqbJ9rvgO+/LVV1/RwSEhLUKlWquF2X2vMvqst16dKlKqBWrVrVL85Pi7F966233G5Zz1e7du3Us2fPep1z33336f5b1LjuuuvcSSl6aP8mNm7cWKT7EIRLgQg6ocygCZyPP/7YPZaWlqaazWY1NDRUTU9P95r/1VdfqYDaoEED1eFw+K3Xpk2bAgVd165ddfehBeL//vvvfsecTqfavHlz1Wg0ukWBzWZTq1SpooaHh/uJDFV1xQHFxsaqFStW9Nqndr/PPPOM3zkTJkxQAfXqq6/2Cwb/7bffVEC99dZbS7Rvz2fhKRI0tm/frnud0hJ0qqqqffv2VQ0Ggzug/5VXXlEB9bPPPlNVNbCgK4grrrhCrVy5steYp6D78ssv/c5JTEz0i08riJ9//lkFvMSoL74CQ+/lKyB9BZ3T6VQPHTqkTpo0SQVURVHULVu2uOc7HA718ccfd2fBer6uueYaNTEx0e/fhpYU8Mcff/jt+cyZM7rZuPv27fOaN3v2bDUuLk594okn/NaYOXOm3+9HcQTdkSNH3LF+iYmJfsdDQkJUQDWZTOott9yi/vrrr2pmZqb69ddfq3Xr1lUBvxjNefPmuZMsfDOst23b5n52HTt21N3T008/rQLqm2++GfR9CMKlwlQUa54gXCyOHDnCli1biImJoXv37u7xypUrc+edd/Lpp5/y8ccf8+CDD7qP/fDDDwD07t0bg8E/euDee+91z9GjR48efmMnT57kt99+o0GDBlx77bV+xxVFoU2bNuzatYsdO3bQqVMnfv31V9LS0rjjjjuoXr263zlhYWG0aNGCzz77jP379xMXF+d1vGPHjn7nXH311YDLnecbf6QdS0lJKdG+C9uDFrvkeZ3S5v777+ejjz5i2bJlPPbYY3zwwQdUq1ZNdz++nD59mjVr1rBnzx7S09NxOBwA2Gw2Tp8+zZkzZ6hUqZLXOZUqVeKOO+7wW6t///6MHDmSH3/8EafTqfv75IlWcy6Q686TgQMHBjx25ZVX6o7XrVvXb8xisTBz5kwvF6bBYGDatGmMGzeOTz75hC1btrBt2zaOHDnCf//7X0aOHMmGDRtYuXJlofcELpfke++95zc+aNAgGjVq5H4/evRoRo8e7TfvyJEjPPPMM9x6660B3bHBkJ2dzd13301aWho9e/bkoYce8pujxTxWrFiRL774gvDwcABuv/121qxZQ9OmTfnkk0/4888/3b/LAwYMYMqUKRw5coQePXowffp06tSpw9atWxk2bBgmkwm73R7wWWm/T1rsoiCUJUTQCWWCDz74AFVVueeee7xihMD1of/pp5+ydOlSL0GnCQ0tjsiXQB+WBR0/dOgQAPv373fH0wUiLS3N65yvvvoqqHN8Bd0VV1zhNy8iIqLQY/n5+SXatye1atXyG4uMjPS7TmnTuXNnKleuzAcffECHDh3473//y5gxYzCZCv5f0/Llyxk+fDjnzp0LOCcrK8tP0NWpU0d3bnR0NDExMaSnp3P27Fl3LFUgtEQO7RkVxJIlSwqd40vv3r2JiIhAURQiIiJo1KgRvXr1ombNmrrza9asydixYxk7diwA+/btY/r06bz77rusXr2a5cuXM2DAAMD1R9KxY8d0fxdr1arlFXvWuXNnNmzYEPS+R40ahdVqZd68eUW9ZTc2m40+ffqwfft2br75ZpYtW6Y7LyIigrNnz9KnTx+3mNO49tprSUhI4JdffmHLli1uQRcREcG6devo1q0bGzZs8Lq3+vXr88gjjzBt2rSAQj0qKgrAK3lKEMoKIuiEMsH7778PwKZNm7j55pu9jmnZnlu2bOHw4cMBP5SLSmhoqN+Y9ld/bGysnxXLF20f2jn169enTZs2BZ6jJxQKspwEY1Xx3ENR9l2c65Q2ZrOZvn37kpiYyFNPPQVQaObl4cOH3dafmTNn0rVrV6644gp3pmPr1q3ZunVr0EkCxSE6Ohq4kKhQ2kyfPp2rrrqq2Oc3btyYRYsWcfbsWZKSkvjss8/cgq5Zs2YcO3aMnTt3Fvr7WlTWrVtHTEyMn0UtLy8PgGPHjrmTSFasWOGX6OB0Ohk4cCBffPEFzZs3Z+3atQEzWOvUqcPZs2cDPqerrrqKX375xa+DR7NmzUhOTuajjz7i119/xeFwcP3119OvXz+mTp0KwDXXXKO7pibkY2JiAj4DQbhciKATLjs7duxg3759APz111/89ddfuvNUVeWDDz5wf/DXqFED8C7j4Emg8YLQLFVVqlQJ2rKindOoUaNiWWNKg+Lsu6xw//33k5iYyPr162nYsCEtW7YscP7nn3+O1Wrl0UcfZdy4cX7H//7774DnHjlyRHc8MzOT9PR0wsLCgvqwrlatGuBqnVWWue2220hKSvKyynbp0oXPP/+cFStW6LpNS0p6ejqbN2/WPZaXl+c+pok8T8aMGcPy5ctp2LAhGzZsKPBnER8fz65duzh79qzuce1no1m0PalQoQKDBg3ycwv/+OOPQODMZe1aRSkTIwiXCilbIlx2tNpzjz76KKorUcfvpdU40+YCbutCUlKSrjXmo48+KvJeatWqRaNGjdi7dy9//vlnUOckJCQQHR3N5s2bL9sHfHH2XVwsFgsAdru9VNZr3bo1zZo1o3LlykGVDtE+VPXcxFu2bAlYmgVccXfffPON3/iKFSsAaNWqFUajsdA9XHPNNZhMJpKTkwudezEpzAqp/XHk6bofNGgQlStX5ocffvD691Ra+9F7af1Y69Wr5x7ztaw988wzzJ07lyuvvJKvvvrKLZoDocXA6onHc+fO8euvvwIX6vcVxu7du9m8eTPXXHNNQMul9odn8+bNg1pTEC4lIuiEy4rD4WD58uVAwXWxbrnlFq644gr27dvnLg5622230aBBA5KTk3nttde85i9ZsoTvvvuuWHt69tlncTqd9O7dm127dvkdP336tFdx0ZCQEB5//HGysrK4++67dS1Ex44dc7uVLxZF3Xdx0eK4SlPM7Nq1i7S0NCZNmlToXC0eaunSpV7N1I8dO6YbPO/Lo48+6lVk+eDBg0yePBlwxYAFQ3h4OPHx8aSkpHDs2LGgzrkYtG7dmsWLF+s2lV+3bp07lu2ee+5xj0dERLB48WIURWHw4MG8/vrrutayf/75J6CV++2336ZRo0Y8+eSTpXIfM2bM4OWXXyY2Npavv/660PhXgO7du9O4cWN+/PFH5s6d6x53OBxMnDiRM2fOcO211/qFcOzatcvvj5F9+/bRu3dvVFVl9uzZAa/5yy+/YLFYuOmmm4p4h4Jw8RGXq3BZ+fLLLzlx4gQNGzbk+uuvDzjPYDBw77338uabb/L+++/TokULDAYD7733Hh06dOCJJ55g+fLlNGnShAMHDrBt2zZGjRrFnDlz3BalYLnvvvv473//yyuvvEKLFi1o3ry527Jw4MABdu/eTUREBMOGDXOf88QTT/DHH3/w/vvv07hxY+Lj46lbty5Wq5Xk5GT27t1L06ZN+c9//lPsZ3Ux9l0cOnbsSGhoKDNmzGDPnj3UrFkTRVF47LHH/ILsLwY9evTgmmuuYfv27e64xby8PL799luaN29O69at3a4zX2666SasViv169fntttuw2az8c0335CTk8P999/P3XffHfQ+unbtyrZt29i0aZM7Pk2PgrI9r7zySreYLA779u1jyJAhPPzww1x//fVceeWV5ObmkpyczB9//AHAQw89RNeuXb3O6969OytXrmTQoEE8/vjjTJ48mRtvvJFq1aqRlZXF0aNH+f3333E6ndx44400aNDA6/y0tDSSk5NLJQN6165dPPLII4Aru/fll1/Wnffggw96iTOj0ciyZcu49dZbGTVqFAsWLKB+/frs3LmTv//+m8qVK7Ns2TK/JKHx48ezd+9emjVrRtWqVTl69Chbt25FURTmz59P+/btda9/4MAB/vnnHzp37hx0ZwpBuKRcwhIpguCH1hD7+eefL3SuVieqWrVqXg2yd+3apXbr1k2NiopSw8PD1TZt2qhffPGFuyipb60srRZaYbXNNm/erPbp00etWbOmajab1cqVK6tNmzZVR48erW7evFn3nE8//VTt2rWrWq1aNdVsNqvVqlVTW7RooT7++OPqjh07vOZqdej0isguXry4wOcCqHXq1Cnxvgt7FoGus2HDBrVNmzZqRESEu3ZXMLXifOvQFUagOnRnzpxRR44cqV511VVqSEiIevXVV6uTJk1Ss7OzdZ+rVgft1ltvVdPT09WHH35YrVmzpmqxWNS4uDh1+vTpqt1uD2pPGkeOHFGNRqN655136h6HwuvQNWvWzOucggoL6/Hbb7+p06ZNUzt27KjWq1dPrVChghoSEqJeeeWV6j333KN+/vnnBZ5/+vRp9eWXX1bbtGmjVqlSRTWZTGpUVJR67bXXqg8++KD69ddfu4tae1JQYWE9CqpD9+233wb1rALVPfz777/VBx54QI2NjVXNZrNaq1Yt9cEHH1QPHTqkO3/hwoXqrbfeqlatWlU1m81qzZo11fvuu0/duXNngfeg9ZaWXq5CWUVR1YuYCiYIl5GHHnqI+fPns2LFCu69997LvR3hMnLo0CHq1q3LrbfeWqSes4XRq1cv1q1bx9GjR4vc+kwoP6iqSuPGjTl37hyHDh0qtKyOIFwOJIZOKNecOXPGXYPNkw8//JB33nmHmJgYunXrduk3JvxP8NJLL+F0Opk+ffrl3opwEVm9ejXJyclMnjxZxJxQZhELnVCu+emnn2jVqhVNmzZ1d1DYt28fycnJ7hibvn37XuZdCpebi2WhAxgyZAgffvghBw8eLDQzUyh/qKrK9ddfj91u57fffrtsNRsFoTBE0AnlmpMnTzJ58mQ2btzI8ePHyc7OpkqVKrRu3ZpHH32UVq1aXe4tCmWAiynoBEEQygIi6ARBEARBEMo5YjsWBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEoVzywgsvoCjK5d6GIAhCmUAEnSAIBbJkyRIURfF6VatWjfbt2/PFF19c7u0VSnJyMhMmTKB169aEhoaiKAqHDh263NsSBEEoVUyXewOCIJQPJk+eTN26dVFVlRMnTrBkyRLuvPNO1q5dS7du3S739gKydetW3nrrLZo0aULjxo3ZtWvX5d6SIAhCqSOCThCEoOjSpQs33HCD+/3QoUOpXr06y5cvL9OCrkePHqSnpxMZGcn06dNF0AmC8K9EXK6CIBSLmJgYwsLCMJm8/y6cPn06rVu3pnLlyoSFhdGiRQs++eQTv/MVRWH06NGsXr2aa6+9lpCQEK655hrWr1/vN/f7778nISGB0NBQ6tWrx/z584PeZ6VKlYiMjCz6DQqCIJQjxEInCEJQZGRkkJaWhqqqnDx5ktmzZ3Pu3Dnuv/9+r3mzZs2iR48eDBgwAKvVyooVK+jTpw/r1q2ja9euXnO///57Vq1axcMPP0xkZCRvvfUWvXv35siRI1SuXBmA33//nY4dO1K1alVeeOEF7HY7zz//PNWrV79k9y4IglDWEUEnCEJQdOjQwet9SEgI7777LnfccYfX+J9//klYWJj7/ejRo7n++ut58803/QTdvn372Lt3L/Xq1QOgffv2NGvWjOXLlzN69GgAnnvuOVRV5bvvvuPKK68EoHfv3lx33XWlfo+CIAjlFRF0giAExZw5c2jYsCEAJ06cYOnSpTz44INERkZy9913u+d5irmzZ8/icDi45ZZbWL58ud+aHTp0cIs5gKZNmxIVFcXff/8NgMPhYMOGDfTs2dMt5gAaN25Mp06d+Pzzz0v9PgVBEMojIugEQQiKli1beiVF9O/fn/j4eEaPHk23bt2wWCwArFu3jilTprBr1y7y8/Pd8/VqxnmKNI2KFSty9uxZAE6dOkVubi4NGjTwmxcXFyeCThAE4TySFCEIQrEwGAy0b9+elJQU9u/fD8B3331Hjx49CA0NZe7cuXz++ed89dVX3Hfffaiq6reG0WjUXVtvriAIghAYsdAJglBs7HY7AOfOnQNg5cqVhIaGsmHDBkJCQtzzFi9eXKz1q1atSlhYmFswepKcnFysNQVBEP6NiIVOEIRiYbPZ+PLLL7FYLDRu3BhwWdwURcHhcLjnHTp0iNWrVxfrGkajkU6dOrF69WqOHDniHt+3bx8bNmwo0f4FQRD+TYiFThCEoPjiiy/4448/ADh58iTLli1j//79PPHEE0RFRQHQtWtX3nzzTTp37sx9993HyZMnmTNnDvXr12f37t3Fuu6LL77I+vXrueWWW3j44Yex2+3Mnj2ba665Jqg1MzIymD17NgA//PADAG+//TYxMTHExMS4s2kFQRDKMyLoBEEIiueee879fWhoKI0aNSIxMZERI0a4x2+77TYWLVrEq6++yvjx46lbty7Tpk3j0KFDxRZ0TZs2ZcOGDUycOJHnnnuOWrVq8eKLL5KSkhLUmmfPnuXZZ5/1GnvjjTcAqFOnjgg6QRD+FSiqRB8LgiAIgiCUaySGThAEQRAEoZwjgk4QBEEQBKGcI4JOEARBEAShnCOCThAEQRAEoZwjgk4QBEEQBKGcI4JOEARBEAShnCN16IqJ0+nk+PHjREZG6jYdFwRBEISygqqqZGVlUbNmTQwGseX8GxFBV0yOHz9O7dq1L/c2BEEQBCFojh49Sq1atS73NoSLgAi6YhIZGQnAiunX80/zF7k65gqqh9g4lZvKqTwbDqcFVQnDoIRhMlbAoBjFkneZiTApXFsphAjTpfvrVFVVVCDbrnL0nI2TeQ7sUspbEIRLTG72OUZ2aO3+7BL+fYigKyaaOEuJf4KG1WszdcSH7mP/9+EAcmy5ZFpzOJ2XxWmrg7CQWhgUMXNfLgzAVZEmqkWaMRkujbBWVRWrU+V4joOjNjs5RjOWcLBckqsLgiD4I4aFfy8i6EqIzQnVwkIB2LBuPACdus3ki7VjsTntpOWcZvfpY+TbzxFikni7y0XFEAO1w00YL9HjV1WVc3aV/Rk20vIcOC/NZQVBEIT/US6ryWjq1KkkJCQQGRlJtWrV6NmzJ8nJyV5zDhw4QK9evahatSpRUVH07duXEydOFLjuVVddhaIofq9Ro0YBcObMGcaMGUNcXBxhYWFceeWVjB07loyMjCLfg0kBq9PO+rXj6NRtJp26zQTgnXWjsBjMVAqLoUaFCtgdZwDxtV0OQo0KV0WaCDUql0RQq6pKjsMl5k6JmBMEQRAuAZdV0G3evJlRo0bx008/8dVXX2Gz2ejYsSPZ2dkAZGdn07FjRxRFYePGjfzwww9YrVa6d++O0xn4Y3Lbtm2kpKS4X1999RUAffr0AVwJDcePH2f69Ons2bOHJUuWsH79eoYOHVrke6if/DrnrDZULljoeo9IZuX8ODp3n4XFYCEmJAKjkodDtRd5faHkVA01UslyaWIYVVUl30PMiYQXBEEQLgWKqqpl5jPn1KlTVKtWjc2bN9O2bVu+/PJLunTpwtmzZ4mKigIgIyODihUr8uWXX9KhQ4eg1h0/fjzr1q1j//79AT/UP/74Y+6//36ys7MxmQr3RGdmZhIdHU3CjRN5bEE/bruiNhajwW2h82TpR/ez89Qhsp21CBW36yUn2mygaSULFUwX10LnipmD5AwrKTki5gRBKDvknMtiUKumZGRkuD9PLwWqqmK323E4HJfsmv8mzGYzRqMxqLllKoZOc3lWqlQJgPz8fBRFISQkxD0nNDQUg8HA999/H5Sgs1qtLF26lIkTJxb4Ya79kgcSc/n5+eTn57vfZ2ZmXjg3P4fud70VcO37+y4FYOSsduTb1fOxdJIgcanItDk5nmPn6igzwf2zKDpaAsSBTDupIuYEQRCwWq2kpKSQk5NzubdSblEUhVq1ahEREVHo3DIj6JxOJ+PHj6dNmzZce+21ANx0002Eh4czadIkXnnlFVRV5YknnsDhcJCSkhLUuqtXryY9PZ1BgwYFnJOWlsZLL73E8OHDA86ZOnUqL774ou6xdyds4I3/G8QjDywpcC+J4zYx7u225NjyCTVVxqAYxFp3CVCB4zkOqoQaibGU/jNXVRW7CgezbBzLkZg5QRAEp9PJwYMHMRqN1KxZE4vFIp93RURVVU6dOsU///xDgwYNCrXUlRlBN2rUKPbs2cP333/vHqtatSoff/wxI0eO5K233sJgMNC/f3+uv/76oCtdL1q0iC5dulCzZk3d45mZmXTt2pUmTZrwwgsvBFznySefZOLEiV7neRYW/jvjDFOGbuKZRe28ztPi6QA+Xf0Qd/Wcx1Pz2pGWlwWKGUUJwWgIw6CEYDSYUbg0gfv/a+Q6VA6fs1MhxozFoFBaj1gTc4eybBzNduAQ05wgCAJWqxWn00nt2rWpUKHC5d5OuaVq1aocOnQIm81WPgTd6NGjWbduHVu2bPGrYN2xY0cOHDhAWloaJpOJmJgYYmNjufrqqwtd9/Dhw3z99desWrVK93hWVhadO3cmMjKSpKQkzGZzwLVCQkK8XL++pOdncP0dH8CihfQe4crUXTk/zi3mAO7qOQ+AVx7axNylvbA77WTbcsm0ZpBtV8m1V8BsqoLZ4CqDIsKudEnLc3Ai10CtcAWFkj9bVVXJd6ocPWfn8Dm7iDlBEAQfpM1YySiKDrisgk5VVcaMGUNSUhKbNm2ibt26AedWqVIFgI0bN3Ly5El69OhR6PqLFy+mWrVqdO3a1e9YZmYmnTp1IiQkhDVr1hAaGlqse7hryH5Cw8w41DZk2y8EfXoKOT0evj+Jz9aMxuF0kO+wkm3L4Xh2Gsezj5LrqESIKQYD0l2iNLGrcDTbTsUQI5Hmkj1XVVXJsqn8neXq/uAUMScIgiBcRi6rdB41ahRLly5l2bJlREZGkpqaSmpqKrm5ue45ixcv5qeffuLAgQMsXbqUPn36MGHCBOLiLgim22+/nbfffttrbafTyeLFixk4cKBfokNmZqa7PMqiRYvIzMx0X7uomTifvtvAJd5UA8bziQ56Yq73iGS35U6ja4+3CTGFEBUSSfXwqjSqdBXXVqpEFcsZ8mxHyLWnY3daKUOJyOWeczaV1Bw7zmI+U1UFh6pyMs/BnrP5pOaKmBMEQfg3cOjQIRRFYdeuXQBs2rQJRVFIT0+/rPsKlssq6BITE8nIyKBdu3bUqFHD/frwwwtttJKTk+nZsyeNGzdm8uTJPP3000yfPt1rHc0l68nXX3/NkSNHGDJkiN91f/31V37++Wd+//136tev73Xto0ePFvNunOTYbXyxdpy7Hp0nw7snsnJ+nFvUaV+1YsQKChVMFagdVZNrKl9Jo+gQKplO4bQfJsd2UoRdKaECp/Od2IqRueCKl1M5lGVn71kbmTb5eQiCIBSHQYMG6TYA6Ny58+XempvWrVuTkpJCdHT05d5KUJSpOnTlCc86dCaTK7ZuwtzeHPntFT8Lnadlbnj3RBasHekl7rT5G9aNd4s2u9NOrj2XM3kZpGSfJTVXxWi6ArMhTNywJcSkQNNKFqqGBu/S1goG/51l558cu1jlBEEoV1zqOnR5eXkcPHiQunXr6oY0DRo0iBMnTrB48WKv8ZCQECpWrHjR96fHoUOHqFu3Ljt37qR58+aXZQ++FPYcPZFoxVJiytBN2J0KK+fHsejD0UwZugmA9WvHAS4hB7Bg7Uiv8zyFXaduM91/pZiNZiItkdSOrEnjyldRO9yI1XYCpyrFGUuKXYW0PCcOFRxO1fuler9sTpeQy7Sp/JFh459sEXOCIAilQUhICLGxsV4vTcwpisI777xDr169qFChAg0aNGDNmjVe5//3v/+lW7duREVFERkZyS233MKBAwcAV9jV5MmTqVWrFiEhITRv3pz169d7nf/LL78QHx9PaGgoN9xwAzt37vQ67utyXbJkCTExMWzYsIHGjRsTERFB586dvcqo2e12xo4dS0xMDJUrV2bSpEkMHDiQnj17uud88sknXHfddYSFhVG5cmU6dOjg7pBVEkTQlRJ/NH6e6jtHs3bNOIbe+zZR7T9i3vJRLFz3MCvnx/kJOV/Xq4ZnP1iADBtk2UOpFl6ZCFMeVkfJf+gCnMxz8PtZq//rjJU9Hq/fz+Sz63Q+v53J50Su1JgTBEG4VLz44ov07duX3bt3c+eddzJgwADOnDkDwLFjx2jbti0hISFs3LiRHTt2MGTIEOx2V4vNWbNm8cYbbzB9+nR2795Np06d6NGjB/v37wfg3LlzdOvWjSZNmrBjxw5eeOEFHn300UL3lJOTw/Tp03n//ffZsmULR44c8Tpv2rRpfPDBByxevJgffviBzMxMVq9e7T6ekpJC//79GTJkCPv27WPTpk3cfffdpRJSVSbKlpRnnn3gO/5pMZn3H9kMtINFs5gydBN1I8fR/a5ZQBxvLX2YCLOBzzaOAbytcoHo1G0mSavH8lemDQWoFxlJ5VALh7PPoapR4nYtIXkOlbxcsXYKgiBcLtatW+fXAeGpp57iqaeeAlxu2f79+wPwyiuv8NZbb/HLL7/QuXNn5syZQ3R0NCtWrHCXHGvYsKF7nenTpzNp0iT69esHuITWt99+y8yZM5kzZw7Lli3D6XSyaNEiQkNDueaaa/jnn38YOdLb+OKLzWZj3rx51KtXD3CVXZs8ebL7+OzZs3nyySfp1asXAG+//Taff/65+3hKSgp2u527776bOnXqAHDdddcV/eHpIIKuhPzVaBIfP7LF/X7K0E3sNNVg5+cP03uES7xt/m6c+3j7tm9xVweFI+vv8SpC7BtPB7D0i1Fc0/JNGkaZibSYqBgSwbHsTJyqA6MiPzpBEASh/NK+fXsSExO9xrTWnwBNmzZ1fx8eHk5UVBQnT54EYNeuXdxyyy269WMzMzM5fvw4bdq08Rpv06YNv/32GwD79u2jadOmXnFprVq1KnTPFSpUcIs5gBo1arj3lJGRwYkTJ2jZsqX7uNFopEWLFjidLv9Os2bNuP3227nuuuvo1KkTHTt25J577imVuEFxuZaQ5U/96PV+p6mG1/veI5Ld8XMA324ZywN93ibivEtWT8hpY21vmcnkofOpHGrEpBiJtERQweTA5syVjFdBEAShXBMeHk79+vW9Xp6CzlesKYriFkZhYWGXdK8aensqyuex0Wjkq6++4osvvqBJkybMnj2buLg4Dh48WOK9iaC7iOglQmjCbfz9c3mo/xwAZi59mMUfjQbg8zXjWDk/jhnvP8y4+13nd+k+i87dZxFuDiPKYsLuOHcpb0MQBEEQyhRNmzblu+++w2az+R2LioqiZs2a/PDDD17jP/zwA02aNAGgcePG7N69m7y8PPfxn376qUR7io6Opnr16mzbts095nA4+PXXX73mKYpCmzZtePHFF9m5cycWi4WkpKQSXRtE0JWYVR+OdNed860/5yvk9AoOr5wfx3ffjWNw37e5qc1M9qZbeWnxQ3z/vctN6xlr1/vud6gUEo6BTOzOfLHSCYIgCOWW/Px8d1F/7eVbUzYQo0ePJjMzk379+rF9+3b279/P+++/T3Ky6zPzscceY9q0aXz44YckJyfzxBNPsGvXLsaNc3223nfffSiKwrBhw9i7dy+ff/65X43b4jBmzBimTp3Kp59+SnJyMuPGjePs2bPuuPeff/6ZV155he3bt3PkyBFWrVrFqVOnaNy4cYmvLYFYJeTuexMxmUKYMnQTnbpB7xH683qPSA7YQUJLkvjph/F0v302aXkOWt88Cxjnd86YB9byyqI7OHzuH1RTTcyGMFAold6kgiAIgnCpWL9+PTVqeIcpxcXF8ccffxR6buXKldm4cSOPPfYYt956K0ajkebNm7vj5saOHUtGRgaPPPIIJ0+epEmTJqxZs4YGDRoAEBERwdq1a3nooYeIj4+nSZMmTJs2jd69e5foniZNmkRqaioPPPAARqOR4cOH06lTJ4xGI+CyHm7ZsoWZM2eSmZlJnTp1eOONN+jSpUuJrgtSWLjYeBYWfnXEVneCg14RYU/0ig4XVIi49c0zCTEofLvlQmLFyvlxvLqoIwfPWTEar8BsDDsv5xTJfhUEQRD8KGuFhf9XcDqdNG7cmL59+/LSSy8V+fyiPEex0JUCemLOFz1x5zvf02Wrzf3x+wtjN988kyiLERjDE0Ph9cWdOZT1D/kOC3bViNlUmRBjBRF1giAIgnAZOHz4MF9++SW33nor+fn5vP322xw8eJD77rvvol9bLHTFRLPQ/XP4L/rct6jQunK+aG5WzToX6Pxh3eYCsHDdw17nzlw6ku++Gw/AbTdPIt2awz/n8sFYgxBjpIg6QRAEwY1Y6C4NR48epV+/fuzZswdVVbn22mt59dVXadu2bbHWk9Zfl5BefV2CK96eohsj51myxHee73y9xImF6x72E2e9RyRzNt9Jgxve4La2Mxn1n9U0rnQVjStGYVaPk2s7g6pKTwNBEARBuJTUrl2bH374gYyMDDIzM/nxxx+LLeaKigi6UmDDuvHsNNXwsritnB9HvD3Fz80K+tY4TyHnK+oWrB3J8O6JXuN7fpnImvfvY+OW8fQekcwH6x+hTlQtmlSqQoTxFDm2UzhF1AmCIAjC/wQi6EoBT8HlGQfnW2QYIKHXasAl6rSXRqD+rto1fMcbN/Ze/66eiVwREUvjitUJN5wm354lpU0EQRAE4X8AEXQl5K4hrka/muDSxF1hCRLaV19r3IZ14xnePdHPVVsQnnO73zWXqhUqUzM8HIfjDKq0kxcEQRCEfz2S5XoR0HOz6h1bsHYkG9bpCzdtnpY8occFMTjSK8nirp7zmDJ0ExHxz5LvyMYiSRKCIAiC8K9GBN1lZsHakV6ZroEsc77CzvO9b8YsaKVUvmPs7PbYHEbMUs5EEARBEP61iMu1DKEn5jzj6jwFW6DYO19rXrVdz+N0HCPfIfF0giAIgvBvRSx0ZYCC4u08LXHaV61I8fDuiXTqNrPAbhM7qUH87hdIbfYceWp1Qk0x0ipMEARBuGykpqaTkZF9ya4XHR1ObGzMJbve5UIEXSmhWdc8Y+T0xgpCE2me54L/uRfctCPdvWN93bGeYu+ZRe2YMnQyp5o/R45NpYK5IqLnBEEQhEtNamo6/e57E6vVfsmuabGYWLFsYpFE3ZYtW3j99dfZsWMHKSkpJCUl0bNnTwBsNhvPPPMMn3/+OX///TfR0dF06NCBV199lZo1axa47pw5c3j99ddJTU2lWbNmzJ49m5YtW5bg7i4gLtdSQLOY+Qo3vbFg0BOFhV1frygxXEic2GmqQdVdk8mzncSh2oq8J0EQBEEoKRkZ2ZdUzAFYrfYiWwSzs7Np1qwZc+bM8TuWk5PDr7/+yrPPPsuvv/7KqlWrSE5OpkePHgWu+eGHHzJx4kSef/55fv31V5o1a0anTp04efJkkfYWCBF0JWRQ5xlBzw2mHEmnbjO9vvri2yps5fw4d8mUgly3w7rNZaepBtl/LsTutEo8nSAIgiAEoEuXLkyZMoVevXr5HYuOjuarr76ib9++xMXFcdNNN/H222+zY8cOjhw5EnDNN998k2HDhjF48GCaNGnCvHnzqFChAu+++26p7FkEXQlZsn5CoVY4TcgFY63zFGWahc9TCOrFy+lZ53wFYefus9zfO+wnsDqyUVXV/RIEQRAEoXhkZGSgKAoxMTG6x61WKzt27KBDhw7uMYPBQIcOHdi6dWup7EEE3SXAU5hBcG5U3/PB1QcWAme4anh2q/BEE36n983lxO/Pk2M9Tp7tNFZHDk7VKcJOEARBEIpIXl4ekyZNon///kRFRenOSUtLw+FwUL16da/x6tWrk5qaWir7EEFXCgQSakXt+OCJnvt0p6mGW5RpFjmtK4Xne09LYEFFib9f+Rjzxq4iTPmHPOsR8uwZOJx2EXaCIAiCEAQ2m42+ffuiqiqJicX7vC8tJMu1hAzqPMMtoPSSIvTee4q8YF2x2hxfgaY37kqSmOk1zzcL9vM1Y7A7R9JjSyJvjNpM7xHJ1Gs2nLPWdEItV2DEJIWIBUEQBCEAmpg7fPgwGzduDGidA6hSpQpGo5ETJ054jZ84cYLY2NhS2Y9Y6C4Dvu2/gkXP2qdZ5rSvmntXS5Lw7Sihseiz0fTo6R2Xd+C3BdSsYCPXehynKpY6QRAEQdBDE3P79+/n66+/pnLlygXOt1gstGjRgm+++cY95nQ6+eabb2jVqlWp7EkEXQlZsn5Csc8dUERRvmDtSAbEep+nlyQB/okSnsJOi7HzFH0ae3bMo1poLrm2k4AIOkEQBOF/j3PnzrFr1y527doFwMGDB9m1axdHjhzBZrNxzz33sH37dj744AMcDgepqamkpqZitVrda9x+++28/fbb7vcTJ05k4cKFvPfee+zbt4+RI0eSnZ3N4MGDS2XP4nItIYM6z2DF5seLde4HxYiD1DtHL07Od8z3vVZ42JMLJVEWUrXJYOzOypiNoUXfpCAIgiCUY7Zv30779u3d7ydOnAjAwIEDeeGFF1izZg0AzZs39zrv22+/pV27dgAcOHCAtLQ097F7772XU6dO8dxzz5Gamkrz5s1Zv369X6JEcRFBV0KWrJ9AaJiZAbEusaV99URvDFyialtST3aaapTafrRMWC2BQk/sXYi7uzCmzR1851t0u2sOvUcsptI1T2IyhEgsnSAIglAqREeHY7GYLnmniOjo8CKd065duwLDjoIJSTp06JDf2OjRoxk9enSR9hIsIuhKCU2waV89RVx4QiLoxMotWDsSzou5eHtKqQg7zzU8Y+h8v2r4umtdYs51vM5vYznRYglGzCLqBEEQhBITGxvDimUTpZfrRUAEXQkZ1HkGUVGRfskNBblTA/V49c14DWTZ86UgMehZp04v1q4g1+xOUw347UmqX/ciBsWM0WACFBQUXP+JyBMEQRCKRmxszP+EwLrUiKArIUvWT2Bs33cKnOOKVbtgGdPLbE3otdpv7INUfbGml+26c+1I3bmercK06+/bl0LjxjW85vha8bRzAE78/jwAlRqPAMwYjDGEmqIBxHInCIIgCGUAyXItBQoqPeKbaQr6BYh9v4+3pzAgFl3Lm159u+HdE9lpqsHw7onE21Pc15oydBMb1o13x9YB7N3Szut8TxGn11ZM48y++dSLAoPzKLm2swHvWRAEQRCES4sIuhIyqPMMrzIivsLI16Wp5/YEfVEYnuBviYu3p3gJwG1JPVk5P86ruPFOUw33dRN6rXaPafjWpYu3pwR0vfq6ap8Y8hUn976H05GG3WmVWnWCIAiCUAa4rIJu6tSpJCQkEBkZSbVq1ejZsyfJyd7C4sCBA/Tq1YuqVasSFRVF3759/Sot+3LVVVehKIrfa9SoUe45eXl5jBo1isqVKxMREUHv3r0LXVePJesneMW5eQqhQG2/PMuFBGobttNUIyjXbEKv1ax6Xr+9l2aV01qQeVrpNFbOj3OLPc+9x9/wIP06TvMa9/z+7B8LyLOdwKleukwlQRAEQRD0uawxdJs3b2bUqFEkJCRgt9t56qmn6NixI3v37iU8PJzs7Gw6duxIs2bN2LhxIwDPPvss3bt356effsJg0Nej27Ztw+FwuN/v2bOHO+64gz59+rjHJkyYwGeffcbHH39MdHQ0o0eP5u677+aHH34o0T15JjZ06jaT3iPOCySf+DbtfbbVlenzwYZHvdYZ0Gm611i8PYUmtS7M9zxnQKfpkOr63isObgQ0tp5j2YbHXCecv76v9VA7p3+n1wHX3J3b32FngHtcOT+ORcv7MrT/RwybdScVLDVQMBQYT+ey5Kmoqnp+niLxd4IgCIJQSihqGfKZnTp1imrVqrF582batm3Ll19+SZcuXTh79qy7R1pGRgYVK1bkyy+/pEOHDkGtO378eNatW8f+/ftRFIWMjAyqVq3KsmXLuOeeewD4448/aNy4MVu3buWmm24qdM3MzEyio6OZMr87oWHmgPMK6tV6S+tx5NhyQYEdvyzwO94iYTgAO7YtcH+vsWPbAq952vtAtecCoTdfG7u346t8+OUT7vsAl0hdv3YcDtXBu5+NAaByk0cJNVfFoBj9RJr262V3Wsm0phGi5KEoIZiMMViM4SLqBEEQLgE557IY1KopGRkZBfYcLS3y8vI4ePAgdevWJTRUCtQXl6I8xzIVQ5eRkQFApUqVAMjPz0dRFEJCQtxzQkNDMRgMfP/990GtabVaWbp0KUOGDHGLhx07dmCz2bwEYaNGjbjyyivZunWr7jr5+flkZmZ6vYKhoISJc+etbeGmCrrHd2xb4BZqO7YtIMISfv4V4TdPQ7POFdQOzPNY7xHJtGvzCO3aPOJnufvwyyfc7lrQLI7JKIqCUTEy6M5ZrJwfx+m906m24wHy7OnYHPluEaeqKipOzlnTSTl3EKstk/pRFagX6cCg/kOO7QxO1SFxeP9SVFXF5sjH6sjF4ZSfsyAIwsWkzJQtcTqdjB8/njZt2nDttdcCcNNNNxEeHs6kSZN45ZVXUFWVJ554AofDQUqKfzyYHqtXryY9PZ1Bgwa5x1JTU7FYLMTExHjNrV69Oqmp+oXfpk6dyosvvlisewvEzu3vcEvr8VwVXYctAeYM6TobgHc/G8PmH2YwpOtst2VMY+X8OKYM3eTuDuF7TC8GzlO8bfrhjfPfXzjvwW5z6NL9LYZ3v5BFq523cr5L2A3rNvfCGHHAx+71q1/3Ik4gPfckefYcKpijqBdTlUaVonGqViLMJziclUaGNQMMMViMkRgV169jebbauUSsilN14FTtOJ35ONU8wInLzWzBZAjHaLCcn+90zVPtKIrR3ZlDr8afryBScbmxz7/xqA144dyL/Sz99+TE6bRjV/NwOM4RYjiHWYF8hxGHagLFjEGJwGQMw6CYUFBQcbpd8qBgUAyIS14Q/r2kpqZLYeGLQJlxuY4cOZIvvviC77//nlq1arnHv/zyS0aOHMnBgwcxGAz079+fvXv30rJlSxIT9ZMOPOnUqRMWi4W1a9e6x5YtW8bgwYPJz8/3mtuyZUvat2/PtGnT/NbJz8/3mp+ZmUnt2rULdbkWxIBYOHr1eLb8ODPgnIJcttoaH6R6Czc9N2qgYsaex7VkjQ3rxvv1efUkUOau7/XN9YbgwEJ0SGXCLVHERYdydaTrWdmddjKsmaTlniU1J4sMqwE7ERgNFTAoFoyKCYNiRBMnZf3DXVVVVNWJ1XEOpzMdiyEfs6ISbjYQYbZgVFzG8CxbHun5TvKcFleJZsWBxWAn1AB5Dic5zoqEW6p73a/2T9Sh2rDaM0C1Ag4UHCiK6npCqooTBRUjKiYUxYLBEIJRsaAoBleMI4CioJw3zBfnmWpWV7szH1V1nLew5gN2VFXFoFixKDYizAoVQ0KpFBpFqCmEPHs++Q4rObZ8zuTnkm5VsauhKIoRVBtGxY5BAYdTwYkZxRCB2RiJUZEuJYJQGpQVl2tqajr97nvzkrf+WrFsYpFE3ZYtW3j99dfZsWMHKSkpJCUl0bNnT/fxF154gRUrVnD06FEsFgstWrTg5Zdf5sYbbyxw3Tlz5vD666+TmppKs2bNmD17Ni1btgw4vygu1zJhoRs9ejTr1q1jy5YtXmIOoGPHju4GtyaTiZiYGGJjY7n66qsLXffw4cN8/fXXrFq1yms8NjYWq9VKenq6l5XuxIkTxMbGokdISIiX6zcQhQkwT/ZcMZTffpxJvD3FXV4kEIFi43w7SRRUFkVzny44X4RYu+bK+XEM7+6a13tEMgvWjvTr8+pLYfcZb0/hdER1rGo4ZkMoYSYDD98312vO+rXjiLZEERueQ3peJmfyssiynSPX7sTqUMhXw0AJxWgIxWQI043RKwu4hFwODscposxWakSGUzE0llCjBcv5l8sSpWJ12MiynuOcLRsFA2aDkVBTCGaDidTsU/z3bDo2ZzRGxXzecuVEBeyObAzqGaqGQowlFJPBhMUYikExuKSaouB0OrGpdqwOO3n2c2Tbz5JjV3E4we40gQJODKhKFEYlFKNixmgoXDC5Xeg4sTlycThOU8GYS6jRiMkAYSYzFoMRg6JQwRRJBXMYYaYwQk0hmAwm972rgMNpJ8+eT6Y1i0xrNqqqEmoKJ8RoQQHsqpNcWx6ncs9wKv8MJtMVWIz6IQmCIJQ/MjKyL6mYA7Ba7WRkZBdJ0GVnZ9OsWTOGDBnC3Xff7Xe8YcOGvP3221x99dXk5uYyY8YMOnbsyF9//UXVqlV11/zwww+ZOHEi8+bN48Ybb2TmzJl06tSJ5ORkqlWrVtzbc3NZLXSqqjJmzBiSkpLYtGkTDRo0KPScjRs30qFDB/bt20dcnL540XjhhReYP38+R48exWS6oF21pIjly5fTu3dvAJKTk2nUqFGxkyI0S5kmdIZ3TyR7m0vweIqu4d0T2ZbU053xemvrCWz+cUbA6xRFIBa0Bnhb57R1NXetxg09k8hzqNhVV4BlqEnB7oTda3oB+oWOAa+SKFU6fExKjp1suxMFhQizgSsjTAzu+3bAPWqxf5+sehCbw0qOPZ9M6znOWfPJstnItBtxEomCEafqwGyMxGIM5XK65lRVxe7Mx2pPI9x4jloR4cSGVyHKEonZ4LJEBkoScapO9zFN8JzJO8vf6cc5lWfDqRowGlSMKDhRiTAZqBEeRdUKlQkznRdyin8IrKqqOHHidDqxOq3k2/Nxqiq59jwURSHPnk9aXjY5did5DpV8ZzhmUyXMhjAURXFb4BxOKw7VjsORDdgBBwYcRJhsVA0LpUZ4ZSqYwzBgwGQwufaigFExut3FgX4umlvaoToBFaNi9HoOTtXJ6dwz7E47SpYzlgrmiqXw0xKE/23KioUuOfkYg4fOuejX92XxolHExV1RrHMVRfGz0PmiaYKvv/6a22+/XXfOjTfeSEJCAm+/7fosdDqd1K5dmzFjxvDEE0/onlNuLHSjRo1i2bJlfPrpp0RGRrrj16KjowkLCwNg8eLFNG7cmKpVq7J161bGjRvHhAkTvMTc7bffTq9evRg9erR7zOl0snjxYgYOHOgl5rT1hw4dysSJE6lUqRJRUVGMGTOGVq1aBSXmfPF0V8KFeDOtMPCAbSO9RN0NPZOom3uGsP8+wz+FiJEFAVp6gUtEPbOoXaEuUD1BqJVU0cRc9Ts+xqHCwXN20vIc5NpVjApUCzNyzqai3ryC2DAj8V+5Sr/sNNXwEnFRt31Els1Jrl1lf6YNpwpmg8KBHY8A8HwAy6Hvnu+5+0IbtXVrRuFwOsix5XImL4Oz+dnkO+wowFnrWbKtYSiYURQDKCGEGCMwXII4PE305NnOYlHOUCfcxBURNakUWhGL0VLg9bVxTcRcWBQqhVYkpLKFq+x5OJwOjAYjRsWIiorFYKGCOeyC+Al0fwoYMaIqKhajhQhzxPnlLwjJMT1c/zPxbPdWuckEDIZwVNWBomYRZrTy9ujNTHmnA888+DUA85b2ItISQYQl3G119L2vYNBiBPUEKZzfPyp2JxgVS9DrCoIgXA6sVisLFiwgOjqaZs2aBZyzY8cOnnzySfeYwWCgQ4cOAZMxi8plFXRaDFy7du28xhcvXuxOYkhOTubJJ5/kzJkzXHXVVTz99NNMmDDBa77mkvXk66+/5siRIwwZMkT32jNmzMBgMNC7d2/y8/Pp1KkTc+fO1Z1bGL4uym1JPb0KAIcnJIJHJwctmeD3Kwaz+4c3C11fE0++om6nqQYb1o13rwvnLWUjArfw0kTelKGbaHZnEmn5Do5nO/gj3YZT59rnsi6YxjOtTurc9iEqCgl2FbvTJROy7Sqns7xN6Aq4xZxvVq025tuFwvf44s/Geu37gS4zcagOVNVJljWbTOs5bE4Hdqed9PxMzljPoCqRmI2RmA2hpS7qNMuSzZGL3XGKKiFW6kRWOm81CzsfE1e8a2rnRZgj3CIs0JyC2JbU0/19IGsqeHczcX39XHfmzm1z0PoQf/Xdq+7xQEWzS4wK52zZnMw5Q47DRKhFBJ0gCGWTdevW0a9fP3JycqhRowZfffUVVapU0Z2blpaGw+GgevXqXuPVq1fnjz/+KJX9lJmkiPKGZl5NuHEi9446pDvH80NPz0rWtMVgdu9YHNT1CnO9erp64UI3Cj3RNGXoJpr2SOJMvkvI5TuD/xVQcOdVFohJgasizWzcPBbwFnCBhJxvYkcgtDlDu76NE1cyQo4th5M5Z0jLyyI1VwWlCmZjBUwGCyV1y2oWOVec3FnCDDnUDA+jVmQ1YkKiXW7Gi+z2DcbtrsVFBnOeXhJNIHFdGKUp7pyqk2PnjrPr1D9YuYIK5oouC6wgCCVCXK6l73LNzs4mJSWFtLQ0Fi5cyMaNG/n555914+GOHz/OFVdcwY8//kirVq3c448//jibN2/m559/1r12uXG5/hu4a8h+4EKWq2/ygqfI0uLstHmMCE7Maevo4Rkf51lSRLOqeKK5V5t0X0VyhpVTeQ5sema5AihMzGmyxq7C4XM2t2XRV8z5CjjwFp+BxJ/n+KLPRrNyfhwb1o2n+10uq+eKTwYRk32KU7mnybKeItseQai5KkaKly2pqipO1U6eLZVIUzbVIsOoXuEKokNc2Zslscpp+P5sC8tIDsROUw0SgjgvUCkb3++DxTc2syQoKISbwrkiPJJ/sk+TZzcSaoouk8kwgiD8bxMeHk79+vWpX78+N910Ew0aNGDRokVeblWNKlWqYDQa/VqMFpSMWVRE0JWQQZ1nsGLz48CFD0pNxCzwcLOCf0ZqoNi44uD6IB3p3ofnfjQh17THKk7mOvjttJUsmzMoS1tRMICX29bmhPxWy2HbRB/3nr4FTnMXe+IrPvSsSJ4lVvrds8Tr+PML2nM85x8s5hqYDaEetdoKxyXmHOTZTlA9NJd60TWpGBrjjh8rTGQUN5lFO684CTHBzPd9np49fEtKaYi7mNBo4kwWKphTOJBxgny7isUUHTDmThAEoSzgdDr9yqFpaKVNvvnmG7elz+l08s0333jF/5cE+T9kCVmy/kI8n/aB6Ov20kMrBFxcArkkAwmgq7usZPcZK/vSbWSWspjTStnqGftyHSq33/qW7nmlISACuQm1ry8O/5aF478mdfcz5NpO4nTaC+xY4Konp+Jw2sl3nCPPdoTqoTk0iKlBtQpVCTGFYFAMdO4+iwVrR9Kp20w6dZvp/l4jkLDyTCQJhgGl84dbQErjZxCIBWtHFlmQKoorWaKCqQJXRdXimkqVqWBIJdd2RjpNCIJwyTh37hy7du1i165dABw8eJBdu3Zx5MgRsrOzeeqpp/jpp584fPgwO3bsYMiQIRw7dsyrZ/ztt9/uzmgFmDhxIgsXLuS9995j3759jBw5kuzsbAYPHlwqexYLXSkwINaV+JB9Pps1mA+x4og5T4uNZwbrBVETp+u2vL5nEsnpNk7nF9G/GgQG8OxX4IdDhbQ8B6tXj6VnT29h5xczN8I/nkvPmuTZvixYQeI69zUqNxlLiLmGlwv2QikRBzZnLg5HFkYll8Sx3wRcL1DMmfbzCVQ3sCg/d7e7Pog4uEtJsPGcGp7PREviKQxFUQgxhlC9QlXO5p8jIzMbqARBWlcFQRBKwvbt22nfvr37/cSJEwEYOHAg8+bN448//uC9994jLS2NypUrk5CQwHfffcc111zjPsc3YfPee+/l1KlTPPfcc6SmptK8eXPWr1/vlyhRXMRCVwpo5Um0rxcb356sBX2oTxm6iWybSpa9dMWcp1WuMLtJhtXJ/kwbK1a6WpYF86Hee0Syl2jydSNrczyPeZ6rh6vv7Fvk2Y7jVB3ucbsznxzrMez2QySOXs73Kx/1EnNfrB0bcH3PfRaUyFFcgklqKC5FsRbG21P8Yvu0833X8cy09UQTvEWx3DlUB1aHHRQzIuYEofwTHR2OxXJpbUkWi4no6PAindOuXTu3x8bztWTJEkJDQ1m1ahXHjh0jPz+f48eP8+mnn5KQkOC1xqFDh3jhhRe8xkaPHs3hw4fJz8/n559/LrSzRFGQLNdi4llYeGxfV+00vQ+p4hYG1qwZvi249D7E9ZIM4u0pXNN9Fak5Dk7mOciwlp6bVftYLcp6ChBhVvjvLxMDipFA5U083weiIIHj+yx7j0imUpPHCbdUw6HayLce5fS+uUELMj3rnN7xkmSOBkNRRZ1nzGZR4zcL62ZS0gLYevF2DtVByrkT/JaWgsNQx138WBCEolNWslxBerkWhaJkuYqgKyaaoPszqTtrsorXy7Ug9ATDlKGbeGZRO68xvXIfvUckM7TbXA5n2fkry1Xkt6REmhUsP/bH0WZFscVhBZPCyw/OL1B4gX6v2KIIF1+XM/j3p50ydBP/NE/E5jhH+r43/c71Pb8wijrXkwGxsPefFL96g4FEUjDPw1ew6Qk437GiiLLSTOjxRBN2qqqSY8vhj7MH+TvLSHhIbUmKEIQSUJYEnRA8RXmO8n/IEvLRyYKPB5Pp5ykEhndP9BIkvUck88XacXy4agxVOnzMqtVjmTJ0k58Fy1dMnLM5OZ5jLxUxd2TnI1h+7E9c15WYDUWzzHmiqrD04zHu9573WhCercmCJVDm5vq14/hk1YPsNNXg1J7JhBsz/M4LVjx6XiPQfQSyRHrO/yD1Qmydp5jz/Op5bjAEI7Z852hiLphEjMLWj7enFCuhQ3PHdu4+izN5ZzmZk4/FVFnEnCAIQiGIha6Y+PZyLQ183XRThm6iVqdPOJvv5Ey+gzyHyhXhJiJMBjTPk0mBiiFGjArs/LQXO001uKvD2xzItJJlU0vsZrUYIPLn+7i2+yoOZtn5p4QiMdKsMHnofPf7QAkQBaG5UD2tSb4Wo8IKGWtZxvv2pfDKxOW8/8VELwtVSeLh9GrswYUWcZq1sKD7LczFWRjBWtD05unVAizNvQXCs7+wds3KTR4hzFIdg2+rNEEQioRY6MonUli4HBGoRRcAN6/gv2et2D0E1JFzdq/QcJMBoswGjIqCpe2H9AgzkmVzkmkruU43K1A/ykxI55XsS7eRlufQLU1SFM757Ks4wklLqvAUYL6ixFfE+bpctfl7t7Tj/cauuL54e0+GBylUihMfp13fNy7yYhCsO1RPzBXkEu89IpmdphrsLKKYK8xN7CnmNOLtKZw0V0MRR4IgCEKhyP8pS4GC3KrDuycGPF6QmJkydBOn851eYg5c7k6nx8vqhLR8JyfyHKTkOvhvupVDWbai3oI+ikuA7c+wcrIUxFxJ2bcvpUiZmb1HJLvFn2YZ014r58cxvHsiG9aNZ3j3RL8yMMFYC9evHedXViVQuRWNYMt2+FLU+nXFXVsrjB3s9YIR5MHM6dRtptezi7encLLFexguQVs1QRCEfwNioSshgzrPKNCi43tM78Pti7Vj6dL9LS8RkJ+wHD81FwRFbeVVEA4nHMm2l96CgFnnTwi9JAhfl6ovgZIFfNfznecp7Dzdn+Cqgze8eyL79vUEXO3K9u1LoXHjGl7rg0sEbV/di/a3fUSbmyHcpHDq6z66iQcriQuYtax3D71HJLuLU3taxS4WvskYetcK9DPR6wcbqOVcQvfV7rFtST3d1/FNRIm3p5B6/buYFJOIOUEQhCARC10J8ewUAUVrd/T8/JuY/8HddOn+lttqFG9PoWXrmWQXQ8yVJoE6P5QUo6LoCjhf9ARb48Y1vFqq+a5RWEKDnsvTU+CtnB9Hp24zua+BJuxS3N/DBfEyZegmzG0/JPPGZRzIsnM0286fGTZsrVfQ/fbZ7p/jyvlxLNuP37U81yqMgtqelSZ6yRielkvPosmB9qn9DLRzB8S6EiwSeq32657iKVi183uPSGZALByPX4DJECJiThAEoQiIha6UKchypIfWV9QdJH/TClJzHQHn/xsoTJjoWYIKC/KfMnSTlwUIPDotACvnz/Q7pnXW8BRagKs0zKKZbFi32l0kd1i3RFRU4u29cLbx/xk5gUybk+QMGwtXjGJYP9f4jMdX02nLTPd9aT9nPUuWdwKH/+9RSWrYFZbooKHX4cETvcQFz/VdbueZXpa7Dev8r6PlYmn7iben8E+z1/nWVBWLYhYxJwiCUEQky7WYBJPlWphweX7+TdSKvIL1m1/xymw9nbCstLcbNAag4rb7LtoewowKydsn6hb79SRQTTS9cS3r0pdAbj1PPIWcp7DThJdmpdPIvWk5OY6C/8mEmxRaVAkhzGigc/eZXseKUiD5Yrb2KiyzOJiadMHWrfP8+aiooILNaWPJ5+PcsXrHms/FYoqS8iSCcJEoS1muUlg4eCTL9RLj2xIJChdz7yzvwz+Z/3jN7T0iGUo3ZK1IaCVK0lsuK36xuSBZv3ZcQDEH+taheHtKkUplJPRaTUKAtfTwjKsDzbqUiFNV2bG6F+ktl+EoRMwBRJoNhBgVPzGnrVmQSPNtK3axCCbjtDCCfa47TTVIwGWVU3EVDE7NPkm8PYWU5tMxGCsToljEKicI/wOkpqbT7743sVov3YedxWJixbKJRRJ1W7Zs4fXXX2fHjh2kpKSQlJREz549dec+9NBDzJ8/nxkzZjB+/PgC150zZw6vv/46qampNGvWjNmzZ9OyZcvgb6YA5M/hUsCzN2WwPT0f7P/x+e8Ur16hzyxqhwIYFAg1XroPOKPiEnMZLZcRhGYpNg5VZeX8OC+9GOwz8+2SESyeMXC+BYcXrB1Jp24z3S/fxIVO3WbSpfssdppqBFV/TwEmDUzkzu6z3LF5nlxMkVYUCspiLUioBRsj6tlvWItNXLjuYd5ZN4p9n93PH+mZHGv+NiZTrMTLCcL/EBkZ2ZdUzAFYrfYiWwSzs7Np1qwZc+bMKXBeUlISP/30EzVr1ix0zQ8//JCJEyfy/PPP8+uvv9KsWTM6derEyZOFdCgIEhF0pYheL9JAvLP8HuBCX1TPumYmA4QY4M/tE4kwXZoPukizAWvr5cVJrC0SyvmkiC7dZ7nHfLte6OEZoK8F3WviIpgMUE+rm6+o04SeFk/nOd/z53h45yNU3nZfgf9oKoZ4H/WNzysr7DTVKFaSRWExor5JDhqePYaPNn0VjHUIMVUUF6sgCGWSLl26MGXKFHr16hVwzrFjxxgzZgwffPABZnPhDQbefPNNhg0bxuDBg2nSpAnz5s2jQoUKvPvuu6WyZ/m/aQn59N0Guh+MhbnWtMhFg2KgS/e3vARLRYsRqxPa3DyLvdsmEmMxcDGNdSYFjD/0K5U2YYVROSTwr5yn8PEtEaKxb1+K2yJa1E4F+/alBGUh04SdlrHpS9UwIybF9Y/HqECIUSHarDDjoQU8O3ieV/07wMu1XJhoLSlFEWmBhGZR96EX86dZ5nqPSGbK0E3E21Oo1uQh/mk+h1BLLYziYhUEoRzjdDr5z3/+w2OPPcY111xT6Hyr1cqOHTvo0KGDe8xgMNChQwe2bt1aKnsSQVdKFFZQ1l9IqLwwYiuKorB+3Tiv+du3jqdSiJGUHDu33foWu3+ewMFfH+HITtfLUIqfg0YFon+5D4C8i+lrPU/OeROgnivSU6B5Pi/PUiVaTThfghF3gc713Yfn1wVrR/rtpXGMhb9/fYQ3HlrA9BELeHXYfF7waGcG+Fn6wDcT1N/NHKxA9e3fWxTLMLgEckE9You6D89r+95XvD2FI01f4Z/mczCZ6xBqisGgGETMCYJQrpk2bRomk4mxY8cWPhlIS0vD4XBQvXp1r/Hq1auTmppaKnsSQVdCkj562Ot9IAuJ7/iw+1YCsO7byYC/FWfH1vGEGBUOn7PR9bbZXuce+rVkwk7BVeA30qwwfcQC9/gl0HPYnKo7pkpDz2Wnh2apCxT/pZUYKQ779qW4X4URalTcFlW92ndaBi8U3uZLT5QVhqelz9cqVhSyt3kL6ALb0Pmgt29fYbnq+WRS4mcTZqlNqCkGk0GscoIglH927NjBrFmzWLJkSZn6f5pkuZYCwXQA8ET7AG7aYjDPD4eV8y/Ekw3vnsiwbgAqC9c9zNXXv0FKrl23DtuhXx8B4JqWb2J1gF1VUXEJNpPiildznPfthhgUQowKYSYDP34/zmMvgB2yb1p+0RWdSQHLed+xb625YAoDF9TJQBvf6VF7zpPCrE7BWO8KwjNGTLMo6rX88vw98XwGRU2W0JsfzBor57s6YiQAd78Y5y7mG56QyPDuLlF8oQRMwYWEtfV8rdPx9hSwwzdV52M2RgCUqf/pCYIglITvvvuOkydPcuWVV7rHHA4HjzzyCDNnzuTQoUN+51SpUgWj0ciJEye8xk+cOEFsbGyp7EsEXSlQnGbrK+fHsZIfA661/nzngt4jHqHhDW+SUKsGOwNYZf/7y8QiX9+Xi/1xa1KgYbSZ9d+OpfcI7T4vdBYoSDwUhJ7QXeAj6oJxIXq2+PL83pfC4ss89+Jp9fK1wH62Ztz5OL1Ct+aFd/HhoglBT2uey5XsGg9PuHBPCb1We2VsByp+rH2v4SnmjjefgdlYCbO07hIE4V/If/7zH69YOIBOnTrxn//8h8GDB+ueY7FYaNGiBd988427/InT6eSbb75h9OjRpbIvEXQlpFffuZhMIUU6x/eDclj3uXTuNstrTPGY+1gLlfQmsyF1TGlsWReTAbiIDSqqhBoZ1m8O4BIBvlZNrfZZYULM99lpAspX2GnnBhPgrwk4zd1aUmud57pN2l4oTBzW7kOybCrXtFT57YyVBStGM7zf2wFFma94CzQHilaw2Lfbg+9zd7u0R/ifH6h3a7w9hVPxU0ihGhZjuAg5QRDKNefOneOvv/5yvz948CC7du2iUqVKXHnllVSuXNlrvtlsJjY2lri4C/+/vv322+nVq5dbsE2cOJGBAwdyww030LJlS2bOnEl2dnZAEVhURNBdJjw/pId11zs2kg3rEunUbSYGlItd5/d8CzLvqxgVBcWhoigKTgNu923R174gUDUh5ynmfMVXYT1DIbCw0ygsy1gTLU17JMGd8N7nD3NfA2jRM4l31j0c0EpXlMzaxo1dTe+zb1qO1aFyOvuCYs6yOTib72DW0ocZd//cgC5UXyuYZ/ZocTtJ6LXucreeAzj/LD0LDPteZ8rQTVzbeTkw8XzbrjexGCphlrZdgiD8C9i+fTvt27d3v5840eUJGzhwIEuWLAlqjQMHDpCWluZ+f++993Lq1Cmee+45UlNTad68OevXr/dLlCgu0vqrmGitvxJunBi0ha6osXYaT78zgqsjzXy+8eJY6OLtKeS1Wk62TxE6owNys6xUignD7nRiczoxGA047U5CLSbsDicmo4LdoWKzO0EBk9mA066iABaLkfx8O04gOtzIc0Pmudf27MrgKTD0LHTFdS+CS3jE35WECpyzOTlrdZJjV8m1O3GoF4SmxagQbnLJ2iiLAYtBYfKs3sW21mnWvm4DlmEr4F+YSYEG0WaG95uje3+e9x5vT6Hy7R+TaXOS51CxOVV32GOkWaFGBROD+wa2+BWEb/s0zWoXqPuJp4v1n+azCTFVREERMScIZZSy0vqrvHSKKCsUpfWXCLpiUhxB50th7jRN9Dy36CGuijDx2UUUdDk3LSfXIylCAew5Ds5l5VMpMoQzWflEhpmxO1UMBpfwsTqcRIVbyMm1kW9zEB5qRlVd/TqtVgdmowFVUbDaHVxZIxx+uJdl+10N6z3xrPmmZz3yJFBclydewflAtTs+Ji3PQbZNJdehBrR2ajZKgwIVTApNK4bw/My7geK5YRsnvOknkvUINSr8uf1CHKSeO1O5eQXpVpcIDbSiSYFa4SYvi19RxLCWHAHeVlPfBA9trQGx8E3V5zEbI0XICUIZp6wIOpBerkVBerleQu4asp/P/u/aoK1vviUnCuLCeiohF7kNmG9RYYOiYDIoVKsWjt3uJCzERJWKFUg9nY1TVQkPMRNiBBSFqIgQ8m0OTEYDDoeTvHw7BqMBi8VIaKiJrFwbOQ6VqLYf8lgnI2fzHfTr7SrF4tnBYeV8V5JAQc3pC3I1eo7F21No0n0Vx7MdHD1n51wQwkqb4VQh26by33QrD4/4iG+3jCvwPD3i7SmkB5k1nOdQaXvLLLZ8N87vd+PmW2aRkmPHlu8sdB27Cv9kF/+v3g9SYTjebmU9MRdvTyGl2UtsNNbEbAgVMScIQpGIjY0ptwKrLCMWumLiaaG7d9QhoOh1wApDE4nPvjOCvduKnsnqmWhQUOyXFueV52OhMxsMOFQVVVVRnGA0KjjPW+gMioID9Xx8nOIul6KqKk6nitFgQFFcIsmpqtjO/5qZDa7ihyFGA3t+mQB4W5EKKpKr1XfzdcV6zo23p9Ck2ypSch2cyXeQnu+kcCkUGKMC1UKN/Pzj+CKdF29P4UzCsqBjH2uFm7zKyWhrnE1YVuT9VzAq/LG95JnPesTbUzjW7BVMphrS7UEQyhFlyUInBE9RnqMUFi4hK5Y/FHRzeQ09q5Pn99rL6RZBSpHF4sr5cV4irrBsz/Cf+nu9VwGr04lDVXECDgNYVRXF4BJveU4nNqcrjovzsWj5TidWVcWuQL7qJM/pJN/pdIs5AJsT8p2ueLbb2s5i4J1z+WKtd6eMQHh2k/As3gsuodHrjreJuu0j9py18nemjTMlFHPgKs13Ms9Bp/ZvFfncovylpKoqD3aby/DuiaycH0e8PYWMlkUXcwC5DtW935L8kaH3e/1Ps9cwm64QMScIglDGEEFXQvalW1n1vL/7b8O68QF7ZQZbkb9L91k8+84IqoUZi7yvogTGaxmihX08GxUFa44dHComQLE6CXEq5GVZUWxOIhQj5DkwBaFknMDBc3Z+PZ1PcoatwJg5vfea9XLK0E18tmYc9e9cyYFMGwez7Jy1llzIeeJQISWn6DVdgpU7Crhd6lo8obX1coLwEuuiAml5riewfm1w7mK9jg++Luwq10wixFwDg9SXEwRBKHOIy7WYaC7XJVt3U7NSNM8Pmcf6tePo3H2W7vziZLi+9n8jUYCffhgfMG6sIIpSXDfensK5G5eT7xtM54FJUcg+m09MpVCyMvIxGRTy8x1k5VipGBmK3eHE4VSJignFXsToTIsBGsdYGNT37QLneQq563smkWVzcjLXQWqugzy7WqpCzpNQo0KTGAurvy5aAcgr498Iam0tKSLenkJ+q+VBxfwVhPF8IedA2bN6DO+e6PU76pXJ2mw2IeaKGBT5G1AQyiPici2fiMv1EpNudfLykpEsXPew233oaZ0rTmuw6f/3MCZF4bEHEt1jwTK8e6Kfi1VvzJOdphpE/Nw/4HEARQWrzYFqdWJAwW53EhpiIiYqFLPZiGJQiI4MwRxS9F8rqxOOZttZ/NFo1nwa2KqkibkGXVfxZ4aN305bOZhlJ+ciijmAfIdKWl7RrXRHdj6CuYDHoYm5oV3nurONSyrmwGVV1Kx0xUH7fat17TCONZ9LqLmSiDlBEIQyjFjoiomnha5CRCQAUWYDLw6dV8iZBbPq+WT+qDuTGIuBbzaPLfL5BYm2whIk9JIjPDEqCorTVWhYUUBVwWi4UPRYPZ9A4VSK3xbWbIBoi4EQg8KjD3jfi5ZhWe/Olew9ayXbHrgESWmjAPWjzLw9r0+JOknE3zQDRYFft07wGh/adS57060cK4ZrNxAVLQZ++3lCofMCWX/j7Skca55IiMn117y4WQWh/CIWuvKJWOguMUd2PsKMhxaQZXPy5vsPF3udlxcP4+96M9mxdTwP3zenWGsUpZOBLztNNQj/qT+RZoNu/JfjfMKDDRWrqmJDdSc+aAkRNoov5sCVNJGW5yQlx8GcZaOAC4ki8fYUrum+ipQcxyUVcwAWg0K4WSlxW7CdP03wE3MAiz57mLzN95ZobV9sHu7zQHGanmVStNeAWKjSZCTHms8jxBR1XsCLmBMEQSjLXFYL3dSpU1m1ahV//PEHYWFhtG7dmmnTpnn1Qjtw4ACPPvoo33//Pfn5+XTu3JnZs2cX2irj2LFjTJo0iS+++IKcnBzq16/P4sWLueGGGwBXn7YnnniC1atXc/r0aerWrcvYsWN56KGHgtq7noUOXNalF853RNDKcPiW2vB1wa56PpnVUUP5v0e+1y02XJzK/76WuqIKvRtazeRkMVyMpYnZADUrmIgyG0jLc5Blc7kQcx1qiURjUTHg6uZQO9zEu58VX7AXRHFLlBSExQB/7XjE/d7XErdyfhyfrRnNu5+Nce/hn6ZTwFAJizECg2IUIScI/xLKkoXu1KlssrLyLvoeNCIjQ6laNfySXa80KTedIjp37ky/fv1ISEjAbrfz1FNPsWfPHvbu3Ut4eDjZ2dk0bdqUZs2a8eKLLwLw7LPPcvz4cX766ScMBn0D49mzZ4mPj6d9+/aMHDmSqlWrsn//furVq0e9evUAGD58OBs3buSdd97hqquu4ssvv+Thhx9m1apV9OjRo9C9a4JuyvzuNGx9oaRFsG5X7YP1pjbT2Xf6AO9O2BiwA4KnIAwW34SIoiRIeNLwhjcDumAvBVofWJWilQEpTQwKNImxUCPMiEGBhetKV9RpJUpKIXTOCwW4OtLEt1vG+dXs82yNBnC06csYDJUxGyuIkBOEfyFlRdCdOpXNmHGfYrNdzKhnb8xmA7Nn3VUkUbdlyxZef/11duzYQUpKCklJSfTs2dN9fNCgQbz33nte53Tq1In169cXuO6cOXN4/fXXSU1NpVmzZsyePZuWLVsGnF9uOkX43viSJUuoVq0aO3bsoG3btvzwww8cOnSInTt3un8B33vvPSpWrMjGjRvp0KGD7rrTpk2jdu3aLF682D1Wt25drzk//vgjAwcOpF27doBL4M2fP59ffvklKEGnUavpy17vs+1OEpeP4ooKJt77/MIHv+cHauLyUaTnu/px2p0qjWIiC+yAUJgAK0i8+R4vKn9un+jOvLSrXHJxdzmFnIZJUfgn287ZfAfRltKNUoi3pxDZ/iNOnyv9voYqgX9e7t8zOxxtNoMQU2URcoIgXHSysvIuqZgDsNmcZGXlFUnQZWdn06xZM4YMGcLdd9+tO6dz585eOiMkpOA2oB9++CETJ05k3rx53HjjjcycOZNOnTqRnJxMtWrVgt5bIMpUDF1GRgYAlSpVAiA/Px9FUbweUmhoKAaDge+//z7gOmvWrOGGG26gT58+VKtWjfj4eBYuXOg1p3Xr1qxZs4Zjx46hqirffvstf/75Jx07dtRdMz8/n8zMTK+XHq2PP8LBLBs70vJoduMMrr9pBje0msmUxQ/x9DsjeHLhCE7kOqhgUmgYbebJQfP5+afXgIILDhdGUaxuRRV4O0012LttIlOHzafytvuCrq/2b+GvHRPZ/fMEtv4wngOZdm67tehFhjXi7Slez79O509Iyb14rm2DcqEo9Rdrx/Lp6gutvGpcM5LU6xcQZq6G0SC15QRBEDS6dOnClClT6NWrV8A5ISEhxMbGul8VK1YscM0333yTYcOGMXjwYJo0acK8efOoUKEC7777bqnsucwIOqfTyfjx42nTpg3XXnstADfddBPh4eFMmjSJnJwcsrOzefTRR3E4HKSkpARc6++//yYxMZEGDRqwYcMGRo4cydixY73Mo7Nnz6ZJkybUqlULi8VC586dmTNnDm3bttVdc+rUqURHR7tftWvX1p33XY03sDkh06by288TeHrwPE7lOciyqVS0GGkSYyG+soWG0WYG3DO70OeiNa0vqOK/Jub0rHOlSe8Ryew01eDwzkc4cv5Vedt9Xq+qoUZK2Yh12Wmc8Kb7+4bRZrJtTvp0LLheXiCeWdTOR3wr7N8+kcrb7uNitOvNtl8Qi126v8VdPROZMnQTVZpMQDHWxmQIFyEnCIJQDDZt2kS1atWIi4tj5MiRnD59OuBcq9XKjh07vDyLBoOBDh06sHXr1lLZT5n56B01ahR79uxhxYoV7rGqVavy8ccfs3btWiIiIoiOjiY9PZ3rr78+YPwcuMTh9ddfzyuvvEJ8fDzDhw9n2LBhzJt3IbZt9uzZ/PTTT6xZs4YdO3bwxhtvMGrUKL7++mvdNZ988kkyMjLcr6NHjxZ6T1fGv8GEecOpGGJg2vD5PPrAXP7TZzZ33fUW76x72J29WVh7pgVrRwZlrSusZInn19ISfjtNNbxeO7aO568dLqFXwaT8K8Rdvofb8rONY2gYbcZsUBjWbW6R1/LtHvKfPi5Rv9NUg4O/PkKUWcFcSvpKVVWyrHm8+m5npgzdxOi32vPQW51JiZ9PqKUmRoO07xIEQSgOnTt35v/+7//45ptvmDZtGps3b6ZLly44HPoel7S0NBwOh19CZ/Xq1UlNTS2VPV3WGDqN0aNHs27dOrZs2UKtWrW8jnXs2JEDBw6QlpaGyWQiJiaG2NhYrr766oDr1ahRgyZNmniNNW7cmJUrVwKQm5vLU089RVJSEl27dgWgadOm7Nq1i+nTp+vG5oWEhAT0jx/Z+YhXR4BbUh7huxqu99EWA42iLX7n6LVXKg6FCTNfV2xBdehKk52mGqx8cD4Azy96iBy7s9SD/i8VvmFo73/hKqcyrFtikZ6n3s/K9+e/55eJ7u8btHizwM4dhaNic+Rg/+UJDl43nXBTNUIVAyBlSARBEEpCv3793N9fd911NG3alHr16rFp0yZuv/32y7KnyyroVFVlzJgxJCUlsWnTJr/EBU+qVKkCwMaNGzl58mSBiQtt2rQhOdn7g/LPP/+kTp06ANhsNmw2m5+Vz2g04nQWPVjTU8zNeGgBFd55k2omA+lWJ7//PIEXdCxwnh/kJRF1C9aOdCdT6AmGwsYuprjT7kvL+n1lyUisTpWsUu61ejExAOEBTGYXUxPF21Pg5/4oNy7HrqpFEsOqqqLiJMeWQZ3fRnO82RQqSNKDIAjCRePqq6+mSpUq/PXXX7qCrkqVKhiNRk6cOOE1fuLECWJjY0tlD5fVITZq1CiWLl3KsmXLiIyMJDU1ldTUVHJzc91zFi9ezE8//cSBAwdYunQpffr0YcKECV616m6//XbefvtCTNOECRP46aefeOWVV/jrr79YtmwZCxYsYNQol2UlKiqKW2+9lccee4xNmzZx8OBBlixZwv/93/8VGABZGCEGhdfeG8m1MRauqWhh2vD53NHOFUDv62orjGHd5gbtFg0k5gLhKeIKawlWGmiu5R1bx/PCkHm88dACokrLr3gRMRvgyggT8ZVDGHjnXB48/zPxfWZFfX6+8+PtKS4B54Hmwv5zx0SaVw7hyM5HMAXxyFRVxak6OJd/hnzbCY41m4rJVAujIu5VQRCEi8U///zD6dOnqVFDv/i8xWKhRYsWfPPNN+4xp9PJN998Q6tWrUplD5fVQpeY6Ppg00qHaCxevJhBgwYBkJyczJNPPsmZM2e46qqrePrpp5kwwbvSvuaS1UhISCApKYknn3ySyZMnU7duXWbOnMmAAQPcc1asWMGTTz7JgAEDOHPmDHXq1OHll18OurCwRqTZQKVQI08N8v9QnzJ0E+dsLvHk28s1UIkSjYXrHg5KKPi6/AIlRviKON+xQOuVNhesdvPdYy8tfoiz+c7LXp7EkwomhasjzcSGGTEqhbe9Kspz852301Rw94nK53vj/v2rq0jwtS3fJNPm/7RUVcWh2snKP43NkUaUpSIh5uooSpmIrBAEQSg3nDt3jr/++sv9/uDBg+zatYtKlSpRqVIlXnzxRXr37k1sbCwHDhzg8ccfp379+nTq1Ml9zu23306vXr0YPXo0ABMnTmTgwIHccMMNtGzZkpkzZ5Kdnc3gwYNLZc+X3eVaGK+++iqvvvpqgXMOHTrkN9atWze6desW8JzY2Fiv+jHF5dVR72Iy+cfW9R6RjOPGFTz6QCLr146jc/dZuuff22kOH24YpXusqLFZnbrNZMO64K1FnsKuIJF3MdCE3cr5cTw7eB69RyRTJ/6NMiHqjAr8sW0if+CylHqKuU7dZnoJ8eJaRjXi7SmFCjpfMXlFuInsDJs7tk9FBRXsThtZ+aewOc4SYamIxVwdMAa9P0EQBMHF9u3bad++vfv9xImu+OaBAweSmJjI7t27ee+990hPT6dmzZp07NiRl156ySvW3tfYdO+993Lq1Cmee+45UlNTad68OevXry+081WwXNZOEeUZrVNEwo0TdQUdwNQlI3lSx3KnUZzYOU/LnmYVCkZUBGO5u9x0bv8W678dS/ObZpBudVKifIASYFTg6kgzV0WaMAawzAVr8SyMQILON/NZc9l7XqNRwpvk2R3YnFYUbDid6VTfOYljzWZgMVdBwSBuVkEQAOkUUdROEWWFctMp4t+GbwmSfKfKlKGbeGZRO935hbldA13DF82d6xtL55kwoYfrPO+WUJcqC1aPYf3mnN/PBBJaz+RkruOyWOwcKmScF5RabTjfci+l9ZwCWec8LZi9RyT7WQbBZUUE2LcvhQ59nqH6rimciH+bEGMMivIvqBcjCMK/jqpVw5k96y7p5XoREAtdMfHs5RoaZvY65inqChJ0GsWx1OkJt0CJF57Hgy1j4mvNu5giTxMt2tdh3eaycN3DtGw9kxOXQdTFWAw0ijETbTbo9m31tch5PvviPKe7W01h1dZnAh73fD7g/fsSb0/hSNPXUZQKmAxmzEbX/7TEMicIgidlxUInFA2x0F1mPMVJrds/gUXF6ypQEL7CwfND3tOa5LLs+ItGvfg5vXVLs45dINekp9B0iZaHWTk/jpXzE5m6ZCRnrQ4ulXVeAaqHGflow2i/Y/H2FG7ouZocu5N8h8rAO+diVGBwV7A6VHcZE1936ZShmwCXNW7fvhQaN67hdrUO6jSL7nfPZdrLI/nlSKKfRdXzva8FWBNzYZZYlPMJ6yLkBEEQ/jcRQXcRubblDAb1LVzMFcf16oueWHIlSYwPeI4m5jy/BlrL85yS4hv757um5/PYvnU88fYUziYsK1LtOgOuOnEBetMXyFebxuqOJ/RazYK1I7mv8xxScx1k2+0YAIeq4lDBoMD1N71Oi5tshBoNhJmMhBpNWAwPYzEqPHP3HHqPcK3VomcS11lt5FttTBm6iabXjaVZ07nABYug3u+F9r72dcM47IgmzFwVgyKJD4IgCP/riMu1mBTkcvWkVZuZPPpA4UkLJRF0hQXlBxO0r5dgUdh6enFdhe3Rl0BiztMS5XmN+i3ewFqAsjMprlIyzw2Zx5Shm8i+aTl5RVB1CnBVpInNW8Z5jcfbU0jotdorXlFvj9rY4DdvQcWAqhpQFCNmgwmz0Uyo0UJ0SDjRIeGYUTn7bT+u676KEKPiV6om0POPt6dwtNkcQs3RKNL1QRCEIBCXa/mkKM9RIqcvMo8+kMispf5xWL4U1s81EMGItQVrRxZqWQsmjs7zWp5iTq/YbkHreO7H91gggbhyfhzx9hQqhRjxlS9GBSpaDBzZ+Qivj1jAc0NcnSmeWdSO8J/6+80vCBVIzdHvxee7H0+0vq7a/hdP/I4lEzfz3iPf0qxyBFdHmahkySPPdow8+1nyHU4y7ArcvII9Z62cyHVd0/fZ6P1eHG/+OmHmaAyKZLEKgiAILsTlehFZOT+OR+cPZ8t34/DMJvVFs/YU1fV6MWvH6ZXl0L7XrFSa2Fg5v2BLnV5nCt8x7xg6bwuYp6i5KsLEOZuTc+d7YVUwKbz8oFak2NtitnJ+HM8sakdv0yNc23IGWbbgihcXp1yKq85gHDPf68LK+V8ArthAFZXO3S7UIHzlnbbEhocxpP989z4BHDfOoMOtb1E7woRJUdyCWXPRghYz9ypGY1XJYhUEQRC8EEF3EfAUZtNHLADieOuDhxk7YG7AcxKXjeLrzWP9zi+IYGvQFYXg4uYu9I7VMmhLsr4evq5XV+JEMtdbDFwdZeZkroNJA/3vvUnbTTRu7CoF8sXacThVsKuQaXWSmmsnNcdRaCyeQfGvD7fTVIMEnbkb1o13C9ykpOH06rXAfcy3OwjAUw9uAfAqNr1yfhw9O5hIzrDhxCVaPRNr4u0pHG36Iv8YqhJminQnQAiCIAiChsTQFZPCYugKEzlvvv8wE/9zQeA9t+ghJp9vYl/SBIlLgafQKkosXSB84/L0np92rSlDNxF/VxIAXXv4d+BYvnIMOXaVXLuTbLtKnkNFBX7/eQLx9hQyb1wWMGvWqEDML/fR7K4klnzm7SqPt6fwzKJ27n14ijkN3wxVT977sB8D712he90PPh7CztO55NpVaoWbuDLCzKqvnwCgcpNRhJivkH6sgiAUG4mhK58U5TmKoCsmhdWh860b1ijhTQwKvDR0Ps8tGsHkoRdcbr5uxmffeZAT5w6Ta0vn/ce2lVgsDYiF8ITCg+2DRbu/YAL4g0WvHIqeqJsydJNXcoIvvUck06Tlm2TbVC/3qgFoFGM+X7wYJi9+iCyrE7vPb3/1UCPbto7XXVsTdIEEZyD0hJ/vnus1G8HBLBs2FYyKQo0wA7G/TeZI06lYTNUxGUJEzAmCUGzKkqA7nZ7KueyMi74HjYjwaCrHxF6y65UmIuguAcFa6AJ9+K/9dBzd75rlnqN3fp9Xr+fjJ34tlQxYT0oj5s5T1HkG8V+MeD7Pwr3bknqS0Gu1+5hn1ilA/85z+DUtn1ydzNZaFYz8+MN4hnWbS45D5e6eb9F7RDLNb5oBgN3pislrGG0m7HzWqYaW5eoZ61eYsFuVNIy7ey10v5+++A4eHfyV+/2a1SPp0TORKUM3caTZW5gMWiVzFRUnoGIxVpAWXoIglJiyIuhOp6fy9Jv9sNutF30PGiaThZcnrgha1E2dOpVVq1bxxx9/EBYWRuvWrZk2bRpxca7/3585c4bnn3+eL7/8kiNHjlC1alV69uzJSy+9RHR0dMB1VVXl+eefZ+HChaSnp9OmTRsSExNp0KBBwHNE0F0CfAVdURIafDsjBMJ49f04/l5arP35WuV8Ka16cqW5ni+BxFJBVrqlH49hz1kr+TqZDdEWAy+cz4AFV4xdl+6zvMS1xvq141AUhQVrR/qVLAH/NmsFWeCmvXsbk4ZsZOo7t/Lkg5u91hgQC+srP0kFcyVJdBAE4aJRVgTd4WPJvDRn8EW/vi/PjlpMnSuC86x07tyZfv36kZCQgN1u56mnnmLPnj3s3buX8PBw9uzZw/PPP8+gQYNo0qQJhw8f5qGHHqJp06Z88sknAdedNm0aU6dO5b333qNu3bo8++yz/P777+zduzegWBNBdwnQs9D5WuVK6ipdOT+O/q+1YvnjW4u8VmHJEpoA04Tf5erf6oleayvPcU3IAX7iyvPcete/gc3nt9psgMohRn75cbx7TV8L2/q14+ncfSbr1433K3WiPZ94e4p7TEua0FqVee5V4+OVQ+nTe5Hu/U4ZuonDTd+ggqU6BhFzgiBcRETQBS/ofDl16hTVqlVj8+bNtG3bVnfOxx9/zP333092djYmk3++qaqq1KxZk0ceeYRHH30UgIyMDKpXr86SJUvo16+f7rpSh+4S4ykmPNs0lZTeI5KLJeaKQkFWvEuNb3Fez8SLgvAVUQd+fYRQo4ICRJgU6kSYaFYphEkDEwOKRoDO3We6vp4Xi518vvbvPAdT2w/JvHEZ6S2XcV3LGbRv+xbbV/ei9x1v+7XpWr92nFvMrV/rXai4SdtNHG36IqHmyihFqpQnCIIgXEoyMlzxfpUqVSpwTlRUlK6YAzh48CCpqal06NDBPRYdHc2NN97I1q1bS2WfIuhKgYshuLS6dL5jwZK9rWCLm2cNu8tpnfO8J73vfe+5U7eZAd2bG9aNd8+vYFJ486EFvPTgfMbfP5fKId6/6oU9S88sVm3de3q9hX3LvdicrpZiGTYnf2fZOJuwjOQMm5+Y18qSgH+P1fsagJNIjIpZ4uMEQRDKKE6nk/Hjx9OmTRuuvfZa3TlpaWm89NJLDB8+POA6qampAFSvXt1rvHr16u5jJUUEXRnAU7xo3z+7aITfvKJkV34Q4PdDE3AFxXxdKjzdnr735WmV00SVVjJEb57vV7vTe44mrrTjwTxL7RmpqsqUoZuYu2wUGS2Xec1RASeQaXNy9fVvEHfDm1zbcga33DKLlUlj/e4FXK7W1GbPYjEFDp4VBEEQLj+jRo1iz549rFihX3IqMzOTrl270qRJE1544YVLuzkfRNCVEsVt3QX4WXZWzo/jpaHz3ccD9TUtDM3ypok4T0tccTpSlCYFJYb0HpHsFnEamrjaltTTS7wFqgcXZlJY9skYr7HCyocEYvvqXhhv+ZADWTa/Miee2FXIdahk2pwcOWfnv2etfLRqrNf+k5JcQj3PGY5ZSpEIgiCUWUaPHs26dev49ttvqVWrlt/xrKwsOnfuTGRkJElJSZjNgfu6x8a6MmxPnDjhNX7ixAn3sZIigq6UCCSQNDFUkCjytFAV1MtU7/vCWLB2JAMC/K4UJtQGxOrP8UwMKA6+sWYFuZY3rBuv+0xcnSO8XcWaO3bl/DgaRZuJthh0xWFhz2/DuvGsXzuOKUM3MWXoJvJaLedknqNILcFUXC7Zczanl4hcun4iACZjNEjsnCAIQplDVVVGjx5NUlISGzdupG7dun5zMjMz6dixIxaLhTVr1hSasFC3bl1iY2P55ptvvNb4+eefadWqVansWwRdKVCYQPAUdXpN7DXBck3LGbRvO0v3mG/CQDDX1duDJ4XFznkmTHien9Brte59FAVNxHrWmPNEE2yaQPMVdZ26zfTqLqGhJab07PkW757v9KCJOs95gZ7dhnXjUVXV3Ss2veUysgsyyxWAqrpi7Tzvz9XG6wVXfTmxzgmCIJQ5Ro0axdKlS1m2bBmRkZGkpqaSmppKbm4ucEHMZWdns2jRIjIzM91zHA6He51GjRqRlOTqaqQoCuPHj2fKlCmsWbOG33//nQceeICaNWvSs2fPUtm39HItBUoro/W/v0xgso971VPM+Frxgr2uZ1mSkhb/LQ3rnC96blBXCzDX954tv7SyJZ7uVn0u3GOwwnfDuvGouJIZpgzdxOmEZVCCoj5GBdZ/O8ZP+DrUMAyK/NMTBEEoiyQmuv6f3a5dO6/xxYsXM2jQIH799Vd+/vlnAOrXr+815+DBg1x11VUAJCcnuzNkAR5//HGys7MZPnw46enp3Hzzzaxfv77UWqPJp8pFoiDrlZ6g0rNC6WV6FiTiPF2rnkkRC9aOLLI1LZCb1rNbQlEIti6fZ5ybywqoxc2tBsbrztUTdZ4lT4Z3d415dpUIJPI6nxeOWTcup0g+Vh2qhBq55U5Xv971a8e5EzOMhogSrSsIglBeiQiPxmSyXPJOERHhwSehFVaet127doXO0VtHURQmT57M5MmTg95LURBBd5HwFD3BiqlgLUmBxJGXi5QL8XPFKRzsW59OE4Ulse4Fc38FW930CdQOzPf7gvbhec3w9h9x+py9SHvwRAFiLAYmDUx015/z7CxrMoaKu1UQhP9JKsfE8vLEFdLL9SIggu4SEKwY8hRpg7vOpVuPWX5z9MRIIMHoOR5oTqA9ZW8bWWpFhwvra1sQLoG32uu9xoZ1488LsfFe5+jFGwZ7rd4jkknLcxQ+OQAmBV4fseB8YeG5buHWpftbHrNEzAmC8L9L5ZjY/wmBdamRpIhLRDBizlOApOYULipKmpigraE35ivmimudC5TEEShzFbw7NEwZuslrzBPfTg56SQ++1r7C3L779qWQ5yi+qzUmxMDaT8excn4cnbvPolO3mV7P7XjTp1FVZwErCIIgCELREUFXhvAUG8dzCnb5rZwfF5QPPxgKE4bZ2/y7SXiWWinIEqbnPg0kqnxFm+e5egWF9erUafvUjvuuGWiv2ry9W9oV235mAKqEGOl+l7dl1dNFriigIoJOEARBKF1E0JVRrIUE5PcekczpfAcOp4qqls5rWDdXAL/veIUb5jKs21z3cc89eH7VQ1VVdxyZpytUT1hp89avHYeqqnTqNpMbeiZ57UWb06nbTPeY5/W1faqqilN1sn7tOK8+qp79dgNhNhRP0lmMCiP6z/Ea04TlyvlxLPv4AWr89jJOsdAJgiAIpYzE0JVBrr9pBk8PnlfovF2nUnl95Cde7lrfUic92r+ge+6ab/XHARauezjgedragbo8gKu0yU5TDXq0f57tq3tR+4557vlLVvRjUD/9FipaFmhq9oVK2p7fe563ZMW9Hr1SL3SdSM1OdacfDO73oe7+C+KzNePY+WkvDK2Wk1PE+nORZn8h6GkhvK/P/zFl6AXBLIkRgiAIQmkhgq6UKWrygR65DjVgAkHvEckMiIW7X4yj/2uHvQSVnsVME256nSg8BVnzFkO45ti7/PeKIQAcyTzid+1nh//gJeT0yqz0HpHMTlMNmt8wlCNZ/8BNz3Ak6x/39Y9m/eO1X997fGnhze45nt8/O+x7Xlp4M88O+961TuYx15wFN5/fm+v7o5nHeHb4935717t3veOPTe/FG48l0aX7LF5a/BDp+c6gHKRRZoUdWycAgQXjRyuH8Ofnm3Cqxc+gFQRBEAQ9FLW0ArH+x8jMzCQ6Opop87sTGubq3+Yr5kpS4gPguhtnEGU2MPE/F1ydI2f34eSeKQDUavoss0Z9BFCglQ78BYzenHs6vMwnXz/t/loS4u0p1O+yGIB+97zntb8Vnwyk3z3v+Z3Te0Qyfe6YGnDNfvcsOX/+IPf3gfC8r753TCU6JNrDoufCs31YQZm4zy0awTmbqltj2ICr3tz2reMLtf71HpFMvD2FQ03fJMJSXSx0giBcMnLOZTGoVVMyMjKIioq66NfLy8vj4MGD1K1bt9QK5/4vUpTnKDF0JWRQ5xkBkwoCtfrypCAR8MKQeZzJ98521cTcyvlxzBr1kZ+FzleQFLS+r4Xtk6+fZuX8OC8xV1Cf1UAM755IQq/VVAyt6CfmALeY03PX9rtnCRVDY+h3zxL++mIQFUNj3C8tCaJiaEyhe9Cu1+wGl8XRV8z1HpHsLiej/XwCWUUnD53Pmw8tYMZDC6gaaqRKqIHKIQYqhRg4tPMRnhyU6BdfWNCeVOc5yXQVBEEQShWx0BUTzUKXcONE7h11yG3t0nqTajXN9PAsAVJQj1VPcTFl8UOogEGBpwd5x9cFss4F6j4RyO1aEMHO85xb1DpwvUckF1qGRa98iSeema2B6tEFaqXm+9yKuv9gmDJ0E0euewaz+WosRvmrVRCES0NZstBlZp8iNy/rou9BIyw0kqjwqpfseqVJUSx0EkNXCniW79AsPwXFUkFwsXaeouLaihZ69nzrvPjwt5oFEiCBxIzvNQoTa4XN066z6vlkhuuUCwmGlfPjGN7du1uE7/eFEYyY0579yvkzdedcTHaaahD/+xSONEsUQScIwv8cmdmneHf1GBxO2yW7ptFgZkjP2UGLuqlTp7Jq1Sr++OMPwsLCaN26NdOmTSMu7sJnxYgRI/j66685fvw4ERER7jmNGjUKuK6qqjz//PMsXLiQ9PR02rRpQ2JiIg0aNCjxPYK4XEvMXUP2Ay7LULAdChas9a/rVlC8Xe8Rybz/xagC1w4U5O/70purJ9L0XK0FiT5t/fCERC/hFYxVz3eOVkzYEz0xp7e2nmDV+76w9Yoi8oK1XGrr7jTVwO7MLbU6goIgCOWF3LysSyrmABxOW5Esgps3b2bUqFH89NNPfPXVV9hsNjp27Eh2drZ7TosWLVi8eDH79u1jw4YNqKpKx44dcTgCNwV47bXXeOutt5g3bx4///wz4eHhdOrUiby8vBLdn4a4XIuJ5nL95/BfREVFusdLo+epJ5oLd8HakX6dFgqzmHnOKc09+aJZvDxdxb4Ww2BcmBvWjffrywqFi6/h3RMDurhXzo/j45VD6NP7Xd1CxMVtE+a5D8+fQzDr9B6RTEyjUUSE1sGgGIt1XUEQhKJQVlyuJ07/zdLPH7vo1/fl/jtfp3rlq4t17qlTp6hWrRqbN2+mbdu2unN2795Ns2bN+Ouvv6hXr57fcVVVqVmzJo888giPPvooABkZGVSvXp0lS5bQr18/3XXLTVLE1KlTSUhIIDIykmrVqtGzZ0+Sk70/lA8cOECvXr2oWrUqUVFR9O3blxMnTgRY8QLHjh3j/vvvp3LlyoSFhXHdddexfft2rzn79u2jR48eREdHEx4eTkJCAkeO+JfrKAqauCmNtlwanbrNLLShvOe19Qgk5oJx0wYqBKx3XqDuEcEKJk8x16nbzKBdt1rxXr29rvhyktd6vmJuePfEIlnZPAk2AcX3nLp7niHfniNWOkEQhDJORkYGAJUqVdI9np2dzeLFi6lbty61a9fWnXPw4EFSU1Pp0KGDeyw6Opobb7yRrVu3lso+L6ugK8ysmZ2dTceOHVEUhY0bN/LDDz9gtVrp3r07TmfgLMGzZ8/Spk0bzGYzX3zxBXv37uWNN96gYsWK7jkHDhzg5ptvplGjRmzatIndu3fz7LPPFju92lN4aC7VkljEgslO9V0/e9tIr4xNz6+eQqswy5me27IgwaPtI5guDIEoSpwcXLgfTxFbWJsxz+O++9QTw0W9l2BcwFrXip2mGuTb03CqhffsFQRBEC4PTqeT8ePH06ZNG6699lqvY3PnziUiIoKIiAi++OILvvrqKywWi+46qampAFSvXt1rvHr16u5jJeWyCrr169czaNAgrrnmGpo1a8aSJUs4cuQIO3bsAOCHH37g0KFDLFmyhOuuu47rrruO9957j+3bt7Nx48aA606bNo3atWuzePFiWrZsSd26denYsaOXGfTpp5/mzjvv5LXXXiM+Pp569erRo0cPqlWrVqx70dyixUkGCESguLhAfJCqb83zdYEWFGfmK2yK4op0JTUEb5X0FFjbknq6x4J5hoGeg56o0/Bd19OKqnfNot57MLGJC9c97B7vnv42ObZ0sdIJgiCUUUaNGsWePXtYscK/w9GAAQPYuXMnmzdvpmHDhvTt27fU4uGKQ5lKivA1a+bn56MoCiEhIe45oaGhGAwGvv9evxsAwJo1a7jhhhvo06cP1apVIz4+noULF7qPO51OPvvsMxo2bEinTp2oVq0aN954I6tXrw64Zn5+PpmZmV4vXwK57krT/eq7ru97rXeo5zFPa11BsWx6cXaFWakGxHrHsC1YOzJoy5YmoqYM3URCr9Vud2hBos7TCuh5j9q5vtcvSJRp87W9B5PpG2g/el06PEWe77MfdOcsPkgFpyMNmzO/wOsKgiAIl57Ro0ezbt06vv32W2rVquV3PDo6mgYNGtC2bVs++eQT/vjjD5KSknTXio2NBfALGTtx4oT7WEkpM4JOz6x50003ER4ezqRJk8jJySE7O5tHH30Uh8NBSkpKwLX+/vtvdyrwhg0bGDlyJGPHjuW991wFbU+ePMm5c+d49dVX6dy5M19++SW9evXi7rvvZvPmzbprTp06lejoaPdL85MvWT/BPediJR144ilQCsuUHd49kQGxLtHlSaAAft/Ei0DxcJ584GEpDhTDVhCamIMLjewLs9B5JmFoL19B5muN1Mv09a05F2wRZt91AsUO+lo+Ped0v2suK+fHcfV/J5NnOy1WOkEQhDKCqqqMHj2apKQkNm7cSN26dYM6R1VV8vP1/0CvW7cusbGxfPPNN+6xzMxMfv75Z1q1alUq+y4zgk7PrFm1alU+/vhj1q5dS0REBNHR0aSnp3P99ddjMATeutPp5Prrr+eVV14hPj6e4cOHM2zYMObNm+c+DnDXXXcxYcIEmjdvzhNPPEG3bt3cc3x58sknycjIcL+OHj0KuDpFQMFiTrMEFRdfUVIQvtcJT0gkPEHfQlhQ/Jxn5mZhGarB3pvv3lc9n+y2zGkUZJnT9hUoSUQ77nstvbhBLYkikFALloLi5jyvGei+dppqUMGYSa49Q7pHCIIglAFGjRrF0qVLWbZsGZGRkaSmppKamkpubi7gMhpNnTqVHTt2cOTIEX788Uf69OlDWFgYd955p3udRo0auS12iqIwfvx4pkyZwpo1a/j999954IEHqFmzJj179iyVfZcJQVeQWbNjx44cOHCAkydPkpaWxvvvv8+xY8e4+urA6cc1atSgSZMmXmONGzd2Z7BWqVIFk8lU4BxfQkJCiIqK8nppFCZoipMoUJDbsCBxVdCxQK7fYGL1CrqHYNzJmoDSmDJ0E+EJ3ucVZJkLFP/nee1A965nTfMtc6In7DwFrd51CisZEyyzx3xH2p6XyLGexKk60e8aKwiCIFwKEhMTycjIoF27dtSoUcP9+vDDDwFX6Nd3333HnXfeSf369bn33nuJjIzkxx9/9IrDT05OdoeSATz++OOMGTOG4cOHk5CQwLlz51i/fn2p9bq9rIKuKGbNKlWqEBMTw8aNGzl58iQ9evQIOLdNmzZ+5U/+/PNP6tSpA4DFYiEhIaHAOZcbvRi4YGucFYWSZKZqZG8r3EIXSKxp4wWJOT2BFSjT19ea6BvDplnnNDxFru/XgvBMANF7hoFcr75j2rzOtz7NlbsnkmM95TbdC4Ig/NsIC43EaDBf0msaDWbCQiMLn3ge7f/Bvq9BgwYBULNmTT7//HNOnDiB1Wrl6NGjfPDBB16dJLR1tHPAZaWbPHkyqamp5OXl8fXXX9OwYcPSuEXgMrf+GjVqFMuWLePTTz91mzXBFWgYFhYGwOLFi2ncuDFVq1Zl69atjBs3jgkTJng9uNtvv51evXoxevRoACZMmEDr1q155ZVX6Nu3L7/88gsLFixgwYIF7nMee+wx7r33Xtq2bUv79u1Zv349a9euZdOmTUW6hyXrJxAaVvq/nHrJAcEU5w2GwooM61mYBsR6x8t58kFq6e3NE8/YNl+LZSAB5duGTc+FvGDtSDasuyDaPJ+Fp6jzHHdZ9LwLCfv23NW7VkGxeZ7PbNh9nwDtgE8ZNusuwsyVMWBEUZQgn5YgCELZJyq8KkN6zpZerheByyroEhNdH57t2rXzGl+8eLFb1SYnJ/Pkk09y5swZrrrqKp5++mkmTJjgNf/AgQOkpaW53yckJJCUlMSTTz7J5MmTqVu3LjNnzmTAgAHuOb169WLevHlMnTqVsWPHEhcXx8qVK7n55ptLfF+FlQkJlkA9YQtaT+uHWhgFiTo9MReekMhwr315Hw8k9vRwdYTY5P7e1zpXWJKCnpgryEKmd452TU9rndbl48LxC102YKT7OtqetXO1nrC++/cVlJ7X0xJQ9KyvC8d9yrBZnQk1x2LELKJOEIR/FVHhVf8nBNal5rK7XAsyawK8+uqrpKamYrVa+fPPP5k4caLfB9yhQ4d44YUXvMa6devG77//Tl5eHvv27WPYsGF+1x8yZAj79+8nNzeXXbt2cdddd5XavQUT2xUIX4GilSMpzBXo24KrKHsMhkDFkrVYuKKUK9lpqhHwuK+7srAyJIUJXD3rnYZeprBn1qzeM/ItjRJMQWFPOnWbWWB3ivc+7M+ZvbOw2VNRVae4XwVBEIRCKRNJEf82eo9ILlGBYU1IaMLDt2WVZ5cEbd7K+XFeLsDSFHW+yQsavuVQisLK+XFBxd4F6myh1ynC8xy9eDvtuepZ8wKJbk3gaefpzdOOef7M9PD8vfD8/fA9Z+C9y1k5P47Kllzy7GkgSRKCIAhCIVxWl+u/gUGdZxAV5Qq29HTZaS46DU/3azCu2EDuVg3PYr69R1y4RmnHsnmKtv9n78zjo6jv//+c2SM34QokyKkigqCC4gHiiSAICuVbq02L+rWCHCp48xOlKhbvIirhqPVoUVuLWOGroIIiWqQooFEwCoIKJBDIfew1M78/NrOZnczszm42F8zTRyQ785nPfGY2ybz2fapuWnWb1g2rdbtaXcOvHurHW/MiX6eK2T1ThavehWwl09SoLIt+Hq1gVF2v9euZFrZffT+0117v0jUv2GyW9NIrozPVpYfxBNwkO9vbrlcbGxsbG1NsC10C0cZfRauTpn5vZB2yIoa04sFKyykr69afW42d06PWttNvi+fcv3qoX8R2XXqMRDLUW7xUa5lZtqvecqmNbdMmRGjviXqM9lj1OkePW8jWVRPCLHjajFq9VdXsWrRzqkzJXUnvjHY4lEPU2i3CbGxsbGwiICj2UyIuKioqyMzMZP9Pu0MWOhV9xwU9+g4FZhYtK10TjLI/VeudVaGkuj7NXKv6sUbj1HVGi3czYtLUgpB41F6vun79Nr0lTpukYJRsoLeAWX0N1uISI40xchfrzxnNovn8367m+7ISauROpLk7ISDa1jobG5uYqKmq5IbzT6e8vDysjmpT4fF42Lt3L3369ElYnbXjkVjuo22hawKixaVFCtKPBSPhAdGTIvSxa0YWNzPMxsViZdOzcmk/fvVQvaVMK+RUoabdrh6jWsW0cWlG3R+MzqffZ+aiVWPo9DF7WuuqPllEazXVunX1a9CLei3a173ancCgTl3p4DxKje+QXXjYxsbGxqYBtqBrAuJJiDB68Otr0GkFjdbdqlrkoF4ovDXP3PVpVbzF2rJMLzCNCgJHO5/K/Js+NlyHKtqiWS+1YlkvsIwEn15Y6d21Wsundh6ja9KKzynj80LXEk24a+fUrsUlushJ68opHbqS7ijHGyi33a82NjY2NmHYLtc4MXO5Nia7FWLrCqFi5HJ8a16BZeEWD3rXq/pau93MBRnJxai39G1dNYGhE98O22bVDW2lxImV5An9XNpyJtoWYlrhp6K33FlZ5/ybPg4r67JyaT/Wrr4dr+RjX8Uv7CqtwuXqjVN0R123jY2NDbQul2tFdbFdWNgisbhc7SzXBKG13MTjQtUepxcZZnFY+nNruxmoGaTBfwsMxZf+tX67mtFqlhhh9Fq7XWvRMsv21KMK0noL3MWsmxi+f92ahrF2kcqA/PvtW7h6wpK4xRzUizitQAvWozMWjkZiVi9W1TH693ruixc3WJcgCCQ53HRJ6URhdQUl/kpEV3sA/FItkuxHEARcYgoO0W3H2NnY2LRKKqqL+evbtyLJ/mY7p0N08b8TnrMs6hYsWMBbb73Fd999R0pKCsOGDePxxx9v0NoLgvV0x44dy9q1a1m1ahUTJkwwnVdRFObNm8fy5cspKytj+PDh5OXl0bdv33gvLQzb5ZpAYukOYbY/WsZrNLGojc1aURQUEWbiS2VFkbHVa8p449g6fQyeWT256q3TeGteQchyGCnjU7t+MBZEakHerasmhLapIkl1SetF09MvXQ6Eixur75HebauKTb2LW12Hvviz1t0bKa5SL9iN9o0etxAESHEl0ykpBReH8Pr2UevbRzK/0DXpCB1dh/D4f0ZSAhGvy8bGxqalqPVUNquYA5Bkf0wWwY0bNzJjxgw+//xzPvjgA/x+P6NGjaK6urrB2IULF1r+AP3EE0+waNEilixZwpYtW0hLS2P06NF4PB7La4uE7XKNE63L9de/fdEwI9MIqy5Vq5Y+rXVKn+FqtBa9tW70uIVRLXhm26xQvXVaqD6dWqtuyvi8sO1gfD/01xBsGVbvgjW6PrP+tw1KgozPazBOv9+sHp0+o1e1KBrt11+X/v1SMVqj0bGyIlPlq6YmUIM34MMvB8hwp5HuTuNQdTH5R0twOE/E6bDdsTY2NvW0FpfroaM/8vd3727y8+v53dgn6drpxLiOLS4upkuXLmzcuJELL7wwtH3Hjh2MGzeOL774gpycnIgWOkVR6NatG3feeSd33XUXAOXl5XTt2pWXX36Za6+91vA42+XajEy8ZjHr194b8SGud6fqt0UqZ6HFSPToXY1Txtd3JHhrXkGDHqsriiC3Tpyp7ksrHRtiFXNqbJm2MLG6FlUcTtGMNZtDn/Gqd8EaHbN29e0sXzM9tC1SWRL1tfZ+azNZ1W3aLhxaURZmQdMR6f1S5zBKGDET8uq1ZbjTyXCnoxBslScIIpIcwBPw4VfcuESHyd2xsbGxsYmV8vJyADp27BjaVlNTw29/+1teeOEFsrOjt03au3cvRUVFjBw5MrQtMzOTc889l82bN5sKuliwBV0jWfXP6WEWMaNMSSPhZlYgV30dTz03qG8qb4Q6rxpfpwoXbf23eJIpjKx3WouVKtzMYvIiWTcbxuBFrvM3aWoBV4x/NtQ9QyXSeD31sW3G49XYOaN5rNSVU8+h7/ARaU3qfFrTvoAAAigo+GQflX4PCOkIdiSFjY2NTUKQZZlZs2YxfPhwBg4cGNo+e/Zshg0bZrkHfFFR0KLRtWvXsO1du3YN7Wss9l/+BKJ9qOvdcPqHvFnJi0i16aI99PVjVxSFx3Gpa1i3ZlYDy512PdVb6+PdrMTLmQlAtT6btk6b/rzacVq0905rEYvUhWPdmlkNhLKR21Ib96a9N9rjVLTWOi3qdu19M8tiNXut9n41E/qRjtUjyTI+SUIQXBHH2djY2NhYZ8aMGXzzzTe88cYboW3vvPMOGzZsYOHChS23MANsC10CUF2cWquNtuAtxF48ONID3IoFKJIwqN46LcwVqo5XRaA6Lmh5NE+oUMMvVdefFs+XM7npyucN11C9dRrJZ4Xv069XkqWwdbz7zq1IssS779zK2KueM5xX7/bW1urTj4nmIq9f0zRuHp/HlPGErlX9V1+exKqVTXuMak01c6/rxaJZB5B6w50dEmtjY2OTCGbOnMmaNWv45JNP6N69e2j7hg0b2LNnD+3btw8bP2nSJEaMGMHHH3/cYC7VLXvo0CFycurLUh06dIgzzzwzIeu1LXQJwMiKY5a5qLfiaTErVhtPbTozVi7tx4qihlY1bfyYXgCp1jMj61xtoJaDVYXsrzwQ9nXklDkNtpntM0IVbSuX9mPZil+xv/IA2/49yXS8/jqsFjOO5PpWj12usTJeMe5Zlq+ezvLV0/HKfip8lciKHDpmzCVzY1qT2Xsdk8tdCVroJEWx3a02NjY2jURRFGbOnMmqVavYsGEDffr0Cdt/33338fXXX7Njx47QF8Cf//xnXnrpJcM5+/TpQ3Z2NuvXrw9tq6ioYMuWLZx//vkJWbf9178ZMIqh07JuzaxQhqq+xIVRIH+0shvqfHqmjM9rUFpDu0/dro7RluIYPW5hqD2Xlmp/DYVVRVT7q/FK3pi+1n2ygCm5b5mK3+devZLnXr2Swxtu4/CG28i86Emm5L5leM3PvXpl6NguA24Nxur1nRzmXtWiF1Vm5WHMRN7gc6fw7z3/xz++f4u/rJkRGrer9HtWLu3H4EBhg/Po5zbarhX6ZkJQ755WUKjyV1HpV3A6UgzntrGxsbGxxowZM/j73//Oa6+9RkZGBkVFRRQVFVFbWwsErW0DBw4M+wLo2bNnmPg79dRTWbVqFRCMf541axbz58/nnXfeIT8/n8mTJ9OtW7eItetiwXa5NpKJ1yzG6UyKyQ2qH6t1beqbz1uxzumzNM0SI/RJB/quBvVrMS55oq5NLTuSevZiZEVGFEV67V1E6tmLw8bXfDG9wTYttxpck3qda1ffHpqj74RVpnOoY68Y/ywQvAd5t7/PCTcV4hrYjjlLRvH99ucaXI+ZaFIxKneycmk/7sg7g3JPGQFFYnfZHoZ0PZNzRz3GlPGZrP9lI1sKtzJn2TC2fxnu9rXy86G33poVQlbFIgQ/SfokP2WeSjxyEmmuJLuosI2NjU0jyMsLPhcvvvjisO0vvfQSN9xwg+V5CgoKQhmyAPfccw/V1dVMmTKFsrIyLrjgAtauXRu1HIlV4rbQ7dmzh7lz53Lddddx+PBhAN577z2+/fbbhCysrbDqn9PDXmsL3aoYWWn0+/VWl2gWIiOLnVYIqIV2zTCz1GnbiOnRrjFtaB4KQeuQgIBw5jMIgkDNF9MRBAFBEEgbmhf6Xvu1fM30sLIi+utbt2YWgiDwxdvB+iSCIHDF+GfrRFtDglmt4cJ3uzOHF2d/wNDC5/jV5X82vQ9ai5iR4NLumzS1gE7JHVGA/P++SPeME/j5q3+R7kpj2epp7NnxBp0P7WHBlP9aTnawivb6tG3BAHySlzJfLaKYEcx8tbGxsWmlpCRn4BCbN3nLIbpISc6IPrAORVEMvyKJOUVRGlja9McIgsDDDz9MUVERHo+HDz/8kFNOOSXGqzEnLgvdxo0bGTNmDMOHD+eTTz7h0UcfpUuXLnz11Ve8+OKL/Otf/0rYAls7qoVOzR7VtoPSBuVbebgb1SXTW4qsWnuC511ouO+tecauWrXYr761lnbOIEFh94dxQeubVkKsKKovU2KGvsl9w8zU4H1Y+eLFrFszqy52L9yiNjhQSMYl/8QnK6Q5RTJcAnArECxgXHzqs/Q+fQ9rfCMp/2A2ZqVczDBLqtj2+RL+Z9QC/vXd+3h+2Mi1o5/AKYTXfbMa83j92EW88u5tltainRcIWUoB/HIAT0BGFOyWXzY2Nq2bdmlZ/O+E5+xerk1AXILuvvvuY/78+dxxxx1kZNSr3ksvvZTnnzfObDwe0NZHM3LZAcx9voL5M9s1sLCZude0c+n3RYrF0mNFBGqL/WrH6+vEqdtzs6eTAVz/UD8mTV0aEhjaunR6a5+2xluk9agCOVhMdzGr3lYo9crUBBRqAjKVfpmSqkBdTqeEQ4D+Q58h2SHwX7+Ct8zHwZoAInDFJc8AdxjeN7M4xEgW1n+9Pyf0/Rvr7jG9BrN51S4UWjFn9H5rra3qmPk3fdyg16tSZyvVtzizsbGxaY20S8s6LgRWcxOXoMvPz+e1115rsL1Lly4cOXKk0YtqaxhZZPTWuKCLU20u/yBgXmZDv037Wns+o3VES8AAa10f1HOr5U30VjI1W/aqS+YBb/D7K54Jxe5N0dWQg4aB/EYi1gizeD712J6DnwZAUqA6oFAdCEq8YN6pgqxApb8+C1X7fmhr2qnCycgaCvVWRbPyItp1RROqMK2BqDTLdtVv205OaD3LVk/j5nGLcTvcpDgdlHk8KEqGbaWzsbGxOQ6JK4auffv2FBYWNti+fft2TjjhhEYvqi2hxtBZjZHSxq2pWaRGYk5FH8MVCb1FTWsZUy1ekeLqQNtiK3jMrx7qZ5pQsHJpP66/9g0ee/ESJkxc2mDtKmqHCCD0r5lbMlrsn34NIwrvpGOSiCuChvFJSmhu9cuonyrU3zPt+6SKJysCNNL79OyK8WFr11+L0Vxm21RrsCAIOAQRhyigylgbGxsbm+OPuATdtddey7333ktRURGCICDLMp999hl33XUXkydPTvQaWzUvr50NmFtZ9ALCCG0ihZF1yChbUi8cFv19XNhrffP5aGi7Q+iZNLXAsGTJe6tva3DN2oLF1VvrO0Boj1fFklFSxsql4QIy0jWogvP0jkmcd/BOk1ECPrmh9dRMdKnrVa1x+vUYzRPNaqfy7ZGdQPB+vr7yhtD3+g4XRtepjeXTfggYPW5hKGBXEOykdRsbG5vjFUHRl/i3gM/nY8aMGbz88stIkoTT6USSJH7729/y8ssv43Ac+83BKyoqyMzMZP7S8SSnNMzY0caAQcM6aFr07kiAAWffwM4vXg6bT4tW4LlPGsG4E8eQ+z+vhMVo5WbXCymt61CPFeGnFZfa63r5jWtZ/dFDUeP21B6x6rVGE5xWYv70YydNLaD3kKdRFBCQKffso3TXC6FxepGsP4+ZIDYTbJHmuubxTkg//gf3yReS5kqlsKqQ/5vrMZxLvZ+RxLz6nupZubQfr705ma+K91Iu5ZDiam/pntnY2Bxf1FRVcsP5p1NeXk67du2a/Hwej4e9e/fSp0+fhJXlOB6J5T7GJehUfv75Z7755huqqqoYPHgwffv2jXeqNkckQdd/UA678sNd0kZCSmX0uIWsXTOLb47u4kjtEUZ0G0ZloJo3v18Fez8PjdMKnLvyzmRkj4v4ufIAnx7czKCsgXz+2aIGcV/q/EZJDvo1WEU710uv/4Ybr/uH6di35gWte1atWKp4iWVdRsLK7DxaMapehzbOTyucos1nVXRacZWr1639AGAk4IyOffH1X7OtuBAcJ+J22H84bWxsGmILurZJLPexUZ0ievbsydixY7nmmmuOKzEXDb2Yi/TQV2Ozlq+exomZvTg3+2wcooP2rgzGnXhFgzkmTS1g5dtT2bvjHyxfPZ0vDm2n+vsN3D15Xf3+pf3CXJ/6UihqnFw0sWRmVdRez5qPH454vCrm1E4U+h6yeqy4io3EYbRkEO21669DK5y05UDM5otUliRSRwoz1DHqz8KkqQWhGLlognHS1ALe/Xg+AVlEFI59y7iNjY2NjTGWg27uuOMOy5M+88wzcS3mWEX7wNZb6kwtd4JAt9SuYRYjdZ7X3guW4Hj737fwt3dnNzhUXyZEa7XTWn708WF69JY9IyJZ2rTJFbnZwRp3kY7RnzvaOY3WFktpEnWf/j3Qlp8xKyljNk8sls5oaK/DLMNZXZ9LlJCVANC8BTttbGxsbFoHll2ul1xySdjrbdu2EQgE6Ncv+KD5/vvvcTgcnHXWWWzYsCHxK21lRIuh06IVZVrxoNZrU4Veua+SrYe2keRwc3rngbRzpwNwxbhnG4iUtWtmAepbJ3BFnfi6eXxeg2pkWhej1g1rRmPESSTrlVXMSpWYnceK6zMWt6yZaDJzt0Y7vxUrXbxo19DptP9HqqujXbbExsamAa3J5VrrK8EXqG7yNai4nWmkuDs22/kSSSwuV8sWuo8++ij0/TPPPENGRgavvPIKHTp0AKC0tJQbb7yRESNGxLnsto1Z0DrUu/T6Dwpv2aTWg5syPthG68fyfRRVHwpmDitKqOm6Khie+ftYPtsUbGN1xbiFPPPqFXz2WbAd1qSphLZD5CSM4Hhz4RV09S2MdskxzanutxI7F01sqgTHN7znZpY7/Rxm5Ui0NefMRJyRmDMSokZibnCgkAHdc0IWy2gYJWFo3eiqa/YPC73WJrSxsbFpIWp9JWzc9XCdR6F5EAUnF/V/0LKoW7BgAW+99RbfffcdKSkpDBs2jMcffzxkwIJgn9eNGzeGHTd16lSWLFliOq+iKMybN4/ly5dTVlbG8OHDycvLS1jIWlwxdE8//TQLFiwIiTmADh06MH/+fJ5++umELKytYSWAfUTvB033LV89jb0V+/ip4meq/TV4ZR/l3nIkWQo90H8q/zns4f727tWsXNqPzFNHhW3Xijl99qTWDRqrFU0rTszKdUwZn9dgnPpvpPOpIsoss1R7DvVfrevY6nlWvzOzwXn18weLP9eXBol03dr7ropDo36+RkSLJ9Rfm3YNeoLbPNRbbW1sbGxaH75AdbOKOQBZCcRkEdy4cSMzZszg888/54MPPsDv9zNq1Ciqq8PnuPnmmyksLAx9PfHEExHnfeKJJ1i0aBFLlixhy5YtpKWlMXr0aDweT1zXpSeuwlUVFRUUFxc32F5cXExlZfP1Z2vNqEJBGzdnFEOncsOVi3hr92pG9r6Ur7YsZx+fkz3wKg5UHuTOvDMp95bjCXh44pXLOfnHArZl5UD+jzz04h/ISc/mr/wUEhdTxtcLOW1fVqO6atHQisFIdfDCkw7MO2YY8dY84zp90WLfzLYZ7fv9mD/zt/dmM/6q54F+IQGmonUxq++R0TzRBFZQ1JouG4Dtzhy266xzWnFnZrnT3n+jez+29AU2dPkTTtHu6WpjY2MTL2vXrg17/fLLL9OlSxe+/PJLLrzwwtD21NRUsrMtfDInaJ1buHAhc+fO5eqrrwbg1VdfpWvXrrz99ttce+21jV53XGVLJk+ezKZNm3j66ac555xzANiyZQt33303I0aM4JVXXmn0wlo7VmLojMqX6FHFQ0CROFRTTOeUjhTXHuXdDeHZo1ePfARJkWiflEmJpzRsv1lNtcbEsZkRyXIWKS5NP0ck12tToF3flZfNo1tKVwRBsFSqRO9O18fU6ccatQizgirqtIIuUv1Bo+vrfNr9pLg62ILOxsYmjNYSQ1de8wufff94k59fz/BT7iUztUdcx+7evZu+ffuSn5/PwIEDgaDL9dtvv0VRFLKzsxk/fjwPPPAAqamphnP8+OOPnHTSSWzfvp0zzzwztP2iiy7izDPP5NlnnzU8rsnLlixZsoQxY8bw29/+ll69etGrVy9++9vfcsUVV7B48eJ4pjxm0Frg9GJOH0MHQavdstXTcAoOuqV15aqrFnNCWg43j8/j5rpSHwBdkjuRk9qFFEcSJ6TWfyLIHftnHn4x+IkhN5uw9l5WWmhFQ2v10lrntC7b886tb3+mtd6ZWbIiJSFo9xmJvkhdJqxcB8DWom0sXzM9bB6tONPG2IGxO91onYMDhWEu7XiJ5oo1u48rl/ZDlqtQbLerjY2NTUKQZZlZs2YxfPjwkJgD+O1vf8vf//53PvroI+bMmcPf/vY3fve735nOU1QU/KTetWvXsO1du3YN7WsscblcU1NTWbx4MU8++SR79uwB4KSTTiItLS0hi2rL6BMgtKIukrXuQHURmUntWP7G/1BcewRREHnrg/sBGHbBLMr8FXRwZ3LUW8qhmqC7++rLH+FXVy9h6euTgg/5wc+ELE6NETzRRJWez7csRnWz6q1VarkSveVKXZ+a6WuUhGFm5YqUgGKF3u17c7jue22JEj16d7mREB0cKGTuixcH9021tnbt/FpUy5yRoNOKafW1kZXQIVyIrPgRhSTD89vY2NjYWGfGjBl88803fPrpp2Hbp0yZEvp+0KBB5OTkcNlll7Fnzx5OOumk5l4m0MhOEcczqst1/0+7eWPjPQ32RxJU+gf5H8Yt5v/2reOEjG58/PMmTus8gNpADYe/XcO5w2/lq0Nfc363cymuKeanip/JTG7PoerDDM05i9pALZ/88imndR5A19QubN0c3upKj1mh3JVL+1kqF2J03KSpBdww9lncDrfh9WkxEmPRyoZYmSNe9HFpZvXeIq1TFXWRjte7SWO5Bqvua3X+TqfdS6ory3a72tjYhLBdrrG7XGfOnMm///1vPvnkE/r06RNxbHV1Nenp6axdu5bRo0c32N9qXa6XXHIJl156qemXVRYsWMDQoUPJyMigS5cuTJgwgYKC8Afhnj17mDhxIllZWbRr145rrrmGQ4cORZ37wIED/O53v6NTp06kpKQwaNAgvvjiC8Oxt9xyC4IgsHDhQstrV3l5bcPCvlDvSlW/tNv1/GXNdAq/+TdfF39Dp5SOHKwqRFJkACq8FSgofPTJE3glH0drS9j/9Ur8ezbxn08X4gl4yDjwLT9/9SYf/LS+gTtUj94dqnXPasWc3tWqRW8dAnj53dsbXKvZfYlGNKtgY8RctOxe7fVqEzrMy7v0Y+6LF4deW3Era6/BSqarUbJHpMzbnl/Nwi/XRp/YxsbGxqYBiqIwc+ZMVq1axYYNG6KKOYAdO3YAkJPTMLQKoE+fPmRnZ7N+/frQtoqKCrZs2cL555+fkHXHJejOPPNMzjjjjNDXgAED8Pl8bNu2jUGDBlmeJ1pqcHV1NaNGjUIQBDZs2MBnn32Gz+dj/PjxyLJsOm9paSnDhw/H5XLx3nvvsXPnTp5++umwMisqq1at4vPPP6dbt26x34gYiCZ2cgZezdHaEry7P2FP6R6O7nwXgF1fvIJ39ycAJDmTQkJPZcj+V+jYfwwAmW7rn7pUwTF63ELDGm2RxIx+2/nnzbB8Xi252fXN6c3Wp2LFjWyUUWtUN87IqmV03SrRsm3n3/Qxb82LngRhJAqjdc/QZxdHsxyuXNqP7c4ccrb9AVmRoq7JxsbGxiacGTNm8Pe//53XXnuNjIwMioqKKCoqorY2+EF5z549PPLII3z55Zfs27ePd955h8mTJ3PhhRdy+umnh+Y59dRTWbVqFQCCIDBr1izmz5/PO++8Q35+PpMnT6Zbt25MmDAhIetOqMv1j3/8I1VVVTz11FNxHV9cXEyXLl3YuHEjF154Ie+//z5jxoyhtLQ0ZCIuLy+nQ4cOvP/++4wcOdJwnvvuu4/PPvuMTZs2RTzfgQMHOPfcc1m3bh1XXnkls2bNYtasWZbWGkuniKZixIg7+KVyPxmudPp37Mc/193LBcNnMXvye3HNF6mQrtHYxqLvRhFJtOi7bRjVoDMjFsuZ9hgr6Gv+GaG/rkjuVqvnNSoyrKfTaXNIdXWyXa82Nja2yzUGl6vZ38yXXnqJG264gV9++YXf/e53fPPNN1RXV9OjRw8mTpzI3Llzw+6tIAihY6C+sPCyZcsoKyvjggsuYPHixZxyyimma2lyl6sZv/vd7/jrX/8a9/Hl5eUAdOwYrObs9XoRBIGkpPoA7+TkZERRbBCgqOWdd97h7LPP5te//jVdunRh8ODBLF++PGyMLMv8/ve/5+677+a0006Lujav10tFRUXYV6K52cACpWa73jx+MTePr88gnjI+j25p2QgInP7LX2nvbsfKpf3o3/GUBlYnq+LLzIqlJ1GlRaq3Gnd5MFqTaknUFhSOtpZo4ihStmgkl7OK2hd39LiFoWLE+vm182itjGbWRv15zVzeVmL9jn67AE+gEjtM1sbGprXgdqYhCnHlY8aNKDhxO60nbSqKYvilCrMePXqwceNGjh49isfj4YcffuCJJ55oIJS1x0BQ4D388MMUFRXh8Xj48MMPI4q5WEnoXd28eXNUBWmGUWrweeedR1paGvfeey9/+tOfUBSF++67D0mSKCw0zxj98ccfycvL44477uD//b//x9atW7nttttwu91cf/31ADz++OM4nU5uu+02S+tbsGABDz30kOE+o4zWeFius9qEP/SD7cD+d9zzOAUHABnOdPbu+AcjxwWFnioojAQKxFabzsjNt3JpP+Y+X8Gu/FivzJgVReGxe0Y13Iyshvo1mq39rXkFrCiCNe/M4KX/uy1sDn3GqNGcVur6accHhWa/kNDTZ7Tqt1lJENGvWbsOo9p/egE46shDrO/yKG5HfL+XNjY2Nokkxd2Ri/o/aPdybQLicrn+6le/CnutKAqFhYV88cUXPPDAA8ybNy/mhUybNo333nuPTz/9lO7du4e2v//++0ybNo29e/ciiiLXXXcdO3fu5JxzziEvz9jK4Xa7Ofvss/nPf/4T2nbbbbexdetWNm/ezJdffsmVV17Jtm3bQrFzvXv3juhy9Xq9eL3e0OuKigp69OjBm5tuJjXdHdquF3WRapmZMe7SeZR4SxEROSmzDz9X7ScgBzjqKaHSV8UZWYNo50qnJuDh97/+W+gh/8qbuUiyRJW/io2bnub6sc9S4i2lU3JHxl/1gqFFKpq1p6nJzYZfPRRZxJhhJDi113DB+bfz6eZnueHKRbxcJ+isCFqzEi76MbFm7Krr03cOUUuiRBOrZnObuXPV7R37zyDF3RNRcNjuVxub45TW4nK1iY1Y7mNcgu6GG24IezCIokhWVhaXXnopo0aNinnBVlKDjxw5gtPppH379mRnZ3PnnXdy9913G47t1asXl19+OX/5y19C2/Ly8pg/fz4HDhxg4cKF3HHHHYhivcdZkiREUaRHjx7s27cv6prVGDpV0O3KL4y7nMbIi+/j0/2bSXOlcXTXu0i9zqZrWhf2lf/M2TlDKK4uZmDn0/js4Of0ateTwzXFnJtzNlsKt/LyHb+E5nlrXgEvu89iYNYA9pT+yKCsgfxc8TNj+4xiwtVLDC1OWtGgtTQmyupoFSPhq7dIGRGPCI0UU6ed08yCN/+mjxk68W3TjhCxlELRHqMfE0usYLT9nU67n1S7g4SNzXGLLejaJrHcx7hcri+//HI8hzVAURRuvfVWVq1axccffxwxNbhz584AbNiwgcOHD3PVVVeZjh0+fHiD8ifff/89vXr1AuD3v/99g4SK0aNH8/vf/54bb7wx3sth076H6T8ohxG9HzQUdmbWum2Hv6Z9UiYeyUPWaeMorinm9KxBHKkt4VD1Ybqnd6NrahYOQaRXu+7sKfuRUk8pL9/xS5hw+KTr/9Cu5ggFX/6N3GxYur+M9APfMmHWj1HrooH1IshNgWqlWrdG65IM/mtUdDgSU8bnIckSBSXf43K4+ejT8CQdM5EYSRDVx74BzAq5V43Qi2Wrlje9mIs0p1ktQbPrkOUyFDIRcJheo42NjY1N2yUuQXfiiSeydetWOnXqFLa9rKyMIUOG8OOPP1qaZ8aMGbz22mv8+9//DqUGA2RmZpKSkgIEs0r69+9PVlYWmzdv5vbbb2f27Nn061f/QLvsssuYOHEiM2fOBGD27NkMGzaMP/3pT1xzzTX897//ZdmyZSxbtgyATp06NVi7y+UiOzs7bN5Y0D6AN+17uME+bQLAzeMXs3z19NDrkp3vcsKgiXRwdaR3Zi+qfJW0c2dwXs5Q0l1pfFdSwBFPCb3b9cQvB1h5Xykr+ahBPNXi106md0ZPZt1VSI/nB/L1ozLDrvrW1NWaCHKzzZvJx0qk5INoBY9zsyFtaEMXvCrmtOtUhZG6TX3v9OfQujG1BMc1jGMzE3GRrlFrxTNKlNC6ZI2OiZbtWi/yXsA16I8kOdJtK52NjY3NMUhcgm7fvn1IUsMaV16vlwMHDlieR42Bu/jii8O2a9N8CwoKmDNnDiUlJfTu3Zv777+f2bPDi/nu2bOHI0eOhF4PHTqUVatWMWfOHB5++GH69OnDwoULyc3Ntby2WNGLuAb7snIYEWHcFb0uQ0AIPmwVQICspGAQZ8/07oiCQJ+Mnowdv8jQwvTe6ttRD500tYBf8gsYdlXDB30siRFWSJSYUxk9bqFhXbpo615RBOiSDhrs17ByaT9Whl6p1sGGwtFoPjXpwWoJlMYSXEPDzN5oLnT9+vyBEtyOVNtKZ2NjY3MMEpOge+edd0Lfr1u3jszMzNBrSZJYv349vXv3tjyflfC9xx57jMceeyziGKOYt3HjxjFu3DjLa7ESNxcL/QflNHBbmsXXNRANQv2/2tprKkbFb8U6q8tygxg0lbnPVzCid1AcaK1U27KaN17ODFVU6bNB1X1W0B976QV3scHE5aoXYMtWT2PS1NjW3BgRZ8WiZzZeRRWhRpmvests7/w5HBy8jCRnetxrtrGxsbFpncRUh27ChAlMmDABQRC4/vrrQ68nTJjAtddeywcffMDTTz/dVGttc6iJBSN6PxiXWNI3h9ejPrBVi5Z+jCrYICgId+UXhsaoomZFUfzrawrU9am13VSMarGBcUcJFfXjwuSxCxucx0hAqfdKW9LEjCnj8xptkYsUMxftfNqadpFcrep+tYOET6qw69LZ2NjYHIPEJOhkWUaWZXr27Mnhw4dDr2VZxuv1UlBQEJNV7HhAFXX9B+WEvrTbox1rZKFT0Rbd1WZDav9VrW96sZebXS8EI7mLmxNtfTitSKlPmJgVqrNmJLhys/Ut1uqFy6BzbjLsm6oVb0YxeI0lN1ubUGFcVFh7Ler6Vdev9n2bMj4vFGunbtcKdKP59IwtedpuCWZjY2NzDJLQ1l/HE2rZkv0/7earkj+bjhvR+8HQ99Vbp5E2NJggsS0rJ1TqJBKb9j0cNk590OuD4Vcu7cdb8wr41UNq8d/IFjfV1doYy5yaVJDIxAiIXoLj0gvuYsbvV4dtU8dfesGdKATd+aWeMjqmBBNNSn3lbDv8FT9/9abhufQZomqRY6N4PiBUssRorfo6cyqxlrRRRazZ+cF6PJ+6zsGBQvafuYxkZ5qdHGFjcxzRmsqWVJQUUltd1uRrUElJa0+7jtGNKK2RJilbsmjRIqZMmUJycjKLFi2KONZq94Vjgc0/P05qupsRvR9sYOnSijmwbgHatO9h09In+oK22nipFUWEiTmzWnL9B+WwIr+Q/lmWlmOIdg1FJ98NRU/GP1kd2k4HeoGl7rt8xL3c8ru3Tct0bPj0aUZdeB9eyYekSICCpEgc9ZSi0PCzi5nw0VrIjLNc6483E6DqPYpWn9BMEE+aWmB4fnWf1uKnLe0SqXvEdmcOmVIlyTG0wbGxsbFJFBUlhfx1/kSkgK/Zzulwuvnfuassi7q8vDzy8vJCsfWnnXYaDz74IGPGjAFg2bJlvPbaa2zbto3KykpKS0tp37591HlfeOEFnnzySYqKijjjjDN47rnnOOecc+K9rAZYttD16dOHL774gk6dOkWsFycIguWyJW0ZfWFhPVpBprW0aEWfKrT0D3wjd6xeHBoJBKPjIhUJNkrcaEnMRJyWm658nhf/b2bEOnI3Xfk8Rz0lvL3+wQZjrJxfP59+bUaFg83i4axa5SJZOaNZcVW01lujoszqGgcHCjl81is4RJeleW1sbNo+rcVCd+iXXfz9yaarOGHG7+5eQdce/S2NXb16NQ6Hg759+6IoCq+88gpPPvkk27dv57TTTmPhwoV4PB4A5syZY0nQ/eMf/2Dy5MksWbKEc889l4ULF/Lmm29SUFBAly5dTI+LxUJnOYZu7969odpte/fuNf06HsScESN6PxgmuvQB/Zv2PRwSc1oLmjZODiI/vJetnhaawygeTEUr0tRCx0ZiTvtvayJSgdwX/29mg31aCxSAKIi8vf5BBp11Q8TzaBML9BidO5KYM4qDi6driBHR5tGfy8yNrF2jX/YmZG02NjY2xxrjx49n7Nix9O3bl1NOOYVHH32U9PR0Pv/8cwBmzZrFfffdx3nnnWd5zmeeeYabb76ZG2+8kQEDBrBkyRJSU1P561//mrB1x5QUofLwww9TU1PTYHttbS0PP9w6AuybG61gA2PBpAo+vYjSjjVLUNBuX7Y6GIOnTbTQZtRqv1ePNRobiZYQetFKeGiL7+oL7WpZvqa+aPNlI+7mxiufY+DQ/w1tyx3zjKkbUy8O9fObdYEwW3Mk4R1pnx4r4lBfn87sWrY7cwhIlXa2q42NjU0UJEnijTfeoLq6mvPPPz+uOXw+H19++WVYhypRFBk5ciSbN29O1FLjKyz80EMPccstt5Camhq2vaamhoceeogHH4zN1XWsoQqpEb2Dr4cUT2NFfiFgLnZjEVmRxmqFn5k4HFJcGMp+1c+nWvLMXLFWEyAilVuJRKRkCKPSJWbxaxMue5g9ZT+iFvXrkNyBjgPGoCgyK967o1FriqVcidG9GhwoZLszJ2yf2T3V3m+r9zJSD1x17SU7n8I16GGS7Fg6Gxsbmwbk5+dz/vnn4/F4SE9PZ9WqVQwYMCCuuY4cOYIkSXTt2jVse9euXfnuu+8SsVwgTgudoiiGGXJfffUVHTt2bPSijhVUQZU21Ny1Fw+qe1cfV2cVrZjTzgdEtODFks0ar7tRPbdR8WQIxonFci8FQUAAspI7MqLb+YztPdpwXCLfn0QS6X4b3SMzV7H2GPXLHziEJAcSt1gbGxubY4R+/fqxY8cOtmzZwrRp07j++uvZuXNnSy8rIjEJug4dOtCxY0cEQeCUU06hY8eOoa/MzEwuv/xyrrnmmqZaa5tBdb/GK7iszK/9NxJWhJ8+vk9vncvNNu+VGoloiR5G7MovjNiXVM38VDGzlr29/kEEBEQEBEHE7XCzs6SA3RV7Y7qGpmC7MzHu7EjuXiOXtH5cya4XqPUftV2vNjY2Njrcbjcnn3wyZ511FgsWLOCMM87g2WefjWuuzp0743A4OHToUNj2Q4cOkZ0dQ+xNFGJyuS5cuBBFUfjf//1fHnroobDWX263m969e8ftYz4W0QouvagyKnMS79yRUGveadcQ6Vi9+7X/oBzS6ta6Kwarm5q5q53PLAtXj1Hv2UlTC3RtwayvRQD8coDDtUc46ikNrU+LFYtitPp48RDLnFYtpEY1CtXXDc/9BM5B80hyZNh16WxsbGxMUBsoxIPb7eass85i/fr1TJgwITTf+vXrmTlzZsLWGJOgu/7664FgCZNhw4bhctllD/Roy4RoRZwqovTxa40Vdmao82rPpZ7HyjnV6zCrhxcNvZhrDKpA0XdHgMiCSEFBqIuhK/WW0T4pE5fDTQkNOzDEso5EcM6whQRkhcsuctAhSeRf70f/pVaLOKvfazEqZqytTaeij61bubQf0xcdwEcP3A672LCNjaIoKMjIioQoOBDqHFn278bxw5w5cxgzZgw9e/aksrKS1157jY8//ph169YBUFRURFFREbt37waC8XYZGRn07NkzFHZ22WWXMXHixJBgu+OOO7j++us5++yzOeecc1i4cCHV1dXceOONCVt3XEkRF110Ueh7j8eDzxdeILA5aty0VrQiRiugVFSB1dTttiLNb7ZPK/TUGnW78s3FnFZEqOO1/yYSM+EWWWQFXYm1X8wg9bQ/8tOOfxqOSlR5kWgMDhSiXPAG5T6Zotpg+60jXhmXCOcOW8iW/8yKOodeyOkzZbXFjMH4vukteItvg7fmFfBx18cQcdoPLpvjEkWRCcg+ZEVClo/ipBav4kIRkhCENJxiCk7Rbf9+HAccPnyYyZMnU1hYSGZmJqeffjrr1q3j8ssvB2DJkiU89NBDofEXXnghAC+99BI33HADAHv27OHIkSOhMb/5zW8oLi7mwQcfpKioiDPPPJO1a9c2SJRoDHG1/qqpqeGee+7hn//8J0ePHm2wX5KO/V6RamHhb3cXcELHTD776ZGY5zCy4LUGtMIulsLDVsVcpGLHRkTrtKBH75psqtZkgwP1a+95xUq8koJXUuj2/W2Gwmt7z2eo8hv/uglATqqDfpluXnl3uuEYI4yuTd8mDqL3elUtd7cuvgGH4LIfWjbHFIqihHoYi4Kjwc+3oij4AqU4OUyXHQ+HxbkOGTqdEo+XioATQeyAy5GOS0xGUrwIOBCFtvEhqLUUFm4LnSJaE7EUFo5L0M2YMYOPPvqIRx55hN///ve88MILHDhwgKVLl/LYY4+Rm9v8VaCbG1XQjb96GYuWjGPlBzNjtkpFi2nTCqtoblIr8XHqOKvuUK3FTcWou0Ss121VJMYq5LTkZsNX3a7nm22vxHV8NAYHCpGHv4FHUggoCrICshK0CToF6JLi4PPPZoXGnz98IQdqIn/QEQUY1MHN6vW3Wl6HmVjVWk/1Vjp91wst82/6mKIhL9mWCJtjBgUFSfbj8R1EUhTSkk4I+9ASFHsyVd6fKf/uecM5rr70IQ7XlFDh81DilZBIQlG8SEoyKe7uiKIzFN7RWmktgg7sXq6x0CS9XLWsXr2aV199lYsvvpgbb7yRESNGcPLJJ9OrVy9WrFhxXAg6lcl3bWVn0VfkZoOjx1y2/jLf8rHahIVoRBNqkfZr4/bUIsNazMSiUQFkvbjTE81Cp3fLNlXrsRVFMLBb4ucdHCgk6aJ/cKhWQvLJhmMCChyskeh71jOcc+AOVhTB5s9m0XPw0xHndgiQ7Ij9oaBmIGvFr7btnFFHCzNX9dwXL2Y+N7L/zMW4HemG1gwbmzaFAt5AKR3d1XgkP9W+AC5HFi5HGoLgQFYkanwHTcUcwL83zAPgutFPUOWrxi/78Uk+fqosozxQQYqrI61cz7Uq2nXMabMCqzUTVx26kpISTjzxRCAYL1dSUgLABRdcwCeffJK41bUhVhTBq+/OYPAJc4FwK5SZaNmWZS5oduUXBjNL68qI6L+MGFJsvF0tN6Luj7WcirY2Xf9BOUwZn2cq2qyINCvFi6HxsW2Jts4NDhQSGP4GhTUSkgW7tldW2Nr9mdBrZ5Q/+KlOkTctJEdAfSkZaFhORtvSLJJlziwucbszhyW3/hOPfz9+ubYuSNwubWLT9lATHAKyhySHg94ZHSndtYTD3zzCga/u46Kiu6n1/ULZrkWW5hO/uofstK50zziB7hkn0C2tHYJSgqT47fI/Ni1OXC7X008/neeee46LLrqIkSNHcuaZZ/LUU0+xaNEiHn/8cQ4cONAUa21VqC7XNzfdTGq6OyRO/mfU84iCwD/XzQiLE4vHHavPxIxH4GiPsxLbFo3GZL5GQitOEjF3ouPmBgcK8Q17nUqTGLhIdE9z8p9Pbyc3GzblmFvpeqU72bTpdtP96jVpEyHMrtGoU4dR7BwYu15Vbnn2IgQxhySnXdbEpm2hxs35A4fIcFay56vlCfu7MGV8HoqiUOYt47uSnzlQm0KquxuiEJeNpFloTS5XG+vEch/j+um78cYb+eqrrwC47777eOGFF0hOTmb27Nncc8898UzZZinYWRQmhP71/kzyD85n0uXPM39m8JfGaryaFn3/VSsY9QY1E3NGVjor54n3OCO0600bmseKoubLOI2VAd1zqAnE9wm82BOMnYv0IHGJ0DnZYbhPe5/UB5L6ZUb11uB9tFKSxUzMASy5fSPIB/HLHtsCYdMmUBQFSQ7gDZTjD/zM4W+fYc9Xy4HIvzM3jVts+Rzq36kMdwZdUjMRlCpkxe66YtOyxCXoZs+ezW233QbAyJEj+e6773jttdf46KOP+PbbbxO6wLbKzqJHeWteAWd3f8DSeK0osuISNRJRsXzyNIu504pIo3MsWz2tgegys+xp59CKEnWbdr2tVcip/HDiQktuViN8ksLQYQvJzTYPs2nnEln1Qb27VW+FM6s/Z4Qq+tR7aiT0o6F1xXZKEvAFKmKfxMammVEUBUnxU+vbz+FvHuHwty+E7Y/0AefFNdOjjtGyfM10REFEFAQUFOzPOzYtTVwuVzO++uorhgwZclyVLZm/dDyDz+nZYL/qZp0/sx3/WnUbOw5YT5aIhF48qX981FZjWmGkPtgTWRMulmQGo/Ih2nivxvR7bapkCiNys+GL7s9QG6+iIyjkBECfRiEAGS6Rb/472/TcKkalUIwEXjS3UjTXq1HyRKcBd5LqzrHdrjatGlmRqPX9wtGdzzV6LqsfosZd8iDbiw/g5QRSnO1a7e+I7XJtmzS5y9Wmnn//ta+huFBF1NznK9hxYD4Dc+5nWC9r1jowt9JpPz1q46SM1qC17Jj1dLWaIKGO0yZHRCI3mwYZvOofRiMrX6R5tDS3mFPxNkLMQbCciV7MJYkCPdKcfPPf2QwOFFq2DKjo4+kai1GLsPrv7T8VNq0bRVHwS7UJEXMQHtYQ6fdszUcPk52aisd/BKXBb7mNTfNh/5VuJPc8VWlaJPfFR88LfT975npKvbJlMaJ3iarZrWoXAL2wU1/rRYH6B2nTvocN3axWChrr6+Gp6N2yWldtpAzeWNiWVZ9Va1VMJppEJldAsDRJt1QHp3Vw82ldssTQiW9TvXWa6fsH8Ym3RAk+BTs+yKb1I8lVYQW/48Hod0afSa7ny/8+R6bLiydQZcea2rQYtss1TrQu1+QUl2WR0a/r/fz+188xaWpB1GP0Qkpv1dJnMurbPlnNbjU7Z6RtsWLUHcKoHp36x9RKfT599vCQ4sKEiy8IWqnmv3QLR72N+/QtCrBv250A/O+Vi3EIgBAsR6q+b4nK8NVjdl8iJUSoTJpaQKf+00hJ6oMoGCdu2Ni0FOojTJK9CPJ+DnwT/Ps3OFAY1vEhXrQhDJHCGQYHCvlp0B9Jdvduld1WWpPL1VNVhN9T3uRrUHElZ5KcnkB3RjPSZIWFf/WrX0XcX1ZWFst0xwT9BmSHypaYCacXHz2Pm+7/HICCQ48C7bh29At8ddA8rk7bR9VsXq2Q077Wi4LGCDKrx2qvX1vIWEUr3vRWvSHFhQypi69TszOtkJsNK7T1/iwfGRuTphbQO8NFTcAXdxydUwiWL9lX9/qv/xfe3qspxZx+fzTRq4+lW7m0H/NvepADg5eS5EhvdQ8qm+MXtTRJrb+YMSVPsXN/IRd3z2FFEWFiTl/yx+oHv1jKnGx35jA4/4/sGfgnMpK64xDiqtt/zOOpKuLzt65Flpqv9ZfocHPer96wLOry8vLIy8tj3759AJx22mk8+OCDjBkzhpKSEubNm8f777/Pzz//TFZWFhMmTOCRRx4hMzPTdE5FUZg3bx7Lly+nrKyM4cOHk5eXR9++fRNxiUCMLtfMzMyIX7169WLy5MkJW1xbwii2S32tijmVuc9X8NXBuri6ng9ELRystWhFsraprlftQ33K+DzLblUId8HGWoBYLVy8osg881U7p3aM6tJIG5rXQAyaFUw2suIlyh27cmm/sPvY0S1yQpozrhgFlxisMfdJhBpzWnEeaywdhD+oIj2A9PsmTS0I+wIMEyPmvngxfqkM7ALDNq2EYEZrAI//AGNKngqJOKPkIZVovx969DF00Y7d7syh4rvnqPUfQVYk2/1qgN9T3qxiDkCWfDFZBLt3785jjz3Gl19+yRdffMGll17K1VdfzbfffsvBgwc5ePAgTz31FN988w0vv/wya9eu5aabboo45xNPPMGiRYtYsmQJW7ZsIS0tjdGjR+PxeBp7eSES6nI9ntAXFraCkRWvX9f7ae8WedlCQ3aj0iZ6V51RQdnmiDnTu1G15zWy2GkxE47RWqMZicZEFxQ2Ysj5C6kJyHglxbSUiVOAZKdApktks6anq1W07bysXpPeNQSxWSW07letuFOZuWgEstgDtyPNttLZtCiqmKv2HqD8u8QkQZhh9PsX7XdycKCQn89YRKqrU6v5XWktLtfKIwVsXX1jk59fz9DxL5HROXqIiRkdO3bkySefNBRub775Jr/73e+orq7G6WxomVUUhW7dunHnnXdy1113AVBeXk7Xrl15+eWXufbaa03Pa2e5tlKMhFXBoUfxb4su5vRUb51m6GJVM0gjWXlG9H6QXfmFppmv6hh1n9W6eEZiDswDiocUF5pa39TjjM6tHtNUSRLRLGTbNs/iu613MOzgnYwovJOcVAcZLpEUh0AHt8iIwjv5cdud7PzvHXGJORX1fbUqUPVxPrEKW32bMH1rsOdv20S37VMIyD7b8mDTIqguVq9Ugce3n3Fl4WKusQkRRlgVc+rvzMql/djuzMGhlBKQvfbvShtHkiTeeOMNqqurOf/88w3HqCLZSMwB7N27l6KiIkaOHBnalpmZybnnnsvmzZsTtlZb0DUhRhYkbR9T9Xu1Vty1o4NFMI0Eil5kqNmfRm7W/oNyQrFoRjFVm/Y9HOaKHVJc2EC86bNirYi6IcUNY+QiYSXxIdpxele31iKVyJIeRvzqoX786qF+bPlsFt/+dzYFX9zBV1tmN8pCmJsdfK/jncPoYROLuFMFnN79qrLdmYM3UISsHPuJTzatC0VRCMg+vP6DHM5/mJJdzzcYs92Z0+S/91ZiUAEO71zCpYfvxydVB3vK2sKuTZGfn096ejpJSUnccsstrFq1igEDBjQYd+TIER555BGmTJliOldRUfCHpmvXrmHbu3btGtqXCGxB1wTo3Y9awaG1KuktTL/+1SImjXo+otVKi2rBqd46LeyPzIjeD4ZET6Q/PmrCw7asnJB4M4u3sxKHZybQ1KLHWnblR7bOmWHlmEgxNEbo91tNTtDGnbUWEuFu1iZFGPV57fX1HGr9h1EUu+aWTfOgKAp+2YPX/wvdv7o3tN3o572pQy7MMPp7sHN/IYfy51HtK0RS/Laoa0P069ePHTt2sGXLFqZNm8b111/Pzp07w8ZUVFRw5ZVXMmDAAP74xz+2zEI12IKuCdBncQKGyQ5aduUXMvf5CnYWPkr1wOcbPETV4sFaV6m2ob3+vOq5zNyHm/Y9HLLi6cWWOr9RokS86EWdGiMWrb6Tfn2xJEKof9ij1XJrqQeAEWrLrpVL+8WVHKFFLVaszhPLnNoHkz5pYrszh15f30Wtv8x+QNk0GcF2WgqyIuOVKin6ei4lu/ISUoqkuVDX2uvru/D4fsYTKCMg28KuLeB2uzn55JM566yzWLBgAWeccQbPPvtsaH9lZSVXXHEFGRkZrFq1CpfLZTpXdnbwwXPo0KGw7YcOHQrtSwS2oGtm9MLOSOgVHHo0ouVHdYeqQfPVW4OB8+o8aiC9FiPLliqOVGGnHWNWiLglieT2teLmbWpXTCKZNLWArasmAPVu2FgZOvHtBnOOHrewUUIxPEboED6pxn446VDda9qv451Y7oU6zheoptZ/FI/vZ07YfkszrLLxGNV1vGnc88EPQfkPUvzNfPz+n/AGKlEU2f7ZaEPIsozX6wWClrlRo0bhdrt55513oiYr9OnTh+zsbNavXx/aVlFRwZYtW0zj8uLBFnSNpGCndfNOpCB+/bb+g4KxINeMep7+g3K4eVwwTs5onN7CpMZgaePkIsWrqfu0As8sGSHWUiZaNu17uMEcWkuhGaoLVD1eux4t6j3Tb1PRxpJpt7dWobfdmRN6L6MluhihJsiowhDChaIWbUC3EUb7Du38C92232zH09Whxnj5pFo8gVI8gaN4A2X45Vqk49QqExRnMgHZi0+qwi978EseArIPSQ4gKxKyItf9KyHJAfyyhxp/MYfy53Hk2wUc2flcA6uclYLYLYH6QVz7u+qoK8atXkPxzjwOf/MQtf6jKNiirjUyZ84cPvnkE/bt20d+fj5z5szh448/Jjc3NyTmqqurefHFF6moqKCoqIiioqKwpgqnnnoqq1atAkAQBGbNmsX8+fN55513yM/PZ/LkyXTr1o0JEyYkbN122ZI40XeK0JeGUH+hVUFllP2pbleL60LQDam3jJ2aHSxt4vsymA2rCi9tORB9pwW9cDErEByppIh6zJDiwtC6opUgsYLWlasVZUbuV6210ag+XbS16K2f2h6z+thGdb6W6BVrlVgLEJuNnzI+j62rJjSw4kHDGEJ9XToVddvURf9DiqtDqynP0NyomZeeQCkOSnHiJ9PtJMXpwifJVAckqgMOJKEdbkcmTjFY5uhYvl+KoqAgI8l+fIESen59l6GrNFHdHNoiwc4Sj5Hszm6WzhJ22RLrZUtuuukm1q9fT2FhIZmZmZx++unce++9XH755Xz88cdccsklhsft3buX3r17A8Hf75deeokbbrgBqC8svGzZMsrKyrjgggtYvHgxp5xySsS1xFK2xBZ0caIXdGBcg81IHBjt01uJtKKtdtDz1ARkuqU62fzzI6ZCZld+MGZKnyShou7THqudSxVX27JyTPu3JsINqxWIZtvVc2qtd/EISa1I07cJ25aVEyYo1QzZ1hRTp8foAai+ryqqKz6S+NNnr+rnMzrOzCryh4WXk5bUCwHhmBYpWrR/Nr2BaryBw3RO8tMzI5Nkh5tkZzLprjRkRcYjeSn1VFBUU85Rr4JfScflbI9bTAaM71drvo/1166grj8Y7xZMkpGUAL5AJYJSxVGDTFQ9kX4WI+07FhgcKOTHQU+QkZSDoDrMBBBMfi4aQ2sRdG2hU0Rros0IugULFvDWW2/x3XffkZKSwrBhw3j88cfp16/+wbFnzx7uuusuPv30U7xeL1dccQXPPfdcg/RfPQcOHODee+/lvffeo6amhpNPPpmXXnqJs88+G7/fz9y5c3n33Xf58ccfyczMZOTIkTz22GN069bN0tqNBJ1K/0E5oXZfu/ILw8Sa1jqkF3Fq6yutcDk1+35S82eajtMKE23JDqNxWguY1e4RqriKNl67jsZa8NRzqyJFW2DXTIyarQXMhaBezKrlY7TWztYo7vSFpCMVlY4HvWjUPlS1ou691bcxZvwiJk0toPNp9x8XVrqQC1HxIcs+JLmKZLGSHmlpnJCRRbukdjgEscEDWVIkagO1lHrKKa6t4IjHS63kRiYFp6MdouDC6z8KgkKyqwsiYqu6l+pjQkEOupUD5QhKFYIgoCDiQOLykuDPn/o7c6yLsUSRmw3vdrgVUXAiiqk4xVQcojvhH5Bai6ADu5drLDRZL9dEs3HjRmbMmMHQoUMJBAL8v//3/xg1ahQ7d+4kLS2N6upqRo0axRlnnMGGDRsAeOCBBxg/fjyff/45omgcAlhaWsrw4cO55JJLeO+998jKyuKHH36gQ4cOANTU1LBt2zYeeOABzjjjDEpLS7n99tu56qqr+OKLL2K6Bm0vV5Vd+YWmYk4VGUN07Whys4PWKOeQxex6dzpXjXyOjG9uheKZYZaj/oNyYN/DoBVpdaVHKAq3NlEngkb0fhB6h1u7RujEnV7c6MWfmUhSt1sRWuo+7b0wE2T0rn+tFShaoad9rZ1Hu84VRZCL8XnCXK+DcuifFW411RbqNXLTtjRTxucxetxCJk2t3xZLL1wjVi7tx0r6Mf+mjxk68W2WrZ7WQMytWzOLZaun8Zc1M4Dgth5fzeTQWS/jFKx1TWlrqC5Eb6AC5BJSHH5SXSLt3clkpXajQ3IHkhxu0wewU3CS7k4nzZVGl9TOVPmqqfBVcqi6hF9qKpBx09ldRUCBGp8XhAxcjnScogta0PKpXrdfqiUglSNSS5IYoGjn8gZjV2i+1wp/W9hFZuf+QkqLnmPEsDs46jlKue8QtYF2uJ1ZOMWmd8W2BMnp2W1WYLVmWpXLtbi4mC5durBx40YuvPBC3n//fcaMGUNpaWnoE0V5eTkdOnTg/fffD6u6rOW+++7js88+Y9OmTZbPvXXrVs455xx++uknevbsGXW8vvWXapHTYvbwVwWC6gZU/zWyxmlRj9FbqiBchKkPda0gUa1c6mtVJBpZBY3EndZCZxZTF80iFm2M3sqnnkcbR2dkMdOKXTPBaPS9Nn4xJJbr0L932jZmLW21Uy1xQTFXELa9sdY5o3Opc2pj6fQib/5NH7P/zBdIdrZv0w+gektUMC5Olv0AyEj4AiW0d9XSKyOTjsmZJNW5Vp2iMyZriqIoLF8zPcwCPDhQiHD+fLZtfSE0bnCgkJ9PfxJRTMMhJuEU3SG3nIICKPVuujoSee8VRcEv1eCXjnBFySJLreP03UYivbZpyHWjn6DCW8neimKKal2kuE9AFJwJeV9bk4XOxjptxuWqZ/fu3fTt25f8/HwGDhzI6tWrmThxItXV1SQlJQHg9XpJS0tj7ty5poX8BgwYwOjRo9m/fz8bN27khBNOYPr06dx8882m5/7www8ZNWoUZWVlhj/sXq83lLIMQUHXo0cP3tx0Mz/tPWqafBAthi43GypPe46Mb28FaOA21WLFlalNrtAKuEgYiTkjoaaO1Z5DFY9q3B0Yu3P1gjNSgoM+e1VfR04rbFWMYvK0cxlZBPX7tOfTCm0V7WsrlrpEuUBbEvUhbJRhO3rcwtD3k6YW0LH/raQm9UQU2m7yfLATQQkCNbiEAEkOBUEQcAjQMSmZbmmdaJ+ciUsMhlksXxN72z4zrLj4Ow2YhUIyJTsfq3t9K+BCEJw4xFRcjrRGu+pUq5xPqkGRCineubRRa7aJjZuufJ4STynfle7nsCcFt7NLUMw3UtTZgq5t0iYFnSzLXHXVVZSVlfHpp58CQYvdySefzI033sif/vQnFEXhvvvu4/nnn2fKlCksXWr8h0a96DvuuINf//rXbN26ldtvv50lS5Zw/fXXNxjv8XgYPnw4p556KitWrGiwH+CPf/wjDz30UIPt85eO57Zr/hK2bdO+hxskPGgtQLvyC5l4+fMRrXFmGIk6fQKBWrJE3aZv8q5a5tT9euuUij5JIVISg367mUjUXodeUKkCUb82vXCD+uxXrajUfq+9V0bnV/erwlA9Tyzxf5FEnVYANYWgawlrh3rOwYFChk58O2QhVK10MxaNAEdv3I6UhJ0zmEEawBsoB8WPILoRhWREwQEIiKIDkWBZiMaKGL9cixQoJDtFIf/LxhV1joc/jFvMXxopEDsNuA2HowOi4ARFQRTdIYGtteYFkxgkgu7cYMyfavXzBqpAOULxt4sbtRabxjH+kj9ysPoIB6p9SEIOyc6MRv2M24KubdImBd20adN47733+PTTT+nevXto+/vvv8+0adPYu3cvoihy3XXXsXPnTs455xzy8oz/6Lrdbs4++2z+85//hLbddtttbN26tUEjXL/fz6RJk9i/fz8ff/yx6Q+6mYVOTYowK1OisnJpP/6x8lY8shKMjdOgjVeLFAOlFV6qSNFmoGrFm+oq03eTUFFFmpG1TEUvFKPGvWFcUsXIEhbJZaxFvSb9fdGP1Y+LtkajmEAzF60efbkTK8KuLVvpoGFixPybPma7M4eVS/uxdvXtlHnLuPZ/XuHmZ8eT5s5OmOsv6ParxeP/iRTRQ5rLhV92EFCCaQd+xYVMOxyOdJxiUoNkBCvrUBQFn1SDLO2neOeyhKxbSyylORrjNleFtZHQzxowE5kUBCEYkyfJVZTuCla97zjgNgQcyAQQkTm684UGx1s9//HiUm2uciu/Hf0ke8v38125lxR3bxyNcL/agq5tEst9bBW+kZkzZ7JmzRo++uijMDEHMGrUKPbs2cPhw4c5cuQIf/vb3zhw4AAnnnii6Xw5OTkNmuj279+fn3/+OWyb3+/nmmuu4aeffuKDDz6I+EOelJREu3btwr4gmBRh5tJU+7VOvPx5XnlzJq6vZ9IpyRESCmlD65uwV2+dFjWgPTe7oSjRWse2ZeVQvXVaqIyFmTtE27dVK2D0Fixtt4i0oXmmLkvt+Y2269HPEWm8KtyMBJzROKN16M+h3W62LZqlzorrVftz0dg2Xi2Feg36B/V2Zw5/GLeYSVMLuGL8s6S50oI7lJo6S09iEAQBlyOFFHcf/EIPKvxOslLcDOzYmbO6dGdghwyyk8tRAnup8f5EbaAUn1SFN1CJJPssFW2VFQl/4CB9MpIavd7BgcIGr41q/SUao5Iy2m3FO5/n6M4nOfLtnxh99NGQmAMo2bmIozv/TOnO58LE3M3jghY6o79vRtuOFTGnv7bcbPN70NRFyV9bdzc5aVlkJUl47ELENlFoUUGnKAozZ85k1apVbNiwgT59+piO7dy5M+3bt2fDhg0cPnyYq666ynTs8OHDKSgI/+Py/fff06tXr9BrVcz98MMPfPjhh3Tq1CmuayjYWRRqbn/Dze8DwYf8yqX96Nv1/zGkuJDU/Jkhq5zvy+kh0aCKL6uo2aSqQNGKOqP4MVXkrCgKnkv95K8er+3XGq2ThLb8iRb98aqlTW/9CsvwjSKetGJNX19NjyqE9VbEThm/MXWzRkO9P2ZC0yi+7ljFLD5q5dJ+jBn/LFde+hx//9etjL86KO565T9AQPYaHxQnQVGXTIqrEzi683OVn+LacgKyxAkZOQzsfCJDsnLo395JZ9cR2jkKaecsJBDYS42/xLR3ZtD656HWX0jJriX8d8tzCVmv9nd6uzOHrasmMGV8XpM+/LX9drVdPfTZpmA95m1f1X7T8cdK3JwqyrRf27vdwiln3sIpg29hwJBbDI8b0D2Hz7r8oUF8byLe48GB8Pjgt9bPpU+7LNo7y6j1HSAgVyErki3sbBrQoi7X6dOn89prr/Hvf/87rPZcZmYmKSnBOJyXXnqJ/v37k5WVxebNm7n99tu54YYbePrpp0PjL7vsMiZOnMjMmcGYtK1btzJs2DAeeughrrnmGv773/9y8803s2zZMnJzc/H7/fzP//wP27ZtY82aNWE17Tp27IjbHb30gj7LFeCs7nOpDiis+mAmudngOmsxrjrreM0XxrExRu7EaGhjzlQhpy8KDA17umq7WKgCzUqNORVtnFuk+DQjd6p2u1HsHER2N0cbo+7XZ+PqMRJ5+v1G12VWyBkaWuui1YbTxuxB4x6OLRmUrhULk6YW0H3gTVQHnCS7e+FyNN7a1RAFRQGfVIM/UEyXZC+nduxOp+SOCIJAQA7gCXhRUJBkiUM1RzhQVUGZ3wliB9yO9LpMUQE1VuzwNw3jYqNhxd0Wr6s9EZnKZh091O9VjpeEBv3vG8CObtM46g3gV5JwiMkoihOxLltZQUCueyoKKIhCABQ/khJAJBDcLmYgCCkI+JHkGhTFA4oPv+IgSRTwKwJpDj8jipeH3eNYXbXa8Vdf+hCHao5SXFtLqS8JUUzH7czEIQQTdKK5Ym2Xa9ukzcTQmf0Aattl3Hfffbz88suUlJTQu3dvbrnlFmbPnh12bO/evbnhhhvCsl7XrFnDnDlz+OGHH+jTpw933HFHKMt13759ptbAjz76iIsvvjjq2rWC7pn7OvPKP2fyzvpbLX9C05b9sCJotGjjvfRxcGYJANpadvr4OnU9Ruc3E0pmNenMyqBox+nR15Yzwsg6B8YWPL21Tk80UWc0XotRmRM9kUrWQOSuFNoHULQHrjbrtznRCgQ1dqpj/z/gcvbG7Uhu0tIloVZb/gP0SpPo26EH7dztqNNpIYwyUDv2n44guBGQ8Aaq6ZgU4Kf8V2M6f1OUh0nk3JFi6Y4X9CLu+163caTWQ2UAJMWFIGSQ5MwIFfBV0f/cKiiERxAodf0xgpnE2jI3iiIhaDK8A7KPgFSBk3LSnMFxe75qXIzm9WMWUuoto8xTSYWvlqNeCZ/SAaejfdTyJq1J0NmFha3TZgRdW0YVdN+vGk9GmivqeL1gipTJGQtai5yRkNIKIe2DQn1waN1DWmuf1vqnb/1lJXkgksVOuz9SbJxeoJm5XNV96vfOIQvZXbqH3nufM0yAMEM/1mqx5EhEK5WiF256EdcYK56+/mCi0Vvoegz6Ax6lG8nOdk1ei05RFAKyFynwEwM6ZNInswdO0RlXGZE+p1/P3q9fiThGjYXbumpCkwbDR2rdZ5VE139ra5a83Gz4ImcqXklBALyyQq2UjtPRDqeYjCPGuoGNQVEUJCVAQPYiALLiQZYr6OAKsPurpQ08KEOGzqT/L8+HbdNz05XPIyPjC/g46inhYFUphz0gCZ1wOdJx1GWA66+vtQi6ttD6Ky8vj7y8PPbt2wfAaaedxoMPPsiYMWMAmDp1Kh9++CEHDx4kPT091OXq1FNPNZ1T7eW6fPlyysrKGD58OHl5efTt2zfiWmxB1wxoW3/d1MdY0OldimAezB+L29XIMgcNLWd6K6D+wa7vARqpVpvZfv259cfo122lvp26ditEu29mwtOquIs2n1l2b6TSLUaCDRr+8bb6INULQqgXuFqLbFOgd+/d8uxFIAZLLEDT9iRVFIVqXxElO58KW0884qXbabkc/Na4ZFFLEKuIMir6rN2eaCJZAZtTAGqTUAZ0z2F7t6nUBAJUBNrjcmQCIAqOJmmlFQ+qddknVSDLNSC4EAFZCeASqvEpyTjFFFA8SHKAnvn3M6B7Dju6TSHJ4aT/L4vZub+Q3qP/QoY7A4cgUhOoobCqmAPVFVT6HQRIRhTScDlScYiuULma2uqqViHoKo8UsHX1jU1+fj1Dx79ERueGyUNGrF69GofDQd++fVEUhVdeeYUnn3yS7du3c9ppp7Fs2TJOPfVUevbsSUlJCX/84x/ZsWMHe/fuxeFwGM75+OOPs2DBAl555RX69OnDAw88QH5+Pjt37owo1GxB1wxoBd3/vTqQSVML4rayxRNHB+YCSy/oAEMrnjZ+LpLg0XeFiCbqzMSM1rUaSTBpLYJ6zMqYqBhZO1WXpLaThNF5Y3HDqseoRKp1F03s6q21kTASbyp6oWgkihMp7IwyK9UHfMcBd5Dk7IRTTGqyZuMAfsmD1/8TJbvqXVmJbPZuRQwnIhaysfM1l6CLNp/R2lXRlWjL5uBAIQO65/D1CTM54vHiU5JxiJmIogunmILQyvrhamn42A0KvWBNQLHutYw3cASUagQhWIPOoZQhKX5SnQInpKWT6kohw5WKAlT4KvEEvPgkieqAnyq/QlXAAUIqLkcG/lqJ/x022BZ0cdKxY0eefPJJbrrppgb7vv76a8444wx2797NSSed1GC/oih069aNO++8k7vuugsIdr3q2rUrL7/8Mtdee63pedtML9djhXVrZjW6h2YsmFmD1H+NRJEqyLTHqS5XfQxe2tA8NvFwmPgY0ftBqovNa7yp20MWSV2yxpDiwtDxRtcBQQEygnrRZkQk1zUEH8CegIcfSvfgCXg4tVM/hnx1N0OyIa3uGoyEl9G9NLs+baaxfp9+rUO21mcWa8eZCc9cGrYWM7PiqdY3/c9eSITohEhTl1gArcj7P2597kJqpA4kOTvgEJqmJ6VTTMIjZIZtMxIcVuPKGrY1m9Zgu55ImcBqvb5I6C1akYScmfVLXVuixZx+jmjzGa1tuzMnmD2aAMGrtchVnv1H1ngUlJpkUpxdSXUk05J9b2Oh4RoFHGEdVgREBFJcXcNGyUoHUGQqpUoKyqsRhTIyXcUEZBGfrJDmFEh3OUlzOWnvFgkoMn65hipfOYU+f5Nf17GIJEm8+eabVFdXc/755zfYX11dzUsvvUSfPn3o0aOH4Rx79+6lqKgorF1pZmYm5557Lps3b44o6GKhVdSha8v0G5DNstWNi3mJVwzqrT9aoWVU1y5taF5Y7bv+g3IMkx20tedU69ymfQ+HxJNeLGpfq2MiJUKkDc0LHRPJYqVHvSZ1XWbXGST4CVgAUs9eHDanmSVOL3i1GN3jSPvMrIjqOfQFn6u3Tgvbpy+BoLXKqV9q/KP2foC5Fa4546DeWjWFg98s5+i3T+Dz/4JXqkJWmqaGVoqrE+37B8sCGVkNtUTbbzYmHmE0aWqBpRp0+p93/XuvvtdTxucZvofaMiX68zeWRFn3EvGzl5sddKuWDpnHT4MeocTfkbSkPmQmZeN2pAStW21AzFlFEIQGXw7RiVN0kerqSIq7Oy5nTyoCOdQo3QkIPSnxd+an6lT2Vgrsq6zm56pafFKAzCQ3PdJb+oraFvn5+aSnp5OUlMQtt9zCqlWrwurbLl68mPT0dNLT03nvvff44IMPTCtkFBUFfwG0FTXU1+q+RGALukZyfs97Q3+ArcZ96Yn3OIjsulT3jej9YNiY3GwaCKoRvR80TTrQ9mhV695pj1XFiOpS1e6P5MZUz6kKITNxZrQ9kghW6v4L/mkP/wNvdI3qtkguZ+21GNXi01+rWf087Tm0DzmjdWkTJvTWNb1lUv3XihUuUfWyjB72ai20X01cFhIaS29fz+H8P1LjOxDsD5pAUScIAk7RhdORycln/KHBmtQ1GFmwImFUxy0ejOJWjdCLd62AV+NfI7l+WyKjtTksvrnZ0H/ILWSfNpV1HW9lXad7qFVOIMXdizRXp1CP02NJyEWjXuCJOEQ3Sa72JDnTSHKmkuruRKo7m2R3T3CchCz04LC3E/urQbKjq2KiX79+7Nixgy1btjBt2jSuv/56du7cGdqfm5vL9u3b2bhxI6eccgrXXHMNHo+nBVdsx9DFjTbLNfvivzRwE0aL9TIjUiannniTE6IJBH0LLaNkBb1lTxtnZzSnHrNEkXiSRPTz1gZq+b5kN37Jz6md+pHmTm0Qw2WUOWt0TqMae1oXsZEV1Oi9j/SzEC1716jEDJjXGYwWg5WomC9t3FYsTHvuWpIa2ZdSi6IoVPuP0tF5mN1fvXhMtqAyi407Fq9V/fn8tscMDlb7kYSOJDnbIwqOVpHY0NZQM8Kry3cx5aJf2TF0cTJy5EhOOukkwx7yPp+PDh068Je//IXrrruuwf4ff/yRk046ie3bt3PmmWeGtl900UWceeaZPPvssw2OUWlzrb/aOnorSTQBEy9Grj3VMqR2fdDu25aVY2gdUj/168WM6lbVirkRvR80ffCr596WlRPmMtRa3CKhWt4iuYojWdTMhJAS7DEeDMY3+dsfySqotRoaxdppz2V0fv26otX403a7MFrPlPEN3yu1tZsWI9GnnUP90r/3jSEeC9blRx5CVqSEnB/qLLJyJZ1Tgu3HYhU4baEtm1Y4N9Zq2BbY0W0qP1e7cDh7kerqjEN0Ih5jLtXmImjFTgIhvm5INkFkWQ7r565FURQURTHd36dPH7Kzs1m/fn1oW0VFBVu2bDGMy4sXOykiQYQySvc9DHVWHLMWVpHmMLL0qehdflpxoc9WDe3rXT+vlQxPfYsvrXDQCpMhmuMilejQdqQwEzUjICxhIiw2cN/DDIlyz/T3KajmlIiZlfp7sUnzvmn3x2sxjPTeq/fRqIZetLm0mCVPqGtWhYra9i3R2ZhG7k2r+KRakoX0BD6gFRyC2KA2nlWaq9RGLEWj9RglJzSHda6p7o3RvFdf+hDfVByiqAaSXV1xitG79thERxAEnM6mt8odK8yZM4cxY8bQs2dPKisree211/j4449Zt24dP/74I//4xz8YNWoUWVlZ7N+/n8cee4yUlBTGjh0bmuPUU09lwYIFTJw4EUEQmDVrFvPnz6dv376hsiXdunVjwoQJCVu3baFrJF91Dj4l1VizaHFjkbDipjXLMDU6r2o5i2Tx0icL6OPJ9NazaMV1owkis9gv7Zq1c5jdy2iuUgWlLnwusmAwu/7GxENasUxCwySKSGO1mJUtSRuaF2ZtMrL2NZVoMWo3ZcaKIhDkg3gDFQmJp1MUGZEATtER1tNUu7ZIYrOxSU2xxJKp52nM+eJxczcm3q2pxJz6b9aAqeQMvIXep09hx5ED7K9x4HZ2D7W0skkMomBcH625cSVnIjqaV6iLDjeu5MzoA+s4fPgwkydPpl+/flx22WVs3bqVdevWcfnll5OcnMymTZsYO3YsJ598Mr/5zW/IyMjgP//5D126dAnNUVBQQHl5fTeMe+65h1tvvZUpU6YwdOhQqqqqWLt2bULbotkxdHGibf01euB8wwK9esziq4wwsgxFio2LFOtlFOyvF0RG5U8iWfS08+nPpT+vlfpzVq/HUozhmU/zQ8kPyMic2rEfKa6UkLVOawHVW8hiOgfWxFss12iEvuervg6d/lr08ZHNldmqj6cz+15l0tQCsgbcDGJX3I6M0MNG207JqvXOL3kJ+PdwZlZXPvjkT4m6pDCsxqpFsmbFW+C5MefW/yy0ZNcHdS07TpjO4doACmmIYhpOR9BVLivBPqkOwR2Ml7PdqwmltXSKALv1VyzYhYWbAa2gu6D2aGh7PAVqG4tWiKiCJVqTehUjS5fVjg/6bfpjzDopNAat+9ZMmHHGU3xfuhvFRNAZYUXEaQVctCQHqwkR6jUZ3ZdIljij9UU6vjke4voabtqgfSNXqLpt2rOXIJGKw5GBQ0xCkaX66v5RHuqKouCVaiiu3kPf9ifw/baGgq6prz+SK1ubpdrWWmglCvX+7Oo5k1+qvPiVTFJcHUPuVFu4NQ+tSdDZWMdOimhGzjhSZKmlVKKC0COhijg1Xs6q+1frmjNrlQX1iRRGnRy05zISb41xRRutV++uDHOVfnUXoRg6iw8LK5Y2fVxcpPc0mkvYCtryItZq79VjVKg2HrdbLMdEKkCrj/lShd6kqQUc3rmEozuf4fLihxCln3Ao+/D69+HxF+MJlBOQfaGg4/ovGVmRUJCp8pWi4KRGSuGa0fV9MAcHChkcKGTn/sLQ9/pr0haqjQez+2Mk8prjb4AZiSpVEy+fdZnC/mo3DmcvMpKycTmSjrtyIzY2TY1toYsTIwudFXdlotC7CbXn16/FKCEh2vFG54PI4qSpr3tbVg5DNg8m7brxDSxlZlYwcfAzJDuTI7pcVfQPXKtCrLGu10ShWoK0tEarkJH71ayTQ7/BU6nwC3jlDEQhCZBQlADgRySAhECltxKnoz1Zad04vWMKa9YHiwyrraH07Nxfv33n/sJQJ4dY7lWksfp9WitdS6GuaXCgMCEtuKLdK1U8ftN9OgdrFERHV9yONNpKJ4djEdtC1zaxW3+1EGp7rMbGz5mhb+lllCGqR225pT+vupYhmm36GnKxrjNWMWdVAKpCawRA7/BtKtq1Kmc8xfel3yMKIn2330FNTKtqOJ+Vsa1B1G3a97DpgzZWsdIcAsRKS6mC7UsBOG3ILQTkCgp2LA3bPzhQSOXQp6kMZJLkcJLiiC4WtCJPK27M4s+M7luke6nft6KIBm3YmgojwaZNQFhRFF3Mmf2sWBWD6vm+zJlKUbWDVFeOJfe5jY1N47AtdHGitdClpgdjQXbl14uTRLs3agY+T+o3M2MqPBwNqxZFq0kciRY0ZoV7tZids6DHFPr9sqzB9nitcNr16MvLtLSQ06+rtVnk9CSyGG5uNnzZ/WlqJeiR7qRfOxcv/t/0sP1WiCSCWyLJpKmJReCrbmkrPWlV3u94C7KQSbKzo53g0EqwLXRtEzspohnQdorISDNPr0/EQ39bVg6ndL2f9G9mhs2pxSwLU9+9wayJvFGXh0QKlUS4Y63Epanr/q7HFJyik5N/WtzgeKv139oKRtfRGCGiz6RtqexIK+e84IJn+aU6QKpTYNfWO0zniUaieo3qs5K1bl91n/pzqCgKy9dMN5uuUWuI9Rh1ffHMr17jZ11upiKQjENoj9uZhig460JYbTHXGrAFXdvEFnTNgF7QbcvKYVd+YYMSE4miauDzpH8z01SQQfS2XbHE+CVC7MQyRyJc0rHSEha25ro+M5EXDfVnVuve37Tv4dDPdnO4YqNZ8FTXX242FPRZyGGPRI80J7133x4WE6ei/z3U98jVx7tFs9YlIs6uNROr9W5A9xw+6PgHZKELya72CNgdHVojtqBrm9hZri3AkOLgAy91aNAiZFZqIh70WbTajE7tvPrvtckO2kLBVjNfG0Os12tWaFg7n/5Lvy/e9VnNVo1lTjNiva/xXJvReaw+oNWfk135haEOE0OKC8O6TjQ1k6YWhMV9qf+qrr8B3XNC26VNv0EUoNIvs6LI2C1oJXlBzQJVRZv29zc8Bi36BzX9h7pYMkz14wYHCk2PjeUDo1mbOKPrVO+JNjPYaL7cbKgd+kfWdZyOInYnxWW7V21sWhJb0CWYmq2xu1CsPLAdQr0hVSt+zFyt6r96AacvORKt80Os47RrNHv4m80V6RyRrlP/Wjr9CdN5jASSlfhAo/eoMfF4VrFSokRLJPGif619qIdqheUXsqII+g/KadDVIG1oXkikJKr/qZEo0ZYXKX09h8svXsSPJy0k89J/MnHk8+zcX//zPKB7DlnJDip8Mmec+2cmXf58wwmjnN9oDXrXqfqlvo6EvmSM9lij82vXoR+33ZljemykIsKRxloVptudOYYCWXtcsTedJFdPkp2JbONmY2MTD3aWa4Ixc6mZlQ3Rt5oye3g74vxjqa0np2a86vdDdMudUSHhWGLitPfF7Dh9DB9E74lqdJ4Kb2XE88eLUaZwUxJrLTur1iO9MDESDPoEH62bdUUR5G6dFnfnA/2aI1Ey914Ky/2oH2ccQoD0YW9wONVBl+9uA+CUH2dR2/MZSn0yu8p8DebQXvPgQCG53XPCLHNGazJzxTaVG1VrzYsn3jGa69jofY/0fbTz5Zw2BZ/SgRR3p1bTUsqm7SDVFiP7G/6dbipEVwaOlKxmO19LYcfQxYlRUkS8QffRxNy2rBwG5szF/fWMiMcDYckNWtGlPYfeEmYlw7W5EwisJkBo98d6v7VEOi4RRYIbg1F2bbRrNhJ3apwnmAsZI5pCxESKVVMtcDmbhlBw11345YbjBCDDJXDGz3eExnvPf52qgEKnJJGe6S4y3SL570w0rTMXLd7VrMWaPgZPO1YlnnpvVpITGpNxa3TPY02IANjYeTqy2A2HmGxb5doQrSWGTqotpvg/t4Lsb/I1hBBdZA17zrKoy8vLIy8vj3379gFw2mmn8eCDDzJmzJiwcYqiMHbsWNauXcuqVauYMGGC6ZyKojBv3jyWL19OWVkZw4cPJy8vj759+0Zcix1D10Lo3WNWH/5GbrV446b03RmM3IXarg3RrGzNLWAidUOw4i6NJ3ZP36bLbEy07hBNTSwWXSOBosZ5QkPLTNrQPPoPyjE8tiksUqoIM7Mopl78T743EXMAClDhV/j+xIWhLNLBv9xBkihQ6pPxSjKvvjud7c4cxn4U/IqlnpyRBW/Z6mkNrFyqO1V/HU0h5qzsjza/flskd7AR6ztNQ3bYYs4mfmR/ZfOKueBJY7IIdu/enccee4wvv/ySL774gksvvZSrr76ab7/9NmzcwoULLf8ePPHEEyxatIglS5awZcsW0tLSGD16NB6PJ6ZLiYQt6NoQqWcvNhUUWouNaoEzEj/abUbtvcA4ls1IOMxYNtH64i0SLVYuUv03vTjb1+e2iPPEk6DQ3Bm4EP06Y8UsQF4V93orViKztdW5VMGjiiE1AL9swHNwwRvsrw7gMxFzWo54JIpPXRQSdeccuAMRWPvRbaFYvMIR2ygcsS2m8iXa615RVO9y1icRxGLhinZeq5nx2rGREjiMiGfN6jEfdb4F0dEdh2CLOZtjm/HjxzN27Fj69u3LKaecwqOPPkp6ejqff/55aMyOHTt4+umn+etf/xp1PkVRWLhwIXPnzuXqq6/m9NNP59VXX+XgwYO8/fbbCVu3HUPXzFgVBUZjar6YHnrQa92pWjdc9dZpDKkbr68tZzSvUXswq8WGX6BlXLBm2/TX1nvvItP9+hhGdX+k96YlxFxTrUH/wN+072F2xWDBihdtLBtAykX/4JuAgr+HgldWOFraMAYuEooCv1QHkE9dhFsUOFgTIMsh8GPd/qALty7AX2d1M3P56terH69atlLOfoG/rDEOgzAjktvT7LXZWiNh5FqOdR71uPwTprO/RsIlnECSIwm7rpzN8YQkSbz55ptUV1dz/vnnA1BTU8Nvf/tbXnjhBbKzo38K27t3L0VFRYwcOTK0LTMzk3PPPZfNmzdz7bXXJmSttoWumdFa0iJhllmpTyzQWtP0f6zVjNZopS+041T3m77FmH7NTSlutOs1Eln6EidmQuyXE2eZnsOoTIrZPYq3dEi8GLl3E31+/c+KNgmiqek/KIfUi/+J5/zX2V8jUeqTqQoopu5VIxwCZLpE0lwCClBcK1Hmkzlt32x8G38TVtBX2+pLFSnaTFlVXO7cX2iYJGAm/Gq/mBFTORIrYk5/brPzm53DzK0crzD/rMsf+KU2mSRXT9yOFGwxZ3O8kJ+fT3p6OklJSdxyyy2sWrWKAQMGADB79myGDRvG1VdfbWmuoqLgL2DXrl3Dtnft2jW0LxHYFroWIpogMovX0lvOtFY6/cPBqE1VNMweMNEsi41NntAeZyVL2NraBNxnPYfvy1tN57Ky3pbqJqG3vCYCfZ21WDNjG8vYj3L46Zy7+aU60Kh5clId/OfTWUCE+LX9QVGnF0e52UGRN6B+ttBxRu5L9Tjtv5FcmnpLntFxestfJCtdtDn11xYpWcMq6vFl/hTSkrIR7WLBNscZ/fr1Y8eOHZSXl/Ovf/2L66+/no0bN7J79242bNjA9u3bW3qJDbAtdK0Yo4f4iN4PxmQxilawV92nFQ16C1Es9eT0Y63Wr2uKhIMeP/65gZgzoiUTHZobs0zPSCRMzF36HPvvu4cav9LgD4+AddtPMMNVNHVNqsV4VcucvuaeOk5/nNF2s236fdHEmRW3aiT0Fj59/Jz+uoyEZyQXs5GQfa/DdJJdXW0xZ3Nc4na7OfnkkznrrLNYsGABZ5xxBs8++ywbNmxgz549tG/fHqfTidMZtItNmjSJiy++2HAu1S176NChsO2HDh2y5LK1im2ha2NYddlawcg6FSnhQH+c1lJoJvpiqVXXUhm16vctZYmLRFOsySxOLFq5jHjKZOzcX0jOpiGUPXAv35X5QIJATYCkFCeKCKIoIiggSzIOh4ikKDhEAVlRQAHRIeALyCgiqB5Ztwidd91mui6ti1V7jWb3wGoygn6+aJZOIytcNGuc2fHaazC6ZrPzm43Xn1c7dmv2FI543SS5cnCKSbaYs7EBZFnG6/Xy0EMP8Yc//CFs36BBg/jzn//M+PHjDY/t06cP2dnZrF+/njPPPBMIlj7bsmUL06Yl7m+8baFrBuKNwVKPMRJFiXjQm7k2o1n1jOLOEmXlirUjhX4djeF4stRp0VppjLIm1dfRukPoj11RFBRX0kNzKKyRkBXw1AZQFJC8MrJHJlATwFvjJ+CVkb0SgdoAVWVeArUSNZU+qsu8YAIU5wAAi9lJREFU+KoDODWiwiEI+E5/PuYA/1itkUbZvvrr08an6WPVYsk+NVuz2etI61G/j3Yuo/V+3Plmjvjak+LuYYs5m+OWOXPm8Mknn7Bv3z7y8/OZM2cOH3/8Mbm5uWRnZzNw4MCwL4CePXvSp0+f0Bynnnoqq1atAkAQBGbNmsX8+fN55513yM/PZ/LkyXTr1i1i7bpYsQVdgrAiBo4FwaAXp1ZcurGgF69GYtgsOaOxNehao4UukZi5GY0wEkD6OE2jMfo5ywc8x/6aAJICoiCQmuQktZ0bh1tEVhSS3A6SU5yITgGnK9hxIC3FhSTJKAo4nCLt0t0oGl1RIykU1UpRryHaNUerQae9Tu32SEItkfGGRuvSx9BFcwdHEpLafaefNY0POk4nIHQnzd0Fh+i0xZxNkyC6MkB0NfdJg+e1yOHDh5k8eTL9+vXjsssuY+vWraxbt47LL7/c8hwFBQWUl5eHXt9zzz3ceuutTJkyhaFDh1JVVcXatWujFguOBbtTRJwYdYpoSrynP0/S1zObZG5VCG3a93BY+RIV9cFgxS2ZNjTPdJ5ErdMo+SKWLhFtQbg15zrN4q2sWpPM3Hn7+z7L/uoA/rq/MAJB65qkKAiAUxAQBIGA+loUEBFwigK11X4UhwBOARQIEP5nqnOyyLbNs8POp1+LPubMKmbXbnadetdmJJd2ItZhtM/q2tTvVb7IvoWqgIxHySDJ2RmH4LKF3DFKa+kUAXbrr1iIpVOELejiJFZB15gHdOnrOST/6X5S8ptG0IH1LNZEzGVjDSstvmIhmqBQM6itiiAjS5Z6jtIBz7GrzIcU4a+LWxEQxaDAEwkKPGQQXCIBScaPgmTy56lnmpNeu29vcF3RskdjGWN0ber3iSCe2D39cVbjH/V81GkKNXIyDrEdSc40HIITBAHBLktyzNKaBJ2NdezWX8cYHYYODnvdFK7bSC204nFlNjfHgjtbTyLFHEQWLiuKCBNzVufTuxrV1z9X+SOKOVEAvzeAoEDAI1Fb4aOy3EtJmYeaCi+VZV4itXwXhfp1G1nErJbuMBNURm5VPVayX422JUIY6q9Rj1nM4Medp7Ku090ojl5kJPUkzd0Bp+hGEERbzNnYtHFsQddMNPaBLGr+1lot8aHGn0WKQTM7zux7/Zza/U0VO2SFY9ki2JiSLqWvR04yMSuxES02Tn+Mur/09RwKTlxIhT+y4V9EQJIURFlBVMDhEElKcpKS5EBRIDPdjSCaCwxPnVqM5HY0Ez1WhZRRqRD9uczi2IzOMThQyJc9nmH8Zc8Zni9aTJw6xmqChXbshk5TeL/TvSiOXqS4utoJDzY2xyC2oGsj6D1P8bYPi3askZvPqCODPo5tW1ZOKM4uEseiJa05iFewvnuJtbIx8bjtwFiEHPVIUc8nKQruNBd+BzhSHbjTXThSHbjSXbjSnfgc4JOMW0c4BOiUFG6/MxM68VrBtNcVqRxIrMgKlGma1Bpl0sazRi36+/B+xxnI4gkku7JCQs4WczY2xx4tKugWLFjA0KFDycjIoEuXLkyYMIGCgoKwMXv27GHixIlkZWXRrl07rrnmmgbF+Yw4cOAAv/vd7+jUqRMpKSkMGjSIL774IrRfURQefPBBcnJySElJYeTIkfzwww8Jv8amxIo4irXLgFl3Ar3I0ws/bceKSGttaUtac7fxamliybrUiwn1PuldhXqxMzhQyOBAIaMvWcTuu++O6GpVUQgmOviU4JdXkfFIMl5ZxqcoBFAwm8YtCnTc1bBgdDwuzVizZKMlIkSab7szhzSnwJGyxxoco35Fs6iancPIsrq+08283/l+ktw9cTvSbBFnY3OM06KCbuPGjcyYMYPPP/+cDz74AL/fz6hRo6iurgagurqaUaNGIQgCGzZs4LPPPsPn8zF+/Hhk2bzxY2lpKcOHD8flcvHee++xc+dOnn76aTp06BAa88QTT7Bo0SKWLFnCli1bSEtLY/To0Xg8nia/bhWrwqJ0q3GLkaYSR5FEWSxtuWJ19cbDtqycNhHj15LEa6Vatnpa2PFqz1O9cMjZNATHiH/wQ7k/5AptSjomiWEiSLXO6evpaVHH6UMFEiH6tPNHIrdqLDkLniCr/X1holP71eE6Y4uqkbCMZNH7sOMfkIRuJDs7IAp2CRIbm+OBVpXlWlxcTJcuXdi4cSMXXngh77//PmPGjKG0tDSUlVNeXk6HDh14//33GTlypOE89913H5999hmbNm0y3K8oCt26dePOO+/krrvuCs3btWtXXn75Za699tqoa23WsiW7x+KZOJbkJsxybSoSlamp72HbmLGtNQu3Na8LwmP5qrdOI/XsxdR8MZ2vej6DVwJZUQgEGzw0GR2TRHZ8PjtibTij9S9bPS0sJEBRFGoCNbDjLtPjjEqDGJUf0W+PlKxQ+noOxfffyyk/zrJwtQ3XoxLperd0/QMlgc6kuTrbQs4mhJ3l2jZps1muahG+jh07AuD1ehEEgaSkpNCY5ORkRFHk008/NZ3nnXfe4eyzz+bXv/41Xbp0YfDgwSxfvjy0f+/evRQVFYUJwszMTM4991w2b95sOKfX66WioiLsy4h4Ox1EI9Lf5ZZwIZolXOhJVOHeWFqIRRvbGkUTtO51VW+dxoqicBf+gTsf4Wj/RfRId3JW5yT2bLuTCwrv5IRUB8kOAUeCtYQInLYvWHvOyCKmtdjpmTI++LOqKArVW6dR4aswFXNmc6v/qqItkpjU7teuq3DENhQlvgQiI6ucdh7VXVvqE0h2trfFnI3NcUarEXSyLDNr1iyGDx8eaqVx3nnnkZaWxr333ktNTQ3V1dXcddddSJJEYaH5Q/vHH38kLy+Pvn37sm7dOqZNm8Ztt93GK6+8AkBRUfCvYNeuXcOO69q1a2ifngULFpCZmRn66tGjBwCpQ/4cNk4VE4WnLIrjLsRHIoSAPoM1mlhTH+xN2QbseIp1awvorWIdrivkhDQn7224jTfWzQiN2/zZLIbuv4NhB+9kxKb1uBKgK0QBhhfeGbYOvcAx69ag/Vmt+WI6AM6v7wu7FqPrNNtvVKxXf5y+Tpz6td2ZQ5c/PR7RghcL6jxf5kxh0y0TWZP5B2QyEIVIRV9sjkdseX/s42zpBajMmDGDb775JszylpWVxZtvvsm0adNYtGgRoihy3XXXMWTIEETRXIvKsszZZ5/Nn/70JwAGDx7MN998w5IlS7j++uvjWt+cOXO44447Qq8rKipCok7Ltqwckrdvo7p7gIyBz5H+TcPg7Xhojl/GeDov6McnsuF9a7VYxYtZyzL9mNZ+3WGlPL6YHtnNePK79O8whqMeiVKfTG3APNnBDKcA5x+8s8Ea9Fh1SRodZ1TaxIoLNdJ+vSVPpXDENir7/pOeP9ze4JgO1xXGVXC4xCuT6s7BIboQ7ZpyNjrcgkCKo9XYb+xOEU1EqxB0M2fOZM2aNXzyySd07949bN+oUaPYs2cPR44cwel00r59e7KzsznxxBNN58vJyWHAgAFh2/r378/KlSsByM4O/rU8dOgQOTn1n4gPHTrEmWeeaThnUlJSmOtXZdua6xjatwc79wctc8n7CxnQPYdtAgkTc02JPqPVyCpmRWQY9XRt7cKkuYl2j9sSWsGxc38hud1zDPetKIJcbiVTd/zuExeS5BD4ZNPt9Dv7GUQBfJKiaxMGaU6R03+eTVNj5D7Vi7VIQiua+AsXiDmcIynsrPtbYTRWP2+kc+7oNpVArUiy6MLZ3D0ybVo9blGgiwKeSk9LLwUIirni/9wKsr/5Tiq6yBr2nGVRl5eXR15eHvv27QPgtNNO48EHH2TMmDEAXHzxxWzcuDHsmKlTp7JkyRLTORVFYd68eSxfvpyysjKGDx8e8iQmihYVdIqicOutt7Jq1So+/vhj+vTpYzq2c+fOAGzYsIHDhw9z1VVXmY4dPnx4g/In33//Pb169QKgT58+ZGdns379+pCAq6ioYMuWLUybFpsIcQ97mR8yMnCfBLUBBa+ksEVR2L31DobE+Ck74nmaqI+rlazVphBmraWMSUsQS6ZwW2DoxLdDSQd6AWImck6uSwrIzQapUxKOr2agJ1ZLVWM6L1iZM5ZCvtpj9GJx5dJ+nDMs6H4N/9hpfP4VRdB/UH2iz4qiYEzg9QEvge2zOFAjkuLuHmzfZWOjQQCSFXAGJBR/MwqoCMj+yuYVc8GTIvsrLQu67t2789hjj9G3b18UReGVV17h6quvZvv27Zx22mkA3HzzzTz88MOhY1JTUyPOqVbWeOWVV+jTpw8PPPAAo0ePZufOnQlLGmnRvwAzZszgtdde49///jcZGRmh+LXMzExSUlIAeOmll+jfvz9ZWVls3ryZ22+/ndmzZ9OvX7/QPJdddhkTJ05k5syg6Jk9ezbDhg3jT3/6E9dccw3//e9/WbZsGcuWLQNAEARmzZrF/Pnz6du3b+jmduvWjQkTJsR0DSfuuy8sy1X9o35uEzxcopEod128je9joS0LmESS6H6tLUH11mlMGZ8XVdRp0e5v5xapNpjXakmReISc2XrM5ovmdjWaU3uc9vhJUwv4739m0X9QDlhI9snNJmxcbnb978+OblNwejMRBAFZCSBilyixCeISIM0bIKmqFr9DBKcdV2mV8ePHh71+9NFHycvL4/PPPw8JutTU1JC3LxqKorBw4ULmzp3L1VdfDcCrr75K165defvtty1V1rBCizrV8/LyKC8v5+KLLyYnJyf09Y9//CM0pqCggAkTJtC/f38efvhh7r//fp566qmweVSXrMrQoUNZtWoVr7/+OgMHDuSRRx5h4cKF5Obmhsbcc8893HrrrUyZMoWhQ4dSVVXF2rVrG62Um8JKYJVEiAG9+7UtiYy25raE6C7qxvTUbU5UMQfGsWP6xAV90oL2tb5AsB41k1zvDrVKvBmmscynbzumF4wrl/ajc/v7Yl+IDocg4pfKCfj3Isp78QRKaEWVqGxaAFGANCDLL5FcUYPgFFHapVKVkdLSS2uTSJLEG2+8QXV1Neeff35o+4oVK+jcuTMDBw5kzpw51NTUmM4RT2WNeGhVdejaEs1dh46T323ac7QS2pKAPB5pqvdHK360dQTNar6p43blF8b8IcpIaFqJVbM6r1FChd7tuqIIzhm2EP8nvzGMo4uG+j6U93+QzF1Bt09Bz+nsroCM5D4IQusJgLdpekQB0hRwCgKix0eSz48sikgCOFKTqRQFjpSXc/2wM1q8Dp2/4keObrm7yc+vp9O5T+JqZx57ryc/P5/zzz8fj8dDeno6r732GmPHjgVg2bJl9OrVi27duvH1119z7733cs455/DWW28ZzvWf//yH4cOHc/DgwbC4/WuuuQZBEMKMWHpiqUNnB10cY1h94BqNay1xbbaoa73o35d4XZ5mc6woAooKGWLgum0gjigMxanGk+FqNT4uWqar0TUYlVJpcO4fZ7HT2lJNUcUcQL+fF7Ov4wzsAhXHF2miQLIvgCMg4/b58VbU4OqYgd8hUpXiDrbXk2QC5UaBDTZm9OvXjx07dlBeXs6//vUvrr/+ejZu3MiAAQOYMmVKaNygQYPIycnhsssuY8+ePZx00kkttmb7Y9wxhr50SKRxrZFYe8/atDzxuDDN0NeV0xf0VbdHOm5FkXmBb32bMKtrjyYS1bZoRuczO8fO/YU4LzT/ZB6J6tdXm+yRI3TBtTkW8SoKsiSjVFTjVxSU9mlUu52UpSZRLcl4fQHkihoEt22/iQW3283JJ5/MWWedxYIFCzjjjDN49tlnDceee+65AOzevdtwv7ayhpZDhw5ZjsOzgi3ojkGsijqzY23aBq0hpk4rjuJZT9rQPNN6ber86r9G4s5sPWbdQgwtZTRelA4wKNuiF49Gxxz1SPGd++R3De9ZQA4gK1IcE9q0VQIKlCe5qGmfTm1qMmUZqRx1iFRV1eI/XIZ0tAIh2Y2Q0rDslo11ZFnG6/Ua7tuxYwdAmDtVi7ayhopaWUMbl9dYbEF3jBKp5llLY6VlmE10Wpv4XrZ6Wtyt7yIJH4huoYuEFcFklImrHqvt3qBt42WUvBGtJZgRK5f2M90XqQ3ZFZcsYsLI58O2OQQJSfbbiRHHGTJQ7XZS6RTxe3z4D5cGhZzbiaNTO3Db2c+xMGfOHD755BP27dtHfn4+c+bM4eOPPyY3N5c9e/bwyCOP8OWXX7Jv3z7eeecdJk+ezIUXXsjpp58emuPUU09l1apVQHhljXfeeYf8/HwmT54cV2WNSNg22GMc1Vpn5eHfHALBqKOETey0dJyhWc01igtNC+bqjweYEnGUbu4Y1hbpmEjFf/Xjrh+7mPzzvOytfiJk9YtU+DdWsekUBSZNLTDdH6nky2GPhEcKkHnSQkafKnIgUMEVu+fyZvoUMpKySXVlAIL9ID/GURQFZAXFH4CABIqCmJqMkJKE4BAjNwJvAURXBoiuZi8sLLoyLA8/fPgwkydPprCwkMzMTE4//XTWrVvH5Zdfzi+//MKHH37IwoULqa6upkePHkyaNIm5c+eGzVFQUBDqTw/ByhrV1dVMmTKFsrIyLrjggoRU1tBiZ7nGiZ3lGj8tLUZsmo5YkiR27i9kuzMn4aV+rLTssjoPQL+zn+Hs/XdEHhwne05ayEl7ZjV6HrX4sMd5CweqDlPjr6Z9UhaZyZ0RBYct6o5BFEUBSUau8SBX1iI4HTg6pIPTWa/hNO97TVUlN5x/eotnuYLd+isW7CxXm6i0lKjSWuhsUXdsUfp6DlwSHrtmVrajKbHimo1V7CUim9cIMUEZqblVY/k+YxQBn0SXVBcVvhLKPUfwybV0SM7G7Ui2LOoURUFBRlGUUPkTQft/Wxy2LIqCIivgDxAoqQBBwNE+HSHFHXxv2sD740jJarMCqzVjC7rjlKbuBBHtvLaYO/bocF0hU4bmNSgyrKJ3VU6Z+DYDWuHPgV587nQKjbb0GR1f+noOytzYHCRa9+vlFy+i1CtR4VeQTlBw+WWc3qfYr6vNt9Y5BVnJJtmZEbU+naIoVPlKqfYdAWREwQEIiIKIU3TgEN3IioBLTMLtTMUhuOyad82EoigQkJBrvUHh5hBxdsoElxNBbP0izqbpsX8Tm4ltWTkxB4yrx5Ru3R41sFs/t5XX6px6cWdjEy/VW6dx87jFhnFf+m0tGe0RTaBpM1XjfVYaWSUb3AMLc6jHlL6ew8iLF3H2+Qvpd/Yz/FwV4IvNs0n7/DrOO3AnZ/1yh2F27xWlyxDlg1T5CvFJNab3XS13IiDUiTQFWfGhKDVI0hHGly2ie0oVSRThCRwhINU2WYkURVGQFSloLTzOo4IUJRgfJ5VUECgqRfEFQlmrgtsWczb12Ba6RlLU9wmqMjIMHScCQeu3ApxQt+1QJ+N51L9ZCvV/5LPrNpTMlblAkDkgmv9h6woc6GD8WlEUshSZXzI1+wUH3S5yQsHtYfPY7tDEo5zxFMJXd7X0Mpoc1RJV88X0sNcq+nIexbVHSGuBdUbCqDSKgGDZZRytwLF+m9FvtHru0tdzyB06mF/GjOZbv4znHgVvhZ9kh0Dq59cxoHsOBdAgAcXovCNL/sL2bjdzxBsAsafh2hVFwReowCFUkuYEmQ4IAsgKjCt9EoDTDyzhy+w/4Pem4na2Q2iCIsaKohCQvXj8+xGENFLdXRA4PvuQKkrQtSodKQe3C2eX9sGMVWgTrlWb5sUWdI0k+4d7wpIitG2L1Nd61P3qWP0Y7X7tayPUYGh1nl35wbHabUYMKS4kv+fjGD2fbDGXWHYd/Y4BLb2IJsZIvJlZlUN16759sEnO3Vgi1bizcj4ji5zZ+CRRCIszHPtRUMTtPnEU1fcq/IRCmqSw4/PZQLCAsTz8jZCIs7omgMEHl/Nhp5vxSdU4RBeiEPzzH5BqEQSBgOwjRThIz4x2+GUnJ/8UFHGr0n8XNs9ZRX9hXYepyHIAh9g0CWE+qYoOLg8eyUdAbo/bcfz1IQ25WGu8ODrXuVZtEWcTATvLNU6aNcu1CdiWlUOfRcG4p2jYFjsbqzRV8kCsa7h53GJqvpgesRdspG1avj9xIaf8OMvSefXzqDXs3r2ksME6xn6UQ/W8+0h76DFq582h3CfhlRVcooDw6bWGpV9WFAWzbv9081Lemmde7iTSda3rcCOjS1/i/9rPxCHAFaXBWnZvt7uJCRUvNjj+n6m/we1IY0LlX8Pm+b8Os0lxZeEQXXVu2saLDUVR8MsefP4DjCnN48OOf8DhCrZSCgpId11cH4CCpAQISB5EQcTlSOVYKdOiKApKtQe5xoOjQwY4G5+pXF1ZwY2toJerTWzYWa42CcUWczZWaU4xpxUspa/nUDL3XkQERvSFYo+E7/UcxgKlhH9w+dVD/cJqv0Vc8+6xCBb7eWvnKX09hw7XFbLv3rsRETjfJVA6//H6sUMH89W9I/FUB0i59x78tQFSHQLu/wRdqZjU8cvNBj7+kOdXTGfFJ7dbqrWnF3ajS18C4Mqy58OOcQsNy0is63ADroDChMq/8uNJT3HinvrQgStL/wzAmva3k5aUg4P4LUhqZm2tv4wu4ksMKQ2+X1UBGbdyiLGlC/m4803U+jJJdndGlmvwS5W4BQ/tnAqyolAV6Ijb2blJ3MDNTl0Gq7NjO2tiTrXLGIwLurD9VHpLmmChNq0JW9C1AfRuXBub1koiLHRW59CO6XBdIe9+Nouzz19IQFKoCci4HwgKPAGoEQVEAS4/FXKr1lL6UUXo2FLNHFo38f9euZii1x9BvnyU4RrVNejr3q0ogv63QYdi6P140G353Z13UXrP3bhFAUmBQhHO2Dc7VIR55/5CUi/5J72650S//pPfpdR3ueXCyVbu5cedfsvYo6+FbcvNBkpfDl5rNmFiTkuGs5QanxdR7IxTdCPUZcYG5FpkxY9DcOMSUxHFoOBTxZskeQjItSgEW5UJShVXlCwOzbs28zrSHX5GliwE4OIjL/JOuxtwByrpmuKknTuV9knZJDuTKfeWs6v0CD4plSRnevQLbsUoioJUXo2Y5EZIDS83oygytf5qJCUQrC8IeKVafJIHAZkkp4iCm1RXB1xiEjX+Siq8RwjINXibse6bTctgC7o2QGsVc7Yr1kZPIix08c6Rmw3snRVxzM79hRxJhgHXhVvAvuuzkEPA0D6AEExo+rbUR/W99+D3yxSfuog0p4j3/kcBGFt3XCkweMQ2Sl8fQu51haFEhp/bjyY/VcZ7t4JThFQEXP9p6EZVX2935nCOpEQUc+o+YfALKCW+kKUxVpeyaj3UcrFOzMXCRUdebbDtw443M6pkeej1mswZpCf3RMRBQPbi9RcxpvQ50znXtb+OK8peD2b5Elz/Z1nXo3hq6Z6WzkmZ3Ulzp+Goc78KQKqzhFqfL+7raBXUFQsWFAWxfVrI4BbM9pWp8pVRXHMAUVBwOWX8AZHJnldZkTaV3OqloWleS51Cu6ROlNQeIsmp8Nual6is9vP/WuiybJoHW9DZxI0t5mzaGmYtyU7VCcEVRdB/6DMApH5+HcVAMfVCcFefP4dcew6g5CIoFwR89yv84JMRaiWG7r8jvA1ahHZo/QflIEeJZlZF2cQJi/jTy9N49u/T6ZvpwlOXVawdo16DfhtYi5ttTO9cgJEaMQcwrvwF1oqzcDgzubz4oajnlepciOq5v8y5keGFQVcxlZBy9guIdfXvFEXBJ/sJyFITFVFpXhSfHyEtBdwuqLNoSoqfozWF1PgrSXOl8+uqF1hRFPzZIxtyq5eG7t2XJ96I4zCU1BaRnqTwq/KXW/iKGlJz+DDeioroAxNEUrt2pHbp0mznaylsQXcc02HoYCBx1r+Wttjpa+jZgrPlaA3JEY3FIUCm20EN4UJwRRHkMjuU2HD0/nvxbvxNaH/I4dc9J2pPW3W+sa/DL/dakyOTphbglWS8ksDY8c/y1rwYLsoiTfHeSXIJQqDa0nnHlr8Rtt2piw2r/WJG2O970IIFoiCG1a1rawkSii+AUu1B7FhfCktBqRNzVXRMySY9KQWqzJN9Ul2ptE/pgl+S6ZTqg/IGp2lRag4f5v2bpyD7m6+Xq+hyMWr5srhF3WOPPcacOXO4/fbbWbhwISUlJcybN4/333+fn3/+maysLCZMmMAjjzxCZmam6TyKojBv3jyWL19OWVkZw4cPJy8vj759+8Z7aWHYhYWPU1589LyEz2kkoFLPXmy5qHLa0LxGFTau3jot7Mum5WjrYi5oJQK3KJjWecutGkvp3HvpkCQyoE68ab9iOde7lxTikcIFXaSyL1Ltk3gkmbfmFRiOs7ot0vZEM2zJB4wuXR59IPXZwSpnHPxrgzHLVgd/xxUUJFkioMgEpEpq/fup8R3AL9W2qaLEwdi5qqCVURRD1jlfwEO1r5x2SZl0befkwI4HQwWnjayw/QteYHTxPMaVPMT5+xeQf1Kw5M3Xfa5t9msywltR0axiDkD2++O2CG7dupWlS5dy+umnh7YdPHiQgwcP8tRTT/HNN9/w8ssvs3btWm666aaIcz3xxBMsWrSIJUuWsGXLFtLS0hg9ejQejyeutemxBd1xyLasHG66/3O2XjSCn/sujDiusXz60yOWx9pCzKY1MeSXO+j2/W2G+1YUQenW7Rz1yqz9yHhMrIgCjLp4Uei1USxcaG3FhZx74E7DcdptVpIjWqP4Lrh9ZNQxudnBvxkCAu2SMuid0ZE+6X4GZDroneYjEPgJn1TbDKtNDIrHh1zrw5GZFmZZrAlUouDH4Shi6E+PkJtN2JdekOtfD9oTzEY+fW+41dMmOlVVVeTm5rJ8+XI6dKiv3D9w4EBWrlzJ+PHjOemkk7j00kt59NFHWb16NYFAwHAuRVFYuHAhc+fO5eqrr+b000/n1Vdf5eDBg7z99tsJWa/tcj0OqeA6Li5+BnZvYkX6u+YDiwrZZbA5UtFYozkGDH2GgAIHT3GaPiBt2g5hcWHHKbnZwNDBKIqSuESQ/XdEH6MhWtHi1iTUSl/P4b/TLmJ0mTVRcd7hv1meu+aL6QjAiUMWISkSLtFJqaeUct9PlAW8KEpK63e9KgpytQexXSq4wh/LggKS7GV8yUpWdriQSaWfhO3XJ7zkWoiRtLHGjBkzuPLKKxk5ciTz58+POFat7+d0GsuqvXv3UlRUxMiR9R9WMjMzOffcc9m8eTPXXtt4C6ot6I5D0tV3/eR3yY1zjpgeFr/UPah2j4WT4zyhTashHjGndaF1qMsG1X7fYehgtl3YC7foINnhotNj4Q9+K4H8zc7J73LOgQgfiJqYaB+srLYra2p29ZhO/+sWWxZzsaLGj/m33Uba0DwURSHJkUy6y8VRXwXQvknOmzAUBSUgIbqdCGkpDaropbjTcXrSeTnpf6A2sgu5Vf6etFHeeOMNtm3bxtatW6OOPXLkCI888ghTpkwxHVNUFPyF7Nq1a9j2rl27hvY1FlvQHY+01IfVk1vu4aelpZM32jy7xzbY9OWInkiKjKQEY89kRUBShNC/ygwHCgIBqYLhS9bx5YzL8crJuEUReYYDhAwEnxO/5ENSvIjTJuIUBYKdVCWcgoxLVHCJkCSKDNn0c/gCWsnPlkpzJYVYbUEGzbMmo5Io/X9ZbDI6MWivqXrrNFLPXoxf9uMJ+FGU5CY9dyJQFAWl1ovgdiGIQlhxYEEQSHKk0j3zFGRZ4mjtL7zTaTxXHV0d83m+6tyKTLatnF9++YXbb7+dDz74IGp3hoqKCq688koGDBjAH//4x+ZZoAm2oDvOSERcXFun1Yq53WPrhYn2+8bMFwNbhnevF2SIyHXfK4goigMEEQUROjkQcIIgIiAGC8kGgv8GXwfbLwkIOAURV90nCAUFv1TDf2fegCA4SHWl15WeEEKto5KdDS0QCsEaXAFk/IpEld/PuvOyUBQZRZEBGUU5FUXx4RT8jC4N1uNqyUxbo/M2xweJSNfcHPeiNViIar6YTslJd1HqE0l2d269fSMUBUVRkCtqkKtqceZ0Muz0IAgCbkcyiqjQJa0P1f5M/pmeiR8vuVVvhsZFeu9LX8/hjKt+Nt5p04Avv/ySw4cPM2TIkNA2SZL45JNPeP755/F6vTgcDiorK7niiivIyMhg1apVuFzmbUCzs4NvzqFDh8jJqX8OHzp0iDPPPDMh67YF3XFIW8r8agrcZz+H74tbW3oZQXaP5ZPzexCQBaRODhTlVhAUhE4yIrfgEMAhKIgCDP/PL8YiTyfcPhvWIyjKOqvCTAgKMUQUpU6UCQ6COVEOhDphJipOCAmyYI8FJ0Ko3pfetBtrXJKAUFfF37ySv9GcAgIIImoHT3SN2ut/nhUkRWJdp7sYvWUnY7duZ8UlQYHRlGKmObtjRKOl3atWaMy1RjtWtRB2W7eT/HPPJEVMNhRJLY6ioMgKUmkliseHo3Nm0DoXgYDsp6T2ICAj0J5AoIx/tBvPbyqC1rpI96XDdYVURq4YY6PhsssuIz8/P2zbjTfeyKmnnsq9996Lw+GgoqKC0aNHk5SUxDvvvBPVktenTx+ys7NZv359SMBVVFSwZcsWpk1LzAc9W9AdZwwpLmRrzvEt6OIRc5bbr+nE1abze+BXQFIcKIoTGQeC4EIQnIiCC6GLM2jVcjpw11mrggStUgoKfkVGQWb9+ScgczaKIqEoEqAgIELnekuZ2nZJEAQEUURExBF6oKmlcOv+3xofdHEgaK7PKYiIrq68f14Syjkn0sPh48LN+2F3MCtVS6KsSVbFSTTrXHNaFFuj9dIKU1D7vipU+6sp91aiKDKCIFDj91B8ZxXfSRIVndJIdrVvtT/jiqyg1HhAknF26QAuR1ThWRuowq8UcV3Vv0Lb3k65ns973Ea/J94Mta7T319V5Jb9qw2o/VZCRkYGAwcODNuWlpZGp06dGDhwIBUVFYwaNYqamhr+/ve/U1FRQUVdWZSsrCwcjuDHz1NPPZUFCxYwceJEBEFg1qxZzJ8/n759+9KnTx8eeOABunXrxoQJExKyblvQ2Rx3bMiayKXFq0KvTcWaRpwN2Q0wODj+wp74JBm/DH5ZQEJEVpwguKCTE0FwBkUbTkRBRBQdOAS1q2gMYkpwRB9j0wBREEl2dkChPQHZz4fnnxAUweedCYqErAQQCCAgEbR2yAC4RImcVDddUjuS5HAjIOAQRRyCE6foxCU6cYiOelmcQLGgDaVetnpak4utsR/lhHrYquy7cxwgIgoiPZ9621TwJp31HIqihO5FS4imcm8Fe8p+4WBNgOBjTEFSRBA64nCkkOxKCn7YaU0oCgqg+APg9YMo4sjKDN4/C/dQCLOWB5lQ+gqUQv4D99Jh9+PkZtcLuNLXcyidP5Gj9yn4ArX4ZpfCCmt1AJuSpHbtEF2uZi8snNSuXcLm27ZtG1u2bAHg5JPDM/327t1L7969ASgoKKC8vL6y8z333EN1dTVTpkyhrKyMCy64gLVr10a17llFUI53/1ucVFRUkJmZyferxpORZu43b21sy8pBcv6GoYULW3opLcJPfWfTzt2OvYeXAZo+uRrx9vkFPfBLSrhYw1UnsFyIogtRcCLgQBTEkHuyoUuSBttsmh/jP3FKXZuo+n2yHECSjyJSiVjXz1UEXKJAskOgnTuZdu5U0lyppDiTcYhqH9F6gScKDgQBRI2YSLTg0V6PgoKsKEhyAFmR8co+Kr1VVPiqkRQZjxTAG5AQBKgNBJNWaiWBgOJGFJNACYpaRXEgCw7cYjLBK/eiyJW0cwVo53bjEARqAn7SXC6SRBeSIpOZlEan5A4kO5NDQiO8kXz4OkP3I8LvhNG9UhQFGQW/5Au9PlxTzLclhwiIfXCKSZqZo4vt0LoUQJJAVkCWg69dDnBoLOXaf2J9HxXNVUsyis+PXOtFrvHi7NgOITUppnlr/VUUVX1HWrLEpLJ/Go7ZecpsqrwpyAigiJz3c30d0K3dbuKqgVeGyms0NR6Ph71799KnT58GgsVu/WWdSPdRj22hO84IulxbehUtR2d3R9K+fYAOdQJu43nj8SoulE7JCLiDljXJGXwwOx241JiyFrJE2DQe4/etoawQHQ4cYjaS0hm57qEfQMYrS1RIPg55a3FSRorjKKlOEZeo/mwEtYCASJrLhdvhJM2VQoozGZfoJsnhrj+HgfAxQy9Eg+JNRpIlPAEPtZIHnxSg2u+hJuAlIEvUBCQq/SCRgowTgRREwY2CUvchRMTlcpFc55o3u0+KoiArHamUaymvqUVWAjjEdhR7fSiKH0kBp1BM15RSuqW1p3NKB1JdqaDUrzMgB/AEPPhlPz7Jj08OICCQ4kwiyZGEy+HEL/mRUXCJLlyiM/S7pn+HyrzlHKg6TECWcYoCJR4vHjmDZGcSYiyWbEUBWUGp9oAoECivRgj2DAuGKKQmBa9BUZA9XgSHA8HlREhyIdT1VhUEzEWYKuIkGcUfCP5sSDJyrTf4OsmNM6t9cL4Y/564HclkJnWnxlfOGxm/4drKfwDh7vMB3//Z9PhTf1gS0/maktQuXdqswGrN2ILO5phG6079ststVB/ej6fjDJRzUxCFVBxiEkmiK5SdaXN8IwgiTsFtuC8ocmRqFR9VPg+KImnyd8EvB3AIARx4SXaUkiRCO7eLDknpSIqMKAikuVLqxIwLURDwSwHEuqxghxB06wIEFIlafy3eOquUpMj4JB8eyUe130eZ14dXBr8s4lfciEIyouBAFJNwOlNwCc5G/Tyr63GIGUBG2D1QCcheDtSUcaj2CD3SyujdLockRxKl3nJqA15q/F7KfT48MoADSXHgl2XcYoBkByQ7RGoDEgEl+H2yw4FTEOssncGvoJsRSjzVHPKAIGTiEAMIQieS3WkxizklICGVVCJmpCAku3GluAnGnBJstVU3TpBkBJcTJSCh+AMokoQYkEAByeevt6wJICS7EUQxWBy41ovs9YMkIzgdONqlIridOFKSoovBKDhEJx1SuiIIIsXV5fy7w2/o0ymDXP4S13w2xx62oDsOkRWppZfQbFQzng86OZCVFERfGg4xmSS3KxRfY4s4G6sERY4DUUnGJTZ0fai5twoyAdmPV/JxtKqMfVWVBGPTZNxiOW5RIdkh4BIFagIyCsHm8xkuJxnuFGRFxiP5KPf5qPAFI/xkRUBWHME4TSEVh9AJh5iE2+EgKeTyr19nU94DFaeYRHpSVwJyew7UHCQg7wdEjnolvLIbUUjB4eiMKLhDYQluByiKRJXkpyLgq4s3dVAbCKD4/aFkH/VLUWQEFCQySHJ1qLvvQXtoLNepKApIMoHisqDFTRVh+usLXiSIIoLLGe42rbPuiaKA7JcQNG7k4HIVEAQcGalBa55TrBNxiXs/JCVAhfco7VICXF26Ekrhs+7XMXz/6wk7h03bxRZ0xyHaeJa2zLasHHbl///27js8yipt4PDvnZ7eKzXU0NtC6EU6iLQFxShiAxVEUBZUQERRXNeCWILyKYKiNAVxF1EQKVIiIggIRAgJJKT3TJJJJjPn+yNkYEgCAULqua9rLsjb5jzzTibPnHplWor0rwP465lR5Fk0WIQelcoJjeKAVqOxfZOXCZx0u270HlJQo1Kr0aj06DXOl3/fihpmrcJKvigsSmCwoKC5XCtkId1sQslJLko+VF5o1D4oGj1qQFM8cvkO9s27WcXPr1HpsSj1uWRKA1To1W4YNNqy+7MpatQqLUI42vaXtyt30bVuIW6rFUtKZlGtmadr+V875apUuahzJIqToczhFmoH/ZVjK5gQgjyzEYvIZ0LWN7btVydz1WV1EKlqyISugsjVByrHuMUtARg/LQIS4mnUfip5hSq244DytCMaHNFpZROqVPWKk4+r34WqywNrSiOEC6ZCHQoq9JqbSDqqmKIoaBQdGt3NZBGKXc5zJ2MVVisirwDFoEPl4oiivs3Rr1V4X3IKMnHQAqbS98tErm6TCV0FkclcxfrDJ4AlM4pGYo2fFgEUfVg992E/8ixqLGI4KI7kCwe0Wh16WQMn1XgKBo17VReidhECCgpBCFSujjX+80GlqMm3VnUppOpKJnRSlSsteRvxNXwb2pQDPeuTaxmARRj4SeWIWjig0WjRXTWBriTVBvK9XPGEVWBOyyqaJqSc871VR0IITIU5mApzCM37gv/5DsYqFEYl/1TVRZOqEZnQSVXm6ubTBR8UTamy33cqeRY1v7U2oKgcUXN1Aif/6EmSVD5CCKw5JhQBik5Tc5M5ipK5uOxI1Op8PjNMxCHXESHKaHeV6qwqnUp76dKldO3aFRcXF3x9fRkzZgwRERF2x0RGRjJ27Fh8fHxwdXVl4sSJJCYmXve6L7/88pUFwi8/goOD7Y5JSEjgwQcfxN/fHycnJzp37sw333xTxhVrjz98qmYSuj98Apj+yVjWJlzpuPttaFOe+7Affm2eIMkykR+9XsREA7TaIBx09TBoPNCpDaiL56eqoR/IkiRVASGwZuegcnGssclcMbVKi6PWFY3ihk5xptCazv0569jkNpQ9gY9wqsXs655f/Jkr1W5VWkO3Z88epk+fTteuXSksLOTFF19kyJAhnDp1CicnJ3JychgyZAgdOnRg165dACxcuJBRo0Zx6NAhVKUMOy/Wpk0bdu7caftZo7EPdfLkyWRkZLB161a8vb356quvmDhxIr///judOnW6MwHfoqigFwmKer3CrleZi4OsTYBvPm7J+GkRPDr/EJ0PjmBnSEN+xABeDpebUPW2dUxl0iZJ0m0TAgotKFoNKid9jV6vRUFBq9Lh41SftNx4sswp6LVFcyX+M/NHyLzBBSjqf5ydc4cLehPMqWkUGiuvQBpnJ7RenpX2fFWlShO67du32/38+eef4+vry5EjR+jbty/79+8nOjqao0eP2pYqWb16NR4eHuzatYtBgwaVeW2NRoO/f9lDfg4cOEBYWBjdunUDYMGCBbz77rscOXKk2iV0FZnMFTVrVnxCVzyB77VTiTRuP5WnlqsoFMNJEY783MMBjUonm1AlSbpjBCBMBaidHYvmm6vhnzOKomAuNJFdkMLDBWv5n/Nkdjk/iFaTR59Lm6q6eDfFnJpG5IuvFK1pW0kUrYamr790y0ndG2+8wQsvvMAzzzzDsmXLAJg2bRo7d+4kLi4OZ2dnevbsyb///e8SrYFXE0KwaNEiVq5cSUZGBr169SIsLIzmzZvfUrmuVa1WLy5exNbTs+hFz8/PR1EU9Hq97RiDwYBKpeLXX3+97rXOnj1LYGAgTZo0ITQ0lIsXL9rt79mzJ+vXryctLQ2r1cq6deswmUz079+/1Ovl5+eTlZVl96iRrlqztKJM/2SsLYnLU0bh1+ZJvFvP4ievFzGJBmg0QTjq6mHQeKJVO8gmVEmS7hwhoMBclDAYtDU+mSumVelx1Liy0XUUI9PWcFfiFzUumQMoNOZUajIHIMyFt1wjePjwYT7++GPat29vt71Lly6sWrWK06dP8+OPPyKEYMiQIVgsZU/c/+abb7J8+XJWrFhBeHg4Tk5ODB06FJOpYvpDVpuEzmq1MmvWLHr16kXbtm0B6N69O05OTsybN4/c3FxycnKYM2cOFouF+Pj4Mq8VEhLC559/zvbt2wkLCyMqKoo+ffqQnZ1tO2bDhg2YzWa8vLzQ6/VMmzaNzZs306xZs1KvuXTpUtzc3GyPBg0aVOwLcKcVJ3LNttEr6aMKueTahKKBDY/OP0SocQQ/ez6K0eqPRtMYB119DDpPdBrHywmcSiZxkiTdcQKwZOQUTedciz5vBGAVkGMufWk6qeIZjUZCQ0NZuXIlHh4edvumTp1K3759ady4MZ07d2bJkiXExMQQHR1d6rWEECxbtowFCxYwevRo2rdvz5o1a4iLi2PLli0VUt5qk9BNnz6dkydPsm7dOts2Hx8fNm7cyPfff4+zszNubm5kZGTQuXPn6/afGz58OBMmTKB9+/YMHTqUbdu2kZGRwYYNG2zHLFy4kIyMDHbu3Mnvv//Os88+y8SJEzlx4kSp13zhhRfIzMy0PWJiYiou+MrQbFuFXKZ4UMUfPgGEGkfwxfrQorVSm22jAA8cNK5XauBqdM8VSZJqGiEEIt+MNb8AtYtTramdQwgswozJkktOfu1Y6acmmD59OiNHjrxu9y6AnJwcVq1aRVBQUJmVPVFRUSQkJNhdy83NjZCQEA4ePFgh5a0W05bMmDGD//73v+zdu5f69evb7RsyZAiRkZGkpKSg0Whwd3fH39+fJk2alPv67u7utGjRgnPnzgFFI2c/+OADTp48SZs2bQDo0KED+/bt48MPP2TFihUlrqHX6+2afqurqxejr0jjFhcNbAg914nCcc/Q+fjzQCeOJseS4/k0isoVB3XNmd1ekqTayWrMQ+3sAFp1VRfllgkhEFhRlFwEVkyFCiZzDi46dyzWAja5PMI/Mz8r17XWJsgVJG7FunXr+OOPPzh8+HCZx3z00UfMnTuXnJwcWrZsyY4dO9DpSq9BTUgoGmrs5+dnt93Pz8+273ZVaUInhODpp59m8+bN7N69m6CgoDKP9fb2BmDXrl0kJSVxzz33lPt5jEYjkZGRPPjggwDk5uYClKjlU6vVWK01bxruq5O4ikrm7NYEPDeCb0MBY1OiB7ckOSmKTK8nsHi5oFFcMej0cqktSZKqXqEFlV6L4mio0e0DVmEhJfci/8z+0G77asNIVCrXcidzIJO5WxETE8MzzzzDjh07MBgMZR4XGhrK4MGDiY+P56233mLixIns37//uufcSVWa0E2fPp2vvvqK7777DhcXF1uW6ubmhoODAwCrVq2iVatW+Pj4cPDgQZ555hlmz55Ny5YtbdcZOHAgY8eOZcaMGQDMmTOHUaNG0ahRI+Li4li0aBFqtZpJkyYBEBwcTLNmzZg2bRpvvfUWXl5ebNmyhR07dvDf//63YoI7N6LCmjlvpCKSuOKm1NMn4gk1jiC0eMc5iBvWluS8bNLyLeRnWlGr/NBqnNApapnESZJUPVxubkWlQlFV/KoQV6Z7Etz5KZYUNCoDXzpMAgpxdshnTNpWHjL9jzWGoewLfII+cSVbkqSKceTIEZKSkujcubNtm8ViYe/evXzwwQfk5+ejVqttfeqbN29O9+7d8fDwYPPmzbZc42rFs24kJiYSEHBlPtjExEQ6duxYIeWu0oQuLCwMoMTI0lWrVjFlyhQAIiIieOGFF0hLS6Nx48bMnz+f2bPtJ1EsbpItFhsby6RJk0hNTcXHx4fevXtz6NAhfHx8ANBqtWzbto3nn3+eUaNGYTQaadasGatXr2bEiJscBXp+CFxOPq91JPAphIB/7IvmSJ8guuyLKtret6i5uPjj4OoeEYrdVgUBdIl7/+bKdJPWJkAol2v4jCNIGdEBixBkFuSSYjJhTDNiVdzQqV1w1OiQ88VJklTtCLBm56I4O9yRvnMCQYYpmfzCXBx1rjhonNCotCiXu6JX1GeiEFaMBemYLfkgdORbTVhzr3T3mWz6kcPaGZxtNZPmp5eXeo071fWmrhg4cGCJ/vQPP/wwwcHBzJs3D7W6ZHO+EAIhBPn5+aVeMygoCH9/f37++WdbApeVlUV4eDhPPlkxa8FXeZPrjbzxxhu88cYb1z3m2lElVw+sKEvz5s0rZmWIJj+Bk7bUXV3iLv+nGXSJL/rXbnsZbvWXsbznFdfGFR8bahxBXLNWCAH1zp0mPjeX9HwLeRYdanUgOq0DKlkbJ0lSdSdE0eMOyS/MJSs/DVNhDjo16FRaNGoXDBpXDBqnCvmMNFvNZJhieSDvC7vtR4Nm0SlqGQBdL3xw3WvIZO72uLi42GbbKObk5ISXlxdt27bl/PnzrF+/niFDhuDj40NsbCxvvPEGDg4OdpVCwcHBLF26lLFjx6IoCrNmzWLJkiU0b96coKAgFi5cSGBgIGPGjKmQcleLQRGSvVv9ZSzrvGsTvc7J8XBuBA73LQQE1i7gVyhIz7dwalA9jAVWUAsc1AooyNGqkiTVIHfm80pBwVnrRk5BFu4GHwxqFU6aFArEOXLMLmhULbAKFWqVBrWiuaXkTghBbkEWKHnsazCGPjFbbPvyLW7lvk51HgihcXZC0WoqfWJhjbNThV3PYDCwb98+li1bRnp6On5+fvTt25cDBw7g6+trOy4iIsI2vy5gG0AxdepUMjIy6N27N9u3b6+wPneKqMx1oGqRrKws3Nzc+HvzKFzKqKGrKLdTfV68ckPx4IZr5YwZTpLJQprJSp5FIN8MkiTVSEJgSc1CcdCjcroDndKFIN+SR2zWOdwNPng4+KJV5WHmKMk5+SiKHotVR6HFGVedLwaNMzq1nuIuKkUjVwUWayFWUWjbbrbko1Xr0ar0WISFXHMWGXkJKKps7s+5MtXW8WZzUClW2p5955aKn51jpsXY78nMzLStvHQnmUwmoqKiCAoKKpGwyKW/yu96r+O1ZA1dDXAzyZzd4AZ/6HywE53pBOfA8b67sQjIKbSSarKSbLKQnVZAocziJEmqBRS9FuVOTVeiKEWJl1pPXqERV6snOrUWa6EvijoJZ70OH6dC0nNSyDKlk53niKPGCxedP1p1UR+4TFMKWfkJqFSFWK0aFMWE2WrBVdcAZ507aXlJFFjyEFjAWsjXzhOZZCxK6tqfe+uWix4eNJPWJ9+ukJehImi9PGtsglWdyYSulrElcsYRcA6cJo0i5+vvUU0YSXyehaS8QjIKBPmyNk6SpFpGWKwgxB3rJKKgwlHrQqYplRxzFmqVB26OXjR2zsFi1WIq1NHIM4dmf621nbPO6TF0ale0ah0ZpmTcHfO5J+1KP++1LoMxWQvJNjoihBYXvTvjs94rd5nK07zq55LNxTYPAN/fbMhSDVJtVoqQbt3ahMvzxp0bQahxhF3Talp+IbEjhnI0tYC/0gtIyLNiksmcJEm1jQCRa0KYy15LsyK4G3wwaBzIMKWQX2jCVKglJccTs1UHqFApV2oIN7kNQ63AuKx3yDRdQqWo7JI5gNDsHTjpPfBy9MDP2R8vhwAO1l90U2UqbpkpS+Pjq0g0utzUNaWaRyZ0NcwfPgH84RPA9E/GXpn811iUyDnedzeGe+9G/HMkKaOGcWrQYI6mFhCVXUiW2YpFZnGSJNV2d7BbuKIoqBUNHg6+WKxmCq1GPBwz8XYy4qI34emYS5OTa2zH/zNzO029i/qrPZD3BY08/Dja5F8lrjs6dRW+Tn4EumlwMeTTI3ZxucsU6l/ULae0pO5Is+m2/9dzy7iJSKWaSDa51iBrE+Cbxa6MnxbBh1M3F9XEFa1mhnri3SSZLCTlWUkvsJBXKGvhJEmqOwQCIe7UGNcrFEVBpagRCFTqdISiIiW3aARl18iS04l0jr4yiKFP3GtlXteKgtWqwaDN42SzF2l77vVylae4ybW0vtZdzl1ZaSLw+Nflup5Uc8mErporHqVabP23T5Oeb+FMviCvgRUnrQqDWiErNZ9ss1UOcJAkqW5SFFQOOhTtnf+zplXpcdA4kVNgREGDh8GCVZSdSka1fYKgk1dWdjjW7Gk6nrOfML57zEJbcnai2Ry72Q3slmLEvt9caf3n5MTCdZNM6KqhP3wCWDKjqCaOhHhatQugntcLpJksHEstsBvQYCy8s/1FJEmSagpFq0FR3fmeRCpFfXlUah7xmU54OFvpdPajMo+/OpkDSiRzxYqTs3ZljGgtTuSuTuLspqa6TCZzdZNM6KqJ6Z+MJT7+lC2J+za0E6kDZpBsKiSzwMrZTLNsQpUkSboOYS4EraZSml0dtS5kmJJJMZq5a1+MbSWg23Vtq0xprq6hKz726m1l/V+q3WRCV0X+8Ang09e60/OezQC2PnG5g58mOc/CH/kW8jIKsFZxOSVJkmoEIbDmFaDS6yrl6TQqHV6OgaTkXuKbzgGM/2MENNt23XOuTbSg5M8kFNW2Xbv/aldvK3F+GduqEzmx8J0hE7oq0jk5ntP3bKZVu6K+DknBy0lpbCErLR+zzOIkSZJuWmUufKQoCk5aVxRHhcScC2zq3IR/3iCpuzYRuzYJK/756u1lJWrXq3UrrWm2ujCnphH54iuVvvRX09dfqvVJnZy2pJL84RNgmy+ueHj5PQPfx911Hr/Xf4e/M82k5ltlMidJklRDFDW9OuNu8CUn38juPi04FfxEuc4tLXkrreattPPKqrW7Xq3ehqRyFeuOKzTmVGoyB0VN8bdTI/jGG2+gKAqzZs0qeW0hGD58OIqisGXLluuXQwheeuklAgICcHBwYNCgQZw9e/aWy3UtmdDdYcWJXHGn1VDjCPw9X+DPhu9yIr2AS7kWuYaqJEnS7VIU1M4Od27pr7KfGBedByqVmtQcCwUFrsR0eLjMo4u/2F9bg3b19uKfS3O9Wrdr9119jYm+SLfg8OHDfPzxx7Rv377U/cuWLUNRytdr880332T58uWsWLGC8PBwnJycGDp0KCaTqULKKptcb9Of3v70zku123Z1p9ZQ4ulsHEHGPcOJyLOQWd9KQZYc4CBJklTRFJWCcseHRFzznIqCRqXBSetGTkEGKUYPCqxexAXNJCRqebmvc71+cbfadHr1edWlhq4mMRqNhIaGsnLlSpYsWVJi/7Fjx3j77bf5/fffCQi4/modQgiWLVvGggULGD16NABr1qzBz8+PLVu2cN999912eWUNXQVw6hrGuMUtbd+wgpYX1cSNG/wBF5u/x9EBg/gro4Akk0WuoSpJknQnCLCaChCWqpjKScFJ54pFWMgtMKFRgY+Tkej2U+yOurZmrrQauWubYMubzJXV7674Z1lDd/OmT5/OyJEjGTRoUIl9ubm53H///Xz44Yf4+9/4JkVFRZGQkGB3LTc3N0JCQjh48GCFlFfW0N2mHg3nMfTuZYyfFlH0i3duBCmvDON0noVMOcBBkiSpkgisBYUo1qr5yqxXO16eyiQFfZYHLnoNimLi96bTEUJF1/Pvl0jOSquVu5nauLImGC7tebIrb1BprbBu3Tr++OMPDh8+XOr+2bNn07NnT1tt240kJBRl2X5+fnbb/fz8bPtul0zoblPuph/4NrQpxkEziMqzkFrfSn6GWU43IkmSVEcoioIKFT5O9UnOiSUpJwON2hUPRxMuhgyc9GoudZxMvWNrSpx7O/PEVcdRrLVBTEwMzzzzDDt27MBgMJTYv3XrVnbt2sXRo0eroHRlkwndbYoZPBCzzomctAIssi1VkiSp6ijc+cVcy3pqRUGjaPFyDCQuO5JkowmrNQCrsJJdkI+LPpeodg9jESqanfwUKL2Ztdjt9qOTEwrfuiNHjpCUlETnzp1t2ywWC3v37uWDDz7gySefJDIyEnd3d7vzxo8fT58+fdi9e3eJaxY3yyYmJtr1t0tMTKRjx44VUm6Z0N2mmJxCHBVZHydJklSlFAW1kwOKprJHudrTqnR4O9YjJfcSKblZCOGHl4sKvTobrdqCEFZiOzxE/T9XlyvhKp6O5GYTNJnM3bqBAwdy4sQJu20PP/wwwcHBzJs3D29vb6ZNm2a3v127drz77ruMGjWq1GsGBQXh7+/Pzz//bEvgsrKyCA8P58knn6yQcsuETpIkSaoVFJVS7ikk7lgZLk84rHJSkZwTS7opGZ3GGxe9MwWWPFJynQAwtnqc4NMrr3ut6jxBcG3m4uJC27Zt7bY5OTnh5eVl217aQIiGDRsSFBRk+zk4OJilS5cyduxY2zx2S5YsoXnz5gQFBbFw4UICAwMZM2ZMhZRbJnSSJElSzScEltx81FoNirZq/7QpioKDxhkfp/ok5cSQkJ2MwIVADwv1XbNAERRY1Bxs/Aw9ot8r8zq1MZHTODuhaDWVvlKExtmp0p6vWEREBJmZmbaf586dS05ODlOnTiUjI4PevXuzffv2Uvvp3QpFVOZaKbVIVlYWbm5ufH7wOI7OLlVdHEmSpDpNWK2Y41LReLqgcqyYP5C3SwhBXqGR1Nx4LKIQDwdHvJw06DU6XAw5WJV8cgp0KAg6nfvojpYlO8dMi7Hfk5mZiaur6x19LgCTyURUVBRBQUElEha5lmv5Xe91vJasoZMkSZKkO6C4ps7fuTGZ+Smk52WQngtOOlfcHTxwcShEp81Bq84nuv3D7P9p1U3NO1dTa/C0Xp41NsGqzuTEwpIkSVLtoFThMNcyKIqCRq3FyyGAei5NcTN4k2s2EpcVT3xGIdk5bqiEAbUC/YdN5lybR8p13ZqazEl3jqyhkyRJkmq+KlvL9cYUFFBAo9LhbvDBWedGZn4qGaZUjAVaUnMd8Xb2xM0hD1eHXC60n8KvP31uO18mb1J5yBo6SZIkqZao3l3CFUW5vParDi+HAPydG6HXOJKVn835lHQiEgUXUw1kmzR07DftxheUpKvIGjpJkiSp5hMCS44JRaet8lGuN1I8tYqD1hmDxolCawE55mxyzVmcT81Fm6nD3dGB4J5P0eX8R7c8ubBUt8gaOkmSJKl2sAqoYRM3KIqCVq3HTe+Fv3MjfJ0aglBIyc7gYpqJAw0fokWPfzLilwDGLW4JlL6yhCTJhE6SJEmSqpiiKKgUNY5aF/ydG+PlWB9zoSPnkxWiUnSEP9OTT1tklUjmZHInFave9dKSJEmSVE6KWgWqml1PUbwmrLPWHWetG2ZrATnmLNJz0tny8EAcdRaGfLybcX+7Mn5ahGyGlWxkQidJkiTVfIqC2tFQlNTVAsrlKVi0aj3uKh9cdZ7kFRrJKUjh5yd68+mKX/Hwr5nz0VmyjVhNpkp7PpXBgNrFudKer6rIhE6SJEmq+UTRygzVaxa621c85Yla0eCkdcNR40JeoQ87p7qh1iQx4uvDrB0Qf92kbm0C3FNNFjSyZBtJ/noTWCyV96RqNT6T/lnrk7ra8VVGkiRJquMEFmMeorASE4VKpigKKpUaR60rPo7N0Stt2PZoP1zaDK7qopWb1WSq3GQOwGK5rRrBN954A0VRmDVrlm1b//79bdPQFD+eeOKJ615HCMFLL71EQEAADg4ODBo0iLNnz95yua4lEzpJkiSpVqgrS5MXJ3YuOi/8nNpiKqgP50aUOE5Od3L7Dh8+zMcff0z79u1L7Hv88ceJj4+3Pd58883rXuvNN99k+fLlrFixgvDwcJycnBg6dCimCmp+rtKEbunSpXTt2hUXFxd8fX0ZM2YMERERdsdERkYyduxYfHx8cHV1ZeLEiSQmJl73ui+//HKJzDk4OLjEcQcPHuSuu+7CyckJV1dX+vbtS15eXoXGKEmSJEkVTaHob5tObcDLoRnfdKlH+tcBrE0ofeTrhqTKL2NNZzQaCQ0NZeXKlXh4eJTY7+joiL+/v+3h6upa5rWEECxbtowFCxYwevRo2rdvz5o1a4iLi2PLli0VUt4qTej27NnD9OnTOXToEDt27MBsNjNkyBBycnIAyMnJYciQISiKwq5du9i/fz8FBQWMGjUKq9V63Wu3adPGLnP+9ddf7fYfPHiQYcOGMWTIEH777TcOHz7MjBkzUNXwEVKSJEl1lUqvRVHVtl5016coClqVHk9DE355YiTqlqP55uOWjFvckm8+bllmgifd2PTp0xk5ciSDBg0qdf/atWvx9vambdu2vPDCC+Tm5pZ5raioKBISEuyu5ebmRkhICAcPHqyQ8lbpoIjt27fb/fz555/j6+vLkSNH6Nu3L/v37yc6OpqjR4/aMt/Vq1fj4eHBrl27ynyRATQaDf7+Zdczz549m5kzZ/L888/btrVs2fI2I5IkSZKqhKKg1utq/LQlt0JRFNRocdc3Ic2kI/RdDRbMDA47zDbgm49bMnLyyaouZo2ybt06/vjjDw4fPlzq/vvvv59GjRoRGBjI8ePHmTdvHhEREXz77belHp+QUJRV+/n52W338/Oz7btd1eqdn5mZCYCnpycA+fn5KIqCXq+3HWMwGFCpVCVq3K519uxZAgMDadKkCaGhoVy8eNG2LykpifDwcHx9fenZsyd+fn7069fvutfMz88nKyvL7iFJkiRVEwLEDVpuarPiNWJ9HINw13XCWd2BX54Yi67lOD5tIf9e3YyYmBieeeYZ1q5di8FgKPWYqVOnMnToUNq1a0doaChr1qxh8+bNREZGVnJpr6g2CZ3VamXWrFn06tWLtm3bAtC9e3ecnJyYN28eubm55OTkMGfOHCwWC/Hx8WVeKyQkhM8//5zt27cTFhZGVFQUffr0ITs7G4Dz588DRX3tHn/8cbZv307nzp0ZOHBgmSNOli5dipubm+3RoEGDCn4FJEmSpFsnsOTU7lGuN1K02oQKndoBF5073g5N8NB1Ys8TE9A2m1jVxasxjhw5QlJSEp07d0aj0aDRaNizZw/Lly9Ho9FgKWWUbkhICADnzp0r9ZrFLYbXjgFITEy8bmvizag2Cd306dM5efIk69ats23z8fFh48aNfP/99zg7O+Pm5kZGRgadO3e+bl+34cOHM2HCBNq3b8/QoUPZtm0bGRkZbNiwAcDW/27atGk8/PDDdOrUiXfffZeWLVvy2WeflXrNF154gczMTNsjJiamxDEGjRpn3Y1bsRXAVa9FU8f6ekhFnHQaHC8vHu6k1eBUjveMJEnlodS6eehuR9GgCQc8HRriqW9d1cWpMQYOHMiJEyc4duyY7fGPf/yD0NBQjh07hlqtLnHOsWPHAAgICCj1mkFBQfj7+/Pzzz/btmVlZREeHk6PHj0qpNzV4i/JjBkz+O9//8vevXupX7++3b4hQ4YQGRlJSkoKGo0Gd3d3/P39adKkSbmv7+7uTosWLWyZc/EL3rq1/Ru8VatWdk2zV9Pr9XZNv9dq7OFM13reAFzKyuXAxSQauDkR5OGMj5MBlaKQkVdAgjGPIA9n9JqiN8SOc3FkmApKXM+gUdPcy5WG7k44ajXkmQu5mJHD2dQs8u7QN1AnrYbWvu74ORtw0GrIL7SQmptPZFo2Bo0aV72WpBwTCcaKGwns6aCnnqsjeeZCojKMuOq1dPD3RK9WUWCx8kd8GpmmAhq5O9PCyxWVApn5Zo5cSsVczZpXHLRqGrs7oygK0elGcs2FJY7pFOBJM6+SI6HOpmRxLCGtXM+jU6sI8nBGq1JxMTOHrHzzbZddkqTaqWjFCdCqtVVckprDxcXF1lJYzMnJCS8vL9q2bUtkZCRfffUVI0aMwMvLi+PHjzN79mz69u1rN71JcHAwS5cuZezYsbZ57JYsWULz5s0JCgpi4cKFBAYGMmbMmAopd5XW0AkhmDFjBps3b2bXrl0EBQWVeay3tzfu7u7s2rWLpKQk7rnnnnI/j9FoJDIy0pbINW7cmMDAwBJTpPz99980atTopuPQqVV0refN6tWr2bRpE16Oeno29KVbPS9OHT7E3H/9i5kzZ7Jl/Vc0dNKi16h56aWXOHr0KJ0DvUpcz82gY1jzeviqLaz86ENmzJjBxx9+gI/awtDm9XA36G66jDfiqNUwuFkgquw03nnz30yfPp03XltC9Mlj9GnsR0c/NzRZKfRp7FeuWsjy0KgU+gf54ZiXSUt3B5p7uRLs7UbKxSg++WA5CVHn6BTgiValolt9b379+Sc++WA5Pno19d0cK6QMFekfgd4EaKz4KmZC6nuXekwDNyfef/991qxZA8D//d//ERYWdlPxtPf3oJGDGndLHr0b+d34BEmqExRUBh3UkqW/aiuVwQCl1HDdUWp10fNWEJ1Ox86dOxkyZAjBwcE899xzjB8/nu+//97uuIiICNvYAIC5c+fy9NNPM3XqVLp27YrRaGT79u1l9tO7WVVaQzd9+nS++uorvvvuO1xcXGwjPdzc3HBwcABg1apVtGrVCh8fHw4ePMgzzzzD7Nmz7UakDhw4kLFjxzJjxgwA5syZw6hRo2jUqBFxcXEsWrQItVrNpEmTgKJvLP/6179YtGgRHTp0oGPHjqxevZozZ86wadOmm46jiacLubm5LFmyhKNHj6JXq/B10DJy5EjS0tJ47LHHcHV1ZdeuXezdu5fPPvuMESNG8Pzzz/Pjjz/i7agnJTffdr0eDXz48+gfjBgxgtDQUAYOHMivv/5KcHAw//vf/+jXqTOJOSYauDnZzjEWmInJyOGv5AwUFJp7udDY3RlXg46MvAKiMrKJz86jo78nga5XkofsfDMXMow467TExcbwj3/8g6effprBgwdz4cIFvv32W3r27EliYiJ9+/bl0qVLDG9R3/aczrqib31WqyAl10Su2UI9V0dUikJSTh4nEzPIMBXg5ainpbcbAS4OFFqtJGTnYSq0oFapCA0N5bXXXqNv374AfL3tmC3hXbt2La183TCbzTz99NNER0fz6KOPEujiSICLI37OBjQqFel5RTWJMZk5dArwooGbI+rLzfK5BYXEZuVyMjEdyzUTj7rotbT0diXQxRG9Rk1GXgHn07NJMObR1tcDP2fD5VhM/JWYjpNOQ7CPG16ORb+AViFIz8vnQkYO/i4OvP76u2RnZ7N06VLublkfB+2VXzGrVaBSKbRt29b2/o6Pjyc/Px8HrYYJbRuTnGPiTHImAmjt4wbA6eRMzFYrbX3dcdBqcNFrWbNmDTt37mTNmjUMa16PyLRs9BoV9V2dcNFrSc01cS41m9S8fLt7LoSg0CrIMxei16jRa9TkmQuJz87jRGI6BZbqVespSeWmFE1bUhdHudYkahdnfCb9s8at5bp7927b/xs0aMCePXtueM61E10risIrr7zCK6+8cltlKUuVJnRhYWFA0RIaV1u1ahVTpkwBijLcF154gbS0NBo3bsz8+fOZPXu23fHFTbLFYmNjmTRpEqmpqfj4+NC7d28OHTqEj4+P7ZhZs2ZhMpmYPXs2aWlpdOjQgR07dtC0adObjqORuzPrv/qSvn374uzsjMVqZdWqVcTExHD06FEKhEKuuZB7772XtLSiZrWQkBAuXLhQVCvoHWBL6HycDLjotcyYMYM5c+Ywd+5cUnJMjB07loCAAGbMmEF4eDjuKiufffYZXbp04euvv6Z+/fo89thjuDv4olIU3DQK69d/zcmTJ2nfvj33338/nQK8iI+PZ8P2/xIUFMTGjRtp3Lgxjz/+OFqtlhXrv6RHjx689NJLJWLcvHkzRqOR5cuXo9VqefLJJ9m2ZTMdO3bk+++/R61WM2vWLKKionjjgy8xm82MHTuWwZ06EZGcSUsfN44ePcqHGzfi5OREaGgoLRo3Jjw8nEuXLrFp0yaOHTvGqFGjAOjZsycHDx4kMzOTlt5ubN26ld69exMdHQ1AoKsjhw8f5tMffsBoNNKlSxcmTJhAKx939CpYERbG4MGDWb16NZ6enkydOhXPID92n0+g+FfMzaBlSLN6REdH83bY+6SkpNClSxdCQ0Nt76u3P1qP2Wxm3LhxDGnXDoBff/0VvV5PREQEx48fZ9CgQQwZMoTExEQOHDhAfn4+y5cvp127dnTq1InvvvuOTp068fXXXzNq1Ch0Oh1a7ZXmDyEEX375JSdOnGDw4MG26XjCw8MBaN+hE6ZCC4lR50hJSaFr16789NNPREREsHz5coKCghg1ahS5ubl8/ulKYmJi6N69O/fccw+KonDp0iU2/vg/6tevz+bNm5k8eTLe3t6ErV5NfHw89evX5+GHHybY243jiek3/f6XpGpBgLXQgrqOrBZRk6ldnGv9uqpVocqbXEt7FCdzULSGWkJCAgUFBfz99988++yztj4BxaKjo3n55ZdtP69bt464uDjy8/OJjY1l3bp1pSZqzz//PDExMeTk5HDgwAF69+590zEYtBpc9Vq2bdvGgAEDMFusqFUqNm7cyGOPPUYhCtvPxrI7KoGd5+LIQMuhmGQURaF///788MMP+DhdqW71d3YgJiaG8PBwpk6dSkRyJr9EJXAmOZPHH3+c3377jZiYGDIyMnj66adZuHAh3bp14/Dhw0yYMIEAF0d8nQyMGDGC8PBwevXqxY8//mhbYy4qKorp06fz/vvv06VLF7799lvmz58PFDVFHzhwgE2bNpGebv+H3c3NDZVKhY+PD97eRc2Jy5YtY8KECej1epo1a8bx48fp378/Pj4+BAcHc++997J//35a+rixZcsWQkNDad26Nd7e3vTv35/Y2FgcHR3RarW4u7vj4+ODTlfUnKzRaBg/frxtIMuqVat4+OGH7cq0b98+mjVrRs+ePfn8889ZuHAhTjoNhYWFzJw5k1mzZtG5c2eioqIYMmQIngYdDdyv1Gp2Dijq+9C9e3f0ej39+/fnzJkzQNG0N7169cLZ2Zn69eszbNgw2+SPW7du5d577+XChQu0adOGhx56iAMHDqDRaHBycsLBwQEfHx9cXFxISUmx3ae2bdvi4uLC1q1b7TrGfvbZZ5w9e5bOnTszffp0Nm7cCBTN0/jDDz+gVavQqlXs37+fDRs2oFKpcHFxwWAw4OPjg5ubGxaLhbvuuovjx4/TuXNn/v3vf7N48WKgaFT3U089xbJly+jYsSMGg4HBgwejUqkYNmwYBoOB5ORkdBpZsyHVZAJrjgnq8ChXqW6rFoMiajJnfVFNy5kzZ5g9ezb5FgtatYro6GgaNmxIpsmM9fIXxnRTAUfiUgFo4+tOkyZNOHPmjN0oR71GxcWLF3FxccHd3Z0zMclF5+blE+zji5ubGxcuXKBRo0bk5ubyySef4O/vzz333EPDhg05c+YMly5dIi8vjw8//BBFURg5ciSBgYG88847AKjVaj777DM0Gg1NmjRh2rRpAAwdOpRXXnmFV199lXvvvZcuXbrw+uuvM2jQIO666y4cHR2ZNGkSVuuVb8BPPfWU7fz77ruPRYsW8cgjj9ie54MPPqBXr1689NJLfPbZZ3Tv3h2AuLg4Vq1axcKFC/H19WXQoEF069ELg/ZK34qHHnqIadOmMWbMGP766y/69etn99o/++yzpKenc+nSJWbNmsX06dN57bXXgKKRzG+++SZt27Zl3LhxtG3blv3799OoXWcuZuSgU6vwdjIw4/XXmTdvHrNnzyYhO4+7L9cQfvDBBzzyyCPMnDkTgNzcXN5++21bk/zAgQNtifDff//Nzp076dmzJx06dCA7O5t777sPlaJw7tw5TCYTq1evxtHFBV0pfUc6duxoS75cXV15+eWXmTBhQpnvOUdHR3r06EFOTo6tG8HPP/+M0WgkLCwMRVHo2rUrrVu3ZsGCBbbzvvjiC3Q6HVarlejoaIYPH27X8ffXC9dfUk+SJEmqvmRCd5tUl2sLCwoK0Gg0FBRaQVc0iCM5OdkuWdOpi/o4JeeasAqBVqslPz/fdg2AQovAy8uL7OxsTCbTlektdBrb5MZeXkUDKby8vPD39+d4Qjrt/T1o0aIF58+f5/z580RGRtKzZ09bG763t7dt/pvGjRuj0WiIy8rF09PT1mkzw1TA1Cee4KmnniI9PZ2VK1cyevToEiN/TySm0yGgaPLn4OBgsvPNuOi1nD59mr/++ouVK1cW9dUqLKRZs2YIITh9+jQzZ860TTeTn5/PyJEj7a6bYMzD4aqErm3btpjNZhYtWsSkSZPspqoRQjBr1iz27t1Lhw4dUKlUJeb3adWqle21ad26NefPn6dV565Fr+fl1/Xvv//mqaee4mJGDuGxyTho1dzdsgGRkZGEhoaSnGMiz1xIu3bt7Ka0adq0KcYCM1arwMPDo8S8iGaLlah0IxqKRlW7u7uzJyqB7g18uFabNm0wW6ycS82idevWREVFlTjmelMxZOQVEBkZSbt27VAUhSOXUuly+R4Xl6tp06bodDr2X0iiVyNfPvroI9vIq/Hjxxcl1k4G4rPlWsZSDaYAipy4RKqbZEJ3m/IuT03RoEEDEhISaNS6HfmFFu655x6++eYbpk2bRq+GvmQXmAnycEGNoMAq0KpVJCQk0KBBA0xXNREk55ro0bIlTZs2ZfPmzfxz4r0YNGqCPJz5dtNGmjRpQnBwMLGxsWRkZJCbm0uwtytCCOLj4/H19cVoNNK+fXt27txZorxJSUm2JmsBds3XHg568gst5BQU4OHhwb/+9S9eeeUVLly4gJ+fn23+vnb+VxYp1mg0FFgsgBZfX18ee+wx7r333hLP6+vry6effkq7y/3QrqYoClarlcYeJftUTJkyhenTp5eYffvSpUts3LiRixcvotFo+Ouvv2xNlcUSExNp5Vc0YWPxa5N/udO/6fLEkAEBAVy4cIGQnr1o5VM0aAOKlmO5dOkSng56LAYd+y5dsluyRVEUirvqXP0aFsei16gJ9nHjXGYyGo3G9nqXJj4+Hq1aRRNPF47+fsbW19NgMJCamoqjtmjeuuTk5BLPA+DuoLOVF6C1rxuZmZnk5ubi4+NDdHS0rQzWy4V+8MEHefDBB4mOjubxxx9n+fLlzHxuDn8myD50Uk2loHY0yFGuUp0l3/m3KdtUQH6hhf79+xMeHo6Pk4FLWblMmzaN8+fPM23aNBIjI9BmpbJm1Wc8++yzOGg1aFQqwsPD6d+/P2lXjXCNz86jwGJl6dKlzJ49m43r1+GQl8k3Gzcwa9YsXnvtNVsCoSgK8+fPJz01hbCwMNRqNZ06deLuu++2dZhPTEzkwoULrFq16oaxbN68mZUrwoiPPk9UVBSvv/46Li4utGzZEh8fH3Jzc/npp584eeKE3XlZ+Way88088cQTLFiwgAMHDpCens5vv/1mSyqfeOIJ2+TRaWlp7Nq1iyNHjgDQqFEjtm/fztGjR+2GeAM8/vjjJCYmlph30MHBgby8PI4dO8bFixdtzZ9XW7hwIanJSXz99ddER0fTv39/UnOLRlblmS0YC4rKvHjxYo7+fpgAjZXw3buAooRn+fLlHP3jCJF/R7B06VImT558w9ewcePGHDp0iMOHDxMbG3vD4wH+97//8eOPP5KcEM9LL71kG5TRuXNnvvvuOyIiIti/fz+rV6+2ndOoUSOOHTtGeHg458+fZ+DAgURGRvLFF1+QlpTInDlz+Oc//1liOHygqyNGo5Evv/yShIQEHB0dcXJywtHR0ZbsSVKNpICi0cgaOqnOkjV0FeBSVi4PPvggw4cPZ8mSJWSaCvD2cuW3337j008/Zfbs2RQUFNClSxdbn6z4+HguXbpEv379+D3uyoSyViE4EpfKhAkTaNCgAR9++CHvvfcezZs359tvv6VHjx5kXp6I2M/Pj44dO/LPf/6T+vXr88MPP2AWoGh1/Prrr7zzzjvcc889ODs7M3DgQKCo6XXw4MEAFFqtODk52UaWtmrVil27drFhwwaEEAQHB/PLL7/g5FQ0kGDDhg1s2rSJwsJCPvvsMwYPHoy3tzdWAScT0xk/fjxarZZ///vfxMfH07hxY9tUMvPnzycwMJDZs2eTlZVFq1atmDdvHgCvv/467733Hm+99RbPPfccjRo1so18Pp2ajaJoyU030sjdiUmTJqHVanF2dmblypXMmTMHBwcHnnnmGdsawFA0T9DIkSO577778PLyYseOHSgaHZFpSbZj/oxPZ9SoURQUFLB48WLS09Pp1q0bI0aMoH///rz77ru8+OKLQNFUOMX91Tp27IizszNWIRCiqNm5uPZu/PjxxMTE8P777zNgwACGDx9ue32tVoFVCNv5UNTc+s4777BlyxaWLFnC4MGDmTdvHpmmAgYNGsQjjzzCY489RvPmzXn99dcxGo0A9OnThyeeeIKwsDDatWvHc889x48//sjSpUv55JNP6NmzJ8uWLQOKVlwpHjlbaLGiVus4ePAgK1asQK1Wc9ddd/Hkk0/yd3rOrf4KSFLVEwKrKR+1Xk6gK9VNirh2ohSpXLKysnBzc+Pzg8cJ8PZkSLN6TJ06lbvvvpu+g4exOzqB1j5uNPFwQXNVE0CSMQ9fZwfmzZtHmzZtCH3gQb47fbHE/Gg+TgZa+bjh5+xgd+6p5Ex8nAy45mfTo0cPu1qgpBwTv8UkgwId/D3t5qkDSMkx4aIvmtg4NjOHk0kZ9GnkV9Q/r9BChqnA7vkA4rNzORafhqNWQ8cAT9yumdQ4z1zIwYvJpOblU8/Vkba+7rhedUxWvplj8Wm46DW08nHHoLnSRy4l18RfiRk09XSh/jVlFUIQnWHk90tFg0h0ahX9g/xxM+jIzjdzLi2LNj7u6DQlBxmYTCbc3NzIz79S85mWm094bDLGAvvVGxq4OdHWz902nx7AhQwjiUYTbX3dcbzcB9JssXIsPg29Rk0bX3cEgj/j0xBAxwBPFBROJ2egVhSae7uiuWYurCRjHnujE2nh7UobXw8EgpyCwhKvJ8CppAz+Ssqgpbcr7f09S91fYLHSysfNtuJIco4JIQS+V92/c6lZXMrKJaS+DwatmpjMHP6IS+Uf9byp52o/kfHp5AxOJmaUeC5JqimEuZDCuFQ0fh4od2Dy9Zou15jNlB7tyczMxNW15Go1Fc1kMhEVFUVQUFCFTZxbF93M6ygTuluUmZmJu7s7YTsP4ODkTK+m9annbCAvLw+NgxOb//wbKBo04azXoVIgO78AvVrN+E7BJCUl4uvry6GoOM4ml91vyaBRY9BqMBVaMF3ur9ehvi/emBkwYABnz57lt+g4zqdkkH/NcH2tWoWzXkehxYoxv6CozxyX+19dddvVimJLKIvKq0VBIafATOE1y2spl4+xCIFKUYqmmrmmzE46LTqNmtwCc4kyuRh0qJWia5uvmcRWfVW5ri1jaWVVLl/PKgTGfHNRMuXrSYcATwICAkhPT+fP2CQiElNtfR3L4qLXoVYpGPPtY3a96vrFVIqCQFzVh65oBcmry1s80MUqhF2Zrz2/+FytWoWDVkOWqaDEdVwMOkzmQgoslus+D4CDVoNOoyb7quuUdc+d9ToERbHJ5lapphPmQgoT0tD4eKAYZC3dtfJyjDw5qCcZGRm4ubnd8ee7XiJSaDRjMV3/M7kiqQ0aNM418z1xMwmdbHK9RdnZ2QA8OagnUNSB/fHHH8fFxYWNGzdy9uzZMs/t06cPd911FxEREaxbt+6mn3vo0KFs376ds2fPYjKZGNm1g93EynVZ586dOXLkCOnp6VitVsb371liQIUkSVJdlZ2dXSkJXVkKjWZiv41EWCrvS6SiVqg/rmmNTerKS9bQ3SKr1UpcXBwuLi4lJjquDCqVCpVKhcViKbG8yO3IysqiQYMGxMTEVEq1/J1wo9emNsRYHnUhzroQI9SNOOtCjFB1cQohyM7OJjAw0G4KqDulrJql/JQ84r6PvuPPf63AUY3Rezvc+EDg5Zdfts0NWqxly5a2ieenTZvGzp07iYuLw9nZmZ49e/Lvf/+b4ODgMq8phGDRokWsXLmSjIwMevXqRVhYGM2bN79uWWQNXSVQqVTUr1+/qotxx7i6utbqD1WoGzFC3YizLsQIdSPOuhAjVE2cVVkzV9O0adPGbuqv4qmfANsSkQ0bNiQtLY2XX36ZIUOGEBUVhbqUyeMB3nzzTZYvX87q1asJCgpi4cKFDB06lFOnTlVYH0OZ0EmSJEmSJF1Fo9Hg7+9f6r6pU6fa/t+4cWOWLFlChw4diI6OLnWZUSEEy5YtY8GCBYwePRqANWvW4Ofnx5YtW7jvvvsqpMxyHjpJkiRJkqSrnD17lsDAQJo0aUJoaGiJFZOK5eTksGrVKoKCgmjQoEGpx0RFRZGQkGCbPgqKaktDQkJsa4RXBJnQSXb0ej2LFi1Cr9dXdVHumLoQI9SNOOtCjFA34qwLMULdibMmCwkJ4fPPP2f79u2EhYURFRVFnz59bIMhAT766COcnZ1xdnbmhx9+YMeOHeh0pU+Xk5CQAGC32lDxz8X7KoIcFCFJkiRJUoWqyYMirpWRkUGjRo145513ePTRR4GiqcuSkpKIj4/nrbfe4tKlS+zfv7/U/nAHDhygV69exMXFERAQYNs+ceJEFEVh/fr1ZT73zQyKkDV0kiRJkiRJZXB3d6dFixacO3fOts3NzY3mzZvTt29fNm3axJkzZ9i8eXOp5xf3xUtMTLTbnpiYWGY/vVshEzpJkiRJkqQyGI1GIiMj7WrXriaEQAhhtzrR1YKCgvD39+fnn3+2bcvKyiI8PJwePXpUWDllQidJkiRJknTZnDlz2LNnD9HR0Rw4cICxY8eiVquZNGkS58+fZ+nSpRw5coSLFy9y4MABJkyYgIODAyNGjLBdIzg42FZjpygKs2bNYsmSJWzdupUTJ04wefJkAgMDGTNmTIWVW05bIkmSJElSpVAbNChqpdJXilAbyp/uxMbGMmnSJFJTU/Hx8aF3794cOnQIHx8fzGYz+/btY9myZaSnp+Pn50ffvn05cOAAvr6+tmtERESQmZlp+3nu3Lnk5OQwdepUMjIy6N27N9u3b6/QdW7loAhJkqRqQAhRJavOSBVP3ku5lmtFkStFSKXavn07wcHBNG7cuKqLcsfk5ubi6OhY1cW44+S9rD127NhBr169an2shYWFdrPt10Z15V7eLo2ztsYmWNWZ7ENXB5w/f56BAwcyYsQITp48WdXFuSOio6MZO3YsoaGhPP3005w6daqqi3RHyHtZexTfy6FDh3LgwIGqLs4dEx0dzX333ce0adNYvHgxaWlpVV2kCldX7qVUvcmErpabMWMGwcHB+Pr6kpSUxN13313VRapwhw8fpnv37uj1enr37s22bduYPHkyP/zwAwBWq7WKS1gx5L2svffy6hnka5Ndu3bRpUsXLBYLXl5evPPOOzz44IO22fFrw/2sK/dSqgGEVGv98MMPQlEU8cknn9i2nT59WqSlpVVhqSrewoULxdChQ4XZbBZCCHH27Fnx4IMPinr16gmLxVLFpasY8l7WjntpNpvFypUrhaIoYv369bbtUVFRIj8/vwpLdmdMmzZN3H///bafDx06JO6++27Rs2fPKixVxbBYLHXqXt6svLw8cerUKZGXl1fVRanRbuZ1lDV0tcxvv/1GREQEAF27dmX06NFs2LCBP//8k759+zJx4kTatm3L9OnTOXLkCFDzviUnJydjsVhsP58/fx5FUWz9c5o1a8a8efNQFIV//etfQM2L8VohISG18l4WE5fHZtXWe3n48GFSUlLQaDR0796dAQMG8P333/P3339z1113MXbsWNq0acMrr7zChQsXgJoZ59VLIwFcuHDBriN3SEgITz75JLGxsfz73/8GamacACqVip49e9baeynVQHc+v5QqQ3x8vJgwYYJQFEVMmjTJtv3gwYNCq9UKT09PsWDBAvHTTz+J9957T3Tv3l0MGDBApKenV12hb1J8fLzo06ePGD16tEhJSRFCFH1LnjNnjhg8eLCIjo62HVtYWCiWL18uHBwcRHJyclUV+ZYkJyeLr7/+Wuzbt08kJSXZtteme5mYmCjee+89sXXrVtt9M5vNte5exsXFiXvvvVcoiiKeffZZIURRPF9//bXQarXC29tbzJ8/X2zcuFEsWrRIBAUFiUceeUQYjcYqLvnNiY+PFz179hSPPPKIMJlMQgghCgoKxPjx48WUKVNEamqq7diMjAwxb9480bx58xr1nk1OThbbtm0Tx44ds8VYG+9lRZE1dBXjZl5HmdDVAnPnzhUqlUqMGjVKDBs2TDz44IO2D5Hc3FwRFhYmVqxYYddktWnTJtGhQwcRFhZWVcW+KS+88ILQaDRi5MiR4uLFi0IIIaxWqxBCiK+//lq0bt1afPXVV3bnnDhxQnTo0EG89dZblV7eW/XSSy8JFxcX0a9fP+Hk5CRGjx4tjh8/LoQQIisrq1bcy/fff1/o9XrRu3dv4ePjI9q2bSt++uknIYQQ69atE61ataoV97L49/Luu+8Wbdq0EQsXLrTdt9jYWLFkyRLxxRdf2J3z7rvvio4dO4qtW7dWRZFvybx584RWqxUjRoyw/W4Wx7l8+XJRv359cfDgQbtztm3bJjp27CjWrVtX6eW9FQsXLhTu7u6iZ8+eQqvVipkzZ4rIyEghhBAXLlyoNfeyIsmErmLIhK6O+PPPP4Wrq6to06aN+OWXX4QQQsyfP1+0bNnS7rj09HTbN8riJCgnJ0fUr19ffPTRR5Va5puVm5srGjRoIJydncWOHTts2wsKCuyO6927txg/frw4deqU3bnt2rUTy5cvr7Ty3qrMzEwxY8YM8Y9//EPs2LFD5Ofni2+//VYMGzZMPP3007bj0tLSauy9FKKodqZLly7iww8/FEIIceTIEfHYY48Jb29vERERIYQQom/fvmLcuHE19l4eOHBAuLm5ibZt24pdu3YJIYR49NFHS/Qbi42NtfW1Kk6A0tLShJOTU41IAlJTU0XDhg2Fj4+P2LNnT5nH1atXTzzyyCN2tc1ZWVnC19dXbN68uRJKeutSUlLEww8/LLp06SJ27twp0tPTRVhYmOjevbt4++23bcfV9Ht5J8iErmLIPnR1yNq1azl58iT9+/cHoHPnzqSlpXH27FnbMe7u7uj1egDbZJcREREoilKt5zGzWq04ODgwZMgQGjduTL9+/Th+/DiPP/44M2fO5O233+bEiRMAvPjii5w+fZqPP/7Ydn5+fj4FBQV4eHhUVQjllpaWhtlsZs6cOQwaNAidTsfYsWPx8PAgLy/PdpyHh0eNvJfF9u3bR2RkJKNHjwaK3q9hYWH4+Pgwd+5cABYvXlzj7qW4an727OxsPv30U06cOMGAAQMQQtCqVSsyMjKIi4uzHVevXj10Oh1Q1B8L4I8//sDFxQUvL6/KDaCciuMUQuDp6UnHjh1p06YNffv25c8//2TGjBnMnz+fL774gtjYWADefvttvvvuO9atW2e7TlpaGk5OTrb3cnVy9b2MiYnBYrHw6quvMnDgQNzd3XniiSdQq9VkZGTYjquJ97IqFRrN5KfkVdqj0Giu6pArRe2e5bGWsVqtqFQqzGYzWq2W9u3b0759e7t9arUaBwcHuyVHrj7fbDZz7tw55s6dS8eOHenVq1dlh3FdxXEUFhbaPhjDwsLw8PCgQ4cOZGdn069fP/Lz8/nll19YsWIFx44dY/jw4Rw/fpwvvviC7t2788ADD7B582Z0Oh19+/at4qhKuvZe+vn5MX36dNq1a2e3383Njdzc3FLPr0n3Uq1W25JOo9FIWloa9erVIz8/H71ez0cffcRdd93Fjh07GDx4MFOmTGHNmjU14l6aTCays7Px8fEBYNCgQbb3bvFr4OrqSmZmZqkT61qtVhRF4dSpUyxdupT+/fvzj3/8o1JjKI+r4yz+MvHWW2/Rtm1bunfvTlxcHCEhIZw6dYrVq1fTunVr/ve//3HvvfeyZ88ePv30U3766SceeOABVqxYgZ+fH926daviqOxdey8bN27MU089RUhICAAWiwW1Wo2fnx+FhSVXOqgp97IqFRrNxH4bWelLf9Uf17Tckxm//PLLLF682G5by5YtOXPmjN02IQQjRoxg+/btbN68+brrsgohWLRoEStXriQjI4NevXoRFhZG8+bNbzqessgauhriP//5D0OGDAFAqy35piz+gO3fvz/JycnExMQAV0ZX5efnExYWxpQpUwgJCaF+/fqsW7cOV1fXSorgxq6OUaPR2JIBrVbLsmXLMJlMfPXVV6xZs4aNGzfyzTffoNFoeOqppwCYOXMmX375Jc2aNeO7776jUaNGHDx4kIYNG1ZlWCVcey+FEDg4OJRI5gD27NlDz549AWwjewsKCmrcvSzm4OBA3759WbFiBQB6vR6r1Ur//v0ZMGAA77//PlBz7uWrr75Kq1atGDZsGPfffz+nT5+23Tu48ns5aNAgkpKS+Pvvv4ErtUAmk4n//Oc/PPDAA3Tt2pWGDRvy2Wef2Wp7qotr4yye7Ll58+YsWLCA7Oxs1q1bx1dffcWuXbv4+OOPiY2NZf78+QAsXbqU119/HbPZzLJly2jYsCE7d+6sVrVX18b4119/4e7ubkvmrFYrarWa/Px8Dhw4QNeuXYGady+rmsVUWKnJHICwiJteaqxNmzbEx8fbHr/++muJY5YtW1buJd7efPNNli9fzooVKwgPD8fJyYmhQ4diMpluqlzXI2voqrnz58/z4osvsmvXLlJSUvjwww+ZPn267ZtiseI3ldlspkuXLhw8eJCxY8fa/rjo9Xpat25NWloaCxYsoE2bNlUST2muF2NxMvDYY4/RtGlTQkJCbLG2adOGhx56iFWrVpGeno6HhwcdO3bkyy+/JC8vDwcHh6oMq4Sy4iz+Q1FMpVIhhCAqKgqj0Uj37t0BbMfodDpatmxZo+5lcWLepEkTunXrxi+//MLevXvp27cvFosFlUpFaGgor732GmlpabbmvOp6L6GoafjLL7/kvffe4/z582zevJlhw4bxww8/0Lp1a+DK72VeXh7BwcGcPHmS3r1727YbDAaaN29OUlIShw8frlb3slhpcQ4fPpxt27bRpk0bZs+eTb9+/ejWrZvt82bgwIH079+fEydOkJOTg5ubGyNGjGDIkCHk5eXh4uJSxVHZKy3GkSNHsm3bthL38sSJE2i1Wluid/W9bNKkSbW+l1L5aTQa/P39y9x/7Ngx3n77bX7//XcCAgKuey0hBMuWLWPBggW27iZr1qzBz8+PLVu2cN9991VImWUNXTVXvLzTxx9/zL/+9S+WLFlCTk4OarW61LmNvL29MZvNtn5XVx8zYMAAFi5cWO0+aMob44ABA9DpdCiKYtt+/Phx/Pz8MBgMdn1fqmMCcDP3UlEUIiIi8PT0tDWr79q1i0WLFgFFNT416V5qtVrMZjOKojBu3Djc3d155513gCs1zqdPn8bX1xdHR8dqfS+tVismk4ndu3czYcIE7rnnHmbNmsXu3bvR6/UsXry4xPxjrVu3Jjs727bslcViscU4btw43n777Wp3L28UZ/E8a87OzvTt29dWq261WjEYDJw+fRqtVouDg4MtVo1GU62SuevFqNPp7O5lcQx//fUXzZo1IzAwEIC9e/fywQcfADBhwoRqeS+lm3f27FkCAwNp0qQJoaGhXLx40bYvNzeX+++/nw8//PC6SV+xqKgoEhIS7FYRcXNzIyQkxLZqSkWQCV01VfzhMXjwYGbPns3YsWN54IEH8PLysnUev1Zxk1y/fv3YvXs3gF3zT3VzKzEWU6lUHDt2jEuXLjF58mQcHBzKXfVd2W41zu+++47evXuTkZHBqFGjGDJkiO0eX53wVAflibH4vdi1a1cmT57M8ePHeeSRRzhy5Ahnz54lPDycPn36YDAYqu29BGx9H//66y9b/yiTyYSiKHzwwQf88ssv7Nq1y9Z0XnzP+vfvzy+//AJg61NYnd1MnNeeFx4eTn5+Pg8//DAqlaraxnqz9xKKfi/79etHcnIyo0aNYsCAAeTn5wPV7/dSujUhISF8/vnnbN++nbCwMKKioujTp49t4uzZs2fTs2dPW23bjSQkJADg5+dnt93Pz8+2ryJU37/2dVzxB6CDg4Otar9Zs2ZMmzaNL774gr/++svujwVg12wnhLD1o6uubiXGixcvsmnTJqZPn07fvn1p1qwZ999/f5WUv7xuJc6srCx2797N999/T0BAAFarlfj4eJYsWWJ3zeqiPDGq1WoKCgqAopqMTz75hN27d/PAAw/QrVs3vL29WbhwYZXFUF5WqxUXFxe6du3KZ599BhR1aRBCMGTIEHr06MHq1attf+SLfy+zs7MpKCggNTW1ysp+M8obZ3EfoMjISH744QdmzpzJ0KFDad++PcOHD6/KEG7oZmNMSEjgt99+4/vvv6dBgwYIIUhISOC5554Dqt/vpXRrhg8fzoQJE2jfvj1Dhw5l27ZtZGRksGHDBrZu3cquXbtYtmxZVRezBJnQ1RDFHedHjhxJt27dmD17NlAyiYOiJpx169bRoEGDKinrrSpPjGlpaezYsYOIiAh++uknPv30UxwdHauqyLekPHHm5ORgsVjw8/Njz549/O9//7ONvKsJyoqxuIO4RqNh0KBB/P7772zYsIGDBw/y7bffVqvmuLIU93EcPXo0x48fZ9++fSiKYkvgXn75Zfbu3UtiYiKAbTTkE088wfLly6vVQIDrudk4z58/z+rVq/nzzz/54YcfWLFihd2yX9XRzcaYmJho60Lwyy+/8N///rdG/V5Kt8bd3Z0WLVpw7tw5du3aRWRkJO7u7mg0Gls/7/Hjx9umD7tWcbNs8fuoWGJiYrmabMtLJnRVKD4+nnXr1nHw4EFb35qyquyLv/k1btyYJ598ksOHD/Pdd98B8Ouvv5KQkGA7JiQkhLZt21ZCBDdWUTHu3buXlJQUOnbsyKuvvsrOnTttgwWqg4qKc9++faSkpODl5cXGjRv57bffbDVeVa2i368Anp6etGvXjuDg4EqIoHxuFKcQAkVR6NWrFx07duSVV14BsCUvBoMBf39/W3/C4g/8QYMG0aFDh8oM5boqKs7iuSAHDBjAm2++yZ49e+jRo0clR1O6io6xadOmfP/99xw8eLDaxCjdeUajkcjISAICAnj++ec5fvw4x44dsz0A3n33XVatWlXq+UFBQfj7+/Pzzz/btmVlZREeHl6h7yOZ0FWRuXPn0qJFCz7++GMGDRrE1KlTiYyMtOvwXxqVSkWfPn0YP348s2bNYtSoUfTt29duIuHqoiJj7N+/P6dPnwbA19e3skIol4qMs1+/fpw6dQqdTkfHjh0rL4gbqOj367lz5yqx9OVXnjivHmUdGhrKX3/9xSuvvGJrMj99+jQeHh7V6gvHtSoyzuJpdTQaTbWaVuZOxOjs7Ezv3r2rJiCp0syZM4c9e/YQHR3NgQMHGDt2LGq1mkmTJuHv70/btm3tHgANGzYkKCjIdo3g4GA2b94MFL3PZs2axZIlS9i6dSsnTpxg8uTJBAYGXnfuupslE7pKlp6ezmOPPcavv/7Ktm3b2L59O59//jkZGRn83//9H1C+gQzJyclcuHABrVbL+fPn6dOnz50uernVhRjhzsVZnSbPlfey9DiL/+CPGTOGpUuX8sYbb9C7d28efvhhJk+ezIgRI3B3d692neTrQpx1IUbpzoqNjWXSpEm0bNmSiRMn4uXlxaFDh26qeT0iIsJugv+5c+fy9NNPM3XqVLp27YrRaGT79u0V2i1BzkNXCYqr9QFSUlJQFIV58+bZ/qhNmDCBtWvX2jreXn38tSIjI5k8eTKxsbH88ssv9OvXr3KCuIG6ECPUjTjrQoxwe3EW93fU6/U89NBD+Pv78+eff3Lq1Cm2bNliNz1BVasLcdaFGGsLtUGDolYqfaUItaH86c7Vy9SVR2nJ/rXbFEXhlVdesTXr3wkyobvDjEYjBQUFeHp6AuDj48OsWbNs8xQVD4d3cnKyjQC8+o9jbm4u27dvZ9y4cUBRte6rr77KXXfdVcmRlK0uxAh1I866ECNUfJxDhw5l6NChlRzFjdWFOOtCjLWJxllL/XFNb3rlhtuhNmjKvexXjSakO2b+/PmiSZMmok+fPuLee+8VZ86csdtvsViEEEIUFhaKxo0bi7Vr19ptF0KIn376SSiKInbs2FF5Bb8JdSFGIepGnHUhRiFknMVqQ5x1IcaaKi8vT5w6dUrk5eVVdVFqtJt5HWUfujugoKCABx98kG3btvHxxx/z2GOPkZ2dzfDhwzly5IjtuOJ+HGfOnMFqtdomtry6f0eXLl149dVXbcvPVBd1IUaoG3HWhRhBxlmb4qwLMUrSTauEBLPOOXHihGjTpo345ZdfbNvy8vKEq6uruPfee8XZs2eFEFe+Ja5fv15069bNduy2bdvE66+/Xqllvll1IUYh6kacdSFGIWSctSnOuhBjTSdr6CqGrKGrYpmZmURERNjNOZWYmIinpye//vorO3fuRAhh+5a4detWBgwYQFJSEoMHDy73ciJVqS7ECHUjzroQI8g4a1OcdSFGSbpZMqG7A1xdXWnXrh0LFiywbfv4448ZNmwYDRs2ZMuWLVitVoQQpKSksG/fPtavX0/9+vVxc3MjJSWFF154oQojuLG6ECPUjTjrQowg46xNcdaFGCXppt2ROsI6Li8vT6xatUpotVoREhIivLy8RGBgoIiOjha7du0SGo1GZGVlCSGEOH/+vGjUqJHo3bu3+OOPP6q45OVXF2IUom7EWRdiFELGWZvirAsx1nSyybVi3MzrKKctqUCFhYVoNBoMBgNTpkyhTZs2HD16FA8PDyZMmADA4cOHadasGenp6bi4uODj48PWrVtp3759FZe+fOpCjFA34qwLMYKMszbFWRdilKRbVgkJZq1nNptt/y8oKBDPPvusrVPutWbOnCnuueeeyipahakLMQpRN+KsCzEKIeMsTU2Nsy7EWNvIGrqKIQdFVBKLxYIQwrb49rJly/D29ua7776zm7jy/PnznD9/nrlz57Jp0yYefvhhoOyFzauTuhAj1I0460KMIOOsTXHWhRjrokKjmfyUvEp7FBrNVR1ypZBNrrfIYrHYloz5+eefmTZtGkajkXfeeYeHHnrI9gEEcOjQIZYuXYqiKGzYsIFevXoBlLlcUnVRF2KEuhFnXYgRZJy1Kc66EGNdVGg0E/ttZKUv/VV/XNNyrxbx8ssvs3jxYrttLVu25MyZMwD079+fPXv22O2fNm0aK1asKPOaQggWLVrEypUrycjIoFevXoSFhdG8efObjKZsMqG7RWq1mpiYGKZOncrPP//MM888wwsvvGBbfgaurBc4ZswYgoKC6NGjRxWW+ObVhRihbsRZF2IEGWdtirMuxFgXWUyFlZrMAQiLwGIqvKnlv9q0acPOnTttP1/9BQLg8ccft1uX1dHR8brXe/PNN1m+fDmrV68mKCiIhQsXMnToUE6dOoXBYCh3ua5HNrneok2bNtGkSRPUajXHjx/nP//5j90HDVz5dujo6FgjP2jqQoxQN+KsCzGCjPNqNT3OuhCjVH1pNBr8/f1tD29vb7v9jo6OdvtdXV3LvJYQgmXLlrFgwQJGjx5N+/btWbNmDXFxcWzZsqXiylxhV6pjOnfuzN69e2v1h0hdiBHqRpx1IUaQcdYmdSFGqfo6e/YsgYGBGAwGevTowdKlS2nYsKFt/9q1a/nyyy/x9/dn1KhRLFy4sMxauqioKBISEhg0aJBtm5ubGyEhIRw8eJD77ruvQsqsCNlrVJIkSZKkCmQymYiKiiIoKMiuSTE/JY+476MrvTyBoxqj93Yo17E//PADRqORli1bEh8fz+LFi7l06RInT57ExcWFTz75hEaNGhEYGMjx48eZN28e3bp149tvvy31egcOHKBXr17ExcUREBBg2z5x4kQURWH9+vVllqWs17E0soZOkiRJkiTpsuHDh9v+3759e0JCQmjUqBEbNmzg0UcfZerUqbb97dq1IyAggIEDBxIZGUnTpk2rosiA7EMnSZIkSZJUJnd3d1q0aMG5c+dK3R8SEgJQ5n5/f3+gaL3hqyUmJtr2VQSZ0EmSJEmSJJXBaDQSGRlp11x6tWPHjgGUuT8oKAh/f39+/vln27asrCzCw8MrtI+oTOgkSZIkSZIumzNnDnv27CE6OpoDBw4wduxY1Go1kyZNIjIykldffZUjR44QHR3N1q1bmTx5Mn379rVbXi44OJjNmzcDRaOxZ82axZIlS9i6dSsnTpxg8uTJBAYGMmbMmAort+xDJ0mSJEmSdFlsbCyTJk0iNTUVHx8fevfuzaFDh/Dx8cFkMrFz506WLVtGTk4ODRo0YPz48SxYsMDuGhEREWRmZtp+njt3Ljk5OUydOpWMjAx69+7N9u3bK2wOOpCjXCVJkiRJqmBljc6sCStFVCdylKskSZIkSdWOxllL/XFNsZgKK+051QZNjUzmbpZM6CRJkiRJqjQaZ22dSLAqmxwUIUmSJEmSVMPJhE6SJEmSJKmGkwmdJEnVRnR0NIqi2OZ1qmiKolToYtiSJEnVhUzoJEmymTJlSoXOi3SzGjRoQHx8PG3btgVg9+7dKIpCRkZGlZVJkqRbJyfSuD038/rJhE6SpGpDrVbj7++PRiPHa0lSTabVFg16yM3NreKS1GwFBQVA0WfjjciETpKkctmzZw/dunVDr9cTEBDA888/T2HhlakH+vfvz8yZM5k7dy6enp74+/vz8ssv213jzJkz9O7dG4PBQOvWrdm5c6ddM+jVTa7R0dEMGDAAAA8PDxRFYcqUKQA0btyYZcuW2V27Y8eOds939uxZ+vbta3uuHTt2lIgpJiaGiRMn4u7ujqenJ6NHjyY6Ovp2XypJqvPUajXu7u4kJSWRmppKXl4eJpNJPm7ikZubS3JyMo6OjuX6kiu/BkuSdEOXLl1ixIgRTJkyhTVr1nDmzBkef/xxDAaDXRK1evVqnn32WcLDwzl48CBTpkyhV69eDB48GIvFwpgxY2jYsCHh4eFkZ2fz3HPPlfmcDRo04JtvvmH8+PFERETg6uqKg4NDucprtVoZN24cfn5+hIeHk5mZyaxZs+yOMZvNDB06lB49erBv3z40Gg1Llixh2LBhHD9+HJ1OdysvlSRJlxUvPJ+UlFTFJam5VCoVDRs2RFGUGx4rEzpJkm7oo48+okGDBnzwwQcoikJwcDBxcXHMmzePl156CZWqqLK/ffv2LFq0CIDmzZvzwQcf8PPPPzN48GB27NhBZGQku3fvtn3Qv/baawwePLjU51Sr1Xh6egLg6+uLu7t7ucu7c+dOzpw5w48//khgYCAAr7/+OsOHD7cds379eqxWK//3f/9n+7BctWoV7u7u7N69myFDhtzciyRJkh1FUQgICMDX1xez2VzVxamRdDqd7fP1RmRCJ0nSDZ0+fZoePXrYfUvs1asXRqOR2NhYGjZsCGC3ODVAQECA7dt5REQEDRo0sCVzAN26dbtj5W3QoIEtmQPo0aOH3TF//vkn586dw8XFxW67yWQiMjLyjpRLkuoitVpdrj5g0u2RCZ0kSRWmuCN0MUVRsFqtFf48KpWqxOivm60BMBqNdOnShbVr15bY5+Pjc1vlkyRJqmwyoZMk6YZatWrFN998gxDCVku3f/9+XFxcqF+/frmu0bJlS2JiYkhMTMTPzw+Aw4cPX/ec4n5sFovFbruPjw/x8fG2n7OysoiKirIrb0xMDPHx8QQEBABw6NAhu2t07tyZ9evX4+vri6ura7likCRJqq7kKFdJkuxkZmZy7Ngxu8fUqVOJiYnh6aef5syZM3z33XcsWrSIZ599ttz9OwYPHkzTpk156KGHOH78OPv372fBggUAZXb4bdSoEYqi8N///pfk5GSMRiMAd911F1988QX79u3jxIkTPPTQQ3ZNOoMGDaJFixY89NBD/Pnnn+zbt4/58+fbXTs0NBRvb29Gjx7Nvn37iIqKYvfu3cycOZPY2NhbeekkSZKqjEzoJEmys3v3bjp16mT3ePXVV9m2bRu//fYbHTp04IknnuDRRx+1JWTloVar2bJlC0ajka5du/LYY4/ZkiyDwVDqOfXq1WPx4sU8//zz+Pn5MWPGDABeeOEF+vXrx913383IkSMZM2YMTZs2tZ2nUqnYvHkzeXl5dOvWjccee4zXXnvN7tqOjo7s3buXhg0bMm7cOFq1asWjjz6KyWSSNXaSJNU4ipDTOEuSVEX2799P7969OXfunF1CJkmSJN0cmdBJklRpNm/ejLOzM82bN+fcuXM888wzeHh48Ouvv1Z10SRJkmo0OShCkqRKk52dzbx587h48SLe3t4MGjSIt99+u6qLJUmSVOPJGjpJkiRJkqQaTg6KkCRJkiRJquFkQidJkiRJklTDyYROkiRJkiSphpMJnSRJkiRJUg0nEzpJkiRJkqQaTiZ0kiRJkiRJNZxM6CRJkiRJkmo4mdBJkiRJkiTVcDKhkyRJkiRJquH+HwblriCDvorrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map.gval.cat_plot(\n", + " title='Agreement Map', \n", + " figsize=(8, 6),\n", + " colormap='tab20b'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "bdcbfb8e", + "metadata": {}, + "source": [ + "## Comparisons" + ] + }, + { + "cell_type": "markdown", + "id": "4a1f3ecc", + "metadata": {}, + "source": [ + "For multi-categorical statistics GVAL offers 4 methods of averaging:\n", + "\n", + "1. No Averaging which provides one vs. all metrics on a class basis\n", + "1. Micro Averaging which sums up the contingencies of each class defined as either positive or negative\n", + "3. Macro Averaging which sums up the contingencies of one class vs all and then averages them\n", + "4. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category." + ] + }, + { + "cell_type": "markdown", + "id": "66235a0a", + "metadata": {}, + "source": [ + "### No Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "4f258087", + "metadata": {}, + "source": [ + "Using `None` for the averaging argument runs a one class vs. all methodology for each class and reports their metrics on a class basis:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "936f2dea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
band11111
positive_categories12345
fn6.01043.0318274.0516572.0364147.0
fp172762.0561004.0462496.03775.05.0
tn1043592.0653360.0422623.0693617.0852206.0
tp0.0953.012967.02396.02.0
accuracy0.8579630.5379270.3581090.572210.700622
balanced_accuracy0.4289840.5077410.2583110.4996020.5
critical_success_index0.00.0016930.0163370.0045840.000005
equitable_threat_score-0.0000050.000055-0.175401-0.000455-0.0
f_score0.00.003380.0321480.0091250.000011
false_discovery_rate1.00.9983040.9727280.6117320.714286
false_negative_rate1.00.5225450.9608530.9953830.999995
false_omission_rate0.0000060.0015940.4295790.4268520.299376
false_positive_rate0.1420330.4619740.5225240.0054130.000006
fowlkes_mallows_index0.00.0284550.0326750.0423390.001253
matthews_correlation_coefficient-0.0009040.001257-0.440983-0.005543-0.000072
negative_likelihood_ratio1.1655460.9712262.012361.0008011.0
negative_predictive_value0.9999940.9984060.5704210.5731480.700624
overall_bias28793.666667281.5415831.4353990.0118910.000019
positive_likelihood_ratio0.01.0335110.0749190.8529160.936112
positive_predictive_value0.00.0016960.0272720.3882680.285714
prevalence0.0000050.0016410.2723220.4266570.299376
prevalence_threshold1.00.495880.7851070.5198760.508252
true_negative_rate0.8579670.5380260.4774760.9945870.999994
true_positive_rate0.00.4774550.0391470.0046170.000005
\n", + "
" + ], + "text/plain": [ + " 0 1 2 \\\n", + "band 1 1 1 \n", + "positive_categories 1 2 3 \n", + "fn 6.0 1043.0 318274.0 \n", + "fp 172762.0 561004.0 462496.0 \n", + "tn 1043592.0 653360.0 422623.0 \n", + "tp 0.0 953.0 12967.0 \n", + "accuracy 0.857963 0.537927 0.358109 \n", + "balanced_accuracy 0.428984 0.507741 0.258311 \n", + "critical_success_index 0.0 0.001693 0.016337 \n", + "equitable_threat_score -0.000005 0.000055 -0.175401 \n", + "f_score 0.0 0.00338 0.032148 \n", + "false_discovery_rate 1.0 0.998304 0.972728 \n", + "false_negative_rate 1.0 0.522545 0.960853 \n", + "false_omission_rate 0.000006 0.001594 0.429579 \n", + "false_positive_rate 0.142033 0.461974 0.522524 \n", + "fowlkes_mallows_index 0.0 0.028455 0.032675 \n", + "matthews_correlation_coefficient -0.000904 0.001257 -0.440983 \n", + "negative_likelihood_ratio 1.165546 0.971226 2.01236 \n", + "negative_predictive_value 0.999994 0.998406 0.570421 \n", + "overall_bias 28793.666667 281.541583 1.435399 \n", + "positive_likelihood_ratio 0.0 1.033511 0.074919 \n", + "positive_predictive_value 0.0 0.001696 0.027272 \n", + "prevalence 0.000005 0.001641 0.272322 \n", + "prevalence_threshold 1.0 0.49588 0.785107 \n", + "true_negative_rate 0.857967 0.538026 0.477476 \n", + "true_positive_rate 0.0 0.477455 0.039147 \n", + "\n", + " 3 4 \n", + "band 1 1 \n", + "positive_categories 4 5 \n", + "fn 516572.0 364147.0 \n", + "fp 3775.0 5.0 \n", + "tn 693617.0 852206.0 \n", + "tp 2396.0 2.0 \n", + "accuracy 0.57221 0.700622 \n", + "balanced_accuracy 0.499602 0.5 \n", + "critical_success_index 0.004584 0.000005 \n", + "equitable_threat_score -0.000455 -0.0 \n", + "f_score 0.009125 0.000011 \n", + "false_discovery_rate 0.611732 0.714286 \n", + "false_negative_rate 0.995383 0.999995 \n", + "false_omission_rate 0.426852 0.299376 \n", + "false_positive_rate 0.005413 0.000006 \n", + "fowlkes_mallows_index 0.042339 0.001253 \n", + "matthews_correlation_coefficient -0.005543 -0.000072 \n", + "negative_likelihood_ratio 1.000801 1.0 \n", + "negative_predictive_value 0.573148 0.700624 \n", + "overall_bias 0.011891 0.000019 \n", + "positive_likelihood_ratio 0.852916 0.936112 \n", + "positive_predictive_value 0.388268 0.285714 \n", + "prevalence 0.426657 0.299376 \n", + "prevalence_threshold 0.519876 0.508252 \n", + "true_negative_rate 0.994587 0.999994 \n", + "true_positive_rate 0.004617 0.000005 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "no_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2, 3, 4, 5],\n", + " negative_categories=None,\n", + " average=None\n", + ")\n", + "no_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "d722dc68", + "metadata": {}, + "source": [ + "### Micro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "3bbb83cf", + "metadata": {}, + "source": [ + "The following is an example of a using micro averaging to combine classes to process two-class categorical statistics. In this example we will use classes 1 and 2 as positive classes and classes 3, 4, and 5 as negative classes:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "538dfc49", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
fn382.0
fp733099.0
tn481259.0
tp1620.0
accuracy0.396987
balanced_accuracy0.602749
critical_success_index0.002204
equitable_threat_score0.00056
f_score0.004398
false_discovery_rate0.997795
false_negative_rate0.190809
false_omission_rate0.000793
false_positive_rate0.603693
fowlkes_mallows_index0.04224
matthews_correlation_coefficient0.017033
negative_likelihood_ratio0.481468
negative_predictive_value0.999207
overall_bias366.992507
positive_likelihood_ratio1.340402
positive_predictive_value0.002205
prevalence0.001646
prevalence_threshold0.463444
true_negative_rate0.396307
true_positive_rate0.809191
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "fn 382.0\n", + "fp 733099.0\n", + "tn 481259.0\n", + "tp 1620.0\n", + "accuracy 0.396987\n", + "balanced_accuracy 0.602749\n", + "critical_success_index 0.002204\n", + "equitable_threat_score 0.00056\n", + "f_score 0.004398\n", + "false_discovery_rate 0.997795\n", + "false_negative_rate 0.190809\n", + "false_omission_rate 0.000793\n", + "false_positive_rate 0.603693\n", + "fowlkes_mallows_index 0.04224\n", + "matthews_correlation_coefficient 0.017033\n", + "negative_likelihood_ratio 0.481468\n", + "negative_predictive_value 0.999207\n", + "overall_bias 366.992507\n", + "positive_likelihood_ratio 1.340402\n", + "positive_predictive_value 0.002205\n", + "prevalence 0.001646\n", + "prevalence_threshold 0.463444\n", + "true_negative_rate 0.396307\n", + "true_positive_rate 0.809191" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2],\n", + " negative_categories=[3, 4, 5],\n", + " average=\"micro\"\n", + ")\n", + "micro_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "79761a73", + "metadata": {}, + "source": [ + "### Macro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "790c56df", + "metadata": {}, + "source": [ + "The following shows macro averaging and is equivalent to the values of shared columns in `no_averaged_comps.mean()`:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "7e64eb9b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
accuracy0.605366
balanced_accuracy0.438927
critical_success_index0.004524
equitable_threat_score-0.035161
f_score0.008933
false_discovery_rate0.85941
false_negative_rate0.895755
false_omission_rate0.231481
false_positive_rate0.22639
fowlkes_mallows_index0.020944
matthews_correlation_coefficient-0.089249
negative_likelihood_ratio1.229986
negative_predictive_value0.768519
overall_bias5815.331112
positive_likelihood_ratio0.579492
positive_predictive_value0.14059
prevalence0.2
prevalence_threshold0.661823
true_negative_rate0.77361
true_positive_rate0.104245
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "accuracy 0.605366\n", + "balanced_accuracy 0.438927\n", + "critical_success_index 0.004524\n", + "equitable_threat_score -0.035161\n", + "f_score 0.008933\n", + "false_discovery_rate 0.85941\n", + "false_negative_rate 0.895755\n", + "false_omission_rate 0.231481\n", + "false_positive_rate 0.22639\n", + "fowlkes_mallows_index 0.020944\n", + "matthews_correlation_coefficient -0.089249\n", + "negative_likelihood_ratio 1.229986\n", + "negative_predictive_value 0.768519\n", + "overall_bias 5815.331112\n", + "positive_likelihood_ratio 0.579492\n", + "positive_predictive_value 0.14059\n", + "prevalence 0.2\n", + "prevalence_threshold 0.661823\n", + "true_negative_rate 0.77361\n", + "true_positive_rate 0.104245" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " negative_categories=None,\n", + " average=\"macro\"\n", + ")\n", + "macro_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "ef8f72ab", + "metadata": {}, + "source": [ + "### Weighted Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "e182a6f7", + "metadata": {}, + "source": [ + "To further enhance `macro-averaging`, we can apply weights to the classes of interest in order to appropriately change the strength of evaluations for each class. For instance, if we applied the following vector the classes uses in this notebook, `[1, 4, 1, 5, 1]`, classes 2 and 4 would have greater influence on the final averaging of the scores for all classes. (All weight values are in reference to the other weight values respectively. e.g. the vector `[5, 5, 5, 5, 5]` would cause no change in the averaging because each weight value is equivalent to a ll other weight values.) Let's use the first weight vector mentioned in weighted averaging:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0eae1cbc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
accuracy0.577454
balanced_accuracy0.476356
critical_success_index0.003836
equitable_threat_score-0.014789
f_score0.007609
false_discovery_rate0.811574
false_negative_rate0.835662
false_omission_rate0.239133
false_positive_rate0.211627
fowlkes_mallows_index0.029953
matthews_correlation_coefficient-0.03872
negative_likelihood_ratio1.088901
negative_predictive_value0.760867
overall_bias2493.443989
positive_likelihood_ratio0.784138
positive_predictive_value0.188426
prevalence0.225962
prevalence_threshold0.573022
true_negative_rate0.788373
true_positive_rate0.164338
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "accuracy 0.577454\n", + "balanced_accuracy 0.476356\n", + "critical_success_index 0.003836\n", + "equitable_threat_score -0.014789\n", + "f_score 0.007609\n", + "false_discovery_rate 0.811574\n", + "false_negative_rate 0.835662\n", + "false_omission_rate 0.239133\n", + "false_positive_rate 0.211627\n", + "fowlkes_mallows_index 0.029953\n", + "matthews_correlation_coefficient -0.03872\n", + "negative_likelihood_ratio 1.088901\n", + "negative_predictive_value 0.760867\n", + "overall_bias 2493.443989\n", + "positive_likelihood_ratio 0.784138\n", + "positive_predictive_value 0.188426\n", + "prevalence 0.225962\n", + "prevalence_threshold 0.573022\n", + "true_negative_rate 0.788373\n", + "true_positive_rate 0.164338" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " weights=[1, 4, 1, 5, 1],\n", + " negative_categories=None,\n", + " average=\"weighted\"\n", + ")\n", + "weight_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "8c567b77", + "metadata": {}, + "source": [ + "Regardless of the averaging methodology it seems as though the candidate does not agree with the benchmark. We can now save the output." + ] + }, + { + "cell_type": "markdown", + "id": "0d5f7be8", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "dff8f8a0", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'multi_categorical_agreement_map.tif'\n", + "metric_file = 'macro_averaged_metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "macro_averaged_metrics.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/SphinxTutorial.html b/SphinxTutorial.html new file mode 100644 index 00000000..6bf9c334 --- /dev/null +++ b/SphinxTutorial.html @@ -0,0 +1,888 @@ + + + + + + + Two-Class Categorical Comparisons — GVAL documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

99e87878df5940cb830674623ce70960

+
+

Two-Class Categorical Comparisons

+
+
[1]:
+
+
+
import rioxarray as rxr
+import gval
+
+
+
+
+

Load Datasets

+

It is preferred to use masking and scaling by default. If your original data does not have nodata or does not have nodata assigned, please assign using: rio.set_nodata(<your_nodata_value>)

+
+
[2]:
+
+
+
candidate = rxr.open_rasterio(
+    'candidate_map_two_class_categorical.tif', mask_and_scale=True
+)
+benchmark = rxr.open_rasterio(
+    'benchmark_map_two_class_categorical.tif', mask_and_scale=True
+)
+
+
+
+
+
+

Run GVAL Categorical Compare

+

An example of running the entire process with one command using minimal arguments is deomnstrated below.

+
+
[3]:
+
+
+
agreement_map, crosstab_table, metric_table = candidate.gval.categorical_compare(
+    benchmark,
+    positive_categories=[2],
+    negative_categories=[0, 1]
+)
+
+
+
+
+
+

Output

+
+

Agreement Map

+

The agreement map compares the encodings of the benchmark map and candidate map using a “comparison function” to then output unique encodings. In this particular case the “Szudzik” comparison function was used by default since no argument was passed in for the comparison_function argument. First, a negative value transformation (nvt) is used to support negative numbers encodings:

+
+\[\begin{split}c = \text{candidate value} \\ +b = \text{benchmark value} \\ +nvt(x)= +\begin{cases} + 2 * x,& \text{if } x \geq 0\\ + -2 * x -1, & \text{otherwise} +\end{cases} \\ +ct = nvt(c) \\ +bt = nvt(b) \\\end{split}\]
+

Then the szudzik function is applied to the transformed values:

+
+\[\begin{split}szudzik(ct, bt)= +\begin{cases} + ct^{2} + ct + bt,& \text{if } ct\geq bt\\ + bt^{2} + ct, & \text{otherwise} +\end{cases}\end{split}\]
+

The resulting map allows a user to visualize these encodings as follows:

+
+
[5]:
+
+
+
agreement_map.gval.cat_plot(title="Agreement Map")
+
+
+
+
+
[5]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f29fbe6d960>
+
+
+
+
+
+
+_images/SphinxTutorial_16_1.png +
+
+
+
+

Cross-tabulation Table

+

A cross-tabulation table displays the frequency of each class in the presence of another within the spatial unit of interest. The sample indices are denoted by the band column. The combination of candidate and benchmark map values are denoted. Additionally, the resulting agreement map values for each combination are shown. The counts column denotes the frequencies of occurrence and can then be used to compute categorical metrics.

+
+
[6]:
+
+
+
crosstab_table
+
+
+
+
+
[6]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
bandcandidate_valuesbenchmark_valuesagreement_valuescounts
011.00.06.010345720.0
111.02.018.0639227.0
212.00.020.0512277.0
312.02.024.02473405.0
+
+
+
+
+

Metric Table

+

A metric table contains information about the unit of analysis, (a single band in this case), and selected categorical metrics. This is done by specifying the positive and negative categories of each dataset and then choosing the statistics of interest. Since we did not provide the metrics argument GVAL computed all of the available categorical statistics. (Note: if there is no negative class encoding all statistics requiring true negatives will be skipped.)

+
+
[7]:
+
+
+
metric_table.transpose()
+
+
+
+
+
[7]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0
band1
fn639227.0
fp512277.0
tn10345720.0
tp2473405.0
accuracy0.917577
balanced_accuracy0.873727
critical_success_index0.682336
equitable_threat_score0.610939
f_score0.811177
false_discovery_rate0.171578
false_negative_rate0.205365
false_omission_rate0.058191
false_positive_rate0.04718
fowlkes_mallows_index0.811352
matthews_correlation_coefficient0.758757
negative_likelihood_ratio0.215534
negative_predictive_value0.941809
overall_bias0.959215
positive_likelihood_ratio16.842723
positive_predictive_value0.828422
prevalence0.222798
prevalence_threshold0.195925
true_negative_rate0.95282
true_positive_rate0.794635
+
+
+
+
+
+

Access to Individual GVAL Operations

+

Aside form running the entire process, it is possible to run each of the following steps individually: homogenizing maps, computing an agreement map, computing a cross-tabulation table, and computing a metric table. This allows for flexibility in workflows so that a user may use as much or as little functionality as needed.

+

Homogenization is intended to help prepare two disparate maps for comparison. Currently, homogenization handles three sets of functionality:

+
    +
  1. Spatial alignment: matching the CRS’s and coordinates of candidate and benchmark xarray maps. By default, the benchmark map is used as the target of this alignment but the candidate map can also be selected.

  2. +
  3. Data type alignment: in order to avoid precision warnings in the comparisons, dtypes are set to the highest precision dtype of the two maps.

  4. +
  5. Data format conversion: a vector data format benchmark map as a Geopanda’s DataFrame can be passed which will be converted to the same xarray object as the candidate map with the same CRS and coordinates.

  6. +
+
+
[8]:
+
+
+
candidate, benchmark = candidate.gval.homogenize(
+    benchmark_map=benchmark,
+    target_map = "candidate"
+)
+
+
+
+

The target_map can also be an alternate map:

+
+
[9]:
+
+
+
target_map = rxr.open_rasterio('target_map_two_class_categorical.tif')
+candidate, benchmark = candidate.gval.homogenize(
+    benchmark_map=benchmark,
+    target_map = target_map
+)
+
+
+
+

The default is to resample using the “nearest” method. Although not applicable for this case of categorical comparisons, one can change the resampling argument to use alternative resampling methods such as bilinear or cubic resampling. These methods would be relevant in the case of continuous datasets.

+

The “szudzik” comparison function is run by default if the comparison_function argument is not provided, but one may use the “cantor” pairing function, or a custom callable.

+
+
[10]:
+
+
+
agreement_map = candidate.gval.compute_agreement_map(
+    benchmark_map=benchmark,
+    comparison_function='cantor'
+)
+
+agreement_map.gval.cat_plot(title="Agreement Map")
+
+
+
+
+
[10]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f2a16beb9d0>
+
+
+
+
+
+
+_images/SphinxTutorial_33_1.png +
+
+
+

Pairing Dictionary

+

A pairing dictionary can be provided by the user to allow more control when specifying the agreement value outputs.

+

A pairing dictionary has keys that are tuples corresponding to every unique combination of values in the candidate and benchmark, respectively. The values represent the agreement values for each combination. An example pairing dictionary for the candidate values [1,2] and benchmark values [0, 2] is provided below. A user has full control over the encodings including the combinations of nodata values (which are in this case np.nan).

+
+
[11]:
+
+
+
import numpy as np
+
+pairing_dict = {
+    (np.nan,np.nan): 0,
+    (np.nan, 0): np.nan,
+    (np.nan, 2): np.nan,
+    (1, np.nan): 3,
+    (2, np.nan): 4,
+    (1, 0): 5,
+    (1, 2): 6,
+    (2, 0): 7,
+    (2, 2): 8
+}
+
+agreement_map = candidate.gval.compute_agreement_map(
+    benchmark_map=benchmark,
+    comparison_function='pairing_dict',
+    pairing_dict=pairing_dict
+)
+
+agreement_map.gval.cat_plot(title="Agreement Map", basemap=None)
+
+
+
+
+
[11]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f2a16a4e830>
+
+
+
+
+
+
+_images/SphinxTutorial_35_1.png +
+
+

Instead of building a pairing dictionary, a user can pass the unique candidate and benchmark values to use and a pairing dictionary will be built for the user. In this case nodata values are not included and will automatically become the nodata value instead of an encoding.

+
+
[12]:
+
+
+
agreement_map = candidate.gval.compute_agreement_map(
+    benchmark_map=benchmark,
+    comparison_function='pairing_dict',
+    allow_candidate_values=[1, 2],
+    allow_benchmark_values=[0, 2]
+)
+
+agreement_map.gval.cat_plot(title="Agreement Map")
+
+
+
+
+
[12]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f2a14f90a00>
+
+
+
+
+
+
+_images/SphinxTutorial_37_1.png +
+
+
+
+

Registration of Custom Functions

+

In this case we register the arbitrary pairing function multiply with the name “multi” and then vectorize it. Multiply can also be passed in as a function in the comparison_function argument

+
+
[13]:
+
+
+
from gval import Comparison
+from numbers import Number
+
+@Comparison.register_function(name='multi', vectorize_func=True)
+def multiply(c: Number, b: Number) -> Number:
+    return c * b
+
+agreement_map = candidate.gval.compute_agreement_map(
+    benchmark_map=benchmark,
+    comparison_function="multi"
+)
+
+agreement_map.gval.cat_plot(title="Agreement Map")
+
+
+
+
+
[13]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f2a14e29660>
+
+
+
+
+
+
+_images/SphinxTutorial_40_1.png +
+
+

A user can also pick which candidate values or benchmark values to use by providing lists to the allow_candidate_values and allow_benchmark_values arguments. Finally, a user can choose to write nodata to unmasked datasets with the nodata value, or to masked/scaled datasets with encode_nodata.

+
+

Cross-tabulation Table

+

A cross-tabulation table can be made using an agreement map as follows. (In this particular case the table reflects agreement values made in the previous example.)

+
+
[14]:
+
+
+
crosstab_table_allow = agreement_map.gval.compute_crosstab()
+crosstab_table_allow
+
+
+
+
+
[14]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
bandcandidate_valuesbenchmark_valuesagreement_valuescounts
011.00.00.011526204.0
111.02.02.0679211.0
212.02.04.02624301.0
+
+
+
+
+

Metric Table

+

Although all categorical metrics are computed by default if no argument is provided, metrics can also take a list of the desired metrics and will only return metrics in this list.

+
+
[15]:
+
+
+
metric_table_select = crosstab_table.gval.compute_categorical_metrics(
+    negative_categories= [0, 1],
+    positive_categories = [2],
+    metrics=['true_positive_rate', 'prevalence']
+)
+metric_table_select
+
+
+
+
+
[15]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
bandfnfptntptrue_positive_rateprevalence
01639227.0512277.010345720.02473405.00.7946350.222798
+
+
+

Just like registering comparison functions, you are able to register a metric function on both a method and a class of functions. Below is registering a metric function:

+
+
[16]:
+
+
+
from gval import CatStats
+
+@CatStats.register_function(name="error_balance", vectorize_func=True)
+def error_balance(fp: Number, fn: Number) -> float:
+    return fp / fn
+
+
+
+

The following is registering a class of metric functions. In this case, the names associated with each function will respond to each method’s name.

+
+
[17]:
+
+
+
@CatStats.register_function_class(vectorize_func=True)
+class MetricFunctions:
+
+    @staticmethod
+    def arbitrary1(tp: Number, tn: Number) -> float:
+        return tp + tn
+
+    @staticmethod
+    def arbitrary2(tp: Number, tn: Number) -> float:
+        return tp - tn
+
+
+
+

All of these functions are now callable as metrics:

+
+
[18]:
+
+
+
metric_table_register = crosstab_table.gval.compute_categorical_metrics(
+    negative_categories= None,
+    positive_categories = [2],
+    metrics=['error_balance', 'arbitrary1', 'arbitrary2']
+)
+
+
+
+
+
[19]:
+
+
+
metric_table_register
+
+
+
+
+
[19]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + +
bandfnfptntperror_balance
01639227.0512277.0NaN2473405.00.801401
+
+
+
+
+
+
+

Save Output

+

Finally, a user can take the results and save them to a directory of their choice. The following is an example of saving the agreement map and then the metric table:

+
+
[20]:
+
+
+
# output agreement map
+agreement_file = 'agreement_map.tif'
+metric_file = 'metric_file.csv'
+
+agreement_map.rio.to_raster(agreement_file)
+metric_table.to_csv(metric_file)
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/SphinxTutorial.ipynb b/SphinxTutorial.ipynb new file mode 100644 index 00000000..7a61e360 --- /dev/null +++ b/SphinxTutorial.ipynb @@ -0,0 +1,1166 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a1702330", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "a403ee30", + "metadata": {}, + "source": [ + "# Two-Class Categorical Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a9fa8470", + "metadata": {}, + "outputs": [], + "source": [ + "import rioxarray as rxr\n", + "import gval" + ] + }, + { + "cell_type": "markdown", + "id": "e14713f5", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "markdown", + "id": "64da5e7b", + "metadata": {}, + "source": [ + "It is preferred to use masking and scaling by default. If your original data does not have nodata or does not have nodata assigned, please assign using: `rio.set_nodata()`" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f91c0b8c", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(\n", + " 'candidate_map_two_class_categorical.tif', mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " 'benchmark_map_two_class_categorical.tif', mask_and_scale=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "1d496084", + "metadata": {}, + "source": [ + "## Run GVAL Categorical Compare" + ] + }, + { + "cell_type": "markdown", + "id": "3d293073", + "metadata": {}, + "source": [ + "An example of running the entire process with one command using minimal arguments is deomnstrated below." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "541857a7", + "metadata": {}, + "outputs": [], + "source": [ + "agreement_map, crosstab_table, metric_table = candidate.gval.categorical_compare(\n", + " benchmark,\n", + " positive_categories=[2],\n", + " negative_categories=[0, 1]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "6555af46", + "metadata": {}, + "source": [ + "## Output" + ] + }, + { + "cell_type": "markdown", + "id": "b2eaeeea", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "c24dfc06", + "metadata": {}, + "source": [ + "The agreement map compares the encodings of the benchmark map and candidate map using a \"comparison function\" to then output unique encodings. In this particular case the \"Szudzik\" comparison function was used by default since no argument was passed in for the `comparison_function` argument. First, a negative value transformation (nvt) is used to support negative numbers encodings:" + ] + }, + { + "cell_type": "markdown", + "id": "6b2dec44", + "metadata": {}, + "source": [ + "$$\n", + "c = \\text{candidate value} \\\\\n", + "b = \\text{benchmark value} \\\\\n", + "nvt(x)= \n", + "\\begin{cases}\n", + " 2 * x,& \\text{if } x \\geq 0\\\\\n", + " -2 * x -1, & \\text{otherwise}\n", + "\\end{cases} \\\\\n", + "ct = nvt(c) \\\\\n", + "bt = nvt(b) \\\\\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "5ba5f9b0", + "metadata": {}, + "source": [ + "Then the szudzik function is applied to the transformed values:" + ] + }, + { + "cell_type": "markdown", + "id": "94e6bfbd", + "metadata": {}, + "source": [ + "$$\n", + "szudzik(ct, bt)= \n", + "\\begin{cases}\n", + " ct^{2} + ct + bt,& \\text{if } ct\\geq bt\\\\\n", + " bt^{2} + ct, & \\text{otherwise}\n", + "\\end{cases}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "4e41ff59", + "metadata": {}, + "source": [ + "The resulting map allows a user to visualize these encodings as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b1ef13a0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFnCAYAAABgqKpGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0UElEQVR4nOy9d5wU9f34/5y25fYaHO1OBFGQYgE9NSL2GFE0iQqxJmJJ/JqABWPNzxSN0WhULDEa/SRirIlGjRqUGA2aGDB6ESwooqIovV3b2zYz798fe7M3Oze7O1sOODNPH/uQm533e95Tdl7v1+v9KpIQQuDj4+Pj4+PTL5C39wB8fHx8fHx8vOMLbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC+5+zH/+8x8kSUKSJK699trtPRyfCnLWWWdl7u3/+3//L+d+iUSCgQMHZvZduHDhthtkkZxzzjlEIhE2bNiQtd0ae77PWWedldVml1126bVPbW0t+++/PzfffDPJZLLX8ROJBHPnzmXy5MnU1dURCARobGxkv/3244ILLuCvf/1rzrFv2bKF66+/nkMPPZQhQ4agaRp1dXVMmjSJ73//+7z88stlX5/NmzczZMgQJEli9OjRrvs888wzzJw5k7322otBgwahaRpDhgxh2rRpPPfcc65tPvjgA2688UaOOOKITJthw4Zx0kkn8c9//rPguJYuXcp3vvMdhg8fTjAYZOjQoRx++OHcf//9WfvFYjEaGxuZNm1a8SfvUxzCp98ye/ZsAQhA7L777tt7OD4OfvrTnwpA3H///UW3nTlzZubeDhgwQCQSCdf9/vznP2f2A8Q//vGP8gbdR7z99ttClmVx2WWX9frOGvvMmTNzfu67776sNiNHjhSAmD59upg5c6Y488wzxaGHHio0TROAOPTQQ7Ou2datW8W+++4rAKFpmjj00EPFqaeeKo4//njR2NgoADF27FjXsT/55JOitrZWAKK6ulp89atfFaeddpr4xje+IcaMGZMZ/7Rp08q6RjNnzhSSJAlA7Lbbbq77TJ8+XUiSJPbcc08xbdo0ccopp4ivfOUrmTFcddVVvdrstNNOmbEfddRR4uSTTxZ77rmnAIQkSWLu3Lk5x3TfffcJVVWFoihiypQp4tRTTxVHHHGEGDBggPjqV7/aa/9bb71VAOKll14q+Tr4FMYX3P2UZDIpBg0aJAAxbNgwAYjFixdv72H52KiE4N5nn30EIJ566inX/U488UShKIqYOHHiDi24v/GNbwhN08T69et7fWcJnWKwBPfKlSuztr/11luirq5OAOLOO+/MbL/gggsEICZNmiS++OKLXv29/vrr4pprrum1/dlnnxWSJAlVVcVNN90k4vF4r33ef/99MXPmTDFmzJiizsHO3//+dwGI8847L6/g/u9//ys2bdrUa/vixYtFdXW1kCRJvP3221nfffWrXxV/+MMfRCwWy9p+zz33CEAoiiLee++9Xn2+9NJLQpIkMXr0aLFs2bKs7xKJhPjvf//bq01XV5eor68XBxxwQMFz9ikdX3D3U5555hkBiClTpohrr71WAGLWrFnbe1g+NiohuG+66SYhy7KYMWNGr322bt0qgsGgOProo8XUqVN3WMG9atUqIcuyOP74412/r6TgFkKIa665RgBZGmFTU5MAxIsvvuj5GB0dHZnJ8YMPPlhw/zfffNNz33a6urrEbrvtJiZMmCA+/PDDvII7H+eee64AxO233+65zdFHHy0A8bOf/azXdxMmTBCyLPeaCHgdh5tg96kM/hp3P+Whhx4C4Nvf/jbf/va3AfjjH/9IKpXK2ebtt9/m61//OvX19dTU1HDooYfy4osvsnDhQtd1RGuddeHChSxYsIAjjjiC+vp6JEmitbU1s98LL7zAcccdx+DBgwkGg+y6665ccsklbN682XUcQggeffRRjjzySAYMGEAoFGL8+PH87Gc/o6urq9f+hx9+OJIk8emnn/LHP/6R/fffn6qqKnbaaScuv/zyzHrmxx9/zGmnncaQIUOoqqriiCOO4O233855PYoZt/1avPrqqxx55JHU1NRQW1vLcccdx7Jly7L232WXXbjmmmsAOPvss7PWYotZh25sbOTII4/kueeeo62tLeu7P/3pTyQSicz9d2PJkiVcfvnlNDc3Z53nD37wA9asWdNr/08//RRJkjj88MNpb2/noosuYuedd87co7lz52KapufxA/z+97/HNE1OO+20otqVyj777APA559/ntm2ceNGAAYPHuy5n3nz5rFp0yYOOuigvNfYorm5uciRprnmmmv45JNPuOeee9A0raQ+gEzbQCDguc3EiRMBej0Lr732GsuWLePwww9nr732Kmocp59+OgD33ntvUe18imB7zxx8iqe1tVWEQiERCATE5s2bhRBCHHTQQQIQzzzzjGubf//736KqqkoAYu+99xannnqq2H///YUsyxkz4syZM7PaWFrf9773PSFJkth///0z7VpbW4UQQlxxxRUCEIFAQEyZMkXMmDEjs+632267iXXr1mX1aRiGOO200zJrbocffrg48cQTxc477ywAccABB4iurq6sNocddpgAxMUXXyxUVRVHHXWUOPHEEzPa0Jlnnik+/PBDMWjQIDFu3DhxyimniL322ksAYuDAgb3GUMq4rWtxySWXCEVRxFe+8hVx8skni913310AoqGhQaxduzaz/w9/+MOM+XrKlClZ67Xvv/9+wXtsHe/BBx8U999/vwDE7373u6x9Dj30UFFVVSU6OjpyatynnHKKUFVV7LvvvuKEE04QJ5xwgthll10EIBobG8Xq1auz9l+5cqUAxIEHHiiam5tFfX29OOmkk8Txxx8vwuGw63NSiP32208AvY5lQYU17ocfflgAYq+99sps23XXXQUgzj//fGGapqdjTJs2rZfJvVgsq0uua7Z06VKhqqo455xzhBA9179Yjfvtt98WAwYMEJqmiY8++shzu+nTpwtA/OQnP8nablnxrr76atHV1SV+//vfi1mzZokLL7xQPPDAA71+o3ZisZjQNE3svPPORZ2Dj3d8wd0P+b//+z8BiG9+85uZbb/5zW8EIL71rW/12t8wjIyA+cUvfuHaVz7BDYjHHnusV79/+tOfBCD23HNPsWLFisx20zTFT37yEwGIU045JavNTTfdJABx+OGHZwm6RCKRMbFdccUVWW0swV1dXS3eeOONzPa1a9eKoUOHCkmSxPjx48WVV16ZeSmbpim+853vuL6UShm3dS1kWc5ab9Z1PfPy+/GPf5zVphKm8gcffFC0t7eLcDgsjjjiiMz3n332mZAkSZx22mlCCJFTcL/88suukyfLnHz22WdnfWcJDmuCt3Hjxsx3H330UcbknGvN3UlHR4dQFEU0NTXl3KfSgvvUU08VgDjjjDMy22644YbMccaNGyeuvPJK8dRTT4nPP/885zEsp65//etfRY3NTj7BbRiG2H///cWgQYMy69ZeBfczzzwjZs6cKU4//XRx8MEHC1mWRTAYFPPmzfM8to8++kgEg0EB9DLzW9fwRz/6kRg7dmyWAyQgRowYkdeE3tzcLADxySefeB6Pj3d8wd0PsQTZ448/ntm2adMmoWmaCIVCGW3Y4sUXXxSAGDNmjDAMo1d/U6ZMySu4jzvuONdxWBrlO++80+s70zTFpEmThKIomZd/KpUSgwYNEpFIxFUL7urqEsOGDRMDBgzIGqd1vldffXWvNnPmzBGA2HXXXUUymcz6bunSpQIQhx12WFnjtl8LuzCwePPNN12PUynBLYQQJ598spBlOeNYdf311wtA/PWvfxVC5Bbc+dhpp51EQ0ND1ja74P7b3/7Wq83dd9/da/04H6+//roAsiYdTpxCwe3jnCg4BbdpmuLTTz/NWFIkSRKvvvpqZn/DMMTll1+e8Tq3f/bYYw9x99139/pthEIhAYgPPvig15i3bNni6v3utKbceeedYuzYseLKK6/s1cdtt93W6/nwKrh//vOfZ51DOBwW9957r+vv241UKiUOPvhg10mqED3Pk6qqYvjw4WL+/Pmira1NvPPOO+JrX/uaAMTIkSNFNBp17f+MM84QgHjyySc9jcenOHzB3c+wNK36+vpeHq7f/OY3BdArdOZnP/uZAFxfHkIIcccdd+QV3L/97W97tVm/fn1mMpCLWbNmCUC88MILQoiel/jXvva1nG2OO+64Xi9LS3DbX8QWd955pwAypkY7HR0dArJD5UoZtxA91+KBBx7otX97e3uv4whRWcFtOSPedNNNQggh9thjDzFkyBCRSqWEEPkF96ZNm8Tvf/97cckll4hzzjknI2SGDBkigMxyixA9gmPgwIGu42ptbc0ICi9C4tlnnxWAOOmkk3LuY7f45Pq0tLRktbEEt9snEAiI3/zmN67HWr16tbj99tvF9OnTxYgRI7LanXDCCVnnlE9wf/75567H9jpx+uyzz0R1dXWvyV6xpvJYLCbeeecd8YMf/EAA4vjjj88ZOmjn+9//fmbCa7//FpZwBsTrr7+e9V08HhfDhw8XgLj33ntd+7eW39zeHT7lo+LTr3j44YcRQjBjxgyCwWDWd9/+9rf5y1/+wkMPPcR3v/vdzPa1a9cCsPPOO7v2OWLEiLzHdPv+008/BWDFihVIkpS3/aZNm7LavPjii57ajB07NmvbTjvt1Gu/6urqgt8lEomyxm1n+PDhvbbV1NT0Ok6lOeaYY2hoaODhhx/mqKOO4r333uOCCy5AVfP/hB999FHOO+88Ojs7c+7T0dHBwIEDs7aNHDnSdd+6ujrq6+tpbW1l69atNDQ05D2+5VBnXaN8zJs3r+A+TqZPn051dTWSJFFdXc24ceM48cQTaWpqct2/qamJCy+8kAsvvBCA999/n5tvvpnf//73PP300zz66KOcccYZADQ0NLB69WrXZ3H48OEIITJ/H3PMMSxYsMDzuGfNmkUymeSee+4p9pSzCIVC7Lnnntx1110oisKdd97JnXfeyQ9/+MOcbX7xi19w9913M3ToUBYsWNDr3kPPb2fChAkccMABWd8Fg0FOP/10brrpJl555RW+973v9WpfW1sLkOXE6lM5fMHdz3jwwQcBWLhwIQcffHDWd5Z39auvvspnn32W8+VbLKFQqNc2y7N42LBhTJ06NW97axxWm9GjRzNlypS8bdwEgiznDoLI952dUsZdynEqjaZpnHzyydx999386Ec/Aijo6fzZZ59lIgVuu+02jjvuOHbaaSfC4TAABx10EIsWLcoSQJWmrq4OSE8O+oKbb76ZXXbZpeT248eP53e/+x1bt27lqaee4q9//WtGcE+cOJHVq1fz1ltvFXxei+W5556jvr6e888/P2t7PB4HYPXq1Rx++OEAPPbYYwwbNqxgn9/5zne48847+ctf/pJTcN9zzz1cffXV1NXV8cILL+TM0GY9+7murbXdmQXPwpqw1dfXFxy3T/H4grsf0dLSwvvvvw/ARx99xEcffeS6nxCChx9+OPOCb2xsBLLDY+zk2p4PS/McNGiQZ03JajNu3LiStKtKUMq4dxS+/e1vc/fdd/PCCy+w++6799KEnMyfP59kMsmll17KRRdd1Ov7Tz75JGfbVatWuW5vb2+ntbWVcDjs6aU8ZMgQIJ0ydEfmyCOP5Kmnnsqyshx77LHMnz+fxx57jNmzZ1f8mK2trbzyyiuu38Xj8cx3ljAvxKBBg4Ce0Dcnjz32GLNmzaKqqoq//vWvTJo0KWdfVkjd1q1bXb+37qelmTux2hUTfufjHT+Oux9hxW5feumliLR/Qq+PFSNs7QtktIWnnnrKVbv605/+VPRYhg8fzrhx41i2bBkffvihpzb7778/dXV1vPLKK9vtRV7KuEvFiqfVdb0i/R100EFMnDiRhoYGzjnnnIL7Wy9PN/P+q6++yvr163O23bx5My+99FKv7Y899hgAkydPRlGUgmPYY489UFWV5cuXF9y3LylkVbAmwfYll7POOouGhgZee+21rN9Tpcbj9lm5ciUAu+22W2abV4uCJeh32223Xt/Nnz+fM888E1VVeeqppwpaEKZNm4aqqrzzzjuuv1XrWJaAd2IpGPkmBz6l4wvufoJhGDz66KMAeRNZHHLIIey00068//77tLS0AGltYsyYMSxfvpybbropa/958+Z5KjTgxo9//GNM02T69OksWbKk1/ebN2/mvvvuy/wdDAa5/PLL6ejo4KSTTnLV+FavXp1ZDugrih13qVjrrJUUWkuWLGHTpk1cccUVBffdfffdgfQkLhqNZravXr26l4nWjUsvvTQrGc3KlSszxWxmzZrlabyRSIR99tmHtWvXsnr1ak9t+oKDDjqI+++/P+s6WDz33HOZteYZM2ZktldXV3P//fcjSRJnn302v/rVr1y13y+++CKn1erXv/4148aN46qrrir7HDZu3Mh9993nmqToxRdf5PLLLwfSCX/svPbaa8yYMQMhBH/84x85+uijCx5r0KBBnH322XR2dnLhhRdmFW154IEHePHFFwmFQr2SNkHaQvDOO++w8847M2rUqCLP0scLvqm8n/C3v/2N9evXs/vuu7Pvvvvm3E+WZU455RRuvfVWHnzwQZqbm5FlmQceeICjjjqKK6+8kkcffZQJEybw8ccf88YbbzBr1izuuuuuojIuQTpD0nvvvcf1119Pc3MzkyZNymgKH3/8MW+//TbV1dVZzitXXnklH3zwAQ8++CDjx49nn332YdSoUSSTSZYvX86yZcvYe++9+c53vlPyteqLcZfC0UcfTSgUYu7cubz77rs0NTUhSRKXXXZZL2envuAb3/gGe+yxB2+++WbGryAej/OPf/yDSZMmcdBBB/Hvf//bte2BBx5IMplk9OjRHHnkkaRSKV566SW6urr49re/zUknneR5HMcddxxvvPEGCxcuzKwfu+EmBCxGjBhRVgW8999/n3POOYcf/OAH7LvvvowYMYJYLMby5cv54IMPADj//PM57rjjstp9/etf589//jNnnXUWl19+Oddeey1f+cpXGDJkCB0dHXz++ee88847mKbJV77yFcaMGZPVftOmTSxfvjzjIFoO0WiU8847j4svvpjm5maGDx9ONBrlww8/zJzDnDlzmD59ela7448/nlgsxqhRo3j66ad5+umne/V98MEHZzm0AvzqV79i8eLFPPzww/zzn/9kv/32Y9WqVbz55psoisK9997r6vD62muvkUqlel1LnwqyDT3YfcrAyjb205/+tOC+b7zxhgCywoWEEGLJkiXi+OOPF7W1tSISiYgpU6aI559/Xjz00EOu4WJWSFKhEJdXXnlFfOtb3xJNTU1C0zTR0NAg9t57bzF79mzxyiuvuLb5y1/+Io477jgxZMgQoWmaGDJkiGhubhaXX355r9AfKxzMLdmGlVUs13WhO9603HEXuha5jrNgwQIxZcoUUV1dXVTIkDMcrBC5wsG2bNkivv/974tddtlFBINBseuuu4orrrhCRKNR1+tqhSMddthhorW1VfzgBz8QTU1NIhAIiLFjx4qbb75Z6LruaUwWq1atEoqi5KyehUtYlfMzceLErDb5ErC4sXTpUnHjjTeKo48+Wuy2226iqqpKBINBMWLECDFjxgwxf/78vO03b94sfvGLX4gpU6aIQYMGCVVVRW1trdhzzz3Fd7/7XfH3v//dNSNbocxpTvKFg0WjUXHTTTeJadOmiZEjR4pwOCyCwaDYZZddxKmnnpr32Sz0yTW+zs5O8aMf/UiMHj1aBAIBMXDgQHH88cfnTUpzzjnnCKDX79inckhC9KFLqU+/4Pzzz+e3v/0tjz32GKeccsr2Ho7PduTTTz9l1KhRHHbYYRWt7X3iiSfy3HPP8fnnn3vykPbpn8RiMZqamth99915/fXXt/dwvrT4a9z/I2zZsiUTw2znj3/8I//3f/9HfX09xx9//LYfmM//BD//+c8xTZObb755ew/Fpw+55557aG1t5YYbbtjeQ/lS469x/4/w4YcfMnnyZPbee2923XVXIL3ut3z5chRF4be//S2RSGQ7j9Lny8qee+7JzJkzufvuu7n88sszYWI+Xx5isRg33XQTxx57LEceeeT2Hs6XGt9U/j/Chg0buPbaa3n55ZdZs2YN0WiUQYMGcdBBB3HppZcyefLk7T1Enx2AvjKV+/j4VA5fcPv4+Pj4+PQj/DVuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh+ffsLPfvYzJEna3sPw8fHZzviC28fHwbx585AkKeszZMgQjjjiCJ5//vntPbyCLF++nDlz5nDQQQcRCoWQJIlPP/10ew/Lx8enQqjbewA+Pjsq1157LaNGjUIIwfr165k3bx7Tpk3j2Wef5fjjj9/ew8vJokWLuOOOO5gwYQLjx49nyZIl23tIPj4+FcQX3D4+OTj22GPZb7/9Mn+fe+65DB06lEcffXSHFtzf+MY3aG1tpaamhptvvtkX3D4+XzJ8U7mPj0fq6+sJh8OoavZ89+abb+aggw6ioaGBcDhMc3MzTzzxRK/2kiQxe/Zsnn76afbcc0+CwSB77LEHL7zwQq99//Wvf7H//vsTCoXYbbfd+O1vf+t5nAMHDqSmpqb4E/Tx8ekX+Bq3j08O2tra2LRpE0IINmzYwJ133klnZyff/va3s/a7/fbb+cY3vsEZZ5xBMpnkscce41vf+hbPPfccxx13XNa+//rXv3jyySf5wQ9+QE1NDXfccQfTp09n1apVNDQ0APDOO+9w9NFHM3jwYH72s5+h6zo//elPGTp06DY7dx8fnx0XX3D7+OTgqKOOyvo7GAzy+9//nq997WtZ2z/88EPC4XDm79mzZ7Pvvvty66239hLc77//PsuWLWO33XYD4IgjjmDixIk8+uijzJ49G4Cf/OQnCCH45z//yYgRIwCYPn06e+21V8XP0cfHp//hC24fnxzcdddd7L777gCsX7+ehx56iO9+97vU1NRw0kknZfazC+2tW7diGAaHHHIIjz76aK8+jzrqqIzQBth7772pra3lk08+AcAwDBYsWMAJJ5yQEdoA48ePZ+rUqcyfP7/i5+nj49O/8AW3j08ODjjggCzntNNOO4199tmH2bNnc/zxxxMIBAB47rnnuO6661iyZAmJRCKzv1vMtV0YWwwYMICtW7cCsHHjRmKxGGPGjOm139ixY33B7ePj4zun+fh4RZZljjjiCNauXcuKFSsA+Oc//8k3vvENQqEQv/nNb5g/fz4vvvgip59+OkKIXn0oiuLat9u+Pj4+Pm74GrePTxHoug5AZ2cnAH/+858JhUIsWLCAYDCY2e/+++8vqf/BgwcTDoczEwM7y5cvL6lPHx+fLxe+xu3j45FUKsXf/vY3AoEA48ePB9IatCRJGIaR2e/TTz/l6aefLukYiqIwdepUnn76aVatWpXZ/v7777NgwYKyxu/j4/PlwNe4fXxy8Pzzz/PBBx8AsGHDBh555BFWrFjBlVdeSW1tLQDHHXcct956K8cccwynn346GzZs4K677mL06NG8/fbbJR33mmuu4YUXXuCQQw7hBz/4Abquc+edd7LHHnt46rOtrY0777wTgNdeew2AX//619TX11NfX5/xXvfx8emnCB8fnyzuv/9+AWR9QqGQmDRpkrj77ruFaZpZ+//ud78TY8aMEcFgUIwbN07cf//94qc//alw/rwAMWvWrF7HGzlypJg5c2bWtldeeUU0NzeLQCAgdt11V3HPPfe49unGypUre43f+owcObLo6+Hj47NjIQnhe8X4+Pj4+Pj0F/w1bh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6UdsV8F99913Z1I+1tbWMnnyZJ5//vnM9/F4nFmzZtHQ0EB1dTXTp09n/fr1eft88sknOfroo2loaECSJL+koY+Pj4/Pl4rtKriHDx/OL3/5S1paWnjzzTc58sgj+eY3v8l7770HwJw5c3j22Wd5/PHHeeWVV1izZk1Wjmg3otEoBx98MDfeeOO2OAUfHx8fH59tyg7nVT5w4EB+9atfMWPGDAYPHswjjzzCjBkzAPjggw8YP348ixYt4sADD8zbz6effsqoUaN46623mDRp0jYYuY+Pj4+PT9+zwyRgMQyDxx9/nGg0yuTJk2lpaSGVSmWVVhw3bhwjRozwJLiLIZFIZBWHME2TLVu2ZMztPj4+Pv0dIQQdHR00NTUhy757U39muwvud955h8mTJxOPx6muruapp55iwoQJLFmyhEAgQH19fdb+Q4cOZd26dRUdww033MA111xT0T59fHx8dkQ+//xzhg8fvr2H4VMG211wjx07liVLltDW1sYTTzzBzJkzeeWVV7bpGK666iouueSSzN9tbW2MGDGC99/+LzV1tQgBhjBIJlKYpiCgqaiqiiz3aOMpwyAeSxCpCmdtd0MIQZwOOtiEImmERS0BwqiJJMoXKzF23QNkGdMUtEejxEUHalWKmjUgXl+JsVMd0bE1RCIDCAfqPc6eBQIBkgFCASFhCBM9paNpKrIkI0kSQgiEELS1bWXzpk1oIRlZVVCUahQ5SEBTiFQF6YrFMQ1BbW2EWKyD1vbNCCEIBoJoWghJkqiurkOV1YzVwhQm7al21kQ/J27GC45YQcGgJwe4iorZ/Z+ERH1gAMMjI9BkrWBfKUNnS3w9ZlUUJAECZDOE1F4LpkKkKkA8nkI3zHQDCSJVQSKhEJIECAFmHCm2AVKdiFADBAeBXNmf0LdH/jDr76c+fAeAr759ArUzPu713Ym771VU/+1P7Jbpp/2JdF1wZ7/2fd14ae+nM/8+cfe9GPtq+hosP1QvaixulHJOFvZzy7Vt7Ksqvxz2FkDmOG7t8m0vZpzlnI/V3iJXP9Y+zu+t+/LLYW8RDf6Njo4Oxu+5DzU1NSWPx2fHYLsL7kAgwOjRowFobm7mjTfe4Pbbb+eUU04hmUzS2tqapXWvX7+eYcOGVXQMwWAwq7KTRei9z4mMG4U8dABSSEMApilIJFPoukEgoBHQVCQJOjpj1AyuRlPTlzSfhV0IgYKOIIIpTEwjgWRUoZohqsIhqK0GWUEIQXV1hFi8DmnjVuTXlyLX15Hcf1dSSiu6FEUKhokEBqKbSWRZRZW0POZ9uzuDlJZFpkkymULVFFRFwTRNtrZtQmhxBgyuAQkk0v2pqoqiBFFVjcZhdZiGSVdXFwKDSKTK1reOAFKpLqrrBhEIpK/t9IbeObIXrFnK1KaJuS9Wifva21h8b7fcbResWQp1ZPXfNn8MddNW5Pw735js+7q1y9WHKmVPQr41dl8WrFnKG1OeZao0sdd3apErOQO/tYoFa5cxtWkiSiSYHlf3Ma1xts1P1wK3CpAunvREVh9z1h6Q+bcq6QSrVZY1673GXgo/7TwAVXKfAExoSR8nFwO/tSpzLrm2/WbMUkBhatPEzLVTIkHXsbv1B9b98nbtS7lHdn7aeQBzG1uA3s+G/RgL1iwl+vyErOfs48PS/69do6CEeoS1v/zX/9nugtuJaZokEgmam5vRNI2XXnqJ6dOnA+myhqtWrWLy5MnbZCzS4Dr0FV8gln6M3FCHulsT8qBawqEApilIpnQ6ozEMw0RCkErpJBIpFEUmGNCQZYnpDbMzL0LA84u/FOxCqpAwybdtwZqlUOXehxuFBFPP2Lyfp1uf1ngmtKjMbWzJ/O3l+IWY2jSRCS0q0CMYnH1aQs2+fWrTRNd7WOx47PfO6te+3XmupTw39utmfyZ7jyN7LHPWNgOwrFnvNc70Navcczy3sYWpOZ6TZc16QeGdbyI1eehK1zblPjvlUOh8ljXrsKZwP3PWNrN40hM5r53Pl4vtKrivuuoqjj32WEaMGEFHRwePPPIICxcuZMGCBdTV1XHuuedyySWXMHDgQGpra7nggguYPHlylmPauHHjuOGGGzjxxBMB2LJlC6tWrWLNmvTTbtUwHjZsWNGa+llHzc2rRSxYs5SpIwv/UOwvhgVrljJnbXPmJQSFf7z5sPqwZuXF4vbSsr/4vIwtn2ZZSPMsRfAta9aZins757GdQigf1nla19TtvHONK99YSnmhWs+J2/Hb5o9halNR3dE2fwzLmldkxrF40hO9rAsABy6Zkfnefvx8z8DcxpZ0u/nZ4yyWSgj/XO3rpq1g7hrvz0KlKOe3XQyWgHdeQ+tZhrSlz+fLwXZ1LdywYQNnnnkmY8eO5atf/SpvvPEGCxYs4Gtf+xoAc+fO5fjjj2f69OkceuihDBs2jCeffDKrj+XLl9PW1pb5+5lnnmGfffbhuOOOA+DUU09ln3324Z577qn4+C2hY328MGdtM3MbW1iwZmlG2BYjdK3jTGhRixLaC9YsLellak0w7C8Ar9i1uqlNEzOaYqF9K4WrJcEDy5r1jHbp/ED62rtZN9z6d7tu9v3yXddc99V+Hb3el1wTJkhfe8scvnjSE72EtnWcXMeytD3rOPkmN31NvutRKctWMZaoUifUdqx7Uej6WZMuO/bj67aa8T79mx0ujntHoL29nbq6Og7nm57W7Zw/KEujzrePtZ/9h1XohWDXwnK9ENz6cJpb+xJLAHtd03Xb5tTSndoh9DaXW33Yr73bNXc7rnN7sZMwuxD02sYNr/3YrRSVWCawC25rjLmY29iS9b3zHuQjn0bt9XzKOd9CS0l9QaWWELyO3Xk8q11H8J+sX7+RseP3oq2tLVNPvtKkfWaSfdL3lx1N01AUpfCO7IBr3Ds6udYioeelPLexxXVdqvcPrsfkW4h82rXbRCEflXjZ58JLv7nM49a47H1YQjvXi8tpisx17S2s4y5Ys7RbQ1maWd+2+vEqQK17UYwmWWjClWtiYce+rgxLy17XrJu2wtM6qpNihDbkFzjWd4WeHy/PVyFhWa4grbRfipe+7M9kvjb235bd+mAaJqZpVmTMuUgmk6xcubLPj/Nlpr6+nmHDhhV0IPQ1bhdyady5NEXIr7F50aRz7ZdPKOQSgIX6KMapK996bznkOrb9WhRrWs2nzZaKNSnyqglbloBiKPb+ldqPl2Pk07btWJq33S+gnGdkWwjDSmnclRyrV+xOiRb5rBfW99a/N/ES7e0djBm7R59o3EIIVq1aRSqV8hO8lIAQgq6uLjZs2EB9fT2NjY159/cFtwt2wR19fkLGjJjvh1Ks1utsb2HX/ryYenPh1NDtQqWUsVpjqpSzjaXx5hPebpQi0Esl1/igOCHg3LfUF7/XdfVy+nYKbq+TEPvzlUto5hvXtnLiyjVJLsYKVWpY4vYymU9oUbl80PUYRoqRo8b2ieBOpVJ89NFHNDU1UVdXV9G+/5fYvHkzGzZsYPfdd89rNvenRXlof2K3jKm2EkLb7uRkN2M5tXXLec1OvjHYsZyILAcreztrjKW8IMtp68bUpolMHroy6zwLCWSnOdk6t6lNEz1rim79uW23nOkKtfVyXLdxl4L9fAsdq5S+gSyHyVKcJvNd03yUcqxSv7fjxSejLyl2Emq//4XaWue2rFlHlmVkqe9e90a341sgEOizY/wvUFWVzoeRSqXy7ucL7jy8tPfTnl6EXoX2gUtmZH54lvZaSLuc2jTR1Vs031jcxtM2f0zmh+x2zFK8ur160+fq2+1lnas/533wui7ots3+8nP72wvpkKyJnicyubTQfFEJpVgWyvHOdwrvOWubM5MiLxOUuY0trl7dbmNy7jdnbXPJz1Ix52wXeqVGWlTSTF6J9fZcVhe7w2E6UVTfJ17xk7uUh9fr5zun5eGrb5/AQFbl3cfrD29q00TqyH5J2OOR7euzTnOwW+IPyB03bcf63vr/gfNnsHjSE1n95zMJFzonL+Qyh1vnWQnTdy7vfLu5sJLr37nuSSHsmmkuXwPr77Sw9G7hcHvG3Pov1EfPWNPJUKzJyZyWbG9yN+zOgfmeK/vaeMa87sFBrm7aiixnvPRzVLhdJSnF7O22fzlOos7nOteYrGNomkq8cJZhn36Cv8btQr5wMPtaoNt6Xi5ntXw/dK9CuRD5+nH+v5IhYl5eZE6TZCFBWuz1cwsZKzSefBOKUvCS2hSKu+b2CQ6khaEzBamTSjp5WceE3klbnNi1aOveWm29+jLYfTzKGXeh9V/rWKX0Uc4zYg/prOSafr4xTWhR+fkut9PR0cHwkaP7ZI07Ho+zcuVKRo0aRSgUqmjffYWz9PPChQs54ogj2Lp1a6/iVtsKr9fRN5UXwYQWNcvUnQ+7CbTQj7xS62tu/TiFtp1iTPD5cHMYs0zzdoFdSODY+8v3tx1LWBTrmV3uNXcTOpUS2s7ENdb/neZPLxRrOnfb30rKAvTyzwD35CyWcLLa2vu1LxFZZnh7kpFSLCOVdlh0c16rVL9zG1v6xBHP7d5AeoKwvS3YZ511FpIk9focc8wx23dgNg466CDWrl3bL5zrfFN5GVhpHnPl1C4Wu8ZWSWeZvujT6zGdFFrTb5s/xtXcm4tF60dV9Ly8mqdL0ZqLPbdCx/UirIq9Ntb++fqe29iSZTZ3w1oGsli85glYk/7NLFoP5MhHYI+NL9fRrpJ4yU+/PbF79bNm2yWYKYZjjjmG+++/P2ubW3Gn7UUgEKh4Aau+wte4y8BKFuJ0MCp19r8tBWsp2ltfYTntFYubc1Euzchr/5XWhJy+CpXEft3s52dZOhasWVqy06ETpxOf0+vc+tu+zc1yYNfeLcuV85p7TfHpHJ8Xf4ltFUqYD7sjXiVT/dqz2pWSorivCQaDmZoR1mfAgAFA2inr//7v/zjxxBOpqqpizJgxPPPMM1nt33vvPY4//nhqa2upqanhkEMO4eOP02VXTdPk2muvZfjw4QSDQSZNmsQLL7yQ1f4///kP++yzD6FQiP3224+33nor6/uFCxciSRKtra0AzJs3j/r6ehYsWMD48eOprq7mmGOOYe3atZk2uq5z4YUXUl9fT0NDA1dccQUzZ87khBNOyOzzxBNPsNdeexEOh2loaOCoo44iGo2WdS19wV0BLM9bL+E6fcWO9EN1ekvne6HOWducJdDchFsxL7dKCMdSr6V94mY/Z7sTmhe8nkPG4bB7ycNNOJZbpczev0UuAe6WjtcpvJ1jhewYbi9JdPJdx0K+EM6/vd4T+37latvWuVYqg6E1STtwyYxM35bD2o4wUfHKNddcw8knn8zbb7/NtGnTOOOMM9iyZQsAq1ev5tBDDyUYDPLyyy/T0tLCOeecg66nz/f222/nlltu4eabb+btt99m6tSpfOMb32DFivT17ezs5Pjjj2fChAm0tLTws5/9jEsvvbTgmLq6urj55pt58MEHefXVV1m1alVWuxtvvJGHH36Y+++/n9dee4329naefvrpzPdr167ltNNO45xzzuH9999n4cKFnHTSSWUXfPEFdx7uW/aLrL8Llt/bjpRyfK8hOF4p9kVRTtIaKLwOWYoAXrBmqeuY8vVlX7N1eo3bx1jOSzqfgCm0tl6Je+x2fPs5Ov0+8h3zwCUzXNfJLZxr3k6KuY72EMhcFqZcAtxpLbFbMPqiKI5X3PxH7HkHdkQzOcBzzz1HdXV11uf666/PfH/WWWdx2mmnMXr0aK6//no6Ozv5z3/+A8Bdd91FXV0djz32GPvttx+77747Z599NmPHjgXg5ptv5oorruDUU09l7Nix3HjjjUyaNInbbrsNgEceeQTTNPnd737HHnvswfHHH89ll11WcMypVIp77rmH/fbbj3333ZfZs2fz0ksvZb6/8847ueqqqzjxxBMZN24cv/71r7Mc29auXYuu65x00knssssu7LXXXvzgBz+gurq6rGu546hpOyCK6i3hO3jP/PTklrsAOGngLM9t+iqrU6XCo0oVDF6FdrEaaLH92ynlpVdszu5iqVQhESht8mAJvAPn9w7vchYosWM5RDrHXzdtBcvoPRlyFjCB4u6HPUbb+nfdtBWuky43x8xctdbt2M+1L3P+58JZgCcXznj18gyzleGII47g7rvvzto2cODAzL/33nvvzL8jkQi1tbVs2LABgCVLlnDIIYegab2LPrW3t7NmzRqmTJmStX3KlCksXZq+f++//z577713lqf25MmTC465qqqK3XbbLfN3Y2NjZkxtbW2sX7+eAw44IPO9oig0Nzdn8rVPnDiRr371q+y1115MnTqVo48+mhkzZmSWCErF17jzoAVUHlt7G3cv+ykAt350fs59LSEx7/Prs7Y/vul2/rz51zy55a6M0Ia0AC9UQcx64RR6ObitJRaikJezZX7L9Z31fTmZn4oxVW4rShlPX2s4lRAOdu9u6565CbR852LF/9s/hfwk7ELG6VnunDgWk/0u131y+w15maDalxfsuC19eYnG8PIcuR2vULtcy0p2S8CO+LuCtDAePXp01scuuJ1CWZKkjAAMh8PbdKwWbmMqxsytKAovvvgizz//PBMmTODOO+9k7NixrFy5sqxx+Rp3HoQQdOlRksFWfvX+eXRtSfGr989DDcqABGTfQAmJpBnj0bW3oQXk7i1Szmw4T265i5MGzsr8bZ/hW2Ejlodovtm9Mz7ba1axtIm3J+mLRXoM2ZWI7NaBfHW1Cx3Twrm2XWntpdRYYLcxbCv/gVIKutivmxWuaH8GcmmMmefMpbKYm6ZZLPYEIbCy1zktWj+KOY427oLcvYhJrgQ4zufamgzkWjvPtO9O/uL8/Tivg1No53pu8/lq1E1b4RqPbxe2xf4eckWOWOfy5BbPXe2Q7L333jzwwAOkUqlewrS2tpampiZee+01DjvssMz21157LaMNjx8/ngcffJB4PJ7RuhcvXlzWmOrq6hg6dChvvPEGhx56KJBO/frf//6XSZMmZfaTJIkpU6YwZcoUfvKTnzBy5EieeuopLrnkkpKP7WvceUjpKaKJrZhSEiUgEaxR0OMmRkp0z7p6BLKETHVwIPWRBgSCVMpEQsraxw2nJm6f4dtffpUod+hkWbOecaqzyJV600pn6UXLtpz17H87JxNOByYv49+eWoRT8LjFLpc7vlzpavNhv272sqQWxca3e22XD0u42a+PM71v3bQVec/V6f+Qa1/7Grb1b6eznJvQXjzpiZyhb/a/rT6sZ9r5nHqJ3bfvaxewdk94+298e5jgtwWJRIJ169ZlfTZt2uSp7ezZs2lvb+fUU0/lzTffZMWKFTz44IMsX74cgMsuu4wbb7yRP/7xjyxfvpwrr7ySJUuWcNFFFwFw+umnI0kS3/ve91i2bBnz58/n5ptvLvucLrjgAm644Qb+8pe/sHz5ci666CK2bt2aUdZef/11rr/+et58801WrVrFk08+ycaNGxk/fnxZx/U17jxIkoxq1mAKgSlHUQKgaAp6UpDo1AnVqMiqjCTJ1AQGUhschCwpKAFIpXQSyRQBTSuYfzaf6SX9424pquay/YVRyMt2WXOP9mwXtm4vu2LWxJ1xvPkodQ270PG9kk87z/Wdtc3y5i12fIWoZJxwrux+0J2WlNzaq3N/Lyye9ERGg7U/R84YebdMaxb5BHWPxad7XGt6jnvg/BnMWWvdM1sftvHY+891bllLSWuyLRRe1pi9kM533zMxnootRLPCsdhCCLZ3jswXXnihV7nKsWPH8sEHHxRs29DQwMsvv8xll13GYYcdhqIoTJo0KbOufeGFF9LW1sYPf/hDNmzYwIQJE3jmmWcYMyZ9j6qrq3n22Wc5//zz2WeffZgwYQI33ngj06dPL+ucrrjiCtatW8eZZ56Joiicd955TJ06NVPZq7a2lldffZXbbruN9vZ2Ro4cyS233MKxxx5b1nH9lKcuWClPl7z1X8JVEQQmptKJIXcAZlqj7jIxkoJwbYC6yGBqgw1IyBkhLYRANwwM3UgLb9ndZC6EIKXrmIYgENCYMWh2r30sByC33M/2F65z3dr5UiomeYfTXJrPfOrm3f1l0RjKSb9ZidSYfRmt4GYGLtZju5hcAM7zcZaetSjFSuA0Pc9Z25xJzuPUoL3WV7ePJ9dkuNCznu/7Qtevkvf/tlW3Ua3H2GXUGD/laR9imibjx4/n5JNP5uc//3nR7f2UpxXA7J7TSMjIRg2qMQCEhoREoEohUh8iIg1CjoXBzBbKkiShKgqappJIpjDN3jNeIQTJlI4wIRjUkITggdcu4nfzv5vZx/rh50qYYk8A48T5ArTMu6UIbev/XtKRFnr570ixpYXWr8uJhy1HY7LCq6x71hfLBOVqdNZzWYxTmf16uwmlYsqk2nH+NuY2tmQlegGy4pyd5HM4syZgbiFqhZ5157is39+EFpXFk57Ie75zG1sqct/b5o9BF2CW3ZOPk88++4z77ruPDz/8kHfeeYfvf//7rFy5ktNPP71Pj+ubyvMQCQeRJBAi7WaGGUYVCobShqJCfXgoIbmaaFuM9i2d1AyoRlYApExuYFmWkVVBe2wrkWAtmtpzyZNJHSQIBNIl95JbtrJ16bvItjSAbuEpbppRrpewXfu2azb5tCu7puiWptNrvu1c/feFF3apWn4hjaYSjlrlYGmHU/tI87afn2XiLlbzLiescFmzzpwWe8EebyVy7VjjddNgc/lsOKmbtiJvdTLLAmKZ/otxArU7eNqvlZdJyuShK1lWcC937EJ/RERlU6tvXK00siwzb948Lr30UoQQ7Lnnnvz9738vew27EL6p3AXLVL5q5YeYKCSS9peJQNWgpjpIUA1nwgP0pEEqqSPLEsFwAEmWMIVBNNlGZ3ILhmlQow4lrEVQVYVkKr2vpvbUyRWGid7eSdeWds7e/wbXseUTIoVM1vYXh9u+Tg0lVz/2bf3JLF7OWMs1ezuFYTFjmdCiVjwnuxtefSPytStELvNvrglpMcezoi/APdQqF26TMzdB69y/2NBLO3ahnWvi4zTrlzPhfXLLXWxqbWdX31S+Q+ObyiuBBMGgimxbm9Y0lbrqmozQhm6zeEAhGNaIdcZp39KJaZikjASt8fUYpk59aDA1VbUIINoVR5ayhTaAKSClBFDzVKdxZqvyWuGrbf6YnEIbesyexeJWdSwffZWG0csYtofQBjJZrez5qYvVaIu9zl6w3wdn317vUbGhclZ0Qq5jeTmu87m3/m0/h2Iq3+U6phV14dSMc6W2LQZ7BIHbMeyavf24pR5PCEFA3s4lwnwqhi+48xCjjWRwK9XVQRRZJqCp1FWH0VSll6OZJEnIikLd4BoC4QDxaJJUUkeRNOrDw4gE6pGldB/BYADDFN2enumPoRu0bmzDNE3CdVWex5hLSwb3ZA2VMlMXyi/uhiUAi9FU3F5W+QRYqd9VAnvii3ypMZ3Xq1CiG+vfVgIUJ/le5m3zx+RML9rLTO6hX3viHefyi4Xb/bVvc3NQcx7XCwcumZER0F48+0spY2sJ2Hxm7ULPs7U+7tZHrqUar2WDveKbVb9c+GvceQgQJigHCIU0AqqKJMsoObzDASQpHUIWqgpgpAxaN3cRDg6kSq3FiueWJAlNVZAliUQiRTCoIUxBvCtJVU2YUCQIAuY9PJOzzngg7/iKMaF50YwqGYLkRrF95w5jWpq1Hpl+IZa+FuhlHIWujVtaT/v/LZz3LC2Y3V/Adi3bLlhzOQ7m6mMZLsLQFh5lJSux+skV15zLQdKOFfJVzLWycDvH3BES2W3t98fNOjG1aWLaVyPPOnY+7GvxTgr9Dt1M7oWS7XgVyl5/s/F4suzCFj47Dr7GnQeVEEGjBl0XKIqCosgFY7LBMp2rDBhST0AJk+hKYhomQghMU2AKgaLIaJpKR1sXHVuiBEIaoUgw3b8koQd75+S1U+y619zGloIaRy5HrGLMum4ThEppus5lAutjVajykqimHPK9TL0c1+7dbGnTuQSyV43KbrZ1tvXSh335pNDzUaivdK3tUTnvt6Vx2i0HhRzbcp1DvlBHt3F52a8QhTRv+5isaIBc6+TWNmdxlVKwXyP7cowd0zSJxxMl9e+z4+E7p7lgOaet/OgDtEAQRZExTUFVOP3vXFiXUtdNVLVnv1RCp3NrlGB1EANI6QbhkIaCxNaN7dQ1VBOuCiKZSdC7INXBiSNuzLR3FogoxVmlGG06nzPajox1XXI5OZUTc2v1X86L3z4+b5przwveS5tyKCbZSr6ELha5TNe5YrdLOT/7mN3uixWD79RuvYRDuuE173l2utce7EVUnNnd7PuUi9v4/7z512zavIXdxkzwndN2YLxeR19wu2AJ7g+WvcPQIYOQZQldN4jFk4RDQVRVdk02LwR0xRJ0xZKEQhrVVcGMhp5K6mzd2I6OAEVGpFLUV2uEtSRCjxKQEqDHQA5wwuh7co7NenmU4vVbzNpyX5rM+5JC12d7epbviLidTzGRC842TgHsnETZE9pU6prkEtoWxQhDt77clivy1Q239+FmgXLLyV7MGL1Mcpzn8eSWu2hra2fnXXyv8h0Zr9fRX+POQ6QqlNGwNS3tAd4VixMMaAQCGoZhkkzpBAPptKbRrjjRWAIhIJUyMAUoUve6dkBlwJA6tm7cSmLjamrDCSLVERQpjAjXY6pVoARAUnhyy11EP13Pd/a9tteYShHaxWR62h5UckxWqtVcoU3b69wrqTHbhaEzK1g+AWAPxco3CSmkyTpxi6u2kovkKrU6oUUtWmDlO74VvmWn2L6dKVmhp0hKMel/i5ngFSqCYmF/fkp9jrws8/UFG1ZtpG1TxzY7Xt2gGoaMGLzNjrc98AV3HpwPuqLIRKrCdMXipHSDRNIgldIJhXSqq0IYpkBTVVRFTpvVsxzZBHKylYixlvphVQTrR4IWwZSsSmPZBCPZsy2v2omzWpSTHU1op19yle/Xvl7v5UVaTr3qfFjHdr5snYLc7gBX6F47q4H1oGc5Xzk1P3u1Oa/JQ4oh4wCGVXWsdwyy9XxmCqKQPUnw8pxb184yxy+e9ETJGrZFrvhy5zitsXrBi0NoIWENuUuOQu4ljh3FarZh1UbOGncRqXhqmx1TC2nM++D2ooT36tWrueKKK3j++efp6upi9OjR3H///ey333452yxcuJBLLrmE9957j5133pmrr76as846qwJnUBjfOa0I0iFfaeFtCkEylQIJZElGlmVqq8PU11VRWxPOmNMRAlNPEl33KcmOTUSG7UZw8G4QqAVJIWf1ML13yIyXF67lUWuF6hT747V+8MU4lDn39drW7eXiVnWrVOzXq1CN4mKcy7zi5jhmP57dwc7efz5P8VxhVYXGuaxZLyoUzwvFhqFBz/Pp5vVt/d8KnXKGetnDvyBb8yxHc5/aNLGonOBermOuZ7jQOJ35GfIJbPsY3BwLd4Sa3G2bOrap0AZIxVNFafhbt25lypQpaJrG888/z7Jly7jlllsYMGBAzjYrV67kuOOO44gjjmDJkiVcfPHFfPe732XBggWVOIWC+GvcLlhr3F989hG1tTWZ7dalsta3u2JJ4okkdTVVKIpCL0uUEJiJdmJbvkDS6gk3NCLJ3uZKifc+47RDbgJ6F7rIZVp2y2Zmb+vFJO1lH+c6cimmbi8aQa61+VKPZ1FKqJK9H6/Cr5Azk5fzLzZL17ZYCnET1m73CMjSjIuNTljWrPfyvC93ySHfGn2xk5p899dLZrR848qXHS4Xbilfrf2f3HIX7e0dDB85epuuca/47yf8YL8rKnosL/zmzRsZs++unva98soree211/jnP//puf8rrriCv/71r7z77ruZbaeeeiqtra288MILRY/Xws+cVmGEECSSOqmUgRACSZKoCgeorgoRiycwzewU/sI0iW1eR2zjF4QG7ER4UJNnoW0mU5jRWOZv5w8/VxYttxej3avWS/GPQhm6FqxZmtHe7G36ArtWYQ9vKuXF7ewrF8VmKLPva69X7kxOks/pKd+Yrf+7JULJNf6+xl6jOp/2WUySHqf2bp+o2vsvVWgXuv/FWpmsMeY6dytEsRShnWsfL9Y2p+a9I2jdOzrPPPMM++23H9/61rcYMmQI++yzD/fdd1/eNosWLeKoo47K2jZ16lQWLVrUl0PN4AvuPFhZzUxTEI0laevoorWji0RS79a+JQIBjVAwQLQrlq70JQQiFSe28RNS8SihoaNRQnWeHUPMeILNi9+kfXPPYqVbfGe+UoHO77y8PJwJLHLhfHlYQiVX/GilcMZu5xK+bjHMzr/tY85lznXGRdvH4ZbNLFcWMec52P+/eNITnq+X0/nKq4Au9X7Y23nJlubEKbQLTQYLCaZyTPxuz6wbpU56Sh1brmxqUFqWN9jxfFj6A5988gl33303Y8aMYcGCBXz/+9/nwgsv5IEHcifAWrduHUOHDs3aNnToUNrb24nFYjlaVQ7fOS0PiWSK9s44IIjFkghA6167jhsQVASyJKGqClVVIbq64qRSUaTYOtSaoYSHDEaSipsbGV0x9GgnktqTgMXL+ls5zlWlOrLYS45aQnBZs7ciEW4evMVQSHu2C/d8a8UL1vQ4bNlxZhTrlT1sDeTKeOY8hts2a3yLJz2R5fiUj0ylsCLuVSnPg1sWOMtTv1QhVcxk0D4Ot/3yWUzcnP6c9IXjlqsjoA1357fcz3+hc8hHX8f8f9kwTZP99tuP66+/HoB99tmHd999l3vuuYeZM2du59G542vceWjvjGfisgWkc5XXhNE0hfUxnfZk2jwuSRKKJFBim4hv3YA2cBRazZCihTaANrCOYUcfxsC9xmW2efFirZu2IufLsdSMTBa5HG2cJUctweJlvMU4A+XDqYm7OXvlwn5eTg3dnlHMGU7nPL7b315etpZWVUw8c7Ev8VI07kJr/JVyHvSK2zW3Xwf7fZ88dCWQ/5kvxSxeCnPWNmec7Qo9785n0U4xz4dV59vCF+CFaWxsZMKECVnbxo8fz6pVq3K2GTZsGOvXr8/atn79emprawmHw30yTjvbVXDffffd7L333tTW1lJbW8vkyZN5/vnnM9/H43FmzZpFQ0MD1dXVTJ8+vdfFciKE4Cc/+QmNjY2Ew2GOOuooVqwozXxk99uz1rRVVSFuCNZ1GazpMjCFwIhHSWz4CEWBqp12JirFEHnS+gshMLrN8K4oGpIW4oHfpF/slpm01BdmvpdG75Ci4to7cavUZGdHCVNpmz/GNYWlXbN2Cgfo/SJsmz8my6xZzEvWXpHNa7tik5ZU0nRqjdWrB3e59zpXvnf7eJz9W+vOlZoY2sm1fOLEuj7WGLyMpVLjdcvItmDNUj9PeR6mTJnC8uXLs7Z9+OGHjBw5MmebyZMn89JLL2Vte/HFF5k8eXKfjNHJdhXcw4cP55e//CUtLS28+eabHHnkkXzzm9/kvffeA2DOnDk8++yzPP7447zyyiusWbOGk046KW+fN910E3fccQf33HMPr7/+OpFIhKlTpxKPx0sYYc/DLoQglTKAdABXXUBGlQSx1g10rPsUqhpIVVezJbmOrmQbpjDy9ropZtCpmy4/KAkJCTkUyooUs5cBfHLLXZlPPuzfuwl+p7e68zu3Nl5ijC1zspvwTpuge/fhXFPtayxh4CzdaGlJbuQS5E6zZrEandWXl4lZudaTYnFLrpLPx6CSlOshn2/SkCsqw2t/uSZc1j2cs7Z5m1sm7Cxr1rMmlAkzj6LwP86cOXNYvHgx119/PR999BGPPPII9957L7Nmzcrsc9VVV3HmmWdm/j7//PP55JNPuPzyy/nggw/4zW9+w5/+9CfmzJmzTca8w4WDDRw4kF/96lfMmDGDwYMH88gjjzBjRvoB/OCDDxg/fjyLFi3iwAMP7NVWCEFTUxM//OEPufTSSwFoa2tj6NChzJs3j1NPPdXTGKxwsNf/+w/qqoYiSwrhUIDqSAi5u6ataaRItq7C1E0CA4YTNTvoSG7GFAaypDIkMpKg6l6eM5oyWR/TMQTsWquhuDiumYkU0Sf/ibTf7pz5lRsy2wsJ60IIYPrA9ANZSHCXqwU4ncHsLztnKkz7S3pHzO4GvXOhO1/a9hd7KWlmIXciECgt3W05FFpLLjdsrtA+5T4H+fqvpOXH+WxblNp/KaFg9nbW5M5augJ4N/UP6s0YI7dxytP+koDlueee46qrrmLFihWMGjWKSy65hO9973uZ78866yw+/fRTFi5cmNm2cOFC5syZw7Jlyxg+fDg//vGPy07A0u9SnhqGweOPP040GmXy5Mm0tLSQSqWyXO7HjRvHiBEjcgrulStXsm7duqw2dXV1fOUrX2HRokU5BXcikSCR6Kmc097eDoCpdKArYSLqwIzQloBUrJ2uDZ8TrB1I1ZChCAnMWCshtRpV1tCUEKocAHqb2wHaUiabEgYNQSVX+hUkVYFICLm9iz+tv52UbhAIaJlQtFKxWhYSzJUw3TlfZvYXUo+DV4/Dl1cnrW2N80VqH3su7Ofu5QVupby0ZzdzYpWWtJzmtoUAtyYS9hhhLx7PXkOcclGJePpC31dygmh3SJuztplF60fB/G3n5e0m7O3bBJAwtr2ONmTEYOZ9cPsOn/L0+OOP5/jjj8/5/bx583ptO/zww3nrrbeKHV5F2O6C+5133mHy5MnE43Gqq6t56qmnmDBhAkuWLCEQCFBfX5+1/9ChQ1m3bp1rX9Z2Nzf9XG0AbrjhBq655preX0gCoXQSM020mExYDUB8E4loG6HBIwhU1WSyo9WHhyHZxLBduMYMgSZLqKSF7tCwwqCggiLnyJsmBMlNWzCqFczOdpQNm9G7ujAbh6AFA2iqWpbwntCict2o2xGbRXdOdUEwoDK9YXbm+0quEbol58hVzhJ6woecyWSstjuSNu5FeLhZGJxYOdYLJW2x9gNvWnqpOCtqWZ7l1r3blkKxFAodf2pTT3rWcvtPXwudA+envbnnNrZw4PpRJfedD+dv001guz0/NarM5s7cy3d9yZARg7/0ucO3Ndvdq3zs2LEsWbKE119/ne9///vMnDmTZcuWbdMxXHXVVbS1tWU+n3/+OUAmhrurs4Mtaz+m/bOlJGJdVA0dTSBSAxIZDViW0mFi1sdOR8pkS6InQYsiSQQUCcVlXwC9M8qmxW/Q2bqRaNsmEpu2kNi4kYRoY2vXBlIpvaz1qutG3Q50Fz/RFBRZIpEoz5TlZc3TSlBivfidL397rPDkoSsz+zrjl/tqDdy+rm8fi13DtK8xe9V4pzZN9CzESkm9WUy6T6/rrrn6tJJ85LvfxaS8LTWRTKG62F6udznPUT6HOau4SjFx+rn6srCXA3XmJbC+dwtptKjVJKKdpfj5+OyIbHeNOxAIMHr0aACam5t54403uP322znllFNIJpO0trZmad3r169n2LBhrn1Z29evX09jY2NWm0mTJuUcQzAYJBgM9v5CSOhtBrXEaagNoNTsSkKqRlI0YnRgCp0I9eTMN07aRBU3BEnTZHBIzrNnD3IwSP1eExC6QfKT1ZgK6A0BdKOdcKAW00xXJQto6dtXlum8Ow7d3oeVbc2rEHGawp0aYL51v1zxr3bBYZmPe9p4GpbncRciVxpJL5Sydn/gkhksXvNEQS3dopiYePu6p0WuePP0BKb3mnqhEKNiNO2+0Mq3Z9RC2/wxzG3sWUqxllWK9XWA7BoF1v11cwx0ft9DT6W8VCyJULa7nuZTIba74HZimiaJRILm5mY0TeOll15i+vTpACxfvpxVq1bldLkfNWoUw4YN46WXXsoI6vb29ow2XyxaXKepShCpb4TITghJRSSSGMIgTgc6ScLUoOQxXEjAsLCCIfKJ92zkgEZk15EIw4RPNpHsSqBMGIgmK9QGG1DlAKmUTiKRIhBIJ2opp2KfZSL3ilMA9dacW3qtAXt5cdnNwE7cQnH6wkRsx63UovN4hdZaS1m7r5u2AtZ4F2rFJGZpmz+m18TH7vRmn7DZ19SdHtVeJj35JippTbR0z/RK3PdKThqsc82X0Q9yO/XlMnm7WaXsePUlmPeRTjAYKLivT/9guwruq666imOPPZYRI0bQ0dHBI488wsKFC1mwYAF1dXWce+65XHLJJQwcOJDa2louuOACJk+enOWYNm7cOG644QZOPPFEJEni4osv5rrrrmPMmDGMGjWKH//4xzQ1NXHCCScUPb4aPYE2YCIi0pBZy0YStIsNJKQoAAY6MmrW+rYdSZIIKiVIVSFIrN+AUa0iJwxqjQHEvliHupuCpEhomoquGySSKQIBFRl3s3shTho4y3V7PmGQ74XnJhgqgZvX7tzGFua0NJdcBa1QDeS5jS2ZyUGpnr7WsYoxl9vblVKgIxe5BKl9fd2tsIdbPwcuGVOW85V9zbySAnR75QnIXu/Obc2ZPHQlcwtMegoJa7d9ClFTH2Ew22eN26fybFfBvWHDBs4880zWrl1LXV0de++9NwsWLOBrX/saAHPnzkWWZaZPn04ikWDq1Kn85je/yepj+fLltLW1Zf6+/PLLiUajnHfeebS2tnLwwQfzwgsv5HWtz0UiPJL2ZJABYYGiWOvXgoSIYUpG2pROCo3i+y5Eqq2Djf/+T3r9XNNIvBEl1dlJZNddkLCZuGWJZDKFpqkoslyW2dyJpVkVo9n2pUOSPVmMpSWWU87RDftaItjqMRfpJW5RasyzPSUqUBGP+0L3xjpXL6bwTLhbmeOqdDSBdW8qOSGwa8uTh6709FvI9YxMaMldcCbfunmxYWa9lrokCJeiQPjskOxwcdw7AlYcd0tLCzU11QysqyYQSM9xUnqKTcZqzGAMBNQwiBoGVVRgQrpCWHztBhAmiQ9XodbVou40iFDTMCS551hWIZR4IkkoGED2WIHMjhAir7k8l7Aq1fu8kl7r9nVxZ2rSXGvLbp7bzrX2XOMrRaMrRwu0v7C9rnmXi1Pjdhu7F0/5fOVnAU/e6dsa57NRqfGVE4NfiaWh7VXW06c4/LKeFUII0I10KU+BQJZkFKFlkqrpJPOmNy0VOaBRNXInqkbuTFXDEOQtMUKNQ7OENqQ1b1mWUWQZ0yx9HA+vvjXnd9bapxN7ydBiqOS6tL0vLznVcx3f3rbS6+a5ssXlwxJudu97p4d9X5HPf8G+vVQnNXte/XIysOVqW+w1sqIIoCdlqlvUA5Tmib5gTXYp3GLbWvSlP4dP/2KHc07bkRCyjggkiEspVCJohNNCUgTQu+c8AhP6QHBnkEDdeTDJD1dhdMZQ6yLdx80+pqIopFI6pmm6eornwzDNXhMCJ9Y6r13LKlZzdu7vpX0xVc+sNW+ARXlS2pcjLKyqYcWYZHM5eeXD2adlLp3b2NIna8O5KGQt8KJ558Me526xLeO/rWfQq7ne69gqkUGtWLZ37Hwu1sVaaU1Gt9nx6gMRhoXrt9nxtge+4M6DqO5E1MaJSQIZnTqRrvoSkqoImQFUWUNBRepjw4VUG0FSVYzN7VmCu4s2EIIwtSiKgiSlb6dhim6PcxVJzh+CJoTA0A0UDyb2qU0TWbymZ03SEiJecQppu8aeS4B7CaWyrwFmzJzdQtzZby5vZq8TELsQLkZgLWvWYU3lXq6F+ijnOF6FTrk5y+2pcK1kKNsiT72dSqX1tZNLW69E37mw14jfkYT3ulgrM/55K0lz21kLArLKE4dc8qUW3r6pPA9hNYQqaUjI6OgIqVublQMERISgVIUqBSq+vu1ECqgoA2pIbtxMTHSkY8gxSNBJp7Ql7eEupbVuRVHQVAVVlUkkU5iGSS4vBiEEumFwWuMcThl6UZ+eA7ibMO3FU/KVBC2UeMV6WdqTTixyZK+yO3uVgz2bWLE4s8DZyXd+lagKVqxQ9Cp8yr2mpQrrXOMrtIRTqcmBNelwfoppn2t7Ofe7bf6YbV60Jxetyeg2FdoASVMvSsN/9dVX+frXv05TUxOSJPH0009nfd/Z2cns2bMZPnw44XCYCRMmcM899xTs9/HHH2fcuHGEQiH22msv5s+fX+yp5MQX3HmokRpoYGcGsFPaAa37csllricXjQTy4Hr0jZvoMloxRAqEoFYMoYHhBIlk7y5JKIpCQNNIplIY3Wv0dtLVznROGeJdYDvNps7sVfZZv3ObF7O49eIrJLydLyY71jEOXJJOP1lMuUy3jFT5xlrKC9ZOPiGea9vUptJrSXuZaHgtXWkfT7E4x2/V0IbiJ0OlXH/7Uk+xlGICd8vVb/2WnFn6nGVi7eS777men+0ptPsL0WiUiRMnctdd7gWcLrnkEl544QUeeugh3n//fS6++GJmz57NM888k7PPf//735x22mmce+65vPXWW5xwwgmccMIJvPvuuxUZsy+486BIKqoUICxVE5TCmVhtWZIwTTPj0W19+gpJkpAbapE6U+iJLjqkzSSkKKoUQCPUba53d1oLBjRSuo6udzvYCTBNQSJZmWo9bi9O+8u3EuZaZ99256ZcOHOhO/uzylPm0pi81D93i9nN96LMl6bT7XxyCZhyTaETWtTMOPNNWPqqhKjzvOY2tmSdo1dhUwmhVIzgz1UFLB/2EEa7QLa22Z3WrKWXXPc3XwpVq5313FfiN/i/wrHHHst1113HiSee6Pr9v//9b2bOnMnhhx/OLrvswnnnncfEiRP5z3/+k7PP22+/nWOOOYbLLruM8ePH8/Of/5x9992XX//61xUZsy+4S0CWpUwe83giRWdXos9r3cp1ESRFQ+4wkZE9ratLEkiSTDAYwOhOk2qaJolkCkWR0TQ1Uya00EvQzUnJqUHnM5kWm4PbOmY+co3ZiyZUyLxrjxFfsGZpTiFuH2uhHNmFYs5ztXULdysGp3Ce29iSsUZMbZrIgUtm9NLypjZNLHr9t1hBumj9qMw52a9NMXnGy1lLtmqxFyI79Siej2t5k1vkWr5IJy3ynqCn0HW2+vEywfUpzEEHHcQzzzzD6tWrEULwj3/8gw8//JCjjz46Z5tFixZlVakEmDp1KosWLarImHzntBIxTcGWtk4MQyBLEA5qlBBC7Rk5HECur6GqLURw2E4owluFMEkCCYlgQCOZ1OmKxQmHgihKdrIW+xqy88eez7PYmZjELV61lDhmL45Phao/5WpvaTa5HHnsbe1Ob7kc8YrVwvqKXGk3cycDUZnQAsuac6fq9Er6Hnvf337tC2WwczvWgUsq44RVyMGynFwFXp75Ys8hU1p1vntGPWcug8wENX4w7Txf1LF80tx5552cd955DB8+HFVVkWWZ++67j0MPPTRnm3Xr1hVdpbIYfI27BNJryDK6biBJEAqVlvjEK8I0iX76OUZIwmiPklq1ieS6TUVFoaVN5+lUqU6hbWHN0EsxQdo1J69CutBxismJXQqFBL+94pKbZuZcQyw03lzx8F7xomm5OUzlYlmznqk2VQn6ej3VHm/tNQucE+c9K6RxF1Nop5Ix1/b75rbmvXjSEwV9OOqmrdjhEtz0R+68804WL17MM888Q0tLC7fccguzZs3i73//+3Ybk69xl4iqKAQ1lUgklKnSVQppE7sAScqZ7zy+Zh2b33gTJRBCrapC//xTasfsRnDYkKKOo+sGwaDWS2hb5nIrb3k+7TsfpXjCeqmbXCjtql1geRmH13Oya2NumpmV+ctZmzmfhaGcF3qhcRdj2XBzssqkMS3SM9rav5j61sVqmpYlp9zCMs7jzs0RNljMuOzr1OVkSHPi1RFxe1t6vszEYjF+9KMf8dRTT3HccccBsPfee7NkyRJuvvnmXuZwi2HDhrF+fXYyiXyVLYvF17hLRFUVwuFAJv652JAwgcAUBjoJOtiCKXIXAAgMHMCgA/ZjwF57ECRAzS6jCA71LrQBdN1ALpDL3BLg0KN9W0LTC5aWWoy3tRcNf2pT4ZrT+by856xtznzA+4vOqW3b+88SWB6rPVlsi+xnhXATLNZ6d7H9lCs4vK41l7Lungu75u10jisG53js6/blUmkLRlt7e0X7+18glUqRSqV6WVQVRcE0zZztJk+ezEsvvZS17cUXX8xZ2bJYtv8bpJ8gRDpHWsoQaEraNSwY0EgkU8hyoKSymlGplShbQECICDKKq9atVIWJ7LoLZiyB+fpHhHYbhTakwfu482jbTuzC+6SBs7pfzN6zdZWibRSjeefKR+7mEd3zUrW9XB3lRkuhkKDyIsyKXTstdE29rqm6UWgSUko/xVKoNGmxNeILkbGQYFkbiksmVKjfYrALaOdEthJ5ByxUw68O5kZnZycfffRR5u+VK1eyZMkSBg4cyIgRIzjssMO47LLLCIfDjBw5kldeeYU//OEP3HprT5roM888k5122okbbrgBgIsuuojDDjuMW265heOOO47HHnuMN998k3vvvbciY/Y1bo+YGKyPR3lrc4LVUR1BOp7bCg0rBQUVAwMheVisltKJWKQBNeib23LuZoWmGYaZrtmdTJHsLv1ZrFXALsTdkpd4NeNVcp3N+ZKDbA3WWpfO94IvdjyWKdSuFRbSEPMJb3vSmWIoRwNzi3/PdR3KSYhSrpZYqdjjYjVoez55e+6BvsS+HGW3cFnr15nKcGX8fuy+DrWdmysy7mKoD0QIyNtWPwzIKvWBSOEdu3nzzTfZZ5992GeffYB03PY+++zDT37yEwAee+wx9t9/f8444wwmTJjAL3/5S37xi19w/vnnZ/pYtWoVa9euzfx90EEH8cgjj3DvvfcyceJEnnjiCZ5++mn23HPPipyjr3F7QCBISjGSyhYMBrAhJjEsrBJQQJJlzO746GLkooSUSZeqEkhnYMubnBQkRUEbPhh9zSaEKUDq0aiFEAhTZMYiS+mJhaapyFJ5tbqdXtaWNpvPI7vY/NWLJz0Ba3LXIs44WrkkH7Kb0b0IxFInE1a607mNLduk4IOzSleu6+lVE3W2dwtzsvbzmjrTOTmxynSWGkkwuWVlpia4fcyV1LbdWLR+FHNIa96wNGOZqWTJUegtrO3ksxoVqgvvBWlLngT+fcSwcD1PHHLJDp2r/PDDD88bzjts2DDuv//+vH0sXLiw17ZvfetbfOtb3/I8jmLwy3q6YJX1/OKzj6itrUnnBRdtxOnE0KvQzDrqAmlt2zBMUrpOMFC8udxAJyq2ppO8UOMpNju1ZjPxf7+HenQzUlADuj3GJQlJljL/traXiyW8LXI5NXnxqHYTBqW8iJyhZm7b3ahE4Ydi+shVctQL1rWqpLOTnUoXwcj3XBRDIQHtVYBXStDnctjLVzY217ZSj2XHrexooTK1Fn9ouYimfQ/xy3ruwHi9jr7gdsFNcAOY6JjCQCWYEYrpLGTpWtilOKhZIV3ppoXbm9E40Wf+TfDwSWjDBvR5nnSn4M4VK+yVYmN2veI1IYZz32JfsKXWa7aObTl/FVNlqi/qcFdScNsFtFOgOZdXyvUKt1Po3lVaeEPfVfoqZQJa7FjmrbyB4buM8QX3Doxfj7uCSN3/KWhoUihLWKazk6U175L6zZixvQlgKRRAro1grtvisUV52Ne5IVvgWEIoV/pQN9yEtrUu7WzjJRbZ2s8LbuFixcatOwVBsR7qxWSzsscs92WMtJUju9S2dpypNq37Z3n1e/Hg9joeL9exEuvUuSw85WLPU27hxbu+2OiIDH08yffZdpQsuD/++GOuvvpqTjvtNDZs2ADA888/z3vvvVexwfUHJCmd1CSl632e9hQAWULZaRDmms3pde7tgD1FY75UjXaBnotcjmRuQtxtn2KSmjhjvYsVjPYEIHa8OlQVm2HNngAmX7rMUnBeT3uhj3L7chuT5ZBn3W+3a2Dlh7eeqXInK5VMMGOfRNoLgpSC9Ry5mbe9WAhKWX7xY72/XJQkuF955RX22msvXn/9dZ588kk6OzsBWLp0KT/96U8rOsD+gGwzm/c1EhLqsAGY7VFEojKFQgqRT+t2wxIoTu3c/vKzCyV7u1Jiie3OTF5wy4Zmrzzmpb19QmL3APZ6fC9FTLzkNi9HwPVVEREvOH0iLLN2odzebhQq92r3GC/Uppj7by0ZuVXFy9Vv2/wxWffVskSU4sjnlUpHdvhsf0oS3FdeeSXXXXcdL774IoFAILP9yCOPZPHixRUbXP8hXYnLLELjNkwD3SwhrlICKRzEFCZmPFl8+21AucUNcrXN9/Ip5XhOwZhv3G4akjUma6JRjBbmRbPy+rK1rykXgz3jVyl+B+VqcXZrSV96jFvn6VwicaPY52hq00TXilzOe2Ev/OEcW7FpVX0h7FOS4H7nnXdcS6ANGTKETZs2lT2o/oYkpSuGFRPPLeVJcZoPkdIxkymoCiJ0HSMWh21gon9yy12uHzvlrBV7dRLzsubtBUvb9Gpmt/Z301LdSih6uRaFXtjFrs8WYzWw+i/V0SmXACnW2c9uNvd6vs5z9Hrelcjylmsc9qWXCS1q3tA9+3i8YoVhlnKffL58lCS46+vrs4LNLd566y122mmnsgfVH5ElGWF6r8stS3ImXapXzHiCTYvfYOu775EaoNHx0cdsffMtRAmOcZXCmSbViT1uNd+LtZhSjlD8S88paCyh6VXTLLS/fSKwYE3+8p59iZvVwJ58xboWdgtCKRMhext7fe9iTff2jG/FaN3Oc7RPmAod3xqvl3E697GbvJ3X2poY2NfV7Q5oTquNV6FqPbvFWiVKnZT57PiU5HJ56qmncsUVV/D4448jdWcOe+2117j00ks588wzKz3GfoEsS0WZyksh1dpOYvNWZEnGrAoRqKpD1pR0tpXtyJNb7uoVNga9ta9iEnsU6strP+kXbW/t0K75eDU/5gtlW9asdyce6anhXe4Ls1Aa0HzY47+t625fh6+k9rlo/ShXq4OXMZZiIvdi5s5XshV06ugOaXRJ+uPs096X9f/JQ1cy1yYYc+XJz7W8UmicFuXc/x2FLclNRPWObXa8iFrDwMCgbXa87UFJd/f6669n1qxZ7LzzzhiGwYQJEzAMg9NPP52rr7660mPsN0gSmEKg9FHYRXDoIBr225/4f94jOXYIIhKmvmYnpL4sBO4BIQQPr7kVTVM5efCFQM8LqVRB7SSXhlUIq4KXk1K0TS/auTPLXDnCu5z8407NbmoTWUIqV9a0YrDO08qWBt7ve18LFq/576HwfcqVD9/exi1kzBmbXexEpZznZ25jS5/E/xfLluQmfrHsEnSxbRxpAVRJ4/+bcOuXWniX9MYPBALcd999fPzxxzz33HM89NBDfPDBBzz44IMoilLpMW43ignvSmcskysSomXlG9dNHUOYmXEIINHZhTlsAMGGBoI19UhllBStBFa5UEmSegltN8otwpBvm5Pt5chjedBb3sx2D3K7wHLLH26nVIct67ytc3f+3+q7WO99J9bygL3fXE5Ydtw8yHNRTkiYV7O9F+uDc23aS24B535u5+tlYlEq21toA0T1jm0qtAF0kSpKw7/hhhvYf//9qampYciQIZxwwgksX748a594PM6sWbNoaGigurqa6dOn9yrb6UQIwU9+8hMaGxsJh8McddRRrFhRmXtSlqo2YsQIpk2bxsknn8yYMX2XIGJ7EU8kXIS3sH2yURS55IIjFqYw6dK7WBdbyycdH9OebO05smEif7SGyMAB1EWGENHqS3JwKxcrP7ppmhiGiW4YaKqaWe/OZTZ9ZM2tvfr6/Sc3uB6jkFDbkbHO2f6ittY9LU3YWgcv1wPfSTGTlXIrT1n1sYs1ubsJMGtyY18PhvKFT7EOe06ssVilR71kNXOu/xcjgCthifAd0orjlVdeYdasWSxevJgXX3yRVCrF0UcfTTTak199zpw5PPvsszz++OO88sorrFmzhpNOOilvvzfddBN33HEH99xzD6+//jqRSISpU6cSj8fLHrPnp+SSSy7x3Km93Fl/RgiIxROEwwFAgGSm/48EQu0lMmVZIqWnNeRSU5HG9BifdHxMwogTUkKElHDmOz2lo4cChIcMSAvsbSSzRUZIC0xh9sxZuo+v6zrxeDxv9ri7P/gZ7R2d3Lvi55w35sdZ3z34+a+QZSuLnMxpjXMKvrDz5YmGwgKsnDVeL8LRPi5r/dvt+MWsd1r7QG+BZqVGndpUuXMoNI6pTVZRjvKxynY6Tc5Tm/KXk/Vyzbxo3vb7YQlPa5KVtiwUthC4jbdYq0k5YXFOZzQ/dMwbL7zwQtbf8+bNY8iQIbS0tHDooYfS1tbG7373Ox555BGOPPJIAO6//37Gjx/P4sWLOfDAA3v1KYTgtttu4+qrr+ab3/wmAH/4wx8YOnQoTz/9NKeeempZY/YsuN96662sv//73/+i6zpjx44F4MMPP0RRFJqbt19Sh0oTDgURQtCViBKusuu2ChjpSydsmrfU7SRWjuAWmOhmCoGgWqtGk1VSZhIFGT0Wx2wcgFQdLusYRY2n2xRuGCaqqqDKPeVBU6kUW7e2oSgy4XAYJazw2PrbuhPSSOkMi5JE0kgRUnvi/f+8+deARCqVNqFpWnbJ0VzObm7kKu6Q1gQLF+fwIhysfi0nNy8C3+orX9/OsXnRLu0aZD7P6kJ9uU0cisFt4lBuHvJSHdXcSr267WcXzE6HOui5H5YloWdb73G5XeNyhWQpznr2SYaXbIM+hWlrS5dNHjhwIAAtLS2kUimOOuqozD7jxo1jxIgRLFq0yFVwr1y5knXr1mW1qaur4ytf+QqLFi3adoL7H//4R+bft956KzU1NTzwwAMMGDAAgK1bt3L22WdzyCGHlDWgHQlJkqgKh4jGYsS6UoSrlLQwEpbmTVoLl1Igpc3nsgqGoSCX6DCmSCqKrGAaJjVaDV2pdmKtm5A/70ALRBCt7XTEOgjv3ERoyOA+1botTVs3DILBQCZDnBCCWDxBa2sbdbU1VFWFc04ihBAZoe3cR1VVkskkqZTeS3g7sQvzeZ/9imBA47TGi3vtl6XprPF+rl5jyC0BXozQK+QoVUxflpCyO4S5Hc8r9uInxbSzzsc+kZnb2JJxgKtsxaylectreo02sCZzAHSP1Q1LWHs5pluVsFKcMkv1sLfa2Mfqh4GVjmmaXHzxxUyZMiVTO3vdunUEAgHq6+uz9h06dCjr1q1z7cfaPnToUM9tiqEk6XLLLbdwww03ZIQ2wIABA7juuuu45ZZbyh7UjoQkSUTCYTA04jGzO9eJAMlIa9tyEiQdJAMkE1kx0ubkEgnIAYaFG9kpMpwarRYMA33ZFyRXb0QkUqjBAEZXF2Y8UbFzdGI5x5mmSTKlE9C0zFq6EIJotIvW1jYGDqjPK7SBTBEVt31kWSIYDCCEIJnKzvVurZdbiV6EEDy27nbmfXYT4VCAQEDtlQDGSTEFGwrhxenKS3snlqZaTD/2vkrNpmWlly00vlxtnfHLFta52DVhp4XAq7NhKcl28mUvc6YadR6j3ON52Z6LSmWOczom7khhYf2BWbNm8e677/LYY49t76HkpSTB3d7ezsaNG3tt37hxIx0d2y5eb1uR1rzDmLpKPGakdW2p+4fWveRtISsSRimpTK32kszg0BCGhoehyhopkUIdvTM1g5oIyio1Y0cTGTWSUNOwimnbljk8ldJJJFMkkiniiSSplEEwoHVbD9IOaW3tHXRGowwe1ECwhFKmTiRJIhBITwwSyRSmKTKJ4CzBLIQgHk+SSCaJVIVR1R7t3C68ndncrHVTN7K0xBIpZo3czUGqHPOypdWWmknObsovta0dy0PdLde4c7Lh1t7N9G5hj5P2mmXNXn7WLS+8Pd2rdYxyqFTYo1fczt/teezLVLJfNmbPns1zzz3HP/7xD4YPH57ZPmzYMJLJJK2trVn7r1+/nmHDhrn2ZW13ep7na1MMJQnuE088kbPPPpsnn3ySL774gi+++II///nPnHvuuQU97forluZt6hrxLsDUSEtOJcvBPC1PzKJCyZzHyWioAuRNCUIffEGwdQNabQS1rprwzk3IFQwDSyRTGccyVVEIaCqhYKBbMMtIUlp4btmylWQyyeBBDaiqUrE19nSFNQVFkdPCW5hpv30hSOkG0a4YQggiVWFkWe5VndApsO3/dgpmS3ha4VpecNMGiw2lsptQLcpZE65kdja7YCzVA3vxpCdcr6eXAhxu+7qt11rbrEId+SZOddNWZK3/2h3NKm1CroTQtiYXXorPWF7uzm25JnH9MTJjWyKEYPbs2Tz11FO8/PLLjBo1Kuv75uZmNE3jpZdeymxbvnw5q1atYvLkya59jho1imHDhmW1aW9v5/XXX8/ZphhKevvfc889XHrppZx++ukZByNVVTn33HP51a9+VfagdkwESFBVpdHVFSMeNwgFFRBSt7S2S28T0xQoSomCTaTXWqKfb0B6cxVasp1QbQLqw4gKO6RZJvFwKOgqiC1tfMvWVhRFYVDDQCRZrvjSuiRJqEp6MpBI6Mgy6HrachEMBEqeKORzAFu0fhR014d2c1ZytnFm0EpnSituPbGSwrYvKDZlKTgcpHC/3l4d7wrta63F26+9G7mTpVReAy3nnuaLabeve1uZ8KD3vS8UclbKPf1fYtasWTzyyCP85S9/oaamJrMGXVdXRzgcpq6ujnPPPZdLLrmEgQMHUltbywUXXMDkyZOzHNPGjRvHDTfcwIknnogkSVx88cVcd911jBkzhlGjRvHjH/+YpqYmTjjhhLLHXJLgrqqq4je/+Q2/+tWv+PjjjwHYbbfdiEQiZQ9ox0R0r2enkCSdcLVMtCOOoitoge7vu9e+DYN02JRsoij5DRqWVp4RSN19mNE48aWfoH+2Gn38YJLDdyb82UrkcKhyZ9R9rGQylTNpjmmaRLu66OiIUlMdobo60mee7EKkP4ZhkkqlMAyDSFWYQCC/01ouLGe2fE4/Vg3qZc3pFJiFyOUZbmmrXh28rAmAZcovNpuW/dil4BZSZncy8+qpbVGsI2A55Bpzrm392UHLei4KTQ7dJkxO6qatgE8rOjxPRNQaVEnb5pnTImqN5/3vvvtuAA4//PCs7ffffz9nnXUWAHPnzkWWZaZPn04ikWDq1Kn85je/ydp/+fLlGY90gMsvv5xoNMp5551Ha2srBx98MC+88AKhUPnvcUmUatP9EtPe3k5dXR1ffPYRNbXVacczOQUYgAxCxjB1ujpNgsEASkDH0E1MQ0ZGAyEhgGBAQ5KkjIA2hcAwDQzTIGXomJJBdSCCKqsYsTiJ9ZvAMNE3bEFfswlz0hC27lRDIhli9OrPCI+YgIjUVuQcTZEW2rIso6lpwW0JSCEEqVSK1rZ2JEmivq42a125kliOcMmkTkrXUWSZQFAjlTLQVAVVLT0Tn+WFns95qxQP3Fz92QVGX6WbrET8dbHe7V5NwX01Ni/5vO1Yyxh9teZcqge4Wz9QeB26Us/vvE9/yfCRo2lra6O2tjLvEYt4PM7KlSsZNWpUL8Hk5yr3Tr7raKckjfuII47I+xJ/+eWXPfVzww038OSTT/LBBx8QDoc56KCDuPHGGzOx4QAff/wxl156Kf/6179IJBIcc8wx3Hnnnb3c7O10dHTw4x//mKeeeooNGzawzz77cPvtt7P//vt7P0k7UrfQFgoIDYSMIkNVtU48ppNMQiolqAppBILp0Kd4IkkypYPloY1gU2wjUSOKTgpDGGgiwMi6kURk2PLmEvRNWwkNGEhK0mFICCkkMyhYhRYIEgpGIBEHm+A2hCAdMW0bap77Yk0gDMMkpeuoitLLBJ0O9YqnQ73qaqkK5/caLxUh0lnikokUKV1HU1WqwqGMI1wKA7P72pV7fC8vvVyJTYrBEtYL1izNG65VClaRkEqnwWybPyZdMKMMJ71KUaqHtl3Lnto00ZP1ZEfALfbajXzPb3+wKAwMDOq3gnRHpSTBPWnSpKy/U6kUS5Ys4d1332XmzJme+7FSze2///7ous6PfvQjjj76aJYtW0YkEiEajXL00UczceLEzGTgxz/+MV//+tdZvHhxzljp7373u7z77rs8+OCDNDU18dBDD3HUUUexbNmy0sqOmoG01i3UnrAoM4giKUTC6XVu0xREu2IoqoKqpJ27TLPHFC4wMZIpTHSCskZQriYoh0GX0LdsQW1Poo4ejhigIskG5qYo8qAINdJAFElFrolBZxtiwGCQJEwM4nRhkMKUEshCpZqBSKQ11IyW311q1BQCYaYzn8mynLEGOIV2tCtGe3sHDQ0D02FgfbCmbhgmyVTaIU7TVKoj4ayxCCERCmokknp3OFrx2r49gUsuDenAJTO6zeW651hgO27Vz6BvMlfZ13Ur+bJ2Vgzra+yRApD2Y9ANkzOa5uRtl8t07zah2RYe3qVo3ZUel5XRzed/j4qayn/2s5/R2dnJzTffXFL7jRs3MmTIEF555RUOPfRQ/va3v3HssceydevWjGmnra2NAQMG8Le//S0rK41FLBajpqaGv/zlLxx33HGZ7c3NzRx77LFcd911BcdhN5XX1tZksqP1uKCZ3QlXurcKGYSEruvE4gmqq6u6PZ9FJjELQiFlpJAlCZHQkU2BmUyRWLsV8dEqkqNrEGMbkBWFFHFMDCRkBtBEgDByrAs+XY45Zi8kVSNFnM2sxiAJgIxKHYMJU4dE2jyfSKbXlWRZRu4WjHJ3djenIBRC0NEZJRqNMqhhYMVN45aTWyKZQghBMKAVTLrSE9+dzgMvd4+/mHHlW+e2a5uVMJXnwukYVOrLu9hELV4nH3bhXaqJ34vJ1i3u3nKO/FZ3gRovOK0E/UHrdKOcSVgpE4ftZSr38U6fmspz8e1vf5sDDjigZMHtTDWXSCSQJIlgMJjZJxRKm1P/9a9/uQpuXdcxDKPXSYfDYf71r3+5HjeRSJBI9CQ0aW9vz/peQup2TzNB1rtjuG2C2wwAajolqKoQT8QIRyTAltvcDBBQAqRa29n8nxZqdh5BbN0GJAmMiXXoO4eok2sJU0NCdCEwUSQNjWBa7gdCyJKMFOtEVNejSgGqqMMgiUYAVVZQJRlMAyHSWrdpCsKh/LHW1hpze0cH8XiCQYMaMt7d5WI5wKV0g0QimYnZ1jx6iEuSREBT0XWTVEpHgu6wMe/js4TFSbinUO2po115s2OPMKtcX8XgJY1r3bQVWeU+3czMXpcR8qVRzZUsJz2ZlHl84518a/AFefu3xmJNNPpqrd/Lfvmel77U+L2ui/t8ualoIedFixaVPNtySzV34IEHEolEuOKKK+jq6iIajXLppZdiGAZr16517aempobJkyfz85//nDVr1mAYBg899BCLFi3K2eaGG26grq4u89l5550de6Q9ylHiPelNM4vLVvY0A0mCUCjYLWjS+cbT+3Xvg0F8zXqMrR0YXXFqxo5GGzYIsyGIkE1MTCQhE6SaoFmDnAqQiBtEu+LEkjrxmgHoaz4kabRjmoKIGEA9w4jQQFDUoKCClM7ulkzqOb3aLS0nHk+wtbWN9Rs2YpoiHZ9dAaGd7l+QTCbpjMZIpXTCoSCRqpBnoW0hSRKqKhMOpePKk0mj5Bj5QlQ6y1QxGdHykS9G104xmr21r9uEwK2ffCFF9nCkYoS2hd0SlGsczslDX2jZlQqZ8iK0S33WvJZD9flyU5LgPumkk7I+J554IgceeCBnn302/+///b+SBuKWam7w4ME8/vjjPPvss1RXV1NXV0drayv77rtv3lzgDz74IEIIdtppJ4LBIHfccQennXZazjZXXXUVbW1tmc/nn3/eeyfR3dZV5vRslCWJqlCYWJfoSR0qTAQmpoijtSYZMHAnIruPItg4iKpdR6IodZBSSKTiRJOdRBOd6LqeyQkeS6TQAhrKkJ0w1RoCX3xBLBHFMM10HLkAYSoIPYiRUkgkUsiy1GttOG0+T9LW3s7GjZvp6OhE0zSGDB7EgPq6ojRZN0R3/HkikSLaFcMwTarCIarCoYwTXCn99ySlSV/qUsPDnALE/oKds7bZs4NWpQRypSmUncy5TmzXXJ0C3K2saiGBlMsq4KVgjCRJPL7xzqxtzvMpNb2rRTHn4qWPYvbLl361r/HTnn75KOmO1tbWZr08ZVlm7NixXHvttRx99NFF92elmnv11VezUs0BHH300Xz88cds2rQJVVWpr69n2LBh7Lrrrjn722233XjllVeIRqO0t7fT2NjIKaeckrNNMBjMMsf3Rur2KFeBlG2xW0pvM1XSc6D0NVEUhYAaJNaVQKsy6RKdRKRqxCdbSa1aR/jwvVGqwyBJKJpGRKkhaXSRkKIk1E6q5FrCBEkQRa/qJGTUIUwDWVEwhu1CcPMXVK/9go4hw+kwQVJlFE0iYKZThwY0NbMWnHYGM+jqihHrrgMbCoUYOLC+ouvYppmeFOi6gZrxEC9NUOdFWCZ4K0tdZSjGZL6sWfe036L1o5haRmY0Cy+Cymt5S+idzCPXuXgVbplCFznGWUjj9kIlljLsVgOvhUDyfV8ocU8+vFSZK2YdO9++1vO6JuFH/n5ZKElwz5s3ryIHF0JwwQUX8NRTT7Fw4cJeqebsDBqUDid4+eWX2bBhA9/4xjcK9h+JRIhEImzdupUFCxZw0003lTzWdFEwDRQzXR3MJrAtOS7oDs+SJELBIJ1Rg65EFzGtCyORIvj2Z6gTR8CwECkzhtAVDEOgGwa6mSJlptJRZ2aChLGVlEiik8KUu4gRxzQFhmkSqxlE3brP2LLpM+JDB6KFwwQDMoNTQTTTWt82icXjxLo131AoRH19HVq3sK6UQE2nJdWJx5MENI1IVSiTJrUv0AIqyWQKSZYyZnev52Kagnmf3kS4KtS9JNBbGyy23GW+l78945qXUC7ruPbje13b9hpnbcc5Hnt1K68UEi7FCG1TmDy67jYCmsb0huyogEp651eC9H1q4cD1vd9ZXiYEXrTgYhL0eEnC4vPloSTBveuuu/LGG2/Q0NCQtd0yY3/yySee+imUag56CpYPHjyYRYsWcdFFFzFnzpysWO+vfvWrnHjiicyePRuABQsWIIRg7NixfPTRR1x22WWMGzeOs88+u5TT7aZbOBjBzN89AlvHJO0tbeoapmFimiaGYbBlQztmKInemUKJG3RVq+jrW1EU0b22p6IoMtVSHWpARlM1FEIoUgBZUbIs84Zh0NEZxTAM4rJKlQ56SKMajZpkELU7FCwWj9Ha2kYwGKKmpjrLmlBJDdg0BfF4AsM0iVSFkGWlzwQ29KRFVRUZwzBJJHVkWUJVlbTjXp5jpwuVJNA0FVXp2TfjvGYT4HPWNjOhJb8DkBWK4zWVp5eXqptwqpTAyuf1feCSGSXFPlfSBCsEmIbottL03JerV17kun8lHMCcWne+2Hu3kp1z1janlxvWFH+fvEYyfBkEsjDWgLl12x1QHoCkVMAjdAempF/ep59+imH0roCVSCRYvXq15368pJpbvnw5V111FVu2bGGXXXbh//v//j/mzMmO+bRM6RZtbW1cddVVfPHFFwwcOJDp06fzi1/8Ak3TPI8NINm2loTpnvEnZcokU0l0I4HAAEkGWUaWgshSAFmWkGWF+mANwqwhpMcRgU1UDRpAwpSpqrYccgRdUUE8LgiGZYJBGYSCqYNpmFmZw0wJhCRTW1OFEatFi3dhdiTQwlUElXTMdSwR55P1K2kcNIyBkfo+y3am6wbxRBJNVQmH3fOc9wXpw0goSrooiWGYJJM6cnehklzavm6k64pXR6pcx2oX4JamU6kMWRZeNfm+8273kBYzD3/e8msgPWW1JjqVuz5ph0nnb/S6Ube7rpE7x1qqt7UleC1yXSs357xF60dx4PpRWeF0xVCq+d85abHOvVB/2+o3akcYaxAbj4busNVtQwAG/82z8PaSCMxCCMG0adN44YUXeOqpp/LmHRdC8NOf/pT77ruP1tZWpkyZwt13382YMeU7QRYluJ955pnMvxcsWEBdXV3mb8MweOmll9hll1089+fFO/iXv/wlv/zlL/Pu8+mnn2b9ffLJJ3PyySd7HkcupFQnQYKkUgkQoBs6VZFqEJCKbiYSCiOrIEsgSyaSZCJJBkgJMFPpIDIZDFMgKYI4OsHOtQRUkKMBhBZGaCEUQNJ1jK503LcsVDZtihGPJ6murmbdhi1URSIkkgk2b97EwNoa1q1dz6D6AUSCtXz8ySeoskwimQRZ0LTbEGrC1X2QPAWEMInFk3TF4tTXVle0Slgx9AhwOUuAp73Qlaz1dSEEsViCcCjo6r3shr24Q6WEkxdNvi8otJ7qZb33z1vnghTvDn1UeHLLXVy98qJepnC7kC3OTG4lK+rtQOpmFXFirePatd98ZVOd8etOcrVdPOmJrJSqTu/8dBtv6+del06cOPu1+2fkYs7aZi5vyPl132FuZdsKbdLHM7eCR8FdKBGYndtuu83z++6mm27ijjvu4IEHHsgUGZk6dSrLli0rO9a9KMFtzS4kSeqVIU3TNHbZZRduueWWsga0I/HZJx8isxufrHifnXYeRVvrZkaP3YtAMIgarifQsEvvRCZZ/xbpaDFAhGKYqQ0Y+iCU+iowOpATndC1mSoEYUVBTwnim9LR38moYPPWKG2trXTF46zbsInGYUNJJk02tnZRM3AwejLOF6u+oL2jg0h1iJqBtQTkII3VTSh5vO5LIZ2/XCeeSKFpCqHu1K7bQ2jbsY6vqj0aeCqVLcDj8WR3jH3+x10IwZ83/xpJytYo3YS3mzCwCptY/4ZsYWOfDOTqIx+lTCIsAVSIQkJGEkp3ZEXPc7WsWYct2fvZr4GFfYKe63kxjXRRnnyPkxcBPrVpYpbz3dzGlhwFUHI7/1nte7dNt7Gb1OumreDA+T0lXi0N/sAlvUPZLLz4LUxoUXNmRisl3/yyZn27FBnpD7zwwgtZf8+bN48hQ4bQ0tLCoYcemtm+ZMkSbrnlFt58800aGxvz9imE4LbbbuPqq6/mm9/8JgB/+MMfGDp0KE8//TSnnnpqWWMuSnCbZrpm86hRo3jjjTcyDmNfVmpr6ol1dWEYOlu3bESWFWS5mKIXUk+kWFUIpWkQifdWoTePJFwfQY3UAXp3grUgZsqgfWsbiUQUtSrIoOAg6urrSCaThMMhEvEEO++8MwKBLMuoG76gK1SDCKbXl9s7OkklU2zcuJXamghVVaGyBatpmiRTekYYVoWDKIpCnAS6YaBVsC54uVjC2i7ArfHX1lTlFQpgFV7RUVWFxzfeSTKZ4oydLskIb0i/AN20TGub8zs3YXPtyLkkYilSH3QSDJoomsbJw/+/gudXjLOS9XJPv8TT1btKNc3m0pyL2Z5MxIklBKGQRjDQO0zRSn/rdTxuwts6N0sDdWJ5gUOP5uwmAK32Tq3cHjJoTYjSf2cXl8n0Pz93FrpC9yHfGrjTO97eZymJenyycSYCA+jq6uL000/nrrvuYtiwYQX7WLlyJevWrctKElZXV8dXvvIVFi1atG0Ft31Q/wsMGrYT9XW1DG0cTiqVxDQNJFnCNMyi+5IkGW2PXYi9+CbG55uIy/VE6tNmGElWMIAUAjAIBMLpjxYiHApSHQkjgHA4lOWsppgpQgEZs74OwzDTmqWidmuaac3IMNPZ2xSPE4507DnohkEqlcI0BaqqEA4HUWS5R8NVlEz60u2tdTuxC/D2ji4UWSaVMlBVcoaoCQGGbiDLEqZpkjJMAprKnzff5ep9bqeQSVgIwe8++RW6btIwMIIkQTAcQE+EiCUMaqur+fPmXzO9Yban8/MivO0vdLsZ12tu60qEcNlRtSByKsGWLZ1IskIkHCAc1lBVOe3gKYTnZQwozvpgL6PK/B5nwXwOeXYt2bJYLGvWmdOS/ndGI3dgF/Q96+fd17/Fe66AQvg1tvsGt0RgAHPmzOGggw7KaM+FsBytncWwhg4dmvmuHDwL7jvuuIPzzjuPUCjEHXfckXffCy/0nnd4R0aXgyTQQNGQlDAKYIVCKpH6ovszJZPOapPw1k6S0Xb0oIZSV0dgl53p0lLElRjhUDWRYBWapqaTmSTT4txUJSJqt+OOBCY6ad+29IBkWWJQQz1SJkFJ2vFNN3R0wySgirTntSxlQtbs9BT/SKeMlWWZQEDLmUlNUeSMBWZHxeyeVESqw2lhnHJfA08j0A2TUDCQ1sw1AKmX93kppFLpcLlBg2psueKhekAVyXiKeDRJIKRmzPR2nBMGu/bvBbuz1YI128dDWZIkFEWipjpEdSRAMmUSjSbp3JRAU6G6OohU5NJOMdaHXIlp3EzOPRprd7Y6ui0Wtu8OXDIj45TmprXn0nq95lbPdX/ditrkOof+mr99e2MlArOnx37mmWd4+eWXeeutt7bjyLLx/AaYO3cuZ5xxBqFQiLlz5+bcT5KkL43gDtQ1Eqz1XpA9P4LOTz7F0JMgS2hotH36OeEJtSQ64gSCKuFAELVaR5e6UEV1RmuWJQmhC7pSie561TLtbKZaxAla2dnMtFeuYZqZf1vasCxJJJPpTGyIdBpWWZKRFRkJCVOY6LqBJElomkoo2LtymBPrO9M0UZTSa2b3Jamkjqqmz1FVFBRZxjDTJU0lQFXVbkEqYRhmdyGWyq/bK4pMw8AIqiMFrSRJBEIauqzTtrGDSH0Vwar8ueUhLQAOnD/Dc85uS9MulI7UuT5fadLPlEIoqBAMqBhGuia8ECbC9rwWwln5zaLY9f9iBZ5lis6kXc2htReThc+JdT65nNIKOb2Vc+z/dXIlAnv55Zf5+OOPqa+vz9p/+vTpHHLIISxcuLBXX5Y5ff369Vnr4evXr+9VXbMUPAtuu3n8f8VUXlkk6ifuSe343THXt5F6/1MGH34QKTWIGggSDKiYkklKinVHiEt0xRMkUykCqko4GCCZMhASpHQT1YiACBKNdpFQoxktUpbk7n+ryJJkW2a3PKx7cpVbJT9lWcpkOkOS8CK20lqUgm7smILb6LZWVFeHM1qzFQduF+AgoSoyyZSembBUGlmWkW3LDHYkSUINqNQ0VJPoSqIoCmqwx8rhtkaeqTnt6nTVg6X55RJoudbjtwVpy4eEoqSdHA0jnSo3VKAoDvSscTud/cqlUqF61vq03UnOTr4JQkYrL9EysqxZL/hc+GRTKBHYlVdeyXe/+92sbXvttRdz587l61//umufo0aNYtiwYbz00ksZQd3e3s7rr7/O97///bLHXJLr8bXXXktXV1ev7bFYjGuvvbbsQX0pkUDSVJRIFdKAahKaipCCRKojBIMqSamLdtaTIEqAMCY6cXUroqYNSUvXrlYVmWQyQauxDj0QRQpASFUIBjTC4SChsIYaAqElSSpROuXNtLKWDint+msVc1AUGU1TCQY1QqEAwUCg26PXm9C2UBUZXe8dz7+9EUIQ60oQCgZcvestAR7srlSm60Z3XvfKeuLbj1fIeqEFVSL1YZKJFJ1bo5iGiT1a0sq1bs+5bg97sn8mtKgZ56lcHuXbUkjnw7o21vNXyvLLsmY9S0CWsvabzzxdDG3zx2Q5yeW6/tZ9csNycHOj0Nq2n5e8eGbNmsVDDz3EI488kkkEtm7dOmKxGJDWnvfcc8+sD8CIESOyhPy4ceN46qmngPRzffHFF3PdddfxzDPP8M4773DmmWfS1NSUN/bbKyW9qa655ho6Ozt7be/q6uKaa64pe1BfdiTdRN3aSUBR0OUEbdI6trKGmNROgk50KYqhRElqHSSkLkw5RTyZQDdMDAOEoaBLcYQCSnfmsPbUFraI1Wzmc7bwBVtZQwebiEntxEUnJpUXsJqmYhjGDrXWLUR6TVkgCATyv8QsgREKBbrj0bfRIHOMRZIkwtVBTEMQbY9lHAXdsAtve2UuS1BMbZrY/6pISeQ832KoRFpTr6VM3drYsYS3mwDPZdIu5pi+k1r53H333bS1tXH44YfT2NiY+fzxj38sqp/ly5dnPNIBLr/8ci644ALOO+889t9/fzo7O3nhhRcqUq+8pOlZrrWopUuXZrnQ+zgQAiOewOiIIlQJIxYjFkwQC3YgIRGWIlRJEVRJQqASNmswUwoKVYSrgsiSlPaQNjSCKATktWAYqKqCiEkkRRxJAhkFlSAqGioBVIIUp0t7I10vW6MrlqCqO3va9vcwFySSqW4ns+09luKQ0jeP2oZqUkmdeGcCLaSiau4OgvawKLuWZ8f+946iZbth+WkogdKsHuUmt7G3KyWdar42Vt9uXuXFOpK5HccS3qVmcOtT5AFAgG2eOU0e4HnvUsoEu7VxbpMkiWuvvbZPrNBFCe4BAwZkXs6777571svEMAw6Ozs5//zzKz7ILwVCkNi4mS1vvkV1wzD0IVW0f7iC6vG7EQg0ISOjSTJIBqYhoacgZA5A07TuPNzpa61pCpqmpMuESjIilSCZ1AkQRksNIxjUUFCRUJCElKkb3leCOxjUMOOCjmiMgJoWMkp3jvXtkmKxWwDYU8X2J6RuvwQtmI4qaNvYQc3ACIFQ36y/7whYyX20HBMUJ/b1fnuo14I1S5nTkjtTGnjTZitViMTJ3MYWV+cxu/Au1RvcCnGz1tV3FM9ySWmCwX/zc5VXmKIE92233YYQgnPOOYdrrrkmK+VpIBBgl112YfLkyRUf5JeFxPqNiHgKgaB6993oWr0GkiZhqSYtcIwUKcNAGAoBVUNWXRyaJNBJ0i42EjFihEwTVVPQAiqJeBLV1HrydW+D97wkSYRDAYJCQ9cNkskUpplEUWQCmpZZu9wWCCuBSonHFGyTS+YJSZIIhgPIskwqoWfWwZ3nlSsZSX/CNAWmEARKcHJ0Fv3IVZSjFGGcS4t2mwR46d9KhpNP8y5X4NqTz3jNUd/XSEqT5/SjPt4oSnBbaU5HjRrFQQcdVHTRjv9VhBCQNAgRQgoNQIwcjF4fRAk1olXXYwpBXE9iCpOQHO42F0o511wFJkliaHKSsBJAkSWESKf9TKZ0NE1FEn0T2uSGJEkokoQSkAloak8RkngCJIlgQOvxqpayhWMly4smEilSKZ1IpPcaUtqKlY5VTwsKE2GmtXPRnahWlqSMB3i6SIyVgrMn9npbYglrVVPo3NpFoitBpL6q15KEF+G9o5rJrbKwmqpS6rSpbtoKT6ldizWBO/d1VggrVchant9O7dsStJXMj7+9hbZP31DSgtJhhx2WEdrxeJz29vasj083AoRuYHyxidhLLSQ/W8PG3UN8rK5hecdyPtE/Z11sA1v1DraEo+gRgaLKaeGW6x0mQKRk9NYqVCWAJIx0ytTuxCKGYRBLRImnutANo9vBSdhCwMyS1nS8InULv0BAIxIJEwxoJFM6sXiCrlicaDRGtCtOtCtOPJGsiGObVURENwwikVAm/r3n+3S8ebQrTjyexDDNzPUKhQKEQ0HCoSCBgIYkSximQSKRJNoVpzMapysWJx5PdFsTBH139XojSRKSLFE9oAohIN6ZzIT02cmXfnTHFdrpMDAEBfOU23E7J7uA6ivParsgt9aTF6xZmhHi4N0L3RpvLse1XOdQzMRjztpmPwXql5SSBHdXVxezZ89myJAhRCIRBgwYkPXxAYTAbI+SWLSM5JvLUUcOI3zUfmjDGjCEgYmJEBIxxaCzJokRFHRqcTq0eMGuUwmd+GYN1ahCMrMLOKQrYMloQRNdxIknEySSKRKJFMmUTjKpk0ymw8v6UoBb49E0lUhViOpImEhViEgkTFU4mClSEu2Ko+tGyQ4ium7Q0dlFLJ5OTqPrRta5pffR6eqKo6kqkUgobdoPaGiamqkupijp+PdgQCMcChKJhKmOhIhUBQkGtHTMum4Q7YqRSCQxzW0nvtPCW6ZmYCStfW+JYqR6X7Mnu8tu9vy9YwrsHrq1ba33EoAXnOdnaanFJCBpmz+mKK9su5C2sAvxYhzEcmnVznSqTiHuVRj3u6gCH8+UNDW97LLL+Mc//sHdd9/Nd77zHe666y5Wr17Nb3/724IlOP8nMAXGJ+tIfvAZ5k4NhCbuhlwTBmCoNhRFUggpYTr0OAwIgJK2HxsI2rU4AUMlaKo5HcokSSGZMumM6oRsGqugW+NFJZWIE6pSEKaBZGpItjmaYZokUylUJV0xa1uZgDNx4pKELKe1LF0xiMUSKKqcibnuLRKl7gSu6W+FAMM0MA1BKpVCliWqI1UgQSyeSGvc3VYIIQSSLBEKB7vTtxY53u6xQtox0DTT2b6i0Vh3PnQFWZG6HQh72lUay2SvhVQM3aBtUwd1g2pQ7A5deoynV5yHqN0VoVVXfAyVxMqHL0tSUTnKnTy55S6EKZg+KJ3n3TI/F7O+61bb2yn0LOE5t/EJ13Kf9mQrxZjQC3mcW9q41X86xru34N5RnNH6Whn4suP1+pUkuJ999ln+8Ic/cPjhh3P22WdzyCGHMHr0aEaOHMnDDz/MGWecUUq3Xw6EwFy5jtTbHxE4cAJGQw2GlBabkiShyQEaq5rSCVXkEDF04qTSbSUwERiyma7tmYN0mlEIhgIQFVjCzDRNYvEondF2JFlB0arRNJCkFJg9IWGqoiBLMvFEstusnDb/Kjmye/UVaXO1SiSioBt6JoZXcnt2Mw7yUjp7nBDd1aQE1ZGqzMvfNAUBTe0uFiK6hW9lhKmVczsUCqQFj25050A3MvWkZTk9AbES3eTKmFbOGELVQbSgSjKuo+gmgbCGJAzkjpWIqkaEWs2O42aXi7S1JBgoz1teiB6hDflrU9vLcVrkK4/pJqAz1dYcOJ3C7Fp8rrVya598WrpTmNu1e7cx24V3uv9tYyq3siemKxmGt8kxv4xYic0K+Y+VJLi3bNnCrrvuCkBtbS1btqQzcx188MEVSefWnxGdcVJLPiKw3+7IjQORgXgiiWKmU4sKQE/pmKYgEggRTgg2hzpJyNbLQJCQdcIEcr56TdNEVRWqAibEFUwTEqkU0a524vF2gsEqqiO1GEmBqgokSQdJRQglI7ytNd5USu+peKap2zyMyhKqAbk4R0dFl+mKxYlUhbM0NutflpDtC6zJgD3BS48fgcAwzXTBlmQKbMsXlZLfkiShaApBWaZ9cwepRJIaZQOoVYjQ4G3vRVckVvhXeqJYWty2EAJhCjpbe2dwhGzN20s9cjs9wr8lK8TKq0Y7tWkii9c8kcmAZneKSwvcpZmqYQcumcGBS2YweejKzLHLWZe2WwusELFtoY2rqkpVVRUbN25Mh7AWWTTmfx0hBF1dXWzYsIH6+vqCaaRLEty77rorK1euZMSIEYwbN44//elPHHDAATz77LNZIWL/cwiBsfwLpAE1yMO7X6AirQEmkqmM85iqKASDaS9aWQga4hESioEuG6imQsjQ8upLiiITDslIiSi6GqC1owtdN9BUlYYBQwkGw0iShGEYJBMxgiEJSU6CYXlbpwWPpiqgKoCELusYponKjh//bJomXbE44VAQxVa4wzKLpy0S2/bFYTerW9cw7TFt0NUVT2vfSlobV7orrpUjXyVJQlbSyVoSm1eTFF2og8emv6vECfUhViW6oFWJrYT2Qgg6tkSRcpjZ7Tm7nZ7b9lSxhYqK5Cv64Vwbt7RoSwhb2vGBS2b0SpBiVRWzipQscxzXTjGCPFc43II1S1nbhzlQJEmisbGRlStX8tlnn/Xdgb7k1NfXe6r3LYkSFiXmzp2LoihceOGF/P3vf+frX/969yw6xa233spFF11U0qB3FNrb26mrq+OLzz6itojqYKK9i8SLLQQO2Rt5SF3mBZNK6SRTOrIkpWtq20y3GScqerLR5UuW0uMlbqJ9upxYdQNdoRrCoUB3vm2639wC5BSJZBJJhoAmgdDADLj2bxjpspfBPiq0USlMU6QdzTQ17QXuGKrlnBYM7hihipYHuGGkzemGkR5fKBS0VQsrVYgLpFQntK8kHhhJVxSqux3YduR7mEymMsskxQ5TCIGhmyTjSRRVySSmyRcOl0vwuZnCy8Fu+rZPDtxwCudcoWrO9XZrIpFPM7c0fWsc1n5rk88zfORo2traqK2tLebUPGOaJsnktsyS9uVB0zTPBZtKEtxOPvvsM1paWhg0aBAPPfQQ9957b7ldbldKEtymif7mCkQ0jnboXghZSlegShloqoKiyMQTqcy/LcephJFgS2IzJiaN4UZkyeNL1zBQPnoXfcQYRDDsENg6SDpgYgpIxExC4e61VjOIJBScepkVBy0rcloTZ/tkPsuHFfZFd9IXt/Gla5jrPXW1dzAsp6xEvPvl1r12r6pqxrva87iNJHLbh4hIE2ZgALHOOKm4TqS+CsUtec8OgBCCeDxJMFi8OVUIgZ7Uad/cSaTOvQSql2Q0doG3LRy6Cmn2peRFz3UcJ9tacPtsGypiTxw5ciQnnXQSdXV1/O53v6tEl/0LU2B+tgHjiw2oe++KkCVSukEqZRAMqN1mW4mAppJM6VhlsVNmii+iq1jT9QWb4huJ6lHPdk5JT4FpIAWCyLL1sjdBiYOUTP9bKMgihEQA01BA5JvNpdOXIgTxRBK9W0MUYtvGLefCmliYQuQU2kD3+q7AzTd9R0CS0s6BkUiIqqog4XCQYDCQjjOPxkgkk93lVgt0JEykzs8QwXpEYEB3gZIQkfoqEl1JEl3JHdLD1zAsh8HihbZpmCTjqZxCG7yFwPV24OpbCgltK6lLJXCu5/tx3F9OfA+CctENjA+/ILXkY7TmsUgDqzEME8Mwuus7yxktSpbl7uxmKUCgyRqNVTvRWLUTI6pHUqVGvB83HgUtAL20FpEW0Gao+6OgSApC15Ay2nZvLPO9pqkEAxrCFCQTqXTSkW0Q850Pa7khpetUhUN5NUkp02bbjK0UrGtteaBbiWCqIiGEKbJixV3PQwikrrVICERVY8YZTZIkFFUhWKXR1R6jqz2+QwnvTJY0rTgTuRCCRDRBtLWLUFUwp9C2U0iAF+OwZhfuO3rZTD92+3+DHfsp3JERAhFLoi/5GLGlHW3yBOSh9QjSZSUD3Wus9veL5RCWSKS9jhVFoUqtokqt6v7e+9tMikUR4YjtABIggxnMaNZStx02Xec4LQQKHcNysgoE5IwTUTKVzv+dLn25bc2vQgh0wySeSPbyIC/Qkm3ppiWEQOhJJEVFkot38LPSxoZCQUxhkkykiHbF0mv5mpZlQpf0KFJiM2bdWJAURz+gqAp1g2tJxpIkosl0uJi8fSu3pcPnzEw6We/tBPFogq62GDWDqt3z9zsoJvHM4klPwJr8WrFdG17WrFc0JWklC5rkK1Tia95fLnyNuxSEQGxuJ7VwKegG2uETkYfWgyShGwaSLCFL7i/KtFBU0zWjhcgIymJeqgIDEWuFcLaGLgFSd8iX3QFNURUM0+w2fXs/zXRIlUIwqKVN59swW5iFaQpiXXGqwiHPnuKW/8C2QgiBSCVofedvxNatKOvYkpSOpw+FglRV2TTwZE+2NimxGREcCEogRx8SsiITqg5iGCatG9sx9G1vNbEc86wQOd0wCBThOCeEoKs9RjyaoG5ILVqgtAxrbpQjeC3hvaPg1+P+36Oop++kk07K+31ra2s5Y+kf6AbGynXo732KuvvOKLvv1B1S1ZOC09KQctETQ53q9ozuva8wTYSecn3ZSsJExBKYA1TMRHaKVEmSkFQNbJMBWUqvr6eSere3dRGavZTW3FVVJaXryPK28zo3TZOurjihUMCztyWkJ02mKSih2FTJpDo2kmpbjyQrhIbsiqS6C1WvSBIokuyqgYeTHVA9gnz30cq0VlUbQpIh0ZUgFAkhK33vdChEutqXaZjoRncmIZGOe/dybOuZT3QlMXST2oaadA7/IrE073Krp7l5fDuF9/Y0UXutTPa7leXXBfDZMShKcBeK0a6rq+PMM88sa0A7ElboVYZYEn3px5gb29AOGIc0bCBCIrOgahgmEoVTOFqCO5FIv9g0l6QnekcbonULspTObJY1LsAMRKBtK7S32nvGFCbU1qPWD8xqoyhyt5d7abmhVUXOJI6R5W3z8u/qSqAF1CLXRNNWhXLSaJZCYEATgw/+TnrCpFQuFC1LgJsmyUScZDyKqFLQRHo5IN+1sZzWDN0k2taFFlQJRYJ9dv/SGfxEJm9BMCtkz5vQFub/396Zx0lRXvv7eWvrffZhAEFZBAThp2LcokGNgjvigkZNXK5el2iMSW5cYtQQNBiNMbliEhINwSsmRhHcNSoRBQSNBgKiRBAM+zrM0mst7++P6upZmKVnmBXryWcM011ddbqmu06d857zPZJ4VQJV14gWRzqtO8Dr025tfnVzjtFz1qM+1Dpc5KStk8zyoTJV06H78+k+2uS4Z86c2Vl29EhSG7ehR+PuLxLkrmrs3VVoQyqwMxnYsLXB9rbtIFQFvaIUNdhKxJVNmafTZk4isz4yk0FXVaSEmj17UBSV6srdBIJBSvv2Y/uuSkKRCJU7dhAtLCQVj9P3oEFoqkbGTDdxODfqdlXcnHZJcRqGTiZj5qL2zrqgSilJJNMoqmiXJKYjHfR2rDO3F3dcqdqute38j5EV3jHAUXWq0w4ik8DIqt2pmorSzHlyi9YUQtEgNZW1CMWd9d05ztsVnTHaqcInJTk1tGDE2GehmsbUTyvnMxCkIxxoe/bR0U4bICT2LQvk03Pw17hbwKxKkt5ZQ2pnNWZ1AidgkCyKYiMQGdt9fE8C1ZSopsRwBErCxEokW923IBt5626VeXPrj7ZtsWvrVnZv30q8uorqyt2uY6utYc+unWz5Yh3J2lp2b99GJtX6ZDFDd8dsttptlM022LaDZdmYlo1lWdm1ys5LuUnpSsRKKQkF2xMZ9rze5Y5EmLUII0IsGiEaCaGoChnTIh5PUht3x6UmkmlS6QwZ08rWJrh/L81QKSovAAnJmlS2W6DjbJNSYjvu56atynWusIpNqjaFETKIFUc6TCa2cbGa1351Wv/DGlSXN9YY92htDbm1NHlbnXBbJpa1ZX07aATaZIdPz8V33C2QrKll7T9XsfHTz9m+bhOWabFl7X/YunYDGz/9nPX/+pSdG7a46VFFQSgKKCLvFmIhBFp2Iba50Za6ESBWVISRjbTD0RhCUSjv15+i0jIGDDmYQChEad++6IGWv5huC5I7/MIrjqs/q9u2bUzTcseAZkxSaRPLsnAcB0UItKxamVtU1+bT2SpSSjKmiWXZrbZ9tbCXDrer5yARVi2OFsn9HQOGTjjkjksNBnV3XKlW95lKpby54kkSyTS2lBghA9tyqNpRk3PeTf20ybJsEZppWlkFv7ZVjtumTdX2ahRVIZCtgu8o6q9xN7VW3ZSKWX3ydbz5Vm63dnPQFkffFttUXz98v6HnlEb2SCR6VuFJURWMYIBYaRFWxsQ2LfRAAC2wr0VIAkPXSaczrpa115Or61iJWoQjKa6oyE66yrZ2JeMEo+4EqHA9BSSJpCZTiwgW0dwqqxACXXNT5um0SW5eptdbnL2ZaNB+1OginMmYuYr4jsKbtpXOtn2158LtZQgE3dv61GlIwEqgRsoa3J54BYRKvWo87+/fYC657ZBOu4ptWljHQVJTFccI6pDVeAdy508oAlVxOwuUVtrJvHGnhtE2RTRPwjRZmybcgrDKvvDc7kdbLVDzFMZy+uKvXNimY+Srf94cTU0u8/FpDt9xt0C4sICKfv0gK56iqAp9Bw/AcdzWGm+d2LHtOuEPx2mz01EUV/gkk7Gyoi0CraAIJxR2K3Oz0biuayiOjbJuFU6/UUi14Z8vZSdZV7OG0mAMwzHRm6kA924Wkqm0W7GdvdDmc8FUhOgUcRPbsUmm0oRDQRRVaVfC23EcTMtVq9s/HbcNjgVq/tmInP69EBiKK2drZ6u9AxEDx3So2V1LuCBEKBLMtdJ5leGW7UrIgvs5DRh6TrI3Z5aUZDJW1mnnvyYtpXR7zRMZwgWhhrPFO5i2OO/6LDn8WY595cK8I9vG+2jKiRee+dlew07clH1dyr2tjrypG4b6M8J99i86RKt8f8PTKl/74QfEotGWN5aQyaYHESAUBb0wiqK37Z7ITRNb2YhYzaqFubKjnr45CISZQV3zL+zhh4HWMK5OWHFW7/kEVdEoD/ahb6hvs9KS3uQqx3HaXACWTGUwdK1DJnBJ3Jud2niSYDCA3o7BE1Aniap3kF09EWHFEdVrcYpHQzvHYTbG0/+OVycJx0LoAfdzWzcEB7xKfct2MyKGrjdo7bJsm3TGJNyGmgQpJZmUSXxPglhJBK0LbrbyaQtrydl5E73yxXPgTTnvpo6zr0NPPOfdXMre1yrff9g/r3AdRKCsmGCfkhZ/1NJCjPJiAn3cbQNlRW122lBX9W1b7kUwk7FQVYVgQG84BlJV3TV1y2xuTzjSJqq7qfSWjqdrKkiw2likpNZLq+4rrsBIioBhoGvqPq2du1mQ/TDS9jDjoIY6dN62EALN0CgoiWKbNvE9CTe9Lr3n62ojDF0jEg5i2TbxeMrVjnfc9i03a5O/004nMlimTWF5rEucNuSnqNaR/dj1I2qv59trHWvq5sBrS2vK8Tb1WP11ce95XyHty4GfKt9HbNtBUztuEpNhaNi2jd6cMIuiYKs6SjKBDIYbPevqpdnSYU+6El0xCKrBvfaR2zrbkpbKtqTl+x4URcG27Ta8q6Zx275S2LaDEty3e8ieO1ako5AIK4HUI3R05bwQAqEKAmGDmso4NbvjxEoiTdYKKIpCOBRwNQEyFvFEMruNIGC0LjMrpaR2TwI7Y1FQFutyKdZ9kSv15FHbEnl/b8uRPNzvQ9dRb87/WPk57+Wt7tOrml91pMWf1ud/fJ+ejR9x7yOqqmDZTVeEtwUp3Tm2qXQGidsG1tQ+pZSkVQMSNc2W/jrSptqsxnZav0AJoaC30pLWGEURuclh7cUb7yiAWCycm6O9DzvcvxvBsoVptGUQTRtRVIWCkijBSIBUbRrbbPpz7XVDBIMBIpEQuq5hWVaLWRtPWCWdyICkW5w2wL2Df72XXKkXuXr/37hNrDFtSZfns8b8vS1H7pN4y/e2HNmkvV7q3R88sv/RrY572rRpHHXUUcRiMfr06cOkSZNYvXp1g23Wrl3LeeedR3l5OQUFBVx00UVs27atxf3ats1dd93F4MGDCYVCDB06lKlTp3aKVrOmKiiKkqu0bi+2bWGaDrsq02Qy4DhNR7RSApECRDK+13MCgaboVIT6MSQ2NK9pY0K4Yya9dp58EPtYoOYWM5lYtk0oFERVFAxdw7LaF8W7Fc0Wmt6FGqddjWOCtJAtZFA6AqEIjKCOqqtU7aghk2z+cy2EW6zo1iU074C9z1b17locRxItCrvtk91UQNhYrtRzxI2HiTTnTL10dv2fUR9quZ/6jzfFaf0Pa/DjOVbv98aO/LT+h3Hssuar3D3n3Pg1vsPef+lWx71gwQJuvPFGlixZwhtvvIFpmkyYMIF43HVK8XicCRMmIIRg/vz5LFq0iEwmwznnnNPiGuvPf/5zfvvb3zJ9+nQ++eQTfv7zn/PAAw/wyCOPdPh7qCsmA3sf1n1VVcMwFAqiBqlUEqUZFS4pJSIcgUwaGqWrDUWnKFBMWbCcoBpqU+WxpqmYllUnuGJa7khPx9krBb0vrWBSgpldxw+Hgw1aztp64+PKazqkMyaqpuba2PY/JCK9G7QQKJ2vfiWE67xjpVHMjIWVaTmjZNt2s9XkUmbrGPbEUVSFUCSQjbQ78Q00g8T9vDzxn18A+a0He8702GUXtug8vXR4SxF2vpH1qiOtvQrbjqtY12D6V1OTwLybkeaOYTcTDPj0Prp1jfu1115r8Puf/vQn+vTpw4cffsi4ceNYtGgR69ev55///GeuCnLWrFkUFxczf/58Tj311Cb3u3jxYs4991zOOussAAYNGsSf//xn3n///U55H940JseW0O6gT6DrOlFFoCgBvDnejXGkRARCoGko8WqcwjpNckWo9An2aZfzcoVgBJZlu5FUtkUsnW1Rq3+l3Zdo27Ztksk0kUiw2Qlq+eCJxngV/e2RcO01OBYitR0ZG9KhhWktIYRAD2houkqiOkmyVhItDtN4kp2UklQ6QyBg0Hh921NDSydMAuEARrDrBtQ0RgKO7RBPJLnyoFvz7reuL1eaj0Rqc7jHyi8CbqoavX5U3hyrjrRaXPO+YvCteR3fp+fTo9a4q6qqACgpcZ1ROp1GCEGgniJYMBhEURQWLlzY7H6++tWv8tZbb/Hvf/8bgOXLl7Nw4ULOOOOMJrdPp9NUV1c3+GkLXt/rvlyTvAuipuktOiHHcRCaiuxzAGzfBPXuooUQGGoAXWm7iIWXOQgEdAxDR9NUV2u6KS/dzvdpOw6JZIpwKICqNIyORVZwzrad3Pq543g/DrbjzjD3fizLdp220fL52h8QqZ1ILYzsxPXtJo+bFWEJF4SQjiRZk9pLVc2y3CxT444At83MpnpHLaqmdKvTzhpEIul2L0DdgJGWUtoe7Rmb6UXX9aPjfPBsaWmNvSXbOnLQiU/PpcdUlTuOwy233MLxxx/P6NGjATj22GOJRCLcdttt/OxnP0NKye23345t22zZsqXZfd1+++1UV1dzyCGHoKoqtm1z3333cdlllzW5/bRp05gyZUq7bZfSvZvX91FFLS+PKN21bKegGHX7ZkT1HmRR6T4et8XDYWUr5yF7MYc2p7UdR5LItn1pzbR9BQx3dKiU2TNRb5vcfPF6qfWAYezf7V8Ajuk67tjgLou26+NVnBeURTHTFomqJIGIkasnSKXTBAPGXlG4bTlkkhkiRWGMUDc77SyOIzEMLSfGsupIi9M4LOe86zu9Ome+t1P3tmvci9348bYKqHjOOt/ovKXUvc/+TY9x3DfeeCMrV65sEEmXl5fzzDPPcMMNN/C///u/KIrCJZdcwtixY1uUVfzrX//K7Nmzeeqppzj00ENZtmwZt9xyC/379+eKK67Ya/s77riD73//+7nfq6urGThwYN62W7aNqnXR+qp3CEXFqTgAZftG7FghqJ3zpwwEdFfz2rIIZm9MvOyA7Tg5rfWW8Nq+NE1tdiaz2yusEDDyTwL1BGfQuUhEaidooS6Pthvjpc5ty6Z6Zw0FpVFXlx8aTAHzerTTCddpq1pPyoY0fbPpiZY0jrwbC6I0nvLlOX7w1pet3OPHvnIhhbRtuMjD/T5scPPQGaM9ffYPeoTjvummm3jppZd45513GDBgQIPnJkyYwNq1a9m5cyeaplFUVETfvn0ZMmRIs/v74Q9/yO233843vvENAMaMGcMXX3zBtGnTmnTcgUCgQTq+rdiWjdFg7nDnktOfjhUhd2xBqdqNU1ze4RGZEAJVCFRDIZnK4DgSVRU5TfN8GqellCRT7pJH48isqeP51MOxEKkdXbq23RJCCIKRAJquYaZN0qZJJBaup7LmqqEla1JEiyM9zGlne/0lXFC6t4Ja0ynm5p12Y9pbwd2aPGpLFJ75WbvS+D69n25d45ZSctNNNzF37lzmz5/P4MGDm922rKyMoqIi5s+fz/bt25k4cWKz2yYSib0iclVVO0ztqzGqpmZ7uTtl9znq1tKzF0NFRZb3R+zc0mCtuzPY6/KbT1ZfQibjVqqHQ+0Z0fnlRqR3gdr90XZ9XKU1FSNkkKhJkqpJIbOjPNPxDFbGpqAsimb0xAp/157ndj+al4paW2nrhK/6LWntXZv2I/IvJ93quG+88UaefPJJnnrqKWKxGFu3bmXr1q0kk3XzrGfOnMmSJUtYu3YtTz75JJMnT+Z73/seI0aMyG1zyimnMH369Nzv55xzDvfddx8vv/wy69evZ+7cufzyl7/kvPPO6/D3UH/6Umdqd3la5oqiNFjXlbEiUDWUPbv2rdy7PTa19JyUmKZJOpMhEg6yv8/J7nCkjUhsR4b79Yhouz5CCFRNIVIUQQKpRIbaygSpRJpQNOAOielhNsPen8B8nXc+Keu2prWrXhnGe9sGt+iw8zmmH3F/OenWVPlvf/tbAE466aQGj8+cOZMrr7wSgNWrV3PHHXewe/duBg0axJ133sn3vve9Btt7qXSPRx55hLvuuotvf/vbbN++nf79+3Pddddx9913d6j9njOVUmZT5Z1zsfIGgkgp9x4Ioig4FQNQNn4OhaWgdeaftM5VC9ewZre0bYdU2nXabRnz6OMirCQIelS03RhNV9GCKonKBKqmUlAa7RY1tH2hvvPOZwhJc+TrtD1H23j7to4DbW4/Pl8O/OlgTeBNB9v4xRoKCmJ7Pe+lrNMZE1VVs60wDatqTcdEV7Rmp3O1Bdt2yJhm82vE0kFZtxoKinDK+u3z8ZrCsmxMy0JVXKU423HcgqVsdbGoF8842WlfoaC7Htp7LuM9B5HZg4hvxika2eMibu+SkYinqNkTR1c0YiUR9EDPHacqpaS6JkEsGm61E2FfHHhLNI7Kverztk4da0t0X/XKMHdEaP/DGLpAMmPcHH862H6AHwq1Abe4xZtRbGLo2l5O28MbvNAxx5V7CV80PJiCrDjAXetudmrYvqGqCoFsz7SdFT5xz4WNabuFOa6SmSSRTBPI9oL3zMu4T3vwbljNtEn1zlocSxKIBCgsj5GsSRHfk8jNqu+p5GNb/Si8I1PRjZ2t10rWVqed73aeg29p1KdP78R33HniSTdmTAvbtrM9xM0U4AjQlA6MPmTrtwAyHINgGGXX1k5Z6/batTRNxdB1ArqOAFRFQc1lFdy2L1VVOnXp4EuBlD0q0pZS4lgOqdo0ieoUwUiAaEHIrRxXBNHiCI7jkKrN5IrVehztOJ2dlYquL7SSr1P1HHG+6+2Nt7u/7z/bZ6xPj8N33HkgpcS2XX1tRYhs5Nm83rLI/q+jcBwH0do6sRA4fQYgdm1vYVZ3x+FlARShoCrukJJkMr+2r/Ycy+7hkVzHIwGl22v6PNnS2so4tXsSqLpKYVkMI+TK4KqqimXZqJpCrCSKHtCo3ZMgk8z0qL+X47gzxkWegj31o+6OrkCv76hbGmbiUT96zgd/3Xv/p0f0cfdUXHlHiWlaOFISyIqHdHUkKRSFjGk2m5b3kKEIhCOIPbuQ5Z2z1g3gSAfHcdANwy1Xy+pVO1ISCQc75fzY0gZU1B4UhXYqTcnHdenh3TGcZsbCTFsoqkK4MJi9Ya2zSddUEsl0LsOiGSrBSIDayjhSQiBcJ9rTXe/DdhwSiTTBoOHqD+RJU867/vq3t34Me4u1NEdzfdstOeZ9dcR+mnz/wy9OawKvOO0/6/5NMBhCUQS6rgHdNNVISlJpE01zC+FaQuzZhbJrK/aQUZ2Wak2lMmi6mo20HZIpN7oKh4KdJkHqfUy/LOl3kdqJSO/GKRzepceV0o1MU4k0ydoUwXCAYHaiF+x9/tNpk9p4ksKCSE5BzXP6mZSJbdkEwoFuE2NxHEltPEEwGGj1xrctCLOW8ypuAxr2Y7fkvD0H2lwxWkcrpTV22Kf0G8XbPO8Xp+0H+BF3C2RMk2g0itrNfalCCDRVwbEdaMVx28EQIpMC6YDonPnUjuOgKjqmZZFKZTAMbe82tQ7my+Kwc0iHro62pZSYKRPLdJDSIVbcupCKqiqoquK2/qkhhKjTNw+EDZI1Kap2VFNQGusWURa3+0HpUKcNdW16ntP2HHb9teumRnx+b8uRbpV3G3TMWyMfh+/qoCdb3Man9+A77hbQdb3bnbY3JcttPWu9JEFoBgIQloU0OsdxSyCRTCMd6U766qGCG72eLjinXibDthziexJIKYkWRVD1uqEyLaGqCtFIiNp4cq857UIIQrEgWkDDTFvuIJ6gnnPuXYKUe6X3O4Ts/pqLsD2n7Q0OqdvO1Tdvytl6EqYdEXXXzwK0ZKdP78QvTmuBfZkX3RF47VaZrNNW8xjoIVQVFBUyqc6xx3LtsW2bcNh32p1H569gSSmxTZtEdYp0IkMoFqSwPIaqK3nXcohsgZqmqbnJbo2f1w2NYDRAOpGhemcNTldWnYu2T7LLlzm7pvPcrkcaPOatW3vjPFcdaTXpNJvTGW/Oabe1Lc131Ps3vuNuge522hnTwrYcAgEdIK+IGyEgEEKkO9ZxO9kCtFQ6QzQSIhgMkM5YWFlFN5+OReT+2/HnVkqJY7utXdW7alEUQTgWzAmotH2WOwQMnUzGbNJet5VQEC2JYAR10vE0ttVVXQLeAJRO2LMQIBSe2zW9weNdPRO78MzPeH3z8gZRtl+Qtn/jp8p7GJ7IRSZjoSgCI+u0keRdESsDwQ6NuB3HIZ5Ioaoq4XAw1+qmqRLLtkilMxi6K87S2fc6DS/23VMs2DXIDnfZXtFYKp7GsSV6QKOwPNYh2uKapiJTMjdBrikUxU2d25ZD7e44elAjHAtBJ6bOBfXnCHTOMc4vvandr+2o1HhuTX3z3s919Y2ET+fjR9w9iPrr2ZqmoutuBCTbes1RVYSZ6TCbkqkMmqYSyrbTuGuU7oVY1zQMXSfdTLTV0UigKuNQbTpdcrzuQ0IHyOVCncO2MjY1lXEs0yYUC2CE9A6bI+/K37oFi61tp2oKsdIIVsYmlcjkbla/DMzdcHvu3/mIqeRLc6lxb43dZ//Cj7h7CN4gEdt2stFro5RlW65riupKn3aA+pbjSGzbIRQMNSvtqqoiF9l09vKC6cDaGhNNCA4tNtD214g7d7e2b29QSkkmaZKKp9GDOpHC8D61ZkkpqTElQVVgNIqsFUW4nQ+t4DpvlYKyKGbKomZ3nFA0gB7onWp7LQ0qyT0nJTgZSG5j3tobmDT0t206RmsOvn5qvH5Fu7/WvX/iR9w9AG9giZSSQMBLOdevznUvdna+88Q1A9FK5JMvpmm5muOtXVC76HqrCegf1ugbVsm3ZdyL6HpXVNf+1K73Xm3TJlWbJhVPEYwGCEX3vZ/adGBHym7yPtK2nbyVySAbpQc1AmGD2soEZtrqkL+TJ7pimu4yDrg3oE4XfwYaKK4JAWoAGRmIjA5i3rqbmbfuu3nvq/4admvr176z3v/xI+5uxlNmE0Jg6O6fo/F11YtQbNtBy6OyHFUFM73PEbdXIBcOBfLaTVdcExUBfUNtbXOTpLb8GzVchF5Y0Tuiunb6bVei1CFRnXTb9QpCBKMBoGPWkR2gPKhiNHHLb9sOuqa3aX9CCAIhAyOgk0mZWR10o93r7t5NcCbj3nCqioKiKti2g23a6JrWqZ0QrcqjCoHUo8iCYYj0rmY3a8o511/D9p5vPECkflV71SvD4BX3cV8Gdf/Cd9zdiOe0baeJOduNaMtlRuoGUoh99qS27biBQj7940J0QjlV08dpK1btbir/9TeM4n6UHDkRoQU6wbKOpm3n0quPcAVUbDRdzSmedaSTMhQINLNPNesg9bb57gaCLfGqBFU7aigojSIFWLZT7yamUWFi7hGZe8y2bQCikYZz4KWUaFIhnTYBDVVVu7ewUSjIYBlzt93PeRV1697eqE9wne+oD7VmI+jXNy/fy2nXd+ies/a0zu14Gi7srDfk05X4qfJuwnFkLo0XzGNtz0vx5ZXqUxQ30pZ5ptabIWOauQK51hE9tlZMMUKUjD2H2MHHIjpJTa4zyGdQTf1K8art1TiOJBwLEooFO6RavDEtaRsYupYb99oehBBECsNEiyPEa5LUVMVRsjeOquJOp/N+vN8bPu4OuImEGzptb9+KohAI6JiWjeP0hDZGN/qeu/0BoM5pez3g4Ka9G/dwe4742GUXcuyyCxtUjXv/ru/QO7IIzqdn4DvuVpBSYjk2Vgd+0V0hEwtVUXKOsbXrq6oqOI6Tn3iFBLfHpv1/Xk9sxUvft4ZowW939xqzGogQ7DOYQOlAhNo7kkyylfxFfT3wZDyN40gKyqKEoh0fZedLh1WnB3S0oIaVtknVpNFU93sSMPTcj2HoGIaGUe+x3Az4ljJXQiFgaGRMG6fbHTeAQKphntv+i2YnhTXldD1nXP+5+tF2/d999j98x50HGdukOh1v9+sdKXGyYynd9LiN7Ug0Lf+Z3UJRMHRX5KI1Bygd26toa7fNGdO9scjXPkWI3HtsCtNp34Wy9xWVdQxCNu8IvcKzql01JGtTGEGdcCyIpnfP9DrPJq+Ncd+P79ZmFJRG0XSNdCKDY3eMYIv7tXC1y02zJ0TdWaO0IM/teCivzZuLnpuKvOtTcOHa9tnn0+PwHXcrCCEIaAZBzdinTLAXP3n9zvmkxxvYgdtu40pL2i1vK519ctqOI0ml0gQCBvmurmua2uLFVVfUNo1UzNkiJVa+1fT7EZ5kSO737A2MlbFIVKfIpCzCsRCFpbFum7xVZ5u7Fm1ZNsGA0QF7FEgp3VGiBa7WefXOWpK1qQ5z3qqqQDarVD8j1H2O3K06f277L5p8tn66vHHq3Iusm4qw2yqV6tM78B13SzhuUYiCIKQF2t3xJABFuKluJO0eEerpQtutRR9O+8U7JGBaFqqqZqtv87YOXdfIZPZe4/SiwPY4F0UINOXL+DGtKyvPrWPXpqneXYuiimzfs9ZtafGcldJV1ksmU4RCgQ4Z6+oV2nkZH01XiZVEMFOWG313iNa5wDB0pHRHk3qV6KZluz+mlftp9fvWYbiR99ztD+71TP0ou/6/vbVuaDrK9uaF++xffBmviHkjUtsgKyqSj+ORsunUrvfa+gpo7b3WCgGqIjDN5ntehWO7fVPtOYaUpNPuUBMvisrnopWLYgR7vcZrK0tn3AukbdvZ9fp6P42iHu+nu1K/3YvMflZcQZNkTYpETQpFVSgqL+iUavF2Wyol8USSQMBAy0dLPw/M7DKNV2AmhEAzNArKogghqNlVi9XEDWJb8JT/DEMjEDAw9Hrr494XNXt+Tcvap6K7NlqG1ELM3fbzVrf0omm/8OzLh++4W0BkqhFmTetrytJVF7Ntm5raFIlkppHjctPPpmXnNeGrFaswDB1HSmpSiSZLmKTjuOpp7fDcjiOz87bVNreTub3oOpbd2HHjFuOpCooQZExr75+06UY+e/1kSKXSpNIZ0t5P1vn3iPXJzkCCwG4gURqMuBKlnVEp3l6kJDu5TsXIu/ugtX26a+WBgN6knoER0jFCOjW741iZ7GdgHz8GnhNXVXftW9c1dF3N/Ttg6ChCkEqb2C3UcXQcAqlHmLv1Z8xbc12rW3sOvHGq3Jc73X/pHSW23YSM9EdWr8eKHYxmNC35CXXzqW3HwbYc9EZ9whJJOpNB0zS0fbzwui8VBAwdmXbnKItGup+KZSLbUT3tOA6JbMrTMNr30RACdM1tC/J60z3lN1VREKrILhU0pKmLoWz4n3p2ugV+QthomtY585a7Ae8cZFIm6coMRiRMpCic66Pvie/RtCyCwUCH2Waads6JNoUQwr2JCRpkkiaZlEkwGujUz4AQbm2JoggyGbNDvsd5HBWpF0BkYItb1R8P2jhVvupICzbTYi+4T+/Ed9wtILUChOqgxDeAMYzmIlgBhEOus5bIvaqxLctGVZQO/bILIQgYGqlsJa9lO1TXpCkpCkG8GsKxNuXjbdshmUph6FreLWDN2aWqiis5Wa+drLUgpUkd9Ib/yaEo1B3DtFBUZZ9s7gl4imeZlImZMgkHBUZIQ2o9u+9cStmuosPm9pVOZwgGjVZaugSKCoGIQXxPnOodNRSURTs1G+HVlwSEQsY0cRynw7IMLRwUaRQ1+ZQ3VazqlWEtrmO7oiyu4top/UZ1kqE+XY2fKm8JIZDh/uiKRE1szharNT1vWFUVVFVBU+vaYbwUuW07WaWmjv6S15PokBCPZ7AtG5GMIyOxvPfiOA7xZArDMDBaUXDLyyoh0DUVq0H1e8emF4UQaKqbynR6cdW567BtanbHqd0TR9Pd4RuB0N6p4p6Ipmm5eot9QWZrK0S2c6I1cjO+iyNECsOkk2ZO67wzEYqb7QK3Q8StzejMA+79IWg8CtSLtOvP466P9/zcf6/oBAN9uoPeHaZ0MlJKUDScgqGIxGaUqn8jA4XIQCkogRYj2vqDDrw0W0fjiZ5IKVEUt4VGWrarmJanZrSUkEpn0DUNXdM6zFl4a/6uxGQnp3l74VK3lBLHdtu7zIyFqilEo+F6RWcSKXu+51YVBdOyCNBGndN6eO1k6YxJLBqiLbUZ3qAS1Vao2RVH0RSixZHc8kxH4yaA3LkCluV+vg1DQ6HzUvXP7X4UHIvzy9yhJI2L0apeGcb3trR8KT+t/2EMXSCBzzvFRp+uxY+4W8DyRhQqOjJyIE7BEHAclOo1KPH/IKzEXjlgr1AtnTZd5TFDbxCFdzSa4lZ/CyGIRQOomtomuVNHOpimnV2P7ji7bNshGAy4RT662kH9vb0fr/MgFU9TtaMa27IJx4KEC0INU737OCCma/AKyVpObbe4B6+dLJEinJUqbU+bpKIqFJRFUTWFdCLdLsGWtvRye+veuq6SyZgtig91CIrWZI+358Tf2zaYh/t92KJa2upx/jr3/oLvuFtArR8lCwFqEBkZgFM4HKkEEDXrUGrWIszqBo4ynTHRdDVbjdrJ626aim3bCAHFRe7FH6FAHnORpZSkU5lserxjbZO4a5+ejnRXt3U5Vob07o1uhX0PIKealzZJ1qSQjiRWGm1FU7ynO24Xy7Lb5bg8px1PpAgG962dzHPe4YIQmq5RtbOGVDzdZptMx8aSLQsc1T+m6ikadkW/txZk7paf7vWw57w93XJv+Igvebr/4qfKW6DJi6kQIAxkuC8yWIbIVCLimxBCRYbKsUTUVTjb57av/FCy+XIpyabjhVu9ZZutvtYbdBIJh4A8B5jkST4DMjoLKSWJjR9TtWo+ZcdchFEyIO+bBk/8w20R2vf7Wu+c2pZD7Z44SIgUhdF09/PRrF29IuIWRCMh0hmT2ngqO9wjvxS1pJ7TDhhZzf4OsEgINEMlVhwlUZ1EURSMoJ5ty279ALrStu+tu9YOAUPPrnm7bWSIzvgGCKRRwnMb7qRm5waMogO5ZPC9za55+457/8V33C1QXZtGKCkiYaPp9hRFQwbLkYFShFmNSG5HmFswYgcCOl0VMSmKyEbdbkpeRgoQ1ZU40cIW9a5T6QyhkNvKk0pnmt624SRF9yYh+2BOVKaJRWbLspts++pwRHYgR1asBQDpoBohYkOPabOCnONIMqZJwNj31L5XeJZOuOc2HA2iB/JxIhJ38nXPdtzeOnIwoKMqCvFEyh38oevuWn0Lr7Vth0Q20u7I2grXLtd5F5RGyaRMqnfVEC50b5Zaq1Zv7/EAggEjJzRk6LrrvDu8HlVAuB+iQMOq2cjcDbdz3sD7m9z0e1uOZNSH+K1g+yG+426BmpQJpKisSVNeGiGoq00XvQgFaRQh9QK09G5EfD3SLkWG+kAnj5EUQqDrOql0JjdjWJb0gc9XQVlfCISafJ3jSCzbJhYMu73XqE1E3I3fZ8NHGjjLRqRpPeLvCJTszUM9UTqEohLqfwhNv/Pm8eajG/q+LR14EqXpZIZkTYpQNEgwEsg76gPAMUHpHXUB7mdQQ1UVMhmTeCKJrmm5DoX6b1lKsB0767QDHe6069uEACOk49gOtbvjRIsjaEbn1Jt4+zR0LVto5xZ8qp3RoiYEjhrGDg5ApDY3u5k3ItRn/8N33C1QURKmpKiQeMpiZ02aTE2SirIYkYiBA1imja4pdeIPQkEGy5B6DBHfgKj6DBkZiNTCeR2vvV9wRXHX2hzHQVFUZCCEEitG3bUNp99Be6VcvWg7oGsNqt3bevyWtm95KGXH4a4zutKgyj72PMtsNqG9Yh7eOnYqnnaFeAydwj4Fbd+fY4FjIrVgm23oLoRwe+uDwQBSusWZtfFkdgRnXb+zI91IOxQMZKfjdbZdgmDUVZ1LJ1zBls4cfeq2KSqoirvubdk2mqaiKh0roqOqChkUUNpfze/Te/Eddwto2aKqSFAjY0vWbq8htbGSaGEIoWuYiTQBXaF/3wLUel9IRyqYdgCRqoXkvyFQQktpTwkooUK0YME+OW/bcdBw19dkeT+UdZ9CacVeUbcXbYeC+d1Q9HQ0TSWTsfY5upHSabfDBrAyNomapJvNLAi3e2qXsOJutC1630XZzUgpBIMGhpTE40nXcaluu2IymXY7LbrAadfZ5BauBaMGtZUJqnfWEiuNoqid1DIm3FqTgKG73zXLxpQ2mqZ0WIeJEAJHghQac7dMRQZK9trm2CW/ohBfx3x/xK8qbwHvC6YoKmVFMUYP68eBA4roVxblgJIQgw8swQiHMe2606jpATRdRxMOoWgZih7FScdRpYkubAIaCDuFKtw78VA4TFAT2MnqfbJVVd2xmhnTcqcnBULIgiKUHVvqtawJhKJiORAMdMwkp/rk00rTXHW5m7Fo702LgqqppPOYVd4SThuHmnitXWbapGpnDUiFkr5lFJUXYwQDGIEwqtpW5yshUw1G25TvXHtkF2lpt45Xca2qdUI83vzrjm49zNceRVGIlUQIF4RIJzOdKtjiLampquIOMjF0d8Jb2sT0vqP7cGxFUXAc6c4kcJpew37r2FuaFWXx6d34f9VWEEIhWlhGJpOhLBwjnawBJEYggqrpFBW727nRmpKdfBUmFCkitXUVu3ftYMe2TeiGgW4E6Nt/ECmCDBz6FUS9qmW1ajvWPlxDhIBA0HBFIbLra3pZf5S1H0PFAIIFpejZyDuafY1tmVhmGlU33KlgqTiO3f5CFtOxMR2LsB5AUVTC0SJUVcU0U5jpJKFoEZpm5I6dqK1EKCrhaHGugjuTTpBO1rbxvbtKbaYpyWSsBqnZtuA4stlK8kAwiqrp2LZFOlmLlI57o5Q0yaQyRItiFJX1IZFIECkoBCAejxOOFpGM78G28lvzNwJhtOBwHCCdziDz7Mf3yNgmAU3v1qr++mhZBT1DaiSSbuV5d2que4ItiqVQvasW3VCJFkUQnSCQVP+YQoCu62jSzXalM6Y7sraeOFNbzouiuktjEhUh9/7OejcGq460XAEXoLq6hgEHPd8xb8qnW+nWiHvatGkcddRRxGIx+vTpw6RJk1i9enWDbdauXct5551HeXk5BQUFXHTRRWzbtq3F/Q4aNCgXOdX/ufHGG9tsoxGMsH37do477jhs28YIuE75rfl/54ILLmD06NGceOKJ/OpXvyadTrNz5053WynQouXECoooLCpFUVQcy6HowP9HYb8R3P/zn3PUUUcxduxY7rnnHuKmQjjmpdS9L7KC0kx7iqKoiHrPCSEQeKMQVRwpkEYAwlFC4QJq4kluueUWvvKVr3D44Ydz6aWXsv6L/xAIRVmy5H0+Xf0ZwVB9mVQv26AhvMpsIVDUpp2iOxnMyDmNcCTK7so9vPjSywRDMTcToRncfPPNXHzxxSAUVC2AboTYsGED55xzDo8++ii6EcK2HTeaQEFKkVNhq//jZGeO10X5boGUI73X1r0PRdUanKvc44qai2qlBJmdAd34/KqajhEMM+uJ/0OioGkBairj1FYm0AyVwrJCIgXuuYtGo7kjVFRUEI/H0fRgg5s071w2/l1RVAKhGM8+/yo1CQsj0HApQyhq3d+i0d9JCAVF1QhqRvZzoDb72WmJ+qNpPble7+/RnghRy86Pz2QsLMvukBa7fcXVP1AoLI+haiqpRAbb6vxMhdti6N5kBgM6qqZgWTaprFiTbIN8qqIoWWVHHeHsfVNomjY7dsZ5duf0Dn4XPj2Bbo24FyxYwI033shRRx2FZVn86Ec/YsKECaxatYpIJEI8HmfChAkcdthhzJ8/H4C77rqLc845hyVLljR7Efjggw+w7ToRhZUrVzJ+/HgmT57cJvsURcEIhHjwwbu5+uqr0XU37fnrX/+aX//61zz00EOccMIJbNu2jd/85jd8/PHHjB07lqOPPpqnnnqKb132DYLBjVT0PQAJBIsOQKohThl3PKNGjeLPf/4zhmHwwAMPcMIJJ/DBBx8QKypv0pZUshYznUA3QgRCkdwFXEpJKlGDpuvoRsO1bCkllqKhRQq47srJxGIx5s6di2EYLFy4kHQ6DcBf/vIXRowYwejRo4kV9cnr3FhWhlSiBoBgKIqm101Es8w0mh7gn8tW8MADDzBp0iRCETcKfeedd9i6dSvz58/npJNORNcNZs2axQcffED//v3dmoJYMbpRtz/HcaitrkRVNSKxwr1siddWk07Fs4NcNEzLQlUNAqEYRr31ffdcVaNqRoPHLTNNvLaa4rIKtEZSsY5toWQnrd1yyy1ccMEFFBYWckC0YC87pJQsXrx4r8eNQAgjEMKxLVLJGgKhGKqq4dg2idpKQpFC1HrHnTJlCqNHj+bQQw9FDwSxzAy6UVeo5jg2qUQNuhFs8HhzNM5iSOmWDjq2g5W9CXIc10Fblkkm4zoSu1H2Rdd1QqEgkXAIPY+WLyAXTdYkkyha21XROgs3jS0IxYKYGYuqHdWEC0IEwu1XgWvLscG9qVEVBSmzM7+z2aJ82gC9LRyho9ipvZ7XdRVHShLJDJEueE8+XYuQPWFBLMuOHTvo06cPCxYsYNy4cfztb3/jjDPOoLKykoIC90JZVVVFcXExf/vb3zj11FPz2u8tt9zCSy+9xGeffZbXB7i6uprCwkJ279xGQVEp/fr145NPPqGkpBjTtKioqOCFF17guOOOo7K6lsJIwL0wOw6KovDOO+9w55138u6771K1bS1WJglAYcVQ5sx9gbvvvpuPP/4YJ1MDZgK9oD/HHnssV111Fddffz1/+MMf0HWd119/nS+++ILzzz+fH/zgBzknMnPmTJ544gkUReHyyy/niiuuQAjBtGnTGD58OH/5y1/YtGkTl112WS7LMHDgQJ5++mm++tWvNniv77//PpdccgnRaJSDDz6YSy65hFGjRjF79myKiop45plneOCBBxg5ciTTpk1j0aJFDBkyhKlTpzJsmDtOcPXq1dx///2sWrWKww8/nPvuu4/y8nImTJjAP/7xD04++WQGDhzIr371Kw4//HBOPfVUtmzZwuzZs3Ech5EjR3LGGWeQTCaZMWMGW7du5fbbb2flypUUFxdzzTXXuFE68PTTT7Nnzx6WLl3KqlWrOP300/nxj39MJpUgXluNIyWZjEnffgewu3IPP//5z1mwYAGFhYXccccdjB8/nt27d3P33Xfz4YcfMnToUKZOncrgwYNxHIfJkydzzTXXcP/99xMIBJg6dSrHHHMMDz74IHfccQdnnnkmuq4zY8YM/vrXv1JQUMCrr77Khg0bWLBgARdeeCFz5swB3Oh75syZTJ8+nUgkwt13382xxx4LwCWXXMKsWbMQOOhGkOuvv56pU6fywgsvcMstt3DsscdSUFDAz372M4YNG8YjjzzC3LlzCYfD3HjjjZx11lkA3HfffQwbNoynn34ax3F4+umnueuuu1iwYAEA55xzDnfeeSc1VTuwLZtkKkU8niCVclXF3FStkuvH1zR3OpxhGOi6ntMv8PrbE/EEyVTK7UsPh4lGwq0OprEsm52VVRi6RnGhm5noSY5ESlczPlGTyo4MdW+iutJGb8iKpqmomtqq63Ych63bdtCnQMEwd+IUjay3L7d6v7Y2TSKRpqwsChKqa2oYPPQQqqqqctdTn95Jj1rjrqqqAqCkxK2QTKfTCCEIBOqir2DQ1TNeuHBhXo47k8nw5JNP8v3vf7/5nuN0Ohd9guu4AYxAkBUrVlBcXExpaSnScVi0aBGKovC1r32NXTt3ois2qUQaM5PMplcVjj76aP7xj3+QSCQIxPqgZB23ZoR45ZVXOPvss1FVlWQ6jcjUokdNJk6cyMsvv8z111/PsmXLmDt3Li+88AJ9+/blggsuoLi4mKuvvpo//vGPzJo1i5kzZ6IoChdffDFlZWWcffbZvPfeezz77LP86U9/QlEUTj31VMaNG8eYMWM4+eSTue666/jv//5vTjjhBI444giEEIwZM4Zx48YxdOhQ/uu//otYLMY///lPHnzwQaZNm8a8efMIh8OceeaZTJ48mbvvvptFixZx1llnsWLFCkzT5IwzzuChhx7i4Ycf5oknnuAb3/gGb731FjfddBM//elPeeSRR9C0uo/a6aefzrXXXktVVRXLli1jxIgRVFRUsH79esC9KF199dUcfvjhfPHFF1xwwQWMGDGCww8/nE8++YRf//rXzJ07l5EjR3L55Zfz4IMPcvvtt2OZKUASDIZRNZ1Jkybx9a9/nddee41EIkFlZSVSSi6++GKOOOIIXnjhBebOncspp5zCJ598gq7rPPfcc/Tt25ennnqK+fPn881vfpPPPvuMq6++milTpvDAAw9QUFBAcXExH330EW+99RZPPvkkBx54IADPPfdcg8/Ws88+y7PPPstHH33EOeecw6effkppaSnz5s3DcRxU1f1Mvvbaa9xxxx1ceOGF3H///fzoRz9ixIgRlJWV8eijj/KXv/yFv/zlL2zbto2JEyfy0ksv8ZWvfIXFixfz9NNP86c//YmKigpmzZrFmjVrePXVVxFC8MknnwCwddsukskEhq4RDoUoiEUbFCcqitqgKr/xd0VVQdc1wqFgbvxmPJFg2/YdgCASDhOJhDAMo4nebYmCIBQMUmNKQppA7wF+W0rp9QCiaSqxojDpZIaq7UmiRWFX99+jHe1j9WOi5hXy3P8I6faAp9MmyLpai72yGhKs2jhC0whYNjKjYGZUFMtGCIEdT5KpqibjOAgEWjxBWtgohoFVk2iT/T49lx7juB3H4ZZbbuH4449n9OjRABx77LFEIhFuu+02fvaznyGl5Pbbb8e2bbZs2ZLXfufNm8eePXu48sorm91m2rRpTJkyZa/HVVVl/fr19O/fH3AL0Hbv3k1paSkA1TUJdF1QEDGwLRNHWKiaQTgaIxaLsXnzZgYO6AfUfXF3797NiBEj3KIjoSADxThSUFpaSmVlZe7Yl156KV/5yleQjs0dd9zBI488wtVXX83vfvc7rr/+empr3dTnueeey9y5czn77LMB+Pa3v82YMWMAOPXUU1m2bBljxozh8ccfZ+bMmbz88stMmTKFiooKnn/+eYYNG0YkEqGwsJC+fSty66IDBgzI3ewsX76cjRs3csopp7Bx40YOOuggCgoKWLZsGevWrWPQoEEcfPDBbNiwgZNOOomf/OQnVFVVUVpaimEY9O/fH9vK5N6bpmlccMEF/PWvf2Xx4sVcddVVfPrpp7nn+/fvTzKZZM6cOVRVVdGvXz/effddDj/8cAAmTpzISSedhOM43HPPPVx//fXccccdqJqGbVkEgu4N16ZNm5g6dSq2laGwIMJBBx3E9u3bWbx4MS+99BK6rnHttdcyffp0Fi9ezIknngjAT3/6U0pLS/nmN7/JDTfcQE1NDSUlJSiKQr9+/YiEg6hZSdsrrriC448/vllN9Lvuuouy0lJOO+00TjjhBF5++WUuv/zyZj+LhYWF6LpOnz596NevH0IIZs+ezT333MPAgQM56KCDuOaaa5g9ezZf+cpXALjxxhsZO3Zs7txu2rSJlStXcswxx3DcccchpSQY0CgtrsjdQO2LSpgQglAoSDAYoKS4iEzGpDaeYNuOnQgEkUiYSDiUjcSVnF49QECRDVonuxOrNkF6WyWiXs5RIpFJk8TuPTnHLQUY5UUYhdFm9tQ0yaSFRBIO1Vt+cUehIRNpZGUtzq5qZE3SfVxTUZGkLdvNhWsqaiyClsp4YwAxNUl15Xb0aBQ7niAZiWHFawk51QhVoTq9BwwVMxEn1qcfSm0t2vZaVFui1cb3+Zz59Ax6jOO+8cYbWblyJQsXLsw9Vl5ezjPPPMMNN9zA//7v/6IoCpdccgljx47Nu8jl8ccf54wzzsg536a44447+P73v5/7vbq6moEDB7rfJU3LrZdL6TBkyBA2btyIZVmUlRTwxbbd2EBFaTGqqmJb7rqgbdsNokyv4GfIkCGsW7fOjc6F4gp+qBrr169nyJAhue379u2LYyaxU3vo27cvO3bsAGDDhg28+uqrLFmyJLet59AAysrKyGTS6LpBKBQilXLXv0QqzjVXX821116LaZp885vf5J577uGpp56qZ6ODmXEdrLfebNsWGzZsIJPJMH16XaHLkUceSTAYZMOGDWzZsqXBc5MnT84d1yOTThHS6pTArrjiCi6//HIqKyuZMWNGA8f92muv8d3vfpfrr7+ePn36EIvFclkQ79y4tiYbnBshlGwBkMq2bds44IADUBSFZDqBY1sIIdixYwelpaUEAgFSiWqC4QL69+/P9u3bc/svLS0llUgQDIdz5zAWqyvcs6xMbk3fvSkxMTNJAqG9Z6D37duXTDqBEYw0sNX7THjxVFMzxR3HQlV1duzYQb9+/bDMFKrm3ggtWrQot13//v1JJRMkEnEuv/xyUqkUP/nJT1ixYgXf/e53ufPOOykpKdmnjoGm8Jx4MBio58QzJBJJduzchW07hMNuFB4MGqi6gm3aZCybQNCoW6fNFmWp2dG0tgRV1Knh5X2T4QqgQ/3ixMYvrbcvO55CtSWKppGOJ3OOWlMEVioDmkogHMKxbex4Eppy3N4xvXbGesdLZyyk4xDRFGQ8hdxVnXXUCfd1AR0RCqBUFCHCQQjooIBm10kBWhLMZMpV81MVRKIWJa7jOBaWppAKqxT2KUEvGUgybaLviqAiCVgWRmkpBhAoK0GoKnpNTX7n0afH0yMc90033cRLL73EO++8w4ABAxo8N2HCBNauXcvOnTvRNI2ioiL69u3bwMk1xxdffMGbb765V/qyMYFAoEE63sO2TYYNG1YvhWtz+OGHM2DAAB5//HGuu+46hgdD6IZBOp0mkUxTUFBAdXU16XSa/v3741h1Dsy2MkyePJmzzjqLadOmUVpSgkQSj8d54oknmDFjRm7blStXoughFD3EypUvc/DBBwMwZswYzj33XL75zW82+36cJsoWlIgr7uI4Nrquc8wxx+QK/nRdx7JcJ+H1HXsXS+nYjB49Gtu2efjhh4lEIg32u2XLFqLRKDNmzNjrAvvFF19gZW9kQpGGa2qjR49mwIABnHPOORiNdMHnzJnDD37wA6699loAnnzyyQbPr1y5EiEUAsEIK1euZOjQoVlbXecnpc3w4cNZvXo1tbW1hMOFkL1BOvDAA9m5cyc7duygvLwcy7L4+OOPc+fXQ9X2vjH0zlNhYWnusdacysqVKznppJNy/z799NMBKCgoYNeuXQwYMIDq6uoGnRL1/x4AQ4cOZcWKFbkbtOXLlzewVwhBxjTRdQNVVbnhhhu44YYb2Lp1KwceeCA333wzuqZ3uONujKK4TjwQMCgqKnAj8do427btQDd0opEIwYDh/r2lRCJwXPH7BhXVbgZfYDsSTfFSzu55tqREE2DXxN0by2QKLRzG2lONsrUKWZ2om4wnBOia61jtrHNV6hysjYNS4f4td23aRqQohm3ZVO+sxDYtVEPjoNHDEYD9+Vas9TvqHLSqQDKNzFjIZNpNpQcN0DVEQAdFQU+ZkDExHcd9PhZGKStEDDsAIkGErnl3Js2eU11KhGWTsR0MXSMgijEG9gVFYev27TiGSUCLQ3EMmUgRLRuKrqn1JICz+xa458Jnv6Bb/5JSSr7zne8wd+5c3n77bQYPHtzstmVlZQDMnz+f7du3M3HixFb3P3PmTPr06ZMr5Gkr6VSK4cOHo6oqX3zxBf379kFKh5kzZ3L++efzwQcfMG7cOLZs2cKsWbN49tlnKSwsZOHChZx44okYhkE8VXeXm0knOeGEE7jyyis57rjj+M53voNhGDz66KOMHz8+l+723ue0adPo168fU6ZMyUXGP/rRj7jsssvYtm0bQ4YM4ZNPPuGggw7isssuy722qVTk1772NU466SRGjhzJxo0b+cUvfsHvfvc7AMaOHcsvf/lLpJSccMIJDV5nmmkGDRrExIkTOeuss7j22msRQjB//nweeOABxo8fz89+9jMuvfRSzjvvPBKJBO+99x4zZsxg2LBhrFu3Llf81fhm44UXXmjyvB922GH84Q9/oLS0lMWLF7NixYoGdi1btowf//jHjBw5krvvvpuHHnoIx7FxskIUVsa1efLkyUycOJH//u//Jh6PU1JSwvnnn891113HRRddxLXXXsuLL77ImDFjGDt2bMN2oCbO4RFHHMGtt97KmDFjuPrqq5u0vTE//elP2bJlCx999BGVlZWceeaZgLvO/53vfIcLLriAefPmNbhxPOKII5g6dSonnHACF198MbfeeitXXHEFmUyGbdu28eKLL/Lhhx82OI47YSvA73//e6qrqxkxYgTLly9n6NChRKNRUol9E/hpC/UjcUVVCQSDGLpGPJ5g9549OLZDIBggGAyi6QaqIrBMKzshTNQNspESr/LE9eWuvLCdSLLn/Q+JDjiA5MbNFBxwINXbt1Ay4hDUgw9wnWqdMV6PW91j2XVlq7Ia0u5nxhutGi6IkkmlSdUmUDUNgTvuxYqGUAui6AG9LqhOm27aO20ibduNiIOB3PHDQrhRdSyECBnZx8XeWYBWzqVXQJjJmK4mfMAgkUghNJ0+hTGUeI17A1T/7Xnv3We/pFuryr/97W/z1FNP8fzzzzNixIjc44WFhYRCbrvOzJkzGTlyJOXl5bz33nt897vf5corr+Shhx7KbX/KKadw3nnncdNNN+UecxyHwYMHc8kll3D//U1Pz2mOqqoqioqK+PTjZQwf+f948MEHyWQy/PjHP2bn9s2UlPWltraWZ555htWrV1NWVsbEiRM55JBDALdi+LLLLmPChPHs2Lqxwb4LikqJFRTlCtBs22bixIkcffTRxGurCUdi3HTTTQwfPpxYLMb69es5++yzOfroo6nes5uCohLWr1/PX//6V3bu3MnBBx/MpEmT6NOnD6+//jojRoygvKyEYCjCokWLKC8vZ+TIkXz88ce89dZbbNiwgbKyMk4//XQOO+wwUskEgWCIBQsWsGbNGsaOHUu/fv344IMPmDhxIls2rqegqIRQOMr8+fN56623MAyDY445htNOOw1VVUmn07z44ou8//77FBQUcPLJJ3P88ccDbh/+4sWLCQaDTJ48mTlz5nDcccdREIuQiNcgpaS4pJyPV31CbW0tX/va13Ach7/85S+sWLGCo48+mgEDBqCqKmPHjuUnP/kJjuNwyCGHsGrVKsaPH8+JJ57Irh1bSSXr1vAKi0oJRWK8+uqrvPPOOxQXF3PxxRczZMgQbNvmxRdfZOnSpYwYMYLLLrsMXdeRUvKHP/yBa6+9lprqSmIFxTzxxBNMnjyZUChEdXU1r7/+OpWVlVx66aV8+OGH9OnTh8GDDiReW0NJWUXu9QB//OMfOfnkk3nyyScJh8NcddVVRKMRV4xFqDz22GNs376db37zm3z44Yecc845xGIxUqkUr732Gtu3b+fcc8+loqKC5cuX8+yzz1JcXMw3vvEN+vbti6IovPrqq4waNYqy0mIMI8gX//kPL774oltfMXAgl112GQUFMbZv3djQeXUBUkIimcQwdPTsspGUEtMyqa1NkkgksCybUCjorpkHXA1xhNg7RS4lTiKNvXkX5uYdpOxawhUVmPE4RlkJqdoawsOHoWgqQnFV0gSehkPT9mV2VWHtqkJRFCzTdjXlFYF06ka7qprqCp3EwmQUHSOgES4Md3jFueNIbMfGMk1XqyBrg+M4ONLJzS6XjqtpsH3HTvoURyjRq7EyaVLRodiWQygUzGU0hKJk5WZVFCGoqalh5Ogj2LNnD4WFe7dV+vQiZDdCtuSi8c/MmTNz29x2222yoqJC6rouhw0bJh966CHpOE6D/Rx00EHynnvuafDY66+/LgG5evXqNtu1YcOGnC333nuvrK2tlaeffrpMp9Py+uuvl3379pV33XWXXLFihaytrZXr1q2TTzzxhHzvvffk5s2b5fnnny8dx5GXXHJJk+/v61//upwzZ47csWOH3L17t3zppZfkmWeeKQGZSqXkt7/9bfnII49IKaWsra2Vr776qjzmmGMkIEeOHClnzJghN23aJKWUcsWKFfKhhx6St912m1y4cKGcN2+ePOSQQ+QFF1wgFyxYIF955RV58803yz/+8Y/yk08+kclkUq5Zs0Y+++yz8rjjjpOAnDx5snzuuefke++9J9esWSN37NghFy9eLL/zne/kbL700kvlW2+9JdPptKytrZVvvPGGvPLKK6VhGPLmm2+WS5culVJKuXPnTjlv3jx5+umnyxEjRsjf//738p133pFLliyRVVVVcsmSJfKZZ56RgwcPzu37xBNPlG+88YZcsGCBPP/88+X1118vly9f3uBv8sYbb0gppbznnnvk3XffLaWUMplMyrfeekuecsope51jIYS84oor5MKFC6VlWXLHjh1y9uzZcujQofKqq66SS5culZlMRn700Ufytttuk5FIRD766KNy6dKlcvr06dIwDPnzn/9cLl26VD7++ONywIABcsqUKfKNN96QS5culbW1tXLFihXylVdekUceeaQ0DCP3+t/85jdy+vTpcuPGjTn7169fL6dPny4LCgpkIBCQ9957r/z3v/8ta2pqpJRS7tmzR86aNUv269dP3nrrrfLVV1+VS5culU8//bS86KKL5HPPPSdramrkF198IR977DHZt29fefXVV8tFixbJuXPnyhEjRsgRI0bIWbNmyc8//1xKKeXnn38uf/nLX8qSkpJmv2v+z5fvZ8OGDW2+Jvr0LHpUH3dPwXEcNm/eTCwWQwiR+38gGyU0vVboFuG4ghiWZZFI5Nd+4RXDbdiwgQMOOIDf/va3DBw4kDPPPJN4vOdWgta3uyv6QqPRKH/+85+RUnLppZfmKuvbQlfb3FH4dnct+6PdUkpqamro379/j1Cw82k/vuPuAXiCL71NGKE32t0bbQbf7q7Gt9unJ+Pfdvn4+Pj4+PQifMft4+Pj4+PTi/Addw8gEAhwzz33NNlL3pPpjXb3RpvBt7ur8e326cn4a9w+Pj4+Pj69CD/i9vHx8fHx6UX4jtvHx8fHx6cX4TtuHx8fHx+fXoTvuH18fHx8fHoRvuP28fHx8fHpRfiOuwtojzRnT8JvPPDZn/A/zz69Hd9xdyI1NTV861vf4tJLLwVcDfTeQE1NDT/84Q+ZNWsW0PrM6Z5CVVUVP/3pT/nggw+625S8qa2tZd68ec3q3/dUUqkUGzZswDRNoPd8tjOZTAP9/97ixL3z29s+Jz6dg++4O4mf/OQnlJeX8/LLL7NkyRJ27NjRK4T9p0+fTv/+/Vm+fDlSStLpdOsv6gFMmTKF4uJilixZwtChQ7vbnLyorKxk+PDhnH/++SxdurS7zcmb++67j8MPP5wLLriAk08+mY8//hhFUXq8E5w2bRrjxo1j4sSJ/M///A+bNm1CCNHj7X7wwQeZMGECAFp2PKrPl5zuGEm2P/P000/LiooKOXz4cPn3v/9dPv/883LYsGFyxYoV3W1aq6xcuVJ+9atflU888UR3m5I38+fPl4MGDZKDBw+Wr732Wneb0yZ27dolJ06cKEeOHClPPPFEmUwmu9ukFlm6dKk8+uij5ahRo+TcuXPlk08+KU8++WR57LHHdrdpLbJy5Up5/PHHy1GjRsnZs2fLH/zgB/IrX/mKnDRpUneb1iJr166VF198sSwvL5dCCDl9+nQppZSWZXWzZT7djX/71oFs27aN//u//+OWW27h9ttvB2DTpk2sWbOGyspKwE159dTI+9lnn0UIwbe+9S0+++wznnjiCQYNGsTo0aM55phjADe12JNS58899xw7duzgnXfeYezYsXzxxResWrWKoUOHUlFRQWFhYY8956tXr2br1q28+OKLjBw5kqeffporrrgC6HnnGWDx4sWMGjWKhx9+mKKiIgC2bNnC3//+d0zTRNf1Hme3ZVnMmzeP8vJy5s6dS3l5OZdeeilPPvkkDz/8MOvWrWPw4MHdbWaTrFy5EoAZM2awZMkS7r33Xq688koikUiP/Uz7dBHdfOOwX+E4jjRNs8HvGzdulGPHjpVTp07tRstax7Ztefnll8upU6fKOXPmyLKyMnnmmWfKww47TEYiEfn444/LTCbT3WbmsG1bSulGrSNHjpTf/e535TXXXCMHDBggx44dK8vKyuRpp50mHcfpZkubZ8mSJfLCCy+UUkp57bXXysGDB0sp3YiqJ51r7xwmk0m5atWqBo9PmDBB3nzzzXLhwoXdZV6LZDIZOWfOHPm3v/1NSln3ufnrX/8qBwwYIPfs2dOd5jWJd74TiYRcsmSJlFLKf/3rX/LQQw+VN9xwg5Sy7n34fDnxb9k6ECFEgzUoIQTl5eVYlkUikQB6ZhGPd/deUFDA7NmzeeONN3j44Yd54YUXWLZsGd/61reYOXMmCxcu7G5TcyiKgm3blJSUcN111/Hoo4+yefNmZs2axezZs3nsscdYtWoV//Vf/wX0zCKkdevWsX37dsCNqmprazn11FM54ogj+Pvf/97N1tXhRdDBYJCRI0cC8PLLL1NcXMzmzZtZtWoVF198MZdccgl79uzpRkv3Rtd1zjvvPMaPH9/g8T179jBw4EBCoVA3WdY83vkOhUK5TNfBBx/Mddddx5NPPpmrKbBtuzvN9OlOuvvOoTfy7rvvynXr1kkpZYsRnXdXfNVVV8njjz++K0xrkdbsfvfdd2VpaakMBoPyo48+yj2+detWOWjQIPn44483+9rOpDm76//77rvvbmCzlFLOnTtXCiHkxo0bu8TO+uTzGZkyZYq8//77pZRSvvnmm7JPnz5SCCGnTp3abeuY+X62586dK59//nlpmqbMZDLy448/lkKIXGTb1bT1O3nllVfKb3/72w0e6w7ysdt7fO3atfKUU06R48eP7yrzfHoofsTdBr744gsmTZrEuHHjeOCBB4CWW6W8StuDDjqIdDrNpk2busrUBuRr98EHH8ykSZPQdT33vOM4VFRUEI1G+fTTT5t9bXfYLYTIZTBuu+02jjjiiAavLy8vp7i4OLdW2BNshrqsi67rLFy4kPPOO4+zzz6bb33rWxx66KH8+9//7vJ14nw/IzKbuZg0aRITJ05E0zR0XWfw4MGUl5fz0Ucf9Ui7Pbzv5Ntvv81JJ52Ue2zdunVA12XE2mK39/igQYO4/vrr+eCDD3j++ecBWLhwIVu3bu0Sm316Dr7jzpObb76ZIUOGoKoqX//617Ftu9VWKZkt1BkwYACbNm0iFot1kbV1tMXuvn37cu2111JUVMS0adNYu3YtiqLwz3/+k2AwyOTJk3uc3V6BTjgc3uu5JUuWMHz4cI4//vhOtxfabnNlZSULFixAVVX+8Y9/8Itf/IKHHnqIJ598kvnz53eJzW2xG5p3Lq+88goHHnggF154YWea2oD2fCcB3nvvPTKZDOPHj2fLli1ceumlDB06lI0bN3ZJwVd77VYUhXHjxnHBBRdwyy23cM455zBu3Dg+++yzTrfZp4fRvQF/z2fp0qUyEAjII488Ur733ntSSilvuukmeeSRR0op80sbf/rpp1JRFPnmm292qq31aavd9dOF8+fPlwMGDJAHHXSQvOiii2RRUZG86qqrZCKR6HF2N2bTpk3yP//5j5wyZYrs37+/fOSRR6TjOJ2a3m+rzV4B42effSaXLl3aoKBRSil/+ctfyp07d3aave21uzGbN2+W69evl1OmTJF9+/aVd999tzRNs9OXUvbV7scee0yecMIJ8t5775XhcFhOmDBBfv75551qc0fYLaWU27ZtkxMnTpRCCHneeefl0uw+Xy58x90E9b9AH374oXz11VcbPD9r1izZr18/uWHDhrz2t2jRIvmNb3xDrl27tkPtbExH2O3tY/ny5XLWrFny1ltvlX//+987xd7Gx5Ry3873xo0b5b333isPOuggOWrUqE69Ueroz0hX0VF2b9q0ST7wwANy+PDhcvTo0Z1+U9qR53vSpElSCCEPPfRQ+corr3S4rfXpSLvXrFkjv/rVr8oDDzxQvv322x1uq0/vwXfcjaipqZG7du3K/V4/EvW+hE899ZQcNGhQk6Iq8Xhczpkzp8H2XUFH2t2VdKTdmUxGvv/++/KFF17o8TY/99xznWpjU3TkuTZNUy5btqzTHZ+UHf8ZmTFjhpw1a1YnW93x38lMJiPfeuutTrTYp7fgO+563HnnnXLIkCHya1/7mrz44ovl6tWrc8/VT7du3rxZ6rqeizLqfyH/9re/SSGEfOONN3q93Z1949GRdndVNbP/GenayvGOtPv111/vlXZ35efEp3fgF6fhDh741re+xSuvvMKMGTO45pprqKmp4fTTT+fDDz8E3KIcrzBHSslhhx2W62uuX9By9NFHM3XqVEaNGtXr7e6syubOsPvQQw/tFFs70+be+hnp7HPdWXaPHj26V9rdFZ8Tn15GN9409BhWrFghDz300AZruclkUhYUFMiLL75YfvbZZ1LKurthy7LkmDFj5B133NHg8a7Gt9u3uTV8u7uW3mq3T+/Cj7hxx0GuXr2aww47LPfYtm3bKCkpYeHChbz55ptIKVEUBcuyUFWV448/Ptey012awb7dvs2+3b7dPl8+/E8JUFBQwJgxY/jxj3+ce2zGjBmcfvrpHHjggcybNw/p1gPkJE29L962bdu6y2zfbt/mVvHt7lp6q90+vYwuje97KMlkUs6cOVPqui6POeYYWVpaKvv37y/Xr18v58+fLzVNkzU1NVLKulTWO++806DgpDvw7fZtbg3f7q6lt9rt07v4Uo/1tCwLTdMIBoNceeWVHHroofzzn/+kuLg4pxL2wQcfcPDBB1NZWUk0Gs2lsr72ta/5dn8J7O6NNvt2+3b77Od0951Dd1BfqSqTycjvf//7uaKRxtx8881y4sSJXWVai/h2dx290WYpfbu7mt5qt0/v5kvluC3LatCb/PDDD8uCggI5dOhQuWbNmtzja9eulWvXrpU//OEPZf/+/eXcuXOllF0/FcvDt7vr6I02S+nb3dX0Vrt99g++NI67/pjEN998Uw4dOlRWVFTIxx57bC+t6NmzZ8vRo0fLMWPGyIULF3a1qQ3w7e46eqPNUvp2dzW91W6f/YcvjeOWUsr//Oc/8vTTT5e6rsv/+Z//aSBHKGXdXXA8HpeLFy/uDhObxLe76+iNNkvp293V9Fa7ffYPvjSO+5lnnpGapsmzzjpLfvLJJ91tTt74dncdvdFmKX27u5rearfP/oOQUsruLpDrCj7//HO2bdvGcccd192mtAnf7q6jN9oMvt1dTW+122f/4UvjuH18fHx8fPYHfOU0Hx8fHx+fXoTvuH18fHx8fHoRvuP28fHx8fHpRfiO28fHx8fHpxfhO24fHx8fH59ehO+4fXx8fHx8ehG+4/bx8fHx8elF+I7bx8fHx8enF+E7bh8fHx8fn16E77h9fHx8fHx6Eb7j9vHpRtavX48QgmXLlnXK/oUQzJs3r1P27ePj0z34jtvnS82VV17JpEmTuu34AwcOZMuWLYwePRqAt99+GyEEe/bs6TabfHx8ejZadxvg4/NlRlVV+vbt291m+Pj49CL8iNvHpxkWLFjA0UcfTSAQoF+/ftx+++1YlpV7/qSTTuLmm2/m1ltvpaSkhL59+/KTn/ykwT4+/fRTTjjhBILBIKNGjeLNN99skL6unypfv349J598MgDFxcUIIbjyyisBGDRoEL/61a8a7Pvwww9vcLzPPvuMcePG5Y71xhtv7PWeNmzYwEUXXURRURElJSWce+65rF+/fl9PlY+PTxfiO24fnybYtGkTZ555JkcddRTLly/nt7/9LY8//jj33ntvg+1mzZpFJBJh6dKlPPDAA/z0pz/NOUzbtpk0aRLhcJilS5fy+9//njvvvLPZYw4cOJA5c+YAsHr1arZs2cKvf/3rvOx1HIfzzz8fwzBYunQpv/vd77jtttsabGOaJqeddhqxWIx3332XRYsWEY1GOf3008lkMm05PT4+Pt2Inyr38WmC3/zmNwwcOJDp06cjhOCQQw5h8+bN3Hbbbdx9990oinvP+//+3//jnnvuAWDYsGFMnz6dt956i/Hjx/PGG2+wdu1a3n777Vw6/L777mP8+PFNHlNVVUpKSgDo06cPRUVFedv75ptv8umnn/L666/Tv39/AH72s59xxhln5LZ5+umncRyHxx57DCEEADNnzqSoqIi3336bCRMmtO0k+fj4dAu+4/bxaYJPPvmE4447LufgAI4//nhqa2vZuHEjBx54IOA67vr069eP7du3A27UPHDgwAZr2EcffXSn2Ttw4MCc0wY47rjjGmyzfPly1qxZQywWa/B4KpVi7dq1nWKXj49Px+M7bh+ffUDX9Qa/CyFwHKfDj6MoClLKBo+ZptmmfdTW1nLkkUcye/bsvZ4rLy/fJ/t8fHy6Dt9x+/g0wciRI5kzZw5SylzUvWjRImKxGAMGDMhrHyNGjGDDhg1s27aNiooKAD744IMWX2MYBuCuj9envLycLVu25H6vrq5m3bp1DezdsGEDW7ZsoV+/fgAsWbKkwT7Gjh3L008/TZ8+fSgoKMjrPfj4+PQ8/OI0ny89VVVVLFu2rMHPtddey4YNG/jOd77Dp59+yvPPP88999zD97///dz6dmuMHz+eoUOHcsUVV/Cvf/2LRYsW8eMf/xigQQq+PgcddBBCCF566SV27NhBbW0tAF//+tf5v//7P959911WrFjBFVdcgaqqudedeuqpDB8+nCuuuILly5fz7rvv7lUId9lll1FWVsa5557Lu+++y7p163j77be5+eab2bhxY3tOnY+PTzfgO26fLz1vv/02RxxxRIOfqVOn8sorr/D+++9z2GGHcf3113P11VfnHG8+qKrKvHnzqK2t5aijjuKaa67JOdNgMNjkaw444ACmTJnC7bffTkVFBTfddBMAd9xxByeeeCJnn302Z511FpMmTWLo0KG51ymKwty5c0kmkxx99NFcc8013HfffQ32HQ6HeeeddzjwwAM5//zzGTlyJFdffTWpVMqPwH18ehFCNl448/Hx6TQWLVrECSecwJo1axo4Xh8fH5988R23j08nMnfuXKLRKMOGDWPNmjV897vfpbi4mIULF3a3aT4+Pr0UvzjNx6cTqamp4bbbbuM///kPZWVlnHrqqTz00EPdbZaPj08vxo+4fXx8fHx8ehF+cZqPj4+Pj08vwnfcPj4+Pj4+vQjfcfv4+Pj4+PQifMft4+Pj4+PTi/Adt4+Pj4+PTy/Cd9w+Pj4+Pj69CN9x+/j4+Pj49CJ8x+3j4+Pj49OL8B23j4+Pj49PL+L/A4QSMSURagwyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "3c9c9c19", + "metadata": {}, + "source": [ + "#### Cross-tabulation Table" + ] + }, + { + "cell_type": "markdown", + "id": "ec6ca1f3", + "metadata": {}, + "source": [ + "A cross-tabulation table displays the frequency of each class in the presence of another within the spatial unit of interest. The sample indices are denoted by the band column. The combination of candidate and benchmark map values are denoted. Additionally, the resulting agreement map values for each combination are shown. The counts column denotes the frequencies of occurrence and can then be used to compute categorical metrics." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fdc9df2b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandcandidate_valuesbenchmark_valuesagreement_valuescounts
011.00.06.010345720.0
111.02.018.0639227.0
212.00.020.0512277.0
312.02.024.02473405.0
\n", + "
" + ], + "text/plain": [ + " band candidate_values benchmark_values agreement_values counts\n", + "0 1 1.0 0.0 6.0 10345720.0\n", + "1 1 1.0 2.0 18.0 639227.0\n", + "2 1 2.0 0.0 20.0 512277.0\n", + "3 1 2.0 2.0 24.0 2473405.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "crosstab_table" + ] + }, + { + "cell_type": "markdown", + "id": "c2b000f2", + "metadata": {}, + "source": [ + "#### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "d6e5d48d", + "metadata": {}, + "source": [ + "A metric table contains information about the unit of analysis, (a single band in this case), and selected categorical metrics. This is done by specifying the positive and negative categories of each dataset and then choosing the statistics of interest. Since we did not provide the `metrics` argument GVAL computed all of the available categorical statistics. (Note: if there is no negative class encoding all statistics requiring true negatives will be skipped.)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "16cb3626", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
fn639227.0
fp512277.0
tn10345720.0
tp2473405.0
accuracy0.917577
balanced_accuracy0.873727
critical_success_index0.682336
equitable_threat_score0.610939
f_score0.811177
false_discovery_rate0.171578
false_negative_rate0.205365
false_omission_rate0.058191
false_positive_rate0.04718
fowlkes_mallows_index0.811352
matthews_correlation_coefficient0.758757
negative_likelihood_ratio0.215534
negative_predictive_value0.941809
overall_bias0.959215
positive_likelihood_ratio16.842723
positive_predictive_value0.828422
prevalence0.222798
prevalence_threshold0.195925
true_negative_rate0.95282
true_positive_rate0.794635
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "fn 639227.0\n", + "fp 512277.0\n", + "tn 10345720.0\n", + "tp 2473405.0\n", + "accuracy 0.917577\n", + "balanced_accuracy 0.873727\n", + "critical_success_index 0.682336\n", + "equitable_threat_score 0.610939\n", + "f_score 0.811177\n", + "false_discovery_rate 0.171578\n", + "false_negative_rate 0.205365\n", + "false_omission_rate 0.058191\n", + "false_positive_rate 0.04718\n", + "fowlkes_mallows_index 0.811352\n", + "matthews_correlation_coefficient 0.758757\n", + "negative_likelihood_ratio 0.215534\n", + "negative_predictive_value 0.941809\n", + "overall_bias 0.959215\n", + "positive_likelihood_ratio 16.842723\n", + "positive_predictive_value 0.828422\n", + "prevalence 0.222798\n", + "prevalence_threshold 0.195925\n", + "true_negative_rate 0.95282\n", + "true_positive_rate 0.794635" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "7a3eb3af", + "metadata": {}, + "source": [ + "## Access to Individual GVAL Operations" + ] + }, + { + "cell_type": "markdown", + "id": "8caf6a67", + "metadata": {}, + "source": [ + "Aside form running the entire process, it is possible to run each of the following steps individually: homogenizing maps, computing an agreement map, computing a cross-tabulation table, and computing a metric table. This allows for flexibility in workflows so that a user may use as much or as little functionality as needed." + ] + }, + { + "cell_type": "markdown", + "id": "8c7c6d3f", + "metadata": {}, + "source": [ + "### Homogenize Maps" + ] + }, + { + "cell_type": "markdown", + "id": "df6070e8", + "metadata": {}, + "source": [ + "Homogenization is intended to help prepare two disparate maps for comparison. Currently, homogenization handles three sets of functionality:\n", + "\n", + "1) *Spatial alignment:* matching the CRS's and coordinates of candidate and benchmark xarray maps. By default, the benchmark map is used as the target of this alignment but the candidate map can also be selected.\n", + "2) *Data type alignment:* in order to avoid precision warnings in the comparisons, dtypes are set to the highest precision dtype of the two maps.\n", + "3) *Data format conversion:* a vector data format benchmark map as a Geopanda's DataFrame can be passed which will be converted to the same xarray object as the candidate map with the same CRS and coordinates." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "7264ffc9", + "metadata": {}, + "outputs": [], + "source": [ + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a1a4bd1a", + "metadata": {}, + "source": [ + "The `target_map` can also be an alternate map:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e3917e34", + "metadata": {}, + "outputs": [], + "source": [ + "target_map = rxr.open_rasterio('target_map_two_class_categorical.tif')\n", + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = target_map\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "686cdd37", + "metadata": {}, + "source": [ + "The default is to resample using the \"nearest\" method. Although not applicable for this case of categorical comparisons, one can change the `resampling` argument to use alternative resampling methods such as bilinear or cubic resampling. These methods would be relevant in the case of continuous datasets." + ] + }, + { + "cell_type": "markdown", + "id": "3376c8a9", + "metadata": {}, + "source": [ + "### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "22ae6d51", + "metadata": {}, + "source": [ + "The \"szudzik\" comparison function is run by default if the `comparison_function` argument is not provided, but one may use the \"cantor\" pairing function, or a custom callable." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c6e3c35c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAF/CAYAAAA2D9EJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd4AU5fn4PzOz9fpxcBynSFGaDQGVACqo4KmY2AtoFCSxBCwxRo0/NWr8xmjU2EsSBaOiRqNYYiSoARM1RGk2RFQQ9ejH9ds28/7+2HuX2d3Z3dlyd6jzMRtuZ955552y7/u8z/sURQghcHBwcHBwcPheo/Z0AxwcHBwcHBx6HkcgcHBwcHBwcHAEAgcHBwcHBwdHIHBwcHBwcHDAEQgcHBwcHBwccAQCBwcHBwcHBxyBwMHBwcHBwQFHIHBwcHBwcHDAEQgcHBwcHBwccAQChwT+97//oSgKiqJw44039nRzHArIjBkzYs/2/PPPT1kuGAzSq1evWNnFixd3XyOz5Nxzz6W4uJgtW7bEbZdtT/eZMWNG3DEDBw5MKlNWVsZBBx3EbbfdRigUSjp/MBjkD3/4A+PGjaO8vByPx0O/fv048MADueiii/j73/+esu0NDQ389re/5bDDDqO6uhq32015eTkHHHAAF154IW+88UbW92PSpElpr/nVV19Neey8efM4+OCDKSkpoVevXhx77LG8/fbbOZ1HURRU1Xp4+frrr5k5cya1tbX4fD6GDh3Kr3/9awKBQFLZjRs34vf7+dnPfpb1vXDIHldPN8Bh1+Kxxx6L/f3EE09w3XXX9WBrHBK5/vrrueGGG5g7d27SgJYNzzzzDPfccw8ejydp39///nd27NiRRyu7hw8++IBHH32UX/ziF1RXV1uWOeecc1Ief8ghh1huP/nkkykpKUEIwfr163nnnXd47733eOmll1i0aFHsnjU2NnLkkUeyfPly3G4348aNo7a2ltbWVpYtW8a9997LokWLmDp1atI5nn/+eWbMmEFzczMlJSWMHTuW6upq2traWL16NQ8++CAPPvggxx57bFqhIhXyGhLZbbfdLMtfeuml3HXXXfj9fo466igCgQCLFi3in//8J88++ywnnHBCXPmjjz6agQMHWta1bNkyPvzwQw499NCkfZ999hnjxo1j27Zt7Lvvvhx66KG899573Hjjjbz++uu8/vrreL3eWPl+/fpx3nnncf/993PppZcydOhQ+zfBIXuEg0MnoVBI9O7dWwCipqZGAOK///1vTzfLwcSvf/1rAYi5c+dmfew555wjADFq1CgBiOeff96y3Iknnig0TRMjR44UgPjXv/6VV5u7ih/96EfC7XaLzZs3J+0DRLbd24ABAwQg1q1bF7d9xYoVory8XADinnvuiW2/6KKLBCAOOOAA8fXXXyfVt3TpUnHDDTckbX/ppZeEoijC5XKJW2+9VQQCgaQyq1evFuecc44YMmRIVtcwceJEy2tIx6JFiwQgqqqqxKeffhrb/vbbbwuPxyMqKirEjh07bNd38MEHC0D86U9/Sto3YcIEAYiLL744ti0cDosTTzxRAOLXv/510jFff/21UFVVnHbaabbb4JAbjkDgEOPFF18UgJgwYYK48cYbBSBmz57d081yMFEIgeDWW28VqqqKU045JanMjh07hNfrFUcddZSoq6vbZQWCDRs2CFVVxXHHHWe5v5ACgRBC3HDDDQIQRx55ZGxbbW2tAMSiRYtsn6OlpSUmdD/22GMZy7/33nu26xYiN4HgmGOOEYD4wx/+kLTv4osvFoC47bbbbNX16aefCkD4fD7R2NgYt2/p0qUCENXV1UlC0KZNm4Tb7RaVlZUiHA4n1XvkkUcKt9stNm3aZPu6HLLHsSFwiPH4448DcNZZZ3HWWWcB8PTTTxMOh1Me8/777/PDH/6QiooKSktLOeyww1i0aBGLFy+2XKeV69iLFy9m4cKFHH744VRUVKAoCo2NjbFyr776KlOnTqVPnz54vV4GDx7MZZddxvbt2y3bIYTgySef5IgjjqCyshKfz8eIESO4/vrraW9vTyov10DXr1/P008/zUEHHURRURG77bYbV1xxRWy9+PPPP2fatGlUV1dTVFTE4Ycfzvvvv5/yfmTTbvO9ePPNNzniiCMoLS2lrKyMqVOn8vHHH8eVHzhwIDfccAMAM2fOjFuvzWadv1+/fhxxxBG8/PLLNDU1xe3761//SjAYjD1/K1auXMkVV1zBmDFj4q7zZz/7GfX19Unl169fj6IoTJo0iebmZi655BL69+8fe0Z/+MMfMAzDdvsBHnnkEQzDYNq0aVkdlyujRo0C4Kuvvopt27p1KwB9+vSxXc+8efPYtm0b48ePT3uPJWPGjMmypdnR0dERs1U45ZRTkvbLbS+99JKt+mQf8sMf/pDy8vK4fXLp44c//GHcsgBA3759OfTQQ9mxYwf/+c9/kuqdPn064XCYefPm2WqHQ470tETisGvQ2NgofD6f8Hg8Yvv27UIIIcaPHy8A8eKLL1oe8/bbb4uioiIBiP3331+cccYZ4qCDDhKqqsbUqeecc07cMXKW+tOf/lQoiiIOOuig2HFyRnHllVcKQHg8HjFhwgRxyimniCFDhghA7LnnnkmzBF3XxbRp0wQgSkpKxKRJk8SJJ54o+vfvLwBx8MEHi/b29rhj5Ezq0ksvFS6XS0yePFmceOKJsdnb2WefLT799FPRu3dvMXz4cHH66aeL/fbbTwCiV69eljOVbNst78Vll10mNE0TY8eOFaeddpoYOnRoTIW7cePGWPlf/OIXMTX+hAkTxDnnnBP7rF69OuMzlud77LHHxNy5cwUgHn744bgyhx12mCgqKhItLS0pNQSnn366cLlcYvTo0eKEE04QJ5xwghg4cKAARL9+/cQ333wTV37dunUCED/4wQ/EmDFjREVFhTjppJPEcccdJ/x+v+V7kokDDzxQAEnnklBgDcETTzwhALHffvvFtg0ePFgA4oILLhCGYdg6x7HHHpu09JAtUktkdc/ke33NNdeICy+8UMyePVvcdddd4ssvv7Ssa8WKFQIQffr0sdzf2toqAFFZWWmrbXvuuacAxAsvvJC07/jjjxeAuO+++yyPvfzyywUg7rrrrqR9n3/+uQDEoYceaqsdDrnhCAQOQggh/vznPwtAHH/88bFt999/vwDEqaeemlRe1/XYwPV///d/lnWlEwgA8dRTTyXV+9e//lUAYt999xVr166NbTcMQ1x33XUCEKeffnrcMbfeeqsAxKRJk+IG0GAwKGbNmiUAceWVV8YdIzvOkpIS8e6778a2b9y4UfTt21coiiJGjBghrrrqqlhnbxiG+PGPfywAcd111+XdbnkvVFWNW8+PRCLi5JNPFoC49tpr444pxJLBY489Jpqbm4Xf7xeHH354bP+XX34pFEUR06ZNE0KIlALBG2+8YSmUSbX6zJkz4/ZJgUAKjlu3bo3t++yzz2Kq91Q2DYm0tLQITdNEbW1tyjKFFgjOOOMMAYgzzzwztu3mm2+OnWf48OHiqquuEs8//7z46quvUp5jt912E4D4z3/+k1XbzNgRCBI/brdb3HjjjUnlX3jhhZhdSSoqKioEIJqbm9O26+23344JsqFQKGm/tF2xEhaEEOLOO++MCchW9O7dW3i9XtHR0ZG2HQ654wgEDkKInR3JM888E9u2bds24Xa7LdcDpSHSkCFDhK7rSfVJ46FUAsHUqVMt2yFnwB988EHSPsMwxAEHHCA0TYsNKuFwWPTu3VsUFxdbztrb29tFTU2NqKysjGuneSaVyM9//nMBiMGDByd1bKtWrRKAmDhxYl7tNt8L8yAjee+99yzPUyiBQAghTjvtNKGqaswg7re//a0AxN///nchRGqBIB277babqKqqittmFgj++c9/Jh3zwAMPJK3Pp0OuRZuFmUSsBsXET6IAkigQGIYh1q9fH9P8KIoi3nzzzVh5XdfFFVdcIdxud1Ld++yzj3jggQeSfhs+n08A4pNPPklqc0NDQ5zWJ5X255577hHDhg0TV111VVId1157rXjsscfE559/Ltrb28WaNWvE//3f/8U0MXfeeWdcean5mDBhQsp7KYWYVNoYyYUXXiggtd2R1Jalsrn405/+FNMeWiH7lOXLl6dth0PuOG6HDmzYsIE333yTiooKfvjDH8a2V1VVceyxx/LCCy/wzDPP8JOf/CS276233gKi7k1W/sann356rIwVP/rRj5K2bdmyhVWrVjFkyBD23XffpP2KojBhwgRWrlzJsmXLqKurY/ny5Wzbto0pU6bQt2/fpGP8fj9jxozh73//O2vXrmXYsGFx+4866qikYwYPHgxE7Qzcbrflvo0bN+bV7kxtkO5V5vMUmrPOOou//vWvzJ8/n1/+8pc88cQTVFdXW7Ynke3bt/Piiy/y4Ycf0tjYiK7rAITDYbZv305DQwO9evWKO6ZXr15MmTIlqa5p06Zx4YUX8vbbb2MYRkr/dYmMOVBZWZmxnencDvfYYw/L7YMGDUra5vF4uPPOO+Nc6VRV5ZZbbuGSSy7h2Wef5c033+Tdd99lw4YNfPTRR1x44YUsXLiQv/3tbxmvCaCtrY1HH300afuMGTMYPnx47PucOXOYM2eOZR2JsUOGDh3K1VdfzYEHHkhdXR3XX3895513Hn6/P2N7siEcDvPXv/4VgB//+McFrVsi3ydpu+FQeByBwIEnnngCIQSnnHJKkrHPWWedxQsvvMDjjz8eJxDIgap///6WdabqbNPtX79+PQBr165FUZS0x2/bti3umEWLFtk6JlEgsPLLlv7b6fYFg8G82m1m9913T9pWWlqadJ5Cc/TRR1NVVcUTTzzB5MmT+eijj7joootwudJ3C08++STnnXcera2tKcu0tLQkCQQDBgywLFteXk5FRQWNjY3s2LGDqqqqtOeXhpDyHqUjFyM06cOvKAolJSUMHz6cE088kdraWsvytbW1XHzxxVx88cUArF69mttuu41HHnmEBQsW8OSTT3LmmWcCUSH7m2++sXwXd999d4QQse9HH300CxcuzLr9Vhx11FEceOCBvPfeeyxdupRJkyYBO99nK8NbSVtbG5D+fv/jH/9g+/btDBkyhLFjx1qWyXSuTOcpKysDiDM+digsjkDgEAtGtHjx4qRgLdLa/s033+TLL79M2alni8/nS9omLc1ramqSZtGJyHbIY/baay8mTJiQ9hirgSbdzM3OrM7chmzanct5Co3b7ea0007jgQce4OqrrwbIaPn+5ZdfxjxH7rzzTqZOncpuu+0Wm3GOHz+ed955J25gKzTSer2lpaVL6r/ttttSBt2xw4gRI3j44YfZsWMHzz//PH//+99jAsHIkSP55ptvWLFiRcb3tdAMGTKE9957L07rJAXzr7/+2vKYtrY2GhsbqaysTCsQmD2UUrHHHnuwYsWKlOeS21P1MVIQrKioSHkOh/xwBILvOcuWLWP16tVANIrYZ599ZllOCMETTzwRGzj69esHxLthmUm1PR1ypty7d2/bMzt5zPDhw3vMJSmXdu8qnHXWWTzwwAO8+uqrDB06lIMPPjht+VdeeYVQKMTll1/OJZdckrT/iy++SHnshg0bLLc3NzfT2NiI3++31dnLqIQNDQ0Zy/YkRxxxBM8//3ycVuiYY47hlVde4amnnkqp9u8qZPTJ4uLi2LZhw4bh9XrZunUr33zzTZJWbPny5QDsv//+Kettbm6OuSWmEwhGjhzJCy+8EKszkUznku3Pxs3TITucOATfc6Rkf/nllyOiRqZJH+njLssCsdnN888/bzkblOuJ2bD77rszfPhwPv74Yz799FNbxxx00EGUl5ezZMmSHhsgcml3rsiwuZFIpCD1jR8/npEjR1JVVcW5556bsbzslK2WOd588002b96c8tjt27fz+uuvJ21/6qmnABg3bhyapmVswz777IPL5WLNmjUZy3YlmbQgUrg2D7IzZsygqqqKt956K+731NVs3bqVf//73wCMHj06tt3v93PEEUcA0XDWiTz77LMAcbZFVmUCgQATJkyI2dhYIUM4v/TSS0lLYZs3b+bf//43lZWVKTUnn3zyCV6vlxEjRqQ8h0N+OALB9xhd13nyyScB0gZ4OfTQQ9ltt91YvXo1y5YtA6KznyFDhrBmzRpuvfXWuPLz5s2LdT7Zcu2112IYBieffDIrV65M2r99+3b+9Kc/xb57vV6uuOIKWlpaOOmkkyxnqN98801cjoauINt254pcxy7kYLhy5Uq2bdvGlVdembGsNHZ8/PHHY2u+EL3HF1xwQcbjL7/88rggTevWrYsZws2ePdtWe4uLixk1ahQbN27km2++sXVMVzB+/Hjmzp0bdx8kL7/8Mg8++CAQH/CnpKSEuXPnoigKM2fO5Pe//71lUp+vv/46pZbt3nvvZfjw4fzqV7+K2/7222+zYMGCmIGnZP369Zx44om0tbXxox/9KEmYu+yyywC46aabWLt2bWz7O++8w0MPPURFRQWzZs1KeR+kYJPJmPDggw9mwoQJbNmyJe5di0Qi/OxnPyMcDnPxxRcnGfJCNEDY9u3bOfjggy2XGx0KRM84NzjsCrzyyisCEEOHDs1Y9rLLLhOAuOSSS2LbzIGJRo4cKaZNmyYOPvhgoSiKmD17tqULkXR9S+fKdvXVV8f880ePHi1OPfVUccopp4hRo0YJTdNEeXl5XHld12PxATwejxg7dqw444wzxEknnST22WcfoSiKGDlyZNwx6UK8yqA9VnHVhYi6tA0YMCDvdme6F1bn+eabb4TP5xOapomjjz5anHvuuWLWrFmWbmyJJLodZsLK7TAYDIp99tlHQDTfxcknnyymTp0qioqKxPjx42PBrMz31RyYaPTo0bHARD/84Q9j789ZZ51lq02S66+/XgDi8ccft9yPKQ5Gqk9ijId0cQiskPkNfD6fGD9+vDjjjDPE8ccfL4YPHx47/wUXXGB57HPPPSfKyspisTCOPPJIMW3aNHHccceJkSNHClVVBSDGjh2blCchVRwC+d7W1NSIY489VkyfPl1MmDAh5uq4zz77WOZ9EEKISy65RACiqKhIHH/88eKYY44RLpdLaJqWNj7EV199JVRVFR6PRzQ0NGS8Z59++qmoqqoSEA3ydPrpp8cCPI0fP94yr4MQO2Ob/O53v8t4DofccQSC7zEyul+qgc/Mu+++KyAah9wca3zlypXiuOOOE2VlZaK4uFhMmDBB/OMf/xCPP/64AJJ8pe0IBEIIsWTJEnHqqaeK2tpa4Xa7RVVVldh///3FnDlzxJIlSyyPeeGFF8TUqVNFdXW1cLvdorq6WowZM0ZcccUVYtmyZXFlu0IgyLbduQgEQgixcOFCMWHCBFFSUhIbeOzECiiEQCBE1F/+wgsvFAMHDhRer1cMHjxYXHnllaKtrc3yvkqBYOLEiaKxsVH87Gc/E7W1tcLj8Yhhw4aJ2267TUQiEVttkmzYsEFomiaOPfZYy/3yvqT7JAqJ2QoEq1atErfccos46qijxJ577imKioqE1+sVe+yxhzjllFPEK6+8kvb47du3i//7v/8TEyZMEL179xYul0uUlZWJfffdV/zkJz8Rr732mmUExFQCwccffywuvPBCMXr0aNGnTx/hcrlEeXm5+MEPfiBuv/32pGidicydO1eMGTNGFBUViYqKCnH00UeLt956K+0xt9xyiwDEiSeemLacmQ0bNogZM2aImpoa4fF4xF577SWuvfbatAGHjjjiCCeXQTegCNGF5sAO31suuOACHnroIZ566ilOP/30nm6OQw+yfv16Bg0axMSJE7PKuZCJE088kZdffpmvvvqKmpqagtXrsGvx9ddfM2DAAE455RSefvrpnm7OdxrHhsAhZxoaGmI++Gaefvpp/vznP1NRUcFxxx3X/Q1z+F7wm9/8BsMwuO2223q6KQ5dyO9//3tUVU0KuuRQeBy3Q4ec+fTTTxk3bhz7779/zLp49erVrFmzBk3TeOihh+JcnBwcCsm+++7LOeecwwMPPMAVV1wRc0d0+O6wceNG/vjHP/LTn/40KZCTQ+FxlgwccmbLli3ceOONvPHGG9TX19PW1kbv3r0ZP348l19+OePGjevpJjrsAnTVkoGDg0NhcQQCBwcHBwcHB8eGwMHBwcHBwcERCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAweF7z/XXX4+iKD3dDAcHhx7GEQgcHLqJefPmoShK3Ke6uprDDz+cf/zjHz3dvIysWbOGn//854wfPx6fz4eiKKxfv76nm+Xg4FAgXD3dAAeH7xs33ngjgwYNQgjB5s2bmTdvHsceeywvvfQSxx13XE83LyXvvPMOd999N3vvvTcjRoxg5cqVPd0kBweHAuIIBA4O3cwxxxzDgQceGPs+a9Ys+vbty5NPPrlLCwQ/+tGPaGxspLS0lNtuu80RCBwcvmM4SwYODj1MRUUFfr8flytePr/tttsYP348VVVV+P1+xowZw7PPPpt0vKIozJkzhwULFrDvvvvi9XrZZ599ePXVV5PK/uc//+Gggw7C5/Ox55578tBDD9luZ69evSgtLc3+Ah0cHL4VOBoCB4dupqmpiW3btiGEYMuWLdxzzz20trZy1llnxZW76667+NGPfsSZZ55JKBTiqaee4tRTT+Xll19m6tSpcWX/85//8Nxzz/Gzn/2M0tJS7r77bk4++WQ2bNhAVVUVAB988AFHHXUUffr04frrrycSifDrX/+avn37dtu1Ozg47Lo4AoGDQzczefLkuO9er5dHHnmEKVOmxG3/9NNP8fv9se9z5sxh9OjR3HHHHUkCwerVq/n444/Zc889ATj88MMZOXIkTz75JHPmzAHguuuuQwjBv//9b/bYYw8ATj75ZPbbb7+CX6ODg8O3D0cgcHDoZu677z6GDh0KwObNm3n88cf5yU9+QmlpKSeddFKsnFkY2LFjB7quc+ihh/Lkk08m1Tl58uSYMACw//77U1ZWxhdffAGArussXLiQE044ISYMAIwYMYK6ujpeeeWVgl+ng4PDtwtHIHBw6GYOPvjgOKPCadOmMWrUKObMmcNxxx2Hx+MB4OWXX+amm25i5cqVBIPBWHmrmAHmQV5SWVnJjh07ANi6dSsdHR0MGTIkqdywYcMcgcDBwcExKnRw6GlUVeXwww9n48aNrF27FoB///vf/OhHP8Ln83H//ffzyiuvsGjRIqZPn44QIqkOTdMs67Yq6+Dg4GCFoyFwcNgFiEQiALS2tgLwt7/9DZ/Px8KFC/F6vbFyc+fOzan+Pn364Pf7YwKHmTVr1uRUp4ODw3cLR0Pg4NDDhMNh/vnPf+LxeBgxYgQQnfErioKu67Fy69evZ8GCBTmdQ9M06urqWLBgARs2bIhtX716NQsXLsyr/Q4ODt8NHA2Bg0M3849//INPPvkEgC1btjB//nzWrl3LVVddRVlZGQBTp07ljjvu4Oijj2b69Ols2bKF++67j7322ov3338/p/PecMMNvPrqqxx66KH87Gc/IxKJcM8997DPPvvYqrOpqYl77rkHgLfeeguAe++9l4qKCioqKmLeDA4ODt9OHIHAwaGbue6662J/+3w+hg8fzgMPPMD5558f237EEUfw8MMP87vf/Y5LL72UQYMGccstt7B+/fqcBYL999+fhQsXctlll3Hdddex++67c8MNN7Bx40Zbde7YsYNrr702btvtt98OwIABAxyBwMHhW44iHKsjBwcHBweH7z2ODYGDg4ODg4ODIxA4ODg4ODg4OAKBg4ODg4ODA45A4ODg4ODg4IAjEDg4ODg4ODjgCAQODg4ODg4OOHEIuhXDMKivr6e0tNQyQY2Dg4PDtw0hBC0tLdTW1qKqzhzz24wjEHQj9fX19O/fv6eb4eDg4FBwvvrqK3bfffeeboZDHjgCQTdSWloKwCEcy9cPj2HgLOvocM9/+gEnDt0vq7qf//SDpG3Z1iExDhmJ+p9VGIeM5IVHHo/bd/y5Z6H+Z1XctvUP75/yWtK11U777NSd6n6l2p6uTuOQkWyYKVLuNx+bzXXk8kzl/U88LrEN6epNfC9k2VTbs32WVuc7ceh+KetZ//D+SdtWHPpE7O/jzz0rab/VPUhEvrN225crme5Pod5tu+3M93rM70GqetJd0/OffkBzq8GA0etj/ZvDt5ce1e8MHDgQRVGSPrNnzwZg06ZN/PjHP6ampobi4mJGjx7N3/72t7g6GhoaOPPMMykrK6OiooJZs2bFMsZJ3n//fQ499FB8Ph/9+/fn1ltvTWrLM888w/Dhw/H5fOy3335J+eGFEFx33XX069cPv9/P5MmTLTPHpUMuE7hws9dPVuNS3JafU4eN5vWNH8d9UpV1KW7USWMpK9WSPuqksWmPM3/izuHyoU4ay7+eeTKpTs9b8W3Z8OTBqEU+2+eR13fqsNG22rfXT1az4cmDM1671T0qK9WS2upS3Gnb63nrY/b6yeqU91w+t9c3fhy7J3auWbYx3fNMvE7PW9FzJG43ty/T+ROfnzz/qcNGx7adOmx07Pzprt3OOySf6+fHPmW5//Njn0r6mNvncvmSPnbu8b+eedL2u5fuXcp0vNW7I59Ptu9Eqj5A3kc7dZx83k9yelbm4zO1Wb4rVr/DU4eNpqxEjevfHL699KhA8O6777Jx48bYZ9GiRQCceuqpAJx99tmsWbOGF198kQ8++ICTTjqJ0047jRUrVsTqOPPMM/noo49YtGgRL7/8Mm+++SbnnXdebH9zczNHHXUUAwYMYNmyZfz+97/n+uuv549//GOszNtvv820adOYNWsWK1as4IQTTuCEE07gww8/jJW59dZbufvuu3nwwQdZunQpxcXF1NXVEQgEuuTeTJk2k7rakbHvC+tXsbA+fgYkty16Mj4lrjwucbsVX8wfxcL6VUyZNhNj4uhYfVbHmtsjWTtpHoOnr0jabgd1yXJb5RLr/2L+KL6YPypWh1W7INrexHuWiKwn2/1Tps2M/Z3pHLIt8iOPWVi/CmPi6FgZeZ3mbXW1I1k7aZ5lfcbE0XHtSGxvunZZ7bPzHM31y+cg6zK/d4nPZGH9KoYsnhH7TJk2M/aR92XKtJlJ7538Ls+b6nnYedaZ9tt5H62exeDpK9K+R5nesWwx12f3N1QIrK7d4btFjwoEffr0oaamJvZ5+eWX2XPPPZk4cSIQHagvuugiDj74YAYPHsw111xDRUUFy5YtA6KpW1999VX+/Oc/M3bsWA455BDuuecennrqKerr6wF44oknCIVCPPLII+yzzz6cccYZXHzxxdxxxx2xdtx1110cffTR/PKXv2TEiBH85je/YfTo0dx7771AVDtw5513cs0113D88cez//7785e//IX6+vqc0tFaqU3lAGEe5OUPP3HwSRQOzJ2q7IjlMZk6wcHTV8Q6YishwNxpW7W5O5H3Y/D0FUmDlxwQ7LTJ3IHLeszH2akj8V7Z6fSNiaMxJo6ODX6yHnO7jYmjLZ+DuU1mgSGxrLnTThQWCoH5vsvnkPhupBIGZPsGPhQ/kzRfjxWyvnT3eGH9qpSCYap2WZGpLakw35fE8+QqMKc7l7wXmd7VTNdjV6BIde9yvV8Ouya7jEloKBTi8ccf59xzz42pnsaPH8/TTz9NQ0MDhmHw1FNPEQgEmDRpEgDvvPMOFRUVHHjggbF6Jk+ejKqqLF26NFbmsMMOw+PxxMrU1dWxZs0aduzYESszefLkuPbU1dXxzjvvALBu3To2bdoUV6a8vJyxY8fGylgRDAZpbm6O+yQiBwPzgC478rWT5lFXOxJ1yXLLzl2Wt/pRZ/qhy8HJSsMAO4UMdcnylHWZhQ5j4uiCz4QSydSxWnVa5pmj7Ei/mD/KcraTODOXx8j7ZL5niVjVl1hOXbI8JgCkGvTldqvzmIVFc9lEIdHquaYbDBfWr4rTuqRqf7bIeiXpZpjy3ie+51JzJYWPXAdXuwOXHa1aKuwK4emwI9gUGruC45RpM5OuLZ/75bDrscsYFS5YsIDGxkZmzJgR2/bXv/6V008/naqqKlwuF0VFRTz//PPstddeQNTGoLq6Oq4el8tFr1692LRpU6zMoEGD4sr07ds3tq+yspJNmzbFtpnLmOswH2dVxoqbb76ZG264IWn7wFnvs3Djx4B1Ry0H4CnTZsJEYoNyvh2FMXE06pLlnT9q605LnkMl88whsTOQM78v5o/K2HHLDro7VJ5moaCutnNjfXLHbb4eq1l4ps5PXreVtsGsubHTiZoH+2xJtYRkNXOXyMF6ysSZwKrYMpJ8D+w800TqakcymBVQb6o/zeCz6Mm5cfutlh7SnSsdduvKR8tQiMHRfM/TkfiepcLO70uWiT3zFMd05/JEIrquEw6He+z832bcbjeaptkqu8sIBA8//DDHHHMMtbW1sW3XXnstjY2NvPbaa/Tu3ZsFCxZw2mmn8e9//5v99svdsra7+NWvfsVll10W+97c3Ez//v07lww+ttVB2fkRyoE+EbMava52pKnDXZVUzi5yoJSdn1zLNn+3M3DI9qZqe7aYByyrwStxSSHTmnMunfvaSfOg3nrfznPFCwh2B3w7a+SpjsumTvN1x2sYsj513sjBsVDvSCYKNTvvrhl+ru9EOuwITrkIh7kihGDTpk00NjZ2y/m+q1RUVFBTU5PR8HOXEAi+/PJLXnvtNZ577rnYts8//5x7772XDz/8kH322QeAkSNH8u9//5v77ruPBx98kJqaGrZs2RJXVyQSoaGhgZqaGgBqamrYvHlzXBn5PVMZ8365rV+/fnFlDjjggJTX5fV68Xq9lvsKKQzIgT6dilhK/7KM/Ntu55U4ozcfZ7XNLuZrzKdDlh1UXe1IBk5ULOtKNOhLta87SWxjog1BvHYj3sg0U712jR2765rtqqbNwqVdulPV3pXn6qlZuPk9SHd9dbUjYX73tUsKA9XV1RQVFTmeDFkihKC9vT02TprHLyt2CYFg7ty5VFdXM3Xq1Ni29vZ2gKTIV5qmYRgGAOPGjaOxsZFly5YxZswYAN544w0Mw2Ds2LGxMv/v//0/wuEwbrcbgEWLFjFs2DAqKytjZV5//XUuvfTS2HkWLVrEuHHjABg0aBA1NTW8/vrrMQGgubmZpUuXcuGFF2Z9vQNnvQ+KO+X+bDocOair7FxSMCaOZlF98mBv7mhVljNk8YyoStcGdjqqfGcOslMasnhGXvWkamuqgc98nwplPJlqoM30XKW9SCZhLVGAMX9PtURgt61WwlEmdXIuWGlhzNvMWhWzYaHVu1EIg8J8BvmowFwYwSqb37/dJYZMfDF/FHW19t71tZPmMWR+fr9RO+i6HhMGqqqquvRc32X8fj8AW7Zsobq6Ou3yQY8bFRqGwdy5cznnnHNwuXbKJ8OHD2evvfbi/PPP53//+x+ff/45t99+O4sWLeKEE04AYMSIERx99NH89Kc/5X//+x9vvfUWc+bM4YwzzogtPUyfPh2Px8OsWbP46KOPePrpp7nrrrviVPmXXHIJr776KrfffjuffPIJ119/Pe+99x5z5swBov61l156KTfddFPMBfLss8+mtrY21pYuv08WRlGpOg5pbyA7cYnZCyEd2RgHmo3R1k6al2Tglq2hoVxyKOSs1a73QTakMmA03+O62pEx6/pUx1iRKAxkEgwSn3EiVp4pmdpuRa7CgNkdUZLNkow0ZltYv8pyELJjMGj3+ef6nti9N5l+D9la7atLludt6W8lZKW7D1OmzYzZhHSlVkbaDBQVFXXZOb4vyHuYyQ6jxwWC1157jQ0bNnDuuefGbXe73bzyyiv06dOHH/7whzFXv0cffZRjjz02Vu6JJ55g+PDhHHnkkRx77LEccsghcTEGysvL+ec//8m6desYM2YMv/jFL7juuuviYhWMHz+e+fPn88c//pGRI0fy7LPPsmDBAvbdd99YmSuuuIKLLrqI8847j4MOOojW1lZeffVVfD5f3vfA3GGn+nFLy/JskHYDdgUBsDfLNwsBZtczq8Ev11lEIToaO4JALuexmoGnqkfem2zOk22bEgcj6WUgP0MWz4i1IZ2nRCrMzzVfEt1b7SwjZFpCKKTWIp/3zurYRAEg0+8hl2vJVyhIdJnM5OaZ2MZ8IiXawVkmyB+791ARQogubotDJ83NzZSXlzOJ43GZlgwSjaasZv521N1mUg3shTQIsursrNa7c8WYOJr154u07U2MJwD21tdluUztTDSYtMJOPXbVwLk+N3M706n2zZ4QdtosyXcZJ7H95vPHe7+kJ5tlC/PvKhs1fKay6fZbLb1kSy42CoW2a8j0OzafLyLCLOYFmpqaKCsrK1gbAoEA69atY9CgQQWZeH2fsXsve1xD4JBMqhmZWa2badaZqvPOVxiw0g4kUqgZpbpkeZLvujx/4lKFXeyq4iHa6a0/X2Q9w8903nSkWi7J9Nzi7ENsDJhmuwGr+ANWbbCaMdpdEkol5MDOGa5c/kj8mJGaskyBecwGconbMpHO+DTTwCv35RsUKp8lLrtBi+y2I5UtTHcb4H4bWL9+PYqisHLlSgAWL16MoijfGi+JXcKo0CEeGUBHBibalX54Vh17IY2LrGb8GffVp47wJ0k1w003866rHWnb6LInSTWby6RVyMZrIbZmTPw58nn20jgt+vfclMKMXOqQLHpyrunYzK6juf5+rH57mYz4pHFhNh48qc6dL4U4v/xdpRKEvpg/ij2m/S/n8+TDjBkzePTRR5O219XV8eqrr/ZAi5IZP348GzdupLy8vKebYgtHQ7ALYNUJypDCcuZUVzuyyyMBFoIhi2fkFfM8XTS6dPvSCQO5dIzZGKHZ1YjYqTNb1W861a7dwdps55CNdqcQ7+PaSfNi70s6Gxrzb8QcydOMPNZ8nxNn6vkamBbKXqHQIX/NWg1p3FsIMuUKGTx9hWWm1e7i6KOPjsuHs3HjRp588skea08iHo/Hlv//roIjEPQg0sArFYmdT3cFA8mHfNeZsyHdAALxBlLZLqFYzbatzl9oK+tsVM3y/IUUFgdPXxETCnJdlspEpoBQ8neR+JHIQco8CH4xf1SSHYL5Xuaqwk/UTmS77JCKroo3IK+zkO+leQnC6vfW1UaF6fB6vXH5cGpqamLu5Iqi8Oc//5kTTzyRoqIihgwZwosvvhh3/EcffcRxxx1HWVkZpaWlHHrooXz++edA1APuxhtvZPfdd8fr9XLAAQckaR7+97//MWrUKHw+HwceeGBc4j1IXjKYN28eFRUVLFy4kBEjRlBSUhITaiSRSISLL76YiooKqqqquPLKKznnnHPiPNqeffZZ9ttvP/x+P1VVVUyePJm2tra876cjEPQA96+8EdgZknhXp7sSmKQaYBKt5s2zvFSaATsDQKpBtCeXaOy+D13ZRnPCoqh/+s7BJTHDYbakWo82n8Nulk55rNRKpdLWyHch2wyV5vbYFbjsLlN01W/K6v3JRVg0Z5c0/y6lwPZt4YYbbuC0007j/fff59hjj+XMM8+koaEBgG+++YbDDjsMr9fLG2+8wbJlyzj33HOJRCJANOnd7bffzm233cb7779PXV0dP/rRj2Jp71tbWznuuOPYe++9WbZsGddffz2XX355xja1t7dz22238dhjj/Hmm2+yYcOGuONuueUWnnjiCebOnctbb71Fc3NzXBK9jRs3Mm3aNM4991xWr17N4sWLOemkkyiEf4DjZdCNSC+Dzz/5iPNH/LqgdT/XcB8n9ZrdrTkCUlFIT4NcBp58Auh0ZRS6XEPwZuthkguZ7A2s2pCt54HdOjL5wKtLlmf0Lkm8N1a5KQppyW+VxyLde5jJUyGfZ5vv8eneBavfdk95GcyYMYPHH388ad/VV1/N1VdfjaIoXHPNNfzmN78BoK2tjZKSEv7xj39w9NFHc/XVV/PUU0+xZs2aWNA6M7vtthuzZ8/m6quvjm07+OCDOeigg7jvvvv44x//yNVXX83XX38da8ODDz7IhRdeyIoVKzjggANYvHgxhx9+ODt27KCiooJ58+Yxc+ZMPvvsM/bcc08A7r//fm688cZYXpyamhouv/zymJCg6zqDBw9m1KhRLFiwgOXLlzNmzBjWr1/PgAEDCnIvJY6GoAfw+Dw8/vVtANy22l6kw/kbb4/7/uz2u/nb9nt5ruE+nmu4D4gKBVLrYKVqNZMpf3uuKuieFgYgP2GoKwOtWLUr02wr8X7a8TDJFjvPujttC+T1WWl5MtmKJKbqlr8BKxsEK7INyiWRWTHNrD+/8HMtu7PzfJ5BOmHAbGy4K3D44YezcuXKuM8FF1wQ27///jtTzRcXF1NWVhYL47ty5UoOPfRQS2GgubmZ+vp6JkyYELd9woQJrF69GoDVq1ez//77xw2wMrptOoqKimLCAETDCcs2NTU1sXnzZg4++ODYfk3TYpF4IRrC/8gjj2S//fbj1FNP5U9/+lMsc2++OF4GPUDE0AmG2/jDZz8j0BLit8tm4St3ocTCNMd3JAoq7cE2nt12DwYRVEVDQbU0VJGagsS4BhBvNT1kceoOI12SoHz5Yv4oBj6kpFVt5mqUKK8vnadCprYlHmO1LZeZfrqokqnqMyaOZsq0nfu6Qlix+4wHT1+RlLhJJnNKbFc29z1dGNxEgzazxbvV+xt97oKBjE4K1mM30qddr4zEstHfVXzcBtkm6TWUGAAose2yXDrPCWknkcn1cW194cILS48nc6hzs2B2ZL+98z5HrhQXF8ey31qRONgrihILfS9D+nY3Vm3KRlGvaRqLFi3i7bff5p///Cf33HMP/+///T+WLl2alNk3WxwNQQ/Q2t5MwGgC1cBToiEEhNp1ROeLCuaBXqHIU06xv4RgMIymuFMKAxKz1gDi12jlv2snzcs4i9jZQdlHniuVD/faSfNSRl3MtfMyzwozGRGmIlVY3FQDVbak6sDTCRfdYWOSzX3KFKwnV+T6v3ndWv5rthkxD0JmoTUROWia712+qYkTbVfkue3YU9j5DZk9A4YsntGjHkWJcT6kTYk5gdh3gf33359///vfluF8y8rKqK2t5a233orb/tZbb7H33lEBaMSIEbz//vsEAoHY/v/+9795tam8vJy+ffvy7rvvxrbpus7y5fH9gKIoTJgwgRtuuIEVK1bg8Xh4/vnn8zo3OAJBj+DRvGh6EQgFVVXwV7pweTTCHQIjYhYKFIo95VT4+uJxedBcGoFgCCGwJVGahQIz2QyaUijIpcM3q5mtjpdWy2ajwWy1A4m+66lm+Xbq6QqyVa12lSo2k0dLIuYBQT4nO0GArAICSTLdYzkomv9Nh1kosNIKZbrebJ55KrfOgQ9ldieTrpWJ76FZ4JHYqS+bCJPZIO+jvIeZtCW7gmAQDAbZtGlT3Gfbtm22jp0zZw7Nzc2cccYZvPfee6xdu5bHHnuMNWvWAPDLX/6SW265haeffpo1a9Zw1VVXsXLlSi655BIgmidHURR++tOf8vHHH/PKK69w22235X1NF110ETfffDMvvPACa9as4ZJLLmHHjh2xSeDSpUv57W9/y3vvvceGDRt47rnn2Lp1KyNGjMj73M6SQQ/Q0aHjLy5BU0BXW1AwUN0CPSxo2xamqMqDy61R5C6jwleDprhQFAW3K5qlKhgM4fV6AJFWU5BOaJCzeDs/aqkuzsY+QKotE9XMiWQzczNbvqfqrNZOmhcLniPLWalszXRnfnczVtqBrtIIZBvv3jzY1tUSy6ZpvleZBISuwryOPfAhYkaGmdolyVVbkKj5klkppU2CrDeVvYX53YROF8/58XE7zHYHXbVkZ8cFN11gMPP+KdNm8vynf6ZyaEGbaZtXX301KaXvsGHD+OSTTzIeW1VVxRtvvMEvf/lLJk6ciKZpHHDAATG7gYsvvpimpiZ+8YtfsGXLFvbee29efPFFhgwZAkBJSQkvvfQSF1xwAaNGjWLvvffmlltu4eSTT87rmq688ko2bdrE2WefjaZpnHfeedTV1cWyFJaVlfHmm29y55130tzczIABA7j99ts55phj8jovOF4G3Yr0Mli2bBklJSUIDAy1HV1rAgwEgkhAIHQoLS2nqqQWl+qOG/SFEEQiOpGIjtfrQVWtBQIhBMFgGEVV8LhdnFwVzdyYLqa8FYmW24mdrdWx6TrkbCMvmjtdO4NlV3oJFJp0ywXyOsxq5F0tDoWd55jt+5EJeR+shBurJE9mEpMq5SJ8yfV0WYd8NxOFDPPzMl9vqu1yXyLmZ27+7Vq9O1ZCUaLLaC7vUKbjnlmznMqhXzi5DLoIwzAYMWIEp512WsxjIlscL4NvAQoqqlGMplcAKgoKbr9GeXklnlA5oTY9+RhFweXScLk0QqEwhoU8J4QgGAqjdgoDGAaPvhVVc8nZstmPO5uZXjoL8ExR4BLPlU7tKPdJwzKzq1k6CpmZL1/yUf8nBgeSLm35eIDk26ZEzB4PVs/SrNGxOi4fElMpp5v1W2VYzCQ8mNfRze+1VOmbYxtYCRayXOLvwWwrkBg4KdNgbXe/OXaEebknnd1FPuftycBE30W+/PJL/vSnP/Hpp5/ywQcfcOGFF7Ju3TqmT5/e5ed2NATdiNQQfPD+SjzenRauAoGhtmG4WijylFLhq0ZEVJq3teAv8eEv9SUtDQgh6Ah2oBsGxb5iVFWJ+iZIYUBRcLtdKCi0fbGere/8D1dRERf/5B9J7ZIBXez6dEsy5Q9IRM6k5GBnZb2fq4847HragUzeCLnGJejJY+2SrfupeeadC+kG+cR3NJP/fyqh1qydsPLike2AndqKbAVkiR1PmUxxEcCUg8IkICSeK1+cbIeF5auvvuKMM87gww8/RAjBvvvuy+9+9zsOO+ywnOt0NAS7MEV+D+bxXUFBM4opddVQ6euLprhxuTUqqstAUQm0hTD0qLGhEAJD6LSFG2kK19Mc2kJHsAPDEFFhIGgSBjpP4q4op2zoELy9+1i2p652ZFL8czsdhrpkeZKmwGrWKD8y4UuqTi4xJK0V6WY3u5J2ANLbA5hd6Apdt91juyMio5xd2/FoSadtyBW7woDcl06DsnbSvLRCsFkYyKQtg+QB3Vy+UMtD8jeR+AxShSF26Hn69+/PW2+9RVNTE83Nzbz99tt5CQPZ4AgEPYCmabg6DUQkPq+HMn85aqcBoaIoqJqGv9iDHtbZsaWJSDi6hNAa2sGOjo1EjBAlvjLcmotAMEQgGEJR44UBFHD3qqR0/31RK/smtUWqRc0zCDudmcQ8MKWbeSV2fqlcGhNdz3oaO+3Ipa3pksZ0J10lFCQO6nbcXK3qyCYHQaYBzk5diYJWopCZLjSxdBPN5p7K30XiDB4yu/2m09xJzFqXRA+Gb0PYdIfuxREIeoB2dQe+YgWXFr39Pq+bshI/qqrELQ0oUc9Disv9eH0e2lsCGLpBRA8BUO6tptTbC7fbjUtTiUT0mCeCRAhBR2uAYCBMUa+SpLaYMwhazc5yHbTyHdCzTUbUFfSU94Fd8h3Mu0MgyVcoyCd+QKIGK5PGJhWpNE/Z3P902is5W5dtzUZTYBXrY9GTcxk8fUXSEkzivSyUMLj+4f0zF3L4VuAIBD2AThjVY1BW6qe4yGspDEgURUFRFYorivAXe2lr7kAPQpm3DyXeXihEj3O7Xfi8HoKhMEKI2Ke9JUBrYxu+Ig/uIm/ebU/VoSd2eLkOpIlW1XaQnbmdc2YzIOUSmKk7sQoAZW7vrtJ287uRj51AOlIJDlIIyLScJMslCgayvUMWz7CsI/HepzLEzXTdqWxnsnmG5nObBYx05LpskBi8yOG7gSMQ9ADlSjU+pQSP20VpsS+lMGBGURRcHg2Pz41o8+COlMSEgdh+V3QpIhSKgIBwMIIwBL1qytHcGrjshZ1IZ3iUKhFNOh//VHVlws4An22HJq31U0We604KMUOrqx0ZN1BlI4h9MX9U2oHSHJgoW8z3MnEw7A7bBSvsnNdKi7B20ryYJi3d/Uo16Fu56qbK0/DF/FFx+zI9zynTZqZd4ksnFCQmisoGeT8GT1/BwFnvZ328w66JIxD0AIYOgY5wdOCGjMKARFEUvH4PldUVCB1CgTDCiGoCDCPqLOJyaYCgqaGFYEeIolIfmkuLxsvOcB5zx5JtFLdUnUpXqtyltXe2a6GJxmvmKImJxle5umrZbYcdUs3G5LZEg1BJuntvtuq3ipgnjzcmjrbdzlQR9zLNrFO1L9toh1ZagkSBMdvYCeacBPL+F8J4VdqQJA7YayfNY/35wrYdj5UtSqLHhZVQID1+zO99NrZDDt9NHIGgB2hvD6AoCqFwmEAwnDEMsRACXTfQOz0NXG4Nf4mXUHuIpu0thEIRmlraaW0LoOsG4Y4IHa1B/CU+VE2NBkE2wiii3Vb7Cj2bT+XKlY2wYCcQTa6YhYMhi2fErMllB7krWGObbT0St1kZpEHqQdWMDKsrSRwYMq3hW61hy3Vsed8yzZxlObshrM15K9IZHpo9AhKvMZOAZ14iMLvJFlrAtfLUyXZZJXF5QF5zut9Hun2OYPD9xQld3AP4/V58XjfC46KtPUBAgM/nttQUCCHQDUFLawcApcU+NE1FURWKKopo2trM9i1N4OkMa9wRosjrpqLKgxrZgRpohmAjih7ktBGPW7bHPFvMRhiIduT5dRx2Dfe6yyJ68PQV1DEyFqpXDm5AXNjZbEh3jXZCSGe7DAByUEl+NjuFGxETflIh22X2u7cKLJVq8Fh/vmDtk9F90offSoDY2U7775L5fiXGBLDzDpuzLFqp9DPZspjvXaprywaraIeQXdyAVHXkSlfELCgkWzZspWlbS7ecq7x3KdV7WLttf5dwBIIewKVpMdfC4iIfrW0BCAh8Pg8AEd1AVaKJj4xOYSAQjGbkcrs0iou8KIqCpimUVZWiN7QQaA8S6WjFVxSmSA2jiAhEfODyQ8nuGK5intl0B6fWXJbUnoEPKTApux9+fEeemVQD365sxQ/xAV1SDTaZciV0F1YD/JDFM6I5JTqZMm3nrNmO6ls+550zUKsB3RqzkCnT5ubDkMUzYL71O2MWTORzyjQ4yvTNiSQ+57WT5qV1mTV76eQiFJjTW6eLGpr47qUKvGTelyqHxbddA7Blw1ZmDL+EcCA5U2FX4Pa5mffJXVkJBQ888AAPPPAA69evB2CfffbhuuuuS5tz4JlnnuHaa69l/fr1DBkyhFtuuYVjjz023+bbxlky6AHMmgBVVSkp9hGORAgEQgRDYRqb2mhu7UA3BB2BUDQngQJejxufNz6XtuZSKSt1obXX08e7hV6VHpTSPRC99kVUDMcoHYjhq0a4ilFcHsv2yIBBdpEdjFSx27E27u4OqNBr/lYuYbsKsk1Ws/10rmfZqKatwgNnux5vh3TBicxZA7N53/JZ88+kcRiyeEbcgJvPbNquZ4Asmy3ZxHQwY2eJpbtp2tbSbcIAQDgQzlobsfvuu/O73/2OZcuW8d5773HEEUdw/PHH89FHH1mWf/vtt5k2bRqzZs1ixYoVnHDCCZxwwgl8+OGHhbgEWzgCwS5AVCgoIhSO0NjcTkQ3CIbChMMRfF43JcU+KsqKKS/1R5cLOgUKIQSR1u0Y29fSp7aKkoFjoHwQwlMOqhsSliBUVWH+SxfGbVtYvypjR5HYGSQKEF2xtpovXbHWmxgfvivP11MUUj2cizCQjkTXP6tBKpUgkS1SoEj12xj4kEJd7cg448l0KaLN7Uvki/mjYvYO6bQadjwJzJkXE/M35LOckMpw1SE1P/zhDzn22GMZMmQIQ4cO5f/+7/8oKSnhv//9r2X5u+66i6OPPppf/vKXjBgxgt/85jeMHj2ae++9t9va7AgEuwiqqlBaUhRNRoSgyOfF63GhaSrFRTv/jgkDhk7H1q9p21qPt3ov3BX9QfMAqT0JhBAYHaHYdzn7seN6ZHZBy8Ytykx3rUXa6ZhzRV6D2WiuJ8nkOpgLdp5TYvCqKdNm2go9bN5nt7xEvmtrJ81j4ENK0rsnVe6Fei5m+xEzsn65X1rrZxpwUwkXg6eviEt7nKlNqeq2qj/dskIqUsVcSHd+h/Tous5TTz1FW1sb48aNsyzzzjvvMHny5LhtdXV1vPPOO93RRMCxIehxzB4GqqpQUVZMc0s7bpcaszNIOAChhwntWI8eEpTuPgzVYy/gkIjo6I3Waq90A7s5pWpdbdTgzq7xlvm4rkSu4cuZVqr11kIYJ0pDO5moKV/tgB3DQjPxKXjjY+vLjjyVkWi6Dn3I4hlxa/2pjpXl4gMj7Wy/nWuxc63m65S2EHW1xIw+rZI0yfcznTGkXcweJ2ZymWlnyrC4dlJ2daayDbAiW2Egk0alO37P3xU++OADxo0bRyAQoKSkhOeff569997bsuymTZvo2zc+vHzfvn3ZtGlTdzQVcDQEPUo0TXGEto4QQkS/q6pCWWkRYV2PRR00HUAk0E7L15+C6qWkdi80m8IAgAhGUDrzIVitV2bSEnR1J5BP1D05KKeyhzDHK0jlVpXNOql0F7OjSrUT8TCb9V1zh23V2ZtdEa1I9LOXM3SzYGN1vCxnPn+qctlidX9ke6TQZa5XCmTmQTHRtsD8vO0uR5g/hYqqOGTxDEtBVL6T5pgEua7zSxLfh3TCgPlaJVZGqQ65M2zYMFauXMnSpUu58MILOeecc/j44497ulkpcQSCHkCGFQ4EwzS3dtDa1kFbR7BzX1RTUFzkIxQK7xQKhCDS0UhL/We4y6rx9OqPomoZzrQTvT1A0wcfEe4VFSAWPTk3qZPKFMgmF7KZTZhVxwvrV3XZurzZXc68vJDtAJBoV5AP2aaRToWdwXph/aokTYKZbIWXdCp/u1hFwEz3XOT9Mt+3VEGkzEsUctA1xxiwGvTWTpoX224+Ry7agWzeY6u4BFbksyySSQiQSCHR6v7sakaGuyoej4e99tqLMWPGcPPNNzNy5Ejuuusuy7I1NTVs3rw5btvmzZupqanpjqYCjkDQI7S2B2jvCNHSGogFG1KAiABBVCOgKirFRX6CwTDBYIhw0zcEt39Fab9B+Cr7oCj2H53QDXYsX0XzZ58xa9r8nNqc2KnZ7bTyGSi6er1S2k/kO5iZhYJ0ERtzjUsvv5uD/qTDjqYnkxYhHV0ZE8JKe5PYTrPdhFUOjXQDsGx74kBnHhTl34maGDvCQKJdxJRpM20/d9m2TEJBKmEgU/vMgpvVNVqVg+R7JY9zhILsMQyDYDBouW/cuHG8/vrrcdsWLVqU0uagK3BsCHqA9o4QqhYNNKQoCiVFXor8XnaEDBSg0hu1H9BUhWKfi4avPsPrhtJ+Q1FcXtuhjiWKqlAyeA9cpX7gzYJcg51BIdeBI5qOOfr3zuAomY+TM99cfd7NfuCyQzRHuzNjpVKuqx0Z9fmv3/ndjAxek27mXlcrw0DvjHuQOECaLcYT1+1llD+7QZSsrtkOXRl3wY5dxuDpK6De3uw78foS38t0g6NdzO+LuX51yXIGL8m+PimophOKFz0517b3QGJcBfmv+T1O9/wHT1/BkPmFW0b5PvCrX/2KY445hj322IOWlhbmz5/P4sWLWbhwIQBnn302u+22GzfffDMAl1xyCRMnTuT2229n6tSpPPXUU7z33nv88Y9/7LY2OxqCHqbI76GoyAsKNIYMvmmPYAhACIxwO6HtX+Dz+/H3GwwuT9bCAAAK+GprKNtvaGzTlGkzbasdc5kJ5DO7t1rLttuGQhj4mY3lzJ2teeYkZ9iJVvJyVgjWMzlz3fJjvrbEsL1W91EOBImW/uZ/s3lmVoJLJgohDEh3u8Slm0xLV4lRBNNdayYtlR1NSaZ1dPPxhdaeWLXNrK3IRitgRbYRShPvxRfzR/VI+uPy3qW4fe7MBQuE2+emvHdpVsds2bKFs88+m2HDhnHkkUfy7rvvsnDhQqZMmQLAhg0b2LhxY6z8+PHjmT9/Pn/84x8ZOXIkzz77LAsWLGDfffct6LWkQxGZAuk7FIzm5mbKy8tZtmwZJSUlAPh9bspK/ISFwsrtQSKG4IAqD+5AI8HtX+HtVUPEX0RLcDuV/ho8mt+ybiEEugBViS4/JAsOAkM36PjXSn582iNA7pb3zzXcxwknPpxX52dlIZ6KxHC56crsKtbP5jZLC/NEbUPi7CzxOlMJVXauMVtL8GyeB+SuIUh1nN32mo8320Jk2xYpRJiPy0WI7a73LZe2WXk2QLz3BtjTyKQ6tq52JBERZjEv0NTURFlZWdbtTEUgEGDdunUMGjQIn8+XtN8JXWyfTPdS4iwZ9CAK0aBEoOBWYVCpm5AeQW/aSKhlB0V9BhB0GzR11GMIHd2IQBo7wtawQcgQ9PZpFtEIFBRVRS3eKVAkdhbPNdwHwEm9Zqc8hyyT6PaUbTx5c/lMg4tUo2dSV/aUMJAu1S+YZ3HxQstgonkT7CSTydY1caebnr3y2Qp3uWoIMh2XSTCxSvBUKNIZiKZaIsqGfJZZrDwsEpGaKfNv0+p+ynwddjQyicilGskX80exx7T/2T6+kFTv0edbPUjvijhLBj2AIUIoChT5vZQUeVEUUBWFPm6dPh0bcIVbKdttL4Jug8bAZnQj6mkQMUIp69QFhAzBtoBOQE+t9BGqwtz55yRtlwO9/DvxY1VmwfOzUJcs5/nnzuWZbffE9qXLPmelRreTGMY8K0ylIu6pQEHm3PBmNz4rsok1YPXd7kxx8PQVTJk203bmul3BQGxh/aqctEa5YsfQ0+ySKd/rbCN7dhVyeUq20exaa3ZptEoBnetvxZg4Os6g07Ep+G7haAh6AF1rRnNVxpIUKQrowXZaN36By1dCUfUgUDWMYDNuzYemuHCrXrxaUco62yIGnzWHcalR10UrFEVBK/IR2dTAU9/cgQ54ve5OLUV6zMKA1fZTq+YA6Wd4+a6vxiyk63dmqpNYGdol0t0JiHLRWJgNA80kzursYMcwTWLO/tcTxELu1tvPq5GpXDqNSrqEVKmOkfdTJbf32K4BZKbrkjYkKstt/aasyuQaxjjXXBgO3w4cDUEPINQAQdFAe7AdwzAwOhrp2PIZrtI+FFXvgaJF5bRSb2/6FA2gd9HulPuqcWs7137ChiBi7Bz5i1wqw8o9DCv34HelMDwUgN8L4QhaMIxmGAQ6ghiGUZDrMgsDf91yN3/b3jUxuGVwHLNhnjn0a6oZUHcMdvmcI9VAkGjIlY1QYHcmmBiYqKtJNKxcf75g/fnC5GWRHjtCQ7oymYTDQhnFms9nhdSamROGZSqfD4XOfOgELvpu0aMCwcCBA2Phec2f2bNns379est9iqLwzDPPxOrYsGEDU6dOpaioiOrqan75y18SiUTizrN48WJGjx6N1+tlr732Yt68eUltue+++xg4cCA+n4+xY8fyv//Fr4sFAgFmz55NVVUVJSUlnHzyyUlBJOwiEARDbWzZuIGtn35I6+b1+KoGUNSrGlQFQedsXtHQVA1FSQ5jHNQFLWEjFsnQrSpU+TTKPRqqlSeCgNC27TR+9gnBEghu3U7L+x+hhIK0drShG0ZKzYJd1CXLea7hPp7ddg/hcCQWYwEyd2TZzqYTrfutsvoldnS7glrcTKI6P9VySKLXhd1ZP+yc0dlZOihkHoBM50lEZjK0E5DKzrXnu6SQaVkg3UCYrRbHrOqXpLoHMe1AF8aCSIVVVse1k+b1iJeBQ9fQowLBu+++y8aNG2OfRYsWAXDqqafSv3//uH0bN27khhtuoKSkJJZPWtd1pk6dSigU4u233+bRRx9l3rx5XHfddbFzrFu3jqlTp3L44YezcuVKLr30Un7yk5/EfEEBnn76aS677DJ+/etfs3z5ckaOHEldXR1btmyJlfn5z3/OSy+9xDPPPMOSJUuor6/npJNOyum6Q60GoilEb9d2evd24eo9GM1fhqHohAml1vmb6NAFmzt00pgLxCEiERrf/4hAQwPB1mZCjY2ISIRAoInm8Gba2lsRwiBXpxOzrYGqqni9bsIJglk2ZOs2l877wGw8laqz3lWEBXPsfkgvKNkZeLIRtOQ6dFcHhJLRAuVzSxVkKBWZykXjWKS/7kzagUIPuLlqXxJDM0Pu6n7IfdnObMgoXZblc1hx6BM5t8dh12KXcju89NJLefnll1m7dq2lv/2oUaMYPXo0Dz/8MAD/+Mc/OO6446ivr48lhXjwwQe58sor2bp1Kx6PhyuvvJK///3vcTmlzzjjDBobG3n11VcBGDt2LAcddFAszaRhGPTv35+LLrqIq666iqamJvr06cP8+fM55ZRTAPjkk08YMWIE77zzDj/4wQ9sXZ90O3x3yV8Z2MeDt3wgwldNIBTB6/XQwjbCdFBJLZqS2rxDCMH2oMG2oM7gEjcezUZsAiEIN7UQaW0jtO4b8HoIFhtE+nrB46LSuxsYGl6v2zqpUg7ohsGpvS+Kfbfr2mYul0m1myqZkXlfIlb2BlZuaIXEqi2pjLLsDuLZeB2ku0+p6s6mLdmQqm6758z0rDLdFzvLBZkEsXT7s3XhTMfC+lVJwYdydbWU9Vlhxx4D4jUn688XrJ00jz1fOYP1s37T7W6HDvaxey93GRuCUCjE448/zrnnnms5GC1btoyVK1cya9as2LZ33nmH/fbbLy5DVF1dHc3NzXz00UexMulSSoZCIZYtWxZXRlVVJk+eHCuzbNkywuFwXJnhw4ezxx57pE1NGQwGaW5ujvsAVJdo+HrvB/4aUDWEgIgIoRMiQgiDzDPrSo/KoBI3LrtPUFFwV5Th370fnrJK9I07ELuVoXjdlHqr8Hn8uNwawWA4lmshX8zCQCZkJ//F/FExdb80rrNSd8tANukGOXPSGDPmztV8nkIKA7JeY+LolNoHszAg2yiXAwq1jg7Re5pt1j+r+5aJfJcb7GgI7AhumZZUMj3nbAIRWVFo7YK6ZLmt3AP5kMoDKPG3J4MiLXpybqwdjobgu8Mu42WwYMECGhsbmTFjhuX+hx9+mBEjRjB+/PjYtlTpIuW+dGWam5vp6Ohgx44d6LpuWeaTTz6J1eHxeKioqEgqky415c0338wNN9yQtD1UtCeGqzg6EwcUVdAkthBW2gEFHZ10Mbii9gVpQxKkxAiFEW4Fl8dDCVWIiIHL5UdRFFyaBgKCoTBejwcQOWsKrGIZSBcoqw5TdtLSmj6p3RNHs6jePEsaFTe7zxS/PrETl+1IXMMHbNebisQOFIBJ6Y8xt1FqDtKFHzbPUjO1U+7LxvZAtikbLYRdDUSqdkgf93TXk21OiGyJtmtVyntv935kGxjKTh3mOANWnjb5YBYYYx4fJsHZbojk7mTz5iaamjq65Vzl5X769i3vlnP1JLuMQPDwww9zzDHHUFubHLS+o6OD+fPnc+211/ZAy3LnV7/6FZdddlnse3NzM/3796ctYGAYAq1T1a8oEBahzsRGAoMIAoFiEV4oH4Su0/T+R7Rv+AZF01A3b6dpzaf0/sGBaH5fVChwRcWMQDCEz+shF3kgXWAjyK2zTBzUc81XYK4PrAenRKHFKlxuqo44OstKP+hm6lwHT1/BlIkzc3Zvy0Q2go50b7NDYh6JdEsAU6bNTOliaCuPQReRSWjKJjBUPu+o1W9EetKsfXJVTGgshFCQeJ7Ed1MaMdbVjoxb+spWwCwkmzc3MePshwiF9G45n8ejMe8v53/nhYJdYsngyy+/5LXXXuMnP/mJ5f5nn32W9vZ2zj777LjtqdJFyn3pypSVleH3++nduzeapqVNO1lTU0MoFKKxsTFlGSu8Xi9lZWVxHwBDRNfXJZqqoegacvyPEIIusOwQEZ1wSxuKxw0KtH2xHiMYRPN6Y2WkUOB2aQSDIQwj+4akilkAZK26tkOhBgjZMcolC6kSzSY6XqqB3qx+lzNpszFkorrWjto5l0hz0mWz0LNsKyFDLjuY8xRI5OCWuH3I4hk5vxsyr0G+11YIu4lCD9KSxERMcknNDonlzAadqUj0aJCCgWxftstKhaKpqaPbhAGAUEjPWhvx5ptv8sMf/pDa2loURWHBggVx+4UQXHfddfTr1w+/38/kyZNZu3ZtxnozecTlwy4hEMydO5fq6mqmTp1quf/hhx/mRz/6EX36xIepHDduHB988EGcN8CiRYsoKytj7733jpVJl1LS4/EwZsyYuDKGYfD666/HyowZMwa32x1XZs2aNWzYsCGn1JRCRPMKSBRFRRWumBCgE866TjuoHg99DhtHv6MOp3LgXhQrJdQecxSuspK4clIoUDU1yYXTLs813MczW++23JcuRCx0f8TBbDo4O4NNqjpSRbrLRR1biEHLzrXYaZeVMCDrNrvUmeMOZEqqk8ugbo4Y2RVkI6jkKpRYncOORsd8b6UAlvgxY2WYaCUwZBJMe8L98dtCW1sbI0eO5L77rCdIt956K3fffTcPPvggS5cupbi4mLq6OgKBQMo67XjE5UOPCwSGYTB37lzOOeccXK7kFYzPPvuMN99801J7cNRRR7H33nvz4x//mFWrVrFw4UKuueYaZs+ejbdz1nvBBRfwxRdfcMUVV/DJJ59w//3389e//pWf//znsXouu+wy/vSnP/Hoo4+yevVqLrzwQtra2pg5M9pxl5eXM2vWLC677DL+9a9/sWzZMmbOnMm4ceNsexjEoRiERAhDRAdbTVVRjU6rAQX0ziWDgqOAoqkoHjfu6irElsbO7cnrAtH0yypGjsaFQoi4OASJZBIKciVfYSLREDGb9smyZvesxLCyVp1sLp1qvtdp9vtPh1QTp8NqsLLSFliReH6zLUlPYjWgZyOE2Wm/3XPE2ddY7De7qA5ZPCOlEGcOqy3rlMaEVsKAXY4/9yzbZb9PHHPMMdx0002ceOKJSfuEENx5551cc801HH/88ey///785S9/ob6+PkmTYOaOO+7gpz/9KTNnzmTvvffmwQcfpKioiEceeaQgbe5xgeC1115jw4YNnHvuuZb7H3nkEXbffXeOOuqopH2apvHyyy+jaRrjxo3jrLPO4uyzz+bGG2+MlRk0aBB///vfWbRoESNHjuT222/nz3/+M3V1dbEyp59+OrfddhvXXXcdBxxwACtXruTVV1+NMzT8wx/+wHHHHcfJJ5/MYYcdRk1NDc8991xO12yU76DNu4kOpSU28Ltw4xZ+fKIEL0UFth5IRqsoQXG70Bvis4UJ03+qqqLrBqFwmHA4giFEVsGLMi03pOp0CmW81N2xBazWYs2DaSE1H+qS5bFcBdmSuFyR6T4VahaYeH/SxY/IFfO15Pr8jYmju0UgGfiQEvMokamg7WB+fnJwl4JbYj6NxHKJWAVFytq+5z89Y0fwbWbdunVs2rQpznOtvLycsWPHpvRcs+MRly89LhAcddRRCCEYOnSo5f7f/va3bNiwIWW8/QEDBvDKK6/Q3t7O1q1bue2225I0DZMmTWLFihUEg0E+//xzS0+GOXPm8OWXXxIMBlm6dCljx46N2+/z+bjvvvtoaGigra2N5557Lq39QFpcYQwlTFgEY8sEXrWYClFLJbtRQhV0tUjgcaFWlBCRWgKiwkCIAB20YAgdRQGvxw0iOriHgqFOl8TM1QuBLddFK8OkfNYlzZ4DqTp1O+vMidkb5Uwqm3C3ideRaWDNdnCXQkE2WF231BR0hwCVjxdCJhJV67kO6l2lBk9U50uNkVzmyOe85mBKqZZv0h0rySauhUPuSO80K++2VJ5r27ZtS+kRl87bLRt6XCD4PuIVxWi4o9oBRXS6EaqoQkO1CFPcFSiKglZVjtHQRFiEiBDEQKeDZhrFRtrYAYDLpeHxuPF4XGiaRjAUyhinILpcoHPmbpelLFNIEjunTGpu2QHbyXQnkb7XsvNMPNZqAMtG05GrEJRtZMF0qvyudumDrh1I5LVZZYbM9roKuZRl9rZINMorVP3p6rMrxGbzDjq2A99NHIGgB6igH73YnVJ6IzUBiqoWLMmQLRRQKkuINDfTHNlMm2hCF2G8oogipQKX4olTUkhDQ1dMKLCuVtoOnN73kpyaZeXyZ/W3JFWY2URDNiuySX+bK3Y7zmwyE1qR6TrsDoh2175zERxkICmwF4Qo13thNlgshNdBrm1KTFhUaKS2oRD1D1k8wxnkuxGpXU7n3ZaIHY+4fHEEgh5AVTQ8ig+X4o7FGlAVJWcDvpzbUVYMgQhGIIhQDHQlgo9iyqnGT3II0mShIL69QggiEZ3Tqi+23Qa7HVoqS+tMsxppIJiPUGAm0To7U9Igua+r/bXldVgNgIVO+2y25M91sM3UnlwHucQ8BoU2UuzuWbTZ4C/Ra8Aq4FY2mN/JTPen0ILV951BgwZRU1MT57nW3NzM0qVLU3qu2fGIy5ddJjDR9x1VVTAiIjaoGkLgcbu6dOlAKfaiKiqiLUhbadTV0aeUpA2IJIUCgTAFL1IQQkQzHOap5UjMMSAj9qXLX58Js7YgnRW3nbC4ayfNg3pibbQzq89GGJABe2T92ZAuul8h2pau7kILHZJc65XPZcjiGQVtY3fNonc+l1Wxayn0MoND19La2spnn30W+75u3TpWrlxJr1692GOPPbj00ku56aabGDJkCIMGDeLaa6+ltraWE044IXbMkUceyYknnsicOXOAqEfcOeecw4EHHsjBBx/MnXfeGecRly+OhmAXQVEU9IhOS2uAxuZ2WtsCXa4xUL1uKC9BbRG48ePGm/mgzra6XS40TSUYDEcNDju9EHxeD3/bHk0SZceYycry3A5fzB+VVVY6Oxb1meLjm5EBdKz8uxOtu+U2aVSWDvOsLzHTXbpZWrrrKmRehFTYmWFmiwyilEs75L3rCfdF+W7mi3xvIPvnY2UkKtuVKtaBHazewZ5If1xe7sfjySV4e254PBrl5f6sjnnvvfcYNWoUo0ZF79dll13GqFGjYtl4r7jiCi666CLOO+88DjroIFpbW3n11Vfjkg99/vnnbNu2LfbdjkdcPuxS2Q6/68hsh19/+RllZaVx+4SAppZWOgLR2AQej4vKsqKU3hWFQAhB+1sfgd+Fb/ReqIqWVbhkIQThSIRQKIJL25kpEXaGL04165YddqoBPTHdamK5XGdMdo5LN5O009Hb8bm3M+tLF/o3sVyu90JinknninlGbie+gd0687k287tTKC2GnWyGmcpYtUVeq8wnYDdaZap3yep9M2fYTPw73b1JJzDsMe1/LOaFbs926OQysI/dbIfOksEuhNvlIqBE8HrcFPu9XetpIASBjZvRPUA4iLG9hUgkgre6N6j2zhtNiOQihI7HY728kUpdmykRTtz66MTCJIuB9DH0zW1OZ7OQynsgU/vMx8rOOt3AEYsdn6G9+VJXOzLruPtSoFv05NzYdU2ZNpO1T86F+p0GfZCcna+rhQEz5vcsn2WnXMiUpAni0xubrzUbYQCi79b6+SLufObgX1Hbis4cIJ1LXubnkikvgrx3ayfNs2UQ2h307Vv+rR6kd0WcJYNdBEUBl6ZS5PNQVurH7dZyFgikW2C6aIehbQ1se2spLd9soKN5B9v+t4zApuzCX0btHSKWbU3MZ5CPS5tV55hriGHzbLFQbcnm2KyDvtgIQNTV8eTlvTL70C96cm5c5EUrl7rB01cw8CElrn3ZXH8+8QjM0SbNdMXShhXqkuUMfCjz79ecOEhi5x4lCkvqkuUpry2be57u+tdOmhcXNwF6PqKkQ2FxBIJdCLfbhculgiAnYUBGGJTxBNKuBqkqnsoKPL0qIaRHlyZUJeuAybpu4HZZCy+FEgqynSlmmgXKtelM9gSJ+61CvOaKOZVtIonrtHbiyefi3y9nepmeyeDpK2KajMQoh6kwCw75RJ40axrskM19syJbm4V057dz3bkKmIUyODUjrz3V/U4U0Bxh4LuHIxD0IEIIdEMQMaIzekVR8LjdhCMRW1H+rGhjBzuop5WGWBplKzxVlVQffihVB46iKOimYq/hlI0YimJzuUB6Qyhq+iBKzzXcFycYyPXlbMPuJhpDZUofbCe+gB2hwOzyVaiQyubO3Gogt0rQk2m2nI/mIlPHbrbnsEOhgg/JZ57NwJNPciO772O6e90dg2ShPQTMSwAyx0U6ocDcjoX1q3j+0w8K2h6HnsMRCHoQnQjr24K83xCiNRIduDVNxTByT22kEyGotKETxiB9elBFU0FTIRCCxlYUi+RSicjlCKPToNBt0zXSLBjU1Y6MrZlmYwGfalZkVUc2QkEmzAZq8jhz4qLEcnaQA6yMfmg3XkEhI/3ZnQ2ns/dI1GZ8MX9UnOuo+R7lYg/QlbYTEqn5MVv150MhvAzkc7bKXphvG83Hmw0Lzchw1pmuY8q0mU5yo+8QjkDQQwgEHbTQKprYFoiwpWPn4K0oIDIkBkqFRjRroqa40ZTMA7zicaH2rURvT51yUwoBum4QjugEg2GCwTAetxs1y6UNs7ZgYf2qpM4oVTTCdO6J+c7KUgkOiZ1hYl74RLLpqK3Wt6XmJBVSkEpFT8SXT5yRD56+wjJTZD6BhvLBriYqVfKfXDBnJcxVMJDvV6JtRqEM+rKpKzEgkllQWPTkXF545PGCtMmh53EEgh7CIEKINqqKAuxWAh4tOrBG8xioOS0ZKCi4hBtFqGi4UcnsRqioKq4+lYimNoRhRGf/RjQXQSSiEwqFCYbCBAIhQuEwCIHb7cLv8+BKYTuQDumOaB74zAOZHXe/fGZfiQOMXS1BPrNcK1LFtM+k+s/kmZGtUJDJIDGXGWmhllYgf2GvJ8PxWsWTyIdCeEjI99+JOuhghSMQ9BAqGiVUUaYVMbgMdivaGWRDVXMPY+xWvJTRhxJRid2MiWqvUoxgmEB7gEAwRDAYikYd1I1O10INr9eDz+vB43GjaWrOHhBSQ2DO1GdOGiQxd1jmoEJ2OjJz7IPEes2Z/QrVUXeHWttMIW0J1CXL095TOx4MVkKW1XHZDkbSbsKO6jodU6bNLNgAmO07k0mrkw25CgNWyzpmdhU3Qoeex4lD0EMoqHgUPx58CKJDtxxkVUUhoqdf/0+FiotiKjvPYVMgKCuCcBgtGMFV7Iu1o6szLspZsjRaM89GUw3mElnWPGsy/51Jo7B20jyYJAe8+P3ZqrrzXS9OF9ugK5D+5JJ0A00mAcNq1prKCDHbOADm98F8j7OdKatLlrP2yVXUkfpZ2gk2lCtWsS+6Oh6CWSg2R29cOyn5uUyZNhMm5XaeutqRREQY+CLHluZOfVsTDcHuCUzUy+untvi7H/PAiVTYjaSLVGjGEIJgIITX60G1afWfD0YoQvsLb+EePQTvnrVdfj65bJBIrgOrOVKbuY58B9pchIFcIv4l1pEo6KQ7JlvthKw31+MzUQi7Adg5QKd6J3IJ5WvWNJnvbbbCQDblUwmpULh7b1e4SDy/jIGQ6V6nQrY/IsLdHqmwvq2JyX9/kKCR28QpW7yqxmtTL/jWCgV2IxU6Swa7IAqgaRqRSKR7zufSUHuVIbY1pUxrXEgS4xOYkepLq5wAmUICJwoDqQIB2fGjt4s5UpzZMC0bFXWiit2Oq528BqlOL2R643woVJCkxAE38X1IJJMqP50RaldpBswDtTkVslnrUQgXwmyFAfmuyus2GzDapbuXyRJpCHZ0mzAAEDT0rLURN998MwcddBClpaVUV1dzwgknsGbNmrgykyZN6rQb2/m54IIL0tYrhOC6666jX79++P1+Jk+ezNq1a7O+JiscgWAXRFEUNE1F7zTy6/rzgdqnHGNbE+SZrTBXZHS5wdNXpJ1lmwfgVJg7O/Mx6f7Otc1ma+vEoC35rFtns84uz5ctXdGpF3LpQ87qrdqZaPFu57yFjEJoB/MzsYpGaMeNNl0yK7vXYxaWEn8b6UjVxp4WBr4tLFmyhNmzZ/Pf//6XRYsWEQ6HOeqoo2hra4sr99Of/pSNGzfGPrfeemvaem+99VbuvvtuHnzwQZYuXUpxcTF1dXUEAqk9xeziLBl0I3aXDCAqBQYCIXw+j621fPNjzGXtP/zVVoL//Zii48ah+j1ZH58LqZYOUpFO1ZtJjZvKWt5qhmaewdnp/BLX5M2qach+BmeuJxt1sN2OulB5IdLVbybXcyW2007SqXTnyua6M933QtocpGu7nedvFgwy2XNkun5ZPptn1hNLBh82bOL4fz5SsHPZ4YWjzmXfXjU5H79161aqq6tZsmQJhx12GBDVEBxwwAHceeedtuoQQlBbW8svfvELLr/8cgCampro27cv8+bN44wzzrA8zlky+C6gkJWGIGyEMURuM3zF48IwdESk+9Rw2ZLY2a0/f+e9SdU5y84yVQeXqGnIRYMgY7wPWTwjrj67UfPMA0KiStnuzF8aZxaCbGafXYUxcXTWKux00RwTbQgykasQlwvmtie2zU475HuWKCwnak6yWc4pdDREh+jADdCrV6+47U888QS9e/dm33335Ve/+hXt7e0p61i3bh2bNm1i8uTJsW3l5eWMHTuWd955J+82OgLBLoyiKFkJBG7Vjapk/0iFbiDCOorfC0Ig9O5ZNpDRC82fRLp6YDILErmuf0u7h7WT5rHoybkpB2arazGvLZvJJbBNujgE2dxHObjkeu/N15LrPU3npZDp3In3LFEzYPfa0qnu5Xtj9/nYOd+UaTNtRwhMhZUgAPaXCnKxJzAOcZYQMmEYBpdeeikTJkxg3333jW2fPn06jz/+OP/617/41a9+xWOPPcZZZ6WO/Lhp0yYA+vbtG7e9b9++sX354AgEuyjSwMRuPAKzUUo2GMEQ25cuo+WrL9F7F9H8yRqaP/6EbrEutMAsFKRTl8p96TrabFy7cvUXN8/iZSeaqh6rttg5ZzYz/1Sdfi42BvkYIGa6F3ZIfLZ2n2eiEJJL1kM75VNpJXINpZ2YPKoQs/RsDWizXU5aWL/KiVRog9mzZ/Phhx/y1FNPxW0/77zzqKurY7/99uPMM8/kL3/5C88//zyff/55j7QzZ4Hg888/55prrmHatGls2RJNm/uPf/yDjz76qGCN+76jKgpGjiGM7dL6+XpaPvuctq+/JtjeQri1jVBjc5eeMxNSKMgkDGQi27X3bNe6C6Giz2QcCfGDak+p8rM9r7w3+Xgd5JJ58Iv5o7KevaeqxzyIZ7r+dOv4mbanwiwU2DE0BLKyF0hE5nPIlhOH7pf1Md8n5syZw8svv8y//vUvdt9997Rlx44dC8Bnn31mub+mJmrDsHnz5rjtmzdvju3Lh5wEgiVLlrDffvuxdOlSnnvuOVpbWwFYtWoVv/71r/NulEMURVVieQS6iuKB/em13/4UlfTCVVuJd7c+VOwzHLtRDruKdK6JZvJ1ozN3mtkOINkaX1mRbvD6Yv6o2IBqTBzd5cFs0iEHx0z2BYlW/4UyvDMPzJkyVCaSTRtk/eZ6skmSlY3gkA12A0nlcj7zEkUu75eT7dAaIQRz5szh+eef54033mDQoEEZj1m5ciUA/fr1s9w/aNAgampqeP3112PbmpubWbp0KePGjcu7zTkJBFdddRU33XQTixYtwuPZaZF+xBFH8N///jfvRjlEUbO0IbBDooCh+n0g3KAoBGrcGHuU4aos62l5ACEET226k6c23Rnblspqv1Cz5mxmR11tqQ/R65Qhnhc9OTenGbMVU6bNzEm7kWi8Zr7vVuve+d4f8wxZnjMbQ81czm+VrMlObAnZ1kxtMwtWdjDfg1S2BebMiBIpSNod4GVsgmyQ53M0BNbMnj2bxx9/nPnz51NaWsqmTZvYtGkTHR3ReAaff/45v/nNb1i2bBnr16/nxRdf5Oyzz+awww5j//33j9UzfPhwnn/+eSC6NHzppZdy00038eKLL/LBBx9w9tlnU1tbywknnJB3m3MKXfzBBx8wf/78pO3V1dVs27Yt70Y5RJH2AIL8xmcpAEREmKAewq/50ZRo7gQjHCHc3o576AAqS8pxad48z1YYhBBEdIOzdrsMiF8mSJzBWXV6mWbT+cy2Mw02WRlkTRwNRLMcqljPZOXasnlAKJRmIlviB6RVUB/9S6bRNUeNzBcrY0A7RD0U8j59HIlCgVVbhiyewdr6ebHvqe5BpvfSfB+tSI7KmVzOrvZK1pXq3UuFfG97il5eP15V69ZIhb28/qyOeeCBB4Coa6GZuXPnMmPGDDweD6+99hp33nknbW1t9O/fn5NPPplrrrkmrvyaNWtiHgoAV1xxBW1tbZx33nk0NjZyyCGH8Oqrr6Z1J7RLTgJBRUUFGzduTFKBrFixgt122y3vRn3XEUIgkLN00flRk3IPRAUCJZoKWcttkBZCEDSC7Ag20BRqxBAGg0r3xK9GX26jLYDny60UDR+Iy1M4H+JciQkvER2XpvK37fdyctWcghiBFYpMEROzITFaXDpS5a6Hro+ND+n95Qezgjqiro9DFo9iMLm3Jd197MllE0hvHDh4+opYvoRc7Rfk8zXfa6u67IR0thv+Oheky2/0fOGc68mV2uJyXpt6wS6dyyCTdrd///4sWbIk63oUReHGG2/kxhtvzKo9dshJIDjjjDO48soreeaZZ6KW8IbBW2+9xeWXX87ZZ59d6DZ+5wiGO0D1gCIAA1BA9xJdwYkf+DVVQTcMVFUl11xDO4INfNP2NQJBta8aj7ZzmSccDKP364VaWpTr5eSMfNENI7qMYQgDIUB0fvd43RgWkRPNndy8L29hxoAr4/bf9/Gvmb33DVm3Jx9VdHS9PzlJU6GR8QYW1Sda70dn6+Yoj6kGhHQxG1LdAzkjzHRd688XBbHrSHUPM9UtAwZ1ZbIiO0masg1ulS4HhPyeKmmUfCcSrzeTMJBPwCg770JXU1tc/q3NLbCrkpMNwW9/+1uGDx9O//79aW1tZe+99+awww5j/PjxSeoOh2RCIZ1QOIRA3ykUKNHBUcT+MxAYqJrSOSjmbktgCAOBQEWl1FMGQqAbEQxhEAqFEAP7oni6N/GlEIJQKEwgECIUjnRmd1RQVQVFgfaOdjZv3srmLdu496NruffD5PfqoU9vJBwO8/AXv43b7vf7mV9/B09t+gNPb76Tp7fclXRsJrWtFelmVHK9H7JT55vXh+2uK5vd02Dn+q/ZuE22KRvSzX7tqqCtslTmwpRpMwuucTEmji5Y8KZ8Q1ObSQwtnA6zW6K5bLbJmXp6MHfYNckrdPGGDRv48MMPaW1tZdSoUQwZMqSQbfvOIUMXr1+3BlVTKC5VcbmU6FhveKLGfQhQQ6BEhQAhFAJtCn6fL+sYAxAdeLd0bGZD25d4VA97lQ2hI9yEaO7AH/IQrN+Ou7wczeemaPd+KO6uFwyEEARDYVRFwd15PhmEKRAMsn37DoqL/BQVF6GpKoqyUzsi70EwEsbjciUFYopEdCK6jtfjTrpf2YZKNmPOEpgpPC7YFwpyzQ6YaoaaTxZEsBYicgnhnM+AIwfIQnhxWNVXSA2OnSUMq/OlyjyYbT09hbktPRG62CE7uiV08R577MGxxx7Laaed5ggDWaApGkW+YtpbDQy9Ux5TOo1j1AgokahAoAhQjKgmIQ98Lj8lrhIqvJV4VA+iI0j70tWENm7DCAYIbd5Ex1dfE0kTMrNQCAERPbo04Ha7YsGUorkbgmzb1kBVr0oqKsrxejy4XC40TUVV1c5lk+gg73W5k2wuADRNRQhBOKIXzEOju9atCxmIJtu6UlnSZzMIyTpy8WWXyDgChUySpC5Zbpn5shDJp3LRFCRqBLJJOGQm22dcCO2INGzdVQQTh8Jiezp42WWX2a70jjvuyKkx3xcUBdwuDcPw09bWTkmpC0UxAMPSpUDRouvsWg6GhYqiUOouZUj5MBQUdBEGw8BVVIQmVFzl5RhCxwiF0PzZWdFmgxycdd0gHI7g8+6cwQsh6OgIsL1hB316V+H1pk/olGmf1+MhGAyhAC6Xy9L2QsY5EAJC4ejSRXGRD01TOblqTlxZszCQzhsgW6IZHuNn1tkEXUpXNpd2FkLoqasdGbW0r89NS5DYhoX1q2Jul+mSPWUjtGVzb1JpTjJ5uZhJFtBy0+IkXv+QxTNsG2/ma1ORqHlyhILvJraXDA4//PC478uXLycSiTBs2DAAPv30UzRNY8yYMbzxxhuFb+l3gMRsh0II2jsCoIYpKvKA4Y4W1DotZ5XOASsgcClFuFxa3m0IRTrYtuNrfNsNPF824du7P2rf3iAEqrcwWQ6jb5TAMAwMIWJGg8IQoIDX40ZV1c6ygrb2DnbsaKS6T288Fqr+XDCEIBgM4dJcuFyapVAghCAYDBMKhyku8qNqakwWMy8vPNdwn+3lhlxV9vmo+lOp+adMmxmzBrc7WJrry7XTz3UZxOr8EnktayfNS5se2277rJYO0gkbkNlITwouYDL+tNB0pFseSIyQmCj4daeXhd2lG2fJYNfH7r20rSH417/+Ffv7jjvuoLS0lEcffZTKykoAduzYwcyZMzn00EPzaPb3C0WBIr+X1vYIwQ4Fr0ftNC5UiXofRMsoGhi6AeQnEAgh0Nsj+D7aQknDViivwlVVAR53vpeSeCYCwRCgoCoKqqagKCpqQr4FIQStbe00NTVTXd0bj7swwgBEgzr5vB4CgRAgOoWCnXULIegIhIhEdEqK/TEBRZIYKdEsFKTzNMjXN7sQMy+zb/ngzF5NcaydNC/mrZCrL7+cyWYbSClxsEucWcfc+ubbCxWcDit1e6aQw5k0MubB32yJbxZAhiyeweA0M3VzACYz8ty5XGuu2oFURrKOduC7S042BLfffjs333xzTBgAqKys5KabbuL2228vWOO+23TGItDCFJUoBMMBdF16E+xU2ggRFQpyTWu8sx5BuKWDjmWf4V6/A0WJ4PMGoEBagaTzGQKfz4PH68btcuHStDgbACEELa1tNDe3UN2nqqDCgERRFLxeT9TQMNLp0igEkYhOa1sHhmFYCgO5Mnj6Ctux+wthoW6V4Mkc7jhX6mpH5j0LLVQyJWmPYB7QzBETczlPVNiJpqu2k5gocf8X80fFjrPKLmjlBSC3p8vPkYpcrzNXUnljJNoPOCmSv3vkZFLe3NzM1q1bk7Zv3bqVlpaWvBv1XUe6FaKFACM6m/WrtHd0UFLsR6FTJBCCSATCQRCGAbmO3YZA/3orgffWACECRwxBNVrxNYdBy38ZwowccFVVtYx3KEMnNzW30NERoE/vqphxYVegqlGhIBgMoxs6kYiOYRh4vR48WZ5XagnSzY7kwCVnZalmlamy54H95QOr2eTg6SsK5lqXL4kz/FxmlYUK1yyx0kKAeXBbldL+Ie44RnYuE2R2GbTrrtlVZKsdSLdEYN6ejQ1DVyD0ejB2dM/J1EoUrcDhL3dBcpoanXjiicycOZPnnnuOr7/+mq+//pq//e1vzJo1i5NOOqnQbfzuoURAC4D0HjDcuD0qmtugvSNAJAKhoEGgXUGEPHhdRajE5zWQA6uuG4QjETpCAVqDbXREOqLlBIR3NBHe1kj7Z1/S8dHnGF6DwKTdqa8oZauvAqPARoRSGIhEdDwWyxBCCELhMJu3bCMcDlPdp2uFgeg5o7nII3qElpZ2FEWhpLgoL42EnZmR7IRz6ehzGTh7KguiHeRsuScyJppJF/LaHMvBDvIdkJoBqzbuas8kV0FRakES700hYzFki9DrEVuPQmw/sXs+W4+KCiA58rvf/S6Wh0ASCASYPXs2VVVVlJSUcPLJJydlMUy6biG47rrr6NevH36/n8mTJ7N27dqc25VITgLBgw8+yDHHHMP06dMZMGAAAwYMYPr06Rx99NHcf//9tusZOHBgbE3Z/Jk9e6cB1zvvvMMRRxxBcXExZWVlHHbYYbHkEAANDQ2ceeaZlJWVUVFRwaxZs2LZFyXvv/8+hx56KD6fj/79+3PrrbcmteWZZ55h+PDh+Hw+9ttvP1555ZW4/QV9EIpcFlDB8IJwowg3fr+K6jLoaBO0txjoYRWPx4OmqWgujUAwHA3mEwwRCIbY1tLA+sYv+bzxMz5r+ox1zetpbI/GvA41NLJl8X/o+OQLWtatp8MbIdBLQyt1UV2sU1nsQtF1aQEYu8ZcsivKY2IxALweVFVJKtPS2sq2bdspKSmmT++qTg+AwgsDsaUBXaetvYO29gAet5uy0mJcLi0W/ChXcnHry8SUaTMtXf5yDc6TS+ffVSrgXDPpFTrSYLrzm8+V6fnKfVIISOU2mO+sP9/B1vwOyL/TBWdKNfAXKh5EQTF2AKFuPGEoZ23Eu+++y0MPPRSXsAjg5z//OS+99BLPPPMMS5Ysob6+PuOE+tZbb+Xuu+/mwQcfZOnSpRQXF1NXV0cgEMipbYnkJBAUFRVx//33s337dlasWMGKFStoaGjg/vvvp7i42HY97777Lhs3box9Fi1aBMCpp54KRIWBo48+mqOOOor//e9/vPvuu8yZMyduzffMM8/ko48+YtGiRbz88su8+eabnHfeebH9zc3NHHXUUQwYMIBly5bx+9//nuuvv54//vGPsTJvv/0206ZNY9asWaxYsYITTjiBE044gQ8//DBWpqAPwnBFAxHpPhBa1J/ecKMIL36vn9LiYirKywEIhSOAgsftwt1pGOdyaXg9boQ7QpPYTjutGGoYVRMgorkPgl9twgiGEC4F1569EZqBWuajROtFtdaPcm/fqEAQicYhl7kVwkZ0OUMX4bR2C3LQFZ1eBIFgGF038HqshYGmpmba2tqp7tObkuKiLtMKCCHQDZ229gBtbR24XS7KSovweFzohoGmqmQp71iSatZq7nizQV2yPE49bp6t2hEMEgefbAbTQvqWJw5iVr7/2WT7AwoakyAbvpg/Kuk5moUBq9gGVnXkSr4ChfkdkLEY5EcO/vLfhfWrUl5PumvsybwS3wZaW1s588wz+dOf/hRnc9fU1MTDDz/MHXfcwRFHHMGYMWOYO3cub7/9dsqMwUII7rzzTq655hqOP/549t9/f/7yl79QX1/PggULCtLevCIVFppLL72Ul19+mbVr16IoCj/4wQ+YMmUKv/nNbyzLr169mr333pt3332XAw88EIBXX32VY489lq+//pra2loeeOAB/t//+39s2rQplqr5qquuYsGCBXzyyScAnH766bS1tfHyyy/H6v7BD37AAQccwIMPPogQgtraWn7xi19w+eWXA9EH2rdvX+bNm8cZZ5xh6/p2uh2upaysNLZdmP4/ioKCQiQSHdhKS/yxQdZcKhDpoEMP4FJceDQPmqKhd0Qw1m1C/+RLjDG1RGo8RDxhaAojijSKfJWU0gfFEGiff4heMwBREk133EELHaIVQwljoFMsKiimMs4QMDrgCkSnS6F8fdydAYQSB/qd9gId9Ond27JMIYgKJgaBYNRzwOvx4I2LdQC6YRAKhWNuj7k0I5P7oXQ1k52oHZc1SbpBOd+1+FzPmwtSNW92u0vlldGVqYzzJZUQZieqYE8jBRk70Q/TuXHaufc94XYowh8htp9YsHPZQal6HsW9T1bHnHPOOfTq1Ys//OEPTJo0iQMOOIA777yTN954gyOPPJIdO3ZQUVERKz9gwAAuvfRSfv7znyfV9cUXX7DnnnuyYsUKDjjggNj2iRMncsABB3DXXXelbEeXRio8/PDDOeKII1J+ciEUCvH4449z7rnnoigKW7ZsYenSpVRXVzN+/Hj69u3LxIkT+c9//hM75p133qGioiImDABMnjwZVVVZunRprMxhhx0WEwYA6urqWLNmDTt27IiVmTx5clx76urqeOeddwBYt24dmzZtiitTXl7O2LFjY2WsCAaDNDc3x32i7BzchaKDGozaFMiPogMCTdNwuTQCwRBC0RFqeGdZRcfn8tPL0wtfcwQ2NhJYsx59fT2hb74hNKYXof4e3L5ifFoZRqULfK7o7FgIUFWErwjR2hhrT4QgAaWJEO1ECNGhNBFRQkgxRGoCDMNAURTcLhdejwef15Pk1gfRQbq5uYWO9g769K7qEmFALg20dwRpaw+gaRqlJUX4fPHBjRQlmijK43YRDKXXfqTCLAyk0gCoS5YzZdrM2P5sLcRTzSizWd/uaewIA98GpCeCRHondJUwUMhcC4uenGu7nemEgULZb3wfeeqpp1i+fDk333xz0j45QTULAwB9+/Zl06ZNlvXJ7X379rV9TLbk5GVglk4AwuEwK1eu5MMPP+Scc87JqSELFiygsbGRGTNmAFFpCOD666/ntttu44ADDuAvf/kLRx55JB9++CFDhgxh06ZNVFdXx9Xjcrno1atX7AZt2rQpKU2zvKGbNm2isrKSTZs2pb3JuT6Im2++mRtuuMFiT6eXgRqODf4xk3wBqGGEHp3B+n0eWtra8BBBU81lAF0l0tzK1rf+S0ltf8KtrbhLSujorSAGePEqLkqoQmDgowRVuFAVDToNFI3icrTtG9HRQaj4lFIihNBw4VbcuFQFTRgII9o8o1Pl7s0Qt0BqDZpbWmhrb+/UDCQLDPkgjQWDwRBhXcfjduP3eZOWK8woioKmqXhwEQyGYwGLXDbbJmMTpNMSfDF/FAMfyn7dVc7E7Fpt93Qa4ExIYaC7LNHNcSOEEITDEXTD4Mxa+xFWrTDnZujq68jV9sMKO9EYZaRMK8yxLByy56uvvuKSSy5h0aJF36qgSjkJBH/4wx8st19//fVJBn12efjhhznmmGOorY2+oTLt7fnnn8/MmVEpddSoUbz++us88sgjllLXrsavfvWruJDPzc3N9O/fP/pF0TtzFiQcpABCBzWEMLyoqorX4yXQ3kFRSWfEvViZCELXUdEgolM0sD+qz0tQVwmrBgZRYUMVGm7hxzAEumEQiASjAY/cPjztLYRav8FTUotLeKigX3RwFAIIdiZZMjCESkTXcblSvzJySSEQDNLa2oau653Gg4UTBqTNQjAUJhKO4Pa4KPX5UVK4OSZiFgpCoTDSxzObNu4UDHZ2luYBWmoJFtV3nTFWYjS7riZbAUQa5g18SMmolk6HTLucDUpn0iwlkj4HSLr7t1NT073LFYUw4LMrVKR7HoUM0f19ZNmyZWzZsoXRo3c+C13XefPNN7n33ntZuHAhoVCIxsbGOC3B5s2bqampsaxTbt+8eTP9+vWLOyZxkp4rhYnI0slZZ53FI488kvVxX375Ja+99ho/+clPYtvkBe+9995xZUeMGMGGDRuA6A3asmVL3P5IJEJDQ0Ps5tXU1CS5csjvmcqY95uPsypjhdfrpaysLO4TQ7iwvP2C6Haxc+D1etwYEZVIZKcXQNQIMIzY1kRp0EvxwD3wD9gNb3UvPL1qUMIudF0nEA7QFmyPrq3rOsFwhNa2AEKAr6SESJ/+eL6uJxJooyXUjrRfAAV0DxheDAOCwVB0CUNLbnN0RhamqbmFTZu30NTUjN/no7pPn4J6EhiGQUdHkNb2dhQFSkr8+LzelDEPUiGFAr/fi8/rIRyOYBj5mdLkY9SXDYlpgfMVBux6FkgBxGwQmGp5w7xdGqrlEpAHogOkXIJJVTYxqiQQM759anPqdVWr5RxpZCf3ZZuoqSvd8L4NhpgOUY488kg++OADVq5cGfsceOCBnHnmmbG/3W43r7/+euyYNWvWsGHDBsaNG2dZ56BBg6ipqYk7prm5maVLl6Y8JlsKKhC88847OalH5s6dS3V1NVOnTo1tGzhwILW1taxZsyau7KeffsqAAQMAGDduHI2NjSxbtiy2/4033sAwDMaOHRsr8+abbxIOh2NlFi1axLBhw2JWn+PGjYu7ybKMvMmFfxCdA67h3mklGDUoiKZA1r07vQ+Idm4+n49Am44uBM1GEyFC6M0dhN77FNewWrS+FSiqAqpKkbcUVfcSCRs0is20ubfi9iloHoHwBHAXiVjaYVFZjVraB983GyhR3Oi6QSgcJhgKEw4ZhIKCUDCC27XTy2Gnd4FBe3sHW7duY8vWbei6TlWvXtT0raakpLggNgMCKQgEaGlth844Aj6vJ2fDQHlPo5/C2jVYJefpKvL1A8/WWC8xOmC6mbXVdefaVmkZb3U+K2FAErVzsRd4Swo6+c7Qd+VlHDtIO4Zd3WhyV6e0tJR999037lNcXExVVRX77rsv5eXlzJo1i8suu4x//etfLFu2jJkzZzJu3Dh+8IMfxOoZPnw4zz//PEAsjsFNN93Eiy++yAcffMDZZ59NbW0tJ5xwQkHandOSQaKvpBCCjRs38t5773HttddmVZdhGMydO5dzzjknTh2tKAq//OUv+fWvf83IkSM54IADePTRR/nkk0949tlngai24Oijj+anP/0pDz74IOFwmDlz5nDGGWfElh6mT5/ODTfcwKxZs7jyyiv58MMPueuuu+KWPS655BImTpzI7bffztSpU3nqqad47733Yq6J5gcxZMgQBg0axLXXXpvXg1BQEEIDtKj6X7g6kxupsUiFAiFFAtwuF8Ggh0AgTMDTQVgP41/diFJZgmf/fqCFEUbUcFJTVTQPhIwgEV3gDvto1wME9QBtRiOa7kVv13G53WiaC6OqhqL69bR9+SlbKivxefwopSplwodPd+P2emIDr1yfbWtro72jA03TKCkpxu/zxYUmzhcpdARDYUKhCG63i5KSolg+hEIiIK3tQSoy2RRkE68gXSY/M4kdda4DkFkYSDcAZkqsY7XfmDgaJiXXmy5joBXGxNFxa9y52E1kelfMywZ2kx1lqs/OManKTZk2EyZaa5hSZbhM3Ca1Ktmq/O16JjgUhj/84Q+oqsrJJ59MMBikrq4uKY7PmjVraGpqin2/4ooraGtr47zzzqOxsZFDDjmEV199tWB2CjkJBGVlZXE/NFVVGTZsGDfeeCNHHXVUVnW99tprbNiwgXPPPTdp36WXXkogEODnP/85DQ0NjBw5kkWLFrHnnnvGyjzxxBPMmTOHI488MnZz77777tj+8vJy/vnPfzJ79mzGjBlD7969ue666+JiFYwfP5758+dzzTXXcPXVVzNkyBAWLFjAvvvuGyvTNQ9CicYjQHRqBHYKAlH7AoHQo/uFEHg8bra17iBSHEaNRHBtaIChtQRb2tD1ZgwdDF2NGtuJAIaq4FbdoLgJEsbl8lKp1qB5NVRF7VTzNxHWw/TylaNu+5JwnxLUXj40oaCrAlc4qqkwDIP2jg7a2tqJRHSKivz06d07pmkorMFg1HOgoz2Iy6VRWhK1EUCQV0ChdITDesyOoJDnkEKBHVe1gQ/ZO7FVpj67yKRDmYz9rGbzmVzT5IC1dtJOdbWVwGDX9kHO1s3158Lftt+blNI6sQ2pIvFlS6a01Jko1GCcTzKjbwVqJdFY7t0VnMjTec7cWbx4cdx3n8/Hfffdx333pdZyJUYFUBSFG2+8kRtvvDGvtqRil4pD8F1HxiFYt/q9nXEIFAUFFaG50Q1BRA9jECSiRzAMA6F70CNgGFEDqY5AEF0JUaRoFL+zDuXQIQQ8XvxFGi53VDhTVQ1Dj8563R4VxZBLEPErRIYRDSUcCobQQu0oX33O1qGDUMu89AoW4XO5UVEwdIOt27YBCqUlJfj8vi6ZqYMpJXEohN/v67RBKPhpTOfr1HpEIui6gdvt6rSTsCcYRDM2duBxuztTN1trDOwM4JnyHyTWB5ld+hKT0eQjTNhpjyRd3AE712dHbZ1uucCMECJJIDCfpxCGfOk0KXZm9fJ7pudqp65cU2nngjFxNMbipT2S/tjJZWCfgqc/NjN48GDeffddqqqq4rY3NjYyevTomMuggzVasBEtENoZZEhAc/MO9EgQRRFomorL5UbzuNE0D5q3CFUBRXUhStx0BBX8hkaHMPAXefB4PHhLXKiqggACHQYtzQY+H7g9dHojKLS1BSkpLkIIA1AwEHSEQ2gKaB4fwusn0tyB1+3Co2poqBiGoH7bJtr0Fvaq2QtNKaz7oBlpNGgIQXFxEZqFAWOhUZSo1O1xuzC0TsEgouN2uzpDHKe/1nA4AkLg8ewUXKyWEtKpgiVyYLIzu7RrtW/WUEj1eyEHCnO8Abt15zJ77io3y0KF5TULA6n2JW4zX5P817zMlM812xU+80VdspzIISPhPy/kXVe2KFotfIsH6V2RnDQEqqpaxgDYvHkze+yxB8FgsGAN/C4hNQTLFj5KVVUVHe2t7LbHYDTNRVtbC76KWsBAwei0KzBQOvMfCz2IIqLbhQGEDdqXrMd3cA1qkYHiUhDeYoS3jLBw0doUQUOnpFSgKSqhoIuPPlnH3iOG8Pn6evxFRQSDQUKREHqgHV0Hva2VPfbej03btlJWXEIoHGbr1q1UD6yivLyUvkV9uyz3QCQSob0jkBRhsLuJJYwKR1A1FbfLldK+wDAELa3tFBX50hqvScGgK9Zo0832u9o4zG7woWwHNjv3ya52AHZGqPT7vMDO59GVERDzFWBSuWra0T7Yva5ClXtmzXIqh37R7RoCB/t0iYbgxRdfjP29cOFCyjvj7UPUx/L1119n4MCB2bf2e8bnn35I2Zgf0N7WgqHraJoLVDfCUxq14jeVjf9bxDaIiI6hbSISqMS9e1+ItKKEGlGa6/GIMJXChSEg3AAhFCLCQ2tLI5vrv6J5RwNffxOkrKyC4pIS1q6vZ8CAAWheP1+uW8/Whh243BrlvctoaW/h4OrRuAqcJjl2TZ1LBO0dAZTOVMU9JAsA0iVRQ9NUwmGdQDCE26VZxikIBkO4XNaumOlINVDnMoDX1Y7sMatwu5EIMw2MzzXcCyhxGpVCXo+hG3H5T55ruI8TTnyYKdNGZzS8y/Xerp00jzpGZqwj3VKDXZsSB4dCkZVAIC3qFUVJikjodrsZOHAgt99+e8Ea912lV+9qtm3diNvjjRrL2baWU3YGMnJpuPr3Jbz2awLVRXjLXLj9NSD6AAaK4cHQDZob2wkEWnBpLqpqBuAqraDaVc7A4iLa29rx+/2MG9cr6s5HmMbGFrxFRZSVluLyuvEoPtpaAvh8ntgMqxDIAEMdgQCgUF5WQnNrW8Hqz4foo4gGt3G5VELhCJGggccttQVRI8tQOExpSeZETYlLCOnCHheSnjQSyyZoklAiIDSea7gvY64IyE47AKDrBi53vEC74PlZts4FuQsFO+0qUuehSJWOecjiGXC+YO2TPZPHQZJLYCiHby9ZCQQyeuCgQYN499136d27d5c06rvO8H1GU1TkQxjRmYswomv62aAoCu7B/Qh/tI7wFxsxhvbGVS798lWECorwoKltUW8FVPrV9KW0tGTn2nyfeBsQdftmepW60XcfDgK2NzTSu1cVLS1thEKhzkyG8W3IBgHQmSY5GAqjd6ZK9nqiSwSqEvWQ6A7bATtE7QuioZr1TgFAUVQ8bhcdgWCnNiN9W61W5GSIWjuDjFmYSOXmaA55m+3A1VXaBbvq8r813gFEUER0wJZCQeKgb3fwTkS6r5o1BBI7oajVJcuTMhxmUqGnG0RTeZyYbQ/i7Arqd6rsU9knmDULdgfwVNeQqKWQ7eypBFNg/RtyyA6799DxMuhGpA3B5yv/RWlJMTv1/wLVV467uDKrQVaEIjS/sxLF6yHs1indczf0YBhfvz6EgGY6iGxtw6v6KfIXoWoqhi5wuTUMwKWqqOYEQA1bUJsa0AcOQwDt7QE6AkHcbhcejxufNxrnIKiH8Wr21/llpxwKRwiFwlEjPo87aX2+rS2A2+PC487J1rVLkT+TSEQnEAgRikSoLC/N6KZoGIJAIBiN8ujWCAbDnLVbNJy1eRBPNQCmmw2bB7Jnt93DKb0v4rEvbkEJbuOsEb+3fW35CAV2XSoTiV6XYOeimIzJjaVAILfvPDaxk7N+DtIeJJNdSiqhIDFOQTqGLJ4Rl8Ia4jUCicdPmTYzFjMASMqSmViXPIdsT2L7zOfIJLBkY0yZqXxowt68+Z8bC25DoOs6n376KdXV1UkG7A7ZsX37drZs2cLQoUPR0iz/2hYI7r77bs477zx8Pl+cn78VF198cXat/Z6wM/3xZzG3Qys/U1sIQcunn9OwfBUVffsT8QhCLc1ovXrh3X8fwh6dEEFKIh6K3X7UzplsIBjCMAQRVaHY40btPGdYCeLavh13Syv6gKEkvhQyQqEhBO2hAF7Ng6YqsZlXcqZDgGg8gVAwTEQ3cLk0vB53ygiGgU7PC7/Pk7RvV6KlpR1FVdBUFbfbOu2zJBzR0XUDVVUIhyO4XVo0zr4Sv2aerRocooPd5i0tzNnnav62/V4A2psDBNqClPcpRXOpKd3tEslFKEicOSeSzrAul+tNJBokK0goJPB6Pbhcaqcb705CoQgAbrc975hsNRGJXhZSKEhn6Ln+fGE52EvMngbm0Mmx+BFpjArtCAS5zPbTCX5dlf4YYOPGjTQ2NlJdXU1RUeblOYd4hBC0t7ezZcsWKioq4nIgWGFbIBg0aBDvvfceVVVVSdkD4ypUFMftMAVWAkHOCEH7hm/o+Loer68Epbmddi2AWl2DUV2N3+dB8SpEtHYgTLGoQMMdTf1rCAwAI7qOX1LipZUG1G1bKGtT0QcMi2YTFAaGbqAb0X+Nzpm+nBVH4/8rqCqoatS4TgoIEV2PJg8iqg3wuGXQn9Q/6HA4QjAUpqTYn9+96UKkZ0FZaVFnHIcICnS6HcZfnxAQDIVwdRopSgrRqQkhaGruIBTS6V1VEtO0CCFoa+wAoKjMh6IqcUJBqnX6bAWCXNMbF0IQkETtUHR2NAbo6Ajh93spLfHi8cgZkEIgGMTjdttehjrhxIdz0pZkYzOROPu3G9FSChtmLYHZGyGX2BSp2pcqBLfVcV0pEAgh2LRpE42NjQWt9/tGRUUFNTU1GfseZ8mgGymoQCAxBPqWRjreeh/XlJHoLg8ulzvqV49BhCBCEXiEn0Ag3DlAqRT5fUR0g4ghcLkUwpEQ2o5taE3NtNcMjA7sioKqRhMBaaqKqqmoSnz+AEOIqNCg61HBoTNJkKappo7YXpAfXTdobeugrLS4Rz0NUiEEhEJhwpEIxUV+okkhRfQ+hiNomhqb/UPnckEwFBXOCh1uWQh27GihuLgIj0dLEEQEoUCEcCCMv8SL6orXYKSaBWeTlTCX4DeFFAYksvsKBIK0t0foCEbwuDVKij14vS5CoQg+m/f/pF6zsxKMEtf07dpNSIFALhXI8yVqG6yQwoDV0oTd4Ffmc6Zro113xq4UCCS6rsflo3Gwj9vtTrtMYCYngeDGG2/k8ssvp6ioKG57R0cHv//977nuuuuyrfJ7QZcIBIDe3E7T/z7GP3oo3oqS2BJAG9EoXuVUIwS0RBox1AB+UYJqFOF2abQHg7QbTbi9KqXNIdSGJjr6Dcbr9eycVSnR7Io6EXTCGBj4KI6mXU5Avk65DIBCCJpb2igtKc4pt0BXYwhBa0s07oDLFHdALo+EwvHRDqX2wO12F1zAidplGKRKzhTVFLQTaA9S2bccVdPi2pAoFGQTYCiTMJBoGGjHHiJfdtp4GLS1BWnvCFJS7MLtduPzeW2/j9kKBXZJF8kxcY0+lWCWSYtgx5YjV5sP2UarY7tDIHDoHnISCDRNY+PGjUmBibZv3051dTW6nj4P+feVLhMItrfQ/s93KTpmLKLcQ4fSRJtoRFfCqGhUUoOiwg5jMwYGZfTCaPOjKRqBYJiQpxmK2ilpjFDeCKHdhxLUg6henbASJEIInTA6EQx0FKFSRX88SmGDhcgwwH6fN27A3RWQ8RJ0w6DIbz3ASBuLcCiC0fmz6grtgF2EELQ3d6AoKr4SbywqI6TXEkD+AkFPIl1aDUMnFNbxuF2WcSQSSeUWWgjhwI6QYWeGn04osCsQ2PEuyOZYRyD47pCTObdcR05k1apV9OrVK+9GOdhHGAaiIxid/anQxg5aaQAEGi78ShEuVaCg4FV8hMIGkYiKz+XG43ajqhoiYOAziilWgyiiAU3TCIWDdIhtCCVeuFNQUVExiHTB1XRmdQyFC5I6uZAYhojZN6RqV9R1UsHrjbopqoqCkqU7aSFRFIWiMj+hQISWhlZKKqKeJoqipBy063rNjqq06+dFv6ewkt9VhQGQwaWiBq+a5iIQDNl6n6Rmw+zGmS9SEEg3UMvBOJMwEF2iSC0QZPIcSCdMfNvTNjsUhqwEgsrKypjh1NChQ+N+YLqu09raygUXXFDwRjpYo3cEaVz1IR6Xj0CFSnjNWtyDqvFXlaKgUKQW41aia/iGIXAHS3EbbvxuX6fxX3TwcrvLoh4DNHSqXgUexUcw4kXx6Gi4ceHGLbxoijv6EYV3DVSUqHFeS2sHum7sMkJB1Dgw3BmYKL1xWjSmkdJlkR2zRVEUPD4XoQ6Fxi3NVPYtB9X+ko6VqjvVwLIrCANmpEZE01R0Q5Dh0cVRKP97O4JANoOxbEsqe4NU7TV7LaTKcploGJmoNZgybSaL6guT+8Fh1ySrXv3OO+9ECMG5557LDTfcEBe62OPxMHDgQMaNG1fwRjpYYAiaPviY9vUbcPcfSPGeA+nYsgVXSKNI6QOAQhhDhImEFIyIhs/lR0twv1JQUFTQCSMwIBIhGAyhKholeh/8wo2iRFMgR/+nyAO7BEVR8fs8tLZ14PPKDILStbFrzpkZQcRkSPhtQ1EUSiqLCbQFCXaE8Ra5Y9sTkbNkGXbXiinTZiaF/N3VhAEzCnQG/8pPSMslP4HVUkEugkCiAWM6QSOVUGDHYDRV5EQoXCIoh12XrAQCGa540KBBjB8/Hrfb3SWNcrCBAkV9+6I0duCqKsfbry96JILm96GiRq3fQwphXUFT3Pi8qQcBXQmzQ2zCF4lQCtEARIpCMBhG6Cqaq/siByoKuN0uSlSVYChEa1sHmqri8bhtrQN3BXpnJMld0dDRLoqi4Cv2EuoI07ytlZLKYjRXbhqYxMFoVxYGZLIqjydzX5VrNMRsyEWoSOXSaDZCtNqeuG1t/by0gp6dtvZU3gyH7iGnnn7ixIkxYSAQCNDc3Bz3cehahBDo21sQH30FAtpqfDS52okMrEQtL8EwDFrDAQJCx+v243G7M8YA0AkTUYLg2hkvwOXWiET0WKTB7kJRFFwujSK/n5JiPy6XRiAYoqW1nVAo3K1tEZ1Ggq4cB89dCUVR8PjdaC6Nlu2tCKN7n2tPoOtGzH02E1aCzZRpM2P2BKkGcquQwqnK5bpWn+446b4oWVi/ioX1q/K2g5Bhkb+YPyrmnZDJLdLh201OAkF7eztz5syhurqa4uJiKisr4z4OXYQAIxAi9P46Aq8tI1KksXlfP1+Gv2Zdyxesb1vPxraNNERaaCxqxygSqGp6QUAIgTAUjHYvmqqhCgMZTlZTo7kFWtvb6AgG0HWjmwWDaKptr9dDSbEfv99LIBjVGoRCYSKRaOyDrmqTECIadyAcweuxjp4oiNoYyJloJBINyBT9RIhEdAxDsKuMu4qiUFJRhL/UR6A9ZCkUPNdwn+1Z/66uHQhHInhMsSHSYdYQyEFeXbKcRU/OzXlwNc+mcxEG7AgR6pLlSUIBUJDBWy5t1NWOdISB7wE5CQS//OUveeONN3jggQfwer38+c9/5oYbbqC2tpa//OUvhW6jA4AQ6NuaCLy2HP3zb/D8YARFE0biKS1DdP6nCI2AS9BWFsbwQqs7SIcWiqZNTkM4EKF9sxtvpCxqIxALL6/g8bpRNYHLGyEQ7iCi67H48MFQmGAwFBMUulJYUBQFl+aitKQIj8dNKByhIxCira2D5pZ2WlrbaWvvIByJFKQdQkS9CgLBMMXFPktjQhmoqKW1jaaWNlrbOugIBAlH9OgnHKEjEKSltZ2W1jba2gMEg2GTkCBi9XQniqrgLfKgqgo7NjejR6yFql15sM+EFNByXeqRs2Og4DNjOeu2sz1f63+5nFAIr4lUSxQO3x1yMhV/6aWX+Mtf/sKkSZOYOXMmhx56KHvttRcDBgzgiSee4Mwzzyx0O7/fGAaRT74m+OlXKAP64hvWH8UfnbH29fdFICh2ldCqB3H38oMaNQCMYNDk6cATcOES6QyqFCIRCIcFQjdMW6NaAk3xIEQIr98gHAqi6C5URY2lAg6Fw6iKgtvjtp/JOQdkWmKPO2psiGlANYSBHtHp6Aji8XjweuzNCq2QXgWBQIiSkiJUVU26JiEEgWBUe1Dk90Xd+aLma8RbXIpODYIR1SDo0ayJQkRdQTVNxeON5oXoziUJRYkKBZGwTuuONsqqSrLyPvg2CAvhiG47h4EVMhzwlGmFcUE01yuxEgxy8WxQlyxP6QES3VaYbIVmocAxMPzukZNA0NDQwODBgwEoKyujoaEBgEMOOYQLL7ywcK1ziGoGPt9E5IMv8B2yL6HKEoTXHctSWOQqZlDpIAwDXEYbHWoEQ07xFQirBmFVx6VnEggMWlrDlBo7Z4o7Z42CjrYIpeUufD4BhooiXMiBz6VpUY1BMNSZEbFrB7ZY/975h6KAioZLiyYOamvrQBhGp4fCzmvE9KdVCw0hiIR1AsEgHR0BvF4vbW0dKIoSjT7o0lDVqAtnKBjCEIKSYn/CDDSxZhm2WUPTNOTCgwyeEw5HaGvrwO124fO6OyMP5nd/7KIoCsXlfsKBCB2tQXxFnqQwx1a5D3Z1YWCndiAq0NrFKh1yXe1IFtVHtQOpDOrymcVbHlu/M1phtvXX1Y6M0waYNRu5psh2+P6Q05LB4MGDWbduHQDDhw/nr3/9KxDVHJhdER3yRIBoaieyYi2esXuj1Vbh9riT1OJCKIRDEcrUIspD/oQhSRBRjLTLBrqu4/Fo9O5VjKKqoMhOVaepuYHtDZvoaG8jFOysRQ3H1SYHTFDQdTkT1nvEYE1VVYqL/RhC0NbeQWtbgNa2Dlpbo8sKLW3ttLS009LaYfq009jcSmNzK6FwmHBYp7KynPLykliiJSGiaYzb2jro6AiiuTSKk4QB+0j/eJ/PQ2lJNAR4a2sHgWAozu6gq2+hoii4fS4UFRq3NKOHE5+b4LnNt8a+7erCgCQcieSsHUi8RjkTTrVskMqo0K6xoRnzDH/tpHmsnTQvZiRol+4a8HO5Poddm5w0BDNnzmTVqlVMnDiRq/5/e2ceH1V59fHfc9fZMtkIOxEBQRAUxQUUFXBBARVEXFCLCFqVYsXW7dVK69bWqtUW1FotaLXULipW3EAFF1CRXQXZN0PYQjLJLHc97x937s1MMkkm6yThfj+fUTJzlzN3Zu5znvOc8zv33otLLrkEc+bMgaZpeOqpp5raxqMXIhg/7AHrkA2uRwcgPohouu4I92iaAcM0rDa8HAde46ByOqKCBgKBJw7Eah9VTNNqzyuQDgg8TBOIqSrCkXLEYmXweHzICuTANAimaYLnTIDpQEKUwKoM4KCqGhjHQAQIAg9JbHoBo7rgOA4+r4x4i4EEkq+D8zqLLzmQCV0x4Pd7nEQ04qz3YbVkZs4xmjK8z3EMXo8MU7K6UUZjStKSgiBY0YW6EkQbCmMM3oAHpkGIVijwZ1vLTowBMA1wFbvw5t77Qd7aW6e2BoisygJ7uaupaUxzoNpK9tIZ8Bvah8DGdmhqOsaWEfUrS6zv9i6tnwb9YmbNmoXbb78dAHD++edj06ZN+Mc//oFPPvkE3333XZMaeDRDFVHoew5A6F+IRJk1URAQjSmIxqyEQasXvDUb4sCQq/jRMZqFPCWADrEsZGm19xzgOQaflwNTItBFD0rLIyiviIHjeOTldkRebkfIkgeSIENTkBAlSB5gBZ6H1yvDI0uQJTGjPS1sGWGOS3xwSQ+e45xOjgInwFZj9sip+w/YynfNMyhbHSJ9XhkBvw8Bvw9er+w4feFIDOUVEVSEo9C0pkmcTD6/tXwg+yREyxUYug4QgUX3A4wHeTtlUhmqHhA03YCQZmVBTdQWJdj50+RrX7XzYH1J7A1R08Mm3eRGe8BPtc5ftWrCPPcU5++qs/6aogBu/kD7pElc6GOOOQaXX345srOz8dJLLzXFIV2IYOwoBpflB9ch2wnj64YBVbNGLo5jlpxu4o2PAI4YJEOAX5cgmZbKYG2a+j6fBx07ZIGLRaGKHhimiYDfg5xgNnzeAHiOBxjAC9aN0NAJgAlwOhJn3fZgaT9aIuTdVOiGAUXV4E3RuIgBLbr8YZVbWloMsizB5/MgK+CF3++FKAqIxlTEYmqzOAWibC8flMOIloHFDsLMKgRY65Biro2mjA6QWf3a2oPglhHz6wyX17TuXzX8bw/EdQ2wVR2Dus7/QdE6cMtW1xh5WLxgnmPL4gXzHEfDXqKw7er5F1ZLoqJLe6PlJOhc6gVVxGBsK4LQrzsg8FZNvKZD1014ZBF+nydeQ15ZB09EUAwFRZEiHFIOWRn/dST4McbA8TwEjgczdUhZQeQG/fB5rbI0qwrRADgV4BWIMkHT4mmLTI9HCarfPK3ZtJVd39rFb0yTEInE4PPKyc4VKp0cM4PvwdHk5zhIooiA3wvTJITKI06po2GYtWSJ1OdcDN4sD3wBEerhHTC83QCuabtaNh+W7oDQiMoCIoJpmCg7VJ7ydbvef8uI+Ukz63SwKwESaYgcsO0MpJrNJzociYN2Kp2C2rAdBttRqPo+3RLE9onrELRGNAP62m3gsv3guuWDYNXEExE8shgvg+PAC1Z2vz0gR/Qwtpdvxb7IXhyI7INixpBqsE4F0zXAMMB5POB53ooOMwBMA/iY9X8QeMaDkQDTACqjBKkRBB6KoiXV3Lc2iCxnwGqRmzrMzHEczBQzxkxgRw98PhkBvxdyXJK3IhyJLyVUOogNPgcAP3cYoteP8ogHWrVEw9aJFR1gDY4OEBFAQPmRcI3LI4lr74kz68SBsa5B8oJrpqaVKFhTFCBxiSJRSTDx+apLDonOSEPC/anEmS64Zqq7dNDOaPmML5eaIQCqBn3NVpiHQ5BGnASKD/oMDFJCbT1jgCjwiMZUmKalSCjxMrKlHACEoJgNvj5hXiUK8ALA8QllffHIgPUHYIoACeCYDjLiggM16BvYQkIcsxINOZ6DmCCL3BogIqtfAwgej1TjEjnHsXg/g9aD3eKX5zmIogBREBCJxqAwSxOCcVauSUP6PzC1FEwthZDbH3zYQNnBEHI6Zje490FLoetGg6MDToQtokHySpC9qZUpgcrSvqrr+fYAn6r5UyKpIgVA9Z4FieJIQLIjYP/bLk2sal/V49rHTHQK6ju7T4xm2AmSHxStw3ldBtTrOC6tF0b1cP0vv/zyWl8vLS3FsmXLMppM1poJhULIzs7G3l1bEQxmJb9IBArHoH+1CRRRIJ55AlheAGZ80LIGrOo3Oj2uimc1L2IgmNBJh8AEK3MgzZsjt38vmBKD0aN3fHZEVvdDXrEGfVMAwIEBUDXr85VEHuloDlgSsgYM3QDjrBJFrgXr7VPaBEDXdESiMWTFxYdqwjDsa1zzINEaMOOlomRaVRNaPNfE65HTbyVtqOBKN4ECPUByjiXSFFFh6iZkvwyObz0OXSJWWaha4++krn3JJIQOV0CQBPizvc4x0m14VNVBaO6Zc02DeUPOW1VkqDZH4bilNzjOiO1UnNdlAJZiIcrKyhAMBut9fpfWQ70cgqlT01uHmjfP1bxORY0OARHocDm05d+BBbwQTj8ezC/HAwa6lexVw0zPVswTBR6C0JDELytMyu3eAviyYBZ0SXglnjwYdwTswV/TdZgGQZbT73Zpf810w4CmGZBEIf1BqhkwDBMV4Sh8Pg/EOq6baZpWwqFHbiHrmgarF4OOmKJAFMV49UQtJZNkgpVvB2MizEChEzYnImiKjnBZBIEcH4RGqEA2F7puQDdMyEliVOlBJiEcisLQdGTlBcDx1Z3DdByDRKegJULpdakFpttMKR3VwdqchFC5gdy+212HoB1QryUDd6BvBkyC+eMhaF9tBN+zM/gTe4GJQoI4kFljGRwQ72AnClBVrcEDLEEDKeVAfqfkY1v52tW25zkemla5VJEOtl0Cz4PjOCiKBpkTwWdgYCEiRKIxyLIIgU/TicrQErrtSDXkc2WMQZZFiGJlt0iPR6qx2Q9TSsD0KMycY5LW0O3qA9krIXSoAjkdg9UUDTMJEVlOpiTU2xkwTRNKRIUg8vAFvdWSSutDYn5BXYNxYzof2tQ1iKd7fDcPwMXGTSrMJLoJ44e9UFd8D2HgsRBO7gMmCU4U3tAN8Cl09KvCcQyMY/FWxdVft0KiJkxNsx66/dBh6gag6GA6gXgRZBog07QelLppEWOAEBdIqm+yma0PIAhWa+WWhogQjSnWYFmf2SRr2dJDID7DL/kRphJGYzwSjuPg9cjw+zxQVR0V4Wj174qpg4V/BAWOAbjq8wS7+iCQ57eWEFq482Vt6IbpJFvWB9MwUXawHFpMc5o91bQCZneArEupMbEKoTaq5gc0RfOhRJpaRXB015PqXang0vZwHYIMYOo6zKgKbdUP0NZvg3j68eD6dAUxOO1o7XV3axmg7tJBSRSg6TVng2uHD0Av2p3yoRX/CAU81AP7oO7dBXXvTuuxZyfUH3fBjEWrnU8UBZim2aDWvlbCIdfigwoRoGlWS2Kf15P2DJcxZq2stOD4R0QwwkdQ8s2bCO9a0+jrxOJOWMDvgSSJCEeiiMZiTjkl0ysATgCJWajp+8YYg+QRIcgCjuwPQVczX31gmgRdt6ID6WL1kTBRcSQMxhgCuf5miXbUlbSXOIPnlq1uUqegsdGHROz30dhKBZfWj1tlkAGiO/dBkDwwwxGwYztBVxRg+4/Wi/aNiQGGaYLlZMFTkIu6nQLOmbVXCwkTgWJReEQJhmHANAwrUU6JQZAkeLw+xCQDPBG0aBSCKIJME15/AIahQ4+EwXt9Vc8IURCgalqDGhoxxsA4zupI14BM+PpCsJIDozE13s64ISH4prerNvRoCGJ2J5iaCjJ0MKHxSY12ZEQUBMQUBeXlEXg9EmS13HIG6niT9vKBL+hF+ZEKZBcEwdWjS2JTkNi8SNdNZ6ksHRtsZ7v8cAUAINgh0LQy1I3sI1CbvHEm2P6PkzG6a/JziU6Bee4p+O8LL2bAMpfmwI0QZAClPApekqAGfNAFHgIvADrBiGoQwEHkBIhMgIcTYRwpB6VR8sYYrFm7YcKkFLN2ssoEK8pKcXh/MXZv+QE7Nn6PSHk5VEXBzk0bsW/nDvywZjUOFxdj23ffVlaLpLhf2lK7DKxBjYzsqIahGy1S0kemlTfg9UiW8mJ99o1fu5aEMQZPQU90GHolsk8YBcann8CZDlb/BA/8Pg8UVUWs4ghMzpNWFMTqfSAjKzcAJaxCbyGdAitXQLfaTseraxAvv03XGQABSlgF4zhk5Qfimh71+2zTWTpIh6phfdsRaOrlg8ZQV6SBW7Yal914XQtZ49LcuA5BBijetgfR8jAO7i7C/h17UfTDDhRt3oldG36AElWS5H+ButUGbRhjEEQBmposKZwIx/EIh0Ig00QwLw9lhw9BkER4/QHomgbTNAAQDF2HGR+oazo/YwyiJFjCNbXYRaicmZmmNbvTdN2qVjDNZs8lsPIGYhAEAaJY/8QzorhGU4aS6Jq3fwKPLL8HIqejPAZEozEYZt1LOYwxCBIPXuRQeiAETWn6/gpVUTUdumFCEnl4ZBEeWYScZsWD/f0Ll0UAAFm5fjDWPLe/xoTTuWWrnfr+RAnhTJBOHsIHRevAfe6qFbYXXIcgAzAAjOPgzwnCNE2Ey8oROlQC06Skobcht1eB50CoDKlWHsw6mj87G/mdu6Bbr97I6VCAToXHgOd4dOrRA50Lj8Gx/U+AN5CF7r37QBDjs9Jabrgcs8Rx9ISGO5WDvxkvM9ShqDpiMRWKokLTLPVCLu7A2Ps0B0Rw1BK9DahRd2gdCfVNDmMATAOMAEH2wTBNhMNRhCMxKKoG06xMLK2eXGrlFARyfIhWxJo1J6Sy4kaMK2my+jlKBJSXhKFrBmS/BGZ3c2xmasojqKvKwFYYrK2ZUUMSB+uzTzp5CKmEkVzaLhl1CHr27Jn0w7YfM2ZYNb8jRoyo9tott9ySdIzdu3dj7Nix8Pl86NixI+666y7oerKc7tKlS3HKKadAlmX06dMH8+fPr2bL3Llz0bNnT3g8Hpxxxhn4+uuvk16PxWKYMWMG8vPzEQgEMHHiROzfv79B7zu/sDO8AT9yOuajS+9C5HXtiGMG9UO3fj0heqqsE7OaM59TYYXiRaiJHfEYAzweKKoCTdfgDWaBl2R4g0GIoggtHAIvihA9HmTn5yMrJwfBvDyoagxhNQydr3nAtjQSBGvg1w2oqgZF1RBTVCiq5sz+BZ6DLIvweCTIsgRJFCGKlpJec84sdUOHomr1SiKsStWuju0NZsTABBFenw8BvxcBv89KUtWsioTyCusRjsQQjSlQNav9tv25efwyfEEvohVKs0QKiABNN8DzHBrimRERlKgKjucQzG/anAEbW0I41YD7QdG6lM/XNTjXFR1oysTBhtIabHBpOjLqEKxcuRL79u1zHosXLwYATJo0ydnmpptuStrm8ccfd14zDANjx46FqqpYvnw5Xn75ZcyfPx8PPvigs82OHTswduxYjBw5EmvXrsUdd9yB6dOn44MPPnC2ef3113HnnXdi9uzZWL16NU466SSMHj0aBw4ccLaZNWsW/ve//+Hf//43li1bhqKiojqVG2sikJsFw9DASzwkn4yczvnwZfvhyw7ANAxoigJNVaGrqqVJUE84ztJzT6w6kAo6Q+jaA+jYFVpuR1BBF/Cdu0HIyoJgqOA6dQXXqQtYx/ijoDMqcnzY4a1ATKp9ULTKEK1ad8Sz2WVJgke2HlJ84LfXa61H3FbGmi173zRNRKPxpkWN0Lc3dLPR3fNaNXoYJu8BxZUtOY5BkqwGWgG/D36/lWsgiSJAgKpqCEdi8eZKsXi7YR6CyKPsYNMuHziRJt2AKDRgucckVBwJwzBM+LN98chA0zgEiXkEvSavcR5Aes2E0lmfbwoSHY90B/CmLlt0aRtk9C5XUFCAzp07O4933nkHvXv3xrnnnuts4/P5krZJVML68MMP8f333+PVV1/F4MGDcfHFF+Phhx/G3LlzoaqWBv/zzz+PY489Fk8++ST69++Pn/3sZ7jiiivwxz/+0TnOU089hZtuuglTp07FgAED8Pzzz8Pn8+Fvf/sbAKCsrAwvvfQSnnrqKYwaNQpDhgzBvHnzsHz5cnz55Zf1ft/yMZ3h6Wk95GM6Qz6mE+TCTpALOwKdc8F3zYfULR9S9w7wdC2od0KbXRaYWGtugkE1AINxkP0+eAJ+8LLVyIiXZPAeL3iPD7zXenBeH8gjQxUZStQShNSyOs8n8Dx4jgPP8ZY2Qhp229s0/aySEI7EIIlSXM+/YcfQNKujY8NUINsCBKZHwMvBanNv2zngOQ48z0GSBHi9lp5BVsCLrIDVXCkWU1ERjoGTePhyfFakQLMiRoqiWe2aFQ2qapV8pluqSkSWdLeqxjUj0v8Q7SWOiiNh6KoBr19O+zuZLrWpF3LLVldzCho6yKbbcyDdNf90SdfeNzdvSPuYLq2bVjPtUVUVr776Km688cakH+1rr72GDh06YODAgbjvvvsQiUSc11asWIFBgwahU6dKhb3Ro0cjFArhu+++c7Y5//zzk841evRorFixwjnvqlWrkrbhOA7nn3++s82qVaugaVrSNscffzwKCwudbeoDL0ngPTJ4jwzBK0PweiD4POA8HjCPDDnoh5hlPXi5fjdCG8asboOqqkHVdKiKBkHg4ZElCHxlVjbxIqDrNSYsEAhhrQJcHQlYjFnNl1TN6opYHziONWk3QSuJUHWU+ho6CJgmwTDNeEfBdppEQAQYUYD3pn2d7CgPx3EQJcFxDBRFgwGCyQMl+0tRXhaGHl9aME0TqqYjGlNQXhFBRTiCaEyNO62pP3siQFU0SKIYH8zTfUsJ1QQ8h+yCLLAGlJnWRV2VBolOgS1UVNOyQk00ts3wB0XrGhTWT4x21HZst/1x+6LVOARvvfUWSktLccMNNzjPTZ48Ga+++io++eQT3Hffffj73/+O666rLHEpLi5OcgYAOH8XFxfXuk0oFEI0GsWhQ4dgGEbKbRKPIUkScnJyatwmFYqiIBQKJT1qwzTNBpVBpcLuf0CwEhU9Hil15ztRAgwN8X7GSdjLBCInwcN765zF85xdhli/MkKO4xyBnMbSUPGhVBimmZDA1iTmtT7IAAwNJHgatLtdfSHFHYNglg+5uQHk5GXBiGiQeEsl0eeVEfBbSxDBLB88Htly3KIKKiqi1RqiEVl9Lziecz6DtN5OvOS2/IiVQOgLesFlsGcGt2y1k3hXVb0wXccg0SmobQBuyfV889xTXOXCdkirESZ66aWXcPHFF6Nr10oVjJtvvtn596BBg9ClSxecd9552LZtG3r37p0JM+vFb3/7W/zmN79Je3vGMZiapSPQGE11EMVL/UwIHMBYTTMwgs448JoGztBBNej6R40I9oZ3o4e/ECJfsziOPTDEFA1CPW7CHLO0DJoCwzRQEY4iEPA1ehAgogbnHrQVmKEAHA+wpr0VyD4JjGVBjengOM7pfWB9JJazKsYTSlVNRzgSg9crJ0SvKC6ylb68tO2wRkJRGLqBQAdfgwSo6sMbJXPrbHzUa/IaoCj5Oad98T9uSGsgr+oU1FTamPialZTY9DN4yylxIwPtkVZxt9u1axeWLFmC6dOn17rdGWecAQDYunUrAKBz587VMv3tvzt37lzrNsFgEF6vFx06dADP8ym3STyGqqooLS2tcZtU3HfffSgrK3Mee/bsqfX92Rr/qqo1ak3dau2r4nBJGKrOYBJAKSIAgJVbQLwAqEr14ySWEQJp5TKweBmipulpJwsyjqUsa6svpkmIRGLwyFI8FN1IwaP2XVxgYUQBXgaauCafMQbJK0LyiigvCUONpf5O21UxXo+MaFRFJKI4lSkMDHyaA7qzTBBRwXEMwQ5ZKbsWZorEpYPESMGWEfPrvYRgtx2u6Ty202CXLJrnntIoPYPEc7lLBO2bVvGLmTdvHjp27IixY8fWut3atWsBAF26WC16hw0bhg0bNiRVAyxevBjBYBADBgxwtvnoo4+SjrN48WIMGzYMACBJEoYMGZK0jWma+Oijj5xthgwZAlEUk7b54YcfsHv3bmebVMiyjGAwmPSoDTvMD6DeYfck4slYHMfjSGkUum7WOLYRY2CSB0yNpTAI8PJe9Agcg8LAMRDSmEVWliGaaZfrcYyBGplDYIWfYxB4Hl6vDFEUoKoNz3a3HZR2u1QQh2lhkBBonmMzBkHk4QnIlgZADb0PrHwXAQG/F7zAIxJVEI7EnF4ZaUFAeWkYalSFJyA3e2QgkXRVC1OF2BtTx58oXGSee0qSE5DI4gXzsHjBPCd6UJdzkMoBqG25wlUqbD9kfMnANE3MmzcPU6ZMgSBUmrNt2zb84x//wJgxY5Cfn4/169dj1qxZOOecc3DiiScCAC688EIMGDAA119/PR5//HEUFxfjgQcewIwZMyDLVu/6W265BXPmzMHdd9+NG2+8ER9//DH+9a9/YdGiRc657rzzTkyZMgWnnnoqTj/9dDz99NMIh8OYOtX6AWdnZ2PatGm48847kZeXh2AwiJkzZ2LYsGEYOnRok14Pq/EPD90w4uHTBh0EgiDA74OlPEgmuJRyvVb0gHl8QDRc7VUv70O2lIt8TwdwjKuHYqI1yJuGCS4eFk6URKgayidCo6SBiQBF1WCYhKyAB3bzJE3T6965huPpugECte9yQxCgRwB/17o3bSCMMauTIM9BjWmWOqJYPSfA/l7IkqU+qGo6IpEYBIGvs8KDiBALK9BVHdkdsppN2bE2UvUgSBQfstUHq2JHC0bjpHq1RLajBJUOQHoz93TD/XVFAi64ZmqtokkubZOMOwRLlizB7t27ceONNyY9L0kSlixZ4gzOPXr0wMSJE/HAAw842/A8j3feeQe33norhg0bBr/fjylTpuChhx5ytjn22GOxaNEizJo1C8888wy6d++OF198EaNHj3a2ueqqq3Dw4EE8+OCDKC4uxuDBg/H+++8nJRr+8Y9/BMdxmDhxIhRFwejRo/Hss882yzVhTm0+oSHZ7VYGOA9RJOTleMHxNX3M8RZ+gSDYwSLANIH4AMgYg0/wwSA9PlOunx2iKEBRLc15gJz3I4qiEwVxrCCzwTM6gpV8FoupyKqaN9CA6ACR1T1PNwzIUv2bNrUpTB0wVYD3Nutp7IZIjGMoO1SOQI4fkjd19YedYyBLYlwlsfZjE5HVjtkk5BQEm1RnoD7Y3QoTnQJ7cLcHent2nmogtWbv6Z+vufID6sMF10y1pJbJXUZoLzDKdP/So4hQKITs7Gzs3bUVwWBWjdtpug7TIEhp6rTXhB2yZwn/TcQ0CYqiwity4Ld+C7N7L1Agu3L/hK9Gfe2wowJ22J0xq7RQ1XR4q6gxGnGVw/rWmlvvwUR5RQQ+rwdCgnCNncHu9cr1ylDXdKsTpCxLYGjH1QUAWPQAmFICM7tfizRvIiKoUQ0VpRFkd8gCL9aceEoERKKxuMhV6sZOZFq9CTQ7MpAhZ8Bm/ISX0hYTSmcGbmMfM931e3ugbsh5E0lMXLQdmVTH1knDUixEWVlZncuiLq2bjEcIXJKxZ6hWdnXjbm51hfidNX5BBOXkgx3eD/IHncGhMedPzCivfA41z9ob4Jba4kOyVIP4EENSdMMKUtR8Ik3TYZgEj9yIngdtBTLAosWgQGGLdXK0Ew2zxSyoUQ2CyVuRgxTnJ7LUCa3W2tWxIwO6qltyxBl0Buzv1WuvXYtrr01fYTAxf6BqSWJ9w/GJAzWHms+fGOq3lx3s5+xjpHIaanIGXNoXrkPQyjBMa5mgRZKiElYkKLcA3PbvwZQYyNM8IWTGKpvUJKvGsXr3C0hHfEgUBCiKZpUO2i8nnCbxnLbj4GmEkFFbgqllAONAYsvO6Bhj4AUOoiyg7GAIgVx/vESx8poTWZ0NBZ6r9jsgq54WsbACkwjBVhAZsFtr/6THL7G4lpLAREZ3PQm9YC0pNDZzf3TXk2p1AhKp6mjY+1Yd7I9beoNjH1B71MGl/eA6BK0MwzAgCC0ppBKfPUsekC8LrPQgqFOPZps1SpIIRdUsKVxRcORxyaS0cxXs2nVd1xHwp1bYY/ESTo7jaq40YJXLKfayxtHgDIAILLof5O3UYtGBROzWyVl5AUQrYhBEvkqiIUFVdfhSLvcQKkoj0FQN2R0ylzPgWEOEmKLiJz1+Wa/9kksN6+cQ2MsJ9RmgE3MXUjksice64Jqp2LJgHkajcrvFC+Y1qq2zS9ugPadQt0kYEB8cW+hkiNf/MwbK7wx25BBgNCw7v87TxQdpr0dKas/MGAPjuLRiBESAYZiIxVT4fB7U1tPe1kSwM9WrPXje6uXAc02mENkWYHqFpU4o5SJTSZP28kEg1w8lokKNVuoUaJrhfHaJ2DkIRITsDlng+Mw7cLYypo2dOFhbmV6iM1B1qaAmbCfASeSr52y9NmegKqmO7ToDRweuQ9DKEOKthFtCFcc0zORQrS8ACCK40JEGZeg3DkpraCKywrNejwSea2BZ5tEMEVikGOQtsBQKM4izfOARETpcASWiWrkBqlpt6YaIEC2PQdcMBHJ8GZUjTsSOav338BznucQBNdEpsB0FW5wo0Rk4bukNjuhQVWwnoCFSwY0RJHI5+nCXDFoJdlmeqmktIpdrmlZGfdKNl+NAHTqDHdoH5HRo4XBy3W2QrbwBBYIgQBTr3wrXBYAZA/QKUNYxaA0llXZJYrBDwJr9x0tuE7UHiAiRUBSxsIKcjplfJkiH1P0HrP/bA7x57inY+VPClhHzq+kPJO7vJAvGE/7qM1tPzBmw90tH76BqDoHL0YHrELQCbGlgVdFg9wNozhueNQvT4oNq8nnMYB744t1gkXKQP7sZx4z6JhECiqLBNM0a8wZc6oAIXGQ/IOcBXOpSvkzAGIPkESGIAkoOlkH2VNpGRFBjGkyDkF0QbDWRgWRq/i4nDt72QGwnAHLLVqPXMiSt1Vfdp7bj1UaiJkLVfepyBhraptml7eMuGWQYp+d7TAUX7zlfNVSqmxrMxuryO8ezVP14jqVuQMTzoLxOYAf3oTWJ+RuGAUVVG93B8KiGNEAthenpiNYQHUjEXj4QZAHhsoizfBApj0GNavBne8G3aLJt+ti/krokjFMNxHUNvg1du0+UKq7vOVuya6JL68J1CDKIXYKnKNZsXRRSRwaMJnIG4meFaVLK6ICNmdcRLBwCS9HwqKngeR6xmApN02GaZtyy1A6IGS/r8no91RLNXNKHaRUgTgb4hrU6bglkr4RAXgCGbqLiSASxihi8WZ5WvUxg6X1YtqXb1wBIL3TfkNl6XWWM7oDvUhPu3TVD2Kp4qqZDlsR4z/fq2zHGIHFS2n0EmgRBBAVzwUr2171tA7A63AmQJAEmEWKKZmVqE6AZOgyz0gGykwgthymzSXBtHkMBEzwZKTVMF4HnwHirD4YaVS1Fw1YaGXCoYlp9nIKm5oOidU6CYkNxlwyOXtwcggxgmtYaPgBHFa+2+11T3gzTKh5gDNShK7gd3wMduwE19kJoOFZZGW81XRIJkahiKQuCYJIJHpxT4w3g6FAPbGYYCNSKr6GdsV9RGgZnMGTl+lM2Qmp1pOg7kugUXJ43o9ou6TYySnc2bw/io7siKRmwvkmI9nF6TV5Tr2ZLLu0DN0KQARRVBc9xkCUxrtjXcudOt6UveX2A5AFXWtKs9tiCQBzHgQEQOQECxzv13ZpWk0CNS70hE60tdwAAQFZPikgohliFAk7gkNMpaC0blEYa3Ro707xRMrdZowb2wJ04eNvLBg11BhL/XxfmcFejoL3gOgQZQJSEuPZ+JlTiAMM0YaYRKjALuoCVFDe7JoHVCMkEi4sDMcZgmAaiMSWeRNj0X1OTzJoVDNsl8c6WrPUsu1ifO0HXdIQOVkCNqfAGZPgCXoBj8AZkaDENFWWRpBbarQqGBn2PmnLmXfVYTeEM1IV9jg+K1oH7vHHSyy6tB9chyAA8y9yaKGMMAs9D143ab2SMWY2OVAVMU5vNHiKCqmoQeAF27yPDNBGOxOD1yOB5rlkiKJphNHGyZlug9UQIiAimYSJSFkUsosIX9CKnIAheEMDzPAzdAC/yyOkYhCDwiIVVkNn6nDiW4l810RK5BQ0RIqqPM1C5NFHpbLy5eUO9z+nSOnFzCDJAJsPfjDGIogA1nsNQK7wAEiVAjQGS3Cz2EBEMk+D1WDNX3TAQjcbgkaRaKyEai9QMeRGtHjKBFhC9qtWE+ICuxjRUlFRA8srwZ3uTqggEgUckGoOHZHA8B09ARrQ8hiMHQvEkw9ahUEmA06irNWD3K0gUNaotSpCYPJiuM+DmFLRvGLU2l7sdEwqFkJ2djb27tiIYzMqIDUQE3TCgKBr8vtpr+k2TwO3YCC6vAGZuQbPYYxgmNE2HLFtNjxRFg88rZ2xJpd1CBK58B0j0W02NMmICQVd1KFENjGOQZAFCChEuwzRx5EgIuTlBp8yUiBAui8DQTQRy/VW6ZWYGwzBREY7C65Ut5zXN/S7Pm1EtWpAq8bA+VC01bIneA/Y5Q+UGcvtuR1lZGYLBlu2e6dK0HIXTpKOXRGcgnZspxwBOlgEl1qx2mUSIRGIwiRDwe12tgWYjM0sGdq5ANBRDNKzAn+2Fx29FnFJ9D02DwHE8NE0Hz0vOdv5sHzRFR7Q8BkkWIXqaV9GzNkyTUBGOwiNLEAW+Xlc11dLBGyVzASJcnv+zRg/uqdQRXVzSwb3zHiXYuge6bkAUhSSt+JphgChbSwbNYpOVXR6ORMEYc52B5oZMoBkSNGs8HRHIJChRDdGQAsZxyOkYhMcv19pqmuOsrpgxRUnKGbD7HoiSgLJDIUfNMBOomgZB4JtWZjx+HLvJkd3MqC6hIfv1VPoDdvlgU2I3abK57MbrmvT4LpnDjRC0c5ymSaoOIoIsSdbNjE8jJM8ASDJYOBTPUG9KPQSCqulQFBV+ryWWYxhmPInQXSpoHpr2M6z1TEQwdRPlJWGYpoms/AAE0XJC6/p8OY7B7/MgVB6GaRJ4PiF1L942ObsgCDWqghd4CFLLLy+ZhmlFBpr4vG+UzMHleT9zehHY7ZQXF82rdb8LrpmKLQvmVeuL0Bhqii4kNkwC4FYZtCPc6Vg7hghxcR8NYIAsi2DxMql0E6FIEAFDb7LSQysqYC0RqKoGv88Lr1eGLInQdB2KqjlSxi5NDBGa+ydvVw/EwgqiFQo8fhk5nYIQ4gJD6Qygti6FFP9OpHpdlAV4s7yIhRWESyPOskRLQZYhzXBk65iJLZRtxyCRC66Z6kQQRnc9ydmmpVUGWyJXwaXlcB2CdortDCiKCoHnIDU0Y5/nAcNoSssQicYABmeJwB4APLIEnuOcroYuTQgDqqrpNSX2gKzGNBzZXwZN0eELeiD7JUt0qp7fPcYASRSgaXrKgZ4xBo5n8GZ5oERVRMqiTfVWMs5/D8/BG4eeqfa8vZQAWE5CKkchFU25bFDX8oVL28Z1CNohRATTNBFTVAiCAEGo2kER9ZjdMMDQmixCoBsmTNOs1rXQViwUBB68wEPTm9IJqRkigmqY0MyWnWFmBDKbZVZLRDB0A9EKBVpMRyDXj6w8f6NbFfM8D9O0mnGlwuqQyCO3UzYYzyEWVmEaZssIGNmiGc1xaMYALnk1N3FAr80JsAf/qg5ATYmFtTkKW0bMz0j1gkvmcB2CdgYRQdcNqKoGSRIgCNWFfRgAMtNUfuM4MHBgTSTio6oa5Fr6EjDGwHNci8nVqibwQ5mGXRU62n9MgkBNmFRoOZ6ESCiKsgPlYAzwZXshecQmWVu3HUS9FueQMYDjOXgDMgzdQOmBEEyjDtGtpoBarjl4QyoFmqKywE5s/KBoHcxzT6mWTGgvWbi0H9ykwnaGYZjQDSM+6FZP4LJnVbphQOIq27bWCOOsmWUThPBN03JWvB6p7o1ZZbOb5oRAiBkEjrX36ACaNIfA0hQwoMY0kAkEC7KcPIGmgjFAFARoug6JxDqDG76gFxTvieDL9oLjMisC1lRksmzQzmWomkhov2aeewqw9KuWNsulmXAjBO0Iu7RQFIRahVs4jks/2slxTZZUqOtG+lUELTQ+SxzDCbkSemUJ9foxtHQSW5PQBEsG9vJA6HAFKo6EIXlE+HO8jXIGiAgh1UTMqC5NzDgWf672a213DA3k+iH7JERDMWhK6vyDpqFFG5LXyVs7bnf+3ZIORCpHwaXt4kYI2gF26FZVNXA8l0Ytv3WDTecGThxvVRo0wQitalrayY0tNdRyjMEn1O/WTkRQDu4AJ/shBju2oVlo48oOTZOgKTq0mAZe4BDI8YPjG68YqBNwIGagq6+6NoZpmOBYGpEsVEYDRFmAaZgoO1SOYF4AkrdpljCSaAFnsKYWyknCRkQA6UB0P97aMh3jj3uxSW2oKYnQziWw/p+GDLpLm8CNEGSApp61mCZBUTWIkpDWgEtUj/kNYwDHQI3MITBNE4ZhQhDS8EGdjPjWiREtw5G17yK06TOQUb0srnVCDWp/nFg9ULq/DGpEgTcgw5/taxJnAAAMkxAUOXhSHM8wzHhyYvrHY4xB9kkI5gegqTp0rWlyCuxE3XAkhpiiWA5S/NgtFS2qpnLIGMCJMH3dQFm98NaWm5vt3G7OQPvHdQgyQFN22bOWCXSIAg+eSy9sy3NWe2Ez3cRCQqMV7jTdgJDmckFrn2+TacDXfSCkvG6A2VYcApv0r66jNBhREa2IwRvwWH0EhMo21U2BwDHke7iUljV0mGWMQfKI8AY8iJbHEC6LOomqRFUf5LRXrul5XTdQEY464llZAR94nnOchJbwB2rtlsgYSMqGmdsfb+24o9bjJCYIVq0k+KBoXcqoQKLWgb2dS/vDXTLIALqpN0j4j8hKggOsULet9kdE8WZA6R3H7nioqCo8soRaB4l4QiHj+EbN2e3qgjQtrHUkqCpn29KIgXxkDxjR4udtHPFrlub1IiLEwgoioSh8QR+ycv1JHQmbEqEWkSxR5KEqGkiqf4KppVUA+IIelB0st5wEn+j8ZuzvPUtaSkkohY0/b1fueD3xJkYJZhBZUQLr+90MSxNx0m6dzEkwg71TvlQ5iFcfzKtWD1RVRkzsnOgIIP0jswmPLk2P6xBkAK4Rs207dE/goKgaGBg8tZTxpYIxBoHnYRqm09ugRsx4IloDbbbzG4goLvWajn32vqnHLwKgGfrR2cK4mbGVBpWoBiWiICsvAFHOXBMhgecRJaXBytl2VU1Op2zEwgqOHA4hK9sPQRQsFykeAajmE9vONwGM4+D1SGAsRQkvY5bTolrOeYMFwJoSxuGNw3/G5fkzAVS2RQbSa3xU1RkY3fUkJ3Jg72/vt/0fJ8OMxIBpC5vlrbi0LO6SQQYQuYYNZNZyPgeOcdDj6oENba5i1XgLznFq3M60GuJQI+5xkagCSazf7InjrfeYUqUOgMCl05wpGSKCbhowjkYVROc6pv4MiMhq51saQXlJBQSRR05BMKPOAFAZEWvMOpKlhMkgekSQQYiWRcExBlHgIUkiZFmELFV5yCI8sgSPR4Isi3G1xZqPL0kCyCToKSolMgLj8MbhZ6yyQCSrHNqkcga2/+NkHLf0hqRGSdv/cXKNSwVuhKB94ToEGcAukaoLey2z+r7MavrSAEnYRLh4SVetNzA7QtDAOzIRwTANSFL6ThBjDKIgQNeNlGuztnhRgxwhNE/Yu/VDKT9H+/PXNQPhsghMw0QgNx4VaKYlgnQhAlQl3oirkZkl1vsg+LN9ECUR0QolLs7VNIO37RRYUstNcsjGw6zfXGJfhNqwIwb2w2bLiPkA4OYPHAW4DkErw75Bm6adH1B9xtGUWc08zzudEFMe0zQsLYIG3I+JAE0znM6K9bGb4xgEnoOmV68lr0z2qkz6SgfbkeCOVocALOlzJCIYmoGyQ+VQIip8AS+C+QHwQuvoOGmaJlRNj+e5NB4iS9cgkOuD5JEQLos2qVYBYxx4joNhpHZkM8Fbb05Le9vEZYBEEiMLxy29odp+Paetb5hxLq0O1yFoRdidAGMxDeFIDKFQBIqqV9nGEh8iIvB8/cPmyTBIogCTTJTHIpXh2URsh6BBMzSCoqowTRPRmIJoTK1Rlz4VoijASBGC1Q0Dkah1vGhMhW7o0HUDum7AMAwY8X4JyY+qTkTyo93jLJQzp3pAjWkoLwlDlAT4gh7wYtNWDzQGIqsJlixLtYbr64Npmk6jJVG22iaXHQxBizWNU8CYlQRpfw8rv3ONt70x1JaQWHXwT8wrSBUJ6PmXzH83XJoPNyurlWESQdGsZEHZI0KqkvCnGyYMw4AsSY2+SVqtkAFZkmAqVlSCcckZ/MzQAY5vUEaXYZgACAG/v4GDjLXOq2o6ZKkyB8E0CaIoQIw3QTINAmBWujNUXeuB7PcDa13a+nc8y5yzzgOkt5TTNiEniU6NaYiGY5A9EoIdsppMT6CpICJEo4qlJyAJTfKZ2I60z+cBYH0XPH4ZHM9BVXQwDhAamI+TCEto20yaDsTzFzhLRxx2EwTGmCMg1hLX/o2SOWCxw5jQdXbS84lLAzUlGSYmE9rLD4nPubQfXIcgI6SeMjAGCDyHYMDn/G393/qHXf4kiSK4Wkq16oN9bFkSoWkGeJmLCx3p8HpEIBoGebz1cggIgGEYiERj8HjktHMmqtsGq7lNzEoEFOIREXsWyxir5jABNQs/Vc7WKMl5MAwT0ZgKSRRa9CbdopAJMgmRcgXRsAZ/theyr37VKS0Bwar513QDwSxfk9mn6wYYLA0OG0urQIIgmlYipcTDH4yfs4GnZQB4ngPPS070yTAJZFqRLvuwhmlC03RIkthCPRcYSM6vdYuqSwbHLT0ZW0bMr3Hgd52C9oe7ZJABmFYeV41L8Zo9o+AqBz0gvpwQzzJsKmeg8pyIr6tbw6RumDhSGgOZBBYOAf7seh3P0A1Eowo8Hgmi0LgZnpWsJTp5DgBSZ1tW2SfVg+O4+M2ah2A/BB6SJECWBOi6DkXVWrFGYv2xW2FHyhVURABe5JHbKdgqnQEAVgRD1etdSlsXipK6yyZjAMczBHJ8UCKalWzYhImGHMdVVjNIIqT4Q5ZEiJIARdVgmC1UmcAY3jj8p6S+Bw3BVix0nYH2R0Ydgp49e6a8cc+YMSNpOyLCxRdfDMYY3nrrraTXdu/ejbFjx8Ln86Fjx4646667oOvJ6+5Lly7FKaecAlmW0adPH8yfP7+aLXPnzkXPnj3h8Xhwxhln4Ouvv056PRaLYcaMGcjPz0cgEMDEiROxf//+Br1vFt4LLrQNTA+npYlu5RYYUBStds2AJoJjDLpmwFA1QNOsCEGamKa19uuRbWeg8Td1ew25PvkH9cEK3/KOcJJRS7vdtoTViMhERUkEaiQGr4dB9kpxKeBW6AzE0Q0DgtDY/JhKDMOEYZoQxdTHZIw5jhLjGGJhBWYzlw8637m4s9ti5YqMhxnoibe2/jTly1VzCgC3quBoIqMOwcqVK7Fv3z7nsXjxYgDApEmTkrZ7+umnU97ADMPA2LFjoaoqli9fjpdffhnz58/Hgw8+6GyzY8cOjB07FiNHjsTatWtxxx13YPr06fjggw+cbV5//XXceeedmD17NlavXo2TTjoJo0ePxoEDB5xtZs2ahf/973/497//jWXLlqGoqAiXX355g963GewDErxgZVvAKnaBGUpKx8Ce3amaBlW11tHT7hZYTxKXJRhjYBwDZ8+V61Hzr6qaNQNvUoEWgmkQDCOeONhMOgKMsXZRgWB3JKwojSBWocATkJFTEKhxQGyNNHV0QJJq18GwVA05eHwSdE1H6YFQ8zsFsPQ2PLIIXdOdZOFmh5dBWb1q3aTX5DXYMmJ+kh6BTbpljC5tD0atKMX6jjvuwDvvvIMtW7Y4P961a9di3Lhx+Oabb9ClSxe8+eabGD9+PADgvffew7hx41BUVIROnToBAJ5//nncc889OHjwICRJwj333INFixbh22+/dc5z9dVXo7S0FO+//z4A4IwzzsBpp52GOXPmALCykXv06IGZM2fi3nvvRVlZGQoKCvCPf/wDV1xxBQBg06ZN6N+/P1asWIGhQ4em9f5CoRCys7Oxd9dWBLMCgKmAixQDainI0wHk7QRwAuwFTMM0oSgqBEGIJ70131ojkdWNkIvPXMpCMWT7eIjbvoXZawBI9qRxDEKoPAK/3+Os9zcF1hq/AtFujMTgtHhuahTVugYtEYlpDoisjoTlJRUQZdFpQsTpYbCKXTBz+je6L0VzQkQIR2KQRAGSJDb6eIZhoiIcQVbAn/b3hUxCRVkEjDH4sjwtosdgEkFRNPA8F1f0bGbHlAiX5/+s2tOpqgxSLQ0kqh+e12UAlmIhysrKEAwGm9Fol+am1dwZVFXFq6++ihtvvNH5MUQiEUyePBlz585F586dq+2zYsUKDBo0yHEGAGD06NEIhUL47rvvnG3OP//8pP1Gjx6NFStWOOddtWpV0jYcx+H88893tlm1ahU0TUva5vjjj0dhYaGzTb1hDOA9MAPHgLL7ghlRcEe+BYseAMgKWeu6AVEQnNB7c94kGINVQ22aYAzIyfaAs9sop+kzqppurdFzTfu1Mk0ToihYinJxVbnmcAbaMrYjUFEagabqCOZnISsvoT1xEzbUalaYJautNcGyjV266JFlsHp8Xxhn5RTIXsm6nk2oVVATHGPwyCIMw3Q6KDYrKe4licsFieqEqUhsdPTm5g1Nb59LRmg1DsFbb72F0tJS3HDDDc5zs2bNwplnnonLLrss5T7FxcVJzgAA5+/i4uJatwmFQohGozh06BAMw0i5TeIxJElCTk5OjdukQlEUhEKhpEc1GAMJPphZfUDB3mBKCbgjGwHlCAxDB8+n37SosXAcczrCWZnWtkNQ92Bil4pJoojm6FfYYsN/Cl17IoKpKzCUSKvTLLBFrKIVMZQdDIEXOPgCHggSX8WJNOOfZyt3pIigaXqjIzRE1lIBYCkI1vddM8YgSDwkj4jSA2Ut4hQw2ymICzI19/lS6RNULTusq+Wxm1jYvmg1DsFLL72Eiy++GF27dgUAvP322/j444/x9NNPZ9awRvDb3/4W2dnZzqNHjx41b8wYSAzCzO4H8ncFKnZDjhWBQ8sluNnlVo5YD2OAIAJKrM597RmdbhjQdR1GNWGg6kJBzqMWwaDEm2JLjcXVZHKJEN65BmXffwIy6t/uuDnEj5zWxFEVkVAUAENOp2x4AzWEuFN28Gl9WGV6ZqOWnIis76GiavB55QZH1hhjkH0ScjpmQ1N06GrDZu71EcCynQLTpLgMcnM7BXOcf1d1BuyIgd0PoSYm9B3U9Ia5ZIRW4RDs2rULS5YswfTp053nPv74Y2zbtg05OTkQBAFCfP144sSJGDFiBACgc+fO1TL97b/tJYaatgkGg/B6vejQoQN4nk+5TeIxVFVFaWlpjduk4r777kNZWZnz2LNnDwBAqy1ZiXEgOQ/I7Q+RM8CVbQEz6h6QmwI781nV7EGPgbLzgJL9oFoS+YgIiqLC5/NAjt/MVFWD4jz0+CP+t6JBUVUoioqYoiIWq1QdTPWIKapVctlCVFVsNJUwovs2Qzm0E3q4pH7Hoqa/sVsdCQmhw+UIl0YheUR4A3IdksNmyjBxa8NuzR2ORGvsZVEbRHENjEgMPq8HXCOXryxVQwEev4xwWQTh0vpHiQiEmKHW65x2pCCVdHfTEi9F3HZb0rN2P4OdPyUsXjDP6XZYl3Pg0rZpFQ7BvHnz0LFjR4wdO9Z57t5778X69euxdu1a5wEAf/zjHzFvnpXMMmzYMGzYsCGpGmDx4sUIBoMYMGCAs81HH32UdL7Fixdj2LBhAABJkjBkyJCkbUzTxEcffeRsM2TIEIiimLTNDz/8gN27dzvbpEKWZQSDwaQHAOz+sQz7D1Y40qa6YVYvO+IkqxpBCoKV/gCmhlpkiiwKVltkAFa0IKcDuGgFmFqzU2LbLgo8eI6DJAlWpzjnIcYfktNBzv6/1yPD65HhkUV4PVLKhyyJLZb9z3GsWnkjJ/uQf+oEFJx1HQR/XtrHspwBw6ncaCx2a+JYhYJYRQyyT0Zup8qOhLWegwit5OdeKwwMPq8MWZIQjsRgmma9vvamaSIcicHrlSGk2W67TpsYs7QKcv1QYxpi9dQqYGCQ+fomSDLIkmTlFDR39QHjQYFjqj1dKVBUWWlgOwcu7ZOMp1Kbpol58+ZhypQpThQAsGblqWbfhYWFOPbYYwEAF154IQYMGIDrr78ejz/+OIqLi/HAAw9gxowZkGUZAHDLLbdgzpw5uPvuu3HjjTfi448/xr/+9S8sWrTIOeadd96JKVOm4NRTT8Xpp5+Op59+GuFwGFOnWutn2dnZmDZtGu68807k5eUhGAxi5syZGDZsWNoVBomoBOw7UI6YokPwyojFNHC6jsLuuRCEyjsYgcEQc0FKFDiwAQj2AgleOKHf+N2OOU1rGBjHgxM9jQqTMs5SK+R5BhIlICsXXMlBmF2OSbm+rihqUkZ4/c9dx2Bmv88W8Ak4joMRn9HbNjGOB+/Nqvex7NlqKkGc+h+LoKs6QocrIEgCAjn++kkOky1B3Sgzmh9mfZ9FkQeRhIpwFB5ZSqvNt2GaCEeiTSKIVc0sxsALHHI6Bi3p5/IYPH45rQqERJns9M8H2E6BomoAWXLdzVZlJPjx5o8PovzAdvzk5Fed5xOXEdxuh+2fjDsES5Yswe7du3HjjTfWe1+e5/HOO+/g1ltvxbBhw+D3+zFlyhQ89NBDzjbHHnssFi1ahFmzZuGZZ55B9+7d8eKLL2L06NHONldddRUOHjyIBx98EMXFxRg8eDDef//9pETDP/7xj+A4DhMnToSiKBg9ejSeffbZBr3n7CwZHl5CVkCG5BGRnyXh0OEwjpQrKMhNEAEiglZ+ABLjwLwdQXoE0KOVL1f9FwG6aULI7gZe8jXINsDKeDbJBEdWCNrM7wxu1w9Ax26AkPyVMU0ThmHC5224E1InTTTDTgeOY/GchsY7ILZT0ZiKCFtcSI1ajaECOX5I3tpr6lPB9AiIT3AmWzl2O2Ge5xBTVKiqBo9His/6q78H0ySEwzFLCVBsWmcg0SZwVl5BeUkYpQdCyC7IAt+EIkrJ57P+75FFZ7lNrkNPoTEnI09HUBbh1fVTcN2JL6fsawC4iYTtmValQ9DesXUI9uzcgmDQmnHaP+7yqIaysIZu+d5KkSDTgFqyCz6PDEWJ4UDxXng8Pnh9fkiSDE1ToapKXJJXQCArG6oSA/k7QvDUf0ZrYxgmFNWa9fMcBwYCv+07mLkdQfmVThIREI3GwDhmlXY101ijqpqzttzcEFn5D1bDo8bNyKzcAUCS6m83kdUEJxpWEAlF4MvywhPwgLEGRGCIwJWsBwV7g8RAvW3JNHYPj2jM+q57vXJSaSsRoSIchSAI8MjNNGBWsQcEhENRMAZ4Ah5Harw5z6lqOkyT4k5B82iSlJaFAK0CeewAxh/315TbVO1hoJPm6hC0E1r/omI7xF7vFUUZkuwDL4jgQNBiVuIRxwvgBQkcbw0kjJfgze0GMVCASDSC9WuWIxaLYNf2H/Dduq+xbfO3+HHPdhiGDk6QIUg+8PVes6yE46xQpabpUBQNBAbK7wzu8H4gIbmQyEp68nq8EEQJvNB0N2M72zxdf5XjeLAqCWTW7Lx+Ii/W5yJC181GacwT2RGC+u4XzytRDUQqYjBNQkH3zsguyIcgihAlLyTZ53w30sJUATLiy01tD9sZzAr4wPM8IpGY87nY5YV2Il5LRJJsJU9/theiLKKiJAwtpjW71LEkChB4HjFFjSdcNn1rZZ7jYDAZYG1H1dKl6cj4ksHRiiDK8PiCOHjwIAoKChAOx9CpIA9ZOXlgCUpyvkAuOF5AKBRCl75nwIgcRsnBIhiGAcZxEEUJDAzeQB68HftC8FY2IiIiqEoEaixcL9usgdTqgKioGjTdAJeVA7ZvF5gaA3l81oBtAJ26dIcoSkn767oKMgzwggjTNBCLlIPqKYxjkImwFkVQ8ic9zwsSZI8fYIAai8A0dPiycp1rpqkxxCIhCJIHXl/QuQ5KtBxaLYmRiVgOkfXerSY79TI9DsXbNNfsczOOg8cbBMdx0DQFStRKNA2XRqApGrJyA/DnZANMQHl5OQoKCqCqKo4cOYKOHTuiInQorURTZsQgdz0VnJwDXdegRMvTfxeUoEuRYexBv1zTnBwX0zShqBoCfm+L22hXIJi6iNDhCgTzsyB6mm+dnzEGQeDA8SI0TYeuGFYFFm/pSzRNAiWsFUiOx5vFj4GkbFyeZ/WWeaNkrvNvl/aJGyHIELI3gIULF+LBBx8EYwzZufkIBv34wx+ewMknn4yuXbvirLPOwvyXXwFg9X246aabEMjvjkGnjYTfn4XCnn1w/MBT0HfQ6eg39BJ8v2UXJk+ejMLCQgwcOBC///3vQeDhiQ+MzOqzCo4XUs4wrcQpEVy8d0EkqiIcUazZLi+Cy+8CXq8sSczOK8Datetw0UUX4ZhjjkG/fv1w9dVXg4hBlL3427z5KDlSBtkbgJ04aCctWtEE6+vHcXzS3wDAMw5+0WtFS8TKpDyPN4Cvvl6Jzz9fDo8vCEHyoKIijLPOOgu/+MUvIEoeMMZB9vjxr3/9C2eddRaWLFkCQZTjM3brhsoYl1wfzhgIldeG47i4Yl7qsi/bZq5KnwfG8eATjs+YfbPmql1fSfLi0OESzH/5FcgeP8jkES2PQZQl5HTKhuz3QJK9WLFiBa688koAwPr16zF27FhrMJI8YEnnZ9WjJBwHURShkBd/njMXkuyFIFXKUDPGWfZWex+W3SazHs57E8T4dydzDgLHcTDilS0xxWpbnSnlSsYYZL+M7IIs6Kre7AJGjDHwHGd1ThQtZcOYosEwmqYSgTEOJgBinKOY+kbJXEfE6I2SuW4OQTvGzSFoQewcgkMH9iGvQycMHjwY//3vf9G7d28QEUaPHo1AIIDHHnsMffv2xffff48nn3wS8+fPBxHh1FNPxWuvvYZjuxeg/MD2eC4hIdilLzZv34uzzz4bjz/+OKZMmYKioiL8/Oc/BxFh4cKFKWctRIRYJARdU+HxBSBKlSFl0zRRHjoCfyA7qfoDAMg0oWoKAA7dunXDnDlzMHHiREQiEbz77ruYOHEiJEnCwIEDsWDBAgwalL5wiabGEIuWQxAkeLxZSQOcpdwo4NFHH0U4HMZjjz0GACgtLUVubi569+6Nr776CllZAUiSjOHDh2PXrl14/PHHcc0111Qr/zN0HWVlJQhkZUOS5Gq2RMMhhEKl8HoqxW14XoTsywKf4FCRaUKJVVQL5ceiEZCpweMLVrv+9ntZvXo1pk2bhjVrUidwAUA4HMbhw4dRWFiIb775Brfccgu++eabhPehQVWj1vViDIauIRYthy+Q4zhZBw4cwAknnICDBw9aNhPBMDQIQmV0xzB0KNFyeHzBao5OKmKRcmhqtM7tmppoTAWIIEkiykIVyA4GwPOZndvY2hDlJRXgBR6BHF+95JIbc17DtOSOGQOEeOlvQ6MU0WgMofIKdJYOA558kKdDyu3GT3gJdpMjN4eg/eBGCDKA1+fHqlWrIAgC+vTpA9MkrFixAuvXr8ff//53HNenNzQlgv7H93U0FxhjuOKKKzBv3jxI/jxIuT0g5fWAnNcTki8HTz/9NK699lrcdNNNIC2M7t26YP78+Vi2bJnT2Gnq1Kl46aWXMHToUJxyyilYsGABvP5s+IN5qAjHMHPmTPTr1w/Dhw/HkiVLkJ2TD0EQMG7cOPzzn//EKaecgpNPPhnvLFoEWfZi7969qKiowMSJEyGKIrKzs3HNNddAkiTMnTsXO3bswLRp0zBq1Chs2LABr7zyCp544glcddVVOPbYYxEKhbBs2TJceOGFOP744/GTn/wEpWXlCAQ7wOvPxr//8x+ceeaZGDhwIO68806oqoaNGzfipZdewmuvvYZRo0bhT3/6k3Ndr7rqKvzzn/+EJMnYvHkzFEVx9CgAYNmyZTj33HPRr18/jBw5El8sX468/I6QJBmzZs3CX//6VwwfPhwnnXQSnn32WXj9QUiSB7puWPXwYPBl5eKLL5ZjzJgx6NOnD8455xxs274dHl8QX6/8Bueffz4GDBiAadOmIRKNwevPdrpsPvDAA+jbty8uvvhi/PhjEQDgrrvuwpYtWzBq1Chce+21AIDrrrsOr7zyCk4//XRMnz4dmzdvTlLsJCLcf//96N+/P8aOHYvde/bC6wti06ZNmDFjBnhBhCT7sH//AUyePBkA8Mtf/hKlpaUYNWoURo8eDcYYjhwpw5QpUzBgwABceOGFWLNmrbVExfEYM2YMXn31VQwePBj/93//h61bt2LcuHHo378/Bg8ebF1nT+pKlqpKk6ZJMAwTum7E81JUaJpeb40BG563em4oqtZkGg+NJVGrQFd1xCKKIwPe3OcVeB4eWbQiWpqBmKI2WLuA4ziYpmnlEJABVBHpsjuwcstWO5GDV3c92UTvxiXTuDkEGUCSPFi6dCnOOOMMJ/HsvffewznnnINAIICKskNWwp4atWacBEgeH4YOHYr77rsvHnqWYBo6+PgM7/3338df/vIX6LEy6PtXwZCykNv9DAwdOhTvvfceBg0ahK+//hpFRUVYvHgxiouLce6552LgwIE48cQTcdNNN2HAgAHYsGEDtm/fjosuugiffvopCgsL8emnn6J79+747LPPsHr1akyYMAH79u3DMcccg+OOOw4jR450FCQHDx4MxhhuvvlmzJ07F88++ywGDhwISZLw5ptv4s9//jPeeecdDBw4EAcPHsR1112HN954AyeffDKeeeYZ3HTTTXjrrbfw+eef49e//jXeeecddOvWDbfffjsefvhhPPLII/jJT36CSCSChx56CDzPIxy2ciSmTJmCa6+9FjNmzMDLL7+MG264AW+//bZz3Tt16oR//vOf6Ny5M7766itceeWV2LRpE3w+H9asWYPly5fj3XffRTQaxciRI3H88cdj+Fln4tDBYgiCgKxgFnbt2oWJEyfin//8J0aOHIk9e/bA4/Hg0KFDGDduHF5//XUMHz4c99xzD6ZPn4433ngDR44cwdy5c7FgwQL86le/wuzZs/GrX/0KL7/8Mh599FH89Kc/xbvvvusMbF9++SVCoRAWLVoEj8eDb775JimCsHbtWtx0003YsGEDXnjhBUyaNAkrV65EKBTCqlWrrI0YQywWc5pvPfbYY3j33Xfx7rvvOseZMmUKTjzxRKxZswYff/wxxowZg82bNyMnJwfLli1D586dsXTpUgiCgBtvvBHjxo3DT3/6U4TDYauHR5KsdFxgS9OhG4ajwaBpGlTVKhs0TRMmmeB5HqZpgIHB45GRHQzC5/OmPcvnOc5qgw0dfBOJDzUFtlZBdkEW1JiGSFyrgBeaf95l5Rfw4HlrQNfizpcoWjkG6TpNljCXaXVdNavLdKuqgVB5DP85NCfF3i5tHTdCkAE4nseePXvQuXNn6Ia1ThcKhZCTkxOfVVUm4JmGDtPUQaaJzp07O/LHdijY/qE7+zMJZs4AmJKlqJeTk5PUVGnWrFkI+P047rjjMHnyZLz55psoLy/H22+/jXPPPRfLly9HcXExBg4ciI8//tjZ77777oPf78fZZ58Nn8+HoqIiCIKA5cuX45prrsGnn36K8847D2effTYqKiogiiI4joMsy1YiVDz0P2HCBJxxxhnw+/2OIxCJRPD5559j8ODB+PDDD2EYBubPn4/zzz8fe/bswYoVKzBs2DAsWrQIXHxNXBAEyLKUtHbct29fSJKE9evX4/XXX8c111yTdN379euHNWvW4Pe//z3ee+89aJqGrVu3Oq//7Gc/Q15eHrp164abbroJ//3vfyFKMsR4OZsky/jvf/+LcePG4bzzzoMSq0DnTgXo1KkTFi9ejNNOOw3nnXceBIHHQw89hIULF0JRFADAwIEDccUVV0CSJFx55ZXYsMHqECdJEjiOg8fjiSeHWdx9993Iz8tDVlb18tGOHTvipz/9KTiO4ZZbbsGePXuwa9euWr9zkmTlYXg8Hng8HlRUVODDDz/E7NmzIQo8Lr74YgwYMACffPKJs8/999+PYFYAgUAAOTk5WLJkCT777DNIkoQ+ffpA11REYwoOHDyMnbv2YufO3Sg+cABlZWUIhUIoLy+HrmvwemQUdMhFjx5d0PvYQhx7THf06lmIwh7dEPD7UFJaip279mD/gcOIKWqd2fMcxyDLImKxmJPK0FoWPu0KBNknwTQMlB4og9HcSoNVzs/zPGTJ6gyqaXpcSTTtAwAgECdYYlZVEAQOimpAbYmOjC4tjhshyAgESZKgaRp4zmpN27dvX7zxxhvO7N/QVTCOt5LNiAAQNE2DJEnOMQA4PQb69u2LrVu3YtjQMwBOAO8rAABs27YtSRI6Pz8fulIBXvKjQ4cO2LdvnzO4L1682Nlu4MCBjiIkYDkWSiwK2eOFx+OBqlo3br/Pi1tvvQUzZsxARUUFhg4dildeeQW33VapjW4aOsz4mnTHjh2t2SFjKCoqwsGDB/Hee+85295+++1QVRVFRUXgeT7pNTuxzrmKhGpr2FOnTsW0adNwyimnIC8vWWZ41qxZ2LXLSrwMBoNYsGAByssrM+7z8/Ot6844dOjQAWvXrgVjzAmaMsbh8OHD6NSpE4hM6PGqBVHyoKSkBAUF1jXXlCiysrIgiiLKysqc6wcA0YowZFl2HIVENC0GXhCd66RpMXBG9bX8vLw8MMagxqKQvQHk5eWhpKQkfk3iVQGw8kBSYRgajhw5gkAgAK/Xi1ikHB5fFgoKCnD48GFnu44dO0JVoxAEGX/84x/x/PPP46GHHsKGDRvwpz/9CVdccQX27z8IWZZQUJAPMS7QY7VRYhBEwZGcTjVD5XkeohhEdnYQiqIiFCrHj0X7IPACsrODCPi98W6fyfsyxsAxDiInQBYlKCZB4lI0pcoQjDEQWSJSkfIYYhEVHp8Erh4z9aawgWeW46QomlOJUOd+YIClPAKOFFCVfTiOwesRUF4ehZwfaJbGXS6Zw3UIMoCu6zj++OPx8ccfg+N4aEoUV1xxBX75y1/im2++wamnnuokne3cuRM9e/YEAGzfvh39+vUDUHmzNwwrFHvVVVdhzpw5mDx5MvzBDuA4Dp9//jm+//57XHrppc6516xZg9NOOw0AsHr1aowYMQI9e/aE1+vF9OnT0adPnxrtrprJreu6c8MmIgQCARQWFlozN8BxeiS5cq3ZviGahoEhQ4Zg9erV+O1vf1vtRjlkyBAcOXIEv/vd76rZIUkSSktLrZm1NwsxpdR57corr8T8+fNxyy23VNtv0aJFePfdd9G3b1+Ul5dXa2i1Zs0ajBkzxrk2ffv2hWma8cGVQKaBgQMH4rnnngPA4M/KA4vrHBx//PF49tlnQUTw+LKwYcMG+P1+x0mwEauIFNnXCAA8CfLItQ0c27dvR2lpKXJycnDkyBH8+OOP6NWrFw4cOIADBw6AiCCIMr777ruU5+F5EV27doVpmti6dSv69OkDwzCwevVq/PznP69iA4EXBPhFCb/4xS/wi1/8Au+99x7uv/9+XHXVVeh5TCGIjAYPdE71iEeGLEvIz89FOBxBWagcJSVH4PV6kR3MgscjxSs1rP3s778oCqjQCaLUOpwBW7TIdth9WTJ01UB5SRjegAzJI1Ubl5vTSeA5DjzPQdMMiGKlc5nynETgGLOcOMYAYkmvGaoGzTAhMhMRTbP0IABEoi3TfM2l+XEdggygxqIYPXo0Hn74YWddtVOnTnjhhRcwZswYXHHFFejbty82btyIzz//3LmxL126FGPGjIFpGiCzsi2ypkZx++234+OPP8bQoUNx7bXX4scff8Srr76KefPmObNTAPjLX/6CiooKFBUVYfXq1XjppZcgyzIeeughXHTRRbjtttsQCASwYsUKzJw5E6ecktDdrMpNZOfOnbjkkktw+eWXo0uXLli1ahVWrVqFv/zlLwCsxlL33nsvhg4dimnTpiXtq2kxTJgwAX/6059w5ZVX4sILL0RpaSk2bdqEl156CbfddhuGDx+OW2+9Faeddhr27t0LTdPw8MMP44wzzsD1118PSZJw5pln4qyzznKOGwwG8fnnn6e87sOGDcPdd9+NMWPG4I033oDfn6xxsGDBgrjwTQQLFy7EypUroWuWOp6VyR3DpEmT8Mwzz+Cqq67ChRdeiO3bt2PSpEkYNWoUOnTogKuvvhpnn302nn32WTzyyCPVb7xVnKpevXqhpKQEd9xxB3r27Ik77rgjpe2JBINBTJ48GZdeeikWLFiAm2++GTk5OcjKyoLf78eMGTMcyW6b7OxsdO7cGTfffDO6d++OBx98EA8++CAmTJiAW265BR999BGOP/74pGtpfU4mPF4Ot9xyC3r37o2CggL85z//wYh4x1HGmq6tsh3uDgazkJUVgKpqCJWXo/jAQQiCAL/Pi6yAH6IogOPj5ZSaCh8vgAFNIjfdWEjTESs+DIq3A7cNoqiKigPkqE0CDFzACzmvfln5RARFNSCJfOpSS5MA3QDFVEDRAAJExhDTNJg8B8ZzYDwPURadT43IiuJF9xVDCgbhKSmDEpNAhg5JC4HjeUQPH4IeiUJTVchZQfCHDoF16gLBI0MM1U/nxKX14pYdtiBlZWXIycnB9q2bcGzvfrj88ssxY8YMnHP2cJSHSpHXoRNKSkrw5ptv4sCBA+jVqxfGjh2LQCAARVEwaNAgfPXVVxA4IFSW3IY3r6AzPB4fvvzyS3z22WfIzs7GxIkT0aFDB5SHSpEVzMEJJ5yAv/3tb1i/fj0Mw8AVV1yBnOwsREr3I1hQiB9++AGLFi2CaZoYPHgwRowYAUEQ8Oabb2LcuHGIRsoRzM7De++9h+HDhyMQCGDDhg1Yvnw5SktL0b17d1xyySUI+P3QNAWi5MHnn3+OAwcOYOTIkThw4ABM00TfvsfhYPGP6NCxCzhewIcffoh169YhPz8fo0aNwnHHHQfTNBGLxfD2229j+/bt6NatGy688EJ06dIFALBp0yZs3LgRxxxzDAYOHIiFCxdi0qRJOHywGLpmLWd06lqIzz77DD179kRhYSEURcGCBQtw6NAhXHrppdi7dy9OPPFEdOjQASNGjMC9996L4uJihMNhjB8/Hp07d8KBYssR0TQNsiSjoFNXMM7qobFp0yYce+yxuOyyy+Dz+aCqKt566y3s2bMHw4cPxxlnnAHTNHHo0CF8//33GDFiBMrLjsAEhy+//NLpp3Hw4EF8/fXXYIxhzJgxePfdd3H22WfD0BUIvIBITHX2LykpwerVq9GtWze888476NevHy655BKEK8ogyz6UhUJ4/fXXIUkSxo8fj6+//tpZMiorK8Py5csRiUQwceJEEBG++uorLFu2DH369MFll10GjrPUHd944w3rGu3ZhZ7H9sb69evx+eefo7y8HIMGDcJFF12ESEUIZaWH0ZwQEUwyocQUlJaFEIspVr6FKCInmAUmcDBUAxyfLDVtxGfqfLw3hUkAz+zljHrMyqveHevYTauIQCs6BEEQQSaBQE4EzT6gnf+jkwHvsV3B8emrApomYf+BcnTo4LeWaIgAwwRFYqAjFTAPloEOh0AVEYBxYB4JEHln0CcCIEkgiYcQjlnXgXEI8yoUw1p+43gRkiSD6QbEKAMEAWWxw+D8HuiRCLI6d4VWXoGAJwimGiiPRHDibT9BaWkpsrOza38DLq0a1yFoQfbu3YsePXoAsFowd+/eHS+88AKeeuopDBo0COFwGNOnT8dFF12E7OxsFBUV4f3338ftt9+OVatWYfv27fjZz36Gbt26oaioKOnYjDFccsklmD59Oo4//nhEIhEsXrwYzz77LDp16oQVK1bghBNOwOuvv46BAwdi3bp1WLp0KR566CGUlJTgjDPOcJpE8TyP77//HgsXLkS3bt1w5plnYt26dZg9ezZuuukmjBkzBlu2bMHy5ctx4YUXYvDgwQgGg9i3bx+WLVuGZ555BiUlJZg6dSpGjRqFvLw8dOnSBeXl5SguLsaTTz6JFStWQBRFTJ06FVdffbUzU165ciWeffZZ7NixA7feeismTJiALl26YN++ffj888/xpz/9CV27dsUNN9yAHj16gOd5FBQU4ODBg1i5ciV+/etfw4gnal599dW47rrrUFJSgt///ve47LLLMGHCBOTk5KBPnz7YtWsXtm3bhlGjRmHEiBGYPXs2Ro4ciW+//Raff/45HnroIezbty/pOsuyjOnTp+Oaa65B9+7d8eOPP2LRokX485//jKlTp+Kaa65Bbm4uvv/+e8yZMwebN2/G7Nmz0bVrVyxYsADvvvsufvOb36BPnz54++23sXDhQsycORP9+/eHLMvo168ffvjhB2zZsgUPPvgg/H4/fv3rX6Nr16746KOPcNxxx2Hs2LHo0aMHtmzZgh9//BGvvPIK5s2bh7y8PPzmN7/BOeecg2AwiJ49e2LZsmVYuHAh5s+fj5kzZ2Lw4MHw+SzHceXKlbjllltw/PHHY/fu3Vi4cCGeffZZ/N///R/OPPNMrF27FrNnz8aQIUNw880345RTTkF2djY2b96MV199Fa+88oq7fuzisGfPHnTv3j3TZrg0AtchaEFM00RRURGysrLA8zwCgYDzfDgcrvHm6vV6IYpWslksFoOqqvU6L8dxCAQCuPvuuzFz5kx07NgxZVJbKkKhEHr06IE9e/a0SdGRuuxnjCErKwuPPPIILr/8cvTp08fJgWgNtPfr39px7a8bIkJ5eTm6du3qVBO5tE1ch8ClVmx1xbaqQuban1lc+zNLW7ffpWVx3TkXFxcXFxcX1yFwcXFxcXFxcR0ClzqQZRmzZ8+GLFdv/tMWcO3PLK79maWt2+/Ssrg5BC4uLi4uLi5uhMDFxcXFxcXFdQhcXFxcXFxc4DoELi4uLi4uLnAdAhcXFxcXFxe4DoGLi4uLi4sLXIfgqKetF5m49meOtmw74Nrv4lIV1yE4itE0Dfv373f+bms3GF3XUVZWlmkzGkxbtr8t2w60ffvb+m/XpXXiOgRHKU8++ST69euHMWPG4Oqrr8bq1avTbwnbCnjiiSdw0kknYcyYMbj77ruxbds2AG3nxtiW7W/LtgNt3/62/tt1ab24wkRHIU888QTmzp2LP/zhDyguLsbbb7+N9evX4/3338fgwYMzbV6dPPDAA/j73/+O3/72t/juu++wZMkShEIhfPHFF8jLy8u0eXXSlu1vy7YDbd/+tv7bdWnlkMtRg2EYpGkaXXzxxTRz5syk10488US69NJLacuWLRmyrm5M06RQKETDhg2j3/3ud87ze/bsocLCQpo6dSqVlZVl0MLaacv2t2Xbidq+/W39t+vSNnCXDI4iOI6DaZrYsGEDTj75ZABALBYDADz//PNYsWIFPvzwQ+i6nkkza4QxBo7jsHbtWpxyyikArLXg7t274/nnn8fLL7+Mzz//PMNW1kxbtr8t2w60ffvb+m/XpW3gLhm0Y+bNm4cVK1bgpJNOwqWXXooePXoAACZNmoRDhw7hk08+AQCYpgmO43Dddddh8+bNWLJkSavonf73v/8d3377LYYMGYLzzz8feXl5iEajGDduHLp164ZXXnkFQKX9F1xwAQRBwHvvvec859p/9NneHuxv679dlzZKpkMULk3P4cOHaezYsdS1a1eaPHky9erVi3r27EnvvfceERG9+uqr1L17d3r33XeJiCgajRIR0ZYtW4gxRhs2bMiY7URE+/bto1GjRlG3bt1o3Lhx1K1bNxo8eDBt3ryZiIgefvhhGjJkCC1fvpyIiBRFISKixYsXkyAItHfv3ozZTtS27W/LthO1ffvb+m/XpW3jLhm0Q7755hts2bIFK1aswGuvvYZt27ahT58+eOKJJ/D111/joosuwqmnnorHHnsMAODxeAAAPM+jW7du+O677zJpPj799FMUFxdj7dq1eOutt7B27VpEo1Hce++92LNnDyZMmIBAIIDnn38eACBJEgDA5/OhS5cuTtZ4pmjL9rdl24G2b39b/+26tG1ch6AdQfHVn++++w6yLMPv9zuv/fa3v4Vpmpg7dy5ycnJw8803Y+fOnbjrrrtgGAYAYMuWLfB6vTjrrLMyZj8R4YsvvkDnzp0RCATAcRw6dOiA5557Dhs3bsTf/vY3nHDCCbjiiiuwcuVKPPnkk87+P/74I/x+PwYOHOjafxTZ3l7sB9rub9elfSBk2gCXxvHFF18gGAzimGOOcdYOTdNEOBwGYN1oGGM49dRTcfHFF+M///kPPvzwQ1x88cV44okncOONN+LTTz/FwIED8Z///AfXXXcdCgoKnP2am2+++QadO3dGx44dndmaLMsoLi6Gx+OBYRjgeR4jR47Eeeedhw8++ABXXHEFbrjhBoTDYdx1111YunQpCgsL8Y9//AM333wzgsGga387t7092N/Wf7su7ZCWXqNwaRo2b95Mp512GnXs2JF69epFp512Gr311ltERLR//37yeDz08ssvExGRpmlERLR792468cQT6ZFHHiHDMIiI6KOPPqInnniCpkyZQu+8806L2b9x40YaMmQIderUifr06UMXXnghrVq1ioiIVq1aRTzP0+LFi4mIKBaLERHR1q1bKT8/n1577TXnOP/617/ovvvuo/Hjx9P//vc/1/52bnt7sL+t/3Zd2i+uQ9AG0TSNpk2bRldccQXt2rWLVq9eTZdccgmdeOKJ9PbbbxMR0U033USFhYUUiUSIyKrDJiKaNGkSjR07NmO2ExGVl5fThAkT6Cc/+Qlt3ryZli5dSoMGDaJRo0bRihUriIjo0ksvpUGDBjn76LpOREQjR46kqVOnZsRum7Zsf1u2najt29/Wf7su7RvXIWhD2DeG/fv3U1ZWFr3yyivOaz/88AP95Cc/oQEDBhCRJbjSqVMnmjFjhpOJbJomjR8/nn7605+2vPFUaf/WrVspEAjQokWLnNdWrFhB48aNo3HjxhER0WeffUbBYJAeffRRZ5twOExnnnkmPfjggy1reJy2bH9btp2o/djfVn+7LkcHbg5BG6C0tBQ5OTnOumBFRQX69esHTdOcbfr27YspU6bg008/xWOPPYb/+7//w3PPPYfrr78eR44cwVVXXYVdu3ZhxYoVeOmll1rU/kgkAp/P59h/4MAB9OzZ08mQBoChQ4diwoQJeOqpp/Dyyy9jypQpePTRR3H77bejrKwMY8eOxfr167F7926cf/75rv1Hge3twf62/tt1OcrItEfiUjObNm2iCy64gEaOHEk33HADffjhh0REFIlEaMiQIXTHHXckya2WlpbSL3/5SzrttNPo0KFDRET02muv0SWXXEKDBw+mXr160euvv95i9m/cuJHGjh1LEyZMoDvvvJO+++47IrLCvvn5+fT73//emTkREf344480efJkmjRpEpWXlxMR0eOPP07Dhw+n448/ngoLC+nf//63a387t7092N/Wf7suRyeuQ9BKWbVqFXXp0oWmTp1Kf/3rX2nYsGHUvXt3+s9//kNERE888QTl5eU5Ais2r776Kp100knODdRmx44dLWU6EREtW7aM8vPz6frrr6fHHnuMevbsSaeddhp99NFHRET0i1/8gnr06EF79uxJ2u+xxx6jk08+mQ4ePOg8Z5omffvtt679R4Ht7cH+tv7bdTl6cR2CVoY963nsscfonHPOcRKLDhw4QLfddhvl5eXR/v37iYiod+/eNHnyZNq+fbuz/yeffEKMMdq6dSsRkZOR3NLMmjWLxo8f77yf77//niZNmkS9evUiIqKysjIqKCigO+64g0KhkLPfm2++SR6Px7mpu/YfXbYTtX372/pv1+XoxRUmaiVs27YNmqY5a42bN28GYwxerxcAUFBQgIceegh5eXm49957AQBz5szB8uXL8Yc//AE7duyAqqp47733cMkll6BLly4A0GKa7AcOHEjqJ79161ZIkuS8n/79++O+++5DKBTC7NmzEQwG8eSTT+KFF17AX/7yFxQXF4OI8O677+KKK65Afn5+i9pv226aZpu0P5G2arv9GbRV+23a2m/XxcUhg86IC1n1xWPHjqXTTz+d3n//fef5P/zhD3TSSSc5Guz2bOG1114jnuedcOlf/vIXGjJkCHXv3p1OOOEE6tChQ4vWVO/atYtOP/10uuaaS8a6ZwAAEIlJREFUa+jIkSNEZJVWzZgxg8aOHUs//vijs62mafTYY49RVlaWs877wAMPUP/+/alv37500kknUceOHZ311ubGNE06fPgwnXfeefTAAw84z7UV+/fu3UuPP/44/fOf/3Tq8GOxWJuwnYioqKiIFixYQMuXL6fDhw8TkdVboK3YX1xc7LQctksbidrOb9fFpSquQ5AB7FDo4sWLqWvXrjRx4kRau3ZtUmOVt99+m8444wx66qmnkvbbv38/DRw40BnAiKxSpvfff5/mz5/fcm+CiO644w4SBIEuv/xyJxRqv7cXX3yRBg0aRG+88UbSPqtWraIBAwbQ3LlziYhIVVXasmULvfLKK/Tcc8+1qP1ERIsWLSLGGMmynBS+/etf/0oDBw5stfbfdddd5PV6afTo0XTcccfRscceS2vWrCEioueff77VX/u77rqLAoEAjRgxgnw+H02cONEZQNuC/Y8++ihxHEfnnHOO85w98P/vf/9r9b9dF5dUuA5BBpk6dSrdeeedzt/2oGozadIkGj16NH311VfOc5FIhM4++2z61a9+RaZpZmSdsaysjHJzc6lDhw702WefOc/bqmo2p556Kk2ePNmZRRERHTlyhPr27Ut/+9vfiCjz66SzZ8+m2267jS6++GIaPXp00mut0f4jR47QZZddRmeddZZz7desWUNnnnkm3XPPPa3adiKikpISmjZtGg0bNow+/fRTisVi9K9//YvOO+88uvvuu1u9/Yqi0D333ENDhw6l66+/nk488UTHnsTv/5VXXtkqf7suLrXhLlJliKKiImzYsAETJkzAunXrcN5552Hs2LE466yz8MILLwAAZs2ahXA4jMcff9zZzzRNlJSU4NhjjwVjLCPrvMFgEBdccAF69eqFs846CytXrsS0adMwc+ZMPPPMM9i4cSMA4O6778batWud9wMAiqJA13Xk5uYCyNw6qd0URhRF5OTk4K677sKHH36I9957z9nmwQcfxOrVq1uV/Tk5Objsssvw+OOPY/jw4QCAwYMHQ5ZljB8/3tnu3nvvbZXX/tChQ2CM4Z577sHZZ58NWZYxadIkBAIBqKrq5HDcf//9rdJ+SZLQu3dv3HjjjfjVr36F008/Hc899xzKy8shCAJUVQUA3HbbbYhGo63qt+viUieZ9kiOBuyZQOIMoqysjDweD/3nP/+hSZMm0S9/+Ut6/fXXaebMmSSKoqNl/s9//pN69+5NgwYNol/96lc0fPhwGjhwYNLMqSXtt9dKS0tLSRRFOuGEE6h79+50ww030Pjx46lfv37Uv39/Z5+HHnqI+vXrR2effTb9+c9/prPOOotOP/10Kioqyoj9VRk7diy9+uqrREQ0efJkOvHEE6mkpIQWLFhARES/+93vqG/fvhmzP5Xttj4/EdHBgwdp3LhxlJOTQxdeeCHdcccdVFFRQUREjzzySEZtT7RfVVUisnQEEssA7dcnT55Mt912W9K+jzzySKv67tjLYYkz+//97380ZMgQ+tWvflXttddee4369OmT0d+ui0t9cB2CZubXv/41jRkzJuk5+6YxduxYKigooBEjRiSJlEyePJlOP/1057mtW7fSz3/+c7r00ktp5syZpChKRu23B6ennnqK+vbtS19//bVzs1y9ejUVFhbSzJkziciSjP3yyy9p8uTJNHLkSLr11ludwSFT9hNVJoFNnDiRPvjgAyIi+vbbb8nj8RBjjGbOnEmqqlIsFsuY/TXZblNcXEznnXcejR07lt555x164oknqG/fvjR+/HgiskLUrenaJwoJEVX+DnRdp549ezqNh+zvt6Iorcr+VIRCIbrvvvtowIAB9P333xMRJdmYyd+ui0t9cR2CZmLTpk102WWXUUFBATHGHO1yezA1DIPmzJlDubm5dMMNNyS9tm3btqR6ZJuWvBnWZn/ijf3jjz+u9tz9999PJ554ojNTtbF12VuCuq6/zTnnnEPfffcdLVq0iDp27EgFBQXk8/mcionE7PGWsj9d24mqi9a888475PP5aN++fUnPt4Zrn3gtE/n222+psLCQfvjhhxqP2Rrsr3r97e/88uXLaeTIkXT99dc7r1X9rbbkb9fFpaG4i1jNxNq1a+Hz+fDiiy9ixowZeOCBB2CaJgRBgK7r4DgOF1xwAYYOHYoPPvgAJSUlEASrtcTGjRtx3HHHgSyHzTmmKIqtwv5ERo4cCUEQwBhzbF2/fj26du0KSZKS7E/Un8+k/bZNe/bsgaIoOOecc3D11Vdj1qxZWLp0KQoLC/GLX/wCAJL6yreU/enYbtOzZ08AlTX8a9asQY8ePWAYRqu79jzPV7MfAL777jt07twZffv2BQC89957+N3vfpe0TWuwv+r1t78bQ4cOxaWXXopvvvkG77zzDl5//XXcfPPNTp4K0LK/XReXBpMpT6S9Ys8aysrKaOXKlUREtHLlSurdu7eTRZ040/j000+pW7duNGbMGFqwYAF9++23dMEFF9B1111XLcTaWuyvaaZHRPTll1/SmWeemdR3viWpr/3XXHMNzZo1K6nk8LnnnqOsrCynNr6laOy1X7duHY0aNYoefvjh5jc2BQ21/9prr6V77rmH9u/fT+effz6JokiPPfZYyxkepyH22/v88MMPdO655xJjjCRJovvvv78FLXdxaRpch6AFqKiooN///veUnZ1NO3fuJKLkEOI333xDI0aMoAEDBlDnzp3p2muvpXA4nClzq5HK/sQb4/bt2+n111+n6dOnUyAQoJ/97Getaq00lf12Yl7VZQ0ia+29JUPUtVHXtd+xYwf9+9//pptvvpl8Ph/dfPPNrcZ2orrtP3jwIBUWFlLPnj1JFEWaOHFiUj5NpqnLfiJLYGnq1KnEGKNbb73VEU5ycWlruA5BM5A4s7f/vWnTJjrrrLNowoQJSdvaiVWxWIx27dpFu3btajlDa6A+9hNZs6ipU6fS6NGjafXq1S1mZ03U1/7WRH1tX716Nd122200bty4Nnntd+7cSYWFhTR8+PA2aT8R0fz58+mcc86hb775pkVsdHFpLlyHoIlJlfhlP//qq69SMBikjz/+mIisrm5VxYgyTX3sX7p0KZWUlDgqbK2B+l7/AwcOtKR5tdKQa09ETrvcTFNf+0tLSykcDtO6deta0swaqe93p7i4mIiqV0+4uLRVXIegiUi8mWiaRnfeeWe1euOioiKaPHkyHXfccXThhRcSY8xZq8w0DbX/66+/bmlTU9KWr//Reu3buv2t4bvj4tKUuFUGjcTO5raz759++mnk5+dj4cKFSRnq9rYHDx7E1q1bkZeXh6KiIpx66qmZMDvJpsbYf9ppp2XC7CSb2ur1P9qvfVu3P9O/XReXJieT3khbJzG5aMmSJdS7d2/q1KkTvfjii9XCjxs3bqQhQ4ZQ7969acWKFS1takpc+zNHW7adyLXfxaU94joEjWT37t100UUXkSiK9Mtf/rLGUrVwOEyffPJJyxqXBq79maMt207k2u/i0t5wHYJG8O9//5sEQaCxY8fSxo0bM21OvXHtzxxt2XYi134Xl/YII0ohHeaSFtu3b8f+/fsxbNiwTJvSIFz7M0dbth1w7XdxaY+4DoGLi4uLi4sL3CoDFxcXFxcXF9chcHFxcXFxcXEdAhcXFxcXFxe4DoGLi4uLi4sLXIfAxcXFxcXFBa5D4OLi4uLi4gLXIXBxcXFxcXGB6xC4uLi4uLi4wHUIXFxcXFxcXOA6BC4uLi4uLi5wHQIXl3bJzp07wRjD2rVrm+X4jDG89dZbzXJsFxeXzOA6BC4uzcANN9yA8ePHZ+z8PXr0wL59+zBw4EAAwNKlS8EYQ2lpacZscnFxad0ImTbAxcWl6eF5Hp07d860GS4uLm0IN0Lg4tLCLFu2DKeffjpkWUaXLl1w7733Qtd15/URI0bg9ttvx9133428vDx07twZv/71r5OOsWnTJgwfPhwejwcDBgzAkiVLksL4iUsGO3fuxMiRIwEAubm5YIzhhhtuAAD07NkTTz/9dNKxBw8enHS+LVu24JxzznHOtXjx4mrvac+ePbjyyiuRk5ODvLw8XHbZZdi5c2djL5WLi0sL4joELi4tyI8//ogxY8bgtNNOw7p16/Dcc8/hpZdewiOPPJK03csvvwy/34+vvvoKjz/+OB566CFnIDYMA+PHj4fP58NXX32FF154Affff3+N5+zRowf++9//AgB++OEH7Nu3D88880xa9pqmicsvvxySJOGrr77C888/j3vuuSdpG03TMHr0aGRlZeGzzz7DF198gUAggIsuugiqqtbn8ri4uGQQd8nAxaUFefbZZ9GjRw/MmTMHjDEcf/zxKCoqwj333IMHH3wQHGf56CeeeCJmz54NADjuuOMwZ84cfPTRR7jggguwePFibNu2DUuXLnWWBR599FFccMEFKc/J8zzy8vIAAB07dkROTk7a9i5ZsgSbNm3CBx98gK5duwIAHnvsMVx88cXONq+//jpM08SLL74IxhgAYN68ecjJycHSpUtx4YUX1u8iubi4ZATXIXBxaUE2btyIYcOGOQMnAJx11lmoqKjA3r17UVhYCMByCBLp0qULDhw4AMCa5ffo0SMpR+D0009vNnt79OjhOAMAMGzYsKRt1q1bh61btyIrKyvp+Vgshm3btjWLXS4uLk2P6xC4uLRCRFFM+psxBtM0m/w8HMeBiJKe0zStXseoqKjAkCFD8Nprr1V7raCgoFH2ubi4tByuQ+Di0oL0798f//3vf0FETpTgiy++QFZWFrp3757WMfr164c9e/Zg//796NSpEwBg5cqVte4jSRIAK/8gkYKCAuzbt8/5OxQKYceOHUn27tmzB/v27UOXLl0AAF9++WXSMU455RS8/vrr6NixI4LBYFrvwcXFpfXhJhW6uDQTZWVlWLt2bdLj5ptvxp49ezBz5kxs2rQJCxcuxOzZs3HnnXc6+QN1ccEFF6B3796YMmUK1q9fjy+++AIPPPAAACQtRSRyzDHHgDGGd955BwcPHkRFRQUAYNSoUfj73/+Ozz77DBs2bMCUKVPA87yz3/nnn4++fftiypQpWLduHT777LNqCYzXXnstOnTogMsuuwyfffYZduzYgaVLl+L222/H3r17G3LpXFxcMoDrELi4NBNLly7FySefnPR4+OGH8e677+Lrr7/GSSedhFtuuQXTpk1zBvR04Hkeb731FioqKnDaaadh+vTpziDt8XhS7tOtWzf85je/wb333otOnTrhZz/7GQDgvvvuw7nnnotx48Zh7NixGD9+PHr37u3sx3Ec3nzzTUSjUZx++umYPn06Hn300aRj+3w+fPrppygsLMTll1+O/v37Y9q0aYjFYm7EwMWlDcGo6gKii4tLm+OLL77A8OHDsXXr1qQB3cXFxSVdXIfAxaUN8uabbyIQCOC4447D1q1b8fOf/xy5ubn4/PPPM22ai4tLG8VNKnRxaYOUl5fjnnvuwe7du9GhQwecf/75ePLJJzNtlouLSxvGjRC4uLi4uLi4uEmFLi4uLi4uLq5D4OLi4uLi4gLXIXBxcXFxcXGB6xC4uLi4uLi4wHUIXFxcXFxcXOA6BC4uLi4uLi5wHQIXFxcXFxcXuA6Bi4uLi4uLC1yHwMXFxcXFxQXA/wNp+xruzx8m7AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='cantor'\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "253162e4", + "metadata": {}, + "source": [ + "#### Pairing Dictionary\n", + "\n", + "A pairing dictionary can be provided by the user to allow more control when specifying the agreement value outputs.\n", + "\n", + "A pairing dictionary has keys that are tuples corresponding to every unique combination of values in the candidate and benchmark, respectively. The values represent the agreement values for each combination. An example pairing dictionary for the candidate values [1,2] and benchmark values [0, 2] is provided below. A user has full control over the encodings including the combinations of nodata values (which are in this case np.nan)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "a2310a98", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGVCAYAAACB0OntAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9L0lEQVR4nOydeXxM1/vHP5OdkIQQERLSUktIEKLhp9YKohVCUS1iaSmKtLavWltbS1GULkRbUdu30qKNBlVKagkpUlsVY0nsEYKE5Pz+yPdcd+7cdeZOZhLn/XrNi9x77rnnnrlzznOe8ywGQggBg8FgMBiMZxonezeAwWAwGAyG/WECAYPBYDAYDCYQMBgMBoPBYAIBg8FgMBgMMIGAwWAwGAwGmEDAYDAYDAYDTCBgMBgMBoMBJhAwGAwGg8EAEwgYDAaDwWCACQQMAQcPHoTBYIDBYMDMmTPt3RyGjgwcOJD7bt9++23Jcnl5eahYsSJXdvfu3cXXSI0MGjQInp6euH79uslx2na5z8CBA02uqVmzplkZLy8vNGvWDPPnz0d+fr7Z/fPy8rBw4UJERkbC29sbbm5uqFq1Kpo2bYpRo0Zh27Ztkm2/ffs2Zs+ejZdeegl+fn5wdXWFt7c3GjVqhOHDh2PXrl2a+6NNmzayz5ycnCx57erVqxEREYFy5cqhYsWK6NKlC/bv32/RfQwGA5ycxKeXy5cvIy4uDgEBAfDw8MALL7yAadOm4dGjR2ZlMzMzUaZMGbzzzjua+4KhHRd7N4DhWHz33Xfc/xMTEzF16lQ7toYhZPr06ZgxYwYSEhLMJjQtbNy4EUuWLIGbm5vZuW3btuHOnTtWtLJ4OH78OL755hu899578PPzEy0zYMAAyev/7//+T/R4bGwsypUrB0IILly4gNTUVBw+fBhbtmxBSkoK12fZ2dlo3749jhw5AldXV0RGRiIgIAD3799HWloali5dipSUFERHR5vdY/PmzRg4cCBycnJQrlw5NG/eHH5+fsjNzcXJkyexYsUKrFixAl26dJEVKqSgzyCkWrVqouXHjBmDxYsXo0yZMujYsSMePXqElJQU/Prrr9i0aRNiYmJMynfq1Ak1a9YUrSstLQ0nTpxAq1atzM79888/iIyMxM2bN9GgQQO0atUKhw8fxsyZM7Fz507s3LkT7u7uXPmqVavirbfewueff44xY8bghRdeUN8JDO0QBuN/5Ofnk0qVKhEAxN/fnwAgf/75p72bxeAxbdo0AoAkJCRovnbAgAEEAGncuDEBQDZv3ixarnv37sTZ2ZmEhYURAOS3336zqs224tVXXyWurq7k2rVrZucAEK3DW40aNQgAcv78eZPjR48eJd7e3gQAWbJkCXd81KhRBABp1KgRuXz5sll9Bw4cIDNmzDA7vmXLFmIwGIiLiwv5+OOPyaNHj8zKnDx5kgwYMIDUrl1b0zO0bt1a9BnkSElJIQCIr68vOXPmDHd8//79xM3Njfj4+JA7d+6ori8iIoIAIF999ZXZuZYtWxIA5N133+WOPX78mHTv3p0AINOmTTO75vLly8TJyYm89tprqtvAsAwmEDA4fvrpJwKAtGzZksycOZMAICNGjLB3sxg89BAIPv74Y+Lk5ER69uxpVubOnTvE3d2ddOzYkURFRTmsQGA0GomTkxPp2rWr6Hk9BQJCCJkxYwYBQNq3b88dCwgIIABISkqK6nvcu3ePE7q/++47xfKHDx9WXTchlgkEnTt3JgDIwoULzc69++67BACZP3++qrrOnDlDABAPDw+SnZ1tcu7AgQMEAPHz8zMTgrKysoirqyupUKECefz4sVm97du3J66uriQrK0v1czG0w2wIGBxr1qwBALzxxht44403AADr16/H48ePJa85duwYXnnlFfj4+KB8+fJ46aWXkJKSgt27d4vu09J97N27d2P79u1o27YtfHx8YDAYkJ2dzZVLTk5GdHQ0KleuDHd3dzz33HOIj4/HrVu3RNtBCMH333+Pdu3aoUKFCvDw8EC9evUwffp0PHjwwKw83QO9cOEC1q9fj2bNmqFs2bKoVq0axo8fz+0Xnzt3Dn379oWfnx/Kli2Ltm3b4tixY5L9oaXd/L7Ys2cP2rVrh/Lly8PLywvR0dH4+++/TcrXrFkTM2bMAADExcWZ7Ndq2eevWrUq2rVrh61bt+Lu3bsm5zZs2IC8vDzu+xcjPT0d48ePR3h4uMlzvvPOO7h69apZ+QsXLsBgMKBNmzbIycnB6NGjERgYyH1HCxcuRGFhoer2A8CqVatQWFiIvn37arrOUho3bgwAuHTpEnfsxo0bAIDKlSurrmf16tW4efMmWrRoIdvHlPDwcI0t1cbDhw85W4WePXuanafHtmzZoqo+Ooa88sor8Pb2NjlHtz5eeeUVk20BAKhSpQpatWqFO3fu4I8//jCr9/XXX8fjx4+xevVqVe1gWIi9JRKGY5CdnU08PDyIm5sbuXXrFiGEkBYtWhAA5KeffhK9Zv/+/aRs2bIEAAkNDSV9+vQhzZo1I05OTpw6dcCAASbX0FXq0KFDicFgIM2aNeOuoyuKCRMmEADEzc2NtGzZkvTs2ZPUrl2bACDPP/+82SqhoKCA9O3blwAg5cqVI23atCHdu3cngYGBBACJiIggDx48MLmGrqTGjBlDXFxcSIcOHUj37t251Vv//v3JmTNnSKVKlUjdunVJ7969ScOGDQkAUrFiRdGVitZ2076Ij48nzs7OpHnz5uS1114jL7zwAqfCzczM5Mq/9957nBq/ZcuWZMCAAdzn5MmTit8xvd93331HEhISCACycuVKkzIvvfQSKVu2LLl3756khqB3797ExcWFNGnShMTExJCYmBhSs2ZNAoBUrVqVXLlyxaT8+fPnCQDy4osvkvDwcOLj40N69OhBunbtSsqUKSP6nijRtGlTAsDsXhTorCFITEwkAEjDhg25Y8899xwBQIYNG0YKCwtV3aNLly5mWw9aoVoisT6j7/UHH3xAhg8fTkaMGEEWL15MLl68KFrX0aNHCQBSuXJl0fP3798nAEiFChVUte35558nAMiPP/5odq5bt24EAFm2bJnote+//z4BQBYvXmx27ty5cwQAadWqlap2MCyDCQQMQgghX3/9NQFAunXrxh37/PPPCQDSq1cvs/IFBQXcxDVr1izRuuQEAgBk3bp1ZvVu2LCBACANGjQgZ8+e5Y4XFhaSqVOnEgCkd+/eJtd8/PHHBABp06aNyQSal5dHBg8eTACQCRMmmFxDB85y5cqRQ4cOccczMzNJlSpViMFgIPXq1SMTJ07kBvvCwkLy5ptvEgBk6tSpVreb9oWTk5PJfv6TJ09IbGwsAUCmTJlico0eWwbfffcdycnJIWXKlCFt27blzl+8eJEYDAbSt29fQgiRFAh27dolKpRRtXpcXJzJOSoQUMHxxo0b3Ll//vmHU71L2TQIuXfvHnF2diYBAQGSZfQWCPr06UMAkH79+nHH5syZw92nbt26ZOLEiWTz5s3k0qVLkveoVq0aAUD++OMPTW3jo0YgEH5cXV3JzJkzzcr/+OOPnF2JFD4+PgQAycnJkW3X/v37OUE2Pz/f7Dy1XRETFgghZNGiRZyALEalSpWIu7s7efjwoWw7GJbDBAIGIeTpQLJx40bu2M2bN4mrq6vofiA1RKpduzYpKCgwq48aD0kJBNHR0aLtoCvg48ePm50rLCwkjRo1Is7Oztyk8vjxY1KpUiXi6ekpump/8OAB8ff3JxUqVDBpJ38lJWTs2LEEAHnuuefMBra//vqLACCtW7e2qt38vuBPMpTDhw+L3kcvgYAQQl577TXi5OTEGcTNnj2bACDbtm0jhEgLBHJUq1aN+Pr6mhzjCwS//vqr2TXLly8325+Xg+5F84UZIWKTovAjFECEAkFhYSG5cOECp/kxGAxkz549XPmCggIyfvx44urqalZ3SEgIWb58udlvw8PDgwAgp06dMmvz7du3TbQ+UtqfJUuWkDp16pCJEyea1TFlyhTy3XffkXPnzpEHDx6Q06dPk1mzZnGamEWLFpmUp5qPli1bSvYlFWKktDGU4cOHE0Da7ohqy6RsLr766itOeygGHVOOHDki2w6G5TC3QwaMRiP27NkDHx8fvPLKK9xxX19fdOnSBT/++CM2btyIIUOGcOf27dsHoMi9SczfuHfv3lwZMV599VWzY9evX8dff/2F2rVro0GDBmbnDQYDWrZsifT0dKSlpSEqKgpHjhzBzZs38fLLL6NKlSpm15QpUwbh4eHYtm0bzp49izp16pic79ixo9k1zz33HIAiOwNXV1fRc5mZmVa1W6kN1L2Kfx+9eeONN7BhwwasXbsW48aNQ2JiIvz8/ETbI+TWrVv46aefcOLECWRnZ6OgoAAA8PjxY9y6dQu3b99GxYoVTa6pWLEiXn75ZbO6+vbti+HDh2P//v0oLCyU9F+n0JgDFSpUUGynnNthUFCQ6PHg4GCzY25ubli0aJGJK52TkxPmzZuH0aNHY9OmTdizZw8OHToEo9GIjIwMDB8+HNu3b8d///tfxWcCgNzcXHzzzTdmxwcOHIi6detyf48cORIjR44UrUMYO+SFF17Af/7zHzRt2hRRUVGYPn063nrrLZQpU0axPVp4/PgxNmzYAAB48803da2bQt8narvB0B8mEDCQmJgIQgh69uxpZuzzxhtv4Mcff8SaNWtMBAI6UQUGBorWKTXYyp2/cOECAODs2bMwGAyy19+8edPkmpSUFFXXCAUCMb9s6r8tdy4vL8+qdvOpXr262bHy5cub3UdvOnXqBF9fXyQmJqJDhw7IyMjAqFGj4OIiPyx8//33eOutt3D//n3JMvfu3TMTCGrUqCFa1tvbGz4+PsjOzsadO3fg6+sre39qCEn7SA5LjNCoD7/BYEC5cuVQt25ddO/eHQEBAaLlAwIC8O677+Ldd98FAJw8eRLz58/HqlWrkJSUhO+//x79+vUDUCRkX7lyRfRdrF69Oggh3N+dOnXC9u3bNbdfjI4dO6Jp06Y4fPgwDhw4gDZt2gB4+j6LGd5ScnNzAcj39y+//IJbt26hdu3aaN68uWgZpXsp3cfLywsATIyPGfrCBAIGF4xo9+7dZsFaqLX9nj17cPHiRclBXSseHh5mx6ilub+/v9kqWghtB72mVq1aaNmypew1YhON3MpNzaqO3wYt7bbkPnrj6uqK1157DcuXL8d//vMfAFC0fL948SLnObJo0SJER0ejWrVq3IqzRYsWSE1NNZnY9IZar9+7d88m9c+fP18y6I4a6tWrh5UrV+LOnTvYvHkztm3bxgkEYWFhuHLlCo4ePar4vupN7dq1cfjwYROtExXML1++LHpNbm4usrOzUaFCBVmBgO+hJEVQUBCOHj0qeS96XGqMoYKgj4+P5D0Y1sEEgmectLQ0nDx5EkBRFLF//vlHtBwhBImJidzEUbVqVQCmblh8pI7LQVfKlSpVUr2yo9fUrVvXbi5JlrTbUXjjjTewfPlyJCcn44UXXkBERIRs+Z9//hn5+fl4//33MXr0aLPz//77r+S1RqNR9HhOTg6ys7NRpkwZVYM9jUp4+/ZtxbL2pF27dti8ebOJVqhz5874+eefsW7dOkm1v62g0Sc9PT25Y3Xq1IG7uztu3LiBK1eumGnFjhw5AgAIDQ2VrDcnJ4dzS5QTCMLCwvDjjz9ydQpRuhdtvxY3T4Y2WByCZxwq2b///vsgRUamZh/q407LAuBWN5s3bxZdDdL9RC1Ur14ddevWxd9//40zZ86ouqZZs2bw9vbG77//brcJwpJ2WwoNm/vkyRNd6mvRogXCwsLg6+uLQYMGKZang7LYNseePXtw7do1yWtv3bqFnTt3mh1ft24dACAyMhLOzs6KbQgJCYGLiwtOnz6tWNaWKGlBqHDNn2QHDhwIX19f7Nu3z+T3ZGtu3LiBvXv3AgCaNGnCHS9TpgzatWsHoCictZBNmzYBgIltkViZR48eoWXLlpyNjRg0hPOWLVvMtsKuXbuGvXv3okKFCpKak1OnTsHd3R316tWTvAfDOphA8AxTUFCA77//HgBkA7y0atUK1apVw8mTJ5GWlgagaPVTu3ZtnD59Gh9//LFJ+dWrV3ODj1amTJmCwsJCxMbGIj093ez8rVu38NVXX3F/u7u7Y/z48bh37x569OghukK9cuWKSY4GW6C13ZZC97H1nAzT09Nx8+ZNTJgwQbEsNXZcs2YNt+cLFPXxsGHDFK9///33TYI0nT9/njOEGzFihKr2enp6onHjxsjMzMSVK1dUXWMLWrRogYSEBJN+oGzduhUrVqwAYBrwp1y5ckhISIDBYEBcXBw++eQT0aQ+ly9fltSyLV26FHXr1sWkSZNMju/fvx9JSUmcgSflwoUL6N69O3Jzc/Hqq6+aCXPx8fEAgI8++ghnz57ljqempuKLL76Aj48PBg8eLNkPVLBRMiaMiIhAy5Ytcf36dZN37cmTJ3jnnXfw+PFjvPvuu2aGvEBRgLBbt24hIiJCdLuRoRP2cW5gOAI///wzAUBeeOEFxbLx8fEEABk9ejR3jB+YKCwsjPTt25dEREQQg8FARowYIepCRF3f5FzZ/vOf/3D++U2aNCG9evUiPXv2JI0bNybOzs7E29vbpHxBQQEXH8DNzY00b96c9OnTh/To0YOEhIQQg8FAwsLCTK6RC/FKg/aIxVUnpMilrUaNGla3W6kvxO5z5coV4uHhQZydnUmnTp3IoEGDyODBg0Xd2IQI3Q6VEHM7zMvLIyEhIQQoyncRGxtLoqOjSdmyZUmLFi24YFb8fuUHJmrSpAkXmOiVV17h3p833nhDVZso06dPJwDImjVrRM+DFwdD6iOM8SAXh0AMmt/Aw8ODtGjRgvTp04d069aN1K1bl7v/sGHDRK/94YcfiJeXFxcLo3379qRv376ka9euJCwsjDg5OREApHnz5mZ5EqTiEND31t/fn3Tp0oW8/vrrpGXLlpyrY0hIiGjeB0IIGT16NAFAypYtS7p160Y6d+5MXFxciLOzs2x8iEuXLhEnJyfi5uZGbt++rdhnZ86cIb6+vgQoCvLUu3dvLsBTixYtRPM6EPI0tsncuXMV78GwHCYQPMPQ6H5SEx+fQ4cOEaAoDjk/1nh6ejrp2rUr8fLyIp6enqRly5bkl19+IWvWrCEAzHyl1QgEhBDy+++/k169epGAgADi6upKfH19SWhoKBk5ciT5/fffRa/58ccfSXR0NPHz8yOurq7Ez8+PhIeHk/Hjx5O0tDSTsrYQCLS22xKBgBBCtm/fTlq2bEnKlSvHTTxqYgXoIRAQUuQvP3z4cFKzZk3i7u5OnnvuOTJhwgSSm5sr2q9UIGjdujXJzs4m77zzDgkICCBubm6kTp06ZP78+eTJkyeq2kQxGo3E2dmZdOnSRfQ87Re5j1BI1CoQ/PXXX2TevHmkY8eO5Pnnnydly5Yl7u7uJCgoiPTs2ZP8/PPPstffunWLzJo1i7Rs2ZJUqlSJuLi4EC8vL9KgQQMyZMgQsmPHDtEIiFICwd9//02GDx9OmjRpQipXrkxcXFyIt7c3efHFF8mCBQvMonUKSUhIIOHh4aRs2bLEx8eHdOrUiezbt0/2mnnz5hEApHv37rLl+BiNRjJw4EDi7+9P3NzcSK1atciUKVNkAw61a9eO5TIoBgyE2NAcmPHMMmzYMHzxxRdYt24devfube/mMOzIhQsXEBwcjNatW2vKuaBE9+7dsXXrVly6dAn+/v661ctwLC5fvowaNWqgZ8+eWL9+vb2bU6phNgQMi7l9+zbng89n/fr1+Prrr+Hj44OuXbsWf8MYzwQffvghCgsLMX/+fHs3hWFDPvnkEzg5OZkFXWLoD3M7ZFjMmTNnEBkZidDQUM66+OTJkzh9+jScnZ3xxRdfmLg4MRh60qBBAwwYMADLly/H+PHjOXdERukhMzMTX375JYYOHWoWyImhP2zLgGEx169fx8yZM7Fr1y5cvXoVubm5qFSpElq0aIH3338fkZGR9m4iwwGw1ZYBg8HQFyYQMBgMBoPBYDYEDAaDwWAwmEDAYDAYDAYDTCBgMBgMBoMBJhAwGAwGg8EAEwgYDAaDwWCACQQMBoPBYDDABAIGg8FgMBhgAgGDwWAwGAwwgYDBYDAYDAaYQMBgPPNMnz4dBoPB3s1gMBh2hgkEDEYxsXr1ahgMBpOPn58f2rZti19++cXezVPk9OnTGDt2LFq0aAEPDw8YDAbRbJcMBqNkwrIdMhjFzMyZMxEcHAxCCK5du4bVq1ejS5cu2LJli0Oni05NTcVnn32G+vXro169ekhPT7d3kxgMho4wgYDBKGY6d+6Mpk2bcn8PHjwYVapUwffff+/QAsGrr76K7OxslC9fHvPnz2cCAYNRymBbBgyGnfHx8UGZMmXg4mIqn8+fPx8tWrSAr68vypQpg/DwcGzatMnseoPBgJEjRyIpKQkNGjSAu7s7QkJCkJycbFb2jz/+QLNmzeDh4YHnn38eX3zxhep2VqxYEeXLl9f+gAwGo0TANAQMRjFz9+5d3Lx5E4QQXL9+HUuWLMH9+/fxxhtvmJRbvHgxXn31VfTr1w/5+flYt24devXqha1btyI6Otqk7B9//IEffvgB77zzDsqXL4/PPvsMsbGxMBqN8PX1BQAcP34cHTt2ROXKlTF9+nQ8efIE06ZNQ5UqVYrt2RkMhuPCBAIGo5jp0KGDyd/u7u5YtWoVXn75ZZPjZ86cQZkyZbi/R44ciSZNmuDTTz81EwhOnjyJv//+G88//zwAoG3btggLC8P333+PkSNHAgCmTp0KQgj27t2LoKAgAEBsbCwaNmyo+zMyGIySBxMIGIxiZtmyZXjhhRcAANeuXcOaNWswZMgQlC9fHj169ODK8YWBO3fuoKCgAK1atcL3339vVmeHDh04YQAAQkND4eXlhX///RcAUFBQgO3btyMmJoYTBgCgXr16iIqKws8//6z7czIYjJIFEwgYjGImIiLCxKiwb9++aNy4MUaOHImuXbvCzc0NALB161Z89NFHSE9PR15eHldeLGYAf5KnVKhQAXfu3AEA3LhxAw8fPkTt2rXNytWpU4cJBAwGgxkVMhj2xsnJCW3btkVmZibOnj0LANi7dy9effVVeHh44PPPP8fPP/+MlJQUvP766yCEmNXh7OwsWrdYWQaDwRCDaQgYDAfgyZMnAID79+8DAP773//Cw8MD27dvh7u7O1cuISHBovorV66MMmXKcAIHn9OnT1tUJ4PBKF0wDQGDYWceP36MX3/9FW5ubqhXrx6AohW/wWBAQUEBV+7ChQtISkqy6B7Ozs6IiopCUlISjEYjd/zkyZPYvn27Ve1nMBilA6YhYDCKmV9++QWnTp0CAFy/fh1r167F2bNnMXHiRHh5eQEAoqOj8emnn6JTp054/fXXcf36dSxbtgy1atXCsWPHLLrvjBkzkJycjFatWuGdd97BkydPsGTJEoSEhKiq8+7du1iyZAkAYN++fQCApUuXwsfHBz4+Ppw3A4PBKJkwgYDBKGamTp3K/d/DwwN169bF8uXL8fbbb3PH27Vrh5UrV2Lu3LkYM2YMgoODMW/ePFy4cMFigSA0NBTbt29HfHw8pk6diurVq2PGjBnIzMxUVeedO3cwZcoUk2MLFiwAANSoUYMJBAxGCcdAmNURg8FgMBjPPMyGgMFgMBgMBhMIGAwGg8FgMIGAwWAwGAwGmEDAYDAYDAYDTCBgMBgMBoMB5nZYrBQWFuLq1asoX768aDx6BoPBKGkQQnDv3j0EBATAyYmtMUsyTCAoRq5evYrAwEB7N4PBYDB059KlS6hevbq9m8GwAiYQFCPly5cHADz35Vg4l3WXLHcwYgMiDr6mut7wqpexPHC/yTVTQ7ahq2eupnrEoPVQxOoLr3oZaZnqBgL6bGqeMbzqZQBQXbfUvbSUB8Sf0ZryasqJ9aHW9ltyX6kyWr5TPlNDtmFmRrTod0frpOfEWB64HwCwNdcTADAzI5qrUw5r+0orUu8mvz/p75L+Lbxern+L63loewHp9+RgxAYMv9RCtL0HIzYg534hajS5wI1vjJILEwiKEbpN4FzWHZG1r+PgFfOUtQDgVd4ZzmU9AAAR1YyS5Sjpd2vBq/4BnGr/X5PjIan94VxWeztnhSYBAGI4QeBpJj3aLj5u5dxEj4sReaI/5r6YhF3wUrwm/W6t/91Tvs6MyESEpPYzO87vRz5SfRp5oj8A4FR78frE6i9qn/xzRJ7oj4zIRMx9MRmTj8WIlkm/W8vsOSNP9BdtC7/9Us/Ovy//vaBlMyIT/3fE9Blo3WLtUcPr/o9QtnwyfrzVBAevBJnUkX63FiJrGwG4cccSgvaaXJ+UWxS6uez/5pa5LyYjxvMRZp2X7+NdTsrvEyDfX2rg9w9g+m7OCk2Cl+fT/ky/WwuREu8w7Qup33bkCXW/XWufh77DtM1SZRLrH0DI/56Fzy4nL7QrlwNAPC03o2TBNnzshNwkH5LaDxmRiciITERC0F7e4K0NOrGrwdJ7RFQzKhcSMPlYDCYfi1HdPjX3sKQdUoSk9lOsz5L+ivHM5b5Xazh4JYjrO62TAb0//zr6fzrZWdo+Wm+MZ67ZRE/P0+MJQXtFy9gauf7S8nvhQ9+VGJ4mTQ1SY4CW/k/6nybFUtRcby5EPkVKwGWUTOwqENSsWRMGg8HsM2LECABAVlYW3nzzTfj7+8PT0xNNmjTBf/9rugq+ffs2+vXrBy8vL/j4+GDw4MFcClnKsWPH0KpVK3h4eCAwMBAff/yxWVs2btyIunXrwsPDAw0bNsTPP/9scp4QgqlTp6Jq1aooU6YMOnToIJpKVi+Scj1NfqxiP8ZZoUmiE4zSdXwiqhkxKzSJu2ZWaBJiPHNFBzexwTQhaK+iBkMKtUKBsP6IakaTCTsktZ/o5EIFK/51QqQm/oSgvbJCgZY+pm2hH3qN8Nml6pEaiGeFJpnUYemERtEqDND+iahmlBQyKBmRiYgztkKcsRX3XdF3PCnXEyGp/ZCU66l5UqWomZiUnk1NHWLvmdL7r6ewKqxv8rEYq+pnEzqDj10FgkOHDiEzM5P7pKSkAAB69eoFAOjfvz9Onz6Nn376CcePH0ePHj3w2muv4ejRo1wd/fr1Q0ZGBlJSUrB161bs2bMHb731Fnc+JycHHTt2RI0aNZCWloZPPvkE06dPx5dffsmV2b9/P/r27YvBgwfj6NGjiImJQUxMDE6cOMGV+fjjj/HZZ59hxYoVOHDgADw9PREVFYVHjx5pfm6xPVQ6sdNBa/KxGLPBkX8+IzLR5Dx/cKU/cjWDKx3M6OpV7Bo6YPOhk4C1qB2Q+JPPwStBZoNwUq6nRZMZX/Uu5OCVIDPhQw9oXwo1BnzNkLAs/xj9v1Bwm3wsRrIPhCtBqXJaNA607w5eCZK9LqKaEXHGVpLtkXsH6PPR70Hqu1D67meFJlmlWteC8D6WCsxS8OubFZokW7+1QiKluPqOYV/sakNQuXJlk7/nzp2L559/Hq1btwZQNFEvX74cERERAIAPPvgACxcuRFpaGho3boyTJ08iOTkZhw4dQtOmTQEAS5YsQZcuXTB//nwEBAQgMTER+fn5WLVqFdzc3BASEoL09HR8+umnnOCwePFidOrUCePGjQMAfPjhh0hJScHSpUuxYsUKEEKwaNEifPDBB+jWrRsA4Ntvv0WVKlWQlJSEPn36aHrutMzqJvuDchNCnLEVuvkeMRn4xSYMIcLVsRRUIyAGX7gQcvBKECAYh9TYO1gKf/IRY/KxGEyG8p4qbaPcJM+vgy8w0P4Q6zOpZ+cf518nXA2r+a5oG4Tl1ewjS33HccZWZm2kzApNsmgFSbdcaJ0JQXvNNAN8+PcUU2Hzt3Ckvn+l56fCklI5S59ZL9QKtbR/YzxzMdnGbRK7L2VWaBJQaPv7FhQU4PHjx7a/USnE1dUVzs7OygXhQEaF+fn5WLNmDeLj4znjlBYtWmD9+vWIjo6Gj48PNmzYgEePHqFNmzYAgNTUVPj4+HDCAAB06NABTk5OOHDgALp3747U1FS89NJLcHN7asgUFRWFefPm4c6dO6hQoQJSU1MRHx9v0p6oqCgkJSUBAM6fP4+srCx06NCBO+/t7Y3mzZsjNTVVUiDIy8tDXl4e93dOTpHxTXjVy5xREl8Y4P9Lj3fzPWIy2VHUSuxSe4R0cpHaGsiITFQ9MNK6frzVBIBtBQOt0GcJSe3HtSmimrFokoKpsMWfMPgTA3/CkhqwE4L2IuSKuZqc/z1NPhaDGN7qXg4qPAi/Z6nrxDQIlDhjK8ntAE4FHlRUTthG/mSj5XuVup/WPW9aXum+SpO9WuM7PSZYaw39ins1TscBpe83KddT9D23JYQQZGVlITs7u9juWRrx8fGBv7+/ouGnwwgESUlJyM7OxsCBA7ljGzZsQO/eveHr6wsXFxeULVsWmzdvRq1aRZNpVlYW/Pz8TOpxcXFBxYoVkZWVxZUJDg42KVOlShXuXIUKFZCVlcUd45fh18G/TqyMGHPmzMGMGTPMjqdlVsep9qaCgBjCwdOSgYI/wNFJLkNmUhIKJlro5ntE9YRBJ9niWI3xtSWcYBAkvh/Mn8SE3hZKk7iYUZ5Q4FO7T84XUqyFfidi+/p8EoL2Isn3qQaC//5ZIuTxhVs1BoQxnrkm9xQTiJTuZS1K9dh6slYrMKm191Dz+6JCIP3+pa7hC4uUGM9c5NxT02LLoMKAn58fypYtyzwZNEIIwYMHD3D9+nUAQNWqVWXLO4xAsHLlSnTu3BkBAQHcsSlTpiA7Oxs7duxApUqVkJSUhNdeew179+5Fw4YN7dhadUyaNMlE85CTk4PAwEDOhkDN4KLHhClc+QrRMsgJJ8mQ1H7calbtag7QXxDgT1hik5dwO0ZpS8US47aEoL1m2ygUoUZGznJbDLVbQFoQq5P/3FSYtJcanW/oqnR/a1flau+jBjVbVnpgi3dCjYakuDSABQUFnDDg6+tr8/uVVsqUKQMAuH79Ovz8/GS3DxzC7fDixYvYsWMHhgwZwh07d+4cli5dilWrVqF9+/YICwvDtGnT0LRpUyxbtgwA4O/vz0k+lCdPnuD27dvw9/fnyly7ds2kDP1bqQz/PP86sTJiuLu7w8vLy+QDFAVf0UsY4Hsa0I+YSxo1GBROdFLtEO6xCy3a+YaGtJ2WDqa0bmsGN/4qWMpVU9gffIRGb7ZA2PfU0I1+pPbPhf/XMvEplVV6bilDU0tQu/ql72lxCyF6PaccShOpvewX+N+N2KKBjgfWujlqgdoMlC1rQUAMhgm0D5XsMBxCIEhISICfnx+io59GI3vw4AEAmMXGdnZ2RmFhkRVLZGQksrOzkZaWxp3ftWsXCgsL0bx5c67Mnj17TDoiJSUFderUQYUKFbgyO3fuNLlPSkoKIiMjAQDBwcHw9/c3KZOTk4MDBw5wZbQw/FILxTJqB33+ipPvuiW3f8t3f5NCOHDR2AH8j17Q+tT4/6tBrZBDoXvswn5R009SqBk4hX1I+4B/fyF8oUB4XnhOTdulPASKcx9bqJWgiLlmSqGHQGfLyU7Le633ql8N/HdRTDCi48HkYzGKLrl6w7YJrEdtH9pdICgsLERCQgIGDBgAF5enOxh169ZFrVq18Pbbb+PgwYM4d+4cFixYgJSUFMTExAAA6tWrh06dOmHo0KE4ePAg9u3bh5EjR6JPnz7c1sPrr78ONzc3DB48GBkZGVi/fj0WL15sosofPXo0kpOTsWDBApw6dQrTp0/H4cOHMXLkSABFnTlmzBh89NFHnAtk//79ERAQwLVFT9QOCNS3W2i4plYdrccgyncF02OQULs3qvVecvvYYtsL1k6IUgKTmrotub81th+A6WQoVocek5Rw4udrrKRW53xNgZxwoIcKW4sRrVZspWK3dttAGM+DolSnPYJKMWyP3QWCHTt2wGg0YtCgQSbHXV1d8fPPP6Ny5cp45ZVXEBoaim+//RbffPMNunTpwpVLTExE3bp10b59e3Tp0gX/93//ZxJjwNvbG7/++ivOnz+P8PBwvPfee5g6dapJrIIWLVpg7dq1+PLLLxEWFoZNmzYhKSkJDRo04MqMHz8eo0aNwltvvYVmzZrh/v37SE5OhoeHupC9fCyJES+14lfrhkVd5sTiCQiRmmzFfMH596eqevqxVEBQM8ipHWCV4iVYOoFKrdD5x8U0DmoQ9pvcdWqEB+GWklSgI7m6rBEe1XpKSKEU3dEeK2o5pFTutlpVWyMUWCuosPgEply4cAEGgwHp6ekAgN27d8NgMJQYLwkDIYTYuxHPCjk5OfD29kbtNRNN4obzf8xU5S9lES6U4tVMBnIqdLEogGojr4ldS1cO9h4otBjraa1LbCVl7+flI4yTQLdE6DlAnQU/fTYaQ8CaZ5QLmKRWQLD2/np9R3J1Cc9ZYoBnSVv1Nvyk2ke58Mq0jQUPHuHsG3Nx9+5dzk5KDx49eoTz588jODhYdOE1cOBAfPPNN2bHo6KikJycrFs7tHDhwgUEBwfj6NGjaNSoEfLz83H79m1UqVLFrlsfSn1JsbuGgPHUQI/vmiaErtDkVnliyK3sxH7sagYvGilQuF2gt1pUzf6x2MpLTd/QvlZatdE20K0ZqX17sXZpbZMcalaX9L2gk31Iaj+zQf3HW000Txx6qIdp/wnDFQPmYbql0EsTIKcB0wO+hqy44nHQGCB6ovS9F6cdgRSdOnUyiXabmZmJ77//3t7N4nBzc1Pl/+8oMIHAwZh8LEb0x01XaMKPEmKreD0Ri/qnl8W+WCheMZsFLYOuUKWvdC2dXLXcQ8rtUe21YqgJzEPvo+ZeSgaccloRPmrfJ75RGg3LHVHNaGKgKuVpIWwXfztKLpSxUPOmdRtKSvBW2sKh9yvO4FxKMTUsRcqwk3rz2Bt3d3f4+/ubfKixuMFgwNdff43u3bujbNmyqF27Nn766SeT6zMyMtC1a1d4eXmhfPnyaNWqFc6dOwegyL5t5syZqF69Otzd3dGoUSMzzcPBgwfRuHFjeHh4oGnTpiZh9QHzLYPVq1fDx8cH27dvR7169VCuXDlOqKE8efIE7777Lnx8fODr64sJEyZgwIABJvZqmzZtQsOGDVGmTBn4+vqiQ4cOyM213kuGCQQOhthAp1c8ckBf4yZ+OGG9Bz+xlT//b35OA7FgQmKIDeRqQxhrwZq+sCTboNS2hdIKVWjzIad9kjpu7fcuzBTIt2Xge86ICQr8LSop+FoTLXEyAPH3Rem3aJ46vPihfaqX3YeU11JJYMaMGXjttddw7NgxdOnSBf369cPt27cBAFeuXMFLL70Ed3d37Nq1C2lpaRg0aBCePHkCoCik/YIFCzB//nwcO3YMUVFRePXVV7mkdvfv30fXrl1Rv359pKWlYfr06Xj//fcV2/TgwQPMnz8f3333Hfbs2QOj0Why3bx585CYmIiEhATs27cPOTk5XNRcAMjMzETfvn0xaNAgnDx5Ert370aPHj2gx+6/wwQmYhTBH6zEVseOEhLY1nDPGWR6TKoP5AYsSwZGLclw1Nav9P3R83rtdSu9K1qsym0Bnczj8HQ7TOzZuS0O3mTrCKtTR0LYb3rYFNA65fKdZEQmou7OWKvuYw1bt25FuXLlTI795z//wX/+8x8ARXYGffv2BQDMnj0bn332GQ4ePIhOnTph2bJl8Pb2xrp16+Dq6goAeOGFF7h65s+fjwkTJnCh6efNm4fffvsNixYtwrJly7B27VoUFhZi5cqV8PDwQEhICC5fvozhw4fLtvnx48dYsWIFnn/+eQDAyJEjMXPmTO78kiVLMGnSJHTv3h0AsHTpUpPsu5mZmXjy5Al69OiBGjVqAIBugfqYhsABkPrh8m0LHMloTQ5bqxK1CkRyhlFyqF3haZlIlfrl4JUgzdogvYwaLXnPtG4/SVna8/tF+Pw0aJVcAiTaB2IBroShkC0RfPjXqJ1k1Wx92IJZoUlICNqrq4ZCyYX2YMQG3e6llbZt2yI9Pd3kM2zYMO58aGgo939PT094eXlxwezS09PRqlUrThjgk5OTg6tXr6Jly5Ymx1u2bImTJ08CAE6ePInQ0FATIz01cWnKli3LCQNAUThh2qa7d+/i2rVrXEI/oCj2Tnh4OPd3WFgY2rdvj4YNG6JXr1746quvcOfOHcX7qoEJBHZEONAJoZn1KKVdO2BJbAGlLQKlLIlq3TbF2qan5bol0PvrFdCJQjUeSgKC1vdRbItHSIxnrqgQwEfMRZLaIwhTgov9X8tkLLRrUHutkuBg6/dGz/rpuyX1e4s4+Jpu99KKp6cnatWqZfKpWLEid1442RsMBi6wHQ3pW9yItUmLut/Z2RkpKSn45ZdfUL9+fSxZsgR16tTB+fPnrW4bEwjsQLU3iiRMvSP+lXTkXJzov8J9bmtWQnIGaWrbphUlDYDa90Fv41BhbAl+cCsx4cjS+4v1bZyxleZtHXp/6klB7SHE6qGujZYKBVreMVpW6Xu2lYZAr/GEH3Pk4JUgru+owFYaCA0Nxd69e0XD+Xp5eSEgIAD79u0zOb5v3z7Ur18fQFFgvGPHjuHRo0fc+T///NOqNnl7e6NKlSo4dOgQd6ygoABHjhwxKWcwGNCyZUvMmDEDR48ehZubGzZv3mzVvQEmEJQ6HOHHaosQsFoHUEs8MChik4qYGyG9h1phgQaHsgT+Kk0s6qKWtMRaEIuHkRC0V7fwtXRLhy+E8KMYCj98+F4m9Dvjx8HgC9xiQoFa+IF/1Aou9jIq1EvQoN8J3zuELxQ4Cnl5ecjKyjL53Lx5U9W1I0eORE5ODvr06YPDhw/j7Nmz+O6773D69GkAwLhx4zBv3jysX78ep0+fxsSJE5Geno7Ro0cDKIqCazAYMHToUPz999/4+eefMX/+fKufadSoUZgzZw5+/PFHnD59GqNHj8adO3c418UDBw5g9uzZOHz4MIxGI3744QfcuHED9erVs/reTCCwE9VjT6gqJzWB8K+vHnuC+9BtBrqXqpeAoHagoQZIxeF3L4Zan3a5e6gJ1qSXSlbNSpJOwnKugPbwCZcSLrRoXoRIbVMoTUZ8oUD4/QuFAkugQoFW99PiRs1Wlx44itdBcnIyqlatavL5v//7P1XX+vr6YteuXbh//z5at26N8PBwfPXVV5xK/91330V8fDzee+89NGzYEMnJyfjpp59Qu3ZtAEC5cuWwZcsWHD9+HI0bN8bkyZMxb948q59pwoQJ6Nu3L/r374/IyEiUK1cOUVFRnK2Cl5cX9uzZgy5duuCFF17ABx98gAULFqBz585W35tFKixGaKTCNugGF4PpPtLl/zaQuKqI6rEnuDJKwgS/LjpBF9det1KEM4qUxT3/uKWDjqXPqtYmwBILbqm6lepS25+WoiWWg9T3IWyfFk8QuWeTc+Gjk7/wvsJjYgIXrU+rxkbp/RA+n1gb9biPGiyJ0SEHv00ZkYkmfWevSIXPCoWFhahXrx5ee+01fPjhhxbVobYvmduhg6BGY6BWq8AXHiYfiwH+py3gqz7VDDiWujkmBO1Fkq/4YEt9x6Xub4kfPoU+n6WDodRWgS2NOalGR6yvtLg+WoO1zye8Xkt9CUF7gSDx95FLqw151zchSloXqimI8czFZNUtlf/NSAkDgLrJmf4u1GxJqBEY1NalBrFopDGeuYj53zPb0+2wNHLx4kX8+uuvaN26NfLy8rB06VKcP38er7/+us3vzbYMSil84YG//8eX8pXUiWJRCJWgKl+xbQP+3rfUpG9NQiT6Lz+0slqk1MFixyyxA5AawOU0BMVhcKo1yqMU1qqQpd5HfmAhPrTdYtdwgoRCSl+t7ZML2qQnccZWdg0LLExiRu07aJ+XFBfokoqTkxNWr16NZs2aoWXLljh+/Dh27Nihi42A4r1tfgeG3RAKBRQtxnB0YrV20BNbtVEbB2rvIGYspwQ/Jr4QLZOdXqspIY5g5EmxtC1aLOb5HiFC1Kxq6bumlK9jVmiSiVAgXIXrbQ0vZdug5h5SRpj8Z6XvvZr3X6kfrXlutRqxkhQbpaQRGBiIffv24e7du8jJycH+/fvx0ksvFcu9mUDAUIS/p69WMBAOFnL57rVku+NrOqglOR9++9Susp6FCJCWThLUv5+P1GQgJwyoRe2ESNukNWol8PRd1DqhCeuVC5YkhtizCQVRsa0GrdDnk7LRkUMpHLnY9fYMTMTQFyYQPKPw7QmUENodKK3g+IOGWJIZa6BBadQgZnCmVK44kbMdEOZtsBZLY17o7V2h56qSape6+R7hPsDTzIpyWOp+SNEjDgbVHFCUtFTC35XUeT2DSdF6+RoYa+JQMBwbJhCUcqg7IoX/Q5YTCvh+73yUBlpqHEUtkfnEGVtpTtOqV+hme0z6Sh4EcrYDtA+p9sIRBmApLwGtWPNd0vsJNR4xnrmyWgNahp9EiY9Y3hCp+wsFXCl3RrFVtpithCXCidQ1UkKDcBLX+j7xn4P/XGzboHTBBIJnBCoUCCV8KaFAztqfr7oXDkD8FY+YIRj/vNxEL3ZOzSBmK1sAWyCnxqerXL4Kl2pbrBEOrNlfFn4ftH1KQptYe62dSPjvltIqXXhebDKVyqYo1IbR74NfXkywk3Odpb8BfmwFmi5ZTnDln5MTQCKqGc20efzrtW6RKboQ2zF0MUNfWByCYkQuDkFxIRbvQMyNie/mJTV4a9kr5g9+Uv7Z/PosmTDsnVtAiB4Z52xBcfST1qRL1hqtisUUkIpjIPc+K22lhaT2M/texbbE6Hm5uvjRE4WxQtS6KioFh+JHbuS3R8/vn8UhcHzU9qVdNQQ1a9aEwWAw+4wYMQIXLlwQPWcwGLBx40auDrHz69atM7nP7t270aRJE7i7u6NWrVpYvXq1WVuWLVuGmjVrwsPDA82bN8fBgwdNzj969AgjRoyAr68vypUrh9jYWFy7ds0m/VLciA2Ccqsuub1K/mqRfuhgLWfsJLxW6d5i2NtdSwvWRpK0dqWvZxRLOdR6qIi9N3qgVhhQOkeRi4fAFwbUGOBSIUBqta+EFo8EoWapuL5/RsnCroGJDh06hIKCAu7vEydO4OWXX0avXr0QGBiIzMxMk/JffvklPvnkE7MQjQkJCejUqRP3t4+PD/f/8+fPIzo6GsOGDUNiYiJ27tyJIUOGoGrVqoiKigIArF+/HvHx8VixYgWaN2+ORYsWISoqCqdPn4afnx8AYOzYsdi2bRs2btwIb29vjBw5Ej169DBLflFSoXujNFGMHPzBSmlFRa3U9VqZyA2UcgGPbInUSk3RfuB/k4uW4Dj868U0EFrcxjIiEwEbaTHoqpe+S5Z4cmgxfFXTj3rk2KCTt5SWhf+uq4GvlRD+Rqj6X6rf5J5HzF3YlmnJHYHrxhu4e/Nesd3Pu1J5+AVVLrb7FQcOtWUwZswYbN26FWfPnuUSOfBp3LgxmjRpgpUrV3LHDAYDNm/ejJiYGNE6J0yYgG3btuHEiaeGdX369EF2djaSk5MBAM2bN0ezZs2wdOlSAEWhIgMDAzFq1ChMnDgRd+/eReXKlbF27Vr07NkTAHDq1CnUq1cPqampePHFF0XvnZeXh7y8PO7vnJwcBAYGOtSWgXDAEVObKk2yUpM9rVvpvNIxR8eaNttCfa+lPbbePtBqlMpHLnSxEKGqnl+H1lDF/DYrCchi0T+lYjDI2eTwrxNuHch9l0KhkPbZ5GMxnIEvRWj8GJLaT5ffmyNsGVw33sDAuqPx+JF55kJb4erhitWnFmsWCpYtW4ZPPvkEWVlZCAsLw5IlSxARESFZfuPGjZgyZQouXLiA2rVrY968eejSpYume5aILQM++fn5WLNmDQYNGiQqDKSlpSE9PR2DBw82OzdixAhUqlQJERERWLVqlUlu6dTUVHTo0MGkfFRUFFJTU7n7pqWlmZRxcnJChw4duDJpaWl4/PixSZm6desiKCiIKyPGnDlz4O3tzX0CAwNV9kbxoeRWpsarQOp4cU/sjpJwpbiQel5HEqiE6n8t3xF/m8lS+ImNLNWEhKT2kzRWVfM8SoauagQKKYT9Qz0pZoUmmQkywrJS0Tm1El71stV1WMvdm/eKVRgAgMePHmvWSFBt9LRp03DkyBGEhYUhKioK169fFy2/f/9+9O3bF4MHD8bRo0cRExODmJgYkwWunjiMQJCUlITs7GwMHDhQ9PzKlStRr149tGjRwuT4zJkzsWHDBqSkpCA2NhbvvPMOlixZwp3PyspClSpVTK6pUqUKcnJy8PDhQ9y8eRMFBQWiZbKysrg63NzcTLYihGXEmDRpEu7evct9Ll26pNQNDo9QAKADinDQs3SgseQ6uipSs/rUKjQ4sk2C2ASid/wCPbC0HVr2uJUEB7XursJ78iMMqpnYtXrs8K+1NneF8B5qtkisCVjF4hFo59NPP8XQoUMRFxeH+vXrY8WKFShbtixWrVolWn7x4sXo1KkTxo0bh3r16uHDDz9EkyZNOG223jiMQLBy5Up07twZAQEBZucePnyItWvXimoHpkyZgpYtW6Jx48aYMGECxo8fj08++aQ4mqyIu7s7vLy8TD4lAbn9finPACVrZ1uqpbWsIvn7tVoiL9oCve7Nn6j434PSnjG1GZFCKhaFVoTtUFuf3rYNau4rds+EoL2Sgq8l9+W77fKJ8cxFRDUjknI9FX9XFFrWku/IGq0JdXE8eCUIaZnVLarjWUONNlqIkoZbbxxCILh48SJ27NiBIUOGiJ7ftGkTHjx4gP79+yvW1bx5c1y+fJnbu/f39zfzBrh27Rq8vLxQpkwZVKpUCc7OzqJl/P39uTry8/ORnZ0tWaa0YInxn16R0axNbKSlPH9QpgOq2GpJLomOtahtN381xs88R6FBjITHlbw16OTG97fnY0naXrH/WyoMap3kxARDYR2Wqvj5/apHrAuacEwoGCQE7dUk4EpF7uRvlchdKxSOn7Vtt+JEjTZaiJSGW04zbQ0OIRAkJCTAz88P0dHRoudXrlyJV199FZUrKxtvpKeno0KFCnB3dwcAREZGYufOnSZlUlJSEBkZCQBwc3NDeHi4SZnCwkLs3LmTKxMeHg5XV1eTMqdPn4bRaOTKlAboYKCHNTYfueBHcn8rYc3gRb0f+MIBzdDoiAMkf0VG/6bwJ3YxI00hQh91PsJnVjI6lJtw5fpQ6biSAZ7SMUCfxFJxxlaScTOsRauBoxSzQpNMfrNCA0ux37OckaOjvPOM4seubodA0eSbkJCAAQMGwMXFvDn//PMP9uzZg59//tns3JYtW3Dt2jW8+OKL8PDwQEpKCmbPno3333+fKzNs2DAsXboU48ePx6BBg7Br1y5s2LAB27Zt48rEx8djwIABaNq0KSIiIrBo0SLk5uYiLi4OAODt7Y3BgwcjPj4eFStWhJeXF0aNGoXIyEhJDwNHhO9hwA+JK3QjdFSEVufWtFU4uE8+FmPmtkYHxlmhSZpDLquFDsxWP0tQ0QQfh1YmoY4TgvYi5MrTusX2yMWQClZFV5X0nNjEwtcyCTUFcpON0kQkTOHNb5cS/OcU04LRY3HGov6Lw1MhgC9U0b/VuOeqge9+KkTL1gq/D/gumMJzanG0IF+lATXaaCFSGm5baabtriHYsWMHjEYjBg0aJHp+1apVqF69Ojp27Gh2ztXVFcuWLUNkZCQaNWqEL774Ap9++immTZvGlQkODsa2bduQkpKCsLAwLFiwAF9//TUXgwAAevfujfnz52Pq1Klo1KgR0tPTkZycbKKqWbhwIbp27YrY2Fi89NJL8Pf3xw8//KBjT9gWobuhWEhcrSjtQfOhLk5CtBgm0QQ9egaukYPeg/rTSw2siqFdrdxu0LIypUZwwsQ5/DbEeObix1tNVLmTxhlbmbiy0fdEzfuiZttAiyZGSpUuFTVQbfvEfPWFYYTlvgMaZlrtOyl8j+j2gVI75eoT9g29h9Q7q/b7Y0aD+qFGGy1EScOtNw4Vh6C046ihi+mAomWStWSPuCSvOpRsK5TCyMpNKNb2CxUA1Kxa+b7oWla5Ygl81AYOstTtUAy6ghdDizZCCaVYAHwff63Pp2ULRu46uTgN/G0DueiKalB6Nx0hDsHZI//inaYTdLu3Wj4/PA+1mzynuvz69esxYMAAfPHFF5w2esOGDTh16hSqVKmC/v37o1q1apgzZw6AIrfD1q1bY+7cuYiOjsa6deswe/ZsHDlyBA0amI/lUpS4OAQM+6FVGOC7+akNF1zS9yX5BoiOiprJnT8xaFF5W6rS5r9XalTXSqGLqQZEKWGSMLiQpSj56vM1KMI2aEVoC6BUtrjyZDBNgX4oaaONRqNJhN4WLVpg7dq1+PLLLxEWFoZNmzYhKSlJkzCgBSYQPOOoGdSFgwFNyEJRo9JOyvUsUbkGhPCtudUYSDLMjdmUJjCxoFjCY/zJXW0WRUv2+pV+F918jyAktR+6+R7RdJ1UVkXAND2zmjZRQUTMoFAsw6M1xsJ8TxZHFIq9K5WHq0fxal1dPVzhXam85utGjhyJixcvIi8vDwcOHEDz5s25c7t37zbLtdOrVy+cPn0aeXl5OHHihOYohVpgWwbFiCNsGQBPtw0yIhNV+yIrhSFWori3C2x5P7V9IGW4KVafngFprMGSaHn0Ovo+qdE48d89pdWulJGi2u0DWlarYCD3DFrCKivVqRRiWIjSxM6/ll/W2qiPFOEzOMKWAcByGcihti/t7mXAsC90IFazB26JWyK/3uIKZyxnIa8HfBdFpRgMajUilggFWvaGLdlT50/uYhOxWGS8ycdiEKNxK0GNMACYagSScj1lhQHhpGqNlkBq20PrBCv1uxELMSwnFFjiOaC2rVQDUxITIfkFVS4xE7SjwgSCZxThgKLWII6/glQzgdGJw9baAdpOuYFSL6GAuijy91al+k+NUKB1spYry1epC7M/KhkUCvfa+a6YYm3kvwu2+I6FroAR1YxmdgJycQn4bqRahSH+xCh8pyxZaUtp4qjdgFhOAjmkhAKx6/QWBkqycTBDHiYQPMMIVyxiK/jijFEgXJFp0S7Qc1LqajHXNDXZF+VIyvV8aml+RVlTIFe3nsGguPsIbkdX7/zJXUrtLjfRZkQmyj6vJe+JWP8IhRD+eb5bHV/LJSzHtVdB6BIzPNRrlSy3tUHbPhmWb0PIIVeXUHgUe1694i0wSgbMqPAZJcYz12zFYgt1Pk3YorRKpoN2SGo/zApNsqnhEr0PP/AQoH0CsNT/XQyt+Rik4D+D1KQu5nfPR6vhJ/XDtwaxSZy2U9jGiGpGrr/4/SYVZpofREloXMePRMiHunEK72HJNoHa3xWNs6EGa6MwCoUBMUJS+xUFadIhVDOjZMAEgmcMsTgElqA1k5oWozo6KPIHKlsIK1T4oPYAltahxhBPiz2BVF1qg/io2aKwJriT8Do9vxux5xO7Hz1maZZN6jJL4b9rYjEdlDwApNCyRcV355X7fVkqDPADKNFnkxMGKGJ96oieBgzrYQIBQxKxRDoUqYFOGBFPaUBU2gfWa29dCmE+A7k6aBIg/jOK/a1UhxhS1ucAFDUmwklRq6bDEQd3OaFFSeCREwqEq3C+qlz4f0vanJTradZ2LSGIxf6vBBVW5AQWutrnt0fsGaX6XEyTUlJdiBnSMIHgGUXNCl/N3rfUNdTSWwm5VaqWAdVSd0g+k4/FIM7YysTfmv/hTxZUEOCvtpQi1h28EmTit54RaZphUejnTetVM9ALB3K1g7Vw+4S2s7gQ6yel79CS9km9Q3rZxah5j/Wqky8A0HdD7rem9v5KHjPMlqD0wwSCZxg1qkdLBl96jR4W/XwDQzXlrIWvjqYIV330Q5+TPxkrrQz5KWcBmG1XCK+Rm8jkLP8ddfDmf49UoOILXUr2JnLZG8VQIyha++6odaG0tm45pIRGqdW+JfeRsiUIr3pZ8VpGyYB5GTxjVI89gcv/bcC5LVniilc99gSGn/1H9jqlAUbrfROC9gJB8kly9EYPIUMYgIc/cMtZcMtZxfPbpcZwUA1avRz0iCnBF6j4W0d6aiikvkMxw0NL3qHicL+ztG1qv1O1RoM0CyRfUxZypR/SMqtrbpstyLyTgzu5D4vtfhU8y6BqBf0CMTkCTCB4hqETMn9ypgKDJddS1PgpaxEG6KpRadVrL99o/uQi1sYYz1yzYD2cRuFKPxONgRR0UtBi8a1lG0WrUGjppK2XEKFXfXzkNDtiPvpa3zdrhChhcCQpjQA/3oGUwH/wShCSfJ/GPtC6Jch3Z42oZkTqWT/V19uKzDs56Dp3NfKfFBTbPd1cnLF14kDVQsHy5cuxfPlyXLhwAQAQEhKCqVOnonPnzpLXbNy4EVOmTMGFCxdQu3ZtzJs3z6ahi9mWwTNI9dgTJn9PPhaD6rEnuOP0//xjwmuFx/koWUgLtyqEe+lC+AOpoxnA0bbRj5ILnlrr/ohqRpPJnz63msFbGMBHLfY2ErPHd6v0zPT7FO6hy/VvcT0H3crib2mpMUy0xmWRf60juSPeyX1YrMIAAOQ/KdCkkahevTrmzp2LtLQ0HD58GO3atUO3bt2QkZEhWn7//v3o27cvBg8ejKNHjyImJgYxMTE4cUJ67LUWJhAwZCd3el5KOFheu5bJ8YzIRMWBSHg+JLWfrOEcX7VM7yGG0uBuiwlPaoKWskNQUxYwDxSj5Iom1iatRpmOkKBJ7WSqNlqeVH30WcViF4jZiQCmtiRyWKOpUvOO0t+KmjwQYhENLXWhpPC1JY5qq+KIvPLKK+jSpQtq166NF154AbNmzUK5cuXw559/ipZfvHgxOnXqhHHjxqFevXr48MMP0aRJEyxdutRmbWQCwTOK1CRvDTQIkRRaAq9IIZzk6ABKrf3trUEQRnYUW7lJoTTZUINELegZAVFv+M+idrKlqBUG1NanRhhSG4hKalJXisVBy6j5julzqXmv+GWsDWgU45lrIgQ4kpagJFFQUIB169YhNzcXkZGRomVSU1PRoUMHk2NRUVFITU21WbuYQMCwCXoLG3z4QgEVAviDv9IWhKMhFG6ECAddvYUetS6iet+T/psRmYgfbzXRXYMjJwxYaxSp5KKnBv47qmQoKnaNXqh9n8TayzQE2jh+/DjKlSsHd3d3DBs2DJs3b0b9+vVFy2ZlZaFKlSomx6pUqYKsrCybtc+uAkHNmjVhMBjMPiNGjMCFCxdEzxkMBmzcuJGrw2g0Ijo6GmXLloWfnx/GjRuHJ0+emNxn9+7daNKkCdzd3VGrVi2zfNMAsGzZMtSsWRMeHh5o3rw5Dh48aHL+0aNHGDFiBHx9fVGuXDnExsbi2rVrNumXkorQFoGP0kCmVc0qFriGP7BZE32wuBAaEyYE7RWdFMW0DmqfjaqG5QwXqQajuAQpsXZQ9bOWmBPWlpFDqR/UuDoqlbdEW0YzIToSzO1QPXXq1EF6ejoOHDiA4cOHY8CAAfj777/t3SwOuwoEhw4dQmZmJvdJSUkBAPTq1QuBgYEm5zIzMzFjxgyUK1eOs8osKChAdHQ08vPzsX//fnzzzTdYvXo1pk6dyt3j/PnziI6ORtu2bZGeno4xY8ZgyJAh2L59O1dm/fr1iI+Px7Rp03DkyBGEhYUhKioK169f58qMHTsWW7ZswcaNG/H777/j6tWr6NGjRzH1lOOjh0aAPwhrWS3KqZr5kxx/YrW3AZ0UwhWXnj7yasoWhyBFJzRLIxGqQUmVrbSKV5qsta6MLdVGiMWosGb/35otO34QJP5vdXngfovrfNZwc3NDrVq1EB4ejjlz5iAsLAyLFy8WLevv72+26Lx27Rr8/f1t1j67CgSVK1eGv78/99m6dSuef/55tG7dGs7Ozibn/P39sXnzZrz22msoV64cAODXX3/F33//jTVr1qBRo0bo3LkzPvzwQyxbtgz5+fkAgBUrViA4OBgLFixAvXr1MHLkSPTs2RMLFy7k2vHpp59i6NChiIuLQ/369bFixQqULVsWq1atAgDcvXsXK1euxKeffop27dohPDwcCQkJ2L9/v6RBCMMUNTnc+YOVlgFUuGUgnGToQEZDAM8KTTLbqy0OAUHt/WiYWCVvBWHYZLmyWvfmLREK1GoXhKtc2j61+9FxxlaKwYvk3h81ibaUKE4XVzHtjqXvq9SzKX13cq6YDMspLCxEXl6e6LnIyEjs3LnT5FhKSoqkzYEeOIwNQX5+PtasWYNBgwbBYDCYnU9LS0N6ejoGDx7MHUtNTUXDhg1N9lmioqKQk5PDuXIoGWbk5+cjLS3NpIyTkxM6dOjAlUlLS8Pjx49NytStWxdBQUGyBh55eXnIyckx+TDE4Q9wdHDiR7ATc1WkH/7kKRYxkJbnZ8iTChOsJ9TFkn5orgRq+8AfUIVqYDUCkVxaXbG2AOonO0uC4VhrMEq/AzXPpCYVtqXnlVATM8JSxCZ6obBUnBOxXB4NZj+gjUmTJmHPnj24cOECjh8/jkmTJmH37t3o16/ofenfvz8mTZrElR89ejSSk5OxYMECnDp1CtOnT8fhw4cxcuRIm7XRYQSCpKQkZGdnY+DAgaLnV65ciXr16qFFixbcMSmjC3pOrkxOTg4ePnyImzdvoqCgQNZ4IysrC25ubvDx8ZEsI8acOXPg7e3NfQIDA6U7oJRx+b8NNGdWjKhmREQ1I7efzZ/UYzxzRVcxQtcwsfOAvLW9klGfJQgFEDFXL7HtAeotoaZ+tRMb7VOtaNmr1io8iKm91WgJ1H5HarUnYii1QU0UTksRfqf8e/G/j+KajMW+J2vdFp9Vrl+/jv79+6NOnTpo3749Dh06hO3bt+Pll18GUGQPl5mZyZVv0aIF1q5diy+//BJhYWHYtGkTkpKS0KCBPhlrxXCYSIUrV65E586dERAQYHbu4cOHWLt2LaZMmWKHllnOpEmTEB8fz/2dk5PzTAkFQuT8puUGwpDUp2mKacQ//nklFTHnoiVyTmjUh6Cn0d4stUQXGjeqgd8nekfAE4YIVuuOxxfMlKDfkVr3StlVp0yIai1ppC357mhEzJAr0iGP1dgfaHF5lEIYzvnglSDgf9tdCLLOU0IYNpsfWpsKHvx3NynX06GFgAqeZeDm4lzskQoreJZRXX7lypWy53fv3m12rFevXujVq5fWplmMQwgEFy9exI4dO/DDDz+Int+0aRMePHiA/v37mxz39/c38wagRhjU8ELKMMPLywtlypSBs7MznJ2dZY03/P39kZ+fj+zsbBMtgZKBh7u7O9zd3WWevHSipBmwZLCcfCxGdEK3FjWqceHAKzcQq1kdqhlcLckxoRYtKmctWoIfbzUx+VsudDLdPpHKxSCHLQMoCUPzWnpva9X6wr6hQtCPt5pw22QJQXsRB/XbRnzEoi5OPhaDGJ5mi0IF5MkwFXYtzbFgC6pW8MLWiQNZLgMrcYgtg4SEBPj5+SE6Olr0/MqVK/Hqq6+icuXKJscjIyNx/PhxE2+AlJQUeHl5cb6dSoYZbm5uCA8PNylTWFiInTt3cmXCw8Ph6upqUub06dMwGo02NfAoqch5G9BJTs+BxNoJgk56/JVRRmQil6pYS/x8NasougpTCkKkhJZwxnxsoW4WE5JodEUxGxBbvAd0y8narR975MSQylophJ9YiP6rJbqj0JhTDfzcCEJ3X0dygaxawQv1q1cptk9pEwYABxAICgsLkZCQgAEDBsDFxVxh8c8//2DPnj0YMmSI2bmOHTuifv36ePPNN/HXX39h+/bt+OCDDzBixAhuZT5s2DD8+++/GD9+PE6dOoXPP/8cGzZswNixY7l64uPj8dVXX+Gbb77ByZMnMXz4cOTm5iIuLg4A4O3tjcGDByM+Ph6//fYb0tLSEBcXh8jISLz44os26pnSiy33YC1h8rEY0WiCYpO73GQj127+wMlPQMOfNLXUZyl8LwItYXLlkNKYUNsFfmjqiGpG2ZgIccZWFgsJ/JwS1mKtUKG1DWqCKMkJckrfp5TLojBpkly7xIRUW2mxGPbB7gLBjh07YDQaMWjQINHzq1atQvXq1dGxY0ezc87Ozti6dSucnZ0RGRmJN954A/3798fMmTO5MsHBwdi2bRtSUlIQFhaGBQsW4Ouvv0ZUVBRXpnfv3pg/fz6mTp2KRo0aIT09HcnJySaGhgsXLkTXrl0RGxuLl156Cf7+/pJbHAzluARS6kZrE69YO4nS1Q+dwC2pT2gIxhc2+MIARWpQlRts9ViZJQTtVXw+pfvIbZ8Ij1PvCj7CiVDP7QBrJnWxdhSHelzs+xDmppCD733D/wgRbmkIMygqabAYpRMDIYTYuxHPCjk5OfD29kYbdIOLwdXezSkW5OwJpPaYrdk/12vvnT9AajFgFMbnV9sWS+wqLDVcE04QdHKQs4vQo0+lUlgLn4HukVsjHOhh1CfElnYdWusX7uXT91IqNbJcfwrfBy3vLQBMDv4v3mx8HHfv3oWXl35q9EePHuH8+fMIDg6Gh4eHbvU+i6jtS4cwKmQ8m0hpCWI8cy02IFQayKyNYa+FGM9cgDfI22JCsWTiEwv3LNcnerVZaLCnRz4APlQjwM9gqOd3rfd3JyV0qkFMs0LfL62/HaGRq9bnnJkRDeC4xrsyHBG7bxkwnm3EhAJr1eFyanDqtqakThZmtqMBWtRqBwDzlZbcQGvJ3rklK2Cx5y7OLJFqXRjVeH6Iwf9+HCGdMx/6DtH3idpX8GNtWEpGpHTacaV3nX9ftk3wbMMEAobN0BqYSC+UwiRTwzOlgZI/OPKTBAHmg6yUpkPtRGup5b+UQaJahBOArUM4a7XJ0JJKmK8ZsBapOiztazphUwFASq1vad1yaNniYjzbMIGAYRMsFQaEanX+wKwlSh2djOUGS61CgRxSg7mtcwhoUe+qUaHbelWtZRVMc05IIfXdUeGKWt5b4oooJaBpmbSl0htHVDOKvheWBsHSkqtCDuYxwGA2BIwSg5Tlt3AwFLpSWWtgJqbCFrZFD99+awK92GOy17pHLzSEk4P2hdx+uNK96T301HpoeV6pCVaP70EYVdAS+N9HaUhUdOVeDu48LMbARGXKoFr50hWLgAkEDN3Roh2wdrJWGhD5EdakVmX8CUNpsOZn2qNl5SZxel+5qH16IBdJUW7ijqhmtDgsLe07/r96YY1gRMMo89ukVxtt4b2g5p7874gfOVAvlPpF+M47Glfu5aDDt6uQV1B8oYvdnZ2xo/8gi4WCuXPnYtKkSRg9ejQWLVokWW7jxo2YMmUKLly4gNq1a2PevHno0qWLha2Wh20ZMBwOs/wC/0NspadFzSk1yfCD2SitJhOC9nIfMcRWWvS+alZz/HwDlqIlsmJC0F6rjNlsNUFYk4YZKHovEoL26i6oFJcwwI8hIMzgqead1yPFc0nizsOHxSoMAEBeQYHFGolDhw7hiy++QGhoqGy5/fv3o2/fvhg8eDCOHj2KmJgYxMTE4MQJ6Rgv1sAEAobNUDMoCQdYtRN8RDWjJgM1NQO5mgRJFOoVIDaw8sO78gdztRMvvYb/fEr74JaeE97TUtSuMLWgx+RrjxUtjcao9Roh/PdH6/4+FYaESL2zar8fsfcwvOplTW171rl//z769euHr776ChUqVJAtu3jxYnTq1Anjxo1DvXr18OGHH6JJkyZYunSpTdrGBAKG7tAIhZZafauxnO/me0TzIKlmj17tBKLFZkDo908nejmBhgoQ/JC0ajIaakHv0MjCyYK2XSxCoa0QbuNY84yW2h5Y8l0It66UhCHa11LvM02jzX9/aMAniha7AeEz6ZU34llkxIgRiI6ORocOHRTLpqammpWLiopCamqqTdrGBAKGzRGz5pfbi6XuWfz9d2EMAGt9ti2BH9LYGuhEH+OZq2rCSgjaKzvJKLVJ6lpLg+Lw4au26VYKf6JKCNprNvGovZ8e+/X8PtaSOjkktZ9VGS0B5fdMKDwdvBKkervo4JUgdPM9YqJNEoYqphoG+p0IoxUKhTRLtUxpmdUV28soYt26dThy5AjmzJmjqnxWVpZJCH0AqFKlCrKysmzRPGZUyHBcbLFfq9aS35K9Z7WW83zkojKq3Ue3JLKjNSs7OW8BWi8/nK4W7wI94Lv1KXmHiKFH6GRq2CgHv2/4W0tq4WvIfrzVBJOPWa5BEhPcxNpK+4VpBrRz6dIljB49GikpKQ4biplpCBg2QZjcyJpBRK+IfFrOS2GNrzZNHws8fSY1GgelLRSlyUfsWS31eReuPsXqpWF0hcKAVqxxwwSeruS1Gp5aIwxYsj2mRz4KOS8SKpwpIWV3IHYfPTNLPiukpaXh+vXraNKkCVxcXODi4oLff/8dn332GVxcXFAgYhTp7++Pa9eumRy7du0a/P39bdJGJhAwig1LhQIx1bHcRKq0uuerUbW0laplLYU/MclNVsK9WWsDxuhh8EeFGbVBcLREaZRD7WRG0aPf9JrklLa1rMltoVaI4E/gapHqbyqgFXd68tJC+/btcfz4caSnp3Ofpk2bol+/fkhPT4ezs7PZNZGRkdi5c6fJsZSUFERGRtqkjUwgYNgUMU0B9avWMrAI91atsSEA1AsF9J50z18KLbYFSjnoxUIrK62WrREalCYLpWe3FWK2I0pYs2ql76UScn2tR+AiJWzpMsi3AxGD7/bIfT8RG2zWntJE+fLl0aBBA5OPp6cnfH190aBBUeyW/v37Y9KkSdw1o0ePRnJyMhYsWIBTp05h+vTpOHz4MEaOHGmTNjKBgFEs8AUDakGvdkDUur+q1rshKddTlfW7VPKlpFxP7v9aQ/Lyy/OFHf69bKmO1aqpkep7MWNRftwF/nVaVOO2DuTEh2p+4oytdEvzrNceO99YkP5tbZ/wr5eyG1CzfSCsi2E9RqMRmZmZ3N8tWrTA2rVr8eWXXyIsLAybNm1CUlISJ0DoDRMIGMUKX1tAo8nxKU5jJaXBX7h65/uE05XS5GMxnFAg9jxK9+ULBkoaEyUtgRaNi17ChlD44nti0Oe0JNa+nhON2hW1nn2iV3hifkIkoSBpDWq+E+q2SD/Cd9uRhIEKZcrAXUTlbkvcnZ1RoUwZq+rYvXu3SZTC3bt3Y/Xq1SZlevXqhdOnTyMvLw8nTpywWZRCgHkZMOxIjGcuYjz3IuTK04FFTb4CPcPHUoM9sfrEBl+5clpWl3wreBqWNsYzt9gHWaX7zQpNUqVGF3MJtUeYXyFqDRNt1U5r+kD4PukdrtiihE8ick7OPZ0aZAXVynthR/9BLJeBlTANAaNYoXkO5PbRpSKsaUVMuBDWrXXbQm+EEQyVVvlyk7Ml6m6l+2nZ2nkWsCQ6ph5GeHppzmg9/PpKQ2IjoEgoaOBXpdg+pU0YAOwsENSsWRMGg8HsM2LECK5Mamoq2rVrB09PT3h5eeGll17CQ54UKFbH3LlzTe5z7NgxtGrVCh4eHggMDMTHH39s1paNGzeibt268PDwQMOGDfHzzz+bnCeEYOrUqahatSrKlCmDDh064OzZszr3SOmHv2XA338X7p2LRW1TuzcrDPjChx+9TS9raT2FBaXJd/KxGF2NyiYfi5HtUzXaATFVsth1YpORHPygVNY8c1Kup9385rWErJbDmi0I4e+GxRBgSGHXLYNDhw6Z+F6eOHECL7/8Mnr16gWgSBjo1KkTJk2ahCVLlsDFxQV//fUXnJxM5ZiZM2di6NCh3N/ly5fn/p+Tk4OOHTuiQ4cOWLFiBY4fP45BgwbBx8cHb731FoCnCSTmzJmDrl27Yu3atYiJicGRI0c4442PP/4Yn332Gb755hsEBwdjypQpiIqKwt9//+2wQSYcHX4mQsBUvSrmw843AKRl+S6G/P/zrxWbTLi6QpPMVkhaA+lYO0Fb62+vFS3BepQEFCkXT7FJUGvGQf77wG+z1qBRVIgKudJP8lprXACVkNuWsiX0Wenz6mmDQIkztkLqWT8AcxXLMhwfu2oIKleuDH9/f+6zdetWPP/882jdujUAYOzYsXj33XcxceJEhISEoE6dOnjttdfg7u5uUk/58uVN6vH0fLo6SUxMRH5+PlatWoWQkBD06dMH7777Lj799FOujFICCUIIFi1ahA8++ADdunVDaGgovv32W1y9ehVJSUm276hSTpyxlcnAr3ZFKIyRT4UILXHzYzxzkRC0l7PmtlZrYO319Lltma1O7cSk5lmEkyu/D6UCF6lBzOuC9ok1eRGkYmHYQhig96GGp/x325YCoFTuCymbGL63jBbkwjszSiYOY0OQn5+PNWvWYNCgQTAYDLh+/ToOHDgAPz8/tGjRAlWqVEHr1q3xxx9/mF07d+5c+Pr6onHjxvjkk0/w5MkT7lxqaipeeukluLm5cceioqJw+vRp3Llzhysjl0Di/PnzyMrKMinj7e2N5s2byyaZyMvLQ05OjsmHYY5SECGlCUxskKWDnNrJjw6W/EHTkhWdkgpeDWq8DfjqdEuFEKW9Y0smSWogaQ10NS3UDlBBQOx70WJ7Yc0kNvlYjOr+VnJ/1VsooFsDUoa5fIS/Db63DOPZxWEEgqSkJGRnZ2PgwIEAgH///RcAMH36dAwdOhTJyclo0qQJ2rdvb7J3/+6772LdunX47bff8Pbbb2P27NkYP348d14qOQQ9J1eGf55/nVgZMebMmQNvb2/uExgYqLo/SjN8OwI+wnTBQh92Le5r1CUQMN8Ht8QNTgvWxnqP8cxVNWnR1R19Tq3+7918j1jaREmsFQb4eQgoIan9TLRItBx9VjUTtJxwY0vtAFD0PvDdB/lhq8WEAiVXXKnvWI27IxUE+M9syfPb23uEYRscRiBYuXIlOnfujICAAABAYWEhAODtt99GXFwcGjdujIULF6JOnTpYtWoVd118fDzatGmD0NBQDBs2DAsWLMCSJUuQl5dnl+fgM2nSJNy9e5f7XLp0yd5Ncli0WD0rTejCc/wBz9JAOWKIBeWhWKtKVTux840M1fq/WxLjv7jgt19oU8KHRtSjz84XRGy9IlfTb0rfg3BSlrtW7G8twh//udV+51RwEPuNMGGg9OIQAsHFixexY8cODBkyhDtWtWpVAED9+vVNytarVw9Go/QPoXnz5njy5AkuXLgAQDo5BD0nV4Z/nn+dWBkx3N3d4eXlZfJhFCHUEvAHPblELXz4g5bcAEZRO5DxVfJy0HbyBRjhnrelmgKqHlcbLU7LZGfLeAfCeBF6qsWFnif0ww+lC+gTYEip3/X0UJHrJzXaAPqeiZXV0k7+toFQiNaqoWOUTBwiMFFCQgL8/PwQHR3NHatZsyYCAgJw+vRpk7JnzpxB586dJetKT0+Hk5MT/Pz8ABQlh5g8eTIeP34MV1dXAEXJIerUqYMKFSpwZXbu3IkxY8Zw9fATSAQHB8Pf3x87d+5Eo0aNABR5Lxw4cADDhw+3+vkZ6hAO9D/easL9X2rlQ/dUtQgDYv+XIyFoL+fxIDRyVDOx0NWtcM9ci2U6jWQntwJUa50vZZRmCdbsS2uZfPg+/2J9wA+wpKYfitNYjtpdiH3fatoh5TVhzfaNIwSV0srVB3dxJ/9Bsd2vgltZBJT1Lrb7FQd2FwgKCwuRkJCAAQMGwMXlaXMMBgPGjRuHadOmISwsDI0aNcI333yDU6dOYdOmTQCKjAEPHDiAtm3bonz58khNTcXYsWPxxhtvcJP966+/jhkzZmDw4MGYMGECTpw4gcWLF2PhwoXcvUaPHo3WrVtjwYIFiI6Oxrp163D48GF8+eWXXFvGjBmDjz76CLVr1+bcDgMCAhATE1N8nVXKqB57Apf/24D71x7wQ8JK+c6rnRyoMMCflIRCgVRdQkHEEqGAGrxJZVBU+xxibpzFjdTkqNQmatTJLyPcIlH7TFIurbQuLd+NXLv57rdiORy0umpKGXaqaevkYzGI0SgMTA3ZhjdVl7YNVx/cReeUpcgvfKJcWCfcnFzwy8sjVQsF06dPx4wZM0yO1alTB6dOnZK8ZuPGjZgyZQouXLiA2rVrY968eTYNXWz3LYMdO3bAaDRi0KBBZufGjBmDSZMmYezYsQgLC8POnTuRkpKC559/HkCRSn7dunVo3bo1QkJCMGvWLIwdO5abyIEib4Bff/0V58+fR3h4ON577z1MnTqVi0EAqEsgMX78eIwaNQpvvfUWmjVrhvv37yM5OZnFILASunVAkx8JtxKKI4gKNfgSQ8uEKLUalssdL7WKE7ZHi02BVBuU2il2jSX9z2+7tatUsTYpIXRLFIu2qOa5lLaxpLZqxOpWayQqdL9Vey3FGmGA3rckcif/QbEKAwCQX/hEs0YiJCQEmZmZ3EfMa45C4+MMHjwYR48eRUxMDGJiYnDihLhRth4YCCHEZrUzTMjJyYG3tzfaoBtcDK72bo7DQrUFcisjes6eq1hAPM8CoH0AFitPtyCEngRKz6u0daBVHWxJH4tthWiBZh/k31dtO+i9lbYRlFDb12ptMrT2I/97UvotUPjCkJg9gJZ7qi2fc68AFV74F3fv3tXVTurRo0c4f/48goODFRdeGdmZ6Pnbl7JlbMGmtm8hxKeqqrLTp09HUlIS0tPTVZXv3bs3cnNzsXXrVu7Yiy++iEaNGmHFihWa2qm2L+2uIWAwhFAtgZIwoAfWaCD0WE3JrdbpM2pdZevtPaDVqp1vyMbPBKkVsQBEarNJClfvWu/PFzjl7is0aJRD6zurVgMhpYHiu96qwVK7gYiDr2m+5lnl7NmzCAgIwHPPPYd+/frJGsgrxcexBUwgYDgkUrEKhFgrGAjd3LRireGV3IQSUc1ollrZXtoQoUW7FBmRiVzmRuDp81krpFgTi1/LxCgW3EfpfsL9fqX6LUForKoWNfez1hvkYMQGi699lmjevDlWr16N5ORkLF++HOfPn0erVq1w7554ukil+Di2gAkEDIdFzKYAMB8QpQY9rYOvlqxvSqspPbQHNKAN3Re2JmQvH0st/4UrUb67m9ikYq2wRFfI/AlabawFS1e7wvrVCgZxxlbIiExU7b2gdqLmawloeG258hT6HavpK1pWa39RrQvTEKijc+fO6NWrF0JDQxEVFYWff/4Z2dnZ2LDBcQQqJhAwHBox7wMxlakYtlxNixn9aU2KBKiPskcHbb2Mviz1oxczduMLKnq7qhVnvHy1Pv9SZYCnmhwl1E7UfBsT4dbRrNAkTkgQvhd8l1w5qEbHku9N70RJzxo+Pj544YUX8M8//4ieV4qPYwuYQMAoEWhZ7WtNkawVKet3fthltag1vOOrvPUQCqxV4dNJiJ9fQM8okPQeljArNMli7YCa81LvDg2SxI+gqIRYXbRv+ROuMHtnRDWjydYMhQbo0qJNsshu4H/tLmmxChyJ+/fv49y5c1wQPiE0Pg4ffnwcW2BxHIJz584hISEB586dw+LFi+Hn54dffvkFQUFBCAkJ0bONjGcYGqNATSRDteetvU5qELTUBkHtdUKXNL4FOmA+Ycn5vVuCGg8KSydjMcS2cJSeTa8IglKoccXkf09CTwmx+viIaZlk03f/D6FHAQ2UJXdvS7dVSqpror15//338corr6BGjRq4evUqpk2bBmdnZ/Tt2xcA0L9/f1SrVg1z5swBoBwfxxZYpCH4/fff0bBhQxw4cAA//PAD7t+/DwD466+/MG3aNF0byGDIIWZjoNYg0RLkQsxaE5VPy0TG3z6gq3S6KqX72JbEEFAyFgSUV4Q/3mqiW+wIsRj+cjYE/ABEthQM1Pat1pU6v4/FEntJvV9UMyEU9GwhDAjvy1DP5cuX0bdvX9SpUwevvfYafH198eeff6Jy5coAAKPRiMzMTK68mvg4emORQDBx4kR89NFHSElJMUkr3K5dO/z555+6NY7BoMhN/FLnpIIdAfKDpSUTGjUA1Ao/OY9aC3V+5jyKWJx5rZoSNQl51NShh/FjUq6nRZO6kleDXoKCtRkt+fCNBZX6mJ+zw9IJWU8tjqNQwa0s3JyKN/Cum5MLKriVVV1+3bp1uHr1KvLy8nD58mWsW7eOC7IHALt378bq1atNrunVqxdOnz6NvLw8nDhxwqZRCgELtwyOHz+OtWvXmh338/PDzZs3rW4Ug8FHbuIXlpE7rzY8srVGbNZYuKs9L5WjgRqiWbovLNYGLfXpMeGahN/VEFRITgige+3W9I8QNYGx6JaQ2P2E+QaU2iRm/CflGSPVLkuDNPHRmkyrOAgo641fXh7JchlYiUUCgY+PDzIzMxEcHGxy/OjRo6hWrZouDWMwHAVL/P8tmXT0mKj4cfH1MuzTaiRpzX0jqhkRZ2yFbr5HAOgXZMkknPL/JjM94jpYGi2TrxFQO0kL+1Xuu7GVMEDbrcVFt7gIKOtd6ibo4saiLYM+ffpgwoQJyMrKgsFgQGFhIfbt24f3338f/fv317uNDIZN4GsVqseewMnu4vYvlkwaaoPVhKT2kzWek0PvPA9KanBbpGIWq//glSBu5axW4yDXNksnQb36l/YJ302Qj1L7qG2INem01dxHCb4Qo1dMDIZjYZFAMHv2bNStWxeBgYG4f/8+6tevj5deegktWrTABx98oHcbGQxdECZSEv7/ZadeilsPlhgOWuIVYa0nhdZ26uU7T7FEKOAbDNL207TAShOiHkmoxOpUMwkrGe/Re1I3Qb4dgBjC+8UZW4nGYyhOOwCqjaD3dEQNAcN6LBII3Nzc8NVXX+HcuXPYunUr1qxZg1OnTuG7776Ds7Oz3m1kMHRDjQeCsAz/b73zBFiD3IqevzdtyWQvdG20BDqJa4FvOMmHPyFau3KnfSNc5UplKVRjQEg1APwgQfx/1cab4OdQ0FNLZIltB30WqVTUjNKHVYGJgoKC0KVLF7z22muoXbu2Xm1iMOyO0JCRLxTIuR5aix7GWsIB3Jr9ba1EVDOabINY4+nAvz+d0MTCJluC1tTKSkKBMO2wVBjnjMhEWaFSLEQz/96WTMSW2g6IeTPQiJzFkZacUfyoNiqMj49XXemnn35qUWMYDEdCbTwD/mCd5Cuej17qGnqd2HmlwV8qBbQ18RASgvZapRXgT2LQOHeJPTOdaPkTmrWrUxosyFItCE1LbWKoKOItQCdiMQFLLIGSlgBGSsetQUogFB63d+pxhv6oFgiOHj1q8veRI0fw5MkT1KlTBwBw5swZODs7Izw8XN8WMhgOjiUW3WLXUOMztZOUyeTrgNDnUYrWRxEro3e8fH7f8vub/g1IT3T8lTqNk8Cf8IXwowbKoTSxWjvxatUOyLXXGs0Tw/FRvWXw22+/cZ9XXnkFrVu3xuXLl3HkyBEcOXIEly5dQtu2bREdHW3L9jIYdkONxoAmlVETaEgMuXC1cvDv5Uh2DhRr1PtiGg9al9o66f2Fq3S+SlyYn0EMvio/xjPXZG9eS7AgtaG47bEKF7M3sHVIaIZjYFEcggULFuDXX39FhQoVuGMVKlTARx99hI4dO+K9997TrYEMRkmCqsqTcj0tHsjF0v5qQQ9/cz2x1BhQTijSqh1R8uTgT+RKfc8PKKRkLGjthK6HMMCfzJXei1mhSaKZEsXiS9DvM/Wsn9Vt1INbebdw78n9YrtfeZdy8HX3Lbb7FQcWCQQ5OTm4ceOG2fEbN27g3r17quupWbMmLl68aHb8nXfewbJlywAAqampmDx5Mg4cOABnZ2c0atQI27dvR5kyZQAAt2/fxqhRo7BlyxY4OTkhNjYWixcvRrly5bj6jh07hhEjRuDQoUOoXLkyRo0ahfHjx5vcc+PGjZgyZQouXLiA2rVrY968eSZhIgkhmDZtGr766itkZ2ejZcuWWL58OTOmfAaRiz5H0TohJ+V6mk0eCUF7gSDtxn00lr+WNgij5ukJ7Sutkxvt5+IQbvh9z32/V8T7nR/1UCkQkz3V6vQd4Od2kBMO6Dsw+Zi5x4nYM+oZvtlabuXdwoRjk/GYPC62e7oaXDEvdJYmoeDKlSuYMGECfvnlFzx48AC1atVCQkICmjZtKnnN7t27ER8fj4yMDAQGBuKDDz7AwIEDdXgCcyzyMujevTvi4uLwww8/4PLly7h8+TL++9//YvDgwejRo4fqeg4dOoTMzEzuk5KSAqAofjNQJAx06tQJHTt2xMGDB3Ho0CGMHDkSTk5Pm92vXz9kZGQgJSUFW7duxZ49e/DWW29x53NyctCxY0fUqFEDaWlp+OSTTzB9+nSTjFH79+9H3759MXjwYBw9ehQxMTGIiYnBiRNPVcQff/wxPvvsM6xYsQIHDhyAp6cnoqKi8OjRI0u6kFFKoQOuVpX/j7eamKiqxVTZcggnHi2TKHWLs9avXWxbQGxVqXX7QA/PC6WAS1Ihm4Wqcn5cAZpTwtL72hr+O0AFA34SJP67mhGZiB9vNRH9vpQEnvCql/VuumbuPblfrMIAADwmjzVpJO7cuYOWLVvC1dUVv/zyC/7++28sWLDARNMu5Pz584iOjkbbtm2Rnp6OMWPGYMiQIdi+fbsej2CGgRBCtF704MEDvP/++1i1ahUePy76ElxcXDB48GB88skn8PS0zMp5zJgx2Lp1K86ePQuDwYAXX3wRL7/8Mj788EPR8idPnkT9+vVx6NAhTsJKTk5Gly5dcPnyZQQEBGD58uWYPHkysrKyuERMEydORFJSEk6dOgUA6N27N3Jzc7F161au7hdffBGNGjXCihUrQAhBQEAA3nvvPbz//vsAgLt376JKlSpYvXo1+vTpo+r5cnJy4O3tjTboBheDq0V9xLAv/HwIYqtwuspKyvU0Ub2qWSlKrcT4E6JaAz0tCO+r97611HOpvY8Ww0StyLVBThBx9ORA/MyPcmXou6qUB0LueQsePMLZN+bi7t278PLysqLVpjx69Ajnz59HcHAwPDw8ZMteyL2IaRkzdbu3WmaETEVNzxqqyk6cOBH79u3D3r3qozxOmDAB27ZtM1mc9unTB9nZ2UhOTlZdj9q+tEhDULZsWXz++ee4desWjh49iqNHj+L27dv4/PPPLRYG8vPzsWbNGgwaNAgGgwHXr1/HgQMH4OfnhxYtWqBKlSpo3bo1/vjjD+6a1NRU+Pj4mKhbOnToACcnJxw4cIAr89JLL5lkZYyKisLp06dx584drkyHDh1M2hMVFYXU1FQARVJaVlaWSRlvb280b96cKyNGXl4ecnJyTD6MkoswOZLYIEoHWMDUAM2alSJfW6B3yFipYDx61Kmk2dByn+IWBoAiLYAwIp81WQaLE7F0yGJl+P+KoYfmiFHETz/9hKZNm6JXr17w8/ND48aN8dVXX8leozQ36Y1VgYk8PT0RGhqK0NBQiwUBSlJSErKzs7m9kX///RcAMH36dAwdOhTJyclo0qQJ2rdvj7NnzwIAsrKy4OdnatDi4uKCihUrIisriytTpUoVkzL0b6Uy/PP868TKiDFnzhx4e3tzn8DAQHWdwXBI+F4GUlbXYiFd+YKBFGpcDW0xMNtioqU+/hS1IXqtRSrVtRRKz86fKIsjVC/NdaBXXXrAhAH9+Pfffzm7s+3bt2P48OF499138c0330heIzU35eTk4OHDh7q30SKjwrZt28JgMEie37Vrl+Y6V65cic6dOyMgIAAAUFhYCAB4++23ERcXBwBo3Lgxdu7ciVWrVmHOnDkWtLx4mTRpkklAp5ycHCYUlHC4CeesfLkYz1xMtmE7SkpQGGuCJGlBmKiKojbltRg0ABFQJDxIGRnqBd/4r7iQmvD1ypbJeEphYSGaNm2K2bNnAyiaz06cOIEVK1ZgwIABdm5dERZpCBo1aoSwsDDuU79+feTn5+PIkSNo2LCh5vouXryIHTt2YMiQIdyxqlWrAgDq169vUrZevXowGotWFv7+/rh+/brJ+SdPnuD27dvw9/fnyly7ds2kDP1bqQz/PP86sTJiuLu7w8vLy+TDKB0sr11L8hw1NrNlzngt8e7tgZgbnyWo6UOpLJVKqM3sqGVi1CvPgjXoIVQUlyD3LFG1alXZ+UwMqbnJy8uL87TTE4sEgoULF5p8li5dij/++ANjxoyBq6t2Y7mEhAT4+fmZBDWqWbMmAgICcPr0aZOyZ86cQY0aRUYckZGRyM7ORlpaGnd+165dKCwsRPPmzbkye/bs4YwfASAlJQV16tThrDsjIyOxc+dOk/ukpKQgMjISABAcHAx/f3+TMjk5OThw4ABXhsEoDpJyPU0mSWu1BFqEFqGHgNTkJwySJOdyqGYCVZqcXnbqJXlObgtBKsIkDU508EqQzbYKbC3I2cqFlGE5LVu2lJ3PxFCam/TGKhsCIW+88QZWrVql6ZrCwkIkJCRgwIABcHF5uoNhMBgwbtw4fPbZZ9i0aRP++ecfTJkyBadOncLgwYMBFElXnTp1wtChQ3Hw4EHs27cPI0eORJ8+fbith9dffx1ubm4YPHgwMjIysH79eixevNhElT969GgkJydjwYIFOHXqFKZPn47Dhw9j5MiRXFvGjBmDjz76CD/99BOOHz+O/v37IyAgADExMVb2GqM0IZxk9FYB6xnTX61amAoBWoIBiQkalk6CckZvWmwGlOC7X9paXW6JD78aAUwPHC2wVWlh7Nix+PPPPzF79mz8888/WLt2Lb788kuMGDGCKzNp0iT079+f+3vYsGH4999/MX78eJw6dQqff/45NmzYgLFjx9qkjboKBKmpqYruIUJ27NgBo9GIQYMGmZ0bM2YMJk2ahLFjxyIsLAw7d+5ESkoKnn/+ea5MYmIi6tati/bt26NLly74v//7P5MYA97e3vj1119x/vx5hIeH47333sPUqVNNYhW0aNGC+3LCwsKwadMmJCUloUGDp/uP48ePx6hRo/DWW2+hWbNmuH//PpKTkzU/L6P0oDQZCTPgKaFmYBcKGHpMBkqTnzDzHv+4EL7goLSyV/LAmBWaJNs2PYUBQLy91mRrpIg9nyU2IMVhM8KEAdvRrFkzbN68Gd9//z0aNGiADz/8EIsWLUK/fk/f8czMTJMthODgYGzbtg0pKSkICwvDggUL8PXXXyMqKsombbQoDoEw+BAhBJmZmTh8+DCmTJmCadMs29Mr7bA4BKUTOcM1LamE1a7Y9TD40qId4E/cwklJLC2vGt91NRMiP3mQVF1qhALh98NvM78dehnSaclUqUfdwmOWPIeauAVSOEIcgpISqdBeqO1Li7wMvLy8TLwMnJycUKdOHcycORMdO3a0pEoGo1SiJYOhGkMuGjnO0slLrYCiNT4BbU9ENaOJVkRMoFCr1dDLU6N67AkToUBMy2GNMKCHx4e9vUZKulbA190X80JnsVwGVmKRQLB69Wqdm8FglFyEq1ThilSrx4Hc5KB1JcgvQ/+vpi2akwYFQTT2gJrnEIO/XWCNdkAJNdoMJYSaBiFaJnstGiWleorDbXBWaBIm/tnJ5vdRg6+7b6mboIsbi2wInnvuOdy6dcvseHZ2Np577jmrG8VglGTEAuQk5XoqGhjSlbWaySPO2ErVgC+modBrouBHJBTek39euK1gqarcFugViU/OHkIq0yK/LD+xkpr7KKFUD0tnzBDDIoHgwoULKCgoMDuel5eHK1euWN0oBqM0oHUFa4nvt9Jqn660pVLXWoNYREL+fSwVAMQmK2EdWvtWTEiTMlq0pm+oAaaaOqT6hbqWShkj6oVarZVcucnHYnAwYoNeTWLYGU1bBj/99BP3/+3bt8Pb25v7u6CgADt37kTNmjV1axyDUdKh+9c0Cp1eVtxqLPnl1MZ67FfTidsWqmlbuRrSa4ef/UeyjB59kxC0V1VkQ7HthMnHYhATmaiqHZbaHtB7MBh8NAkE1OfeYDCYhVp0dXVFzZo1sWDBAt0ax2CUJvhpZ/Uy4pKzwrd1tDkpl0q+8aCayUprqOHL/21gtf3A8tq1RO8lbLM13xXN0pgQtFc2o6CUJ0dGZKLsdQyG3mjaMigsLERhYSGCgoJw/fp17u/CwkLk5eXh9OnT6Nq1q63aymCUSNQm3bF04A9J7edQe8JatgrE+oX2g1S/6R1/gI9Ym60JQU1zIcR45orWwxcE+DYXccZWiDO2snvEQUd6rxi2xyIbgvPnz6NSpUp6t4XBeCbQksSGPykqCRbCOtUIGI424POfVXjMFvdSqpv2YUZkItdXauw2pODXQxEKIUKBit5PymCRf1zt9ymlVRLeg//8jNKP6i2Dzz77DG+99RY8PDzw2WefyZZ99913rW4Yg1HaoJMP36YAMF0RU4TqbLEJkl9GWIfaLH+0HVq0E1StTSMxWqpWt+VKXwvCOAV86Gq9m+8RxHjmcvvuwgkyKdcTP95qwmkEKMIkT8D/tlp4QZf4ES3FytP/03sItxj4qNEoyAkNYhoSrRE3GSUX1ZEKg4ODcfjwYfj6+iI4OFi6QoMB//77r24NLE2wSIUMCp2A6GRq6eRI65G6Xo1goCVKHX8yssaH31GEASFa0iUrrZrF+kXpGr7NALVBAJ5uPdDgT1LRI9XEMbAkRoHcNY4QqRAAHjzORF5htm73V8LdyQdlXasW2/2sQfdIhefPnxf9P4PB0A7f+8Daeiy5Lx8tWxj8yedZXzXSCXJWaBJ+vNUEgOnELXUNXdULtQnAU+0Bv28TgvZyxol8IYGeo94MtF5rvD7kDEGLK9iRJTx4nIlfL8WgkOQX2z2dDG7oGJikWiioWbMmLl68aHb8nXfewbJly0Sv2bhxI6ZMmYILFy6gdu3amDdvHrp06WJVu+WwyIZg5syZePDggdnxhw8fYubMmVY3isF4FqB72LZcLQttEPTC0j1lWz+vtVhiU8EX6tRkSjx4JYgTBpJyPRGS2s/EI0QoDNB/+dqCiGpGM9sCMQFDiNLzUZsE4VaErT1WrCWvMLtYhQEAKCT5mjQShw4dQmZmJvdJSUkBAPTqJZ6+e//+/ejbty8GDx6Mo0ePIiYmBjExMThxwna/H4sEghkzZuD+ffOY0Q8ePMCMGTOsbhSDwdAXNcZzNKKhFrSsGB1ZEKBo0ZbQiVMswZMYtF5ank6ydNuILxzwtQC0LJ3wqbaAkhC0V3VMiBjPXNVZKPkw10frqVy5Mvz9/bnP1q1b8fzzz6N169ai5RcvXoxOnTph3LhxqFevHj788EM0adIES5cutVkbLcplQAgxSW5E+euvv1CxYkWrG8VgMGyH2LYBfxJUUg0r7VPT+rUaOJY0tAQE4gwKRfpuVmiSSZ/HeObix1vm/Uuvldpq0HMVL3w2+n6w9Mj6kJ+fjzVr1iA+Pl50LgWA1NRUxMfHmxyLiopCUlKSzdqlSSCoUKECDAYDDAYDXnjhBZMHKSgowP379zFs2DDdG8lgMGzL5GMxmAz93MtKgjZACF9w0XPimxWaJBtgSNj3cvYHenw/Yu1QCiJFIxsyYUAfkpKSkJ2djYEDB0qWycrKQpUqVUyOValSBVlZWTZrlyaBYNGiRSCEYNCgQZgxY4ZJ6GI3NzfUrFkTkZGRujeSwWDoi9TqnU46YhPiLJ6xm9RqtLgDCemJWJhpwHp1uRpPDJrWWgk5F0CldNFywoQ9Uy8/i6xcuRKdO3dGQECAvZtigiaBgIYrDg4ORosWLeDqylznGIySjFjqZrpHLRbrnk5IpX2lyHf9k5tklYioZpRV5dOVudq8BVS4YIGCSi4XL17Ejh078MMPP8iW8/f3x7Vr10yOXbt2Df7+/jZrm0VGha1bt+aEgUePHiEnJ8fkw2AwSi406BCFv3K1VdKhkoAlmQYPXgmSVNHT82pJCNrLfRdSQoaUYSg9JjRWFLZJ7hlpFkaGdSQkJMDPzw/R0dGy5SIjI7Fz506TYykpKTbVwlskEDx48AAjR46En58fPD09UaFCBZOPWmrWrMnZJPA/I0aMAAC0adPG7JzQRkHs+nXr1pmU2b17N5o0aQJ3d3fUqlULq1evNmvLsmXLULNmTXh4eKB58+Y4ePCgyflHjx5hxIgR8PX1Rbly5RAbG2smvTEYJR06qU8+FmPiQsf/v3AycnRXQnsi5rFgSYZCGjGRQr0StBBnbKV4X7nzlgahYjylsLAQCQkJGDBgAFxcTBX0/fv3x6RJk7i/R48ejeTkZCxYsACnTp3C9OnTcfjwYYwcOdJm7bNIIBg3bhx27dqF5cuXw93dHV9//TVmzJiBgIAAfPvtt6rrUeOXOXToUJMyH3/8sVk9CQkJJmVoVkagKIhSdHQ02rZti/T0dIwZMwZDhgzB9u3buTLr169HfHw8pk2bhiNHjiAsLAxRUVG4fv06V2bs2LHYsmULNm7ciN9//x1Xr15Fjx49tHQbg1EqKK3bBcXhDWGpMACYT9ZSQoGYFiAktZ+qOAVi9+XjaLkvSho7duyA0WjEoEGDzM4ZjUZkZmZyf7do0QJr167Fl19+ibCwMGzatAlJSUlo0MB276lFbodbtmzBt99+izZt2iAuLg6tWrVCrVq1UKNGDSQmJqJfP3VSZOXKlU3+njt3rplfZtmyZRX3THx8fCTLrFixAsHBwVxa5nr16uGPP/7AwoULERUVBQD49NNPMXToUMTFxXHXbNu2DatWrcLEiRNx9+5drFy5EmvXrkW7du0AFAkh9erVw59//okXX3xR1fMyGAzHRcwdMynXkzOwlJrI1U7ylggDFKnrqPU/n4SgvUCQdREL6T2FwgiNyOhouDv5wMngVuyRCt2dfDRd07FjR0hlC9i9e7fZsV69ekkGLrIFFgkEt2/fxnPPPQcA8PLywu3btwEA//d//4fhw4db1BApv8zExESsWbMG/v7+eOWVVzBlyhSULVvW5NoRI0ZgyJAheO655zBs2DDExcVxdaSmpqJDhw4m5aOiojBmzBjuvmlpaSaqGicnJ3To0AGpqakAgLS0NDx+/Niknrp16yIoKAipqamSAkFeXh7y8vK4v5l9BaMkIJfspzTDf2Y6efM9DuRsAaTgX2OJMKBGiJAyMtQj1LAw4yI/VLIjUda1KjoGJrFcBlZikUDw3HPP4fz58wgKCkLdunWxYcMGREREYMuWLSauiFoQ88t8/fXXUaNGDQQEBODYsWOYMGECTp8+bWKdOXPmTLRr1w5ly5bFr7/+infeeQf379/nMi5K+XLm5OTg4cOHuHPnDgoKCkTLnDp1iqvDzc0NPj4+ZmXkfELnzJnDIjcySiRqhYLSajtAV8cHrwTJBv0Rph+2RTvUYOuMhHyhw1FzGpR1rYqyKF0TdHFjkQ1BXFwc/vrrLwDAxIkTsWzZMnh4eGDs2LEYP368RQ0R88t86623EBUVhYYNG6Jfv3749ttvsXnzZpw7d44rM2XKFLRs2RKNGzfGhAkTMH78eHzyyScWtUFvJk2ahLt373KfS5cu2btJDIZq5Cb70ioIiKH3ZEsFCKEgoWTlr4SY0MKfxK1FTZ4GRsnGIoFg7Nix3Aq8Q4cOOHXqFNauXYvffvsNGRkZmuujfplDhgyRLde8eXMAwD///CNb5vLly5yqXsqX08vLC2XKlEGlSpXg7Ows6+/p7++P/Px8ZGdnS5YRw93dHV5eXiYfBqO0UNqFgoNXgmziZkdX/fxEQnxBwJJ7Tj4WI2nsSevTK7Qxi4NQerFIIBBSo0YN9OjRA97e3li5cqXm69X6ZaanpwMAqlaVVgulp6ejQoUKcHd3B6Dsy+nm5obw8HCTMoWFhdi5cydXJjw8HK6uriZlTp8+DaPRyCIzMko1JTnyoFbE3CdDUvspagesifJHgxLxP4DlK3qaHIl+hDAvAYYcuggE1iDll3nu3Dl8+OGHSEtLw4ULF/DTTz+hf//+eOmllxAaGgqgyNvh66+/xokTJ/DPP/9g+fLlmD17NkaNGsXVM2zYMPz7778YP348Tp06hc8//xwbNmzA2LFjuTLx8fH46quv8M033+DkyZMYPnw4cnNzOa8Db29vDB48GPHx8fjtt9+QlpaGuLg4REZGMg8DRqmHP0mWVmGAj5hQAEhPpnraEPAFARpkiIaSVktxuYUyLUHpwyKjQj2R8st0c3PDjh07sGjRIuTm5iIwMBCxsbH44IMPuDKurq5YtmwZxo4dC0IIatWqxbkQUoKDg7Ft2zaMHTsWixcvRvXq1fH1119zLocA0Lt3b9y4cQNTp05FVlYWGjVqhOTkZBNDw4ULF8LJyQmxsbHIy8tDVFQUPv/8cxv2DIPhODwLgoASSrkC+FgSiVBugtVybz58+wdO0yHhMeGoHgSM4sNApJwiLeCvv/5CkyZNUFBQoFeVpYqcnBx4e3ujDbrBxcDyQDAYjg71tOAndgJMffzFrO7F3AWlXBeFdQPg8kkIkcuaKKyTIqxbqg5hm+WEGtrmOGMrpJ71w9k35uLu3bu62kk9evQI58+fR3BwMDw8PHSr91lEbV9q0hAoReYTGt0xGAxGSYXvdjn5WAzAmwT5iEUGlNIMiAkP1K1ROEnzV+tUe6BWU8CvSxi4KMYzFzGRiSY2BlRoiINpeGOp56Dli84/UtEiRklAk0CgFGPA29sb/fv3t6pBDAaD4YjQqIDCSIBqVe1UqOALBbNCk1St+mn5jMhEE5sFJcFDaRtCCH02ek96fUlwNyQFV4HCO8V3Q6cKMDg7Vvpia9EkECQkJNiqHQwGg1GisMRiXxhqWM+EQRHVjCbbDGLuhlriKagxGsyITETdnbEaWmkbSMFVkBsdARRf6GLADaj8q2qhoKCgANOnT8eaNWuQlZWFgIAADBw4EB988IFJdF4hu3fvRnx8PDIyMhAYGIgPPvjAJICfntjdqJDBYDBKCqJGegKUIvlZm0Y4IWgvt01B9/2F9fEzG/LbI9w+UEvG/7YYqCbD9PkcYMug8A6KVxhA0f0K7wAqBYJ58+Zh+fLl+OabbxASEoLDhw8jLi4O3t7eXFwfITQ537Bhw5CYmIidO3diyJAhqFq1qolhvF4wgYDBYDBUwrcl4KNlgp98LAaTIW5kKOfCyF/9C4UCPkJhhG/jwN+q0Bp9UWi/QOtwBA1BSWD//v3o1q0bF2+nZs2a+P7773Hw4EHJa9Qk59MTu8chYDAYDEdEytVy8rEYbmIV0wSojQgoZjcgFahIrO6EoL3chyLWHjE7A37q5KRcT9VhianwwRdmDkZsULyOUZTOeOfOnThz5gyAIq+8P/74A507d5a8Rio5H028pzdMIGAwGAwJxKIXUvhCAX8y1TvJEBUMQlL7ccKIWqFDTuPAF2wowrrFhISMyETEeOZyWpGIg6+pasuzzsSJE9GnTx/UrVsXrq6uaNy4McaMGYN+/aQFMaXkfHrDtgwYDAZDB2ydcZAPNU6UW9WrSZ0MmG8F0C0NCt/bgGoj+HESDkZsQAXNT/DssWHDBiQmJmLt2rUICQlBeno6xowZg4CAAAwYMMDezQPANAQMBoOhC/wtAFumRKYoqfjVRkm0xMtBLGgSQ55x48ZxWoKGDRvizTffxNixYzFnzhzJa5SS8+kNEwgYDAZDBXLbBxQtGQX5QoPeSYf0Fki0bFMwxHnw4AGcnEynXGdnZxQWFkpeo5ScT2+YQMBgMBgKqM3lQLcM1KygrcmSWJxQYYVviMjQziuvvIJZs2Zh27ZtuHDhAjZv3oxPP/0U3bt358pMmjTJJLifmuR8esIEAgaDwbABWjMU6qkl0FPY+PFWE+7/1BCRbjMwAUE9S5YsQc+ePfHOO++gXr16eP/99/H222/jww8/5MpkZmbCaHyq3aHJ+VJSUhAWFoYFCxaYJefTE12TGzHkYcmNGIySDz/HgRj8mARa9+elEiDZCyXDxFmhSWhXmIMKL/xr1+RG9opUaNAQqdCe2CS5EYPBYDzr0O0DJcFACanJ1pGEAiVNw+RjMZgc/N9iao00BucAoPKvLJeBlTCBgMFgMHREKamQHFQQcISkQmrcFmeFJmHin9EAjhdPo2QwOAeoDiPMEIfZEDAYDIaO8G0B5AQDucmWWvVbk/NADC3eB2rsEPj2BYySDxMIGAwGQyciqhlVTZIR1YyKk7OjbBvIUVI8JRjqYAIBg8FgWAl/gj94JcjE+j4jMtGiuAB6aweAkjmBM7t361Hbh3YVCGrWrAmDwWD2GTFiBACgTZs2ZueGDRtmUofRaER0dDTKli0LPz8/jBs3Dk+ePDEps3v3bjRp0gTu7u6oVasWVq9ebdaWZcuWoWbNmvDw8EDz5s3NMlA9evQII0aMgK+vL8qVK4fY2FizCFIMBuPZgR+bQJiMSM3qXmly1st+gC+MFEcERb1wdS3yxHrw4IGdW1LyoX1I+1QKuxoVHjp0CAUFBdzfJ06cwMsvv4xevXpxx4YOHYqZM2dyf5ctW5b7f0FBAaKjo+Hv74/9+/cjMzMT/fv3h6urK2bPng1AXT7p9evXIz4+HitWrEDz5s2xaNEiREVF4fTp0/Dz8wMAjB07Ftu2bcPGjRvh7e2NkSNHokePHti3b59N+4jBYDgmSl4GwtwGanMLCMlQyFmgpf6EoL0IuaI+q6Ga9toql4GzszN8fHxw/fp1AEVjv8FgsMGdSi+EEDx48ADXr1+Hj48PnJ2dZcs7VByCMWPGYOvWrTh79iwMBgPatGmDRo0aYdGiRaLlf/nlF3Tt2hVXr17lMkKtWLECEyZMwI0bN+Dm5oYJEyZg27ZtOHHiqTTfp08fZGdnIzk5GQDQvHlzNGvWDEuXLgUAFBYWIjAwEKNGjcLEiRNx9+5dVK5cGWvXrkXPnj0BAKdOnUK9evWQmpqKF198UdXzsTgEDEbpQY3b4azQJE4oiDO2MjmnVjhQ63EgJhBkRCYiztiKOy78Wwk5ISOimhEJQXuRc6/AJnEIgKIJLSsrC9nZ2brW+6zh4+MDf39/RYHKYdwO8/PzsWbNGsTHx5s0OjExEWvWrIG/vz9eeeUVTJkyhdMSpKamomHDhibpIaOiojB8+HBkZGSgcePGkvmkx4wZw903LS0NkyZN4s47OTmhQ4cOXM7ptLQ0PH782KSeunXrIigoSFYgyMvLQ15eHvd3Tk6Ohb3DYDAcjeqxJxSFApqVEChanQuFAjVQN8aIakZ08z2i2dhQOKFr0VLIlT14JQiwsUmCwWBA1apV4efnh8ePH9v2ZqUUV1dXRc0AxWEEgqSkJGRnZ2PgwIHcsddffx01atRAQEAAjh07hgkTJuD06dP44YcfAEjniqbn5MrQfNJ37txBQUGBaJlTp05xdbi5ucHHx8esDL2PGHPmzMGMGTPUdwKDwShRqBEKpOISaNlC4NfBT3vMr+PglSCz7QVbhBa2hbGjEs7OzqonNYblOIxAsHLlSnTu3BkBAU8DS7z11lvc/xs2bIiqVauiffv2OHfuHJ5//nl7NFMTkyZNQnx8PPd3Tk4OAgMD7dgiBoNhD4T2BDT5URzUq+/5QoHcNgKNg0DvN9niVoO7V0hqP4eKoMiwDQ4hEFy8eBE7duzgVv5SNG/eHADwzz//4Pnnn4e/v7+ZNwC1/Pf39+f+lcsnTSVPsTL8OvLz85GdnW2iJeCXEcPd3R3u7u6yz8RgMJ4dhFkQE4L2ahYKgKJJWmz1LxQ8aFn+tZYy+ViMXbQDjOLDIeIQJCQkwM/PD9HR0bLl0tPTAQBVq1YFUJQr+vjx45wVKlCUK9rLywv169fnysjlk3Zzc0N4eLhJmcLCQuzcuZMrEx4eDldXV5Myp0+fhtFotFleagaDUTJQmxpZbAK3xKaAEuOZy2kDZoUmISMy0UwY4MNf6cvBn/T5GgkpYWAry3hYarC7l0FhYSGCg4PRt29fzJ07lzt+7tw5rF27Fl26dIGvry+OHTuGsWPHonr16vj9998BFLkdNmrUCAEBAfj444+RlZWFN998E0OGDDFxO2zQoAFGjBiBQYMGYdeuXXj33Xexbds2E7fDAQMG4IsvvkBERAQWLVqEDRs24NSpU5xtwfDhw/Hzzz9j9erV8PLywqhRowAA+/fvV/2szMuAwSidDD/7j6I6XW51bcnq3RardbotoSUfw9osD7zZ+LhNvAwYxYvdtwx27NgBo9GIQYMGmRx3c3PDjh07sGjRIuTm5iIwMBCxsbH44IMPuDLOzs7YunUrhg8fjsjISHh6emLAgAEmcQtoPumxY8di8eLFqF69ulk+6d69e+PGjRuYOnUqsrKy0KhRIyQnJ5sYGi5cuBBOTk6IjY1FXl4eoqKi8Pnnn9uwZxgMRmmBvzoXW8WrjTVga4Q2CkqEpPZDwYNHcITkRgzrsbuG4FmCaQgYjNKLGi0B8NR/XwgVCNQY7ylN2Em5nlwdUkKIGqhNAt82gV83ABQ8eISzb8xlGoJSABMIihEmEDAYpZfL/22g2hJfbkIXTr4UpUmdlpW7P20f39BQqi18jYWcYSITCEoPdt8yYDAYjNJA9dgTwFl1ZZNyPbmsiEJtAX/iV7uy17LdwJ/cI6oZTewG+OfF2swo3TCBgMFgMHTg8n8bIMbzL1V+/yareCuj/WkRBoQCBnV3FE72wjqF2wSM0gkTCBgMBsNK1OQ14KNH1kGtRoj8lb/wWuFkLzRyjPHMtTrAEcPxYQIBg8Fg6ERSrqdiICBrhQFLXRTV2BjQ+oXbBo7gAcGwPQ4RmIjBYDBKMjQ40eRjMYp78ZSEoL1m9gNSE29Iaj8k5XpaPDFTQ0VrDR4ZpRumIWAwGAwbQVXvUq6GccZWSAjaazbR82MW8M9pSYgEmOY1UCtM0PYynj2YQMBgMBg6w9cSyKnfI6oZzcIX0/P81Mn0b0smahpHgH9POaGCCQPPLkwgYDAYDBtBV9taVvV6QOMNiGkGirstjJIDsyFgMBgMG6I0Acudt3Qyj/HMtdgWgAkMzy5MIGAwGAwdqB57QnXmQ8B2qnt+NkMxuwG2JcCQggkEDAaDoSNahAI5Dl4JsthmQKleOZjA8OzCBAIGg8HQGSVtgS0m3YhqRs5IkcUNYFgCEwgYDAbDRsgJBWr26tXu51MB4+CVIJNrMiITNQkf/HoYzx7My4DBYDBsCBUKtIY3VouYLYJStESpegDtwsDBiA2ooOkKhqPCBAIGg8EoweghDEjVJQXfg6HuztcAzNV8L4bjwbYMGAwGoxjgbx/YSiXP9zDQgtZthZDUfpzAcTBig0X3ZDgeTEPAYDAYpQTqYSBMZyyH2q0CZl9Q+rGrhqBmzZowGAxmnxEjRpiUI4Sgc+fOMBgMSEpKMjkndv26detMyuzevRtNmjSBu7s7atWqhdWrV5u1ZdmyZahZsyY8PDzQvHlzHDx40OT8o0ePMGLECPj6+qJcuXKIjY3FtWvXdOkHBoPBsBaqxk/K9cTkYzGKgYmoVwKgfpJnwkDpxq4CwaFDh5CZmcl9UlJSAAC9evUyKbdo0SIYDAbJehISEkzqiYmJ4c6dP38e0dHRaNu2LdLT0zFmzBgMGTIE27dv58qsX78e8fHxmDZtGo4cOYKwsDBERUXh+vXrXJmxY8diy5Yt2LhxI37//XdcvXoVPXr00KknGAzGswDdNqBuiVqDGUnBn/yplkDJhoB6JFgqDLCsiKUPAyGE2LsRlDFjxmDr1q04e/YsJwCkp6eja9euOHz4MKpWrYrNmzebTPgGg8HsGJ8JEyZg27ZtOHHi6Y+uT58+yM7ORnJyMgCgefPmaNasGZYuXQoAKCwsRGBgIEaNGoWJEyfi7t27qFy5MtauXYuePXsCAE6dOoV69eohNTUVL774oqrny8nJgbe3N9qgG1wMrlq7h8FglGKoFwI/MyJd7SvBn5ytyY6oBXrPnHsFqPDCv7h79y68vLxsci9G8eAwRoX5+flYs2YNBg0axAkDDx48wOuvv45ly5bB399f8toRI0agUqVKiIiIwKpVq8CXcVJTU9GhQweT8lFRUUhNTeXum5aWZlLGyckJHTp04MqkpaXh8ePHJmXq1q2LoKAgrowYeXl5yMnJMfkwGAyGGFRTcPBKEDepx3jmKhoKyoUqtjTaoRwZkYkm99yqwV6B4dg4jECQlJSE7OxsDBw4kDs2duxYtGjRAt26dZO8bubMmdiwYQNSUlIQGxuLd955B0uWLOHOZ2VloUqVKibXVKlSBTk5OXj48CFu3ryJgoIC0TJZWVlcHW5ubvDx8ZEsI8acOXPg7e3NfQIDA5W6gcFgPMNQoWBWaBKScj0RktpPVCiYFZqEWaFJyIhMVL1FoBe0TZSZGdHFcl+G7XEYL4OVK1eic+fOCAgIAAD89NNP2LVrF44ePSp73ZQpU7j/N27cGLm5ufjkk0/w7rvv2rS9apg0aRLi4+O5v3NycphQwGAwVEG3CkJS+xVN/BJ79nwjwjhjK922CKS2G5jtQOnFITQEFy9exI4dOzBkyBDu2K5du3Du3Dn4+PjAxcUFLi5FsktsbCzatGkjWVfz5s1x+fJl5OXlAQD8/f3NvAGuXbsGLy8vlClTBpUqVYKzs7NoGbpN4e/vj/z8fGRnZ0uWEcPd3R1eXl4mHwaDwVBCaDcQktrPxJWQag/4ZUNS+0kKA7ZKWMRyJpQuHEIgSEhIgJ+fH6Kjn6qeJk6ciGPHjiE9PZ37AMDChQuRkJAgWVd6ejoqVKgAd3d3AEBkZCR27txpUiYlJQWRkZEAADc3N4SHh5uUKSwsxM6dO7ky4eHhcHV1NSlz+vRpGI1GrgyDwWDogZTnweRjMaJCAB+xiV9Po0KmHSjd2H3LoLCwEAkJCRgwYACnBQCKVuViq++goCAEBwcDALZs2YJr167hxRdfhIeHB1JSUjB79my8//77XPlhw4Zh6dKlGD9+PAYNGoRdu3Zhw4YN2LZtG1cmPj4eAwYMQNOmTREREYFFixYhNzcXcXFxAABvb28MHjwY8fHxqFixIry8vDBq1ChERkaq9jBgMBgMa6AqfLlVOTUiFAoBcpoDLQID3b5glE7sLhDs2LEDRqMRgwYN0nytq6srli1bhrFjx4IQglq1auHTTz/F0KFDuTLBwcHYtm0bxo4di8WLF6N69er4+uuvERUVxZXp3bs3bty4galTpyIrKwuNGjVCcnKyiaHhwoUL4eTkhNjYWOTl5SEqKgqff/65dQ/PYDAYKrCl+6AUB68EISMy0cT10dLQyIySgUPFISjtsDgEDAZDLfy4BFqEAS3l1ZSV0ghQbUHdnbE4+8ZcFoegFOAQNgQMBoPBEEdzOmIWXphhIUwgYDAYDAdFKqwxPwSyXDlbw7wMShdMIGAwGAwHRGqylxIGbCEUyG0XMEofTCBgMBiMUoItNQVaUiozSiZMIGAwGIwSgpoJX00ZGvo4IWgv5zkg505IPQ2oUGCrQEcM+8K8DIoR5mXAYDCKA+qhIERtDAFhvAHhFgE/THLBg0fMy6CUwDQEDAaDUcoQagloIiTAVPUvnOjpOaHgIMxwGGdsBYBpCkobdg9MxGAwGAzbMSs0ySwj4mQ8ncyFQoEwiRKXXMkzF5P/d4y6NkZUMyK86mWctV3zGcUI0xAwGAxGKYWu6vnJkChi8QoiqhkRZ2yFOGMrk/L0/0LNAYt5ULpgAgGDwWCUQvjbBsLsiVIcvBLEfShUCJASChilByYQMBgMRillee1aqoQBvi2A0C6ArymgtgN80jKrW95AhkPBBAIGg8EoxSi5IQrzGfDtA4SwLYLSDRMIGAwG4xlFLrlRQtBeAKZbBNQmgXkXlE6YQMBgMBilnOqxJ0Q1BXLaADHo9gMVFhilCyYQMBgMxjMOX0sQUc3IeRsA0nkLmJag9MEEAgaDwXhG0JLrQMlegNkTlD6YQMBgMBjPEGqFAikNAEtyVHphAgGDwWA8Y0gJBVQIOHgliNkJPIPYVSCoWbMmDAaD2WfEiBEm5Qgh6Ny5MwwGA5KSkkzOGY1GREdHo2zZsvDz88O4cePw5MkTkzK7d+9GkyZN4O7ujlq1amH16tVmbVm2bBlq1qwJDw8PNG/eHAcPHjQ5/+jRI4wYMQK+vr4oV64cYmNjce3aNV36gcFgMEoK1LCQBSgqfdhVIDh06BAyMzO5T0pKCgCgV69eJuUWLVoEg8Fgdn1BQQGio6ORn5+P/fv345tvvsHq1asxdepUrsz58+cRHR2Ntm3bIj09HWPGjMGQIUOwfft2rsz69esRHx+PadOm4ciRIwgLC0NUVBSuX7/OlRk7diy2bNmCjRs34vfff8fVq1fRo0cPvbuEwWAw7MrBK0GKBoNSSZAYJRuHSn88ZswYbN26FWfPnuUEgPT0dHTt2hWHDx9G1apVsXnzZsTExAAAfvnlF3Tt2hVXr15FlSpVAAArVqzAhAkTcOPGDbi5uWHChAnYtm0bTpx4qiLr06cPsrOzkZycDABo3rw5mjVrhqVLlwIACgsLERgYiFGjRmHixIm4e/cuKleujLVr16Jnz54AgFOnTqFevXpITU3Fiy++qOr5WPpjBoPhKIilSKZxCei/GZGJkl4GQJFAkHOvABVe+JelPy4FOIwNQX5+PtasWYNBgwZxwsCDBw/w+uuvY9myZfD39ze7JjU1FQ0bNuSEAQCIiopCTk4OMjIyuDIdOnQwuS4qKgqpqancfdPS0kzKODk5oUOHDlyZtLQ0PH782KRM3bp1ERQUxJURIy8vDzk5OSYfBoPBcASEdgRyQYoYzwYOIxAkJSUhOzsbAwcO5I6NHTsWLVq0QLdu3USvycrKMhEGAHB/Z2VlyZbJycnBw4cPcfPmTRQUFIiW4dfh5uYGHx8fyTJizJkzB97e3twnMDBQugMYDAajmOELBUJhIKKaESGp/bjohGKEpPbDVuZ1UGpwGIFg5cqV6Ny5MwICAgAAP/30E3bt2oVFixbZt2FWMGnSJNy9e5f7XLp0yd5NYjAYDBPkIhgCQIxnruz1MzOidW8Twz44hEBw8eJF7NixA0OGDOGO7dq1C+fOnYOPjw9cXFzg4uICAIiNjUWbNm0AAP7+/maW/vRvusUgVcbLywtlypRBpUqV4OzsLFqGX0d+fj6ys7Mly4jh7u4OLy8vkw+DwWA4GlJCATUuzIhMREZkoqy2gFHycQiBICEhAX5+foiOfippTpw4EceOHUN6ejr3AYCFCxciISEBABAZGYnjx4+beAOkpKTAy8sL9evX58rs3LnT5H4pKSmIjIwEALi5uSE8PNykTGFhIXbu3MmVCQ8Ph6urq0mZ06dPw2g0cmUYDAajNEGFgThjK4Sk9kNSridiPHOZZ0EpxsXeDSgsLERCQgIGDBjAaQGAolW52Oo7KCgIwcHBAICOHTuifv36ePPNN/Hxxx8jKysLH3zwAUaMGAF3d3cAwLBhw7B06VKMHz8egwYNwq5du7BhwwZs27aNqzM+Ph4DBgxA06ZNERERgUWLFiE3NxdxcXEAAG9vbwwePBjx8fGoWLEivLy8MGrUKERGRqr2MGAwGAxHhmoJ+N4H/K2DycdiMBnM1bA0Y3eBYMeOHTAajRg0aJDma52dnbF161YMHz4ckZGR8PT0xIABAzBz5kyuTHBwMLZt24axY8di8eLFqF69Or7++mtERUVxZXr37o0bN25g6tSpyMrKQqNGjZCcnGxiaLhw4UI4OTkhNjYWeXl5iIqKwueff27dwzMYDIaDUT32hKhLIqP041BxCEo7LA4Bg8EoCcgJBMLYBAUPHuHsG3NZHIJSgEPYEDAYDAbDcdCSFZFRemACAYPBYDAYDCYQMBgMBsOc6rEnTDQFTGtQ+rG7USGDwWAwHBehUBDyX+ncBoySDdMQMBgMBkMTLEBR6YQJBAwGg8FQTfXYE5h8LMbezWDYALZlwGAwGAxN8LcRnpDHOGvHtjD0g2kIGAwGg8FgMIGAwWAwGAwGEwgYDAaDwWCACQQMBoPBYDDABAIGg8FgMBhgAgGDwWAwGAwwt8NihSaWfILHAMsxyWAwSgFP8BjA0/GNUXJhAkExcu/ePQDAH/jZzi1hMBgMfbl37x68vb3t3QyGFRgIE+uKjcLCQly9ehXly5eHwWCwd3NUkZOTg8DAQFy6dKlE5jpn7bcvrP32pTjaTwjBvXv3EBAQACcntgtdkmEagmLEyckJ1atXt3czLMLLy6tEDogU1n77wtpvX2zdfqYZKB0wcY7BYDAYDAYTCBgMBoPBYDCBgKGAu7s7pk2bBnd3d3s3xSJY++0La799KentZxQvzKiQwWAwGAwG0xAwGAwGg8FgAgGDwWAwGAwwgYDBYDAYDAaYQMBgMBgMBgNMIGAwGAwGgwEmEDzzlHQnE9Z++1GS2w6w9jMYQphA8Azz+PFjXLt2jfu7pA0wT548wd27d+3dDIspye0vyW0HSn77S/pvl+GYMIHgGWXBggWoU6cOunTpgj59+uDIkSMlJuESAMyfPx9hYWHo0qULxo8fj3PnzgEoOQNjSW5/SW47UPLbX9J/uwzHhQUmegaZP38+li1bhk8++QRZWVn46aefcOzYMSQnJ6NRo0b2bp4iH3zwAb777jvMmTMHGRkZ2LFjB3JycrBv3z5UrFjR3s1TpCS3vyS3HSj57S/pv12Gg0MYzwwFBQXk8ePHpHPnzmTUqFEm50JDQ8mrr75Kzp49a6fWKVNYWEhycnJIZGQkmTt3Lnf80qVLJCgoiMTFxZG7d+/asYXylOT2l+S2E1Ly21/Sf7uMkgHbMniGcHJyQmFhIY4fP47GjRsDAB49egQAWLFiBVJTU/Hrr7/iyZMn9mymJAaDAU5OTkhPT0eTJk0AFO0FV69eHStWrMA333yDP/74w86tlKYkt78ktx0o+e0v6b9dRsmAbRmUYhISEpCamoqwsDC8+uqrCAwMBAD06tULN2/exG+//QYAKCwshJOTE9544w2cOXMGO3bscIjc79999x1OnDiB8PBwdOjQARUrVsTDhw/RtWtXVKtWDd9++y2Ap+1/+eWX4eLigl9++YU7xtr/7LW9NLS/pP92GSUUe6soGPpz69YtEh0dTQICAsjrr79OnnvuOVKzZk3yyy+/EEIIWbNmDalevTr5+eefCSGEPHz4kBBCyNmzZ4nBYCDHjx+3W9sJISQzM5O0a9eOVKtWjXTt2pVUq1aNNGrUiJw5c4YQQsiHH35IwsPDyf79+wkhhOTl5RFCCElJSSEuLi7k8uXLdms7ISW7/SW57YSU/PaX9N8uo2TDtgxKIYcPH8bZs2eRmpqKxMREnDt3DrVq1cL8+fNx8OBBdOrUCU2bNsXs2bMBAB4eHgAAZ2dnVKtWDRkZGfZsPvbs2YOsrCykp6cjKSkJ6enpePjwISZOnIhLly6he/fuKFeuHFasWAEAcHNzAwCULVsWVatW5azG7UVJbn9JbjtQ8ttf0n+7jJINEwhKEeR/uz8ZGRlwd3eHp6cnd27OnDkoLCzEsmXL4OPjg7feegsXLlzAuHHjUFBQAAA4e/YsypQpg5YtW9qt/YQQ7Nu3D/7+/ihXrhycnJxQqVIlLF++HCdPnsSqVasQEhKCnj174tChQ1iwYAF3/ZUrV+Dp6YkGDRqw9j9DbS8t7QdK7m+XUTpwsXcDGNaxb98+eHl5oUaNGtzeYWFhIXJzcwEUDTQGgwFNmzZF586dsWnTJvz666/o3Lkz5s+fj0GDBmHPnj1o0KABNm3ahDfeeAOVK1fmrrM1hw8fhr+/P/z8/LjVmru7O7KysuDh4YGCggI4Ozujbdu2aN++PbZv346ePXti4MCByM3Nxbhx47B7924EBQVh7dq1eOutt+Dl5cXaX8rbXhraX9J/u4xSSHHvUTD04cyZM6RZs2bEz8+PPPfcc6RZs2YkKSmJEELItWvXiIeHB/nmm28IIYQ8fvyYEEKI0WgkoaGh5KOPPiIFBQWEEEJ27txJ5s+fTwYMGEC2bt1abO0/efIkCQ8PJ1WqVCG1atUiHTt2JGlpaYQQQtLS0oizszNJSUkhhBDy6NEjQggh//zzD/H19SWJiYlcPRs2bCCTJk0iMTExZMuWLaz9pbztpaH9Jf23yyi9MIGgBPL48WMyePBg0rNnT3Lx4kVy5MgR8sorr5DQ0FDy008/EUIIGTp0KAkKCiIPHjwghBT5YRNCSK9evUh0dLTd2k4IIffu3SPdu3cn/fv3J2fOnCG7d+8mDRs2JO3atSOpqamEEEJeffVV0rBhQ+6aJ0+eEEIIadu2LYmLi7NLuykluf0lue2ElPz2l/TfLqN0wwSCEgQdGK5du0bKly9Pvv32W+7c6dOnSf/+/Un9+vUJIUUBV6pUqUJGjBjBWSIXFhaSmJgY8vbbbxd/48nT9v/zzz+kXLlyZNu2bdy51NRU0rVrV9K1a1dCCCF79+4lXl5eZNasWVyZ3Nxc0qJFCzJ16tTibfj/KMntL8ltJ6T0tL+k/nYZzwbMhqAEkJ2dDR8fH25f8P79+6hTpw4eP37MlXnhhRcwYMAA7NmzB7Nnz8Z//vOf/2/v3oOqKP8/gL+Xm0hggKJiQiiBYl5DSAJJVEQ9KqhhiTliOk6SmJqKjpplyiheRieL8lJaOkZmVlpq3lDyfgNvYKGgKAgUiqJx0fP+/cHv7JfjJUXlXPTzmnEm9uzueZ+ns2c/u/vss0hMTMTgwYNx5coVvPnmmzh//jz27duH5cuXGzT/zZs3YWdnp+YvKCiAh4eH2kMaADp06IC+fftiwYIFWLlyJYYMGYJZs2Zh9OjRKC4uhkajwfHjx3HhwgV07dpV8j8D2Z+G/Oa+7YpnjLErEnF/GRkZDA0NZUhICKOjo/n777+TJG/evElfX1+OGTNGb7jVq1evcvz48fTz8+Pff/9Nkly9ejV79+7Ntm3bsmnTpkxKSjJY/vT0dGo0Gvbt25fjxo3jqVOnSFae9q1bty7nzJmjHjmR5KVLlxgVFcXIyEhev36dJJmQkMCgoCA2b96c7u7uXLt2reR/yrM/DfnNfdsVzyYpCEzUkSNH6OrqyqFDh3Lp0qUMCAhg48aN+cMPP5Ak582bR2dnZ3WAFZ1Vq1axTZs26g+oTlZWlqGikyR37drFunXrcvDgwYyPj6eHhwf9/Py4fft2kuQHH3xANzc35uTk6C0XHx/Pdu3asbCwUJ2m1Wp58uRJyf8MZH8a8pv7tiueXVIQmBjdUU98fDyDg4PVjkUFBQWMiYmhs7Mz8/PzSZKenp6MioriuXPn1OV37txJRVGYmZlJkmqPZEMbO3YsIyIi1M9z+vRpRkZGsmnTpiTJ4uJiuri4cMyYMbx27Zq63Pr162lra6v+qEv+Zys7af75zX3bFc8uGZjIRJw9exYVFRXqtcY///wTiqKgdu3aAAAXFxfMmDEDzs7OmDRpEgBg8eLF2Lt3L+bOnYusrCyUl5dj06ZN6N27N1xdXQHAYGOyFxQU6D1PPjMzEzY2Nurn8fHxweTJk3Ht2jVMnz4dderUwfz587FkyRJ8+eWXuHz5Mkjit99+wxtvvIG6desaNL8uu1arNcv8VZlrdt3/A3PNr2Nu264QKiMWI4KV9xdrNBr6+/tz8+bN6vS5c+eyTZs26hjsuqOF1atX09LSUj1d+uWXX9LX15eNGzfmyy+/zHr16hn0nurz58/T39+fAwcO5JUrV0hW3lr13nvvUaPR8NKlS+q8FRUVjI+Pp4ODg3qdd+rUqfTx8aG3tzfbtGnD+vXrq9dba5pWq+U///zDLl26cOrUqeo0c8l/8eJFJiQk8LvvvlPvwy8tLTWL7CSZm5vLNWvWcO/evfznn39IVj5bwFzyX758WX3ksO7WRtJ8tl0h7iQFgRHoToVu3bqVjRo1Yv/+/Zmamqr3YJVffvmFr776KhcsWKC3XH5+Plu2bKnuwMjKW5k2b97MFStWGO5DkBwzZgytrKzYr18/9VSo7rMtW7aMrVq14o8//qi3zJEjR9iiRQt+9tlnJMny8nL+9ddf/Oabb5iYmGjQ/CT566+/UlEU1qpVS+/07dKlS9myZUuTzT9hwgTWrl2bYWFh9PLyYpMmTXjs2DGS5BdffGHybT9hwgTa29uzU6dOtLOzY//+/dUdqDnknzVrFi0sLBgcHKxO0+34N2zYYPLbrhD3IgWBEQ0dOpTjxo1T/9btVHUiIyMZFhbGAwcOqNNu3rzJjh07ctq0adRqtUa5zlhcXEwnJyfWq1ePKSkp6nTdqGo67du3Z1RUlHoURZJXrlyht7c3v/rqK5LGv046ffp0xsTEsEePHgwLC9N7zRTzX7lyheHh4QwMDFTb/tixY3zttdcYFxdn0tlJsqioiMOGDWNAQAB3797N0tJSfv/99+zSpQsnTpxo8vnLysoYFxfHDh06cPDgwWzdurWap+r3f8CAASa57QrxX+QilZHk5ubixIkT6Nu3L9LS0tClSxdoNBoEBgZiyZIlAICxY8fixo0bSEhIUJfTarUoKipCkyZNoCiKUa7z1qlTB6GhoWjatCkCAwNx6NAhDBs2DLGxsVi0aBHS09MBABMnTkRqaqr6eQCgrKwMt27dgpOTEwDjXSfVPRTG2toajo6OmDBhAn7//Xds2rRJnefDDz/E0aNHTSq/o6MjwsPDkZCQgKCgIABA27ZtUatWLURERKjzTZo0ySTb/u+//4aiKIiLi0PHjh1Rq1YtREZGwt7eHuXl5WofjilTpphkfhsbG3h6euKdd97BtGnT4O/vj8TERFy/fh1WVlYoLy8HAMTExODff/81qW1XiAcydkXyLNAdCVQ9giguLqatrS1/+OEHRkZGcvz48UxKSmJsbCytra3Vscy/++47enp6slWrVpw2bRqDgoLYsmVLvSMnQ+bXXSu9evUqra2t+fLLL7Nx48aMjo5mREQEmzVrRh8fH3WZGTNmsFmzZuzYsSM//fRTBgYG0t/fn7m5uUbJfyeNRsNVq1aRJKOioti6dWsWFRVxzZo1JMnZs2fT29vbaPnvlV03Pj9JFhYWslevXnR0dGS3bt04ZswYlpSUkCRnzpxp1OxV85eXl5OsHEeg6m2AutejoqIYExOjt+zMmTNN6rujuxxW9ch+w4YN9PX15bRp0+56bfXq1XzppZeMuu0KUR1SENSwjz76iD179tSbpvvR0Gg0dHFxYadOnfQGKYmKiqK/v786LTMzk++//z779OnD2NhYlpWVGTW/bue0YMECent78+DBg+qP5dGjR+nu7s7Y2FiSlUPG7t+/n1FRUQwJCeHIkSPVnYOx8pP/6wTWv39/btmyhSR58uRJ2traUlEUxsbGsry8nKWlpUbLf7/sOpcvX2aXLl2o0Wi4ceNGzps3j97e3oyIiCBZeYralNq+6kBC5P+2g1u3btHDw0N98JDu+11WVmZS+e/l2rVrnDx5Mlu0aMHTp0+TpF5GY267QlSXFAQ1JCMjg+Hh4XRxcaGiKOrY5bqd6e3bt7l48WI6OTkxOjpa77WzZ8/q3Y+sY8gfw//KX/WHfceOHXdNmzJlClu3bq0eqeroxmU3hAe1v05wcDBPnTrFX3/9lfXr16eLiwvt7OzUOyaq9h43VP6HzU7ePWjNxo0baWdnx7y8PL3pptD2VduyqpMnT9Ld3Z1nzpy57zpNIf+d7a/7zu/du5chISEcPHiw+tqd26oht10hHpVcxKohqampsLOzw7Jly/Dee+9h6tSp0Gq1sLKywq1bt2BhYYHQ0FB06NABW7ZsQVFREaysKh8tkZ6eDi8vL7CyYFPXaW1tbRL5qwoJCYGVlRUURVGzHj9+HI0aNYKNjY1e/qrjzxszvy5TTk4OysrKEBwcjLfeegtjx45FcnIy3N3d8cEHHwCA3nPlDZX/YbLreHh4APjfPfzHjh2Dm5sbbt++bXJtb2lpeVd+ADh16hQaNmwIb29vAMCmTZswe/ZsvXlMIf+d7a/7bnTo0AF9+vTB4cOHsXHjRiQlJWHEiBFqPxXAsNuuEI/MWJXI00p31FBcXMxDhw6RJA8dOkRPT0+1F3XVI43du3fzhRdeYM+ePblmzRqePHmSoaGhfPvtt+86xWoq+e93pEeS+/fv52uvvab33HlDqm7+gQMHcuzYsXq3HCYmJtLBwUG9N95QHrft09LS2LlzZ37yySc1H/YeHjX/oEGDGBcXx/z8fHbt2pXW1taMj483XPD/9yj5dcucOXOGr7/+OhVFoY2NDadMmWLA5EI8GVIQGEBJSQnnzJnD559/ntnZ2ST1TyEePnyYnTp1YosWLdiwYUMOGjSIN27cMFbcu9wrf9UfxnPnzjEpKYnDhw+nvb09R40aZVLXSu+VX9cx787LGmTltXdDnqL+Lw9q+6ysLK5du5YjRoygnZ0dR4wYYTLZyQfnLywspLu7Oz08PGhtbc3+/fvr9acxtgflJysHWBo6dCgVReHIkSPVgZOEMDdSENSAqkf2uv/OyMhgYGAg+/btqzevrmNVaWkpz58/z/Pnzxsu6H1UJz9ZeRQ1dOhQhoWF8ejRowbLeT/VzW9Kqpv96NGjjImJYa9evcyy7bOzs+nu7s6goCCzzE+SK1asYHBwMA8fPmyQjELUFCkInrB7dfzSTV+1ahXr1KnDHTt2kKx8qtudgxEZW3XyJycns6ioSB2FzRRUt/0LCgoMGe8/PUrbk1Qfl2ts1c1/9epV3rhxg2lpaYaMeV/V/e5cvnyZ5N13TwhhrqQgeEKq/phUVFRw3Lhxd91vnJuby6ioKHp5ebFbt25UFEW9Vmlsj5r/4MGDho56T+bc/s9q25t7flP47gjxJMldBo9J15tb1/t+4cKFqFu3Ln7++We9Huq6eQsLC5GZmQlnZ2fk5uaiffv2xoitl+lx8vv5+Rkjtl4mc23/Z73tzT2/sbddIZ44Y1Yj5q5q56Jt27bR09OTDRo04LJly+46/Zienk5fX196enpy3759ho56T5LfeMw5Oyn5hXgaSUHwmC5cuMDu3bvT2tqa48ePv++tajdu3ODOnTsNG+4hSH7jMefspOQX4mkjBcFjWLt2La2srKjRaJienm7sONUm+Y3HnLOTkl+Ip5FC3mPoMPFQzp07h/z8fAQEBBg7yiOR/MZjztkByS/E00gKAiGEEEJA7jIQQgghhBQEQgghhJCCQAghhBCQgkAIIYQQkIJACCGEEJCCQAghhBCQgkAIIYQQkIJACCGEEJCCQAghhBCQgkAIIYQQkIJACCGEEJCCQIinUnZ2NhRFQWpqao2sX1EU/PTTTzWybiGEcUhBIEQNiI6ORkREhNHe383NDXl5eWjZsiUAIDk5GYqi4OrVq0bLJIQwbVbGDiCEePIsLS3RsGFDY8cQQpgROUMghIHt2rUL/v7+qFWrFlxdXTFp0iTcunVLfb1Tp04YPXo0Jk6cCGdnZzRs2BAfffSR3joyMjIQFBQEW1tbtGjRAtu2bdM7jV/1kkF2djZCQkIAAE5OTlAUBdHR0QAADw8PLFy4UG/dbdu21Xu/v/76C8HBwep7bd269a7PlJOTgwEDBsDR0RHOzs4IDw9Hdnb24zaVEMKApCAQwoAuXbqEnj17ws/PD2lpaUhMTMTy5csxc+ZMvflWrlyJ5557DgcOHEBCQgJmzJih7ohv376NiIgI2NnZ4cCBA1iyZAmmTJly3/d0c3PDunXrAABnzpxBXl4eFi1a9FB5tVot+vXrBxsbGxw4cABffPEF4uLi9OapqKhAWFgYHBwckJKSgj179sDe3h7du3dHeXl5dZpHCGFEcslACAP6/PPP4ebmhsWLF0NRFDRv3hy5ubmIi4vDhx9+CAuLyhq9devWmD59OgDAy8sLixcvxvbt2xEaGoqtW7fi7NmzSE5OVi8LzJo1C6Ghofd8T0tLSzg7OwMA6tevD0dHx4fOu23bNmRkZGDLli1o1KgRACA+Ph49evRQ50lKSoJWq8WyZcugKAoA4Ouvv4ajoyOSk5PRrVu36jWSEMIopCAQwoDS09MREBCg7jgBIDAwECUlJbh48SLc3d0BVBYEVbm6uqKgoABA5VG+m5ubXh8Bf3//Gsvr5uamFgMAEBAQoDdPWloaMjMz4eDgoDe9tLQUZ8+erZFcQognTwoCIUyQtbW13t+KokCr1T7x97GwsABJvWkVFRXVWkdJSQl8fX2xevXqu15zcXF5rHxCCMORgkAIA/Lx8cG6detAUj1LsGfPHjg4OKBx48YPtY5mzZohJycH+fn5aNCgAQDg0KFD/7mMjY0NgMr+B1W5uLggLy9P/fvatWvIysrSy5uTk4O8vDy4uroCAPbv36+3jldeeQVJSUmoX78+6tSp81CfQQhheqRToRA1pLi4GKmpqXr/RowYgZycHMTGxiIjIwM///wzpk+fjnHjxqn9Bx4kNDQUnp6eGDJkCI4fP449e/Zg6tSpAKB3KaKqF198EYqiYOPGjSgsLERJSQkAoHPnzvj222+RkpKCEydOYMiQIbC0tFSX69q1K7y9vTFkyBCkpaUhJSXlrg6MgwYNQr169RAeHo6UlBRkZWUhOTkZo0ePxsWLFx+l6YQQRiAFgRA1JDk5Ge3atdP798knn+C3337DwYMH0aZNG7z77rsYNmyYukN/GJaWlvjpp59QUlICPz8/DB8+XN1J29ra3nOZF154AR9//DEmTZqEBg0aYNSoUQCAyZMn4/XXX0evXr2g0WgQEREBT09PdTkLCwusX78e//77L/z9/TF8+HDMmjVLb912dnbYvXs33N3d0a9fP/j4+GDYsGEoLS2VMwZCmBGFd15AFEKYnT179iAoKAiZmZl6O3QhhHhYUhAIYYbWr18Pe3t7eHl5ITMzE++//z6cnJzwxx9/GDuaEMJMSadCIczQ9evXERcXhwsXLqBevXro2rUr5s+fb+xYQggzJmcIhBBCCCGdCoUQQgghBYEQQgghIAWBEEIIISAFgRBCCCEgBYEQQgghIAWBEEIIISAFgRBCCCEgBYEQQgghAPwfxwhy8CIFrSIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "\n", + "pairing_dict = {\n", + " (np.nan,np.nan): 0,\n", + " (np.nan, 0): np.nan,\n", + " (np.nan, 2): np.nan,\n", + " (1, np.nan): 3,\n", + " (2, np.nan): 4,\n", + " (1, 0): 5,\n", + " (1, 2): 6, \n", + " (2, 0): 7,\n", + " (2, 2): 8\n", + "}\n", + "\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dict\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\", basemap=None)" + ] + }, + { + "cell_type": "markdown", + "id": "7bf7b2aa", + "metadata": {}, + "source": [ + "Instead of building a pairing dictionary, a user can pass the unique candidate and benchmark values to use and a pairing dictionary will be built for the user. In this case nodata values are not included and will automatically become the nodata value instead of an encoding." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f6567376", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAF/CAYAAAA2D9EJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeYAUxbnAf909994sLOsqAioIXqCgcsSbuAoeqHgbz0QlEjXG+6mIyYvPRIxGDWKiaOIZiWI0CEGNmggaQcELEA9E5WbZe87uen/M1tAz0zPTMzt7qP3LmyfbXV1dXdNT9dVX36EIIQQODg4ODg4O32vUnm6Ag4ODg4ODQ8/jCAQODg4ODg4OjkDg4ODg4ODg4AgEDg4ODg4ODjgCgYODg4ODgwOOQODg4ODg4OCAIxA4ODg4ODg44AgEDg4ODg4ODjgCgYODg4ODgwOOQOCQwn//+18URUFRFG677baebo5DETn//PMT3+0ll1ySsVw4HKZPnz6Jsq+99lr3NTJPLrzwQkpKSti8eXPScdn2bJ/zzz8/6ZpBgwallSkvL+fAAw/kzjvvJBKJpN0/HA7zu9/9jrFjx1JRUYHH42GnnXZi9OjR/OxnP+Mf//hHxrY3NDTw61//mkMPPZSamhrcbjcVFRWMHDmSqVOn8uqrr+bdH4cffnjWZ16wYEHGax955BEOOuggSktL6dOnDxMnTmTx4sUF3UdRFFTVenr5+uuvueCCC6irq8Pn8zF06FCmT59OKBRKK7thwwb8fj8//elP8+4Lh/xx9XQDHHoXf/nLXxL/fvzxx7nlllt6sDUOqdx6663MmDGDOXPmpE1o+fDMM89w77334vF40s794x//YPv27Z1oZffwwQcf8Oijj/KLX/yCmpoayzLnnXdexut/8IMfWB4/5ZRTKC0tRQjB2rVrWbJkCUuXLuWFF15g0aJFiT5rbGzkqKOO4t1338XtdjN27Fjq6upobW1l2bJl3HfffSxatIhJkyal3eO5557j/PPPp7m5mdLSUg4++GBqampoa2tj5cqVPPDAAzzwwANMnDgxq1CRCfkMqey8886W5a+88kruuece/H4/Rx99NKFQiEWLFvHPf/6TuXPnMnny5KTyxxxzDIMGDbKsa9myZXz44Ycccsghaec+/fRTxo4dy9atW9lnn3045JBDWLp0KbfddhuvvPIKr7zyCl6vN1F+p5124uKLL+YPf/gDV155JUOHDrXfCQ75IxwcOohEIqJv374CELW1tQIQb731Vk83y8HE9OnTBSDmzJmT97XnnXeeAMT+++8vAPHcc89ZljvppJOEpmlixIgRAhD/+te/OtXmruKEE04QbrdbbNq0Ke0cIPId3gYOHCgA8cUXXyQdf++990RFRYUAxL333ps4/rOf/UwAYuTIkeLrr79Oq+/tt98WM2bMSDv+wgsvCEVRhMvlEr/5zW9EKBRKK7Ny5Upx3nnniSFDhuT1DIcddpjlM2Rj0aJFAhDV1dXik08+SRxfvHix8Hg8orKyUmzfvt12fQcddJAAxB//+Me0c+PHjxeAuPzyyxPHotGoOOmkkwQgpk+fnnbN119/LVRVFaeddprtNjgUhiMQOCT4+9//LgAxfvx4cdtttwlAXHbZZT3dLAcTxRAIfvOb3whVVcWUKVPSymzfvl14vV5x9NFHi/r6+l4rEKxbt06oqiqOO+44y/PFFAiEEGLGjBkCEEcddVTiWF1dnQDEokWLbN+jpaUlIXT/5S9/yVl+6dKltusWojCB4NhjjxWA+N3vfpd27vLLLxeAuPPOO23V9cknnwhA+Hw+0djYmHTu7bffFoCoqalJE4I2btwo3G63qKqqEtFoNK3eo446SrjdbrFx40bbz+WQP44NgUOCxx57DIBzzjmHc845B4Cnn36aaDSa8Zr333+f448/nsrKSsrKyjj00ENZtGgRr732muU+rdzHfu2111i4cCFHHHEElZWVKIpCY2NjotyCBQuYNGkS/fr1w+v1sttuu3HVVVexbds2y3YIIXjyySc58sgjqaqqwufzMXz4cG699Vba29vTyss90LVr1/L0009z4IEHEggE2Hnnnbn22msT+8WfffYZZ555JjU1NQQCAY444gjef//9jP2RT7vNffHGG29w5JFHUlZWRnl5OZMmTeLjjz9OKj9o0CBmzJgBwAUXXJC0X5vPPv9OO+3EkUceyYsvvkhTU1PSub/+9a+Ew+HE92/F8uXLufbaaxk1alTSc/70pz9l/fr1aeXXrl2LoigcfvjhNDc3c8UVVzBgwIDEd/S73/0OwzBstx/g4YcfxjAMzjzzzLyuK5T9998fgK+++ipxbMuWLQD069fPdj2PPPIIW7duZdy4cVn7WDJq1Kg8W5ofwWAwYaswZcqUtPPy2AsvvGCrPjmGHH/88VRUVCSdk1sfxx9/fNK2AED//v055JBD2L59O//5z3/S6j3rrLOIRqM88sgjttrhUCA9LZE49A4aGxuFz+cTHo9HbNu2TQghxLhx4wQg/v73v1tes3jxYhEIBAQg9ttvP3HGGWeIAw88UKiqmlCnnnfeeUnXyFXqT37yE6EoijjwwAMT18kVxXXXXScA4fF4xPjx48WUKVPEkCFDBCB23333tFWCruvizDPPFIAoLS0Vhx9+uDjppJPEgAEDBCAOOugg0d7ennSNXEldeeWVwuVyiQkTJoiTTjopsXo799xzxSeffCL69u0rhg0bJk4//XSx7777CkD06dPHcqWSb7tlX1x11VVC0zRx8MEHi9NOO00MHTo0ocLdsGFDovwvfvGLhBp//Pjx4rzzzkt8Vq5cmfM7lvf7y1/+IubMmSMA8dBDDyWVOfTQQ0UgEBAtLS0ZNQSnn366cLlc4oADDhCTJ08WkydPFoMGDRKA2GmnncQ333yTVP6LL74QgBgzZowYNWqUqKysFCeffLI47rjjhN/vt3xPcjF69GgBpN1LQpE1BI8//rgAxL777ps4tttuuwlAXHrppcIwDFv3mDhxYtrWQ75ILZFVn8n3+qabbhJTp04Vl112mbjnnnvEl19+aVnXe++9JwDRr18/y/Otra0CEFVVVbbatvvuuwtAPP/882nnTjzxRAGI+++/3/Laq6++WgDinnvuSTv32WefCUAccsghttrhUBiOQOAghBDiT3/6kwDEiSeemDj2hz/8QQDi1FNPTSuv63pi4vrf//1fy7qyCQSAeOqpp9Lq/etf/yoAsc8++4g1a9YkjhuGIW655RYBiNNPPz3pmt/85jcCEIcffnjSBBoOh8VFF10kAHHdddclXSMHztLSUvHOO+8kjm/YsEH0799fKIoihg8fLq6//vrEYG8YhvjRj34kAHHLLbd0ut2yL1RVTdrPj8Vi4pRTThGAuPnmm5OuKcaWwV/+8hfR3Nws/H6/OOKIIxLnv/zyS6EoijjzzDOFECKjQPDqq69aCmVSrX7BBRcknZMCgRQct2zZkjj36aefJlTvmWwaUmlpaRGapom6urqMZYotEJxxxhkCEGeffXbi2O233564z7Bhw8T1118vnnvuOfHVV19lvMfOO+8sAPGf//wnr7aZsSMQpH7cbre47bbb0so///zzCbuSTFRWVgpANDc3Z23X4sWLE4JsJBJJOy9tV6yEBSGEuPvuuxMCshV9+/YVXq9XBIPBrO1wKBxHIHAQQuwYSJ555pnEsa1btwq32225HygNkYYMGSJ0XU+rTxoPZRIIJk2aZNkOuQL+4IMP0s4ZhiFGjhwpNE1LTCrRaFT07dtXlJSUWK7a29vbRW1traiqqkpqp3kllcrPf/5zAYjddtstbWBbsWKFAMRhhx3WqXab+8I8yUiWLl1qeZ9iCQRCCHHaaacJVVUTBnG//vWvBSD+8Y9/CCEyCwTZ2HnnnUV1dXXSMbNA8M9//jPtmlmzZqXtz2dD7kWbhZlUrCbF1E+qAJIqEBiGIdauXZvQ/CiKIt54441EeV3XxbXXXivcbnda3XvvvbeYNWtW2m/D5/MJQKxatSqtzQ0NDUlan0zan3vvvVfsueee4vrrr0+r4+abbxZ/+ctfxGeffSba29vF6tWrxf/+7/8mNDF33313Unmp+Rg/fnzGvpRCTCZtjGTq1KkCMtsdSW1ZJpuLP/7xjwntoRVyTHn33XeztsOhcBy3QwfWrVvHG2+8QWVlJccff3zieHV1NRMnTuT555/nmWee4cc//nHi3JtvvgnE3Zus/I1PP/30RBkrTjjhhLRjmzdvZsWKFQwZMoR99tkn7byiKIwfP57ly5ezbNky6uvreffdd9m6dSs//OEP6d+/f9o1fr+fUaNG8Y9//IM1a9aw5557Jp0/+uij067ZbbfdgLidgdvttjy3YcOGTrU7Vxuke5X5PsXmnHPO4a9//StPPPEE11xzDY8//jg1NTWW7Ull27Zt/P3vf+fDDz+ksbERXdcBiEajbNu2jYaGBvr06ZN0TZ8+ffjhD3+YVteZZ57J1KlTWbx4MYZhZPRfl8iYA1VVVTnbmc3tcNddd7U8Pnjw4LRjHo+Hu+++O8mVTlVV7rjjDq644grmzp3LG2+8wTvvvMO6dev46KOPmDp1KgsXLuRvf/tbzmcCaGtr49FHH007fv755zNs2LDE39OmTWPatGmWdaTGDhk6dCg33ngjo0ePpr6+nltvvZWLL74Yv9+fsz35EI1G+etf/wrAj370o6LWLZHvk7TdcCg+jkDgwOOPP44QgilTpqQZ+5xzzjk8//zzPPbYY0kCgZyoBgwYYFlnpsE22/m1a9cCsGbNGhRFyXr91q1bk65ZtGiRrWtSBQIrv2zpv53tXDgc7lS7zeyyyy5px8rKytLuU2yOOeYYqqurefzxx5kwYQIfffQRP/vZz3C5sg8LTz75JBdffDGtra0Zy7S0tKQJBAMHDrQsW1FRQWVlJY2NjWzfvp3q6uqs95eGkLKPslGIEZr04VcUhdLSUoYNG8ZJJ51EXV2dZfm6ujouv/xyLr/8cgBWrlzJnXfeycMPP8y8efN48sknOfvss4G4kP3NN99Yvou77LILQojE38cccwwLFy7Mu/1WHH300YwePZqlS5fy9ttvc/jhhwM73mcrw1tJW1sbkL2/X3rpJbZt28aQIUM4+OCDLcvkuleu+5SXlwMkGR87FBdHIHBIBCN67bXX0oK1SGv7N954gy+//DLjoJ4vPp8v7Zi0NK+trU1bRaci2yGv2WOPPRg/fnzWa6wmmmwrNzurOnMb8ml3IfcpNm63m9NOO41Zs2Zx4403AuS0fP/yyy8TniN33303kyZNYuedd06sOMeNG8eSJUuSJrZiI63XW1pauqT+O++8M2PQHTsMHz6chx56iO3bt/Pcc8/xj3/8IyEQjBgxgm+++Yb33nsv5/tabIYMGcLSpUuTtE5SMP/6668tr2lra6OxsZGqqqqsAoHZQykTu+66K++9917Ge8njmcYYKQhWVlZmvIdD53AEgu85y5YtY+XKlUA8itinn35qWU4IweOPP56YOHbaaScg2Q3LTKbj2ZAr5b59+9pe2clrhg0b1mMuSYW0u7dwzjnnMGvWLBYsWMDQoUM56KCDspafP38+kUiEq6++miuuuCLt/Oeff57x2nXr1lkeb25uprGxEb/fb2uwl1EJGxoacpbtSY488kiee+65JK3Qsccey/z583nqqacyqv27Chl9sqSkJHFszz33xOv1smXLFr755ps0rdi7774LwH777Zex3ubm5oRbYjaBYMSIETz//POJOlPJdS/Z/nzcPB3yw4lD8D1HSvZXX301Im5kmvaRPu6yLJBY3Tz33HOWq0G5n5gPu+yyC8OGDePjjz/mk08+sXXNgQceSEVFBa+//nqPTRCFtLtQZNjcWCxWlPrGjRvHiBEjqK6u5sILL8xZXg7KVtscb7zxBps2bcp47bZt23jllVfSjj/11FMAjB07Fk3TcrZh7733xuVysXr16pxlu5JcWhApXJsn2fPPP5/q6mrefPPNpN9TV7Nlyxb+/e9/A3DAAQckjvv9fo488kggHs46lblz5wIk2RZZlQmFQowfPz5hY2OFDOH8wgsvpG2Fbdq0iX//+99UVVVl1JysWrUKr9fL8OHDM97DoXM4AsH3GF3XefLJJwGyBng55JBD2HnnnVm5ciXLli0D4qufIUOGsHr1an7zm98klX/kkUcSg0++3HzzzRiGwSmnnMLy5cvTzm/bto0//vGPib+9Xi/XXnstLS0tnHzyyZYr1G+++SYpR0NXkG+7C0XuYxdzMly+fDlbt27luuuuy1lWGjs+9thjiT1fiPfxpZdemvP6q6++OilI0xdffJEwhLvssststbekpIT999+fDRs28M0339i6pisYN24cc+bMSeoHyYsvvsgDDzwAJAf8KS0tZc6cOSiKwgUXXMBvf/tby6Q+X3/9dUYt23333cewYcO44YYbko4vXryYefPmJQw8JWvXruWkk06ira2NE044IU2Yu+qqqwD41a9+xZo1axLHlyxZwuzZs6msrOSiiy7K2A9SsMllTHjQQQcxfvx4Nm/enPSuxWIxfvrTnxKNRrn88svTDHkhHiBs27ZtHHTQQZbbjQ5FomecGxx6A/PnzxeAGDp0aM6yV111lQDEFVdckThmDkw0YsQIceaZZ4qDDjpIKIoiLrvsMksXIun6ls2V7cYbb0z45x9wwAHi1FNPFVOmTBH777+/0DRNVFRUJJXXdT0RH8Dj8YiDDz5YnHHGGeLkk08We++9t1AURYwYMSLpmmwhXmXQHqu46kLEXdoGDhzY6Xbn6gur+3zzzTfC5/MJTdPEMcccIy688EJx0UUXWbqxpZLqdpgLK7fDcDgs9t57bwHxfBennHKKmDRpkggEAmLcuHGJYFbmfjUHJjrggAMSgYmOP/74xPtzzjnn2GqT5NZbbxWAeOyxxyzPY4qDkemTGuMhWxwCK2R+A5/PJ8aNGyfOOOMMceKJJ4phw4Yl7n/ppZdaXvvss8+K8vLyRCyMo446Spx55pniuOOOEyNGjBCqqgpAHHzwwWl5EjLFIZDvbW1trZg4caI466yzxPjx4xOujnvvvbdl3gchhLjiiisEIAKBgDjxxBPFscceK1wul9A0LWt8iK+++kqoqio8Ho9oaGjI2WeffPKJqK6uFhAP8nT66acnAjyNGzfOMq+DEDtim/zf//1fzns4FI4jEHyPkdH9Mk18Zt555x0B8Tjk5ljjy5cvF8cdd5woLy8XJSUlYvz48eKll14Sjz32mADSfKXtCARCCPH666+LU089VdTV1Qm32y2qq6vFfvvtJ6ZNmyZef/11y2uef/55MWnSJFFTUyPcbreoqakRo0aNEtdee61YtmxZUtmuEAjybXchAoEQQixcuFCMHz9elJaWJiYeO7ECiiEQCBH3l586daoYNGiQ8Hq9YrfddhPXXXedaGtrs+xXKRAcdthhorGxUfz0pz8VdXV1wuPxiD333FPceeedIhaL2WqTZN26dULTNDFx4kTL87Jfsn1ShcR8BYIVK1aIO+64Qxx99NFi9913F4FAQHi9XrHrrruKKVOmiPnz52e9ftu2beJ///d/xfjx40Xfvn2Fy+US5eXlYp999hE//vGPxcsvv2wZATGTQPDxxx+LqVOnigMOOED069dPuFwuUVFRIcaMGSNmzpyZFq0zlTlz5ohRo0aJQCAgKisrxTHHHCPefPPNrNfccccdAhAnnXRS1nJm1q1bJ84//3xRW1srPB6P2GOPPcTNN9+cNeDQkUce6eQy6AYUIbrQHNjhe8ull17K7Nmzeeqppzj99NN7ujkOPcjatWsZPHgwhx12WF45F3Jx0kkn8eKLL/LVV19RW1tbtHodehdff/01AwcOZMqUKTz99NM93ZzvNI4NgUPBNDQ0JHzwzTz99NP86U9/orKykuOOO677G+bwveCXv/wlhmFw55139nRTHLqQ3/72t6iqmhZ0yaH4OG6HDgXzySefMHbsWPbbb7+EdfHKlStZvXo1mqYxe/bsJBcnB4diss8++3Deeecxa9Ysrr322oQ7osN3hw0bNvDggw/yk5/8JC2Qk0PxcbYMHApm8+bN3Hbbbbz66qusX7+etrY2+vbty7hx47j66qsZO3ZsTzfRoRfQVVsGDg4OxcURCBwcHBwcHBwcGwIHBwcHBwcHRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgeH7z233noriqL0dDMcHBx6GEcgcHDoJh555BEURUn61NTUcMQRR/DSSy/1dPNysnr1an7+858zbtw4fD4fiqKwdu3anm6Wg4NDkXD1dAMcHL5v3HbbbQwePBghBJs2beKRRx5h4sSJvPDCCxx33HE93byMLFmyhN///vfstddeDB8+nOXLl/d0kxwcHIqIIxA4OHQzxx57LKNHj078fdFFF9G/f3+efPLJXi0QnHDCCTQ2NlJWVsadd97pCAQODt8xnC0DB4ceprKyEr/fj8uVLJ/feeedjBs3jurqavx+P6NGjWLu3Llp1yuKwrRp05g3bx777LMPXq+XvffemwULFqSV/c9//sOBBx6Iz+dj9913Z/bs2bbb2adPH8rKyvJ/QAcHh28FjobAwaGbaWpqYuvWrQgh2Lx5M/feey+tra2cc845SeXuueceTjjhBM4++2wikQhPPfUUp556Ki+++CKTJk1KKvuf//yHZ599lp/+9KeUlZXx+9//nlNOOYV169ZRXV0NwAcffMDRRx9Nv379uPXWW4nFYkyfPp3+/ft327M7ODj0XhyBwMGhm5kwYULS316vl4cffpgf/vCHScc/+eQT/H5/4u9p06ZxwAEHcNddd6UJBCtXruTjjz9m9913B+CII45gxIgRPPnkk0ybNg2AW265BSEE//73v9l1110BOOWUU9h3332L/owODg7fPhyBwMGhm7n//vsZOnQoAJs2beKxxx7jxz/+MWVlZZx88smJcmZhYPv27ei6ziGHHMKTTz6ZVueECRMSwgDAfvvtR3l5OZ9//jkAuq6zcOFCJk+enBAGAIYPH059fT3z588v+nM6ODh8u3AEAgeHbuaggw5KMio888wz2X///Zk2bRrHHXccHo8HgBdffJFf/epXLF++nHA4nChvFTPAPMlLqqqq2L59OwBbtmwhGAwyZMiQtHJ77rmnIxA4ODg4RoUODj2NqqocccQRbNiwgTVr1gDw73//mxNOOAGfz8cf/vAH5s+fz6JFizjrrLMQQqTVoWmaZd1WZR0cHByscDQEDg69gFgsBkBraysAf/vb3/D5fCxcuBCv15soN2fOnILq79evH36/PyFwmFm9enVBdTo4OHy3cDQEDg49TDQa5Z///Ccej4fhw4cD8RW/oijoup4ot3btWubNm1fQPTRNo76+nnnz5rFu3brE8ZUrV7Jw4cJOtd/BweG7gaMhcHDoZl566SVWrVoFwObNm3niiSdYs2YN119/PeXl5QBMmjSJu+66i2OOOYazzjqLzZs3c//997PHHnvw/vvvF3TfGTNmsGDBAg455BB++tOfEovFuPfee9l7771t1dnU1MS9994LwJtvvgnAfffdR2VlJZWVlQlvBgcHh28njkDg4NDN3HLLLYl/+3w+hg0bxqxZs7jkkksSx4888kgeeugh/u///o8rr7ySwYMHc8cdd7B27dqCBYL99tuPhQsXctVVV3HLLbewyy67MGPGDDZs2GCrzu3bt3PzzTcnHZs5cyYAAwcOdAQCB4dvOYpwrI4cHBwcHBy+9zg2BA4ODg4ODg6OQODg4ODg4ODgCAQODg4ODg4OOAKBg4ODg4ODA45A4ODg4ODg4IAjEDg4ODg4ODjgxCHoVgzDYP369ZSVlVkmqHFwcHD4tiGEoKWlhbq6OlTVWWN+m3EEgm5k/fr1DBgwoKeb4eDg4FB0vvrqK3bZZZeeboZDJ3AEgm6krKwMgB8wkeYLf0Cfh9+2LPfcJx9w0tB986r7uU8+SDuWbx2S5rm7Uz7lM5rn7s4r+81LOnfU+5Mpn/JZ0rGGCw/O+CzZ2mqnfXbqztRfmY5nq7N57u7E5vfNeN58bT7PUch3Kvs/9brUNmSrN/W9kGUzHc/3u7S630lD981YT8OFB6cde/36PyX+fdT7k9POW/VBKvKdtdu+QsnVP8V6t+22s7PPY34PMtWT7Zme++QDmlsNBh6wNjG+OXx76VH9zqBBg1AUJe1z2WWXAbBx40Z+9KMfUVtbS0lJCQcccAB/+9vfkupoaGjg7LPPpry8nMrKSi666KJExjjJ+++/zyGHHILP52PAgAH85je/SWvLM888w7Bhw/D5fOy7775p+eGFENxyyy3stNNO+P1+JkyYYJk5Lhtym8CFm5o57+JS3JafU/c8gFc2fJz0yVTWpbhpe2kvysu0tE/bS3tlvc78Md9DK/HS9tJevDP+hbQ6+5y6Lum6pksPQ/P4bN9HPt+pex5gq301c96l6dLDcj67VR+Vl2lpbXUp7qzt7XPqOmrmvJuxz+X39sqGjxN9YueZZRuzfZ+pz9nn1HWUl2lpx83ty3X/1O9P3v/UPQ9IHDt1zwMS98/27HbeIfm9vve/cyzPv/e/c9I+5vZpJd60j50+fmf8C7bfvWzvUq7rrd4d+f3k+05kGgNkP9qp4+jPTi/ouzJfn6vN8l2x+h2euucBlJeqSeObw7eXHhUI3nnnHTZs2JD4LFq0CIBTTz0VgHPPPZfVq1fz97//nQ8++ICTTz6Z0047jffeey9Rx9lnn81HH33EokWLePHFF3njjTe4+OKLE+ebm5s5+uijGThwIMuWLeO3v/0tt956Kw8++GCizOLFiznzzDO56KKLeO+995g8eTKTJ0/mww8/TJT5zW9+w+9//3seeOAB3n77bUpKSqivrycUCnVJ34xZPoX6uhGJvxeuX8HC9SuSyshjb42cm3RcXpd63Iptl4xj4foVjFk+hab5QxL1WV1rbo9k6fRZVM9ebOuZUqmYaE+gSq1/2yXj2HbJuEQdVu2CeHtT+ywVWU++58csn5L4d657yLbIj7xm4foVNM0fkigjn9N8rL5uBEunz7Ksr2n+kKR2pLY3W7usztn5Hs31y+9B1mV+71K/k4XrVzB6xtTEZ8zyKYmP7Jcxy6ekvXfyb3nfTN+Hne8613k776PVd1E9e3HW9yjXO5Yv5vrs/oaKgdWzO3y36FGBoF+/ftTW1iY+L774IrvvvjuHHXYYEJ+of/azn3HQQQex2267cdNNN1FZWcmyZcuAeOrWBQsW8Kc//YmDDz6YH/zgB9x777089dRTrF+/HoDHH3+cSCTCww8/zN57780ZZ5zB5Zdfzl133ZVoxz333MMxxxzDNddcw/Dhw/nlL3/JAQccwH333QfEtQN33303N910EyeeeCL77bcff/7zn1m/fn1B6Wit1KZygjBP8vKHnzr5pAoH5kFVDsTymlyDYPXsxYmB2EoIMA/aVm3uTmR/VM9enDZ5yQnBTpvMA7isx3ydnTpS+8rOoN80fwhN84ckJj9Zj7ndTfOHWH4P5jaZBYbUsuZBO1VYKAbmfpffQ+q7kUkYkO1znbgl6bz5eayQ9WXr44XrV2QUDDO1y4pcbcmEuV9S71OowJztXrIvcr2ruZ7HrkCRqe8K7S+H3kmvMQmNRCI89thjXHjhhQnV07hx43j66adpaGjAMAyeeuopQqEQhx9+OABLliyhsrKS0aNHJ+qZMGECqqry9ttvJ8oceuiheDyeRJn6+npWr17N9u3bE2UmTJiQ1J76+nqWLFkCwBdffMHGjRuTylRUVHDwwQcnylgRDodpbm5O+qQiJwPzhC4H8qXTZ1FfN4KKiWssB3dZ3upHneuHLicnKw0D7BAyKiauyViXWehomj+k6CuhVHINrFaDlnnlKAfSbZeMs1ztpK7M5TWyn8x9lopVfanlKiauSQgAmSZ9edzqPmZh0Vw2VUi0+l6zTYYL169I0rpkan++yHol2VaYsu9T33OpuZLCR6GTq92Jy45WLRN2hfBs2BFsio1dwXHM8ilpz9aZ/nLoffQao8J58+bR2NjI+eefnzj217/+ldNPP53q6mpcLheBQIDnnnuOPfbYA4jbGNTU1CTV43K56NOnDxs3bkyUGTx4cFKZ/v37J85VVVWxcePGxDFzGXMd5uusylhx++23M2PGjLTjfR5+m4UbPgasB+qKiWtgfccPdT6JSbmezg0UTfOHUDFxTceP2nrQku2pIPfKIXUwcJ24BWbHV3K5Bm45QHeHytMsFNTXdRycnj5wvzVyLqxPbl/iOLkHP/ncVtoGs+bGziBqnuzzJdMWktXKXSIn6zEnTgFWJLaR5Htg5ztNpb5uBNUshumm+rNMPm+NnJt03mrrIdu9svHWyLm2fj+d0TIUY3I093k2Ut+zTNj5fcnxJvGdZ7hGlusJdF0nGo32zM2/5bjdbjRNs1W21wgEDz30EMceeyx1dXWJYzfffDONjY28/PLL9O3bl3nz5nHaaafx73//m333Ldyytru44YYbuOqqqxJ/Nzc3M2DAgI4tg49tDXZ2ftByok/FrEavrxsRH3Dnxwf81HJ2kROlHPzkXnbib0bYmjhkezO1PV/ME5bV5JW6pZBrz7mQwX3p9Fkw3frcjnslCwh2J3w7e+SZrsunTvNzmwWk+jq6HTk5FusdyUWxVufdtcIv9J3Ihh3BqRDhsFCEEGzcuJHGxsZuud93lcrKSmpra3MafvYKgeDLL7/k5Zdf5tlnn00c++yzz7jvvvv48MMP2XvvvQEYMWIE//73v7n//vt54IEHqK2tZfPmzUl1xWIxGhoaqK2tBaC2tpZNmzYllZF/5ypjPi+P7bTTTkllRo4cmfG5vF4vXq/X8lwxhQE50WdTEUvpX5aR/7Y7eKWu6M2Dhlw5FDIQmp+xMwOyHKDq60bgmr+FhdPT60o16Mt0rjtJbWOqDUGydiPZyDRXvXaNHbvrme2qps3Cpl26U9XelffqTiNBM+b3INvz1deNgEu6r11SGKipqSEQCDieDHkihKC9vT0xT5rnLyt6hUAwZ84campqmDRpUuJYe3s7QFrkK03TMAwDgLFjx9LY2MiyZcsYNWoUAK+++iqGYXDwwQcnyvzP//wP0WgUt9sNwKJFi9hzzz2pqqpKlHnllVe48sorE/dZtGgRY8eOBWDw4MHU1tbyyiuvJASA5uZm3n77baZOnZr38/Z5+G1Q3BnP5zPgyEm9gh1bCk3zh/DW+vTJ3jzQVrCG0ZdMjat0bWBnoOrsykEOSqNnTO1UPZlUm5kmPnM/Fct4MtNEm+t7rZi4JiHc5Vrdm9tm/jvTFoHdtloJR7nUyYVgpYUxHzNrVeS7nekdK4ZBYWcm+bjAXBzBKp/fv90thlxsu2Qc9XX23vWl02cxms79Ru2g63pCGKiuru7Se32X8fv9AGzevJmampqs2wc9blRoGAZz5szhvPPOw+XaIZ8MGzaMPfbYg0suuYT//ve/fPbZZ8ycOZNFixYxefJkAIYPH84xxxzDT37yE/773//y5ptvMm3aNM4444zE1sNZZ52Fx+Phoosu4qOPPuLpp5/mnnvuSVLlX3HFFSxYsICZM2eyatUqbr31VpYuXcq0adOAuH/tlVdeya9+9auEC+S5555LXV1doi1djZVRVKaBQ7riyUFcYvZCyEY+xoFmY7Sl02elGbjla2hYXzfC9v6oXex6H+RDJgNGcx/X141IWNdnusaKVGEgl2CQ+h2nYuWZkqvtVhQqDFi5weazJSON2RauX2E5CdkxGLT7/Rf6ntjtm1y/h3yt9ismrum0pb+VkJWtH8Ysn5KwCelKrYy0GQgEAl12j+8Lsg9z2WH0uEDw8ssvs27dOi688MKk4263m/nz59OvXz+OP/74hKvfo48+ysSJExPlHn/8cYYNG8ZRRx3FxIkT+cEPfpAUY6CiooJ//vOffPHFF4waNYpf/OIX3HLLLUmxCsaNG8cTTzzBgw8+yIgRI5g7dy7z5s1jn332SZS59tpr+dnPfsbFF1/MgQceSGtrKwsWLMDn83W6D8wDdqYft7QszwdpN2BXEAB7q3yzEGB2PbOa/ApdRRRjoLEjCBRyH6sVeKZ6ZN/kc59825Q6GUkvA/kZPWNqog3ZPCUyYf5eO0uqe6udbYRcWwjF1Fp05r2zujZVAMj1eyjkWTorFKS6TOZy80xtY2ciJdrB2SboPHb7UBFCiC5ui0MHzc3NVFRUcDgn4jJtGaQaTVmt/O2ou81kmtiLaRBkNdhZ7XcXStP8IcSe75e1vanxBMDe/rosl6udSQaTGcraqceuGrjQ783czmyqfbMnhJ02Szq7jZPafvP9k71fspPPtoX5d5WPGj5X2WznrbZe8qUQG4Vi2zXk+h2b7xcTUV7jeZqamigvLy9aG0KhEF988QWDBw8uysLr+4zdvuxxDYFDOplWZGa1bq5VZ6bBu7PCgJV2IJVirSgrJq5J812X90/dqrCLXVU8xAe92PP98l7h57pvNjJtl+T63pLsQ2xMmGa7Aav4A1ZtsFox2t0SyiTkwI4Vrtz+SP2YkZqyXIF5zAZyqcdykc34NNfEK891NihUZ7a47AYtstuOTLYw3W2A+21g7dq1KIrC8uXLAXjttddQFOVb4yXRK4wKHZKRAXRkYKLe9MOzGtiLaVxkteLPeW565gh/kkwr3Gwr7/q6EbaNLnuSTKu5XFqFfLwWEnvGs4sXhU8apwEsHTmLeqyFmXpGpMWF2HFtbtfRQn8/Vr+9XEZ80rjQbtyDbPfuLMXY/pC/q0yC0LZLxlHxwOsF36cznH/++Tz66KNpx+vr61mwYEEPtCidcePGsWHDBioqKnq6KbZwNAS9AKtBUIYUliun+roRXR4JsBiMnjG1UzHPs0Wjy3YumzBQyMCYjxGaXY2InTrzVf1mU+3anazNdg75aHeK8T4unT4r8b5ks6Ex/0bMkTzNyGvN/Zy6Uu+sgWmx7BWKHfLXrNWQxr3FIFeukOrZiy0zrXYXxxxzTFI+nA0bNvDkk0/2WHtS8Xg8tvz/ewuOQNCDSAOvTKQOPt0VDKQzdHafOR+yTSCQbCCV7xaK1Wrb6v7FtrLOR9Us719MYbF69uKEUFDotlQucgWEkr+L1I9ETlLmSXDbJePS7BDMfVmoCl8aYtppe+p12eiqeAPyOYv5Xpq3IKx+b11tVJgNr9eblA+ntrY24U6uKAp/+tOfOOmkkwgEAgwZMoS///3vSdd/9NFHHHfccZSXl1NWVsYhhxzCZ5/F02gbhsFtt93GLrvsgtfrZeTIkWmah//+97/sv//++Hw+Ro8enZR4D9K3DB555BEqKytZuHAhw4cPp7S0NCHUSGKxGJdffjmVlZVUV1dz3XXXcd555yV5tM2dO5d9990Xv99PdXU1EyZMoK2trdP96QgEPcAflt8G7AhJ3NvprgQmmSaYVKt58yovk2bAzgSQaRLtyS0au+9DV7bRnLAo7p++Y3JJzXCYL5n2o833sJulU14rtVKZtDXyXcg3Q6W5PXYFLrvbFF31m7J6fwoRFs3ZJc2/SymwfVuYMWMGp512Gu+//z4TJ07k7LPPpqGhAYBvvvmGQw89FK/Xy6uvvsqyZcu48MILicViQDzp3cyZM7nzzjt5//33qa+v54QTTkikvW9tbeW4445jr732YtmyZdx6661cffXVOdvU3t7OnXfeyV/+8hfeeOMN1q1bl3TdHXfcweOPP86cOXN48803aW5uTkqit2HDBs4880wuvPBCVq5cyWuvvcbJJ59MMfwDHC+DbkR6GXy26iMuGZ4hxm2BPNtwPyf3uaxbcwRkopieBoVMPJ0JoNOVUegKDcGbr4dJIeSyN7BqQ76eB3bryOUDXzFxTU7vktS+scpNUUxLfqs8Ftnew1yeCp35bjt7fbZ3weq33VNeBueffz6PPfZY2rkbb7yRG2+8EUVRuOmmm/jlL38JQFtbG6Wlpbz00kscc8wx3HjjjTz11FOsXr06EbTOzM4778xll13GjTfemDh20EEHceCBB3L//ffz4IMPcuONN/L1118n2vDAAw8wdepU3nvvPUaOHMlrr73GEUccwfbt26msrOSRRx7hggsu4NNPP2X33XcH4A9/+AO33XZbIi9ObW0tV199dUJI0HWd3Xbbjf3335958+bx7rvvMmrUKNauXcvAgQOL0pcSR0PQA3h8Hh77+k4A7lxpb8/2iQ0zk/6eu+33/G3bfTzbcD/PNtwPxIUCqXWwUrWayZW/vVAVdE8LA9A5YagrA61YtSvXaiu1P+14mOSLne+6O20L5PNZaXly2YqkpuqWvwErGwQr8g3KJZFZMc3Enu9nuy672F2dd+Y7yCYMmI0NewNHHHEEy5cvT/pceumlifP77bdf4t8lJSWUl5cnwvguX76cQw45xFIYaG5uZv369YwfPz7p+Pjx41m5ciUAK1euZL/99kuaYGV022wEAoGEMADxcMKyTU1NTWzatImDDjoocV7TtEQkXoiH8D/qqKPYd999OfXUU/njH/+YyNzbWRwvgx4gZuiEo2387tOfEmqJ8OtlF+GrcKEkwjQnK20UVNrDbczdei8GMVRFQ0G1NFSRmoLUuAaQbDU9ekbmASNbkqDOsu2ScbhO3JJVtVmoUaJ8vmyeCrnalnqN1bFCVvrZokpmqq9p/hDGLN9xriuEFbvfcfXsxWmJm2Qyp9R25dPv2cLgpmb4NFu8W72/2y4ZB89D0/z0YD12I33a9cpILRv/XSXHbZBtkl5DqQGAUtsuy2XznJB2ErlcH5euL154YenxNHrGjlDn5sRXR+20V6fvUSglJSWJ7LdWpE72iqIkQt/LkL7djVWb8lHUa5rGokWLWLx4Mf/85z+59957+Z//+R/efvvttMy++eJoCHqA1vZmQkYTqAaeUg0hINKuIzpeVDBP9AoBTwUl/lLC4Sia4s4oDEjMWgNI3qOV/106fVbOVcSOAco+8l6ZfLiXTp+VMepioYOXeVVYaITETGFxM01U+ZJpAM8mXHSHjUk+/ZQrWE+hyP1/8761/K/ZZsSsHTALranISdPcd51NTZxquyLvbceews5vyOwZMHrG1B71KEqN8yFtSswJxL4L7Lfffvz73/+2DOdbXl5OXV0db775ZtLxN998k732igtAw4cP5/333ycUCiXOv/XWW51qU0VFBf379+edd95JHNN1nXfffTepnKIojB8/nhkzZvDee+/h8Xh47rnnOnVvcASCHsGjedH0AAgFVVXwV7lweTSiQYERMwsFCiWeCip9/fG4PGgujVA4ghDYkijNQoGZfCZNKRQUMuCb1cxW10urZbPRYL7agdRAPJlW+Xbq6QryVa12lSo2l0dLKuYJQX5PdoIAWQUEkuTqYzkpmv+bDbNQYKUVyvW8nQ0nXT17Ma4Tt+S8VrpWpr6HZoFHYqe+fCJM5oPsR9mHubQlvUEwCIfDbNy4MemzdetWW9dOmzaN5uZmzjjjDJYuXcqaNWv4y1/+wurVqwG45ppruOOOO3j66adZvXo1119/PcuXL+eKK64A4nlyFEXhJz/5CR9//DHz58/nzjvv7PQz/exnP+P222/n+eefZ/Xq1VxxxRVs3749sQh8++23+fWvf83SpUtZt24dzz77LFu2bGH48OGdvrezZdADBIM6/pJSNAV0tQUFA9Ut0KOCtq1RAtUeXG6NgLucSl8tmuJCURTcrniWqnA4gtfrAURWTUE2oUGu4u38qKW6OB/7AKm2TFUzp5LPys1s+Z5psFo6fVYieI4sZ6WyNdOd+d3NWGkHukojkG+8e/NkW19HIpumua9yCQhdhXkf28WWhJFhrnZJCtUWpGq+ZApxaZMg681kb2F+N6HDxZPkuB1mu4Ou2rKz44KbLTCY+fyY5VP45ydPUzW0qM20zYIFC9JS+u65556sWrUq57XV1dW8+uqrXHPNNRx22GFomsbIkSMTdgOXX345TU1N/OIXv2Dz5s3stdde/P3vf2fIkPjvqLS0lBdeeIFLL72U/fffn7322os77riDU045pVPPdN1117Fx40bOPfdcNE3j4osvpr6+PpGlsLy8nDfeeIO7776b5uZmBg4cyMyZMzn22GM7dV9wvAy6FellsGzZMkpLSxEYGGo7utYEGAgEsZBA6FBWVkF1aR0u1Z006QshiMV0YjEdr9eDqloLBEIIwuEoiqrgcbs4pTqeuTFbTHkrUi23Uwdbq2uzDcj5Rl40D7p2Jsuu9BIoNtm2C+RzmNXIvS0OhZ3vMd/3IxeyH6yEG6skT2ZSkyoVInzJ/XRZh3w3U4UM8/dlft5Mx+W5VMzfufm3a/XuWAlFqS6jhbxDua57ZvW7VA393Mll0EUYhsHw4cM57bTTEh4T+eJ4GXwLUFBRjRI0vRJQUVBw+zUqKqrwRCqItOnp1ygKLpeGy6URiUQxLOQ5IQThSBS1QxjAMHj0zbiaS66WzX7c+az0slmA54oCl3qvbGpHeU4GoTG7mmWjmJn5Oktn1P+pwYGkS1tnPEA626ZUzB4PVt+lWaNjdV1nSE2lnG3Vb5VhMZfwYN5HN7/XUqVvjm1gJVjIcqm/B7OtQGrgpFyTtd3z5tgR5u2ebHYXnblvTwYm+i7y5Zdf8sc//pFPPvmEDz74gKlTp/LFF19w1llndfm9HQ1BNyI1BB+8vxyPd4eFq0BgqG0YrhYCnjIqfTWImErz1hb8pT78Zb60rQEhBMFwEN0wKPGVoKpK3DdBCgOKgtvtQkGh7fO1bFnyX1yBAJf/+KW0dsmALnZ9uiW58gekIldScrKzst4v1Eccep92IJc3QqFxCXryWrvk635qXnkXQrZJPvUdzeX/n0moNWsnrLx4ZDtgh7YiXwFZYsdTJldcBDDloDAJCKn36ixOtsPi8tVXX3HGGWfw4YcfIoRgn3324f/+7/849NBDC67Tbl86AkE3kghMtOZjdBH3LtiBwBeA8kApqhI37TB0g3AwhqKA1+9G1VSEEAgM2qPNtIS3Yegqld5a/F4/igLhcFwz4HbH7Q4QEGnYTutna9FDES6Z/GfLtlkNFHYGj1ShINf2gx07gGz0RluAQuis8FMMulKAslKHF+L5YZdMAoFdYSDbNan3eWvkXMvfiVkYyCfEcTahoLMCAewQClLzjHQmgJcZRyDo/ThbBr0YTdNwdRiISHxeD+X+CtQOA0JFUVA1DX+JBz2qs31zE7FofAuhNbKd7cENxIwIpb5y3JqLUDhCKBxBMQsDAAq4+1RRtt8+qFX909oi1aLmFUQu1b8Z84CSbeWVOnhlcmlMdT3raey0o5C2Zksa0510lQFg6raAHTdXqzryyUGQazvETl2pE2TqFlS20MTSTTSfPpW/i9QVPOR2+82muZOYBYBUD4ZvQ9h0h+7FEQh6gHZ1O74SBZcW736f1015qR9VVZK2BpS45yElFX68Pg/tLSEM3SCmRwCo8NZQ5u2D2+3GpanEYnrCE0EihCDYGiIcihLoU5rWFnMGQau94EInrc5O6PkmI+oKervGobOTeXcIJJ0VCjoTP6Bi4pokISDX9k0mMtml5NP/2Wxb5D6/bGuqUJANq1gfb42cS/XsxWlbMKl9WSxhsOHCg4tSj0PP4wgEPYBOFNVjUF7mpyTgtRQGJIqioKgKJZUB/CVe2pqD6GEo9/aj1NsHhfh1brcLn9dDOBKNbyt0fNpbQrQ2tuELeHAHvJ1ue6YBPXXAK3QiTbWqtoMczO3cM58JqZDATN2JVQAoc3t7S9vN70Zn7ASykUlwkEJALmNTWS5VMDCr263qSO37TIa4uZ470/ZRPt+h+d5mASMbhRqZpgYvcvhu4AgEPUCFUoNPKcXjdlFW4ssoDJhRFAWXR8PjcyPaPLhjpQlhIHHeFd+KiERiICAajiEMQZ/aCjS3Bi57YSey2Q5kSkSTbV8/U125sDPB5zugSWv9TJHnupNirNDq60YkTVT5CGLbLhmXdaI0BybKF6s9bElXxynIhJ37WmkRlk6fldCkZeuvTJO+latupjwN2y4Zl3Qu1/c5ZvmUrFt82YSC1ERR+SD7o3r2Yvo8/Hbe1zv0ThyBoAcwdAgFo/GJG3IKAxJFUfD6PVTVVCJ0iISiCCOuCTCMuIWiy6UBgqaGFsLBCIEyH5pLi8fLznEf88CSbxS3TINKV6rcpbV3vnuhqa5y5iiJ5hC6kD1EbmfJxwLfajUmj5ld2cxk63uzVb9VxDx5fdP8IbbbmSniXq6Vdab25Rvt0EpLkCow5hs7wZyTQPZ/MVxbpQ1J6oS9dPosYs/3s23HY2WLkmosaCUUSONI83ufj+2Qw3cTRyDoAdrbQyiKQiQaJRSO5gxDLIRA1w10PR7W2OXW8Jd6ibRHaNrWQiQSo6mlnda2ELpuEA3GCLaG8Zf6UDU1HgTZiKKIdlvtK/ZqPpMrVz7Cgp1ANIViFg6kJbY5nHJvyOxmtvVIPWZlkAaZJ1UzMqyuJHViyLWHb7WHLfexZb/lWjnLcnZDWJvzVmQzPDR7DKQ+Yy4Bz7xFYHaTLbaAm2rnkNpWO6RuD8hnzvb7yHbOEQy+vzihi3sAv9+Lz+tGeFy0tYcICfD53JaaAiEEuiFoaQ0CUFbiQ9NUFFUhUBmgaUsz2zY3gacjrHEwQsDrprLagxrbjhpqhnAjih7mtOGPWbbHvFrMRxiID+SdGzjsGu51l0V09ezF1M8ekQjVKyc3RpIUdjYfsj2jnRDS+W4DgJxU0r+bhHDzfLobWiqyXWa/e6vAUpkmj/hKd0c4X7ldk3oPWNGROc/+u2Tur4qJaxKZ9+y6UpqzLFqp9HPZspj7LtOz5YNVtEPIL25ApjoKpStiFnQlm9dtoWlrS7fdr6JvGTW7Fj/FdU/iCAQ9gEvTEq6FJQEfrW0hCAl8Pg8AMd1AVeKJj4wOYSAUjmfkcrs0SgJeFEVB0xTKq8vQG1oItYeJBVvxBaIE1CiKiEHMBy4/lO6C4SrhmY13cWrtVent6VDv5vPDTwzkNsk08fVmK35IDuiSabLJlSuhu7Ca4EfPmBrPKdHBmOVDEgKOHdW3/J7HzJcrUKsJ3RqzkCnT5naG0TOmwiXW74xZMJHfU67JUaZvTiX1e146fVZWl1mzl04hQkEivTXZo4amvnuZAi+Zz2XKYfFd0wBsXreF84ddQTSUnrmwq3D73Dyy6p68hYL777+f3/72t2zcuJERI0Zw7733ctBBB2Us/8wzz3DzzTezdu1ahgwZwh133MHEiRM723xLnC2DHsCsCVBVldISH9FYjFAoQjgSpbGpjebWILohCIYi8ZwECng9bnze5FzamkulvMyF1r6eft7N9KnyoJTtiuizD6JyGEbZIAxfDcJVguLyWLYnNdBKLuQAI1XsdqyNu3sAKvaev5VLWG9BtslqtZ/N9Swf1bRVeOB89+PtkC0UsjlrYD7vW2f2/HNpHEbPmJo04XZmNW3XM0CWzZd8YjqYsbPF0tM0bW3pVmEAIBqK5q2RePrpp7nqqquYPn067777LiNGjKC+vp7Nmzdbll+8eDFnnnkmF110Ee+99x6TJ09m8uTJfPjhh8V4hDQcgaAXEBcKAkSiMRqb24npBuFIlGg0hs/rprTER2V5CRVl/vh2QYdAIYQg1roNY9sa+tVVUzpoFFQMRngqQHV3BDIw30fhiReSB8eF61fkHChSB4NUAaIr9lY7S1fs9abGh+/K+/UUxVQPFyIMZCPV9c9qksokSOSLVb4BM64Tt1BfNyLJeDJbimhz+1LZdsm4hL1DNq2GHU8Cc+bF1PwNndlOyGS46pAfd911Fz/5yU+44IIL2GuvvXjggQcIBAI8/PDDluXvuecejjnmGK655hqGDx/OL3/5Sw444ADuu+++LmmfIxD0ElRVoaw0EE9GhCDg8+L1uNA0lZLAjn8nhAFDJ7jla9q2rMdbswfuygGgeYDMngRCCIxgJPG3XP3YcT0yu6Dl4xZlprv2Iu0MzIUin8FsNNeT5HIdLAQ731Nq8Koxy6dkXd2by6YaBeYqL5Hv2tLps3CduCXt3ZMq+2J9Lwn7kRRk/fK8tNbPNeFmEi6qZy9OSnucq02Z6raqP9u2QiYyxVzIdn+H3EQiEZYtW8aECRMSx1RVZcKECSxZssTymiVLliSVB6ivr89YvrM4NgQ9jNnDQFUVKstLaG5px+1SE3YGKRcg9CiR7WvRI4KyXfZE9dgLOCRiOnqjtYor28RuTqlaXxc3uMsnDn5XxsyXyD18udLKtN9aDONEaWj31si5jL6k82mJ7RgWmklOwZsce18O5JmMRLMN6KNnTE3a6890rSyXHBhpBfXs0KDkehY7z2p+TmkLUV9HwujTKkmTfD/ryWwMaRezx4mZQlbauTIsLh2ZnxYjk22AFfkKA7k0Kt3xe/4usnXrVnRdp3//5BDy/fv3Z9WqVZbXbNy40bL8xo0bu6SNjoagB4mnKY7RFowgRPxvVVUoLwsQ1fVE1EHTBcRC7bR8/QmoXkrr9kCzKQwAiHAMpSMfgtV+ZS4tQVcPAp2Juicn5Uz2EOZ4BZncqvLZJ5XuYnZUqXYiHuazv2sesK0Ge7MrohWpfvZyhW4WbKyul+XM989ULl+s+ke2R1rxm+uVApl5Uky1LTB/33a3I8yfYkVVHD1jqqUgKt9Jc0yCQvf5JanvQzZhwPysEiujVIfvD45A0APIsMKhcJTm1iCtbUHaguGOc3FNQUnARyQS3SEUCEEs2EjL+k9xl9fg6TMARdVy3GkHenuIpg8+ItonLkC8NXJu2iCVK5BNIeSzmkhN8tJV+/Jmdznz9kK+E0CqXUFnyDeNdCbsTNYL169I0ySYyVd4yabyt4tVBMxs34vsL3O/ZQoiZd6ikJOuOcaA1aS3dPqsxHHzPQrRDuTzHlvFJbCiM9siuYQAiRQSrfqntxsZ9kb69u2Lpmls2rQp6fimTZuora21vKa2tjav8p3FEQh6gNb2EO3BCC2toUSwIQWICRDENQKqolIS8BMORwmHI0SbviG87SvKdhqMr6ofimL/qxO6wfZ3V9D86adcdOYTBbU5dVCzO2h1ZqLo6v1KaT/R2cnMLBRki9hYaFx6+bc56E827Gh6cmkRstGVMSGstDep7TTbTVjl0Mg2Acu2p0505klR/jtVE2NHGEi1ixizfIrt7122LZdQkEkYyNU+s+Bm9YxW5SC9r+R1jlCQHx6Ph1GjRvHKK68kjhmGwSuvvMLYsWMtrxk7dmxSeYBFixZlLN9ZHBuCHqA9GEHV4oGGFEWhNOAl4PeyPWKgAFXeuP2ApiqU+Fw0fPUpXjeU7TQUxeW1HepYoqgKpbvtiqvMD7xRlGewMykUOnHE0zHH/70jOEru6+TKt1Cfd7MfuRwQzdHuzFiplOvrRsR9/qfv+NuMDF6TbeVeXyfDQO+Ie5A6QZotxs3CiCy7dPos20GUrJ7ZDl0Zd0FuEWSjevZimG5v9Z36fKnvZbbJ0S7m98Vcf/zf+f8OKiauyRqXAOICgF3vgdS4CvK/5vc4V3Cs0RRvG+X7ylVXXcV5553H6NGjOeigg7j77rtpa2vjggsuAODcc89l55135vbbbwfgiiuu4LDDDmPmzJlMmjSJp556iqVLl/Lggw92SfscDUEPE/B7CAS8oEBjxOCb9hiGAITAiLYT2fY5Pr8f/067gcuTtzAAgAK+ulrK9x2aODRm+RTbasdCVgKdWd1b7WXbbUMxDPzMxnLmwda8cpIr7FQrebkqBOuVnLlu+TE/W2rYXqt+lBNBqqW/+b/5fGdWgksuiiEMSHe71K2bXFtXqVEEsz1rLi2VHU1Jrn108/XF1p5Ytc2srchHK2BFvhFKU/ti2yXjekX644q+Zbh97twFi4jb56aib1le15x++unceeed3HLLLYwcOZLly5ezYMGChOHgunXr2LBhQ6L8uHHjeOKJJ3jwwQcZMWIEc+fOZd68eeyzzz5FfRaJInIF0ncoGs3NzVRUVLBs2TJKS0sB8PvclJf6iQqF5dvCxAzByGoP7lAj4W1f4e1TS8wfoCW8jSp/LR7Nb1m3EAJdgKrEtx/SBQeBoRsE/7WcH50W93kt1PL+2Yb7Oeqtuzs1+FlZiGciNVxutjK9xfrZ3GZpYZ6qbUhdnaU+Zyahys4z5msJns/3AYVrCDJdZ7e95uvNthD5tkUKEebrChFiu+t9K6RtVp4NkOy9AfY0Mpmura8bQUxEeY3naWpqory8PO92ZiIUCvHFF18wePBgfD5fzvJO6OLM2O1LZ8ugB1GI+6GCgluFwWVuInoMvWkDkZbtBPoNJOw2aAquxxA6uhGDLHaErVGDiCHo69MsohEoKKqKWrJDoEgdLJ5tuB+Ak/tclvEeskyq25O5LjuDu7l8rslFqtFzqSt7ShjIluoXOlZxplj9CS0D8bwJdpLJ5OuauMNNz175fIW7QjUEua7LJZhYJXgqFtkMRDNtEeVDZ7ZZrDwsUpGaKfNv06o/Zb4OOxqZVORWjWTbJeOoeOB129d3JTW79vvWTNC9FWfLoAcwRARFgYDfS2nAi6KAqij0c+v0C67DFW2lfOc9CLsNGkOb0I24p0HMiGSsUxcQMQRbQzohPbPSR6gKc544L+24nOjlv1M/VmVeGXMlFRPX8PLBV/DM1nsT57Jln7NSo9tJDGNeFWZSEfdUoCBzbnizG58V+cQasPrb7kqxevZixiyfYjtzXW8wEFu4fkVBWqNCsWPoaXbJlO91vpE9uwq5PSXbaHatNbs0WqWALvS30jR/SJJBp2NT8N3C0RD0ALrWjOaqSiQpUhTQw+20bvgcl6+UQM1gUDWMcDNuzYemuHCrXrxaIGOdbTGDT5ujuNS466IViqKgBXzENjbw1Dd3oQNer7tDS5EdszBgdfzU6mlA9hVeZ/dXExbS63dkqpMkjKvWZ550uzsBUSEaC7NhoJnUVZ0d7BimSczZ/3qCRMjd9fbzauQql02jki0hVaZrZH9WsCO7Yj7YNYDM9VzShqSCNQUb9xYaxlgmxoLOGWE69E4cDUEPINQQYdFAe7gdwzAwgo0EN3+Kq6wfgZpdUbS4nFbm7Uu/wED6BnahwleDW9ux9xM1BDFjx8wfcKnsWeFhzwoPflcGw0MB+L0QjaGFo2iGQSgYxjCMojyXWRj46+bf87dtXRNvWwbHMRvmmUO/ZloBdcdk15l7ZJoIUg258hEK7K4EUwMTdTWphpWx5/sRe76fycsiO3aEhmxlcgmHxTKKNd/PCqk1MycMy1W+MxQ786ETuOi7RY8KBIMGDUqE5zV/LrvsMtauXWt5TlEUnnnmmUQd69atY9KkSQQCAWpqarjmmmuIxWJJ93nttdc44IAD8Hq97LHHHjzyyCNpbbn//vsZNGgQPp+Pgw8+mP/+979J50OhEJdddhnV1dWUlpZyyimnpAWMsItAEI60sXnDOrZ88iGtm9biqx5IoE8NqAqCjtW8oqGpGoqSHsY4rAtaokYikqFbVaj2aVR4NFQrTwQBka3baPx0FeFSCG/ZRsv7H6FEwrQG29ANI6NmwS4VE9fwbMP9zN16L9FoLBFjAXIPZPmuplOt+62y+qUOdL1BLW4mVZ2faTsk1esim8FhKnIlaGfroJh5AHLdJxWZydBOQCo7z97ZLYVc2wLZJsJ8tThmVb8kUx8ktANdGAsiE1ZZHZdOn9UrvAwcikOPCgTvvPMOGzZsSHwWLVoEwKmnnsqAAQOSzm3YsIEZM2ZQWlrKscceC4Cu60yaNIlIJMLixYt59NFHeeSRR7jlllsS9/jiiy+YNGkSRxxxBMuXL+fKK6/kxz/+MQsXLkyUsZOS8uc//zkvvPACzzzzDK+//jrr16/n5JNPLui5I60GoilCX9c2+vZ14eq7G5q/HEPRiRLJrPM3EdQFm4I6WcwFkhCxGI3vf0SooYFwazORxkZELEYo1ERzdBNt7a0IYVCo04nZ1kBVVbxeN9EUwSwf8nWby+Z9YDaeyjRY9xZhwRy7H7ILSnYmnnwELbkP3dUBoWS0QPm9ZQoylIlc5eJxLLI/dy7tQLEn3EK1L6mhmaFwdT8Uvm1nNmSULsvye3j9+j8V3B6H3kWvcju88sorefHFF1mzZo2lv/3+++/PAQccwEMPPQTASy+9xHHHHcf69esTfpwPPPAA1113HVu2bMHj8XDdddfxj3/8Iyl/9BlnnEFjYyMLFiwA4OCDD+bAAw9MpJQ0DIMBAwbws5/9jOuvv56mpib69evHE088wZQp8ZXDqlWrGD58OEuWLGHMmDG2nk+6Hb7z+l8Z1M+Dt2IQwldDKBLD6/XQwlaiBKmiDk3JbN4hhGBb2GBrWGe3UjcezUZsAiGINrUQa20j8sU34PUQLjGI9feCx0WVd2cwNLxet3VSpQLQDYNT+/4s8bdd1zZzuVyq3UzJjMznUrEK7GPlhlZMrNqSySjL7iSej9dBtn7KVHc+bcmHTHXbvWeu7ypXv9jZLsgliGU7n68LZzYWrl+RFnyoUFdLWZ8VduwxIFlzEnu+H0unz2L//7mA9x++scfdDh0yY7cve40NQSQS4bHHHuPCCy+0nIyWLVvG8uXLueiiixLHlixZwr777puUDaq+vp7m5mY++uijRJls6SPtpKRctmwZ0Wg0qcywYcPYdddds6ahDIfDNDc3J30Aako1fH33BX8tqBpCQExE0IkQI4JB7pV1lUdlcKkbl91vUFFwV5bj32UnPOVV6Bu2I3YuR/G6KfNW4/P4cbk1wuFoItdCZzELA7mQg/y2S8Yl1P3SuM5K3S0D2WSb5MxJY8yYB1fzfYopDMh6m+YPyah9MAsDso1yO6BY++jQ4RqWZ9Y/q37LRWe3G+xoCOwIbrm2VHJ9z/kEIrKi2NqFiolrbOUe6AyZPIBSf3syKNJbI+cm2uFoCL479Bovg3nz5tHY2Mj5559vef6hhx5i+PDhjBu3Y6DMlBpSnstWprm5mWAwyPbt23OmpNy4cSMej4fKysq0MtnSUN5+++3MmDEj7XgksDuGqyS+EgcUVdAkNhNV2gEFHZ1sMbfi9gVZQxJkxIhEEW4Fl8dDKdWImIHL5UdRFFyaBgLCkShejwcQBWsKrGIZSBcoqwFTDtLSmj6VpvlDeGu9eZU0jvqJO1b3ueLXy9S85vpS1eOpK9RCvRJSB1BplZ0Ncxul5iBb+GHzKjVXO+W5fGwPZJvy0UK8NXJuWj9bkakd0sc92/PkmxMiX+LtWpGx7+32R76BoezUYY4zYOVp0xnMAmPC48MkONsNkdyTbGhoprE12G33qyz1s1Of4mlEegO9RiB46KGHOPbYY6mrSw9aHwwGeeKJJ7j55pt7oGWFc8MNN3DVVVcl/m5ubmbAgAG0hQwMQ6B1qPoVBaIi0pHYSGAQQyBQLMILdQah6zS9/xHt675B0TTUTdtoWv0JfceMRvP74kKBKy5mhMIRfF4PhcgD2QIbQWGDZeqkXmi+AnN9YD05pQotVuFyMw3E8VVW9kk31+BaPXsxY06Mu5V1BfkIOtK9zQ6peSSybQGMWT4lo4uhrTwGXUQuoSmfwFCdeUetfiPSk2bh+rkJobEYQkHqfVLfTWnEWM+IpK2vfAXMrmRDQzMnTX+ESEzvtnt6XBrPzTj/OyUU9Iotgy+//JKXX36ZH//4x5bn586dS3t7O+eee27S8UypIeW5bGXKy8vx+/22UlLW1tYSiURobGzMWMYKr9dLeXl50gfAEPH9dYmmaii6hpz/Y0SgCyw7REwn2tKG4nGDAm2fr8UIh9G83kQZKRS4XRrhcATDyL8hmWIWAHmrru1QrAlCDoxyy0KqRPOJjpdpojer3+U2h9kYMlVda0ftXEikOemyWexVtpWQIbcdzHkKJDsmt+Tjo2dMLfjdkHkNOvtsxbCbKPYkLUlNxCS31OyQWs5s0JmJVI8GuQ0n25fvtlJX0dga7FZhACAS0/PSSLzxxhscf/zx1NXVoSgK8+bNy3mNHQ+5YtIrBII5c+ZQU1PDpEmTLM8/9NBDnHDCCfTrlxyWcuzYsXzwwQdJ3gCLFi2ivLycvfbaK1EmW/pIOykpR40ahdvtTiqzevVq1q1bV1AaSiHieQUkiqKiCldCCNCJ5l2nHVSPh36HjmWno4+gatAelCil1B17NK7y0qRyUihQNTXNhdMuzzbczzNbfm95LluIWOj+iIP5DHB2JptMdWSKdFeIOrYYk5adZ7HTLithQNZtdqkzxx3IlVSnkEndHDGyK8hHUClUKLG6hx2NjrlvpQCW+jFjZZhoJTDkEkx7wv3x20pbWxsjRozg/vszL5jM2PGQKzY9LhAYhsGcOXM477zzcLnSdzA+/fRT3njjDUvtwdFHH81ee+3Fj370I1asWMHChQu56aabuOyyy/B2rHovvfRSPv/8c6699lpWrVrFH/7wB/7617/y85//PFHPVVddxR//+EceffRRVq5cydSpU5NSUlZUVHDRRRdx1VVX8a9//Ytly5ZxwQUXMHbsWNseBkkoBhERwRDxyVZTVVSjw2pAAb1jy6DoKKBoKorHjbumGrG5seO4ReYDRUFTVYwCjQuFEElxCFLJJRQUSmeFiVRDxHzaJ8ua3bNSw8paDbKFDKqdfU6z33826utG5LyX1WRlpS2wIvX+ZluSnsRqQs9HCLPTfrv3SLKvsThvdlEdPWNqRiHOHFZb1imNCa2EAbsc9f5k22W/zxx77LH86le/4qSTTrJV/oEHHmDw4MHMnDmT4cOHM23aNKZMmcLvfve7LmtjjwsEL7/8MuvWrePCCy+0PP/www+zyy67cPTRR6ed0zSNF198EU3TGDt2LOeccw7nnnsut912W6LM4MGD+cc//sGiRYsYMWIEM2fO5E9/+hP19fWJMrlSUgL87ne/47jjjuOUU07h0EMPpba2lmeffbagZzYqttPm3UhQaUlM/C7cuIUfnyjFS6DI1gPpaJWlKG4XekNydjBh+p+qqui6QSQaJRqNYQiRV/CiXNsNmQadYhkvdXdsAau9WPNkWkzNR8XENYlcBfmSul2Rq5+KtQpM7Z9s8SMKxfwshX7/TfOHdItA4jpxS8KjRKaCtoP5+5OTuxTcUvNppJZLxSooUr7fSfmUz/Iq72CPXB5yXUGvikPwXScRh+DLf1BaVkIJVVQQFzqC4TAut4pLdSWMCYsRCyATwhAEF74D/SoJjB4aP4YgQgidKF4RQEVD1w2MjiiGQhh4PJ5E/oVsGIYgHI5w9s5XZS9IugFVZ/247fihQ+5VnHmyNVt42ylv95rUa/MdjDubttjc5nzS4HYGO89aiOFpamrkroih0BlSYwoUs33ZnjefMM35xLWQ711vSH+8ct0mzr79iaLd2y6P33AWw3ftn7tgCoqi8NxzzzF58uSMZYYOHcoFF1zADTfckDg2f/58Jk2aRHt7O36/P+O1qXzr4hB8n/CKEjTcce2AIjrcCFVUoaFahCnuChRFQauuwGhoIioixAhjoBOkmUaxgTa2A+ByaXg8bjweF5qmEY5EcsYpiG8X6LaEgWKQurLKpeaW+8x2Mt1JpO+1HDxTr7Vaqeej6SjUOCvfyILZVPld7dIHXWsfIp/NKjNkvs9VzK0sswCUapRXrPqz1WdXGMjnHXRsB76bOAJBD1DJTvRhF8roi3QtUFS1aEmGbKGAUlVKrLmZ5tgm2kQTuohrBgJKJS7Fg3nfQhoauhJCgXW10nbg9P5XFNQsK5c/q39LMoWZTTVksyKf9LeFYnfglBNFZyzsO3NeYnfvuxDBQQaSAntBiArtC7PBYjG8DgptU2rComIj9/6LUf/oGVOdSb6XkctDritwBIIeQFU0PIoPl+JObA+oilKwAV/B7SgvgVAMIxRGKAa6EsNHCRXU4Cdd9ZcuFCS3VwhBLKZzWs3ltttgd0DLpPbMtaqRBoKdEQrMpFpn50oaJM91tb+2fA6rCbDYaZ/NlvyFTra52lPoJJeax6DYRordvYo2G/yleg1IIbJQzO9krv4ptmDlkJtcHnJdgSMQ9BJUVekw2hNEozHCkWhRwgdnQynxoioqoi1MG9sJ0waKgvl/add0CAWaphIK7xAKZLtjeud8gVOzFJpjARQ6IOWKfWCe3HLdIzWUst2odXaRwkshAkQmt7uuSvNrrrurJotC6zWHgC5mG7trFS3fARmzQgrOqQahnanfoXtpbW1l+fLlLF++HIi7FS5fvpx169YB8UB25lg7djzkio0jEPQSFEVBj+m0tIZobG6ntS3U5RoD1euGilLUFoEbP268uS/qaKvb5ULTVMLhKIYhiHR4Ifi8Hv62LZ4kKtcAbKUdyCc+fz5Z6exY1OeKj29GBtCx8u9OHbjlMekjng3zqi810102gSXbcxUzL0Im7Kww80UGUSqkHbLvesJ9Ub6bnUW+N5D/92OVD0O2K1OsAztYvYO9If1xZakfj6uQYO6F43FpVJbaV90vXbqU/fffn/333x+Iu7vvv//+iey8GzZsSAgHYM9Drtg4XgbdiPQy+PrLTykvL0s6JwQ0tbQSDMVjE3g8LqrKA6hq18lsQgja3/wI/C58B+yBqmh5hUsWQhCNxYhEYri0HZkSYUf44kwW/XLAzjShp6ZbTS1X6N6pneuyqdjtDPR2fO7Nq75sbc1Wn7lcoX0hKYaHwcL1KxL12IlvYLfOzjyb+d0p1taJHc+OXGWs2iKfVXoj2PVOyfQuWb1v5gybqf/O1jfZBIaKB17vcS8DcHIZZMNuX/aaXAYO4Ha5CCkxvB43JX5v13oaCEFowyZ0DxANY2xrIRaL4a3pC6q9+8YTIrmIoOPxuCzba1bXmgecXKl4k3IXzC+eG1m2GPrmNmezWcjkPZCrfeZr5WCdbeKQ3hK52ttZ6utG5B13Xwp0b42cm3iuMcunxCeY6TsM+iA9O19XCwNmzAmXsn2vXUGuJE2Q7IpoftZ8hAGIv1uxS/ol3c8c/CtuW9GRA2R6/Lz5e8mVF0H23dLps2wZhPYEO/Up/9ZM0L0VZ8ugl6Ao4NJUAj4P5WV+3G6tYIFAugVmi3YY2drA1jffpuWbdQSbt7P1v8sIbdycsXym+8RiMcu2puYzKIYNgJlCQwybV4vFaks+1+Y7wdkJQNTV8eRlX5lD4r41cm5S5EUrl7rq2YtxnbglqX35PH+hXhfSsNCqX7pia8OKiolrcJ24JWe5ROIgU7/YtUtJFSAyPVs+fZ7t+ZdOn5UIcNRbIko6FBdHIOhFuN0uXC4VRGFBiWSEQRlPIOtukKriqarE06cKInp8a0JV8g6YrOsGbpe18FIsoSDflWKuVaDcm85lT5B63irEa6FkC1qUuk9rJ558If79cqWX6zupnr04ocmwa9RmFhw6E3nSrGmwQz79ZkW+NgvZ7m/nuQsVMPMVLO1M3PLZM/V3qoDmCAPfPRyBoAcRQqAbgpgRX9ErioLH7SYaixXsYdDGdraznlYaEmmUrfBUV1FzxCFUj96fQNhN5R7DKB8+FMXmdoF0MVTU7EGUnm24P0kwkPvL+YbdTTWGypU+2E58ATtCgdnlq1ghlVOjMlrd1yqAULb+6ozmItfAbrbnsEOxgg/J7zyfiaczyY3svo/Z+ro7Iz0WC/MWgMxxkU0oMLdj4foVPPfJB0Vtj0PP4QgEPYhOjLVtYd5viNAai0/cmqZiGIWnNtKJEVba0IlikN0FUNFU0FQIRaCxFcUiuVQqcjvC6DAodLutbQdSMQsG9XUjEnum+VjAZwvNmko+QkEuzAZq8jpz4qLUcnaQE6x0s7Qbr6CYkf7sroaz2XukajO2XTIuKTSvuY8KsQfojvDDUvNjturvDMXwMpDfs/RMMccf6GwbzdebDQvNpLrXZmLM8ilOcqPvEI5A0EMIBEFaaBVNbA3F2BzcMXkrSjzXQCFoxLMmaoobTck9wSseF2r/KvT2UOa2dggBum4QjemEw1HC4Sgetxs1z60Ns7Zg4foVaYNRpmiE2dwTO7sqyyQ4pA6GqXnhU8lnoLba35aak0xIQSoT3Z02GtJX5NWzF1tmiuxMoKHOYFcTlSn5TyGYsxIWKhjI9yvVNqNYBn351JUaEMksKLw1ci6v7DevKG1y6HkcgaCHMIgRoY3qQIidS8Gj7UhopChqQVsGCgou4UYRKhpuVHK7ESqqiqtfFaKpDWEY8dW/Ec9FEIvpRCJRwpEooVCESDQKQuB2u/D7PLgy2A5kQ7ojmic+80Rmx92vM6uv1AnGrpagM6tcKzLFtM+l+s/lmZGvUJDLILGQFWmxtlag88JeT4bjtYon0RmK4SEh338n6qCDFY5A0EOoaJRSTbkWYLdy2DmwI6iGjFpYCG7FSzn9KBVVYDOmgNqnDCMcJdQeIhSOEA5HiEZj6LrR4Vqo4fV68Hk9eDxuNE0t2ANCagik9TykRyeE5AHLHFTIzkBmjn2QWq9UheaTbjYX3aHWNlNMW4KKiWuy9qkdDwYrIcvqunwnI2k3UWjkRsmY5VOKNgHm+87k0urkQ6HCgNW2jpne6kbo0P04cQh6CAUVj+LHgw9BfOqWk6yqKAWHAFZxUUJVxz1sCgTlAYhG0cIxXCW+RDu6OuOijDUgjdbMq9FMk7lElk0NTWv27zaXTUXWNWb+FCD5fL6q7s7uF2eLbdAVSH9ySbaJJpeAYbVqzWSEmG8cAPP7YO7jfFfK8YyQc6mfnfm77GzK7WxYxb7o6ngIZqHYHL1x6ch0bVhn3Fbr60YQE1Hg84LrKBYbg400Rtq67X6VnhJq/ZXddr/uwIlU2I1ki1RoxhCCcCiC1+tBtWn13xmMSIz259/EfcAQvLvXdfn95LZBKoVOrOZIbeY6OjvRFiIMFBLxL7WOVEEn2zX5aidkvYVen4ti2A3Ajgk60ztRSChfs6bJ3Lf5CgP5lM8kpELx+t6ucJF6fxkDIVdfZ0K2PyaiPR6pcGOwkSn/vouIESva/XPhUV3MPeSqb4VQYLcvnS2DXogCaJpGLNY9L7fi0lD7lCO2NmVMa1xMUuMTmJHqS6ucALlCAqcKA5kCAdnxo7eLOVKc2TAtHxV1qordjqudfAapTi9meuPOUKwgSakTbur7kEouVX42I9Su0gyYJ2pzKmSz1qMYLoT5CgPyXZXPbTZgtEt3b5PlojHS1q3CAEDEiOWlkbj99ts58MADKSsro6amhsmTJ7N69eqc1z3zzDMMGzYMn8/Hvvvuy/z58zvT7Kw4AkEvRFEUNE1F7zDy6/r7gdqvAmNrExhGl9/PChldrnr24qyrbPMEnAnzYGe+Jtu/C22z2do6NWhLZ/at89lnl/fLl64Y1Iu59WHO8Gd1zvyxc99iRiG0g/k7sYpGaMeNNlsyK7vPYxaWUn8b2cjUxt4mDHxbeP3117nssst46623WLRoEdFolKOPPpq2tsxCxeLFiznzzDO56KKLeO+995g8eTKTJ0/mww8/7JI2OlsG3YjdLQOIu/qFQhF8Po+tvXzz11jI3n/0qy2E3/qYwHFjUf2evK8vhExbB5nIpurNpcbNZC1vtUIzr+DsDH6pe/Jm1TTkv4Iz15OPOtjuQF2svBDZ6jdT6L1S22kn6VS2e+Xz3Ln6vZg2B9nabuf7NwsGuew5cj2/LJ/Pd9YbtgxWNX3DuUsyax67ij+PvYxhFTsXdO2WLVuoqanh9ddf59BDD7Usc/rpp9PW1saLL76YODZmzBhGjhzJAw88YPtezpbBdwGFvDQEUSOKIQpb4SseF4ahI2KFGTN2B6mDXez5fol/Zxqc5WCZaYBL1TQUokGQMd5Hz5iaVJ/dqHnmCSFVpWx35V9fN6Ko7m097ZbWNH9I3irsbNEcU20IclGoEFcI5rants1OO+R7liosp2pO8tnOKXY0RId0mpqaAOjTp0/GMkuWLGHChAlJx+rr61myZEmXtMkRCHoxiqLkJRC4VTeqkv9XKnQDEdVR/F4QAqF3z7aBjF5o/qTS1ROTWZAodP9b2j0snT6Lt0bOzTgxWz2LeW/ZTCGBbbLFIcinH+XkUmjfm5+l0D7N5qWQ696pfZaqGbD7bNlU9/K9sfv92LmfzBbZGdsCK0EA7G8VFGJP0Dx39/wa6YBhGFx55ZWMHz+effbZJ2O5jRs30r9//6Rj/fv3Z+PGjV3SLkcg6KXEAxTZj0cgy+e7XWCEI2x7exktX32J3jdA86rVNH+8im6xLrTALBRkU5fKc9kG2nxcuwr1Fzev4uUgmqkeq7bYuWc+K/9Mg34hNgadMUDM1Rd2SP1u7X6fqUJIIVkP7ZTPpJUoNJR2avKoYqzS8zWgzXc7aeH6FU6kwgK47LLL+PDDD3nqqad6uilJFCwQfPbZZ9x0002ceeaZbN4cT5v70ksv8dFHHxWtcd93VEXBKDCEsV1aP1tLy6ef0fb114TbW4i2thFpbO7Se+ZCCgW5hIFc5Lv3nu9edzFU9LmMIyF5Uu0pVX6+95V90xmvg0IyD267ZFzeq/dM9Zgn8VzPn20fP9fxTJiFAjuGhkBe9gKpyHwO+XLS0H3zvub7zLRp03jxxRf517/+xS677JK1bG1tLZs2bUo6tmnTJmpra7ukbQUJBK+//jr77rsvb7/9Ns8++yytra0ArFixgunTpxe1gd9nFFVJ5BHoKkoGDaDPvvsRKO2Dq64K7879qNx7GHajHHYV2VwTzXTWjc48aOY7geRrfGVFtslr2yXjEhNq0/whXR7MJhtycsxlX5Bq9V8swzvzxJwrQ2Uq+bRB1m+uJ58kWfkIDvlgN5BUIfczb1EU8n452Q7tIYRg2rRpPPfcc7z66qsMHjw45zVjx47llVdeSTq2aNEixo4d2yVtLEgguP766/nVr37FokWL8Hh2WKQfeeSRvPXWW0Vr3PcdNU8bAjukChiq3wfCDYpCqNaNsWs5rqrynpYHEELw1Ma7eWrj3Yljmaz2i7Vqzmd11NWW+hB/Thni+a2RcwtaMVsxZvmUgrQbqcZr5n632vfubP+YV8jynvkYahZyf6tkTXZiS8i25mqbWbCyg7kPMtkWmDMjSqQgaXeCl7EJ8kHez9EQ2OOyyy7jscce44knnqCsrIyNGzeyceNGgsFgosy5557LDTfckPj7iiuuYMGCBcycOZNVq1Zx6623snTpUqZNm9YlbSxIIPjggw846aST0o7X1NSwdevWTjfKIY60B+isSCCFgKgRoS3WluSJYERjRNvbcQ0dSFVpHSWePvS4NEC8zTHd4IzaK4HkbQI7lthdtVKD3JNNPgOrHdW62Ye9WMFsCl25m33/zQZwUpgqdPsl072yBRTKRL4eCnYwG1pmendGz5hqK/dCNqHGHNsiUz2p561ygdi13ZB9nO/70BOZNbNR6SnBo3ZvJH6P6qLSU2K7/KxZs2hqauLwww9np512SnyefvrpRJl169axYcOGxN/jxo3jiSee4MEHH2TEiBHMnTuXefPmZTVE7AwF9WBlZSUbNmxIU3m899577LxzYT6Z3yeEEIjENC86Pmpa7oG4QKDEUyFrhU3SQgjCRpjt4QaaIo0YwmBw2e74VT8ARlsIz5dbCAwbhMtTPB/iQpHai1hMx6Wp/G3bfZxSPa0oRmDFIlfExHyomLgG1tuboDPlroeuj40P2f3lq1lM/ey46+PoGeOopvC2ZOvHntw2gezGgdWzFyfyJRQqtMnv19zX2YSCVPLJl9AZwTL2fD8YKe8XLbieYlHrr2TuIVf16lwGdrS9r732WtqxU089lVNPPTWPlhVOQQLBGWecwXXXXcczzzwTt4Q3DN58802uvvpqzj333GK38TtHOBoE1QOKAAxAAd1LXGGTPPFrqoJuGKiqSqG5hraHG/im7WsEghpfDR5txzZPNBxF36kPalmg0McpGPkDMYy4BsMQBkKA6Pjb43VjWERONA9yj3x5B+cPvC7p/P0fT+eyvWbk3Z7OqKLj+/3pSZqKjYw38Nb61BXgCpienEsh04SQLWZDpj6IrwhzP1fs+X5FsevI1Ie56pYBg7oyWZGdJE35BrfKlgNC/p0paZR8J1KfN5cw0JmAUXbehe6m1l/5rcgr0JspaMvg17/+NcOGDWPAgAG0tray1157ceihhzJu3DhuuummYrfxO0ckohOJRhDoO4QCJT45isT/DAQGqqZ0TIqFbxwYwkAgUFEp85SDEOhGDEMYRCIRxKD+KJ7uVbcJIYhEooRCESLRWEd2RwVVVVAUaA+2s2nTFjZt3sp9H93MfR+mv1ezP7mNaDTKQ5//Oum43+/nifV38dTG3/H0prt5evM9addmGywzrQBzqYEL8eE2q3/tbmOY3dNgx/6v2bhNtikfsq1+7RpQWmWpLIQxy6cUrnHBWuhpmj+kaKruzoamNpMaWjgbZrdEc9l8kzP1tsncoXfQqdDF69at48MPP6S1tZX999+fIUN6175Sb0OGLl77xWpUTaGkTMXlUuJzveGJG/chQI2AEhcChFAItSn4fb6CQhILIdgc3MS6ti/xqB72KB9CMNqEaA7ij3gIr9+Gu6ICzecmsMtOKO6uFwyEEIQjUVRFwd1xPxmEKRQOs23bdkoCfgIlATRVRVF2aEdkH4RjUTwuV1ogplhMJ6breD3utP7KN1SyGXOWwFzhccG+UFBodsBMK9TOZEEEayGikBDOnZlw5ARZDC8Oq/qKqcGxs4Vhdb9MmQfzraenMLelN4QudshOt4Qu3nXXXZk4cSKnnXaaIwzkgaZoBHwltLcaGHqHPKZ0hAxWY6DE4gKBIkAx4pqETuBz+Sl1lVLprcKjehDBMO1vrySyYStGOERk00aCX31NrL29k0+WGyEgpse3BtxuVyKYUjx3Q5itWxuo7lNFZWUFXo8Hl8uFpqmoqtqxbRKf5L0ud5rNBYCmqXEDypheNA+N7tq3LmYgmnzrymSwmc8kJOsoxJddIuMIFDNJUsXENZaZL4uRfKoQTUGqRqAQoz7I/30phnZEGjL2FsHEobjYXg5eddVVtiu96667CmrM9wVFAbdLwzD8tLW1U1rmQlEMwIhrC1LmOUWL77NrBRgWKopCmbuMIRV7oqCgiygYBq5AAE2ouCoqMISOEYmg+f1FeT4r5OSs6wbRaAyfd8cKXghBMBhiW8N2+vWtxuvNntAp1zmvx0M4HEEBXC6Xpe2FjHMgBESi8a2LkoAPTVM5pTrZpccsDIxZPoUKiudbX1+XvLLOJ+hStrKFtLMYQk993QiWrp8F0wvTEqS2YeH6FQm3y2zJnvIR2vLpm0yak1TXxGykC2iFaXFSn3/0jKm2jTc7a1ORqnlyhILvJra3DI444oikv999911isRh77rknAJ988gmapjFq1CheffXV4rf0O0BqtkMhBO3BEKhRAgEPGO54Qa3DL1XpmLBCApcSwOXSOt2GSCzI1u1f49tm4PmyCd9eA1D79wUhUL3FyXIYf6MEhmFgCJEwGhSGAAW8HjeqqnaUFbS1B9m+vZGafn3xWKj6C8EQgnA4gktz4XJplkKBEIJwOEokGqUk4EfV1IQsZt5eeLbhftvbDYWq7Duj6s+k5h+zfEoiAZTdydJcX6GDfqHbIFb3l8hnWTp9Vtb02HbbZ7V1kE3YgNxGelJwAZPxp4WmI9v2QGqExFTBrzu9LOxu3ThbBr0fu31ZkA3BXXfdxWuvvcajjz5KVVUVANu3b+eCCy7gkEMO4Re/+EXhLf8Ok57+OD5Rtra34XZ58Ho6PA+0EHFDw/h1kYhA0X143O5O3V8IQailleC771PasAUqqvGMHQ2B4moG4rYAEUBBVRRULb4toKbkWxBC0NrWTlNTM/36VeNxF0cYSGpHKILLpXUIBUrSuWAoQiymU1riSwgo2ZBCQTZPg0L30ItpS9B5C3I6PenKvijGs0DyJFpIRkCrOqE4dhuQ3QPALIAU0q/5pNHO1LZielykvl+OQND76VIbgpkzZ3L77bcnhAGAqqoqfvWrXzFz5sxCqvwe0hGLQIsSKFUIR0PouvQm2CGjCRHfYig0rfGOegTRliDBZZ/iXrsdRYnh84agSFqBtPsZAp/Pg8frxu1y4dK0JBsAIQQtrW00N7dQ0wXCAHRsH3g9cUPDWIdLoxDEYjqtbUEMw6C0xG9LGLBD9ezFtmP3F8NC3SrBkznccaHU143o9Cq0WMmUpD2CeUIzR0ws5D6jZ0xNpKu2k5go9bw5eJBVdkErLwB5PFtAokwU+pyFkskbI9V+wEmR/N2jIJPy5uZmtmzZknZ8y5YttLS0dLpR33WkWyFaBDBQFQWfX6U9GKS0xI9Ch0ggBLEYRMMgDAMKnbsNgf71FkJLVwMRQkcOQTVa8TVHQev8NoQZOeGqqmoZ71BGTWxqbiEYDNGvb3XCuLArUNW4UBAOR9ENnVhMxzAMvF4PnjzvK7cOsq0qZaAhuSrLtKrMlD0P7G8fmMP5mo81ndg7DHxT984L0VoUK1yzJPX7SJ/cVmS0f0i6bvaIjm2C3C6Ddt01u4p8tQPZtgjMx/OxYegOhL4ejO3dd0O1CkWr6777dQMFCQQnnXQSF1xwATNnzuSggw4C4O233+aaa67h5JNPLmoDv5MosY5tgQ4LQsON2xMlFtNpD4bw+uPGd4auouHG63IRiUQRQiStsCFubGgIg5gRQxc6mqbi03woKEQbm0AXRBsa0T/bgOE1CI3dhS2uMiraXZRGW4v6WFIYiMV0vBaaByEEkWiUhoZGNE2lpl81mqZ1mTAQv2c893hMjxFqixAI+CgtCXRsXRRWpx2VvByECxnoC/ES6OkIftmQfZVvG2UwpGIZcqbeP81YNI8sibKM1AxYtbG3fSeFbh3I7ZDUd15qpyoeeL1YTSwYoa9HbDkaiHTjXT3Q75+2hYJZs2Yxa9Ys1q5dC8Dee+/NLbfcwrHHHpvxmmeeeYabb76ZtWvXMmTIEO644w4mTpxYjMZbUpCu9IEHHuDYY4/lrLPOYuDAgQwcOJCzzjqLY445hj/84Q+26xk0aFBiT9n8ueyyHQZcS5Ys4cgjj6SkpITy8nIOPfTQpGQQDQ0NnH322ZSXl1NZWclFF12UyL4oef/99znkkEPw+XwMGDCA3/zmN2lteeaZZxg2bBg+n499992X+fPnJ50XQnDLLbew00474ff7mTBhAmvWFDhIKTvCFWN4QbhRhBu/X0V1GQTbBO0tBnpUxePxoGkqmksjFI7Gg/mEI4TCEba2NLC28Us+a/yUT5s+5YvmtTS2NwEQaWhk82v/Ibjqc1q+WEvQGyPUR0Mrc1FTolNV4kLRdWkBmHjGQrIrymsSMQC8HlRVSSvT0trK1q3bKC0toV/f6g4PgOILA4mtAV2nrT1IW3sIj9tNeVkJLpeWCH5UKMXKVW9mzPIpli5/hQbnKcTFrKtUwIVm0it2pMFs9zffK9f3a7ZrkOWt2tpZYaCz20rmd0D+O1twJrn9kTrxFyseRJdibKd7hQHi98tDI7HLLrvwf//3fyxbtoylS5dy5JFHcuKJJ/LRRx9Zll+8eDFnnnkmF110Ee+99x6TJ09m8uTJfPjhh8V6gDQ6FZiora2Nzz77DIDdd9+dkhL7iR4gvsWg6zt87D/88EN++MMf8q9//YvDDz+cJUuWcMwxx3DDDTdw/PHH43K5WLFiBSeeeCJerxeAY489lg0bNjB79myi0SgXXHABBx54IE888QQQ394YOnQoEyZM4IYbbuCDDz7gwgsv5O677+biiy8G4h1/6KGHcvvtt3PcccfxxBNPcMcdd/Duu+8mkkjccccd3H777Tz66KMMHjyYm2++mQ8++ICPP/7YtsGLNCr86stPKK/wg3ABCgpK3J5AiRHXGGgIAW3tQTwed4cxoUDXjbiWQI0b6G0Nb+Hrtq+AeGwDl+Kmj9aP/qX9aPvgExpXraR80CBifd3EvtmG0reEkuG741PL0CIxtDUfoA8dAW5P/P4CoobApca3NBS0tMA/EulJAHEtRSQaQwE8HrelMNDU1EwwFKJvdZ8uEwTkvXTDIBSKoOs6Pq8XT0cUxmAogsft6tBKFFa/NCzMtNqSqyk7gWZSyRXApqsG5dS4+Z25Ty4jR/MkZzdUtGxbdyINAF0nbkn6Hq2MHLPR27QEEvN7avaMKITeYFQooh8htqUn3OtqlOrnUNx7F3x9nz59+O1vf8tFF12Udu7000+nra2NF198MXFszJgxjBw5kgceeCCv+3Spl0FXceWVV/Liiy+yZs0aFEVhzJgx/PCHP+SXv/ylZfmVK1ey11578c477zB69GgAFixYwMSJE/n666+pq6tj1qxZ/M///A8bN25MpGq+/vrrmTdvHqtWrQJyd7wQgrq6On7xi19w9dVXA9DU1ET//v155JFHOOOMM2w93w4vgzUdXgZxhOn/x4kLCbGYTlt7iLJSf2KSNZcKxYIE9RAuxYVH86ApGnowhvHFRvRVX2KMqiNW6yHmiUJTFBHQCPiqKKMfiiHQPvsQvXYgojSe7jhIC0HRiqFEMdApEZWUUJW0TRGfcAWiw6VQvj7ujgBCqRP9DnuBIP369rUsUwyEiLs5hsJxzwGvx4M3KdYB6IZBJBJNuD0W0oxc7oep6tV8LMSzTcZdKRgU26dcToJmy/tMXhldmcq4s2TSEhQi7HU3UgtgJ/phNs8HO33vCAT5CwS6rvPMM89w3nnn8d5777HXXnulldl111256qqruPLKKxPHpk+fzrx581ixIj9tXpd6GRxxxBEceeSRGT+FEIlEeOyxx7jwwgtRFIXNmzfz9ttvU1NTw7hx4+jfvz+HHXYY//nPfxLXLFmyhMrKyoQwADBhwgRUVeXtt99OlDn00EMTwgBAfX09q1evZvv27YkyEyZMSGpPfX09S5YsAeCLL75g48aNSWUqKio4+OCDE2WsCIfDNDc3J33i7JjchaKDGo7bFMiPogMCTYu7y4XCEYSiI9TojrKKjs/lp4+nD77mGGxoJLR6Lfra9US++YbIqD5EBnhw+0rwaeUYVS7wueIreyFAVRG+AKK1MdGeGGFCShMR2okRIag0EVMimDUBoXAUwzBQFAW3y4XX48Hn9aS59UF8km5ubiHYHqRf3+ouEQbk1kB7MExbewhN0ygrDeDzJQc3UpR4oiiP20U4Ei3Ia8MsDGRSu1ZMXMOY5VMS5/O1EM+kJrayWu+t2BEGvg1ITwSJ9E7oKmGgmLkW3ho513Y7swkDnfVYcUjmgw8+oLS0FK/Xy6WXXspzzz1nKQwAbNy4kf79+ycd69+/Pxs3buyy9hVkVDhy5Mikv6PRKMuXL+fDDz/kvPPOK6gh8+bNo7GxkfPPPx+Azz//HIBbb72VO++8k5EjR/LnP/+Zo446ig8//JAhQ4awceNGampqkupxuVz06dMn0WkbN25MS9MsO3njxo1UVVXl7Hj533y/nNtvv50ZM6yy7nV4GajRxOSfMMkXgBpF6PEVrN/noaWtDQ8xNNVcBtBVYs2tbHnzLUrrBhBtbcVdWkqwr4IY6MWruCilGoGBj1JU4UJVNCAeKtgoqUDbtgEdHYSKTykjRgQNF27FjUtV0ISB6AiJYBgGmqri9WSPhyC1Bs0tLbS1t3doBoprPCiNBcPhCFFdx+N24/d507YrzCiKgqapeHARDkcTAYtcNtsmoxtm0xJsu2QcLrbEtQTYnwjlSsyu1XZvVUVLpDDQXZbo8ruBDhfbaAzdMDi7zn6EVSvMcSW6+jkKtf2wwo4hpoyUaYV8H4sVldMhzp577sny5ctpampi7ty5nHfeebz++usZhYLupiCB4He/+53l8VtvvTXNoM8uDz30EMceeyx1dfE3VKa9veSSS7jgggsA2H///XnllVd4+OGHuf322wu6T3dyww03JIV8bm5uZsCAAfE/FL0jZ0HKRQogdFAjCMOLqqp4PV5C7UECpR1734kyMYSuo6JBTCcwaACqz0tYV4mqBgZxYUMVGm7hxzA69tdjYRQFFLcPT3sLkdZv8JTW4RIeKtkpPjkKAYQ7kiwZGEIlpuu4XJlfGbmlEAqHaW1tQ9f1DuPB4gkDoiPyYTgSJRaN4fa4KPP5UTK4OaZiFgoikSjSxzOfNiYEA3YIBuYJumLiGsbMn8Jb67vOGCs1ml1Xk68AIu0RXCduYeH0wgLywA5Pg3xQOpJmKbHsOUCy9d8OTU33blfkK0haYVeoyPZ9FDNEt8MOPB4Pe+yxBwCjRo3inXfe4Z577mH27NlpZWtra9m0aVPSsU2bNlFbW9tl7StORJYOzjnnHB5++OG8r/vyyy95+eWX+fGPf5w4ttNOOwGkSU7Dhw9n3bp1QLzDNm/enHQ+FovR0NCQ6LRMnSrPZStjPm++zqqMFV6vl/Ly8qRPAuHCsvsF8eNix8Tr9bgxYiqx2A4vAIEAooitTZSFvZQM2hX/wJ3x1vTB06cWJepC13VC0RBt4fb43rquE47GaG0LIQT4SkuJ9RuA5+v1xEJttETakfYLoIDuAcOLYUA4HIlvYWjpbY6vyKI0NbewcdNmmpqa8ft81PTrV1QDQsMwCAbDtLa3oyhQWurH5/VmjHmQCSkU+P1efF4P0WgMw+icKU3q4NpVauXUtMCdFQbsehZIAUR+IPP2hvm4TCpUSEAeIGH41jR/SMayZu2ARFEUXC6Npzbdk7Fuq+0caWkvz+WbqKlYKZE7W3cxk0M5dB1xLWfY8tzYsWN55ZVXko4tWrSIsWPHdll7iioQLFmypKAQk3PmzKGmpoZJkyYljg0aNIi6ujpWr16dVPaTTz5h4MCBQLzDGhsbWbZsWeL8q6++imEYHHzwwYkyb7zxBtFoNFFm0aJF7LnnnolIi7k6fvDgwdTW1iaVaW5u5u233y7wy+mYcA33DivBuEFBPAWy7gWhJbL5KYqCz+cj1KajC0Gz0USECHpzkMjST3DtWYfWvxJFVUBVCXjLUHUvsahBo9hEm3sLbp+C5hEITwh3QCTSDouqGtSyfvi+WUep4kbXDSLRKOFIlGjEIBIWRMIx3C4X7o5VtBRKDMOgvT3Ili1b2bxlK7quU92nD7X9aygtLSmKzYBACgIhWlrbQVEoLQng83oKNgyUfRr/FNeuIVPo3a6gkEx7ZvI11kuNDphtZW313IW2VWYrtLqflTAgidu52Au8JQWdzrrY9eZtHDtIO4bebjT5beSGG27gjTfeYO3atXzwwQfccMMNvPbaa5x99tkAnHvuudxwww2J8ldccQULFixg5syZrFq1iltvvZWlS5cybdq0TLfoNAVtGaQGHxJCsGHDBpYuXcrNN9+cV12GYTBnzhzOO++8JHW0oihcc801TJ8+nREjRjBy5EgeffRRVq1axdy5cel3+PDhHHPMMfzkJz/hgQceIBqNMm3aNM4444zE1sNZZ53FjBkzuOiii7juuuv48MMPueeee5K2Pa644goOO+wwZs6cyaRJk3jqqadYunQpDz74YKItV155Jb/61a8YMmRIwu2wrq6OyZMnF9KFcVdDoQFaXP0vXB3JjdREpEKBkCIBbpeLcNhDKBQl5AkS1aP4VzaiVJXi2W8n0KIII244qakqmgciRpiYLnBHfbTrIcJ6iDajEU33orfruNxuNM2FUV1LYP1a2r78hM1VVfg8fpQylXLhw6e7cXs9iYlX7s+2tbXRHgyiaRqlpSX4fb6k0MSdRQod4UiUSCSG2+2itDSQyIdQTARktT3IRC6bgnziFWTL5GdGRkKUFDoBmYWBbBNgrsQ6VuelytoqkE22v1Npmj8kaY+7ELuJXO+KedvAbrKjXPXZuSZTuTHLp8B8aw1TpgyXqccSbq95qvzteiY4FMbmzZs599xz2bBhAxUVFey3334sXLiQH/7whwCsW7cuKYz6uHHjeOKJJ7jpppu48cYbGTJkCPPmzUu4wncFBQkE5eXlST80VVXZc889ue222zj66KPzquvll19m3bp1XHjhhWnnrrzySkKhED//+c9paGhgxIgRLFq0iN133z1R5vHHH2fatGkcddRRqKrKKaecwu9///vE+YqKCv75z39y2WWXMWrUKPr27cstt9ySiEEA9jr+2muvpa2tjYsvvpjGxkZ+8IMfsGDBgk4m3VDA8ACiQyOwQxCI2xcIhB4/L4TA43GztXU7sZIoaiyGa10DDK0j3NKGrjdj6GDoalwNJUIYqoJbdYPiJkwUl8tLlVqL5o3HF4ir+ZuI6lH6+CpQt35JtF8pah8fmlDQVYErGtdUGIZBezBIW1s7sZhOIOCnX9++CU1DsZMSxXSdYHsYl0ujrDRuI0BHXoeuIBrVE3YExbyHFArsuKq5TtwC6VuJGessZCUrkw7lMvazWs3nck2TE9bSkTvCDVsJDHZtH+R+urn+QvjbtvvSUlqntsGqPwvNx9AZg89iTcaF1POtFgTUKuKx3bs5UqFalbtYBw899FDW86+99lrasVNPPZVTTz0134YVTK+KQ/BdR8Yh+GLl0h1xCBQFBRWhudENQUyPYhAmpscwDAOhe9BjYBhxA6lgKIyuRAgoGiVLvkA5ZAghjxd/QMPljgtnqqph6PFVr9ujohhyCyJ5hygeUChKJBxBi7SjfPUZW4YORi330iccwOdyo6Jg6AZbtm4FFMpKS/H5fV2yUgdTSuJIBL/f12GDUPTbmO7XofWIxdB1A7fb1WEnYU8wiGdsDOJxuztSN1trDOxM4LnyH6TWB7ld+lKT0RQj+FC29kiyxR2w83x21NbZtgvMCCHSBALzfYoRiS+bJsXOql7+net7tVNXdwZzapo/hJJjP+7xOATg5DLIht2+LEhDsNtuu/HOO+9QXV2ddLyxsZEDDjgg4TLoYI0WbkQLRXYEGRLQ3LwdPRZGUQSapuJyudE8bjTNg+YNoCqgqC5EqZtgWMFvaASFgT/gwePx4C11oaoKAggFDVqaDXw+cHvo8EZQaGsLU1oSQAgDUDAQBKMRNAU0jw/h9RNrDuJ1u/CoGhoqhiFYv3UjbXoLe9TugaZ0Xe4BaTRoCEFJSQDNwoCx2ChKXLvhcbswtA7BIKbjdrs6Qhxnf9ZoNAZC4PHsEFysthKyqYIlckVsZ3Vp12rfrKGQ6vdiThSpaX+7KpFPV7lZFissr1kYyHQu9Zj5meR/zdtMnXlmu8JnZ6mYuIaGubtDLwhXoGh18C2ZoHsrBQkEa9euTQo5LAmHw3zzzTedbtR3nS2bvsGIVRNsb2XnXXdD01wEAqX4KocCBgpGh12BgdKR/1joYRQRA6HjcgHRMJob1JYtlAQMlKiC8JYgvOW4NRceNYYS0SEkUBWVSNjFp6u+YK/hQ/hs7Xr8gQDhcJhILIIeakfXQW9rZdfqndm4ZjORknYi0ShbtmyhZlA1lRWVXSYMCBH3DmkPhvB6PAS8xU+FnIu454GCqnYYVkaiqJqK2+XKaF9gGIJgKJ4wyaq9ZsFA+phnG4jzNfCD7JoHea+u8ie3G3xITmx2Jzcrt7nUa+1qBwAMIXh8/V34ffFw51JQ6wpNSTZ7i0xlU5FCwegZuY0wCxUaKiausf38ucq9st887CvOHXozeQkEf//73xP/XrhwIRUVFYm/dV3nlVdeYdCgQUVr3HeVzz75kPJRY2hva8HQdTTNBaob4SmLW/Gbyib/WyQOiJiOoW0kFqrCvUt/iLWiRBpRmtfjEVGqhAtDQLQBIijEhIfWlkY2rf+K5u0NfP1NmPLySkpKS1mzdj0DBw5E8/r58ou1bGnYjsutUdG3nJb2Fg6qOQBXkdMkJ56pY4ugPRhC6UhV3M2yQBJxwUBD01SiUZ1QOILbpVnGKQiHI7hc1q6Y2ciWByHfVVt93Ygeswq3G4kw14T1bMN9gJKkUSnm8xi6kWSs9WzD/Rz11t2MWT4kp6BUaN8unT6L+tkjctaRbavBrk2Jg0OxyEsgkBb1iqKkRSR0u90MGjSImTNnFq1x31X69K1h65YNuD3euLGcbWs5ZUcgI5eGa0B/omu+JlQTwFvuwu2vBdEPMFAMD4Zu0NzYTijUgktzUV07EFdZJTWuCgaVBGhva8fv9zN2bJ+4Ox9RGhtb8AYClJeV4fK68Sg+2lpC+HyexAqrGMgAQ8FQCFCoKC+lubWtaPV3hvhXEQ9u43KpRKIxYmEDj1tqC+JGlpFolLLSQE5tRuoWQrawx8WkJ43E8gmaJJQYCI1nG+7PmSsC8tMOQDyVuMudLNC+MuZKW/eCwoWCHXYVKxKeIdkMF83/lvEPFnZhcCs7FBIYyuHbS14CgYweOHjwYN555x369u3bJY36rjNs7wMIBHwII75yEUZ8Tz8fFEXBvdtORD/6gujnGzCG9sVVIf3yVYQKivCgqW1xbwVUdqrtT1lZ6Y69+X7JNiDqtk30KXOj7zIMBGxraKRvn2paWtqIRCJ4PR5MC6281frxBInxNMnhSBS9I1Wy1xPfIlCVuIdEd9gO2CFuXxAP1ax3CACKouJxuwiGwh3ajOxttbLZldsHdiYZszCRyc3RHPI234mrq7QLdtXYf2u8C4ihiPiELYWC1Enf7uSdinRfNWsIJHZCUUvVOut3JDXKpULPNolm8jixygJZPXsxTN+hss9kn2DWLNidwDM9Q6qWQrq59lSCKbD+DTnkh90+LMiG4IsvvijkMocOwoaKBzeogmDUACFQfRW5L0xBKfWjD6rGFdGJrl5PbPed0cNRfDv1IwI0a23EjCgl/ioC/gCqphKNxhBoGIBLVVFNk7pQFNRoFEXE4yBKjYDb7UpKaxzWo3i17PkMzMhBORKNEYlE40Z8HjcBvy9pf96laei9SCCQKIoSj+3g9cQzULYFicRiBPw2LJ8FhEJhNE3jma33Eg5HOWfnq9Im8VwToPm81US26KDLmdL3Z/zl8ztQwls5Z/hvbT1bPsJJKnKvu5Dr488gIBEhMreWJbVPkgc5a68QwxBxV9I865Zsu2Qco2fEJ8m31s9NrPSt4kuMnjG1I/eBdWZKec1bI+cmBAwZMyCR/8Ki/I5/x0NAp24zmLEToTCb0JApNkK2eo96fzJwV8775ovbHR9j2tvjmkyHwmlvbwd29GkmbLsd/v73v+fiiy/G5/Ml+flbcfnll9ts5veLHemPP024HaZ2v+1VtxC0fPIZDe+uoLL/AGIeQaSlGa1PH7z77U3UoxMhTGnMQ4nbj9qxkg2FIxiGIKYqlHjcqB33jCphXNu24W5pRR84lNSXQkYoNISgPRLCq3nQVCWx8krPdAgQjycQCUeJ6QYul4bX484YwTDU4Xnh93nSzvUmWlraUdS4kOB2W6d9lkRjOrpuoKoK0WgMt0uLx9lXkvfM81WDQ1wVvmlzC9P2vpG/bbsPgPbmEKG2MBX9ytBcakZ3u1QKmdTlhJUpxkI2g7dCnjeVeJCsMJGIwOv14HKpHW68O4hEYgC43fYMYvPVRKR6WUihIJuhZ+z5fomkSVaYPQ3MoZMT8SOyuDTacTksZLWfLZZGV6U/BtiwYQONjY3U1NQQCOTennNIRghBe3s7mzdvprKyMpESIBO2BYLBgwezdOlSqqur07IHJlWoKI7bYQasBIKCEYL2dd8Q/Ho9Xl8pSnM77VoItaYWo6YGv8+D4lWIae1AlBJRiYY7nvrXEBgARnwfv7TUSysNqFs3U96mog/cM55NUBgYuoFuxP9rdKz0ZfCeePx/BVUFVY0b10kBIabr8eRBxLUBHrcM+pP5Bx2NxghHopSW9N7VgGEIWlrbKS8LdMRxiKFAh9th8vMJAeFIBFeHkaKkGIOaEIKm5iCRiE7f6tKEpkUIQVtjEIBAuQ9FVZKEgkyr4XwFgkLTGxdDEJDE7VB0tjeGCAYj+P1eykq9eDzSXkAhFA7jcbtta52OeuvugrQl+dhMyOBQErsRLaWwIYUEGbdACgmFxKbI1L5MIbitrutKgUAIwcaNG2lsbCxqvd83Kisrqa2tzTn2OIGJupGiCgQSQ6BvbiT45vu4fjgC3eXB5XLH/eoxiBFGKAKP8BMKRTsmKJWA30dMN4gZApdLIRqLoG3fitbUTHvtoPjEriioajwRkKaqqJqKqiTnDzCEiAsNuh4XHDpUwJqmmgZie0F+dN2gtS1IeVlJj3oaZEIIiESiRGMxSgJ+4kkhRbwfozE0TU2s/iEuPITCkbhwVuxwy0KwfXsLJSUBPB4tRRARREIxoqEo/lIvqitZg5FpFWyeXHJRSPCbYgoDEjl8hUJh2ttjBMMxPG6N0hIPXq+LSCSGz2b/n9znsrwEo1R1vV27CSkQjFked96X90vVNlghhYFUDYPdgFN2bU0yCQXdLRBIdF1PykfjYB+3241m00usIIHgtttu4+qrryYQCCQdDwaD/Pa3v+WWW27Jt8rvBV0iEAB6cztN//0Y/wFD8VaWJrYA2ohH7aqgBiGgJdaIoYbwi1JUI4DbpdEeDtNuNOH2qpQ1R1AbmgjutBter2fHqkqJZ1fUiaETxcDAR0k87XIK8nUqZAIUQtDc0kZZaUlBuQW6GkMIWlvaCQR8uExJc+T2SCSaHO1Qag/cbnfRBZy4XYaRMTlTXFPQTqg9TFX/ClRNS2pDqlCQT4ChXMJAqmGgvFdXCAQS+d7FYgZtbWHag2FKS1y43W58Pq/t9zFfocAu2SI5pkZLzCSY5dIi2AmPbTeMdiqyjVbXdodA4NA9FCQQaJrGhg0bqKmpSTq+bds2ampqLIMWOXShQLCthfZ/vkPg2IMRFR6CShNtohFdiaKiUUUtigrbjU0YGJTTB6PNj6ZohMJRIp5mCLRT2hijohEiuwwlrIdRvTpRJUyMCDpRdGIY6ChCpZoBeJTO5HFIR4YB9vu8SRNub0DGS9ANg4DfeoKRNhbRSAyj42fVFdoBuwghaG8OoigqvlJvIiojZNcSQOcFgp5EurQahk4kquNxuyzjSKSSyS20GMKBHSHDzgo/m1BgVyCw412Qz7WOQPDdoSAvA7mPnMqKFSvo06dPpxvlYB9hGIhgOL76U6GN7bTSAAg0XPiVAC5VoKDgVXxEogaxmIrP5cbjdqOqGiJk4DNKKFHDKKIBTdOIRMMExVaEkizcKaioqBjEuuBpOrI6RqJFSZ1cTAxDJOwbMrUr7jqp4PXG3RRVRSG7fXvXoigKgXI/kVCMloZWSivjniaKomSctOv7XBZXaa+Pq6QzWb33VmEAzFEnVTTNRSgcsfU+Sc2G2QOks0hBINtELSfjXMJAfIsis0AgQ19nIpsw8W1P2+xQHPISCKqqqhKGU0OHDk36gem6TmtrK5deemnRG+lgjR4M07jiQzwuH6FKlejqNbgH1+CvLkNBIaCW4Fbie/iGIXCHy3AbbvxuX4fxX3zycrvL4x4DNHSoXgUexUc45kXx6Gi4ceHGLbxoijv+EQXJkllRlLhxXktrEF03eo1QEDcOjHYEJspunBaPaaR0WWTHfFEUBY/PRSSo0Li5mar+FaDa39KxUnVnmlh6gzBgRmpENE1FNwQ5vrok5AS+cP2KrJOs3XqsyDekM+wQxDLZG2RaxZu9FjJluUw1jEzVGoxZPoW3ejhQkkPXkteofvfddyOE4MILL2TGjBlJoYs9Hg+DBg1i7NixRW+kgwWGoOmDj2lfuw73gEGU7D6I4ObNuCIaAaUfAApRDBElFlEwYho+lx8txf1KQUFRQSeKwIBYjHA4gqpolOr98As3ihJPgRz/P0Ve2CUoiorf56G1LYjPKzMIStfGrrlnbgQxkyHhtw1FUSitKiHUFiYcjOINuBPHU5GrZBl214oxy6ekhfztbcKAGQU6gn91TkgrJG+A1VZBIYJAqgGjDBhkRSahwI7BaKbIiVC8RFAOvZe8BAIZrnjw4MGMGzcuZ5ADhy5EgUD//iiNQVzVFXh36o8ei6H5faiocev3iEJUV9AUNz5v5klAV6JsFxvxxWKUAT6vBxSFcDiK0FU0V/cFClKUeCCkUlUlHInQ2hZEU1U8HretfeCuQO+IJNkbDR3toigKvhIvkWCU5q2tlFaVoLkK08CkTnC9WRgQQqDrBh5P7rGq0GiI+VCIUJHJpdFshGh1PPXY0vWzsgp6dtraU3kzHLqHgkb6ww47LCEMhEIhmpubkz4OXYsQAn1bC+Kjr0BAW62PJlc7sUFVqBWlGIZBazRESOh43X48bnfOGAA6UWJKGFw74gW43BqxmJ6INNhdKIqCy6UR8PspLfHjcmmEwhFaWtuJRKLd2hbRYSToKnDy7E0oioLH70ZzabRsa0UY3fu99gS6biTcZ3NhJdiMWT4lYU+QaSK3CimcqVyhe/XZrpPui5KF61ckIkh2BhkWedsl4xLeCXYiITp8eylIIGhvb2fatGnU1NRQUlJCVVVV0sehixBghCJE3v+C0MvLiAU0Nu3j58vo13zR8jlr29ayoW0DDbEWGgPtGAGBqmYXBIQQCEPBaPeiqRqqMJApFTU1nlugtb2NYDiErhvdLBiAqqp4vR5KS/z4/V5C4bjWIBKJEovFYx90VZuEEPG4A9EYXo919ERB3MZArkRjsXhApvgnRiymYxiC3jLvKopCaWUAf5mPUHvEUih4tuF+26v+3q4diMZieEyxIbJh1hDISb5i4hreGjm34MnVvJouRBiwI0RUTFyTJhSAvTDGuZBbG/V1Ixxh4HtAQQLBNddcw6uvvsqsWbPwer386U9/YsaMGdTV1fHnP/+52G10ABACfWsToZffRf/sGzxjhhMYPwJPWTmi43+K0Ai5BG3lUQwvtLrDBLVIPG1yFqKhGO2b3Hhj5XEbgUR4eQWP142qCVzeGKFokJgeD8UrowqGw5GEoNCVwoKiKLg0F2WlATweN5FojGAoQltbkOaWdlpa22lrDxKNxYrSDiHiXgWhcJSSEp+lMaEMVNTS2kZTSxutbUGCoTDRmB7/RGMEQ2FaWttpaW2jrT1EOBw1CQkiUU93oqgK3oAHVVXYvqkZPWYtVPXmyT4XUkArdKtHro4hdyz/fJGrbjvHO2v9L7cTiuE1kWmLwuG7Q0Gm4i+88AJ//vOfOfzww7ngggs45JBD2GOPPRg4cCCPP/44Z599drHb+f3GMIit+prwJ1+hDOyPb88BKP74irW/vz8CQYmrlFY9jLuPH9S4AWAMgyZPEE/IhUtkM6hSiMUgGhUI3TAdjWsJNMWDEBG8foNoJIyiu1AVNZEKOBKNoioKbo/bfibnApBpiT3uuLEhpgnVEAZ6TCcYDOPxePB67K0KrZBeBaFQhNLSAKqqpj2TEIJQOK49CPh9cXe+uPkayRaXokODYMQ1CHo8a6IQcVdQTVPxeON5IbpzS0JR4kJBLKrTur2N8urSvLwPvg3CQjSm285hYIUMBzxmeXFcEM31SqwEg0JyDVRMXEM91h4gMjFSMQwCzUKBY2D43aMggaChoYHddtsNgPLychoaGgD4wQ9+wNSpU7Nd6pAvQqB/tpHYB5/j+8E+RKpKEV53IkthwFXC4LLBGAa4jDaCagxDLvEViKoGUVXHpecSCAxaWqOUGTtWijtWjYJgW4yyChc+nwBDRREu5MTn0rS4xiAciRskdrHvfWJ87/iHooCKhkuLJw5qawsiDKPDQ2HHM2L6p1ULDSGIRXVC4TDBYAiv10tbWzCearojuI2qxl04I+EIhhCUlvhTVqCpNcuwzRqapiE3HmTwnGg0RltbELfbhc/r7og82Ln+sYuiKJRU+ImGYgRbw/gCnrQwx1a5D3q7MLBDOxAXaO1ilUWyvm5EPMshmQ3qOrOKt7x2+o5ohfnWX183IkkbYNZsFJoi2+H7Q0FbBrvttlsiBfKwYcP461//CsQ1B2ZXRIdOIkA0tRN7bw2eg/dCq6vG7XGnqcWFUIhGYpSrASoi/pQpSRBTjKzbBrqu4/Fo9O1TgqKqoMhBVaepuYFtDRsJtrcRCXfUokaTapMTJijoulwJ6z1isKaqKiUlfgwhaGsP0toWorUtSGtrfFuhpa2dlpZ2WlqDpk87jc2tNDa3EolGiUZ1qqoqqKgoTSRaEkIQCoVpawsSDIbRXBolacKAfaR/vM/noaw0HgK8tTVIKBxJsjvo6i5UFAW3z4WiQuPmZvRo6vcmeHbTbxJ/9XZhQBKNxQrWDqQ+o1wJZ9o2yGRUaNfY0Ix5hb90+iyWTp+VMBK0S3dN+IU8n0PvpiANwQUXXMCKFSs47LDDuP766zn++OO57777iEaj3HVX8fNif28RAn31Vyh9K1AH9IWOSSQaiyUC90SjOrqhx9PwqipaVCWixgi6oggEmlARSvZZxTDi6XldIgYuDcOAUCRCW3sLoVATPl+AstJKDF1gGAaaaoASA5OWIO4ZoBKJRFFUBSHA5dLwuIsfwCgXqqoS8HvpSDFgIrkfEueVji0HYRAL65SU+BKGaEKNP0c8JbOSqKOY6n1VVfD7vBieeDbKYCictKXgcsW1C7kMRAtFURT8pT4MXRBsDVNSEd92UhTA0FFbv+S5r/8H4c+eOrU3IETcs0BudxWbziQHyuayZ2fCLzQPgUQKNGPmW9exdHp+bon5lnfo/RT0i/n5z3/O5ZdfDsCECRNYtWoVTzzxBP/617/46KOPitrA7zOiNUjsq824hu+KOcya2+UiGAoTDMUNBuO54OOrIRWFqnAJNcEy+oRL6RsqoyyaPeeApioE/CpKuJ2Y20djSzstrSFUVaNPVQ19qmrwenx4XF6iYUxaguQJ1qVp+P1efF4PXo+7R3NayDDCqmr+qEkfTVUTmRxdqgsZjdnntc4/ICPfdc2kHM8QGfB7KS0JUFoSwO/3JoS+tvYQLa3ttLYFiUaLYziZfP/49oE34CHYEkaPxUAIlOAmUDSEv39PRobKA0E0puOy6VmQiWxagtjz/ZLOpWYezBdzbohMH4ld40Y54Vvt86d6TTTNH5L4O3XVn0kL4NgPfDcpigg9cOBATj75ZCoqKnjooYeKUaWDEOhfbEQtK0HtW5FQ48d0nUg0PnOpqhIPp2se+ASoQsGju/6/vfOOj6rM+vjvuXVaJiEhdCJIFUFRLKBYwIICKghYUBdRrIgr7tpeC2tjd111dde6qyu6ui67rooLWEAXLKBSpKggvYbQQjLJlFvP+8edezOTTJJJnSTe7+czSmZuOXNn5j7nOc85vwO/LkEyLZXBmjT1fT4POrTPAheLQhU9MEwTAb8HOcFs+LwB8BwPMIAXrEHI0AmACXA6Emfd9mBpP5oj5N1Y6IYBRdXgTdG4iAHNuvxhlVtaWgyyLMHn8yAr4IXf74UoCojGVMRiapM4BaJsLx+UwYiWgsUOwswqAFjLkGKuicaMDpBZ9drag+DKWS/WGi6vbt2/cvjfHohrG2ArOwa1nf/jwrXIHr252sjD14PfcWz5evA7jqNhL1HYdgmXHKwhUdGlrdF8EnQudYLKYzC2FkLo1w0QeKsmXtOh6yY8sgi/zxOvIa+ogyciKIaCwkghDimHrIz/WhL8GGPgeB4Cx4OZOqSsINoF/fB5rbI0qwrRADgV4BWIMkHT4mmLTI9HCarePK3ZtJVd39LFb0yTEInE4PPKyc4VKpwcM4PvwdHk5zhIooiA3wvTJITKIk6po2GYNWSJ1OVcDN4sD3wBEerh7TC8XQGucbtaNh2W7oDQgMoCIoJpmCg9VJbydbvef+WsF5Nm1umQPXpzlYG/PnLAtjOQajaf6HAkDtqpdApqwnYYbEeh8vt0SxDbJq5D0BLRDOhrtoLL9oPrmgeCVRNPRPDIYrwMjgMvWNn99oAc0cPYVrYF+yJ7cCCyD4oZQ6rBOhVM1wDDAOfxgOd5KzrMADAN4GPW/0HgGQ9GAkwDqIgSpEYQeCiKllRz39IgspwBq0Vu6jAzx3EwU8wYM4EdPfD5ZAT8XshxSd7ycCS+lFDhINb7HAD83GGIXj/KIh5oVRINWyZWdIDVOzpARAABZUfC1S6PJK69J86sEwfG2gbJoWsmppUoWF0UIHGJIlFJMPH5yksOic5IfcL9qcSZhq6Z6C4dtDFch6AlQQAUDfqqTTAPhyAM6QuKD/oMDLIkOgMWY4Ao8DBM0xmsJF5GtpQDn+BDtpQDvi5hXiUK8ALA8QllffHIgJN5JwGmBxwTQYYY/zv1OWwhIUkSLdU+TYfZhKqC9YGIrH4NIHg8UrVL5BzHWpTdQEWVgigK8Hpk+H1exGIKysNRRCIxSyCpnrkGTC0BU0sgtOsBXhJQerB68aKWhK4b9Y4O2BG2WESF5JUsXYZqGNXl+JQzbnuQr202bg/OqZYBEp2AROlge9C3sSsQqrMvkcRjNtQpsLETJN0IQduCUR1+5ZdeemmNr5eUlGDp0qUZTSZryYRCIWRnZ2PPzi0IBrOSXyQChWPQv9kIiigQTzsWLDcAMz5oWQNW1RudHlfFs5oXMRBM6KRDYIKVOZDmzZHbvwdMicHo3is+OyKr+yGvAMQDpgCAAwOgatbnK4k80tEcsCRkDRi6AcZZJYpcM9bbp7QJgK7piERjyIqLD1WHYdjXOLV8cUvBjJeKkmlVTWjxXBOvR06/lbShgivZCAp0B8k5lkhTRIWpm5D9Mji+eQWU0sUqC1Wr/Z3Uti+ZhNDhcgiSAH+21zlGug2PKrcjbuqZc3UDcX3OW1lkqKZB/qSHb3EcEbsV9jmdB2AJ5qG0tBTBYLDO53dpOdTJIZg6dWpa27322mv1NqgtU61DQAQ6XAZt2Q9gAS+EU/qD+a2yOVXTrWSvajr92Yp5osBDEOqT+GWFSbldmwFfFsz8zgmvxJMH446APfhrug7TIMhy+t0u7a+ZbhjQNAOSKKQ/SDUBhmGiPByFz+eBWMt1M03TSjj0yM1kXeNg9WLQEVMUiKIYr56ooWSSTLCybWBMhBkocMLmRARN0REujSCQ44PQABXIpkLXDeiGGY+i1W1fMgnhUBSGpiMrNwCOr+ocpuMYJDoFzRFKr00tMN1mSumoDtbkJITKDLTru811CNoAdSoSdwf6JsAkmHsPQftmA/gencAfdzSYKCSIA5nVlsEB8Q52ogBV1eo9wBI0kFIG5HVMPraVr11le57joWkqTJPSFuax7RJ4HhzHQVE0yJwIPgMDCxEhEo1BlkUIfJpOVIai5bYjVZ/PlTEGWRYhihXdIj0eqdpmP0wpBtOjMHOOSlpDt6sPZK+E0KFy5HQIVlE0zCREZDmZklBnZ8A0TSgRFYLIwxf0VkkqrQvZozcDhda/axuMG9L50Ka2QTzd47t5AC42bg5BJtFNGD/tgbr8RwgDe0I4oTeYJDhReEM3wKfQ0a8MxzEwjsVbFVd93QqJmjA1zXro9kOHqRuAooPpBOJFkGmATNN6UOqmRYwBQlwgqa7ryrY+gCBYrZWbGyJCNKZYg2VdZpOseUsPgfgMv3gvTCWMhngkHMfF8ww8UFUd5eFo1e+KqYOF94ICRwFc1XmCXX0QyPVbSwjN3PmyJnTDdJIt64JpmCg9WAYtpjnNnqpbAbM7QNam1JhYhVATic2TgMZpPpRIY6sIVpc34dK2cB2CDGDqOsyoCm3VT9DWbYV4Sn9wvbuAGJx2tPa6u7UMUHvpoCQK0PTqs8G1wwegF+5K+dCK9kIBD/XAPqh7dkLds8N67N4Bde9OmLFolfOJogAzntBY13HBSjjkmn1QIQI0zWpJ7PN60p7hMsaslZVmHP+ICEb4CIpXvofwzu8afJ1Y3AkL+D2QJBHhSBTRWMwpp2R6OcAJIDEL1X3fGGOQPCIEWcCR/SHoauarD0yToOtWdCBdrD4SJsqPhK120O38TRLtqC3hLnEGnz16c6M6BQ2NPiRiv4+GViq4tHyaX1fWBdEd+yBIHpjhCFjPjtAVBdi213rRvjExwDBNsJwsePLboXangHNm7VVCwkSgWBQeUYJhGDANw0qUU2IQJAkerw8xyQBPBC0ahSCKINOE1x+AYejQI2HwXl/lM0IUBKiaVq+GRowxMI6zOtJVkx/RmBCs5MBoTI23M65PCL7x7aoJPRqCmN0RpqaCDB1MaHhSox0ZEQUBMUVBWVkEXo8EWS2znIFa3qS9fOALelF2pBzZ+UFwdeiS2BgkNi/SddNZKkvHBtvZLjtcDgAItg80qu2Jywb1oSZ540xw+KbTMKpL8nOJTkHpwj74pNfcDFjm0hS4EYIMoJRFwUsS1IAPusBD4AVAJxhRDQI4iJwAkQnwcCKMI2Ug06z1mIzBmrUbJkxKMWsnAhhDeWkJDu8vwq7NP2H7hh8RKSuDqijYsXED9u3Yjp++W43DRUXY+sP3FdUiKe6XttQuA6tXIyM7qmHoBow03l9DIdPKG/B6JEt5sS77xq9dc8IYgye/B9oPvQzZx44E49NP4EwHq3+CB36fB4qqIlZ+BCbnSSsKYvU+kJHVLgAlrEJvJp0CK1dAt9pOx6trEC+/TdcZAAFKWAXjOGTlBeKaHnX7bNNZOkiHymF92xFo7OWDhlBbpCF79Gacs25c8xjj0uS4DkEGKNq6G9GyMA7uKsT+7XtQ+NN2FG7agZ3rf4ISVZLkf4Ha1QZtGGMQRAGamiwpnAjH8QiHQiDTRDA3F6WHD0GQRHj9AeiaBtM0ABAM3dINqOn8jDGIkmAJ19RgF6FiZmaa1uxO03WrWsE0mzyXwMobiEEQBIhi3RPPiOIaTRlKomva/gk8svweiJyOshgQjcZgpKEXwRiDIPHgRQ4lB0LQlMbvr1AZVdOhGyYkkYdHFuGRRchpVjzY379waQQAkNXOD8aa5vbXkHB69ujNTn1/ooRwJkgnD+HjwrUITtzaDNa4NAeuQ5ABGADGcfDnBGGaJsKlZQgdKoZpUtLQW5/bq8BzIFSEVCsOZh3Nn52NvE6d0fXoXshpn4+OBUeB53h07N4dnQqOQs9jjoU3kIVuvXpDEOOz0hpuuFxcIEdPEMGpGPzNeJmhDkXVEYupUBQVmmapF3JxB8bepykggqOW6K1HjbpDy0iob3TsjoaMAEH2wTBNhMNRhCMxKKrmiEmlTi61cgoCOT5Ey2NNmhNSUXEjxpU0Wd0cJQLKisPQNQOyXwKzuzk2MdXlEdRWZWCLFtXUzKg+iYN12SedPISTHr6lzja4tFwy6hD06NGjSkMcxhimT7dqfs8+++wqr918881Jx9i1axfGjBkDn8+HDh064K677oKuJ8vpLlmyBCeeeCJkWUbv3r0xZ86cKrY8//zz6NGjBzweD0499VR8++23Sa/HYjFMnz4deXl5CAQCmDBhAvbv31+v951X0AnegB85HfLQuVcBcrt0wFGD+qFrvx4QPZXWiVn1mc+psELxItRElTrGAI8HiqpA0zV4g1ngJRneYBCiKEILh8CLIkSPB9l5ecjKyUEwNxeqGkNYDUPnqx+wLY0EwRr4dQOqqkFRNcQUFYqqObN/gecgyyI8HgmyLEESRYiiACHep6Gp0A0diqrVKYmwMpW7OrY1mBEDE0R4fT4E/F4E/D4rSVWzKhLKyq1HOK6AqGpW+237c/P4ZfiCXkTLlSaJFBABmm6A5znUxzMjIihRFRzPIZjXuDkDNomKgpX5uHBtyudrG5xriw40ZuJgfWkJNrg0Hhl1CFasWIF9+/Y5j0WLFgEAJk2a5Gxzww03JG3zxBNPOK8ZhoExY8ZAVVUsW7YMr7/+OubMmYOHHnrI2Wb79u0YM2YMRowYgTVr1uCOO+7AtGnT8PHHHzvbzJ07F3feeSdmzZqF1atX4/jjj8eoUaNw4MABZ5uZM2fiv//9L/79739j6dKlKCwsrFW5sToC7bJgGBp4iYfkk5HTKQ++bD982QGYhgFNUaCpKnRVtTQJ6gjHWXruiVUHUn4nCF26Ax26QGvXAZTfGXynrhCysiAYKriOXcB17AzWIf7I74TyHB+2e8sRk2oeFK0yRKvWHfFsdlmS4JGthxQf+O31WusRt5WxJsveN00T0Wi8aVED9O0N3Wxw97wWjR6GyXtAcWVLjmOQJKuBVsDvg99v5RpIoggQoKoawpFYvLlSLN5umIcg8ig92LjLB06kSTcgCvVY7jEJ5UfCMAwT/mxfPDLQOA5BYh5B3svLnAeQXjOhdNbnG4PKcsh13cfl50NG73L5+fno1KmT85g/fz569eqFs846y9nG5/MlbZOohPXJJ5/gxx9/xJtvvonBgwfjwgsvxKOPPornn38eqqoCAF566SX07NkTTz31FI455hjcdtttmDhxIv74xz86x3n66adxww03YOrUqRgwYABeeukl+Hw+/O1vfwMAlJaW4tVXX8XTTz+NkSNHYsiQIXjttdewbNkyfP3113V+3/JRneDpYT3kozpBPqoj5IKOkAs6AJ3age+SB6lrHqRu7eHpkl/nhDa7LDCx1twEg2oABuMg+33wBPzgZauRES/J4D1e8B4feK/14Lw+kEeGKjIUq8UIqaW1nk/gefAcB57jLW2ENOy2t2n8WSUhHIlBEiUIAl+v8LCdxEageqpAtgYITI+Al4NV5t62c8BzHHiegyQJ8HotPYOsgBdZAau5UiymojwcAyfx8OX4rEiBZkWMFEWz2jUrGlTVKvlMt1SViCzpblVN6uOR1ruKL3GUHwlDVw14/XLa38l0qUm9MHv05ipOQX0H2XT7BaS75p8u6dr73qb1aR/TpWXTYqY9qqrizTffxHXXXZf0o33rrbfQvn17DBw4EPfddx8ikYjz2vLlyzFo0CB07FihsDdq1CiEQiH88MMPzjbnnntu0rlGjRqF5cuXO+ddtWpV0jYcx+Hcc891tlm1ahU0TUvapn///igoKHC2qQu8JIH3yOA9MgSvDMHrgeDzgPN4wDwy5KAfYpb14OW63QhtGLO6DdqNhVRFgyDw8MgSBL4iK5t4EdD1ahMWCISwVg6ulgQsxhgkySpDrGv2A8exRu0maCURqo5SX30HAdMkGKYZ7yjYRpMIiAAjCvDetK+THeXhOA6iJDiOgaJoMEAweaB4fwnKSsPQ40sLpmlC1XREYwrKyiMoD0cQjalxpzX1Z08EqIoGSRTjg3m6bymhmoDnkJ2fBVaPMtPaqK3SINEpsIWKqltWqI6Gthn+uHBtvcL6idGOmo7tNjdqW7QYh+D9999HSUkJrr32Wue5yZMn480338T//vc/3Hffffj73/+Oq6++2nm9qKgoyRkA4PxdVFRU4zahUAjRaBSHDh2CYRgpt0k8hiRJyMnJqXabVCiKglAolPSoCdM061UGlQq7/wHBSlT0eOyZcqVjixJgaIj3M07CXiYQOQke3lvrLJ7n7DLEupURchznCOQ0lPqKD6XCMM2EBLZGMa/lQQZgaCDBU6/d7eoLKe4YBLN8aNcugJzcLBgRDRJvqST6vDICfmsJIpjlg8cjW45bVEF5ebRKQzQiq+8Fx3POZ5DW24mX3JYdsRIIfUEvuAz2zMgevdlJvKusXpiuY5DoFNQ0ADfnen7pwj6ucmEbpMUIE7366qu48MIL0aVLhQrGjTfe6Px70KBB6Ny5M8455xxs3boVvXr1yoSZdeK3v/0tHn744bS3ZxyDqVk6Ag3RVAdRvNTPhMABjFU3AyPojAOvaeAMHVSNrn/UiGBPeBe6+wsg8tWL49gDQ0zRINThJswxS8ugMTBMA+XhKAIBX4MHASKqd+5Ba4EZCsDxAGvcW4Hsk8BYFtSYDo7jnN4H1kdiOatiPKFU1XSEIzF4vXJC9IriIlvpy0vbDmskFIWhGwi099VLgKouvFv8fK2Nj/JeXgbMSn7Odg5Owi1pDeSVnYLqShsTX7OSEht/Bm85JW5koC3SIu52O3fuxOLFizFt2rQatzv11FMBAFu2bAEAdOrUqUqmv/13p06datwmGAzC6/Wiffv24Hk+5TaJx1BVFSUlJdVuk4r77rsPpaWlzmP37t01vj9b419VtQatqVutfVUcLg5D1RlMAihFBACwcguIFwBVqXqcxDJCIK1cBhYvQ9Q0Pe1kQcaxlGVtdcU0CZFIDB5ZioeiGyh41LaLCyyMKMDLQCPX5DPGIHlFSF4RZcVhqLHU32m7KsbrkRGNqohEFKcyhYGBT3NAd5YJIio4jiHYPitl18JMkbh0kBgpWDnrxTovIdhth6s7j+002CWLpQv7NEjPIPFc7hJB26ZF/GJee+01dOjQAWPGjKlxuzVr1gAAOne2WvQOGzYM69evT6oGWLRoEYLBIAYMGOBs8+mnnyYdZ9GiRRg2bBgAQJIkDBkyJGkb0zTx6aefOtsMGTIEoigmbfPTTz9h165dzjapkGUZwWAw6VETdpgfQJ3D7knEk7E4jseRkih03ax2bCPGwCQPmBpLYRDg5b3oHjgKBYGjIKQxi6woQzTTLtfjGAM1MIfACj/HIPA8vF4ZoihAVeuf7W47KG12qSAO08IgIdA0x2YMgsjDE5AtDYBqeh9Y+S4CAn4veIFHJKogHIk5vTLSgoCykjDUqApPQG7yyEAi6aoWpgqxN6SOP1G4qHRhnyQnIJGvB7+Drwe/40QPanMOUjkANS1XuEqFbQdGGe5OYpomevbsiSuvvBK/+93vnOe3bt2Kf/zjHxg9ejTy8vKwbt06zJw5E926dcPSpUsBWGWHgwcPRpcuXfDEE0+gqKgI11xzDaZNm4bZs2cDsMoOBw4ciOnTp+O6667DZ599httvvx0LFizAqFGjAFhlh1OmTMHLL7+MU045Bc888wz+9a9/YePGjU5uwS233IKFCxdizpw5CAaDmDFjBgBg2bL01+1CoRCys7OxZ+cWBINZ1W5n9XY3IEtSvbPjTdMSBCorV+H3CvD6qiaNEQExRYX34B4rsa9rz6RjhPUwjijF6OLvCo5xaSsmEhGUeBKjrTOQKIlQ2Q7TJMuOegoHEQGKqkJVdWQFrPdpJxbW55hEgK7r0A2jxtbTrR8Cd2QDyN8FJOU03VmIoCk6NEWH7BXBi9XnBFjfE2sZIRJfRrB6ZdR8/Fi5gmg4hux4ZKC5P7Nzvn6mSplgZfGhmmbXo7ocX+eWyJmcrQ9dM9FxPk7+6iKsnvg0SktLa530uLRsMp5DsHjxYuzatQvXXXdd0vOSJGHx4sV45plnEA6H0b17d0yYMAEPPPCAsw3P85g/fz5uueUWDBs2DH6/H1OmTMEjjzzibNOzZ08sWLAAM2fOxLPPPotu3brhlVdecZwBALj88stx8OBBPPTQQygqKsLgwYPx0UcfJSUa/vGPfwTHcZgwYQIURcGoUaPwwgsvNMk1YU5tPqE+2e1WBjgPUSTk5njB8dV9zPEWfoEg2MFCwDSB+Jo5Yww+wQeD9PhMuW52iKIARbU05wFy3o8oik4UxLGCzHrP6AhW8lkspiKrct5APXxdIkpyyNpsdQEAmDpgqgDvbdLT2A2RGMdQeqgMgRw/JG/q6g87x0CWxLhKYs3HJiKrHbNJyMkPNqrOQF2wuxUmOgX24G4P9PbsPNUs3pq9p3++psoPqAtD10xE9ujNCJIrXdxWyHiE4OdEuhECTddhGgQpTZ326rBD9izhv4mYJkFRVHhFDvyW72F2OxoUyK7YP+GrUfdZtuUE2GF3xqzSQlXT4a2kxmjEVQ7rWmtuvQcTZeUR+LweCAnCNXYGu9cr1ylDXdOtTpCyLIGhDVcXAGDRA2BKMczsfs3SvImIoEY1lJdEkN0+C7xY/UyeCIhEY3GRq9SNnci0ehNoqo7s9lkZcwZsUkUJqqO22X3i8oJ9zHQjAvZAXZ/zJpKYuGg7MqmOrZOGJZjnRgjaABmPELgkY89Qrezqht3cagvxO2v8ggjKyQM7vB/kDzqDQ0POn5hRXvEcqp+118MttcWHZKka8SGGpOiGFaSo/kSapsMwqY0vE8QhAyxaBAoUNFsnRzvRMFvMghrVIJi8FTlIcX4iS52wuuUCOzKgq7olR5xBZ8D+Xn1w3M24eOFLaTsFifkDlUsSk6IIabRTThyos1H9+RND/XZyov2cfYxUTkN1zoBL28J1CFoYhmktEzRLUlTCigS1ywe37UcwJQbyNE0ImbGKJjXJqnGszv0C0hEfEgUBiqJZpYP2ywmnSTyn7Th4GiBk1JpgainAOJDYvDM6xhh4gYMoCyg9GEKgnT9eolhxzYmszoYCz1X5HZBVT4tYWIFJhGALiAzYrbV/0f3X+LpwLUah9m6Ho7ocjzxYSwoNzQUY1eX4Gp2ARCovV9j7Dl2YPNif9PAtjn1AzVEHl7aD6xC0MAzDgCA0Z1JUfPYseUC+LLCSg6CO3Zts1ihJIhRVs6RwRcGRxyWT0s5VsGvXdV1HwJ9aYY/FSzg5jqu+0oBVLKfYyxo/B2cARGDR/SBvx2aLDiRit07Oyg0gWh6DIPKVEg0JqqrDl3K5h1BeEoGmashun7mcAccashJif9H913XaL7nUsG4Ogb2cUJcBOjF3IZWGQeKxhq6ZiJWzXsSolyu2+3rwO2k5Oi6tmxZRduhSAQPig2MznQzx+n/GQHmdwI4cAgy9tj3rd7r4IO31SEntmRljYByXVoyACDAME7GYCp/Pg5p62tuaCHa1Q5UHz1u9HHiu0RQiWwNML7fUCaV2yFTSpL18EGjnhxJRoUYrdAo0zXA+u0TsHAQiilcTZN6Bs5UxbezEwZrK9BKdgcpLBdVhOwH2TL2us/WanIHKpDp2Ovu5tH7cCEELQxAExBQFoiigqW/WpmEmh2p9AUAQwYWOwGxX96ZKDYPSerdEVnjW65HAc/VrWvSzhggsUgTy5lsKhRnEWT7wiCg9WIasXGv5QFHVKnkcRIRoWcwqislp3K6FDcGOav3n8HOYkHcbgPiAGl/3r6wcaA3MVR2Fkx6uUCys7EjYTsDQhXWXCq5c+eDiUhNuhKCFYGfkq5rWLHK5pmll1NthewAAx4HadwI7XFSvkr2GUXsbZCtvQIEgCBDFurfCdQFgxgC9HOTJQ0soqbRLEoPtA9AUHbGoBiIkdZckIkRCUUTLY/D4pRbjDNSErSgIoIpy4NA1EzGqy/EYumaik1hYWX8gcX8nWXD05pQlizVhCxLZxwTS66HQEMEkl9aLGyFoAdjSwKqiOf0AmvKGR0RQVC0+qFYSCQrmgi/aBRYpA/mzm3DMqGsSIaAoGkzTrDZvwKUWiMBF9gNyLsClLuXLBIwxSB4Rgiig+GApZE+FbUQENabBNAjZ+cGMNiqqnuq/y4mhdluPwE4AtAb6zUlr9ZX3qel4NZEYGai8T23iR/Vt0+zS+nEjBBnG6fkeU8HFe85XDpXqpgazobr8zvFgJfVxLHUDIp4H5XYEO7gPLUnM3zAMKKra4A6GP2tIA9QSmJ4OaAnRgUTs5QNBFhAujUCJqFZkoCwGNarBn+0F36zJtulj/0pqkzBONRDXNvjWd+0+Uaq4rudszq6JLi0L1yHIIHYJnqJYs3VRSB0ZMBrJGYifFaZJKaMDNmZuB7BwCCxFw6PGgud5xGIqNE2HaZpxy1I7IGa8rMvr9VRJNHNJH6aVgzgZ4OvX6rg5kL0SArkBGLqJ8iMRxMpj8GZ5WvQygaX3YdmWbl8DoKq0cXXb1JXayhjdAd+lOty7a4awVfFUTYcsifGe71W3Y4xB4qS0+wg0CoIICrYDK95f+7b1wOpwJ0CSBJhEiCmalalNgGboMMwKB8hOIrQcpswmwbV6DAVM8GSk1DBdBJ4D4xlMw4QaVS1FwxYaGXCoZFpdnILG5uPCtTjp4VsaVBXgLhn8fHFzCDKAaVpr+ACcbOqa7neNeTNMK1eQMVD7LuC2/wh06ApU2wuh/lhlZTw4jgdEQiSqWMqCIJhkggfn1HgD+HmoBzYxDARqwdfQztgvLwmDMxiy2vlrbITUYkjRdyTRKbg0d3qVXdJtZJTubN4exEd1QZKgUHXLBrUdJ+/lZXVutuTS+nEdggygqCr8fl9cbrd5b3bptvQlrw+QPOBKimHmdWgye2x5Y47jwACInBC306rv1rTqxYdc6giZaGm5AwAAAkwyES1TYJomOIFDTvssqBGr70Eg2yozbK3YzkEqx6AxSDVwV64sSPc4QIUTkq4zEHqnF1D3ikiXFoi7ZJABREnIiDMAWAOwYZow0wgVmPmdwYqbvgTRaoRkgsXFgRhjMEwD0ZgSTyJs/K+pSWb1CoZtknhnS9Zyll2sz52gazpCB8uhxlR4AzJ8AS/AMXgDMrSYhvLSSFIL7RYFQ72+R405824KZ6A27HN8XLgWwYlut8O2gusQZACeZW5NlDEGgeeh60bNNzLGrEZHqgKmqU1mDxFBVTUIvAC795FhmghHYvB6ZPA81yRL3pphNHKyZmug5UQIiAimYSJSGkUsosIX9CInPwheEMDzPAzdAC/yyOkQhCDwiIVVkNnynDiW4l/V0Ry5BVZb5LpRF2egYmmiwtl4b9P6Op/TpWXiLhlkgEyGvxljEEUBajyHoUZ4ASRKgBoDJLlJ7CEiGCbB67FmrrphIBqNwSNJNVZCNBSpCfIiWjxkAs0gelWjCfEBXY1pKC8uh+SV4c/2JlURCAKPSDQGD8ngeA6egIxoWQxHDoTiSYYtQ6GSAKdRV0vAVkJMFESqKUqQmDyYrjPg5hS0bRi1NJe7DRMKhZCdnY09O7cgGMzKiA1EBN0woCga/L6aa/pNk8Bt3wAuN9+SMm4CDMOEpumQZavpkaJo8HnljC2ptFmIwJVtB4l+q6lRRkwg6KoOJaqBcQySLEBIIcJlmCaOHAmhXU7QKTMlIoRLIzB0E4F2/krdMjODYZgoD0fh9cqW85rmfpfmTq8SLWhofkHlUsPm6D1gnzNUZqBd320oLS1FMNi83TNdGpef4TTp50uiM5DOzZRjACfLgBJrUrtMIkQiMZhECPi9rtZAk5GZJQM7VyAaiiEaVuDP9sLjtyJOqb6HpkHgOB6apoPnJWc7f7YPmqIjWhaDJIsQPU2r6FkTpkkoD0fhkSWIAl+nq5pq6eDd4ucBIlyad1uDB/dU6oguLung3nl/Jti6B7puQBSFJK346mGAKFtLBk1iE2CaJsKRKBhjrjPQ1JAJNEGCZrWnIwKZBCWqIRpSwDgOOR2C8PjlGltNc5zVFTOmKEk5A3bfA1ESUHoo5KgZZgJV0yAIfOPKjMePY/cxsDsc1iY0ZL+eSn/ALh9sTOxujjbnrBvXqMd3yRxuhKCNQ/EaaVXVQUSQJcm6mfFphOQZAEkGC4fiGeqNqYdAUDUdiqLC77XEcgzDjCcRuksFTUPjfoY1nokIpm6irDgM0zSRlReAIFpOaG2fL8cx+H0ehMrCME0Czyek7sXbJmfnB6FGVfACD0Fq/uUl0zCtyEAjn/fd4udwae5tTi+CUbDaKX9dWHNTo6FrJmLlrBer9EVoCNVFFyo3WHKrDNoO7nSsDWN3UIwpGsAAWRbB4mVS6SZCkSACht5opYdWVMBaIlBVDX6fF16vDFkSoek6FFVzpIxdGhkiNPVP3q4eiIUVRMsVePwycjoGIcQFhtIZQBmzdCmk+Hci1euiLMCb5UUsrCBcEnGWJZoLsgxpgiNbx0xsWZw9enOVmf/QNROdCMKoLsc72zS3ymBz5Cq4NB+uQ9BGsZ0BRVEh8Fxym+O6wPOAYTSmZYhEYwCDs0RgDwAeWQLPcU5XQ5dGhAGV1fQaE3tAVmMajuwvhabo8AU9kP2SJTpVx+8eY4AkCtA0PeVAzxgDxzN4szxQoioipdHGeisZ5z+Hn8O7h56t8nzllsipHIVUNOayQW3LFy6tG9chaIMQEUzTRExRIQgCBKFyB0XUYXbDAENrtAiBbpgwTbNK10LG4hoJAg9e4KHpjemEVA8RQTVMaGbzzjAzAplNMqslIhi6gWi5Ai2mI9DOj6xcf4NbFfM8D9O0mnGlwuqQyKNdx2wwnkMsrMI0zOYRMLJFM5ri0IwBXPJqbuKAXpMTYA/+lR2A6hILa3IUVs56MSPVCy6Zw3UI2hhEBF03oKoaJEmAIFQV9mEAyExT+Y3jwMCBNZKIj6pqkGvoS8AYA89xoGoGgcZGNYGfSjXsLNfR9mMSBGrEpELL8SREQlGUHigDY4Av2wvJIzbK2rrtIOo1OIeMARzPwRuQYegGSg6EYBq1iG41BtR8zcHrUynQGJUFdmLjx4VrUbqwT5VkQnvJwqXt4CYVtjEMw4RuGPFBt2oClz2r0g0DElfRtrVaGGfNLBshhG+alrPi9Ui1b8wqmt00JQRCzCBwrK1HB9CoOQSWpoABNaaBTCCYn+XkCTQWjAGiIEDTdUgk1hrc8AW9INNEJBSDL9sLjsusCFhjkcmywezRm4HCqomE9mulC/vAf+GPGbDMpSlwIwRtCLu0UBSEGoVbOI5LP9rJcY2WVKjrRvpVBM00Pkscw7HtJBydJdTpx9DcSWyNQiMsGdjLA6HD5Sg/EobkEeHP8TbIGSAihFQTMaOqNDHjWPy5mq+13TE00M4P2SchGopBU1LnHzQOzdqQvFbe33678+/mdCBSOQourRc3QtAGsEO3qqqB47k0avmtG2w6N3DieKvSoBFGaFXT0k5ubK6hlmMMPqFut3YignJwOzjZDzHYoRXNQhtWdmiaBE3RocU08AKHQI4fHN9wxUCdgAMxA118VbUxTMMEx9KIZKEiGiDKAkzDROmhMgRzA5C8jbOEkUQzOIPVtVBOEjYiAkgHovvx/uZpGNfnlUa1obokQjuXwPp/GjLoLq0CN0KQARp71mKaBEXVIEpCWgMuUR3mN4wBHAM1MIfANE0YhglBSMMHdTLiWyZGtBRH1ixEaOMXIKNqWVzLhOrV/jixeqBkfynUiAJvQIY/29cozgAAGCYhKHLwpDieYZjx5MT0j8cYg+yTEMwLQFN16Frj5BTYibrhSAwxRbEcpPixmytaVEXlkDGAE2H6uoKyjsb7m29ssnO7OQNtH9chyACN2WXPWibQIQo8eC69sC3PWe2FzXQTCwkNVrjTdANCmssFLX2+TaYBX7eBkHK7AmZrcQhs0r+6jtJgREW0PAZvwGP1ERAq2lQ3BgLHkOfhUlpW32GWMQbJI8Ib8CBaFkO4NOokqhJVfpDTXrm653XdQHk46ohnZQV84HnOcRKawx+osVsiYyApG2a7Y/D+9jtqPE5igmDlSoKPC9emjAokah3Y27m0Pdwlgwygm3q9hP+IrCQ4wAp122p/RBRvBpTeceyOh4qqwiNLqHGQiCcUMo5v0Jzdri5I08IaR4LKcrbNjRjIQ/aAs5v9vA0jfs3SvF5EhFhYQSQUhS/oQ1Y7f1JHwsZEqEEkSxR5qIoGkuqeYGppFQC+oAelB8ssJ8EnOr8Z+3vPkpZSEhsaW8/blTteT7yJUYIZRFaUwPp+N8HSRJy0WydzEsxgr5QvVQziVQfzytUDlZUREzsnOgJIN2U24dGl8XEdggzANWC2bYfuCRwUVQMDg6eGMr5UMMYg8DxMw3R6G1SLGU9Eq6fNdn4DEcWlXtOxz9439fhFADRD/3m2MG5ibKVBJapBiSjIyg1AlDPXREjgeURJqbdytl1Vk9MxG7GwgiOHQ8jK9kMQBctFikcAqvjEtvNNAOM4eD0SGEtRwsuY5bSolnNebwGwxoRxePfwn3Fp3gwAFW2RgfQaH1V2BkZ1Od6JHNj72/sdvuk0GGoM+Nu8JnkrLs2Lu2SQAUSufgOZtZzPgWMc9Lh6YH2bq1g13oJznGq3M62GONSAe1wkqkAS6zZ74njrPaZUqQMgcOk0Z0qGiKCbBoyfowqicx1TfwZEZLXzLYmgrLgcgsgjJz+YUWcAqIiINWQdyVLCZBA9IsggREuj4BiDKPCQJBGyLEKWKj1kER5ZgscjQZbFuNpi9ceXJAFkEvQUlRIZgXF49/CzKF3YB0CyyqFNKmfg8E2n4aSHb0lqlHT4ptOqXSpwIwRtC9chyAB2iVRt2GuZVfdlVtOXekjCJsLFS7pqvIHZEYJ63pGJCIZpQJLSd4IYYxAFAbpupFybtcWL6uUIoWnC3i0fSvk52p+/rhkIl0ZgGiYC7eJRgSZaIkgXIkBV4o24GphZYr0Pgj/bB1ESES1X4uJcjTN4206BJbXcKIdsOMz6zSX2RagJO2JgP2xWznoRANz8gZ8BrkPQwrBv0KZp5wdUnXE0ZlYzz/NOJ8SUxzQNS4ugHvdjIkDTDKezYl3s5jgGgeeg6VVrySuSvSqSvtLBdiS4n6tDAJb0ORIRDM1A6aEyKBEVvoAXwbwAeKFldJw0TROqpsfzXBoOkaVrEGjng+SREC6NNqpWAWMceI6DYaR2ZDPBp0PvSHvbxGWARBIjCyc9fEuV/XL/9k39jHNpcbgOQQvC7gQYi2kIR2IIhSJQVL3SNpb4EBGB5+seNk+GQRIFmGSiLBapCM8mYjsE9ZqhERRVhWmaiMYURGNqtbr0qRBFAUaKEKxuGIhEreNFYyp0Q4euG9B1A4ZhwIj3S0h+VHYikh9tHmehnDnVA2pMQ1lxGKIkwBf0gBcbt3qgIRBZTbBkWaoxXF8XTNN0Gi2JstU2ufRgCFqscZwCxqwkSPt7WPGda7jtDaGmhMTKg39iXkGqSIBwycHGNc6lReFmZbUwTCIompUsKHtESJUS/nTDhGEYkCWpwTdJqxUyIEsSTMWKSjAuOYOfGTrA8fXK6DIMEwAh4PfXc5Cx1nlVTYcsVeQgmCZBFAWI8SZIpkEAzAp3hqpqPZD9fmCtS1v/jmeZc9Z5gPSWclon5CTRqTEN0XAMskdCsH1Wo+kJNBZEhGhUsfQEJKFRPhPbkfb5PACs74LHL4PjOaiKDsYBQj3zcRJhCW2bSdOBeP4CZ+mIw26CwBhzBMSa49q/W/wcWOwwxneZlfR84tJAdUmGicmEtpRx4nMubQfXIcgI1XVvAwSeQzDgc/62/m/9wy5/kkQRXA2lWnXBPrYsidA0A7zMxYWOdHg9IhANgzzeOjkEBMAwDESiMXg8cto5E1Vtg9XcJmYlAgrxiIg9i2WMVXGYgOqFnypma5TkPBiGiWhMhSQKzXqTblbIBJmESJmCaFiDP9sL2Ve36pTmgGDV/Gu6gWCWr9Hs03UDDJYGh42lVSBBEE0rkVLi4Q/Gz1nP0zIAPM+B5yUn+mSYBDKtSJd9WMM0oWk6JElspp4LDCTn1bhF5SWDkx4+DStnvVjtwO86BW0Pd8kgAzCtLK4al+I1e0bBVQx6QHw5IZ5l2FjOQMU5EV9Xt4ZJ3TBxpCQGMgksHAL82XU6nqEbiEYVeDwSRKFhMzwrWUt08hwApM62rLRPqgfHcfGbNQ/Bfgg8JEmALAnQdR2KqrVgjcS6Y7fCjpQpKI8AvMijXcdgi3QGAFgRDFWvcyltbShK6i6bjAEczxDI8UGJaFayYSMmGnIcV1HNIImQ4g9ZEiFKAhRVg2E2U2UCY3j38J+S+h7UB1ux0HUG2h4ZdQh69OiR8sY9ffr0pO2ICBdeeCEYY3j//feTXtu1axfGjBkDn8+HDh064K677oKuJ6+7L1myBCeeeCJkWUbv3r0xZ86cKrY8//zz6NGjBzweD0499VR8++23Sa/HYjFMnz4deXl5CAQCmDBhAvbv31+v983Ce8CFtoLp4bQ00a3cAgOKotWsGdBIcIxB1wwYqgZomhUhSBPTtNZ+PbLtDDT8pm6vIdcl/6AuWOFb3hFOMmpot9uasBoRmSgvjkCNxOD1MMheKS4F3AKdgTi6YUAQGpofU4FhmDBME6KY+piMMcdRYhxDLKzAbOLyQec7F3d2m61ckfEwAz3w/pabUr5cOacAcKsKfk5k1CFYsWIF9u3b5zwWLVoEAJg0aVLSds8880zKG5hhGBgzZgxUVcWyZcvw+uuvY86cOXjooYecbbZv344xY8ZgxIgRWLNmDe644w5MmzYNH3/8sbPN3Llzceedd2LWrFlYvXo1jj/+eIwaNQoHDhxwtpk5cyb++9//4t///jeWLl2KwsJCXHrppfV632awN0jwgpVuBivfCWYoKR0De3anahpU1VpHT7tbYB1JXJZgjIFxDJw9V65Dzb+qatYMvFEFWgimQTCMeOJgE+kIMMbaRAWC3ZGwvCSCWLkCT0BGTn6g2gGxJdLY0QFJqlkHw1I15ODxSdA1HSUHQk3vFMDS2/DIInRNd5KFmxxeBmUdXeMmeS8vw8pZLybpEdikW8bo0vpg1IJSrO+44w7Mnz8fmzdvdn68a9aswdixY7Fy5Up07twZ7733HsaNGwcA+PDDDzF27FgUFhaiY8eOAICXXnoJ99xzDw4ePAhJknDPPfdgwYIF+P77753zXHHFFSgpKcFHH30EADj11FNx8skn47nnngNgZSN3794dM2bMwL333ovS0lLk5+fjH//4ByZOtMJlGzduxDHHHIPly5dj6NChab2/UCiE7Oxs7Nm5BcGsAGAq4CJFgFoC8rQHeTsCnAB7AdMwTSiKCkEQ4klvTbfWSGR1I+TiM5fSUAzZPh7i1u9hHj0AJHvSOAYhVBaB3+9x1vsbA2uNX4FoN0ZicFo8NzaKal2D5ojENAVEVkfCsuJyiLLoNCHi9DBY+U6YOcc0uC9FU0JECEdikEQBkiQ2+HiGYaI8HEFWwJ/294VMQnlpBIwx+LI8zaLHYBJBUTTwPBdX9Gxix5QIl+bdVuXpVFUGqZYGEtUPz+k8AEswD6WlpQgGg01otEtT02LuDKqq4s0338R1113n/BgikQgmT56M559/Hp06daqyz/LlyzFo0CDHGQCAUaNGIRQK4YcffnC2Offcc5P2GzVqFJYvX+6cd9WqVUnbcByHc88919lm1apV0DQtaZv+/fujoKDA2abOMAbwHpiBo0DZfcGMKLgj34NFDwBkhax13YAoCE7ovSlvEozBqqE2TTAG5GR7wNltlNP0GVVNt9boucb9WpmmCVEULEW5uKpcUzgDrRnbESgviUBTdQTzspCVm9CeuBEbajUpzJLV1hph2cYuXfTIMlgdvi+Ms3IKZK9kXc9G1CqoDo4xeGQRhmE6HRSblBT3ksTlgkR1wlQkNjp6b9P6xrfPJSO0GIfg/fffR0lJCa699lrnuZkzZ+K0007DJZdcknKfoqKiJGcAgPN3UVFRjduEQiFEo1EcOnQIhmGk3CbxGJIkIScnp9ptUqEoCkKhUNKjCoyBBB/MrN6gYC8wpRjckQ2AcgSGoYPn029a1FA4jjkd4axMa9shqH0wsUvFJFFEU/QrbLbhP4WuPRHB1BUYSqTFaRbYIlbR8hhKD4bACxx8AQ8Eia/kRJrxz7OFO1JE0DS9wREaImupALAUBOv6rhljECQekkdEyYHSZnEKmO0UxAWZmvp8qfQJKpcd1tby2E0sbFu0GIfg1VdfxYUXXoguXboAAD744AN89tlneOaZZzJrWAP47W9/i+zsbOfRvXv36jdmDCQGYWb3A/m7AOW7IMcKwaH5EtzscitHrIcxQBABJVbrvvaMTjcM6LoOo4owUFWhIOdRg2BQ4k2xucbiKjK5RAjv+A6lP/4PZNS93XFTiB85rYmjKiKhKACGnI7Z8AaqCXGn7ODT8rDK9MwGLTkRWd9DRdXg88r1jqwxxiD7JOR0yIam6NDV+s3c6yKAZTsFpklxGeSmdgqec/5d2RmwIwZ2P4TqGN93UOMb5pIRWoRDsHPnTixevBjTpk1znvvss8+wdetW5OTkQBAECPH14wkTJuDss88GAHTq1KlKpr/9t73EUN02wWAQXq8X7du3B8/zKbdJPIaqqigpKal2m1Tcd999KC0tdR67d+8GAGg1JSsxDiTnAu2OgcgZ4Eo3gxm1D8iNgZ35rGr2oMdA2blA8X5QDYl8RARFUeHzeSDHb2aqqkFxHnr8Ef9b0aCoKhRFRUxREYtVqA6mesQU1Sq5bCYqKzaaShjRfZugHNoBPVxct2NR49/YrY6EhNDhMoRLopA8IrwBuRbJYTNlmLilYbfmDkei1fayqAmiuAZGJAaf1wOugctXlqqhAI9fRrg0gnBJ3aNEBELMUOt0TjtSkEq6u3GJlyJuvTXpWbufgT4vH18Pfsfpdlibc+DSumkRDsFrr72GDh06YMyYMc5z9957L9atW4c1a9Y4DwD44x//iNdeew0AMGzYMKxfvz6pGmDRokUIBoMYMGCAs82nn36adL5FixZh2LBhAABJkjBkyJCkbUzTxKeffupsM2TIEIiimLTNTz/9hF27djnbpEKWZQSDwaQHAOzaW4r9B8sdaVPdMKuWHXGSVY0gBcFKfgJTQ80yRRYFqy0yACtakNMeXLQcTK3eKbFtFwUePMdBkgSrU5zzEOMPyekgZ//f65Hh9cjwyCK8HinlQ5bEZsv+5zhWpbyRk33IO2k88k+/GoI/N+1jWc6A4VRuNBS7NXGsXEGsPAbZJ6Ndx4qOhDWegwgt5OdeIwwMPq8MWZIQjsRgmmadvvamaSIcicHrlSGk2W67VpsYs7QK2vmhxjTE6qhVwMAg83VNkGSQJcnKKWjq6gPGgwJHVXm6QqCootLAdg5c2iYZT6U2TROvvfYapkyZ4kQBAGtWnmr2XVBQgJ49ewIAzj//fAwYMADXXHMNnnjiCRQVFeGBBx7A9OnTIcsyAODmm2/Gc889h7vvvhvXXXcdPvvsM/zrX//CggULnGPeeeedmDJlCk466SSccsopeOaZZxAOhzF16lQAQHZ2Nq6//nrceeedyM3NRTAYxIwZMzBs2LC0KwwSUQnYd6AMMUWH4JURi2ngdB0F3dpBECruYAQGQ2wHUqLAgfVA8GiQ4IUT+o3f7ZjTtIaBcTw40dOgMCnjLLVCnmcgUQKy2oErPgiz81Ep19cVRU3KCK/7uWsZzOz32Qw+AcdxMOIzetsmxvHgvVl1PpY9W00liFP3YxF0VUfocDkESUAgx183yWGyJagbZEbTw6zvsyjyIJJQHo7CI0tptfk2TBPhSLRRBLGqmMUYeIFDToegJf1cFoPHL6dVgZAok53++QDbKVBUDSBLrrvJqowEP97b+xDKDmzDL05403k+cRnB7XbY9sm4Q7B48WLs2rUL1113XZ335Xke8+fPxy233IJhw4bB7/djypQpeOSRR5xtevbsiQULFmDmzJl49tln0a1bN7zyyisYNWqUs83ll1+OgwcP4qGHHkJRUREGDx6Mjz76KCnR8I9//CM4jsOECROgKApGjRqFF154oV7vOTtLhoeXkBWQIXlE5GVJOHQ4jCNlCvLbJYgAEUErOwCJcWDeDiA9AujRipcr/4sA3TQhZHcFL/nqZRtgZTybZIIjKwRt5nUCt/MnoENXQEj+ypimCcMw4fPW3wmplUaaYacDx7F4TkPDHRDbqWhIRYQtLqRGrcZQgRw/JG/NNfWpYHoExCc4ky0cu50wz3OIKSpUVYPHI8Vn/VXfg2kSwuGYpQQoNq4zkGgTOCuvoKw4jJIDIWTnZ4FvRBGl5PNZ//fIorPcJteip9CQk5GnAyiL8Oa6Kbj6uNdT9jUA3ETCtkyL0iFo69g6BLt3bEYwaM047R93WVRDaVhD1zxvhUiQaUAt3gmfR4aixHCgaA88Hh+8Pj8kSYamqVBVJS7JKyCQlQ1ViYH8HSB46j6jtTEME4pqzfp5jgMDgd/6A8x2HUB5FU4SERCNxsA4ZpV2NdFYo6qas7bc1BBZ+Q9Ww6OGzcis3AFAkupuN5HVBCcaVhAJReDL8sIT8ICxekRgiMAVrwMFe4HEQJ1tyTR2D49ozPque71yUmkrEaE8HIUgCPDITTRgVrIHBIRDUTAGeAIeR2q8Kc+pajpMk+JOQdNokpSUhgCtHLnsAMb1+WvKbSr3MNBJc3UI2ggtf1GxDWKv94qiDEn2gRdEcCBoMSvxiOMF8IIEjrcGEsZL8LbrCjGQj0g0gnXfLUMsFsHObT/hh7XfYuum77F39zYYhg5OkCFIPvB1XrOsgOOsUKWm6VAUDQQGyusE7vB+ICG5kMhKevJ6vBBECbzQeDdjO9s8XX+V43iwSglk1uy8biIv1uciQtfNBmnME9kRgrruF88rUQ1EymMwTUJ+t07Izs+DIIoQJS8k2ed8N9LCVAEy4stNrQ/bGcwK+MDzPCKRmPO52OWFdiJec0SSbCVPf7YXoiyivDgMLaY1udSxJAoQeB4xRY0nXDZ+a2We42AwGWCtR9XSpfHI+JLBzxVBlOHxBXHw4EHk5+cjHI6hY34usnJywRKU5HyBduB4AaFQCJ37ngojchjFBwthGAYYx0EUJTAweAO58HboC8Fb0YiIiKAqEaixcJ1sswZSqwOiomrQdANcVg7Yvp1gagzk8VkDtgF07NwNoigl7a/rKsgwwAsiTNNALFIGqqMwjkEmwloUQcmf9DwvSJA9foABaiwC09Dhy2rnXDNNjSEWCUGQPPD6gs51UKJl0GpIjEzEcois92412amT6XEo3qa5ep+bcRw83iA4joOmKVCiVqJpuCQCTdGQ1S4Af042wASUlZUhPz8fqqriyJEj6NChA8pDh9JKNGVGDHKXk8DJOdB1DUq0LP13QQm6FBnGHvTLNM3JcTFNE4qqIeD3NruNdgWCqYsIHS5HMC8Loqfp1vkZYxAEDhwvQtN06IphVWDxlr5E4yRQwlqB5Hi8VzQbJGXj0lyrt8y7xc87/3Zpm7gRggwhewOYN28eHnroITDGkN0uD8GgH3/4w5M44YQT0KVLF5x++umY8/obAKy+DzfccAMCed0w6OQR8PuzUNCjN/oPPBF9B52CfkMvwo+bd2Ly5MkoKCjAwIED8fvf/x4EHp74wMisPqvgeCHlDNNKnBLBxXsXRKIqwhHFmu3yIri8zuD1ipLE7Nx8rFmzFhdccAGOOuoo9OvXD1dccQWIGETZi7+9NgfFR0ohewOwEwftpEUrmmB9/TiOT/obAHjGwS96rWiJWJGU5/EG8M23K/Dll8vg8QUhSB6Ul4dx+umn41e/+hVEyQPGOMgeP/71r3/h9NNPx+LFiyGIcnzGbt1QGeOS68MZA6Hi2nAcF1fMS132ZdvMVerzwDgefMLxGbNv1lyV6ytJXhw6XIw5r78B2eMHmTyiZTGIsoScjtmQ/R5IshfLly/HZZddBgBYt24dxowZYw1Gkgcs6fysapSE4yCKIhTy4s/PPQ9J9kKQKmSoGeMse6u8D8tuk1kP570JYvy7kzkHgeM4GPHKlphita3OlHIlYwyyX0Z2fhZ0VW9yASPGGHiOszonipayYUzRYBiNU4nAGAcTADHOUUx9t/h5R8To3eLn3RyCNoybQ9CM2DkEhw7sQ277jhg8eDD+85//oFevXiAijBo1CoFAALNnz0bfvn3x448/4qmnnsKcOXNARDjppJPw1ltvoWe3fJQd2BbPJSQEO/fFpm17cMYZZ+CJJ57AlClTUFhYiF/+8pcgIsybNy/lrIWIEIuEoGsqPL4ARKkipGyaJspCR+APZCdVfwAAmSZUTQHAoWvXrnjuuecwYcIERCIRLFy4EBMmTIAkSRg4cCDefvttDBqUvnCJpsYQi5ZBECR4vFlJA5yl3Cjg8ccfRzgcxuzZswEAJSUlaNeuHXr16oVvvvkGWVkBSJKM4cOHY+fOnXjiiSdw5ZVXVin/M3QdpaXFCGRlQ5LkKrZEwyGEQiXweirEbXhehOzLAp/gUJFpQomVVwnlx6IRkKnB4wtWuf72e1m9ejWuv/56fPfdd9Vek3A4jMOHD6OgoAArV67EzTffjJUrVya8Dw2qGrWuF2MwdA2xaBl8gRzHyTpw4ACOPfZYHDx40LKZCIahQRAqojuGoUOJlsHjC1ZxdFIRi5RBU6O1btfYRGMqQARJElEaKkd2MACez+zcxtaGKCsuBy/wCOT46iSX3JDzGqYld8wYIMRLf+sbpYhGYwiVlaOTdBjw5IE87VNud87XzzhNjtwcgraDGyHIAF6fH6tWrYIgCOjduzdMk7B8+XKsW7cOf//739Gndy9oSgTH9O/raC4wxjBx4kS89tprkPy5kNp1h5TbHXJuD0i+HDzzzDO46qqrcMMNN4C0MLp17Yw5c+Zg6dKlTmOnqVOn4tVXX8XQoUNx4okn4u2334bXnw1/MBfl4RhmzJiBfv36Yfjw4Vi8eDGyc/IgCALGjh2Lf/7znzjxxBNxwgknYP6CBZBlL/bs2YPy8nJMmDABoigiOzsbV155JSRJwvPPP4/t27fj+uuvx8iRI7F+/Xq88cYbePLJJ3H55ZejZ8+eCIVCWLp0Kc4//3z0798fv/jFL1BSWoZAsD28/mz8+513cNppp2HgwIG48847oaoaNmzYgFdffRVvvfUWRo4ciT/96U/Odb388svxz3/+E5IkY9OmTVAUxdGjAIClS5firLPOQr9+/TBixAh8tWwZcvM6QJJkzJw5E3/9618xfPhwHH/88XjhhRfg9QchSR7oumHVw4PBl9UOX321DKNHj0bv3r1x5plnYuu2bfD4gvh2xUqce+65GDBgAK6//npEojF4/dlOl80HHngAffv2xYUXXoi9ewsBAHfddRc2b96MkSNH4qqrrgIAXH311XjjjTdwyimnYNq0adi0aVOSYicR4f7778cxxxyDMWPGYNfuPfD6gti4cSOmT58OXhAhyT7s338AkydPBgD8+te/RklJCUaOHIlRo0aBMYYjR0oxZcoUDBgwAOeffz6++26NtUTF8Rg9ejTefPNNDB48GP/3f/+HLVu2YOzYsTjmmGMwePBg6zp7UleyVFaaNE2CYZjQdSOel6JC0/Q6awzY8LzVc0NRtUbTeGgoiVoFuqojFlEcGfCmPq/A8/DIohXR0gzEFLXe2gUcx8E0TSuHgAygkkiX3YE1e/RmJ3Lw5s6nGunduGQaN4cgA0iSB0uWLMGpp57qJJ59+OGHOPPMMxEIBFBeeshK2FOj1oyTAMnjw9ChQ3HffffFQ88STEMHH5/hffTRR3j55Zehx0qh718FQ8pCu26nYujQofjwww8xaNAgfPvttygsLMSiRYtQVFSEs846CwMHDsRxxx2HG264AQMGDMD69euxbds2XHDBBfj8889RUFCAzz//HN26dcMXX3yB1atXY/z48di3bx+OOuoo9OnTByNGjHAUJAcPHgzGGG688UY8//zzeOGFFzBw4EBIkoT33nsPf/7znzF//nwMHDgQBw8exNVXX413330XJ5xwAp599lnccMMNeP/99/Hll1/iN7/5DebPn4+uXbvi9ttvx6OPPorHHnsMv/jFLxCJRPDII4+A53mEw1aOxJQpU3DVVVdh+vTpeP3113Httdfigw8+cK57x44d8c9//hOdOnXCN998g8suuwwbN26Ez+fDd999h2XLlmHhwoWIRqMYMWIE+vfvj+Gnn4ZDB4sgCAKyglnYuXMnJkyYgH/+858YMWIEdu/eDY/Hg0OHDmHs2LGYO3cuhg8fjnvuuQfTpk3Du+++iyNHjuD555/H22+/jQcffBCzZs3Cgw8+iNdffx2PP/44brrpJixcuNAZ2L7++muEQiEsWLAAHo8HK1euTIogrFmzBjfccAPWr1+Pv/zlL5g0aRJWrFiBUCiEVatWWRsxhlgs5jTfmj17NhYuXIiFCxc6x5kyZQqOO+44fPfdd/jss88wevRobNq0CTk5OVi6dCk6deqEJUuWQBAEXHfddRg7dixuuukmhMNhq4dHkqx0XGBL06EbhqPBoGkaVNUqGzRNEyaZ4HkepmmAgcHjkZEdDMLn86Y9y+c5zmqDDR18I4kPNQa2VkF2fhbUmIZIXKuAF5p+3mXlF/DgeWtA1+LOlyhaOQbpOk2WMJdpdV01q8p0q6qBUFkM7xx6LsXeLq0dN0KQATiex+7du9GpUyfohrVOFwqFkJOTE59VVSTgmYYO09RBpolOnTo58sd2KNj+oTv7MwlmzgCYkqWol5OTk9RUaebMmQj4/ejTpw8mT56M9957D2VlZfjggw9w1llnYdmyZSgqKsLAgQPx2WefOfvdd9998Pv9OOOMM+Dz+VBYWAhBELBs2TJceeWV+Pzzz3HOOefgjDPOQHl5OURRBMdxkGXZSoSKh/7Hjx+PU089FX6/33EEIpEIvvzySwwePBiffPIJDMPAnDlzcO6552L37t1Yvnw5hg0bhgULFoCLr4kLggBZlpLWjvv27QtJkrBu3TrMnTsXV155ZdJ179evH7777jv8/ve/x4cffghN07Blyxbn9dtuuw25ubno2rUrbrjhBvznP/+BKMkQ4+VskizjP//5D8aOHYtzzjkHSqwcnTrmo2PHjli0aBFOPvlknHPOORAEHo888gjmzZsHRVEAAAMHDsTEiRMhSRIuu+wyrF9vdYiTJAkcx8Hj8cSTwyzuvvtu5OXmIiuravlohw4dcNNNN4HjGG6++Wbs3r0bO3furPE7J0lWHobH44HH40F5eTk++eQTzJo1C6LA48ILL8SAAQPwv//9z9nn/vvvRzArgEAggJycHCxevBhffPEFJElC7969oWsqojEFBw4exo6de7Bjxy4UHTiA0tJShEIhlJWVQdc1eD0y8tu3Q/fundGrZwF6HtUNR/coQEH3rgj4fSguKcGOnbux/8BhxBS11ux5jmOQZRGxWMxJZWgpC592BYLsk2AaBkoOlMJoaqXBSufneR6yZHUG1TQ9riSa9gEAEIgTLDGrSggCB0U1oDZHR0aXZseNEGQEgiRJ0DQNPGe1pu3bty/effddZ/Zv6CoYx1vJZkQACJqmQZIk5xgAnB4Dffv2xZYtWzBs6KkAJ4D35QMAtm7dmiQJnZeXB10pBy/50b59e+zbt88Z3BctWuRsN3DgQEcRErAcCyUWhezxwuPxQFWtG7ff58Utt9yM6dOno7y8HEOHDsUbb7yBW2+t0EY3DR1mfE26Q4cO1uyQMRQWFuLgwYP48MMPnW1vv/12qKqKwsJC8Dyf9JqdWOdcRUKVNeypU6fi+uuvx4knnojc3GSZ4ZkzZ2LnTivxMhgM4u2330ZZWUXGfV5ennXdGYf27dtjzZo1YIw5QVPGOBw+fBgdO3YEkQk9XrUgSh4UFxcjP9+65poSRVZWFkRRRGlpqXP9ACBaHoYsy46jkIimxcALonOdNC0Gzqi6lp+bmwvGGNRYFLI3gNzcXBQXF8evSbwqAFYeSCoMQ8ORI0cQCATg9XoRi5TB48tCfn4+Dh8+7GzXoUMHqGoUgiDjj3/8I1566SU88sgjWL9+Pf70pz9h4sSJ2L//IGRZQn5+HsS4QI/VRolBEAVHcjrVDJXneYhiENnZQSiKilCoDHsL90HgBWRnBxHwe+PdPpP3ZYyBYxxEToAsSlBMgsSlaEqVIRhjILJEpCJlMcQiKjw+CVwdZuqNYQPPLMdJUTSnEqHW/cAAS3kEHCmgSvtwHIPXI6CsLAo5L9AkjbtcMofrEGQAXdfRv39/fPbZZ+A4HpoSxcSJE/HrX/8aK1euxEknneQkne3YsQM9evQAAGzbtg39+vUDUHGzNwwrFHv55Zfjueeew+TJk+EPtgfHcfjyyy/x448/4uKLL3bO/d133+Hkk08GAKxevRpnn302evToAa/Xi2nTpqF3797V2l05k1vXdeeGTUQIBAIoKCiwZm6A4/RIcsVas31DNA0DQ4YMwerVq/Hb3/62yo1yyJAhOHLkCH73u99VsUOSJJSUlFgza28WYkqJ89pll12GOXPm4Oabb66y34IFC7Bw4UL07dsXZWVlVRpafffddxg9erRzbfr27QvTNOODK4FMAwMHDsSLL74IgMGflQsW1zno378/XnjhBRARPL4srF+/Hn6/33ESbMRKIkX2NQIAT4I8ck0Dx7Zt21BSUoKcnBwcOXIEe/fuxdFHH40DBw7gwIEDICIIoowffvgh5Xl4XkSXLl1gmia2bNmC3r17wzAMrF69Gr/85S8r2UDgBQF+UcKvfvUr/OpXv8KHH36I+++/H5dffjl6HFUAIqPeA51TPeKRIcsS8vLaIRyOoDRUhuLiI/B6vcgOZsHjkeKVGtZ+9vdfFAWU6wRRahnOgC1aZDvsviwZumqgrDgMb0CG5JGqjMtN6STwHAee56BpBkSxwrlMeU4icIxZThxjALGk1wxVg2aYEJmJiKZZehAAItHmab7m0vS4DkEGUGNRjBo1Co8++qizrtqxY0f85S9/wejRozFx4kT07dsXGzZswJdffunc2JcsWYLRo0fDNA2QWdEWWVOjuP322/HZZ59h6NChuOqqq7B37168+eabeO2115zZKQC8/PLLKC8vR2FhIVavXo1XX30VsizjkUcewQUXXIBbb70VgUAAy5cvx4wZM3DiiSdWGF7pJrJjxw5cdNFFuPTSS9G5c2esWrUKq1atwssvvwzAaix17733YujQobj++uuT9tW0GMaPH48//elPuOyyy3D++eejpKQEGzduxKuvvopbb70Vw4cPxy233IKTTz4Ze/bsgaZpePTRR3HqqafimmuugSRJOO2003D66ac7xw0Gg/jyyy9TXvdhw4bh7rvvxujRo/Huu+/C70/WOHj77bfjwjcRzJs3DytWrICuWep4ViZ3DJMmTcKzzz6Lyy+/HOeffz62bduGSZMmYeTIkWjfvj2uuOIKnHHGGXjhhRfw2GOPVb3xVnKqjj76aBQXF+OOO+5Ajx49cMcdd6S0PZFgMIjJkyfj4osvxttvv40bb7wROTk5yMrKgt/vx/Tp0x3Jbpvs7Gx06tQJN954I7p164aHHnoIDz30EMaPH4+bb74Zn376Kfr37590La3PyYTHy+Hmm29Gr169kJ+fj3feeQdnxzuOMtZ4bZXtcHcwmIWsrABUVUOorAxFBw5CEAT4fV5kBfwQRQEcHy+n1FT4eAEMaBS56YZCmo5Y0WFQvB24bRBFVZQfIEdtEmDgAl7IuXXLyiciKKoBSeRTl1qaBOgGKKYCigYQIDKGmKbB5DkwngPjeYiy6HxqRFYUL7qvCFIwCE9xKZSYBDJ0SFoIHM8jevgQ9EgUmqpCzgqCP3QIrGNnCB4ZYqhuOicuLRe37LAZKS0tRU5ODrZt2Yievfrh0ksvxfTp03HmGcNRFipBbvuOKC4uxnvvvYcDBw7g6KOPxpgxYxAIBKAoCgYNGoRvvvkGAgeESpPb8Obmd4LH48PXX3+NL774AtnZ2ZgwYQLat2+PslAJsoI5OPbYY/G3v/0N69atg2EYmDhxInKysxAp2Y9gfgF++uknLFiwAKZpYvDgwTj77LMhCALee+89jB07FtFIGYLZufjwww8xfPhwBAIBrF+/HsuWLUNJSQm6deuGiy66CAG/H5qmQJQ8+PLLL3HgwAGMGDECBw4cgGma6Nu3Dw4W7UX7Dp3B8QI++eQTrF27Fnl5eRg5ciT69OkD0zQRi8XwwQcfYNu2bejatSvOP/98dO7cGQCwceNGbNiwAUcddRQGDhyIefPmYdKkSTh8sAi6Zi1ndOxSgC+++AI9evRAQUEBFEXB22+/jUOHDuHiiy/Gnj17cNxxx6F9+/Y4++yzce+996KoqAjhcBjjxo1Dp04dcaDIckQ0TYMsycjv2AWMs3pobNy4ET179sQll1wCn88HVVXx/vvvY/fu3Rg+fDhOPfVUmKaJQ4cO4ccff8TZZ5+NstIjMMHh66+/dvppHDx4EN9++y0YYxg9ejQWLlyIM844A4auQOAFRGKqs39xcTFWr16Nrl27Yv78+ejXrx8uuugihMtLIcs+lIZCmDt3LiRJwrhx4/Dtt986S0alpaVYtmwZIpEIJkyYACLCN998g6VLl6J379645JJLwHGWuuO7775rXaPdO9GjZy+sW7cOX375JcrKyjBo0CBccMEFiJSHUFpyGE0JEcEkE0pMQUlpCLGYYuVbiCJygllgAgdDNcDxyVLTRnymzsd7U5gE8MxezqjDrLzy3bGW3bTyCLTCQxAEEWQSCORE0OwD2vk/Ohnw9uwCjk9fFdA0CfsPlKF9e7+1REMEGCYoEgMdKYd5sBR0OAQqjwCMA/NIgMg7gz4RAEkCSTyEcMy6DoxDmFehGNbyG8eLkCQZTDcgRhkgCCiNHQbn90CPRJDVqQu0snIEPEEw1UBZJILjbv0FSkpKkJ2dXfMbcGnRuA5BM7Jnzx50794dgNWCuVu3bvjLX/6Cp59+GoMGDUI4HMa0adNwwQUXIDs7G4WFhfjoo49w++23Y9WqVdi2bRtuu+02dO3aFYWFhUnHZozhoosuwrRp09C/f39EIhEsWrQIL7zwAjp27Ijly5fj2GOPxdy5czFw4ECsXbsWS5YswSOPPILi4mKceuqpTpMonufx448/Yt68eejatStOO+00rF27FrNmzcINN9yA0aNHY/PmzVi2bBnOP/98DB48GMFgEPv27cPSpUvx7LPPori4GFOnTsXIkSORm5uLzp07o6ysDEVFRXjqqaewfPlyiKKIqVOn4oorrnBmyitWrMALL7yA7du345ZbbsH48ePRuXNn7Nu3D19++SX+9Kc/oUuXLrj22mvRvXt38DyP/Px8HDx4ECtWrMBvfvMbGPFEzSuuuAJXX301iouL8fvf/x6XXHIJxo8fj5ycHPTu3Rs7d+7E1q1bMXLkSJx99tmYNWsWRowYge+//x5ffvklHnnkEezbty/pOsuyjGnTpuHKK69Et27dsHfvXixYsAB//vOfMXXqVFx55ZVo164dfvzxRzz33HPYtGkTZs2ahS5duuDtt9/GwoUL8fDDD6N379744IMPMG/ePMyYMQPHHHMMZFlGv3798NNPP2Hz5s146KGH4Pf78Zvf/AZdunTBp59+ij59+mDMmDHo3r07Nm/ejL179+KNN97Aa6+9htzcXDz88MM488wzEQwG0aNHDyxduhTz5s3DnDlzMGPGDAwePBg+n+U4rlixAjfffDP69++PXbt2Yd68eXjhhRfwf//3fzjttNOwZs0azJo1C0OGDMGNN96IE088EdnZ2di0aRPefPNNvPHGG+76sYvD7t270a1bt0yb4dIAXIegGTFNE4WFhcjKygLP8wgEAs7z4XC42pur1+uFKFrJZrFYDKqq1um8HMchEAjg7rvvxowZM9ChQ4eUSW2pCIVC6N69O3bv3t0qRUdqs58xhqysLDz22GO49NJL0bt3bycHoiXQ1q9/S8e1v3aICGVlZejSpYtTTeTSOnEdApcasdUVW6sKmWt/ZnHtzyyt3X6X5sV151xcXFxcXFxch8DFxcXFxcXFdQhcakGWZcyaNQuyXLX5T2vAtT+zuPZnltZuv0vz4uYQuLi4uLi4uLgRAhcXFxcXFxfXIXBxcXFxcXGB6xC4uLi4uLi4wHUIXFxcXFxcXOA6BC4uLi4uLi5wHYKfPa29yMS1P3O0ZtsB134Xl8q4DsHPGE3TsH//fufv1naD0XUdpaWlmTaj3rRm+1uz7UDrt7+1/3ZdWiauQ/Az5amnnkK/fv0wevRoXHHFFVi9enX6LWFbAE8++SSOP/54jB49GnfffTe2bt0KoPXcGFuz/a3ZdqD129/af7suLRdXmOhnyJNPPonnn38ef/jDH1BUVIQPPvgA69atw0cffYTBgwdn2rxaeeCBB/D3v/8dv/3tb/HDDz9g8eLFCIVC+Oqrr5Cbm5tp82qlNdvfmm0HWr/9rf2369LCIZefDYZhkKZpdOGFF9KMGTOSXjvuuOPo4osvps2bN2fIutoxTZNCoRANGzaMfve73znP7969mwoKCmjq1KlUWlqaQQtrpjXb35ptJ2r99rf2365L68BdMvgZwXEcTNPE+vXrccIJJwAAYrEYAOCll17C8uXL8cknn0DX9UyaWS2MMXAchzVr1uDEE08EYK0Fd+vWDS+99BJef/11fPnllxm2snpas/2t2Xag9dvf2n+7Lq0Dd8mgDfPaa69h+fLlOP7443HxxReje/fuAIBJkybh0KFD+N///gcAME0THMfh6quvxqZNm7B48eIW0Tv973//O77//nsMGTIE5557LnJzcxGNRjF27Fh07doVb7zxBoAK+8877zwIgoAPP/zQec61/+dne1uwv7X/dl1aKZkOUbg0PocPH6YxY8ZQly5daPLkyXT00UdTjx496MMPPyQiojfffJO6detGCxcuJCKiaDRKRESbN28mxhitX78+Y7YTEe3bt49GjhxJXbt2pbFjx1LXrl1p8ODBtGnTJiIievTRR2nIkCG0bNkyIiJSFIWIiBYtWkSCINCePXsyZjtR67a/NdtO1Prtb+2/XZfWjbtk0AZZuXIlNm/ejOXLl+Ott97C1q1b0bt3bzz55JP49ttvccEFF+Ckk07C7NmzAQAejwcAwPM8unbtih9++CGT5uPzzz9HUVER1qxZg/fffx9r1qxBNBrFvffei927d2P8+PEIBAJ46aWXAACSJAEAfD4fOnfu7GSNZ4rWbH9rth1o/fa39t+uS+vGdQjaEBRf/fnhhx8gyzL8fr/z2m9/+1uYponnn38eOTk5uPHGG7Fjxw7cddddMAwDALB582Z4vV6cfvrpGbOfiPDVV1+hU6dOCAQC4DgO7du3x4svvogNGzbgb3/7G4499lhMnDgRK1aswFNPPeXsv3fvXvj9fgwcONC1/2dke1uxH2i9v12XtoGQaQNcGsZXX32FYDCIo446ylk7NE0T4XAYgHWjYYzhpJNOwoUXXoh33nkHn3zyCS688EI8+eSTuO666/D5559j4MCBeOedd3D11VcjPz/f2a+pWblyJTp16oQOHTo4szVZllFUVASPxwPDMMDzPEaMGIFzzjkHH3/8MSZOnIhrr70W4XAYd911F5YsWYKCggL84x//wI033ohgMOja38Ztbwv2t/bfrksbpLnXKFwah02bNtHJJ59MHTp0oKOPPppOPvlkev/994mIaP/+/eTxeOj1118nIiJN04iIaNeuXXTcccfRY489RoZhEBHRp59+Sk8++SRNmTKF5s+f32z2b9iwgYYMGUIdO3ak3r170/nnn0+rVq0iIqJVq1YRz/O0aNEiIiKKxWJERLRlyxbKy8ujt956yznOv/71L7rvvvto3Lhx9N///te1v43b3hbsb+2/XZe2i+sQtEI0TaPrr7+eJk6cSDt37qTVq1fTRRddRMcddxx98MEHRER0ww03UEFBAUUiESKy6rCJiCZNmkRjxozJmO1ERGVlZTR+/Hj6xS9+QZs2baIlS5bQoEGDaOTIkbR8+XIiIrr44otp0KBBzj66rhMR0YgRI2jq1KkZsdumNdvfmm0nav32t/bfrkvbxnUIWhH2jWH//v2UlZVFb7zxhvPaTz/9RL/4xS9owIABRGQJrnTs2JGmT5/uZCKbpknjxo2jm266qfmNpwr7t2zZQoFAgBYsWOC8tnz5cho7diyNHTuWiIi++OILCgaD9PjjjzvbhMNhOu200+ihhx5qXsPjtGb7W7PtRG3H/tb623X5eeDmELQCSkpKkJOT46wLlpeXo1+/ftA0zdmmb9++mDJlCj7//HPMnj0b//d//4cXX3wR11xzDY4cOYLLL78cO3fuxPLly/Hqq682q/2RSAQ+n8+x/8CBA+jRo4eTIQ0AQ4cOxfjx4/H000/j9ddfx5QpU/D444/j9ttvR2lpKcaMGYN169Zh165dOPfcc137fwa2twX7W/tv1+VnRqY9Epfq2bhxI5133nk0YsQIuvbaa+mTTz4hIqJIJEJDhgyhO+64I0lutaSkhH7961/TySefTIcOHSIiorfeeosuuugiGjx4MB199NE0d+7cZrN/w4YNNGbMGBo/fjzdeeed9MMPPxCRFfbNy8uj3//+987MiYho7969NHnyZJo0aRKVlZUREdETTzxBw4cPp/79+1NBQQH9+9//du1v47a3Bftb+2/X5eeJ6xC0UFatWkWdO3emqVOn0l//+lcaNmwYdevWjd555x0iInryyScpNzfXEVixefPNN+n44493bqA227dvby7TiYho6dKllJeXR9dccw3Nnj2bevToQSeffDJ9+umnRET0q1/9irp37067d+9O2m/27Nl0wgkn0MGDB53nTNOk77//3rX/Z2B7W7C/tf92XX6+uA5BC8Oe9cyePZvOPPNMJ7HowIEDdOutt1Jubi7t37+fiIh69epFkydPpm3btjn7/+9//yPGGG3ZsoWIyMlIbm5mzpxJ48aNc97Pjz/+SJMmTaKjjz6aiIhKS0spPz+f7rjjDgqFQs5+7733Hnk8Huem7tr/87KdqPXb39p/uy4/X1xhohbC1q1boWmas9a4adMmMMbg9XoBAPn5+XjkkUeQm5uLe++9FwDw3HPPYdmyZfjDH/6A7du3Q1VVfPjhh7jooovQuXNnAGg2TfYDBw4k9ZPfsmULJEly3s8xxxyD++67D6FQCLNmzUIwGMRTTz2Fv/zlL3j55ZdRVFQEIsLChQsxceJE5OXlNav9tu2mabZK+xNprbbbn0Frtd+mtf12XVwcMuiMuJBVXzxmzBg65ZRT6KOPPnKe/8Mf/kDHH3+8o8Fuzxbeeust4nneCZe+/PLLNGTIEOrWrRsde+yx1L59+2atqd65cyedcsopdOWVV9KRI0eIyCqtmj59Oo0ZM4b27t3rbKtpGs2ePZuysrKcdd4HHniAjjnmGOrbty8df/zx1KFDB2e9takxTZMOHz5M55xzDj3wwAPOc63F/j179tATTzxB//znP506/Fgs1ipsJyIqLCykt99+m5YtW0aHDx8mIqu3QGuxv6ioyGk5bJc2ErWe366LS2VchyAD2KHQRYsWUZcuXWjChAm0Zs2apMYqH3zwAZ166qn09NNPJ+23f/9+GjhwoDOAEVmlTB999BHNmTOn+d4EEd1xxx0kCAJdeumlTijUfm+vvPIKDRo0iN59992kfVatWkUDBgyg559/noiIVFWlzZs30xtvvEEvvvhis9pPRLRgwQJijJEsy0nh27/+9a80cODAFmv/XXfdRV6vl0aNGkV9+vShnj170nfffUdERC+99FKLv/Z33XUXBQIBOvvss8nn89GECROcAbQ12P/4448Tx3F05plnOs/ZA/9///vfFv/bdXFJhesQZJCpU6fSnXfe6fxtD6o2kyZNolGjRtE333zjPBeJROiMM86gBx98kEzTzMg6Y2lpKbVr147at29PX3zxhfO8rapmc9JJJ9HkyZOdWRQR0ZEjR6hv3770t7/9jYgyv046a9YsuvXWW+nCCy+kUaNGJb3WEu0/cuQIXXLJJXT66ac71/67776j0047je65554WbTsRUXFxMV1//fU0bNgw+vzzzykWi9G//vUvOuecc+juu+9u8fYrikL33HMPDR06lK655ho67rjjHHsSv/+XXXZZi/zturjUhLtIlSEKC8mIdwAADjNJREFUCwuxfv16jB8/HmvXrsU555yDMWPG4PTTT8df/vIXAMDMmTMRDofxxBNPOPuZponi4mL07NkTjLGMrPMGg0Gcd955OProo3H66adjxYoVuP766zFjxgw8++yz2LBhAwDg7rvvxpo1a5z3AwCKokDXdbRr1w5A5tZJ7aYwoigiJycHd911Fz755BN8+OGHzjYPPfQQVq9e3aLsz8nJwSWXXIInnngCw4cPBwAMHjwYsixj3Lhxznb33ntvi7z2hw4dAmMM99xzD8444wzIsoxJkyYhEAhAVVUnh+P+++9vkfZLkoRevXrhuuuuw4MPPohTTjkFL774IsrKyiAIAlRVBQDceuutiEajLeq36+JSK5n2SH4O2DOBxBlEaWkpeTweeuedd2jSpEn061//mubOnUszZswgURQdLfN//vOf1KtXLxo0aBA9+OCDNHz4cBo4cGDSzKk57bfXSktKSkgURTr22GOpW7dudO2119K4ceOoX79+dMwxxzj7PPLII9SvXz8644wz6M9//jOdfvrpdMopp1BhYWFG7K/MmDFj6M033yQiosmTJ9Nxxx1HxcXF9PbbbxMR0e9+9zvq27dvxuxPZbutz09EdPDgQRo7dizl5OTQ+eefT3fccQeVl5cTEdFjjz2WUdsT7VdVlYgsHYHEMkD79cmTJ9Ott96atO9jjz3Wor479nJY4sz+v//9Lw0ZMoQefPDBKq+99dZb1Lt374z+dl1c6oLrEDQxv/nNb2j06NFJz9k3jTFjxlB+fj6dffbZSSIlkydPplNOOcV5bsuWLfTLX/6SLr74YpoxYwYpipJR++3B6emnn6a+ffvSt99+69wsV69eTQUFBTRjxgwisiRjv/76a5o8eTKNGDGCbrnlFmdwyJT9RBVJYBMmTKCPP/6YiIi+//578ng8xBijGTNmkKqqFIvFMmZ/dbbbFBUV0TnnnENjxoyh+fPn05NPPkl9+/alcePGEZEVom5J1z5RSIio4neg6zr16NHDaTxkf78VRWlR9qciFArRfffdRwMGDKAff/yRiCjJxkz+dl1c6orrEDQRGzdupEsuuYTy8/OJMeZol9uDqWEY9Nxzz1G7du3o2muvTXpt69atSfXINs15M6zJ/sQb+2effVblufvvv5+OO+44Z6ZqY+uyNwe1XX+bM888k3744QdasGABdejQgfLz88nn8zkVE4nZ481lf7q2E1UVrZk/fz75fD7at29f0vMt4donXstEvv/+eyooKKCffvqp2mO2BPsrX3/7O79s2TIaMWIEXXPNNc5rlX+rzfnbdXGpL+4iVhOxZs0a+Hw+vPLKK5g+fToeeOABmKYJQRCg6zo4jsN5552HoUOH4uOPP0ZxcTEEwWotsWHDBvTp0wdkOWzOMUVRbBH2JzJixAgIggDGmGPrunXr0KVLF0iSlGR/ov58Ju23bdq9ezcURcGZZ56JK664AjNnzsSSJUtQUFCAX/3qVwCQ1Fe+uexPx3abHj16AKio4f/uu+/QvXt3GIbR4q49z/NV7AeAH374AZ06dULfvn0BAB9++CF+97vfJW3TEuyvfP3t78bQoUNx8cUXY+XKlZg/fz7mzp2LG2+80clTAZr3t+viUm8y5Ym0VexZQ2lpKa1YsYKIiFasWEG9evVysqgTZxqff/45de3alUaPHk1vv/02ff/993TeeefR1VdfXSXE2lLsr26mR0T09ddf02mnnZbUd745qav9V155Jc2cOTOp5PDFF1+krKwspza+uWjotV+7di2NHDmSHn300aY3NgX1tf+qq66ie+65h/bv30/nnnsuiaJIs2fPbj7D49THfnufn376ic466yxijJEkSXT//fc3o+UuLo2D6xA0A+Xl5fT73/+esrOzaceOHUSUHEJcuXIlnX322TRgwADq1KkTXXXVVRQOhzNlbhVS2Z94Y9y2bRvNnTuXpk2bRoFAgG677bYWtVaayn47Ma/ysgaRtfbenCHqmqjt2m/fvp3+/e9/04033kg+n49uvPHGFmM7Ue32Hzx4kAoKCqhHjx4kiiJNmDAhKZ8m09RmP5ElsDR16lRijNEtt9ziCCe5uLQ2XIegCUic2dv/3rhxI51++uk0fvz4pG3txKpYLEY7d+6knTt3Np+h1VAX+4msWdTUqVNp1KhRtHr16mazszrqan9Loq62r169mm699VYaO3Zsq7z2O3bsoIKCAho+fHirtJ+IaM6cOXTmmWfSypUrm8VGF5emwnUIGplUiV/282+++SYFg0H67LPPiMjq6lZZjCjT1MX+JUuWUHFxsaPC1hKo6/U/cOBAc5pXI/W59kTktMvNNHW1v6SkhMLhMK1du7Y5zayWun53ioqKiKhq9YSLS2vFdQgaicSbiaZpdOedd1apNy4sLKTJkydTnz596PzzzyfGmLNWmWnqa/+3337b3KampDVf/5/rtW/t9reE746LS2PiVhk0EDub286+f+aZZ5CXl4d58+YlZajb2x48eBBbtmxBbm4uCgsLcdJJJ2XC7CSbGmL/ySefnAmzk2xqrdf/537tW7v9mf7turg0Opn0Rlo7iclFixcvpl69elHHjh3plVdeqRJ+3LBhAw0ZMoR69epFy5cvb25TU+Lanzlas+1Erv0uLm0R1yFoILt27aILLriARFGkX//619WWqoXDYfrf//7XvMalgWt/5mjNthO59ru4tDVch6AB/Pvf/yZBEGjMmDG0YcOGTJtTZ1z7M0drtp3Itd/FpS3CiFJIh7mkxbZt27B//34MGzYs06bUC9f+zNGabQdc+11c2iKuQ+Di4uLi4uICt8rAxcXFxcXFxXUIXFxcXFxcXFyHwMXFxcXFxQWuQ+Di4uLi4uIC1yFwcXFxcXFxgesQuLi4uLi4uMB1CFxcXFxcXFzgOgQuLi4uLi4ucB0CFxcXFxcXF7gOgYuLi4uLiwtch8DFpU2yY8cOMMawZs2aJjk+Ywzvv/9+kxzbxcUlM7gOgYtLE3Dttddi3LhxGTt/9+7dsW/fPgwcOBAAsGTJEjDGUFJSkjGbXFxcWjZCpg1wcXFpfHieR6dOnTJthouLSyvCjRC4uDQzS5cuxSmnnAJZltG5c2fce++90HXdef3ss8/G7bffjrvvvhu5ubno1KkTfvOb3yQdY+PGjRg+fDg8Hg8GDBiAxYsXJ4XxE5cMduzYgREjRgAA2rVrB8YYrr32WgBAjx498MwzzyQde/DgwUnn27x5M84880znXIsWLarynnbv3o3LLrsMOTk5yM3NxSWXXIIdO3Y09FK5uLg0I65D4OLSjOzduxejR4/GySefjLVr1+LFF1/Eq6++isceeyxpu9dffx1+vx/ffPMNnnjiCTzyyCPOQGwYBsaNGwefz4dvvvkGf/nLX3D//fdXe87u3bvjP//5DwDgp59+wr59+/Dss8+mZa9pmrj00kshSRK++eYbvPTSS7jnnnuSttE0DaNGjUJWVha++OILfPXVVwgEArjgggugqmpdLo+Li0sGcZcMXFyakRdeeAHdu3fHc889B8YY+vfvj8LCQtxzzz146KGHwHGWj37cccdh1qxZAIA+ffrgueeew6efforzzjsPixYtwtatW7FkyRJnWeDxxx/Heeedl/KcPM8jNzcXANChQwfk5OSkbe/ixYuxceNGfPzxx+jSpQsAYPbs2bjwwgudbebOnQvTNPHKK6+AMQYAeO2115CTk4MlS5bg/PPPr9tFcnFxyQiuQ+Di0oxs2LABw4YNcwZOADj99NNRXl6OPXv2oKCgAIDlECTSuXNnHDhwAIA1y+/evXtSjsApp5zSZPZ2797dcQYAYNiwYUnbrF27Flu2bEFWVlbS87FYDFu3bm0Su1xcXBof1yFwcWmBiKKY9DdjDKZpNvp5OI4DESU9p2lanY5RXl6OIUOG4K233qryWn5+foPsc3FxaT5ch8DFpRk55phj8J///AdE5EQJvvrqK2RlZaFbt25pHaNfv37YvXs39u/fj44dOwIAVqxYUeM+kiQBsPIPEsnPz8e+ffucv0OhELZv355k7+7du7Fv3z507twZAPD1118nHePEE0/E3Llz0aFDBwSDwbTeg4uLS8vDTSp0cWkiSktLsWbNmqTHjTfeiN27d2PGjBnYuHEj5s2bh1mzZuHOO+908gdq47zzzkOvXr0wZcoUrFu3Dl999RUeeOABAEhaikjkqKOOAmMM8+fPx8GDB1FeXg4AGDlyJP7+97/jiy++wPr16zFlyhTwPO/sd+6556Jv376YMmUK1q5diy+++KJKAuNVV12F9u3b45JLLsEXX3yB7du3Y8mSJbj99tuxZ8+e+lw6FxeXDOA6BC4uTcSSJUtwwgknJD0effRRLFy4EN9++y2OP/543Hzzzbj++uudAT0deJ7H+++/j/Lycpx88smYNm2aM0h7PJ6U+3Tt2hUPP/ww7r33XnTs2BG33XYbAOC+++7DWWedhbFjx2LMmDEYN24cevXq5ezHcRzee+89RKNRnHLKKZg2bRoef/zxpGP7fD58/vnnKCgowKWXXopjjjkG119/PWKxmBsxcHFpRTCqvIDo4uLS6vjqq68wfPhwbNmyJWlAd3FxcUkX1yFwcWmFvPfeewgEAujTpw+2bNmCX/7yl2jXrh2+/PLLTJvm4uLSSnGTCl1cWiFlZWW45557sGvXLrRv3x7nnnsunnrqqUyb5eLi0opxIwQuLi4uLi4ublKhi4uLi4uLi+sQuLi4uLi4uMB1CFxcXFxcXFzgOgQuLi4uLi4ucB0CFxcXFxcXF7gOgYuLi4uLiwtch8DFxcXFxcUFrkPg4uLi4uLiAtchcHFxcXFxcQHw/456XTjaTBhCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='pairing_dict',\n", + " allow_candidate_values=[1, 2],\n", + " allow_benchmark_values=[0, 2]\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "8e4c5a2d", + "metadata": {}, + "source": [ + "#### Registration of Custom Functions" + ] + }, + { + "cell_type": "markdown", + "id": "1b259d70", + "metadata": {}, + "source": [ + "In this case we register the arbitrary pairing function `multiply` with the name \"multi\" and then vectorize it. `Multiply` can also be passed in as a function in the `comparison_function` argument" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "972f07aa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAF/CAYAAAA2D9EJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd4AU5fn4P1O23l7j4IBTBBQUbNgViN2IijHYUNTYozEQJcaoMdGIyS9Go4m9JUZN7BrFGhT1a4lgQ7GLgiIinePa3pYp7++PvVlm92Z3Z8sVcT5mw93MO+/7zrtz8z7v8z5FEkIIPDw8PDw8PL7XyH3dAQ8PDw8PD4++xxMIPDw8PDw8PDyBwMPDw8PDw8MTCDw8PDw8PDzwBAIPDw8PDw8PPIHAw8PDw8PDA08g8PDw8PDw8MATCDw8PDw8PDzwBAIPDw8PDw8PPIHAI4u33noLSZKQJIkrrriir7vjUUFOPfXU9Hd79tln5yyXSCQYMGBAuuzLL7/ce50sktNPP52qqirWrFmTcdzqe77PqaeemnHNiBEjupWpqalh991355prriGZTHZrP5FI8Le//Y3x48dTW1uL3+9n6NCh7LbbbvziF7/gmWeeydn35uZm/vSnP7HPPvvQ2NiIz+ejtraWnXbaiXPOOYeXXnqp6PHYb7/98t7znDlzcl579913s8ceexCJRBgwYACHHXYY8+bNK6kdSZKQZefpZfny5Zx22mk0NTURDAbZeuut+f3vf088Hu9WduXKlYRCIX7+858XPRYexaP2dQc8+hf//ve/0z/fd999XHbZZX3YG49sLr/8cmbNmsVdd93VbUIrhkceeYQbb7wRv9/f7dwzzzzDhg0byuhl7/Dhhx9yzz338Ktf/YrGxkbHMqecckrO63/wgx84Hj/66KOJRCIIIVi6dCnz58/nnXfe4amnnmLu3LnpMWtpaeHAAw/k3XffxefzMX78eJqamujo6GDBggXcdNNNzJ07l8mTJ3dr4/HHH+fUU0+lra2NSCTCnnvuSWNjI9FolE8//ZTbbruN2267jcMOOyyvUJEL6x6y2WyzzRzLz5w5k+uvv55QKMTBBx9MPB5n7ty5PP/88zz66KNMmTIlo/whhxzCiBEjHOtasGABH330EXvvvXe3c4sXL2b8+PGsW7eO7bffnr333pt33nmHK664ghdffJEXX3yRQCCQLj906FDOOussbrnlFmbOnMnWW2/tfhA8ikd4eHSRTCbFwIEDBSCGDBkiAPHGG2/0dbc8bPz+978XgLjrrruKvvaUU04RgNh5550FIB5//HHHckceeaRQFEWMGzdOAOL//u//yupzT3HEEUcIn88nVq9e3e0cIIp9vQ0fPlwA4quvvso4/t5774na2loBiBtvvDF9/Be/+IUAxE477SSWL1/erb4333xTzJo1q9vxp556SkiSJFRVFVdffbWIx+Pdynz66afilFNOEaNHjy7qHvbdd1/He8jH3LlzBSAaGhrE559/nj4+b9484ff7RV1dndiwYYPr+vbYYw8BiL///e/dzk2cOFEA4txzz00f0zRNHHnkkQIQv//977tds3z5ciHLspg6darrPniUhicQeKR58sknBSAmTpworrjiCgGI6dOn93W3PGxUQiC4+uqrhSzL4phjjulWZsOGDSIQCIiDDz5YTJo0qd8KBMuWLROyLIvDDz/c8XwlBQIhhJg1a5YAxIEHHpg+1tTUJAAxd+5c1220t7enhe5///vfBcu/8847rusWojSB4NBDDxWA+Nvf/tbt3LnnnisAcc0117iq6/PPPxeACAaDoqWlJePcm2++KQDR2NjYTQhatWqV8Pl8or6+Xmia1q3eAw88UPh8PrFq1SrX9+VRPJ4NgUeae++9F4CTTjqJk046CYCHHnoITdNyXvPBBx/wox/9iLq6Oqqrq9lnn32YO3cuL7/8suM+rbWP/fLLL/Pcc8+x//77U1dXhyRJtLS0pMvNmTOHyZMnM2jQIAKBAFtuuSXnn38+69evd+yHEIIHHniAAw44gPr6eoLBIGPHjuXyyy+ns7OzW3lrD3Tp0qU89NBD7L777oTDYTbbbDMuvPDC9H7xkiVLmDZtGo2NjYTDYfbff38++OCDnONRTL/tY/Hqq69ywAEHUF1dTU1NDZMnT+aTTz7JKD9ixAhmzZoFwGmnnZaxX1vMPv/QoUM54IADePrpp2ltbc049/DDD5NIJNLfvxMLFy7kwgsvZNddd824z5///OesWLGiW/mlS5ciSRL77bcfbW1tnHfeeQwbNiz9Hf3tb3/DNE3X/Qf45z//iWmaTJs2rajrSmXnnXcG4JtvvkkfW7t2LQCDBg1yXc/dd9/NunXrmDBhQt4xtth1112L7GlxxGKxtK3CMccc0+28deypp55yVZ/1DvnRj35EbW1txjlr6+NHP/pRxrYAwODBg9l7773ZsGED//vf/7rVe8IJJ6BpGnfffberfniUSF9LJB79g5aWFhEMBoXf7xfr168XQggxYcIEAYgnn3zS8Zp58+aJcDgsALHjjjuK448/Xuy+++5CluW0OvWUU07JuMZapf70pz8VkiSJ3XffPX2dtaK46KKLBCD8fr+YOHGiOOaYY8To0aMFILbaaqtuqwTDMMS0adMEICKRiNhvv/3EkUceKYYNGyYAsccee4jOzs6Ma6yV1MyZM4WqquKggw4SRx55ZHr1dvLJJ4vPP/9cDBw4UIwZM0Ycd9xxYocddhCAGDBggONKpdh+W2Nx/vnnC0VRxJ577immTp0qtt5667QKd+XKlenyv/rVr9Jq/IkTJ4pTTjkl/fn0008LfsdWe//+97/FXXfdJQBx5513ZpTZZ599RDgcFu3t7Tk1BMcdd5xQVVXssssuYsqUKWLKlClixIgRAhBDhw4V3377bUb5r776SgBir732Ervuuquoq6sTRx11lDj88MNFKBRyfE4KsdtuuwmgW1sWVFhDcN999wlA7LDDDuljW265pQDEz372M2Gapqs2DjvssG5bD8ViaYmcxsx6rn/3u9+Jc845R0yfPl1cf/314uuvv3as67333hOAGDRokOP5jo4OAYj6+npXfdtqq60EIJ544olu53784x8LQNx8882O115wwQUCENdff323c0uWLBGA2HvvvV31w6M0PIHAQwghxD/+8Q8BiB//+MfpY7fccosAxLHHHtutvGEY6Ynr//2//+dYVz6BABAPPvhgt3offvhhAYjtt99efPHFF+njpmmKyy67TADiuOOOy7jm6quvFoDYb7/9MibQRCIhzjjjDAGIiy66KOMa68UZiUTE22+/nT6+cuVKMXjwYCFJkhg7dqy4+OKL0y970zTFT37yEwGIyy67rOx+W2Mhy3LGfr6u6+Loo48WgLj00kszrqnElsG///1v0dbWJkKhkNh///3T57/++mshSZKYNm2aEELkFAheeuklR6HMUqufdtppGecsgcASHNeuXZs+t3jx4rTqPZdNQzbt7e1CURTR1NSUs0ylBYLjjz9eAOLEE09MH7vyyivT7YwZM0ZcfPHF4vHHHxfffPNNzjY222wzAYj//e9/RfXNjhuBIPvj8/nEFVdc0a38E088kbYryUVdXZ0ARFtbW95+zZs3Ly3IJpPJbuct2xUnYUEIIa677rq0gOzEwIEDRSAQELFYLG8/PErHEwg8hBAbXySPPPJI+ti6deuEz+dz3A+0DJFGjx4tDMPoVp9lPJRLIJg8ebJjP6wV8IcfftjtnGmaYqeddhKKoqQnFU3TxMCBA0VVVZXjqr2zs1MMGTJE1NfXZ/TTvpLK5pe//KUAxJZbbtntxfb+++8LQOy7775l9ds+FvZJxuKdd95xbKdSAoEQQkydOlXIspw2iPvTn/4kAPHMM88IIXILBPnYbLPNRENDQ8Yxu0Dw/PPPd7vm1ltv7bY/nw9rL9ouzGTjNClmf7IFkGyBwDRNsXTp0rTmR5Ik8eqrr6bLG4YhLrzwQuHz+brVvd1224lbb721299GMBgUgPjss8+69bm5uTlD65NL+3PjjTeKbbbZRlx88cXd6rj00kvFv//9b7FkyRLR2dkpFi1aJP7f//t/aU3Mddddl1He0nxMnDgx51haQkwubYzFOeecIyC33ZGlLctlc/H3v/89rT10wnqnvPvuu3n74VE6ntuhB8uWLePVV1+lrq6OH/3oR+njDQ0NHHbYYTzxxBM88sgjnHnmmelzr7/+OpByb3LyNz7uuOPSZZw44ogjuh1bs2YN77//PqNHj2b77bfvdl6SJCZOnMjChQtZsGABkyZN4t1332XdunX88Ic/ZPDgwd2uCYVC7LrrrjzzzDN88cUXbLPNNhnnDz744G7XbLnllkDKzsDn8zmeW7lyZVn9LtQHy73K3k6lOemkk3j44Ye5//77+fWvf819991HY2OjY3+yWb9+PU8++SQfffQRLS0tGIYBgKZprF+/nubmZgYMGJBxzYABA/jhD3/Yra5p06ZxzjnnMG/ePEzTzOm/bmHFHKivry/Yz3xuh1tssYXj8ZEjR3Y75vf7ue666zJc6WRZ5qqrruK8887j0Ucf5dVXX+Xtt99m2bJlfPzxx5xzzjk899xz/Oc//yl4TwDRaJR77rmn2/FTTz2VMWPGpH+fMWMGM2bMcKwjO3bI1ltvzSWXXMJuu+3GpEmTuPzyyznrrLMIhUIF+1MMmqbx8MMPA/CTn/ykonVbWM+TZbvhUXk8gcCD++67DyEExxxzTDdjn5NOOoknnniCe++9N0MgsCaqYcOGOdaZ62Wb7/zSpUsB+OKLL5AkKe/169aty7hm7ty5rq7JFgic/LIt/+185xKJRFn9trP55pt3O1ZdXd2tnUpzyCGH0NDQwH333cdBBx3Exx9/zC9+8QtUNf9r4YEHHuCss86io6MjZ5n29vZuAsHw4cMdy9bW1lJXV0dLSwsbNmygoaEhb/uWIaQ1RvkoxQjN8uGXJIlIJMKYMWM48sgjaWpqcizf1NTEueeey7nnngvAp59+yjXXXMM///lPZs+ezQMPPMCJJ54IpITsb7/91vFZ3HzzzRFCpH8/5JBDeO6554ruvxMHH3wwu+22G++88w5vvvkm++23H7DxeXYyvLWIRqNA/vH+73//y/r16xk9ejR77rmnY5lCbRVqp6amBiDD+NijsngCgUc6GNHLL7/cLViLZW3/6quv8vXXX+d8qRdLMBjsdsyyNB8yZEi3VXQ2Vj+sa0aNGsXEiRPzXuM00eRbublZ1dn7UEy/S2mn0vh8PqZOncqtt97KJZdcAlDQ8v3rr79Oe45cd911TJ48mc022yy94pwwYQLz58/PmNgqjWW93t7e3iP1X3PNNTmD7rhh7Nix3HnnnWzYsIHHH3+cZ555Ji0QjBs3jm+//Zb33nuv4PNaaUaPHs0777yToXWyBPPly5c7XhONRmlpaaG+vj6vQGD3UMrFFltswXvvvZezLet4rneMJQjW1dXlbMOjPDyB4HvOggUL+PTTT4FUFLHFixc7lhNCcN9996UnjqFDhwKZblh2ch3Ph7VSHjhwoOuVnXXNmDFj+swlqZR+9xdOOukkbr31VubMmcPWW2/NHnvskbf8s88+SzKZ5IILLuC8887rdv7LL7/Mee2yZcscj7e1tdHS0kIoFHL1sreiEjY3Nxcs25cccMABPP744xlaoUMPPZRnn32WBx98MKfav6ewok9WVVWlj22zzTYEAgHWrl3Lt99+200r9u677wKw44475qy3ra0t7ZaYTyAYN24cTzzxRLrObAq1ZfW/GDdPj+Lw4hB8z7Ek+wsuuACRMjLt9rF83K2yQHp18/jjjzuuBq39xGLYfPPNGTNmDJ988gmff/65q2t23313amtreeWVV/psgiil36Vihc3Vdb0i9U2YMIFx48bR0NDA6aefXrC89VJ22uZ49dVXWb16dc5r169fz4svvtjt+IMPPgjA+PHjURSlYB+22247VFVl0aJFBcv2JIW0IJZwbZ9kTz31VBoaGnj99dcz/p56mrVr1/Laa68BsMsuu6SPh0IhDjjgACAVzjqbRx99FCDDtsipTDweZ+LEiWkbGyesEM5PPfVUt62w1atX89prr1FfX59Tc/LZZ58RCAQYO3ZszjY8ysMTCL7HGIbBAw88AJA3wMvee+/NZpttxqeffsqCBQuA1Opn9OjRLFq0iKuvvjqj/N13351++RTLpZdeimmaHH300SxcuLDb+fXr1/P3v/89/XsgEODCCy+kvb2do446ynGF+u2332bkaOgJiu13qVj72JWcDBcuXMi6deu46KKLCpa1jB3vvffe9J4vpMb4Zz/7WcHrL7jggowgTV999VXaEG769Omu+ltVVcXOO+/MypUr+fbbb11d0xNMmDCBu+66K2McLJ5++mluu+02IDPgTyQS4a677kKSJE477TT+8pe/OCb1Wb58eU4t20033cSYMWP4zW9+k3F83rx5zJ49O23gabF06VKOPPJIotEoRxxxRDdh7vzzzwfgj3/8I1988UX6+Pz587n99tupq6vjjDPOyDkOlmBTyJhwjz32YOLEiaxZsybjWdN1nZ///Odomsa5557bzZAXUgHC1q9fzx577OG43ehRIfrGucGjP/Dss88KQGy99dYFy55//vkCEOedd176mD0w0bhx48S0adPEHnvsISRJEtOnT3d0IbJc3/K5sl1yySVp//xddtlFHHvsseKYY44RO++8s1AURdTW1maUNwwjHR/A7/eLPffcUxx//PHiqKOOEtttt52QJEmMGzcu45p8IV6toD1OcdWFSLm0DR8+vOx+FxoLp3a+/fZbEQwGhaIo4pBDDhGnn366OOOMMxzd2LLJdjsshJPbYSKRENttt52AVL6Lo48+WkyePFmEw2ExYcKEdDAr+7jaAxPtsssu6cBEP/rRj9LPz0knneSqTxaXX365AMS9997reB5bHIxcn+wYD/niEDhh5TcIBoNiwoQJ4vjjjxc//vGPxZgxY9Lt/+xnP3O89rHHHhM1NTXpWBgHHnigmDZtmjj88MPFuHHjhCzLAhB77rlntzwJueIQWM/tkCFDxGGHHSZOOOEEMXHixLSr43bbbeeY90EIIc477zwBiHA4LH784x+LQw89VKiqKhRFyRsf4ptvvhGyLAu/3y+am5sLjtnnn38uGhoaBKSCPB133HHpAE8TJkxwzOsgxMbYJn/+858LtuFROp5A8D3Giu6Xa+Kz8/bbbwtIxSG3xxpfuHChOPzww0VNTY2oqqoSEydOFP/973/FvffeK4BuvtJuBAIhhHjllVfEscceK5qamoTP5xMNDQ1ixx13FDNmzBCvvPKK4zVPPPGEmDx5smhsbBQ+n080NjaKXXfdVVx44YViwYIFGWV7QiAott+lCARCCPHcc8+JiRMnikgkkp543MQKqIRAIETKX/6cc84RI0aMEIFAQGy55ZbioosuEtFo1HFcLYFg3333FS0tLeLnP/+5aGpqEn6/X2yzzTbimmuuEbquu+qTxbJly4SiKOKwww5zPG+NS75PtpBYrEDw/vvvi6uuukocfPDBYqutthLhcFgEAgGxxRZbiGOOOUY8++yzea9fv369+H//7/+JiRMnioEDBwpVVUVNTY3YfvvtxZlnnileeOEFxwiIuQSCTz75RJxzzjlil112EYMGDRKqqora2lqx1157iWuvvbZbtM5s7rrrLrHrrruKcDgs6urqxCGHHCJef/31vNdcddVVAhBHHnlk3nJ2li1bJk499VQxZMgQ4ff7xahRo8Sll16aN+DQAQcc4OUy6AUkIXrQHNjje8vPfvYzbr/9dh588EGOO+64vu6ORx+ydOlSRo4cyb777ltUzoVCHHnkkTz99NN88803DBkypGL1evQvli9fzvDhwznmmGN46KGH+ro7mzSeDYFHyTQ3N6d98O089NBD/OMf/6Curo7DDz+89zvm8b3gD3/4A6Zpcs011/R1Vzx6kL/85S/Istwt6JJH5fHcDj1K5vPPP2f8+PHsuOOOaeviTz/9lEWLFqEoCrfffnuGi5OHRyXZfvvtOeWUU7j11lu58MIL0+6IHpsOK1eu5I477uCnP/1pt0BOHpXH2zLwKJk1a9ZwxRVX8NJLL7FixQqi0SgDBw5kwoQJXHDBBYwfP76vu+jRD+ipLQMPD4/K4gkEHh4eHh4eHp4NgYeHh4eHh4cnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh8f3nssvvxxJkvq6Gx4eHn2MJxB4ePQSd999N5IkZXwaGxvZf//9+e9//9vX3SvIokWL+OUvf8mECRMIBoNIksTSpUv7ulseHh4VQu3rDnh4fN+44oorGDlyJEIIVq9ezd13381hhx3GU089xeGHH97X3cvJ/PnzueGGG9h2220ZO3YsCxcu7OsueXh4VBBPIPDw6GUOPfRQdtttt/TvZ5xxBoMHD+aBBx7o1wLBEUccQUtLC9XV1VxzzTWeQODhsYnhbRl4ePQxdXV1hEIhVDVTPr/mmmuYMGECDQ0NhEIhdt11Vx599NFu10uSxIwZM5g9ezbbb789gUCA7bbbjjlz5nQr+7///Y/dd9+dYDDIVlttxe233+66nwMGDKC6urr4G/Tw8PhO4GkIPDx6mdbWVtatW4cQgjVr1nDjjTfS0dHBSSedlFHu+uuv54gjjuDEE08kmUzy4IMPcuyxx/L0008zefLkjLL/+9//eOyxx/j5z39OdXU1N9xwA0cffTTLli2joaEBgA8//JCDDz6YQYMGcfnll6PrOr///e8ZPHhwr927h4dH/8UTCDw8epmDDjoo4/dAIMA///lPfvjDH2Yc//zzzwmFQunfZ8yYwS677MJf//rXbgLBp59+yieffMJWW20FwP7778+4ceN44IEHmDFjBgCXXXYZQghee+01tthiCwCOPvpodthhh4rfo4eHx3cPTyDw8Ohlbr75ZrbeemsAVq9ezb333suZZ55JdXU1Rx11VLqcXRjYsGEDhmGw995788ADD3Sr86CDDkoLAwA77rgjNTU1fPnllwAYhsFzzz3HlClT0sIAwNixY5k0aRLPPvtsxe/Tw8Pju4UnEHh49DJ77LFHhlHhtGnT2HnnnZkxYwaHH344fr8fgKeffpo//vGPLFy4kEQikS7vFDPAPslb1NfXs2HDBgDWrl1LLBZj9OjR3cpts802nkDg4eHhGRV6ePQ1siyz//77s3LlSr744gsAXnvtNY444giCwSC33HILzz77LHPnzuWEE05ACNGtDkVRHOt2Kuvh4eHhhKch8PDoB+i6DkBHRwcA//nPfwgGgzz33HMEAoF0ubvuuquk+gcNGkQoFEoLHHYWLVpUUp0eHh6bFp6GwMOjj9E0jeeffx6/38/YsWOB1IpfkiQMw0iXW7p0KbNnzy6pDUVRmDRpErNnz2bZsmXp459++inPPfdcWf338PDYNPA0BB4evcx///tfPvvsMwDWrFnD/fffzxdffMHFF19MTU0NAJMnT+avf/0rhxxyCCeccAJr1qzh5ptvZtSoUXzwwQcltTtr1izmzJnD3nvvzc9//nN0XefGG29ku+22c1Vna2srN954IwCvv/46ADfddBN1dXXU1dWlvRk8PDy+m3gCgYdHL3PZZZelfw4Gg4wZM4Zbb72Vs88+O338gAMO4M477+TPf/4zM2fOZOTIkVx11VUsXbq0ZIFgxx135LnnnuP888/nsssuY/PNN2fWrFmsXLnSVZ0bNmzg0ksvzTh27bXXAjB8+HBPIPDw+I4jCc/qyMPDw8PD43uPZ0Pg4eHh4eHh4QkEHh4eHh4eHp5A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB14cgl7FNE1WrFhBdXW1Y4IaDw8Pj+8aQgja29tpampClr015ncZTyDoRVasWMGwYcP6uhseHh4eFeebb75h88037+tueJSBJxD0ItXV1QD8gMP45qoJjLzobcdyj3/+IUduvUNRdT/++YfdjhVbh5t6ner86qrdc95Lvjrd9M9N3bnGK9fxQnXmO28/V8x9lPKd5rouuw/56s31/eU6Xux3mau/uer56qrdux1beOQ/u/XDqc5KUG5dhcanUs+2236Wez/25yBXPfnu6fHPP6Stw2T4LkvT7zeP7y59qt8ZMWIEkiR1+0yfPh2AVatW8ZOf/IQhQ4ZQVVXFLrvswn/+85+MOpqbmznxxBOpqamhrq6OM844I50xzuKDDz5g7733JhgMMmzYMK6++upufXnkkUcYM2YMwWCQHXbYoVt+eCEEl112GUOHDiUUCnHQQQc5Zo7Lh7VNoOJj9MULUSWf4+fYbXbhxZWfZHxylbU+NdVKt0+ha+wfpzZeXPlJwTq/vn5v5GCwqLaO3WYXjt1mF1dlR1+8kK+v37vgvTv1P7u/Vj2F+jv64oU5x9z63uxj4+Y+rD7m+z6d7rOmWul23N6/Qu1nf39W+8dus0v6mPVdfH393nnv3c0zZNX15cn3OJ7/8uR7un0KPbNuxthtn90+d7k+Ts+O9f0U+0zkegfYx7Gn78f+HBQq4/R8HrvNLtRE5Iz3m8d3lz4VCN5++21WrlyZ/sydOxeAY489FoCTTz6ZRYsW8eSTT/Lhhx9y1FFHMXXqVN577710HSeeeCIff/wxc+fO5emnn+bVV1/lrLPOSp9va2vj4IMPZvjw4SxYsIC//OUvXH755dxxxx3pMvPmzWPatGmcccYZvPfee0yZMoUpU6bw0UcfpctcffXV3HDDDdx22228+eabVFVVMWnSJOLxeI+MzaSmcUxqGpf+/bkV7/PcivczyljHso9b12Ufd2LJdXvx3Ir3M65xqtNer53FU29nq5lvFL6hMsiuf8l1e7Hkur3y9ss6XmgM7PUUcz77uymE9X1mj7Mdp3Gc1DSOxVNvz9l+9r3b+5uvX07n3HyP9vqt78Gqy35v2f16bsX7jHr47PTHPh72j9Mzbm833/dR6Htw8z0Vwum72GrmG3mfo0LPWLFUuj63ON27x6ZFv8plMHPmTJ5++mm++OILJEkiEolw66238pOf/CRdpqGhgauuuoozzzyTTz/9lG233Za3336b3XbbDYA5c+Zw2GGHsXz5cpqamrj11lv57W9/y6pVq/D7/QBcfPHFzJ49O51x7rjjjiMajfL000+n29lrr73YaaeduO222xBC0NTUxK9+9SsuuOACIJX5bfDgwdx9990cf/zxru6vra2N2tpahl/1R0ZfvDDjnNPLatTDZ7N46u0FX3a5JsTsF3U+ctWf79pi6q8ES67bK++k5dQf++Rkvz67rmyhyKonV5vZ4zXq4bOLFozyCXJOAofTODuVLUVYyVdnuVjCAJB+nvOVdbof+ySY6/vojecwXzuV+ntwcy/Wc1mJ+3bb71xtPbLoXeq3/pLW1tZ0tk6P7yb9xiQ0mUxy7733cvrpp6dVTxMmTOChhx6iubkZ0zR58MEHicfj7LfffgDMnz+furq6tDAAcNBBByHLMm+++Wa6zD777JMWBgAmTZrEokWL2LBhQ7rMQQcdlNGfSZMmMX/+fAC++uorVq1alVGmtraWPffcM13GiUQiQVtbW8YnG2ulmL1SgsyXp9MfYrYWoRTyaQMK1Z09gfb0yqXQhJtrjKz+WSu5JdftVXC1Y9VltWkfI6fxcqrPqVw+DUz28XwaIXtZpzqzfy80CWdrXXL1vxisei3crDCz+2n/HqxPT1LOPRejmcvXfm8J2BZu28unwfHYNOg3RoWzZ8+mpaWFU089NX3s4Ycf5rjjjqOhoQFVVQmHwzz++OOMGjUKSNkYNDY2ZtSjqioDBgxg1apV6TIjR47MKDN48OD0ufr6elatWpU+Zi9jr8N+nVMZJ6688kpmzZrV7fjIi97muZWfAPn/GHO9HMulFG2Dm3pyrb77GvuLbFJT18GpzhOuE/aJNx/2VVv2tXbBzs1L1G2b+a61yCVU2stZk/Wkmc5ailK+00lN49iKN2Cqrf4StANu28qH27rcCsG52igXt/eb/ZxVgr4QRtxiGAaapvV1N76T+Hw+FEVxVbbfCAR33nknhx56KE1NTeljl156KS0tLbzwwgsMHDiQ2bNnM3XqVF577TV22KEyVsc9yW9+8xvOP//89O9tbW0MGzasy9L6kx7/47MmH+sPPdcffCn9cNo3tn7vC2Eg33aA1S/7qrnQxFzKy3bx1Nthqrv6il1NuhUknK4rps5cGopJTfQ6vT05VWpC7K1+l/pM5KOY7YreQAjBqlWraGlp6ZX2NlXq6uoYMmRIQcPPfiEQfP3117zwwgs89thj6WNLlizhpptu4qOPPmK77bYDYNy4cbz22mvcfPPN3HbbbQwZMoQ1a9Zk1KXrOs3NzQwZMgSAIUOGsHr16owy1u+FytjPW8eGDh2aUWannXbKeV+BQIBAIOB4rtJ7tNkvh1z7wtkTYqn9qJRg4dTHUrBeUNaq1KmufAZ9lVD3lkIuuwD7+Vy2EYXqdWs/0Fv37Pa7LWUvvjdXt/15JV0q9ucg3/1NahoH1/VevyxhoLGxkXA47HkyFIkQgs7OzvQ8aZ+/nOgXAsFdd91FY2MjkydPTh/r7OwE6Bb5SlEUTNMEYPz48bS0tLBgwQJ23XVXAF566SVM02TPPfdMl/ntb3+Lpmn4fD4A5s6dyzbbbEN9fX26zIsvvsjMmTPT7cydO5fx48cDMHLkSIYMGcKLL76YFgDa2tp48803Oeecc4q+35EXvQ2SL+f5Yl449rKF1K3ZL9pRD5+dUulWiHJXDtZLqRQDPTe4MZwsNEG7JddE61ZtXegZcNLMWL/nsztx01cn4agnJsFcdhROPzsZhtopR9VfTJneoJJbJW5Zct1eTGpy96wvnno7o+iZv1E7hmGkhYGGhoYebWtTJhQKAbBmzRoaGxvzbh/0uVGhaZrcddddnHLKKajqRvlkzJgxjBo1irPPPpu33nqLJUuWcO211zJ37lymTJkCwNixYznkkEP46U9/yltvvcXrr7/OjBkzOP7449NbDyeccAJ+v58zzjiDjz/+mIceeojrr78+Q5V/3nnnMWfOHK699lo+++wzLr/8ct555x1mzJgBpPxrZ86cyR//+Me0C+TJJ59MU1NTui99QSFJPvu8WyPEYowD7cZoi6fe3s3ArVhDQ2vLoZKr1lxGfOWQz8jTPiFb1vW5rnHC6XvL1w83Ak2hMcjueyXJJWAUc73V/1InIbft9bS2pK9cBvPhJGQVelbc2ISUi2UzEA6He6yN7wvWGBayw+hzgeCFF15g2bJlnH766RnHfT4fzz77LIMGDeJHP/oRO+64I//617+45557OOyww9Ll7rvvPsaMGcOBBx7IYYcdxg9+8IOMGAO1tbU8//zzfPXVV+y666786le/4rLLLsuIVTBhwgTuv/9+7rjjDsaNG8ejjz7K7Nmz2X777dNlLrzwQn7xi19w1llnsfvuu9PR0cGcOXMIBoNlj4GbF3Ypk5pdKHD7h+tmlW8XAizL71yTX6kv8Eq8aNyMWSntOK3Ac9VjjU0x7VTy3i2NS3YfinmW7N9rpfpl4eZeS9lCKJVy2nC6NlsA6E/Gthb2PtmfE7fCS6WiSObC2yYoH7dj2K/iEGzqWHEI9uPHqEVuGbhRd9vJNbFX0iDI6WVX6Zd3of7aBRMLt0KAW9VsoXtyU4/btsr53tyMfTH+6/ZxLHcbJ1/cB6f2clHqc1XqNlyx54sVdkppv1LXFKoP3D3zutB4mScqHocgHo/z1VdfMXLkyIosvL7PuB3LPtcQeHQn14rMrtYttOrM9fIuVxhw0g5kU8kVZbbvutV+9laFW9yq4mGjH30lVOlur8+1XVIJYSC7P7m2dXJpVpxWjG5XkbmEnOw+FXrGrb5Z1+YSIuwGctnHCpHP+NStbUe5z0s5WxeFxqbYfuSyheltA9zvAkuXLkWSJBYuXAjAyy+/jCRJ3xkviX5hVOiRiRVAx02Uwt7G6cVeSTWo04q/4LkuV79845RrhZtv5T2paVxFjS57ilzCQCGtQjFbCNlxCizK+e4t4zTr57yW7TaeW/G+7drCrqOl/v04/e1VSsvgpu1yqVT7llCQa0tk+HmvldxOOZx66qncc8893Y5PmjSJOXPm9EGPujNhwgRWrlxJbW1tX3fFFZ6GoJ9i7T3DxpVTfzRIysYKt1wq+aLR5TtXyAiqWIoxQnOrEXFTZ7ETST7NgNvJ2m7nUIx2pxLP4+Kpt6efl2JX8Lmes3xq+54wMO0P2LUalnFvpet2Or7VzDccM632FoccckhGPpyVK1fywAMP9Fl/svH7/a78//sLnkDwHaI/GiRlU+4+czG4sRUoZNyYTztQqG894YpXrDBQaWFxq5lvpIWCUrelClHIeNYN9r7l2kIoZnsoXzul9q8vqNSWhZ1CWxA9bVSYj0AgwJAhQzI+lju5JEn84x//4MgjjyQcDjN69GiefPLJjOs//vhjDj/8cGpqaqiurmbvvfdmyZIlQMoD7oorrmDzzTcnEAiw0047ddM8vPXWW+y8884Eg0F22223jMR70H3L4O6776auro7nnnuOsWPHEolE0kKNha7rnHvuudTV1dHQ0MBFF13EKaeckuHR9uijj7LDDjsQCoVoaGjgoIMOIhqNlj2enkDQB9yy8Iq+7kK/pFDiouyPddyJctwrvwsryJ7so107ZdlQWGRnOCyWXPvRxXpAWN+dpdWwVsVOGg6nSbKY/tsFDjdli62/pylFWLRnlyzGYLe/MWvWLKZOncoHH3zAYYcdxoknnkhzczMA3377Lfvssw+BQICXXnqJBQsWcPrpp6PrOgDXX3891157Lddccw0ffPABkyZN4ogjjkinve/o6ODwww9n2223ZcGCBVx++eXp5Hf56Ozs5JprruHf//43r776KsuWLcu47qqrruK+++7jrrvu4vXXX6etrY3Zs2enz69cuZJp06Zx+umn8+mnn/Lyyy9z1FFHUQn/AM/LoBexvAyWfPYxZ4/9fUXrfqz5Zo4aML2idZZKJT0NSnkBldNuT6z6y6UcocctbjNJ2inW88BtHW62fwp5lxTyEihUJtd1hbx6iulDOV4rpfbTDfmeBaex6ysvg1NPPZV7772327lLLrmESy65BEmS+N3vfscf/vAHAKLRKJFIhP/+978ccsghXHLJJTz44IMsWrQoHbTOzmabbcb06dO55JJL0sf22GMPdt99d26++WbuuOMOLrnkEpYvX57uw2233cY555zDe++9x0477cTLL7/M/vvvz4YNG6irq+Puu+/mtNNOY/HixWy11VYA3HLLLVxxxRXpvDhDhgzhggsuSAsJhmGw5ZZbsvPOOzN79mzeffdddt11V5YuXcrw4cMrMpYWnoagD/AH/dy7/BoArvnUXaTD+1dem/H7o+tv4D/rb+Kx5pt5rPlmgPS/biiUv71UFXRfCwPl0l+FgWx7kp5QCeejN20L8t1jIWHBzdgUcst0S6GUzH1p81NO2/mEgf7297H//vuzcOHCjM/Pfvaz9Pkdd9wx/XNVVRU1NTXpML4LFy5k7733dhQG2traWLFiBRMnTsw4PnHiRD799FMAPv30U3bccceMCdaKbpuPcDicFgYgFU7Y6lNrayurV69mjz32SJ9XFCUdiRdSIfwPPPBAdthhB4499lj+/ve/pzP3lovnZdAH6KZBQovyt8U/J96e5E8LziBYqyKlwzRnKm0kZDoTUR5ddyMmOrKkICE7Gqo4aQrsk4r186iHc78wejJrYb46S3EjtGPdXz5PhWL7VqkxKPVlWol98Hy4vb+tZr7RLXGTlcwpu1/FjFehMLi5jAKdnt9iv3en78StV0Z22WxBxRKgrPHNHudcHiGpe8gvCLtxfVy8onLhhS2PJ3uoc/v9Hjh027LbKJWqqqp09lsnsid7SZLSoe+tkL69jVOfilHUK4rC3LlzmTdvHs8//zw33ngjv/3tb3nzzTe7ZfYtFk9D0Ad0dLYRN1tBNvFHFISAZKeB6HpQwT7RS4T9tVSFIiQSGorkyykMWNi1BpC5R2u30C60itj4gnKP1VYuH257eGOn9krB6f6Kreu5Fc5hcSslEPW3lZVFMffnRg1fCtYzYd+3tv51shuBTKHVTX/K1TY59cGtPYWbvyG7Z8Coh8/uc+1CdrwRy6MA+u+zXCw77rgjr732mmM435qaGpqamnj99dczjr/++utsu21KABo7diwffPAB8Xg8ff6NN8p7X9TW1jJ48GDefvvt9DHDMHj33XczykmSxMSJE5k1axbvvfcefr+fxx9/vKy2wRMI+gS/EkAxwiAkZFkiVK+i+hW0mMDU7UKBRJW/lrrgYPyqH0VViCeSCIEriTLXFkIxk6YlFJTyQrWrmZ2uzw4aYwkMxeDG997Ny3VTeclVCvuEUMhQzn4+X9lCY2xNivZ/82EXCkrRChXznedy63TTnuVamf0c2gUee52l9MVOqcKPNY5WHwppS/rD30wikWDVqlUZn3Xr1rm6dsaMGbS1tXH88cfzzjvv8MUXX/Dvf/+bRYsWAfDrX/+aq666ioceeohFixZx8cUXs3DhQs477zwglSdHkiR++tOf8sknn/Dss89yzTXXlH1Pv/jFL7jyyit54oknWLRoEeeddx4bNmxILwLffPNN/vSnP/HOO++wbNkyHnvsMdauXcvYsWPLbtsTCPqAWMxANiMoZg0gIyEh+wAE0XVJDM1EQqLKV0tdcAiKpCJJEj5VQVEUEi6Fgnzniwl4ZL0YivHhntQ0Lq82wKLYOi2r8lwvJPskYp8kCtlMeGRiTXZ2L4NCY2/R07Yf9rbtk7L9Oc1HOYGKrOvtgk/2eOSyt8gWcOwunhb2Z7Ennst8dTqNZfa12fZFk5rG9Wkcgjlz5jB06NCMzw9+8ANX1zY0NPDSSy/R0dHBvvvuy6677srf//73tEr/3HPP5fzzz+dXv/oVO+ywA3PmzOHJJ59k9OjRAEQiEZ566ik+/PBDdt55Z377299y1VVXlX1PF110EdOmTePkk09m/PjxRCIRJk2alLZVqKmp4dVXX+Wwww5j66235ne/+x3XXnsthx56aNlte14GvYjlZbBgwQIikQgCE1PuxFBaAROBQI8LhAHV1bU0RJpQZV/G9oAQAl030HWDQMCPLDtvHQghSCQ0JFnC71M5uiGVudFNTHk72VbTbiK3FTL8KuaFbJXvrQhx/QXrPuxq5P4Wh8LN91js81GIcsbBrQdAPqz9dKuO7O/JqZ/2c7mOW+eysd+rm7we2XVnu4yWMnaFrntk0bvUb/2ll8ughzBNk7FjxzJ16tS0x0SxuB1LTyDoRbIFAgCB6BIKWgATJImQUoMaryYQCBKuDnazF7CEAsMw8Qd8yA7nE0kNWZLw+VQwTTo+X8IpE68Huhtf5ZpEC03+2de5CRTk9FJ2q152m4mxv02cpZArJa01afTXe3T6fnN9J6VuQ2UnZyrk2eJGiM3GvgrOTvXr9PeSq41CLqPZfa9EdsRsF8hsobrSfyNecqPK8vXXX/P888+z7777kkgkuOmmm7jrrrt4//33S94W8ASCfoglEHz4wUL8gY0WrimhIIqpthP2V1MXbEToMm3r2glFgoRyCAWxRAzDNKkKViHLUso3IUsYkJCIfrmUtfPfQg2HOffM/3brlzXRlOPT7QbrxZRvUivHbXFT0Q5sChT7PdpX3qVQzDNayP8/1zOdSzuR72+lGG1Z9moeCgfryhcXAZyFGad+loMnEFSWb775huOPP56PPvoIIQTbb789f/7zn9lnn31KrtOLQ9CPCYf82Od3CQnFrKJaHUJ9cDCK5EP1KdQ11oAkE48mMY2UsaEQAlMYRLUWWrUVtCXXEEvEME2REgYSNmGgqxFfXS01W48mMHCQY3/s+/32Y27ILmf3Bc/+WC+wcoyV8u2BVjLLYm9QjP1ET7XfG23YPQhyYc+nUEmDtWK0A26MHp3qdLrezXebT8NWqRW89TeR/R305XPnkZ9hw4bx+uuv09raSltbG/PmzStLGCgGTyDoAxRFQVWUjGPBgJ+aUC1ylwGhJEnIikKoyo+hGWxY04quGQB0JDewIbYS3UwSCdbgU1TiiSTxRBJJzhQGkMA3oJ7qHbdHrh/crS+WkVC2wVQpL4x8K6/sl18uQ79s17O+xk0/Su1rf9Bm9NTEkD2pu3FzLVRHJfpULNlCZiGPi0LnnMra7zNbKMg3Zm7ux6516a/bTB79B08g6AM65Q0EqyRUJTX8wYCPmkgIWZYytgaklOchVbUhAkE/ne1xTMNEN5IA1AYaqQ4MwOfzoSoyum7gUzMFDSEEsY44ibhGeECkW1/slsVOq7NyjK/KodhkRD1Bf7dHKHcy7w2BpFyhoD/cYy7NUzF9y6e9ylbjF6MpcIq3YMXUyN6CqXRsBouvrtq9IvV49D2eQNAHGGjIfpOa6hBV4YCjMGAhSRKSLFFVFyZUFSDaFsNIQE1gEJHAACRS1/l8KsGAn0RSQwiR/nS2x+loiRIM+/GFA2X3PdcLPfuFV+pEmm1VXeq1uSimzlICM/UmTgGgetptrRTsz0Y5dgL5KDS5lbqdZPV31MNnO9aRPfa5DGQL3Xeuvf1ivsNSjCdLxckF0eO7jycQ9AG1UiNBKYLfp1JdFcwpDNiRJAnVr+AP+hBRPz49khYG0ufV1FZEMqmDAC2hI0zBgCG1KD4FVHeRqvMZHuVKRFMoHHEpL6eeWJ1b1tdOWyO9/XKrxArNig1gUcyYLblur7wTZaG0t4Xqtii0Uu0tSm138dTb05q0fOOVa9J3mqhzefVkZ5cs9H3migpqP5/vWijtubfGY6uZbzDyorcLX+DxncATCPoA04B4TEtN3FBQGLCQJIlAyE99Yx3CgGRcQ5gpTYBpppxFVFUBBK3N7SRiScLVQRRVScXLLtCO/cVSbBS3XC+V/qhydzJ2tEfIc0pa0xPCQjEW+E6rMetYtkGoRSGfdWsCc4qYZ7++mBgQTm0XWlnn6p9bd1S3dbot4xRkyD7+lTJedRIMrG2VYgN2FfO7dSz7ue9rI1ePvscTCPqAzs44kiSR1DTiCc1VxEHDMDG6PA1Un0IoEiDZmaR1fTvJpE5reycd0TiGYaLFdGIdCUKRILIip4IgmxqS6HTVv0qv5nO5cvUXYcEuHIx6+OwMa/L+8oJ0CpNrHcvl8+4m5LQVVtcie2JwYymf/Xv2uLldOduvz6dit+7XjUeC1Ub2PRYS8OxbBHY32Z54Zp2EgnLqKPeZ7U/PvUfv4mU77ANCoQDBgA/hV4l2xokLCAZ9jpoCIQSGKWjviAFQXRVEUWQkWSJcF6Z1bRvr17SCP2VMmIglCQd81DX4kfUNyPE2SLQgGQmmjr3XsT/Z0dd6k/5muLfVzDeYNHPjhLPx5fh++nix5LtHN5EYi90GAGtSKbyvnm/yKRSAx65hydUX+x68PViOU33FUCiWQCHsWRadVPqFbFnsY5fr3ooh1zgWo7HL912UQk/ELOhJ1ixbS+u69l5rr3ZgNY1bOLtyf1fxAhP1IlZgom+WfkFtbSqAh2madETj+FSFYNAPgG6YyFIq8ZFpCto6YsQTqYxc1VVBqsKBtPCgawYbmtuJdybQYx3UhjUGVGtIQgcliKSGwBdGqFXopsqxQ8537FuxQX1KiVnwXQ4cVOjlWCitc6kBZorpn9MEn33MPmkUEgjsOGkh3E5AlVq9ForSWErfcpHdZydjPychutjxyCbf9fmEoEJlKzUWTvSHwERrlq3l1DHnocW7Zy7sKXxBH3d/dn3RQsHNN9/MX/7yF1atWsW4ceO48cYb2WOPPXKWf+SRR7j00ktZunQpo0eP5qqrruKwww4rqk0vMFE/xq4JkGWZSFUQTdeJx5MkkhotrVHaOmIYpiAWT6ZyEkgQ8PsIBjJzaSuqTE21itK5gkGBNQyo9yNVb4EYsD2ibgxm9QjMYCNCrUJS/Y79KXVCslTsbqyNe1sFWek9/1xq+f6Ak1rcIp9BXzGqaSc1crmTX67yubYC7FkDi3neytnzL/S3kV13uYJdTwrMpdbtZoulr2ld196rwgCAFteK1kg89NBDnH/++fz+97/n3XffZdy4cUyaNIk1a9Y4lp83bx7Tpk3jjDPO4L333mPKlClMmTKFjz76qBK30A1PIOgHpISCMElNp6WtE90wSSQ1NE0nGPARqQpSV1NFbXUotV3QJVAIIdA71mOu/4JBTQ1ERuwKtSMR/lqQfZC1BSHLEvc/dU7GMTfCQPbLwCnIUH9S+0PP2CfkEwr62/2XSl8GAipUPtv1z2mSyiVIFEshjZBlu5HL6yYXTvXZvTlKCXjkFDcku65yNSa5DFc9iuOvf/0rP/3pTznttNPYdtttue222wiHw/zzn/90LH/99ddzyCGH8Otf/5qxY8fyhz/8gV122YWbbrqpR/rnCQT9BFmWqI6E8ftUQBAOBgj4VRRFpiq88ee0MGAaxNYuJ7p2BYHGUfjqhoHiB3J7EgghMGPJ9O/2ib3QCsD+0irGLcpOb24X9NTLq79pCgq5DpaC2/1q+89On1zXORkF5itvYT1rdjfA7LKV3kMvNEHncmF1Ip9w4XYFnk8oKNcDwyJXzIVi6/HIJJlMsmDBAg466KD0MVmWOeigg5g/f77jNfPnz88oDzBp0qSc5cvFMyrsY+wmHLIsUVdTRVt7Jz5VTocwzroAYWgkNyzFSAqqN98G2e8u4JDQDYwWZxVXvondKStiMdsMvWE7kJ36tTdUr9a+fbnaATeGhXYy96+d1eO5jETzvdBHPXw2W7HxXnJda5XL9oEv5tlwc6/ZRomLV9zOpCbyGnfahQ2nvhdDLhuLUuoqdL89FbAJihcG3ARR+q7aAvUl69atwzAMBg/ODCE/ePBgPvvsM8drVq1a5Vh+1apVPdJHT0PQh6TSFOtEY0mESP0uyxI11WE0w0hHHbRdgB7vpH355yAHiDSNQnEpDACIhI7UlQ8Bio+K1tMvgexVVjFR94oRBnKt5kqJte9GlepmBVjM2Ga70Dm1l6++bD97a3VpF2xy+a5b91yoXLE4jY/VH0voKjTJ57ItcPNMWKti+6dSk7QbDY4bF0o3FGPnYb9XCyejVI/vD55A0AdYYYXjCY22jhgd0RjRWKLrXEpTUBUOkkxqG4UCIdBjLbSvWIyvphH/gGFIslKgpY0YnXFaP/wYbUBKgCh2H7xUo6JiVhP2F+JzK97vsX35bHe5fEZ5buqy11EqxVyfbzzdTNaWZiO7vEWxwkslJjKnvfh834tTnIRcQaSctijsMQacJr3FU2/PyBSY3W4xFPsc97TgXUgIsPcjV3TG/m5k2B8ZOHAgiqKwevXqjOOrV69myJAhjtcMGTKkqPLl4gkEfUBHZ5zOWJL2jng62JAE6AIEKY2ALMlUhUMkEhqJRBKt9VsS67+heuhIgvWDkCT3X50wTDa8+z5tixdzxrT7S+qz036tG8p5ufX0fmUu9XKp9eSzxi42L0K+gD+FxsXNhF5Ii9BXON2fkyYrO2iQhVsD1+yJzj4pWj87BWwqhJMtRSmTZynfjRsbBqtep3t0Kgfdx8q6zhMKisPv97Prrrvy4osvpo+ZpsmLL77I+PHjHa8ZP358RnmAuXPn5ixfLp4NQR/QGUsiK6lAQ5IkEQkHCIcCbEiaSEB9IGU/oMgSVUGV5m8WE/BB9dCtkdSA61DHFpIsEdlyC9TqEPBq5W+owqTiuad+3rg/Xfi69J4+pWkW7FqDQr7lTirlSU3jWLzidpi68Xc7VvCafCv3jRPIxpTRThNkrn3751akovy5DaKU654L0ZMBpdzYZWw18w2Y6m71Xej+8k2Obsk3dqWOUyEjyVzPR6H+2e/X/hwXuodRVG4b5fvK+eefzymnnMJuu+3GHnvswXXXXUc0GuW0004D4OSTT2azzTbjyiuvBOC8885j33335dprr2Xy5Mk8+OCDvPPOO9xxxx090j9PQ9DHhEN+wuEASNCSNPm2U8cUgBCYWifJ9V8SDIUIDd0SVH/RwgAAEgSbhlCzw9bpQ8W+/IulnNW901622z5UwsDPbiyX7bpl9cdaYWfv/RZSn2fXna1VsCZ0++/ZWBNBtqW//d9ivjMnwaUQlRAGspMnWf8W2rrKjiJYjn2GG01JoX303jBgtWN/LovRCjhRbITS7LFYct1e/SL9ce3AanxBX+GCFcQX9FE7sLqoa4477jiuueYaLrvsMnbaaScWLlzInDlz0oaDy5YtY+XKlenyEyZM4P777+eOO+5g3LhxPProo8yePZvtt9++ovdi4UUq7EWsSIULFiwgEokAEAr6qImE0ITEwvUJdFOwU4MfX7yFxPpvCAwYgh4K055YT31oCH4l5Fi3EAJDgCylth+6Cw4C0zCJ/d9CfjLV2efVLY8138xRA6aXVUcxZE/K+cr0FzV4rj5newTYX8hu/cbd3GNPW4KXqiHIdZ3b/mZ7kxSKXpivnuzresJ7oFJUsm927w1wp5HJde2kpnH9IlIheKGL8+F2LL0tgz5EIuWHChI+GUZW+0gaOkbrSpLtGwgPGk7CZ9IaW4EpDAxThzx2hB2aSdIUDAwqDtEIJCRZRq5yFiggNdEDeSd7q0w+ip2MCk0ulhq9kLqyr4SBfKl+ofvLPK1lIJU3wa0PezHjutFNr2fGpFQNQbmaBacET5Uin4Fori2iYihnm8WNG6Xb/lj5OtxoZJyutbbEIHVPw897zfX1PUnjFoO+MxN0f8XbMugDTJFEkiAcChAJB5AkkCWJQT6DQbFlqFoHNZuNIuEzaYmvxjBTnga6mcxZpyEgaQrWxQ3iRm6lj5Al7rr/lG7H7RP9Y803d/vkKgPwn/U38ci6G9Pnin1RukkMY18V9jdjJntueLsbnxNux8Yp1TG4XylaqnC3xnD9YUyLWQVXwuDUrTtothFmoe+wt8bSacvKDeWOnd2g07Mp2LTwNAR9gKG0oaj16SRFkgRGopOOlV+iBiOEG0eCrGAm2vApQRRJxScHCCjhnHVGdZPFbRqqnHJddEKSJJRwEH1VMw9++1cMIBDwdWkp8pNLM2AdP7ZhRsE6yiVtIb1iY6Y6+7lC2wa9nVmxlNW53TDQTvaqrtj6CmHP/tcXZBtHFnNNLvLVZQkDTvdbyAakVNwaQJZzX24pVShIXVe6m65H/8bTEPQBQo6TEM10JjoxTRMz1kJszWLU6kGEG7dAUlJyWnVgIIPCwxkY3pzaYCM+ZePej2YKdHPjzB9WZbap9bNNrZ+QmsPwUAChAGg6SkJDMU3isQSmaVb8Hh9ecwP/Wd8z8bYnNW0MCJTLMM+J3pjsymkj10s+25CrJ9wxrVVwb+FkWJnyLnHnpudmQsxXxk0GylJxqtet1qAUo9ByKedevcBFmxZ9KhCMGDEiHZ7X/pk+fTpLly51PCdJEo888ki6jmXLljF58mTC4TCNjY38+te/Rtf1jHZefvlldtllFwKBAKNGjeLuu+/u1pebb76ZESNGEAwG2XPPPXnrrbcyzsfjcaZPn05DQwORSISjjz66W8AItwgEiWSUNSuXsfbzj+hYvZRgw3DCAxpBlhB0reYlBUVWkKTuYYwThqBdM9ORDH2yRENQodavIDt5IghIrltPy+LPSEQgsXY97R98jJRM0BGLYphmTs1CMTzWfDOPrrsRTdPTMRbcUOyKJ1tV6pTVzymSXX8iu4+5tkOyNSFuV/1WnU5t5Svb0zi1Y2UydBOQyk0/y72XcjwPKrWdkavu/mA4a/+76w9eBh6VoU8FgrfffpuVK1emP3PnzgXg2GOPZdiwYRnnVq5cyaxZs4hEIhx66KEAGIbB5MmTSSaTzJs3j3vuuYe7776byy67LN3GV199xeTJk9l///1ZuHAhM2fO5Mwzz+S5555Ll3GTkvKXv/wlTz31FI888givvPIKK1as4KijjirpvpMdJqI1yUB1PQMHqqgDt0QJ1WBKBhrJ3Dp/GzFDsDpmkMdcIAOh67R88DHx5mYSHW0kW1oQuk483kqbtppoZwdCmJTqdGK3KZBlmUDAh5YlmBVDsW5z+bwP7MZTuV7W/UVYsMfuh/wTU7H+527L9kZAKPsnV5ChXBQqZ2ka8tFT2oFS2nNLsXYklSZ7S876HhYeWZ7Xkkf/oV+5Hc6cOZOnn36aL774wtHffuedd2aXXXbhzjvvBOC///0vhx9+OCtWrEj7cd52221cdNFFrF27Fr/fz0UXXcQzzzyTkT/6+OOPp6WlhTlz5gCw5557svvuu6dTSpqmybBhw/jFL37BxRdfTGtrK4MGDeL+++/nmGOOAeCzzz5j7NixzJ8/n732cjeZWG6Hb7/yMCMG+QnUjkAEG4kndQIBP+2sQyNGPU0oUm7zDiEE6xMm6xIGW0Z8+BUXsQmEQGttR++IkvzqWwj4SVSZ6IMD4FepD2wGpkIg4HNOqlQChmly7MBflFWHm33/fKumXNbY2S83Jze0SpPdl1xGWW4n8WJXi8WU70k3zlx1u22z0HdV6D7dbBcUEsR6090wWyNUqqulVZ8TbuwWsstZnj9b/usUvr7od33uduiRG7dj2W9sCJLJJPfeey+nn36642S0YMECFi5cyBlnnJE+Nn/+fHbYYYeMbFCTJk2ira2Njz/+OF0mX/pINykpFyxYgKZpGWXGjBnDFltskTcNZSKRoK2tLeMD0BhRCA7cAUJDQFYQAnSRxCCJThKTwivrer/MyIgP1e03KEn46moIbT4Uf009xsoNiM1qkAI+qgMNBP0hVJ9CIqGlcy2USzHCgPWSX3LdXhl7y3ZbgWys44WMwPK5bNnbqaQwYO9zLu2DU94B6+VfqX307Pbdri6LtVyvBG40BG4Et0JbKoW+574MRJQLN7kHegKnbS373wx4GoJNiX7jZTB79mxaWlo49dRTHc/feeedjB07lgkTJqSP5UoNaZ3LV6atrY1YLMaGDRsKpqRctWoVfr+furq6bmXypaG88sormTVrVrfjyfBWmGpVaiUOSLKgVaxBkzoBCQODfDG3UvYFeUMS5MRMagifhOr3E6EBoZuoaghJklAVBQQkkhoBvx8QJWsKig1cZL2kLWt6J7JXSVY4YzdaBDcaBCetQbmrsLRV9tTc5bP7aGkO8oUftgtChfppnSvG9sCpnUqVzdUPy8c93/0UmxOiWKzvK98z2FuBobLrsP/s5GlTCextug2U1V/4tr2NDbFYr7VXHwqxWXXlNCL9gX4jENx5550ceuihNDV1D1ofi8W4//77ufTSS/ugZ6Xzm9/8hvPPPz/9e1tbG8OGDSMaNzFNgdKl6pck0ESyK7GRwERHIJAcwguVgzAMWj/4mM5l3yIpCvLq9bQu+pyBe+2GEgqmhAI1JWbEE0mCAT+lyAOFhIFSX5b2a0rNV+BUZ6EXnVO43HK9CQqtYN3mIiiFYvpfzPeUnUci3xZAvkBLrvIY9BCFvptiAkOV84w6jY0lCNlzEFRCKCgU9Cg7/oL9e+0vQsK37W0c9K9/kjCMwoUrREBReOHk0zcpoaBfbBl8/fXXvPDCC5x55pmO5x999FE6Ozs5+eSTM47nSg1pnctXpqamhlAo5Col5ZAhQ0gmk7S0tOQs40QgEKCmpibjA2CK1P66hSIrSIaCNf/rJKEHLDuEbqC1R5H8PpAg+uVSzEQCJRBIl7GEAp+qkEgkMc3iO+I2mmGlqNQEYX/h2VWixUTHc7NHa73sy1XLlxJpznLZrPQq20nIsN9fLo8PJ7uKUp8Ny3Wx3HurxJZApSdpi+xETNaWmhucJvpStkfs32t/8HgA2BCL9aowAJAwjKI0EldeeSW777471dXVNDY2MmXKFBYtWlTwukceeYQxY8YQDAbZYYcdePbZZ8vpdl76hUBw11130djYyOTJkx3P33nnnRxxxBEMGpQZlnL8+PF8+OGHGd4Ac+fOpaamhm233TZdJl/6SDcpKXfddVd8Pl9GmUWLFrFs2bKS0lAKkcorYCFJMrJQ00KAgVZ0nW6Q/X4G7TOeoQfvT/2IUVRJEZoOPRi1JpJRzhIKZEXu5sLplseab+aRtTc4nusta3a3FPOCK2dvP1cbpay0KvEidnMvbqMcZk+ATnU77T/nCyJVLPaIkT1BMd9RqUKJUxtuDWvt+/3ZcR6cBC/In8uhv0z2mwqvvPIK06dP54033mDu3LlomsbBBx9MNBrNec28efOYNm0aZ5xxBu+99x5TpkxhypQpGUbylaTPvQxM02TkyJFMmzaNP//5z93OL168mK233ppnn32WQw45JOOcYRjstNNONDU1cfXVV7Nq1Sp+8pOfcOaZZ/KnP/0JSLkdbr/99kyfPp3TTz+dl156iXPPPZdnnnmGSZMmASm3w1NOOYXbb789nZLy4Ycf5rPPPkvbFpxzzjk8++yz3H333dTU1PCLX6QM5ubNm+f6XtPJjd59m8FDBhAJBpElFSEE62KrSYY2gAQBUcUANkeWek5e01dtIPb824SP2hsl4pzfQNcNdMMgGPAXXb8QAk3TOX7IzJxletKSvRLksqzOZ91up6c8AMq5xrrOTm9azDvhpLKu9P57sfRGVMtK2KiAzeakKX/Oj3xJjMp5JvpDcqOP1qzmiAfvrVjbbnny+JPYvnFw4YIOrF27lsbGRl555RX22WcfxzLHHXcc0WiUp59+On1sr732YqedduK2225z3dZ3xsvghRdeYNmyZZx++umO5//5z3+y+eabc/DBB3c7pygKTz/9NIqiMH78eE466SROPvlkrrjiinSZkSNH8swzzzB37lzGjRvHtddeyz/+8Y+0MACFU1IC/O1vf+Pwww/n6KOPZp999mHIkCE89thjJd2zWbuBaGAVMam9y24AVHz4RIigiBAgXGHrge4odREkn4rRnJkdTNj+k2UZwzBJahqapmMKUVTwokLbDcW4CpZCb8cWKLQX2xPtldJG9nZFb8bed+pHJbHfSzn31VtRLS2PklLiblgfe56F7Hwa2eXc1u/R87S2tgIwYMCAnGUKeclVmj7XEHyfSMch+PoZItVVVFFPLSmhI5ZIoPpkVFlNGxNWIhZALoQpiD33NgyqI7zb1qljCJLEMdAIiDAyCoZhYnZFMRTCxO/3p/Mv5MM0BYlEkhM3Oz9/QSrv1+3GDx0Kv/SzrazdtGunWA1BsdeUQvaqNNtzozcmQjf3WsozkZ0aub9NbNkxBXrrmS8mTHMpffI0BMVrCEzT5IgjjqClpYX//e9/Ocv5/X7uuecepk2blj52yy23MGvWrKIi5X5nNATfRwKiCgVfSjsgiS43QhlZKMgOYYp7AkmSUBpqMZtb0UQSnQQmBjHaaBEribIBAFVV8Pt9+P0qiqKQSCYLxikQQmAYhithoCdwE6XObaY7i+y92Oxrc8VJcEsljAvd4GT4Zz/XXyI2loJ1b04Gi8XeVyW1O9kCQKU1I4WEn54UBjxKY/r06Xz00Uc8+OCDfd2VDDyBoA+oYygD2JxqBmK5Fkiy3CNJhnIigVQfQW9ro01fTVS0YoiUZiAs1aFKfuz7FpahoZoWCpyrTQkDJscNPq8i3SykAi704s4V1AiKS3/bG5TjxlXoPtxOiG40BKVa8tu/CzdBiEodC7vBYiW8DsrtU08+P5XShHhJinqPGTNm8PTTT/N///d/bL755nnL5vKSy+fdVg6eQNAHyJKCXwqiSr709oAsSZi9vHsj11RBXMeMJxCSiSHpBKmilkZCdFf9dRcKMvsrhEDXDaY2nuu6D25faKWkqrXO55toi10VZ1tn5xM4rPP2f3sK6z6cJsBKG8jZLflLnWxLDSRViOw8BvaAV5WgL1bRuTwHyu2P/ZksND6VFqy+jwghmDFjBo8//jgvvfQSI0eOLHhNIS+5SuMJBP0EWZa6jPZS1vmJpFaR8MH5kKoCyJKMiCaIsoEEUZAk7P91u6ZLKFAUmXhio1Bg9Vsv0xc4e4K1xwIo94WUTygAdy+97FDKpdgW5MMSXkoRIHK53fVkIp9yBYNClFqvNY52Yei7NKHZJ357EKdKxK+w6vfoXaZPn869997L/fffT3V1NatWrWLVqlXEbLEMTj75ZH7zm9+kfz/vvPOYM2cO1157LZ999hmXX34577zzDjNmzOiRPnoCQT9BkiQM3aC9I05LWycd0XiPawzkgA9qI8jtAh8hfAQKX9TVV5+qoigyiYSGaQqSXV4IwYCf/6xPJYkq9AJ20g64fdFZOQ/c4saivlB8fDtWAB0nF7DsF7d1zG1/ncagUNCdfPdVybwIuXCzwiwWK4hSOf3oDSPJbIp9NnNhPTdQ/PdjCUNO/coV68ANTs9gf0h/XB8KEVBKCeZeOgFFoT7k7LLtxK233kprayv77bcfQ4cOTX8eeuihdJlly5axcuXK9O8TJkzg/vvv54477mDcuHE8+uijzJ49m+23376i92LheRn0IpaXwfKvF1NTU51xTghobe8gFk8FAvL7Veprwshyz8lsQgg6X/8YQirBXUYhS0pR4ZKFEGi6TjKpoyobMyXCxvDF5WQRzLcKL8cH303wIbf+2k64cafMF7o3u3yh/lYiHkElPAyeW/F+up5C4+S2v+Xem9sYEr2NU1+ytQFuyHeN0/Nmz7CZ/XO+scknMAw/77U+9zIAL5dBPtyOpScQ9CKFBILOWJz2aJyA30dVKIDPp/Sct4EQxFauRlu+DkyD0KgtMHWdQONAkN23aZqCzliCcMifIbxk5zNwcncrJ3BPOcZUPSUU9JRrohvBoVKTZil12Ccke5322Pt2eloYsK51aq83hYJiUnfb79XtfWeXy9WeXVCzfnfCjVBg5VGw018EAo/ceG6H3zEkCVRFJhz0U1MdKksYsNwCRZ6ECMl1zax7/U3av11GrG0D695aQHzVmpzlc7Wj67pjX7PzGVTapc3NhF7O+Z6ilAmu0HZDb8QusMhl1ObkUmfZM9j7V0xfS/W6sAwLndrqia2NXLgRPJy2BEoVEnO1V8yY57t/Kxqi3U6lv2hcPCqDJxD0I3w+FVWVQZQWlMiKMGjFE8ir/JFl/PV1+AfUQ9JIre5lqeicSoZh4lOdhZdKCQXFrhQLrcysvelC9gSluDm6pVDgpN4QWKyVXqG27GPp1qjNySK+FOyaBjeUO27F2izka78nDfeKFQLdTNzWvecaw2wBzRMGNj08gaAPEUJgmALdTK3oJUnC7/Oh6XrJHgZRNrCBFXTQnE6j7IS/oZ7G/femYbedCSd81I0aQ83YrZFcbhdYLoaSnD+I0mPNN2cIBtb+crGrv+yJJd+1buMLuBEKsl2+KoHbwEnZ1/TUBOPmxd4XVunWmBcz8ZST3KgS99ibkR4rhX0LYPHU2/P+XTgF63r88w8r2h+PvsMTCPoQA52l0QQfNCfp0FMTt6LImGY+ZX/hOhNSFAMNk/wugJIigyJDPAktHUiqWrB+azvC7DIo9PlUV9oMu2Bg3zMtxgI+X2jWbIoRCgqRK9Jc9kq5WAHH+tcubPTmxOt2NZxPQ5OtzbBb2GePUanbJb2Btc9eifYq5WUAzs9JuX20X283LLST7V6br64jt96hrP549B88gaCPEAhitNMhWlkX11kT2zh5S1Iq10ApKPhS/0o+FKnwBC/5VeTB9Rid8dx97RICDMNE0w0SCY1EQsPv8yEXubVh1xY8t+L9bi+jXGr6fO6J5a7KcgkOxb7Ui90fd2ovXx09qSUolewVud1mIJdhXzGUuwXgdsysvfFKkGsMSiFbCK1URMFi6sre/skWYD0NwaaDJxD0ESY6SaI0hONsFgG/sjGhkSTJJW0ZSEiowockZBR8yBR2I5RkGXVQPaI1ijDN1OrfTOUi0HWDZFIjkdSIx5MkNQ2EwOdTCQX9qDlsB/JheR/kmiDcWPaX85LNnmDcagnKWeXmq7PY+iq9Yu4Jl8ZKCi3f5X3qSn9XlfCQsJ7/71KQJo/ewxMI+ggZhQgN1ChhtqyBzcIbg2pYUQtLwScFqGEQEVEPLmMKyAOqMRMa8c448USSRCKJpukYhpmKTKgoBAJ+ggE/fr8PRZFL9oCwawjsq6jsScT+wrIHFXLzIrPHPsiu11KF9qbHQ6WptJYg31i4uTcnIStXcKVC7WXX0xeGiZWkklqdUoUBp20dO14eAw+Lwjpljx5BQsYvhfATRJCauq1JVpakkkMAy6hUUd/VhkuBoCYMmoaS0FGrgul+9HTGReguFNhd1pwmcwu7DYI9NK2Tr7XTC3nx1Ntham7VfXb/8lEJtXBvbgVY/uQW5aw68/m+Z2PZdbhtL9s3v1Cb+Vg89XYmzeybbH5OgYN6Oh6CXSi2t+OkDZvUNA6mltbOpKZx6EIDviytggoijBVgbui9BuV6JKWp99rrBbzARL1IvsBEdkwhSMSTBAJ+5CKCBJWKmdTpfOJ1fLuMJrBVzz/g2UGLLEqdFJ0C49iPl0opwkApEf+cghW5zWFfrHbCqrcSQYny9atSdZcTBCq7HrumqS+CE5USlKrYNvJRqP1SbWZ0ofV5YCJhrECsPRhIVqz9wviRBj3/nRAKvMBE32EkQFEUdF3vnfZUBXlADWJda860xpUkOz6BHUt96ZQTINcL1MlCP9+efyl797nINvoqJZGOk7eCm2yAdpV6JdMbl0NPbZ9kPw/FUkkjVLc4TdT2/lfKlbVYYSDXGJZrFNunmBvoXWGAVHtlaCT+/Oc/I0kSM2fOzFvukUceYcyYMQSDQXbYYQeeffbZktsshCcQ9EMkSUJRZIwuI7+ebw/kQbWY61rBNHu8PSes6HJbzXwj7yrbjXFfPo+EXD+Xgt29LPvlXm5kxmL22a32iqUnXuqV3PqwVvW5tnWKDX7U23YETsKA/Wc3brT5klmVmjCqmLLlCg4ezrz99tvcfvvt7LjjjnnLzZs3j2nTpnHGGWfw3nvvMWXKFKZMmcJHH33UI/3ytgx6EbdbBpBy9YvHkwSDfld7+favsZS9f+2btSTe+ITw4eORQ/6iry+FXFsHuShH1ZvLWt5pIrGv4Nwa1dn3Zu2qaSg98I+brQP79W5f1JXwZS9Uv51S2ypm393NFkgx992b2wr5+u6mH3bBoJA9h9ttsGK+s36xZaB9jFh/ZMXadovU8DiSb7uiruno6GCXXXbhlltu4Y9//CM77bQT1113nWPZ4447jmg0ytNPP50+ttdee7HTTjtx2223uW7T2zLYFJAoSkOgmRqmKG2FL/lVTNNA6KUZM/YG2S+7YjwOcr3g3GoT8mHFeM8ObOM2al6uQD7FROmr5ATfW6GTC1HKajaXpiDbhqAQvRm90d737L656Yf1nDllTyzVpqO/xbvYlJg+fTqTJ0/moIMOKlh2/vz53cpNmjSJ+fPn90jfPIGgHyNJUlECgU/2IUvFf6XCMBGagRQKgBAIo3e2DazohfZPNr05MZU6qVp2D5ZLYy6Kce+rVGAbN21nY00upY59JbZl8nkpFGo7+9rsFa/be3Ojunf7/biNyOk2QmA+nK7v63gXHikefPBB3n33Xa688kpX5VetWsXgwYMzjg0ePJhVq1b1RPc8gaC/kgpQ5D4egVW+2O0CM5Fk/ZsLaP/ma4yBYdo+W0TbJ5/RK9aFDtiFgnzqUutcvhdtMWrfUj0S7Kv4QpO4W/e8nqAU9Xc5KvNKCDTZ363b7zOf1sei2HtzKp9LK1FqKG17nZVyRS3WCLPY7QIvUqF7vvnmG8477zzuu+++fpvOuWSBYMmSJfzud79j2rRprFmTSpv73//+l48//rhinfu+I0sSZokhjN3SsWQp7YuXEF2+nERnO1pHlGRLW4+2WQhLKCgkDBSi2L33vlgVuTGOzPbB7wsqoS0ollIyD1Yq22C2wFlMOu1cz12xQohdKHCjrYDy3D6tfA7F4uUycMeCBQtYs2YNu+yyC6qqoqoqr7zyCjfccAOqqmI4xJ4ZMmQIq1evzji2evVqhgwZ0iN9LEkgeOWVV9hhhx148803eeyxx+jo6ADg/fff5/e//31FO/h9RpKldB6BnqJqxDAG7LAj4cgA1KZ6ApsNom67MbiNcthT5HNNtFOu4Ve2u18xVNI4z6lty/PC/ntfhfK1JsdC9gWViCzohH1iLpShstx2sse5mCRZxQgOxVBqICk37dm/r1LGz9MQuOPAAw/kww8/ZOHChenPbrvtxoknnsjChQtRFKXbNePHj+fFF1/MODZ37lzGjx/fI30syctg/PjxHHvssZx//vlUV1fz/vvvs+WWW/LWW29x1FFHsXz58p7o63eeYrwMAEzTJJHUCAbceRq4wfq6rfqEELS9txh9zWriewwkHKqlLjgYqQRbhEoihEDTUnEYjh8yE8g9IVZqoiw1il72cSjNgKuQhXyx9fY0+YLuQHl9tQeaKiWgUKU9Kdx4jBTjlVKorux67RSKx5GvTK7rShkrq70Dh27reRmUyH777ZfhZXDyySez2WabpW0M5s2bx7777suf//xnJk+ezIMPPsif/vQn3n33XbbffnvX7bgdy5JCF3/44Yfcf//93Y43Njaybt26Uqr0cCA9aVPeet0SAnShkTCShJQQipSSRk1NR+vsxLf1cOojtahKoMzWKoMQAt0wOWmz84HMySB7YihFSOgJF0aLcgPn5DpvX8n1lWCQOTm9nw55a6XRzZ7Ey22r1IBClR6f7IBTTn0Z9fDZLF7R3f00V11OWC6sbjwm8mlh3H4HPe2C2mvI9YCf3o5UmGq3cixbtgxZ3rgYmzBhAvfffz+/+93vuOSSSxg9ejSzZ88uShgohpIEgrq6OlauXMnIkSMzjr/33ntsttlmFenYpowQAoGlmBFdH7lb7oGUQCClUiErpU3SQggSZoINiWZaky2YwmRk9VaE5BAAZjSO/+u1hMeMQPVXTrovlbTwohuoisx/1t/E0Q0zKmIEVincrNB6gly566F3thPyCSNb8UY6V8Coh89mK0rvSyFPjb7MgJjPOHCrmRvHoNRnwfp+7WPtVJebkM5uw1+XQmoMLGFCK7meSiEpTTDo+e9cLoOXX3457+8Axx57LMcee2xZ7bilJIHg+OOP56KLLuKRRx5JWcKbJq+//joXXHABJ598cqX7uMmR0GIg+0ESgAlIYARImXRkTvyKLGGYJrIsU+quwYZEM99GlyMQNAYb8SsbAw9pCQ1j6ADk6nCpt1My1uRvmik7CVOYCAGi63d/wIfpEDnR/pK7++urOHX4RRnnb/7k90zfdlbR/SknAFBqv797kqZKk9t6P7Vat0d5LHbydFO+0H1VYsLOp2XoD+mQ3SRpKja4VT51fyE7l1I0EeU8o6k+9D/NgqQ0wXcgr0B/pqSN4j/96U+MGTOGYcOG0dHRwbbbbss+++zDhAkT+N3vflfpPm5yJJMGSS2JwNgoFEipyVGk/zMRmMiK1DUplm5YaAoTgUBGptpfA0JgmDqmMEkmk4gRg5H8vZv4UghBMqkRjydJanpXdkcJWZaQJOiMdbJ69VpWr1nHTR9fyk0fdX+ubv/8CjRN484v/5RxPBQKcf+Kv/Lgqr/x0OrreGjN9d2uLaS2dSLfispeXyn2A8XkI7DasHtHWJ9yshjmW/26nUCcslSWQqXc7nqKckNT58LN1lF2AKueaMfj+0lZoYuXLVvGRx99REdHBzvvvDOjR4+uZN82OSyjwqVfLUJWJKqqZVRVSs31ph+EDxAgJ0FKCQFCSMSjEqFgsCTDQiEEa2KrWRb9Gr/sZ1TNaGJaK6ItRijpJ7FiPb7aWpSgj/DmQ5F8PS8YCCFIJDVkScLX1Z4VhCmeSLB+/QaqwiHCVWEUWUaSNmpHrDFI6Bp+Ve0WiEnXDXTDIOD3dRuvYkMl27FnCayk8V+phmCF0g4X+8LPtzdeSgjnnrAhqFR9lazXjUbEqb1SAgf1p/1+e1/6Q+hij/z0SujiLbbYgsMOO4ypU6d6wkARKJJCOFhFZ4eJaXTJY1KXD6qsg6SnBAJJgGSmNAllEFRDRNQIdYF6/LIfEUvQ+eanJFeuw0zESa5eReyb5eidnWXeWWGEAN1IbQ34fGo6mFIqd0OCdeuaaRhQT11dLQG/H1VVURQZWZa7tk1Sk3xA9XWzuQBQFDnloaAbFXPX7K1960oGoim2rlxZGouZhKw6SvFlt7Da7wntQPZ9VCL5VLmagnJW+n2hQenpLTGPvsX1cvD88893Xelf//rXkjrzfUGSwKcqmGaIaLSTSLWKJJmA6ehSICmpfXalBMNCSZKo9lUzunYbJCQMoYFpoobDKEJGra3FFAZmMokSClXk/pywJmfDMNE0nWDAl+H6GIvFWd+8gUEDGwgUcLMsdC7g95NIJJEAVVUdbS+sOAdCQFJLbV1UhYMoiszRDTMyypa6HVAIy+7AvrIuJuhSvrKl9LMSQs+kpnEpS/uplelD9qq+Eq6nxWpinPpVyMslu71KuGVm33+5xpvFkK156k2hwMu/Vz5ux9C1huC9997L+Nx5553cfvvtvPzyy7z88svccccd3HnnnSxcuLDUPn+vSE1cPhQCxKImiK6gFOl/N5aVpfKCE8mSjCqrKLICQqAhCA3bHKU1SbihnprtxlC30w7Ifl8Zd7QRIVIPoGEYaLpOIqmR6LIX0PSUMGC51gghiHbGWN+8gcZBAwsKA26QZYlA0I9uGOi6kY7CnJ0zQQhBIpEkkUgSqQqhqAqSJHULiuQ2SFKxWC/2YiaX7OsL2TsUm6goO9JfubEEisUpGZVdGFg89facoYGL7Ve2x0a+eguNod0WxH7fufIK5BpXpwBM+bwaegNr/CuRo6IYfL7U+6izFzSXmzrWGFpjmouSbAj++te/8vLLL3PPPfdQX5/yw9ywYQOnnXYae++9N7/61a9K6PKmT/fARKmJvqMzik/1E/B3eR4ocVKGhqnrkkmBZATxF/gyCyGEIN7eQezdD4g0r4XaBvzjd4NwZTUDKVuAJCAhSxKyktoWkLPyLQgh6Ih20traxqBBDfh93ff9y+5HPImqKqhdk739XCyeRNcNIlXBDN/fXFg2CPk8DUrdQ6+kLUH5FuSZ3gqlYPenL+Yap3uB7u50dortZ6XtNpzqtddv13KUMq7FBjLqabKfr56yIQBYuXIlLS0tNDY2Eg6HK/p++D4ghKCzs5M1a9ZQV1fH0KFD85YvyYLs2muv5fnnn08LAwD19fX88Y9/5OCDD/YEAld0xSJQNMIRiY72OKqioqipc+lSIrXFUGpa4431CLT2GLEFi/F9vQGpVicQiGMG/IUvLqU9UxAKBwDnMEdCCNo7orS3d9A4qAFfhYUB6NLCBFLbByChqgogMAyTWDyBJElEqkLIcmXatfzQ3ayMK2GXYI+3b1/JTirT82pS07iyVdFbzXwjHbSoqGuycIq9UO64WZPykuv2YvGK27sJG248UOzCjlsDwXzjmq/d/iQIQO9uG1gx+618OR6lUVdX5yr/QUkCQVtbG2vXru12fO3atbS3t5dS5fcKy60QJQmYyJJEMCTTGYsRqQoh0SUSCIGug5YAYZqpQFylYAqM5WuJv7MISBI/YDSy2UGwTQOH+NnlIIRA142UAWCO80IIWtvaicXiDBrYkDYu7Alk2RIKNAwztYVgmiaBgB9/ke0+1nwzRw2YXpFVZa7seeDeU6DcLYeeJnvvvJTJo5QER/nI/j66T+rv57R/yLhuZndvhXyCQCH60/eWb6K3H+8NGwZJkhg6dCiNjY1oWt8HQPou4vP5HPMkOFGSQHDkkUdy2mmnce2117LHHnsA8Oabb/LrX/+ao446qpQqv19Iete2QJcFoenD59fQdYPOWJxAKGV8ZxoyCj4CqkoyqSGEyFC3Q8rY0BQmuqljCANFkQkqQSQktJZWMARacwvGkpWYAZP4+M1Zq1ZT26kS0ToqeluWMKDrBgEHzYMQgqSm0dzcgqLINA5qQFGUHlUDCpHKCaEbOvFoknA4SKQq3LV1UVqdpVjeF0MpXgJ9HcEvH6XkInC6vlzyhbwuFPwnG7vNQK4+9ufvpFicnnlLyzL8vNd6vH1FUVxPah6lU5Lb4W233cahhx7KCSecwPDhwxk+fDgnnHAChxxyCLfccovrekaMGJHeU7Z/pk/f6C8+f/58DjjgAKqqqqipqWGfffYhFoulzzc3N3PiiSdSU1NDXV0dZ5xxRjr7osUHH3zA3nvvTTAYZNiwYVx99dXd+vLII48wZswYgsEgO+ywA88++2zGeSEEl112GUOHDiUUCnHQQQfxxRdfuL7XDKSN4YoxAyB8SMJHKCQjqyaxqKCz3cTQZPx+P4oio6gK8YSWCuaTSBJPJFnX3szSlq9Z0rKYxa2L+aptKS2drQAkm1tY8/L/iH32Je1fLSUW0IkPUFCqVRqrDOqrVCTDAGHfnhAlZVe0rknHAAj4u6nhU1sEHaxbt55IpIpBAxu6PAAqLwxYRo26YRDtjBHtjOP3+aiprkJVlXTwo1LpiaA5ltGcnZ7IGpiPnmqrnEx6laQYL4RCeQKscvZ/S20vF32R6jpXzATPzfD7QUkCQTgc5pZbbmH9+vVpr4Pm5mZuueUWqqqqXNfz9ttvs3LlyvRn7ty5AOm4zfPnz+eQQw7h4IMP5q233uLtt99mxowZGQZgJ554Ih9//DFz587l6aef5tVXX+Wss85Kn29ra+Pggw9m+PDhLFiwgL/85S9cfvnl3HHHHeky8+bNY9q0aZxxxhm89957TJkyhSlTpvDRRx+ly1x99dXccMMN3Hbbbbz55ptUVVUxadIk4vF48QNoqqlAREYQhJLypzd9SCJAKBCiuqqKutpaAJKaDkj4fSq+LsM4VVUI+H0In06rWE8nHZiyhqwIEKncB4lvVmEmkghVQt1qIEIxkWuCRJQBNCpDqQ0MTgkEekoNZ+VW0MzUdoYhtLx2C9akK4TANAXxhIZhmAT8zsJAa2sb0WgnjYMGplfoPYEQAsM0iHbGiUZj+FSVmuowfr+KYZooskyR8o4jPfGCtKvH7VbdbgSDciafSvqWZ09iTr7/xXo+9FXEQqc+uhUG8tXhlt7KTVEoaVa+e+xrIc+jspQVqbDSzJw5k6effpovvvgCSZLYa6+9+OEPf8gf/vAHx/Kffvop2267LW+//Ta77bYbAHPmzOGwww5j+fLlNDU1ceutt/Lb3/6WVatW4fen1NgXX3wxs2fP5rPPPgPguOOOIxqN8vTTT6fr3muvvdhpp5247bbbEELQ1NTEr371Ky644AIAWltbGTx4MHfffTfHH3+8q/vb6GXwRUb6Y2H7/xQSEhK6nprYqiMbDd/speJ6jJgRR5VU/IofRVIwYjrmV6swPvsac9cm9CF+dL8GrRoirBAO1lPNICRToCz5CGPIcESkBiSI0U5MdGBKGiYGVaKOKuoztilSE65AmCamTZvg6woglD3Rb7QXiDFo4EDHMpUgJZiYxBMpz4GA308gI9YBGKZJMqkR8PtKzg3hJtphdspeKC9PgnXOotLCSE+kCs5Oi1yOSr2vVqhuEgh91ynk+eBm7HvSy8CjdylJQ7D//vtzwAEH5PyUQjKZ5N577+X0009HkiTWrFnDm2++SWNjIxMmTGDw4MHsu+++/O9//0tfM3/+fOrq6tLCAMBBBx2ELMu8+eab6TL77LNPWhgAmDRpEosWLWLDhg3pMgcddFBGfyZNmsT8+fMB+Oqrr1i1alVGmdraWvbcc890GScSiQRtbW0ZnxQbJ3chGSAnUjYF1kcyAIGipNzl4okkQjIQsraxrGQQVEMM8A8g2KbDyhbii5ZiLF1B8ttvSe46gOQwP75gFUGlBrNehaCaWh0LAbKMCIYRHS3p/ugkiEutJOlEJ0lMakWXklhiiKUJME0TSZLwqSoBv59gwN/NrQ9Sk3RbWzuxzhiDBjb0iDBgbQ10xhJEO+MoikJ1JEwwmBnPQJJSiaL8PpVEMr/2IxduQx/bX6BbzXyj6ARDuer8rkxEboSB7wKTmsZlRF0c9fDZ35l7KUarUo4w4LFpUZJR4U477ZTxu6ZpLFy4kI8++ohTTjmlpI7Mnj2blpYWTj31VAC+/PJLAC6//HKuueYadtppJ/71r39x4IEH8tFHHzF69GhWrVpFY2NjRj2qqjJgwABWrVoFwKpVq7qlaR48eHD6XH19PatWrUofs5ex12G/zqmME1deeSWzZjll3evyMpC19OSfNskXgKwhjNQKNhT00x6N4kdHke1lAENGb+tg7etvEGkahtbRgS8SITZQQgwPEJBUIjQgMAkSQRYqsqQAqVDBZlUtyvqVGBggZIJSNTpJFFR8kg9VllCEiegKiWB2qdwDBQIYWVqDtvZ2op2dXZqByhoPWsaCiUQSzTDw+3yEgoG8LoSSJKEoMn5UEgmtS4gB1WXfrABF+QQDtzkPsrHKu7Xa7u8GaxnxDHohmp49eJQQAk3TMUyTE5vcR1h1wh5XoreiAlYCt7kncrmoesLA95OSBIK//e1vjscvv/zybgZ9brnzzjs59NBDaWpKPaFW2tuzzz6b0047DYCdd96ZF198kX/+859ceeWVJbXTm/zmN7/JCPnc1tbGsGHDUr9IRlfOgqyLJEAYICcRZgBZlgn4A8Q7Y4QjqQlsYxkdYRjIKKAbhEcMQw4GSBgymmxikhI2ZKHgEyFMU2CYJnE9gSSB5Avi72wn2fEt/kgTqvBTx9DU5CgEkOhKsmRiChndMFDV3I+MtaUQTyTo6IhiGEaX8WDlhAHLZiGR1NA1HZ9fpToYQsrh5piNXShIJjUsH89i+ugkGDi5s/XkS9UepbA3BINiBRDr/i3hqNxAR8UgdSXNkvT8OUDyjd9GTU3vToy9ORG7Sd/s8f2irORG2Zx00kn885//LPq6r7/+mhdeeIEzzzwzfcyKqLTttttmlB07dizLli0DUkErsgNW6LpOc3NzOgjDkCFDWL16dUYZ6/dCZezn7dc5lXEiEAhQU1OT8UkjVByHX5A6LjZOvAG/D1OX0fWNXgApI0ANsa6V6kSAqhFbEBq+GYHGAfgHDEHSVAzDIK7FiSY6U3vrhkFC0+mIxhECgpEI+qBh+JevQI9HaU92YtkvgASGH8wApgmJRDK1haF073NqRabR2tbOqtVraG1tIxQM0jhoUEU9CUzTJBZL0NHZiSRBJBIiGAjkjHmQC0soCIUCBAN+NE3HNMszpemtyS7bAr7cdt2qli0BxE1IXSfDwlz9dBMSONseIxun0NKW8e2Dq6/PWXeu7RxLkNlq5htFJ2rqSc+A74Ihpsd3m4oKBPPnzy8pTeVdd91FY2MjkydPTh8bMWIETU1NLFq0KKPs559/zvDhwwEYP348LS0tLFiwIH3+pZdewjRN9txzz3SZV199NSOoxdy5c9lmm23SkRbHjx/Piy++mNHO3LlzGT9+PAAjR45kyJAhGWXa2tp4880302WKo2vCNX0brQRTBgWpFMhGYKP3AamXWzAYJB41MISgzWwlSRKjLUbync9Rt2lCGVyHJEsgy4QD1chGAF0zaRGrifrW4gtKKH6B8MfxhUU67bCob0SuHkTw22VEJB+GYZLUUrkHtKRJMiFIJnR86kYvh43eBSadnTHWrl3HmrXrMAyDhgEDGDK4kUikqiI2AwJLEIjT3tEJkkSkKkww4C/ZMNAa09SnsnYNuULv9gTlZtordjVqTZJOAZEs8mUrLHeydGovX56JlJ2LO991S9Apd4Xen7dxPDwKUZJAcNRRR2V8jjzySPbaay9OO+00zj67OInaNE3uuusuTjnllAx1tCRJ/PrXv+aGG27g0UcfZfHixVx66aV89tlnnHHGGUBKW3DIIYfw05/+lLfeeovXX3+dGTNmcPzxx6e3Hk444QT8fj9nnHEGH3/8MQ899BDXX399hir/vPPOY86cOVx77bV89tlnXH755bzzzjvMmDEj3ZeZM2fyxz/+kSeffJIPP/yQk08+maamJqZMmVLKEKYme6EASpcwoKbcEE0/UtfXktICbLTil/ATjwviIka70Ub802+Q6iP4dxwKqpZ2HVRkGcUPppogKTrRNZ3Ozjgb2ltYH11DR7yV1pYWWlrbSOoGsYYhCEkm+vXnfN2ykjWxNtb7oiRUHbkr/K+ibExGpGk6LS2trFy1mrb2dsJVYYYMbmRAfV06OVHZgoDlNRBP0N4RQyARiYQJBf0ocmUncQElhS+2J0pyopiJxSkOgRtKnYDsE1++ftr75NS/7PN2gcEpkE32724yBeZrvxCFnhNLENhq5hvdci+UYqfhto/5jEdzkUsALCdltYeHnZJsCGpqajL+0GRZZptttuGKK67g4IMPLqquF154gWXLlnH66ad3Ozdz5kzi8Ti//OUvaW5uZty4ccydO5etttoqXea+++5jxowZHHjggciyzNFHH80NN9yQPl9bW8vzzz/P9OnT2XXXXRk4cCCXXXZZRqyCCRMmcP/99/O73/2OSy65hNGjRzN79my23377dJkLL7yQaDTKWWedRUtLCz/4wQ+YM2dOSRqRjUipeASILo1Al2yA6LIvEAgjdV4Igd/vY13HBvQqDVnXUZc1w9ZNJNqjGEYbpgGmIaeM7UQcU5bwyT6QfCTQUNUA9fIQlICCLMldav5WNENjQLAWed3XaIMiyAOCKELCkAWqltJUmKZJZyxGNNqJrhuEwyEGDRyY1jRUOimRbhjEOhOoqkJ1JGUjQFdeh55A04y0HUEl2yjGlqDYwDmlvPStpEOFjP2KySiYNoi08gPY4ilk51koxvYhO/VxqcLPf9bf1C2ldXYfckXiK5ZCaak9PPoz/SoOwaaOFYfgq0/f2RiHQJKQkBGKD8MU6IaGSQLd0DFNE2H4MXQwzZSBVCyewJCShCWFqvlfIe09mrg/QCisoPpSwpksK5hGatXr88tIprUFkakQMs1UKOFkIomS7ET6Zglrtx6JXBNgQCJMUPUhI2EaJmvXrQMkqiMRgqFgOnNhpUmlJNZIJpOEQsEuG4SKN2Nrr0vroesYhonPp3bZSbgTDFIZG2P4fT78fh+S5OyFUMwE7mZCcevSZ283e4KtJG4S/DglYyoHt2mphRDdBAI7lRgPJ8HH6VyuY3bvFMj9vbqpq7fdPb04BJsOJW0ZbLnllqxfv77b8ZaWFrbccsuyO7WpoyRaUOLrkePrkWPrkDrX0P7tR7R/8y7xlR9grPkCtXU5ocRaqsVaGgJRBofjDInojBjooykSYGgogE+YVIf91IT9RCIBwqEggYAfQ5doaxXEY12ynqwjMOmIxrBcDoUAE0FMS4IEij+IFAiht8WQYgZ+FBRkhAkr1q2ixdjAwEEDCIdDFVfZW6RsEuJouk5VVbgr6VHFm8lAklKCk9+nEvD7MAyDRFesBTeysqbpIAR+/8a+Om0luHk5FxPi161PvN0I0W10vWLJDprkNilTMfSUsV6lhCO7MJDrXPYxe1mnbZZy7tnbMvAohZI0BLIsO8YAWL16NVtssQWJRKJiHdyUsDQEC567h4aGBmKdHWy2xZYoiko02k6wrgkwkTBTboXCROrKfyyMBJJIHRcmoJl0vrKU4B5DkMMmkiohAlWIQA2aUOlo1VEwiFQLFEkmmVD5+LOv2HbsaJYsXUEoHCaRSJDUkxjxTgwDjGgHW2y7A6vWraWmKkJS01i7di2NIxqora1mcHhwj+Ue0HU9ldgpK8JgbyNEKj2ypunIioxPVXPaF5imoL2jk3A4mNd4zW1Ao1Lo6/1iN6vRnlChu9UOwMYIlaFgKh239X305NiVe8+5XDXdaB/c3lelyj2y6F3qt/7S0xBsAhRlQ/Dkk0+mf37uueeo7Yq3D2AYBi+++CIjRoyoWOc2VZZ8/hE1u+5FZ7Qd0zBQFBVkH8JfnbLit5XN/FmkDwjdwFRWocfr8W0+GPQOpGQLUtsK/EKjXqiYArRmSCKhCz8d7S2sXvENbRuaWf5tgpqaOqoiEb5YuoLhw4ejBEJ8/dVS1jZvQPUp1A6sob2znT0ad0HtoUxj1hZBZyyO1JWquI9kAcBySVRQFBlNM4gnkvhUxTFOQSKRRFWdXTF7i/4uDEBhjcBjzTcBUo8JTqZhZuQ/KSWNdbEsnno7k2a6Cw6Ua6vBs0Pw6G2KEggsi3pJkrpFJPT5fIwYMYJrr722Yp3bVBkwsJF1a1fi8wdSxnKureWkjYGMVAV12GC0L5YTbwwTqFHxhYaAGASYSKYf0zBpa+kkHm9HVVQahgxHra6jUa1lRFWYzmgnoVCI8eMHpNz50GhpaScQDlNTXY0a8OGXgkTb4wSD/vQKqxJYAYZi8TggUVsToa0jWrH6yyH1VaSC26iqTFLT0RMmfp+lLUgZWSY1jepI4URNbiIcbmoUEzRJSDoIJT1RF6IY7QCkUomrvkyB1m1b5eDkepnPcNH+86iHz4br6Ob54OHRkxQlEFjRA0eOHMnbb7/NwIEDe6RTmzpjttuFcDiIMFMrF2GadA9ZmB9JkvBtORTt46/QvlyJufVA1FrLL19GyCAJP4ocTXkrIDN0yGCqqyNpF0IGNWTUKa9fzYBqH8bmY0DA+uYWBg5ooL09SjKZ7MpkmNmHYhAAXWmSE0kNoytVcsCf2iKQpZSHhNKHK247kgSSlArVbHQJAJIk4/epxOKJLm1G/r6Wa7NrFya+S4KF29Xtf1r+CuhIIjVhWxN19qRf6j1bMTPsGgILt+OZrQkpZ6sh17VO9gRbzXwDpm68Jpd9QinbE/n6kStYkyeYbPp4Xga9iGVDsGTh/1EdqWKj/l8gB2vxVdUXNcmKpE7b/IVIAT+az6B6q80wEhrBoYNIAm3E0NdGCcghwqEwsiJjGgLVp2ACqiwj2xMANa9Bbm3GGLENAujsjBOLJ/D5VPx+H8FAKkFUwtAIKO73+a2XclLTSSY1JEnC7/d125+PRuP4/Cp+X0nesD2K9Wei6wbxeJKkrlNfW13QTdE0BfF4IhXl0aeQSGictFn3+Pq5JsB8q2H7RPbouhs5ZuAv+PeXVyEl1nHS2L8Uc3slU+pEkbqvjXE20sG6wFEgsI5vvDZb2HL+Hix7kEJ2KbmEArumo1CQqVEPn53hcgmZGgEnTwwnLxCr3ey6rDas/mT3z95GMd4nbshX3vMy2HRwLRDccMMNnHXWWQSDwQw/fyfOPffcinRuU2Nj+uPFabfD7OF3LRAIQfvnS2h+933qBg9D9wuS7W0oAwYQ2HE7NL9BkgQR3U+VL4TctZKNJ5KYpkCXJar8PuSuNjUpgbp+Pb72DozhW5P9UFgRCk0h6EzGCSh+FFlKr7y6ZzoESMUTSCY0dMNEVRUCfl/OCIbxeBJBKqFTf6a9vRNJllBkGZ/POe2zhaYbGIaJLEtomo5PVbq8JzL3zItVg0Nqslu9pp0Z213Cf9bfBEBnW5x4NEHtoGoUVc7rblcupbjIWZRyv9mkgmQlSCYFgYAfVZW73Hg3kkzqAPh87nJVlKKJsE/0llBQyMjSabK3sHuG2EMnp+NH5DEqdCMQlCLEeQLB9wPXAsHIkSN55513aGho6JY9MKNCSUpnKvTIxEkgKBkh6Fz2LbHlKwgEI0htnXQqceTGIZiNjYSCfqSAhK50AhpVog4FXyr1rykwAczUPn4kEqCDZuR1a6iJyhjDt0m5JQoT0zAxzNS/ZtdK31oVp+L/S8gyyHLKuM4SEHTDSCUPIqUN8PusoD+5X8qappNIakSqQuWNTQ9ieRbUVIe74jjoSNDldph5f0JAIplE7TJStKiEB4UQgta2GMmkwcCGSFrTIoQg2hIDIFwTRJKlDKGgknvnpfi7V0IQsEjZoRhsaIkTiyUJhQJURwL4/Za9gEQ8kcDv87nehip1bIqxmcgWCLLzU+TCEjbsWgK7N0KltAO5PBdy1e0JBJsO3pZBL1JRgcDCFBhrWoi9/gHqD8dhqH5U1Yffp2JiopNASAK/CBGPa10TlEw4FEQ3THRToKoSmp5E2bAOpbWNziEjUhO7JCHLqURAiiwjKzKylJk/wBQiJTQYRkpw6EoSpCiy7UXsLsiPYaRiJdRUV/Wpp0EuhIBkUkvFSQiHSCWFFKlx1HQURU6v/qFruyCRTAlnFb4hIQQbNrRTVRXG71eyBBFBMq6jxTVCkQCymqnByDXpFZOVsK+FAQvr9RWPJ+js1IkldPw+hUiVn0BAJZnUCboc/2KFgew9fbf7+JZA4DR2brYlAMetiUru8xfjzugJBJsOJQkEV1xxBRdccAHhcDjjeCwW4y9/+QuXXXZZxTq4KdEjAgFgtHXS+tYnhHbZmkBdJL0FEGUDALU0IgS06y2YcpyQiCCbYXyqQmciQafZii8gU92WRG5uJTZ0y4z8BSmjRIGBjoGGiUmQqlTa5Sysx6mUCVAIQVt7lOpIVUm5BXoaUwg62lNxB1Rb3AFreySpZUY7tLQHPp+v4gJOyi7DzJmcKaUp6CTemaB+cC2yomT0IVc0RYtCKud8ZbINA93YQ5TLRhsPk2g0QWcsQaRKxefzEQwGXD+PPWWwWSiSY7YtgZNgVkhYqGTsgWKu9QSCTYeSzLlnzZpFR0dHt+OdnZ3MmjWr7E55FIlm4Fvbhl9WMCWDDmk9zWI5nbQQp50kUXQlStzXTFzpwFCTJLQEsXiCRFzDQCeutBCT2lAViYDfR0KPE6eddmkdG1jJer5hPd/QzLe0itXoQnPsSrmJjWRZTnuz9CeEECQTGoqqdFM/p7wRuqIdBnwYukEsnkwLBz2h7ZAkCVnOvS8uSRJVdWFCkSCJTi1t2JmPSlqR2yf/QkmgKoH13Pl8CrW1IQY31hIKBTFFyhDUzbqnJ703rAiOuSI5ZkeUdNI29KSVf0+mbfb47lCSObe1j5zN+++/z4ABA8rulId7hGkiYonUpCNDlA100AwIFFRCUhhVFkhIBKQgSc1E12WCqg+/z4csK4i4SdCsokpOIIlmFEUhqSWIiXUIychoT0JGRsZE74G7kfCpKomkVpHUyZXENEXaviHfJJzKDplyU5QlCalId9JKIkkS4ZoQybhOe3MHkbqUp4kkSTkn6EkDpqdU2itSKulcVvL5tAN9TSq4VMrgVVFU4omkq+epN2ITOGGp5wtN+KlJO7eWoNDqP5+GwQuC5AFFagjq6+sZMGAAkiSx9dZbM2DAgPSntraWH/7wh0ydOrWn+uqRhRFL0PzWe8RWrSZWJ9O26AuU9TohUU2YWurlRqrlGmQUhCnhS1RTpQ+k2ldHwJ/yoQ8EfNRV11Al1yHj61pJCfxSEFkPoBIgQIQq6qkTQxjAZgyQNsdP5Q3/JCllnKd3Web3F/OWlHGg1hWYKP+fjERqQlIVpcsOo3f6mLM/koQ/mHLvbFnThjALawrsPLfi/fQH8q9S+4MwYMfKU6EoMoZZ2rPkxtivVIoxRLTIp2WA3P118lpw6k++dNdujR89vrsUpSG47rrrEEJw+umnM2vWrIzQxX6/nxEjRjB+/PiKd9LDAVPQ+uEndC5dhm/YCKq2GkFszRrUpEJYGgSAhIYpNPSkhKkrBNUQSpb7lYSEJIOBhsAEXSeRSCJLChFjECHhQ5JSKZBT/5OsC3sESZIJBf10RGMEA1YGQcu1sWfaLIxAtxkSfteQJIlIfRXxaIJETCMQ9qWPZ5MO65sn7K7TZNTfhAE7EnQF/yov/HalcjJY9RRTVzEq/VyaAjcGo/lCJ3vBiTZ9ihIIrHDFI0eOZMKECfh8vh7plIcLJAgPHozUEkNtqCUwdDCGrqOEgsjIKev3pIRmSCiSj2Ag9yRgSBobxCqCuk41pAIQSRKJhIYwZBS19yIHShL4fCoRWSaRTNIRjaHIMn6/zzGfQG9gdEWS7I+Gjm6RJIlgVYBkTKNtXQeR+ioUtTLbMv1ZGLCSVfn9hd9VvbFdUIpQkUuTYDdCdDqefWzxCnf5Fcrpq8d3m5Le9Pvuu29aGIjH47S1tWV8PHoWIQTG+nbEx9+AgOiQIK1qJ/qIeuTaCKZp0qHFiQuDgC+E3+craOxnoKFLCVA3xgtQfUraIKs31feSJKGqCuFQiEhVCFVViCeStHd0kkxqvdoXIQRaUket0OTZl0iShD/kQ1EV2td3FL198F3EMMy0+2whnAQb++Saa3J0u3ovZ4LNd52Tx0IlVPtWWOQl1+2V1g54WwabNiUJBJ2dncyYMYPGxkaqqqqor6/P+Hj0EALMeJLkB18Rf2EBelhh9fYhvtaW81X7lyyNLmVldCXNejst4U7MsECW8wsCQgiEKWF2BlBkBVmYWOFklS6L/47OKLFEvNf39VN7wDKBgJ9IVYhQKEA8kdIaJJNaytbA7Lk+CSFScQc0nYDfOXqiIGVjYK1EdT0VkCn10dF1A9MU9Jd5V5IkInVhQtVB4p1JR6GgGK+A/q4d0HQdvy02RD7sGgL7JF+pSbAUYcCtEFFKTAM3WFsbnjDw/aAkgeDXv/41L730ErfeeiuBQIB//OMfzJo1i6amJv71r39Vuo8eAEJgrGsl/sK7GEu+xb/XWMITx+GvrkF0/ScJhbgqiNZomAHo8CWIKclU2uQ8aHGdztU+AnpNykYgHV5ewh/wISsCNaAT12LohpGOD59IaiQSybSg0JPCQspQT6U6Esbv95HUdGLxJNFojLb2Tto7Ool2xtB0vSL9ECLlVRBPaFRVBR2NCa1ARe0dUVrbo3REY8TiCTTdSH00nVg8QXtHJ+0dUaKdcRIJzSYkiHQ9vYkkSwTCfmRZYsPqNgzdWajqz5N9ISwBrdStHmt1DJU3pss23st3vFyVfSX7nWuLwmPToSS3w6eeeop//etf7Lfffpx22mnsvffejBo1iuHDh3Pfffdx4oknVrqf329ME/2z5SQ+/wZp+GCC2wxDCqVWrINDgxEIqtQIHUYC34AQyCkDQB2TVn8Mf1xFFfkMqiR0HTRNIAzTdjSlJVAkP0IkCYRMtGQCyVCRJTmdCjipaciShM/vc5/JuQSstMR+X8rYENuEagoz5f8fS+D3+wn43a0KnbC8CuLxJJFIGFmWu92TEIJ4IqU9CIeCKXe+lPkamRaXokuDYKY0CEYqa6IQKVdQRZHxB1J5IXpzS0KSUkKBrhl0bIhS0xAB2X1Aqe+CsKDphuscBk5Y4YArbUiXnYsgm1LbzCW4lBJVMl8bVp2egeGmR0kCQXNzM1tuuSUANTU1NDc3A/CDH/yAc845p3K980hpBpasQv/wS4I/2J5kfQQR8KWzFIbVKkZWj8Q0QTWjxGQd01riS6DJJppsoBqFBAKT9g6Napt71sZVoyAW1amuVQkGBZgyklCxJj5VUVIag0SyKyNiz05s6fd71w+SBDIKqpJKHBSNxhCm2eWhsPEesf3o1ENTCHTNIJ5IEIvFCQQCRKOxroA3KqqqIMtSKodBIokpBJGqUNYKNLtmK2yzgqIoWBsPqTj8Ak3TiUZj+HwqwYCvK/JgeePjFkmSqKoNocV1Yh0JgmF/tzDHTr75/V0Y2KgdSAm0bnFKh+xGO1DOKt7x2qkboxUWW7+TPYGHh1tK2jLYcsst+eqrrwAYM2YMDz/8MJDSHNhdET3KRIBo7UR/7wv8e26L0tSAz+/rphYXQkJL6tTIYWqToawpSaBLZt5tA8Mw8PsVBg6oQurynU+9VA1a25pZ37yKWGeUZKKrFlnLqM2aMEHCMKyVsLvocJVGlmWqqkKYQhDtjNERjdMRjdHRkdpWaI920t7eSXtHzPbppKWtg5a2DpKahqYZ1NfXUlsbSSdaEiKVxjgajRGLJVBUhapuwoB7UsFzZIJBP9WRVAjwjo4Y8UQyw+6gp4dQkiR8QRVJhpY1bRha9vcmeGz11enf+rswYKHpesnagex7LKQqz2VUWEr0P3sbi6fezuKpt1fMSLDSeNENNz1K0hCcdtppvP/+++y7775cfPHF/OhHP+Kmm25C0zT++te/VrqP31+EwFj0DdLAWuRhA6FrEtH0VMx8RZHRNAPDNFJpeGUZRZNJyjoxVUMgUISMkPLPKqaZSs+rCh1UBdOEeDJJtLOdeLyVYDBMdaQO0xCYpokimyDpYNMSpDwDZJJJDUmWEAJUVcHvK+kRKwtZlgmHAnSlGLCROQ7p81LXloMw0RMGVVXBtCGakFP3kUrJLKXrqKR6X5YlQsEApj+VjTIWT2RsKahqSrtQyEC0VCRJIhQJYhqCWEeCqtrUtpMkAaaB3PE1jy//LSI0tOJtVxohUp4F1nZXX1GsR4GbCb9cNX2hrYPFU4tzSyy2vEf/p6S/mF/+8pece+65ABx00EF89tln3H///fzf//0fH3/8cUU7+H1GdMTQv1mDOnYLsL3cfKpKLJ4gFk8ZDKZywadWQzIS9YkqGmPVDEhEGBivploL5m1HkSXCIRkp0YnuC9LS3kl7RxxZVhhQ38iA+kYC/iB+NYCWwKYlyJxgVUUhFAoQDPgJ+H0YhuHYXm9ghRGWZftHzvgospzO5KjKKlY05mDAOTuelbOgZyblVIbIcChApCpMpCpMKBRIC33RzjjtHZ10RGNoWmUMJzPbT20fBMJ+Yu0JDF0HIZBiq0FSEKHBfRkZqggEmm6guvQsyEU+LUH2yjg782Cx2CfqXJ/ssm4p1vsg+95yaQE8+4FNk4qI0MOHD+eoo46itraWO++8sxJVegiB8dUq5Ooq5IG1aTW+bhgktdTMJcuphDqy/cUnQBYSfkOlSvfjN1NRBvPF1A+HgzQOrEaOx0j6ghimSaQqSF1NLeFQBEVWQAJFTU1Chi4AE2Qd+6rbmiytT2+ovCuFbhgkkhqhUPfMeBL06vaHFXJXVRUCAT/hcJDqSIiqqhA+n0osniQeT/aIUOALWNsH7RixVqT4WszqLUAqL8pfb1BJ7YBwCHVsTYKLp95eUF2eSzuQS/1faILNFgwKtW+1kS+UcfYHSG9R2O8jn6Gix6ZF3+nUPPIiOuIYS1agbrM5qErKJ17T0XWTYMBHVTjY5UO+0Q9eCEHCSLCicwXrEutSFv8FDPwkSUJWFFRZQTJ1/NU11NdUEQ6l3NJSXogGyElQEvgCAk3rMluU9C4tQfeXZ2o1nbKu7+/Bb0xT0NkZJxwKZApXbBRyzD68B0szocgyfp+PSFUI0xS0tXemXR0Nw8xjJVJMWxKh6iDhiI/k+q8wQpuBnF/D1H9IxR1Qy/AsEEJgGiat69odz9uFglLIl/bYLZYw4LSat0/ubtNZO5EtKGTjuSBumvT+Bq9HYTQDfeES5Noq5M0aEKR84oEuS/TU6ltRU9b9fn/qa+zUo3zdsZROPUpICVHtixBUgrix+pd0DQwDORhEUhQkqWtDQNJA1kgHK5IUJCFjGgJF6dISmM5hYVVVIZHQ8Pt9yEW4tPUmQqSEAb9PRVWdUxWnUjKLckPhVwRLOAiHA5hmyqZDNww6op2EQkF8qvUn7ZyR1FUbQJW8Hi1URXtnkJBqlDXJ9hYp7YBUsnZACAEC2jdEXW2P2CdD+8ReaJJ3G9cglx3C4qm3pz0QLKEgJaDkFwCsdkuJq+B0Txt/d06F7vHdwxMI+hMCSGro7y3GXN+Gf79xiK5JX0LCb/OtlyTwqQqxeBLTTEUk9CsBav11gKDGV4tSjJo3EQNFBVmxufV1aQZSv6QmfqEiSzrC6Ao4kCO+gRVISJZShoayIuOzhUXuDwghUvkaEASD/pxzgCxLXfkM+g9Wil9FkfH5VHyqSmcsTkJKxYSQ5JStSSn5H6RkC1KyBbV+LErUoHVtG3WNtRXLfdBT6Hrpgktaw9ap4Q/5CYScI1NC7tVxMf7+TmWycxbYgyNBplbC+tkpe2F23XbBwjpXKaHguRXvc+DQbYuqx6P/Ioki9LlHHXVU3vMtLS288sorfWpM1p9pa2ujtraW5V8vpqamOvOkEIhoHP3NzxCdCXwTtkMaEMHsmrRSE1b3F53eFRUvlbxIQmCiCx1VUlOWAy5fjvLq5UiJOMawrbpWRyKV/VBJpCZ9UwVkJCCppb5fv0/BjfYhFULWwNANJDnloij3or+9Y58AXdPpjMWp7go+lAvDsMY49yTRHzC7XEWFmfKa0LpsTULBlHGiq2fBSCK3fIaIDEME6lJBmjqTmLpJoCqArPQfgc5Oyi00mfPvpNC1whS0re9A9atU1YbSdRST8KgcFX2xFFLlF1uXW8PFUQ+fnRZGLKHiwKHb8jJP0NraSk1NTdHte/QfihIITjvtNFfl7rrrrpI7tCmTUyAQArG+HW3ex0iREOoeY5CqAl0KAz1l7JVjpWdFzPOpCqpaik47pSaVl30B4WrMQUNtZ7qMB7sEAWvy13Qd0xAEAu6zXVqPmW4YaJqB36e6n6R6AMMw6YjGCIeD+AqMm2maKYPDYKCXelcZUrkYdOKJBD6fr8t7Is/WjTCR2r9EknyYkS3SanMhBFpCJ9raSaQujFpGFMieQtcNdMMkkBGMyh3CFETbYhiaTvWACLLSXTh0KxhUMiqgm7bytePW9dGNHUM+IaGt3aB+6y89gWAToKgtA2+i7wFMgfntOrQ3P0UZMQRlxy2RfKotOJCZ0w0OujLY+VSSSa3kCVagIRLt0DA4s+6UvXa38oqsoGkbtyrcYPVLVRRkWSaR0AjIPpQ+mFiEEHTG4gQCPlTFpRDVRzaFliBVyvcqSRKBgA+fb2O2yGDQnzPZj5RoRtJjmHXDM/bQLe+DQMhP27oO6hprukU07EuEECkh0+9sA5IP0zRJdCZRfQrhmlA3o9JSKTQZVyK1cKFJ3G39nguhh4XnZdCX6CbGouUk53+Cuv1I1J1HIfnVtBbe0A0Uhzj62ciyhCRLXamKu59PqURNTE1LfXTro2PqBiR0JF0gFB/CNBCmmfoI56RFkgRqV4CkYj0IrPgAqppKrdzbCCGIxROpybKY1aTUu66H0LXCb/4WMxGlHIlElmVCwQBV4SDJpE5HNNb9WTF1pOi3iMhwkLuvEyzvg8iAqtQWQi9nvsyHbphpV81iMA2T1rXtaHEtnewp1w6YlQGyUKRGt14I2fYBlabSdWe7PXpsmngCQR9g6jpmLIm2YBHaB0vw7TEGeVQTQiKdjtbad09tAxR2HfT7VDQ9d7hgbf0a9BXLHD/aqm9JoJBcs5Lk8q9JLl+a+nyzlOS3X2PGY93a8/lUTNMsKbVvyuBQ7vVJRQjQtFRK4nAo6HqFK0lSamelF+c/IQRGdAPN7zxO9Ov3yh4nqUsIi1QF8ft9RDtjxOLxtDulpHeArCJ81eR63iRJwh/0oQZUNqxuQ0/2TXhqO6Yp0HUj7WnjhlQeCZOODdFUOuj6qh7RdvRkDoRCVLJuJ9sITzjYNPG8DPqA2NKVqP4gZrQTaeRg9EQCvvw2ddJ6MUlgmCZSXTXBQfUUFgrk9Kq9m0pYCEQ8RtDnxzAMTMNIGcol4qh+P8FQmLjfQBECLRZD9fkQpkmoKoJh6OidUZRQOLtFfKpKUtNKSmgkSRKSLKcy0pVgCV8sgpRxYCye7EpnXIoKvvL9yocea8NXOxhTSyIMHUkt36jR0oz4VJV4IkF7eyehoJ9Asj0lDBS4SWv74P+3d97xUZVZH/89t07LJCQEQosoSBMQRQQEFVBBCSoIWLAgghVxxbW+FnYt7K6rru6CbXUti6vYcUFU0EVFUBFEUEGqFCG0kEwy7bbz/nFnbjJpTOok4fl+PqNk5pYzd2buc57znPM7Hr8bxYdLkJ7tb/SS0rLNiwzDcpbKkrEh7mwXHyoBAPhb+5rM0kdTZOuTgzCqfeJz5Z2Ct35Z09hmcRoI7hCkgGhxGBnt/Ij4PBAlEW5RgqHpMHUDqsdlNxgCIAsE/XAxKCsd7Ahr3YwBsiwhEtFgSQTB6bIXg+wywZKiQoSDQQQOFyASDKLDcV0gCCJ+3bgBHp8PB/fuRU7uMTh8YD969h8QO3jl5xNFAYbBYJgmJLFmg3o8qhGNarYqX7Jr+bWELDtvwO1SbOXFmuwbu3aNCWMMruzOcGV3bpBZuN0/wQVFNhGOREAlh6H4c5JqX233PlAhKxKiQQ2yS2oUnQIicpIHy9qSrEMZ1xmIBjUwQYCvVfXVJVVRWVfE2lAfeQQNTTL2jevWB8C2hjeG0+DwJYMUkL91F8LFQRzYuQf7tu/Gnl+2Y8+mX7Fj/S+IhqMJ8r/AkdUG4zDGIMkSdC1RUrgsgiAiGAiALAv+zEwUHToISZHh9vpg6DosywRAMA0DVqz2vqrzM8YgKxJ03ax2hZtQOjOzLHt2pxuGXa1gWQ2eS2DnDUQgSRJkueaJZ0S2T5SqmWTD9k8QkeZ1QRYMFEeAcDgC0zryUg5jDJIiQpQFFO4PQI/Wf3+F8mi6AcO0oMgiXKoMlypDTbLiIf79CxaFAABprbxgrGFuf/URTm8KHQ6TyUNItY2c+oU7BCmAAWCCAG+GH5ZlIVhUjMDBAlgWJQy9tbm9SqIAQmlItfRg9tG86enIymmHDsd1QUbrbLTNPQaiIKJtp07IyT0Gx/Y8AW5fGjp26QpJjpUVVnPDFZgtjmOUabhTOvhbsTJDA1HNQCSiIRrVoOu6XaEQc2Di+zQEREA0ap/PXYsadYcWGlVmDIBlghEgqR6YloVgMIxgKIKopsOyShNLKyaX2jkFvgwPwiWRBs0JKa24kSGKYgWn+cgHAIoLgjB0E6pXARNYowR9qmuZXN3sO57EV5NGRMlQk32SiQ5UJozEab6k1CHo3LlzhYY4jDFMn26H4oYNG1bhtRtuuCHhGDt37kReXh48Hg/atGmDO+64A4ZhJGyzbNkynHzyyVBVFV27dsXLL79cwZa5c+eic+fOcLlcGDhwIL799tuE1yORCKZPn46srCz4fD6MHz8e+/btq9X7zsrNgdvnRUabLLTrkovM9m1wTJ/u6NC9M2RXuXViVnXmc2XYoXgZWtmOeIwBLheiWhS6ocPtT4OoqHD7/ZBlGXowAFGWIbtcSM/KQlpGBvyZmdC0CIJaEIZY9YBth2wle+A3TGiajqimIxLVENV0Z/YviQJUVYbLpUBVFSiyDFm2lfQacmZpmAaiml6jJMLylO/q2NJgZgRMkuH2eODzuuHzeuwkVd2uSCgusR/BUAThSBSabrffjn9uLq8Kj9+NcEm0QSIFRIBumBBFAbXxzIgI0bAGQRTgz2qYnIGtTw5yHuWprENifJ+60BSWG5qCDZz6I6U5BKtWrUpQNfzxxx9xzjnnYOLEic5z1157LR588EHnb4+nNLnNNE3k5eUhJycHK1aswN69e3HVVVdBlmXMnj0bALB9+3bk5eXhhhtuwGuvvYZPP/0U06ZNQ7t27TBq1CgAwPz583Hbbbfh2WefxcCBA/Hkk09i1KhR+OWXX9CmTRsAdsvnRYsW4a233kJ6ejpuvvlmXHTRRfjqq69q/L59rdJgmjpERYSoiFA8pYI3Vizpz5YFJjBX8uI/cQTB1nOPJ+wBgJKdAzJNW9lQN+yZvSJBKC4EO7gXZtvjEBcpAgAQoUQrxO7QIXRSABVUzdKBrS8QiWpwqQokUXCUCI908xUYa7DsfcuyEA5H4HG7arVWDMRmpoZV5+55TRojCCvW80Jg9sxZUWyHzV52t78XpmnBNG2nz4pVwwiC4GgdmLKIogMBpGf77a6J9TDwxpeZjJhSZG1Eh0oKgxAkEd50T1LfyWR5t2Cuk0dQfmBMRhq4sQbTstGIZM/ZHPIbOPVPSu9y2dnZyMnJcR4LFy5Ely5dcOaZZzrbeDyehG3KKmF98skn+PnnnzFv3jz069cP5513Hh566CHMnTsXmmZr8D/77LM49thj8fjjj6Nnz564+eabMWHCBPztb39zjvPEE0/g2muvxZQpU9CrVy88++yz8Hg8+Ne//gUAKCoqwosvvognnngCI0aMQP/+/fHSSy9hxYoV+Prrmv9o1GNy4OpsP9RjcqAe0xZqbluouW2AnFYQ22dB6ZAFpWNruNpn1zihLV4WWLbW3AKDZgImE6B6PXD5vBBVF0RRhKioEF1uiC4PRLf9ENwekEuFJjMUaAUIaEVHPJ8kihAFAaIg2toISdgd36b+Z5WEYCgCRVZiev61O4au2x0da6cC2RwgMCMEUfVXcPcYY45zKYoCFEWC223rGaT53EjzuaEqMiIRDSXBCARFhCfDY0cKdDtiFI3qdrvmqA5Ns0s+ky1VJSJbulvTYpoRyX+I8SWOksNBGJoJt1dN+juZLEdKKqysp0BtSHadvr7X/JO1971N65M+Jqdp02SmPZqmYd68ebjmmmsSfrSvvfYaWrdujd69e+Oee+5BKBRyXlu5ciX69OmDtm1LFfZGjRqFQCCAn376ydnm7LPPTjjXqFGjsHLlSue8q1evTthGEAScffbZzjarV6+GrusJ2/To0QO5ubnONjVBVBSILhWiS4XkViG5XZA8LrvToEuF6vdCTrMfolqzG2Ecxuxug5qmQ9MNaFEdkiTGZvClWdkkyoBhVJmwQCAE9RIIR0jAYsxuvqTppZ0Rk0UQmN1NsJ6wkwg1R6mvtoOAZRFMy5bDbbFJBESAGQZEd9LXKb58JwgCZEVyHINoVIcJgiUCBfsKUVwUhBFbWrAsC5puIByJorgkhJJgCOGIFnNaK//siQAtqkOR5dhgnuxbKlNNIApIz04Dq0WZ6ZE4kkgRUFGoqKplhSPtX9vkvY/3/FCrmX6XW78+4n5NIfGRU780GYfg/fffR2FhIa6++mrnuUmTJmHevHn43//+h3vuuQf//ve/ccUVVziv5+fnJzgDAJy/8/Pzq90mEAggHA7j4MGDME2z0m3KHkNRFGRkZFS5TWVEo1EEAoGER3VYlgVBqB9J2Hg5FsFOVHS5lMo738kKYOqAVTHTP752LgsKXKL7iLN4URDAwBLKwpJBEARHIKeu1FZ8qDJMyyqTwFYv5jU9yARMHSS5arV7vPpCiTkG/jQPWrXyISMzDWZIhyLaKoketwqf1wWf1wN/mgcul2o7buEoSkrCFRqiEdl9LwRRcD6DpN4O2dGH4sN2AqHH74aQwp4ZQGniXXn1wmQdg7JOQXUDcGOH+Lk4UcujyegQvPjiizjvvPPQvn2pCsZ1113n/LtPnz5o164dzjrrLGzduhVdunRJhZk14k9/+hP++Mc/Jr09Exgs3YJFVDdNdaJYqZ8FSQAYq2oGRjCYAFHXIZgGqAotgLAZwu7gTnTy5kIWqxbHiQ8MkagOqQY3YYHZWgb1gWmZKAmG4fN56jwIxNfIWzLMjAKCCLD6vRWoHgWMpUGLGBAEwel9YH8ktrMqxxJKNd1AMBSB262WiV5RTGQreXnpuMMaCoRhGiZ8rT21EqCqCWXzCKqiy61fAxcnPue0L8b1SQ3k5Z2CqgbjZBoV1RUeFWi5NIm73Y4dO7B06VJMmzat2u0GDhwIANiyZQsAICcnp0Kmf/zvnJycarfx+/1wu91o3bo1RFGsdJuyx9A0DYWFhVVuUxn33HMPioqKnMeuXbuqfX9xjX9N0+u0pm639tVwqCAIzWCwCKBKIgCAnVtAogRo0YrHKVtGCCSVy8BiZYi6biSdLMgEVmlZW02xLEIoFIFLVWKh6JpFKirQsosLbMwwIKpAPdfkM8aguGUobhnFBUFokcq/0/GqGLdLRTisIRSKOpUpDAxikgO6s0wQsoWu/K3TKu1amCrKLh2UjRRsufi5Gi8hVJewGH+tPsP5ZY/DnYGWTZP4xbz00kto06YN8vLyqt1u7dq1AIB27ewWvYMHD8b69euxf/9+Z5slS5bA7/ejV69ezjaffvppwnGWLFmCwYMHAwAURUH//v0TtrEsC59++qmzTf/+/SHLcsI2v/zyC3bu3OlsUxmqqsLv9yc8qiMe5gdQ47B7ArFkLEEQcbgwDMOwqhzbiDEwxQWmRSoxCHCLbnTyHYNc3zGQkphFlpYhWkmX6wmMgeqYQ2CHnyOQRBFutwpZlqBptS+BizsoLXapIAbTgyDJ1zDHZgySLMLlU20NgCp6H9j5LhJ8XjdESUQoHEUwFHF6ZSQFAcWFQWhhDS6f2uCRgbIkk0sAVB5ir0sdf/nBuSonoKyDkEz0oDIHoDoHw1Yq5LQEUr5kYFkWXnrpJUyePBmSVGrO1q1b8Z///AejR49GVlYW1q1bh5kzZ+KMM85A3759AQAjR45Er169cOWVV+LRRx9Ffn4+7rvvPkyfPh2qapfy3XDDDZgzZw7uvPNOXHPNNfjss8/w5ptvYtGiRc65brvtNkyePBmnnHIKTj31VDz55JMIBoOYMmUKACA9PR1Tp07FbbfdhszMTPj9fsyYMQODBw/GoEH121XMbvwjlpEDrtVBIEkSvB7YyoNkQahUrteOHjCXBwgHK7zqFj1IV1ohy9XaLiNMWjHRHuQt04IQCwuXlUQoH8onQp2kgYmAqKbDtAhpPhfizZN03TjyzlUczzBMEKhllxuCACMEeNsfedNawhizOwmKArSIbqsjViJzHP9eqIqtPqjpBkKhCCRJPGKFBxEhEozC0Aykt05rMGXHmlK+dK+yATUeLRh164k1KvUrGwmoCcluf6Ttkimr5DQ/Uu4QLF26FDt37sQ111yT8LyiKFi6dKkzOHfq1Anjx4/Hfffd52wjiiIWLlyIG2+8EYMHD4bX68XkyZMTdAuOPfZYLFq0CDNnzsRTTz2Fjh074oUXXnA0CADgkksuwYEDB/DAAw8gPz8f/fr1w0cffZSQaPi3v/0NgiBg/PjxiEajGDVqFJ5++ukGuSbMqc0n1Ca73c4AFyHLhMwMNwSxqo851sLP5wc7sAewLCA2ADLG4JE8MMmIzZRrZocsS4hqOnTDlkKOvx9Zlp0oiGMFWbWe0RHs5LNIRENa+byBWkQHSvXyTahKzZs2NSssA7A0QHQ36GniDZGYwFB0sBi+DC8Ud+XVH/EcA1WRYyqJ1R+biOx2zBYhI9sfUyBsGp9ZfHCPD/TVVQzYs/dGNa/OlEYb9JTawak/GKW6f+lRRCAQQHp6Onbv2AK/P63K7XTDgGUSlCR12qsiHrJnZf5bFssiRKMa3LIAccuPsDoeB/Kll+5f5qtRUzviUYF42J0xu7RQ0w24y6kxmjGVw5rWmtvvwUJxSQgetwuSVNqnIJ7B7narNcpQ1w27E6SqKmDlG0S1MFh4P1i0AFZ690Zp3kRE0MI6SgpDSG+dBlGuOvGUCAiF7QiBXfZZyTaW3ZtAj0cGUuwM1KTZUTIz8JruU92+NT1GZcepasnBIB3LsABFRUVHXBblNG1SHiHgJBKfodrZ1XW7uR0pxO+s8UsyKCML7NA+kNfvDA51OX/ZjPLS51D1rL0WbmlcfEhVqhAfYkiIbthBiqpPpOsGTItiingt2BMAADLBwvkgX26jdXKMJxqmy2nQwjokS6xS0ZDIctQJKyMeGTA0w5YjTqEzEP9e/Xv347iy4++T3q9s/kD5ksSahuOTrSwoG+qP/7vs/6s6d2NUL3BSD3cImhimZS8TNEpSVJkVCWqVDWHbz2DRCMjVMCFkxkqb1CSqxrEa9wtIRnxIliREo7pdOhh/ucxpyp4z7ji46iBk1JxgWhHABJDcuDM6xhhESYCsSig6EICvlTdWolh6zYnszoaSKFT4HZBdT4tIMAqLCP4mEBmIt9a+qtPtSQ+co9qfiC6wlxTquhZfk4G6/Lni+5Y/Rtc3r3fsq+k5OM0X7hA0MUzThCQ1ppBKbPasuECeNLDCA6C2nRps1qgoMqKabkvhypIjj0sWJZ2rEK9dNwwDPm/lCnssVsIpCELVlQasdDklvqxxNDgDIAIL7wO52zZadKAs8dbJaZk+hEsikGSxXKIhQdMMeCpd7iGUFIagazrSW6c+Z4CIEIlquKrT7TXaL7HUsGGiAeUpGxk40vG37HkOo24t3Y5HCI4OWnIKdbOEAbHBsZFOhlj9P2OgrBywwwcBs3bZ+Uc8XWyQdruUhPbMjDEwQUgqRkCxJjuRiAaPx4XqetrHNRHimeoVHqJo93IQhXpTiGwOMKPEVidUWiFVSZPx5QNfKy+iIQ1auFSnQNdN57MrSzwHgYiQ3joNgph6By6ujBknGVXBss5A+aWCqqhqJp8syToDRzo/p2XDIwRNDEmSEIlGIcsSGvpmbZlWYqjW4wMkGULgMKxWNW+qVDcoqXdLZIdn3S4FolDLssyjGSKwUD7InW0rFKYQZ/nAJaPoQDHSMu3lg6imVcjjICKEiyN2UUyGJ+WRgbJ2McbwzqE5GJ91c4XXy8+s7YG5oqPQ9c1SxcJkw/ocTn3DHYImQrwsT9P1RpHLtSw7oz5hzVwQQK1zwA7uBTJaN7JDcOQ2yHbeQBSSJEGWJe4M1AYrAhgloLRj0BRKKuMlif7WPnv2Hyu5Las9QEQIBcKIBKPIaJP6ZYJkqC5SUHZg3/rkIGy5+LlK2yfH9y9LTUP3ZfeP75eM3kH5HALO0QF3CJoAcWlgLao7/QAa8oZHRIhqemxQTTyP5c+EmL8TLFQM8qY34JhR0yRCIBrVYVlWlXkDnCNABCG0D1AzAaHyUr5UwBiD4pIhyRIKDhRBdZXaRkTQIjosk5Ce7U95o6LKqfq7XH7wLz8Qd7n164S1+vL7VHe8ZCm/z5Gcgdq2aeY0f3gOQYpxer5HNAixnvPlQ6WGpcOqqy6/czxb1U8UWOUNiEQRlNkW7MBeNCUxf9M0EdW0OncwPKohHdAKYbnaoClEB8oSXz6QVAnBohCiIc2ODBRHoIV1eNPdEBs12TZ54r+SI0kYVzYQH2nwrUvOQFXRhCOds7G7JnKaDtwhSCHxErxo1J6ty1LlkQGznpyB2FlhWVRpdCCOldkGLBgAq6ThUX0hiiIiEQ26bsCyrJhllTsgVqysy+12VUg04yQP00tAggqItWt13BiobgW+TB9Mw0LJ4RAiJRG401xNepnA1vuwbUu2rwGQXOi+NrP1I5Ux8gGfUxX87poi4qp4mm5AVeRYz/eK2zHGoAhK0n0E6gVJBvlbgRXsO/K2tcDucCdBUSRYRIhEdTtTmwDdNGBapQ5QPInQdphSmwTX7DGjYJIrJaWGySKJApho98HQwpqtaNhEIwMO5UyriVNQ33y85wd0ffP6OiUg8iWDoxeeQ5ACLMtewwfgZFNXd7+rz5thUuWMjIFat4ew/WegTQegyl4ItccuKxPtpksyIRSO2sqCIFhkQYTg1HgDODrUAxsYBgI14WsYz9gvKQxCMBnSWnkrbYTU5Kik70hZp6AySeNkGxklO5uPD+Kj2iMhGbCmSYjx43S59esaNVvitAy4Q5ACopoGr9cTk9tt3Jtdsi19ye0BFBeEwgJYWW0azJ64vLEgCGAAZEGK2WnXd+t61eJDnBpCFppa7gAAgACLLISLo7AsC4IkIKN1GrSQ3ffAl26XGTZX4s5BTXod1ITKBu7a6A6UdQbK/p9z9MCXDFKArEgpcQYAewA2LQtWEqECK7sdWEF+rboG1gS7EZIFFhMHYozBtEyEI9FYEmH9f00tsqpWMGyRxDpbsqaz7GJ/7gRDNxA4UAItosHtU+HxuQGBwe1ToUd0lBSFElpoNykYavU9qs/BtiGcgSMRPwdvgdyy4A5BChBZ6tZEGWOQRBGGYVZ/I2PMbnSkRcF0rcHsISJomg5JlBDvfWRaFoKhCNwuFaIoNMiSt26a9Zys2RxoOhECIoJlWggVhREJafD43cjI9kOUJIiiCNMwIcoiMtr4IUkiIkENZDU9J45V8q+qSGVuQXXUxBkoXZoodTbe27S+YQzjNDp8ySAFpDL8zRiDLEvQtCR6mIsSSFYALQIoaoPYQ0QwLYLbZc9cDdNEOByBS1GqrYSoK0oD5EU0ecgCGkH0qloTYgO6FtFRUlACxa3Cm+5OqCKQJBGhcAQuUiGIAlw+FeHiCA7vD8SSDJuGQiUBTqOupkL5roXVRQnKJg8m6wzwZYSWDaOm5nK3YAKBANLT07F7xxb4/WkpsYGIYJgmolEdXk/1Nf2WRRC2b4CQmW1LGTcApmlB1w2oqt30KBrV4XGrKVtSabEQQSjeDpK9dlOjlJhAMDQD0bAOJjAoqgSpEhEu07Jw+HAArTL8TpkpESFYFIJpWPC18pbrlpkaTNNCSTAMt1u1ndck97soc3qFaEFd8wuqU0NsKOLnDBSbaNVtG4qKiuD3N273TE79chROk45eyjoDydxMBQYIqgpEIw1ql0WEUCgCiwg+r5trDTQYqVkyiOcKhAMRhINReNPdcHntiFNl30PLJAiCCF03IIqKs5033QM9aiBcHIGiypBdDavoWR2WRSgJhuFSFciSWKOrWtnSwbsFcwEiXJR1c50H9yOpI3I4VcHvvEcJcd0DwzAhy1KCVnzVMEBW7SWDBrEJsCwLwVAYjDHuDDQ0ZAENkKBZ5emIQBYhGtYRDkTBBAEZbfxwedVqW00Lgt0VMxKNJuQMxPseyIqEooMBR80wFWi6DkkS61dmPHacUe1PdB7AkRP34q9Xpj8QLx+sb8raNK5bn3o/Pic18AhBC8dpmqQZICKoimLfzMQkQvIMgKKCBQOxDPX61EMgaLqBaFSD122L5ZimFUsi5EsFDUP9fobVnokIlmGhuCAIy7KQluWDJNtO6JE+X0Fg8HpcCBQHYVkEUSyTuhdrm5ye7YcW1iBKIiSl8ZeXLNOyIwP1fN53C+bgoszSronJOgWj2p+ILXueq9AXoS5UFV3glQUtFz4da8EQISbuowMMUFUZLFYmlWwiFEkyYBr1VnpoRwXsJQJN0+H1uOF2q1AVGbphIKrpjpQxp54hQkP/5OPVA5FgFOGSKFxeFRlt/ZBiAkPJDKCM2boUSuw7UdnrsirBneZGJBhFsDDkLEs0FmQb0gBHrvyY5Wf+ZSMIZf/f2CqDvCVzy4I7BC2UuDMQjWqQRAFKbTP2RREwzfq0DKFwBGBwlgjiA4BLVSAKgtPVkFOPMKC8ml59Eh+QtYiOw/uKoEcNePwuqF7FFp2q4XePMUCRJei6UelAzxiDIDK401yIhjWEisL19VZSzjuH5uDdg09VeL6sE1D2uSNRn8sGPDrQsuEOQQuEiGBZFiJRDZIkQZLKd1BEDWY3DDD1eosQGKYFy7IqdC1kLKaRIIkQJRG6UZ9OSNUQETTTgm417gwzJZDVILNaIoJpmAiXRKFHDPhaeZGW6a1zq2JRFGFZdjOuyrA7JIpo1TYdTBQQCWqwTKtxBIziohkNcWjGACFxNbfsgF6dExAf/Ms7AFUlFlbnKGy5+LmUVC9wUgd3CFoYRATDMKFpOhRFgiRVFPZhAMhKUvlNEMAggNWTiI+m6VCr6UvAGIMoCKAqBoH6RrOAX4p07Cgx0PJjEgSqx6RC2/EkhAJhFO0vBmOAJ90NxSXXy9p63EE0qnEOGQMEUYDbp8I0TBTuD8AyjyC6VR9Q4zUHr02lQH1UFsQjEmWdgrL/5s5By4MnFbYwTNOCYZqxQbdiAld8VmWYJhShtG1rlTDBnlnWQwjfsmxnxe1SjrwxK21205AQCBGTILCWHh1AveYQ2JoCJrSIDrIAf3aakydQXzAGyJIE3TCgkHzE4IbH7wZZFkKBCDzpbghCakXA6oumUDbIlwqODniEoAURLy2UJala4RZBEJKPdgpCvSUVGoaZfBVBI43PisBwQisFx6VJNfoxNHYSW71QD0sG8eWBwKESlBwOQnHJ8Ga46+QMEBECmoWIWVGamAks9lz11zreMdTXygvVoyAciECPVp5/UD80akPyI/L+9lucfzemA8EdhZYFjxC0AOKhW03TIYhCErX89g02mRs4CaJdaVAPI7Sm60knNzbWUCswBo9Us1s7ESF6YDsE1QvZ36YZzULrVnZoWQQ9akCP6BAlAb4MLwSx7oqBBgH7IybaeypqY1imBYElEclCaTRAViVYpoWig8XwZ/qguOtnCSOBRnAGq2qhnCBsRASQAYT34f3N0zD2+Bfq1YaqBvzECockZNA5zQIeIUgB9T1rsSxCVNMhK1JSAy5RDeY3jAECA9Uxh8CyLJimBUlKwgd1MuKbJma4CIfXfojAxi9BZsWyuKYJ1ar9cdnqgcJ9RdBCUbh9KrzpnnpxBgDAtAh+WYCrkuOZphVLTkz+eIwxqB4F/iwfdM2AoddPTkE8UTcYiiASjdoOUuzYjRUtqqByyBggyLA8HUBpx+H9zdc12Ll5zkDLhzsEKaA+u+zZywQGZEmEKCQXthUFu72wlWxiIaHOCne6YUJKcrmgqc+3yTLh6dgbSmYHwGouDkGc5K+uozQY0hAuicDtc9l9BKTSNtX1gSQwZLmESi2r7TDLGIPikuH2uRAujiBYFHYSVYnKP8hpr1zV84ZhoiQYdsSz0nweiKLgOAmN4Q9U2y2RMZCSDqtVT7y//dakjvfxnh8qVBJ8vOeHSqMC5TUP+FJBy4QvGaQAwzJqJfxHZCfBAXaoO672R0SxZkDJHSfe8TCqaXCpCqodJGIJhUwQ6zRnj1cXJGlhtSNBeTnbxkb2ZSG917BGP2/diF2zJK8XESESjCIUCMPj9yCtlTehI2F9IlUjkiXLIrSoDlJqnmBqaxUAHr8LRQeKbSfBIzu/mfj3niUspZQphY09H6/ccbtiTYzKmEFkRwns73cDLE3ESLp1sqDA8nep9KXqBvHy1QPlty3bOdERQHqyaSQ8cuoP7hCkAKEOs+146J4gIKrpYGBwVVPGVxmMMUiiCMu0nN4GVWLFEtFqaXM8v4GIYlKvydgX37fy8YsA6KZxdLYwbmDiSoPRsI5oKIq0TB9kNXVNhCRRRJiitVbOjlfVZLRNRyQYxeFDAaSleyHJku0ixSIAFXziuPNNABMEuF0KGKukhJcx22nRbOe81gJg9QkT8O6hf+CirBnOU/EBPpnGR5VpD8QjB/H94/ttfXIQrEgEuGtBvb8NTuPDlwxSgCzUbiCzl/MFCEyAEVMPrG1zFbvGW3KOU+V2lt0Qh+pwjwuFo1Dkms2eBNF+j5Wq1AGQhGSaMyVCRDAsE+bRqILoXMfKPwMistv5FoZQXFACSRaRke1PqTMAlEbE6rKOZCthMsguGWQSwkVhCIxBlkQoigxVlaEq5R6qDJeqwOVSoKpyTG2x6uMrigSyCEYllRIpgQl491Cp2mFlKoeVOQNbnxyErm9en9AoaeuTg6pcKuARgpYFdwhSQLxE6kjE1zIr7svspi+1kIQtixAr6ar2BhaPENTyjkxEMC0TipK8E8QYgyxJMAyz0rXZuHhRrRwhNEzYu+lDlX6O8c/f0E0Ei0KwTAu+VrGoQAMtESQLEaBFY4246phZYr8PgjfdA1mRES6JxsS56mfwjjsFttRyvRyy7rCaTTziEYP4I86Wi58DwPMHjga4Q9DEiN+gLSueH1BxxlGfWc2iKDqdECs9pmXaWgS1uB8TAbpuOp0Va2K3IDBIogDdqFhLXprsVZr0lQxxR0I4Wh0CsITPkYhg6iaKDhYjGtLg8bnhz/JBlJpGx0nLsqDpRizPpe4Q2boGvlYeKC4FwaJwvWoVMCZAFASYZuWObCpIOvcAicsAZSkbWej65vUV9jv2rlW1tI7T1OAOQRMi3gkwEtERDEUQCIQQ1Yxy29jiQ0QEUax52DwRBkWWYJGF4kioNDxblrhDUKsZGiGqabAsC+FIFOGIVqUufWXIsgSzkhCsYZoIhe3jhSMaDNOAYZgwDBOmacKM9UtIfJR3IhIfLR5noZw51QNaREdxQRCyIsHjd0GU67d6oC4Q2U2wVFWpNlxfEyzLchotyardNrnoQAB6pH6cAsbsJMj497D0O1d32+tCdU5B+cG/bF5BZZEAvkTQsuFZWU0MiwhR3U4WVF0ylHIJf4ZpwTRNqIpS55uk3QoZUBUFVtSOSjAhMYOfmQYgiLXK6DJNCwDB5/XWcpCx13k13YCqlOYgWBZBliXIsSZIlkkArFJ3hipqPVD8/cBel7b/HcsyF+zzAMkt5TRPyEmi0yI6wsEIVJcCf+u0etMTqC+ICOFw1NYTUKR6+UzijrTH4wJgfxdcXhWCKECLGmACINUyH6csrEzbZtINIJa/INg64og3QWCMOQJijXHt3y2YAxY5hHHtZyU8X3aAry7JsHz+QWXPcZo/3CFICVV1bwMkUYDf53H+tv9v/yNe/qTIMoRqSrVqQvzYqiJD102IqhATOjLgdslAOAhyuWvkEBAA0zQRCkfgcqlJ50xUtA12c5uInQgoxSIi8VksY6yCwwRULfxUOlujBOfBNC2EIxoUWWrUm3SjQhbIIoSKowgHdXjT3VA9NatOaQwIds2/bpjwp3nqzT7DMMFga3DEsbUKFEiyZSdSKiK8/tg5a3laBkAUBYii4kSfTItAlh3pih/WtCzougFFkRup5wIDqVnVblF+yaDrm4Ow5eLnqhz4uVPQ8uBLBimA6cUx1bhKXovPKITSQQ+ILSfEsgzryxkoPSdi6+r2MGmYFg4XRkAWgQUDgDe9RsczDRPhcBQulwJZqtsMz07Wkp08BwCVZ1uW26eyhyAIsZu1CCn+kEQoigRVkWAYBqKa3oQ1EmtOvBV2qDiKkhAgyiJatfU3SWcAgB3B0Iwal9IeiWi08i6bjAGCyODL8CAa0u1kw3pMNBQEobSaQZGhxB6qIkNWJEQ1HabVSJUJjOHdQ39P6HtQG8qLFHFaDil1CDp37lzpjXv69OkJ2xERzjvvPDDG8P777ye8tnPnTuTl5cHj8aBNmza44447YBiJ6+7Lli3DySefDFVV0bVrV7z88ssVbJk7dy46d+4Ml8uFgQMH4ttvv014PRKJYPr06cjKyoLP58P48eOxb9++Wr1vFtwNIbAVzAgmpYlu5xaYiEb16jUD6gmBMRi6CVPTAV23IwRJYln22q9LjTsDdb+px9eQa5J/UBPs8K3oCCeZ1bTbbU7YjYgslBSEoIUicLsYVLcSkwJugs5ADMM0IUl1zY8pxTQtmJYFWa78mIwxx1FiAkMkGIXVwOWDzncu5uw2WrkiE2H5OuP9LRWTA4GKOQUAryo4mkipQ7Bq1Srs3bvXeSxZsgQAMHHixITtnnzyyUpvYKZpIi8vD5qmYcWKFXjllVfw8ssv44EHHnC22b59O/Ly8jB8+HCsXbsWt956K6ZNm4aPP/7Y2Wb+/Pm47bbbMGvWLKxZswYnnngiRo0ahf379zvbzJw5E//973/x1ltv4fPPP8eePXtw0UUX1ep9W/6uIMkNVrQZrGQHmBmt1DGIz+40XYem2evoSXcLrCFllyUYY2ACgxCfK9eg5l/TdHsGXq8CLQTLJJhmLHGwgXQEGGMtogIh3pGwpDCESEkULp+KjGxflQNiU6S+owOKUr0Ohq1qKMDlUWDoBgr3BxreKYCtt+FSZRi64SQLNziiCko7rtpNutz6NbZc/FyCHgGn5cOoCaVY33rrrVi4cCE2b97s/HjXrl2LMWPG4LvvvkO7du3w3nvvYezYsQCAxYsXY8yYMdizZw/atm0LAHj22Wdx11134cCBA1AUBXfddRcWLVqEH3/80TnPpZdeisLCQnz00UcAgIEDB2LAgAGYM2cOADsbuVOnTpgxYwbuvvtuFBUVITs7G//5z38wYcIEAMDGjRvRs2dPrFy5EoMGVfSqKyMQCCA9PR27d2yBP80HWFEIoXxAKwS5WoPcbQFBQnwB07QsRKMaJEmKJb013Fojkd2NUIjNXIoCEaR7RMhbf4R1XC+Q6kriGIRAcQher8tZ768P7DX+KOR4YyQGp8VzfRPV7GvQGJGYhoDI7khYXFACWZWdJkSCEQQr2QEro2ed+1I0JESEYCgCRZagKHKdj2eaFkqCIaT5vEl/X8gilBSFwBiDJ83VKHoMFhGiUR2iKMQUPRvYMSXCRVk3V3i6siqD6nIIAOCsdr2wDAtQVFQEv9/fQAZzGoMmc2fQNA3z5s3DNddc4/wYQqEQJk2ahLlz5yInJ6fCPitXrkSfPn0cZwAARo0ahUAggJ9++snZ5uyzz07Yb9SoUVi5cqVz3tWrVydsIwgCzj77bGeb1atXQ9f1hG169OiB3NxcZ5sawxggumD5jgGldwMzwxAO/wgW3g+QHbI2DBOyJDmh94a8STAGu4bassAYkJHughBvo5ykz6jphr1GL9Tv18qyLMiyZCvKxVTlGsIZaM7EHYGSwhB0zYA/Kw1pmWXaE9djQ60Ghdmy2no9LNvESxddqgpWg+8LE+ycAtWt2NezHrUKqkJgDC5VhmlaTgfFBqWSe0nZ5YKy6oRVEX/9vU3r69c2TspoMg7B+++/j8LCQlx99dXOczNnzsRpp52GCy+8sNJ98vPzE5wBAM7f+fn51W4TCAQQDodx8OBBmKZZ6TZlj6EoCjIyMqrcpjKi0SgCgUDCowKMgSQPrLSuIH8XsGgBhMMbgOhhmKYBUUy+aVFdEQTmdISzM63jDsGRB5N4qZgiy2iIfoWNNvxXomtPRLCMKMxoqMlpFsRFrMIlERQdCECUBHh8LkiKWM6JtGKfZxN3pIig60adIzRE9lIBYCsI1vRdM8YgKSIUl4zC/UWN4hSwuFMQE2Rq6PNVpk9QvuwwWaeA0zJoMg7Biy++iPPOOw/t27cHAHzwwQf47LPP8OSTT6bWsDrwpz/9Cenp6c6jU6dOVW/MGEj2w0rvDvK2B0p2Qo3sgYDGS3CLl1s5Yj2MAZIMRCNH3Dc+ozNME4ZhwKwgDFRRKMh5VCMYVPam2FhjcQWZXCIEf/0eRT//D2TWvN1xQ4gfOa2JwxpCgTAAhoy26XD7qghxV9rBp+lhl+lZdVpyIrK/h1FNh8et1jqyxhiD6lGQ0SYdetSAodVu5l4TAay4U2BZFJNBbminYI7z7/LOQGUJhpUxrluferWJkzqahEOwY8cOLF26FNOmTXOe++yzz7B161ZkZGRAkiRIsfXj8ePHY9iwYQCAnJycCpn+8b/jSwxVbeP3++F2u9G6dWuIoljpNmWPoWkaCgsLq9ymMu655x4UFRU5j127dgEA9OqSlZgAUjOBVj0hCyaEos1g5pEH5Pognvms6fFBj4HSM4GCfaBqEvmICNGoBo/HBTV2M9M0HVHnYcQesb+jOqKahmhUQySqIRIpVR2s7BGJanbJZSNRXrHRigYR3rsJ0YO/wggW1OxYVP83drsjISFwqBjBwjAUlwy3Tz2C5LBVaZi4qRFvzR0MhavsZVEdRDENjFAEHrcLQh2Xr2xVQwkur4pgUQjBwppHiQiEiKnV6JzxSEFl0t31S6wUcetNCc/G+xlsfXKQ0+mQVxu0fJqEQ/DSSy+hTZs2yMvLc567++67sW7dOqxdu9Z5AMDf/vY3vPTSSwCAwYMHY/369QnVAEuWLIHf70evXr2cbT799NOE8y1ZsgSDBw8GACiKgv79+ydsY1kWPv30U2eb/v37Q5blhG1++eUX7Ny509mmMlRVhd/vT3gAwM7firDvQIkjbWqYVsWyI0GxqxEUP1jhL2BaoFGmyLJkt0UGYEcLMlpDCJeAaVU7JXHbZUmEKAhQFMnuFOc85NhDcTrIxf/vdqlwu1S4VBlul1LpQ1XkRsv+FwRWobxRUD3IOmUcsodcAcmbmfSxbGfAdCo36kq8NXGkJIpISQSqR0WrtqUdCas9BxGayM+9WhgYPG4VqqIgGIrAsqwafe0ty0IwFIHbrUJKst32EW1izNYqaOWFFtERqaFWAQODKtY0QZJBVRQ7p6Chqw+YCPIdU+HpUoGi6xMaG3HHoOWS8lRqy7Lw0ksvYfLkyU4UALBn5ZXNvnNzc3HssccCAEaOHIlevXrhyiuvxKOPPor8/Hzcd999mD59OlRVBQDccMMNmDNnDu68805cc801+Oyzz/Dmm29i0aJFzjFvu+02TJ48GaeccgpOPfVUPPnkkwgGg5gyZQoAID09HVOnTsVtt92GzMxM+P1+zJgxA4MHD066wqAsGgF79xcjEjUguVVEIjoEw0Bux1aQpNI7GIHBlFuBomFg/3rAfxxIcsMJ/cbudsxpWsPABBGC7KpTmJQJtlqhKDKQrABprSAUHIDV7phK19ejUS0hI7zm5z7CYBZ/n43gEwiCADM2o4/bxAQRojutxseKz1YrE8Sp+bEIhmYgcKgEkiLBl+GtmeQwxSWo62RGw8Ps77MsiyBSUBIMw6UqSbX5Ni0LwVC4XgSxKpjFGERJQEYbvy39XByBy6smVYFQViY7+fMBcacgqukA2XLdDVZlJHnx3m8PoHj/Nlx10jzn+bLLCLzbYcsn5Q7B0qVLsXPnTlxzzTU13lcURSxcuBA33ngjBg8eDK/Xi8mTJ+PBBx90tjn22GOxaNEizJw5E0899RQ6duyIF154AaNGjXK2ueSSS3DgwAE88MADyM/PR79+/fDRRx8lJBr+7W9/gyAIGD9+PKLRKEaNGoWnn366Vu85PU2FS1SQ5lOhuGRkpSk4eCiIw8VRZLcqIwJEBL14PxQmgLnbgIwQYIRLXy7/LwIMy4KU3gGi4qmVbYCd8WyRBYHsELSVlQNhxy9Amw6AlPiVsSwLpmnB4669E3JE6mmGnQyCwGI5DXV3QOJORV0qIuLiQlrYbgzly/BCcVdfU18ZzAiBxDLOZBMn3k5YFAVEoho0TYfLpcRm/RXfg2URgsGIrQQo168zUNYmCHZeQXFBEIX7A0jPToNYjyJKieez/+9SZWe5TT2CnkJdTkauNqA0wrx1k3FF31eqbGTEEwlbLk1Kh6ClE9ch2PXrZvj99owz/uMuDusoCurokOUuFQmyTGgFO+BxqYhGI9ifvxsulwdujxeKokLXNWhaNCbJK8GXlg4tGgF520By1XxGG8c0LUQ1e9YvCgIYCOLWn2C1agPKKnWSiIBwOAImMLu0q4HGGk3TnbXlhobIzn+wGx7VbUZm5w4AilJzu4nsJjjhYBShQAieNDdcPhcYq0UEhghCwTqQvwtI9tXYllQT7+ERjtjfdbdbTShtJSKUBMOQJAkutYEGzHL2gIBgIAzGAJfP5UiNN+Q5Nd2AZVHMKWgYTZLCogCglyCT7cfY4/9Z6TblexgYpHMdghZC019UbIHE13tlWYWieiBKMgQQ9IideCSIEkRJgSDaAwkTFbhbdYDsy0YoHMK671cgEglhx7Zf8NMP32Lrph/x265tME0DgqRCUjwQa7xmWYog2KFKXTcQjeogMFBWDoRD+4AyyYVEdtKT2+WGJCsQpfq7GcezzZP1VwVBBCuXQGbPzmsm8mJ/LjIMw6qTxjxRPEJQ0/1ieSWaiVBJBJZFyO6Yg/TsLEiyDFlxQ1E9zncjKSwNIDO23NT8iDuDaT4PRFFEKBRxPpd4eWE8Ea8xIklxJU9vuhuyKqOkIAg9oje41LEiS5BEEZGoFku4rP/WyqIgwGQqwJqPqiWn/kj5ksHRiiSrcHn8OHDgALKzsxEMRtA2OxNpGZlgZZTkPL5WEEQJgUAA7boNhBk6hIIDe2CaJpggQJYVMDC4fZlwt+kGyV3aiIiIoEVD0CLBGtlmD6R2B8SopkM3TAhpGWB7d4BpEZDLYw/YJtC2XUfIspKwv2FoINOEKMmwLBORUDGohsI4JlkI6mH4FW/C86KkQHV5AQZokRAs04AnrZVzzXQtgkgoAElxwe3xO9chGi6GXk1iZFlsh8h+73aTnRqZHoNibZqr9rmZIMDl9kMQBOh6FNGwnWgaLAxBj+pIa+WDNyMdYBKKi4uRnZ0NTdNw+PBhtGnTBiWBg0klmjIzArX9KRDUDBiGjmi4OPl3QWV0KVJMfNAv1nUnx8WyLEQ1HT6vu9FtjFcgWIaMwKES+LPSILsabp2fMQZJEiCIMnTdgBE17Qos0daXqJ8EStgrkIKI9/Jng5R0XJRp95Z5t2Cu829Oy4RHCFKE6vZhwYIFeOCBB8AYQ3qrLPj9Xvz1r4/hpJNOQvv27TFkyBC8/MqrAOy+D9deey18WR3RZ8BweL1pyO3cFT16n4xufU5F90Hn4+fNOzBp0iTk5uaid+/e+Mtf/gKCCFdsYGR2n1UIolTpDNNOnJIhxHoXhMIagqGoPdsVZQhZ7SAapSWJ6ZnZWLv2B5x77rk45phj0L17d1x66aUgYpBVN/710ssoOFwE1e1DPHEwnrRoRxPsr58giAl/A4DIBHhltx0tkUuT8lxuH775dhWWL18Bl8cPSXGhpCSIIUOG4Pe//z1kxQXGBKguL958800MGTIES5cuhSSrsRm7fUNlTEisD2cMhNJrIwhCTDGv8rKvuM1CuT4PTBAhljk+Y/GbtVDh+iqKGwcPFeDlV16F6vKCLBHh4ghkVUFG23SoXhcU1Y2VK1fi4osvBgCsW7cOeXl59mCkuMASzs8qRkkEAbIsI0pu/GPOXCiqG5JSKkPNmGDbW+F92HZbzH44702SY9+d1DkIgiDAjFW2RKJ22+pUKVcyxqB6VaRnp8HQjAYXMGKMQRQEu3OibCsbRqI6TLN+KhEYE2ABICY4iqnvFsx1RIzeLZjLcwhaMDyHoBGJ5xAc3L8Xma3bol+/fnjnnXfQpUsXEBFGjRoFn8+H2bNno1u3bvj555/x+OOP4+WXXwYR4ZRTTsFrr72GYztmo3j/tlguIcHfrhs2bduN008/HY8++igmT56MPXv24He/+x2ICAsWLKh01kJEiIQCMHQNLo8PslIaUrYsC8WBw/D60hOqPwCALAuaHgUgoEOHDpgzZw7Gjx+PUCiEDz/8EOPHj4eiKOjduzdef/119OmTvHCJrkUQCRdDkhS43GkJA5yt3CjhkUceQTAYxOzZswEAhYWFaNWqFbp06YJvvvkGaWk+KIqKoUOHYseOHXj00Udx2WWXVSj/Mw0DRUUF8KWlQ1HUCraEgwEEAoVwu0rFbURRhupJg1jGoSLLQjRSUiGUHwmHQJYOl8df4frH38uaNWswdepUfP/991Vek2AwiEOHDiE3NxffffcdbrjhBnz33Xdl3ocOTQvb14sxmIaOSLgYHl+G42Tt378fJ5xwAg4cOGDbTATT1CFJpdEd0zQQDRfD5fFXcHQqIxIqhq6Fj7hdfROOaAARFEVGUaAE6X4fRDG1c5u4NkRxQQlESYQvw1MjueS6nNe0bLljxgApVvpb2yhFOBxBoLgEOcohwJUFcrWudLuykQKeQ9By4BGCFOD2eLF69WpIkoSuXbvCsggrV67EunXr8O9//xvHd+0CPRpCzx7dHM0FxhgmTJiAl156CYo3E0qrTlAyO0HN7AzFk4Enn3wSl19+Oa699lqQHkTHDu3w8ssv4/PPP3caO02ZMgUvvvgiBg0ahJNPPhmvv/463N50eP2ZKAlGMGPGDHTv3h1Dhw7F0qVLkZ6RBUmSMGbMGLzxxhs4+eSTcdJJJ2HhokVQVTd2796NkpISjB8/HrIsIz09HZdddhkURcHcuXOxfft2TJ06FSNGjMD69evx6quv4rHHHsMll1yCY489FoFAAJ9//jlGjhyJHj164KqrrkJhUTF8/tZwe9Px1ttv47TTTkPv3r1x2223QdN0bNiwAS+++CJee+01jBgxAn//+9+d63rJJZfgjTfegKKo2LRpE6LRqKNHAQCff/45zjzzTHTv3h3Dhw/HVytWIDOrDRRFxcyZM/HPf/4TQ4cOxYknnoinn34abq8fiuKCYZh2PTwYPGmt8NVXKzB69Gh07doVZ5xxBrZu2waXx49vV32Hs88+G7169cLUqVMRCkfg9qY7XTbvu+8+dOvWDeeddx5++20PAOCOO+7A5s2bMWLECFx++eUAgCuuuAKvvvoqTj31VEybNg2bNm1KUOwkItx7773o2bMn8vLysHPXbrg9fmzcuBHTp0+HKMlQVA/27duPSZMmAQBuv/12FBYWYsSIERg1ahQYYzh8uAiTJ09Gr169MHLkSHz//Vp7iUoQMXr0aMybNw/9+vXD//3f/2HLli0YM2YMevbsiX79+tnX2VV5JUt5pUnLIpimBcMwY3kpGnTdqLHGQBxRtHtuRDW93jQe6kpZrQJDMxAJRR0Z8IY+rySKcKmyHdHSTUSiWq21CwRBgGVZdg4BmUA5ka54B1agNHIwb8fj9fFWOE0AnkOQAhTFhWXLlmHgwIFO4tnixYtxxhlnwOfzoaTooJ2wp4XtGScBisuDQYMG4Z577omFnhVYpgExNsP76KOP8Nxzz8GIFMHYtxqmkoZWHQdi0KBBWLx4Mfr06YNvv/0We/bswZIlS5Cfn48zzzwTvXv3Rt++fXHttdeiV69eWL9+PbZt24Zzzz0XX3zxBXJzc/HFF1+gY8eO+PLLL7FmzRqMGzcOe/fuxTHHHIPjjz8ew4cPdxQk+/XrB8YYrrvuOsydOxdPP/00evfuDUVR8N577+Ef//gHFi5ciN69e+PAgQO44oor8O677+Kkk07CU089hWuvvRbvv/8+li9fjj/84Q9YuHAhOnTogFtuuQUPPfQQHn74YVx11VUIhUJ48MEHIYoigkE7R2Ly5Mm4/PLLMX36dLzyyiu4+uqr8cEHHzjXvW3btnjjjTeQk5ODb775BhdffDE2btwIj8eD77//HitWrMCHH36IcDiM4cOHo0ePHhg65DQcPJAPSZKQ5k/Djh07MH78eLzxxhsYPnw4du3aBZfLhYMHD2LMmDGYP38+hg4dirvuugvTpk3Du+++i8OHD2Pu3Ll4/fXXcf/992PWrFm4//778corr+CRRx7B9ddfjw8//NAZ2L7++msEAgEsWrQILpcL3333XUIEYe3atbj22muxfv16PP/885g4cSJWrVqFQCCA1atX2xsxhkgk4jTfmj17Nj788EN8+OGHznEmT56Mvn374vvvv8dnn32G0aNHY9OmTcjIyMDnn3+OnJwcLFu2DJIk4ZprrsGYMWNw/fXXIxgM2j08EmSlYwJbugHDNB0NBl3XoWl22aBlWbDIgiiKsCwTDAwul4p0vx8ejzvpWb4oCHYbbBgQ60l8qD6IaxWkZ6dBi+gIxbQKRKnh5112foEIUbQHdD3mfMmynWOQrNNkC3NZdtdVq6JMt6aZCBRH8PbBOZXszWnu8AhBChBEEbt27UJOTg4M016nCwQCyMjIiM2qShPwLNOAZRkgy0JOTo4jfxwPBcd/6M7+TIGV0QuWYivqZWRkJDRVmjlzJnxeL44//nhMmjQJ7733HoqLi/HBBx/gzDPPxIoVK5Cfn4/evXvjs88+c/a755574PV6cfrpp8Pj8WDPnj2QJAkrVqzAZZddhi+++AJnnXUWTj/9dJSUlECWZQiCAFVV7USoWOh/3LhxGDhwILxer+MIhEIhLF++HP369cMnn3wC0zTx8ssv4+yzz8auXbuwcuVKDB48GIsWLYIQWxOXJAmqqiSsHXfr1g2KomDdunWYP38+LrvssoTr3r17d3z//ff4y1/+gsWLF0PXdWzZssV5/eabb0ZmZiY6dOiAa6+9Fu+88w5kRYUcK2dTVBXvvPMOxowZg7POOgvRSAly2majbdu2WLJkCQYMGICzzjoLkiTiwQcfxIIFCxCNRgEAvXv3xoQJE6AoCi6++GKsX293iFMUBYIgwOVyxZLDbO68805kZWYiLa1i+WibNm1w/fXXQxAYbrjhBuzatQs7duyo9junKHYehsvlgsvlQklJCT755BPMmjULsiTivPPOQ69evfC///3P2efee++FP80Hn8+HjIwMLF26FF9++SUURUHXrl1h6BrCkSj2HziEX3fsxq+/7kT+/v0oKipCIBBAcXExDEOH26Uiu3UrdOrUDl2OzcWxx3TEcZ1zkdupA3xeDwoKC/Hrjl3Yt/8QIlHtiNnzgsCgqjIikYiTytBUFj7jFQiqR4FlmijcXwSzoZUGy51fFEWoit0ZVNeNmJJo0gcAQCBBssWsyiFJAqKaCa0xOjJyGh0eIUgJBEVRoOs6RMFuTdutWze8++67zuzfNDQwQbSTzYgAEHRdh6IozjEAOD0GunXrhi1btmDwoIGAIEH0ZAMAtm7dmiAJnZWVBSNaAlHxonXr1ti7d68zuC9ZssTZrnfv3o4iJGA7FtFIGKrLDZfLBU2zb9xejxs33ngDpk+fjpKSEgwaNAivvvoqbrqpVBvdMg1YsTXpNm3a2LNDxrBnzx4cOHAAixcvdra95ZZboGka9uzZA1EUE16LJ9Y5V5FQYQ17ypQpmDp1Kk4++WRkZibKDM+cORM7dtiJl36/H6+//jqKi0sz7rOysuzrzgS0bt0aa9euBWPMCZoyJuDQoUNo27YtiCwYsaoFWXGhoKAA2dn2NdejYaSlpUGWZRQVFTnXDwDCJUGoquo4CmXR9QhESXauk65HIJgV1/IzMzPBGIMWCUN1+5CZmYmCgoLYNYlVBQBOaLc8pqnj8OHD8Pl8cLvdiISK4fKkITs7G4cOHXK2a9OmDTQtDElS8be//Q3PPvssHnzwQaxfvx5///vfMWHCBOzbdwCqqiA7OwtyTKDHbqPEIMmSIzld2QxVFEXIsh/p6X5EoxoCgWL8tmcvJFFCerofPq871u0zcV/GGAQmQBYkqLKCqEVQhEqaUqUIxhiIbBGpUHEEkZAGl0eBUIOZen3YIDLbcYpGdacS4Yj7gQG28ggEioLK7SMIDG6XhOLiMNQsX4M07uKkDu4QpADDMNCjRw989tlnEAQRejSMCRMm4Pbbb8d3332HU045xUk6+/XXX9G5c2cAwLZt29C9e3cApTd707RDsZdccgnmzJmDSZMmwetvDUEQsHz5cvz888+44IILnHN///33GDBgAABgzZo1GDZsGDp37gy3241p06aha9euVdpdPpPbMAznhk1E8Pl8yM3NtWdugOP0KGrpWnP8hmiZJvr37481a9bgT3/6U4UbZf/+/XH48GH8+c9/rmCHoigoLCy0Z9buNESihc5rF198MV5++WXccMMNFfZbtGgRPvzwQ3Tr1g3FxcUVGlp9//33GD16tHNtunXrBsuyYoMrgSwTvXv3xjPPPAOAwZuWCRbTOejRoweefvppEBFcnjSsX78eXq/XcRLiyOVEiuLXCABcZeSRqxs4tm3bhsLCQmRkZODw4cP47bffcNxxx2H//v3Yv38/iAiSrOKnn36q9DyiKKN9+/awLAtbtmxB165dYZom1qxZg9/97nflbCCIkgSvrOD3v/89fv/732Px4sW49957cckll6DzMbkgMms90DnVIy4VqqogK6sVgsEQigLFKCg4DLfbjXR/GlwuJVapYe8X//7LsoQSgyArTcMZiIsWxR12T5oKQzNRXBCE26dCcSkVxuWGdBJEQYAoCtB1E7Jc6lxWek4iCIzZThxjALGE10xNh25akJmFkK7behAAQuHGab7GaXi4Q5ACtEgYo0aNwkMPPeSsq7Zt2xbPP/88Ro8ejQkTJqBbt27YsGEDli9f7tzYly1bhtGjR8OyTJBV2hZZ18K45ZZb8Nlnn2HQoEG4/PLL8dtvv2HevHl46aWXnNkpADz33HMoKSnBnj17sGbNGrz44otQVRUPPvggzj33XNx0003w+XxYuXIlZsyYgZNPPrnU8HI3kV9//RXnn38+LrroIrRr1w6rV6/G6tWr8dxzzwGwG0vdfffdGDRoEKZOnZqwr65HMG7cOPz973/HxRdfjJEjR6KwsBAbN27Eiy++iJtuuglDhw7FjTfeiAEDBmD37t3QdR0PPfQQBg4ciCuvvBKKouC0007DkCFDnOP6/X4sX7680us+ePBg3HnnnRg9ejTeffddeL2JGgevv/56TPgmhAULFmDVqlUwdFsdz87kjmDixIl46qmncMkll2DkyJHYtm0bJk6ciBEjRqB169a49NJLcfrpp+Ppp5/Gww8/XPHGW86pOu6441BQUIBbb70VnTt3xq233lqp7WXx+/2YNGkSLrjgArz++uu47rrrkJGRgbS0NHi9XkyfPt2R7I6Tnp6OnJwcXHfddejYsSMeeOABPPDAAxg3bhxuuOEGfPrpp+jRo0fCtbQ/Jwsut4AbbrgBXbp0QXZ2Nt5++20Mi3UcZaz+2irHw91+fxrS0nzQNB2B4mLk7z8ASZLg9biR5vNCliUIYqycUtfgESUwoF7kpusK6QYi+YdAsXbgcYMorKFkPzlqkwCD4HNDzaxZVj4RIaqZUGSx8lJLiwDDBEU0IKoDBMiMIaLrsEQBTBTARBGyKjufGpEdxQvvzYfi98NVUIRoRAGZBhQ9AEEUET50EEYoDF3ToKb5IR48CNa2HSSXCjlQM50TTtOFlx02IkVFRcjIyMC2LRtxbJfuuOiiizB9+nSccfpQFAcKkdm6LQoKCvDee+9h//79OO6445CXlwefz4doNIo+ffrgm2++gSQAgaLENryZ2TlwuTz4+uuv8eWXXyI9PR3jx49H69atURwoRJo/AyeccAL+9a9/Yd26dTBNExMmTEBGehpChfvgz87FL7/8gkWLFsGyLPTr1w/Dhg2DJEl47733MGbMGIRDxfCnZ2Lx4sUYOnQofD4f1q9fjxUrVqCwsBAdO3bE+eefD5/XC12PQlZcWL58Ofbv34/hw4dj//79sCwL3bodjwP5v6F1m3YQRAmffPIJfvjhB2RlZWHEiBE4/vjjYVkWIpEIPvjgA2zbtg0dOnTAyJEj0a5dOwDAxo0bsWHDBhxzzDHo3bs3FixYgIkTJ+LQgXwYur2c0bZ9Lr788kt07twZubm5iEajeP3113Hw4EFccMEF2L17N/r27YvWrVtj2LBhuPvuu5Gfn49gMIixY8ciJ6ct9ufbjoiu61AVFdlt24MJdg+NjRs34thjj8WFF14Ij8cDTdPw/vvvY9euXRg6dCgGDhwIy7Jw8OBB/Pzzzxg2bBiKiw7DgoCvv/7a6adx4MABfPvtt2CMYfTo0fjwww9x+umnwzSikEQJoYjm7F9QUIA1a9agQ4cOWLhwIbp3747zzz8fwZIiqKoHRYEA5s+fD0VRMHbsWHz77bfOklFRURFWrFiBUCiE8ePHg4jwzTff4PPPP0fXrl1x4YUXQhBsdcd3333Xvka7dqDzsV2wbt06LF++HMXFxejTpw/OPfdchEoCKCo8hIaEiGCRhWgkisKiACKRqJ1vIcvI8KeBSQJMzYQgJkpNm7GZuhjrTWERILL4ckYNZuXl745H2E0vCUHfcxCSJIMsAoGcCFr8gPH8H4NMuI9tD0FMXhXQsgj79hejdWuvvURDBJgWKBQBHS6BdaAIdCgAKgkBTABzKYAsOoM+EQBFASkipGDEvg5MQFDUEDXt5TdBlKEoKphhQg4zQJJQFDkEweuCEQohLac99OIS+Fx+MM1EcSiEvjddhcLCQqSnp1f/BjhNGu4QNCK7d+9Gp06dANgtmDt27Ijnn38eTzzxBPr06YNgMIhp06bh3HPPRXp6Ovbs2YOPPvoIt9xyC1avXo1t27bh5ptvRocOHbBnz56EYzPGcP7552PatGno0aMHQqEQlixZgqeffhpt27bFypUrccIJJ2D+/Pno3bs3fvjhByxbtgwPPvggCgoKMHDgQKdJlCiK+Pnnn7FgwQJ06NABp512Gn744QfMmjUL1157LUaPHo3NmzdjxYoVGDlyJPr16we/34+9e/fi888/x1NPPYWCggJMmTIFI0aMQGZmJtq1a4fi4mLk5+fj8ccfx8qVKyHLMqZMmYJLL73UmSmvWrUKTz/9NLZv344bb7wR48aNQ7t27bB3714sX74cf//739G+fXtcffXV6NSpE0RRRHZ2Ng4cOIBVq1bhD3/4A8xYouall16KK664AgUFBfjLX/6CCy+8EOPGjUNGRga6du2KHTt2YOvWrRgxYgSGDRuGWbNmYfjw4fjxxx+xfPlyPPjgg9i7d2/CdVZVFdOmTcNll12Gjh074rfffsOiRYvwj3/8A1OmTMFll12GVq1a4eeff8acOXOwadMmzJo1C+3bt8frr7+ODz/8EH/84x/RtWtXfPDBB1iwYAFmzJiBnj17QlVVdO/eHb/88gs2b96MBx54AF6vF3/4wx/Qvn17fPrppzj++OORl5eHTp06YfPmzfjtt9/w6quv4qWXXkJmZib++Mc/4owzzoDf70fnzp3x+eefY8GCBXj55ZcxY8YM9OvXDx6P7TiuWrUKN9xwA3r06IGdO3diwYIFePrpp/F///d/OO2007B27VrMmjUL/fv3x3XXXYeTTz4Z6enp2LRpE+bNm4dXX32Vrx9zHHbt2oWOHTum2gxOHeAOQSNiWRb27NmDtLQ0iKIIn8/nPB8MBqu8ubrdbsiynWwWiUSgaVqNzisIAnw+H+68807MmDEDbdq0qTSprTICgQA6deqEXbt2NUvRkSPZzxhDWloaHn74YVx00UXo2rWrkwPRFGjp17+pw+0/MkSE4uJitG/f3qkm4jRPuEPAqZa4umJzVSHj9qcWbn9qae72cxoX7s5xOBwOh8PhDgGHw+FwOBzuEHCOgKqqmDVrFlS1YvOf5gC3P7Vw+1NLc7ef07jwHAIOh8PhcDg8QsDhcDgcDoc7BBwOh8PhcMAdAg6Hw+FwOOAOAYfD4XA4HHCHgMPhcDgcDrhDcNTT3ItMuP2poznbDnD7OZzycIfgKEbXdezbt8/5u7ndYAzDQFFRUarNqDXN2f7mbDvQ/O1v7r9dTtOEOwRHKY8//ji6d++O0aNH49JLL8WaNWuSbwnbBHjsscdw4oknYvTo0bjzzjuxdetWAM3nxtic7W/OtgPN3/7m/tvlNF24MNFRyGOPPYa5c+fir3/9K/Lz8/HBBx9g3bp1+Oijj9CvX79Um3dE7rvvPvz73//Gn/70J/z0009YunQpAoEAvvrqK2RmZqbavCPSnO1vzrYDzd/+5v7b5TRxiHPUYJom6bpO5513Hs2YMSPhtb59+9IFF1xAmzdvTpF1R8ayLAoEAjR48GD685//7Dy/a9cuys3NpSlTplBRUVEKLaye5mx/c7adqPnb39x/u5zmAV8yOIoQBAGWZWH9+vU46aSTAACRSAQA8Oyzz2LlypX45JNPYBhGKs2sEsYYBEHA2rVrcfLJJwOw14I7duyIZ599Fq+88gqWL1+eYiurpjnb35xtB5q//c39t8tpHvAlgxbMSy+9hJUrV+LEE0/EBRdcgE6dOgEAJk6ciIMHD+J///sfAMCyLAiCgCuuuAKbNm3C0qVLm0Tv9H//+9/48ccf0b9/f5x99tnIzMxEOBzGmDFj0KFDB7z66qsASu0/55xzIEkSFi9e7DzH7T/6bG8J9jf33y6nmZLqEAWn/jl06BDl5eVR+/btadKkSXTcccdR586dafHixURENG/ePOrYsSN9+OGHREQUDoeJiGjz5s3EGKP169enzHYior1799KIESOoQ4cONGbMGOrQoQP169ePNm3aREREDz30EPXv359WrFhBRETRaJSIiJYsWUKSJNHu3btTZjtR87a/OdtO1Pztb+6/XU7zhi8ZtEC+++47bN68GStXrsRrr72GrVu3omvXrnjsscfw7bff4txzz8Upp5yC2bNnAwBcLhcAQBRFdOjQAT/99FMqzccXX3yB/Px8rF27Fu+//z7Wrl2LcDiMu+++G7t27cK4cePg8/nw7LPPAgAURQEAeDwetGvXzskaTxXN2f7mbDvQ/O1v7r9dTvOGOwQtCIqt/vz0009QVRVer9d57U9/+hMsy8LcuXORkZGB6667Dr/++ivuuOMOmKYJANi8eTPcbjeGDBmSMvuJCF999RVycnLg8/kgCAJat26NZ555Bhs2bMC//vUvnHDCCZgwYQJWrVqFxx9/3Nn/t99+g9frRe/evbn9R5HtLcV+oPn+djktAynVBnDqxldffQW/349jjjnGWTu0LAvBYBCAfaNhjOGUU07Beeedh7fffhuffPIJzjvvPDz22GO45ppr8MUXX6B37954++23ccUVVyA7O9vZr6H57rvvkJOTgzZt2jizNVVVkZ+fD5fLBdM0IYoihg8fjrPOOgsff/wxJkyYgKuvvhrBYBB33HEHli1bhtzcXPznP//BddddB7/fz+1v4ba3BPub+2+X0wJp7DUKTv2wadMmGjBgALVp04aOO+44GjBgAL3//vtERLRv3z5yuVz0yiuvEBGRrutERLRz507q27cvPfzww2SaJhERffrpp/TYY4/R5MmTaeHChY1m/4YNG6h///7Utm1b6tq1K40cOZJWr15NRESrV68mURRpyZIlREQUiUSIiGjLli2UlZVFr732mnOcN998k+655x4aO3Ys/fe//+X2t3DbW4L9zf23y2m5cIegGaLrOk2dOpUmTJhAO3bsoDVr1tD5559Pffv2pQ8++ICIiK699lrKzc2lUChERHYdNhHRxIkTKS8vL2W2ExEVFxfTuHHj6KqrrqJNmzbRsmXLqE+fPjRixAhauXIlERFdcMEF1KdPH2cfwzCIiGj48OE0ZcqUlNgdpznb35xtJ2r+9jf33y6nZcMdgmZE/Mawb98+SktLo1dffdV57ZdffqGrrrqKevXqRUS24Erbtm1p+vTpTiayZVk0duxYuv766xvfeCq1f8uWLeTz+WjRokXOaytXrqQxY8bQmDFjiIjoyy+/JL/fT4888oizTTAYpNNOO40eeOCBxjU8RnO2vznbTtRy7G+uv13O0QHPIWgGFBYWIiMjw1kXLCkpQffu3aHrurNNt27dMHnyZHzxxReYPXs2/u///g/PPPMMrrzyShw+fBiXXHIJduzYgZUrV+LFF19sVPtDoRA8Ho9j//79+9G5c2cnQxoABg0ahHHjxuGJJ57AK6+8gsmTJ+ORRx7BLbfcgqKiIuTl5WHdunXYuXMnzj77bG7/UWB7S7C/uf92OUcZqfZIOFWzceNGOuecc2j48OF09dVX0yeffEJERKFQiPr370+33nprgtxqYWEh3X777TRgwAA6ePAgERG99tprdP7551O/fv3ouOOOo/nz5zea/Rs2bKC8vDwaN24c3XbbbfTTTz8RkR32zcrKor/85S/OzImI6LfffqNJkybRxIkTqbi4mIiIHn30URo6dCj16NGDcnNz6a233uL2t3DbW4L9zf23yzk64Q5BE2X16tXUrl07mjJlCv3zn/+kwYMHU8eOHentt98mIqLHHnuMMjMzHYGVOPPmzaMTTzzRuYHG2b59e2OZTkREn3/+OWVlZdGVV15Js2fPps6dO9OAAQPo008/JSKi3//+99SpUyfatWtXwn6zZ8+mk046iQ4cOOA8Z1kW/fjjj9z+o8D2lmB/c//tco5euEPQxIjPembPnk1nnHGGk1i0f/9+uummmygzM5P27dtHRERdunShSZMm0bZt25z9//e//xFjjLZs2UJE5GQkNzYzZ86ksWPHOu/n559/pokTJ9Jxxx1HRERFRUWUnZ1Nt956KwUCAWe/9957j1wul3NT5/YfXbYTNX/7m/tvl3P0woWJmghbt26FruvOWuOmTZvAGIPb7QYAZGdn48EHH0RmZibuvvtuAMCcOXOwYsUK/PWvf8X27duhaRoWL16M888/H+3atQOARtNk379/f0I/+S1btkBRFOf99OzZE/fccw8CgQBmzZoFv9+Pxx9/HM8//zyee+455Ofng4jw4YcfYsKECcjKympU++O2W5bVLO0vS3O1Pf4ZNFf74zS33y6H45BCZ4RDdn1xXl4enXrqqfTRRx85z//1r3+lE0880dFgj88WXnvtNRJF0QmXPvfcc9S/f3/q2LEjnXDCCdS6detGranesWMHnXrqqXTZZZfR4cOHicgurZo+fTrl5eXRb7/95myr6zrNnj2b0tLSnHXe++67j3r27EndunWjE088kdq0aeOstzY0lmXRoUOH6KyzzqL77rvPea652L9792569NFH6Y033nDq8CORSLOwnYhoz5499Prrr9OKFSvo0KFDRGT3Fmgu9ufn5zsth+OljUTN57fL4ZSHOwQpIB4KXbJkCbVv357Gjx9Pa9euTWis8sEHH9DAgQPpiSeeSNhv37591Lt3b2cAI7JLmT766CN6+eWXG+9NENGtt95KkiTRRRdd5IRC4+/thRdeoD59+tC7776bsM/q1aupV69eNHfuXCIi0jSNNm/eTK+++io988wzjWo/EdGiRYuIMUaqqiaEb//5z39S7969m6z9d9xxB7ndbho1ahQdf/zxdOyxx9L3339PRETPPvtsk7/2d9xxB/l8Pho2bBh5PB4aP368M4A2B/sfeeQREgSBzjjjDOe5+MD/3//+t8n/djmcyuAOQQqZMmUK3Xbbbc7f8UE1zsSJE2nUqFH0zTffOM+FQiE6/fTT6f777yfLslKyzlhUVEStWrWi1q1b05dffuk8H1dVi3PKKafQpEmTnFkUEdHhw4epW7du9K9//YuIUr9OOmvWLLrpppvovPPOo1GjRiW81hTtP3z4MF144YU0ZMgQ59p///33dNppp9Fdd93VpG0nIiooKKCpU6fS4MGD6YsvvqBIJEJvvvkmnXXWWXTnnXc2efuj0SjdddddNGjQILryyiupb9++jj1lv/8XX3xxk/ztcjjVwRepUsSePXuwfv16jBs3Dj/88APOOuss5OXlYciQIXj++ecBADNnzkQwGMSjjz7q7GdZFgoKCnDssceCMZaSdV6/349zzjkHxx13HIYMGYJVq1Zh6tSpmDFjBp566ils2LABAHDnnXdi7dq1zvsBgGg0CsMw0KpVKwCpWyeNN4WRZRkZGRm444478Mknn2Dx4sXONg888ADWrFnTpOzPyMjAhRdeiEcffRRDhw4FAPTr1w+qqmLs2LHOdnfffXeTvPYHDx4EYwx33XUXTj/9dKiqiokTJ8Ln80HTNCeH4957722S9iuKgi5duuCaa67B/fffj1NPPRXPPPMMiouLIUkSNE0DANx0000Ih8NN6rfL4RyRVHskRwPxmUDZGURRURG5XC56++23aeLEiXT77bfT/PnzacaMGSTLsqNl/sYbb1CXLl2oT58+dP/999PQoUOpd+/eCTOnxrQ/vlZaWFhIsizTCSecQB07dqSrr76axo4dS927d6eePXs6+zz44IPUvXt3Ov300+kf//gHDRkyhE499VTas2dPSuwvT15eHs2bN4+IiCZNmkR9+/algoICev3114mI6M9//jN169YtZfZXZntcn5+I6MCBAzRmzBjKyMigkSNH0q233kolJSVERPTwww+n1Pay9muaRkS2jkDZMsD465MmTaKbbropYd+HH364SX134sthZWf2//3vf6l///50//33V3jttddeo65du6b0t8vh1ATuEDQwf/jDH2j06NEJz8VvGnl5eZSdnU3Dhg1LECmZNGkSnXrqqc5zW7Zsod/97nd0wQUX0IwZMygajabU/vjg9MQTT1C3bt3o22+/dW6Wa9asodzcXJoxYwYR2ZKxX3/9NU2aNImGDx9ON954ozM4pMp+otIksPHjx9PHH39MREQ//vgjuVwuYozRjBkzSNM0ikQiKbO/Ktvj5Ofn01lnnUV5eXm0cOFCeuyxx6hbt240duxYIrJD1E3p2pcVEiIq/R0YhkGdO3d2Gg/Fv9/RaLRJ2V8ZgUCA7rnnHurVqxf9/PPPREQJNqbyt8vh1BTuEDQQGzdupAsvvJCys7OJMeZol8cHU9M0ac6cOdSqVSu6+uqrE17bunVrQj1ynMa8GVZnf9kb+2effVbhuXvvvZf69u3rzFTjxHXZG4MjXf84Z5xxBv3000+0aNEiatOmDWVnZ5PH43EqJspmjzeW/cnaTlRRtGbhwoXk8Xho7969Cc83hWtf9lqW5ccff6Tc3Fz65ZdfqjxmU7C//PWPf+dXrFhBw4cPpyuvvNJ5rfxvtTF/uxxObeGLWA3E2rVr4fF48MILL2D69Om47777YFkWJEmCYRgQBAHnnHMOBg0ahI8//hgFBQWQJLu1xIYNG3D88ceDbIfNOaYsy03C/rIMHz4ckiSBMebYum7dOrRv3x6KoiTYX1Z/PpX2x23atWsXotEozjjjDFx66aWYOXMmli1bhtzcXPz+978HgIS+8o1lfzK2x+ncuTOA0hr+77//Hp06dYJpmk3u2ouiWMF+APjpp5+Qk5ODbt26AQAWL16MP//5zwnbNAX7y1//+Hdj0KBBuOCCC/Ddd99h4cKFmD9/Pq677jonTwVo3N8uh1NrUuWJtFTis4aioiJatWoVERGtWrWKunTp4mRRl51pfPHFF9ShQwcaPXo0vf766/Tjjz/SOeecQ1dccUWFEGtTsb+qmR4R0ddff02nnXZaQt/5xqSm9l922WU0c+bMhJLDZ555htLS0pza+Mairtf+hx9+oBEjRtBDDz3U8MZWQm3tv/zyy+muu+6iffv20dlnn02yLNPs2bMbz/AYtbE/vs8vv/xCZ555JjHGSFEUuvfeexvRcg6nfuAOQSNQUlJCf/nLXyg9PZ1+/fVXIkoMIX733Xc0bNgw6tWrF+Xk5NDll19OwWAwVeZWoDL7y94Yt23bRvPnz6dp06aRz+ejm2++uUmtlVZmfzwxr/yyBpG99t6YIerqONK13759O7311lt03XXXkcfjoeuuu67J2E50ZPsPHDhAubm51LlzZ5JlmcaPH5+QT5NqjmQ/kS2wNGXKFGKM0Y033ugIJ3E4zQ3uEDQAZWf28X9v3LiRhgwZQuPGjUvYNp5YFYlEaMeOHbRjx47GM7QKamI/kT2LmjJlCo0aNYrWrFnTaHZWRU3tb0rU1PY1a9bQTTfdRGPGjGmW1/7XX3+l3NxcGjp0aLO0n4jo5ZdfpjPOOIO+++67RrGRw2kouENQz1SW+BV/ft68eeT3++mzzz4jIrurW3kxolRTE/uXLVtGBQUFjgpbU6Cm13///v2NaV611ObaE5HTLjfV1NT+wsJCCgaD9MMPPzSmmVVS0+9Ofn4+EVWsnuBwmivcIagnyt5MdF2n2267rUK98Z49e2jSpEl0/PHH08iRI4kx5qxVppra2v/tt982tqmV0pyv/9F67Zu7/U3hu8Ph1Ce8yqCOxLO549n3Tz75JLKysrBgwYKEDPX4tgcOHMCWLVuQmZmJPXv24JRTTkmF2Qk21cX+AQMGpMLsBJua6/U/2q99c7c/1b9dDqfeSaU30twpm1y0dOlS6tKlC7Vt25ZeeOGFCuHHDRs2UP/+/alLly60cuXKxja1Urj9qaM5207E7edwWiLcIagjO3fupHPPPZdkWabbb7+9ylK1YDBI//vf/xrXuCTg9qeO5mw7Ebefw2lpcIegDrz11lskSRLl5eXRhg0bUm1OjeH2p47mbDsRt5/DaYkwokqkwzhJsW3bNuzbtw+DBw9OtSm1gtufOpqz7QC3n8NpiXCHgMPhcDgcDniVAYfD4XA4HO4QcDgcDofD4Q4Bh8PhcDgccIeAw+FwOBwOuEPA4XA4HA4H3CHgcDgcDocD7hBwOBwOh8MBdwg4HA6Hw+GAOwQcDofD4XDAHQIOh8PhcDjgDgGH0yL59ddfwRjD2rVrG+T4jDG8//77DXJsDoeTGrhDwOE0AFdffTXGjh2bsvN36tQJe/fuRe/evQEAy5YtA2MMhYWFKbOJw+E0baRUG8DhcOofURSRk5OTajM4HE4zgkcIOJxG5vPPP8epp54KVVXRrl073H333TAMw3l92LBhuOWWW3DnnXciMzMTOTk5+MMf/pBwjI0bN2Lo0KFwuVzo1asXli5dmhDGL7tk8Ouvv2L48OEAgFatWoExhquvvhoA0LlzZzz55JMJx+7Xr1/C+TZv3owzzjjDOdeSJUsqvKddu3bh4osvRkZGBjIzM3HhhRfi119/reul4nA4jQh3CDicRuS3337D6NGjMWDAAPzwww945pln8OKLL+Lhhx9O2O6VV16B1+vFN998g0cffRQPPvigMxCbpomxY8fC4/Hgm2++wfPPP4977723ynN26tQJ77zzDgDgl19+wd69e/HUU08lZa9lWbjooougKAq++eYbPPvss7jrrrsSttF1HaNGjUJaWhq+/PJLfPXVV/D5fDj33HOhaVpNLg+Hw0khfMmAw2lEnn76aXTq1Alz5swBYww9evTAnj17cNddd+GBBx6AINg+et++fTFr1iwAwPHHH485c+bg008/xTnnnIMlS5Zg69atWLZsmbMs8Mgjj+Ccc86p9JyiKCIzMxMA0KZNG2RkZCRt79KlS7Fx40Z8/PHHaN++PQBg9uzZOO+885xt5s+fD8uy8MILL4AxBgB46aWXkJGRgWXLlmHkyJE1u0gcDiclcIeAw2lENmzYgMGDBzsDJwAMGTIEJSUl2L17N3JzcwHYDkFZ2rVrh/379wOwZ/mdOnVKyBE49dRTG8zeTp06Oc4AAAwePDhhmx9++AFbtmxBWlpawvORSARbt25tELs4HE79wx0CDqcJIstywt+MMViWVe/nEQQBRJTwnK7rNTpGSUkJ+vfvj9dee63Ca9nZ2XWyj8PhNB7cIeBwGpGePXvinXfeARE5UYKvvvoKaWlp6NixY1LH6N69O3bt2oV9+/ahbdu2AIBVq1ZVu4+iKADs/IOyZGdnY+/evc7fgUAA27dvT7B3165d2Lt3L9q1awcA+PrrrxOOcfLJJ2P+/Plo06YN/H5/Uu+Bw+E0PXhSIYfTQBQVFWHt2rUJj+uuuw67du3CjBkzsHHjRixYsACzZs3Cbbfd5uQPHIlzzjkHXbp0weTJk7Fu3Tp89dVXuO+++wAgYSmiLMcccwwYY1i4cCEOHDiAkpISAMCIESPw73//G19++SXWr1+PyZMnQxRFZ7+zzz4b3bp1w+TJk/HDDz/gyy+/rJDAePnll6N169a48MIL8eWXX2L79u1YtmwZbrnlFuzevbs2l47D4aQA7hBwOA3EsmXLcNJJJyU8HnroIXz44Yf49ttvceKJJ+KGG27A1KlTnQE9GURRxPvvv4+SkhIMGDAA06ZNcwZpl8tV6T4dOnTAH//4R9x9991o27Ytbr75ZgDAPffcgzPPPBNjxoxBXl4exo4diy5dujj7CYKA9957D+FwGKeeeiqmTZuGRx55JOHYHo8HX3zxBXJzc3HRRRehZ8+emDp1KiKRCI8YcDjNCEblFxA5HE6z46uvvsLQoUOxZcuWhAGdw+FwkoU7BBxOM+S9996Dz+fD8ccfjy1btuB3v/sdWrVqheXLl6faNA6H00zhSYUcTjOkuLgYd911F3bu3InWrVvj7LPPxuOPP55qszgcTjOGRwg4HA6Hw+HwkwcgbQAAAFZJREFUpEIOh8PhcDjcIeBwOBwOhwPuEHA4HA6HwwF3CDgcDofD4YA7BBwOh8PhcMAdAg6Hw+FwOOAOAYfD4XA4HHCHgMPhcDgcDrhDwOFwOBwOB8D/A+nj9RX5/IRoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from gval import Comparison\n", + "from numbers import Number\n", + "\n", + "@Comparison.register_function(name='multi', vectorize_func=True)\n", + "def multiply(c: Number, b: Number) -> Number:\n", + " return c * b\n", + "\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"multi\"\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "6c7e8929", + "metadata": {}, + "source": [ + "A user can also pick which candidate values or benchmark values to use by providing lists to the `allow_candidate_values` and `allow_benchmark_values` arguments. Finally, a user can choose to write nodata to unmasked datasets with the `nodata` value, or to masked/scaled datasets with `encode_nodata`. " + ] + }, + { + "cell_type": "markdown", + "id": "5181e51a", + "metadata": {}, + "source": [ + "### Cross-tabulation Table" + ] + }, + { + "cell_type": "markdown", + "id": "3906909f", + "metadata": {}, + "source": [ + "A cross-tabulation table can be made using an agreement map as follows. (In this particular case the table reflects agreement values made in the previous example.)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "18b9c315", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandcandidate_valuesbenchmark_valuesagreement_valuescounts
011.00.00.011526204.0
111.02.02.0679211.0
212.02.04.02624301.0
\n", + "
" + ], + "text/plain": [ + " band candidate_values benchmark_values agreement_values counts\n", + "0 1 1.0 0.0 0.0 11526204.0\n", + "1 1 1.0 2.0 2.0 679211.0\n", + "2 1 2.0 2.0 4.0 2624301.0" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "crosstab_table_allow = agreement_map.gval.compute_crosstab()\n", + "crosstab_table_allow" + ] + }, + { + "cell_type": "markdown", + "id": "0d94c67e", + "metadata": {}, + "source": [ + "### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "3a9aa1cc", + "metadata": {}, + "source": [ + "Although all categorical metrics are computed by default if no argument is provided, `metrics` can also take a list of the desired metrics and will only return metrics in this list." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "2ba3fc06", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandfnfptntptrue_positive_rateprevalence
01639227.0512277.010345720.02473405.00.7946350.222798
\n", + "
" + ], + "text/plain": [ + " band fn fp tn tp true_positive_rate \\\n", + "0 1 639227.0 512277.0 10345720.0 2473405.0 0.794635 \n", + "\n", + " prevalence \n", + "0 0.222798 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table_select = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= [0, 1],\n", + " positive_categories = [2],\n", + " metrics=['true_positive_rate', 'prevalence']\n", + ")\n", + "metric_table_select" + ] + }, + { + "cell_type": "markdown", + "id": "382b1a13", + "metadata": {}, + "source": [ + "Just like registering comparison functions, you are able to register a metric function on both a method and a class of functions. Below is registering a metric function:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "67938408", + "metadata": {}, + "outputs": [], + "source": [ + "from gval import CatStats\n", + "\n", + "@CatStats.register_function(name=\"error_balance\", vectorize_func=True)\n", + "def error_balance(fp: Number, fn: Number) -> float:\n", + " return fp / fn" + ] + }, + { + "cell_type": "markdown", + "id": "bf6e16f4", + "metadata": {}, + "source": [ + "The following is registering a class of metric functions. In this case, the names associated with each function will respond to each method's name." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "1e8eeb59", + "metadata": {}, + "outputs": [], + "source": [ + "@CatStats.register_function_class(vectorize_func=True)\n", + "class MetricFunctions:\n", + " \n", + " @staticmethod\n", + " def arbitrary1(tp: Number, tn: Number) -> float:\n", + " return tp + tn\n", + " \n", + " @staticmethod\n", + " def arbitrary2(tp: Number, tn: Number) -> float:\n", + " return tp - tn" + ] + }, + { + "cell_type": "markdown", + "id": "75deed2d", + "metadata": {}, + "source": [ + "All of these functions are now callable as metrics:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "6a41eee3", + "metadata": {}, + "outputs": [], + "source": [ + "metric_table_register = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= None,\n", + " positive_categories = [2],\n", + " metrics=['error_balance', 'arbitrary1', 'arbitrary2']\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "6ab884b7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandfnfptntperror_balance
01639227.0512277.0NaN2473405.00.801401
\n", + "
" + ], + "text/plain": [ + " band fn fp tn tp error_balance\n", + "0 1 639227.0 512277.0 NaN 2473405.0 0.801401" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table_register" + ] + }, + { + "cell_type": "markdown", + "id": "6f930bbd", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "markdown", + "id": "b3c625d6", + "metadata": {}, + "source": [ + "Finally, a user can take the results and save them to a directory of their choice. The following is an example of saving the agreement map and then the metric table:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "899a1da9", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'agreement_map.tif'\n", + "metric_file = 'metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "metric_table.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_images/SphinxContinuousTutorial_11_1.png b/_images/SphinxContinuousTutorial_11_1.png new file mode 100644 index 00000000..283f8f13 Binary files /dev/null and b/_images/SphinxContinuousTutorial_11_1.png differ diff --git a/_images/SphinxContinuousTutorial_13_1.png b/_images/SphinxContinuousTutorial_13_1.png new file mode 100644 index 00000000..4a83ba1c Binary files /dev/null and b/_images/SphinxContinuousTutorial_13_1.png differ diff --git a/_images/SphinxContinuousTutorial_25_1.png b/_images/SphinxContinuousTutorial_25_1.png new file mode 100644 index 00000000..7dc8bb21 Binary files /dev/null and b/_images/SphinxContinuousTutorial_25_1.png differ diff --git a/_images/SphinxContinuousTutorial_27_1.png b/_images/SphinxContinuousTutorial_27_1.png new file mode 100644 index 00000000..20c206b8 Binary files /dev/null and b/_images/SphinxContinuousTutorial_27_1.png differ diff --git a/_images/SphinxMulticatTutorial_15_1.png b/_images/SphinxMulticatTutorial_15_1.png new file mode 100644 index 00000000..0ae1ed69 Binary files /dev/null and b/_images/SphinxMulticatTutorial_15_1.png differ diff --git a/_images/SphinxTutorial_16_1.png b/_images/SphinxTutorial_16_1.png new file mode 100644 index 00000000..516ce189 Binary files /dev/null and b/_images/SphinxTutorial_16_1.png differ diff --git a/_images/SphinxTutorial_33_1.png b/_images/SphinxTutorial_33_1.png new file mode 100644 index 00000000..f53dc218 Binary files /dev/null and b/_images/SphinxTutorial_33_1.png differ diff --git a/_images/SphinxTutorial_35_1.png b/_images/SphinxTutorial_35_1.png new file mode 100644 index 00000000..0e3d417b Binary files /dev/null and b/_images/SphinxTutorial_35_1.png differ diff --git a/_images/SphinxTutorial_37_1.png b/_images/SphinxTutorial_37_1.png new file mode 100644 index 00000000..0e7f15a7 Binary files /dev/null and b/_images/SphinxTutorial_37_1.png differ diff --git a/_images/SphinxTutorial_40_1.png b/_images/SphinxTutorial_40_1.png new file mode 100644 index 00000000..a595e23d Binary files /dev/null and b/_images/SphinxTutorial_40_1.png differ diff --git a/_sources/SphinxContinuousTutorial.ipynb.txt b/_sources/SphinxContinuousTutorial.ipynb.txt new file mode 100644 index 00000000..51b5c92b --- /dev/null +++ b/_sources/SphinxContinuousTutorial.ipynb.txt @@ -0,0 +1,718 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d9c0d99", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "40183645", + "metadata": {}, + "source": [ + "# Continuous Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4bbfe0e8", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import xarray as xr\n", + "import rioxarray as rxr\n", + "import gval" + ] + }, + { + "cell_type": "markdown", + "id": "3e5c08fe", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "markdown", + "id": "33d00a22", + "metadata": {}, + "source": [ + "In this example, the comparisons output of Variable Infiltration Capacity Model total annual CONUS precipitation in 2011 with that of the model output of PRISM, also total annual CONUS precipitation in 2011. \n", + "\n", + "- Livneh B., E.A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K.M. Andreadis, E.P. Maurer, and D.P. Lettenmaier, 2013: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions, Journal of Climate, 26, 9384⦣8364;⬓9392. https://psl.noaa.gov/data/gridded/data.livneh.html\n", + "- PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu, data created 4 Feb 2014, accessed 16 Dec 2020. https://prism.oregonstate.edu/recent/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "271aa18e", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(\n", + " './livneh_2011_precip.tif', mask_and_scale=True\n", + ") # VIC\n", + "benchmark = rxr.open_rasterio(\n", + " './prism_2011_precip.tif', mask_and_scale=True\n", + ") # PRISM" + ] + }, + { + "cell_type": "markdown", + "id": "4331a54f", + "metadata": {}, + "source": [ + "## Run GVAL Continuous Compare" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ad35fb26", + "metadata": {}, + "outputs": [], + "source": [ + "agreement, metric_table = candidate.gval.continuous_compare(benchmark)" + ] + }, + { + "cell_type": "markdown", + "id": "c601b584", + "metadata": {}, + "source": [ + "## Output" + ] + }, + { + "cell_type": "markdown", + "id": "ddc2cb91", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "d38aaeeb", + "metadata": {}, + "source": [ + "The agreement map in this case will be simply the difference between the two modeling outputs." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "810a5cbb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAErCAYAAAA7aTGEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydedwkRX3/31XV3TPzXHuy3AiCCoiKICpgEFBBWeLBIqcKEpOgoFET0V9exjOahBCNJ3iC8QBRBBWQQwx4oEZJECKIGkGQe49nn2tmurvq+/ujqnp65nl2FxB0kfnowz5Pn9XV1fX53qVERBhiiCGGGGKIIf6kof/YDRhiiCGGGGKIIR55DAl/iCGGGGKIIR4DGBL+EEMMMcQQQzwGMCT8IYYYYoghhngMYEj4QwwxxBBDDPEYwJDwhxhiiCGGGOIxgCHhDzHEEEMMMcRjAEPCH2KIIYYYYojHAIaEP8QQQwwxxBCPAQwJ/08I//Vf/4VSCqUU73nPe/7YzRniYcSJJ55Yvdu//uu/3uBx3W6XpUuXVsdeffXVf7hGPkicdNJJjI6Oct999/Vtj23f2M+JJ57Yd86OO+4475iJiQn22WcfzjjjDPI8n3f/brfLBz/4Qfbdd18WLVpElmVsvfXWPOMZz+D1r389l1xyyQbbvnbtWt7//vdzwAEHsGLFCtI0ZdGiRey555689rWv5Tvf+c7v3T9r1qxhxYoVKKXYZZddFjzmG9/4BieccAJPecpTWL58OWmasmLFCg477DAuvvjiBc/5xS9+wb/8y79w0EEHVedstdVWHHHEEXzve9/bZLt+9rOf8cpXvpLtttuORqPBlltuyYEHHsjZZ5/dd1y73WbrrbfmsMMOe/APP8QjAxniTwannnqqAALIE5/4xD92c4YYwDvf+U4B5Oyzz37Q555wwgnVu12yZIl0u90Fj7vggguq4wD5z//8z9+v0Y8QbrjhBtFay1ve8pZ5+2LbTzjhhA3+fOpTn+o753GPe5wAsmrVKjnhhBPkVa96lRxwwAGSpqkAcsABB/T12bp162SvvfYSQNI0lQMOOECOOeYYOfzww2XrrbcWQJ70pCct2Pavfe1rMjExIYCMjY3J8573PDn22GPlxS9+sTzhCU+o2n/YYYf9Xn10wgkniFJKANl5550XPGbVqlWilJI99thDDjvsMDn66KPlWc96VtWG//f//t+8c7bddtuq7c9//vPlqKOOkj322EMAUUrJBz/4wQ226VOf+pQkSSLGGNl///3lmGOOkYMOOkiWLFkiz3ve8+Yd/4EPfEAAueqqqx5yPwzx8GFI+H8iyPNcli9fLoBstdVWAsiPfvSjP3azhqjh4SD8pz/96QLIhRdeuOBxL3vZy8QYI0972tM2a8J/8YtfLGmayr333jtvXySrB4NI+Lfeemvf9v/5n/+RRYsWCSAf+chHqu2vf/3rBZA999xTfve738273o9//GN597vfPW/7N7/5TVFKSZIkcvrpp0un05l3zM033ywnnHCCPOEJT3hQz1DHt7/9bQHkr/7qrzZK+P/93/8tq1evnrf9Rz/6kYyNjYlSSm644Ya+fc973vPkP/7jP6TdbvdtP+usswQQY4z8/Oc/n3fNq666SpRSsssuu8hNN93Ut6/b7cp///d/zztnbm5OFi9eLM985jM3+cxDPPIYEv6fCL7xjW8IIPvvv7+85z3vEUBOOeWUP3azhqjh4SD8008/XbTWcuSRR847Zt26ddJoNOSQQw6RQw89dLMl/Ntvv1201nL44YcvuP/hJHwRkXe/+90C9Gmg22yzjQBy5ZVXPuB7TE9PV0L15z//+U0e/9Of/vQBX7uOubk52XnnnWX33XeXX/7ylxsl/I3hL/7iLwSQD33oQw/4nEMOOUQAede73jVv3+677y5a63kCxANtx0ICwRB/WAx9+H8i+MIXvgDAK17xCl7xilcA8OUvf5miKDZ4zg033MCf//mfs3jxYsbHxznggAO48sorufrqqxf0k0Y/8tVXX83ll1/OQQcdxOLFi1FKMTk5WR132WWXsXLlSrbYYgsajQaPf/zjefOb38yaNWsWbIeIcO6553LwwQezZMkSms0mu+22G+9617uYm5ubd/yBBx6IUorbbruNL3/5y+yzzz6MjIyw7bbbctppp1X+2v/7v//j2GOPZcWKFYyMjHDQQQdxww03bLA/Hky7633x3e9+l4MPPpjx8XEmJiZYuXIlN910U9/xO+64I+9+97sBePWrX93na34wfvatt96agw8+mIsvvpj169f37Tv//PPpdrvV+18I119/Paeddhp7771333O+7nWv46677pp3/G233YZSigMPPJCpqSn+5m/+hu233756Rx/84Adxzj3g9gN89rOfxTnHscce+6DOe6h4+tOfDsAdd9xRbbv//vsB2GKLLR7wdc455xxWr17Nfvvtt9E+jth7770fZEs93v3ud/Ob3/yGs846izRNH9I1gOrcLMse8DlPe9rTAOaNhR/84AfcdNNNHHjggTzlKU95UO047rjjAPjkJz/5oM4b4hHAH1viGOL3x+TkpDSbTcmyTNasWSMiIvvtt58A8o1vfGPBc6699loZGRkRQJ761KfKMcccI/vss49orStz5wknnNB3TtQy//Iv/1KUUrLPPvtU501OToqIyFvf+lYBJMsy2X///eXII4+s/Jo777yz3HPPPX3XtNbKscceW/kUDzzwQHnZy14m22+/vQDyzGc+U+bm5vrOee5znyuAvPGNb5QkSeT5z3++vOxlL6u0r1e96lXyy1/+UpYvXy677rqrHH300fKUpzxFAFm6dOm8NjyUdse+ePOb3yzGGHnWs54lRx11lDzxiU8UQJYtWyZ33313dfzf/u3fVmb2/fffv88fffPNN2/yHcf7ff7zn5ezzz5bAPnMZz7Td8wBBxwgIyMjMj09vUEN/+ijj5YkSWSvvfaSl770pfLSl75UdtxxRwFk6623ljvvvLPv+FtvvVUAefazny177723LF68WI444gg5/PDDpdVqLThONoVnPOMZAsy7VwQPs4b/xS9+UQB5ylOeUm17/OMfL4CcfPLJ4px7QPc47LDD5rkGHiyilWdDffazn/1MkiSRk046SUR6/f9gNfwbbrhBlixZImmayq9//esHfN6qVasEkHe84x1926PV8O1vf7vMzc3JZz/7WTnllFPkDW94g3zuc5+b943W0W63JU1T2X777R/UMwzx8GNI+H8C+PSnPy2AvOQlL6m2ffzjHxdAXv7yl8873lpbEdP73ve+Ba+1McIH5Lzzzpt33fPPP18A2WOPPeRXv/pVtd05J+94xzsEkKOPPrrvnNNPP10AOfDAA/sIstvtVqbAt771rX3nRMIfGxuTn/zkJ9X2u+++W7bccktRSsluu+0mb3vb26rJ3Dknr3zlKxeczB5Ku2NfaK37/OllWVaT5j/8wz/0nfNwmPQ///nPy9TUlLRaLTnooIOq/b/97W9FKSXHHnusiMgGCf873/nOgkJXNHu/+tWv7tsXCScKhvfff3+179e//nVlGt9QTMEgpqenxRgj22yzzQaPebgJ/5hjjhFAjj/++GrbP/3TP1X32XXXXeVtb3ubXHjhhXLHHXds8B4x2O373//+g2pbHRsjfGut7LPPPrJ8+fLKL/9ACf8b3/iGnHDCCXLcccfJc57zHNFaS6PRkHPOOecBt+3Xv/61NBoNAea5I2If/v3f/7086UlP6gsMBWSHHXbYqKl/7733FkB+85vfPOD2DPHwY0j4fwKIBPiVr3yl2rZ69WpJ01SazWalfUdceeWVAsgTnvAEsdbOu97++++/UcJfuXLlgu2IGuyNN944b59zTvbcc08xxlSkURSFLF++XEZHRxfUuufm5mSrrbaSJUuW9LUzPu/b3/72eee86U1vEkAe//jHS57nfft+9rOfCSDPfe5zf6921/uiTiIRP/3pTxe8z8NF+CIiRx11lGitq4Cz97///QLIJZdcIiIbJvyNYdttt5Vly5b1basT/hVXXDHvnDPPPHOef3xj+PGPfyxAn7AyiEEyWehnUMAYJHznnNx2222V5UYpJd/97ner4621ctppp1VR/PWfJz/5yXLmmWfO+zaazaYA8otf/GJem9euXbtgNsGg9eYjH/mIPOlJT5K3ve1t867x7//+7/PGxwMl/Pe+9719z9BqteSTn/zkgt/3QiiKQp7znOcsKNyK9MZTkiSy3XbbyaWXXirr16+XG2+8UV7wghcIII973ONkdnZ2wesff/zxAsjXvva1B9SeIR4ZDAn/UY6o2S1evHhexPBLXvISAealML3rXe8SYMFJR0Tkwx/+8EYJ/xOf+MS8c+69995KiNgQTjnlFAHksssuE5He5P+CF7xgg+esXLly3iQbCb8+gUd85CMfEaAyidYxPT0t0J+y+FDaLdLri8997nPzjp+ampp3H5GHl/BjkObpp58uIiJPfvKTZcWKFVIUhYhsnPBXr14tn/3sZ+XNb36znHTSSRU5rVixQoDKLSTSI5ylS5cu2K7JycmKYB4IuXzzm98UQI444ogNHlO3MG3o57rrrus7JxL+Qj9ZlsnHP/7xBe915513yoc+9CFZtWqV7LDDDn3nvfSlL+17po0R/h133LHgvR+owPXb3/5WxsbG5gmJD9ak32635cYbb5TXve51Asjhhx++wRTOOl772tdWgnL9/UdEUgfkxz/+cd++Tqcj2223nQDyyU9+csHrRzfhQnPHEH84JAzxqMYXv/hFRIQjjzySRqPRt+8Vr3gFX//61/nCF77Aa17zmmr73XffDcD222+/4DV32GGHjd5zof233XYbAL/61a9QSm30/NWrV/edc+WVVz6gc570pCf1bdt2223nHTc2NrbJfd1u9/dqdx3bbbfdvG3j4+Pz7vNw44UvfCHLli3ji1/8Is9//vP5+c9/zutf/3qSZOOf9Lnnnstf/dVfMTMzs8FjpqenWbp0ad+2xz3ucQseu2jRIhYvXszk5CTr1q1j2bJlG71/DDSMfbQxnHPOOZs8ZhCrVq1ibGwMpRRjY2PsuuuuvOxlL2ObbbZZ8PhtttmGN7zhDbzhDW8A4Oabb+aMM87gs5/9LBdddBHnnnsuxx9/PADLli3jzjvvXHAsbrfddohI9fcLX/hCLr/88gfc7lNOOYU8zznrrLMe7CP3odlssscee/Cxj30MYwwf+chH+MhHPsLf/u3fbvCc973vfZx55plsueWWXH755fPePfS+nd13351nPvOZffsajQbHHXccp59+Otdccw1/+Zd/Oe/8iYkJgL7g3iH+8BgS/qMcn//85wG4+uqrec5zntO3L0arf/e73+W3v/3tBiftB4tmszlvW4zU3mqrrTj00EM3en5sRzxnl112Yf/999/oOQsRidYbTjLZ2L46Hkq7H8p9Hm6kacpRRx3FmWeeyd///d8DbDJy/Le//W2VefHv//7vrFy5km233ZZWqwXAfvvtxw9/+MM+4nq4sWjRIsALFY8EzjjjDHbccceHfP5uu+3GZz7zGdatW8eFF17IJZdcUhH+0572NO68807+53/+Z5Pj9cHi4osvZvHixZx88sl92zudDgB33nknBx54IADnnXceW2211Sav+cpXvpKPfOQjfP3rX98g4Z911lm8/e1vZ9GiRVx22WUbrOgXx/6G+jZuH6yaGBEFvcWLF2+y3UM8chgS/qMY1113HTfffDMAv/71r/n1r3+94HEiwhe/+MWKGLbeemugP02pjg1t3xiiprt8+fIHrJnFc3bdddeHpM09HHgo7d5c8IpXvIIzzzyTyy67jCc+8YnzNK9BXHrppeR5zt/93d/xN3/zN/P2/+Y3v9ngubfffvuC26emppicnKTVaj2gyXzFihWAL027OePggw/mwgsv7LPqvOhFL+LSSy/lvPPO49RTT33Y7zk5Ock111yz4L5Op1Pti0LAprB8+XKgl4I4iPPOO49TTjmFkZERLrnkEvbcc88NXiumNq5bt27B/fF9RkvAIOJ5DyYNcoiHH8M8/EcxYu793/3d3yE+HmPeT8zxjscClXZy4YUXLqjNnX/++Q+6Ldtttx277rorN910E7/85S8f0Dn77LMPixYt4pprrvmjEcBDafdDRcyHLsvyYbnefvvtx9Oe9jSWLVvGSSedtMnj46S7kBviu9/9Lvfee+8Gz12zZg1XXXXVvO3nnXceAPvuuy/GmE224clPfjJJknDLLbds8thHEpuyYkThue4aOvHEE1m2bBk/+MEP+r6nh6s9C/3ceuutAOy8887VtgdqwYgCws477zxv36WXXsqrXvUqkiThwgsv3KTF4rDDDiNJEm688cYFv9V4rygYDCIqJhsTKoZ45DEk/EcprLWce+65ABstYPJnf/ZnbLvtttx8881cd911gNdenvCEJ3DLLbdw+umn9x1/zjnnPKAFNBbCP/zDP+CcY9WqVVx//fXz9q9Zs4ZPfepT1d+NRoPTTjuN6elpjjjiiAU1zDvvvLNyWzxSeLDtfqiIfuSHk+yuv/56Vq9ezVvf+tZNHvvEJz4R8MLf7Oxstf3OO++cZ0peCH/3d3/XV4To1ltvrRZpOuWUUx5Qe0dHR3n605/O3XffzZ133vmAznkksN9++3H22Wf39UPExRdfXPnSjzzyyGr72NgYZ599NkopXv3qV/Ov//qvC2rbv/vd7zZoJfvoRz/Krrvuyv/7f//v936G+++/n0996lMLFqe68sorOe200wBf6KmOH/zgBxx55JGICF/+8pc55JBDNnmv5cuX8+pXv5qZmRne8IY39C1G9LnPfY4rr7ySZrM5r1gXeIvEjTfeyPbbb89OO+30IJ9yiIcTQ5P+oxRXXHEF9957L0984hPZa6+9Nnic1pqjjz6aD3zgA3z+859n7733RmvN5z73OZ7//Ofztre9jXPPPZfdd9+d//u//+MnP/kJp5xyCh/72MceVIUu8BW1fv7zn/P+97+fvffemz333LPSTP7v//6PG264gbGxsb6gnre97W384he/4POf/zy77bYbT3/609lpp53I85xbbrmFm266iac+9am88pWvfMh99Ui0+6HgkEMOodls8sEPfpD//d//ZZtttkEpxVve8pZ5QWCPBF784hfz5Cc/mZ/+9KdV3ESn0+E///M/2XPPPdlvv/249tprFzz32c9+Nnmes8suu3DwwQdTFAVXXXUVc3NzvOIVr+CII454wO1YuXIlP/nJT7j66qsr//hCWIg8InbYYYffa0XIm2++mZNOOonXve517LXXXuywww60221uueUWfvGLXwBw8skns3Llyr7z/vzP/5wLLriAE088kdNOO433vOc9POtZz2LFihVMT09zxx13cOONN+Kc41nPehZPeMIT+s5fvXo1t9xySxU4+/tgdnaWv/qrv+KNb3wje++9N9tttx2zs7P88pe/rJ7hTW96E6tWreo77/DDD6fdbrPTTjtx0UUXcdFFF8279nOe85y+QF+Af/3Xf+VHP/oRX/ziF/ne977HM57xDG6//XZ++tOfYozhk5/85IKBwD/4wQ8oimJeXw7xR8AfMCNgiIcRsTrdO9/5zk0e+5Of/ESAvrQtEZHrr79eDj/8cJmYmJDR0VHZf//95Vvf+pZ84QtfWDBtL6aGbSrV6JprrpGXv/zlss0220iaprJs2TJ56lOfKqeeeqpcc801C57z9a9/XVauXCkrVqyQNE1lxYoVsvfee8tpp502LwUrpuUtVGQlVqHbUL8Q8oV/33Zvqi82dJ/LL79c9t9/fxkbG3tQqVuDaXmbwobS8tauXSuvfe1rZccdd5RGoyGPf/zj5a1vfavMzs4u2K8xLey5z32uTE5Oyute9zrZZpttJMsyedKTniRnnHGGlGX5gNoUcfvtt4sxZoOrybFAetvgz9Oe9rS+czZWeGch/OxnP5N/+Zd/kUMOOUR23nlnGRkZkUajITvssIMceeSRcumll270/DVr1sj73vc+2X///WX58uWSJIlMTEzIHnvsIa95zWvk29/+9oIV/DZVaW8QG0vLm52dldNPP10OO+wwedzjHietVksajYbsuOOOcswxx2x0bG7qZ0Ptm5mZkb//+7+XXXbZRbIsk6VLl8rhhx++0WJEJ510kgDzvuMh/vBQIo9gSO4Qj0qcfPLJfOITn+C8887j6KOP/mM3Z4g/Im677TZ22mknnvvc5z6omv+bwste9jIuvvhi7rjjjgcUcT7EoxPtdpttttmGJz7xifz4xz/+YzfnMY+hD/8xirVr11Y56HV8+ctf5tOf/jSLFy/m8MMP/8M3bIjHBN773vfinOOMM874YzdliEcQZ511FpOTk/zTP/3TH7spQzD04T9m8ctf/pJ9992Xpz71qTz+8Y8HvF/zlltuwRjDJz7xCUZHR//IrRziTxV77LEHJ5xwAmeeeSannXZala43xJ8O2u02p59+Oi960Ys4+OCD/9jNGQIYmvQfo7jvvvt4z3vew3e+8x3uuusuZmdnWb58Ofvttx9/93d/x7777vvHbuIQmwEeKZP+EEMM8YfHkPCHGGKIIYYY4jGAoQ9/iCGGGGKIIR4DGBL+EEMMMcQQQzwGMCT8IYYYYoghhngMYEj4QwwxxBBDDPEYwJDwhxhiiCGGGOIxgCHhDzHEEEMMMcRjAEPCH2KIIYYYYojHAIaEP8QQQwwxxBCPAQwJf4ghhhhiiCEeAxgS/hBDDDHEEEM8BjAk/CGGGGKIIYZ4DGBI+EMMsZnjXe96F0qpP3YzhhhiiEc5hoQ/xBAB55xzDkqpvp8VK1Zw0EEH8a1vfeuP3bxN4pZbbuFNb3oT++23H81mE6UUt9122x+7WUMMMcRmguSP3YAhhtjc8J73vIeddtoJEeHee+/lnHPO4bDDDuOb3/wmhx9++B+7eRvED3/4Qz784Q+z++67s9tuu3H99df/sZs0xBBDbEYYEv4QQwzgRS96Ec94xjOqv//iL/6CLbfcknPPPXezJvwXv/jFTE5OMj4+zhlnnDEk/CGGGKIPQ5P+EENsAosXL6bVapEk/fLxGWecwX777ceyZctotVrsvffefPWrX513vlKKU089lYsuuog99tiDRqPBk5/8ZC677LJ5x37/+99nn332odlssvPOO/OJT3ziAbdz6dKljI+PP/gHHGKIIR4TGGr4QwwxgPXr17N69WpEhPvuu4+PfOQjzMzM8IpXvKLvuA996EO8+MUv5vjjjyfPc8477zxe/vKXc/HFF7Ny5cq+Y7///e/zta99jde97nWMj4/z4Q9/mFWrVnH77bezbNkyAG688UYOOeQQtthiC971rndRliXvfOc72XLLLf9gzz7EEEP86WJI+EMMMYDnP//5fX83Gg0++9nP8oIXvKBv+y9/+UtarVb196mnnspee+3FBz7wgXmEf/PNN3PTTTex8847A3DQQQfxtKc9jXPPPZdTTz0VgHe84x2ICN/73vfYYYcdAFi1ahVPecpTHvZnHGKIPwV0Oh3yPN/kcVmW0Ww2/wAt2rwxJPwhhhjAxz72MZ74xCcCcO+99/KFL3yB17zmNYyPj3PEEUdUx9XJft26dVhr+bM/+zPOPffcedd8/vOfX5E9wFOf+lQmJib4zW9+A4C1lssvv5yXvvSlFdkD7Lbbbhx66KFceumlD/tzDjHEoxmdToedHjfGPffZTR671VZbceuttz7mSX9I+EMMMYBnPvOZfUF7xx57LE9/+tM59dRTOfzww8myDICLL76Yf/zHf+T666+n2+1Wxy+UM18n8YglS5awbt06AO6//37a7TZPeMIT5h33pCc9aUj4QwwxgDzPuec+y69/uj0T4xsOR5uaduzyjDvI8/wxT/jDoL0hhtgEtNYcdNBB3H333fzqV78C4Hvf+x4vfvGLaTabfPzjH+fSSy/lyiuv5LjjjkNE5l3DGLPgtRc6doghhnjgGBtXm/z5ffDP//zPKKV44xvfWG3rdDqccsopLFu2jLGxMVatWsW9997bd97tt9/OypUrGRkZYcWKFbzlLW+hLMu+Y66++mr22msvGo0Gu+yyC+ecc87v1dZNYajhDzHEA0D8UGdmZgC44IILaDabXH755TQajeq4s88++yFdf4sttqDValUCRR233HLLQ7rmEEM8FuBwuE3sf6j4yU9+wic+8Qme+tSn9m1/05vexCWXXMJXvvIVFi1axKmnnsoRRxzBD37wA8C76FauXMlWW23Ftddey913382rXvUq0jTl/e9/PwC33norK1eu5OSTT+aLX/wiV111Fa95zWvYeuutOfTQQx9ymzeGoYY/xBCbQFEUXHHFFWRZxm677QZ4jV0phbU9/+Ftt93GRRdd9JDuYYzh0EMP5aKLLuL222+vtt98881cfvnlv1f7hxjiTxmFuE3+PBTMzMxw/PHH86lPfYolS5ZU29evX89nPvMZPvCBD3DwwQez9957c/bZZ3Pttdfyox/9CIArrriCm266iS984QvsueeevOhFL+K9730vH/vYx6ogw7POOouddtqJf/u3f2O33Xbj1FNP5cgjj+SDH/zg798pG8CQ8IcYYgDf+ta3+MIXvsAXvvAFPvCBD7Dvvvvyq1/9ije/+c1MTEwAsHLlSubm5njhC1/IWWedxXve8x6e9axnscsuuzzk+7773e8G4M/+7M/4l3/5F973vvdx0EEH8eQnP/kBnb9+/Xr+8R//kX/8x3/kqquuAuCjH/0o//iP/8hHP/rRh9yuIYbYnOEQ7EZ+HN5tNjU11fdTj7tZCKeccgorV66cl7Vz3XXXURRF3/Zdd92VHXbYgR/+8IeAr3r5lKc8pS+l9tBDD2Vqaoqf//zn1TGD1z700EOrazwSGJr0hxhiAO94xzuq35vNJrvuuitnnnkmf/3Xf11tP/jgg/nMZz7DP//zP/PGN76RnXbaiX/5l3/htttu44YbbnhI933qU5/K5Zdfzpvf/Gbe8Y53sN122/Hud7+bu++++wFdc926dfzDP/xD37Z/+7d/A+Bxj3tclf43xBB/SnA1Ut/QfoDtt9++b/s73/lO3vWudy14znnnncd///d/85Of/GTevnvuuYcsy1i8eHHf9i233JJ77rmnOmawfkb8e1PHTE1N0W63+7KAHi4MCX+IIQJOPPFETjzxxAd8/EknncRJJ500b/vgJLKhwLyFFrY54IAD+OlPf7rJay6EHXfccRgEOMRjDoUIxUbGfdx3xx13VBY6oC/2po477riDv/mbv+HKK6/8k4vqH5r0hxhiiCGGeNRiY+b8+AMwMTHR97Mhwr/uuuu477772GuvvUiShCRJuOaaa/jwhz9MkiRsueWW5HnO5ORk33n33nsvW221FeDz/gej9uPfmzpmYmLiEdHuYUj4QwwxxBBDPIphZdM/DwbPe97zuPHGG7n++uurn2c84xkcf/zx1e9pmlZxMuAzaW6//Xb23XdfAPbdd19uvPFG7rvvvuqYK6+8komJCXbffffqmPo14jHxGo8Ehib9IYYYYoghHrUoURRsONe+3Mi+hTA+Ps4ee+zRt210dJRly5ZV2//iL/6CN7/5zSxdupSJiQle//rXs++++/LsZz8bgEMOOYTdd9+dV77ylZx++uncc889vP3tb+eUU06pLAsnn3wyH/3oRznttNM46aST+M53vsP555/PJZdc8qDa+2AwJPwhhhhiiCEetXDifza2/+HGBz/4QbTWrFq1im63y6GHHsrHP/7xar8xhosvvpjXvva17LvvvoyOjnLCCSfwnve8pzpmp5124pJLLuFNb3oTH/rQh9huu+349Kc//Yjl4AMoGUb5DDHEEEMM8SjD1NQUixYt4sc/34qxjZTWnZl2POvJ97B+/fq+oL3HIoYa/hBDDDHEEI9aWBR2I2b7je17rGGzI3znHHfddRfj4+MLLkIyxBBDDDHEowMiwvT0NNtssw1aPzIx4oVoCtnwtYuhDbvCZkf4d91117wCCUMMMcQQQzx6cccdd7Dddts9Ite2aOxGEs42vXjuYwebHeGPj48DcManP8eyFcuZWNEiSUZpamgkXXLXxSgLlKAUWjURydGqRekEpUZJ9SSF7SJkGJUidDBaIaIoXU5iUkqbY8XixNdhcuJQwfRjlAYm8DWaphFAK0WqUpQyOCmxYmmYJksa22NlhnXd+wGFE4d1JanOMDrDqGXMlfehVY4CEp1hxaKVRqHQSiMilFICglGJb0fHkGQalSq2am1FovySrEpRGaiUBkKOqYhCaVAINpSO1sFCopSglEIEnPVniMRrqXC+v87s7CyNkQyjEqwUaOWHiA4flCAo1O9tfRERrIBRcTnZuhj+8Ft2rHOUnYKs5fvRimOyyGloS8OkJCpFoSgkr/7t2pzC5eQ2RxBGklFG0xE0fuW7deum+PWvbkUBY+MTpIlBG42IQymNOId1FqUVk1OTNEYatDtzLF4xztiiUebKGaw4Mp2BbVA6hUk1pTRxklFIwqiZxeg2IiWCxommlSQ0zXJmC4dSjvFUKJ1/T6Opwijfr4KicIKgmc4nmS4m8dNjhtEpILSSBls0tyRVOowRqYKcjPbvoWMd97Ytt88U897Njq0u3XI1Wms/pgS/VIkCUQnOCqIsVndwUuKnnJJY/0yFsSC1K2ulUSqOUf+NWGdRSpGoJHy34MQCglYKrQyCYJRBoSnFhivaMF4NpfM1zP33rasMbQUoNKPpBNuPbo9WmryTo1OD0boa6/47ddw2/RvmyhmofQsimkWNpWzV2hpQGKVYXzicwHgq/G72bpzMIYB1Fhvarqpxr8K3ZdCqgVIaP5+UJNqS6pTC5ThnSXRG7LGtRrZmIu33Swswma/ldzO3o5QBcWFrisMvAuXE90EhE2EOcOwwNsYWjSUU4r/zVCmswGw5x+3T95OaOaxLKESRqgKRDMSEPihDbyTMloux0qAQYWZ6mr96wX7VvP5IQEThZMNzhmxk32MNmx3hx4/rSU97Em5kCxyCWX8vMzNz6JGMTienkWqUNjiVkCaKolvQbCSkSlGW6+i4kvZcTqtlMOMtsokVNMws1jkcCaPJCIUryJ0n/YZuULiC0vkJzWjDWDIBtIBxwLOjAj+RB3I0yjCWTtAuhU46g4gnVhsm2UynbNFcxp1zJUZNkWjf3VYsmc5ItCd3ESF3BYk2aKWZyqdIjKFpmqQtw8TIBIlOcQJGDxC+ciAg+EkS8d93DMUc5GUJ/6kmutpkJghGGxojvm2lOHRF7v6CUUB4KITvJ0xPRuCjZ+OV47ZHyo3jrCNPC5qjDQRPao0yRylHw2RoNIJggzCnGPPCGFJ73wlKeeGw67ps0xohSzKU0rSaTcqyJGs0yPOcNE2Ynplh3bp1LFm6mNGJEVSiuOuuu2m0MlyjIGtkVb8o6yiKFTRHJ9BKkVtP7qkZoaFnfK+rUVLdpWUMK5rLERRzZcFMuZaGbjKaTpCoKLRCKTBTOIyChk0YsyOAJnczdG0HK45GkrJ4bDwIoJ6snUCieu9ixAllw6JajqncoRTkVhhLNVuMznFvZ11F2kZ5+hRxlAJaDEY7FKM4LCIWSML4U+ggiPp+NhgNWpkwPspqnLqwAIqII8GgVRII37dThe/WKEPhHKlY3xalA+FpHC1ESowyCEkgWO/h1UozmowyEfqim+YkqRfg6t+IE2HrbGva5RwgdGw7CIQwko2yeMy/g1JKKKYRUUwVijJbhFE5RjkSNYGIQysLWJwISpkgiMR2eSEk0RaF80qCeIXCz0HOf+NNh0vKsCKcqr7pxBjG1BgQBf/wzJLjpEEpLURSUoRMz+JkBNMcJ2mNMaYVSvUUhqyASS2IjGCUpm2bZLrLunXjiGgSrVBKaKQK5zIaqgVoOqXFJr139EghF0O6EZN+PiT8Cpsd4Ue00rVkjRTHGHbREspSMeM0BUI2MoG1DnElDSkZScfRJgEpcYkgpCRO0RhJSUaFZjJKpmFOZtHiaNs2Iq7S6l343WhTTTatJCEBljQfh1YbHkxOFO1S+8kqTJKiCgSLVoZWosj0OLmbprSdSrMvXIEVL+lrDCiDiFBI4YWAhqXb7eJyw2p9PxPZBKPJmP+klaCNJ/XCKhLlP1Bn/YRtmE/0PTFBKBysyy3LGoakTrQCRieVYGLCc6v6+TWrwEOBrp0a2+icJ5lU9/T8B3KHDR+7gLXAz6CVZUMrGEmy6ujCQaIVRiVoDIVYShEybUCBE6EUi0FhlCFRKSbV7LDdtqFPwk2UF5yUhsVLR9liq8UorRgrm6xtr2HF6BLS1FC4AsRrmQDWlqiZNXRzhU3H2GJxxmjSxtFistuimWgWZ/59udB5BhhNUmALBGhoReEgd0LL+Lc0kXnNeyxdDCwGvPZ399xdfuwDuXOUThhNA3GqaAWS8M6EJZmiaTRbtjSIouuE8VRTOkASIFrIJJC/RqFROifQeSBuCQRde1NhTDlJsS4H7fskCqFSXTMKCUEQw5OfExe+K79dK02iDKXkUGn6jkQ18Hq1AwpUHwnaSoDoR290Sej3rVtb4UJ77mn/jvva91XPXjqH0pp2OccdM7cH66HC6AaQolSOUKBCDThoIaTh7wLrMoyaA1ViZQxxGq063moU/lfrNNZ217C2uyZYlbzwlOggUKlgcRSHVrE/HUoJmZ7xVhEpvaVD2hROWN9tkrUaKIHSeSuPE8GPOqGQhET7Pl66qMRJGAMkaGUpbYITP5dlaUJemgX69OGFQ+E2YtLfWJ39xxo2W8JXStBqDamapDk2xtKxMbp2lHU5zJUKK/7zXqTm2GY8ozXSItGKtp1jOp/DiaWUglYyhogltxatBKUSlFKUrsSJ4MRRUFSThjcJKhKdYm0bJyVGN2qauJ/AvMlbSHXCksYIRi0l0Skd2w5asdcM7u/cjVJCKxmla6cBP/2VUqJFo5XCYVGi0XoEaDOSjmKURrSgi5TZuTkSElrJCAbjp5ZAkkqi9uH7TVe20ToNCnUS1ArGU72AUFCzHqjfh9Zrd65MDf6ahp6mr5XXCLXutc0Ge7LRG7+/iASdxl980wqE8ooe4vtKUZmNO9YxU1gWZ5pEa7TWZChKZylciS9IaUlUQuFyRDkSZXC4QDAqqqGhXYJ2ngCU1qQ6JVE5aZJSUnryUwoYBTogOU4y/vqnfoGcf9vzBTRaGdOFwiihlfgxmVshSTQto7xJGyicYJSilXiJJtUSxpTvSytRkPF94ML7iEJup5zhvvbvAMWarkMrhUKjVYoKz1e43PcfmpZpMJEuZUJroGTGBfdaeBvefBpN00XNLqQRnA/ckoU0PkOibRgvgkJXE7UK5Cbiny1SfxTOpdZOrzkb0EllcfPHApQkygAGKyVCWd0vWhl6oyX8q3pjWMUfpdDhiUVUJZTMlZPcOZujlL++C0Tr7W8Cygazd5foGhPJ0TgUhT9OTQaBRGNUgVYGKykiBSgThB3nn61qq0LCe1NRHqisBBBdliIaEBJdhPMsSiXh3Zbkrs2svZvODKE/E1KtsNLBicWoqAgkKNdk7WwDIUMZRak0tmMxOqF0JWlq/HOUD30t+geKYZT+A8dmS/gd28E4KCno2g6pThlNJ1iqWqyWUTpWU3ZL5kiYTGCy3WF5U2O0YRFjwfeaUnTazJVzgcwzL/U6B+IwJCTiTYGFLTDamwmVUszmbVqmyVxRkGovXQvC+nyS2XKWhmkyU86yZXMrSsnpljnWOCa7k8FyoDFK07VdLJYl2VKMjDFdTld2da2V/+yVJ350AmJwYkmMprA5qTYYa2hPdpkr25WFIGKeLrvRsa2qewN0B2QCAfJuibPzP1JVTbQDN93E7RY8Xm1gG16IqZv4q7bFybt2zUrDDxqibKJhRV7grO1ZKZT35XfKOQpXcM9MSaJTxpPxYN0IflXlApEXOIQ5OxMsQglaae+DrzdXHNG/Yp3D0qG0lsw2MaR+TLgShaBUk67VTM2M8a97H4peNIpbN0vZLVHNBiuaCa3ECzQjwZ/jXHCNaEXDKHqvS6oyogqYs0LpYCz1WpBGUMq7opqmSeEsWim6rhtMH1HTjNq6ItVJFcOg0BS2zfp8Eu+LNlhxQWvES6HBvK6Vd5v4vkgQvJnfv2MXzOpS3adHVjro7gI0g1k5R8S31QssGqMztFJYl6NUEOLQlQXJuuCaCdtFKZRypDr171W8tSFaEaKlz9ZieSJi9+oFheD4TUhwC05564bKyMxijOpgxVK6stcHKroJfHu9q6OsXw0lDlFtrCShHy3gcGIACXE5pvrmU1ISnQZFpCR33UpgkiDQ+H5qYSX3yg8ahQRrhWBdG+s6RFHaKEPu/LeX6AzQdMtFWDeKdQk5/jmcFUyq0Q0vzBkBo3NS3YFs7Ua/yYcDhRgK2bAlYRil38NmS/jxw1UkCBlOHFP5OrSaYzw1NI2m4xRT67pMzij0WAuTwUsvvAgxgqQCVnkX9+ICNZmSrtdIAsuefh/3rR0HgSSztJo5U7ctZsnj17H2/nGvJrcNOIUqgg4pIEFk1l2FaJBUUGE2UIXCNXrOcZkoYDolmVPYpuBGLMopdNubnsycphx11e+SCpIIomHkd5rZJxWQONT6FN1RmB1nsaXBpN5S0Z5sohsW1zHotvEEqH07YxsiRPvGV/sIbaxUhBpLVCcNvBAFGN8+VM35Hvc5VfXFPNR9aPXrir8mKrQxXMsrZdJb6UEWODdcV2L/OwVOzT/W88P88yvVp9cvdTegGmxnbbuo2M/R9l27phYWchnGa1d9tJDQE7aftd/hNG3BjotGGU2CGTeIM06g42BN17JF09A0ipnS0TSKZpCSYqzHiNGI8Tdpl0KiIdWKkWSC7UZHmS0dc6VgFCzKNA1jiPpq1/r7NbRG1Tpjupji9pl7KJ3QsRM4yUh0h0QLRnVJlSXR/ho66t7iBYJoNYpEpUj961HOm5ZFVSKAoLAyjlYdjCorTbu6sjhveVBUvaOVD9rz95TgipPK9x7deDoIcwqF0jFotsn9nQlSXbLDmPECVe21WAdaSxXjUI85icJj9bsILZOx4/i2GKXp2Jzfzd5G11qUKlGYoFn7NmlsEEgUSlQQGIIGryxeV/bP4ihCQJ8gYlHaB5uOpuMszhbTdT7QNHUpnbJD6UJhWeXdGnEAauK4SkHliHO1UebJProylTLkLqNtx5jKx3q2g8TP06rrMNabzluJ8q5LOjSzDq5Yt8Agf3jhNhGlPzTp97DZEj5kaGVwUuDXQ4qTRMlYOsdcmWFNE2korFU0Win3lwrTUdgGSCKQOVq/TeiUGa17FPkzZkluGOXuO5egAtGUwPq5MbSDNXdPYEZKXCdBEkG1dR8xSCqQCFIqT87K38d0NHbEQcsiTmGmE6SdgBbKcUF3NenahGJZiTOgS08UyazGNoO5sFS4QPpz2znMmgTXEGRxgTUJcucorulI7zEct+o/+dxlB2K3DIFMWnpkbQfIVQUyjH/HXX3kHhhsoe+iOlA8Oargja0LCTJwfCUdEYSDOmMu0ACpnUdQNlE+n0YNNKp2nkj/39V96yQsqldbU1TweQy2pfZ7bAMDAlLt/ioEPdeFwL7r0d8FfYJU7K8F+jq+gl2WC8VUTr5+ko4Io60RkpABoBPvx+/klt/MFSxqaBKjSRoJhYJMx4A9oW2nyV0nmKu9WyDVGU2T0kwaaAWZFnInJFr7GJTQlvXWE0DTaBIVTbwF08UsM8VynFiaZj2ljFNKRrdMEFmMomcy9hYHQSuLUZaRZD2aPFiLQEhQOCRkyyhliBKa98hPhcj+6Mf3mqe3HhTxLXkClBIn0TrRI/po9VGBELwFLyVR3nVTuOC7D5aA2VJx95xl7XTBVuOKMRSpVpTiPe2KnjKigdFkMVu2fLtz12Uqnwx9lWHF0NCGTEcTvA1krYEMyPFzmwApIk1KSXDSwqguiV4H0hOBpBpLUvnVrQOlNF2b07Zd2mXCZDerYnFaiWBdl1JyrOjw/A6HxuDN9eBqgYlhTgk0aVTGVLGEqXwEW2nR/thECSOJkNLFuhwfcqjQOsdaQCxWNqQFPHyworEbCdqzw2KyFTZbwl8/NY5ppBhTolUbSxHSc3Io1zOabIvoFGdzXv/TK/jqS45mfeE4c9XL2GGsZNW/fpNyFDpbCEtvgPv3Lxi5YZTOCkey1pMpS3KSzFLe10RZ0HMGq0ClDtU2Pa4JxK4ckAeyzxwUGl16bV+VynNWIriJ0pOWVZBrXOZwKehZgzQczihw2n/3ShADtiUkc4rSeGuApJpk0lBmiSeXLTuo+xuIhnN/tTds14HJzLfJUNkdxXhiDs2uaaP9/VvXVKXvQCqmqp5fAKWQwEhRu/WWg97xFeK1VO1yNQZckEjxgknU9CVo3qJUf2PpCTCVIBMb6mozsev9HY+r2lsnerylBtXrw4UsAb2x0LvAPE2+ZiXoF6iqebp3iartYYMNWqLAIV+5tLJMDN7jmpe+mKIoOfry3gIb5/7ZStpGsXi8ydKJZhWbsC6fpV3OABalsiD3dBlNWmzV2oqGaQbCDM0Uqt8nUsFhmSlmcaKZKjp0bMlskVNKk0Qp2nY5XdvCDRi6uy6JPYTU9okYxtJ7A2lqFJ7MlTJo0VVAnyfrFKMtPtCthGAKj6ynlfFjQ5RPGVXi42bC83gXULQK+EA2TRbM16NAl4bJMKokVw7t2kxk0yzKFtO1bVJdUAoUkvnQPg0dJ/6TjZo8irG0xWjSQCnFuu5a1ufrAE2qfRCl7wUFyqCU9QGxkuIT8hQO46Pm3ThCFoQzP4i0jKHVjB8mIdvAx1f0LAAi/hm7do7ZUmPdItYXLboWWskIu0wonKyn63TltsiDFSBmyYCquTIi8Xshcbocq5G9d5y1EmFZQxhLHd08R2cd2qXDGJ8x1LUF2gilddhylEcaQ5P+A8dmS/idboOZqSZONCaZoNEoyLICY3IEn85j0oS50vHxg18aAo5gi6bmhV/+BmwP6YzCLS7oLspo3ZFiG6AL5SfSRGj+uknn8V1oOBixqKnEa/51SG+CliQQngMplQ8mFoVrBKaYSWCigNygGha62muUTnnTtQWVe/O9G3HojvaafUPQFsoJ5yeuwp9XTlgoPQu4+xtIIuRLHHLXmL/PaImaTD0RuwHtdVOQnkAAzNek6ZcB+jZGywHRuhAJOVxYVE8gqBF/ta8iZqncEMoFsgw37TMSVBaKqL3XLQy9a6AHNPyaQKJcTXioI6rVG3RH+Get+D4IJdVlohshujoWQEXwdQGq7/qxM2vyhFrAQiDw3K9/g+j2iPuP/d4lfOsFL2FyzQzSLRgdazCXlyhlybTBkkIICnOS0rY564v1LNeZ1+y16hlEFXRtl/X5JFZKOla4Z26UubLFSDKDlUU4lzDnWjgfirZgylXUq+to21EynZKaDj4wVhP951obSmexEoWAMvitUxQJqAJxCQ6DEodWZSB631k9slc48RkyKjTBiSNRGUoJzlpyp0l1yXTeRikfVGmxGCWMJF3ub99KWTrKToO1RYNEh3sh3hqgEhQJqdYoDHPlJKluULguqU4RSVB0K2OOFVdZJ0pXIlKE4GGNUinWjaFCkF5i5shtKwRdgqgRjCq8K0AFawa1oR2i50vnmM7XY9QsE+kYhRlhJMloGsO6bk7HOpY2FpOahJkiZ113BihRyqGQkJkhvYBjNB27iMnukspm0kyExZllcaMDtME1me1AXmqcS2mmCShHYXOs8xJ03l3wk3hYsenCO0PGj9hsCT9tGZYum8ZaRafboNNJmJ1uoDUkCdwnlqKYhjSldBqVO7YeMbzswvP55suP4vCvnQ8o1FTC9M6O8f/TzOzkMB0/CS3afj0zs0vQkymN1Zq5xzkYs5BrVKtEnOqZax1gJJCGb58uQiGa+OURuGMqhdTBnKkmbk/iwRLggMyR3J96k713J+JMOMa79nrEhbcUSHBBJDOaYolFr8l8rILx1gbdNv5atteWSrOEHoHU2hv9+vM0/JqLQLR4oSNaW+N+Bgg5kUpDFKndI8569XtUBKZQwdwWfc1RWPDXrd0kQqi0YRIZ5JT50P4ZNmjVC/08YNyYZ66vZJnBZw8++z4T/gK3qIg8CDf1dteNBwu6CGpCQH3uqssXh13xdQAuO/Aw9v2WFwoufO7zGB9r0RrJyHWXubLElQWduYLV6+eQpW2WtEZItI/qd+GaqU5JdEKn6DCVJ3SswTrN7GwD2xWcKzxpaY1qpEhqQG26GJMVQ8ctwqg2Vluf1YDX9nWItI8P6PPM/fsVyfDTtvJm8VA8pvdx6iqC3LsAFNb5D0ErjQ7ZFeAoXYlRRRVYK6Lp2k4QEBTtco7c5YholEDCHIoGVoRCOuG6o2jl6FqfJ5/oRtC8E7pOIdJFi2OymATxKbgE1wWAw6FDqogTIVUlTmXhdXdJ9CyKFFQoMERZvetYZ8HXkojmd6qg2tJZUj1Lqn1G0D3txNcfEc267jpSA5oErQoIfSwqBVK0kpCmq5grR1nXncChGEksi7M5mqYN5ORW0bVdtJpFZZYshVg1N1GaBBfuaSnc7EbHxMMBJzoUEtrQ/iHhR2y2hO+lfOHkC36KKG/yli26uG7Ik1/coTObwVQK0BcM1S4VPzjmOPb/8pfQuSfaxpTg7tIoCzM7W6bWj9CYUdiGov2ELqptSCe65NMZajLzk68Rb5YPE60oUKW3EPRNvMFvLkYgFVRXe5O/U9C0qJnEXytYCUTApYIdKzGtEjeXolIHU0lPS40pwdqb/FWpSKY0xZYFjd+ldB+X+8BCJahSo5Z1cbMpyinUQDpx5ePXQOaQEMyIpQpsrAQCRRWMWGnOBupBdPUAO0I/zROiIzkNaLXKhf6MGq/rZ0s1cHz1e5zb64KEq50z+L1HAUVq59evVRdeXI+oqjCAKBzF00K7+4LuiMLSwmRf90Qo20/8FbHXBIAo/M2XPuoNC22vFzSoWSdeeNW3qnf3smuuAiVctP+hNEYyxtMmB37rol6f1RGu/YMjVtFVc0wXs6zLSybzUbrtAsoSnSlaY45CjVBKgpQWyQuk00UlBrIUkqhZL0T+ik45QaZzUjUTIvuFWGnSa5he43Y4EJ81YFQX0GhxISagF3QnNT+MDxMMnnaVV0FnPpXP/+5z1H3aYCyiJfiCPUanNE2LxdkKnAgd3cUoT4SCoCS4P2Q2vJSUltmSxY1tGUs06/LV3D13H06a5K7LHTO/rdIIYxYChIqdxO2x/TmKeuVAL7jooJ+6mG5Y68s4jGPmjidvhcNr7VrpUEzMf/+F69K1jkSnJEphifULfNqlVglWMia7E8yWPs15q2bJRDZFu1xH7rwboaoUWBv01ucI4/A1EBKtKKxgNqJ5P1wo0OQbM+kPNfwKmy3hWzE4lyIKkrYnitatTXQJ657Vpb2uSXNJh9bSWdZPjiBWoSdTPn/oSznqovP50sEvQDlPrOm0pr0cWvcLxZgnzrKlSWfAtKFYblAjJcV9LfSiHMm9qX2hYDfl6PnJowAAPcKxwfSvQDJXmb2V9YIHTqFnDW7Uooyg7m6ilhcw6zV00WDmQhaAFh8bEK5dbJ2jphO6Sx1qfYKMl6SjBc4p0tSSjXWYumNio1qvxKC+GnlU8Xoxh9oq0FIjt55WqxLn260EKbW/Xp2Eo7lbQtHQSOjhOtGnq+J/gsa/oIa8UHR/PKceeb+h51UD++ukX/97wXNrL1167RTlx2IlEDhVaf/1GIT+KP/wDrWwUJlPSWonRGmj+psewUutn+rXj+6EGKsQ577wHl5y7eXz71m7Rd2atP8FF/Cp5z6bmU5CyRhWwdv+6zIQ+PChL6SUBtb5WhakCSpNwDmkKJF2F1CoRoKkCWqBxVIchqliBVZGyfQc4LCicOKJuGmERLd9vIGU+EgCRaIaGJUgRHdAEopWhQA9pHIB9HLcey9asJiQDue19CAwVJUq/UAZS8cZTSeYYj13dH+LSloUzrGssZQslLQV8cGrThSJbjGWGAoRxtNF6JEGoChczuru3VVAoNfA/YsTqdfF870ioaqgt1bEEsdlZTXxZK9CPn1MJYypjRIsFuGaokKsqreaOBeDBf1T+hog0VLQ+3Fi6bgRZssmE5li+1GLMFVZJmKJ47K0iBXECsGw4usbafE1NZRGS+INhe4PUXhHb6LwziMvdDxasPkSvlWsn1vsic9AOo3/cCyM3dhg5oklY60ua1aP0xjNKX43yuk7PJ7Ofb/j/dvvxDHfvQJCRHwx7rBNxdy2QvN+hcug9euM7lKwTSFZl2A7Gu0Usi7z/0atNWphUcFKgwk3kn7U9uMx8W+rPHFGIjD+AkrwAkHhMwBsy6HXJ7gsXCD4teMEXGnZAapQyIiDXIERbKFxuWHReJtOngRNcQH2VPgYgpi+Vouyrw6N5v5YDD1uo/d80fogFftR9VNVgbd+70iKtSapSKCD9x9k/XpsQB/h156rbhEY3K6lp2nWzxf63CQoqdwa80iwzwXRezYV3nH92lK3COh6n9XaFW8Qz9X959VftqJ+b9WzJNSfs+qbWlsq1c9fr4ohWGhcSO1Y4BOHrWKyWyLiSExCYuCjB7+QskxxRYoTX+hHOzCpxjnBisLqBDOaebrtFuSdDqaVYY3GBmtELIIjIuQ2oWsXUbisJgQKmvvJtC9VW7oy5L4rnHR8qhh+PPjCWd7fn+q00vpFCiD4+kPJlVggp3r3feV8e/2daRNfiT9UHF1bolE0zAijyWhlWCkcdK2j64RChEwr2mXCeDpOqhWz5Qz3d1x47hi/DhKKfIEBpX3+vapVkBDBYiFkVUisDRBKHwNolVA6g0+uczi8eV6FNQic2GCNUOH5/XWMTgBf3MgpQhEfQh8oCmkwnU/QNJptRwtydz+FK8L7gkT7tEYpvStRJaB0EJwSQaxPk811F6VyxAiFbvNIY9NR+kPCj9hsCd+1u3QXTfDRww/nb752McUYNNbD2mfnLP9+ivnfhLWdpTTWaYqJDASe8rSn0HaCaY3A3b+BsRLXMUjikFyz5H8N6/YsSRd3KbqjZFNQtjyJA9XkWPfLV5N5v6Lqt9UC/PqsAUEFk9T57aUnfyXeImBHxZvdOxo3anFGoG388YlDjLcwVDetR6MbgYZFWqAmU9SKDjqzrLlrEWbW+PgBHRoivfaosvccfWQbn6EeVAb95uxIMjFKHxVS4vq12sE0ucr6Ef+JPvlIovEaVZepvkA130zpb1sf2Qmhckmf4NXX8Fof9JH3IIlrf2B/dP0gOdZy9uvBnfWYg2pbTV5ZKOYhZmgMEHg1zgZln7rfv3oXAyRff65KaKz1XYxXiBkdGj618khmCkfpfDdOdh0UDp0YxIG2ik7ZxImgrSNteFLMS++Dtza+QCFr+IpvZZJiktRr57Mdr4U2UiRNCAn5WAnFeGoSnFEFDTNXdWCMZYyR92UoO+1z1aUaQnlYFKfKuydE7hOFDBeuF7PPVeXzjmloWumwoE3sx4TRbJy2E6z4RXDu6/j9W7W8Zj1TSkiDVJWcXApIKIwkYryGggmxLSXetN/AG9TLSh7VoYhN5aJQodiXJGgV0hfJewtiIWiV+4qcaO8CUSAkQEG0prm4cE6t0A+KqlJf0zQBw0wxxvp8hIZJ2XY0J7f3M52vRytDohMy08IX/umgcL60dxioEvrZpAalfMxCFKbqn+MjBV9aV210/xAemy3hk2iksHTwueo6V+hCWPTfGYiQT8DInRrThcv+ahWHfvZrrPzqNxAFX3rpS73pfdbAiGVsSZv8pkV0lwBWoX/hU0Wc8dp21PQiYfVHjfea1GdpHVBEq5SxOFlbhS6MJ3qHT70LZnzmDDJqYc6guhrGSsa3mWZ67QjYGAzoL1b5vMVbFVxD0JMpblnOyA7TzN45BuMlKnG4JNQNGIw4j6b0OtHGebbhfFAe4rVOoa+gEPVnDuQh8UEjQUdirVkDgJ5Vo3KzzifdeRbuWgdHMlRKQuDgBqaP+nsa1PJV/Y9wSBQgqgjMngDUt70mGAG+8JCj904qrhJwvn+U63Fxxcd1olfSHwMxcLvBgL7qvHhOvIYKFoDYFnx/V9r8IMRzz09efTx3z5XcMVsyUwhru7XBIuJDw1E4oxEThlLSW1inG/oxGzGMp5pXX3E+ysFHnn8knVCsh6zqMEhbKOuQbo60c+8CaKSUJgnt7rXVSsJMsYzRdD2JaqNQVTVDH65XEle3NMr4NL5wH6HoVWOUIogDPso2yBhYZysiiqvwofyiFNYJZSCowgr3ty3jY4sxdpa29f79pYkm1rlMtWKLphd+EkUoFa2wIqzpOkRSHItRkgOaws2hlaul1EnPlUYMeIzVBhWKBCcZVhoYNRuOiQPdZymoUGbXqLR6yQpBaV/L3ooNzx4sIxDq6nthJ1EZTkaYLTMmu2MsbymWN+eYzu+nY9soq3FzUCQlyWgbTQKFI4nlyYN33L9G72bxcQNl1R49OJgfAeSSYGTDVJb/IaSORwk2W8LXWYbkBUXS4LwjjuSYCy5g6vGKrX5cMreFIVvvtfOyBS/4/AW4Ubjs5Uf7DzYUWlFOIYVmdl0LNeYoFgnpOkM54v3UWtPzrYcJVXd7RXUWEk8rzpL5Ezr0CD8qYSi8uV4gXZsg2pM2MwYZs2CE5miO1g7TKrFrG95vbwTGStSarIoJUPc3/DS2tICOoZ1kmKU5KMGVGhktoWv6g9tiTnokr0iaKhCy88+uQuxBRTr0hI5KA66TYZ28F0oJHAzC69tHn+DRZ/ZWPS0/xhJg1fygvHoee59WT2/7QiZs6BHuoKBQke2AYLTQfQafRzbwrAvdF/pcNfWgyXnyj603ILZjoChQdJsslPoXrh3v9YvJnLvnrC8v7eoXCb9aB420/lh9D6qBv/3eBT7GReBbq47ljtmCuVLmyZkQNOzEgGmixJv73WzHm4KzFNIkCHVe25+z4xTSZCK9h6xmDrahiEvUTEspUSoJ5XbLcC+DwgSfrQbaOFy1/oQvbxu+8zCgvBaq0IzgxFCGIkSLGil5WZAaDRRkWqq8eoCulbAMcW9byyhKR6iOKHSspXQtuq4B5GhVBCuDN407BKriQI1gWi9RyhDr3hnVRVFUlgAX1hOIOfXhN5z4f7XuRe+rmnXH4frO88+QMZkvxolhScMykU4x2V1L13aRQnHi936OJMI5T3wK1nVJtENbw7HXXcc39zmYaTeJjDicLnHO0hUf5JiEEuVhYeIFRsXDCycbXx53Y/sea9hsCZ8sfLzdgrtmFOWYJZs0rN4jwXSgHAXbANsQrnnV0UwXMFc6jrjofFzIiBPtI+bpaGRRAaKwuUZ3Fa4puDSQ3ojPmde515BVXYtagDMGFcBqm+qfIL2FoBLjKcd8ZKs0XGUVkFzTmWqgFvlAuNZWs3R/O15F3bslRUXikgoq96mGAK6poQxFRxKHlLpyGwA1H/VA+01UQcNzxGh3q/oeqvLZZ87XFFhII48HDpKd6r/Hgp03SPZRylKBBCPZ912XmoVC+rXZegR9zEyIx6jaMTUBr2pP3B7Pj+Rf77/4jpMo/IQfN0DAtcef1x0LuRMj2deuUfV9XbisfqQnHcQCQ3F7FMDqAkjol0/8+ZHcNVMgsfi+jnnsAUXpyXnhJjKRwV9f/jW09SV7/+Pwl3PzZF7V798YVFSzmxmqmUFpkU6OtLuozGv9aK/haixGeXKOMQOROKK27wksvqRA4opAZllFkr4OfW3NCqJwEavVRSuB/90obxFYNNpgZs4x1hyncIIixYqv2ubXI+iRvbc4+JYkWrEoMzhRZHorSoGp3DKZ+1701QA9GYs4pHqyAuUHPb5aYBvCMsC959ZAFG4U4qwXDkIsg0/380JMd32J7Tqy0ZS0aRALxaxf2yEdMRiTMp23wBVsOSFkyX1M5dPefZELJ/7w55XAML50jFXX/qjvm/nz//pPLj3wYOycpdOYo0hycpejiDULYhbFI49Nl9Yd+vAjNlvCV0qhmhl2/SxFM+XcQ4/iFV//KuUoqAJMV+ESsIssz/nquZg5jckVtDxBSSrQCFWUZ5LgRxXsRIkrNOlag3KQL3GombDqVsi136h2WsP8qPLY+N5+HUrmVh9L4gvuSOZ8LXwNplFSloYsK2k1Cvba92au/a9dSeY0riG4VkjxCxkC2aShu6JETYfXp4Fx560X485bDrRAx0DD+gBBq7z5vqtRTetdB8GSoFolUpiw6FlPcxftl3mlG0u+SVQwe4QEDKbp9XVOjYCqvxcSEIBYh75HVKqnpQ9KV1K7bi3YTmqmb0l6Vo0YQFkvkOPrItQEgtj+agzUniu+3+qYnjQYCzBFIbFyRQzWEVC1tRdqhC5G0PVj+yIca11X1YFQA4IPfQIq4o+N9//iy4/knpmCdTM5aIVOFCakLcbHdaV4Qjb9QoAGxjPNkkxz1MVfRgl859hV3DGjWN2JGvcDn9irXP008Sl8ziHdAplpgzGoRko20gkBZylCWEJaaQx++WqjTPC9+2A4p7qhYI9viQnuAEGHRZA0Vgxa9aLNY46/T//zQX7WjVA4IdG+sFemE8QacoGOnQNKbKjLr6P5Lqb7qZhj7yPqNYqmGSdVitFUmC0NebQ8olBkqBB0pyvfva4Nt36hppfG51+8xOcIxxuVQViJMdMZ69bNolDMrunSGGnQne2Q5zlaJzSaLaam19IanWVkJGV0yRKmymkUisSmHPfD/wHC92EVq679UTWWet+6cNjV3+G/Dz+Wu+65l5FllvXFJArvw0+0waiUTD/yFFOIwWy00t4fQux4dGCzJXwAtKqk9JluibL4xWy0UI4IbmmBWZNi5hTonk9eFYqRHWaYXd9kZKKDu20R+VLBTWVkaw3FhMM9fg5XavT9DVzD9bRixbzpayEtfx7qpBD+VeDJ2tJLr4vzeFdjdQpKSH47Qr5Th3w6o9Mq+cHtT8LkCpf52vq0StT6FEkEXSjyrQtfsa/heoQ6k1IuspCKJ2iApkVKjRktsHNpqCEgXgByCrW0i7MaWZ8hLVtpxSr4y1Uaro/2woAN2+vabJQA+h661lnBktF78IGPb7BfVW9a61N3K3NL7e9Aun3vpxZPMKAA9prUR/qBrpzydQlCzIEXBlSv8FBsh6JnZne1MRMFj3CzyOeKXuOi5ag6NwoGNeGpumC9/wa7ra7tRzgfOS+Bg0TBV1a9nLtnCu6Y7KA1NJuWv7n80qq/Pn7YS+hYhbMKSgupz58eS339/Fdf8RV0+ObEcyvOgJOUV17xpZ4A5eCzL3gZk7nGPgjzqVLKk/yI8QlmhaWcnmNGWpStFs1klpaZ9JHqMbo8xHb44DUfnZ+qjEQMhYuFaPxiPQaNX6rWoYLZX6NJVUqJCtYDX39fQgqb0coXn1GKkVbGmun1zNChLQ6lOoANdfzDCoqSgDJAO7x7n8/eMg0eNzaO1+p9Xr03qRtKaVG4EVI9g1G+xG/hckrnV+r08QnOpxGiQ9yCxsdH+hJJkfCj0JFoaJoxHELpSrZ+3Bbk0yWjY6MUtmC8Oc7cVE6hNY1mE6MKOm6adjHHnJ3yQkehOP6710MY+z0LYByT0gtODv/u/fXzuOiZf0a3aJMpn7bowmA12oTMgEcWmy68M9TwIzZvwg+5vq50dAvF+Ue9nO1GU/Y950u4MYsUvpCOy+j5QZuO0RWzPje9VZLnCXZpMKFbKJaXqFaJMQ67ttHT/mCj5ueFgvXCrl4KVi1S36XBphoFiVBlTwg+6sz5Aj0tS3epw9zjqwi6WUMypynHQ8RwK0j4TuEyi3MGNWMCGXn3gI85EFSu0R3tgwO7Gjp+PQA3naGqgjteOJLUIdOZb1/qqjQ1X5tfPLlPp2gLdsz2CKdOWrHPBoin2l3X9uuRbPXAvUozH+j7wTr59XOCtaMvQK2m3Q6+J+8vDzvsAimCEq434D7oBdvFLeHZYkxB3G5qbRzAoHGiEkjqGvpAXf3qnEFXwUJEHzX6eIyGa172Yg74+teZac8y0dC8/jvfnGfFOOfFK5ktvctelZZGZhhtJpx01flVH6nQ1xJd4uFZD77wSzULh9930hUXgRI+8NxVA6Tfa3yiYDT1deZT1Ss5c8Kl5wNw4UuO4dfOYWe72EaDRJUkSvkytCgKCvySwlHL7gRzvY+wF2xV7dEvS2xJtRe6GsbgQ8g0DdPE2pTSOTI1BxQY1aFh2iFlzRvPtVbYpM3s1DpUo4FT3aBbe4nQl8fNEcrKWiIhp97pFPB+/lRDXHJWKe2XDFI50KGZNNFocnyanUhBKaFUjPQyC/xU7QvzqBgKp7zur1VKwzQYSVt0yjYj2QiSGmwr8S/HWZzWtCZgUZrQbDSY7M7hioLEKJ+d4OD47/2sz/JUoQocVr34oDh+haqKpVtnoKvITCPUnHAktOZ9Ew83LBtf895ucM9jD5s14SulUMYg1mLF0C6FZ533RYzT6BmD2rqDbXvS13kIdLOKudvHkUxYtO161t+5CO0UbjLzpKkE5hJKLb5+/vpkHknMm6RrG+f57aHSCGONda8NxYvGf6kK7wCeNBJfN18J2BUFBCK3I45kxvjrzfqZ1jXEl88N+f+ig/ZfKq+RK8CEaaXUnsArkgas9opIy8J00vONp1EtDIF7UcMPgX7OKFRHzyea2AeV33tACJh3YL+W3NfH9d/jZBN/lOr546lt18GwWRcCwkQkKmjn1r+HStOvZzzE9xBWLlRRGFIDboWBSDoBn2kRt8eUuw2sYxBjNeZp7VW76evb6rBYARF6hLuhtsX5OfTNAV//OkrghG9f0qu7ENosRkDDiRf7xXf+4/ADeOV/XlMTuOYLGX3pp7Xlop3xVR2roFenePy44d62N4vnTsitkCjH4kbKKy75SnXNvjES/m4aaLQybFmSzE7REkviWuRSkizyvv2o7folcnuFaYwyKBJElSEgzneej1T3EfmJThhJRmiYFhMi3Ne+l67roNFhOdgYEOdN/R3bJifHJSXSdajMobQnXN/nZSik5KP/tVLhb03uLKu7qxlLxihcQelssCgIqSkBH3lvVErHtrHOuySMNqE6nn+xGkXpLEZ3qvLDsUhQbPdoMooOEkeiR7CuiVIOJ3MI0DSG0nVoNUdoJQ1yl1OG1Dkblgsu8yDUxwqhtW8lCqIxi6c+lpXz1QsbyQTlqKWrcmxpSZOUbqfEmpJHGoVLMG7DVBaDuIfYzAkfqAadBpakQQu10FyvmMsapLOaYmkJyhMk0RybK6anWmy902rWzYyQdxLsXIpu+o80bZZ01zX6eWhgXIgOJqwFI71ryppQFeqpzPaRfIKLIZr0q2NreeOSCsz6FD5ZXPhFeKJC2hQk88F6YsRP3GUI/OtqZHHh09Ymw0pbTYeqgg/BjQS/5ZzxBXPKxAsoMfCsVEgs+qPwC/dQf4bBTok7Y78toFIPaO+1g3u/OvpdHJFD+3zZ4eB5aWlheySp0E4xPSKvE6c/3o8N77rpXUPiZKbAJX4Ro75SybWmx/Z6Q4X0t3uA0yuL0MCGXkqf9LSmSripHarpdz3U5QXVf8151w0HVSWWgxAnQSNE9VIDX3npNb4rbf+1e8KY1N5Nv+anJX4jvRNf9o2v+L+d4tpXHEfhhOee96WqHb6tzLfoAC+68Dy+f9RxPOeqC/j2nx/BC77xNUTBl559AEY5tErp2jmsOFLtA+NKydCUpFqRKOOHtCsD0TUr95ATS+ksXdv12r9YHI5UZ2gMqW4iMsZ0Yelav6TvbLmGdjmLTkJFvlyDcThtQbma1h5dDJ7s/bLesLp9H2v1akQkuBtsiKb3xwlCbouKfHWop6+Uz6KI9fQI7Y+lhxPtS/OmOmVxYylWHIVzOBoUzqGYRaRL6YpQpjgJkfOO2WK2eg9puE6RF7gpPNlDEJ5rUpmDelzHYICqRvuUxFaHIp2jdCWl0iTNBnL/hjXvhwu+QPGG7yMb2fdYw+ZP+OLHWlE61s3kfP2QI30UbaIQlXPI5y8mmUywIw6ZKJDc0LjXIAak3eK+e5roroJRRzarKRb5l9/JNSoNZm7b89rXtScVbaWDqr8ob26Lc6v2E6qZ05RLyr7FZnRH41rWR0TXJrpIJiqQrl6c4yYzpGtIZjW6gHypxUwZX3s/EnShcSPWt7nh/Gp5SW9Iq0JXBKIEzHTSXyRGCVXKqsa7NIz0SuTW0++qvgj/utp5kaDi2gK1zpOazFBfGa9PA4f+uvRR4FpIcKj3fX1FPFU7Lpga+8zw1XvzB1XXV1JZSbwGrvrvXyfOePvwzBL6DPBllGtDYnAirLd/0P1QPdMAKrdCrQ2D9SDi9XrP2s/SVYAiVK6HnjCFj1vQMk+I2KDrAaogwBiQGAWwPhOw7gUtKi3s98UvUbdKVALDwFioP+/+X/kSaHj+xV8DBdcefRy33X4vM7MzdNQ41k1gEiHRjkR3SBTkLsM6MFpQZH7VOSVVcJ5SGicJXQuFa6PULIlKyLRfprawhplSUVjL3XPTFE6BMixvthhJFA6LJAU2ddjSxxKIVcF8r0LZW4szPi0OypBv7z8EX9BHwkI+KUY3EKsR6YaFegSlTFi4Rsh0A1EuLLpjwrAREuUtFK1kBCslTTOKdaPc27ZMZMKSBqS6TW6FQhStZIRUJzgRSldQuDaJTkhVRqozn5oJvPK6n4a1IvzLUIm3olTfkKYXx0Lvu62/O6UUzrlqtUMUZK7BXLeYN8Yfbgwr7T1wbPaErxopbrJL2UjpKMdx11xQmbCTdQnlIhc0BoF2gioVjTVgWz5tL9+5i1uboazCNoVsraEcD7K5VXWFqO/feXHHA47fumCQTil0CS6FZDLx6XfRFy6qN4kPTtw6aOwpuK7xaXelwraCBcApdKEoRl1FrkpAtY0P2CsVruXQ7QGtPJEeGbHwUrNRC5NEkLSM9Ue8FhOXta1sxfQm/0GOUrV9NbfHPC20InPpJ9466tr7A8E8C4LfVkXCD6as1UhMtPTSE+vNXCjjoHav6LbumXZq11S1blO1dlTSJD2haaHgNhkg1fr2AQtCda9owagfXyPzepEgl/S7pCpBod6FUmvjQNukZpWqlwaOD121uy64RcG51vj464+OOZ675yxzZcFx37qgFyQpcezCfl/21oFPPuPPOPkn3+YLB6zk/ilLMTaCUqNxiYGgGeNN5rpEK0fLlCGq34V15XPfPFEonaKVD/RTqkRLzkiaV8vYKgwt4x84t357KQXa+EBAJRaHkCjj8/wlwVrBFhYShyhble2NhO4zCBTOCb7IToqIryzo8+N952c6wei0V/dfQou0YTydoJX45XO7pabrCrZoKUZThVGCD2RUjKpRRByz5RwxBNZFwRdFZjIER17kXvhzqvq3bwzFqSDGKdWE3NDwYDlo05WuTyNU+AV0soTG4j9MlL7eaJT+QgP6sYnNnvDrnFO4GRqLurhfj5HOQHe5kMxoXBYmsq4imVPki/3qerqraPyqSb7I+7tVqShjWdtE9V17cILt/V4rHRuD2uIpAjoHXYCyYEe9Wdm0NXbcB85Jw/VM0mGdewhaWOIvphsWN5P6fYG7bQPSdQbTATersSOuqvSGwS9Hq7wFQcZLX7UvTsIhqlrXossrwoizY72YTScULkhcrx/6rBkD/aJqf9f7rW5iHjy2fv4g2Q0eW0WM1Y6va9+DRFwnGnq/R02zUjv77kGYxKSn9S70nHXNX6jiRGIzRdGzaNTOn+ciqiZSepaFwX11oSJMzn0m/bpQUT1f7cZhpwy+E1W7rurfVe/H6I+vW15iM/qCFNXAObEGbl/fDdSxUMLXXnIUk13hpMu+wqdf+HL+Z02X2UJwCGc8dxWJhjde/VW+svLl3N12ZDrSk/fDnnnokbzi8q/ysb2fS6Jz0E2M7uLD/0ZJtCJRbQrXQCmLVrA+T7GicdIIxF+SaBhJUsbSOZzMYJ2PBci0wYqQ2y5KQdcmoUysDoKAgFJVtT+NxkoZSuRqGo0GSdlECoNSjrKw6NRR6C4uD1UamxqlQYu3BojypnYdVu+z0qUMRYasK0l0SqYaWCkZT8cZTUexIswWJYl2LG96s3zXdVEk5K5AxJEmKR2bU9iCQvxyv6V4Rcdr+963bsteSJvE7ySM9SgQ6rbuc8H03qnvkrIs6JZz6EQjeHdGokfp3mPprnnkffjDwjsPHI8Cwg/yqYBWCeOXjZEvAvXcdSzKCu67ZXnwb4MkQjnqCbgcczQ6Pte+eb+iu8z7w3WhsFltEjWCznUv4K6nmBBv3KdZhQlRCahcYdreV1qOgqSA8gV9KnIKdfRRQXBwCsZKpOw9l+skPnjOho9NCzQtpUsox+idFwIBdVsjuYJMkIng808Euj3fvs//d5UVo2/Mi69jIBrsiFRam8p1z1wtDKTXqf5qeoPEW99eO6U/AEz6Ne7BA+vSV73oTp2kB++9AaJBVM8kGfdFrUVRFSVSZb1j6GmyodPqvuyK2AeEvnnPHzQhZalIuu+QQbP9BoTNeYGAUnuG0LZKeKixq1e4e+eKolrmuSpoJKqX6RC7ycT7Mr/P6fVb36ur9W/U0HurLSrOOfzlGAWvuPR8fjfr6Fjh9INWsbZrMUpoJkKnDOFoovj8oUcBQsuU5M7SsVlvwrbCP+//YqZm26gZg26mJInB6BIVctYTU9IwYKWgdIqGKZkrm+SuGVqcAYqpHJY1FUsaOaGqPqWTqoiNUSlKpUBBFQOuvIQlTuNQaJXjF7sRUmX8ErE6p9FskckYogRbWrKkwW/vuAOTGO6fnaTZaDI6McL09AxaQ6fbZfGixRR5QXNpRjJuEEqM9iVsJ7IJUp2G+gNgXUJDK9KoPACZTmlbv5KgAzq2U9UaKGyBUU0UFiclHVd6gdLC8T/9L5RWXrMX5a1+jt4aIDH2o56HX1lt/FiZ65TYUYvRDpTPGtDKopcpsuZwtbzNCZs/4YMvBiKCE8OafUpadyTIdUuYelyBKZQnWquQUYs4hRsVdNvX4F/+7Hu56xcryNZpzONmKe8c9eRY9gihCrgbmNyA3lrytYkcqFKmXBoq/o24/qC8GBjnQJrR7O4/GJ1ZnDJIrv32MJGmM5pykfV+/0L3r+iWeCKPJXDjAj9Sami4XrBdiPp3i0KFvvo67PSesVhWojpB0BkvkBkfC2BGQs4+0hf5Pk+rrmvDsX/q/vo62UfNNEak19EXHzFwj8G/57WhproOYJ6Jvu+eVKl9gz73KuK8Oj9quQMCgPQ0HTXQT96VEC4ZnzkG4YVtg75rXxq3d8+4auK8uIAoeKlgho39EPs5CgA1oaKyNoTaLtUSvVEYCW3o686av73PKrBQJkNNgFMClx11DL9cX1A4YXXHMpIo/vXAVXTmleQTjCpxZGgUb7rmq30fYey7s15wJNNFrNOfoNIxpFtgZ7o4DarZgMTQsTBTNGmanKYpg2/X+/h7Da1eH+u6Bq1GaeoCo0sEi9EGG1aD1Pjo/1JK34/eNAbYqqa+94X5aHkrPhPAaTCJMJq0mJ3rUrqUpYuWU9qc8ZEJUEJRlNjCMjo2QaZbGDJECUuzpaQqxTnBaEPaSGmYFKMSNIpOXtItcu696w7GxsZAFOPjo6CE6c40zvomaa2ZmZqlNdFElynt2TbN5YbcFWS6SdEpOPa/rwXARaE3Cm7xG6hSdeOaGf3vL1oMX/E/PwbgnGfshVlaYJOCLhkm65J3Z3mkUTiNdhsm9WIj+x5reHQQvvOSY6IVes6vG59NQT7ZWw5WEiqTuR4rcA2NA+789RahiA3kk00Y9SasqNn1Tb51VBN4GNW1/HPlVLX6nG2Jz7k3PhpfJrx5HTzhq9y3GQFJ/Op5bm0DXfTIPAbVleO1xijxrgqremkyob0ukIwQSgc3XZ/f1RlgNvHuBO2JxDWkl5Cq8Gb/UMjHWY1Z0kUpQRvBrc/6NbyQolcn2UEyRyT4c/v7ry9gMGruDGj/g+Qetd5ILIN1Egb87oN+9PrtFrJC1NskulZoJ5L4QK2BullaiBo0FelXwkDoX2V7RCr1/qhIufe3qk229YBAUT5y3hl6hCo1a020+sQGhjFSPf5AvEjU2nWJ/1Z0TZil9iy1/o1xJPM/j5p1oZKM/FHfP+44bljdod0uSLXfO11AVca3Wu3NB1NNF17jNgp0ofsEjyj4/PV3fDrffxxyFOtzS241rtVAmhnkJa7d9e1vZrgsoZQms2UTrbwVYUOFV6wo1nZGmMhyRpIuDQ0KCxRYZ7H0lucVvOtBS3iUIOU651Aq8QWB6FC6BMhCZT7xGTglLFuxJUb5ysVzeZc7f3cHebvNNk/YhfGJUQoKGknmeVYErKbdzsmtout8jf6GcnSnZ8iMYu3qSVbfv5as0SBdnVKWBVkzZW62TZqlNJtN7r3nPpYuW8qaNWtojTXZcukSSltiXZfOvV3Eec1exfEjoFIbqm6GdN+Bb7NvjNRchUpghIy27Xp3I22sgHOPfBa8bKLwjgyD9io8Ogi/GnQF6bSidb9fNEfHnGADYlxFji4U1InFVFwmpFOKxr0J+XZ+KU2KYL5aiOxrqLSdQP5igu9ceWKoCuwokIkSsQqzOPc+eUAvzuH+Jm5xAbMh3c5Iz3wa0vZ0rrCjnrWdAd3VvWV701CON4xb0w5WjfjxzfTMZlXKkwnCgBZUqaEIRNd0vjiJ9fn1LhPoGF8PXRQqs6iJAtdOfM71IPnVtdCgtVdyUa0ve9qp6ttW9Wl8r4PveEAjV4NaeO0C1TrqUYuuCHjg+jXiVYMTWE0T7yP9oBpHU3il3UctKFoI6PVDvGcvYK72+ANzTtS4eyvoUVXIG2xz3ScjRqpFjjA10o/n1KPnqxfT2+9S+lF7nr7YAi19wshgrISYBQQEJfxqXZeZdsF4M8FpxVwpYAVK54XCLAjpoUEKYUmm+MvLvtp76D6fQa/tr7r8fFDwtcOO4fbZ0kfTN1J/zdLipubQ4yOQJQiEJXiFTIecc5cE826vk0sR1ueLKF2XiWyOVOcISViYxmvZIhk2LMHrlEVJTLGTYLwRLAajNFYKCltinaFTdqsXn+g5ljUXo7UiSZs0d9iJzopZxhY1SRONOINWiq7Nycuchhoh0SnoBJTGACMJLN1iKQoY32cvxPnUwrl8DqcdVhztYg6jMkabI2y17XIcjsVbjdKZ6uLWQepaHH3TD/3YNvg5UIJJPwoAcdXMulAeBdhqcNELAA7CX5KlGOfL3Crl6wTETIVHEha1icI7m5jkH0PY/Ak/Tkjgl4S0sG4PSzJtPFnpnhaoBFzTV57TDYvM+QIzuqvo7NyFucRX54vS66ZuHTWg0AYd1qiXpl8fO0a5q5gbbxUqEexsikoEnVrsXEpjRlGYxBcHCu4EFF4Dtz4PXsVI+9JH5kcNzS+Y45lAuZhrTo/cpDdRR9JVDk/ywewr2rsAVKmQrq6CCjGC7mpcI7BVR/c+aCUwZr2GN51UGmjPNRBINyEUdqG3MxKgqBA0R5W66Duy5neOBB9TyQYC2PqIJlobpGf+7kN8VwPkRHyNNUKsiCv6JBcSKlRNCAhChaq1cUOlewe3VdHnA2SudK8f+y0csY/p/yVo9brTWyfA1zsPk64Lmmdd7QrCxEJrCdQftfo3WCokauI1l1CM54oBo73m9q63eiZny4kGJ3zzq5xxyBFecNJ40tdem0yUpZSURZmia+EvL/tqEAYHAg7js9dXNwSO+NZ5fP4FR3NPO1jrwop8KkuQovCL8cTTBbQumMgmaZeLmS5G5r0sK4rZskGqc0gcpWsiJGg1Q7ecw2HCWvZUA0JC7X4/hToESykqFNCRsGpc6rVnFFoyZos2rXQEKznJiGbZ+DJfyjf453NXUpQWsYqZoqRbCA1lGUk1mgJrYdZCqhqIaEQZnBQ4XdIpO3RcByFBaY04RzNr0LUdSptz/E0/obIEif9epewJ9ErRH79joyCqFp5v6uMpYNnSZZhJgy1hfaYYHdHh+R9ZONl4YN6w7k4Pmz/huxgIAs1UKCaEbJ3xmsqKDqxu+Im49BOVtoakrQCvyuTLS8gNel3m8+HBF8KpaWLzECfkWqER7zf3GpaeMbiWQ7JQ5CZXkAh61iATJapUJGsTVFCnignX0/ycT+HTpaII6XONtZpyRNC5qiL6q/k6bFMOxATiiEtzOZ+WF6vF1QPRXCJI03r3Q0eju6Gin6ZK/2PMwhq/T0pfW1+cQq3NfExCoTGtEiGpluh1+LZUxWl01I79ZCK1hWr8OXWVl36yiUKDom/Rtj7fei04jZpVof6uqmvUhJJ5PvL68XWtWwAR756U2tK8Nc25rulUbZXes/e1x/XGVlj8rIoJGNT4JT5rdaP+f1V9W7x21MRrFe/qlipVgA8Q9f/2hK/QLxKu7PD1F+pWgFhS1/b6pio2FH830t+3Aj867njumiu4fbrkjVdeCAIfP2wV00W4YVH6OByt0Qoyk7I81SxpKO6cCwJX4E+lxLsx6GmOVZ+E+333Zcdz0/qcPoQy3NLxgXRxQAmKjh0hKTRLm74OftcmlH0mKV+jf6YYQaucTM/5QjfSwqgS7wvzL94oHSL3o32pDCvyhdQ7ZVB4s5evvOcfJDMpqcnolj4DoLQ+At+QYq1lanqW9qzjRd+/1H/Pdcta2hsE0bWknPILY4X30BzNsVZTdBK0CZZCq6HUXhFJwzgJSkmFKJCHcaQK1T/mau85vhQV5prBOfS5l1yEcvCfLzuS++9czwwjTLU3rVj9vig3kZZXbmTfYw2bv3OjtGC098fpnJG7FIt+LZSjDlnTwCXitfpgJvf58H5xHRyo3K84l0wraNlezvqGEAb3YD50Fa0aXASqUH5xGfAHWq/5q2mvybtMcIlgm/7j7OXi+8p5xWKLzhWmqyhCLQHEa27OgIxZb8EIqFddQ/fI3VsLer5+Vfh76ZgdkPvnjZqaLoLEbhVSKuy4xY1YJHO4qQyZTXFNV93KdU1FtnEN9P7+El8dMJC7ciChX6KlQdna8/cRu6r6uiK+OtnXyTr0cX+Ee2+X7yPp/VsLIov3r7SSOsnGWggh1TFOaJUroabdV+RX19aJloNaO1QUgoKgGOebSksaeM7aO43GlThmVLD46PBe60GIVdcEM7//obICecGsd5++6PvQ/5Wfthax75Ja/0bNPmTB9AnJoW9vnS743azjjd++ELTwHy95OTOR7EvryTf48P/2P7/GKVdewKsu/iqZgZMv+0rvPQTNMhSy6wkjsTJlwAFf+yInf+crJPjXlooiVQqTGIwTUhQNFIlSGMCg6JQtuoVjWWOaxY0yZOX2+jLTltG0BMZxTJCZkkR3KtO0Vn6p2p4ZPwThhop5AiAOrfzKdYlqIBgf84HBOktuHZAykoyS6YxO2WHd+mn2Ov98DrzsYk/2YSzELIdK8IyBuvUYmNpYKPIEG4puudLgcoMUuhecDCE2xb93KRV0DBItk7GUcxx7C1QYrY/zvvEe56MwVp77ja+SakU+08Y6HnFYUZv8eTD4p3/6J/bZZx/Gx8dZsWIFL33pS7nlllv6jul0OpxyyiksW7aMsbExVq1axb333tt3zO23387KlSsZGRlhxYoVvOUtb6Es+9MUr776avbaay8ajQa77LIL55xzzkPqgweKzZ/wnYRa2KCVMLe1sPbJXkN2I5ZkxmDmdEUE5bjzhWsU5Cu8ti2pkMyBXuujdQdJS4xU/vJqMMfgqUistROVw5vnuyF/fbyEEdvTsp3CTpTYMeer4sV3rPGmMus1LKyPAVCFFyaSaYVkPt+erg5+fetJJly3PunHsqZVNH9NGxItVXpe3X0hJlgqmsFcHzW2zLtC1GjhXSKjRU+gaXk2iBO+6N4PomAqRc2Gvmj6lcokc4HwXOjDMKHHiSQSTewPoKorH4kpTPh9/vcFfpTQ7/uvxw2EvoukWL3LGIhIvFdk2rC7CpaLz+r7t7rWgIm+al88LhJw/QurCQ3Vl6fj8/b85z6mA3Q3BALGOIOyNnbrwk5dWQ3tkqQ3lhdEOCcKN/O+iSjcGELMifQLbnhiuPKYY5jMHW+44gIAvnnEMdzXtj0qtc5HqinFW665oNYPwiFfPb/PbdFzkdQm6OAuq76ZiowgKUHmLJ3pHDdXYpxCpynFXInrWEzXkRSgu4LqCjPTLUZ0k61awk7jip0nFE0DCkXuDJqEncZTthsdZ1E2QdMspmnGaSVjNJNREtUk0QmJbtBMRkh1k0w3SHVGqlNaySgN0wiL++SI5F4A0A20ygLxlL5WvlO01xa84FuX+ecqtBfOXS0zJ3ZirqHt8/e9EKir4FIpNNI1lHOJ1+jxZC6lRrV9sDCB3CEYPoyr5qpqDYnat1l1f/27jWOmsvoMCJ4qCISZ8KUDX8KaqZwscyT6kWf8uFrexn4eDK655hpOOeUUfvSjH3HllVdSFAWHHHIIs7O9jIM3velNfPOb3+QrX/kK11xzDXfddRdHHHFEtd9ay8qVK8nznGuvvZbPfe5znHPOObzjHe+ojrn11ltZuXIlBx10ENdffz1vfOMbec1rXsPll1/++3fKBrDZm/RjLmmiFFZKxIBbWjAy0aZz+ziuEQgrpI8wUtL8VYNiQnCLHC5Ivd2lvfrhgwJfNJO6luv596X2EUA10UVJ2GWC7gS7bJ70mbfEiC/3O2a9b7+mvaEVruG8id0Fzgrj0TWivz5o+I0gkMcFLVRtPfVYZa9b+0Dj9xnL9gZ/L8rXJkjmoLPCp+zpxIWKY4K0k2D2c96kX2hkrlFV7PMXmy/49F5SaINV1XE6XIuO6ZFOjCyX+BJqhFtdi962aC5XvcPrCn/t9pUrpE9tHjx4Xl57fGHzN/e7BaRm/qdWyjYQYuz3eEx43r6SuLVnGDSR9jUxWmCCLz0GilbLpUttHEiMH6cnTAj0yj4HjS7m3ceHCv0ahYJKYHG9JlXCwoAwUz9etDCSKF57+VerwNbbZ0qq7Dtf77bXsbGiW40Dotnej1vVE24iz9SLHNF7X1859BjualuMMRiV+GfWnuzSBCTR/tPVfhGlsUyxw1jKRCPFYbHSIVEpizLD6k6X3GWMJAmpcRS2QMhY221i1Dg7jfu69l0LYEPRmxIxBbltk2i/TG+iUpTyOfCJ8mYSX/3PBxGmugQMs50u+XrhJdde1RsP0cIRh2wSBPhSee3eiNfoE3xpAAHJDaphYS5BNb1WoRKHLcJ81LR+PhkvkVz787X4VN4YG2F1EKSoiL/+vcZ03+8edSzP/fK5RB9+HLD/+fKjOfDC8/jCIUcxOVfSnm5z+z1TkKZ0zDi5neaRhkVTbqy07oPUay+77LK+v8855xxWrFjBddddxwEHHMD69ev5zGc+w5e+9CUOPvhgAM4++2x22203fvSjH/HsZz+bK664gptuuolvf/vbbLnlluy55568973v5a1vfSvvete7yLKMs846i5122ol/+7d/A2C33Xbj+9//Ph/84Ac59NBDH2QvPDBs3oQvQoi6AZVzzDU/hIZBacfc/aPo6DOWQJYdBV1Dd7e2N2lZ5VPymtIXVVz5ZOPvwW8VzeExIEqVque7T12VUx9N+7RKsBo9barJtppT0yAQhMA+As+hvK/eNRxKh+j8pr+fC4WBAKSt0YXGNR06194nbwRR3uSJAj2nvak9ThTGP1Ay5wlYUi/EiAqlhpuq0iZEQTpSYEuNCotmSKFQWkHD4pLgGsgVblEJ7WCX7tOkw7/BpyhWQdv4PsuN1yYGJvheZHs4OZLUgBAWzcWVD7qm0ar68VFmCBpPXwRxncgVvn0D5vi+dkn/eT1tuqLVniAYDwhEVxFhXWBRUh1eXcup2gpzteYFIUii9i8y3wRfe16pk0Tsr/rzhglZlSA6ShMDF6tlKFQxCVLb5oJAE+rXVumMsf8V7Hv+F/2qluFZ5iLb+woxkBr6AzQGn2dgfAy+5/q7UL2fNkJOfJfhX+f8SvHtLnpRmNrEMdGAXRYZFmU+e366WM+cnSPTDZRSLGkUZFowytAtuzTMKFOFRuFoGEtmUhIFTePr5zeN0DAKh/Olb5WEqnsWK76OfsM0aehG5b1xTlGWlpmpnJdcc0XvWU1vDBE1+yhcBzeKigW5lHhtP0wyqlFCqdHjeVUS17aT3vFafMpux6/CiXbQ1ahm8O91dE3Q6M1TsXZHrOnxg2OP5/+mCkTBFUcewwsu+hKI4rOHruIXq3POeNZLuHuyg1iHbed+hVPnsJ0cN9PZ8Lt/mPBIV9pbv349AEuXLgXguuuuoygKnv/851fH7Lrrruywww788Ic/5NnPfjY//OEPecpTnsKWW25ZHXPooYfy2te+lp///Oc8/elP54c//GHfNeIxb3zjG3+v9m4MmzXhC3gfYCNFqRKzJvX+89UNZEmBE3y6moJ0rfGV9GYMzBhfxl77qH3d6UWiL1Q/n6h9i+qbtCWtFRgpVWUmr0xYNulpezWy74torufaB+EiCgOS+Fx7HTQ5l4Wcfqc8yWfB9BZ80rqIBTB8kFPdN1xNDPgiQPXnUwPPo+cMziqKWGEw8YuBxDKtseqWyjV2zJcI7pnQaxdVvW1xZUGxtbxtp/q0fn9er8/7aucreib9+Fj1oh81gq/6Fnraa9WcXvrcvPdcOanD3zF4qYolUBusy7BQ3XlRtWvUbxH7Q/qPHTTH+7x9VVkJqvNVP/n2CRNRKFGVCDK/rTV/LITc+xiEV+vvuiZfLY5TFzIq14pvVN/xoS0xd773oOGfEBodl69tmp5rqf+5/LWr/orvoibL9FschE8//yjua9v+G6JAKVSa4NpxQRrvx99+LGE8EwrJSVRKalJG1CggpDoF08RKiZWCZjJCU2csbVgWZyBYFJq5MsFKScM4Uq2wkjBbKppGkfgPB43BSYNMj+BE0baaudIxU4Dp5Lz82ot6ZBybHa0auvc41fLL9GQl5ajqe4DycYQd4wN3takK5aj4PsJ3IdaPF932dUl8LY6wzHYoN15lyNTGT1Vi2SnubpdMFZbPvPDl/G625JPPO5K8LFk9U+DyErEuZEpozNLx6jlEHJI/8ovnbMpsH/dNTU31bW80GjQajY1f2zne+MY3sv/++7PHHnsAcM8995BlGYsXL+47dsstt+See+6pjqmTfdwf923smKmpKdrtNq1Wa6NteyjYrAkfQJxDK8V41sB0FKYT6sR3M1yzN6vblp8hGmt9kR0xgPNBZ0kbusv6J5vB37FqXgSypGHWCbXpK7N+NK+XIUgmkz6i6COMMFGrUoVALK/8VIFWqUN1DCrUdNfBVG9bwbzvQBoOM2VwDU/6yYxfYMc1ernS9ZS32AiF9JFj9Nm5zCGpIx3PKaYagFRxAJVWXvjYB9XR3ocf2l/xfT3VrE5ywSdfuVlkoD+i6d0NTHT1FLdwvUGCrJvDK1N/YK5YC7+uFUaiHKyWWFkVam6aPg9DEBZF1y9EnyAxT6OndmiMfB4UciKZR4Kvn6v7O6q6R82VEH39ooJwIrU21t5JDGCNxF+t0KhqzxADuVJ/77iceP/yxL17RfeWjn0TrVY1webDh6wiL5wPpAMkS3xWB/CGb3+1r7+c8fcVAAmCHSw4Zuq/f/mwo/ndrK+TP5ooljQMWsHdc75sL8bEPC0wiiUNzYqmQSRHBRN7qjO0Mij8gjVKNHf97j6yLGPRRAJGI1JibYnSipmyjS0hbRhmOwWNZobSKUZ5M/9MoehYT/6NEMoyXQj3tx2zBRSzHVJbVt9Gn9XL0osfSoLZXuFTLE2UelQVsBpN/ZUVMrwbbRyuDC/RhhLbbROChB0u8/ci5N5XwlUNcVGyutB91THH8Kv1Ba4smSn8zsI6nPPvTkqLMho11vKn1a05IqixwTTIhx+laNRGCD+a+7fffvu+7e985zt517vetdFrn3LKKfzv//4v3//+93/vdm4O2LwJX/CSulZMZCNE06kufTnbZFZRjgIq+N8LRWeFXzTHdBR2RLAjDpN7iVYXulc4J2jVfaZl6tqE0Fs/3ROxVAJBiBcIk/tCtdX7VhajpyHaECeACoF/RajKl/qceNGBZI1UdfFpWaz1kdq25bAjoNva52OnPrjLpdLz8dZQETP0isgoUKngSl+TAKchFZRx0DXe5Jcpb/JLCKY/L6hUJFNJErH/pH8CGfBJ9qUZRdIfNFlL77iK7Gv92adI1v9WcbAMaOHxPS6EmqAxSC4VKYb+ippoJD8XtZ8Nqdg1waT+DPX+qcZMFHRqE+U8gWCwGFHcVxO+ejt6v0qMbo+EXSfc+OXXhZH4/CyQD19Lu5znpgE+fsDLKC3ksyUIJKlBJT5KvrQulJn25O9CFHq1II+i77p1YaoeIPbhA4/k9hlLouDxixJe8q1zq/Fy6WHHcfP6wstwRkFZgslwAlZKEq1RwTWjUKQqrkYnoLwmvHbNeu69ZzW2dIyPj9Fpd7DOkWQZU1MztEZHaBcli7bZjk4mFE77KHDn01WbBlINSxuarvWkX3YKXCdHLR7jUwcexV9e+dXai6TPfYhWNfeLQK4rAVIR+j4GjIoPuCVzXmArjF+lL2bGdHzArk+lrGkiuuaSFLylLVgdRMPVq45lrnTMFY772pb/vb9Dp3AocYj1grXrdFGpz/f3QYB6PtnjrTsq+wPU0n+AJv077riDiYmJavumtPtTTz2Viy++mO9+97tst9121fatttqKPM+ZnJzs0/Lvvfdettpqq+qY//qv/+q7Xozirx8zGNl/7733MjEx8Yho97C5E761KK1JtOKIC74GTe8bT6f9bG8z/ISd0DNhNRxlC1hvfOU6B92lfhaJqSM++Ej1TZDRDx3JRuhp9NGs6aOZe4Vsqn0Dk2n1Qc1TVUDH6ne58gGHWsDg/04E0l7NfNU2QSjIvGXA+OC7yt8WpHXX6H+O+i0rn2zQ4CXxD5c0vanNOXyGQWx45nyBosRVpKi7QcN1NS1eRdKqTSZ1Xqo0Unoacs1C0DMbh5Pq5t7Ba9WeI/Z1n3UmkkPVpl6T+toT21QRsD+oihHYkMZOTcuN5K97pDdY1GaetaC6Rr9A4Sf82j3r49KpvjK78/oiXrNaEdH/pycE9c6NdQMqMtW9fordDT0hqt7+ioyJz03Vrro1ZemilLvaluZY5iVD57AGjNZkSlfZJZUwEwWuMB6r+hMxBz+SVSUYehN9Qwtv+P5XelKBEigVy5qG5kzJrBNUmiB5iWpkflEeFDoEGXgtX/V+1+CwbLXtFhRlgRTQzJpoY7jn3vtoJyNMqQZ6PKdjLbabsyZPsHnee4kBbXxswdRM6E8Bme2gx1uIVvz1ty4gUGP1HcVVPBG8RS/60cvw/mPgXHQN1r4/Pe3rgcTOlFL16uC7MJ8k0lulc6T00fu1jAeA/3r58fxqqmR91/J/kzmzuSUvHVLVpxAvjChw7S6q6d+xOIdqZL7a4QagNha/8TDhgRL+xMREH+FvCCLC61//ei688EKuvvpqdtppp779e++9N2mactVVV7Fq1SoAbrnlFm6//Xb23XdfAPbdd1/e9773cd9997FixQoArrzySiYmJth9992rYy699NK+a1955ZXVNR4JbLaELyJIt0AlhpGk9zLHfquZ3VYqU2X0gbvS58FDmAPCIjR+3fhwckVUNU2rzsl1sqyTTkUmqu+cup+xz4wMPVNn/eA6N2a9SGtJnHcPJOKDalxvIgN6WqhQpRlWqXi11cvqEzeEST1O/NEfXlVl07j7G9DwWj3ghY3E+YC9sNJg5dqIq79BFczY/8L8feMqfZi4LWgjtW4AfABdvfNrsRCxj/tOqGmxfVwvtX11qN6zV52jpOe/j2bNgb6rxxLU4wQkbhfVNw56bF67bj2uIMzHVU68DiRfe9a+vgxtVro25uoxEPXnlQGC7hMyQixFRdaBnsJxC9Ui6ROWIiFvKBAhWHyikDRVOkrxLiEnDqyFRFOIN/EP1i7AMb808ALPVgVFGnj9NV/ptSNaGZR/sFR7k/pc4Z89LvRiw78KjdH+oZ24nuAYNP5GI0UljpGxUSDh9umCO12Tdq6xZYnkPj1WpSPBDx4/hoGxV19gRkCPtTBZSisJwnKoZaEK/1xkvfdWfd9RyIGeNSwKBzGtVbzykyzqUkw1UIlDxfoJpQrnS2/sKHzAX03gVQJYxX3tkjUzOZ3CMWMtYp2PwVD+eXzlPk/6eqzlqxr+AYj8gaJ0GrWRBXLKB7l4zimnnMKXvvQlvv71rzM+Pl753BctWkSr1WLRokX8xV/8BW9+85tZunQpExMTvP71r2fffffl2c9+NgCHHHIIu+++O6985Ss5/fTTueeee3j729/OKaecUlkWTj75ZD760Y9y2mmncdJJJ/Gd73yH888/n0suueQh9sSmsdkSPoVFlCIdbbJsJOXHJx7Lfmeeh0uo6s8DYAQ3UaLWp34cj1r0ZOL93Vt0ULe3sE3xde6d8iavUF4XaopMjXsiOcbtvR3hR/f84wyO+4H5sXcR5pFeNHHqKeO1925NQ4slPE1tktZhc9B+5gWlQUV0sf0uLqmb615tAQXlTIrKpPIpMlGQNktfqath0WMFNjeo9amvACiqUqgqgopE0+NiHxxpw4Rb7ZP+Poyb60F7YZ/aEAFU91I9Dbdm6h7sgz6CqZNDbE7w0fdbHaJwxDwhrUpbqj1D9XttwgaqinWxmI3OVdXGuIJiX7qh6p07T0PXPctTheg+iUJgPDeOae2JNz5HvS/qfDQvvqJqT40kBp9Nhfu4Xh9f/IIX87tOzqi1FHMzmNYYnW4brRo455DmqBdwy16bCWQTr9n37uvfUBjnVf0Jme9OQMFe536Brx5+NGvbJdLJ0YtCUJ6K69pJ5R5EgnsmPKSCUDtf0clzVueOW2csRTqKa3eRuQ7J4jHSTNMwfhGv2HEC5E7oWmFwMUAFtIzi1G9/tfdKQ/xrtJCZOe3dfHGMhn9dIlUGjiTS+0wEb30TBYlQdmpTeMjj7zPVxzGRiBcKuqZnURC4fNXR/GJNh06nxOUlKktQjRRlQjACKv4/PNTmQ/QR/lPbcLtkg3sWxplnngnAgQce2Lf97LPP5sQTTwTggx/8IFprVq1aRbfb5dBDD+XjH/94dawxhosvvpjXvva17LvvvoyOjnLCCSfwnve8pzpmp5124pJLLuFNb3oTH/rQh9huu+349Kc//Yil5MFmTPhSlKjRJmOZ5rjzLggSLXSW90gr+u1lNkG0YOY0ZeZw49ZnBbWTXhpwOwz0aNYfGAV9ZvBacZHo06w0NpkvJPSZ7x3VKnSVFhX21YPcRNHTBAmkoKVH6i5O+LVGxvlwYKYenLgr33PmXQfScDhcFejlI3P95OBNgoJan1IIPkdXgZ1KqXyMRSTZwU6Ded9ZDISLlQkXIJV5JNmTJ3rxBrUYicraErWTuvZTcUZtlbX6/QKJ1IW4qs01QSUKE1XRE1eTzlRso1RCWhXcFomxTkIaxMWyAL3YD+XCOgk1oSlqWX1wA/sjQ4R99XtW6aC1FLtqCWVDL8c9XEvlIfgy8Rkh82KdBgMcY9OESsCqBD4BVShu+J+f0ZhYgitLJicnWbp0KVPr12PSFJNmTOy8G/++78t507Vf6RfyogstBqTFgLVIdPHveK+agFC3vvx/9v48XrejKhPHn1W1937f94x3SEhAEgalobtt2ha/rXEEBBKGkIkQAjggrV9poFFsB5zw1367waHBCYGmEeluIJAAQUSGEASVSY3SKJMCBkKSe5M7nekd9lDr90fVWrX2e869uTcEuRdOfT7n3nPed+/atWvXrjU961ny2UJBwLQGCo+yKrB3wDhviVA6AsFFr2GnTn503Kn8qlyFSR1w5NgGNoplLHiHzhGqaoQSLX7gpjdHZSMJUZsqmsfFGdAo75l5tMGb97rifE8SJiwQU+cAoGStS09FAHPy/CWFuliq0R0ZAK2k2SGOSwCouj45hgxTOi4M8+J7rrgKn7hjglnHCLMGbmUBJFUNz6B2T6fl8VwZ4J3acDjEy172MrzsZS877jH3u9/9trns59vDH/5w/O3f/u0pje/LaaevwG87UOGxMvDRqk8vv58Syg3C7KyUeiZMdUVErYMJmEY0Lpehx5onFqNaCCJo5tLB5jc6sXqip5CM9bVd2MOJNQIVAlwgFjhJm1eO45J+v53UJI8x/j9vPvCOf7KcW4WUs4scwwPAqw3cHRW6AafUPhMe2ChBKUYo9MDUJjbANg1mHkVtLD8dR/rMhR2+O07b9p0Jr6hFP3/MHIreXsv2I27Qbe+9CBU2nhWJnYtLVHL350+luTFb93T6PALjkuDujDJjhk0dYignkBGoeUnZGHxPSZI5UWUkddxlZcuGkPTeCArwPCEB2Q5WdH/xyu/AOeffHxvlIkoinHvfB4LA2Lt3BjccgJnRgNAx8OqHX4Vn3vim/Iys8m29KchzZbMUFMA3v/ZSW/bAqGlQ7l3EeXsK3GtEcEiZJ+bgWd3g1i8dAIOxsrKMtmnBzGi7DoUvUa3dgdGsxp59e0CB0WAa11BHPet4XgfW0IoIau4PMdbDMC8PmXdVng/S3yl0FN/PyLLHjPguA2i3Svg9dSzUNfaxlkdDUalgQHwCcdxQZVYU6fc+4RJ88eg0xurbEN30Z6CwB5LL/h506X8tt9NW4ANA6QlP++O3oNoitAuEdinANYR6D4OXohVPUkY2vUxa0rUM8Fte492a/iKWWkcxD3Xmcs4pEL9PL+W861AFf7JM/CSmAPbiuPNWb9LiBXQ3jxmQTbMXU7VC9ERSUpq1XIlVgPAgROvcuPboWJnCBw7dckwVcjOXefuTSzDIvFGeG2Kk2DsiQ5/d+81w1AWdbpS2Seq5OeVs1anwMgJuJ6S9Tp3kpIvg66UKwjxPZFS4cQWQnWudT/O3VRYTIIoleyNZ/Hrs3Jz0whhpfHoeZGzIz0/CSPo4rTRBP08+PWtdemLZOcR0VZtiCijV77ZHMe+Gmc8koHwIGLlkc7Jq2TP279+Do9NChQyYgYIAX2YtF8Az/+IacAWTnmbGFiKhVPb0mLlPg4gCE6p45HmOxxdNg3+xr8Ses4co9X0iECJJjkMUaBwYk8kUHQccPbqG8XiCvXv3ggho2g4dM5qmxaxp0bYt2qZT/I+dNv2fWEM3nHg0NESjmTGs3kCuOK+BhNXQmg7y/Blxf7LrOYUjxV0fGg+/2EShn56/0iTrHmPGkeYKAA5OOxzeCmDvwU0Dt7J4Rgp74J638L+W22kr8N2ggneEMAwIlUe73AFLLZqiANWE6rYS7IB2KQH10osVRpEjnh1Qrjk0y2zctAAWuui2FlCdefdUYKTNxe6DVu7GErwB6Aq4OoYa1BVqNnkKSXCG6N63wDDtzsT3gTnrn/qbth4n4QFpEpuXKnjDDrReQJjVFJVL6MXfi2NFxDeUnBUZOx/isUhAwUAp9JDu0wokO/55S1aEQ0igSiUQghHc1no1z2HbvadjdJptrJ6RY/Jq/aOf/ieWu3wtqWAm/cuSoPQEpACiZR4lRATTP5DT9ojVSlM0fsl9N74Ib4Yy8IlyqAtF5kTI43welHqoXGb1s5a7Yi4S8EvnQsHdMhdzmoBkv+y03hxr+IkCcOmfXo/f++4nY5KC2AwkQc99cJePcXKWqRYAWlp0miooD1eyH0SRJVLvWY99MSHbuyZgNCpQuOiyF3gnI6DjDgwCc6zb/k0Pvj8AxqyeYRYIa+0Asw7o2oAmAIEZk6ZFO5mhAsH94ydiCMRnLIJSWEvZ7PSOz69n10B5IiBhdqKMwpf1kLgp2JCEoYykWDFEkAAAgl+qC4TC9wQ8pT7IyTuEzCmRwicfffKV+PThGqh8Lm7kz1wrmJmi5/UE3++22E5bgR+mNWYd4xXfcyGe95b3RnALl7j3g+7EnX97jsbKik2HbpSJKCJClUGeFeCn+ciOI11kRwr6E++ApFbZ+L003ZzSpuqmDn4cmf10k5oHoAFAyEC8UEEFqhSwAZDTo+athzmg3/YBye/QHGZJ4XGHY5qMxmgljtfEDT9UIY61iudTnaSOEdoAooUR4jnURMskLCbmPdmnbQ54oGwkGCVKflwTUwhDwTFH2N4XG+vVDoJY3bocqHfrNpbb3/SgSl/2vWL780knsqPMGyBjN4JYrV6biglsA07Ojy0ew/l/7mcrUJvuy9A+50wIZMUDWSERgaKKhuEK0HUj1ykkrSofJ+slCwSTrUDImSFyD4SIZ/BGwIk3TRD0jhFijdj+ufOxUE70y+nZkFnnwNw8y7MTV3pAtIwj5ATEUXHggvGGb/0ubExm+Meb/wmz2RQPfei/xtLiCIE7BA6oA3B0Rrhz2qIN8WZLB6xWDKISt09iznxgjmj0pgVPGzAzqkGF53z0jzVUl6v4mT0jRA8edUnZE44Pua0yfkYc4/iqgPVeeijwX7AN7CL5FnHM5LG8IMToKyBpGgWkq8BOKapVMmjTgzrCd7zhOrzjyiuxdXSKjZBiBeb9OdNaAJ0QtHei777e2mkr8NFFl/2oWMTsrPQmLHY4+Kl7oWjiptNWAA9YLT61jMsA+BA17qUW5WKDem0QrXYpFxsI1ETsmrSw0MUwgN3zpO/0groG8BNKZW+NNbXTC5xe/mDTsHScdz0FKgRM19myhW4+XAW4sY+xPAeEFIenluBCVGrCIG7acu+qeFQBwVGmDDbXUKBekJQgxEpcgpxm9DdsoB/7TRujtUiltDhTUraaPGckx6rgnRM+6aOeTiB4CmvhyCkJmd+rktdz5yALFhHs8rufe57zsQuL3eA8H7oOCb1n3FMkCUZwpePmlYz0M58eF5VPqPtexzQvPNMYt4WQfJ7nKHCDueYcEl5uxuUJJoNpyMdStBSThU9A5NF3c1ZjnWmpATPHjKyAizdOFLB0X8Kcab04sq5qGmJtNsXCwiL2Li3D63Udjs4YN2+2ODbjvDSTInJwnB5Fx0BXR5rYNnJ/lIsD/NSfv00VGnl+sYoi955nJqKCps/l50XqDdGlqd6RPI8UKPFqICrUSVBHxSq/s0qkxZFeO4dyWJUwnUNZyy1FQycN4K2XXYHPrnWY1YgkOoMqK2hnoFu/u4u0vG43hq/t9BX4hQd3AUCB6oiHnwHThzRgx3AdYXqvLlr3w1iSkZr0IqS60TTzCOdNwJMCzR0j+BQfVKIL4liNzgioyBmfnI7zvvz0Qocqk4PE79P/kidrLSn7/Vzr4QPmzEMr3EWJUcAPrABN1lnrTJoZIkPf1GVefrEak4VAjAjaC6QgoPlr934X0g+yg9t+HIlVIf9zmm/ZD038WWmLZY7k92CElBGyurFJmIOz4NHx7OS6SwIyW/jpPOnbpgFay1KaHYfFJqRNX/+U/GojpHvrgZGVQgkXyQYvxUrs8NPfOhc2VJTyufUca3Eij6HvceCeMqHENnIdAtgIeRZkt1ibWu0xCTLxOATgTy+8Gp9ca2OVusRchzpEshYEdEI3Y1PGkutZ2fVU+FMfeFgwMAqxRoMoBWle3n/hE7GxuQWuljE6az/KwuOckUflCRt1wOFZhy9stph2iMjrLgBtB+46IOWaEwMooruBygLDxQH2FIQf+sBbYlnumsCiNMoaIUAyNkDIIZWkGOkaMFuHLuVhMNkHac04qGey9zJUIVr3jKyAIQp9agGiBKhF0mFcGpeuib7WyZ7xjkdfiANbMziOlf1c28XntDUBOxeFvyOcTnn2d9V2Y/gn305bgU9VCa4brM+K6BILAI8LDA87NCux+Ay1BHf2FOHOQeSbX2nQHalAVYjL/M5BNDKM5UUNKW8+hUgSIxs3pVx1fTlTfM0ahZLSJGlE8vKpgLfArWBS89j83zNTYTqfs9AI2wpbAICfxFgeVzFKKdS6JORDdQLhESISnxCr/TkCTRw6ofEtYiqjMpqhPwSLOQCQLY3jgRvkvtL/1CGlCsVNLZSsm5w9PYhwMnNNRltSodobk7EAOVtAdki999wKVLHOUix6G/mLuhNgnlcanAMQTIofZ7xHr7QrIRexkb6CEbIGXNUTDr2wBnrradv9MHa+Z6Z+VkD6olcbgNPz8fGaLOM2niomRG+ZCaXksEGe4Ie/8xr8zgO+Dcure3HrLbdgMByha2oU1QBcFBje+3zsGxZZ+dKHD50EUVZUWRJwIBCBp/YZhqiQTCYd9u3bi6WlURwOA4emHT633uHorNNYPDctwiQy41FZAN6DqkitS20HN6ywWBLOHnpc8cdvzJOdFFaZ31CwAuYE16LgxfS8exlBgIIl7eck4ElKgrqjSHpFiMRYDsAggOuMNeIigoT9JL7r3WLIz9/K9cSmKWVte2yhAC5+x3uAAPzh93wX2nGNUDfwvAC3sh910yKsb8EtL8SY/hki9Hdj+CffTmOBX4CbDtPAeOVjH4f9ow1ced2fI1RAtxjz75v9DdzBIejsKXB4ALplCBoysFHktCO7IcqD9/lFVX59ALyngT8SUezWVbxNDidefWJE0N6AM9lKcvsDefPa1jgK4m7EytGvX1ECtSXXtub0Wrlq8qclLVBzfiX7oMluz+KsKfjwEChyNT4uoiAJJW+7v53Gq3PYl8jzv+YPOCk7aQy9Y1n3+egi3aHtFMZQIWMt+53IWuafGVOMQ9v3XvuyF0U+RrwCcrvJjUytOV8Gmqw1eGhcnlIfOeQTBayGYYwiSAB2Yr6zzXoAZG1s44tgI7R3Ol/GnVzjcEgV1kxeeaqixo615C07TlamUXI0WyFqa8/7/F/j5f/qezBcWsbAEY5srGO0uhdclHjeB69Ti97WXN+WDos8fjLATosDEaXqg096Gj598xEcog6LocFWyygccMekQx0ADgyuG/C0jmWohxVQFUmGETwBz7/pjdEzJ4paR7HqT4iSmJOO0vMQUZw3LthUgpQ8+jh3PV4FeRaCtRCFQUB0HuAGCvyjQXL3zHIqLeIlIoC5TGMYdtHrIetSFIfGgZo8l3rNtJaZIs7mhz76F3j5Qx+GcnEJwRV47of+CK94+KU4BiBsTWNO/g7r8HRsgQldOP5ody383E5bgW8pHafO48rr/hzdiFGMCdWdHs2ekDYroJsVUdYN+xvd8UqdKsDOWCvEAI+9At2UwMTGn1WQJcu/puh9EKrZZEVxFfkCALPhW008XdslEgzqCG5KCMOU2OSMEE4xO2sRM2F7SCDF8Hrc3IiCqGt8EowGYbwDCv6ELRvQ89Ohv/fGo4j2rDjpPCD/bvWH3j26/nEyBrUunfk7xep3CjP00PcitEx/HJDzwe31jPUkhXKsp8deRzZWAdwBUOEWEfeGUKkDnChcgsOwa8S2pJQoWE6Upbb/3ETRnK/vIF4mcUNTMGyLJt3L4g+iUE1eGKvgIX2e7g0dgWyowzEGoxEmy/cC2garq/cCBgM8/yNvzlSvRoBryp8oL5JdYdaLS1kLSp4k8+QZn7xjjKPwCIe24LZaFKMSTISui5TcqGvAe7jFoVLBVg5YKR1++M+ugXQoHvAMakwKXJnortuoQPeyPuQH0JAND8VCp1zlLgEORbFCCjmSVd5aisC8LmYkqQJrU/RKBooQi+PUTnklyAEM1rg+NTF8JziDHoVzAgBqOe5A+PG/uwmvvuhKbDYBv/v9T8JCwdioC7T1FGdSPD/mfpxA4J8xqstXvp2+aAbnYpnKusEsMK67+nKExQ7sgMXbgcFhB9r0Ebk7dRlIFkhJL6zrsBfOmtuw5W8/SdMhMTYr7AF9GZUdK9WMkE2JXba8w06qlBVItlpZSOmFAerylHCm3cSV7jdQTmlKFpvG57tsQQFJHs5i6o6buDwXyY3P7iTl/najcXu838Y/PGNe2FOySPT5wMji+b7mNtbeOM0zU0zADlat7V8mlFQQJ6UoCS+NL9tujJLSV2jm+hcFx44tKRpSZ17d/kCuusiIlr0gqV3uQ8snm7BSb44sgn+ntWrvgckgyeU+qRdD17UknA1MyoCn8yU3nNasnpOu8yM3vQf7CqCqSuxdGuAnP/LmrFwLaY0Zl6SNyXqH5wws5YRoN+x7cREz/uziq7B3scTK6gjl3iX8zGfeCl4fo1vbAm+MgRBASwuxZGtZoHCEn77pjXjeX70Rz/jwG0AOoDJm8vQELLGG0BT8VsUHJ++jVaB0/n1yoTfpHiUVswypGA5npZKiLOXGgRsXwbKioKdzAYA8o1hoAR8FPRFHF7+sv4RDIgfNugCixw5SWIuyEfCOx16VLH3GR572VLz9SU8GdYRvWinwvBvfjOe+9zqUkpoX5hTg07yJS/9EP7stttPWwicC3NICwtoWmtrhzq0OxTGP5S8AS7e2mNyrwOItDs0yMDuvBm0USZAlIZNiZ8WajyVyJy6W1R2yupplB9bUOJNiJxuQqw36yYDRek1e5EGA2/K5P4fMFAb0LXyxStPnmt9uLG+xdKmLla9IzXu5YDz+vVdejUe96Zo8TrWIkkVRMMIwRNyDWFYERQXn+yDMC+mTfl4iRDhuOmqdyZAWOrVkRGFSL4VkAFjLh+aEpE4IzX2Yx94jUIK5TzNG7j33tNGqFZ4ekBX0FvVvFTY7Tqu0pHsW139PSMw3q25bwTOvqBrrUnPjKf0u7nkggwjNGC0ttG00J7C3FbeR4+UZGjCq5vSLR4Og6Xw//IG39Na3KqAphAQPzdTA/NxKKIug6bLb3jUHfO+fXKPjvf7RT8NrvuOpmLUBm00AEaH0hOXSxdeDgHNHokUA3BCozZ4O+Cj4BbCoWIzagcqgc6LrSgR3KlzFMtEpvCH7jnoHxbIP8d6LhTYW+goErr16B5BSKCnVWhAtr1ps0KbiVlQyMPGZHdMAQhnGIJe69xw9oH96xeNxaNwBDvij778MnznWYL0JYM/47OEpfut7LkHHjFvXZghdiOV0nV0Mp3frxAA60fe7DcBpLPBBBHHTknfoAuMjP/JUfNfvvwELB+MDrPcAfgJUX6rQrMaX02+5SNLjGGgJ3UKIXPKcYjnEOYZdmlghA65NFleyPFxDWesH0kuM3iZgQVZunGvbiyQICe0sAl3Ti2TzFNe3CHphstNdGykzYW4D1xgz4VFvvAYv+47vw2T9KJ7/+Y8las54+vCsCaaHRzl2KtZS6hsFg8XCkDShE70forRgzurVD3Kuso0ru3GsZVBMCO2iUaAglp4RVoRtwrVX/KajzHdt0taUf18EtYDs2FhtNlyivnjOf1rXuDnPKhuimIgw5gA4yYWWH5rbhJEVQKmgp2tL4vcSuiHDfw9o/Lwn/FOYgEQgC2nL3CPp9Sf3Y4FcZgrY5SItnAQUhBVPnlfon2sVIlUa5H0xXg+17kM6TixZmS+ZH+mbWMs/a31EwwUgA730Pa9LLnTqcymo8pjed8sR4bKQJ3NNcvFKcU7Ne6Y3iOSeR1aWxTsj75WuaWTlaBCiu2LUgQNiidoigIat/s5B0mLjfbtk1cvYOBBc0SGMItWuvP/UUUxtTe/Ph696CtrAaDvGZGuKsWtw+5rHkVnAS/79pfjHtQ7wjD2jAm943OU4vBXQdAElAeQcunmypDOg7YL2Tr6dvgJfWoolrQw8vv0PX4/RBuHABQ5+ChRjoF6NHNJuRjEHvWJUxzy6AWtM300Taj1ZJE42Pc4biPLfp83TyQaluy62pePNF7ahVqwuYW+LcU5X59x1FfCykUgfcxuppvzAuBOBbJXJZhK1ADz7ox/Ab37/ZcA//t9sqTlG0/hkYUXtxNVJMNjsgQTKUiklt8THEf4yHz3FJAlDzzmXvmRQCpOIMO4GRpKl0+YvYrEXPD/PaVxSIMZuyD3nh+Y6o8c70DtOOpP/7L3YORAlwQh7bRKeSIokcRZucQx50xYsgJ6vCor5P2ExlGwmjUfGLAAztJRjwXNkUTR/H5QVquO6agMiHS4jp6CJJW7v1cy3enWkfwtAFYVA1pBdMyaXfNt603fDXFhSOK3AFuUiZEuXatfrjx3USte0QySFQwF36fmnsJzFzqjSQHNjFaNAFzGyclAxXNll5aqKtMFS9CawR7HQoGs8wqQAlQHceOPFkfkEQufQzmICPxXibYj3SwD+9LFPw8Fxh3HTKWnQ3x2cog6xInhXx6I73gE1OoStaZy+hSGObTU4ImRJzqEobIxo+/I4nduuwD/5dvoLfDAIjGHpwAUwPZsjfz0Y3TCR4AyAap3QjiQWHolxUDBoHOPW8DmNRVN/xDIoojJgwXh2c+kJWbtpiqUi771Wx4MqD64x1s78pq1CvHe7qgTEDID8lQof66IyLnimtCGL14KA7vAgKQ5xI+emvylzEQdDnsFbRQxjzOU7a/8u733bYu8WGCc53gktHIYhxiq7WJBnvnaBnuqSsLTu7yQot2U8UP/3eYZEay2GMmsQ2ld6jvY+rFdBwX1G6cqd51u2SqK0MOgrIgAUpd8LJ0mKpwgMM38gqHeI5taLllJNg5YYsF1/+UbSYI0SJYJf5kL7D1D2NgWaGaGt8tF0NL8e7ZwopSuQlaG0hhVPYRUCmVsmuDqdn0IBhHxenE+jSDVeP2MpRCTjaxOILg2M0nrnpPxzm8JcQmEr8fjUV2II7mUYxBi6S8C6PDFcmrUgj5Pj9alsEdq4KNtpmZ/D1AODSAc+Dx4NrYtxe6aECwh47/dchWOBcHjS4hN3TFJdHIL3Ds/+8Jvxhkc+GUXHGDcMwKNuGRwCeNaCqhIoPMK0jpdxLrrvmxabE9lHCG5x2FtCp3vbdemffDu9BX7Ivu+OA8JqA6yVKDYIcEBXCXUseoK83tdFASCCm6CMblYwKFHJTF4o1hz9nkZvrQtCTxu3ZVd7ZUMtKQtyPz235Zwmrfn8xupnMmhuEUpzcXbZZP/z+94MAHjp912Kn/iz6zOCeKkFtpI1UXFO6akdXPrdlSEWnBp7BYFRyGz5lDYcdb2nQkSWDCW70AEMAzgAYTFuur4mVWZ4uQXWCvBSB9r0+ozYcXZvy33ZP1ThIp0fPUgHmvoRoRMo/Z7mTNzUPSXLpKUxTNEWJKFmFC0j7Hs4BLkHEgEVx6bPTKz0kK+p1RbN2POY5gQsGaVD11WfgIckJEVQXn51dcualnUE9NYV8mU0RSzOF/cUowgsQ1JKCT2MigFW2lQwOABliM9CnyFnfIMK/XROosVGh8yVoFS+ydINFGtiANHaB7KAnsdLcCKv0ZoacRxRmKc9RLAlwvxYQFH3AOYIlBBR8ylPHgWANlWYXOiy8EnjKKpOWYaj0OcI2EvYDk2vM0pF4CJ6MprIrcEd4V2Pfjo26haVB+6zUuLid71R5/mdF16ONz7yShAz2rrDdNqhazqEtgN5F1MSE6MeDUpsQ+GncB5J7P4Mcusz4y4s/H/GwZzm7bQV+MwMHs9AgxJLA4cr/+TNQBVddsUUmJ4VF3oziMQ5s7PzS+/HLv0e9wc3I9DAqRUkrvcwDKCW0C1EfnjXSjpS5sZmR3OxRUDivJK6FzeRtMlLXA/W+oOmJfVAc9JtQAQWbrksvCh+ptagvIDGIkX6ap6b/ifff330WuhBcUx+08cywuRAVXIxTgr4sYt9GNY9jbm62D+XIVuJYlVibnNN8+BaQggevotzLDzkYZAE4HoB2j8Dz4ptlru1OPtWtVi15jMyn+tx0OqIOs+isKnSFgF66uK28fn0nNSNLx2QEYgWuGmJlpCP6aHrk3Wv33cw107XM4j0+eeswrabu1f5PlnqYcB6XA+nYRj4suVt5tKuR1F01YAmHVd02WdlQbxf8xkCqnDJ2m3TTaoFaxQ2OVVi4cY6h48DozZNVZkXRk8Qp3rwGo8XwpokTNmCJkWwCnBUlAxZ73bNpdoTWnxK5pMBSplB1uvHUt1OvCMBoCKgLCOCczqpYhdt1Iy4CCA5p6MUVkhrsU3zI16vKuCid78ebtCBA+HPLvpBvPsJT8G4CdiqW3zxaMCkrtE2HbpUEIeqEm40wI7MefN/+zNHwM+3XZf+ybd5R+kptRe/+MUgIvzET/yEfjadTvHsZz8b+/fvx9LSEq644gocPHjwlPvmaQPuAqphif/4/utjrvrER256DwyOpBc+aeuywbmpi5tnETeeUDK6Ud6QwkIH9ogFZEK0RNzYw0l6DKBUp6FEfqlV2McfterncqQ1pposrngM+oIK5ljEa41u83Ej1vKfeaPP4DH5nYzgiT9qWTl7XhI8PkTmLtnoAwG1Aw+7qDBUnAmIDOGPcIJTQCRn6XJamwoFG39O1k9I5zGlTbAK6EZBlQN2DFcE+FELLHSp9kHmJ98252TmN821Cb/2lAZN+2tlrFBAW8wflz7zAxGPRhbo6esuKX5tqkugaVfYJniR3IqUUvyU792sGa205xEtWGeEL+z/nNNMOSkLInQkhVByvGHmSZooDubz+bBAPE7ek/y5q+O6jcps/NtPXFSaA4znIE1cgM5LDwzoOFLkSirZTmmDgvmQWgdmY47u/KCYBrJrLD3TTMkr/ceQlTyP6K4nVSSYkYV9uj7Eqg/5+WqJbRhhn95Xfe+HIa5bee8q7nn4lMzHM2bTCtNxhdCkeLwNRwg4zyG+p8jnchnABeP6730i3vjvLsJ133YR3vJtl+H/fNvl+Ifbj+Efbz6A249McfvhGmtrNeppg+Ac3OIIbnkBblCCvDvjQHin2oRa90Q/uy22u23h/9Vf/RVe+cpX4qEPfWjv85/8yZ/EO97xDlx77bVYXV3Fc57zHFx++eX44Ac/eEr9c93ALS9h4GOZW3C0YEIVN6ng4+bTDUNMnUP6jDIRhWsoxySJUGwSQJFcR6xeVAG0Vmbrx9SzlvSXDI6T/6H9i4AWK84C+yTNz1Y+s8xrFq0/22usuySQgu8LIHHjqiRJm5Bw5UdrK4CJ8n14IMw8/GYRPRpNcj2WgFtsQXcMNAdZ3bsuz6E2MsLTZTe3WiAwyorkAANwWz67//fNEDZjWeNmo4oWzdTp5t1z4YtCxObezXB68Wg7PkYGT8p8q+WYrTwlKqJs6SvPgQg1gwHTDABV0lgBaL1wgCFJ0qmzyop6SUTQ9oGA0QNgOjDYA+UOYOQ1LN4jM1/xHpGtbCCn883NrVVk1ZMg8yHjSL/L2tb0UHO/BBh8ArLyI4I6ID9IGYM1N0QhEfIosc6Pt1cTAxWD7LvQxZQ7S/pki1tp+MQAZHshFXk+Dqk2Rxq7hAKQFAxLcFR1aTiUaxE0ac9w8d0DIZe4TeuRfLy/MPMJWMgI0zm6xUB48fJ9cXhtDeOWsH7gVhRFiRACqsEAh+68A/c6/wFwe+4Fdn5nS/7roZn367jf7zYAd9PC39zcxNOe9jS86lWvwt69e/XztbU1vPrVr8ZLXvISPPKRj8TDHvYwvOY1r8GHPvQhfOQjHzm1gQ0qhEmNWYpLujZa9dQB7QKj3IiCxo8j8lyquYGi9c6eFSAGRLc++yxwNb7dEcIgA/qoydz4riEFAdlUInD+TjfFeeFoCtZIbLPnrjbu27DY9dJ7NEYbsvWpZS+lzXkItC2mDagmoGAUe6eRYWsQ4Ooo3NzUxZz8Q4PjrwDingAgSc9KG6YIIGpIxyvWJ5chIqtFQLQEXmkQjg4ieK+hCIyaOmCxVbe33DOZe9t2f3l4+UW33gYk4UZZeYkx1zkr0m4SIuwEfGWq62WUvSgLUEtbaI21GM/x9tq5a4oSly3VrPBsU2pM7F6UV10LsrY88hoTVr8iHqdeG+S1F0maoBa7LdMrF1bvhDnPDlALxlCcb06lqPW+5JnK3CSBHLWVPO/5geZrU+PUOldPVgLgKeGUjJPjO8y1i3S0qsT0GTNtCVkdS4cd11akrk4Hi7BPefdCq8tCQRxMeCF5zmQtsjAMusiFAQBo4+ecMD7UEbiJ51DJ8Ue8RQy8YP1LOO/e+1As78HSOfdHeda9sXjeAzC87wNw72/+dyj3nhXrAnwdWPLHbXwXpDu7Fr62uyXwn/3sZ+Pxj388HvWoR/U+v+mmm9A0Te/zhzzkITj//PPx4Q9/eMe+ZrMZ1tfXez8AgEEBeId61uAlFz0B1/zwZeiGadANYbo/bz6hSqlvKX1HhXkVgMUWXDLa5S4Le7E+OlIBFAacFQKHTFObLHwyVgGArP2n91gEerx+tuIAY/kgCSMnFlPcTPy6zwAmyMZJKhjUdU8pnp6ATLKZWiFB68Zp0wHtkWGOlabF3+xr0a22kZu7yGl/1onRa8ZdD8/q/lZ3cVKAQNHr4WUMoza6OgfZ/y1IfErx0fK2Qbbe54T8Nrf5XLMCUgS2CDhVqNSSTQeqAOpvBHYORFDlfHwkz4hRSKzVp+ex1jtnWUPpf3jznBiwxXNUiTJucftMe255yn2Iu58SRbNrsrWra6elzCMQANeYzxtSj4+rSTnY7XVDEUNigr9gH3+i8pFwA9S/fs9lnt4nvQ8LfpP/7bNnxFCAuNXlUSWAHpoY65BqfTrUljJngIRVasqhD6ZeSMvWDuBhiCWkK05FpzhW6KvifsJFyAp/8hSQUWQE7KfMfCUbvAEiEn/qovcByGOXdzmFH7ilGJKoQvxJdTQaKjBpgUnn0C3vwWy4hLErMRssYlIMpCrx122LoL0T/+y22E5Z4F9zzTX4m7/5G7zoRS/a9t2BAwdQVRX27NnT+/ycc87BgQMHduzvRS96EVZXV/XnvPPOAxDfRbe0AADY2pzh80cbvOrqR4Ha6KZ3DSEUQLcUEAYhgsOAHsI90mLGztwsMu2VG4TqGMUYfpc3fZJ4rVrmRgICKmR7TTYqUQgIGhdVlPhxLej8axjkOtbKmy8xcHO+phEiyypr+ducb9cmLgEJSVD+3m/5aGFb7vc0T8cV+mmD67mcrTWaWAk1Jiux21EbrZomYgYAaCU0N3W5bzb9ifAm9AWfkcrzSop8vc1CNha59D1P7WsxA5lrPv0tgrvM4ST2sW9RlgDkiosiTNnMU+pPhKSC9AigJlvZUfAilwKWe+rMGNmOFQmEGgU2OD33JMj92MFPY4U1v+Xgk2CXeLxrjR7UxnM1I6Gj+H16L+Y9SnptUaYI/UJP6f6j4M7nAul5+KSQD9MP5bWrIQrHRklHtPwpDSCtZYvQ50HIwtJzFNgm1U0VROE60GswuAoGt4KMwDc8HahCXndt9kL0QmzyvIVit3GZrlhKdEt4RtITZe2LUi4KWnqHDo2BtguRavzr1Yo/QePg7vJnt8V2SjNxyy234HnPex5e97rXYTgc3iMDeMELXoC1tTX9ueWWW+IXRCBHoMUhaFCi3pzhjq0KYcDws7gxhSqWycVCh+FZk+hKBrJF1zhg7JPrk9EsB7QjRrOU3sxFs+MR6yamm63L1m/8YO5l000uCWHZRJIF14v5JotQq61pH7nUrvRpL6UxX8mNluuWeSOy8ey8ySagWUso13xkp/McUxvvNVUlReL/ymuOHQSnxOzn7kXuP1TRSgqj+MMFw63UwGahVpQbdpGJ0MVnFoUS0Kx0PSGWrfI0p7LhyzPdPn15vuYUJEobqLpIu/ychFdcgYSiqBRx8++5rhHxIaGMHpFQRgCkejs8a9ElHW+bXfVi/YtC0Q0i1TGXjDDkqESUcT1LDQarlGipWOvxMNaxPAMJJbFRDChZ9VF49z+3mJFQWSEY++wG2ZujKXyJG0C9FCk7RO4/lJyKtyC7vgkpVEbQuDmg/POQSo8pG4TLEBUCOdbE4omhCqROhYTDzPvKRkHlKmRsBafrVNGKx7ADVQHkIrgUQA49QO47TVTywJDnnM8vygMQqXUNOJKEtrcMGlYSr07kxHB5SZv3HbWLabQ1RRDybIJBqFFW/uvXbX+Ctmvhn3w7JYF/00034Y477sC3fuu3oigKFEWBD3zgA/id3/kdFEWBc845B3Vd49ixY73zDh48iHPPPXfHPgeDAVZWVno/thERaFgBjtDWAb/9iIfHTaWK9aHhGG6tQP3FJZTLtTLkacwZyGlyFevGCgaKgxWqYz7nMssmLlZzeu8F9d2LFwNqxQBQEJ+OOx3n6jTRkq9uEPs53S8LULHSVJmQviTVTE5p564lLcWsoyCKX3YDzgh/xwhHBqCpy2GNjuDS5jNvUUtceN4yFmpiOMQNrYnjc1MXBcjRCiw1vYddJPVJcyZCpN2bUPpp/tIl07V6yyDrWklI61itW96Z+ZLnY56XddHr3Mk9mU193ovSCwXJNY1LXwFiwq9eMkIVIpbExJFjJ2mAIV+DnYm3G/yAFpyx2REGiGeVSym9G9cPcj631LsXZSgpJSGh8zXk0Jts+Txey7UEP5UMBPQUNF0fVUjrgbNlLO58MnMv8yDKx5y3Rj8TshwRwtYLJMqfnGRi5Kq/O2TCnTRGMngGADHM4lgpbLkRjgnR8ihyVyTPmq6HgBi3F8+eZBLUCZtSu/g/cQ9xD0rrS5RPxxHpPwiZIwBQxU74ENZv/xKO/tNnEGYb2G07ND6Jn90G4BRR+t///d+Pv/u7v+t99oxnPAMPechD8LM/+7M477zzUJYlbrzxRlxxxRUAgM985jP44he/iAsuuOBuD5KACEoBofQFuiFHEF6qXc2e4RugOzjq46bkpRR6yhpqUbuG0C530cqtCcGk1/EwgCYuU4USg0B54ehGnzZuSiA+B3W/qsWZsgl6tLziWp9G3IG6plOakaZnDQKo9eClFrQRkWg2f5qrOA+2OIuGA0qOhEIp9q/XnRQxM2HikM0N9DMSrPWorGtJMI2CWmtqfTUeYRTJjhgJLIX4vV+t0U0KVPunqI8MM9ipI9DYoxgn/ESaM9f2Lbpek/g0MPcs4jmi7GXlIP1u06BsOEK+T4RLkSGQc3347NpBf2EhI8GtAJbn4GAIhDiFeDgpE+iRMjlBhSugjjSspCA/waTMubi1UI94gURR4uwxopAyMiRFNJ3jmqR3lAAT5eccsmIgx/coiZNnQDIhVDkWnIgNqUmT+0214rkS4R+PF/ImJCWVinhDvTQ6UYDJrE8LqOycrolISZyUo+SuovRekKNM6JPWhIybiIE6eYTSmDFgVRqJ81zkdZT2mDZjiHRtWAs+3cNbH3M5Lv3AdUAR8I5vfRwu/tg7QJ4RGhc58tNxb//+R2ILI6xNAtqtCVZGq/Are1Bjt8035sS1cILvd1tspyTwl5eX8c3f/M29zxYXF7F//379/JnPfCae//znY9++fVhZWcFzn/tcXHDBBfiO7/iOL2ugHALgPSofhywEOkibVruU0vPE+gCyFZY2fdlkiQXo59Qy8hOnYQItRhFkwzSbg7U8DWo/gtGMYE8biYLbrKapaX+5K40lI1ulqpim8rYWyEaMyCQoAl2wCGAzXtb7AEUQk7VWFHxmLQ4TW1TQohLFRJBjJhZKczoISlzEhMhQlu67G0ca0frwMLr6x16pdoGYceGnUQjEOeiDEPMmbix5YV2TjViE3E653uKmTml5Gj6xQoPznIswtvSoOcZqzp23tOefMZCt4ZZAnNcK2Xsi430xoezefdtxpAwSq4D02fqM4ipCzhLxIAtttagTiBQdcvggucPhkHnhJTxRmGdvsQUybgWapq7EYyWWv3g4CFkZSMozCcBT1kHKn9exty677pvoXgfSMTLHLYF8unwS9rFQTjrOsxYdUoS9S5z280soAe2sshFBei6v185lfn2btZP6+usrno5jdYuDE8al73sjyAPoHJ7w4Xfj7Y9+Ei5+/1sUS0CpYFAzXMGhdca4bsEYwO1dRLfrzt+x7RLvnHy7x5n2XvrSl8I5hyuuuAKz2QwXXnghfv/3f//L7pfKAjxrMJlVaph2oxAJY5LAoXMnaLcST7VW56K+ZZQ2GDeh3mfgmM4nufVhGOIGWHGqI582qWQFAdCNXt3P2l8U5q6J3PE9LnirjABqIagADqRWtNtKZTHraHFoDDCdR9t2pyT/073HPP5M4hJS7fUeHW4ai4KPxIOgwjRv3FHQQlOG1A0bCK52CKstyoMlii1gcu8OtNKAN8s4XyXDVR24YJQHS3TDvsDIAipdjvNnvfi9tdLRP8/+DiQh0pGxnl2fOAb9vrZPJrZ5Tmzc26IbFUth50/y+kUA2j4F5JUsep0LUQSlL2SFRPElxppXciFVdGUCKdHMIueWm/hy8IDrUuxdcQNmnRogh4TAZK3LulEugKRQq4LhEEM5HSKQ06aUUp6XXjGekiOnPJCBeCF2TnU6vmAVqvoe1BTBevI8QnxPuIjrzZUh0tl2LqbtqcLGOgZ4jsAuHwBHGdnfpocgIQNT6548R+VB+pLsA2/6Tc962jG+sMl45p++Uel6JUR48bvfht+74HL4gvGsP/sjwDOuvfBi3Hw0oB7PQORAywvzK3O32TavaO/0/W4DcA8I/Pe///29v4fDIV72spfhZS972ZfbdW5EoLJAmMwwC07dsJRy6P3YoVvq0M18ttIWWvBGuZ2rXIxijvn27VKIQpmBYsuhG6Z4XEPgKqBcmaGbjOI5VoNH2oSRN8AImkPcI+oo7AGokHEtlGFtvhMCshASyx1RUIRByAxfqhgg5Zsnq0OwC5yQ+wux/jVv+hiimEWgXDfIAr8/x1kBEReqTUWc5yfXcXSE0UGHdgg03qMbMkKJWLFw7BJmIkRmv9KBNorkqUjWreAnOgK5OHYdiriV0zz00N5GCPYE73Fce9lKRyaEIe4LQkCFkNyfWAcEpPi3CB2AOpfxFZ6TAyjdl7Vw0++UWP56TG4S4/UAWNIxE4DUjKtH6GSFSoMeh4H0qWEllng995QGCkAruFtjzfeeryjL3ghSKQ2rB6YfKVITXH5OHpFjAsjAPFVMEJUECXekOLa4ZjmlqiFQP5qiWBrSPqhxCWgZLXEqAyIRjgN3HPtJiHd9j6QPSuQ9xIAH/KAFmNChiILZxzg8TZ1iNeLcIyogCRAKzzEdb8vn+XexT0cdKuGoZyhzIwhgZuxdHOC2YzNQQ7j2oktx2xqjHtcg7yNoedeyP3FTy+ME3+82AKcI2vuqtsQiFbqAN1x0eQQRtZT45wl+o4iu75mLm4+4apN1pSxlIW4KYRjQLQSNm4vrO6y2QEp1Yge0W5UOQeO98ndPcMs4AaHsFQUjFP3/hXDFAoF6Vqu1fJJQjBsTtHqYBXdto00dBWDq4Y5loBx8vGc/duohkR/rNej1k64v/yljHveFzOScgGY1aIwzVIx6bxdjtSFaebGKX1Q6uJQOKVtc/cv107HEwjdzapHi/RORFTyjo6j72igM6mUn5GehSkH+3zLpESOlvrlMxcpRiFNtYv+ieFqgm/TXxewI1+b7i2j6rCRY+ACAXmw9zxEDgoyv+il/pAoRqxUfyqQ4eFa3fJ54qLcmvgtmPfaAdlm73VYgJ63tzErImawpWbuaEgcYcKmx6AOBO8HcOLiJ2+6FYdL7U0s6kKLiNWTWUmR2lNQ4ud1O7jE99y7HgENC2vtRi2K5BnzIYMm0hmnm4to2ghtMKRSI7MFIilHLwEYT8D8fflUeh7ml81cc9i4WeMl3XoxbjjIm40iIQAu7wv6kGp/Ez24DcAYJfCKCWxiinczwpWM1/uDiy/Dhpz815efGY9zYx820dghHB3Omd88Q7AvrpOEzAcUdJYq15EovAtyGj5bOMBbpCUXuS4UR0BMgFs3uZpT/t0InbYhybG/zZfQ3OSsELQGQEQ42h5+2cuYBpY2Q56w3eRF6yvFOL4Zx7bpZ5FRXlyrFsIps/IL6Jo6YCAkRBMlvVhYy5I3absQyNoLGQEUY5++4N4fC898DiRnhLP/3LH9jeZNxD2txmnmFwQp+k/0R087yfbPxl+m1E4ArA/GyALTgPCXESSA1V6d8+s782LHJqWkMAHpo/1CY5yprPq0RSTFUK1TukUX5BZQK1857UhbsTXIREg4EGpdnQdYj9dNSPJdJgY1KUZueJzcU4+UyVlkfaW0jkRkJ4922injEMfedEddZ7XpV/3qudkAVfSpDzqLoCESM0Dl0GyXajQqY+Th+EeyelR0SiWSJJLUweY5CGTkBBO0/nrWgpoYLnQmfQbNjvu//vAnnrxZwnlBPIizPLY/OpIJ1X90mm9iJfnYbgDNI4IMIqAq4pRHaaY0D6zN8+tAkfhUyS5jQeyq/vDSxAtIm0mM1C8lKSulrmpM8i4KzW+xUWCkS3OV1JMJAFIpQRre2vPz2/x7gSuO6fYsqdjo3fAfwYpet87Q5C8hKindwybESXcHA3joKiamPFQTN2s/AMR3CtmvGMQLFhtM4qtDWgvPGLt4TLuJmGEYh3i/HCzkhgZmRpm4pratRnKiJ80vqFaBcjlWEczs/MciCtYthmoih6LPdyfgU0ChCTdaFSWvreT6MRQ1EK9wl+uXomjUegLSuhPCopwymebPMeNaLIdkcxTgKf82dN3H6uGahqZTCLxCfS0w55TJa8rKeg+TSy3wUrEJHvQB5GarQV09SxTnezciguzZa4DH9DFEg2/VYBlX4en0AWthIFVLxdgWA68g4R10MqcWfjENRrxCyIqCen2StI1AW0gEZAyPKliHc4qQUiJcvHKtynD5AvSjwhiNg6qOL33JYAPp+SZgnHkP4/Kc+g7XPfhJbX/onvOqbvjV7c4xn7rFvuBYVERAYVBYg57Ar8U+ucbjrn90W25kj8BGtfCoLuOUFhLrFwbUJfufCJ+I9T78yHhCQisYgAsmEorMj/O0PPTVbD2I1yAZX5EI4XETU+OBIfKG7xYDyqI8KhLWwRcgAWQBai0qsaPu/cQ3rcUC2WuVPtUJIlQHqCG4jmnLCCqbXdYgEIgI+PFpFDEJIZW8nEvbw+XLWIBZrWJpY4ToeM/70uasJxdEibuhltr44pLzqktXVHAYhCh/5zCPXNqAs+NRCTvF6LSNrjXMDuMsDhCLcc4w6KQ5i9aXUqR5FsliZ1uI2z04VBQWyIVm1cQAaiw2ITHlTUoHeU6TMWhHe+951fL624EB6uAKCYhV28vxY61yyCOKcR+8LV4Z1bk5ZjO7+ZJEOQ1YQROlFer6iUIp1LoqTywpFBLcFYBgiCj4JbBKvASUSmkEGSVjCJ3HVg3M2hK3YKM+RhTgnMftJSql4cqimbN2LLBbFEYjnAaAmKSxpzVHVgVYbYOaU+lrz6YvMpqmFdeQZeuTKecS45oKH4/UPe7h6AJpZjT3792OwvIrh0krPGyV0ze998uXomONwdwX9qbVdC/+k2z2O0v9nad7BrSwirG9hc9Li80drpaf1CSj2lz94BS545VvUsvl3//t1aZMxwo1SznUS5NEVSigaoFlmuJlDcf4Wuo1FLZUKIFOKAioQegLTNsnVB4yAz1+zS3UAiv644pdkLE7Oloe4KwUZDQDrheZSy4bkjhUxBJHmICykdLjjjXVeE0gbZLPM25WbIlpx1KYCQ44zsClRmwKAm7geKyBx3Hy7hchY56cJhClo8zlPg+AEdvJAMAEuzQmXZsxpvrbhI0T4qjAn/VuAYJT4BnpKm17Q/C/PZM5j4pIVroWbDPKe5tjuAGR3PEWLvquglqLExu19CNeDXUvKDy/LRqxSGaO2uXVolSmJu3MesxZ+EUS6CDwJa0gIRyxci3y3a7jJx/fWsUO0yAnZc2NCBpJCSW18wWgWU2cpUdzKNSmte1v6VioRAqI45zniQegp7m4W+w9NGcfYElCGeF3B/ojSOIkgWKuk6DpIgManfOj9YAf8n0deAXKA72ZwoxFumwCtI7z6CVfimX/yJh3DjU+7DF9cj2h+hACUc1XzdtsJ2zaDZYfvd1tsZ6TAJ0qbRFUg1C0mbRSAf/NDT8W3v+wN+MOnX461GrjhGZejoSmW/SIueP0bY8lNs+mDI+mL3fhCxWiM9VwfWIB3YnXlgjeY20f1T7FWJY84KRnxQ/M/pT7bXGJ3m/SYVwAIhkkQvZg5V0ERzEwADzsEsVSS0KQtbwRFRqirG5IJx1MGegJX9koB7iXUPzHgtxxaiWsCUdlI/YcykuOIW901CdGdqGWBaCVHIcbb/E82JYw9gGBCJVZZIHtO3tjl+eR6C+m+jaCw51NDPeVBQGKaztbDgUBd7z3AoXi2Z3mO5NpI8087hJ+y8pete3aU5yUgWt0igM0csBX2dq12WWmwa0riyaIwchnUVS8WOEk/6TNK9MOZ/Y+z0uCgOAfqKHoDymSpW0VKwJwhptZRivdLbn1UBJLrnPL8ce1S8RpoNcs4b1Gx0Fh/eq4CqpSsFu4IbuaityJRJcvagEnnVSQ+kAl3quihYEX9Z6UPKXVPwKpPf/+bAQdc9/DLcXgSEAJh3AU0xksTCuC2NeDQZouubkGDCrsW/ik2E9o67ve7DcAZKvABgJnBdQsqC8wC4bcf+UR87ugsCjwQHvO/rwMFQrsYch40A//3h5+Kb3nt63UTdNMk9AEICEyvIRaOjfmlTRqMGC838Uhbl1wFaG/Q6AmjXm7+vPUImHxtsSJYfxcBqTnWM5fTCT2Dpl6tTWoJ3SikzIXMwuaMQMuSFLlaX2fuFzAhE8qCjdJnPqYktUsdMOqAOi4tapKA1Ip5OYcfxOhWA1AFuKMlqMu54RrlSIJMU85EAIqwttYyzDNgUnBXrssOFczZjU+9Z2KVLfaJvY8pumclBGCAhooUt8+U4vVdEzf0XvfiJSKoxR/vOX2W3PnsgSAJIolHglIxG2Gi4S7l2ifXtlr1LgoceGQLtbNxc4Ad6fypIssUY8iNy9csozXMgeLvDtEjBuR0NABEc8BQjmNDEb0D5POEkWNwKHKGhkMvFVWr0kkIRsYp60YAfKpsknojlOa44IhbkXsr8lqJyH+AKBLxCBAXOvex3kNUTDmvEwBcRPAuFSGm+0kJXKS5ljoL8g7NHK684a14x+Mvxxc3Gmw0kTvp5Y+4FD/+gesBBo5NOnRtALcd3MouMv+Um+wDJ/p+twE4gwV+dNEFkI+5tlPn8fnNFr97+cV4+tuvxduuugqXXfMmFFtOAUhwwLf84euzkCDEUECXNxj2hkoTAAeKufllQLHhAM/oysTSJwQ2JsarLHDb3PgMONEERIAjW9XGggKMriBuSUOvqtayWNGLLbiJKUxS7ENc/uAo7LVPyoyDeq/iYlUQI2mRn15cm5Dz5hOIjIchAvvWCoRRFAiYOfAwwG16RUD7qUc34h54iylmVoQmcQ0Y4as6TrJaleVNU894mwOEzfRar0WuB5+UGO2b8njsvKfvVEBCPkuCuMwxZSZk5LVZCyK4XQsFy6lL3igwXABdkRQDjn+7lFtv14Ok/wFQK5a6lMfO6AlbVcisV6NM89Xle7NzB7McZSLIh0hYY3yi5IKuVQ4OLhWRIYpKeKh9BMIBOVbOSTlxDO4cqOqiQsHIoD85XsGJMp+sYSDx5ihjX4qvb/OgpXc5FByrADaUnlnyABQx9172hZ7njpBZJ8mQVAnpD1OU2MjYGk3DBaKHouA0IXFMriEsLw4iEygF/NSfvxkUCDdc8WR8/nCNtUmLblrDLQ4j9e9uO7W2K/BPup1RoD3AyE8CqCoRpjU4MHgyRTet0XLklz9aB9z4g1fFqmTenmh+BzLYiaDFTgDEDU82rmRJtOc0CKttAjsFSGlSO7CdQqbSX3ajsn60ze16ontPmxdS6qFsjO5YCb/mIRXy2PTH5RxVLcymDiP4jYKi1fGkemByIfdohdM8uZmDqx26hZBc1w5+w6M4Fnnyyw3KbmsRwPb6LgKwXHKR2opzKvREQRH1VIT1caYXgAIe1bo1/aiw1hAPqRdnG45CxiHSMOTzxenikldFK9YlAcwesTJemZ93jwuf8nGU5jeUjK4yio3MhU8pd07miFURkrx+VSTE2k6WpoITiYGSI+hT+jVKoCL/gZxuJ+BWys/cl5HBjlyIMXgGQksIjYsV4KYebuyj29t4QITGlhufKs5lAKSGJMzzVKeTg5JYydqTQkXy7KimPj4l/R/KWDwKiO8PkoAPpTADpsu3pGswEg7FQYRRF8NlnnusjTrOBEh0DSWPWsxe0DS9NIajM8YsAKB4zJ9e+RQcmXRYn3Vot6Zwi0OgKrDrzr8bjU/i5260l73sZbj//e+P4XCIb//2b8df/uVf3jPj/Sq2M0rgF20Nd+wOrFKHKjQYjTwGlUPZ1RjNxqjqKdB2eNuTLsQz3nodurbDXzzp8p6g3amuvWzcmuuc3IiuJhRbLocEJh6uiqlxkj4mZDTa5i17exFpaTdTS3z+eAEXSkwUyFacjDWlhUXQEWV3LgN+Nu8mMFawHDd/TVE81MLJx0TA0g73JH0YwSTu1FBG4dMuAOV67MNPSV3x9sdN0kbbGWtcBLSWWkV2Aff1pr6g5rzR9l50A74iM4Y4J0Iik4WACJxoIfavaavOiddBc7lV2MdsBC2Uk1zOoeLIRljkczU0knjU2UWLv6uygBdBHAsNcX/tAD3QHoC8xk34QbkaPEfXs1ilTOrl4SqmnpHnZM2nOTdgutC5SFDDkcM8tD7Xh5+57D0oIriN0zslYxYlQdDwvVCRCE1JfxXPk8yrYApS2h7KdA2x0AVQSMjKjnhXClmrfcQ9zDqQ/0Vx6oUZgCzIjTfMfp+LE5GSd33k6qfgkuuvwWLq/5qLn4xD0w53bLbomg5UFUBV7Lry72aT1M4T/Zxqe+Mb34jnP//5eOELX4i/+Zu/wb/9t/8WF154Ie64446vwB3887UzyqVfImDz2GHUzRSHDx7EwuIiiuEI1Z792Dh4OwBCWC/wuQPR7fi4//lmNMsMeNLYq+PkkrUId9PUdcpAN+KY3y+KQBV5uc++71Hccete+M05NK211Bk7W/jibhV0tlDDagfx7wgy4rypp41EBGtkrEsblOS8p+MYpk/rtga2oe01Bi1jTWAyOxyJmQvQkIdswE1QSxNATLlL3zXLYllRVgyEOnebSR43V6k6KKj2XkrcnDKlwtm4fa1iZKsZWiBc77lr/FUEK9TtyyUjEOX0QIZSI7NgCNI9xY5zNoOwCUr+PHwWKADQLrNa4tTNhRoMIFOenQId63gDcs+ujiEnEXZEWXFSIShEL84UGEoCMd7j3NwwRQpdJ+4IViHKLLXozQJPGo2kuPEgxOMl5U3mW6oFEoDO5zRPNjwaLj5sqWjJZnCuQwQuClCPOVffS0oDe87rDdC/ZT40rJLiHVrrQrJKkpBmJEEyzZiXHiBRUhYJcIn/AQ7wXa6pEGtHAv/4uVvw0m/8V1g/egR+eR8cgIObHSZNQJjV8KtLO+rSu+0k211Z8XfDwn/JS16CH/3RH8UznvEMAMArXvEKvOMd78Af/MEf4Od+7ufu1jBPh3ZGCXwqKwz2nY2GGXvucx4WlpZAvkBoZhjt3Q+Gw8AX6LjFq77r2/D//ulN8JPIaR+KZLUmt7jm1WrnrPFYra5EDK6gVhdtevAK4/CxJbhRC2xF7v5QBSVbETejxvt2aH1K3h2OS/1obBHQeLOgskPFWQmYVzQASOxaKtdRiqGmr3qI995uczyfj1yrRN+yNL8KN0Cg5KJPc9AuMfyE0Kx0sSqh6EkSX09GlpRwlT7DIKYs9uLLVnkRJcC88KooCGAtKSl638lboa79PBRkj4J0JoKA9HfJmVehLOEiEsGSnwMXAE1N7FmYjtNas7gJReJ3UTlQ93ZAn+yIzPiQAGeIygSXrJkPxOjVfejlyXMkuVFXfQAYcX1JGVlOljcIcd0UMf6OBFTT1EUgWqZSmEZc7w4xHc8orWq1O5k/g30ANPSQS51mzY4E+FmyPjtqXX7fRh1AgPMJTNdEqU2JVle4A0LFoJoQvJBwMcIoP4fgOVU3zGuqp5yKEtWmMEpSEMKAjbLK+rwA4Ol//UHAM373XvdFy8DhaYdZ3aKbNnDDCjENaFfkf6Xb+vp67+/BYIDBYLDtuLqucdNNN+EFL3iBfuacw6Me9Sh8+MMf/oqP8yvZziiBP2YHrJwFIL5PG+l/7wfg4Qq6wNhc3wJVi/Ajj2ue8nhUpcelb3obgGRhlcgpYwb1DiZo9TmJgSarsGcVTTy6LqYO+WmsbIdRADZ8X1ga1LueO48Inz9O85mNwiFWpwXvSZ9z8cReH+LKSvFZW5FPLOyc9879Tc3Mic5Tuof5r+avnwVYnksKMe/ej42wJ2PxclRo1HIzKWtAEnhyr+bCmvooH3E+XhUa60QI+e/e8Ak6Lg1f2EsRq+fAVrbjOQePKAMs1jxFpL26uKUmvWRYdOY5y7WKaBWKwOZKMi/i+RoeSAauKDs5NJRM6LSeFTcgCkZC8FNwPZc+NaS7AYvwSQKbg4+/p2O5sJpSmswkcCFxdI73oiGFuVLQulbsM5L5SHn/NgzFgyREBwFEDOcDuknKBBGEvw9adEcVHskkYAC1g5PsEhexFRo+8DlUggJgScO1CpZDDCGkctW6RjgZEXIvFJVfV8d5ffuVV+DYhNHCYaNhjGcNmroFmEGjXVT+l9uIT+y2l9LU5513Xu/zF77whfiVX/mVbccfOnQIXdfhnHPO6X1+zjnn4NOf/vSXP+CvYjujBL5t1qBt1dQAaGURPJ5hY73GuBnAVw5/cvWT8Nhrr1UBaIF5O0kva/kGBwjYSS7otrzSj4IJGAtlnAyC+25yGSihv8HZ48QjkCSyytodBF2/j/mJISMcYTIDjGE4L63V7W01gu3zsaNL3IzJotD1Y9OVCmLf719ZzaxVFWKndhOVDudBf2LpK8I+6xpZ+CSrcHtIpQ/eEmE7/5mGJEx4QxXCtA6UHc48Z05CT5D3VrHoRTXS+NhFN724oUOJWMxJQH4yX4ZcRxWKOlmYEupJwDYp50ouhbI4Wd4SD7ekO/PrrqG8puSeW6fKAwNa7pUpKR6CaJfJYwK6fohBwY6i5KXLaMjHghNTrXn2HJVyJrgiRP1Zq86lccnzF2EvY0ihApYbHMYS1D0F2XhEpFJgPF/6YWDsNVWTmtSvKs7peTSxFoLwazzxjW+OREzpef/vx1yG2yYACpOhsNvufrP7xvG+B3DLLbdgZWVFP97Juv9ab2eswN+xEUVteXEIPrIBDgFDxxh619PUyZnNVmLcgtIikwMupxAhpHQkiVNSF9PdXOJOt+7Jncc297sI+7lNRdO25hZwGIaIRJYNdCehz+jH2uctVT3cmLnWw2CFvj1eFCWjCPVesDx1fXCg9JvipW4WK+X1hOliB3ck+ayNm9h6JLLy00f461wE9OZXBbQV9HbakoCmVP2NzLX0mRB6HpuMC0C29NVyz3Fb6Ujy/2MBnDwf1EFDRDYODI74BxH6POA+RW+R14u17AFoXroKKIn9i4BOgp8SAI98AFN0/bOEoYpMI6teAvG2mOesefcMLSijqZMiWOW8pExYKmJ5QMrrnx5oxCKkhV9FJYkHDExj8RoexPEx4v204zITrgw7dd1nit38zKh1kVxHQHyJE0LCMW7L5/WlXg/kNFWZZ/EGGCUyr8OsiBGnNEvl2ocSL4WK4R3gCo92awpa6K/d3XY32kkK/JWVlZ7AP14766yz4L3HwYMHe58fPHgQ55577t0f52nQziiU/ik1F9X+PVWHR7zuTQBEa0+xQMobZE8gpk1Ei4skzd+nCnRIVLLKSjb30mfTDb1NYacFKdYlm2O2lQJNA3SzORT2nLDX7AOJiZsna6v3bWuCwk5KSL9kqlg/c3NkhLoVNLzDaupZ4wJkY6TUPwYmDn5CefNsc//zzpdtFdLm21xOvb0FLW4kQlZcumnOhZFQCGfmUfhIMXJO6W3qJher3claSSlaQn9s5kU8IKHMPPXB8ArIs+AipuAFY6nH1LRY0jmMusiVvxC0UFEfWJbGVwZgGBS8yF10t3PKR48FoZK1KuuuTelt1jr2rIA4wR6weX8UGChpeEAOKSFavGQr/wXKVrIUH5LnVbvoMQM0Do8ycTQMu6ictaRlasGIFe0Ec5DGLN4G4pRum2oBIFDE3mwWoNaBJr7/DsGsuTndl5MibUGoYKQ6EUmBcTGMY3dWLbWcAJxNE1A4RKWqm6dZ3G2n2noFpo7zcyqtqio87GEPw4033qifhRBw44034oILLriHR//P274mBT4BoEEJbjts1QF+SvCTVEhGCmsgbaxVQFjoNN3HCj9tYvk1ESQkObeuttIoCy09R/43Fq1tro6CPDLecdqosxLA1uLufWhu1F5SBJAw6Ql3e/rSuuR7Atzc6/aqfVGJ8FORyDvcj1h+MnZnBG2y5kTBYieWbE6ZaVdCFPQWZGa8BtKP9SDQ3PzqRizWVjD3b6bP5tuLRSceh56CIf2YOdvWrEIHs7FLVTvKz0QBgIReumVm/RNhmMcPQHPvwzBE9LsoaKmojObKA9Cqbvat7tLNyX0E1xs0mWtpGVqpbpdCWRoSsKEBmfeU1UB1HLvfSjXs5T6SkJd3RYoMuWkcE5eMbhj6VQyBGEoQQKag7MXiTsA6VfCkMI5ZMDwI6JY6hD2RN0OzJaR/mTNJVRTPTUgpt5zXTfQixX0jVH1OAC5E6TPKe0B09xsMCptyxT98w9vgSw8qPXjWIDMk7ba71fgkfk6xPf/5z8erXvUqvPa1r8WnPvUpPOtZz8LW1pai9s/U9rXl0pdGpKQ8a5MCr7n8UjzjLddH13si+yCTJ+vGPls41nKe2+VdB6BNikNjUn1sXhMA2Q0FwNX/PDcBo2la186H9fEAImRSGKIfNxZKXOoLxIDsip0fK8x97uDOl49CGS3XHgFKb3widFgVJALASy2wVfRSDHvoeB+LFCkwz2SCybgkbqvhinllw/5pYs0aOpBN2M4J7D0jx/VFPoo7eK6Ofa8PtWaNYsNx8EzmPjn23auyZ5SBHge/Fb6U5oNCCjOZmxVhmO4Vkl2Q1oau54RaJ1kz0rzNv4wyR/jpnQHlscS2UwxcaXalUl1yV/uxS3F5oBukp+ZYUzRDETM1AECIdJQSmKD0zDnrIj5v6iLPPgR/IELfQVNDXQcwpTBJwUrj7IYd+FgVQxlyqxrCy1Oh6yxhPDRE1UlBLc6IfEZUEqw/X3SVhD9QkKUqDHKPwNsufxIOzaZoWo9ZVaDdmoJHA5DfSaPcbSfTdoAdbfv+VNtVV12FO++8E7/8y7+MAwcO4Fu+5Vvwrne9axuQ70xrX5sCH4gV9ZZGaLemuK0N+B+XXIIff/Pb0C4mY6DIPPgwf8c/MJe/njYqFapxYwtsyE88MK8gzKO4twlU4rRRo79528PBfdlk4ukiZObBeFxk2lmmpKiYa26Lg1vTdm6M+qvLm/FOrns9l/O4XAfwNNLrMsx3cn2Clq+VnHstJNTz5affRSDKXJEdoHl2nDdrG79XJ4yxrtnJnJAqCJYNT4SwFfQatQkEmiHzIBilTFIMRaBLvn2P7MblkIIdqwp6mXPx2sjztfdhFBIesBIAsRORlNaoWNAioARrkDwefZBd+lW8PYJyB2W2vGDoeRMo0QmXgGQqeICT9doDZIr1LP3Kj6QmJjxBVARZr8FCNpQUOHkooUSmwy0ZruqiknO4AgVTKyMNRBR9JEWAktJtnWkalw/xpRQwpKD6lSPB4H6kaZEemeZAuO6yK7FeM+6YMjabEiNPWBwUWK8L8HgKLI120fp3twmW40Tf3432nOc8B895znPu5qBOz/Y16dIHEF+esohldOsGhzZr/MFVl6FcpwymkhzgtPH04j3ytpogvTCFRWrO6Gbtgbvmhfk2/3Nuva7TJj1vdfTcyZzT7OwClnj48a5BIbrQBSXcA94BPbm6zefP/YPUEyF4gXk/u+lDN84mI7ItoE9d6XKfas3OCR77E6zFbW4yUKbdlfi7MCD2JhoaNrHXcQkMOe/lUYtfLHf7POTyae2o50PHG93YfpY3IwoJvKWeoXRtIfYRhSPNGwSINnNwEw83zXTKvUkWoVNHWld1Qxu3PIgzQ5ys+45AJcc68EXQHHjuXH/uWhc59TsCtWksEwc3dXBjH5kIjWIkoQ3XImdPpPkMJStfAwnnAJJgFd6EOobOItV1HLesZZLwF9CrvUAdAQXDDVp89zd9LiqTU5e9HQkDIIqPS5UD9ZptxnGIla4hGoM90P1BlDFAWfX0PZGwiigoDDzpzdfimddfh3uNZvjJd78VS9UG/uOfvhV+UIKbFuhOMdC827TZbeh4P7sttq9ZgQ9EoU+O4JYX0E0b3L42w+t+4PIIrJo6dZ9qyVDMWczakfkgxfzCQmdAWdsF3nH/NtJC3dbiVraueHOoVgyTZihA8/c5/mvj2HI/InhtjF5j69ZSnn9DzHhtPBphTimQe5onwhFgI+Xz5b4lRY+9KDXILl0AijLv0Lt/4ea39eUV7GeEcuaVZ+1LxigKllaqS8A0IdXZCeyjILQgdLms8VlKyPReDJ6jspWBgumeJFbfZVZBQYALL77eZ0jXMehxjVk3Lmd0cPIEFIYWNglRseKZESlwu8SWR9JhVuxIKIa79ELMXPyZOGDqIni0IfhpxJ/4SRZqGqc27nMBsjElK7rI7nylyZUUuI5i7J6Q8/4p9kMzB7QU8Tae4VZrhMVOQ1Xixg+tw1989huBjSIq5EhrP2UkyDiCh8b2xWuT14VY8GatyRpMx0fsDeDqnEYpcyOYBVv2mDj2d8l1fwx4Ruk6vOSRl8c9qizA0xq7sfy72XYyDuZ/dhuAr3GBDwAgAgoPtzhAO5nh5qNT/OHjL+2RtoSFyI8vaGytsW6tSEABdQAikKjMK0kFG7BNyEdB11c3bYw6CyIkohLqd8PznRmlIQkF12GbzKYgGw9la2anPoG+3N4RodZvEgpQJSJZ6ho3R/xfXeoy30YZoZYMCZIZk5wfYKwsYwXP61TB/C/99xQEUsESwXHxGAEQirdB6W1DGpcBemnuu0yRR8o6SJMhIME2gTCNHBX0viD4xerXIj7C6eAYrka01AUUSsiFktJ4nAifBLALozQ5jsGCzAeih6BJJDSCkk/gNolXcyuaLmWsiKTVSRGYtFZdLalvae6KrGDkWgpQwKJkC3DBCMP0XlnMCce69H6SkPtdX7l1tUOx7lGtOVTHYpEmv1mAGoewVcKvF1ERkHAcA+5wBX/bIOIFRHgnCmEAscTvqAOqoM9IvAuSMUBdfJZCnCOeBfEEiYCnllRB7WUaiIKAeGwxjv2IEvrWyy7FkdkSWgbYuVjxM+xa+He73RVCf3dqtX3tC3wguverEm5xhGZS4/a1GV5x0SUxzjylCNozC6NHHWuEfk+Om/g9MTQFSDayOW/4tt+1b2tM7/Q0WNyG/WOBLMAAqMUtpXnjhiT9soIV51PWTijbj6cdq1dg7nCJSRvPyXGcBfFvsf4E62Bc59l1ar63Y7HzO2e9I3k07EVzqD+n1FlFoTeXIgikz9bE3tO4FWsgKHUrSNP1BLgl/W9nIZz7AbJHRoVeuh8RLukYiPAUl7WpEc9tdO2jdmoZw1xbMBagiLrvPee0KCRWL+5uwVpYnIIorQpQS3H7WO0vpzeGIlvyouhYRbAbsj6q/DxTBkvy4uTqgRzZ9qYupSZ2GOyfRMFcR48HU1TGIqU26/yqMpEAf64hfe97iqXJECCGeipyOmIWJpEciZXiWObmwz/yVNz4tKvBnvGapzwpKnMJp/KFzQLrtdxQAAcGua+Lrfgr03Yt/JNuX7ugvblGROCqgPML6I5tYr0slKrUj2OsL1R5w91ZKyQQojsQgFoOVFOPkGTH/H70rc7UXerIXG8nAUzRmtJjCTnmn2KFgNkYzSInRrbsk9WlG6eNbac/e16F3njjlyLYFOMAc15IBU8EMZ6OsVgkQTxrqppY/gLqSyj7HnAKyMpA+t1SH1ulTN3nhrlPatFDriO/unxenqysCDGhVyUOjJ6glxi1NNeZ5xTMGEU4GMuW2lQrYWCEIXF/TQDqfoag4suIGyEf89GpycC2eN3UQaotzxbkKF3bEIcIbcmAmMacdl/HVDtRuNhlkKs8awmjWM9OSEqcNGoAB5dJaFL4RrwN1GX8g+Iuugw09TPAT4FmGWCKFM2Spz88Z4x6WmB2cAEYBJTrkQGzG6bCQmadUR1Jn9B6YNTFokEFR7pdjuMmBmjq4nP0+b7lfWMXs3PiHCKHAUV2MyeGPcZ3vOb1aVEACwXhNx9/Obr0mGZd9C749JzbtgMNK+zy6d+9dldx+t0Yfm5fNwIfSJa+d3CjCu14hv/+yItx9oLHD7zz+mz9mo12RxIcZCHDHso21osxG1na67MvV+wv5mT0V6iaepSVAmd28JB/tWldKvDF+rPjENe055y/vO0ms5CyFq/FOvSambeeN0TngSPFrFGOtrnnKW+ekZEuH2NdpqEwf4vQckCwSHdAx0ENbRtvfoachaTMo88WvH2O0SUf+82sdvkGOssXH3Iuvt4D5/mR6/RCLCwx5qhMhApxzjqgSzn41DpwEevQk0NkjVPPlMtcCARNs+ulmkn+vgHuqWeiM14rwacQknITtSQv3BNp/cs96vMWJkWZbxGaRjHy03hNBfDJ3MhaJI6sjJ7RjgjNYpxnWwUvLHaYHBnFdEACyg2XhDvFioJAzsCQAjsEZdlDogWmghEoKl/BRUWqM4Jc10lKMdTsk/R+wEEzTFwT4/rtQjo3hQK2GkZgIDAQKyoGcBvQdl105YcAKr+utuLd9lVqX3+rjAi0METYGGM2a1APnaZVKfd4oLgxbPp+XNpuzkiuP8p7CWAExNyx8YT57+ZdAP0/e18Tg8Q0ZerFCWWDVVR5yJuV4A4oJAsqCQotYeoQc7Dt0EjcvsYzYP+XsZKhE942P5SVF4M7iBv7HE9AGrMVjlFg5T6Vwx75vnVqAkVhbwVsshQlVi9xZ8uNoK514TRI8xgoClx57ooNMA9FEeKUlQOJi2chAXXjxnFCK7eJ54VCLMGbPRKUlUmOgs2NIypePEpu2MVjUtydEC10LkMeGxAVPREyHRn3PfUEPc0SK6BkSYiygijMJA0tMgDGeXOJaAdpTkOJvF4VtAcNd3GimmW5RzmkzGlybubgZ/E5uDbOfTvinELrWUGCdMzpmKRwDfvopdOyyvL8ZD4aAproBaDC4HE4U2NzwnTosk3ri5r0uQD/vJ6q1wkVJyUozt/bn/ZkNAFwLuAZ174Vv3XxZRjXLbq6BbcdqPCA93CrA2jBrN12yu2u2PROlWnva7l9XQaOKBHzcBcw69ggnZER0NM4NZI/DfQNb7V0E9hKaVeln7QBqetPBKIoEOoWhxGi2Te1k9Hd61+6IChCXH9cX84qGY2kIDUEt+UzKGluHNtcYDu4xHqphNw/hr2hehXfPOd4tCoCCWgGAFoIxiLkjYVv3dIC3pMu4mYNFc7CuqeWOuVzgTmFQWL35qZV2COPuV8bIFr6roGC6wQcKcfY68r1gqDYxboWLIDBECiRkgdCFSLwTuYoCT7eKMHjAph40HoBTGItehIXv+hXtYtx7VQuliVunlL9qKFU6ha6fiMhFZJSmRU1l5QpZ4VpWmPdIKfbKd5C4uIS2hB0e4NIRTvIglzmLCpjGTkfyijM/TSu0WKL8tz52K+fUlJCkoVdm/WTvDvKZmmUVQlRoIsLSvLrKaXrqZIm50imAcm10/2WUDDlX/3wU6Li4xgfeebVWC09lgrCwBFeffllmExrdONZdP0vL8AtDuFGA5D3uzn4X27jE/zsNm1ffxZ+akQERrSAcqyV1I2tlkl68d00xgB7AgbILnQpp+nMZmMQx7Jx9K129Dah+dYjbTFCTz+T/lLnsqlpTDcJHAtS0/UvFiZB3cDZ6rbS0Q4oYhiww2G9uWXznQp45BBBAECkfYt1palP5pzePWecU+5LlAAbIye5cLbKNN4P6SdashJ3p04qt+V7kPGLxabKRJp/m9Yo9yzKo3hKgo8elSgUjKJIpAJOlENF5jOiW3/mVCUnMDgh7blgVQSE6ZEZqhgoziKFUTTEEgjMOXVMn29a68TQGLUi79P7IaGdYHaMkGoexbTB/LvOl3hX0vvAJcAcFRk3jeyKfkrq/pa5DENWLAh10ZsQqlQ5MN2Wq6GZAiLghZ7XFrEB4nVFkIeSI+hPMkSSB8DVQK9wkmRlzJO2SKaOeNT0Hhnf9r+uAXXA9Vdeif97cIJJ0yEw4ByhbgPa8Qw0KEGjwa6AvyfbXQn2XaGv7etW4MM7UGBszTq85pGXYe8CITDBO8Ylf/SWhPQ1G4hQv8p7qpYnRcsrxTaFSlSJOYzluKOA3EnQGyEG5C4E8a2KgAhMdSnHzd+PCe1CX+iLIHN1RD53A46bFoBcM9woKKb/7CY/vvdBbzOFCaIVbtwMDEVjx07MNTTWanKXrdBP19TvUkw6qmxzCoaZNxF6GaRmnkcSgqGMz2m+ZK+mqFEULqI4iYCRWLxr5V6hCG4GlLktegGQY7qcAGGGZY8CK4ucCL5ArIxtQdD+KeuBZrE8LYOU4hmOIyJfFDwA1DmTkggETils0o+J1yszoNyDWfuCdJc6Dfoc7JrwIuhFkQGEGjdUMSYvCk458alevFPSnnbB9Its3VPISoYA66TaoC1gJB6kUKCfVivrrIx9uJYQJg5Sx0E8ETIH3VDWXlYYFMkv104gQ6EKBuIY3nH5lbhlo8Zn7hijmzWRZTAw3KgCdyFa8rvC/h5vuy79k29f3wJ/cYRmbRN3FMu4s427BgF4yfddKh5m7KmAH3rv9T0BqMh3AG6GeKRYQz66HrsBUtwy8c/PWfpWeM670HcSYPPCvVcNzxDTsGcEZMGBVg7K31Md3aRcJCEs1pBYpxI71zhoLjBzvCaCNyPfAaGFnb8vuV+J3/ZYBm0sX/7Wi4jrpf+nhjWMNyAPiownRBQH0rlgQvRysCHTEecDJRe6uOfTPFrgXTCWrc0e0CG7qMiI+1srtgHGesxAM9fGtDZXE2iG6CEoDQ5DwjViFYviIPXou6w46Px49IrTaA6+UVR769DyTbgM2LN0stYr5pJglwqSriGzhqIgZwHodQQ3AToXreluIfXTQr08cm+h4qh3dcgFbeQZOGg54ZgtgRwRUxBjekYV60KhBiikSiBxUp5T2p2kDYKVf8CmW4Yyptb5WQx7CB/CXzz3anz2yBSfvGOMZjoDOQdaHIK8B9oOXDdxvxlWJ3qFdtvdbLso/ZNvX7cCn4jACR1LXYhCwTkwx81OQOIHJ4xXPeJSPHC/x6Pe9Obs9gPUTanWc7JQugH3BI+fUGZzs4L8LhaqNHuOuL9FCNt4I4zQjgIgd05CFOSSkE/ubNcAoRRNBipY/Cx5CZLA0HEYt7fgAbYPGFlApk0fhAgyM/djsyCiBQt1Hdt4ffY0sM6BntNGgSMx3Z0adcng89COVWkT5UKVhTwmAYPpfUCeKfW8LOrSTsdRCu+IpRkKA24MmbwlGFe2hmyQvAKcrN4QFchQ5r5DhXjPCUAna02IepigpX9lzmXNCAWsa4BQZXd6TJdLXouGetY2IN/nZ5bDVvFz3wGhEKUpZRn47DGQwjjEQLPEapXFOH+0riWPP1r1nOe4AJgzYM6GcahDTh2UwaZ3tAembAz9MrJHAsTqjZHnJex5NoODAnIZZ/HoOOAv/uPV+OJajS8dm6EZz+CXRkBVZCu+KkDV1+02+8/TzLtz3O93G4CvY4EPADBkF6UDFkvCf/jgm/E/v+tJWCoJm7MOGx3j6CTg/97a4mWPeBwqH0AgnLu4gCe89S1xZ07UqLJhAcgWhUGF71h6dq4dLy6+7TxJywJ0ExJrNQyMUJbLJEAWl9mqFcUEDHXp94Ru6ptC7JMairXIYaxoe30HxLQj6n2eJXweh8SpNd6tAjUD13peEVEWvCCh8/ci7IUIhV1OiZN7nccUZKXD/G08BCKoqIV6Kaz1LrF8ETbzbkMKGVMxn5HA8oyShSzhI9dQtO6b/rVUKKdruTopacQA9cMgIlxdYgqUeY/WeQSwRUWV9bkLJkIEsq1Rv12RQeYiMPdKIRbgi/cCZTAkRs6BT8qNpLXF+c1EPKLU9IiRWJ51zgqwxyjwT55h8k54wUL4qJTqeJIiFhUt7ntkON+3EOmI3Oak54e01qqNePz6LODWjRrttIabF/a77Z+l7br0T759fQv8qgB1FbrJDNOZQxiV+L3/51Ic3aqxxgw/WYcvK3Bbg5sO08KhXVjGdP0YNvigujcBaHqblLvVUHEiTpFNDthB8Js2787f6Xu53k6aqwL8stcyU3SnrAGtnmetaTZuW9ko27h5s8uWPBkhAph7YjkvW9+9Ij+9dDgjsAOy4gIYdH++H41Ta1wjfx9K7rno8wWhFlov/GEwECIIFe1vhL1aj2mOQpnP7c0bcj/Sv3hdNLXNggwdjFIIDfewsLBwTmHzsyzILGBQYtoWTCgtIMb2RUDZzIFIFxs9BEEFn8uhjZSbDqLe/fQ8TD6S4YQUExfgHrVzc5Ty1qmNih2M0NY1msIz7NK54s63hDkcrxFBdcgehHQMy/OVZ5dCDOp1a+L/vksTTmlekYR4HcehIY3kHSAG/vo/PBX/zyvegL/88avw71/xRoQCuPbyJ2I9EMZNXGv/cHiCaR3zDWlX2H912q6Ff9Lt61rgExEwqkDDEly3mI1rzMCgoogg9nqKITdoN9bBIZJkDLzHbP0Ixm2N33zgv0Q5GICaGf7TP3469plcxeyzaafWE5DDAcfx5Z9I2OumNH+Q6XI+ZCAocy3/KRsyuLepsiDPBFhWsaZSUUNRWaBsJQlTn2IFjDUvaVhkS+p6M0CeE7TIgkmyACxwUYS9KAPicmaXLTCxlnvnGoZBsf6U4U0UFEmVk+fRJSCeEe7zHg/5n9P/86hwjYETlOM9fm6eoayRNAeRHIgjEDHxH/gk5IJmh+Q5mU+PE8yF3F8oDRYhWa7iOQipgI0sEukn+Dz31JEWE5Ixu6SABN8flyDyYyGi+MzlWKXWJQkfsT4bJigJk0vuchZlM+Rn7Jo030VWoiQcQoCy9YUiro1QMsiRXlPWgAh/VSpKUZYog1YT/z+1hH//8jfg3Zc8HpONGn/01Cfin9YD/uFYVP4ZAAJHHvwuRDAedttXpe0K/JNuX9cCH0hCnwg0KIFBGTeczTFCF1AOltFxh2r5bPiFIRiMtqiw935L8J4QmOECMD18EL/5kH+Db7z/vXHZO9+zDfEt6GZXU4wbW2tVB3LXq3KbsO9Z6PFH6UTNMZq/LwJHrC75nqCC2brSuYBmG2Rilh2UEmtYC2DKZigYa90qCJSAalplDshhEeNeZUrALGMhWpa33ng4Czm5jioAyfWr8XLKfQiRjqLUvekD+Vb0/lI6n2slrc/cLmWgWygZjqIiZa1+naM01oiSJ7V2Q5VSFUP/2lb5EJe3Pked57jWBAEvQrsdmbVhnpnMbajSV0U+IKcRxjBEZMAzykebxxe8ZDFwFOCp74j0T0oHKPM0iPeCI67EJ+588RqIl8a64YXYRj1mch9JoZZQiiVOYsms8HktqDKn6yYrpqJIsgPqSY2p9/j8jLG5MQP5BMgrPBAYaFqQd0DhsUuN+9Vpuy79k2/HgTl9HbYk+BECuGnhRgPwwgLawSImfoAxe0xCga3NGcYdwRUtnvP+P8HapMMMiwjL98EXJgO86eLH9bs1xUKkgM2OVryAq+bkvljBx9UH7KYHY/URei50EbYSB1USHOlD4ua9MaFXYU9eHKlqJsJovkhOHIdRany/vKslZOm5iyn+M0+MowC4VMlQBIa6xs28kVEUVPO3m7wcb0BnylpohKt4IaynQSxEDXmwmVdb5VDK3hasaZrBIO3lmq4x1zZzrMRBDv3NKil0ZMYtAk1c7L5GFpwDVoueJV1NvCRKeGOUjgaaPqdAuDKD50Rhcm36SS54IRTyM2glOXbJ9Z+ekQhyUS4lhc9JFTrJMgiitLIqPQCUgMeZrAJNiWTz3GXti0D3UXnqkkdDMhusUu66fK7iCVLhnZXz9uG2jrC1NQMVHrQ0ikBfoij8h5X+vdu+Os3ukcf72W2x7Qr8+eYc4D247VB6QjUo4LzXetXUBYS2w3o7wG98z+PBHIDlRXTeY7w+wReOAdc9/gm68ahbfyf2rvl2V/78bf569ASaRcZbIJmNUUvcXPOpKf6tfOvCDkimP+RzxUsRXcdiosUD7MulMdp5RaCQGvJJkEj83fWvp9d0mbWvh4GwQlzKsEpanJ0LqxBR3yruue0L6NtgLWqNQhgFSqfe5e8syl5rvYcsxKRKnApgZyxZE9cXd726n0kUAGSrlfN4pC85184lE5TuNTLh5fFTiMA2ZZaTsInnnEKXBqBI+iYKcTLKmoYa0ty7BkqL21V5XiKQLgtU6cvPzHOSORYlMilDUdlAT2ES3oCeZ8XiWsRTIx4OAyIEx+p/rs1hE5kYScF0s7ieN2YdNlqOFe2G1a5gPx0bn8TPbgOw69Lf3ghwywsImxNMNtuYvscMt7oUrf+2Q1EVQGA046gEuIUBSmJ0oUZZt1ibjHLKT9qEQhXgJ85Qru7g1pchmK9UmOx0vMTdU+vJfmMlW0uRi7h5yvhgQgAs8UvmvotfhIwViIZMRvOzTcpi3JxJwwi2aexaLDLtNI9XnoVF11tFqW/5ZivVuqwVJ2AVH3u/VgGQ51QkIeD7CsS8ta/C3aeiKjblUoZTpDBOAib2PBLiLWmxTVlRIZbS8wSkx6ZvO08yHitgu0FSrBz3mf5EP5Pr2XmX59JmIJwtUStC3HUSBogAQLn+NoWoANpBFOrsgWDXT1I05ZnYWLvckwBFQ4VUWk7Wrnns8lxEqTXPK/aBSOjkMrjTNVnpYB/7oAZAypIgBt73jKdgbdri82s1mlkDMGOX7/70bHdlxe9a+LntCvy5FivqEdzKAtAFgCMwJ1LxAqn6BxZ9g61RiWarBrqAilocvv1mnHv22eiOrqtVqqjvjtAtd4AQzQARoDZvtauEz633kXVR0/Y+VIjZvcl2a9PZxPpNAk/j7nNVAnvsdyIcETdftZpTWqLchv7SEUhzmjJQrZfidrwX0gj7bfNg7s1u9PY4DWGwGaeZj1BlgSvHaT64ESQAMtiSaU7QZje+PhfkmvMWQR6kkqA8H4ay6PWsEKM4BDtuoJcSZ5UFaVKeNuIQkrXeRgpbceOzS/H4Wtz9CS8gXoV0rlwvUHwvVGGS+/HmuDTp1MX3JAygSp2EG8Qy73kiUp+C8BdQoFjwQAbtSRgoKGtexk/EZyAnoIcLAcfxi7VPIaLz/TQy63Gi7GUXPSLve8pV+NShKTamDdq6BXcBbmURuzH607TdlRW/K/C17Qr84zQiikAc21LMrhnX2BqVGSTFjLassLRnL2Ztg81jh3sALgDZRVrG1CeNoc6Z869/2L9BFwr8wMf+Rs/vgfXuYs+RmLpytJvLZFf2XCfJ0hMh5+ucr7+jILIClua+Z4NYF2EYAJ7bLCX+q2EFaUzIeYRmzEag5uPyr5r2Zyx6TdWy7uKEYZAYcM/7IEqIxHPNGJhI+1algKBFZSRWLWxz6FI8WwS/zKt4TIwiYj0NPQWlBVAkoWY3NXFXJ6ta71e8K8LGKFZ0+l6oaW3qpc4tQyljtVm3eOrbT6PC0pXmuaVQALUUXf6ptG+XKtcJcHBwNGUIlLHgDpAVHr0/7ieyiGJhhbefZUVKnmEvlNSZ30PuR9aAPPNuCPW4SQGet1xyGf7+zgnG4wahaUFVCbc4VHDvbjv92q6Ff/JtV+CfQotpfAOACM20iTi/hQFQFmhAKO/1DShmUww6h9/6t+fheR//gMrz9z38YnRtCwZjMKhSeXtCR4TQTcFM+NRnPoNbbz8KbxQNNfp3MHN7Vr9pIuzjQX0LMQqTaG0TQ8lOIDBvz+gWQy+drGeN2wvNu4R7ygVtGxcw9/JJKMC45EnGksbYCyukDshYqlYobMMzpPuzFr/GscOcoJhTDMSt3g3QA9qpdd3A0Oom93CR7mFGvT6UzMhkKcy7423IQhDlUixGQyrGmpX5kznoqmzZyzgjIj5NrfzvWIGY4tkQi16eW6hCj1FP69BTBgEqxsCRhi7UNZ/mSgQzdUC5gR6hUDeA8kEEZwCRyApQxD4ghkNEuQqS/mfWpcsKg+AJtilnyl2QrlnmeWEHvOPpV+COcYub11pMx3VUJlajVb8btz/N266Ff9JtV+CfYiMiYFiBhlXvswBgxoTJuIPfdw7atsMbv+8inL9/EYOqivza8WA1FCYdY70O2D9YgiNgZfXbUE8bEBrc8KDz8Oj3/bleg43Ag/1VgrLmOJs7bVPbyPaVKv7ZCm4AEvOZ8SaIEBXr0Qhn0FzcmgHltDeCmgmQKmrRl97/TjEKhJiPTvaG+1Yvpyp7En9mpj54jFIeuwzJzo0RcDJ/Nh4s36li0EXXLwswLl1DBI7Mg1qxQa6awGtdvm4PByHTG/KPYjJdUjK6rOzZNEFCtrrZoZfGZl3kFvwmxXVUIbPhD5M1Ioqlm7kkvCNQT2PlzoQjED9zLdCla7kWoAbwDTAb9ddFNwCaZejc+NqsUYs3Seuiq/ruf7HWgfg/tVDmOy38k4S3KCTi/reIfamyBwAffe7VODZr8Y+Ha/z9oRmaaRPr1Kf3W97X3XZ6N7vPHe/73RbbrsC/G+2EGn9Vot2awi0McNSVuDcKLBQ+C8R0buAAl1ZiHYDF0mE0HIA6xmjYolgZ4eNPeRTqaYd6FtB0JahYxPe88216qW0x7XmhYgRvjqubz+d89kpUoxtkLi2r4QHJ6Z+bgm3WshFsCND87f5J6WvhfU/XVB7z5CUwiQBRcNmLythMjN3epw2tOJN+J8doVbc0b9YD0Iv9m9/Fspd7sMJIU7yMNyGUyFStkmaWhNRO7vpedoBY07zdSrUYAfUuiJAnjkC3uedkq+dJlgSXYqGTKmZWEIv3ggQZL0I4gfHKVIGRmhS7JyjXg4xPqtBFb4QoeVnREk4D6/1QxUi4EmSOjMKi65JMCmCdv1ZPCed5pgD86XOuwhc3axzeqnFsGtBtzUCjCm5xiF2r/gxruxb+SbddgX9PNqLo4i88wniKta7EFzzhm4dFREonKcQMbDYbmIUZ9g3OAkAatiZHCKEDCqAoHPwSYbQIhECY1S0+9ISLUc8A5x2+911v60u07P/vL3Ir7O3HLrnHfU5HEtctYLRmc74U71GmPdlEbb/GWtbPTJEWnS6TR72NEMaUp7VWHvcwAlDLtVfURe5V3NZynPEG9ICLEts317fhAgX1GRc6m/mUPhStTgAn0BoopcRpyCGeHHzmLiADULPjIwBUZ4tdjyMzPgaC5wi4E+Ep19MSzYjgSaCf85/u10+c3qeXrALOFjPUW5CFv+V7sOVyy82cVSDPQzIflB0R+RhnPExSR0AonSUdUefGIPAVYS8tAC4Y8F8aj+T+S2ZBqOLnt6/V+NJGi8mkBjdtJNOpyl1Bfwa23Rj+ybddgX8PN0qsfewIYWOCw8MSXzi8hWVfY3VlGVVZAgRUPtbFLp1I2XSu82i6BZTFFEATlQQCvAdGowbDUYUWq2jqFh+8+HI00waPeM/boTFvoGfN9IQ95w1XBVthhP28ppxyx10dy/2GxYiQoimpcLHWt7jmKeQqbD23sgiauUpslvCGXbTQulHmNxeqWe0/eScUIAeAIYpIukbI/7PL9yIxYHEzWze/utdNSp5a01ISl/MGo2xxyVKOwj3fVi8WPad0KSZAD05W+pzCIoLXgu1s3N1qWgq+K+JcU6qe5xrKbv+kCFAS7HHOEzOfWPVy3TlPjZLTtNA0OQk3BA+QT2A8Z7wgeXnn+XTZpW/vU76jNufsq3KR5kiVmuSJUtyFrj8Tn0/PVD0H6dzrfuhxuPnwFOOtFnAEt7qUqHh3hf2Z2PQdO8H3uy22XYF/DzYPhuOA4Dy6woMIqDvG59ca3LessbIMINn5AzdAgRJSr11aWXlsbbbY3HRYWCAsDULch4jAKBBoCAKhGlYoByV4Bfjrq65GPW1Qzxo8/J1/tOMCVyuVkIVKahawhiQce9arHDf1QJHR+2Ll2zg+x6H2rDkVTHKeUQaE/xzEavW1S6xx/ngtUxq1NyC5OfQ+692/dQWrRZw/61nwxp0cKV0BqWUfi7uwWvA2XCGKxnxGhNAcKxOhEToi3HpKlsFbAMj54alvxWFwfla5P4pC1ANIsfdQQCloHQPdKETBPnVKxCPCPpRAuZUFvnozQh6P4BrmXft5zqCgOVvUyBnPRG/MyLn5io9oTL/CEGkKL+l8uXy85NLL966N3gI7Rpfm5u3PvAL/eHiG8TSiBN3Sgr5fu+0Mbbsu/ZNuuwL/Hmzh2J2o149iz9nnYNoGhK7GcNZhsrUJt3cRdx46isWFEbbGYzAz1o6tY9++vVhZWcLS4gKAaOWz9/iH9YBuXOG8hRr3XQ7wHjgyqTAclBhWADFHjwABblCgqDwWMMRNT70azazBbFKDA8OXHt/7lut7YCt1B3fpXbHxdqTfKQvZbsAKSmMW4Rgt7L94zKVYXF2I9crTpklo4MMGOOEUAgoc2qzRjAmPu+HGfA0ZQ7KUbYYidVFKqUvejCtONvXSD+N9SQEb6t+P3KMoGwbUqFajuM3Fa5Hi2ZojJn0AOTtBFCMNK8hCyKx6IuRdQBSWMNYsZYHW88qY5zCfQqcAPsTzVNcSD0DI7HVZ4Yjfu3UXnyUAahPXPiiXw+V8TfEs9LIHUlxect8F/W5pgrthvE/HRthznjvrSQGSnBVlxvI9UBbmMgdCACSC3tL12gqE+TlxvEAAPvq8qzFuO3z+aIOtcQduO7jVxZRuh912JrddgX/SbVfg34MttC0KIszWjgLMqCdjTA+3mEynuK3eg5WFIaaTMQ4fOYqzzzoLs9kMBw4exAPufz6WHnh/7Wet7rBeDcAAPjMtcEfdYEQBd9aMqpjim1ZK3Gu56l1bhG1RehSlx3BxgNAxmlmDP7v0ErRNF4X/H78tkY9Y07dvyQHIlrsKw3SsJeUJBOcIt9x2GwiEhcVFLC8tIgTG2rEZ2naG1eUhvC9x9OgU55x9Nq797u/Ckz70QY2Ja7w4jYE4VfYrWXPVmRBLt9rxFbw9pU1AftYVb2LxPTxAsrJFYJAIZ5kLAbSJQiFCj4EgpEoSI9cwQVJ4EnBPwGLOWsXz1iqMsBXLVsZklAAhp5HjfQdwIsPpFfHh6BVQxckg3UMJFBPKCogoXYKtoGhxy9gVdyChGZkH9QRF8poejXNKgysm2RNisRw29q73Iyl8ovSJR8PMk7MKiQc4xOwA6pLSYZRF6/WQ+5t0U0zbEmvTFqFuY3U7Z9F/u+1Mbbsu/ZNvuwL/HmzVvrOBegXVMCJ93awGMzDc3EKxsoRB5XH+CCi8i4YHB3Shw/LCUu6Ega021yUPIByWMmYemDHwhbUZCMDiwGNQOHi3HVVMRPAFwRcDDBYqcGA0dYu/eOKlkT2MGR3H6umeHAIYDg50HHOn67po3RPBF5F5sG06wBOOHj2G+51/Hj7/T1+AL0psbW2BwGBmjLc2MBwNAQD79y7iziOH8Op/81A0TYMf/9Snkos6uqNj3nmUgkxGwMg98XahEL8QWRAPmE+9U8VlDswlQl5d7EbwqSs85aArEryIFeOsO17GY4Ur2PDEi5BE7l/z9OfCDyq0TYhBBLIIcwXKUUK8i9u6NS7xf1E2vQAAaGdJREFUkAFxwrnvk3Igfcda8Ok+m3yPoBT2SIpKKKE4DVGmJOUQMPn1SJ+nMbCg40VYu3wcU3azx7K56bo2XII0p+YZ2TCCnNMjXBLlqEpLJzqn0DLjzkmDrVmHWLvegC122xndiBlkybp2+H63xbYr8O/B1rgSGJZogLjbVCOAGbxcYG1jgsnKAs5aqrB/dQCKIhEAekKWAYQwt0CtMGfGEXisrbWoqMVez/gX+0cYVvM5b/Z0AnnCYFSiGpbRCk4COV6TQUhKgxFO879Pt6IEGy4O0ucxpPCA+5+PtunwoG/6RmyOx/DFuWibBt4XWJvOsH+pQtd0KKsBztq/DysrK2AGrtu7D1f+xQfBntEZ4Ju9rmYEIP8dww1pWGKlioWf0PjiclcFQScXOWfeuMylCE0vpi/nMABNj4seCEhBmS73IYJZq7jZZ5CUAbHegeyaFite6ssrT4FEL4psAYOSm1w8FkmhCUW2qotpPldDFhytYlEIei50Q0wD+Y6RqZOt0mVCQ+IhsTz3Vlj7mfEUyHCcKViTvARsvQqUlQnliEjXd7WkOObrzNcnkHtTNr50/+Mu4OiYEdoOVPrdkP3XUtt16Z902xX4X+lGBJQFmAhdx5i0ARwQhdYOuw4RcNbQ42DdYsbAtp0p/d0BmDCDpx2atsOwmktO3nkwGjMFA5NujMKV8OTRcYuSqohW3qExM8phicnGFADgjDt0757VeAyAlZUlyBsWGNgTGANP8EQIzPjGb1yBdw5goN2/D+9d2oNHvesdyVJjBV8pyE249ykKe9ck680hkgSl2404AJOuJ+51Rk+Ai1DthTB2uGUF9tkIRkr5omThCxZAhDwAOFNNrjd/c6CznnU/F26wx1KbjO6Qx6057gCqNUO8k7wiImTFC6LxfXMfACKmIDHcuRpK+mOR80rwUydkvYD5EphQct5F2REPgp+m3yXOXuR7APLfFhgo32sBI/OZuvjNfcTrcSQIEka9ZO2HipUhkFrg6CRgo0asX7/Li/811XZd+iffdgX+P0MjAFR4hFmNf9p0IJriG1YHKPzOm87+5QHuPetw82zHr3ttVPkdrPs5SbXTmAgYFQkoCIKn43sIAIAZqCcNRstDuOOMmwCQMQcZQOkIk5ZROmDgkTdaAorSYe85K7jhwscCDDz6hndm69Z6GfQCjFBGyWbd0ZIKqNIkxdZt/FuteYJasSok5Rhn+8wubAuoE8Q7wwjDLgtwPQc5tq6UuAZ8xn7bren5boZeFTpxsYsrX5jy2CWXvtQjMNgFagBOVeaUODF5D+Zd8FSb+Q4pVz2FKFwNuBSTDz5iBySbwo/j/81inkMv2ReiVKRwQRDFqI5jc4x+zjwSHiApG5qTL8oRx3GJ8qDWe3oG1kNDSMpgwj2EEYMDgUMXp3M3dv811Xbz8E++ndLKf/nLX46HPvShWFlZwcrKCi644AK8853v1O+n0yme/exnY//+/VhaWsIVV1yBgwcP3uODPuMakTJ4jdfH+Nxmi61Ze5xDCY6AUXFyj6ZloJ0PAQA4vp8rf+7IwZFLaP/tOADm/EMAnCM4ImwPie10LYIMq3SEOvAOoyH4wmP/ffZiae8i3vOoi6Jred6pERLdr0Wy2T9bSpZvqkQYTNEaj1SfHmq5qiUo/YvAtEqBKAtilSZBraVixXMg3gdTsMWmkwFJaDb9vjXWbixwsdS7UexDGOkkZu6a9JMqvflpPD5UWVEQcGA3SgIyKQp+BgW4CX7AT2J/xTR5DeIjgatjil61DozuZIzujIQ6xSRb+hQSXe5SFKrtosl/Fys/jcc1QDFO49Vnmu+F2qwE6fdJIegG/f4VmyEZCMm6J/N8VGFL9/7uyx+L2bgDtwFw7q504d12pjU+iZ/dBuAUBf5973tfvPjFL8ZNN92Ev/7rv8YjH/lIXHLJJfjEJz4BAPjJn/xJvP3tb8e1116LD3zgA7jttttw+eWXf0UGfiY1D2AJwEJVYlAWWCyyb7JrA+pZ9A2HDuhaRlMHLFcFRg6oHKFyhCXvMHCEnnFNhE0mfOHYDE3LSRDfs7tZEzjG+B2hGpWoZw2aWavx/+0tm+cFAYUDKgcsFPLp9vE55zBcHOCsb9iH9z/24j4aP6XAzVPnalnWuUiG0u96o/Yndj6tIJh+V45560IXa537lnuvbG4SmJJypgxuxnVOIQpGEbTajLdAiWKSEA6VCRuETE7TS91LOIBuAI27S+47W2vX536ozT/lBlBsReHt6xxPt8LWtVE4RyWFdMP0s3Rd8TgAeOWPPCkqH5MscBGAa553uSoAb/mp78dbn/94vO0/PS7z3huQo00BtCRDEppoR9CN26b5yXOxPBLWvRsqRjcKeMwfvROjRV2Au+1rrOk6P8HPbovtlFz6F198ce/v//pf/yte/vKX4yMf+Qjue9/74tWvfjVe//rX45GPfCQA4DWveQ3+5b/8l/jIRz6C7/iO77jnRn2GtQEHlLcfwvKwRCDCwhZwx+YYOHsJzXiGwcIARw+uo2ujqVlPa1QLA+yrQ6yo13YYVgWmTYfZ4ghrxiXJAG6ZMZY2ZviGPcO5K++0w538rsdgOMpn+MKhGlaYbExRDoodQYe9KwnMnhTXddxGFOPiy3sX8c7vfRQe94H35nGIMHA8dw5UcIqLXc9RARDd+64lhIJzeqEIZ3ELi7fApJfJtS3hjcab0zXE7S6AMkHIyzWksE6Qgjjitpc0OxlHuhcp/GJz8kOVLGFkFL8i6UMU3oBJc5PYf0jpbICmQapnId1L8AAK4I3/+XI85dffAjeJfbsOKCeM637zKZi0DdYbAtBhoWR4BsYTYDCqcPNGh1f9v0/Cj73iOrz7+U/GnWtbaAYj3Lwe8Fs/eikGvsPtmx7jluCEQ4AAN0WPRc+mMloufX0exgui4LzEky8cADInsQ9Oz4UQKsawALx36I7jWdttZ3b7arjtb775Zvzqr/4q3ve+9+HAgQO4z33ug6c//en4hV/4BVRVTpv++Mc/jmc/+9n4q7/6K5x99tl47nOfi5/5mZ/p9XXttdfil37pl3DzzTfjQQ96EH7t134Nj3vc4/R7ZsYLX/hCvOpVr8KxY8fwXd/1XXj5y1+OBz3oQac05rsdzOq6Dtdccw22trZwwQUX4KabbkLTNHjUox6lxzzkIQ/B+eefjw9/+MN39zJfE60A4IcluCjguoB6a4L1SY0jkyZanIHRtp2WxV1YHoEDo/AOvixQFh4cGNy26OY7J0IHwoFxh6Y1eWf3kDkTGUczus25KJmOb+HPNznOBuV3PpeI4EuPpT2LeO+Fj9PDNC7ucjf6gjtGKDkxx3HffQ+xyOP3VoD0wYHJ8vesQDebI66kPOKit/SzJm1OAGxapEfcyoAi2N0speuJUJbCMCkX3c+y1T3PEtdDpqfrhyqS3bSj/DmQhH1ylxcixFNIQGLwcp8vf/Zj8IUDx/Cipz0Cr/oPj9I4+qv/f1fg7w5O8Mk7G9x8tMEXjnb4h0PApw4FfH6txWcOzzCtW9y51eDlz7wMnziwhZu3gC8cmWK8McWRQxPcdusEt9+2gY07N7B+ZIwXX/kEvPxHLkG7mO/NZg64Orr/q7X4v/L3C+agMf8nxYUdEAasylv8PoZ1XE1wM8JiySh9zI0pCRg4oNy1+L82mo09Hu/nK9A+/elPI4SAV77ylfjEJz6Bl770pXjFK16Bn//5n9dj1tfX8ZjHPAb3u9/9cNNNN+E3fuM38Cu/8iv4H//jf+gxH/rQh3D11Vfjmc98Jv72b/8Wl156KS699FL8/d//vR7z67/+6/id3/kdvOIVr8BHP/pRLC4u4sILL8R0OsWptFMG7f3d3/0dLrjgAkynUywtLeGtb30r/tW/+lf42Mc+hqqqsGfPnt7x55xzDg4cOHDc/mazGWazjE5bX18/1SGd9m3LOfiz9gJEWCKgHs8w6wI8CPc9exmFd1jeOwI5Qj1t4QuHwIwjhyY41AEYRG2RF0doj7N2NwIwbQOq8q5s6ZNv7jhIZl/6GPO/C6VC0v16TeLj2xSB9BcRRksjbK1PshAwghVAzsEXcMH2brZfE9AUMKsMKCI9eQKAbF1LjrgF8FnEu6V9VcFtxuhSwRiSfUdIdywDXhqTr6HCy7WAb6Mg5yK64SW+rymGLnsIgNxPGGY3t5ISilWcYvhOQhaphO+zfu89aBcyOv7FF/9bjO77ANw6bdESoSMCM4O7gK4L4Fnyqyd62hbAbQC4jTnu8A7wDlT4WJAG8VmFtsN4bYLJGvBfL3s8Xvi6d+ANP3UpnvZr16u3QQGPJfDe51yCA+O4rp/5urfnEEAS+nAmhW+WQj2UU/I4MSG6hrC1toaFUMIVjMH4GKZbG/C+AA0XEQYLaP1uXv6Z2r5aoL2LLroIF110kf79wAc+EJ/5zGfw8pe/HL/5m78JAHjd616Huq7xB3/wB6iqCv/6X/9rfOxjH8NLXvIS/NiP/RgA4Ld/+7dx0UUX4ad/+qcBAL/6q7+KG264Ab/3e7+HV7ziFWBm/NZv/RZ+8Rd/EZdccgkA4H/9r/+Fc845B9dffz2e8pSnnPSYT9nCf/CDH4yPfexj+OhHP4pnPetZ+KEf+iF88pOfPNVutL3oRS/C6uqq/px33nl3u6/TtXUM1AzUgXGkY6wHYNp2WG8ZW3UbK+k5AGBUQw9fEIqCcP5KiWHbYtYFzLqAmrO3uNeI0DJwbNxsz+G/h1tPVp/s8UYaMzrwtuo5/eY8gUO8U0ucI2A7iVUrql4UgNTef/ET8cErInbkL596VXYquCxQxKUtgr3XRDHg5B5OaHubFtcD9JmbFYu0SDFtO77esWnsFCJATmLmAsILg3h+sRXPf/9/fgpe9yOXarxcJzdhAK79sSf3094c8LZnXaypg5K/3pWI/PU2lBGAV191AYo0hl988//FT//G9bj3aojKp3NA4eEKD04141EWwKCMP8MKNBrA7VmC278Cv2cZfmURbmEIGpTxZ1jBLY3g9i6DFkeo1yf4xcsejZvXGK/9mcejK/Mcv+k/fS/e9OzH4QvrjC+tAbcemOH/u+ixeMlVT+h5KqpjfaUKLt9/N8o4DWLgiuv/DJM7bsXRWz+Ho7ffis2jR7B+xwEc+NTH4cYbu+H9M7gp7uYEP0A0Ju2PNTTvqba2toZ9+/bp3x/+8Ifxvd/7vT0X/4UXXojPfOYzOHr0qB5jPeNyjHjG/+mf/gkHDhzoHbO6uopv//ZvP2Xv+Slb+FVV4Zu+6ZsAAA972MPwV3/1V/jt3/5tXHXVVajrGseOHetZ+QcPHsS555573P5e8IIX4PnPf77+vb6+/jUp9HvNAQiMCQh3bDVYHBQofB8lT0RYWSjxjXs6fGmzwRH2aCPV3Y5ddkT4wjhgz6jF8qhIh30FtjGOjH1VV8EXJ+r/OFqBBsSB443PeYelPYs94hR7OmAUAeS/b3j0Y9G1HUIbMOtq3PCYx2Lt0Abe8+iL0NYtHvvn740CGNAUOYvc1/x5w0YHY7EDUAGqZV0pW/cAehqZDUX0itKY8IDEoPVcBR5GxULS8x75omvwuh+/FG/8ySdh2jLGbUBBhNWhx2WvuhZPfuWbcP2zrgIDuOwVb8Rbf/wq3DLp8L+edyWe+j+vhUu16/0seyGaxTiOt/zC9+PQ5hBv/s8XYzgAwB7H6oD1GaBRImaELoBDgFsYgIZ9aueTbUQErgq4fcsIRzYw3qxxRzEECHj9T1+IrcbhwNhjY+ZRb80QkhehawM2xjP8xlUX4+de+3adW9cAXfJ2aPqe/N6legEcU/Pu/y/OxxcOTuHYwY0qMBEWZ1P4pVXUd+tudttp0Y4fJczfA9vkygtf+EL8yq/8yj02jM9+9rP43d/9XbXuAeDAgQN4wAMe0DvunHPO0e/27t2LAwcO6Gf2GPGMy/8nOuZk25edkBpCwGw2w8Me9jCUZYkbb7xRv/vMZz6DL37xi7jggguOe/5gMNA0P/k5Y9rdjA9RUQCB0Y1n+MJWh0/cOcbhzRptF7bFxs9eHeLfnLuEBy85jBAAZriuQxG6/rWJsAXC59Zq1O2OfgAAQOgY440ZupYRAqPr4v/xJ35/vFvitOmXVdHLxWfeHtPPDvvkamVJ53Po+dV3mh+iGMe/6PH5sLt6qQGMloc4+7z92HvuKvaes4qzvmEfzrrPXpz1Dftwzv3Pxnsf83gZlLrT1TpkQAvlSFxYGOhEcFsg3VyKWM99n7wRISHpQ/JMCEOypKMpUE+s7yHwymdcAQrAHz/3KQglcP2zr8Irn3kFfv0Zl+Cf1mr8/e2b+Ifb1vGlO7dw8x0b+LtbN/Cblz8Bf/BDl2HWdOi6gPc8+yk4MmnwrNdeh6e98lr81tMuj+EBF6/RDRLBDuK4rvj/bsRCRXBuhItf+HY8/r9ej9s3Cxwce9QBcZ21HcIsaSZfJi2tpoEuDhHGM2yMW/z6DzwRN6+NcOvGAEfWGNPDm5HzfnEIt3cZbs8S2DlsHZng15/xRC3cI0RBoqBpbYSWlBZYGPwufdu7Ua2sYoNLbGCAzXIBzdI+TO4SUrrbTuemmbon+AGAW265BWtra/rzghe8YMf+fu7nfq6XqrzTz6c//eneObfeeisuuugiXHnllfjRH/3Rr/Qt3+12Shb+C17wAjz2sY/F+eefj42NDbz+9a/H+9//frz73e/G6uoqnvnMZ+L5z38+9u2L9KnPfe5zccEFF3zNIfSZGWg6cBNp0GhQgfzJ607kCG51ATxtUG9OcNvU4/As4D6TDucsFlgdFfDOqcVfFoRvWB0glGv4wpqHDxXuM3D4p5pRW8FJhENtwJHNGuesDgAKCBzgqdC+ujbgyIE1+NKja1qELihY0HmPrm2xtGcRe85e2jZuOd8Vfc79wMCkYywW2JE9UFqbXj5/EhXKyBH2nbuKv7j8Mmwe28JF73tPjmHPWfnEwLu//yIsrCxovzoOikoHM2PPvVbwrsc8AeNJgyv+9N2JiIZyP0kB2FbTPvUDZGuekVzQwrBneOttLr4NHQg3vaYLpZg6kM/dM3D4zR+4HJ9ba/DrT70EH79lDd20zkqYd6DRQO8ttB02NqbY3JzBFQ6F93AOaJjw4ic9FmVJ2Jh1+O9XXYa9Q4cfe8Wb4/0VwPuffzXW6g4dE67872/EdT91Ff7nf74Sz/ida7FcAbOOomLadOAugCc13L7le4akjih6CbqAdm0LG4FBhQd3MVfeLY2AKq9bMMOtLiIcWsfWZoOX/cjF+PHXv12VJstSGCqGFM/RfP0E0Th70WNtXKAbT+HKxROu1912ZjQKHDE4J/gewEkblD/1Uz+FH/7hHz7hMQ984AP199tuuw2PeMQj8J3f+Z09MB4AnHvuudu4aORv8Xwf7xj7vXx273vfu3fMt3zLt9zl/dh2SgL/jjvuwA/+4A/i9ttvx+rqKh760Ifi3e9+Nx796EcDAF760pfCOYcrrrgCs9kMF154IX7/93//lAZ02jdm8LQGT2u4QQnuAsLmBG5l4eQ3DyKQ98CCA40q8LTGdH2Mm2clbh+XuN9SgfvtGcIbNz85wp5Fh644igOH9qDuhrg3BRzsAqY+P8bAwJfWJpjUR7G4FIPCZ43uk5j0COQcFpZj+p5bHMIXHm0TLbfhwgDjjSmGiwO0geF7CP3Yui6gHPRzmhnApGUsGhf/PFiPyC42xlYT/ekLx1EShP9/cc8CykGB9z3uCejaDo+68Z3Z0g8APHDDYx6LalidUBAREYrC49x7r2I2rvHexz4ej37Hn/RpZym79vsn5/9DykMXQQKp2OahDHmaY+4AatBTKJSUJwl8cSp88BeuRt0F3D6Orvq1rRnata0IelteiF4hxJAOyYQC4IpBo2SBtx3qtouligOjmwLTwgOYYavwCF2B1zzrSpQ+kjvdOu5w56RDHVKc+6VvxH/5ocvwX37kUhzaClgeeIwKhw1iHJkEoPTgpgMV94xFTETA4hBYHIK6EGlvCw8UvneP6WAQALe6iG5tC4cwwu9ffQn+4zVvy4WEBibcYih2pbmGcOV1b8XvXvhErE1qoGkjFmFX6J/Z7SRd+ifbzj77bJx99tkndeytt96KRzziEXjYwx6G17zmNT3KcQC44IIL8Au/8AtomgZlGS2JG264AQ9+8IOxd+9ePebGG2/ET/zET+h5N9xwg3rGH/CAB+Dcc8/FjTfeqAJ+fX1dcXSn0ohPPr/qn6Wtr69jdXUVf/jhj2NhafmrPZztjRlhYwyqSuz1jA3yqNcnsbb2KVj5/S4Z6AK4bsDTGuXSCOcteDxw/whVqkzHYDSY4BB/CYcOlzi0sRfnDjzGbcAhSpsWM0ZhgrOLw2imhJW9DYbVCu61eG9DnXvXmxszsN4EDDyhchmtz8yYbEwxWKjUK6Djl963bZ6s/6p3PiHNmXPan3QRT2dzBmn/bdNh69gY9bTBYKHC9/3R2/D+JzwR9bTGvnP3oKhOTn9ljlbrkQPHcOE7390j6JBcb0m9Yw/Npd9Wt15i/JRTyyTlTRjffJ1j9BSAZiH+L6l7Em9+7y9cjX9Yb3Bk3GC6Ponu7IUhaFSduhXKAIPBswYxTsPguoGrSlRVAU9AqEoEBro0t+eOPKazDkenDbiLD2ZQefzsm/8Ir/3hJ+GWo1O0kxpU+Mga+VVqzAzULcLaFor9y1geOSyWHZ75v9+uCls3TFDRXmGjbO13iwG/8e1PQDuZwe1ZPm79iN325bfx5gZ++IKHYm1t7R4P14qs+I7H/yqK8vhrsm2m+Mg7fukeH8Ott96Khz/84bjf/e6H1772tfA+74lila+treHBD34wHvOYx+Bnf/Zn8fd///f4kR/5Ebz0pS9VlP6HPvQhfN/3fR9e/OIX4/GPfzyuueYa/Lf/9t/wN3/zN/jmb/5mAMCv/dqv4cUvfjFe+9rX4gEPeAB+6Zd+CR//+MfxyU9+EsPhyb+Pu1z6d6d5B246sPcoAdS4e7F8aUQEFD66a71HsznFFzEEeIwH7B9hkNLgCgwwoBEWh1s4dnQTt7kVFB0DRb72ADVGwxqz6RCz2mPvyMMJ+brmdOmVjzMixkIRWf3mj/CF33arxxNIzACYoqWb/iZKP+ny0ldgzooFkJKvCxCb0EZVYPXsZYQ24Ogda/iT7300mlmD/ffZC3cqIRWT7w/HYDN+Tf8zADrVQQD1CEhuuBTOsfF5JIvezzKJjngRClPFTWrDhxL40laLO9ZmqNe2QGUBt2cproe7Y32mMIYA65g5e5I2JnDDCtSxfgci3D6ZIaSyyZKK0bkRfuPyJ+L2tRlC0wFdAH0VhT0ABf2h9OjWxlibldgcVqpwdUOAGkoIfaOwEYMS46KbEVYWHI7WHjyZAQuDXdf+GdxO1qV/T7cbbrgBn/3sZ/HZz34W973vfXvfiZGyurqK97znPXj2s5+Nhz3sYTjrrLPwy7/8yyrsAeA7v/M78frXvx6/+Iu/iJ//+Z/Hgx70IFx//fUq7AHgZ37mZ7C1tYUf+7Efw7Fjx/Dd3/3deNe73nVKwh7YtfDvVuOmRdgYo1hZBHcduq0p3J6le6QoB3O0zMLWFOXSCN+w4PDgsxZQFFFqjnEMR7uDmE0YRzcWcKxZQRsKsHcgZix3G1gtN3G42QM4wgOXG9xn79nwPkmvHm/t8Tc5WRbzG2Eza9A1AYPFu7Y81w5tggPQNi0WlheweWwruehLdG2Htm4x2ZhiZf8yyBO6pgURYbjigEQxRKHqjVMAgtOtGtWwhPM71wE4mda1HQ7ddhQX3vAutdapo8zuZhjdNA1P3P2C4heloOsf72bRii8m2UPAlEFmrk6kOQPg959xOQ6tTdFsTkBLI9Cw2u7Svicac1y7kxmk0AF5Fz0AzsWysYMS6ALC2hbcaBBj6szgtoNbWYju9tNAOEZMwQxhcwK/Zwm/+K53aN0BdpKWB4QyCnhpAuD631dcgtuOBTSbk4gXKIvT4r6+1to/h4V/wUX/5S4t/A+/65e/ImM409quhX93WuFBZYF2fRw376XR3dqcVddKKGgwgLTpeiK0mxPcRiPQoTG+MVn6FS2g8AWw2OCc0RjhzgJHJstw4ymoKjHGIrbaRQRmcAvcMRlg/yKwMJhXRk483uNtfkVVoK1n4MCg41TNAwAOwGRzhtHyCJO1GtNxjRAY9SyawF0b0LUB1bDEoduOgENACIzR4gCj5b3gXlF6O2fAbKtGOSjgi7tpAafmvMPynkXccOFj8aj3/QmE5SfWjSflc3c1esKEU9lXIH/uUrnYYN4oCRFwBbz+565AGxxK51AQcGja4disw3hzhttvOwZ4B7e6FJ//V0rwEEXvQdl/7cl8DwBMBFoaIdQNyDlQWcbYurt7itVXopF3GvvnulGmw1CmuH0gwMcqit1igJu6CNxLy2p1UIGXO9zWdmg3o8K+m4x/Zrbdankn33YF/t1oRAQsjUC8HUR1so0N+I85gvLIEXgc4FYWQVUBWhyi2ZziFgxBR8e439mMlqZghOgW98De5QlmXYUpipinzwyqSnTjMcLmBHfsWcKwcHjg3kEKDXz5+5ovHbq2O6EbnRyw/96r6EDYuzjE0FOCGTC6tlOr3BceXdfFuDFFvn5wYvHj/khj7L2F8w7FPSAYI6vfEFvr4+S6T754l4RGiv2GMjO6KUOeBQ4SNG/eJ/Y610bh0pXx66v++5vx3370chA6tE2HZjJDN6mjoF9ZjIIe98DDueubvstLkCDoE8Pj6SwIyTtg1mh1QSEuQuCIufBJeStytUbXEJ5w7bUAAb/ziCdic9pEhfskMSC77TRrHWf06/G+320AdgX+3W4kwei725jBkxncwjBu+o4waFqMZy141oAWBtG9WrcIdYvN0QxHsR6FkmmjhQbnFYdx66E9WFsrEGY1irNWQUUBvzBEmNT4kiMcqwMesFTg3L0FgEKy4+0dnWCokWxHTmlmLcrBXedil4MCBYABc4+PvyitosBJcdjp+tsFftsGDEblPWdpErC8bykz1An3vbjvU6Wa4NOeIi58+d2ncrHCua+0v7FwTXDAa3/iyWgC4+C4xXh9gjCtgbJQQQ8c36PyVW2n4ZB6rQsI4ymKlUWEkkFCnuQjpXMoGJK2l9P34gN0DeN1T3oSbj06zejR3XZGNsJdWPj/bCM5/duuwP9qNSLAOXDbgUqPAQfsKwkTLhJ4KgGuug6uSrVXsTMpTlEylgYzrFcD8EaL7tgmwAy3vABioJvOcGzW4HNhiIUSWD1BqdDjIe7rSYOi9HA+lrI9GZBcGxgEwB9nMw0crS6vqLgTKx1t3d0jlr1tRITBsMIHHnsJvu+db9NYvtLthmj5UzDWN2UwmPD8S4qg0tsScO3PXIXNJgr6ybRBvTEBB/7yAHm7TZukCA4WqpzymLIX2TO4EjAGUvU8Skx8BAqEUWFArLsC/8xtd0WAdnrB1L6q7ctHme22u93c8gjcduBJjS5Ejn04AuoGvD5GWNsCHGHoHUZcwE9H8NPh9p/ZECN28I7ghLN8z1LEGlRFJGppO2wy4R+O1Di2WaNuOrSJVW/+fajDds7+ovQoqiLFzk9O6Dq6631Uvk7qzHGPEy/DyV77VBo5wur+ZXzwiVfgxkdFNj5qItqbAimNazfgWH41CZX55hpoTfg3/cxVODDpcOekxcbRLcyObgKDEm7vrrC/x1qy2itHuPHpT1HBTh1Fa37mgJaSx4VAbfwcPh73xHe9CQuDiE3gWbMrGM7QZtNqj/ez22LbtfC/So2IAO/hVhYQjm1i5h0a5zDygN+/jKYL6AJjWHoMHHDu6j7srdxxowiLCy1un9RoCNFr4F22l5PU5bbDYUfYPDTFMgJcWWCJGOfvH2E4iCjlkHLw9xmQHxGhGpaYbs0wXNo5hWknz8Dxqu3lYYm/9a5baCOP+1dCTjIzGIzR0hD1tDbu+mTZwwgSiKu/n0svKWDv/umrsVYHTDvGVh2wcWQToQtw+1ZivveuoL9HGxEw8IQ2AG+45Mm4+q1vymZMmmpqKWdUpCJVlJSDs5cctqYVmnENHtyDoaLd9s/WiDniqU7w/W6LbdfC/yo3IoJbWgBPZuAQUBHwwCWPb73XCN96zgK+5V4jnLM6xJgJW4HgnIP39sfDe4/FUYlvGDkMVxYi69raFsKkRtiaAl2AWxqBpzXCeIbJ5hR3zgLuaIHDLUfAYNrnnAP2Ddy2hUGO4AqHetJs482XVocZWm6P+/18E/KdTLFz/M3WeXePpD3u1ELHmI0b1LMGg9EA73zEY1RYsOMsOAxhTvwOPZa+bgA8+r+/AUdnAXdMOky2pkDbYbB3CQsuoHB3DZjbbSffqPAIbYdj4wZ3TDrUHccKhYxs5QeCmzlQTfoDx6rMXf6+a7EySiEuwanstjOrhZP42W0Adi38r34jAspk6W9McKz1qEH4JiKcs1yh8A4LA2DWMaoT+McdEe6/b4S9wxZf2HA4uFkjzGpQVSJsTeEWhnCri/HgLiBsTcFbU7jVIZwI/OT78mHn6wxGFWbjGl3TwZtYugj40p2ogpooAbnvEBhbbYzzL5Z0Qvc/OYJzkXXvnrDCmDmGLpjhmw5lFfEJs3GN5b1LuOHCx+LR73yn8u0L+Z/Q6KJNrv0ip+YJXe7s4JcwbRk0rqN35cgWjh25E0v77wU/GKFbXD1Vts/dtlNLSmDTdPjBa68DEAU8UV5r7CNanxpCGKQ4fhPJ9Wnm4DrC3lGBY2URiwOdwMrnFP/itovKaeFi1sOuV+Cr2nYt/JNvuwL/NGhEBPYebnURvDXF1voEn+oYR6YdHnLWCFXpsbBjKdrM8UpEKDxh31IJAuNYy6hHA1AX0IUAblq4KlHwFh5uYYCwMcZWBxyZdji3IhCFGBYl8X3Gvq3FXg4KNLMWPqHLmRkdd3DkMqNfb4SJ4GWH0TsCRkWk1aW5c3ayhYloWwSgqTt0TcznJxc9Bs2sRTUoQI7QdRHsVw68svxJa7uA6azFAgFF2uirUYV6UmNpz2IW9uLOpyjkxeVvOf2pA172mH8HBuHmz38OS0t7MGtaFFWBekpoZzVm60dBgymKpdXdTKF7qNGwQhhPI61xmdJkuyTcAbjaECm1kfWRA8AupuoBwJXvuA6/9d1PxGRjAgqxeI9dKMwcyYmmNbhuItNmiJ/RoASGlYbNdoX/V6GlZ3HC73cb/v/tnXecFdX5uJ9pt+3u3cayBZYiXQGRJiBYEhRUVCCWKCGgqLErxoAGUYlKFBUlGg3GRP2i/hQkIigxIkZFFEQEkV6Xuixsv/1OOb8/ZvfChUXQ0Jadh898lnunnXfmzrznnLeBo/BPGhJhfqleiOnEqsOUKilUhnUyfXZ8+uFs4rXHSfdp5AXi7Iro6JKEFY6hZPuTtV2N8tRNwbaqOF4F/F4FSRFIsrBfaDXxZQJ7hsGtJI/oE4eq+XeYltXZVlWq7RDUBgrW/XBKkp2nwDSsRISAEFBRUo03xUN5SRWSBPFoHNOw8PjcuL1uolF7RkKSIKdJFp4UO5zQMgVK3CDdrdjV/xJ5ASRUl4JlCj66aCADPvnIVuyqsG3B1Izy9wvNq+Wu2ct4+cZLyUtvjBGM40rxoNR0QlIAC4Elq+jO++eoIEkS+NyImM7jFwzk/sX/RghRk7JYIDT7nsnxmo6izL74LVkkVUrM8KpEIwoiHIdUT00qaAGWXSVQ6IadtMjvs01LEgjTDq21qoIgy7byd2mOr8Zxxkm8c+Q4Cv8kQ5Ik25s7rhMNx1klwBcwyPcp5KW50FQ5sd0+vZs8zS3LEi2zvbjKI2yOCixNsUv57u8drshIPjdmMExpTCVsWKS7FfwuieZZLjTFNq4LS0o4RkkAsoRlWsQicSRs5aj8SPW0n2K1/jEvfbA7PXrMRHXtMydoXs0u9OK1QxclFdw+Nxh2sR1fqhdJAj2uo7r2tdOyLDu3gESiQFHi+ikKpqFz0X8/QrZIjPItTSDXKv2aLHpSjSKx07mC5PERjseI6zEU9WcUvnH4SUiSZJfNLQ8w5RdXcM+89+2CRJaEFLNz59sV9CR7Ol6TWPDra9lQpXPDRzMSHbdCv0pl2EU4EEYRHrsjV5NiWPK47JwJB2QalBQJKcWD8HnANLEicbuEcIonubSvw7HFCcs7YhyFfxIiAaR6sUJRwtURIqpMQHezO2JSmKqS53djWQITCOkW6a7kqXRJkvC4FBqneyjRo4TTvMRDMTAt8LprnPTsbGrCrSHCMUJVEUKKTGmKmzSXTF6GrUCFJCEJKWnAoqgK0bAOsoQaN0jxe4+44lhtLvz969UfvNG+70VtzncZTMPiQKtBSlYKmiQhZdi5tO3YftvEIFGb0OfgB17VFHx+D/GogWUK9vcHNOIGeszgq6G/ou87M+3zmxIo9nES0/q1qXMle/AoBFTFrX3Fdn48tYDD0UCS7M6rx0WkKoKlCeZdeSUXzXi3Joe+lCh5LBT4cthVrKuMUBaTkfV9JiKvy8DvUYgEJTAMcGl2AiyXZifBOpTyliRUGRRVRbhUdN2urUFMtxX/SZSO+FRFMsV+fht1r3ewcRT+yUjN9LKc6k2UzY0FwpRqKjHLjWkJArqFJEmkeTT8LrlOvZLqUTkt0004ZrBdlgiH41hVQTt1r6rsczhK8SD5BCIURY/E2R2S8XsU9Ggcj9uNpikkFKcA3bDw+j0oiowR1RPlao8EPWYQi8RRNRlFVVA1tWYKdL/ZgFplLwSxaBxTt1BUGcuysEwLVbPz6AOoCe26fyhgTbWbA50D2HdcIexpfSHsKAVRs62EZPspxA1cbo35Q67glzNn1yTXqYnpVgRSTEookdpqeJJpz4SEFdnOiGia2OnfnBf+saT2N2yWVfP0OZezNWghx2qm8gEEGCn2S7/vGzMQak1BHclOoSyZEv3+MYs3hw62nwuz1q1bJDrHtSgSuOSabK6ShCpB1BSYAtyyhM+nUa3ImDVT/XKqF+EU5jm21Hauf2y9A+CE5Z3USJJk1x/3upEzUhFCUF0VYXV5jK3VcbYGdLZVRakMG1hWchY+2yZtK32f10WhV0HxuJA01U4ycuB5ZBnJ50HoBruq4nyzK8K3JTE2lUXRTfuJMg2LaDhGBAkh1yT6UWRM0zqiUDwhBHpMx5PixuXVMHSTYEUII25gmRaWZSEsgVVzPNOwP3tSVVxeFY/PjcfnxjRMYuF4zUwBdSh1CTu5/cEvWSFs/4R4JI4eM5AVe/ZAYCVeDJIsoblUDN3A63Pzr4sGJPLnyyYoUSnhkS+ZgLALtygxuO21d3EpMpJLQ0R1511znJBkCcmtYUTihHQJhGTXM1DBcouE855UUxHRctsmGiCRV0E64Mdk13Owt3HJ4FUgx2OR7zNp7FVId8l4VRm3ImEKW/HLQLpbwZPqRU71YgWjzpTyMabWS//HFgcbR+HXB2oUspzms19qUR0rZmCEolQEYvxQGmVrZRTjAMUrSRKpqkQjr0K+34VfgURR+joeAkmWkP0pmIZJoDJMKBhjW8RkbzCGaVmEA1EMScbnc6HVlKVVNSUx7X44hCWQZLvwjaIoeFM9pGT4MAyTSDBKNBQnHIgQC8eJhePoMd0ugavaIXmyIqG6VFweDVOSMPVaJS1hCYF1mAe7thMRj+pobhVvmhtcJnEzTFCvQrdiCXOD2+dC1VRkCfw+bV+OfRO7SE5N+VslZmfWq62s9+4t15Cmybh8bkQ8foQ32OF/RpLscr66gWFYTB0yBD1FIAlQIpKdBTFekzVREQi3heUzbUVv2h7+uikQpomowzylW/ZjEzZktgZldoRMSiIme6MmYaPG1AMEdItMt0y+T0F2aUgu1Xb6c5TOscMS9pTLoRbHSz+Bo/DrEbV2d8nvQ/L77HKqkkSwOsyGihir94YpC8aJ6WZSPXtNlvC6VfI89ktIRGJY0TpeQpKEpNgdCzk9FUmSbU/4oE44rONJcZHiVUlRJZSa0bMk20rf1E2EJQ75YhNCYOhmYireDiW0HfG8KW58fi/eVDfeNA+eVDeKajsDyoqMJGpNClAzFicsJHTdTBw/ZkHU/PHBlCTZDoeyIic8/RVZI2ZGiBkhquPlVMfLiZvRxOyBqVukpHn5aPBlfHjJQBA1xXIMkor51YZ+/WrqO8iyhMutIWMbF2TJngpWJMekf0zR7LLV8fIA5eXRxNe10RSW2zbbCNV25KvNnGipsHjE1cRM7FA7+WAnVAGEDajWwTywimPNX1mydcu+2BaQvG47lM8wcTg2OCP8I8ex4dczkmyBErb9XTfQgxF2xlX2Ri1yvQbtG3lQD8jZnuFTcQUN4iluuzQr9gvpgBMgCWHXQlck/C6Z/Ew3qktQoZfjxUuqlpa0i+ZWiYbjENORkFA0Bc2dbLcUlsAyLNwph7D1y7YHnFwzrZrwqJfs0buUkN02XUhCICtSIrxQrY2EOoRGDUeilJVXoKkqWBKpaT40l0okHiIWt1A0D5alU2aU4lFCZHhy7Glhl0w8ZoLHTXqGj89HDiUWjhEORRg661M7+Y7EvmI6Btz02gweP68rLkvG3FOFrKr4fD7C4TBqih/dk3q42+zwM5AA/D6I6hjVIZ66YBAPzP0QSwNLwXay1MS+THwmdmy+CZYlEzNqOsrKvtwTP8XvsmZXgrqgLGbaKl+WkNwuO/lVeopjyz8WCA7jpX/cWnLS4yj8eo4kSeDSUDIUrGicWHWY3fjwVsY5LcuTCEKVJAmXIuOWBJphEFDt7SW3VmfKWhGNo/rcNEvV8LoMqmKVuBQXXtV70PmFDJrPjSrZXvJ6VMc0bEc7O3zQLnwjK/scoPbNQMD+T2TtC7Z2u7husHrNOrKzsvD701AVBcuyUEyDcExgCouSvaX40jNxSRapqSkIpH0j6prjhMNhVq1aA0BaWhqKomIJE1VVCIZCeNweotEoiibhdrvZKVVQUVFJWloaKT4fbVq2RMQMZFkmJd2HN93D+9f+kpKSMqqCAYy4jqqojF28mcm92yOERVWgEknTcGka5RVlRKJR/AUykifVeQcdCyTb7VPyaGC4MaI6r1w3mFHvzLJXC5B1CdMl9pXQTTGRojKGJaEblt3hrDF5WfEaT/sjRAB+l0yqJrE3WtskCbwuRFy3R/ouJ1//Ucc8jNee46WfoF4ofFWWkCWJuHn4pMgeVbF76sehXScLXkCzLIxUL5JbQzUMKuIKMd1EMoVtM1dlMKGRIhNJ8WAKCSsURYrE0NJ8qLJE1BLErOTceHFLoMleclP2KfoDY+utWi0tSyhIdnhSTAe0xBS+aVjJnvxJ3vV26J+oYzylaSouTaO0rJxdu3YTN+L409LQ9TglJXvJzMxElmUi23aS5vfTuLAQxe3Go6n4VQmt5nA+n4+2bVpjWhYul4uqqmq8PjcpKT6qqgNYhkVmRjpp/jRkRUKWFLweDwIJj0vD43MDAssSGDEdr8+D15tHTuMc21xhmkQiMf6enUWT/Dz2GDJ6ZRhLllA9bhTLwmdZ4HLjWPaPMTWmL6syxN6gxZShl3Pn7NlYKolQPEm1wFBAl5B1ib1lFcQNKZGfxwrH7EQ7Lu2w75L9Az8rYxZxMzmjhATIKR6sYARJ0xy7zlHGSa175Jz0Cr9VVhpdC7IBWFdaxYrdFTTx+2iRkUqG14UEVMd0dgcitGnkx6epGJbFRxt2EtEPtpu5VYXWWWk08fvwqAoh3WBbZYgtFQGMY+Tc4dNUOuSk08jnxq0qRAyTikiMjWUB0twaKZpKcTBCVfSnqwIJcIciSGWV+PwpKBKo2OFCspyOGY8RCIYxDUFOQWM6+DOIxnQ2bS3GlCwy01IoaNoISZKorA6xoipM2AJJlbFMi+3VOrqQaJyq4VYkPIr9UqwdpNh15gwUSUl0BGwlrxGujuDyanb4nm7gsjTbqE1tp2G/KX9hdy5gX0a/WvkKC5vidvuIRKPE4xFUVSIYCJHiSyUzM4NIJELzlqeRnp5ZM3MgavwPBLFIED0ewef1cFrLZonjRnOzqA5V4vKqqK40otE4ebl5+DxpgCAWi5Cb04id5QEa1STvqSumX61JOqRpKh63m4z0NAzTYsPeCOG4QE7zosuq4y1zvFEVJI9GvCKIrqk8cdFljPnvbN4b3otBH35pR2aodj5902uxNxRDslx2GWhZQpEFutttO/kd4rWgGXEURUZTZCJCtp8LIYgaArXWMbZmxsDQVCRVQUSi4PM4o/yjiZN454g5qRW+R1XoWpDNK6+8QuvWrena+xz8bo28VC+LFi3ilXnzEEJw9tlnc+GFF6IoCmPGjOGee+6hc24mi3eUJh0v0+vivBZ5REJB3pn2Olu3bqVjx44MHTqU1llpfFa0u85Owv9CqkvlwtYFlBQX8+q0d9mzZw9NmjShf//+XNi2LbquU11dzemn5TFn7Q5066eVdpIl23tdSbensmUhEIrEWWe1paysjOz8HCr2lJHiT2XL1iIWLVrEwIEDadkin+17K2nfoQX//ve/2b17N9dffz07jBLCgYhddCccJSRJbA3ECcVN/F6NFJdMY+8+5W4JiFs6mmShKa7E97FwDJdXQ5ZlO+Ndmmc/h726USQpafZNCIGFRW5eAaFwFI8vBZcmU121l+rKapo3a4LP57WnUtMzeeqpp+jcuTMDBgzghRdeoEmTJlx+2SD0eCTJmTAWj2MJC0mTqaoIoXgg5grj9fmxTDvePzU1i3Cwgpz0FDQ5uQNiGnaWPvWAAkICMIHSkE51xKC2boHD8UeqTVPt0hDROEZFkMn9B3HZv+YgqRLCqKmcpwqm9/wFO8qqkCxBJBTGE0pBVRQUdz7xQ+gKWYJA8XascJCs7CxM3Tb3KKqKrutkZmVTsruYrKwshKwQ9aUT93mwqoJIbpfzuziaWIcpev8T36mnMie1wm+T7ae8vJxnnnmG5cuX43KpuITJwIEDKS0t5Te/+Q1ut5sXX3yRL774gokTJ9K9e3ceeeQRXn75ZVaWVBLS7ZKXsiTRu7Ax336zmMGDB3PllVfSrVs3Zs2axbhx4/j000/p1zyfikicgjQvLlUhohuE4gZbK4NsrggiSxKnZaXSPD0Vr6ZQFdPZVBagOhanY24mealeNEUmFDeI6AabKwIUpPnYuH49ffv25eabb6ZNmzZs2LCBV155hUmTJvHDDz9w44038t1333Fpu6YIIQjqBlleNxHdwBKCkmAUAeSmehACSsNRVu2pJKKbpHtctGvaiCyfG8O0qAxGMA0TSZLo06cPc+bMoV27dgB88sknjBkzhtGjR/PEE09QISSCwSDDhw+nurqa66+/ntw0H03SU8j0ulEkqAxGWb+rlMq4RbOcNPLSU/BoKqZpIoSFHo8Qj0SQ7GB2BHZ4nKyo+LOy0DSX7XhnGsRjESzLwO1OQVbtnPamEScWDaFpGj6XF1Vz18TKW5iWjh6PoKguxo//Ay1btuSee+4hPSOf9Ix8ZEVBlmUs0+6kNW/enOzsmtmgdetsW7+qkeLPxjR0QuFyJEkhJTUDU5hIcYU0dxZurw9ZlfF50njqqacoKSnh6aefxpeagRaPIisqak2aXNMwsMwqJAW8Kemomp2FzTRNTCGIxHWa+BRaNlEIxHV2ByOsLa0+bMigw9FHkuzYfOFSsSqC6GGTaQMvZvgnc5HiMtQUz9mzZy9V5ZWk+FJITUtFkiRisSgEIwh/6iFH46l+P3FJUFVRjqEbpKen2/sBpcU7iQQCBLAwAV+zdGRFRnjdtgOf3+eM8o8WNXkUfnS9A3CSK/wWmam8+JcpDBo0CLfbTif7l7/8hcrKShYvXowhJOKmyW233UZxcTEAV1xxBffccw8VFRU0z0xl9Z5KAPLTvPg0hRtuuIFHHnmEW2+9leponBtuuIE77riD3//+97z77rsYoQDz/vM5zZs3Z86cObRt25ahQ4fi97jI8LjwqxLvv/8+mzZtomfPnvzyl78EYNu2bSxcthm/389HH33E6aefzhVXXIEkSTz6lxlcfvnlTJw48SAZ582bR1lZGdOmTSM1NZUhQ4bw+ZzZnH322cyePZuMjAx+/etfs337dv7++rsoisLgwYO5pG0hq/dU0jE3k9WrV/PG7NlkZWVx9dVXk9Eoi8WLF1NdXc37779Pfn4+F198MQADBgxg+vTpPP7447TNSef111/nl7/8Je+99x4Ap2WlsXz5cmb+97/EYjHOOecczu/Xj4pgBA2TD2e/z5lnnsnMmTNp2rQp11xzDamyRHl1MWman7gpISkajZvmsWPHDmbOnEkwGKRPnz5ccMEFABQVFTFnzpyELPn5eUiSzMKFC8nNzWXZsmVs3ryZiy++mM6dO7Njxw7WrFlDaWkp06ZNo3PnzuTn5/Pdd99RWFjI7NmzGTJkCE2aNCEzMzNxbS3LYsaMGWzZsoWLL76YTp06AbB48WIyMjLIzW2M5tLYuGkTAIWFhSxdupSqqiqmTZtGmzZt6NWrF+FwmHfe+n/s2bOH8847jx49egCwdetWioqK8Pl8fPzxx4wYMQKXy8WMGTMoKyujefPmXH311eiWYENZ9dF+PBx+AlJNhbvh/5mbqHw487KBxA034ahEdiMdSbfsNLqKgiIEkcqwnXWvrtG4gPScxsSzGxM3DLvIjmlglBWjpWbiTvHjSfikCHRJRpVA8bqIxQ1EKGpH2DhK/3/GseEfOSetZTHd68ajKnzwwQf84he/QDctZFni7bff5o477iBiCj5Yv53/bNzFl1tLsFL8LNtVhtvtpnv37syfP5/G+3nY5qd5WblyJUVFRYwaNYqVJRX8Z+MutlWGuOOOO/jwww8JhUJs2bKFkSNHcv/995OXl8eLL77I6NGjaZPtJ8ujccEFFzB//nzy8vJ47LHHePLJJwFYunQpI0aM4JlnniErK4vx48fz0ksv2efOz+fLL7/kq6++wjCMJDkjkQiWZREIBAiFQgDcd999DB06lOrqajweD4sXL6Zfv34AmKbJ+eefT9GWLXTMzeStt97iqquuIjMzk507d9K7d2+CwSCxWAzLsgiFQgQCAayaaa3MzEx69OjBvHnzAHjttdcYOXJkUpveeustfD4fjRo14q677uKf//wnmaleysrKuP7667njjjvIyclh+vTpjBgxAp8nDbfmAwSqLMhI87N48WK6d+9OMBikSZMmfPTRRwCsWLGCPn36EI1GKSsro0ePHhQVbQXg5ZdfZvDgwaxYsQJZljn//PPZsmULhmGg6zqxWIxAIEA8HmfDhg2MHDmSsWPHkp6ejmVZ/P3vf2fBggUJOaZMmcKyZcvw+XxcfPHFLFq0CIDXX3+dTz/9FLAzBc6aNYv33nsP0zSJxWLE43ECgQDRaJR4PE7fvn358ssvSU1N5brrrmPatGkAfPvttwwfPpwnn3ySzMxM4vE4ffr0obKykrZt27JhwwZKS0vxONO3J4TamSIRjmFFYgjdZHLfITz3yyFMvmAo24KplERUKnWI6BDSBWEUwkIiLCSsw5RdbexTyPUpxFGIyRqxWJhg8RYCVeXEJIWYpCb+1uZ/0RQZOc0Lhukk5DlamNbhFwfgJB7hp7ltj+7Vq1fTunVr4qaFpshs2rSJli1bUh6JJXwxigMRigMRADrlZtK6dWtWrVrFJVcMThzPoyos37iRpk2b4nK5KA2XA1AWjtKhRQui0Si7du0CIBQK8eabb5Kens6QIUNo1qwZDz/8MPPnzyc9PZ2pU6cCMGTIEFq1asWYMWPsc3g8TJs2DVmWyc/P5+WXX+a2225jxIgRbNy4MaHE+/fvz5///GfOOOMMLr/8cmbPns1tt92WJP+9997L1VdfDdij8smTJzN06FDAfpG9+OKLPP3004wdO5Z58+bRvn17AHbu3Mn06dO54YYbyMjI4LrrrqNtmzZJoXfXX389r732Gm3btqWiooIuXboknXvSpEnEYjH27NlDTk4OTz/9NDfccAMAgUCAV155haZNmzJs2DAKCwvZtGkTBQWNiUdD6IaBqmo89NBD/PnPf+b666/HNHSUmin8p556itGjR/OHP/whcbznnnuOKVOmAHDJJZfw6KOPArBq1So++eQTbrrpJjp37kzLli0T12nhwoXEYjFmzJiBx1P3SKl3796JWRWXy8VTTz3FzJkz9/0m3G5Udd8jkJOTQ58+fSgpKUmcZ/r06aSkpPDyyy8D0LFjR377298yfPhwADRN45133kFRFMrKyqioqODmm28mJycncdz/bi4+qG0O/yM19RBELA66AYqC5LXNRximXb/eMBGRmB09kpkGiowhJEzL9tSXLRNLN7EMExHTa+LkazoK0bidnOcQnTVVhlRVQZZgh2LaaXVTMkhp2wPZVXcon0uWkCU7WRV+H1Z12HYo87r3S+3r8JNxnPaOmJN2hK/UOEpFIhHcbjfxGjtteno65eXlSaMmTZEpTE/BrciYQuB2u+2Y6v0eIMMSZGRkUF5uK3qvptT8VamoqEgcG6BFixakp6fzQ0kFGRkZNG3alM2bN7NixQq+//57evXqRa9evRg4cCCaplFZWQlAu3btkGWZ4kCYnJycxLkCusUTTzxBcXExy5cvp6CggIsuughdT85p/31xeeL/nTp1IlCT837FihX86U9/Spz31VdfTSiXHTt2MHLkyMS6BQsWsGfPnqTjxuMRTHPfuS688EKWLFnClClTGDFiRHKCHCG488476datG3feeSdTp05NmEsAGjVqRNOmTflhRylut5sOHTqwYcMGFNlW6HJNObtVq1bZ0+HBABWlewgFbNnWrVvHWWedhR6PYhhxunbtyvr16xPHb9++fWJ2IicnJ3FvajENHT1md+5at26N1+ulYk8JdXHmmWdimQbRcIguXboknQdsD/vajHsHYlkWpmGwfv16unbtihCCSDBA165d2bJlC/GatLlnnHEGiqJQsqeU7Oxs7rnnHjp27Ejfvn3561//immaZHiOrLCQw5EjACsQRoRjSLKMiMQQoag9mq8MYgUjoBvIaT5cWX47HbRmK2jZtCBuYETidmU7QE5PAcX2tCduICIxO5V1HTpYkSDTrZCqyaRqMk1TVBQJhKSgpfhRtIPvtwRocq1TqoQiy7jTfQjTwqoK2m03TGfE/7MQ+5R+XUuDCtL+cU7aEX60xtmuSZMmlJSUoGQ0It0jGDRoEHPmzOHyyy/nrPwsYqZFq6w03IpMdUzHrSqUlJRw1llnEdsvnWVpOEqfPn0wDIOFCxfSpcfZpLo0Wmel8eo/p9O9e3caN27Mtm3bKCsrw7IsWmelYVkWpaX2yzwzM5OLLrqI1157rc42yzWjaEsk99azfLYDXty0aNu2Lc888wxTp06lpKQkkZgG4IzGGYl9NE1DN/dNw//1r3/lnHPOSTpfJBLB6/Xy4YcfJpzV9qf22KrLi7LfCF9RFK666iomT57Mjh07EtP9AN9//z3z58/nhx9+QFEUFixYkDTlX11dTSwWo3Wu3da9e/eSnZ1NdTDElk1bKSxsAtij5d27d3PaaS0xUdBcPsDuMOzdu7emVvy+/fe/hkbMQFGUpGtYK4uiaonZAk2r+eup+2dcWlqKrKi4PFLSeWo7hGrNi7miwu7Y7X8eWZZBlsnOzmbVqlV24iKvlx07duL3+/edu+ZvWNjXcPz48TzwwAN8++23/O53vyMjI4OLh1zJxvJAnW10+PkI3UDxuEBTkXQDYVqIaBzF50F2awhFRpNAQWDGzZoCUwIzbtSUvlUTil6qCaMTpmU71aX6QKm7AJNPlUl32YMLRZLI9SoUhw1CRh31KdhXzC2oW3aUHvZhvZqC6fdiGXa7rWDEnolza+Cyf9POqP8IcEb4R8xJO8Ivq+l5n3vuuSxZsoR0j8buQIR7772XWbNmMXHiRLzRAI0lnRn/7y3+/Oc/k14zklqyZAn9+vWjPLIvrn1HVRjN5eKPf/wjo0aN4tuvF9LcpzL7/Vk8+OCDjB8/PrFtaWkpL7zwArJl8vzzz9O8efOEA9YHH3zAnDlziMfjlJWVMWfOnMPKMn36dP49ZzZ6sJqysjImT55MYWEhBQUF5Ofns337dlasWEHJ7uSp39JwDMO0GDVqFGPGjGHLli1YlsWqVatYunQpXq+Xa6+9ljvuuIO9e/ei6zqLFi1i48aNgN1Z+u9//8v2bduIxWJJxx43bhxr166lcePGSd+73W4qKyspKSmhtLSUxx9/PGm9YRhMnDgRyTR48803icfjdOnShU1bt1O0o5gVK9ei6zojR45k3Lhx7N5dQlZ2Nt8tWw7ANddcw9NPP83u3bspKtrK888/zzXXXJN0DpdHrUmxu4+mTZuyZMkSNm3alJhRqSUWSpatlrfeeovVq1dTVVXNpEmTuOqqqwDo3Lkz7733HhUVFXz77bdMnz49sU+TJk1Yvnw5GzdupKysjMsuu4yPP/6YL774gkgkyvjx47nmmmsOehF73F727NnD/PnzsSyLjh070rhxY0zTyaF+rJBTPHYZ2lAUIcvIqV67WI1hYEbtVM96JE4kEica09FDUYxABGGY9vR9qhdJVfYpe0tgVYeRfW47L3/NPZYlO8qnNj1EULfYEzEpjVpETEFV3Er8XmvyTyXYX9VY2EnfRM3fsCHQZLsippTiQfangEvFCsewqkK2WcFRVofHNA+/OAAn8QjfsCx2ByKMGDGCBx98kNtuu401e6o4s0VLFi9ezPPPP89FF10E2LbaWjv6unXrUBSFM888k6+27U0cL2qY/LC7gjFjxtC6dWsee+yxRBz+u+++S79+/QjXzCqceeaZVFRU0K1bN1q3bs3MmTMxLEF+QQEfffQRTz75JPfddx8ZGRkMHjyYyy67jNzcXLp27QrY6WUzMjLo1asXYCurKVOmMH78eBRFoXPnznz88cfIskxeXh6TJk1iwoQJpKen889//pPzzjsPn89HpWWxZm8Vo0ePTij3iooKWrduzYMPPgjACy+8wKRJk7jwwguJx+OcccYZPPHEEwA8++yzTJ48mdmzZzNlyhSaN2+eMCPEYxGyMtOpDgRwuVwMGDAAgA4dOvD73/+egQMHkpGRwe23385//vOfxHWs9YTv2bMnTZo04YMPPkA3LYorQ/jzm2MJky1FW7nzzjsRQjB06FCi0SgXXnghvXr1Yvjw4ZSXl3PppZfi9XoZM2YMgwYNAmwzRpMmTRI58du1a4ff7wfgxhtvZMKECdx9991ce+21dOnSJXF9PSnupP1r5Rg3bhz3338/W7duZfDgwdxyyy1YlsmwYcNYunQp55xzDl27dmXcuHEJc87QoUNZuXIlo0ePpn///tx9991Mnz6dP/3pT+zdu5cLLrgg0QnKzc3lrLPOAkCT7Bf6Sy+9xF133YXb7ebSSy9l2LBhrNxT9T8+DQ4HIkkSeFwobs3WoLKdAUJO89llieO6rfQlyV6nqUgeF7JLTaTgFWBPoxum7UQX15E8LnDvS3/rlSXUskq7AJKqEE3xYcoykahBkSkIlceIB8NkZGdgCgtVCIjFifu8tVN9yNjOg5Yk2/Z7y0rUgHBrCm4hCOjYdnyPC+HWwDSxQjHbHyHV64z0fwxnhH/ESOIk60JWVVWRkZHBS598RZsm+fyiXXMuvvhinnjiCbKbn8aSomLOapZLy+yMpP0qwlEyfR5uueUWBg4cyEWXXMq73609yHpzWqMMOjfJId27z7FmTyDEsu0ltMhOJ7B9C7/73e9YunRpYn1JdYgvNmzDo6mc3bKAxmkpSccMxuJ4NBVVltlSVsn6knIuaNscV42fQW3b9mdXVZBFW3aSm5ZCj+b5iW1rieoGH6/ZQkU4yun5jejSNBdtP3tzOK7z1ead5PtTOKMgJ2nfslCEFTv20LGgETkHtBVg+94yQhV7SXWryKpGTm4TNFVFj8cpLq+kWV7jg/YBOwytX79+bNu2LfFdeSjC5xu2UR2MIMK2g5RLkenWrDFtTytMelGFQwF0PU56xr4pfCEEleV7cbk9pKT6EcKiomwPQoKsrFwAAlXlqJqGL8V/UJui0TBle4rJyGxESlp6wjNbVg52tqquLGfvrt00blpAmj/j4PVV5ciSTOp+6/R4rKYM8D67bDBQRTweJTMzB0mWCYcCrNpWzGlNm5Kd5ks65g+79vLdtt11Xk+HY0RNEqRE6br9Rt+1/xdCIMIxhG7YjnmKgqTKdoa+/X6zigTe6gAqECuvRvW4EKYgHouhtWiCWVKGUh2goEU+pWXVmJKMHovhy0zH1HWsuG2XN3Ud1evGm5pCoLQCl8+N5PUgsvwYpkXwAHOAT7XL9UarovYMgNdVL5V+JBTk1v525Eptp/poUV1dTXp6Ov2b3IIquw+5nWHF+GTn36iqqkoMIBoqJ90IPxCwbZ239u8DwIIFC3jrrbfQdZ2i9Wv4Vc2oLiMjg/bt2yNJEmvXrqVFixZ899133HPPPbRr145rr72Wd95555DnOf3008nOzmbHjh1s2bIFsEdn3bt3T2xz++23M3fuXIqKipL2bdasGS1atCAQCLB69WpisRgpKSn4fD727rVnFTweD+np6ZSU2A5lOTk5tGnTBsMwKCoqOsixLjMzE7fbTUlJCbm5uZSXlyccw4DErEVqairbtm1LapPX66Vz585omsbGjRvZvXt30rqMjAwqKipwuVxomkZZWVnSuTVNo1GjRpSUlGBZFn6/n9NPP51wOMyGDRtIT0/n9ttvT3imAzz88MO89dZbCfNBXbjdbs4880w0TWPt2rWJ83o8Hrp06UI4HGbNmjWJWYfs7GxisRjBYDBxTSzLoqqqKnENGjVqRCwWIxaL4ff7E9f3wP2zsrIwDIPc3FwaNWrEypUrE78tgMaNG9OmTRu2b99OdbUdI19rKpBlmUaNGmEYRsLxsmPHjqSmprJmzZpEe1JSUvB6vZSW7svomJeXR6tWrYjFYqxbty7pnA4ODZVAIHDUFX4CS/Cj2XWOUcr0+shJN8K3LItdu3aRlpZmZ8qSJFwue3Sl63qSg9mBqKqKUlNN7UAP+CNB0zTcbjemaaIoSkLxNCSqq6spLCxk+/btSb1hVVXxer3ouo6maQSDwVPOvngo2RsKDVn+hiw7HDv5hRAEAgEKCgoSTs1Hi8QIP+9mVPnQkTCGFeeT3S87I3xOwhG+LMs0bdq0znVu96GnbQ7E6/UefqM6CIfD3HvvvTz11FMN+sfh9/vrlL+285WWlna8m3TcOJTsDYWGLH9Dlh2OjfzHbGRfi2Xx4yN8J/FOLSetl/6JwjAMpk6desqNXh0cHBxOSSzr8IsD4Ch8BwcHB4f6TG0K5B9bjjGxWIwuXbogSRLLly9PWrdixQr69euHx+OhsLCQSZMmHbT/jBkzaN++PR6Ph06dOjF37tyk9UIIHnroIfLz8/F6vfTv358NGzb85HY6Cv8A3G43Dz/88E8yH5xKNGT5G7Ls0LDlb8iyQ/2WXwjrsMuxZsyYMRQUFBz0fXV1NRdddBHNmzdn6dKlPPXUU4lqrrV89dVXXHvttYwaNYply5YxePBgBg8ezMqVKxPbTJo0ib/85S/87W9/Y/HixaSkpDBgwACi0ehPaudJ57Tn4ODg4OBwOGqd9n6ZPhxV+hGnPRFnftW0Y+a09+9//5t7772XmTNncsYZZ7Bs2bJEfZKXXnqpJgHZ7oT/0/3338+sWbNYu3YtYCcjC4VCfPDBB4lj9urViy5duvC3v/0NIQQFBQX8/ve/57777gPs8PXc3Fxee+01fv3rXx9xW50RvoODg4ND/eUE2vBLSkq46aabmDZtGj6f76D1X3/9Neeee25C2YNdDG3dunWJOiFff/01/fv3T9pvwIABfP311wBs2bKF3bt3J22Tnp7O2WefndjmSHEUvoODg4ND/eXHCufsl4Wvuro6aTkw3fhPP61g5MiR3HLLLUn5W/Zn9+7d5ObmJn1X+7k2X8qhttl//f771bXNkeIofAcHBweHeoswzcMuAIWFhaSnpyeWP//5z3Ue7/7770/kgDnUsnbtWp5//nkCgQAPPPDA8RT3f+Kki8N3cHBwcHA4YiwB0uFz6R+YVOhQDoq///3vkyqE1sVpp53Gp59+ytdff33Qcbp3786wYcN4/fXXycvLS8oGCiQ+5+XlJf7Wtc3+62u/y8/PT9qm1lfgSHEUvoODg4ND/UUcJrVujcI/0qRCOTk55OTkHHa7v/zlLzz22GOJz7t27WLAgAG88847nH322YBd2G3cuHGJDKUA8+bNo127dmRmZia2mT9/Pvfcc0/iWPPmzaN3794AtGzZkry8PObPn59Q8NXV1SxevJhbb731sO3cnwal8MPhcJ2OFQ2FysrKRN33hkZDv/cODqcqwhKIHxnhH6tAtGbNmiV9Tk1NBaBVq1aJbLHXXXcdEyZMYNSoUYwdO5aVK1cyZcoUnn322cR+d999N+eddx7PPPMMl156KW+//TbffvttInRPkiTuueceHnvsMdq0aUPLli0ZP348BQUFDB48+Ce1uUEo/LVr13Lffffhcrlo2bIlN910E+3btz/RzTpurFu3jjvvvBPDMGjevDnDhg07yCv0VKWh3/sdO3Ywc+ZM2rRpQ6dOnSgsLEQIUS8rr/0cGrr8O3fu5JNPPqF169Z06tQJv99/yskvTBMhHdodTQjzOLYmmfT0dD7++GNuv/12unXrRqNGjXjooYe4+eabE9v06dOHt956iwcffJA//vGPtGnThlmzZtGxY8fENmPGjCEUCnHzzTdTWVlJ3759+eijj/B4PHWd9tCIU5zPP/9cZGdni+HDh4uJEyeKFi1aiB49eogvvvhCCCGEaZonuIXHlqVLl4r8/Hxx/fXXi7///e+id+/eomnTpmL27NknumnHnIZ+75988knhcrnEueeeKxo1aiQ6d+4sFi1adKKbddxo6PJPmDBBuFwu0adPH+Hz+cTll18uVq1adaKbddSoqqoSgOjLJeJ8rjjk0pdLBCCqqqpOdJNPOKe8wh89erQYMmSIsCxLCCHE6tWrxZVXXilat259glt2fJg4caI499xzRTgcFkIIsWfPHnHrrbeKnJwcsXPnzhPcumNLQ773JSUlolOnTuK1114TQgjxzTffiGuvvVYUFhaK9evXn+DWHXsauvzr168Xp59+upgxY4YQQojZs2eLAQMGiI4dOwpd109w644OkUhE5OXlCeCwS15enohEIie6ySecUzYsT9TYbTZu3IimaYkprA4dOjBu3DgqKyuZMGECwI+W3K3vrF+/HkmSEtUDc3JyeOyxx0hPT0/IL07RZIsN6d4feA8//fRTiouLGTRoEAA9evTgH//4B7IsM3HiRAKBwIlo5nGjIcq/fznvf//731RUVPCrX/0KgMsuu4wpU6ZQXFzMI488coJaeHTxeDxs2bKFqqqqwy5btmz56dPfpyCnjMIvLi7m7bff5uuvv6a8vBxJkojH4zRr1oxQKMSuXbsS23bs2JF7772XyZMnEw6Hj3qd5hNBSUkJGzduBMA099mszjjjDCorKxOFFizLIisriwkTJvCPf/yD4uLiem/P27FjB1OmTGHu3Lls374dsItZNJR7HwwGE1m7amnZsiWVlZUJxRaPx/F6vTz//PO88cYbrFix4kQ09ZhQWVnJ4sWLE/ceoEWLFg1G/rKyMq688kpGjRqV+K5Zs2bouk5ZWRlgP/ft2rVjwoQJPPvssxQXF5+o5h5VPB5Pwvv+xxZH2dvU/7cdtkND27ZtmTp1Kv379+fmm29mw4YNuFwuOnXqxLZt21i8eHFie1VVGTBgAE2bNuWNN944gS0/OkycOJGCgoLEA68oSmLkWluBqTZPsyzLCCHo378/HTp0YOrUqSes3f8LtSPaSZMm0apVK/71r38xYsQIBg0alIiNPeussygqKjql7/2DDz7ImWeeyeDBg/n1r3/NunXrAMjIyKBnz5789a9/BcDlciGE4LLLLqNr1678/e9/B+r/DMdDDz1E27Zt+d3vfkfHjh2ZMWMGYDtL9erV65SXf+zYseTn5zN//ny++uorqqurAUhJSaFVq1a8/fbbAImO7W9+8xsKCgp47rnngPovv8NPo14r/IqKCm688Ua+/PJL5s6dy0cffcSrr75KZWUlr7zyCgC/+93vcLvdzJw5MzECBjtxgmEYSTmO6xvxeJz777+fOXPmMGzYMCorK3nttdeAfQ/yoEGDaN68OR9//DFLliwB7DCPtLQ0MjMzEbYfx4kS4WcjSRJ79uzhjTfe4OWXX+bzzz9n7ty5nHHGGVx11VVs27aNUaNG4fP5ePfdd0/Jez98+HDmzp3L1KlTufHGG6murmbAgAGsWLGCNm3acPbZZ/Pll1/y7bffAmAYBmCHCn3zzTeEQqF6O8Nhmia33HILc+bMYebMmcyYMYNrrrmGP/zhD4B9j7t3787ChQtPSflfffVVGjVqxNy5c/niiy946aWXSE1NTaRa7du3b6IjsH79esDuJPv9fq644gp++OEH4vF4vZXf4edRr+92aWkpkiQxduxY+vXrh9vt5uqrryY1NZV4PJ5QeuPGjWPZsmVJJQljsRiGYdTruHSXy0WrVq244YYbGD9+PD179uTFF18kEAigqirxeByA2267jXA4zJNPPpnY17IsysvLadGiRb2d0j+UnVZV1US6y4ceeuiUvPfr169n2bJlTJ48mf79+/Pb3/6Wf/3rX1RUVPDoo49SXl7Ob37zG7xeb6L+dm3ij3Xr1pGfn4/b7a6XnT2wzThfffUVo0ePpl+/frRp04bhw4eTk5NDdXU1brebwYMHn5Ly79ixg7fffpsHH3yQH374gV69etG1a1fWrVtHOBwGwOv18tvf/pYdO3bwz3/+EyCRFnbjxo34fL7ErIdDA+KEuAr+TGrDqOLxuBBCiEAgIFauXHnQ+uuuu07cdtttSfs+9thjol27dqJfv37i+eefF+ecc47o2bOn2LVr13Fq/f9OrXy6ric8z/cPLZszZ47o1q2bGD9+/EHr3nzzTdG6dWvRqVMnMX78eNG3b1/RsWNHsWHDhuMowc+nLtkXLVokVFUVmzdvFkIIEYvFhBD2dZBlWXz55ZdCCCEeffTRen/vD+TLL78UqqqK8vLyxHdFRUWiRYsWoqCgQEydOlUIIcTrr78umjRpIm6//XaxdOlSsXr1anH22WeLRx555EQ1/aiwY8cOIUmSmD59euK7/v37i6FDh4oXX3xRVFZWCiGEmDZtmigoKDil5LcsSxiGkfR506ZN4owzzhDPPvts0rYPPfSQaNWqlZgwYYLYtm2bWLFihejevbv461//epxb7XAyUG8U/iOPPCIuueSSxOfal34ttQrBMAzRokUL8eabbwoh9imBWCwmFi1aJK677jpxwQUXiFtvvTXRcagPHCh/XVRXV4sHHnhAnH766WL16tVCCJEk48aNG8Xdd98tLr/8cnHnnXcmrs3JzqFkX716tejbt6+47777Et/V/i569uwphg0bJoQQIhQK1et7XxcrVqwQZ511VlLH9oEHHhC33HKL6N27t+jfv78QQohwOCxmz54tmjdvLtq3by/S09PFddddV69DlGqf9VGjRom8vDxx2WWXCbfbLc455xwxevRo0axZM3H++ecnYu5nzZp1SslfF9XV1aJt27Zi4sSJQoh9z31paamYOnWqSEtLE506dRIpKSnit7/9rYhGoyeyuQ4niJNe4a9du1ZcccUVIicnR0iSJP7v//5PCCGSerj7s3LlStGsWTOxbt26Qx6zPj3sh5L/wFjaWkX31VdfiQsuuEAMHz48se5A5VZflN2hZK9tfzweF6NHjxa9e/cW33zzTdK65557TnTo0EEEAoGkY9ane/9jRCIR8eqrrwpN08TZZ58tsrOzRUFBgSgqKhKffvqpUFVVVFdXJ7YvKysTy5YtqzczOj/G/s/+5s2bxeDBg8Wdd96Z+K60tFS0b99eTJ48OdE5OJXkP9Rg58orrxQDBgyoc5+tW7eKL774QqxZs+aYt8/h5OWkt+EvX74cn8/HK6+8wu23386DDz6IZVkoilKn/WnVqlXk5eXRtm1bwI5HfeKJJ5K2qU8hGoeSX1XVJPlr7fC9evXi8ssv59tvv+WDDz7gnXfe4eabb04K1au1ZZ7sHEp2TdMwDANN0xgyZAg+n4+nn34a2Cfb2rVryc/Px+PxJHki16d7Xxe1jmcej4eRI0eycOFCbrjhBl566SV27txJ8+bNKSsro3Xr1lRWVib2y8rKokuXLrRu3foEtfzoYBgGiqIkPns8HtauXcsNN9wAgK7rZGdnoygKa9asSTilnUryH+hzI8sypmnSsmVLgsEge/fuPWi/Zs2a0a9fvwaVVtqhDk50j+NQ1PZiq6qqxJIlS4QQQixZskS0atVKjBkzRghR9yh/2LBhYuzYsaKkpET0799faJqWmOaqT/wc+Wv3WbdunTjvvPOEJEnC5XKJcePGHceW/+8ciez7z3C8+uqromnTpqeUnfZA9pc3Ho+Le++995Cj1bvuuktcfvnlx6tpx4X95dd1PSF/ZWWlyMjIEG+88UZi/aJFi0S3bt3Ehx9+eCKaekw4lPxC7Htenn32WdGiRYtTZhbL4ehz0ir8uggGg+LJJ58U6enpoqioSAiRrPT27t0rmjVrJlq0aCE0TRO/+tWvTqn8yYeTXwghdu3aJa6//nohSZK49dZbD5rSrq/UJfv+/hmnmp26FsMwkqZwn332WeH3+0WrVq3Exo0bE99v2rRJbNq0SfzhD38QBQUF4r333hNCHDz9W984lPynnXaa2Lx5swiFQmLMmDFCkiQxYsQIccstt4iMjAxx0003NZj7X7t+6dKlQpIksXjx4hPSVoeTn5Na4e//Q6/9/9q1a8U555wjhgwZctD2RUVFolmzZqJv377iu+++O27tPFb8VPmFEOK1114T5557rvj222+PSxuPFT9F9tr1paWlp4ydVojkztwnn3wiWrVqJXJzc8Urr7xykA/Hm2++KTp27Cg6deqUiE6o7xyp/JZliUcffVTceOON4qqrrmpw8tcyf/58MWzYMLF9+/bj2UyHesRJq/APVeBB13XxxhtvCL/fLz799FMhhBCfffaZqKysFKFQSHz//ffHs5nHjJ8i/+effy52794thKj/Izohfr7spyLbtm0TAwcOFJqmifvuu0+UlZUlra+936FQSHz11VcnoonHlCOVX4hTs/rh4eR3cPgpnHQK/8dsVbXs2rVLXHfddaJNmzbioosuEpIkJby06zs/V/5aW3d9piHLXhczZswQqqqKSy+9tEF6VzvyN2z5HY4+J42XvmmaCCFQVRWA5557juzsbN5///2DvFJN02Tv3r1s3LiRrKwsdu3aRY8ePU5Es48a/6v83bt3PxHNPio0ZNl/jK5du/LFF1/wwQcfNEjvakf+hi2/wzHgBHc4hBA/zVa1Zs0a0a1bN9GqVSvx9ddfH++mHhMasvwNWXYHBweH48lJofCFOHJbVSgUEv/973+Pb+OOAw1Z/oYsu4ODg8Px4qSY0n/33Xc57bTTUBSFFStW8NRTT5GVlVXntj6fj/PPP//4NvAY05Dlb8iyOzg4OBxPJCFOfLmkzZs3U1JSQu/evU90U04IDVn+hiy7g4ODw/HkpFD4Dg4ODg4ODseWk2JK38HBwcHBweHY4ih8BwcHBweHBoCj8B0cHBwcHBoAjsJ3cHBwcHBoADgK38HBwcHBoQHgKHwHBwcHB4cGgKPwHRwcHBwcGgCOwndwcHBwcGgAOArfwcHBwcGhAeAofAcHBwcHhwaAo/AdHE4ARUVFSJLE8uXLj8nxJUli1qxZx+TYDg4O9RNH4Ts0SEaOHMngwYNP2PkLCwspLi6mY8eOAHz22WdIkkRlZeUJa5ODg8OpjXqiG+Dg0BBRFIW8vLwT3QwHB4cGhDPCd3A4gM8//5yePXvidrvJz8/n/vvvxzCMxPrzzz+fu+66izFjxpCVlUVeXh6PPPJI0jHWrl1L37598Xg8nH766XzyySdJ0+z7T+kXFRVxwQUXAJCZmYkkSYwcORKAFi1a8NxzzyUdu0uXLknn27BhA+eee27iXPPmzTtIpu3bt3P11VeTkZFBVlYWV1xxBUVFRf/rpXJwcKhHOArfwWE/du7cySWXXEKPHj34/vvveemll/jHP/7BY489lrTd66+/TkpKCosXL2bSpEn86U9/Siha0zQZPHgwPp+PxYsX8/LLLzNu3LhDnrOwsJCZM2cCsG7dOoqLi5kyZcoRtdeyLIYOHYrL5WLx4sX87W9/Y+zYsUnb6LrOgAEDSEtLY8GCBSxcuJDU1FQGDhxIPB7/KZfHwcGhHuNM6Ts47MeLL75IYWEhL7zwApIk0b59e3bt2sXYsWN56KGHkGW7j9y5c2cefvhhANq0acMLL7zA/PnzufDCC5k3bx6bNm3is88+S0zbP/7441x44YV1nlNRFLKysgBo3LgxGRkZR9zeTz75hLVr1/Kf//yHgoICACZOnMjFF1+c2Oadd97BsixeeeUVJEkC4NVXXyUjI4PPPvuMiy666KddJAcHh3qJo/AdHPZjzZo19O7dO6EYAc455xyCwSA7duygWbNmgK3w9yc/P589e/YA9ii9sLAwyUbfs2fPY9bewsLChLIH6N27d9I233//PRs3biQtLS3p+2g0yqZNm45JuxwcHE4+HIXv4PAz0DQt6bMkSViWddTPI8syQoik73Rd/0nHCAaDdOvWjTfffPOgdTk5Of9T+xwcHOoPjsJ3cNiPDh06MHPmTIQQiVH+woULSUtLo2nTpkd0jHbt2rF9+3ZKSkrIzc0FYMmSJT+6j8vlAmz7//7k5ORQXFyc+FxdXc2WLVuS2rt9+3aKi4vJz88HYNGiRUnH6Nq1K++88w6NGzfG7/cfkQwODg6nHo7TnkODpaqqiuXLlyctN998M9u3b+fOO+9k7dq1vP/++zz88MPce++9Cfv94bjwwgtp1aoVI0aMYMWKFSxcuJAHH3wQIMlUsD/NmzdHkiQ++OAD9u7dSzAYBOAXv/gF06ZNY8GCBfzwww+MGDECRVES+/Xv35+2bdsyYsQIvv/+exYsWHCQg+CwYcNo1KgRV1xxBQsWLGDLli189tln3HXXXezYsePnXDoHB4d6iKPwHRosn332GWeddVbS8uijjzJ37ly++eYbzjzzTG655RZGjRqVUNhHgqIozJo1i2AwSI8ePbjxxhsTStjj8dS5T5MmTZgwYQL3338/ubm53HHHHQA88MADnHfeeQwaNIhLL72UwYMH06pVq8R+sizz3nvvEYlE6NmzJzfeeCOPP/540rF9Ph9ffPEFzZo1Y+jQoXTo0IFRo0YRjUadEb+DQwNCEgcaCB0cHI46CxcupG/fvmzcuDFJYTs4ODgcLxyF7+BwDHjvvfdITU2lTZs2bNy4kbvvvpvMzEy+/PLLE900BweHBorjtOfgcAwIBAKMHTuWbdu20ahRI/r3788zzzxzopvl4ODQgHFG+A4ODg4ODg0Ax2nPwcHBwcGhAeAofAcHBwcHhwaAo/AdHBwcHBwaAI7Cd3BwcHBwaAA4Ct/BwcHBwaEB4Ch8BwcHBweHBoCj8B0cHBwcHBoAjsJ3cHBwcHBoADgK38HBwcHBoQHw/wF0kxkTS/qm2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "6de1bc13", + "metadata": {}, + "source": [ + "In this case it is a bit difficult to see the variability of the precipitation difference, but if extreme values are masked out the map will look like the following:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f23a3282", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAErCAYAAAA7aTGEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgtRXX3/1lV3b2HM96Rey+zzIKCIhpBERAnICiDgqBBSWKMGmNMQnzzOGd4Xwk/NRLjlDhEERxBRQSJc4wxmgQhyigz3PneM++9u7tq/f6o6t77cAcGQVH2l+dw7umxurq61lrfNZSoqjLEEEMMMcQQQ/xGw/yqGzDEEEMMMcQQQzzyGAr8IYYYYoghhngMYCjwhxhiiCGGGOIxgKHAH2KIIYYYYojHAIYCf4ghhhhiiCEeAxgK/CGGGGKIIYZ4DGAo8IcYYoghhhjiMYChwB9iiCGGGGKIxwCGAn+IIYYYYoghHgMYCvzfIPznf/4nIoKI8M53vvNX3ZwhHka84hWvqN/tH/zBH+zwuF6vx9KlS+tjv/3tb//yGvkgce655zIyMsKGDRsWba/avrOfV7ziFYvO2WuvvbY5Znx8nCOOOIILLriAPM+3uX+v1+M973kPT3/605mYmCDLMlavXs1TnvIU/uiP/oivfvWrO2z7li1b+Nu//VuOPvpoVq5cSZqmTExMcNhhh/GHf/iHfPOb3/yF+2fz5s2sXLkSEWHffffd7jFf/vKXOeecc3jCE57A8uXLSdOUlStXcsIJJ3D55Zdv95wbbriBd73rXRx77LH1OatWreLUU0/le9/73v226yc/+Qkvf/nL2W233Wg0Guyyyy4cc8wxfOxjH1t0XKfTYfXq1ZxwwgkP/uGHeGSgQ/zG4HWve50CCuj+++//q27OEPfB2972NgX0Yx/72IM+95xzzqnf7ZIlS7TX6233uC984Qv1cYB+61vf+sUa/Qjh2muvVWOM/vmf//k2+6q2n3POOTv8+chHPrLonD333FMBPe200/Scc87R3/md39Gjjz5a0zRVQI8++uhFfbZ161Z98pOfrICmaapHH320nnnmmXrSSSfp6tWrFdADDjhgu23/4he/qOPj4wro6OioPvvZz9aXvvSlevLJJ+t+++1Xt/+EE074hfronHPOURFRQPfZZ5/tHnPaaaepiOghhxyiJ5xwgp5xxhn6tKc9rW7D//k//2ebc3bddde67ccff7y+5CUv0UMOOUQBFRF9z3ves8M2feQjH9EkSdRaq0cddZSeeeaZeuyxx+qSJUv02c9+9jbHv/vd71ZAv/GNbzzkfhji4cNQ4P+GIM9zXb58uQK6atUqBfQ//uM/ftXNGmIAD4fAf9KTnqSAXnrppds97pRTTlFrrR566KGPaoF/8skna5qmun79+m32VcLqwaAS+Lfddtui7f/zP/+jExMTCuiFF15Yb/+jP/ojBfSwww7Tu+++e5vr/fCHP9R3vOMd22z/yle+oiKiSZLo+eefr91ud5tjrr/+ej3nnHN0v/32e1DPMIh//dd/VUBf9apX7VTg//d//7du2rRpm+3/8R//oaOjoyoieu211y7a9+xnP1v/5V/+RTudzqLtH/zgBxVQa63+9Kc/3eaa3/jGN1REdN9999Wf/exni/b1ej397//+723OWVhY0MnJSX3qU596v888xCOPocD/DcGXv/xlBfSoo47Sd77znQroa1/72l91s4YYwMMh8M8//3w1xujpp5++zTFbt27VRqOhz33uc/V5z3veo1bg33nnnWqM0ZNOOmm7+x9Oga+q+o53vEOBRRbomjVrFNCrr776Ad9jdna2Vqo/+clP3u/xP/7xjx/wtQexsLCg++yzjz7+8Y/Xm266aacCf2f43d/9XQX07//+7x/wOc997nMV0Le//e3b7Hv84x+vxphtFIgH2o7tKQRD/HIx9OH/huBTn/oUAC972ct42cteBsBnPvMZiqLY4TnXXnstv/3bv83k5CRjY2McffTRXH311Xz729/erp+08iN/+9vf5qqrruLYY49lcnISEWFqaqo+7sorr+TEE09kxYoVNBoNHve4x/HGN76RzZs3b7cdqsrFF1/Mcccdx5IlS2g2mxx00EG8/e1vZ2FhYZvjjznmGESE22+/nc985jMcccQRtNttdt11V84777zaX/vzn/+cl770paxcuZJ2u82xxx7Ltddeu8P+eDDtHuyL7373uxx33HGMjY0xPj7OiSeeyM9+9rNFx++111684x3vAOCVr3zlIl/zg/Gzr169muOOO47LL7+c6enpRfs++9nP0uv16ve/PVxzzTWcd955HH744Yue8zWveQ333nvvNsfffvvtiAjHHHMMMzMz/PEf/zG77757/Y7e85734L1/wO0H+OhHP4r3npe+9KUP6ryHiic96UkA3HXXXfW2jRs3ArBixYoHfJ2Pf/zjbNq0iSOPPHKnfVzh8MMPf5AtDXjHO97Brbfeygc/+EHSNH1I1wDqc7Mse8DnHHrooQDbjIXvf//7/OxnP+OYY47hCU94woNqx1lnnQXAhz/84Qd13hCPAH7VGscQvzimpqa02WxqlmW6efNmVVU98sgjFdAvf/nL2z3n3//937XdbiugT3ziE/XMM8/UI444Qo0xNd15zjnnLDqnsjJ///d/X0VEjzjiiPq8qakpVVX9i7/4CwU0yzI96qij9PTTT6/9mvvss4+uW7du0TWdc/rSl7609ikec8wxesopp+juu++ugD71qU/VhYWFRec861nPUkDf8IY3aJIkevzxx+spp5xSW1+/8zu/ozfddJMuX75cDzzwQD3jjDP0CU94ggK6dOnSbdrwUNpd9cUb3/hGtdbq0572NH3JS16i+++/vwK6bNkyXbt2bX38n/7pn9Y0+1FHHbXIH3399dff7zuu7vfJT35SP/axjymg//zP/7zomKOPPlrb7bbOzs7u0MI/44wzNEkSffKTn6wvetGL9EUvepHutddeCujq1av1nnvuWXT8bbfdpoD+1m/9lh5++OE6OTmpp556qp500knaarW2O07uD095ylMU2OZeFXiYLfyLLrpIAX3CE55Qb3vc4x6ngL761a9W7/0DuscJJ5ywjWvgwaJieXbUZz/5yU80SRI999xzVbXf/w/Wwr/22mt1yZIlmqap3nLLLQ/4vNNOO00Bfetb37poe8UavvnNb9aFhQX96Ec/qq997Wv19a9/vX7iE5/Y5hsdRKfT0TRNdffdd39QzzDEw4+hwP8NwD/90z8poC984Qvrbf/4j/+ogL74xS/e5njnXC2Y/uZv/ma719qZwAf0kksu2ea6n/3sZxXQQw45RG+++eZ6u/de3/rWtyqgZ5xxxqJzzj//fAX0mGOOWSQge71eTQX+xV/8xaJzKoE/OjqqP/rRj+rta9eu1V122UVFRA866CB905veVE/m3nt9+ctfvt3J7KG0u+oLY8wif3pZlvWk+Za3vGXROQ8Hpf/JT35SZ2ZmtNVq6bHHHlvvv+OOO1RE9KUvfamq6g4F/je/+c3tKl0V7f3KV75y0b5K4FSK4caNG+t9t9xyS02N7yim4L6YnZ1Va62uWbNmh8c83AL/zDPPVEDPPvvsetv//b//t77PgQceqG9605v00ksv1bvuumuH96iC3f7t3/7tQbVtEDsT+M45PeKII3T58uW1X/6BCvwvf/nLes455+hZZ52lz3jGM9QYo41GQz/+8Y8/4Lbdcsst2mg0FNjGHVH14V/+5V/qAQccsCgwFNA99thjp1T/4YcfroDeeuutD7g9Qzz8GAr83wBUAvBzn/tcvW3Tpk2apqk2m83a+q5w9dVXK6D77befOue2ud5RRx21U4F/4oknbrcdlQV73XXXbbPPe6+HHXaYWmtroVEUhS5fvlxHRka2a3UvLCzoqlWrdMmSJYvaWT3vm9/85m3O+ZM/+RMF9HGPe5zmeb5o309+8hMF9FnPetYv1O7BvhgUIhV+/OMfb/c+D5fAV1V9yUteosaYOuDsb//2bxXQr371q6q6Y4G/M+y66666bNmyRdsGBf7Xv/71bc75wAc+sI1/fGf44Q9/qMAiZeW+uK8w2d7PfRWM+wp8773efvvtNXMjIvrd7363Pt45p+edd14dxT/4c/DBB+sHPvCBbb6NZrOpgN5www3btHnLli3bzSa4L3tz4YUX6gEHHKBvetObtrnGe9/73m3GxwMV+H/1V3+16BlarZZ++MMf3u73vT0URaHPeMYztqvcqvbHU5Ikuttuu+kVV1yh09PTet111+lznvMcBXTPPffU+fn57V7/7LPPVkC/+MUvPqD2DPHIYCjwf81RWXaTk5PbRAy/8IUvVGCbFKa3v/3tCmx30lFVfd/73rdTgf+hD31om3PWr19fKxE7wmtf+1oF9Morr1TV/uT/nOc8Z4fnnHjiidtMspXAH5zAK1x44YUK1JToIGZnZxUWpyw+lHar9vviE5/4xDbHz8zMbHMf1YdX4FdBmueff76qqh588MG6cuVKLYpCVXcu8Ddt2qQf/ehH9Y1vfKOee+65tXBauXKlArVbSLUvcJYuXbrddk1NTdUC5oEIl6985SsK6KmnnrrDYwYZph39/Nd//deicyqBv72fLMv0H//xH7d7r3vuuUf//u//Xk877TTdY489Fp33ohe9aNEz7Uzg33XXXdu99wNVuO644w4dHR3dRkl8sJR+p9PR6667Tl/zmtcooCeddNIOUzgH8Yd/+Ie1ojz4/itUQh3QH/7wh4v2dbtd3W233RTQD3/4w9u9fuUm3N7cMcQvDwlD/FrjoosuQlU5/fTTaTQai/a97GUv40tf+hKf+tSn+L3f+716+9q1awHYfffdt3vNPfbYY6f33N7+22+/HYCbb74ZEdnp+Zs2bVp0ztVXX/2AzjnggAMWbdt11123OW50dPR+9/V6vV+o3YPYbbfdttk2Nja2zX0ebjz/+c9n2bJlXHTRRRx//PH89Kc/5Y/+6I9Ikp1/0hdffDGvetWrmJub2+Exs7OzLF26dNG2Pffcc7vHTkxMMDk5ydTUFFu3bmXZsmU7vX8VaFj10c7w8Y9//H6PuS9OO+00RkdHERFGR0c58MADOeWUU1izZs12j1+zZg2vf/3ref3rXw/A9ddfzwUXXMBHP/pRLrvsMi6++GLOPvtsAJYtW8Y999yz3bG42267oar1389//vO56qqrHnC7X/va15LnOR/84Acf7CMvQrPZ5JBDDuH9738/1louvPBCLrzwQv70T/90h+f8zd/8DR/4wAfYZZdduOqqq7Z599D/dh7/+Mfz1Kc+ddG+RqPBWWedxfnnn893vvMdfv/3f3+b88fHxwEWBfcO8cvHUOD/muOTn/wkAN/+9rd5xjOesWhfFa3+3e9+lzvuuGOHk/aDRbPZ3GZbFam9atUqnve85+30/Kod1Tn77rsvRx111E7P2Z4gMWbHSSY72zeIh9Luh3KfhxtpmvKSl7yED3zgA/zlX/4lwP1Gjt9xxx115sV73/teTjzxRHbddVdarRYARx55JD/4wQ8WCa6HGxMTE0BQKh4JXHDBBey1114P+fyDDjqIf/7nf2br1q1ceumlfPWrX60F/qGHHso999zD//zP/9zveH2wuPzyy5mcnOTVr371ou3dbheAe+65h2OOOQaASy65hFWrVt3vNV/+8pdz4YUX8qUvfWmHAv+DH/wgb37zm5mYmODKK6/cYUW/auzvqG+r7fetmlihUvQmJyfvt91DPHIYCvxfY/zXf/0X119/PQC33HILt9xyy3aPU1UuuuiiWjCsXr0aWJymNIgdbd8ZKkt3+fLlD9gyq8458MADH5I193DgobT70YKXvexlfOADH+DKK69k//3338byui+uuOIK8jznz/7sz/jjP/7jbfbfeuutOzz3zjvv3O72mZkZpqamaLVaD2gyX7lyJRBK0z6acdxxx3HppZcuYnVe8IIXcMUVV3DJJZfwute97mG/59TUFN/5zne2u6/b7db7KiXg/rB8+XKgn4J4X1xyySW89rWvpd1u89WvfpXDDjtsh9eqUhu3bt263f3V+6yYgPuiOu/BpEEO8fBjmIf/a4wq9/7P/uzP0BCPsc1PleNdHQvU1smll166XWvus5/97INuy2677caBBx7Iz372M2666aYHdM4RRxzBxMQE3/nOd35lAuChtPuhosqHLsvyYbnekUceyaGHHsqyZcs499xz7/f4atLdnhviu9/9LuvXr9/huZs3b+Yb3/jGNtsvueQSAJ7+9Kdjrb3fNhx88MEkScKNN954v8c+krg/FqNSngddQ694xStYtmwZ3//+9xd9Tw9Xe7b3c9tttwGwzz771NseKINRKQj77LPPNvuuuOIKfud3fockSbj00kvvl7E44YQTSJKE6667brvfanWvSjG4LyrDZGdKxRCPPIYC/9cUzjkuvvhigJ0WMHnmM5/JrrvuyvXXX89//dd/AcF62W+//bjxxhs5//zzFx3/8Y9//AEtoLE9vOUtb8F7z2mnncY111yzzf7NmzfzkY98pP670Whw3nnnMTs7y6mnnrpdC/Oee+6p3RaPFB5sux8qKj/ywynsrrnmGjZt2sRf/MVf3O+x+++/PxCUv/n5+Xr7Pffcsw2VvD382Z/92aIiRLfddlu9SNNrX/vaB9TekZERnvSkJ7F27VruueeeB3TOI4EjjzySj33sY4v6ocLll19e+9JPP/30evvo6Cgf+9jHEBFe+cpX8nd/93fbtbbvvvvuHbJk//AP/8CBBx7I//k//+cXfoaNGzfykY98ZLvFqa6++mrOO+88IBR6GsT3v/99Tj/9dFSVz3zmMzz3uc+933stX76cV77ylczNzfH6179+0WJEn/jEJ7j66qtpNpvbFOuCwEhcd9117L777uy9994P8imHeDgxpPR/TfH1r3+d9evXs//++/PkJz95h8cZYzjjjDN497vfzSc/+UkOP/xwjDF84hOf4Pjjj+dNb3oTF198MY9//OP5+c9/zo9+9CNe+9rX8v73v/9BVeiCUFHrpz/9KX/7t3/L4YcfzmGHHVZbJj//+c+59tprGR0dXRTU86Y3vYkbbriBT37ykxx00EE86UlPYu+99ybPc2688UZ+9rOf8cQnPpGXv/zlD7mvHol2PxQ897nPpdls8p73vIf//d//Zc2aNYgIf/7nf75NENgjgZNPPpmDDz6YH//4x3XcRLfb5Vvf+haHHXYYRx55JP/+7/++3XN/67d+izzP2XfffTnuuOMoioJvfOMbLCws8LKXvYxTTz31AbfjxBNP5Ec/+hHf/va3a//49rA94VFhjz32+IVWhLz++us599xzec1rXsOTn/xk9thjDzqdDjfeeCM33HADAK9+9as58cQTF53327/923zhC1/gFa94Beeddx7vfOc7edrTnsbKlSuZnZ3lrrvu4rrrrsN7z9Oe9jT222+/Redv2rSJG2+8sQ6c/UUwPz/Pq171Kt7whjdw+OGHs9tuuzE/P89NN91UP8Of/MmfcNpppy0676STTqLT6bD33ntz2WWXcdlll21z7Wc84xmLAn0B/u7v/o7/+I//4KKLLuJ73/seT3nKU7jzzjv58Y9/jLWWD3/4w9sNBP7+979PURTb9OUQvwL8EjMChngYUVWne9vb3na/x/7oRz9SYFHalqrqNddcoyeddJKOj4/ryMiIHnXUUfq1r31NP/WpT203ba9KDbu/VKPvfOc7+uIXv1jXrFmjaZrqsmXL9IlPfKK+7nWv0+985zvbPedLX/qSnnjiibpy5UpN01RXrlyphx9+uJ533nnbpGBVaXnbK7JSVaHbUb8Q84V/0XbfX1/s6D5XXXWVHnXUUTo6OvqgUrfum5Z3f9hRWt6WLVv0D//wD3WvvfbSRqOhj3vc4/Qv/uIvdH5+frv9WqWFPetZz9KpqSl9zWteo2vWrNEsy/SAAw7QCy64QMuyfEBtqnDnnXeqtXaHq8mxnfS2+/4ceuihi87ZWeGd7eEnP/mJvutd79LnPve5us8++2i73dZGo6F77LGHnn766XrFFVfs9PzNmzfr3/zN3+hRRx2ly5cv1yRJdHx8XA855BD9vd/7Pf3Xf/3X7Vbwu79Ke/fFztLy5ufn9fzzz9cTTjhB99xzT221WtpoNHSvvfbSM888c6dj8/5+dtS+ubk5/cu//Evdd999NcsyXbp0qZ500kk7LUZ07rnnKrDNdzzELx+i+giG5A7xa4lXv/rVfOhDH+KSSy7hjDPO+FU3Z4hfIW6//Xb23ntvnvWsZz2omv/3h1NOOYXLL7+cu+666wFFnA/x64lOp8OaNWvYf//9+eEPf/irbs5jHkMf/mMUW7ZsqXPQB/GZz3yGf/qnf2JycpKTTjrpl9+wIR4T+Ku/+iu891xwwQW/6qYM8Qjigx/8IFNTU/zf//t/f9VNGYKhD/8xi5tuuomnP/3pPPGJT+Rxj3scEPyaN954I9ZaPvShDzEyMvIrbuUQv6k45JBDOOecc/jABz7AeeedV6frDfGbg06nw/nnn88LXvACjjvuuF91c4YAhpT+YxQbNmzgne98J9/85je59957mZ+fZ/ny5Rx55JH82Z/9GU9/+tN/1U0c4lGAR4rSH2KIIX75GAr8IYYYYoghhngMYOjDH2KIIYYYYojHAIYCf4ghhhhiiCEeAxgK/CGGGGKIIYZ4DGAo8IcYYoghhhjiMYChwB9iiCGGGGKIxwCGAn+IIYYYYoghHgMYCvwhhhhiiCGGeAxgKPCHGGKIIYYY4jGAocAfYoghhhhiiMcAhgJ/iCGGGGKIIR4DGAr8IYYYYoghhngMYCjwhxjiUY63v/3tiMivuhlDDDHErzmGAn+IISI+/vGPIyKLflauXMmxxx7L1772tV918+4XN954I3/yJ3/CkUceSbPZRES4/fbbf9XNGmKIIR4lSH7VDRhiiEcb3vnOd7L33nujqqxfv56Pf/zjnHDCCXzlK1/hpJNO+lU3b4f4wQ9+wPve9z4e//jHc9BBB3HNNdf8qps0xBBDPIowFPhDDHEfvOAFL+ApT3lK/ffv/u7vsssuu3DxxRc/qgX+ySefzNTUFGNjY1xwwQVDgT/EEEMswpDSH2KI+8Hk5CStVoskWawfX3DBBRx55JEsW7aMVqvF4Ycfzuc///ltzhcRXve613HZZZdxyCGH0Gg0OPjgg7nyyiu3Ofbf/u3fOOKII2g2m+yzzz586EMfesDtXLp0KWNjYw/+AYcYYojHBIYW/hBD3AfT09Ns2rQJVWXDhg1ceOGFzM3N8bKXvWzRcX//93/PySefzNlnn02e51xyySW8+MUv5vLLL+fEE09cdOy//du/8cUvfpHXvOY1jI2N8b73vY/TTjuNO++8k2XLlgFw3XXX8dznPpcVK1bw9re/nbIsedvb3sYuu+zyS3v2IYYY4jcXQ4E/xBD3wfHHH7/o70ajwUc/+lGe85znLNp+00030Wq16r9f97rX8eQnP5l3v/vd2wj866+/np/97Gfss88+ABx77LEceuihXHzxxbzuda8D4K1vfSuqyve+9z322GMPAE477TSe8IQnPOzPOMQQvwnodrvkeX6/x2VZRrPZ/CW06NGNocAfYoj74P3vfz/7778/AOvXr+dTn/oUv/d7v8fY2BinnnpqfdygsN+6dSvOOZ75zGdy8cUXb3PN448/vhb2AE984hMZHx/n1ltvBcA5x1VXXcWLXvSiWtgDHHTQQTzvec/jiiuueNifc4ghfp3R7XbZe89R1m1w93vsqlWruO222x7zQn8o8IcY4j546lOfuiho76UvfSlPetKTeN3rXsdJJ51ElmUAXH755fz1X/8111xzDb1erz5+eznzg0K8wpIlS9i6dSsAGzdupNPpsN9++21z3AEHHDAU+EMMcR/kec66DY5bfrw742M7DkebmfXs+5S7yPP8MS/wh0F7QwxxPzDGcOyxx7J27VpuvvlmAL73ve9x8skn02w2+cd//EeuuOIKrr76as466yxUdZtrWGu3e+3tHTvEEEM8cIyOyf3+DBEwtPCHGOIBoCxLAObm5gD4whe+QLPZ5KqrrqLRaNTHfexjH3tI11+xYgWtVqtWKAZx4403PqRrDjHEYwEej7+f/UMEDC38IYa4HxRFwde//nWyLOOggw4CgsUuIjjX9x/efvvtXHbZZQ/pHtZanve853HZZZdx55131tuvv/56rrrqql+o/UMM8ZuMQv39/gwRMLTwhxjiPvja177GDTfcAMCGDRv49Kc/zc0338yb3vQmxsfHATjxxBN597vfzfOf/3zOOussNmzYwPvf/3723Xdfrr322od033e84x1ceeWVPPOZz+Q1r3kNZVly4YUXcvDBBz+ga05PT3PhhRcC8P3vfx+Af/iHf2BycpLJyck6G2CIIX6T4FEcO3aN+Z3se6xhKPCHGOI+eOtb31r/u9lscuCBB/KBD3yAP/iDP6i3H3fccfzzP/8z/+///T/e8IY3sPfee/Oud72L22+//SEL/Cc+8YlcddVVvPGNb+Stb30ru+22G+94xztYu3btA7rm1q1bectb3rJo2//3//1/AOy5555DgT/EbyQ8ulOhPhT4fYgOo4aGGGKIIYb4NcPMzAwTExPccP0ujO0kSn921nPgQeuZnp6uGbrHKoYW/hBDDDHEEL+2cPdD6e9s32MNQ4E/xBBDDDHEry2chp+d7R8iYCjwhxhiiCGG+LVFiVCw41z7cif7HmsYCvwhhhhiiCF+beE1/Oxs/xABQ4E/xBBDDDHEry0cgtuJFb+zfY81DAX+EEMMMcQQv7YYCvwHjkedwPfec++99zI2NrbdRUiGGGKIIYb49YCqMjs7y5o1azDmkSnsWqih0B1fuxhS+jUedQL/3nvvZffdd/9VN2OIIYYYYoiHCXfddRe77bbbI3Jth8HtpEr8/S+e+9jBo07gj42NAXDBP32CZSuXM76yRZKM0DTQSHrkvocVB5QggpEmqjlGWpReERkhNVMUroeSYSVF6WKNoCqUPiexKaXLcerwGuowefVIpH6sGGCcUKNpFgWMCKmkiFi8ljh1NGyTJY3dcTrH1t5GQPDqcb4kNRnWZFhZxkK5ASM5AiQmw6nDiEEQjBhUlVJLQLGShHZ0LUlmkFRY1VpFImFJVhFqgkoMEHNMVQUxICgulo42kSERUUQEVfAunKFaXUvi+eE68/PzNNoZVhKcFhgJQ8TED0pRBPmF2RdVxSlYqZaTHVTDH35mx3lP2S3IWqEfnXqmipyGcTRsSiIpglBoXv/uuZzC5+QuR1HayQgjaRtDWPlu69YZbrn5NgQYHRsnTSzGGlQ9Igb1HucdYoSpmSka7Qad7gKTK8cYnRhhoZzDqSczGbgGpRdsaii1ideMQhNG7DzWdFAtUQxeDa0koWmXM194RDxjqVL68J5GUsFK6FdFKLyiGGbzKWaLKcL0mGFNCiitpMGK5i6kYuIY0TrIyZrwHrrOs77juHOu2Obd7NXq0Ss3YYwJY0oJS5UIqCR4p6g4nOnitSRMOSVV/TOJY0EHrmzEIFKN0fCNOO8QERJJ4ncLXh2gGBGMWBTFikUwlOriFV0cr5bS5+G5xACmzt4WQDCMpOPsPrI7Rgx5N8ekFmtMPdbDd+q5ffZWFso5GPgWVA0TjaWsaq0GBCvCdOHxCmOpcvf8WrwuoIDzDhfbLvW4l/htWYw0EDGE+aQkMY7UpBQ+x3tHYjKqHlvVXs14uriYjAJT+RbunrsTEQvq49YUT1gEymvog0LH4xzg2WN0lBWNJRQavvNUBKcwXy5w5+xGUruA8wmFCqkUqGagNvZBGXsjYb6cxGmDQpW52Vle9Zwj63n9kYCq4HXHc4buZN9jDY86gV99XAccegC+vQKPYqfXMze3gGlndLs5jdQgxuIlIU2EolfQbCSkIpTlVrq+pLOQ02pZ7FiLbHwlDTuP8x5PwkjSpvAFuQ9Cv2EaFL6g9GFCs8YymowDLWAMCNJRIEzkUThasYym43RKpZvOoRoEq4uTbGZSVjSXcc9CiZUZEhO626kjMxmJCcJdVcl9QWIsRgwz+QyJtTRtk7RlGW+Pk5gUr2DNfQS+eFBQwiSJhu+7qp94X7ms8X/1RDcwmSmKNZZGO7StVI+phXu4YKUgPBSBHybMIIwgRM9WV662PVJuHO88eVrQHGmgBKHWKHNEPA2bYTAoiovKnDAalDF04H0niATlsOd7rGm1yZIMEUOr2aQsS7JGgzzPSdOE2bk5tm7dypKlk4yMt5FEuPfetTRaGb5RkDWyul/EeYpiJc2RcYwIuQvCPbVtGmYu9LqMkJoeLWtZ2VyOIiyUBXPlFhqmyUg6TiKV0gqlwlzhsQINlzDq2oAh93P0XBennkaSMjk6FhXQIKy9QiL9d9H2StlwSMszk3tEIHfKaGpYMbLA+u7WWmhbCeJT1VMqGLVY4xFG8DhUHZDE8SeYqIiGfrZYA0ZsHB9lPU59XABF1ZNgMZJEgR/aKfG7tWIpvCdVF9oiJgo8g6eFaokVi5JEARs8vEYMI8kI47EvemlOkgYFbvAb8aqszlbTKRcApes6USGEdjbC5Gh4B6WWUMyiKswUQplNYCXHiieRcVQ9Rhzg8KqI2KiIVO0KSkhiHIIPRoIGgyLMQT58402PT8q4IpzU33RiLaMyClSKf3xmzfHaoNQWqikpSmbm8drGNsdIWqOMGkGkbzBkBUwZRbWNFUPHNclMj61bx1A1JEYQURqp4H1GQ1qAoVs6XNJ/R48UcrWkO6H086HAr/GoE/gVWukWskaKZxQ3sYSyFOa8oUDJ2uM451Ff0tCSdjqGsQloiU8UJSXxQqOdkowozWSEzMCCzmPU03EdVH1t1fv4b2tsPdm0koQEWNLcEyM7HkxehU5pwmQVJ0mVAsVhxNJKhMyMkftZStetLfvCFzgNmr7BglhUlUKLoAQ0HL1eD59bNpmNjGfjjCSj4ZMWxdgg1AsnJBI+UO/ChG3ZVtD31QSl8LA1dyxrWJJBQatgTVIrJjY+twyeP8AKPBSYgVOrNnofhExq+nb+A7nDjo/dDlsQZtCa2TAC7SSrjy48JEawkmCwFOooVcmMBQGvSqkOi2DFkkiKTQ177LZr7JN4EwmKkxiYXDrCilWTiBFGyyZbOptZObKENLUUvgANViaAcyUyt5leLrh0lBWTGSNJB0+LqV6LZmKYzML78rHzLDCSpMAKFGgYofCQe6Vlw1saz4LlPZpOApNAsP7WLtwbxj6Qe0/plZE0Ck6pWCCN70xZkglNa9ilZUCFnlfGUkPpAU2AiiHTKPwNgkFMThTnUXBrFNADbyqOKa8pzudgQp9USqjW16yUhKiIEYSfVx+/q7DdiCERS6k51Ja+J5EGwa72QIEsEoKuViAWoz+6NPb76tYqfGzPus7dbOhsqJ+99B4xhk65wF1zd0b2ULCmAaSI5CgFEuvDQQsljX8XOJ9hZQGkxOko6g1GuoE1iv8NdBpbepvZ0tscWaWgPCUmKlQSGUf1GKn60yOiZGYusCJaBqZDOxReme41yVoNRKH0geXxqoRRpxSakJjQx0snSrzGMUCCEUfpEryGuSxLE/LSbqdPH154BL8TSn9YS7+PR63AF1GMbCaVKZqjoywdHaXnRtiaw0IpOA2f94QssGYso9VukRih4xaYzRfw6ii1oJWMourIncOIIpIgIpS+xKvi1VNQ1JNGoASFxKQ418FriTWNAUs8TGCB8lZSk7Ck0cbKUhKT0nWdaBUHy2Bjdy0iSisZoedmgTD9lVpi1GBE8DhEDca0gQ7tdAQrBjWKKVLmFxZISGglbSw2TC1RSIpW1kfoN1Nzo4NiUBkUgkZgLDXbUQoG2AP5RcT6wJ1rqiFc09K39I0Ei9CYfttc5JOt2fn9VTXaNOHi929ASDD00NBXQk0bd51nrnBMZobEGIwxZAildxS+JKwi7UgkofA5Kp5ELB4fBYxUZmhsl2J8EABiDKlJSSQnTVJKyiD8RIARoAua4zXjVdf8BBTe/YTn0mhlzBaCFaWVhDGZOyVJDC0rgdIGCq9YEVpJ0GhSo3FMhb50WikyoQ98fB+Vktst59jQuRsQNvc8RgTBYCRF4vMVPg/9h6FlG4ynSxk3BiiZ89G9Ft9GoE8raroY4IUMig+BW7o9i8+SGBfHiyKYeqKWKNxUw7NVor9SznWgncFytmCSmnELxwKUJGIBi9MSpazvV7EM/dESf0t/DEv1I4KJT6wqtVKyUE5xz3yOSLi+j4I28G8K4iLt3aNyjanmGDxCEY6TqaiQGKwUGLE4TVEtQGxUdnx4trqtgsb3JpU+ULMEULksVQ2gJKaI5zlEkvhuS3LfYd6tpTtH7M+E1AhOu3h1WKkMgQTxTbbMN1AyxAqlGFzXYU1C6UvS1IbnKB/5pWmHUfoPHI9agd91XayHkoKe65KalJF0nKXSYpOO0HWGsleyQMJUAlOdLsubBmssE4xG32tK0e2wUC5EYZ4Frdd7UI8lIdFABRauwJpAE4oI83mHlm2yUBSkJmjXijKdTzFfztOwTebKeXZprqLUnF6Z46xnqjcVmQODFUPP9XA4lmRLsTrKbDlb8+rGSPjsJQh+TAJq8epIrKFwOamxWGfpTPVYKDs1Q1BhG1t2p2Nb6nsD9O6jEyiQ90q82/YjlXqivc9N7+d22z1edrCNoMQMUvx126rJe+CatYUfLUS9n4YVeYF3rs9SSPDld8sFCl+wbq4kMSljyVhkN6JfVXwU5AUeZcHNRUYowYgJPvjB5qqn8q8473F0KZ0jc00saRgTvkRQRJr0nGFmbpQLDn0+ZmIEv3WeslcizQYrmwmtJCg07ejP8T66RozQsEL/dWldRlSABaeUHkbTYAUZFJHgimraJoV3GBF6vhepj8rSrKx1ITVJHcMgGArXYTqfIviiLU59tBoJWmik140Et0noiwQl0PzhHftIq2t9n76wMtF2V6AZaeUc1dDWoLAYrMkwIjifIxKVOEzNIDkfXTNxu4og4klNGt6rBrahYhEqps8NxPJUqLrXbFcJrr4JjW7BmcBuSEZmJ7HSxamj9GW/D6RyE4T2BldHOXg1RD0qHZwmsR8d4PFqAY1xObb+5lNSEpNGQ6Qk971aYdKo0IR+auE0D8YPBkEjW6E438H5LpUqbcWS+/DtJSYDDL1yAudHcD4hJzyHd4pNDaYRlDmrYE1OarqQbdnpN/lwoFBLoTtmEoZR+n08agV+9eEKCUqGV89MvhUjC4yllqY1dL0ws7XH1JxgRlvYDE75wmX4VNGJEroGSmHl47aw4efLGL3d4Frw9t/5NP909zMovWG3kWmeMHYP//jdZ3PecV/lgzc9k2ZasnHzGFoYZC5BrSKlEOJclHTa4hPFjXpMHhpqFwzFRIyIM7Bsz61svnMJjQ2WfNKTrOrgSoNuCnRZY5Ohs8ohXmhsMpQtcG2Ppsrq7wpbT59ncqTDutuXkW2yPO34n7Jp8wjLG/NMph2+fvsBrBifY92Wccotzfq+VOxbkFdBMCaKOKlYOVCBREGCE71ycYntfxmqA8dKoKgldZhEEeNrq9z7YKG70uJL6d9Tg18vXEv6Mxn9f6sTTOYQo9g0TKtiFGs8ifUY4+vzBwNzKlree8E5g/eCeoMrDHip2109g9gYLOCrB60aIFBK2O6IfRKbWV+n6pB4qutP+eJDn0pkgtWGvq76VBTUxGtaDRsr1ji2RzxU7kdRUKt86Gm/TdMV7DUxwkgiNV0cLDXoetjcc6xoWppWmCs9TSs0o5ZUxXq0rUHjO+2USmIgNUI7GWe3kRHmS89CqViBiczQsJbKXu25cL+GMfV7BJgtZrhzbh2lV7puHK8ZiemSGMVKj1QciQnXMJXtrUEhqFijSlAJaRi24gO1rFKrAIrgdAwjXayUtaVdX1l9YB7qIacYCUF74Z4aXXFa+94rN56JypwgiKmCZpts7I6TmpI9Rm1QqOjDeTBG6xiHwZiTSnms/61Ky2bsNbYrVgxdl3P3/O30nEOkRLDRsg5tMriokAiiEhWGaMGLI9jK4Vk8RQzoU1QdYkKw6Ug6xmQ2Sc+HQNPUp3TLLqWPhWUluDWQ8E0ZqnGVguSo9wOjLAj7ypUpYsl9RseNMpOP9rmDJMzT0vNYF6jzViLBdUmXZtbFF1t5pOHvJ0p/SOn38agV+JBhxOK1IKx3VE0SJaPpAgtlhrNNtCE4JzRaKRtLIZsS8nFwTjBjBcu+3mRzZzlrfqjs+oabuPVj+/OWn5xMq5HXd/rp5lWYQnjvdcex5/It3LllCWmzJJ9vomngTk0huFEHTYfvGFzbgw1CP92cUOxS0F6yQOks5V0jbN44Bpmnt6fDbEkxN4xgDp6l10iRjkU8tNZaeksjhd2DchRoOdY+y5JdP8b6iRFW7beJdY1Jvv+Dx+OX5kz+Z4NvvvMMrrryM+RP7mKMBiFjgvVGz/S5RwfYKKSUxQIvCnuqX0KkvCOicBUPVNZ9aVDjYrAgqO/T8WI8iEWdIEajBS7RElGq7zFYyxKOS+J1VPDOIMaHKG8VitJGt0i8fqTfve9/2EoQ+hqFu0j0FMfrV+3X+DyiBKEOoT0+cvsDClKt/IguUh4QRbyEnzL2S9yulXJl+g2TyrUyaBKaeM0o6GslYkCxkFLYd7lSzOTk01N0VRlptUliBoBJgh+/mztuXSiYaBgSa0gaCYVAZqqAPaXjZsl9N9LVwS2QmoymTWkmDYxAZpTcK4kxIQYlNnXaBQHQtIZEKoq3YLaYZ65YjldH005T6hilZvTKBNVJZIAyDoyDYsRhxdFOpjHkkS0CJUHwaMyWEbFUmmvwyM/EyP7Kjx8sz8AeBApcIkOGlnit2Im+oK9YH4kvJzB4KYkE103ho+8+MgHzpbB2wbFltmDVmDCKkBqh1OBpF/rGiAFGkkl2aYV2577HTD4V+yrDqaVhLJmpKHgXhbUBMiAnzG0KpKg2KTXBawsrPRKzFbSvAinVeNLar+48iBh6LqfjenTKhKleVsfitBLF+R6l5jg18fk9HoMl0PXgBwITo5IdxaSVjJliCTN5G1db0eHYRJR2oqT0cD4nhBwKxuQ4B6jDLZpUHhk4NbidBO254QrwNR61An96ZgzbSLG2xEgHRxHTc3IopxlJdkVNinc5f/Tjr/P5F57BdOG58OWnsMdoye//7heZ27XF5kOVA957F7e+ewn5R/djy2Ge9PpRZiY8qw7YyG4j09x5za7YXMg3trhDlrJ0dIH1G8f7AtKAG/FIbiA3uJZHRgt0IcHMW3wCMm+xy5Qszent6XHeUOYWP5fiJ0q6YyDr2sh4gW94emWKWsAoPhPyFSWNdQndptBY1iFvZTR/nrFufAL1wn5PupMbf7obPoO33f7n7PeMZfz0tl3RUpCGAyeoF6ThoZC+FK8E1+B3V1m71ewuGi3NASFPPD8yBiICTY96wRU20HiJr4V1OJ5agIvVIPgJVnugEyu+FbRyNtaCUeN1gi1TOhOVh6BMqA8KARCO0/5vsVHB8DHqL4kTWBEtlCIoQWoVnBDkivale8sFYRyvF9okNWMiBcHyiu3USjIOxCdoNKAw0crXwABUjEC1v/rbFNX1whiQ+M7EwfMu/hrGgbehzVI1VeDbp55MUZS85Oqv1kzFJUeeRMcKk2NNlo43a+Voaz5Pp5wDHCJZTLfrMZK0WNVaRcM2o8CMry8yJwDjqeJxzBXzeDXMFF26rmS+yCm1SSJCxy2n51r4+xDdPZ/ELVWoXnV9y2i6PgpNgxCEuYjFqKkD+oKwTrHGEQLdyuguqKI6YxqehI43mDCGo7urYgP6rEAIZDNkkb4eAXo0bIaVklw8xncYz2aZyCbpuQ6pKSgVCs1CaJ+BrtegF1aWPMJo2mIkaSAibO1tYTrfChhSE4IoQy8IiEXEhYBYTQO9j+CxIWrej6FkUTkL49boKEbmwhCL2QYhvqLPAKiGZ+y5BeZLg/MTTBcteg5aSZt9xwWv0/S8qd0WeWQBqiwZkAFXRp9FUyyz5eiAsA+Os1aiLGsoo6mnl+eYrEun9FgbtOueKzBWKZ3HlSM80hhS+g8cj1qB3+01mJtp4tVgk3EajYIsK7A2RwnpPDZNWCg9/3jci2LAEaxoGl5w8Zfh2Qnte2F0nykWHr+a1rdSukvAzgs+BT/i6F62Czf8tqGcLBlfPk9x9xitRh6o4wErWZwgpeDbHkoJ1n43wfQM4gU/Gfxvs+tGWbXnFqa2jNAe65J3G7U7QFIfLM+5FNolbkURLP+ekE94pGvo7dXDGCXvpJjU0d2rgK4FAzf+7+5oyzGzH3zlx4exas8trFo1xfqblgcLMzeQhlSdaAQEDD6LRNdEtOxr2p8+rVybpvF4Kgq7Oi4KVY3C3CY+CGSNgtQHql69YKxirMfYaNX7IKRrBUEUE/vFlwZjtbbW1UtkEjTcM97bO1nEIohRTOKDRS8+TK7VMUn0XRaC5AIN5b6GgBoNwjwf5NUHlBEPmmqQNy6yB9V1laBAxNQINfH6laJYdakH6Zq+IhV/19mOlclYsQaAT/p9XDMICs+67MsgYExQ0FTgzO9/lSuf/UKmNs+hvYKR0QYLeYmIIzMWRwoxKMxrSsflTBfTLDdZsOyN9AlRgZ7rMZ1P4bSk65R1CyMslC3ayRxOJ/A+YcG38CEUbbspV5VdPYiOGyEzKantEgJjDZX/3BhL6R1OKyWgjH7rFCEBKVCf4LGIeoyUUdCHwd0X9oLXkCEjsQlePYlkiCjeOXJvSE3JbN5BJARVOhxWlHbSY2PnNsrSU3YbbCkaJCbeCw1sgCQICakxCJaFcorUNCh8j9SkqCYIveqVhTiHyE6UvkS1iMHDBpEU50eRGKSX2AVy14pBl6DSxkoRXAES2QyCfhqGaKCKSu+ZzaexMs94Okph27STjKa1bO3ldJ1naWOS1CbMFTlbe3NAiYhH0JiZof2AYwxdN8FUb0nNmTQTZTJzTDa6QAd8k/ku5KXB+5RmmoB4CpfjfNBw8942Q+Nhx/0X3hlK/AqPWoGftixLl83inNDtNeh2E+ZnGxgDSQIb1FEUs5CmlN4guWd123LKpZ/lK2e8hJMu/SzihZm7x5k5Rdnz0oI7TjI0NgdN8NVP/wYfXvt8iluWsex/DbPHpzRWLTA706K9fAYtTPiqBHCCzzQIjTiH2bmYrpXoAH0srLtjKdIumd/cDlZuTJ+T+QRSD4WhNdbDXzdOMaHByreKb3pkPkFbDrz0BRtgugbfdkiitG6zdPbL2fjTFbimR1uebDSn2NJEUh8EV2xzbT1Xwt0ovuFrmroSWKHt0QJWgVTrGUXaHt+1QWGpIs+TvrDVaFmnWbnodpVQF6ORrle8l0DbV5aPD4oBQJK5aK0IPlLplW8+HAx153cN3iqm6aLgj++lEqgDckaMBjdMKgzG/KHxvZThPYsbUIwI/YOJjtxo8StBoAfffLVZawWq8peLi/EeGq19JPrnCe6A6l4a3knFeoqTRTEAVVvCu4ntWuR2gUh6cMLXv4QKXPWsEzjyq19GDVx6zLMZG23RamfkpsdCWeLLgu5CwabpBXRphyWtNokJUf2e8GypSUlMQrfoMpMndJ3FecP8fAPXU7wvgtAyBmmkaGpBZLuCfxBOLV0/gZUOzriQ1UCw9k2MtK9UhZBnHvtCM8K0LYEWj8Vj+i/d1BHkwQUgOB+CJYwYTMyuAE/pS6wUdWCtqqHnulFBEDrlArnPUTWIQsICQgOnSqHdeN0RjHh6LuTJJ6YRLe+EnhdUexj1TBVToCEFl+i6CK/QY2KqiFcllRIvWXzdPRIzj5CCxAJDlHXYSVVnIdSSqOh36qDa0jtSM09qQkbQuk4S6o+oYWtvK6kFQ4KRAmIfq6RAihGNabrCQjnC1t44HqGdOCazBZq2A+TkTui5HkbmkcyRpUEBDe0zJPh4T0fh53c6Jh4OeDWxkNCO9g8FfoVHrcAPWr7yuk/8OFgdy5TVT1zHhulQsen4vW/kv7fszro7lobDq4CxFDql8P0zzuLIz19EMmtRq7Svv5tVS3cj6TjufqHjy/c+kZF7obdgyE7dQLlpnN/a507+6+7dWXvr8jBZp4Fqrfz4iGC6giZxEpZIfxeBuvUth22X+OkMM1qgpaE93mFh3Sja8OFaLRcCzVqKXbPAHsu3cPuGZYy0e8zcORGVDEXzmHKUKDRKpGtp3WbRJ80y/r0xkudsZsumUYxRim7CAQfezS3rVuBKA13TDxiL1xCrYD3N0ZyysPjCoIUNAr/qOwOSeGzT4Z1gUxeEdeYDLZ94xICxIZe3ElqSlHVAXUXdi9FFAl19kGLeBb++L2MlsTLQkz5aLlWgnQ5a2ZVAH1CCxCpaBgsTL5BULyQK3TQm7XlC8GUUxuqCIK+p39T3A/HiO67fQVLRwkFQV0XiNPYVsYmU8ZqVzz+Oi0EGwOTVeJG+eyFS+CYGhGoaFIqKxq+s/cCmavD9u/jPJDIgVdsIzX7B178Wnscqp3znG6hRvnTk82i0M8bSJsdceVmf/RlAFefx/dNOoycLzBbzbM1LpvIRep0CyhKTCa1RTyFtSk3Q0qF5gXZ7SGIhSyGpLOvtCX+hW46TmZxU5iLDoVSVJoOFGSxuH6gVBIeVHmAw6mNMQD/oTmsNqAoTjJ52yeugs5DKF/4dctRD2mBVREsJBXusSWnaFpPZSrwqXdPDShCESmCCQpvnqSablt2FycaujCaGrfkm1i5swGuT3Pe4a+6OOo2wykKAWLGTanvV/hxhsHJgUFxMtE99lW440Jd9giiwG0F4C55gtRsxsZhYGGuF79FznsSkJCI4qvoFIe3SSILTjKneOPNlSHNe1SwZz2bolFvJfXAj1JUCBwrauJAjjCfUQEiMUDjF7sTyfrhQYMh3RukPLfwaj1qB79TifQoCzU3B59n48iR7zxdsemfO1285kOMedzOn7/HffPneJzLXa7D150v41HNfxEsu/SyffvZzMIVQjjrad1umfmtXlvzHWnp7LqNxR4PppU0m7i5pbTKsO2SMVSum+cG1+7Hb4zZy93wGXYtUgtBJzfSKE3zDh32WEKXfi0pA16ILFh1xGKukzRAYqKnHLNgg9EshX99G1vRopSV3/nB3Rg7eyvSGUST12NSjGxr4TIMw6pkQaKaQPW0L03dP0D2oRH6+hPbusxy8cj2lGla3pjl6+S18+IdH11R2uPnifi3zJNLkgWIX37dIKyHq8kCTu8LWljyE/Y1GwUgjp5GWbJ1vk+dJEMJRAUgTh4uBdF6EsrB1YJ+xHh/9rpXfoe/fD/vxlRCnVhaIfyORMYlt7SsD8eVQ85zR/x5M8Tr7oOJBvaCVwnLfPoqWdaUsVfvr/rFaswKVu4ZI40sZ6f6+3hHPF9SCT7VP6w/Ap7pIyIuX6GoICkFgD6Kwj/uqPqmYA2xgmgYVPYnuqBf++1UDLhtqhaR+5EpRAZ7x2S/w4eN+i7luQskoTuBN/3kleHjf859PqQ2cD7UsSBMkTcB7tCjRTg8QpJGgaYJsZ7EUj2WmWInTETKzAHicCl6DIG5aJTGdEG+gJSGSQEikgZUEpXIHJLFoVQzQQ2sXQD/HvXoJguKwMR0uWOlRYagrVQZNbTQdYyQdZ4Zp7urdgSQtCu9Z1lhKFkvaVhkoXoXEtBhNLIUqY+kEpt0AhMLnbOqtrQMCgwUexqjqYF280CsaqwoGtqIqcVzWrEkQ9hLz6atUwiq1USNjEa8Z401C2XDF+ypYMDxlqAFSMQX9H6+Orm8zXzYZz4TdRxzKTM1MVCWOy9KhTlGnRGIl1DcyGr51MRhNgt7sfxmFd8z9FN555JWOXxc8egW+E6YXJoO/PYPxOzziFekVtD6yhK2n5zx1/FY+fOszOWz5Pfzrvz+Rv9vjcXQ33M3f7rE3Z/7gSmiC6Vg6azz5hGHdkatYeq2hGFNGvrKUzQdBbwmkt7RYu6WBKYW7b1qJKQy+6fuUeGVdaUidA9As+sNtFJrxJ7ABgs8teW7JvSCFwbd8mGS9wEiJLiR0RXHLS8rbJ5CJElKPTR15Q0OEfZU+FylgVcHOG9zKHC2F0WbOll6LtdPjPPvA67m9tyK0zfYFy6BvXgtDWZrY7igkLUH4mYrSB5zpxysm8Xmjta4qzPcyukUaKXqthYWI4rzgvaktfWs93sco/HjNkK4dhVKVXRBRpwMO0uvVBh8kaeVSqK1+pR8VD7UAxmisRES/jYmiRVTOGj4I7kT7GUuRWZCKmajcOjLoxydG2stA8xTfCK4BiewQRXXswPNVgjy6hzQJ/a4S3oPc59i+TBhoj+krFJXrYFHkf9WsgaA/yYMyMshCUCkU8VgUPnjyaUz1SlQ9iU1ILPzDcc+nLFN8keI1FPoxHmxq8F5xKjiTYEeyIG57BXm3i21lOGtwVTBoXXZXyV1Cz01Q+IwqsC/Y4RvJTChVW/oy5r4LXrshVYzQb6FwVvD3pyatrX7VAoi+/lhypSqQUz/zonK+fc0sM7YePoF88PRciUFo2DYjyUgdblF46DlPzyuFKpkROmXCWDpGaoT5co6N3ZhqKlX8Omgs8hXSZ0zIv5eBChKquJheE5SWWBsglj4GMJJQektIrvN4Aj0vcQ0Cry6yERKfP1zHmgQIxY28EIv4EPtAKLTBbD5O0xp2HSnI/UYKX8T3BYkJaY1aRgU1ATFRcYquTfWQmx4iOWqVwnR4pHH/UfpDgV/hUSvwfadHb2Kc9774JM7758uZ2cMwfmOPu/4qYY833MveW1fw19MvZOJGy7/uuRxx8IRDn0DHK7bVhs23MLbLHLPTLdJmSTGXsf8HutzyhoQj9r6Ta2YPYPxWpbscylYlMMKErTZS+dLfVvNn9A1KzfrW3CAtXE3aSasIQWoLIffeFILpGMqRErqCbmnQXDNPIy2Z2TpCNlIw2uqxOW0gpUVUg4AoAzWdJg6fKe2xLukSx4afL2P1obexemKG91xzPLq+CaMlkkWrpfLPFwZcRbVqLezFap8Kr/LRo7VtbaUxBKGvJubbR398WYZrl4XFJv3AvLK0sa+EohuGV2X9+yqTwAQXQ035Dwj96jpGPL6sAvz6FmhtpUu4rtr4fmyk8J0EZUm03we+z9BQ+fyrOgTVPtv3xVcvuRLotUJS5+xLUBaqQyuhWw60cyBfHzuQUhWteE1CW3yi/XS+iuqHMP5MpQQIJq5bo1VWV/1AQWhrxXzcRxGoFBTx1O4FcQSlNFM+fPLpzBWe0gfBONXzUHhMYlEPxgndsolXxThP2ghCMS+DD945raQjWSNUfCuTFJukwTqf7wYrtJGiaUJMyMdpLMYzoNlZKWjYBaqBV8VcVO6XMpadFq3o8NCdeVwUp867J0buUykZPl6vyj6X2uddpaEZMXFBm+pdJIxkY3S84jQsgrOhG/avagXLeq7UmAYptV5XKmgsjKRqY2fb6BoqI7XfIBDqZX/cxyI2tYtCYrEvTTAS0xfJ+wtioRjJQ0VOTHCBCCgJUEQlQqJyoXEQx8JEAlWlvqZtApa5YpTpvE3Dpuw6kpO7jczm0xixJCYhsy1C4Z8ugg+lvWM+qcZ+tqlFJMQsVMrUINH1SCGU1pWd7h8i4FEr8EkMWji6mGCFz4LMdVjzd5OgytS+TVZ/19PcnHPZm87kpPd+kZM/9RVU4JNnvhDpGWY2jDKyfJ6TH/e/fPmzR7H14ARfFlz/uQPIANcUXMujzZBb7j2BrgVMT9Csb10PonZd6eAEGy2pUvAG6BnKhSa2Y0hc9Lmu6ZBmJeXGNs2VC3Q3t+hNN5lYPcWpT/53vnDrYSx0Y9W21Edhb2pBMZb12DxR0Lt1nNHHb+LsZ36fT/3ot9hl1ymarZz5VhoEaSGLGqqJrxWZvuMvWL/NsR55N4Em+OjTt62yLqIjpvK3E7MXAvtQWfCmsuC9jRH7QZB7LyRZiAHQgcj9isJHwdjF04FqUCqM8UGxsKEIj3rwuUWyKl+aAQVM+0VtotLWp+qDUqNQuwdEqAVzrcgluuhyEi3mRZkLVcZAGayoEBMxMACcBMnv++1QUylQUiuFGl0BKsTzGRhEQlUvuK4H4EJ8iKaD94nZAKqYvN9OnynGhTHY79TYJbGWxA9fdRZrF0rumi+ZK5QtvUFKQUNoOIK3JrghAJL+wjq9+AKytmUsNbzyW5dAKfzDsS+mG4v1kFX3t5C2EOfRXo528uACaKSUNonvqd9WpwlzxTJG0mkS6SBIXc0whOuVVKtbWrEhjS/eRymoqzFqEdWBoMxGHQPnXS2IqlX4qqha55UyCqjCKRs7jrHRSaybp+OCf39pYqjqXKZGWNEMyk8ixFLRglNlc8+jmuKZRDQHDIVfwIgfSKnTSicFqoDHqtqgICR4zXDawMp8PKamczBShhgEPFbS+mULiphQy96pi88emRGIdfWDspNIhtc282XGVG+U5S1heXOB2XwjXddBnMEvQJGUJCMdDAkUnqQqTx694xI/rCS+q9KXdXvML0HY5ppgdceiLP9laB2/JnjUCnyTZWheUCQNLjrrNM6+6Avc8ZI1/Mefn8UZR1zAkhsXWFjdZGFVyvM/8kWKVcqVLzkjfLC+b/l1OxlfvvUQFtY45h/nGbkxo7MyBlElYLuCy6S2dO2swY14vKX23d9XyAwYV4tQ+24rijUGY7l28N1nN7RxKTDh6d07Eqz7rOApK++kbXL2WrKF627ZHekEunnlmim2/u9yyrZCotx1zRqswNgBW9m0dZQft/bgkP3uJjGezUkbs0qZnWrVxV2CzztSbSY00DTCxyhWSVKH94JNPWVusY0yCOsqV9xqnQNvU1cLcompclXwnvdReGuccqrUshgnUPviKz0kCn7vJKbiVcdE33W0wl1hsKnH57ZPzVd9PZDax+D1Y99TtV1lsVyJwXgAUrEbEK4fg/uqlL5K+NZC2dznpUdmFpWgCERhXwXr1db6gFKolXWeaL8+QkU322iJRQGtJgjvMN6iIhHfY7DSoyUfYwlM5UKAvlVf90to+w1TOWsXXCgv7QcHd/yn89BI6z/v0+sY4E9/9DnoGMQJXzv1bO6aL1go++FzgxARSCzYZmCsegV+vhuo4CyFNIlsTbD2F9wYhTYZT9eRDdDBLhZxqSzTUktEklhuN45psQg2+mwN0MHj6/UnQnnb8ET1cs9aMQJtvFrKWIRoopGSlwWpNUBBZrTOqwfoOY3LEPe3taxQemJ1RKXrHKVv0fMNIMdIEVmGQI17FOriQI1IrZeIWKq6d1Z6CEXNBPi4nkCVUx//hdfw25h+9L4MMGMev+i88AwZU/kkXi1LGo7xdIap3hZ6rocWwiv/6yekzZIPrXoKzvdIjMc4yytu+Xc+v/8LmPVTaNvjTYn3jp6GIMckliiPCxNvZ1Q8vPC68+Vxd7bvsYZHrcAnix9vr+DeOaG7a8HIz1OOf8NFtA5ayeyahN4kFBPwzd97CbMFLJSeU7702UC3eoNmDj+d0dncYMU+m+kWKfPTE6Ea31KlbAdh3FzWoTvXwM4kYMDkZnHQFvStrsrUuQ/qdKrKT281WGWVoWGVzq4hvcaO56gP/u35hQbfu3sf0t0dTVvywsP+h698+wj2fvxablu3nJEDppmdaoMT3MoSmU6ZunsCgK1L2sx2GogoS0Y6LHQyQEKAoNXAUMTqblUKHQJpo6xL0oayuGHyc7mtA/QgGHxaGkbHusxMtYOAj7nytRSL1lOYu6KwGiiyU0fpx30aJ6E6WC8qBINrVosQlQGPi3UIamXLVmmQ2hdk8bk0FtrBhPx/MYpoLEtaW+Ix6yAWCanbWYTtENpWFf2pIvZjjwQlIaGvKJQGyqDcbcNfqiwO0hMgulsWbauUgKpUb3QzSNGPyqdKzVOCYhCj/SXGeqjts0wUUgdj1scIfODU07h3rkCr4vumymOPKMognLcDAcYzeNW/fgHbTfCZ8skTX8z1U3ldv39nkMrMbmZIM4PSod0c7fSQLFj9GBPrHTmsBOFcxQxUgqOy9oMAqzSyKMSFKMyyWkj6+I41WshV4Zzq2nFEUqk3VgIjMDHSYG7BM9oco/CKkOI0VG0TYZGwD4xDJIuMMJFZvAqZWUWpMJM7pvLQi6EaIFT+ea2frEAkpBiGaoEdiMsA95/bAJVyI6h3QTmIsQwh3S8oMb3pEtfzZCMpadOiDor5sLZD2rZYmzKbt8AX7DKuZMkGZvLZ4L7Ild//3/8J7AcwtnSUM679HkkW7u294dQbruRLT34BbsHRbSxQJDm5zxGqmgVVFsUjj/svrTv04Vd41Ap8EUGaGW56nqKZcskxZ/LyLZ9n0y6QzCekM+CaUO7d4agvf5rG+oRkHsxSwU14pF0yNt7FGM/02nEaaUmWOPI9Ld1lGe2bGkgBc0s83bWhGpRvhtS5Ohjrvm3ahk4e+Bv6ikAlNK1iFgxuzNeR9pI53FQDGSlYNT7D1k6b3cenWNedYM+RLRzYupd3nvMeDrvoIhqbDfMTTVhWhACwwuJbjtFbUrqHdlh/z2S4vVWWj81jb27j9shp7jpHmjhmtrYZm+wwP9fA55b2ZJfObJOJkQ5z3Qa9ToppOHZZNsPWuTZ5NwlpcjYwA8Z6ksQzO9MConB01EuMO18xAb6m4yFY9nXXxDz8WkAqkTXoKwJV+d3Kt18Xn3EGidX8BtMANTIY1e+Kgg/BcjHIsDSYRlgoxxrfr7Of+Dpg0CSKLwlV/KqSu0qoXljFciB9l8GgfCmDv1o8SCzAVKdBSlAApZRFEfA+1VAgCfoCWQmKocriQEEnMZCSygUdMkKiy6Tui2jM1gF+8V6mlLoE8L+8/HTWzRVsncvBCCYRbFQeoi6BLyO7YBcrAQYYywxLMsOLr7wEccI3zj6Nu+aETd3K4n7gE3udq58mIYXPe7RXoHMdsBZppGTtbgw4S1HiEtJisITlq63Y6HsPwXBeerFgT2iJje4AxcRFkAxOLUb60eZVjn9I/wtBfs63KbySmFDYKzMJ6iy5QtctACUu1uU3dZRoTPeTKsc+RNQbhKYdIxVhJFXmS0vuawIfIUNi0J2pffdxbMT/Dyo1/TS+8JK1eo54vJUM4kqMmcnYunUeQZjf3KPRbtCb75LnOcYkNJotZma30BqZp91OGVmyhJlyNjgSXMorfvrD0E9WKXoJZ1z3XbwzFL2EJHX1t37yj6/iP4/5He5dt572Msd0MYUQfPiJsVhJycwjL2IKtdidVtobcvoVHrUCHwAjtZY+1yuxXSGZB59Ad4UyesBWyuuX0N4gdTS/aynMWc56xg+58p6DOHbNLfzrVb9Fa7+Cm+9cRfumDPYs2e/5P2dzt0332lW4JXGhHaUf1XyfMaJwn2p0gzsrWjhYZVXUNwhueR6sx04QKmojlTibcvv65djEces39mH8+eu4Zu0afrJ0DX/9H58gnc8oRhXf9ixbMcPmW5dC22HmLO6IWdxcRjaeY6ynzBPuvGcZsneXZqugM9OkA7QnOiwsNNhz1Wbu2rSEXjdFrGfDPUsQJ+y17zoWioy1dyyjsayDTT0m8ZSdFMkcE2MdrCizovQ6Kb60SNIvkFNb81UlPPF9637Awq9XMxP6grt6xXaxxWtMcBHU7koGLG67OMdfXAysjHnnQFzQJkygvqyYjQHKHzBpf/EfRILQL0yk5QONThLiJ0Lqna2Fq9gotDUI7G3S20Tr9M3+WImKUSmLYj3qADztC39MvE613Q/sj91an1cPzHA9kwclRRNwRvn8mS9m7VzBXVNdjIFm0/GGr11RKzPvP+mFdF104ZQO0pA/PZqG+vmv/PZnkK4hmTchpTATtOnxmvKy73wq3DdRtBQ+dvRpTOUG9yDoUxEJQr5tQ4JZ4ShnF5jTFmWrRTOZp2WnQqR6FV0eU85C8FqIzk8lI1FL4aOyR1isx2IIS9V6JNL+BkMqKSUS2YNQf19jCps1EorPiNBuZWyenWaOLh31iHQBF+v4xxUUNYmWcCeqPSGfvWUb7Dk6RrDqQ159oNQtpbYofJvUzGEllPgtfE7pw0qdIT7BhzRCTIxbMIT4SB/uTRWkGJSOxEDTjuJRSl+yes8V5LMlI6MjFK5grDnGwkxOYQyNZhMrBV0/S6dYYMHNBKWjEF7+Xz/CJEHZrmtkFKb+hspYH6SMrODhV3+Kyw45ll7RIZOQtujj/GiNjZkBjyzuv/DO0MKv8OgW+DHX15eeXiFc/Duns9tIyjM+fDG6usvcXAvbE8pRkDJMhGZpj5cc/N8s+Ix9Jzdzx/xSpg5yLNMwoLsHd9h1+TTjaZef3LI7NDQUqonC477500A/r7me3PuTr3HRcgNMNwTYmQXBjbkgIHo2XDPVECzWi1r8WIGbTUmWlcweWNL7z1X4TLl57QjNjYbO7mEBktaSLs4bTCnY0ZyibNBd18b0DGWawmRO1i6widCbadDbkpGtXqA33WBhugUKt929guZoTqGx0E3iMW3H7fesCIpOy1H0EtJGSdFNMKnD55bNd00iPUO263y/fn0MIqxXwqvsuyjUQwld6VvisLgQT/x35TrQmiXoXwPifVRC/fwBFwAESrES+ItYXS9B4bIaRraEH5u4fuBhGRf4qcr9xmBCdYLkwcoOr137TE0RXraJee9BqaMueFMF1NXjRPs6TF2cqZL/tU+e2k9vimqcsciVJNFVMBjTN1gOuRL2ZqDwnFr4zqknc/SXvsRcZ57xhuGPvvmVOoUUE9r9sRedyHwZXPZSOhqZZaSZcO6/XxzGaIypMIWEOgFJYC3IPMd97VN1AGIl9M/99hdRgfc8/fT7CP0+LZYIjKShznwq/ZIz53zts6hRLjvppdziPW6+h2s0SKQkEUEkCZYjBYLGHHjFSDfS9SHCXgnKaAjQC0pCakBQGtbGEDJDwzZxLqX0nkwWgAIrXRq2E1PWAnlujOCSDvMzW5FGAy+9aFuHFxfK4+YoZc2WaMyp9yYluAggNVAtOStiwpJBkgNdmkkTgyEnvBzVglJjqRjtZxaEAe3iFxdD4STY/kZSGrZBO23RLTu0szaaWlwrCS/cO7wxtMZhIk1oNhpM9RbwRUFiJWQneDjnmh+hGoR7JezDNxpcYuoEVdPP5qm+8+qb3WqhJ2S2EZgo9SS0eKTh2Pma926Hex57eFQLfBFBrEWdw6mlUypP/dynaDiLrG1y4BG389PNe2JyIZ0VfAa+Z/nMd56OTha87inf4h9+dBwmN9zy89WBrh9V7t0wSTMpGFu6wPzMeD+CO1pxaoMgr9uhBD/pwIReWWMqYcL2DcVnHlMKrq3QDNWuKl9rHQhWxI+lNNDw9OYz8EL7sC1sXTeGFIbuCk/znrC4jl+bsgAw7ik2NaHpoQgpVdpy0LN0eyEVzmQOD+QLKSYG/lWcXydvIQ3H5NJ5pu4dx1fUcrushXTRSxCruG6CVgVlmp7u1mbfn81iK70S1IGWJ0bl92ns2kceA9MqwV25BWq/vIbJy1dUvUpogw0KSnVPjfXsxYbCRHUMQUxd1ERDEFthgsLVKOvYhCD0g4uhDMXFcN0ktCE3mCLGbgz6yON7RmPAnQvZG3X53CqHvso4qHKqpc8AhLoIUr+LsBRv/NPRr5Vf/WjIEjExLkATDbX1K7dDNQbjS/BZHI9x5j36S18C4JxvfLUO5vONoGVoorhEecXlXwXgX046mpd999sh+LB62DqVrx8bUOf7z9s+e9HwYa2HROuKhY8bs6zvBFo890rulEQ8k42Ul331c3WsS6Ws9GWZ0LTQaGW4siSZn6GljsS3yLUkmQi+/craDUvk9gvTWLEICSplDIgL6kSIVA8R+YlJaCdtGrbFuCobOuvp+S4GE5eDrQLiAtXfdR1ycnxSoj3frzhJUHqVMo7vEP1vpIpFMeTesam3idFklMIXlN5FRkFJbQmEyHsrKV3XwfngkrDGxup4UeFCKL3Dmm5dfrgqElS1eyQZwUSNIzFtnG8i4vG6gAJNayl9l1azTStpkPucMqbOubhccJmHoNzRsS55aYPAr9xHUclSF1mwOPYEoAjR+Y1knHLE0ZMcVzrSJKXXLXG20kYfORQ+wfodi7LCDyn9Co9qgQ/0J0BgSRryn23HMvFz+OnoHrTWGboHdimkESyR0gShOJtw+b1P4O+fcTFf2/oEbp5ZwR0bl7LLklkKZ9lvfCM/v2X1IuoYFgt6rWqsV/nOA5aWZpH3l2ClahqCufxI3B4FnG2VuIU0VMyLgkSzEPyGj9Hd7ZKpDWNIz7Bqn82su3cJsjGkRRWTHh0vYTaBlgslY+csLMmRqYwV+24mS0ru/vlKvBcaS7rk81mYWHNDsqKDCBQbWtAzTHXG+3nkXtCeJRkp6zXu8066qN9ri7MyW/U+/toqn77SADQoAeqjZU81aQSruoJ3gomleivrARMnlSp4rYr8dybk2Xv6tfVFkRTqinxGIetT35VyEiL8CT5bZwKj4QUfry02Ru0bwnoFXROYGli8tr0Plny9rSpiH62d2q1QGRp1lL4sttqdLCqIU8UB1P74aoyl4Kq2Db6PmH0SCpj1mSepfP7Rly9OQiZKpcB2TWQ+Qnt9Eu7/squ+Hc511U3695L4/qugQfGmLtQDoD4Eh5JXfgZ40RWfDYp1Kfz7y8+i8MrRn/l0rUssilsYdEsY5fmXX8z3Tzmbo779eb5xwmk858uBNfj0bx2NFY+RlJ5bwKknNSEwrtQMQ0lqhERsCK/wZRR0zdrr7dVRekfP9YL1rw6PJzUZBktqmqiOMls4ei4s6TtfbqZTzmOSWJEvD+PQG0dYqKmy2isXQxD2YVlv2NTZwBazCVWN7gYXo+nDcYqSu6IWvibW0xcJWRRVPT1i+5VQejgxoTRvalImG0tx6im8x9Og8B5hHtUepS9imeIkRs575ov5+jWn8TpFXuBnYGSkF4pnlQNKuxDm1MEUWh/GSxVzYjAhJbHVpUgXKH1JKYak2UA37tjyfrgQChTv+D66k32PNTz6BX6k6IrSs3Uu58vPeglyDEwkgkrOie+/nMYtTbq7OFbsuYUtMyM0/7uNz2Dtpl350x+fQzYLnV08rXWGu/dugCjfmG2HRVWshmVvK2usmvN8pKpjlHtFGVc104NLME72qSJdQ3O9pbd/F9+zdcqX29ogW94ht1kUCiE31qa+FnS+l7Df3mu5+bbVbJwaJbs3JZmHhSd1SO5ohTWyWz5EhOeGdFWHsmdhMmfDz5ehLVcrI/lCGovPCMaB3t3GpVpTgN4qkkZhl3pM5kizkqKwuDKk2oX88SjpopAH+oV8iNushij6yn8eGyHWh4A4Z/Axct4kwYIQG4vs+H5+v5igHGgp9T2CMIgvHwYK9vg6WK9KlZMY5Ka+L0QkN2hVFGYgvVKiYkFh8JkPEfbVPWMVQqLFrhWr4WMevBKCL2NgIIXpC/uqImKVZhcr4qn2q+/VY6z66qp0vMGxXuXQS1A4RAnWeTXBamAW6rS9GNUflBCtXQ614mAC5a9Gw5K8ZVAmZFB7rV5qVDokWvexlktgj4KMq69Z1wWIbTYxdsUnWsc6HPmpT/eZD2Lfe8J4qao9VumJkSk56kufggSefdUXIIUfnHY2t9+5nrn5OboyhvPj2ERJjCcxXRKB3Gc4D9YoQhZWnROtg/NEDF4Teg4K30FknkQSMhOWqS2cZa4UCudYuzBL4QXEsrzZop0IHocmBS71uDLEEqiTSN9LLHvr8LaKDSljvn3MftGqRr7BSIo1jaDYai8u1KOI2LhwjZKZBio+LrpjY9apkkhgKFpJG6clTTuC8yOs7zjGM2VJA1LTIXdKoUIraZOaBK9K6QsK3yExCalkpCYLqZnAO9deQadMaaZB2S+zSOsX0XWWRCan+uR6Uo+DauyICN77erVDBDLfYKFX8EhjWGnvgeNRL/ClkeKnepSNlK54XnnNpym6CWKU9OYWvX3KMHkkysaNE9AzLP/fgoWVCfmEMPHb93LX9aswuZBPKmM3JizspmG5iDz4xmsqfyBSu75/RTtWgj9uNHHtCCkN7duFZAHycchubdJdXQbLPQ1R/8Fq1j5VHK1am3ia7YKybbhnaoJkJKdcSHErS3wWaLXGAhRryjBB9yyoUGxuYsZzfC8hWdGh3BhKBVZKhmmW+NzgTd+Iqo23KIBtHpQC37bYVaFSmVchn8uQKv2uKu9LFPbSt7rDCfG6lU+PKkdfakEtAxN+FeWv8d99oRN+aut9MYcQdw5srn3EMtCOqBwo/cI6Vbqc6bM1laD0DR+YlooRKKoo/8gqZBrD16VfErkieyKFXjNAFWxfeNV5/YNpeSa0tapxv81Yg9qCrhhKlcUCvF+PILTL9Krn6xNL1SI8lTLgoyu3bPhFNSRCUR/6FHtkMmRgjh4sHa0Dr6deOTIJz60aWQcLkvffUZ29MODXr/75wxe/jLULjoWy4Kx//Vy9WqBU/WLg6Z+/CFT4yJOfyR/8+F+56JknsnHGUYy2EQmlbqtPNKTLKakpMeJp2TJG9fu4rnweHlUFMSlGQqCfSInRnHaaUy1jK1haNlAuuQvbSy0wNgQCijo8SiI25PlrgnOKKxwkHhVXl+2tBHrIIBC8Dw8nkqK6UL3NmCboyUyCNSl13X+NLTKWsXScVhKWz+2Vhp4vWNESRlLBhmAhjAgjMoKqZ75cqMj3UHaBmCNgMxRPXuQ0bcl8kdFISzpFijVhbhosi+2dCW7JQmomqirzHJiDDj3thTRCISygkyU0Jn85Ufpmp1H626sQ8djEo17gMzDXFX6Oo/a4lR989YmM3q1seYLSvCehGNNQZWzK0togTO0LnRWQzcDMpWuweyqupZie0F0Zfvu21FaUxskFoPJd1hPjgO9eRxzSM3XNeXFCOiek82B7ysIawWVKtjGh2K0XaPglecj9Tjy6kMRUL8XllnYrR1XYdXKan69dQZK6aC17yglo3dKguRnKkYxiVR6q75UGyRyNVkFuoNzSZGS3WeY2jiDdMOi9t3FhnyrNZ6C0a7RwTS8KAoX5rS2wStosqaiCas35ENhG1Rl9a6wM22Sg3ntdV78SHgKLKt9VXVyllVUyT6Wf219dk+o8rf32lT9xESqLvSIDNCpUFfVsNVr4lRVMHfwmcaEbvCBpVHCgToMDqJfOrQKUjA6k1sU2V4pixYCUob2LAkBrfz79hXIGn4G+sA/nau0W0PsqEl5CyV0naEr9zvp1nuOfkSWp1ytS8LZ/eCVUq0V4TE/qdMKK5ZAyKB+a0g9SjEoACqbKL69mkkqBEK3rBlTPcOlJZzDVU8696nP80/NezP9s7jFfKB7lgiNfTGLgj3/wWT53/Jms7XgyU4mn4If94HNP5+yvf55/fPKzSEwOpok1PUL43wiJERLpUPgGIg4jMJ2nODV4bUTBX5IYaCcpo+kCXudwPsQCZMbiVMldDxHouSSWiTVREQiDrKr2ZzA4LWOJXEOj0SApm2hhEfGUhcOknsL08Hlwc0nThBUnNbABKoFqN3H1Pqc9ylhkyPmSxKRk0sBpyVg6xkg6glNlvihJjGd5M9DyPd9DSMh9gaonTVK6LqdwBYWG5X5LDU6IYO2Hl+lKVxemycuEvEgoSot6CfU5FNjUgKxSxAaVzzB2yrKgVy5gEoMS3BmJGaG3ztHb/Mj78IeFdx44fg0EvtQav5GEdWevZMXjS57z19/jkNZd/OkVLyOdNfgsCPXOKrALQr5bTuN/M2wOy66FLY83FMtK7JzFjcSZ1QZ61kynIeCukEhJxslKCKKyElwQrMI8WG7JnKG5KQj7uV2FciSc68ZisJwNQYTStUGxiBXRxlbN08uTkGKkcOeWJTRbOXkeA8gST2uyw0IxRmd1KOAjeYimpwS7KaM7k6LjBcv23MqmeycwrRKdTpHxAp3OMF3BjZaYju2bQBqeWVwMckyh1wwCWFTIZ7OQu66ASh3YVwuvSolW6hiERYLbSyx4Qx0tXcU4hFfZT+ET6QcUVuxBvUCMN3WmQDi4f4/wd3UitbAfLCMMhCospSCFqen8KpsiLDkcKtpIXBGw7iNPCEKrAu2qNRUG/PNS+fir9LgqhqD6rSFnPqTJhfb2a9v321oX3DED94/Cv8rlX1QAqnIHGO1b80ZjcF+Q6DLQ1/V1TGhPlVVSMRHBmpdaKPtGPCcqcYuIFI3KSlRuap7B9YsDmTxkL1T0vjjh4ye9GCtw9lWf4e55T9cp5x9zGlt6DitKM1G6ZQxHU+FTx5wJKC1bkntH12X9Cdsp7zryZGbmO8icxTRTksRiTYnEnPXEljQsOC0ovdCwJQtlk9w3Y4tDcaqZHJY1hSWNPCrESum1LmJjJUUkBQrqGHAREIN6g0cwkhMWu1FSsWGJWJPTaLbIdBQVxZWOLGlwx113YRPLxvkpmo0mI+NtZmfnMAa6vR6TE5MUeUFzaUYyZlFKrAklbMezcVKTxvoD4HxCwwhpFUQLZCal48JKgh7oum5da6BwBVaaCA6vJV1fBiPHwZvvuYLMmiDsnaUoLWUZUvJcN8Es2DrduF7FcXC9kUxZ6Ja4EYc1HiRkDRhxmGVC1hyulvdowqNf4EMoBqKKV8sNb5tk6bcTLv3AsVz07FmSOUPZDjXF/aoerjDoaofZ2CCfgAte+xFe/dXfZfwm4fHH3swPf3ggtMpAjxcCztbL3S5aybGSdTZS5UTBmAcL3+QGPBRj0FsidFf44NtVCcLESxDQucEs6cGmBr4RBNKaiWk2zo8yPdPGbW7UUc7Ne1Lc3l3YmrHQSbC9kHlA0yMth05l2FxwIz7Ux/fCXKdBOpZTdmM51E6CcdDcc4aF2Saam1gApm+kq1F6B3bwUxmaedbstoW165aQNEr2WLGFOzcujWUEQmyDGg00OVGQxzQ24naJ0eqo4AvbdwlUgXtxcZxQnz+KikpJqKntgX3V9rrYTvDvhwVI4u/Kd82gYBqgjuNvn3rEDhxXBzuYKGDjjkqwpkEJrBe/SYLCVafXVRR1FSjnpc79r4S/KeJiN0QBL0G5qtYyMGXfUNIktMkU/RRDTUKwXhVYyUC/Bda2rvAUAhE1CF2fUiscthvTTA31YjnWRWs9Cuhqyd7Kmq9Q1QkQT8gGie4B6LMa9TYhpvv12/e1M8/kpumCwiubuo52IlzwzNPpblOST7FS4skwCG/4wecWl7KOgYgfOubFzBZVnf4ESUfRXoGb6+ENSLMBiaXrYK5o0rSBpg6+3eDjXzTo4i229ixGRmiaAmtKFIc1FucgxuJjxVJqGRiresC4uqZ+tV6zFYvTkAngDdhEGUlazC/0KH3K0onllC5nrD0OohRFiSscI6PjZKaFJUNFWZotJZUU7xVrLGkjpWFTrCQYhG5e0ity1t97F6Ojo6DC2NgIiDLbncW70CRjDHMz87TGm5gypTPfobnckvuCzDQpugV/ee+X8SrM5o3Q3bFcdZJ4SDzd3IZiZFWgpeu/c1HCwk8ezv7JDxGFjx/+ZOzSApcU9MiwWY+8N88jjcIbjN+xUC92su+xhl+PnvBBc0yMIBsaaAITtxaUt46GSSvzuHGHziegwj6rN7Jkvy2MPmUTr/rWK0hmDfkk/Ofte2FWL2Ab1ZqgwSdFVcBlkGeNh4gLkfQUpp6ITG6wnTB5dJcp3TUljJVQGMbXzNSrwNkszqwbmiEPOvVIabjxxl2ZunEpbktWC3uA3u55P3ddoJwoQ7tygy4kgYqPaX1SBp9ab7pJkni0EmBe8E3PwoaREBgYg8/8ZIFvu7DCX9PjFlK06bHzlvlexhP2vpsn7nYve4xO4TpJiIwfsKA1CnBxUpeSNQs2xASUsY+gnvir50gbJUnqsEmscmbDynomLrQTexlqJoV+pb/Uh2eIHV+tfEdVwa4SuGV4j5U1X7/GmO6mRvvvV0OWRG09JxomscqCdxLeNfQFT10Bj3608uCXI1pT4qaMNLdUFnE4r1rXHvr+eXFBMNsFUy+C45u+X+u/Gx3zqQ8xBVWAmxDjNSqyI7yjqh9C7nwUxNUjZIpraKTgiYWqFN/0YSloqR8l9FFkBqQUbC+wFaaQOiixqltRLQYU/hD+7aVnc+t0TqeTI0UJRclsp0C9p07Yjm/cqWG2CBa3FbDzFumaOoiWmHr5Bz+4hD/9z8+yS8vQSsAag2k1kPE2ZBm+08PPLOB7JYU3zJVNNveWMlOM0XWjOyy84lTY0m0zV7YpfANDGsW8x/k8WMlUgp7IQoQ1360h0vuKSIJXg9Kl9F1KX9J1C8yXC2hagi1ZtnIX1qzZnd12XcPS5cspXUHe6bBm9Uoe//h92GvfVRz8hP3YZcUSJkZHWDIyTqopuRNmCmFjN6xkOD0zh8+7bNk0xe233cm9a9dx6213ctNNt7J5wxT33LmW9fdsYuvGGe6+Yy2b753mtuvvZmrLDOqhLEo6nR5z6zsU3jKfN3De0CstzgvLxuYRUfJeAj0b5sfKmzHoCo9jQMqKWYI2Gd55PCVKJ2RC+Ec+C15j4Z0d/ehDCNr77ne/y2//9m+zZs0aRITLLrvsPvdU3vrWt7J69WparRbHH388N99886JjtmzZwtlnn834+DiTk5P87u/+LnNzc4uOufbaa3nmM59Js9lk99135/zzz3/QbX0w+PWw8Cu6k4KRu4QVP5qmu3qEJApdnxlcoww+bKfcfNMaaPhQ4a5nKEc9Y3ca7H+3sEdvQVWYnk9jbrf0LcNBX0+VhibUKXXipI7sL0yYpP2oi8HWyvge03TzlP0ft5af3xvWpt97rw3c+b9raDxuBrdhJFhr7Tipq0CjROYT0lkT/PSElLlk2uJGg3NVRgrYmtWR0dmmhHJEg0WnQrfT7tsunvBWGx43m6KJYjuCX0gg87SWdEI6U8/itzbw42Fp3lu9wTnDyolZ9tp9I3dtWkI5n/aj2itUK/GlQWBKbsI8bqNppoChXhTHlRUtr0EBgjo6v7buwwGgiqko+dj3vhzg8yuaOv5dKwyVa6GKkI/6Q02xV9S5RMt8UJ5Xx5fSd1lUMRyRyqxL8cfCPhC2V5Z6RXki1P5vFExBfyW7akGz6mljFoWU8TmToBz4Kk99gOavgwMFyBy24QJ70vB1PEHdhVZrPUW0r3hVXhDX6itWVfxCFaewyH1gNaQnxom+CtqrggNdYyA2oMpiMcrNW3vMdQrGmgneCAulglMoo8DPQlBXRUYLypJM+P0rPx/+9hItR6nLUWss9/zyb1+CGPjicWdx53wZoukbabhm6fAzC5ixNmQJCnEJXiUzMefcJ5HerSkhSlWm8wlK32M8WyA1OUoSF6YJVrZqhotL8HpxiFYpdhpfleKwWDE4LShcifOWbtmj0gwTs8Cy5iTGCEnapLnH3nRXzjM60SRNDOotRoSey8nLnIa0SUwKJgExWKCdwNIVSxFg7Ignoz6kFi7kC3jjcerpFAtYyRhptlm163I8nslVI3RnevitkPoWv7f2G6SJY7QBnTzF+bCstXOGjaWlLGw/1bWML7zKzKiCN0UxRTU+wjtLshTrQ5lbkVAnoMpUeCThkPspvLPjfTvC/Pw8hx56KOeeey6nnnrqNvvPP/983ve+9/GJT3yCvffem7e85S0873nP42c/+xnNZnAfnX322axdu5arr76aoih45Stfyate9So+/elPAzAzM8Nzn/tcjj/+eD74wQ9y3XXXce655zI5OcmrXvWqB93mB4JHv8AfYICNlCQ9uOHVI7TuSihGI/VpQLo2VL0bL8laBauWzHD3hiVot0E6a5CTNzG3cZxkoUHZScMCMwMT1qK4jsqqTaM/OlLCdsHgXYJZ0kNbgvMG2yhJU0feS+jmKaOtHreuX07aLFk+Ns/dmydp3yPMZaMksxbXCnn0mihmMg9+6rECs6URHrJrMPM2UL0OGHXoXIrxguTBKqvqpJs44/qEusALBMtQFmxNvfrMo6nHzFu6toHdmCK7d0JNg+kUPxH45+50kw2AMaHQzepdtzLfy5i9dywI07Qfle4b0SrMSshjRkJFO0tYCa/y6YdldKHshuFWV7nzgkmDperLkIHgq1XwIp1bBeVJtMC1or4rKx/6PvZKSFY58bVCQCwsE+jyqoiPaHCxBH+DLMrEqJcSjqvhkZuYkkmf7o+pghQDSgYsosCRIPirSPna45CEim51nIMdGOjVWKyCESuFJvVQGFzPBrcRQehLx9RBdCD9+APRutRunUoVXQj99FPqd1pZ9yYHrQraxFz++tlsYAoqRSYoAn1FYdNczi7jDV7xpc/zd88/NShnhiD0TcjMSMRRaspEJvQc/P6Vn8fXdS0G+gHqyH1V6vUOTv3WRXzymWexruPieJNQlz9L0KIIi/FEqIIxBePZFJ1yktmizWIIToX5skFqckg8pW+iJBiZo1cu4LGhyE/9chWNtfvDFOpRHKVKLKCjcdW4aFQgGM2YLzq00jZOc5K2YdnYslDKN/rnc19SlA51wlxR0iuUhjjaqcFQ4BzMO0ilESriicVrgTcl3bJL13dREsQY1HuaWYOe61K6nFev/Q5ZWtLppaE9XphaaFG6UFHP2hCVX1efLML8KNG9JYX02R/TF/b1gk5GWbZ0GXbK4kqYzoSRdr9a3yMJrzsPzHsodXde8IIX8IIXvGC7+1SV9773vbz5zW/mhS98IQD/8i//wi677MJll13GmWeeyfXXX8+VV17Jj370I57ylKcAcOGFF3LCCSdwwQUXsGbNGi666CLyPOejH/0oWZZx8MEHc8011/Dud7/7MSzwfRUIAs1Umd1LGb05oRyBvQ+7m9uu2zUIzwWD7QmSZyRbGmzWUZoCnYO76FyTrTctQ5b3gg94NqkjpqvJrw5IqYS/DbS5FIHQ09ESn8WiOfc28SsLGqM9erMNytkM0yzJ17Updi9xvYTkpjZbijFShbm9XE2Lm0KwnTCpdlsWCsPYDQndFWCmkxBLUJXqLQWN20wuMQZAcQ1iaddQq59eKBdLI1L4CxY1nnRJL0Tabm6QbEnAC2XDBOagk7BszTTT1y/FTKXMdyx7H7CW3CXce8NKzIoeW+db7LF0K7P3jqFNX1fEowi0q7jQH7gg2H1psFlcqEaFpBlXLBtIZ6zT9JTatx8siUpgS3CxVELIA2pCzEIlhKsAvdp6p8/SLLLow30GGb0qHiN0cN9KRftCEiG4KipmqbpmHBv16oC2r3xR3bLsW8Om7FvuEFmASnExxCI69O8ThW+IyicEHtashSK9pN6vzvYZBdfPzbdzgto4hkxkJ2r/OyEtUkKZYJ8NMCRQpzGaInwbooGZWKSkZAMUfnQX/eeLX8a9CwV3zpb8yVWXIg7ef/JpzBYaJG5RhjgcYzACmU1ZnhqWNIR7FsK1TEfqe2gzBnSqhPduqkyNsO27L3g5P5vOF88TsQy3dkMgXV2/AaHr2iSFYWkz1MHvuYRSBzWrUKN/rmhjJCczC6HQjbawUlKnHohgxcTI/YpnKuOKfDH1TmwImxNi5b0wMDKbktqMXhkyAEoXIvAtKc45Zmbn6cx7TvyfLwUjoDB1v9uRfp6kicWrvDMsmZzHxCyMJ6+4i635CLdNL2Ws0cWrMJ83mO00KApLu6V0eillaWk2quV2lcR6nA/GiytscOf5ga6p2CaphmkYM645kNIah9HRV16KKYRvnXI6G++ZZo42M50Hb10/WJT3k5ZXxn0zMzOLtjcaDRqNxoO+32233ca6des4/vjj620TExM87WlP4wc/+AFnnnkmP/jBD5icnKyFPcDxxx+PMYYf/vCHnHLKKfzgBz/g6KOPJsuy+pjnPe95vOtd72Lr1q0sWbLkQbft/vDoF/ilA2sw4rAmZ/X3HaM/upPr374HP79hDdr2JGM5zjUQNSTzgmtB2VZa6wSdSykmHKO3WVr7z7Lp58vCZD04DqPPMkwwMfrUEvzrQYGHTighKrnBTTiYtyzZpcO62UaQNaXBLO0xe88YpggR+7YjMaDQ1LSobyjlmOInSsx0gukJc3t5sqmw8IgbCTR+a8UCnelmrZxUE60aRZPgpzddE4S9UexcKNARllQNX2fZtmgniVZmEAJ2zoaKhMYw12nArt3wwZaG2+5cGRSdJXldF/+eqYmg5CQKC/GjGvTrG1i952am5lv0FlK8E7J2QT6b4XJbL7JTW2xVnj6gzoQSqLWFTRBecZIMk0wQqIsC5CBY3rUVXQlRravDVZuDj59aGags10p5kMRTr3OvBDdQYWqKvgp0DAuz+VDuV6r2xPtHqrvKsVfbF/auRd+HL/TTCGExKxDT9WpffFX3oKDPZESBWwm+Kjpekz6NX817VVS+DPSLr9YXqLqt7AcK1tkDAq6p9Riqxh4mBPjVLJICURG9bbZgY9fzhqsvhUT5xItewroFFwRv6UIj4lK8b/zu5+vnu+qMF/MHV30upEzGqG/TleB7TTR8b06QRlyiMb6jZ371k4hV3vOUM6JxGcZOmVjUa/TES6gQHFdt6pYtesUMyxqzLLgxpnopTvtiOzOOkbQExvAkZHamXoHPaGg7YvDqogw0MbnDEErrgqjHGIshw0iCRrLfYHDekTuPlZR2klH4Ht2yy/xcl+d85/JYkCq+RRsUJemZ+n1ljRIfGaWqQFZmHWVkxO6YX0ruQhT/1k6bbp5QOkvZi99gC5wP1yvKUKWwN5+RtYqQax+r66kHqdLxqnGqlXIaSnrjwven1TEx7VLy8N6edeVn+dihz2duroMb0K8fKTiVnS7aVO3bfffdF21/29vextvf/vYHfb9169YBsMsuuyzavssuu9T71q1bx8qVKxftT5KEpUuXLjpm77333uYa1b7HpsD3GmthgxFl7dMTzFMfh5lX7K4LmOtHKCYNNhaE6O2ZQ8diOob5Q7vYDQ3cipyRdYaNNy7vV4VT6lxm33ZBACzYevDW1n7mw/KnLghMASiEdMaycWoURJlYHTTHmel2KOvbTUj2mqM320CsJ7m7GQKkUuqCJVoKphcUgmQu1H1v3yPMH1qghaEz08TMJJhVHfzadrAme4IaCXS6Rn9vHhbS8K1A2+NjbEGqMJVhXBR48cPzWYg6TyZ7uMLWVfbaY13yPGHF5BybZ0fYdckU83mD+V5Ge0mH7kKGtgkLqwxQZKKw7o6lITp9PGdsvEMvT2mMB3bBGMXFlbfUmUDdo2huI4UeJJRWbK6EOvvblKyt/MRl/8Ou3Rgi/cj6yrAfSJMLFrb2iwb5EPVvmuUit0Mt2IW4DkG8l9F+ydokuCukZzAVGxQVA+P6AtfZaN1X1jBB8FfsTS3sYy2EwSh3O2/Cgjjav55PQoCfT+9TAVAIvtWo7Gn0fwehHTuquqX2X11Vvz8UJrqvBhyvGddsqNL1QqU+qZVPkxu+ftaZ3DJd8PqrvgDAV049kxuni/4QcT742UX48x98DkyoWqhWec5lnwkBcZViFul7tMoqUUh9SG2tUsFiTQXFk5SQ545u6clSg7WCT1OKhZLUGmysGOkjpzuXt1iyzIaqdFmwVe+eh54Tcm8ZQ9l7zKCEqnwLpQF6VAK99IpKD6/BX1/6yhSulqUNVTxLX+I1jyVnLdY0MJLiVLBSUsasjs7WghP/8+vB0OgFYU3TYxtlEFIVATOT0UkSWku6FHmCy01Y1dIZpudbeC9MLzRZMtLBqWG+m1EWtl6G2/csM74dFtkynlajYGauiU19WD8jKuFhtcg4HiJjqIWplccg1EOMUbWKZL1iZcwqkcTz6cNP59610zSXJ/TyR17iP9DV8u666y7Gx8fr7Q/Fuv91x6Ne4Fe5pIkITks0UUafsIXjdr2ZL3z3qchEoOR9M9Cry1bMwBeXM7cH2L16LCwk4IStB0pI0apSiaD2jUpuYMRhl/VwnRidWpWnjXOhFIIYwXZDmlsx7mBLAymF6fmJEIUffYy+6XG3jCG7dvHdYFG7ZlhYRxPBLymwU2kso6pgFJ9BPh4YCSmExpp5GOuFiWY8VBN0aVASKgrUL8uR6bR+nipi3TWC9DS5IZsKz2gXYOQW2PQkobXbLBPtsApflpSs3TRJWYZCQKUz5PMpt21aDU0XS2pq9H3Hd1LT8tFaBrCKzy2NxFE6y2S7Q15aNm0ew1RR5zZMIGh0BxAndaG/UEdMu8NoSMXLTQjeEo1++3jrSjBUFHgp/UI61dip/MzBFAsWY/XuhboAULUC4KCAH8yp1yqGAEJBoipl0EiMqQin+TSmsg3EC1RFbapFaAZL4mp8zqor1YQaEhLTn0weo+nToEz4JDILaM12VCmC2CCkg4XWt8A1jfct+4qTKYjZHNqPVSDGJ1R9arSu2FfBV2sJxJfuE6WdCH941efrYMU750rq7LtQ77b/PqrYAjdQ2IrQ7sAkRKbBD7yfIq4M56t6HIFZ+fwxZ3Fvx2GtxUoSLGITFJI0AU1M8FSYUDhqNBP2GE0Zb6R4HE67JJIykVk2dXvkPqOdJKTWU7gCJWNLr4mVMfYeC3Xtew7AxaI3JWoLctchMWGZ3kRSREIOfCKBTgnV/0IQYWpKwDLf7ZFPKy/8n6/3FdvUh7EV+8pmDieK9iymWZJkjiwNFTe7ZYZ6YcvMCMsm5tmwYZwVq6YwoixrdJmZa6JeyJZ1yGcb7LLrFFtm2iTW0cxK5joN1Bts6nB5GpiI3NTsoGZVLYsg4FH43otfytGfvTiMuXruVL512pkc87VPc9HRZzK1UNKZ7XDnuhlIU7p2jNzN8kjDYSh3Vlo3Bk6Oj48vEvgPFatWrQJg/fr1rF69ut6+fv16DjvssPqYDRs2LDqvLEu2bNlSn79q1SrWr1+/6Jjq7+qYhxuPboEfeOVIB+ac+5Nv4pa2aSQlX/zZocHfncWJaixEsk9Nj7DXWXfRmR4nzxPsjMUtU1ym9cI4gwFLKiEYz3nBzYbcd9cOPjjbiauMNTx+NAgrnewGKzC3LFsxw3ynQe+ekSiAot9doBx1yJYMW8ZrWMI60T746v2SAjUxOn9pDPfOPDIXTLrOlhZ23uKX5uH4EQeZD4FecYlduyELldY0ULiuESyg5sbgkijbSr7UB2GyUsmXWKRUet2Mees5YNlGZooGY2MdAOYXGvRswshEl6JtKboJ5Anje08zvWU0ROha+oLfh1lbK4o7N2zcNEbaKtk4M4o1HvUG16O2aOs6+IlfLOiFvgVe0eNd2590qptWMFAT2RIFdBVHxX0o90p4F3F9+4EiOuFgoDR9OnOgbn0Ilvv/2fvzqN2yqrwb/q21dnM3T3fOqR6qBIlRosEGOxJjE0lsEhEoEAVj86JmGElM8E2MI9/Q6HC8yZc3wy7BT2NsYgeCfYJRkUSjEUVBI6IgXVFUd+p0T3c3e+/VfH/MudbeTwFlgcFUyVmjnnHqee5ud/eec17zuq6ZSMjFYhLj42p0k5xeU3UOmqgcr9TT42ZnQ54qFVVAyTPU5CdVsulxyVlnvIlyRCr7OLr6DZPPM0iFlq/hYtOr6JImHCUxyC6CLo0Qv/byw0w+0ETp2+ZjmxRy/+Sf/xFMLWgHBtY52otDDNTu7LmbtmoSxbO/7J4dTyeJMppYEiUjyZ+FDYk+wzn53xhlUvymw+7nnY7stfCX9h37jajnT4Yj1mFNY1uMMZxrBxqbcMbR+Y7WLTkeLIZI6wKNq6kMzJwgCzOXaJ0hEsX61iR13QuEJD76rZvR2lbAC4TH4n3g9Ljn81/7X8sOmzoWCaydBYwVAp2xiaoBluD7qlhRb07bUpHfeHDK0XrGEx9/ia2vicnwzivnCYOT96wDs/0tl6/uEL2lqiKHhwtuOH9K5x3HhwusJho4+U4ml0Ti6xJmK4XPb37hC3jb8QAGfum5X8jTdTzyDz79Obzpcs+//ehncf/hlhQiYdPLhNMYCdueeLrlA73+vJ32nvjEJ3LLLbfw6le/ugT44+Njfvu3f5uv/uqvBuBpT3sah4eHvO51r+OpT30qAP/tv/03Yox80id9UnnOv/gX/4JhGKh1jsGrXvUqPvzDP/wDAufDozzgJ5AeYFtjjGd40z7sRi6+8SaWTzri9CaDvdIQ68TiTS3dhQT3zrjr3seXijvcMOCu1PgD1YFvRkh6WmFY7WEmh84OT9JPz3CyDomJJ03pYV2+90D6kbq91o8+06XC0/en0VJvI0x9d6UmLiKDHVsGoY6wE2AwuBNH2PMSUFQzbk9dgTXd1ujNWG7eYRll3wx0N8QRas4e8l4SmWTBXJxxfM7xupMZVRNoG0/XV4WpO6hEJ61qmtvWHB8uJNiX6lZjofrtZ7a78TI+c9jIZdUHKx4CE/tdOVAJ2wR13ZsS96xW15oYzIK8Z3U2kBXtuRsDRJ72lgfpEMfkK8PXKScYOvTGqtIgDaNPuM1e4fkaNEjykX0G0uQxK8iSbNsIRRfUIU0gfZPK9ZEtiG0vb1KS1kQZuxvnE0WES8XO1nqIZqzW301xlMb9yGhItTGEBg3m47Es22kEAbA+W/nKU0LFhNhqxuM5i2Q/BLetxvfMSAqaDEIZXztzpjgU5mFC0SF9a6uIApL0lGMcx+cmCzRyXX//pz6PBzcP6Vcoqc7UFXGTB9IYKmO4fadit0kMqacyNbWrWZglkKhtDW5GSJ6QBmbVgpltON8GDhpIBAyWta8IydO6SG0NIVWsvGHmDJWMfMTiiKmlsQtiMmyCZe0jpwO4bc8Xv/EnZK5GVClrtNAEQbKyBDEa6jrI908veTGwshxd3hmTPW958Oou0Vuu1gvmted409KvGh1eJe8RowyxcpcatgZSb7l8bYeqCdQzz9BVwsiPYJQkajpF1ZTEef/GczwEvv+znss9K8/3fcoX0HvP5dOB2HtSiKqUsLjzu+W0pBRJ/Qd+eM4jhfTfl3V6espb3/rW8vs73vEOfv/3f5/z589zxx138I//8T/mW7/1W/mwD/uwIsu77bbbeOYznwnAk5/8ZD77sz+br/zKr+R7vud7GIaBF73oRXzhF34ht912GwDPf/7z+eZv/mZe+MIX8vVf//X84R/+Id/5nd/Jt3/7t7/P2/tI16M64AOkGLHGsNu0NNegOdSxsccHmP1UYNftjQKt7v+Jod+FMJMBMcNxw/wyHD55POnl/mQm979Beosx6+MtsPByY9PevpBoRJKSQsINMi7U7wfRo+eYYBmNSWrte3knDmydIc61QpoF6sXAcK0tc+PtiYMbOqoLW+JJIzeDg5727hn9fqQ6dSzvge2NMMwjbq3VwdoqqzqNldMEN01VItYJu7GEXU89G/jYx9/L6+++HRqP7x1VG6R9p2xdFp7usGV+bsvm6nyEhfX9k0mlci5Bf+NIRifoKYO/sOgZg0zyeRIXpcIufeksFXtIZp6TuJSlcRZMHKezkdGDHFC0ik4q0csIgqklYMXeSbKxteO44oxETODr4kWgicQYKPNFOl5YyQqzPB8jE03xT0jKPYs1hTGfV6zTmDxq4MekAnOboJX/pH8OyMQ/RVnsIMlVbGTbbS8JWmhy9azXQxKpoEnglwrVz6Mcz94UXX0h6BUCn8EGQxqMyEutXFMmCHT9XX/7Tvoh4oAaSE1FlC49/+jVP6kSR91fNRiKhjPISnBjolOulXyco+Hln/U87lmJT/6yMpxrHdbA/Wux7cW5rNMCZzjXWm6aOVLqMQqx17bBGodBjXOS5b57HqRpGvb3KnCWlDwheIw1nPoNwUPdOlbbgXbWYGyNMwLznw6GbZDg34p4gpMhcWkTWQ0wrLbUQYIr3qrls8LnvcEsAxioZ56qCliT8ECjZlW9qUidE2noTPz53VzscaO3xGhZNh1H65lcg72j3uvor8xIVaLe6RkOJPk2TSQOjiEYQQFg9EPS+1yWoppoePUXfSFvORqI3nM6SBUxhEiMkqAlHzDOYnbmcu1O0ZyUMDsPlUH+718+WczDBPWHg/vf2/rd3/1dPuMzPqP8/uIXvxiAL/3SL+WHfuiH+Gf/7J+xWq34qq/6Kg4PD/mUT/kUfvEXf7Fo8AF+7Md+jBe96EV85md+JtZa7rzzTr7ru76rPL6/v88v//Iv8zVf8zU89alP5YYbbuAbv/EbP2CSPHi0B/yEZOrWsNcsChvabSC0MH/AsLlFnhgv9MRNxZWPg+aKozmSATr+5p7muCHOA+6kkilpaiqSb+RCOqFA03nYhwka7JPBdrY4kqWgUG4mYamEJveKjQYM403RaFvtcQ43DuIBUCfMccVwqqdg6UUTXyU4bOiaRLPf0Z803HDhhEuDw5w6/I0DRzcnqgdrmqsOv0jUx0L+SzUji13XOK1MMvdUJ0yV2Fl2XN4uCFvHqZ/RLgaW845rh0tuOn/CZqfi6NoSOwtsj1ths0erfWEhhBlvSzAVb+2RVVxc4YKRVkUYg2lhoOfePBTZG8W4Riu9oHBuIy5npezJAV6DvRx/fU1OdAxjBVuCs54oJxO0k7dF3y2ZklbG6sAoEHK+RtSgpoqynWrQk69VJh+Bg4T2rHUiYx59axLFwMdqGyIrFzCi5ChyvUkSV66xLFHTxHIaoKckwdgkTFLVSX6+wvixTSP6wYhqZVQIRugf5HgnTGkjWN3+vE3f/anPwgfoVx4SVLXDVAYH+BBJO+JESdTPaVTmqdeMeF6Y0cJZK95s8ATw7572Bdx9GqgMfOh+xbP+xw8TVUf+yk//Ev74aBCLBGfAe3ANMUFInspajDFyTjDUJk+jk3OeAly9csTFBy4TfGR3d4ftZkuIkappOD4+Zb5csBk8+7c9nm2TGKIqayJEDDMHtYXzraULEvT9diBue8zBDv/hE57PV/yPl5eEPDVJZzoAa0dvakLtMDbiqsjqtMVYcFUUdWYdcXWQ36OhacQDpKk9D57ssr/YMgwOnyq6oxa3ccQ6ElqBbEwwZSx36FxpreVrlDryq894AWsfWQ+RBzeBP7y0ZTtETIqkIAlt3HaYWvT+xgDOvnuwR9Ad0/w5eOl/ACD9T//0Ty/TDt/TMsbwLd/yLXzLt3zLe33O+fPni8nOe1tPecpT+PVf//X3efve3/XoDvghYKylsoY7f+Jn4LwMyJnfp/KSXbmBsRAb1ngi1XA419PdNcff2pG85fjJXlj28yg6ZDdhOpPvj6kERyGUJfHbz9Wplf4rGWLPJK48B71K0I8XllU0oAQuvXbcUSVZ9zXHcC5IoGwC5qgmzgNm6UmHDaYzDFdn1IeOK8c3UPXKBTh1mGjwOzLsxwyGYW9SbZpxUIv+Cgbc1koltxsgwpPOXcGSeLu33HjzEQCdr9jd3fDAxX2qmcc1AWMS/kj6S7a3441YPy9XlaVnnuVvwUglnQljTFEHyr/ZWS+qpMgoOSsHxLKm3z3DCGeX99Lj7W3pQ+dgDVJFEs2IBFgEPclWutobTpNDWYxgMmFMGe2p1mTFQ/bOJzJOrsvoh253Pge2N2fY+MkKzyKz6eW6olw3RSePohUwqhUM0rbIx8nKsS8tF5uKVJBK2weD0ap8ApXrdiat7DKJksjYTsruf1Grv7lmAXrOUzKc36+5bxOY7TRyEGMkOLHBbYwFHSBl2lCuERI4VUqkDGE3Mokuy2CpMudCIPrWJv7R616mX1qLsYnYOS7MHLNTzyomTF2Reo9pG7HDxWBV1idVvhn/30IkcMvjbmTwA2mAWTPDOscDFx9kUy04Ni12t2cbAqHrudJXhL7nzBcB2CDcgmN1T00J0mqL3Z2TrOHv/9efwkkmKAjM1hJnQfY1GDitdLCXxSPW3K4O9OsaUwesS1R1KMz67l07kL1FTOLy0ZKqihLkvSUuArRqOV4lFjet6LYNoavKtZ+S5Xee8fd4y7HnqAu87bBn1Qd6H0lJfTdSkraLgbjpMDM5xylGTNuICuO9LPNQ7s0HYF2flvfI16M24KeUSN2AqRyLSm9O0fD4Xwnc9ymmTOQK+wGztcTGYc938toI6UNXcHVGddDj1+rwppK4PBNenqxxw+ovMJKXJpPNohur9Pw9N9rXFrh3rEpMVEWAwrImVzWMBa3fibI91mBmHtsZgjOkw0b2zSXsiSQ2YoQigcFtLH4ZcRsN4M1Y/eX+Ho0alwwS+ZNNhJm2IrZSZW19xRvfeAd2b+DK4Q4As3nP/mLLeu4ZrrWj292O3JSMtm6rlWxDXiZqBVkLjyDsBEyGmps4+t5PIOVMoItRe8DKxi7WtRqg83GzWztWn6VaR4hcYVJpo8dBB94UU5n80blXPthxuwrKIAlCxCq0qX/XqihVUk3nBCZPqcsVvU4cIiskigmPk/1yPYRGA3mdr5UJDyBR0ASbrzFtNaHnlzBBCgIjShXH3JQ08hCSJg3ixpj5HBSpXb7e5aI0hUMhrP84tgFMtt/VQ1xFwe2Rzzv2EZ8ESYkpQghQWYYkEH+qY9mHPPjIVFGcFacoiRJSczKREZ/URP7ha18m5zyKUgY/cm5qK5D6ekDIiVqdBf3XYHFWx0enOH6HteJv2xpTRRY7S6Di7pOBe+OMTW8J3pN6qcRNvdBWTB628dDEdHIhJrA7c1xTM6/UoU7bLHatAXSfUcmRgLUmRnWUvCkYbBWJvcNWAd+L7W1KhrQT+Pgn3MPv3/14ZvOexbzHWvHBN1UEI62q6ATV26xarJtsn7acHtx4rpz2bIfIaQikEIWDYWR/xLlPgr7dmYur4Z9DIH+ky0eLeZgBOf768JyyHrUBnyGQjKFezriwqHnNV34hn/7/fRl+bonZGASgjtzw+Gtceud5YjIc3HTC0dsP8AcDf/Uj38mbf+1DCecDu48/wQfxi+/XDWnjGIdCZBYwcvNs4hgQ9HGBonXb3KS3OGWWT25cGfIvvdOcIEyCVWZlV3fPCE2iuTrCX1ZvrqEFklF7VkEWcrAvQWwa7O3oHIhNgmokcMfVGDhc4k333QJLL4S13nLrE67w+J0j3nl8jhv2T7nltvu5/3SPB+66gD2sShARtnaGDybBAtnOeDAI10H76UbZ9IX1nvMEJckVp7zEaDijS5jkZgx2SSsGDaKpUrJl5ktkuVtGYHI1Hcw41c+bcr5Spb4Ken4Ky92FsQVh5TlC6tMbR+YYQJGRle3TxNQEOWdZXgd6fak+vhDgdBof0/69XjPJQGojdrDl2jFaHYp+nhJgTDS4rpwGYq2JRTTS58+BekJKLEhIzjByeyZfry5pLpTKcCTjEmblSLW64FWJ//Ipz+Sebc8yBIb1KW6+w7bbYE1LjJE0W1ItPaF3YwIcDEk9GDLqUgxfpsmbtoZMbwX2j6aYIpXlEh/3kz/MT37WF3F140nbHruvpDyT59ql0h4k6XdELywBL4RtsO17LveRd5wGhnpJ3HSk9ZbqYIe6sbROhngVbgzQx0QXEg8dBmiAuTN8zX9/hXyH03jdJiff//qBhv4GX5I7MxjoE2EByUVCcDSLgQEk6YyWeqYmPDPPXUfnJME0idPTGXGQY2qrIJNDN5JQuybQznrWJzNJ3vUa/KU7n8ebrmzZbj2x95imwrQ1xim6icn/6U49egJ9XglpqTzc49eXrEdtwE+Dxyxn7DSWL/mPPyWBZgFXPlJxSpvwNw6wqrj04D6pSjQXa9a7DbPHnxKi5e1XLxRb05NrC4HOWtW7TkaOnhkakihysJThX6bOY+aMk1tC4PusMTaDVE9ubccqyiRQ457sKIbJiIBcqPWJEVKWjlGN2h/ORi1Fy50AO80cdLMnv5Yb4jJgTh1mbyDsK7IRDW5liVsxKwo39lAn7n/HDfg7LMebGdYk7rv7glQJs0AaKglsE9nX1IL4TMKTK7SNG+euTytoDfo5YJbBO3Zkh0/Z6hS9vVbKSl7DTJIB9D2MvoeVA2YMY084cypy8qDVfHb5M4ORfnGjVq5ZgpeDvoFkVAZHNjMyo4HNCHgooz6VRDI2YzLitvLaMINse2u3EwWAYazAczskAuq7bwbZ5OTQ9hRkEh5JOAEmSLch1RRSXTJi61ydiKmPnyMoTa689bOLbLF4EVCStIxgpUWQYxsMrC1/8Hv/i3bvHNF7Dg8POX/+PMdHR7i6xtUNe096Mv/2rz6fr/tfPy4VvUmlX59sEqOsrR3nM7gkCZluS+ZumDwoyFLQl+T0PBvxBGDbQ+Wom4pzbeL2Han+DVZQw1BAfkIKJX41tmHTR64ennBS7bJwlmANTTOnxvPCt7yUGKzYRm/dOD/BUtQxyQrixkzHY29sSbQKwTGrVvYiXhnxOUllEcCKCdR82YuUr3fszDuO9bN39rZ0Q8VTbruf3/uTD+HKtmLv3FqKmU1VktKgaFQyYOpIDIbtphFdvxYav3zn83jjgxu6kIjdgN1bYNQR8bG0rkP6j3w9egO+D5jKsdc6You6lkFzDXbutVz7SL057HrMUQU7geEg4IKlP2m1uh0km1bYm1zpTfueatpSlqT74//rv7FOWCtwZNLKJ7bCes83ZuuVga1scqNuaWEObgDjKEEim5yQpGLO09RK0JtorjEQi20soyxt/EcCoVZrqU7Y3Z64quXGua7K5LEbP+Qqh79/I+GcJ2wsro74Qdi7l+45Vywy62OH3w24jSXsBuyRusk0qn7P1WauyPOG5B4zeiMEohsPZCY2luOb93NKsosGk0Z29tSsZrxA5NwVNAN9jwkRMFt/Gm/HSn76em0ZyA1X90khclNP2iK16J5NThCStniyXa4V9CUH57ydYZZKVV7kfpNLLdmE69U5MTsKArGlIB75OGUSX7ksMtlPA35U6RwGnKcQXMvrVWKVHAwzdR9spgdU3z8H/3xetV0jEkwzog+ZsGjh5juewEm9pDaGWx7/oRgS58512FlLSokBQ0jwfZ/wxbzwNS8t/XvqVK6X0cxJ/8kzD/L58Xa0cNWELqk6ICUwFnYdzIeB+tyS2w8qbpqb4jU/rfO6fuDeex4gkdjb28UPnpQSPgQqV9McPci86zk4f4CJiYEtYbDicd85sRQOek1qolXOqxfzHzNkc6k0WiNHscTO8L2xcgzsUjTuuTpf7Ip2vd821DPPettQVYEYDetNA8nwxgdu4cM/9D7e+sCNHF3awc28DN1Sh8iCQHkDXa33wVjuTa/+7Gdy97Wt9Op9FJj+MRjsQSH765D+I1qP2oAPUDvDF//cT7N30bC5CbY3eqp1xdGTErPHSRXfnzSkPS8e543MeccbzCIQH5gTc6+8d7D0clOdQRosbuaJR438TbXZ0i/UHn4maekXNuuGM/msfdAJYU6DVcw2qYr4ZW2124puvvSV89ISMo8dLTcNzWVkwtr4mqmM8ExF78dqNLYR5l6MNvY7/KoROU4nlezlt13Atgl3rcLdsaLf1FTXKsJuGANeMPhlFOTCUEawCsGNkihNt6dAnFYnaU0kgeYh46rOMNvT6FBY9r+OxMoUZ73cvsicvylGV6bC5W3K1Wl+S4vot+MkaOW+fk66JpA8SYOLTRLgNSiaAnlLb5qtlb79pAWBS0XvbqrJMYljQlZtJ+faypjZwkHIAT4b8jwkQck6+RLMM+yvBDBcItYGP5ckN+UEKgHzSAB8OHsRZXviMuJ2MPLmNsn/O4q3gUlAru51+h5t4MKFA65tK1I+gSlBZcDVJUEC+Jo3/BDNUkczeyffWYBZlCmIipSRNLmqZAJjNulhsFIBq/GR0XNn1R2uGgb+8vmagxtn1KU7ZjCISY5FAlqKic1mS0iRa9eOWK83nDt3DmNg8IGQEsPg6QaP9x4/BAnGimIZTfiyP0FGsAq3pbflO5lNssheCoOBHY8tZElpNbk6YFpPSoZKvTCamaeuAtZGYrR4mxjWNbaRXv6l1Q4fevNl3v7AjYTeqqxSEAPhbCj/I0lhEjWJTDZxcRu4sook50jDgN1bPiaDPVyv8N+X9agN+LZtcNYQLnj6SzWb2wduuu2QS7M9OK2wv72HqaB/XCimIRhIN3SkocK6xOIuy+r2VPqkyVuWByu6rsa0fiQMTSqplMl2kwEmwBhAEsRzPc1iIHRLqhNDmKeitZ6y8s0gZjcmmFLtFTZ07iWn9O7Vq4VsRnLm80tQmty09YYfLbDjYePYPdhwevcefquSwo0tE9DCIkKvScZbd+CCJ+yIJtp0440KpIpMtSQsYSeCS7gj7e3FsSKdHh/SyG/IfvBuq3yEC4PczE/cWH2mh/zkP1dRZVSTt09abeZjZxj709O/O6QqTxpsq1wVSsImD+h7BQrj/4xenxG9KFVkPjcmwSwSk9XhNIiXeEn2NLHQoT+pTgzqUhcW8p5uawr3grzZW1P087n/bhKSkNiROxHbsSePTZitqCdim8SDvZ72Fwy0QQhyvRMypaoZUJ13UU/klxm5Ps08FYJdUuTEAMZFmEdRxnjLs1/7Cr7rY1/ARpvYaXLQpuSuxUzIDKepZUiG1OvUSiSZSsr+F/Y4GG+JmexpJGEznZUkLHMYDKRlAJsIQ2Q+r6isQPbZiTERCSmQMKQkc9v/0oc/AUh0fUcXDUe+pQsQfGSIEFNiM3j8pqPBYN76RuIyYNoIgygIsgWtWYlyJrSacDr5ZDMI6iczEAxVlETBW7lGUO/5lMD3jjiIcRX7cp0OXYW1ka5vBN7vZOJlUBLy1dN9rs52yv3AJDl2YugkxOE81jrWQUms8No7v4A3XemhceNwo4kF8mNtpWSKj8l7e/z6kvWoDfhx29OFxPd8wufw9f/rV2gv1lzy5/l3f+uH+ac/8uViHTuDxb2O7ry64oEYVFSJph0I87kMlWnki+XqyHbTEDsnxBVvYNfLzVmJZrl/j/Zwc8Cx/Vih22sN1Z+0dOfkJpssE4MZShVgA9gTMecZdkfHu1QnGUChyUYm+AEUNvRDIM5SPBkKEgEUAx96Kw5bq5rNHx/gjIoMGvEdCA4Z0lMZ/J4EgKAyNXNcQWY+588AUpt15zLQJewF4i0d6UT8+wlGpWa6TUGJcbr/uQWRsiPeSUXa94RlwK4lcZD4qxE1m9nojav0lHPv3zNW1JroTAe/FKTAC0phcsVfkpMkNzc9sQVarZBWQNa3a+DOiACDKXPrIY4GMg/xmkcfJnvp58dNKmqFBNICCDIm2SQITSr7m2V2bmOkzaPZV1Qv/oxk0Gp0Vm8FuUgTyakqIkqgJxn1pHdyHEm4OpIq0XrHYNXJzWDqRNxOxqNqfzwBpo5UM0+KlugNVRsIXjTwthIjljMMdcPZ35Epbd1QEaPBuqQGRaacFnpFa+qIqYVLwWAFYRqsfFfV/8B5HSTURl72V/4GJ5uOt9z1Drpuy1Oe8pHsLOfEFIgp0ke41hkubT0+yjGoLew3CWNq7t+IZj6mJGz0wZO2Ayklmrbha17/n6GR6tn2ZmzfJL1nBDHUsgMMlSkjizMS45fC2zER4kK+r6aK48hfEOa9jpXOx9VVkc2qFfe9mRfJ6amagAVh6bs6iqZej2OcB+JCr+fBiN9BHZkterb37mB7wyf/+E/yyi94LqtrW06i1QR4vMc81lbEPCxp7+Ee+2Bbj9qATwikBPNqyeFHiVvI/k2nfO3PfxmLU+mJD7vQ7zJWJmiGuzuwM+s4nsHy1lOecvN9vPadHyIs4VMdF9vLKN1+Zkck+aYN/oH5SMZiRKaT9hurrWF2GbpznBmYk6qJcsACOh7VdeDnkwCjFqmlesz/wtiDz336NH4++rhB/p6Z3bhEtRjw6xn2YktyUvUarzeh0wq/jKSDgUFtwEwwmE1Fmkfq3R5fRTgcZzJPUQWZiqUeAIMhmkoq4GyIU6UzL8u8hfwHEygmL4BAt0rIYhFI6/FmRRRotqApEz5A6Vnkc5EYIfwcWFImY+o2DBaTkpqbyHOMkX5Jyla8dSJT4E1mzgeDbcOEuGfGY5/1/70tfyskyVzh52sgf2w0QmbMz4kUyV5Obsp1pteHUfQh1jlxSuPfjBEouKBK+rkPTT56CSCm+E0Y0blHcXUzQF0LbOyD2CkHTQKiNyJ/qyIym0Z+z5PajEkyZTBaQcp8INPUDYiPvj27QatVK8m1JhKmisoFMPq9TKRGEBl5b6OqASRIBkMeEBWrEVXrzYyjbstiseTczi6ufK7lWpe469Rz2KXxNqHXy8W1glUhQejFJtaL90e9bPm63/g5QavqVKD5OJMEmgyhq69HbOR6dVtph2WTJqzyeapEWOp32EWsSwS9lqo64AdBX9JgCceNVP8uUrfighl01oMtvBMDK0fotP1SiyLHBANNkGQjgkmGuHVs1gusJhg/c+edvPUo0PWIiU7bjAnaYxDWD3+KLC9c7+GX9egN+JUjhQhU7L2por2W2Hn+muN6n2pruPaxA7N7a7rzUQbnbCrRrs891kWuXNvhSX/jbt555TyvecOHiY+3RZiwW2HK9gdxZNsmQ3/c4DJpK//dSEsg98aG3UhoR9g7w7IZhp16sYvz2eRmPtm9qbFMGf05rebT+K+JwlLPs9DjXCKCHaQP6rdCygt7Wukf9HClIRwEgjey7wkIBrcWMpE/J2ZEw6Y+u2HwbqhCdhjEplHKFd/9xpCqNOrGg2xzbmkYBG0oRL1FZhkykukSwjLOAUz7uSnq320qZK6pt0HenhxAp8eUwDiFTIsZq3IyIUrZscpySQLcFF2ZcCjwRoKmBmC7ceW1tjPqejcqK2Izyueyb0Q+LhkCtl70+ckxEjYZkZGpGZTst4IUqtcu0H46y/ZPTRpRJzjTHkrR0K9rbB2x1soNE/AqvbMuYh2EQXzYjZVqM0U5dhiwNlFpovBLn/xl/NGRlyl16lxHHyXYEQnoCOdBpLDGqWRMiW14I6NVM+Fxa4lRVR5tYHFhTd/V4qdhZJ+Nt/zqZzyDk9MVqdllfsMF6spx89zROMNJH7nSBd556tkGhOkfIvhACgFUa24SwslQH/7ZsuWgMnzJb/0kprZUR058LBaaLtSKOFm5d6RGmfdVwu8oiqdtnGmLhHzNHPS4OmJdBCOaeueinI8qEhMkxKp6vhRTneBkvHS+BuxgcRtDsga/I5B8inLt4swowdTWSL4mYhP5hc/+bB5Yddgkk/2sD3KeVhuStRL8reHRpLP/09b1Hv4jX4/agG+amtQPHHcVw67cMO9+8Dzn3mg5+RCorla4Dp78V+/mj//wdszewEfecT9/+JbHs7O7ZdvVvPUNj9cbn9xAbYB06sbg3ItJjN3IF8wcVYRZLN7guaoqNqJ6447ziNW+qfGm9KhBpDeZPW0HhR1zAAc12TBnbtTA6NeOEk4NUCXsqR0rfb3xN5ek9znsqUzsqCbtBNhY7LmOeFqT9tVDdS30/2Y54OtIGlr8OU91WBGWkeqBZnRTm6wpqlASj86+u0d/DiQpB2FKFWwHA2srPcw24a1C470d2yZBbvaEs9V5cmni4qdzCrLvfv7chKAF+bXxLCpQprrlfdAHolcPBqdwtHI5jLrdpExsy14COWGzUqllFnY5b0nQHpuZ9Apa2GE06TEBUkaELGN/32kVrx4PsUmjxDGjGPl3I2oNYHxOGPc5b2f2M8hDl0hCXMvHOWEhIm5sdcRq/zYlCsyPES5D0w4EaTrLfriEtUluskESnqf/xg/zbTf8NXb3z3Hvu95FO5sThp6qaUlVxezWOzg/k1tNikbkY0qKFHdFi90qZyVfh4sRldmuGkFbdNxwSoY0D2w2gfPnz7GzM890GC5vA287DlzrQunFp8ETN+KMZ+oKnMM0Yq1rfMDOGpa14caZ485ffqmc5yiJSJjwCuI8YusgXIithaWMj85tI9fJ8zPxNdlEmktya6qgtgmGxbzDB1fy+r6raXd6DDAMjlRFDg7WHJ3MJdEKAun7Sy3tVYOfw3BrPybDlpF46iLNYqBfyfc+m41lkugzfv6Xsb3h+5/+1/DrntgPuLTA7l2gHzzxeIXdXUhP/zES9K/38B/5ehQH/Io0BLYx8ZJnfS4X5ic8/z/9Ot0B+Fs7WFfUH3HEm1//ITzpo+/h7X/4ON5y1xOx+5HTd+5JoNdgT9KbsVqkplqIUSRwp076/N6w/JBjujfvC3xdNPpoMKMEI7cW4xuS6Of7gygOWkk+y21GUxWgwPOFaxdlgll/o0hp4mKEsbFJ/jYTYlKukKd9bb8TC5yZLXzTRljjcXDS019L6yLNAk998l387pueQLXwMrbXG+E8mIRfxgIhnzn+STfJUG4mWQ6YeQRTtv0Z5r0GmTCTYOv34pkquXjsO+nB5go997tLIuDGcyBtEL255TZKQhANdBvTxCwn6/jTWOkYa8bz6gXuj9PtNpP/yRwChdtN1qRvx89LhlFKh1IFthOyZxivgZwAoi6KOTHM/gJZlpl5BRiKs2FJqnR/UiMPmJKI5mOmecrEfbFUm6qrT/mB7HTXCUokxjaJUEeReFWJSqF7Kg3UUQJ/DIbaiflLv64xNvFPLr6Gl8z+JrOdXVpruHpyzHz/HKmq+ce/9zKxzs0VfaBwJvKkxKSub0nbRGbjyrmKWYqXORXAb37e3+NNd13lsgks48DKJyoLD24CfRSkIfUDadtjrMHOGmgqjWEGZ+Bb7vp+Nl0tCQ7gO4dZoKw6QReSoQx2ykmKyd4F/ei/kdqInyfc3It8L38vsnX0IPvj2sC2r3E2Ym2kqQOrYOk3NSkYlvtbYjQcHi2o6lBG4VqTiOd71rvinrc8t6HvK8JgC9ckDsJN6jd53KEpjon5OcnK8LEv/e3f4P/3lKdSL3eItuJFr/05vvdTnsUhEFdb0eTz2FgxGWmPPMzj15esR23An1o6bq2TYH8+0V427Lyh5fRDA11fU60M9147ILlEfyGU4IgVKUrSfnHSYA9o9s1INotS/Z9eXmDnUYLQoASdNooCAEowCq1A2/WJxS/U+U5HhqYqMewm2quWqL9ndmxJmDMCsJU2gV1bmmNDfyBRNlWpmGOYwRbnuGLk4qSFMB4rRQeaiGsDoXejF0A0XNos5cYfkcpEJ8iN41JNeZspZ6DsMvL+xc/9IYTG6WvL4x6FqcfE4EzrIqE6eEpCNu1hF1dArWJzwEtq/WqyQYzTihvL1OqsDJGpJvyB7JYXjXgXNQmsGa2IFXmZkqmMS3LDnyo2HjIPJB/C6TmxuUffGUJLCfKuM5jOEGaM/Ihmsq9Jq31NBozTyhwUcaAEw4fKC2Nm5+fWhSIMKSmfZFBzGxgJjxnF0ENgKoHxc8/eulhauzFYSWIG6eVPEZGUEu18zmb3JvAD+/s3Qdvyf7/hZcSuGs9XSYb0WKvfgVE0pyR9Vq7VVKfR4bCO8h1qIn/04JprOOLlFXblqeY1yRhCEEtu+h6cwy5nxQq2sbBXW77q939YDmecjZLbQZiY4rWQaJaDjLLdilmXVUVD0mQ1t4mMklbbgy3WJoa+ktHPwUiSk6dA9la3X5QOTpGa9aahP2kwg8Xt9/ggUySrRhUUQLsY2Fts2VtsOTydC6NfWwEgSI2tImFbycyMmY7BngnkZJIRZcWmFuLt1mIHw99/4+v4gb/9XE6HyL//tOeyqBInfYXvtzyW+vnikfgwAf8xk7p84NejN+BbC8aS+oHO1rz0K57Ns17zY6TDOY971TEXt3schSXsRdJxK/D3doQeM5u3MNq1Ypo6oyWQIGbkZc2lmmE/SKBMiThhw6NQaTLgOlPYt0QNQlpJpUbm24ep/W++mU9WllilSuDd7a0edzzaWcY2lglmyeoNcJD9KTPDFcozUarXFC3BSXDKVSDR8MDhngTXK20ZKGMalewYW6xpH1rlywZmhGLaM89DNcxZhzmbxufW45tFLdaEqSzbfmb0qqEkZqXSn7xvcT1EP1O16HlbjIOUtAVgzr4u91MK7K2qiOIeZ00p6gsJz1CMUZLuv+ynbqsiHWcCptfjoihCctLXtx5cD7E2ZduymyJJzXmq0RjKBEiTx4vKQNEE43Ufi3e/XsMT74FyXGFMqHpVVCS1Zc4GR0GRgmQkYVIeQJoFQpRq3pikSgpGF76gsrecY7jIV7zplfzAx3whG1szq+CFr3+Z9J4zye0hSpZisqTtFRrV3eepek1SeaZuk5WK+X88/fk82CdCXbGaNfy/938f/3R4gYB5CQnwOwJLGyPV/De/4/uJ0eJcpKoqmtrTDxWbkxm2DtgqCFNeeQy+d6JmcOJ8l3kd0Ts1ZTIj/6eN9BtBOpIXcmY9HwDlKkQjcwmyOgEJ9ABhXUsCZxNhK5lk1Xja2vO4/SMeXO3gTKJ2gYvXdrHqAtltaubLXhIIm3A2MkRD3A1ynQDGinSSZPj5v/7FfO6rZBbBa5//fC5tAp/3ipfzl/YqPvUnXwrAyz7nuXpBPSSbf5Sv65D+I1+P2oBvDNidBfFoxdBbLq0C9Vvn3PGfD/nuX7iTO/+fV/O4/544vsPhP23D+v4dqRCze9g8EBeB2V0N2xsizTVLtYbuQFnjboRCs9d5mI83QZmKlnAnVcG3Y53KZLRpELdeA9ZBj3ugLYhAVFlWIfiN5GFx6LKjFtudOLk558o0u3NVwjWI8zD2Fkugkcd/5TlfxNN/4mXj+xc72YhtA4tZT9h3hMNG5IXBSAxpQgmwxYRmEvWLCUquyNPkOXn/J8chk9bCrgw0EkKTvL66ecNw2kBnFdlQFMAKKdDkBC1P47NChsoJR6xGox/RxJ+FIkxiVC7kPxhGQiCcTVp06IrxQO8kwarTOAwJCllwOtZ2hP5NSVJM1vEbrZy1ZSMvkoSOijFJAUVyJr/nAN2M+5XUijnbx6YEaSHnzDjtDytyQzIFMcrtJklg9H/yYcjHsJegmo9XnBIAoSQZmUmfx9iShByWBifvocc5dhUpwZf99k9KwhMMxlaiTojAXNjtpo7lvTLrvvAl1m4kds7D6FURGR0UXeLTf+1HsCorfNknvJB/Nf9qOh85HcS7oXaG3Vqm71kDt8wdKRmsjVJRb2r6WnoorgnUjbQnQpBxt3hLPGlg4YWkmCBmQqMmBqYOMkxJIXeCgaMalgG3GPC9o2qk32+bIIlTHfmwGy9x1M/YDDWHxwtBIs93NK0nJsO87Rm8o608jQ181IUHuPv0AGsSeztbrl7exbWe0DkGdeZLyRCyWZJJooSpJVHxq5pf/bufx+V1wNSRn3/ac3nz4cDxEIlN4q1XtnznX/98Qkrce9QRQyb+PXaCZMgy1Id7/PoCHsUBX6jIuaqwhJj4n//gi/iMay/lXHsBgKsf7lhcTKTf2IcnSl97dr9jc8cgZKxNxfamgNkdGELDsKs38yAWlyw9nFbimpWgOhHIs5BwToWh67ZywdiVVO7k+9wgcGzUo2gvtmDQvrjcyOJMKv7q1KpkLmmw1xty1CpMg7jpTYG1Ae1FqyzIUIJ+tlbFG/7Wj7+Ml/z1T2NzfI0X3/867M5QWhif9RF/xKve8mTxAA+jnz8gGzD30AlbmD4fe/0nM+Ef6lkfctV89pTJPHWpfIoTXCXQsr84x3WG2SXD5hZNoHKvuYkY77BB4bfSbxYydFRNcdH4B1MkW8UkJzPZNeBa9SzPhjm5so91HDkVuf+ak4KsJsjzC7T6Lc/RjKOw400SOVQljH3x16e46mXtfkaVUiV+CNKyoExPK4HWadvEjDa9qF0uWmmTOQ9VxGXoOGb42JQxwGVwk4FkpS2VHf/KYCCviIImfOV0GiRgN1HtZLXCrhIjBVwOrFF5Wt7+ZAWCNyC6+kxA3eS/Wankp/JJb8eEDbRXHjEtJC8e+BhBpapWvABypfu83/4BqkoklCIvlI2pnKAFjQus+4bB11hFKmwVadoB7x1On4cx1LX6FlSR1Mhxjb0bt1OvmTSIXJFgxc+gEa/6tD8I+x5RM1gnGvid3S3Hw5KDCyvWvubq6YJzyw23nD/meDNjZ9axGWqB6W1iPu/Yn21obMCaSGUjG1+z125xN0ZOty3bQVoqw7YSEqRyIH7r2V+EjwkfEpvVlrUduP/IcbWLfNtHPYe3HAkCcDCveNlnP5srq8gQIrUBYy3hIWZJj4V1vcJ/5OvRG/Dz0l7SXut42n94KTe9K/LJ3/1y2gYWFxMnTzBUK2iOLLECv5NYvq2m369J57wE0asNcc8Xi1i71mEdqVLdt7jR5erMBINdCQPZQCF/helI0Ql5LN9Y7SCue8YbZehTgn2sJbjYQVnZHu2l6xtOIFgTKYEfm4qNp1TQphC9skogOfia3/o1/u3TnwV3/Z4ku6qTvnd9QPTC8h2SwRxJJUY76VvX2QTkrPlOmVanqwS+bNc6Wfmx2ESpzqLBzTxcbuVx3b/uHGUAzpRYNv3Mkq0bDfaT9kD2XjeDIbXpTL99ijbI64SVbjtBCgrPIiMa+eTp9hmvxXWy5diYDD0nxsTATj5v2jpS6NzpqPRUUeyWZT8nwTZNJJy5l5B1541Qr80gJDtTFB1aaQNEK+x5k8SUZoqy5OORq3RFAAq/ZZK/oTmazQN9khBFMZA6V0hnuSI3K1denMmMBXnK3Asy0jEmpiLVRPTpShDMbYx87oGiuhAto7zWLQei9qlTMlSNx9mIs4nBO7yXL1G3qc/c3K1LLJdbKic+9MPgZF9dpO9qXBVwLmJNKhB/yq2ewZahTlLFT45xpS6DSHISvQYcb2mWPRd2VwzBEZJhtrui947ZbkfXV1yJS55804Nc2iy59/IBO8st104XtM1ASobBOyob6YPjMM145/E5Nn3NueUaZyMhWfpebtv/9Wkv5OI6sB5CMQ16w8UtfVSPqj6SksVZ6AnElXj028WMw9XA1WyWZC1VNYF3HvLdfrSv6wH/ka9Hf8AnYUjMakuYJy59tBW9azL0B2qCcwC774DNzbC5WW6k/ryHNkhf3IJtpCeZSXGglWUwMhGuNwR1sLJrWyrw6Y0rWYp8KhPLxJsaCU7NGBCEMEchDuZxqGAwmVymFWB571xFaJAQBUAah7ugQSdO7tgus+YRjXgnPUNcIhjHH7z5DkwVxaOn9YTKnXFmq+cegKbxrB5ckmYBc1K9Wz8/GSSAZlzdn/0SlXHBCVhVGJ1r4IB0vofDRvT/u0Fu+rlqrCUaJnXZy3JHPfVjUM0ufCW7UgAoKwhy0Muvya0dC2EnnGlLpFp70lnKl8aAkz/XDnasfjnrqGcmMs08137qADjsJrEy1vOSn1tkmhnRyQx6GOWEwUhPt0okVWowqGqh0Up3sOP4ZpOKrDQ2E8+AjCpokuI6Ro6F9s1L4jXopqsMTZwpk/jl95kXk0Y//cK7SCOyknOe/P1Kcr2Ua21QyEP5JSbItWqScDxKG0XbQnbl5Puk3v22ilS1BG6AeSsbHaJhezwv34VmMUi1HS1GIfy29QURaPV1wyAw/3bTEIOhnQ8Mg6NqgygPqkg9k9fFaAjeETaVJDXBiFtnHUkoIS6BWwzEZNj6CmcSlkSIlnkzcDDfcNLNAHjH4XnZ12g4urpksbelH4RXkJIpPvtH2zmHp3OCdwzesTvf8vInfwWH0XBl43njgxvhsxqDc5av/cOX8iOf8MVUIbEeEuDofSLFSOo8pqmhcsRtLzHdWoHvB8/pRo+/Mdjl7DFFc7sO6T/y9egO+DE3yw0hReZPPGbz9j0W9xpSJU57QoBCSHaVBN+TJw8yOarPMDjyZYXRLMWA2TplUgtrNTYJ24lm3GQCFVqNowHZUoa5ZMa+1V5jWGYmILhgRzg+GnmfpBKjiA63GIOCSeDWsl+hENrksdREqYqypWYmeSGVrPXSovi//9tPkSx8x19/Fv/4NT+tcGticcOG9cUd4nKAHc/e/oaur+jXDbeeP2LVN5yfr7lUBQ4v70jyMpvMFEiKXrR6LJIRlzwLqEWuENWSuL8Fw/xgQwiW9ibPtqvhNPeXDfsfcsTROw5oblvRPbAQApoy+mOKpbLOJLuUtei57aFJFxNY2Oh8ALKioVbS4kD5/5TAzKJA1H5ynSV9z0lCp38mjzUVtvh4YzHaNkCDpVSxEK3KsIwprHOr0tCsjJBgK6hPYfbrtVWQh37MFgqnJG+Ufi2SFYVIUh9/tzWERgmDfU5WtO3UalYzSFWaFLYtrSG9QE0SBCyjAXE+QYJStpA1glwY1Hdh/P/Svqjj6JFQR8wykBRuL60GF1Q1weg3oGqTqAN1rIu4OjBrBvqhoqoCzia2fU3XVcUNEAN1K5W/ZPihjDkOQRQzdR2wRlABY5NO0ktUTWIYHKGrCGv5MpomFtY9IMNpnCKAVcTOI/GkFiOeKpG8I6wr3A0bNp2Y2iwa6ZHdujghaiC/tllgTOLoZE4cLLaO9H1FDBbvxVHvJM7F7bGKhE1Fu98x9BU//In/gJPe0zi4ba/mGb/+Y7g6YG3iZ5/2RfzYJ7wAkxK+D2y3gTAEog8YZ0WSqI56pq15Nxa+6lNN7t0/hmD9lB6+in+Iw/MH9XrUBvyUEmndYdqandbynF/+ScxOK3yeK4krfxUw0B9E3NZy9SmJZBJpHmguCiEnLOQG214z9F0tAacRaVSYJcKFgbR1NBc2dEet3Oi0+rGDsqx7c0ZLnSFoCb4jY1/mkdvyGcKkltdZtdlNRit9CyaOhD4TwN80YLuGPAYVC92FqG59aaxws0GLWndab4o3fa5C/8mv/izsxhKcKicwu7tvRphHTk1ivtPRd5Z7L50jXmq5vNjHnVaCVieoDl1JluIykHbjGX9ws3WlWi7aeYvcpNeOTb/E9Ib+YMDVkWpAJgsCh3fv86SPvJf7DveVjMWYoWcPcDhToebko1TS+e+Jom2Xkw7GW/VlR5UMehPP89xtwtRI0M+PKV8hVbpPOmJWpG/KFUhg1FGvsPzdZDsmK1ZjcM+JpHy2XDPZbS9pAR1n2g7J961JJZ5bAnY7MkALgdEmDcCJYTcq2jGiTiS5jssxzNtcnPdGvkV+YxPkmgWgs9IeqRLuVP39lSwqlfxZRQZQdN9YxKhmq8l2o0z4YGRUdGfHbZ3JVLiSFNgItTx32FYYk9hfbLEmsRkqum1TrH73zq0J0dLWstFHxwuB623Ea3WcNe2DFwth37sSVAHCVjX6E1VPt6nFAjerBrIio4nEa41cqyr5TcFg5oG29jgX6fqKVddwbrnhtvkhziT+17XbADjdtMI5mHsW84557Vl1jTjuDY4YLf1WkgBTyRCd+bLjGa/5IW7YP6UPjp956tfwi5/xxayHyKr33H0tsul7/BAIOhDHNDV23vIenfMe+rt7yO+PoXUd0n/k688U8P/1v/7XfMM3fANf+7Vfy3d8x3cAsN1u+bqv+zpe9rKX0XUdn/VZn8V3f/d3c/PNN79P7522A6m2tDszvvo3fkb6sF0rVUwLB2+Cw7+SlJylN9XeUF2tJOBauRmGOWwrvYFFQ7y5gwda/F6Q6rWJ9BcXVJtRMmY7o69NI6lOb9ZFK62Vb7FPTQajDDG3NcRGKvYwS2eGo7y3deE3Gg4/XF5fkAVFed9NUqarQKm56kyCBtDlfoQEr91Zx7Dr6K7U2qKwrE9mVPsdKVrSrscd1UWj7da2WImOgVacwTJDfAxICWpg0ESgEk9vACpolz3LWc/V8225maYmstd0NBeu8g6VGKXBYtZOIHJlGL9bLzGM1bUJRhwJszvbYEfOgZWgJwZKkGwmsZnSAkh2JCfFPAJW35tBzXb6zJmQqW1mMBONvHosIAE0tygKt8+M0LZRZUdu1QTV3Zs8fjnzOLIsMScL2jaxvSmIRN4Xq9eh/I2RHJch9XysdHunls/5Oow1UqHmTk2E+tiMiW0C28lxizWlpRXz+OiYkwNbHA3DXJMONfXB1+Jo2ITJ+dTEo0pS5WuWmXKryoCtElYteF0tSmofLc7IqNjgnQwgaiIhWhZNT0iW03WLsZEYDV1XF027H4SgF6MhDMrPcUnUBdpGMHkQUTDEXUnyQu+KWsBUSfX0YM/1Euh1m6udQT43yTUTgqWuA7Nq4E+Ob2Lta462cwbvJBFBUIb9+ZYQLdZGdtqOq8OCEASZbOYDwTt+6mPupOu2WAxV27CKlj+5/5DtaoWd77HqorDrDVBX2GUjkkR4TFXq7++KyWAeJqhfN94Z1/sd8H/nd36H7/3e7+UpT3nKmb//k3/yT3jlK1/JK17xCvb393nRi17Es5/9bP7n//yf79P7p37A7u7QOlje5bBeevV+JzEsBVK0nWE476mO5Y4ZZxGcLb7lbm3xO4HUANYwvwzJzmRanEuYOrDY7dgc7RUynN+Jak0qNy+3HQl3mPFGGptEtVYmeRCYP1vI5usrzOX/q7UpTmpFMuXGm3Gs4PAjtHIrN+8Mw8qNqGjFM0tfb1JSbWtVNBjiXKoON/eEocY0ot+N9y2I5wfMSQVHFWkncNttR9z7e7diS2/YlG20gy0mOSlJYLK9GLnEWm/WMzmOdHoDrcSx0DQCp0bj6O9b0u2I/v+JH3Y/d913A66OvOHeW6mqyPZoJgmFjjjO/Vyj0wl5KHEww8EGsrtekd9FCdRuZUafA1VdmGDI41Izmz81UeRHyZCCQvTIYKZYCUSfFA/MiURuwcQmFm5GZpznYUJllkKWfQaKU6M8N6kcUY77tIed9330zpdjL0RQipuen8s1ZP3kmlISZ0aoSrsrit6/DOuJShzV6yfD8uU4a+zI5EOTwG2Rlk6C1I3IQ4b2CWZMZFwiBSstJf3aRGWVp6x0yPr8lF8v6IWpZWBMVQW8d0WFYYzY+eYkzbpIO/MFsu+Do+tr+nUt76WVu1MzIucifnBntPaYVNp5xRBK/fFZVyNKM8twDmWoTd6mxV5XIOUQLCFYNuuGqg7UVeD+oz0qF9n2dfHNr6tA03j6ruaBwz3O76yZ156L1/bkY/RSiNHwreaJXDk6Yu0Nxw/cS1XVxBhp2pbLlx7kpjueiD24iWTde67kPxjWJPl9r49fX8BZ5e0jXqenp7zgBS/g+77v+zh37lz5+9HREd///d/Pt33bt/E3/+bf5KlPfSo/+IM/yG/+5m/yW7/1W+/bhrUNcdPTeYgNVBu48EcR2xm2N8DuPQnXQXuxoj4xYier5K6474mzKAQxhRvrY0NsGeHHTm5AXVcRzw0Ffq1OrWioLVQrqXQlyMUzeuxqZYmttAfk7qjVpMLIVued294Uo5U861z6nSM0y81bIZJN7VYN6uKVZOTlPI4s8QzzPvTsWdi/6RSSwZ/WMIt87JPehV/XxHMD9kg8+NurFnel4p433CoQdt7u6TJnKz+7tQINR4qDm107WLvRr1tHDjfLgdmyl35+AraO87cf8o633UI6rgnrGr+p2RzOOH/zcdHfxypJyyJ7ziuKINtDOV5Gg1Cx6M0e9plLMVOER6FoU0WZCZ818wlhgueKUhEDrEDd2RIYpglaThakP16MbFSmJ62X8TgWu9uHQPNnKuNekjTbS1+cvE2axGSUKsPzfiFT2UKrp1tbRbFS9MCJDDS2YpkcF4E4i6IuSYwkxKCjeQfpybuNbE9OVk1OLhV5sBO5ZpkiqUoRrBxvP5cE1QxG5IFBvovFaTIZ0uBEApfbMvncJor/RApi19t1tQToMI6L3XQ1275mUFZ+jJaYDENfcXo6Z3valgvEmETVeqI3+M4xbKtR0RGN2OJmJj5nUTIWXpUSScifJmGrgK0DuEg999Stp5n5ohJIyeAHx/a0ETlfNKy3DXUVmNWexUxMcvptxbar6buaFCEMjqunC/rgWC46FvOO6C1xkIE5/5/0Dm6/9TzV7gE7Nz+B+oZbWd7+RGaPfyK3ftTHUp+7QeYCqMnQB+VSSP+9/bz7ze2Dd71fAf9rvuZr+Dt/5+/w9Kc//czfX/e61zEMw5m/f8RHfAR33HEHr3nNa97je3Vdx/Hx8ZkfANoKnKXvBv7Ns/8uP/hPn8X6BqkY3AauPnk0rRl2klSuiyDBsJPqwewOLG5cwY5n+7hBAq+RSs52ltg7hpMGVo7hIAi5qRZdfSY62a3cFGyWQ2XYNBvk5Bjsxr6t7bWnnNn7kx6nOKsxjpw14O6ea7CTG31YiI5fYOXMyNb3WobSPxXG90jgI8HxPXsj43kw/N5b75AKPI7BZPjwDdWHnhLP98RFKKS4aQIx/Y7kIBlrCQpBrTsLwzyBXYsm2a4c4Z1LUjLceOMR6WDA7svNjoTA7zlRqCOb11wojPUzlrU2lRniZTsyhJ1jYibAKeKBS8QmEdqJVj4H3pwsVeMxmxIDgWKUJA5vE028JnjViQbmNLHDhcKziJXMBogLUSKkVhjvcRalws7QsCZNAt9rAuONJlUZHpgcC/2cQpaDwrJ3HYq8iHmTiQiPQVnwdmOFN6J2zdVKkALXSRJdbaA+FUVItZ5I+vQYhzlsb4B+X66PoAmHn8u13B8E8Vrw0grKiaDRRMXobPtMCkyDkjwVuSBlWFxPSDSk3hHWNVFd6iQxF4hss26wNoqczsZijRs6Jy6BnYVBLG2Hk4YULNFLZW/riK2StPI6K62ENmIudKRdL4XCgcfYxOLchnq3L7PoqyYQg5DsfC+wvFN2/rCt6DY1VR2Y7fTMFj3LRSfXVLRcOdzh6NqCfi2kOedEo9/MPK4KBC+tiE1Xs9k2LHc62p2eeuaJwTCYio2HTbCE3QO62Q5rW9O1SzZVO3WU/qBcgrA8/M/1Jet9hvRf9rKX8frXv57f+Z3febfHHnjgAZqm4eDg4Mzfb775Zh544IH3+H7/6l/9K775m7/53f5uALuzIK23rE473p7g37/o6XzFy36FMIN6Bd1BItw0iFyoCaJH1n47g2F+rhPCmk24qzXVGmZXpJo5/LhBBq/km+nGluo7VmMQKJW4S2I+lSFkJpC8sq2Tk99DJnjl4SlaGWWWv3ygwvMYhoMgvgCtGva4VGDfMvsdYBalgsrJhknERZQb7KQKxcjNF4RlLYxpSRCsN6QHZnTne1Lvirwtk7iSQsKF/Z6DbFYGGLC515nnxxsJktVRJQlTkwirhuW848Ybjrn0wAHHp3Pqcx3DtRZ2PZw67JWmoB3Fdpexqi05R/6fNAak6bjX0svOv5tE9v9PBaZ28sXPyUGitAHyFDksxCaIfW0+7naSQGTpnF4PeeaCiSO5MyVl7lcJ0xmRMiLn0e/EQthLur3V6Wi0lBUCfqlJom5fSSCjzhzQazwHf9eB2RqGZRKPiV4+w/VMFCbKP9DCNTZgBvm3vEeUzx5JqxBbec2UgY8RpEECvaIcbnIcQecWGOidjL6t5aJKHgm4baCZDzi1ru3WtRw7NatJweCqKNr7KByKrne4JhCjpak9IVqqKhC8w7VBht1Mr10rN/uo46NT5tHUUaYOBoOtg5BK21CmAqYIm9OWZj5gWyX7dZUSXWuMjXRdLW0GnTswtYJOybDZNlLl+4awdYXwZ2cD3lvC4Jjv9azWraIhyIAi7/Au0lSBk6M5xiQur8EHaVcmYx5Tkrk/j5WiFZ+Eh3n8+pL1PgX8d73rXXzt134tr3rVq5jNZv9bNuAbvuEbePGLX1x+Pz4+5vbbbwdjRCKynMG2pz/teJCGYT8xuyjwfNgPuMs1yw875NMe9zZ+6e0fQT9ITzhZRGOrDOFUJda3JepjHaiTYHnTitXlJTbr1mdjXzO/pniZ2yQJxWQJuzrqxDrKPHhgJPvpio3OPt+IlG9aHdrOjoxnhbJjdtvLk8VaSVzoK0lq5hI0TWfP+APYrT0rMQuO9qphc4cnzQKzC2sed3DE2+67kbiqCsM71Umh+RGBSJNtxE0CfJOKo11qYyFlhcEKiap3POnxD/LWd9zCrY+7hmkCN5875p4/uYk0i7grtcLYsL5DI5KdJCz5+GUGf+ErjANjipSMyTYaeZ8sJUzhISTHpO+pMG2GnU0wMA+SzLgIs0DcOmH7K7GuoCnRjLB3oyoKIDWa+Vg5TnYt10TECglRE5jYQGqiXCu9JexIslnOV87ZVPOerCI+vcGpQyNMEkiUK6IITW4zZIMfp9X8VJ+fLMXtMV/HYUkxB8oEvdBQEJbMWRnm2XkygQfjpe0Vd4J+T7S/bREDpqAOiSuZ3mhmAXNakeqoFa8YRBmbMDNPVYtr3rCpMRZ8V9HMB8ARlA3fx4phcLTtgDHICN8osL/vBTKxapgTvKPe6bUtANEbbBNE119FFrOexgWONy3ztud0NSP2VZmIZ528B0lY+9FbZjvKxO8qqjoQbCJ0jn5dU808VZYJ6r5YmxjWwqeJ3lLPPK4Sj4BCVNQVBstmaGVoj7Z5UrehjR7fVMQPVtj+YdafVsVfr/DH9T6lPq973et48MEH+biP+ziqqqKqKn7t136N7/qu76KqKm6++Wb6vufw8PDM6y5evMgtt9zyHt+zbVv29vbO/EyXMQYza8AafB/5zs/4dMJcYPzmolSUJ3ft8wu/+lT+6m33S185CmQXO50q1ojxSjoYhPR3IDen+Pv77Ly1Ula+3uRmqcC1eZqZ9UbgyjC5KWv1a9XvPVVJeqF6g8xVZHUqX9BqJc8rDGeQKjBDndpvJokOmioRl1mDZ2TududGclfWv0OZNGcS2jdltPx1iX4/lVn2y7bnLW+5jXjYSHIwiBOdO3FCQNM+skmMsjEd5GNK9Z+gDbDjxaBkMRBWwrQPhw2QeOvbb6He6bl6suD8+VPufeBcOSap1t7uh69Y3rAqzHQiWtVyhqhYpFLk6n9EPUpAT6bMUbBBEQDtm4s7SRrlldmaNxkJ6tEUt7q4rcpjlNkF+ln6XBO0cteIa7J0sonyMw+EPU/Y8zIhrbeSTKH7rn10kPMTW4X95+JvnpEi06vuvZNrME9KLN4NfmwPZE6BiSon1Ws1zEfyXqy1599AWIy9/9jwkBaOIAxhJtvittBekZkTJkySWf2OxHnE7g5iVV0nYf7XQY6fIhUFMcmWxxOjJGPBVrG0XWKwuCbgqkC7FAKBq3Xug7YAxBDH4oOlcpGduUDo2SlPhuSEkkxUTaBpB1wjiV2KlsWsp62ydh/WG6m26+Ug10Iw4tTXePnMPOpWXfusSwLvq70upxV+W7NdNfQrQQCCygybZY+xibCt8IPD9xWuiszmPbu7G9rGyzm1ScfzgttIi+T4/nu49o43E7sTrq/3sNIj+Lm+gPexwv/Mz/xM3vCGN5z525d/+ZfzER/xEXz91389t99+O3Vd8+pXv5o777wTgDe/+c3cfffdPO1pT3u/N9KAkFIw1K6iuyHQXHP4nVTcy6qV4fWvf1IJoID08lzCXGsEatRBOG5jMSeGze0DxluqQ0fcDzI32xvMTR3pwVZc37JXehqJV3mjirWtFQi9GKlkZMDIzdT2D+n51kJkqq9U+B2lRKtfflwGkZuZRLvf0W/nLG45ZX3fjgScOo7w4dJjD2vZhmxpqn3rtOsxh7VWXfr8KnHp0p547V9uiwwsE7aMF8ldqkQiZT2kXSG7pd5ABfaGDr+uMJ0TF0GXGNYVzYWt6KXbgGsC3lSEwfHkO+7j7Vcv8Kl/+a38+tuexKz1zG8Z2HY128tz7MUl9iCWQTF2JUlNnNgYZ67EdOBObqegbZbkpLWRj4HJSYRLOpBGq05NJEywo4dAG0Vu1Tk5Jop8FIKfQb4p03Mfjdjc5/fwAuWnCkwVC7scY0lz8ViPvRN2ejdyMkyvXI5M5otmopsf4fWkNsz52rFe4HZJSClcADtQjJ1AnjfsSK9ezG7k8Wol7+8XCJxcSUJgPYWAKO2tRGxMOa5WDY7c1uDniZSVBgqHZxKcjIXVY9ZZkU3NgxzjHY/ByJAXh0LeFbYVE5l21pOSkTnnCn8bK7Pkrfa/Y7DUlcDtlYust2O1HAeLNwnrDDFYKicokjGJug5sB2kNhGioXSAm8eGvXOR0mMmEO2/x0TDbW4s/fzSaiOhQml59KJIhhigcgh3hECXvME1ku2lKGyH1cm397Kc9h+f9/o+xu9jyn25/Hl9534+z1265vF6yOm2JnSgT/vOn/i1WzDnaRPxqw958H7d3UMZdXF/jykngwz1+fcl6nwL+7u4uH/VRH3Xmb8vlkgsXLpS/v/CFL+TFL34x58+fZ29vj3/4D/8hT3va0/jkT/7kP9OGphjBORpXQRQJkNtKEA47ge3jAu64IpvWYJAhHTaRarnJWy/wddUZ/L4833USRJrLIsMJe4F0WuOiErR6Iw56hjPQedFXk2HQRLVRaZJugzCZtQqMUKbsBanAinRs2kvOfWIdlmKCYX08GyvC3hYpYDoSFmIOcJkYFZdiR5ptT40XWNUcV8RGtMgaJ6Ui0+ekSqWF6hsQlmMQzQE3HNeYNkKPyhXB7vf0R61A04BvpKqLBt5y6UYA/sdb/hLNfKC7tMDv94QTIWF1N3tJfHaVCJhJiLm618p27O8rLG/HnrQQ6XTWe4bV8+vrKMEmiNOe66xI6tQ1LdXI48kUspv10n9OKjkzEVCpXFIynsktBDRpegiJUw6EFUjbO2IUW1arKIdJFFWJqB/kOizeCtnCeTLcBsBtzCilU8hfTJ84Aw0XyZ0Vln1OAPLzk0EmBgZNSr38+IU+T1ELYw1hYkaVXG4hqGSzFUe9qbVpGsRlshxPTRJCFQXSt5N+erburSLJW2a76vduFdo37gzTethWBQ1YbxrqOtAP+pXRajr2jhQtrhVSnNHHrBGr26oJVDrfftPXRAyLZuBwNR8Dh0gLOF5L67JaDMWHf9hWpHUl11SVGHorznwuyvhcNyZBxiR+57O/jMPec3GTeM5rf5SqSaw2Lc94w3/h5572Qp7/Bz9KXQmXIKVAGizDbI/Lx4l170m02HNLwnU4/z2u68Y7j3z9b3fa+/Zv/3astdx5551njHf+rMvUFakb2HSNWJVa6G/wuJXD7feE44aP/oS38UcXb9YeoPbuo7DHsxe90bGg7YOuaIhdDynIfHu7csLQPt8Teke128OlWXE0K97j+RoyYyU2kqhEB16fGlEQBEEhbBJIFpCqE61E8wS7aDADuPMdYV3T3b+UKvKoFsvfmUL+qj83pLM3ekUdxHVPvNhTMHpD1wmBbcQcV6M23SCtBa0uY4NA6lESmsIsTxrgO6s36fHcxMFSHTvqJ5zC/9pl557Epb/mefwdV7j3vvNCwJp7bthdsZn1rF53gXAhyDbpqGKpuk1BF/Ln5lUc94wE+PwdLhP9JjB5loulSuB0tFVho8DSyZnx/XRGfPE0yBW9leNQJgsaxAnPQXHnsxOzmE7UHCZzMXILRIOaze6B2v7JATJb1ebeuYkypEkSG9lhExDyWaPHweZrTrX5HpzmOiVBUa19qhg98zWoJyuPuV5IemGux8Kboigp58Ilkbfmaz3PEche/1YuDgnCEhCdi2xXDalzuGOdMJkPrI2l+i+mTgbc3HPu3AqAxokF7tZXIntbSXKYe++xd+X4+VhT7/ZC8LMJ7y22CdRzz4XdFbcsT7iyXXC8nXF8PJfnuUilZMFV17Az69kMNYtZT+UiPlg2h3PoHFsabBVp5wPdpmbYVEIQbIShbwwYp+OCrcj3qCGquQ8usQ2Jd54mvuK3fwzjwA+OoDLBz/v1n+Lff/QX46rEV//uz2CrwMs/7ZncdS3SrzuMsZjdxXu8J15fuv402P46pF/Wnzng/+qv/uqZ32ezGS95yUt4yUte8md963EZg6kr4qaji2r16RAI/NyAeXBGc9uau48PSFGsOG+56Yj77z0vxhpeb/A5EGg15jrYPs4z7MoNf/agpTsvPUmzrrA7A095/H383tUnlj5z7sVO58eX4JMk2McmUR8bsZI1QpqKtcCgaZ5IasIjhH+Fc40pA2n8SVO6EsYb4rmBdFifPSRerYO9wLxurZX/IFa7OzesaWvPlfv3aPc7uuMWd+qwBx3+tMofPtGLp7JRthAB844JtDs6teUEQQLmuV9r6M4ZTusldj9xNDPsvLXm0gO3YJfqi3BSc20+Z33/Do1DZI4mKbltVDlklCMHNkAQkexyp9uTDWhim0YzoiTbb3SccWwfchnlirOToI9NZVyx6OUVIu+z770Y8hg9t7ExRKIka4OFrYz0NUNuqRhiUpRiGCcP5rkM+Xd3aoqHvfUg3gFyTk2SKl6MmlK5mWU2vZjuSLCxWklnLwWbWfiZyW/0OplJkKfJSYAc7/6cnnMr5j9mapFrKIOM4jLIts8icTBjGyPpE5ExsqaOhK6m1/Gxpg2kWwfJndQetxBg0WPcRmwV2NvfMK8HfHAl2J+sZoUwl6/X2Ik2vxgT1Qm/rbHLXqRu88jefMsQHZ2vOO5brq0WrFZyMYTBEgZLrK1Y19rIcbQ4F5nNPLedu0pMhrdzgb6vaBqP904SgMwz0ITOtkEKimAxTWC26NlcXEpSpDwV2wSsCTTqUZ+ikXG2Gyce/AnOLVvuO+zg1PHyz72T+44S/brHOIdZzj549fWPdP1pWvvrFX5Zjx29grpIxRB52d+6k+aaxW0M9b0Nxhv83UuuXVvSHbfE3jGrhiINMsHgtlYgVR2OMxxEugsRs7UCS2ovu33CCaYJItOrEn988eZCYssM9SINc2Owz0cyOwBmZ71kwc8l8PvFONgEZZCLntyc8Uk33ohkMGpysnXlBhuXgeiEuT0yrsfADDA/t2V1OOfa285BEhMQ2wTS+Z5wcS7JSvZCdxooYPxi2PG9CvsdYMeDDutJ2WluMFz5mMTpE2TOfJhFhoPA6YcNDHtRqsqjCgZLt22oTi1+oQFDq8iMjEwZ+WX08JClaEnJfpSZBBKc83FOxX1vKiuU5EB3QI9nhsjPWM3m1ogmEk4JcK434/yDnDBsLO60olqJzt14g1vJGORMjkT9GMwgqE2GxF0//us2ihYlCczVdgz6Z2YFWIqjXmzGxCG5RKwFhvc7idDIPoVW31OrfL9IhEXCL4UbkWqxjS6SUUMxjjKKhuTWQnKiJgCk5x7lwOaeenGfdDpGVtshWEQKqp71KSKafBfL60wdca2XqXQm0fuKdV9z2jVs+5p+1RCutIIqTUwYMrE0G+igBjZNFWiqwFZny5+uW95+342s1y1RTXwwEL0jRlOm6nkv5D+Aa92cta95woWr/JXbHmAxE4Y/LpIGS1pXhOOaamcQBdBGOCcpGLbrpozGxoBpRX/pE5wMke/7xBdILz9Lb7VouGPPcm5Z8e2f9AzedS2xWctEJrO4Huwf0UqP4Of6Ah5DAd8Yg13M8JuOew57/uNznslvfunzsZ7ijMeDM+zaUR1WvOOtt4xseKOBVqHgVE2Y+Pleokzw9Ad7tHdJNbBYdPT3LCW4nO+kel5E8gzzfHMEtEqf3KQBDDRHkiw0R2NvtkwayyzwhDj55arFmzKUBwBl4ScdmEOufnX/5Cafit3r9sGF3Ij0vdrWCzuZcbtMb868Hig98fIFiRos1XzGHtbU19RZT1sR/Y2+mPfEzND2hvpyXarPuAikeZD+fw7ouq9ZM14+01JY/GcMjtBjkHvHOdkJRgLvMN4Yk83wtZnIJHMGY0YnQzW7yRC47Uc2vLxm/NcOozNdHoQT5pE4kwAaG3GbK/75OmAnt4FKEMjtkiABPl8T9Yluc5CEoFoZ6pVRVz/RxNvJOctz6Auz3whsn1n5papXmD9fP6kSN76wEyRpy5yJiYIiuwBmlKME/jqOY4cBaxP1zEv/fcgVM5g9HSGYkL9vZVyyeM9bXBWpWi8MepNkQtxqxvF6JklDkrnwGRJPbRRCXxWF/a+yRtkIRahsZNvVxGRYnbacnswYuqr05G0lUE3MaozB4urAcrkl9I6hqzjetFQmsupb3nzPzfzRvbdy7XApap9NJb35JrK8eSWf2Yj2n3UlKppe2oFhGbG7Pc1iwFhYdx4z9NgYMLWiJVEUPu7U8en/6eXcsV9hnaHfSAZrd+cfDDb4/3tWMQN5mJ/rC3gUT8t7t2UMNBXWzvGnGx5IAocJjC3yN79MpGXArGsxspnFUpkLHKwsdMCtJMqFhTC0w06g7wzNkWF7QW6KJ4dzqo0lPWFNOG5wiTLfXjBeufG6rVb0emP0c0r1nav6YZkmyQWlmkIr/NwzhfEaNdObe5WY37Jic3Epr4+Mc8vXDpZeeqNV4km3X+Rt77yZWz70Gg+8+UZWh3Ox1b2hy1yk8X1JBdYv6d8EtTADzB+09PvCcQizpPp+gznoSZtKRg4Dac+z3N+wWTX4a60EKJeklaDELb+UnXJb3Wc7bo/rwOfJMJ1OWOv1WFhTqtaSCKkbXyZQ2qgtlUrOa04cjDeYjdFhSKojV5a/JAcTrsLE2Cb31Z1uA0aTy9xPd+j4Xkrvuzq1xdQmJ2dGCZpmMFQbCd5AQYHsxD66WgurPsvoplPvqq3M9k6VJjxuVI5I4qGnLydQhnFyo0kF1TEuybRD9LX5f10qvAqQ5IodL970Wo3aWibexU1Fr4xyWwfQ3jitaOer2YDfVpgq4mZBOAg6Cjfza2wtbHsSqmqwrNat6OWDpdnpGWqRrxmTBD5PRox5vBU7bSv7I3p5yzA4McPJsj8DvrfartDrvLekWcIY2GwbUjI07UBKhne88yb2bzylagLDtqJqRTtPG6jmA9YmVtfm4iWwCEWSWYoG5eLE3tGta0wdefsfv5njVcdyd5f/cNsn8vf/8PfVeyEVyeTn/ugr+Hd/+xlsY8LMaox9zNRi/8dXihQ55nt7/PqS9Zi6qoz28u3ugth7Lh5t+I5nfB6/8JXPlcc9uMWA9WP15lbioPd7X/b8M/Bl1jsbb0jzgDt1xae8vWY4+CNHGiz+1g73loVK0ChadBMoVWVSWHxq/pLlT3kwSR6WM2VcF1lZ6Yei0iqFRJW8JtC1pXvXjtwcdwfpdefg7RJ759YyWzwY3vq2W2EjPcy4DLhLIs+z98xLhQw5qZigFDkRCXIss6ogB8FMTsRIYGvfMpOBOXteqrA64IMVvfKul/bDvscfeIZzQQxaloHURprDbEA0ShizakFUA2C3iiRMGOnFzCj3dZG/W4Xbo9rimqgVuULuWYGQ2yhF4qb6fxMm8jejp0Q/KwfmPFsgzOTz3VZ4INbLgKTm8Kxuvqw0wvChGQN5bhOEVj/bgvUyI2LKvM+fmRTaL+dqClUmxEe/iSQH/kCOe5wH2B1EMpbVBdGQ6ghzT9oJsAiYgx570BMPFLHZ02sM+U5VS49Ti9mqDThlrRsnLnV1K2YybevZP7eiqiLz3Y5mp6dWHbtxiXo5sLu/KYY0lSYQIEE+/2T9fD0Tk5swODHNqaJY3e6ICx7JULcer719PzjMUS098qxcSQbWbhyaMxOofVjXDBs5uX5w3Lx3wu13XObkaI7vHVUbxADIyDCqqLA/aydIiEESjiZq8iFJ0k98/Gfw4x/5mZhG2hdD13Nw4QLt7j6znb2S6CcrhYrtDa/6omcTko53ul7av2/reoX/iNdjp8KfLmexe0vi8YrTjeft13r6c0HIZg/OSMvEa7/kTj7lO35abtYJPuZHf4wyQjEzq22iOrUM6pAXW6nOZyvD6R2J6lrFp3zqG3nNPR9V2NRCsEqFJZxNSkrQhFJFl95oZo9rtZYyHK+IQHVihSldYG0dYpLfU3u6xhtoE+mkxm3GkaQgHvqpThgXMZ1YiR6+9RwshGQW6wQ393DUlGo1Ew5zcMoyvryy1n31ePUXyEEwQWoT3SIJvyB7x19u6WY1bnfAVoE4A3epFlkjwm0w0WG3lu2NibDrsVe12hsoDonT72f2gD8j13vIMUr1yJMwJSCOiEre9pLMZDRF4f0ytyBKZZ6DcU7aymsnEH9xY5wmIAgaUJ+A35HWTZ4fHxuR37luPK7JjsqOMJMKv9/PY3/12jLjZ+SExA5CJkx6DZdENF9nlaoFVEmQN1AsRtNo+JQzG5D+dLaEzsemEvZ9XYtWPagPfuhlDgVOvOnrSlj1tUrdBu/K/8ektrmDK6S3wTtcLYiAHwQlCJ1Iam0dyjU9bCuqJtBr0OWwITYRv4NY7gYhB1aV6PfznHsSAvtnHkRGcJxU93avJ+oAHoLBHtckk7hrc6OUQJ2FhZdkYGtJDYRksC7SX53JaNzMcQjSTjBWRu2aOvG83/pVqCM/+je+AGPBhQ47n3PfBrw1/MdnPJf/67++vIzY/pUveyZ3Hwubnxihng6VuL7+tGUSYxv1vTx+fcl6TAZ8YxQKbypi79l4i9tYXvflz+dvfOtL+Q//8Nkc9fCL/+DZDGbLrlvytJf+xDi6tJA5DMP5oP70EnzDfmS1MKVH/mu//xFUFcXFLCqcmtm6pQrLPeesd3aTm+qkR57bC1kPbbZW+AS57wsS3KfBLZMDLUXr7jpD0OloRINZDuLEh8Do9UFHbxvsxslQH28w982wun0xO/sNttz3p0YzJebql2maXJS+sI7V5VT5AgmaByq6WYDTCvGmT6XPGvYCdu2kjQK4U3E5DIuE35Fj0FxTyNop1KzHIU+Zy74GsUYZ6EL6ywz+AoFD0e8XBru+Lk9QzLp368eKeuoZX63H4F/67wFMJ0S5nEyi728VGUn1eJ6rlSQx9oQz/gLWS7WfCXzloYjILvU6Ff36uO05SbA9hL1IdJQZEDkhiG0swV5G1Wpw6sVZkWraxpHk1fRGPe8T9XxgWNdkuV1MBmsSPoI14lo3291SuUg3VFQu0FaBTV+XwTZdX0kvflvRLgZAfPNzYhCCpTttxIjIG9x+L1PiukosaIOY7fTrWnrjVmStREM8rQmVEgfnwqI3NhGjESi/Va6Bt0KGTYJIhSC8h9g77GEtvJNlIKijpbGawBpNgILBzCQBceqsaHcH9vY2nJzMwSRikqmbGLCtl0Ro10MwfPFvvQJc5Cc/6Qu4shH/i3WIDJmrE6Xld98RXD71hN5j2uZ6hf++rkzgfLjHry/gMRrwAVJKpN5j6oouGr7j6c/gbdc6gdYxfM73/xR2gO2tXo1uxBr39/6v5/MxP/jjgAaoK47+XBgNTzqrFebY83QdJfhmSZNJ0ie2G5VGWWGQF9OdCeRctPL5Ro78Hisk6GZ4dgq1K1SfL2ZjRy93jDCuTaKoDNJxXTT2cR4YrrW4jcMq7NyfUze7LC+MYFauIB1TxCLMI3YQFURySTy9NeDlccGSJBkJ+ksZHWoemLG91XNwbsXx4QGgY4Q7gz/nx4Qh76dN+Cdt2dnZcvrWA1xnRBte6bHKxjcJ1csjsqZZUltZMwmQE3mkJgfSi1Z53TR58OOMeps9FfI50nNT+vdb+fwMxVNR3OzyZ03tlnPCYAO4tVjYZgtcGIfUJCcDoAS+T/iFbKPrx8/u9ziDBLhOEYw0HhNnEQQl996z7NSLVCx2MrjFTLwAUjQCQ0cDvcEOYkZkoiH1hiHWmCpi68jezpZuqPDBMl/2tLWMhDUm0Q0Vy1atb21k3gz63YRNqjFAOx+IydDWAr3UVaBxgaMwx9Y6i6AyIkVVnkDympTk6YGJgsSkXscXV9K/D5sKH41sbxXlO9MKlB4vVaWdkyWs1GAv17jekIwhJAjLIIN2eocZ5PvkrtUyHwC5loLO0ahaT9dXtLOebtuIM17+Dm8cZmfAqidAGCzxpOE5//2n+YXPupO7TwZOBvDA93z6M/n7v/kz4A2Hm0DwkeQDdu86M/99XtPi6L09fn0Bj+GATwJixDhLComtdbz91PP/fuXn8YL/8gp+/u89j+f80CtoL1aElmIX+rE/8ONl4liy0O/Hoje2G7FbtQHtKxoYoD+IpF1P+65G/MV3PPaoKsS/WGemM+qVb6QPnWF97e1Rq77caBRzFFi59PgzgUqhbTOR6pl8M08iz7MrR7KwuGnFdt2QrrQC63vhLuRedndj0OMlAdwGrfB15ZtiJq7lYI/C4cWlzSDHSt8jdYawFClW8/Y5/YWIaSInJ3PMDZ0gCoO8R3tY051LxQK4BNmLM45WNebAE3tLMpN5AaqEUL8WCXw6eCi2ExwvoxB6WHNCb4O8R57JXjT2WbeviM30tZnhbyJqMysBzASwRkfD6tTBqZudCYAfFRh2kME1rAX1CTOK450dKPr7YQkmGfxcK76ZIAvZhOfMRLycNOj7uF6SH7wpRjCFDOpNcWA2VYLKy31xsMWMKE/fA0YCZaVyz2RoGs9Gp8Jlt7J5PbDXbulCRecT5+ZrfLRU6kd///GeEuFgZ9lhjUD4276mcoFuqDi/s8ZVwtqXHrqiQE2S9tfGYrbjd0u8DqwQPl0i1VFkpptKzpuTHc/baJxY3aaFIEpua/ALtcceMnnTEOY61MhbceWsonxvlWyaDJiNunfOg/BVoqVTlC2qTTIDQqC1ibiphBthZZIeAapTx+6ylbkbJvLi174C4y2/8ozn8fYrPUcbT9j22OVMyKnX1/u2rgf8R7weU6Q9mBRhBkxTE7c9KSbSZkvY9viUqI8s1/rIL3/VFzDsq2wp98/deBMlSVDIj4c9XwawZPY9RoPU2jH/uKvsPfEQtxgIu57YJtx2fN/Cwi8VLCWwZRlVYfNCYU/nIJN7/xJ4RvlZXnYrQ3xsZ3AnFW5jcZ2he/se1V1z7CB68KwgAKn+JJDn8ldMVpjcV9KUg2AlGYjVZLa8SwJ7h7wvlGl+7lpFdVjR3RAlMF+rse+aU791zuxBw/IeCW42oyTTBr2RG3q912HVFjkPl4ExkcoVsV+kApWfaT+8h39HrTYj0TJSHBMzAS8fh4ziZFLi9LhnEqYkQCr382NlX62FZT/sUJztYi3Be9gTN7t8PeSWT4HfK3leHszkl/KaPOimEAcbSRpiNf49Jxq2NxIgBwtDDtwCedtW0BfXCGHPzb3I5rTHH+txGJEMUxor2bbxNLXH2YSzkbb2xGS4MF9zw3zFvB447maEaDnuZlxdL1itW4bDFn95xumqxQcrEjug72Xnr50umDUDs3agmg2SpNjxmi1f9JzANQm/H0YzKpdEZtqICoetxRxVgnIVmaz8G5cBvy9ZTbYltl7ktQXdAthY7GGt59jKbIkE9fmtVO2NWN5GP+l35bZWMKJEWQs/JZ3WhE0l8xUAvxO41iW6CBiD3Th+9ZlfxNVN4LgL+NUWu5xBU12H89+flR7Bz/uxXvKSl/CEJzyB2WzGJ33SJ/Ha1772f8/2/h9cj6mAX/kee/gg+ybQxIH53NE2ljr0zLs1Tb8FH/iZF/xtvuKlP0Xwgd94zrNLTzxZCWS54stf3Azvmq0rvvImQH1smD/gdBKZ5fDqklt2T2SwzNrJDXpnUiknpEeqVf3ZnncaK/6kMH023GG8sedKvFRq2RBFTWNysHPrkQBWHxuZopY5WYcV2UymbJu+nmzji96scqWt2v5k1BGw4uxNtxrlW3kVcptFbFaNHuNZlIpqgPUtsHeXbHd7TUxoyn5qgA0PzkvAiXUqx83kZKxSGHdqAjRd2WUPCfTFiCj/Lep5UV+B6Vz4kgQ2Z/ensKjXapCjHjNyLFIJyFip+o3yALKNbZ5KZycQfapg2IX+HPj5+Jx8rDMvIVYS+P3OGPgzlD/sp4IGuW48BDmJKRlPredzYnxTNaH8mIWX868qDaPWy2Z3oJ4PtK1n2fS0VRAYvvaEaHA2cjo0HPUzhiA+98fdjNNty/FmRjhudNKhIARBjW2CyuX6Tc0wOEK0nB7P8FsJjG4WYLCYlcN2ktQm5ajYTirl1ERRF6BGO8seM/eCeC2EJc+QCYWa7DQBZkE4L0rszOTUVCXcSnkNyYh1MsKBMIoEZWZ+1EQobiti79Q614zSy0x8baS9YlcOs3KkJvHbX/BFPOM/v5SlJhcv+7tfwOVt4MFTTxgCpqmgqa5D+e/nyrbgD/fzvq6f+Imf4MUvfjHf9E3fxOtf/3o++qM/ms/6rM/iwQcf/ADswZ/fekxB+jWR08Mr9MOWKxcvslguqWZzmoMLnFy8HzDE44q3PSDSpGf/65/i9PFAa8bee+SMy1hZGnzsxhbXve6GRHWq8q7e0O50XF0v+OaP/3n+5eueQbpPBmtM4eBpIMv2pqq1AZOKgUvWOhdSW34j5IbkVlJluPUkIUgQVcJXbQQGFie/AhqoE106y1B2I6RNmNjWZpOZPMiEMWDJdlA+2w46KrUz0gbZ2LF/bRDHMyTwZ27A6nbhCqxuHge+5MopW6wWRYOOInZrITGmBtx69HYnMVZv+XeDSCxR0tzWliRBCJTjNMMcsEsyBqIN1yTGaTulDJGZUbwVbIbT0xi4jZpAJANxNp7z/Dl+ITJA64UHUBQOeppXj0+qw04S4PqxH2EH/RyXMJXss9exytWJwPCxRoL4qSlJgM0jePuK2MYy2CZFS/ICQVcznRxnE3bmMQsl9kUjOaqR49J1FadO/HzbKtANDc5GfHBc6ndwJjJER0owrz3rbUN32sh5OehJvWO7kdeLxC7iT5vSVlr1IntFWys+VfJVabRP4g3VsRN/gdyC0cFO1IHkLalRS98djwnCrK9aj99mHaWM1fVbGaMd51GSkVocNkkQ9oPwdrIEUadeApjBEo4aks63B4T7sFVioMJxtnPFDtl2VeHz5HkVb3nbu/iOJ3wkx9eu4nbPY4GLp4HNEIldj9vfeY957PX1CNcHANL/tm/7Nr7yK7+SL//yLwfge77ne3jlK1/JD/zAD/DP//k/f78289GwHlMB39QN7fkbGVLi4LbbWezsYFxFHDrm5y6QsLSuIiTP937GU3nRf3kd7VXwOxoca7Brg1sJpHdGSqdM29imcnNPNuF3Uxkqsrl/SXOH50fv+2Ruv/Eqd1+8DSKE3VCg9thqIKhyOT+uzH5P0yA2ZfuDBBgdmSrDbMbAjVqp2l6G8hQimnpyF828EdhSkglKsD/jApelYUZRxBx4pza3OUBCGarjl5qETB6T5yfSQnqswSbccSWfFwybWxPtVcP6QwaaS7Xo75GqO+bKPcrNlsm2DAeB6kSQFJyeI5dK352EVH8K14OcP7cRjb9UX1rd2/FbL0qLNGrlbSomNqGdaN2T/J4ThlhrT1nJhbFCvfzl5u62QmQsyMUi4a4Z/ELeIyxSOedR5wYYZdjnxM/0EI0E/eAENRArYkqyErPqI1HmBSQrChO3cqPpT68eBE4G3VSzQNN4YrSS49WpDJzBygx5p+533jt8cDgbcTZysNhwsm25tpozdBXVRD7XDxXbk1b883cUoq8iYV1hZwG/lcBvOiW4NlGMleo4zhswSUinNpJaS1rp4IuYKzhkwqW610UvA7LEz96wOLemcpFl23O8mbFZy2hav6mhs8RFkHbGbsKfNKJu0YTN3bhVhQvENghTP5iSYBprigTSVoE4TzJHYaNIhBWeT3Vq1bY4FpUPJvHFv/8bMA/8u5s+F5/gyjbQ9Z6wHbCzBpy9DuX/Oazj4+Mzv7dtS9u27/a8vu953etexzd8wzeUv1lrefrTn85rXvOaD/h2fiDXYyrgr5OFvRsAudec6L/OtaTZHiEmTo9XmGaJmzt+5IV/h6Z2POvHfr5AeWEp5LzSS9dKM7Pfkz4v1XpzzlPmACwcXdlh0zXM257m0NCfiywurNludsqAkzO96kl2meVTZQem8H1kdNqrxko/1UnGjNrJe2QUYWrCYnJQGuWAxYaX8b3zyha3WY5o4vjcUSaQy5r8HhSou0yWm2j3UwTTOXFKa6Ma4Qjjf3tDor1Yl5G6Mn89lV66HayoHoYJiTGb1cxT8ZjPc+jlYKRyfKc8iDBPZySQxX41lF0p2VfS6XchJ1Ypy+00UCZINhP8Ek7tbWNNScbGXjPYPhFbPXdVYtixxVbXbSRwBJ0lYLd2vN6sfrgDTNQhP4ZhL6p7nzoEKlKQNEZMbYHF1zYho4NNaT9QSz+/ajzzdmDT1fTbinqmRL5oCZuK1Hq8cUW773tHOx+4OizoN9LfTslQteN8+RSFLLd7bo1zkeNjHTEbdbhMLyiA0QmByUoSKEmnQO/lO7K1pBnYOhBmRmRxSY/zPGBMYm9/w6zyLJuOd105R4wGv66J0bKYd/TB0XUyiS72Tq4hVSTEVS2olrb16p0Ov60I2wpb6yS+YIktxDxDQM8PSRz+Zoue9fFM9iVfh0nUKJlQiwFmQdwtN5aff96dHG4SHsvJkFh3A0PvISXM/Dor/8+6THp42D77r9x+++1n/v5N3/RN/Mt/+S/f7fmXL18mhMDNN9985u8333wzb3rTm/7sG/x/cD2mAv50pcm/vgQmMHtL0rrj5LhnPbS4xvLKL7mTz3nFKwpxLmu5pzrk94ipGanCkktUSy8Wjskw3L+gm7c0jbzH5tICmwOoNQWezuYpBbaekPgA+eyskc4jU20ao5JhhN0fQnYb3+PsATHqUiewuSYPbsIfgPLlyNtlM9FLI9fUjY98w1VkoLQKMgkxa+N1eiHVuE8o0pC32c+lrZITqIyquI2Vilwh8UJGG/QzcttAj9n0Rpv9DnLPtwT1NBL1CvtetfK21wEzSNDMcxUAQT6SKUFYOiiptGeyyVIhWAYjkK/KHSVYUFCLMBeUxa3VXyAPBVJWfNk+lwqyUx06mbDYQNiNgvaoV4QJo3ogOnm/fIztYIhVIuxogtqK97xrpLJftj1NFeiHimbmqSsx1OkzepRdEhH4HxD1RzRCQNMhMT7JiNjGeYIxeG/pu0pY6ttKXOnUzzRlL4QEzMSKFlUJVGuxvyaooqASMl6KghCkxkrgbQK2jlRNwNnI1lfcvnvIuzhH6FU3DxythUAYgy36ftkGDfKMX63FuQ3btYy+xcj+lpG2Fkxvx3OVHfuiYXVlIfwdb6g2omBxE7MmDLhTizly5Xvz+T/+U/jdWBLPH/2MZ3PfBqjse77vXF/v29IC6GEfB971rnext7dX/vyeqvu/6OsxG/Df4zIyUY/ljHT1hBQjM5uYOenL5Yo4ZWi2NyPUHQXfLs5keaRuNBh12bJNlD6lkeDW3zwIO3cjQzPyeNuyphfhtLI3yJ1HiUOlp63BdUo6sxmqPt9jjmrK2Fo7ef8c9HPAdAhUPKnq40Mr/PyrViqld58M5iHfHtvZAkMLBpoK1Jpn0ZeompnWVivXBEQJkvXKyryDzJ8wML9pxfAne1hNeoqCwqU8dl6Mg+Io0ctVl1X1gQx60aI9J1h5HyLjebGAn1jj9loQ+9HTP/fPMaMcUa4Z2efYAEkIidl5MUsVU5ZZJiGHmsFQnViB/7P6bND9qBNhJpKA3HKJsyhGSHViUBmf7ZQnoP4H2ZuhOAAiEwqLTbBRr/w6lgq8bSXY106r5PmWVd8weKmGqzZgrKdfSxXvnEjmoreFaZ4SYnSjUH4Khr6TXnkYJFFI0YCLoln3alzjjQR6gwx06mW7UxuJet2bJMY4w3kZqLPc7dh2NXZvy/pI5tKbJtKvGk6AWTPwR5duJgQZTbvYl+AdByfJhBI38zlzayeujm2AFnZ2t4CQGK2LdA8syvUV2xGOF+8HU5IytrbwREyiGENlhYXtTVFpCGlVrrtYJ+prkpgMewFnwVYOv9piFlwP+n/W9QgD/t7e3pmA/97WDTfcgHOOixcvnvn7xYsXueWWW97/7XwUrL9YAX+6rIGUOGgCf/NHXo5pBPaJC5kSxsYR64iN9oycLgcVE8Ao3EuC0M0Zzg3Q6aCaIGS46EZNNQmppstQHM46+5nx36TogdzNR3hWZtGPV68EMYM5rM/uX8qVof6aWfbkqnMCN+tNNWkQPnuccuIBRSIYM+ItG2sGhaH1/fKY2cL2z8evjuV4CaVd9zdIQPRLRQ+8Ic7lLrq+smD3Cqxvk5dUa+EehAlxMLvl4SbT6HKiMkVQ6lR64g9Ntuygh7oZkyI/16AaxsdStsO147HIBLpS8XmjPg1plNpptW87A8aMk+2Mvt5A1Ukg8Dtj7zq1ig7UsiOmEg4EVln7Qc2NKiGdVTsDUeFqXD7epgwIMRYZO1sH2laqeGcj26Fiq0Y5na/YdjXdusZq5ZvUabAMfdHpiikYTCvMfkmIY7GxzQNtbBUlOdi6kcw2SKJMAnNaleNTriH9PDF30uslGYbThsNNzXx3K6S/KAlDGCy7B2tiMmy2jZjanNakKgnEroY9BiTYWxmQFZtE3PdUiwFXRfrThuNLS6na2yg2ug4huk6T8ezmmQf/6aZnP4TQjt/nYV9QipwAxmVGxPQ12xFtcmvLMEQqC94YCIFif3l9vV8rH9uHe/x9WU3T8NSnPpVXv/rVPPOZzwQgxsirX/1qXvSiF73/G/ooWH8hrzQDmLYm+cCqN7TXDKExdLd43JEj7GhQmEdCG2n3O4b7FxNomwL7ZylWCkYqlCaKZhwN2hrQpQc+2YgJJP6eMniToDpyJaDEWSys8OnrM7cgOwGWHdQAnp+bGcGpSdBTIMfQ5l6zJEACxVOSEJMoBj3AGdgetEpvob3ixK2vSmfRBYPAtHm+96DN5akLjiYCeaY9pe8vn7l+fCzDicpx1f3J+5kNYrLffklKlIfgOq0mJx77dhi3MR+rjAYUYmZFITDm9xpbKKnsxzTYl3PoDakdEyGZFZBRAoHnkyYFrjNqACVJXZyr9GvSGmCwxQeAbPI2F6252x1kGp3sBWmmA2nqKLI7dXwrjnO6tl0tM92jxZrEZqgFdcnnV9tUxiRcEwVO1+l2KRrsYsDVQubLy6kHftUGulUlLZy1QCz1lUpHNct5tjqvPrcr3NYU74phR0bJhmUYJy5qIr1V0l2KQOeodga6oaKuAnXt6U8WmDoJ2a9zZ6R2xoDZ7+FCYn9XbHDjYHVan16btV4AbRTLYYt8PzqL0QQ1w/RWZbok2WaTORMIaTPWSV6vrRbj5XwDOrlRWk3i6wFf9qqf4zs/45mY2pG6AVM5rpP2/gzrEVb478t68YtfzJd+6Zfy8R//8XziJ34i3/Ed38FqtSqs/cfq+gsZ8DGmmPIcbSr+w997Jl/1wz+LXYvMh0WAU9HJ0kaGBxYFfiv9Yksuc0fkfGsFGVgE3LEj6ghWvCMT/qaWuGbQAJxXJtDp8zIZLc7GEaa5X2imF2kO9mlS0eYxnHVUoldS/bBVTfZYARsPqRnnnptJHzwjCIVA6N7zt2PYEXa+38vWbPpAQoJw0MSkSqSgcGg0LG49Zf3gEuaBtHGSFEwqvVQn3MoR5mmE00FJhXpOkh5PLxVs8bZP4/+XU58tkiPkEcV5ylw+t8XRMB8DfTy6MYkrcHAnB8l4OyYCen5y5WDFXVZu/A6xHLapeDJIRZgkAXByHE2v7ZBKqmG8BKGkQ3DiQuxejYs5VyNOiEky132SMOTBSTaVgJwSLOcdJ+sZzkbqRobcRAyLWV9cHAFCtLS1L5B/pTu39TUn27YgBZuuZvCOphXCn2sC4UrL7KKTJHYlA4AwahW80fefQ31VK+Aahl1BLEh6Tne82OHm/QoGgpVE4KDHVYHKBfq+whhJbNjKSbRbW8iJtg3Uex0pGW49f8Tdb7tJksd8Xfciy0tR0IB8HQES7P2YuNte0KY4F+me29hCpI35OzqxpfYLlU6e2lEloiZYIp9N/NxznsPlbivtlKbCr7akeYtx1wP++7vMQ++X7+Hx93U973nP49KlS3zjN34jDzzwAB/zMR/DL/7iL74bke+xtv5iBnyQiXo7c/xqy30+8pIXfD7/6Pt/js3NhpAqGQt66iRYOWXvr63cBDQwTglWoIHAJMzWUq0nZWOGiqdMUcNoIlOqfQ2KaQzaeUwreWRmDmRaAJuYFHKU39EqNuoUOTL/IAduK373mXyEVcvgvGnuLGnRBkamvTm7jdOVqgS9JjGzOCIXk+eZ7GwXjZD4eiM92GAg30xLkJZj49YSSEXHnCQx8ZMkJB9MINUCsRZrZMdEbmdKMM+2uLHShCfvQ0YG8mnznFEeZEe9fN6tl1aH9VLt5vfP+2492GMjcw2C0aE0lGouGxblbbHDxO42mDLbwHZWesfKSUiN9uHVytVW0mtOaXKB6IWaNECaCHYvEL3B43Ba5ftgRb62GGTwjY2EZIoffna/sy4R1E46REsyhq2XATjLticlGKJjGOT5Q7QC4ydwW0u1hmqb0RaBvKcEx9znJoHR80IbNbBPElqXqNuBftXgrlXiFIkoBkKwhK2aSuW2EhB2VEvvEvNFz417pxxtZtzzxluwwRD2s5wFUhUxitRlhARvYBYlkVe76gzJW2+IWFKT8C7gNuJGmNSNMs+5mCbpYZ6/Y3KejDf85LOfy3GfeHCbOB1q5s6wbCuO+4q03sLO/Dpb//1dqgp52Mffj/WiF73oMQ/hP3TZP/0pj81ljIG6kjG6/cDl057v+fvPYvcuufHaE6eua2Z0x1JCVTFQyfIhw2gMs5HK0y8S4YKXIJF14WqKU3rYObDahwT+spH6T28KgTAThLL2uNzjs4PcxNULkMSkjiNMH8++dx6qknbHm15pP5jRxlZQjTQ+rj9lW5LAy1lznnTimkCfqez7lEGPAZTR7E7duP+1jOwt1ZG2FVLNyI7P7odxEigmUOk0icr+6GiAzWOOUzW+x1ROmL0GMvpRnerNXQllhe/XCBJSEofcVrDlo0uf3S9jqebzT7WC5nh8nfGG+kQMleIsCqnvWOyRba4snR6XVUXaVKIhP27wV2eEw5bQO0LnyvE16pSXLPjTmnRai/IgWGaNp60C7UIm1W26mk1fs+3FH38YKnaWHXs7W3bmHctWoP9V14gWX21xTzbiotf1FcO2Yrg6I16awdUG+2BbFAh2oKAiwkcxBWkBIUv6hQwiwiA+Aa1OqlOWvLGJ7rjF1gG/70lVJA1OtfcWVk5QD7Qi1w6S7S1u5rl574RXPvWfYgzURzpPYrAwWBYHG9xCJCx2oz74Kr0T/35XEJPqVM5LJuPZjcX2dkz+qxHBcWsriWuWESqJ0niD1f79c1/+Cr7qZT/FTfOOF//Cz7DTnPDVv/7TuLYmDR7C+9hovr7KyhX+w/1cX7L+4lb4aNC3YHcXhJMN9x8Z/uPXPZsvfPlPY1cGP1eb0q1k/KhxRu4Flyp5IpOLrQQ7c2Eos+WL/haEtJfh9MQoYysVsSmBNg93yZ9jh8mgl2klqr3sQvbTyik2GmQGYdFnlCAHfRO0Go8Gc1KNf1PiGxl+9+/u80/uZUzkgLEStGFqZXuGS6CJSe6J5+MhKIo+zyWtSKVfGueR2LsxyE/69rmitoM67qXxM+wAKbPzrZjtlO1RbwG3ycnaWeTEqJueSSrRWwicHxsJVinkzztbGeRzYrMMy8l43kwszNuapXPWi79+bCjSu6TEvogExFhJVWsGg1X1RZYrkgfIzGOBsJOX9gIZFRoUTQkGZgEaiN7gGhlU0wHDINV8iJa+q7Euso01rpJxtfJdSWyHmrYWot9p1xLV/jYFK5/rEuZERhq7rRybakO55vycYlAEcpzCnFH9WkugDG3SSZRxVF/U4oIXBoupI2Fdj+jNYAiDKFTqG4Rh//hbrnDf4T7DthKP+4MBC5z0LZ/zu/+Ww3tvxBzIF8GdWsI8SjvAJphH8cSvhbybvxf5HGaUJ+Vzmq/fSmZKJCvJRF5WVRiuM8TGQBRzpnLONWmONTzz5f+F2CZqG/j2T72T2AdMXZG2PWY543ov//1YkyT9vT5+fQF/wQM+IF+gymGXLX615a5r8APP+nxe+NM/V6r7+vxWqha18aRWC9yEkIasSNWKhj8aGYu54zGXhQSVmlQ082nSq5dtUIQgjoEnj3A9A4mr3/v0rBT1QA5Wk7pj0wAAlqpJREFUCpunaiS1yfNGyVqBF5PBHrszJDXMQ67/vG1hTFLezZcgB+CciUBBFoy3o7lNMe8xEuQrCeow7n/WuJsgLmV05t0+xzBWyZlb4bam+PkXAp++9Az/Ij+Q478GeCbHwPWQzXOopOLMwT+pu50kGfLaWCsRrxnfM8ySSvRk300vJEkzGTJUiIJD3m/x5scY+gMNJCmJk54O9amPLMkZlZEahvOB6sgRW2l9pEEd4VyQWe0t1HNPf9JgXaSeeXYWHSerGZtVdoKCzWkrbYFopFpWb/jVtmHWyIzgwTtm7cC2l4i9WTXEbSUOetFgTytBWXoJgGLyZKhWgpqkQY6z7Si2z7EWAp+vk/BHIgXFMNFgDyuqE0N/oyZATdKxyInqsKI+MdhOkqfNLYm4WhAPBu6+eB7zwEy+qxc64olY4B7+0QVO14bGajKmds4sA9YmZm2Pbwe2GxltC0KilFkI2YZZbZF7xFejAtPLdVXO4USBIdLOSaLTmTIcqTo15doZdiSx+9nnfj4PbMAnMNZinCX6cvFeX+/r+lNY+lwHT8r6CwvpT5cxBpoau5wzbHruP+p4yTOeQaoTzWXH8OBcMnJFvYsn+RSezgSyDHMraz/f1N3KlovOTAJmkcJNCsYSWHOwzpDzZHAMk+Ar8PAkUudWwGAKxCjtAKPVrxCZ3Dq76SXCIhYb2PI+xehnUqXnlR4CY5eDSWHlm+l7oUhHHi9qxCO+IBtMEAtl7Atagk5soxjLnLHKrUYuxJgoTY6lthfM5FiaoDflybHN25ms6qcnzH+rg29yoC7nJcuqso4+5zrzVH43HmnJZE1+GD83tHoctX/tekqQyNdDyiY9VhOJZvzcZKE6dCM8nqV8tUy9szqz3vdOp+IJae900zKcNsTTmnjSELtxcptrAtFbrDLv21qsdn0QFGBWeWI00ts3CLKwcTIMRk2R8uChnHAKf0Uh+zkM+7mal59MzpMpgypZ7K0mRYlBK3FBkORYmGioTwxuDfVaEwhFbma7HfFaSzjnqW9d8/S//GbciUyps5qM+GUi7AbiMhRliO8dPljqKhA2Feakku+NJjFGk8FqZco5y9dcaOQn2UmLx8u++/no7ZCT7f/51V/Eq778C4ktfN9XPIdYyfyLVCfeeVpx3CtrNEVSTBj7QXEr/sCs9Ah+ri/gg6HC12WMITUV1i0Ih6cc15X242F2SSRhw64wcJNOVCvBwkyqa6PsYoB5IC48nFaELCODsxB/bg1Mgg7o+2nATFarSzt+XnmNGaFjkJtMtp3NFrV2kOq8VEjTQJ1UntYZ1XYLMS7DqePnyP8kI6BIDryQ47W2InQAT2Hb59dGCXpubctgIHm9GRMhQ2E8Z2ShMOrTCIlnmN5osJxWvCA32XyMjR/bCyaNVVZsxxt20Ao9Jx+pUnDFcqa/N7ZQNGBZlTROCHuxTSXQu+1E+melsg0zDRKWghBkqV5OakiU/vCgSYHd2pHrwRhMwzKKIc9M+iT1fMDYRFt7Ntsav6lxeSCOSXhFAOzME504zqFSt3wOqqyxTwYfLDFaopLPHry6K5a0x5XwDepUoHizNThFvkwnNgDj3Il8nUpAzAe2OpULOKMcOem0vQHvsJ0R5UcCdiTjSr0rUyTbQ5hfCSQjAbK7IbG9LNOiPvej/4A/PryZX/qDj4TznsVdNbEWX3tAiHy19tqHmrjrWR/OWRxsqBaeNPfEY3ES7JcB4w3NNSukQx1HnFtRGcqvNihhcEwCw0zPWwP1iSG28Ne/96VkTsmiMvybZz+LoNdaFyQBcsix8z5gZg3X4fz3b30gWPp/UdcHTcAHrfSdxc4b/Lrj33zO3+XGheNLXvmzQtBS2BGFbF33EPw7w7RZctdGMeJxjH3rnFGasQo1wYx+9fo+pV9u5P1yn7kE0Px6ZczHxowmIJknAAWVMMhNOQcgQQe0j9pKJZ/11ynrtFXDXbZrWglPoPOUiVeTap3pACAYdeM6lKT4F2iAy9ax7lhGhk7b41M9fZglDZ6mBEmppkxpa8QJzyJXYNHJNpU2x6RKrzbjdkzljUIWHP8/r9BKYC8WuhOL1Yy0FM+AyTfI7+h7ItP33JZCFMwJ5LQSHMmAus3qgeDnkkz4Xe0FDw72RIc/bCqaxUDXV9R1oKqiOM4l8NsK10j5nTX7ySZSkGTCWJjPeioXGbwjRMMwVOIfHwxpsGKSYxNuY8sxsQMYnT9Rn4zHNbTCeYharMqgn4y66D6qA2DKvBiguSbBPMyEvEiU6j9UIyJUH1liBdsbYH2LI1XKr9Drrr1lzS/9yV8hXmoxFpb32IKcVCvlPlSJoIZFQh5MzHdkprCr5ILtF14+d5CJebGxDHqt5EFYeS6D28o5c90kCXBSuYcG6pUQQDcLTZAUmVsNIuOLCcQLI5J8xIdAihFixNQfVLfi6+v/0Prgu8qMwSxmxJM1XTfQzyxhKTed1ESsQp6zvY7t/UuVrVF02SAQLoA5rhSGT2BNge7PfJwG+zMVbbHOHaPemX7/QxL9qANVLNJrzI5uTvXfSatJqd4RZ7xmRByy0U2YRbFqrS12rxdWdJUgJEQ3nUrglmBtxiSnBHZTUItMVpsmOAZKZV/kd5gS1Ew0pCABPUPDOSBOK+zkRC9eoP16hNxdpx8UxvfIvIscfJIVmZgJKonrlZS3HYNu6cm7MTmJddKbuylV2xlVhJ4j2yOISa70GNsCuaqPtQb9anw8OYXtNRmT60OQBEGURpicCOHWDnuxJVxt8LNIvdNzy7ljIeB5Rx8c/VDhvaPdkQti6ERO184HQpDqPfSOOs+nD1YCvdrnpqNaNOY6RdBtpcrNqFGlgc7PR5Z9czI5tp4yERAYnQezvLKTqYgyWS6VhDcZiHse1uI7Xx056mM57jlZ6s8Jx6FaG8IM2ksOtwXztl1cJefSbeS5oQG/k5TvkZRwS7E+ZlWxWVekOuJmviBsRp0OzSD6+aRDnbKs0IT/P3vnHS9ZVabrZ62dKp3UOdKEJogEQVRQdGQEAclIEBRQdFQEZsCAchWzKIgoo+jA6IiXkasgBlBEEB0DCCrKICA5NA0dT6xTYae17h9rrV11OqMgNNTrrzxN1a6da3/p/d5P4E8KMxyp6xq6357LzKVVe80TIBH88ORjSBVIqfiXy37ABW86gmaSkScZOsuN4I7nIQcikL3o/m/F062093zGC8/gYyJ9EQbodkKcd7TrtaYg8rTHS+ZHH5nZ9Llty9N20hZumlbJpiM9bdTOUoETsHHLuSjeGVOzMVHUqov6eZfojdP377DhbZYg7RhBF7WK3AbgNtOgfWwtU9vIy/zba1vJ0UmJbpWQTk3MDbxhHekvFw276F+Bdkn+3B6XY3oXGQTr2OTGC9COkFY3D20is7D2ra9gMxxAJ0ORdfWxWzJYd6SsrGY52PetJHKRutfWUeoy6s4x8Wz5pCgZyK5roIUR27H/7R70KjTEPMchCBp233zQCZ0WSrteFXYcN69touGsbNbr+vJViaKc4xZ27V4q1Ka/vOUXXRmyZGa9L3liBkKaDg09HqBLyqjsWVKeFyiQmtZkREEYaXtkYY7nKdLUJ6nbE2MHy+Q1VWj/u/vLi7ucmQQoG25EXtJoYTUcAkgqFCqRuSt5KAomvxn+Y7MtiSAd0NapUSajAGhh70/fnC+ZQTxopJZNqQrKyyHtM/uTl8z2wjFIBuy1agK434wpA/l1aQR0fKNPoUMjDuWHOUkjNJkHTyMbnuG+JIIcwztwuhEmU8EUeWZtCaQq1ASTApHALacfy8u++R28WHDLu44jyaGdK3IEl5xwBCvrCXkrMVnGvgpCil4a/+lCL22/SXhBGnwwRl9jx5/aOp9IZaHDbcRgJCozEV846hklrXxqPVm76M+2FzktfY0oot0pPfVucAwUkShQkLaK/bMdBDqVJqWsKdrbZGLIPwrjgLixu74l6eVdz3nlWTKUsEbU/jJEZtbn0sqF2IimICi6en7H2FuREdthUNTA12T1O7jUuuykQDNfWza8KCIwp3EgE1HU3QvjqZxB7xDBulXznKMgMrufopNiBjtTPnPRtH3P9oEL+76KKCbouXY97Yhpynzm9s2LKRQBtU9HJwEKhr9QoO02jAANVoynE+2bAUfGeDhpZdmSxuBqY1T9ca9TMhDaEM3aHlRydOwbh86qK5JpsIJLKhNoJc30usRIxaJNNN/WgVlPy6Y1rLPktYyj6ltlPJl2Sg7K75znrNK5T4sat2XCmwyJshkC0TnOTJiuUatEp/oz/NU+qqLxhz3jEGRySqujmakAJKaMkNUgq3bOW2nY1tnLnWubl9fYd/vbzCqmnU5kpk213NcmbgWmp18aln4wITodGVKANKp63RwRsNfcZXYi87vMbeS/x7e+g5cIrn7zUfzvihatNEdps74kU2TNGBEFiHLUE9l5OtFVwlvv5z0AL2CDjycRStOIcy57zZEMVQRKCzypOeza75t+4YoJdWQsyEu6SOcBpg3P1V9LOdQDYyBsu5PwtJl85gbMWGPU3UrXbfjXhBYUqnp0RdjSTgETXTXRvGT7gzMTdZVXQGsWxbS3gv0uNf6k0TJP+50h0mjMiFdpW+hEd+bBpfQtka6AwETptgWuEAxKO4bcDeZxaf94SHe+a+u2hWa5Z0bLythkQtz2C4OuKUoYhTSu7qyru99EOl6DW4c0hndKNsUa87zcSb+79906nPxuUDd/lSNy+R0GfjeJC9E553mErYUbI5qXOuc1Dzv3g3EgBDIxqWqZOkfCiAlpqY2WQiYQsTQlg1Gf3GnsT3pmWp4PYiyEQKM847mJpodn2zhlKsiTCFXLjeCNMlPkwOyDM/TaM8eQVs1/e9YRcpmgzDOMdnN93X3Q4VV4bRNR56GZZujFkPRrwnFBGBtCW/RgQF4Cv+HjN0AFhoxXaDAI08LmN01rXG5m45hrZdnzedghVjoehj/Z6RRw97xQIHMjlIUA2fRojpQRqUSm0jhzqflN+C2Ih9x9oju/Bfu7ch0gWdnyCIY7jq7y4SdvPIbH6wn3rWySxylam8K9LIfoXCE8r2fsnwH0Uvqbjhe2wa+WSccnWen3sSoz1k0AF77m8OJZNhjCib/8QdGX7YybnJSWtSsAH+W5VK6mtEKQ9lsnIZFkfXlhnIp6sA0birq1Zmo6XYGWopO29nWxfjSd0be2pu0Mbh4Cta6HnStXuAdTaAxYOGYejskQJiuRC2Mole2fz0zd1RnuYsa7i/bdM6tgAtqHtVOxyzEkNGeYMZmOQsZXGwa6azdzRtqxod33ikmEdBls0Yk8nTMkXGQumNJOVdSV7TqLFLpLzXqddRfLdaoURQ91t4ORd43RdlPTVGAjYV93eAVY56BknRQfspI9Jsvqx57KYNLeltYZCyYhHBfkkSCryIKHoZ1wUWZmzLs6s2yajItsSrvfnXOtStrcg2CEf6yqoyor/ElZHHdBZHQZEtHhP8gcVNy5nq6kInOQTZCJNNkK39TUpd8RsfHagqxs0uQytnPkA/NZewY4aWWXQVGhibbTPmNcvdgYZFeq0cKUQ1xNXcRdUb491zKzcxAwzosjuvoNQTARFNfSZAI6okGuPOY1TabFlZhkapYJYnNdvLZ11jK48VPH8eBIm3tWNknbsemtr5YQngdZjk5S87wphetMhPXw96HH0t90vGANvhACbdmxIjd63VpKtDYpfNeVtqKl+fprjmDr6R6vu+pqk/K3KXJDVtJFbc+ovQnTh+zUz4QmHPbIqma4TdGTzvpvRJfONjtq/1jGuA4VMulM85KJVYWjKxLRhrCW2egbAZ59YKnAGHknJes3BFkFQ0DzzZ6ZensnKnUtgUgNpRydSZPql9qkRZ38sFjDaDj2u2fOqS7S8MZpEbZ33ZUFvKRjbJ0hLrIbdM6Ji6JNndgci0uN486rO7fuoa1N6t4ZMxetFc6F6nrf/ttrdbZdOATKGj+bpi+MvSX7GWlZ48CkVd3prbffl5bQF9Q7JQTttmlvD79httGaaT4vr4CsalLLMhZkNZCZJCtblrsAUoFvnVAtNbltHXWyxDKRBZcCa/iymiF3+rlJn7uMjt8090bhQGnjqJhyEh0HS3VIbMFEJ1uSh7bWbx0l7WubITM3SXOuxrRxUrxcFkSFZt15mcLxNKWAjpiNcGS8rMMzUE7zQHeyM65tTmaGuZ+XOz84FXSWyz1z07Qt8dCfFAQNe92cI5pCZMmBUrnjghs+dhxLxhOWjsWkzRivVobQ70TxoY8IX7CP2X8Mein9TcYL+07sErsIJFQDwbvu/A6X7HIctUAwGefUc81oS/G/T2R89bVvIPQUAsGcaoVDrv6+iX6jTtq/GHErTDq7UGyzD92p2+8M0ulI8bLuG9RFuTbKk7EAW0MWYNPaGq0FSV8nrW2+Q6EQZtqmzPrSfgrtcCd5K2NRKO8VUrKJQA2m0PSh7Rljn3TS/0U7ox0eIx3ZycFOJnMiM25gTl5y7YVThXNcndRF6t3G2xh2q4RojWgxdjbtRNpeTFFfdmNL3YOhEPmx9XmtO9tz403dd73YOhjWCZGWK+C1O8s5PX1BJ5MiMggaJp3ujstdXy0h6Z9qnNLIEAGTPvM3DzoOYZEh8Mzx+w1zHT0pQMhCKMpkPYzOgteSRXbEdR/gGeKksKx6R0rVdkyvc0b8Ziez4joaZAbYkoNzBN35dLwGzzq+jsXutBD82Nzgrs1SWoKlif47nAzneBXX395HXlsUjpubUud4BXlk2+W6Syq2DOPaIL2m5VJYUaOsojviWk4B0v6GpM3AueN25YLi/rLKjLUl5nsTseKJekLWTpBrGvse/iHopfQ3HS9sgx/6iDwkb8W0Y4kqB1y0w9GMNhLGtcZrTeAFITpL0GlO25dklT7aE2PU9QqTTrUENxV0okblRtFKQ8ZSJWVag4pocWqafQpcutyl/B3r2Blmt5iLMNeAsrPtlY+JwG0fMQJ0aKOmLp3vom7q+o0tQTAvmUg1q5h53zTtlLLUMvVsSUE7LQFnTMs5umHC86J3HpNiVnZUsAp1QYLrlqyFTmTfrbTntygcqc45NP/Oyh2iXVGHFy69TkHEcue2mFyXUejnu2jVGT1n2KXtty5q/XnH0IicYlRvITNrOR2uDu+iYZl0DNqaLV1p1e27JrNlkaxith2M2/MhKVjunu11B7NeJ+DTcYoMy9yl893oXqEFwSQEk5q432SCsnKn3UwwlfNRSDPY8oNzDPPIlIPSmvVpy0bEz4vtfjtCozSG2LcqeW6gjlOnE5qio8SJIDnipFM2dMeVlwwT3qXtVWivjev1t5wImYK059s5vMGkve5d0rjhWCcj5Tdc+2hn/7Rv9u22047jlV/4f9z8vmN51QXfJQ/hihMPZUIJmqk54fcPt2gnOWiN6Bn7Zwe9CH+T8YI2+EIIKIeIUoBOMuJmQoxG+L7RQUnalHRKVp9AKyOSEXke8cQIzSzhC1u9iCCKEGnMv953rzUYwj40dEGqw7L/haBIv68rn98tvbtWKtnrYgy7enmR7qfzvtumACfL66IyYwToSLs6qS8l0NLksV2LWFbtRF5eQxYKabqUG5ESFxm5KW8CQ9CzTGjRliaVb9v9lJuOZ/fdGUjH/ncp5O5zoWWXrC2dqNxriOL9bqfJ1Vvde9K1y1lRIx10UshCmdRsXsJO6TPbF4kxVF5iouzuToAi4usqObg0t8kg2GOzUabyOmQ4oSG377vasDN8IgfP8h3c9REKwnGzXNJnywi2jVEmptzgDKuwaes8dMcsiqE+hihqDJnXAuUL8nKHlOf6zR3xzjibhszmDDg2+xFMgLYG10uM0TcROEWJyDlG4bh1qHx371njX6WI1pH2HGNY964rwMkLe21r3BtWLrfcucZOl0ELs960z2zHb5ltOI6AP0lRogkmKTQrZIItjVA4DW69LvPwqvP+Hz8+4SBa9YSr33koj0wo7h8zzr8GUBrhSUPIK0e9+vyzhZ7B32S8oA0+WKMvBCIKILKDcCabqFwRRH3kOifsm4lXKaHRZH7I0KIanidQWiMVtIdXcMGOO7PNlnM54rob7OjYro0EijwAb8JIierQRt7dN6LQHSa/puDCARgRk25vAFxtvpvBjzY8goJ0BVNYzEVNM7EtUtY4Ca0L4lzR9y60ZaQ79rWJhHJfWvKeNufNpeTthEBSaQlzorDgpkPAGACXEtfSErW0JX5lnf0thtmkHefHb3bqri6t6vrpu8sgIsdOj+t85j53Yi5FvVx2Uv/S/kWY85WGnagfKNr+XFratwI+TsjHTcnTwhyrjM1xZRVbFsg6UX8xLtcxv7XlC1jDk1WMkTca7xSOkZd0onD33+6zQpcgdMbV8jCs2BAS2tM7hq3QVoBCYjqr2vNfMtcW6LQRSksmnOiSz8VcF3cMRlfelFtKq8FX4Lc1cSIKUpy7ji7boT1zH8ZDgnBiatnJdQyI3Oybl3SIeu7aF7oNTvAoM+tw1xps655j+zvSYdi5Vt3OteF5aJCmFJe0Etqex8OxZrIeIzxLyPM9U19IM4Qnwffo9dQ/O+il9DcdcuOLvEBgDT9KodMMWY7QlQpZVKXlRTS1R0v5NCZjmrlA+hmn/+I6xls5MVVU3zwea0VceegbOv3pwrQmiVhCZtqs8rLu1M27atOFA1DUsjvtbKLrtTE43XMjEGKiahWYKX8ytezswGh+Fz3vlljlFOccsUDkdCb4QZH+ly0jRSpiU4uX9m/3PhZsclsnLjIbmmJQUVFjd6fBnhfPzqXvdgacEcjKnXS9S42jO0bUOEd2f+06tKQgJTojIC0rU2TGGPhxp4Ztzn8nfQ+W+DWJMfq5rU/bc+eiW7fNQo0t6rzvlOhkahwAr20iTpl06thgjt21ybmSRPcDq7te7mRts4qNnAWEE8Yoe00jSKN9yCudZZyh9uKue007YywIxx3vxAw3yivKZpc6RtRvWKMam/PgIvhoFALb9qk9iCY0WckYQUfK685ImOO0Q3IcYTPvZEzSWqdcEzTM+n2bonclA+fwiG6n0WZXtDDbTKtWsMdlVvwuxwl7/t32bb9+0m8c3v6F03gyFzQaMcL3ELWyIfoKYYx/KSz+u4dnB0Jv/NWDQc/grwkpwfPQWU7gCcLIR3oeum3YXSJXqCxnIos4/58OQmsFfVVyz6M50eKxMbj6wIMLJr+WlsgWSzN/e01MieRF5701b1ItOoVVmHoXi85fx3g36mb2O44zIHWHWe1TDN0RqXnIOYlXx/TWa94dGvxxk6UwI0W79smms6e81vilac+wtfOyLpwA2TWqtkiTu1XaNjqXIu9m2BeKdtb4u9a57ojU/XURPbZEUCjBJZ11Zl1Ra8Fsd2QyW6d3RC4Xybttu5T3miTC7qyAzDqGLKt0Ut3YFHNWNpdRpiba9xvuHFrD2O5IyLoyRVYy0avbb5naU98VQadVKzlbhrzcmT0gU+NweDFFXb3IMFRVpzPDDkWSqTG6pdFOlsWR7MxEQ/Pqjq6Tvs4QKuUbR6Rg5VsDHo6a7WqbWXHlDJl0nJtOOaJzLh0nwLUMAgW50mkEaLtPRktAF6Q9oew5bXbKJu5ecWWScNw4q/U4p55pM9GuFPYM+3MRaz531vXqAeil9NeGANlXQU22aE1mpn1Pa+RAzUT/WY4f+qA0adM4AbISEQhNrhKCJGO8VS70u7WVZM0HMsKVgZEelRR9wWtt3j78ijY33DPMPckMisE6iE76X+niSyYtb5d19XYBeUXjNbv63hNRkAyVp9GRQitp6vGOOS0xfYpCF1wBr4lVSDNtikp2/u0cHZHIwmg7Qpv2tenvz4Vha8vO8bijK1LronMuphDTmJruL06NNSzSevXK6xg3sP/ukostmPpZx9DkEUVLoiuHFL6W28HMGJncppydTr+rmbsSQl4yRlVkIJyBj+3xWGfAtX9pz9aztck2dDPHjYiP+azbqLl/u2vpiHRC2Zp22WR2dGCGPbmyjFtPwQFwtt12BngtWdTzg7rAa1EMjEn6Ow6IUBAPdLIlecme57zjbCT9JuugQlDlznUoMi1Zx/g6noLjSkg74jjt6+yjZ3v1ncOlAnNuhM3sFEQ+WwoI6q7H3maVhM1QxNaJCM219RvmlfaZ/bvhtDcx3s54eDwhjVPQJs3fw3MPvT78TUfP4K8BM1FPIPsrkCsT1XvSSvFifvhoql5KoxyQNhLIFaHIGF72KHNmziQfnSjS6iKxErSxJFvYRrU9ZMuzbXjOuruN2zQ4eqp5d0YNWFNVzli2buaaNbxe13vOD7APvULAxHeG2P7bfs/p9RdENquJ7lK/jjHvtZwBMWNTHQvf1NQESDvtLTefyVQYRrZ1LMSYnHIY3YI3BalQdA0BstH9lGVV17LOebDRdTHIxkbpLqIXyqbCa3RG2qadyK97LCp0zo/TGXCkR5mBdnV4p8KoOt9RfscRkKmNxp0DYg2vE+Jx/d1A0bLWbRS7ORmufOGIi3nYuT/yyEbfge3Rr2TkbY9g2De1fMx30n5tZhvYbIvIBH7TlG+0bydHalCBKGrdosvYytRmRazEMFaMSGTm0JJKx5kqugpyK8pTTH00h+XFxllRtiMgDzuiOWiTxp/SFufWZ0sKTmfBET+d1K2XdtZhvmCzNpkx7uXhnPaQJK0ZDX/tmeE7P3/Lsfx1dZt6OyVLMnSukP1VejX65yg2FsX3DH6BnsFfD4QQhojTDVuzS5sJjXLQEZnTmiwIqQ0OEWcpk2PDuBo0WCNhpVD9akYGyKY1+t10ey244qU7kyufE+74k7lPi3q/YKoX0L2zXR9ZgRLX6uTmyrt6+pr1bpf6RGhjsD3TApWVzL51dwxozPKu3xvXouYOQRpDX2QUtHV28o5ioFuR15RmQlpTFD9I0f3XGU573IWssduWW8buX3crl8tuaAle1jGgeYlOm56tAbt1CucAWbW1woeyDkbudfgEJrthjbR1Jtx0O6cT4OWmDa7gAvgm2nSp9qIV0IPcOgTS7rtztvy2JiuLome+KC+ITkbCpakd2RBs5kVhUh254Y8gOv387jw5xUCRmoxPVlMdPQgBBBrd1jZ9b05IOGYCXecUOedRBcZIR6OmXp/0m2jZkfS8Nky/JyHp80hrknjA7pOVPMZmJlDg5x0nybXhudHQuPkHhdPZceLcb823gkkis86SMsZfSXPdHNrTJFlJFOWVPILvvfEI7lrVotlMUWmGCANktVSQe3t47qEX4W86egb/KcC08UUgBGk7NTy/SgSBT4ogmDUfP24T5ZKLdlnIv935q+Lh+cu9DiPPMjSaKAqRAhSCXAhU3kZrwV/vu48nlo3idTsa2kXaGqfsMkXT3i5T3NSik6otvICuWtaaRjWramtIBGiTAm7PzpFOuAUT8RXja0XHQJuoSK/tQDsHw6XhXTO+24eiVQ+0TQ0XkrjWiLko0hm/7kE6LvpT3QbaGlzXQ+06ArJyx5CTmeiwMJ6i62/Wifxd+57IIB0w35OWtObOqd/opLBVaFL3aRXbTic6Uao2kagjDbo6vvZB684xu9G/ADIzZLe0asb9Ks/a7kpX5Otq3j54ykbIVvFPuql+k54hbEpTwwbA65oO6a6rb4y9yAxRNO/LDNFUm6yPbwltRQeDbX/DZRisaJBMIGhoy6YXRYrei6FvqcKvp2RlQ/CMBykmG+aBJePZa5wHtmSQddL8yoogeQnIVJNVBLltzXPdG87x6O5G8WLzA8xLNoMSm78m62AcW+3DD9/9RlY2Mx4dz2g3ExAgB0xU36vbP8fRi/A3GT2D/xQhhIBSiCiFU95TQKwFrWaON202WZbz3X86gC2mV4nC0Ohrm4WLQKGVayYSxfSohhTQP7AHSTtFkHLjtgvZ7xe/6aSRbRSjA9VJcWtMKCqN8XCCPUVLnIvqAaQZaYrqPLwN81pMEY2h5RVqY90RtSrpTrugdtGpLtj4TuvdqaM5zoD27G6GZvypE6aZQsTTzpkw0bOWdKb0QcHALlqqHLtfdNZRGH3M58BU2VywRMVOJCx0h0WvvY5SHDb6laJTA1Y+iLBjwFya2inTuTZBZc+PY7E7I5R7nX93zwmQLk1u38sj06LmvqttBiZzYjV0MgbOCDqSoNHVt+9ZB0gmtiffcSvMpepy2pwksChOij/m47VN7T5oUJDZnO68cGURS9Jz7wcNCCc14XhGa2Zorrt1cuIBwcQWVdBmuaBOUdbw2vY6qs59EA9Y0p6T8nUsfGGvUxv8pkYFZjiR6Uqx59qq6xkypCj2XQUQ1u39IeFXHzuOsTjjgeGEu1bHpO3UzKm3v2/3e+3huQ3HW9nQ5z0Y9Az+34ANevxhQNZoIysRozJgLj4V3ysibfddpRXS3omJgmogKZciRK4plzL8/jJ3vmlfknZOEivSPED4Vfb+2Y/W2Jmuf0uMQbc6+8JG093ktkKy1rXkdf0YRNqZcQ6QV5Rl41ujHazDlbZOBsKMGhZaFON7C+GXFMJxSW5Tzd2CQWiKscPa0+SRSYW76M1tw9W0nYgOTP18Sn+5TXu7SN4ZOi+hUGhz2YI86qSO82Aq8UzaTIHITRTtFPjc9LhuMqGb5CddFJpDWjbLZBWK0a2uZdBvUqS087BTxy8Il9aBy8tWW99lK6BoYcOdE98Q9Nz0RpGB9IyT4YSCAOtkuBKJHZIUS7KaIqjLomwiY4r2Que8ZGUb1WtQtmQSjZl9D8fBb2mCpibul2jpGzEcO842L0HbF0W/dNLfcWKBYs6DY+Kr0N1XZj8K/YS8kxHA3naF1oLtWgBbOrH3QFa2MsLd2RQN133yWJZMJgw3EsbairwRI8ohslrqRfWbG3oR/iajZ/CfTghhUvy+h2q2Gc8DHvMEO5V8hASrto7WMJnWiVXMtGgGdDHthRQolYMPvi/xaoJyFZQSxEnG795wCEkM0pO85mc/YkouX2iTmodOKh3RibZlZ9Gixt02RjoPNdjIR0tt0qtpd/He/tPOX3fT+3C6+W67rgMhFUZ+1z60XapZRY5TQGfKn2Xvd09sKwalQEeoxh2HNdiunQ86THX3t5he6DgGviHMFVr5zgmy9XfHmhdd2QDljL5L/bve/yLDQXHMjvgn7bba/RSCQ1nF1NVRIO0ERFdPdwbNHVvRWZCbmnM43lH9Kwyu33UOsJH2pCiIbXnZpvA9DblAR9poJ2gKSWMwJSWhobRaFtyGoE6RSs9DW2PXHTZ90DDlhkLlUICX6MLx7Hs8Ia15RUlJZJ1ShGedLZlb4yw62RG0qfkH1rlJqya6910ZxV4TDehQEDRMdO8cWWkzDGm1w+FQ0pwL7YFsm8/jAXPfLxtPWFrPaLUSdJoZMZ0w6Bn6zRC9Gv6mo2fwn2YIq9qnpUDVWwyXAh4bbtDnJQz09xEGAQgIPTMXO5Cd3LUQAiE90rxC4LeB1DgJAjwPyuWUUjkkY4A0ybj54CNJ2ymvvfFaQ/7LO+I9Qom1ItxCRlULm660zPFwqrEF+yPKDGM/aBgRF29ukzzzyNMQ4WkzQMc32zVFZsMvkLlE2/nori3OkcywRqe788BMjBM2kteEE4L2DOuguG4Bp5dvU99oQ8Byx+OMtbLHJVPzXamn1vqdsI1QZva5smQ8l+6HTh3Ype8RHUnY7oE+zvA6QyuElZvFOTk2bZ8Zp6bQpBe2vmwjdZepyKJOFOpY+wW5zp0HS0BL+5kiDOScJJGDKmuz3aZpi/QbnlXPs9fa1/iTneE6yodwstOuVigAdnUraGF0+JUPfqzJEAiljVRvKGymQtAeCk0q3Rr07oyMtudT+RCmnXW7Fkd3n/gtK0qUmixJ4dTZjIuXQG7JdkXWx2YAtLQiO5YLUnAvrIMrM7jiX9/Ao8Ntmo0MpEAO1BBS0Evfb57oKe1tOnoG/2mEh0ZqhZIeuW+myiW55uHxlAVBQn8fuDg/khE+gckKdK0jCD0akxmTk5JKRVCLlK1nCzQ+SpQQCMJSSBAF6H64/ZjjSNopSZzy2uuumTqtzq7cTZhzETdQGM4Ouc4ZL9GlFW8NqoZ4rIQIc8MHyIUhgClMJGlOAI7CJxNhmPyIgkRY9KdHVoFQGRlXNw0ttzyBxnwKCdtOKYSpbXu49YkpP2hnfLv/23EGC815xwxXtgpijX1hQIV1UJwgDYbcKGNhBub4XYbbOhaFip+N/l1U7LT2u8mHjo3v2PLK7nORnbBtf/gQWHa5M2zSOQSeJTdKcy5lboRtzHuiIBUWWvhaEE9T+JOScEzYMoNG+ZqgLslqUF0KXmp4AHkIMhdFXV1IyCqGWyBzjdDGqXAZErBMd6spUOjw25IAmOMQfsfwOrGdgjxpyXtOnCePzOd+25Yzuso0Tqc/mLRSv0GX85RasqXNMKBN7T6P4Or3vpEHhmOabXOTyFql+H31sJmil9LfZPQM/tMINbaKZGKUwZmzaWcKlSeU4pxWYxI5VGXV6lGqlTKNZhOtNeNjE0ybNkR/f41a1bDAhBBoz+P+CUXeDFlYSVjQp/A8GGmFlKKAUghCa5MRECAjHz/0qFDi9jcfRxqnxK0ErTRe4LHPd35k6uqupctO1CvY7t3POpf6t/3vRkNdm+l8iYBAQCoQHhDl/Hbvo6gOVNB2f8wqUjxVR1uegsJn9WRC2hQc9NNfYEoPNnXs9styDtxDvdsAr1WSgKL9rkgtu55515cvO9910rraN/Vj6aR7rdEXtgXMRYTFWNzADrzBrtPXnb5zl9HwbPQu3Lx3CgU4XARqHYOihz3raMG7QS4uyi967jVTtOTzkjk/WQmE1fk3108UBtM5KeG4PV+uJp+An5mZ8E5i1mubSXFgpHC91NxTygPsecsiCrlhjanTZ2VBVhZWvc7sj5e4iFwTDwp0bocpahOtd18D1yMvE4q59m46n7BERadh4Dc6RDyR23S/JV0Gkxq/pcgqEu2LDq8C4zgUHRuYc/s/nz6OZpbz8GhKo5mjsxw5ULXtdn/7b76H5wB6Bn+T0TP4TyNUluELQTw+ClqTtJq0hzNa7TZPJoP0V0q0W02GR0aZOWMGcRyzfMUKttpyC2pbb1msZzzJmQgjNHBf22dlklIWilWJJvTbLO4PmNUXTtm2M7Z+4OEHHqVqhMo1aZzyy2MOJUtzvMDjn675EV4sivGwBRM+M2l53f3fxYFZK6wFJLLotSeVSCl4/MknEQgq1Sp9tSpKacbHYrIsZqCvhOcFjI62mT1zJle+9pUcdfPNhbHu1q+XbTvEpdw19taS8BQURh1t68J2EI0Q4ORyRVd6XtCpiTsnoBBpyTps++60MGB6vq2hLBT0CmdEoDxl1mXfNA6KKE6Rk4TNqma/nDKd4S109b/b/TLHobt098WUaFbYCDWr2LKEcx4cs79sDHgemevpNSiMq5v8hzD17WjE/FtmJuKW1jnJSqA8U3YQliCYlwzvwZ1nbfkHWhpOgZdAacSKB9lxsX7bbLc06iSabYbHXrpwwkbr0g7rsd8JY91xdKTJpLj2TKHA72rRdETLrOSZ8kKZwtFyTqLMQSSdrE4rb9POAsbbGSrJzHQ72eVB9rDZopfS33T0DP7TiHDaTEj6CUuG6SvjBK2hNNnA768RhR5blMH3pJnToxW5yumr1Dor0dDIbGJcCBSCYZcz9SDW8Nh4jACqkUfkSzy5NqtYCIHnCzw/IqqEaKVJk4zfHH64UQ/TmlwrNBpPSBQaiUSsJ9zJ89yw8IXA843yYJbm4AlGR8dYtMVCHn7kMTw/oNFoGNEerWk26pTKhj49fajKqpHVfGOXXUjTlFPu+qup/2uTjs5qXVG8NATEgpOggbxjfLsjfu3KrzbS7x4BXMyht++bdXcp0nmdOm+3KI8jfvlN+31PdIxNJju8AN3ZntcyQj9gHjLBhN2cZeALrGCNMOtxY2VNhsKuv9QxUsVwIdtBIHKIbJucF5vzEw900ta+1eD3UpNury1VqFCQRYK8ZNj7abWjQBfWO+cwnOxkI4TozLAPmp1Ruqb1z/XD68KKl5tdjPu2NtF+rkmqEqE6mQ83UEhoc47DCduV0dSkVTGlC0ML44w4SV8zIc8cV6oFyhckfdCWwpAurXNk+CBdXArrhGVas6qV0ohzzOz6YN0/4h42OwhtSkwb+rwHg57BfxqRygBKASmYh2FYBq3RfT7j9Rat/gozaiHTByI6ArpMMbIaUGqNG7TbmGvNCB7j4xmhyBjyNNtNL1MK11AFnPJ1gfAEUTkgLJlwS1uDbLZpNPmFE9Vxm1vj3+2GqQGUqhGO9ScEbLXlFmRpzraLt2Gy2cTz55ClKZ7nM96OmV4LydOcIIyYMX0a/f39aA1XDU3j2F/cgg4h9boMo0tPQxFROrjMhJNRnUI21B2j5VrmdFeE72RVCwJhV9rfDbRx7PhCqx8bTdqec5de9xwJ0Pa8S23JZ5GtWbuSgYWL+vMIk+rHsuInLechh7QqinZAd1wqMKn1aMzurzSpdXOuTP1eCbNPpdXmuMvDOSLTIAXKOhQqEEhtDLvrSPASXUjRZiWT2i66I3Jj7AvtfjrnwhllP9akFVOL0QKCllNmNPdRaTQn6ZOdjgnrkIX1jpCTK92IDPKqc2YosiHuWmkB0bgiqUmji2BvdxV19s+LO46SmOg6hz40c8VoU6OyHBF4vZL98wm9lP4mo2fwn2kIAYGPFoI817QyhVaA0GtF5W7xGSWPFUlGrGGtJ5P97xxoaY1u56RZTinsTk+u72kmOpGwhlbexJcBnvDIdUYgQsNWXge01gSlgFbdCLLLrnTo0OCAWQbo76/hfmFKw6DSRJ7AEwKlNdts048nJWjIpk/jhtogr7/2ukKIx5UZhK2P21NVtNN5LdBVWw6wUbnuYmt3dya4zEAxuQ6TRi60712GYB2+kiP2aReB606ZIRy327dtZi4TACYC75Z+dVBWOMdpH/ixSYNrKfBjXdT5wdbpbZrSb1kRH0um81KN19ZkFbPzA49kpo4tbBZCQFp1krGdYTmFUBEd0SAvAX/SCDJV6goVCOIBUZDfXApdBcbhiCYUeWjU/0LL2I8mjFcjUxOtZxVTLiqPK9KyJGho8pIoZga4h29WEshM20yJ6GRV7HmOLA/BkBnN6OY8FAVj32kv5GFnkmBuR/WiTYTvt61j0oLRlqKeYObX93Txn1fopfQ3HT2D/w+AAITvoeKERyYlQrSZPxDhe+t+6Ezvi5gb5zwar/PjKSiH3jqi++7QfD37JKDsW6IgAk+sP0MAxkglrZRyXwm5nv02wV3HndZAIAWtTBNIiDw6D1oBfiAZmt3Pzw4+ADS8/qfXF+z8QuNeTd2Aa48LJm3q19XdnZGHjia+Tbe7aNIx6bujVJfSFylmrKzoWq+go2NvX9oDks52CtJd2iHiubR1VjJp+6xqjI+LdL22KzmYqDrDGD+Rmzp2aQzifhftG4Och8Z4qwTywDp9oYB+D79ljK1pWTNORNDQJH02crftjWDS+X6TYqqcHyuiMVXIJnuxRzwgUIHAizVh3fTdV5dn5CVJNJKR1jyEhvKKBIRgckGEzDRerJGp6dxIK7I4h2HdHkNk/h1MaqJckfRJtJt7AJRGFFqaKYpJvyUCZtoQCtuaeEAWQjrKCgqpEDN0p9zJ0IjcOgFtY/jb00ErgVa5+WX0avfPK/T68DcdT+nO/9rXvsYuu+xCf38//f397LXXXvz0pz8tPm+325x66qlMnz6dWq3GG9/4RlasWPG07/RmByEKBa/mRJOHJjMacbaeRQVSQNnftEuTacjWLAEA689zdd6XQiKFtGz/tXkAWndeApBSIIVg7ZLYurYlcLsVSEGi1qG5j8DzPabPG6I2VOVnB+xvR7pOWWQKsQ86afuiLz3u1OGdBr5jeudRR0/fZQDcoJRucRjXI1+MW3WsedvbLhTFnHq/DU70x5UG/FbnVKjQKgW6WvmEbR9zMwJyo0pX6PgrIyKTRwItBa3pZnpb2mfLBokxpkHDvKIJRXl1Rnk4R0uKqDwaV/htc8FaMyRxv6lvK5tG92LjhOSRcVIqq3OCiYxoZYNgMivOaTSuqT2ZMXh/g8GbH2fGzSsoPzpKeVmTcCymNJIiM017Rkh9UURaEdTnm6E4CEFWkchMU16d4rc0flNRWZlTGrUlLG0yAmFdETbMPntt47S4ay5sHb49JEiqguZsaQx90LkujsnvhIu8dmeYjnO8tAc/fdMBxM0cnSmQcmO+cA+bG/QmvHoAnqLBX7BgAZ/73Oe4/fbb+eMf/8g///M/c9hhh3H33XcDcOaZZ3Lttddy1VVX8atf/Yonn3ySI4888hnZ8c0JHlADKmFAFPhUfStpB+SZIonNk1/lkGeaNFH0hT5lCaEUhFJQ8ySRFEwJroVgUgseG4tJM20N8dP7NEuVNjV+KQjLAUmcksZZUf9fG65mAL4AX0IooeK7d9fePyklpWrEjPnT+OVBh1AMB5K6GJzS7QS4yM6ldYv6fZfUbCHPSqeO694rtOGDrmXter2Eom9eWi33YkKeHUWblU1K3m9hWPitjlxs0QqWmrR0aVTjt7UL5gs+QRG9SyMik0dmoEzS3+EauOl6KrBtc8oYyrQqaU/zyUsmNFaB04sXKM+0zeW2pU4mphYfNDRBS9O3VNH3RE5lVUY4EhOMtiDPySqdZJ/fVkSrYuREG0qRoeorjTc8STyzjPIleWiM+xfOOZryiKKyShE0FOFEhkw0//HvR5P0m3X+11dfz2VfOZRvn3cQfssecyjwWgovNhmBPLS6DFZkSPmGLKgiaM+w11h1znk32dIR+7D1f2FLA2kfxNMUr//hTylX/Z6hf56iOwO3vlcPBk8ppX/IIYdM+e/PfOYzfO1rX+PWW29lwYIFfOMb3+CKK67gn//5nwH45je/yYte9CJuvfVW9txzz6dvrzczRFoRLFtNXylACUGlASsnmzCzRtqMiSoRoysmyDOTl07aCWElYlqizES9LKcU+rTTnLhaZrwrJamBx2NNrR4zf7C0xpbX9YTb9KeeRiNF5xueLwlLIa16myDy10k6nLIl4QrpxunZEIQwqee+oSrX7bMvB/38JrOvQqPCLnEd57E7Y553ftCF8adTFnARusw6kT10GWdjy6a2wVkjDh1tfbdt1ydv9AysIbbkvbRqjWzqtqHxY43yBOlQJxNhshaapGTkbru7BXJX63YlBCFIaxDWlW1ZlAVZMY1MvbyyMi9q9y46dtkOLzVseplrdAbRWIpIFTLTyCRHlQO0CPnqN9/EaW+5Ar+Vm/1rpbB0GZc+8GlaWcpEKoCcSqDxNDRbEJVDHq3nfP68Y/jAWd/luxcfx6rxBmlU5tEJxcc/90YiL2fZpEczE0hr6LWE8uqctCrN2F2tDachg6Qmpjhuok0xHCUPOloJuAyO5SO4ITtZ2bznevf9SUleVZR88DxJvp7MWg+bN3pp+03D31zDz/Ocq666ikajwV577cXtt99Omqbsu+++xTI77LADW2yxBb/73e9e0AbfB7xSgPZ9ZJKSNFqkQuK3UvoEaKXJshzf98gzRaWvTJrm+J4kl54ZKqY0OsvI11y5EOQaljdzZtUUYdDFznoaYBRH3frMQxvL8N803XFnnbup/6xzH4UQeIFHbbDKjQcfyOuv+Sla2p5/YYxf9xAUV1NPqxQp+TU3rQKMOp6tJztCnWurKyRrreEtDEfNqL55bQpVO7/dYfC7LoA8gND2wId1IwXrUsxamjG5QkHQNLXwaFwhco32BEFLW716I37j264CLzZOjpfoYsJbHpmaOsKWC2yZI+kTZJHXxazvEACjcYXQENRN3T2YVPiTKe2ZJaKRBBV45FWfz3z5EB5bPsb7zjuQGWWPD733JwiluOCOj/GXFS0Spcm06SsxhEtFnilk07h8q1LB5z5zFHcvb9BUkDXaqEzRzI3AjdYaKQQi8DjnjEMYqHq873M/pDSq8Os5KhTG+EtBNKGNM5JCc5YsOBJ5ZNv03CCfppF7NoJI5rxHYx0hJqc0GNYhyyTVQBN4ghRNIMCTxtFLe4Zi84erO27o8x6Av8Hg/+Uvf2Gvvfai3W5Tq9X4wQ9+wI477sgdd9xBGIYMDg5OWX727NksX758veuL45g47rDTJiYmnuouPefRkBJvxhAIQU1A0oyJc4WHYMHMPnxP0jdURkhB0s7wfInSmpHVLVbnQGRyzrpaJlvPvVtX0M6cwX96INdj0L3AMzX/jTgWrt1vCmzQvz7DL4SgXCvTmGh1pvolomOg6aTui2lpYp2r6uyHZ3rC3Ox0V7tXoR0LnJnxxo4w6IypiozhcONylR1Y4+rITvddhZ3vuql5xlDroqYulMRLtEllx4ZM57e1dUAEYd0Q3vLQvO83MtozfLKSoP/xjLQiTWtdZvXr7ejXgpxoiYjt6QK/aTIIQpm2u6zqWXa/IqsE+A3Ti+6Nt/CaHh9769U0FlTIKpJoPOeDZ7+c8oKteKKdkQlBLgRaa3SuyHOFji3d3srTZsCTgM7MevEkeBLhe2YgDYA2LXHN8Ratcfg/7zmYL338R1z8n0dzxnFX4Ld8sopHHhinLqkJrv3EYSxvmvv6lK9ci98yxxU0REG4dGqRoW3D07LTReHImn4TGuPjVFSA9DVRc4x2o47n+YhSFRVVyLxeX/7mih5pb9PxlOmq22+/PXfccQe33XYbp5xyCieddBL33HPP37wDn/3sZxkYGCheCxcu/JvX9VxFriHRkCjNSK6ZUNDOciYyTSPJzCQ9GzmHJQ/PF/i+YIv+gFKWEeeKOFckuiBbT4UQZBrGmunaPfxPM6bY6k1dforOQI4Wa+UppkB6Aq3Mkbq2OlfLVpEZ/mJkbu0IXqnNy/6yf3nEIfz22CNAaG478ZhiiI/RXzcpbkMcE4jcTPBzEJbE54R70pphhbvasUxNTdyl7l3rmisHeImpl5eHbe1eUrTLiVxPPSZpCHnVZRmVFQlBU6E9w9CPhzz8pqK6PCcPJdd8+Xj+42NHUFqdUVmVdzIc0kS83/roMcbIFwNxBP/384cXrX9JTZLWPNJ+nzySiFxB4KE9gUhzLjx7byorUoLxlH//4G/4/EFfY+6AMs6nlOB7SN9D25nxBD5EgXmVQkQ5Qg7WkNP78Qb78PqryEoJEQXmVQqRtTJyqA9RLZNMtDj1rAN5dFxzwRVHEw/6BJMZMtdc+qXX8s3PHMRjE5ql4/DE8piPHncgn/7Xg00HQlMT1RWDD+SEE4Zr4Yy740jEQ5a3YYmVx37717RWPsHoEw8xuuwJJkdHmFi5nOV/vRPZrPfK+5sxisBgA68eDJ6ywQ/DkMWLF/PSl76Uz372s+y6665cdNFFzJkzhyRJGBsbm7L8ihUrmDNnznrXd/bZZzM+Pl68Hn/88ad8EJsdJKA0LQQrGylpptYiwQkh6K8EbDMYMkvkJhWzgdRULgSPNRWTbUeoe4YMvzaKfSrf2PrX87nuTu+v+zErPUltsFow64sI3kr/dqfutZMD1oIbDjiQn+63HypTxK2EGw48kPHVda4/aH9+vN/rrGNA4SyoQKNCXaT+wdaFyxTiNG6QiwooZGjBatFbuVyZdJwSoWxLgzb7lYfCCOrojrBQVhKF3G3SJ1G+IK16iEx3BGV8k5FI+iR5CEeddDkS+OrXj+dLFx3Ll84+kv8480i+88Gj8Vvw1o9/l29/4k185+xjEVrz7Y8dy+N5xEVfOY72kLRDgwR+Mzd1eqC5qI9keoWLf/ZG9PRpXPrNN3LZ1cfw9Z+eyPm/ehf1WJIV3AmNyhVaKWQlQpYjZClElkJj0EMf4cmNatMLISD0kdP60FlOczJhZTNES/j3bx3KFy48mOXNfh4cCXhiVUJ7ZBKd5uStlPqqJp/4t0Pw2sp0YdgxuTI316yQS652piJGIybCVyFsud0WDM1fRG3GfIa23JZp2+zA7O1fjNc30CNyb854Fln6n/nMZ3jlK19JpVJZK7vtsGTJEg466CAqlQqzZs3iAx/4AFk2lUvyP//zP+y+++5EUcTixYu57LLL1lrPxRdfzJZbbkmpVOIVr3gFv//975/y/v7dDalKKeI45qUvfSlBEHDTTTcVn913330sWbKEvfbaa73fj6KoaPNzr80GG6sdrQfC90Fp8mbMY42cu1c1GZ5MyPK1Df/MgRI7z6mxfU1SRoHWyDzHV/nUbQtBA8FD4wlJts48AAAq1zTrMXmmUUqT5+aveZnP13dI2j70g9Cf0ouvtV5rvzsJe2GXce18XQX19Z0fIagNVrnhkDd0tP0VCDf+121jjVWU+0rMXDidoTkDDM0eYMb8acyYN8SM+dOYveVMbnjDQQWlQKbCvGIT5RckPlub176dB1+ykaLf2Q8X+bv3/LbpLffanVa7PBLEg5K0YsfHhhD3G1KdYbPnhTZ9WpNkZUlzls8X/89RyBy+c95xJH2Sb3/mTVzwiaP50HlH8ch4wl3LJrn/yQmWrmrw6Mo6f3miziffczBf+dCRxGlOnit+8OnjGGmlvP+zV/Guj17Jue87kvY041i0Zvi0Z4TE00ugIS9J3nXMT6iEAinLvP2gKzjpuO+ybNJnRdMjUZj7LMtRsesz/PvS30UbaLWEasbUmxkf+cjhPDpe5ol6xMi4pj08aTTvqyXkUB9ysIaWksZIiw9/6ggj8hMZoSCEKWkoO6VPe9Yhaxmmfmolm4+4+gbC/gHqOqBOxGRQIa1No7VRSmkPz2W4lP6GXs8UkiTh6KOP5pRTTlnn53mec9BBB5EkCbfccgvf+ta3uOyyy/joRz9aLPPII49w0EEHsc8++3DHHXdwxhln8I53vIOf/exnxTLf/e53ee9738vHPvYx/vSnP7Hrrruy//77s3Llyqe0v0Kvv79qLZx99tkceOCBbLHFFtTrda644grOO+88fvazn7HffvtxyimncN1113HZZZfR39/P6aefDsAtt9yyyTs0MTHBwMAAl/3uTiq1vqd0MP8oaK0hzdFpZh42UYjwnoLvpDVaKZMeTVKE7xGVQ+ZVfGZXfQbKviFHdUEpxePNlTw27uFlIfNKkkcSQSKmLudpxU41j9kDRv1FaYUn/IJgl8Y5K5YM4wUeeZqhcoXnmwee9DzyLKM2WGVwZo01obUmaZmpNFEpLGx2rjStXFP1O738azL4tTZ65gLw7JS/jZ1jrTTNiRaTYw0OvOFG7ArRni6G/ZiFBdfvvz8zF0431wPWoSmgyTLF6lV1mq2UY66/wUTnbpSuJeNJO1CnOwnhW/16vw2lEUO+S2umt95vm30IGsoadvPFPLQa7zkFCU1Lo1DnxQq/lZP0+4VAjZO4/ebHj+HxyZxACOI0o92IydtJxwnzJKIcFftGlqOTzOg3+BLf85DS6M0HgSIIBM0soOxLhkqSD5x1JWlNInK49ovHM57k5FrwzlO+zX/+x5upJ4r3nXoFn7v4WFa3TFtmnmToXKEmmshpfeZefxqU6rTW6EYbYjPZUfgeOje98rJagrBz32KdSrV6Aq+vxIwhnzO+fG2HcClNBibpg2RQIxNRTCh0A5CyiuZ7Rx7Bg6ti8iTrTMvr4RlDc7LOW/fahfHx8ac9mHO24hWHfAo/WLNDqYMsbXPbtec8I/vgcNlll3HGGWesleH+6U9/ysEHH8yTTz7J7NmzAfiP//gPPvjBD7Jq1SrCMOSDH/wgP/nJT7jrrruK773pTW9ibGyM66+/HoBXvOIVvOxlL+MrX/kKYOzBwoULOf300/nQhz60yfv5lEh7K1eu5MQTT2TZsmUMDAywyy67FMYe4Itf/CJSSt74xjcSxzH7778/X/3qV5/KJp770BrdTtDtBBkF5kE42UL2Vzb94SEEwvOgIhHlEN1OaE80eTQOWNYMWFTzWTRYwvM6BlRIwWBVkvujLF89SJKXmCsUK3JF2+tcRqVh6XiLVjJKtWbo5DPK86ySnkBISaXP/DhktYTne2SpsXqlSkSz3qZUjciUxhNrG848VwTR1J5mDbQyY/CLQ1yLjNd9s2kaqQm1K/7a2zDLG/3/6mCFIPK56dCDyLOc/W746ZQoPQ81Nx54AGEp3KANEkLg+x5z5g4QNxN+dvgbOPB7103pnde2r1/mdJoLoFD9A1NfnzI+1wr/ZCVBNJaT1jxDzEtMqjmYNOQ5oyBnxGWEEui2MOIzkyYb8+NvvoUkVyxrKnwhGG/EZOMNQ3rrq5isENrcO+6EAjrUiLKNwLOcxLLihdLkbWj7HhDT8D1U7vOlz7+JwDPiTk80c1a1chKlkYniHadewZmfOoozzjua1Q1FX+RR9iV1oRlp2Zp/miP8pyciFkJAtQTVkuEUpJlZt+9NOUa7sBF/GqiSjzdYTZkLTzuM9178I9OCKCGeZnkRLVHU7tNa5zr6DcGb/vuHfOmwQxhvJZBmhovQM/qbNzaWtn8W6zW/+93v2HnnnQtjD7D//vtzyimncPfdd7Pbbrvxu9/9bkp3m1vmjDPOAEwW4fbbb+fss88uPpdSsu+++/K73/3uKe3PUzL43/jGNzb4ealU4uKLL+biiy9+Sjux2SHNkOWIIU9TD0OSiZaxtOuRnF0fTL1TQDlChAE6SWlNNHlIlUkyxdbTy4R2Mh1AWdQoRWPUSg2eqIfMiTxqStE2Y+xAa0q6TTUYpj4pEEFKKezvMs4aPxBMm7Oml9vxjsu1EK1hIlVEniCUeipbX2vkGnr7noAZpfVlOHTx/13BGmV/qmKf+7dZxv2CjcMTlkPCckiW5vzPIYeStFOiSshrf/Aj/ufQQ0naCdX+8kYdLvOxIKqE+IHHT47Yn4O+/7NCGldmpuUtL3cGuKjAOADKt1GkG8YDVq7X6MSHkxAPesUQGr9tjslvK4K6qdfJJKc5r1w4E0E9IxnwCRo5cQb3T+SMNFPaEy2bzi4jyuGUtsi1j8neQ6HsTIDTJsOi47QQzVHNNq0s4Ik0xxOgwgClIbcn/tNfOY52nDPaTtC5JpUClSve+7Vr+NpZRzHWzgx5Tz29KibFsVlDv5GFTf3fGv3R0Of89xxONcg59YvX4jfsaOWa6cpQXSUap5WgQjjldz/kgt0PIZtsIQf7evZ+M8emsvTX7ACLoogoip7BPYPly5dPMfZA8d+ue219y0xMTNBqtRgdHSXP83Uuc++99z6l/emJSv8t8CQ6zdEIzCP2b6vlOwghTAtTOUJWy6STbZY0cx5e3SRObcSGwCciEmWqpRg/m+TJVDOZ6SlcgoiEcilBIYgTj7LnIV3a382a3QSXuOILwnWokHq+t9ahblCaVxmSnkCgLWHPyAcLPNkh8KmulWpAyxRtC+Zu3UHoMzCzj+lzB0njlJ/ssx9pnDJ93hDeU2hH7O73156t01sVPe163C3b3Wn1y4xCKU8FFPK9eckQxOJ+QXua7JDzBJSGM8LxFGlHsiIE0UiK3zJG059o47UV8YDP0kbGyvGY5uo6WoMcrK1h7J8CbGZGlkLDlK+WkANVtIB2vUUryUlaCVk7QbUTVJyybKTJ8GiDvBmb95pt8kzxiXcfyrLxGJXmkCtE9Oy2rznSH4FHPt5kfCxmRV0SNDWlESMf7E/aFswQ8pLutHHaroZg1KO/IhGeh27FG1CN7GFzgFB6oy+AhQsXTukI++xnP7vO9X3oQx+a8kxb1+upGtrnCnrDc54qhECEAareZKIconMnuv73hwlCCHToI3REWm+xRJfJabH9jAq+LxFCUqJGVG4wf26d0XrOWNoPygi5CK3JlaDRKjEhB5mIBdVWSl9J4Xlr0Ns3sh++q8F3GRwhBNITZLHRCtiYMZoYnkQryNKMSl+FybGGTdEH5FlOlmS06m36p/chPEGemlp0qd85KBnocO398wSV/gqDswKkt25nY1OOMaqE/OSw/Tnwup+ZEbdZJ9J39fegbmfUuzQ/tu5vuYciNzV/r+163yGLBKVRhfYFspXhTbbRoY/2pZGw1ZpgIiGZUSGe5vO5jx/FIysbpJMtRK2MKIVrp7T/DgghwPMQlRI68FGt2PSJgqnHK42SEhEFyMjUKdR4gyzNSdupKWNlObK/Ynrsn2UIIZD9VXQrJp9ogpTEg4YA6bdMRqY9HfAs3yM3WZe0j6K1sq8sqcehOeeBhw78v8256uHZxyam9B9//PEpNfz1Rffve9/7eOtb37rBTW699dabtGtz5sxZi03v5su47rU5c+asNXNmxYoV9Pf3Uy6X8TwPz/PWucyGOuDWhZ7B/1vge4jAJ5tomlpyrfw3PZyLyMKyoM14OQ8RBXhCkE22eFKUEaubbDO9TBR4hKKC7/lQTZldbqJW+Yy0+pDNNiIMaFKlkVVR2kiprmxFTK9CJVrzQb2x9Pe6P/dDnyyJDclqAyUMraA1GVPuK9MaT2g3E5TSJLEROs8zo9YWlgJWPzmCVgqlNOVqRLlvCF00Va95ziBuJASRv0lOx4YgPUnfYJWfHXwAr/vldajcsPZl3pkol1SMqIvIrbiObwbQ+C3MKbQ1/HBSGzGcUqctzWsrdCDJhipcdOWJZEoSSIkvYHU7ZyzOaU7GLHtyDDyJHKiZ6/9MGR4hEIGPDKb+7EXX54BRNKyVUUmKkBIRBKa2Lp+6Y/VMQXiyqP3rJCWPjHOW9BmVRJEBIYhckMxL8YZ9hBKoQCNTwUAUovtynsxyssk2crC2sZ9ED89RbGpKf1O7wGbOnMnMmTOfln3ba6+9+MxnPsPKlSuZNWsWADfeeCP9/f3suOOOxTLXXXfdlO/deOONRXdbGIa89KUv5aabbuLwww8HDGnvpptu4rTTTntK+9Mz+H8DhBBQKyP02iSqTYXuIv9pbUh5Qgp0UyH7q6avuVoinWzzOCXEaJNFMzWZaKNRCAHCg6G+FnEe0sYns6l9EQbkzSZqssXKwRolX7L1UEQUeGykTXqT4AWSPMuRG4j2hITpcwfIEQxVS5Q8YWkGmjzLi6jc8z3yPEfb0bCeb6TzhBOsX+Oc5WmG9CT+02AYjapficZE06jxAUKbMbNpzTHsjXSvF1NM0ysEd4TR0tfC1P6Dpplm5yVmiEweeSSDISLXnPIv3+H9XzgWQW4i51ZM3kqMoe+vGkPP03BxNn7QG92EEAJRCguFx+eyIRSehNgYfDcYKe0zAkReYhUU6x55uZPa9SYFh3z3KrSAf3/doUy2U+Nwh73H4WaJXHc6dtb3+TOEJUuWMDIywpIlS8jznDvuuAOAxYsXU6vVeP3rX8+OO+7ICSecwPnnn8/y5cv5yEc+wqmnnlpkGN797nfzla98hbPOOouTTz6ZX/ziF1x55ZX85Cc/Kbbz3ve+l5NOOok99tiDl7/85XzpS1+i0Wjwtre97Sntb+8O/xtRkKX+VmiNbsXISsk89KUgSjOacYaOU0QlMvXSJEMlGZPlmFEmEGvkrsqVlIX+ME+sHmR83EfFCf6MAYTv41VKqFbCUikYSxRb1XzmDPmA75rluo9oA7tqxHbcV9I4I9iEWm4Q+fhANEV3X+AH3Y6Cto7Dura/7ta6qBw8fZGmgL5ptaLHP4+MHC2pKKR7ETatryiMisgBaer+Yd3MbPcSI3uLEGCZ73kk+eKlbyFVmhXNjOZEC9VOIPALQw/rz6g8q3gO7tIU5ArVbOP3V8mq2koPgyopZEuSDJpBQGjM9KZUFKqLXlNw+ZvfyBOjll35NJTkenh2INhIhP8MbvujH/0o3/rWt4r/3m233QD45S9/yWtf+1o8z+PHP/4xp5xyCnvttRfVapWTTjqJT37yk8V3ttpqK37yk59w5plnctFFF7FgwQK+/vWvs//++xfLHHvssaxatYqPfvSjLF++nJe85CVcf/31axH5NoaewX+2IARIic5yROARacW0QNDSPirJ0LZ2rfMcGXZmwK6LX+QHmloUMxFG6HpGPjZp2PR9FWPE2jFjccpDqkQlgIENjArtJjB1G6GkleIHHtIzo2w3FN07ZMr23a/nYaq06db3Cmb+hp2OLMmflsi+G0IIolLIrw84jNdc/yPjw+VYuV2T3kd1VPKAQs42aAIpKE/gYXTwRW6yLNqT/MflJzKZGkPfaqck9RZaaZM+9v6+ckQPFC2CUSVEJkYiOS8BuUBVFKJqNCOE1EhPoZU0paY+H5FKylZmGegZ/M0Zz+LwnMsuu2ydqnjdWLRo0Vop+zXx2te+lj//+c8bXOa00057yin8NfHsM3BewJB9ZTNNrJWQK6OxjxSQpOiJJmq8AVJQ8iRl7eO1y3jt0tqvuERZSzxpmdm1sjEqvmdKA+UIspxJLbh/JGFsMiFJczKrqrfm7yFRa2v2+4GHH/q2dr5pRleKjT9H3cfWnVnvci7LsKnbfioQUjAwvY9bDnkjN+13EAB+U+C3KCR2lQ9pvxmik1e6evWhGNoSTOYEkznhRMbXLj+R5a2cVa2M+miDeHQSogA51DP2Txts9B5KwY0nH2uuQ6Dx2gJyYCxEtT2E1GglyWMPrQUiVOhQcfhvv00lMtwEHafPqGHo4ZlD99z79b16MOhF+M8SHHNa9ldQY5PEniSVkrIH3vQ+0lyRK00p8IgkzBmYxlAo11tFqFYylrUSUoHJGniyEy9bq6uznGEpmFzdpg+FDHxqQrPF9DKlyLCUle3Bn9ZF8hNCEJYC2o2YUi1ap7FaV2ZgfdP2Orvl8q0bh8qMjvszYSe11mg05VqJpJ0gclGI8DiDr/0OO18mFINvvFiTViVZJMhLkiv/4y2MJ4p2rmkkivrIJCpXyGn9CPl3loF6WAtCQOQJMgX/7/BjOP7qK61Qkih4GXnbNzlfqZGeBl+hpMYPcmbWJI12SNpM0NHTWCrq4R8GobXhU23g8x4MehH+swwhBLJWMf3AShEK2LrmsfusMrvPrvCSWWVmD5RoakFDCaSUeF73y7RsVMsB88uSUn/FqK6NN1CtBNVoQ66QtTK6naCaMa3JNqtixcoMhjNtCIP2OSclTIvkWjeGkEa6NWml6+1bTlRMprP1fr4mNDYbh63DbSClLz2JkM/M7apyTdxMSeKUqBxx3ev3Q9t0b/fwHpEb6V03kjUPBCoQxQG0hyRv/LdvMxorVrZyWo02ZDnRUI2KVPhy44S5HjYdwvdQWc5YM2VlKyfJNV5LWJEdc11EJpFjAWLcvLLJAM9X+GFOlnoc/6fL6S/bEpfjqfSweUFtwqsHoBfhP/sQAgIb6ddbjGUeCYLFQjC7L8T3JJUI4lwTbiA/LoVgy2llhkoZj9UlKyYTVJwYzYBGG1kx4iuAITs12uhGGzlQQjqDb3Nfnlr3dqJySNxMyNMcr6uW7gx8INfume/AOQGddSulaWSmzl8NxAbT/0IKpDRz2Z+OKExrbUoXWuOlOUFo+AlxM6FvqMYNbziQA354PeiOEI8bf6sC07aXlyAviULFTabgtzTxiqW0M41oJia7MtJgbGQVtemz8KIyebU3ne1pgXUC0zTn5G99DwT4GV11JIkKNbItkJkg7VcIBUkjQHgaPRaStUsMvcRnLPDNcKANRPna1r90lhvn1DczBXpZgWcXvQh/09Ez+M8BCCHQnmfU0BptGhMt/pprRto5O8woEwYeFX9dD5WpErS+J5hWCxBoxjJNUo4QuSJXCp1myNDqhvseshKh6k0aOYy0c+aEAiGUKYsKS0W36+6O2IPIJ42zQtlOa02uc6SQHUW/KXto293WsfdSdCR2xRrfWVcsLIRYqwKQJjl5avr5hTQZgzTOCCMfIQV5bsh+QWRbErtWm+WKdpxREeDbB31YDklaCbXBamHstdf560R4lH0PaceypprzTt4djeDRhx+iVhskTjP80CdpC7I4IZ4YRURt/NrAM9kp9IKCKIWoZhuZmbG4WposTDJoW/Aa0owiBmQs0MpDxxJdUuhyjtIeR1/3Pb70qkNp1VsIZYb3dN8oWmsjbtVO0ElqlDaVeU9EAZTCwsnoGf9nAfZabPDzHoCewX/OoGjzq5UhToknmqz2qow1U4Yqpj99YzVxt56BSsCcesKTrZRUCFQzxpveP9XaWeOZ5pol4wllD/rLHsLTluSkbS7bmOw410Te1Ii+WJX930b2bJ376gvnELhGwXX/OIUwOgV5pooOAa1hdMUE5WqJkRXjCAFJOyHPFKVKRFSOaLdNRkIImDl/GqWqaSdUucZLMgYiD2kFfIwugMAPPVSuue4Qo8IntGHl+22zLzI2xh/VJRWg4WNf+APnnXcYcwZmkU0mhNUSnnVCqoBCo6RP2nv+PC0QQkAlQscpHz/kAD50qxmsFEwKtK/R/Rmq5UFdGl6GD1pqU67x7cRFDdrXDJZ92i0P3UygVjKOr9agFLqVoNPMiBb1V0xpSYDOTWutGp8Eq1RIGPS4Gv9gbKrwTg89g/+cgxDCsLmTlHYz4W4NlXrG3IrHnL6QwJfFch27OzXNLaVgq+llwpEWD7c1KvDMKN9udrgnEZWIfLLJ6tinmSkGIo/+ULBoWkjg2Rq2EgUxSgDYoSpxKzH6/qFXjNdd5/E8har1hlj6YJyeNM7xw045ISgHIAVR2bQuCh+iSgQZZGlOpVZGCEiTFD/s7KdSymgLCKYMKAI3Jjhl/59fj5eLIrp3EroCY/SV7ZZUAeS5oDXDQ5QqNJOYJI3x/L9RC7+HTYYQAjlQRY3Uueh1h3HmddeQVTVCCcRYgAqUEUhKQChBVobfHHs8D4ynnHz9VWYdmWBhv89YM6RZb+LpkrnIVmJYlEKjmbCG0qDwBKJaQldKkOeoVoJuJWuP9u3hmcWz2Ja3uaFn8J+DEAC1MqrRpjnRouVL6mnE8lbOwprPnP4IpTQ50EgVA+HUVLoQglLoMWugxIq0TbOvTNKIzSzXcmRJekZNTUcBuhnTGG/R8CSrqxF9oWTOoLFmWgiEnjq/3vM92s0UpMBPMjOpbhP7mLWda148DNdXqbDva5uOExLyTLFm1aA6rUogBGLQTPwzvf2mxCBwgj5r/+D9wKPSXyJpZ6hc080HzJKMNM64+eg38pr/+32T2k9MSx4Ywy+yjtqe689XuWA8MWWRrmpLD88khDDOaymkNd4iryhuPOooXn/V9/AnJEJ7xZyENILfnnA09421GI4lXlMWYkrlMKO/5NGaFJBlEAZGACsMjAjW+oy3EPgSPN9Hhz5pmpM32hCnxvA/h+SIn68QuUZsIIwXvfpZgZ7Bfy7CppdlrQxWKzyuN1kd+MQqIleaeqoQQtBXCugP5TrtSq3ks/VQRDPOeFwKms0ENT5ppHt9r0M4qpYQFY1utElbCcsbkv6SR9pOKEURQeBRGE4NaaYo95fwPEnWTotxtZuCNM6IWwl+IPF8Dz/wbQq0KxvgjL3WxO2EPFV4vkQphcoVfmB09AH8wrp2twLaAfZrkgPorFdrk9bX2nQpaLusQBieQpIRRgE3vulQ9v/va4oxuVqaiD6ITdSYlU1NPw/Az00mpOlJo4iY5yC8Xnr3GYa7h/PhCS541aE8NqnwJyThhNVHmIDWHDPYaO/Lr0KVFcGYBxKyPoWMBft8+Yd86y2Hm99F7mjdunCOHTwBobRqrkLgC2jnmlxDJAWVSsCEJ8ltql/Wyr3BPM80nHO9oc97AHptec9puLG5shwhB2torZkYb3HPSMxjEwmP1VOWjLcZa2YoNVWFz9SkjdGvlEMWlj28UogIfCMysuZ2pDTT1NKMJ8cTfv9kiz+uiHlouE2am19UninazZgWAi2t0I8nyXO1Sa14WmvSOKVUjQjLAVmaMznaIEsyVK5QSqGVRtn15Zn571LNJyz7lCoRpUpEnuXEzcRmCliHUReAXKeh1drwE5JWQhpnZr69BI0qHgxCmlG8WZpRrkRcedj+eLGJ6r0YolFj7L3YsPVlDtGEJprQvP+zVxF6Zja9bqe9Z80/CEIKRBSQtRIaqVFI9NomK5P2Q1AXiFwgE4FsS9LBnKxmJl2KTNjbZerNZOY5mCsYSih7MLOkmFvJmVX2GAglZV8SeYJcG8MvgYHIo1QrI2tl1GS7l1J+huFY+ht69WDQM/ibA6xBln0V81Brp6g4I2u0Ga3H/GV1m8fG2mRrGF4hBDVfMKPsMbc/pN8DN5d9XQ8hIc3Y0TzLqY81aUzGLGnlrJqMyZWiWW+TCUmlEhLYsbR+4BVp941BK42QZvCN53mUayWqgxWyLKc12abdSGjWW8TNhLiZkMYpYSlA+qYlT3oCP/QJSwG5EOSpM9ICpTVqIz9s50Qk7ZQg8in3RRDmJHmTyXScVMVFuSGqhPiBjxTQXwmK4SwyNpPyonGNTDXRuMZrgwoEaUXwfz/xJvoCSViJ0Emy6de4h78PQiDLETrNyDLFxccfQWu2IWyVhiGYNNP0tKdRkUL2J/gz2kaZL4G0qklzjc5z9DrKU6kyP5tmJnlsUrK0kbOilbOqndPMzH2ngHqqGIokcyseMgwQoW9Ifz2j88xBaZNyWd+rx9Iv0DP4mxFc3V30VxD9FTNOVQgmJ5o8MBpzz6omw5MJcZoXDxghBIEUlCOfOSXzENKtGNVex0NICIRnHAs5UEMIaZjwkynNZkqpGlIt+1R9gWejZyGN0c/THK30eh9sWmuyNC9S8aaV0BDxytWISn+Zci2i3FeiVIvwfEMGlJ6pw3YiL40CmlqQpnmx/lhBO99wMCWEIRxKTxZMf08GxHmLOGswkYwwkYyQ5O0ie5CnimpfmZ+86RB+dNQByBzCCUXQ0GgpzCAdDdJS70/8+HeQUhBGARJTXJDCpII90SvpP6MIzNjqZKTOyEi7eNu1USYDtruikiN9RZ56oCAra249+RjiHNNqJ9cmoWqgmcFECvmaUxztXymMben0toAoR6aVL8vp4ZlBL8LfdPRq+JsZptQCBab+nmakky2eSHxWtRWzyxk7zCjhr6HZPljxCSczkmpkRrNiHkhrbAChtZmF7gn6Q8ncoQg/1IymI5QpUwv6pnwliHzazQTiFIHACzyCaGrdUiuNyhRRdT21fqlAu9ZD0WHUCxO9i+LYTelCaI30RNFe6IbUrc+iNltthkdGCXwflKDWVyEIfVpJgzhReEEJpVKGs9WUvAaDpZmgBTKUJHEOpYiBwQo/e9+RxM2YZqPFCV+7ibxkZHjzSOC3Tevev553FR85ZndCJclXjiN9n0qlQrPZxK/2k5ZqG73OPTx1CID+CrRTsokGnzvgID727Z+QViEvY3v1NShBFvvo2MNrS7xYoJQkzqyj7HW0J54K79J+lclUMxznxuRLgYhCI341UO3V8p8JOMnODX3eA9Az+Js9hBAQBniDHqqdEE80WU6F8ljC1tNKRROqEILQk0RCE2QZdd8sL6JgnZK1up3gVyK2qAWUw4zxeIzQCyn75bW2ryUElQhfGJZ82k7JM0O0M+2DZvCN9DoEqE4GArp/ke4B65ZL0ox7/nof06dNo7+/D9/zUErh5RnNWJNrxYpVq6kMDBEKRa1WRSM6EbVdT7PZ5O67/wpAX18fnuejdI7ve0w2GpSiEu12Gy8QRFHEE2KU0dEx+vr6qFYqbLvVVug4Q0pJdaBCeaDEFe/dlxUrhhmfrJMlKb7n8+nvPcS5h++A1orx+hgiCAiDgJHRYVrtNv3zJKJU6z2DngkIQ/sUpQCyiKyd8tVTD+fdX/8hKBPp+w1J1pfiBYocoJqSro7IlCDNlHE4bclLJZZpv4nQQH8oqQWCVW23SwLKITpJTaQf9vT6n3bkG2Ht9Vj6BTYLg+9LgRSCJN+4KHLJ94yn/g/Yr+cKykCgFFmtjIgC/CxjNPGI0xyRa1Mz9yXkMMOTtKolci1QjTaiFRP0VfCloK00sZqqjZcoTSDLzK52DP2avfXKWWkp8BCmPSlOgaBI4eeZmsrkn8KuN61/eh3xVBD4hEHA6uERnnxyOUmW0N/XR5omrFixiqGhIaSUtJY8QV9/P7MWLsSLIkqBT78vCOzqKpUK2227mFwpwjBkfHyCciWiWq0wPlFHZYqhwQH6+vuQnkAKj3KphEZQCgNKlQjQKKXJ4pRypUS5PIeZs2aackWe02rFXDh9GvPnzmFlJknHmigp8EsRnlJUlIIwolfZf4ZhS19qrMGqScUFJx3KGVddQ1bW+C1BpgWlckIjKZM3fYKWZNXwKEkm0Jg6p2rGRmgnDDb6LOlu/ByLFUk+VVFCALJaQk22EEHQq+s8zehJ6246nvMGf5tpfew+bzoA960e587lo8zvr7DlYI3BcogAJuKU5fUW287opxL4ZEpx/QNP0ErXrptFvsfiaX3M769Q8j0aacaSsQaPjNbJniFyRyXwedHMAWZUIiLfo5XljLZiHhyu0xcFVAOfZZMtxttP3RQIIGq0EMNjVPqreAJ8TLuQlAPkSUx9skmeaWbOm8WL+gdpxykPPbaMXCiG+qrMWzADIQRjEw3uHG/SVCB8icoVj0+kpFowqxYQeYKSZx6KLkgxc+YyPOEVjoAx8gHNiRZhOTDte2lGqAJT1MY5DV0pf22cC+go+rnjW7hwAVFUodVukyQtfF8wWW9QrdQYGhqk1WqxaKutGRgYspkDbfkHmrg1SZq0qJRLbL3VFsV627OnMdEYIyz7+GEf7XbCnNlzqJT6AE0ct5g9cwZPjNSZYcV71tXT71vRoSDwKUURgwN9ZLnigVUtmolG9pVJpd9jy/yj4XuIUkAyOkka+HzmkEP40I3X8L137Mnhv/olgZ/jRRl5HJLOSFnViBEqNGOgpcCTmjSKjM7Ceh4LQZbgeZLAk7S0NL8LrWlnGt8RY23GIAt8hO+hW22olHpR/tOJnvDOJuM5bfBLvsfu86bz9a9/ncWLF7P7Xq+iPwqYUytz66238vUbb0RrzSte8Qr2228/PM/jrLPO4owzzmCX2UPctnT1lPUNlUP+acs5tBqTfPfyb/HYY4+x0047ceSRR7J4Wh//8+jydToJfw9qoc9+i+exYtkyvnn591i5ciXz589n3333Zb/ttiNNUyYmJthx6zlce+9SUvXURjtJYdjr3oBJZUut0Z5gt922Y3h4mOlzZzK6cphqf41HHnuUW2+9lQMOOICttpzL46vG2OFFW/LTn/6U5cuX87a3vY2l2Qqa9ZYZutNs0xCCx+oJjSSnvxxQDSWzyh3jrjQkKiUQisALi/fjZkxYDpBSGsW7vlIXYW/d8ISYkn3TWqNQzJ4zj0azTalSJQwkE+OrmBibYNEW86lUyiaVOjDE5z//eXbZZRf2339/vvKVrzB//nwOPeRg0qQ1hUwYJwlKK0QgGR9t4JUgDpuUK/2o3PT712rTaE6OMnOgSiCnOiB5ZlT6/DUGCGnMGPbVjZSJVoabW9DDPx7CyVSHAbqdkI1OcsEBB3PItT+CkqTZDskmA0SkuGrn/Vg6PI5QmlajSalRxfc8vGguyXpshRRQX/Y4qjnJtOnTyFNT7vF8nzRNGZo2nRXLlzFt2jS09GhXBkgqJdT4JCIKe/fF0wm1kaH3T/GZ+nzGc9rgbzu9n5GREb7whS9wxx13EIY+oc454IADWL16NW95y1uIooivfvWr/PrXv+bcc89ljz324OMf/ziXXnopd60Yo5GakZdSCPZaOIs//v42Dj/8cI466ihe+tKX8sMf/pAPf/jD/OIXv+DVi+Yy2kqY11cm9D1aaUYjyXhsbJKHRyeRQrD1tBqLBmqUA4/xOOWh4ToTccJOs4eYUysTeJJGktFKMx4erTOvr8KD99/P3nvvzTvf+U623XZbHnjgAb7+9a9z/vnn85e//IV3vOMd/OlPf+Kg7RegtWYyzZhWjmilGUprVky20cDsWgmtYXWzzd0rx2ilOQOlkO0XzGBaJSLLFWOTLfIsRwjBK1/5Sq699lq23357AH7+859z1llnceaZZ/K5z32OUS2YnJzkhBNOYGJigre97W3M7qswf6DKUDnCEzA22eb+J1czlii2mNnHnIEqpcAnz3O0VqRJi6TVQphmdjSmPU56Pv3TphEEoSHe5RlJ3EKpjCiqIn2jaZ9nCXG7QRAEVMIyfhDZXnlFrlLSpIXnh5xzzgfYaqutOOOMMxgYnMvA4Fyk5yGlROXGSVu0aBHTp9ts0H33mVq/H1Dtn06epTSaIwjhUa0NkusckXj0RdOIyhWkL6mU+vj85z/PihUruOCCC6jUBgmSNtLz8a1Mbp5lqHwc4UG5OoAfGBW2PM/JtaaVpMyveGw136OepCyfbHHv6omNtgz28PRDCNObr0MfNTpJ2sy5/HUHccLN15LUQ0SoEFKzcuUqxkfGqFaq1PpqCCGI4zZMttD9tfVG47X+fhKhGR8dIUszBgYGzPeA1cueoFWvU8dwBSpbDCA9iS5HhsDXX+lF+U8XrFriBj/vAXiOG/wth2p89d8v4uCDDyaKjJzsv//7vzM2NsZtt91GpgVJnvOe97yHZcuWAXDYYYdxxhlnMDo6yqKhGvesHANgbl+ZSuBx8skn8/GPf5xTTjmFiXbCySefzGmnncb73vc+vve975E16tz4s1+xaNEirr32WrbbbjuOPPJI+kshg6WQfl/wox/9iIceeoiXv/zlvO51rwNgyZIl3Pznh+nv7+f6669nxx135LDDDkMIwaf+/SoOPfRQzj333LWO8cYbb2R4eJjLL7+cWq3GEUccwa+uvYZXvOIVXHPNNQwODvKmN72Jxx9/nP/81vfwPI/DDz+cN2y3kHtWjrHT7CHuuece/vuaa5g2bRrHHHMMgzOmcdtttzExMcGPfvQj5s6dy4EHHgjA/vvvz5VXXslnPvMZtps5wLe+9S1e97rX8YMf/ACAraf1cccdd3D1L39JHMe86lWv4rWvfjWjky0Ccn5yzY/Yddddufrqq1mwYAHHHnssNSkYmVhGX9BPkguEFzBrwRyWLl3K1VdfzeTkJK985SvZZ599AHj00Ue59tpri2OZO3cOQkhuvvlmZs+ezZ///GcefvhhDjzwQHbZZReWLl3KX//6V1avXs3ll1/OLrvswty5c/nTn/7EwoULueaaazjiiCOYP38+Q0NDxblVSnHVVVfxyCOPcOCBB7LzzjsDcNtttzE4OMjs2bMIwoAHH3oIgIULF3L77bczPj7O5Zdfzrbbbsuee+5Js9nku1f8P1auXMk//dM/8bKXvQyAxx57jEcffZRKpcINN9zASSedRBiGXHXVVQwPD7No0SKOOeYYUqV5YHji6f559PAUIOyEu7f8z48RbR98zfcPOIAki2i2BdNnpIhUGRldz8PTmtZY06jurSsa1zAwcxbJ9FkkWWaG7OQZ2fAygtoQUbWfUsFJ0aRC4gvwyiFxkqEbbdNh0zP6fzd6NfxNx3O2sjhQjij5Hj/+8Y/553/+Z9JcIaXgO9/5DqeddhqtXPPj+x/nZw8+yW8fW4Gq9vPnJ4eJoog99tiDm266iVldDNu5fWXuuusuHn30Ud7+9rdz14pRfvbgkywZa3Daaafxk5/8hEajwSOPPMJb3/pWPvShDzFnzhy++tWvcuaZZ7Lt9H6mlQL22WcfbrrpJubMmcOnP/1pzjvvPABuv/12TjrpJL7whS8wbdo0zjnnHL72ta+Zbc+dy29/+1tuueUWsiybcpytVgulFPV6nUajAcD73/9+jjzySCYmJiiVStx22228+tWvBiDPc1772tfy6COPsNPsIa644gqOPvpohoaGeOKJJ9hrr72YnJwkjmOUUjQaDer1OsqmtYaGhnjZy17GjTfeCMBll13GW9/61in7dMUVV1CpVJgxYwb/+q//yn/9138xVCszPDzM2972Nk477TRmzpzJlVdeyUknnUSl1EcUVACNLzWDff3cdttt7LHHHkxOTjJ//nyuv/56AO68805e+cpX0m63GR4e5mUvexmPPvoYAJdeeimHH344d955J1JKXvva1/LII4+QZRlpmhLHMfV6nSRJeOCBB3jrW9/KBz/4QQYGBlBK8Z//+Z/85je/KY7joosu4s9//jOVSoUDDzyQW2+9FYBvfetb/OIXvwCMUuAPf/hDfvCDH5DnOXEckyQJ9XqddrtNkiTsvffe/Pa3v6VWq3H88cdz+eWXA/DHP/6RE044gfPOO4+hoSGSJOGVr3wlY2NjbLfddjzwwAOsXr2aUi99+6zAZYp0M0a1YnSa88WXvZGL9jmCL+79RpZM1ljR8hlLoZVCI9U08WhqQVML1EbGrs6qeMyueCR4xDIgjptMLnuE+vgIsfCIhV/8dfovgSeRfWXI8p4gz9OFXG381QPwHI7w+yLD6L7nnntYvHgxSa4IPMlDDz3EVlttxUgrLrgYy+otltVbAOw8e4jFixdz991384bDDi/WV/I97njwQRYsWEAYhqxujgAw3Gzzoi23pN1u8+STTwLQaDT49re/zcDAAEcccQRbbLEFH/vYx7jpppsYGBjgkksuAeCII45gm2224ayzzjLbKJW4/PLLkVIyd+5cLr30Ut7znvdw0kkn8eCDDxZGfN999+Wzn/0sL37xizn00EO55ppreM973jPl+N/73vdyzDHHACYqv/DCCznyyCMB8yD76le/ygUXXMAHP/hBbrzxRnbYYQcAnnjiCa688kpOPvlkBgcHOf7449lu222ntN697W1v47LLLmO77bZjdHSUl7zkJVO2ff755xPHMStXrmTmzJlccMEFnHzyyQDU63W+/vWvs2DBAt785jezcOFCHnroIebNm0XSbpBmGb4f8NGPfpTPfvazvO1tbyPPUjybwv/85z/PmWeeyQc+8IFifV/60pe46KKLAHjDG97Apz71KQDuvvtufv7zn/Mv//Iv7LLLLmy11VbFebr55puJ45irrrqKUmndkdJee+1VZFXCMOTzn/88V199deeeiCJ8v/MTmDlzJq985StZsWJFsZ0rr7ySarXKpZdeCsBOO+3EiSeeyAknnABAEAR897vfxfM8hoeHGR0d5Z3vfCczZ84s1vvLh5ettW89/J2w8xB0nECagechyqZ8RJab+fVZjm7FpntkqA88SaYFuTLaDVLlqDRHZTk6Tm2fvHUU2glaYLT11wFfQs33kAKWermR1a0OUt3uZchw3a18oRRIYcSq6K+gJpqGUFaOzByHXrT/t6FH2ttkPGcjfM8SpVqtFlEUkdg67cDAACMjI1OipsCTLByoEnmSXGuiKDI91V0/oExpBgcHGRkxhr4cePavz+joaLFugC233JKBgQH+smKUwcFBFixYwMMPP8ydd97J//7v/7Lnnnuy5557csABBxAEAWNjYwBsv/32SClZVm8yc+bMYlv1VPG5z32OZcuWcccddzBv3jxe//rXk6ZTNe3/d9lI8e+dd96ZutW8v/POO/nkJz9ZbPeb3/xmYVyWLl3KW9/61uKz3/zmN6xcuXLKepOkRZ53trXffvvxhz/8gYsuuoiTTjppqkCO1px++um89KUv5fTTT+eSSy4pyiUAM2bMYMGCBfxl6WqiKOJFL3oRDzzwAJ40Bl3acXZ33323SYdP1hldvZJG3Rzbfffdx2677UaatMmyhN13353777+/WP8OO+xQZCdmzpxZXBuHPEtJY+PcLV68mHK5zOjKFawLu+66KyrPaDcbvOQlL5myHTAMe6e4tyaUUuRZxv3338/uu++O1prWZJ3dd9+dRx55hMTK5r74xS/G8zxWrFzN9OnTOeOMM9hpp53Ye++9ufjii8nznMHSpg0W6mHToQFVb6KbMUJKdCtGN9ommh+bRE22IM2QfRXCaf1GDjowBlrmCpKMrJWYyXaAHKiCZ5j2JBm6FRsp63XYYE/AUORRCyS1QLKg6uMJ0MIjqPbjBWtfbwEE0pFSBZ6URAMVdK5Q45Nm37O8F/H/TdAdo7+u1wuqSXvDeM5G+G1Ltps/fz4rVqzAG5zBQElz8MEHc+2113LooYey29xpxLlim2l9RJ5kIk6JfI8VK1aw2267EXfJWa5utnnlK19JlmXcfPPNvORlr6AWBiye1sc3/+tK9thjD2bNmsWSJUsYHh5GKcXiaX0opVi92jzMh4aGeP3rX89ll122zn2WNopWeqq3Pq1iCHhJrthuu+34whe+wCWXXMKKFSsKYRqAF88aLL4TBAFp3knDX3zxxbzqVa+asr1Wq0W5XOYnP/lJQVbrhlu3H5bxuiJ8z/M4+uijufDCC1m6dGmR7gf43//9X2666Sb+8pe/4Hkev/nNb6ak/CcmJojjmMWzzb6uWrWK6dOnMzHZ4JGHHmPhwvmAiZaXL1/O1ltvRY5HEFYA4zCsWrXKzorvfL/7HGZxhud5U86hOxbPD4psQRDYv6V138arV69Gej5hSUzZjnMIfftgHh01jl33dqSUICXTp0/n7rvvNsJF5TJLlz5Bf39/Z9v2b1Obc3jOOedw9tln88c//pF3vetdDA4OcuARR/HgSH2d+9jD3w6dZnilEAIfkWboXKHbCV6lhIwCtCcJBHho8iS3A6Y0eZLZ0bd+YeiFbaPTuTKkuloFvHUPYKr4koHQBBeeEMwueyxrZjSydcynoDPMbTJVpksPs9py4JH3l1GZ2W812TKZuCiA0NzTvah/E9CL8DcZz9kIf9h63q95zWv4wx/+wEApYHm9xXvf+15++MMfcu6551Ju15klUq76f1fw2c9+lgEbSf3hD3/g1a9+NSOtTl/70vEmQRjyf/7P/+Htb387f/zdzSyq+Fzzox/ykY98hHPOOadYdvXq1XzlK19Bqpwvf/nLLFq0qCBg/fjHP+baa68lSRKGh4e59tprN3osV155JT+99hrSyQmGh4e58MILWbhwIfPmzWPu3Lk8/vjj3HnnnaxYPjX1u7oZk+WKt7/97Zx11lk88sgjKKW4++67uf322ymXyxx33HGcdtpprFq1ijRNufXWW3nwwQcB4yz98pe/5PElS4jjeMq6P/zhD3Pvvfcya9asKe9HUcTY2BgrVqxg9erVfOYzn5nyeZZlnHvuuYg849vf/jZJkvCSl7yEhx57nEeXLuPOu+4lTVPe+ta38uEPf5jly1cwbfp0/vTnOwA49thjueCCC1i+fDmPPvoYX/7ylzn22GOnbCMs+VZit4MFCxbwhz/8gYceeqjIqDjEjanH5nDFFVdwzz33MD4+wfnnn8/RRx8NwC677MIPfvADRkdH+eMf/8iVV15ZfGf+/PnccccdPPjggwwPD3PIIYdwww038Otf/5pWq80555zDscceu9aDuBSVWblyJTfddBNKKXbaaSdmzZpFnvc01J8pyGrJjKFttNFSImtlM6wmy8jbRuo5bSW0WgntOCVttMnqLXSWm/R9rYzwvY6xVxo10URWIqPLb6+xFKbLx8lDTKaKla2c1W1FK9eMJ6q4X63+VIFuU6Mwom/a/m1mmkCaiZiiWkL2VyH0Uc0YNd4wZYWesdo48nzjrx6A53CEnynF8nqLk046iY985CO85z3v4a8rx9l1y6247bbb+PKXv8zrX/96wNRqXR39vvvuw/M8dt11V25ZsqpYXzvL+cvyUc466ywWL17Mpz/96aIP/3vf+x6vfvWradqswq677sro6CgvfelLWbx4MVdffTWZ0sydN4/rr7+e8847j/e///0MDg5y+OGHc8ghhzB79mx23313wMjLDg4OsueeewLGWF100UWcc845eJ7HLrvswg033ICUkjlz5nD++efziU98goGBAf7rv/6Lf/qnf6JSqTCmFH9dNc6ZZ55ZGPfR0VEWL17MRz7yEQC+8pWvcP7557PffvuRJAkvfvGL+dznPgfAF7/4RS688EKuueYaLrroIhYtWlSUEZK4xbShASbqdcIwZP/99wfgRS96Ee973/s44IADGBwc5NRTT+VnP/tZcR4dE/7lL3858+fP58c//jFprlg21qB/7iKUznnk0cc4/fTT0Vpz5JFH0m632W+//dhzzz054YQTGBkZ4aCDDqJcLnPWWWdx8MEHA6aMMX/+/EITf/vtt6e/vx+Ad7zjHXziE5/g3/7t3zjuuON4yUteUpzfUjWa8n13HB/+8If50Ic+xGOPPcbhhx/Ou9/9bpTKefOb38ztt9/Oq171KnbffXc+/OEPF+WcI488krvuuoszzzyTfffdl3/7t3/jyiuv5JOf/CSrVq1in332KZyg2bNns9tuuwEQCPNA/9rXvsa//uu/EkURBx10EG9+85u5a+X43/lr6GFNCCGgFOJFgbGg0ihAyL6KGUucpMboC2E+C3xEKUSGfiHBq8Gk0bPckOiSFFEKIerI35alwB8eMwOQfI92tUIuJa12xqO5pjESk0w2GZw+SK4VvtYQJySVskv1ITHkQSWkqd8rVcyAiAKPSGvqKaaOXwrRUQB5jmrEho9QK/ci/Q2hF+FvMoR+jrmQ4+PjDA4O8rWf38K28+fyz9sv4sADD+Rzn/sc0xdtzR8eXcZuW8xmq+mDU7432mwzVCnx7ne/mwMOOIDXv+Egvvene9eq3mw9Y5Bd5s9koNwh1qysN/jz4yvYcvoA9ccf4V3vehe333578fmKiQa/fmAJpcDnFVvNY1Zfdco6J+OEUuDjS8kjw2Pcv2KEfbZbRGh5Bm7fuvHk+CS3PvIEs/uqvGzR3GJZh3aaccNfH2G02WbHuTN4yYLZBF315maScsvDTzC3v8qL582c8t3hRos7l65kp3kzmLnGvgI8vmqYxugqapGP9ANmzp5P4PukScKykTG2mDNrre+AaUN79atfzZIlS4r3RhotfvXAEiYmW+imIUiFnuSlW8xiu60XTnlQNRt10jRhYLCTwtdaMzayijAqUa31o7VidHglWsC0abMBqI+P4AcBlWr/WvvUbjcZXrmMwaEZVPsGCma29NYmW02MjbDqyeXMWjCPvv7BtT8fH0EKSa3rszSJ7RjgTl12sj5OkrQZGpqJkJJmo87dS5ax9YIFTO+rTFnnX55cxZ+WLF/n+ezhGYIVQSpG13VF3+7fWmt0M0anmSHmeR7Cl0ahr+ue9QSUJ+r4QDwygV8K0bkmiWOCLeeTrxjGm6gzb8u5rB6eIBeSNI6pDA2QpykqMXX5PE3xyxHlWpX66lHCSoQol9DT+slyxeQa5YCKb8b1tsfbJgNQDjdLo99qTHLKvqZzxTnVTxcmJiYYGBhg3/nvxpfRepfLVMzPn/gPxsfHiwDihYrnXIRfr5ta5yn7vhKA3/zmN1xxxRWkacqj9/+VN9qobnBwkB122AEhBPfeey9bbrklf/rTnzjjjDPYfvvtOe644/jud7+73u3suOOOTJ8+naVLl/LII48AJjrbY489imVOPfVUrrvuOh599NEp391iiy3Ycsstqdfr3HPPPcRxTLVapVKpsGqVySqUSiUGBgZYscIQymbOnMm2225LlmU8+uijaxHrhoaGiKKIFStWMHv2bEZGRgpiGFBkLWq1GkuWLJmyT+VymV122YUgCHjwwQdZvnz5lM8GBwcZHR0lDEOCIGB4eHjKtoMgYMaMGaxYsQKlFP39/ey44440m00eeOABBgYGOPXUUwtmOsDHPvYxrrjiiqJ8sC5EUcSuu+5KEATce++9xXZLpRIveclLaDab/PWvfy2yDtOnTyeOYyYnJ4tzopRifHy8OAczZswgjmPiOKa/v784v2t+f9q0aWRZxuzZs5kxYwZ33XVXcW8BzJo1i2233ZbHH3+ciQnTI+9KBVJKZsyYQZZlBfFyp512olar8de//rXYn2q1SrlcZvXqjqLjnDlz2GabbYjjmPvuu2/KNnvo4YWKer3+tBv8AkqzQXWdZ0gyfXPEcy7CV0rx5JNP0tfXZ5SyhCAMTXSVpukUgtma8H0fz05TW5MBvykIgoAoisjzHM/zCsPzQsLExAQLFy7k8ccfn+IN+75PuVwmTVOCIGBycvJ5V19c37G/UPBCPv4X8rHDM3f8Wmvq9Trz5s0rSM1PF4oIf8478eX6O2EylfDz5Zf2InyegxG+lJIFCxas87MoWn/aZk2Uy+WNL7QONJtN3vve9/L5z3/+BX1z9Pf3r/P4nfPV19f3j96lfxjWd+wvFLyQj/+FfOzwzBz/MxbZOyjFhiP8nvCOw3OWpf9sIcsyLrnkkudd9NpDDz308LyEUht/9QA8ByP8HnrooYceethkqI2I6/Rq+AV6Bn8NRFHExz72sadUPng+4YV8/C/kY4cX9vG/kI8dNu/j11qh9fqj+A199kLDc46010MPPfTQQw8bgyPtvW7gBHyxAdKeTrhp/PIeaY9ehN9DDz300MPmDKVAbCCK70X4BXoGv4ceeuihh80XGxuQ00tiF+gZ/B566KGHHjZb6DxHi/Xr5Wvd09J36Bn8HnrooYceNl8oDaIX4W8Kega/hx566KGHzRd6I9K6PYNf4AUlvNNsNp/tXXhWseZY2RcSXujXvocenq/QSm/01YPBCyLCv/fee3n/+99PGIZstdVW/Mu//As77LDDs71b/zDcd999nH766WRZxqJFi3jzm9/Mvvvu+2zv1j8EL/Rrv3TpUq6++mq23XZbdt55ZxYuXIjWerOcvPa34IV+/E888QQ///nPWbx4MTvvvDP9/f3Pu+M3Nfz1x669Gn4Hz/sI/9e//jV7770306ZN42Uvexnf//73OfHEE/nNb34DsMFhPM8H/OlPf2KfffZhwYIFHH/88dx333287W1v49prr322d+0Zxwv92p9//vlss802fP/73+ekk07i4IMP5rbbbntePew3hBf68X/yk59k66235tJLL+X1r389J5xwAvfcc8/z7vgzHZOpDbx0/Gzv4nMH+nmOM888Ux9xxBFaKaW11vqee+7RRx11lF68ePGzvGf/GJx77rn6Na95jW42m1prrVeuXKlPOeUUPXPmTP3EE088y3v3zOKFfO1XrFihd955Z33ZZZdprbX+/e9/r4877ji9cOFCff/99z/Le/fM44V+/Pfff7/ecccd9VVXXaW11vqaa67R+++/v95pp510mqbP8t49PWi1WnrOnDmuJ2+Drzlz5uhWq/Vs7/KzjudthK8tUePBBx8kCILCq33Ri17Ehz/8YcbGxvjEJz4BPL8jvfvvvx8hRDE9cObMmXz6059mYGCgOH79PCW1vJCu/ZrX8Be/+AXLli3j4IMPBuBlL3sZ3/jGN5BScu6551Kv15+N3fyH4YV4/N3jvH/6058yOjrKG9/4RgAOOeQQLrroIpYtW8bHP/7xZ2kPn16USiUeeeQRxsfHN/p65JFHKJVKz/YuP+t43hj8ZcuW8Z3vfIff/e53jIyMIIQgSRK22GILGo0GTz75ZLHsTjvtxHvf+14uvPBCms3m0z6n+dnAihUrePDBBwHI807N6sUvfjFjY2M88MADgDFw06ZN4xOf+ATf+MY3WLZs2Waf4lu6dCkXXXQR1113HY8//jgAcRy/YK795OQko6OjU97baqutGBsbKwxbkiSUy2W+/OUv89///d/ceeedz8auPiMYGxvjtttuK649wJZbbvmCOf7h4WGOOuoo3v72txfvbbHFFqRpyvDwMGB+99tvvz2f+MQn+OIXv8iyZcuerd19WlEqlYqRvht69Yy9web/tAPOOusstttuOy655BL23Xdf3vnOd/LAAw8QhiE777wzS5Ys4bbbbiuW932f/fffnwULFvDf//3fz+KePz0499xzmTdvXvGD9zyviFx32GEHSqUSP/7xjwGQUqK1Zt999+VFL3oRl1xyybO2338PXES7rjrt7373O6IoYrfdduPRRx99Xl/7j3zkI+y6664cfvjhvOlNb+K+++4DYHBwkJe//OVcfPHFAIRhiNaaQw45hN13353//M//BDb/DMdHP/pRtttuO971rnex0047cdVVVwFmBvuee+75vD/+D37wg8ydO5ebbrqJW265hYmJCQCq1SrbbLMN3/nOdwAKx/Ytb3kL8+bN40tf+hKw+R9/D08Nm7XBHx0d5R3veAe//e1vue6667j++uv55je/ydjYGF//+tcBeNe73kUURVx99dVFBAyw9dZbk2UZYbj+oQvPdSRJwoc+9CGuvfZa3vzmNzM2NsZll10GdH7IBx98MIsWLeKGG27gD3/4AwBCCPr6+hgaGkJrvVmm9IUQrFy5kv/+7//m0ksv5Ve/+hXXXXcdL37xizn66KNZsmQJb3/726lUKnzve997Xl77E044geuuu45LLrmEd7zjHUxMTLD//vtz5513su222/KKV7yC3/72t/zxj38EIMsyAI4//nh+//vf02g0NtsMR57nvPvd7+baa6/l6quv5qqrruLYY4/lAx/4AGCu8R577MHNN9/8vDz+b37zm8yYMYPrrruOX//613zta1+jVquxfPlyAPbee+/CEbj//vsB4yT39/dz2GGH8Ze//IUkSTbb4+/hb8NmfbVXr16NEIIPfvCDvPrVryaKIo455hhqtRpJkhRG78Mf/jB//vOfufTSS4vvxnFMlmUMDg4+S3v/9yMMQ7bZZhtOPvlkzjnnHF7+8pfz1a9+lXq9ju/7JEkCwHve8x6azSbnnXde8V2lFCMjI2y55ZabbUp/fXVa3/c5++yzARMBPh+v/f3338+f//xnLrzwQvbdd19OPPFEvv/97zM6OsqnPvUpRkZGeMtb3kK5XOb8888HIAgCwLRpzp07lyiKNktnD0wZ55ZbbuHMM8/k1a9+Ndtuuy0nnHACM2fOZGJigiiKOPzww5+Xx7906VK+853v8JGPfIS//OUv7Lnnnuy+++7cd999hd5EuVzmxBNPZOnSpfzXf/0XYJxkIQQPPvgglUqlyHr08ALCs0IV/BuR57nWWuskSbTWWtfrdX3XXXet9fnxxx+v3/Oe90z57qc//Wm9/fbb61e/+tX6y1/+sn7Vq16lX/7yl+snn3zyH7T3fz/c8aVpWjDP3Xtaa33ttdfql770pfqcc85Z67Nvf/vbevHixXrnnXfW55xzjt577731TjvtpB944IF/4BH87VjXsd96663a93398MMPa621juNYa23Og5RS//a3v9Vaa/2pT31qs7/2a+K3v/2t9n1fj4yMFO89+uijesstt9Tz5s3Tl1xyidZa629961t6/vz5+tRTT9W33367vueee/QrXvEK/fGPf/zZ2vWnBUuXLtVCCH3llVcW7+277776yCOP1F/96lf12NiY1lrryy+/XM+bN+95dfxKKZ1l2ZT/fuihh/SLX/xi/cUvfnHKsh/96Ef1Nttsoz/xiU/oJUuW6DvvvFPvscce+uKLL/4H73UPzwVsNgb/4x//uH7DG95Q/Ld76Ds4g5Blmd5yyy31t7/9ba11xwjEcaxvvfVWffzxx+t99tlHn3LKKYXjsDlgzeNfFyYmJvTZZ5+td9xxR33PPfdorfWUY3zwwQf1v/3bv+lDDz1Un3766cW5ea5jfcd+zz336L333lu///3vL95z98XLX/5y/eY3v1lrrXWj0disr/26cOedd+rddtttimN79tln63e/+916r7320vvuu6/WWutms6mvueYavWjRIr3DDjvogYEBffzxx2/WLUrut/72t79dz5kzRx9yyCE6iiL9qle9Sp955pl6iy220K997Wv1rbfeqrXW+oc//OHz6vjXhYmJCb3ddtvpc889V2vd+d2vXr1aX3LJJbqvr0/vvPPOulqt6hNPPFG32+1nc3d7eJbwnDf49957rz7ssMP0zJkztRBC/9//+3+11nqKh9uNu+66S2+xxRb6vvvuW+86N6cf+/qOf81eWmfobrnlFr3PPvvoE044ofhsTeO2uRi79R272/8kSfSZZ56p99prL/373/9+ymdf+tKX9Ite9CJdr9enrHNzuvYbQqvV0t/85jd1EAT6Fa94hZ4+fbqeN2+efvTRR/UvfvEL7fu+npiYKJYfHh7Wf/7znzebjM6G0P3bf/jhh/Xhhx+uTz/99OK91atX6x122EFfeOGFhXPwfDr+9QU7Rx11lN5///3X+Z3HHntM//rXv9Z//etfn/H96+G5i+d8Df+OO+6gUqnw9a9/nVNPPZWPfOQjKKXwPG+d9ae7776bOXPmsN122wGmH/Vzn/vclGU2pxaN9R2/7/tTjt/V4ffcc08OPfRQ/vjHP/LjH/+Y7373u7zzne+c0qrnapnPdazv2IMgIMsygiDgiCOOoFKpcMEFFwCdY7v33nuZO3cupVJpChN5c7r264IjnpVKJd761rdy8803c/LJJ/O1r32NJ554gkWLFv3/9u49pub/jwP489OptKjvcVwSzhFHbnNPbU2uK/cRxh/6I5cYG9mMYsydDTNshhmL4Q/DYsNmwiEhYeKPjjlx5lASW3Eac6rX7w/r/M5RKDrndPo8H1tb53xur9cpe57P+/3OwadPn9C7d2+3z07Q6XQYOnQoevfu7aPKm0d1dTU0Go3zcUhICMxmMxYuXAgAcDgc6NChAzQaDYqKipyL0lpT/z+vuQkICEBNTQ169uwJu92O8vLyescZDAaMGjVKVf+tNDXA1+84fqXuXWxlZaUUFBSIiEhBQYEYjUbJyMgQkYbv8lNSUiQzM1PKysokMTFRgoKCnMNc/uRv+q875sWLFzJmzBhRFEWCg4Nl/fr1Xqz83zWmd9cRjqysLOnevXurmqf9mWu/379/l1WrVv3ybjU9PV2mT5/urdK8wrV/h8Ph7L+iokK0Wq2cPn3auf3BgwcSExMjV65c8UWpHvGr/kX+/+9l3759EhUV1WpGsaj5tdjAb4jdbpddu3bJf//9J1arVUTcQ6+8vFwMBoNERUVJUFCQzJ49WyorK31VbrP7U/8iIiUlJbJgwQJRFEWWLVtWb0jbXzXUu+v6jNY2T12nurrabQh33759Eh4eLkajUSwWi/P54uJiKS4uljVr1kjXrl0lOztbROoP//qbX/Xfq1cvefXqlVRVVUlGRoYoiiKpqamydOlS0Wq1snjxYtX8/Ou2P378WBRFkfz8fJ/USi1fiw5811/0uu/NZrOMHDlSZs6cWW9/q9UqBoNBEhIS5MmTJ16r01Oa2r+IyIkTJ2T06NHy6NEjr9ToKU3pvW77x48fW808rYj7m7mcnBwxGo0SEREhx44dq7eG48yZMzJw4EAZNGiQ868T/F1j+6+trZVt27ZJWlqazJkzR3X917lx44akpKSIzWbzZpnkR1ps4P/qAx4cDoecPn1awsPD5ebNmyIiYjKZpKKiQqqqqqSwsNCbZXpMU/q/ffu2vH//XkT8/45O5O97b43evHkjkyZNkqCgIFm9erV8+vTJbXvdz7uqqkru3bvnixI9qrH9i7j/GWpr8af+iZqixQX+7+aq6pSUlMi8efMkOjpaJkyYIIqiOFdp+7u/7b9urtufqbn3hpw7d04CAwNl6tSpqlxdzf7V3T81vxazSr+mpgYigsDAQADA/v370aFDB1y6dKneqtSamhqUl5fDYrFAp9OhpKQEsbGxvii72fxr/yNGjPBF2c1Czb3/zvDhw3Hnzh1cvnxZlaur2b+6+ycP8PEbDhFp2lxVUVGRxMTEiNFolPv373u7VI9Qc/9q7p2IyJtaROCLNH6uqqqqSm7duuXd4rxAzf2ruXciIm9pEUP658+fR69evaDRaPDs2TPs2bMHOp2uwX1DQ0MxduxY7xboYWruX829ExF5kyLi+49LevXqFcrKyhAfH+/rUnxCzf2ruXciIm9qEYFPREREntUihvSJiIjIsxj4REREKsDAJyIiUgEGPhERkQow8ImIiFSAgU9ERKQCDHwiIiIVYOATERGpAAOfiIhIBRj4REREKsDAJ/IBq9UKRVHw9OlTj5xfURRcvHjRI+cmIv/EwCdVmj9/PpKTk312fb1ej9LSUgwcOBAAYDKZoCgKKioqfFYTEbVugb4ugEiNNBoNunTp4usyiEhFeIdP9JPbt28jLi4Obdq0QWRkJNauXYvq6mrn9rFjxyI9PR0ZGRnQ6XTo0qULNm/e7HYOs9mMhIQEhISEYMCAAcjJyXEbZncd0rdarRg3bhwAoH379lAUBfPnzwcAREVFYf/+/W7nHjp0qNv1Xr58idGjRzuvdf369Xo92Ww2zJ07F1qtFjqdDjNmzIDVav3Xl4qI/AgDn8jFu3fvMGXKFMTGxqKwsBCHDx/G8ePHsX37drf9Tp48ibZt2yI/Px+7d+/G1q1bnUFbU1OD5ORkhIaGIj8/H0ePHsX69et/eU29Xo8LFy4AAF68eIHS0lIcOHCgUfXW1tZi1qxZCA4ORn5+Po4cOYLMzEy3fRwOByZOnIiwsDDk5uYiLy8P7dq1w6RJk/D9+/emvDxE5Mc4pE/k4tChQ9Dr9Th48CAURUG/fv1QUlKCzMxMbNy4EQEBP94jDx48GJs2bQIAREdH4+DBg7hx4waSkpJw/fp1FBcXw2QyOYftd+zYgaSkpAavqdFooNPpAACdO3eGVqttdL05OTkwm824du0aunbtCgDYuXMnJk+e7Nzn7NmzqK2txbFjx6AoCgAgKysLWq0WJpMJEyZMaNqLRER+iYFP5KKoqAjx8fHOYASAkSNHwm634+3btzAYDAB+BL6ryMhIfPjwAcCPu3S9Xu82Rx8XF+exevV6vTPsASA+Pt5tn8LCQlgsFoSFhbk9/+3bNxQXF3ukLiJqeRj4RH8hKCjI7bGiKKitrW326wQEBEBE3J5zOBxNOofdbkdMTAzOnDlTb1unTp3+qT4i8h8MfCIX/fv3x4ULFyAizrv8vLw8hIWFoXv37o06R9++fWGz2VBWVoaIiAgAQEFBwW+PCQ4OBvBj/t9Vp06dUFpa6nz8+fNnvH792q1em82G0tJSREZGAgAePHjgdo7hw4fj7Nmz6Ny5M8LDwxvVAxG1Ply0R6pVWVmJp0+fun0tWbIENpsNK1asgNlsxqVLl7Bp0yasWrXKOX//J0lJSTAajUhNTcWzZ8+Ql5eHDRs2AIDbVIGrHj16QFEUXL58GeXl5bDb7QCA8ePH49SpU8jNzcXz58+RmpoKjUbjPC4xMRF9+vRBamoqCgsLkZubW2+BYEpKCjp27IgZM2YgNzcXr1+/hslkQnp6Ot6+ffs3Lx0R+SEGPqmWyWTCsGHD3L62bduGq1ev4uHDhxgyZAiWLl2KRYsWOQO7MTQaDS5evAi73Y7Y2FikpaU5QzgkJKTBY7p164YtW7Zg7dq1iIiIwPLlywEA69atw5gxYzBt2jRMnToVycnJMBqNzuMCAgKQnZ2Nr1+/Ii4uDmlpadixY4fbuUNDQ3Hnzh0YDAbMmjUL/fv3x6JFi/Dt2zfe8ROpiCI/TxASUbPLy8tDQkICLBaLW2ATEXkLA5/IA7Kzs9GuXTtER0fDYrFg5cqVaN++Pe7evevr0ohIpbhoj8gDvnz5gszMTLx58wYdO3ZEYmIi9u7d6+uyiEjFeIdPRESkAly0R0REpAIMfCIiIhVg4BMREakAA5+IiEgFGPhEREQqwMAnIiJSAQY+ERGRCjDwiYiIVICBT0REpAL/A3b3dt247n2yAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement.data = xr.where(\n", + " (agreement < np.nanquantile(agreement.values, 0.0001)) | \n", + " (agreement > np.nanquantile(agreement.values, 0.9999)), \n", + " np.nan, \n", + " agreement\n", + ")\n", + "agreement.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "a3759b13", + "metadata": {}, + "source": [ + "#### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "7f9da249", + "metadata": {}, + "source": [ + "A metric table contains information about the unit of analysis, (a single band in this case), and selected continuous metrics. Since we did not provide the metrics argument GVAL computed all of the available continuous statistics. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "cb56e8bf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
coefficient_of_determination0.685261
mean_absolute_error216.089706
mean_absolute_percentage_error0.319234
mean_normalized_mean_absolute_error0.267845
mean_normalized_root_mean_squared_error0.372578
mean_percentage_error0.010022
mean_signed_error8.085411
mean_squared_error90351.664062
range_normalized_mean_absolute_error0.033065
range_normalized_root_mean_squared_error0.045995
root_mean_squared_error300.585541
symmetric_mean_absolute_percentage_error0.269394
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "coefficient_of_determination 0.685261\n", + "mean_absolute_error 216.089706\n", + "mean_absolute_percentage_error 0.319234\n", + "mean_normalized_mean_absolute_error 0.267845\n", + "mean_normalized_root_mean_squared_error 0.372578\n", + "mean_percentage_error 0.010022\n", + "mean_signed_error 8.085411\n", + "mean_squared_error 90351.664062\n", + "range_normalized_mean_absolute_error 0.033065\n", + "range_normalized_root_mean_squared_error 0.045995\n", + "root_mean_squared_error 300.585541\n", + "symmetric_mean_absolute_percentage_error 0.269394" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "ad610371", + "metadata": {}, + "source": [ + "## Alternative Uses of GVAL Continuous Operations" + ] + }, + { + "cell_type": "markdown", + "id": "247d5d33", + "metadata": {}, + "source": [ + "Aside form running the entire process, it is possible to run each of the following steps individually: homogenizing maps, computing an agreement map. This allows for flexibility in workflows so that a user may use as much or as little functionality as needed." + ] + }, + { + "cell_type": "markdown", + "id": "0789693a", + "metadata": {}, + "source": [ + "### Homogenize Maps" + ] + }, + { + "cell_type": "markdown", + "id": "1cf6aa4d", + "metadata": {}, + "source": [ + "Just like in continuous comparisons, homogenizing can be done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f22f9ceb", + "metadata": {}, + "outputs": [], + "source": [ + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "51129e9e", + "metadata": {}, + "source": [ + "### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "b430629f", + "metadata": {}, + "source": [ + "The \"difference\" comparison function is the default used for the `comparison_function` argument in `gval.continuous_compare` and is the only continuous comparison function available by default. It would be advised not to use a categorical comparison function such as 'cantor', 'szudzik', or a pairing dicitonary because it could result in a very large number of classes." + ] + }, + { + "cell_type": "markdown", + "id": "9900e890", + "metadata": {}, + "source": [ + "Using difference in comparison:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "c47e812a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAEyCAYAAAAfsGLXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wvRX3//5yZLZ92yq1cem9iQRAVsIAiKGDjYsESbMlPBY0agyYPY0uM3xAeGoPdKBgLqIkVEESNvcQSBRVRbPTLbad92u7OvH9/zOx+Pp9zzm0IivJ58Tjcc3ZnZ2dnZ+fd328lIsIYY4wxxhhjjPFnDf3HHsAYY4wxxhhjjHH3Y0zwxxhjjDHGGONegDHBH2OMMcYYY4x7AcYEf4wxxhhjjDHuBRgT/DHGGGOMMca4F2BM8McYY4wxxhjjXoAxwR9jjDHGGGOMewHGBH+MMcYYY4wx7gUYE/wxxhhjjDHGuBdgTPD/jPC///u/KKVQSvHGN77xjz2cMe5CPOc5z6ne7f/3//1/22zX7/dZuXJl1fYrX/nKH26Qu4jnPe95NJtN7rjjjpHj5di39/Oc5zxn5Jr99ttvSZvJyUmOOeYYLrjgArIsW3L/fr/PW9/6Vo499limpqZIkoTdd9+dBz3oQbzkJS/h8ssv3+bYt2zZwj//8z/ziEc8grVr1xLHMVNTUxx55JG86EUv4stf/vLvPT+bN29m7dq1KKU46KCDlm3z2c9+lrPPPpv73e9+rF69mjiOWbt2LaeeeiqXXXbZstf8/Oc/51/+5V848cQTq2vWrVvHGWecwde//vUdjuvHP/4xz372s9lrr71I05TddtuNE044gYsuumikXbfbZffdd+fUU0/d9Ycf4+6BjPFng3PPPVcAAeSQQw75Yw9njEV43eteJ4BcdNFFu3zt2WefXb3bFStWSL/fX7bdf//3f1ftAPmf//mf32/QdxOuueYa0VrL3/7t3y45V4797LPP3ubP+973vpFr9t13XwFk/fr1cvbZZ8tf/MVfyCMe8QiJ41gAecQjHjEyZ1u3bpWjjjpKAInjWB7xiEfI05/+dDn99NNl9913F0AOPfTQZcf+yU9+UiYnJwWQVqslj370o+Wss86SJzzhCXLwwQdX4z/11FN/rzk6++yzRSklgBx44IHLtlm/fr0opeS+972vnHrqqfK0pz1NHvKQh1Rj+Lu/+7sl1+y5557V2E866SR56lOfKve9730FEKWUvPWtb93mmN73vvdJFEVijJHjjz9env70p8uJJ54oK1askEc/+tFL2r/lLW8RQL70pS/d6XkY467DmOD/mSDLMlm9erUAsm7dOgHkO9/5zh97WGMM4a4g+A984AMFkE996lPLtnvyk58sxhh5wAMecI8m+E94whMkjmPZsGHDknMlsdoVlAT/N7/5zcjx//u//5OpqSkB5MILL6yOv+QlLxFAjjzySLn55puX9Pfd735X3vCGNyw5/rnPfU6UUhJFkZx//vnS6/WWtLnuuuvk7LPPloMPPniXnmEYX/ziFwWQv/qrv9ouwf/hD38omzZtWnL8O9/5jrRaLVFKyTXXXDNy7tGPfrT853/+p3S73ZHj7373uwUQY4z89Kc/XdLnl770JVFKyUEHHSQ/+9nPRs71+3354Q9/uOSaTqcj09PT8uAHP3iHzzzG3Y8xwf8zwWc/+1kB5Pjjj5c3vvGNAsg555zzxx7WGEO4Kwj++eefL1prOfPMM5e02bp1q6RpKieffLKccsop91iCf+ONN4rWWk4//fRlz9+VBF9E5A1veIMAIxLoHnvsIYBcffXVO32P+fn5iqn+0Ic+tMP23//+93e672F0Oh058MAD5T73uY/84he/2C7B3x6e//znCyBve9vbdvqak08+WQB5/etfv+Tcfe5zH9FaL2EgdnYcyzEEY/xhMbbh/5ngwx/+MADPetazeNazngXAxz72MfI83+Y111xzDY9//OOZnp5mYmKCRzziEVx99dV85StfWdZOWtqRv/KVr3DVVVdx4oknMj09jVKKmZmZqt2VV17Jaaedxpo1a0jTlAMOOIBXvOIVbN68edlxiAiXXHIJj3rUo1ixYgW1Wo3DDz+c17/+9XQ6nSXtTzjhBJRS/Pa3v+VjH/sYxxxzDI1Ggz333JPzzjuvstf+6le/4qyzzmLt2rU0Gg1OPPFErrnmmm3Ox66Me3guvva1r/GoRz2KiYkJJicnOe200/jZz3420n6//fbjDW94AwDPfe5zR2zNu2Jn33333XnUox7FZZddxuzs7Mi5j3/84/T7/er9L4cf/ehHnHfeeRx99NEjz/niF7+YW2+9dUn73/72tyilOOGEE5ibm+Ov//qv2Xvvvat39Na3vhXn3E6PH+ADH/gAzjnOOuusXbruzuKBD3wgADfddFN1bOPGjQCsWbNmp/u5+OKL2bRpE8cdd9x257jE0UcfvYsj9XjDG97Ar3/9a9797ncTx/Gd6gOork2SZKevecADHgCwZC1885vf5Gc/+xknnHAC97vf/XZpHM94xjMAeO9737tL141xN+CPzXGM8ftjZmZGarWaJEkimzdvFhGR4447TgD57Gc/u+w13/rWt6TRaAgg97///eXpT3+6HHPMMaK1rtSdZ5999sg1pZT5l3/5l6KUkmOOOaa6bmZmRkREXvWqVwkgSZLI8ccfL2eeeWZl1zzwwAPl9ttvH+nTWitnnXVWZVM84YQT5MlPfrLsvffeAsiDH/xg6XQ6I9c88pGPFEBe9rKXSRRFctJJJ8mTn/zkSvr6i7/4C/nFL34hq1evlsMOO0ye9rSnyf3udz8BZOXKlUvGcGfGXc7FK17xCjHGyEMe8hB56lOfKocccogAsmrVKrntttuq9n/zN39TqdmPP/74EXv0ddddt8N3XN7vQx/6kFx00UUCyPvf//6RNo94xCOk0WjI/Pz8NiX8pz3taRJFkRx11FHypCc9SZ70pCfJfvvtJ4Dsvvvucsstt4y0/81vfiOAPPShD5Wjjz5apqen5YwzzpDTTz9d6vX6sutkR3jQgx4kwJJ7leAulvA/8pGPCCD3u9/9qmMHHHCAAPLCF75QnHM7dY9TTz11iWlgV1FqebY1Zz/+8Y8liiJ53vOeJyKD+d9VCf+aa66RFStWSBzHcsMNN+z0devXrxdAXvva144cL7WGr3nNa6TT6cgHPvABOeecc+SlL32pfPCDH1zyjQ6j2+1KHMey995779IzjHHXY0zw/wzwH//xHwLIE5/4xOrYO9/5TgHkKU95ypL21tqKML3pTW9atq/tEXxALr300iX9fvzjHxdA7nvf+8ovf/nL6rhzTl772tcKIE972tNGrjn//PMFkBNOOGGEQPb7/UoV+KpXvWrkmpLgt1ot+d73vlcdv+2222S33XYTpZQcfvjh8upXv7razJ1z8uxnP3vZzezOjLucC631iD29KIpq0/yHf/iHkWvuCpX+hz70IZmbm5N6vS4nnnhidf53v/udKKXkrLPOEhHZJsH/8pe/vCzTVaq9n/vc546cKwlOyRhu3LixOnfDDTdUqvFt+RQsxvz8vBhjZI899thmm7ua4D/96U8XQJ75zGdWx9785jdX9znssMPk1a9+tXzqU5+Sm266aZv3KJ3dvvGNb+zS2IaxPYJvrZVjjjlGVq9eXdnld5bgf/azn5Wzzz5bnvGMZ8jDHvYw0VpLmqZy8cUX7/TYbrjhBknTVIAl5ohyDv/+7/9eDj300BHHUED22Wef7ar6jz76aAHk17/+9U6PZ4y7HmOC/2eAkgB+4hOfqI5t2rRJ4jiWWq1WSd8lrr76agHk4IMPFmvtkv6OP/747RL80047bdlxlBLstddeu+Scc06OPPJIMcZURCPPc1m9erU0m81lpe5OpyPr1q2TFStWjIyzfN7XvOY1S655+ctfLoAccMABkmXZyLkf//jHAsgjH/nI32vcw3MxTERKfP/731/2PncVwRcReepTnypa68rh7J//+Z8FkMsvv1xEtk3wt4c999xTVq1aNXJsmOB/4QtfWHLNu971riX28e3hu9/9rgAjzMpiLCYmy/0sZjAWE3znnPz2t7+tNDdKKfna175WtbfWynnnnVd58Q//HHHEEfKud71rybdRq9UEkJ///OdLxrxly5ZlowkWa28uvPBCOfTQQ+XVr371kj7+7d/+bcn62FmC/4//+I8jz1Cv1+W9733vst/3csjzXB72sIcty9yKDNZTFEWy1157yRVXXCGzs7Ny7bXXymMe8xgBZN9995V2u71s/8985jMFkE9+8pM7NZ4x7h6MCf6fOErJbnp6eonH8BOf+EQBloQwvf71rxdg2U1HROTf//3ft0vw3/Oe9yy5ZsOGDRUTsS2cc845AsiVV14pIoPN/zGPecw2rznttNOWbLIlwR/ewEtceOGFAlQq0WHMz88LjIYs3plxiwzm4oMf/OCS9nNzc0vuI3LXEvzSSfP8888XEZEjjjhC1q5dK3mei8j2Cf6mTZvkAx/4gLziFa+Q5z3veRVxWrt2rQCVWUhkQHBWrly57LhmZmYqArMzxOVzn/ucAHLGGWdss82whmlbPz/4wQ9GrikJ/nI/SZLIO9/5zmXvdcstt8jb3vY2Wb9+veyzzz4j1z3pSU8aeabtEfybbrpp2XvvLMP1u9/9Tlqt1hImcVdV+t1uV6699lp58YtfLICcfvrp2wzhHMaLXvSiilEefv8lSqIOyHe/+92Rc71eT/baay8B5L3vfe+y/ZdmwuX2jjH+cIgY408aH/nIRxARzjzzTNI0HTn3rGc9i8985jN8+MMf5gUveEF1/LbbbgNg7733XrbPffbZZ7v3XO78b3/7WwB++ctfopTa7vWbNm0auebqq6/eqWsOPfTQkWN77rnnknatVmuH5/r9/u817mHstddeS45NTEwsuc9djcc+9rGsWrWKj3zkI5x00kn89Kc/5SUveQlRtP1P+pJLLuGv/uqvWFhY2Gab+fl5Vq5cOXJs3333Xbbt1NQU09PTzMzMsHXrVlatWrXd+5eOhuUcbQ8XX3zxDtssxvr162m1WiilaLVaHHbYYTz5yU9mjz32WLb9HnvswUtf+lJe+tKXAnDddddxwQUX8IEPfIBPf/rTXHLJJTzzmc8EYNWqVdxyyy3LrsW99toLEan+fuxjH8tVV1210+M+55xzyLKMd7/73bv6yCOo1Wrc97735R3veAfGGC688EIuvPBC/uZv/mab17zpTW/iXe96F7vtthtXXXXVkncPg2/nPve5Dw9+8INHzqVpyjOe8QzOP/98vvrVr/KXf/mXS66fnJwEGHHuHeMPjzHB/xPHhz70IQC+8pWv8LCHPWzkXOmt/rWvfY3f/e5329y0dxW1Wm3JsdJTe926dZxyyinbvb4cR3nNQQcdxPHHH7/da5YjJFpvO8hke+eGcWfGfWfuc1cjjmOe+tSn8q53vYu///u/B9ih5/jvfve7KvLi3/7t3zjttNPYc889qdfrABx33HF8+9vfHiFcdzWmpqYAz1TcHbjgggvYb7/97vT1hx9+OO9///vZunUrn/rUp7j88ssrgv+ABzyAW265hf/7v//b4XrdVVx22WVMT0/zwhe+cOR4r9cD4JZbbuGEE04A4NJLL2XdunU77PPZz342F154IZ/5zGe2SfDf/e5385rXvIapqSmuvPLKbWb0K9f+tua2PL44a2KJktGbnp7e4bjHuPswJvh/wvjBD37AddddB8ANN9zADTfcsGw7EeEjH/lIRRh23313YDRMaRjbOr49lJLu6tWrd1oyK6857LDD7pQ0d1fgzoz7noJnPetZvOtd7+LKK6/kkEMOWSJ5LcYVV1xBlmW88pWv5K//+q+XnP/1r3+9zWtvvPHGZY/Pzc0xMzNDvV7fqc187dq1gE9Ne0/Gox71KD71qU+NaHUe97jHccUVV3DppZdy7rnn3uX3nJmZ4atf/eqy53q9XnWuZAJ2hNWrVwODEMTFuPTSSznnnHNoNBpcfvnlHHnkkdvsqwxt3Lp167Lny/dZagIWo7xuV8Igx7jrMY7D/xNGGXv/yle+EvH+GEt+yhjvsi1QSSef+tSnlpXmPv7xj+/yWPbaay8OO+wwfvazn/GLX/xip6455phjmJqa4qtf/eofjQDcmXHfWZTx0EVR3CX9HXfccTzgAQ9g1apVPO95z9th+3LTXc4M8bWvfY0NGzZs89rNmzfzpS99acnxSy+9FIBjjz0WY8wOx3DEEUcQRRHXX3/9DtvendiRFqNknodNQ895znNYtWoV3/zmN0e+p7tqPMv9/OY3vwHgwAMPrI7trAajZBAOPPDAJeeuuOIK/uIv/oIoivjUpz61Q43FqaeeShRFXHvttct+q+W9SsZgMUrBZHtMxRh3P8YE/08U1louueQSgO0mMHn4wx/OnnvuyXXXXccPfvADwEsvBx98MNdffz3nn3/+SPuLL754pwpoLId/+Id/wDnH+vXr+dGPfrTk/ObNm3nf+95X/Z2mKeeddx7z8/OcccYZy0qYt9xyS2W2uLuwq+O+syjtyHclsfvRj37Epk2beNWrXrXDtocccgjgmb92u10dv+WWW5aokpfDK1/5ypEkRL/5zW+qIk3nnHPOTo232WzywAc+kNtuu41bbrllp665O3Dcccdx0UUXjcxDicsuu6yypZ955pnV8VarxUUXXYRSiuc+97n867/+67LS9s0337xNLdnb3/52DjvsMP7u7/7u936GjRs38r73vW/Z5FRXX3015513HuATPQ3jm9/8JmeeeSYiwsc+9jFOPvnkHd5r9erVPPe5z2VhYYGXvvSlI8WIPvjBD3L11VdTq9WWJOsCr5G49tpr2Xvvvdl///138SnHuCsxVun/ieILX/gCGzZs4JBDDuGoo47aZjutNU972tN4y1vewoc+9CGOPvpotNZ88IMf5KSTTuLVr341l1xyCfe5z3341a9+xfe+9z3OOecc3vGOd+xShi7wGbV++tOf8s///M8cffTRHHnkkZVk8qtf/YprrrmGVqs14tTz6le/mp///Od86EMf4vDDD+eBD3wg+++/P1mWcf311/Ozn/2M+9///jz72c++03N1d4z7zuDkk0+mVqvx1re+lZ/85CfsscceKKX427/92yVOYHcHnvCEJ3DEEUfw/e9/v/Kb6PV6/M///A9HHnkkxx13HN/61reWvfahD30oWZZx0EEH8ahHPYo8z/nSl75Ep9PhWc96FmecccZOj+O0007je9/7Hl/5ylcq+/hyWI54lNhnn31+r4qQ1113Hc973vN48YtfzFFHHcU+++xDt9vl+uuv5+c//zkAL3zhCznttNNGrnv84x/Pf//3f/Oc5zyH8847jze+8Y085CEPYe3atczPz3PTTTdx7bXX4pzjIQ95CAcffPDI9Zs2beL666+vHGd/H7Tbbf7qr/6Kl73sZRx99NHstddetNttfvGLX1TP8PKXv5z169ePXHf66afT7XbZf//9+fSnP82nP/3pJX0/7GEPG3H0BfjXf/1XvvOd7/CRj3yEr3/96zzoQQ/ixhtv5Pvf/z7GGN773vcu6wj8zW9+kzzPl8zlGH8E/AEjAsa4C1Fmp3vd6163w7bf+973BBgJ2xIR+dGPfiSnn366TE5OSrPZlOOPP14+//nPy4c//OFlw/bK0LAdhRp99atflac85Smyxx57SBzHsmrVKrn//e8v5557rnz1q19d9prPfOYzctppp8natWsljmNZu3atHH300XLeeectCcEqw/KWS7JSZqHb1rwQ4oV/33HvaC62dZ+rrrpKjj/+eGm1WrsUurU4LG9H2FZY3pYtW+RFL3qR7LfffpKmqRxwwAHyqle9Strt9rLzWoaFPfKRj5SZmRl58YtfLHvssYckSSKHHnqoXHDBBVIUxU6NqcSNN94oxphtVpNjmfC2xT8PeMADRq7ZXuKd5fDjH/9Y/uVf/kVOPvlkOfDAA6XRaEiaprLPPvvImWeeKVdcccV2r9+8ebO86U1vkuOPP15Wr14tURTJ5OSk3Pe+95UXvOAF8sUvfnHZDH47yrS3GNsLy2u323L++efLqaeeKvvuu6/U63VJ01T2228/efrTn77dtbmjn22Nb2FhQf7+7/9eDjroIEmSRFauXCmnn376dpMRPe95zxNgyXc8xh8eSuRudMkd408SL3zhC3nPe97DpZdeytOe9rQ/9nDG+CPit7/9Lfvvvz+PfOQjdynn/47w5Cc/mcsuu4ybbrpppzzOx/jTRLfbZY899uCQQw7hu9/97h97OPd6jG3491Js2bKlikEfxsc+9jH+4z/+g+npaU4//fQ//MDGuFfgH//xH3HOccEFF/yxhzLG3Yh3v/vdzMzM8OY3v/mPPZQxGNvw77X4xS9+wbHHHsv9739/DjjgAMDbNa+//nqMMbznPe+h2Wz+kUc5xp8r7nvf+3L22Wfzrne9i/POO68K1xvjzwfdbpfzzz+fxz3ucTzqUY/6Yw9nDGCs0r+X4o477uCNb3wjX/7yl7n11ltpt9usXr2a4447jle+8pUce+yxf+whjnEPwN2l0h9jjDH+8BgT/DHGGGOMMca4F2Bswx9jjDHGGGOMewHGBH+MMcYYY4wx7gUYE/wxxhhjjDHGuBdgTPDHGGOMMcYY416AMcEfY4x7OF7/+tejlPpjD2OMMcb4E8eY4I8xRsDFF1+MUmrkZ+3atZx44ol8/vOf/2MPb4e4/vrrefnLX85xxx1HrVZDKbVscqUxxhjj3olx4p0xxliEN77xjey///6ICBs2bODiiy/m1FNP5XOf+9w9Ovvgt7/9bf793/+d+9znPhx++OHLVv4bY4wx7r0YE/wxxliExz3ucTzoQQ+q/n7+85/PbrvtxiWXXHKPJvhPeMITmJmZYWJiggsuuGBM8McYY4wRjFX6Y4yxA0xPT1Ov14miUf74ggsu4LjjjmPVqlXU63WOPvpo/uu//mvJ9Uopzj33XD796U9z3/velzRNOeKII7jyyiuXtP3GN77BMcccQ61W48ADD+Q973nPTo9z5cqVTExM7PoDjjHGGPcKjCX8McZYhNnZWTZt2oSIcMcdd3DhhReysLDAs571rJF2b3vb23jCE57AM5/5TLIs49JLL+UpT3kKl1122ZLa39/4xjf45Cc/yYtf/GImJib493//d9avX8+NN97IqlWrALj22ms5+eSTWbNmDa9//espioLXve517Lbbbn+wZx9jjDH+fDEm+GOMsQgnnXTSyN9pmvKBD3yAxzzmMSPHf/GLX1Cv16u/zz33XI466ije8pa3LCH41113HT/72c848MADATjxxBN5wAMewCWXXMK5554LwGtf+1pEhK9//evss88+AKxfv5773e9+d/kzjjHGGPc+jAn+GGMswjve8Q4OOeQQADZs2MCHP/xhXvCCFzAxMcEZZ5xRtRsm9lu3bsVay8Mf/nAuueSSJX2edNJJFbEHuP/978/k5CS//vWvAbDWctVVV/GkJz2pIvYAhx9+OKeccgpXXHHFXf6cY4wxxr0LY4I/xhiL8OAHP3jEae+ss87igQ98IOeeey6nn346SZIAcNlll/FP//RP/OhHP6Lf71ftl4uZHybiJVasWMHWrVsB2LhxI91ul4MPPnhJu0MPPXRM8McYY4zfG2OnvTHG2AG01px44oncdttt/PKXvwTg61//Ok94whOo1Wq8853v5IorruDqq6/mGc94BssVoDTGLNv3uFjlGGOM8YfCWMIfY4ydQFEUACwsLADw3//939RqNa666irSNK3aXXTRRXeq/zVr1lCv1yuGYhjXX3/9nepzjDHGGGMYYwl/jDF2gDzP+cIXvkCSJBx++OGAl9iVUlhrq3a//e1v+fSnP32n7mGM4ZRTTuHTn/40N954Y3X8uuuu46qrrvq9xj/GGGOMAWMJf4wxluDzn/88P//5zwG44447+OhHP8ovf/lLXv3qVzM5OQnAaaedxlve8hYe+9jH8oxnPIM77riDd7zjHRx00EFcc801d+q+b3jDG7jyyit5+MMfzotf/GKKouDCCy/kiCOO2Kk+Z2dnufDCCwH45je/CcDb3/52pqenmZ6erqIBxhjjzwW9Xo8sy3bYLkkSarXaH2BE93DIGGOMISIiF110kQAjP7VaTY488kh517veJc65kfbvf//75eCDD5Y0TeWwww6Tiy66SF73utfJ4s8KkHPOOWfJ/fbdd185++yzR4599atflaOPPlqSJJEDDjhA3v3udy/b53L4zW9+s2T85c++++67y/Mxxhj3ZHS7XVm31mxzzQ//rFu3Trrd7h97yH90KJGx19AYY4wxxhh/Wpibm2Nqaorf/GBfJie2bZ2em3fsf/TvmJ2drTR091aMVfpjjDHGGGP8yaLZ8j/bgh2LtBXGTntjjDHGGGP8ycIhO/z5ffD//t//QynFy172supYr9fjnHPOYdWqVbRaLdavX8+GDRtGrrvxxhs57bTTaDQarF27lr/927+ton1KfOUrX+Goo44iTVMOOuggLr744t9rrDvCmOCPMcYYY4zxJ4tc7A5/7iy+973v8Z73vIf73//+I8df/vKX87nPfY5PfOITfPWrX+XWW28dycJpreW0004jyzK+9a1v8cEPfpCLL76Y1772tVWb3/zmN5x22mmceOKJ/OhHP+JlL3sZL3jBC+7WqJyxDX+MMcYYY4w/OZQ2/N/9fI8d2vD3PexWbrrpphEbfpqmIzk0FmNhYYGjjjqKd77znfzTP/0TRx55JP/2b//G7Owsa9as4aMf/ShnnnkmAD//+c85/PDD+fa3v81DH/pQPv/5z3P66adz6623VsWv3v3ud/OqV72KjRs3kiQJr3rVq7j88sv5yU9+Ut3z6U9/OjMzM8tW0rwrMJbwxxhjjDHG+JOFQ7Db+SlV+nvvvTdTU1PVz5vf/Obt9nvOOedw2mmnLSmm9YMf/IA8z0eOH3bYYeyzzz58+9vfBuDb3/4297vf/UYqXZ5yyinMzc3x05/+tGqzuO9TTjml6uPuwD3Oac85x6233srExMSyOcnHGGOMMcb404CIMD8/zx577IHWd498mYsj346eOhcHsKyEvy1ceuml/PCHP+R73/veknO33347SZIwPT09cny33Xbj9ttvr9osLmtd/r2jNnNzc3S73ZHiXHcV7nEE/9Zbb2Xvvff+Yw9jjDHGGGOMuwg33XQTe+21193Stws/2zsPMDk5uVNheTfddBN//dd/zdVXX/1nl6znHkfwJyYmAPjZtT+sfheE2zq3sFAsMBlPEumYlekqjPIFSUSEQgQNOCy3dm5hIZ8DwIm/XqFRKsG6iJpxRDohcxkiEJuUwk2TGIiU0MkVzWQOJxmF82EdCkfNxCQ6hq7G1Aw96VBIQaJjlEpoF2toRJZm1GEhn6Odt3FisWJxSFUoxeFQeO1F+S8ojDLEJmJluoqpZAoQCnG0c8d0kgKD6zUKMIDGKN/L9jQilauGGr4n1fziYK49j0stENOKUiIVLWknCBqNhLlVCn9v8H+IkDkJxwWFwpSNBHIpMEqjlfbXMwibUXj1XLyd5yikoO/6REqjUFi8Q06v6GHDXOcuZyGfp3AFCEhfo1ONC0q+iWSSNbV9aReK1ammZ6HvBK3gp1szMiccOpWwKtVYgbpRPo2uE27vFtzYLugUA5FCVW/Gwyg4eDJmz0YU5s3PlVH+PkYpIjX6vkSErNsnqaUoPfr8VoROIcQaIqUwi6bHir/H4j6H+25boXDCRKzR4RoXxp45wShItEJvbw35zkaO5eKvz51QM4q4Gp+i7Gqpl5BU/y/XjQvf753R6o32L0vObWln/GYhZ9YpykEp/PtIjCJ3Qr4NiuH3lMEad05ozc1zxF6TtCbqS8YrIoPnqu4kFAK/W8jJwmJPjWZ13TAZqbtNk1mOpe86dIouCk2n6LCQt/3za/9UVhxaGRQRVjLAsiJdw6pkFVov3i22fa9M/HwNr8PZuTmOuN9R1V5+d6BU3W/v/K7gBz/4AXfccQdHHXXUoA9r+drXvsbb3/52rrrqKrIsY2ZmZkTK37BhA+vWrQNg3bp1/O///u9Iv6UX/3CbxZ79GzZsYHJy8m6R7uEeSPDLhdJoNZiYbKGVRkSotVLmslk2dG9nsjbJVH0ybE4KEfFcnIBWMDk5web+Jjb1NpJZT8AkPKqIQStLbBQ1FWGdoxG36Nkaic5oRprC1enYHIBIFJFaQ9/OEGuhESe4GmQ9TawmWFl35PQQozAWGnGL6aRGkkesUWvIXc5Mfyu55COV0fzHOPjbqIhVtTVMJhMYZTDKeIImkFhDI4JYg/9AC6w4FIb5TJNGmuYONo7yXmro/yPnnRBFEUkjRiuNHnLvGGzMI28Kwobi08ANiL8E5saKI9FRxQgMMwhDL7zqp1P4NhOJWsKUlHPWKbp0sg5GQ+4sC8W8n9fYt/HMFDRrTaxYFArpaVSisGSAsHtzHZFucNtcgdFd0rgFLmI6NewfFcz0HdMTEStqxjOE2q9LEWFqCnbPHD/dmrFQCImGVqzZ0h+lGFuUYu9GSmvovZQbsJWlxFlE6EcJaX0pwRcRJgLDUBIfHcZjA8F1Ao1odNbK/p0IRd/R0opmHBiwRf2XKMI3VBE4qWgkhPsuvq4cg1aKRLOE+SwZhdwN5nLk/qGvwvl7m20wLjuCH07JPQ7mYmpK2K1v+dWWHrdaNfpA+KUTb6PPYWau/D1uNbk5KzjYRaxc0VjyHLnzc14zqvp2CoHVUUFmoeeElYlmVc34+bobCb4TyPoZFA6tNImLmXSNivFXGAqxEIQIoY4CVtWnmE523qxa7sGLmbZyjdyd5tlc2IFKf9f6e/SjH8211147cuy5z30uhx12GK961avYe++9ieOYL33pS6xfvx7wBa5uvPFGjj32WACOPfZY3vSmN3HHHXewdu1aAK6++momJye5z33uU7VZXPb66quvrvq4O3CPI/glfrvwaw5uHkIr8hkVaqZGnEYYFdGIGnRtl0QnlRRacuJe0olYmawktzkd3SZ3ObnrISKBqxViVScxCV3p0bcZkcpwYukUKYVEpHqKXDL61pBJk8nE0Snm6FlHM06x4tiaTdPrZdQxpA1Fz9WZUgWgmIgmQClEHLmzzGTzKDKcuAEBCFtJpCJa8QT1qEZN1zDaUMoJWSE0IyHSqiKqXhrSCJapVBEFKipBol4OO8OnG2Wq+VRDBMUKYSNXo4xD2FRFvKjuACuu0gLEOiyvcjMY4ho8U+A3dwEyK6QmSL7bGWusa6xO1zCfz7BQzGCdBUWl7TFEiDiMNkQSkbscECKlqUVNJuIJppMVLBRtYr2Jdm5ZU2shGG6Y8xLYVKJZkeiK8HieRCrGZjLRHDwVc3vHsqXvggZoQBgakaJnhc09S6s1+MRUmK9F9LzqO+zCS99d0AiILPWyNcprIHpWWMi9pF6L1Eg7BaxMt20/HWZIokX3L8c6vGdWmirxhMwFDUQzolqBvo0aYgLB6NE+SmZRh2s29ixWhL2a0U5JlUufo3zaoTEHohfHhjU1zca5gtyYJUR/WxD8HJdaFIBcG+aU0M0tTmRkrOWaNsoz6+XzZ1ZYKAoaxrB3PaIRqWrtL6MCCc/z+xJJhVaCk5yu7aIxWLH+GxaN4NAIUirFlfb7Ewq7i6FsSimWKwD9h/DDcijsdlaM28XVNDExwX3ve9+RY81mk1WrVlXHn//85/OKV7yClStXMjk5yUte8hKOPfZYHvrQhwJw8sknc5/73IdnP/vZnH/++dx+++285jWv4Zxzzql8B174whfy9re/nfPOO4/nPe95fPnLX+bjH/84l19++S6Nd1dwjyX4nbzDfDaHdTCRNDF4bjnSEX3XR6OZKbbSilrUTD1spqWq0Htmrq3vRrtY4NbOzYDzkosiEEvBSoGTAussSlkUmkKgZiy5sxSSk2hDz0b07SoSXdAu+ogIyhTEcZfcriAv6qj5ggLD7VnEimaPZtyncAW5y8kcNKMmTgy5y+nb/oh0b8XSLdooJUTK0FBNAIzykntJyJWCzPXJXU6iE6yzOOUwRqNEV88+rEK+Mx/c8DWlxAUDwo7gTSjKS3xley2CVuU4GCKUgQAN07NFkmNsVCVZVk0GwtqgnVbEJGg1jVaaTtEmMSmJjtHK0Lf9ijHp2i6Ri5hoTNGsNYnjCKMjz8i4AmEBEYVRDhT0rbCQO/ZqRrQLYSZz7FY3DI+qnIu1NcOK1PDTrRkbupZEQ81outbRt56ZyVxgdES2+R5EhL71ZpBYZEidMpCaGCIcw/0ME2qlFJlzNCpiv7TdjrC8OcAPwBPmAXpWKkanHFs3HIu1J2ZayQinoKs+/cFS4i+xtm4onNwpYj/crx8xlTbFBe3DiomUvTPHLbmfbymfdzvzo/DPgxswuoUT6gjNelLdywXNyDAzN0zGa5Fi/1ZK7qAeKfpWuKNrcQLTqcaK0DCaxHhGO9JqCfO1qwjKMwgat1yysE96U6DCIRQ4KbVTft063MhcLodhbcqoRD+4t/97F8XrOwEn1evZ5vm7Gm9961vRWrN+/Xr6/T6nnHIK73znO6vzxhguu+wyXvSiF3HsscfSbDY5++yzeeMb31i12X///bn88st5+ctfztve9jb22msv/uM//oNTTjnlrh9wwD0uDr+Mrbzih59k91W70YparKqtJtIRhSvY3N/EXD5HqlMm4glacYtIeYWc//AsVgp0kFZ7tsctnZtZyBcoZYqSNTBK47chwYnFW53931qV9ueYRrSOzPWxbhalYlKTIOKACGECJxqjEqzrU3MFFk2SZmhVUIjFOotWmkZUp2d79GyPTtGmcMWA8AvEJqZuGqytryU1KYo42LsH0nUhPlOTiN/EtDKV+r0IquJSPd6IBjZZGfoSl9tHxAn9bkbaSJbd+F2QyEyQ/Eu6tK22XhXsyJ2QaF0xLGEQ23j7A+WpiFBqyW2wr9eMGrrWszZ955mnSEXhfXk5w2t1MnKXY/KYNE4xiaZbdJnLZtjS30zhLJH2PhOpaXBTO6FnNc3IsK4eIcDamgYUuWT0ii5OvGq0FU+gUGzuW67dkrMi1ezZjJjNHPO5q5iAQ6YS9miYbdrGRYTZzJEYhe1mNJpp0EINVLJey+I1INua89HPWG2Phu0SJEjwDioCZAXmc0c90qSaIf8UIXc5ThxWXAiHsmHOTHg3/rvSypCaeqUC3pZKeOfH6e3kIgOiO8pAek7VOaGdWeZ7Bbd1CjY774+y3IRFCtY1DCsSwy2dgpnMoZ1QK3L2a2j2WDOB1qqa+6JkspcZn1JBHAmvqWsdv1soKJwwGWtasSY1itSoqo+7QjoWEebzeebzBWCgXSz3E4WicBaUCjsfiFimkmkm4snq3QzxodV8FmF9JnrAp9qg9UmDqWJmdo599jv4bsljX9KKb/10d1rbicNfmHccd8Rt41z63IMl/D2ae7J7YzdqZuAlaZRhZbqKRKfEOqYZNUftowJKaWKVVERdq5jJeLoiAJ5w1QCHlTyoWAWjDFrpasNylHbknEh1ENUnF4VIl0QL9ahBZjVOclJjSUxG4TJibZjrtJhbMCTJHE2T0Eo9Q5KaFKUUWulgH3W0i3alltZoEpNQM3XvHBg+seEPPw7MzbD4UH6U5Yas8FLEiLRMqT69cyhJbR4cvJYjYKUJoJTuerZP5qyXakwDgx5w/v6CkWdYrI69rVPgBKYSP19pkH6y4CCmlKKma95Wr9TQJuY1QYCX+gtPrOeLWWaz2cBoOZTy72RrtgWjZoGV1MwKr0XQXvrsWv+8hRRs7G3E4aiZBkY3cE4xEcMDViVoBc1I0zCK6UQz03dkTri5XdCKlH+G5Zij8BMF08GIKl4pNN4BsrBeqk6NQslA4zM6f0vfhws78a4Q0oGJwRMGo71MOMxU1Iyfo1ygbzPa+RZi4yVeJ7bSbhXi/xUgVt6fI1YRqUmpmRpqSCNUlDb+nRrl0DMykOJKKXt5gqkwRjFZ10zUIlY2LLfM9rml5+iilxB9J7C179jS84wrTqjbgkOnE1ZO1arm/vvzDr/D12o1+DYl2ONKrVfdKA6diqtnLpn0zIr/du8qjk3BRDxBM5pYYkoqUe4NufOmmUqrMYTMeWfaIhD4UuvTKRxRrCvTx0Lu2NLPWVNPaEU7Z0r8feFE4WQ7Kv3tnLu34R5L8FckK4l1bYSzVEoRETGdTFd/D0MFSbg6LkKsDSvTldRMws2dm4O07dX51hWYQFhLVbQa+k8QnETM5nVqJiN3GVo5ClfQt30SPcFMNkXmbmcm61GPBKNTpho9NszVmO1O4aKMvouZqjsKJ0CdSHlP8b7t0rM9rLKV3SxWEXEYk5cKZKDSH/54Fq3hxY4yhSs/zEFztfSybWKYIKugtvfS0/ZVrjao+h1CpGNyV1QEefHAJdxiiSNfaLVH8HIffg5hsBmV78goM7JOHA4EjDb08i6b+xtx4uipTlB/a0QGBCzRCZnNqJsOMMVsJjjJyJxGYZiMNShhoWiyIlFkts4Ns/MottCMYY/GHtSM96qds37TTI1iMtG0YsVM5mjFeon0V2pCpsMD9kc1+tXcI1IxBMMq03LutoctfUccHAvNMirYYZTzMayiHjnPQH1qA5UwyjOuPZdhwzqNlMZoQ+6KyibspCATR6RTMikAgw1agfKZS0mxNFHsCCWD6QSiklHYhgZrMZRS1BLDAasbTM33+clsQT9cX8KJ0M6FRBwR3ha8IlJMNJPqmxj0B+Wbk/ANDI9RKW/aKc0M5Zov25VEdlPPawPrQ/r85UxbO4uB4LPtd6/COBOtsBp+OZezumbYszGwyhul6DuhW3jtZ+EsPVugVIxRisT4NpOJph4lVEEsfwBaa9m+DX975+5tuMcS/Jm8g8qT8CEXIxthtUEYHzo2kA6Xqp4UXnXfs31sEHd8OJgmNt7pz+Ftui44nJVcOQqUKlBsRESTmohCHEoZeraLwrAi9UShWxT0XM5s1iPWMdOtGooYRY2N8zGdfI56rcDRYir2H1Kq69RM3zvSBPu3xdEpOjSixg644+1/UckiUf5OqUmr3v1vSoFZdL+B0FcSz8EOlkaGWE8MjXJUwVoyNMtBKUW6jBeQXkS0ynfVt1JpAQwGlF8NiU69v4M4anHKfD5f2SyVUjhxrEhXspDP04qb1IyQmA5WvBanZiwbuhl9K1hpUDc5oIh0l9R4n3kZGsd0quk7SyNSHDgZ4wSun80wWrFXY9RZzIl35mqEzT1ahvEpxxlr7/1tNGQOlEjlHFZ9FyOOcOFfDfXIm4VyN0QYF2FxpMty/h/lX/0gTjtAide8dYuYXMNkHGGUIpecQnIKV2ADA5aYhLpJKVw+4szXK7zNunSOi9TAV2I5DEc72KA+Hl4TO4vSIXNlK2G3bsFNOUtWY9MWHDadkBWO2zJhQw7N2T57rWoE7csyBDQwx36OhHYIqYy133uG37NSAwkbBg6CRTBjVfZpNYgkGGhtds50s5gZWc4cVzqU1iLYqxlRN6PnInzY3e8WFnCyCSFDpMDKJKtq6zhgIkbwe1iiISkv/gNYjAsx5LJt3WUxlvAr3GMJfmbn2ZJpCpfTiBy5y+jZDEWZKlHYvb4n08n0IPSDgYQwDCuWubyNE0ekNU6sD2vC23qVMr6qUrA7KjQiMdDHiaMgp3AxRk0Air7tk5qImkmoRZrMGlITQXC669s+PfFEu3Bdppoa1Te4okeaOCI9Qeb6xDpmRbqK1NSYzWbAKu7YsJliSlhdV+T9giiOMFoTRYai8J6zxhi0VsRRtOwHP7oJ3XlWe2ifGPQmXoo31cmBVDh8SAlYt2Otgie6PkZ8W3Hki9svd6y2mDkYDI161CTCEKcRWmnmslmceK1OLapRj+pE2pDqOnN5xFxmacZt6qagXcyT6piFfBVaRURaWFuPSfVu1XOVfgMo0AKrUq8VSLTihvmcvhVuG1btV9dREXv/HCHSwcqyRNcor/bOy7nCU4Ryb7biHQ/bhWNFaoiUJ/zej0JVxH6xBD2iwi/5tUXzXJoHFNCMPOEaxKcLWmVktqCjYmomIXMWKwajU5ztI1gKl5ErTaITalHdO3ziGYxSlV+uoeVci0rCWI5DExiYO6n+rkJjNaxtxmydyeiKlxYFaOUZBzYjVjQTTKRZUzh+dfsC9aDCLsQzXiWDNWyuKv0vS+fZXmBIS+99zWj4owrPMpFouoXQszISaptZoQjtc1euHX+fvhPmMr8OWrHeYahf+a2W77Q0PYSpZ0Wql5iAvFOoJXdb0WpLOBrjpGAmy8lcTN0M7P3+uf8whHYs4e887rEEH1aTGq9CKlw/OP2kTCZ1NJqO7ZC5Prd1b62kY0/QY+pRg1bUHJGQC9fDSYYV/8hOIrSKQeX+I3TlpqdxkiJYVAgtEiK/meuElckEvWKGvstxOLpFl9xl1EyL+WKaJGpTi6BwlsxmCH5MSV2TZwnddo8s7dNImnSc1xI04wkKl9Pu9sjm+sStlGuu+Rlaa7TR5FlOo95gfmGeVStXglIYozns4AOBweZ4V4bAKGDAGI/2WzH/wQt7sVbFz6Kil4v3Pq78CZaXiHrWS+jTi9USuzLeYQI2JKdppTFGU2RCqgwT8SQ1UydzGY2oSd3UQXm1PigmY8NNCxM4qTMZZ/Rsj1grJuKCrjXc3I6JFKyuZXSLDg7HdLJi4FuB166kRjOXeU3CisQwk/X49XyXQ6YmaRjY2LuD3GUoFFPpClLdwknplDdQqTs3UA8XAt3C0Yw1m/uWrX1HqhV7h9C/zPqw0+nUVCFfU0lIkoRnwErnv1LyygIDocOhKDAGy0UW5CKkWlVx9z5RD4EB7wMF3SInc47COSJtMUoT6ShIpYpCLOJyjBuEf5bMWqldm88XyF1OpL0+yYpnxo0yTMQTPgx1mfe+K/Bz4tjan0OpBvVazAPXGvqFY6Znua1rWduIWdGKvTZCKeJIs266Rj31jPZMfyudwjsD102DlemqEem+fCYnkGpFEpwuBx79o2PXIjSMom6U18aogco/1apisKxkoBR9F3F7x7Kx501mdaOYtsKauiFmoAUpv9cyoqbkjX3OAKnGBUMe7ctMayMyrEpXsaVvgXkEg1IJqTaDOV3GFHR3w4rGbkfCt7LNU/c63GMJ/q8X6uyVxrSiOWKd0nNNUjMbEozEGG1o5wvMZXMYbUh0Qs/2cOKYTFYEpzchs3mIB5fgIFQGiVlK73yNwmiDEkXuEpQq0OQIGicRIglWuii3hV7Rx+Eqx8HM9mnGLdp5TO4myF2H1ESIEvou84Sv6FLonCiOMaJRufahebEQacGJJjUpRdMi2mFSOPSwA6mlKXOzC9x2+wb23WcP4jghTVO2bJ2h0SizfA1W84Dwj8r1FUfPsP19qRagvGY4tnhgZV20B6hgQVee7vtDvoXD+xAoBf3CUTgF9EiMom6WZiczi55jMKryvmrk7+Fjy0Ex8JyOdMREMsl83iUPORCMjpiM6t6cIy5IvJC7DJEeezYVTiKaUZO2adCzfRLdw4mhZjRGCT1rWSgWyF1GK5og1rEf09CwvF0TcoS+00zpmNT4jH/zeZu+7QBQjxrUTYvMeS/wSCtMZZP2DJHDq75dcFqsG0cWWRLtM8VpoGcdsRgaUVSpgkvJOQvJYMD3JwLtwvnYfe2d8JJAlGQ5Do6BuaaM/S9nu8wR4DfWHIMi1orEpDRMg3rkk9OIOHIpgvOspXB5xajPhwRKE/EE7WKOzGVEKibRNdrFHE4stahGM6oz7No48GwpfW5ccIoNa1Gc9+kYeiQvffvQOKNSUgOJtqhIkSaGybph3YSAUrh8NB59opmQOa+R6hRtZrIt3k4fF0zEk16y1d7Mp5Wfh25R+jFs31wxLGVHWpYcN/h3uKnXo11Ap0jJHKxKvTPsmpqhFWviRf1bcTixlJ/ZkIsTOmiNKjNmdU+DllFH00TDvhMtJpOUzf0+Cs3KNGEyNp6JhErz57VTyz/nXQ2Hwm3HHdkts7fcW3GPJfgN08HKNLd3V9GzCYWkrEzrrEzmmYgLDJF3ENMxiohI14icpes6zPQ3Y12OxdK3PeqmTuEKFAqNrtT3VnxYlla6Cp2LlEUpg1EtCmfJUWhlvWOYODq2QyuawIqmU/RpRCmJTslNn93MVjKXAYZCIiIVuHE8Me65LhhI4oTIJujckKfeE13wG0VU13TUPJPpFGnSYvWaFUxPT1BLa1Vmwd3WrkYFT1kYNmX4NJKJVohjEDfPQNU2sN8tZeWdeMkMpUbsg2X/Ph1rcMwqd45F2oWyfx0I1VRqQKBnoyHJbPTeiYZCKzIHiV76cQ4T+hHTwQ5QuV8qIUIRqxijEzZ0b6dve8GhqiDSMU5cFaHRiOpMxFNoNUE9agQpv0vfRRhVo10UFNKnZuo0oxalp/li9KywoWM9gRBN7rSPgFaGvVt7IeJCUqMYo7wUt5j18Zu/IrNCK9YhyY2jU2xkIZ9DKZjLy/traqZOI9odo/QgsUuYY4eqtClWvBZiIva25V4wI2zLrFLaeGHgbOid5fzbyWyKj3wofJgXmkIcsS5Qtkvhcqw4+rZP7jL6ts9CvjBInKX997W5vwUfXqlRWtO1C2S2R2oiDDCXz1CIIrNdYq1D+KpCKU3uCnpFJ5hoIqw45rN5n3QmfL8++VaEUSmFFDjJUPhojbpJEKBm6kwnqxCgkxVeBR80Hgaom/AdKA2BsHeKDr9d+A0iipqJacV7EOuY+dzRDiGya7QhMjvnga+XrASPwsFCkbKh66gbYW0tohV7U1GZAtrH3EMc3uem3mbm8rmQd2SQEdJL8wlK5WgV4VwORKBy1tZ2Y2W6askaiBWsqcXE2pBo5bV3y5h//L/bz3F/VyETQyzLpf0pz/8BBvEngnsswe+7FnPZBLlonIPYWIzymerm84K6AaNiYl3QMM2Q4c0Q6RoS8qkXkmOUT3aztr4bnaINStEtLIVz1IxhOp2kb3vM5bN+czURmctRZKSmjnI+t7RP0+rT3UbaUNMJm3vzZE5IdU6kPSddSI44y3y+mprJaEUdrBRVsh2fFMjhIotkIH2LSzSRiaiZKbb2t9Iu2kwl0z6/gPbx+R7+w9LVXqBQYcNVgRLGpV000AAnIK4ik9ugk75DrTSRXj58zLMagkGRhw9ZDzl6KaSS8vIqPjckD1GKlvbZpUriLQCBCbnttg3Mzs8zvXIVRiuSyGCtDZKmUEtTuv2cRqNGHEfE2sCQynlYheq1G1I9aEmmNJpEG7QyrKvvTu5yerZLu1igV2SBkfDS5lw2R99mtOIWE3Hpb5FgdI+N3ZQ7ugn1KGbflqKVQjRU06GE4NWlfSfB50HoFpbN/Xbwmp8g0ilWoGfb1bzEumS0VKUpceJrKmRFBygQDPOFwYryaz0klQJHpEdj9Us7rVFeLm4YRTPSwdERykRNw2l5h2Pih1fAsGSYOa9pKHLQOJRqo/C5LJxYBI04w9b+PJBVb6LK9IbQKTphXSlacQuH0Le9Shvl5XBDI4rRKObyLpHOKJwjd31iHdEpuhXTroP5IHMZM9lsSGjVIVIx2kQh26NBqxij/JdogpYnc5nP6SDCRAxTif8evKNdsHVXJimFltKB1AaGXZMXeZgjy1TiHUg7hU83vDI1REpV637UBAXWFXRtx2skxAX1uPGqf8RrIPFMYzuHqVizdysi1WoQATLs7zH05nz9iQGD6yQJnvaOQqbROLQSIl1gReFDlm21FjKX0c7bYRl4hr9TaApT5sooa4MYwo6AiEEpy2w2x90NL+Fvm4na1Ux7f864xxL8dfU2KyZ6zGeKtm2SuTqT8bxXgxbgpMBKTt3UcORBmohJVUTf9jE6wjmHBJWe39z9oi2zvxndItUp1hXUTB3rfGEWJwUFlprWtGLDQp6BGETFCJaFfIHd6i0aUY3ZzBElOcoZOkWPNIoQHCJtnBQolRIrXSX+SU3qs+9JnyROSVwN23M4U0DsnZl8MhlXfVxDysjw7+DvwjcbJBkZ4qq1VgzRPn/ldqSLHX0WZfKQmIG2oLT5iStD8pSXVNXAU3x4g3OhGFE8xJDML7SZm51ndtabZ1DQaXeYmJykUa/hnGPr1hkOOnB/Vq1Z6SXJkC2xlIlLW6Vb9LyVZ4bSKLx+OyIiiiLqps5UMk3f9kPRHUun6DGXbfKbXNFmMp5iOlkBStGMhXqkuX5GMZ8rbpiDg6ci1tV1RSQrL2hlKxU6QDOaIdI5m3o5ShWsA6aSaZSSEO5pKvNJSXpzJ2TWO8mBcFN7A7nr4iRGKQPkWFfHiiHSnng6cRTiEOffVc/6OZmIRwvjKKVIjGCD30C78LkNIuV9Bfoh5r9TCKn25gmv1FFDSZD8DPvURC4k4NEICQpLpNtVUp5hlbEKzIyIVCVT20UnEG3PMIDCOkdsIiIVk7mcwjn6tlup7MsQXKMMqUnY0t+KE0fd1IOpBiKdQuUDEKPRdIsFomAGNNqQ25xIReSSh1TMo9+ECet+cdZEYSC/SsnkSIEiZSLWRFqxKtXEwUbet4KRQSz+8Prsuz63dm6lZwWkQLAoYlRI1e0Jf0zXTpOaFew/ETMR6xHmbvjdDmfHLGtbCCrkISnC2rRo5shlgghLQ0dkzhPuYZNZO1/gxvZNFC4h0r3wPmuIOH8fVc6O8o66qszml9HptLm74dDYsUp/p7BLBP/1r389b3jDG0aOHXroofz85z8HoNfr8Td/8zdceumlI+kGF9f83RmkeguxbtKKa8zmdQoHW/s9em43GiZjgg2AQlzmk87oiDI2NtHNoK6L6LkOCkXP9vwiVp6D1QjdYoG28VXzOkXpxR8RKYNSmnqUUrgixMV7iGhESdUevPRudYRWqiIeThyz2RSFq7OqlpGaNHx4GhvsmN5xzBHHCbGOWeguoCNNK2qh1WhK120hK6SKg4XBJQu5wyhFPRqEjd0V8MLnQPVcLSAlxAzU+oXzWobM+hCjRhQ2goEVABXsmQcdsJ/XfFj/aW7avIV2u82+++xFZDzjlhc5aZoucXQqN85hu2ipz7BBM6NRlYPhcCOlFFo0NeOT96QGalHKVNKgXbSJdAwKUlMbeOLTZW3dcOOCpWfhhllLqg3TiY+3n050UItH1CNLI/L284kYWrH31ygkZmNvji39eSAPDqnz2J4wFU0xmUxDMM2kISdxagwr0908gRBhvmjTLQxKOURqdG2LRC/Qtz1uXLiFSBv6tk6iJ9mzGS+7knzMvM8b0C1GwwOjyDuOWfGq65nM0Yo0iQlrSXzymJrxCWO09kH0hSiclIWfNFAg4v3efWSM8WmNxVEaXYyKQqIkReF6FeOoFD7nhfPMU6Q14nQlzZuQZVIQ+tbvAwqNFV8Ns3D+3fSLPjYQp65dwEoBTihcUfVlxdJ3gkh9xIRUrlOtgo/CyERGXhWOQ1Gur3iELS9t2z4Ln6pC7XIJkUj9zYCf59w5rGvg03wD9AMDBNZZLIpEG5qRoREtT+y3BZ/zwBNFHaqOKIRIdzDSQymwEoc+R5+/GbfYvbE3G7uK6bTPbLbJa0XEoFXhmW8pK5kooMBRBGeJO++Iu7PIJSLfjko/H4flVdhlCf+II47gi1/84qCDaNDFy1/+ci6//HI+8YlPMDU1xbnnnssZZ5zBN7/5zV0emOAJrVaOmmlTM7mXGpRGq5TMTZPZPo1oLiQliUNZVaFdtH0hGG3QztvuMufNAeK8qk4QYp2iVUTu2kTK5+jvF/1gq2oR6yY9u5nUpKRGBQ2AlwDaRdt/oJLQtwWFFLSiFpH2sd5GOSJd4HB0ih7WFaCgb7vEuoZWhsJ5iaJQlshEqARs19GTPjVTo50vUI8aVercgZPe4INMTcgroMEYwTnvdNWIFUjYYLa53pfa8aszQwlDthVeo0YuHVJRBic48MSjvL8EZ8DFCYGiyMuIYrx4vse6tVjniIyX9g2aOC5Lzfr0whrt4+1DJ6WjXrkJivgCPv5dlwryIG2G/yrGA0WkIiQQJZSP9CD4LPiN2nhCIV6iLbUXSgk9W1CIoVNYJuKISHtNQiNSHDxlMEqwLmUqWcPWbAs9W9DOhY5bQKRPpCcxqsDmiqzXoV349LoNgzdfKMFnE4uoR74gSrvwhEuISMw82rXI3CR928QoS6QdiowkzekUDmsg1TFKDRMKPwGJUVWM+HCIVqwHkRONSBNrb16Yz/08Zy6nZ7fSs/NDqmiLoszZXsOJxkoTpXrh/CCznohPRuWUt6v7tNhUPhUqKM371ue26Nl+kCojrLL0pY9RhsSkIUpCBd+cgpquERnj828EhqNnu9Uz+9wXLhSqMp4RdxOgIlxIXz2y1pUfTanar74RVxZnLRdTipWU+VxYmRK0LF4TV2bQ0wiJgoU8YzafC2vSIFi0isJz5yiV48SryZ04UI7pOKuYDxH/jnZE9L1Zp8CbgwSRBIdBq06YD69RKZyvJikyVCRLKRKdEOtpUmNpRjUW8hmc5NiS+aoK0JYFsQeCwfa85+8qWFHBFLHt82N47DLBj6Koquc7jNnZWd7//vfz0Y9+lEc96lEAXHTRRRx++OF85zvfqaoI7SwWckstn8OoCOhSM45YGyTfgialEc1TMz60qnAFc9k8U8kEkTZEqoZQR2SOSMXkklVqwsQkvsqeTqiZFs04JdYRC/k8fdsHfMgeNL0aXoSVtVW0ogmcOK8pCJRua38rheuBMigcXdujjpcGa1GNpuoR6wKjErriib/npP0GYXQZjyS+6IvWRLGiXwhz+Rxd22VFupKaqZMGGzj+1gNI1YUnQDrEcItXn482HGzyy6G0wWtKwknlzV2LRsuqjnr0jn5QOkgy4Psq1b+Cz/w2nzumYu2TFg1xDZWXslaVqnd44xEEJWokBG4YI+MYEuoVoI3GOUGUnxSfe3/R9eG/MuuixbKQzxGpiEbU9OYKk7Jn0zCZ+EIvzciBamMlZV0jIRpK4K6VYkXiCUghdaxYZrMZvJOpz6xodEIrTon1JAtZB6FPz27EFpoZ6XsCrTRIjKOD6hPsr0U1vwpHrGe9BCz+qJMaRiu6xSb6NkcrxW71dTRMg0j7l507mM0cU4kv3tIthGakSQIRKR31RIQ4qPo3di03zOe+lrxWKGIS00cF9bZGI+F7gJzYpGjX8etKaRQWlEaJ/xaU8lXbekWXMmvisKq+dDIrXEFZgW/Y7GHF0rd9+tL3/jMi5E7RK3qoQLyteCnUv9uBKUCrqNKk+dz+bYxKMGrU32RoSQ0r8YEiMEg1tHJVaK9UcQFe0zWX+/DJ8vsp51UBsY59ciKRYJbzmkjBBs96V43X+3JE7NUwIX31sp/BNr+L8v8OQ+EapKaPVFXxfH4TrfSoU0x45sz69fKruYLUGM+4qZhISZDmHVBDiBHmKQuZoXat6t6dgd2BSt9uZ8+7t2GXCf4vf/lL9thjD2q1GsceeyxvfvOb2WefffjBD35AnuecdNJJVdvDDjuMffbZh29/+9vbJPj9fp9+v1/9PTcXnDwUwdbtMErIbB/NJI4miZlDKFDUMaqOqC5GQ991UapGLjmZVayqtYh1xGw2Q2b79F0/eOt76Mgx099Ku1gIMfMSpEVNzWj6bsFvrOKTq/ifIDEqQ8/CTHYLkYZE1+gUULgFIq1pRnW6dh4jeeDegz1NBB/2V6oyYxIdV9n2nHZEuf8bB+3CMx1pkjKg7n5+JMxTbIINPffERpff7NA69998SBISdhtnh7zeQ19VojzlHX9s+H25vWU4xndbGCHCIrRiReYUpQIQ2X62sGFb4uKwtx1jcLUXaKUKxcslJ1Eh93uoDualFV0ds2KpmTpz+azPyohPe5xoRbOs/IsGpqpNOUR+0s/6CJoo1iQqRlvNXD7r1cwmohW32NLrkUYpRgmpFkgU8/SDxFLHr0Rf/U/rAue8xFdIGVraRykvHVISQVXGa9cQgVwSvDNfh4V8hk7RwyhNqusolVTv3BdeUtskImXs/S2dovK+bhfeo2NKpkhdGyJHIRrcBEnURivBSIQjIpMMRxY2X+9kV74c54JmoPTzwAXJechXQ6kQwucJoQkaGa9OloFUXvaJRYfcdCWBHS7eU6ZldmLDvLlA0B1S5okbZqZlQP4H/5ZJdxqIdBGy4BPh+yq/j5WJIRdhPndMxLoyS/nnzMOIYhCft8OXqfVZGg0KpRMMFohDCKEa/W53Cn6kCtDKBR8QjVYSNFvG2/dlKXHU+EqGE4nmZ1sVuTOBOXE46Ye+DUVeI4oEcamfTyVoyZf0d1djrNLfeewSwX/IQx7CxRdfzKGHHsptt93GG97wBh7+8Ifzk5/8hNtvv50kSZienh65ZrfdduP222/fZp9vfvObl/gF+IEZMpuQOR8zHylfoGZa34pCyKxjLl8bNh1fYMfJFm/rUxHa9Ojbgm7h06t2i07Vd+ZyMpezkC/4OHxlKokGiYn1NDWjyF3IcR5K0vZdjzu6G2hETVamu+HEkWhCIZ0CJ5ZYayIV+7CgXBAlZFL4sr52EBpY2vQV0LM9r9LEopQm1jFWQT2qszJdOeL8VUmPOiS5MOJ15sOEnnBcQh5tvOrZWgUOnBa0lPy+Gum6UonjxWPNIOZ6cYKfHRH7xVDK26R3r3sGyI0wDNs2L9wZDDMHVSpWa9GxrsIwM8kqGy74DdhgELwH+Xw+S2pqaKW9t7eOwruNvR+GzUlVrZrDOB6YGBbaHSITUa+1vOd/7ov2mNDXZDLpCZgrEJ1QiK/EF4ccDrE4rLSIdRHCBXMfqqZ0UFF6IqFV5iVhvDSJFGgVYVQvzKkn/0bFzGYLCHMhn8Aqdm9ETCee9BmlSKJtl1S2ImzNHN3Kmc8FP42YpNvEZBbJHbEC5XJ0lCBOMPUYlQtGNGalJlPdQFx1cPi05eLwMrMUXjMjJSEimGfKb9Sn7vUqfz/fPipg4PDoHSADx6sSlPTCLQxOSrW2YzicsmS4lYr8PC67pgbrtVSpW1dQsICiQCtF7nz1TiuKrZmjZnxSr819x5qaqUIxwdvly3wV3sSYVAyNCwRMKYOIoW+nqrDC3OVs6t2BVoZVtdXooDbXavkIm1IzYnQSGIw+iZ4J2hY/Td4kkyDEGNWlzMRRfvN967P/rUwTtvQjIj0PJJRlxsTFdDs1GmlEbpt+79CwsPCHcNrbvtr+DxEa+KeCXSL4j3vc46rf73//+/OQhzyEfffdl49//OPU6/U7NYC/+7u/4xWveEX199zcHHvvvTezmaaZTNGMMtA9clejW+SgLJoEXyv+ZiLVolMomlGEYOjbDJ/0wuDES+0+LhjqIcOaBK9d71ktXq0lBPVeg8J12NjbiOCTeGzub2I2m6GQoqoCFuupwB1bukU32Akt4Dff3PlynZ2QXKUMHfIxwD6VL2FTy1xW5Z5WAkr8puVV+fVRhVQp3YtXbpYGcu8zFdKfivI/4HO9onDOawEEkDJH56KPupAC4zSRNuRSVI5qumIFBnLFnXUCLDORuWDnv4t8CXdwU5/jAMuQP4RhJsuomZyaiYmUT5yTuSxoNBSpTsltVvl/NKImzThCxKFRFF3Hz35xLVk/o9lq0Ww2AYcxPqxQKc3Nt9xOFGlmFmbRkfKpnCNo7d0GvPNn3/aJTZ2s70cnKsFJSu5StIppRAXg7filt/WKdIJu0aQQS8348rq5izBYmrFBq7LQM+TOv7+t/U20i3m0yilkC7d35tFKqJkaq2u7+bz8alCqFgGjg+ZCCdb59dUuvAQbG0XhhNpkjMsLlAlVIF1RaW5yY3FWeW2S9k6rBIZFyAcaGMrEQIM1ZlSZjc+r/lEK54qgitcUYkFUVZzJ+2x4ZtX7ZBDOlZEzttISDAw4Plm3v0/pNWCrv0eWUemdH749r6VyQDewF4ZYzVKLJmjF/g6RUvTxjEJq4LbuVjrFFsCHxfkuHYp+YARUYHR6KBUHZlSRmDZa5XSt5qb2QsgtoJnL5yA8717NvUlMymKooGAvmR2/LgJL5AhJazSFawEaS0Lp4Fc6bvqyvYpEC3O51wqlxpG7Olo5jNJMNH2+gzjJg/bOkNw5srBLcD6wcLvnx/D4vcLypqenOeSQQ7jhhht4zGMeQ5ZlzMzMjEj5GzZsWNbmXyJNU9J06SLtZxH2llvpRxFGZyHErAANOo5weRuRgskWuF6Pjtb0ej2sc2jdo75qDSaFWHvpXOHtrz43vrcHplGNrHTqCSrDZmQQGpVUXcVxK41WhkSnA7VvSN4znJs8d/7DWpEY5mjixIcAIYS8AD4KoFRpWnFovKf4fD5PkfdouBbKUtkzXaDrldKq3BMrz3MV1I4qcOulpM6Qx96gHnfQbo8Q20HojoSnNlBtiH47G9YG7CpGqoYNHbdOKpPBXZkaeBiD6IyB9kKLpqY1kfKmFVVttApbhniG9eKJhbe3lgV3Mten3khZuWKaKIqJ4xjnhFotpdvtMTlZo9PusHXrVqZXTJHECSbRtLd2ceS08zky5wm5dRm5zcjzSTBraMWRz2fgIoxy5C4m1hZIMSom0l2aUZ01tQZWhPmsTd/NMZ2sxKh6lfJW4SWzHF/hrCzPDJC7Nn3XrUKrqiQ9Mig3O6zBiZWiZnyY2XwuoQ/v2T9RU2xSPQrnJW0TBYIuzjvtqQST+KyTWvnQteGsj17DBt5hzDNjnvkwIdwtGIDEr1PrbEW0tQpZNEsVPVTJfKyURN54FbY4RHwWPO9cqPBe9bZSw3uzzo7gv/d6VCezk551kZzMZoDPaqfx8yUIfddhReqYyzQbewRNTwet6jhp4At0+eqdPpEPaJUEIu3XpFFee2jFkrkM6wqs8kWKHI5IRczn8yQhl0C1cym/73h23XnGVzSOCMThSHHSQCTCiiIxCzip0S0MXesjRYz2vg+JgUIckVrAOsFoC9RQ9Jmbr1NYnysgiiIi4/OH9Dp/CJW+IdquSn9swy/xexH8hYUFfvWrX/HsZz+bo48+mjiO+dKXvsT69esBuP7667nxxhs59thjd7nvOK1h+zm5itk806FZr9GamKLTblMnRvV7GJOyMNfDGMVcuw06QjmNicEkOc1oJVa2YFUG4j3rS+leD6nzopCQBaARRb4Eb+0AtvfpC4pNvRwn3g5mlA/X87ZETWp8OMtctpnM9oMdUeGTCFA5IykVYUKyECsWMY6MHqqvmItmUWgm4gl0SYC1oDWhPvfAEWi4UM0o3VQjo+47YSEXVqaDIi7elOEJWhmCqNVArq/6UKMmgF3F6LiC5gFfLGY4n/fvj6XmgcU6CqMVE3FpVik91L1mRaHJpSTynqA48ZudQQVfjgitNQcfeMDIw5XFnbzJZYrV66ZRWmGlYGt/KzKRew1NIG7leAWw/QWSImJOraA12WCflifU7XwVPeuYTgyt2ASGxBfHiZTCpE3mshoan22tG3TGNeM364lg823Fa6r52NS7g429O8I70CEJi6YRKcpCMJ4x9H1pBdOpJjGqKgTTKYTJRBOrHiIlg+jbSyWtRmiVoULx3PJph7/Bisksw/YkAvqVP3/5rZSqeFe1NzgGjihOLIYIo40Px1QxKB8Gq4IKXisJqm1fGEupDJ83MkIkq5j4YQw7lparywmsra1hdboaQZjpb+Hm9o2UTLILDK5QcEv7Jvo2DzHwCd6BMCQ2oIePBdEILQSDVr1Q4S1Cs4DDBp+OHMjDuHUQSvz9rAi3dm4BCOdDyKOOqr+H00iL5HjGBWK1gFYRQgZicapL7hwzWZ21tcT3P1TTQSkLYoMt349lsuUorAIs1kUY47xGKl7ewfauxI5z6Y8l/BK7RPBf+cpX8vjHP559992XW2+9lde97nUYYzjrrLOYmpri+c9/Pq94xStYuXIlk5OTvOQlL+HYY4/dZQ99gKn4DlYcsI6+rdFYu5auhTmnoLGKnuTsPdlg1YoJ4jhCa2G2P0e3yHDi1Un1qIlgcYV3oom0TxdTUFQ2q8z2w8ZjKmk61gnWtkEmMSHDnYgPBQOChOKJw1SS4lgZsvllFUGJlGEun8WJkIS0vsF4QCE2xAR75aFITqJaKCy1YC8mVujMYHvCTLGVtJVU+cj9eECc8ptY+RFWNG4x2ZSRXzWqKie6LQwX2Ph9UPoBLO7TF0PxaTq1gmjIR6B0dNqpUCNK/4SdYBVUSBJUOl+V9xBPuBYKG7Khaa9FEk3uLLnzDJxgiULWRlHi/SzEeru/1v4FVMZCH9oEgjY+5C/YWojTQWVGrWpYiVDMAxpXaJ77nW9xwVGPoVAGp3yoWiv2cfhWfGx8zfisbWXN8V7hC5uU0RA14wvc+B/fKFKKksUrI+BdiJ3uFfNs6t8GeLuzRgeNV0wZzpjbPESY6JA6dgWra55o9a0L7Yqgmjd485ZGK6/F8FNe2pq909hyLJ4PgczCJWUGNwlX+wAwT8y8d783W5UL2rNbfdvDiZdAjQol5VT5THjP91BrQ8TiKCMAyjqcyyyfoaGWtnwf4lgmWhowL7lrc0fv5kqIyFzfz7oKFfPwIXZQUNZ588mf+6GfLMxfJzxjRKzLxD668j8wqvRfGOjhRjVlZbIjwY80zKU4fCY8R6Sy0N6bI1GgxdJ3XXRxO7d2dHgmQ6w0VrqD/AUCWmsMCfP9lH6eEKeaHE1/wVKLYvrZ/DKzeddix176Y4JfYpcI/s0338xZZ53F5s2bWbNmDQ972MP4zne+w5o1XnJ461vfitaa9evXjyTeuTNYyGcxmaMZN1nbmGBTr4bNEjILkoNttZjp+LrjzQhaNKnrOpnt+9SbvR7dootGEZEGT2QLTnkHoKBezJ3PsmVDNa520SE1CV2XY3X5CQkz2QwLxQIN06BddFiRrvbRA1lGPWrQztpeMhAfR9wruuSS04xaTJopZvMZv8EGZsGGLHpKgdIKVIx1OVp79XwhOYlKydsFbemi0rBBDoupi3em7dC9Uo0Pvq52VoYah2MiQtZfGn8MBKei0T52iHIsy40x8AHDzjQqEORCJORVGDopS68vD5fC13LTMQoh6xWV30Q5l9ZZX3TJ9dnQtSQ6oRm3MMonkvG1A/w1NniNL1gfOVH6Y8S6NAmUdyqzyCnEQkbus8YVCRNEdPKOV9VKQU0JhaS085j5fhOAV/7wat5xzGNxEymCoRXq2adGUTMhZDDkEyhL7A4/uxv6Yy7zUlwrAj2kRVFKVetewNuCRfC51C2EhDsK739SRrEofFrV+WwWn7nNm0Dy4I3t6zd4lkIHAmedraR3oR/m1VXf4MAk5tPe+tkOFnLRKGoo5RmKkmkpJXgTvM1tlTxmUAfC55TPvSf+kJOeQhOrGEGRi3e2lWAu8PkZ3JB5a3heyyiX0Xkso29KrY2lYKa/hZAUF6OaGJ2hXA44nJKheRI8G+6984Xc+0BQoFRIaKOCICMJgsVn8/P5A6jCG031LUTBh6nMHZFXiY6k8ltSCE5qKHzJcaVMlWdAEJzr0pZeMJ0QTCeqipDQStF3TfrFBOISFnLvVJn3QcUaHRnsNmpM3NUoxGzXS78Yq/Qr7BLBv/TSS7d7vlar8Y53vIN3vOMdv9egABQJjph20QXpEKmVtOIJcq3otjN+c0sOtZRWUzjn6s8BIJF3DDI9/zkW0xZqFroGEge5Zs1eW2n3E1Y0u2ycbfGOoz/Ky655Gt12gtJgMwMLBmW9BF2VgxNVURSXOJQNKtwifPpGcJEMrgue8y4SdO6TyigB3VeoQmFr/m9loWg6dK79PmvATRaoxKI2pcRziv4ai+5rbwpYmUOmff+FQo1QTZbTZg8q2g2dEz2kHoDg3FdesORlQBRUtcPtyvuVHv/D1438rgbHymsc3ilBiU/GpaU6r7SMMjbD/Q2rNEQNwg9F+Xcii9oPj7Ua76Jxiipp1MiUlMeG+1OyuM3gnsqBlPO0iPkqtYqL38NyXMoHTjmT+Q0zTEewtpkMVaYL3uF4rUTPOtbWDdbBfOFzG1TphcMlzWhwbafwNtlIw3SykrqZYKFwVX31VuTrDfiHdN72KRAbXWlGFNC1XW5q3xJS3U6TuwaRrhHrgkjnGAriUPDBT68EJ82cKnyR0gSiQHknQ0+UvHRfMlBCitAkVnMEhXG4ztfOcFVoGNVxo2PKu0swHUjJtDkHWJx2Q86oqnL2c5KypV+jHuXs3kiXvB5PO4IJRgZ+Dt6x0bvDeSnbawKNMuzTWkvNJFhxbOxtYDabhzIWXyVVVIET734mpbe96NAuzJXOPTOCj9NnKJTRM5g+8+BUOkXdNMhdQeb69G2XzPraIqIUIp4ZK2esyk1AjFJ5CJNk4N2vtE9QJIJRMU4ierbJ1v4khXhGoEyNYaxgnEM0pBE00rvfR96Jxm1Hbb+9c/c23GNz6XsP3hDygaURdakT0c4jdDOi5yxOCTb2/u2iwcUhqUpbY1PAKig0umOwGpRVbNw0Sb3V55bbVjK1coEXfPm5qLhclAp6uvpVGKL1iUPlgZhHAiVhV36TL39UV+ESQfc8lTU9VW32LhV0T3uioDzxR/y4XOxQWqGcQrV92BpG6K9xSCTYyBJNZNCL/MDqFjpmkLlSAvFRS4nNCJG5cy8jMDBhMkqiXx7DP8MoxV88AIaYELW4MssyDIKMaixGmJlFzImowaEl/6oBMzFMwBcxK9W8lR3JNtQGJXOwDEMhZhEzUDIH29K8CEvMMqLgeVf9F5874WQmiz62XdCNDEmaeOct7dX6hYPb2wV54QvmpJGma3099bJOQeYcDq+C9VK/JncKoxISY6iZGkr5hDtWIDGaRAeVsAjtvg8hS42mjDh0OObyebrFCno2oma2EmuNw9C1KVL4+vGx9t+vv2+BE0WkM2LdJ9b9EaneSYqiGyRLhghnBFhEtoZqlgSCRyBQBc75JFYDfwAXEu0MCGWpWSs/WMEhrkDp1EfOKO8k6ZzFSkzfNZnJFDXj2LxQsLalqAcVetcKrahkVgZLKdIpk/EKvE7I0S06FGIRDIUk1ExtaJwumKIMQhRC8LpDCzQBichdgpCCnsUn5NGVT8VA41bOh6v2o8z6NNGdQtEpYiKt0SojURbB1yCxLkRJKO9YaZSmkAyvWfAzV/pOOAQVMhz27QRb+00yVzJDgeFAfIiyKrBZH60gRmHs3R+W5+OjtvWRsd1z9zbcYwk+aKzr4ZTfMdvFAok2tOLdWdjUZqJRY2K6gUXx7sevJ9aOs7/2CZRVRB2o3wHcbJh7RJ/zjruct17yJPIJQboJXaegr5m9ZQrT07hIkJpFBUJe7sCiAeWldoKzqUsE1fdEW2V6QCjqFh05VCeBQuFi/zlEPUUxnfu2jQLX0Zi+wrUsOte42O9Dpq0pJhwusTR+G5NNK+xqf1M1HxF1FG6hziOP+ymxtlz94/sM1N7BmC1KKq/8knhsk9gv5gqGCXrAMO0LXm0oFyRrPaBWSvBENWg90F5qX1ZqDhJStV2qsp2q7iUVJ7WIiagIsKoIryqPOzVK0IfyCSurBsR8WGswNKgRIWB4vkreQ5ZcMniuIcZg+Hh1Xpa5ZTk+JQNNUminHDzxC1cDcMmpR1FkPgGQFsNEPMHEZAuZ61LvOWbbPuSyFmta9ZhoskYtHkSR3NrZTOE8MVHUvGJF5UwlE6ytraFuImLlHfEk+FYEdpNWrABH7tpkTtEpenSKnJlslp6dRiuLlUm6tkXuFm8lPvLGKFc5TSkgNT2mktvRZIH4CZHqhfnxEnvFRAIGE1TOPi9/0NX780qFstWBBSiXX9gzSsu2QlVrqky+4/9qosmoR6lPzCU5Si0wERsaUYu5PKPvctqFQkeaZgSNiJD4KAwljHwibtIKfjY92+U3878K9zCkenih6DBuHaTlGFEWEeMjGqRBLhMoDFa8qt9IHaMcQl6FFZaakjJPQfm+QejaBaIiZj5vsqEbobBMJMI+LcjsVnKnvSZRLIUrQt2RQUIyOxR1VK5fAXouZabfou+SatFHSphIFCsSQVxOYrp0cp8DwmhFUSxwd2Ms4e887rEEf25uDSaOSZMcYzK/8JWjFUfUWzX68z2e/z+f4H2nn0kjUkwmhh+ecRYPffd/IQqKx87Qv3aaia83eOvPnkS2UlAF7HX/27jx12uhUJiuxjad96eJHSZx2J7xqvUhYlmqsYOmE6k5dMfgpnLUvJ9Ck1qKhRhVd6iehtRBpilaFpV7RzC6Brcqg80Juu8/OjG+72IyeO33Nd3dbTAVCHprgmihaDniWcOPN+7BQjv1968HR6AsLOhhwXdbTO02j8vo79vqYNjEoQbq61H1t0KJVAzTyOUMqd71Mt2Vm71TVfuhi0cZmBGKKt5EUBJSU0r1gQFyIJWbsVSXeTvLoJvhZxQGJpMR58ig1WFInV/2UUn0ixgArxVQA4aj0nSqQWL+xdoJ4KzP/3DJq/j0qcfzpC98Y+T41U94Cltvn6W/0GPdmhYmMnTznEgJouPgaGoR56X2uWyeuqn5Msxa0VSjWfZyl7FQzJO5jF6Rs6XfYD43xNqhmMBJTO7qFJXtdLn1IkMe0l5F37cp3aJO3fR8mmTtc8f70DLvCGlFgspaQsiaRZGglEWHkDLPN7rgAAgEbcAgkZI3I/joGSobe83UEawvXWxj0B0Wcs98JCbxORG0Y1VaeK97KVjIa7RdnUiHqoYhNbZCh5wAEOs6nXwGoyOKUG8j0SkOiwnpZX2Z3fDNiPfTKXN9eHt7jUKaGBSx6VA4ReHq5C5GdBrCGmE43W4589584X0R+kUP6+4gUjUm4ykyV6NhIupG0c49AzaVTAIwn/fI8g6+YI+glFSfgyoTkqGw0mJLb3VlKzdKaMXC2npOon0J4g1boas1C90m9SRGIfT7d39q3Vw0ZrtheePUOyXusQTfGEu302Jhro7SjjiGJFbckrfJ+xanDf9y0pOZzx0rkognfvJj/M/Tn4JtODot4MZJpm+B/jQ475CLGLjptpWIEdKNEUVDoG6RQqEWImyrqBLVjNA/qyrCDKB6GtGCmo+QRKBQ2JmE0tlVYn8MAA0qV0HiVbhIcImAFlShkNRVkrHKB39LIqi52N/HKbBgU2HmpikkEqJcQdjMqGzeg3GPEIlFUnZ1uFI5L7pIAUggVKMEd1jiFa0CIS0J4FBfVT+MXF8STMpxM2B6KuI+RBhHfBTK46V7vh5I5lW7ktiWDIgJ4W+lBmPJmILEuKjCUMVwLLK9j/gwBL+M4amr5olljpfjc4umfOgZ/bwyqi+Wod+BJ135TWAoBE7ByZ/5RNXH5447mcd/42pQ8KmTTmB6okmUaDp2gR6gxJH1c+7oz2In60yltYGFI9xGK+MrtImlW2jmsoTcGaRwFH0ocoe4PkQalSZglsvytnTRCYqenSTRs+DKWHivdLW6vMYGe76X6n0sehQkTR8Kq1SBUFAmyi2T5eggwZdpYi3DSXYietaHwRXOenu1+D6sCDk5Zb37ru3QLto4C7ZQGLpYiQGDlX6ImW8gqMAECUIPCo2oMj2vgPTJXB9lNblzSCjA5ELBHZ8lwYR3bEl0hpUaih6RyjFmAe/8V1QOgf45Q8EdsZSlhv378/8vXIFVXRpRTgMfvruxG9GzBU4Mmja1SBNrXza6THrkzSjel8CE7Me5qzPTX+Hj3ZUwleRMxD1i3ccoRzvveb+JxIdMNlu+sqHWGuv+AF7647C8ncY9luD/3VXfwu4Rc9GjH4aWJjVVpygc9cggzRpxbJgrfFGKMz/1cS550lOZz7QnrNYT1v5KaNwuzO2v0Lm3ocf1ArshpWiKt/n3DKpmkcA1U6gloW5iPNEVLehAyEWFjXnEaW5IX1w6ollG1MVmIdjdQz+qH8wCWgaMglvEcBTgIipmQNUsdgLviKgEFoZe45Bk6X9hlCkoUTIZEgitT/HnGY0hSVNKPfOQCrrqUwliQFXSraC014IsQam2hoFNveRThu6/xB4f/BIGf492uyxDELQH1TWB8I+o6od/XzTfMswgbc+mPyTgb08psmRsw10MazcEZPEXObSkBuNlwDTBiOMgwBO+dnXJ//Hkq7/ClY8+lUxBs7WKCaDf7XHKF67ks488mcz2mE8sUaQrD+16I8GpHJxirt9jc3+CrOdwfR+nHteEuJFQEONyi3SCTT6JUEnsTT/bDJVU5K5G366kGW+tHtAhiCsGCpPKtu7DBI3KBgp6XeafHzAZpU+AV3kTzg1y9PvWugq807pkNLz9WsTbqn2VTR91UTNNiBRO+0yNifaMQeFKD/4OKjACNTPNVHIgE7Ehcx1uWrglpOZW3Ny+KUQjBHu78vNQRin41+yCVsOg1RzgvLoenykQcZ6RCE57UCbW0ejA2Pj+FKgQaYDPU6Dx1eSsLcL3nNEpuizkPpVzpFWVF0GFnABGRTiJaRc1ZrMWVgwTsWNVrYNzmyikwPpwfHKbA12UViFkUJHjwCnykNb47oQvH7Xtj0+2c+7ehnsswUeDJI6//My3KFYX3plOwZp9tzDXrdGbqXmCETsuOf3pnPWZT/Dx08/gysc/mVP/69MoDelW2HKE/zfdopg/QMjaCY0tit5uDkSx5wF3cNt1a4n27JBt8Hkgl/M9U15QqHZn5bzamiLEYFuFMyE2PhB6NOjSnh8JBH8BWpbk5oRsysFEDn3jCbAWvxsYQYbt4UYRz2mKlsN0NLK6wEUacZ4yrTtwM7f/biVqxFju/5GS0Ed+DOI8Q+TTqQ0Rfe3vr8pxyOBZvXbEE2RlxGstHP7+BAKvAuFXEj58lhC3irqNSNNSTesosV+kWRj+l0VtFknAlfZgMZFdJE2X84tTo+4Ci50MZWge3SItStBCDF+/2AkPGCXSApUGstIcDN1vGGro2tC+Yg5YhgkZun95zWP/53K+eNoZuNwRJxEnf/HzoOHxX79qEcPh5+vzjz6ZO7KtzGdC3zXIUZioQ6MpqDjm3C9ezQUnPgkwaGOQNEZZh/Rz3HwHFRlIY4jKfPCjDyYo2sUqUCnNaB5F4cmdmJBpT9GIvPRLFX3v7fixqnnplZxIpV62F8FoCeF1ZcLbGio4/vp7ltylBMLmQ8wIBZOsstX3I2im0xW04mnanTa39m/CqJTcWRpRg1bcClkEvbe7E0ViWkwn3m+hZuqsqq0kd97/YD7fhA2V/EoNgn89w/NSZhzIQppu7/WvAwctuHCtH68gVYnf4T4JzxXS/4CUAoyrkhYNsgdICJnUQUMQBAixWApyFzGT+RDVvVtCI+oAPRZyqeaqKDLECS6XAeMfzHnKCNrd/dJ17nwZ9G2fH6v0S9xjCb5oqN8Y07wV+EXMil90ufXlGZ0socgNB+1/OzO9OptvXMGGX/yUdz3wGJ562Sd5932O8I51TjG/n7DiOkVvFfRXQrJVo+9IUAXorsZNWTZ+bx1u2pLf1kA7cGUCrLCRVjQqOOF5iVJVRD4kP69UvRJJkOy1l8xrriJyovESdF+TTzjvdLY18UyA8bZ4iWRw30CAJRLySUFnimLCQmZoTHjOub2lwcatE5DrpaF2Yah+V1ReOwAj0nalQq487xnaOxaLo+G6ymkq/Fq2N2FORlzPGXEIFAVqObW/jErZoyqKsg0DzckwsV/CWCzze9muJJDDFHpobOVYRsYw7Om/qO1izcBiVIQ0MCGVmaQcS8mcLHO9GtZwLHrmikFYrAGoROTReTnp8k8OmNXFYxweD3Dq1V/gLSefTi6CiWISA6/48qdBCW979HouOGE9SiAWH9vvlJewpGHACcZadG7Juhm6nkJkfJW8oYQwDugUDfo2QdChToAv9hvpHKNuJ9aCdV7trpXGKYeERDEG4wmbMl4tLppIR8E2XqBVH1/X3S9Sn5lOhanxPgMQ6gYoVzm+KRSJNuFfX6uwcFlgwDUT8RQT8YQv4INf/2VpYRFfXyB3MavS3YLkXNCbn8HaPGgavGe+SN9L9SI+94D46nLic2RXgSq+kqMn0S6k8dZlpcAyM6Hz8f7e18EnEVLaO8gIBCYncOSuCMvRJ5PyzIUEJsLnTPCXxMznk4Bm7xY0o1k6wQEvs0UIY7TYQhDnfPoGn40InCCFIH1Fnt8TyuOOVfol7rEE/8NnnsLz/uur5BN+L7r14XWSL9XpnTjP2hXz/O5/98bVvcPOy37zc/7z2BP4wDEP4bk//A6uYdEdQzEpzB5kUM7HugOkmzRFCyT2IXJFy6GDGr9yroJqs1yysQ9tzmrIrl+2GTkieCIeB4lfeWKvxN/ff2H4CAEjSLuquTpkEw9jmSxwXeNV/qLozNfYZ4/NdOZr2EwPVNalnTo8R5kvYAkN014dLyXhc2rQh1VeI+AUErlR4lpKqE4ttYtbFaR9T0Aq+7+EY8Pth4h4afJY7Bi3rAq+ZDqW9TtgiLCHA8NzONyOxceXeeHleIel+2FfAVVuzAPmaZhJXOLoVw674iKpHBdHxlTOi8K/k7KPMurBLGo/zMwMHxtmYKo5VaNMUmjz3lPPpGuF3PkQvSwv0JF/nwbNBcc9kSx3FB2HiRQm1mQ9XzAHF+zlTqglBm18ISujHJI5pJ/5oQepv0x6pJVDKyGzBsdA5VHTbTRZSIbjRsZpxUuUkfZEzzmvpi5L6uoQXS8iKJIhQgjeN0C8x77yOfdLT/4BwSdoCcJttaYeNeiHPp3AQi7k4tNT506YyVzIqmlKJYJXznvaHVLaUsXqKwpELXrxavDiyoRHPsmOQgUmzYmvCeAIDnYQmAfjE/uoEBdaSfw+9G44aU752k1wyPPZMH1yJl/gy5DZGjP9FoXU2asppHqGjd2NVVSEVnW8xsA7U6so7D/l+LXCJF470S3TQd6NcKIqZm5b58fwuMcS/F6WeKe6sMnmLb+W7fUT5L9q0ZiEbEKTrfDe962Vq7DdTrUBSyKIEVwqJFsVOtP0d7MD264DIkHlPgkOMGoP3gkMq0IVfvOX2KF6xifbicRL3WWSGcFz76XUljqkUOiuGRD5MrufXSTxCuie9hqDjjcB3BKvGIQRavHMwKK1XUr9i4lQJV2WlXaQRRI0lKaLEcc+8NJOxQQoRgfK8hL3MDMSjpWXjqi+g3d82aYypZRzCEvvtxwRl8V/qwFHVt5s2LRQOeMN9T0ivoexDXv6l32XTKAwCAFkiPBrqZ6zGkeQ9peT0kuFwCjDo0ZzF5Rjc4O5qvoo/d0WM0zh73Kdf/BJT2FT35I72JqV4Qji14QTJIkgWJuUMaT1UFeAEJtdM2itqGufKT9zhHQwgSkRA8rgXITKC6TnibVOY0giMolRKmExcknIXUpi+pW9uyyI4x/Phlh7HYodlUPXwZaNJ4zSH5rWkphC6e5oh8LbyglzhIycQCGwtSe00hVo16VT+NoASvmNU+HTGK9Mvd9AzXipP3e+3PDmvjdFFG4FMAMYrCsQfEVGjc+t4EJee8+n6qByh0H+xAgnKSIao/MyQhYArQqUDtoD5VAqDktDgdJE+EqBZYplE6rv+a1IqiyaWhlS06RbRGzpTxHriL2bFmQzM9mMNwf0FWIgTnKUiskL0E6jI7AhM6JQhgtqUlNjXt39YXm5GPTYS3+ncI8l+HOZxcWgLagcVv3ES6Rz+ykW9laYDnz+RU/kpI9+Gt1XPP2jn+KTf/EUbzNHe6ndCPGsore7xSxosJBNC8mMwjac/8Yj8VnsNAM7bbkxDgl9y9G1yv5ZimMinnhDcPTzF4uRQVY85dX8KlNEzQxnNS5PiNf0vKpbQZEZ3JZ0ZMOeWrXA3Nw0uqtR63rY+dhnBRTfTzGTDjb9xcROyUAFXNLp2A0k1mUebsQ7fTGxh6WTAaNpd0v1vRv8PaICUUPzJ6NzPTL3xkczlJn+RhiN4Wes7jt4xiUS/EAIGfhalO1KpmJ4rDB6XgAXmCCUl2qGpfWhWw0PceTxh7z8RQ+k/2GUmoLqb6sqjcISRmv42pL50MvMTfkuBD711Kfxu4WC2zreY3wJg1YUEHkJWoLqepQD8Rn79mhErKkZTvzER1FO8c7HrqefDyWkLcemFSqJIIlQhUX6OdLLULFBpQkSyuqWkmnPNilcjWa0mXo06zPBlc5twQ7tiVU59ijY0v0HpkK6XRCcRKB6KKEqNNW3/Uol7pXs4ZtFIZLiJKZwpQStAEPdGBQF9UjRMAPOK3dlut3B9NUj/zzzuS8KFWlBXEohLZx0Q1KioGavFo4KaXQ1ThIvPSsHJAg1nEQYlSFSDGUl9OvCayi8kt6n+vV58k3JPEv5JGWWQ/DGAkdZ88FJwu2dKXo2JtGavVo9CruZ+XwecQ63oEiI6Xdy3HQfYwpcLmhnSIsafdPFpRaUCxESllwV2y1AdldhLOHvPO7BBN/xySeeyZkf/2+SOVjYQ5HMQzoDNoH+CjjpI59GIrj0mWeyMjE+jagStPWEAoF8UojmNEVDqN9msHUoavhNu5XDQuST6BSDzFyyDZvq8LHFttuKGw8buJJgv3fKS/02cO2ZRmU+o17RTsA4pvedZeuGCaKtEcWURUUOs7qH7UWouQhWZvR/sBLZzfr73lzD7NXzqsMspujGXtKrW9RCNKAJITtgNS7jCYRoQWlvcxQdnA8Z0BCG6IiYIAWUjMHihy/7HulgmWbDxGqI6C3WqlQahfLvktgNScYjEvzicVREJjxEqU0ZYQQ887iEWFYMkQzvw0MPM7o+vGOmqsYzEsK43PCGGa6geVnObj/iXjDsge8WSfnDjEbFlKiRuSnDJocJ/w2zObawA+3OsFNdYX0xGh/wveQZjBKmEssLrvzMyPHzH31GVTZ3WZSEJo68Wt8Jkhe4ds8rL9LEMwShbSE+Ll2YDQTEP2hZr8JL5RI8623VRlfqcI1Igq+Gp3BYT/yraRj850sg+/frbdMFKF9waLfJGjNtS70RUY8cmmhkyoVQmGhoqkxYcitr3rueehMrDTpFzEzWDdcJVjL/GqsKgOH9S4ZSPg+BSB+lbFW1scw1MFzj3afl9aV1fTW9kGlQeZu89MFZIarroMJXGJsgroDEoVXEXDZBt0iYSBQra1uZz7b4+gnOIW3Nc7/3E8QIlxz1IPJ2TiNtUYtqPPZ/r+arjzmDLfMbse2CvNGj0AVWClyoEnp3Q3aQeEfGYXkV7rEE3xWOzd0CiYXeGqjdocibkE/6uHqXCFed9URqpgEID//YJZ7IV8mtBQxII/ccXk/T2w2YzpCFGN33DnwSj0pdKFlCzBf/vi0Jzp8M40/EJ8cJefdV39vyRQETheesrULHjk43YWrNAnsfNMNPf7IPGIWdSf1mvjKDrQnF4W1UiCKwDYfeUMM2LaZtcCusJ+Z9M8gXIKCyRZKxwpsxspCisySgwS9gxJnOKe+1n4csacNM0GLCXdnmF4nsi6XxarIG87Ssyr08N0zs1NC15bOUdnZZ1EcgfqXGpkoKVLY1DDnQMcjSN+w5z+L7qkVMAUP3pfKVqKa6JNiLaGDptLw4lG64TzXMPAyE6iUS+5Jrhx0d3eC5dU6l4fmXRz0Rmxde6o7NEE33aW19XlyzhNgbBfVIsV/L0CoZWCO87aT19O3y/Ne2oJQCo1A69h7+uUX6GdLto5IYlcbEkQ3SfZg3XGVzt1hf/TIQal85TpO7/qB/yfGCeMjfj0FC3ncT1q0P4RsyZRBhRSPUvfMfgtGauklompSu8/HzvSLzamIJOenVoBJhFExyPumPP9aImogoIuWwLmah8PHzBCc+FThqFRarHvrGlFYQvPG18jZ8RVSlGQapChB5LQFonYB45z1jI+64eStRFCEWmhN15mfmKfqWPC+YXDFBp5sjUU6jPsva/aaZyzcCgsGQL8Bzf/DTat2v3W0tj/78FSPf7SOv/iQo+N9TnsbGTZtg2jFrtyLi6Mnd77SXi0Jth6jnYwm/wj2W4Is4FjLHfz7xTPadiJmINUd+5MPVziKJ8Nj//KyXQK1C1bzdvsy3qls5LtdISbAKb1NnIQbniYGkoa9hxyiWCKpLx7a99VNu9GXBHKcgC2r9UjToRL6oT+RwuSZuZFinuXFmBWoqR21MsS3rw1y2JN4X4fY6UndI7omzq1uUVdimRXUj7/yXhDj4Iam8JCwSOVShEQsqcV5NLoEhiAVCFdNSzVymzq3szkOEuFI5l7n7hxmm4ZC+RXMyQjxLNULod7iPAd2SRdcMjaUa11AoZImQqGjkNVVMAqOFghRB8zHUrxvqs7SHl0xD+ftw7H5JoNWAKRpZI0Ocoi6zOI546g/NmQyNb5G+fyTrn4SxDD/PsD2/mgt4/xPXs7lT+JSpWkgiqEc9EqNo5wm5Uz5mvCh8KJ3yVfi08mrwVqx4/mX/5e8doki+8Yyz+MVsjtEO6zIcEd1C07Nq54n/sNQfG5Rz0C+Q+Q5FouiYlcQ6I9ELaN2rSlT7KdeVql8kRSmf898novEvSZFX1fS8Y5+qCLxCVSWxCa3BS4O59aljff9QT2PmO126yrFgOyjV9fcRh2cLQMQgJCjVQQWTg1YxWsGejb1JTJ0ERaStzxioDD46oQ4oYt1DK6/mL1wezAQ+z4ALlTy9dA6OolLOjFQdxKcVjrTxnvwikChWrJyiPdNlauUU/azP2tVrKHIhRxNFCY1GRpQKue3RK2YQBC2aZ379R94vxdsNUFZx0uWfpwpfLDNphnX74Cs/xhce+ljmszlMZHz+AO7+XPrj1Lo7j3suwc8KcuC5H/tviqagMzCisXv0kE6E7hhPD0KcuwRJNd29Q7+doI3DdiMvmfYNOtMgEO3dJuvGyFzsiV2hlqhit0fsd3r8etDPiG9A7LxEnWkfGhgJvTTGziaQOvTW2JsYHKhM4+qualepp8vMdJHzKnAjVQw8zqeuLVXGupXjelHI+++dFLEK1cy9lqETeU/8QAxVoXyIYGmfDinMK0l2mbkpkxL5QbGUI6oI+3IXl31QEf4qpe1yonJJBMP5AdEts/4FYl0S75LID/1dOSEqKkc7YOAoWUnT4f524PSIkkGlxGGtAoPfl9MAVQgOniNUccSGsbg9g3kfpv9V2mIVvOpCO4c3VxjvYHjhiY9nrp/RSAviqCBSCzzvs9/2XWv491OeTO5ACgdKEUWaNTXDHs2IWMHD/+ujKAe6NLWEWxqleO6XPjHCEF3xxMexpVfj9q4Pr9sWFCUzMXjESGkm44h4MmFzp2Bh0xydtEmzBg2tKyneicOKw7o+onyWOHDEQcVdBFV5ebwQb0f2Xv2WSHl7ry9rnNAuEpwIqe7jJEOrLqlJgAlKI18cG7J+m5mFrbgkAZUFiTokskEDOSKZn4iQDU+pInjDC5Hy0rpPi+uJqFCjcE2gQ2Qc9ahB4fLQq//oyoyBBaU9XFNIDSRDq354zqH6ASoiNSn1qE7P9jBK01jXYO26dSilKUSomzqd2QWiekSrXqddzLGQz2GsIafv0xcvALkaOH+OOIcOCUjDxws/ltzlREWM6hnq+eQ218FdBcf2E+9s79y9DfdY1kectzG/7YlP5HPrn8oPXvBMxIgn9iEJT+mEpDNF1NaQOPobGp7Yb6hj5iIav0w8Qduth0sdcWwHWeYyVfUBQ/vu0AY87FC25Hc32q4KLxsqkVrabVWhKtW+cv5fN1mgM+3V97mGTBMt+CQ7WIVpa0xHD+4V0vF6U17w7rfKE+dCoXrG95MrVO59BdzWxFfVi92AWFiQ2cRrGgJjMWJLz5VPdNQ1/t9CDaIBFhGnJZ7/gQiPVJRb5Fw2EkO+KAZclZJzpaofukFJhBfxAKVqfuAJP+i7GttQpkEVNB+q8PNUaQSG1OCDlzpgApTziZSUDT/F8Fx4plMWzclgTQ3GPnIdEMy1o0xRyWi4oec04SeSgWRVnQzvI/gmXP64RyNaOGBVzl9/+XO8+KrP85dXXM1zr/iWzweh4JInnc50Okcz6jJJxoGTMQ9clfKsqz7Go//rozzi4x+t5kpK7UbAQz/+UXRPj8zDqZ++kmdd9Sl2bzCkIfCDUzhiDatSzeHTMUetSnnQ6lr4SXnQmpSzP/9xnnHZx4lDul5pdzGuR2Qduh+hXIRSJmThM2gVB0nXVf+VGfVKdZoTT/S9dkBITUojajCRTDCZTLI6rZHqjEJ6Ie+99wnwtvxyah1iLIXqY7MezmVAP+gMSi2BQqmCQclaFSRPoWf7IWeAdyx0YVP4/9n78zBbsqpOGP6tHRHnnBxu3pqoASnE1n6aRqQVVKhWsWSUKsYaGFsUbRUb+ATe16bpx34dnrb18+sG7QaRdsIBKAoKpKSYUYoWsaVRXhxREKUYaq5782bmGSJir++PNewVkXmLusXgRXM/T96beU7Ejh07duw1/dZvTVPGen0MTdpVdj+gy52A7kQtRJfN9QYIv5/Q7yZaueJgaY5VSthsNjFJtSg0NMUkHUWiLWRM0LKED+b9cWwcrXF0fYZEGct+oRUVJSUmdxnf9cH/V5g8TZGPTJ1K+AU1HtCV34W/YIq6naC9I6O79QtgPX2O1ubqc/6cSvvpn/5pfNM3fROOHDmCc889F0984hPx0Y9+dHDMYrHAc57zHJx99tnY3NzE5ZdfjptuumlwzCc/+UlceumlWF9fx7nnnosf+ZEfQdd1g2Pe+9734oEPfCCm0ym+5mu+Bq961avu1hzc1XbaWvhifTFmibBWJzzof74G/ZkSD6rvuQdKjPZTG65h5oaRdiqxbG6bSp79uQvsbjWgmtHvNqjPWmG+NxELNmNsmB3shgX2W222oTMXoafHcY2S2manr2jIx28CLrFY8IuEPMmY3FJ7XvbkDqHgpfMWyDfPwJM83HQZ4M1OhPJeJdeb5KJxm6XeymZAu6WULjHAG72MN6vQYyqCByhubYKD/fbNzShWH+PYLtBHzzQ28YIU5citdevH4uqmMHDoJwEcP2cahPH9kmNPgR8EV5wiqU20YilYzoNbt+d4UA59tML1+paWJ+g0Vu4D6xCDvHqf2hEmwL06A8VJ+x3xQTABl7z9PQCAS974Ni+bbF+yPs+nvfktI/yK/hfGR6qEDCh/GUgZRQiEe6Oe8Ix3XYN3P/7pdiiOLTOIOmw1Fb7zDVcXZSiV5eOKFgP33qxw9nQTmC+Rlz3OonvgjhMLYH2JerNFB6DtV6hSFeLwNRJlcWczA+jRZonf16nR2yP0uUOVKhFKVAOpBWMlpYepRk0NmjQBs+TaAz1uXdyE3XYHqDN4tQSvgNTIw2Ul7YmYftbfBH9Q47N7N+KO6nYRtt0CPQuD4IQmIBgxbI02t2hzC6BHnSYAOu2vEPIAEKIgXWhWSXCSJthoNkFSQQodV2i5ATGDsYdl3sMkTbzWQEoJPWcss1QqbJIUHGEGVrudeA0BiXQlexe47C9mIITwF7Gk961Va+hnHZq1Fnzsi0+tK6EautPvT6Vdf/31eM5znoNv+qZvQtd1+I//8T/iUY96FP7iL/4CGxsbAIAXvOAFuO666/D6178eR48exXOf+1xcdtlleP/73w8A6Psel156Kc4//3z8wR/8AT772c/imc98JpqmwX/5L/8FAPCJT3wCl156KZ797Gfj1a9+Nd7znvfg3/7bf4sLLrgAj370o+/mbNx5IzbGidOkbW9v4+jRo/jl634fW+efi3Mawvde/2ahlFWyGGt5sxcueqjwWyUBx211WNtaYLVs0M9raLYL0BFmZ8+x+OzGwKI90IXvuxLcjXWyNWXWPU+UpCbL77RMRdgkOBOdoOdTeYEyJI7OANqEtBJhnWfSB9u5JPdg/AG80SPNOknhI+XBV1Q+dYppYBSkPqGQAJniUJX7cgAbsB+lbnMRfUJxwx//P56/ONHjeYzHRDehz/0Bk84H/H4ylLxVO9TwzTg1zl2U6lUwQT8QhmHcHhIYLQj3LpykUZyXfWg+KmMdAARPvu7utG9T4A64pCmtzgVwZ/3mYZ9jhWbfHEHmNPUYzM+g4qSvh31TOJyWsJ7e8qgn4MTydvCRhD43yFigIkKlNd4FPd9iWtXatRSQSZTQpKlb/23O6tJvNRc+qeVM6HMFYIZV3gChwbxn1EQ4MtkB8wmx9LkDdwIqtsI8jAwmEaKmBDPg1LgilCXtrstCk1unGrNqHT0Dy36BOtXILFZ2osaR/p1+xpw0Ji6V+CrNc59UU7R5hTMmZ6KmTdy6mGNWV8JSyCssum0wpEZAUynnAcvcEBEm1RTzbg+r3KLPHebHFvieP/uw03azerMG7yRQQmqjffRdj3wMFtM58iRje3UHto9v45IHXonjx49ja+sL6943WXHle56JZmM/n4O1dneF1z/8N+72GG655Race+65uP766/HQhz4Ux48fxz3ucQ+85jWvwRVXXAEA+Ku/+iv8y3/5L/GBD3wAD3nIQ/C2t70Nj33sY/GZz3wG5513HgDgF3/xF/GiF70It9xyCyaTCV70ohfhuuuuw5/92Z/5tZ761Kfi2LFjePvb337K47wr7bS18FNdI3c9jlOFN156GdYbwkZdo1vN8bBrfkdqyk/VKqsZ1W0NqgWhWgLdzgTLO0SrTwTkrQ60Uwni/7Y1jXPy0CK1Nto04+dGrhMbdYTUErozReFALUIwzSsB1nWpAL4AZ7PjJotwAWCAMU5iOXHN5SXTjRmA9sNS4EdBdXmncYXDY8uduqFXtH9zjkKUuAAWbS4qHqZ/8QH/W5/96DjtXzwJPKQh1l8PFNTx8zjBY/KY8TPZp2wEb0PciPohV36phBfGiCA0TaBHJUSvMaAhBvumx5ViD0YCcRB+sDCFzxkNjyOcXGkZz91oWuwGHRAI9RwMhxoAkeHcMJQ4xYNMAr2+AwercMzgJPZruWeMh/MbsS02X/u8bFRIn4iBjc0Z7thOOLHYxQpng2gL/bRGVRPq1Ml7zoRKUe4VAZNqqSl72QF0hBYsRL/IuUdKFSqqwSAwMdq8QEUdOoYWy5mA0GFWT7HKS2Su0NUtUDFqrXLHqkFV3AAsqXCZelAlFEU22b0Wz7ESvolqr+TW5zkASyskOY8SNqpNdNyh7Vt03OqjIDRpgq3JFqZpBoDQ5Qk+M+9R0RSbtYAD21yjok0ArMVwYnhD+kiUMKvWQEjY6zs86y//BMpO5M+P7VVgXQh9WWP2TDkojzlnrPoWPfeo0umTh7+9vT34fDqdYjqdfs7+jx8/DgA466yzAAAf+tCH0LYtHvGIR/gx973vfXHve9/bBf4HPvABfN3XfZ0LewB49KMfjR/6oR/Cn//5n+MbvuEb8IEPfGDQhx3z/Oc//3OO6e6201bgo67AXY++SZjnW/Gkd/2exIkyoW4r5Foq11FHoL2Efj3jK97X41PfIe7tdP4c/U1r4ATM/r7B6gwRonmWkVYErgm5UVrdIFhKPr1tmvK3lLfVYxjIFTC9PaGaA+0RIO3Ky58BsZwqScuzc8suqC/PVDpLax3yiQngVr8aUnVWT0DlbjNqCf1WJ0j8npBO1OBpdnIa5xPQ8aWQLmWbabWbkKcsuCIioRNjEjBhiI8H32RppihEBcZAW+atSDwSKjzsy33m4+uMrm1twCE/sjKsz2AxGnbAXcWdKCWFHEmfT0LxdgBKpoOhcoLS10Bw2tgitiC2MCYXYtGNDxws2Akgq65oCpT1MTpuoEgErgLS7wdZD6Y4Eg/7sXFQuEfW/T6PrG+jaNb3YOg9KPc2LCdMPhfmWSHw4JpMwK8/5sm4fdnjBb97zWC+oifgO974Orzhkiuwc+IIXnD9dbjmEY/FDdvbyFubWGWhzxXkvtRhr6nDXreJSeoxrRjLLC7/hD0k6pCoQ00TNNUMQIc2L9FrFsCk6tGwsNMR7YCowbzr0LGVoZUqexkVQJ1Q3xLkdxCmVKNvG+SWQNMWfd8BRvJDSZMrjAK4V8rahD5n5dRPWgCnd8pgImCSJshZ3PmbzREcabaQmbHTdUhoceFGA1BGRgdQJamMqcasmmG33cVOu6PMhFk8HWDMMFFcQUbuWZ+/gHZzV/n8l+UrC8TKdru3S9dkZsZuuyOMfDTFEl/8tLwuV6A7idN3+t2FF144+PzHfuzH8OM//uN32nfOGc9//vPxLd/yLbj//e8PALjxxhsxmUxwxhlnDI4977zzcOONN/oxUdjb9/bdnR2zvb2N+XyOtbW1Ox3b3Wmnr8AHlBWK8Yy3vg+8DkxvrrG69wq8p258glSAS0BzPOHT30aoFiKV+O/XkZJYIqsz2NHL1JHkw6tFzGMr0vodBIIxsESQgcmxhLQSTgCxyFWAmJtbgXQldUXPV0AfzStgkpEXjQj7Ha33fUaLdPsEuQaq47UUAmJRPPK6vPi0W4kngCBx+4XG5w2x3yakVscdbi5p+eDmeEKeMPo1Viv6JKbjQcIeo/9HczV2d7usG1j20ZyLpufQ7HSvxUHjGCsHsSv9msyadgu4PMOBtyNWywt9+2dBUQCrEhF0EBfocZjmMTHrKPYblSKEc6MiEz7fF4IIt81AydAIEz22lmPbF1UI/0eiHr+teGvWr3mCbDBG/MZxukMn9kwJeMkjL3OdMTNwy0IE7c9efBkAQpOA51//Bvziw67Q+u1S7/wTcwbqKf7bIy7DZb97DV7yzQ8DcUadMiZpDhCQMMW06lGnFm2eiLWegcwT7LVTtHxUlgExEoDJinDe2hyJFsqzD63P16PnlfyeK7S5ReTcTylpxbwKiTJy7tCjEx78RKiaCjXVaPIm2k48EDxd4vgdJ7DcXaKeNMgTKQjUTBv0WXLyAWDaTLC3WqFeq9HnTrnzCQ01mE1nAODCfpUJCTVmVUZTidIAJHS5R5ulbMwSS6msB8Zuu4eUZl4XYHu1jY471NRgubsEVSwMnlYrI6wL9ITmeIV+yrLnxfdE181yuULbtKh88Y2Ytb4I7a6i9G+44YaBS/+uWPfPec5z8Gd/9mf4/d///c9/oKdBO20FPlUJ3GcwGrz6km/H9/7G/0K1AFZqSVvLlby83SaQa0Z1jNCtM/qtDs3tNdKKkCdyQtZFmmvVTqM1os0QzP5FEE7ESvW7knPzBOinQK5RYuHRkjWLEyUP3xD1mGTBFkyy0NVqKICX4r3gWY9MqcScM4EWquhUAvajigW0Z0K2krGBGLnWOGrYlDmJJdKtowDO+rBpG/jLyufa5+62xVDgutQpLxsZeYt9zOWwQW37OL/2XflC/rV0wCjdcJLfwzMzt7Z8XL7cB1Bjue6gIA7gSppZxsbaOBhHsLAH68dkm2UNqMXuqcAUlBi9jnPtK9rdMSERGW3X05AP65xRuK8xLCAqHYPPgQG3QMzvZyV0s//thAg89N9j/n9QrMyb8qbLnoxbFxldZtRaMnm7zegGj4HxI+95I37ukU/CsifUBDz/vZLz/+x3X4OrL30S5h3hRAvM1VhsM+P/+61PwGqxAo71WE0bLGdH5V4ImPQd1utKuPjRInONmhZgTHQ6CMxCGdx1wM3zCc5bW0MiyRnvrBwtBMQnhDctoGQ5AEQ5YFLK2yWIEnpmNFSDISGC1GRMKsKR9Q20yx4tT9DvboOQcOymbSymUvmv7VosFyv0vSgMR7eOYm++i/vc70KAGdPUoKlrTKsJjky2hFyHRBHp2xY1dWj7jGY6QZ1qdNxjr9tFjdrDAdzCwYp9x+Cqw7JvUVGNBhMsji/xrD//k7DIIfH7uL4zodu0xQJ/z7yOCAGcauR5QgajnuJLwnJ3V136W1tbpxTDf+5zn4u3vOUteN/73od73ete/vn555+P1WqFY8eODaz8m266Ceeff74f80d/9EeD/gzFH48ZI/tvuukmbG1tfVGse+DzFPg/8zM/gxe/+MX44R/+Yfzcz/0cAODiiy/G9ddfPzjuB3/wB/GLv/iLp9h7ECLUYHICmJ8rm2K/kYX/HsUqyzNZiKt7CC0mdQndGT3q22vk85fgYxPxBvRwUNbJQFYuh0yQUhA+QUC2R9iBTwNgnW34Zi1Zq8SYNjKe1KplaS75JHzXIEa1XSNPBZnvFe8CExwlSEnciRTroVwM9X5DqgWyubIRjEgCeCIEMMQQr0GbwHVGmvaSs08IG3i5pv9vUq0j5W7HwFo2nMIgnj2az33zPlYEXNEYjcOEVE8jxSycH8Fids3xtSwGORb2hIJFGFvIPIzRD9ze1h+JkEcQop6iaEpWvJdExc3t4x3Nh12TR+tpgFmgkyphfriNqWStyd+aCTGAR4yBk+GaFrd3vIB9HxSqt1z+FHz02ApdL0pmlciy0wc3xgD+28OfgLaXm37h710Dp7gm4MnXvUkVIMZvPPop2Gkz9jqAmwqo14CcwYsW3fE9oK5Bswn6aoJ5P0FFU0xSh0Qi9Ds+eLvb7SrcPD+CI5MlptUKNRGIGvR5iS6vUKcGUuNORixEN4DQ3GYtgMMAGhX8LQBBxPfokKoJJrMK3Tzj/PMvxGKxhwvOrdH1HRbdHm6/+Q6ce4974oyts5BU8Z/UFaaTBl0mtMsePQOJasx7wpQarFYtTuwcx+6Jbdx00y1ouxZnn3UW6rrCqmvByJjPF1hbmyGlCrfddhvOveAeuP22OzCZNjjzPptaPGiCvVt28KyPfUiAevFRa6VMttRLC9uN39XQHv++d/qyfNW//lrkanngnH8hW5cTKJ9cseju5LuDGjPjec97Ht70pjfhve99L77qq75q8P2DHvQgNE2D97znPbj88ssBAB/96EfxyU9+EhdddBEA4KKLLsJP/dRP4eabb8a5554LAHjXu96Fra0t3O9+9/Nj3vrWtw76fte73uV9fDHa3Rb4H/zgB/HKV74SD3jAA/Z99/3f//34yZ/8Sf97fX39lPvnvgc1U3HpX/se8Fcxzv5/Cbd+I2N6S4VunZG3siDzGUX4bAh5TbUnm/PqXkvwsgId6YBl2o823XdhFGVALTGu2ePjUGHYbeayAW90QALOOHsHxz51FMhAOmOFvKpAJ2rwZi/57MRuxXGdQSstp6k1720TJtWsU0diye9VoB5exIQygBOVA8gojDmCEUnnhAnIG70ADOcV+EgLHG8AlnK91ZkrUMpodyagSZY0P2smMIOA3BcO6TFIn3O3eojz+dhMSBLKfNqziMVs7O+DnlcADLlCZP3QSKge8PswPZKKQmHjDKx50ar1C7ryYwqAKoX96NqQtbKvWJcKXDJMVww31Dw81tbYWGkxrofVkCeAxSc9nEebFwvJGk7AvFJBgfEWlS71PgwUYSZN2RrOk13vE8dX6JcdZhNhiFu28r6gSs7Tb1PVseSgr9eE33zMlXjmtW8oyrNdg4BnvvN1+MAVz8CtixVuXxKOrxhLqkDrwpvPyxZ5Zw6qK9DGDD1qzPsahKlQ4MZJHUot7HY1GGdgo15hrW5R0Z6z3C3zEg01mvdfisNY5b2eJb+ewOgVR9HzHLmvkXmFNi9RkXju6nqGM9aOYDapsGxb8DFCN78ZfKTD2edsYN4vQCCs1TMs2iXquhYcT0PoKGG3rXA8M7YqYHNjDWuTGn2fkaqElAirrsXaZIqqqUENYVI3WJutCQ1xz+IpWJsiLzPaZY/l4gS6vYzcGYkIeZlrK//tHquD3sUQrvHMDGK842GPwmdXn0ai08fCv6vtOc95Dl7zmtfgzW9+M44cOeIx96NHj2JtbQ1Hjx7F933f9+GFL3whzjrrLGxtbeF5z3seLrroIjzkIQ8BADzqUY/C/e53P3zXd30XfvZnfxY33ngjfvRHfxTPec5zPJTw7Gc/Gy972cvw7//9v8f3fu/34nd/93dx9dVX47rrrrubM/G5290S+Ds7O3jGM56BX/qlX8J//s//ed/36+vr7ra4202LYxAxcsNoTiTsnQ9Mb67QSxhLgHIKwELNwHoHLCpMbid0m4z2SMbkk1Oszu5lNSoL3cmvqf/bJmtANs1p58RipVeQeP0kA4sE7gmzrQWO/f1RfNuD/gofO34Obr7jCLBbSz/zhKRc+mb5cluBtVKflIpXyykDaUnozurk/laC8ueaUe8mdJti9XPDQkA0ro1es1j+ilNIPcAz3WxVS2ej5FVh0y8qYNVIeMGq+ikLoQk1s1TldwaINH0QEjJhHQBxyKkugrn8Eoh1Dpp7a3FzCRau9WOI+AFRjn0dBVcQ9vvi0SpMxmtCHAYm/W0cQbCqcKM+dhRuI+gGrgRgZJ3bcWYtA4OU0zLeAzwiCcHTJM9Cwg40SLO0r73Aj122Cv3HORo3u8fwvZVa348DoKBYMFarHvfYmmDJwPEVy3rKDLRC30s1qa1MqJMg4p/7zjcceA9xTi56w6t9Pq597FPx8e0OHUjwPrMJeNIg33ECNJsITTCg18nYrHeQqMO8O4KWrcAt/Ji9bgbmCnUSBb7NM1GKaYkOHfrcoOesVewIiTMYS2RmEBJSYoBbJFQKAGzRc4W2b5T6NoOwQG7WMMFR1A3h/HPPwAXnPBA59ahShc0kxtEqd1j0SzRJwpqLJZAmFY5OJOxRUUKVGgAzHNk6AgJj0c+x6BdY9Ess+yXWj6xhvd7AtJ7gnHPPxLzbw9pOg8WtK2wuj6KmGo/5m7fKc8sJ5r2zQllsaPyxoA/r0cNRo/e5aho0exI++GI30UdOvq+f6ghe8YpXABBvdWy/9mu/hu/5nu8BALz0pS9FSgmXX345lsslHv3oR+MXfuEX/NiqqvCWt7wFP/RDP4SLLroIGxsb+O7v/u6BIfxVX/VVuO666/CCF7wAP//zP4973ete+OVf/uUvWg4+ANytPPzv/u7vxllnnYWXvvSluPjii/H1X//1A5f+n//5n4OZcf755+Nxj3sc/tN/+k8ntfKXyyWWy+L22d7exoUXXohffc8fYX19E+trwP/1lre7ZdivSy5+LIzi9LoVo5on9BulShzXLBtIJaVr96GPB7Oh/0erSi3RQToWwd3W5uJKR1bo9xoRNtMM7FZIxuPfCzGQ/F6sbpAId2FQ4yGPPRNSJwqAAALh7my34k3ZGb2ItglbJgMQrq9lg5POmSCXsgj3qQj8tFchr4s0o0XhEhi4je2FtyyGCRdyDkA2DC2yAkD6tzGa5Z4KeNLmPVrqyOF3ezaR/vZOnuFYIA3oja0/UwwOcn8z9gtO29h4eL4x9MVMjnG/dn2v0heVBz+mzGfcv8bDo7AODINguACfG5K1P5iHA9yxg+9NaI/GFT+TkEdZT3EtEAO/8agn4aa9Hv/+vb+DN135ZBHIDBH2XQekBKoT6tQjc4X/+91vwqseewUWK8az3yUC36tVuicmKjdx/MAvXHwldoNQYWbkYztIa1MR+uEmmrTC2dM7sMxHcWw5C0uIwm+MI80ejjS3gpHQ8RoSliDa1bi9Ztcod33WFDegQkWSkw8IXiFzh0SEppq4pdukBhv1JlKaIqHDKrfYbDYxrSeYVA2YGcvVCnvzFt2qRZ8Je0vC5hph0iR0eaWueEJChRpTrLK+21hi2S+w6KXuAFUbmKUas0qY+xbdHI9///uATEizDtwnfw8BqLJPQJPFy2UGUl+mydfZOIRkz8fea33Hrv3Wh+EB3/DAL2oe/sVv+SHUGycH4HW7S7z3sa/4oozhy62dsoV/1VVX4Y//+I/xwQ9+8MDvn/70p+Mrv/Ircc973hMf+chH8KIXvQgf/ehH8cY3vvHA43/6p38aP/ETP7Hvc+56UJUwazI4ARufBvYuAJoThMU9+gJ8YhHG9W4Sgb8gcJWQp1IgptpL6LdUeLW0j5Vs33V1oUawnfPim+udUAQYQzbArlJAXgKdqJEWJELaLb0i8GhF4KmmCU5kzJmoKAYJ8pIRg5jAtQqMJC+aE8PYyxYEiN1DXu+9WE5qCdWKnJaVMiFPGWkvCcEPETDLoly0CXxEGL6QWDwMxoaXgtC3e+mF4MfCBz6PKoxMeaEoyBhDqk6Ez6x/Ux5MCDlwzqKoGGw4dp2Dn6d9xyPiIDvINCQaCPqDvAc+ByjHmBJpHhP/24Zf8TB+r2sGhML5j/D/6N5iOujga9t8g7D3cZDMoRe9i0pKzFwYC1UT9gHQZ++Egw8PINt5/1Ofjr8+3uJ4xzh7Szxbn9nrRdgzu2WPJKiS9brBBeu1PgbGxiR5eqGxUg5KJR8AYHz7456Gv9luy7MAACJQUwNt5wLfxGGbJzi+Ohvnre2B0GG3XcdyEN9lJGIs+ikqOgvTahs1ncAgHq/FeLzIjT1AArosvxMJ978A/hIqmkAQ/kLU01SNcAakCdZSA4YQ4aAH9rYXWCwyvvP336oWjq4pW5fGuGkhp0ziPamylrwmrG0usVrV6FcVUiXCmzMBKuCpzuAugbsEMsrtDFDDAIsHEEo9PQDZx/BcKgr+IK05CHswsLZ16uHcU21faJf+P+Z2SgL/hhtuwA//8A/jXe96F2az2YHH/MAP/ID//nVf93W44IIL8PCHPxwf//jH8dVf/dX7jn/xi1+MF77whf63WfjoM5ASQDvoNjOIE9Y/C+zeE1D2yMJJzgV5n2sVmgzktYzpbTX6e2RUx+rPKewB+ItkRVjiRujCqi/Ibj7SAcsK2Kn8WGpFoJZKdTxwY3Ojl2oB1KRKS5ZjKsULAECbBp4B+Z0F7BcAfOK6176t9OdcshncgzBVL0crrjve6JETC7fBRG9mISESqjN4pxELHRBmv+UBsbgoqIxQSC128nJeVKSfHctlI6FgIQ549d2a050uFqwJ1x68yy7xitSOz5BBKDXgMfTY2NzbRheftylXhknwuLXNOVx4W3zc0fm1eKTGVM6el2b3o6h8v78D7tevEzEIKH+7QpFMEQiPynP7w9zavdr0qZeCxWAdgE59vY02dFM4/na7w7xjPO/t1wCJ8arHXYmb5ook7bM8aI3dzyrgB9/xBr/vc2YVLrnmdfpeWxiBYBTVHN/b8Fy+882vxS9ffAU6VboILNlkTQ3eW6HuGHWVZLllZdPjBtt7Nc7c6LDZ9Lh9UaFnxlznuyLGWdMV1uoJCGeiTttY9j1YY2cCsUxgbp2pLnNGRgJRr3n0hDpJyED0HcmdF46AhN12hURTTFKDigjLfoETx+eolxM8+n+9zTQXud9Kb7q1da3rMEGwPyRClhKDO3l4850pUi1hvNxWIsDtPUgs9TbsWZqyaCygtrfZO2qhLAxfYwCDmiEOnjaDSGP+D3vjG/DFbocC/663UxL4H/rQh3DzzTfjgQ98oH/W9z3e97734WUvexmWyyWqakiA8OAHPxgA8LGPfexAgX8ytiMNTWJSNaBMOP7VQh2blSwlqcUq7iWIgGXZ6HkqFeaaWyukFZCO1fsWKwCJqUME9IBi1Sz5rix2kBxf7ST0MxkLpj2wSiIYc0LqgH6zR16HFLDZq5S3X14ebtjDD6kTyz0tVWjU7LzutBSXgnkp5AB4SlbWDc9c88hAnmQvZGLgOLDMEfWApxNVLAyAxIB6DggAr5JU1ltVSMTg9U40+Jneo4EKDWAGwLjTqSNRuGrBXHAikB4v1Jx6nm5Wykjq9zV88OEHGAruA44vLvsD+rLT7aB4TRN+44PD8/bnHhQQS9E7mKWxXItruGAcFGgaYy6onOf3mCWDw56xH5739zEE0g375hoDC43EgNMvy/UdZxD1MoIrKqbsmKeKAOfjN+8CE+M577jG5+vWRbhwn4FGyu4SgOf97jVF0SPgMW98nep2NFBsBs+NMMAtmJel6wC0GTlDY+nAbH2CRSsgtVXbo64IKRG6PqMiQqIpjjQJoIRzZhnMFT61C2yvGB1XWOUZvnqD0OcW826GLk9A1GNWSSncRQ8kLLDqMxIxes5KiSsLalJNkUBY5qV4AEhofetUoakaEGpMEmPZt2iQsDiWcen17ykKlPJpQEMyTo3NJGm3FYOn2Y0I1oXMWuCKEgkIjyBu+p7EU2eYo6lY9UQAqgxu1drvSaqL2loeC8pU9kRTLm3f5BRCS/Yoa8bPfeOjcDl+FF/M1nMC3Un6X38n3/1Ta6ck8B/+8IfjT//0TwefPetZz8J973tfvOhFL9on7AHgwx/+MADgggsuOKWB2X6UqEde61F1QgZR7Ykb3CxfTgBVYs1XuxX6Ta1GREC9CyzP4bHR583j/DFeHxHuNDqnk2tTlhcJfSWW0Dwpe5+y65lV6G5sLm7UVIQ0IIqKM+VNVDtusrjYl0nIeyJaVvEEpELH3c/KOui0vDoHADQUAIBI5nKtA7O6+axwTp3BWWoR5MWknB8sOd+Eg5VlwpBWBJ4ANM2oJmJa5hOTsoHYAzgI6TsW/rqRxVi9W+oh7jxYKPb/SOoPLPxxfDyi1qKwH7cYO84jJTAi4uOcxOvYsGI6XBwzyVjMTSrPSr6MKXByDyPF1Re3/mlrWdcHcVEQ2BQuvQ/3alSqkOoapXzgVBZBFJSLrKWcn3nd6y3Qglc++kocX9kC1+NV4dynJvHofmKKp03DPj6B0ks9S8gJICJhxWdgAUbftcC0Aqa1V3euGsJ56wkXbtaYVFMs+gWW/R4mVYN/tpVwfDUHYQPTKiHnFpkZHW/gprnE5+97BmFSMZY9AziKnbZHk3pU1GHR7+kY5IEmSqhzA0bGtBKim4rEmyBKB2G5zDhxfIXLPvCewcR42BAQy7sSkhwwxH2fJNSHisFtKmh6SztWNz4IBX+01oPqjOaMDqsTE5l3fU9LGEjXUTfc+AysTJoR8rYrnobHvOG1ei7jrU+4Apf89jXgBPzywy/DqgfaLmOxu8Cx2+8YP/EveDu08O96OyWBf+TIEacXtLaxsYGzzz4b97///fHxj38cr3nNa3DJJZfg7LPPxkc+8hG84AUvwEMf+tAD0/futJFsZM98++8CU6A/W2N182pfWdLUiobXb/QutIVwp6zbMQBrYPFnSKw8hf0z7T/W+NJTDymU09IQHAgMNquy+Ra+dQedAaWYjoLwuOIi1FdKvWnpgDZ2dSlzkrS9CJRBrA/ggpZK3rXeV24rpEkPSoxsKW2ZgKVuIjruNBfwHq2ChnyQpa2uQsFIJOnT0tiiJRwVh8GzDv3FuHqIlYtjYfzg4ErZgOYTGILnrFm6nQtpE/Tk8xMxCgVpX0iaBvdubiibbxY+dgfHjZQTUuva5XOcmhE+YsDQaMqCz6GlCeoHcTpivN/HX+YwpjQCahWOjh/S48IVkn3PPii2EbC56OV/Zgb6HqiSlowFNpsDFD5gf12Gk723QSFgAna6LDpUxB6zWJzdqkNqyhZ37w3CfY5UWrKXsOpXaPPKBfVmU6GiVivlZWzUm1j0hHPXekyrFZrUIKFCk4CKMppUo0kTdAzM6nUteCNofCO8qVKNSZqIHM3ys1r2OHF8jiv/99s1cwaFz2JUOtkUfssexVwzk2oOoDoC1jtwm1DNOglLqTJgHiYGgVcV2r0atNYD80pCAGu9KApK4uRr15RjE/5qR/3+056Bjx5fDYihLvmdN+AXvv2JaHvgjt0O3PdCmtbJs/9iN2bSegYn//6wSfuCMu1NJhO8+93vxs/93M9hd3cXF154IS6//HL86I/ePZdOIqGBpZzQzyCFcdbZQWyUtXY8Ad0mo7mtRnekd9c/9QSctwAfm7i1Y825vdVF6bSpgFjali/vG7lt/MJih1USwX8SV7L1NUg/S5CiOQtJxaOWNByhssNe9rUsNepbCU9wJvcgUAaqpTL9NUKgA7uObRwIG6UqEabQ1NsVuE7Ia0kQ+Ee6EsdTxcHphwlCAbwvFhKEbrAYKQM8T2KFmCIRkfthTPsESBT6JoxGBY4GrnVXzIbgLq94x+EcBAFqzysi1lWwuUU8FjZ2CwdMwwAXYm75oHiU7/Q2FSdgljSyWOAUpb+NV7uJGRo+VobP8bhiXcSLiCdI5yvMhc2fI/7H2R72Zyp/l3kgt+xTDzCFVEuSeLmdKl4FUV6bRHj2O98wdHy4AA9rJNlztIdc5tvCCyDgv33bFWhVwalJnAmu5zU1eNnKAIhwdEL4io0GmZfIAOrUYL1ZxyQLoK6mGkSEVSsKwHq9gTrVOHPaYWsite0TActM6HKHSSX5iqs8wbxjTCqpzNdzRp8rZEywyhMgM07khL1OQgZpscKsa/H0P3qH3OxBKW+mzDVyN0QQjyKJoUHmprd56wnYqVVvr4shkcOj6wlpLntlds8Pg02ZTzxk2Azu+agAf2avw7zrwQ3jf158JbrMaLseu6uMvOrAyxY0m4CmDWhjBq1M/EVt/ecg3ulPkXjnH3P7vAX+e9/7Xv/9wgsv3Meyd7dbRWhIrPTUyg8gQrFf6xXEltFtJKx/hpBWCd0aMDmmRWwaIK0Avm3qJCWDZpszYx8BiVxfBZ9+SApCcQS2CsWTCftxTDW1kqrTb2ZAUwhRS+qduearPUkpREtIiyQAmExSGXDCqHalSJCldjXbkpevBstAyhndpf4ppXYV+MfTjGq9Q0+NMsOpq3aq2kNXSZU/YvAsgxZpYEHvixu79NB7MXCQz3WYF6C4k00IRy9AKGZz4Ln6e7H2QiZANPKCkHJr2MZrm6pZwwfl4RP2pYVRvHbsLw7tIGEfpihiIBiA85KYZ2KEWSjhJj3JLKswNYOxG6hQFT0eCRTPODFhDyDXKK56u8eRl8K9DxrSSPqMx4rC/3jk5VisMipmUGasTSUXP7cZz//9a4Zz7IDAodIo4+SDptHn/n9cfAWWPXDGhHD2rMJZ04S9jvHx7Q6LHqCmBu/M/XGfMUmYVUDPFZLOZUUVUhLvQ5eF4voTf/NpTKYTbG5uoEkNmDK6Xqq+Ldsl+pYxnU2wnTusb20gNVO0WYh7lj0w7wjTKuGsKWOSgDYDN84Zx5dAv1iC50tsnX3E4+EgHlTG5FoNjDrLWlCPkSmK1CYJn1ndDkA4OWYdeC7CnqoM7it5ZuZBUFxSXlNmzYziESQGuiAUVfmNnkoDcN6y12G56PDSb34C9hYt2l7WJmcGVaJQpPWpr1fz7HwxG38Ol/6hhV/a6culnxKmlYLXanlgtjHUJyqp+AYBq+18ZdFYJ7dVaI9KKl93puaXj9KtBtcJ8fFsm+s4r9kXfjnWrG1gaPAWSxODC+ZGNlRaJtHQVyJ8ndef5BhaEahLyGvaeV82xryWBy9iv1b43ocX13Hm8LcJdSakWY/JtMPi2ERuepoFxMcEqjLSmT36E42Md5W8f3np9UWObm4K7ugo8BSZzlzGJpcJwkUtOnddx4cUBXjaP8eD2LpZIYFnYR9DXVTE3NIvfbo+0IV0NrMqScI58rfOVUDex0Uw8AyElD0K1xuU7wXEdUsYgvpiWiAVIeiKg93ziJs/Nq4sS4BcWspmD4wLmQ1Q+ZG3IPxNOTitqChLnBi/9NAnYcUE9Ix21WNaJ6xWGU2d0DHw8m+9HP/uf79BvBqmMMXnp2Mdx+zdg5GA33rkU/DZeY9lD5yzlvA973ldmC/Cb1/yNHxsuwWbK7nPQF2hyyxFYkK5VoIUuiEQkmYEnHnmUezs7OHmm24FMnD0jC1sb59Anxn12ga2T+yiamrMly3WzmnQbqyjN5e5GQdg3LgHzGpgkhK2V4y+7ZB3F6iObqIFyT6Qi0WdlRzLAMSUkyh3dUZUEgEo1oeBhiWsyCrUJhmUBIRHTQ9ua8mwWUjKMtf6Pifpg6KHwJZNAt73xKdju81oEuHEKmNn2ePYskfuM3b2WvE45AzugH5vAaoqpKYCdxmYnrwu/RerMXDS+l/2/WGTdvoK/LrG5iTJBpCCJU0QZjfCQODYBrI6W3PuNQ4eLVJuuCBeD7qmuVcj6M0EUfj7IFzAoJ+x4EKxvNIyAYnlHixFRgWRo+4Jcpxq4QOBbseGYiaDOYhjsF8yhX7EUljctC59zQJEOzHysgJnmW9zqZMScnj9eD28CK2RkLaN3LwCI+t7XxzfBKEdZ4KMgxwdC0hW5YMxzP+P/ZpCoJbpYBAZA3fqYDjmEaLQH0frsxw9sH4Ny2BrRD+zegaIIQO7dKxZH296LMBDKEPGyyX9LgDuABo8+8G82/UTvDaEvF+juTto3Y/mt6Czi3J5z3Om+OvjLdKsQjOtwG2Lrib0CaAq4d+99w2yjpo4KG3qhvY1zxjGs3VM6w1hsyUcnSQ8/V2vG2pqPeGMibjeM0Pc+m0HqitkKBteSM0gIl2KJBXvwLjHeWfhzHO3UOcG01ri85/67E04kdZwnKbgjR6rVQuatZjnBv2J+f71DCnWu4q65rJF2lgDqoRVLso4ZaCf8UDZdaWV416knCBGT23FuHoSD+ZuLSmgvWTI5IUK+94UiIAvqbPw5C+r4XuQGH9w2dPxF3e02Flm1GCsuh5db5oXg/sMSiT4jFWH6siGvusZNGmEa+FLYNXH1g+qU53k+8MG4DQW+FVFOGutAfVAvUdoN1RDVWIr5zYfWQqW886sWmwQ8IPfbV8tho92ELTdcKwduO/4oTHiXfgmH81/aNy9pWJdJQa1qpis0mjzhucle6rgOBFiJOidrQ8obn0T9uaObTJyTwI87CUTAE0W8A4BOFGLRUoyn5ZXbnHa6P71eUxwPMEgLss0FNw2J4M8fQyE/ViRiQoDB+XPFY68f4MZ56qXL8oYonIxtsoHnxlLHuHk47RmOAidK/eKsIZ1jIQnejWCAhfDJj7kkXI0iNHn0E/8Xm9mgDMwfTHG7cd7YbzuKNwwGAzxwDPDFeOWZY+OGTVJxXjuswgjO30cAkD5vAgdDJQ7uUfya1z21qsG43TciwrIWUWYViQkODmD1KLvWQS7UOCqG7/vlA9fOkhIqKqErmdMpjUyJ3z8eIvP5nV0LdAv94A+C7HPdM3PFT0r7C06Pg43mqYNqqbG0UkS4GJ4ZtVCAcbhWZAqPzzVuWny4NlTpgGaH4lRbbTo92pRBIxQRxUCjooUQ1JtK0X7K5aJGbjhRIsTey3atsey60X5B0TIA6C6AmfZHGhrXeb3Syzgxy0zeSjsZN8fNmmnrcA/Y1phc1phclxejoYJy3MyqnlCNxWXveTbV7IHHemAHaGQTFsr4MYZODP4SFdcyvPkmnUwgorVYjnzGAkn35hpwCRlrlprFKxI3xcx/DtpDnpaEZAI1IqVlRYlBctTAo1QxfKpzZ1PQZiH5nzq2rJaqsny6PXGu50GWO8l378j4EiHZtahXdSgOqM6p0W/qkDHG69KiDBHPoGmG5kSFFHWI6T+wHIP8zqIKQfFSm4A8iKbBcXh75EwGlr2+oEpB1wEr13LgWt2bhBqYnVTUSj1ng4uHhL+D5ZmjJMbOFOeafkccc6CnrkvdIHh2ho8DypDHORBG+o7PjcbYwh77At1UZiPoEgPlAoFdqKHKzDXXPRw3La9ja2UsH3zjdg482zsbO+gXpthtVphesbZCjhLpT+zLjMGykMMW/k8kCq9YfKjJ87m4SFXvxqvevSV2N1tpb9JDQJj3VOGWYlwStjG+jTq3MSEnd05bmyn+PReRq6n4H4FWrWYnr2F2SRhvSZMKnKPQWZglRm7bcZux8IxFKZ1VhHutVHj8b8tCguptuBTqmW8B0BVBshqcChLaPTsUYZwgHQJmPbIbQm/SQ2OcAGGeBNJib0Sg5aVk0wRA2+69Mn4xPEVVosW3Gek2QSk7Ih+L//Awv2gxow7d+nfyXf/1NppK/DP32yw2Shz3gRS976VeswGlqt2tTiGxbsb0Yb7eQ0c7eRlaRPSPEm1OC4vkrWBZTdGhGMojAbrRj8bx3CjvBq4U1UYuPWfyNOlqIeDseT8EYgwCrgwQBGyRYqOC1hAQX8uiBoG7SWkhbCPocki9I81aI/Cj+12JH5v1tlB4KnxPA7m0uYx5KwPwpBRbqlHo1hKAUxJ4ScK1EGKXHxQ4SN7YGwCMBziz5x94wSGnovBA7dlY+BABEXPB14+G1CN9oWeGUzOQshBGA/OJQzS+uQ78rF6zDXMzeAxkOXyk7OecRgjWBUQhlMtD/ARkcL2ZNY4MFAgqSN87GN/i7R+BACwt7sL9D12jh/D5tYW5rt72DrjTPzXBz8ZP/IHr4/asHYAd08T67se596UukSD1EX7nuPzIWCWCHl3ibQxw9EJ4fx14Lw1KdELkBoAGZll8XXcodaYf5OmyC2wu7ODuq5w7qRCJsJkfQ2TqsfWEeAR7369DElT4mIq5Aee/gzctugxraQoECDV9B52zWsH9+TZJXVgwKSyXgYKTy1CnTqSEJwBM9UzkrZW6Pdq8RQqex5lUciQUEpv6zMH4MLfJu/aJ1yJj966QJcZ3PVIWxtaKOn0E/DjdpiWd9fbaSvwj0wTHvyy1yLPAHGHauEcc2MlYZyzPHUv/ECivWK3lhfMDNSFptEFAb8vRhnXRdgAiXTRmIBwya0HuVAdunuph1jnEYMQL2Hx0yjcosUVUuxOJnR9o/YPymZMq6RphFxcv4OqfyxKEgDs1L45pL7QxwK6YZiVlfZ7FgZjicqOurfH4x+HRMb3Ft3QxepHEfZc5qZ0imIxn+RiRREIil3kxjfvQUy1i5Z1WDNe9MeenfKYx+/BGp+FCnSOv1sfug5CKMD4GEq4RMZIIQUuPu+yTiRem0wZCUqF6wshhu40ujbFHH/BENRn6zMHRTPM673u85W4td4CU8KZVQUw48xzlqBJg5oZ80q2mpd+y5X4urMmeMSbX6NjL9dxfIGuI/dYmYKXC3By4J62IWq46SzqcWxCOOOsGe61WWGjIYC1AkOYvJ3dOf7+7z+FnDPOOOMoFvOFOGj6HrPpDPPFHVjszXHW2WeBc4/VosXNJ7JzzB+UxnnRa14NsHJlmMeQnaZBD0TJY9dnl5usID1WRL7eU6Mxe+TyrtielwnUZOQTDWiawS1JWLAv2UQG+vV01ZYEqEtwT+LbLnk8/u72BXqG1CBoKlDAqZzurc9JEdd38v1hA3AaC/zvvPoazPo19FvlBU0tgc9Zgm+bupubVrJoaa6qa8PAsiqCd6UW1oRlTdgLE7nhddN2C24UQ/S4qm3+RhJihDfRAgWK8FEGwLRIB7rg/djx50FRAU4u7H1wXASxkfuAgnvQ5FUr5lDSDAEyNg8TeFoKNQpBDgKbIcdGoT/2fAw8Hm4R778BTx+zuacyDUX4BCE9Pp/HB9tchucRP7M5jc82YAPM0GQKxySM8uwhgl1d0eQSuVxnQFpj4wvnF554FbpWPQ8ocfm4HogHnhvHeIR1MzCYAbfaY5lZq8TH4P0ARvNOWQ+j6/nzsWfifOl6/xXjgvPOwW3bwCpiClKjILGyzXQMPPxtvwU0EFe0ufOzhKBciPo9cnjHilfM73kcZsmEyWqFr71gHRtH6pBtIb/03KOiGmBGlSpsrK9j1ba47bbb0bYdzjzzLKSqwc5yhY4JPJnhjt0FVm0LYmBaNWGhjB6vLcMOUHaf8rl5u5K9X3qP5oXzdyGsZbuvVZI9KzJ3Qpk1la4YpDH83cYV9Li2XcG0sE/o/8a9jBMtA0Ri3W+s4cupHbr073o7bQU+COjWZBPgmbC9UUeYfGwN7VFxRRtxjrtMdcOtt7VgxiyUZ00C+gMgL85ieK3IdBa19rgv5mkGN0Lhm5T8pliUVE7M8Kp0aU8kgJAFoWjeoeODrneQcjCmWY0n8ERPnPZIxxvJAjAmLt1UxVUYxtomBfQNWd5kg5JzqBeLMBMKJfBIiMcxD7ALJgzVquRJFurhsRDnA3SegUkUrjN6PiVOX+Zo4JY2Qe/H64c2Zsv9NoXPjyl96g0V4eSCnwaAOB+7KRw+3YzcICgigT0xus15NC2WMWJjDULQ0+f0UTpyG2VuiheFy7gzCi+F3Y9fwP4vx3Jt9xK8Pnr/UXg97G2vx69d/BQsl2aaijAC875nS7Xk9jEraCwoYaysb4NxmPsZQWh5BkiYF33uXd+jIpnYhApZizdIkRuWnHtmpGmDC+59HhIBq67Fbke4ZdFgmYFVz+gyIzODVx36+RINEY5uTYG/1DlckY8ZgLv3nco4eCsAVfZ6lPg9ARmpKKmAv68O0iUMQkTcJulT043RQP7frZGtwqAr+jq3FhqyuTKSsZ7wv5/6ZHz0thXShNF3itT9MrLuARP4Jx/zocAv7bQV+P1mh41PA90ZDJpkYJJRfWaKbp1F2BLAU8nDjxZ2cV3D08J4mkuxjo4kJ32WJU1uT6tgjYBC3kz7BsRS3xF3GFf2IgZJHVy61YIc0c6NWSK8bxNA6CK2GLIdbNyjxglezz61BF4JSjctFKjHstH0a9ktfKfyTdiXpuiXMOIhT1FT9sKYyuaxZN6nBAwsX5vfVRhTHpID2Sn7LONgsTP28ym4ZyBcOla0G94cypjs/8Ck6MeMm1nE8RjCAOR5kMJmwt7OGYQP1Kr1rJO4drV/6jDMNhoBRl0Impsb4Tv92sF6ozkCsbz9cb7j/YUa6DJfXOZrdB37fdVlIA9cKPt2W9L5ZCN88XBGGctA6Y3XtLk25D+hhBgUPIgMfOzvP4GqSvjGB/0rJ37JzNhpgZvmjGOrFr0qIk0CthoGUYWb5sCiz1JZr8/gVQusOiARZmtTXHjmDJe95Wrso8AN69y8EFxjkEXiv0cFLwA2i+YGB9ulRRJq6zoDbQK3uhcZUQ8AWlTOr2/eloJbMaUsPPMKgglYCDHPQ17zerz5siux3S6w2+HLUjoeovTvejttBf61j3wSLnvnO5GOrMC3T8FHOtR7QLdOyLPwwpuar/EvEKNfz8Baj2rWo9tpRNgskpOfSFx0SGZ6Ute0vUgUrhk3Ox4dAxV0ZtWGmLNbziMdIbaBnOMDvjNhBVFkAICWCWlBsskQ3PKy8edpUQCyUnNaNS5ozM+FR9zHmgCgg/aLIOSM+99aZKwLQtWOG1je3QEWEGO/oB6/q6ZvRMEz2vwBBLQ65AIDYa2CxjZGwzGYkHNlINy7Pd+YCqhrwnWBuGmPx81lTPZ36sryjUQ/Q+XFrLIyRz6vUWDbvIzXVgzXeKfsz8U/qiTti7MKkwEfxWihxlBW6BI5C9GNjz0sdm01QUJu8TlbuesxaHacgjoqkzuucfCK+3075n2LamMN95iW7JLcV/j0XotP7vSYx3lQ4Xb7Qsaa+wx0PbjtwJmRqgqTrXW84Po3DYbha6vSddRpqGH0DFNbQHkADbwsbGybo5ARV1zWEiA4HCuXreuNSXAaHmLsUvDuUCmxbQBAVexZFZXUVn4Pr33sZfj48Q5tC+T5ErQ2LXPzZQDYA3AI2juFdtoKfHCNejehPSMBmx2q2xosvqJDfUftm32eSXycG9tkRRhVZ67Q7dXob5ui0hc8jzYPinsRo1ioYcfMlbqxoXu5gZz2beYq5E3YjzbT0gEXvUGVgrjxjS1X2HE+5uCuNqFk/P5T7BMWDgqbMLCSl97K81ImBwYNcsAPuDVXrCwXf6SMiHHIxRUYlYTgii03EuZn7LaPFnNQsrxoEA378RYzFOKcMeQ+afRjX8bzTMgPzHTrhIKQ12cZQFte5Y6pWG7B2hooRozi+uXwk4bHRCG/v6yt8DnkKqzlsZJIw1sZKyNebTHmwfvihIel7DNX0GwNksaVmfD7j34q/up4h0mTJB2WCGh7UErIuUNOFRiE5//B6/VaVK5rJVcDiQ8Awd+YC1oFJ7VJrGtdC6kHrv32h6NuGnTTDfRNg2lNuMesQseM2+c9bl70+Oxejz5LNT10nRR26bLklBugb1IBKSGtz7DWJJxZAc/43TdJvr2lxUYablVUAHioweZNPGmj5R2scFbPJCcWemVTwn0tcKmhYCyHLe3fe/oQkvJ3Fd63Kxj+uWI1KsZbHvEo3LzqMKVKHknO4LZFbjtQSqDZZFD46LRtcb852feHDcBpLPBvm3cuJKY3TNBuMerjFaoV0H/FSgTlXiMvzlovZDEkZDL9tuaPUzC6gkZMHUmtecuX7qlsbigCMAVroDDNlf+pU+swoNEB3aCr0UuiSgUCVkA+H0r2uHGkFUn5XNu4ufwPQGrY93DaXvaiNbpBaKUrbnqgl9hfrtnz8ivHF3AcwmBYLhxy2YjLpPD+v01IsglbQspAP7XNJwjJAzbLYdf7lYF9HgBT1iIfwp3cB4DiiQipTX5MvK4L4yA5EwpYDeHa9nxial4ejguMIXWuXkoqH4piwnUYaxDuBypjMdVwLOwzwdM7bU5I5y9DlLNeL2XhKZRHOJg/A1/aujOliODx9m956+vw3y98ADbOOhc3fupTqOoKuWdUVQWuEtYvuBCz9fWS0WLKkQo0Zgw9ILaeA56CrDqk8VIQI0+Avq9xwVecKddioM2MT+50uHneYafTOHxm8LIFL1aSW97UoFkNqkRKUtejnjU40iSct57wuGuv8nFYaNCUG66zeMfMrW/FatSb5JZ1mE+39IlLhgGgJW0FbY9O4/ONAEOpIwlHVizAPUAIeBZioVcLQreRkc3TEAGTBFGSlFoXwMjrBTz+re8CMvArD/kmLPZacNehXjuC6sx7YLXq0G/vIm2uA82Xnj3vVBpnQh7vTaPvD5u001bg33Siw2897lH4rt9+J6o5kBtC+xVLdCdqYFcFvW1Ex5qyWasp74J5LBB0N0ut8ksD4PUslaQOAIpFlyl1Yr0RA9SiuMpqlA3xc2iaHh0YucMPsujZKv6F3Od4H6nFUIPXDmIJXT668nhdVje2bUa54X0y+6AxezsoxkAjil8XUsXiYLNCIycAwWPgB5WyPdDjEJ5FHMNJhlXOYcK+2KTm3g/K+EYLyc8ddTpWfBxjEHAAI8E/9NKU7uJn2d7E8T1nDF3bNq9VAP7pmFnXqDAy7n+wg5CKPw9ReKgL70xE+HtaqgrloByRvS+a5/1VF5yLm3dbTI6egc3pBLd89jNYP/N8cFWjaib4weuvVt72EYdEWAP+3M27Y0LMXOJ+M/Lf2x7zFHz8k7dj544WVPVY9jLeWxcCzOM+g5cr8KoDNTXSkXW3WgkSw58l4Mg04/wzJviOt7xaLeaynnkiY5ElxF5Cmhp2TJCx1QGKK1LvjT8Fghyr+AOu2XFFZMBZFebooBa+CnuGFLZaVqIcqALRr0txK1c+KFxH1yQtyedV1gDcyrf8/O/94z/CLz3wwWjrM9BTQj1rsNYkHAOQ9+ZIRzf3LcvTqR269O96O20FfpcZ1MzQzxThnIDJDVNwAtoze2BP4oCyaFHi84DGPcfWJ8rbF9y2xABWgeyCeagsxLVi5/XkoByLo3oMLQlgb8A6Z0NguHVpQtLdmKpMxHFHYJbd2wAMFhdyZZYbCk6AIdS5qtzYXI3BZp9T6JtAiTFtHZSfG617R7Pz4BpjIRcnN3jKFWOxf/6GoAv9X9HyB+IdgBA60NNioZAMj3keKOh1A6UodEbjOHD+Ql/J0kKr0hdZ1oRlbaRwzgHKT5wP81aN6YRdyauH92KhIwN7GYrbLXd9pkXxMi+ApB0ylIPdWlbsi7mXTenuCY//wHtw1UMeieNrZ2IFwpF7HwFmU0wqwnPf90adgDK/Bvpky6DJYvEPsAVRqYnUzaq8/PXtCyzqBrs3boPWpmhmDTqGCPr5Etz1oGmDtLUBJEIiod49c5LwjPe+1ifY3OIORA3WvKcPWl0P2JoI61fXlQlgNsUwFgKyd1TDPkys+e4sCsY8cNtrlk3UcZkAajJo2oO7hNwlAfQBQA0BQgJCsLWSSpxZx+w4FVsXHdBtZPFiZsK//ZP/jV/5ziuxo/WGj04TtpcV8rIVj9bYY3k6NabBszjw+8MG4DQW+MyMO+ZAnkhBmdlNhLVbgeNfY1Y1h8pSdpK4MaNwGWzIYSMcuC0dtV6E/eBcjueSb5KDdJkkIQCPOx50T6aBh859Q7Yhjt3WvkHScCzWctl8PAcf0JQ6wVEls05MgVDw3dgVftL2ORSC4RzzEBDnFiWVTAnL7Q9phvF57btmfJ9HWABFOO0TgH6I5/uromUbrippokiZUDnJjfJIYRkrcfZZfDZUzjNL2taLrwNCKQ5lNx+UpTivMRafcunD0jzH1e2GkwB/1q5oqQdoUL3PPCG2hmoUMFrsm1RARUtY21P/6J147bddju1MaGYzPOv3rylCtA/PwJTIsD5APCjmU9zkcs1YohkJePelT8GtLeO25QTzRYf/+09fj//6zx6LbOOcNkgbM02DI0wS8MMffF3pL2laag8pD1vxvowAc8+Tv/P23lAQ4lT2g0xAC3hpWyXgKaEfmTdbd9wD1Kt30dLxUlm3ZMoHNFvJ5ktz87FKwj1CDBK+I30k5EXGPHav47j2kU/BE956NcDAHzz9Gbhp3uNJ11yNr9mq8e1XixL0mkuu1HmwzeP0bZzheKSTfX/YpJ22Ar/fW2Cny6j3CNWcsHEjo14wmp2EtZsT+hmwd0GWDW+aleYSHiurjlfgWiwsMBQVC7cogKIouJuyZkl9qSTOPWhxYx/LFpbreLW9CMiKjUTIpCUViwahv+h1GF0WgFvpcSyve+wT8JS3/fb+uGtHDgzKs+zxerDykY+FQ5AuJ1WIx9Z2sMqjgB+4awFJLTKio0rTG4OAjMLMFbggMBkIG7F+F70NA0UqfIbhOAbuYqDwLignPLu1VfoakN6MnqcpKoPnpe53MhIj69IseR2bg6jiMssornjFe3jJ5vBMfEi6wUeswTisJE6XkZZr92+uXzvWwGFh3ADKXJvg1rGBScma7G8Z3NN+743l+YGK9auelJLbX27IPV4EpYTlMhfRmlZhDwCPeNtVbk2/9mFPw6suejp2VhmLXrjsZ7UUqukz0FSEe65XPufcJlBAt2OSNXSh44EqPp1Un7PQTOT1cMWokTg6LSpNtdR+KyoeAQUayvgJ1dYK3BNyr0jgeQUkIE97US6AUrq7yqiaHqli9F2S8+rg3WwJaFBSHa2kNevcKYiQVoTfveyxuHkvAwl488Mvw1/e0WKvz+CK8dFb5njJtz4emYHPHF9K1kIioBrthadZO3Tp3/V22gp8quXl/O0nX4nHXXs1VrclrN/SgymhPSKbZ7Od0K8zaK9Cc4Kw+IpWXpJ5hX4j6yZTNhzf9you6PuYC2sWiIGDgLLJhWaEP2Ww0re791WpcPxAJ54K6km8ElEZiH0rChgYWnByHA8EoZ3b1A3+29d+I174F/8HtNWCd2vfiLlmUM3AUsB/aWlSkAT800KEXB4K3cFzGH9u1+eRALRYsCkBgRM87VUCEpynoaWuwsPz08nS98p9+z5v1h3s/odCcCx4Sx36wDoWvx8oC0XRYow6ivepHcW54CSUuilaERoLGoeEXBGMczkw3cP9govrn1Dm1tzwdj2zMImL8OUyjIGnC3DuiJIXzoU5cqzRuLDAvprpNl4HrsV7dWETvkNRnjheO06brW8TvGTH6Ho2RS9gESwD46uPNHjwW34d/+uSZ2J71WNSZTzyXa8NFxchb++Gp6IaCY0pMIzy3OzeWeof+P1ENL3OnQhdWXTccKGw9r0hpKaC0S8r2asM8FtnUIK46O36DKRa4vgphDmMUhc1gFXle5QosLQPZ8K9jjkRPnO8wu3LHi/55ifgb453SBXjzPUKnIBlBvrMaIhAidB34Zme7o0/9yGH7TQW+EiEOhGeePXrMd1J2Dsf2L1XhclxoF0TwFm1lGpzqSX0E2B6Y4N+yuhn7Oh1y3e1giKAvOy51oIVrOlNCpCLlaoGzV5C2m8Z+SalbtKkZDZGaiP1x6kcG8/D6G8bo/UXBUa/v4/Lrn0DAOAlD78ML3jfNb4h8gSoN1r0xycBIEhFyBjZCUKa0UggjkNjB6Hp5QtyK5RJFCo+2oG2a3dj0sosI5vLoNggKkjBwLZ5PUAJ4UCI5C5LkHv4vRpeBpJZmLFUa7ymDcf25wAujNgCF/ZBiPrgLO5twsSUAxMOhIH3ItavHwtaY5szF3xk1XOr2lwftq4CX3hUUEzImBAzz4NPsgmGDiAmZ6OE4Q5srQfhTd3wWRRtQpWCtH9NDbwGesvmKR4rdwPchT0LJ5cp84HEIqgJ+OZrfwNgwrde+1thjcoi4FpKPxsAjiOK3upG6MIhzQDgkdAceDUiQM4VrjAh5o6PIQJ7dX1/IcmymXXIbSpofZvD+IyY0M7lwXAmUQLAyJ1WGaqAt1/yNNy816PtM3LOrlQtsyyXvGgBItxygtFyj7y7AAioNma4fSfj//fgx2G+7IAqoa4PWEunceNMd4rEP0Tpl3b6CnwG6gTkKWNVA2s3E+bnAotzGPUOoW4JuQEm24TlmaJRY0lerAQ9iSG0Jjssh52elb+63+iR5knc8IxCTuGWBYaWjY5rUPAmNFEY5PcUcmYHVnJQHGxzHFRH098tdjqw9P380KEKoR6E//rQK/Ajv3eNkAoRo79tqgQq5fBCWMMlHa9i8QxoyGAMoAOC0BkJ/egiH4xrXnkNA1pKWWKuueSN+6TB59ct8iCIXQiP5nLwPGDWTZnbaIXnpqQxmAdh4FIuU1mGFQrjmEt8HMP3vnxy5bvcABhhSaL1O07N23ft4H1iG4sdq5a4pYW6VRqyAgbXs7kBtPgOynoyhcZIdogVNIfCXKfzMFB84nwnLh6a2OL9Gl7ALVF7BuWZDMauSsTgnpo8uH9vnuJGkqPP+lnDCmLTZ9eRFqWRxUGTPMxPX1RBQbO50PerCQvWFAED8a3SkF7ZLHxTEHSBk425KQogAORFLcctkwj7ugN3ogAAKsxUweWV1AjJqqy/49ufhtuWGccWPf76loVMLxEmdcIP/eEb8JqHPRmpYyw6Rjup0WUG+oy8bCXHPhH6+UqcRYmAlIBVhx3VxBhA2lz7MjDygxZ+0u8PG3AaC3wHnlRAAqPdILHos2yo1SpsWhngROjWQ9oaAf16FssyujBRNtS0l2D0t57OxOFlPohuV7V8t5otdl2xo6fdnRyEyrAEafncLKdqj9Cvl8s4T7/2YYI1ChHvr2L8yO9dAwB46bc8Bi94/9ugkgq82QlHAQM8KZsXdYQ068E9ITVZDESlGc7KSWBDFGR3FvSv1ecOSPGB0E8AphmYq4ldMdJKaH/7mX63Ikl1SixMf2UafWIGCocpRigHupXvrojwdcx0ME+GbWL2XAdK3LCIjtUXcIUqYd/z9HBNDvduOADzXnDIwmB4PrcBLR15H3ECQVmJqWoIfdn9umMlrDfq4KGlYaEdLtwQuaxHiVnDFUd3WHTlj8E9QBVbc/dG6xYYhCX20fqaEIufsaQkDlkICV77IirWyp1RBgJx09v8maWucf19FRVt7QS0PJmCaO+F0dZ2CqTTFHQe4AhQ7qvJQJsUSyT3a5S43JJa+QDnhGrSI1UZlBjtvAbnJHPRJg2pCOWtYAz0PtumrDmCrM024U2PfAp2+x4bk4SNaYPHv+t1PgfXPeoKvO5hTwZxRrfKWC579G2P3HWgqgLNJqBpI31OJ7pYwvxneTCUUrjwadxGyvuB3x82AKexwK+mE5y7WYPXemH6vDWhuQ048c+yuOkVhNZPgH5DGPdSWwQxZaC5Q2JTvVr5qSWh3YUIPKnOhbKpuKUNpCUhT1BAYm7dqbJgsXj9PrrsBwKdMQBm2YZvZX0BAdVRTsPNzdyXAeE7trJsk7bNkhhY29gMggSg4+URS+VAxRE07DnReacBWpIQh90bybjzJIuwbxNoofMbvBfuDtVNMC0TsmERegjSugJ6pT2mFQFnrsDLSqyYlkZx8yDQQ78ulMNhPh9RmbOMBbcwg9AJIDCprV7OM8CcCUgGCguiKgGW/hcVveLmjzHacO3w3J2xjYdjtvvZx8wWTw73N/QcsM+N1FXQaxqLng+hCHvXkVIZi/9uSoBNgl7CmCrTeJ0Hb1f0zMRKiF4Cd/iIZY17WWvsp5q1UIH+zq0A6OJaIUJR4KZ6c4mFhGukRDDgOe9sgE1TwiI6P4/+7oJOMwbaWvdecwKleM20F69Cn0BJgHdVylpqG2ArgGMYkiaDKXlcf1DfQxUdbhjv+86n4tvfeRWokfQ87sMcMnDDsR7zVYeu7ZHbHkgEmjRIa1NJA4wCnA64mdM5Be+gdijw73I7bQX+mWsJT33zNagq2QXbDRHuFosX8JNs0M2xCv2avjT6IueGgUaEVzVP6M/qwCcqT3syq95c2AAGG2QeWxejzcpJa7TyFRjiMk1lA+XwbtFIcTAhnTqADMwW97oAarNNHryf/ndwPAM/9PY3CPiHxVLnicQS0/FalIwVlVKby8oFveSKq5KRSvekSGUAzs/t80FhwwSASrj6oVYjZQnJcDccJ68qpGmPVDO6jryGt31/ENhsbF2z33OY/yCISQ+0GvEgLoKBwg0ADoQrwlyvEyva2TOLm0d8niZA7Ptk1x+OK4ZG3LUOFDe6Ds1xJzaXjIGwGWzJLkCDQhiB1eF5RFd7PCce6zF6X5OEOkeuCuzLQiHN5/a4tv2fqVDnmmvcleEg6OOYIzgu3gPpd9Z/D+EDsLACccmf78IiDjgLNoDiiOwHGg7YV+PeQhvA0OPHev0GYuXr2Ixf31n5VrKwqGG0ixp9nQVDsKpAdZZxMgrGQOvegwGGoO2pF8a9dz30Cdjte9xy+3H8zkWPQ5ca7GZgvliiazu09RoWiw7Hj69k36lrpM0vE3rcz6MdxvDvevu88i1+5md+BkSE5z//+f7ZYrHAc57zHJx99tnY3NzE5ZdfjptuuumU+z5rpoCvCKohoN5RWtwOnv/antEjG4OVWRbaOAH9OS3Sdu1ANdpsYaVjfYMPG46TlwBlU48vuvVvC0mtNo8fW2rWSDicLJ7rlqxZS4EHYJ9b0m+s3B8AcWPq5skNC3YhAUfPO1EGwijVyVYJaKm4SPW+KPz4OXoIdfvz9geWZrhXGNGMURwnnddaGMV4XoNSEAD2MwrSe+64WmMHhTQGLUNYEBHnVU+Kz41Q6sb7sxWLi6yion0PDAlZ7Gfk6vb+g7DnAwRqUU7KvBhA01PjTLGNik9WBXZBngY6ALxFxRUmhMOlA4XuIEwC/V0tdP/JMo7UytylFWnambA8ppaQVhDGxyzXc+XUhHNcS0ZEY0qao/VR/g5pb76eU1BGR3PNCcNa8XoNq21AXRqGXUgV/T6MRf+OdTPKpJEoAxGoa++RKg5+aJOFGMe8CKYsmwDvEvq9Bv289kkigtTo6EVoVZMshEerUmCIK8ZLzroPPvIXf44THfBXH/8k/vKv/xYf/cuP4lN/9Vc49qlP4e///CNIqwUwqSXufmQdtDYB1dU/amEPYLh/nOznsAH4PCz8D37wg3jlK1+JBzzgAYPPX/CCF+C6667D61//ehw9ehTPfe5zcdlll+H973//KfW/s+pR7xE2PgPsXkBoj5bNtz5eIU8ZeSrasLmY8zQPNgLSTSrd3CBP4G50ntfgWY+8DlS318F6kP9TK6QVRj0JwCluqaPiRo+bllmZCnqSeD4Kw1qspqUtz7LyBFjWAA2sNN/blFDHLUUdLxOQFIiVFqmMVUMb9VkLbN+w5RsqMUB7QcdLGMRnD3Inu2WphgcIA1e34x6sMYA1ieFTS6KIHG2BE43wgi8TsFeDVoQuz4aefLWw/G/rcqRUxNi+CZeBFV3rQSZANXMh4g4sTDAOCTghTZj7ASBtnI5pm7KSpIzn0AXgIB4f7o+lT7KMiVQUE3eRB0Kl3PCgyp5b2zQau2EPAsjSAZlJ16NZu3pfwsIIB6ZxYn/mKVY3DDwWXvu9DvNl92tCX+8FYxIfy7QYAFLLsyEuYRRTfin06RgLe/YGTjSuCiKfE39ffb3pxSwF9wBFMk95VGWw3DvawHPPNFREFP9AhkXoCTkrOK/Osp5W4tWjiosHJFfo7R6a7EYJiPF/3fZ34Irx5n/1DTj6FfdBni/QUYfpbA3UTNCccw/Q+hoSNf/05FsEn5zs+8MG4G5a+Ds7O3jGM56BX/qlX8KZZ57pnx8/fhy/8iu/gpe85CV42MMehgc96EH4tV/7NfzBH/wB/vAP//CUrnHLTodfffIT0K3J31IRrsS1LN5nrHteMU9doyLQe3RbvQhw5aGnDLFsVwm0K4rDQBAnSUcydy6pZWnudV87tqmFeLlb67YRNxDQWhs25bDpeH36ZMJey9cWY0Rdj+ZO1Z/EBVgXwIAeV1drqDs+BWVCWpjrQg+oeFBT/E7fF1MwLF6biiABB8vIhGqjG/BaRt7owUc6VJMsm+O8Ak+yYwgmt1ZhbMH6jHM8GsrBYwzfaWjC78ljzNqZkZ8c1E0qVrldzwQ09eI5iKDQMj/BMnSrVH83Cz+SyOiYfT0G5SW6mYtiQ4NxDMdFbllb+Cdqi6ZwmOLAqnxaCip1JZUwdRBO/aiUkISGhOK6zKtRNOdawzbq8TDviCtuFipK5T5NoA+02oMAsjo+n6uehFWtJ7G6IdYxWUok6zsV7g1ZMCvmbRiwWvYhE0DDX1zJfWYDldYsxF4J4DoXD6JS1TpwVJ+pCXKuGZhkzy7w8MaiApbJ74kzvMiN92E/Fes1i0K522bMucKiniGfeR7ma1vYq2doN8/C3j9FYY/yHt3Zz2GTdrcE/nOe8xxceumleMQjHjH4/EMf+hDath18ft/73hf3vve98YEPfODAvpbLJba3twc/ALDaW+DT2y32LhCBXC10U63kZUwrQn2slpdaBT+1ku8txS4kTYfaoVs0awqSufWS5YebBawav21g+xqF/yNgyVKt0ujvrOC/KOxpaDmSuY9JQG+Dy9kQAqDLrFJJh9LPNI7pQrMjsUImGXlWpAjXoixwUo9IvCccIPzVUjapMVBoUrGi0zJJ+t1C/t84aw+0ISlG/Vytm0pR/jUjzRP6mSlhOg95/xgGkYLR49j3nY0vtvEjNOsxxHAP6tv6yaZAVqNj1QUe4x8ULc/QByftp+ah4qff+TjUfV6qNppipd+n8r8rFLWl6BGgLv/UShqk/C7vBK1IXfHB3W0/pjToO8EEL9xU8CMYrG2uFOdizym66k0JNc+QWdwJpRCQKyii/PE0D2saqIcsKrGy7oMCrGtq8NDVEHAjwI4BPP7vc2feCILn+fOEfRysCuzAkxefbfQq6NgMhBfz7c2LM15cTumd5XzzBph7H72CFBMLn/8q4Y4FCxCvqXG6U95+yZproXfyc9gA3A2X/lVXXYU//uM/xgc/+MF93914442YTCY444wzBp+fd955uPHGGw/s76d/+qfxEz/xE/s+T5tryIsV/svFl2JjNsfz3/J7aLbFom3XsvBGb3aYbC2x2m2EKhMobtBOkei1oPibEwnVUlL6lud2oGmPvEqoduqhWz6uDw454fHdsg3bTLC4noJl5McaMroq57nAJx5s6vFzt3orlmpZbe3r1wlcYJZh4PcGFVezumqzWdk9idDVjTUKVr+deK9xDgB39Yavxaqn7FYUN4zd7VnZ2Mzi000/LZK4lBOQJzzIWBjEfDEcn3+gf8SxDvARcfzBzcv2zJKyMvj8a4EYQhEOphSagpYYeT3UWnALNeIKVFHMw6yKgeeiYpkmE4r2Y9amCUYop4NZyKACpgsAUL9uyC5AENKUJaxlXAx+TlA4hp8HS5NUQTHXOSlKn3johu+FsGdfDQjIvTDUKu5RhLVZsKa8ViyFnoglvQ2QvHrrrk3leIbH4LkSy9dc4GYxu+A15WlcAlqv3xsPvaXl2Zq1OH+GCN3NXsrM6txRVmVLhTRZKC5ZXY7ROgScFZB6yM7LVPLyA0ZAkP2kSo/sa9QSfvvSx+KzOxkN98jNDKd9utyXqo3354O+P2wATtHCv+GGG/DDP/zDePWrX43ZbPYFGcCLX/xiHD9+3H9uuOEG+aKukDbWkOdLzFczvOKybwAgQrPe0814t0L72XXQdlM2y6h1q8XOSSpDLc7JaI9kNHdUmHxyivp47QJmbC2OY8v7mlkwdkJcdCx59f53tBB1jKlN7kIeb76Dz5ssWIAubH7hOi5sDjJRObhWSfeHaT/AJaQezgw4UIQ1fMHROjKBrp9xxbK5TlRjmmYBUE16YLsRITbpheREFQEHwzVAf2YX0gPDfOu9DQB19vFIqERBH1PLAAys2KjEDeK45i63lk2jKv2V2LKluqnU8UwRVSI8TKLzE8I9DtKLCkAYN9fiueJmeM+RIVL6oqJQssTW7RrWn8XQnTnSlIOqzKnH66n8PfBosVjwlj3g4D29fVdQTXFMxSVuQDu32G1cwa0+qCSXSfjn61zWmzXzWk1zwAfQ8H0zgBzgdLXmOfLsEzvOvTJ271zCAvb8dQ1YOIYNj5PCvbtyrfMXgYGal2/ZJ9RkDBZZza7gGXe/3aux87nnQT0klAmf/Ju/Q3/rZ3HsU3+N5mRg3n+KLd+Fn8MG4BQF/oc+9CHcfPPNeOADH4i6rlHXNa6//nr89//+31HXNc477zysViscO3ZscN5NN92E888//8A+p9Mptra2Bj8ABFlay+5ElJDQoDuS0W1kjeWLAKGOBpsEZYi2nEncy8HqNHRzt85otySWnM9s0a/n4lrNLislPz6moY3fMULJFgiCCixxzYESYhu+bobR4vL/R65hB+tpHH7gTvcUrpBWqGhmjwfqeCgjWK7JN2/qNL6ZynVtQ7VSq+6W1n6NgtjvvyVgkeQc+3xPWfsmPapJxmxzWVICEyPPsoQTFglpngrwLriaYdMxEsbGF+4xaEOyczlvYO1HYRbm1zZRmzfrH2bVdcGdPbJ+XbgahsM51/WaFUT4TbK7lnmSnebZ+2AM1xXBY8TUhZ8WSEv1JFQBQ4GhUiKxeBTXfMBb9FO4EuWCnsM4qMTnSbkTLHRgINTUwYWlp+VRiOGbEmR4DxVYlrHhSqyFXgzIZ+NvU1FwCMCsd2WSVYHxd0h/PO015vBbqMnuMT67BKGxjYqFClqyNWJ/s67JUEiLQggQgGS7ZAsRFQ2UlsmL7/CqcoXdswP0ORIBVGfQWoc07UVZJrjiYfvXrz/s0aiPnoO2B7bOPR9eYeewlQ37C+zSf/nLX4773Oc+mM1mePCDH4w/+qM/+gIP/EvfTmnVPPzhD8ef/umf4sMf/rD/fOM3fiOe8Yxn+O9N0+A973mPn/PRj34Un/zkJ3HRRRed+ugyg8FIibDWSPQhae58nrLS4vK+uLfHi3UjSy2h2hOtO0/YN/JqBdQ3N+6e7I52rkRUCxImPmAolOP/OWx8vnHCN9NiVZahVQuSanmGbh5Zc4DE1t3NHTf0KPzMYhp3AmhaIft1iSH59icqVHfUcp6i1w2gGIWr5Vu7AO7LxmP9Uy/8BmAAG53Md50L+Kon8PEGfOMMi9vWNMsBEt/VZ5hWwkjmlm8E25nwO6hF4WYAtAOUMb8XcyEH8FvBU7DPpa2XMT9DBI15n0wh5lyeg2zo2m/MCDALNA/ndOBZiqEPE6rA/nsDCtgvPvrwe/TCuDJr1r0qqqkr92ZzQ4yBwmix8jxldGviqUotStZJvH60vBkuzA1f42uSIEC1hsv6DtY+gFLMJpOmuekaicQ7hILQ9wGXMfh8tnbTGFQXLDTTQG5lsr14jRoSXGc5T9HyPFElytD2kBAVOhLhDxSgn71HASsBAKgY1zz6aQUHAuD3vuMZkk/ey8L051czrrr0Sbg9T7HDa2i37oF07r3QHgp8b7Zu7+znVNvrXvc6vPCFL8SP/diP4Y//+I/xr/7Vv8KjH/1o3HzzzV/4G/gStlOK4R85cgT3v//9B59tbGzg7LPP9s+/7/u+Dy984Qtx1llnYWtrC8973vNw0UUX4SEPecipjy6JQOk6Bvebrhn3MxE4Bjpzzna3PFnBciwWMikLmjJIVfMkaUaVCOB+Rr5BmFDr10QxsCI7pggAGKRYxVidIfWFpa9sJhEjkJuT324UJLRIsrnUGWlZ+WaXlqmg+v1E7dysmLZQEkdXdl7LEof0+dUNOGGIXs4Ru0BulZmr2F39SQXY7VKgh1cJ1VzZDBtJwTNkt6cj2earG27aq3ToQ8BdQZ2rkE3saOyBMIwMbjoNbo2rpeTxbJa/Bx6hCKZCUB7MyiKAwjwajbPRxMZrD4RlT8PQUra51GdsAq0nmd7odjTLVN3IIqyHu5bjOGBKMAqYD0UZjEqnnUM2T7p2nfSHyt/je8uGSgdAlQo/64O4ZGnY2rD3SVHy1EMEmq05Yi8uFQFueZbFyrWJA4ql26qGYR4VU1yhz8Se+eDGIZTQdS7u+lZi8SLcywSxhQPVa2Mof+uvkCTJZDolt3XRBIWXSQGVZTwfvOLpuGE34zO7HS5/52vleXUCLr742qvxW4+4HCeWGUc3gKe/+1pwxfjNhz4RN9zRoVusQCmB1qaHHupxC8bKSb8/xfaSl7wE3//9349nPetZAIBf/MVfxHXXXYdf/dVfxX/4D//hbg3zdGhfcDXxpS99KR772Mfi8ssvx0Mf+lCcf/75eOMb33i3+hIwTo3c95i3a/jD73oywJoGRiguvPXerTPfUDPcajACFeqBelduOdeyiXXrRsQBQZkzkDd7ccEmeB6sI43D4omxTN+cO3iqn1lQJV6IsiHaZqboeulDNxXbCFeEarfAw91KsmsHSyeqsbbpGxrfCG/2tZGgjMLShf3onolVwGRy9+bkDrX2dcNPrSD1eZaHhUUUyT1w2ds4XKKGeyB49sFgnC5AVTjpBuxsd2ZNWaqWueZDbNf/H02Lu2UP+jzok8LylhwdX+LTCN6eoBTY9z2pm97Og6bDhawBva9sZVY1Q8PZ+djmBo5PGJPqHJSWZDHoXImnK9cWp2cHT7Ih7zU8VDAiZf5zCPXASKpMQcpD3Aggx/dTdm8DHAgYxlWJVWwubYupp0rBeDaHcT41Tg4Fog6EfWJh9pv1qNZbTNZapKYvSi5UAbF9ok8lNEcsCupaJ2Q6Lfn7DRYXP2lqnStvNgf2vlFZgwYgzOhQEcDBLUJL5atIwFnr65h3FT59vAZ6wuse9kTcsgN0uwvQdALaXCv89ofNm+v3J/vR48bZYMvl8sD+VqsVPvShDw2yzVJKeMQjHnHSbLMvl/Z5U+u+973vHfw9m83w8pe/HC9/+cs/364BIrEmMqPtGQ/5zau9rnRaEDIn8FFBLbHG4Or1Ft1ts4Gbl82irNmygTy2mpYJzXFCuyXsdMlobisGhfWQZ8LXf5C26Bah/m7ZMi7D+mA1wYSHCXyUuGD8HvB0veiCHoDU9IKyweqmstHLZrmrj7bJSgQCtaaHQMGh0Ofh2ABExjPnQCCAMgsvdwaW52QXqFldnmklIQSuWTjDzeJTIe4KBco4WMmHYtjNXXLjsAXpvDYmO9jnDEABeIVTU4yb58KkN+and3yFTwN5vNXj3NlwBPFhAFwL5wOISwEaDv3qPAwIeVRgG36gWPPm/o8KEHwOARHetIJb96mlgefJ8Ase94/TyFzyw22ebA0EbwSBpbiSCTaGForRY2KhKfWumScKFSQOz3D+eltXhYpXlWtDyhN7ieK8rKXAUiwvbXFy8xiopU/zCjzrPZ6v7PnCbqd4GKxEMfVYuuIIvGaFhrqs7G4165Ardkvc1wVpqlwPUXrsWbuHRxXfHuhnWeh2QdjrslDVK47EWwYuefNr8ZuPfjJuPrbAL3zLE/HZ44x2vgRNG/k5ROUf3D5XnF6/u/DCCwcf/9iP/Rh+/Md/fN/ht956K/q+x3nnnTf4/LzzzsNf/dVffd7D/Ydsp726SLMpuOuxvdfilY98gqQYKbMeMZDuaIC9Cmm3Ap2o0R2flk3FYoC9gZhU+za3Z2vgNBSrC6J113eMdKFglUYBPxhrFnc+IJkE1q+P5wBfnB0/juXKlxzuxb6Eb7p+nm60nIBqpwJ262ItzjKw0SvKOLr4wyBCDNolHxfQl4D84qYrm2GeFLZDTmr5M4JrF06yIyh03dANeGdzY7qPlSc+oLmlr8cXtzv2ueXFwi1pbgNK3mCJuatd772UnB325bds3A1t4W/wkA4Nz3MPgwv5oliQ/d2X85w8x87PsnZ4FG4ZeBlgyquGiky/sDCA3qusewzedlayl33o/DiHB1LNwteHeQE8HBAPS+GzTCIQVZi64hoR84CmohG4N8GqFngn2STFo8V+D64cdyJsPbStVjuvpCIdt0raY3iOwQsH3yvYvBQGnjTU/yTDiYUQ5nLTmJC0q2Uq4ZssXhrhBQG++Y1XYa/jUpsmKi+6tr7mjArnbNbYXWYsTyxAdQ1anx0K+ztrdxGlf8MNNwwywl784hf/w4z3H7Cd/gI/EdLWOnLX4/btBV72qCe4UEhLEVCkVo1r7Qjvs23EJuzG7tpgNaVlEnCfWkacoKVgC5hqkGqVRxtvAroN+aBf043FUNFjocABYY4ia+Xa7J/5GA24ZKhldRtGsJu7HUkBUVbNb68aCMUDQSxRSTIsQKeCzTbIimXOuVjh8R5yU0h+/P8JeyXDAkiTufE4fC4Kl1f+y/CUQUPUR4yFCW+zgGPMPCpAbg2rRZ+1tK+d44BE+ywoWM62GAVxp+vOlYmyhqyca1Ig4SD8k+BlYOO6cQyFKi/1nuBKqgWhWsn/xDIPaSk/ZCEAA/4FLwE3gnHp1oxgSVnjyH6XDAlfT3VR6so7U7I9nMzJLP8K4jViCCXsKonlGwBoVlbWyGxg4FMT8vqu+tpXAiky0pmOpOztUmMQTZZ7aNRNb0vZ5thAcgwR6gwJi9kcrZJw6q9SeZYduecr4jNI7yN3FTgL9z33BCyk8iZr6ikAcfdv124oxLANEuPXvukbRSlR9j/0hN1P/i32Pvm3+JWv+1YhWrI1rjiFb/nN16Fxtz2D1qeHwv5ztLsK2htng02n0wP7O+ecc1BV1b4aMHeWbfbl0k57gS9u/Qppax3MwPaJJX7u4sfhmsuucIAcAHWjorx8gz6i8OTBBu4ANF0UeSZpY2b9pVXR3hGOO8iqs2t5fJUxENrlouHwaL2Ztj9erFy+M2GLulhWeb0HT7OA/DY0rWe9A60I6XgjlnNEXtslwwY/GJ9tXATUuypQzPqqgeZEknlJI+KUGEMOdQgsjOCkK+bKDZY613AOfBfu0SszmudBWhuCAtaX+R/c4zh/P2HA7DYA9tlP4hIbt+/7AvqzNE633u36Aaw3fv6e220KE2sfippPHVAttM8OxRMAFejByxHnVvoOlLCV5PTnmawTY/pza9QUS1Nkay6sgnFXMCGdirLp+JkwLzK+koPPTS6e1kayTjyebYpAtO7Vk0Fdcta+mDNvyocrmBUDmupoa9ar8ZkHaZEkXGahElVSvGiOzoeBIov3T6rcsSkFcc1ZKGiS3cXvtN6hj1d97Tfiuz/yR0XR0TEvto+hqQj/9o/fL14LU1q4POsZ937KYbsLje/Czym0yWSCBz3oQYNss5wz3vOe99y9bLPTqJ3+Al8bAUhb60CVsLe7xN8dW+K6K69EnoiGXO9UbvnUJyrlqQc+/KynDPpxbV5f5NQD/Uw29mqult4yoT9nJQf2JHnQysdt7thoGRwo1E2o0OgnujoZhbvcmm2Ktlta6o+5Vyu1hpap8IzPKxnnioC5go/6VKx90vulocYLhN+JD3w52k3GePfp10SgpEWSzdw3XbvHoEhBlLGYbmbWrM+dCjwHWtrmZ5u0xYfjczRPC5e/o5Vtzx9QpSqEdoaIeA7HDa+R6zg/8Pn39EJjjjOlQXPgq0WxwuO5sGfHsT8oQK/89FMU2lqCg/bAIWxCej1TSEfKIZN4WbjmYm0bURJQ8uUr9pALahYr2tz9xhuQxJrlOhDrRGU3AZhkUMPlhyD55U0uxEyq3Fh4xrgC/DkSe/aCu8V1zqmymHmpDWFcEaacWSEbi8sXkiL2eXFwZfRIZAH90bwCHa+BZQI1WTAv5kExxH5iKWVrY7A0QSrziQx8z5/9H1BPuP6SJ5c1z8A/u++/QH3BfQAGfv2SK7WPsP4JuL0j9H0PrgPw57CdvH2BBT4AvPCFL8Qv/dIv4dd//dfxl3/5l/ihH/oh7O7uOmr/y7V93qC9L1kjSV/C+hR8xwqrLuOW+crNKK4Zb3zKE3HebIJv+bWr8d7veTy+/beuxde/6irfXCNa2dmsMmkd91KZjDLAIPBWB7q9cSCec18HV7Rb8vsAUTbu0X2EgCh1JqCobEq2kYbz3QokoNqtQL3GBvXamGRAc9pplWTT2asCgls2bY87E8BHO9ncBnOM4csRxxOUFLfsK+HGB4r1yMTOC+6WrqfSGfCPgSSkR+n2RmL9jFIFzsaiP85IFscBFC4D22jt5oKC4opOhodW/FlZ+MBAelFAUBiPKSVsk1esYI9fq/Vnln6CVkDswrCYyrV0Xs1DYuMbcOurUHej3CxqhHGNnptVdZQ/grLmimR4xgMOCe3Mqt41XEIFUUGNx1YsGBEfi90Ql3ASQWivOfRrpaxRFCYmVdKU/969HxFAYHgNhgjcWS7rUUGVVGcFBxbwpHkinJSoKpkGUfH3lM1Vcnc/bI+wOesJ0FRSJBYvQ5tAHN5fUzwy8O3Xvh6/94Sn4MQqY3fZYzclZCb87HdcjluXGb/5hCvxb667GgR5yK98zJNwbN6BV52UuT1053/O5qRHd/L9qbanPOUpuOWWW/D//D//D2688UZ8/dd/Pd7+9rfvA/J9ubUvH4FvjRmcGUgJx+Y9rrrkcvybq94EroFFW+NbXnc1kIBv/61rS4U8DpuHClbZjMPmWLGwkSVGtZvQ71So9pII5EyK6CdHQ8dytwNhPzYJgZNqmBxmn6IVO1IcOKFYL4Ayn5Vd3rjx01zz9ac90qoqQzEyGIT9c3dkPegGBUCsV+Nttw3f+tINkAwTYQJL05RyLZ4Gp2GtgLzVgRfJ3fyGU0h3NAOh7xt6ABeagIwAt4FQRBFC/hwy3HdlJEHmSbDx2r2Ym3aA6A/zn0KetSg1FnJAce235XwPUVTs55qiYwqiKQEAkJbl3jhkB6ROrP2IrhdrWB5I6uSCckywkkNWhfFWDFICoxcjl/VgZZZZx0IteQjLCrggq0LnwDe41Vs0DuucAZJ4PACJ+08BCootwcZkCgQ81k12TmBEBAdgJwE0T566KCEg0RwJKIBXvRdH9BvepSekneRptKxeDFTslfgsz96ePU8y0rQH79byndFCA47+F04LfUxTqa73Hde9rpTZJeAV3/pEQe8zsIuMNz/mMjz+HW/EVY+8DDdut+i7HqgScGjh37X2uaz4u2HhA8Bzn/tcPPe5z717J5+m7cvGpe9t1YEqGfYiJ3xyt8dLH/84/MaVTwSY8L++60p3dSdz6/kP3KIXLnsEAKBYxsbiByYl89ENOqQk7aNwZRStwgOX2qKVBQws17Elvw9loi7OgbIyPsaub2AoBlIQ5gWQNBzXkEmOfJwWsuDRXlMoWOExfaeobUnqtLfkzGT9LIti0gPVHfUAaT5Afe/UxS1qgi1+b0qFciXEKnFWfY6V8z16I/bl7gelTDb8Eqax8ItbhDo/5hrfn88ux3m+P5V1xIRSkTELm2O1PFjYS19wlH2utZ9U5t+8Hxa/9ph+Jp/fWF3P4vC+3kzZCyDTQUgnF+tWcCs0EOaO4rclmRhUZZ1Plnz1KiPV8kNV1hx6ckVDEO4QCuZ5pWtBH7SFg8zTYB4gEsHrFn1PA7IpToI5cNKoYI27x8fWhB5v2AADPFq4xEIhqSUR9pUSWynAl0nGlfYq8HajKcBwBZkySsGeERGUpbm+/4pnIK0S0irhvM0aRAROCTs94wlvfyPe8YQn47ZFj5YZvGqRNr4wtUr+KbS7Cto7bF+OAj8lgBnIGdxn9H3Gbg/knvG0a1+PG3bE3R0tbrfEwqbg4D2GxwEHebGQF73fyFhduEJuGP1GLla5bYDR7clh44nNBThGKzH0ZeOCWZklq8CtU2CQpmWAtohkN3BcFPAOpEplHPt0k7C5mZAbKDg2ZCvWwgC1eu8NozkhZW+rnRoWa653JZ7NFJDI47lRNHhuSh1yi2tHhYobltQzFbYOfHNiH/ZnbRUHnS+f2NPEHACnAj7WIbe8+XjvMn9hPCaQw/qS/sRK9LWn57qVHsMP8Zn7fajgnwyFfwwbgYNiA1kTA8VMn5VjFQKKHQ2DZ1KHIs+U1z8sd6fgDeexFUKytQ2990yotE4ChQdqKXHcJxHuizhREOHe2CID0qyTUFmdByEgX4/WrwIlbR5doUlKfetMfXAF1BkAOa4RuIdJnjEXT5CTAgk2JVcIpbPZa9bzJIMWFbBIwo9v+fddyRSiTANkPpjwrVe/Br/3tKeAE2MnV8hVBaoSXvi/fhsA8MnjK+zMO/TzJdLmGpDSoTv/rragkB/0c0hNWNqXhcCv+haTvkWTCPW0xmRzDVi1qJdLVMdPIHU9utwhLQlPe/Pr8b5nPLVY8wDMxTqwHMMfyQBeumFUe8k5+5EB7FaYnDuXanDAII3J4qoDT/74OhFxHMF40fJ0q58GVi6H3F9zRQJAtZdQ72mNgK64LFNg4wPgm9A4v53DXjY+Pgx7v1IS48h1ObbbkLmhTjbK5nhCc0IEV71nCspI2hPLXC/F8vH4cxS2wSp3F7J+OAAc2q8xnmebvqH+g5Xt4Dku4zIGRPH8KMFTyI9P3SgG75Opjzag942AiBMKzXJSdrumDFu+17/VOiwMeGV92fjGee8G9hrEKQlFwUtlEplEuBY+CoZ5JywzwgowoVbXvV3I2SHLXLN9zUDuE/pWhCC3kgKXWgWSqvXOGZLi1kn6XV5VoCYXcJ0S5oA1FVHXdVbXuIEGvRnL3yTDCh6ZG54Cf754TBjZUfxFcTZuClNyLPuEVMkcKJTJUhO5hBHs/VHlwoU+owh99ThefPVVMmwd1rQS5fJ1l16BnVUGr1rQxhrQ1IfC/lQa34WfwwbgyyCGXxPQ3vIZrK/NsOoz+q5D3/eYbp2JfrEHWs2Rbz+OO7YTfuvhD8a/eff/xsW/fhWgm6i48FA2FAyNjiioU0uey5wUpI+K0G/0aOc1jt7jBLZ3ztBNaLSKePSCmnA3F/GIbnQfmG/QFxxs5kqBWS8sgqGflop7WYk9HBxHALkvMnRb8UAw+L0H5YNdKZFrMw+tTBe80cK1Tb8p99puMvqZZD5wLel9qzN44IIGFQvbvABM5JYqgIPBkFEJQJhmi62rFT64t7BvD5Wd8jw8sqH3K0qikr5Ea1zdt255p+jeLxSy2UJCreEARJhkgiPz7dppNVIeWVkLaTj/sdlxZCDCmsrmZpZweMZEDJCOJenvxpHf8KBjr9rnk64D7RNQZfRtckY8UmQ6QAoWpTJPDUtOvfVg4SDPzefCoWBemFEWha37iN3ICYMa8lC+DAfeRQwD4IoPdUCesQNaBwWRoOGYKCRsUfRhHem8y5qgkrVhNQO8zkPAehDw1u98HFarFW688TOoj56H513/elz12KfgM9srtK28zDQ5FPan3D6XUD8U+N5Oe4EPImwc2cKxW29C27ZoqoStM88BUcZe36JrV6pcN7jx5h0gMeo9QmsvcFPoWnEABsaFhW7C5srkVDbPtFeB1jqcu7mD7TPXwXdMyoYFFJfRQe+pWaMePoj3NlQK7HevLBePg4yHCeBJ6DoKLT+2/O5CrIcIUxVaabCp7h9v/M7j0/uOhcdcIyGRAcdyFQR5wyo4izJhg2MyAat9qieY1BIfeBmCsB4MNRDQjMfvVrk1FaymvIigLYqHeAlY3eeMjMLUZ9UFo8fD0wFzQeW7gAoeAasZb/wCNm+UBezogK8ent7lSHpEQYLATcBl7eo6cbpfIGSW6OSZMAQcwCZzwkWQ2USw3BOIBP2OcL02yeNILC78isWFb0qGjbtThcCGpKEWGbNK3RzfAZTUx1aVXFVQXNj7veq4jbOh4TKngU/AXzNVBp1MCDavhulRRWDCGouXuh25tmcd3tM6S7yfUQCuCNcxRYAYL/vqf4FUT/CYd/wOfv4+98UuV1g7eh5AwIllh7bPyPMV0pG1O7UDDtvB7XPF6Q9j+KWd9gK/z4zV+lFM772FKTNSSmgpoSZgUjWo7/EV6OdLcNujXp/g1V99H/yba94pFLy6MXLNhWyDhlYuAF8xbvnpBmnkL9WK0G7U+MTNZyM1GTh3Ab5xDfmMFulYUyyVaDoOAqQjSzUKPD8m/B5R6gcsVtu4XImA9QcgjeLk4w4YSOaKPMDFXi4cPo/HmQaRg1IShUZg3gOTkL9YWMIEso+1CAJxpcaxyMbL8Ts9r8Rhg/IADJWOrgjIaJ3TeAwYfubWr91qAlgn2QFe5n0w0Bjr3BGVWL8J05UiyVXZI72XnDg8Q1LFQQVdUiVRORrifVians97Lv8LfW6ZEKeUrlhKEU+Vs15z3R3XkNjrtUePjVSoS5J61qdy39H9b79r2qi72XUYtFI+CAux2ftHDKzSKNQVrm+KmNHnhvFikp2fn0h0NfegzTJSktQ8QhK2PnPFZ53jkBFi18iUC4NexUANUJvcwyXTr9eowjiMQtmeTYWSEaPhked+/KMgBq699PF4wtuuBdeMl3zVffFf//Xl2N7rkOcr0KQGmlon8bCdUju08O9yO+0FvhgJthmVD1cMYLopf87WwHmBdq/Dp7nBf3/c47Cx1uB7rr3GNwryDZ4OEMjBwgDc9e2u2VkGzSt0y5nw0i8TEjGS5bGrZeQ17M2NPBrzwBq3303RoP3FXvaNzSzteJzdDjBMwTIlJHSD4Ucn+RCD+RmkfOnfpO7Xfc6A6PYM54rgL2A6t8JUEUorQfm7ADdBbIIwUhNbfNXmLJwjCl6Yl1HNdurDrZoAAYpwMYUgzK3Mq/Rv1lu5YQxSAJEYjGH53X4twzj6LbSUGw5eFwyUTQDFKje0ORMio1+0VvfNv43LxkNQgJ7Of62pZ+oFsCIxZGj+2uYjhBPUJe+cBjpGIAh5RimSoxgXe+7+TNXN7umyPXmlOBPmrGGPWKnP14opE4o/qBoNLdQAWvh1OBNYGfu4FpyIMXHG8JhR5VLWsTVZFJ8QXnBmSJtjG5POWVqRh5JAECCrK55F8QIDT3zL7+CNT7oChAoVEY4vWty4YnDfIx3ZPHTl3812aOHf9XbaC/y70ogAbMzAixVWJ+boN9fRpYz3fdeV+LbXXu1xVgAlJWhfMNc608MmWV7UzU42kt0aaZmQzXUcBKK/2CGPfaBVBqGz73pAsXgO/lo2zorLdYMF5UKJUdKg3AokxFruw4ta3yjzcdDYDlBC3MIeT2EYU+kb6jIluLvWHoW5zJtwfHS1xpBHAJ4N4rxczts3bSqoBzHhEGIhjcNzKgVL7VJpZFm70Jmwhw/MlStTSK6Q2D0bLiRmNjAJV74h/0mtWlN+ADjAUCZJhFYymmFTfmxKzHo2ZdDY58JzMEGfNGVSziXPI+eOxEVdDfP0naMgYzDPvlzMajaFoStKnXgvgrKiOfwRjW8eDffWqAKXm6wueVUqFgLs7Cs5n3uSSo2q6XKnvBDqyaM+OWgvGf5B3428ll1BtiwEXlWoNlrkYxP3fg2YHMf68IqQcvK1ZUqJETW5otkDiYPXJwNXvOEaD7+868orcNsuoQMBfZYMpMN26o1x50j8Q4Hv7R+FwHcWvkkN3hWP6D3XgW977dVwN609dLMyoxWezXLhYskZIGhRieWiVlHqSNKaeon77Q8PhP9PYaGd1IVv1p9bpqNr+Ak0/D4ed2fNhfNJBjDyfozH667ycL19UQG1zqgj5x23Y6p50jz0PKLfVcEZWOMiAQuAISCPWB58DvpB1Px9mkwgl4GOCwtxXdL+oiC2e+/J7QAAkdlJREFUzymxlFyu4Wh/V7pAQ90ulD42ZSVPUJ6rHwjPFWfNIXeBq5aqFWUxqmLLzHDA3Sgs5M9GlQ8OWStGYes3TZD8+pVYuAR7ZhC3PrFzz5dnE+YskAuh17i7pXOOLN2xEskExT5oOMhCaib/akY/FeUAs7JO+oVsX65gEMSFT9Ip5fIe5zVF8q+EX8P5/Oe1RKiOT0a8DFzAkgj3od4A6oRfoZ8wknmt9j1PeDjDMR1afKlfA3bmrUQH6gq8bEHNP47t+EvdDi38u97+ca0wkrc+ZwZ4gWqexKXKknMNNrQvDzZ5FxocBX+xBHlVlfSqbKursMa5C9B3sFG/Y52gC6xwuhr3gdCAMgY3iUcH2JhTWPHmFnQvwwFW/oGxg/FcBuusJ6l/PronDuM3G/lkL5e5lgemNIA8Baz8rltM9UjPMKs0YAksTu4pXUHL8F/NMo23HJDetg5MaPcTLniIqLwEgJ3eLIxL34S4WfbO5WDWbw1Pt0sdlRQ968pc9u7NkPkwjoAYQuA1TQttslj+9vzNCmUdh64tTppaF8FmDA/9cCfFalCrENVngAygS4VRDxAhSeVv/y6H505CtexYBGCgmMSHRx08VBLph6FlfmmZBOGfGGmZNDMC4FWSsAQg41dqZzLUPsMZBSmTUwR7KWyj0DYKamsZHmrwtUNlrfhNprLO+gl7ZouFXxxzApTwgc2ZgQY1q6anHlVTI3UV+sUKzHzo1r87zdb+nX1/2AD8oxP4AE1q5K7Hsblwydc7Cf3acOMEAXmanbDGN/KBxQwXqKQqvrkGuQtWobvbddM+mcUfGtdcwFvN6Jr77iloAgOrDL7QswKbLC0ISayIQgJDrjQMDPmxljEah2EfSLnCrdLbPhxApQNhFCGEIqCdsyBeqqeChh5tsi5kTA6iWIknnSsl2fD0tVEWgvUVC9o4aVItFjsdYKkFGTfYvPdhMtRl7NYqQymQi5JhufkDl7ErnmUdFsETmO5UwfH4vj0HGwOjFMaxHHxTRpjUDR4UR/0upmp6tTkWgc7Ro0Lw98AnJpNz16dQgrnaU6BiwJF4SMdS2FSRzFNGv8YeGjPBLsrJSMk0qxzSh2Qz6Hi70D8ZAyM7ct/CF2QeAFKPE6EADU0xUcOAAvU2m1Jp6Yf6fG14fgwwUAyj0umeGMW6XHHtdQCA//rQx6NnBrpe6HQPhf4ptciCebLvD5u0f1QCnwBgbYq8vYvbtoH/cenj8by3XOvxVK9NrZaJW2/WfPMcCVWowNHiGzxlRz47AphGmxON+hwLUwVHjQWhAKVCf/FLTdfzzdHQwnpMnkjqm9EDU1c2QOuLMBzHXWl5opvjpNzjwDkwEq7ODU8Az8RNzOqOdhKhJFaXpUyOU+rIFAcqYEaJVR+goARLbNBP/D8oIt5MgVLL11n3ooLgiGsaug5HAt+9BmOWwDAmY4nzvPKD9nWWlEmhjdXnOxA6QemyDlTJG4dBDiIyivgSqrPk1TsSDa4UUJOHIZku6bsigp7N9R2UgrSCemtsEuE4BeoL/bLHvZuQ72/CtmLxirQ6V1qjYaxpchvu3cauih7XAGYZrPOeJj14XgMKEIzYkn3WIRePj68Dzec3Rcz4OjwrZfwIdR15ae2oEWi/Vz/pybhlvkJFFfquRzedIO8tkLY27lIk7rCFNn6GB31/2AAMxd2XfyMCqoR0dAO5zzh+YoH/8djHIy3Fkk/LVFiwbIOOaUSqCAx29iCsjUgjLZK7oAcbUbTEfUwYLDi3AozVbSS/3PIGMFYSbFO3sIRZ3IN+k1mS7P+XeHvIeTehHe81dqZWjoUMuBIBLdfg4dhcaFq6FnwTT3uVMgFiWC62YqQFuRXkgtJCHSZIArOekJtgkPdsLmh3revf/p39rdZsnPtYBS0N8uXL+R6DNU4A+9H7qxYUlILyf2rlu7QyJHfog6HgslCPwNZkuF23/nOZ233eEntG9n9PIGMttPuJlNEDZTRonOb+tyXQi5LGbXLhLuNOwCqJ10dd6rRIHv+u90RJSqtyP0Yv7JS9NJxnnmj4IlOZlyOt1JtP4XlBFZJ5BVpUWhkSLqAtDMLTjHpjhXPueVzAijdNpbqeeQj0PqmnwKipypEx+pli3VuGhRIwBcXNLPVS10E9bbko4HkilNG//11PxpsuuwJg4LVPuBIV9agS4dlvuwaThjCZ1lJNZ9XBPRuH7S4128Lu7OewSfvHJfABEBGoqpCOrIH7jO29Fr98yRPRnCARFhFhbxz6g3QtFAFG7C4+Ex7GxAcg0I2WPv33uMqCFT6Q5Uz7FuW4mzImuJCKAjwqF4N7CIqF5bPfWcj+pG9FsBrNPTr4Lg7eUrkGFhP2udQ4MRCE/MCNX4XwSxROwP48/ghC8/sNfRJ8Ay4ZFGWibehpBS94E69r/YzHGJuFTTx8EtH7hILYNnS7WbhG22rzE69t026KQUtCYLMij1NHgU4Mp7EtXPhl4qgJwtyAZ6p4sLHRmRJH+hmrcE1yDhuaX+PVtJK69GmVVJGGA9NsXFzJuNLKUlwPoKr1tW2KpE7DbuP9xNx+Dnnv0Lg9seJrdKySm0/4Z0dvV4GsCscyCU6hyW7pR7wHKQOg0TxbsaJYeMlCB/FdszmvFkkqaqpya/eWWsK3/NbVeNI1bwAAPP1Nr8fRyR6efd2bpE9qkSpCmomVfyifTrHxXfg5bAD+kbn0YyMipCPryCf2cOsO8KtPfiK++7d/G9Uc6Na5sNVZrDIuDBM06gL3kq4jgRl5zseOPbOe98W7o2SPMX87PqQsHVjH2cZiFpOdO1rUA+rQvhzrbkzbQPcJaBrcv3TGw+/9IkPhuU9o9Qccq/0mtTpjmWFP3wpqqOU1u4vdYuLRIqfyNwXL0chhxnM0UAAYXh7VwhGE0bOloih6yVSzBNV9a2lfno9tmIJQe92ey3huWJnc3AUf5p16BZxWEJd0Bbfgc6AldhezFcHJKClyQaiKgpFKGKUK69GeQSMncE7yTFsSa1tb1aviogj41JbnIkyEZe4io6AJWSMAiqEEA9pxkrCbe956eQDOk7+QGAHXwLlfeTtu+vQZ6NX7gWkvWTXLhH5vhv9z89cgaajAWB65yYVMiMjXbOTSH2J64Ch783DlWsbrlQ+5hCmINT0vAQxyRsuBMg7gEa97m4P85n3CCkmqgGaWFL3D0rh3uR3G8O96OyUL/xWveAUe8IAHYGtrC1tbW7jooovwtre9zb+/+OKLxcIOP89+9rO/4IO+S83c+xsz9IsVPn3HAq+49HHo1tjj5wBKvDygm/d1ZYJR4+Z5lodW1kGXP8BiH38Yq/NJERTad+iAPEbNdIvl+jEmPM1IMxdwZ1YKHazlmnyOHoPw+YEtFSVmUKgGw74s7OBeEj8gCD1VXAYbbBT2ZtGHF3rg9YjH2fC5/G8Klwtjlg4MNe/hDbumhQbMfW7nAgHQBZg7Oqb2ecWunjxObeO1UJAhxw3AZp8hq4dAhZ2FLUitegmNaBaDFqPhxFoFL4On2UlvAIg1P9W/uxA6OCiNlGmoqHG5X0Hrq1dBn2Ey9zfDqxz2My7zAVFgPETBpoyocl2XanVWiIY6QrUkx3X4WPSYai+h2kuY3Fyj3lWvwiLh5r87SxSOuYbX2uThnNRpuKVFwI2oB8Pc+pNcgI72rCmspyzPKHWhNK8+v2TPx8o2U1h3himIWSJK0lOtCisfMuHlj7wM866SwwhDjMphu2vt0MK/y+2ULPx73ete+Jmf+Rn883/+z8HM+PVf/3U84QlPwJ/8yZ/ga7/2awEA3//934+f/Mmf9HPW19e/sCM+hUZE4KaWmP6JOW4/wfj5Rz4eDzhvHQ/7zauQGxq6oQeWrvfigtDT+ZZDS8wVggO8AMABVrT27whss2rH51p/0ZUNDArrGLjIlA/SDIJoIXlRGxtDEPQUrrMPkAbsUwk9l3p0X2YxJrOqzeoPN+5AQ5TN15vnahcBzPH+MvYL+wMcCIPwQFDSIt6CEw0yAvbl/7syRcVaDoC+bCxzZslqwZ8UFLiY0eCeFhMmhKJ01HBWOfEgwF3gAMrfdUkBzcYZryElMlpcBcERIHHujELM4/MV+q7LsxmGjSCo/jZpCELnJw2fJXkqm/DNJ6WW5QT3PthzGHh9GErvC/Ee6Lvga8mQ/ArqrBbFms4Q4qJ+Jgc3tzbIE0ZzwR5WOxOkvUZT+WTy85S92JErhD0ptwaAORWFOXiNqAeqVcGjuGLoISE4e6c941wJ1iUpo2Jqi7fgbf/mKbht2WOnZSRizCrCbUvGbqeKFBiZGWA+FPqn2D5XnP4whl/aKQn8xz3ucYO/f+qnfgqveMUr8Id/+Icu8NfX13H++ed/4Ub4eTYiAqoKaXMN/fFdLCc1vuO3rpINpYO8XGPvmW3+9jvEtW+c6JRJkesYCMs7jZEjCrBwgUzD68WO3LIfjcvczfFzYL+/xjZSo7w112qU0rYRn+ylMGS8CsIB6ng0ZK9BYPfYE5wUSe/HBXdwOvh0mEVkL3AUAGGOPN1toKQEC3zQr6a4uWU7VNYGNxD/1M17rAy6AkBmAZJPpVuzwNDCz+Vcu3f/bPBsh5oX9ZBaBBY6UO2MzZonuKs7Fr9hZsCJjEZrydPaiuBiQKx4e0YK/Eux+psrm+UZASIUrfn9KcjT57MHeMKeny5KLLnQ5IqL4ulYg5LKZ33kRvAWSBC6647Qnb/EZL3F6vaZF3KqdxP6qfEYaIw/pO9xA8nnT5C5rAVcOq7c6PNjyjiXNZ4UiGoFogAUT0aS6+SAPXj0667CO5/6FNy+7FTIq3BnBjEjMaPvs0zIYVreqTXDpNzZ94cNwOcB2uv7HldddRV2d3dx0UUX+eevfvWrcc455+D+978/XvziF2Nvb+9O+1kul9je3h78fFFalZDWpmh3F/iZix+L33zskxzMk5ssbnrbBCMhh7mldZOyqloDZPhJWuRUP9DKtzbuJ3gUDEg1ALIFwTg4P6SkWVwr0qLaZowEUXJSiV0P3PonEerxXgbKDet1UrFUx7neRaCXjXTQIezYcG0TaqpkuTIQU/D099wEIUN2PDnXgs+TCUX7PQh/y2jItfYVhLZZammlwC5NJ8w16/GaFREpYVms3uiliPduysMgNBSUBjZh2EuGCdZ7YNbLHCSVC2u9pNeZYLTnredyrW7rmsFNlv4mGVQzyJD5gKLtK9C8Ai3SYN04cdCSXCGwksEclE/x8Oh9pPI/N2UOzZK3tZlaeMoeqUD1oj+m0CSg3QC6DUa/rhbxUsZY3TJB/3cbqHYqTG6vkObJ0/8sS8JCFsaUCCr3bbiMPMvITXmWnIB+pih7/d/mNBkPP6GUTgb0erJGquVQUUwrwu1L+aMhgJhBfQZWHfq9JZY7C+Rli7Qxu9OI2mHb3+gu/Bw2aacM2vvTP/1TXHTRRVgsFtjc3MSb3vQm3O9+9wMAPP3pT8dXfuVX4p73vCc+8pGP4EUvehE++tGP4o1vfONJ+/vpn/5p/MRP/MTdv4O72IgIWJuA2w6565FRlxKjugmAE/LRDrRTCX3qyMJ2UJGl4wSj0QVIPP4gNj9gJC3jIIuFMQj3E6uVbf3CAWnERt6jxycUNjHrVlHhTjI0yUUgh/EV/WHkZQjW9eD3eG/2VQQh+vWHlhrMwjtwDuDKFB2UM22KQ+i7MB4ivOWlAI1b2Xovlhue6+CNQFBQ7HgD8oVYrDdTQmi4TqJiYrSsjrmw9LFG5teK6Yh7XvuNIFJtuWFUSwL25CCaiZCnxMhdBeOjZw09ePnZJPS0rOBQ6knqxrPOvxHPAI5Qd0HNGDDgVfNAApQYfa2CX+/BLPCBMqhjEE8BDRVkVXQ8W4EYWfus5iW9s1qp4J2yp8GtjmbUu8mPMVIjUw6ZlTuiN6UZLqQBCMuesvdRrfNt+fwGnNXnNGAJJHlmTiNsngN7hsoQyVOpD2GK6vXPeir2OnHlnzFNuGG7xx27PfrlCtz1oNkEaTYBKtXiDi38U2vR+DnZ94cNwN0Q+P/iX/wLfPjDH8bx48fxhje8Ad/93d+N66+/Hve73/3wAz/wA37c133d1+GCCy7Awx/+cHz84x/HV3/1Vx/Y34tf/GK88IUv9L+3t7dx4YUX3o1b+dyNAOGt7nssO0YUzKzuxLRdIy0IecaOdB4Icf3f4uIWY48APKdLteODhT2Ik8cNMAj7KHy9zzrQAXPZdECM1GKQw06hNCyZxaibZVoRsKrci3EQ6H544TLGAl7EUIEZnxItfcAFsdHmAhiQyRRgHAYWvFy0nO/xUT2RI6NctPrt0vYcRuOMGQzuzQ/x6RTy/Kk1lzkKME/BXOLyJ0fx5yrM4Uh5kLi23Y9anMED5Aj9OE5bO3o+eioV3ZYVcsWeiufc89aHkUz1Kj/MylWL1HLordKdKYqphwMFTdEhCs9Px+pj1/XRT+GWcVQOUytphXnKel2IS34qrmxAY92muKliwGqliweBUO0KviFPGc12Gl6H5H5yww6qY7YHW7IWXBFSr4yva3Pfk9bHMPZHKvcZSzHLejGPBbsrnzq5l//zg0/HN/zmb0mJ3o4xbxmLLqNjxs4q49hOi26+BJJwhtChkP+82iFK/663Uxb4k8kEX/M1XwMAeNCDHoQPfvCD+Pmf/3m88pWv3Hfsgx/8YADAxz72sZMK/Ol0iul0eqrDuHuNyN+rnuEgKGPLY7VI8gSOvPVNR79zARlYzAZlYXn090nHciffBSHr5B+hL3f5plJmlToCUdhwDWxklxsAt+DWHVURtDgSjnGMZv2UffTktxaFPeCEOY49CF4A0rCFK0wm5IJ1H8MU+0IjB4zFnxcg5h5Dnv2IIGcwJ9msuzJ0YvjaoDaco3PgAj44RNwjobUbvIKbke6YbqMKo/Hru+u+lbEYFsIsRRewHUlFN4LzwwMqhF06Q8vF6mQp8M6eN3oq6WgGWMvk/AHJLH9TclWZMcIaSzMknbtcB2Fv66kP822VHkP4JWIvAAkXRN4DMitd7zF1hJwYaYWSCtkWD0Oubd5QsifMcaPvSG5Q8BwMYNYBy6rMgWYLeGw+UmaHteaKWKgZEO/tG171alBPeN2TrsDNuyt85DM7yMxIasF3ixVQJ6SNNe33UNh/3u3Qir9L7fPOw885Y7lcHvjdhz/8YQDABRdc8Ple5gvXJg14scKx3Ra/8B1PwPokITNQE+O73vXbAFAoeBOEntNebmsEsbQqBq2S52ZbXNdDBaENBPbYArbPBwIWRZkABuA+sxjlc3heuoGi+hm7pewbN2uMsRdrzFDOYKXbNZR8TKXSez0ZD8G++2Nyy2gwV8Tgqgj0QbjC/jdQVcQqhD4sjcnLq0a09GhsAwKdGKP3eyqWpHsazC2uikYyMFwmVCt42lmuw3E6//H6RRmz6+h3dVEwcvS+JDhZS3JSHaBX97Ag9iEWewaoT8W7YMxuNle9pPEZU5woiuTeHXH7p+KS7ktYwQB60YK1Qj9jTnlKZZ2I1yIIxF49HoGPgCko0GplVwu1tlN5hn0NzUpAUZbsHL2MhaWSKlADKmMKoL4azstfQKWmDGiIwiZZ3w9Pp8wAGkbqQrgsrk29V7tutSjPINfAGy+/Ap/eXuETt+6ib9XFkgWQRymBmZHW1w4L5XyB2iFK/663UxL4L37xi/GYxzwG9773vXHixAm85jWvwXvf+1684x3vwMc//nG85jWvwSWXXIKzzz4bH/nIR/CCF7wAD33oQ/GABzzgizX+U29VQlqfod/exfZ0CyeWkBeSCT/7bU9STyxjPTH+3fVvtq+8mTBJi8o3LOoBrguoKSs7l7jZx+ankvmQXCe2fUI1CrNUin1E1DBSSePKddmY3R3rnYuQp7ls8mk1qtwWrjVwS9vXqYxt8AKNXyYVkoNYfy4btoVAjGwGXCzBAeBM5/VAjwPBB+qyxrwq1o+1gKJ392wQ9hZS8GcRlRG21LOiEJgCVIB+egoFKzcIOpgXQBWzAeEMivKWuiJwgaK8kQpVL9IYlJIxLsQ8AZShBY+KIET0TnERUDwp68qwAKkD+qi0muLJECIZu39VvoRbACUdj6JnbFgUp19TxSEoRu69MNCfhhNSK2u0n8l9mvU9wKsEjIavyxga0vVFZMDOUGhqiUHWBSDHpBgm6eGkQL4eGgmjSegD6pUB+hnwm098Ev7mlj10ixWoluwgVKodtp1k3TXVobD/ArZDl/5db6ck8G+++WY885nPxGc/+1kcPXoUD3jAA/COd7wDj3zkI3HDDTfg3e9+N37u534Ou7u7uPDCC3H55ZfjR3/0R79YY79bjQDktkOaTUFdj6pK4EQAM2oiJAK6DOx0wMu+9fG491kVGtrFpVe/axA35AbD/GYOVjMwSvuL3gGO/33ONrCCnSSkbBYMFeQZLgCj6zv+jwR0awWU5LF+IlFQ1IpJLaE3i84KD1k/JjiC0LAhRU9BTB2MFd4G31GZwxg3Zwxf0uhWdZQ1Y4AWz7aSXSpjoAAQAxnDTZZ6KrqDciFEwGIEraW+CAcgVKvT751aFyghlmS1C2QwrsAwIXppUlcs1bTS9LMWyBOgmzHqXUGcZ2WbNTxHZjjy3BQW8zKhkgqAYwwGgELvG4WcghQ5E1CJ8mpryUIXuUbxsKAov0arK0RCBKNNtr+7dfbHYg+4nwbGyE6O81x7de3niQL5zOuk81VKCpd1aWucJ+V5+/2H552WquRkVe3tRMuuYMkGMNAideR5/Db2eo9KeECf/x/8f56OG7aX+PjtC7R7S1RH1oCmHgr2SXOnkbzDdjeb7jN3+v1hA3CKAv9XfuVXTvrdhRdeiOuvv/7zHtCXotGkRt5bAlwhAThjkvA9v/8G/M9/fTk2moT5ssNOmzHPwF/ftELTTPCyR14CAnDOWo0nX3ctDJXrlqW5eH3ngQPUXDhEV/QB7WQu8wPd6dEKj4K3Kn87wC7073tuE04K9QK8WEgNZ0zLuuE5wC5al9ELAJQSrGHA+yiA9byYzz4YpAHxzKoN/blnwIR4TOOzQ83rEoVyTEDVvh3MZYIwA5xE8DCVsQ26t2NVwJknx84ZCNcR9sKuYcIMgKcqWsZAP6PiqlaLOysNdOpU+FqxnV5uZp8F00ifhjtInRDjcCPjr+bkY+CeCs++CXAVdnavnmHXqRC1DAYDY5o1bWDGBE955Uot885i6MP1Qbq4U4ficrfnxQTqy1owQW/FmIygJ5vV3qN8TqIIVep1Yxt/IuQUFDTWY82jFNalhG9YFRh2pTDXwPu/6wr869e8HvWeeDeOLXt8dqdFN18hrU/3C/vD9kVrhy79u97+0XLpn7QRiaadGf1ihZ6AW7sGL/mGx+PYiSWOA6h2b0czW0O32AO6DisiVEfPxu6xO3DLzm14/cUX48rr3zsQJhQZ7UyiaTrcUDjTKa/AAagOGAjNQTMLyEBpwbK365ugcFS/bqy2iXPNope0ApIyAcMNl2p5McUPRYjZWP0zu2angjqaeVGgR4WGeJ/GbnNrx3os18Y0mE4qc6BfeYnWkUcmxpDLZMf5Lh+7ByEoOwMwpyoehgY3BLe5uyOBjYHarOKhVHHTrq0sbNZc7l1SNj59xCF2jSwejrHA7ykgxy2HviPQQt3PgANTBVCp3BKqrGUCaEIDAWygNzCAStLlcsgM6SfqBaEyr1xpSp4i82UtiLLST4qFb/OX1EVuIRATyrGE8oCuNoRDWNeujJXARKI3Rm+Drn0LN8TQmIcqALj3Sj00qSN88Aeeim9+xVW+Fj5xYoVf+M7HY9EKQ95f3LyHZZ+Rux7V1vqhsP9StgAIPen3hw3AP0WBDwjP/2wCnk2AtkO3bAFmUF0BmdFzRt3ugRc7yFlYwHi5BvRLpGaCT372Frz86x+M5YljeOHHPlpkWEcl3U0RvFwXhrEv7E3o/wdot8UqDvIzIViOHMasSkkifzEEjMQDxQFtuAezeALFr3sVzH1vaYMIVnkU9ijnACipeea6V08FAyq4xLWatOaAWNDDa0s/I6XDBLsqPo5tCHqYAQvN1e5pd8FD4+e4ucsB6CheidJfwQYMlD1rUZkwBcMohU3oViKEyI4PnggTYGncdy73aNgDEJwC1qbXwgcDd7kC0Mapgq6w6v07TiXG4FE8AmRx/EzuSSAG+sYwBFSUsJi5cJCXJhY5ciWiCO8YrpLrE/ope8hIsglkDKmDAHDjMwCG6ZQh3dBCWaTx+we/7Cq8+2mPx05D+PjxjL+7Yyk59FUCZ4Zlg6S1KQ5R91/admjh3/X2T1LgA4BTvjY1qqYGMyMf3wUToZkdRdd3qDbWUW2uAWB0dYO1I2dgqxbAbd8DVa7ws/f7BtznKy/Ak9/+1iKsxu97dIPa3zEATLz/nDjU8YI9QGDui1MFSysOY5CnTiaMaWC5AkXYWUzWZcrUoOYm7Ib36ymEFj8wC954BLgoHwflw7sr274PVphZh+ZuN8E/tsijYI737+DA4CExV3yhHy4C0ecsbCgmmMnj2Cr8ctAbEga8DB6TV775Mo7imk7t0DrODTvmIDLYDTwSo42uZA7IeWlVcAg219166aNgB8QSBzGyW7eAqTCewcBAnrKn0OWmUMx6BoKBO5XQpt4r66KflmebMCRM4lr6NgtcQhlc1oNVKExh/tWCT6bYcXmOqQeYNTylCk2elOcgE6SkOyhz72BQU3aIkSvCOx73GJzoCX+7l7F7YgFqKqStDSDpPtLpAqjSoXX/pW4jb9yB3x82AEUE/dNtRnrRZyBnpGkDzKbIa+tY1RMsWsZixZjfsYv5KoOpQ5VW2Gt77LY18to5+PsThF971KVFEAGeLiVo+KwpRnF3DgePAHA+NDvlzrQBPzj8HwW9uZDVQhTrlcLx43GF/4NlZ0LAK6/lMrbx2A1Y54Q5geQkjpUPWH1mUVlHHv9Xl3Ou5X+3xILu5CELLgJoABYLlmR0D5d7Gd77QJExNDYNlRwXYEEZcRKdVMIQZm1zKkLf3O02VnPXx/5s3L5cuIzb6W2pZBKAxd2eOvnehGauRfHIug4N9Bg9B8ilChxM6Gv+va8hK4nbaTpaiHcziZJRrUIVuarMm4cjzHNkTHnKPzColGeKXSrzgyx58vVcx8llHqM3ylMh7XGGNL2soYTiLWFfNzY+x5GwzBlXjLVzj+LGDOztrUSor89AKtyJCNRUoPoQff8P0UjrEdzZz2GTdijwrVXywnLXo0qEuq5AicBtJ98RgfuMnX6KE6sJuO1BR9bB61O0e0vctJ3xqkc+NmzSsmMxFWuvILYPaCcT6kEpOLDR/q/2AeEOOJ06EzhUXLmp0INa37F/y/VPCxq44A+EJZiF7zsrYOVRhdwokO0ETv9BF0mJcEZV2lzJICDmh5uAMHdz6SgMKaT6xbzqQeGTcC8m0MTq9lsun5tHQK1DUm+Ggc6iwHJXu5PDFCEdXexi5aIQ4bTlXFdUdExiaQ/v1axgu06eFE54NkBfHxQLC70oKM6ej1Xlo45CDQEItkDj/66AEFxBYLWw7Xl67F/nLrWqMCyBZodQz+FhLw9/URmbWfwWNnBkv9UpGOmstjbMas8aUnJshdE0qwJRLeE4CwHuFarjtCL88fc9AyeWHU50DFaj4FCwnz5t/G4c9HPYpB0KfG2UCHRkHWBgsbvEYncBzizUl5MaSAn1tEade/SLFtz1SOszzKY1mgljrVthuSS864onu+XiLktzWyt//Z888xkHDGBoeQDBUh4dV35QrGUaHhL78A0w1G+3sQDwDd8F5XgvCxbmgAMgU0Gi9wdsgOYiHd8GlWsOP+ehQmTxYO3HLNzBDTMN4s77Uf/Bah4B3NzDMJ6v4PqPQDsHeiHOKReFIo5dBT9QBJNbwhYzTio8zSUdFA4TipbfHn9yCDc4UNCyFprismYtKJQbLkJSQXvmKncB6NgJ1uurIqDhqNSjsNopGY0JXQ8zmAITvChcSRihWyvKQG6CMtKUe6hWcEXEvS/RGzLyXEVlzBQvnxe9JfOopNCvsQCmrsxxVAKrBXlpXjDwiWNL/M2xFZbzFsgMVGON8rD9gza+Cz+HDcA/5Rj+AY2IgCNrkjr0/2/vvOOsqM7//z7TbttOXaQjRQV7FCKIRhRjA7ti7D1YYvmKxl6isUQsiS0m6s8Se5dYiREbNuwCIqC0pW69dcr5/THlzl2WFqkyn7xuZGfOzJw5c+88/fNI6bruwItlSqSUJFQLmVApOA6yYKInVJrm/0R5x/ZYS+tZRmWRSpTiy6fY8xx2ePiREmG4MriGslzx2OUsa5a3lMOuYP/FHipd8xUH0foHIop/h+PeUHwBA8iQ8C4qGLKoDAhchSDcf11IXDYUL8GPFeQx+Baw0upY/8ZksEiexCsqMkH8PZyo5ycvilCmOsX7U+yi+70EYRdxWMjaolQJkAIcn6pZ4lvvwotTF09CUQmDEld3IDhD1w2set969veFn7d/36oMCfRi+EPJKiHlhKDRjhQEJXsl9MNeuaaQ7pqo4e9LaM4lVSHecVIIlz3Rey6OBkpWBGsRzuHwFQY7VnT/B99JJ5Rc6F3DT6gMPE/+c5XFefn3UJLg54AUHlOfxFVkCp5S5Sskviz3GgTdvc9oZizNYRdM1wDw4vYRNh5ESXurj0jgh+En8qmtftAKiGQcK5OjRXpF0dJ9qRWERllNDVLVaKxfgFXIubvDAkKXbhzUDMWkoVRwAXf07Eltpy4cPvn9YHNbMfzWceuS2DPF7eEX4nKWMWHefVk8L8UXZEl8N7h48eW6XAxehhnr3JPJ0DXDL16g6AFpazlCcxa+NyFolCOKFl7IrSyVIlkMAEoxKc8nFgpnpJdQpfqC0z8+SA4rHhMkiVml1xXST9zzFlABpCyxvEuu5wu0kMD0Lc7WzzFIOAuVFoYTEv25Bjqht0Yl9eyhk4WfXVAS6F9Tut9Vn+fIP5+jeWqv7+Y2QwyEKoFiYMfdMknFc5M7ui/EhUeXC0YjqDl3n5UM6b2eIiO1YgKjwF0jJZSp73//As+H91z8ksBw2V44YVGxi4pXsD7ev+2Yt4bePBwNnjzkYOa12DQ059zwXUxHiRtRo5uNEKty20cu/SIigb8aEEJATAeBS5mJQCRiiJiOJUFv3wXHtkhU5UFL8uDONZz48SSkgIkjDsBxHGzHIRbTUDw+bRMFZAFFEfw0Zx6LlyxFojJt+gyglYwvMZ1bCeHwv1sLYNHqy14i+ItWnWtmeUqJ6h1Yqov4pyuxEANq2tD03JeuKL0WnjUZorCV/ntTUpLxLhVKlQb/mq31JF/xaJW9XuKxcAhatgbCMmxRhxWnkAcjKHvz+g6ES/VK4v/+eKUoXByNIPksnOQnCAkZP5NdLZ7XF+QlSoji6hCBgBcEJY4idG3/4QQ920OKioII7jlIHPSVubDyoBa/W8ISOHGnRDlVCiFtEK/u3sIt61SEV4VRdJML2zWEw8qFlgO9uSik/fBAsfLBtbgDb1M4qTGkwCq2e13F8zwEMXpKx/rrHRYIgZclFAIJ8jAUeHHMoSzKWvzYZJHPFFxFpDKFUKLo50aLVu+aNvdHAKIY/mpDCIEwdJSKFKIiifC0fQkUJDSlC1iVHcklU9jxMiYdfDCfHXU0NR0raV9bTeeu7anuUEVl+0rKqsuxEnFilVVU11Sz9Vb9GTJ4F3YYNJBhQ7blzb2Gl3qthWsNB/8uUQaKn5L8vpClGxaCfuKcz37mDvBOZYWT8ULnV4vKgNTauF6oHMwv4/Nj0vi5DF5JHo4IyuuKc5OBtS8cd0y47M934/oc/cVcgmKZFlD0AHjzctTStWod3w9nefvXCrwFoaxz/x79xD0/9uyzyRUpiovnVzxXsh8f9oVsuNGLvwZBgpsvxDU33FD0wHjX0orbfAHlx+vDVQDhCgDXTe8tgio9vv+Qcud7BUJrhAJKXkHJC7QWJWCTcwV50VvjTr6YTCdsEQh8LUcQMgrCWgIKlZBrB3bS3eavj6/0hL9Xjn/PPsEPxf1SIXDJ+1UJfg5AOAkSCDwkwRqpoQRAAZPPPppXTzqcOw84iG+W5qmrz5FvziEMDaU8ItHZFFCS2tTqs64we/ZsTj75ZHr16kUikaBPnz5ceeWVFAqFknFffvklw4YNIx6P061bN2666ablzvXUU08xYMAA4vE4gwYNYsKECSX7pZRcccUV1NbWkkgkGDFiBN9///0azzkS+GuAoATH+5QgZmBlckigWY3RbKkoqopQvbGC4BgHG0MV5Cw3L8AwdGKaRiIO7WtUOncy+Pzwvfho/z2Wn0NbX+CQkCvZ5r/wZatx0rUGSxrOhCxt11p0Sr4dgdKhhISGNzZQKBQZuEnD81FalVv5Jwxc516GvJWQJS/2cPkb4Wu0pu9tdb1wKCNsCQcC3qeNdYpCoRh/DlmgwQmLbnzffR8Q1YTG+0JLLYCSJxA8voLgGMW5hM8fuMZFKKkv5O73wwF+TXmJgAyOl0Wmx1D5nPsASr80wleo/EfoeyQKrjteeJa7r6T5YQyfOlcpUOL1ELbLL6/mQc2687NjpQK32D++1XOFEuUvLJSDPAQ/BBO6np/0iCgqbMFYL+bvK2vLKVHeM/WVyV/d8y9mNeRoLthYLTnQVJSqVKDURy78jRvCkav8rAtMnToVx3G49957+eabbxg/fjz33HMPf/zjH4MxTU1N7LPPPvTo0YNPP/2Um2++mauuuor77rsvGPP+++9z9NFHc/LJJzNlyhRGjx7N6NGj+frrr4MxN910E3fccQf33HMPkydPJpVKMXLkSHK53BrNWUi5cRUpNjU1UVlZyYMffEmyrHxDT2e1IaUEy8bJ5BBCUFGeYKeOMWKG608VXn6A6Zgszi2iXawTEg1DAUUIbMumkG+mLJ4PcoL8R2NaKvm8Rj4vsG3QDI2hrzxXFNDBJCi+xEMu6hKXeHiMHeqY15Zw8JPifMKTkEvXT+YqubZ3zuUEtScwg/Ix37K1ii9zPw6t5F0r0TFkcP2SqgM1JB2gmAfgs++1utcgZq0WywDD4wLlIJTo5c87IG0JW5fhxDpf0IcUq5IQg3deO0ax1ayD52Yu8g0E4QJK5xNcO+TWDsaIULmb8M7vj/HnJorPzn82QWJeyEJHUiQ1UkJWd/gefS+IHXpuvmLke0W8qoMgfh8vWtdhhjx/vM8NoJgEiYH+M1ELxbCBlnX/HY7Ph0sCw9+fYD204poFioMohhwcTwl59PDRzEtb5LMm0rTcHvVGxIO/tpBpaeaEIdvS2NhIRUXFWj23Lyt2PvQ6ND2+wnGWmeOTZy5bJ3NojZtvvpm7776bmTNnAnD33Xdz6aWXUldXh2G4+V8XX3wxzz//PFOnTgXgyCOPJJ1O8/LLLwfnGTx4MNtvvz333HMPUkq6dOnCBRdcwIUXXghAY2MjnTp14sEHH+Soo45a7flFFv5agku+4boApWWTsR1mLcuxZFkj2WyuKE9RSaopNCGIKQIvTRChCBzHwCaJ9KLYvifB0B3KygpUtY9R2b4c3dCY9NtRTNznAPekrSz4kmx7P+mstaUMReEe2heM813zocY67rVEIOxbhxcCXSCUjR9OWvPnGhaMgTBrQ3nwSw/bDGXgCf9QaVnYIg4rPq47XZRaiOGseBESbOGyvRBXvC+4/CUAQt6O4hqGSW4Ct7Kk1M2u+FZ4aJs/T+/5leQW+POjdB39tXZ8+tvQfQfrb3ohFNN7nt79hhPXhPecFbNovQf/DpXEBSELQVC3Hlw3ZJXbcffjhEIQwXVD3gm/1K+14hiEOjz+AX/dgzBKqDFPWHELPDT+MwuHO6Akli8kPDlmP+Y35cm15N0e9VVliEjYb3JY3Tr8pqamkk8+n1/rc2lsbKSmpib4+4MPPmD33XcPhD3AyJEjmTZtGvX19cGYESNGlJxn5MiRfPDBBwDMmjWLurq6kjGVlZXsuuuuwZjVRSTw1wIUQMdBFSAUBaFr2AWbuVmbn5amsaziG1NVVMr1ShShEvYWCiHQdJ1l9VDfrGF57n7AUwBiSDRUTSWeilHRrpyqDhVMPvxwJh04mv+MdIV/Wxmpft13uF4aKEnu8uET2wR/F0SQTQ64Wd0iVEInZPCy9RP5fBdxiaD3X/bh6/sJdD6zm3QFmJ0I5Sv4ZWVhRaV1nkFYQPqu35ClL0LXba18QEiA+1arcOv/XWHqChw75v3tbzdk8dfj5RL49e5BHN0pXlvx6rqF5bnN/cY1ngD18xeCksGQshH2PgRrJr3r+daz415DyxbJarS0ez0t47bXdZnvPCIdv0WuXmzrbBuuZa3milZ3EDoInk9xzQJXv29RS9ebYSWLQt82igLXfz5B/b0sjaX75/I9DD4jYeCKl0WFzlfq/Dp+JeyNCbn/7Zj33K3iNqnA8ycdwpwmQa7gLq5SlnQT8yJhv8lhdQV+t27dqKysDD433HDDWp3HjBkzuPPOOzn99NODbXV1dXTq1KlknP93XV3dSseE94ePa2vM6iLK0l8LULLNNM//kc5du5MuWAgpUAsOZt4mFtNobsmgKCotLWkMQ2fBgoV06NAeRRG0b1cdWPK6obEkL1nQCDUJnZ5lJlVJSdZUyTkJknEVVZGBBaJqAlWNEUsYSCn5+MgjKeQKmDmLPV57qdicJBRXD+qVW1l7QQa2V/4WkAeFktGk7rmNpTvm7T0OoqJdWdHKAwQ2qmwGaSGQSBSacg7NLTb7v/l28NIO5gX4FLThGu/llRCK3oZA8HvjFbySu2IL06ARUEjhEKJY3uYHssIx8XB8Wfj8AE4rFsCQBYmDW2suvQk7FHsGtPZ+OME0SgWdWrSUw4lwrcMSgZveO4kdZq8LMwYqXhJgKHkwqFKwBXqzCCxm4YAogBQeyUzo5Rh0XgxVEgRNaULXVkxvTX3viXdMuAwxcOUTevYU1xpPWQjnTgS19QHdbfFYP9k0rJAESkA45KJRDPmIYt8CYcOiZodsxkbaDkrU3W7Thgz9oFe0H5gzZ06JSz8Wi7U5/OKLL+bGG29c6SW/++47BgwYEPw9b9489t13Xw4//HBOPfXUNZj8+kUk8NcCbMtCkZJ8Yz2OaSJtm+Z0mpZ0GtmuhlxLgvnz61i8ZDFlZeUgJfWNjVhmgWFDh6B5zF2m5bBEKmSNGPNsWNao0ylrki4ImmSB9oZFv3ZxDC3UoEOAwHP9xxX0mAaV8MnRR1HIFijkTDcxMKaz2wvPeS9IVwJISoUcXnIhjihJfAvi5rYAj0BIOgJNU1hSX08mk6W8vJzyshRCCDJ5lYV1i9iith2KopLOOOhGnAl7jSCWMBjx4oQSi18Kgk6Dfulc2BKXIYVAIAMBKGRR1pZ0pvMQvodAuIYy8f1GKlL15Kt3imK83KWZDRQepXQ9hLdWxbh40bPht4QN6uc9oe7Hv0sUmlClAJTO1Rd6/hz8MjQ3a16UCDnhkQYFvex9Pclj11O8tVX9ZLZQB8Rwy2Tfeg9nyAdlfqFxftxdLYQUF/95iGLWfLiSQnox+yD04o+XXgjBf86SEgpiYDnCIUfzdMAQsVFwrJcvovpUvd53YNLvD6WxoDB1cQ6nYKGk4lHJ3SaOVWXj+/sqKipWK4Z/wQUXcMIJJ6x0TO/evYN/z58/nz333JNf//rXJcl4AJ07d2bhwoUl2/y/O3fuvNIx4f3+ttra2pIx22+//SrvJ4xI4K8FaKkKlM7d0JJJNEXFsQqoBZNkJkeiLIUW0+kcc+jRfQuMWAyzUMARDrqqo4ZeNnnLIe+bokBWqswu+OYY1BUkqfocHSpixDSBrrrHhq0T/9+6oaHpKsmKhJsQmDV5Z/+DsG3XvLIdC4SbU+AIB5UiXagfChaeje74ncAQqKpAKAKrYKNoKgt/WkjXrlswf8FC5lgWlmUhHYem5mYWLm6kUCig6Rpdajti2/DjvCbu325bTv7yS/c6ArSs20kN3A1SSNdyDsVbW5cctrag/Xh/0EHPFwKB0hCy3ikVQoESYBGUHfpj1UKxd7prvcqgn7qvOPite4Uti73bJUjHM9ZDgiqIJ0MxvyKUP+CX/gWleiJ0L6q33fcI2MXx/nqElQ0/Bl+SLW8XlZCShMNQOZs7uLg+y30xJKhm6TglHxLWtnffoTn61w9Ii6Ak8Q5vnfzcB1o9t3BoIUjG8138WnFs+L9BpYOvjAjIS4fFaYdc3v3+Y0SvwE0dYbf9ivavCTp06ECHDh1Wa+y8efPYc8892WmnnXjggQdQWimPQ4YM4dJLL8U0TXTd1ULfeOMN+vfvT3V1dTDmrbfe4g9/+ENw3BtvvMGQIUMA6NWrF507d+att94KBHxTUxOTJ0/mzDPPXKN7i77tawGmokJZFc3+Bi0BWgJppGhsztAiIBWPsWX7JIonkCUySNjzYUuJIyWhwH7pfmBGTvJTIU9CgS3iCltUrzg71Rf+mu7G/hPlcRzbzw2Q+O1Phfe/kGe+JA9Q4vYXQEK8LBZMS1EUenTvRjqToUttZ9KZbDD/jp06ki5YlCd1pGlRXV1O3cIlbLFFLY5j8+Svf82Rk953y/GSblzZb4HqCw7fgx/cjyQIObiWuCiWB4ZK9MJ132EhFQi20G8yaGITsmQDEhjPNS4cEIovPF3hjifofZe56yoWgXs7IPUJWee+QhFOMAsy4kN5EmqBYizaO8bR3Oz3YlOX4gMK0wGrOQK62OCBegLS9pQoxfdgSAJyIH8+4I4JSG68vKbWQtXPgg+ocBXv0YQy/AkJcuF4qRee9R30EAgpboHi4nkPAgEfqmBQvWRBxyhNCvRzCII5EfJUOMX1zVg2TXmJY9kIQ2/1C4ywSWI1XfprG/PmzWOPPfagR48e3HLLLSxevDjY51vlY8aM4eqrr+bkk09m3LhxfP3119x+++2MHz8+GHvuuecyfPhw/vKXv7D//vvz+OOP88knnwTeAiEEf/jDH7juuuvo27cvvXr14vLLL6dLly6MHj16jeYcCfx1CVUBQ8MuWGQsDceWCBWvRG/5V01SV6lUJEuckNAPQwgcIcgBOVuiN+eprYx5vTxW/uoKx/2llKStFmJq3H0BCwdDMVZ4rJSSRFmMdGPWddVqRW9AdXUl1dWVANTUVLnjPWUma0t0BQzFvWYyWY6uuVnQju3w33YdGP7iC+4xYYpX/7p+7Nq/tXDDH1+A+zywItS1L+RaD4ctgjhxyIIPpwQUL+xawUrIzS4FQX03lgi42N1Fdd3r4UQzdwJF4QUhS96/z5D7OnhOvlUaOs5n/QtXGPjro5igZEKWsS9EVS/ZTXhlaFqpUhH2GvjzVQqe4tCqxM0n+PE75fnu8kBZ8K36kMUtrFbc+97H0bywgHePvifDj60Ha+wpKkGVqCw+syCEEVqrYIwVqoyQRaZE//jFaYeWvATTRiTjbf/OImxSWF2X/trGG2+8wYwZM5gxYwZdu3Yt2ecnXFdWVvL6668zduxYdtppJ9q3b88VV1zBaaedFoz99a9/zWOPPcZll13GH//4R/r27cvzzz/PwIEDgzEXXXQR6XSa0047jYaGBoYOHcqrr75KPL5ig68tRHX46xhOroDM5omXJ+iW0uhRFSuNwYcgpaQhXeDzepO8WEVcUUq2jEOfDsk2RP2qXmIS27ERoWsoK7medCTZlhyqrmLEV9YatPhVciRY0v2vlJK4Krx3a9GH4DjQvKyZbHOOkW+/XlL+FSRvhazNMO+A7xp2BUAryenX74ddeaIofEoEsq8v2EXruTRUQNFi9WPJIbd0IJhlMTYduKN9174nQH0FonWtfhBz90MRvuAMJ/Q5rqANEugkpS5xL4YdzNfPIQiVsQXrG1J+3D70IRc97jF2rKhQ+IJYy3qKUIhTwbfUC+VFy9pHiddEDSkTXna/7w2wkqXKh1LArR7whLWSd6/v/9fP2g/Ij1SW41kIlCJR9AhIVfLAgQdR12jjZAso1WVRst46xvqowx+y7zWrrMP/4NUr1ksd/saOyMJfxxAxHWyHXGOG2SQxFOhRk2h7rBAkDBVNmKxOhagTZJm13hN2yLe9XVVW/ejD0QUEaLrahkG0omu5x6sCMjYYKqEsAXe8okBFu3JiiRhv7bMftmUz8q3X3GPD2dy+HPczrmVpUqHfmlf6SYf+9f0kO99iFe4B0mM2CixJWfxvMRNeBopDIETtkHIgQlayUhTawnGFS8CZ723zSXwcnRJXd9AYJ2R9+wlp4Ao+NesJ5wKBaz3cGx6Kcwlz5NsGRea5MDOf7s5LsYrCXs0VhbKwiz3vA8HsQfHd7d7yBFz0mhsy8L0QUvNCCx7JjVLwPAihGL2vOPlhkUDx8R+Bvz6x4rNx9KKwD6x+lYDWN/jeiNJ/IyT/Hr0fPzbbSMtGaGrkzv+FQNgS0YpNsvX+CC7WKD317rvvZttttw2yHYcMGcK///3vYH8ul2Ps2LG0a9eOsrIyDj300OWyDzc3xIQgnjBQhUBTFaRXcyUl2JbjhZcEjgOOA6pQSKkCRYAiBLoiMBTRZkfOhXmHhowZnGNtQkqwHC/eL8CI6RSyJmbeZsVOoaLvVgC6ApqApNb2/MFVcuKpGO1qq0lVpnhtr33d7YGQJzC5Aws/5GoOyr/Cbj3hKQZhGmDFHSBs4W7XQlzyIaWm2H+9yAsfxMRD7u2wG9G3eAML2z+dJywDYR8SvGFuAP8+feHsN5SBopAM/+3H8n3KWicWEqRQdOf7CYjePfheBC3jdq3TMi7nvZojqADwhbjvsVALoOY9Uh4TtJwMhK6VcIX5w2cfHngP/AQqNU/gTfB70TsGQd6C4jHpgTsPNV+cu/S4DxzdnZOVcGv6zXJKlC9wzxlcj6KCJ+xiFYYdd+f82+cnYMTVFSjJETZZyNX4RADW0MLv2rUrf/7zn+nbty9SSh566CFGjRrFlClT2GabbTjvvPN45ZVXeOqpp6isrOSss87ikEMO4b333ltX89+ooQlILWtCs23QVJK2Ay15ljk28ZhGPmui6RpmvoBtOVimjaqpVOEmg9mmRSymIyRkbJvmRJyCzwstBGkJ0xoKbKspJIzW1ndbb7Q1ecvJUlIgQ0VRFTJNOTQjUZLw1xbcPAV3jB6w4Kz4+kIRpCoT5NK5onfel+8Bna53TS9pL6DXDZe5ecc5uvQsXuEXGLgkPposnjewClyPgRJmjguHF/y/oSRMEGSgS6/UzRPkvitDOMVSM9soCnjXK1G6JGFGvxLh6VvSBgELni+QA8+CXrTQwxnuQXMkD2rePSbsmvevFVjdNuDN2bX8JY5erEowkyK4F//4+rxTck6puPO9/cRDEMLh7IeeR9hw14kHY0lJUoNT730+6DBo6yFlzRfmXsjAz+3w+zEECY/eWDVPCUVv4DHwvQB+IocicVRIGKBoCnah1eJE2GThOXBWuj+Ci58dw6+pqeHmm2/msMMOo0OHDjz22GMcdthhgNtcYKuttuKDDz5g8ODBq3W+X1IMPy4guWgZGiCkRHEkjhAYZTE6VSbQNZXmhjSO7aDpGrblSpW8LckbBlaugK4ICgWTgqLQUlNFodXjUh2HAWUqXavjazUe6XjXUULnlFLSUp8mWZFE0Tyre6U/J1+9bj2m7WOklJh5k6Xz6/ntf94IhpYktvlCNeTTL8nGD59attruu6KV0N++AA+8CATC1K9X9xPFwvXw4cx+39Xuu6DDSWIljV1869YiCAmglCaWhecQFsYB4YwoJuAhCRryhGvwFbPoFfC9C4rpcdN77nrbcAW/n2R339n70JhVUKWgS0rnyDtfRMvC05cfzuxmk5wlyUtX5zJUV5kzcyZKTPciFIJOcQXFtlmasbB1jbwlkbYNlktwI4RAaCpGTKUqpXD6Qy8UKXxl0eIP8/dLz8JXQusYlBBqxefgGDJoGOR3LwxT77oeDMkrR43mmzoTM1NArykLOl6uo/4qmz3WRwx/6G+uQtNWEsO3crw78aoohs/PiOHbts1TTz1FOp1myJAhfPrpp5imWcL3O2DAALp3775SgZ/P50s4jZuamv7XKW10MIFc+2pQBEkhcHJ5MnkTLZmga5lBKqaRqnQFteNIClmTWFJnSUuBRRkHmYwjEDiOgw2YbehmthAszjvUOhJNXXsCf0WCXNNVlDW6Tltj2477CyHQYzpG3CgKZz8sH47Nh1X6kDs+lA8Y/N0W+U5wnpAlHrj7ZWi8v08BfCa+cNxcFPeHWw0Htf6exSxVzxL1XNolzH1+fN8JCWrPRe1b9gDC9I4N3a9fihdOJoRi/B8RWkNJCbtfQGNrAxYsmrmAdCaHbVuc+8EsbjxgEBXdejG9PkfOFm7JqCPBdsiqKtKyXClp5oPln9sC0rJxLBukRCoKQnF7TKAqSEdCwSKTzpFtUPjT6P0pTxlccM9zvPjH/Tno+lcCRchPCnQ0eOP00TQULA5/8OViOSLuGlkJX5EqegD8Z6sUis/Y9+w4ZoYyTSOvQdLKYmbToBuYegJL1bEje3DTw6rc9pEyF2CNBf5XX33FkCFDyOVylJWV8dxzz7H11lvz+eefYxgGVVVVJeNXxfd7ww03cPXVV6/xxDcF2BIywhUiWSlB0zFbcsQdSdq0qUgVM95VBLrhss9Ul+mUpdMsyAtkqARuRcjZDnnTRlXaaNv7P2JVp1m5ZU8bLn/3Vyk9s21FRwshUFS/2FsUmf18N24bB8pWgq0kjt4qUz80weBFEMTWvTGBhagUP2qBYla8Z32GY+uELE8/Cz1MFrMcY54n2P38ABF4Ltwxjk7QXEcxCUoInz55NEfc+7y7HiGSnCCvwJtX2LUuTLDixfuwtSILnm9FX/bSV8XYPVDduSNn3foiUoHrzjkYy1MmFNvGzhZwMnlEXAdFQUqP7lkREDdQNNX9t/C9QAT/llK6fxcsCk0ZlmUKXHfSQSzKuJ4OnyxIlUXPx09NsLBF4U8j9yORULjwqZcD74ne7F7AF/wBQZG3pna82E1RsWHO9z+RMQV50yEnJKZZACFIZ3N07LsVTqoqkg+bGISUiJU4qle2b3PDGiXtAfTv35/PP/88YPk5/vjj+fbbb//nCVxyySU0NjYGnzlz5vzP59qY4coBCY7ERDA/Y2FaTpsJcIam0KddgnaKg+44rJQ4QgiapcKcxoJrga1LSLBMB8deQ+qq4uEh3/yKFYZUZdK1Zr2mOWGLOtw1L/zvMF7ba9/gmNf3+W3xcuFz+eV0/vGtyXhCHgM/Kz9ws/uZ4aFs8IDdzQrlAvjnUorna53d7xihmLwXOihJDAyR6jx/6iEcfcfzQXMbtVC8jpqHCacfxQtnHBmEDIQD/+/UI4pleU6xnl4K14Vulnm8/AL++fuRKDa8/McDGPu3txA23H/JgS6vCbhWuwTpSEQyhlKeREnFUcsSKKk4SjKOEjfcDHhFCXpEhLVHf5swNJSachCQXZZmfosSkP/4a/K3Ew/khiNHsbC+gFXfgtWUpWVxhusO2C+w9H2FLui6J4qeDN9LIGzhJR/C2M+nUdu1E3oySVl1e6pru1LVeQuqO9diJFORsN8EIWy5yk8EF2ts4RuGwZZbbgnATjvtxMcff8ztt9/OkUceSaFQoKGhocTKD3MCt4VYLLbCJga/OAiBUBVkrkB9XGfa0hxdy3QqEhpKyDoXQpCMawzqnKIha/FDs0VT4GqWbvmZdz5wX8bzC5KqlgKdKmIrtPKlI7EsZwXldSuHlOA4DopHrbvSsW28Nt13sUA6q2Y302Ma7xw0ikLeZMSrE4pudkqFfRiv7bUvyfI4sYSBFtP47HdHewRcksljjsA2beoXNbHfu28U48AUz+u6ul2pG2SAh3jwg37uYfIa31Xeuv7ck3FB5rxslRAY7skuAD+rXoEXzz6CH1sszvnns7x9yRiG3foYE84+kqU5h/k5kz8fvz85R+LYDlK4/pNETKMmqeHYDqbHW/Cfs45memOeY+9/ktuPH0WFrnPiA08jLC9WLoqMfr77Wxg6z15yGKMvfxo7DreefzDzWyBn430BJI5p4ZgWakVy1W6glcFXBlIJnKVNWAWb8cePJqY6ZCyFgg1LGkzslrQ7NhlDiRvIvInVlOHaow5giyo48X63h3gg3EN0ugE1sqfcuHz7kmPeepvbf3Mg6ZY8akUKFIFaCZn//W4ibEhELv3Vxhpb+K3hOA75fJ6ddtoJXdd56623gn3Tpk3jp59+CjiBN3lIiXQk0rTcz6ooHVtBAEpFEmnbFBozzG3MM2VJjulLc6RzFrZTtPiFEMQMjY4VMbZup1ClZVCkQycsalqTQwtBAcHMZotcwS2bCz6hb3suY7JsQSP1C5tZVtfEwh+XsayuiaV1TSyra2bJvAbSTbkV3TyO7aCopaRBUkoKAV3vSpcOM0hMW7mgEEJQVlNGPBXjtb1GMumQ0cuPkaX/1g2NsuoUWlxHCAVVU9F0Fd3QiCUMEuVxyjtW8OyvR/D8iP0pJtWJYlmfV4q3XMZvKPHPZ73zM+SVcL267yYP5RBA0QqVHumM7472Y+5+5rnUXFbCvA1/PelQvmkocMexBzNlXgsz5tRTV9dEU3OOXCaPKcGyHUzboakpy4+LWvhiXjMzl2S48/CD+GphmoaWAnf8bh/AZH7a4r7jD+XJ3x/ieU9cy95Ri+Q8J972MlKq/OuyI0DAOfc85z4zANtBWhZOOoeSisNqhJpWC6qCKEtgN6ZpqGtm0eI8LY15ckuasdM5lPIESk05SiLmeg3iBiIZp1CfZklGwY4VmfX8tQxImVSJo7s7SpoWSahMKDiKwMzksR1JyCkTYVOD/x5e2ScCsIYW/iWXXMJvf/tbunfvTnNzM4899hhvv/02r732GpWVlZx88smcf/751NTUUFFRwdlnn82QIUNWO0N/o4aUSNvBac648UkJKApKeWL103yEQKgqannSVRyyebKNGX40YyzK2XROqPSqiqGHmPiEECQTCl21RhbW55GFcjrqkM/ZZBS1aO0DWUcyvz5DVbmFopqoikG5XlUUPIqCZVpYlo2iCBRFIZvOu1ZieYJcc55YKub9PuRyngLHliW0uuByyCzJ23SMq2j+dcKZZP6tU9QuTUdiOR4ZzwqsREURpCqTxBIGjYubA3d4yTllcVuiLB5cp+2lF5SXx0kmDZqWtvDWAQcw4qWXPcEvgtg6hLLgRdEoRwF8hrlW7v8w6U5ArhMOAUCQLR/ch5cw5+cPKCY4Cux75xMA3HzMwWRa8tgtWdBURNxAUV2JpWpq0VXuK3YFC6tgYRYs0o6vNEK+oLvfV0zqTJtMQkfNw5MXHMmhf32Cp886koVZm7F/fxrFhsaCZG7a5M+nj0YXAl1RUAS0ZGxa7GJMfm2ltgkhIBmDmA62jcyZ4NiIVNzluhcsFxIgGUPmTVqWZbn5kIP4v2dfdPd5ypTLS+CGg4TX/MgxQt9HCZ3KNJa06ORbcsi4gViLCa8R1i+E47axXtn+CC7WSOAvWrSI4447jgULFlBZWcm2227La6+9xt577w3A+PHjURSFQw89lHw+z8iRI7nrrrvWycQ3BGSugDB0EoaKKQRmU8bNVF7Tl4UQ7gsmFUfEdJxsnpZsntmFOAXLYcuaOHFDLTa/wSCpx6kuTzNnURxHGnSPwQ8FhwJK8EI0nCyNmRbyBZNkhU1cr6RMr8R/TcfiGrW93C5QvlveTaJyBV5lO9e92Ww6xFWBpsiSsjzbstFbUesqQIe42sYS+Bu8RjdCoAo3BqzgTblVgl1opf1lQjM0arpUMfnoI8g0Ztjj3y8vd5lX99gHI7Eyyl9/2QWqqlDdoYJ0U9bd5ll8QbOXEMNfQJXrs+apxXFKyM3fuqtcQPzij/Vc/gG3e8gFGWT52zDh7KOYmzZpyNpkGjLYeROlPOkKQ2/+bdyUGxOP6ciYFy7xLRrTxsnl8evOhKqQkZJbTh7F3MY8t55wKDO9krtrjzuYq/7xHOm8hVmwKTgOCMFVj7/EP848jE7lBtllrnB0CiaqN6e1ASGE6zFQFYShh3escLxSVYbT0EKuucCth4/mvGefDyh0g3JLicvO6LdO9jUVCb/91zP8c//R1OVVZDoH5YmIZncTxdrulvdLRsSlv7qQEieTAwnt4yoFodDUlA0skZ9zXgnuy7kli5qK0SmuslX7BDFP6EskWZqodxZQNy/G0kIVZZpCwZbkdN2z9BxqxWLKjDTpZp3yaknHss6kjMpVTKD0JSelJGe7LHk+25+/vZA1UTUF7We1FF1eyofDGK6C4AfOtSDL3x9jmzYtDRmGv+JadW+O+C01tVXLhRpWOQspaVzczJ7Pv1RKmeslzPl0r37WPlCSRR/m4w/obLXiWD9xTssRWPqKDWay6D1QTAI6W7UAd551GIsac1hNadC1wHX+PwsiGQroSJDZPLJgIhSBYugouuaFfgBFYCAxCxZWwXQVWUVBT8Upi7mehaashZ3JIxIxlJj+82L4PxeeV8NpbEGtKkOoKuVxwbmPPQ+4zHyOLoPKiqADoik8xUBiJyS3Dz2ITGMWpTyJ0NUNe0+/QKyPOvw9drl0lXX4b3/0p6gOn4hLf40gDB2nOUNjXEd4tLM/2yrwEq+krqKUJbCa0ywkgbM4y4B2cZJxt7ucQRJNGFRW5hEtDTSYFZiqEVhzwnZAdbBslXpRjZPJUB3PIY1yhE9PGy7iXuF0BHE1LICLUFSBbTmo+qrv2yrY5LImAoglY1h5C6EKjJj7lbNtB6tgo6gKiu7ymkvHQdW9IKxwvH6u7nwDb4cXq39v9MGomooe19dY2Af3WRbj33vvzb5vvY5whLdORWEftvr92G/Aze5DUqyP9136oTa0wvKy6UXx3EGpneK6/186/yjmNJssXNqCnckHVv3a+m65/waRjCETBk5L1i2ty7mp7tILDWQloCooybgbckpnkbZDU8ZBOg5O3kTomtsfYkMLRiHA0BDJOHaDm9jX0r6iSIZkgbAFdlJ6VQoSYQpXCdDcfUoByhOCfCGGnc6iVKYiK38TROTSX31EAn91IQSorgVgZguui1TX/vfkJU9QS///BKCrqGVJ7JYsi2UcvT5Hn5o4yZiGKjTiIoVVkcdI5kimLeY2dsDKS9BUVClZSg1KwSSnJTDtOO1yChUJUcpMt1q3uvxYIQSqrlLI59EdbZUxz4YlzRhxg/qFDaiam0HuOA6JVBzHcTDzbi6BpinEknEc28YqWHTq0Q494ZPke/VvIfjHxsviqCvoOri6iCUMYsmYWwqmySLDnd91zaubD7Pm+aQ2vnXuQzVLk8f8rnDuieCFq47kgD89wYSLj2L/6x/nuSuOZFneoang8Pm8ZgrpnBvuqC53XdvrQvB4CoBSnnST8ByP/S7ISRFFJUGCzJuYmbxb5+zlEYi4sdEIRQFuWCxuYC9tcgl/RJHACAWUgsCOSYQURTIexc3WF6agIm6QN00aTQunxU0S3FjuL8JqYlWJeRuXE3uDIhL4awAhQKlIQcH0LIxVl5gtB8/NKnMFpOWAbQeldkpZAgwNpTyJ3ZxhvohTWJpj6/YxDAOvna1A1SSpMouyTI4mJ4G0HCxNAUVHqgb2smYsIZgpkqQMi+qUvlYMMiEEuuFSAItVkPwky+OYBYdUpxoMQdA8J5/No2oGRtwhljCK2+I6MulSDK+IF9sPKyiq+NnC3kdZVYp/77kPI999zWPMEy4rmwTHT5wM8ej72d4+lW6Qn+iz4/nWpWfZS9X1jjeaklvOOphv6k1uG3so39UXSKcLWGm3KkKk4iiG7lri61Lg+AJdUxGsWFkVSJSKpDt54SU1esdvNPC9Y6rilrt6/PiODk7MU6i9/Aipu1a+o4sgp0KqknJDEKs0yJsOmaYs2M7aq0CIsH7ge+JWtj8CEAn8NYOfbJf4ebwBMpNHmhbC0BBGDFW4jXKcFtetiK6ilCewmzLUq0kWFBZSZhSwKfYPVRToVNNIsjnLwnQ1hfq0KzTiBkJVwLJJp/NMVaC2YFNbrhPTXYVhTV7ZMmBd8bzajoMjQTNWflyy3I2p2dIzHL3tZVXLx9ra2tYWHI9Aw4ivBXc3BE2BkuVeu+KAh9cTFNItAwgY3PyGLH4ins+853e/s4rJiGHud1uHMX95EkeDa48bTVMmj53NgyLcHJC14b5f2/AVg00he93j6lc0BSshi5USivS6KbrxGWELpCqxdFAs16W/7xNPgYDxww/0lLdIOmxqiJj2Vh8/uw4/wv8Ax3FjoaqKMDQqHYu4oSFtxw0VCOFKdAECB0fksEQBGVZjBRgxh/KyAobiShonnXPjso6DUp5A2g4NDVmm1+eZvSSL44TYZgK2ilX/GDLNWdJNWfLpPFK6xDirgpQSR0oUZJsKhk+KI1dzDlJKrIL1MxMG20aqMsmbw38LQgYxYH/S0muxGybRAYLGLe4fBOx74cY8SHjx/45CSLj1zEO59ncHka9vxi6YKBUplOpyV0Hb2IT9pgQpcTJ5lLhBKmW47YU113r3iY2chIMTd3CSNjLmgCJxDAc7IXHiDo8deCim6XidDiPrfpODIwn6i7f5iQS+j0jgbwCIhFtH7BRMhG2T0Dyft5Suq79g4WRyCF1DBaSjIi3a/GiKJK6arrdACKRlo6QSYOiut8DQsDJ55hUkdfUFHFsWM7NbQUqJ7SxPoqOoColUjHhZjFjSWK0kOYlr3a9shCVL/14ZHNtBIteaK9+HEG54oKpjJW/ttX+JHhTQ5XplXT6Frs/qFrbug0Y8Xoe658cdxb3nHU5dxubPpx7MsqUt5Jc1I3QdpbIMof+M7PsIpfByDFK6UqyAyAvXKyPw3C+h8T5Toup6r45680l0zdv4P9JGR9iAcFbjEwGIBP76h0evq1SmwLSx8xZ1UqMgBVoqjvDK/4QQxJIx2ukq7UQHqswt2vxU212oUhIIr45ZKUsEwj/gMlcEBSmY3uIwta6FBUszLGou0JQ2sUNS2QGaLdlKULtxe9OLjwbnXOVtCrRVjNVEiTG8UuQzhdW+9prC7dKnUdmhgtf33Nfd5rjxfOHVcqNIHE0WefD9LH7cyUutyOfuGDDqlscpOJIlmQLNi5tclsKackRZ3E2Si4T92oWUpDSFF484MmgIpJhuwxwlrZYocCgS6Zfs4W6vSqoohoaTza2SNTLCxgXfpb+yTwQXUQx/Q0C4JWBKRRK7oQVbU4gJ6JLS0HSVtC1RBRiqgqOpGDGNhC48Vjr/y1usT+9gF1iQz5MpWDiNaZRkDDTP52zokC3gtGTJCMFPusb8nAOaQ6VjMahLOQlVBOdTRWnYVgjc7PycGbjUWwtdKSW2tBEIFOE1TSlOcQVL4O+UbfDytT1+XVnE0pGYeQsEJCv8eL5rAQpHFGPBngIgQsQuill075speOfso/mh2cK0JS15m8yyFjA09PIEEhHlD60LKAIch4wliamCB0YfxokvPO16ZARIQ4LV6jupS6TmaW6KpFOZQkNGJxsl7m16cFbBvONEJr6PyMLfUBACVAW1PImTzpG3JcssSVITbNM+wdYdkvSqidMu7ioAK1JShRBUJQ36Vxp0qEqgJwzsxjROfTNOQxqZzaFUplD85iOWTaE5i2na6IaGYSiesSlRFSjX2/5KxFIxrIIdJM61BVtaK9izvA0vpcRyJAU/xLYKSagZqttPfS3BzzFwpMQ0i/NWhGDiyAOYsOfebvKeKgMmL79nfTiObyVLY/6/ufFfVAkL2zKx0xl0aZFMGehNS0laOTS7sNZoaSMAQqDEY9i5AosyFqMfe5KTnn0apSCCcItiCa9PgkDNKq7iVnC3iYJAZFX2ff4ZqhMaQlOReXPV14VVl4NFWD+IuPRXG5GFvwEhhEAaGoqawmnOUF9QyEtIW5KuFQZxQ6V9bEU6WdHSFwI6V8aoSelMW5Jlnihz45iA1ZIF3XaZ0aQEQ4Osgsyb5OIqeUuiGSA8sh3piJI8fve3IlAUN1nPLJgoajHRzHd/qkJFFWtmFRUcSc52XbHGKlRPRVVwbGs5siP/txw2/qUs/u3zHLTlHGg2HaQDcctxqXm9enRFVYiVaa7R4IiAs99vLxtw4vvX80q/fBf/4Xc9x6VDeqMJjaZMmrLmcrLpNIZhoMTixLfo6ZImRVg7UBWQ4Fi2p5gJt9Oh5VZY4At9v62xBByBtAAVhAnCFFQlVBYZGla2gEy23XXSr1qRBdNVDEIcBeuMPyHCytGaDKut/RGASOBvcAjP0lcqy5CZHOmGDD9YCVSgV/u2SECKrvCScwCGptAlpbG0YJIXAscvV/KL4H1Xu6KAtEhbkoUtJj2rdTc5EC+5yW/+jkvra0s33q5oKk6+1Iq3pIWCQFWW/yqFO/W1LgYUQpBQBQk/2U2UHtPWeKeVhW/bDg2LW4jFDfceBVimTT5ToLwmFTQHciwHI66RKI+j+IqFBMOycRyJoikBr4Ae13CyEg3dLcnzErtwRJFoJ8zEJ4p198KB20bvSn1DE7FYEmHEIZkkkUggdAPdiGFLCUrkLl6rUARKKo7dlMGOud9hnyhJOF7jHAfwFQDwwjEKDk7QzvigV57krqEH05QrIAumy7MRfDG9ZNecicwX3N9sIuYqfgULpznjegcMPaDojYT/+oFwHMRKXPoicukHiAT+xgDhWumk4iiKwMkVWKALtKVZyuIalUkNVWltAi//MhFCUJUy6Jo2WZC1aPF7m7aOR+oaMpOnkDeZ1ei2We2Q0kjEBHFdgOIgpeJaL7gudxnUKHsWjieYNfEzvkKiKNzlKnz6QhFuS3ZHonpJBlbBxrEcCjmTloY0luUqI0ZMJ/tT1nX3qiqOZeM4Dl37dkbx1tEsWGA7xBMGilp8OQsh0DQF23J484D92Ovfr7iqjyJd74eflR/SuxwVNyejAF169sRqNkkvaUImE2jtOmIiMNrhNQ6SmJGHca3C7aAXRxYs/jx4Xy7++N9I6aqMju7lX3hjlbzA8Txa0qeQdkBqEsUSdCrTSOd0t2eA1yNDSrezpcyZCF11mQpD1rzQVGTcQOYL7idtuyycyShBc73AkaEM2hXsjwBEAn+jghAC4gZOIU1jS54WU2JkbLpnLdolNSoSemCt296XWFVKXyaqIujdMYVYkuGHrESaFrIlC6kEPoubUARKRdJtz9uUZUZe56cWjTJdMKhTjFRMRQhXwCEFhuL9YLxrNS5tQSiCWFwnllxxHfkaUfx41vLK1weXq0B1hbYW00jVpNBVhVRlAkc6ODioqkA4rpKjaiqO49LIqlpRaVJUgZmX5DMFYikjUCL8CzmOg6qrnqUo3OQv1Z2k39I2qMUXgON2wkubDlnLwTRtv9ISX0mKsO4gBCjlCZz6Zu78zcGc89rzvHfikfz6/z1RUlHh52J8cNwY5rTYzE1bnPf6s0HlRacywaIWjcZM3k32UlUoWMhcwWXZbMtt7xFyiWTcdZDZDk42j9OccRNo9eUTXSOsRUTUuquNTSJpL6mrlK0G4YoqBJUxHU3ZdH9cQgj3xaKpWJkcmYY0MxoLfLE0z9KWAqbl0JKzqM/bZNpIoBNCoCiCDuUxOupQ7mWdOw0t7ovLC3ALTUWUJVyCHinJNWZoyDssS9seha9n/fhKgt+8RtfQYjpawnAz9017tcuYfPKcQt50E/BkSCkIy9tQBUIha2JbriXvU/oWu+uBHtfQDJVYQiNVliCVTBAzdBIpnXjKQNMFRkwlliilF1Y1lWRF3L2vVvO3LZtCziRZFuflvUcWCfgcEbTFDVPrOppXo6+5eQGKZ9XJyJW4/iCE68mKGbQ0ZLj/oEMY/K/Hg06GSkGgpQV23C2tHPzoYzRaWUxHohTchAxhw+6PPk25objnMl2iKmnbHlHWymP0KmAogmRMJVaRQEnFcdI5ZHPW/S5EgmfdQK6MdMdx90cANgELf0CHSgZ1qgZg5rJmPluwlJ5VZfSqLqNd0qVkrc/mWdSSo0+7cjTPZTth+lzSheWzxlOGRr92FXSrTBHTVNIFix8bWvh+aROFdUS6URHT2aZjFR1TcQxNJWfZLM3kmbG0ifKYTsrQWNCcZXE6F8T+RCKGTMSQBRMrUyBdUPgOSDWbNDuQUqB7ZYwyTRRj8x6EEFSXJxlYXolZKPDFvHqMeIxBnWswDI2s7fDJvCWkCxZ9O9fQu7oMASxpSvP94mUgs2RbcnSoTFJZ5iYvSSlxbEkmaxJLxYjrCramkM+ZaPrqxaQt0ybTlCWe0sk0FxCKQizRNpGPlNJ11+dNYmqcWCKBZiTItDSjaSqqrni1/gCSeLIS3VieojefbaGQzyx3bqtgY+ZNV0FSFS8ZUMGIJTBiSaTTiERS3cFtp+m3xpV+zN7regcEzWaEDR3iKmnLbawk86Yb042su/UCIQRKWRx7SRNLWyzu2vtQzn32OcArz1Pc2nypSKQmOOXll0BIZNJN8FMKrivA0BSEooRcwX5Jn0AV7mZDkVTFwHJUV9cQghbTocWSqBJqYgotQienqdjpnFsuG3XjWzdYVZlP5NIPsFFb+EldY1Cnav7yl78wceJEOqTi7NGzM9t3quKDiW9y7rnncu655/Lv556hZ0UcTVE466yzmDVrFtt1rlnufB1Scfbr15VUIc34W27m97//PQ/+/V66xhX22bLLankR1hRVcYORfbegZcEc/nTtNZx55pncfMP1LJwxleG9OrNVdRK9aSnDe3bCUEOPwxP8iseYJ4HmxgwLG7OkGzMsyZjMqM9R11zAtp0SK1sIhVR5NcsW1lFVlmKrTpUM7NKOWdO/5e47bqNl4XwGdaompWtsX1vDhOef5d6/3kGvjtUkhMZXi3LMyAq+bTRJ513+/kLOJJPOY2pa4NoXvs96NX9PtmmTLI9jJGIkyuIIBLl0nnwmTyFnYuZN978FC+lICnmTRLlOZbsamtNZ8pZNdYcOgEvE407C/ehGnCuvvJIXX3wRgBtvvJF//etfaHqx74H0Eq/MvIVjO+gxDSUucbCxpEk8VUFzOkdDU5rqjh0CD8QL++7rncBzCVtF17CwCerxFQuOuO9JEqrASMW8LO7/4UsT4X+HoiB0FSdvYvu5Fj7tseo+IyCw6p24m7SHIt2mSXg5K1KGWysEEEC5LmifECjCxpGQsyQNBSeQK7aExoJDma7QPqGhlSVAU5HZQmTlrwtIZ9WfCMBGbuH3a1fBwoUL+cc//sGXX36JqqoIM89uuw2nrKyM448/HsMwePXVV5kyZQo333wz++yzD1dccQUPP/ww5YZOc8GtqVWFYHC3DrzxxhuMGTOGM888k5EjR/L6668zYMAAJk6cyB59tqQ+W6BLRTKYQ3PeZHZDC1MXN6Ipgv7tK+lRVUbK0KjP5pmxrJn6bJ7tOtfQqSwRHNeUN5m5rJlOZXG++OILfvOb3/DHP/6RnXbaie+//55XXnmFHXfcke+++45TTjmFzz77jFFbdQcga1okdPfROI5kUTqH6ThsUZFESkldU4YvZ9XR0JRlaTJB50QlFckEjuNgmfnAithvv/146aWX6N+/PwCPvvceV111FQsWLGD8+PHkLJuGhgbOOussmpqauPDCC+nRuYYtFUFtVRkA6WwOp5DGNvPUdOpIPF68R8e20PU0ppn1OqsWX42KqmHEkmi66yGwLRPHbkJRJYlUOapmQI3ELORpaWxENwziyTJ0wy1Xk1JimQUsK4+qGtxwww306tWLP/zhD1R16NwmEc+uu+5Kt27dAJg7dy6JRAJV0ymv6ohlFsjnWrBNSWU712OUz7ZgyjzJZBWKoqKpBg88cAcLFy7klltuoapDJ3LpFnqWV/Dt+WPRDYNPfprHA29/Qt2yZi48cHeG9OkeXD9nWsxZ1kDvDjWoikImV2Bec4avFzdiRVbGeoEAlFQCpzlDIWFw2+jRnP3qc2hpt0ueE3MH2QkHqUu3pFJIcBRw4P2TDmbaQumS7/iJsp5eKwDLK5vN2mA6Gm3VfAnAdFwCq85JlcaCjZ2M4zRlkHHd9R5Elv7ag70KoR6F1gJstAJfAD2qUtx6y10cfPDBaJqG40jGjx9PMpnkzTffpDlvkrcdjjrqKOrr6wFXyJ155pksXryYHtUpvl7YAECXiiQxVeH000/nL3/5C8cddxyL0zlGjRpFWVkZF154IS+//DJNy5by2MvP06NHD5577jn69evHSSedRGVMpyJmoJg5/t8//s4PP/zALrvswuGHH44QghkzZvDRd9+RSqV45ZVX2HrrrTnhhBNQVZW/v/AChxxyCBdccMFy9/nMM8+waNEibrvtNiorKznxxBN5/JGHGTZsGE888QQdO3bk1FNP5ZtvvuHef/0LVVU58sgj+e0OWzN9YT39OlXz7rvv8sILL1BTU8MJJ5xAbW0tEydOpL6+noceeoiOHTty1FFHAbDvvvvy/PPPc+ONN9K3XQX33Xcf++23H48//jgA3WvK+e9//8tdb75JPp9nt91246CDDiJZVkk6neHRRx9jhx124PHHH6dr166cdtppaDGDTFO9mwyoKKi6Tqq8hm+//ZYnnniC5uZmhg4dyiGHHALAV199xTPPPIOqqhx11FH07dsXgNdee43a2lref/99Zs6cyYEHHsiwYcOYOXMmU6ZM4aeffgJg8ODBdO/enUmTJtGtWzeeffZZjjvuODRNQw01PzFNk3vuuYdZs2Zx0EEHsdtuuwEwceJE2rdvz9Zb9Scmyvjkk88A6N27N5MmTaK5uZnbbruNgQMHMmLECBoaGrjvb39j0aJF7LnnnvztuFEAfP/997z88suB0nnOOeegScmfrruLpUuX0rNnT0499VTy1WX8sKTBLS0EzI3bsbZpQwgwNETMoLC0GVNXuXvfQ/jDv57DCRrreGM9+uSgUZIOioyRd3IgHbfrZBuw5cr7RCjC3V9wJIuztjtWEYiYjtOSQ6lIRuRLaxNR0t5qY6N981Ql3Xj3hAkTGD58OKZXT/7kk09y2mmn0ZQ3eW3GfN6eVcd/Zi6gXmpMnrMYTdPYZZddeOutt+iQLMZ0O5clmDJlCnV1dRxzzDF8sWAZb8+qY1Z9M6eeeiqvv/46zc3NzJkzh7Fjx3LHHXcwbNgwXn31VU477TS6V5WRVGHYsGHMmTOHYcOG8eijj3LppZcCrhA77bTTeOqppxg8eDD33Xcf48ePB6BXr168/vrrvPTSSzQ1NZXcZ7t27dB1ndraWjp47urrrruOY489ls6dO9O7d2/+85//MGrUKPr27Uvv3r3Zf//9+fbbb+nXqZp7772X8847j1122YVUKsXQoUNpaGigsrISTdPo0KEDtbW16LpbYlReXs6wYcP497//DcADDzzA8ccfXzKnd999l+22244hQ4Zwyy23cMcdd6CqGvX19Zx77rlcffXV/PrXv+azzz7j8MMPJxZPoKg6haxJLpMnnqzgP//5D3vvvTe1tbXsueeeTJ8+HYDJkyczcuRIunfvTrt27Rg2bBjfffcdAI899hhHHHEEuVyO/v37M3r0aKZNm0Y8HieVSlFRUUFtbS1lZWXMmjWLsWPHcvvtt7PzzjuTTCZ57LHH+Oijj4L7GD9+POl0mu22244xY8YwceJEAJ5++mnee+89LxTiKhqvvvoquq5TXl5OKpWitraWyspKstksu+66K4sWLWLHHXfkwgsv5K677gLgyy+/5JRTTuGJJ55g1113RQjB8OHD6dixI/vvvz8ATU1NaJlG7HmzUJcuoHnWdC/vIMK6ghACURZHqSnHKVjkCpbb7dAjSHIb64ji20+TOLpE2GA7grxpuzJCcXM7pO2ssoIkDEeCrkBSEyzOuQJfCOGS89gOFKxICK1NSFbBtLehJ7jxYKO18MtiroCaOnUqvXv3Jm/b6KrCjz/+SPfu3anPFoKxSzJ5lmTyAOzYpR29e/dm6tSpjDq0eHsxTWH27NlsscUWqKpKfc49viFbYOtu3TBNkwULFgCuZfjPf/6TVCrFXnvtRZcuXbjpppt4/fXX6dWrF9dffz0Ae+21F127duVPf/oT4Arvu+66CyEEyWSSO++8kwsvvJBjjjmGuro6xo0bx7Rp0wJBOnjwYPbYYw8eeeQRjjzyyJL7HzduHKNHjwZgzz335Pbbbw+ESHNzc6BQXHHFFXz44Yf06tUrWC9fKSovL2e//fajb98tUUJkLyeeeCJ33HEH/fv3x7Ztttlmm5JrX3rppSxatIj58+dzxhln8Le//Y1zzz0XgEwmw9///nc6duzIAQccQPfu3Zk2bRo9e3RDKA7SEaiqxjXXXMMtt9zC0UcfTSGf48ADDwRcITxu3DhOOukkABYsWMCdd94ZCNHDDjuMP/zhDwB88MEH/Oc//+GMM86gX79+9OrVi8MOOwxVVXnvvfcAePjhhwEwjOWZ60aMGBF4VUzT5LbbbuM3v/lNsD+byxOPF5XC6upqtt9+exYuXMgRhx+OUBQeffRRunXrxg033ABAjx49OOSQQ/j9738PQFVVFffffz9CCOrr62lpaWHvvfemT58+7LPPPgDMmvIlpm2Ta2pC043IulsP8AmtRFwnnzW59+hRnPbkC0Gc3vfES8Nx2RRViR2DvGVj2dJNUxGA7SALFkoozLcqSEBBoLdy2wsBSpmbua/oZZFXf20hsvBXGxutha94v4ZCoYCu6xQs9xfavn17Fi9eTCqUYJfQVPrUlJPSNRwp3fGFQnAOANOWwbFSyuD4lKGxePFiAGpq3ES/Hj16kEql+LKunrKyMrp168aPP/7Id999x8cff8yQIUMYPHgwI0aMoEuXLjQ0NADQp08fhBDMb8pQXV1NY2MjAA05k/MvuJBvv/2WhQsXsvvuu3PAAQdQKBSVFoAvFiwL/r3VVlvR7HF6f/fdd1x++eUMHjyYwYMH88ADD2DbNvX19SxevJgxY8YE+95//32y2WzJeXPZLIV88VrDhw/nm2++4eabb+aEE04oGWvbNmPGjGHUqFHceeedvPLKKyxcuDDY3759ezp27Eg+24KmafTr149Zs2ahKG7WvO6RlUyfPp0ddtiBfC5D49LFNCxxzzFz5kwGDhyIWchimQUGDhzIzJkzg/P36dMH2zKRjkN1dfVyHpF8Pkdd3fxgrGEYfPLJx7SFrbfeGse2KOSzbL311iXXAYjHY2graJIikZimGcxXSkku28ygQYOYN28e+byrYA4YMAAhBJnmBqqrq7n22mvZe++92XrrrbnmmmswTZOqLt2I9ehHstcAEt16R8Q76wtCoCRiONk8S1ocbhrlhmICemRcQiVhCXBAzQvmLViEaZpIPzM/m0fEddRVNNMRUOK5yTuSOWkLMxw+FsKtyVdVZC4fCaK1Bdte9ScCsBFb+FmvoUm3bt1YsGABWnUHbEcyatQonnrqKUaPHs2uXTuQt216V5eDdOjXvoKYplJXV8euu+5Kzio+6MWZHEOGDEFVVSZOnMhuw/egKm6wZU05d975EL/+9a9p3749s2fPZuHChdi2zYD2Fdi2zcKFC+nYsSOdOnVi+PDhPPbYY23OOeCXpzSBrSYZI2fZtBRs2rdvz6WXXsoNN9zA4sWLPcpY962wXW2xskBVVQq2Deh06tSJv/zlL+y5554l18vn86RSKZ577jk6d+7c5nwcxyGeSAYMcwCKonD00Udz4403cvPNN5coHlOmTOGbb77h888/RwjBxIkTmTx5crC/vr6eTCZDIu4mEM6fP5+OHTsivaQZx/tvbW0tP/74I337bkk8WUayvByATp06MW/ePC97XjBv3jw6duxYMueAXje0hv69JJMpkskUP/wwK4jX9+5ZTJwLY/78+Siqhi6UYJ4A8XicTCYTJCAuXryY9u3bl1xHUVQURaVTp0588cUXCCEwYkl++GEmVVVVxGKx4Dm5B7pzHjt2LGPHjuX777/nd7/7Hd26dWP0UWP4drGr/EXuxfUMXUMkYlj1LVgIbtjrQMa98xLPH/lrDnxlkpuQp7lC3045NEkNQ0gsDXRsDM0hF4uxorZQAHohC4UciUQcU9Fx8DgYhEBTFBzbRtFc8h1TCsxUzG1sZehunkBk6v88RBb+amOjtfCXpl0rdY899mDy5MnUJAzmN2e44IILePvtt7ngggtonDMTZ8kC7rzjdq666irKPOvyww8/ZPjw4Sz13PwA8xrTKKrKn/70J0466SQmvPgCRks9999/P9dccw3XXHNNMLa5uZnrrruOpYsXcd1117HNNtvQtWtXjjjiCN58800efPBBFi5cyPTp0wOX8srw4IMP8vAD/6Tux1lMnz6dyy+/nH79+lFbW0vXrl2ZM2cO//nPf/j6669LjluSyVOwbM4880zOP/98PvnkE5YsWcI777zDu+++SywW48QTT+Tkk09m6tSpLFq0iFdeeYVvv/0WgJ49e/LCCy8wZcoU0ul0ybn/+Mc/Mn/+/MCr4aOyspK6ujq++eYbpk+fzrXXXrvc/fzxj3+kbuFC/vrXv2IYBttttx225XojHNvCcdw5jxs3ji+++JJMvsDrr78BwHHHHcef//xnvvnmWz799FNuv/325XII2kKvXr145513+Oijj4LQi49UKtHmMU888QSTJk1i5qxZXHfddfzud78DYKedduLxxx9nxowZvPbaazzzzDPBMT179mTy5MlMnjyZH3/8kdGjR/Pf//6X5557jrlz5/F///d/bc5X02MsWLCAJ598koULFxKPxzEMg1QqhRO9cDYYhBCIVBylpgKRjGE3tHDrXgdw4Avvuv0RTAWRV5Ca5KFBQ1g250eyC2bTMncGmR+/J7N4PpjmSvW0QksTi36YxtLZM8jNnUlm1lQK82ZizZ+F3rCIlllTyf84Hb2+DiXbjFBVRCLmkvKst5X4BcORq/6sY+TzebbffnuEEHz++ecl+7788kuGDRtGPB6nW7du3HTTTcsd/9RTTzFgwADi8TiDBg1iwoQJJfullFxxxRXU1taSSCQYMWIE33///RrPc6O18G1HMq8pw0knncTZZ5/NueeeS11zA9t06sxnn33G3//+d8aOHQvAkCFDOOeccwA3ea6qqoqtt96aSbOLrui87TBlwTLOOOMM+vfvz7333svNN9/MwIEDmThxIttuuy1NXlx/4MCB1NTUcMQRR9CvXz+efvppMqZNVbv2TJo0ifHjx3PPPfdQXV0dxKa7devG8OHDAbAch/bt2zNy5EgAtttuO/7+97/z8MMPo6oq2267LW+88QaKotChQwf+/ve/869//YuysjJuvfXWoHJgqSP5elEDp59+OtXV1Vx55ZUsXbqUvn37cv755wNw6623cs899zB27FhyuRyDBg0KEgn/+te/cvfddzN+/HiuueYa+vfvH1im3yxuQlcE6cUNlMfjHH300QD07duXG264gbPOOouqqiouuugi3njjjWAda2tr2WGHHTjqqKPo1q0bEyZMQEoHs+C+vBwJLfUNnHTSSRiGwcUXX0wmk2HEiBH89re/5bDDDiObzXLuueeSTCa57bbb2GuvvYLn2Lt3b7dRCZIddtiBcs8zcMopp9Dc3Mzf/vY3Ro0axcCBA4P1dXN2ZPF4YOedd2bIkCH885//ZPbs2Rx77LGceOKJmGaeI488kmnTpnHiiSey4447cvPNN5NMujHaUaNG8eOPP3L33XczbNgwTj75ZCZMmMDNN9/MHXfcwW9+8xvGjRsXPPPdd9/de+YSwzB46623uOOOO4jH4xx66KEcfvjhfDa/GKqJsP7hxvMFJGPIbB4r7/DIPvvxu9cmoBRcYS8cyOQLOI5Dqqycyo4dQQisfB4zk0fqhltO1wYSZeUke/eladkSCrZNqqwc07LQdJ3mdBpHKKixGA1NzSQ7V6AKIGFg5wvIguVWFURW/v8M6dhIuWK3/cr2rS1cdNFFdOnShS+++KJke1NTE/vssw8jRozgnnvu4auvvuKkk06iqqqK0047DYD333+fo48+mhtuuIEDDjiAxx57jNGjR/PZZ58xcOBAAG666SbuuOMOHnroIXr16sXll1/OyJEj+fbbb0vykFYFIVeXF3U9obGxkaqqKu5+83161XZi5Na9Ofjgg7nooovosdVAJv0wl+226EjfjtUlDWUWNafpWJ7i+OOP55hjjmHI7sN59vPpy51/i6pytt2iAx3LU8G2OfVNfDF3EX07VtM8Zxann346n376abD/p2VNvPfDXOK6ys7da+lWUxHssx2HJS1ZKhMxDE3l+0XLmLG4nj379SBp6LTkC7TkC3SuKCuZx8y6pXw8cz4d2pWzU/daKhOxkv3NuQJvTZ1NYy5Pnw5VbLdFJ8rjxcS0JS0ZPpq9gM4VKQZ26YARijEubmzGzjZRliynrKKi5LxSSuYvWsLE7+fiCEFSCPbZrj+VqThL01lmLK5np26d0dooSfrxxx8ZNmxYUB4HkM4281PdDJIigUQjYzkkpUNZeSXV7TugakWdsqW5EdMsUFFZE7jCbduiYdkijFiMsvIapHSoX7oITdOpqKpBSmhqWIqq65SVVS73Ysykm1m2ZCGVVe0oq6hCOg6WZWLESn8EUkp++nEWP/zwA127d6df3/7L7Z+zcAapWDnVlR2CJMdMSwuqphIL8Q80NSzDNPNU13REKAotzU0saVhGqqoDHVs9509+XMA3C5Yst5YR1j+klDhLm1GTBld88rq7UcA/9v0teUulUICs6eBkCyipmEuvK6HQmIZ4DNEGMZcA2sUUQNBo2i4bo23RMm8mim6Q7Nzdo6p24YuemCLI5kzs5ixKWSLosPdLQzbdwpkjfh1UDq1NNDU1UVlZyV6Vx6KJFbebtmSBtxofprGxkYpW78O1gX//+9+cf/75PPPMM2yzzTZMmTKF7bffHoC7776bSy+9lLq6uiCx+OKLL+b5559n6tSpABx55JGk02lefvnl4JyDBw9m++2355577kFKSZcuXbjgggu48MILAVdOdurUiQcffDAouV4tyI0Mc+bM8XkSJSBfeeUV2dLSIhsbG+WkSZOC7YZhyH79+sl+/fpJwzDkwIEDpZRSLliwQEop5f77719yntafTp06ya233lpWV1cH2+6++2756aefyqFDh0oppTzyyCNlZWXlcsdWVlbKbbbZRnbv3l0K4ZKuKooidV0PxgghSv6OxWKyf//+sk+fPjIejy93TkVRpGEYwb355w1/evToIbfZZpvl5qQoitxyyy3lVlttJZPJ5HLH+edTVVVqmtbmevjXBqSu67Jv375yiy22kEIIaRiGvOaaa+SPP/4oBwwYIKWUcuzYsbKmpmalayyEkH369JEDBgyQsVisZL7++cPjNU2TiqKU/K2qaskYXdelqqrLrW/r4/1j27dvL/v167fceeLxuBwwYICsrKyUqqout1/TtJK16tKli+zbt2/JNkVRllvPRCIhBwwYIHv16rXCtY4+0Wdz+8yZM2ety4rGxkYJyL3Kj5EjK05c4Wev8mOCOTQ2NgafXC73s+dQV1cnt9hiC/nxxx/LWbNmSUBOmTIl2H/sscfKUaNGlRwzceJECchly5ZJKaXs1q2bHD9+fMmYK664Qm677bZSSil/+OGH5c4rpZS77767POecc9ZovhudS79Lly7MmTOH8vLywJpTVRVVVdluu+2CzPe2kE6nqaqqIpPJrDCxbkVoamrikksu4YwzzmDSpEk4jsN99933s+5lU0NTUxPdunVj5syZy2nCqqqSSqX47rvvkFJyww03BOWJvxT49z9nzpx1YglsCtjc12Bzv39Yu2sgpaS5uZkuXbqspdm1cQ3bRopVu/R9Fk4fV155JVddddX/fl0pOeGEEzjjjDPYeeedmT179nJj6urqgpJpH506dQr2VVdXU1dXF2wLj6mrqwvGhY9ra8zqYqMT+Iqi0LVr1zb3rUms4n/BI488wt13301ZWRmKomy2P/iKioqV3rsQIoit/xKxqvvfHLC5r8Hmfv+w9tZgbbvyl4P0HQkr289yCoyfz9QaF198MTfeeONKL/ndd98FZG2XXHLJGk95Q2GjE/gbGk7EuxwhQoQImw4cWSRWaAuewF9dBeaCCy5Yjp+kNXr37s3EiRP54IMPllMcdt55Z4455hgeeughOnfuXMJjAgR/+6XUKxoT3u9vq62tLRnj5wqsLiKBHyFChAgRNllI21mFS3/NjLgOHToENOcrwx133MF1110X/D1//nxGjhwZUG2DW3l06aWXYppmQG/+xhtv0L9/f6qrq4Mxb731VsAw6o8ZMmQI4JYkd+7cmbfeeisQ8E1NTUyePJkzzzxzje4tEvgeYrEYV1555QrdPJsDNvc12NzvH6I12NzvHzbBNZAObXUtLN2/9tG9eynhV1mZW6HTp0+fICw9ZswYrr76ak4++WTGjRvH119/ze233x70WQE499xzGT58OH/5y1/Yf//9efzxx/nkk0+CHDIhBH/4wx+47rrr6Nu3b1CW16VLl4B+fXWx0ZXlRYgQIUKECKuCX5Y3VByAhr7CcRYm78qX11lZno/Zs2fTq1evkrI8cIl3xo4dy8cff0z79u05++yzAy4PH0899RSXXXYZs2fPpm/fvtx0003st99+wX4pJVdeeSX33XcfDQ0NDB06lLvuuot+/fqt0RwjgR8hQoQIETY55HI5evXqtVqZ6p07d2bWrFnrPPF7Y0ck8CNEiBAhwiaJXC63XBOytmAYxmYv7CES+BEiRIgQIcJmgY22eU6ECBEiRIgQYe0hEvgRIkSIECHCZoDNQuBnMpkNPYUNjoaGhg09hQ2K6DsQIUKEzR2/6Dr8qVOncuGFF2IYBr169eLUU09lwIABG3pa6xXTpk3j7LPPxrIsevTowTHHHMOIESM29LTWG6LvAMydO5dnnnmGvn37MmjQILp164aUcrNqyRqtAcybN48333yTLbfckkGDBlFRUbHZrcHmjl+shf/OO+8wdOhQampq+NWvfsWzzz7Lcccdx6RJk4DNg0L3s88+Y88996Rr166MGTMm6AH/0ksvbeiprRdE3wG3j3afPn149tlnOf744znggAOYPHnyZvWSj9YArrnmGnr37s19993HPvvsw7HHHsu33367Wa1BBNjo2uOuLZx33nny4IMPlo7jSCml/Pbbb+Vhhx0mt9xyyw08s/WH66+/Xu6+++4yk8lIKaVctGiRPPPMM2WHDh3kvHnzNvDs1j029+/AwoUL5aBBg+SDDz4opZTyo48+kkcffbTs1q2bnD59+gae3fpBtAZSTp8+XW699dbyqaeeklJK+eKLL8qRI0fKgQMHStM0N/DsIqxP/OIsfOlVGc6YMQNd1wMNdquttuLSSy+loaGBq6++GvjlW3jTp09HCEEikQBcjujrrruOysrKYA3kL7gqc3P7DrR+lhMnTmTBggUccMABAPzqV7/iH//4B4qicP3119Pc3LwhprlesbmuQUtLS/Dvf//739TX13PooYcCcOCBB3L77bezYMGCn9UeNsKmh01e4C9YsIDHH3+cDz74gGXLliGEoFAo0L17d9LpNPPnzw/GDhw4kPPPP59bb72VTCaDomzytw+4XZNmzJgBgG0Xm0hss802NDQ08P333wOucKupqeHqq6/mH//4BwsWLPhFuPTmzp3L7bffzoQJE5gzZw4A+Xx+s/oOtLS0UF9fX7KtV69eNDQ0BEKtUCiQSCS48847eeSRR/jyyy83xFTXGRoaGpg8eXLwHQDo2bPnZrUGS5cu5bDDDuPkk08OtnXv3h3TNFm6dCngvgf69+/P1Vdfzfjx41mwYMGGmm6E9YxN+m130UUX0a9fP+69915GjBjBaaedxvfff49hGAwaNIiffvqJyZMnB+M1TWPkyJF07dqVRx55ZAPOfO3h+uuvp0uXLsEPXFXVwGodMGAA8Xicl19+GQBFUZBSMmLECLbaaivuvffeDTbvnwvfmm0rPuu3rNxhhx2YPXv2L/47cNlll7HddtsxevRojjrqKKZNmwZAVVUVu+yyC3/7298Al21MSsmBBx7IjjvuyN///nfgl+HluOKKK+jXrx+nn346AwcO5KmnngLcXuyDBw/eLNZg3Lhx1NbW8tZbb/H+++/T1NQEQCqVok+fPjz++OMAgZL7u9/9ji5dunDbbbcBv4w1iLBybJICv76+nlNOOYV3332XCRMm8Oqrr/LAAw/Q0NDA/fffD8Dpp59OLBbjmWeeCaxfcPsYW5aFYRgbavprBYVCgYsvvpiXXnqJY445hoaGBh588EGg+MM94IAD6NGjB6+//joff/wx4HZeKi8vp7q6GinlJuvSF0KwaNEiHnnkEe677z7++9//MmHCBLbZZhsOP/xwfvrpJ04++WSSySRPP/30L/Y7cOyxxzJhwgTuvfdeTjnlFJqamhg5ciRffvklffv2Zdddd+Xdd9/lk08+AcCyLMDt4vXRRx+RTqc3aS+HbducccYZvPTSSzzzzDM89dRTHHnkkfzf//0f4D7rnXfemffee+8XuwYPPPAA7du3Z8KECbzzzjvcfffdlJWVBRzzQ4cODRSB6dOnA67CXFFRwahRo/jqq68oFAqb9BpEWD1skk94yZIlCCEYN24cw4YNIxaLccQRR1BWVkahUAgE3qWXXsqUKVOCNoPgunoty6KqqmoDzX7twDAM+vTpw0knncTll1/OLrvswl133UVzczOapgX80r///e/JZDLceOONwbGO47Bs2TJ69uy5Sbv0VxSf1TSNSy65BHAtv1/qd2D69OlMmTKFW2+9lREjRnDcccfx7LPPUl9fz7XXXsuyZcv43e9+RyKR4KabbgIIenJPmzaN2tpaYrHYJqv0gRvOef/99znvvPMYNmwYffv25dhjj6VDhw40NTURi8UYPXr0L3YN5s6dy+OPP85ll13GV199xeDBg9lxxx2ZNm1awD2RSCQ47rjjmDt3Lv/85z8BV2EWQjBjxgySyWTg+YjwC8cGSRVcQ9i2LaWUslAoSCmlbG5ull9//fVy+8eMGSN///vflxx73XXXyf79+8thw4bJO++8U+62225yl112kfPnz19Ps1878O/RNM0g69zfJqWUL730ktxpp53k5Zdfvty+Rx99VG655ZZy0KBB8vLLL5dDhw6VAwcOlN9///16vIOfh7bu/8MPP5SapsmZM2dKKaXM5/NSSnctFEWR7777rpRSymuvvfYX8R1ojXfffVdqmiaXLVsWbJs9e7bs2bOn7NKli7z33nullFI+9NBDcosttpBjx46Vn376qfz222/lrrvuKq+66qoNNfW1hrlz50ohhHzyySeDbSNGjJCHHHKIvOuuu2RDQ4OUUsqHH35YdunS5Re3Bo7jSMuySv7+4Ycf5DbbbCPHjx9fMvaKK66Qffr0kVdffbX86aef5Jdffil33nln+be//W09zzrChsJGL/Cvuuoqud9++wV/+y97H74gsCxL9uzZUz766KNSyuLLP5/Pyw8//FCOGTNG7rnnnvLMM88MFIdNBa3XoC00NTXJSy65RG699dby22+/lVLKkvucMWOGPPfcc+VBBx0kzz777GB9NgWs6P6//fZbOXToUHnhhRcG2/zvxy677CKPOeYYKaWU6XR6k/8OtIUvv/xS7rDDDiVK7iWXXCLPOOMMOWTIEDlixAgppZSZTEa++OKLskePHnLAgAGysrJSjhkzRmaz2Q019bUC/7d/8skny86dO8sDDzxQxmIxudtuu8nzzjtPdu/eXe6xxx7yww8/lFJK+fzzz//i1qAtNDU1yX79+snrr79eSll8DyxZskTee++9sry8XA4aNEimUil53HHHyVwutyGnG2E9YqMV+FOnTpWjRo2SHTp0kEII+f/+3/+TUsoSbTaMr7/+Wnbv3l1OmzZthefc1H7cK1qD1rWzvpB7//335Z577imPPfbYYF9rwbYpCboV3b9/D4VCQZ533nlyyJAh8qOPPirZd9ttt8mtttpKNjc3l5xzU/sOrAzZbFY+8MADUtd1ueuuu8p27drJLl26yNmzZ8uJEydKTdNkU1NTMH7p0qVyypQpm5RnZ2UIvwtmzpwpR48eLc8+++xg25IlS+SAAQPkrbfeGigHv7Q1WJEBdNhhh8mRI0e2ecyPP/4o33nnHfndd9+t8/lF2Liw0cbwP//8c5LJJPfffz9jx47lsssuw3EcVFVtM9b0zTff0LlzZ/r16we4tad//vOfS8Zsav2QV7QGmqaVrIEfhx88eDAHHXQQn3zyCS+//DJPPPEEp512Wkmpnh+/3BSwovvXdR3LstB1nYMPPphkMsktt9wCFO9v6tSp1NbWEo/HS7KPN7XvQFvwk87i8TgnnHAC7733HieddBJ333038+bNo0ePHixdupQtt9yypIdCTU0N22+/PVtuueUGmvnag2VZqKoa/B2Px5k6dSonnXQSAKZp0q5dO1RV5bvvvgsS0n5pa9A6B0dRFGzbplevXrS0tLB48eLljuvevTvDhg3b7CimI7DxxfB9jbWxsVF+/PHHUkopP/74Y9mnTx950UUXSSnbtvKPOeYYOW7cOLlw4UI5YsQIqet64NLa1PC/rIF/zLRp0+Tw4cOlEEIahiEvvfTS9TjztYPVuf+wl+OBBx6QXbt2/cXFZ1sjfM+FQkGef/75K7RUzznnHHnQQQetr6mtN4TXwDTNYA0aGhpkVVWVfOSRR4L9H374odxpp53kK6+8siGmus6wojWQsvjbGT9+vOzZs+cvyqMV4edjoxP4baGlpUXeeOONsrKyUs6ePVtKWSrwFi9eLLt37y579uwpdV2Xhx56qGxsbNxQ010nWNUaSCnl/Pnz5YknniiFEPLMM89czp29KaOt+w/nafwSY9Q+LMsqcd2OHz9eVlRUyD59+sgZM2YE23/44Qf5ww8/yP/7v/+TXbp0kc8995yUcnm376aIFa1B79695cyZM2U6nZYXXXSRFELI448/Xp5xxhmyqqpKnnrqqZvV98Df/+mnn0ohhJw8efIGmWuEjRMbpcAPf6n9f0+dOlXutttu8uCDD15u/OzZs2X37t3l0KFD5Weffbbe5rkusaZrIKWUDz74oNx9993lJ598sl7muC6xJvfv71+yZMkvKj4rZalS9+abb8o+ffrITp06yfvvv3+5XI5HH31UDhw4UA4aNCioUPglYHXXwHEcee2118pTTjlFHn744ZvlGvh466235DHHHCPnzJmzPqcZYSPHRifwV9TMwTRN+cgjj8iKigo5ceJEKaWUb7/9tmxoaJDpdFp+8cUX63Oa6xRrsgb//e9/ZV1dnZTyl2HJSfm/3/8vFT/99JPcd999pa7r8sILL5RLly4t2e8/93Q6Ld9///0NMcV1jtVdAylLS1J/SVjVGkSIsCpsNAJ/ZXEpH/Pnz5djxoyRffv2lfvss48UQgTZ2b8E/K9r4Me5N3Vs7vffFp566impaZrcf//9N9us6mgNojWIsHawwbP0bdtGSommaQDcdttttGvXjhdeeGG5DFTbtlm8eDEzZsygpqaG+fPn86tf/WpDTHut4ueuwc4777whpr3WsLnf/8qw44478s477/Dyyy9vtlnV0RpEaxBhLWFDahtrEpf67rvv5E477ST79OkjP/jgg/U91XWGzX0NNvf7jxAhQoT1hQ3u0l/duFQ6nZb/+c9/1u/k1hM29zXY3O8/QoQIEdYHNqhL/+mnn6Z3796oqsqXX37JzTffTE1NTZtjk8kke+yxx/qd4HrA5r4Gm/v9R4gQIcL6gpByw7VImjlzJgsXLmTIkCEbagobHJv7Gmzu9x8hQoQI6wsbVOBHiBAhQoQIEdYPNniWfoQIESJEiBBh3SMS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAaIBH6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAaIBH6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIcIGwOzZsxFC8Pnnn6+T8wsheP7559fJuSNEiLBpIhL4ETZLnHDCCYwePXqDXb9bt24sWLCAgQMHAvD2228jhKChoWGDzSlChAi/bGgbegIRImyOUFWVzp07b+hpRIgQYTNCZOFHiNAK//3vf9lll12IxWLU1tZy8cUXY1lWsH+PPfbgnHPO4aKLLqKmpobOnTtz1VVXlZxj6tSpDB06lHg8ztZbb82bb75Z4mYPu/Rnz57NnnvuCUB1dTVCCE444QQAevbsyW233VZy7u23377ket9//z277757cK033nhjuXuaM2cORxxxBFVVVdTU1DBq1Chmz579c5cqQoQImxAigR8hQgjz5s1jv/3241e/+hVffPEFd999N//4xz+47rrrSsY99NBDpFIpJk+ezE033cQ111wTCFrbthk9ejTJZJLJkydz3333cemll67wmt26deOZZ54BYNq0aSxYsIDbb799tebrOA6HHHIIhmEwefJk7rnnHsaNG1cyxjRNRo4cSXl5OZMmTeK9996jrKyMfffdl0KhsCbLEyFChE0YkUs/QoQQ7rrrLrp168Zf//pXhBAMGDCA+fPnM27cOK644goUxdWRt912W6688koA+vbty1//+lfeeust9t57b9544w1++OEH3n777cBt/6c//Ym99967zWuqqkpNTQ0AHTt2pKqqarXn++abbzJ16lRee+01unTpAsD111/Pb3/722DME088geM43H///QghAHjggQeoqqri7bffZp999lmzRYoQIcImiUjgR4gQwnfffceQIUMCwQiw22670dLSwty5c+nevTvgCvwwamtrWbRoEeBa6d26dSuJ0e+yyy7rbL7dunULhD3AkCFDSsZ88cUXzJgxg/Ly8pLtuVyOH374YZ3MK0KECBsfIoEfIcL/AF3XS/4WQuA4zlq/jqIoSClLtpmmuUbnaGlpYaedduLRRx9dbl+HDh1+1vwiRIiw6SAS+BEihLDVVlvxzDPPIKUMrPz33nuP8vJyunbtulrn6N+/P3PmzGHhwoV06tQJgI8//nilxxiGAbjx/zA6dOjAggULgr+bmpqYNWtWyXznzJnDggULqK2tBeDDDz8sOceOO+7IE088QceOHamoqFite4gQIcIvD1HSXoTNFo2NjXz++ecln9NOO405c+Zw9tlnM3XqVF544QWuvPJKzj///CB+vyrsvffe9OnTh+OPP54vv/yS9957j8suuwygJFQQRo8ePRBC8PLLL7N48WJaWloA+M1vfsPDDz/MpEmT+Oqrrzj++ONRVTU4bsSIEfTr14/jjz+eL774gkmTJi2XIHjMMcfQvn17Ro0axaRJk5g1axZvv/0255xzDnPnzv1fli5ChAibICKBH2Gzxdtvv80OO+xQ8rn22muZMGECH330Edtttx1nnHEGJ598ciCwVweqqvL888/T0tLCr371K0455ZRACMfj8TaP2WKLLbj66qu5+OKL6dSpE2eddRYAl1xyCcOHD+eAAw5g//33Z/To0fTp0yc4TlEUnnvuObLZLLvssgunnHIKf/rTn0rOnUwmeeedd+jevTuHHHIIW221FSeffDK5XC6y+CNE2IwgZOsAYYQIEdY63nvvPYYOHcqMGTNKBHaECBEirC9EAj9ChHWA5557jrKyMvr27cuMGTM499xzqa6u5t13393QU4sQIcJmiihpL0KEdYDm5mbGjRvHTz/9RPv27RkxYgR/+ctfNvS0IkSIsBkjsvAjRIgQIUKEzQBR0l6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAaIBH6ECBEiRIiwGSAS+BEiRIgQIcJmgEjgR4gQIUKECJsBIoEfIUKECBEibAb4/78IzNbnvB+PAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"difference\",\n", + " continuous=True\n", + ")\n", + "\n", + "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "a6197929", + "metadata": {}, + "source": [ + "The following uses an abritrary custom registered function for use in a continuous agreement map:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "858705fd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAEyCAYAAABHz/HOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7xuVXXv/Z1lrfW0XU4/wAEUpImKiiWCDWOJQIyKUbFhi1cFTSxBkzeJJTfxDfHVJMQeRa8a0NyoMWo0xsQSE71qYkcURemH03Z7yipzjvePOdfazz57n4YHBO/z47PZZ68611xzzTHGb5SpRESYYIIJJphgggkOC/QvugETTDDBBBNM8MuEiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWCdYIIJJphggsOIiWD9JcL/+T//B6UUSile//rX/6KbM8FhxLOf/ezm3f6P//E/9nlcnuesX7++Ofbzn//87dfIQ8Rzn/tcut0ut9xyy4rtddv39/PsZz97xTl3uctdVh0zPT3N/e9/f974xjdSFMWq++d5zpvf/GYe9KAHMTMzQ5qmHHHEEdzvfvfjJS95CZ/85Cf32fbdu3fzp3/6pzz0oQ9l8+bNJEnCzMwM9773vXnRi17Ev/7rv/7c/bNr1y42b96MUoq73e1uax7z8Y9/nAsuuIB73vOebNy4kSRJ2Lx5M2effTaf+MQn1jznBz/4AX/2Z3/GWWed1ZyzdetWnvjEJ/KlL33pgO361re+xTOf+Uy2bdtGlmVs2bKFhz/84Vx22WUrjhsOhxxxxBGcffbZh/7wd3bIBL80uOiiiwQQQE488cRfdHMm2Auvec1rBJDLLrvskM+94IILmne7bt06yfN8zeP+/u//vjkOkH/7t3/7+Rp9G+Hb3/62aK3ld3/3d1ftq9t+wQUX7PPnXe9614pzjj32WAHkvPPOkwsuuECe9axnyUMf+lBJkkQAeehDH7qiz/bs2SP3ve99BZAkSeShD32oPPWpT5Vzzz1XjjjiCAHkpJNOWrPtH/nIR2R6eloA6fV68qu/+qty/vnny+Me9zg54YQTmvafffbZP1cfXXDBBaKUEkCOP/74NY8577zzRCkl97jHPeTss8+WpzzlKfLABz6wacPv/d7vrTrnqKOOatr+yEc+Up785CfLPe5xDwFEKSVvfvOb99mmd73rXWKtFWOMnHnmmfLUpz5VzjrrLFm3bp386q/+6qrj3/SmNwkgn/vc5251P9wZMRGsvyQoikI2btwogGzdulUA+cpXvvKLbtYEYzgcgvU+97mPAPLRj350zeOe8IQniDFGTjvttDu0YH3c4x4nSZLI9u3bV+2rhcKhoBas11xzzYrt//3f/y0zMzMCyKWXXtpsf8lLXiKA3Pve95brr79+1fW++tWvyute97pV2//xH/9RlFJirZVLLrlERqPRqmOuvPJKueCCC+SEE044pGcYx7/8y78IIC94wQv2K1j/67/+S3bu3Llq+1e+8hXp9XqilJJvf/vbK/b96q/+qvyv//W/ZDgcrtj+9re/XQAxxsj3vve9Vdf83Oc+J0opudvd7ibf//73V+zL81z+67/+a9U5g8FAZmdn5QEPeMABn/mXCRPB+kuCj3/84wLImWeeKa9//esFkAsvvPAX3awJxnA4BOsll1wiWmt50pOetOqYPXv2SJZl8uhHP1oe85jH3GEF67XXXitaazn33HPX3H84BauIyOte9zoBVlhURx55pADy2c9+9qDvsbi42Civ73//+w94/Ne//vWDvvY4BoOBHH/88XL3u99dfvjDH+5XsO4Pz3ve8wSQv/zLvzzocx796EcLIK997WtX7bv73e8uWutVgvpg27GW4P1lxcTH+kuCD3zgAwA84xnP4BnPeAYAH/rQhyjLcp/nfPvb3+bXf/3XmZ2dZWpqioc+9KF89rOf5fOf//yafqzaz/f5z3+ez3zmM5x11lnMzs6ilGJubq457tOf/jTnnHMOmzZtIssyjjvuOF7+8peza9euNdshIlx++eU84hGPYN26dbRaLU455RRe+9rXMhgMVh3/8Ic/HKUUP/3pT/nQhz7E/e9/fzqdDkcddRQXX3xx40/78Y9/zPnnn8/mzZvpdDqcddZZfPvb395nfxxKu8f74otf/CKPeMQjmJqaYnp6mnPOOYfvf//7K46/y13uwute9zoAnvOc56zwBR6KH/SII47gEY94BJ/4xCeYn59fse/DH/4weZ43738tfPOb3+Tiiy/m9NNPX/GcL37xi7nxxhtXHf/Tn/4UpRQPf/jDWVhY4Ld/+7c5+uijm3f05je/Ge/9Qbcf4D3veQ/ee84///xDOu/W4j73uQ8A1113XbNtx44dAGzatOmgr/Pe976XnTt3csYZZ+y3j2ucfvrph9jSgNe97nX85Cc/4e1vfztJktyqawDNuWmaHvQ5p512GsCqsfDlL3+Z73//+zz84Q/nnve85yG142lPexoA73znOw/pvDs1ftGSfYKfH3Nzc9JqtSRNU9m1a5eIiJxxxhkCyMc//vE1z/mP//gP6XQ6Asi97nUveepTnyr3v//9RWvd0GQXXHDBinNqq+m3fuu3RCkl97///Zvz5ubmRETkVa96lQCSpqmceeaZ8qQnPanxOx1//PFy8803r7imc07OP//8xufz8Ic/XJ7whCfI0UcfLYA84AEPkMFgsOKchz3sYQLI7/zO74i1Vh75yEfKE57whMaaeNazniU//OEPZePGjXLyySfLU57yFLnnPe8pgKxfv35VG25Nu+u+ePnLXy7GGHngAx8oT37yk+XEE08UQDZs2CA33XRTc/wrXvGKhp4988wzV/gLr7zyygO+4/p+73//++Wyyy4TQN797nevOOahD32odDodWVxc3KfF+pSnPEWstXLf+95XHv/4x8vjH/94uctd7iKAHHHEEXLDDTesOP6aa64RQH7lV35FTj/9dJmdnZUnPvGJcu6550q73V5znBwI97vf/QRYda8aHGaL9YMf/KAAcs973rPZdtxxxwkgL3zhC8V7f1D3OPvss1dRyoeKmrXYV59961vfEmutPPe5zxWR5f4/VIv129/+tqxbt06SJJGrr776oM8777zzBJA/+qM/WrG9ZsH+4A/+QAaDgbznPe+RCy+8UF760pfK+973vlXf6DiGw6EkSSJHH330IT3DnRkTwfpLgL/5m78RQH7jN36j2fbWt75VAPnN3/zNVcc75xoB8Cd/8idrXmt/ghWQK664YtV1P/zhDwsg97jHPeRHP/pRs917L3/0R38kgDzlKU9Zcc4ll1wigDz84Q9fIYjyPG8opFe96lUrzqkFa6/Xk6997WvN9ptuukm2bNkiSik55ZRT5NWvfnUzaXrv5ZnPfOaak8ataXfdF1rrFf7OqqqayekP//APV5xzOKjg97///bKwsCDtdlvOOuusZv/PfvYzUUrJ+eefLyKyT8H6r//6r2sqNzVd+pznPGfFvnpirxWwHTt2NPuuvvrqhlLdl893bywuLooxRo488sh9HnO4BetTn/pUAeTpT396s+0Nb3hDc5+TTz5ZXv3qV8tHP/pRue666/Z5jzro59///d8PqW3j2J9gdc7J/e9/f9m4cWPjNz1Ywfrxj39cLrjgAnna054mD37wg0VrLVmWyXvf+96DbtvVV18tWZYJsIrGrvvw93//9+Wkk05aESAHyDHHHLNfivj0008XQH7yk58cdHvuzJgI1l8C1ILm7/7u75ptO3fulCRJpNVqNdZkjc9+9rMCyAknnCDOuVXXO/PMM/crWM8555w121FbZN/5zndW7fPey73vfW8xxjSTc1mWsnHjRul2u2takYPBQLZu3Srr1q1b0c76ef/gD/5g1Tkve9nLBJDjjjtOiqJYse9b3/qWAPKwhz3s52r3eF+MT9Y1vv71r695n8MlWEVEnvzkJ4vWugm8+dM//VMB5JOf/KSI7Fuw7g9HHXWUbNiwYcW2ccH6z//8z6vOedvb3rbKf7k/fPWrXxVghVKwN/aetNf62VuQ7y1Yvffy05/+tGEilFLyxS9+sTneOScXX3xxEzU8/nPqqafK2972tlXfRqvVEkB+8IMfrGrz7t2714xe3puNuPTSS+Wkk06SV7/61auu8Rd/8RerxsfBCtY//uM/XvEM7XZb3vnOd675fa+FsizlwQ9+8JpKpMjyeLLWyrZt2+RTn/qUzM/Py3e+8x151KMeJYAce+yx0u/317z+05/+dAHkIx/5yEG1586OiWC9k6O2VGZnZ1dFKP7Gb/yGAKtSE1772tcKsObHLSLyV3/1V/sVrO94xztWnbN9+/ZGWO8LF154oQDy6U9/WkSWJ9lHPepR+zznnHPOWTWZ1YJ1fKKscemllwrQUGnjWFxcFFiZinRr2i2y3Bfve9/7Vh2/sLCw6j4ih1ew1sFql1xyiYiInHrqqbJ582Ypy1JE9i9Yd+7cKe95z3vk5S9/uTz3uc9thMDmzZsFaNwJIssT+/r169ds19zcXDORH8wk/o//+I8CyBOf+MR9HjPOmOzr5xvf+MaKc2rButZPmqby1re+dc173XDDDfKXf/mXct5558kxxxyz4rzHP/7xK55pf4L1uuuuW/PeB6vY/OxnP5Ner7dKGTtUKng4HMp3vvMdefGLXyyAnHvuuftMzRrHi170okYhHX//NWrhCchXv/rVFftGo5Fs27ZNAHnnO9+55vVr99Jac8cvIywT3KnxwQ9+EBHhSU96ElmWrdj3jGc8g3/4h3/gAx/4AM9//vOb7TfddBMARx999JrXPOaYY/Z7z7X2//SnPwXgRz/6EUqp/Z6/c+fOFed89rOfPahzTjrppBXbjjrqqFXH9Xq9A+7L8/znavc4tm3btmrb1NTUqvscbvzar/0aGzZs4IMf/CCPfOQj+d73vsdLXvISrN3/J3355Zfzghe8gKWlpX0es7i4yPr161dsO/bYY9c8dmZmhtnZWebm5tizZw8bNmzY7/3rgKu6j/aH9773vQc8Zm+cd9559Ho9lFL0ej1OPvlknvCEJ3DkkUeuefyRRx7JS1/6Ul760pcCcOWVV/LGN76R97znPXzsYx/j8ssv5+lPfzoAGzZs4IYbblhzLG7btg0Raf7+tV/7NT7zmc8cdLsvvPBCiqLg7W9/+6E+8gq0Wi3ucY978Ja3vAVjDJdeeimXXnopr3jFK/Z5zp/8yZ/wtre9jS1btvCZz3xm1buH5W/n7ne/Ow94wANW7MuyjKc97WlccsklfOELX+C3fuu3Vp0/PT0NsCLI8ZcZE8F6J8f73/9+AD7/+c/z4Ac/eMW+Ojr2i1/8Ij/72c/2OTkeKlqt1qptdWTo1q1becxjHrPf8+t21Ofc7W5348wzz9zvOWtN2FrvO6h9f/vGcWvafWvuc7iRJAlPfvKTedvb3sbv//7vAxwwUvVnP/tZE+n9F3/xF5xzzjkcddRRtNttAM444wz+8z//c4WAONyYmZkBgvC+LfDGN76Ru9zlLrf6/FNOOYV3v/vd7Nmzh49+9KN88pOfbATraaedxg033MB///d/H3C8Hio+8YlPMDs7ywtf+MIV20ejEQA33HADD3/4wwG44oor2Lp16wGv+cxnPpNLL72Uf/iHf9inYH3729/OH/zBHzAzM8OnP/3pfVZ4qsf+vvq23r53Fa0atUI1Ozt7wHb/MmAiWO/E+MY3vsGVV14JwNVXX83VV1+95nEiwgc/+MFmAj7iiCOAlekH49jX9v2httw2btx40JZGfc7JJ598q6yTw4Fb0+47Cp7xjGfwtre9jU9/+tOceOKJqyyJvfGpT32Koih45StfyW//9m+v2v+Tn/xkn+dee+21a25fWFhgbm6Odrt9UJPm5s2bgVAS8I6MRzziEXz0ox9dwVI89rGP5VOf+hRXXHEFF1100WG/59zcHF/4whfW3DcajZp9tbA9EDZu3AgspxbtjSuuuIILL7yQTqfDJz/5Se5973vv81p1ytKePXvW3F+/z9qy3Rv1eYeS3nRnxiSP9U6MOnf1la98JRL85at+6hzJ+lig0bY/+tGPrmmdfPjDHz7ktmzbto2TTz6Z73//+/zwhz88qHPuf//7MzMzwxe+8IVf2ER7a9p9a1HnE1ZVdViud8YZZ3DaaaexYcMGnvvc5x7w+HpyW4u+/uIXv8j27dv3ee6uXbv43Oc+t2r7FVdcAcCDHvQgjDEHbMOpp56KtZarrrrqgMfeljiQVV4rqeMuhWc/+9ls2LCBL3/5yyu+p8PVnrV+rrnmGgCOP/74ZtvBWuS1ID7++ONX7fvUpz7Fs571LKy1fPSjHz2gBX722WdjreU73/nOmt9qfa9aAO+N2gDYn/D+ZcJEsN5J4Zzj8ssvB9hvov1DHvIQjjrqKK688kq+8Y1vAEEbP+GEE7jqqqu45JJLVhz/3ve+96AKca+FP/zDP8R7z3nnncc3v/nNVft37drFu971rubvLMu4+OKLWVxc5IlPfOKaFtMNN9zQ0N23FQ613bcWtZ/vcAqVb37zm+zcuZNXvepVBzz2xBNPBIKS1e/3m+033HDDKgpyLbzyla9cUSzjmmuuaRZ7uPDCCw+qvd1ul/vc5z7cdNNN3HDDDQd1zm2BM844g8suu2xFP9T4xCc+0fg6n/SkJzXbe70el112GUopnvOc5/Dnf/7na1qP119//T5Zn7/+67/m5JNP5vd+7/d+7mfYsWMH73rXu9YsovLZz36Wiy++GAgFScbx5S9/mSc96UmICB/60Id49KMffcB7bdy4kec85zksLS3x0pe+dMWiBu973/v47Gc/S6vVWlVUBoKF/Z3vfIejjz6au971rof4lHdOTKjgOyn++Z//me3bt3PiiSdy3/ved5/Haa15ylOewpve9Cbe//73c/rpp6O15n3vex+PfOQjefWrX83ll1/O3e9+d3784x/zta99jQsvvJC3vOUth1SxBUKFle9973v86Z/+Kaeffjr3vve9G037xz/+Md/+9rfp9Xorghte/epX84Mf/ID3v//9nHLKKdznPvfhrne9K0VRcNVVV/H973+fe93rXjzzmc+81X11W7T71uDRj340rVaLN7/5zXz3u9/lyCOPRCnF7/7u764Khrkt8LjHPY5TTz2Vr3/9641fezQa8W//9m/c+9735owzzuA//uM/1jz3V37lVyiKgrvd7W484hGPoCxLPve5zzEYDHjGM57BE5/4xINuxznnnMPXvvY1Pv/5zzf+y7Ww1iRd45hjjvm5VnC68soree5zn8uLX/xi7nvf+3LMMccwHA656qqr+MEPfgDAC1/4Qs4555wV5/36r/86f//3f8+zn/1sLr74Yl7/+tfzwAc+kM2bN7O4uMh1113Hd77zHbz3PPCBD+SEE05Ycf7OnTu56qqrmgDCnwf9fp8XvOAF/M7v/A6nn34627Zto9/v88Mf/rB5hpe97GWcd955K84799xzGQ6H3PWud+VjH/sYH/vYx1Zd+8EPfvCKgEeAP//zP+crX/kKH/zgB/nSl77E/e53P6699lq+/vWvY4zhne9855oBkV/+8pcpy3JVX/5S43aMQJ7gMKKuVvSa17zmgMd+7WtfE2BFOoaIyDe/+U0599xzZXp6Wrrdrpx55pnyT//0T/KBD3xgzXScOuXjQCkEX/jCF+Q3f/M35cgjj5QkSWTDhg1yr3vdSy666CL5whe+sOY5//AP/yDnnHOObN68WZIkkc2bN8vpp58uF1988arUijrdZq1iAHVVon31CzHf7udt94H6Yl/3+cxnPiNnnnmm9Hq9Q0rJ2Dvd5kDYV7rN7t275UUvepHc5S53kSzL5LjjjpNXvepV0u/31+zXOt3jYQ97mMzNzcmLX/xiOfLIIyVNUznppJPkjW98o1RVdVBtqnHttdeKMWafq7+wRtrK3j+nnXbainP2VyBiLXzrW9+SP/uzP5NHP/rRcvzxx0un05Esy+SYY46RJz3pSfKpT31qv+fv2rVL/uRP/kTOPPNM2bhxo1hrZXp6Wu5xj3vI85//fPmXf/mXNSs6Hajy0t7YX7pNv9+XSy65RM4++2w59thjpd1uS5Zlcpe73EWe+tSn7ndsHuhnX+1bWlqS3//935e73e1ukqaprF+/Xs4999z9Fs147nOfK8Cq7/iXGUrkNgwBnOBOiRe+8IW84x3v4IorruApT3nKL7o5E/wC8dOf/pS73vWuPOxhDzusa7s+4QlP4BOf+ATXXXfdQUW4TnDnxHA45Mgjj+TEE0/kq1/96i+6ObcbJj7W/0uxe/fuJodzHB/60If4m7/5G2ZnZzn33HNv/4ZN8H8F/viP/xjvPW984xt/0U2Z4DbE29/+dubm5njDG97wi27K7YqJj/X/Uvzwhz/kQQ96EPe617047rjjgOB3uuqqqzDG8I53vINut/sLbuUEv6y4xz3uwQUXXMDb3vY2Lr744iYNZ4JfHgyHQy655BIe+9jH8ohHPOIX3ZzbFRMq+P9S3HLLLbz+9a/nX//1X7nxxhvp9/ts3LiRM844g1e+8pU86EEP+kU3cYI7AG4rKniCCX6ZMRGsE0wwwQQTTHAYMfGxTjDBBBNMMMFhxESwTjDBBBNMMMFhxESwTjDBBBNMMMFhxESwTjDBBBNMMMFhxESwTjDBHRyvfe1rD7hW7AQTTHDHwUSwTjBBxHvf+16UUit+Nm/ezFlnncU//dM//aKbd0BcddVVvOxlL+OMM86g1WqhlFqzCMgEE0xw22JSIGKCCfbC61//eu5617siImzfvp33vve9nH322fzjP/7jHboa1X/+53/yV3/1V9z97nfnlFNOWXOlngkmmOC2x0SwTjDBXnjsYx/L/e53v+bv5z3veWzZsoXLL7/8Di1YH/e4xzE3N8fU1BRvfOMbJ4J1ggl+QZhQwRNMcADMzs7SbrexdqUe+sY3vpEzzjiDDRs20G63Of300/nf//t/rzpfKcVFF13Exz72Me5xj3uQZRmnnnoqn/70p1cd++///u/c//73p9Vqcfzxx/OOd7zjoNu5fv16pqamDv0BJ5hggsOKicU6wQR7YX5+np07dyIi3HLLLVx66aUsLS3xjGc8Y8Vxf/mXf8njHvc4nv70p1MUBVdccQW/+Zu/ySc+8YlVa0/++7//Ox/5yEd48YtfzNTUFH/1V3/Feeedx7XXXsuGDRsA+M53vsOjH/1oNm3axGtf+1qqquI1r3kNW7Zsud2efYIJJvj5MRGsE0ywFx75yEeu+DvLMt7znvfwqEc9asX2H/7wh7Tb7ebviy66iPve97686U1vWiVYr7zySr7//e9z/PHHA3DWWWdx2mmncfnll3PRRRcB8Ed/9EeICF/60pc45phjADjvvPO45z3vedifcYIJJrjtMBGsE0ywF97ylrdw4oknArB9+3Y+8IEP8PznP5+pqSme+MQnNseNC9U9e/bgnOMhD3kIl19++aprPvKRj2yEKsC97nUvpqen+clPfgKAc47PfOYzPP7xj2+EKsApp5zCYx7zGD71qU8d9uecYIIJbhtMBOsEE+yFBzzgASuCl84//3zuc5/7cNFFF3HuueeSpikAn/jEJ/if//N/8s1vfpM8z5vj18o5HReWNdatW8eePXsA2LFjB8PhkBNOOGHVcSeddNJEsE4wwZ0Ik+ClCSY4ALTWnHXWWdx000386Ec/AuBLX/oSj3vc42i1Wrz1rW/lU5/6FJ/97Gd52tOexloLRhlj1rz2ZHGpCSb45cPEYp1ggoNAVVUALC0tAfD3f//3tFotPvOZz5BlWXPcZZdddquuv2nTJtrtdiO4x3HVVVfdqmtOMMEEvxhMLNYJJjgAyrLkn//5n0nTlFNOOQUIFqhSCudcc9xPf/pTPvaxj92qexhjeMxjHsPHPvYxrr322mb7lVdeyWc+85mfq/0TTDDB7YuJxTrBBHvhn/7pn/jBD34AwC233MLf/u3f8qMf/YhXv/rVTE9PA3DOOefwpje9iV/7tV/jaU97GrfccgtvectbuNvd7sa3v/3tW3Xf173udXz605/mIQ95CC9+8YupqopLL72UU0899aCuOT8/z6WXXgrAl7/8ZQD++q//mtnZWWZnZ5vo4wkm+GXBaDSiKIoDHpemKa1W63ZoUYRMMMEEIiJy2WWXCbDip9Vqyb3vfW9529veJt77Fce/+93vlhNOOEGyLJOTTz5ZLrvsMnnNa14je39WgFx44YWr7nfsscfKBRdcsGLbF77wBTn99NMlTVM57rjj5O1vf/ua11wL11xzzar21z/HHnvsIffHBBPckTEcDmXrZrPPMT/+s3XrVhkOh7db25TIJHpiggkmmGCCOxcWFhaYmZnhmm8cy/TUvr2aC4ueu57+M+bn5xvG6bbGhAqeYIIJJpjgTotuL/zsC+4XYDpOBOsEE0wwwQR3WngEz76l5/723VaYCNYJJphgggnutCjFUe7Ho1mKvx1bEzARrBNMMMEEE9xpMbFYJ5hgggkmmOAwwiO4iWDdP7z33HjjjUxNTa1Zc3WCCSaYYII7B0SExcVFjjzySLS+beoRleIp9yM7J1QwcOONN3L00Uf/opsxwQQTTDDBYcJ1113Htm3bbpNr+/izv/23N+5wgnVqagqA73/nv5p/C8JNgxtYqpaYTqaxOmF9tgGjQmFzEaESQQMex42DG1gqFwDwEs5XaJRKcd7SMh6rUwpfIAKJyaj8LKkBq4RBqeimC3gpqHwI11Z4WiYh1QkMNaZlGMmASipSnaBUSr/aRMc6unbAUrlAv+zjxeHE4ZGm4LrHowjWeP0bFEYZEmNZn21gJp0BhEo8/dIzm2bA8vkaBRhAY1S4yv4s/CZdWY3fk6Z/8bDQX8RnDkjo2Qyr7KrjBEGjkdi3ShHuDeEPEQovcbugUJj6IIFSKozSaKXD+SyHwysCbZPs5zkqqch9jlUahcIRSgqOqhEu9nXpS5bKRSpfgYDkGp1pPA7BMZVOs6l1LP1KsTHTjBzkXtAKvrenoPDCSTMpGzKNE2gbFcoXeuHmYcW1/YpBtawiq+bNBBgFJ0wnHNWxsd9CXxkV7mOUwqqV70tEKIY5aStD6ZXP70QYVEKiwSqF2at7nIR77H3N8Wv3nVB5YSrR6HiOj20vvGAUpFqh9zeGwsVWbCslnF96oWUUSdM+RX2p1XEl0vy/Hjc+fr+3hqVaeX1ZtW93v+CapZJ5r6gbpQjvIzWK0gvlPmbfMKcsj3Hvhd7CIqdum6Y31V7VXhFZfq7mTkIl8LOlkiIO9sxoNrYN01bdZsxc3ZbcDxhUQxSaQTVgqeyH59fhqZx4tDIoLE4KwLEu28SGdANa7z1b7PtehYT+Gh+H8wsLnHrP+zZz+W0BdwAqeH/7bivc4QRr/UI6vQ5T0z200ogIrV7GQjHP9uHNTLemmWlPx0lAISJBKxHQCqanp9iV72TnaAeFC4JC4qOKGLRyJEbRUhbnPZ2kx8i1SHVB12oq32bgSgCsKKzaRO7mSLTQSVJ8C4qRJlFTrG97SkaIURgHnaTHbNoiLS2b1CZKXzKX76GUcsVKJmHQL/9tlGVDaxPT6RRGGYwyQXAIpM7QsZBoCB9ChROPwrBYaDKr6R7gA63vpcb+v2K/F6y1pJ0ErTR6rIz08gS44k1B/HBDWaBlIStRiXDiSbVtBO64IB574c11BlU4ZipVq4R/3WeDasigGGA0lN6xVC2Gfk3CMUFpgW6rixOHQiEjjUoVjgIQjuhuxeoONy1UGD0kS3rgLbOZ4a62Yi73zE5Z1rVMULx0GJciwswMHFF4vrenYKkSUg29RLM7Xzkz71aKozsZvbH3Uk90TlYLQREhtylZe7VgFRGmomCuJ3kd2+OiYPMCHbuy1+rrexGq3NPTim4SFZ29rl+jit9QI0ikkUUQ77v3eXUbtFKkmlVKXi2QS7/clyvuH69V+XBvsw8F4UAIzam1tOW+mJkRtuSOH+8ecaNTKx+IMHSSfVxzXGmq/530ulxfVJzgLevXdVY9R+lDn7eMar6dSmCjrSgcjLywPtVsaJnQX7ehYPUCRV5A5dFKk/qEad9pFGyFoRIHUVkX2ihgQ3uG2fTg3XH1HLy3clSPkdvSrVcKB6CCb7Nb7xN3OMFa46dLP+GE7on0bMj8bZkWSWYxytKxHYZuSKrTxqqqNcuguVvWp+spXclA9yl9SelHiEjU0oREtUlNylBG5K7AqgIvjkGVUYkl0zOUUpA7QyFdplPPoFpg5DzdJMOJZ08xy2hU0MaQdRQj32ZGVYBiyk6BUoh4Su+YKxZRFHjxyxNt/GStsvSSKdq2RUu3MNpQ671FJXStYLVqhFfQ7jWCYyZT2CitJFqIa+Fg9E6jTNOfamzidkKcMNVKAR0nL5FgenrAiW+s2kTH4VV/dGPSOQjfMIkKUDghM9GS209bE91iY7aJxXKOpWoO5x0oGvbCYBHxGG2wYil9CQhWaVq2y1QyxWy6jqWqT6J30i8dm1o9BMPVC8GimEk161LdTPBB9kujQEynmhNmEm4eOHbnPjIayxNwxypGTtg1cvR6y5+Yiv21l9xsrh1nu9XvLlq4IqtXzTAqWNQjJyyVwfJsWbXiOAWsz/bt3xoX/Hav+9dtHZ+bGuZFgsDw0aLuWpoRGI5RY8oWGL3yGrVSpuM5O0YOJ8K2rj0oK2n1c9RPO9bmKFySxLCppdmxUFEas0q47gtC6OOaFQAotWFBCcPS4UVWtLUe00YFpbh+/sIJS1VFxxiObls6VjVjfw2TPj7PzyuMFFoJXkqGbojG4MSFb1g0gkcjSE2mKh3mJxRO3AGvvndb11oY8faIk/Eo3H5GjL9Vo+nnwx1WsA7KAYvFAs7DVNrFELQ/qy25z9Fo5qo99GyPlmnHSaummEL49eb2FvrVEjcOrgd80MQVUSgJTiq8VDjvUMqh0FQCLeMovaOSklQbRs6Suw2kuqJf5YgIylQkyZDSraOs2qjFigrDzYVlXXdEN8mpfEXpSwoPXdvFi6H0JbnLV1irThzDqo9SglWGjuoCYFSwRGuBqRQUPqf0JalOcd7hlccYjRLdPPs49XhrBvb4ObUFAcsCFCFQ7ypYMPXxWgSt6nYwJpDiRD8uN/ayhBKjGkupOWTZ+Fg+TisSUrSaRSvNoOqTmoxUJ2hlyF3eKABDN8R6y1Rnhm6rS5JYjLZBYfAVwhIiCqM8KMidsFR6tnUt/UqYKzxb2obxVtV9sbllWJcZvrenYPvQkWpoGc3QeXIXlIbCR4VCZJ/vQUTIXaDPE5ExemDZCmBsgh6/zrhAVEpReE+nEaqrjzsQ1qaRQwOCAFzGyEmjUNRtG8ZtiQ5CQytZIZF1c82wsbZga2xuGyovt3oaXMEIxR8ngb7VSrFuKuPownNDGfpb6ufdT/8owvPglxXKygtthG47be7lo6U/rjSNi8uWVdy1l1F6aFtF7oRbhg4vMJtpnAgdo0lNUGitVquUnENFJIMgMkilFHGeDC4khUeo8E1wTxi3Hn/AdYLH2YGVFuryvcPft7256KV5Pfvcf3vjDitYQTN0Q4wy9KQNccIeuSEL5QKZzphKprC6pnhrLdrhpGqsL286tEyHyi9FKylYVJUbYrwGNEr5OLgEGDFygla1fxBm0nkKn1P5eVKdYHSgp6fsAmIFn2qMSnG+T8tXVIVmqBxauegzDDRMx25g5EaM3IhB1afyVeO3zF2Ox+O8Z3N7M5nJ8KKiP1I1wkIrQ2YMIkJqUrQyDW1bRYox9JOsoAZlbMQf7Peqxo710cIwTTtWG1fj1GPwn3pKL6Ras2yH1pbMyonfNPuW21uzqy76P1umJigh1Snrsw10kx6CYJVFoZhOZgAofUnXdyl9iSkTEpVitGZYDVko5tid70IErDbMFXvITE7bpiil2VM4MmPHBBeUUjKqhngJ77KXTJEoxdFdw1zuWZdpjupa5gvPYunZPnRc36/oWM2RHbPfPh85ITUqWH+wUvOPjIHzwaJnDSGtlCLTQtZYpWp/suKQ4WO7dFSUnIQ2t60m08EvnurQ2NIXVN6Ti49pDi72mYmsQviuwjhuN4JZomBqmVvncwxxFsvXIbY3UURtSIHWHL+pw9bCsTiquGlQscvrqDCuvqdVsLVjWJcabhhUzBUe5YVeVXKXjma6mzWUvFHh+zNj38X4FY1StKyiFYd4qYTcB793UgZ3goqC2RykX/Ng0bG9GMewzJbV84lCUXkHKihkgZVxZGZ5jeHVfuNwhSoKtFQv73eRxchq98lhfI59oUBT7GcF1AOvfbMSr33ta3nd6163YttJJ53UrHh1MLjDCtYju0dxRGcLLbO81I9RhvXZBlKdkeiEru2u9F8JKKVJVEptv2qVMJ3MRjq4iAKiBXiclJGaE4wyaKUpfYmXOrxIASVWDRCVU4pCZEiqhbbtUDiNl5LMOFJTUPmCRBsWBj0WlgxpukDXpPSy4MHJTIZSCq109F95+lW/oTM1mtSktEw7BEnFoTw+0SQqeoPGRmxN29ZCVRG04hXWHzXtdutQi7QyBrqsFeRST7q1tTJyOYV3QUs3HQx6WZMNJ6x4hr1pvJsGFV5gJg39lUVtvoiBMkopWroVfKljyoeCRuHSypBXBaNqyGI1z3wxHxUaj1LhnewpdmPUPLCellkXrGIdrKmhqyfNih2jHXg8LdPB6A7eK6YSOG1DilbQtZqOUcymmrncU3jh+n5Fz6rwDGv0WR3RaCPlvILCVQpNCASrXBBmmVEoWWYwVvbf6vfh44x3KIFBy9R0mICNDorPuPXRMqGPSoHcFfTL3SQmWHBeXMPWVBJ+C5Co4G9PlCUzGS3TQo0xHFXtgz2oVo49I8tWSW017m3d109jjGK6rZlqWdZ3HDfM59ww8gzRq4SrF9iTe3aPgoKIF9qu4qTZlPUzrebw8P2FwMfxc7Va/jZr4V2zOG2jOGkmaZ5ZCDEGhZPw7R4uzUjBVDJF106tckHUqOeG0gdKv7HSx1D4EFRYRbdQzWIMKo9NdEOZL5We3XnJpnZKzx6cC+rnhReFl33fZ3/79oVTTz2Vf/mXf2n+tvbQROUdVrCuS9eT6NYKTUkphcUym842f48jUFJjg1KERBvWZ+tpmZTrB9fjvEOrQAM7X2GiAKspTDX2nyB4scyXbVqmoPQFWnkqX5G7nFRPMVfMUPibmStGtK1gdMZMZ8T2hRbzwxm8Lch9wkzbU3kB2lgVIlNzN2TkRjjlGr9GoixJbFPQ+GSZCh4fpHuNlb0DBipffwDLh6vVp+0T44JPRbo3WAP7p+pcpIg9gtUJpa8awbd3w4WVQU8rngc4MkbVjj+HsPzR1+/IKLNinHg8CBhtGJVDduU78OIZqUGkTTUiy4Ii1SmFK2ibATDDfCF4KSi8RmGYTjQoYanqsi5VFK7N1fOLKHbTTeDIzpG0TBuABRcmp8woplNNL1HMFZ5eoldYM7Bs2c/GB8xXMsFN3yPSCN5xqm0fhtYK7M49SQywMmtQd+Oo+2Oc2lyxn2XazcXZ2KigII58gYvj1CqN0YbSV43PzktFIR6rMwqpAIOTcJH6mVO9HAB0MIKlVuS8gK0F8kEyMkopWqnhuI0dZhZzvjtfkcfza3gR+qWQiscSfHXrrGKqmzbfxPL1oH5zEr+B8TYqFVwCNT1dj/n6uFqY7Rw5tNK0x3jgtVwiB4tlA2Pf717FdqZa4TT8aKFkY8twVGeZOzFKkXthWAU2r/KOkatQKsEoRWrCMdOppm1TmqD5216u4ti/j3V/+/YFay1bt2691W26wwrWuXKAKtP4wVQrJpzmQzQhJWTZ2llNWQQmSDNyOS6q74Gm1CQmBD95gs/NR5q41jJRoFSFYgcimsxYKvEoZRi5IQrDuixMvsOqYuRL5osRiU6Y7bVQJCha7FhMGJQLtFsVnh4zSRiwmW7TMnkIKIj+SYdnUA3o2M4BtL39j9x0L9P0VtFrzdVr+jZQwSuOkfGjQ8pG3azMGhI9NdbKsYkIGsVhLSilyNaIhtB7CYf6XeVOGqvWYECF0ZDqLPijxdNKMhbLxcanpJTCi2ddtp6lcpFe0qVlhNQMcBJYiZZxbB8W5E5w0qFtSkBh9ZDMhBhdGWvHbKbJvaNjFcdPJ3iBq+YLjFZs66wMmvESglo6cRK1aygYdTsTHaJNjYbCg4r0oxkTJCsDguJvDW2r0Sr4NO0+LMK9I+vX8s/Xf+XRPPSAksAkDauEUsN0YjFKUUpJJSWVr3BR0UlNSttkVL5cEdQ0qoJPsQ4SsmrZl70WxqOrXaQdx8fEwaIOTFvfS9kyrLiuZNVo7LqKk2dTispzUyFsL6E7n7NtQyeyCWsIqqiEhj4S+jFVKtFh7hl/z0otW4ywHChVRfdH4z9Uy5HLyyzEwVH+ewv9+rve2x2jgJaFbV1L26zcZwnpND9bWsLLToQCkQon02xobeW4qSS6iDSphrQ++XbwsVZiKGXfXFwVLdaFhYUV27MsI8uytU7hRz/6EUceeSStVosHPehBvOENb+CYY4456DbdYQVr4RbZXWgqX9KxntIXjFyBoq4LKRzRPorZdHY5pJtljXccThwLZR8vHqs1XlzwjRB8cUqZUG8y+oUUGpEEyPHiqSipfIJRU4AidzmZsbRMSstqCmfIjIUYfJS7nJEE4Vj5ITNdjcoNvhqRpR6rpyh8TqIT1mUbyEyL+WIOnOKW7buoZoSNbUWZV9jEYrTGWkNVhUg9YwxaKxJr1/ywVn7st151HPsel68mwSo1zc5lK2d8kxJw/sBWchBuwde0rzzMvY9fa1trbyG83DTatovFkGQWrTQLxTxeAkvRsi3ato3Vhky3WSgtC4Wjm/Rpm4p+tUimE5bKDWhlsVrY3E7I9JbmueqIZBRogQ1ZsHJTrbh6sSR3wk3jlHBzHo1QDc8RI6udrCncjAp0aVn3FWHmredAJyEAq1951mUGq4KADX5u1QjVvS3CFdRvrRft1c81rayArlWN3zW8X0GrgsJVDFRCy6QU3uHEYHSGdzmCo/IFpdKkOqVl2zF2IPpC9dhYUWsHvdQCqG6HJioKt5I2bVLeNGzuJuyZKxhKsH4E6JUFx3ct67opxmo2VZ4f37xEO1KflQQFp1Zkxt0cdRxaHUQ4iopfHS2sWZnWpOKzTKWaYSWMnKxIoSucUMXjS1+PnXCf3AsLRRgHvUQfMIWn/lbrd1pT1rHrWZfpVa6DEBznKP0etNodtyZ4qZgrSgqf0I6umuXnvh3MVQ7eYt278NBrXvMaXvva1646/oEPfCDvfe97Oemkk7jpppt43etex0Me8hC++93vHnQ+7h1WsMJGMhOoh8rnMfghYzpto9EM3IDC59w0vLGx9oLgTGjbDj3bXWHxVX6ElwIn4ZG9WLRKQJVhsPt6ctF4yRAcKqYMCDZMmjplfTrFqJoj9yUez7AaUvqClumxWM2S2j4tC5V3FK5ACG1K25qySBn2RxRZTiftMvDB6u0mU1S+pD8cUSzkJL2Mb3/7+2it0UZTFiWddofFpUU2rF8PSmGM5uQTjgeWJ6HDGdqugGXXxMrrNspsjPrcmyUIvagYlRKiHRt/79oa/sgFi3N2bzP7UNo7LijG7A6tNMZoqkLIlGEqmaZl2hS+oGO7tE0bVKCDQTGdGK5bmsJLm+mkYORGJFoxlVQMneH6foJVsLFVMKwGeDyz6bpl3zeBLciMZqEIlvG61DBXjPjJ4pATZ6bpGNgxuoXSFygUM9k6Mt3DS13oY5mK9X6ZVqwEhpWnm2h25Y49uSfTiqNjSk/hQjrZbGaaVI6ZNBbzICg6TpaDoCBYv2W8RwjmCgJ4rUjmUoRMqyZvNRSUqGux5kDFsCopvKfyHqsdRmmsttHKUlTiEF9i/HJaV60U1WzRYrlE6UusDvyIk6D0GmVCwOJeE/6tQegTz558AaU6tFsJ99lsyCvP3Mhx09CxuZOwrpcE61opEqvZOtuinQWFdi7fw6AKQZFt02F9tmGFtVo/kxfItCI14f0uRxCvbLsWoWMUbaMCu6CWqeJMq0aRcVKAUuTecvPAsWMUXC1to5h1wqa2IWHZqq+/1zqCv9ZBQ86tNO2CsQjaNbq1Yw0bsg3szh2wiGBQKiXTy6GHa7kQbms40bj9WKx1AZrrrrtuxULn+7JWH/vYxzb/vte97sUDH/hAjj32WD784Q/zvOc976DadIcVrD9ZarMtS+jZBRKdMfJdMjMfE+ETjDb0yyUWigWMNqQ6ZeRGePFMp+ti8I9QuDLmU0oMlKiTPxwgwXpFYbRBiaL0KUpVaEoEjReLSIqTIcrvZlSF6N06gKpwOd2kR79MKP0UpR+QGYsoIfdFEDDVkEqX2CTBiEaVOqTcJILVghdNZjKqrkO0x2Rw0snH08oyFuaXuOnm7Rx7zJEkSUqWZezeM0enU1d9Wf6KlwXsSju10VAZ94+utmrrc8Zz85a9YHt9ayp6OFWQr2FTOMITfLxKQV55Kq+AEalRtM3qajVmr+dYblV9X7Xi7/Fta0Ghmr6w2jKVTrNYDiljDrHRlmnbDm4A8dGCg9IXiIw4qqvwYunaLn3TYeRyUj3Ci6FlNEYJI+dYqpYofUHPTpHoJLRprFnB7wQlQu41MzohM6EC1GLZJ3cDANq2Q9v0KLxH+0iLNj7DoHh4AmXqY/BW23gK60h1qBykgZHzJGLoWNtQiLUlWMSiBRCuJwL9yofcVx2CkdI4+ctamhLLNH+dO1v3dp1jGyawEoMi0YrUZHRMh7YNRRREPKVUMYjQUfmyUYgXY6GPqWSKfrVA4QusSkh1i361gBdHy7bo2jbjIV7LkQd1TISPwYFxLIoPPvexRwrWZEh5MSojM5Bqh7KKLDVMtw1bpwSUwpcr8zmnuilFjOYdVH3mit3Bj5pUTCXTwVLTwT2kVeiHYVX7mfdPc49bjVbLqu2G8A53jkb0KxhUGYWHDVkICtzUMvQSHSKhx+DE48VRf2ZjISjoyII07q/mngYtKwPuUg3HTvWYTjN25TkKzfosZToxQVmDhskKbMvaz3m44VH4/YRl1kX4p6enVwjWg8Xs7CwnnngiV1999UGfc4cVrB0zwMksNw83MHIplWSsz9qsTxeZSioMNgTK6ASFxeoW1juGfsBcvgvnSxyO3I1omzaVr1AoNLqhfZ04rA70YAhq0ljlUMpgVI/KO0oUWrkQICOegRvQs1M40QyqnI7NSHVGaXK2mD0UvgAMlVisitolQeiN/BAMpEmKdSm6NJRZiHwVwgdp25qBWmQ6myFLe2zctI7Z2SlaWaupNLVl88aYfbQ3BR7Kd6VaIZ7lvFOWKZpl/8pq1dRLsDRQaoX/pr5+KIMXA1TqL3Qva7m+vo4CYSYzIDBydszSWHnvVEOlFYUPoft7Y1ygrqCcD4AmDE0JFkWiEoxO2T68mdyNYmBJhdUJXnwTEd6xbaaSGbSaom070WodknuLUS36VUUlOS3Tpmt71JGte2PkhO0DFyZi0ZRehwxCZTi6tw0RH4tvJBgVrJK9VYwwySoKJ/QSHYsxeAbVDpbKBZSChbK+v6Zl2nTsERillwsQxD72qIYdcBKs6qkk+P5GkX7eFx2/d+pVLbhtTLUoXEaItK5C+gaaSjyJrlBuSOVLnHhyl1P6gtzlLJVLywVedPi+duW7CWluGqU1Q7dE4UZkxmKAhXKOShSFG5LooJCGd6wpfcWoGkRq3+LEs1gshuII8fsNRWIsRmVUUuGlQBGiw9smRYCWaTObbkCAQVEF6jZa8AZom/gdKA1RgA6qAT9dugYRRcsk9JIjSXTCYunpV4G12aQN9iDTifSqkRBQeViqMrYPPW0jbG5ZeklwMdSlN0POakg1sgp2jnaxUC7EvP3lCmHBOk1RqkQri/clYEGVbG5tYX22YdUYSBRsaiUk2pBqFdioNdwG4fftU6e3EEMia5WnqPf/fNdfWlrixz/+Mc985jMP+pw7rGDNfY+FYopSNN5DYhxGhcpFi2VF24BRCYmu6JhurPhjsLqFxHqxlZQYFYoybG5vYVD1QSmGlaPynpYxzGbT5G7EQjkfJjFjKXyJogh5dj7Uzgzl8UKZQasNLZ2ya7RI4YVMl1gdNMNKSsQ7FsuNtExBzw5wUjVFIULxCo+3DilAcodPNdZYWmaGPfke+lWfmXQWqxLQkJiaZgwDWDffnELVOWRR4iS13yrOtV5AfCOO9iGPwgW10li9dlpIEOmCQVHGD0aPBbwopLFayjjxpnWSu1L0dKBdaiEpAFHY33TTduYXF5ldvwGjFak1OOei5SS0soxhXtLptEgSS6IN4/mc49RbsNaledBaHGg0qTZoZdjaPoLSl4zckH61xKgqosAO1tNCsUDuCnpJj6mk9oenGD1ixzDjlmFK2yYc21P0MrBjNatrCIFmy71En7QwrBy78n6M0p3C6izmhPabfkl0rdCoxvL3EmpGF9UAqBAMi5XBiQpjPRY/AY/VNZ2smjbVfj4NdIyia3UM+IK6oMjeOc91ebrxETBu6RQ+WM5VCRqPUn0ULrRbHIJGvGFPvkjIJFSRxoyVfxAG1SCOK0Uv6eERcjdq2JVgVxo6NkGjWCiHWB3yZEufk2jLoBo2yrGOtHPhC+aK+Vh4ZYBVCdrYmItr0CrBqPAlmshaFL4g93m0mmEmDd9DCDiKvsjGlaHQUgfSuagYa8qqjH3kmElDIN2gCmUe12cGG+M69s5FFsD5iqEbBAtbfKRVTaCMkcCoEZSzfgkzieboniXTajnifNwfP/bmQn3tZUXSSxojez2VzKLxaCVYXeFEEVIRXTMWCl/QL/txGATFelBpKlPnmte1zw1xRkDEoJRjvlgZMHRbIFis+1ZWDrXy0itf+Up+/dd/nWOPPZYbb7yR17zmNRhjOP/88w/6GndYwbq13Wfd1IjFQtF3XQrfZjpZDPRZBV4qnJS0TQtPGbXjhExZcpdjtMV7j0QqKEyiYXDU1YCM7pHpDOcrWqaN86HAu5eKCkdLa3qJYaksQAyiEgTHUrnElnaPjm0xX3hsWqK8YVCNyKxF8Ij08VKhVEaiNEtl8MVkJgvVmCQnTTJS38KNPN5UkISgjtznYYCqukDc2pYeNeVaByDEQ2otUWvFmIwJZ+5HWz7Q8KsTvhOWrd/aJyO+TrVRwfJSy5Gp4xOJj4saJGOCf3Gpz8L8IvPzgdZHwaA/YGp6mk67hfeePXvmuNvxd2XDpvXBMorVs2obr/Yl+b2et/GcK40i8KIWi7WWtmkzk86SuzwW73cMqhELxc4wmVR9ppMZZtN1oBTdJBRFuGpOsVgqrl6AE2YsW9u6EUZN1KVyDfUK0LVzWF2yc1SiVMVWYCadRSmJaVymod1rEVd6oXAhWAiE6/rbKf0QLwlKGaDE+TZODFYHIeXFU4lHfHhXIxf6ZCpZWWBfKUVqBBf9uv0q5AZbFXy5ecyZHVRCpgOtHUgKNVasI/RwKP/h40ITGiFF4bC63yw+MU41qqg0iEizlFi/GkThGAQzKJz3JMZiVULhy1B4wg0bqrdOrTPKkJmU3fkevHjaph0pfrA6g8ZHm6DRDKslbHQfGW0oXYlVllLKWAJz5Tdh4rjfu4qWsGyPSa1MSIUiYyrRWK3YkGmS6MPMnWBkOZd1fHzmPufGwY2MnIBUCA5FgoolUoOATRi6WTKzjrtOJUwleoUSNf5ux6ul1bW7BRXz+Ks4Nh2aBUqZwuLoaEvhg4Acd7X0yyWu7V9H5VOsHsX32ULEx9obde+oELCo6upOBYNBn9saHo07CCr4YHH99ddz/vnns2vXLjZt2sSDH/xgvvKVr7Bp06aDvsYhCdYDVaQYjUa84hWv4IorriDPcx7zmMfw1re+lS1bthzKbQDI9G4S3aWXtJgv21Qe9uQjRn4LHVMwxXZAIb4IxRG0pc4tS3U30jyWkR+gUIzcKAwWFTQyjTCsluibsMrNoKqjhi1WGZTStG1G5auYVxogohElzfEQrFGnLVqpZpL24pkvZqh8mw2tgsxkcYBrXPQzhQAaT5KkJDphabiEtpqe7aHVylJ6+0JRSZNHBsunLJUeoxRtu5wOcjgQjKllyrIZQEpIWKaDKx+s5sKF1IGOjR/cMnuMiv6mux13l2DJu/AJ7Ny1m36/z7HHbMOaoCCVVUmWZasCPuoJatxvVdvnLjINGtUEWo0fpJRCi6ZlQpGJzEDLZsykHfpVH6sTUJCZ1nLkL0M2tw3XLjlGDq6ed2TaMJuGfNXZVEc61dK2jo4N/s2pBHpJ8KdXkrBjtMDufBEoY2DeIm4kzNgZptNZiJR+FmtBZsawPtsSJmIRFqs+w8qglEekxdD1SPUSuRtx7dINWG3IXZtUT3NUN1lzJIWc05B3O6xWpv1YGwJonATKc67w9KwmNXEsSShy0DKhsIHWIQm1EoWXegEJDVSIhDjbEIlvQjlJ8dRkvVE2FvRQVH7UKGhKEXLGfVBSrNaI1411amLVsVC5LMwDCo2TsHpV5cO7yascF4XA0C3hpAIvVL5qruXEkXtBpL3C9VCPU62iD3lFR9pAoeJR1OMrWaH+1r7HUJVJNSk0pcTMh3wXEPq59B7nO4TyqgB5VDTAeYdDkWpD1xo6dm2hui+EnOEgfHSsqq4QrB5gZIRS4CSJ11z5/N2kxxGdo9kxVMxmOfPFzmDli0GrKii5TeU6BVR4qujMvm3WYB1HKZZyP1RweYgFIq644oqft0mHbrHuryLFy172Mj75yU/yd3/3d8zMzHDRRRfxxCc+kS9/+cuH3DAhCDStPC3Tp2XKoAUrjVYZhZ+lcDkduxCT55O43JjQr/qhpKE2aB98K4UPNLL4QPEIQqIztLKUvo9VoQZxXuXRl9Aj0V1GbheZyciMihZt0Gj7VT98CJKSu4pKKnq2h9UhV9Ioj9UVHs+gGuF8BQpyNyTRLbQyVD5oyJVyWGNRKbihZyQ5LdOiXy7Rtp2mZOFysNLywM9MzMvVYIzgfQg+6SQKJH7I+xxXq/2szZ6xxPZ9hc2rFaeOUVsxGAjCJF3fX2JQ1N6FK6wNNo+YYG4euXUzznusCdarQZMk9RJsQiUVGh3yVeNF6oClerIRCQsBhHddE6vReor/NQIehVUWiZM/KkSWE33KYUI0YUKWYKHV1rhSwshVVGIYVI6pxGJ1sIw7VnHCjMEowfmMmXQTe4rdjFxFvxQGfgmRHKunMarClYpiNKBfZRit6BgC7a2EUF3G0rahsHq/CgJCsKRmEe17FH6a3HUxymG1R1GQZiWDyuMMZDpBqfEJOXRAalSTYzmeepHo5UjtjtUkOtDSi2Xo58KXjNweRm5xjMJ0KOqatC28aJx0UWoU9y9XWhIJRVO8Cn7PUI6UxuetItmau5AbPnJ5tJIsTjlyyTHKkJosRmWrGDtR0dItrDEhfz0K9pEbNs8ccsd9XPDCBIXXT4GyeKlWj3UVWlNTws034utFy+rBlOEkY7EU1mdE1iAwS3VFJY2QKlgqC+bLhTgmDYJDKxufu0SpEi+BXvXiQXlmk6IR8iLhHR1IuAZ3QEVwIwgiKR6DVoPYH4EhqHxY/UlkbLENpUh1SqJnyYyja1sslXN4KXG1ktMszFYvFLmsgO8vWvdwwYmKFPa+99/eOGTBuq+KFPPz87z73e/mb//2b3nEIx4BwGWXXcYpp5zCV77yFX7lV37lkO6zVDpa5QJGWWBIy3gSbZByN5qMjl2kZULKROUrFopFZtIprDZY1UJoI7KAVQmlFA29lJo0rIqjU1qmRzfJSLRlqVwkdzkQUnGgG+hbEda3NtCzU3jxwfKNEmVPvofKj0AZFJ6hG9EmWDct26KrRiS6wqiUoQQhGzTD8CEaXecZhFrBSmtsosgrYaFcYOiGrMvW0zJtMj0WGr6S66wvESZ6HXMgJdCuKw9cnkzXQu0j1dQCiiZ6tGVXLje2MoJw5cDVUTOHcK2aNhRCJaDF0jOT6FBcY0w6N1GRWjUU4fgHLghK1IrUlnGsaMeYkaoAbTTeC6JCp4TawnudH/+rq3A5HEvlAlZZOrYbaG6TcVTXMJ2GgvFd60H1cZKxtZNix4ooa6VYl4aJupI2ThzzxRwh2C5U2jI6pZdkJHqapWKAkDNyO3CVZk7yIAiVBknwDFA50T9WNf2r8CR6Plh0ErZ6aWG0YljtJHclWim2tLfSMR2sDi+79DBfeGbSUAR+WAldq0njZF0HLIkISaSIdwwdVy+W1Ou3KhJSk6MiLarRSPweoCQxGdoPwrhSGoUDpVESvgWlwioro2pIXUVrnOKtg20qX1GvmDNOlztx5C4nlzzEN4hQesWoGqGikHQSrKrwbpcpZK1swwyF2sV9jEoxamU8wNiQGid/gSoqIi208k3KnjRxyIG5WShDWlT9/dT9qoBEJ6GIhtT1twOzJrgYyeub9gZfu2Vbx8SyoWt+Bvv8Lur/ewyV75CZHGlWsQn1AbTSK4MW4jMXLoyXHy9UoVY5GlSCVRKtUw+0EBKERZoqwerQVsm5NXAHoILvFOux7qsixTe+8Q3KsuSRj3xkc+zJJ5/MMcccw3/+53/uU7DmeU6e583fTXUMRfRFeowSCpejmcbTJTULCBWKNka1ETXEaMj9EKValFJSOMWGVo9EW+aLOQqXk/s8RgcHaOuZy/fQr5ZizqlE60fTMprcLzWLZddrpJraAlKGkYO54gashlS3GFRQ+SWs1nRtm6FbxEgZtdHo7xAhpPPUFFhYPL2uvuS1x5bhbzz0qyDcs7GFzmtpIbGfEhN9nGWY1HX9bYyNp/BtxWT2+FV7NxZlG6/VFE5SIQDCxX+v9Q2P58jtCyuEnQi9RFF4RU0cIfuvHjPu69k7neXAWD47GGjSpNiUUpKqWNs2ruYxvg6tjwEcLdNmoZwPVboI5SZTrejWK+KhgZlm8osZXeRFjqCxiSZVCdppFsr5QE8aSy/psXs0IrMZRgmZFkgVi+RRA28TRmJYrUfrCu+DBVNJnTKWo1SwdqiFjarzHVuIQCkpIahpwFI5x6AaYZQm022USpt3HhZwUPucrOvc1RsGVRPt2a+Cx31GZsh8H6ynEg1+itT20UowYvFYCinwFHGSC8FG9cvxPlq6tR8eHy3BMV+6UjE1JwgcExmGQEPKspVZXxOHjrWKakE2vghAXQ7TxzV7UT4KTo/UdYPGlVZZFrPLv+viEB1EhghF9FmHa9Xfx/rUUIqwWPqw0PyK5yxjixKQkPcelm8LVbsMCqVTDGFd6ZAapFZ+tweF0FIFaOWjj16jlVAv7uHj/LQ3NGHloalU8/09itKbqAR4vOTx2oaqbGGtID4L/akELeWq6x1uHG4q+HDgkATr/ipS3HzzzaRpyuzs7IpztmzZws0337zPa77hDW9Y5bcNDTMULqXwIefUqlDoflbfiEIonGeh3Bw/7lCo38vu4ItRFm1G5K5iWIWydsNq0Fy78CWFL1kql0IeqzKNho4kJHqWllGUPtZwjUu15X7ELcPtdGyX9dkWvHhSTSzIX+HFkWiNVUkI9y8FUUIhVVjuzi2n/NQ+VwWM3ChQYTiU0iQ6wSlo2zbrs/UrgmAaa0jHZGwjgWsdF6jE7RLrhBIoS+cUePBa0FLrr2rFpRsqlWDuaZZzFvcuRHEgobo3lAo+wyPaQdHwKwTzvmnpW4NxIdyUwHMOnegmvaqQovGxQZjoDGEt3EE1YLGcJzMttNIhulTb+G6T4Cd3JZlqNX2YJMvU9FJ/gDWWdqsXIo3LUPzfxGtNp9NBUPgK0SmVhJVzkpgDnYjHSY9EVzENqAwpKEpHaitMxloVwbIjWEdIhVYWo0axT4OYNSphvlhCWIj5uBs4omOZTYOIMUqR2n0vNehE2FN4hk1Qk49+9IR02MUUDik9iQLlS7RNES+YdoIqBSMas15TqGEUYjoGvrl6cAQbUKrANEg94RNp/fobDSUTA1Uc+jtEIS8HfoVAsKhZqhQlo3gLg5eaDvWMp0nViq1SNvTjmmNqebzWVKzzFRVLKCq0UpS+h1UJThR7Ck/LhOIzu3LPppZpUqwg+E3rfO/gmkobxcFHQaGUQcSQu5kmXaj0JTtHt6CVYUNrIzrSrVqtHdFfW/pGp1GQ56R6LrIHoZsClZ8iJBg1pM5kr7/53IVqUOuzlN25xepFIKVerkR8wnDQopNZStcNc4eGpaXbI3hp/3Tv7ZHyszcOSbDuryJFu92+VQ34vd/7PV7+8pc3fy8sLHD00UczX2i66QxdW4AeUfoWw6oE5dCkhLVKr8eqHoNK0bUWwZC7gpCcbfASrNCQVwftWHFHYpRgiOSUQIcIkRbqUPkBO0Y7EEKy+a58J/PFHJVUzaodiZ6J2p5jWA2jH8cBYZIrfVjGahCLANQpASGHLpRQJE4ehS+a2ppKQEmYHAIF3F5JZNTWqgRSrHZghtiRWHZOVPiBUGMPhffBqhVA6tpoe308lVQYr7HaUMal96DWc9XyzVl78j0Y1JVpfPTDHqaYqgPcNOQI4xjzVxvmioKWKWmZBKtCgYfCF9FCV2Q6o3RF45/v2C7dJCykrlFUQ8/3f/gdiryg2+vR7XYBjzEhXUgpzfU33Iy1mrmlebRVoYSmhd7RfSAEweUuJzFtijy0TlSKl4zSZ2iV0LEVEPysdXTnumyKYdWlEkfLeFKjKL3F4OgmBq2k8QOXPry/PflO+tUiWpVUspubB4toJbRMi42tLaHucPRP12lURkdLXAnOh/HVr4JFlhhF5YXWdIIvK5SJqzb5qmEiSuPwTgV2RIfgPaJiIJTLjAJ1AYvlMWZUXZ0pUMYohfdVpHA1lTgQ1SzyEHzqQSkMPnPivjpS3zVW7zLxH4qkhvvUXl3X/L1iGNXRwPHbC6yLB4ZRjBsSNU/LTtFLwh2sUuQEgZwZuGm4h0G1GwjpLuGSHkUeBW69LOMIpZKo9ClS00erkqHTXNdfirm5moVyAeLzbuseTWpWVxNSkZitlYowLqLq4YnFFTSV7wEaR0od6FQHsGUmUNmpFhbKwHJkxlP6Nlp5jNJMdUO+cJKWkY0ypLdOLBwSfEgY2u/+2xs/V7rNeEWKRz3qURRFwdzc3Aqrdfv27ftdJWBfhZDzwuJuuJHcWowuYupIBRp0YvFlH5GK6R740YiB1oxGI5z3aD2ivWETJoNEB2tToeIap56K4K/JbIuiDm6IVFPXGoROYyU2eZBKo5Uh1dkyXRiLTIzXXi19GMDrUsMCXbyE0H6EmFcboo5rKsyJRxMiUxfLRapyRMf3UI7G3+Sj/GzIjnruaSJdVaSrVNQ+a8uTscilOocuikhZKdSWQ/IlPrWBZuIJ08a4dXuoWLHKx9h256Whmg9nScZxLEeDL1vjWjQtrbEqUPKqmdAUrk7diuMlTMrBH1YX7i98TruTsX7dLNYmJEmC90KrlTEcjpiebjHoD9izZw+z62ZIkxSTavp7hnhK+uUChQ8C0/mC0hWU5TSYTfQSG/KBvcUoT+kTEu2ADKMSrB7StW02tTo4ERaLPrlfYDZdj1HtptSgIlgaJWFFknrZQoDS98n9sEmZaIpJyPIybOOMRKIULRPSRxZLidcIkcRTLcVONaLywXI0NgpO8SF4SaWYNFQh0yqkpIxXAQuMEYTAmaD0BCFvYhpLdBxIGKfOu0Y4ahWrqtXULjRFJ5zUwtQE6lM8IqEqUgiyUoQoXtfQt8EdcCCE771t2xRuOqgIUlK4AghVjjShvwQh9wPWZZ6FQrNjRGQuBmjVxkuHsNBHWG0rFJwArdIoDMOYNCqwYU4chS9wvsKpsNiBx2OVZbFcJI25uM3MpcK8E9RiHxRM0XgsiMeT4aWDiMWJIjVLeGkxrAxDFyLTjQ6+6dRAJR6rlnBeMNoBLRQ5C4ttKhdyba21WBPy70eD24MKNtj9UsF3Ah/rOMYrUpx++ukkScLnPvc5zjvvPACuuuoqrr32Wh70oAcd8rWTrIXLS0qVsGtuQLfdojc1w6Dfp02CykcYk7G0MMIYxUK/D9qivMYkYNKSrl2Pk904VYCESN7aWtVjNJCNhQMAOtaGpelax7G/T0xQ7ByVeAl+CqNCGk7w9WgyE8LUF4pdFC6Pfh5FSMKlCcpQymJiUrsThxhPwQiVKxbsPArNVDKFrgWdFrQmrg+5HBAxXvB+pXxSK1qde2GpFNZny8XgAwUeBEedWlSvGavGr6FWUseHipXtipY0oej8eL3Snx+raeW9bW6jFVNJTcfXEbGBKVBoSqmFaZi4vYRJxaCir92iteaE449b8XD1IhGBqp9h49ZZlFY4qdiT70GmysA4RCFSt1cAly+RVpYFtY7edIdjekEg9ssNjJxnNjX0EhMFfyiyb5XCZF0WihaaUH1nGLnGlgmT4lT0yfWS5Ty8naNb2DG6Jb4DHYsFaDpWUReUDwpYuJZWMJtpUqOagvKDSphONYkaIVIrYuF4aawvi1YFKi4qVz/t+DfYKHN1Oo5YIG/ih+tvpaZwfXO8wbMcKODFYbAYbUKalUpAhfQ2FalbrSRSomGBDaUKQh0xi0jRKMvjGA+wq0eXF9jc2sTGbCOCMJfv5vr+tdTKqI+KpFBxQ/86clfGHNKUEEgVE4MZEWLPNUIPwaDVKK7IYtEs4XHR514CZWy3jsp/uJ8T4cbBDQBxf0xl0rb5e7x8p0hJUBAgUUtoZREKEIdXQ0rvmSvabG6Fta3dWM1qpRyIi77W0JbpnqdyCnA4bzHGB4YlWTvQ8HDiwLWC7+AW6/4qUszMzPC85z2Pl7/85axfv57p6Wle8pKX8KAHPeiQI4IBZpJbWHfcVnLXorN5M0MHC15BZwMjKTl6usOGdVMkiUVrYT5fYFgVeAk0RNt2ERy+CsEEVoeyBhVV41MoXB4/cNNYh4lOca4PMo2JFY9EQooHEDXuMAnPpBme9bG6U9FM3FYZFsp5vAhpLKcYSWcqcTGnLpBOIiWp6qFwtKI/j0ShC4MbCXPVHrJe2tRbDe0B8SpMFvVgb2TJ3uJJVvxTo5pltvaF8ULdPw9qP+3e1wxF1UN5NK3Ajvlw64CPg0oh4BAW8FaxmEUdhFLfQ4KAWKpcrI6jAysimtI7Sh8UJcFhYxUvURL84OKCX1br8AIaZ05IWQBBm5DKEzl6kmx5JSWtWjixKBYBja80r3/1F7jw9WdTKYNXIQWll4Q8Vicht7RlQhWfes3LURUKpNfR1y0TCuWHn3CQVYpalaozSH3MPRxVi+zMbwKCX1CjI4OTUKcpla6MEe06luxbx8ZWEA658/G4KlK6huAW0WgVrPLQ5bUvMATPrKVKhdSmIp5SV/SReHZI7AhCI0QTB3dHPaCDWpO7EV6CRWVUXAJG1c9EiLSNtcRFHJ464rheN2uN4TPW1NrXGlKX6oIgy0pC6fvcMrq+UdYLn4dej2sZG0LqDFTU67KEopt5vE4R+28Qn9GS6LoAhW78w0bV/uVlXmkl81MX5RBCS2NfiidURvJYVcTjgxsLBVocuR+iq5u5caDjMxkSpXEyXM7/FdBaY0hZzDPyMiXJNCWafMnRsgl5sbhGbx5eHDgq+A4uWA9UkeLNb34zWmvOO++8FQUibg2WynlM4ekmXTZ3ptg5auGKlMKBlOB6PeYGYd3LroUeXdq6TeHyUPJsNGJYDdEoLFmMfHTgVQiEiLRU6UPVFRdXz+hXAzKTMvQlTtdDVZgr5liqluiYDv1qwLpsY4hWLgratkO/6AdNV0Ie3qgaUkpJ1/aYNjPMl3NhIotC2cWqSkqB0gpUgvMlWgdat5KSVGWU/Yq+DFFZnIjGza69Z4D9yJea/oWwrmNRp+rFbSJCka/O3wNicMXKaxwQdVvWamOUt+NBBSoKvkqWF/VuIKvPrzfXxsRa3bESQjGqGr923ZfOu7B4g8/ZPnSkOqWb9DAqFDwItZHDOS5GqS65EKld+8sTXVPJ9Z3qqkIKcVBQhipCVcoUlkE5CBSfVLSUUElGv0xYzLug4a1/+Ele8aePw09lCIZeXE81M4qWialAMR+3Xnpu/Nn92B8LRbBKehb0GCuglGrGvUDw1YkQasU6iIUhFCE+oI6aV4RydovFPKGST6DOyxj9GepTB9GtoyBx3jXWqJDHfvXNN7jsSgnlBkNvRw+maBQtlAqCu1YOaovUxOhW1xQ5WK5zHWrmliHydyxYSaFJVIKgKCUEHUqkmUN+sx9zi4z3ax1Vv7If62j/moVwVMzlu4nFCDGqi9EFypeAxysZ6ychqLshGlgog4+aCqVi4QUVDQZJERyhulPIv6VJWzLNt2BjjEmde102BTmkiStRCF5aKMJSnEqZJk9XELwf0pdRpNyJlLtqIrK1UuS+S15NIT5lqQzBZWUOKtFoa3D7qKF9uBHWY923KVDd0angA1WkaLVavOUtb+Etb3nLz9UoAEWKJ6FfDUEGWLWeXjJFqRXDfsE1N5TQyuh1hTc/5wMASGoRrdB5BUpR9VJ8otGFa/JI5u7WwhRCPquwA9h9T086p9ElVG1o7YDeTZ7WrgozqtCFQ4xGOY+K4YKjLR3swKG8YBZi7msnwbUsSgQ9cqjKI1bjM4Ppl/i2RTnBLAxRpcP3WqgiTPTDo6dp3TJEVHB25esz8nWW6R/3MbuWKLbNYoYVqnQsHjfFaJ0mGQitOYcuPD5WzPGpRhdBeLt21KC1QnlBl0KyGARnMZsw2GRQTtBRluazKvRBC7QPcysCosFlMNwquI6HXoU2Hl8ZpFSoSmPnDboEXdFcQwm4NGxTHryFJMTrkM5Da07IZxRVG/JZ8JlgRoqqI/hM6By9SH93ByoFmYeRRvcNugiWuovH20G4px1CNi9N2pzJgzNZgksp9JEKz6UraSSxyQWTe8zI4xOF1LUWnaArwdvQfzUjYPsVrh36Di+YURXGhQiq8rhuBlrhMtM4k0UrXCsIal14VK1RKNBlpDmVCssUGsUfvP1pLG6fY9bC5m66YtFpF5WSQSWMnGdz2+A8LFYhN7gp6xhP6Y6t9zqoltdlnU3X0zZTLFW+Wd+zZ0M95UCF+OCbEkiMbix9BQzdkOv6N8QSg7OUvoPVLRJdYXWJoSKJBa0FootEUKqkSUuips4VqBBsFSb/IsYBqGg9ZghdErVAJBrjeaE2uG9SPmi2G51Q310i5Sy1cuQ94PDajwXlqSboyUvG7rxF25Yc0clWKWthjo7U/ZgfOgR4hbCgYDUGZssowzG9zbRMihPPjtF25otFqHNZVdpEMXsJYThSR/eKjsfFvtJlEPqEPFfGUpSCIhcqUc1kM7RNh9JXFD4nd0MKF2qni1KIBKWn7rEmt5cEpcqY/lS7AcKCCEaboEyqBC+WkeuyJ5+mkiBw69Ry4wTjPaIhs9DJbvuYXC8avx+6d3/7bivcYWsFh4jBGMqNo2OHtLH0S4vuWkbe4ZXgkhBPK8bgWuFxzMIQSW0QKJXH5A6XGZRAe5ej7Gimf1oxWmc46t+E+ePAjMC0obUnTLo+UYi2pIXDZ4bhpjbt7Tm69Iw2WHrDIDwximJDm2LKgFK0dhWU0wnp7vCx26UCMQoxirJnace2AahRCUaTLFUMjuqQzpWY3JEslohVlFMp+foNmJGnnEoZbbSYkZAtePIZjXYaURqXKUSFZxOjcJluKon5RGGHQTBUHROVZGmEai14lAPXAp+AXp6nguDVkCyoQKdtqGi3SpYWWqhBim97fMuTLGrEhOuYUMAFb2m2iYZiKgjBWrUWHe6nBMwomMViAr29tLMT/qEI+XC9Esk1uq8oZ8LH6jNQSwpdxOsShKbyYEpBNJhCKDsaXQVBWbXCfauWwhRgRwI6vB9JNN4EQWggpIvkHuUlKCghnJlkz2h5kUcIi10nBt82jWDWcbkxnzWLjdY8HbpyQZB6CYqbDVSyrgSfav74RZfzV39xDtNVjutXDK0hzdIQxKIDHVx5uLlfUVah8H5mNUMX1vOsdYPCezyBugtWrKb0CqNSUmNomRZKhcIQTiA1Y4tki9DPQ2pIZjR1JpHHs1AuMqzWMXKWltlDojUew9BlSBXWL010+H7DfSu8KKwuSHROovMVVqqXDMUwWkqMCSgLOET2xNWniIKl9ixWeB+KrSz7a30sCLEskGqmqF6pQvCIr1A6C5H6KgSLee9wkpD7LnOFomU8u5YqNvcU7Ui9Dp3Qs7VSQPPb6ozpZB2B4/AMq0FYexZDJSkt0xprp48uDINgY2rNkJqkhxTEUvoUIQM9TygcoRuf9zKDVPeHbxbiKFwozzmoFIMqwWqNVgWpcgihxrrzMSpbhQAzozSVFARLOfRc7dv2CCpWvMrdFHvyLoWvlY4o2JGQeqgqXJGjFSQojLvt020OdqHz2xN3WMEKGudHeBU0yn61RKoNveQIlnb2meq0mJrt4FC88vLnkmjPay/6MLoUVF6hCodeGDI4YSO7Tm2x9fM78d2Mzg0Vo81tzMjTKYRsT066mLD7pIxkANlCHEyJwrc1Ylpku3PaOwCt6B/VpnftiHx9SuemCtEa0YrBFkPVhs4NgQ4uZ7Ngve4sGR3ZA4H5u1ha2y16rk++dSPZoEA6KarydK9ZoH/cDGVXs+4LP8MM1rFw4hT5tGb2RznZ9iWSxZSrn9xFl4pN/+1xmcKlCl0Kxayi6liyuSBE7cBTtRV26NGVYAZhFR2fBsGrK1aUz9VlsCzNiMayS5cEkwtVW+GNwmeK6sYOi5lHTZdIy6OHIX0i3+TpXKcxRbBAR1s87e0an0C+yUHXoROH35GRzsdJ0AZhbvIgQ0ObFKIUutQ1o4jLLLqAsgfaQbZTY0bQ2h32V+1gedqB4FoKb8COfGO9pgsOnyrKTmifS4PwN4WgvOBSRdmxjdIBsT0SWAA7CMwFBCEKoOLyeqIUkhioAk2sSo8kOghLAeUEFZ2hvl5g3At2UIIG0eEcLYIqHTpXqNLxyqcFduj1H34UVREKVWgJC31PTfeQhSHtkWe+H1KpWomm106w0y1ayXLU+o2DXVQ+TNqKFh4wqmQmnWJzaxNtY0mUimu0Bt+3iaOilyjAU/o+hVcMqhGDqmSumGfkZtHK4WSaoetR+r2nkhDpb5RvgkcUkJkRM+nNaIooZASrRnHqCxZoTQ8EsWsiVamBKvol4n4VAsmaKNg4f9bLK9aeR4VCVG19Bb9w+KuLpqBts1BARkqUWmIqMXRsj4WyIPcl/UqhraZroWOJBTpqF0m46VTSpRfjIEZuyDWLP473MGR6XATr2G4drb8EUQ4REyKopUMpUygMTgJFbKSNUR6hXr/WNZZ/nedbv28Qhm4JWyUsll22Dy0Kx1QqHNODwu2h9EEJDmviVrGu+nLhHDeW5RA+hjBPjHzGXN4j9yk15WOVMJUq1qWC+JLUDBmUIYfaaEVVLXFbY2KxHgIWFjZhkoQsLTGmCANMeXqJpd1rkS+O+H9/6z1c/LfPoWMV06nh7694Gk9/6DugLNlzxlHMfneOzndvpP2zLm6mjao8u06bYuYnObrypLsL8o1tyinLYCtU0x6Ta9o7HS7VmMJjCk85naJLjy48ydCzdHSLmR8tcdMZU2z+5gifKhaOE7b8H2Hh+A7T1wwZbkrJ5iuqdS10IfhEMfvjkl2nTbPhm0IynyOppeomSKLpb2ujnNDeUdK/7zaSxQpVwcZvLeFTw+iIHq2bluhe32PqOk9ne87Oe7UppqF7UxCIugwWnzMgSmNHwTJVPggICJSorgTtgpXrk2Ap+kjl2JFQdhWmikLBCYjCtaDqCravqETjSaDtYKQRLWS7gpXsTaSEHQyPdKG2YssxPTtgVCQUqZAMwA6FURatVgtVB9IFKKYFkyvSOXCdIEyVD89lB+E57SgIY5sL3oSAF58oiulwXY2imDLoQrCjEC5tB1HKShBmVTsIVtEKl0ULxIOYoIyEZ1GY0iNa1dEqqMIF6zS16LxsHMWSGfDg2haX6WDpIoGqTzS2X6Eqh3ISFIeiClYrDmnZhk4OTjrXXPePnvq5RoDX+PMrzuYVz/+XQG9Ha/udf/M09tw8T740YuumHsYahmWJVYLoJAbcOcQHK3ShWKRtWmF5Qq3oqpVVl0pfsFQtUviCUVWyO++wWBoS7VFM4SWh9G2qxre1llUgYxGZgdrNXcawatM2o1CeUofauCFlJASEOZFIdUpMRXEoUpRy6JgqEhhZHwOhgGjdLhf8CPRziNan8YG2TBvBhSX9XAJ6wFIZhHxq0pBTrD0bsipE+UrFUtmi79tYHVchiiVJFTrm1EKi2wzKOYy2VLGeeKozPA4TNbyw/FxU3GIcRZ0rH/yhLSrphoXizYDKKyrfpvQJorOYrgTjZQ7rng+0d/AV59UI52/BqhbTyQyFb9ExlrZR9Mug6Myk0wAsliOKckAo/C+BHarfWF04B4WTHrtHGxtfplFCLxE2t0tSHZbm274HhlqzNOzSThMUQp7f9iUNS9GY/abb3P4lIu6wgtUYx3DQY2mhjdKeJIE0UdxQ9ilzh9eG57/nWSyWnnWp5eVPeS9/89Fn4XotmG4z9bMRqqiQmS4Y0/ivpq4r8Kkmu24PbkOPpW0J3ipmfyTsOk1RTClaexR6jOpLdw0pZ1pIdKj0rs+pplI2fSunf2RGtrti638GyzAZQLEuJRlGX2eqMSOHrhRm6IIA2NhBVYLOPMMtWaAvnZAuOspeGCDDjUEwu8xgcocxCp8lbPxuESb8fsGG7yqqjmG4yeLTYGEm/dCOsqtxKSiv8ApcJ1DG3gYB7G043idBgNihoF30rSIkg2gVSKBXszkVzTiwSwqfGPKNimRBU8x6ipOGsCPDW0FXCt/2ZBuGaCUk1rG02MLnFtPXVFkQ8MVs6N9ySvCpMEoUPgtBHMW60NZ0PrSp9vmmi5DNB2s8n1GU3UAzZ/PgYjKmKcCMgkU/mDaYHJL+GBMRlYmaKjY5mGF0NMb3rqNf1aUaUlDeYEYOn5ogaNWYT1sHBUGMRomQ9CtEK0SroNAIjeNTrEIPS/AeVUezjqrY11IPfiQL/jUxKgjdWrgaxSsv+EywfaIPTjS86Onvp05O/ou/eBwvf9FHEKv58785h9mpLjbVDNwSI0CJp8hLbsnncdNtZrJW7XJuKEatTFhRRRzDSrNQpJTeIJWnyqEqPeJzsBqVpWDWqvqzWtgKipGbJtXz4Otc0kDWOV2f46K/NVipIZfTRssppLgpVSFU1AUK66IOOlqkdXk+x3gxCMvIhfSWyrvgT5RwDSdCSUm93urQDehXfbwDVykMQ5wkgMFJHnNOOwgqKhuCMIJKI6ouiyggOYXPUU5Teo/EhRx8LNwfsoxNpI4cqS5w0kIxwqoSY5YIQVBVExgVnjMW7hdHvQRfeH/h/5WvcGpIx5Z0CGl5O4aWkavwYtD0aVlNosNyinVxjkC/B1+viVUnS99mLl8X8kWVMJOWTCUjEp1jlKdfjoJfOw2pUN1eWIlIa43zt0NU8J093eb2xDte/E+oddP8P+96BFq6tFSbqvK0rUG6LZLEsFCF4ta/96R38z//7rksFrqZ7MQqJEtQgxw/ZcEJYjWubehc38dt6FHMpExfU7DjtIzRBoWqIF0I1CAEq8gbRbmuhV0qcS0bfKdK4ZWmmLbYQbyXUagy0Hwu5rN4ozF58JuJClkBrVtyfGbQZbCKujeMKHuWqmvIZyw29+i8DmgBnxqSuRE+Nbhegi49ZTdhtKXDYLPFZYrODkfRMyEQZ+TRZfjtU02VKaquJp9RFFPB8jM5tHcE68jkYCX4HqtWsPqSPk0fuAyKGdBFCBByGfg0/Egq5EeUdNYN0Vror9PYrKLa1cLMG/Isoz01QkThC4PqG0yuKNYF61NVoT0ISCL4jkOVGrQgRqGrcJzLIk2dQ7rko9ITBG+yFIS/qoKQ1FVQBKp2sKDThWCBF9MaUyxz39qFa+IEMxK0E1Tp8XY56EsUiFW4RJEuBipd5yFiVrRGMh1oX62w/QqfBL+pRAGvxsJzVaR6G6sUln8rhXJhn29ndQ5R2OeC/3YcqnSgdey7YBXXljDAK5734SDSvOZ3n/MJ/vrdT6ZQ0O1tYArIhyNe/LyP8Oa3Pp7CjVhMHdbqJiK03UnxqgSvWMhH7MqnKEYen4c8z6QlJJ2UigRfOmQQfaapRaUJaLWGkG1aT+lb5G493WQPtSj3COKrZddE4/sM6T9GFcvErq7r6y4L89pnG6hS4r7lGsThaN0k1GhdC/TgXxQJvsSwKlaI8m6ZLliF16FyV6qDAK58HTE8QEWB2zKzzKTHM5UYCj/guqUbYklUxfX962L0c/SHxhiDOioagm9YYsqLVgtAWLw+tD8UcxDlm+Alag+y0uioQITrBWYlHBfyfDVh9RfnQmEOVMGgGrJUxvVutWryilXMqQ0LwCf0qxbzRQ8nhqnEs6E1wPudVFLhQjorpSuBIUqrmAqkKPHgFWUsJ3lbIixDsW8/quxn322FO6xgxQSN//99+mcoZ7NgGQBzJ7Qou4rOLZ6qFXyMb7n8Av7wqZfxpx98Fm9931N56Xn/C6+DUHXru+hBgR6WVOu72IFD75ynOmI9ZuT4i/e/lZc9/UVc/XzDpn9LmyhWXcXJPVowZm6A3zyFLhyuk2AGJa3chcm4Zch2CeV0inKCT4PFVLU1yWJBMZMEwbsErmtZ3Jay8cvbKY+Y4Zb7tels9yGIxkKVaaSjSRccykM5pUn3GJIb56i2zGB3LbH75M1kCzpaap7rH+fY9IUoOHTwhXoDKMVonaHqwHATlHcZwVxKtlPT3hGoVJtLzM8weBsCeoroy7RDyNcFwZVvENxAMTqqpLt+QLHYQu9J8JVh1O+hN4845dibsMqzY6bH9p3TMJ8wXOxBLyyZJ9MlVZnSvkWFIKccXBskAbGCyjVmpMGHACozCpZ1iOStqW4VhHsS2qd8oK9rGjpQ4YqipxohG3ypwVpNlnwINoqRwt4abN/VcVLB59oKwrIOZNJVUJZcqrCpRudBKXJtgy5CRLFrG8ygCkJVBaGsS49PTQhSGpZBQEar0ndC0J2qQiSSZEn0y8oK6lchIXpc60Adly74dwkTGDpQ9rBs8YZgKIVEi/jCF/5v3vG/no4vPUlqeeGLPoZKNL/z0n9YjlCW4G/GCZe++4ncUuxhsRBy36FEYeyATldQScKbX/gJXvSWpwAGbUxQYJ1H8hK/OEBZA1kCtq53u3JiExT9agOojK5dRFEFsSImPr6iY4M1R5O9GvysiWoFa4wSq7Jgq4pgtMS0mbrQYAsVAyDDPaWO9qFeKN1LWGlHo3HKoaQOxNHMZuvoJbP0B31uzK/DqIzSOzq2Qy/pxapSIbrWiyI1PWbT4FdumTYbWuspffAPL5Y7cXHlndoiDu92vF/qjN0ilkcNUcZhtZkQEBXODe0VhHrpu/FrEp8rlqkAUTHX3TfFNZazbyWmQulo8Ub/tjgcFaW3zBUh9ezontCxA2DEUilNX1VVgXjBl0KdXSPx+1JG0P62txZLH5YH3ff+CRW8DAXJ7gFqWJAtDGE4YvF+2zAFtPY4dt7LkCzAhu8VbP/h93jFJWfxe8/8AL/7uvvjM4tyHj/VwmyfQzptfDvBLOXYXUvgPHZuwOjoGS5+xNOYf3CbbR/zZHty+kdl2KEPAT6lR+eOYl1KedL6ECCzZ4C2Gp8a7NwQyRL0yOG6SQgMSg0mWhDpfMVga4Yd+ChwNa5l6GyvKI+YQTlhy1eXqHoJrmWwMcCoammUCxN8suQo1rfQUylmUJJvm6FqwfzJQu+nIRin972Uzs0lo40hAEd5ieVYVWMRtnZBe2crpMUUwReJF5KlimImoegGQW0HUGXBWi568VU40IUi3+DQfUM5ZYNlug5wCl9ptswu8VtHfZH/7yePZqY15BY1hYgi3Tqg2N6GRKDQ+FSoOqqJ4g0UqqBKhS6iUI2r9IgFVUbLVgWLNJ8JQjNbCO2ywxBgBTEYKgnKVs3+uCwIce1qS1bFwCUfjlPgWhpTCs5EAVWFScKl4T2YUqiy5YIcIZJaNf5rNEHBiqvN1ylOYlRM04pRw4nBpwkmj+lYSiFWI4kJrEc8r/kEav+tMYjVMSo5UPJidUNd1xRxaHsUJFYvJwoL/I8L/hZVhdSxZrH4xnKmiXBX3vPbz/wwL/rAMyhFMDYhNfDWF3wQMZqXvuPpvOivn4aS8Eq1UXgVLAbpmJCC5By6dBTDAt3OwJqwqs1Y4QIPDKoOuUsRdKyDHBbBs7rEqJtJtOB8oGu10njlkVjQwGCCAFEm0KmisdpG32WFVjlhXdEQ7BQqFYX76+jThVgXWfkmAEgRFhMPv8PaQpUvEBeE2lQyw1QyFfz6sQvrJfdEQv3k0idsyLZES7BitDiHc2W0nEMksEgerFSRkLsrYTUYiYxGrC9CWHkpiEIfy6fqemWfulKVD/mywRcdil0oHYIKJb7nYMlq8FVUIkPRk3qtWl1XSY511UUSFstpQHN0D7p2nkEMRCpcFdOTHK4SxPuQ/hyVSrwglSC5oizvCMvG3f5UsJK11gn6BWJhYYGZmRm+/N1v8PqnfwyVl0HzTgx4z/DoaYoZw/RVC/gsaSak17zpMfjRiP/5e1+gmEnIdgdfql0sAsWWBR3C7hnAcIRMd/HtpNHqi9kUnwXKtvYrQvTDjTy2X4UJNUZ7ouqIzzB7lVMJPtUU0waXQufmqvG1uZZpLG4VcwN9qpvJWUzIc9S5x2calwSBaIc+0ruO/lEZne0FuvDMndDC5LDz3tC5QdG7yWMKoZgK1K9PCD5SgdacD8LAhCAdMwr+urIbJhk7XE5LGa43Te7m0jFg+zA8QuLEGyxLu61Pr52z+/oZ7LyhmnG0Nw0oCkuaVoz6KUoLfiFFlQrb1+giCD0bI+/LKTDD0M9VG8oNVZilhxoz0OgqUKlJH4gUcHd7yMUdbAoRzT4JgiddjJHLrSCMk77gLZRd1UQ2Vy3VpOGICc9ic98Izhq6juCVQAGrShAbfLJVS5HNuUC1V56qY5E67SIep0qPjWlYrmOXc10jfeyzUAVIOUGPYkGF1OJaIf8awnsK7yPSu9Gfq0cOXVSN3zXceJkuVs4hdSzBuOVaC/44ziBauN4TQ4QRrbn4A89m6ITSh9QbyjB5Kq+wWlOVjqL0ZIlBWYVJNMWwwhqNeMFJKNLfSk0sjCFUziPRr1gBKlqxIXdVSHSJUY7ChYW3A4Qpu4desouwoHewtLTWjYUnIkGINr7F5Sjh5TreAmTB0sOxrEsE/18dLVxHDtfr2xqlmUlnOaJzFArF0qDPjfn15PHcbd0jMapHKbA+0xROmCs8XoR1Wah+lbtQ3iKLgvUni1eH9ZZVXds4VLNqyqZBpIEZS5+p/aV13i9xSbq6zrFHK4WXBOdNKEChDEgV6F9lCDWBy6YWtpOqKW9oVYI07QhC2uoErQyFazGX96ikwxEdoWvn2JPvaKKwvWSEmsgFrihD+LxZbnXM0EUrzcLCIufc9zeZn59nenp6f1P/IaOWFS/9998g6+27dGK+VPJXD/6H26QN+8Id1mIdFWmIvKypsxiF2bplSOeqJVAKnZS46RZ46K3fgBsOopUgVN2Qx+oTg+nnaCdUM1mYdMoKvEeMxizlzJ86i2hF98Ycn2hcK+QzKiH4TYWQB+ulCUJxmUEUJEslunDB8ptOKNuK3g0l2c4R1Uyk+2q/qwJdhtxa0YqqEwR5tqfCDiqK2SSktlhFuuDQRa25hsAmu1RSdRK6N1YoL0xdk5IuBWGTLUgM3FmeQEUT8l1LCbmsLkYBx33ehFQdMaopMlHEgCAzBBSYoaLqeXxLwCmKfsL8NV2sU/gsbAPYvG4REcVokOJLgyQeVZl6IZNw75QmZ9ZnUE57dK7QA4Nve8xQE5fewCdC2VNkuwINbEae4aaQi+xDNbrl4g9JEEbKQ9lRkcYOQsnbQBU3VjwKE4vI63K5WINLFc7oQF/FAhISi0pAuEYTWe1D2pKEXAewgSY2eRCIonSwep2PAUym8a02qTdRKfQxmrgWqCo64eqgpbp9SkKMQA3RYTypMlDb6NB3ojSqdGG/J9DGEq22WIyiVgb/4CMvYGfuKD3sKWrzOI5xLyHf2oRXrIwha8e6ycTcxlYQom0dKgEXnli2oPadG1AG7y2qrJBRoA11lkBqKSRBqZS9UUpK6bOwgHp8Z3VhfSDWzg2Ll4dFE+qm6+hrhLBEXD5GtsZJX0FdfMKNpa3UA88TK7QR1qjdMxJ62Tq0HzKoQu1jpcLEqQjlI9dnwa/bMnF5dx+W4duVuyi01wFzgMH5CiGsoKRJo3AMdXvDq9eRqoXleloWLxkiGqPLWNc67NGqQuloDSuPUknMVgoWqiWs7FOXtjRxtRyh9ksHOyEs9N5lWFl25zMk2nJ014HsYq6YCzRyHhT+JC1RKqGsQHuNtuBipSyhTgPSZKbForrt021KMehJVPDBYaFwgd7yQXM380tgbZh0ui3UqOSt//p8/sfjPoAe5vw/Z7+TP//nF2OGcWHyURUEZz+nmm2HakyAm+1g8pJi6xRV28CGjNmv34Jb32VwVIeiF6oa2b4LVo4IZddgRn5F8IuKlohYjVcKXYTjezeHgt++bRufm08MtvAoF63bmRTbr1g4NkEMpIuOnXdvs3SMUG0qMbsTtv1L/BDykPi9cIwlWbDYxYKlo3u0dzmUQLroWTrSkC0sCxk7jILBKHQu0dcao2GjkOsfBZ2bA1VadhRlj+bZXCvOxSZGELcdKvEoI8h8EijXjoOpCm09U+0c5zV5ZVBawHgYJiinsCEIs6lcpKNf1aWgKoUuFXoAsmTQLmwXDdmekOJTzMC6HwpL20ygdCOFbEbR0k+DIhX8w7VQDM/qkkD7ig4+oTodSVdBcLjOsoXuLSQDv8wi2GXqt2qF6+kKUidRICuKKR2irKPgV8JyihKCT3QQzk4ixe2bghGiVQx2IvRZDQljK1iYOoyzQRkFr27yZxtEYQpBYPpUw5ilWidPqFgZChEu+eSL+NlSxU2DKgr8vT6+qgIbLcJIeQYJVR8YKjgd2bFsahme99TLMLnj5e99Fnk5VgiwbqZWqNRCagMdnZfIqEAlBpWl4TkhPpdi5LpUvkXX7qJt54PlXAf5RD9hEAp12230dQZ6t17EGwQvFtQoFCGJ/Za7vKFSgw0Y3wkKkQwvCZWvK+sqwNA2BkVF2yo6ZlnBKX1d5nC5+9o2PM9iGRaXsFoQn1FJDy/DWDwj0rMNX69i+UKNlxSRAqU8kCK08GIxqkCkGqtSFV0mSKimVNPDsQ6wURKp8GVLsrZ+A8nsqWtae0m5eTDDyCWkWrOtN6Jyu1gsFxHv8UuKlIR8UOJnc4yp8KWgvSGrWuRmiM9CRGCIyHaUqtrvQiaHC15UQ/Pva//tjTuwYPVc8rcX8KrffA8MS1S7BUWJGsSo3E7GC3/9/WA1f/LJF7I+NXQjLaxzh08Czec7wTfp2pb02t2Q2BBU4WG40dC7viQ/eh3ZdXvoKEUHyNeFIASfKNA6CMospM34aLnafgVe8JnBpxpV+aaIQG1tDLe2MENPvs406R7pXIkZOPBCZ4dDtOKGh6Ssv9Kz9YtzzJ86i0th52kJLoUj/z3n2se0Of5d11HcdRNiNeu/OceO+69rhMzU9UI259h9smXDd0t8pvFWsedEhbmeQJEOhf5MECB17mjZDaUMA/UZvj+XBUFhh4H6zdcLqtBQaqTtsBtHVKMEbR0iCje07KSHG1j00DSRvYEGVs0E73WgdHUJ5TRU0450jyGdi9WeytqKJgYaBas5m4MqU9Gqg7wXhHPSD2xCHbBUQ2Lqi0sUVQdQiqqjMCNBxQwIlyjKrgl+2DjZmlwiBa9wicGOQqnIOgjMB2MtXLsVI44XHS6p84Jp6P7QEFl2F0RKNyhZMd+3jl7XcUIfiyQOljAo50PJQ+/j+rq+sVrrKlCNT1WHohTK+ajISFiooXQr0ojQmqvnS1zlIvvCSkFduWj9qpXbI4wSZlLHG573oSbvVwEveNczm+Xk1kQ9ocfvT3lBygrfH4VArywNgjceW0nI6xTm40QdnrOuxx2sTImRvK45pl6VKRSsTwmr1yg8LgjZujlj/4WlAYONGHyHIdjOKsWW6RZzfUe7Y2lbj8aOicIg1+1eOcAmEh3rWyGal3YXJx0GVcJcMWxoXidFHCr1ij3EVXgKVMwvE8lRyjWrLNW5uuNrjIZyiGHJubD6Taw8pYLPVHLwTrBt3VDQxqWIryD1aGVZKKYYVilTqeL/Z+/P427NyvpO+LuGe9jTM51z6pwqKEZRWtROMN1J+n07nUQ7/aoxSYsoAoqKYhQRIUaCUQlGA5gBURRQDAIiKA4xn7YzD5pOYkIcMQpIATXXmZ7zDHu4hzW8f1xrrf0chIJCi5Rp78/nVJ3zDHvfe+/7Xte6ftdvOGhvcDocij90CMSV5mUv+y1Cpfjeb38q42pk2sxpbcvXvuxf8ePf91c4PL2KXznGaYfTTmDnBH8/3Ef8GAYR8Y/kNtsjuMD1jRNyx06LOVpLt9pWQvYwhh/6+WfRmikQ+aovepPs1uvtKhstjPPk0TsExkfvc/WPTZnfH5jdueL8L5/gdye4eUVMM1jfCoRshkA0CjcRONN0MlfT7iycZ3ATg/bCCBYZhtxV61tb5neu6M+1VKtAczjgJ9Jxr2+VnzV9pN9RLO6Ebl/zwZdVXHpTSLCiornhuO/PNNz6/4w88Pm3c+7dEpq+fsyCc7+1ZH3bhOl9G6591pz6BPbeLzpY38g5LO4Wqck4BTMIm9ZNYXaPEJiikRlnfYR0jVZ0okHL/ze3wMG7YZwb1hdh2Fe4lOISg2Kxu6GtHFfu2ke1ATZgjyx+Goh16iZ0cnOKFF9i0wNH4i8cKjmX/HmZQRjI9Q1FtUoQrBF419Xyu6aTLtK30BzJ7LU+FURBCq1iddEQrGwUqlWUTrWXAro5ZwROVtL51qeRahPod4RNq4dUFEMk1sLUVUHOIc+q81xaBRLULoUqJlRRBSFxZC9gldqakDph04UtmzdsYWY9eDmHPrF/z7B20bp0w2XOmg4VI0ELzKcIMMosGIAhaXS15mt+7Dn40UkXWZkztVPsBFFK+AwftiAaBROreNzcMK9kExkayze9/pn0/vc2vQ92qES2UroSRvHoif1A3PSoukI1FZX1qVtN6wGSOSqWGl7SqlJBlKQXzRj67ePHEWkskz8xhph8bU1CCESacwYCx+KjJjIREhQRozUTUzMzDZsg+tPODQIvZs9dtU0Osim4Q8wp5GtTOyNGhVUBHyqWTvSnJDKTnG9K8lEis8nzV6UVJPZvzpVV2GLvCLEEGUjXC1rXEIXEZLzlyj03sNYSPcwWE06PTnG9ZxwdO/sL1puRaEemk2NuedweJ+NVIGIwjEv4ju/+beE9WcUtF2/hOd/0T+X6iBEd4dnf/I8A+JkfeDpXr12DvcCxv0GMge7DIvgejmOMCvUgxXP8b9CxPmLJS//wX/1nDg72Ob+oeeyiYlFpvvgL38hZYoY56eUGHRxh1jDs1gJ/jpFxLvCtTt2C2Th8uy26pg+MO0IaOXmM4eA9g3S6jRgAiPAfhoUU3KiTdKPfLoa5wGYvYJM6ZWKG3mIhwUhXK9Cym5jk2yswZL+ryyzQdpGd951y/OQdVIhMLo+MC0N7beDkCROqlczd+l3pfMapYnIYqFaBbl/g0uWjpVvToxRNUidq+i28Wy3FBKI70HQH225y2Elwa7oqmiP5v5sKTDsuSHIieVw3i+jb1wSv8aMwEfWRBS/kIbtW1Cfbx8s6Wt9I12w66A9g3JXuDRPRvaa+oco5SXEEX4nrkt1EqpVoVm0XwEf8RORGvpIZqms1/Y7cUNn4QkXpiIedBMEGZI5tFNUqlM8220D6RqfNlXS8wUpRtZuA7SO6D+VzNp1LmyoxhQhVgnE3HuUykqFT9yvXlx7SxjF9PQc9ZIlOCX8Y0yI8isdw1rlKhyo8gjxvlRcssLAaPYTAS3/meVxfO3yMaCNN48T21EaxGmvGoMTmbnBgDBjxxRXDKcW8Urzi2T8GgJ9UECNv+amv5H3HI0YHfBgIWDZO03n1kIqsvDFpwhgC9I44jOhaMduJVHqg1ksqnS64fP/qJkGfmhibtA/ok2GCJqa0nZx+I12dSuQd6ehsyiqFbAcoloK13ufxix2sli7bjZ5V37NRgaVfo9RGnicGpPxCjIZIjVJroUMltq9W8Kjp7dRmwhAC17v7OR4PS1cd4gRQGNWhlcDDLoxSIJMZf0jJW9Jtyl4rRFFvhqRfFURfrBKtlvSZXGzX13pWRxt293fph55J1eLGyIjG2prgBmwTGX3H7KChp0NHzV/7W78l13DSeef6pD2FO1EY8An5eON3/wVO6xOc7VEobhzf4PP++Bc/rOSl5/ybZ1DPf++sPh/DcuDNf+4df0ReAoiDYwT+9tPeiJ/W6NGjY6S/MEUPAbsaRFTvhGQRKrEgPPwfWhb3JChnI1CrjgHTOczacecXLiTB5j7P8jZDtY7MHhDNabtyqOi3TjcarNWpA0zm9ka6lGyRF60slHblEkmFMqPDIjOqbJkHMtfVCtMHmms9fmKJpqI+8kSraK9sGA4midDkWT66YXp5pD9XY9fiJqQHKfDrixrTwzhRRC2dtZup4qwEcPKkwOxu+TkiNDekQAy7inGuaA9D8dAddkSWE2pQOfXmQNi8UQs0bAaokpmKQLCK8Z4pYeblvekMeiPwudlsP08zSIEUA3zpTokw7sr36yONm0b8NAqhyUmHmTvLYOV3XCvvaXOUZt7JIUl5YU8T5DoIVua741TjKukuRSssBd83abMxKJqjmKwMPWaQLjFUsiFCQXMjlMUjVhqz9mVmqUchwUlXKwuOHkK5hrIutfw/RPQQC8MXlSU2sZiYgLzGAvV6MUHPbk1RJYmOUqCiWCtqLd8fPaEV4h+15Ztf/6Wc9APTxlFZh1VL/s7T/6m86Vbzgrd8BWOAmM7XWs2F1nDbzFIpeM6z3yxs596Ly5IPQghUiu/81ncWhyvTR37ojV/AYdfywEbzYKJ8RS7a6ToCrNLsVJZqp+b62rG8dsK6mTFrYap16UoliDzgQy9ELTQQqBI06hLEmr/uosz5hEXssUrmcRL3V7NyNSFGGt0T4oBWGxpTAwuyp1NVGYZ+xdHyBqGuQQ2paCXDBTQwEuOAlL3kpKWc5DyriFXSfYodYSZQtbgwA9ZYE5jYKS6M6VElxzY7SDnyvFLjYgtxQKuebcZtelRlaUzDxE7ofIdRmumlKbdcuoRSGhcjEzNhfbzETizzyYSVO2E5nmC8YaQX28iljDqCFS2/HuJNiJxKBiq6D+XfKklrxjBiXYXqDJPx4S9kkgb8IDPWB/new3U8cgtrEF3YC9/2lTxmt+bRs4qn/x9vEHvAPu3gM9Q1eszpgNtvOfdbG8adiskDney2rp7QPfE8q0+ZM7ky0l90gKVaaw7emzFI6TqPnjRh73c3ic2pibWhOh0xG4WfWLQLhXFsNg6zcaIxTckp467GbALDnqVaenwyQ4+Voj4aiSrpR9Nzbm5tmd69pjVCfvITiz7taU86+kftUN3YsNP75O4D/W7F/K6Ok8e3qAB77xsZ9gzr85pqHZicyPkNOwblRZay+JCiXgbWFzTjAkBRn0YWdwfWt0jazd4HPP2uLprP9lAkOEQwfRoYdcJpCUY8fEEKk5tEodo7he41ZqOxmy3sm52b7Fp8f5FTkDShjTgn5YJpNgoOBcJtDuXn4ijd5rArjzU9TIYQRklRUxBqRX2cjfKtEIWGgJpIMIJKEGc25Rdyl6I+icKmRjZK1emYPt8qRdNpkScBuhcNqDnthYmbi1gj8TzRmq0cK32+JEhP2OSIV7CTolsKY4zozkkhhNL1iqOSk6KaBO7ZRKIU8nSdKihQcWglru773/wXecFzf4EnnBt54Rf/TIkxjBkCDoHveueXMYYTTocK7RQXdqYczGqe89y3FmhbZzg7kfCyLOiZz3wzk9MB31r0oAmV4vlf/X8RteJ7fvDpXN5s3wLJjhWZy06luTgxzKxO0XLSrVqt+PK/8qMEq/jWNzxLSE2rDabusT6At6hao7RP5UWjlMVHj1HhzNxTJU3mthMNhC0CY8S+sTY1jWmZGDgejnExGccrg1E+zVrzHDUQjcepnjgEVOUQVyexSZTXoFDKFRMIGYELv7fzPY1uSvcphV3R6IBVR1KIUtSdC07IR6L8xQWXsoFzkIDYHrowsN2up3tKaaZ2jlXyOirVYPUUFyg+xVp5Nv6Y2W5Da1tyMLwkIMm6Glzg2/7WuxnnEqepx5g2mmmkkYxEzBhJ+xc5BS9wdq0b9Kjpboy41cMPiI7BoB7UIOKjf+/hOh6xhRUFMUZarZhYzZf8768jzKTdX90+IVSKxQdUWXRCYzHLkWg19aHYBm7O1zQ7NcEo2uuO4yfU7L0blv/rium7Gkya4fpaY3rP/N5M+RU/Vz0K61ej0ScDKEV/IHDz5mJLe30QaY4Vz95gYJzJWxps+n+lmN3bozeOMLGS96WSXZ5WDOdaquOB0BomHzgUKZDRNPccE2vL3f/7jEv/aWD5qEoKSqXF49fCA3+6YueDkZ27HP2uodu3xeN394OO5W2W6TXPMNec++2OYDXDrsyQrz9FCtjy0Zr2WnrPo8DdwYj+U/mIm2q6PUW0JCJPgsUHoIFYR6ojTailk42JTJQJSSoZ8oekT8jXuKrkZ/ywfUwVpIg2N+RnmuPI6qLA2qEGm4rwOBOtrq+tnIsnuSEpgpXPkrSjFsP+WJ5fj2ku6tNsdOUJjU6bKwkU0E6M86sTJ1B+hmWjkNVIUO1ZbaiwfPVNXwOwmUinpRCKhGzcuiwFCK0txTT/ruTqxuQSpQmTSt6nTF7yCGTsIqGtbhpyxkrzjc/7J6AVL/iyn8MkKFnwQkWYWKJRfPszf6pocaPR5e82hb6W16gVYVYXjbcafWEto5XIx4wRgt/a85Jv+Rl+7AefmS8pjnqBX3cqw/Of/ubiThXOyIdUiJB8lR8zN5xr5rDpCb3nQF3gxmkH0x47H3HA6AeMNmfmpBatAlYbkejhGcOYIN8qLSkKHxxGG2rdiIRHj0QGieRTFqsqKl0jIenyONe6y6zGJdhAHHriALoCVLYZTOzb8l/5m+wbLPevH+CGOUQpxcZ1+CiOUrWqEQuLgMIyhpExjIDH6hpwheiUjSMAMbRIZT8n/9S6ZlbNkcDDkMK/K7l+WNOHNbWui5ey1hofA32QZKFKi4YtRhhWTjyyyfdzGo0ptghRiGnkkDpZIyiVVoaJmeBbRzUZiUcPv6Vh4GOwgn+fHesrX/lKXvrSl/LCF76Q7/u+7/u4fueRW1hjApOc5+u++E1oKLKD+Z0yPxl3GllEEZKSTReAm1n6PYvtpKNRIdKdr5hc81z5E4adfz2j34uoWEPYEk/0kPxgB7mG1OhR3UCYNITWyPw1PYddiZzCbALN2uGmluMn1vhayDLrS4r993jqTaA/qAi31DIPve4ZFprmyJfgcT+zBKPoHruPHrzIdKzGLSou/aeBYceWrNVxbhln8jj770Hg4MEUIo0ZkqH/0Ui9MPS7hmoZ6PdkYXYTBVExuSKFBSUaTjclbQwUZhRyaNQyX1QBqhN5/HGmSmC57ZAcVg1sBLrNBKS83Vcu5byaVJBzYXbbYlr8glX63TS/GeYCa5ue0gXn0HQVUvzbKHPScWFT+DyiYXaSW1ufiouWCpHmxpgY4qIhVT7iWpPsCWVhsKsRs5LC5xuZzykvcG+wOsHSWwyzsHih2F/qMZRGIjTZYL3oX6Rb1QphhKTfSdBwnsMDMuJQkhNb5lvJajPmCLrM7jlDlVAuSIjA4IoJBCFIx4EXhrdRUhjP3G/Zo1oeZNs5l8f0ybQibwoAgi78gnwvVivP13/xP5TFt+jQUzh8IvQoH1E6vXea8h4qF/nGL39reX9F/hT4/jd8Caf9iAsTfKgIdIkpLRmjMWrG6NGG4nBkVKTSmko3BKSbGkPAeYULN5KWVFNpS0Thg2GMLVe7Cde6no2PWKVY1A1KDTTWEo0jOiFXZoP/rCfTOST+zC5HJDORPnTEGHAhJChcYOzsgOSiIwQHiImEFFuN0VY6ydShg6x9Vhka01KbhjEM7NX7WDXnWrehtYZKRZQZ6NwJkUitKyqTTRQiq3GJUoraSCeNUmhl2Bx3fPNb3os5kHQs04sGXJ25NCC/ZNksqoA0BOmyEWtE6OOGkYGH+3g4vYLf9a538YY3vIHP+qzPeki/94gtrNpagvMcK8P3vvWZTCvFzFrcsOF5X/x2dD+iJ3KhRKNornZSCJ1Db0TzmY9ht2Z2T4dbVFz41cDk2kB3UOEa0XwGK5mbUYPuJGM1TCv0eiwFVqddtl35wtyMWlEdd6jNyOaWfXY+OHDjyTWuVZz/TcfVP2bZ/cCZTNNKsTlnMKMwbaUQBtQmJF9gQ3vVEWtTCC++FYjWDLmbVFIsasU409iVdGTjLGk6IzSncn7TyyPDrsVuEkS8a8944iLwUS9a2M5rooX1JYFpswZUyT0NSHHUg9xQwcpsst9RRU7jJ/L9YSd1nyNoIxBuXmsyREwQw5ZSgKP8rhkos8popXBGCTbBNakDTjKjbHpPs/XzNX1Im6SQR100h8M2JQbROBMjblGjfcScSAGSryNkIC35ttqLBjYahYoRX2kp1HGrh7Ubj5tbggLjtoU2m5XoFBene5d29waMQGdnCyIxloD0rbtS+lYiMp0lPxYLxCBwccwymZBsDiuzhelCEDVGlt2obSHjJgvG7f+V28bXFRenDGU3whw2CSJXPiRiVSbrmWLnWNygYlqkvbxWZbbPG41Ks21dXrecG+BhNm+5caI57VYMnEOpHXxjMVZhtUsvW2ESq9YoqE2fpDihEIkUIzHBrCF4tDYYJYU1qsgYOoxyuEgy3a9ROFrbMISeEA3OjmAiNqXSxMTkMVGQAx88QXmUCXKhpw/RJ1elHG2nlS3JKz5l5mYfY6lcmpmZ46Jj9CMuEbIUikrX7NQ7NLoFFC7U3LfxGNUwtwqrPWOwGCUCdTHVl5mzi1LAK12jlaY1ExSatXd8wzveI0WhbMKFhxBVIgE6ZBTik247EzjttniFEBj8KDC9PnPBPkzHw6VjXS6XPOtZz+JHfuRH+O7v/u6H9LuP2MKKNUQnc8pNuMZfe86/koVIKarBESuD7sWTlBAIkxpz71X8Y24hKsXmUsvkckc0isn7rxH255i1IzxqSnW4QXee9W0t9fHI8vYWMzfUp45QGSFKdZKTOexM8a1mnGmaQycFI8I4NUx/425hMi7mzO5aokbPbGcPN5UCetu/6yQdpTWosA0lD5Vic17THEc25yzz+wTKbY49oUq2dLWk59Qnrsgz6mtrrv5Pe1RrKdZ779tw/Ckt3b5mfr88xvSysJuHvZrmWp9SdGQB3NxScfBfrjPctkCNgWG/RruIXTpc2+BrRX2MLA6NvM76ZLtbda10tu0NAJnDVqvIuBCo2K63rOJQSVHMaThmI98vjEJS19kIOUpmOaQbOhX+CP1MGMHag09FNTN68446d75ijkGZw8dKnLViZSCIuYKwaDXjbs3qtormSF6c3QSUpD9Ld5qLdhRYVndZNmBLehGpA8uFVF7TVrMqGxdf5tWhtnK9GrV1TIJiuB8rg+qckIScwMZEShB67iJDsmLMlok6sYUVSZ6jkl5W2VSsBao9e565G1UuFJaxGmIxoFCjL5AtgMoaXavBBdmAJoZy7nhQCj+rQIPebOVC0eoSSECaT0ety9z3ZT/ybA57z/e/4B0JVk4ev3lN1ornPvutfO8bn8nydMEPfv1P8ao3fil3n5wQduYMIc8kNVpJDqhVjrWbU2tPYyJ9EKhYs0Yrh1YOq2oq0wKOMfT4KDux2niqGFLg9xKlKjbO4WK2UJRUnID4YyoVk7eFsI0bZfFjRRgVqhnxPqERCGtXRFFJbxslfccojQ9i36hKmLkX3m8QS8Za14QgMPC8WrCodggxsnQOzcjtM/H5DDhQEhpvtaU1LatxxXJcJqeqwBhEO9tSp7lvIPhYkCTfpHs/kgiTsqG+aaPnQkF+hMMgc9zVuBSHJtXQ8/DLbdzHmLG69L2Tk5Obvt40DU3TfNTfe/7zn88XfMEX8Lmf+7n/HRVWMqQTedlX/DNUbbDLge6WKXaZnFKsIiiDGhXmeE249RxqcCilmN29ksXGgz9YCGOtteg+4Kc1425NferpD2qqtXSMUcvzjfMK3dri2xusdLbRiA2hdoHpb9xN7HtUJf6netXjDmZljugbKaihUiUsPMtkbBfZ+eBIf2CZXvF0+4bFXT0qRO7/UxMe9UtLsS68c0V/cYIeIuuLFdc+Y4/mODK7d8BsHOOuzI+bE2H2qhDZXKhYfGBg+qFjQlvLTr6W5JqdO1ZgFM0Hr4PWjLvn6fYMtVUlJk4LGVE6Bk+ZYfpKIFszkOB12dFms3DTkfSbIsnRo3SwKrkp5YII2245d686xccFKGYP0chzNifI5j0IRyqaM5CrS7CsQrrFXtjYGfoVf94KnZAMIQyJOUOoU6SfVdheWOG5W9OD7MZ9qwVeTqSj0FjUGGiOxjPxcuCnpsyaSKMHux7LDFVBIXnEVPSUjjc1qzi2ZLxc3NL/QyVynMxKjlq6u1grdDKCyJ7XAkds3aPkvcyEqi0Um2MOVYyQNjvK+1LshByVPo+UrCOfnRRi39Tb89UkI4oUhxgEvsal76UZXJRhHt/wQ88ufVyIcDXl0X79a74U6aTg1S95Jy/9e09P+aGSt/nBTQTb8PVv/HK+5fk/wTe+6vNQMWB1oNYbuaZoaIzH6pEx1NJ9BgixZj02jHE3vUXiSVUPiouTDVp1UjQTPOzx+DjI34NhDON21gloLTFwIRq0CoTg8DiU0iitMJXBKksV5oxOOurY9BzfOKVf9dhavMWDClRNhQ8qzUehqWrWw4CdWHxwRVJTqYq2aQFKUR2CQmNpTaAyUpxB44JnDEL06uklCYfIalyjdUuMkRDhZDjBRYdVFf2qx01hciXbgApkr4dY5GXN5aXYcdbmJoMRNQZipen7gbEaMaVL/HAM+Q/++HhZwbfffvtNX3/Zy17G3/pbf+sj/s473vEOfvVXf5V3vetdn9A5PWILqzKa6AORipe/5f/Hd33RzwNQrdJqnAf5lfiFBtMSalM6FDetpDM9XhHnLcoFlo+do4fIyadMMZ3As1GLUX2wME5t+n+CZxoh8QDEASqvaK8PVPcfgzGo+QwqMazw84bQGKqlR/m0EOrU7YyiY63WSarQRzYXLGYUHantwLeScLJ3h2fYa+jOWZqpwS4dvtHM7h9ojgzjXHP8xIaoG1AwvewZZ7poMJtDh59UDHsN1dKhVwN6PRImlfgbm0mK+pJiUK1kDm3GyLBIxgeddKIqpjmoj/iZlmLagqpFK5rN9YPaynuqpXSY2UUpp+loB9Vavp5N86OWn/eNPKf2AnWHSn6uTppV16aiP27JPbLRkcc1o+hXQwUODUkepXwUiN9q8BGXjLqjVpIgFKHaBOzSkUPJoxJIPmoJLIhKMe42Nzki6TEU4wdiRC/TNRmEXKbGIBs8H2EUmUphCyuF2STCh9XCPq8EwlWrNI8KSA5oYwkp1UaSdCK4iFsYaAXFCNnMIXemZ4wdzHqUzeXZ2KxcWFNXDAi8C8L8nVRStM/AyCTHKMmv3f49L66Z5ZyZzwQ557/7U1/FtS7ggrB+Y4STMeDObCgUkdc/72284I3PpPcKq+A1L/pJlIJXveAnedUPP52NU5yOsEnNzxgiX/fqL2HoBjjyDE1F3+7KpkZB7R1Ta8RrmJEQLVZ1SPi4zNxiFKtG5+DKpubiZIJWkhLhckwbQmYSY4YREmtWPnaxERSrwR6lND5GKmWJCLSsq0BtFIvpjLH3jLHGr05QaI4un9A1ktQzupG+G/BeCvPuzi7rzYrHffrtECONrqispTE1i3qnaFx9MPhxxCrH6ANVU2O1xUXP2q2w2AIjx5FC2vIuEo2j92LQX1HTHfc8/23vkc2rTvffaSiFFUC7wLg/SWPkeGacLOMEcT2zhI3k3tqGT4rr0ccLBd9999036Vg/Wrd6991388IXvpB/8S/+BW3bfkLn9PsqrB+JLfVn/+yf5Rd/8Rdv+rmv+7qv4/Wvf/1DfPQz8JqqxAQiFUg3r2Uelo5oFONCFj/fTlFpxub2WqrBce1/PmB2n+P48Zb2UEgt4pwD9YnoR4PZRo1VmygFJIiPLkBz5CVA/KQnVhalFH53SqwNvjH4qWFzIEJ9PUrBqo9EjpDhEp+612rpMYNEtgUrpv8qRGI2j1ew874l/flWOqsuSW6MnGdmappeYGUxjYh4pXEzw+Gn19zyX9aMc0sFZOtFlHQgw4UpdjWiXWTYEY9dN1H0+zC5KnOUUHEmBzWWtJ/2RnJDslCfBNwkzXqT6b0KYp6vB6DefoqhFig3GDG1yO9/qFN3qiG6ZLlowM2gOhGylB6leBLBbGQjUJ/41MHJDW2GINFembGIdEpuaksRzJIZMZMIqF42PqESZrdKhdFNBFX48OtCjSKUzwW4WroE854xuA8B1fsSXF66uRCI1oJNhCAvlIv4YXaY5DzXlEeMBlyauUZVHJpUgGAUNr+2cSvjgVhmnhluJmYP49Stbm8fYkrXOctmlvdMoOHMcM86xlzAo93mFZP+nWmx3/fOr+a9RwPOC0xqtMrqzjP3uHBbv+GHn8HoZU752m98uyDASs7zbzz3p4oz1ct/6Jksx8DapcJvJ/K+diPueA3Wotoab2o2vsaohlo7tJLi6uJHXu5WznBls2BR9zRmwCqFUhU+9LgwSOoLKilLRWQjqLoXeFmplKZTpQI7AsLA9Ti0qalbg9sELl26na5bc+stFucdnVtzeOUGt1y4jb2dA7SVLrC2hqaucEEx9h4fQSvLxisaVTEMI6fLY1anJ1y+fJXRjZw7OMBaw+BGIoHNpmMyadHacP36dW659QKH129QNxX7j5unEIKa9dUlX/+Pfpuq36JJAONMAjxqH4R1rxJCkjgRZ8lt+R558fP/cUFGvv01n00w/Ud8z/8gDxc06kFyX1363s7OzsdlEPErv/IrXLlyhac+9anla957fumXfonXvva19H2PMQ8u4fmEC+uDsaW+9mu/lu/6ru8q/55Opw/58aP3qKoRKPhZ/5h4MMPef4S//YDqypLYWtzuFNPLzMF0UiDHuaW93IloPsBw24LmKHDX5xnsUnSZk0OBNYwVaFdFgTttH/CVrAw2mRs0hyOnj20YFobpOoVVA/2jd1IRsfS70jFe/t8c5/9jhV1H7vkczezuGZf+04YbT5gwOfQp2kwWx815I6xgBXbl6c5VVJuAazWTKz0qSGG+73+b8ah/c4q5f42+tIMKFdWJaDbdvBI3oFYzLCT5xbVSnHxraa5tpOtpDetLNaaLTO9bc/qYlt3f7dFDoD10HD65pjsP++8JHH2qZu99oUDD41ThWkO9CsmxyYuZxrGXqLtR0R56+j0t1HytxBdYJYlMR0m1cVORzLi5FO/mGJlDJl29m1EKa7Aw7IlzlHKUWapAymdubhexnd+Si2q9JeFkElEqUDLjDAy7prBqa8S/WUWNr4T8dNaEXzkppn6ipYgHsVDUQcg9Sm0LYJ47Kue2pJ86JbXn61opmaFGhxq9SGFCELjVavy0Kub7IJsBN7WlU4I0408sZpMKKl5YwDpGuUaVAgNBaWEcay2bshiTg5PE2GVtK2or8cnSI3SEkVT4zxCtknY2BnVTFF6eSeMjHzwe8L2jrcUxqB+TljRJdGTmKF9yUTyCp1bx8jc+i7/9jDcRalPOLUcsfufzf4K3v/UruNYNHPaK4yHSK4Oaii9w7EfCcoOyBjVr8Vg23qJoxHpw+ylwc4FXrJwlssfMDkzsiFHrojvtQ0+lKrSq0jwyptkoKBQ+SgCAIqZoN/BxQ/CWEAfG0Evcmo1Y27I3WdDWhn4ciUcKt7lCXDjOnZ+x8R0KxcS2dGOPtRY1GqgUTmlWo+E4RHYMzGcTJrXF+4A2Gq0VgxuZ1A2msqhKUduKSTsR+0cfpfOdNIQ+MPaevjvFrQPtYfpoh4jt2ZLYwha1UokVftZXX8VYUBLd+/LvH/zhv8T9w70S1P4wH3/Q5KXP+ZzP4d3vfvdNX/uqr/oqnvzkJ/OSl7zkYxZV+AQL68diS02nUy5duvSJPPT2UHLbKZVkLauBOGmwN9ayWAH1UV+gNN8I2adaeszxhjipcHsN9X2nBLtL3Ik0d9dMrofiqFPM01PCia9VsrkLuKkRU4WZZnLd4+uUmDKvUN7SnbOsL2jaQ4Eq+13Fp7yl5/5vXjOZrzG/civn3z0yzi27H+qpr65xu21ZhOzKMi4sk/tWor2tZXZrl47qgRPufPpFLr5r4PxvjKje487Nqe4/xjcHRKu48cQp537tmOHclGgi9VI6udNHGy78xsDJ42pmE019NLK6rUl+tkk2UsGVP7Fg9oAs+JPrkb0PyKz3/G947CawumSpl6LpJEY25w2z+x12NeKmDX6imd55ittpOH3cJElspIOuT0kUfYFnM+M3NSXYlRCZfE3JaXVT+WM2pCi9LaFJ+8g4FZYyxGIKoUfxdA7VmSLoohBtkhwAIFhdNiCml2xVYfVKAo5vzLabU2z/bhU6zZFyt2o2icDmPLo7M5ZIxTE/Z+kUB1fIQTER02LkDMPWg9HJhKAqXUCwoiuNSubBetxuJnwtc2GRHulCWFJB5sDZTrEEpVemsIGjUUJqSmYW8no/HCqOpcDqQSIWy3w2jThk55SY1rlm+SiwcWsYBs+FnZo+wvEQwQrRitGJCb9V5ERUq4WB++rnvlU2TamofvgRjeIZz3krMbli/cDrn8kdJw6HEj5GWxPrinDjFNXWErYhqwiKwNwu0cqxcQvGmIPfKD+zdi0xGqyWz2wM6X5VPQ6HDxU+hiShEUe3SJ/sBTVaR4gjGpOIUCM+GkZfiZ8vAUVHqCbU7GIrxaVb9rj1/FMJ2mO0Ya6lCRmCo/M9lZZxWNeDrg27tcDlRmmMroCWxc4CMaLY0PmOzvf0vme6mDC1Mxpbc/6WfTZuzWRZ0V0bmPe7WGX5sjf/a0AQocyDyBIbiFtvdC33QEzSKBkTReRCSiYi5RoBU1VUa4GdH+5DbqePXjwf6hksFgs+4zM+46avzWYzzp0793u+/tGOT6iwfiy21Nve9jZ+/Md/nEuXLvGFX/iFfMd3fMdH7Vr7vqfvt3BBYW5FWaisCpjT4Wb3GaOIVgg5egyYZY/yNXoImJVEwunRo3xguLRgfdEy+x3FwXsdzbWecafGN3prEJAILH4iC012UppdFl2kWXvUKAvzaK38/DowuSY3e3Mc2JwX3enFHzKMizm3nw5UJ1L4dT8y7rUCUSdYV/lAdSqQIBrs2jHOLMpENk844OJ/HqiOenQ/olYdmBkYTX24wS0azv36CW63xbeirTSdXNgH7/HYtWP/vZ5xp0L5yOJDG4b9WjJErWZx94BZOzYXZX6gQqTflYD2OkTsakRFy+acZnrVs7pohb3bWTFY8BHTBfqLM9xU2MzrC6YYPKCEEby6LUloNsks3wmpa3WbyHzcRJJu2msyY53dJzNWSGzhTRRNbSs3s6+jFPs+lBB5FGKnlvWdOsG3VU46CiWdyDcSqpAJT5kx7WYpiD6ZSsCZ4po1qk5iAvUYSt5pgVoT2ziSdvR5gfEhmagn2LQfy6YQq4mmInp7Uzh5dlDKn4v2cQvPJaJIe20oIwTtAqb3qEGgZ7MaMCSSVDJUyd2nGrNTUyJHuSDdcyAJ/xNEnTcK6XFUhvx8FChbI521VqW71mNi+P7DZ3J57Xn917yVv/uPvpY7TvLmA/A+FVWN1Z4QDa//mrfy7T/+HLrhzOtPXY5vk0Woi0melGDslFP8jd/4dv7Gq74ElxfvxFLGaBFi221n4aKmDw3nmjVGO456m4BoyAU2otj4Cju2LKolCodjIigAKyKjvHdpxhmhRNVJPJuk73hCcl5yaOURkEunj11jlGHtRjSO07BkXs1pdF0cm/phYL0Z8YMU2HXvmU8UloF1N5QcWY3B0jDk0Qc9ve/ofIeLDmVmjNpjzMCKkc5teMF3/CfMEOgODNpB6yK+TnyHtXyObipIlBmkCZGM4eQ+16c4zTNSsUycK7GGKL7ua3+WqOD7vu/zPuK6/wd5uJD0fg/2/U/y8ZAL68diSz3zmc/ksY99LLfddhu/+Zu/yUte8hLe+9738rM/+7Mf8edf8YpX8PKXv/z3fD06jzKathIWoloNhFmLWg+4W+YpEzPNkiqDOdmgK4MaPdYosVobA/X1NcOnNwx7ML3zFD+rkzWhSq42MicS3V7EzQRGsyuBNTYXKrSThdduQpE6mBQrNs7zPAyRzNwQI4L63mPCzkRmbVpjV8ISjZURMtFei9mM+EWNvbEGDc3GpbmqQgWFaQ26Hwn7c9ysIu62VCc9djkQrWacW9xESFF27dLsT6Cz9cVa0l5qTXVtxeS0E8OBxGxd3zZh8Z5D3MGM08e0uIl0gL7WXP/MKdVSFvQbTzKMC6iPYX1B0e/UYoKfJCfttZFhz9IcCbNWzBsi3V4iIVlQSzG+j4YS8+brbe5rnuW6iUpEp0hzLOQk5aEeJN4um+hTK4EPU4hBNIrxnMZ0271p9g/GKHyaa6qQAg9SUDpRy4xwBb42VOtQUELRGPuiq1TJFSnURpbIXIAykzbJR/ChFCW5kDWxsqJdBSnCgaRlVSgVi0+vLEqmMJrzgpX5BMVgIUaUls9LuQRJ++xdrVGbEVUZdO9uYvNGrYubWDn/TLLLSTt5o5C9jvNrMUKui41JDlWqkFgA3vxzX837jkeOXeTcjrze+9ZeiEpx26mixSpwaituncryo4nMao0eEqTvPNFYidUrzGaVOvjtpueHf+iZ/O7JuP3MQd7HysLopGsldyyKMdQcD+e4OFmjcKzGKf1Ni25Eq0jnG4w6oDEnWHXKTfPSZOq/NctPDB4FLnV5Som3sRCfNEbViVEsu87KVKK51TUTXRGJuODAw/qko+sCz3vp/y3XYOeLVhQQvXTyJydKA+AmIg/ztdxH/Z7M0G0XxaY0pE1qH7HpHs//zpnCoucH3wi5Uo8hbdYpG0iVso5j2igo5wtiWLJcnC5jC+0ik52HPgZ8qMcnI4/13/7bf/uQfv4hFdaPhy31vOc9r/z9Mz/zM7n11lv5nM/5HO644w6e+MQn/p6ff+lLX8qLX/zi8u+TkxOhRXvpWFFLQluhrxyhQyBOailuIZbwcpEeWDExNyaZ4Uf8xGDvPGZ5+z6P/ScdflaLo9HEFD1jNAqzCbKG1JpQK3EXSlCjHmJh94qURhixdu2wG8/lP9my+JBi9kCQhVkrqsMN/aP3UlCAeM9Kp5O6gBRNpzuZxSkv8y7lI915i+kitg8iqTk3xc0s7X1LTj51h1Ap2ntPiJOG6mRED4bNLRXNtU6co5IcY3JtRA+B6upSGMGzGje11McDtg90T5rg/8dztNdG+l0xvW9vSGjB+hKc+63IyRNkFz4+tmP/nzcMc8U4g9lleR0ZXs1QunaxMH9lwd3e1MOOFNpxLkb/zVGEKzDOFdVSFqYMdQarCFUiQ2kxz59c86kzSnO8vFtOBCM9gm8lhSYmaYtKEK4ZQyLmBKp16iwa0b26Sj5vu4kMC0N9GqmPnZhgVLp0wr6Wxct0AX0mqUh5WVywmhhV0VozjrIITZsSjQYyl8SoovHMBKdojBiDBICI6VLByNBydjxSMtfMXaLyQdCbBJ8qF2SD6UKRnoHAwSokv2ClJIzAhWJaAWylNgm2Fmg3wamNsH7F+lBvC7yP6I3jAyeOjYu85iveTKwN3/H2r+TyJnU1+T1Js9XWwPd+7dvk9dWG863hBU//MbGKTIiASa/XN+m1nUES8gz9rz73x/n2f/Cl4hIapG8MCkJliesB6yI2yXxCENqRjxUna8v+zDGvPIedwcfIxssTGBU5aAYmtkaxj9Un9N4TkxRGBHmSnpOdi8SPWKOUTzpUSc6RM4IcbycaW81qHNCqodYVRil633F6vMH2NV/3Lb8gM81k9OFrjbJgNq6Yb2CliNqOQjoTFm9MaJvGNYIaVettalMeDVQrj0+ZzdU63uwetvElNpEoTODsDnb2M48aYmNLqk1+bD8zheAG8Nzn/MRHrBN/kMcf+qDzT4Qt9Sf/5J8E4P3vf/9HLKwfTaSbYg6pTSWdyaUDQmUIrRhDbIX/lNkSUXbcvjXY5Yg+7aHrefzPr+jPNdiVShCxuOVcf3yL9rD7Ac/mQpVmBZH2mmN9qWJxdSgdjJsYVrdazv/ydTaP22V5e8uNJ2sWHxJThPpUMb1/4OhTJxw9fp+duz3VSS8SoM7JnHS/xZ4ODPst1elAaC161YMP9PsV9YkTNvGJIxjF+tEz6uMR12r0emB2b8fmYkv/mQc0h058gw97tI9cfeqcnQ+NtA+s8PMGvZLiEGuL6lxxQHHzin7XJqIPrC9VVOuI3UQOP82y94FAcwOWj9LUR3Dyx3sm72258j8F6htSgFcXhSh19OTIxf9kqI89bmFE65pmMN0BZYQVallgqqVoXNvrsXgK200s6SjRJFawEsi4WkYJHE9h4iqKUxUIPFhITJVmrFSZDZ01QvCNeNKqAONcp89eNgCri2IFKbv/xIBOu/LMEg51mnWm1+VmpuSvFpg0zyRzR6kUNM2WpJMJSskNqUhi0uy1pNqkea4evHSdqRBmW0KVgsTjtCqxXbIpM6nT23a00SjipLo5ZafoakN5zJihVnXGJhGETFXpgrhEo6UYDx41BkIrhdxs0nWmIq/+qrfIJkHDte5M1+5DyXhVwKu/6R1SONLxjc98i6DcGY7OGuEEM+du1XRiqhFSNCSIXIYxEAJp1gnttKYbhawzJARLa4XzAaMUWjUsKg1Kc74NxGi4ZwUnQ8RFwxBanjhT+DCycS0u1CjlaY1ExHUeNB2DD2gV8TEQoi9Endo0aBR96KWTUyHNkg2VqVBYah3p/UiFpjsKfMO3/svEERD4NVQC9UcNdi3jjBjSjN8bxqktUhgxrFFlhKUHyYKVhkC+Vh2PjLsVdunFgc1I5xlVyjgepEMtucDpXGLyEgCRNtp13oipMrYQGVosaoxcbH1jeOG3/UV+6c9tiawPx+GjftA8Vv8g33u4jodUWD8RttSv//qvA3Drrbc+pBNLHx1aSeqLWY6oGLGnEhju51KM80x0XFTURz3joi5dhr56DAd7jIuK5nBg2BUdY458O/dbG2Klk02gL3KRaBSTq47NhbrAkSDQynBpgV17Vpcsizsjpofplcjid48ZLkyZXfbYlZMuJ82hUAbV2CR7sVSnQ8nYDJOGcGBpbgjRSY+RYceyumSw64hdy821eeweduOLOYHpA2rjcTPxAN5/T091uMEvasxKAgNEEpG6ixRx5ieW7sAIUagY1MtN1hzJ4rZzp0+ELM3svzYSFbfSQjbS0J3PRCPFyWMUswek4KLAJXmS9rBzZ+DksZp+X4qoHpKRvpauNAeT50VSxYjupMA1x77E/tmVLCj58DObzEFkTu6N7KJ9rdBOJScmWYBNLwuGmOTLn3GWupMzxdwMSdIDnNXoKS+FP0tRTBfK7ClaiW/DIGSeGMFv74FQ22LyQJROT/VeRohKbfWiia0baoNZjxLUkI4SYZhOLbS1dHVQugrlgoiJ02KW7Rt1J3NXuQYE/o0pL1h7T/QCHVPJz0cjXa0QncLWUSmfi08F9QxreVzU2LXj5V/5ViEQxci3vvHLOc5OTWdMBMopK4WKYauH9NsO6SYf4gTfm85jOgpErnMXrhW21QQNSonrbozQEfFuhMZAY8meJ6ZSXJxqbp9batPQ+Y7er6lNxRN2NMfDBsWMxmhCGAkx4uKMyxuJyXvynqI2kd5HYJfl6Km0xyhH59fpHGTHo5XGhopIoDFiyGCUdMdS3BV9Hzg9HnjRS/9Feb1Rp5jJRALyTbLQ9FvWf9Z1h8rQHIfENZEXGYxkBmsfwVM2jt2FBjdRrC8Yplc8QcnGxVdgkhlEsNIlC9P8zGhAy3VVnYjO+rXv/Gq+8en/MJ2D4rVveQYvePbbiUbx0tc9g8HD6ALdquPo8MaHL+1/4Mcf+o71Y7Gl7rjjDn7iJ36Cz//8z+fcuXP85m/+Ji960Yv4M3/mzzxkE2O5sCLf9VX/t9j7nRPo2XS+3GDyBSEHVSEyLmSmIgu0h9mkkEXczCb4V1GdOoaDhvqwhyHg92qaqz1uUYkkISQYuQti8D7TNMdOiC+1pjoZxCd4HVIEGYwHk9IpDbsVegiMM1lk9SAXq680tvOYtSx4obHoXmajZuNL+LnpAs2R3Fyb85bmhi8ykOqop7s0xTea+kgizPTohQ06rUoBCnUKDOjkU85xZaEWlvNpK5Fq1Vo0q8HC4j5HVLA5J8SG2QOeYUdeQ0gbDDMkM4hIsR0EcUmqllKEmqNAvydkofa60O99K3PaahXp92UGlPWU0VIg3n5fukfTS2Sb7re5t8oLAUf3Yv2IFfg+GiGThTp5+nqRBRUTByXsWdsFfNBFm+zbxAIfU87sKmA2oilVqWCF2lCdig9x7sCLy5JWUox0LFaUQaliMRgrvdWAghREk/Smhu3clWR00rvtTNNqojIUxnH6WekgEalMKvZ55qhSkIRO56dSR5FhaLQWkhPIHDXdK/IGJztDreHM/jhrY1WKCqPiJnhaqRSj2HlA5sJdJn6lGTRGF0h6Xm21tRlSFNMNnyDNM3NguMkbWSUNcb7molUsXYqMy68j/T1qhRscutq+/4+ZKR63MCkHVjH4gTEMpSDOK4NRMjcdY2Bm53ReccvE05iBSldoDJUGowKVtlS6xkVo7VQkyCmyLhszGG2pdS2yoiB/ht5zerzhxd/5T7Fr8TYOVq4XlfJN5fMUKNdXqrxPk6tO5qnZr7oPmA6GHYN2kW5fPryxkVhEIRJGQojUo3S/fqKpTxx2pejOWSnELhYSIFBsO7P3tumkEXjzzz2X9x4Pwj1IMrPnf/VP8td/4OmMHm6sHNF7MfdJjPeH+4hRJb/mj/79T/bxB+q8VNc1//Jf/ku+7/u+j9Vqxe23387TnvY0vv3bv/0TejytwJxsMDFia4sanLCCK1OMv821lez6K0NzZcW41+Jbg64NsTLc/+cOqJaR2f1OFurkRdret2Tcm1AdbpisB9xuW6C+YS5MX5SIpFGKftfSHDt8pRn2aibXPZPLHetbW9rDUea2iWzgF7YUnvpYOkw9eoYdi59omiiWaGbZS4E1CnNGCzjsmhQoPnL8xJr20FNfPmW4tEANiun7D0Eputt3sStZjPVqEKlD2kiEWgwhwiQZwXeO0MqsNjQVdl1jVyOrR7W0ydJRIsg002ue5a2WyVXPud+JuEbjWyGO9HuKei2MXnEpgvUtism1SHtjRAVLqBWLu0bc1FCtpOiE7MZkFcvHBepDzeQKxJoyA9IuwVLp3+NcZp46dT+h0igj7MTCHm5TZmrS3JnOJ1mML/BtqEwid2jcRPJpzRBTh5ZcoZZe9Kxpzugbg8rRWUphxiTh8TJHB+l+Y2O2ur4g3sCh2lamKLCLFHwFYFE6iH3g6FEbR6wtOns5pm4uVlJUlYtijDK40lHmDYZZSzHyrZXnCNviorL8wUfR1SolutQYb5qRlu645Mgm0pTeFtX8epRJEDwRP7Fy/3WuwNDZdzhkDS6p3iXda6UVf/d5b0PHmAhcCabXYocHaWZoJZ9YBTnXLAeKmrRhEYLeN73i6eS9U2q2tgZ6lSX2yVZSKXZrxaNmFSH2YmylK6bVlDoIscgqMX0ZRim0UzvDast+49ipFSFqtII+KFxw1EY2EkOo2bhIbZy4IcWAD4ZAzRAkPes0aNZOoGbdDbRu5KXf/k8wOetWgQrbLjwTynwt/AEUJanLt1rUD326DpWw2ydX5VqorcK3krkskhj5nE0fqW90oBR6TNpjZahP5fnLZ+hlIyymMNt0sNzM3Ld2bJzHt4Zve80zcCEyOs9qCITBEfsR1daopkLNWnQO1HkYD/8xDCL8HwZW8IcfZ9lSt99+++9xXfqED6OolNouJpk5OXrcTiNa07nMRc3lI+zgCG1NdWMjm2qtUd3ILf9lzepRLWYIyTM2Oeq0lcw+B4c7P2PYqwr0p6Ji2NG0h55qFcQzduWxxwO6leH85K4Vp5+2j90EfNIZhkbjrZj5d/uVFOJGFqXq/hXKR06eMEV5S7AV9WmFXY5UyRJvdteSa398l/kDjubqhnG3oT6JTO48YvlpB8z/852MT7yEn+8w7Fjm//4ONp/9eNrjNbGtZc4MorEcsxE7jDsV4UJDc73H7TWMC0u/o2iOdTKul9fQ74sUZXp5ZHbZ4VvN6pL4GVfXPP2Bxa5lByyRcjI3nV4VRqGbiKVjqGU+lN2b8jzVdLI4zu7SmJ7EQpSv55lme0OWxmoTkjxEPJfzjjlUOrkMKfzUYJJMynTSgUWtUJ2QuOSP7O4zDGx66aqJ0N5ILk6nrhTqkuziI25uUjeVOlEn14buvfgvZ8bwGdF8ZmbnQ4++SICMS92aEWhYKo9JC6l0xCp1u5m1myPmMswarcZPqq19Yf6TFj89ipNUnNiSqBOxW8P/UrCDdJNQrp1MfDO9T6Qoma3mUHlhoYby+zG9x5LNqcAoXvijX0E3BNkohsikES1rGAOvfcHbirMUMRTWc2iEnCRSLrnPQ2OTRnZLnBFyWyRozbd879PpPezVinOt4aDRrF3kjhNH50FVlrjclJHSXq1pDfhoCpRslEFr6aZdEOeuD/7uvdRNzXw+o9IVUQWcl5SWfuzxY6Rpa06CY7ozQ1cNYxCDid7DxikaozloIrWGMcADm8hxD77riZuenXMLKYgJAhc0KRXBBNX7lBGc9ci+EtKk6YJoyWeVsNuBcWbwjaY69YRKMcw17eCFc5B2Hqbz+NamDZFc38HKqESuzVBm9iqmWWm+J/KIzGqurh1953jhK76IdTcy5iCKEFFGrmE9bbbQ/5l74eE64seAgv/Qd6x/kIfSmsZoIVigbyJ6VNdWhLaWFKxphX/8BXIqSX3lFL8zIVrN0Wfs0pwkLepGHGzyIhgTWSNUyTP2eGT5mDZ1jdBed+kio9j5ud26XJSb23eZXB0Q9rFIe0zvcRMhVE0fEJZuJon0tyZG75GnOhlRPjLsVIw7dSEJGKPYf+8asxrobptDiEyujoRZ2kg89mKZn+rOEx91C+0DK2Jbp4KQrOYS/JJzRaswok4EolY+0u3rYlOox8jhky31iejYooajJyYjDR+ZXkm6tXQu8ZYKuwlMrkc2BwYzRsaJdPiZsZlN8E0vz1GfJvJDIiupqBlnW3clM6hEoMi0/9R+KCVh9EoC5LMkJGeU+lol8wd5DDWGFP8nXY+bptzRVMdEniMd8TgXyYHtQpp1ptQYFzGnHbrX6NHiUxhD1CRPZENI72N1Mm5h18TOhW0nlkMJcAHD1nZQLBDPhI/7iN6Mcq2f8f4lE49UQiIyczM53KiYbDCXQ+lEo5FuNCff+Gki5Q3beLcMqapuu+AI0cUTGlOQgeJgpdJoQUsnKV1kTPC1Lyb73/q6ZzNEuUfHwdNYzTAEKqtxEV70A8/iVX/zpzBjIEwM8cxzAHitgBT9p0EZ2QBlC8lQa/7Oq5/B/RtP7+H8RPM3X/JT5TWYIfL9r30m7z8Zt8EDPoA1uBDFbP5MjJlCDPMVSqTDOrK/v8tyuebK5WsQYHdvh5OTU3yI2MmMk9MVprJs+pHJ+YpxNsUHxH+YPEeOPLCG1kKtNSdDxI+OsOowu3NGFPXxuNWChu3aYjaiq69dstosqEk5ady8Kt2r6YIkRrlYIiabI9Gi2o0QHKuTsax1WcLkW11mstpt7S5DrXnLjz2bkzFQacXpEFj2nqPeE3xguR7TvigQHfh1hzIGXRmRjTX172/h/wSONKp/0O9/so9HbmG1lnmdqf96K6LXEG1VjMHPupOFSglc6mQhaQ8d48yUcOjNLRXTywO+1mWRikaLFV1jqE88m3OG5kRmsVpLATOddBHDjqU+coy7tuzoxrmQhzJhSaVdps7QYfJatasBP6mw1ztCZejPN7hWC3yanE38xGJPR9Ca5uoG3Tn8vJEZ4sYXO7owrcX7VzcCAQPRGvzEpESfxC7UgJbilLtZ32qqdWR6/4CbG7p9TXMs3YJrZBbaHEuB9Y0WEtHKY9cjvrW0hw43NQQL8/tk1tzo7axP/HlNIhIJ2ULeD7Ahe81GbKfod0hOLzJ7tZtQZkamz/pQ+X27dgUuVCDm9l6jKzHUj+m1FnYtJHtDiutU/hpKZDnVqUt6zCTJUQodAn6nkYW8MaXIi2wodZMmFX6tiFp296KDHpNsCplrj6H8rgoBvRnIeefFD7gW5m7WCka9Nd0vgehhSyCR9zlZDCY9KmdN8JOBQdZon3VGOpsHqzdbXXU28s+LOCp1KdkHOGlPczJPIUlptt7FLnLb+Yb3HY/o1lA1hjiOOKvwGpTR/L1vfjt2DLLBzY1olMcPmfXrY5nvVYNsqmI6Hz1GppViPip2a81LXvwOrM+bJpk37tU6R9IKHDw6lDUEkjvSGT8+pVRaPpQk1BC5cPGA/Vt2sKGisTI/vef+y5zqCceqIc48wzCi2pFNqPCnm5vWoPwGeiLDmRU99iN6NgGjGfJIId0zblbdpFXVYyA0JkkKw/baPrP5C1WCa0fZLFaniT3vZXTTHAtypIdQrqEM6XqjCwqnxy3MGyvNT7zl2fz2jZFlH7BEBudx+TqIkZhMT2KMMDjMQhK9CAFVS9IXn4Qu9ezhc2rAg33/k3w8YgurMYqDSdptd4PMVq0UQYH1dJkN5GKi0g5MpdlDdyAvT2LBDNUqlLgvs5YLz81M6Riz6D1bHUYFvtLUx0PqwAy+NTTXeoa9Gpd23ZAISwkilR2hLVrbaBUEWST7cy3N9U6M+qNc9NXJBrfbUl3boDeSRCNJIuKoY043Eku3PyXOW0JjyuITF1Jk3dTgGk2/q6mX4gEMQtpxUysOPUPADGJkEWpNt2eKzrTfVeSc08l1L+b0KYLNN5rqyKGNpr3c0906k0XVKKqlKyEEdpXF+rLZEHF6xCSherUWFnB9GvGDQjmNuh6pT6SzNWPE9ALZ524/JDSg2OWlzkmFWObldq0oFoZpoXZTg+3DVgqQ5k3ZyUgPQf7e+bSwy/s5zix24xPhSYFWjBPRN+cgdXFzitKtpSIek5REtMQGs3Eyehh9KnoBvREEIdqKUKVzTq8hG5qEWhZUcWxKb2c2yNeyEJfOFyEziSY27y63BCfh6Ei3W+amMW7h5ioxiEMgKJ0ITNvuKFhdNJL53jL5I1YQGn1mNq+42ntcjFgliaXRB7EyLAQ3jcqkpAQ7Sri5dE0yjxb/43yomAg0iTX9oue/PZ1cxAS2bPG0EWiNojFKzBpCQKUOVVBXlawHE/zrXSbfQiq7xmicj9SNJUTNHccj94cpbgTfr8VNq7LQTMrvxvQ+l3NGvhjP9Eq6qTCVZbfWzCt1U4tlV2NKMlJlJpzh4bwJCVV6/ISYGS+jp+zIFSrFsGNKIIdL39ODbJC1F5tMHYSNbdcC5cdEltMugovcfTpyuh4ZR0/vfJnbq7S5UtbI7yiF2pnK+/tJLqQffoSoUH+YWcGfzGOvMcwbgz7ZlJnOeMsCc7wh7LZi6dZoqqXAPutba6b3C1tt2DHM7+yYXtbc97/WVKeWzVM3LP6fmvpUY4aInmiqVaBaOvr9Cl9runOa+iR1Tb0QM/SQSCb9iK4t8WAqcp+JQJHNkcw1iGCXo2gekzNNnsHFTA7wgSpFkTUPCOnKnG6ItaW++wasNwLzXh1k5zebYroRvz9Hd4NA4E2VZiAqQULb5+j2dfL8FDi1v9Rgu0B7/4ZxvxFB+NJRLwPXP73i4D0jZggcflrD8Z/omb6vob0Gh59qcTO48OuO6X3r1F1JRNi43wqDUYOvM0wqKUD97qSkzphOinWwad4zRDFrcNJ92U2gPfQl2ceuPWbjC5wNoAcxqs+zRTVs49jCJEXAGSkIGdIX68MEc6XPxQyxaPRUiGXH72tx0CmuPol5OS4s2Yg/JBTC9JFq5dPMdTv7U6MvcF4pfC4UC041etS63+pYbZ02iynxpjKghIyHy0iHzN7knNI8sHOocYu0FHnP2SxWL0b8QImqk4KautGY4/BcYd3mwp7fOyGYiXkAiAY5S4/Er1gRGk11PKAHuQd9q/m+l38u109O2NGakysPMNs/x/JkiZ20DMNAs3eOfj8v/BRnLDWKC1phOKdNj+T8ZhmIBtLsN8+Klfy73F9KNh7PfOaP8Z2veyar1SgVr7YoItPCwI7JsEGVepALoETBBXRULFcbHhgb7l0Hgm2IfkANI825HdpaM7WK2qjSAYcIQ4isxsDKxcwrKkdrFI+eWV78jDdJUUpyOJKmWHcjNFY2VtnsXglS5RsjnWuVRmMhFm/svNlzU7PNN/Zi9JCbjWSmW0wmfCPXVbXy8h4mktzfe9tX8MHjgaEbiT6g2xqV3LLKa/lvXEQ/0pHBzAf7/if7eMQW1kvzSnZ2RqeEEIXeONy5uXjgjpL+ApKfGYzCzQWitX1kdfsM7SMHvxOYXB653k9ojmMK8JUOKdSKUAlpwzfCZC3zBwBt0d2I2gzQ9yja5KUpetP6xKFG8fzV3UhoK8Z5hV27NNd1KVoLNhdrqlPxCda9x4SA3og5hNoMInOYJfuvSSswViKa6EGYo7HZzuRUjFTHPeNuQ78rTNzpNb/tclLnHYxAl2bjGG5paB/oaYziYIh0B5bFnRvO/dYGmKC9zD13P+QZ5on4MxWoUqm4nfElGFzCyFWxTRtnELUp3rb1Mkk4IqV4obY6YgA6GBZJ0mMT43EjhholrxTpwuJZ7Wc2O4jyWMrqbfh4ctQiJg9lEmSZF2Urc8toFaoLhZnpZlaCGHzuGqLAb8kC0U0kxShGcesiUqBbQtjOTSsDYxRyULLyi5VoWtWZLvas3CbbFuagdRl52CSpcOV5YpRFOFsiFu9fUsee2LwMAbCgk87ThaI/zWz02FT4abWFgAM3wcF5IxLMNh7OtwJFjinbVgVxqnr/+z+Ani4AWK9W4D3L4yPmOztsVmt29vb5ay99Gt//HT9d7PGiIpGZpMhm84GM9uROjMzuRhdjkHxkxAotHTFK0WpFWPXoWcturbg0hYsTia6DpAmOQXx+o5bZa5rJVrohjLBaLrHWcEttCEpRTyfUxrOzgK/8lp9O3tHJP3oQuFb5yI///NdwvfM0RiWitaTffO2XvVnOu5C3sgGJbKoyu1qPghSdDSHIrmYqhYOYMclzrNx33TlLc+iKKURB3ZLjmE73korg0/91YhlnuP/Vb/8K3nutw4VIdB69M5Ma+ggspB9+/Hcvt/mDPBaN5sv+P99/ZhENxLphnIuNVphsiSJZ75XnCeNEdKdRgWplQZrf62mvDcRKUnCyNWFUUkxUlAt0K/1QeDThwpSqrVDjVHaMad5XnfhCFDGnHaGp0L2jvTImwb7Al7G1hKaSompUmplk44ZanJEGJ16sRqFyYkplRAKUCR45XDueKQxKumSZoZrUxQskFI2iPnaERjPuiGlGfeoJkzqxP6WTWz26hQjz+zxuqpleHrCnA22ayUYF1eVT+XsraRpRKUhFW9YO+SzaG6IDFajJYZY9ft6IdCUXQh+KO1JM55GTWvL17ye25MfqbluEFVKQRP+oS7ZpNKrA3f5MtmqeS+leusVs/5alKFEJszjLedQYMEE2VkEJecauA3FQJVVGmM4ST1gf9aWbzpB1sS60WrrGti5kpRhVQV8E2kY++xopHkZIQT5lyGYmfKiN/LtzMjcP8l4QU0ZvJfIurSRUXfk0d6+2owoh5YkFol9Iaku+ZnLUlyIWrTdsNyU6huJAZVMn5Gtdim20ikc/7rFcsztEpdk3cs/un+9RdYWNkY2R6+nF3/3FfOZBzdd89Y/La7MUKRPJ6SrPH0OtpdinYqS0XEPRSJRh8YPOTXzK1j1QnqNasXfQ8ui5YZagV4WSGz3V5eVqw5133kMIgb29XbpNl7ICPG3Tsulu0K03HJw7IAbP0I1cOQ3Up6KRzlF6xdRCKZ79l98oBbPSom3O2mIoRSoaiu2qBD+IhCwaJddvowth0qe5aWatZzcwPUYYpTlor8l4TFzFtnKsaFVhG+fRgV07tNPbgmsUr33T0/nQYSe+IKNDVeYmZ6xH+uE/hgn/H0q5zcN1fMOXvplaKfy8LbCa7h3LT5uw86EBP5UbCy+LdHNd2LIuGzukhckMgX6vkq7xlgbRpiqqlQSOi2tJxCUo0LWK5kSIACY51Qy7NWYM2NNBdpfLnjCpxEx/WklxHP3Wii3BllSG5eMXTO/r0C4wTizaKZkN6mQXp5SwehN5BQ2qG/Gzrc1j2aWn+WEuEvmmVd2A35ngzjX4WjO9PApDcKLF0iwVZL3xECL1YceQIF1zKsYKw44p8zLf2tJB+UlFbCvpqp3oZS0y+ynz0EQOI4rVnxqT9VwjyELW6MqLkZ/TYyBEgfBcLcxe7cBVRqQFQ0oeqvXW2k7XpVuRZBpSUZSFTaQ5ZbgIyM4+GCOZqnUKOE+bEtMlWDJLW0zqZs50uX6SoD4j+kAi2EbMJqLW0qkODqUrWSDndTk/6XpT3E96DtWnIWVCEqJOBv1B3JAE/jyjgz0jdZFrISRS05Ypn+PfdCrqoanAysKer5dQa9xU/l0ILXELFUazHRjqMZZia/qcdUu5jtxUZvRshHEfGs2tF89z/SQ1yhl+1JXMfs+YZLgIz/mmt6OmWsw4XJr9uYCfCeKkEiN2m6ObYGsv5DIgSZ+SnETJvZCvsXoYeMqtU2YLu2240l989BglOk6jDbPplGEcuX79kHF07O8foE3Fsh9wURHrlhurjmEcUREak+wkI4k0daYA5c9ocOgzDlzFHSt/7jF/9imyMBGKdBo/ZBZ7hub1JhZ7QyGmAckDO+u8QqXwMyO2qMszvsIgRLrE4oatlEayViMPrAOno2wMovNCsvpDdPwRFPxQDiVep9EqfFULE9JFLvyb+3CX9gRmTW410RphTGrZPU/vOiUaxfoxC6GvV4p+R+Om0p1qD+2h33Y2iJ6yPhX5RXXqigbUbNJcbfCsbp8JG/ZOsPdcg7oiTHaFCWplMTAbJwk852fojWPx3hugNW4xZ1iYZOUn80qJEkti73R/qomV4jazaacpnY1vK+obHVHpIiXwSVM73jbl5HbL4l7PjU/TPOafdnSXpqLRPOrRq54wa3DTCuMl8US7QH0UGXcsvlLC/k0aVLsc0Rsp7nY5MJyf4ZsFzWGH3owo57FrOV+BLoXEM+zXxCHg2wp7OspCHwJq6eluW9Cdr9h976l0eOn9VTGW3TlIVygaWJkfnf1eZknatSszwP6gTbCcFB9jZAaYd/raRVyrk7E/RKVRNUVioIft4h6qLMFKaEAfy3xcx4heRpHwaHCNwrYG5RQoW7rymBgtsdKyqXDSifr9KgnvpfiZ9ZaVW1wNsvTGjUKma6148+YIt8oQjZXHSwzhmK5hs3ZioZnhOyXQepkVWymuupcUIgA9gmtTbFyMoLY5rtlndtypysYuJPvPUGtcqwjW4lrRBj/7xT/D93zP0+n7sL1/Ve4Ubz6GhcJ2ggrF5C+bybq+NUJqi1vf52rpbtJUZmmbFIdtXKBv00jIe4xKRQRDQDY3YpYfRbMaI7qpuPUxF9EKBjeycoqrXUUfYPARF6KEmg8Ov+mplGJ3p5FNWmuwq1CY0RJRmGDhKn82OhXVNK4YvQTHa0Cf0TsrRWzPaHldcmqrNVTJMMNF2XAmdMf0skmmkk1JfSzrT5FBpc2txFImn+Y8R0/e2MpHfuJnvoL3Xh/QdcRnedcfom4VcmF9MCj4k3gy6XjEFlY3r6ivjcSdRnZrxjD90DFhd4Y53YAxjHst426zpZXnmUEIxLYuusr1LZpxDtUpLO4PRAv9nuHwKfCoX5Jd9/xex+aCxW4ocg2A6toKtzcBpZh/aInqBtTREiYtcdpIxmZKJjGbrSVddccDKSbL4M/vUB336DGwuq0haikE2dPYTUyZM5kQia0ujEmxyUs3TBbNQ7kp+/2K9S2GyWGgvdJx27/TqG5gcrfH7bYyH90MbJ6wS3NDtHNutxYYqDHUNwQeL96gg+xcx/0J9eVT3MFMip+P9BcmKCfWktoFqhudzEBrg3Ke5prk6uouFYNcOJACrwL055JZRyeeuYGACTInz/Bijq3yjQTNBytyHJ3CxvPNHyqdPIO3vr8qSKfLzBSZBkDMV3qG/j2FVamztV7qEOTnREqjgsyjgKT9E09iFeVzM0OG90THeDbHVWkl2taYCnejoZOH16N0uno9SMeaZ6OZcakl/i3mmRyyUIcsFdOUmXIuenIeOnWYQqJyE5O0tty0SYladL5Zp5rlLzmQIMuTokKCxVMWqhgXpM1oTWKsyuMN+fy3z/J7VjWFFHRJIUrF3vvyOcmCv+3uCgkwd8wKfE6nsho7iD1k7nC1j7z/zg9ijOZPfPb/WAwKQowsR7i8iRwNIz4V/ErDTiUuRJc30PkgSTg+EIcxBdUr2knD7fstf/05b0UZhRldmcXn8y6vsffE1m5HDGFLZsPq7XtkcmFlOx5R201ftXQMu5Wgan3AJl4ILop8JkK1csLezmSzhPbIdazBUDah2WAlVAq7cigfeNZffjP/4Cefw8nYsXL8t6lCv8/jj1jBD+F4zeufxrd+9c/jJob6WAzqVTeijMftz4rzS74Yx7nBN4r6NLB80h7Xn2KoljC7P+AmEqI9veIKPd/NLJf+oxSUZiU3SXt9m54iDF+N25vIDDNJJtSNUyEaGQ2jR2FEdjCIG48e2N5ETUOYNkl7WkGINDcc41yKjV25EgKQdY2+NVJ4so1fIvzI3zXD+Rq7lqJ19Ck19TIyv88xvfNEIOkQCbOmeMmGyuBv3WV67xo3r+nPtdhklhErjfUp2KC12xuvlh3vcOvOVq87M7ipkHeqU3m/hoOJsFWTbESf9lvWZm1R/UiYt4x7E/QoM9ycH1v7KJ9pgmJFTxdY3mapVpE4lc2GS8QoY8WQ3U0MqjWMU9GoBiMLSb9nqNbC/o0GqhPpckKjU5CzKvPDYNPsysmsdpxJ99zc8MUv1deKMb1eW0wgItUqQdEpWkvcjTyGtDgmUlSoDEW5nhACnTSlygvcqTqXCqrbLtAJXs6Lr4piGhGtFFQpkgkqTUxo+cFtgZeLRTZfZpD5pQkRRvk6RnSdbqLIoeKuJaX7yGtyE1N8sKMC7bczPtMFfJR5fkQ0ylJhgxgy5FNKoddnD6ugPdx2oCCkI3MmVlGiA7WQkc48QjaKyOQ4sY9MPxMj3/ptf56NHzGzCReaMyQsb7h3PXLX0rM5w5vLReSwk3MNPoDzxNFJJ20M9c6UH/wGkfjkTZdOAtVspqGHgBkTAhYTQclH9JhkNI1F42S1VQq8IkzsTQUxr/2xUomXpzFegijy+5DJSpCLrzDo7Znc4MxdEDZXLEYlmWClB4/p5f8A3/3WZ3PHsWMcIWx61KTZvjd/CIhL8EfkpYd2RDGo167CTwz1Yc9w2y7V4VqKUa3ZnK9ojjzjTG5ylcTi6wuG9hos7nHUxyPT+2HYTySSIKSNLEbXPs2SNiP1GISBm9io/UHN5N41hICfNAL17S6ISV+L1sV8XY2pS/NJGqKUEAHClj2px4BdbT2LzUmP32m27Dsli6Gvs2PQVlJABHs6oEdPd77Brj2+BXUsi+lwywxfaarVdtEa55baBbE/awz11TX2VNNfmKKHgE+WaD6/ngTN4tnaIS6E6BWNEqlEpvBn04YEnRKtdFlnGLJR65Id6ie2GNmPM00wNWZMRJ68qBjF7LLMGX0qiNVGFrFqJRCmm+htV5h/T1PY3qTuWvkgu1iVmgSXfFeJxDrP00XzK/NDWbhcq0t6iBmkEMcOUUAmshvIAlgfjQUV0Z1HDy6R7CwmDjJjTgXS+K0JhHKJ5JSJeS6AjkJgy7P2eObfxYEpoQBaIPL6ZJRwiTRnJMYyG5fPdds1BZNmdCYVCKWwKbs2VJTOuxjjq5RT2yVCk6G4JPlWFzTANaBq+Lnv+WLec+yoK01MGwxGj9KaEBxBGyKKv/8334l1kRhEyqOHmCQf3OSWpGKUaznrwpNNpl2HZNKvCvz66tf9RWxV4ZoZvqporOJCa3AxcrjxXOk89689PgirGufEIN4F0WRmYlNtQGv0tGVSafYNfOc3/CRYmUuLa5Eu5MGzBK4Mv0aliOmazzKoLYqhC9lNUCq5DvNISMhGGQKX0HHtAqTr8exs/OzMXcUo601CXLLfr9h9bZ9f6PWyGQqV5jU//Je4MjgaZUQGHQJxHAmjk3u5rW8KUHjEHnmm/2Df/yQfj9jCej11llFBfShaz+qoQ7nA8RPakuGp54ajT9Gcf7d0Ttc/3dIcw94dA8OOTf61UmDt6UBoLPXVNadP2qU+cZi1Q3cj/YUpzbUNoba4uXj4tlf7RPU3VCe9mDsMjjHlqurTHvanqNWIX9RFv2p6j3VbcgshERpGD4tWOru0IJvVUKzoQm1Y31ZjN8KunX7oiO7Ru1snGmQxa68PKBfY/11NfTRy+pgW5Q3dgcGfbLuY6kR0uP5cg1Mas67ZXGqZ3blk3G+Z3HUiRWzeSnFLi3OoDT7ZSbo052yvDzIXTDdZTn65aU5UGxhkMSU61Ogwpx1Gybw7p2jYdSiyEuVkzludOAkUSMYIeV6kE/TtJgarYMiG8IEyC9WjPKZ2W6Zmhul8ck/K/sBRSwqPdjIv9XUKe45nYdBItFJY80YidyuhlvcjM2aV86nrTvNkFwAxzNejLN4lQSYEYpP0t0qMGaLWUGthBwcP2VULyHaYuSjm2Wcmr4nP7JbMtQ2kRghkyRcbJXNwksZXD5FQJzhWJWN3Q1msy+xSQ3bgEv1vOi2jCrRebQRmfsYLfoq//rzPZHZwCw/ccw/GGoKPGCNykumtt9NOp9uIQC/GITl7tMxN8+uD8tnJSYHZSNfl21RwFLhFhfeWWx+1L88VYQyRu5aOKxvH0qU5aYjEfiR2g2gzK4tqrdgmIiQz21YsKs3FqeaFz/lx+dzS9UXuBNMGwLfCJldxe/55JKWcL/aWshGC2Nit4UbWIEPRoZbfjen9zi5mSf2gU7qVW2iqU2F36/WA25uUdafIkCJlxh4ajU1e5GJrma8dxYu//GchBF76ms+lW49E57CTBWb/AsPg8Ccr9HxasnQfqUcMihA++vnFB/new3U8Ygvr5VPHy9/6dF72zJ9CdwMBWD1uQX00srhnYJwZNufEhP22f9cnRx44eI9LbkaDEHHWDt07zLFoRU0S0M/uXrG+bSqQ50FD+8C6JMPoFK+mx4DupAsJs4b2/iV+1mBWDnPSgQ/Yy8di4DAGyHILn3eTnthY0LHoFwU60gwHjRCjztjV6dFTn26xKncwozodQNXi2nRxIjdJ0oZO7loSWyvdXJsXX3GNcq1m2LNcf0rD3vuF0bi+tcWuA8O5ibiz7E3YivBVYffqMaATRF1tUhduxPgiQ07aaDH7B5kJJmhJeS8zQ2tFf6xlJlctncT17VXYdcDNDP2eFVj4WJiyMRVT3+iSxerbtLD4CKnQZd1s1FCfSlJN7nqKs5ZzRJPhQlUWm7wAmTHCJggZTEt6SDgDT+qR4kSVCT0hbQZy8kfuHnNngNaIXU4QOUwygIgR2VxpvU2T0RQdqxplJgdnoFwl3bUaHHFSl5lvqEzRWtulL3mZIelvzbLHz2qi3cqlyoYpM20BNabNR9KomtWZgIpaM04yRKwK+1UryR+WB6awVKu1aC8ff+stXFmN1Lt7zJuaq/ffx3T/EtFYTFXzd77lp4SV7WVGmK1K1bDVpsqGEyGZ+SjE5yTVKu5DUKDuH/rhZ3LHXYcsb8iYqPcRpSRoPcY0K+0H4uBQlUUvpqULyzPWVsOiCVzaq/mq5/64PK+WBVlFicXLZJ+ilzUKbyUcQg9Jn57gVj+rRf4St++VuCCF8hpCrctsVchPcj1US1eM8Yum2Mfk/SvXnow4EoltYrf3boJT9BhKp5qLar62hGktcLNKUX3f862/yN/43j/LaPfwSmPbikmlOQLCeoPenf8eAtoj6fgjKPghHC5EVNUSG0Owouec3rkEoL84FV1oYgwOexX1iRNjelODlgBmnRmKyMyvkIFqS7Qm2dN5kY/MKsbdCt0H6uOB/qChPh6TjlajOkeY1qLlO+llAUzFQw+uxM6FnZr2jmuSn2n0lmZPlEK8GiEEzMrJXKeW+Vl1uCE2hurUFQjITwy+yuHsqYOvpOM4y9wLlaLb01SblB17JO5HCpjfL7rRcS5eyMOuTV2bL0Hgyvubhv95VqSHUGwfY6/o98R83vQhze5MsRHUSfoQayuEnHqbpBFqg3KhQJPaBaqTKB242easuoXk2NqNZ9ypZCZ0hjUdptvuxTV5wddAQI3bTl3IOCmXMkX4aZ/Yll0oRVFPLHblGecmMcSTsN7HUjiK0UTv0YUIlbuO9NwBcmILIDv8NCfV62R0UVspFoMUXlKBzPKZs0hALqp5zlWYp0ptZ7qdL5FekORHRuMWzU1kND3Iwh9qkafZ5EMrUg+xaiwWj73HTywk1jQq5fXa1C2b1MXna8OqrWftEHnBS/8Fr/o7/wfHk30GFIvHLKBtqI3i77/4nZJal2bdKkRUnxKLEktcj9KJnY3dM912/qyzJCTBw8Eo3nfY0dmK1QMnqElD1Va4iBTUTU90HtVU6J2ZzKiVWB7u15pve/E7ysxSOeksxZY0bdCS1lf3QYIDMh8CRD4VpOCjVHKQigy71TYrNW3CtvepTtdhIOr0Gq1AsyooqhMn74uKRG1Qw3azlxm9bioNhOllHSikJbaQ79Z60xezlFKk06H7M+RGH3jl3/hFXvqmL2eZ5ty7jeakN4R+lM2/eQSX1mwo/WDf/yQfj9jCGmPkxoYijjdHa9h0hP0dme1ZTXM04mvZyWWtmPIRezqKM4xRqJjYulrL1ZkM78dFVWYO3bkauxK3IWsUoRZo1DfJXix1uWr0mMGJhnWTikKST/jWYE9H7FFHnKX8zOQIk2ceyujkqCIFN9Ypw/V0kE4vGMxy3DoIKelEqpUvC4y+sREmbivGErofqY9r9GjodzXTM7FrhFh8Qqtl0jhaGOa6zB3a62MpbtmgPR/KRXQMVC7iJklrGoUoFnoxT1Bj6nKiFhKF1vh5k5xzxIBBuYhZDfI5xEhoK5EmrcZC4iAnmCS4TKUCF7UUxwzFulYcn8rjV6AmEpmVvYPzbZQNOUKtpUMLscgUcgGLZzYomfWaF/+zEXLKha1rToIGyUSa/HjI9SRM3rTpGAY5Hx22EGCCA4VRrbfhAiGWLqKwe30sxhHZ5lDsGU2BfHNySZlR5lPJPsY2p9qcMbDIJLVhW4ABlA+YtXDz3NQAUcLtjUIN6eEN0unm90FLYYmV5q+/7J/zva98GidBUbUt3/HtP4vtxfs4owrKy6xQJ2vJ7MQkTkumFIs806QU5O1nFqzmjT/yZVwbI9f7mk3neNX3/zwvee5f2JL6mwo9a2VGqBS1hu/9zp8usL82itCIUUzVCUkof0ZF2zxKZ+3ypqrabkRyt2k6kZsVh6RwxgTFyD2c9cElhCF1scXmU1HMU7IuN8P9paNNRE0Q1naopYD6Jp13Th/QCjpfTCdyIEMedXz/657Bi776J1Ah8uM//1wubzx//UvexKfsWJ77tDcRNfztN315+rC389xH6hHDdk/70b7/yT4esYXVrzuWLmBWgyRxnK5gHNHWoq8dQVPTP/5csfQCsBu5kPp9y+5vHxEmlUC23QBtLakwk6pYplVLgSCrUymc/a7smvtdzf57VulEEkSViEloDZ0UiBImHaC57wS16gn7M+luZ80ZaUwKjDaGcVHT3HtCnNboZV/gQpJsRUzlnXRjLqL89iNa3zZh/v5Bbtxlhxod3/ULz+PbvuodaRGUTg7ERjGnu5zu1ey9dy3wsY+oUOGmimophInoVSJtmbRA6KQnjGWOpIJEu+Vc06hlQxOSjs4uc8rONgO2Wgp7eHl7Q3tdJBL9vmV+5wa7HFCDI+R5WYyEqWVcGJHOWFXs4oJVdBeErVitIr5VDAuJx8qFUc7LFLvEkGDGbG6QZ2WSDhKIlUVvHCpG7FLiB8eZxSSfZcgew75oT/PmQ1xpYurYdClKsmnI9pujWBpmssnoIbkPkYzL8/nJ7+a5tS3/jkYTGlVY4/kYF5XM4lqNmtlkPpE7JJ+kMbkYZw/krYZWjCAi1el4UyeTC5qKUWDQ1G35Vjowk23wkAKDk/enFAsv7Ohve+E7C3u3VmeKkNVFk02MxLThLEU9yuOoYQtJRyVMfRW3IRsxOW499+vejpvIzPtVr34Gf/fbvpjlEOi8ePW2VgzvfYDKKG6bbu02q3UomxKgOLrJKEURk+xLvHp1QQFUkrJkTTCQvm+xS5fkXo5Q6wK9Z6SkMICNYnOLpCDZTub91YnwC9xku4kMlXzuwlBPZhFO0ATfCPScUSffamkalGSvFvvRZLYB8vm98Sf+ClfWci6v/sEv4XdujKy9oB3vvbrhG37gSwgR7jvuhSWtleyyHsHHH0HBD+FQVuQKf/9nv4YXPest2NERT5eoxVy8dIHmnmP83pT6cIO+fsL9X3A7k8NAc8PT3ToHwEwqWcS7Ic0CHd2jJkyuCmlonFvMkNJv1nKR73xoSN2mwl6+QdyZorpRZhM24s7Pqa4tBe4NAax0ruHcAtXJ47qdpqSfmOtLhotzqhsdzf0nMk/Lov+mSp2Jw5xs8Iu2dB/drRWTy7002ouayf2dJPxsxsI+rGzFN7z8/8urX/Ofufq/ePZ+01ItI81JIv00ivo00t3S0l7tS4Dy8jbF4m5Z4O1KlQKW55yEpG/0krLB3CZihZJMVR+TF7I8XkiQeO7EJ/etGPdbCWS/q8NPLM21Dc01SvQdiHWfn1jM0mGsMD/dVCdXLF2gZNuFUvCE/Svnngk8mVFZYuZSFq2EjFNcom7KK03a09wBaReFHRkpsHImARWtodka1McUv6UrTTWGkvQR058MEWeCl/Kx+F7n+LmYyFoqhALZ5aAAPXgCYi+XjdmjEQKSGgWuFm9j6WYseR68ZUhvNbCK6JI+NuR8VoUOMbFs9ZkiDAq5F/xEF4mNSih1SO91aDRmLdd4RBWTB0jQuz9DrAKUCuDBnGHSZtRIuvUUSWaUMNONXI8e+fyy33QurioiGyGjeOKi4v/8hrfxk699JieDpzaB53zzOwvpK1iol0G6w/RZCLlNF7tKUQlADkHI38sm9bmL9Sm6Lc+HMyvct4nlPTFlDhuMGNKc9V1WIVKfpqI4BHyKg4ta/Khz8Qe533yltiQuItpRWPPCkg5JEiWbfHGhCoXNq1SyqbSK+44Nh73nBa/8In732KFNZH8qsqE+gA+RSokG27vteTzij0dYU61ifGT1+ScnJ+zu7vKj//yXObhwjtc9961SSNJOXh2dEmfCVFPLDWExlVi5JF2ITSVFrfO4hRiMBwPVymNPB3L+oZtamhtCerLHHf3FGaHWNJc38jw+pdosO+KkQQ0jWINfTEoiTRbzh7YWMsNEWMiTu09wexOqD12Vc9pflMxNsiuLEn1iNlIocV8ghJfaMu7UydNYOrPmvhMhbWR5TOoUojF8/T/8cl71yp8DwDUwLhTjFHY/JIUxGpjf3dGdrxkWhigoX5G01Kceu/YpPi/peTPhJ8Gbm1sq6hOfUnJ80bBmIooePL61uKlhnBvaa2Ni6iarvtEXb2Q/y4ScBHuprYFB2bE3EtM3TlKuag5uSV3pOJO5oUkyBOmMKK48vhISlNmMlDDptMhng3KV0nZIs+KcBFNYywni3ELlqrB2z5oa2LUTl6TRy+eYCncmb2XrwXwdxCTTypBwltiE2uBmlcixNvK+uVlVilRxdzozBwSKHjgXzbzQqJAC2EMuBG7bYZ49ElyWDT3CxG5DtpPbUUkdGv3WrSm9/rzxKISuBD0WP9/sAxzT3DptUtAy78uvIWq2rOh0n2QtbfbqzgSgTMbJ4fX5ufJcM19TvhWZVp6h2l7kQ/Ja5LzGqUp6XBI5Ld5k+J9nnHnTkjdEwaok2WO7QXARnzKJ8+xeTihikv45Bxu4VtK2ZGMRy8w7s6PdJDPft5u9HAph+rzhibz+R5/FlbVn9IEQQoE/e9nLEDph9CutGCOEVSfd7axFK0XIGzGjmaZR1KpzxH5A7c0/YcnNennKV/7pz+L4+JidnZ1P6DE+2pFrxe2vfxk6NVsf6Qibjrv/6ssflnP4aMcjtmMlJv1hW0m82pUTwrkF4dI+5topnI4wadEPXCM8+haZxa5H3LwuMy+7HNlcarcEACdEoNPHNFTryPET5uz/7oDuLWbjaO84Iiym4rM6qaGN2G5E9YPAeoDe9CKZSO5OomdFoLXDDVWM4CPV3ddhNgHnUb0TOCW5rmToV296KdTr1D3vTqluSGE315f4ZpfYStaq6YSZrDtHSFCa7qVARaPwKL7lb3wRP/jin8RPNOFIZnFiyA/KiykGyHym303mGgY2B5Jp2u1XTK70ZfFTPohxBOBmBrsJjHNNtUwdiI9FJK9cFCP8VJDtRuC7zYWaydVBClQrvsva18V1KlhVQsZRAbMR/2XJoxQo2uoUUA7bIIIqdas+plxYYcgGI92nn+gSqzXuTMg+yMaJhEG6MC+pPcXYPJQCa5djiVTDUQojbAuBOAdtw8ezZjW09XbDpLfz8lJIa/GqjSkDVWZlWzZ4Jqplm86sFxZmb3JpGgPVypWCnJN1SoScRv6u1Laojl7ORyPM5Yya2ORbneRhoZaiGqycl0pkLoW8V1LEEyvaSBHNZgWCBHCzAcTElI1PdkfLAfM4CtEqF978fHpI5KZKF3Z4tp3MxWqcqeRtDHaVrgErqIcZtub1pk9jC59/T6MdBCtFtD2Ucwu1jFFySgxKFZ9eKdoyItCJzGTXYvKikNlzVBCmybJUZROS7Ogl2mDlIVoIXuITS+JTIBH9olgZpoIKFImXCrJRCEbxo6/+Eq73gaPO876rHV6BUoraal710p/m77zmS9Au0rnIWFvJqPWB0I+iUdUKvxHFhczKNQyOZZZdAXo++UPQtCoevLX+Iyi4HLJBSskePdDWkonaO6grGEayiB4XUFbj9trtvEvDsFdjuoBBXI5UlAt/fs+AdoHpvQHdjylkfMV4254I/buBOK2o7j/ZLo61BK37eYvuR7rbdkoAuuoc/cUpdm2wRxvpbqtKIsOcA+dhZ4463UjXO29TMbWYVS/w7vEacyYqKk5qugsN1anDtZp+1zALEaN1cUeq0i5zdWvD617wdqJWvPDv/iW+/yX/WB5Dy453fu9I1IrVpSpJUCL1aWR9UWE6gcnWFwyzy0KQWt0m7k6mE11ddaNnXEw5fpxh90Oe1UWRydiF7Mq1E3s7M4B2mtVFw+4HhzQvDtjjDrXqCHszgfDGwLBrGWea9sjjrDwOylIf6xRSkLokLQSkfkcW1mZIUNcANqawhF40kMFqYqXo9+Vncw5r1uLGRtEdGJojXxy2SHrSbKyQ4dZodAp40PjWbnWGiUCjncT56SGUmWWobSqemhikCxWGdypIqbCp0UvRthmKH0tXK7C2dG8mbeYIEZ20kWX+mbprMrEqdcZqFKtKQObmWqNMIr6k88tELNFZc4a5Tpn9mrXDpusrb65yl5o785uIeRl2ToVMipQhW3OiKBuaArMnVq2f2DL/LQb3VjG2dUEzooJhIU5YuQsMFslPzizuBO3nuWtIhvbFhzt1n+K6lTpkowhKEY08hhmTf3RCNHyVAw620HZOAgIhLRbyUkIaVDfiFlUhGOWinAmAgIydxm1XHIxAtdVK2Pqql/ezGrY66OzqpfvAa17/Zay8Z1ZrZk3FN339O8jkth/6wafxqtd8CSoG3BDoe48fPcE5lDGotkYlPbVqannDz3akIQKxhMQ/kjWsAH9kEPEQDtPU3DK3dOcqtK+YXzlG3Vjjnngbw25Fe18lN/akpr84pT7sMatRTAqC3ASTe5cCYT5K5q32xprTT9uXv68848JQLWuBEisjZg3GECtDdccDhFvPoa8eFeg5tLIAxMow/eANwrQu7NLmeodaDwLTplkuSsFyJUXWeYgBTIU53jDctqC551gK2eN3mP9Oj96MJcDb7bbYlefoSTVEmBxKB+cnEo+me5FQDLsVs/sHsX48GZnM5kVUXp06du/oyLKBxZ0dm4sN9bHDTwzNkSxy06temMepA9r5nU46ntpy+rgpx0+oqU8CB+9zdHuGxd0DfmKK3eI4TXFqMTK9t6M6sVv7uYgQeuq5WCiuPFf/WMP8/kC/q6iXWwaukDNSJ7AcS0EjRqqVmOXblehSi2GBVdi1L7ClmFm4kldZYtMi9DuyyFUrhQ8pLs5tYeowqQk1Qm7zEZO612KWYKXbEMj5jJTLKMlOdWekIhqR1xS2aOoMMxTrt6HdmUkcK5NMCM6SmuJWzkPqllPhgW0njI8JaUla7OR8BUjxzY/lt7PXqDVKR6KT8yXDu/k507hBj4JcRCiWoFm3myPTgjYFUo9pNpo79GBl85OatgKp+kpju6TlVqrMrPNRogQTxFqtZJPka1VGA1FH9FpGAOPcpNmoIni1NaMIeaYqRTXP2HOAfYZmIXXPGa4mzS37UBbnEpWXZFjFbjSPohLZR7kooRuVEJR8rQqjnShfM33YQuMIScx0W0h8mxolCIUi4hvLW37kGXz5N/ykwMh9SHagW3j67iPPZnC40RNGITKpukJPGiHenS2Uiu2LKIvvI7yQfvjxB1xYX/e61/G6172OD33oQwA85SlP4Tu/8zv5vM/7vI/7MR6xhXV/ovmOL3kT02wPNm1kt+U8zWEgNhKdFXYN7d0nhB3B2HOShJ9YmFaY1cD0rlOWT9xJloJeoJRa0R6O1FdWpQhGo9BOSE7UNXrVS1FNeka9GWUxQouPbufRpNlF2nHrVc9ZE3/aRvxTT06hrkvAdX11XWZr89++Job9IYvnA65tiZV0lPUqMLunKx1cNimXeLdQOrXufM3f/8o3U6Uoqv5cU1IxZnctGQ4mNEdSdIJV1Kce04lu108soU3m5vOKqCUcvV4G6mPZkfcHlvbIlwI5zg11t51X9XuG1aMnVCuBD80QGOdWouesEHZ8q1ncEzh9tJA01ucNk+ue+kRcdzYXaswgcJcKpI5YFo7qRN7r6tSJO9TCypwqGc1n+DYXiZDSf5QXO8XsuBQqwfky/Opbi6q3sXk5cFs2Wqpo/Uq4AFCkSakbNL3MVXWf9MbJTavM3Qp0Kr9TpDuZOV7b0hkKGczIDNtLZyxs5FR0rRbpS67tSsl5JD/h/DPlyF1qlgxBmdNGJSQbAmLtFRBTFM4U7QHMabfV28ZYcnEh/c6Ywtc15HxeX8ts2qZZsZ+mLinBozptqDBKLA6TkUexCbRSbCUekpJGpaKQm/Qo+aPisa0K+Ud7SakqRfnM4+msV/Uy08w1pU5QbJZjZV9e32yzSfPsHrjJGcknJq/OjHK7JaHVy63spl4FXCObrGotFp3Z3cu3smGQ9jZ9bokwhpdr+Ye///9k5T1XD4/5wVf9RZyuWAXYdD1udIx2Qtc5jo8HqZ3Woud/SGwJfx9HDOpB3ZUeqvPSox/9aF75ylfypCc9iRgjb37zm/nLf/kv82u/9ms85SlP+bge4/fFo37lK1+JUopv/uZvLl/ruo7nP//5nDt3jvl8ztOe9jQuX778kB/7oBUZgc4G04mlaw5XDHsNqvdFt7p60h7johbT6WRGkDV9UWs2ty+Y3rdJMxtYX5R5YXWjk4LY9dANMjNViuHiAtpaFsfWykw1ueaoGIX5axRm1RdHJTWI4UOx9oM0txCjCKZTScQxRh5TCTQXJhVYU2Zvaj3gdloJKE9G83ZzpoOIlMVPRZl9arcVkg97DW5qufFpU/odzV1/QSezdVVs17IVYJYTSOKFMKSloPoEb8kiGGox4mgOHfVhX4z5M2kjWElKybDbODNsLiStavJAdRPDsGPYnDd0e5r99zvqkyhetFEkAiY502y9VaE+cjTXeumoe58MBHSxPMxHtp9T3ovVZCpcQoDSmFHclvIszldieOGmtph0KCfXlFn2Mr+e1mUmqTsvLM/Gig63rcrnXFivecZaW9GoWi3zxTMdgMqdavoTG0OYVEWXmtNrTO8TG1mVP2r0qM2IOenQa9E+l1luLnhnpDkZci7EpLQZze9XPCOjkEALfdPGQYUgfr+Dk3txLVaaanASH9iP6PUgbHAfzzxfzljNZhuJWDQGseZLCECGgrNRfDboiOl9KHF3dussVQwd0kcfrZgmFEnJkNKRBoFaTQpmj3rb/Yp5QkjmKGl2Oco4IKcc5d9RPsi1mUYN8gFTxjHqzCbaTWW2X+6vQc4jqz1MH2mPAu2R3wZvaLYmGw7cRFjPduW32axG8YLnPYHf/O3/yqmD99xxF7/zvg/w3t95L/e85z0c3XMPd/7X30QPHdRW5qKLKWpSo6z577qoAtuO9cH+PITjC7/wC/n8z/98nvSkJ/Gpn/qpfM/3fA/z+Zxf/uVf/rgf4xPuWN/1rnfxhje8gc/6rM+66esvetGL+IVf+AXe+c53sru7yzd+4zfyRV/0Rfz7f//vH9LjLweZdXKyRM9n+INZwfzbe08I05pxpyE0muaG6PE2t02SBlIX0onuBiZ3CcTqFjV27Zle1vS7ltPbd7jw765IRxk9qhenpfrO65w89RKL9x0VGHn6wSPGCzPqOy6DUtRIl6FPO2JbiWnEjRVUljiboIYNbDqYTmTRPl0XbRle2Jknn3HA7O4NsTL051ra+1bEiRSk9krH8ZOmgMw/g2mY3bsRfSSyeAeraa/2jIuK2d0rulsmRYQ/7Fasntpx6z9qaI5FFqN7T3vay+IXJYjczyvZqac50dZdQRYWuxqpr3v0qsccI8koVZKEnET68w12E3DKUCc25fHjDDt3eeora/xOwz1/dsItv+bo9zTtoayMdumZ94GQDBkyfN3ccBCRkPYxlkKacyYLcQZQUUOXNYUSsJ5Z0/kxx7mhSzPX5lgco6IVUwDTpRltttlT2fC9KaiDn1bShRrpuHXvytxd2L1pA2e2Bg03ZYemx86oiPJRTOCTFaJyAUUgBvGKVmc6rHy9hMrIvFQpmFQpyizNR2OyTUxz4WC1BFsHjapNCRFXuZtOrF3lPXodytY6z39jZZKrUNgSnTyo0QmqcoaQJfCzKtej5CHLKKaEaWemt9lCs7kbzDIpnT6TnA6kAqLJtArNtphmZMRuQmHVFjZ5jMXuzyToVvlEdrKqFNq8yMbUJZs+FGi6QKTps3ezqui45U0Cn4qr7TzjQrKMVdgWeqBct5lJrJ0YtEQjcLB2grpELelLOkHCynm0kw2qmwoKk4l9P/AjHyRaxWu+/4+z+6jHETYdTjmadoKqaqrzF1DTCVpVjzTlycN/fJzOSycnJzd9uWkamqZ50If23vPOd76T1WrFn/7Tf/rjPqVPqGNdLpc861nP4kd+5EfY398vXz8+PuZHf/RH+Qf/4B/w5//8n+ezP/uzedOb3sR/+A//4SFVe4CrS8e3/6OvLZrVaDR+UZ9hMoq1V3UyMu5U9HuymPZ7BjcxbM5XdOdr+lsXqNHjZnVKIJF5YrXy7Nw50D12XzrKqhLSwd4Ef3GX+Z0riJH6aGBy34rY1tjTXualRqM2A/pkIxC1C+jrJ4SDuRBM1sIi9pf2GS/MUScr4mIqmtXGlGSTyZVB4KRFTXvfijCpuPGUHUznJI3mNJQ/w0LjplLA/aLm5Ekz7Hpk9aiW6mQoqRvj3LK+tYYA01+bSHD7jX4LB8aI22kYzs9QITDs2JQ8k03DEwSXdu1mPQoTelIRJo1k4O5UDHsiXalOHc1hXzqwYa6pVjBONVf/5z2On9iiAlz7LMvkeqDf09i1Z/Womsldx7SXNyIRyYvsGMUxy6dc1fTZx+ySFNLcM3dALhR9KYBf1Lh5TagNodZCeBmjZIba1FWkTNFsYpDZqqGWGaewcZNWMmsDOycIxZk83BzGXULAK+lQ3VRkV5nNGqrEMofCLlcpAUiVsAYpNKZPVoWZoZx+Vrq+DyMqxSiz2vQ48j6G1P0JxKhd2G6kEpRbft657d8z6jJsmcZZXhMrQ5i1YsuYtbpaWO6xtsJMr6Ub1r1omU3vE3lLzBUyq1teT9xu4lLRLMktUAqZHoRAR7KjzHm8Et+XZs16qxUloRGSRCP3ugQ0+DRO2MLMINBuITS1VhAbq/EzCeIQw39BckLSWMfkAZwZ9tn6MSYCm9nIJsFPDOPMMM4E2s2bw/rYF0MaFbJtaEqISo+R3x9fp/B2m/W7sBoDm2jobEvYv8hmssPatozzA9b/byyqpBn6x/gDcPvtt7O7u1v+vOIVr/ioj/nud7+b+XxO0zT81b/6V/m5n/s5Pv3TP/3jPqdPqGN9/vOfzxd8wRfwuZ/7uXz3d393+fqv/MqvMI4jn/u5n1u+9uQnP5nHPOYx/Mf/+B/5U3/qT/2ex+r7nr7vy7/zrmJYd9x7Moo94OiLuThKJUvBgfa0IzQVYb+iPk4LwjEsb6+xG7mh7DJb9oWSk2k68X3VvRd27nRS9IH2cMV4YZ5yYMXoOlYJXq6t7NpTTJffnwuDWCnCpX1U7wkLkcRE00AAe7jCX9ovJCe9HghtTXe+pb26EZ/gaxs2t8+plo79/3oicprEdLQbMZ3v9xXTKxoVZaG2m8iw1zC5LL7Fw17NMNdJ2xaZ3y8dw+acIeoJk8ud3PBTi0+zx+Gx8zJz1l6JY0uCy2TOpAmqEp1bgktD8jOOVjHuSQi98pHZvZviDewbw52fV2E3ML9LUZ/COIduX867O1+x/5tHhEmF6kU/q3xEn4o9m2tTR5wgRAl6lsUxk3tyl4o68710jsWK0El+aqhl0VKORFgJJTbQt1vNarCqdIlZ3uKmFqNBGyUbJpCuuNWyiEUEOkwGB97aslhnLWIurkaa1C0LN89LU8pNmaXWAslnoxDrkpTGUIhe5LmRtUlzLR2XGT1qtFt5TSYspdeUZTl5rCGb+VjGGGUO3FRSZH0kqmTvl4lKxqZOVm/NL8o5qvI4ykVMNopIIwhI880QhWRILEXqrKezDtvkmGxMkrtchaAUvkmzzyFuEYbEAC/FTgnrN4eH5yIlj2nESCSn6BjF2CT7y0QQyx2ndpJBmz/XrLVWUT4KiR6Uwu8rkbq5SZIPha3WGhVLJ5sZ8jq9HnlvKCMV7cXgxQyIHhu40UXC6FFJsvWIZ+x+Mo6Ps2O9++67b9KxPli3+mmf9mn8+q//OsfHx/z0T/80z3nOc/jFX/zFj7u4PuTC+o53vINf/dVf5V3vetfv+d4DDzxAXdfs7e3d9PWLFy/ywAMPfMTHe8UrXsHLX/7y3/N1PZ8QuoGvfuOzmbUbXvulP4Xtx1TQJmhrWD2qZXVRtGnzeyXn1C0MvlK0N6RgCCFkQnVjg9oMxMqyedwu3YEQDvbeJzdxVFJAo9YQ5UYwyx53cUZ1OJRFCqVg0iZ7RCtkpTxD00jhnNZkw//YVDKPGj1+d0JUaXZbiS5SSDh1Ij5oulumNDf6MgtzE8U400wvB1a3Wsxg8RW0N3JShsWuRprDnvZK2JpWNCndxGrGmaU/3zIsRP82e0C0azm+TebFDpUM2s0mwZaJtDPuSRKPGkMxcVc+yu7di1YVKJ7N/b5hfpdi+TgR89s1LO7yxQVnes9KOjdjGc9P6HeteBkrmS3GtXQjrpW5Y2Y9Cnt3C1fLuXoUW61k1Gc2CMnZptpAc5jYn5UqrjVmiKWYxrksluNMFsNqGYolY7Qab7IGNxYYMpNzdNJl6pTGo/sgBKikjxXTe4F0VROJU5n9qhRWrRKXgESIiYnFa3qPb6RjJ4h8BigSF1LhjhjpHpX4JOtRknUgQc2d2CuqEAWdyXNbfcZXOcO+GebNzOHMdk1dqu6TsHIkeXFHVJ/gaK3Iwekh2Q6GyqBJs8xUZEN632K2/PPZYESQg2FHXL7MJpT1slr5klMssHagHjiT8Zu0yWPEJUQCEC9ko/DZtSt3rF6uzeGgEY7AJBGnRtkE5M1XMAo/0QyLmvo4WQUmm0Lf6sJ4DomwRAwpli9JomIuxFuIX49BOni/tYvMs2VIsLmTsIUq/Y7ZeP7eW76Y+5eBKnpC1f5RUc3Hx8kK3tnZ+bgNIuq65lM+5VMA+OzP/mze9a538ZrXvIY3vOENH9fvPyQo+O677+aFL3whb3vb22jbj+508VCOl770pRwfH5c/d999t3zDGvRsQtj0bIaWv/Zzf0EIIbWlur5CdyOTyz3n392x9/5BmKiJ/FBtYsngzPINv2gZb93F709pH1ix/6vXOfiNo23BzDt8RJhuktF/v5cclnwQXWqMEsQ8euy1FSoE3N4Ec7wpczS96jF3Xy7/9vNGvINHj+5HVIy0V8TmT4T4snsVIpJ0fP2BRE/5WgLGTx4vgnbTRyaHgWzlZ7qUnqJUYRXngqhG8VpWUYz3fa3o9gUuzvrJ+sbA7K5VmTGSd9jrET+1rG+bypxuNWDW4ts87gj5yk20EJIuGEKlWN1qiZVi2NHsfcDRXlVsbhG9Ybafs5uAn1eEWcOVP7XH+paqxGFBYpIG2aH7iU4zs+xxq0paR1RiBJE7B1/rpF8MxUTCrH3S40qhzZ2KSouq+KqGokWVRTLKbC6Fa+c82DwXBHl/glHJzWcbwj0ubFmwg1WEZGogfsNpXlwbKbRKnl/8gA2hsfidRghTZ8hOZ+FKQAxGjNrORs8ERAjLN10HiWSUr2mUgkzCS0U1b96yveJNEHMQDkGsbWIAJ87D2RkrqSCn+bebJ6ezWp4jRzmW58ibo2wPmF2wUqGUjfCZJUlRzBWGhRVim0uuSHEL8QWjCtTr2kSaSjNV32qR2KTHE59ryuYsd5+5qGnPTd1tcWJK/sX5Z7OJhWyYtsYTGNnYqVFGGboPQkLMH6nOEZGJ2JXuOZIsy9diYZiJa7LpEkLYXb/7Ify1+zm6531U+v+NoO9HOcLH8ef3+xQh3ISsfqzjIXWsv/Irv8KVK1d46lOfWr7mveeXfumXeO1rX8s/+2f/jGEYODo6uqlrvXz5MpcuXfqIj/nRBshKKXEqQqGURlPhdydFqK83I7411Ec9btKio3SIeS6nfKS9loK+G4Ob5gt1eAAAy6BJREFUWerr4mrk5w1qUmNOO04+dUF9GmgubzCnG8zg2Dxun6jg8H+Ycdu/PhLnJJfvnECcNuJQs9Ni7j+kuhzxBzNJ4HGjFOHJRAwhdqYopdBLkStsHrtLVDD7/7P353GXZmV9L/xda93THp6hhq7qGVRQVCQ5ekzSb3KMr3EIJh6NwOsREdAWhQMooIagUUCjkmhEVECjqChpMGrQnBhC1HPQozGJQYlTRBm7m+7qmp5pD/ewhvePa61176fpbrqgaRus9flUd9Uz7H3vaV3r+l2/4Q/vwj72LO2JMs8YbaPQvaLct5jGsLyuyIzgnfcIVT9tJv1cM4u2gmm+aLcllcdOjOhqo74xKGhPapo9T7WAan+gOGxRrUV1PfbsjsyJW4cuNbodGE5OWF9TSt7p2mJ3G+xc3i7VfsxP1QXNJUvQBbaRg8z6lGF2Tli3yXqtPQXTCyrbIR7dXNNcLti+3dKcW9GfkFjA8iBCrVphZ4WwOlvPMCuoDnp0Z7NEyayG3GW5aYlpfXaEShtngte8ju45Srr0svVURzHxwwirlCBh6WnzlbB5GzfYIv+sGcR1x9XR2afW2EblqD5fqVzkg5HbSfFqxdrnKDFjXdb5QuzwlFjOYb1EqqXPgh+lMsGYLGuRJByTZ5IqzjVx0Ri/0ALjgiQpdUJAGufDsasFUoxZUAplbWbFS+dq5L0SQoy/U6joIoYGPy3jHJwN/9/4UsbOXrsg3nqbXVY0AQHAiPtQOiz5SjPMpQtOM1IhH0U418SZZPxjJxEW7iIUm567OEpIYRrpd4MZw+rlcKSiZWZkEJuNIt57XLRULVYOu8H0rhYeb8YiryKRqlwMUSokWm15bsnmE6n7DlryXYeZyu+F5MWd9jFC4Dt//B+xWLZ0R0u2z1ybkYGriwcNBT/Y9ZKXvIQnPvGJ3HzzzRwdHXHbbbfxtre9jbe+9a0P+jauqLD+vb/39/ijP/qjY1/7mq/5Gh73uMfx4he/mJtuuomyLPmN3/gNnvSkJwHwzne+k9tvv/2KGFV5+UAgoLViUsqlmk7IGm6rotrv8HVBfbHF7ggcGQpFv23wBqp9mX+W+2JejwtCgHIhO+Fs//kR/akJGMXh409jes/0Pfuoc5eY/umEsDPH7c4wFw/H+Vtp0HtLzGItchoQm0WlZOOqStT+IdQ1OIdufT7ZT99xp3Qd15zIbEQfmYXVoUCge48XJvL2e3uObqpo9qQbN63cf7GMfr17coJSTrSlrhEY1zVaSFR2QHlPdTiw/V6oDnrMUYuf1fi6RBmDBooLRwzXbosLVdNIULNR1JctpnWSXKOSrEFi9mZ3LJlfXNLdsE23qzGtdHrTc5b1mYLJJceZt1uac2vW109AKYa5aEXrAzG7qC+3HHzynOn5QTYrXWaGri8Uw1xj2girbh7QQxCNcWKwJnOH2JGm+SQILG1rRX0ogehpvheivjTEgluupMsVj+MOs7bZ7EEPDmyEemsh7Wjr6eYaPUSjgshu1SuRe/RbJhsASAZs7JDj49Nrm034Zc4qZvgJDk4e0BlRgVyUxAowfk0TU01UZvDKm2SDZJTmrJspJdEYQ7rPEItknPdWKSRdpGNq8EJei9/PDOViA1ZWIzHomBtTgCK9pqXOowpXm2OM7GOezKjsVpSgY5lHC0qhIoEtuTQpF9DpdyKsSoTo1QBGjeQfbUPOLh3Z21At5GA7TCVkQqc4REV8jWUEIJI0CHGUgA9URzZfu4v+1kGLVSeQ04fSTNvVhn/5Y0/lBS94U3aR+oV/9mT+jxf/YjQUiRKciF694seewrkjTx8UbE/RswnDle+mH7dLhfGAen/fv5J1/vx5nv70p3P33Xezs7PDE57wBN761rfyBV/wBQ/6Nq6osG5tbfH4xz/+2NdmsxmnTp3KX7/11lt50YtexMmTJ9ne3ub5z38+t9xyy30Slz7kivNOawPBzdGDw5dGAnp9YNiJUU+1YdgyuFoxTKRzKtrA6rpGUlKSHV10lDFHol8NkUxkZlXevMzaozrL6rM/kepw4NLjp5z+/SMOP/Natt9xD2FSoS8cjNKZSSX2itaC84TdOWp/IZrVuiLUJWo9oKwjNCVhW4qmn5SRrAHBJCbuqIGb32U5/ISKoKDaEwOH9cmS3T9fMmxXNBe6CNnF1BOvIYgest4b6LdLSjM6D2kbOHjslMmlOibexKDzrQrTOcxRT3LcUb2jSDBUZ2V+phTl0YCdFvQ7Bf3JhqI0lPsdZ/5bi51XBK2oLi7Rbh4NGSzDbi0bvBLy0tbtA91ugVkH7Kxi+y+WhEJj1oIs+EJjnKPa7zF9QXHQy4ysNqAK9GoQh6GZ3K5a9ePpPhJSXCPP4zDVNJctFVLcTGvRnaU/ORFBfyuB65tZn9VByD7GOfXFxcI5pI5W028X0enGj11YgD5aL5bLaJsYZ+269/IeKCTjN1Tyf907SBaBbMCyxE41d43j7pBmqbngWo8arKA8SfKTutENByeUkjEGjAURhGF/L/OHfP8x4STP7NFQpc+nyiYOaIFkg1b4eZw9RxvA8qiP+taYtRo7WrHMjFBnCIQAw6zIDkpE6DVpPIulFHRXx4NInHcL7Dx2hZtFHoT4ZKc6F8hiJd2/q0YEKFkNmp48RpKxgMzmEzkpz0u9mFGIQcU4EjD9KAWyE5PlRgC/8K+/mjuWnruWlhc95zaoZJ8ya8/XPvM2fuA1T+Ko8+zM4CXf+O9wjeKfff+Xcceexba9JBNN6ocC2fz4Wg9yxvpg1+te97qP5GqAj4Lz0itf+Uq01jzpSU+i6zq+6Iu+iNe85jUf1m0pBaos8M6xHib83Ftu5Wn/8KdEjlIZ+YDZwOpssWF2LSfJ6iimWMT5V7H2VOdXmLbPsyOI85lOBO/NJdmkL3zOWXFdaaQQhMqw/T/OS5e7vxDJDcAwSNZr8NIBFAZ1sITpRAgOyxWYWexMTHTG0dgTjVgSFop+LptE+oDJTEc205139zmbNSiY3S2ev8oGhu0SPXjUoAhV7HxKjep8DAZXHJ1uKBc+k2uUi1mNXp63ovfYuVgkhqYAK9KCYkWWbyQDDLtdozyURwOm8xRHHfpwjTs5Q9+1R9lvsb5RpE3lQYepZE4snq6yUQ1T2fwmF6SI51DoLqbeeJ2ZmG5eEhQMJ+o4I5UNNNRGIM/eQmmkk2pKmSnHTSzJlUxv4sYu53sdC1ixGMgh4cUYNI6PiTJskFxCACUyErtV5Ri5YuUpj2L2awwS0L2n6DTJqN4bJZfde1QvM1C97qXYAhTiG0zK+k0doAsx4ShqQqPMJjFuJbFGgxJ9q8AOZmTobsC8GQaLjF1FCsXWmVuA1rhZlaPQgOwWlGbv2bXIqPEgghDIkp2edlIciaYgQYEO0Ws4MrwzXAy5wxYDGCGrDVtjsk2SfpUrn7vTlKKTCG1FL85jpg30O6OncdDynrMTTT/X+FKyfMtlkMyMSKQT/Wt8iqL5vi+E9GcngiKVC5tntabzlGuReXUnykhui1F20Vs47TfZX1jJe8FjMUpLxF58WYo4zhm2Sk5Op5xfrlkcCFv4n7/my/nAPthli5o2qLr8+Dd7+DCW4kN0rA/blYzrIy6sb3vb2479u2kaXv3qV/PqV7/6I71p2USMkB4GF/jqJ76OUMuHtNxbo4eag8dMSPFnwcDepweu/c+B5kKXSSx2qxRob1Jm5qOvC9zEYJaW4tICd2JKt1uK2USpYtRaTF4xiju/9Dpu/KU7orn+MG5KQ/xUFgaKQuZbXZf1t4CwkadxjlxoisMoHUI+yM3+SOIIWshKKkC119KdauT0OzNiI7hd4SslPqFzEbCXe2u51rbg3GfXNJdg6y6LL2BxvWH7doudKHb+YiGerxNDvyOQVrkYoUZfymzW10XubuxOg2sMdqIpl060wjsFjVaUTiDZ/pPORocsRX/tFr7UVJfWzA473LTCzktM59j+c5nT2XkVWY82x6ip1tJdN2FyrsVuldhpSqARIo6OiUUZYgQx9j81x06FGQ0Ks4yB61rlbi0l0Jgj8U1Osha73WQTdfFejuzbLr6+kZ1LdMUyKxtlR0KKK476GBMXMsSpe8ewJYlD5aG8N5K8RnUSKZd0pfjx9zAahgAm6lTzZr+hdVUqZsyOh4GUz4uJ8Gt8bCFm2YploMnFNDl0yRNDlvukAoFX8WAQyTPRJQmi/Cdqe+20GN2P9IYRRIxRM0tJ5PGlxjeaZOCwWbjT/xNByU4EofKldI5BQX3oMGufk26SQ5MwZ0eLz2A01b5o2n2hcNNkfg/TizLzN1HTuhlSLkk5Ka4twcMqS3naUwXtyQLTiclDkoEFJZIa08u81LQeBjF2SKHzxUrUAMNOQ6g1CsXKejEFcyEb7Ke0nuc9/ed4+b96Kuf3W/7x9z+Juw8Cw7qTgnq1qN7/eohnrA/FesRPwFVTE6zjcDXwLT/9NPSyR6+GrDPc/bMFs3MD2+9t2XlXy9n/Kj6hwqiTcOvyoJMg4onY0YVIkNDdBn2+c/mDs/3enmv+80WqA5uJLfMPeEnS6SMzsiwydIaNhvs+wEoIUlzcI2zPUIdLKb5KiUtT2hzjyXvr9o5iYSmOBtHVdk5mx5VIcRKcWB3a6Imq8yk+hSb72LX1WwU3vG3J1p1DNE+Qwr33mCIeMCqCEYhW5n6x0xiEDKZ7i68LKXi9w81KupMV9T1LJnetKS+u8+vSnio5euw293zOadrTFetrGyb3tDlSDaXwTYFZtHS7Bd2JkvbaSZT2DKjeoRetQNkR8mwudgzbggYELUxfHVNoXFPEjjEaGQzChtXLjuryetRPRla0WVnKo0E2+dbGYG8jRSYaG4iJQOzM4++YRZv9e4+9D61HrwbMcqC6tPFc6HFumCQuKDGrV1ae1zSXTHm78p5x2SwiMc1x8lonO0HdW7nmDd0riXgUi3Motegwq0I6XqPGopq6fKPwdTn6B0c5VoiGGMnTOD/WdKjox9cyzVFVSuqJXWFmAWtI8Yk5aSaxzF3Ijle+iOb8qctLI5XIGjeDoDdyHUQDDzeSnOJ7Q0UtczoA6EFCKdLow/RyO0Urz1PRjZFruPQ8kme1cj8he/emCDhxSgoM8zgjb2O8W+RFrK+JWbmRkV0eDPk9hRN/ZDsXSPgpz3wTKxsE6VfxsQf5e7GymM7xmF3D6XnBsvN0Ry2qKKRbvVpU7389DKzgK12P/MKqFXp7ireOy4ctL/jZp+cZlJika+k4etkYq4WP9HiXT/hJi5g/iBkaTYJx2ZDKw47i4lKKWWQd9lsGc9QzvaeXwllKVxoOjghtK0VV62iL6AUGVgq25qh1D1UF04n8vTDodQeRUFVfakmsxv5ElWn+NnaibiqOL3YWnaROFhw8WrrHo+sL7FRjJ4b2moZhu6I6sHTX1CyvK0S6MwRMBzvvc9R7Vnx/o/Y0hT/L5jLCnsq6PE8rLy6Yvecgk1j8rKI+t6DoBF52jWJy0eMLYdsubprSna7xleboE2WWPJycMr9jRXO+ozyyAvvGLslPZbat2gG9t6C8uJQoPhsojxzTu1uqe44w+2tMayn2WpSN2aSFEei9s+jDNcX+Gp26VSOweL9TiWNObQTK3W2wOw26tehlh24HykPxBVbDKCfJhaWLLOXIzFSRNKUPViKbio5FUqhKQiNpR8XRgFnZTEJKetBQFfLz0ZA/r5yb6lHLFWrVyZ9uEJ00ZH9everl753N7kJCTFL5wOBnNW4enZKMya5PEqJeMWxVkTyks0OUshueulqkQqGKrlFRdpIISL4WJrLpHGYlvtKp80wsXHne5XflUDN2pqLJ9RnWTWlFuhfZjVl7ilV0KPIB1xjctMBOxVVt9EIeSVHSQYf8GRK/6wjPr3zUFrts/mA6QSmylCmSnRJruFzFnNY9T7H2TC6Kd2+/W+KmgoAMM830rk6KLWQXsHSI+PYf/FxcU1CsXB4VLG9/D6vb38N3fMfnCNmtc4KyxKCGZzzxdZRZzhRQ0/pqUf0QK5GXHujPw70esek2eSkl7NXtKf5wxeFRx3N/4qu4ebfmxU9+nZg47DS4WUFx1FNEgk2CMoHjnq5aycZqzdjlGBNnXOC3G7rdkvKyFOyt91lCbXCVZrjpJOV7YqBACNDbUVlgjHQhdSV5sTBmxoaNeZYX6Y1YyyGd9KyQzSumapj1vVI0nMwK+22D6RSuFAlL0Ynk4/BRBcVK9K3trsB9B48yXPM/Orbf1eFLw+qGCSjZSOwkwlU2zrzqItP6lfXoo05mrlqj9o5Q86nM9UoxjJ/92SX8vObgU3dwtaK5ZFmfLiTX9UyBthJF56Lvccq2NOsBt11jDsVUQ6/j86MVYTLJZvRmbTGxgPg6+jCvRx6k6p1oio2Wg01ZojqLMtL1+e0Jw1YZu9U4B603HJGMgrKMjztZC8Y4tzQrd158n6tCvpeIYl2fX980fwaEWJL00AmuvleaTHJYOqZLTe+lFCtonfwp41wysuGTqb/4/AaJH/PEwPd4H0bnEIqUoOOjX7CKZhVqI90lWUhKJ1fkLkrpMY9UZq1R1hQ1xrmIqjAGzyuVnZXQYsigot7U1yZrTYHM8k2fx01PXZ3MKFI3qxX4GPemVSYQ+dSdJ9OFRBbKDFwJq0/3l+bFJs+e5aAh5KVo5GFUNLYQkpOJ2b/CNpdOXA8ylgkTTb0fgzDi5yloJRIno3jZS/4G3/WdvyPZuClWt9K0h/tMd07wvd/2f0fpjcufu2Rd2QT3IaO7r66N9RCTlx6K9YjvWNNSgN6egtGslh3v2+941S9/HX5aYY566jsP0MuO4qhj+qd3U1xaoJzjF3/91vwogyaftvW6zzMxu11LHuthCy5Q7w1c+sxdIV8se8zlJc0dh3KyLAxhtSb0cYN1iVbopYsyQiLxs5qwUWRDLUL74WxkBcdurbj7snjuLhy6t5QXlpjDtXj09g697gmFotrrKVcePcD8roFT/9MxuSBd6PQej3aiL53dPVCupFMaog+wbwz1/iBMx7WlWNnsZFS0Y6SXGiSIIAVY4z1hZ5YhyCTb8FsNflKx8ycHEBDymAs0e476YEwSaU8JTLY+2wg0OjhcY6TYJIKO1mAdarFGLzvKCwvx5D1YwLpFrzrMwTrO1tIs0EBTjfBpCIS6kCK8PYEQqC+sMrtXDdEsYzWIYUaMRcNvzCVBAurj1zFaGN0J5k2rKrPpvVr3Wd+srEV1A2rdY/YW8vd+jF8DROJkR1ck+cU4X61LQTcKE/9fjAVTSxEhhDxDlVGHE5Z0gmCjP3CCR/udSuwUq9g9xv+jhGTjjUC5dlpIClCtcVMxsHDxaxIuIIEGycwkMdc3rRLtzGQUxNbS4fo6/nsiH0DpKH1ObEkRbuNMNxK+wsbjiAeAFPCtrThipSSfDC2nbjjIYSO5WvkYV5gMHbLhR2Q0E2HgYukojgYm97SUa3E1q/Z61BCynjr7+hZCwBMv4dHxyxsx1Vcu8N0v+12U9bz+X/0fEB+vsoFPfNynUFz3aLQNfOfPPl2uJSIZyfb0slU4Jwzyq+tBrPAg/jzM65HfsaaVJAbTmrDX01vPhbXoVLX3hLrkn//qMznbVHzNLT/Cv/rtW7n1H76RJz3xp0HryBb2sXs1Yi83+MiwLHDzUj6gpUY5j+nh8BMbTv1+C22H6nuGa66humONamoYDAwWNZ0IlDdpCFVJmApxxeytIAT8rEFZi5/UoKG8uJQN2wXUpQOYTSmOOin4Q/QaPuqylytKiqFZtFSFojnfSlD6tVuZlbi8TrP9fsvyhhpfQHtCMb/LU18WqLzfkeJe7cV/75bc+XmKG//vkPWIupNgbJXmxnleKJ20rwqxsGstflriakPQFfMPiFfx+hoxadBTTbMvZJDqyOe0kaAUq0dvMXv/QhJjWsfBJ++w+0d7hEIMN9SiheBRqyCFJXWMyxZKeX6yxZ42UBWoxZpQldgTU5krR2hWOjtPcSDdsRqcFLYNkwOTYNZ1L53vYKVTrKqxcCadaYxDwzkpjnHTC3Xs7BPEax146TjCtJYCm57Hzed1czabzEe0Fl20T/+OqEuCBnXEUdPsNAWVb8S9KetyMQxGyZ6ihYynhpiikuLa4mhkkw3sYjF3TdSvliMMTOwqE4rtS5WzSINWOWnGF4Kq6MiyNW3I95nkUNqNetL0PtORzZ1Dx+N8Npk7pJQe5YJIuebFqFtOrNzJmN8rXTgy//QKbZ0c8EojUHeh0OvRbS05YxVLi2lVjr1TMWFGIQYU5XKQYl9q+mnMVE3aWo3IhIzB+MDXfvUb+Kk3fDVHvWfZOZZa44Pi63/sq7jYeb7z57+Wlz7zZynWclD41p97BvtrS+itxL9dhYE/5FJeoR4gc/WBvvfRWh87hTWtEAg+gNbsrx3f87NP46Wf90Mwm9AOBc/84h+HpuTWf3Ab6+umVHu9yFKcR3dyKlaDoz8zoToYZIMOAVcXQIUvNfU9S6Z3G6pLKyHg9D3+xjNUf3ansH2nE7j7vMC/dZWj4UJpcFORibAzFbKK1uAUeh2TUdyYNsJsKpve4KjvWY7C/Em5MUeS+ZU9Mc0h2nZ3ilkMVBEu23mvfL0+cAwTTWVgck+cAQLFUucOwNeSLnPzW2TjMG20YWwHgTwBP6ulS0xQellkWQwhoFsESmsEZixWlq139fFgMqU8HDCHorP1TcGFz9xiVmuKlac/NUFZYZVu//mCg0/fZeePLst9ugCHC3nsEVZUy1aK2WId4XObCxbR+F0NluLiUuQ3pZHv1SWh1NjdhuJIvJd1F4PqeysdpvVSTNtuJKAVkp+bmb7dkDe3MJ2IM9JgofeCRnhQ65Ycbh91raGStCSMHgtz1MpmVrk2YLvx64nI4wO4AZo6drQqF9OMHAxSvH1TCJvXxVFHvD9f6MxYlQNkLB4+SUBGVq0wduMhCOmuTGLPxnl8gnJ99FlWnrGQGnXM5xZisUPIQCBeznY2EoV8odARWpWiHg+1NqBj5JqrTb7m7F09eCmUWlMeDvIeLOU69cJl05VNHNVEhCZB5em2mvNrVCdmM77U+FmZTSsg3X+SFYnByTDXTM6L/KbfkqJKCJRHNs+jUydut4Sh/DXPemPW0Qel+NYfejJKvEBY4vnBn3oqL/z6N/E9P/Z/cO5wwFknKMbVjvXBratQ8EOweouKIvjWa25fOp7375/Hd/77r4eg+Klf/3qZtzmR3JjWYpa9/Fm0QmLZrqkvd7iJwcUc0Gq/wybnonktkVezCr0eCP0ghJ4TO3Ej7oWtZ4xsiv3A+sZt7FaNWfZi+O8iqaU0+GmVPVf9zlT+P49ynNR9REN++fAX+NJInNu0EmLHWuz8hMFJjOmS3aPIp26BlHfe3Y5P125F0FCsBtk8I1NTu5CzW5V1kqgTOyO97OT6Nj7YOia7hKpA9TIDNWtLud+h1z3DrhS7fi4OUOub5/hKQgrO/vYlTMriVGKcHuKBolx4uuu35bHfq3gIJGtE4rRcQdcTZg2hNNiTM+zZHfzOFHdyRphW+KiXDFVBd6rJc+M0G07GBxiFWnawWMkcXGu5j9lUil0IkqWbXh/roj90LL5lEefyXuDjVJCTCX1Zytedg9UaterkNrQa5VkgRRgi/FvKNaQCm4p5kTp0nWdxWC8wfdTBJsZsIhb5lEeMOD2JwYLPxJ7NJcx5P+qAY2eZ5CzeqMw+T37KrlbZ9m+Y6UiiEyN726hsQJ/MF2yUvpRHjvrASuB8clWqk4aYaCE4QrWJDZwPBRvMYBSEGNWXN87Y4fpK5xi/xKMQSVA8WETSVyKVqdjhFosB08phwyxtPIT4jHY1F3vmd/T4WgxI5HHEuWtjone3z3PeZGEYFPzcG5+BWQ0Uq4Gz8wIVEYeFC7zw697Ia372aVxqHUMIhH5Azx4aL/a/CuuRSF762CusSdjuPcF5nPMsHXgX+I6n/gx3LBCHo0KE+kFrurMzACm4vY0+szGEevD0Jypwcd6o4qwGCIWmvW7O/hd/Ku2ZhsuffQ3upmtguSQEL6fKXma1vlKYlUUftah2gzFK3By1xjeSE9qdnTNs14RJJYU6GqYXeytJo9mpZINMcXUmQo1a0Z2qc2D1MI/60otryoWlPOxHDd1Rn+Gp9nRJe6ahPdOIjnQmJ3HXGOxWiW6jZWAIhEKgTb1oM5FGdb3A3usevb+MFHaPPmzFcacuad53mVAatt63QneO+kKHOb+H2jsCF5jccUS110bjcZm/hdqwPFvQnipY3tDQX7+FP7NLOLGF352JQUKy4dveIpzYwm7XuGnJsFXS75TYrTrKHwy+MvSnJvSnJlQHPeXFZfZSTsbw2Ug+ZvDSRH2xUpBYwNZFMlqcxZYlFAWhlMNRKGMRTV2FUoRYbMOkHmeyPozFMh1SzKYBQuxaQYp1WQgiUte5W00z3kRskfuO1+tGl6SkOdW9ZKGazuWQdVdr7Kyg3y6xc3nuUhpQvpTC5IQZHbW5rjHYmbggbSa1mC4wxGKa49kY3YuKteT0Vgd2DHeAaLJvslxnmEkxcrEAitUk48EqrgTRosmErBQP6GqdDxbi4iQsZV9F43s/kpfkoBt1u9F5LbH/XSOBGCFahfrGUCx6ORzoBGGL/rs6GKj3LMXKU7RS+IvWZVtKbb3AyZ3P5LCn//9+mp/4lVsJWrHwBm8Mymhe/U3/BoDbD3oWa4tbd+i5jJeuwsAPcnk5xN1vFutfgtzmYwIKNm4QiKqsohRkgl13FAR8P8B8hvUec3nJdz7ldbzu157D133+a0RqMKuEoLHdUPY26xxVEd1rdCIpOAglZtmjVz1uZyIU/EozuTBw7m9UKAe7/zPA9hacvwiTiVzgMFDvRR3oVoPqR7N4HaPu+lMTlA+Uey1VLyShUBWE7cmYgrPdYJY97ekqkzXsVkV1aRXTXBTNBemkivefZ2tvLifudsA0ElZeXWqlIMVVrCQ7dX3aMLnkJNi8UrhrKsq1p1hYkaB08tzotpUCkj7Y3seuTpi0xMcVAjJP1vIc2jPbmEWHWvWYfQvLNeHgELWzjbq0h7/hGrpTDcXSShaulfD5M2+7mzBr8E0RO5gSzRBJVJqAF7OOSP4qDsUjeJiXlAuLnRbSicf6W11uM7knBXPrdsDYsTCpw6UUPa3Esq8q5THWVewY4+GtH+Txx6Kp1p3MfRvpfnO2aZTihLrI0pwwqbLEKnkaoxSqKsEZMRGBKBuKlprOy0w3mqDkDSG6I2X3JDcWnmTEjwqkELg0XwViIZGCFYqYnOLBmciQDVJwZMZIzoD1pXjrZvOQYmT15hW7MjPIAa5oZSPTQ6BYxwD1YPIsN5noq9gYF63HTnWMDCQbdCgXQ9sjwuImosNOMrDEinaVdMJ2asSof/C4FCUYZTgyZ1bSIRZRFx1drpT1MmvVkqAkNoxDPpS7aSnkKBcIJTJjdhIqEEqdE5lCofBO59sQ9rdwI1JAhvKBW5/yM8mpEQXURrT23/v6p/GB/Z7QD6jZBMrialG9kvUIhIIf8YW1UDBcuIvppKF3Hmctzjnq7RO4doXq1/jLB+wdal562//Oy5/yb3nW3/h+/HUnAfmQNncvY+ESg4Ics6aTnk5OruX5BX67kc192YELmFJz9AlTtt8fuPQZ0J9sqABdGOgGgfMmDcX+mrBBMvGzCtVHr1kF9bmFyEeaCgx5npoKgIqJJqE0lEeO5s4DcYpSYrSgW2EMoxG5yfZcuknnpZhbj4m6SV9qdAgyN62MGNm3mtU1hqQPKpeiGdSDp7i0ELi6KbCnphSHnWh1TSQspY7LeUJTjp1tkO5z2BJnpbDTQAhCEKlL2ebXLRiN/sAF7CduS2e9J4SioBT27E6EFTXlpaVIVVyCPAdxrDI6E1jwnqAKitiVaBs3085JYV+2hIl4NEvBsNG1KIiLUbqd1K0ZLUXLxCKZmMZlIYV2GOLBYiQsuVkt89qULBM3adXZ3MVKZ9nIfDh+PclIKEuoTCa0oVQOFUjwNUBoBOnA+g3PYCUQc5rBR0JPcPI+ErhYnk/XRImRlu5WRf12YqnKn/iYIlt+jLNTaBft/RSjHMZKekzRRtlOJCsRIbf68pAtDkNl5LVpkyVhiIXXoxXRLEVFKDrka1JDyDAyimw6kmfV8RspPDxJXooQsqzIVVL4fJQjpYAG3TrsbpO1tTqaYKSIO4Heyd7Rx+waI4lLD4EQPCnMwRfxOqNlZkIR5LZdPKhofvQnn0zf95w7dxfFzln+5Yt+nle8/uncddgzJNlWdbWoXvG6Wlg/jKUUs61t9i/ewzAMlEazfeI0SnlWbsAOAn8GSs6dX4gM4+BIYq6sxZ6YUiw76X4mRX6TjyQKHUkcmhAzU/2kRPmoBwwwv6Nl75Mn2Lnj7r9Vce1/U0zOXcZfexKsR5+7iKorwjW7mcQUNGjv0Ssr3dgqEmSaapz71QVm2edkFrOy+ElBfc9C5Dob8BUeTG8lHHlnmhm6wCjHgOyGo3zAN2V+fJN7BsyudIUHn1Awv3PIusuUFRsKjTkSprVKRaBIcz89zvqMisQfj7GeYauk2xXdaLFwInOZlqhpRXHhUF5Ha8WZqXfodSeFuSlwhZhUuMZgphWqc/J8GYXeW0rXp5S8U+P8VJAAJ89L9LQ1R21k8eoYlacyG9gspMtPshcmjUDwkWQUqgKddMZFdNcakNdqE9ZFxgxm2ZHDD6LvtJ/G4rqht/VVIazTBGsaOdzpzkZNqsCaunPxwKWkiCYLxGjYkOViyRw/hQOk10PrnMSj4vdBTBBSAEXqBn1JnmsmuQkQ9aJjQRMILWC0SGBco7Ak2Qw5uSeZ5PtCieVlcgMrdTaR8IWO0XSJ2evjgVFnMpWwimPoudH4WmHWZI/loHWesaaA9FSYiQVfAuVV1GZrfBXJilYkO6rzGe51xXiw9ZWmiDFvWI+dleg+8hdWg3TMFjnl59dWUywsSm3Ez8XPiYxtdHa6esG3/3V0UfG8Z/0S3/gtT2AZDJOdswQFR51lcB6/7tFbk6va1Q9jPdTpNg/FesQXVucD/XSH+uZt6hDQWjMoTaGgMiXFNTfg1h1hcBTTipf98qN52Ze+Ab2UGaHamuC2J5hFF8O7S8qDYdTgFZHoMCmyJq44kjQZDTJvOlgzPVnB7xtW18KFv15y0907PPW2t3LbV34h7lFnGbZr6nNHYA3DyQnV+SMpHs5hPnAgH+BrJPdUtRa3OxVdrBNcrFiI7tHNSty8Fgcjo5ica8cuK2ogzYUWf3JLHqP30qFVhUhhZrXYI64HQlNkKExs9mQDuPZ3jtC9kLRE5uOhlEJgVn30eB0Dt5O3L6kjKMXv2NdlzAiVn+t2DGbtxTnKituNOzHPAe9mNUQiUS2weSTp2EZTn1vKgUa7XLDsdbu4pqC+c1/ml3HmbGelMJpXMcg7ajzDtCY5OZm9BX5nOjJ/y0IKVOdGspB1ke08jHNSzfizkUilID/P+GSor/BNJdeUCxwQZUnZb3mJSK5iHJs5auN8UKD7RNYh+uoqHbNOAdKMPnXGCWZMLGEYIWEriTne6EycUNZhrFj9FYsBOy/ltU1kpGKckZpuJJdhVNbE6i7gp0bci1y6r5FZTOxalRsLWjK4D0oJw1clOcr4+6iAWYcsDUr3R/YOTs8Ho51hPETZicle0sEo4XoNnoBERrpInjKtlxSnSourUyraRUrfkefSVZqwVeEmYoDhSgUxucaFghSE4HU6nMj12qmR96EV4ldOQwoqa2t9pfmh7/0fEAKv/Nmv4IW3/gK+Njz/Bx/H8//5UzhcWfy6R1XFaJN6dV3ZutqxXvkKgE2hvmr8Yh+AWswWQjMh+JZhZflAKPnGX7iV2aTke578U0CERuNmpfsU3RUzJV1Ah6j9awwuGbavBiE01IZwWqQ5xcqhfEmzJ+b0b/iaf4BWFvOBS+jlnLu+4DTX//SfUL0PVBWh0O0t6VStQ9/Zyb/V6L5kdyfYWSnz3WgN1+9WFCsXnW587hLdyVl2+1HWSyEAkXV4GM7MKY46zL5krrraRMcjmUUqH8QcwkmB1useZZOmr4wzpwLXFJjWolpLf80U12jJtjWyoTX3rLA7DcO8EJgv2sDVBy7LFXyhYSrReMWhw08r7Fwi6kJlWJ9uKFaW7kTJ7L1HuO0aHU0kwKEGLWSpeY2f11k8b+dVLu5UGrOW6D9lPbQt/sQsSmYK9MFK/p6ep8V6tBNMs9OqkuexMoSiyKYOqeNQweaCGopCyE8ZRhaTBl9HE5D43vFNJDQpCKemAnWuhzx795NKusHW5lHBaLIvGaAm6opDYr0mZ57oSyuzVSVzWJXkKA5lyZuzuDUpMXxoCtGd1kI6KleRFBShUm0FafCVlvn5BvxbrH0svlKIVBglNsEonJFC5soRNUlm9alTFkMH0RbLYxL9rG6HY7m0yRBCckoVoHHJKrESOD0ZVbhG5wOBJAaFmMAjYeG6l0D6+lIn4RNGyayU+PwaxbBVoGLH7aMTlXYCd4dC4WMSVNqbVXwcvpRYuWIxZPcuVESR4qhJmNYRVnaBb3nam/iBn386CoNRioN24FwfCM6ht+ZXIeAPc13tWD9KSylg1hDanv5ojZtPsdrzul/7Or76q26TZJtGPlEptstNhPSieosvy+iXGnBzhatKukfXTC469j9JYtR23+UpDzq2kJlPsb/G1yUHn7LFbifw35m3r1FFQQheiAgndkUjOZ/J5hw7ILsdM0q1ws4LmruX+KrAzYpociAwV7XfZxLU6roJk/Nd7OZU7FCkOwoTKYrl5ZXAiG2PUooCOe33u1U+XeshoOpSNKNxtqdbg5tWcbYWWZYeQi2djuk0w7wUhijQXTMV5vHa0e+UuEpMIMza4yYaW6QcSikabl5T7K3QfUG/U8WOWLE43VDvO4bTk2hc7gUSjT4IYVZlRuimCfv6TJ2j51QrxdjPaun0IoszE4islzmv0lJUo9wlDIMcMJxHefHSVT4SioyGtYdJneHkUBqU99gTMzHUTz6+aTNMloOlFEgbZVzl0YBqbdxoBSI0R21mF6s+slNJ4eCy6aeZsnJeghHSrLggPsYId1dyOEzogshMTIRP49cKKajDbCTSQDSIcMKk9YXcdp7xxqKqQkD1UWvq42uq42ZmQwxZl9vUcZaZPHe1A4KMRGRcg3SdXghMxDlsdl6Khi2uqWPghHyvWLnoC14RSil+xohXNUhnKmYVsYNc+whVS3H1pYxDVBfoTkk8XkpscrWm9J5uWzO7Wzx7dTxgyBtlfL7SKhfi05zlTxsQcHby0hocmJZcaHGBf/Kkn8kcjx/7pa/m0lJhUceNQK6uK1uBB2b+Xi2sH+ZKcF1VEJbSUFw/ha9+6m1CrpnL/E/3HjeZUO61FHudkEc8QnqpS9y0oL7U4ytDuXDYqWF6IbA+JZZtptWUBx37j5vjPnnC6bfvs/Nnh/g0Gyy0EF6WK4F+z19AnzwB1qJskSE85YXJ6GOeLCHQ71b4WsdAbpdP8L7SdLtltn7LRBYQchPIxqZjkHsYcoeG9fh5lYOhXaloOieQVZzJpflqcu5xjRw48hwVD5YcFxaMCOW1lWuwkwTdCaSe5oKqUAQTstOP2xLGs90qGaaGYabEU/j2I/ykpN+t5XUYnHgzx1iyNEd1hcZE79f6wMoBpJPQ89ALc9SABJ9HiUowCAwMOWEIEw0CikK61ntrVkEMQIpomu9cNLNXuFklRUuJDjjUaiQPKbEbVOl2gsymzbIfSUcRLvZNFUlEKsOmKTBcpZQWRT5s6N7hqyKjF35isvbUl5ow0cc2DxUCLoZvSzB7nBe2KQJO7k+5EGefERIulLgkBSDqQbOfrZJ5cCY4ITPT1A2kWb52UnBNgnY3CpOOzOwc/p3Q7OiApIikqcGPFoXIe8DOhC8wzEyGpKsjP3IlIkO4WKWvCdQr0YSKYbtGRQ6AnZvcZdd78v6YnnfoNtoKGumUiaYSpNcimrv4yuRQhOQEhh4JkdLey2ciHXxSPBydvG/9tGKxHjABVGEI3ZB9oa+uK1tXO9aP9lLSLXgfILQ077vMcN0OhfUcPXpCsRZYy27VFIlQUmgC4sojMV0qB2eXh4q61MzuVAzbJd3pGtN6XKWoDzyrm7fEhOJgxXB6TnnQ4m66BnPnRfzePno2FSJMUYBbwZZoM4sPXMJMJxLSXRWSWuICQynwl3Jxk+osatBUkamp10OUusTZUicQsMTGCaNUW48ynjCtRBt7JLm0/XYJkwih1bXo7fpxhgdAZGz65DgTJM1FtQPrs2dwtcJV0sl02xpXR0akBuUUxSpQH8qGG5BOgoDoFOdlNIRXuEoKMgHW18+pL7ZU+53c/7LFmyhjCgFfF0K28SLCT/O/oEvUrKDcE7tDyYM1GKNktu29QOTJQD+93tHcXt4vSmQvqSPZ2YrviegFHA8b4m5kjmeQ1gbd2sysTSEPejUAIafOJEY3STtZVPEGokyjGiPe0lxO955Q6YiquPz2drX8rp2anNKStMo6Eu2kkEZyT/T1dbU816YPaCuQreTheszgcfFAlCIK0zw0RCZxYt2mIiaEOjVGyMXr2JSYxCTb7JyUZCcp8i2zZ11Ar9zGTFt+zqxtdEkSyVjqOk0rmvGU71rkYHqNadlIuJFC6KaC5iQSlZsaiYfbuH2Qw4CbSCiDXLf4DAskH1+ypHsNcq3pwCW/kAxexsNUzrqN7z9lQ+QkCInQKYcpC7Q1uLYnhHAVDv5w1tUZ60d5KVBVgbeO/bWYC5QXREoyu6vPbFlXa9pP3GZ6d4veW0FpwHuZS06lCywOZCamioJQC1Gi35X53uycpVhH+7TecfD4k2y9d0l7Zsr0D96fTQDCYFHbczEXmFTRfAHs9Scp7roMGhafvAVMcJV8YIuWCM95dJxx1ueOALC7k2huofO8Tbc9lz5zh8klx/ydl+HyPuH0STFyAPyJOco6ygVoWzBslwKlrS2hkDi1NKtLRC5C7KDqCqM1xdGKem9g75MbXAOTS5F9XEAoYHljQA2K6kAxzBTNvmz2/kSBHgLN5QGztAw7FV382vwuyzDTMRAgPpZuiLIe2eR07yVLddAUix5fir8rkMkzSU9qDtbSnaZghNWabDSQjBycF2g+xbQ5d8zsnn6Qf4eQD2lJTyqet6PLUbY8NBvSiih3Uq08Jl+XWUKlBvCzYmTzxmKmuzibI2TpiK9iIlAsVom040otUGgfsuF8Mm0QD+wR+pV0mDgnHUQz6kXuihlGkpIPY9pOgq9VQAhATljCiVSUbps4f1XR4lB5KGPcH5Ch7iSpArId51icBMYPTYGLHbzyIWtIpQsJ+M3ONSbaoESPiwq4eI0m2m2mDtNHP3A3NdntSw8+z4uJzk5oJRF6RXzO4+tCiMiR0SgXO+l00HDxvkozphZFnaxcg3T2ObEmLl+LHldZDxr+yVPFHOLZr/lKXAg5WekqgenKVjaCeIDvP9zr46qwKoBJjT9ccukQvunffB2v+vIfx01nBK1YnSmZnh8wncc1on/UEWJTvUPT5ZlmOpEm7F7HPMVyr2WYzeh2S7b+4gC70zB//5pgtJyeo8mA3tkmxM09TCqGUzP5MLcOOyulY20qpud6PvB3G+rLML9LZkXFapDTdAiUF9e5eJQXl7idCd3JmuaeFeub5wQF9aGI1g8+4zSzu+YUt1/A3XAKc25PyDWFmPVXl9e4WZxxxhmS7uIH3QVCnGVKnFYALfMzf2Kb8vyC6oaa5UzRnpCiKpsuTO9U2DmUC9E9NpfElMJVmtUZzfpUzfRCyeqMZn6XdBj9lqG5OFDuRQ/gdX/M2KI8GjLUmboIs2gJdTna1KlI4qkK6U61luIIo2OTLuTvXZ8hu1wQi423fwgiw4mwtszIRIOqQ0C5MVpvjAAE6vh+8UkKMj6GZGyfiEah0LhJiVkPmSiUYaqQzPQFwkxGDUS5S3qDq1jkc8FDbAtDIhPFTlWg5EAwITsjAdkgImiwjY5a0EgmSozXAMNUC5SOyGnK5Rgjl/SsGJVlOcojGbUuwOBylxbi3DvFDqaYtHQoCsmXOXIOfCGQrumlkxayXSDoMTUJoFz7/HPJNUysCUVSY2cm2wq6WlMeiRNSes4lY1hna8WU05YOtfJ8x9GNdaCEAKacz+z2RMZKF5WVBpXBa8mLzhadjEgAGr7357+WC+seowzOOmxd4Vctent2VXJzpetqx/pRXkqJGcHODL9oOThq+aZ/+w380Fe/nlAattdWZB5NSXkkEFV7/Yz6Uos5XKIGjfHgTkzzSRTIetPqcoc+XDO9I87MBjEl6K6ZYjpPcdjiT+8I2WQ1oC8dSDJOCPjrtkUqMJM0kKNPPUFzeaDfKdn9c08/1xTLUazuC42b1XINHpnhVHIiL5aW9uxUNlwln2tfgumF2GNO3BAtC6/BNSLpUFHnZyeGYW4wvYRBoxQ6zl1TMoruZGP0pPlohe4NO39ywOL6XboZBCOFVDnpcCbnZQM2PXQnCuo9i1ae3XdZvFEUraNcSLJJP9f4Epq7F/KyrTr8rBFkIDoJ6VY6c9P2eY7lmwpzYV+yVHemuHmFWfViZlGZEfoFgXe9B6KZQjTXp+3EoGGjGG7aFwatJQQhdkIUIvFRth87WKXy+0MdrgWN2DBbyJaQzkdzCw8xbFwbKTTaudGu0HqBsX3U5hbSLYtPrRjMi7eyDJPS/FF54oweeY8YMINHtSHDwSAWg0CGqzfj0pIJv3xtLACJbZsMIIJJcLLPsq00ewTiLNNn3XGA3F2GWqPaMJp8wGiWEWIKDWQ7wGAU3YmS6jDaUW50cL5Q0SrRZ026Wdv8/g5a4aaG9WlDe0Kx817H/L1H+KbM1qUYhfFi+5hmpuKDnJ4fnSFs3UqcYygDeHGREp16DHAvxJ9ZPrdyLZKEo7I+XfnAz/3SMzjfer71ST/Dd//812CUw2jFDzz99bz4Z7+aqi5ouwF6K5Ktq13rg16PxBnrxx0NTakYjL41ITjP4Wrgxbc9E33PHsXeUkgHnRhst6crinWEEaNJulp3UYbiZa62VUlSy1pYpG53RndmBkoxXDNjODkRQ/vlkE/eynnsbkM4uY171FkoS8qjHtM6ioWlWEQz8rWlvtTRXHZsv7+nWDtcI92D6RzDjrBazaJFrXp8VVBcXjJsl1k20e0I9JVE+9rKiTvpALtdw6VPr6OEQWQCdqLotjV2OkKrbhpdnkotrNfejhsvYLcqDj5tG19KUTXRvs5O4htXwTBLMOG4aSsfqA56mQP2kqVpG0W5kG7GT0pJk4lFzm7VwrYNArmF5AhUaPS6kyJopOss99bZuD8kSHc6ieSjIsK/Mf90M5oN5GupsHax2Pa9QLmRwJJmaMkaMZOQGLvRMKlEAjKpMuEr6WIliF2SSkIpEJ9eyfvIzquMSuB9dhSSGLdo6WdDJGk5YaIvh0hoCqOdXtSkmrWNbFWffz/Nkl2jY/CBvC7ahRytlqz/XK3ktdVkyYmvpIAX0fPWDNL9+kJRrKzopTuHWQ/Z1GJkScvsXg1OZtGFjl+LBVyTncpU7OKy6YNSVIc2M7zF53l8j6uYfiM8gygTiik3KZjc9OAmESYv5XvVXk/RSgJUQgGSiYOQtLw8rsUQvZadvAcTqxckDSrIYSbEg5bq5VBaHHZZ+qXiaEBYypZnfvHr+Nan/AwA3/mU17FTrfiBp/1cfMoGtFHoRrrWv4Q68LG9woP48zCvj6+OdWMppdBbU/zRiosL+Ke/9k38sye+GrVcw4ktyQAFuhMlxVGD0hq1XAms1VpoIEQNW39mmsXk3ihWZwvqC4HV9TW2USgH5U5BdSidnis1ixtK2pMNJ99paYzGTYvR3QU54fu6oLz7gLKQBBy73TC9a4U+6jj4ayfZ+ZP9DZtE2WDsiSnlwtKeqmguR7P0ic7uL4QIWw8Ce03OD0zOQ7m/ltP5zdtoC/2WilaAHuXE/Ycg2srsPuXi7EgLrKsCbL8/djJDoN9SlIto/j5AGSR7s1yKAfz0UrvR9UuBbHdKTB+Y375EWS/MyrS5tRa96gmxg1HWixbVGOlIXRCo14nhBEYLo7LQ6L1Defw+Cu21gj7OUI2W/9skg3DyB+T/W3PxANY6d1xqU/pg4vwrBImD64ecFeumkYyUCmL0fcbFwq31B8PDDilGiV2brQgdeB0lLiLd0EMQBCM+/77UmFaSXhKcHxSEStjTCUrNhSd2tFJA1djlGpVvIyjQAzn/NAWTm9ZjUsh3tBVUASn2vXSoQSmJG4xFMBQmPo78QYzvIT1KgnSyFSWb+yeyXDCRrBQ1q8oGlJJZdDCKMkbD+VKxuKFkfheRdBQYtgzlQuQw9WXP1nv9aEkYURhXFRSdZ9gSUpxZ+5HA5AN63ecZaWbxW4/CQysIg69LQRzSa51GA6nQDi63LCk8Qf5Ofp6e/Y9+MWuY107ToyW1ywd571yNjHvQ65E4Y72ijvW1r30tT3jCE9je3mZ7e5tbbrmFt7zlLfn7n/u5nysd48afZz/72Q/5RT+olWDhWYNrez6w1/Kif/dsmE2ERRtP+sVS5A329Ax/egeqEjXYGMcVT6020O+UFEc9ixtK9j9ZofeXbL1niavkpF8dOVw8CYdC0ew5JhcDh48qRFtoFMOWRLjpTnSQxfvPy7WuW/Tt91DddSDxbKVheleXC0YoRfohTkOefrugWMUOxnomdy6kG15a8cxtBSor9lqKZS9FNZ60XTRXd5X86bfFz1VgNC2yoaiLFeZl3FC9SBmGqWxuvoD6IDC55NCWvIEPM4EMlQ8MJ2rsdk13eiIQJwJLTi7HUPU+WvvFbjMUGp8KFYxz08GK3240qZcuz2VfX5X0pDHCT2DgMHang40F2UtxTX9Pc1YtcK3qItw7DJEt7Ee5TjSUyPP3eK0C58b5Yi/vGzHsiBtqjMdL32OQAAYgG33gxPBdYPgha3N1b8VAIQTKPdEwF6uYI6uT8YOwlX1tMrvZ14JGANEPWmDtYu3HTjcVEyedqIpzykTQMZ1IZ3Qn3IJsJj+MhJxs31mXspOkgIYikncSIlDo0eEskuNSV538evVaipSJBTxpW5XzFIedjGLuOhIHtdZilpbt93d4oyiP5PksVj6Ty3TvBB1o7WiFGF2evBHUpp/LLDbLc2KUnIqHrpRQpXqbXbCwHt32o1FLb8duPbF/4/z9WFGNjmuql0NIIja98HVfxdoaaaoiqerqusL1sd6x3njjjbziFa/gsY99LCEEXv/61/OlX/ql/MEf/AGf/umfDsCznvUsvuu7viv/znQ6fWiv+AqWUmJTp3dm+KM1l48Cz33TrTzh7JRv+DuvxJ3cEt/RZHDuAmE+iQ49QTSRRSM0/7Vjfd2U6UUhMvQ3ncSsB2b3OIqVE23nEOhOiMPN6oyi34HqAI4e3VCsJfQ5bRxqcITtOW53IgzhppbUFC0zNhVAH65BG9TRGmY11LKhz95zwDG6v9aYxShXoe0IO7OYyDIwnJyi5vFD74M0dcvAMBf5jJ1G8kpkK+roEoRS+FktczYX0E4xueioDiy6l1mtAgjCIt1+b4tpLcNOTXEozFBfGexuiek85d7AsFXQ7RiCrkeGr4/GHYA5WMtGHcI4N02z0URIsmluujGL2vyac+SsU2slgi0EaPuR9ZuITCEIBGxjKH1VjvNZH+TfkW0clJL5Z3zeE2SdO5XIfM2ElViwUWo06I+QtI4+z74phC0aZTOhjDKegHS7WlMsB9HPBik0blKS0mCCIqMVrhllP+Whzd2aCkLwCUVyOIrw/yTaAiZQxCX4Xv5uWhuTYvxIrkpSpWivSBFJXMaQMmLREWpNHXmULgVS9qnMjlMSDIF8xA9RdhNMTIuJSVDZiMEFaC3UBjBM7lrgm4LuRCPvy9ZFXawUW7sdbTuTpjYeGvot6fCLpZWDqGfsQJXKBXRklscZesmxbhyI2l6dHztxlLB5ez/yludwqXMshoBWgcYoLnWBZWRSawI+vy+vFtcrWY/EGesVFdYv+ZIvOfbv7/me7+G1r30t/+W//JdcWKfTKddee+1Dd4Uf4VLRFEDPJ7iDJV1V8A3/2w9JMdpbEKoStzPZ2DBcNHSIJ+ggTkWEir3HVZgOZucc5/5mQ7loqA8C/VzTXLYsry2oDzymD7SnDMMNHdX/qPEFuFqkKGYtHWIF0rXurSK5pYmFSJJuglb43Zl0OqtudHYpjRS7VS8f/n48FftkGh/1jkRzg+KoixBWwfLagiGSj4qVdJoCBYaxGAQXN3ovxQPQpWhgtYJ+p8B0kRmqRB+JgmLRY7drMZWfVBSXFui6ZCtKnoIxktPaltiJiP6Ty1CIoejijuQinCgdaZjU8npEFm/YmsoMy0g3i49M07KUgpoDu738zmDHgPEQxuI7vknk/9GIPnWnYToRKdbGz+a4OC+bvBo2imkIo042SVQ84ywXxsNB9DhOTNLsLLW5aVsPtcEXheSnqlQQpetL2ai+EKlNYuiixO4vzVGJBXPTdCHrL0NCG0I2ADG9SE1M50bD/1REEoKxwXjOa8MkIZiYnxq7M18V6DbNuRmdnOKoIT1/uTN2MqfMn0sfBO4eHMoohtkEPThWj9rCVTo6ccmPFgctvi6F5Z70xMm9KwTstKBayGfMzgxuoqkvdNmdLRRaGL3x/RI2xgKqt3KIiOQzCVOI8jojEqOs043/JgSe+2U/yWt+5VYudzYW03Csw9Uh4OIh7Cpx6QpXgtgf6PsP8/qwyUvOOd70pjexXC655ZZb8tf/9b/+15w+fZrHP/7xvOQlL2G1Wj3g7XRdx+Hh4bE/H5VlNHpSMyxbvvaNX8d3/F/Pxm9PCFVBe7bh4LEz/EwK0vCoawg7c6gq7MkZ/TVTCRjv4fTbjximAv8uHhU4epRifVpmYdUi0J4wHN1kaC7B2z//R+lOwuqsYnGDojqUmZbpnHi/RvtBjBYSTHT1OXzsDF9qljfP6K6dY6/ZRh0sBKpb9RIw7j3K2myNJ0zaFNQt0KnqIvwYN283MdgJtKdheZOn34H2pMZONcN2EWU4RpyBKpO9iIUBOx77XK3pt6LmMUKM5cKLsUYU4ycto68K2pt25fq6QVyftPispi5Cr20sRBq/1eQZK0OcoyYot+thGGQOmnJiE3w7m0LsdNEx73QYCItllj1l7WqWy/hR3wrjPHbSwKRBDdFP2pjYkYHeX6JWnSADGsmJrQt5vmZyOMoIiHXSDacNMxUTyNAp3o9aYkUmauXDUl0IMeaop982DFtpE5fH054qcI3OcySdDPK1QJ4uwq+ulj++VAwzjW3SSECg+/JIyE/VwSAkqMHnbNk8FohzYYGvY5HcnDF6n2HUJLNJcLHAnESDD3KMnepttq1UNhlrREhXMybFTCpCU+Fnwo0oViJZau5eM3/fArMYKC8tJUSiNOjeYhadmK9EIxQ7ldm7SMHGQ4arNP2JCjsT9zWZUwvU76eVREmmiL9YVIlz400Jll53Avd28h5NkiMA3VsuR6Z1GV9n5Tz0Frfq6BYtvhvQs+aq3OYKl3oQf65kfd/3fR+f/dmfzdbWFmfOnOHLvuzLeOc733lFt3HF5KU/+qM/4pZbbqFtW+bzOW9+85v5tE/7NACe+tSn8qhHPYrrr7+eP/zDP+TFL34x73znO/m3//bfPuCDePnLX36ll3HFSykFk4owWLx1eAraa2cCcxqwjXQr7/yGk9z8VtlI/OkZq+sqmksWXyi277DYrYp631EdaFRQ6B76HTj/v4jH7eKTLPW5gvmd8L/+0gsJJxy+MLiZ58Q7BbZT0TLQ7k4p7pZgbtVb+uvm+EqzvkajQoGycHRTyewuhTmYjjmPBwspKJMJqh0kKDzlu1YBCnEuUhHuVN7jqpLy4prZPSXdCU21L5IXPchjH6KQvt4HrRS0CnSIGlgHFKL/RWcJRpISaCsbtK80xUE7bqjxmqoLqygbkg64rAv0MjJwkwQjzS6NyTFvmXAEUNex61Ty2FPnlzZ472Edv64FEg6ddOrKGPFuNoYQPMqYsbuEDc2rlpDxjA7ElJthZO3mbsJL/mr+mVgk5SDj8+0lJ6FNgksoynjKlnBxucYo9YgJPok8o5zIUczKiv2ehm63FBZvNJsXIwg55Lhai1l+kuWUChftC0WCpSPrV+anyckqFbQM996LhKNXEskXiEW9rORwmLJhXYhpORsdl1EyY+5Gu8KRyONzJxuMzgQsbQNmmVj50qGGphCzjQix2hNTzGGH9hvXm6wF4/X4pohdo7w+yWgkGEV5ZKn2Pa6RQ4kO4jqVOvakm/aT0ata+AYKeosKAvfmQ9DmY9aI1jpq4JULvO7XnsPKCgS8W2vuOHTsLR2u6wnWoZoK3VTyPrzasV75+lBz1CuEgn/zN3+T5z73uXz2Z3821lq+7du+jS/8wi/kT//0T5nNZg/qNq64sH7Kp3wK73jHOzg4OOAXf/EXecYznsFv/uZv8mmf9ml8/dd/ff65z/iMz+C6667j7/29v8e73/1uPumTPuk+b+8lL3kJL3rRi/K/Dw8Puemmm670sh7UUiAsUufobLRD84FSgRkCdl7y2H+9wlw4xF2zLdFopcJHgXlKitFWc/B4BVbxN/+Xd7EYKi7+xKNRXmCm7lrLMhSUB5qd9wT6bVif1vRbgcm5lmJvCc6LprGS7tCenKGCkIkWNwr8pAfRp9b7mvWjd5i+dz9GxwXp0LoegkEdLNDziXygKdCrTroolGxMk1JMzAvNzh/vsfPH4LaaqKstjxNGIolFSEPCvk1xbTrBcgq0EcamTl1nHz1uq4LuZE213wt5JAQxf5hUqMUad3YXfMDPqqydNK3NLlJ62UkXnwpqUcTONcB8CotVlM9YgbyT/GbdRuKRlT/GoJomdo6SYxs2565ay/OX4OLkIeyCzHPT+2XdQV2KPV3vclIRwwBlier1BgwcvZvT86dVnKtaYQvFa81exukwFLuXkAs8BK+yfaW2gFES6t6Ij3V1EGHb1uXfzTNUJeiEWTt0G6F+F6KDVHIq8hRLm5nFvtRQ6hhM4XKXSoqHUypC2jKv9Cb6c6fDQlWMZvMJ6k1SlEEydoE45tACu/oEJ3t0kCc8FbUMuQN4MMsux+0V++tRqhMJQqrzec6ru4GwQRySk4eQh1Kkn5sWJAlPsRQWc1AKsxSte0J5Ehs9JdTk56KIh4zIiQgxrEENjp//zefz5H/wE3Jtg2M9BFrrsSGw6D37iwG7lvGO3pnJof9qMf2w10PNCv6P//E/Hvv3z/zMz3DmzBne/va38zmf8zkP6jauuLBWVcVjHvMYAD7rsz6L3/u93+NVr3oVP/7jP/5BP/s3/+bfBOBd73rX/RbWuq6p6/pKL+PDW0rl968LUbvWRdjrSAzofWVQW1ORgShFc8chITJVh+1aIsECnPnPhsufqrhnNef8b9yAfRyceCec+DNPf2fB+ixsv1dmXLO7AtWholiLiD1Dg90ATRXZhx5VaYqVZ3LesLw+4GYe3Wmay5rJ+S6HfNPUhLIQ027nJVf0aIVaxwKhlRCAvEfpuLkMbuwuQqC4uJBi5+MmvBKyi2rtOCDQSHH2fjRSVx61DgKXmREiDjHYWg1C5tLtIBIhI4Hm5tICylKIUSlUXWuG3QZfasqDpWyEaR5alrEgbUgP2g2yUFpajczd9PV6TBJiEGaxUorQD/LzaWYWtcsZIvYR4tQbXaZWYvIxbEgr0vOYu2Y//j3CvaGOH61GozoVIWEnHWyE/tPrghECk+5s9hXOZhOxW0pdXdJbZpJPapQGj0csD1VASEeBHPcm3ahCBY3qfbYfTAYPOfoMcgRaLkzRqSqkGWrKi43PeZolikmGjnCxy11+2Jglp/cKG6MFEFZ1et6z3KUqUMqN8DFkJnmaXasuBtYXRkYjkYGc59obEhhfC/oiZvqB9kwphKd4sDRri2p76VwjhJ2eN/kBNZpcpMNTei4SMbgqeMoX/Th6cHzPL97K+WXPH961wIcgB2mlsG0PhUbPJsfft1fXh78eRFd67zHjg609BwcHAJw8efJBX85HrGP13tN13X1+7x3veAcA11133Ud6Nw/dqkpC27O/HPjm134F00ojmc+Bf/qCX5Ksx0pTnTuCppKOcHC4WYUKQczIC8X6pKJcwuK265lo2Pr9nsk77wGgfexZJpcFOg1aAsCn5yxF6+h3Sw4+6SzTC47p+w7zB99XmvZkSbcjEK3pFO60Y+udEoVV7K8F9q0L1LqVbqEwsmFXFawHaMUfmK15lgKEQotjD6Au7BGsRc2jtEiJ17GB7JyTiEN+WqO0GDi4qXQXvjJZI5kE9q4UK0flA2YlbOLykh0Zt4CvKkIVuzkbJTLOE5oy+8O6nYkY/id2bzLPLyWQnK6TmarR8hjq+vjmnKwKlZJ0oaRXzZ0WqKqMBdHk+S1VNcLCiUFsnRTxOH8Ni6UcYuparsc7+b+KBTNtvKlLVQrKaOSfmKFVNRbyRHDykYW96iPJx2aZRupmdWeju0+MOYx62TQPVxwnQJm15AgnoxJlR7Z3DlmoxnScdH1CyNokWZl8Den+slaVkR2cNbrxIKPSbDR1d+k1iZpeZT1audFEY2NG62PIgmqtFNbkxZuuzWt5joykywhbd9QJByL7OulkiyLOckcZTTDSgZZ76+yulIhbmX3svBS+bpCs3Y3iLHcUH3vs0PWyy2hOKA3/4ldu5QOHPe+9uMQN7tjzoLQWFGI64arh/kOzHiwr+N5I6Etf+lJe9rKXPeBte+95wQtewN/+23+bxz/+8Q/6mq6osL7kJS/hiU98IjfffDNHR0fcdtttvO1tb+Otb30r7373u7ntttv44i/+Yk6dOsUf/uEf8sIXvpDP+ZzP4QlPeMKV3M1HdxmNnja4wyWH9TZHHfGDo3juK54ch92BqQ5837e/OYckp81i8oGFSF7+rCXEaDHd9vhZTbi8D8bQ/AXU8wl+VnP4mDnVUZRDVJrJuTXFqqLbLVg9aptimXxVoTqwFGuNcrJRTP+rpjxqWd5Q018zp/6Lc6jCjJt6YrguV7JZDwjxxlrUsiWZzYvcIkjI+sXL0Hbo/SX+xDyL9lUS/MdAAmJKTNAaXwjByU50tjBMhhmjMUUQSUhlJP4tJgWhC3GyigzfBNv6M7tinr8axBTCiF9wKp6UpRjpr9uxOzBaNtVUlMoiGzewbo93jdYJ9JvmnUYLNLzRxYqGVeVin7rTY3PRYUAlyDl1cKkYwyj5ifPZTCRLgenGgPaxM9XCNlapA4txYloKxmZXl7Su8sYp0H6EV4OOHVuCrkP8HqIhzUUzpuYkl6NQqfFxpWJWlzkWLs1K5WCVwgji+yM5Q7XhWJHN1zwMqCFJ11TOJk3ZuOmg5SciWzKxSIV4CBEpmIchjPDuSljtfiIzaZ26SdxY3BIkbDcOBT4c05GmDlzsKg3BB0w3xIxXNUp5kI4zfxYKHTtcN5KUYuC9sha1HqSgDlLkQ13x0l+4lb+4sMK2PaoQNcLIBBcZlS7N1aL6EK4HCwXfcccdbG9v568/mG71uc99Ln/8x3/Mb//2b1/RNV1RYT1//jxPf/rTufvuu9nZ2eEJT3gCb33rW/mCL/gC7rjjDn7913+dH/qhH2K5XHLTTTfxpCc9iX/6T//pFV3QR3spwA8W3dQo6zAptzIECqXyPruw8OLv+jJuPmko1ZIX/P03yQbVCGnDnZxJh+UcLNfi3HT2mnwyTZKYE2+/gD05i7T8ZBnoaS4OhEJh54ZiIeYSyUd32FIUS1hdY1CnDfW+x84N6jFnYyKKdDZ63aGchvlMOielZAaZnIbKArX2uVCFukCdOiGFxTn0osU3FarQ8v8gp3baDqbiq2pPNjEVCMqlZ5jJbElbhelHSzxKTbEY0KthhNF6gTWH3QmVC5lopJoa1Q15EwNQR6sonfHQhxHehTGFpixzccI6WLeEuKmpZKhvjJCWNiz9JNQ8EolSRwnynEGcJ0f4WWvwNhfVcXYQr8E7cXTSRv4eO2A/rTMsKCYPAyoaEoQy6n2tEJuUVsfcdZQVr+NgVCZEqc4SmhLfVNIRrTpCIRIWFWeJYjgfma6JLxUZxkEnC0O/URyDzMejBCUVPl8XaO9BGZSWTlF3ozwpEYQSzDoW03in6d/OjYeeRCpy4vGcPntAvu5M0EpGGak4mrHICRwbcnEOJshrHAv7sfsHeY+n20k+2+l+nUMveynUEdJXRKi9NHKDIeAnE/l8RdOPsCnP8qAX6+Pxg8Ab/uu3cMdhx7svtwyrDrM1kc/fZgGtyquM34/GepDkpWRs9GDX8573PP79v//3/NZv/RY33njjFV3SFRXW173udff7vZtuuonf/M3fvKI7/8taqirwqw6CQQO7leb5P/HL/Mtbv5RZqVl3lsXgWXv483t6yrLim9741Sjg9KTgnz759dja4JoZ5eUV1BVhWhFsgZ+W6HYQkX9kB67PNkzOtZR7S4YzWyJ7qHROEnFTwzDVuErR7SiGuczG6gPRKZouQn+FRnt37PSeCTtBNhxmU+neiigRSWkvEYlFxyIbodnEGFY+oFZRyjKIQ0xoKorFwPpsI3pXoyhXHt2Ljyw+SIpIzOwMuqQoI9yXzBI8VBfEbD8dSkQuA3rRjVpUJ5txWLeoSSPXP9hRHpPsAXe3pBhHaVEmfoSNzV1pgutl8/NB7AlTd+qDmJx7L4V0GMbOLGllu34swKkwZTZwup9hY85WCGHGbsxvYyejBsbbz5Ib8LNGrt8JYzZ1xKEpM8SJikEQScKTTRJiB6U9GntsgwegKKItYjy0xO5LrBMj9AwiT0rs24RspGt3I/knzdEzWWmjWw1Rtzk+5niYSZFxmkgGctLpJbg5jUAjczYdFEKK9FPxdjdYxynflCFqSNFShEtNSM+JO87UVenwFAu4sHvjc5GY3CFJZyJkHJ9nCX+IebmFhN6jZWzw+l97Dk//4n8lyFA/sN857l4M2HWPntYfXFSvro/aeqgNIkIIPP/5z+fNb34zb3vb2/iET/iEK76mj1uv4PtdSsnJ0Qdc2+MUXLQlL3/qF7N/1HEAmOVlymaCbVdgLb1SmJ1TLPf3uLC4xPe8/h/xkuf86ggxNSV62bH45BOY1lMYiYfTy47++i26XY2dTDixvxLN5kQirUwvFoNq8BRrWJ8ucDV4A+0p6QoJsDpbMD1nqS6vxeZwKWSaMKlih+BG56CuFxP6NHPUWswnKiObw8FSYLv5TDqiSRk9UmWepIMUInUQ81xnM+q9gaOba2bnRDu4urakXEoXHQzUe17cfJTCNQZltQR+a01oCvQ9S/zJuTCQV4ntG6/PRqZt6qqmkwzlAlJwujhHhrHQdp08zsVyhH0BlWBcY6TAai/uSSDdLaB6RHaTGMFps09zYaPH4pLmp4kQleB3PxY/TAwTiDId1dsxLD35G3e9XEf8eRWZyXk+GLvdbEBgPWrVoVInnXI6Bz/et/eobsOXd4NTFEpDdgHyHjVEHWp8DkIlRVXFwrdZCFHp8YdscIDfeM00G1IjTVDh+IxbqUxyEvlRfG/qsYiGqsgsW18ZlFNA9BzegFxRapzH9hEmTnNRIhQczTbSezDF9GVzjkTyi+zrZC6SH68H7bvjh6J0aFIKBsfP/7/P4yv/9g8LMa0yvPeo50VveAbtII5Jf3p+Rec83jrM9vRqUX04l+cYMnGf37+C9dznPpfbbruNX/mVX2Fra4tz584BsLOzw2QyeVC38VevsCJdjmpEcM5gsd0Q4UTxW3XBUwwrQrvA+/gB7ibgOnRZcfvdF3jhKz6P7mifH3vxf455oGtm794X2Ndo+pMF4XTD4aNLTv/hin4nFjHnYvcpH7xiLdpCX2pxaJpA+5iO+n1RCN8G2hM6k3x0lAwEU4rdXyoAhRmDkrt+lKkMA4RmPHFPmhFOBfRRhzsxxU0rTHRZCo1AVqEu5TRoPfO7eumYg8d0gX7b0Fy0+EoM0fUgesput2BycWA4OaG8LNaQ/uQcnNg5qkgUCoUWmDoE2ciH7njnNWnG+amOc9GmloIf3bFYreV6g8+dZAgjezdYO26sCHkpWCtfB4KPELIxI9kpuT1ZK7PV3AnHT2cZZSJlMRaMRChK6plk55cgzE0GMeQZ4CbJR2bSZmTGRkZqNmXf7MojFL65dYc4b83F3LsRgpYn5njBMGoslCGI3rNkDImAceaeft+FEWZNTO08m40FPkbMKRdg1edin7rIYAAVfamDmJco/FjUxg+pFNHN2alGyEdJCpRm1ZpIcApiJJECx6ti5BBsvobp8Ww8Z6I5dfmAg4nEqeiw9JV/4wf58bc8m0WpePeB5317nWhQjSaksUMAPalHdOPqeljWQ92xvva1rwXE+35z/fRP/zTPfOYzH9Rt/JUsrIB8qADKAlMWhBDwB0uCUpTNDtZZzGyKmU+AgC1KJlu7bBejKsN4w9e98vN59KOu49u/6k3CHI4fVD0EfCmFUTnP9J0XxIe4G5jc4bC7E9GBDo7u9IRuV1EdBZRX6D+umVwK1AcywzzxF130bI0wFzrndKo+Ftcu+t12sRur65GgE2Ln4eMHvqllfpUgQOvGwPBVDwb8lhB9kgTEHEkXsb55BxWgOnTi/7v0WXoTCk259KO/rI4yihBY37TN5I5DMQWYVtGQfpCitl6TvXlnE+lO+56wXo+EI++lkKZuDaAfxqKa4OK0Njv2uEIXYcGkcTRGoOeyECmO0TK/LIwwiOP7JBekRHxKEXMmsrKLIhsGpMKVGaRKSSJOfK8RrRqVV9BvdJ/9IJB17IJ9XUIToW7nxg6+MOO1hJAPFAInR9hSeSHhuVHykuPrJtWIDkSLzFDErlUpqMnEqM24NLl9BIFYD9nxa2TsEj1zY8daxLzaZMdpY5caX8ucHgNSBAst0LQL+T0T6lJeo8Su1ht+vImY5II8j/F2iKYWynrwdrScLIwcGHub833RWvSuSoEOIi1Lr7lz0clLE4rAq//NrRw5xXtWnuVRiyoNensGOu4j1suTZPTVbvXhXg9yxvqgb+7eo5UPY/3VLaxppQ9B3PD0tEGkmxW2tyJVCQF/tMRMG4rSY7Rn0Rr8UKAnp3n/keLbfu4r+c5v+RVM66O7S09Qip2VZf+TZ6jHzNh+z4oims0X+9HoPwSabsCXO3Q7BtPC1p1SRIu1JOuY9SBSl0KP8gFkI8tGClqLicKkQfUD4ZoTqMuHshFrjd6PUpzoARwiOclPCkKpMZE8kmZXqotFz8eN0HrcvKFcWAgiJdKDiwxUMcbQnWxww7zAtI5y2eGnFW5SMswMTWlkBpbkEk2dZ6u5cKTipxSqLMd5p9bZxCEVlrBef1BRDRtxcCptwKkQb2x4wfu8AYb489J9xeOvc8cNH9JzPWkEet8gSwnz1BKIHVKSp0RYMhVVmUfqD9bjppNaP+QcWbWh3RxtENV4KAgBomsThdlgx0af5VigQ5onK0Uyks+dYHDjLDPEVJaknDNj1FtQKr83EttXDWLLKa2tkqLrkPeNN7mYyuzaRWtKl0MjgHxQVMMG63Zjlp3NJjbSY/R6GA8J6X2T4d74GKJGN89+0yEhZuLm7tqobCqRZU5agxlfV98U6BYmZ3Z436U1q5W4e6lpc7yAbkQDXl0P71LpvfsA33+4l/7QP/JXZBkjrkzWYbSiKAxKK5nLGaHHB+dZuJqjviIMDrU1JUxrhlXHPYee7/qXX4pOVmcRygqFZnZuoD2lOPzEKXd86VnU/gKVbPviZtKcW4up+hAYZkJsUi5QHHWozolZf5IkJMs9pUbpTdo8B9n81cX9DGviPSEZ8y+XElN34QC9lLzUoJBot2mJPTETiHCzO4gbrzlYUZ47ZPoXFymOpAAGJVaGprXRtEDqkonpLUJGgebSwOqmOcPZOf2phvXNO2NiTV3LDDNdY1plKYUyFTjnpJgmz2ClM0NWZnha5sNmY5NLcohUnJI+NkHF6WcSuSnNV9NKm3ZZSFEFua3k3mSMfG+jQIUmwssJYUjvBxs71AQ/b3aeRbHBOu5Ry07QCO+lS7Y2OkhtWCamoho39byBxKKTY92qQmwBZ/WYdZuKyUY27QiDijtRqEy+bp0i8QYnXWBEJDbfw5LHmqQlLnevGD2SoTx57qrWPfpwjTpaj0SrDX2qsnbMuE2/l2bgg5UDRHIiu/dKc14QNnUIY2FPkq14DWrdS2SgdaMrVmJ4r3p+/v95Lked5cgGgvfourzalT6CVpLbPNCfh3tdLaxxKa1QW1MI0C472mVL8EEsxyKDsKgLCu9w7UCwDj1taOqCsgpMbE/XKX78jV9NdWFFe6bGTcrs6nLd2/bY/Z+HrD9zzZv+x0tk7hilGKHQ+MYwPW+ZXHIszyjaE5put2TYaeTnolB9ONFg5xVuKzKRE7SXiklhRjKQUgKtxmQXd3IrSlbMaAGIpNKY3nP06EkW5mPT7E1uW6QWJnd/Koinq1kJO7k4aOObOOAa+RnfVDnP1bQW00qWrJ1q6kttJOmMkOmxrtQJsUhNJ2PXo2WDDkFmoCHI31WzMddSaiyYMFrbxblshv6UkvlqhoyVEJ+MySQnfCQ+aSN/UvHLbxpx/JHs13EzTqSZ0IhfbN6wiZv8JtFn3Y6ErM057BAJTylkIPvI6nG+mcg1KX4NYnjC6Fwk7617EasS49Uk2LYYE1yiu5DkELsxV9X7D5qvKutHZnoiOKXXIUl9jJY4xEkl96E3iFUmPpZYeCXbNBbKFJZuheCmNt8nKWvXxc48HSSSRjhej8oFOkLiPl5vPJyoXg4xGSUBKdjrXrSssdi/d7/jL/Z7unXM+jVXu9NH1AoP4s/DvK5CwRtLKQVbk+zGgtFC4omvTgiBibGEiaH3ntAPlBPD4V23s3XmNPbSHpfZYTg5obkgBvBuKo45i0/aptq3TH6/5h++6WeppyVFEubrqBM96HGTgmbf0G8rtNWgCsy6yJo63UuwtXJaLNiG6OaDHmdxacMF6daKAtX1mH60jWOnkc61LgjG4CqZj+p1lNyY0VUmw3R2vF59sJKZ1eAo9gNYT7GyuNpQX+oJhaG4vBR4c3YCs78WO0eg3y5GWYW1o32hjoSfbGKv8rxVNl93nBjSC1s0+JAN9rPecANWDMl5SWuBl70Y8atJkwu1/IokBqnUOadClqQ36b5TVxvijDsSmDIUqVxk1JKDELBOZq2b0pTN2/JhhFU3H39aubv1wgxWmmiAPHZPqVAaMakIhZa0okpm4MX+erzfyEhORvsixRldmpIWNnfhiTQUO0G1eW35NYkQvdbRPUrnnw+1QR91I/SaXucNi8ljZKvI7hbmthm70nRIKovxgBFCZvcCY3eckJwQwIsTVaiJRbmX2+yHjQJtxmAGrfFVwTf/9NN416UW1w9y0I5z1avrkbM+5vNYP+5XIjSZe31wNKhpg121LELcdCO816uC+cmTBFNwsHc3tm/FMCGQDc6X11WsziiqA8P0fAyfdgEXI7B0hLi+6Z98KtedvZ4Xfdf/y+Siiqb/LnoJO4mwKsRsnSBOR6oqULYa53Tx2rKO1QeBF0E2nES+UUr0t6XBNyWh1BJ0XRrUoQWv0SvGjUfprPkMO1uycUYWa1AKVYo9oo5pKZvzrWLRx3zVQCg103MpvSZujGnzS9KM1AGtXe7mErkIEAcb52J6jRa2L1I4wya06YPoG6syF9QE7SoVrRGTPCd1nYMUeCExbaTrNPXxa9VmY9bp4kxRDjlim2c3OrAE3yc3Jg0hzgc3u+Y8L1eQSkwiN5XJ1MCPxTjJSMwINyfGb+qeE0EodZbJ4CFEwpkMFMkdZzKcSM+HN5L+gifbWArxLOR5aTaQmFZy+Ft1IocqCsKsER1rN8i1HhyN78HpJLJ6Ve68QxnD7VPxjqMMucY0Mzdye6njjazsfChJr0uW5vj8POX5szGiSR0SSqLzgTSUhu/9pa/hAwvH/lErY5+6RDcVVw3zH3nroTbhfyjW1cL6IJZSShiCCrEqQ6EmNaousQHK09fjnWWy20Ex5WUv+//yz77lPwHwk6/5crz3OO+p6wKtxC90QEPo0Vpx+x0f4MLFSwQM7/zzd1GsHN3JkvaEZna3xzeGUDTZVKI4GghGC5EjFdGgQU2OW/NNmpFJuxnsHU/zbncmszMngentqQLdNVTeo49i8YtaRelUY4dpFKEssbtNvj1fG4qldKxlZ0fNZEwF6W/YES9hL+kqdl5SXApjsbeWECFrFW9zJCL5EQJ0TqBe51BFSbDDaOwA0rmmx+kcuqmzjlUIUaJBDcFLcU2mCM7F5zBCxOm6plOyTjgdUFKnnT4+hRmNJqpKCgtENyw9/l7Sv6ZuqjBjsXcbbk5paXFaOka+2uzSEkQcvxeaqCvNkhuPWQn8HHQqmoi1oRuDzQEx+a8ksUj1DjcvR1lLmm9urGx9aT1UOo8PpOjamBwUzTnSda7W+L19VC0+1EBOj8nX3G6EHeSEnXiwU7Gz93HebAEXO9fkvrSpSdZaimcMNpDXQB8vvGVJ9m9Wih98y7M5v7a8/9DSrXpQyDjo3nKgq+uRsz4U3Hu1Y33kLqWUGEukTTp+LSAOfO2yx+ycwYfAvHD8zJueyrRp0JG8s0l28AEutI5ZOWVeaubzOf1gBW5yS/7WZ34qX/eCX0dbwzATKG912tDsOXypYlKOy84wx64RK5tEHwubFv/eHAyutXRfyxW6KaW7Ghy690wuDCMpaSIuSaEucdu1mKtDjtQKTYFrDK5W2InG9IHq/IrCB4l+8+BOzVGdo7t2RnPnAaEoKFa9GKWfnsuGGYspxsBqjYpGECE5KPW9FNggcG+ej1b3IjodIxwFKaCpG0yFGQiDjalAGy9G0qMm28IQohm/FSlQXcXZNaN+Nc1aQ5BDTFWOUHwqtE4kH1n25MNYGBOhJ9kpJnRBqdF/eLNIRGheJUg+zRNjQRp1oimIPIw6WZz4GBcR1g6xOw+MEpn8JgKMkkOQ9TnUPBfhexcYoyRVxpTRFUmKXliuUFvzcXYcXx99zSk58CUryphOo4I6zn52QaDzRExLxXCjm8Z5Obz442xxomQqFFpuP702MVkIrcdDj1a88fe+mcut5c8vdvzJpQ7XDdKlTipUU121IfwYWH8ZcO8DravHsCtYSqljf46tusKuWgJwZGqOrEEbkU0IfDQWV4+jMorWyty2qkrqomDSwOmThmvPVvzyz/59fumVn5ffMPWhxFc1l6xAwSCC9ghd+Wl1nGVqdOwaks4wSIFIEhalUJcPo2lFQHeO4iAW1arg4NN38bNaHIJCoN+tsFsl6+tn9NdM6XdrfKkY5ob1aU27K+5Dxd6S7NKDdDbN7Qdyf72Vjc6I4QXOScbqdCLmD9eeGZ/rNDOFja5HZmB6MhGSUS484ww0pHkZbHQ7Edp1Tgp1L0UvOCdFNkGx6eCUinbqenyIetUI/yYjh3RdyUt2iDF361aKbSIoFQU0FWFWj/DlpllB8ijWG0U1zWYTyScReFKBGexIWIrG/75J7OkgrxvI+8OM/r7iHxwdiLyXOXp0NjKrAd0Omf2bDS4iAStHtUXmrnIhS2X0qhcIN4bQq+2t7Keb5+nJPWqTB5A+RwmKLzdQgARpp2KYYP5N5ODYTNqMc1LnRwOV+BqEST0+zyCvlQ985d/+Yd6733LUO+xC7ED17kyK6lXo9xG/BAV74D8P97rasT4USymZdeopftXSDpb3qgknp5a6igzKSIOyYeBCe55T9VnRPcaljaa3nhACWiuq2lBWml//sS9gsIauK+g6Jc1SVfC05/xCNigP8UQfSiM2ctbHDXoD5izHTnuT7GSOxL1Ix83Sx/nr7M52JLUoCXvvG3GM6h5VoAdoLotvcHUEzZ7DzQrMgY6mFQUm5q6qwcL+inB6N+eI6kW7QaRR+K2ZbNKFEdP8MkbKJT/X9P+iiN2e5KtmBCHJZ2JnkkTeKhtk6CzHyZ1gZHeqSmQ92YUJSJaB6bbxSGeZOtUkwwkbm27yN9Z6lA75QJjU+FlNcghK88A0k02ZupI9W4yz1HSb/XDM9jFfu4rdqvcwMehldDrS4Cdyf0GLq5e8xpHtO8QiqZG8XqUwRxspQsn6MbHCIxwtHWliCG/MwjP5Kv57sRrtG9UoO1NNjPrbmHVnApXzhAh9BxPnrKn7XrfHNcXxMycMZn+8UDpGZCAfbGJB1/H3O5sDHb7r3309H1haLu73hMFKRmp11ef3Y2pdhYI/fpdSMqfRW1P8/oKV87z3csvpyjKb1Mym4jGpMUzNLCbpjB9epRXeVzgMijUwsj2r0lOWPZOtbayr6NuBn3v1k7CD5xue/kbR59WiV1TdkOG4TRu+1AmowkQDewe6yOxQkA3NTQt05zBLMcp3W5XIaqYFthGP48lFj+kDdqLRQ8D0AV8I0QqjsGe2KS4uZANeb8Sn+Shx2GQYxy5M9WbcNJOcQvvjEhSQLtYK0UfPph9EaMos3vEXyBIc56QIxedFz6tMDlIp9zURgNI1p2uKxg2bkHNI2lmlxm6q3LBITGzkaKyQM0y1RoeIJIRYjHycsaZrDpH5m2Qm2pAjbNJzROxWtc7Qbza3j05CuhtQ3pCdkTKc6yPJSops0JI/GlQYI/5CQHE8Pi4fNjbm2rlomSidaerj/sbpdxOrORViF006EgSeWNHx/nI2aiKKJQLXJuyfYP70uqcCHz+POLFlzLD2xvvi+97yTN5/qaNdC2FN786vdqgfg+sqeenjdGnA4PFK47RGlQWud9zpFaujJY+9tiBScjDasFXuCInpmGJBUZQll/ccZVmwNenjvqQIKAIVgQJTGJqZppnVeBd4w698Lf16wA6WZz3zTej9PsJlaSal8Tsz9KrDz2vU4Vo2t9iZqnZIFwClyjPWBB2W9xwRCpOL6PKUpj6Ij3sI9HMlSTeAbRq23g/FXXvjLDGxcZXO87pM/kms29VaIFmAuhK5i5UuW2z+vLB1Y/EK0UZQR8P+0HaRDewheMIQhFGaYNVITNosqiQNbNSukmQdqajW9UhwUQq/PclGBZkAo6IDkdEjASYV5wS/x81etxuOUptM18RSjddESEWhHAuItXE+eLxg+7rMDkm6t9A7VC/zVLw4Y4VCo1ornWBR4CcVxcHYnfpayDt63UdLy2689jQHTm9yiMYX8QCTCmR63iJ5K5GVwqYbUUYJ9Hh7iTEdu8qcgZpIS9H/N0e0paKXbitqneX2HWBG+U48tIRJYswff75/8G3P5V2XOtpeDi56Pj0uIbq6PmbW1cL6cbr0+oiju97PtTfezLK3qKAwvWfoHHVdcLRYobVhsVhSVSV3330P11xzGq0Vp0+dyDPbsiq42AXuPoCTk5JHzwd2p4H1YGj9hGljMHrsZE2hMKamnlSEEHjjL99K3/YMreVZT/vX6IsHYB162Y5JJE2JcoV0rYURw4Iow/ClBHT7WjpfP6uhkk643h84uqlmds7hK0W3o/m33/QP2D41F6glNSU4TDiCYFEEAprD1nO0cLzwq96MartxM0wZskUhM8lNo4dU1KzIakLUnmbzhhAI6zbP1FQI0ZoQ1KZ+P8G9CeKtEqMXgWl1TLmxbiS5gHTAk/qYPSBKESqTjT1Ub0etJ0ghaHQm5CRdKTAWXBiJZInRnTqzPFs1Y9edDAk2jQmiGYIKQepNjtYjFsM4Y0264NjJKucoLq3y/Bvv0WufIepj3WAiHKUucIMAluL45DbsODNO7ObUuaaOPeejhuPz7wTdpmCDTXQizbJdzyhx0uN9bKIbm/CwHkceoRS9tHxe3Ph4rOX8kWe9cgTn0VfTaD62171RjPv6/sO8rhbWh2A5a9Eh0B3s4YeB4BxHyyWL5ZJw6iTtYsJdd53jwsULzOdbEAJ7BwfYoed/+zu3UMQNc7Cei0Gzrmo+4ODyQcnZ9cCyVxyGntOV5ZNPNVTFhtG3kvmtUoqq0ZR1ATvwxv/w9fTrnr4dhCBVlzzzKa8X84fFUmQkIcgm61w2Pvd1iVn2GV5U7YDbFhi72XOsTxnqQ8/8bktRaC7u7bFardna2mJrPkMpxaoz3HPuPDdcdwqtDcuVp6wafugNT6GeVPyfX/iTcu2JXASEo4XMZkEKR9dJIbWjpWTaGJWpRrZwfO5yJJwxYzFIK0R5TVGMvxN1sKqux441EaSiS5PqhAmewrjTTNtOK5E7KSWd4uDznDAXh3jduZPr+vGwoMeON89T0/2nma0ujnW88kaLbGBtZG6dEm7SfTpPKMxIcvJAwQi/+xhUHt2XUsELcd4b8ixS50KWDOtzuLl18qZLhX9zruw3ip11qH6j0KaVkoqSdjS9D7wwfOXxbHTFm3B8dl8Spr1YGw7yb+eP3U/KG86B7fF+Xv9fns9Br/mzCy2+t+hZc1VK8zG+rhpEfJyuYraNvvYmiumUQhu8FZej6aplMp9R1CXX1p5H3XwDVV0z9D1eeUpTYjY+1J31dIxdzjoY3tfHzULBuT4w22u5ZrumLhRlshfcnNXGv5dVQVEaptsTnHX064HXvfFpuAiJOW9lf8TglccwbkpCs5KCHQj4lNyBwhgR7tveoQvDPbffw4033sBdd9/DHdZio23g4dER91w4oO97irLg+uvO4By8/wOH/OOf+Pv8i2f/JynwIeAPjsQFCSRtZjpBlaWk0fgY4ZY2TR/TW6pq1LmqaCZwL7OHTQee3O1uSDJU8gdOHWwyLkiF1ooeU8V5oVKKUBeYo14OJNZLgkw7SDYuCBKQ81w3YO94nRlqTt1X6tTSqXuTZaz0OHtMc2frUKn7yjPl2KWlYpfut+9RHcdmtypFDG6c4hM0rSwbRfp4Bzka4scvpCKXVmJEQ2Siq7GbTK9HMs3fJIhtErWcjxaSGwV1c359bAYf57Xp+SrYeG43fJuj33X6hHTBc2HpaTt5/1Nd3QI/1tdVKPjjdA3awHyXo/SFYgLFhFDNODhasVAwa2oec3qaCUtCLTkOP7kgocnHyB6b3wfe1QZu7zsmGm5oNDecaO73ulKRLUqZzU62GrwLkTEbolVj7HhRm4huJtKlItsuOwjQzOt8WVprHnXzTSxXK66/7lqWq3W+/jNnz7DsLVvTkjBYTpzY4tw9F7nhhuvw3vHdb/hyvuMf/gzUFXp7Tli3+INDKWKpwG0WG6QrDU66tJDkMiYySX0AnAQn+CC6yI00nKSFPdZB6Zigs0lWSs4+ST6TzO8jW1cNlcyDjY4+vz7Hxkk6jRmLjvMCZcIIYaa5r1ZS8AYbmax+lKBEyQp4gZerSmDlFFEXwgglmwCDGoMAuj5esxv1uSYWojT33pT6bBxO5DpHWDWn2IAUKB9/LhX5RELTqYM1ct9JSpW7cg9eS+sQ4sy0GyBsdKCJEQ3jbDePAzYOJmkUkL2bI2Kx2VlvIB8KhIkeofiVdRx2AW+jI9f9fnquro+ZdRUK/iu2jIaqwPWWlS3wLqAiIeneRRVgWhp2dOCiDx9UVAEh0ShFC7QuUB51XLdTxzrxwFvE5lw2hMDSLqhNAwG88lS6ut/fDSEwmdcsD9bS7BVjd3vixA4nTuwAcPLkrvx8PDSsXaDUUGm5z+l0i7IQKYN3np/43W/lWZ/7Krm+aQwAGKyYOBSFQLfRr/lYR7QBjwbnUGGjY9VKOjoYN/hk/ec3Nm8SbLyhp8xexbH4JvOKTeJMHwtXSp2Juki17uT6UmGDLOnIsGwqRjBqRGGcIaa/35uZmgp1CKPxhLyo0SGqhd4cM2JA69H3FsbDRLrd3CVvwNLpccfOd9OWEq1lljvYcea82bVuFugqdtxpLqsVMuQ1I8HLRF1QksuoSGRTxfEOdpMJfe/A98SyTjPj9FxVI/HrWGyel2510QkxSk2b+/6cXV0fU+sqFPxXbKkEQfYdlzrPe/ZaHrVbH5+Rbqyq1HzSTsXR3iCQ8IdY29NSvHkBjom1PlSRhYmZCCP2wewrAbpVTz2t0PeSv2wuvfEO9kGKqg+wtp7GKKpyZEdro9g6Oecn3vaNrI9avvEfvY5wuJBiZ3ScUWoUcROPLN10ub5fxwcj1xN8EL9iI1FnmSEcO065XSOh5tHVKUOzuSsqjxOMjhXGMLJRow9ulpSA/H4f56ibrkxp7rrZyW5m6G6iE6lrTUVq87aT3ESe3OMv5qYzkbrX+yEdHow+PrPdnAc7P94HkL2JM1nIo6wZyWbR5CN3rCFE4tdGQUy3kx/fvX7e+QgZB9H8ZrKSH804qkog5eQT7SPE3USjh8KM6UtpDt7EourH11FZL85TpcF7hY/GGOoB3stX18fQCnBVx/pXbKlaNpz2YMX7mFJpeNTJyX3/rFJMKkOhhpw3/UDLoziG3+a1CeTe99eN/tAv/bF9WkFRmvs44N/ffcW9UsHKiauiOfZdhdawfWqLelLzml/9Bpx1PP+Lf0w286YeCT/pN6YTQj+I3CbBh0QYOCbbBNjokoRNm+a3qpRiqIrig7vE9P/U5W0Si1LA+CCxYcFaIbwkNmtRQLce3ZySVCcVFhdh4FSs722huNlNpgKTZSkGbM9ofRilPalAZRg7Fs7U4aXZo9bZj1cKGeNjTHmm1o7dd7peho0ZqR8D0NM1bnbGEB9HGK9BxcMRYSyKSaubZsEbUYCCFrhjr3c+aCQTkAS7x6IKRIOUIB7H1mfbx2T3SAofMIYf+TdfyfuPHMGKEcnVXvXjYykXxOjkAb7/cK8rOrK99rWv5QlPeALb29tsb29zyy238Ja3vCV/v21bnvvc53Lq1Cnm8zlPetKTuOeeex7yi/5YWrVSNJMKoxSF0QRRwcuebX3cR1Q2ozFKMzMqjq0UpVZUWt1nUtU9nWd/NeTbeChXCGB9nMcqqOqSfj0wdI4Q7u+NqvIfBZQaCgXT4r6vH+Qw0cxqTl13gtnOjB/5D8+JM8s0HxQnJqw9FkyutPgFK2PGjXxzxfmrijaFqipjAYxFantr1FxurrYb/6xb6U7X7fh7hRGd7SYcOQzSdRnRMOcTyWDldoZhLKKpwN47sDwVi6qKnVq8/WE4TjZKxTARfHJ3uVGwQIpRKeQsyR0dxoLY9uKO1PfyZxiOQ9CpSCcv5xyw7saAd4j6VcX3/va3bMC0aTa6qc+N157IYsmWMBX4dB9Ky+NIPs+VGJuEWSN5rluz4102I9Sb9dgg3WvKjy0NflISasPzv+JNVI25n8Po1fUxu8KD+PMwryvqWG+88UZe8YpX8NjHPpYQAq9//ev50i/9Uv7gD/6AT//0T+eFL3whv/qrv8ov/MIvsLOzw/Oe9zy+/Mu/nN/5nd/5aF3/I3oVCmaXDymcg8IwdR4WHZe9o6kLuvVAURYMXY+zHjs4TGHYRaEduMFS1yUqwMo5jiYN/Qa5ZBngnfs9Tyg0k+re3eR97RxXspuEDZRSUVQGbTSrw5aimhwjPt3Xkjmy/Eyp0k52//evtGK2M6Fdtsdhy43fUkDwdjTgd47g7fGiGueEajIZpTzrVn6nqWXTTqYVVTlCvInYFItiGIaRiawShYsNWUwYLQ5z0oo/XtySPhZGi71o3hEicUelQpakPibJVzZuR6kRSk4dLYywrmaEl9NtpazRY7Pa+DOpMNuNDjEVy00bx1T8NyHdZCm50dHvdRvwbSqwRvPNb/0mlPL8wBNfAz7w4v/4XGwITAv47s/7kePQc3ocWoHdgEqiyUTWBqfnK16jWvcS7l6NebHZ5jONSTwShN4YJhXoQuP6RG++uj7Wl+JDzFgftivZuM9w/+3Hg1onT57k+7//+3nyk5/MNddcw2233caTn/xkAP7sz/6MT/3UT+V3f/d3+Vt/6289qNs7PDxkZ2eHn/ndP2Q63/pILu0vfTUKpucvUyBEEO0DXimqec3ZnQllYTjaX+KdpygLXNyEOxfoqgrb9pRa0fcDvdYsTu7S3+vlMt7zuLnhxhPNQypy9/F+Nm0XQwgs9pZMt6foFATwgG/bdFy898/c9++EEBi6gUt37fFNT3yNbOJ1zEHt+6g9jf/vB5J1ncqzR58LhEpzzk0HqLTqaiTRJI/eZOCQOsqiIKxljptJTol0E8PRRYZTjGzdzXScbNqwUTwi4SdE318VU1ho6ntBoOH4zDQVnhx9ZsbbrauRSJSL74amM3WqKVA+HQiqaoR/gZf91rM5WGtMUFw/K3nR3/1hsJZX//eX8L6jgdYGunhJlZFD09AO6LqMLoqKs41GO8ellcWVBZ2NbGwrRgxKKVRhqGrD7kzzfX//x8b57mag+eZc2+jYwSfimh4PQkmSUxh8XQq5SilhaCfrxsxMFunNq37lGfzJuYFh1VOeFAvDwPGx9dX10K3V4ohn3vIEDg4O2N7efkhvO9WKv/N5L6Mo7l8dYW3Lb//fL/uoXMP9rQ97xuqc4xd+4RdYLpfccsstvP3tb2cYBj7/8z8//8zjHvc4br755gcsrF3X0XXjRPHw8PDDvaRH3BqA9vQJ0IqpUvi2Y9UNFNMJN84rZnXBbEcKoveBfj1QT0suLnrOrzxh2qAQsoUDhvs4AzmluNB5rvOB4t4B7R/Bur+CWZRmgzD14G7pg9d9z2WVUpR1SdVUObBc9UMOKz/WXSUNb5LUJH/YpF9NYdZVOc5jQ5BCHbvBMK3FW7kb5JMwbJCKQkCpGJyuAuCliEVHI4UZ5TlpXpqKYSoCCGsZrcRucHN+m52V/Hi/m4U5me6nUHq30bHlF2MjECB4MchXmqx/3TSeyD8XxgME5C72/HvuZrlqcc7yAy/6TZ73M1/C9k2fwJ/vtbROiRQskp7WybjDBxi6/EreuYBgHT52wkFrgeyjPCn4AL1ltWxZ72ue9fNfx9as4gc//5W89g+ex3P++o+MnXBh5H2iND/229/Afm/5J5//U/JcZcOMHiZNNLgYJTkqBDH0H5wUWD8eNPywYl4UdAVM7ZphvYSyYignWFPirmLEH3vr44G89Ed/9EfccssttG3LfD7nzW9+M5/2aZ/GO97xDqqqYnd399jPnz17lnPnzt3v7X3f930fL3/5y6/4wj8WlguwUkIwWocARcmwaGl8YDk4tmflKINBUVbSnZ2Yl8yXS+7ulLjhfIjVOk83OIy+jzi7D3N9qJt54E6V+4CK5d0flINQ3O9vK6WEeZxM9SspZkErlNJSYGMXpxIEnDqcMnaVlRm7s6Q11UpyQI9Z6kXIcN7IjC45CCWItzASWpC60nt3lTAW0QyNxqKSzCi8JwWob9oxqui7GJyTFJ+UOVskXageb2/jPv7l217AN/+dH5B/b6a6bHbKKVAARnh2M+M1kbc2/Ixf88xfOWZVeOLaM3z33/1BAJ73/3zrSGR2Drfu8asO1QhzOIRos6kVNBU6zl7Tm0il5wdBJRRAb+kPV1xe9TznP3wj51eMB5XEHo6v1e2HcM9C87U/90wmE82rv/RfjV39ai23V8dIPueEKTxIzJ6PnykJQvDc8Re3sxoU3eBpVWAYhOm8XLeceeyn4me7fxn78NX1ESwVwigNu5/vP9zrivnmn/Ipn8I73vEO/ut//a885znP4RnPeAZ/+qd/+mFfwEte8hIODg7ynzvuuOPDvq1H8pKeR+CtAcVdK8sQY+LuvapC80mnJpzSnnKTvXpfSymOguaOg146io/mCmAHj980GLiyX98Yhtx/YZ7tTCViDCIDOP6sjnPIopCimkwPlMouTCF4fuQ/PV+6S6350V97PsE5KWraZCOBrG+MzjzHklgS8zTBqXajo9yUkqSuL+WmQmYGA8dNH/TGH6MJQYp9tmBMz1HW6urjHadSvOq3XsQ3/61/PprXb1r8DQOv/u0X8arf+ZbRtCF4vvs3v+X4TFSpEXpNs9sIr37XbzwLQuDHf/+5fPcX/gSEwD/7by+UM4hcnPzdB9S0Rm9N0bMGM5+gZw162qCbShi30aP33mkxOc+4KtAnt0DB+vKSuxZ6vM5CSFn/+Nefyzf8u/+Te/Z67N4Ce7hmcWHFrW/6umN+z/d+bZT10rVWYh6S3LFUO/DKb/1drrvxLOV0yvzEaU5cdyO7197AiWuvo5rOrhbVj8GlXPiQfx7udcUda1VVPOYxjwHgsz7rs/i93/s9XvWqV/EVX/EV9H3P/v7+sa71nnvu4dprr73f26vrmjrN0T7eV9TOhbZnryl556WWG+cl25MCvdFtKqWYNgWfce2M/bXl3UeWw8RZSlKCeHsgm95dfWB30XN2u77frjX4gLX+fmQzD7yk+fLoaGn4gD97H9uTTFoVwX9ot5uyLvjJ3/kW+m7g2f/r98h8Ll5/dmZK6TUA3vOjv/ECplsN9aSiqAve+F9eFJvSwBv+5KW4wbF3/pAXfM2b8E2FziSp6JEbghTj1CEmODLBvFrkI9JZqhGCBugHUlJO2DQ0KItjVoz5uUhdLcgBweis3/2RP/h23r+w/MDn/Ave8Gcv52l//Xt57e+9mEut56524Bvf+iJaH/AuSkuASV1wclrgnWfwgFb81O9+M39+0PEdn/sveeF/ej7bZcnLP++VY/can7d8mPAeVZX86O99C9/wGa8AY/jHv/2PuWsBrUtvgIAfLH6wmO3ph4Y1Hmilojub4C8dYnvHC/7j86mNZ2U1vYOL+wNusZSfndbopiJ0A/ZwxbP+3XO5YRde9nk/LrenRyQiE5eUGpN9GiGshdLw0lv/Hc//ya9iuegw2zPQCrMDqw//0Vxdf5nrEQgFf8QKae89XdfxWZ/1WZRlyW/8xm/k773zne/k9ttv55ZbbvlI7+aRsUIg+NEdKGzq+R7EUoDenhKcoz9YcedBxx9cbPnzSy3L1uL82MEqpairgjPbNZ92SrNbrNDBcxbLyXubXypFj+I9R5a2FzlM/rPxrmpXA5fvPmDvniMunzvknvdf5vK5Qy6dO+TyuSMufmCf5WF7fw8e7zzaHDe3CCHQZ5vEB3zqZNMP6Zl4gOdJKeYn5zSzmlf/7j/hp//k5eL8k6wGYZSDxCJYVgXzEzOKpkQpjSkMRWkoq4J6UjHZatg6s80rXvcVfP/PPVWK87oVKPFoOcpr2u6DX9MEoWYJinRLYRgIXQwD8CloPXWcG89R7myVFN4EEW8wvMVEoqDSis7BP/6tF/Mn+z3f/Gsv5A8+sOBdd+xx7twhh0ct7apjCGCdZ3Cew8M17z+/4H984Ij3XFzxol9+Nn90z5L9Rc+L/uOtwMBdS8u3/foL+P7//MLx/u7lPPUd/58fJQTDD/33bwPgX3zeD8lrBtKJW4tftuhZM5LCPtJlNGo+wR0s2T93xPkLHYuDjvbiEW7Zorcm6JNb6EktXXBToaYN/d6SiysNdflBsh4VIf1QaEEmMqFplC3tTDReK4ZVh/MBx1/K/nt1PRQr7cMP9OcK12/91m/xJV/yJVx//fUopfjlX/7lK/r9K+pYX/KSl/DEJz6Rm2++maOjI2677Tbe9ra38da3vpWdnR1uvfVWXvSiF3Hy5Em2t7d5/vOfzy233PKgGcGP6BUCwXn80SrCbIDW6K3Jg6c7RCao2ZpKgV53rA9WvH+oOd86rp0YPmG3ptxwZlJKMZ1obiwOuGevI/RbnCmhax0rbcbuFVj7wF17K3a3LNoMGF2xVe7mOqa0xg4Wax1aK7TWrJfi8TTZmtAeddSzOr4Pwwd1vt6FY3aGIH4DFzvHmcZQpPvJDsMbD53xFDf4gPXRNOJ+uh6tFbOdKfWk4uDC0TFCEETItHeiKVWKybzJ93PfT71ia6thOq04vLTgtW95Ns/5wtfAMIxynFQMc4asIoeHa00II4v23uk58rWRlSz3qUeIOpGR5BuZoBS0QiXDehP4hs/8PgCe9+vfzGrR4RZrmfU2FdoIocfEQIDMdg2B0Ftsbxl6y9KHfDddX8bHNXBucKwmYlDxyt99CS/829/PD/7Ot3LP2vHPP/8HwXkO+sCdy4Hn/8YLKZWi1BqtYLFyLNw4M32oKD5KKZjWUiCdI7QDeIeaNaI/VnwQlMy0JnQDi8trnvOLX8drv/wnxg10sIS6wlcFaNCtPO9hsrHVhcDZecHFRUm3aAlNhXoIiX9X18O7lA+oBxiDPdD37m8tl0v+2l/7a3zt134tX/7lX37Fv39FhfX8+fM8/elP5+6772ZnZ4cnPOEJvPWtb+ULvuALAHjlK1+J1ponPelJdF3HF33RF/Ga17zmii/qkbpC26OqkkllGJRiOFzFDfEKP5RKyQd51qDqEr/uWKw73tc39NbzmJMNTWVyYSuomJYNJ7aW3HG+wYeKm2t4d+/pk+UfUPk1B6sFXT8w3XY05Q7zcoe0HdZNwXWfcI38KzFjQwwDULBzSmCxo0EsCAsdjsltnHWUTXms4Grgmsbcx1MwkpYE8lQYJTM6DaM09D6furEwFFXByet3ecOffRergxXf8Pk/Kt8LQTSs21v88JueRjUpP+gg8MFPu8IYzYlrtlkeRktEJ25LIXgYgjBYU1FNea/RFEEVBcFHs4rk0rSpxUyvbYSEw+ZsNq0Nr+LNQhuc5cd+/6XcuRzYXztW+ytcN6C3plJ04vXfx4OSmWVdEuoIs6drGhy+7Uh6EmU0qxB44X96IXcedLzgrS/kPVFK86xf/SZ+4ot+kGVnGXpHH5+Dn/pHr+alb3sRZ7cq1pelCPl+wNTlB1/Lh7nUxlxVVeXmN+735/XuHL+/oD3qed6vfAM/+uU/IUhCVQqZxXtwQYhMfmO+rBS4wPP/95/i297wDM51hrBsYWvykBH/rq6Hd3000m2e+MQn8sQnPvHDv6aPVMf6UK9HrI41BPyqhQCnG0OvNIeH63yy/khuN4Bsgos1ZlZztjF86ukJdSyugcCaQ/b83Zz7QM2lfpd5oeldoE1yjOC5Tl1gXi1ZHpVsnQicmV/LrNr5EBdwfDMJIdA6Idgm96f09X49YApN8RFFbX1wNd2Ev0mpO5k9rI79jBsci/0VX/+Fr4Z1y6t//Rs5ed3uB0HUH/IqQuDgwhFf/3k/PFoVOpdtDzcTVULXj2YMG7rITEqKzFpVjAbyo8xGHIFCCv2uquOSlyQdGizf9vaXc/6gxR4uoSwy5Pphb/hhYxAQIKw7Qj+gtEJXJbos4sgA0IqKwNBbbB/tDLWmnDXMa+mUD9cWt+pQkxpdl/db+B6WFbt0f7DA7M5RxrDVKH7oH75Wvt2UAgNHYlYwRpjBvZWCWxW47ZpvfNVTWB2s0VtTVGn+ch/Tx+F6OHSsn/s3vv1D6ljf9t++hzvuuOPYNTxYfo9Sije/+c182Zd92YO+tqtewVewVFXij1YcNKVIJMIHw6VXfqMROC0Nej7BHi25hwn+wprHnWqYNpIGUzGlUBU7Ox1qsc/+sM1gRms95TwYj3WGPXUCv1pxomkJ1ZYYEwVFDtF+IAckpWjMZqEblzYKZz2m/NCP2/aOdj2ggHpaYzuLMoqqlrecc14yXY1GlyaSkzymVKCtHDNdgp1HYlcRZ6k/9f98I6YwlE15xUU1P855zQ//X1/PNz7l9WLUn6LWstGA22D4BnL6zb3PolEKlLSdqizEPcgFKajp51NBvhfT+7V//HLuOBq459ICt+pyl/pQvbfk76CmNWFS4Rdrkcy0EmkX4nWtA2A0etrIqGK5JjjP4coTvMd3A6osxP/6L7sAKQVVgZo2uH0hOC1Ob+eDirIe5Qb8rCZUMSWpi2xwJx2tWQ1sTRRdX+OWa/TO7GrX+jG4HiwUfNNNNx37+ktf+lJe9rKXfVSu6WphfbBLqZzvOaz7cQP9cEkccWMN6T8KKA1mPsUt1lwIDeVeyyedbJjWBUYVNGqG3e6opi3TpeXOg2uwnbBXTQhc4iS6H2iLCYNrONVqtidKFC7hwW8Y97W5KKUwpaHvOkpffMiZ1P7FI6qmYu+efUwhjFXvPZNZg/eeoZNZb1Fo6mmDdw7bW84+6hTlRMv1Kg/hXjPd+LvNvMHcT0rQg131pKKe1oS6gvkkax9Zt6OWMhlOgHw/2imGlHADY1E1G/PXVETj+sn3vIJnPfbb+cl3fjdf99hv58f+/Hu43HkOe887PnBEv2wFJj+xFTW6H4UNPhZavTUVMpKPbkiZM6DGYhwgdAPDqhNoNc55VVM9YoqPAhmnNBXu0qEYU6SAgkL4B6obCKpCBUcotLCEjZjyq8Gx3VR0w8DBYPELIUs9Uh7f1fUg14ciKMXv3VfH+tFaVwvrFSylQG/PRg/WDycoOcJzoe0JVrxjk4RGzydQFeitKe5oxV2qob/U8mmn6+gXLwb+pgjM5pb5quXQTwjWYwsNuiSYCnf5CKsU71FTZpXlxKx8SBoMpRRlJdaL6kOYUUy3GobeMzt7kkqNvKBu3WGKiqrx1JNq/FpTEqZi7Xh/vp8JjtZGfcRFNa357owffsNX8qxv/w9U+z3mYI2aTWRep8TMnWEYSUh9n7W0yR0pRElOGAZUWWbXqBzEHgIHQ+Cb//tL+ZO9gRf/95fxP/d6lsseuxQWtpo16KqUzvKjubGnwlkYcY+6vx8joLen4yFBcczo4f/f3nnHV1GlDfg5M3N7OiQQJCGAFBGWxYKwgoiLsmsDO4KKIiqIyqqs6Nr7WsGK2NAVC6vY5XMVEQVUbAgqNXRICCGk3Nw6d+Z8f8y9NwmEooYEyDy/3xUz9Zxz58573ve8Zb8gYe1RFSuMLRp3EIunOASsOFbdsBLxawJFqohI/LtUBalOgSvdSUQ3CVaF4uFIDeTxbNM4WEkCdr8fksVjGgNbsP4WEk5Hnj8205HBiFXM26khnC6rupUew6y2zFE4VJRUD0ZVkHLVS3G0hBRnFIN4GS4si1errEq8/hAlgUyi5QHr5ex2WnUmYwaBQITlCuRGDXJTHbgclmD+La9GmcwOEA8XM02rUtqu66IDlmAFy3KqJF7KQErGzmsh9W2rDzMe6O10N4CZFEuAaU4Vb6rHMifFTCvmEcXShBJpCjXNMv2rIFxOSzuN6jWZgkyzxuRb21EJkmt8Ew6/FRSFK768mapgBCMUsUzIcQe2/U5LSgjgA8FbNp6LWNEUTI/DSrrvUq0JjwARjxlSolbMsuHWUKImSkjnqjOmgRCMmzLMekj3L5cTm71gf8y8ZAvWpsA0rbUqVUU4NdIjYYJOjUBYT3pvJl8KmJgiTEzsUI1DgNNlkiqjlIdiRIXAjGs/mCZKqgczFKWiIoQ/4iQSidGplRslWYdV1r3Ybgj6Q0gJqmrlfnW49qaWq6WZ70qUJ0J6kprQnlIkSkksGvuDjlP140v38sKDpzFmzNuYPhdCj1eeSVSbSVTMiURqZV5KVJipycBUO2lEQsOdsuxuxnb+FxO+vxN/SCdS7gchLMuH4w84JtlYSIkZjKC4nfh8TiuzlmlpsaZDQUjQ05zWykL8kVeiJqZbIDWB6VK5b+r5bCoLW/tVW1s94DDl7l1/f0e4TXV1NYWFhcm/165dy08//URWVhb5+fl7PP8PJ4iw+e0IjxWHZ0Z1hGHg0eK2UiktE3E0hhkMIxwaKiBNFRmj3o+mSNyqbmm/QiBjBorPA06Hpf06NWLBCJujki3lUUxD1niC7oCUEsPcOdmDoip4fC7cKS5cXudeOQtJLG11d0fEZN2/d4dpmEhkg5mAEwhhmZUzctJ59rmzEbphfWLxcJraDkeJ/MFuNzVJI+KlympnYpKSKYX/5s6f72VL0OCab25ne1k1ke1+hMOBkp6CsIVqwxFfA/Y5FCt9nQJKJIYSkzU+e7U0bxkPuJaadfyN42bg0OrWebU5gDD34vMb+f777+nVqxe9evUC4LrrrqNXr17cdttte3W+LVgbG2GlNVTSfaAbGJEYW6RGVAo0nxsRD+sRQuDyumjhUGkhssnQD6n3k2m0IUPxWMniVQUlxZMUsslcrYogKgUrq02Wb6mmuCzIVn+UqoCOUUv6mYA/JncQiNa6qh6vX5m85h67KdD2cKwW11Yle856EwlG9/revxWrqo5GenYaT714nrUtGquVwD9e3s3lskJxEqE0tVHVZKpCVJUrO/+LqCnZFoziL62yslZlpSJS3JazkC1UGxYp8WkKj74zGhEzkZpiCVfdxLUtjIhJZMK3TBPEPCpmXJhKARleFcWpYYbCe8wiZrN/kTAF7+7zWzn++OPrZrCLf1566aW9Ot82BTcFQiAUK72hUVGNoSm4BLTxaWgOlYAhUQU4VQVTU3G6NDwOEc9SlHhIauI7s40oxZEIwWgMszKA4nXFPValVTYtFMWsDhEUgg0OjaKwCZpJuhmjR5tUPKpIXk8VdZfVhMDyBg7rSVPsjsJNSokhDQQCRcSTr9c0cRdDkNgp68nTVP/x+0rDk6ZEj8RAgDfNU+MRnHBQcjgs7TUQrPFANKw11doOSsLp5D8r72a1P4ZuSKojBsHt1eDUcKR6kMnS7zYNimJZD4IxiUsV3DxjFPcOm4ZUBVIVmA5rTVWYEqkIUMBwKhhuBTNmPfCtUhQqgg5CtgPTgYe5hwwRZuNbIWyNtakQAlQFNdWLGQgTMSTbYxKvJji8pYdu2V7aZ7lp4bYE7a4mXUIIMrxOuqQ7yc7w4PA4MSoDmOV+zIoAMhRGSfehJJKYxwyi/hC6buBwajidSlx5kqgKpDrqfyRcPhexqJF0IKoPQ8Z2sWdnnVRKScyURBMpc/cgcTSnatXzbCCklJjxj67XtFsRgmdmjGTyGxda31EiWUTEyiEs4/8mwq+Ey1WT7EFKLmx3AxkihhHTMQJBHDKG1+fEUVWGNxZGM6J2xc+GRAgUtwsjHGVrMMaEU57hvrOeR4SjVmWTmESNGCgxEyVi4KiKoIYM1LCJEjXRQgaaX2fciNfI9GgITUVG9L279+/MQ2vTwOyDXMF/FFtjbUKEEEinhqL6MP1ByqMKEQmBmKRtmhO3U6Wla1dznxrNVQhone4iy+dgxbYQm0UKWBNzYtUhcBhWphwpwalBSEFGdMJulUhMojlBxJNCSFPUcTaynkmBolhVZ/SojqLWxDImzGaqUFHFb5vlR01J2LBMeM49TPEUVcE0Yjsl5aide6H2tuRyZ/w/9Sm7ft1EmuCOmVZKxHg8p6IquFI0KyF/Yh01ntpQJOq8KiKeQ1gAak0pNuAf3W/n4lfORBMaVcEAKf5UQoEATqcTxeXGfUiBldzDpmFQFZBYcaymiTAk0mHFqQrV+p7UQDRpIsaUKDETIS0HJiViooQNMjwqW50asVAU6a2/SlTCS15GdUsA14rx3Wfxxza7x2T3vo9NsGxuC9YmRsQ1VyU9BRkME6gIsjrmQQXat6wvWL3GhFrnGlh1XNv4NMqiOhEhMBNhCIn1wISJVlFAxgjEJCXVOgWZDstJKu6la3l7WFkrJNaaqyZA0VTMSF2tNCZjKAhUZedHqXZlnR09g4UQeFSBR002rc459R2/Y71ZwzCpKK3G5XZafRQQ0w0iwSipWb5kkQEzZuJ0a3hS3TU58iU4YwamKVE0JRmX63BrmCGJhiMZq4xhxRsnEkLISMRKCqHEf7GJcnKm5J+zx1JeUYXL5UU43eD14vF4EA4nDqcLQ0przdam4VAEis+NURXEjIfCCSktwWpIDK8DoZsoxCxve7AyM+lgulWkqoBicO0lr3L95HOpCkeRUd2KU6/lkCalRIatikaoCorHBQLL2dAftLRdpyOZGtEWso2DME3EbkzBoglMwbZg3R8QltaJz42iCMxwlGKHQCsLkeLWSPdqqMqOKt3OP1ohBBk+J20DOsWhGNWJml87rhc5NGQwQjSis7bSKj+W7dPwuARuhwDFRErFmo0TT5GbjPGLz9jjAlATf+AREjVCtL4arnUOVUTcOVeixheBY1EDM2YSDetUVwSIxfP7Ol0OQhtClplQVTFjBqZp0rZTa5T4OOpRq8Sb2+O0aszGX4JCCDRNwYiZTPl4LGNPf95qQCKjTzxtYZ3cCmo8p3MsRpuCAmJ+ncC2KqTXg9YiBx2Bs0Vc0UWi29bDBsWqeONGRmOMfuxsnrv+7WTIlOlUrQpC8Z+LEtGRUsN0qJhxM4mim1Zsa9igVYpGIOywciLHc4BLaVWikmEd4VCtzFW1tFOhqUi30yohGIkiA/Gc017bUa1RMCW7zCqT2N/I2IJ1P0IIAW4nZjRAZXWEal3iDBrkh2K08GqkeRxJ7dOIPyzqDt6pqiLokONDbAuyOhSvHVsdAp8nmdVHKMKqCxuKEKoKURhxsKFaI8Uh6NHKhc+lIoREmlasglNJBABa96osq0YoApfbgcu76xR3vykVRSKt427HB6RhJlMHai4NX5YPh6rgS/dgShMTE1UVCNOSfKqmYsYTOKhazeREUQV6RBIJRnH5nElhnbiRaZqoDhUiUStJvxr3Ck5k+4nFrKT7UkI8paHQNAK6SShmoutGIoKKxGTEZt8hBFbsdrmffzw7nMcv/g8vz76Ci/7+PEI3azxD46b9Vz+4nI3VBpsCMZ4a9R+0sIlUFFqlCLZWa1QGIzVLANEYMhy1Yo/rM/fGE8cIr9t6NgwTMxTB9ActR0LHzg5/Ng3IXqY0bEwOCOclr0MlZS8SA6hCkO5yoO0YCnEAIRLJAzSVWDBMsCJAYWWUxWURyqqj6DGT6nCM8ohBsB5HIiEEiiLITnWR44DUNA8AZkW19YKIL0AKTUWkeFBSPVZFm8ogFRGT7QEjnjoxrk0mhHH8xaA5NDSXA83jtDyFdWOvwxMSSR6iEd1yRJK1hG9tuVbL4zka0jFilmaaSKVYUw0HHG4Nzani8mj4Ujz4vB5cTgcenwO3z4nmEDhdKi5P3bSOqqbiTXNb/dqh/UbMIBrW8aa4mfTB5TUxq7oO0Sg4HFbqwkRqy2TJMyd+PW56FyJZ0camEUh8Dy4n1RVBbnz9Yi4Y+pK15mqaiIiO4g9jelxIh8qI01+gMhZCN6VVsxUQhsGoU18i1alY14prvYmqR2IPa6gq4FQEXpeKK82D4nNjBsJIf6huMQabhkWaNb4Q9X2kbQreia7Z6fRolQnAmu1+fiwuoyAjhfaZKbTwWqnwykMRtlaH6dgiFS1u6pu1chOB6M5eqj6nRucWaeSl+3BpKoFojPUV1awqqyK6j4LD01wODs/JIMfnxqmphGMGZcEIhWVVpLoc+Jwaxf4QpYFwcm1GeFxIjwsZ1YkFowSiCssAn1/Hb4JPgfx0FymaqFk7jSOEIDPVS/fUdPRolMWby3G6XfRonYXTqREyTL7fvI1ANEan1ll0yExBANuqAqwq3Q4yRKg6THa6l/QUy4lDSolpSIIhHZfPhduhYGgKkbCO5ti7NcOYbhCsCuH2OQj6owhFweWpP+GElNIy80Z0XKobl8eD5vQQrPajaSqqQ4nHygJI3N50HM6dUyNGQtVEI8Gdrh2LGugR3ZqIqErcKUrB6fLgdHmRZiUSSWZ2WjItYSI3MOGItaYaq5mooAhkNEq2WyUQswo0yIhurbnZ2kqjIIRASXFjbKuirDrGdc+P4LGznkvm4kYRlik4brn49wVvIIXAzHCjhmMoIcsb2KkpCEWpZUJMhI8JVGFtdiqSDBfETNWS6UJQrZtUxySqhCyXQrVwENZUjEDYCoOzq+fsG/YUVtAEpuD9WmP1OjR6tMrkkUceYc6cOWT73Bxf0Jo/t8rg6zmzGT9+POPHj+f/3plJQZobTVG46qqrWLt2LT1bZ+10vWyfm5M7t8UXDTDp4Ye48soreem5qbR1K5x0aJu90op/KxluJ4M7HUJ18Ubuvfsuxo4dy0P330dJ4XIGtG/NYZleHFVlDChohVOt9XXEBawSz6AkAX9lkJLKEIHKINuCOoXlYbb4oxiGWUdrFELBl5rJ9pItZKT4OKxVOt3btGDtyqVMeXwy1SVF9GiVic+h8efcLGa9+zZTn3yc9jmZeITGz1vDFIYESyt1AhErP3E0rBMMRNA1LWkSFglb514+t4Zu4E114/S48KS4EQjCgQiRYIRoWEeP6Na/0RjSlEQjOp5UB+ktsvAHQkRiBpnZVqH2SDAa76z1cTjd3H777bz//vsAPPDAA7z++utojpq8zokgbz0SwzRMHC4NxS0xMYhJHbcvDX8gTEVVgMyc7KRG/fCsK+vEr8po1PokSszVimv9Z/db8agCp88V9xr9vU+Oze9CURAOFTOiW4lOFOJJO6xiCSIaAxNLS5WSaIbTsi4oipUOkUTZXZksCFVn0gqkOgQtPQJFGJgSwjFJRdRMvr8NCZVRkxSHQkuPhpbisarthKK21rovkOaeP43Mfq2xdm6RRklJCS+88AJLlixBVVWEHuHYYweQkpLCyJEjcTqdfPzxxyxatIiHHnqIk046idtuu41XXnmFVKcDf7zQtCoEffKy+fTTTxk+fDhjx45l8ODBfPLJJ3Tt2pU5c+ZwfMdDKQ9FaZPmTbbBH9FZV1HN8tJKNEXQpWU67TJS8Dk1ykMRCrf7KQ9F6Nk6i1YpnuR5VRGdNdv9tEpxs3jxYk444QT+9a9/ceSRR7Jq1So++ugjjjjiCJYtW8bo0aP58ccfGXKYlYMypMfwOKyvxjQlWwNhdNPkkDQvUkq2VAVZsnYLFVUhyrweWnvSSfN6ME2TmB5JzopPPvlkPvjgA7p06QLAqwsWcMcdd1BcXMykSZMIxwwqKiq46qqrqKqqYsKECbRrncWhiiA3IwWAQCiMGQ1g6BGyWuXgdtf00TRiOBwBdD0UrzhW8wpSVA2ny4vmsDReI6ZjGlUoqsTjS0XVnJAl0aMRqisrcTiduL0pOBJl2aQkpkeJxSKoqpP777+f9u3b849//IOM7Nb1Jow45phjkjUXN23ahMfjQdUcpGbkENOjRMLVGLokvYVlAYmEqtFlBK83A0VR0VQn06Y9TklJCQ8//DAZ2a0IB6opSE3j/Q2TcTid/PL1Kt585ANK1pdyxQMj6HVC9+T9I6EoxWu3kndoG1RFIRiOstkf5JfSSmJNMGtujghA8Xkw/UGiHidX/3c0j418BdUfgogO8ao3RoqLmFdDasJybjJNMCT/+exiVpTEJ0oJh8H4/FFgldkNxCQhA3RTo75YDgHoppVopbVXpTJqYHjdmFVBpNthacO25tpwGHsQnrZXcA0CaJfh49GHn+aMM85A0zRMUzJp0iS8Xi+zZ8/GH9GJGCbDhg2jvLwcsITJ2LFjKS0tpV2mj19KKgBok+bFpSpcccUVPPLII1x00UWUBsIMGTKElJQUJkyYwIcffkjV9jJe+/Bd2rVrxzvvvEPnzp0ZNWoU6S4HaS4nih7mPy88x+rVq+nduzfnnHMOQggKCwv5dtkyfD4fH330Ed26dePiiy9GVVWee+89zjzzTK6//vqd+jlz5ky2bt3K5MmTSU9P55JLLuGN6a/Qv39/ZsyYQU5ODpdddhm//vorU19/HVVVOe+88/h7r26sLCmnc6tM5s+fz3vvvUdWVhYXX3wxubm5zJkzh/Lycl5++WVycnIYNmwYAH/729949913eeCBB+jUIo1nn32Wk08+mTfeeAOA/KxUvvjiC56ePZtIJMKxxx7L6aefjjclnUAgyKuvvkavXr144403aNu2LZdffjmay0mwqtxyilIUVIcDX2oWS5cuZcaMGfj9fvr168eZZ54JwM8//8zMmTNRVZVhw4bRqVMnAP73v/+Rm5vLV199xZo1azjttNPo378/a9asYdGiRWzYsAGAPn36kJ+fz7x588jLy+Ptt9/moosuQtM01FpJ1HVd55lnnmHt2rWcfvrpHHvssQDMmTOHli1b0u2wLrhECt9//yMAHTp0YN68efj9fiZPnkz37t0ZNGgQFRUVPPvUU2zdupWBAwdy51vXAbBq1So+/PDD5OTummuuQXok995zD2VlZRQUFHDZZZcRyUxh9bYKK2QI0PdvQ9GBjRBWAXSXk2iZH92hcv3LFzH5tKdAVayi5y4VqYAwJGrETNrtpFtDkS4iZhikaVWJqgdD7j4PtiKs/VFTUhoy4pqzQLgcVs3XNK+dJKQhsZ2X9p4Mr7UeOWvWLAYMGIAej8f873//y+WXX05VROd/hUXMXbuFz9cUUy41Fm4sRdM0evfuzWeffUa2t2bNrXWKh0WLFrFlyxZGjBjB4uLtzF27hbXlfi677DI++eQT/H4/GzduZNy4cTz++OP079+fjz/+mMsvv5z8jBS8KvTv35+NGzfSv39/Xn31VW6++WbAEhaXX345b775Jn369OHZZ59l0qRJALRv355PPvmEDz74gKqqqjr9bNGiBQ6Hg9zcXLLjZs577rmHCy+8kNatW9OhQwc+//xzhgwZQqdOnejQoQOnnHIKS5cupXOrTKZOncq1115L79698fl89OvXj4qKCtLT09E0jezsbHJzc3E4rJl6amoq/fv35//+7/8AmDZtGiNHjqzTpvnz59OzZ0/69u3Lww8/zOOPP46qapSXlzN+/HjuvPNO/vKXv/Djjz9yzjnn4HJ7UFQH0ZBOOBjB7U3j888/58QTTyQ3N5eBAweycuVKABYuXMjgwYPJz8+nRYsW9O/fn2XLlgHw2muvce655xIOh+nSpQtDhw5lxYoVuN1ufD4faWlp5ObmkpKSwtq1axk3bhyPPfYYRx11FF6vl9dee41vv/022Y9JkyYRCATo2bMnw4cPZ86cOQC89dZbLFiwIG5CtwT6xx9/jMPhIDU1FZ/PR25uLunp6YRCIY455hi2bt3KEUccwYQJE3j66acBWLJkCaNHj2bGjBkcc8wxCCEYMGAAOTk5nHLKKQBUVVWhBSsxNq9FLSvGv3ZlfF3YZl8hhECkuFGyUjGjMcLRmJWSUrPK/CkhHUW3BKowJYZDwXBrYEgMUxDRDetdrFhr79Iw9+ixXhtTgkMBryYoDVuCVQhhJZEwTIjGbJNwQyLZQ+alxm/SfquxpsRNNsuXL6dDhw5EDAOHqrB+/Xry8/MpD0WTx24LRtgWjABwRJsWdOjQgeXLlzPkrJruuTSFdevWccghh6CqKuVh6/yKUJRueXnouk5xcTFgaTovvvgiPp+Pv/71r7Rp04YHH3yQTz75hPbt23PfffcB8Ne//pW2bdty7733ApaQfPrppxFC4PV6eeKJJ5gwYQIjRoxgy5YtTJw4kRUrViQFVp8+fTj++OOZPn065513Xp3+T5w4kaFDhwIwcOBAHnvsseTL2u/3JwX3bbfdxjfffEP79u2T45WYfKSmpnLyySfTqdOhKLWSElxyySU8/vjjdOnSBcMwOPzww+vc++abb2br1q0UFRUxZswYnnrqKcaPHw9AMBjkueeeIycnh1NPPZX8/HxWrFhBQbs8hGIiTYGqatx11108/PDDnH/++UQjYU477TTAEnYTJ05k1KhRABQXF/PEE08khdXZZ5/NP/7xDwC+/vprPv/8c8aMGUPnzp1p3749Z599NqqqsmDBAgBeeeUVAJzOnTMZDRo0KGkl0HWdyZMnc8IJJyT3h8IR3O6ayVdmZiZ//vOfKSkp4dxzzkEoCq+++ip5eXncf//9ALRr144zzzyTK6+8EoCMjAyef/55hBCUl5dTXV3NiSeeSMeOHTnppJMAWLtoCbphEK6qQnM4bW2lEUgkXhFuB5GQzsQPLuPfQ16oKQtnWA5NMa+CEpVIh4Lh1YjEDGKGtNwIBPE19ZhV9H0vsZZ2BY4dzL1CgJJieQorjhTbGtxQ2Brr3qPEn7poNIrD4SAas+zkLVu2pLS0FF8tRyOPptIxKxWfQ8OU0jo+Gk1eA0A3ZPJcKWXyfJ9To7S0FICsLMvhqV27dvh8PpZsKSclJYW8vDzWr1/PsmXL+O677+jbty99+vRh0KBBtGnThoqKCgA6duyIEIKiqiCZmZlUVlYCUBHWue76CSxdupSSkhKOO+44Tj31VKLRmskBwOLi7cn/P+yww/DHc5YuW7aMW2+9lT59+tCnTx+mTZuGYRiUl5dTWlrK8OHDk/u++uorQqFQneuGQyGikZp7DRgwgF9//ZWHHnqIiy++uM6xhmEwfPhwhgwZwhNPPMFHH31ESUlJcn/Lli3JyckhEqpG0zQ6d+7M2rVrURTLS9cRD6pfuXIlvXr1IhIOUllWSsU26xpr1qyhe/fu6NEQMT1K9+7dWbNmTfL6HTt2xIjpSNMkMzNzJw0/EgmzZUtR8lin08n3339HfXTr1g3TiBGNhOjWrVud+wC43S60XSRbl0h0XU+2V0pJOOSnR48ebN68mUjEmsh17doVIQRBfwWZmZncfffdnHjiiXTr1o277roLXdfJaJOHq11nvO274snrYCeIaCyEQPG4MEMRtlWbjPnvpZYXsFNLxrVKVaDqppVTOBhjc/FWdF1HJjyBQxGE24G6h6T8AupYIiKmZGMghl57eU8IK6ZVVZHhiK21NhQJJ8LdfRqZ/VZjDcUTo+fl5VFcXIyWmY1hSoYMGcKbb77J0KFDOaZtNhHDoENmKkiTzi3TcGkqW7Zs4ZhjjiEcqxnQ0mCYvn37oqoqc+bM4dgBx5PhdnJoVipPPPEyf/nLX2jZsiXr1q2jpKQEwzDo2jINwzAoKSkhJyeHVq1aMWDAAF577bV625zMn0tdR54sr4twzKA6atCyZUtuvvlm7r//fkpLS+Op+qxfX8/cGk9mVVWJGgbgoFWrVjzyyCMMHDiwzv0ikQg+n4933nmH1q1b19se0zRxe7zJjEMAiqJw/vnn88ADD/DQQw/VEfCLFi3i119/5aeffkIIwZw5c1i4cGFyf3l5OcFgEI/bcqQqKioiJycHGXceMOP/5ubmsn79ejp1OhS3NwVvaioArVq1YvPmzXFvXcHmzZvJycmp0+ZkWsNaY5joi9frw+v1sXr12uR6aoeC+gsPFxUVoagaDqEk2wngdrsJBoNJR6zS0lJatmxZ5z6KoqIoKq1atWLx4sUIIXC6vKxevYaMjAxcLlfye7JOtNo8btw4xo0bx6pVq7jgggvIy8tj6LDhLC21Jlm2l3Aj49AQHhex8mpiCEa/cAHPXfk6D789mKsu+xKpCAyHgmYY6BkuqqSGU0hiGjgwcGomYZeLXZWXAHBEQxAN4/G40RUHJvEYZiHQFAXTMFA0K0mELgW6z2UVyHA6rHVcW3X9Y9ga695TFrC0ruOPP56FCxeS5XFS5A9y/fXXM3fuXK6//noqN67B3FbME48/xh133EFKXFv65ptvGDBgAGVx8zDA5soAiqpy7733MmrUKGa9/x7O6nKef/557rrrLu66667ksX6/n3vuuYey0q3cc889HH744bRt25Zzzz2X2bNn89JLL1FSUsLKlSuTpsjd8dJLL/HKtBfZsn4tK1eu5NZbb6Vz587k5ubStm1bNm7cyOeff84vv/xS57xtwQjRmMHYsWO57rrr+P7779m2bRtffvkl8+fPx+Vycckll3DppZeyfPlytm7dykcffcTSpUsBKCgo4L333mPRokUEAoE61/7Xv/5FUVFRUktPkJ6ezpYtW/j1119ZuXIld9999079+de//sWWkhKefPJJnE4nPXv2xIhZ2rVpxDBNq80TJ05k8eIlBCNRPvnkUwAuuugi/v3vf/Prr0v54YcfeOyxx3Za462P9u3b8+WXX/Ltt98mTfYJfD5PvefMmDGDefPmsWbtWu655x4uuOACAI488kjeeOMNCgsL+d///sfMmTOT5xQUFLBw4UIWLlzI+vXrGTp0KF988QXvvPMOmzZt5p///Ge97dUcLoqLi/nvf/9LSUkJbrcbp9OJz+fDtDWTJkMIgfC5UbLSEF4XRkU1Vz43jPEXzkWJSbSggSMQI+ZRueOOfmzfuJ5Q8TqqNxUSXL+KYGkR6Ppu50PR6iq2rl5B2bpCwpvWEFy7nOjmNcSK1uKo2Er12uVE1q/EUb4FJeRHqCrC47KSRzTaSBzEmHLPn0Zmv9VYDVOyuSrIqFGjuPrqqxk/fjxb/BUc3qo1P/74I8899xzjxo0DoG/fvlxzzTWA5USUkZFBt27dmLeuxoQZMUwWFW9nzJgxdOnShalTp/LQQw/RvXt35syZw5/+9Ceq4uuu3bt3Jysri3PPPZfOnTvz1ltvEdQNMlq0ZN68eUyaNIlnnnmGzMzM5NphXl4eAwYMACBmmrRs2ZLBgwcD0LNnT5577jleeeUVVFXlT3/6E59++imKopCdnc1zzz3H66+/TkpKCo8++mjSU7nMlPyytYIrrriCzMxMbr/9dsrKyujUqRPXXWd5pj766KM888wzjBs3jnA4TI8ePZIOVU8++SRTpkxh0qRJ3HXXXXTp0iWpaf1aWoVDEQRKK0h1uzn//PMB6NSpE/fffz9XXXUVGRkZ3HDDDXz66afJcczNzaVXr14MGzaMvLw8Zs2ahZQmetR6SZgSqssrGDVqFE6nkxtvvJFgMMigQYP4+9//ztlnn00oFGL8+PF4vV4mT57MX//61+T32KFDByvhOZJevXqRGtd0R48ejd/v56mnnmLIkCF07949Ob6W74KsOR846qij6Nu3Ly+++CLr1q3jwgsv5JJLLkHXI5x33nmsWLGCSy65hCOOOIKHHnoIr9daQxsyZAjr169nypQp9O/fn0svvZRZs2bx0EMP8fjjj3PCCScwceLE5Hd+3HHHxb9zidPp5LPPPuPxxx/H7XZz1llncc455/BjUY2J36bxsdZbBXhdyFCEWMTkrmdP5/bL3kMNmZgOFWFIgpEopmniS0klPScHhCAWiaAHI0iH0wqTqQdPSireDp2o2r6NqGHgS0lFj8XQHA78gQCmUFBdLiqq/Hhbp1n1jj1OjEgUGY1ZXsy21vq7kaaBlLs29+5u375CyL3NR9dIVFZWkpGRwZTZX9E+txWDu3XgjDPO4IYbbqDdYd2Zt3oTPQ/JoVNOZp3E9Fv9AXJSfYwcOZIRI0bQ97gBvP3Typ2uf0hGKn86JJucVF9y28byKhZv2kqnnEz8G9dyxRVX8MMPPyT3b9hexYLVm3A7VI7KzyUvKy25zzBNtlWHSPe4cGoqq7Zup7C0nIGd2+F1OqiORKmORGmdllKnHWu2lPHdmiKyW6RyZH4u6R5Xnf3+cJTPlq+jMhyhY3YGPQ9pRaq7xkFnW3WQb9cV0zrNR/c22ThrrQGVVvoxQlWkeFNJSUurc10pJUVbtzFn1SZMIfAKwUk9u5Duc1MWCFFYWs6Rea3R6gk1WL9+Pf3790+GvQAEQn42bCnEKzxINIIxE680SUlNJ7NlNqpWM3er9lei61HS0rOSJlTDiFGxfStOl4uU1CykNCkv24qmOUjLyEJKqKooQ3U4SElJ3+kFFAz42b6thPSMFqSkZSBNk1hMx+mqm4VJSsmG9WtZvXo1bfPz6dypy077N5YU4nOlkpmenXT2ClZXo2oqrlrxu1UV29H1CJlZOQhFodpfxbaK7fgyssnZ4Xv+fn0xvxZv22ksbRofKSVmmR/V62TaLe8jTDA1wa1ThhKJqUSjENJNzFAUxeeyvIglRCsD4HYh6kkgI4AWLgUQVOqGlRbaiFG9eQ2Kw4m3dX48RahF4hXvUgShsI7hD6GkeJIVcQ42QoFqxg76SzJSoSGpqqoiPT2dv6ZfiCZ2XYYxJqN8VvkKlZWVpO3wPtxX7Hcaq9/vB2DsoL8A8NFHHzF9+nQMw2DJksUM698fsLxACwoKAFi3bh2dO3fm559/5oEHHqB169aceuqpfPTRR7u8T6tWrWjRogXFxcXJGNgpU6bQu3fvpPYybNgwPv7446QTUoL09HTatm2bDM+RUlrxm6qKrlsmUatKipb82+VyUVBQQCwWY/PmzYTD4TrXVBQFTdOIRqM4nU7LgWKHOU+7du1ISUlh06ZNddqkKAodOnTA4XCwfv16gsG6KfwS10s4GCWqwOx4TGKt1eFwUFBQQDAYpKioCIfDwS233MLIkSPx+awJyVVXXcXrr7/O9u271saEEMl2rV27NunwoygKHTt2JBgMsnnz5uTxVqyymVxz1jQNKSVGLecDh8ORPKb2+O54fuLczMxMsrKyWL16dZ3ruN1uCgoKKC4uprq6GqDOfi0+IUiMVZs2bfD5fKxduza5TVEUFEWpM54ej4d27doRiUTYuHFjvWNts39x4p92Xu6waVj8fn+DC9Ykpgm7KRvXFJmX9juN1TRNioqKSE1NrakzGg+lqE/Y1EZVVVTVqmbyW19oVVVV3HTTTck1U9M0ky/c5kJVVRV5eXls3Lhxp5mdqqpJoSqlpLq6eq+T7x8o7K7/zYXmPgbNvf/QsGMgpcTv99OmTZs6DpQNQUJjPcE7bI8a65zgG81bY1UUhbZt29a7r3bM4b5g+vTpTJkyhZSUFBRFabY/rLS0tN32XQiRXPs8GNlT/5sDzX0Mmnv/oeHGYJ9pqgkSdaJ3u79x2e8Ea1NjNkFeSRsbGxub38meCp3bgtXGxsbGxmbvkYaJFLvzCraT8DcZLpeL22+/PRmO0hxp7mPQ3PsP9hg09/7DATgG0qS+KkN19zcu+53zko2NjY2NzZ5IOC/1E6ei4djlcTF05ssPm7fzko2NjY2NzZ5wOp20bt2a+Vs+3OOxrVu3rrdQx77C1lhtbGxsbA5IwuHwTsVM6sPpdO7zqJLa2ILVxsbGxsamAdlvk/Db2NjY2NgciNiC1cbGxsbGpgFpFoJ1x9y5zZFEMfbmiv0M2NjYNBYHtVfw8uXLmTBhAk6nk/bt23PZZZfRtWvXpm5Wo7JixQquvvpqYrEY7dq1Y8SIEQwaNKipm9Vo2M8AbNq0iZkzZ9KpUyd69OhBXl4eUspmVarMHgPYvHkzs2fP5tBDD6VHjx6kpaU1uzFoLA5ajfXLL7+kX79+ZGVlcfTRR/P2229z0UUXMW/ePKB5pC788ccfGThwIG3btmX48OHJGqQffPBBUzetUbCfAXjwwQfp2LEjb7/9NiNHjuTUU09l4cKFzeplao8B3HXXXXTo0IFnn32Wk046iQsvvJClS5c2qzFoVORByrXXXivPOOMMaZqmlFLKpUuXyrPPPlseeuihTdyyxuO+++6Txx13nAwGg1JKKbdu3SrHjh0rs7Oz5ebNm5u4dfue5v4MlJSUyB49esiXXnpJSinlt99+K88//3yZl5cnV65c2cStaxzsMZBy5cqVslu3bvLNN9+UUkr5/vvvy8GDB8vu3btLXdebuHUHJwedxirj0UOFhYU4HI7kjOywww7j5ptvpqKigjvvvBM4+DWWlStXIoTA47GKdGdnZ3PPPfeQnp6eHAN5EEdbNbdnYMfvcs6cORQXF3PqqacCcPTRR/PCCy+gKAr33XdfsvbxwUxzHYPaJS//7//+j/Lycs466ywATjvtNB577DGKi4u54447mqiFBzcHvGAtLi7mjTfe4Ouvv2b79u0IIYhGo+Tn5xMIBCgqKkoe2717d6677joeffRRgsFgg9cHbCpKSkooLCwE6hbrPvzww6moqGDVqlWAJUSysrK48847eeGFFyguLj4oTEGbNm3iscceY9asWWzcuBGASCTSrJ6B6upqysvL62xr3749FRUVSeERjUbxeDw88cQTTJ8+nSVLljRFU/cZFRUVLFy4MPkMABQUFDSrMSgrK+Pss8/m0ksvTW7Lz89H13XKysoA6z3QpUsX7rzzTiZNmkRxcXFTNfeg5YB+q9xwww107tyZqVOnMmjQIC6//HJWrVqF0+mkR48ebNiwgYULFyaP1zSNwYMH07ZtW6ZPn96ELW847rvvPtq0aZP8ISUKvQN07doVt9vNhx9aKb8URUFKyaBBgzjssMOYOnVqk7X7j5LQzupbP/v6669xuVz06tWLdevWHfTPwC233ELPnj0ZOnQow4YNY8WKFQBkZGTQu3dvnnrqKcDKPiOl5LTTTuOII47gueeeAw4Orf22226jc+fOXHHFFXTv3p0333wTsGqB9unTp1mMwcSJE8nNzeWzzz7jq6++oqqqCgCfz0fHjh154403AJKTyQsuuIA2bdowefJk4OAYg/2FA1KwlpeXM3r0aObPn8+sWbP4+OOPmTZtGhUVFTz//PMAXHHFFbhcLmbOnJnU5gA6dOhALBZr1LyR+4JoNMqNN97IBx98wIgRI6ioqOCll14Can4gp556Ku3ateOTTz7hu+++A2qKlGdmZiKlPGBNwUIItm7dyvTp03n22Wf54osvmDVrFocffjjnnHMOGzZs4NJLL8Xr9fLWW28dtM/AhRdeyKxZs5g6dSqjR4+mqqqKwYMHs2TJEjp16sQxxxzD/Pnz+f777wGIxWIADB8+nG+//ZZAIHBAa+2GYTBmzBg++OADZs6cyZtvvsl5553HP//5T8D6ro866igWLFhw0I7BtGnTaNmyJbNmzeLLL79kypQppKSksGXLFgD69euXFLgrV64ErIlpWloaQ4YM4eeffyYajR7QY7C/cUCO5LZt2xBCMHHiRPr374/L5eLcc88lJSWFaDSaFCw333wzixYt4tlnn02eG4lEiMViZGRkNFHrGwan00nHjh0ZNWoUt956K7179+bpp5/G7/ejaVoyf+aVV15JMBjkgQceSJ5rmibbt2+noKDggDYF72r9TNM0brrpJsDSZA7WZ2DlypUsWrSIRx99lEGDBnHRRRfx9ttvU15ezt1338327du54IIL8Hg8PPjggwA4HFYVkBUrVpCbm4vL5TpgJ1dgLQN89dVXXHvttfTv359OnTpx4YUXkp2dTVVVFS6Xi6FDhx60Y7Bp0ybeeOMNbrnlFn7++Wf69OnDEUccwYoVK5Kx2x6Ph4suuohNmzbx4osvAtbEVAhBYWEhXq83qcnbNBBN4jL1GzEMQ0opZTQalVJK6ff75S+//LLT/uHDh8srr7yyzrn33HOP7NKli+zfv7984okn5LHHHit79+4ti4qKGqn1DUOij7quJ71cE9uklPKDDz6QRx55pLz11lt32vfqq6/KQw89VPbo0UPeeuutsl+/frJ79+5y1apVjdiDP0Z9/f/mm2+kpmlyzZo1UkopI5GIlNIaC0VR5Pz586WUUt59990HxTOwI/Pnz5eapsnt27cnt61bt04WFBTINm3ayKlTp0oppXz55ZflIYccIseNGyd/+OEHuXTpUnnMMcfIO+64o6ma3mBs2rRJCiHkf//73+S2QYMGyTPPPFM+/fTTsqKiQkop5SuvvCLbtGlz0I2BaZoyFovV+Xv16tXy8MMPl5MmTapz7G233SY7duwo77zzTrlhwwa5ZMkSedRRR8mnnnqqkVt98LPfC9Y77rhDnnzyycm/Ey/VBIkXbiwWkwUFBfLVV1+VUta8ZCORiPzmm2/k8OHD5cCBA+XYsWOTAvpAYccxqI+qqip50003yW7dusmlS5dKKWWdfhYWFsrx48fL008/XV599dXJ8TkQ2FX/ly5dKvv16ycnTJiQ3JZ4Pnr37i1HjBghpZQyEAgc8M9AfSxZskT26tWrzmTypptukmPGjJF9+/aVgwYNklJKGQwG5fvvvy/btWsnu3btKtPT0+Xw4cNlKBRqqqY3CInf/qWXXipbt24tTzvtNOlyueSxxx4rr732Wpmfny+PP/54+c0330gppXz33XcPujGoj6qqKtm5c2d53333SSlr3gPbtm2TU6dOlampqbJHjx7S5/PJiy66SIbD4aZs7kHJfitYly9fLocMGSKzs7OlEEL+5z//kVLKOrOz2vzyyy8yPz9frlixYpfXPNB+RLsagx1jzxLC5KuvvpIDBw6UF154YXLfjgLkQBIou+p/og/RaFRee+21sm/fvvLbb7+ts2/y5MnysMMOk36/v841D7RnYHeEQiE5bdo06XA45DHHHCNbtGgh27RpI9etWyfnzJkjNU2TVVVVyePLysrkokWLDihLxe6o/S5Ys2aNHDp0qLz66quT27Zt2ya7du0qH3300aQQPtjGYFeKxtlnny0HDx5c7znr16+XX375pVy2bNk+b19zZb9dY/3pp5/wer08//zzjBs3jltuuQXTNFFVtd61gF9//ZXWrVvTuXNnwIrd+ve//13nmMasx9cQ7GoMNE2rMwaJddI+ffpw+umn8/333/Phhx8yY8YMLr/88johOIn1pQOBXfXf4XAQi8VwOBycccYZeL1eHn74YaCmf8uXLyc3Nxe3213H2/FAewbqI+F843a7ufjii1mwYAGjRo1iypQpbN68mXbt2lFWVsahhx5aJ0d0VlYWf/7znzn00EObqOUNRywWQ1XV5N9ut5vly5czatQoAHRdp0WLFqiqyrJly5KOOQfbGOzoI6EoCoZh0L59e6qrqyktLd3pvPz8fPr379/sUns2Kk0t2XckMQOrrKyU3333nZRSyu+++0527NhR3nDDDVLK+rXWESNGyIkTJ8qSkhI5aNAg6XA4kqaQA43fMwaJc1asWCEHDBgghRDS6XTKm2++uRFb3jDsTf9ra+3Tpk2Tbdu2PejWz3akdp+j0ai87rrrdql5XXPNNfL0009vrKY1GrXHQNf15BhUVFTIjIwMOX369OT+b775Rh555JHyo48+aoqm7jN2NQZS1vx2Jk2aJAsKCg4qC82BxH4nWOujurpaPvDAAzI9PV2uW7dOSllXsJSWlsr8/HxZUFAgHQ6HPOuss2RlZWVTNXefsKcxkFLKoqIieckll0ghhBw7duxOZtADmfr6X3sd/WBcQ0wQi8XqmPwmTZok09LSZMeOHWVhYWFy++rVq+Xq1avlP//5T9mmTRv5zjvvSCl3NhceiOxqDDp06CDXrFkjA4GAvOGGG6QQQo4cOVKOGTNGZmRkyMsuu6xZPQeJ/T/88IMUQsiFCxc2SVubO/ulYK398CT+f/ny5fLYY4+VZ5xxxk7Hr1u3Tubn58t+/frJH3/8sdHauS/5rWMgpZQvvfSSPO644+T333/fKG3cl/yW/if2b9u27aBaP5Oy7uRp9uzZsmPHjrJVq1by+eef32mt/dVXX5Xdu3eXPXr0SHpEHwzs7RiYpinvvvtuOXr0aHnOOec0yzFI8Nlnn8kRI0bIjRs3NmYzbeLsd4J1V0mhdV2X06dPl2lpaXLOnDlSSinnzp0rKyoqZCAQkIsXL27MZu5TfssYfPHFF3LLli1SyoNDM5Hy9/f/YGXDhg3yb3/7m3Q4HHLChAmyrKyszv7E9x4IBORXX33VFE3c5+ztGEhZN9TsYGJPY2Cz/7DfCNbdrRskKCoqksOHD5edOnWSJ510khRCJL1BDwZ+7xgk1iEPdJp7/+vjzTfflJqmyVNOOaXZenHaY2CPwYFGk3sFG4aBlBJNs2quT548mRYtWvDee+/t5PFmGAalpaUUFhaSlZVFUVERRx99dFM0u0H5o2Nw1FFHNUWzG4zm3v/dccQRR/Dll1/y4YcfNlsvTnsM7DE44GhKqf5b1g2WLVsmjzzySNmxY0f59ddfN3ZT9xnNfQyae/9tbGwOPprcFLy36waBQEB+/vnnjdu4RqK5j0Fz77+Njc3BRZOagt966y06dOiAqqosWbKEhx56iKysrHqP9Xq9HH/88Y3bwEaguY9Bc++/jY3NwYeQsulKGqxZs4aSkhL69u3bVE1ocpr7GDT3/tvY2Bx8NKlgtbGxsbGxOdhocq9gGxsbGxubgwlbsNrY2NjY2DQgtmC1sbGxsbFpQGzBamNjY2Nj04DYgtXGxsbGxqYBsQWrjY2NjY1NA2ILVhsbGxsbmwbEFqw2NjY2NjYNiC1YbWxsbGxsGhBbsNrY2NjY2DQgtmC1sbGxsbFpQGzBamPTBKxbtw4hBD/99NM+ub4QgnfffXefXNvGxmb32ILVplly8cUXM3To0Ca7f15eHsXFxXTv3h2AuXPnIoSgoqKiydpkY2PTMGhN3QAbm+aIqqq0bt26qZthY2OzD7A1VhubHfjiiy/o3bs3LpeL3NxcbrzxRmKxWHL/8ccfzzXXXMMNN9xAVlYWrVu35o477qhzjeXLl9OvXz/cbjfdunVj9uzZdcyztU3B69atY+DAgQBkZmYihODiiy8GoKCggMmTJ9e59p///Oc691u1ahXHHXdc8l6ffvrpTn3auHEj5557LhkZGWRlZTFkyBDWrVv3R4fKxsamHmzBamNTi82bN3PyySdz9NFHs3jxYqZMmcILL7zAPffcU+e4l19+GZ/Px8KFC3nwwQe56667kgLNMAyGDh2K1+tl4cKFPPvss9x88827vGdeXh4zZ84EYMWKFRQXF/PYY4/tVXtN0+TMM8/E6XSycOFCnnnmGSZOnFjnGF3XGTx4MKmpqcybN48FCxaQkpLC3/72N6LR6G8ZHhsbm73ANgXb2NTi6aefJi8vjyeffBIhBF27dqWoqIiJEydy2223oSjWXPRPf/oTt99+OwCdOnXiySef5LPPPuPEE0/k008/ZfXq1cydOzdp7r333ns58cQT672nqqpkZWUBkJOTQ0ZGxl63d/bs2Sxfvpz//e9/tGnTBoD77ruPv//978ljZsyYgWmaPP/88wghAJg2bRoZGRnMnTuXk0466bcNko2NzW6xBauNTS2WLVtG3759kwII4Nhjj6W6uppNmzaRn58PWIK1Nrm5uWzduhWwtM68vLw6a6i9e/feZ+3Ny8tLClWAvn371jlm8eLFFBYWkpqaWmd7OBxm9erV+6RdNjbNGVuw2tj8DhwOR52/hRCYptng91EUBSllnW26rv+ma1RXV3PkkUfy6quv7rQvOzv7D7XPxsZmZ2zBamNTi8MOO4yZM2cipUxqrQsWLCA1NZW2bdvu1TW6dOnCxo0bKSkpoVWrVgB89913uz3H6XQC1vpsbbKzsykuLk7+XVVVxdq1a+u0d+PGjRQXF5ObmwvAN998U+caRxxxBDNmzCAnJ4e0tLS96oONjc3vx3Zesmm2VFZW8tNPP9X5XH755WzcuJGrr76a5cuX895773H77bdz3XXXJddX98SJJ55Ix44dGTlyJEuWLGHBggXccsstAHVMzLVp164dQgg+/PBDSktLqa6uBuCEE07glVdeYd68efz888+MHDkSVVWT5w0aNIjOnTszcuRIFi9ezLx583ZylBoxYgQtW7ZkyJAhzJs3j7Vr1zJ37lyuueYaNm3a9HuGzsbGZjfYgtWm2TJ37lx69epV53P33Xcza9Ysvv32W3r27MmYMWO49NJLk4Jxb1BVlXfffZfq6mqOPvpoRo8enRR2bre73nMOOeQQ7rzzTm688UZatWrFVVddBcBNN93EgAEDOPXUUznllFMYOnQoHTt2TJ6nKArvvPMOoVCI3r17M3r0aO6999461/Z6vXz55Zfk5+dz5plncthhh3HppZcSDodtDdbGZh8g5I4LODY2Ng3OggUL6NevH4WFhXUEo42NzcGHLVhtbPYB77zzDikpKXTq1InCwkLGjx9PZmYm8+fPb+qm2djY7GNs5yUbm32A3+9n4sSJbNiwgZYtWzJo0CAeeeSRpm6WjY1NI2BrrDY2NjY2Ng2I7bxkY2NjY2PTgNiC1cbGxsbGpgGxBauNjY2NjU0DYgtWGxsbGxubBsQWrDY2NjY2Ng2ILVhtbGxsbGwaEFuw2tjY2NjYNCC2YLWxsbGxsWlA/h/9Fu4c2TDKbQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from gval import Comparison\n", + "from numbers import Number\n", + "\n", + "@Comparison.register_function(name='divide', vectorize_func=True)\n", + "def multiply(c: Number, b: Number) -> Number:\n", + " return c / b\n", + "\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"divide\",\n", + " continuous=True\n", + ")\n", + "\n", + "agreement_map.gval.cont_plot(title=\"Agreement Map\", figsize=(6, 3))" + ] + }, + { + "cell_type": "markdown", + "id": "48861d2d", + "metadata": {}, + "source": [ + "### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "b7059f3b", + "metadata": {}, + "source": [ + "Like in cateogrical compare, all metrics are computed by default if no argument is provided, `metrics` can also take a list of the desired metrics and will only return metrics in this list." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "255f3d40", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandmean_absolute_errormean_squared_error
01215.10623289814.117188
\n", + "
" + ], + "text/plain": [ + " band mean_absolute_error mean_squared_error\n", + "0 1 215.106232 89814.117188" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['mean_absolute_error', 'mean_squared_error']\n", + ")\n", + "\n", + "metric_table" + ] + }, + { + "cell_type": "markdown", + "id": "693f4447", + "metadata": {}, + "source": [ + "Just like registering comparison functions, you are able to register a metric function on both a method and a class of functions. Below is registering a metric function:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "295e1fe0", + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Union\n", + "import numpy as np\n", + "import xarray as xr\n", + "from gval import ContStats\n", + "\n", + "@ContStats.register_function(name=\"min_error\")\n", + "def min_error(error: Union[xr.Dataset, xr.DataArray]) -> float:\n", + " return error.min().values" + ] + }, + { + "cell_type": "markdown", + "id": "f05c8bab", + "metadata": {}, + "source": [ + "The following is registering a class of metric functions. In this case, the names associated with each function will respond to each method's name." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c3e9ebf1", + "metadata": {}, + "outputs": [], + "source": [ + "@ContStats.register_function_class()\n", + "class MetricFunctions:\n", + " \n", + " @staticmethod\n", + " def median_error(error: Union[xr.Dataset, xr.DataArray]) -> float:\n", + " return error.median().values\n", + " \n", + " @staticmethod\n", + " def max_error(error: Union[xr.Dataset, xr.DataArray]) -> float:\n", + " return error.max().values" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "66a0ec92", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandmin_errormedian_errormax_error
01-3035.65527325.8582084263.23291
\n", + "
" + ], + "text/plain": [ + " band min_error median_error max_error\n", + "0 1 -3035.655273 25.858208 4263.23291" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "_, metric_table = candidate.gval.continuous_compare(\n", + " benchmark,\n", + " metrics=['min_error', 'median_error', 'max_error']\n", + ")\n", + "\n", + "metric_table" + ] + }, + { + "cell_type": "markdown", + "id": "2d91a3c2", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "markdown", + "id": "27c889fb", + "metadata": {}, + "source": [ + "Finally, a user can take the results and save them to a directory of their choice. The following is an example of saving the agreement map and then the metric table:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "78505603", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'continuous_agreement_map.tif'\n", + "metric_file = 'continuous_metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "metric_table.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/SphinxMulticatTutorial.ipynb.txt b/_sources/SphinxMulticatTutorial.ipynb.txt new file mode 100644 index 00000000..e2885293 --- /dev/null +++ b/_sources/SphinxMulticatTutorial.ipynb.txt @@ -0,0 +1,1168 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "05d93248", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "4744f004", + "metadata": {}, + "source": [ + "# Multi-Class Categorical Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "275a7087", + "metadata": { + "tags": [ + "hide-output" + ] + }, + "outputs": [], + "source": [ + "import rioxarray as rxr\n", + "import gval\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "from itertools import product\n", + "\n", + "pd.set_option('display.max_columns', None)" + ] + }, + { + "cell_type": "markdown", + "id": "34069943", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "38473c06", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(\n", + " \"./candidate_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " \"./benchmark_map_multi_categorical.tif\", mask_and_scale=True\n", + ")\n", + "depth_raster = rxr.open_rasterio(\n", + " \"./candidate_raw_elevation_multi_categorical.tif\", mask_and_scale=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "fa522035", + "metadata": {}, + "source": [ + "## Homogenize Datasets and Make Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e3e5ca15", + "metadata": {}, + "source": [ + "Although one can call `candidate.gval.categorical_compare` to run the entire workflow, in this case homogenization and creation of an agreement map will be done separately to show more options for multi-class comparisons." + ] + }, + { + "cell_type": "markdown", + "id": "2ac66a26", + "metadata": {}, + "source": [ + "#### Homogenize" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "29375e17", + "metadata": {}, + "outputs": [], + "source": [ + "candidate_r, benchmark_r = candidate.gval.homogenize(benchmark)\n", + "depth_raster_r, arb = depth_raster.gval.homogenize(benchmark_r)\n", + "del arb" + ] + }, + { + "cell_type": "markdown", + "id": "4e9e1be1", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "e2851c9b", + "metadata": {}, + "source": [ + "The following makes a pairing dictionary which maps combinations of values in the candidate and benchmark maps to unique values in the agreement map. In this case we will encode each value as concatenation of what the values are. Instead of making a pairing dictionary one can use the `szudzik` or `cantor` pairing functions to make unique values for each combination of candidate and benchmark map values. e.g. 12 represents a class 1 for the candidate and a class 2 for the benchmark." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "de894568", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 1): 11\n", + "(1, 2): 12\n", + "(1, 3): 13\n", + "(1, 4): 14\n", + "(1, 5): 15\n", + "(2, 1): 21\n" + ] + } + ], + "source": [ + "classes = [1, 2, 3, 4, 5]\n", + "pairing_dictionary = {(x, y): int(f'{x}{y}') for x, y in product(*([classes]*2))}\n", + "\n", + "# Showing the first 6 entries\n", + "print('\\n'.join([f'{k}: {v}' for k,v in pairing_dictionary.items()][:6]))" + ] + }, + { + "cell_type": "markdown", + "id": "44328dcf", + "metadata": {}, + "source": [ + "The benchmark map has an extra class 0 which is very similar to nodata so it will not be included in `allow_benchmark_values` in the following methods." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "1dc16dd7", + "metadata": {}, + "outputs": [], + "source": [ + "agreement_map = candidate_r.gval.compute_agreement_map(\n", + " benchmark_r,\n", + " nodata=255,\n", + " encode_nodata=True,\n", + " comparison_function=\"pairing_dict\",\n", + " pairing_dict=pairing_dictionary,\n", + " allow_candidate_values=classes,\n", + " allow_benchmark_values=classes,\n", + ")\n", + "\n", + "crosstab = agreement_map.gval.compute_crosstab()" + ] + }, + { + "cell_type": "markdown", + "id": "93fe86df", + "metadata": {}, + "source": [ + "The following only shows a small subset of the map for memory purposes:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "55606165", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAIvCAYAAAD9IEb7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZxN9f/Hn+duM2NW+xBJlkGFSaNQomTJEolI32wh2bVoX6SkFBJjSfRLaGGEihahRYVIvjRJtpjBYBaz3e38/rjOdZdzZ+4smOn7fj66j5n7OZ/zOZ9zZnRf814VVVVVBEEQBEEQhHKL4XJvQBAEQRAEQSgZIugEQRAEQRDKOSLoBEEQBEEQyjki6ARBEARBEMo5IugEQRAEQRDKOSLoBEEQBEEQyjki6ARBEARBEMo5IugEQRAEQRDKOSLoBEEQBEEQyjki6IQyxy+//IKiKCiKwuTJky/3doRSZNCgQe6f7YgRIwLOy8/Pp1KlSu65mzZtunSbLCJDhgwhPDyckydPeo1rey/oNWjQIK9zrrrqKr85UVFRJCQkMH36dKxWq9/18/PzmTFjBq1atSI6OhqLxUKNGjW44YYbGDNmDJ999lnAvZ85c4ZXXnmFtm3bUq1aNcxmM9HR0TRv3pyRI0eycePGEj+f06dPU61aNRRFoX79+n7HnU4n3333HY8//jgtWrQgMjKSkJAQ6tWrx0MPPcTBgwcLvcbq1avp3LkzVatWJTQ0lNq1a9OrVy++//573fk//fQTd911F1WqVCE0NJSGDRvy9NNPk52d7TdXVVXi4+O57rrrcDqdRX8AgnCpUAWhjDF69GgVUAG1YcOGl3s7gg/PP/+8CqiLFy8u8rkDBw50/2wrVqyo5ufn685buXKlex6gfvvttyXb9EVi9+7dqsFgUB977DG/Y9reBw4cGPC1cOFCr3Pq1KmjAmrv3r3VgQMHqg888IDatm1b1Ww2q4Datm1br2d29uxZ9frrr1cB1Ww2q23btlX79eunduvWTa1Ro4YKqHFxcbp7X7VqlRoVFaUCakREhHr77ber/fv3V3v06KE2aNDAvf8777yzRM9o4MCBqqIoKqDWq1fP7/j+/fvd14qNjVV79Oih9urVS73iiitUQI2MjFS/++473bUdDoc6ZMgQFVDDw8PVTp06qffee6/aqlUr1WKxqC+99JLfOUuXLlWNRqMKqNdff73aq1cv9corr1QBtWnTpmpGRobuswLURYsWlehZCMLFRASdUKawWq1qlSpV3P9zB9Sffvrpcm9L8KA0BF18fLwKqElJSbrzevXqpRqNRrVZs2ZlWtD16NFDNZvN6okTJ/yOaSKlKGiC7uDBg17jO3fuVKOjo1VAnT17tnt8zJgxKqA2b95c/eeff/zW+/nnn9UXX3zRb3zt2rWqoiiqyWRSX3vtNTUvL89vzr59+9SBAweqDRo0KNI9ePL111+rgDp8+PCAgu6vv/5S77jjDvWbb75RnU6nezwvL08dNGiQCqhXXnmlarVa/c7Vfhe7d++unj592uvYmTNn1D///NNr7OjRo2poaKifOMvPz1f79+/v3qsvTqdTbdSokXrFFVeoNputyM9BEC4FIuiEMsWaNWtUQG3Tpo06efJkFVBHjRp1ubcleFAagu61115TDQaDes899/jNOXv2rBoSEqJ27NhR7dSpU5kVdEeOHFENBoParVs33eOlKehUVVVffPFFFVBvv/1291jNmjVVQP3qq6+CvkZWVpb7j6b333+/0Pnbt28Pem1PcnJy1Hr16qlNmjRR//zzz4CCrrA1NCG7adMmr2NHjx5VLRaLeuWVV6o5OTlBrffSSy+pgHrHHXf4HTt9+rQaGRmpmkwmNS0tLeC5K1euLNI9CMKlQmLohDLF0qVLAbj//vu5//77Afjwww+x2WwBz9m9ezfdu3cnJiaGyMhI2rZty1dffcWmTZt045S0OK5NmzaxYcMG2rdvT0xMDIqikJ6e7p63fv16unbtStWqVQkJCeHqq69m4sSJnD59WncfqqqyfPlybrvtNipWrEhoaCiNGzfmhRdeICcnx29+u3btUBSFQ4cO8eGHH5KQkECFChW44oorePzxx93xUgcOHKB///5Uq1aNChUq0L59e3bv3h3weRRl357PYsuWLdx2221ERkYSFRVF165d2bt3r9f8q666ihdffBGAwYMHe8V6FSXOrUaNGtx2222sW7eOjIwMr2MfffQR+fn57p+/Hrt27XLHXHne58MPP8zx48f95h86dAhFUWjXrh2ZmZmMGzeO2rVru39GM2bMKHJ81LvvvovT6aR///5FOq+4xMfHA3D06FH32KlTpwCoWrVq0OssWbKEtLQ0WrduXeAz1mjRokURd+rixRdf5O+//2bevHmYzeZirREWFkbDhg0B/H6u7733HlarlQcffJCwsLCg1tuxYwfg+rfnS6VKlWjatCl2u1037vC+++4DYOHChUW5BUG4ZIigE8oMGRkZrFmzBovFQt++falbty6tW7cmLS2N9evX656zdetWWrVqxbp166hTpw7dunUjLy+Pzp07s2rVqgKvt2zZMrp06UJ2djZdunQhISEBRVEAeOKJJ+jSpQtff/01cXFx9OjRA5PJxIwZM7jxxhs5ceKE11pOp5MBAwZw3333sW3bNpo3b86dd95JdnY2L774Iu3btyc3N1d3H7NmzeL+++8nJiaGzp07Y7Vaef311xk2bBj79+/npptuYteuXdx2223Ur1+fTZs20b59e789FGffGmvXruW2224jJyeHO++8kxo1avD555/Ttm1bUlNT3fPuuecemjVrBkCbNm0YOHCg+xUbG1vg8/ZlwIAB5OXlsXLlSq/xDz74gAoVKtCrV6+A57766qvMmDEDgJtvvpk777wTVVVJTEzkhhtu0BV14EoguO222/i///s/WrZsyR133MHhw4eZOHEiQ4YMKdL+161bB+iLg4tBVlYWACEhIe6x2rVrAzBv3jxUVQ1qnS+++AKgREL0hRde0P1jSWP37t288cYbDB48mFtuuaXY13E6nRw+fBjA7/dLS9ho3bo1KSkpTJ8+nYceeohJkyaxfv163eehJT1UrFhR93qVK1cG4LfffvM7dvXVV1O7dm02btwY8N+yIFxWLq+BUBAu8M4776iAetddd7nH5s6dqwJqnz59/OY7HA61YcOGKqC+/PLLumtxPijdE8/A/BUrVvit+9FHH6mAeu2116r79+93jzudTvW5555TAfXee+/1Oue1115TAbVdu3ZqSkqKezw/P18dOnSoCqiTJk3yOufWW291B6Rv27bNPZ6SkqJWr15dVRRFbdy4sfrEE0+4Y4ucTqf6n//8RwXU5557rsT71p6FwWDwimez2+1q7969VUB99tlnvc4pDZfr+++/r2ZmZqphYWFq+/bt3ccPHz6sKoqi9u/fX1VVNaDLdePGjWpqaqrXmMPhcLslBw8e7HXs4MGD7p9506ZN1VOnTrmP/fXXX27XZaCYPl+ysrJUo9Go1qxZM+Ac7XpFoSCXa79+/VRAHTBggHts6tSp7us0atRIfeKJJ9SkpCT16NGjAa+hJRt8//33RdqbJ9rvgO+/LVV1/RwSEhLUKlWquF2X2vMvqst16dKlKqBWrVrVL85Pi7F966233G5Zz1e7du3Us2fPep1z33336f5b1LjuuuvcSSl6aP8mNm7cWKT7EIRLgQg6ocygCZyPP/7YPZaWlqaazWY1NDRUTU9P95r/1VdfqYDaoEED1eFw+K3Xpk2bAgVd165ddfehBeL//vvvfsecTqfavHlz1Wg0ukWBzWZTq1SpooaHh/uJDFV1xQHFxsaqFStW9Nqndr/PPPOM3zkTJkxQAfXqq6/2Cwb/7bffVEC99dZbS7Rvz2fhKRI0tm/frnud0hJ0qqqqffv2VQ0Ggzug/5VXXlEB9bPPPlNVNbCgK4grrrhCrVy5steYp6D78ssv/c5JTEz0i08riJ9//lkFvMSoL74CQ+/lKyB9BZ3T6VQPHTqkTpo0SQVURVHULVu2uOc7HA718ccfd2fBer6uueYaNTEx0e/fhpYU8Mcff/jt+cyZM7rZuPv27fOaN3v2bDUuLk594okn/NaYOXOm3+9HcQTdkSNH3LF+iYmJfsdDQkJUQDWZTOott9yi/vrrr2pmZqb69ddfq3Xr1lUBvxjNefPmuZMsfDOst23b5n52HTt21N3T008/rQLqm2++GfR9CMKlwlQUa54gXCyOHDnCli1biImJoXv37u7xypUrc+edd/Lpp5/y8ccf8+CDD7qP/fDDDwD07t0bg8E/euDee+91z9GjR48efmMnT57kt99+o0GDBlx77bV+xxVFoU2bNuzatYsdO3bQqVMnfv31V9LS0rjjjjuoXr263zlhYWG0aNGCzz77jP379xMXF+d1vGPHjn7nXH311YDLnecbf6QdS0lJKdG+C9uDFrvkeZ3S5v777+ejjz5i2bJlPPbYY3zwwQdUq1ZNdz++nD59mjVr1rBnzx7S09NxOBwA2Gw2Tp8+zZkzZ6hUqZLXOZUqVeKOO+7wW6t///6MHDmSH3/8EafTqfv75IlWcy6Q686TgQMHBjx25ZVX6o7XrVvXb8xisTBz5kwvF6bBYGDatGmMGzeOTz75hC1btrBt2zaOHDnCf//7X0aOHMmGDRtYuXJlofcELpfke++95zc+aNAgGjVq5H4/evRoRo8e7TfvyJEjPPPMM9x6660B3bHBkJ2dzd13301aWho9e/bkoYce8pujxTxWrFiRL774gvDwcABuv/121qxZQ9OmTfnkk0/4888/3b/LAwYMYMqUKRw5coQePXowffp06tSpw9atWxk2bBgmkwm73R7wWWm/T1rsoiCUJUTQCWWCDz74AFVVueeee7xihMD1of/pp5+ydOlSL0GnCQ0tjsiXQB+WBR0/dOgQAPv373fH0wUiLS3N65yvvvoqqHN8Bd0VV1zhNy8iIqLQY/n5+SXatye1atXyG4uMjPS7TmnTuXNnKleuzAcffECHDh3473//y5gxYzCZCv5f0/Llyxk+fDjnzp0LOCcrK8tP0NWpU0d3bnR0NDExMaSnp3P27Fl3LFUgtEQO7RkVxJIlSwqd40vv3r2JiIhAURQiIiJo1KgRvXr1ombNmrrza9asydixYxk7diwA+/btY/r06bz77rusXr2a5cuXM2DAAMD1R9KxY8d0fxdr1arlFXvWuXNnNmzYEPS+R40ahdVqZd68eUW9ZTc2m40+ffqwfft2br75ZpYtW6Y7LyIigrNnz9KnTx+3mNO49tprSUhI4JdffmHLli1uQRcREcG6devo1q0bGzZs8Lq3+vXr88gjjzBt2rSAQj0qKgrAK3lKEMoKIuiEMsH7778PwKZNm7j55pu9jmnZnlu2bOHw4cMBP5SLSmhoqN+Y9ld/bGysnxXLF20f2jn169enTZs2BZ6jJxQKspwEY1Xx3ENR9l2c65Q2ZrOZvn37kpiYyFNPPQVQaObl4cOH3dafmTNn0rVrV6644gp3pmPr1q3ZunVr0EkCxSE6Ohq4kKhQ2kyfPp2rrrqq2Oc3btyYRYsWcfbsWZKSkvjss8/cgq5Zs2YcO3aMnTt3Fvr7WlTWrVtHTEyMn0UtLy8PgGPHjrmTSFasWOGX6OB0Ohk4cCBffPEFzZs3Z+3atQEzWOvUqcPZs2cDPqerrrqKX375xa+DR7NmzUhOTuajjz7i119/xeFwcP3119OvXz+mTp0KwDXXXKO7pibkY2JiAj4DQbhciKATLjs7duxg3759APz111/89ddfuvNUVeWDDz5wf/DXqFED8C7j4Emg8YLQLFVVqlQJ2rKindOoUaNiWWNKg+Lsu6xw//33k5iYyPr162nYsCEtW7YscP7nn3+O1Wrl0UcfZdy4cX7H//7774DnHjlyRHc8MzOT9PR0wsLCgvqwrlatGuBqnVWWue2220hKSvKyynbp0oXPP/+cFStW6LpNS0p6ejqbN2/WPZaXl+c+pok8T8aMGcPy5ctp2LAhGzZsKPBnER8fz65duzh79qzuce1no1m0PalQoQKDBg3ycwv/+OOPQODMZe1aRSkTIwiXCilbIlx2tNpzjz76KKorUcfvpdU40+YCbutCUlKSrjXmo48+KvJeatWqRaNGjdi7dy9//vlnUOckJCQQHR3N5s2bL9sHfHH2XVwsFgsAdru9VNZr3bo1zZo1o3LlykGVDtE+VPXcxFu2bAlYmgVccXfffPON3/iKFSsAaNWqFUajsdA9XHPNNZhMJpKTkwudezEpzAqp/XHk6bofNGgQlStX5ocffvD691Ra+9F7af1Y69Wr5x7ztaw988wzzJ07lyuvvJKvvvrKLZoDocXA6onHc+fO8euvvwIX6vcVxu7du9m8eTPXXHNNQMul9odn8+bNg1pTEC4lIuiEy4rD4WD58uVAwXWxbrnlFq644gr27dvnLg5622230aBBA5KTk3nttde85i9ZsoTvvvuuWHt69tlncTqd9O7dm127dvkdP336tFdx0ZCQEB5//HGysrK4++67dS1Ex44dc7uVLxZF3Xdx0eK4SlPM7Nq1i7S0NCZNmlToXC0eaunSpV7N1I8dO6YbPO/Lo48+6lVk+eDBg0yePBlwxYAFQ3h4OPHx8aSkpHDs2LGgzrkYtG7dmsWLF+s2lV+3bp07lu2ee+5xj0dERLB48WIURWHw4MG8/vrrutayf/75J6CV++2336ZRo0Y8+eSTpXIfM2bM4OWXXyY2Npavv/660PhXgO7du9O4cWN+/PFH5s6d6x53OBxMnDiRM2fOcO211/qFcOzatcvvj5F9+/bRu3dvVFVl9uzZAa/5yy+/YLFYuOmmm4p4h4Jw8RGXq3BZ+fLLLzlx4gQNGzbk+uuvDzjPYDBw77338uabb/L+++/TokULDAYD7733Hh06dOCJJ55g+fLlNGnShAMHDrBt2zZGjRrFnDlz3BalYLnvvvv473//yyuvvEKLFi1o3ry527Jw4MABdu/eTUREBMOGDXOf88QTT/DHH3/w/vvv07hxY+Lj46lbty5Wq5Xk5GT27t1L06ZN+c9//lPsZ3Ux9l0cOnbsSGhoKDNmzGDPnj3UrFkTRVF47LHH/ILsLwY9evTgmmuuYfv27e64xby8PL799luaN29O69at3a4zX2666SasViv169fntttuw2az8c0335CTk8P999/P3XffHfQ+unbtyrZt29i0aZM7Pk2PgrI9r7zySreYLA779u1jyJAhPPzww1x//fVceeWV5ObmkpyczB9//AHAQw89RNeuXb3O6969OytXrmTQoEE8/vjjTJ48mRtvvJFq1aqRlZXF0aNH+f3333E6ndx44400aNDA6/y0tDSSk5NLJQN6165dPPLII4Aru/fll1/Wnffggw96iTOj0ciyZcu49dZbGTVqFAsWLKB+/frs3LmTv//+m8qVK7Ns2TK/JKHx48ezd+9emjVrRtWqVTl69Chbt25FURTmz59P+/btda9/4MAB/vnnHzp37hx0ZwpBuKRcwhIpguCH1hD7+eefL3SuVieqWrVqXg2yd+3apXbr1k2NiopSw8PD1TZt2qhffPGFuyipb60srRZaYbXNNm/erPbp00etWbOmajab1cqVK6tNmzZVR48erW7evFn3nE8//VTt2rWrWq1aNdVsNqvVqlVTW7RooT7++OPqjh07vOZqdej0isguXry4wOcCqHXq1Cnxvgt7FoGus2HDBrVNmzZqRESEu3ZXMLXifOvQFUagOnRnzpxRR44cqV511VVqSEiIevXVV6uTJk1Ss7OzdZ+rVgft1ltvVdPT09WHH35YrVmzpmqxWNS4uDh1+vTpqt1uD2pPGkeOHFGNRqN655136h6HwuvQNWvWzOucggoL6/Hbb7+p06ZNUzt27KjWq1dPrVChghoSEqJeeeWV6j333KN+/vnnBZ5/+vRp9eWXX1bbtGmjVqlSRTWZTGpUVJR67bXXqg8++KD69ddfu4tae1JQYWE9CqpD9+233wb1rALVPfz777/VBx54QI2NjVXNZrNaq1Yt9cEHH1QPHTqkO3/hwoXqrbfeqlatWlU1m81qzZo11fvuu0/duXNngfeg9ZaWXq5CWUVR1YuYCiYIl5GHHnqI+fPns2LFCu69997LvR3hMnLo0CHq1q3LrbfeWqSes4XRq1cv1q1bx9GjR4vc+kwoP6iqSuPGjTl37hyHDh0qtKyOIFwOJIZOKNecOXPGXYPNkw8//JB33nmHmJgYunXrduk3JvxP8NJLL+F0Opk+ffrl3opwEVm9ejXJyclMnjxZxJxQZhELnVCu+emnn2jVqhVNmzZ1d1DYt28fycnJ7hibvn37XuZdCpebi2WhAxgyZAgffvghBw8eLDQzUyh/qKrK9ddfj91u57fffrtsNRsFoTBE0AnlmpMnTzJ58mQ2btzI8ePHyc7OpkqVKrRu3ZpHH32UVq1aXe4tCmWAiynoBEEQygIi6ARBEARBEMo5YjsWBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEQRAEQSjniKATBEEQBEEo54igEwRBEARBKOeIoBMEoVzywgsvoCjK5d6GIAhCmUAEnSAIBbJkyRIURfF6VatWjfbt2/PFF19c7u0VSnJyMhMmTKB169aEhoaiKAqHDh263NsSBEEoVUyXewOCIJQPJk+eTN26dVFVlRMnTrBkyRLuvPNO1q5dS7du3S739gKydetW3nrrLZo0aULjxo3ZtWvX5d6SIAhCqSOCThCEoOjSpQs33HCD+/3QoUOpXr06y5cvL9OCrkePHqSnpxMZGcn06dNF0AmC8K9EXK6CIBSLmJgYwsLCMJm8/y6cPn06rVu3pnLlyoSFhdGiRQs++eQTv/MVRWH06NGsXr2aa6+9lpCQEK655hrWr1/vN/f7778nISGB0NBQ6tWrx/z584PeZ6VKlYiMjCz6DQqCIJQjxEInCEJQZGRkkJaWhqqqnDx5ktmzZ3Pu3Dnuv/9+r3mzZs2iR48eDBgwAKvVyooVK+jTpw/r1q2ja9euXnO///57Vq1axcMPP0xkZCRvvfUWvXv35siRI1SuXBmA33//nY4dO1K1alVeeOEF7HY7zz//PNWrV79k9y4IglDWEUEnCEJQdOjQwet9SEgI7777LnfccYfX+J9//klYWJj7/ejRo7n++ut58803/QTdvn372Lt3L/Xq1QOgffv2NGvWjOXLlzN69GgAnnvuOVRV5bvvvuPKK68EoHfv3lx33XWlfo+CIAjlFRF0giAExZw5c2jYsCEAJ06cYOnSpTz44INERkZy9913u+d5irmzZ8/icDi45ZZbWL58ud+aHTp0cIs5gKZNmxIVFcXff/8NgMPhYMOGDfTs2dMt5gAaN25Mp06d+Pzzz0v9PgVBEMojIugEQQiKli1beiVF9O/fn/j4eEaPHk23bt2wWCwArFu3jilTprBr1y7y8/Pd8/VqxnmKNI2KFSty9uxZAE6dOkVubi4NGjTwmxcXFyeCThAE4TySFCEIQrEwGAy0b9+elJQU9u/fD8B3331Hjx49CA0NZe7cuXz++ed89dVX3Hfffaiq6reG0WjUXVtvriAIghAYsdAJglBs7HY7AOfOnQNg5cqVhIaGsmHDBkJCQtzzFi9eXKz1q1atSlhYmFswepKcnFysNQVBEP6NiIVOEIRiYbPZ+PLLL7FYLDRu3BhwWdwURcHhcLjnHTp0iNWrVxfrGkajkU6dOrF69WqOHDniHt+3bx8bNmwo0f4FQRD+TYiFThCEoPjiiy/4448/ADh58iTLli1j//79PPHEE0RFRQHQtWtX3nzzTTp37sx9993HyZMnmTNnDvXr12f37t3Fuu6LL77I+vXrueWWW3j44Yex2+3Mnj2ba665Jqg1MzIymD17NgA//PADAG+//TYxMTHExMS4s2kFQRDKMyLoBEEIiueee879fWhoKI0aNSIxMZERI0a4x2+77TYWLVrEq6++yvjx46lbty7Tpk3j0KFDxRZ0TZs2ZcOGDUycOJHnnnuOWrVq8eKLL5KSkhLUmmfPnuXZZ5/1GnvjjTcAqFOnjgg6QRD+FSiqRB8LgiAIgiCUaySGThAEQRAEoZwjgk4QBEEQBKGcI4JOEARBEAShnCOCThAEQRAEoZwjgk4QBEEQBKGcI4JOEARBEAShnCN16IqJ0+nk+PHjREZG6jYdFwRBEISygqqqZGVlUbNmTQwGseX8GxFBV0yOHz9O7dq1L/c2BEEQBCFojh49Sq1atS73NoSLgAi6YhIZGQnAiunX80/zF7k65gqqh9g4lZvKqTwbDqcFVQnDoIRhMlbAoBjFkneZiTApXFsphAjTpfvrVFVVVCDbrnL0nI2TeQ7sUspbEIRLTG72OUZ2aO3+7BL+fYigKyaaOEuJf4KG1WszdcSH7mP/9+EAcmy5ZFpzOJ2XxWmrg7CQWhgUMXNfLgzAVZEmqkWaMRkujbBWVRWrU+V4joOjNjs5RjOWcLBckqsLgiD4I4aFfy8i6EqIzQnVwkIB2LBuPACdus3ki7VjsTntpOWcZvfpY+TbzxFikni7y0XFEAO1w00YL9HjV1WVc3aV/Rk20vIcOC/NZQVBEIT/US6ryWjq1KkkJCQQGRlJtWrV6NmzJ8nJyV5zDhw4QK9evahatSpRUVH07duXEydOFLjuVVddhaIofq9Ro0YBcObMGcaMGUNcXBxhYWFceeWVjB07loyMjCLfg0kBq9PO+rXj6NRtJp26zQTgnXWjsBjMVAqLoUaFCtgdZwDxtV0OQo0KV0WaCDUql0RQq6pKjsMl5k6JmBMEQRAuAZdV0G3evJlRo0bx008/8dVXX2Gz2ejYsSPZ2dkAZGdn07FjRxRFYePGjfzwww9YrVa6d++O0xn4Y3Lbtm2kpKS4X1999RUAffr0AVwJDcePH2f69Ons2bOHJUuWsH79eoYOHVrke6if/DrnrDZULljoeo9IZuX8ODp3n4XFYCEmJAKjkodDtRd5faHkVA01UslyaWIYVVUl30PMiYQXBEEQLgWKqqpl5jPn1KlTVKtWjc2bN9O2bVu+/PJLunTpwtmzZ4mKigIgIyODihUr8uWXX9KhQ4eg1h0/fjzr1q1j//79AT/UP/74Y+6//36ys7MxmQr3RGdmZhIdHU3CjRN5bEE/bruiNhajwW2h82TpR/ez89Qhsp21CBW36yUn2mygaSULFUwX10LnipmD5AwrKTki5gRBKDvknMtiUKumZGRkuD9PLwWqqmK323E4HJfsmv8mzGYzRqMxqLllKoZOc3lWqlQJgPz8fBRFISQkxD0nNDQUg8HA999/H5Sgs1qtLF26lIkTJxb4Ya79kgcSc/n5+eTn57vfZ2ZmXjg3P4fud70VcO37+y4FYOSsduTb1fOxdJIgcanItDk5nmPn6igzwf2zKDpaAsSBTDupIuYEQRCwWq2kpKSQk5NzubdSblEUhVq1ahEREVHo3DIj6JxOJ+PHj6dNmzZce+21ANx0002Eh4czadIkXnnlFVRV5YknnsDhcJCSkhLUuqtXryY9PZ1BgwYFnJOWlsZLL73E8OHDA86ZOnUqL774ou6xdyds4I3/G8QjDywpcC+J4zYx7u225NjyCTVVxqAYxFp3CVCB4zkOqoQaibGU/jNXVRW7CgezbBzLkZg5QRAEp9PJwYMHMRqN1KxZE4vFIp93RURVVU6dOsU///xDgwYNCrXUlRlBN2rUKPbs2cP333/vHqtatSoff/wxI0eO5K233sJgMNC/f3+uv/76oCtdL1q0iC5dulCzZk3d45mZmXTt2pUmTZrwwgsvBFznySefZOLEiV7neRYW/jvjDFOGbuKZRe28ztPi6QA+Xf0Qd/Wcx1Pz2pGWlwWKGUUJwWgIw6CEYDSYUbg0gfv/a+Q6VA6fs1MhxozFoFBaj1gTc4eybBzNduAQ05wgCAJWqxWn00nt2rWpUKHC5d5OuaVq1aocOnQIm81WPgTd6NGjWbduHVu2bPGrYN2xY0cOHDhAWloaJpOJmJgYYmNjufrqqwtd9/Dhw3z99desWrVK93hWVhadO3cmMjKSpKQkzGZzwLVCQkK8XL++pOdncP0dH8CihfQe4crUXTk/zi3mAO7qOQ+AVx7axNylvbA77WTbcsm0ZpBtV8m1V8BsqoLZ4CqDIsKudEnLc3Ai10CtcAWFkj9bVVXJd6ocPWfn8Dm7iDlBEAQfpM1YySiKDrisgk5VVcaMGUNSUhKbNm2ibt26AedWqVIFgI0bN3Ly5El69OhR6PqLFy+mWrVqdO3a1e9YZmYmnTp1IiQkhDVr1hAaGlqse7hryH5Cw8w41DZk2y8EfXoKOT0evj+Jz9aMxuF0kO+wkm3L4Xh2Gsezj5LrqESIKQYD0l2iNLGrcDTbTsUQI5Hmkj1XVVXJsqn8neXq/uAUMScIgiBcRi6rdB41ahRLly5l2bJlREZGkpqaSmpqKrm5ue45ixcv5qeffuLAgQMsXbqUPn36MGHCBOLiLgim22+/nbfffttrbafTyeLFixk4cKBfokNmZqa7PMqiRYvIzMx0X7uomTifvtvAJd5UA8bziQ56Yq73iGS35U6ja4+3CTGFEBUSSfXwqjSqdBXXVqpEFcsZ8mxHyLWnY3daKUOJyOWeczaV1Bw7zmI+U1UFh6pyMs/BnrP5pOaKmBMEQfg3cOjQIRRFYdeuXQBs2rQJRVFIT0+/rPsKlssq6BITE8nIyKBdu3bUqFHD/frwwwtttJKTk+nZsyeNGzdm8uTJPP3000yfPt1rHc0l68nXX3/NkSNHGDJkiN91f/31V37++Wd+//136tev73Xto0ePFvNunOTYbXyxdpy7Hp0nw7snsnJ+nFvUaV+1YsQKChVMFagdVZNrKl9Jo+gQKplO4bQfJsd2UoRdKaECp/Od2IqRueCKl1M5lGVn71kbmTb5eQiCIBSHQYMG6TYA6Ny58+XempvWrVuTkpJCdHT05d5KUJSpOnTlCc86dCaTK7ZuwtzeHPntFT8Lnadlbnj3RBasHekl7rT5G9aNd4s2u9NOrj2XM3kZpGSfJTVXxWi6ArMhTNywJcSkQNNKFqqGBu/S1goG/51l558cu1jlBEEoV1zqOnR5eXkcPHiQunXr6oY0DRo0iBMnTrB48WKv8ZCQECpWrHjR96fHoUOHqFu3Ljt37qR58+aXZQ++FPYcPZFoxVJiytBN2J0KK+fHsejD0UwZugmA9WvHAS4hB7Bg7Uiv8zyFXaduM91/pZiNZiItkdSOrEnjyldRO9yI1XYCpyrFGUuKXYW0PCcOFRxO1fuler9sTpeQy7Sp/JFh459sEXOCIAilQUhICLGxsV4vTcwpisI777xDr169qFChAg0aNGDNmjVe5//3v/+lW7duREVFERkZyS233MKBAwcAV9jV5MmTqVWrFiEhITRv3pz169d7nf/LL78QHx9PaGgoN9xwAzt37vQ67utyXbJkCTExMWzYsIHGjRsTERFB586dvcqo2e12xo4dS0xMDJUrV2bSpEkMHDiQnj17uud88sknXHfddYSFhVG5cmU6dOjg7pBVEkTQlRJ/NH6e6jtHs3bNOIbe+zZR7T9i3vJRLFz3MCvnx/kJOV/Xq4ZnP1iADBtk2UOpFl6ZCFMeVkfJf+gCnMxz8PtZq//rjJU9Hq/fz+Sz63Q+v53J50Su1JgTBEG4VLz44ov07duX3bt3c+eddzJgwADOnDkDwLFjx2jbti0hISFs3LiRHTt2MGTIEOx2V4vNWbNm8cYbbzB9+nR2795Np06d6NGjB/v37wfg3LlzdOvWjSZNmrBjxw5eeOEFHn300UL3lJOTw/Tp03n//ffZsmULR44c8Tpv2rRpfPDBByxevJgffviBzMxMVq9e7T6ekpJC//79GTJkCPv27WPTpk3cfffdpRJSVSbKlpRnnn3gO/5pMZn3H9kMtINFs5gydBN1I8fR/a5ZQBxvLX2YCLOBzzaOAbytcoHo1G0mSavH8lemDQWoFxlJ5VALh7PPoapR4nYtIXkOlbxcsXYKgiBcLtatW+fXAeGpp57iqaeeAlxu2f79+wPwyiuv8NZbb/HLL7/QuXNn5syZQ3R0NCtWrHCXHGvYsKF7nenTpzNp0iT69esHuITWt99+y8yZM5kzZw7Lli3D6XSyaNEiQkNDueaaa/jnn38YOdLb+OKLzWZj3rx51KtXD3CVXZs8ebL7+OzZs3nyySfp1asXAG+//Taff/65+3hKSgp2u527776bOnXqAHDdddcV/eHpIIKuhPzVaBIfP7LF/X7K0E3sNNVg5+cP03uES7xt/m6c+3j7tm9xVweFI+vv8SpC7BtPB7D0i1Fc0/JNGkaZibSYqBgSwbHsTJyqA6MiPzpBEASh/NK+fXsSExO9xrTWnwBNmzZ1fx8eHk5UVBQnT54EYNeuXdxyyy269WMzMzM5fvw4bdq08Rpv06YNv/32GwD79u2jadOmXnFprVq1KnTPFSpUcIs5gBo1arj3lJGRwYkTJ2jZsqX7uNFopEWLFjidLv9Os2bNuP3227nuuuvo1KkTHTt25J577imVuEFxuZaQ5U/96PV+p6mG1/veI5Ld8XMA324ZywN93ibivEtWT8hpY21vmcnkofOpHGrEpBiJtERQweTA5syVjFdBEAShXBMeHk79+vW9Xp6CzlesKYriFkZhYWGXdK8aensqyuex0Wjkq6++4osvvqBJkybMnj2buLg4Dh48WOK9iaC7iOglQmjCbfz9c3mo/xwAZi59mMUfjQbg8zXjWDk/jhnvP8y4+13nd+k+i87dZxFuDiPKYsLuOHcpb0MQBEEQyhRNmzblu+++w2az+R2LioqiZs2a/PDDD17jP/zwA02aNAGgcePG7N69m7y8PPfxn376qUR7io6Opnr16mzbts095nA4+PXXX73mKYpCmzZtePHFF9m5cycWi4WkpKQSXRtE0JWYVR+OdNed860/5yvk9AoOr5wfx3ffjWNw37e5qc1M9qZbeWnxQ3z/vctN6xlr1/vud6gUEo6BTOzOfLHSCYIgCOWW/Px8d1F/7eVbUzYQo0ePJjMzk379+rF9+3b279/P+++/T3Ky6zPzscceY9q0aXz44YckJyfzxBNPsGvXLsaNc3223nfffSiKwrBhw9i7dy+ff/65X43b4jBmzBimTp3Kp59+SnJyMuPGjePs2bPuuPeff/6ZV155he3bt3PkyBFWrVrFqVOnaNy4cYmvLYFYJeTuexMxmUKYMnQTnbpB7xH683qPSA7YQUJLkvjph/F0v302aXkOWt88Cxjnd86YB9byyqI7OHzuH1RTTcyGMFAold6kgiAIgnCpWL9+PTVqeIcpxcXF8ccffxR6buXKldm4cSOPPfYYt956K0ajkebNm7vj5saOHUtGRgaPPPIIJ0+epEmTJqxZs4YGDRoAEBERwdq1a3nooYeIj4+nSZMmTJs2jd69e5foniZNmkRqaioPPPAARqOR4cOH06lTJ4xGI+CyHm7ZsoWZM2eSmZlJnTp1eOONN+jSpUuJrgtSWLjYeBYWfnXEVneCg14RYU/0ig4XVIi49c0zCTEofLvlQmLFyvlxvLqoIwfPWTEar8BsDDsv5xTJfhUEQRD8KGuFhf9XcDqdNG7cmL59+/LSSy8V+fyiPEex0JUCemLOFz1x5zvf02Wrzf3x+wtjN988kyiLERjDE0Ph9cWdOZT1D/kOC3bViNlUmRBjBRF1giAIgnAZOHz4MF9++SW33nor+fn5vP322xw8eJD77rvvol9bLHTFRLPQ/XP4L/rct6jQunK+aG5WzToX6Pxh3eYCsHDdw17nzlw6ku++Gw/AbTdPIt2awz/n8sFYgxBjpIg6QRAEwY1Y6C4NR48epV+/fuzZswdVVbn22mt59dVXadu2bbHWk9Zfl5BefV2CK96eohsj51myxHee73y9xImF6x72E2e9RyRzNt9Jgxve4La2Mxn1n9U0rnQVjStGYVaPk2s7g6pKTwNBEARBuJTUrl2bH374gYyMDDIzM/nxxx+LLeaKigi6UmDDuvHsNNXwsritnB9HvD3Fz80K+tY4TyHnK+oWrB3J8O6JXuN7fpnImvfvY+OW8fQekcwH6x+hTlQtmlSqQoTxFDm2UzhF1AmCIAjC/wQi6EoBT8HlGQfnW2QYIKHXasAl6rSXRqD+rto1fMcbN/Ze/66eiVwREUvjitUJN5wm354lpU0EQRAE4X8AEXQl5K4hrka/muDSxF1hCRLaV19r3IZ14xnePdHPVVsQnnO73zWXqhUqUzM8HIfjDKq0kxcEQRCEfz2S5XoR0HOz6h1bsHYkG9bpCzdtnpY8occFMTjSK8nirp7zmDJ0ExHxz5LvyMYiSRKCIAiC8K9GBN1lZsHakV6ZroEsc77CzvO9b8YsaKVUvmPs7PbYHEbMUs5EEARBEP61iMu1DKEn5jzj6jwFW6DYO19rXrVdz+N0HCPfIfF0giAIgvBvRSx0ZYCC4u08LXHaV61I8fDuiXTqNrPAbhM7qUH87hdIbfYceWp1Qk0x0ipMEARBuGykpqaTkZF9ya4XHR1ObGzMJbve5UIEXSmhWdc8Y+T0xgpCE2me54L/uRfctCPdvWN93bGeYu+ZRe2YMnQyp5o/R45NpYK5IqLnBEEQhEtNamo6/e57E6vVfsmuabGYWLFsYpFE3ZYtW3j99dfZsWMHKSkpJCUl0bNnTwBsNhvPPPMMn3/+OX///TfR0dF06NCBV199lZo1axa47pw5c3j99ddJTU2lWbNmzJ49m5YtW5bg7i4gLtdSQLOY+Qo3vbFg0BOFhV1frygxXEic2GmqQdVdk8mzncSh2oq8J0EQBEEoKRkZ2ZdUzAFYrfYiWwSzs7Np1qwZc+bM8TuWk5PDr7/+yrPPPsuvv/7KqlWrSE5OpkePHgWu+eGHHzJx4kSef/55fv31V5o1a0anTp04efJkkfYWCBF0JWRQ5xlBzw2mHEmnbjO9vvri2yps5fw4d8mUgly3w7rNZaepBtl/LsTutEo8nSAIgiAEoEuXLkyZMoVevXr5HYuOjuarr76ib9++xMXFcdNNN/H222+zY8cOjhw5EnDNN998k2HDhjF48GCaNGnCvHnzqFChAu+++26p7FkEXQlZsn5CoVY4TcgFY63zFGWahc9TCOrFy+lZ53wFYefus9zfO+wnsDqyUVXV/RIEQRAEoXhkZGSgKAoxMTG6x61WKzt27KBDhw7uMYPBQIcOHdi6dWup7EEE3SXAU5hBcG5U3/PB1QcWAme4anh2q/BEE36n983lxO/Pk2M9Tp7tNFZHDk7VKcJOEARBEIpIXl4ekyZNon///kRFRenOSUtLw+FwUL16da/x6tWrk5qaWir7EEFXCgQSakXt+OCJnvt0p6mGW5RpFjmtK4Xne09LYEFFib9f+Rjzxq4iTPmHPOsR8uwZOJx2EXaCIAiCEAQ2m42+ffuiqiqJicX7vC8tJMu1hAzqPMMtoPSSIvTee4q8YF2x2hxfgaY37kqSmOk1zzcL9vM1Y7A7R9JjSyJvjNpM7xHJ1Gs2nLPWdEItV2DEJIWIBUEQBCEAmpg7fPgwGzduDGidA6hSpQpGo5ETJ054jZ84cYLY2NhS2Y9Y6C4Dvu2/gkXP2qdZ5rSvmntXS5Lw7Sihseiz0fTo6R2Xd+C3BdSsYCPXehynKpY6QRAEQdBDE3P79+/n66+/pnLlygXOt1gstGjRgm+++cY95nQ6+eabb2jVqlWp7EkEXQlZsn5Csc8dUERRvmDtSAbEep+nlyQB/okSnsJOi7HzFH0ae3bMo1poLrm2k4AIOkEQBOF/j3PnzrFr1y527doFwMGDB9m1axdHjhzBZrNxzz33sH37dj744AMcDgepqamkpqZitVrda9x+++28/fbb7vcTJ05k4cKFvPfee+zbt4+RI0eSnZ3N4MGDS2XP4nItIYM6z2DF5seLde4HxYiD1DtHL07Od8z3vVZ42JMLJVEWUrXJYOzOypiNoUXfpCAIgiCUY7Zv30779u3d7ydOnAjAwIEDeeGFF1izZg0AzZs39zrv22+/pV27dgAcOHCAtLQ097F7772XU6dO8dxzz5Gamkrz5s1Zv369X6JEcRFBV0KWrJ9AaJiZAbEusaV99URvDFyialtST3aaapTafrRMWC2BQk/sXYi7uzCmzR1851t0u2sOvUcsptI1T2IyhEgsnSAIglAqREeHY7GYLnmniOjo8CKd065duwLDjoIJSTp06JDf2OjRoxk9enSR9hIsIuhKCU2waV89RVx4QiLoxMotWDsSzou5eHtKqQg7zzU8Y+h8v2r4umtdYs51vM5vYznRYglGzCLqBEEQhBITGxvDimUTpZfrRUAEXQkZ1HkGUVGRfskNBblTA/V49c14DWTZ86UgMehZp04v1q4g1+xOUw347UmqX/ciBsWM0WACFBQUXP+JyBMEQRCKRmxszP+EwLrUiKArIUvWT2Bs33cKnOOKVbtgGdPLbE3otdpv7INUfbGml+26c+1I3bmercK06+/bl0LjxjW85vha8bRzAE78/jwAlRqPAMwYjDGEmqIBxHInCIIgCGUAyXItBQoqPeKbaQr6BYh9v4+3pzAgFl3Lm159u+HdE9lpqsHw7onE21Pc15oydBMb1o13x9YB7N3Szut8TxGn11ZM48y++dSLAoPzKLm2swHvWRAEQRCES4sIuhIyqPMMrzIivsLI16Wp5/YEfVEYnuBviYu3p3gJwG1JPVk5P86ruPFOUw33dRN6rXaPafjWpYu3pwR0vfq6ap8Y8hUn976H05GG3WmVWnWCIAiCUAa4rIJu6tSpJCQkEBkZSbVq1ejZsyfJyd7C4sCBA/Tq1YuqVasSFRVF3759/Sot+3LVVVehKIrfa9SoUe45eXl5jBo1isqVKxMREUHv3r0LXVePJesneMW5eQqhQG2/PMuFBGobttNUIyjXbEKv1ax6Xr+9l2aV01qQeVrpNFbOj3OLPc+9x9/wIP06TvMa9/z+7B8LyLOdwKleukwlQRAEQRD0uawxdJs3b2bUqFEkJCRgt9t56qmn6NixI3v37iU8PJzs7Gw6duxIs2bN2LhxIwDPPvss3bt356effsJg0Nej27Ztw+FwuN/v2bOHO+64gz59+rjHJkyYwGeffcbHH39MdHQ0o0eP5u677+aHH34o0T15JjZ06jaT3iPOCySf+DbtfbbVlenzwYZHvdYZ0Gm611i8PYUmtS7M9zxnQKfpkOr63isObgQ0tp5j2YbHXCecv76v9VA7p3+n1wHX3J3b32FngHtcOT+ORcv7MrT/RwybdScVLDVQMBQYT+ey5Kmoqnp+niLxd4IgCIJQSihqGfKZnTp1imrVqrF582batm3Ll19+SZcuXTh79qy7R1pGRgYVK1bkyy+/pEOHDkGtO378eNatW8f+/ftRFIWMjAyqVq3KsmXLuOeeewD4448/aNy4MVu3buWmm24qdM3MzEyio6OZMr87oWHmgPMK6tV6S+tx5NhyQYEdvyzwO94iYTgAO7YtcH+vsWPbAq952vtAtecCoTdfG7u346t8+OUT7vsAl0hdv3YcDtXBu5+NAaByk0cJNVfFoBj9RJr262V3Wsm0phGi5KEoIZiMMViM4SLqBEEQLgE557IY1KopGRkZBfYcLS3y8vI4ePAgdevWJTRUCtQXl6I8xzIVQ5eRkQFApUqVAMjPz0dRFEJCQtxzQkNDMRgMfP/990GtabVaWbp0KUOGDHGLhx07dmCz2bwEYaNGjbjyyivZunWr7jr5+flkZmZ6vYKhoISJc+etbeGmCrrHd2xb4BZqO7YtIMISfv4V4TdPQ7POFdQOzPNY7xHJtGvzCO3aPOJnufvwyyfc7lrQLI7JKIqCUTEy6M5ZrJwfx+m906m24wHy7OnYHPluEaeqKipOzlnTSTl3EKstk/pRFagX6cCg/kOO7QxO1SFxeP9SVFXF5sjH6sjF4ZSfsyAIwsWkzJQtcTqdjB8/njZt2nDttdcCcNNNNxEeHs6kSZN45ZVXUFWVJ554AofDQUqKfzyYHqtXryY9PZ1Bgwa5x1JTU7FYLMTExHjNrV69Oqmp+oXfpk6dyosvvlisewvEzu3vcEvr8VwVXYctAeYM6TobgHc/G8PmH2YwpOtst2VMY+X8OKYM3eTuDuF7TC8GzlO8bfrhjfPfXzjvwW5z6NL9LYZ3v5BFq523cr5L2A3rNvfCGHHAx+71q1/3Ik4gPfckefYcKpijqBdTlUaVonGqViLMJziclUaGNQMMMViMkRgV169jebbauUSsilN14FTtOJ35ONU8wInLzWzBZAjHaLCcn+90zVPtKIrR3ZlDr8afryBScbmxz7/xqA144dyL/Sz99+TE6bRjV/NwOM4RYjiHWYF8hxGHagLFjEGJwGQMw6CYUFBQcbpd8qBgUAyIS14Q/r2kpqZLYeGLQJlxuY4cOZIvvviC77//nlq1arnHv/zyS0aOHMnBgwcxGAz079+fvXv30rJlSxIT9ZMOPOnUqRMWi4W1a9e6x5YtW8bgwYPJz8/3mtuyZUvat2/PtGnT/NbJz8/3mp+ZmUnt2rULdbkWxIBYOHr1eLb8ODPgnIJcttoaH6R6Czc9N2qgYsaex7VkjQ3rxvv1efUkUOau7/XN9YbgwEJ0SGXCLVHERYdydaTrWdmddjKsmaTlniU1J4sMqwE7ERgNFTAoFoyKCYNiRBMnZf3DXVVVVNWJ1XEOpzMdiyEfs6ISbjYQYbZgVFzG8CxbHun5TvKcFleJZsWBxWAn1AB5Dic5zoqEW6p73a/2T9Sh2rDaM0C1Ag4UHCiK6npCqooTBRUjKiYUxYLBEIJRsaAoBleMI4CioJw3zBfnmWpWV7szH1V1nLew5gN2VFXFoFixKDYizAoVQ0KpFBpFqCmEPHs++Q4rObZ8zuTnkm5VsauhKIoRVBtGxY5BAYdTwYkZxRCB2RiJUZEuJYJQGpQVl2tqajr97nvzkrf+WrFsYpFE3ZYtW3j99dfZsWMHKSkpJCUl0bNnT/fxF154gRUrVnD06FEsFgstWrTg5Zdf5sYbbyxw3Tlz5vD666+TmppKs2bNmD17Ni1btgw4vygu1zJhoRs9ejTr1q1jy5YtXmIOoGPHju4GtyaTiZiYGGJjY7n66qsLXffw4cN8/fXXrFq1yms8NjYWq9VKenq6l5XuxIkTxMbGokdISIiX6zcQhQkwT/ZcMZTffpxJvD3FXV4kEIFi43w7SRRUFkVzny44X4RYu+bK+XEM7+6a13tEMgvWjvTr8+pLYfcZb0/hdER1rGo4ZkMoYSYDD98312vO+rXjiLZEERueQ3peJmfyssiynSPX7sTqUMhXw0AJxWgIxWQI043RKwu4hFwODscposxWakSGUzE0llCjBcv5l8sSpWJ12MiynuOcLRsFA2aDkVBTCGaDidTsU/z3bDo2ZzRGxXzecuVEBeyObAzqGaqGQowlFJPBhMUYikExuKSaouB0OrGpdqwOO3n2c2Tbz5JjV3E4we40gQJODKhKFEYlFKNixmgoXDC5Xeg4sTlycThOU8GYS6jRiMkAYSYzFoMRg6JQwRRJBXMYYaYwQk0hmAwm972rgMNpJ8+eT6Y1i0xrNqqqEmoKJ8RoQQHsqpNcWx6ncs9wKv8MJtMVWIz6IQmCIJQ/MjKyL6mYA7Ba7WRkZBdJ0GVnZ9OsWTOGDBnC3Xff7Xe8YcOGvP3221x99dXk5uYyY8YMOnbsyF9//UXVqlV11/zwww+ZOHEi8+bN48Ybb2TmzJl06tSJ5ORkqlWrVtzbc3NZLXSqqjJmzBiSkpLYtGkTDRo0KPScjRs30qFDB/bt20dcnL540XjhhReYP38+R48exWS6oF21pIjly5fTu3dvAJKTk2nUqFGxkyI0S5kmdIZ3TyR7m0vweIqu4d0T2ZbU053xemvrCWz+cUbA6xRFIBa0Bnhb57R1NXetxg09k8hzqNhVV4BlqEnB7oTda3oB+oWOAa+SKFU6fExKjp1suxMFhQizgSsjTAzu+3bAPWqxf5+sehCbw0qOPZ9M6znOWfPJstnItBtxEomCEafqwGyMxGIM5XK65lRVxe7Mx2pPI9x4jloR4cSGVyHKEonZ4LJEBkoScapO9zFN8JzJO8vf6cc5lWfDqRowGlSMKDhRiTAZqBEeRdUKlQkznRdyin8IrKqqOHHidDqxOq3k2/Nxqiq59jwURSHPnk9aXjY5did5DpV8ZzhmUyXMhjAURXFb4BxOKw7VjsORDdgBBwYcRJhsVA0LpUZ4ZSqYwzBgwGQwufaigFExut3FgX4umlvaoToBFaNi9HoOTtXJ6dwz7E47SpYzlgrmiqXw0xKE/23KioUuOfkYg4fOuejX92XxolHExV1RrHMVRfGz0PmiaYKvv/6a22+/XXfOjTfeSEJCAm+/7fosdDqd1K5dmzFjxvDEE0/onlNuLHSjRo1i2bJlfPrpp0RGRrrj16KjowkLCwNg8eLFNG7cmKpVq7J161bGjRvHhAkTvMTc7bffTq9evRg9erR7zOl0snjxYgYOHOgl5rT1hw4dysSJE6lUqRJRUVGMGTOGVq1aBSXmfPF0V8KFeDOtMPCAbSO9RN0NPZOom3uGsP8+wz+FiJEFAVp6gUtEPbOoXaEuUD1BqJVU0cRc9Ts+xqHCwXN20vIc5NpVjApUCzNyzqai3ryC2DAj8V+5Sr/sNNXwEnFRt31Els1Jrl1lf6YNpwpmg8KBHY8A8HwAy6Hvnu+5+0IbtXVrRuFwOsix5XImL4Oz+dnkO+wowFnrWbKtYSiYURQDKCGEGCMwXII4PE305NnOYlHOUCfcxBURNakUWhGL0VLg9bVxTcRcWBQqhVYkpLKFq+x5OJwOjAYjRsWIiorFYKGCOeyC+Al0fwoYMaIqKhajhQhzxPnlLwjJMT1c/zPxbPdWuckEDIZwVNWBomYRZrTy9ujNTHmnA888+DUA85b2ItISQYQl3G119L2vYNBiBPUEKZzfPyp2JxgVS9DrCoIgXA6sVisLFiwgOjqaZs2aBZyzY8cOnnzySfeYwWCgQ4cOAZMxi8plFXRaDFy7du28xhcvXuxOYkhOTubJJ5/kzJkzXHXVVTz99NNMmDDBa77mkvXk66+/5siRIwwZMkT32jNmzMBgMNC7d2/y8/Pp1KkTc+fO1Z1bGL4uym1JPb0KAIcnJIJHJwctmeD3Kwaz+4c3C11fE0++om6nqQYb1o13rwvnLWUjArfw0kTelKGbaHZnEmn5Do5nO/gj3YZT59rnsi6YxjOtTurc9iEqCgl2FbvTJROy7Sqns7xN6Aq4xZxvVq025tuFwvf44s/Geu37gS4zcagOVNVJljWbTOs5bE4Hdqed9PxMzljPoCqRmI2RmA2hpS7qNMuSzZGL3XGKKiFW6kRWOm81CzsfE1e8a2rnRZgj3CIs0JyC2JbU0/19IGsqeHczcX39XHfmzm1z0PoQf/Xdq+7xQEWzS4wK52zZnMw5Q47DRKhFBJ0gCGWTdevW0a9fP3JycqhRowZfffUVVapU0Z2blpaGw+GgevXqXuPVq1fnjz/+KJX9lJmkiPKGZl5NuHEi9446pDvH80NPz0rWtMVgdu9YHNT1CnO9erp64UI3Cj3RNGXoJpr2SOJMvkvI5TuD/xVQcOdVFohJgasizWzcPBbwFnCBhJxvYkcgtDlDu76NE1cyQo4th5M5Z0jLyyI1VwWlCmZjBUwGCyV1y2oWOVec3FnCDDnUDA+jVmQ1YkKiXW7Gi+z2DcbtrsVFBnOeXhJNIHFdGKUp7pyqk2PnjrPr1D9YuYIK5oouC6wgCCVCXK6l73LNzs4mJSWFtLQ0Fi5cyMaNG/n555914+GOHz/OFVdcwY8//kirVq3c448//jibN2/m559/1r12uXG5/hu4a8h+4EKWq2/ygqfI0uLstHmMCE7Maevo4Rkf51lSRLOqeKK5V5t0X0VyhpVTeQ5sema5AihMzGmyxq7C4XM2t2XRV8z5CjjwFp+BxJ/n+KLPRrNyfhwb1o2n+10uq+eKTwYRk32KU7mnybKeItseQai5KkaKly2pqipO1U6eLZVIUzbVIsOoXuEKokNc2Zslscpp+P5sC8tIDsROUw0SgjgvUCkb3++DxTc2syQoKISbwrkiPJJ/sk+TZzcSaoouk8kwgiD8bxMeHk79+vWpX78+N910Ew0aNGDRokVeblWNKlWqYDQa/VqMFpSMWVRE0JWQQZ1nsGLz48CFD0pNxCzwcLOCf0ZqoNi44uD6IB3p3ofnfjQh17THKk7mOvjttJUsmzMoS1tRMICX29bmhPxWy2HbRB/3nr4FTnMXe+IrPvSsSJ4lVvrds8Tr+PML2nM85x8s5hqYDaEetdoKxyXmHOTZTlA9NJd60TWpGBrjjh8rTGQUN5lFO684CTHBzPd9np49fEtKaYi7mNBo4kwWKphTOJBxgny7isUUHTDmThAEoSzgdDr9yqFpaKVNvvnmG7elz+l08s0333jF/5cE+T9kCVmy/kI8n/aB6Ov20kMrBFxcArkkAwmgq7usZPcZK/vSbWSWspjTStnqGftyHSq33/qW7nmlISACuQm1ry8O/5aF478mdfcz5NpO4nTaC+xY4Konp+Jw2sl3nCPPdoTqoTk0iKlBtQpVCTGFYFAMdO4+iwVrR9Kp20w6dZvp/l4jkLDyTCQJhgGl84dbQErjZxCIBWtHFlmQKoorWaKCqQJXRdXimkqVqWBIJdd2RjpNCIJwyTh37hy7du1i165dABw8eJBdu3Zx5MgRsrOzeeqpp/jpp584fPgwO3bsYMiQIRw7dsyrZ/ztt9/uzmgFmDhxIgsXLuS9995j3759jBw5kuzsbAYPHlwqexYLXSkwINaV+JB9Pps1mA+x4og5T4uNZwbrBVETp+u2vL5nEsnpNk7nF9G/GgQG8OxX4IdDhbQ8B6tXj6VnT29h5xczN8I/nkvPmuTZvixYQeI69zUqNxlLiLmGlwv2QikRBzZnLg5HFkYll8Sx3wRcL1DMmfbzCVQ3sCg/d7e7Pog4uEtJsPGcGp7PREviKQxFUQgxhlC9QlXO5p8jIzMbqARBWlcFQRBKwvbt22nfvr37/cSJEwEYOHAg8+bN448//uC9994jLS2NypUrk5CQwHfffcc111zjPsc3YfPee+/l1KlTPPfcc6SmptK8eXPWr1/vlyhRXMRCVwpo5Um0rxcb356sBX2oTxm6iWybSpa9dMWcp1WuMLtJhtXJ/kwbK1a6WpYF86Hee0Syl2jydSNrczyPeZ6rh6vv7Fvk2Y7jVB3ucbsznxzrMez2QySOXs73Kx/1EnNfrB0bcH3PfRaUyFFcgklqKC5FsRbG21P8Yvu0833X8cy09UQTvEWx3DlUB1aHHRQzIuYEofwTHR2OxXJpbUkWi4no6PAindOuXTu3x8bztWTJEkJDQ1m1ahXHjh0jPz+f48eP8+mnn5KQkOC1xqFDh3jhhRe8xkaPHs3hw4fJz8/n559/LrSzRFGQLNdi4llYeGxfV+00vQ+p4hYG1qwZvi249D7E9ZIM4u0pXNN9Fak5Dk7mOciwlp6bVftYLcp6ChBhVvjvLxMDipFA5U083weiIIHj+yx7j0imUpPHCbdUw6HayLce5fS+uUELMj3rnN7xkmSOBkNRRZ1nzGZR4zcL62ZS0gLYevF2DtVByrkT/JaWgsNQx138WBCEolNWslxBerkWhaJkuYqgKyaaoPszqTtrsorXy7Ug9ATDlKGbeGZRO68xvXIfvUckM7TbXA5n2fkry1Xkt6REmhUsP/bH0WZFscVhBZPCyw/OL1B4gX6v2KIIF1+XM/j3p50ydBP/NE/E5jhH+r43/c71Pb8wijrXkwGxsPefFL96g4FEUjDPw1ew6Qk437GiiLLSTOjxRBN2qqqSY8vhj7MH+TvLSHhIbUmKEIQSUJYEnRA8RXmO8n/IEvLRyYKPB5Pp5ykEhndP9BIkvUck88XacXy4agxVOnzMqtVjmTJ0k58Fy1dMnLM5OZ5jLxUxd2TnI1h+7E9c15WYDUWzzHmiqrD04zHu9573WhCercmCJVDm5vq14/hk1YPsNNXg1J7JhBsz/M4LVjx6XiPQfQSyRHrO/yD1Qmydp5jz/Op5bjAEI7Z852hiLphEjMLWj7enFCuhQ3PHdu4+izN5ZzmZk4/FVFnEnCAIQiGIha6Y+PZyLQ183XRThm6iVqdPOJvv5Ey+gzyHyhXhJiJMBjTPk0mBiiFGjArs/LQXO001uKvD2xzItJJlU0vsZrUYIPLn+7i2+yoOZtn5p4QiMdKsMHnofPf7QAkQBaG5UD2tSb4Wo8IKGWtZxvv2pfDKxOW8/8VELwtVSeLh9GrswYUWcZq1sKD7LczFWRjBWtD05unVAizNvQXCs7+wds3KTR4hzFIdg2+rNEEQioRY6MonUli4HBGoRRcAN6/gv2et2D0E1JFzdq/QcJMBoswGjIqCpe2H9AgzkmVzkmkruU43K1A/ykxI55XsS7eRlufQLU1SFM757Ks4wklLqvAUYL6ixFfE+bpctfl7t7Tj/cauuL54e0+GBylUihMfp13fNy7yYhCsO1RPzBXkEu89IpmdphrsLKKYK8xN7CnmNOLtKZw0V0MRR4IgCEKhyP8pS4GC3KrDuycGPF6QmJkydBOn851eYg5c7k6nx8vqhLR8JyfyHKTkOvhvupVDWbai3oI+ikuA7c+wcrIUxFxJ2bcvpUiZmb1HJLvFn2YZ014r58cxvHsiG9aNZ3j3RL8yMMFYC9evHedXViVQuRWNYMt2+FLU+nXFXVsrjB3s9YIR5MHM6dRtptezi7encLLFexguQVs1QRCEfwNioSshgzrPKNCi43tM78Pti7Vj6dL9LS8RkJ+wHD81FwRFbeVVEA4nHMm2l96CgFnnTwi9JAhfl6ovgZIFfNfznecp7Dzdn+Cqgze8eyL79vUEXO3K9u1LoXHjGl7rg0sEbV/di/a3fUSbmyHcpHDq6z66iQcriQuYtax3D71HJLuLU3taxS4WvskYetcK9DPR6wcbqOVcQvfV7rFtST3d1/FNRIm3p5B6/buYFJOIOUEQhCARC10J8ewUAUVrd/T8/JuY/8HddOn+lttqFG9PoWXrmWQXQ8yVJoE6P5QUo6LoCjhf9ARb48Y1vFqq+a5RWEKDnsvTU+CtnB9Hp24zua+BJuxS3N/DBfEyZegmzG0/JPPGZRzIsnM0286fGTZsrVfQ/fbZ7p/jyvlxLNuP37U81yqMgtqelSZ6yRielkvPosmB9qn9DLRzB8S6EiwSeq32657iKVi183uPSGZALByPX4DJECJiThAEoQiIha6UKchypIfWV9QdJH/TClJzHQHn/xsoTJjoWYIKC/KfMnSTlwUIPDotACvnz/Q7pnXW8BRagKs0zKKZbFi32l0kd1i3RFRU4u29cLbx/xk5gUybk+QMGwtXjGJYP9f4jMdX02nLTPd9aT9nPUuWdwKH/+9RSWrYFZbooKHX4cETvcQFz/VdbueZXpa7Dev8r6PlYmn7iben8E+z1/nWVBWLYhYxJwiCUEQky7WYBJPlWphweX7+TdSKvIL1m1/xymw9nbCstLcbNAag4rb7LtoewowKydsn6hb79SRQTTS9cS3r0pdAbj1PPIWcp7DThJdmpdPIvWk5OY6C/8mEmxRaVAkhzGigc/eZXseKUiD5Yrb2KiyzOJiadMHWrfP8+aiooILNaWPJ5+PcsXrHms/FYoqS8iSCcJEoS1muUlg4eCTL9RLj2xIJChdz7yzvwz+Z/3jN7T0iGUo3ZK1IaCVK0lsuK36xuSBZv3ZcQDEH+taheHtKkUplJPRaTUKAtfTwjKsDzbqUiFNV2bG6F+ktl+EoRMwBRJoNhBgVPzGnrVmQSPNtK3axCCbjtDCCfa47TTVIwGWVU3EVDE7NPkm8PYWU5tMxGCsToljEKicI/wOkpqbT7743sVov3YedxWJixbKJRRJ1W7Zs4fXXX2fHjh2kpKSQlJREz549dec+9NBDzJ8/nxkzZjB+/PgC150zZw6vv/46qampNGvWjNmzZ9OyZcvgb6YA5M/hUsCzN2WwPT0f7P/x+e8Ur16hzyxqhwIYFAg1XroPOKPiEnMZLZcRhGYpNg5VZeX8OC+9GOwz8+2SESyeMXC+BYcXrB1Jp24z3S/fxIVO3WbSpfssdppqBFV/TwEmDUzkzu6z3LF5nlxMkVYUCspiLUioBRsj6tlvWItNXLjuYd5ZN4p9n93PH+mZHGv+NiZTrMTLCcL/EBkZ2ZdUzAFYrfYiWwSzs7Np1qwZc+bMKXBeUlISP/30EzVr1ix0zQ8//JCJEyfy/PPP8+uvv9KsWTM6derEyZOFdCgIEhF0pYheL9JAvLP8HuBCX1TPumYmA4QY4M/tE4kwXZoPukizAWvr5cVJrC0SyvmkiC7dZ7nHfLte6OEZoK8F3WviIpgMUE+rm6+o04SeFk/nOd/z53h45yNU3nZfgf9oKoZ4H/WNzysr7DTVKFaSRWExor5JDhqePYaPNn0VjHUIMVUUF6sgCGWSLl26MGXKFHr16hVwzrFjxxgzZgwffPABZnPhDQbefPNNhg0bxuDBg2nSpAnz5s2jQoUKvPvuu6WyZ/m/aQn59N0Guh+MhbnWtMhFg2KgS/e3vARLRYsRqxPa3DyLvdsmEmMxcDGNdSYFjD/0K5U2YYVROSTwr5yn8PEtEaKxb1+K2yJa1E4F+/alBGUh04SdlrHpS9UwIybF9Y/HqECIUSHarDDjoQU8O3ieV/07wMu1XJhoLSlFEWmBhGZR96EX86dZ5nqPSGbK0E3E21Oo1uQh/mk+h1BLLYziYhUEoRzjdDr5z3/+w2OPPcY111xT6Hyr1cqOHTvo0KGDe8xgMNChQwe2bt1aKnsSQVdKFFZQ1l9IqLwwYiuKorB+3Tiv+du3jqdSiJGUHDu33foWu3+ewMFfH+HITtfLUIqfg0YFon+5D4C8i+lrPU/OeROgnivSU6B5Pi/PUiVaTThfghF3gc713Yfn1wVrR/rtpXGMhb9/fYQ3HlrA9BELeHXYfF7waGcG+Fn6wDcT1N/NHKxA9e3fWxTLMLgEckE9You6D89r+95XvD2FI01f4Z/mczCZ6xBqisGgGETMCYJQrpk2bRomk4mxY8cWPhlIS0vD4XBQvXp1r/Hq1auTmppaKnsSQVdCkj562Ot9IAuJ7/iw+1YCsO7byYC/FWfH1vGEGBUOn7PR9bbZXuce+rVkwk7BVeA30qwwfcQC9/gl0HPYnKo7pkpDz2Wnh2apCxT/pZUYKQ779qW4X4URalTcFlW92ndaBi8U3uZLT5QVhqelz9cqVhSyt3kL6ALb0Pmgt29fYbnq+WRS4mcTZqlNqCkGk0GscoIglH927NjBrFmzWLJkSZn6f5pkuZYCwXQA8ET7AG7aYjDPD4eV8y/Ekw3vnsiwbgAqC9c9zNXXv0FKrl23DtuhXx8B4JqWb2J1gF1VUXEJNpPiildznPfthhgUQowKYSYDP34/zmMvgB2yb1p+0RWdSQHLed+xb625YAoDF9TJQBvf6VF7zpPCrE7BWO8KwjNGTLMo6rX88vw98XwGRU2W0JsfzBor57s6YiQAd78Y5y7mG56QyPDuLlF8oQRMwYWEtfV8rdPx9hSwwzdV52M2RgCUqf/pCYIglITvvvuOkydPcuWVV7rHHA4HjzzyCDNnzuTQoUN+51SpUgWj0ciJEye8xk+cOEFsbGyp7EsEXSlQnGbrK+fHsZIfA661/nzngt4jHqHhDW+SUKsGOwNYZf/7y8QiX9+Xi/1xa1KgYbSZ9d+OpfcI7T4vdBYoSDwUhJ7QXeAj6oJxIXq2+PL83pfC4ss89+Jp9fK1wH62Ztz5OL1Ct+aFd/HhoglBT2uey5XsGg9PuHBPCb1We2VsByp+rH2v4SnmjjefgdlYCbO07hIE4V/If/7zH69YOIBOnTrxn//8h8GDB+ueY7FYaNGiBd988427/InT6eSbb75h9OjRpbIvEXQlpFffuZhMIUU6x/eDclj3uXTuNstrTPGY+1gLlfQmsyF1TGlsWReTAbiIDSqqhBoZ1m8O4BIBvlZNrfZZYULM99lpAspX2GnnBhPgrwk4zd1aUmud57pN2l4oTBzW7kOybCrXtFT57YyVBStGM7zf2wFFma94CzQHilaw2Lfbg+9zd7u0R/ifH6h3a7w9hVPxU0ihGhZjuAg5QRDKNefOneOvv/5yvz948CC7du2iUqVKXHnllVSuXNlrvtlsJjY2lri4C/+/vv322+nVq5dbsE2cOJGBAwdyww030LJlS2bOnEl2dnZAEVhURNBdJjw/pId11zs2kg3rEunUbSYGlItd5/d8CzLvqxgVBcWhoigKTgNu923R174gUDUh5ynmfMVXYT1DIbCw0ygsy1gTLU17JMGd8N7nD3NfA2jRM4l31j0c0EpXlMzaxo1dTe+zb1qO1aFyOvuCYs6yOTib72DW0ocZd//cgC5UXyuYZ/ZocTtJ6LXucreeAzj/LD0LDPteZ8rQTVzbeTkw8XzbrjexGCphlrZdgiD8C9i+fTvt27d3v5840eUJGzhwIEuWLAlqjQMHDpCWluZ+f++993Lq1Cmee+45UlNTad68OevXr/dLlCgu0vqrmGitvxJunBi0ha6osXYaT78zgqsjzXy+8eJY6OLtKeS1Wk62TxE6owNys6xUignD7nRiczoxGA047U5CLSbsDicmo4LdoWKzO0EBk9mA066iABaLkfx8O04gOtzIc0Pmudf27MrgKTD0LHTFdS+CS3jE35WECpyzOTlrdZJjV8m1O3GoF4SmxagQbnLJ2iiLAYtBYfKs3sW21mnWvm4DlmEr4F+YSYEG0WaG95uje3+e9x5vT6Hy7R+TaXOS51CxOVV32GOkWaFGBROD+wa2+BWEb/s0zWoXqPuJp4v1n+azCTFVREERMScIZZSy0vqrvHSKKCsUpfWXCLpiUhxB50th7jRN9Dy36CGuijDx2UUUdDk3LSfXIylCAew5Ds5l5VMpMoQzWflEhpmxO1UMBpfwsTqcRIVbyMm1kW9zEB5qRlVd/TqtVgdmowFVUbDaHVxZIxx+uJdl+10N6z3xrPmmZz3yJFBclydewflAtTs+Ji3PQbZNJdehBrR2ajZKgwIVTApNK4bw/My7geK5YRsnvOknkvUINSr8uf1CHKSeO1O5eQXpVpcIDbSiSYFa4SYvi19RxLCWHAHeVlPfBA9trQGx8E3V5zEbI0XICUIZp6wIOpBerkVBerleQu4asp/P/u/aoK1vviUnCuLCeiohF7kNmG9RYYOiYDIoVKsWjt3uJCzERJWKFUg9nY1TVQkPMRNiBBSFqIgQ8m0OTEYDDoeTvHw7BqMBi8VIaKiJrFwbOQ6VqLYf8lgnI2fzHfTr7SrF4tnBYeV8V5JAQc3pC3I1eo7F21No0n0Vx7MdHD1n51wQwkqb4VQh26by33QrD4/4iG+3jCvwPD3i7SmkB5k1nOdQaXvLLLZ8N87vd+PmW2aRkmPHlu8sdB27Cv9kF/+v3g9SYTjebmU9MRdvTyGl2UtsNNbEbAgVMScIQpGIjY0ptwKrLCMWumLiaaG7d9QhoOh1wApDE4nPvjOCvduKnsnqmWhQUOyXFueV52OhMxsMOFQVVVVRnGA0KjjPW+gMioID9Xx8nOIul6KqKk6nitFgQFFcIsmpqtjO/5qZDa7ihyFGA3t+mQB4W5EKKpKr1XfzdcV6zo23p9Ck2ypSch2cyXeQnu+kcCkUGKMC1UKN/Pzj+CKdF29P4UzCsqBjH2uFm7zKyWhrnE1YVuT9VzAq/LG95JnPesTbUzjW7BVMphrS7UEQyhFlyUInBE9RnqMUFi4hK5Y/FHRzeQ09q5Pn99rL6RZBSpHF4sr5cV4irrBsz/Cf+nu9VwGr04lDVXECDgNYVRXF4BJveU4nNqcrjovzsWj5TidWVcWuQL7qJM/pJN/pdIs5AJsT8p2ueLbb2s5i4J1z+WKtd6eMQHh2k/As3gsuodHrjreJuu0j9py18nemjTMlFHPgKs13Ms9Bp/ZvFfncovylpKoqD3aby/DuiaycH0e8PYWMlkUXcwC5DtW935L8kaH3e/1Ps9cwm64QMScIglDGEEFXQvalW1n1vL/7b8O68QF7ZQZbkb9L91k8+84IqoUZi7yvogTGaxmihX08GxUFa44dHComQLE6CXEq5GVZUWxOIhQj5DkwBaFknMDBc3Z+PZ1PcoatwJg5vfea9XLK0E18tmYc9e9cyYFMGwez7Jy1llzIeeJQISWn6DVdgpU7Crhd6lo8obX1coLwEuuiAml5riewfm1w7mK9jg++Luwq10wixFwDg9SXEwRBKHOIy7WYaC7XJVt3U7NSNM8Pmcf6tePo3H2W7vziZLi+9n8jUYCffhgfMG6sIIpSXDfensK5G5eT7xtM54FJUcg+m09MpVCyMvIxGRTy8x1k5VipGBmK3eHE4VSJignFXsToTIsBGsdYGNT37QLneQq563smkWVzcjLXQWqugzy7WqpCzpNQo0KTGAurvy5aAcgr498Iam0tKSLenkJ+q+VBxfwVhPF8IedA2bN6DO+e6PU76pXJ2mw2IeaKGBT5G1AQyiPici2fiMv1EpNudfLykpEsXPew233oaZ0rTmuw6f/3MCZF4bEHEt1jwTK8e6Kfi1VvzJOdphpE/Nw/4HEARQWrzYFqdWJAwW53EhpiIiYqFLPZiGJQiI4MwRxS9F8rqxOOZttZ/NFo1nwa2KqkibkGXVfxZ4aN305bOZhlJ+ciijmAfIdKWl7RrXRHdj6CuYDHoYm5oV3nurONSyrmwGVV1Kx0xUH7fat17TCONZ9LqLmSiDlBEIQyjFjoiomnha5CRCQAUWYDLw6dV8iZBbPq+WT+qDuTGIuBbzaPLfL5BYm2whIk9JIjPDEqCorTVWhYUUBVwWi4UPRYPZ9A4VSK3xbWbIBoi4EQg8KjD3jfi5ZhWe/Olew9ayXbHrgESWmjAPWjzLw9r0+JOknE3zQDRYFft07wGh/adS57060cK4ZrNxAVLQZ++3lCofMCWX/j7Skca55IiMn117y4WQWh/CIWuvKJWOguMUd2PsKMhxaQZXPy5vsPF3udlxcP4+96M9mxdTwP3zenWGsUpZOBLztNNQj/qT+RZoNu/JfjfMKDDRWrqmJDdSc+aAkRNoov5sCVNJGW5yQlx8GcZaOAC4ki8fYUrum+ipQcxyUVcwAWg0K4WSlxW7CdP03wE3MAiz57mLzN95ZobV9sHu7zQHGanmVStNeAWKjSZCTHms8jxBR1XsCLmBMEQSjLXFYL3dSpU1m1ahV//PEHYWFhtG7dmmnTpnn1Qjtw4ACPPvoo33//Pfn5+XTu3JnZs2cX2irj2LFjTJo0iS+++IKcnBzq16/P4sWLueGGGwBXn7YnnniC1atXc/r0aerWrcvYsWN56KGHgtq7noUOXNalF853RNDKcPiW2vB1wa56PpnVUUP5v0e+1y02XJzK/76WuqIKvRtazeRkMVyMpYnZADUrmIgyG0jLc5Blc7kQcx1qiURjUTHg6uZQO9zEu58VX7AXRHFLlBSExQB/7XjE/d7XErdyfhyfrRnNu5+Nce/hn6ZTwFAJizECg2IUIScI/xLKkoXu1KlssrLyLvoeNCIjQ6laNfySXa80KTedIjp37ky/fv1ISEjAbrfz1FNPsWfPHvbu3Ut4eDjZ2dk0bdqUZs2a8eKLLwLw7LPPcvz4cX766ScMBn0D49mzZ4mPj6d9+/aMHDmSqlWrsn//furVq0e9evUAGD58OBs3buSdd97hqquu4ssvv+Thhx9m1apV9OjRo9C9a4JuyvzuNGx9oaRFsG5X7YP1pjbT2Xf6AO9O2BiwA4KnIAwW34SIoiRIeNLwhjcDumAvBVofWJWilQEpTQwKNImxUCPMiEGBhetKV9RpJUpKIXTOCwW4OtLEt1vG+dXs82yNBnC06csYDJUxGyuIkBOEfyFlRdCdOpXNmHGfYrNdzKhnb8xmA7Nn3VUkUbdlyxZef/11duzYQUpKCklJSfTs2dN9fNCgQbz33nte53Tq1In169cXuO6cOXN4/fXXSU1NpVmzZsyePZuWLVsGnF9uOkX43viSJUuoVq0aO3bsoG3btvzwww8cOnSInTt3un8B33vvPSpWrMjGjRvp0KGD7rrTpk2jdu3aLF682D1Wt25drzk//vgjAwcOpF27doBL4M2fP59ffvklKEGnUavpy17vs+1OEpeP4ooKJt77/MIHv+cHauLyUaTnu/px2p0qjWIiC+yAUJgAK0i8+R4vKn9un+jOvLSrXHJxdzmFnIZJUfgn287ZfAfRltKNUoi3pxDZ/iNOnyv9voYqgX9e7t8zOxxtNoMQU2URcoIgXHSysvIuqZgDsNmcZGXlFUnQZWdn06xZM4YMGcLdd9+tO6dz585eOiMkpOA2oB9++CETJ05k3rx53HjjjcycOZNOnTqRnJxMtWrVgt5bIMpUDF1GRgYAlSpVAiA/Px9FUbweUmhoKAaDge+//z7gOmvWrOGGG26gT58+VKtWjfj4eBYuXOg1p3Xr1qxZs4Zjx46hqirffvstf/75Jx07dtRdMz8/n8zMTK+XHq2PP8LBLBs70vJoduMMrr9pBje0msmUxQ/x9DsjeHLhCE7kOqhgUmgYbebJQfP5+afXgIILDhdGUaxuRRV4O0012LttIlOHzafytvuCrq/2b+GvHRPZ/fMEtv4wngOZdm67tehFhjXi7Slez79O509Iyb14rm2DcqEo9Rdrx/Lp6gutvGpcM5LU6xcQZq6G0SC15QRBEDS6dOnClClT6NWrV8A5ISEhxMbGul8VK1YscM0333yTYcOGMXjwYJo0acK8efOoUKEC7777bqnsucwIOqfTyfjx42nTpg3XXnstADfddBPh4eFMmjSJnJwcsrOzefTRR3E4HKSkpARc6++//yYxMZEGDRqwYcMGRo4cydixY73Mo7Nnz6ZJkybUqlULi8VC586dmTNnDm3bttVdc+rUqURHR7tftWvX1p33XY03sDkh06by288TeHrwPE7lOciyqVS0GGkSYyG+soWG0WYG3DO70OeiNa0vqOK/Jub0rHOlSe8Ryew01eDwzkc4cv5Vedt9Xq+qoUZK2Yh12Wmc8Kb7+4bRZrJtTvp0LLheXiCeWdTOR3wr7N8+kcrb7uNitOvNtl8Qi126v8VdPROZMnQTVZpMQDHWxmQIFyEnCIJQDDZt2kS1atWIi4tj5MiRnD59OuBcq9XKjh07vDyLBoOBDh06sHXr1lLZT5n56B01ahR79uxhxYoV7rGqVavy8ccfs3btWiIiIoiOjiY9PZ3rr78+YPwcuMTh9ddfzyuvvEJ8fDzDhw9n2LBhzJt3IbZt9uzZ/PTTT6xZs4YdO3bwxhtvMGrUKL7++mvdNZ988kkyMjLcr6NHjxZ6T1fGv8GEecOpGGJg2vD5PPrAXP7TZzZ33fUW76x72J29WVh7pgVrRwZlrSusZInn19ISfjtNNbxeO7aO568dLqFXwaT8K8Rdvofb8rONY2gYbcZsUBjWbW6R1/LtHvKfPi5Rv9NUg4O/PkKUWcFcSvpKVVWyrHm8+m5npgzdxOi32vPQW51JiZ9PqKUmRoO07xIEQSgOnTt35v/+7//45ptvmDZtGps3b6ZLly44HPoel7S0NBwOh19CZ/Xq1UlNTS2VPV3WGDqN0aNHs27dOrZs2UKtWrW8jnXs2JEDBw6QlpaGyWQiJiaG2NhYrr766oDr1ahRgyZNmniNNW7cmJUrVwKQm5vLU089RVJSEl27dgWgadOm7Nq1i+nTp+vG5oWEhAT0jx/Z+YhXR4BbUh7huxqu99EWA42iLX7n6LVXKg6FCTNfV2xBdehKk52mGqx8cD4Azy96iBy7s9SD/i8VvmFo73/hKqcyrFtikZ6n3s/K9+e/55eJ7u8btHizwM4dhaNic+Rg/+UJDl43nXBTNUIVAyBlSARBEEpCv3793N9fd911NG3alHr16rFp0yZuv/32y7KnyyroVFVlzJgxJCUlsWnTJr/EBU+qVKkCwMaNGzl58mSBiQtt2rQhOdn7g/LPP/+kTp06ANhsNmw2m5+Vz2g04nQWPVjTU8zNeGgBFd55k2omA+lWJ7//PIEXdCxwnh/kJRF1C9aOdCdT6AmGwsYuprjT7kvL+n1lyUisTpWsUu61ejExAOEBTGYXUxPF21Pg5/4oNy7HrqpFEsOqqqLiJMeWQZ3fRnO82RQqSNKDIAjCRePqq6+mSpUq/PXXX7qCrkqVKhiNRk6cOOE1fuLECWJjY0tlD5fVITZq1CiWLl3KsmXLiIyMJDU1ldTUVHJzc91zFi9ezE8//cSBAwdYunQpffr0YcKECV616m6//XbefvtCTNOECRP46aefeOWVV/jrr79YtmwZCxYsYNQol2UlKiqKW2+9lccee4xNmzZx8OBBlixZwv/93/8VGABZGCEGhdfeG8m1MRauqWhh2vD53NHOFUDv62orjGHd5gbtFg0k5gLhKeIKawlWGmiu5R1bx/PCkHm88dACokrLr3gRMRvgyggT8ZVDGHjnXB48/zPxfWZFfX6+8+PtKS4B54Hmwv5zx0SaVw7hyM5HMAXxyFRVxak6OJd/hnzbCY41m4rJVAujIu5VQRCEi8U///zD6dOnqVFDv/i8xWKhRYsWfPPNN+4xp9PJN998Q6tWrUplD5fVQpeY6Ppg00qHaCxevJhBgwYBkJyczJNPPsmZM2e46qqrePrpp5kwwbvSvuaS1UhISCApKYknn3ySyZMnU7duXWbOnMmAAQPcc1asWMGTTz7JgAEDOHPmDHXq1OHll18OurCwRqTZQKVQI08N8v9QnzJ0E+dsLvHk28s1UIkSjYXrHg5KKPi6/AIlRviKON+xQOuVNhesdvPdYy8tfoiz+c7LXp7EkwomhasjzcSGGTEqhbe9Kspz852301Rw94nK53vj/v2rq0jwtS3fJNPm/7RUVcWh2snKP43NkUaUpSIh5uooSpmIrBAEQSg3nDt3jr/++sv9/uDBg+zatYtKlSpRqVIlXnzxRXr37k1sbCwHDhzg8ccfp379+nTq1Ml9zu23306vXr0YPXo0ABMnTmTgwIHccMMNtGzZkpkzZ5Kdnc3gwYNLZc+X3eVaGK+++iqvvvpqgXMOHTrkN9atWze6desW8JzY2Fiv+jHF5dVR72Iy+cfW9R6RjOPGFTz6QCLr146jc/dZuuff22kOH24YpXusqLFZnbrNZMO64K1FnsKuIJF3MdCE3cr5cTw7eB69RyRTJ/6NMiHqjAr8sW0if+CylHqKuU7dZnoJ8eJaRjXi7SmFCjpfMXlFuInsDJs7tk9FBRXsThtZ+aewOc4SYamIxVwdMAa9P0EQBMHF9u3bad++vfv9xImu+OaBAweSmJjI7t27ee+990hPT6dmzZp07NiRl156ySvW3tfYdO+993Lq1Cmee+45UlNTad68OevXry+081WwXNZOEeUZrVNEwo0TdQUdwNQlI3lSx3KnUZzYOU/LnmYVCkZUBGO5u9x0bv8W678dS/ObZpBudVKifIASYFTg6kgzV0WaMAawzAVr8SyMQILON/NZc9l7XqNRwpvk2R3YnFYUbDid6VTfOYljzWZgMVdBwSBuVkEQAOkUUdROEWWFctMp4t+GbwmSfKfKlKGbeGZRO935hbldA13DF82d6xtL55kwoYfrPO+WUJcqC1aPYf3mnN/PBBJaz+RkruOyWOwcKmScF5RabTjfci+l9ZwCWec8LZi9RyT7WQbBZUUE2LcvhQ59nqH6rimciH+bEGMMivIvqBcjCMK/jqpVw5k96y7p5XoREAtdMfHs5RoaZvY65inqChJ0GsWx1OkJt0CJF57Hgy1j4mvNu5giTxMt2tdh3eaycN3DtGw9kxOXQdTFWAw0ijETbTbo9m31tch5PvviPKe7W01h1dZnAh73fD7g/fsSb0/hSNPXUZQKmAxmzEbX/7TEMicIgidlxUInFA2x0F1mPMVJrds/gUXF6ypQEL7CwfND3tOa5LLs+ItGvfg5vXVLs45dINekp9B0iZaHWTk/jpXzE5m6ZCRnrQ4ulXVeAaqHGflow2i/Y/H2FG7ouZocu5N8h8rAO+diVGBwV7A6VHcZE1936ZShmwCXNW7fvhQaN67hdrUO6jSL7nfPZdrLI/nlSKKfRdXzva8FWBNzYZZYlPMJ6yLkBEEQ/jcRQXcRubblDAb1LVzMFcf16oueWHIlSYwPeI4m5jy/BlrL85yS4hv757um5/PYvnU88fYUziYsK1LtOgOuOnEBetMXyFebxuqOJ/RazYK1I7mv8xxScx1k2+0YAIeq4lDBoMD1N71Oi5tshBoNhJmMhBpNWAwPYzEqPHP3HHqPcK3VomcS11lt5FttTBm6iabXjaVZ07nABYug3u+F9r72dcM47IgmzFwVgyKJD4IgCP/riMu1mBTkcvWkVZuZPPpA4UkLJRF0hQXlBxO0r5dgUdh6enFdhe3Rl0BiztMS5XmN+i3ewFqAsjMprlIyzw2Zx5Shm8i+aTl5RVB1CnBVpInNW8Z5jcfbU0jotdorXlFvj9rY4DdvQcWAqhpQFCNmgwmz0Uyo0UJ0SDjRIeGYUTn7bT+u676KEKPiV6om0POPt6dwtNkcQs3RKNL1QRCEIBCXa/mkKM9RIqcvMo8+kMispf5xWL4U1s81EMGItQVrRxZqWQsmjs7zWp5iTq/YbkHreO7H91gggbhyfhzx9hQqhRjxlS9GBSpaDBzZ+Qivj1jAc0NcnSmeWdSO8J/6+80vCBVIzdHvxee7H0+0vq7a/hdP/I4lEzfz3iPf0qxyBFdHmahkySPPdow8+1nyHU4y7ArcvII9Z62cyHVd0/fZ6P1eHG/+OmHmaAyKZLEKgiAILsTlehFZOT+OR+cPZ8t34/DMJvVFs/YU1fV6MWvH6ZXl0L7XrFSa2Fg5v2BLnV5nCt8x7xg6bwuYp6i5KsLEOZuTc+d7YVUwKbz8oFak2NtitnJ+HM8sakdv0yNc23IGWbbgihcXp1yKq85gHDPf68LK+V8ArthAFZXO3S7UIHzlnbbEhocxpP989z4BHDfOoMOtb1E7woRJUdyCWXPRghYz9ypGY1XJYhUEQRC8EEF3EfAUZtNHLADieOuDhxk7YG7AcxKXjeLrzWP9zi+IYGvQFYXg4uYu9I7VMmhLsr4evq5XV+JEMtdbDFwdZeZkroNJA/3vvUnbTTRu7CoF8sXacThVsKuQaXWSmmsnNcdRaCyeQfGvD7fTVIMEnbkb1o13C9ykpOH06rXAfcy3OwjAUw9uAfAqNr1yfhw9O5hIzrDhxCVaPRNr4u0pHG36Iv8YqhJminQnQAiCIAiChsTQFZPCYugKEzlvvv8wE/9zQeA9t+ghJp9vYl/SBIlLgafQKkosXSB84/L0np92rSlDNxF/VxIAXXv4d+BYvnIMOXaVXLuTbLtKnkNFBX7/eQLx9hQyb1wWMGvWqEDML/fR7K4klnzm7SqPt6fwzKJ27n14ijkN3wxVT977sB8D712he90PPh7CztO55NpVaoWbuDLCzKqvnwCgcpNRhJivkH6sgiAUG4mhK58U5TmKoCsmhdWh860b1ijhTQwKvDR0Ps8tGsHkoRdcbr5uxmffeZAT5w6Ta0vn/ce2lVgsDYiF8ITCg+2DRbu/YAL4g0WvHIqeqJsydJNXcoIvvUck06Tlm2TbVC/3qgFoFGM+X7wYJi9+iCyrE7vPb3/1UCPbto7XXVsTdIEEZyD0hJ/vnus1G8HBLBs2FYyKQo0wA7G/TeZI06lYTNUxGUJEzAmCUGzKkqA7nZ7KueyMi74HjYjwaCrHxF6y65UmIuguAcFa6AJ9+K/9dBzd75rlnqN3fp9Xr+fjJ34tlQxYT0oj5s5T1HkG8V+MeD7Pwr3bknqS0Gu1+5hn1ilA/85z+DUtn1ydzNZaFYz8+MN4hnWbS45D5e6eb9F7RDLNb5oBgN3pislrGG0m7HzWqYaW5eoZ61eYsFuVNIy7ey10v5+++A4eHfyV+/2a1SPp0TORKUM3caTZW5gMWiVzFRUnoGIxVpAWXoIglJiyIuhOp6fy9Jv9sNutF30PGiaThZcnrgha1E2dOpVVq1bxxx9/EBYWRuvWrZk2bRpxca7/3585c4bnn3+eL7/8kiNHjlC1alV69uzJSy+9RHR0dMB1VVXl+eefZ+HChaSnp9OmTRsSExNp0KBBwHNE0F0CfAVdURIafDsjBMJ49f04/l5arP35WuV8Ka16cqW5ni+BxFJBVrqlH49hz1kr+TqZDdEWAy+cz4AFV4xdl+6zvMS1xvq141AUhQVrR/qVLAH/NmsFWeCmvXsbk4ZsZOo7t/Lkg5u91hgQC+srP0kFcyVJdBAE4aJRVgTd4WPJvDRn8EW/vi/PjlpMnSuC86x07tyZfv36kZCQgN1u56mnnmLPnj3s3buX8PBw9uzZw/PPP8+gQYNo0qQJhw8f5qGHHqJp06Z88sknAdedNm0aU6dO5b333qNu3bo8++yz/P777+zduzegWBNBdwnQs9D5WuVK6ipdOT+O/q+1YvnjW4u8VmHJEpoA04Tf5erf6oleayvPcU3IAX7iyvPcete/gc3nt9psgMohRn75cbx7TV8L2/q14+ncfSbr1433K3WiPZ94e4p7TEua0FqVee5V4+OVQ+nTe5Hu/U4ZuonDTd+ggqU6BhFzgiBcRETQBS/ofDl16hTVqlVj8+bNtG3bVnfOxx9/zP333092djYmk3++qaqq1KxZk0ceeYRHH30UgIyMDKpXr86SJUvo16+f7rpSh+4S4ykmPNs0lZTeI5KLJeaKQkFWvEuNb3Fez8SLgvAVUQd+fYRQo4ICRJgU6kSYaFYphEkDEwOKRoDO3We6vp4Xi518vvbvPAdT2w/JvHEZ6S2XcV3LGbRv+xbbV/ei9x1v+7XpWr92nFvMrV/rXai4SdtNHG36IqHmyihFqpQnCIIgXEoyMlzxfpUqVSpwTlRUlK6YAzh48CCpqal06NDBPRYdHc2NN97I1q1bS2WfIuhKgYshuLS6dL5jwZK9rWCLm2cNu8tpnfO8J73vfe+5U7eZAd2bG9aNd8+vYFJ486EFvPTgfMbfP5fKId6/6oU9S88sVm3de3q9hX3LvdicrpZiGTYnf2fZOJuwjOQMm5+Y18qSgH+P1fsagJNIjIpZ4uMEQRDKKE6nk/Hjx9OmTRuuvfZa3TlpaWm89NJLDB8+POA6qampAFSvXt1rvHr16u5jJUUEXRnAU7xo3z+7aITfvKJkV34Q4PdDE3AFxXxdKjzdnr735WmV00SVVjJEb57vV7vTe44mrrTjwTxL7RmpqsqUoZuYu2wUGS2Xec1RASeQaXNy9fVvEHfDm1zbcga33DKLlUlj/e4FXK7W1GbPYjEFDp4VBEEQLj+jRo1iz549rFihX3IqMzOTrl270qRJE1544YVLuzkfRNCVEsVt3QX4WXZWzo/jpaHz3ccD9TUtDM3ypok4T0tccTpSlCYFJYb0HpHsFnEamrjaltTTS7wFqgcXZlJY9skYr7HCyocEYvvqXhhv+ZADWTa/Miee2FXIdahk2pwcOWfnv2etfLRqrNf+k5JcQj3PGY5ZSpEIgiCUWUaPHs26dev49ttvqVWrlt/xrKwsOnfuTGRkJElJSZjNgfu6x8a6MmxPnDjhNX7ixAn3sZIigq6UCCSQNDFUkCjytFAV1MtU7/vCWLB2JAMC/K4UJtQGxOrP8UwMKA6+sWYFuZY3rBuv+0xcnSO8XcWaO3bl/DgaRZuJthh0xWFhz2/DuvGsXzuOKUM3MWXoJvJaLedknqNILcFUXC7Zczanl4hcun4iACZjNEjsnCAIQplDVVVGjx5NUlISGzdupG7dun5zMjMz6dixIxaLhTVr1hSasFC3bl1iY2P55ptvvNb4+eefadWqVansWwRdKVCYQPAUdXpN7DXBck3LGbRvO0v3mG/CQDDX1duDJ4XFznkmTHien9Brte59FAVNxHrWmPNEE2yaQPMVdZ26zfTqLqGhJab07PkW757v9KCJOs95gZ7dhnXjUVXV3Ss2veUysgsyyxWAqrpi7Tzvz9XG6wVXfTmxzgmCIJQ5Ro0axdKlS1m2bBmRkZGkpqaSmppKbm4ucEHMZWdns2jRIjIzM91zHA6He51GjRqRlOTqaqQoCuPHj2fKlCmsWbOG33//nQceeICaNWvSs2fPUtm39HItBUoro/W/v0xgso971VPM+Frxgr2uZ1mSkhb/LQ3rnC96blBXCzDX954tv7SyJZ7uVn0u3GOwwnfDuvGouJIZpgzdxOmEZVCCoj5GBdZ/O8ZP+DrUMAyK/NMTBEEoiyQmuv6f3a5dO6/xxYsXM2jQIH799Vd+/vlnAOrXr+815+DBg1x11VUAJCcnuzNkAR5//HGys7MZPnw46enp3Hzzzaxfv77UWqPJp8pFoiDrlZ6g0rNC6WV6FiTiPF2rnkkRC9aOLLI1LZCb1rNbQlEIti6fZ5ybywqoxc2tBsbrztUTdZ4lT4Z3d415dpUIJPI6nxeOWTcup0g+Vh2qhBq55U5Xv971a8e5EzOMhogSrSsIglBeiQiPxmSyXPJOERHhwSehFVaet127doXO0VtHURQmT57M5MmTg95LURBBd5HwFD3BiqlgLUmBxJGXi5QL8XPFKRzsW59OE4Ulse4Fc38FW930CdQOzPf7gvbhec3w9h9x+py9SHvwRAFiLAYmDUx015/z7CxrMoaKu1UQhP9JKsfE8vLEFdLL9SIggu4SEKwY8hRpg7vOpVuPWX5z9MRIIMHoOR5oTqA9ZW8bWWpFhwvra1sQLoG32uu9xoZ1488LsfFe5+jFGwZ7rd4jkknLcxQ+OQAmBV4fseB8YeG5buHWpftbHrNEzAmC8L9L5ZjY/wmBdamRpIhLRDBizlOApOYULipKmpigraE35ivmimudC5TEEShzFbw7NEwZuslrzBPfTg56SQ++1r7C3L779qWQ5yi+qzUmxMDaT8excn4cnbvPolO3mV7P7XjTp1FVZwErCIIgCELREUFXhvAUG8dzCnb5rZwfF5QPPxgKE4bZ2/y7SXiWWinIEqbnPg0kqnxFm+e5egWF9erUafvUjvuuGWiv2ry9W9oV235mAKqEGOl+l7dl1dNFriigIoJOEARBKF1E0JVRrIUE5PcekczpfAcOp4qqls5rWDdXAL/veIUb5jKs21z3cc89eH7VQ1VVdxyZpytUT1hp89avHYeqqnTqNpMbeiZ57UWb06nbTPeY5/W1faqqilN1sn7tOK8+qp79dgNhNhRP0lmMCiP6z/Ea04TlyvlxLPv4AWr89jJOsdAJgiAIpYzE0JVBrr9pBk8PnlfovF2nUnl95Cde7lrfUic92r+ge+6ab/XHARauezjgedragbo8gKu0yU5TDXq0f57tq3tR+4557vlLVvRjUD/9FipaFmhq9oVK2p7fe563ZMW9Hr1SL3SdSM1OdacfDO73oe7+C+KzNePY+WkvDK2Wk1PE+nORZn8h6GkhvK/P/zFl6AXBLIkRgiAIQmkhgq6UKWrygR65DjVgAkHvEckMiIW7X4yj/2uHvQSVnsVME256nSg8BVnzFkO45ti7/PeKIQAcyTzid+1nh//gJeT0yqz0HpHMTlMNmt8wlCNZ/8BNz3Ak6x/39Y9m/eO1X997fGnhze45nt8/O+x7Xlp4M88O+961TuYx15wFN5/fm+v7o5nHeHb4935717t3veOPTe/FG48l0aX7LF5a/BDp+c6gHKRRZoUdWycAgQXjRyuH8Ofnm3Cqxc+gFQRBEAQ9FLW0ArH+x8jMzCQ6Opop87sTGubq3+Yr5kpS4gPguhtnEGU2MPE/F1ydI2f34eSeKQDUavoss0Z9BFCglQ78BYzenHs6vMwnXz/t/loS4u0p1O+yGIB+97zntb8Vnwyk3z3v+Z3Te0Qyfe6YGnDNfvcsOX/+IPf3gfC8r753TCU6JNrDoufCs31YQZm4zy0awTmbqltj2ICr3tz2reMLtf71HpFMvD2FQ03fJMJSXSx0giBcMnLOZTGoVVMyMjKIioq66NfLy8vj4MGD1K1bt9QK5/4vUpTnKDF0JWRQ5xkBkwoCtfrypCAR8MKQeZzJ98521cTcyvlxzBr1kZ+FzleQFLS+r4Xtk6+fZuX8OC8xV1Cf1UAM755IQq/VVAyt6CfmALeY03PX9rtnCRVDY+h3zxL++mIQFUNj3C8tCaJiaEyhe9Cu1+wGl8XRV8z1HpHsLiej/XwCWUUnD53Pmw8tYMZDC6gaaqRKqIHKIQYqhRg4tPMRnhyU6BdfWNCeVOc5yXQVBEEQShWx0BUTzUKXcONE7h11yG3t0nqTajXN9PAsAVJQj1VPcTFl8UOogEGBpwd5x9cFss4F6j4RyO1aEMHO85xb1DpwvUckF1qGRa98iSeema2B6tEFaqXm+9yKuv9gmDJ0E0euewaz+WosRvmrVRCES0NZstBlZp8iNy/rou9BIyw0kqjwqpfseqVJUSx0EkNXCniW79AsPwXFUkFwsXaeouLaihZ69nzrvPjwt5oFEiCBxIzvNQoTa4XN066z6vlkhuuUCwmGlfPjGN7du1uE7/eFEYyY0579yvkzdedcTHaaahD/+xSONEsUQScIwv8cmdmneHf1GBxO2yW7ptFgZkjP2UGLuqlTp7Jq1Sr++OMPwsLCaN26NdOmTSMu7sJnxYgRI/j66685fvw4ERER7jmNGjUKuK6qqjz//PMsXLiQ9PR02rRpQ2JiIg0aNCjxPYK4XEvMXUP2Ay7LULAdChas9a/rVlC8Xe8Rybz/xagC1w4U5O/70purJ9L0XK0FiT5t/fCERC/hFYxVz3eOVkzYEz0xp7e2nmDV+76w9Yoi8oK1XGrr7jTVwO7MLbU6goIgCOWF3LysSyrmABxOW5Esgps3b2bUqFH89NNPfPXVV9hsNjp27Eh2drZ7TosWLVi8eDH79u1jw4YNqKpKx44dcTgCNwV47bXXeOutt5g3bx4///wz4eHhdOrUiby8vBLdn4a4XIuJ5nL95/BfREVFusdLo+epJ5oLd8HakX6dFgqzmHnOKc09+aJZvDxdxb4Ww2BcmBvWjffrywqFi6/h3RMDurhXzo/j45VD6NP7Xd1CxMVtE+a5D8+fQzDr9B6RTEyjUUSE1sGgGIt1XUEQhKJQVlyuJ07/zdLPH7vo1/fl/jtfp3rlq4t17qlTp6hWrRqbN2+mbdu2unN2795Ns2bN+Ouvv6hXr57fcVVVqVmzJo888giPPvooABkZGVSvXp0lS5bQr18/3XXLTVLE1KlTSUhIIDIykmrVqtGzZ0+Sk70/lA8cOECvXr2oWrUqUVFR9O3blxMnTgRY8QLHjh3j/vvvp3LlyoSFhXHdddexfft2rzn79u2jR48eREdHEx4eTkJCAkeO+JfrKAqauCmNtlwanbrNLLShvOe19Qgk5oJx0wYqBKx3XqDuEcEKJk8x16nbzKBdt1rxXr29rvhyktd6vmJuePfEIlnZPAk2AcX3nLp7niHfniNWOkEQhDJORkYGAJUqVdI9np2dzeLFi6lbty61a9fWnXPw4EFSU1Pp0KGDeyw6Opobb7yRrVu3lso+L6ugK8ysmZ2dTceOHVEUhY0bN/LDDz9gtVrp3r07TmfgLMGzZ8/Spk0bzGYzX3zxBXv37uWNN96gYsWK7jkHDhzg5ptvplGjRmzatIndu3fz7LPPFju92lN4aC7VkljEgslO9V0/e9tIr4xNz6+eQqswy5me27IgwaPtI5guDIEoSpwcXLgfTxFbWJsxz+O++9QTw0W9l2BcwFrXip2mGuTb03CqhffsFQRBEC4PTqeT8ePH06ZNG6699lqvY3PnziUiIoKIiAi++OILvvrqKywWi+46qampAFSvXt1rvHr16u5jJeWyCrr169czaNAgrrnmGpo1a8aSJUs4cuQIO3bsAOCHH37g0KFDLFmyhOuuu47rrruO9957j+3bt7Nx48aA606bNo3atWuzePFiWrZsSd26denYsaOXGfTpp5/mzjvv5LXXXiM+Pp569erRo0cPqlWrVqx70dyixUkGCESguLhAfJCqb83zdYEWFGfmK2yK4op0JTUEb5X0FFjbknq6x4J5hoGeg56o0/Bd19OKqnfNot57MLGJC9c97B7vnv42ObZ0sdIJgiCUUUaNGsWePXtYscK/w9GAAQPYuXMnmzdvpmHDhvTt27fU4uGKQ5lKivA1a+bn56MoCiEhIe45oaGhGAwGvv9evxsAwJo1a7jhhhvo06cP1apVIz4+noULF7qPO51OPvvsMxo2bEinTp2oVq0aN954I6tXrw64Zn5+PpmZmV4vXwK57krT/eq7ru97rXeo5zFPa11BsWx6cXaFWakGxHrHsC1YOzJoy5YmoqYM3URCr9Vud2hBos7TCuh5j9q5vtcvSJRp87W9B5PpG2g/el06PEWe77MfdOcsPkgFpyMNmzO/wOsKgiAIl57Ro0ezbt06vv32W2rVquV3PDo6mgYNGtC2bVs++eQT/vjjD5KSknTXio2NBfALGTtx4oT7WEkpM4JOz6x50003ER4ezqRJk8jJySE7O5tHH30Uh8NBSkpKwLX+/vtvdyrwhg0bGDlyJGPHjuW991wFbU+ePMm5c+d49dVX6dy5M19++SW9evXi7rvvZvPmzbprTp06lejoaPdL85MvWT/BPediJR144ilQCsuUHd49kQGxLtHlSaAAft/Ei0DxcJ584GEpDhTDVhCamIMLjewLs9B5JmFoL19B5muN1Mv09a05F2wRZt91AsUO+lo+Ped0v2suK+fHcfV/J5NnOy1WOkEQhDKCqqqMHj2apKQkNm7cSN26dYM6R1VV8vP1/0CvW7cusbGxfPPNN+6xzMxMfv75Z1q1alUq+y4zgk7PrFm1alU+/vhj1q5dS0REBNHR0aSnp3P99ddjMATeutPp5Prrr+eVV14hPj6e4cOHM2zYMObNm+c+DnDXXXcxYcIEmjdvzhNPPEG3bt3cc3x58sknycjIcL+OHj0KuDpFQMFiTrMEFRdfUVIQvtcJT0gkPEHfQlhQ/Jxn5mZhGarB3pvv3lc9n+y2zGkUZJnT9hUoSUQ77nstvbhBLYkikFALloLi5jyvGei+dppqUMGYSa49Q7pHCIIglAFGjRrF0qVLWbZsGZGRkaSmppKamkpubi7gMhpNnTqVHTt2cOTIEX788Uf69OlDWFgYd955p3udRo0auS12iqIwfvx4pkyZwpo1a/j999954IEHqFmzJj179iyVfZcJQVeQWbNjx44cOHCAkydPkpaWxvvvv8+xY8e4+urA6cc1atSgSZMmXmONGzd2Z7BWqVIFk8lU4BxfQkJCiIqK8nppFCZoipMoUJDbsCBxVdCxQK7fYGL1CrqHYNzJmoDSmDJ0E+EJ3ucVZJkLFP/nee1A965nTfMtc6In7DwFrd51CisZEyyzx3xH2p6XyLGexKk60e8aKwiCIFwKEhMTycjIoF27dtSoUcP9+vDDDwFX6Nd3333HnXfeSf369bn33nuJjIzkxx9/9IrDT05OdoeSATz++OOMGTOG4cOHk5CQwLlz51i/fn2p9bq9rIKuKGbNKlWqEBMTw8aNGzl58iQ9evQIOLdNmzZ+5U/+/PNP6tSpA4DFYiEhIaHAOZcbvRi4YGucFYWSZKZqZG8r3EIXSKxp4wWJOT2BFSjT19ea6BvDplnnNDxFru/XgvBMANF7hoFcr75j2rzOtz7NlbsnkmM95TbdC4Ig/NsIC43EaDBf0msaDWbCQiMLn3ge7f/Bvq9BgwYBULNmTT7//HNOnDiB1Wrl6NGjfPDBB16dJLR1tHPAZaWbPHkyqamp5OXl8fXXX9OwYcPSuEXgMrf+GjVqFMuWLePTTz91mzXBFWgYFhYGwOLFi2ncuDFVq1Zl69atjBs3jgkTJng9uNtvv51evXoxevRoACZMmEDr1q155ZVX6Nu3L7/88gsLFixgwYIF7nMee+wx7r33Xtq2bUv79u1Zv349a9euZdOmTUW6hyXrJxAaVvq/nHrJAcEU5w2GwooM61mYBsR6x8t58kFq6e3NE8/YNl+LZSAB5duGTc+FvGDtSDasuyDaPJ+Fp6jzHHdZ9LwLCfv23NW7VkGxeZ7PbNh9nwDtgE8ZNusuwsyVMWBEUZQgn5YgCELZJyq8KkN6zpZerheByyroEhNdH57t2rXzGl+8eLFb1SYnJ/Pkk09y5swZrrrqKp5++mkmTJjgNf/AgQOkpaW53yckJJCUlMSTTz7J5MmTqVu3LjNnzmTAgAHuOb169WLevHlMnTqVsWPHEhcXx8qVK7n55ptLfF+FlQkJlkA9YQtaT+uHWhgFiTo9MReekMhwr315Hw8k9vRwdYTY5P7e1zpXWJKCnpgryEKmd452TU9rndbl48LxC102YKT7OtqetXO1nrC++/cVlJ7X0xJQ9KyvC8d9yrBZnQk1x2LELKJOEIR/FVHhVf8nBNal5rK7XAsyawK8+uqrpKamYrVa+fPPP5k4caLfB9yhQ4d44YUXvMa6devG77//Tl5eHvv27WPYsGF+1x8yZAj79+8nNzeXXbt2cdddd5XavQUT2xUIX4GilSMpzBXo24KrKHsMhkDFkrVYuKKUK9lpqhHwuK+7srAyJIUJXD3rnYZeprBn1qzeM/ItjRJMQWFPOnWbWWB3ivc+7M+ZvbOw2VNRVae4XwVBEIRCKRNJEf82eo9ILlGBYU1IaMLDt2WVZ5cEbd7K+XFeLsDSFHW+yQsavuVQisLK+XFBxd4F6myh1ynC8xy9eDvtuepZ8wKJbk3gaefpzdOOef7M9PD8vfD8/fA9Z+C9y1k5P47Kllzy7GkgSRKCIAhCIVxWl+u/gUGdZxAV5Qq29HTZaS46DU/3azCu2EDuVg3PYr69R1y4RmnHsnmKtv9n78zjo6jv//+c2SM34QokyKkigqCC4gHiiSAICuVbq02L+rWCHCp48xOlKhbvIirhqPVoUVuLWOGroIIiWqQooFEwCoIKJBDIfew1M78/NrOZnczszm42F8zTRyQ785nPfGY2ybz2fapuWnWb1g2rdbtaXcOvHurHW/MiX6eK2T1ThavehWwl09SoLIt+Hq1gVF2v9euZFrZffT+0117v0jUv2GyW9NIrozPVpYfxBNwkO9vbrlcbGxsbG1NsC10C0cZfRauTpn5vZB2yIoa04sFKyykr69afW42d06PWttNvi+fcv3qoX8R2XXqMRDLUW7xUa5lZtqvecqmNbdMmRGjviXqM9lj1OkePW8jWVRPCLHjajFq9VdXsWrRzqkzJXUnvjHY4lEPU2i3CbGxsbGwiICj2UyIuKioqyMzMZP9Pu0MWOhV9xwU9+g4FZhYtK10TjLI/VeudVaGkuj7NXKv6sUbj1HVGi3czYtLUgpB41F6vun79Nr0lTpukYJRsoLeAWX0N1uISI40xchfrzxnNovn8367m+7ISauROpLk7ISDa1jobG5uYqKmq5IbzT6e8vDysjmpT4fF42Lt3L3369ElYnbXjkVjuo22hawKixaVFCtKPBSPhAdGTIvSxa0YWNzPMxsViZdOzcmk/fvVQvaVMK+RUoabdrh6jWsW0cWlG3R+MzqffZ+aiVWPo9DF7WuuqPllEazXVunX1a9CLei3a173ancCgTl3p4DxKje+QXXjYxsbGxqYBtqBrAuJJiDB68Otr0GkFjdbdqlrkoF4ovDXP3PVpVbzF2rJMLzCNCgJHO5/K/Js+NlyHKtqiWS+1YlkvsIwEn15Y6d21Wsundh6ja9KKzynj80LXEk24a+fUrsUlushJ68opHbqS7ijHGyi33a82NjY2NmHYLtc4MXO5Nia7FWLrCqFi5HJ8a16BZeEWD3rXq/pau93MBRnJxai39G1dNYGhE98O22bVDW2lxImV5An9XNpyJtoWYlrhp6K33FlZ5/ybPg4r67JyaT/Wrr4dr+RjX8Uv7CqtwuXqjVN0R123jY2NDbQul2tFdbFdWNgisbhc7SzXBKG13MTjQtUepxcZZnFY+nNruxmoGaTBfwsMxZf+tX67mtFqlhhh9Fq7XWvRMsv21KMK0noL3MWsmxi+f92ahrF2kcqA/PvtW7h6wpK4xRzUizitQAvWozMWjkZiVi9W1TH693ruixc3WJcgCCQ53HRJ6URhdQUl/kpEV3sA/FItkuxHEARcYgoO0W3H2NnY2LRKKqqL+evbtyLJ/mY7p0N08b8TnrMs6hYsWMBbb73Fd999R0pKCsOGDePxxx9v0NoLgvV0x44dy9q1a1m1ahUTJkwwnVdRFObNm8fy5cspKytj+PDh5OXl0bdv33gvLQzb5ZpAYukOYbY/WsZrNLGojc1aURQUEWbiS2VFkbHVa8p449g6fQyeWT256q3TeGteQchyGCnjU7t+MBZEakHerasmhLapIkl1SetF09MvXQ6Eixur75HebauKTb2LW12Hvviz1t0bKa5SL9iN9o0etxAESHEl0ykpBReH8Pr2UevbRzK/0DXpCB1dh/D4f0ZSAhGvy8bGxqalqPVUNquYA5Bkf0wWwY0bNzJjxgw+//xzPvjgA/x+P6NGjaK6urrB2IULF1r+AP3EE0+waNEilixZwpYtW0hLS2P06NF4PB7La4uE7XKNE63L9de/fdEwI9MIqy5Vq5Y+rXVKn+FqtBa9tW70uIVRLXhm26xQvXVaqD6dWqtuyvi8sO1gfD/01xBsGVbvgjW6PrP+tw1KgozPazBOv9+sHp0+o1e1KBrt11+X/v1SMVqj0bGyIlPlq6YmUIM34MMvB8hwp5HuTuNQdTH5R0twOE/E6bDdsTY2NvW0FpfroaM/8vd3727y8+v53dgn6drpxLiOLS4upkuXLmzcuJELL7wwtH3Hjh2MGzeOL774gpycnIgWOkVR6NatG3feeSd33XUXAOXl5XTt2pWXX36Za6+91vA42+XajEy8ZjHr194b8SGud6fqt0UqZ6HFSPToXY1Txtd3JHhrXkGDHqsriiC3Tpyp7ksrHRtiFXNqbJm2MLG6FlUcTtGMNZtDn/Gqd8EaHbN29e0sXzM9tC1SWRL1tfZ+azNZ1W3aLhxaURZmQdMR6f1S5zBKGDET8uq1ZbjTyXCnoxBslScIIpIcwBPw4VfcuESHyd2xsbGxsYmV8vJyADp27BjaVlNTw29/+1teeOEFsrOjt03au3cvRUVFjBw5MrQtMzOTc889l82bN5sKuliwBV0jWfXP6WEWMaNMSSPhZlYgV30dTz03qG8qb4Q6rxpfpwoXbf23eJIpjKx3WouVKtzMYvIiWTcbxuBFrvM3aWoBV4x/NtQ9QyXSeD31sW3G49XYOaN5rNSVU8+h7/ARaU3qfFrTvoAAAigo+GQflX4PCOkIdiSFjY2NTUKQZZlZs2YxfPhwBg4cGNo+e/Zshg0bZrkHfFFR0KLRtWvXsO1du3YN7Wss9l/+BKJ9qOvdcPqHvFnJi0i16aI99PVjVxSFx3Gpa1i3ZlYDy512PdVb6+PdrMTLmQlAtT6btk6b/rzacVq0905rEYvUhWPdmlkNhLKR21Ib96a9N9rjVLTWOi3qdu19M8tiNXut9n41E/qRjtUjyTI+SUIQXBHH2djY2NhYZ8aMGXzzzTe88cYboW3vvPMOGzZsYOHChS23MANsC10CUF2cWquNtuAtxF48ONID3IoFKJIwqN46LcwVqo5XRaA6Lmh5NE+oUMMvVdefFs+XM7npyucN11C9dRrJZ4Xv069XkqWwdbz7zq1IssS779zK2KueM5xX7/bW1urTj4nmIq9f0zRuHp/HlPGErlX9V1+exKqVTXuMak01c6/rxaJZB5B6w50dEmtjY2OTCGbOnMmaNWv45JNP6N69e2j7hg0b2LNnD+3btw8bP2nSJEaMGMHHH3/cYC7VLXvo0CFycurLUh06dIgzzzwzIeu1LXQJwMiKY5a5qLfiaTErVhtPbTozVi7tx4qihlY1bfyYXgCp1jMj61xtoJaDVYXsrzwQ9nXklDkNtpntM0IVbSuX9mPZil+xv/IA2/49yXS8/jqsFjOO5PpWj12usTJeMe5Zlq+ezvLV0/HKfip8lciKHDpmzCVzY1qT2Xsdk8tdCVroJEWx3a02NjY2jURRFGbOnMmqVavYsGEDffr0Cdt/33338fXXX7Njx47QF8Cf//xnXnrpJcM5+/TpQ3Z2NuvXrw9tq6ioYMuWLZx//vkJWbf9178ZMIqh07JuzaxQhqq+xIVRIH+0shvqfHqmjM9rUFpDu0/dro7RluIYPW5hqD2Xlmp/DYVVRVT7q/FK3pi+1n2ygCm5b5mK3+devZLnXr2Swxtu4/CG28i86Emm5L5leM3PvXpl6NguA24Nxur1nRzmXtWiF1Vm5WHMRN7gc6fw7z3/xz++f4u/rJkRGrer9HtWLu3H4EBhg/Po5zbarhX6ZkJQ755WUKjyV1HpV3A6UgzntrGxsbGxxowZM/j73//Oa6+9RkZGBkVFRRQVFVFbWwsErW0DBw4M+wLo2bNnmPg79dRTWbVqFRCMf541axbz58/nnXfeIT8/n8mTJ9OtW7eItetiwXa5NpKJ1yzG6UyKyQ2qH6t1beqbz1uxzumzNM0SI/RJB/quBvVrMS55oq5NLTuSevZiZEVGFEV67V1E6tmLw8bXfDG9wTYttxpck3qda1ffHpqj74RVpnOoY68Y/ywQvAd5t7/PCTcV4hrYjjlLRvH99ucaXI+ZaFIxKneycmk/7sg7g3JPGQFFYnfZHoZ0PZNzRz3GlPGZrP9lI1sKtzJn2TC2fxnu9rXy86G33poVQlbFIgQ/SfokP2WeSjxyEmmuJLuosI2NjU0jyMsLPhcvvvjisO0vvfQSN9xwg+V5CgoKQhmyAPfccw/V1dVMmTKFsrIyLrjgAtauXRu1HIlV4rbQ7dmzh7lz53Lddddx+PBhAN577z2+/fbbhCysrbDqn9PDXmsL3aoYWWn0+/VWl2gWIiOLnVYIqIV2zTCz1GnbiOnRrjFtaB4KQeuQgIBw5jMIgkDNF9MRBAFBEEgbmhf6Xvu1fM30sLIi+utbt2YWgiDwxdvB+iSCIHDF+GfrRFtDglmt4cJ3uzOHF2d/wNDC5/jV5X82vQ9ai5iR4NLumzS1gE7JHVGA/P++SPeME/j5q3+R7kpj2epp7NnxBp0P7WHBlP9aTnawivb6tG3BAHySlzJfLaKYEcx8tbGxsWmlpCRn4BCbN3nLIbpISc6IPrAORVEMvyKJOUVRGlja9McIgsDDDz9MUVERHo+HDz/8kFNOOSXGqzEnLgvdxo0bGTNmDMOHD+eTTz7h0UcfpUuXLnz11Ve8+OKL/Otf/0rYAls7qoVOzR7VtoPSBuVbebgb1SXTW4qsWnuC511ouO+tecauWrXYr761lnbOIEFh94dxQeubVkKsKKovU2KGvsl9w8zU4H1Y+eLFrFszqy52L9yiNjhQSMYl/8QnK6Q5RTJcAnArECxgXHzqs/Q+fQ9rfCMp/2A2ZqVczDBLqtj2+RL+Z9QC/vXd+3h+2Mi1o5/AKYTXfbMa83j92EW88u5tltainRcIWUoB/HIAT0BGFOyWXzY2Nq2bdmlZ/O+E5+xerk1AXILuvvvuY/78+dxxxx1kZNSr3ksvvZTnnzfObDwe0NZHM3LZAcx9voL5M9s1sLCZude0c+n3RYrF0mNFBGqL/WrH6+vEqdtzs6eTAVz/UD8mTV0aEhjaunR6a5+2xluk9agCOVhMdzGr3lYo9crUBBRqAjKVfpmSqkBdTqeEQ4D+Q58h2SHwX7+Ct8zHwZoAInDFJc8AdxjeN7M4xEgW1n+9Pyf0/Rvr7jG9BrN51S4UWjFn9H5rra3qmPk3fdyg16tSZyvVtzizsbGxaY20S8s6LgRWcxOXoMvPz+e1115rsL1Lly4cOXKk0YtqaxhZZPTWuKCLU20u/yBgXmZDv037Wns+o3VES8AAa10f1HOr5U30VjI1W/aqS+YBb/D7K54Jxe5N0dWQg4aB/EYi1gizeD712J6DnwZAUqA6oFAdCEq8YN6pgqxApb8+C1X7fmhr2qnCycgaCvVWRbPyItp1RROqMK2BqDTLdtVv205OaD3LVk/j5nGLcTvcpDgdlHk8KEqGbaWzsbGxOQ6JK4auffv2FBYWNti+fft2TjjhhEYvqi2hxtBZjZHSxq2pWaRGYk5FH8MVCb1FTWsZUy1ekeLqQNtiK3jMrx7qZ5pQsHJpP66/9g0ee/ESJkxc2mDtKmqHCCD0r5lbMlrsn34NIwrvpGOSiCuChvFJSmhu9cuonyrU3zPt+6SKJysCNNL79OyK8WFr11+L0Vxm21RrsCAIOAQRhyigylgbGxsbm+OPuATdtddey7333ktRURGCICDLMp999hl33XUXkydPTvQaWzUvr50NmFtZ9ALCCG0ihZF1yChbUi8cFv19XNhrffP5aGi7Q+iZNLXAsGTJe6tva3DN2oLF1VvrO0Boj1fFklFSxsql4QIy0jWogvP0jkmcd/BOk1ECPrmh9dRMdKnrVa1x+vUYzRPNaqfy7ZGdQPB+vr7yhtD3+g4XRtepjeXTfggYPW5hKGBXEOykdRsbG5vjFUHRl/i3gM/nY8aMGbz88stIkoTT6USSJH7729/y8ssv43Ac+83BKyoqyMzMZP7S8SSnNMzY0caAQcM6aFr07kiAAWffwM4vXg6bT4tW4LlPGsG4E8eQ+z+vhMVo5WbXCymt61CPFeGnFZfa63r5jWtZ/dFDUeP21B6x6rVGE5xWYv70YydNLaD3kKdRFBCQKffso3TXC6FxepGsP4+ZIDYTbJHmuubxTkg//gf3yReS5kqlsKqQ/5vrMZxLvZ+RxLz6nupZubQfr705ma+K91Iu5ZDiam/pntnY2Bxf1FRVcsP5p1NeXk67du2a/Hwej4e9e/fSp0+fhJXlOB6J5T7GJehUfv75Z7755huqqqoYPHgwffv2jXeqNkckQdd/UA678sNd0kZCSmX0uIWsXTOLb47u4kjtEUZ0G0ZloJo3v18Fez8PjdMKnLvyzmRkj4v4ufIAnx7czKCsgXz+2aIGcV/q/EZJDvo1WEU710uv/4Ybr/uH6di35gWte1atWKp4iWVdRsLK7DxaMapehzbOTyucos1nVXRacZWr1639AGAk4IyOffH1X7OtuBAcJ+J22H84bWxsGmILurZJLPexUZ0ievbsydixY7nmmmuOKzEXDb2Yi/TQV2Ozlq+exomZvTg3+2wcooP2rgzGnXhFgzkmTS1g5dtT2bvjHyxfPZ0vDm2n+vsN3D15Xf3+pf3CXJ/6UihqnFw0sWRmVdRez5qPH454vCrm1E4U+h6yeqy4io3EYbRkEO21669DK5y05UDM5otUliRSRwoz1DHqz8KkqQWhGLlognHS1ALe/Xg+AVlEFI59y7iNjY2NjTGWg27uuOMOy5M+88wzcS3mWEX7wNZb6kwtd4JAt9SuYRYjdZ7X3guW4Hj737fwt3dnNzhUXyZEa7XTWn708WF69JY9IyJZ2rTJFbnZwRp3kY7RnzvaOY3WFktpEnWf/j3Qlp8xKyljNk8sls5oaK/DLMNZXZ9LlJCVANC8BTttbGxsbFoHll2ul1xySdjrbdu2EQgE6Ncv+KD5/vvvcTgcnHXWWWzYsCHxK21lRIuh06IVZVrxoNZrU4Veua+SrYe2keRwc3rngbRzpwNwxbhnG4iUtWtmAepbJ3BFnfi6eXxeg2pkWhej1g1rRmPESSTrlVXMSpWYnceK6zMWt6yZaDJzt0Y7vxUrXbxo19DptP9HqqujXbbExsamAa3J5VrrK8EXqG7yNai4nWmkuDs22/kSSSwuV8sWuo8++ij0/TPPPENGRgavvPIKHTp0AKC0tJQbb7yRESNGxLnsto1Z0DrUu/T6Dwpv2aTWg5syPthG68fyfRRVHwpmDitKqOm6Khie+ftYPtsUbGN1xbiFPPPqFXz2WbAd1qSphLZD5CSM4Hhz4RV09S2MdskxzanutxI7F01sqgTHN7znZpY7/Rxm5Ui0NefMRJyRmDMSokZibnCgkAHdc0IWy2gYJWFo3eiqa/YPC73WJrSxsbFpIWp9JWzc9XCdR6F5EAUnF/V/0LKoW7BgAW+99RbfffcdKSkpDBs2jMcffzxkwIJgn9eNGzeGHTd16lSWLFliOq+iKMybN4/ly5dTVlbG8OHDycvLS1jIWlwxdE8//TQLFiwIiTmADh06MH/+fJ5++umELKytYSWAfUTvB033LV89jb0V+/ip4meq/TV4ZR/l3nIkWQo90H8q/zns4f727tWsXNqPzFNHhW3Xijl99qTWDRqrFU0rTszKdUwZn9dgnPpvpPOpIsoss1R7DvVfrevY6nlWvzOzwXn18weLP9eXBol03dr7ropDo36+RkSLJ9Rfm3YNeoLbPNRbbW1sbGxaH75AdbOKOQBZCcRkEdy4cSMzZszg888/54MPPsDv9zNq1Ciqq8PnuPnmmyksLAx9PfHEExHnfeKJJ1i0aBFLlixhy5YtpKWlMXr0aDweT1zXpSeuwlUVFRUUFxc32F5cXExlZfP1Z2vNqEJBGzdnFEOncsOVi3hr92pG9r6Ur7YsZx+fkz3wKg5UHuTOvDMp95bjCXh44pXLOfnHArZl5UD+jzz04h/ISc/mr/wUEhdTxtcLOW1fVqO6atHQisFIdfDCkw7MO2YY8dY84zp90WLfzLYZ7fv9mD/zt/dmM/6q54F+IQGmonUxq++R0TzRBFZQ1JouG4Dtzhy266xzWnFnZrnT3n+jez+29AU2dPkTTtHu6WpjY2MTL2vXrg17/fLLL9OlSxe+/PJLLrzwwtD21NRUsrMtfDInaJ1buHAhc+fO5eqrrwbg1VdfpWvXrrz99ttce+21jV53XGVLJk+ezKZNm3j66ac555xzANiyZQt33303I0aM4JVXXmn0wlo7VmLojMqX6FHFQ0CROFRTTOeUjhTXHuXdDeHZo1ePfARJkWiflEmJpzRsv1lNtcbEsZkRyXIWKS5NP0ck12tToF3flZfNo1tKVwRBsFSqRO9O18fU6ccatQizgirqtIIuUv1Bo+vrfNr9pLg62ILOxsYmjNYSQ1de8wufff94k59fz/BT7iUztUdcx+7evZu+ffuSn5/PwIEDgaDL9dtvv0VRFLKzsxk/fjwPPPAAqamphnP8+OOPnHTSSWzfvp0zzzwztP2iiy7izDPP5NlnnzU8rsnLlixZsoQxY8bw29/+ll69etGrVy9++9vfcsUVV7B48eJ4pjxm0Frg9GJOH0MHQavdstXTcAoOuqV15aqrFnNCWg43j8/j5rpSHwBdkjuRk9qFFEcSJ6TWfyLIHftnHn4x+IkhN5uw9l5WWmhFQ2v10lrntC7b886tb3+mtd6ZWbIiJSFo9xmJvkhdJqxcB8DWom0sXzM9bB6tONPG2IGxO91onYMDhWEu7XiJ5oo1u48rl/ZDlqtQbLerjY2NTUKQZZlZs2YxfPjwkJgD+O1vf8vf//53PvroI+bMmcPf/vY3fve735nOU1QU/KTetWvXsO1du3YN7WsscblcU1NTWbx4MU8++SR79uwB4KSTTiItLS0hi2rL6BMgtKIukrXuQHURmUntWP7G/1BcewRREHnrg/sBGHbBLMr8FXRwZ3LUW8qhmqC7++rLH+FXVy9h6euTgg/5wc+ELE6NETzRRJWez7csRnWz6q1VarkSveVKXZ+a6WuUhGFm5YqUgGKF3u17c7jue22JEj16d7mREB0cKGTuixcH9021tnbt/FpUy5yRoNOKafW1kZXQIVyIrPgRhSTD89vY2NjYWGfGjBl88803fPrpp2Hbp0yZEvp+0KBB5OTkcNlll7Fnzx5OOumk5l4m0MhOEcczqst1/0+7eWPjPQ32RxJU+gf5H8Yt5v/2reOEjG58/PMmTus8gNpADYe/XcO5w2/lq0Nfc363cymuKeanip/JTG7PoerDDM05i9pALZ/88imndR5A19QubN0c3upKj1mh3JVL+1kqF2J03KSpBdww9lncDrfh9WkxEmPRyoZYmSNe9HFpZvXeIq1TFXWRjte7SWO5Bqvua3X+TqfdS6ory3a72tjYhLBdrrG7XGfOnMm///1vPvnkE/r06RNxbHV1Nenp6axdu5bRo0c32N9qXa6XXHIJl156qemXVRYsWMDQoUPJyMigS5cuTJgwgYKC8Afhnj17mDhxIllZWbRr145rrrmGQ4cORZ37wIED/O53v6NTp06kpKQwaNAgvvjiC8Oxt9xyC4IgsHDhQstrV3l5bcPCvlDvSlW/tNv1/GXNdAq/+TdfF39Dp5SOHKwqRFJkACq8FSgofPTJE3glH0drS9j/9Ur8ezbxn08X4gl4yDjwLT9/9SYf/LS+gTtUj94dqnXPasWc3tWqRW8dAnj53dsbXKvZfYlGNKtgY8RctOxe7fVqEzrMy7v0Y+6LF4deW3Era6/BSqarUbJHpMzbnl/Nwi/XRp/YxsbGxqYBiqIwc+ZMVq1axYYNG6KKOYAdO3YAkJPTMLQKoE+fPmRnZ7N+/frQtoqKCrZs2cL555+fkHXHJejOPPNMzjjjjNDXgAED8Pl8bNu2jUGDBlmeJ1pqcHV1NaNGjUIQBDZs2MBnn32Gz+dj/PjxyLJsOm9paSnDhw/H5XLx3nvvsXPnTp5++umwMisqq1at4vPPP6dbt26x34gYiCZ2cgZezdHaEry7P2FP6R6O7nwXgF1fvIJ39ycAJDmTQkJPZcj+V+jYfwwAmW7rn7pUwTF63ELDGm2RxIx+2/nnzbB8Xi252fXN6c3Wp2LFjWyUUWtUN87IqmV03SrRsm3n3/Qxb82LngRhJAqjdc/QZxdHsxyuXNqP7c4ccrb9AVmRoq7JxsbGxiacGTNm8Pe//53XXnuNjIwMioqKKCoqorY2+EF5z549PPLII3z55Zfs27ePd955h8mTJ3PhhRdy+umnh+Y59dRTWbVqFQCCIDBr1izmz5/PO++8Q35+PpMnT6Zbt25MmDAhIetOqMv1j3/8I1VVVTz11FNxHV9cXEyXLl3YuHEjF154Ie+//z5jxoyhtLQ0ZCIuLy+nQ4cOvP/++4wcOdJwnvvuu4/PPvuMTZs2RTzfgQMHOPfcc1m3bh1XXnkls2bNYtasWZbWGkuniKZixIg7+KVyPxmudPp37Mc/193LBcNnMXvye3HNF6mQrtHYxqLvRhFJtOi7bRjVoDMjFsuZ9hgr6Gv+GaG/rkjuVqvnNSoyrKfTaXNIdXWyXa82Nja2yzUGl6vZ38yXXnqJG264gV9++YXf/e53fPPNN1RXV9OjRw8mTpzI3Llzw+6tIAihY6C+sPCyZcsoKyvjggsuYPHixZxyyimma2lyl6sZv/vd7/jrX/8a9/Hl5eUAdOwYrObs9XoRBIGkpPoA7+TkZERRbBCgqOWdd97h7LPP5te//jVdunRh8ODBLF++PGyMLMv8/ve/5+677+a0006Lujav10tFRUXYV6K52cACpWa73jx+MTePr88gnjI+j25p2QgInP7LX2nvbsfKpf3o3/GUBlYnq+LLzIqlJ1GlRaq3Gnd5MFqTaknUFhSOtpZo4ihStmgkl7OK2hd39LiFoWLE+vm182itjGbWRv15zVzeVmL9jn67AE+gEjtM1sbGprXgdqYhCnHlY8aNKDhxO60nbSqKYvilCrMePXqwceNGjh49isfj4YcffuCJJ55oIJS1x0BQ4D388MMUFRXh8Xj48MMPI4q5WEnoXd28eXNUBWmGUWrweeedR1paGvfeey9/+tOfUBSF++67D0mSKCw0zxj98ccfycvL44477uD//b//x9atW7nttttwu91cf/31ADz++OM4nU5uu+02S+tbsGABDz30kOE+o4zWeFius9qEP/SD7cD+d9zzOAUHABnOdPbu+AcjxwWFnioojAQKxFabzsjNt3JpP+Y+X8Gu/FivzJgVReGxe0Y13Iyshvo1mq39rXkFrCiCNe/M4KX/uy1sDn3GqNGcVur6accHhWa/kNDTZ7Tqt1lJENGvWbsOo9p/egE46shDrO/yKG5HfL+XNjY2Nokkxd2Ri/o/aPdybQLicrn+6le/CnutKAqFhYV88cUXPPDAA8ybNy/mhUybNo333nuPTz/9lO7du4e2v//++0ybNo29e/ciiiLXXXcdO3fu5JxzziEvz9jK4Xa7Ofvss/nPf/4T2nbbbbexdetWNm/ezJdffsmVV17Jtm3bQrFzvXv3juhy9Xq9eL3e0OuKigp69OjBm5tuJjXdHdquF3WRapmZMe7SeZR4SxEROSmzDz9X7ScgBzjqKaHSV8UZWYNo50qnJuDh97/+W+gh/8qbuUiyRJW/io2bnub6sc9S4i2lU3JHxl/1gqFFKpq1p6nJzYZfPRRZxJhhJDi113DB+bfz6eZnueHKRbxcJ+isCFqzEi76MbFm7Krr03cOUUuiRBOrZnObuXPV7R37zyDF3RNRcNjuVxub45TW4nK1iY1Y7mNcgu6GG24IezCIokhWVhaXXnopo0aNinnBVlKDjxw5gtPppH379mRnZ3PnnXdy9913G47t1asXl19+OX/5y19C2/Ly8pg/fz4HDhxg4cKF3HHHHYhivcdZkiREUaRHjx7s27cv6prVGDpV0O3KL4y7nMbIi+/j0/2bSXOlcXTXu0i9zqZrWhf2lf/M2TlDKK4uZmDn0/js4Of0ateTwzXFnJtzNlsKt/LyHb+E5nlrXgEvu89iYNYA9pT+yKCsgfxc8TNj+4xiwtVLDC1OWtGgtTQmyupoFSPhq7dIGRGPCI0UU6ed08yCN/+mjxk68W3TjhCxlELRHqMfE0usYLT9nU67n1S7g4SNzXGLLejaJrHcx7hcri+//HI8hzVAURRuvfVWVq1axccffxwxNbhz584AbNiwgcOHD3PVVVeZjh0+fHiD8ifff/89vXr1AuD3v/99g4SK0aNH8/vf/54bb7wx3sth076H6T8ohxG9HzQUdmbWum2Hv6Z9UiYeyUPWaeMorinm9KxBHKkt4VD1Ybqnd6NrahYOQaRXu+7sKfuRUk8pL9/xS5hw+KTr/9Cu5ggFX/6N3GxYur+M9APfMmHWj1HrooH1IshNgWqlWrdG65IM/mtUdDgSU8bnIckSBSXf43K4+ejT8CQdM5EYSRDVx74BzAq5V43Qi2Wrlje9mIs0p1ktQbPrkOUyFDIRcJheo42NjY1N2yUuQXfiiSeydetWOnXqFLa9rKyMIUOG8OOPP1qaZ8aMGbz22mv8+9//DqUGA2RmZpKSkgIEs0r69+9PVlYWmzdv5vbbb2f27Nn061f/QLvsssuYOHEiM2fOBGD27NkMGzaMP/3pT1xzzTX897//ZdmyZSxbtgyATp06NVi7y+UiOzs7bN5Y0D6AN+17uME+bQLAzeMXs3z19NDrkp3vcsKgiXRwdaR3Zi+qfJW0c2dwXs5Q0l1pfFdSwBFPCb3b9cQvB1h5Xykr+ahBPNXi106md0ZPZt1VSI/nB/L1ozLDrvrW1NWaCHKzzZvJx0qk5INoBY9zsyFtaEMXvCrmtOtUhZG6TX3v9OfQujG1BMc1jGMzE3GRrlFrxTNKlNC6ZI2OiZbtWi/yXsA16I8kOdJtK52NjY3NMUhcgm7fvn1IUsMaV16vlwMHDlieR42Bu/jii8O2a9N8CwoKmDNnDiUlJfTu3Zv777+f2bPDi/nu2bOHI0eOhF4PHTqUVatWMWfOHB5++GH69OnDwoULyc3Ntby2WNGLuAb7snIYEWHcFb0uQ0AIPmwVQICspGAQZ8/07oiCQJ+Mnowdv8jQwvTe6ttRD500tYBf8gsYdlXDB30siRFWSJSYUxk9bqFhXbpo615RBOiSDhrs17ByaT9Whl6p1sGGwtFoPjXpwWoJlMYSXEPDzN5oLnT9+vyBEtyOVNtKZ2NjY3MMEpOge+edd0Lfr1u3jszMzNBrSZJYv349vXv3tjyflfC9xx57jMceeyziGKOYt3HjxjFu3DjLa7ESNxcL/QflNHBbmsXXNRANQv2/2tprKkbFb8U6q8tygxg0lbnPVzCid1AcaK1U27KaN17ODFVU6bNB1X1W0B976QV3scHE5aoXYMtWT2PS1NjW3BgRZ8WiZzZeRRWhRpmvests7/w5HBy8jCRnetxrtrGxsbFpncRUh27ChAlMmDABQRC4/vrrQ68nTJjAtddeywcffMDTTz/dVGttc6iJBSN6PxiXWNI3h9ejPrBVi5Z+jCrYICgId+UXhsaoomZFUfzrawrU9am13VSMarGBcUcJFfXjwuSxCxucx0hAqfdKW9LEjCnj8xptkYsUMxftfNqadpFcrep+tYOET6qw69LZ2NjYHIPEJOhkWUaWZXr27Mnhw4dDr2VZxuv1UlBQEJNV7HhAFXX9B+WEvrTbox1rZKFT0Rbd1WZDav9VrW96sZebXS8EI7mLmxNtfTitSKlPmJgVqrNmJLhys/Ut1uqFy6BzbjLsm6oVb0YxeI0lN1ubUGFcVFh7Ler6Vdev9n2bMj4vFGunbtcKdKP59IwtedpuCWZjY2NzDJLQ1l/HE2rZkv0/7earkj+bjhvR+8HQ99Vbp5E2NJggsS0rJ1TqJBKb9j0cNk590OuD4Vcu7cdb8wr41UNq8d/IFjfV1doYy5yaVJDIxAiIXoLj0gvuYsbvV4dtU8dfesGdKATd+aWeMjqmBBNNSn3lbDv8FT9/9abhufQZomqRY6N4PiBUssRorfo6cyqxlrRRRazZ+cF6PJ+6zsGBQvafuYxkZ5qdHGFjcxzRmsqWVJQUUltd1uRrUElJa0+7jtGNKK2RJilbsmjRIqZMmUJycjKLFi2KONZq94Vjgc0/P05qupsRvR9sYOnSijmwbgHatO9h09In+oK22nipFUWEiTmzWnL9B+WwIr+Q/lmWlmOIdg1FJ98NRU/GP1kd2k4HeoGl7rt8xL3c8ru3Tct0bPj0aUZdeB9eyYekSICCpEgc9ZSi0PCzi5nw0VrIjLNc6483E6DqPYpWn9BMEE+aWmB4fnWf1uKnLe0SqXvEdmcOmVIlyTG0wbGxsbFJFBUlhfx1/kSkgK/Zzulwuvnfuassi7q8vDzy8vJCsfWnnXYaDz74IGPGjAFg2bJlvPbaa2zbto3KykpKS0tp37591HlfeOEFnnzySYqKijjjjDN47rnnOOecc+K9rAZYttD16dOHL774gk6dOkWsFycIguWyJW0ZfWFhPVpBprW0aEWfKrT0D3wjd6xeHBoJBKPjIhUJNkrcaEnMRJyWm658nhf/b2bEOnI3Xfk8Rz0lvL3+wQZjrJxfP59+bUaFg83i4axa5SJZOaNZcVW01lujoszqGgcHCjl81is4RJeleW1sbNo+rcVCd+iXXfz9yaarOGHG7+5eQdce/S2NXb16NQ6Hg759+6IoCq+88gpPPvkk27dv57TTTmPhwoV4PB4A5syZY0nQ/eMf/2Dy5MksWbKEc889l4ULF/Lmm29SUFBAly5dTI+LxUJnOYZu7969odpte/fuNf06HsScESN6PxgmuvQB/Zv2PRwSc1oLmjZODiI/vJetnhaawygeTEUr0tRCx0ZiTvtvayJSgdwX/29mg31aCxSAKIi8vf5BBp11Q8TzaBML9BidO5KYM4qDi6driBHR5tGfy8yNrF2jX/YmZG02NjY2xxrjx49n7Nix9O3bl1NOOYVHH32U9PR0Pv/8cwBmzZrFfffdx3nnnWd5zmeeeYabb76ZG2+8kQEDBrBkyRJSU1P561//mrB1x5QUofLwww9TU1PTYHttbS0PP9w6AuybG61gA2PBpAo+vYjSjjVLUNBuX7Y6GIOnTbTQZtRqv1ePNRobiZYQetFKeGiL7+oL7WpZvqa+aPNlI+7mxiufY+DQ/w1tyx3zjKkbUy8O9fObdYEwW3Mk4R1pnx4r4lBfn87sWrY7cwhIlXa2q42NjU0UJEnijTfeoLq6mvPPPz+uOXw+H19++WVYhypRFBk5ciSbN29O1FLjKyz80EMPccstt5Camhq2vaamhoceeogHH4zN1XWsoQqpEb2Dr4cUT2NFfiFgLnZjEVmRxmqFn5k4HFJcGMp+1c+nWvLMXLFWEyAilVuJRKRkCKPSJWbxaxMue5g9ZT+iFvXrkNyBjgPGoCgyK967o1FriqVcidG9GhwoZLszJ2yf2T3V3m+r9zJSD1x17SU7n8I16GGS7Fg6Gxsbmwbk5+dz/vnn4/F4SE9PZ9WqVQwYMCCuuY4cOYIkSXTt2jVse9euXfnuu+8SsVwgTgudoiiGGXJfffUVHTt2bPSijhVUQZU21Ny1Fw+qe1cfV2cVrZjTzgdEtODFks0ar7tRPbdR8WQIxonFci8FQUAAspI7MqLb+YztPdpwXCLfn0QS6X4b3SMzV7H2GPXLHziEJAcSt1gbGxubY4R+/fqxY8cOtmzZwrRp07j++uvZuXNnSy8rIjEJug4dOtCxY0cEQeCUU06hY8eOoa/MzEwuv/xyrrnmmqZaa5tBdb/GK7iszK/9NxJWhJ8+vk9vncvNNu+VGoloiR5G7MovjNiXVM38VDGzlr29/kEEBEQEBEHE7XCzs6SA3RV7Y7qGpmC7MzHu7EjuXiOXtH5cya4XqPUftV2vNjY2Njrcbjcnn3wyZ511FgsWLOCMM87g2WefjWuuzp0743A4OHToUNj2Q4cOkZ0dQ+xNFGJyuS5cuBBFUfjf//1fHnroobDWX263m969e8ftYz4W0QouvagyKnMS79yRUGveadcQ6Vi9+7X/oBzS6ta6Kwarm5q5q53PLAtXj1Hv2UlTC3RtwayvRQD8coDDtUc46ikNrU+LFYtitPp48RDLnFYtpEY1CtXXDc/9BM5B80hyZNh16WxsbGxMUBsoxIPb7eass85i/fr1TJgwITTf+vXrmTlzZsLWGJOgu/7664FgCZNhw4bhctllD/Roy4RoRZwqovTxa40Vdmao82rPpZ7HyjnV6zCrhxcNvZhrDKpA0XdHgMiCSEFBqIuhK/WW0T4pE5fDTQkNOzDEso5EcM6whQRkhcsuctAhSeRf70f/pVaLOKvfazEqZqytTaeij61bubQf0xcdwEcP3A672LCNjaIoKMjIioQoOBDqHFn278bxw5w5cxgzZgw9e/aksrKS1157jY8//ph169YBUFRURFFREbt37waC8XYZGRn07NkzFHZ22WWXMXHixJBgu+OOO7j++us5++yzOeecc1i4cCHV1dXceOONCVt3XEkRF110Ueh7j8eDzxdeILA5aty0VrQiRiugVFSB1dTttiLNb7ZPK/TUGnW78s3FnFZEqOO1/yYSM+EWWWQFXYm1X8wg9bQ/8tOOfxqOSlR5kWgMDhSiXPAG5T6Zotpg+60jXhmXCOcOW8iW/8yKOodeyOkzZbXFjMH4vukteItvg7fmFfBx18cQcdoPLpvjEkWRCcg+ZEVClo/ipBav4kIRkhCENJxiCk7Rbf9+HAccPnyYyZMnU1hYSGZmJqeffjrr1q3j8ssvB2DJkiU89NBDofEXXnghAC+99BI33HADAHv27OHIkSOhMb/5zW8oLi7mwQcfpKioiDPPPJO1a9c2SJRoDHG1/qqpqeGee+7hn//8J0ePHm2wX5KO/V6RamHhb3cXcELHTD776ZGY5zCy4LUGtMIulsLDVsVcpGLHRkTrtKBH75psqtZkgwP1a+95xUq8koJXUuj2/W2Gwmt7z2eo8hv/uglATqqDfpluXnl3uuEYI4yuTd8mDqL3elUtd7cuvgGH4LIfWjbHFIqihHoYi4Kjwc+3oij4AqU4OUyXHQ+HxbkOGTqdEo+XioATQeyAy5GOS0xGUrwIOBCFtvEhqLUUFm4LnSJaE7EUFo5L0M2YMYOPPvqIRx55hN///ve88MILHDhwgKVLl/LYY4+Rm9v8VaCbG1XQjb96GYuWjGPlBzNjtkpFi2nTCqtoblIr8XHqOKvuUK3FTcWou0Ss121VJMYq5LTkZsNX3a7nm22vxHV8NAYHCpGHv4FHUggoCrICshK0CToF6JLi4PPPZoXGnz98IQdqIn/QEQUY1MHN6vW3Wl6HmVjVWk/1Vjp91wst82/6mKIhL9mWCJtjBgUFSfbj8R1EUhTSkk4I+9ASFHsyVd6fKf/uecM5rr70IQ7XlFDh81DilZBIQlG8SEoyKe7uiKIzFN7RWmktgg7sXq6x0CS9XLWsXr2aV199lYsvvpgbb7yRESNGcPLJJ9OrVy9WrFhxXAg6lcl3bWVn0VfkZoOjx1y2/jLf8rHahIVoRBNqkfZr4/bUIsNazMSiUQFkvbjTE81Cp3fLNlXrsRVFMLBb4ucdHCgk6aJ/cKhWQvLJhmMCChyskeh71jOcc+AOVhTB5s9m0XPw0xHndgiQ7Ij9oaBmIGvFr7btnFFHCzNX9dwXL2Y+N7L/zMW4HemG1gwbmzaFAt5AKR3d1XgkP9W+AC5HFi5HGoLgQFYkanwHTcUcwL83zAPgutFPUOWrxi/78Uk+fqosozxQQYqrI61cz7Uq2nXMabMCqzUTVx26kpISTjzxRCAYL1dSUgLABRdcwCeffJK41bUhVhTBq+/OYPAJc4FwK5SZaNmWZS5oduUXBjNL68qI6L+MGFJsvF0tN6Luj7WcirY2Xf9BOUwZn2cq2qyINCvFi6HxsW2Jts4NDhQSGP4GhTUSkgW7tldW2Nr9mdBrZ5Q/+KlOkTctJEdAfSkZaFhORtvSLJJlziwucbszhyW3/hOPfz9+ubYuSNwubWLT9lATHAKyhySHg94ZHSndtYTD3zzCga/u46Kiu6n1/ULZrkWW5hO/uofstK50zziB7hkn0C2tHYJSgqT47fI/Ni1OXC7X008/neeee46LLrqIkSNHcuaZZ/LUU0+xaNEiHn/8cQ4cONAUa21VqC7XNzfdTGq6OyRO/mfU84iCwD/XzQiLE4vHHavPxIxH4GiPsxLbFo3GZL5GQitOEjF3ouPmBgcK8Q17nUqTGLhIdE9z8p9Pbyc3GzblmFvpeqU72bTpdtP96jVpEyHMrtGoU4dR7BwYu15Vbnn2IgQxhySnXdbEpm2hxs35A4fIcFay56vlCfu7MGV8HoqiUOYt47uSnzlQm0KquxuiEJeNpFloTS5XG+vEch/j+um78cYb+eqrrwC47777eOGFF0hOTmb27Nncc8898UzZZinYWRQmhP71/kzyD85n0uXPM39m8JfGaryaFn3/VSsY9QY1E3NGVjor54n3OCO0600bmseKoubLOI2VAd1zqAnE9wm82BOMnYv0IHGJ0DnZYbhPe5/UB5L6ZUb11uB9tFKSxUzMASy5fSPIB/HLHtsCYdMmUBQFSQ7gDZTjD/zM4W+fYc9Xy4HIvzM3jVts+Rzq36kMdwZdUjMRlCpkxe66YtOyxCXoZs+ezW233QbAyJEj+e6773jttdf46KOP+PbbbxO6wLbKzqJHeWteAWd3f8DSeK0osuISNRJRsXzyNIu504pIo3MsWz2tgegys+xp59CKEnWbdr2tVcip/HDiQktuViN8ksLQYQvJzTYPs2nnEln1Qb27VW+FM6s/Z4Qq+tR7aiT0o6F1xXZKEvAFKmKfxMammVEUBUnxU+vbz+FvHuHwty+E7Y/0AefFNdOjjtGyfM10REFEFAQUFOzPOzYtTVwuVzO++uorhgwZclyVLZm/dDyDz+nZYL/qZp0/sx3/WnUbOw5YT5aIhF48qX981FZjWmGkPtgTWRMulmQGo/Ih2nivxvR7bapkCiNys+GL7s9QG6+iIyjkBECfRiEAGS6Rb/472/TcKkalUIwEXjS3UjTXq1HyRKcBd5LqzrHdrjatGlmRqPX9wtGdzzV6LqsfosZd8iDbiw/g5QRSnO1a7e+I7XJtmzS5y9Wmnn//ta+huFBF1NznK9hxYD4Dc+5nWC9r1jowt9JpPz1q46SM1qC17Jj1dLWaIKGO0yZHRCI3mwYZvOofRiMrX6R5tDS3mFPxNkLMQbCciV7MJYkCPdKcfPPf2QwOFFq2DKjo4+kai1GLsPrv7T8VNq0bRVHwS7UJEXMQHtYQ6fdszUcPk52aisd/BKXBb7mNTfNh/5VuJPc8VWlaJPfFR88LfT975npKvbJlMaJ3iarZrWoXAL2wU1/rRYH6B2nTvocN3axWChrr6+Gp6N2yWldtpAzeWNiWVZ9Va1VMJppEJldAsDRJt1QHp3Vw82ldssTQiW9TvXWa6fsH8Ym3RAk+BTs+yKb1I8lVYQW/48Hod0afSa7ny/8+R6bLiydQZcea2rQYtss1TrQu1+QUl2WR0a/r/fz+188xaWpB1GP0Qkpv1dJnMurbPlnNbjU7Z6RtsWLUHcKoHp36x9RKfT599vCQ4sKEiy8IWqnmv3QLR72N+/QtCrBv250A/O+Vi3EIgBAsR6q+b4nK8NVjdl8iJUSoTJpaQKf+00hJ6oMoGCdu2Ni0FOojTJK9CPJ+DnwT/Ps3OFAY1vEhXrQhDJHCGQYHCvlp0B9Jdvduld1WWpPL1VNVhN9T3uRrUHElZ5KcnkB3RjPSZIWFf/WrX0XcX1ZWFst0xwT9BmSHypaYCacXHz2Pm+7/HICCQ48C7bh29At8ddA8rk7bR9VsXq2Q077Wi4LGCDKrx2qvX1vIWEUr3vRWvSHFhQypi69TszOtkJsNK7T1/iwfGRuTphbQO8NFTcAXdxydUwiWL9lX9/qv/xfe3qspxZx+fzTRq4+lW7m0H/NvepADg5eS5EhvdQ8qm+MXtTRJrb+YMSVPsXN/IRd3z2FFEWFiTl/yx+oHv1jKnGx35jA4/4/sGfgnMpK64xDiqtt/zOOpKuLzt65Flpqv9ZfocHPer96wLOry8vLIy8tj3759AJx22mk8+OCDjBkzhpKSEubNm8f777/Pzz//TFZWFhMmTOCRRx4hMzPTdE5FUZg3bx7Lly+nrKyM4cOHk5eXR9++fRNxiUCMLtfMzMyIX7169WLy5MkJW1xbwii2S32tijmVuc9X8NXBuri6ng9ELRystWhFsraprlftQ33K+DzLblUId8HGWoBYLVy8osg881U7p3aM6tJIG5rXQAyaFUw2suIlyh27cmm/sPvY0S1yQpozrhgFlxisMfdJhBpzWnEeaywdhD+oIj2A9PsmTS0I+wIMEyPmvngxfqkM7ALDNq2EYEZrAI//AGNKngqJOKPkIZVovx969DF00Y7d7syh4rvnqPUfQVYk2/1qgN9T3qxiDkCWfDFZBLt3785jjz3Gl19+yRdffMGll17K1VdfzbfffsvBgwc5ePAgTz31FN988w0vv/wya9eu5aabboo45xNPPMGiRYtYsmQJW7ZsIS0tjdGjR+PxeBp7eSES6nI9ntAXFraCkRWvX9f7ae8WedlCQ3aj0iZ6V51RQdnmiDnTu1G15zWy2GkxE47RWqMZicZEFxQ2Ysj5C6kJyHglxbSUiVOAZKdApktks6anq1W07bysXpPeNQSxWSW07letuFOZuWgEstgDtyPNttLZtCiqmKv2HqD8u8QkQZhh9PsX7XdycKCQn89YRKqrU6v5XWktLtfKIwVsXX1jk59fz9DxL5HROXqIiRkdO3bkySefNBRub775Jr/73e+orq7G6WxomVUUhW7dunHnnXdy1113AVBeXk7Xrl15+eWXufbaa03Pa2e5tlKMhFXBoUfxb4su5vRUb51m6GJVM0gjWXlG9H6QXfmFppmv6hh1n9W6eEZiDswDiocUF5pa39TjjM6tHtNUSRLRLGTbNs/iu613MOzgnYwovJOcVAcZLpEUh0AHt8iIwjv5cdud7PzvHXGJORX1fbUqUPVxPrEKW32bMH1rsOdv20S37VMIyD7b8mDTIqguVq9Ugce3n3Fl4WKusQkRRlgVc+rvzMql/djuzMGhlBKQvfbvShtHkiTeeOMNqqurOf/88w3HqCLZSMwB7N27l6KiIkaOHBnalpmZybnnnsvmzZsTtlZb0DUhRhYkbR9T9Xu1Vty1o4NFMI0Eil5kqNmfRm7W/oNyQrFoRjFVm/Y9HOaKHVJc2EC86bNirYi6IcUNY+QiYSXxIdpxele31iKVyJIeRvzqoX786qF+bPlsFt/+dzYFX9zBV1tmN8pCmJsdfK/jncPoYROLuFMFnN79qrLdmYM3UISsHPuJTzatC0VRCMg+vP6DHM5/mJJdzzcYs92Z0+S/91ZiUAEO71zCpYfvxydVB3vK2sKuTZGfn096ejpJSUnccsstrFq1igEDBjQYd+TIER555BGmTJliOldRUfCHpmvXrmHbu3btGtqXCGxB1wTo3Y9awaG1KuktTL/+1SImjXo+otVKi2rBqd46LeyPzIjeD4ZET6Q/PmrCw7asnJB4M4u3sxKHZybQ1KLHWnblR7bOmWHlmEgxNEbo91tNTtDGnbUWEuFu1iZFGPV57fX1HGr9h1EUu+aWTfOgKAp+2YPX/wvdv7o3tN3o572pQy7MMPp7sHN/IYfy51HtK0RS/Laoa0P069ePHTt2sGXLFqZNm8b111/Pzp07w8ZUVFRw5ZVXMmDAAP74xz+2zEI12IKuCdBncQKGyQ5aduUXMvf5CnYWPkr1wOcbPETV4sFaV6m2ob3+vOq5zNyHm/Y9HLLi6cWWOr9RokS86EWdGiMWrb6Tfn2xJEKof9ij1XJrqQeAEWrLrpVL+8WVHKFFLVaszhPLnNoHkz5pYrszh15f30Wtv8x+QNk0GcF2WgqyIuOVKin6ei4lu/ISUoqkuVDX2uvru/D4fsYTKCMg28KuLeB2uzn55JM566yzWLBgAWeccQbPPvtsaH9lZSVXXHEFGRkZrFq1CpfLZTpXdnbwwXPo0KGw7YcOHQrtSwS2oGtm9MLOSOgVHHo0ouVHdYeqQfPVW4OB8+o8aiC9FiPLliqOVGGnHWNWiLglieT2teLmbWpXTCKZNLWArasmAPVu2FgZOvHtBnOOHrewUUIxPEboED6pxn446VDda9qv451Y7oU6zheoptZ/FI/vZ07YfkszrLLxGNV1vGnc88EPQfkPUvzNfPz+n/AGKlEU2f7ZaEPIsozX6wWClrlRo0bhdrt55513oiYr9OnTh+zsbNavXx/aVlFRwZYtW0zj8uLBFnSNpGCndfNOpCB+/bb+g4KxINeMep7+g3K4eVwwTs5onN7CpMZgaePkIsWrqfu0As8sGSHWUiZaNu17uMEcWkuhGaoLVD1eux4t6j3Tb1PRxpJpt7dWobfdmRN6L6MluhihJsiowhDChaIWbUC3EUb7Du38C92232zH09Whxnj5pFo8gVI8gaN4A2X45Vqk49QqExRnMgHZi0+qwi978EseArIPSQ4gKxKyItf9KyHJAfyyhxp/MYfy53Hk2wUc2flcA6uclYLYLYH6QVz7u+qoK8atXkPxzjwOf/MQtf6jKNiirjUyZ84cPvnkE/bt20d+fj5z5szh448/Jjc3NyTmqqurefHFF6moqKCoqIiioqKwpgqnnnoqq1atAkAQBGbNmsX8+fN55513yM/PZ/LkyXTr1o0JEyYkbN122ZI40XeK0JeGUH+hVUFllP2pbleL60LQDam3jJ2aHSxt4vsymA2rCi9tORB9pwW9cDErEByppIh6zJDiwtC6opUgsYLWlasVZUbuV6210ag+XbS16K2f2h6z+thGdb6W6BVrlVgLEJuNnzI+j62rJjSw4kHDGEJ9XToVddvURf9DiqtDqynP0NyomZeeQCkOSnHiJ9PtJMXpwifJVAckqgMOJKEdbkcmTjFY5uhYvl+KoqAgI8l+fIESen59l6GrNFHdHNoiwc4Sj5Hszm6WzhJ22RLrZUtuuukm1q9fT2FhIZmZmZx++unce++9XH755Xz88cdccsklhsft3buX3r17A8Hf75deeokbbrgBqC8svGzZMsrKyrjgggtYvHgxp5xySsS1xFK2xBZ0caIXdGBcg81IHBjt01uJtKKtdtDz1ARkuqU62fzzI6ZCZld+MGZKnyShou7THqudSxVX27JyTPu3JsINqxWIZtvVc2qtd/EISa1I07cJ25aVEyYo1QzZ1hRTp8foAai+ryqqKz6S+NNnr+rnMzrOzCryh4WXk5bUCwHhmBYpWrR/Nr2BaryBw3RO8tMzI5Nkh5tkZzLprjRkRcYjeSn1VFBUU85Rr4JfScflbI9bTAaM71drvo/1166grj8Y7xZMkpGUAL5AJYJSxVGDTFQ9kX4WI+07FhgcKOTHQU+QkZSDoDrMBBBMfi4aQ2sRdG2hU0Rros0IugULFvDWW2/x3XffkZKSwrBhw3j88cfp16/+wbFnzx7uuusuPv30U7xeL1dccQXPPfdcg/RfPQcOHODee+/lvffeo6amhpNPPpmXXnqJs88+G7/fz9y5c3n33Xf58ccfyczMZOTIkTz22GN069bN0tqNBJ1K/0E5oXZfu/ILw8Sa1jqkF3Fq6yutcDk1+35S82eajtMKE23JDqNxWguY1e4RqriKNl67jsZa8NRzqyJFW2DXTIyarQXMhaBezKrlY7TWztYo7vSFpCMVlY4HvWjUPlS1ou691bcxZvwiJk0toPNp9x8XVrqQC1HxIcs+JLmKZLGSHmlpnJCRRbukdjgEscEDWVIkagO1lHrKKa6t4IjHS63kRiYFp6MdouDC6z8KgkKyqwsiYqu6l+pjQkEOupUD5QhKFYIgoCDiQOLykuDPn/o7c6yLsUSRmw3vdrgVUXAiiqk4xVQcojvhH5Bai6ADu5drLDRZL9dEs3HjRmbMmMHQoUMJBAL8v//3/xg1ahQ7d+4kLS2N6upqRo0axRlnnMGGDRsAeOCBBxg/fjyff/45omgcAlhaWsrw4cO55JJLeO+998jKyuKHH36gQ4cOANTU1LBt2zYeeOABzjjjDEpLS7n99tu56qqr+OKLL2K6Bm0vV5Vd+YWmYk4VGUN07Whys4PWKOeQxex6dzpXjXyOjG9uheKZYZaj/oNyYN/DoBVpdaVHKAq3NlEngkb0fhB6h1u7RujEnV7c6MWfmUhSt1sRWuo+7b0wE2T0rn+tFShaoad9rZ1Hu84VRZCL8XnCXK+DcuifFW411RbqNXLTtjRTxucxetxCJk2t3xZLL1wjVi7tx0r6Mf+mjxk68W2WrZ7WQMytWzOLZaun8Zc1M4Dgth5fzeTQWS/jFKx1TWlrqC5Eb6AC5BJSHH5SXSLt3clkpXajQ3IHkhxu0wewU3CS7k4nzZVGl9TOVPmqqfBVcqi6hF9qKpBx09ldRUCBGp8XhAxcjnScogta0PKpXrdfqiUglSNSS5IYoGjn8gZjV2i+1wp/W9hFZuf+QkqLnmPEsDs46jlKue8QtYF2uJ1ZOMWmd8W2BMnp2W1WYLVmWpXLtbi4mC5durBx40YuvPBC3n//fcaMGUNpaWnoE0V5eTkdOnTg/fffD6u6rOW+++7js88+Y9OmTZbPvXXrVs455xx++uknevbsGXW8vvWXapHTYvbwVwWC6gZU/zWyxmlRj9FbqiBchKkPda0gUa1c6mtVJBpZBY3EndZCZxZTF80iFm2M3sqnnkcbR2dkMdOKXTPBaPS9Nn4xJJbr0L932jZmLW21Uy1xQTFXELa9sdY5o3Opc2pj6fQib/5NH7P/zBdIdrZv0w+gektUMC5Olv0AyEj4AiW0d9XSKyOTjsmZJNW5Vp2iMyZriqIoLF8zPcwCPDhQiHD+fLZtfSE0bnCgkJ9PfxJRTMMhJuEU3SG3nIICKPVuujoSee8VRcEv1eCXjnBFySJLreP03UYivbZpyHWjn6DCW8neimKKal2kuE9AFJwJeV9bk4XOxjptxuWqZ/fu3fTt25f8/HwGDhzI6tWrmThxItXV1SQlJQHg9XpJS0tj7ty5poX8BgwYwOjRo9m/fz8bN27khBNOYPr06dx8882m5/7www8ZNWoUZWVlhj/sXq83lLIMQUHXo0cP3tx0Mz/tPWqafBAthi43GypPe46Mb28FaOA21WLFlalNrtAKuEgYiTkjoaaO1Z5DFY9q3B0Yu3P1gjNSgoM+e1VfR04rbFWMYvK0cxlZBPX7tOfTCm0V7WsrlrpEuUBbEvUhbJRhO3rcwtD3k6YW0LH/raQm9UQU2m7yfLATQQkCNbiEAEkOBUEQcAjQMSmZbmmdaJ+ciUsMhlksXxN72z4zrLj4Ow2YhUIyJTsfq3t9K+BCEJw4xFRcjrRGu+pUq5xPqkGRCineubRRa7aJjZuufJ4STynfle7nsCcFt7NLUMw3UtTZgq5t0iYFnSzLXHXVVZSVlfHpp58CQYvdySefzI033sif/vQnFEXhvvvu4/nnn2fKlCksXWr8h0a96DvuuINf//rXbN26ldtvv50lS5Zw/fXXNxjv8XgYPnw4p556KitWrGiwH+CPf/wjDz30UIPt85eO57Zr/hK2bdO+hxskPGgtQLvyC5l4+fMRrXFmGIk6fQKBWrJE3aZv8q5a5tT9euuUij5JIVISg367mUjUXodeUKkCUb82vXCD+uxXrajUfq+9V0bnV/erwlA9Tyzxf5FEnVYANYWgawlrh3rOwYFChk58O2QhVK10MxaNAEdv3I6UhJ0zmEEawBsoB8WPILoRhWREwQEIiKIDkWBZiMaKGL9cixQoJDtFIf/LxhV1joc/jFvMXxopEDsNuA2HowOi4ARFQRTdIYGtteYFkxgkgu7cYMyfavXzBqpAOULxt4sbtRabxjH+kj9ysPoIB6p9SEIOyc6MRv2M24KubdImBd20adN47733+PTTT+nevXto+/vvv8+0adPYu3cvoihy3XXXsXPnTs455xzy8oz/6Lrdbs4++2z+85//hLbddtttbN26tUEjXL/fz6RJk9i/fz8ff/yx6Q+6mYVOTYowK1OisnJpP/6x8lY8shKMjdOgjVeLFAOlFV6qSNFmoGrFm+oq03eTUFFFmpG1TEUvFKPGvWFcUsXIEhbJZaxFvSb9fdGP1Y+LtkajmEAzF60efbkTK8KuLVvpoGFixPybPma7M4eVS/uxdvXtlHnLuPZ/XuHmZ8eT5s5OmOsv6ParxeP/iRTRQ5rLhV92EFCCaQd+xYVMOxyOdJxiUoNkBCvrUBQFn1SDLO2neOeyhKxbSyylORrjNleFtZHQzxowE5kUBCEYkyfJVZTuCla97zjgNgQcyAQQkTm684UGx1s9//HiUm2uciu/Hf0ke8v38125lxR3bxyNcL/agq5tEst9bBW+kZkzZ7JmzRo++uijMDEHMGrUKPbs2cPhw4c5cuQIf/vb3zhw4AAnnnii6Xw5OTkNmuj279+fn3/+OWyb3+/nmmuu4aeffuKDDz6I+EOelJREu3btwr4gmBRh5tJU+7VOvPx5XnlzJq6vZ9IpyRESCmlD65uwV2+dFjWgPTe7oSjRWse2ZeVQvXVaqIyFmTtE27dVK2D0Fixtt4i0oXmmLkvt+Y2269HPEWm8KtyMBJzROKN16M+h3W62LZqlzorrVftz0dg2Xi2Feg36B/V2Zw5/GLeYSVMLuGL8s6S50oI7lJo6S09iEAQBlyOFFHcf/EIPKvxOslLcDOzYmbO6dGdghwyyk8tRAnup8f5EbaAUn1SFN1CJJPssFW2VFQl/4CB9MpIavd7BgcIGr41q/SUao5Iy2m3FO5/n6M4nOfLtnxh99NGQmAMo2bmIozv/TOnO58LE3M3jghY6o79vRtuOFTGnv7bcbPN70NRFyV9bdzc5aVlkJUl47ELENlFoUUGnKAozZ85k1apVbNiwgT59+piO7dy5M+3bt2fDhg0cPnyYq666ynTs8OHDKSgI/+Py/fff06tXr9BrVcz98MMPfPjhh3Tq1CmuayjYWRRqbn/Dze8DwYf8yqX96Nv1/zGkuJDU/Jkhq5zvy+kh0aCKL6uo2aSqQNGKOqP4MVXkrCgKnkv95K8er+3XGq2ThLb8iRb98aqlTW/9CsvwjSKetGJNX19NjyqE9VbEThm/MXWzRkO9P2ZC0yi+7ljFLD5q5dJ+jBn/LFde+hx//9etjL86KO565T9AQPYaHxQnQVGXTIqrEzi683OVn+LacgKyxAkZOQzsfCJDsnLo395JZ9cR2jkKaecsJBDYS42/xLR3ZtD656HWX0jJriX8d8tzCVmv9nd6uzOHrasmMGV8XpM+/LX9drVdPfTZpmA95m1f1X7T8cdK3JwqyrRf27vdwiln3sIpg29hwJBbDI8b0D2Hz7r8oUF8byLe48GB8Pjgt9bPpU+7LNo7y6j1HSAgVyErki3sbBrQoi7X6dOn89prr/Hvf/87rPZcZmYmKSnBOJyXXnqJ/v37k5WVxebNm7n99tu54YYbePrpp0PjL7vsMiZOnMjMmcGYtK1btzJs2DAeeughrrnmGv773/9y8803s2zZMnJzc/H7/fzP//wP27ZtY82aNWE17Tp27IjbHb30gj7LFeCs7nOpDiis+mAmudngOmsxrjrreM0XxrExRu7EaGhjzlQhpy8KDA17umq7WKgCzUqNORVtnFuk+DQjd6p2u1HsHER2N0cbo+7XZ+PqMRJ5+v1G12VWyBkaWuui1YbTxuxB4x6OLRmUrhULk6YW0H3gTVQHnCS7e+FyNN7a1RAFRQGfVIM/UEyXZC+nduxOp+SOCIJAQA7gCXhRUJBkiUM1RzhQVUGZ3wliB9yO9LpMUQE1VuzwNw3jYqNhxd0Wr6s9EZnKZh091O9VjpeEBv3vG8CObtM46g3gV5JwiMkoihOxLltZQUCueyoKKIhCABQ/khJAJBDcLmYgCCkI+JHkGhTFA4oPv+IgSRTwKwJpDj8jipeH3eNYXbXa8Vdf+hCHao5SXFtLqS8JUUzH7czEIQQTdKK5Ym2Xa9ukzcTQmf0Aattl3Hfffbz88suUlJTQu3dvbrnlFmbPnh12bO/evbnhhhvCsl7XrFnDnDlz+OGHH+jTpw933HFHKMt13759ptbAjz76iIsvvjjq2rWC7pn7OvPKP2fyzvpbLX9C05b9sCJotGjjvfRxcGYJANpadvr4OnU9Ruc3E0pmNenMyqBox+nR15Yzwsg6B8YWPL21Tk80UWc0XotRmRM9kUrWQOSuFNoHULQHrjbrtznRCgQ1dqpj/z/gcvbG7Uhu0tIloVZb/gP0SpPo26EH7dztqNNpIYwyUDv2n44guBGQ8Aaq6ZgU4Kf8V2M6f1OUh0nk3JFi6Y4X9CLu+163caTWQ2UAJMWFIGSQ5MwIFfBV0f/cKiiERxAodf0xgpnE2jI3iiIhaDK8A7KPgFSBk3LSnMFxe75qXIzm9WMWUuoto8xTSYWvlqNeCZ/SAaejfdTyJq1J0NmFha3TZgRdW0YVdN+vGk9GmivqeL1gipTJGQtai5yRkNIKIe2DQn1waN1DWmuf1vqnb/1lJXkgksVOuz9SbJxeoJm5XNV96vfOIQvZXbqH3nufM0yAMEM/1mqx5EhEK5WiF256EdcYK56+/mCi0Vvoegz6Ax6lG8nOdk1ei05RFAKyFynwEwM6ZNInswdO0RlXGZE+p1/P3q9fiThGjYXbumpCkwbDR2rdZ5VE139ra5a83Gz4ImcqXklBALyyQq2UjtPRDqeYjCPGuoGNQVEUJCVAQPYiALLiQZYr6OAKsPurpQ08KEOGzqT/L8+HbdNz05XPIyPjC/g46inhYFUphz0gCZ1wOdJx1GWA66+vtQi6ttD6Ky8vj7y8PPbt2wfAaaedxoMPPsiYMWMAmDp1Kh9++CEHDx4kPT091OXq1FNPNZ1T7eW6fPlyysrKGD58OHl5efTt2zfiWmxB1wxoW3/d1MdY0OldimAezB+L29XIMgcNLWd6K6D+wa7vARqpVpvZfv259cfo122lvp26ditEu29mwtOquIs2n1l2b6TSLUaCDRr+8bb6INULQqgXuFqLbFOgd+/d8uxFIAZLLEDT9iRVFIVqXxElO58KW0884qXbabkc/Na4ZFFLEKuIMir6rN2eaCJZAZtTAGqTUAZ0z2F7t6nUBAJUBNrjcmQCIAqOJmmlFQ+qddknVSDLNSC4EAFZCeASqvEpyTjFFFA8SHKAnvn3M6B7Dju6TSHJ4aT/L4vZub+Q3qP/QoY7A4cgUhOoobCqmAPVFVT6HQRIRhTScDlScYiuULma2uqqViHoKo8UsHX1jU1+fj1Dx79ERueGyUNGrF69GofDQd++fVEUhVdeeYUnn3yS7du3c9ppp7Fs2TJOPfVUevbsSUlJCX/84x/ZsWMHe/fuxeFwGM75+OOPs2DBAl555RX69OnDAw88QH5+Pjt37owo1GxB1wxoBd3/vTqQSVML4rayxRNHB+YCSy/oAEMrnjZ+LpLg0XeFiCbqzMSM1rUaSTBpLYJ6zMqYqBhZO1WXpLaThNF5Y3HDqseoRKp1F03s6q21kTASbyp6oWgkihMp7IwyK9UHfMcBd5Dk7IRTTGqyZuMAfsmD1/8TJbvqXVmJbPZuRQwnIhaysfM1l6CLNp/R2lXRlWjL5uBAIQO65/D1CTM54vHiU5JxiJmIogunmILQyvrhamn42A0KvWBNQLHutYw3cASUagQhWIPOoZQhKX5SnQInpKWT6kohw5WKAlT4KvEEvPgkieqAnyq/QlXAAUIqLkcG/lqJ/x022BZ0cdKxY0eefPJJbrrppgb7vv76a8444wx2797NSSed1GC/oih069aNO++8k7vuugsIdr3q2rUrL7/8Mtdee63pedtML9djhXVrZjW6h2YsmFmD1H+NRJEqyLTHqS5XfQxe2tA8NvFwmPgY0ftBqovNa7yp20MWSV2yxpDiwtDxRtcBQQEygnrRZkQk1zUEH8CegIcfSvfgCXg4tVM/hnx1N0OyIa3uGoyEl9G9NLs+baaxfp9+rUO21mcWa8eZCc9cGrYWM7PiqdY3/c9eSITohEhTl1gArcj7P2597kJqpA4kOTvgEJqmJ6VTTMIjZIZtMxIcVuPKGrY1m9Zgu55ImcBqvb5I6C1akYScmfVLXVuixZx+jmjzGa1tuzMnmD2aAMGrtchVnv1H1ngUlJpkUpxdSXUk05J9b2Oh4RoFHGEdVgREBFJcXcNGyUoHUGQqpUoKyqsRhTIyXcUEZBGfrJDmFEh3OUlzOWnvFgkoMn65hipfOYU+f5Nf17GIJEm8+eabVFdXc/755zfYX11dzUsvvUSfPn3o0aOH4Rx79+6lqKgorF1pZmYm5557Lps3b44o6GKhVdSha8v0G5DNstWNi3mJVwzqrT9aoWVU1y5taF5Y7bv+g3IMkx20tedU69ymfQ+HxJNeLGpfq2MiJUKkDc0LHRPJYqVHvSZ1XWbXGST4CVgAUs9eHDanmSVOL3i1GN3jSPvMrIjqOfQFn6u3Tgvbpy+BoLXKqV9q/KP2foC5Fa4546DeWjWFg98s5+i3T+Dz/4JXqkJWmqaGVoqrE+37B8sCGVkNtUTbbzYmHmE0aWqBpRp0+p93/XuvvtdTxucZvofaMiX68zeWRFn3EvGzl5sddKuWDpnHT4MeocTfkbSkPmQmZeN2pAStW21AzFlFEIQGXw7RiVN0kerqSIq7Oy5nTyoCOdQo3QkIPSnxd+an6lT2Vgrsq6zm56pafFKAzCQ3PdJb+oraFvn5+aSnp5OUlMQtt9zCqlWrwurbLl68mPT0dNLT03nvvff44IMPTCtkFBUFfwG0FTXU1+q+RGALukZyfs97Q3+ArcZ96Yn3OIjsulT3jej9YNiY3GwaCKoRvR80TTrQ9mhV695pj1XFiOpS1e6P5MZUz6kKITNxZrQ9kghW6v4L/mkP/wNvdI3qtkguZ+21GNXi01+rWf087Tm0DzmjdWkTJvTWNb1lUv3XihUuUfWyjB72ai20X01cFhIaS29fz+H8P1LjOxDsD5pAUScIAk7RhdORycln/KHBmtQ1GFmwImFUxy0ejOJWjdCLd62AV+NfI7l+WyKjtTksvrnZ0H/ILWSfNpV1HW9lXad7qFVOIMXdizRXp1CP02NJyEWjXuCJOEQ3Sa72JDnTSHKmkuruRKo7m2R3T3CchCz04LC3E/urQbKjq2KiX79+7Nixgy1btjBt2jSuv/56du7cGdqfm5vL9u3b2bhxI6eccgrXXHMNHo+nBVdsx9DFjTbLNfvivzRwE0aL9TIjUiannniTE6IJBH0LLaNkBb1lTxtnZzSnHrNEkXiSRPTz1gZq+b5kN37Jz6md+pHmTm0Qw2WUOWt0TqMae1oXsZEV1Oi9j/SzEC1716jEDJjXGYwWg5WomC9t3FYsTHvuWpIa2ZdSi6IoVPuP0tF5mN1fvXhMtqAyi407Fq9V/fn8tscMDlb7kYSOJDnbIwqOVpHY0NZQM8Kry3cx5aJf2TF0cTJy5EhOOukkwx7yPp+PDh068Je//IXrrruuwf4ff/yRk046ie3bt3PmmWeGtl900UWceeaZPPvssw2OUWlzrb/aOnorSTQBEy9Grj3VMqR2fdDu25aVY2gdUj/168WM6lbVirkRvR80ffCr596WlRPmMtRa3CKhWt4iuYojWdTMhJAS7DEeDMY3+dsfySqotRoaxdppz2V0fv26otX403a7MFrPlPEN3yu1tZsWI9GnnUP90r/3jSEeC9blRx5CVqSEnB/qLLJyJZ1Tgu3HYhU4baEtm1Y4N9Zq2BbY0W0qP1e7cDh7kerqjEN0Ih5jLtXmImjFTgIhvm5INkFkWQ7r565FURQURTHd36dPH7Kzs1m/fn1oW0VFBVu2bDGMy4sXOykiQYQySvc9DHVWHLMWVpHmMLL0qehdflpxoc9WDe3rXT+vlQxPfYsvrXDQCpMhmuMilejQdqQwEzUjICxhIiw2cN/DDIlyz/T3KajmlIiZlfp7sUnzvmn3x2sxjPTeq/fRqIZetLm0mCVPqGtWhYra9i3R2ZhG7k2r+KRakoX0BD6gFRyC2KA2nlWaq9RGLEWj9RglJzSHda6p7o3RvFdf+hDfVByiqAaSXV1xitG79thERxAEnM6mt8odK8yZM4cxY8bQs2dPKisree211/j4449Zt24dP/74I//4xz8YNWoUWVlZ7N+/n8cee4yUlBTGjh0bmuPUU09lwYIFTJw4EUEQmDVrFvPnz6dv376hsiXdunVjwoQJCVu3baFrJF91Dj4l1VizaHFjkbDipjXLMDU6r2o5i2Tx0icL6OPJ9NazaMV1owkis9gv7Zq1c5jdy2iuUgWlLnwusmAwu/7GxENasUxCwySKSGO1mJUtSRuaF2ZtMrL2NZVoMWo3ZcaKIhDkg3gDFQmJp1MUGZEATtER1tNUu7ZIYrOxSU2xxJKp52nM+eJxczcm3q2pxJz6b9aAqeQMvIXep09hx5ED7K9x4HZ2D7W0skkMomBcH625cSVnIjqaV6iLDjeu5MzoA+s4fPgwkydPpl+/flx22WVs3bqVdevWcfnll5OcnMymTZsYO3YsJ598Mr/5zW/IyMjgP//5D126dAnNUVBQQHl5fTeMe+65h1tvvZUpU6YwdOhQqqqqWLt2bULbotkxdHGibf01euB8wwK9esziq4wwsgxFio2LFOtlFOyvF0RG5U8iWfS08+nPpT+vlfpzVq/HUozhmU/zQ8kPyMic2rEfKa6UkLVOawHVW8hiOgfWxFss12iEvuervg6d/lr08ZHNldmqj6cz+15l0tQCsgbcDGJX3I6M0MNG207JqvXOL3kJ+PdwZlZXPvjkT4m6pDCsxqpFsmbFW+C5MefW/yy0ZNcHdS07TpjO4doACmmIYhpOR9BVLivBPqkOwR2Ml7PdqwmltXSKALv1VyzYhYWbAa2gu6D2aGh7PAVqG4tWiKiCJVqTehUjS5fVjg/6bfpjzDopNAat+9ZMmHHGU3xfuhvFRNAZYUXEaQVctCQHqwkR6jUZ3ZdIljij9UU6vjke4voabtqgfSNXqLpt2rOXIJGKw5GBQ0xCkaX66v5RHuqKouCVaiiu3kPf9ifw/baGgq6prz+SK1ubpdrWWmglCvX+7Oo5k1+qvPiVTFJcHUPuVFu4NQ+tSdDZWMdOimhGzjhSZKmlVKKC0COhijg1Xs6q+1frmjNrlQX1iRRGnRy05zISb41xRRutV++uDHOVfnUXoRg6iw8LK5Y2fVxcpPc0mkvYCtryItZq79VjVKg2HrdbLMdEKkCrj/lShd6kqQUc3rmEozuf4fLihxCln3Ao+/D69+HxF+MJlBOQfaGg4/ovGVmRUJCp8pWi4KRGSuGa0fV9MAcHChkcKGTn/sLQ9/pr0haqjQez+2Mk8prjb4AZiSpVEy+fdZnC/mo3DmcvMpKycTmSjrtyIzY2TY1toYsTIwudFXdlotC7CbXn16/FKCEh2vFG54PI4qSpr3tbVg5DNg8m7brxDSxlZlYwcfAzJDuTI7pcVfQPXKtCrLGu10ShWoK0tEarkJH71ayTQ7/BU6nwC3jlDEQhCZBQlADgRySAhECltxKnoz1Zad04vWMKa9YHiwyrraH07Nxfv33n/sJQJ4dY7lWksfp9WitdS6GuaXCgMCEtuKLdK1U8ftN9OgdrFERHV9yONNpKJ4djEdtC1zaxW3+1EGp7rMbGz5mhb+lllCGqR225pT+vupYhmm36GnKxrjNWMWdVAKpCawRA7/BtKtq1Kmc8xfel3yMKIn2330FNTKtqOJ+Vsa1B1G3a97DpgzZWsdIcAsRKS6mC7UsBOG3ILQTkCgp2LA3bPzhQSOXQp6kMZJLkcJLiiC4WtCJPK27M4s+M7luke6nft6KIBm3YmgojwaZNQFhRFF3Mmf2sWBWD6vm+zJlKUbWDVFeOJfe5jY1N47AtdHGitdClpgdjQXbl14uTRLs3agY+T+o3M2MqPBwNqxZFq0kciRY0ZoV7tZids6DHFPr9sqzB9nitcNr16MvLtLSQ06+rtVnk9CSyGG5uNnzZ/WlqJeiR7qRfOxcv/t/0sP1WiCSCWyLJpKmJReCrbmkrPWlV3u94C7KQSbKzo53g0EqwLXRtEzspohnQdorISDNPr0/EQ39bVg6ndL2f9G9mhs2pxSwLU9+9wayJvFGXh0QKlUS4Y63Epanr/q7HFJyik5N/WtzgeKv139oKRtfRGCGiz6RtqexIK+e84IJn+aU6QKpTYNfWO0zniUaieo3qs5K1bl91n/pzqCgKy9dMN5uuUWuI9Rh1ffHMr17jZ11upiKQjENoj9uZhig460JYbTHXGrAFXdvEFnTNgF7QbcvKYVd+YYMSE4miauDzpH8z01SQQfS2XbHE+CVC7MQyRyJc0rHSEha25ro+M5EXDfVnVuve37Tv4dDPdnO4YqNZ8FTXX242FPRZyGGPRI80J7133x4WE6ei/z3U98jVx7tFs9YlIs6uNROr9W5A9xw+6PgHZKELya72CNgdHVojtqBrm9hZri3AkOLgAy91aNAiZFZqIh70WbTajE7tvPrvtckO2kLBVjNfG0Os12tWaFg7n/5Lvy/e9VnNVo1lTjNiva/xXJvReaw+oNWfk135haEOE0OKC8O6TjQ1k6YWhMV9qf+qrr8B3XNC26VNv0EUoNIvs6LI2C1oJXlBzQJVRZv29zc8Bi36BzX9h7pYMkz14wYHCk2PjeUDo1mbOKPrVO+JNjPYaL7cbKgd+kfWdZyOInYnxWW7V21sWhJb0CWYmq2xu1CsPLAdQr0hVSt+zFyt6r96AacvORKt80Os47RrNHv4m80V6RyRrlP/Wjr9CdN5jASSlfhAo/eoMfF4VrFSokRLJPGif619qIdqheUXsqII+g/KadDVIG1oXkikJKr/qZEo0ZYXKX09h8svXsSPJy0k89J/MnHk8+zcX//zPKB7DlnJDip8Mmec+2cmXf58wwmjnN9oDXrXqfqlvo6EvmSM9lij82vXoR+33ZljemykIsKRxloVptudOYYCWXtcsTedJFdPkp2JbONmY2MTD3aWa4Ixc6mZlQ3Rt5oye3g74vxjqa0np2a86vdDdMudUSHhWGLitPfF7Dh9DB9E74lqdJ4Kb2XE88eLUaZwUxJrLTur1iO9MDESDPoEH62bdUUR5G6dFnfnA/2aI1Ey914Ky/2oH2ccQoD0YW9wONVBl+9uA+CUH2dR2/MZSn0yu8p8DebQXvPgQCG53XPCLHNGazJzxTaVG1VrzYsn3jGa69jofY/0fbTz5Zw2BZ/SgRR3p1bTUsqm7SDVFiP7G/6dbipEVwaOlKxmO19LYcfQxYlRUkS8QffRxNy2rBwG5szF/fWMiMcDYckNWtGlPYfeEmYlw7W5EwisJkBo98d6v7VEOi4RRYIbg1F2bbRrNhJ3apwnmAsZI5pCxESKVVMtcDmbhlBw11345YbjBCDDJXDGz3eExnvPf52qgEKnJJGe6S4y3SL570w0rTMXLd7VrMWaPgZPO1YlnnpvVpITGpNxa3TPY02IANjYeTqy2A2HmGxb5doQrSWGTqotpvg/t4Lsb/I1hBBdZA17zrKoy8vLIy8vj3379gFw2mmn8eCDDzJmzJiwcYqiMHbsWNauXcuqVauYMGGC6ZyKojBv3jyWL19OWVkZw4cPJy8vj759+0Zcix1D10Lo3WNWH/5GbrV446b03RmM3IXarg3RrGzNLWAidUOw4i6NJ3ZP36bLbEy07hBNTSwWXSOBosZ5QkPLTNrQPPoPyjE8tiksUqoIM7Mopl78T743EXMAClDhV/j+xIWhLNLBv9xBkihQ6pPxSjKvvjud7c4cxn4U/IqlnpyRBW/Z6mkNrFyqO1V/HU0h5qzsjza/flskd7AR6ztNQ3bYYs4mfmR/ZfOKueBJY7IIdu/enccee4wvv/ySL774gksvvZSrr76ab7/9NmzcwoULLf8ePPHEEyxatIglS5awZcsW0tLSGD16NB6PJ6ZLiYQt6NoQqWcvNhUUWouNaoEzEj/abUbtvcA4ls1IOMxYNtH64i0SLVYuUv03vTjb1+e2iPPEk6DQ3Bm4EP06Y8UsQF4V93orViKztdW5VMGjiiE1AL9swHNwwRvsrw7gMxFzWo54JIpPXRQSdeccuAMRWPvRbaFYvMIR2ygcsS2m8iXa615RVO9y1icRxGLhinZeq5nx2rGREjiMiGfN6jEfdb4F0dEdh2CLOZtjm/HjxzN27Fj69u3LKaecwqOPPkp6ejqff/55aMyOHTt4+umn+etf/xp1PkVRWLhwIXPnzuXqq6/m9NNP59VXX+XgwYO8/fbbCVu3HUPXzFgVBUZjar6YHnrQa92pWjdc9dZpDKkbr68tZzSvUXswq8WGX6BlXLBm2/TX1nvvItP9+hhGdX+k96YlxFxTrUH/wN+072F2xWDBihdtLBtAykX/4JuAgr+HgldWOFraMAYuEooCv1QHkE9dhFsUOFgTIMsh8GPd/qALty7AX2d1M3P56terH69atlLOfoG/rDEOgzAjktvT7LXZWiNh5FqOdR71uPwTprO/RsIlnECSIwm7rpzN8YQkSbz55ptUV1dz/vnnA1BTU8Nvf/tbXnjhBbKzo38K27t3L0VFRYwcOTK0LTMzk3PPPZfNmzdz7bXXJmSttoWumdFa0iJhllmpTyzQWtP0f6zVjNZopS+041T3m77FmH7NTSlutOs1Eln6EidmQuyXE2eZnsOoTIrZPYq3dEi8GLl3E31+/c+KNgmiqek/KIfUi/+J5/zX2V8jUeqTqQoopu5VIxwCZLpE0lwCClBcK1Hmkzlt32x8G38TVtBX2+pLFSnaTFlVXO7cX2iYJGAm/Gq/mBFTORIrYk5/brPzm53DzK0crzD/rMsf+KU2mSRXT9yOFGwxZ3O8kJ+fT3p6OklJSdxyyy2sWrWKAQMGADB79myGDRvG1VdfbWmuoqLgL2DXrl3Dtnft2jW0LxHYFroWIpogMovX0lvOtFY6/cPBqE1VNMweMNEsi41NntAeZyVL2NraBNxnPYfvy1tN57Ky3pbqJqG3vCYCfZ21WDNjG8vYj3L46Zy7+aU60Kh5clId/OfTWUCE+LX9QVGnF0e52UGRN6B+ttBxRu5L9Tjtv5FcmnpLntFxestfJCtdtDn11xYpWcMq6vFl/hTSkrIR7WLBNscZ/fr1Y8eOHZSXl/Ovf/2L66+/no0bN7J79242bNjA9u3bW3qJDbAtdK0Yo4f4iN4PxmQxilawV92nFQ16C1Es9eT0Y63Wr2uKhIMeP/65gZgzoiUTHZobs0zPSCRMzF36HPvvu4cav9LgD4+AddtPMMNVNHVNqsV4VcucvuaeOk5/nNF2s236fdHEmRW3aiT0Fj59/Jz+uoyEZyQXs5GQfa/DdJJdXW0xZ3Nc4na7OfnkkznrrLNYsGABZ5xxBs8++ywbNmxgz549tG/fHqfTidMZtItNmjSJiy++2HAu1S176NChsO2HDh2y5LK1im2ha2NYddlawcg6FSnhQH+c1lJoJvpiqVXXUhm16vctZYmLRFOsySxOLFq5jHjKZOzcX0jOpiGUPXAv35X5QIJATYCkFCeKCKIoIiggSzIOh4ikKDhEAVlRQAHRIeALyCgiqB5Ztwidd91mui6ti1V7jWb3wGoygn6+aJZOIytcNGuc2fHaazC6ZrPzm43Xn1c7dmv2FI543SS5cnCKSbaYs7EBZFnG6/Xy0EMP8Yc//CFs36BBg/jzn//M+PHjDY/t06cP2dnZrF+/njPPPBMIlj7bsmUL06Yl7m+8baFrBuKNwVKPMRJFiXjQm7k2o1n1jOLOEmXlirUjhX4djeF4stRp0VppjLIm1dfRukPoj11RFBRX0kNzKKyRkBXw1AZQFJC8MrJHJlATwFvjJ+CVkb0SgdoAVWVeArUSNZU+qsu8YAIU5wAAi9lJREFU+KoDODWiwiEI+E5/PuYA/1itkUbZvvrr08an6WPVYsk+NVuz2etI61G/j3Yuo/V+3Plmjvjak+LuYYs5m+OWOXPm8Mknn7Bv3z7y8/OZM2cOH3/8Mbm5uWRnZzNw4MCwL4CePXvSp0+f0Bynnnoqq1atAkAQBGbNmsX8+fN55513yM/PZ/LkyXTr1i1i7bpYsQVdgrAiBo4FwaAXp1ZcurGgF69GYtgsOaOxNehao4UukZi5GY0wEkD6OE2jMfo5ywc8x/6aAJICoiCQmuQktZ0bh1tEVhSS3A6SU5yITgGnK9hxIC3FhSTJKAo4nCLt0t0oGl1RIykU1UpRryHaNUerQae9Tu32SEItkfGGRuvSx9BFcwdHEpLafaefNY0POk4nIHQnzd0Fh+i0xZxNkyC6MkB0NfdJg+e1yOHDh5k8eTL9+vXjsssuY+vWraxbt47LL7/c8hwFBQWUl5eHXt9zzz3ceuutTJkyhaFDh1JVVcXatWujFguOBbtTRJwYdYpoSrynP0/S1zObZG5VCG3a93BY+RIV9cFgxS2ZNjTPdJ5ErdMo+SKWLhFtQbg15zrN4q2sWpPM3Hn7+z7L/uoA/rq/MAJB65qkKAiAUxAQBIGA+loUEBFwigK11X4UhwBOARQIEP5nqnOyyLbNs8POp1+LPubMKmbXbnadetdmJJd2ItZhtM/q2tTvVb7IvoWqgIxHySDJ2RmH4LKF3DFKa+kUAXbrr1iIpVOELejiJFZB15gHdOnrOST/6X5S8ptG0IH1LNZEzGVjDSstvmIhmqBQM6itiiAjS5Z6jtIBz7GrzIcU4a+LWxEQxaDAEwkKPGQQXCIBScaPgmTy56lnmpNeu29vcF3RskdjGWN0ber3iSCe2D39cVbjH/V81GkKNXIyDrEdSc40HIITBAHBLktyzNKaBJ2NdezWX8cYHYYODnvdFK7bSC204nFlNjfHgjtbTyLFHEQWLiuKCBNzVufTuxrV1z9X+SOKOVEAvzeAoEDAI1Fb4aOy3EtJmYeaCi+VZV4itXwXhfp1G1nErJbuMBNURm5VPVayX422JUIY6q9Rj1nM4Medp7Ku090ojl5kJPUkzd0Bp+hGEERbzNnYtHFsQddMNPaBLGr+1lot8aHGn0WKQTM7zux7/Zza/U0VO2SFY9ki2JiSLqWvR04yMSuxES02Tn+Mur/09RwKTlxIhT+y4V9EQJIURFlBVMDhEElKcpKS5EBRIDPdjSCaCwxPnVqM5HY0Ez1WhZRRqRD9uczi2IzOMThQyJc9nmH8Zc8Zni9aTJw6xmqChXbshk5TeL/TvSiOXqS4utoJDzY2xyC2oGsj6D1P8bYPi3askZvPqCODPo5tW1ZOKM4uEseiJa05iFewvnuJtbIx8bjtwFiEHPVIUc8nKQruNBd+BzhSHbjTXThSHbjSXbjSnfgc4JOMW0c4BOiUFG6/MxM68VrBtNcVqRxIrMgKlGma1Bpl0sazRi36+/B+xxnI4gkku7JCQs4WczY2xx4tKugWLFjA0KFDycjIoEuXLkyYMIGCgoKwMXv27GHixIlkZWXRrl07rrnmmgbF+Yw4cOAAv/vd7+jUqRMpKSkMGjSIL774IrRfURQefPBBcnJySElJYeTIkfzwww8Jv8amxIo4irXLgFl3Ar3I0ws/bceKSGttaUtac7fxamliybrUiwn1PuldhXqxMzhQyOBAIaMvWcTuu++O6GpVUQgmOviU4JdXkfFIMl5ZxqcoBFAwm8YtCnTc1bBgdDwuzVizZKMlIkSab7szhzSnwJGyxxoco35Fs6iancPIsrq+08283/l+ktw9cTvSbBFnY3OM06KCbuPGjcyYMYPPP/+cDz74AL/fz6hRo6iurgagurqaUaNGIQgCGzZs4LPPPsPn8zF+/Hhk2bzxY2lpKcOHD8flcvHee++xc+dOnn76aTp06BAa88QTT7Bo0SKWLFnCli1bSEtLY/To0Xg8nia/bhWrwqJ0q3GLkaYSR5FEWSxtuWJ19cbDtqycNhHj15LEa6Vatnpa2PFqz1O9cMjZNATHiH/wQ7k/5AptSjomiWEiSLXO6evpaVHH6UMFEiH6tPNHIrdqLDkLniCr/X1holP71eE6Y4uqkbCMZNH7sOMfkIRuJDs7IAp2CRIbm+OBVpXlWlxcTJcuXdi4cSMXXngh77//PmPGjKG0tDSUlVNeXk6HDh14//33GTlypOE89913H5999hmbNm0y3K8oCt26dePOO+/krrvuCs3btWtXXn75Za699tqoa23WsiW7x+KZOJbkJsxybSoSlamp72HbmLGtNQu3Na8LwmP5qrdOI/XsxdR8MZ2vej6DVwJZUQgEGzw0GR2TRHZ8PjtibTij9S9bPS0sJEBRFGoCNbDjLtPjjEqDGJUf0W+PlKxQ+noOxfffyyk/zrJwtQ3XoxLperd0/QMlgc6kuTrbQs4mhJ3l2jZps1muahG+jh07AuD1ehEEgaSkpNCY5ORkRFHk008/NZ3nnXfe4eyzz+bXv/41Xbp0YfDgwSxfvjy0f+/evRQVFYUJwszMTM4991w2b95sOKfX66WioiLsy4h4Ox1EI9Lf5ZZwIZolXOhJVOHeWFqIRRvbGkUTtO51VW+dxoqicBf+gTsf4Wj/RfRId3JW5yT2bLuTCwrv5IRUB8kOAUeCtYQInLYvWHvOyCKmtdjpmTI++LOqKArVW6dR4aswFXNmc6v/qqItkpjU7teuq3DENhQlvgQiI6ucdh7VXVvqE0h2trfFnI3NcUarEXSyLDNr1iyGDx8eaqVx3nnnkZaWxr333ktNTQ3V1dXcddddSJJEYaH5Q/vHH38kLy+Pvn37sm7dOqZNm8Ztt93GK6+8AkBRUfCvYNeuXcOO69q1a2ifngULFpCZmRn66tGjBwCpQ/4cNk4VE4WnLIrjLsRHIoSAPoM1mlhTH+xN2QbseIp1awvorWIdrivkhDQn7224jTfWzQiN2/zZLIbuv4NhB+9kxKb1uBKgK0QBhhfeGbYOvcAx69ag/Vmt+WI6AM6v7wu7FqPrNNtvVKxXf5y+Tpz6td2ZQ5c/PR7RghcL6jxf5kxh0y0TWZP5B2QyEIVIRV9sjkdseX/s42zpBajMmDGDb775JszylpWVxZtvvsm0adNYtGgRoihy3XXXMWTIEETRXIvKsszZZ5/Nn/70JwAGDx7MN998w5IlS7j++uvjWt+cOXO44447Qq8rKipCok7Ltqwckrdvo7p7gIyBz5H+TcPg7Xhojl/GeDov6McnsuF9a7VYxYtZyzL9mNZ+3WGlPL6YHtnNePK79O8whqMeiVKfTG3APNnBDKcA5x+8s8Ea9Fh1SRodZ1TaxIoLNdJ+vSVPpXDENir7/pOeP9ze4JgO1xXGVXC4xCuT6s7BIboQ7ZpyNjrcgkCKo9XYb+xOEU1EqxB0M2fOZM2aNXzyySd07949bN+oUaPYs2cPR44cwel00r59e7KzsznxxBNN58vJyWHAgAFh2/r378/KlSsByM4O/rU8dOgQOTn1n4gPHTrEmWeeaThnUlJSmOtXZdua6xjatwc79wctc8n7CxnQPYdtAgkTc02JPqPVyCpmRWQY9XRt7cKkuYl2j9sSWsGxc38hud1zDPetKIJcbiVTd/zuExeS5BD4ZNPt9Dv7GUQBfJKiaxMGaU6R03+eTVNj5D7Vi7VIQiua+AsXiDmcIynsrPtbYTRWP2+kc+7oNpVArUiy6MLZ3D0ybVo9blGgiwKeSk9LLwUIirni/9wKsr/5Tiq6yBr2nGVRl5eXR15eHvv27QPgtNNO48EHH2TMmDEAXHzxxWzcuDHsmKlTp7JkyRLTORVFYd68eSxfvpyysjKGDx8e8iQmihYVdIqicOutt7Jq1So+/vhj+vTpYzq2c+fOAGzYsIHDhw9z1VVXmY4dPnx4g/In33//Pb169QKgT58+ZGdns379+pCAq6ioYMuWLUybFpsIcQ97mR8yMnCfBLUBBa+ksEVR2L31DobE+Ck74nmaqI+rlazVphBmraWMSUsQS6ZwW2DoxLdDSQd6AWImck6uSwrIzQapUxKOr2agJ1ZLVWM6L1iZM5ZCvtpj9GJx5dJ+nDMs6H4N/9hpfP4VRdB/UH2iz4qiYEzg9QEvge2zOFAjkuLuHmzfZWOjQQCSFXAGJBR/MwqoCMj+yuYVc8GTIvsrLQu67t2789hjj9G3b18UReGVV17h6quvZvv27Zx22mkA3HzzzTz88MOhY1JTUyPOqVbWeOWVV+jTpw8PPPAAo0ePZufOnQlLGmnRvwAzZszgtdde49///jcZGRmh+LXMzExSUlIAeOmll+jfvz9ZWVls3ryZ22+/ndmzZ9OvX7/QPJdddhkTJ05k5syg6Jk9ezbDhg3jT3/6E9dccw3//e9/WbZsGcuWLQNAEARmzZrF/Pnz6du3b+jmduvWjQkTJsR0DSfuuy8sy1X9o35uEzxcopEod128je9joS0LmESS6H6tLUH11mlMGZ8XVdRp0e5v5xapNpjXakmReISc2XrM5ovmdjWaU3uc9vhJUwv4739m0X9QDlhI9snNJmxcbnb978+OblNwejMRBAFZCSBilyixCeISIM0bIKmqFr9DBKcdV2mV8ePHh71+9NFHycvL4/PPPw8JutTU1JC3LxqKorBw4ULmzp3L1VdfDcCrr75K165defvtty1V1rBCizrV8/LyKC8v5+KLLyYnJyf09Y9//CM0pqCggAkTJtC/f38efvhh7r//fp566qmweVSXrMrQoUNZtWoVr7/+OgMHDuSRRx5h4cKF5Obmhsbcc8893HrrrUyZMoWhQ4dSVVXF2rVrG62Um8JKYJVEiAG9+7UtiYy25raE6C7qxvTUbU5UMQfGsWP6xAV90oL2tb5AsB41k1zvDrVKvBmmscynbzumF4wrl/ajc/v7Yl+IDocg4pfKCfj3Isp78QRKaEWVqGxaAFGANCDLL5FcUYPgFFHapVKVkdLSS2uTSJLEG2+8QXV1Neeff35o+4oVK+jcuTMDBw5kzpw51NTUmM4RT2WNeGhVdejaEs1dh46T323ac7QS2pKAPB5pqvdHK360dQTNar6p43blF8b8IcpIaFqJVbM6r1FChd7tuqIIzhm2EP8nvzGMo4uG+j6U93+QzF1Bt09Bz+nsroCM5D4IQusJgLdpekQB0hRwCgKix0eSz48sikgCOFKTqRQFjpSXc/2wM1q8Dp2/4keObrm7yc+vp9O5T+JqZx57ryc/P5/zzz8fj8dDeno6r732GmPHjgVg2bJl9OrVi27duvH1119z7733cs455/DWW28ZzvWf//yH4cOHc/DgwbC4/WuuuQZBEMKMWHpiqUNnB10cY1h94BqNay1xbbaoa73o35d4XZ5mc6woAooKGWLgum0gjigMxanGk+FqNT4uWqar0TUYlVJpcO4fZ7HT2lJNUcUcQL+fF7Ov4wzsAhXHF2miQLIvgCMg4/b58VbU4OqYgd8hUpXiDrbXk2QC5UaBDTZm9OvXjx07dlBeXs6//vUvrr/+ejZu3MiAAQOYMmVKaNygQYPIycnhsssuY8+ePZx00kkttmb7Y9wxhr50SKRxrZFYe8/atDzxuDDN0NeV0xf0VbdHOm5FkXmBb32bMKtrjyYS1bZoRuczO8fO/YU4LzT/ZB6J6tdXm+yRI3TBtTkW8SoKsiSjVFTjVxSU9mlUu52UpSZRLcl4fQHkihoEt22/iQW3283JJ5/MWWedxYIFCzjjjDN49tlnDceee+65AOzevdtwv7ayhpZDhw5ZjsOzgi3ojkGsijqzY23aBq0hpk4rjuJZT9rQPNN6ber86r9G4s5sPWbdQgwtZTRelA4wKNuiF49Gxxz1SPGd++R3De9ZQA4gK1IcE9q0VQIKlCe5qGmfTm1qMmUZqRx1iFRV1eI/XIZ0tAIh2Y2Q0rDslo11ZFnG6/Ua7tuxYwdAmDtVi7ayhopaWUMbl9dYbEF3jBKp5llLY6VlmE10Wpv4XrZ6Wtyt7yIJH4huoYuEFcFklImrHqvt3qBt42WUvBGtJZgRK5f2M90XqQ3ZFZcsYsLI58O2OQQJSfbbiRHHGTJQ7XZS6RTxe3z4D5cGhZzbiaNTO3Db2c+xMGfOHD755BP27dtHfn4+c+bM4eOPPyY3N5c9e/bwyCOP8OWXX7Jv3z7eeecdJk+ezIUXXsjpp58emuPUU09l1apVQHhljXfeeYf8/HwmT54cV2WNSNg22GMc1Vpn5eHfHALBqKOETey0dJyhWc01igtNC+bqjweYEnGUbu4Y1hbpmEjFf/Xjrh+7mPzzvOytfiJk9YtU+DdWsekUBSZNLTDdH6nky2GPhEcKkHnSQkafKnIgUMEVu+fyZvoUMpKySXVlAIL9ID/GURQFZAXFH4CABIqCmJqMkJKE4BAjNwJvAURXBoiuZi8sLLoyLA8/fPgwkydPprCwkMzMTE4//XTWrVvH5Zdfzi+//MKHH37IwoULqa6upkePHkyaNIm5c+eGzVFQUBDqTw/ByhrV1dVMmTKFsrIyLrjggoRU1tBiZ7nGiZ3lGj8tLUZsmo5YkiR27i9kuzMn4aV+rLTssjoPQL+zn+Hs/XdEHhwne05ayEl7ZjV6HrX4sMd5CweqDlPjr6Z9UhaZyZ0RBYct6o5BFEUBSUau8SBX1iI4HTg6pIPTWa/hNO97TVUlN5x/eotnuYLd+isW7CxXm6i0lKjSWuhsUXdsUfp6DlwSHrtmVrajKbHimo1V7CUim9cIMUEZqblVY/k+YxQBn0SXVBcVvhLKPUfwybV0SM7G7Ui2LOoURUFBRlGUUPkTQft/Wxy2LIqCIivgDxAoqQBBwNE+HSHFHXxv2sD740jJarMCqzVjC7rjlKbuBBHtvLaYO/bocF0hU4bmNSgyrKJ3VU6Z+DYDWuHPgV587nQKjbb0GR1f+noOytzYHCRa9+vlFy+i1CtR4VeQTlBw+WWc3qfYr6vNt9Y5BVnJJtmZEbU+naIoVPlKqfYdAWREwQEIiIKIU3TgEN3IioBLTMLtTMUhuOyad82EoigQkJBrvUHh5hBxdsoElxNBbP0izqbpsX8Tm4ltWTkxB4yrx5Ru3R41sFs/t5XX6px6cWdjEy/VW6dx87jFhnFf+m0tGe0RTaBpM1XjfVYaWSUb3AMLc6jHlL6ew8iLF3H2+Qvpd/Yz/FwV4IvNs0n7/DrOO3AnZ/1yh2F27xWlyxDlg1T5CvFJNab3XS13IiDUiTQFWfGhKDVI0hHGly2ie0oVSRThCRwhINU2WYkURVGQFSloLTzOo4IUJRgfJ5VUECgqRfEFQlmrgtsWczb12Ba6RlLU9wmqMjIMHScCQeu3ApxQt+1QJ+N51L9ZCvV/5LPrNpTMlblAkDkgmv9h6woc6GD8WlEUshSZXzI1+wUH3S5yQsHtYfPY7tDEo5zxFMJXd7X0Mpoc1RJV88X0sNcq+nIexbVHSGuBdUbCqDSKgGDZZRytwLF+m9FvtHru0tdzyB06mF/GjOZbv4znHgVvhZ9kh0Dq59cxoHsOBdAgAcXovCNL/sL2bjdzxBsAsafh2hVFwReowCFUkuYEmQ4IAsgKjCt9EoDTDyzhy+w/4Pem4na2Q2iCIsaKohCQvXj8+xGENFLdXRA4PvuQKkrQtSodKQe3C2eX9sGMVWgTrlWb5sUWdI0k+4d7wpIitG2L1Nd61P3qWP0Y7X7tayPUYGh1nl35wbHabUYMKS4kv+fjGD2fbDGXWHYd/Y4BLb2IJsZIvJlZlUN16759sEnO3Vgi1bizcj4ji5zZ+CRRCIszHPtRUMTtPnEU1fcq/IRCmqSw4/PZQLCAsTz8jZCIs7omgMEHl/Nhp5vxSdU4RBeiEPzzH5BqEQSBgOwjRThIz4x2+GUnJ/8UFHGr0n8XNs9ZRX9hXYepyHIAh9g0CWE+qYoOLg8eyUdAbo/bcfz1IQ25WGu8ODrXuVZtEWcTATvLNU6aNcu1CdiWlUOfRcG4p2jYFjsbqzRV8kCsa7h53GJqvpgesRdspG1avj9xIaf8OMvSefXzqDXs3r2ksME6xn6UQ/W8+0h76DFq582h3CfhlRVcooDw6bWGpV9WFAWzbv9081Lemmde7iTSda3rcCOjS1/i/9rPxCHAFaXBWnZvt7uJCRUvNjj+n6m/we1IY0LlX8Pm+b8Os0lxZeEQXXVu2saLDUVR8MsefP4DjCnN48OOf8DhCrZSCgpId11cH4CCpAQISB5EQcTlSOVYKdOiKApKtQe5xoOjQwY4G5+pXF1ZwY2toJerTWzYWa42CcUWczZWaU4xpxUspa/nUDL3XkQERvSFYo+E7/UcxgKlhH9w+dVD/cJqv0Vc8+6xCBb7eWvnKX09hw7XFbLv3rsRETjfJVA6//H6sUMH89W9I/FUB0i59x78tQFSHQLu/wRdqZjU8cvNBj7+kOdXTGfFJ7dbqrWnF3ajS18C4Mqy58OOcQsNy0is63ADroDChMq/8uNJT3HinvrQgStL/wzAmva3k5aUg4P4LUhqZm2tv4wu4ksMKQ2+X1UBGbdyiLGlC/m4803U+jJJdndGlmvwS5W4BQ/tnAqyolAV6Ijb2blJ3MDNTl0Gq7NjO2tiTrXLGIwLurD9VHpLmmChNq0JW9C1AfRuXBub1koiLHRW59CO6XBdIe9+Nouzz19IQFKoCci4HwgKPAGoEQVEAS4/FXKr1lL6UUXo2FLNHFo38f9euZii1x9BvnyU4RrVNejr3q0ogv63QYdi6P140G353Z13UXrP3bhFAUmBQhHO2Dc7VIR55/5CUi/5J72650S//pPfpdR3ueXCyVbu5cedfsvYo6+FbcvNBkpfDl5rNmFiTkuGs5QanxdR7IxTdCPUZcYG5FpkxY9DcOMSUxHFoOBTxZskeQjItSgEW5UJShVXlCwOzbs28zrSHX5GliwE4OIjL/JOuxtwByrpmuKknTuV9knZJDuTKfeWs6v0CD4plSRnevQLbsUoioJUXo2Y5EZIDS83oygytf5qJCUQrC8IeKVafJIHAZkkp4iCm1RXB1xiEjX+Siq8RwjINXibse6bTctgC7o2QGsVc7Yr1kZPIix08c6Rmw3snRVxzM79hRxJhgHXhVvAvuuzkEPA0D6AEExo+rbUR/W99+D3yxSfuog0p4j3/kcBGFt3XCkweMQ2Sl8fQu51haFEhp/bjyY/VcZ7t4JThFQEXP9p6EZVX2935nCOpEQUc+o+YfALKCW+kKUxVpeyaj3UcrFOzMXCRUdebbDtw443M6pkeej1mswZpCf3RMRBQPbi9RcxpvQ50znXtb+OK8peD2b5Elz/Z1nXo3hq6Z6WzkmZ3Ulzp+Goc78KQKqzhFqfL+7raBXUFQsWFAWxfVrI4BbM9pWp8pVRXHMAUVBwOWX8AZHJnldZkTaV3OqloWleS51Cu6ROlNQeIsmp8Nual6is9vP/WuiybJoHW9DZxI0t5mzaGmYtyU7VCcEVRdB/6DMApH5+HcVAMfVCcFefP4dcew6g5CIoFwR89yv84JMRaiWG7r8jvA1ahHZo/QflIEeJZlZF2cQJi/jTy9N49u/T6ZvpwlOXVawdo16DfhtYi5ttTO9cgJEaMQcwrvwF1oqzcDgzubz4oajnlepciOq5v8y5keGFQVcxlZBy9guIdfXvFEXBJ/sJyFITFVFpXhSfHyEtBdwuqLNoSoqfozWF1PgrSXOl8+uqF1hRFPzZIxtyq5eG7t2XJ96I4zCU1BaRnqTwq/KXW/iKGlJz+DDeioroAxNEUrt2pHbp0mznaylsQXcc02HoYCBx1r+Wttjpa+jZgrPlaA3JEY3FIUCm20EN4UJwRRHkMjuU2HD0/nvxbvxNaH/I4dc9J2pPW3W+sa/DL/dakyOTphbglWS8ksDY8c/y1rwYLsoiTfHeSXIJQqDa0nnHlr8Rtt2piw2r/WJG2O970IIFoiCG1a1rawkSii+AUu1B7FhfCktBqRNzVXRMySY9KQWqzJN9Ul2ptE/pgl+S6ZTqg/IGp2lRag4f5v2bpyD7m6+Xq+hyMWr5srhF3WOPPcacOXO4/fbbWbhwISUlJcybN4/333+fn3/+maysLCZMmMAjjzxCZmam6TyKojBv3jyWL19OWVkZw4cPJy8vj759+8Z7aWHYhYWPU1589LyEz2kkoFLPXmy5qHLa0LxGFTau3jot7Mum5WjrYi5oJQK3KJjWecutGkvp3HvpkCQyoE68ab9iOde7lxTikcIFXaSyL1Ltk3gkmbfmFRiOs7ot0vZEM2zJB4wuXR59IPXZwSpnHPxrgzHLVgd/xxUUJFkioMgEpEpq/fup8R3AL9W2qaLEwdi5qqCVURRD1jlfwEO1r5x2SZl0befkwI4HQwWnjayw/QteYHTxPMaVPMT5+xeQf1Kw5M3Xfa5t9msywltR0axiDkD2++O2CG7dupWlS5dy+umnh7YdPHiQgwcP8tRTT/HNN9/w8ssvs3btWm666aaIcz3xxBMsWrSIJUuWsGXLFtLS0hg9ejQejyeutemxBd1xyLasHG66/3O2XjSCn/sujDiusXz60yOWx9pCzKY1MeSXO+j2/W2G+1YUQenW7Rz1yqz9yHhMrIgCjLp4Uei1USxcaG3FhZx74E7DcdptVpIjWqP4Lrh9ZNQxudnBvxkCAu2SMuid0ZE+6X4GZDroneYjEPgJn1TbDKtNDIrHh1zrw5GZFmZZrAlUouDH4Shi6E+PkJtN2JdekOtfD9oTzEY+fW+41dMmOlVVVeTm5rJ8+XI6dKiv3D9w4EBWrlzJ+PHjOemkk7j00kt59NFHWb16NYFAwHAuRVFYuHAhc+fO5eqrr+b000/n1Vdf5eDBg7z99tsJWa/tcj0OqeA6Li5+BnZvYkX6u+YDiwrZZbA5UtFYozkGDH2GgAIHT3GaPiBt2g5hcWHHKbnZwNDBKIqSuESQ/XdEH6MhWtHi1iTUSl/P4b/TLmJ0mTVRcd7hv1meu+aL6QjAiUMWISkSLtFJqaeUct9PlAW8KEpK63e9KgpytQexXSq4wh/LggKS7GV8yUpWdriQSaWfhO3XJ7zkWoiRtLHGjBkzuPLKKxk5ciTz58+POFat7+d0GsuqvXv3UlRUxMiR9R9WMjMzOffcc9m8eTPXXtt4C6ot6I5D0tV3/eR3yY1zjpgeFr/UPah2j4WT4zyhTashHjGndaF1qMsG1X7fYehgtl3YC7foINnhotNj4Q9+K4H8zc7J73LOgQgfiJqYaB+srLYra2p29ZhO/+sWWxZzsaLGj/m33Uba0DwURSHJkUy6y8VRXwXQvknOmzAUBSUgIbqdCGkpDaropbjTcXrSeTnpf6A2sgu5Vf6etFHeeOMNtm3bxtatW6OOPXLkCI888ghTpkwxHVNUFPyF7Nq1a9j2rl27hvY1FlvQHY+01IfVk1vu4aelpZM32jy7xzbY9OWInkiKjKQEY89kRUBShNC/ygwHCgIBqYLhS9bx5YzL8crJuEUReYYDhAwEnxO/5ENSvIjTJuIUBYKdVCWcgoxLVHCJkCSKDNn0c/gCWsnPlkpzJYVYbUEGzbMmo5Io/X9ZbDI6MWivqXrrNFLPXoxf9uMJ+FGU5CY9dyJQFAWl1ovgdiGIQlhxYEEQSHKk0j3zFGRZ4mjtL7zTaTxXHV0d83m+6tyKTLatnF9++YXbb7+dDz74IGp3hoqKCq688koGDBjAH//4x+ZZoAm2oDvOSERcXFun1Yq53WPrhYn2+8bMFwNbhnevF2SIyHXfK4goigMEEQUROjkQcIIgIiAGC8kGgv8GXwfbLwkIOAURV90nCAUFv1TDf2fegCA4SHWl15WeEEKto5KdDS0QCsEaXAFk/IpEld/PuvOyUBQZRZEBGUU5FUXx4RT8jC4N1uNqyUxbo/M2xweJSNfcHPeiNViIar6YTslJd1HqE0l2d269fSMUBUVRkCtqkKtqceZ0Muz0IAgCbkcyiqjQJa0P1f5M/pmeiR8vuVVvhsZFeu9LX8/hjKt+Nt5p04Avv/ySw4cPM2TIkNA2SZL45JNPeP755/F6vTgcDiorK7niiivIyMhg1apVuFzmbUCzs4NvzqFDh8jJqX8OHzp0iDPPPDMh67YF3XFIW8r8agrcZz+H74tbW3oZQXaP5ZPzexCQBaRODhTlVhAUhE4yIrfgEMAhKIgCDP/PL8YiTyfcPhvWIyjKOqvCTAgKMUQUpU6UCQ6COVEOhDphJipOCAmyYI8FJ0Ko3pfetBtrXJKAUFfF37ySv9GcAgIIImoHT3SN2ut/nhUkRWJdp7sYvWUnY7duZ8UlQYHRlGKmObtjRKOl3atWaMy1RjtWtRB2W7eT/HPPJEVMNhRJLY6ioMgKUmkliseHo3Nm0DoXgYDsp6T2ICAj0J5AoIx/tBvPbyqC1rpI96XDdYVURq4YY6PhsssuIz8/P2zbjTfeyKmnnsq9996Lw+GgoqKC0aNHk5SUxDvvvBPVktenTx+ys7NZv359SMBVVFSwZcsWpk1LzAc9W9AdZwwpLmRrzvEt6OIRc5bbr+nE1abze+BXQFIcKIoTGQeC4EIQnIiCC6GLM2jVcjpw11mrggStUgoKfkVGQWb9+ScgczaKIqEoEqAgIELnekuZ2nZJEAQEUURExBF6oKmlcOv+3xofdHEgaK7PKYiIrq68f14Syjkn0sPh48LN+2F3MCtVS6KsSVbFSTTrXHNaFFuj9dIKU1D7vipU+6sp91aiKDKCIFDj91B8ZxXfSRIVndJIdrVvtT/jiqyg1HhAknF26QAuR1ThWRuowq8UcV3Vv0Lb3k65ns973Ea/J94Mta7T319V5Jb9qw2o/VZCRkYGAwcODNuWlpZGp06dGDhwIBUVFYwaNYqamhr+/ve/U1FRQUVdWZSsrCwcjuDHz1NPPZUFCxYwceJEBEFg1qxZzJ8/n759+9KnTx8eeOABunXrxoQJExKyblvQ2Rx3bMiayKXFq0KvTcWaRpwN2Q0wODj+wp74JBm/DH5ZQEJEVpwguKCTE0FwBkUbTkRBRBQdOAS1q2gMYkpwRB9j0wBREEl2dkChPQHZz4fnnxAUweedCYqErAQQCCAgEbR2yAC4RImcVDddUjuS5HAjIOAQRRyCE6foxCU6cYiOelmcQLGgDaVetnpak4utsR/lhHrYquy7cxwgIgoiPZ9621TwJp31HIqihO5FS4imcm8Fe8p+4WBNgOBjTEFSRBA64nCkkOxKCn7YaU0oCgqg+APg9YMo4sjKDN4/C/dQCLOWB5lQ+gqUQv4D99Jh9+PkZtcLuNLXcyidP5Gj9yn4ArX4ZpfCCmt1AJuSpHbtEF2uZi8snNSuXcLm27ZtG1u2bAHg5JPDM/327t1L7969ASgoKKC8vL6y8z333EN1dTVTpkyhrKyMCy64gLVr10a17llFUI53/1ucVFRUkJmZyferxpORZu43b21sy8pBcv6GoYULW3opLcJPfWfTzt2OvYeXAZo+uRrx9vkFPfBLSrhYw1UnsFyIogtRcCLgQBTEkHuyoUuSBttsmh/jP3FKXZuo+n2yHECSjyJSiVjXz1UEXKJAskOgnTuZdu5U0lyppDiTcYhqH9F6gScKDgQBRI2YSLTg0V6PgoKsKEhyAFmR8co+Kr1VVPiqkRQZjxTAG5AQBKgNBJNWaiWBgOJGFJNACYpaRXEgCw7cYjLBK/eiyJW0cwVo53bjEARqAn7SXC6SRBeSIpOZlEan5A4kO5NDQiO8kXz4OkP3I8LvhNG9UhQFGQW/5Au9PlxTzLclhwiIfXCKSZqZo4vt0LoUQJJAVkCWg69dDnBoLOXaf2J9HxXNVUsyis+PXOtFrvHi7NgOITUppnlr/VUUVX1HWrLEpLJ/Go7ZecpsqrwpyAigiJz3c30d0K3dbuKqgVeGyms0NR6Ph71799KnT58GgsVu/WWdSPdRj22hO84IulxbehUtR2d3R9K+fYAOdQJu43nj8SoulE7JCLiDljXJGXwwOx241JiyFrJE2DQe4/etoawQHQ4cYjaS0hm57qEfQMYrS1RIPg55a3FSRorjKKlOEZeo/mwEtYCASJrLhdvhJM2VQoozGZfoJsnhrj+HgfAxQy9Eg+JNRpIlPAEPtZIHnxSg2u+hJuAlIEvUBCQq/SCRgowTgRREwY2CUvchRMTlcpFc55o3u0+KoiArHamUaymvqUVWAjjEdhR7fSiKH0kBp1BM15RSuqW1p3NKB1JdqaDUrzMgB/AEPPhlPz7Jj08OICCQ4kwiyZGEy+HEL/mRUXCJLlyiM/S7pn+HyrzlHKg6TECWcYoCJR4vHjmDZGcSYiyWbEUBWUGp9oAoECivRgj2DAuGKKQmBa9BUZA9XgSHA8HlREhyIdT1VhUEzEWYKuIkGcUfCP5sSDJyrTf4OsmNM6t9cL4Y/564HclkJnWnxlfOGxm/4drKfwDh7vMB3//Z9PhTf1gS0/maktQuXdqswGrN2ILO5phG6079ststVB/ej6fjDJRzUxCFVBxiEkmiK5SdaXN8IwgiTsFtuC8ocmRqFR9VPg+KImnyd8EvB3AIARx4SXaUkiRCO7eLDknpSIqMKAikuVLqxIwLURDwSwHEuqxghxB06wIEFIlafy3eOquUpMj4JB8eyUe130eZ14dXBr8s4lfciEIyouBAFJNwOlNwCc5G/Tyr63GIGUBG2D1QCcheDtSUcaj2CD3SyujdLockRxKl3nJqA15q/F7KfT48MoADSXHgl2XcYoBkByQ7RGoDEgEl+H2yw4FTEOssncGvoJsRSjzVHPKAIGTiEAMIQieS3WkxizklICGVVCJmpCAku3GluAnGnBJstVU3TpBkBJcTJSCh+AMokoQYkEAByeevt6wJICS7EUQxWBy41ovs9YMkIzgdONqlIridOFKSoovBKDhEJx1SuiIIIsXV5fy7w2/o0ymDXP4S13w2xx62oDsOkRWppZfQbFQzng86OZCVFERfGg4xmSS3KxRfY4s4G6sERY4DUUnGJTZ0fai5twoyAdmPV/JxtKqMfVWVBGPTZNxiOW5RIdkh4BIFagIyCsHm8xkuJxnuFGRFxiP5KPf5qPAFI/xkRUBWHME4TSEVh9AJh5iE2+EgKeTyr19nU94DFaeYRHpSVwJyew7UHCQg7wdEjnolvLIbUUjB4eiMKLhDYQluByiKRJXkpyLgq4s3dVAbCKD4/aFkH/VLUWQEFCQySHJ1qLvvQXtoLNepKApIMoHisqDFTRVh+usLXiSIIoLLGe42rbPuiaKA7JcQNG7k4HIVEAQcGalBa55TrBNxiXs/JCVAhfco7VICXF26Ekrhs+7XMXz/6wk7h03bxRZ0xyHaeJa2zLasHHbl///27js8yipt4PDvnZ7eKzXU0NtC6EU6iLQFxShiAxVEUBZUQERRXNeCWILyKYKiNAVxF1EQKVIiIggIRAgJJKT3TJJJJjPn+yNkYEgCAULqua9rLsjb5jzzTibPnHplWor0rwP465lR5Fk0WIQelcoJjeKAVqOxfZOXCZx0u270HlJQo1Kr0aj06DXOl3/fihpmrcJKvigsSmCwoKC5XCtkId1sQslJLko+VF5o1D4oGj1qQFM8cvkO9s27WcXPr1HpsSj1uWRKA1To1W4YNNqy+7MpatQqLUI42vaXtyt30bVuIW6rFUtKZlGtmadr+V875apUuahzJIqToczhFmoH/ZVjK5gQgjyzEYvIZ0LWN7btVydz1WV1EKlqyISugsjVByrHuMUtARg/LQIS4mnUfip5hSq244DytCMaHNFpZROqVPWKk4+r34WqywNrSiOEC6ZCHQoq9JqbSDqqmKIoaBQdGt3NZBGKXc5zJ2MVVisirwDFoEPl4oiivs3Rr1V4X3IKMnHQAqbS98tErm6TCV0FkclcxfrDJ4AlM4pGYo2fFgEUfVg992E/8ixqLGI4KI7kCwe0Wh16WQMn1XgKBo17VReidhECCgpBCFSujjX+80GlqMm3VnUppOpKJnRSlSsteRvxNXwb2pQDPeuTaxmARRj4SeWIWjig0WjRXTWBriTVBvK9XPGEVWBOyyqaJqSc871VR0IITIU5mApzCM37gv/5DsYqFEYl/1TVRZOqEZnQSVXm6ubTBR8UTamy33cqeRY1v7U2oKgcUXN1Aif/6EmSVD5CCKw5JhQBik5Tc5M5ipK5uOxI1Op8PjNMxCHXESHKaHeV6qwqnUp76dKldO3aFRcXF3x9fRkzZgwRERF2x0RGRjJ27Fh8fHxwdXVl4sSJJCYmXve6L7/88pUFwi8/goOD7Y5JSEjgwQcfxN/fHycnJzp37sw333xTxhVrjz98qmYSuj98Apj+yVjWJlzpuPttaFOe+7Affm2eIMkykR+9XsREA7TaIBx09TBoPNCpDaiL56eqoR/IkiRVASGwZuegcnGssclcMbVKi6PWFY3ihk5xptCazv0569jkNpQ9gY9wqsXs655f/Jkr1W5VWkO3Z88epk+fTteuXSksLOTFF19kyJAhnDp1CicnJ3JychgyZAgdOnRg165dACxcuJBRo0Zx6NAhVKUMOy/Wpk0bdu7caftZo7EPdfLkyWRkZLB161a8vb356quvmDhxIr///judOnW6MwHfoqigFwmKer3CrleZi4OsTYBvPm7J+GkRPDr/EJ0PjmBnSEN+xABeDpebUPW2dUxl0iZJ0m0TAgotKFoNKid9jV6vRUFBq9Lh41SftNx4sswp6LVFcyX+M/NHyLzBBSjqf5ydc4cLehPMqWkUGiuvQBpnJ7RenpX2fFWlShO67du32/38+eef4+vry5EjR+jbty/79+8nOjqao0eP2pYqWb16NR4eHuzatYtBgwaVeW2NRoO/f9lDfg4cOEBYWBjdunUDYMGCBbz77rscOXKk2iV0FZnMFTVrVnxCVzyB77VTiTRuP5WnlqsoFMNJEY783MMBjUonm1AlSbpjBCBMBaidHYvmm6vhnzOKomAuNJFdkMLDBWv5n/Nkdjk/iFaTR59Lm6q6eDfFnJpG5IuvFK1pW0kUrYamr790y0ndG2+8wQsvvMAzzzzDsmXLAJg2bRo7d+4kLi4OZ2dnevbsyb///e8SrYFXE0KwaNEiVq5cSUZGBr169SIsLIzmzZvfUrmuVa1WLy5exNbTs+hFz8/PR1EU9Hq97RiDwYBKpeLXX3+97rXOnj1LYGAgTZo0ITQ0lIsXL9rt79mzJ+vXryctLQ2r1cq6deswmUz079+/1Ovl5+eTlZVl96iRrlqztKJM/2SsLYnLU0bh1+ZJvFvP4ievFzGJBmg0QTjq6mHQeKJVO8gmVEmS7hwhoMBclDAYtDU+mSumVelx1Liy0XUUI9PWcFfiFzUumQMoNOZUajIHIMyFt1wjePjwYT7++GPat29vt71Lly6sWrWK06dP8+OPPyKEYMiQIVgsZU/c/+abb7J8+XJWrFhBeHg4Tk5ODB06FJOpYvpDVpuEzmq1MmvWLHr16kXbtm0B6N69O05OTsybN4/c3FxycnKYM2cOFouF+Pj4Mq8VEhLC559/zvbt2wkLCyMqKoo+ffqQnZ1tO2bDhg2YzWa8vLzQ6/VMmzaNzZs306xZs1KvuXTpUtzc3GyPBg0aVOwLcKcVJ3LNttEr6aMKueTahKKBDY/OP0SocQQ/ez6K0eqPRtMYB119DDpPdBrHywmcSiZxkiTdcQKwZOQUTedciz5vBGAVkGMufWk6qeIZjUZCQ0NZuXIlHh4edvumTp1K3759ady4MZ07d2bJkiXExMQQHR1d6rWEECxbtowFCxYwevRo2rdvz5o1a4iLi2PLli0VUt5qk9BNnz6dkydPsm7dOts2Hx8fNm7cyPfff4+zszNubm5kZGTQuXPn6/afGz58OBMmTKB9+/YMHTqUbdu2kZGRwYYNG2zHLFy4kIyMDHbu3Mnvv//Os88+y8SJEzlx4kSp13zhhRfIzMy0PWJiYiou+MrQbFuFXKZ4UMUfPgGEGkfwxfrQorVSm22jAA8cNK5XauBqdM8VSZJqGiEEIt+MNb8AtYtTramdQwgswozJkktOfu1Y6acmmD59OiNHjrxu9y6AnJwcVq1aRVBQUJmVPVFRUSQkJNhdy83NjZCQEA4ePFgh5a0W05bMmDGD//73v+zdu5f69evb7RsyZAiRkZGkpKSg0Whwd3fH39+fJk2alPv67u7utGjRgnPnzgFFI2c/+OADTp48SZs2bQDo0KED+/bt48MPP2TFihUlrqHX6+2afqurqxejr0jjFhcNbAg914nCcc/Q+fjzQCeOJseS4/k0isoVB3XNmd1ekqTayWrMQ+3sAFp1VRfllgkhEFhRlFwEVkyFCiZzDi46dyzWAja5PMI/Mz8r17XWJsgVJG7FunXr+OOPPzh8+HCZx3z00UfMnTuXnJwcWrZsyY4dO9DpSq9BTUgoGmrs5+dnt93Pz8+273ZVaUInhODpp59m8+bN7N69m6CgoDKP9fb2BmDXrl0kJSVxzz33lPt5jEYjkZGRPPjggwDk5uYClKjlU6vVWK01bxruq5O4ikrm7NYEPDeCb0MBY1OiB7ckOSmKTK8nsHi5oFFcMej0cqktSZKqXqEFlV6L4mio0e0DVmEhJfci/8z+0G77asNIVCrXcidzIJO5WxETE8MzzzzDjh07MBgMZR4XGhrK4MGDiY+P56233mLixIns37//uufcSVWa0E2fPp2vvvqK7777DhcXF1uW6ubmhoODAwCrVq2iVatW+Pj4cPDgQZ555hlmz55Ny5YtbdcZOHAgY8eOZcaMGQDMmTOHUaNG0ahRI+Li4li0aBFqtZpJkyYBEBwcTLNmzZg2bRpvvfUWXl5ebNmyhR07dvDf//63YoI7N6LCmjlvpCKSuOKm1NMn4gk1jiC0eMc5iBvWluS8bNLyLeRnWlGr/NBqnNApapnESZJUPVxubkWlQlFV/KoQV6Z7Etz5KZYUNCoDXzpMAgpxdshnTNpWHjL9jzWGoewLfII+cSVbkqSKceTIEZKSkujcubNtm8ViYe/evXzwwQfk5+ejVqttfeqbN29O9+7d8fDwYPPmzbZc42rFs24kJiYSEHBlPtjExEQ6duxYIeWu0oQuLCwMoMTI0lWrVjFlyhQAIiIieOGFF0hLS6Nx48bMnz+f2bPtJ1EsbpItFhsby6RJk0hNTcXHx4fevXtz6NAhfHx8ANBqtWzbto3nn3+eUaNGYTQaadasGatXr2bEiJscBXp+CFxOPq91JPAphIB/7IvmSJ8guuyLKtret6i5uPjj4OoeEYrdVgUBdIl7/+bKdJPWJkAol2v4jCNIGdEBixBkFuSSYjJhTDNiVdzQqV1w1OiQ88VJklTtCLBm56I4O9yRvnMCQYYpmfzCXBx1rjhonNCotCiXu6JX1GeiEFaMBemYLfkgdORbTVhzr3T3mWz6kcPaGZxtNZPmp5eXeo071fWmrhg4cGCJ/vQPP/wwwcHBzJs3D7W6ZHO+EAIhBPn5+aVeMygoCH9/f37++WdbApeVlUV4eDhPPlkxa8FXeZPrjbzxxhu88cYb1z3m2lElVw+sKEvz5s0rZmWIJj+Bk7bUXV3iLv+nGXSJL/rXbnsZbvWXsbznFdfGFR8bahxBXLNWCAH1zp0mPjeX9HwLeRYdanUgOq0DKlkbJ0lSdSdE0eMOyS/MJSs/DVNhDjo16FRaNGoXDBpXDBqnCvmMNFvNZJhieSDvC7vtR4Nm0SlqGQBdL3xw3WvIZO72uLi42GbbKObk5ISXlxdt27bl/PnzrF+/niFDhuDj40NsbCxvvPEGDg4OdpVCwcHBLF26lLFjx6IoCrNmzWLJkiU0b96coKAgFi5cSGBgIGPGjKmQcleLQRGSvVv9ZSzrvGsTvc7J8XBuBA73LQQE1i7gVyhIz7dwalA9jAVWUAsc1AooyNGqkiTVIHfm80pBwVnrRk5BFu4GHwxqFU6aFArEOXLMLmhULbAKFWqVBrWiuaXkTghBbkEWKHnsazCGPjFbbPvyLW7lvk51HgihcXZC0WoqfWJhjbNThV3PYDCwb98+li1bRnp6On5+fvTt25cDBw7g6+trOy4iIsI2vy5gG0AxdepUMjIy6N27N9u3b6+wPneKqMx1oGqRrKws3Nzc+HvzKFzKqKGrKLdTfV68ckPx4IZr5YwZTpLJQprJSp5FIN8MkiTVSEJgSc1CcdCjcroDndKFIN+SR2zWOdwNPng4+KJV5WHmKMk5+SiKHotVR6HFGVedLwaNMzq1nuIuKkUjVwUWayFWUWjbbrbko1Xr0ar0WISFXHMWGXkJKKps7s+5MtXW8WZzUClW2p5955aKn51jpsXY78nMzLStvHQnmUwmoqKiCAoKKpGwyKW/yu96r+O1ZA1dDXAzyZzd4AZ/6HywE53pBOfA8b67sQjIKbSSarKSbLKQnVZAocziJEmqBRS9FuVOTVeiKEWJl1pPXqERV6snOrUWa6EvijoJZ70OH6dC0nNSyDKlk53niKPGCxedP1p1UR+4TFMKWfkJqFSFWK0aFMWE2WrBVdcAZ507aXlJFFjyEFjAWsjXzhOZZCxK6tqfe+uWix4eNJPWJ9+ukJehImi9PGtsglWdyYSulrElcsYRcA6cJo0i5+vvUU0YSXyehaS8QjIKBPmyNk6SpFpGWKwgxB3rJKKgwlHrQqYplRxzFmqVB26OXjR2zsFi1WIq1NHIM4dmf621nbPO6TF0ale0ah0ZpmTcHfO5J+1KP++1LoMxWQvJNjoihBYXvTvjs94rd5nK07zq55LNxTYPAN/fbMhSDVJtVoqQbt3ahMvzxp0bQahxhF3Talp+IbEjhnI0tYC/0gtIyLNiksmcJEm1jQCRa0KYy15LsyK4G3wwaBzIMKWQX2jCVKglJccTs1UHqFApV2oIN7kNQ63AuKx3yDRdQqWo7JI5gNDsHTjpPfBy9MDP2R8vhwAO1l90U2UqbpkpS+Pjq0g0utzUNaWaRyZ0NcwfPgH84RPA9E/GXpn811iUyDnedzeGe+9G/HMkKaOGcWrQYI6mFhCVXUiW2YpFZnGSJNV2d7BbuKIoqBUNHg6+WKxmCq1GPBwz8XYy4qI34emYS5OTa2zH/zNzO029i/qrPZD3BY08/Dja5F8lrjs6dRW+Tn4EumlwMeTTI3ZxucsU6l/ULae0pO5Is+m2/9dzy7iJSKWaSDa51iBrE+Cbxa6MnxbBh1M3F9XEFa1mhnri3SSZLCTlWUkvsJBXKGvhJEmqOwQCIe7UGNcrFEVBpagRCFTqdISiIiW3aARl18iS04l0jr4yiKFP3GtlXteKgtWqwaDN42SzF2l77vVylae4ybW0vtZdzl1ZaSLw+Nflup5Uc8mErporHqVabP23T5Oeb+FMviCvgRUnrQqDWiErNZ9ss1UOcJAkqW5SFFQOOhTtnf+zplXpcdA4kVNgREGDh8GCVZSdSka1fYKgk1dWdjjW7Gk6nrOfML57zEJbcnai2Ry72Q3slmLEvt9caf3n5MTCdZNM6KqhP3wCWDKjqCaOhHhatQugntcLpJksHEstsBvQYCy8s/1FJEmSagpFq0FR3fmeRCpFfXlUah7xmU54OFvpdPajMo+/OpkDSiRzxYqTs3ZljGgtTuSuTuLspqa6TCZzdZNM6KqJ6Z+MJT7+lC2J+za0E6kDZpBsKiSzwMrZTLNsQpUkSboOYS4EraZSml0dtS5kmJJJMZq5a1+MbSWg23Vtq0xprq6hKz726m1l/V+q3WRCV0X+8Ang09e60/OezQC2PnG5g58mOc/CH/kW8jIKsFZxOSVJkmoEIbDmFaDS6yrl6TQqHV6OgaTkXuKbzgGM/2MENNt23XOuTbSg5M8kFNW2Xbv/aldvK3F+GduqEzmx8J0hE7oq0jk5ntP3bKZVu6K+DknBy0lpbCErLR+zzOIkSZJuWmUufKQoCk5aVxRHhcScC2zq3IR/3iCpuzYRuzYJK/756u1lJWrXq3UrrWm2ujCnphH54iuVvvRX09dfqvVJnZy2pJL84RNgmy+ueHj5PQPfx911Hr/Xf4e/M82k5ltlMidJklRDFDW9OuNu8CUn38juPi04FfxEuc4tLXkrreattPPKqrW7Xq3ehqRyFeuOKzTmVGoyB0VN8bdTI/jGG2+gKAqzZs0qeW0hGD58OIqisGXLluuXQwheeuklAgICcHBwYNCgQZw9e/aWy3UtmdDdYcWJXHGn1VDjCPw9X+DPhu9yIr2AS7kWuYaqJEnS7VIU1M4Od27pr7KfGBedByqVmtQcCwUFrsR0eLjMo4u/2F9bg3b19uKfS3O9Wrdr9119jYm+SLfg8OHDfPzxx7Rv377U/cuWLUNRytdr880332T58uWsWLGC8PBwnJycGDp0KCaTqULKKptcb9Of3v70zku123Z1p9ZQ4ulsHEHGPcOJyLOQWd9KQZYc4CBJklTRFJWCcseHRFzznIqCRqXBSetGTkEGKUYPCqxexAXNJCRqebmvc71+cbfadHr1edWlhq4mMRqNhIaGsnLlSpYsWVJi/7Fjx3j77bf5/fffCQi4/modQgiWLVvGggULGD16NABr1qzBz8+PLVu2cN999912eWUNXQVw6hrGuMUtbd+wgpYX1cSNG/wBF5u/x9EBg/gro4Akk0WuoSpJknQnCLCaChCWqpjKScFJ54pFWMgtMKFRgY+Tkej2U+yOurZmrrQauWubYMubzJXV7674Z1lDd/OmT5/OyJEjGTRoUIl9ubm53H///Xz44Yf4+9/4JkVFRZGQkGB3LTc3N0JCQjh48GCFlFfW0N2mHg3nMfTuZYyfFlH0i3duBCmvDON0noVMOcBBkiSpkgisBYUo1qr5yqxXO16eyiQFfZYHLnoNimLi96bTEUJF1/Pvl0jOSquVu5nauLImGC7tebIrb1BprbBu3Tr++OMPDh8+XOr+2bNn07NnT1tt240kJBRl2X5+fnbb/fz8bPtul0zoblPuph/4NrQpxkEziMqzkFrfSn6GWU43IkmSVEcoioIKFT5O9UnOiSUpJwON2hUPRxMuhgyc9GoudZxMvWNrSpx7O/PEVcdRrLVBTEwMzzzzDDt27MBgMJTYv3XrVnbt2sXRo0eroHRlkwndbYoZPBCzzomctAIssi1VkiSp6ijc+cVcy3pqRUGjaPFyDCQuO5JkowmrNQCrsJJdkI+LPpeodg9jESqanfwUKL2Ztdjt9qOTEwrfuiNHjpCUlETnzp1t2ywWC3v37uWDDz7gySefJDIyEnd3d7vzxo8fT58+fdi9e3eJaxY3yyYmJtr1t0tMTKRjx44VUm6Z0N2mmJxCHBVZHydJklSlFAW1kwOKprJHudrTqnR4O9YjJfcSKblZCOGHl4sKvTobrdqCEFZiOzxE/T9XlyvhKp6O5GYTNJnM3bqBAwdy4sQJu20PP/wwwcHBzJs3D29vb6ZNm2a3v127drz77ruMGjWq1GsGBQXh7+/Pzz//bEvgsrKyCA8P58knn6yQcsuETpIkSaoVFJVS7ikk7lgZLk84rHJSkZwTS7opGZ3GGxe9MwWWPFJynQAwtnqc4NMrr3ut6jxBcG3m4uJC27Zt7bY5OTnh5eVl217aQIiGDRsSFBRk+zk4OJilS5cyduxY2zx2S5YsoXnz5gQFBbFw4UICAwMZM2ZMhZRbJnSSJElSzScEltx81FoNirZq/7QpioKDxhkfp/ok5cSQkJ2MwIVADwv1XbNAERRY1Bxs/Aw9ot8r8zq1MZHTODuhaDWVvlKExtmp0p6vWEREBJmZmbaf586dS05ODlOnTiUjI4PevXuzffv2Uvvp3QpFVOZaKbVIVlYWbm5ufH7wOI7OLlVdHEmSpDpNWK2Y41LReLqgcqyYP5C3SwhBXqGR1Nx4LKIQDwdHvJw06DU6XAw5WJV8cgp0KAg6nfvojpYlO8dMi7Hfk5mZiaur6x19LgCTyURUVBRBQUElEha5lmv5Xe91vJasoZMkSZKkO6C4ps7fuTGZ+Smk52WQngtOOlfcHTxwcShEp81Bq84nuv3D7P9p1U3NO1dTa/C0Xp41NsGqzuTEwpIkSVLtoFThMNcyKIqCRq3FyyGAei5NcTN4k2s2EpcVT3xGIdk5bqiEAbUC/YdN5lybR8p13ZqazEl3jqyhkyRJkmq+KlvL9cYUFFBAo9LhbvDBWedGZn4qGaZUjAVaUnMd8Xb2xM0hD1eHXC60n8KvP31uO18mb1J5yBo6SZIkqZao3l3CFUW5vParDi+HAPydG6HXOJKVn835lHQiEgUXUw1kmzR07DftxheUpKvIGjpJkiSp5hMCS44JRaet8lGuN1I8tYqD1hmDxolCawE55mxyzVmcT81Fm6nD3dGB4J5P0eX8R7c8ubBUt8gaOkmSJKl2sAqoYRM3KIqCVq3HTe+Fv3MjfJ0aglBIyc7gYpqJAw0fokWPfzLilwDGLW4JlL6yhCTJhE6SJEmSqpiiKKgUNY5aF/ydG+PlWB9zoSPnkxWiUnSEP9OTT1tklUjmZHInFave9dKSJEmSVE6KWgWqml1PUbwmrLPWHWetG2ZrATnmLNJz0tny8EAcdRaGfLybcX+7Mn5ahGyGlWxkQidJkiTVfIqC2tFQlNTVAsrlKVi0aj3uKh9cdZ7kFRrJKUjh5yd68+mKX/Hwr5nz0VmyjVhNpkp7PpXBgNrFudKer6rIhE6SJEmq+UTRygzVaxa621c85Yla0eCkdcNR40JeoQ87p7qh1iQx4uvDrB0Qf92kbm0C3FNNFjSyZBtJ/noTWCyV96RqNT6T/lnrk7ra8VVGkiRJquMEFmMeorASE4VKpigKKpUaR60rPo7N0Stt2PZoP1zaDK7qopWb1WSq3GQOwGK5rRrBN954A0VRmDVrlm1b//79bdPQFD+eeOKJ615HCMFLL71EQEAADg4ODBo0iLNnz95yua4lEzpJkiSpVqgrS5MXJ3YuOi/8nNpiKqgP50aUOE5Od3L7Dh8+zMcff0z79u1L7Hv88ceJj4+3Pd58883rXuvNN99k+fLlrFixgvDwcJycnBg6dCimCmp+rtKEbunSpXTt2hUXFxd8fX0ZM2YMERERdsdERkYyduxYfHx8cHV1ZeLEiSQmJl73ui+//HKJzDk4OLjEcQcPHuSuu+7CyckJV1dX+vbtS15eXoXGKEmSJEkVTaHob5tObcDLoRnfdKlH+tcBrE0ofeTrhqTKL2NNZzQaCQ0NZeXKlXh4eJTY7+joiL+/v+3h6upa5rWEECxbtowFCxYwevRo2rdvz5o1a4iLi2PLli0VUt4qTej27NnD9OnTOXToEDt27MBsNjNkyBBycnIAyMnJYciQISiKwq5du9i/fz8FBQWMGjUKq9V63Wu3adPGLnP+9ddf7fYfPHiQYcOGMWTIEH777TcOHz7MjBkzUNXwEVKSJEl1lUqvRVHVtl5016coClqVHk9DE355YiTqlqP55uOWjFvckm8+bllmgifd2PTp0xk5ciSDBg0qdf/atWvx9vambdu2vPDCC+Tm5pZ5raioKBISEuyu5ebmRkhICAcPHqyQ8lbpoIjt27fb/fz555/j6+vLkSNH6Nu3L/v37yc6OpqjR4/aMt/Vq1fj4eHBrl27ynyRATQaDf7+Zdczz549m5kzZ/L888/btrVs2fI2I5IkSZKqhKKg1utq/LQlt0JRFNRocdc3Ic2kI/RdDRbMDA47zDbgm49bMnLyyaouZo2ybt06/vjjDw4fPlzq/vvvv59GjRoRGBjI8ePHmTdvHhEREXz77belHp+QUJRV+/n52W338/Oz7btd1eqdn5mZCYCnpycA+fn5KIqCXq+3HWMwGFCpVCVq3K519uxZAgMDadKkCaGhoVy8eNG2LykpifDwcHx9fenZsyd+fn7069fvutfMz88nKyvL7iFJkiRVEwLEDVpuarPiNWJ9HINw13XCWd2BX54Yi67lOD5tIf9e3YyYmBieeeYZ1q5di8FgKPWYqVOnMnToUNq1a0doaChr1qxh8+bNREZGVnJpr6g2CZ3VamXWrFn06tWLtm3bAtC9e3ecnJyYN28eubm55OTkMGfOHCwWC/Hx8WVeKyQkhM8//5zt27cTFhZGVFQUffr0ITs7G4Dz588DRX3tHn/8cbZv307nzp0ZOHBgmSNOli5dipubm+3RoEGDCn4FJEmSpFsnsOTU7lGuN1K02oQKndoBF5073g5N8NB1Ys8TE9A2m1jVxasxjhw5QlJSEp07d0aj0aDRaNizZw/Lly9Ho9FgKWWUbkhICADnzp0r9ZrFLYbXjgFITEy8bmvizag2Cd306dM5efIk69ats23z8fFh48aNfP/99zg7O+Pm5kZGRgadO3e+bl+34cOHM2HCBNq3b8/QoUPZtm0bGRkZbNiwAcDW/27atGk8/PDDdOrUiXfffZeWLVvy2WeflXrNF154gczMTNsjJiamxDEGjRpn3Y1bsRXAVa9FU8f6ekhFnHQaHC8vHu6k1eBUjveMJEnlodS6eehuR9GgCQc8HRriqW9d1cWpMQYOHMiJEyc4duyY7fGPf/yD0NBQjh07hlqtLnHOsWPHAAgICCj1mkFBQfj7+/Pzzz/btmVlZREeHk6PHj0qpNzV4i/JjBkz+O9//8vevXupX7++3b4hQ4YQGRlJSkoKGo0Gd3d3/P39adKkSbmv7+7uTosWLWyZc/EL3rq1/Ru8VatWdk2zV9Pr9XZNv9dq7OFM13reAFzKyuXAxSQauDkR5OGMj5MBlaKQkVdAgjGPIA9n9JqiN8SOc3FkmApKXM+gUdPcy5WG7k44ajXkmQu5mJHD2dQs8u7QN1AnrYbWvu74ORtw0GrIL7SQmptPZFo2Bo0aV72WpBwTCcaKGwns6aCnnqsjeeZCojKMuOq1dPD3RK9WUWCx8kd8GpmmAhq5O9PCyxWVApn5Zo5cSsVczZpXHLRqGrs7oygK0elGcs2FJY7pFOBJM6+SI6HOpmRxLCGtXM+jU6sI8nBGq1JxMTOHrHzzbZddkqTaqWjFCdCqtVVckprDxcXF1lJYzMnJCS8vL9q2bUtkZCRfffUVI0aMwMvLi+PHjzN79mz69u1rN71JcHAwS5cuZezYsbZ57JYsWULz5s0JCgpi4cKFBAYGMmbMmAopd5XW0AkhmDFjBps3b2bXrl0EBQWVeay3tzfu7u7s2rWLpKQk7rnnnnI/j9FoJDIy0pbINW7cmMDAwBJTpPz99980atTopuPQqVV0refN6tWr2bRpE16Oeno29KVbPS9OHT7E3H/9i5kzZ7Jl/Vc0dNKi16h56aWXOHr0KJ0DvUpcz82gY1jzeviqLaz86ENmzJjBxx9+gI/awtDm9XA36G66jDfiqNUwuFkgquw03nnz30yfPp03XltC9Mlj9GnsR0c/NzRZKfRp7FeuWsjy0KgU+gf54ZiXSUt3B5p7uRLs7UbKxSg++WA5CVHn6BTgiValolt9b379+Sc++WA5Pno19d0cK6QMFekfgd4EaKz4KmZC6nuXekwDNyfef/991qxZA8D//d//ERYWdlPxtPf3oJGDGndLHr0b+d34BEmqExRUBh3UkqW/aiuVwQCl1HDdUWp10fNWEJ1Ox86dOxkyZAjBwcE899xzjB8/nu+//97uuIiICNvYAIC5c+fy9NNPM3XqVLp27YrRaGT79u1l9tO7WVVaQzd9+nS++uorvvvuO1xcXGwjPdzc3HBwcABg1apVtGrVCh8fHw4ePMgzzzzD7Nmz7UakDhw4kLFjxzJjxgwA5syZw6hRo2jUqBFxcXEsWrQItVrNpEmTgKJvLP/6179YtGgRHTp0oGPHjqxevZozZ86wadOmm46jiacLubm5LFmyhKNHj6JXq/B10DJy5EjS0tJ47LHHcHV1ZdeuXezdu5fPPvuMESNG8Pzzz/Pjjz/i7agnJTffdr0eDXz48+gfjBgxgtDQUAYOHMivv/5KcHAw//vf/+jXqTOJOSYauDnZzjEWmInJyOGv5AwUFJp7udDY3RlXg46MvAKiMrKJz86jo78nga5XkofsfDMXMow467TExcbwj3/8g6effprBgwdz4cIFvv32W3r27EliYiJ9+/bl0qVLDG9R3/aczrqib31WqyAl10Su2UI9V0dUikJSTh4nEzPIMBXg5ainpbcbAS4OFFqtJGTnYSq0oFapCA0N5bXXXqNv374AfL3tmC3hXbt2La183TCbzTz99NNER0fz6KOPEujiSICLI37OBjQqFel5RTWJMZk5dArwooGbI+rLzfK5BYXEZuVyMjEdyzUTj7rotbT0diXQxRG9Rk1GXgHn07NJMObR1tcDP2fD5VhM/JWYjpNOQ7CPG16ORb+AViFIz8vnQkYO/i4OvP76u2RnZ7N06VLublkfB+2VXzGrVaBSKbRt29b2/o6Pjyc/Px8HrYYJbRuTnGPiTHImAmjt4wbA6eRMzFYrbX3dcdBqcNFrWbNmDTt37mTNmjUMa16PyLRs9BoV9V2dcNFrSc01cS41m9S8fLt7LoSg0CrIMxei16jRa9TkmQuJz87jRGI6BZbqVespSeWmFE1bUhdHudYkahdnfCb9s8at5bp7927b/xs0aMCePXtueM61E10risIrr7zCK6+8cltlKUuVJnRhYWFA0RIaV1u1ahVTpkwBijLcF154gbS0NBo3bsz8+fOZPXu23fHFTbLFYmNjmTRpEqmpqfj4+NC7d28OHTqEj4+P7ZhZs2ZhMpmYPXs2aWlpdOjQgR07dtC0adObjqORuzPrv/qSvn374uzsjMVqZdWqVcTExHD06FEKhEKuuZB7772XtLSiZrWQkBAuXLhQVCvoHWBL6HycDLjotcyYMYM5c+Ywd+5cUnJMjB07loCAAGbMmEF4eDjuKiufffYZXbp04euvv6Z+/fo89thjuDv4olIU3DQK69d/zcmTJ2nfvj33338/nQK8iI+PZ8P2/xIUFMTGjRtp3Lgxjz/+OFqtlhXrv6RHjx689NJLJWLcvHkzRqOR5cuXo9VqefLJJ9m2ZTMdO3bk+++/R61WM2vWLKKionjjgy8xm82MHTuWwZ06EZGcSUsfN44ePcqHGzfi5OREaGgoLRo3Jjw8nEuXLrFp0yaOHTvGqFGjAOjZsycHDx4kMzOTlt5ubN26ld69exMdHQ1AoKsjhw8f5tMffsBoNNKlSxcmTJhAKx939CpYERbG4MGDWb16NZ6enkydOhXPID92n0+g+FfMzaBlSLN6REdH83bY+6SkpNClSxdCQ0Nt76u3P1qP2Wxm3LhxDGnXDoBff/0VvV5PREQEx48fZ9CgQQwZMoTExEQOHDhAfn4+y5cvp127dnTq1InvvvuOTp068fXXXzNq1Ch0Oh1a7ZXmDyEEX375JSdOnGDw4MG26XjCw8MBaN+hE6ZCC4lR50hJSaFr16789NNPREREsHz5coKCghg1ahS5ubl8/ulKYmJi6N69O/fccw+KonDp0iU2/vg/6tevz+bNm5k8eTLe3t6ErV5NfHw89evX5+GHHybY243jiek3/f6XpGpBgLXQgrqOrBZRk6ldnGv9uqpVocqbXEt7FCdzULSGWkJCAgUFBfz99988++yztj4BxaKjo3n55ZdtP69bt464uDjy8/OJjY1l3bp1pSZqzz//PDExMeTk5HDgwAF69+590zEYtBpc9Vq2bdvGgAEDMFusqFUqNm7cyGOPPUYhCtvPxrI7KoGd5+LIQMuhmGQURaF///788MMP+DhdqW71d3YgJiaG8PBwpk6dSkRyJr9EJXAmOZPHH3+c3377jZiYGDIyMnj66adZuHAh3bp14/Dhw0yYMIEAF0d8nQyMGDGC8PBwevXqxY8//mhbYy4qKorp06fz/vvv06VLF7799lvmz58PFDVFHzhwgE2bNpGebv+H3c3NDZVKhY+PD97eRc2Jy5YtY8KECej1epo1a8bx48fp378/Pj4+BAcHc++997J//35a+rixZcsWQkNDad26Nd7e3vTv35/Y2FgcHR3RarW4u7vj4+ODTlfUnKzRaBg/frxtIMuqVat4+OGH7cq0b98+mjVrRs+ePfn8889ZuHAhTjoNhYWFzJw5k1mzZtG5c2eioqIYMmQIngYdDdyv1Gp2Dijq+9C9e3f0ej39+/fnzJkzQNG0N7169cLZ2Zn69eszbNgw2+SPW7du5d577+XChQu0adOGhx56iAMHDqDRaHBycsLBwQEfHx9cXFxISUmx3ae2bdvi4uLC1q1b7TrGfvbZZ5w9e5bOnTszffp0Nm7cCBTN0/jDDz+gVavQqlXs37+fDRs2oFKpcHFxwWAw4OPjg5ubGxaLhbvuuovjx4/TuXNn/v3vf7N48WKgaFT3U089xbJly+jYsSMGg4HBgwejUqkYNmwYBoOB5ORkdBpZsyHVZAJrjgnq8ChXqW6rFoMiajJnfVFNy5kzZ5g9ezb5FgtatYro6GgaNmxIpsmM9fIXxnRTAUfiUgFo4+tOkyZNOHPmjN0oR71GxcWLF3FxccHd3Z0zMclF5+blE+zji5ubGxcuXKBRo0bk5ubyySef4O/vzz333EPDhg05c+YMly5dIi8vjw8//BBFURg5ciSBgYG88847AKjVaj777DM0Gg1NmjRh2rRpAAwdOpRXXnmFV199lXvvvZcuXbrw+uuvM2jQIO666y4cHR2ZNGkSVuuVb8BPPfWU7fz77ruPRYsW8cgjj9ie54MPPqBXr1689NJLfPbZZ3Tv3h2AuLg4Vq1axcKFC/H19WXQoEF069ELg/ZK34qHHnqIadOmMWbMGP766y/69etn99o/++yzpKenc+nSJWbNmsX06dN57bXXgKKRzG+++SZt27Zl3LhxtG3blv3799OoXWcuZuSgU6vwdjIw4/XXmTdvHrNnzyYhO4+7L9cQfvDBBzzyyCPMnDkTgNzcXN5++21bk/zAgQNtifDff//Nzp076dmzJx06dCA7O5t777sPlaJw7tw5TCYTq1evxtHFBV0pfUc6duxoS75cXV15+eWXmTBhQpnvOUdHR3r06EFOTo6tG8HPP/+M0WgkLCwMRVHo2rUrrVu3ZsGCBbbzvvjiC3Q6HVarlejoaIYPH27X8ffXC9dfUk+SJEmqvmRCd5tUl2sLCwoK0Gg0FBRaQVc0iCM5OdkuWdOpi/o4JeeasAqBVqslPz/fdg2AQovAy8uL7OxsTCbTlektdBrb5MZeXkUDKby8vPD39+d4Qjrt/T1o0aIF58+f5/z580RGRtKzZ09bG763t7dt/pvGjRuj0WiIy8rF09PT1mkzw1TA1Cee4KmnniI9PZ2VK1cyevToEiN/TySm0yGgaPLn4OBgsvPNuOi1nD59mr/++ouVK1cW9dUqLKRZs2YIITh9+jQzZ860TTeTn5/PyJEj7a6bYMzD4aqErm3btpjNZhYtWsSkSZPspqoRQjBr1iz27t1Lhw4dUKlUJeb3adWqle21ad26NefPn6dV565Fr+fl1/Xvv//mqaee4mJGDuGxyTho1dzdsgGRkZGEhoaSnGMiz1xIu3bt7Ka0adq0KcYCM1arwMPDo8S8iGaLlah0IxqKRlW7u7uzJyqB7g18uFabNm0wW6ycS82idevWREVFlTjmelMxZOQVEBkZSbt27VAUhSOXUuly+R4Xl6tp06bodDr2X0iiVyNfPvroI9vIq/Hjxxcl1k4G4rPlWsZSDaYAipy4RKqbZEJ3m/IuT03RoEEDEhISaNS6HfmFFu655x6++eYbpk2bRq+GvmQXmAnycEGNoMAq0KpVJCQk0KBBA0xXNREk55ro0bIlTZs2ZfPmzfxz4r0YNGqCPJz5dtNGmjRpQnBwMLGxsWRkZJCbm0uwtytCCOLj4/H19cVoNNK+fXt27txZorxJSUm2JmsBds3XHg568gst5BQU4OHhwb/+9S9eeeUVLly4gJ+fn23+vnb+VxYp1mg0FFgsgBZfX18ee+wx7r333hLP6+vry6effkq7y/3QrqYoClarlcYeJftUTJkyhenTp5eYffvSpUts3LiRixcvotFo+Ouvv2xNlcUSExNp5Vc0YWPxa5N/udO/6fLEkAEBAVy4cIGQnr1o5VM0aAOKlmO5dOkSng56LAYd+y5dsluyRVEUirvqXP0aFsei16gJ9nHjXGYyGo3G9nqXJj4+Hq1aRRNPF47+fsbW19NgMJCamoqjtmjeuuTk5BLPA+DuoLOVF6C1rxuZmZnk5ubi4+NDdHS0rQzWy4V+8MEHefDBB4mOjubxxx9n+fLlzHxuDn8myD50Uk2loHY0yFGuUp0l3/m3KdtUQH6hhf79+xMeHo6Pk4FLWblMmzaN8+fPM23aNBIjI9BmpbJm1Wc8++yzOGg1aFQqwsPD6d+/P2lXjXCNz86jwGJl6dKlzJ49m43r1+GQl8k3Gzcwa9YsXnvtNVsCoSgK8+fPJz01hbCwMNRqNZ06deLuu++2dZhPTEzkwoULrFq16oaxbN68mZUrwoiPPk9UVBSvv/46Li4utGzZEh8fH3Jzc/npp584eeKE3XlZ+Way88088cQTLFiwgAMHDpCens5vv/1mSyqfeOIJ2+TRaWlp7Nq1iyNHjgDQqFEjtm/fztGjR+2GeAM8/vjjJCYmlph30MHBgby8PI4dO8bFixdtzZ9XW7hwIanJSXz99ddER0fTv39/UnOLRlblmS0YC4rKvHjxYo7+fpgAjZXw3buAooRn+fLlHP3jCJF/R7B06VImT558w9ewcePGHDp0iMOHDxMbG3vD4wH+97//8eOPP5KcEM9LL71kG5TRuXNnvvvuOyIiIti/fz+rV6+2ndOoUSOOHTtGeHg458+fZ+DAgURGRvLFF1+QlpTInDlz+Oc//1liOHygqyNGo5Evv/yShIQEHB0dcXJywtHR0ZbsSVKNpICi0cgaOqnOkjV0FeBSVi4PPvggw4cPZ8mSJWSaCvD2cuW3337j008/Zfbs2RQUFNClSxdbn6z4+HguXbpEv379+D3uyoSyViE4EpfKhAkTaNCgAR9++CHvvfcezZs359tvv6VHjx5kXp6I2M/Pj44dO/LPf/6T+vXr88MPP2AWoGh1/Prrr7zzzjvcc889ODs7M3DgQKCo6XXw4MEAFFqtODk52UaWtmrVil27drFhwwaEEAQHB/PLL7/g5FQ0kGDDhg1s2rSJwsJCPvvsMwYPHoy3tzdWAScT0xk/fjxarZZ///vfxMfH07hxY9tUMvPnzycwMJDZs2eTlZVFq1atmDdvHgCvv/467733Hm+99RbPPfccjRo1so18Pp2ajaJoyU030sjdiUmTJqHVanF2dmblypXMmTMHBwcHnnnmGdsawFA0T9DIkSO577778PLyYseOHSgaHZFpSbZj/oxPZ9SoURQUFLB48WLS09Pp1q0bI0aMoH///rz77ru8+OKLQNFUOMX91Tp27IizszNWIRCiqNm5uPZu/PjxxMTE8P777zNgwACGDx9ue32tVoFVCNv5UNTc+s4777BlyxaWLFnC4MGDmTdvHpmmAgYNGsQjjzzCY489RvPmzXn99dcxGo0A9OnThyeeeIKwsDDatWvHc889x48//sjSpUv55JNP6NmzJ8uWLQOKVlwpHjlbaLGiVus4ePAgK1asQK1Wc9ddd/Hkk0/yd3rOrf4KSFLVEwKrKR+1Xk6gK9VNirh2ohSpXLKysnBzc+Pzg8cJ8PZkSLN6TJ06lbvvvpu+g4exOzqB1j5uNPFwQXNVE0CSMQ9fZwfmzZtHmzZtCH3gQb47fbHE/Gg+TgZa+bjh5+xgd+6p5Ex8nAy45mfTo0cPu1qgpBwTv8UkgwId/D3t5qkDSMkx4aIvmtg4NjOHk0kZ9GnkV9Q/r9BChqnA7vkA4rNzORafhqNWQ8cAT9yumdQ4z1zIwYvJpOblU8/Vkba+7rhedUxWvplj8Wm46DW08nHHoLnSRy4l18RfiRk09XSh/jVlFUIQnWHk90tFg0h0ahX9g/xxM+jIzjdzLi2LNj7u6DQlBxmYTCbc3NzIz79S85mWm094bDLGAvvVGxq4OdHWz902nx7AhQwjiUYTbX3dcbzcB9JssXIsPg29Rk0bX3cEgj/j0xBAxwBPFBROJ2egVhSae7uiuWYurCRjHnujE2nh7UobXw8EgpyCwhKvJ8CppAz+Ssqgpbcr7f09S91fYLHSysfNtuJIco4JIQS+V92/c6lZXMrKJaS+DwatmpjMHP6IS+Uf9byp52o/kfHp5AxOJmaUeC5JqimEuZDCuFQ0fh4od2Dy9Zou15jNlB7tyczMxNW15Go1Fc1kMhEVFUVQUFCFTZxbF93M6ygTuluUmZmJu7s7YTsP4ODkTK+m9annbCAvLw+NgxOb//wbKBo04azXoVIgO78AvVrN+E7BJCUl4uvry6GoOM4ml91vyaBRY9BqMBVaMF3ur9ehvi/emBkwYABnz57lt+g4zqdkkH/NcH2tWoWzXkehxYoxv6CozxyX+19dddvVimJLKIvKq0VBIafATOE1y2spl4+xCIFKUYqmmrmmzE46LTqNmtwCc4kyuRh0qJWia5uvmcRWfVW5ri1jaWVVLl/PKgTGfHNRMuXrSYcATwICAkhPT+fP2CQiElNtfR3L4qLXoVYpGPPtY3a96vrFVIqCQFzVh65oBcmry1s80MUqhF2Zrz2/+FytWoWDVkOWqaDEdVwMOkzmQgoslus+D4CDVoNOoyb7quuUdc+d9ToERbHJ5lapphPmQgoT0tD4eKAYZC3dtfJyjDw5qCcZGRm4ubnd8ee7XiJSaDRjMV3/M7kiqQ0aNM418z1xMwmdbHK9RdnZ2QA8OagnUNSB/fHHH8fFxYWNGzdy9uzZMs/t06cPd911FxEREaxbt+6mn3vo0KFs376ds2fPYjKZGNm1g93EynVZ586dOXLkCOnp6VitVsb371liQIUkSVJdlZ2dXSkJXVkKjWZiv41EWCrvS6SiVqg/rmmNTerKS9bQ3SKr1UpcXBwuLi4lJjquDCqVCpVKhcViKbG8yO3IysqiQYMGxMTEVEq1/J1wo9emNsRYHnUhzroQI9SNOOtCjFB1cQohyM7OJjAw0G4KqDulrJql/JQ84r6PvuPPf63AUY3Rezvc+EDg5Zdfts0NWqxly5a2ieenTZvGzp07iYuLw9nZmZ49e/Lvf/+b4ODgMq8phGDRokWsXLmSjIwMevXqRVhYGM2bN79uWWQNXSVQqVTUr1+/qotxx7i6utbqD1WoGzFC3YizLsQIdSPOuhAjVE2cVVkzV9O0adPGbuqv4qmfANsSkQ0bNiQtLY2XX36ZIUOGEBUVhbqUyeMB3nzzTZYvX87q1asJCgpi4cKFDB06lFOnTlVYH0OZ0EmSJEmSJF1Fo9Hg7+9f6r6pU6fa/t+4cWOWLFlChw4diI6OLnWZUSEEy5YtY8GCBYwePRqANWvW4Ofnx5YtW7jvvvsqpMxyHjpJkiRJkqSrnD17lsDAQJo0aUJoaGiJFZOK5eTksGrVKoKCgmjQoEGpx0RFRZGQkGCbPgqKaktDQkJsa4RXBJnQSXb0ej2LFi1Cr9dXdVHumLoQI9SNOOtCjFA34qwLMULdibMmCwkJ4fPPP2f79u2EhYURFRVFnz59bIMhAT766COcnZ1xdnbmhx9+YMeOHeh0pU+Xk5CQAGC32lDxz8X7KoIcFCFJkiRJUoWqyYMirpWRkUGjRo145513ePTRR4GiqcuSkpKIj4/nrbfe4tKlS+zfv7/U/nAHDhygV69exMXFERAQYNs+ceJEFEVh/fr1ZT73zQyKkDV0kiRJkiRJZXB3d6dFixacO3fOts3NzY3mzZvTt29fNm3axJkzZ9i8eXOp5xf3xUtMTLTbnpiYWGY/vVshEzpJkiRJkqQyGI1GIiMj7WrXriaEQAhhtzrR1YKCgvD39+fnn3+2bcvKyiI8PJwePXpUWDllQidJkiRJknTZnDlz2LNnD9HR0Rw4cICxY8eiVquZNGkS58+fZ+nSpRw5coSLFy9y4MABJkyYgIODAyNGjLBdIzg42FZjpygKs2bNYsmSJWzdupUTJ04wefJkAgMDGTNmTIWVW05bIkmSJElSpVAbNChqpdJXilAbyp/uxMbGMmnSJFJTU/Hx8aF3794cOnQIHx8fzGYz+/btY9myZaSnp+Pn50ffvn05cOAAvr6+tmtERESQmZlp+3nu3Lnk5OQwdepUMjIy6N27N9u3b6/QdW7loAhJkqRqQAhRJavOSBVP3ku5lmtFkStFSKXavn07wcHBNG7cuKqLcsfk5ubi6OhY1cW44+S9rD127NhBr169an2shYWFdrPt10Z15V7eLo2ztsYmWNWZ7ENXB5w/f56BAwcyYsQITp48WdXFuSOio6MZO3YsoaGhPP3005w6daqqi3RHyHtZexTfy6FDh3LgwIGqLs4dEx0dzX333ce0adNYvHgxaWlpVV2kCldX7qVUvcmErpabMWMGwcHB+Pr6kpSUxN13313VRapwhw8fpnv37uj1enr37s22bduYPHkyP/zwAwBWq7WKS1gx5L2svffy6hnka5Ndu3bRpUsXLBYLXl5evPPOOzz44IO22fFrw/2sK/dSqgGEVGv98MMPQlEU8cknn9i2nT59WqSlpVVhqSrewoULxdChQ4XZbBZCCHH27Fnx4IMPinr16gmLxVLFpasY8l7WjntpNpvFypUrhaIoYv369bbtUVFRIj8/vwpLdmdMmzZN3H///bafDx06JO6++27Rs2fPKixVxbBYLHXqXt6svLw8cerUKZGXl1fVRanRbuZ1lDV0tcxvv/1GREQEAF27dmX06NFs2LCBP//8k759+zJx4kTatm3L9OnTOXLkCFDzviUnJydjsVhsP58/fx5FUWz9c5o1a8a8efNQFIV//etfQM2L8VohISG18l4WE5fHZtXWe3n48GFSUlLQaDR0796dAQMG8P333/P3339z1113MXbsWNq0acMrr7zChQsXgJoZ59VLIwFcuHDBriN3SEgITz75JLGxsfz73/8GamacACqVip49e9baeynVQHc+v5QqQ3x8vJgwYYJQFEVMmjTJtv3gwYNCq9UKT09PsWDBAvHTTz+J9957T3Tv3l0MGDBApKenV12hb1J8fLzo06ePGD16tEhJSRFCFH1LnjNnjhg8eLCIjo62HVtYWCiWL18uHBwcRHJyclUV+ZYkJyeLr7/+Wuzbt08kJSXZtteme5mYmCjee+89sXXrVtt9M5vNte5exsXFiXvvvVcoiiKeffZZIURRPF9//bXQarXC29tbzJ8/X2zcuFEsWrRIBAUFiUceeUQYjcYqLvnNiY+PFz179hSPPPKIMJlMQgghCgoKxPjx48WUKVNEamqq7diMjAwxb9480bx58xr1nk1OThbbtm0Tx44ds8VYG+9lRZE1dBXjZl5HmdDVAnPnzhUqlUqMGjVKDBs2TDz44IO2D5Hc3FwRFhYmVqxYYddktWnTJtGhQwcRFhZWVcW+KS+88ILQaDRi5MiR4uLFi0IIIaxWqxBCiK+//lq0bt1afPXVV3bnnDhxQnTo0EG89dZblV7eW/XSSy8JFxcX0a9fP+Hk5CRGjx4tjh8/LoQQIisrq1bcy/fff1/o9XrRu3dv4ePjI9q2bSt++uknIYQQ69atE61ataoV97L49/Luu+8Wbdq0EQsXLrTdt9jYWLFkyRLxxRdf2J3z7rvvio4dO4qtW7dWRZFvybx584RWqxUjRoyw/W4Wx7l8+XJRv359cfDgQbtztm3bJjp27CjWrVtX6eW9FQsXLhTu7u6iZ8+eQqvVipkzZ4rIyEghhBAXLlyoNfeyIsmErmLIhK6O+PPPP4Wrq6to06aN+OWXX4QQQsyfP1+0bNnS7rj09HTbN8riJCgnJ0fUr19ffPTRR5Va5puVm5srGjRoIJydncWOHTts2wsKCuyO6927txg/frw4deqU3bnt2rUTy5cvr7Ty3qrMzEwxY8YM8Y9//EPs2LFD5Ofni2+//VYMGzZMPP3007bj0tLSauy9FKKodqZLly7iww8/FEIIceTIEfHYY48Jb29vERERIYQQom/fvmLcuHE19l4eOHBAuLm5ibZt24pdu3YJIYR49NFHS/Qbi42NtfW1Kk6A0tLShJOTU41IAlJTU0XDhg2Fj4+P2LNnT5nH1atXTzzyyCN2tc1ZWVnC19dXbN68uRJKeutSUlLEww8/LLp06SJ27twp0tPTRVhYmOjevbt4++23bcfV9Ht5J8iErmLIPnR1yNq1azl58iT9+/cHoHPnzqSlpXH27FnbMe7u7uj1egDbZJcREREoilKt5zGzWq04ODgwZMgQGjduTL9+/Th+/DiPP/44M2fO5O233+bEiRMAvPjii5w+fZqPP/7Ydn5+fj4FBQV4eHhUVQjllpaWhtlsZs6cOQwaNAidTsfYsWPx8PAgLy/PdpyHh0eNvJfF9u3bR2RkJKNHjwaK3q9hYWH4+Pgwd+5cABYvXlzj7qW4an727OxsPv30U06cOMGAAQMQQtCqVSsyMjKIi4uzHVevXj10Oh1Q1B8L4I8//sDFxQUvL6/KDaCciuMUQuDp6UnHjh1p06YNffv25c8//2TGjBnMnz+fL774gtjYWADefvttvvvuO9atW2e7TlpaGk5OTrb3cnVy9b2MiYnBYrHw6quvMnDgQNzd3XniiSdQq9VkZGTYjquJ97IqFRrN5KfkVdqj0Giu6pArRe2e5bGWsVqtqFQqzGYzWq2W9u3b0759e7t9arUaBwcHuyVHrj7fbDZz7tw55s6dS8eOHenVq1dlh3FdxXEUFhbaPhjDwsLw8PCgQ4cOZGdn069fP/Lz8/nll19YsWIFx44dY/jw4Rw/fpwvvviC7t2788ADD7B582Z0Oh19+/at4qhKuvZe+vn5MX36dNq1a2e3383Njdzc3FLPr0n3Uq1W25JOo9FIWloa9erVIz8/H71ez0cffcRdd93Fjh07GDx4MFOmTGHNmjU14l6aTCays7Px8fEBYNCgQbb3bvFr4OrqSmZmZqkT61qtVhRF4dSpUyxdupT+/fvzj3/8o1JjKI+r4yz+MvHWW2/Rtm1bunfvTlxcHCEhIZw6dYrVq1fTunVr/ve//3HvvfeyZ88ePv30U3766SceeOABVqxYgZ+fH926daviqOxdey8bN27MU089RUhICAAWiwW1Wo2fnx+FhSVXOqgp97IqFRrNxH4bWelLf9Uf17Tckxm//PLLLF682G5by5YtOXPmjN02IQQjRoxg+/btbN68+brrsgohWLRoEStXriQjI4NevXoRFhZG8+bNbzqessgauhriP//5D0OGDAFAqy35piz+gO3fvz/JycnExMQAV0ZX5efnExYWxpQpUwgJCaF+/fqsW7cOV1fXSorgxq6OUaPR2JIBrVbLsmXLMJlMfPXVV6xZs4aNGzfyzTffoNFoeOqppwCYOXMmX375Jc2aNeO7776jUaNGHDx4kIYNG1ZlWCVcey+FEDg4OJRI5gD27NlDz549AWwjewsKCmrcvSzm4OBA3759WbFiBQB6vR6r1Ur//v0ZMGAA77//PlBz7uWrr75Kq1atGDZsGPfffz+nT5+23Tu48ns5aNAgkpKS+Pvvv4ErtUAmk4n//Oc/PPDAA3Tt2pWGDRvy2Wef2Wp7qotr4yye7Ll58+YsWLCA7Oxs1q1bx1dffcWuXbv4+OOPiY2NZf78+QAsXbqU119/HbPZzLJly2jYsCE7d+6sVrVX18b4119/4e7ubkvmrFYrarWa/Px8Dhw4QNeuXYGady+rmsVUWKnJHICwiJteaqxNmzbEx8fbHr/++muJY5YtW1buJd7efPNNli9fzooVKwgPD8fJyYmhQ4diMpluqlzXI2voqrnz58/z4osvsmvXLlJSUvjwww+ZPn267ZtiseI3ldlspkuXLhw8eJCxY8fa/rjo9Xpat25NWloaCxYsoE2bNlUST2muF2NxMvDYY4/RtGlTQkJCbLG2adOGhx56iFWrVpGeno6HhwcdO3bkyy+/JC8vDwcHh6oMq4Sy4iz+Q1FMpVIhhCAqKgqj0Uj37t0BbMfodDpatmxZo+5lcWLepEkTunXrxi+//MLevXvp27cvFosFlUpFaGgor732GmlpabbmvOp6L6GoafjLL7/kvffe4/z582zevJlhw4bxww8/0Lp1a+DK72VeXh7BwcGcPHmS3r1727YbDAaaN29OUlIShw8frlb3slhpcQ4fPpxt27bRpk0bZs+eTb9+/ejWrZvt82bgwIH079+fEydOkJOTg5ubGyNGjGDIkCHk5eXh4uJSxVHZKy3GkSNHsm3bthL38sSJE2i1Wluid/W9bNKkSbW+l1L5aTQa/P39y9x/7Ngx3n77bX7//XcCAgKuey0hBMuWLWPBggW27iZr1qzBz8+PLVu2cN9991VImWUNXTVXvLzTxx9/zL/+9S+WLFlCTk4OarW61LmNvL29MZvNtn5XVx8zYMAAFi5cWO0+aMob44ABA9DpdCiKYtt+/Phx/Pz8MBgMdn1fqmMCcDP3UlEUIiIi8PT0tDWr79q1i0WLFgFFNT416V5qtVrMZjOKojBu3Djc3d155513gCs1zqdPn8bX1xdHR8dqfS+tVismk4ndu3czYcIE7rnnHmbNmsXu3bvR6/UsXry4xPxjrVu3Jjs727bslcViscU4btw43n777Wp3L28UZ/E8a87OzvTt29dWq261WjEYDJw+fRqtVouDg4MtVo1GU62SuevFqNPp7O5lcQx//fUXzZo1IzAwEIC9e/fywQcfADBhwoRqeS+lm3f27FkCAwNp0qQJoaGhXLx40bYvNzeX+++/nw8//PC6SV+xqKgoEhIS7FYRcXNzIyQkxLZqSkWQCV01VfzhMXjwYGbPns3YsWN54IEH8PLysnUev1Zxk1y/fv3YvXs3gF3zT3VzKzEWU6lUHDt2jEuXLjF58mQcHBzKXfVd2W41zu+++47evXuTkZHBqFGjGDJkiO0eX53wVAflibH4vdi1a1cmT57M8ePHeeSRRzhy5Ahnz54lPDycPn36YDAYqu29BGx9H//66y9b/yiTyYSiKHzwwQf88ssv7Nq1y9Z0XnzP+vfvzy+//AJg61NYnd1MnNeeFx4eTn5+Pg8//DAqlaraxnqz9xKKfi/79etHcnIyo0aNYsCAAeTn5wPV7/dSujUhISF8/vnnbN++nbCwMKKioujTp49t4uzZs2fTs2dPW23bjSQkJADg5+dnt93Pz8+2ryJU37/2dVzxB6CDg4Otar9Zs2ZMmzaNL774gr/++svujwVg12wnhLD1o6uubiXGixcvsmnTJqZPn07fvn1p1qwZ999/f5WUv7xuJc6srCx2797N999/T0BAAFarlfj4eJYsWWJ3zeqiPDGq1WoKCgqAopqMTz75hN27d/PAAw/QrVs3vL29WbhwYZXFUF5WqxUXFxe6du3KZ599BhR1aRBCMGTIEHr06MHq1attf+SLfy+zs7MpKCggNTW1ysp+M8obZ3EfoMjISH744QdmzpzJ0KFDad++PcOHD6/KEG7oZmNMSEjgt99+4/vvv6dBgwYIIUhISOC5554Dqt/vpXRrhg8fzoQJE2jfvj1Dhw5l27ZtZGRksGHDBrZu3cquXbtYtmxZVRezBJnQ1RDFHedHjhxJt27dmD17NlAyiYOiJpx169bRoEGDKinrrSpPjGlpaezYsYOIiAh++uknPv30UxwdHauqyLekPHHm5ORgsVjw8/Njz549/O9//7ONvKsJyoqxuIO4RqNh0KBB/P7772zYsIGDBw/y7bffVqvmuLIU93EcPXo0x48fZ9++fSiKYkvgXn75Zfbu3UtiYiKAbTTkE088wfLly6vVQIDrudk4z58/z+rVq/nzzz/54YcfWLFihd2yX9XRzcaYmJho60Lwyy+/8N///rdG/V5Kt8bd3Z0WLVpw7tw5du3aRWRkJO7u7mg0Gls/7/Hjx9umD7tWcbNs8fuoWGJiYrmabMtLJnRVKD4+nnXr1nHw4EFb35qyquyLv/k1btyYJ598ksOHD/Pdd98B8Ouvv5KQkGA7JiQkhLZt21ZCBDdWUTHu3buXlJQUOnbsyKuvvsrOnTttgwWqg4qKc9++faSkpODl5cXGjRv57bffbDVeVa2i368Anp6etGvXjuDg4EqIoHxuFKcQAkVR6NWrFx07duSVV14BsCUvBoMBf39/W3/C4g/8QYMG0aFDh8oM5boqKs7iuSAHDBjAm2++yZ49e+jRo0clR1O6io6xadOmfP/99xw8eLDaxCjdeUajkcjISAICAnj++ec5fvw4x44dsz0A3n33XVatWlXq+UFBQfj7+/Pzzz/btmVlZREeHl6h7yOZ0FWRuXPn0qJFCz7++GMGDRrE1KlTiYyMtOvwXxqVSkWfPn0YP348s2bNYtSoUfTt29duIuHqoiJj7N+/P6dPnwbA19e3skIol4qMs1+/fpw6dQqdTkfHjh0rL4gbqOj367lz5yqx9OVXnjivHmUdGhrKX3/9xSuvvGJrMj99+jQeHh7V6gvHtSoyzuJpdTQaTbWaVuZOxOjs7Ezv3r2rJiCp0syZM4c9e/YQHR3NgQMHGDt2LGq1mkmTJuHv70/btm3tHgANGzYkKCjIdo3g4GA2b94MFL3PZs2axZIlS9i6dSsnTpxg8uTJBAYGXnfuupslE7pKlp6ezmOPPcavv/7Ktm3b2L59O59//jkZGRn83//9H1C+gQzJyclcuHABrVbL+fPn6dOnz50uernVhRjhzsVZnSbPlfey9DiL/+CPGTOGpUuX8sYbb9C7d28efvhhJk+ezIgRI3B3d692neTrQpx1IUbpzoqNjWXSpEm0bNmSiRMn4uXlxaFDh26qeT0iIsJugv+5c+fy9NNPM3XqVLp27YrRaGT79u0V2i1BzkNXCYqr9QFSUlJQFIV58+bZ/qhNmDCBtWvX2jreXn38tSIjI5k8eTKxsbH88ssv9OvXr3KCuIG6ECPUjTjrQoxwe3EW93fU6/U89NBD+Pv78+eff3Lq1Cm2bNliNz1BVasLcdaFGGsLtUGDolYqfaUItaH86c7Vy9SVR2nJ/rXbFEXhlVdesTXr3wkyobvDjEYjBQUFeHp6AuDj48OsWbNs8xQVD4d3cnKyjQC8+o9jbm4u27dvZ9y4cUBRte6rr77KXXfdVcmRlK0uxAh1I866ECNUfJxDhw5l6NChlRzFjdWFOOtCjLWJxllL/XFNb3rlhtuhNmjKvexXjSakO2b+/PmiSZMmok+fPuLee+8VZ86csdtvsViEEEIUFhaKxo0bi7Vr19ptF0KIn376SSiKInbs2FF5Bb8JdSFGIepGnHUhRiFknMVqQ5x1IcaaKi8vT5w6dUrk5eVVdVFqtJt5HWUfujugoKCABx98kG3btvHxxx/z2GOPkZ2dzfDhwzly5IjtuOJ+HGfOnMFqtdomtry6f0eXLl149dVXbcvPVBd1IUaoG3HWhRhBxlmb4qwLMUrSTauEBLPOOXHihGjTpo345ZdfbNvy8vKEq6uruPfee8XZs2eFEFe+Ja5fv15069bNduy2bdvE66+/Xqllvll1IUYh6kacdSFGIWSctSnOuhBjTSdr6CqGrKGrYpmZmURERNjNOZWYmIinpye//vorO3fuRAhh+5a4detWBgwYQFJSEoMHDy73ciJVqS7ECHUjzroQI8g4a1OcdSFGSbpZMqG7A1xdXWnXrh0LFiywbfv4448ZNmwYDRs2ZMuWLVitVoQQpKSksG/fPtavX0/9+vVxc3MjJSWFF154oQojuLG6ECPUjTjrQowg46xNcdaFGCXppt2ROsI6Li8vT6xatUpotVoREhIivLy8RGBgoIiOjha7du0SGo1GZGVlCSGEOH/+vGjUqJHo3bu3+OOPP6q45OVXF2IUom7EWRdiFELGWZvirAsx1nSyybVi3MzrKKctqUCFhYVoNBoMBgNTpkyhTZs2HD16FA8PDyZMmADA4cOHadasGenp6bi4uODj48PWrVtp3759FZe+fOpCjFA34qwLMYKMszbFWRdilKRbVgkJZq1nNptt/y8oKBDPPvusrVPutWbOnCnuueeeyipahakLMQpRN+KsCzEKIeMsTU2Nsy7EWNvIGrqKIQdFVBKLxYIQwrb49rJly/D29ua7776zm7jy/PnznD9/nrlz57Jp0yYefvhhoOyFzauTuhAj1I0460KMIOOsTXHWhRjrokKjmfyUvEp7FBrNVR1ypZBNrrfIYrHYloz5+eefmTZtGkajkXfeeYeHHnrI9gEEcOjQIZYuXYqiKGzYsIFevXoBlLlcUnVRF2KEuhFnXYgRZJy1Kc66EGNdVGg0E/ttZKUv/VV/XNNyrxbx8ssvs3jxYrttLVu25MyZMwD079+fPXv22O2fNm0aK1asKPOaQggWLVrEypUrycjIoFevXoSFhdG8efObjKZsMqG7RWq1mpiYGKZOncrPP//MM888wwsvvGBbfgaurBc4ZswYgoKC6NGjRxWW+ObVhRihbsRZF2IEGWdtirMuxFgXWUyFlZrMAQiLwGIqvKnlv9q0acPOnTttP1/9BQLg8ccft1uX1dHR8brXe/PNN1m+fDmrV68mKCiIhQsXMnToUE6dOoXBYCh3ua5HNrneok2bNtGkSRPUajXHjx/nP//5j90HDVz5dujo6FgjP2jqQoxQN+KsCzGCjPNqNT3OuhCjVH1pNBr8/f1tD29vb7v9jo6OdvtdXV3LvJYQgmXLlrFgwQJGjx5N+/btWbNmDXFxcWzZsqXiylxhV6pjOnfuzN69e2v1h0hdiBHqRpx1IUaQcdYmdSFGqfo6e/YsgYGBGAwGevTowdKlS2nYsKFt/9q1a/nyyy/x9/dn1KhRLFy4sMxauqioKBISEhg0aJBtm5ubGyEhIRw8eJD77ruvQsqsCNlrVJIkSZKkCmQymYiKiiIoKMiuSTE/JY+476MrvTyBoxqj93Yo17E//PADRqORli1bEh8fz+LFi7l06RInT57ExcWFTz75hEaNGhEYGMjx48eZN28e3bp149tvvy31egcOHKBXr17ExcUREBBg2z5x4kQURWH9+vVllqWs17E0soZOkiRJkiTpsuHDh9v+3759e0JCQmjUqBEbNmzg0UcfZerUqbb97dq1IyAggIEDBxIZGUnTpk2rosiA7EMnSZIkSZJUJnd3d1q0aMG5c+dK3R8SEgJQ5n5/f3+gaL3hqyUmJtr2VQSZ0EmSJEmSJJXBaDQSGRlp11x6tWPHjgGUuT8oKAh/f39+/vln27asrCzCw8MrtI+oTOgkSZIkSZIumzNnDnv27CE6OpoDBw4wduxY1Go1kyZNIjIykldffZUjR44QHR3N1q1bmTx5Mn379rVbXi44OJjNmzcDRaOxZ82axZIlS9i6dSsnTpxg8uTJBAYGMmbMmAort+xDJ0mSJEmSdFlsbCyTJk0iNTUVHx8fevfuzaFDh/Dx8cFkMrFz506WLVtGTk4ODRo0YPz48SxYsMDuGhEREWRmZtp+njt3Ljk5OUydOpWMjAx69+7N9u3bK2wOOpCjXCVJkiRJqmBljc6sCStFVCdylKskSZIkSdWOxllL/XFNsZgKK+051QZNjUzmbpZM6CRJkiRJqjQaZ22dSLAqmxwUIUmSJEmSVMPJhE6SJEmSJKmGkwmdJEnVRnR0NIqi2OZ1qmiKolToYtiSJEnVhUzoJEmymTJlSoXOi3SzGjRoQHx8PG3btgVg9+7dKIpCRkZGlZVJkqRbJyfSuD038/rJhE6SpGpDrVbj7++PRiPHa0lSTabVFg16yM3NreKS1GwFBQVA0WfjjciETpKkctmzZw/dunVDr9cTEBDA888/T2HhlakH+vfvz8yZM5k7dy6enp74+/vz8ssv213jzJkz9O7dG4PBQOvWrdm5c6ddM+jVTa7R0dEMGDAAAA8PDxRFYcqUKQA0btyYZcuW2V27Y8eOds939uxZ+vbta3uuHTt2lIgpJiaGiRMn4u7ujqenJ6NHjyY6Ovp2XypJqvPUajXu7u4kJSWRmppKXl4eJpNJPm7ikZubS3JyMo6OjuX6kiu/BkuSdEOXLl1ixIgRTJkyhTVr1nDmzBkef/xxDAaDXRK1evVqnn32WcLDwzl48CBTpkyhV69eDB48GIvFwpgxY2jYsCHh4eFkZ2fz3HPPlfmcDRo04JtvvmH8+PFERETg6uqKg4NDucprtVoZN24cfn5+hIeHk5mZyaxZs+yOMZvNDB06lB49erBv3z40Gg1Llixh2LBhHD9+HJ1OdysvlSRJlxUvPJ+UlFTFJam5VCoVDRs2RFGUGx4rEzpJkm7oo48+okGDBnzwwQcoikJwcDBxcXHMmzePl156CZWqqLK/ffv2LFq0CIDmzZvzwQcf8PPPPzN48GB27NhBZGQku3fvtn3Qv/baawwePLjU51Sr1Xh6egLg6+uLu7t7ucu7c+dOzpw5w48//khgYCAAr7/+OsOHD7cds379eqxWK//3f/9n+7BctWoV7u7u7N69myFDhtzciyRJkh1FUQgICMDX1xez2VzVxamRdDqd7fP1RmRCJ0nSDZ0+fZoePXrYfUvs1asXRqOR2NhYGjZsCGC3ODVAQECA7dt5REQEDRo0sCVzAN26dbtj5W3QoIEtmQPo0aOH3TF//vkn586dw8XFxW67yWQiMjLyjpRLkuoitVpdrj5g0u2RCZ0kSRWmuCN0MUVRsFqtFf48KpWqxOivm60BMBqNdOnShbVr15bY5+Pjc1vlkyRJqmwyoZMk6YZatWrFN998gxDCVku3f/9+XFxcqF+/frmu0bJlS2JiYkhMTMTPzw+Aw4cPX/ec4n5sFovFbruPjw/x8fG2n7OysoiKirIrb0xMDPHx8QQEBABw6NAhu2t07tyZ9evX4+vri6ura7likCRJqq7kKFdJkuxkZmZy7Ngxu8fUqVOJiYnh6aef5syZM3z33XcsWrSIZ599ttz9OwYPHkzTpk156KGHOH78OPv372fBggUAZXb4bdSoEYqi8N///pfk5GSMRiMAd911F1988QX79u3jxIkTPPTQQ3ZNOoMGDaJFixY89NBD/Pnnn+zbt4/58+fbXTs0NBRvb29Gjx7Nvn37iIqKYvfu3cycOZPY2NhbeekkSZKqjEzoJEmys3v3bjp16mT3ePXVV9m2bRu//fYbHTp04IknnuDRRx+1JWTloVar2bJlC0ajka5du/LYY4/ZkiyDwVDqOfXq1WPx4sU8//zz+Pn5MWPGDABeeOEF+vXrx913383IkSMZM2YMTZs2tZ2nUqnYvHkzeXl5dOvWjccee4zXXnvN7tqOjo7s3buXhg0bMm7cOFq1asWjjz6KyWSSNXaSJNU4ipDTOEuSVEX2799P7969OXfunF1CJkmSJN0cmdBJklRpNm/ejLOzM82bN+fcuXM888wzeHh48Ouvv1Z10SRJkmo0OShCkqRKk52dzbx587h48SLe3t4MGjSIt99+u6qLJUmSVOPJGjpJkiRJkqQaTg6KkCRJkiRJquFkQidJkiRJklTDyYROkiRJkiSphpMJnSRJkiRJUg0nEzpJkiRJkqQaTiZ0kiRJkiRJNZxM6CRJkiRJkmo4mdBJkiRJkiTVcDKhkyRJkiRJquH+HwblriCDvorrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map.gval.cat_plot(\n", + " title='Agreement Map', \n", + " figsize=(8, 6),\n", + " colormap='tab20b'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "bdcbfb8e", + "metadata": {}, + "source": [ + "## Comparisons" + ] + }, + { + "cell_type": "markdown", + "id": "4a1f3ecc", + "metadata": {}, + "source": [ + "For multi-categorical statistics GVAL offers 4 methods of averaging:\n", + "\n", + "1. No Averaging which provides one vs. all metrics on a class basis\n", + "1. Micro Averaging which sums up the contingencies of each class defined as either positive or negative\n", + "3. Macro Averaging which sums up the contingencies of one class vs all and then averages them\n", + "4. Weighted Averaging which does macro averaging with the inclusion of weights to be applied to each positive category." + ] + }, + { + "cell_type": "markdown", + "id": "66235a0a", + "metadata": {}, + "source": [ + "### No Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "4f258087", + "metadata": {}, + "source": [ + "Using `None` for the averaging argument runs a one class vs. all methodology for each class and reports their metrics on a class basis:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "936f2dea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
band11111
positive_categories12345
fn6.01043.0318274.0516572.0364147.0
fp172762.0561004.0462496.03775.05.0
tn1043592.0653360.0422623.0693617.0852206.0
tp0.0953.012967.02396.02.0
accuracy0.8579630.5379270.3581090.572210.700622
balanced_accuracy0.4289840.5077410.2583110.4996020.5
critical_success_index0.00.0016930.0163370.0045840.000005
equitable_threat_score-0.0000050.000055-0.175401-0.000455-0.0
f_score0.00.003380.0321480.0091250.000011
false_discovery_rate1.00.9983040.9727280.6117320.714286
false_negative_rate1.00.5225450.9608530.9953830.999995
false_omission_rate0.0000060.0015940.4295790.4268520.299376
false_positive_rate0.1420330.4619740.5225240.0054130.000006
fowlkes_mallows_index0.00.0284550.0326750.0423390.001253
matthews_correlation_coefficient-0.0009040.001257-0.440983-0.005543-0.000072
negative_likelihood_ratio1.1655460.9712262.012361.0008011.0
negative_predictive_value0.9999940.9984060.5704210.5731480.700624
overall_bias28793.666667281.5415831.4353990.0118910.000019
positive_likelihood_ratio0.01.0335110.0749190.8529160.936112
positive_predictive_value0.00.0016960.0272720.3882680.285714
prevalence0.0000050.0016410.2723220.4266570.299376
prevalence_threshold1.00.495880.7851070.5198760.508252
true_negative_rate0.8579670.5380260.4774760.9945870.999994
true_positive_rate0.00.4774550.0391470.0046170.000005
\n", + "
" + ], + "text/plain": [ + " 0 1 2 \\\n", + "band 1 1 1 \n", + "positive_categories 1 2 3 \n", + "fn 6.0 1043.0 318274.0 \n", + "fp 172762.0 561004.0 462496.0 \n", + "tn 1043592.0 653360.0 422623.0 \n", + "tp 0.0 953.0 12967.0 \n", + "accuracy 0.857963 0.537927 0.358109 \n", + "balanced_accuracy 0.428984 0.507741 0.258311 \n", + "critical_success_index 0.0 0.001693 0.016337 \n", + "equitable_threat_score -0.000005 0.000055 -0.175401 \n", + "f_score 0.0 0.00338 0.032148 \n", + "false_discovery_rate 1.0 0.998304 0.972728 \n", + "false_negative_rate 1.0 0.522545 0.960853 \n", + "false_omission_rate 0.000006 0.001594 0.429579 \n", + "false_positive_rate 0.142033 0.461974 0.522524 \n", + "fowlkes_mallows_index 0.0 0.028455 0.032675 \n", + "matthews_correlation_coefficient -0.000904 0.001257 -0.440983 \n", + "negative_likelihood_ratio 1.165546 0.971226 2.01236 \n", + "negative_predictive_value 0.999994 0.998406 0.570421 \n", + "overall_bias 28793.666667 281.541583 1.435399 \n", + "positive_likelihood_ratio 0.0 1.033511 0.074919 \n", + "positive_predictive_value 0.0 0.001696 0.027272 \n", + "prevalence 0.000005 0.001641 0.272322 \n", + "prevalence_threshold 1.0 0.49588 0.785107 \n", + "true_negative_rate 0.857967 0.538026 0.477476 \n", + "true_positive_rate 0.0 0.477455 0.039147 \n", + "\n", + " 3 4 \n", + "band 1 1 \n", + "positive_categories 4 5 \n", + "fn 516572.0 364147.0 \n", + "fp 3775.0 5.0 \n", + "tn 693617.0 852206.0 \n", + "tp 2396.0 2.0 \n", + "accuracy 0.57221 0.700622 \n", + "balanced_accuracy 0.499602 0.5 \n", + "critical_success_index 0.004584 0.000005 \n", + "equitable_threat_score -0.000455 -0.0 \n", + "f_score 0.009125 0.000011 \n", + "false_discovery_rate 0.611732 0.714286 \n", + "false_negative_rate 0.995383 0.999995 \n", + "false_omission_rate 0.426852 0.299376 \n", + "false_positive_rate 0.005413 0.000006 \n", + "fowlkes_mallows_index 0.042339 0.001253 \n", + "matthews_correlation_coefficient -0.005543 -0.000072 \n", + "negative_likelihood_ratio 1.000801 1.0 \n", + "negative_predictive_value 0.573148 0.700624 \n", + "overall_bias 0.011891 0.000019 \n", + "positive_likelihood_ratio 0.852916 0.936112 \n", + "positive_predictive_value 0.388268 0.285714 \n", + "prevalence 0.426657 0.299376 \n", + "prevalence_threshold 0.519876 0.508252 \n", + "true_negative_rate 0.994587 0.999994 \n", + "true_positive_rate 0.004617 0.000005 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "no_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2, 3, 4, 5],\n", + " negative_categories=None,\n", + " average=None\n", + ")\n", + "no_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "d722dc68", + "metadata": {}, + "source": [ + "### Micro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "3bbb83cf", + "metadata": {}, + "source": [ + "The following is an example of a using micro averaging to combine classes to process two-class categorical statistics. In this example we will use classes 1 and 2 as positive classes and classes 3, 4, and 5 as negative classes:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "538dfc49", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
fn382.0
fp733099.0
tn481259.0
tp1620.0
accuracy0.396987
balanced_accuracy0.602749
critical_success_index0.002204
equitable_threat_score0.00056
f_score0.004398
false_discovery_rate0.997795
false_negative_rate0.190809
false_omission_rate0.000793
false_positive_rate0.603693
fowlkes_mallows_index0.04224
matthews_correlation_coefficient0.017033
negative_likelihood_ratio0.481468
negative_predictive_value0.999207
overall_bias366.992507
positive_likelihood_ratio1.340402
positive_predictive_value0.002205
prevalence0.001646
prevalence_threshold0.463444
true_negative_rate0.396307
true_positive_rate0.809191
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "fn 382.0\n", + "fp 733099.0\n", + "tn 481259.0\n", + "tp 1620.0\n", + "accuracy 0.396987\n", + "balanced_accuracy 0.602749\n", + "critical_success_index 0.002204\n", + "equitable_threat_score 0.00056\n", + "f_score 0.004398\n", + "false_discovery_rate 0.997795\n", + "false_negative_rate 0.190809\n", + "false_omission_rate 0.000793\n", + "false_positive_rate 0.603693\n", + "fowlkes_mallows_index 0.04224\n", + "matthews_correlation_coefficient 0.017033\n", + "negative_likelihood_ratio 0.481468\n", + "negative_predictive_value 0.999207\n", + "overall_bias 366.992507\n", + "positive_likelihood_ratio 1.340402\n", + "positive_predictive_value 0.002205\n", + "prevalence 0.001646\n", + "prevalence_threshold 0.463444\n", + "true_negative_rate 0.396307\n", + "true_positive_rate 0.809191" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "micro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=[1, 2],\n", + " negative_categories=[3, 4, 5],\n", + " average=\"micro\"\n", + ")\n", + "micro_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "79761a73", + "metadata": {}, + "source": [ + "### Macro Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "790c56df", + "metadata": {}, + "source": [ + "The following shows macro averaging and is equivalent to the values of shared columns in `no_averaged_comps.mean()`:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "7e64eb9b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
accuracy0.605366
balanced_accuracy0.438927
critical_success_index0.004524
equitable_threat_score-0.035161
f_score0.008933
false_discovery_rate0.85941
false_negative_rate0.895755
false_omission_rate0.231481
false_positive_rate0.22639
fowlkes_mallows_index0.020944
matthews_correlation_coefficient-0.089249
negative_likelihood_ratio1.229986
negative_predictive_value0.768519
overall_bias5815.331112
positive_likelihood_ratio0.579492
positive_predictive_value0.14059
prevalence0.2
prevalence_threshold0.661823
true_negative_rate0.77361
true_positive_rate0.104245
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "accuracy 0.605366\n", + "balanced_accuracy 0.438927\n", + "critical_success_index 0.004524\n", + "equitable_threat_score -0.035161\n", + "f_score 0.008933\n", + "false_discovery_rate 0.85941\n", + "false_negative_rate 0.895755\n", + "false_omission_rate 0.231481\n", + "false_positive_rate 0.22639\n", + "fowlkes_mallows_index 0.020944\n", + "matthews_correlation_coefficient -0.089249\n", + "negative_likelihood_ratio 1.229986\n", + "negative_predictive_value 0.768519\n", + "overall_bias 5815.331112\n", + "positive_likelihood_ratio 0.579492\n", + "positive_predictive_value 0.14059\n", + "prevalence 0.2\n", + "prevalence_threshold 0.661823\n", + "true_negative_rate 0.77361\n", + "true_positive_rate 0.104245" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "macro_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " negative_categories=None,\n", + " average=\"macro\"\n", + ")\n", + "macro_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "ef8f72ab", + "metadata": {}, + "source": [ + "### Weighted Averaging" + ] + }, + { + "cell_type": "markdown", + "id": "e182a6f7", + "metadata": {}, + "source": [ + "To further enhance `macro-averaging`, we can apply weights to the classes of interest in order to appropriately change the strength of evaluations for each class. For instance, if we applied the following vector the classes uses in this notebook, `[1, 4, 1, 5, 1]`, classes 2 and 4 would have greater influence on the final averaging of the scores for all classes. (All weight values are in reference to the other weight values respectively. e.g. the vector `[5, 5, 5, 5, 5]` would cause no change in the averaging because each weight value is equivalent to a ll other weight values.) Let's use the first weight vector mentioned in weighted averaging:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0eae1cbc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
accuracy0.577454
balanced_accuracy0.476356
critical_success_index0.003836
equitable_threat_score-0.014789
f_score0.007609
false_discovery_rate0.811574
false_negative_rate0.835662
false_omission_rate0.239133
false_positive_rate0.211627
fowlkes_mallows_index0.029953
matthews_correlation_coefficient-0.03872
negative_likelihood_ratio1.088901
negative_predictive_value0.760867
overall_bias2493.443989
positive_likelihood_ratio0.784138
positive_predictive_value0.188426
prevalence0.225962
prevalence_threshold0.573022
true_negative_rate0.788373
true_positive_rate0.164338
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "accuracy 0.577454\n", + "balanced_accuracy 0.476356\n", + "critical_success_index 0.003836\n", + "equitable_threat_score -0.014789\n", + "f_score 0.007609\n", + "false_discovery_rate 0.811574\n", + "false_negative_rate 0.835662\n", + "false_omission_rate 0.239133\n", + "false_positive_rate 0.211627\n", + "fowlkes_mallows_index 0.029953\n", + "matthews_correlation_coefficient -0.03872\n", + "negative_likelihood_ratio 1.088901\n", + "negative_predictive_value 0.760867\n", + "overall_bias 2493.443989\n", + "positive_likelihood_ratio 0.784138\n", + "positive_predictive_value 0.188426\n", + "prevalence 0.225962\n", + "prevalence_threshold 0.573022\n", + "true_negative_rate 0.788373\n", + "true_positive_rate 0.164338" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weight_averaged_metrics = crosstab.gval.compute_categorical_metrics(\n", + " positive_categories=classes,\n", + " weights=[1, 4, 1, 5, 1],\n", + " negative_categories=None,\n", + " average=\"weighted\"\n", + ")\n", + "weight_averaged_metrics.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "8c567b77", + "metadata": {}, + "source": [ + "Regardless of the averaging methodology it seems as though the candidate does not agree with the benchmark. We can now save the output." + ] + }, + { + "cell_type": "markdown", + "id": "0d5f7be8", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "dff8f8a0", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'multi_categorical_agreement_map.tif'\n", + "metric_file = 'macro_averaged_metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "macro_averaged_metrics.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/SphinxTutorial.ipynb.txt b/_sources/SphinxTutorial.ipynb.txt new file mode 100644 index 00000000..7a61e360 --- /dev/null +++ b/_sources/SphinxTutorial.ipynb.txt @@ -0,0 +1,1166 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a1702330", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "a403ee30", + "metadata": {}, + "source": [ + "# Two-Class Categorical Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a9fa8470", + "metadata": {}, + "outputs": [], + "source": [ + "import rioxarray as rxr\n", + "import gval" + ] + }, + { + "cell_type": "markdown", + "id": "e14713f5", + "metadata": {}, + "source": [ + "## Load Datasets" + ] + }, + { + "cell_type": "markdown", + "id": "64da5e7b", + "metadata": {}, + "source": [ + "It is preferred to use masking and scaling by default. If your original data does not have nodata or does not have nodata assigned, please assign using: `rio.set_nodata()`" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f91c0b8c", + "metadata": {}, + "outputs": [], + "source": [ + "candidate = rxr.open_rasterio(\n", + " 'candidate_map_two_class_categorical.tif', mask_and_scale=True\n", + ")\n", + "benchmark = rxr.open_rasterio(\n", + " 'benchmark_map_two_class_categorical.tif', mask_and_scale=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "1d496084", + "metadata": {}, + "source": [ + "## Run GVAL Categorical Compare" + ] + }, + { + "cell_type": "markdown", + "id": "3d293073", + "metadata": {}, + "source": [ + "An example of running the entire process with one command using minimal arguments is deomnstrated below." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "541857a7", + "metadata": {}, + "outputs": [], + "source": [ + "agreement_map, crosstab_table, metric_table = candidate.gval.categorical_compare(\n", + " benchmark,\n", + " positive_categories=[2],\n", + " negative_categories=[0, 1]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "6555af46", + "metadata": {}, + "source": [ + "## Output" + ] + }, + { + "cell_type": "markdown", + "id": "b2eaeeea", + "metadata": {}, + "source": [ + "#### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "c24dfc06", + "metadata": {}, + "source": [ + "The agreement map compares the encodings of the benchmark map and candidate map using a \"comparison function\" to then output unique encodings. In this particular case the \"Szudzik\" comparison function was used by default since no argument was passed in for the `comparison_function` argument. First, a negative value transformation (nvt) is used to support negative numbers encodings:" + ] + }, + { + "cell_type": "markdown", + "id": "6b2dec44", + "metadata": {}, + "source": [ + "$$\n", + "c = \\text{candidate value} \\\\\n", + "b = \\text{benchmark value} \\\\\n", + "nvt(x)= \n", + "\\begin{cases}\n", + " 2 * x,& \\text{if } x \\geq 0\\\\\n", + " -2 * x -1, & \\text{otherwise}\n", + "\\end{cases} \\\\\n", + "ct = nvt(c) \\\\\n", + "bt = nvt(b) \\\\\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "5ba5f9b0", + "metadata": {}, + "source": [ + "Then the szudzik function is applied to the transformed values:" + ] + }, + { + "cell_type": "markdown", + "id": "94e6bfbd", + "metadata": {}, + "source": [ + "$$\n", + "szudzik(ct, bt)= \n", + "\\begin{cases}\n", + " ct^{2} + ct + bt,& \\text{if } ct\\geq bt\\\\\n", + " bt^{2} + ct, & \\text{otherwise}\n", + "\\end{cases}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "4e41ff59", + "metadata": {}, + "source": [ + "The resulting map allows a user to visualize these encodings as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b1ef13a0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFnCAYAAABgqKpGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0UElEQVR4nOy9d5wU9f34/5y25fYaHO1OBFGQYgE9NSL2GFE0iQqxJmJJ/JqABWPNzxSN0WhULDEa/SRirIlGjRqUGA2aGDB6ESwooqIovV3b2zYz798fe7M3Oze7O1sOODNPH/uQm533e95Tdl7v1+v9KpIQQuDj4+Pj4+PTL5C39wB8fHx8fHx8vOMLbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC+5+zH/+8x8kSUKSJK699trtPRyfCnLWWWdl7u3/+3//L+d+iUSCgQMHZvZduHDhthtkkZxzzjlEIhE2bNiQtd0ae77PWWedldVml1126bVPbW0t+++/PzfffDPJZLLX8ROJBHPnzmXy5MnU1dURCARobGxkv/3244ILLuCvf/1rzrFv2bKF66+/nkMPPZQhQ4agaRp1dXVMmjSJ73//+7z88stlX5/NmzczZMgQJEli9OjRrvs888wzzJw5k7322otBgwahaRpDhgxh2rRpPPfcc65tPvjgA2688UaOOOKITJthw4Zx0kkn8c9//rPguJYuXcp3vvMdhg8fTjAYZOjQoRx++OHcf//9WfvFYjEaGxuZNm1a8SfvUxzCp98ye/ZsAQhA7L777tt7OD4OfvrTnwpA3H///UW3nTlzZubeDhgwQCQSCdf9/vznP2f2A8Q//vGP8gbdR7z99ttClmVx2WWX9frOGvvMmTNzfu67776sNiNHjhSAmD59upg5c6Y488wzxaGHHio0TROAOPTQQ7Ou2datW8W+++4rAKFpmjj00EPFqaeeKo4//njR2NgoADF27FjXsT/55JOitrZWAKK6ulp89atfFaeddpr4xje+IcaMGZMZ/7Rp08q6RjNnzhSSJAlA7Lbbbq77TJ8+XUiSJPbcc08xbdo0ccopp4ivfOUrmTFcddVVvdrstNNOmbEfddRR4uSTTxZ77rmnAIQkSWLu3Lk5x3TfffcJVVWFoihiypQp4tRTTxVHHHGEGDBggPjqV7/aa/9bb71VAOKll14q+Tr4FMYX3P2UZDIpBg0aJAAxbNgwAYjFixdv72H52KiE4N5nn30EIJ566inX/U488UShKIqYOHHiDi24v/GNbwhN08T69et7fWcJnWKwBPfKlSuztr/11luirq5OAOLOO+/MbL/gggsEICZNmiS++OKLXv29/vrr4pprrum1/dlnnxWSJAlVVcVNN90k4vF4r33ef/99MXPmTDFmzJiizsHO3//+dwGI8847L6/g/u9//ys2bdrUa/vixYtFdXW1kCRJvP3221nfffWrXxV/+MMfRCwWy9p+zz33CEAoiiLee++9Xn2+9NJLQpIkMXr0aLFs2bKs7xKJhPjvf//bq01XV5eor68XBxxwQMFz9ikdX3D3U5555hkBiClTpohrr71WAGLWrFnbe1g+NiohuG+66SYhy7KYMWNGr322bt0qgsGgOProo8XUqVN3WMG9atUqIcuyOP74412/r6TgFkKIa665RgBZGmFTU5MAxIsvvuj5GB0dHZnJ8YMPPlhw/zfffNNz33a6urrEbrvtJiZMmCA+/PDDvII7H+eee64AxO233+65zdFHHy0A8bOf/azXdxMmTBCyLPeaCHgdh5tg96kM/hp3P+Whhx4C4Nvf/jbf/va3AfjjH/9IKpXK2ebtt9/m61//OvX19dTU1HDooYfy4osvsnDhQtd1RGuddeHChSxYsIAjjjiC+vp6JEmitbU1s98LL7zAcccdx+DBgwkGg+y6665ccsklbN682XUcQggeffRRjjzySAYMGEAoFGL8+PH87Gc/o6urq9f+hx9+OJIk8emnn/LHP/6R/fffn6qqKnbaaScuv/zyzHrmxx9/zGmnncaQIUOoqqriiCOO4O233855PYoZt/1avPrqqxx55JHU1NRQW1vLcccdx7Jly7L232WXXbjmmmsAOPvss7PWYotZh25sbOTII4/kueeeo62tLeu7P/3pTyQSicz9d2PJkiVcfvnlNDc3Z53nD37wA9asWdNr/08//RRJkjj88MNpb2/noosuYuedd87co7lz52KapufxA/z+97/HNE1OO+20otqVyj777APA559/ntm2ceNGAAYPHuy5n3nz5rFp0yYOOuigvNfYorm5uciRprnmmmv45JNPuOeee9A0raQ+gEzbQCDguc3EiRMBej0Lr732GsuWLePwww9nr732Kmocp59+OgD33ntvUe18imB7zxx8iqe1tVWEQiERCATE5s2bhRBCHHTQQQIQzzzzjGubf//736KqqkoAYu+99xannnqq2H///YUsyxkz4syZM7PaWFrf9773PSFJkth///0z7VpbW4UQQlxxxRUCEIFAQEyZMkXMmDEjs+632267iXXr1mX1aRiGOO200zJrbocffrg48cQTxc477ywAccABB4iurq6sNocddpgAxMUXXyxUVRVHHXWUOPHEEzPa0Jlnnik+/PBDMWjQIDFu3DhxyimniL322ksAYuDAgb3GUMq4rWtxySWXCEVRxFe+8hVx8skni913310AoqGhQaxduzaz/w9/+MOM+XrKlClZ67Xvv/9+wXtsHe/BBx8U999/vwDE7373u6x9Dj30UFFVVSU6OjpyatynnHKKUFVV7LvvvuKEE04QJ5xwgthll10EIBobG8Xq1auz9l+5cqUAxIEHHiiam5tFfX29OOmkk8Txxx8vwuGw63NSiP32208AvY5lQYU17ocfflgAYq+99sps23XXXQUgzj//fGGapqdjTJs2rZfJvVgsq0uua7Z06VKhqqo455xzhBA9179Yjfvtt98WAwYMEJqmiY8++shzu+nTpwtA/OQnP8nablnxrr76atHV1SV+//vfi1mzZokLL7xQPPDAA71+o3ZisZjQNE3svPPORZ2Dj3d8wd0P+b//+z8BiG9+85uZbb/5zW8EIL71rW/12t8wjIyA+cUvfuHaVz7BDYjHHnusV79/+tOfBCD23HNPsWLFisx20zTFT37yEwGIU045JavNTTfdJABx+OGHZwm6RCKRMbFdccUVWW0swV1dXS3eeOONzPa1a9eKoUOHCkmSxPjx48WVV16ZeSmbpim+853vuL6UShm3dS1kWc5ab9Z1PfPy+/GPf5zVphKm8gcffFC0t7eLcDgsjjjiiMz3n332mZAkSZx22mlCCJFTcL/88suukyfLnHz22WdnfWcJDmuCt3Hjxsx3H330UcbknGvN3UlHR4dQFEU0NTXl3KfSgvvUU08VgDjjjDMy22644YbMccaNGyeuvPJK8dRTT4nPP/885zEsp65//etfRY3NTj7BbRiG2H///cWgQYMy69ZeBfczzzwjZs6cKU4//XRx8MEHC1mWRTAYFPPmzfM8to8++kgEg0EB9DLzW9fwRz/6kRg7dmyWAyQgRowYkdeE3tzcLADxySefeB6Pj3d8wd0PsQTZ448/ntm2adMmoWmaCIVCGW3Y4sUXXxSAGDNmjDAMo1d/U6ZMySu4jzvuONdxWBrlO++80+s70zTFpEmThKIomZd/KpUSgwYNEpFIxFUL7urqEsOGDRMDBgzIGqd1vldffXWvNnPmzBGA2HXXXUUymcz6bunSpQIQhx12WFnjtl8LuzCwePPNN12PUynBLYQQJ598spBlOeNYdf311wtA/PWvfxVC5Bbc+dhpp51EQ0ND1ja74P7b3/7Wq83dd9/da/04H6+//roAsiYdTpxCwe3jnCg4BbdpmuLTTz/NWFIkSRKvvvpqZn/DMMTll1+e8Tq3f/bYYw9x99139/pthEIhAYgPPvig15i3bNni6v3utKbceeedYuzYseLKK6/s1cdtt93W6/nwKrh//vOfZ51DOBwW9957r+vv241UKiUOPvhg10mqED3Pk6qqYvjw4WL+/Pmira1NvPPOO+JrX/uaAMTIkSNFNBp17f+MM84QgHjyySc9jcenOHzB3c+wNK36+vpeHq7f/OY3BdArdOZnP/uZAFxfHkIIcccdd+QV3L/97W97tVm/fn1mMpCLWbNmCUC88MILQoiel/jXvva1nG2OO+64Xi9LS3DbX8QWd955pwAypkY7HR0dArJD5UoZtxA91+KBBx7otX97e3uv4whRWcFtOSPedNNNQggh9thjDzFkyBCRSqWEEPkF96ZNm8Tvf/97cckll4hzzjknI2SGDBkigMxyixA9gmPgwIGu42ptbc0ICi9C4tlnnxWAOOmkk3LuY7f45Pq0tLRktbEEt9snEAiI3/zmN67HWr16tbj99tvF9OnTxYgRI7LanXDCCVnnlE9wf/75567H9jpx+uyzz0R1dXWvyV6xpvJYLCbeeecd8YMf/EAA4vjjj88ZOmjn+9//fmbCa7//FpZwBsTrr7+e9V08HhfDhw8XgLj33ntd+7eW39zeHT7lo+LTr3j44YcRQjBjxgyCwWDWd9/+9rf5y1/+wkMPPcR3v/vdzPa1a9cCsPPOO7v2OWLEiLzHdPv+008/BWDFihVIkpS3/aZNm7LavPjii57ajB07NmvbTjvt1Gu/6urqgt8lEomyxm1n+PDhvbbV1NT0Ok6lOeaYY2hoaODhhx/mqKOO4r333uOCCy5AVfP/hB999FHOO+88Ojs7c+7T0dHBwIEDs7aNHDnSdd+6ujrq6+tpbW1l69atNDQ05D2+5VBnXaN8zJs3r+A+TqZPn051dTWSJFFdXc24ceM48cQTaWpqct2/qamJCy+8kAsvvBCA999/n5tvvpnf//73PP300zz66KOcccYZADQ0NLB69WrXZ3H48OEIITJ/H3PMMSxYsMDzuGfNmkUymeSee+4p9pSzCIVC7Lnnntx1110oisKdd97JnXfeyQ9/+MOcbX7xi19w9913M3ToUBYsWNDr3kPPb2fChAkccMABWd8Fg0FOP/10brrpJl555RW+973v9WpfW1sLkOXE6lM5fMHdz3jwwQcBWLhwIQcffHDWd5Z39auvvspnn32W8+VbLKFQqNc2y7N42LBhTJ06NW97axxWm9GjRzNlypS8bdwEgiznDoLI952dUsZdynEqjaZpnHzyydx999386Ec/Aijo6fzZZ59lIgVuu+02jjvuOHbaaSfC4TAABx10EIsWLcoSQJWmrq4OSE8O+oKbb76ZXXbZpeT248eP53e/+x1bt27lqaee4q9//WtGcE+cOJHVq1fz1ltvFXxei+W5556jvr6e888/P2t7PB4HYPXq1Rx++OEAPPbYYwwbNqxgn9/5zne48847+ctf/pJTcN9zzz1cffXV1NXV8cILL+TM0GY9+7murbXdmQXPwpqw1dfXFxy3T/H4grsf0dLSwvvvvw/ARx99xEcffeS6nxCChx9+OPOCb2xsBLLDY+zk2p4PS/McNGiQZ03JajNu3LiStKtKUMq4dxS+/e1vc/fdd/PCCy+w++6799KEnMyfP59kMsmll17KRRdd1Ov7Tz75JGfbVatWuW5vb2+ntbWVcDjs6aU8ZMgQIJ0ydEfmyCOP5Kmnnsqyshx77LHMnz+fxx57jNmzZ1f8mK2trbzyyiuu38Xj8cx3ljAvxKBBg4Ce0Dcnjz32GLNmzaKqqoq//vWvTJo0KWdfVkjd1q1bXb+37qelmTux2hUTfufjHT+Oux9hxW5feumliLR/Qq+PFSNs7QtktIWnnnrKVbv605/+VPRYhg8fzrhx41i2bBkffvihpzb7778/dXV1vPLKK9vtRV7KuEvFiqfVdb0i/R100EFMnDiRhoYGzjnnnIL7Wy9PN/P+q6++yvr163O23bx5My+99FKv7Y899hgAkydPRlGUgmPYY489UFWV5cuXF9y3LylkVbAmwfYll7POOouGhgZee+21rN9Tpcbj9lm5ciUAu+22W2abV4uCJeh32223Xt/Nnz+fM888E1VVeeqppwpaEKZNm4aqqrzzzjuuv1XrWJaAd2IpGPkmBz6l4wvufoJhGDz66KMAeRNZHHLIIey00068//77tLS0AGltYsyYMSxfvpybbropa/958+Z5KjTgxo9//GNM02T69OksWbKk1/ebN2/mvvvuy/wdDAa5/PLL6ejo4KSTTnLV+FavXp1ZDugrih13qVjrrJUUWkuWLGHTpk1cccUVBffdfffdgfQkLhqNZravXr26l4nWjUsvvTQrGc3KlSszxWxmzZrlabyRSIR99tmHtWvXsnr1ak9t+oKDDjqI+++/P+s6WDz33HOZteYZM2ZktldXV3P//fcjSRJnn302v/rVr1y13y+++CKn1erXv/4148aN46qrrir7HDZu3Mh9993nmqToxRdf5PLLLwfSCX/svPbaa8yYMQMhBH/84x85+uijCx5r0KBBnH322XR2dnLhhRdmFW154IEHePHFFwmFQr2SNkHaQvDOO++w8847M2rUqCLP0scLvqm8n/C3v/2N9evXs/vuu7Pvvvvm3E+WZU455RRuvfVWHnzwQZqbm5FlmQceeICjjjqKK6+8kkcffZQJEybw8ccf88YbbzBr1izuuuuuojIuQTpD0nvvvcf1119Pc3MzkyZNymgKH3/8MW+//TbV1dVZzitXXnklH3zwAQ8++CDjx49nn332YdSoUSSTSZYvX86yZcvYe++9+c53vlPyteqLcZfC0UcfTSgUYu7cubz77rs0NTUhSRKXXXZZL2envuAb3/gGe+yxB2+++WbGryAej/OPf/yDSZMmcdBBB/Hvf//bte2BBx5IMplk9OjRHHnkkaRSKV566SW6urr49re/zUknneR5HMcddxxvvPEGCxcuzKwfu+EmBCxGjBhRVgW8999/n3POOYcf/OAH7LvvvowYMYJYLMby5cv54IMPADj//PM57rjjstp9/etf589//jNnnXUWl19+Oddeey1f+cpXGDJkCB0dHXz++ee88847mKbJV77yFcaMGZPVftOmTSxfvjzjIFoO0WiU8847j4svvpjm5maGDx9ONBrlww8/zJzDnDlzmD59ela7448/nlgsxqhRo3j66ad5+umne/V98MEHZzm0AvzqV79i8eLFPPzww/zzn/9kv/32Y9WqVbz55psoisK9997r6vD62muvkUqlel1LnwqyDT3YfcrAyjb205/+tOC+b7zxhgCywoWEEGLJkiXi+OOPF7W1tSISiYgpU6aI559/Xjz00EOu4WJWSFKhEJdXXnlFfOtb3xJNTU1C0zTR0NAg9t57bzF79mzxyiuvuLb5y1/+Io477jgxZMgQoWmaGDJkiGhubhaXX355r9AfKxzMLdmGlVUs13WhO9603HEXuha5jrNgwQIxZcoUUV1dXVTIkDMcrBC5wsG2bNkivv/974tddtlFBINBseuuu4orrrhCRKNR1+tqhSMddthhorW1VfzgBz8QTU1NIhAIiLFjx4qbb75Z6LruaUwWq1atEoqi5KyehUtYlfMzceLErDb5ErC4sXTpUnHjjTeKo48+Wuy2226iqqpKBINBMWLECDFjxgwxf/78vO03b94sfvGLX4gpU6aIQYMGCVVVRW1trdhzzz3Fd7/7XfH3v//dNSNbocxpTvKFg0WjUXHTTTeJadOmiZEjR4pwOCyCwaDYZZddxKmnnpr32Sz0yTW+zs5O8aMf/UiMHj1aBAIBMXDgQHH88cfnTUpzzjnnCKDX79inckhC9KFLqU+/4Pzzz+e3v/0tjz32GKeccsr2Ho7PduTTTz9l1KhRHHbYYRWt7X3iiSfy3HPP8fnnn3vykPbpn8RiMZqamth99915/fXXt/dwvrT4a9z/I2zZsiUTw2znj3/8I//3f/9HfX09xx9//LYfmM//BD//+c8xTZObb755ew/Fpw+55557aG1t5YYbbtjeQ/lS469x/4/w4YcfMnnyZPbee2923XVXIL3ut3z5chRF4be//S2RSGQ7j9Lny8qee+7JzJkzufvuu7n88sszYWI+Xx5isRg33XQTxx57LEceeeT2Hs6XGt9U/j/Chg0buPbaa3n55ZdZs2YN0WiUQYMGcdBBB3HppZcyefLk7T1Enx2AvjKV+/j4VA5fcPv4+Pj4+PQj/DVuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6Uf4gtvHx8fHx6cf4QtuHx8fHx+ffoQvuH18fHx8fPoRvuD28fHx8fHpR/iC28fHx8fHpx/hC24fHx8fH59+hC+4fXx8fHx8+hG+4Pbx8fHx8elH+ILbx8fHx8enH+ELbh+ffsLPfvYzJEna3sPw8fHZzviC28fHwbx585AkKeszZMgQjjjiCJ5//vntPbyCLF++nDlz5nDQQQcRCoWQJIlPP/10ew/Lx8enQqjbewA+Pjsq1157LaNGjUIIwfr165k3bx7Tpk3j2Wef5fjjj9/ew8vJokWLuOOOO5gwYQLjx49nyZIl23tIPj4+FcQX3D4+OTj22GPZb7/9Mn+fe+65DB06lEcffXSHFtzf+MY3aG1tpaamhptvvtkX3D4+XzJ8U7mPj0fq6+sJh8OoavZ89+abb+aggw6ioaGBcDhMc3MzTzzxRK/2kiQxe/Zsnn76afbcc0+CwSB77LEHL7zwQq99//Wvf7H//vsTCoXYbbfd+O1vf+t5nAMHDqSmpqb4E/Tx8ekX+Bq3j08O2tra2LRpE0IINmzYwJ133klnZyff/va3s/a7/fbb+cY3vsEZZ5xBMpnkscce41vf+hbPPfccxx13XNa+//rXv3jyySf5wQ9+QE1NDXfccQfTp09n1apVNDQ0APDOO+9w9NFHM3jwYH72s5+h6zo//elPGTp06DY7dx8fnx0XX3D7+OTgqKOOyvo7GAzy+9//nq997WtZ2z/88EPC4XDm79mzZ7Pvvvty66239hLc77//PsuWLWO33XYD4IgjjmDixIk8+uijzJ49G4Cf/OQnCCH45z//yYgRIwCYPn06e+21V8XP0cfHp//hC24fnxzcdddd7L777gCsX7+ehx56iO9+97vU1NRw0kknZfazC+2tW7diGAaHHHIIjz76aK8+jzrqqIzQBth7772pra3lk08+AcAwDBYsWMAJJ5yQEdoA48ePZ+rUqcyfP7/i5+nj49O/8AW3j08ODjjggCzntNNOO4199tmH2bNnc/zxxxMIBAB47rnnuO6661iyZAmJRCKzv1vMtV0YWwwYMICtW7cCsHHjRmKxGGPGjOm139ixY33B7ePj4zun+fh4RZZljjjiCNauXcuKFSsA+Oc//8k3vvENQqEQv/nNb5g/fz4vvvgip59+OkKIXn0oiuLat9u+Pj4+Pm74GrePTxHoug5AZ2cnAH/+858JhUIsWLCAYDCY2e/+++8vqf/BgwcTDoczEwM7y5cvL6lPHx+fLxe+xu3j45FUKsXf/vY3AoEA48ePB9IatCRJGIaR2e/TTz/l6aefLukYiqIwdepUnn76aVatWpXZ/v7777NgwYKyxu/j4/PlwNe4fXxy8Pzzz/PBBx8AsGHDBh555BFWrFjBlVdeSW1tLQDHHXcct956K8cccwynn346GzZs4K677mL06NG8/fbbJR33mmuu4YUXXuCQQw7hBz/4Abquc+edd7LHHnt46rOtrY0777wTgNdeew2AX//619TX11NfX5/xXvfx8emnCB8fnyzuv/9+AWR9QqGQmDRpkrj77ruFaZpZ+//ud78TY8aMEcFgUIwbN07cf//94qc//alw/rwAMWvWrF7HGzlypJg5c2bWtldeeUU0NzeLQCAgdt11V3HPPfe49unGypUre43f+owcObLo6+Hj47NjIQnhe8X4+Pj4+Pj0F/w1bh8fHx8fn36EL7h9fHx8fHz6Eb7g9vHx8fHx6UdsV8F99913Z1I+1tbWMnnyZJ5//vnM9/F4nFmzZtHQ0EB1dTXTp09n/fr1eft88sknOfroo2loaECSJL+koY+Pj4/Pl4rtKriHDx/OL3/5S1paWnjzzTc58sgj+eY3v8l7770HwJw5c3j22Wd5/PHHeeWVV1izZk1Wjmg3otEoBx98MDfeeOO2OAUfHx8fH59tyg7nVT5w4EB+9atfMWPGDAYPHswjjzzCjBkzAPjggw8YP348ixYt4sADD8zbz6effsqoUaN46623mDRp0jYYuY+Pj4+PT9+zwyRgMQyDxx9/nGg0yuTJk2lpaSGVSmWVVhw3bhwjRozwJLiLIZFIZBWHME2TLVu2ZMztPj4+Pv0dIQQdHR00NTUhy757U39muwvud955h8mTJxOPx6muruapp55iwoQJLFmyhEAgQH19fdb+Q4cOZd26dRUdww033MA111xT0T59fHx8dkQ+//xzhg8fvr2H4VMG211wjx07liVLltDW1sYTTzzBzJkzeeWVV7bpGK666iouueSSzN9tbW2MGDGC99/+LzV1tQgBhjBIJlKYpiCgqaiqiiz3aOMpwyAeSxCpCmdtd0MIQZwOOtiEImmERS0BwqiJJMoXKzF23QNkGdMUtEejxEUHalWKmjUgXl+JsVMd0bE1RCIDCAfqPc6eBQIBkgFCASFhCBM9paNpKrIkI0kSQgiEELS1bWXzpk1oIRlZVVCUahQ5SEBTiFQF6YrFMQ1BbW2EWKyD1vbNCCEIBoJoWghJkqiurkOV1YzVwhQm7al21kQ/J27GC45YQcGgJwe4iorZ/Z+ERH1gAMMjI9BkrWBfKUNnS3w9ZlUUJAECZDOE1F4LpkKkKkA8nkI3zHQDCSJVQSKhEJIECAFmHCm2AVKdiFADBAeBXNmf0LdH/jDr76c+fAeAr759ArUzPu713Ym771VU/+1P7Jbpp/2JdF1wZ7/2fd14ae+nM/8+cfe9GPtq+hosP1QvaixulHJOFvZzy7Vt7Ksqvxz2FkDmOG7t8m0vZpzlnI/V3iJXP9Y+zu+t+/LLYW8RDf6Njo4Oxu+5DzU1NSWPx2fHYLsL7kAgwOjRowFobm7mjTfe4Pbbb+eUU04hmUzS2tqapXWvX7+eYcOGVXQMwWAwq7KTRei9z4mMG4U8dABSSEMApilIJFPoukEgoBHQVCQJOjpj1AyuRlPTlzSfhV0IgYKOIIIpTEwjgWRUoZohqsIhqK0GWUEIQXV1hFi8DmnjVuTXlyLX15Hcf1dSSiu6FEUKhokEBqKbSWRZRZW0POZ9uzuDlJZFpkkymULVFFRFwTRNtrZtQmhxBgyuAQkk0v2pqoqiBFFVjcZhdZiGSVdXFwKDSKTK1reOAFKpLqrrBhEIpK/t9IbeObIXrFnK1KaJuS9Wifva21h8b7fcbResWQp1ZPXfNn8MddNW5Pw735js+7q1y9WHKmVPQr41dl8WrFnKG1OeZao0sdd3apErOQO/tYoFa5cxtWkiSiSYHlf3Ma1xts1P1wK3CpAunvREVh9z1h6Q+bcq6QSrVZY1673GXgo/7TwAVXKfAExoSR8nFwO/tSpzLrm2/WbMUkBhatPEzLVTIkHXsbv1B9b98nbtS7lHdn7aeQBzG1uA3s+G/RgL1iwl+vyErOfs48PS/69do6CEeoS1v/zX/9nugtuJaZokEgmam5vRNI2XXnqJ6dOnA+myhqtWrWLy5MnbZCzS4Dr0FV8gln6M3FCHulsT8qBawqEApilIpnQ6ozEMw0RCkErpJBIpFEUmGNCQZYnpDbMzL0LA84u/FOxCqpAwybdtwZqlUOXehxuFBFPP2Lyfp1uf1ngmtKjMbWzJ/O3l+IWY2jSRCS0q0CMYnH1aQs2+fWrTRNd7WOx47PfO6te+3XmupTw39utmfyZ7jyN7LHPWNgOwrFnvNc70Navcczy3sYWpOZ6TZc16QeGdbyI1eehK1zblPjvlUOh8ljXrsKZwP3PWNrN40hM5r53Pl4vtKrivuuoqjj32WEaMGEFHRwePPPIICxcuZMGCBdTV1XHuuedyySWXMHDgQGpra7nggguYPHlylmPauHHjuOGGGzjxxBMB2LJlC6tWrWLNmvTTbtUwHjZsWNGa+llHzc2rRSxYs5SpIwv/UOwvhgVrljJnbXPmJQSFf7z5sPqwZuXF4vbSsr/4vIwtn2ZZSPMsRfAta9aZins757GdQigf1nla19TtvHONK99YSnmhWs+J2/Hb5o9halNR3dE2fwzLmldkxrF40hO9rAsABy6Zkfnefvx8z8DcxpZ0u/nZ4yyWSgj/XO3rpq1g7hrvz0KlKOe3XQyWgHdeQ+tZhrSlz+fLwXZ1LdywYQNnnnkmY8eO5atf/SpvvPEGCxYs4Gtf+xoAc+fO5fjjj2f69OkceuihDBs2jCeffDKrj+XLl9PW1pb5+5lnnmGfffbhuOOOA+DUU09ln3324Z577qn4+C2hY328MGdtM3MbW1iwZmlG2BYjdK3jTGhRixLaC9YsLellak0w7C8Ar9i1uqlNEzOaYqF9K4WrJcEDy5r1jHbp/ED62rtZN9z6d7tu9v3yXddc99V+Hb3el1wTJkhfe8scvnjSE72EtnWcXMeytD3rOPkmN31NvutRKctWMZaoUifUdqx7Uej6WZMuO/bj67aa8T79mx0ujntHoL29nbq6Og7nm57W7Zw/KEujzrePtZ/9h1XohWDXwnK9ENz6cJpb+xJLAHtd03Xb5tTSndoh9DaXW33Yr73bNXc7rnN7sZMwuxD02sYNr/3YrRSVWCawC25rjLmY29iS9b3zHuQjn0bt9XzKOd9CS0l9QaWWELyO3Xk8q11H8J+sX7+RseP3oq2tLVNPvtKkfWaSfdL3lx1N01AUpfCO7IBr3Ds6udYioeelPLexxXVdqvcPrsfkW4h82rXbRCEflXjZ58JLv7nM49a47H1YQjvXi8tpisx17S2s4y5Ys7RbQ1maWd+2+vEqQK17UYwmWWjClWtiYce+rgxLy17XrJu2wtM6qpNihDbkFzjWd4WeHy/PVyFhWa4grbRfipe+7M9kvjb235bd+mAaJqZpVmTMuUgmk6xcubLPj/Nlpr6+nmHDhhV0IPQ1bhdyady5NEXIr7F50aRz7ZdPKOQSgIX6KMapK996bznkOrb9WhRrWs2nzZaKNSnyqglbloBiKPb+ldqPl2Pk07btWJq33S+gnGdkWwjDSmnclRyrV+xOiRb5rBfW99a/N/ES7e0djBm7R59o3EIIVq1aRSqV8hO8lIAQgq6uLjZs2EB9fT2NjY159/cFtwt2wR19fkLGjJjvh1Ks1utsb2HX/ryYenPh1NDtQqWUsVpjqpSzjaXx5hPebpQi0Esl1/igOCHg3LfUF7/XdfVy+nYKbq+TEPvzlUto5hvXtnLiyjVJLsYKVWpY4vYymU9oUbl80PUYRoqRo8b2ieBOpVJ89NFHNDU1UVdXV9G+/5fYvHkzGzZsYPfdd89rNvenRXlof2K3jKm2EkLb7uRkN2M5tXXLec1OvjHYsZyILAcreztrjKW8IMtp68bUpolMHroy6zwLCWSnOdk6t6lNEz1rim79uW23nOkKtfVyXLdxl4L9fAsdq5S+gSyHyVKcJvNd03yUcqxSv7fjxSejLyl2Emq//4XaWue2rFlHlmVkqe9e90a341sgEOizY/wvUFWVzoeRSqXy7ucL7jy8tPfTnl6EXoX2gUtmZH54lvZaSLuc2jTR1Vs031jcxtM2f0zmh+x2zFK8ur160+fq2+1lnas/533wui7ots3+8nP72wvpkKyJnicyubTQfFEJpVgWyvHOdwrvOWubM5MiLxOUuY0trl7dbmNy7jdnbXPJz1Ix52wXeqVGWlTSTF6J9fZcVhe7w2E6UVTfJ17xk7uUh9fr5zun5eGrb5/AQFbl3cfrD29q00TqyH5J2OOR7euzTnOwW+IPyB03bcf63vr/gfNnsHjSE1n95zMJFzonL+Qyh1vnWQnTdy7vfLu5sJLr37nuSSHsmmkuXwPr77Sw9G7hcHvG3Pov1EfPWNPJUKzJyZyWbG9yN+zOgfmeK/vaeMa87sFBrm7aiixnvPRzVLhdJSnF7O22fzlOos7nOteYrGNomkq8cJZhn36Cv8btQr5wMPtaoNt6Xi5ntXw/dK9CuRD5+nH+v5IhYl5eZE6TZCFBWuz1cwsZKzSefBOKUvCS2hSKu+b2CQ6khaEzBamTSjp5WceE3klbnNi1aOveWm29+jLYfTzKGXeh9V/rWKX0Uc4zYg/prOSafr4xTWhR+fkut9PR0cHwkaP7ZI07Ho+zcuVKRo0aRSgUqmjffYWz9PPChQs54ogj2Lp1a6/iVtsKr9fRN5UXwYQWNcvUnQ+7CbTQj7xS62tu/TiFtp1iTPD5cHMYs0zzdoFdSODY+8v3tx1LWBTrmV3uNXcTOpUS2s7ENdb/neZPLxRrOnfb30rKAvTyzwD35CyWcLLa2vu1LxFZZnh7kpFSLCOVdlh0c16rVL9zG1v6xBHP7d5AeoKwvS3YZ511FpIk9focc8wx23dgNg466CDWrl3bL5zrfFN5GVhpHnPl1C4Wu8ZWSWeZvujT6zGdFFrTb5s/xtXcm4tF60dV9Ly8mqdL0ZqLPbdCx/UirIq9Ntb++fqe29iSZTZ3w1oGsli85glYk/7NLFoP5MhHYI+NL9fRrpJ4yU+/PbF79bNm2yWYKYZjjjmG+++/P2ubW3Gn7UUgEKh4Aau+wte4y8BKFuJ0MCp19r8tBWsp2ltfYTntFYubc1Euzchr/5XWhJy+CpXEft3s52dZOhasWVqy06ETpxOf0+vc+tu+zc1yYNfeLcuV85p7TfHpHJ8Xf4ltFUqYD7sjXiVT/dqz2pWSorivCQaDmZoR1mfAgAFA2inr//7v/zjxxBOpqqpizJgxPPPMM1nt33vvPY4//nhqa2upqanhkEMO4eOP02VXTdPk2muvZfjw4QSDQSZNmsQLL7yQ1f4///kP++yzD6FQiP3224+33nor6/uFCxciSRKtra0AzJs3j/r6ehYsWMD48eOprq7mmGOOYe3atZk2uq5z4YUXUl9fT0NDA1dccQUzZ87khBNOyOzzxBNPsNdeexEOh2loaOCoo44iGo2WdS19wV0BLM9bL+E6fcWO9EN1ekvne6HOWducJdDchFsxL7dKCMdSr6V94mY/Z7sTmhe8nkPG4bB7ycNNOJZbpczev0UuAe6WjtcpvJ1jhewYbi9JdPJdx0K+EM6/vd4T+37latvWuVYqg6E1STtwyYxM35bD2o4wUfHKNddcw8knn8zbb7/NtGnTOOOMM9iyZQsAq1ev5tBDDyUYDPLyyy/T0tLCOeecg66nz/f222/nlltu4eabb+btt99m6tSpfOMb32DFivT17ezs5Pjjj2fChAm0tLTws5/9jEsvvbTgmLq6urj55pt58MEHefXVV1m1alVWuxtvvJGHH36Y+++/n9dee4329naefvrpzPdr167ltNNO45xzzuH9999n4cKFnHTSSWUXfPEFdx7uW/aLrL8Llt/bjpRyfK8hOF4p9kVRTtIaKLwOWYoAXrBmqeuY8vVlX7N1eo3bx1jOSzqfgCm0tl6Je+x2fPs5Ov0+8h3zwCUzXNfJLZxr3k6KuY72EMhcFqZcAtxpLbFbMPqiKI5X3PxH7HkHdkQzOcBzzz1HdXV11uf666/PfH/WWWdx2mmnMXr0aK6//no6Ozv5z3/+A8Bdd91FXV0djz32GPvttx+77747Z599NmPHjgXg5ptv5oorruDUU09l7Nix3HjjjUyaNInbbrsNgEceeQTTNPnd737HHnvswfHHH89ll11WcMypVIp77rmH/fbbj3333ZfZs2fz0ksvZb6/8847ueqqqzjxxBMZN24cv/71r7Mc29auXYuu65x00knssssu7LXXXvzgBz+gurq6rGu546hpOyCK6i3hO3jP/PTklrsAOGngLM9t+iqrU6XCo0oVDF6FdrEaaLH92ynlpVdszu5iqVQhESht8mAJvAPn9w7vchYosWM5RDrHXzdtBcvoPRlyFjCB4u6HPUbb+nfdtBWuky43x8xctdbt2M+1L3P+58JZgCcXznj18gyzleGII47g7rvvzto2cODAzL/33nvvzL8jkQi1tbVs2LABgCVLlnDIIYegab2LPrW3t7NmzRqmTJmStX3KlCksXZq+f++//z577713lqf25MmTC465qqqK3XbbLfN3Y2NjZkxtbW2sX7+eAw44IPO9oig0Nzdn8rVPnDiRr371q+y1115MnTqVo48+mhkzZmSWCErF17jzoAVUHlt7G3cv+ykAt350fs59LSEx7/Prs7Y/vul2/rz51zy55a6M0Ia0AC9UQcx64RR6ObitJRaikJezZX7L9Z31fTmZn4oxVW4rShlPX2s4lRAOdu9u6565CbR852LF/9s/hfwk7ELG6VnunDgWk/0u131y+w15maDalxfsuC19eYnG8PIcuR2vULtcy0p2S8CO+LuCtDAePXp01scuuJ1CWZKkjAAMh8PbdKwWbmMqxsytKAovvvgizz//PBMmTODOO+9k7NixrFy5sqxx+Rp3HoQQdOlRksFWfvX+eXRtSfGr989DDcqABGTfQAmJpBnj0bW3oQXk7i1Szmw4T265i5MGzsr8bZ/hW2Ejlodovtm9Mz7ba1axtIm3J+mLRXoM2ZWI7NaBfHW1Cx3Twrm2XWntpdRYYLcxbCv/gVIKutivmxWuaH8GcmmMmefMpbKYm6ZZLPYEIbCy1zktWj+KOY427oLcvYhJrgQ4zufamgzkWjvPtO9O/uL8/Tivg1No53pu8/lq1E1b4RqPbxe2xf4eckWOWOfy5BbPXe2Q7L333jzwwAOkUqlewrS2tpampiZee+01DjvssMz21157LaMNjx8/ngcffJB4PJ7RuhcvXlzWmOrq6hg6dChvvPEGhx56KJBO/frf//6XSZMmZfaTJIkpU6YwZcoUfvKTnzBy5EieeuopLrnkkpKP7WvceUjpKaKJrZhSEiUgEaxR0OMmRkp0z7p6BLKETHVwIPWRBgSCVMpEQsraxw2nJm6f4dtffpUod+hkWbOecaqzyJV600pn6UXLtpz17H87JxNOByYv49+eWoRT8LjFLpc7vlzpavNhv272sqQWxca3e22XD0u42a+PM71v3bQVec/V6f+Qa1/7Grb1b6eznJvQXjzpiZyhb/a/rT6sZ9r5nHqJ3bfvaxewdk94+298e5jgtwWJRIJ169ZlfTZt2uSp7ezZs2lvb+fUU0/lzTffZMWKFTz44IMsX74cgMsuu4wbb7yRP/7xjyxfvpwrr7ySJUuWcNFFFwFw+umnI0kS3/ve91i2bBnz58/n5ptvLvucLrjgAm644Qb+8pe/sHz5ci666CK2bt2aUdZef/11rr/+et58801WrVrFk08+ycaNGxk/fnxZx/U17jxIkoxq1mAKgSlHUQKgaAp6UpDo1AnVqMiqjCTJ1AQGUhschCwpKAFIpXQSyRQBTSuYfzaf6SX9424pquay/YVRyMt2WXOP9mwXtm4vu2LWxJ1xvPkodQ270PG9kk87z/Wdtc3y5i12fIWoZJxwrux+0J2WlNzaq3N/Lyye9ERGg7U/R84YebdMaxb5BHWPxad7XGt6jnvg/BnMWWvdM1sftvHY+891bllLSWuyLRRe1pi9kM533zMxnootRLPCsdhCCLZ3jswXXnihV7nKsWPH8sEHHxRs29DQwMsvv8xll13GYYcdhqIoTJo0KbOufeGFF9LW1sYPf/hDNmzYwIQJE3jmmWcYMyZ9j6qrq3n22Wc5//zz2WeffZgwYQI33ngj06dPL+ucrrjiCtatW8eZZ56Joiicd955TJ06NVPZq7a2lldffZXbbruN9vZ2Ro4cyS233MKxxx5b1nH9lKcuWClPl7z1X8JVEQQmptKJIXcAZlqj7jIxkoJwbYC6yGBqgw1IyBkhLYRANwwM3UgLb9ndZC6EIKXrmIYgENCYMWh2r30sByC33M/2F65z3dr5UiomeYfTXJrPfOrm3f1l0RjKSb9ZidSYfRmt4GYGLtZju5hcAM7zcZaetSjFSuA0Pc9Z25xJzuPUoL3WV7ePJ9dkuNCznu/7Qtevkvf/tlW3Ua3H2GXUGD/laR9imibjx4/n5JNP5uc//3nR7f2UpxXA7J7TSMjIRg2qMQCEhoREoEohUh8iIg1CjoXBzBbKkiShKgqappJIpjDN3jNeIQTJlI4wIRjUkITggdcu4nfzv5vZx/rh50qYYk8A48T5ArTMu6UIbev/XtKRFnr570ixpYXWr8uJhy1HY7LCq6x71hfLBOVqdNZzWYxTmf16uwmlYsqk2nH+NuY2tmQlegGy4pyd5HM4syZgbiFqhZ5157is39+EFpXFk57Ie75zG1sqct/b5o9BF2CW3ZOPk88++4z77ruPDz/8kHfeeYfvf//7rFy5ktNPP71Pj+ubyvMQCQeRJBAi7WaGGUYVCobShqJCfXgoIbmaaFuM9i2d1AyoRlYApExuYFmWkVVBe2wrkWAtmtpzyZNJHSQIBNIl95JbtrJ16bvItjSAbuEpbppRrpewXfu2azb5tCu7puiWptNrvu1c/feFF3apWn4hjaYSjlrlYGmHU/tI87afn2XiLlbzLiescFmzzpwWe8EebyVy7VjjddNgc/lsOKmbtiJvdTLLAmKZ/otxArU7eNqvlZdJyuShK1lWcC937EJ/RERlU6tvXK00siwzb948Lr30UoQQ7Lnnnvz9738vew27EL6p3AXLVL5q5YeYKCSS9peJQNWgpjpIUA1nwgP0pEEqqSPLEsFwAEmWMIVBNNlGZ3ILhmlQow4lrEVQVYVkKr2vpvbUyRWGid7eSdeWds7e/wbXseUTIoVM1vYXh9u+Tg0lVz/2bf3JLF7OWMs1ezuFYTFjmdCiVjwnuxtefSPytStELvNvrglpMcezoi/APdQqF26TMzdB69y/2NBLO3ahnWvi4zTrlzPhfXLLXWxqbWdX31S+Q+ObyiuBBMGgimxbm9Y0lbrqmozQhm6zeEAhGNaIdcZp39KJaZikjASt8fUYpk59aDA1VbUIINoVR5ayhTaAKSClBFDzVKdxZqvyWuGrbf6YnEIbesyexeJWdSwffZWG0csYtofQBjJZrez5qYvVaIu9zl6w3wdn317vUbGhclZ0Qq5jeTmu87m3/m0/h2Iq3+U6phV14dSMc6W2LQZ7BIHbMeyavf24pR5PCEFA3s4lwnwqhi+48xCjjWRwK9XVQRRZJqCp1FWH0VSll6OZJEnIikLd4BoC4QDxaJJUUkeRNOrDw4gE6pGldB/BYADDFN2enumPoRu0bmzDNE3CdVWex5hLSwb3ZA2VMlMXyi/uhiUAi9FU3F5W+QRYqd9VAnvii3ypMZ3Xq1CiG+vfVgIUJ/le5m3zx+RML9rLTO6hX3viHefyi4Xb/bVvc3NQcx7XCwcumZER0F48+0spY2sJ2Hxm7ULPs7U+7tZHrqUar2WDveKbVb9c+GvceQgQJigHCIU0AqqKJMsoObzDASQpHUIWqgpgpAxaN3cRDg6kSq3FiueWJAlNVZAliUQiRTCoIUxBvCtJVU2YUCQIAuY9PJOzzngg7/iKMaF50YwqGYLkRrF95w5jWpq1Hpl+IZa+FuhlHIWujVtaT/v/LZz3LC2Y3V/Adi3bLlhzOQ7m6mMZLsLQFh5lJSux+skV15zLQdKOFfJVzLWycDvH3BES2W3t98fNOjG1aWLaVyPPOnY+7GvxTgr9Dt1M7oWS7XgVyl5/s/F4suzCFj47Dr7GnQeVEEGjBl0XKIqCosgFY7LBMp2rDBhST0AJk+hKYhomQghMU2AKgaLIaJpKR1sXHVuiBEIaoUgw3b8koQd75+S1U+y619zGloIaRy5HrGLMum4ThEppus5lAutjVajykqimHPK9TL0c1+7dbGnTuQSyV43KbrZ1tvXSh335pNDzUaivdK3tUTnvt6Vx2i0HhRzbcp1DvlBHt3F52a8QhTRv+5isaIBc6+TWNmdxlVKwXyP7cowd0zSJxxMl9e+z4+E7p7lgOaet/OgDtEAQRZExTUFVOP3vXFiXUtdNVLVnv1RCp3NrlGB1EANI6QbhkIaCxNaN7dQ1VBOuCiKZSdC7INXBiSNuzLR3FogoxVmlGG06nzPajox1XXI5OZUTc2v1X86L3z4+b5przwveS5tyKCbZSr6ELha5TNe5YrdLOT/7mN3uixWD79RuvYRDuuE173l2utce7EVUnNnd7PuUi9v4/7z512zavIXdxkzwndN2YLxeR19wu2AJ7g+WvcPQIYOQZQldN4jFk4RDQVRVdk02LwR0xRJ0xZKEQhrVVcGMhp5K6mzd2I6OAEVGpFLUV2uEtSRCjxKQEqDHQA5wwuh7co7NenmU4vVbzNpyX5rM+5JC12d7epbviLidTzGRC842TgHsnETZE9pU6prkEtoWxQhDt77clivy1Q239+FmgXLLyV7MGL1Mcpzn8eSWu2hra2fnXXyv8h0Zr9fRX+POQ6QqlNGwNS3tAd4VixMMaAQCGoZhkkzpBAPptKbRrjjRWAIhIJUyMAUoUve6dkBlwJA6tm7cSmLjamrDCSLVERQpjAjXY6pVoARAUnhyy11EP13Pd/a9tteYShHaxWR62h5UckxWqtVcoU3b69wrqTHbhaEzK1g+AWAPxco3CSmkyTpxi6u2kovkKrU6oUUtWmDlO74VvmWn2L6dKVmhp0hKMel/i5ngFSqCYmF/fkp9jrws8/UFG1ZtpG1TxzY7Xt2gGoaMGLzNjrc98AV3HpwPuqLIRKrCdMXipHSDRNIgldIJhXSqq0IYpkBTVVRFTpvVsxzZBHKylYixlvphVQTrR4IWwZSsSmPZBCPZsy2v2omzWpSTHU1op19yle/Xvl7v5UVaTr3qfFjHdr5snYLc7gBX6F47q4H1oGc5Xzk1P3u1Oa/JQ4oh4wCGVXWsdwyy9XxmCqKQPUnw8pxb184yxy+e9ETJGrZFrvhy5zitsXrBi0NoIWENuUuOQu4ljh3FarZh1UbOGncRqXhqmx1TC2nM++D2ooT36tWrueKKK3j++efp6upi9OjR3H///ey333452yxcuJBLLrmE9957j5133pmrr76as846qwJnUBjfOa0I0iFfaeFtCkEylQIJZElGlmVqq8PU11VRWxPOmNMRAlNPEl33KcmOTUSG7UZw8G4QqAVJIWf1ML13yIyXF67lUWuF6hT747V+8MU4lDn39drW7eXiVnWrVOzXq1CN4mKcy7zi5jhmP57dwc7efz5P8VxhVYXGuaxZLyoUzwvFhqFBz/Pp5vVt/d8KnXKGetnDvyBb8yxHc5/aNLGonOBermOuZ7jQOJ35GfIJbPsY3BwLd4Sa3G2bOrap0AZIxVNFafhbt25lypQpaJrG888/z7Jly7jlllsYMGBAzjYrV67kuOOO44gjjmDJkiVcfPHFfPe732XBggWVOIWC+GvcLlhr3F989hG1tTWZ7dalsta3u2JJ4okkdTVVKIpCL0uUEJiJdmJbvkDS6gk3NCLJ3uZKifc+47RDbgJ6F7rIZVp2y2Zmb+vFJO1lH+c6cimmbi8aQa61+VKPZ1FKqJK9H6/Cr5Azk5fzLzZL17ZYCnET1m73CMjSjIuNTljWrPfyvC93ySHfGn2xk5p899dLZrR848qXHS4Xbilfrf2f3HIX7e0dDB85epuuca/47yf8YL8rKnosL/zmzRsZs++unva98soree211/jnP//puf8rrriCv/71r7z77ruZbaeeeiqtra288MILRY/Xws+cVmGEECSSOqmUgRACSZKoCgeorgoRiycwzewU/sI0iW1eR2zjF4QG7ER4UJNnoW0mU5jRWOZv5w8/VxYttxej3avWS/GPQhm6FqxZmtHe7G36ArtWYQ9vKuXF7ewrF8VmKLPva69X7kxOks/pKd+Yrf+7JULJNf6+xl6jOp/2WUySHqf2bp+o2vsvVWgXuv/FWpmsMeY6dytEsRShnWsfL9Y2p+a9I2jdOzrPPPMM++23H9/61rcYMmQI++yzD/fdd1/eNosWLeKoo47K2jZ16lQWLVrUl0PN4AvuPFhZzUxTEI0laevoorWji0RS79a+JQIBjVAwQLQrlq70JQQiFSe28RNS8SihoaNRQnWeHUPMeILNi9+kfXPPYqVbfGe+UoHO77y8PJwJLHLhfHlYQiVX/GilcMZu5xK+bjHMzr/tY85lznXGRdvH4ZbNLFcWMec52P+/eNITnq+X0/nKq4Au9X7Y23nJlubEKbQLTQYLCaZyTPxuz6wbpU56Sh1brmxqUFqWN9jxfFj6A5988gl33303Y8aMYcGCBXz/+9/nwgsv5IEHcifAWrduHUOHDs3aNnToUNrb24nFYjlaVQ7fOS0PiWSK9s44IIjFkghA6167jhsQVASyJKGqClVVIbq64qRSUaTYOtSaoYSHDEaSipsbGV0x9GgnktqTgMXL+ls5zlWlOrLYS45aQnBZs7ciEW4evMVQSHu2C/d8a8UL1vQ4bNlxZhTrlT1sDeTKeOY8hts2a3yLJz2R5fiUj0ylsCLuVSnPg1sWOMtTv1QhVcxk0D4Ot/3yWUzcnP6c9IXjlqsjoA1357fcz3+hc8hHX8f8f9kwTZP99tuP66+/HoB99tmHd999l3vuuYeZM2du59G542vceWjvjGfisgWkc5XXhNE0hfUxnfZk2jwuSRKKJFBim4hv3YA2cBRazZCihTaANrCOYUcfxsC9xmW2efFirZu2IufLsdSMTBa5HG2cJUctweJlvMU4A+XDqYm7OXvlwn5eTg3dnlHMGU7nPL7b315etpZWVUw8c7Ev8VI07kJr/JVyHvSK2zW3Xwf7fZ88dCWQ/5kvxSxeCnPWNmec7Qo9785n0U4xz4dV59vCF+CFaWxsZMKECVnbxo8fz6pVq3K2GTZsGOvXr8/atn79emprawmHw30yTjvbVXDffffd7L333tTW1lJbW8vkyZN5/vnnM9/H43FmzZpFQ0MD1dXVTJ8+vdfFciKE4Cc/+QmNjY2Ew2GOOuooVqwozXxk99uz1rRVVSFuCNZ1GazpMjCFwIhHSWz4CEWBqp12JirFEHnS+gshMLrN8K4oGpIW4oHfpF/slpm01BdmvpdG75Ci4to7cavUZGdHCVNpmz/GNYWlXbN2Cgfo/SJsmz8my6xZzEvWXpHNa7tik5ZU0nRqjdWrB3e59zpXvnf7eJz9W+vOlZoY2sm1fOLEuj7WGLyMpVLjdcvItmDNUj9PeR6mTJnC8uXLs7Z9+OGHjBw5MmebyZMn89JLL2Vte/HFF5k8eXKfjNHJdhXcw4cP55e//CUtLS28+eabHHnkkXzzm9/kvffeA2DOnDk8++yzPP7447zyyiusWbOGk046KW+fN910E3fccQf33HMPr7/+OpFIhKlTpxKPx0sYYc/DLoQglTKAdABXXUBGlQSx1g10rPsUqhpIVVezJbmOrmQbpjDy9ropZtCpmy4/KAkJCTkUyooUs5cBfHLLXZlPPuzfuwl+p7e68zu3Nl5ijC1zspvwTpuge/fhXFPtayxh4CzdaGlJbuQS5E6zZrEandWXl4lZudaTYnFLrpLPx6CSlOshn2/SkCsqw2t/uSZc1j2cs7Z5m1sm7Cxr1rMmlAkzj6LwP86cOXNYvHgx119/PR999BGPPPII9957L7Nmzcrsc9VVV3HmmWdm/j7//PP55JNPuPzyy/nggw/4zW9+w5/+9CfmzJmzTca8w4WDDRw4kF/96lfMmDGDwYMH88gjjzBjRvoB/OCDDxg/fjyLFi3iwAMP7NVWCEFTUxM//OEPufTSSwFoa2tj6NChzJs3j1NPPdXTGKxwsNf/+w/qqoYiSwrhUIDqSAi5u6ataaRItq7C1E0CA4YTNTvoSG7GFAaypDIkMpKg6l6eM5oyWR/TMQTsWquhuDiumYkU0Sf/ibTf7pz5lRsy2wsJ60IIYPrA9ANZSHCXqwU4ncHsLztnKkz7S3pHzO4GvXOhO1/a9hd7KWlmIXciECgt3W05FFpLLjdsrtA+5T4H+fqvpOXH+WxblNp/KaFg9nbW5M5augJ4N/UP6s0YI7dxytP+koDlueee46qrrmLFihWMGjWKSy65hO9973uZ78866yw+/fRTFi5cmNm2cOFC5syZw7Jlyxg+fDg//vGPy07A0u9SnhqGweOPP040GmXy5Mm0tLSQSqWyXO7HjRvHiBEjcgrulStXsm7duqw2dXV1fOUrX2HRokU5BXcikSCR6Kmc097eDoCpdKArYSLqwIzQloBUrJ2uDZ8TrB1I1ZChCAnMWCshtRpV1tCUEKocAHqb2wHaUiabEgYNQSVX+hUkVYFICLm9iz+tv52UbhAIaJlQtFKxWhYSzJUw3TlfZvYXUo+DV4/Dl1cnrW2N80VqH3su7Ofu5QVupby0ZzdzYpWWtJzmtoUAtyYS9hhhLx7PXkOcclGJePpC31dygmh3SJuztplF60fB/G3n5e0m7O3bBJAwtr2ONmTEYOZ9cPsOn/L0+OOP5/jjj8/5/bx583ptO/zww3nrrbeKHV5F2O6C+5133mHy5MnE43Gqq6t56qmnmDBhAkuWLCEQCFBfX5+1/9ChQ1m3bp1rX9Z2Nzf9XG0AbrjhBq655preX0gCoXQSM020mExYDUB8E4loG6HBIwhU1WSyo9WHhyHZxLBduMYMgSZLqKSF7tCwwqCggiLnyJsmBMlNWzCqFczOdpQNm9G7ujAbh6AFA2iqWpbwntCict2o2xGbRXdOdUEwoDK9YXbm+0quEbol58hVzhJ6woecyWSstjuSNu5FeLhZGJxYOdYLJW2x9gNvWnqpOCtqWZ7l1r3blkKxFAodf2pTT3rWcvtPXwudA+envbnnNrZw4PpRJfedD+dv001guz0/NarM5s7cy3d9yZARg7/0ucO3Ndvdq3zs2LEsWbKE119/ne9///vMnDmTZcuWbdMxXHXVVbS1tWU+n3/+OUAmhrurs4Mtaz+m/bOlJGJdVA0dTSBSAxIZDViW0mFi1sdOR8pkS6InQYsiSQQUCcVlXwC9M8qmxW/Q2bqRaNsmEpu2kNi4kYRoY2vXBlIpvaz1qutG3Q50Fz/RFBRZIpEoz5TlZc3TSlBivfidL397rPDkoSsz+zrjl/tqDdy+rm8fi13DtK8xe9V4pzZN9CzESkm9WUy6T6/rrrn6tJJ85LvfxaS8LTWRTKG62F6udznPUT6HOau4SjFx+rn6srCXA3XmJbC+dwtptKjVJKKdpfj5+OyIbHeNOxAIMHr0aACam5t54403uP322znllFNIJpO0trZmad3r169n2LBhrn1Z29evX09jY2NWm0mTJuUcQzAYJBgM9v5CSOhtBrXEaagNoNTsSkKqRlI0YnRgCp0I9eTMN07aRBU3BEnTZHBIzrNnD3IwSP1eExC6QfKT1ZgK6A0BdKOdcKAW00xXJQto6dtXlum8Ow7d3oeVbc2rEHGawp0aYL51v1zxr3bBYZmPe9p4GpbncRciVxpJL5Sydn/gkhksXvNEQS3dopiYePu6p0WuePP0BKb3mnqhEKNiNO2+0Mq3Z9RC2/wxzG3sWUqxllWK9XWA7BoF1v11cwx0ft9DT6W8VCyJULa7nuZTIba74HZimiaJRILm5mY0TeOll15i+vTpACxfvpxVq1bldLkfNWoUw4YN46WXXsoI6vb29ow2XyxaXKepShCpb4TITghJRSSSGMIgTgc6ScLUoOQxXEjAsLCCIfKJ92zkgEZk15EIw4RPNpHsSqBMGIgmK9QGG1DlAKmUTiKRIhBIJ2opp2KfZSL3ilMA9dacW3qtAXt5cdnNwE7cQnH6wkRsx63UovN4hdZaS1m7r5u2AtZ4F2rFJGZpmz+m18TH7vRmn7DZ19SdHtVeJj35JippTbR0z/RK3PdKThqsc82X0Q9yO/XlMnm7WaXsePUlmPeRTjAYKLivT/9guwruq666imOPPZYRI0bQ0dHBI488wsKFC1mwYAF1dXWce+65XHLJJQwcOJDa2louuOACJk+enOWYNm7cOG644QZOPPFEJEni4osv5rrrrmPMmDGMGjWKH//4xzQ1NXHCCScUPb4aPYE2YCIi0pBZy0YStIsNJKQoAAY6MmrW+rYdSZIIKiVIVSFIrN+AUa0iJwxqjQHEvliHupuCpEhomoquGySSKQIBFRl3s3shTho4y3V7PmGQ74XnJhgqgZvX7tzGFua0NJdcBa1QDeS5jS2ZyUGpnr7WsYoxl9vblVKgIxe5BKl9fd2tsIdbPwcuGVOW85V9zbySAnR75QnIXu/Obc2ZPHQlcwtMegoJa7d9ClFTH2Ew22eN26fybFfBvWHDBs4880zWrl1LXV0de++9NwsWLOBrX/saAHPnzkWWZaZPn04ikWDq1Kn85je/yepj+fLltLW1Zf6+/PLLiUajnHfeebS2tnLwwQfzwgsv5HWtz0UiPJL2ZJABYYGiWOvXgoSIYUpG2pROCo3i+y5Eqq2Djf/+T3r9XNNIvBEl1dlJZNddkLCZuGWJZDKFpqkoslyW2dyJpVkVo9n2pUOSPVmMpSWWU87RDftaItjqMRfpJW5RasyzPSUqUBGP+0L3xjpXL6bwTLhbmeOqdDSBdW8qOSGwa8uTh6709FvI9YxMaMldcCbfunmxYWa9lrokCJeiQPjskOxwcdw7AlYcd0tLCzU11QysqyYQSM9xUnqKTcZqzGAMBNQwiBoGVVRgQrpCWHztBhAmiQ9XodbVou40iFDTMCS551hWIZR4IkkoGED2WIHMjhAir7k8l7Aq1fu8kl7r9nVxZ2rSXGvLbp7bzrX2XOMrRaMrRwu0v7C9rnmXi1Pjdhu7F0/5fOVnAU/e6dsa57NRqfGVE4NfiaWh7VXW06c4/LKeFUII0I10KU+BQJZkFKFlkqrpJPOmNy0VOaBRNXInqkbuTFXDEOQtMUKNQ7OENqQ1b1mWUWQZ0yx9HA+vvjXnd9bapxN7ydBiqOS6tL0vLznVcx3f3rbS6+a5ssXlwxJudu97p4d9X5HPf8G+vVQnNXte/XIysOVqW+w1sqIIoCdlqlvUA5Tmib5gTXYp3GLbWvSlP4dP/2KHc07bkRCyjggkiEspVCJohNNCUgTQu+c8AhP6QHBnkEDdeTDJD1dhdMZQ6yLdx80+pqIopFI6pmm6eornwzDNXhMCJ9Y6r13LKlZzdu7vpX0xVc+sNW+ARXlS2pcjLKyqYcWYZHM5eeXD2adlLp3b2NIna8O5KGQt8KJ558Me526xLeO/rWfQq7ne69gqkUGtWLZ37Hwu1sVaaU1Gt9nx6gMRhoXrt9nxtge+4M6DqO5E1MaJSQIZnTqRrvoSkqoImQFUWUNBRepjw4VUG0FSVYzN7VmCu4s2EIIwtSiKgiSlb6dhim6PcxVJzh+CJoTA0A0UDyb2qU0TWbymZ03SEiJecQppu8aeS4B7CaWyrwFmzJzdQtzZby5vZq8TELsQLkZgLWvWYU3lXq6F+ijnOF6FTrk5y+2pcK1kKNsiT72dSqX1tZNLW69E37mw14jfkYT3ulgrM/55K0lz21kLArLKE4dc8qUW3r6pPA9hNYQqaUjI6OgIqVublQMERISgVIUqBSq+vu1ECqgoA2pIbtxMTHSkY8gxSNBJp7Ql7eEupbVuRVHQVAVVlUkkU5iGSS4vBiEEumFwWuMcThl6UZ+eA7ibMO3FU/KVBC2UeMV6WdqTTixyZK+yO3uVgz2bWLE4s8DZyXd+lagKVqxQ9Cp8yr2mpQrrXOMrtIRTqcmBNelwfoppn2t7Ofe7bf6YbV60Jxetyeg2FdoASVMvSsN/9dVX+frXv05TUxOSJPH0009nfd/Z2cns2bMZPnw44XCYCRMmcM899xTs9/HHH2fcuHGEQiH22msv5s+fX+yp5MQX3HmokRpoYGcGsFPaAa37csllricXjQTy4Hr0jZvoMloxRAqEoFYMoYHhBIlk7y5JKIpCQNNIplIY3Wv0dtLVznROGeJdYDvNps7sVfZZv3ObF7O49eIrJLydLyY71jEOXJJOP1lMuUy3jFT5xlrKC9ZOPiGea9vUptJrSXuZaHgtXWkfT7E4x2/V0IbiJ0OlXH/7Uk+xlGICd8vVb/2WnFn6nGVi7eS777men+0ptPsL0WiUiRMnctdd7gWcLrnkEl544QUeeugh3n//fS6++GJmz57NM888k7PPf//735x22mmce+65vPXWW5xwwgmccMIJvPvuuxUZsy+486BIKqoUICxVE5TCmVhtWZIwTTPj0W19+gpJkpAbapE6U+iJLjqkzSSkKKoUQCPUba53d1oLBjRSuo6udzvYCTBNQSJZmWo9bi9O+8u3EuZaZ99256ZcOHOhO/uzylPm0pi81D93i9nN96LMl6bT7XxyCZhyTaETWtTMOPNNWPqqhKjzvOY2tmSdo1dhUwmhVIzgz1UFLB/2EEa7QLa22Z3WrKWXXPc3XwpVq5313FfiN/i/wrHHHst1113HiSee6Pr9v//9b2bOnMnhhx/OLrvswnnnncfEiRP5z3/+k7PP22+/nWOOOYbLLruM8ePH8/Of/5x9992XX//61xUZsy+4S0CWpUwe83giRWdXos9r3cp1ESRFQ+4wkZE9ratLEkiSTDAYwOhOk2qaJolkCkWR0TQ1Uya00EvQzUnJqUHnM5kWm4PbOmY+co3ZiyZUyLxrjxFfsGZpTiFuH2uhHNmFYs5ztXULdysGp3Ce29iSsUZMbZrIgUtm9NLypjZNLHr9t1hBumj9qMw52a9NMXnGy1lLtmqxFyI79Siej2t5k1vkWr5IJy3ynqCn0HW2+vEywfUpzEEHHcQzzzzD6tWrEULwj3/8gw8//JCjjz46Z5tFixZlVakEmDp1KosWLarImHzntBIxTcGWtk4MQyBLEA5qlBBC7Rk5HECur6GqLURw2E4owluFMEkCCYlgQCOZ1OmKxQmHgihKdrIW+xqy88eez7PYmZjELV61lDhmL45Phao/5WpvaTa5HHnsbe1Ob7kc8YrVwvqKXGk3cycDUZnQAsuac6fq9Er6Hnvf337tC2WwczvWgUsq44RVyMGynFwFXp75Ys8hU1p1vntGPWcug8wENX4w7Txf1LF80tx5552cd955DB8+HFVVkWWZ++67j0MPPTRnm3Xr1hVdpbIYfI27BNJryDK6biBJEAqVlvjEK8I0iX76OUZIwmiPklq1ieS6TUVFoaVN5+lUqU6hbWHN0EsxQdo1J69CutBxismJXQqFBL+94pKbZuZcQyw03lzx8F7xomm5OUzlYlmznqk2VQn6ej3VHm/tNQucE+c9K6RxF1Nop5Ix1/b75rbmvXjSEwV9OOqmrdjhEtz0R+68804WL17MM888Q0tLC7fccguzZs3i73//+3Ybk69xl4iqKAQ1lUgklKnSVQppE7sAScqZ7zy+Zh2b33gTJRBCrapC//xTasfsRnDYkKKOo+sGwaDWS2hb5nIrb3k+7TsfpXjCeqmbXCjtql1geRmH13Oya2NumpmV+ctZmzmfhaGcF3qhcRdj2XBzssqkMS3SM9rav5j61sVqmpYlp9zCMs7jzs0RNljMuOzr1OVkSHPi1RFxe1t6vszEYjF+9KMf8dRTT3HccccBsPfee7NkyRJuvvnmXuZwi2HDhrF+fXYyiXyVLYvF17hLRFUVwuFAJv652JAwgcAUBjoJOtiCKXIXAAgMHMCgA/ZjwF57ECRAzS6jCA71LrQBdN1ALpDL3BLg0KN9W0LTC5aWWoy3tRcNf2pT4ZrT+by856xtznzA+4vOqW3b+88SWB6rPVlsi+xnhXATLNZ6d7H9lCs4vK41l7Lungu75u10jisG53js6/blUmkLRlt7e0X7+18glUqRSqV6WVQVRcE0zZztJk+ezEsvvZS17cUXX8xZ2bJYtv8bpJ8gRDpHWsoQaEraNSwY0EgkU8hyoKSymlGplShbQECICDKKq9atVIWJ7LoLZiyB+fpHhHYbhTakwfu482jbTuzC+6SBs7pfzN6zdZWibRSjeefKR+7mEd3zUrW9XB3lRkuhkKDyIsyKXTstdE29rqm6UWgSUko/xVKoNGmxNeILkbGQYFkbiksmVKjfYrALaOdEthJ5ByxUw68O5kZnZycfffRR5u+VK1eyZMkSBg4cyIgRIzjssMO47LLLCIfDjBw5kldeeYU//OEP3HprT5roM888k5122okbbrgBgIsuuojDDjuMW265heOOO47HHnuMN998k3vvvbciY/Y1bo+YGKyPR3lrc4LVUR1BOp7bCg0rBQUVAwMheVisltKJWKQBNeib23LuZoWmGYaZrtmdTJHsLv1ZrFXALsTdkpd4NeNVcp3N+ZKDbA3WWpfO94IvdjyWKdSuFRbSEPMJb3vSmWIoRwNzi3/PdR3KSYhSrpZYqdjjYjVoez55e+6BvsS+HGW3cFnr15nKcGX8fuy+DrWdmysy7mKoD0QIyNtWPwzIKvWBSOEdu3nzzTfZZ5992GeffYB03PY+++zDT37yEwAee+wx9t9/f8444wwmTJjAL3/5S37xi19w/vnnZ/pYtWoVa9euzfx90EEH8cgjj3DvvfcyceJEnnjiCZ5++mn23HPPipyjr3F7QCBISjGSyhYMBrAhJjEsrBJQQJJlzO746GLkooSUSZeqEkhnYMubnBQkRUEbPhh9zSaEKUDq0aiFEAhTZMYiS+mJhaapyFJ5tbqdXtaWNpvPI7vY/NWLJz0Ba3LXIs44WrkkH7Kb0b0IxFInE1a607mNLduk4IOzSleu6+lVE3W2dwtzsvbzmjrTOTmxynSWGkkwuWVlpia4fcyV1LbdWLR+FHNIa96wNGOZqWTJUegtrO3ksxoVqgvvBWlLngT+fcSwcD1PHHLJDp2r/PDDD88bzjts2DDuv//+vH0sXLiw17ZvfetbfOtb3/I8jmLwy3q6YJX1/OKzj6itrUnnBRdtxOnE0KvQzDrqAmlt2zBMUrpOMFC8udxAJyq2ppO8UOMpNju1ZjPxf7+HenQzUlADuj3GJQlJljL/traXiyW8LXI5NXnxqHYTBqW8iJyhZm7b3ahE4Ydi+shVctQL1rWqpLOTnUoXwcj3XBRDIQHtVYBXStDnctjLVzY217ZSj2XHrexooTK1Fn9ouYimfQ/xy3ruwHi9jr7gdsFNcAOY6JjCQCWYEYrpLGTpWtilOKhZIV3ppoXbm9E40Wf+TfDwSWjDBvR5nnSn4M4VK+yVYmN2veI1IYZz32JfsKXWa7aObTl/FVNlqi/qcFdScNsFtFOgOZdXyvUKt1Po3lVaeEPfVfoqZQJa7FjmrbyB4buM8QX3Doxfj7uCSN3/KWhoUihLWKazk6U175L6zZixvQlgKRRAro1grtvisUV52Ne5IVvgWEIoV/pQN9yEtrUu7WzjJRbZ2s8LbuFixcatOwVBsR7qxWSzsscs92WMtJUju9S2dpypNq37Z3n1e/Hg9joeL9exEuvUuSw85WLPU27hxbu+2OiIDH08yffZdpQsuD/++GOuvvpqTjvtNDZs2ADA888/z3vvvVexwfUHJCmd1CSl632e9hQAWULZaRDmms3pde7tgD1FY75UjXaBnotcjmRuQtxtn2KSmjhjvYsVjPYEIHa8OlQVm2HNngAmX7rMUnBeT3uhj3L7chuT5ZBn3W+3a2Dlh7eeqXInK5VMMGOfRNoLgpSC9Ry5mbe9WAhKWX7xY72/XJQkuF955RX22msvXn/9dZ588kk6OzsBWLp0KT/96U8rOsD+gGwzm/c1EhLqsAGY7VFEojKFQgqRT+t2wxIoTu3c/vKzCyV7u1Jiie3OTF5wy4Zmrzzmpb19QmL3APZ6fC9FTLzkNi9HwPVVEREvOH0iLLN2odzebhQq92r3GC/Uppj7by0ZuVXFy9Vv2/wxWffVskSU4sjnlUpHdvhsf0oS3FdeeSXXXXcdL774IoFAILP9yCOPZPHixRUbXP8hXYnLLELjNkwD3SwhrlICKRzEFCZmPFl8+21AucUNcrXN9/Ip5XhOwZhv3G4akjUma6JRjBbmRbPy+rK1rykXgz3jVyl+B+VqcXZrSV96jFvn6VwicaPY52hq00TXilzOe2Ev/OEcW7FpVX0h7FOS4H7nnXdcS6ANGTKETZs2lT2o/oYkpSuGFRPPLeVJcZoPkdIxkymoCiJ0HSMWh21gon9yy12uHzvlrBV7dRLzsubtBUvb9Gpmt/Z301LdSih6uRaFXtjFrs8WYzWw+i/V0SmXACnW2c9uNvd6vs5z9Hrelcjylmsc9qWXCS1q3tA9+3i8YoVhlnKffL58lCS46+vrs4LNLd566y122mmnsgfVH5ElGWF6r8stS3ImXapXzHiCTYvfYOu775EaoNHx0cdsffMtRAmOcZXCmSbViT1uNd+LtZhSjlD8S88paCyh6VXTLLS/fSKwYE3+8p59iZvVwJ58xboWdgtCKRMhext7fe9iTff2jG/FaN3Oc7RPmAod3xqvl3E697GbvJ3X2poY2NfV7Q5oTquNV6FqPbvFWiVKnZT57PiU5HJ56qmncsUVV/D4448jdWcOe+2117j00ks588wzKz3GfoEsS0WZyksh1dpOYvNWZEnGrAoRqKpD1pR0tpXtyJNb7uoVNga9ta9iEnsU6strP+kXbW/t0K75eDU/5gtlW9asdyce6anhXe4Ls1Aa0HzY47+t625fh6+k9rlo/ShXq4OXMZZiIvdi5s5XshV06ugOaXRJ+uPs096X9f/JQ1cy1yYYc+XJz7W8UmicFuXc/x2FLclNRPWObXa8iFrDwMCgbXa87UFJd/f6669n1qxZ7LzzzhiGwYQJEzAMg9NPP52rr7660mPsN0gSmEKg9FHYRXDoIBr225/4f94jOXYIIhKmvmYnpL4sBO4BIQQPr7kVTVM5efCFQM8LqVRB7SSXhlUIq4KXk1K0TS/auTPLXDnCu5z8407NbmoTWUIqV9a0YrDO08qWBt7ve18LFq/576HwfcqVD9/exi1kzBmbXexEpZznZ25jS5/E/xfLluQmfrHsEnSxbRxpAVRJ4/+bcOuXWniX9MYPBALcd999fPzxxzz33HM89NBDfPDBBzz44IMoilLpMW43ignvSmcskysSomXlG9dNHUOYmXEIINHZhTlsAMGGBoI19UhllBStBFa5UEmSegltN8otwpBvm5Pt5chjedBb3sx2D3K7wHLLH26nVIct67ytc3f+3+q7WO99J9bygL3fXE5Ydtw8yHNRTkiYV7O9F+uDc23aS24B535u5+tlYlEq21toA0T1jm0qtAF0kSpKw7/hhhvYf//9qampYciQIZxwwgksX748a594PM6sWbNoaGigurqa6dOn9yrb6UQIwU9+8hMaGxsJh8McddRRrFhRmXtSlqo2YsQIpk2bxsknn8yYMX2XIGJ7EU8kXIS3sH2yURS55IIjFqYw6dK7WBdbyycdH9OebO05smEif7SGyMAB1EWGENHqS3JwKxcrP7ppmhiGiW4YaKqaWe/OZTZ9ZM2tvfr6/Sc3uB6jkFDbkbHO2f6ittY9LU3YWgcv1wPfSTGTlXIrT1n1sYs1ubsJMGtyY18PhvKFT7EOe06ssVilR71kNXOu/xcjgCthifAd0orjlVdeYdasWSxevJgXX3yRVCrF0UcfTTTak199zpw5PPvsszz++OO88sorrFmzhpNOOilvvzfddBN33HEH99xzD6+//jqRSISpU6cSj8fLHrPnp+SSSy7x3Km93Fl/RgiIxROEwwFAgGSm/48EQu0lMmVZIqWnNeRSU5HG9BifdHxMwogTUkKElHDmOz2lo4cChIcMSAvsbSSzRUZIC0xh9sxZuo+v6zrxeDxv9ri7P/gZ7R2d3Lvi55w35sdZ3z34+a+QZSuLnMxpjXMKvrDz5YmGwgKsnDVeL8LRPi5r/dvt+MWsd1r7QG+BZqVGndpUuXMoNI6pTVZRjvKxynY6Tc5Tm/KXk/Vyzbxo3vb7YQlPa5KVtiwUthC4jbdYq0k5YXFOZzQ/dMwbL7zwQtbf8+bNY8iQIbS0tHDooYfS1tbG7373Ox555BGOPPJIAO6//37Gjx/P4sWLOfDAA3v1KYTgtttu4+qrr+ab3/wmAH/4wx8YOnQoTz/9NKeeempZY/YsuN96662sv//73/+i6zpjx44F4MMPP0RRFJqbt19Sh0oTDgURQtCViBKusuu2ChjpSydsmrfU7SRWjuAWmOhmCoGgWqtGk1VSZhIFGT0Wx2wcgFQdLusYRY2n2xRuGCaqqqDKPeVBU6kUW7e2oSgy4XAYJazw2PrbuhPSSOkMi5JE0kgRUnvi/f+8+deARCqVNqFpWnbJ0VzObm7kKu6Q1gQLF+fwIhysfi0nNy8C3+orX9/OsXnRLu0aZD7P6kJ9uU0cisFt4lBuHvJSHdXcSr267WcXzE6HOui5H5YloWdb73G5XeNyhWQpznr2SYaXbIM+hWlrS5dNHjhwIAAtLS2kUimOOuqozD7jxo1jxIgRLFq0yFVwr1y5knXr1mW1qaur4ytf+QqLFi3adoL7H//4R+bft956KzU1NTzwwAMMGDAAgK1bt3L22WdzyCGHlDWgHQlJkqgKh4jGYsS6UoSrlLQwEpbmTVoLl1Igpc3nsgqGoSCX6DCmSCqKrGAaJjVaDV2pdmKtm5A/70ALRBCt7XTEOgjv3ERoyOA+1botTVs3DILBQCZDnBCCWDxBa2sbdbU1VFWFc04ihBAZoe3cR1VVkskkqZTeS3g7sQvzeZ/9imBA47TGi3vtl6XprPF+rl5jyC0BXozQK+QoVUxflpCyO4S5Hc8r9uInxbSzzsc+kZnb2JJxgKtsxaylectreo02sCZzAHSP1Q1LWHs5pluVsFKcMkv1sLfa2Mfqh4GVjmmaXHzxxUyZMiVTO3vdunUEAgHq6+uz9h06dCjr1q1z7cfaPnToUM9tiqEk6XLLLbdwww03ZIQ2wIABA7juuuu45ZZbyh7UjoQkSUTCYTA04jGzO9eJAMlIa9tyEiQdJAMkE1kx0ubkEgnIAYaFG9kpMpwarRYMA33ZFyRXb0QkUqjBAEZXF2Y8UbFzdGI5x5mmSTKlE9C0zFq6EIJotIvW1jYGDqjPK7SBTBEVt31kWSIYDCCEIJnKzvVurZdbiV6EEDy27nbmfXYT4VCAQEDtlQDGSTEFGwrhxenKS3snlqZaTD/2vkrNpmWlly00vlxtnfHLFta52DVhp4XAq7NhKcl28mUvc6YadR6j3ON52Z6LSmWOczom7khhYf2BWbNm8e677/LYY49t76HkpSTB3d7ezsaNG3tt37hxIx0d2y5eb1uR1rzDmLpKPGakdW2p+4fWveRtISsSRimpTK32kszg0BCGhoehyhopkUIdvTM1g5oIyio1Y0cTGTWSUNOwimnbljk8ldJJJFMkkiniiSSplEEwoHVbD9IOaW3tHXRGowwe1ECwhFKmTiRJIhBITwwSyRSmKTKJ4CzBLIQgHk+SSCaJVIVR1R7t3C68ndncrHVTN7K0xBIpZo3czUGqHPOypdWWmknObsovta0dy0PdLde4c7Lh1t7N9G5hj5P2mmXNXn7WLS+8Pd2rdYxyqFTYo1fczt/teezLVLJfNmbPns1zzz3HP/7xD4YPH57ZPmzYMJLJJK2trVn7r1+/nmHDhrn2ZW13ep7na1MMJQnuE088kbPPPpsnn3ySL774gi+++II///nPnHvuuQU97forluZt6hrxLsDUSEtOJcvBPC1PzKJCyZzHyWioAuRNCUIffEGwdQNabQS1rprwzk3IFQwDSyRTGccyVVEIaCqhYKBbMMtIUlp4btmylWQyyeBBDaiqUrE19nSFNQVFkdPCW5hpv30hSOkG0a4YQggiVWFkWe5VndApsO3/dgpmS3ha4VpecNMGiw2lsptQLcpZE65kdja7YCzVA3vxpCdcr6eXAhxu+7qt11rbrEId+SZOddNWZK3/2h3NKm1CroTQtiYXXorPWF7uzm25JnH9MTJjWyKEYPbs2Tz11FO8/PLLjBo1Kuv75uZmNE3jpZdeymxbvnw5q1atYvLkya59jho1imHDhmW1aW9v5/XXX8/ZphhKevvfc889XHrppZx++ukZByNVVTn33HP51a9+VfagdkwESFBVpdHVFSMeNwgFFRBSt7S2S28T0xQoSomCTaTXWqKfb0B6cxVasp1QbQLqw4gKO6RZJvFwKOgqiC1tfMvWVhRFYVDDQCRZrvjSuiRJqEp6MpBI6Mgy6HrachEMBEqeKORzAFu0fhR014d2c1ZytnFm0EpnSituPbGSwrYvKDZlKTgcpHC/3l4d7wrta63F26+9G7mTpVReAy3nnuaLabeve1uZ8KD3vS8UclbKPf1fYtasWTzyyCP85S9/oaamJrMGXVdXRzgcpq6ujnPPPZdLLrmEgQMHUltbywUXXMDkyZOzHNPGjRvHDTfcwIknnogkSVx88cVcd911jBkzhlGjRvHjH/+YpqYmTjjhhLLHXJLgrqqq4je/+Q2/+tWv+PjjjwHYbbfdiEQiZQ9ox0R0r2enkCSdcLVMtCOOoitoge7vu9e+DYN02JRsoij5DRqWVp4RSN19mNE48aWfoH+2Gn38YJLDdyb82UrkcKhyZ9R9rGQylTNpjmmaRLu66OiIUlMdobo60mee7EKkP4ZhkkqlMAyDSFWYQCC/01ouLGe2fE4/Vg3qZc3pFJiFyOUZbmmrXh28rAmAZcovNpuW/dil4BZSZncy8+qpbVGsI2A55Bpzrm392UHLei4KTQ7dJkxO6qatgE8rOjxPRNQaVEnb5pnTImqN5/3vvvtuAA4//PCs7ffffz9nnXUWAHPnzkWWZaZPn04ikWDq1Kn85je/ydp/+fLlGY90gMsvv5xoNMp5551Ha2srBx98MC+88AKhUPnvcUmUatP9EtPe3k5dXR1ffPYRNbXVacczOQUYgAxCxjB1ujpNgsEASkDH0E1MQ0ZGAyEhgGBAQ5KkjIA2hcAwDQzTIGXomJJBdSCCKqsYsTiJ9ZvAMNE3bEFfswlz0hC27lRDIhli9OrPCI+YgIjUVuQcTZEW2rIso6lpwW0JSCEEqVSK1rZ2JEmivq42a125kliOcMmkTkrXUWSZQFAjlTLQVAVVLT0Tn+WFns95qxQP3Fz92QVGX6WbrET8dbHe7V5NwX01Ni/5vO1Yyxh9teZcqge4Wz9QeB26Us/vvE9/yfCRo2lra6O2tjLvEYt4PM7KlSsZNWpUL8Hk5yr3Tr7raKckjfuII47I+xJ/+eWXPfVzww038OSTT/LBBx8QDoc56KCDuPHGGzOx4QAff/wxl156Kf/6179IJBIcc8wx3Hnnnb3c7O10dHTw4x//mKeeeooNGzawzz77cPvtt7P//vt7P0k7UrfQFgoIDYSMIkNVtU48ppNMQiolqAppBILp0Kd4IkkypYPloY1gU2wjUSOKTgpDGGgiwMi6kURk2PLmEvRNWwkNGEhK0mFICCkkMyhYhRYIEgpGIBEHm+A2hCAdMW0bap77Yk0gDMMkpeuoitLLBJ0O9YqnQ73qaqkK5/caLxUh0lnikokUKV1HU1WqwqGMI1wKA7P72pV7fC8vvVyJTYrBEtYL1izNG65VClaRkEqnwWybPyZdMKMMJ71KUaqHtl3Lnto00ZP1ZEfALfbajXzPb3+wKAwMDOq3gnRHpSTBPWnSpKy/U6kUS5Ys4d1332XmzJme+7FSze2///7ous6PfvQjjj76aJYtW0YkEiEajXL00UczceLEzGTgxz/+MV//+tdZvHhxzljp7373u7z77rs8+OCDNDU18dBDD3HUUUexbNmy0sqOmoG01i3UnrAoM4giKUTC6XVu0xREu2IoqoKqpJ27TLPHFC4wMZIpTHSCskZQriYoh0GX0LdsQW1Poo4ejhigIskG5qYo8qAINdJAFElFrolBZxtiwGCQJEwM4nRhkMKUEshCpZqBSKQ11IyW311q1BQCYaYzn8mynLEGOIV2tCtGe3sHDQ0D02FgfbCmbhgmyVTaIU7TVKoj4ayxCCERCmokknp3OFrx2r49gUsuDenAJTO6zeW651hgO27Vz6BvMlfZ13Ur+bJ2Vgzra+yRApD2Y9ANkzOa5uRtl8t07zah2RYe3qVo3ZUel5XRzed/j4qayn/2s5/R2dnJzTffXFL7jRs3MmTIEF555RUOPfRQ/va3v3HssceydevWjGmnra2NAQMG8Le//S0rK41FLBajpqaGv/zlLxx33HGZ7c3NzRx77LFcd911BcdhN5XX1tZksqP1uKCZ3QlXurcKGYSEruvE4gmqq6u6PZ9FJjELQiFlpJAlCZHQkU2BmUyRWLsV8dEqkqNrEGMbkBWFFHFMDCRkBtBEgDByrAs+XY45Zi8kVSNFnM2sxiAJgIxKHYMJU4dE2jyfSKbXlWRZRu4WjHJ3djenIBRC0NEZJRqNMqhhYMVN45aTWyKZQghBMKAVTLrSE9+dzgMvd4+/mHHlW+e2a5uVMJXnwukYVOrLu9hELV4nH3bhXaqJ34vJ1i3u3nKO/FZ3gRovOK0E/UHrdKOcSVgpE4ftZSr38U6fmspz8e1vf5sDDjigZMHtTDWXSCSQJIlgMJjZJxRKm1P/9a9/uQpuXdcxDKPXSYfDYf71r3+5HjeRSJBI9CQ0aW9vz/peQup2TzNB1rtjuG2C2wwAajolqKoQT8QIRyTAltvcDBBQAqRa29n8nxZqdh5BbN0GJAmMiXXoO4eok2sJU0NCdCEwUSQNjWBa7gdCyJKMFOtEVNejSgGqqMMgiUYAVVZQJRlMAyHSWrdpCsKh/LHW1hpze0cH8XiCQYMaMt7d5WI5wKV0g0QimYnZ1jx6iEuSREBT0XWTVEpHgu6wMe/js4TFSbinUO2po115s2OPMKtcX8XgJY1r3bQVWeU+3czMXpcR8qVRzZUsJz2ZlHl84518a/AFefu3xmJNNPpqrd/Lfvmel77U+L2ui/t8ualoIedFixaVPNtySzV34IEHEolEuOKKK+jq6iIajXLppZdiGAZr16517aempobJkyfz85//nDVr1mAYBg899BCLFi3K2eaGG26grq4u89l5550de6Q9ylHiPelNM4vLVvY0A0mCUCjYLWjS+cbT+3Xvg0F8zXqMrR0YXXFqxo5GGzYIsyGIkE1MTCQhE6SaoFmDnAqQiBtEu+LEkjrxmgHoaz4kabRjmoKIGEA9w4jQQFDUoKCClM7ulkzqOb3aLS0nHk+wtbWN9Rs2YpoiHZ9dAaGd7l+QTCbpjMZIpXTCoSCRqpBnoW0hSRKqKhMOpePKk0mj5Bj5QlQ6y1QxGdHykS9G104xmr21r9uEwK2ffCFF9nCkYoS2hd0SlGsczslDX2jZlQqZ8iK0S33WvJZD9flyU5LgPumkk7I+J554IgceeCBnn302/+///b+SBuKWam7w4ME8/vjjPPvss1RXV1NXV0drayv77rtv3lzgDz74IEIIdtppJ4LBIHfccQennXZazjZXXXUVbW1tmc/nn3/eeyfR3dZV5vRslCWJqlCYWJfoSR0qTAQmpoijtSYZMHAnIruPItg4iKpdR6IodZBSSKTiRJOdRBOd6LqeyQkeS6TQAhrKkJ0w1RoCX3xBLBHFMM10HLkAYSoIPYiRUkgkUsiy1GttOG0+T9LW3s7GjZvp6OhE0zSGDB7EgPq6ojRZN0R3/HkikSLaFcMwTarCIarCoYwTXCn99ySlSV/qUsPDnALE/oKds7bZs4NWpQRypSmUncy5TmzXXJ0C3K2saiGBlMsq4KVgjCRJPL7xzqxtzvMpNb2rRTHn4qWPYvbLl361r/HTnn75KOmO1tbWZr08ZVlm7NixXHvttRx99NFF92elmnv11VezUs0BHH300Xz88cds2rQJVVWpr69n2LBh7Lrrrjn722233XjllVeIRqO0t7fT2NjIKaeckrNNMBjMMsf3Rur2KFeBlG2xW0pvM1XSc6D0NVEUhYAaJNaVQKsy6RKdRKRqxCdbSa1aR/jwvVGqwyBJKJpGRKkhaXSRkKIk1E6q5FrCBEkQRa/qJGTUIUwDWVEwhu1CcPMXVK/9go4hw+kwQVJlFE0iYKZThwY0NbMWnHYGM+jqihHrrgMbCoUYOLC+ouvYppmeFOi6gZrxEC9NUOdFWCZ4K0tdZSjGZL6sWfe036L1o5haRmY0Cy+Cymt5S+idzCPXuXgVbplCFznGWUjj9kIlljLsVgOvhUDyfV8ocU8+vFSZK2YdO9++1vO6JuFH/n5ZKElwz5s3ryIHF0JwwQUX8NRTT7Fw4cJeqebsDBqUDid4+eWX2bBhA9/4xjcK9h+JRIhEImzdupUFCxZw0003lTzWdFEwDRQzXR3MJrAtOS7oDs+SJELBIJ1Rg65EFzGtCyORIvj2Z6gTR8CwECkzhtAVDEOgGwa6mSJlptJRZ2aChLGVlEiik8KUu4gRxzQFhmkSqxlE3brP2LLpM+JDB6KFwwQDMoNTQTTTWt82icXjxLo131AoRH19HVq3sK6UQE2nJdWJx5MENI1IVSiTJrUv0AIqyWQKSZYyZnev52Kagnmf3kS4KtS9JNBbGyy23GW+l78945qXUC7ruPbje13b9hpnbcc5Hnt1K68UEi7FCG1TmDy67jYCmsb0huyogEp651eC9H1q4cD1vd9ZXiYEXrTgYhL0eEnC4vPloSTBveuuu/LGG2/Q0NCQtd0yY3/yySee+imUag56CpYPHjyYRYsWcdFFFzFnzpysWO+vfvWrnHjiicyePRuABQsWIIRg7NixfPTRR1x22WWMGzeOs88+u5TT7aZbOBjBzN89AlvHJO0tbeoapmFimiaGYbBlQztmKInemUKJG3RVq+jrW1EU0b22p6IoMtVSHWpARlM1FEIoUgBZUbIs84Zh0NEZxTAM4rJKlQ56SKMajZpkELU7FCwWj9Ha2kYwGKKmpjrLmlBJDdg0BfF4AsM0iVSFkGWlzwQ29KRFVRUZwzBJJHVkWUJVlbTjXp5jpwuVJNA0FVXp2TfjvGYT4HPWNjOhJb8DkBWK4zWVp5eXqptwqpTAyuf1feCSGSXFPlfSBCsEmIbottL03JerV17kun8lHMCcWne+2Hu3kp1z1janlxvWFH+fvEYyfBkEsjDWgLl12x1QHoCkVMAjdAempF/ep59+imH0roCVSCRYvXq15368pJpbvnw5V111FVu2bGGXXXbh//v//j/mzMmO+bRM6RZtbW1cddVVfPHFFwwcOJDp06fzi1/8Ak3TPI8NINm2loTpnvEnZcokU0l0I4HAAEkGWUaWgshSAFmWkGWF+mANwqwhpMcRgU1UDRpAwpSpqrYccgRdUUE8LgiGZYJBGYSCqYNpmFmZw0wJhCRTW1OFEatFi3dhdiTQwlUElXTMdSwR55P1K2kcNIyBkfo+y3am6wbxRBJNVQmH3fOc9wXpw0goSrooiWGYJJM6cnehklzavm6k64pXR6pcx2oX4JamU6kMWRZeNfm+8273kBYzD3/e8msgPWW1JjqVuz5ph0nnb/S6Ube7rpE7x1qqt7UleC1yXSs357xF60dx4PpRWeF0xVCq+d85abHOvVB/2+o3akcYaxAbj4busNVtQwAG/82z8PaSCMxCCMG0adN44YUXeOqpp/LmHRdC8NOf/pT77ruP1tZWpkyZwt13382YMeU7QRYluJ955pnMvxcsWEBdXV3mb8MweOmll9hll1089+fFO/iXv/wlv/zlL/Pu8+mnn2b9ffLJJ3PyySd7HkcupFQnQYKkUgkQoBs6VZFqEJCKbiYSCiOrIEsgSyaSZCJJBkgJMFPpIDIZDFMgKYI4OsHOtQRUkKMBhBZGaCEUQNJ1jK503LcsVDZtihGPJ6murmbdhi1URSIkkgk2b97EwNoa1q1dz6D6AUSCtXz8ySeoskwimQRZ0LTbEGrC1X2QPAWEMInFk3TF4tTXVle0Slgx9AhwOUuAp73Qlaz1dSEEsViCcCjo6r3shr24Q6WEkxdNvi8otJ7qZb33z1vnghTvDn1UeHLLXVy98qJepnC7kC3OTG4lK+rtQOpmFXFirePatd98ZVOd8etOcrVdPOmJrJSqTu/8dBtv6+del06cOPu1+2fkYs7aZi5vyPl132FuZdsKbdLHM7eCR8FdKBGYndtuu83z++6mm27ijjvu4IEHHsgUGZk6dSrLli0rO9a9KMFtzS4kSeqVIU3TNHbZZRduueWWsga0I/HZJx8isxufrHifnXYeRVvrZkaP3YtAMIgarifQsEvvRCZZ/xbpaDFAhGKYqQ0Y+iCU+iowOpATndC1mSoEYUVBTwnim9LR38moYPPWKG2trXTF46zbsInGYUNJJk02tnZRM3AwejLOF6u+oL2jg0h1iJqBtQTkII3VTSh5vO5LIZ2/XCeeSKFpCqHu1K7bQ2jbsY6vqj0aeCqVLcDj8WR3jH3+x10IwZ83/xpJytYo3YS3mzCwCptY/4ZsYWOfDOTqIx+lTCIsAVSIQkJGEkp3ZEXPc7WsWYct2fvZr4GFfYKe63kxjXRRnnyPkxcBPrVpYpbz3dzGlhwFUHI7/1nte7dNt7Gb1OumreDA+T0lXi0N/sAlvUPZLLz4LUxoUXNmRisl3/yyZn27FBnpD7zwwgtZf8+bN48hQ4bQ0tLCoYcemtm+ZMkSbrnlFt58800aGxvz9imE4LbbbuPqq6/mm9/8JgB/+MMfGDp0KE8//TSnnnpqWWMuSnCbZrpm86hRo3jjjTcyDmNfVmpr6ol1dWEYOlu3bESWFWS5mKIXUk+kWFUIpWkQifdWoTePJFwfQY3UAXp3grUgZsqgfWsbiUQUtSrIoOAg6urrSCaThMMhEvEEO++8MwKBLMuoG76gK1SDCKbXl9s7OkklU2zcuJXamghVVaGyBatpmiRTekYYVoWDKIpCnAS6YaBVsC54uVjC2i7ArfHX1lTlFQpgFV7RUVWFxzfeSTKZ4oydLskIb0i/AN20TGub8zs3YXPtyLkkYilSH3QSDJoomsbJw/+/gudXjLOS9XJPv8TT1btKNc3m0pyL2Z5MxIklBKGQRjDQO0zRSn/rdTxuwts6N0sDdWJ5gUOP5uwmAK32Tq3cHjJoTYjSf2cXl8n0Pz93FrpC9yHfGrjTO97eZymJenyycSYCA+jq6uL000/nrrvuYtiwYQX7WLlyJevWrctKElZXV8dXvvIVFi1atG0Ft31Q/wsMGrYT9XW1DG0cTiqVxDQNJFnCNMyi+5IkGW2PXYi9+CbG55uIy/VE6tNmGElWMIAUAjAIBMLpjxYiHApSHQkjgHA4lOWsppgpQgEZs74OwzDTmqWidmuaac3IMNPZ2xSPE4507DnohkEqlcI0BaqqEA4HUWS5R8NVlEz60u2tdTuxC/D2ji4UWSaVMlBVcoaoCQGGbiDLEqZpkjJMAprKnzff5ep9bqeQSVgIwe8++RW6btIwMIIkQTAcQE+EiCUMaqur+fPmXzO9Yban8/MivO0vdLsZ12tu60qEcNlRtSByKsGWLZ1IskIkHCAc1lBVOe3gKYTnZQwozvpgL6PK/B5nwXwOeXYt2bJYLGvWmdOS/ndGI3dgF/Q96+fd17/Fe66AQvg1tvsGt0RgAHPmzOGggw7KaM+FsBytncWwhg4dmvmuHDwL7jvuuIPzzjuPUCjEHXfckXffCy/0nnd4R0aXgyTQQNGQlDAKYIVCKpH6ovszJZPOapPw1k6S0Xb0oIZSV0dgl53p0lLElRjhUDWRYBWapqaTmSTT4txUJSJqt+OOBCY6ad+29IBkWWJQQz1SJkFJ2vFNN3R0wySgirTntSxlQtbs9BT/SKeMlWWZQEDLmUlNUeSMBWZHxeyeVESqw2lhnHJfA08j0A2TUDCQ1sw1AKmX93kppFLpcLlBg2psueKhekAVyXiKeDRJIKRmzPR2nBMGu/bvBbuz1YI128dDWZIkFEWipjpEdSRAMmUSjSbp3JRAU6G6OohU5NJOMdaHXIlp3EzOPRprd7Y6ui0Wtu8OXDIj45TmprXn0nq95lbPdX/ditrkOof+mr99e2MlArOnx37mmWd4+eWXeeutt7bjyLLx/AaYO3cuZ5xxBqFQiLlz5+bcT5KkL43gDtQ1Eqz1XpA9P4LOTz7F0JMgS2hotH36OeEJtSQ64gSCKuFAELVaR5e6UEV1RmuWJQmhC7pSie561TLtbKZaxAla2dnMtFeuYZqZf1vasCxJJJPpTGyIdBpWWZKRFRkJCVOY6LqBJElomkoo2LtymBPrO9M0UZTSa2b3Jamkjqqmz1FVFBRZxjDTJU0lQFXVbkEqYRhmdyGWyq/bK4pMw8AIqiMFrSRJBEIauqzTtrGDSH0Vwar8ueUhLQAOnD/Dc85uS9MulI7UuT5fadLPlEIoqBAMqBhGuia8ECbC9rwWwln5zaLY9f9iBZ5lis6kXc2htReThc+JdT65nNIKOb2Vc+z/dXIlAnv55Zf5+OOPqa+vz9p/+vTpHHLIISxcuLBXX5Y5ff369Vnr4evXr+9VXbMUPAtuu3n8f8VUXlkk6ifuSe343THXt5F6/1MGH34QKTWIGggSDKiYkklKinVHiEt0xRMkUykCqko4GCCZMhASpHQT1YiACBKNdpFQoxktUpbk7n+ryJJkW2a3PKx7cpVbJT9lWcpkOkOS8CK20lqUgm7smILb6LZWVFeHM1qzFQduF+AgoSoyyZSembBUGlmWkW3LDHYkSUINqNQ0VJPoSqIoCmqwx8rhtkaeqTnt6nTVg6X55RJoudbjtwVpy4eEoqSdHA0jnSo3VKAoDvSscTud/cqlUqF61vq03UnOTr4JQkYrL9EysqxZL/hc+GRTKBHYlVdeyXe/+92sbXvttRdz587l61//umufo0aNYtiwYbz00ksZQd3e3s7rr7/O97///bLHXJLr8bXXXktXV1ev7bFYjGuvvbbsQX0pkUDSVJRIFdKAahKaipCCRKojBIMqSamLdtaTIEqAMCY6cXUroqYNSUvXrlYVmWQyQauxDj0QRQpASFUIBjTC4SChsIYaAqElSSpROuXNtLKWDint+msVc1AUGU1TCQY1QqEAwUCg26PXm9C2UBUZXe8dz7+9EUIQ60oQCgZcvestAR7srlSm60Z3XvfKeuLbj1fIeqEFVSL1YZKJFJ1bo5iGiT1a0sq1bs+5bg97sn8mtKgZ56lcHuXbUkjnw7o21vNXyvLLsmY9S0CWsvabzzxdDG3zx2Q5yeW6/tZ9csNycHOj0Nq2n5e8eGbNmsVDDz3EI488kkkEtm7dOmKxGJDWnvfcc8+sD8CIESOyhPy4ceN46qmngPRzffHFF3PdddfxzDPP8M4773DmmWfS1NSUN/bbKyW9qa655ho6Ozt7be/q6uKaa64pe1BfdiTdRN3aSUBR0OUEbdI6trKGmNROgk50KYqhRElqHSSkLkw5RTyZQDdMDAOEoaBLcYQCSnfmsPbUFraI1Wzmc7bwBVtZQwebiEntxEUnJpUXsJqmYhjGDrXWLUR6TVkgCATyv8QsgREKBbrj0bfRIHOMRZIkwtVBTEMQbY9lHAXdsAtve2UuS1BMbZrY/6pISeQ832KoRFpTr6VM3drYsYS3mwDPZdIu5pi+k1r53H333bS1tXH44YfT2NiY+fzxj38sqp/ly5dnPNIBLr/8ci644ALOO+889t9/fzo7O3nhhRcqUq+8pOlZrrWopUuXZrnQ+zgQAiOewOiIIlQJIxYjFkwQC3YgIRGWIlRJEVRJQqASNmswUwoKVYSrgsiSlPaQNjSCKATktWAYqKqCiEkkRRxJAhkFlSAqGioBVIIUp0t7I10vW6MrlqCqO3va9vcwFySSqW4ns+09luKQ0jeP2oZqUkmdeGcCLaSiau4OgvawKLuWZ8f+946iZbth+WkogdKsHuUmt7G3KyWdar42Vt9uXuXFOpK5HccS3qVmcOtT5AFAgG2eOU0e4HnvUsoEu7VxbpMkiWuvvbZPrNBFCe4BAwZkXs6777571svEMAw6Ozs5//zzKz7ILwVCkNi4mS1vvkV1wzD0IVW0f7iC6vG7EQg0ISOjSTJIBqYhoacgZA5A07TuPNzpa61pCpqmpMuESjIilSCZ1AkQRksNIxjUUFCRUJCElKkb3leCOxjUMOOCjmiMgJoWMkp3jvXtkmKxWwDYU8X2J6RuvwQtmI4qaNvYQc3ACIFQ36y/7whYyX20HBMUJ/b1fnuo14I1S5nTkjtTGnjTZitViMTJ3MYWV+cxu/Au1RvcCnGz1tV3FM9ySWmCwX/zc5VXmKIE92233YYQgnPOOYdrrrkmK+VpIBBgl112YfLkyRUf5JeFxPqNiHgKgaB6993oWr0GkiZhqSYtcIwUKcNAGAoBVUNWXRyaJNBJ0i42EjFihEwTVVPQAiqJeBLV1HrydW+D97wkSYRDAYJCQ9cNkskUpplEUWQCmpZZu9wWCCuBSonHFGyTS+YJSZIIhgPIskwqoWfWwZ3nlSsZSX/CNAWmEARKcHJ0Fv3IVZSjFGGcS4t2mwR46d9KhpNP8y5X4NqTz3jNUd/XSEqT5/SjPt4oSnBbaU5HjRrFQQcdVHTRjv9VhBCQNAgRQgoNQIwcjF4fRAk1olXXYwpBXE9iCpOQHO42F0o511wFJkliaHKSsBJAkSWESKf9TKZ0NE1FEn0T2uSGJEkokoQSkAloak8RkngCJIlgQOvxqpayhWMly4smEilSKZ1IpPcaUtqKlY5VTwsKE2GmtXPRnahWlqSMB3i6SIyVgrMn9npbYglrVVPo3NpFoitBpL6q15KEF+G9o5rJrbKwmqpS6rSpbtoKT6ldizWBO/d1VggrVchant9O7dsStJXMj7+9hbZP31DSgtJhhx2WEdrxeJz29vasj083AoRuYHyxidhLLSQ/W8PG3UN8rK5hecdyPtE/Z11sA1v1DraEo+gRgaLKaeGW6x0mQKRk9NYqVCWAJIx0ytTuxCKGYRBLRImnutANo9vBSdhCwMyS1nS8InULv0BAIxIJEwxoJFM6sXiCrlicaDRGtCtOtCtOPJGsiGObVURENwwikVAm/r3n+3S8ebQrTjyexDDNzPUKhQKEQ0HCoSCBgIYkSximQSKRJNoVpzMapysWJx5PdFsTBH139XojSRKSLFE9oAohIN6ZzIT02cmXfnTHFdrpMDAEBfOU23E7J7uA6ivParsgt9aTF6xZmhHi4N0L3RpvLse1XOdQzMRjztpmPwXql5SSBHdXVxezZ89myJAhRCIRBgwYkPXxAYTAbI+SWLSM5JvLUUcOI3zUfmjDGjCEgYmJEBIxxaCzJokRFHRqcTq0eMGuUwmd+GYN1ahCMrMLOKQrYMloQRNdxIknEySSKRKJFMmUTjKpk0ymw8v6UoBb49E0lUhViOpImEhViEgkTFU4mClSEu2Ko+tGyQ4ium7Q0dlFLJ5OTqPrRta5pffR6eqKo6kqkUgobdoPaGiamqkupijp+PdgQCMcChKJhKmOhIhUBQkGtHTMum4Q7YqRSCQxzW0nvtPCW6ZmYCStfW+JYqR6X7Mnu8tu9vy9YwrsHrq1ba33EoAXnOdnaanFJCBpmz+mKK9su5C2sAvxYhzEcmnVznSqTiHuVRj3u6gCH8+UNDW97LLL+Mc//sHdd9/Nd77zHe666y5Wr17Nb3/724IlOP8nMAXGJ+tIfvAZ5k4NhCbuhlwTBmCoNhRFUggpYTr0OAwIgJK2HxsI2rU4AUMlaKo5HcokSSGZMumM6oRsGqugW+NFJZWIE6pSEKaBZGpItjmaYZokUylUJV0xa1uZgDNx4pKELKe1LF0xiMUSKKqcibnuLRKl7gSu6W+FAMM0MA1BKpVCliWqI1UgQSyeSGvc3VYIIQSSLBEKB7vTtxY53u6xQtox0DTT2b6i0Vh3PnQFWZG6HQh72lUay2SvhVQM3aBtUwd1g2pQ7A5deoynV5yHqN0VoVVXfAyVxMqHL0tSUTnKnTy55S6EKZg+KJ3n3TI/F7O+61bb2yn0LOE5t/EJ13Kf9mQrxZjQC3mcW9q41X86xru34N5RnNH6Whn4suP1+pUkuJ999ln+8Ic/cPjhh3P22WdzyCGHMHr0aEaOHMnDDz/MGWecUUq3Xw6EwFy5jtTbHxE4cAJGQw2GlBabkiShyQEaq5rSCVXkEDF04qTSbSUwERiyma7tmYN0mlEIhgIQFVjCzDRNYvEondF2JFlB0arRNJCkFJg9IWGqoiBLMvFEstusnDb/Kjmye/UVaXO1SiSioBt6JoZXcnt2Mw7yUjp7nBDd1aQE1ZGqzMvfNAUBTe0uFiK6hW9lhKmVczsUCqQFj25050A3MvWkZTk9AbES3eTKmFbOGELVQbSgSjKuo+gmgbCGJAzkjpWIqkaEWs2O42aXi7S1JBgoz1teiB6hDflrU9vLcVrkK4/pJqAz1dYcOJ3C7Fp8rrVya598WrpTmNu1e7cx24V3uv9tYyq3siemKxmGt8kxv4xYic0K+Y+VJLi3bNnCrrvuCkBtbS1btqQzcx188MEVSefWnxGdcVJLPiKw3+7IjQORgXgiiWKmU4sKQE/pmKYgEggRTgg2hzpJyNbLQJCQdcIEcr56TdNEVRWqAibEFUwTEqkU0a524vF2gsEqqiO1GEmBqgokSQdJRQglI7ytNd5USu+peKap2zyMyhKqAbk4R0dFl+mKxYlUhbM0NutflpDtC6zJgD3BS48fgcAwzXTBlmQKbMsXlZLfkiShaApBWaZ9cwepRJIaZQOoVYjQ4G3vRVckVvhXeqJYWty2EAJhCjpbe2dwhGzN20s9cjs9wr8lK8TKq0Y7tWkii9c8kcmAZneKSwvcpZmqYQcumcGBS2YweejKzLHLWZe2WwusELFtoY2rqkpVVRUbN25Mh7AWWTTmfx0hBF1dXWzYsIH6+vqCaaRLEty77rorK1euZMSIEYwbN44//elPHHDAATz77LNZIWL/cwiBsfwLpAE1yMO7X6AirQEmkqmM85iqKASDaS9aWQga4hESioEuG6imQsjQ8upLiiITDslIiSi6GqC1owtdN9BUlYYBQwkGw0iShGEYJBMxgiEJSU6CYXlbpwWPpiqgKoCELusYponKjh//bJomXbE44VAQxVa4wzKLpy0S2/bFYTerW9cw7TFt0NUVT2vfSlobV7orrpUjXyVJQlbSyVoSm1eTFF2og8emv6vECfUhViW6oFWJrYT2Qgg6tkSRcpjZ7Tm7nZ7b9lSxhYqK5Cv64Vwbt7RoSwhb2vGBS2b0SpBiVRWzipQscxzXTjGCPFc43II1S1nbhzlQJEmisbGRlStX8tlnn/Xdgb7k1NfXe6r3LYkSFiXmzp2LoihceOGF/P3vf+frX/969yw6xa233spFF11U0qB3FNrb26mrq+OLzz6itojqYKK9i8SLLQQO2Rt5SF3mBZNK6SRTOrIkpWtq20y3GScqerLR5UuW0uMlbqJ9upxYdQNdoRrCoUB3vm2639wC5BSJZBJJhoAmgdDADLj2bxjpspfBPiq0USlMU6QdzTQ17QXuGKrlnBYM7hihipYHuGGkzemGkR5fKBS0VQsrVYgLpFQntK8kHhhJVxSqux3YduR7mEymMsskxQ5TCIGhmyTjSRRVySSmyRcOl0vwuZnCy8Fu+rZPDtxwCudcoWrO9XZrIpFPM7c0fWsc1n5rk88zfORo2traqK2tLebUPGOaJsnktsyS9uVB0zTPBZtKEtxOPvvsM1paWhg0aBAPPfQQ9957b7ldbldKEtymif7mCkQ0jnboXghZSlegShloqoKiyMQTqcy/LcephJFgS2IzJiaN4UZkyeNL1zBQPnoXfcQYRDDsENg6SDpgYgpIxExC4e61VjOIJBScepkVBy0rcloTZ/tkPsuHFfZFd9IXt/Gla5jrPXW1dzAsp6xEvPvl1r12r6pqxrva87iNJHLbh4hIE2ZgALHOOKm4TqS+CsUtec8OgBCCeDxJMFi8OVUIgZ7Uad/cSaTOvQSql2Q0doG3LRy6Cmn2peRFz3UcJ9tacPtsGypiTxw5ciQnnXQSdXV1/O53v6tEl/0LU2B+tgHjiw2oe++KkCVSukEqZRAMqN1mW4mAppJM6VhlsVNmii+iq1jT9QWb4huJ6lHPdk5JT4FpIAWCyLL1sjdBiYOUTP9bKMgihEQA01BA5JvNpdOXIgTxRBK9W0MUYtvGLefCmliYQuQU2kD3+q7AzTd9R0CS0s6BkUiIqqog4XCQYDCQjjOPxkgkk93lVgt0JEykzs8QwXpEYEB3gZIQkfoqEl1JEl3JHdLD1zAsh8HihbZpmCTjqZxCG7yFwPV24OpbCgltK6lLJXCu5/tx3F9OfA+CctENjA+/ILXkY7TmsUgDqzEME8Mwuus7yxktSpbl7uxmKUCgyRqNVTvRWLUTI6pHUqVGvB83HgUtAL20FpEW0Gao+6OgSApC15Ay2nZvLPO9pqkEAxrCFCQTqXTSkW0Q850Pa7khpetUhUN5NUkp02bbjK0UrGtteaBbiWCqIiGEKbJixV3PQwikrrVICERVY8YZTZIkFFUhWKXR1R6jqz2+QwnvTJY0rTgTuRCCRDRBtLWLUFUwp9C2U0iAF+OwZhfuO3rZTD92+3+DHfsp3JERAhFLoi/5GLGlHW3yBOSh9QjSZSUD3Wus9veL5RCWSKS9jhVFoUqtokqt6v7e+9tMikUR4YjtABIggxnMaNZStx02Xec4LQQKHcNysgoE5IwTUTKVzv+dLn25bc2vQgh0wySeSPbyIC/Qkm3ppiWEQOhJJEVFkot38LPSxoZCQUxhkkykiHbF0mv5mpZlQpf0KFJiM2bdWJAURz+gqAp1g2tJxpIkosl0uJi8fSu3pcPnzEw6We/tBPFogq62GDWDqt3z9zsoJvHM4klPwJr8WrFdG17WrFc0JWklC5rkK1Tia95fLnyNuxSEQGxuJ7VwKegG2uETkYfWgyShGwaSLCFL7i/KtFBU0zWjhcgIymJeqgIDEWuFcLaGLgFSd8iX3QFNURUM0+w2fXs/zXRIlUIwqKVN59swW5iFaQpiXXGqwiHPnuKW/8C2QgiBSCVofedvxNatKOvYkpSOpw+FglRV2TTwZE+2NimxGREcCEogRx8SsiITqg5iGCatG9sx9G1vNbEc86wQOd0wCBThOCeEoKs9RjyaoG5ILVqgtAxrbpQjeC3hvaPg1+P+36Oop++kk07K+31ra2s5Y+kf6AbGynXo732KuvvOKLvv1B1S1ZOC09KQctETQ53q9ozuva8wTYSecn3ZSsJExBKYA1TMRHaKVEmSkFQNbJMBWUqvr6eSere3dRGavZTW3FVVJaXryPK28zo3TZOurjihUMCztyWkJ02mKSih2FTJpDo2kmpbjyQrhIbsiqS6C1WvSBIokuyqgYeTHVA9gnz30cq0VlUbQpIh0ZUgFAkhK33vdChEutqXaZjoRncmIZGOe/dybOuZT3QlMXST2oaadA7/IrE073Krp7l5fDuF9/Y0UXutTPa7leXXBfDZMShKcBeK0a6rq+PMM88sa0A7ElboVYZYEn3px5gb29AOGIc0bCBCIrOgahgmEoVTOFqCO5FIv9g0l6QnekcbonULspTObJY1LsAMRKBtK7S32nvGFCbU1qPWD8xqoyhyt5d7abmhVUXOJI6R5W3z8u/qSqAF1CLXRNNWhXLSaJZCYEATgw/+TnrCpFQuFC1LgJsmyUScZDyKqFLQRHo5IN+1sZzWDN0k2taFFlQJRYJ9dv/SGfxEJm9BMCtkz5vQFub/396Zx0lRXvv7eWvrffZhAEFZBAThp2LcokGNgjvigkZNXK5el2iMSW5cYtQQNBiNMbliEhINwSsmRhHcNSoRBQSNBgKiRBAM+zrM0mst7++P6upZmKVnmBXryWcM011ddbqmu06d857zPZJ4VQJV14gWRzqtO8Dr025tfnVzjtFz1qM+1Dpc5KStk8zyoTJV06H78+k+2uS4Z86c2Vl29EhSG7ehR+PuLxLkrmrs3VVoQyqwMxnYsLXB9rbtIFQFvaIUNdhKxJVNmafTZk4isz4yk0FXVaSEmj17UBSV6srdBIJBSvv2Y/uuSkKRCJU7dhAtLCQVj9P3oEFoqkbGTDdxODfqdlXcnHZJcRqGTiZj5qL2zrqgSilJJNMoqmiXJKYjHfR2rDO3F3dcqdqute38j5EV3jHAUXWq0w4ik8DIqt2pmorSzHlyi9YUQtEgNZW1CMWd9d05ztsVnTHaqcInJTk1tGDE2GehmsbUTyvnMxCkIxxoe/bR0U4bICT2LQvk03Pw17hbwKxKkt5ZQ2pnNWZ1AidgkCyKYiMQGdt9fE8C1ZSopsRwBErCxEokW923IBt5626VeXPrj7ZtsWvrVnZv30q8uorqyt2uY6utYc+unWz5Yh3J2lp2b99GJtX6ZDFDd8dsttptlM022LaDZdmYlo1lWdm1ys5LuUnpSsRKKQkF2xMZ9rze5Y5EmLUII0IsGiEaCaGoChnTIh5PUht3x6UmkmlS6QwZ08rWJrh/L81QKSovAAnJmlS2W6DjbJNSYjvu56atynWusIpNqjaFETKIFUc6TCa2cbGa1351Wv/DGlSXN9YY92htDbm1NHlbnXBbJpa1ZX07aATaZIdPz8V33C2QrKll7T9XsfHTz9m+bhOWabFl7X/YunYDGz/9nPX/+pSdG7a46VFFQSgKKCLvFmIhBFp2Iba50Za6ESBWVISRjbTD0RhCUSjv15+i0jIGDDmYQChEad++6IGWv5huC5I7/MIrjqs/q9u2bUzTcseAZkxSaRPLsnAcB0UItKxamVtU1+bT2SpSSjKmiWXZrbZ9tbCXDrer5yARVi2OFsn9HQOGTjjkjksNBnV3XKlW95lKpby54kkSyTS2lBghA9tyqNpRk3PeTf20ybJsEZppWlkFv7ZVjtumTdX2ahRVIZCtgu8o6q9xN7VW3ZSKWX3ydbz5Vm63dnPQFkffFttUXz98v6HnlEb2SCR6VuFJURWMYIBYaRFWxsQ2LfRAAC2wr0VIAkPXSaczrpa115Or61iJWoQjKa6oyE66yrZ2JeMEo+4EqHA9BSSJpCZTiwgW0dwqqxACXXNT5um0SW5eptdbnL2ZaNB+1OginMmYuYr4jsKbtpXOtn2158LtZQgE3dv61GlIwEqgRsoa3J54BYRKvWo87+/fYC657ZBOu4ptWljHQVJTFccI6pDVeAdy508oAlVxOwuUVtrJvHGnhtE2RTRPwjRZmybcgrDKvvDc7kdbLVDzFMZy+uKvXNimY+Srf94cTU0u8/FpDt9xt0C4sICKfv0gK56iqAp9Bw/AcdzWGm+d2LHtOuEPx2mz01EUV/gkk7Gyoi0CraAIJxR2K3Oz0biuayiOjbJuFU6/UUi14Z8vZSdZV7OG0mAMwzHRm6kA924Wkqm0W7GdvdDmc8FUhOgUcRPbsUmm0oRDQRRVaVfC23EcTMtVq9s/HbcNjgVq/tmInP69EBiKK2drZ6u9AxEDx3So2V1LuCBEKBLMtdJ5leGW7UrIgvs5DRh6TrI3Z5aUZDJW1mnnvyYtpXR7zRMZwgWhhrPFO5i2OO/6LDn8WY595cK8I9vG+2jKiRee+dlew07clH1dyr2tjrypG4b6M8J99i86RKt8f8PTKl/74QfEotGWN5aQyaYHESAUBb0wiqK37Z7ITRNb2YhYzaqFubKjnr45CISZQV3zL+zhh4HWMK5OWHFW7/kEVdEoD/ahb6hvs9KS3uQqx3HaXACWTGUwdK1DJnBJ3Jud2niSYDCA3o7BE1Aniap3kF09EWHFEdVrcYpHQzvHYTbG0/+OVycJx0LoAfdzWzcEB7xKfct2MyKGrjdo7bJsm3TGJNyGmgQpJZmUSXxPglhJBK0LbrbyaQtrydl5E73yxXPgTTnvpo6zr0NPPOfdXMre1yrff9g/r3AdRKCsmGCfkhZ/1NJCjPJiAn3cbQNlRW122lBX9W1b7kUwk7FQVYVgQG84BlJV3TV1y2xuTzjSJqq7qfSWjqdrKkiw2likpNZLq+4rrsBIioBhoGvqPq2du1mQ/TDS9jDjoIY6dN62EALN0CgoiWKbNvE9CTe9Lr3n62ojDF0jEg5i2TbxeMrVjnfc9i03a5O/004nMlimTWF5rEucNuSnqNaR/dj1I2qv59trHWvq5sBrS2vK8Tb1WP11ce95XyHty4GfKt9HbNtBUztuEpNhaNi2jd6cMIuiYKs6SjKBDIYbPevqpdnSYU+6El0xCKrBvfaR2zrbkpbKtqTl+x4URcG27Ta8q6Zx275S2LaDEty3e8ieO1ako5AIK4HUI3R05bwQAqEKAmGDmso4NbvjxEoiTdYKKIpCOBRwNQEyFvFEMruNIGC0LjMrpaR2TwI7Y1FQFutyKdZ9kSv15FHbEnl/b8uRPNzvQ9dRb87/WPk57+Wt7tOrml91pMWf1ud/fJ+ejR9x7yOqqmDZTVeEtwUp3Tm2qXQGidsG1tQ+pZSkVQMSNc2W/jrSptqsxnZav0AJoaC30pLWGEURuclh7cUb7yiAWCycm6O9DzvcvxvBsoVptGUQTRtRVIWCkijBSIBUbRrbbPpz7XVDBIMBIpEQuq5hWVaLWRtPWCWdyICkW5w2wL2Df72XXKkXuXr/37hNrDFtSZfns8b8vS1H7pN4y/e2HNmkvV7q3R88sv/RrY572rRpHHXUUcRiMfr06cOkSZNYvXp1g23Wrl3LeeedR3l5OQUFBVx00UVs27atxf3ats1dd93F4MGDCYVCDB06lKlTp3aKVrOmKiiKkqu0bi+2bWGaDrsq02Qy4DhNR7RSApECRDK+13MCgaboVIT6MSQ2NK9pY0K4Yya9dp58EPtYoOYWM5lYtk0oFERVFAxdw7LaF8W7Fc0Wmt6FGqddjWOCtJAtZFA6AqEIjKCOqqtU7aghk2z+cy2EW6zo1iU074C9z1b17locRxItCrvtk91UQNhYrtRzxI2HiTTnTL10dv2fUR9quZ/6jzfFaf0Pa/DjOVbv98aO/LT+h3Hssuar3D3n3Pg1vsPef+lWx71gwQJuvPFGlixZwhtvvIFpmkyYMIF43HVK8XicCRMmIIRg/vz5LFq0iEwmwznnnNPiGuvPf/5zfvvb3zJ9+nQ++eQTfv7zn/PAAw/wyCOPdPh7qCsmA3sf1n1VVcMwFAqiBqlUEqUZFS4pJSIcgUwaGqWrDUWnKFBMWbCcoBpqU+WxpqmYllUnuGJa7khPx9krBb0vrWBSgpldxw+Hgw1aztp64+PKazqkMyaqpuba2PY/JCK9G7QQKJ2vfiWE67xjpVHMjIWVaTmjZNt2s9XkUmbrGPbEUVSFUCSQjbQ78Q00g8T9vDzxn18A+a0He8702GUXtug8vXR4SxF2vpH1qiOtvQrbjqtY12D6V1OTwLybkeaOYTcTDPj0Prp1jfu1115r8Puf/vQn+vTpw4cffsi4ceNYtGgR69ev55///GeuCnLWrFkUFxczf/58Tj311Cb3u3jxYs4991zOOussAAYNGsSf//xn3n///U55H940JseW0O6gT6DrOlFFoCgBvDnejXGkRARCoGko8WqcwjpNckWo9An2aZfzcoVgBJZlu5FUtkUsnW1Rq3+l3Zdo27Ztksk0kUiw2Qlq+eCJxngV/e2RcO01OBYitR0ZG9KhhWktIYRAD2houkqiOkmyVhItDtN4kp2UklQ6QyBg0Hh921NDSydMAuEARrDrBtQ0RgKO7RBPJLnyoFvz7reuL1eaj0Rqc7jHyi8CbqoavX5U3hyrjrRaXPO+YvCteR3fp+fTo9a4q6qqACgpcZ1ROp1GCEGgniJYMBhEURQWLlzY7H6++tWv8tZbb/Hvf/8bgOXLl7Nw4ULOOOOMJrdPp9NUV1c3+GkLXt/rvlyTvAuipuktOiHHcRCaiuxzAGzfBPXuooUQGGoAXWm7iIWXOQgEdAxDR9NUV2u6KS/dzvdpOw6JZIpwKICqNIyORVZwzrad3Pq543g/DrbjzjD3fizLdp220fL52h8QqZ1ILYzsxPXtJo+bFWEJF4SQjiRZk9pLVc2y3CxT444At83MpnpHLaqmdKvTzhpEIul2L0DdgJGWUtoe7Rmb6UXX9aPjfPBsaWmNvSXbOnLQiU/PpcdUlTuOwy233MLxxx/P6NGjATj22GOJRCLcdttt/OxnP0NKye23345t22zZsqXZfd1+++1UV1dzyCGHoKoqtm1z3333cdlllzW5/bRp05gyZUq7bZfSvZvX91FFLS+PKN21bKegGHX7ZkT1HmRR6T4et8XDYWUr5yF7MYc2p7UdR5LItn1pzbR9BQx3dKiU2TNRb5vcfPF6qfWAYezf7V8Ajuk67tjgLou26+NVnBeURTHTFomqJIGIkasnSKXTBAPGXlG4bTlkkhkiRWGMUDc77SyOIzEMLSfGsupIi9M4LOe86zu9Ome+t1P3tmvci9348bYKqHjOOt/ovKXUvc/+TY9x3DfeeCMrV65sEEmXl5fzzDPPcMMNN/C///u/KIrCJZdcwtixY1uUVfzrX//K7Nmzeeqppzj00ENZtmwZt9xyC/379+eKK67Ya/s77riD73//+7nfq6urGThwYN62W7aNqnXR+qp3CEXFqTgAZftG7FghqJ3zpwwEdFfz2rIIZm9MvOyA7Tg5rfWW8Nq+NE1tdiaz2yusEDDyTwL1BGfQuUhEaidooS6Pthvjpc5ty6Z6Zw0FpVFXlx8aTAHzerTTCddpq1pPyoY0fbPpiZY0jrwbC6I0nvLlOX7w1pet3OPHvnIhhbRtuMjD/T5scPPQGaM9ffYPeoTjvummm3jppZd45513GDBgQIPnJkyYwNq1a9m5cyeaplFUVETfvn0ZMmRIs/v74Q9/yO233843vvENAMaMGcMXX3zBtGnTmnTcgUCgQTq+rdiWjdFg7nDnktOfjhUhd2xBqdqNU1ze4RGZEAJVCFRDIZnK4DgSVRU5TfN8GqellCRT7pJH48isqeP51MOxEKkdXbq23RJCCIKRAJquYaZN0qZJJBaup7LmqqEla1JEiyM9zGlne/0lXFC6t4Ja0ynm5p12Y9pbwd2aPGpLFJ75WbvS+D69n25d45ZSctNNNzF37lzmz5/P4MGDm922rKyMoqIi5s+fz/bt25k4cWKz2yYSib0iclVVO0ztqzGqpmZ7uTtl9znq1tKzF0NFRZb3R+zc0mCtuzPY6/KbT1ZfQibjVqqHQ+0Z0fnlRqR3gdr90XZ9XKU1FSNkkKhJkqpJIbOjPNPxDFbGpqAsimb0xAp/157ndj+al4paW2nrhK/6LWntXZv2I/IvJ93quG+88UaefPJJnnrqKWKxGFu3bmXr1q0kk3XzrGfOnMmSJUtYu3YtTz75JJMnT+Z73/seI0aMyG1zyimnMH369Nzv55xzDvfddx8vv/wy69evZ+7cufzyl7/kvPPO6/D3UH/6Umdqd3la5oqiNFjXlbEiUDWUPbv2rdy7PTa19JyUmKZJOpMhEg6yv8/J7nCkjUhsR4b79Yhouz5CCFRNIVIUQQKpRIbaygSpRJpQNOAOielhNsPen8B8nXc+Keu2prWrXhnGe9sGt+iw8zmmH3F/OenWVPlvf/tbAE466aQGj8+cOZMrr7wSgNWrV3PHHXewe/duBg0axJ133sn3vve9Btt7qXSPRx55hLvuuotvf/vbbN++nf79+3Pddddx9913d6j9njOVUmZT5Z1zsfIGgkgp9x4Ioig4FQNQNn4OhaWgdeaftM5VC9ewZre0bYdU2nXabRnz6OMirCQIelS03RhNV9GCKonKBKqmUlAa7RY1tH2hvvPOZwhJc+TrtD1H23j7to4DbW4/Pl8O/OlgTeBNB9v4xRoKCmJ7Pe+lrNMZE1VVs60wDatqTcdEV7Rmp3O1Bdt2yJhm82vE0kFZtxoKinDK+u3z8ZrCsmxMy0JVXKU423HcgqVsdbGoF8842WlfoaC7Htp7LuM9B5HZg4hvxika2eMibu+SkYinqNkTR1c0YiUR9EDPHacqpaS6JkEsGm61E2FfHHhLNI7Kverztk4da0t0X/XKMHdEaP/DGLpAMmPcHH862H6AHwq1Abe4xZtRbGLo2l5O28MbvNAxx5V7CV80PJiCrDjAXetudmrYvqGqCoFsz7SdFT5xz4WNabuFOa6SmSSRTBPI9oL3zMu4T3vwbljNtEn1zlocSxKIBCgsj5GsSRHfk8jNqu+p5GNb/Si8I1PRjZ2t10rWVqed73aeg29p1KdP78R33HniSTdmTAvbtrM9xM0U4AjQlA6MPmTrtwAyHINgGGXX1k5Z6/batTRNxdB1ArqOAFRFQc1lFdy2L1VVOnXp4EuBlD0q0pZS4lgOqdo0ieoUwUiAaEHIrRxXBNHiCI7jkKrN5IrVehztOJ2dlYquL7SSr1P1HHG+6+2Nt7u/7z/bZ6xPj8N33HkgpcS2XX1tRYhs5Nm83rLI/q+jcBwH0do6sRA4fQYgdm1vYVZ3x+FlARShoCrukJJkMr+2r/Ycy+7hkVzHIwGl22v6PNnS2so4tXsSqLpKYVkMI+TK4KqqimXZqJpCrCSKHtCo3ZMgk8z0qL+X47gzxkWegj31o+6OrkCv76hbGmbiUT96zgd/3Xv/p0f0cfdUXHlHiWlaOFISyIqHdHUkKRSFjGk2m5b3kKEIhCOIPbuQ5Z2z1g3gSAfHcdANwy1Xy+pVO1ISCQc75fzY0gZU1B4UhXYqTcnHdenh3TGcZsbCTFsoqkK4MJi9Ya2zSddUEsl0LsOiGSrBSIDayjhSQiBcJ9rTXe/DdhwSiTTBoOHqD+RJU867/vq3t34Me4u1NEdzfdstOeZ9dcR+mnz/wy9OawKvOO0/6/5NMBhCUQS6rgHdNNVISlJpE01zC+FaQuzZhbJrK/aQUZ2Wak2lMmi6mo20HZIpN7oKh4KdJkHqfUy/LOl3kdqJSO/GKRzepceV0o1MU4k0ydoUwXCAYHaiF+x9/tNpk9p4ksKCSE5BzXP6mZSJbdkEwoFuE2NxHEltPEEwGGj1xrctCLOW8ypuAxr2Y7fkvD0H2lwxWkcrpTV22Kf0G8XbPO8Xp+0H+BF3C2RMk2g0itrNfalCCDRVwbEdaMVx28EQIpMC6YDonPnUjuOgKjqmZZFKZTAMbe82tQ7my+Kwc0iHro62pZSYKRPLdJDSIVbcupCKqiqoquK2/qkhhKjTNw+EDZI1Kap2VFNQGusWURa3+0HpUKcNdW16ntP2HHb9teumRnx+b8uRbpV3G3TMWyMfh+/qoCdb3Man9+A77hbQdb3bnbY3JcttPWu9JEFoBgIQloU0OsdxSyCRTCMd6U766qGCG72eLjinXibDthziexJIKYkWRVD1uqEyLaGqCtFIiNp4cq857UIIQrEgWkDDTFvuIJ6gnnPuXYKUe6X3O4Ts/pqLsD2n7Q0OqdvO1Tdvytl6EqYdEXXXzwK0ZKdP78QvTmuBfZkX3RF47VaZrNNW8xjoIVQVFBUyqc6xx3LtsW2bcNh32p1H569gSSmxTZtEdYp0IkMoFqSwPIaqK3nXcohsgZqmqbnJbo2f1w2NYDRAOpGhemcNTldWnYu2T7LLlzm7pvPcrkcaPOatW3vjPFcdaTXpNJvTGW/Oabe1Lc131Ps3vuNuge522hnTwrYcAgEdIK+IGyEgEEKkO9ZxO9kCtFQ6QzQSIhgMkM5YWFlFN5+OReT+2/HnVkqJY7utXdW7alEUQTgWzAmotH2WOwQMnUzGbNJet5VQEC2JYAR10vE0ttVVXQLeAJRO2LMQIBSe2zW9weNdPRO78MzPeH3z8gZRtl+Qtn/jp8p7GJ7IRSZjoSgCI+u0keRdESsDwQ6NuB3HIZ5Ioaoq4XAw1+qmqRLLtkilMxi6K87S2fc6DS/23VMs2DXIDnfZXtFYKp7GsSV6QKOwPNYh2uKapiJTMjdBrikUxU2d25ZD7e44elAjHAtBJ6bOBfXnCHTOMc4vvandr+2o1HhuTX3z3s919Y2ET+fjR9w9iPrr2ZqmoutuBCTbes1RVYSZ6TCbkqkMmqYSyrbTuGuU7oVY1zQMXSfdTLTV0UigKuNQbTpdcrzuQ0IHyOVCncO2MjY1lXEs0yYUC2CE9A6bI+/K37oFi61tp2oKsdIIVsYmlcjkbla/DMzdcHvu3/mIqeRLc6lxb43dZ//Cj7h7CN4gEdt2stFro5RlW65riupKn3aA+pbjSGzbIRQMNSvtqqoiF9l09vKC6cDaGhNNCA4tNtD214g7d7e2b29QSkkmaZKKp9GDOpHC8D61ZkkpqTElQVVgNIqsFUW4nQ+t4DpvlYKyKGbKomZ3nFA0gB7onWp7LQ0qyT0nJTgZSG5j3tobmDT0t206RmsOvn5qvH5Fu7/WvX/iR9w9AG9giZSSQMBLOdevznUvdna+88Q1A9FK5JMvpmm5muOtXVC76HqrCegf1ugbVsm3ZdyL6HpXVNf+1K73Xm3TJlWbJhVPEYwGCEX3vZ/adGBHym7yPtK2nbyVySAbpQc1AmGD2soEZtrqkL+TJ7pimu4yDrg3oE4XfwYaKK4JAWoAGRmIjA5i3rqbmbfuu3nvq/4admvr176z3v/xI+5uxlNmE0Jg6O6fo/F11YtQbNtBy6OyHFUFM73PEbdXIBcOBfLaTVdcExUBfUNtbXOTpLb8GzVchF5Y0Tuiunb6bVei1CFRnXTb9QpCBKMBoGPWkR2gPKhiNHHLb9sOuqa3aX9CCAIhAyOgk0mZWR10o93r7t5NcCbj3nCqioKiKti2g23a6JrWqZ0QrcqjCoHUo8iCYYj0rmY3a8o511/D9p5vPECkflV71SvD4BX3cV8Gdf/Cd9zdiOe0baeJOduNaMtlRuoGUoh99qS27biBQj7940J0QjlV08dpK1btbir/9TeM4n6UHDkRoQU6wbKOpm3n0quPcAVUbDRdzSmedaSTMhQINLNPNesg9bb57gaCLfGqBFU7aigojSIFWLZT7yamUWFi7hGZe8y2bQCikYZz4KWUaFIhnTYBDVVVu7ewUSjIYBlzt93PeRV1697eqE9wne+oD7VmI+jXNy/fy2nXd+ies/a0zu14Gi7srDfk05X4qfJuwnFkLo0XzGNtz0vx5ZXqUxQ30pZ5ptabIWOauQK51hE9tlZMMUKUjD2H2MHHIjpJTa4zyGdQTf1K8art1TiOJBwLEooFO6RavDEtaRsYupYb99oehBBECsNEiyPEa5LUVMVRsjeOquJOp/N+vN8bPu4OuImEGzptb9+KohAI6JiWjeP0hDZGN/qeu/0BoM5pez3g4Ka9G/dwe4742GUXcuyyCxtUjXv/ru/QO7IIzqdn4DvuVpBSYjk2Vgd+0V0hEwtVUXKOsbXrq6oqOI6Tn3iFBLfHpv1/Xk9sxUvft4ZowW939xqzGogQ7DOYQOlAhNo7kkyylfxFfT3wZDyN40gKyqKEoh0fZedLh1WnB3S0oIaVtknVpNFU93sSMPTcj2HoGIaGUe+x3Az4ljJXQiFgaGRMG6fbHTeAQKphntv+i2YnhTXldD1nXP+5+tF2/d999j98x50HGdukOh1v9+sdKXGyYynd9LiN7Ug0Lf+Z3UJRMHRX5KI1Bygd26toa7fNGdO9scjXPkWI3HtsCtNp34Wy9xWVdQxCNu8IvcKzql01JGtTGEGdcCyIpnfP9DrPJq+Ncd+P79ZmFJRG0XSNdCKDY3eMYIv7tXC1y02zJ0TdWaO0IM/teCivzZuLnpuKvOtTcOHa9tnn0+PwHXcrCCEIaAZBzdinTLAXP3n9zvmkxxvYgdtu40pL2i1vK519ctqOI0ml0gQCBvmurmua2uLFVVfUNo1UzNkiJVa+1fT7EZ5kSO737A2MlbFIVKfIpCzCsRCFpbFum7xVZ5u7Fm1ZNsGA0QF7FEgp3VGiBa7WefXOWpK1qQ5z3qqqQDarVD8j1H2O3K06f277L5p8tn66vHHq3Iusm4qw2yqV6tM78B13SzhuUYiCIKQF2t3xJABFuKluJO0eEerpQtutRR9O+8U7JGBaFqqqZqtv87YOXdfIZPZe4/SiwPY4F0UINOXL+DGtKyvPrWPXpqneXYuiimzfs9ZtafGcldJV1ksmU4RCgQ4Z6+oV2nkZH01XiZVEMFOWG313iNa5wDB0pHRHk3qV6KZluz+mlftp9fvWYbiR99ztD+71TP0ou/6/vbVuaDrK9uaF++xffBmviHkjUtsgKyqSj+ORsunUrvfa+gpo7b3WCgGqIjDN5ntehWO7fVPtOYaUpNPuUBMvisrnopWLYgR7vcZrK0tn3AukbdvZ9fp6P42iHu+nu1K/3YvMflZcQZNkTYpETQpFVSgqL+iUavF2Wyol8USSQMBAy0dLPw/M7DKNV2AmhEAzNArKogghqNlVi9XEDWJb8JT/DEMjEDAw9Hrr494XNXt+Tcvap6K7NlqG1ELM3fbzVrf0omm/8OzLh++4W0BkqhFmTetrytJVF7Ntm5raFIlkppHjctPPpmXnNeGrFaswDB1HSmpSiSZLmKTjuOpp7fDcjiOz87bVNreTub3oOpbd2HHjFuOpCooQZExr75+06UY+e/1kSKXSpNIZ0t5P1vn3iPXJzkCCwG4gURqMuBKlnVEp3l6kJDu5TsXIu/ugtX26a+WBgN6knoER0jFCOjW741iZ7GdgHz8GnhNXVXftW9c1dF3N/Ttg6ChCkEqb2C3UcXQcAqlHmLv1Z8xbc12rW3sOvHGq3Jc73X/pHSW23YSM9EdWr8eKHYxmNC35CXXzqW3HwbYc9EZ9whJJOpNB0zS0fbzwui8VBAwdmXbnKItGup+KZSLbUT3tOA6JbMrTMNr30RACdM1tC/J60z3lN1VREKrILhU0pKmLoWz4n3p2ugV+QthomtY585a7Ae8cZFIm6coMRiRMpCic66Pvie/RtCyCwUCH2Waads6JNoUQwr2JCRpkkiaZlEkwGujUz4AQbm2JoggyGbNDvsd5HBWpF0BkYItb1R8P2jhVvupICzbTYi+4T+/Ed9wtILUChOqgxDeAMYzmIlgBhEOus5bIvaqxLctGVZQO/bILIQgYGqlsJa9lO1TXpCkpCkG8GsKxNuXjbdshmUph6FreLWDN2aWqiis5Wa+drLUgpUkd9Ib/yaEo1B3DtFBUZZ9s7gl4imeZlImZMgkHBUZIQ2o9u+9cStmuosPm9pVOZwgGjVZaugSKCoGIQXxPnOodNRSURTs1G+HVlwSEQsY0cRynw7IMLRwUaRQ1+ZQ3VazqlWEtrmO7oiyu4top/UZ1kqE+XY2fKm8JIZDh/uiKRE1szharNT1vWFUVVFVBU+vaYbwUuW07WaWmjv6S15PokBCPZ7AtG5GMIyOxvPfiOA7xZArDMDBaUXDLyyoh0DUVq0H1e8emF4UQaKqbynR6cdW567BtanbHqd0TR9Pd4RuB0N6p4p6Ipmm5eot9QWZrK0S2c6I1cjO+iyNECsOkk2ZO67wzEYqb7QK3Q8StzejMA+79IWg8CtSLtOvP466P9/zcf6/oBAN9uoPeHaZ0MlJKUDScgqGIxGaUqn8jA4XIQCkogRYj2vqDDrw0W0fjiZ5IKVEUt4VGWrarmJanZrSUkEpn0DUNXdM6zFl4a/6uxGQnp3l74VK3lBLHdtu7zIyFqilEo+F6RWcSKXu+51YVBdOyCNBGndN6eO1k6YxJLBqiLbUZ3qAS1Vao2RVH0RSixZHc8kxH4yaA3LkCluV+vg1DQ6HzUvXP7X4UHIvzy9yhJI2L0apeGcb3trR8KT+t/2EMXSCBzzvFRp+uxY+4W8DyRhQqOjJyIE7BEHAclOo1KPH/IKzEXjlgr1AtnTZd5TFDbxCFdzSa4lZ/CyGIRQOomtomuVNHOpimnV2P7ji7bNshGAy4RT662kH9vb0fr/MgFU9TtaMa27IJx4KEC0INU737OCCma/AKyVpObbe4B6+dLJEinJUqbU+bpKIqFJRFUTWFdCLdLsGWtvRye+veuq6SyZgtig91CIrWZI+358Tf2zaYh/t92KJa2upx/jr3/oLvuFtArR8lCwFqEBkZgFM4HKkEEDXrUGrWIszqBo4ynTHRdDVbjdrJ626aim3bCAHFRe7FH6FAHnORpZSkU5lserxjbZO4a5+ejnRXt3U5Vob07o1uhX0PIKealzZJ1qSQjiRWGm1FU7ynO24Xy7Lb5bg8px1PpAgG962dzHPe4YIQmq5RtbOGVDzdZptMx8aSLQsc1T+m6ikadkW/txZk7paf7vWw57w93XJv+Igvebr/4qfKW6DJi6kQIAxkuC8yWIbIVCLimxBCRYbKsUTUVTjb57av/FCy+XIpyabjhVu9ZZutvtYbdBIJh4A8B5jkST4DMjoLKSWJjR9TtWo+ZcdchFEyIO+bBk/8w20R2vf7Wu+c2pZD7Z44SIgUhdF09/PRrF29IuIWRCMh0hmT2ngqO9wjvxS1pJ7TDhhZzf4OsEgINEMlVhwlUZ1EURSMoJ5ty279ALrStu+tu9YOAUPPrnm7bWSIzvgGCKRRwnMb7qRm5waMogO5ZPC9za55+457/8V33C1QXZtGKCkiYaPp9hRFQwbLkYFShFmNSG5HmFswYgcCOl0VMSmKyEbdbkpeRgoQ1ZU40cIW9a5T6QyhkNvKk0pnmt624SRF9yYh+2BOVKaJRWbLspts++pwRHYgR1asBQDpoBohYkOPabOCnONIMqZJwNj31L5XeJZOuOc2HA2iB/JxIhJ38nXPdtzeOnIwoKMqCvFEyh38oevuWn0Lr7Vth0Q20u7I2grXLtd5F5RGyaRMqnfVEC50b5Zaq1Zv7/EAggEjJzRk6LrrvDu8HlVAuB+iQMOq2cjcDbdz3sD7m9z0e1uOZNSH+K1g+yG+426BmpQJpKisSVNeGiGoq00XvQgFaRQh9QK09G5EfD3SLkWG+kAnj5EUQqDrOql0JjdjWJb0gc9XQVlfCISafJ3jSCzbJhYMu73XqE1E3I3fZ8NHGjjLRqRpPeLvCJTszUM9UTqEohLqfwhNv/Pm8eajG/q+LR14EqXpZIZkTYpQNEgwEsg76gPAMUHpHXUB7mdQQ1UVMhmTeCKJrmm5DoX6b1lKsB0767QDHe6069uEACOk49gOtbvjRIsjaEbn1Jt4+zR0LVto5xZ8qp3RoiYEjhrGDg5ApDY3u5k3ItRn/8N33C1QURKmpKiQeMpiZ02aTE2SirIYkYiBA1imja4pdeIPQkEGy5B6DBHfgKj6DBkZiNTCeR2vvV9wRXHX2hzHQVFUZCCEEitG3bUNp99Be6VcvWg7oGsNqt3bevyWtm95KGXH4a4zutKgyj72PMtsNqG9Yh7eOnYqnnaFeAydwj4Fbd+fY4FjIrVgm23oLoRwe+uDwQBSusWZtfFkdgRnXb+zI91IOxQMZKfjdbZdgmDUVZ1LJ1zBls4cfeq2KSqoirvubdk2mqaiKh0roqOqChkUUNpfze/Te/Eddwto2aKqSFAjY0vWbq8htbGSaGEIoWuYiTQBXaF/3wLUel9IRyqYdgCRqoXkvyFQQktpTwkooUK0YME+OW/bcdBw19dkeT+UdZ9CacVeUbcXbYeC+d1Q9HQ0TSWTsfY5upHSabfDBrAyNomapJvNLAi3e2qXsOJutC1630XZzUgpBIMGhpTE40nXcaluu2IymXY7LbrAadfZ5BauBaMGtZUJqnfWEiuNoqid1DIm3FqTgKG73zXLxpQ2mqZ0WIeJEAJHghQac7dMRQZK9trm2CW/ohBfx3x/xK8qbwHvC6YoKmVFMUYP68eBA4roVxblgJIQgw8swQiHMe2606jpATRdRxMOoWgZih7FScdRpYkubAIaCDuFKtw78VA4TFAT2MnqfbJVVd2xmhnTcqcnBULIgiKUHVvqtawJhKJiORAMdMwkp/rk00rTXHW5m7Fo702LgqqppPOYVd4SThuHmnitXWbapGpnDUiFkr5lFJUXYwQDGIEwqtpW5yshUw1G25TvXHtkF2lpt45Xca2qdUI83vzrjm49zNceRVGIlUQIF4RIJzOdKtjiLampquIOMjF0d8Jb2sT0vqP7cGxFUXAc6c4kcJpew37r2FuaFWXx6d34f9VWEEIhWlhGJpOhLBwjnawBJEYggqrpFBW727nRmpKdfBUmFCkitXUVu3ftYMe2TeiGgW4E6Nt/ECmCDBz6FUS9qmW1ajvWPlxDhIBA0HBFIbLra3pZf5S1H0PFAIIFpejZyDuafY1tmVhmGlU33KlgqTiO3f5CFtOxMR2LsB5AUVTC0SJUVcU0U5jpJKFoEZpm5I6dqK1EKCrhaHGugjuTTpBO1rbxvbtKbaYpyWSsBqnZtuA4stlK8kAwiqrp2LZFOlmLlI57o5Q0yaQyRItiFJX1IZFIECkoBCAejxOOFpGM78G28lvzNwJhtOBwHCCdziDz7Mf3yNgmAU3v1qr++mhZBT1DaiSSbuV5d2que4ItiqVQvasW3VCJFkUQnSCQVP+YQoCu62jSzXalM6Y7sraeOFNbzouiuktjEhUh9/7OejcGq460XAEXoLq6hgEHPd8xb8qnW+nWiHvatGkcddRRxGIx+vTpw6RJk1i9enWDbdauXct5551HeXk5BQUFXHTRRWzbtq3F/Q4aNCgXOdX/ufHGG9tsoxGMsH37do477jhs28YIuE75rfl/54ILLmD06NGceOKJ/OpXvyadTrNz5053WynQouXECoooLCpFUVQcy6HowP9HYb8R3P/zn3PUUUcxduxY7rnnHuKmQjjmpdS9L7KC0kx7iqKoiHrPCSEQeKMQVRwpkEYAwlFC4QJq4kluueUWvvKVr3D44Ydz6aWXsv6L/xAIRVmy5H0+Xf0ZwVB9mVQv26AhvMpsIVDUpp2iOxnMyDmNcCTK7so9vPjSywRDMTcToRncfPPNXHzxxSAUVC2AboTYsGED55xzDo8++ii6EcK2HTeaQEFKkVNhq//jZGeO10X5boGUI73X1r0PRdUanKvc44qai2qlBJmdAd34/KqajhEMM+uJ/0OioGkBairj1FYm0AyVwrJCIgXuuYtGo7kjVFRUEI/H0fRgg5s071w2/l1RVAKhGM8+/yo1CQsj0HApQyhq3d+i0d9JCAVF1QhqRvZzoDb72WmJ+qNpPble7+/RnghRy86Pz2QsLMvukBa7fcXVP1AoLI+haiqpRAbb6vxMhdti6N5kBgM6qqZgWTaprFiTbIN8qqIoWWVHHeHsfVNomjY7dsZ5duf0Dn4XPj2Bbo24FyxYwI033shRRx2FZVn86Ec/YsKECaxatYpIJEI8HmfChAkcdthhzJ8/H4C77rqLc845hyVLljR7Efjggw+w7ToRhZUrVzJ+/HgmT57cJvsURcEIhHjwwbu5+uqr0XU37fnrX/+aX//61zz00EOccMIJbNu2jd/85jd8/PHHjB07lqOPPpqnnnqKb132DYLBjVT0PQAJBIsOQKohThl3PKNGjeLPf/4zhmHwwAMPcMIJJ/DBBx8QKypv0pZUshYznUA3QgRCkdwFXEpJKlGDpuvoRsO1bCkllqKhRQq47srJxGIx5s6di2EYLFy4kHQ6DcBf/vIXRowYwejRo4kV9cnr3FhWhlSiBoBgKIqm101Es8w0mh7gn8tW8MADDzBp0iRCETcKfeedd9i6dSvz58/npJNORNcNZs2axQcffED//v3dmoJYMbpRtz/HcaitrkRVNSKxwr1siddWk07Fs4NcNEzLQlUNAqEYRr31ffdcVaNqRoPHLTNNvLaa4rIKtEZSsY5toWQnrd1yyy1ccMEFFBYWckC0YC87pJQsXrx4r8eNQAgjEMKxLVLJGgKhGKqq4dg2idpKQpFC1HrHnTJlCqNHj+bQQw9FDwSxzAy6UVeo5jg2qUQNuhFs8HhzNM5iSOmWDjq2g5W9CXIc10Fblkkm4zoSu1H2Rdd1QqEgkXAIPY+WLyAXTdYkkyha21XROgs3jS0IxYKYGYuqHdWEC0IEwu1XgWvLscG9qVEVBSmzM7+z2aJ82gC9LRyho9ipvZ7XdRVHShLJDJEueE8+XYuQPWFBLMuOHTvo06cPCxYsYNy4cfztb3/jjDPOoLKykoIC90JZVVVFcXExf/vb3zj11FPz2u8tt9zCSy+9xGeffZbXB7i6uprCwkJ279xGQVEp/fr145NPPqGkpBjTtKioqOCFF17guOOOo7K6lsJIwL0wOw6KovDOO+9w55138u6771K1bS1WJglAYcVQ5sx9gbvvvpuPP/4YJ1MDZgK9oD/HHnssV111Fddffz1/+MMf0HWd119/nS+++ILzzz+fH/zgBzknMnPmTJ544gkUReHyyy/niiuuQAjBtGnTGD58OH/5y1/YtGkTl112WS7LMHDgQJ5++mm++tWvNniv77//PpdccgnRaJSDDz6YSy65hFGjRjF79myKiop45plneOCBBxg5ciTTpk1j0aJFDBkyhKlTpzJsmDtOcPXq1dx///2sWrWKww8/nPvuu4/y8nImTJjAP/7xD04++WQGDhzIr371Kw4//HBOPfVUtmzZwuzZs3Ech5EjR3LGGWeQTCaZMWMGW7du5fbbb2flypUUFxdzzTXXuFE68PTTT7Nnzx6WLl3KqlWrOP300/nxj39MJpUgXluNIyWZjEnffgewu3IPP//5z1mwYAGFhYXccccdjB8/nt27d3P33Xfz4YcfMnToUKZOncrgwYNxHIfJkydzzTXXcP/99xMIBJg6dSrHHHMMDz74IHfccQdnnnkmuq4zY8YM/vrXv1JQUMCrr77Khg0bWLBgARdeeCFz5swB3Oh75syZTJ8+nUgkwt13382xxx4LwCWXXMKsWbMQOOhGkOuvv56pU6fywgsvcMstt3DsscdSUFDAz372M4YNG8YjjzzC3LlzCYfD3HjjjZx11lkA3HfffQwbNoynn34ax3F4+umnueuuu1iwYAEA55xzDnfeeSc1VTuwLZtkKkU8niCVclXF3FStkuvH1zR3OpxhGOi6ntMv8PrbE/EEyVTK7UsPh4lGwq0OprEsm52VVRi6RnGhm5noSY5ESlczPlGTyo4MdW+iutJGb8iKpqmomtqq63Ych63bdtCnQMEwd+IUjay3L7d6v7Y2TSKRpqwsChKqa2oYPPQQqqqqctdTn95Jj1rjrqqqAqCkxK2QTKfTCCEIBOqir2DQ1TNeuHBhXo47k8nw5JNP8v3vf7/5nuN0Ohd9guu4AYxAkBUrVlBcXExpaSnScVi0aBGKovC1r32NXTt3ois2qUQaM5PMplcVjj76aP7xj3+QSCQIxPqgZB23ZoR45ZVXOPvss1FVlWQ6jcjUokdNJk6cyMsvv8z111/PsmXLmDt3Li+88AJ9+/blggsuoLi4mKuvvpo//vGPzJo1i5kzZ6IoChdffDFlZWWcffbZvPfeezz77LP86U9/QlEUTj31VMaNG8eYMWM4+eSTue666/jv//5vTjjhBI444giEEIwZM4Zx48YxdOhQ/uu//otYLMY///lPHnzwQaZNm8a8efMIh8OceeaZTJ48mbvvvptFixZx1llnsWLFCkzT5IwzzuChhx7i4Ycf5oknnuAb3/gGb731FjfddBM//elPeeSRR9C0uo/a6aefzrXXXktVVRXLli1jxIgRVFRUsH79esC9KF199dUcfvjhfPHFF1xwwQWMGDGCww8/nE8++YRf//rXzJ07l5EjR3L55Zfz4IMPcvvtt2OZKUASDIZRNZ1Jkybx9a9/nddee41EIkFlZSVSSi6++GKOOOIIXnjhBebOncspp5zCJ598gq7rPPfcc/Tt25ennnqK+fPn881vfpPPPvuMq6++milTpvDAAw9QUFBAcXExH330EW+99RZPPvkkBx54IADPPfdcg8/Ws88+y7PPPstHH33EOeecw6effkppaSnz5s3DcRxU1f1Mvvbaa9xxxx1ceOGF3H///fzoRz9ixIgRlJWV8eijj/KXv/yFv/zlL2zbto2JEyfy0ksv8ZWvfIXFixfz9NNP86c//YmKigpmzZrFmjVrePXVVxFC8MknnwCwddsukskEhq4RDoUoiEUbFCcqitqgKr/xd0VVQdc1wqFgbvxmPJFg2/YdgCASDhOJhDAMo4nebYmCIBQMUmNKQppA7wF+W0rp9QCiaSqxojDpZIaq7UmiRWFX99+jHe1j9WOi5hXy3P8I6faAp9MmyLpai72yGhKs2jhC0whYNjKjYGZUFMtGCIEdT5KpqibjOAgEWjxBWtgohoFVk2iT/T49lx7juB3H4ZZbbuH4449n9OjRABx77LFEIhFuu+02fvaznyGl5Pbbb8e2bbZs2ZLXfufNm8eePXu48sorm91m2rRpTJkyZa/HVVVl/fr19O/fH3AL0Hbv3k1paSkA1TUJdF1QEDGwLRNHWKiaQTgaIxaLsXnzZgYO6AfUfXF3797NiBEj3KIjoSADxThSUFpaSmVlZe7Yl156KV/5yleQjs0dd9zBI488wtVXX83vfvc7rr/+empr3dTnueeey9y5czn77LMB+Pa3v82YMWMAOPXUU1m2bBljxozh8ccfZ+bMmbz88stMmTKFiooKnn/+eYYNG0YkEqGwsJC+fSty66IDBgzI3ewsX76cjRs3csopp7Bx40YOOuggCgoKWLZsGevWrWPQoEEcfPDBbNiwgZNOOomf/OQnVFVVUVpaimEY9O/fH9vK5N6bpmlccMEF/PWvf2Xx4sVcddVVfPrpp7nn+/fvTzKZZM6cOVRVVdGvXz/effddDj/8cAAmTpzISSedhOM43HPPPVx//fXccccdqJqGbVkEgu4N16ZNm5g6dSq2laGwIMJBBx3E9u3bWbx4MS+99BK6rnHttdcyffp0Fi9ezIknngjAT3/6U0pLS/nmN7/JDTfcQE1NDSUlJSiKQr9+/YiEg6hZSdsrrriC448/vllN9Lvuuouy0lJOO+00TjjhBF5++WUuv/zyZj+LhYWF6LpOnz596NevH0IIZs+ezT333MPAgQM56KCDuOaaa5g9ezZf+cpXALjxxhsZO3Zs7txu2rSJlStXcswxx3DcccchpSQY0CgtrsjdQO2LSpgQglAoSDAYoKS4iEzGpDaeYNuOnQgEkUiYSDiUjcSVnF49QECRDVonuxOrNkF6WyWiXs5RIpFJk8TuPTnHLQUY5UUYhdFm9tQ0yaSFRBIO1Vt+cUehIRNpZGUtzq5qZE3SfVxTUZGkLdvNhWsqaiyClsp4YwAxNUl15Xb0aBQ7niAZiWHFawk51QhVoTq9BwwVMxEn1qcfSm0t2vZaVFui1cb3+Zz59Ax6jOO+8cYbWblyJQsXLsw9Vl5ezjPPPMMNN9zA//7v/6IoCpdccgljx47Nu8jl8ccf54wzzsg536a44447+P73v5/7vbq6moEDB7rfJU3LrZdL6TBkyBA2btyIZVmUlRTwxbbd2EBFaTGqqmJb7rqgbdsNokyv4GfIkCGsW7fOjc6F4gp+qBrr169nyJAhue379u2LYyaxU3vo27cvO3bsAGDDhg28+uqrLFmyJLet59AAysrKyGTS6LpBKBQilXLXv0QqzjVXX821116LaZp885vf5J577uGpp56qZ6ODmXEdrLfebNsWGzZsIJPJMH16XaHLkUceSTAYZMOGDWzZsqXBc5MnT84d1yOTThHS6pTArrjiCi6//HIqKyuZMWNGA8f92muv8d3vfpfrr7+ePn36EIvFclkQ79y4tiYbnBshlGwBkMq2bds44IADUBSFZDqBY1sIIdixYwelpaUEAgFSiWqC4QL69+/P9u3bc/svLS0llUgQDIdz5zAWqyvcs6xMbk3fvSkxMTNJAqG9Z6D37duXTDqBEYw0sNX7THjxVFMzxR3HQlV1duzYQb9+/bDMFKrm3ggtWrQot13//v1JJRMkEnEuv/xyUqkUP/nJT1ixYgXf/e53ufPOOykpKdmnjoGm8Jx4MBio58QzJBJJduzchW07hMNuFB4MGqi6gm3aZCybQNCoW6fNFmWp2dG0tgRV1Knh5X2T4QqgQ/3ixMYvrbcvO55CtSWKppGOJ3OOWlMEVioDmkogHMKxbex4Eppy3N4xvXbGesdLZyyk4xDRFGQ8hdxVnXXUCfd1AR0RCqBUFCHCQQjooIBm10kBWhLMZMpV81MVRKIWJa7jOBaWppAKqxT2KUEvGUgybaLviqAiCVgWRmkpBhAoK0GoKnpNTX7n0afH0yMc90033cRLL73EO++8w4ABAxo8N2HCBNauXcvOnTvRNI2ioiL69u3bwMk1xxdffMGbb765V/qyMYFAoEE63sO2TYYNG1YvhWtz+OGHM2DAAB5//HGuu+46hgdD6IZBOp0mkUxTUFBAdXU16XSa/v3741h1Dsy2MkyePJmzzjqLadOmUVpSgkQSj8d54oknmDFjRm7blStXoughFD3EypUvc/DBBwMwZswYzj33XL75zW82+36cJsoWlIgr7uI4Nrquc8wxx+QK/nRdx7JcJ+H1HXsXS+nYjB49Gtu2efjhh4lEIg32u2XLFqLRKDNmzNjrAvvFF19gZW9kQpGGa2qjR49mwIABnHPOORiNdMHnzJnDD37wA6699loAnnzyyQbPr1y5EiEUAsEIK1euZOjQoVlbXecnpc3w4cNZvXo1tbW1hMOFkL1BOvDAA9m5cyc7duygvLwcy7L4+OOPc+fXQ9X2vjH0zlNhYWnusdacysqVKznppJNy/z799NMBKCgoYNeuXQwYMIDq6uoGnRL1/x4AQ4cOZcWKFbkbtOXLlzewVwhBxjTRdQNVVbnhhhu44YYb2Lp1KwceeCA333wzuqZ3uONujKK4TjwQMCgqKnAj8do427btQDd0opEIwYDh/r2lRCJwXPH7BhXVbgZfYDsSTfFSzu55tqREE2DXxN0by2QKLRzG2lONsrUKWZ2om4wnBOia61jtrHNV6hysjYNS4f4td23aRqQohm3ZVO+sxDYtVEPjoNHDEYD9+Vas9TvqHLSqQDKNzFjIZNpNpQcN0DVEQAdFQU+ZkDExHcd9PhZGKStEDDsAIkGErnl3Js2eU11KhGWTsR0MXSMgijEG9gVFYev27TiGSUCLQ3EMmUgRLRuKrqn1JICz+xa458Jnv6Bb/5JSSr7zne8wd+5c3n77bQYPHtzstmVlZQDMnz+f7du3M3HixFb3P3PmTPr06ZMr5Gkr6VSK4cOHo6oqX3zxBf379kFKh5kzZ3L++efzwQcfMG7cOLZs2cKsWbN49tlnKSwsZOHChZx44okYhkE8VXeXm0knOeGEE7jyyis57rjj+M53voNhGDz66KOMHz8+l+723ue0adPo168fU6ZMyUXGP/rRj7jsssvYtm0bQ4YM4ZNPPuGggw7isssuy722qVTk1772NU466SRGjhzJxo0b+cUvfsHvfvc7AMaOHcsvf/lLpJSccMIJDV5nmmkGDRrExIkTOeuss7j22msRQjB//nweeOABxo8fz89+9jMuvfRSzjvvPBKJBO+99x4zZsxg2LBhrFu3Llf81fhm44UXXmjyvB922GH84Q9/oLS0lMWLF7NixYoGdi1btowf//jHjBw5krvvvpuHHnoIx7FxskIUVsa1efLkyUycOJH//u//Jh6PU1JSwvnnn891113HRRddxLXXXsuLL77ImDFjGDt2bMN2oCbO4RFHHMGtt97KmDFjuPrqq5u0vTE//elP2bJlCx999BGVlZWceeaZgLvO/53vfIcLLriAefPmNbhxPOKII5g6dSonnHACF198MbfeeitXXHEFmUyGbdu28eKLL/Lhhx82OI47YSvA73//e6qrqxkxYgTLly9n6NChRKNRUol9E/hpC/UjcUVVCQSDGLpGPJ5g9549OLZDIBggGAyi6QaqIrBMKzshTNQNspESr/LE9eWuvLCdSLLn/Q+JDjiA5MbNFBxwINXbt1Ay4hDUgw9wnWqdMV6PW91j2XVlq7Ia0u5nxhutGi6IkkmlSdUmUDUNgTvuxYqGUAui6AG9LqhOm27aO20ibduNiIOB3PHDQrhRdSyECBnZx8XeWYBWzqVXQJjJmK4mfMAgkUghNJ0+hTGUeI17A1T/7Xnv3We/pFuryr/97W/z1FNP8fzzzzNixIjc44WFhYRCbrvOzJkzGTlyJOXl5bz33nt897vf5corr+Shhx7KbX/KKadw3nnncdNNN+UecxyHwYMHc8kll3D//U1Pz2mOqqoqioqK+PTjZQwf+f948MEHyWQy/PjHP2bn9s2UlPWltraWZ555htWrV1NWVsbEiRM55JBDALdi+LLLLmPChPHs2Lqxwb4LikqJFRTlCtBs22bixIkcffTRxGurCUdi3HTTTQwfPpxYLMb69es5++yzOfroo6nes5uCohLWr1/PX//6V3bu3MnBBx/MpEmT6NOnD6+//jojRoygvKyEYCjCokWLKC8vZ+TIkXz88ce89dZbbNiwgbKyMk4//XQOO+wwUskEgWCIBQsWsGbNGsaOHUu/fv344IMPmDhxIls2rqegqIRQOMr8+fN56623MAyDY445htNOOw1VVUmn07z44ou8//77FBQUcPLJJ3P88ccDbh/+4sWLCQaDTJ48mTlz5nDcccdREIuQiNcgpaS4pJyPV31CbW0tX/va13Ach7/85S+sWLGCo48+mgEDBqCqKmPHjuUnP/kJjuNwyCGHsGrVKsaPH8+JJ57Irh1bSSXr1vAKi0oJRWK8+uqrvPPOOxQXF3PxxRczZMgQbNvmxRdfZOnSpYwYMYLLLrsMXdeRUvKHP/yBa6+9lprqSmIFxTzxxBNMnjyZUChEdXU1r7/+OpWVlVx66aV8+OGH9OnTh8GDDiReW0NJWUXu9QB//OMfOfnkk3nyyScJh8NcddVVRKMRV4xFqDz22GNs376db37zm3z44Yecc845xGIxUqkUr732Gtu3b+fcc8+loqKC5cuX8+yzz1JcXMw3vvEN+vbti6IovPrqq4waNYqy0mIMI8gX//kPL774oltfMXAgl112GQUFMbZv3djQeXUBUkIimcQwdPTsspGUEtMyqa1NkkgksCybUCjorpkHXA1xhNg7RS4lTiKNvXkX5uYdpOxawhUVmPE4RlkJqdoawsOHoWgqQnFV0gSehkPT9mV2VWHtqkJRFCzTdjXlFYF06ka7qprqCp3EwmQUHSOgES4Md3jFueNIbMfGMk1XqyBrg+M4ONLJzS6XjqtpsH3HTvoURyjRq7EyaVLRodiWQygUzGU0hKJk5WZVFCGoqalh5Ogj2LNnD4WFe7dV+vQiZDdCtuSi8c/MmTNz29x2222yoqJC6rouhw0bJh966CHpOE6D/Rx00EHynnvuafDY66+/LgG5evXqNtu1YcOGnC333nuvrK2tlaeffrpMp9Py+uuvl3379pV33XWXXLFihaytrZXr1q2TTzzxhHzvvffk5s2b5fnnny8dx5GXXHJJk+/v61//upwzZ47csWOH3L17t3zppZfkmWeeKQGZSqXkt7/9bfnII49IKaWsra2Vr776qjzmmGMkIEeOHClnzJghN23aJKWUcsWKFfKhhx6St912m1y4cKGcN2+ePOSQQ+QFF1wgFyxYIF955RV58803yz/+8Y/yk08+kclkUq5Zs0Y+++yz8rjjjpOAnDx5snzuuefke++9J9esWSN37NghFy9eLL/zne/kbL700kvlW2+9JdPptKytrZVvvPGGvPLKK6VhGPLmm2+WS5culVJKuXPnTjlv3jx5+umnyxEjRsjf//738p133pFLliyRVVVVcsmSJfKZZ56RgwcPzu37xBNPlG+88YZcsGCBPP/88+X1118vly9f3uBv8sYbb0gppbznnnvk3XffLaWUMplMyrfeekuecsope51jIYS84oor5MKFC6VlWXLHjh1y9uzZcujQofKqq66SS5culZlMRn700Ufytttuk5FIRD766KNy6dKlcvr06dIwDPnzn/9cLl26VD7++ONywIABcsqUKfKNN96QS5culbW1tXLFihXylVdekUceeaQ0DCP3+t/85jdy+vTpcuPGjTn7169fL6dPny4LCgpkIBCQ9957r/z3v/8ta2pqpJRS7tmzR86aNUv269dP3nrrrfLVV1+VS5culU8//bS86KKL5HPPPSdramrkF198IR977DHZt29fefXVV8tFixbJuXPnyhEjRsgRI0bIWbNmyc8//1xKKeXnn38uf/nLX8qSkpJmv2v+z5fvZ8OGDW2+Jvr0LHpUH3dPwXEcNm/eTCwWQwiR+38gGyU0vVboFuG4ghiWZZFI5Nd+4RXDbdiwgQMOOIDf/va3DBw4kDPPPJN4vOdWgta3uyv6QqPRKH/+85+RUnLppZfmKuvbQlfb3FH4dnct+6PdUkpqamro379/j1Cw82k/vuPuAXiCL71NGKE32t0bbQbf7q7Gt9unJ+Pfdvn4+Pj4+PQifMft4+Pj4+PTi/Addw8gEAhwzz33NNlL3pPpjXb3RpvBt7ur8e326cn4a9w+Pj4+Pj69CD/i9vHx8fHx6UX4jtvHx8fHx6cX4TtuHx8fHx+fXoTvuH18fHx8fHoRvuP28fHx8fHpRfiOuwtojzRnT8JvPPDZn/A/zz69Hd9xdyI1NTV861vf4tJLLwVcDfTeQE1NDT/84Q+ZNWsW0PrM6Z5CVVUVP/3pT/nggw+625S8qa2tZd68ec3q3/dUUqkUGzZswDRNoPd8tjOZTAP9/97ixL3z29s+Jz6dg++4O4mf/OQnlJeX8/LLL7NkyRJ27NjRK4T9p0+fTv/+/Vm+fDlSStLpdOsv6gFMmTKF4uJilixZwtChQ7vbnLyorKxk+PDhnH/++SxdurS7zcmb++67j8MPP5wLLriAk08+mY8//hhFUXq8E5w2bRrjxo1j4sSJ/M///A+bNm1CCNHj7X7wwQeZMGECAFp2PKrPl5zuGEm2P/P000/LiooKOXz4cPn3v/9dPv/883LYsGFyxYoV3W1aq6xcuVJ+9atflU888UR3m5I38+fPl4MGDZKDBw+Wr732Wneb0yZ27dolJ06cKEeOHClPPPFEmUwmu9ukFlm6dKk8+uij5ahRo+TcuXPlk08+KU8++WR57LHHdrdpLbJy5Up5/PHHy1GjRsnZs2fLH/zgB/IrX/mKnDRpUneb1iJr166VF198sSwvL5dCCDl9+nQppZSWZXWzZT7djX/71oFs27aN//u//+OWW27h9ttvB2DTpk2sWbOGyspKwE159dTI+9lnn0UIwbe+9S0+++wznnjiCQYNGsTo0aM55phjADe12JNS58899xw7duzgnXfeYezYsXzxxResWrWKoUOHUlFRQWFhYY8956tXr2br1q28+OKLjBw5kqeffporrrgC6HnnGWDx4sWMGjWKhx9+mKKiIgC2bNnC3//+d0zTRNf1Hme3ZVnMmzeP8vJy5s6dS3l5OZdeeilPPvkkDz/8MOvWrWPw4MHdbWaTrFy5EoAZM2awZMkS7r33Xq688koikUiP/Uz7dBHdfOOwX+E4jjRNs8HvGzdulGPHjpVTp07tRstax7Ztefnll8upU6fKOXPmyLKyMnnmmWfKww47TEYiEfn444/LTCbT3WbmsG1bSulGrSNHjpTf/e535TXXXCMHDBggx44dK8vKyuRpp50mHcfpZkubZ8mSJfLCCy+UUkp57bXXysGDB0sp3YiqJ51r7xwmk0m5atWqBo9PmDBB3nzzzXLhwoXdZV6LZDIZOWfOHPm3v/1NSln3ufnrX/8qBwwYIPfs2dOd5jWJd74TiYRcsmSJlFLKf/3rX/LQQw+VN9xwg5Sy7n34fDnxb9k6ECFEgzUoIQTl5eVYlkUikQB6ZhGPd/deUFDA7NmzeeONN3j44Yd54YUXWLZsGd/61reYOXMmCxcu7G5TcyiKgm3blJSUcN111/Hoo4+yefNmZs2axezZs3nsscdYtWoV//Vf/wX0zCKkdevWsX37dsCNqmprazn11FM54ogj+Pvf/97N1tXhRdDBYJCRI0cC8PLLL1NcXMzmzZtZtWoVF198MZdccgl79uzpRkv3Rtd1zjvvPMaPH9/g8T179jBw4EBCoVA3WdY83vkOhUK5TNfBBx/Mddddx5NPPpmrKbBtuzvN9OlOuvvOoTfy7rvvynXr1kkpZYsRnXdXfNVVV8njjz++K0xrkdbsfvfdd2VpaakMBoPyo48+yj2+detWOWjQIPn44483+9rOpDm76//77rvvbmCzlFLOnTtXCiHkxo0bu8TO+uTzGZkyZYq8//77pZRSvvnmm7JPnz5SCCGnTp3abeuY+X62586dK59//nlpmqbMZDLy448/lkKIXGTb1bT1O3nllVfKb3/72w0e6w7ysdt7fO3atfKUU06R48eP7yrzfHoofsTdBr744gsmTZrEuHHjeOCBB4CWW6W8StuDDjqIdDrNpk2busrUBuRr98EHH8ykSZPQdT33vOM4VFRUEI1G+fTTT5t9bXfYLYTIZTBuu+02jjjiiAavLy8vp7i4OLdW2BNshrqsi67rLFy4kPPOO4+zzz6bb33rWxx66KH8+9//7vJ14nw/IzKbuZg0aRITJ05E0zR0XWfw4MGUl5fz0Ucf9Ui7Pbzv5Ntvv81JJ52Ue2zdunVA12XE2mK39/igQYO4/vrr+eCDD3j++ecBWLhwIVu3bu0Sm316Dr7jzpObb76ZIUOGoKoqX//617Ftu9VWKZkt1BkwYACbNm0iFot1kbV1tMXuvn37cu2111JUVMS0adNYu3YtiqLwz3/+k2AwyOTJk3uc3V6BTjgc3uu5JUuWMHz4cI4//vhOtxfabnNlZSULFixAVVX+8Y9/8Itf/IKHHnqIJ598kvnz53eJzW2xG5p3Lq+88goHHnggF154YWea2oD2fCcB3nvvPTKZDOPHj2fLli1ceumlDB06lI0bN3ZJwVd77VYUhXHjxnHBBRdwyy23cM455zBu3Dg+++yzTrfZp4fRvQF/z2fp0qUyEAjII488Ur733ntSSilvuukmeeSRR0op80sbf/rpp1JRFPnmm292qq31aavd9dOF8+fPlwMGDJAHHXSQvOiii2RRUZG86qqrZCKR6HF2N2bTpk3yP//5j5wyZYrs37+/fOSRR6TjOJ2a3m+rzV4B42effSaXLl3aoKBRSil/+ctfyp07d3aave21uzGbN2+W69evl1OmTJF9+/aVd999tzRNs9OXUvbV7scee0yecMIJ8t5775XhcFhOmDBBfv75551qc0fYLaWU27ZtkxMnTpRCCHneeefl0uw+Xy58x90E9b9AH374oXz11VcbPD9r1izZr18/uWHDhrz2t2jRIvmNb3xDrl27tkPtbExH2O3tY/ny5XLWrFny1ltvlX//+987xd7Gx5Ry3873xo0b5b333isPOuggOWrUqE69Ueroz0hX0VF2b9q0ST7wwANy+PDhcvTo0Z1+U9qR53vSpElSCCEPPfRQ+corr3S4rfXpSLvXrFkjv/rVr8oDDzxQvv322x1uq0/vwXfcjaipqZG7du3K/V4/EvW+hE899ZQcNGhQk6Iq8Xhczpkzp8H2XUFH2t2VdKTdmUxGvv/++/KFF17o8TY/99xznWpjU3TkuTZNUy5btqzTHZ+UHf8ZmTFjhpw1a1YnW93x38lMJiPfeuutTrTYp7fgO+563HnnnXLIkCHya1/7mrz44ovl6tWrc8/VT7du3rxZ6rqeizLqfyH/9re/SSGEfOONN3q93Z1949GRdndVNbP/GenayvGOtPv111/vlXZ35efEp3fgF6fhDh741re+xSuvvMKMGTO45pprqKmp4fTTT+fDDz8E3KIcrzBHSslhhx2W62uuX9By9NFHM3XqVEaNGtXr7e6syubOsPvQQw/tFFs70+be+hnp7HPdWXaPHj26V9rdFZ8Tn15GN9409BhWrFghDz300AZruclkUhYUFMiLL75YfvbZZ1LKurthy7LkmDFj5B133NHg8a7Gt9u3uTV8u7uW3mq3T+/Cj7hxx0GuXr2aww47LPfYtm3bKCkpYeHChbz55ptIKVEUBcuyUFWV448/Ptey012awb7dvs2+3b7dPl8+/E8JUFBQwJgxY/jxj3+ce2zGjBmcfvrpHHjggcybNw/p1gPkJE29L962bdu6y2zfbt/mVvHt7lp6q90+vYwuje97KMlkUs6cOVPqui6POeYYWVpaKvv37y/Xr18v58+fLzVNkzU1NVLKulTWO++806DgpDvw7fZtbg3f7q6lt9rt07v4Uo/1tCwLTdMIBoNceeWVHHroofzzn/+kuLg4pxL2wQcfcPDBB1NZWUk0Gs2lsr72ta/5dn8J7O6NNvt2+3b77Od0951Dd1BfqSqTycjvf//7uaKRxtx8881y4sSJXWVai/h2dx290WYpfbu7mt5qt0/v5kvluC3LatCb/PDDD8uCggI5dOhQuWbNmtzja9eulWvXrpU//OEPZf/+/eXcuXOllF0/FcvDt7vr6I02S+nb3dX0Vrt99g++NI67/pjEN998Uw4dOlRWVFTIxx57bC+t6NmzZ8vRo0fLMWPGyIULF3a1qQ3w7e46eqPNUvp2dzW91W6f/YcvjeOWUsr//Oc/8vTTT5e6rsv/+Z//aSBHKGXdXXA8HpeLFy/uDhObxLe76+iNNkvp293V9Fa7ffYPvjSO+5lnnpGapsmzzjpLfvLJJ91tTt74dncdvdFmKX27u5rearfP/oOQUsruLpDrCj7//HO2bdvGcccd192mtAnf7q6jN9oMvt1dTW+122f/4UvjuH18fHx8fPYHfOU0Hx8fHx+fXoTvuH18fHx8fHoRvuP28fHx8fHpRfiO28fHx8fHpxfhO24fHx8fH59ehO+4fXx8fHx8ehG+4/bx8fHx8elF+I7bx8fHx8enF+E7bh8fHx8fn16E77h9fHx8fHx6Eb7j9vHpRtavX48QgmXLlnXK/oUQzJs3r1P27ePj0z34jtvnS82VV17JpEmTuu34AwcOZMuWLYwePRqAt99+GyEEe/bs6TabfHx8ejZadxvg4/NlRlVV+vbt291m+Pj49CL8iNvHpxkWLFjA0UcfTSAQoF+/ftx+++1YlpV7/qSTTuLmm2/m1ltvpaSkhL59+/KTn/ykwT4+/fRTTjjhBILBIKNGjeLNN99skL6unypfv349J598MgDFxcUIIbjyyisBGDRoEL/61a8a7Pvwww9vcLzPPvuMcePG5Y71xhtv7PWeNmzYwEUXXURRURElJSWce+65rF+/fl9PlY+PTxfiO24fnybYtGkTZ555JkcddRTLly/nt7/9LY8//jj33ntvg+1mzZpFJBJh6dKlPPDAA/z0pz/NOUzbtpk0aRLhcJilS5fy+9//njvvvLPZYw4cOJA5c+YAsHr1arZs2cKvf/3rvOx1HIfzzz8fwzBYunQpv/vd77jtttsabGOaJqeddhqxWIx3332XRYsWEY1GOf3008lkMm05PT4+Pt2Inyr38WmC3/zmNwwcOJDp06cjhOCQQw5h8+bN3Hbbbdx9990oinvP+//+3//jnnvuAWDYsGFMnz6dt956i/Hjx/PGG2+wdu1a3n777Vw6/L777mP8+PFNHlNVVUpKSgDo06cPRUVFedv75ptv8umnn/L666/Tv39/AH72s59xxhln5LZ5+umncRyHxx57DCEEADNnzqSoqIi3336bCRMmtO0k+fj4dAu+4/bxaYJPPvmE4447LufgAI4//nhqa2vZuHEjBx54IOA67vr069eP7du3A27UPHDgwAZr2EcffXSn2Ttw4MCc0wY47rjjGmyzfPly1qxZQywWa/B4KpVi7dq1nWKXj49Px+M7bh+ffUDX9Qa/CyFwHKfDj6MoClLKBo+ZptmmfdTW1nLkkUcye/bsvZ4rLy/fJ/t8fHy6Dt9x+/g0wciRI5kzZw5SylzUvWjRImKxGAMGDMhrHyNGjGDDhg1s27aNiooKAD744IMWX2MYBuCuj9envLycLVu25H6vrq5m3bp1DezdsGEDW7ZsoV+/fgAsWbKkwT7Gjh3L008/TZ8+fSgoKMjrPfj4+PQ8/OI0ny89VVVVLFu2rMHPtddey4YNG/jOd77Dp59+yvPPP88999zD97///dz6dmuMHz+eoUOHcsUVV/Cvf/2LRYsW8eMf/xigQQq+PgcddBBCCF566SV27NhBbW0tAF//+tf5v//7P959911WrFjBFVdcgaqqudedeuqpDB8+nCuuuILly5fz7rvv7lUId9lll1FWVsa5557Lu+++y7p163j77be5+eab2bhxY3tOnY+PTzfgO26fLz1vv/02RxxxRIOfqVOn8sorr/D+++9z2GGHcf3113P11VfnHG8+qKrKvHnzqK2t5aijjuKaa67JOdNgMNjkaw444ACmTJnC7bffTkVFBTfddBMAd9xxByeeeCJnn302Z511FpMmTWLo0KG51ymKwty5c0kmkxx99NFcc8013HfffQ32HQ6HeeeddzjwwAM5//zzGTlyJFdffTWpVMqPwH18ehFCNl448/Hx6TQWLVrECSecwJo1axo4Xh8fH5988R23j08nMnfuXKLRKMOGDWPNmjV897vfpbi4mIULF3a3aT4+Pr0UvzjNx6cTqamp4bbbbuM///kPZWVlnHrqqTz00EPdbZaPj08vxo+4fXx8fHx8ehF+cZqPj4+Pj08vwnfcPj4+Pj4+vQjfcfv4+Pj4+PQifMft4+Pj4+PTi/Adt4+Pj4+PTy/Cd9w+Pj4+Pj69CN9x+/j4+Pj49CJ8x+3j4+Pj49OL8B23j4+Pj49PL+L/A4QSMSURagwyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "3c9c9c19", + "metadata": {}, + "source": [ + "#### Cross-tabulation Table" + ] + }, + { + "cell_type": "markdown", + "id": "ec6ca1f3", + "metadata": {}, + "source": [ + "A cross-tabulation table displays the frequency of each class in the presence of another within the spatial unit of interest. The sample indices are denoted by the band column. The combination of candidate and benchmark map values are denoted. Additionally, the resulting agreement map values for each combination are shown. The counts column denotes the frequencies of occurrence and can then be used to compute categorical metrics." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fdc9df2b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandcandidate_valuesbenchmark_valuesagreement_valuescounts
011.00.06.010345720.0
111.02.018.0639227.0
212.00.020.0512277.0
312.02.024.02473405.0
\n", + "
" + ], + "text/plain": [ + " band candidate_values benchmark_values agreement_values counts\n", + "0 1 1.0 0.0 6.0 10345720.0\n", + "1 1 1.0 2.0 18.0 639227.0\n", + "2 1 2.0 0.0 20.0 512277.0\n", + "3 1 2.0 2.0 24.0 2473405.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "crosstab_table" + ] + }, + { + "cell_type": "markdown", + "id": "c2b000f2", + "metadata": {}, + "source": [ + "#### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "d6e5d48d", + "metadata": {}, + "source": [ + "A metric table contains information about the unit of analysis, (a single band in this case), and selected categorical metrics. This is done by specifying the positive and negative categories of each dataset and then choosing the statistics of interest. Since we did not provide the `metrics` argument GVAL computed all of the available categorical statistics. (Note: if there is no negative class encoding all statistics requiring true negatives will be skipped.)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "16cb3626", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
band1
fn639227.0
fp512277.0
tn10345720.0
tp2473405.0
accuracy0.917577
balanced_accuracy0.873727
critical_success_index0.682336
equitable_threat_score0.610939
f_score0.811177
false_discovery_rate0.171578
false_negative_rate0.205365
false_omission_rate0.058191
false_positive_rate0.04718
fowlkes_mallows_index0.811352
matthews_correlation_coefficient0.758757
negative_likelihood_ratio0.215534
negative_predictive_value0.941809
overall_bias0.959215
positive_likelihood_ratio16.842723
positive_predictive_value0.828422
prevalence0.222798
prevalence_threshold0.195925
true_negative_rate0.95282
true_positive_rate0.794635
\n", + "
" + ], + "text/plain": [ + " 0\n", + "band 1\n", + "fn 639227.0\n", + "fp 512277.0\n", + "tn 10345720.0\n", + "tp 2473405.0\n", + "accuracy 0.917577\n", + "balanced_accuracy 0.873727\n", + "critical_success_index 0.682336\n", + "equitable_threat_score 0.610939\n", + "f_score 0.811177\n", + "false_discovery_rate 0.171578\n", + "false_negative_rate 0.205365\n", + "false_omission_rate 0.058191\n", + "false_positive_rate 0.04718\n", + "fowlkes_mallows_index 0.811352\n", + "matthews_correlation_coefficient 0.758757\n", + "negative_likelihood_ratio 0.215534\n", + "negative_predictive_value 0.941809\n", + "overall_bias 0.959215\n", + "positive_likelihood_ratio 16.842723\n", + "positive_predictive_value 0.828422\n", + "prevalence 0.222798\n", + "prevalence_threshold 0.195925\n", + "true_negative_rate 0.95282\n", + "true_positive_rate 0.794635" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table.transpose()" + ] + }, + { + "cell_type": "markdown", + "id": "7a3eb3af", + "metadata": {}, + "source": [ + "## Access to Individual GVAL Operations" + ] + }, + { + "cell_type": "markdown", + "id": "8caf6a67", + "metadata": {}, + "source": [ + "Aside form running the entire process, it is possible to run each of the following steps individually: homogenizing maps, computing an agreement map, computing a cross-tabulation table, and computing a metric table. This allows for flexibility in workflows so that a user may use as much or as little functionality as needed." + ] + }, + { + "cell_type": "markdown", + "id": "8c7c6d3f", + "metadata": {}, + "source": [ + "### Homogenize Maps" + ] + }, + { + "cell_type": "markdown", + "id": "df6070e8", + "metadata": {}, + "source": [ + "Homogenization is intended to help prepare two disparate maps for comparison. Currently, homogenization handles three sets of functionality:\n", + "\n", + "1) *Spatial alignment:* matching the CRS's and coordinates of candidate and benchmark xarray maps. By default, the benchmark map is used as the target of this alignment but the candidate map can also be selected.\n", + "2) *Data type alignment:* in order to avoid precision warnings in the comparisons, dtypes are set to the highest precision dtype of the two maps.\n", + "3) *Data format conversion:* a vector data format benchmark map as a Geopanda's DataFrame can be passed which will be converted to the same xarray object as the candidate map with the same CRS and coordinates." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "7264ffc9", + "metadata": {}, + "outputs": [], + "source": [ + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = \"candidate\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a1a4bd1a", + "metadata": {}, + "source": [ + "The `target_map` can also be an alternate map:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e3917e34", + "metadata": {}, + "outputs": [], + "source": [ + "target_map = rxr.open_rasterio('target_map_two_class_categorical.tif')\n", + "candidate, benchmark = candidate.gval.homogenize(\n", + " benchmark_map=benchmark,\n", + " target_map = target_map\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "686cdd37", + "metadata": {}, + "source": [ + "The default is to resample using the \"nearest\" method. Although not applicable for this case of categorical comparisons, one can change the `resampling` argument to use alternative resampling methods such as bilinear or cubic resampling. These methods would be relevant in the case of continuous datasets." + ] + }, + { + "cell_type": "markdown", + "id": "3376c8a9", + "metadata": {}, + "source": [ + "### Agreement Map" + ] + }, + { + "cell_type": "markdown", + "id": "22ae6d51", + "metadata": {}, + "source": [ + "The \"szudzik\" comparison function is run by default if the `comparison_function` argument is not provided, but one may use the \"cantor\" pairing function, or a custom callable." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c6e3c35c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAF/CAYAAAA2D9EJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd4AU5fn4PzOz9fpxcBynSFGaDQGVACqo4KmY2AtoFCSxBCwxRo0/NWr8xmjU2EsSBaOiRqNYYiSoARM1RGk2RFQQ9ejH9ds28/7+2HuX2d3Z3dlyd6jzMRtuZ955552y7/u8z/sURQghcHBwcHBwcPheo/Z0AxwcHBwcHBx6HkcgcHBwcHBwcHAEAgcHBwcHBwdHIHBwcHBwcHDAEQgcHBwcHBwccAQCBwcHBwcHBxyBwMHBwcHBwQFHIHBwcHBwcHDAEQgcHBwcHBwccAQChwT+97//oSgKiqJw44039nRzHArIjBkzYs/2/PPPT1kuGAzSq1evWNnFixd3XyOz5Nxzz6W4uJgtW7bEbZdtT/eZMWNG3DEDBw5MKlNWVsZBBx3EbbfdRigUSjp/MBjkD3/4A+PGjaO8vByPx0O/fv048MADueiii/j73/+esu0NDQ389re/5bDDDqO6uhq32015eTkHHHAAF154IW+88UbW92PSpElpr/nVV19Neey8efM4+OCDKSkpoVevXhx77LG8/fbbOZ1HURRU1Xp4+frrr5k5cya1tbX4fD6GDh3Kr3/9awKBQFLZjRs34vf7+dnPfpb1vXDIHldPN8Bh1+Kxxx6L/f3EE09w3XXX9WBrHBK5/vrrueGGG5g7d27SgJYNzzzzDPfccw8ejydp39///nd27NiRRyu7hw8++IBHH32UX/ziF1RXV1uWOeecc1Ief8ghh1huP/nkkykpKUEIwfr163nnnXd47733eOmll1i0aFHsnjU2NnLkkUeyfPly3G4348aNo7a2ltbWVpYtW8a9997LokWLmDp1atI5nn/+eWbMmEFzczMlJSWMHTuW6upq2traWL16NQ8++CAPPvggxx57bFqhIhXyGhLZbbfdLMtfeuml3HXXXfj9fo466igCgQCLFi3in//8J88++ywnnHBCXPmjjz6agQMHWta1bNkyPvzwQw499NCkfZ999hnjxo1j27Zt7Lvvvhx66KG899573Hjjjbz++uu8/vrreL3eWPl+/fpx3nnncf/993PppZcydOhQ+zfBIXuEg0MnoVBI9O7dWwCipqZGAOK///1vTzfLwcSvf/1rAYi5c+dmfew555wjADFq1CgBiOeff96y3Iknnig0TRMjR44UgPjXv/6VV5u7ih/96EfC7XaLzZs3J+0DRLbd24ABAwQg1q1bF7d9xYoVory8XADinnvuiW2/6KKLBCAOOOAA8fXXXyfVt3TpUnHDDTckbX/ppZeEoijC5XKJW2+9VQQCgaQyq1evFuecc44YMmRIVtcwceJEy2tIx6JFiwQgqqqqxKeffhrb/vbbbwuPxyMqKirEjh07bNd38MEHC0D86U9/Sto3YcIEAYiLL744ti0cDosTTzxRAOLXv/510jFff/21UFVVnHbaabbb4JAbjkDgEOPFF18UgJgwYYK48cYbBSBmz57d081yMFEIgeDWW28VqqqKU045JanMjh07hNfrFUcddZSoq6vbZQWCDRs2CFVVxXHHHWe5v5ACgRBC3HDDDQIQRx55ZGxbbW2tAMSiRYtsn6OlpSUmdD/22GMZy7/33nu26xYiN4HgmGOOEYD4wx/+kLTv4osvFoC47bbbbNX16aefCkD4fD7R2NgYt2/p0qUCENXV1UlC0KZNm4Tb7RaVlZUiHA4n1XvkkUcKt9stNm3aZPu6HLLHsSFwiPH4448DcNZZZ3HWWWcB8PTTTxMOh1Me8/777/PDH/6QiooKSktLOeyww1i0aBGLFy+2XKeV69iLFy9m4cKFHH744VRUVKAoCo2NjbFyr776KlOnTqVPnz54vV4GDx7MZZddxvbt2y3bIYTgySef5IgjjqCyshKfz8eIESO4/vrraW9vTyov10DXr1/P008/zUEHHURRURG77bYbV1xxRWy9+PPPP2fatGlUV1dTVFTE4Ycfzvvvv5/yfmTTbvO9ePPNNzniiCMoLS2lrKyMqVOn8vHHH8eVHzhwIDfccAMAM2fOjFuvzWadv1+/fhxxxBG8/PLLNDU1xe3761//SjAYjD1/K1auXMkVV1zBmDFj4q7zZz/7GfX19Unl169fj6IoTJo0iebmZi655BL69+8fe0Z/+MMfMAzDdvsBHnnkEQzDYNq0aVkdlyujRo0C4Kuvvopt27p1KwB9+vSxXc+8efPYtm0b48ePT3uPJWPGjMmypdnR0dERs1U45ZRTkvbLbS+99JKt+mQf8sMf/pDy8vK4fXLp44c//GHcsgBA3759OfTQQ9mxYwf/+c9/kuqdPn064XCYefPm2WqHQ470tETisGvQ2NgofD6f8Hg8Yvv27UIIIcaPHy8A8eKLL1oe8/bbb4uioiIBiP3331+cccYZ4qCDDhKqqsbUqeecc07cMXKW+tOf/lQoiiIOOuig2HFyRnHllVcKQHg8HjFhwgRxyimniCFDhghA7LnnnkmzBF3XxbRp0wQgSkpKxKRJk8SJJ54o+vfvLwBx8MEHi/b29rhj5Ezq0ksvFS6XS0yePFmceOKJsdnb2WefLT799FPRu3dvMXz4cHH66aeL/fbbTwCiV69eljOVbNst78Vll10mNE0TY8eOFaeddpoYOnRoTIW7cePGWPlf/OIXMTX+hAkTxDnnnBP7rF69OuMzlud77LHHxNy5cwUgHn744bgyhx12mCgqKhItLS0pNQSnn366cLlcYvTo0eKEE04QJ5xwghg4cKAARL9+/cQ333wTV37dunUCED/4wQ/EmDFjREVFhTjppJPEcccdJ/x+v+V7kokDDzxQAEnnklBgDcETTzwhALHffvvFtg0ePFgA4oILLhCGYdg6x7HHHpu09JAtUktkdc/ke33NNdeICy+8UMyePVvcdddd4ssvv7Ssa8WKFQIQffr0sdzf2toqAFFZWWmrbXvuuacAxAsvvJC07/jjjxeAuO+++yyPvfzyywUg7rrrrqR9n3/+uQDEoYceaqsdDrnhCAQOQggh/vznPwtAHH/88bFt999/vwDEqaeemlRe1/XYwPV///d/lnWlEwgA8dRTTyXV+9e//lUAYt999xVr166NbTcMQ1x33XUCEKeffnrcMbfeeqsAxKRJk+IG0GAwKGbNmiUAceWVV8YdIzvOkpIS8e6778a2b9y4UfTt21coiiJGjBghrrrqqlhnbxiG+PGPfywAcd111+XdbnkvVFWNW8+PRCLi5JNPFoC49tpr444pxJLBY489Jpqbm4Xf7xeHH354bP+XX34pFEUR06ZNE0KIlALBG2+8YSmUSbX6zJkz4/ZJgUAKjlu3bo3t++yzz2Kq91Q2DYm0tLQITdNEbW1tyjKFFgjOOOMMAYgzzzwztu3mm2+OnWf48OHiqquuEs8//7z46quvUp5jt912E4D4z3/+k1XbzNgRCBI/brdb3HjjjUnlX3jhhZhdSSoqKioEIJqbm9O26+23344JsqFQKGm/tF2xEhaEEOLOO++MCchW9O7dW3i9XtHR0ZG2HQ654wgEDkKInR3JM888E9u2bds24Xa7LdcDpSHSkCFDhK7rSfVJ46FUAsHUqVMt2yFnwB988EHSPsMwxAEHHCA0TYsNKuFwWPTu3VsUFxdbztrb29tFTU2NqKysjGuneSaVyM9//nMBiMGDByd1bKtWrRKAmDhxYl7tNt8L8yAjee+99yzPUyiBQAghTjvtNKGqaswg7re//a0AxN///nchRGqBIB277babqKqqittmFgj++c9/Jh3zwAMPJK3Pp0OuRZuFmUSsBsXET6IAkigQGIYh1q9fH9P8KIoi3nzzzVh5XdfFFVdcIdxud1Ld++yzj3jggQeSfhs+n08A4pNPPklqc0NDQ5zWJ5X255577hHDhg0TV111VVId1157rXjsscfE559/Ltrb28WaNWvE//3f/8U0MXfeeWdcean5mDBhQsp7KYWYVNoYyYUXXiggtd2R1Jalsrn405/+FNMeWiH7lOXLl6dth0PuOG6HDmzYsIE333yTiooKfvjDH8a2V1VVceyxx/LCCy/wzDPP8JOf/CS276233gKi7k1W/sann356rIwVP/rRj5K2bdmyhVWrVjFkyBD23XffpP2KojBhwgRWrlzJsmXLqKurY/ny5Wzbto0pU6bQt2/fpGP8fj9jxozh73//O2vXrmXYsGFx+4866qikYwYPHgxE7Qzcbrflvo0bN+bV7kxtkO5V5vMUmrPOOou//vWvzJ8/n1/+8pc88cQTVFdXW7Ynke3bt/Piiy/y4Ycf0tjYiK7rAITDYbZv305DQwO9evWKO6ZXr15MmTIlqa5p06Zx4YUX8vbbb2MYRkr/dYmMOVBZWZmxnencDvfYYw/L7YMGDUra5vF4uPPOO+Nc6VRV5ZZbbuGSSy7h2Wef5c033+Tdd99lw4YNfPTRR1x44YUsXLiQv/3tbxmvCaCtrY1HH300afuMGTMYPnx47PucOXOYM2eOZR2JsUOGDh3K1VdfzYEHHkhdXR3XX3895513Hn6/P2N7siEcDvPXv/4VgB//+McFrVsi3ydpu+FQeByBwIEnnngCIQSnnHJKkrHPWWedxQsvvMDjjz8eJxDIgap///6WdabqbNPtX79+PQBr165FUZS0x2/bti3umEWLFtk6JlEgsPLLlv7b6fYFg8G82m1m9913T9pWWlqadJ5Cc/TRR1NVVcUTTzzB5MmT+eijj7joootwudJ3C08++STnnXcera2tKcu0tLQkCQQDBgywLFteXk5FRQWNjY3s2LGDqqqqtOeXhpDyHqUjFyM06cOvKAolJSUMHz6cE088kdraWsvytbW1XHzxxVx88cUArF69mttuu41HHnmEBQsW8OSTT3LmmWcCUSH7m2++sXwXd999d4QQse9HH300CxcuzLr9Vhx11FEceOCBvPfeeyxdupRJkyYBO99nK8NbSVtbG5D+fv/jH/9g+/btDBkyhLFjx1qWyXSuTOcpKysDiDM+digsjkDgEAtGtHjx4qRgLdLa/s033+TLL79M2alni8/nS9omLc1ramqSZtGJyHbIY/baay8mTJiQ9hirgSbdzM3OrM7chmzanct5Co3b7ea0007jgQce4OqrrwbIaPn+5ZdfxjxH7rzzTqZOncpuu+0Wm3GOHz+ed955J25gKzTSer2lpaVL6r/ttttSBt2xw4gRI3j44YfZsWMHzz//PH//+99jAsHIkSP55ptvWLFiRcb3tdAMGTKE9957L07rJAXzr7/+2vKYtrY2GhsbqaysTCsQmD2UUrHHHnuwYsWKlOeS21P1MVIQrKioSHkOh/xwBILvOcuWLWP16tVANIrYZ599ZllOCMETTzwRGzj69esHxLthmUm1PR1ypty7d2/bMzt5zPDhw3vMJSmXdu8qnHXWWTzwwAO8+uqrDB06lIMPPjht+VdeeYVQKMTll1/OJZdckrT/iy++SHnshg0bLLc3NzfT2NiI3++31dnLqIQNDQ0Zy/YkRxxxBM8//3ycVuiYY47hlVde4amnnkqp9u8qZPTJ4uLi2LZhw4bh9XrZunUr33zzTZJWbPny5QDsv//+Kettbm6OuSWmEwhGjhzJCy+8EKszkUznku3Pxs3TITucOATfc6Rkf/nllyOiRqZJH+njLssCsdnN888/bzkblOuJ2bD77rszfPhwPv74Yz799FNbxxx00EGUl5ezZMmSHhsgcml3rsiwuZFIpCD1jR8/npEjR1JVVcW5556bsbzslK2WOd588002b96c8tjt27fz+uuvJ21/6qmnABg3bhyapmVswz777IPL5WLNmjUZy3YlmbQgUrg2D7IzZsygqqqKt956K+731NVs3bqVf//73wCMHj06tt3v93PEEUcA0XDWiTz77LMAcbZFVmUCgQATJkyI2dhYIUM4v/TSS0lLYZs3b+bf//43lZWVKTUnn3zyCV6vlxEjRqQ8h0N+OALB9xhd13nyyScB0gZ4OfTQQ9ltt91YvXo1y5YtA6KznyFDhrBmzRpuvfXWuPLz5s2LdT7Zcu2112IYBieffDIrV65M2r99+3b+9Kc/xb57vV6uuOIKWlpaOOmkkyxnqN98801cjoauINt254pcxy7kYLhy5Uq2bdvGlVdembGsNHZ8/PHHY2u+EL3HF1xwQcbjL7/88rggTevWrYsZws2ePdtWe4uLixk1ahQbN27km2++sXVMVzB+/Hjmzp0bdx8kL7/8Mg8++CAQH/CnpKSEuXPnoigKM2fO5Pe//71lUp+vv/46pZbt3nvvZfjw4fzqV7+K2/7222+zYMGCmIGnZP369Zx44om0tbXxox/9KEmYu+yyywC46aabWLt2bWz7O++8w0MPPURFRQWzZs1KeR+kYJPJmPDggw9mwoQJbNmyJe5di0Qi/OxnPyMcDnPxxRcnGfJCNEDY9u3bOfjggy2XGx0KRM84NzjsCrzyyisCEEOHDs1Y9rLLLhOAuOSSS2LbzIGJRo4cKaZNmyYOPvhgoSiKmD17tqULkXR9S+fKdvXVV8f880ePHi1OPfVUccopp4hRo0YJTdNEeXl5XHld12PxATwejxg7dqw444wzxEknnST22WcfoSiKGDlyZNwx6UK8yqA9VnHVhYi6tA0YMCDvdme6F1bn+eabb4TP5xOapomjjz5anHvuuWLWrFmWbmyJJLodZsLK7TAYDIp99tlHQDTfxcknnyymTp0qioqKxPjx42PBrMz31RyYaPTo0bHARD/84Q9j789ZZ51lq02S66+/XgDi8ccft9yPKQ5Gqk9ijId0cQiskPkNfD6fGD9+vDjjjDPE8ccfL4YPHx47/wUXXGB57HPPPSfKyspisTCOPPJIMW3aNHHccceJkSNHClVVBSDGjh2blCchVRwC+d7W1NSIY489VkyfPl1MmDAh5uq4zz77WOZ9EEKISy65RACiqKhIHH/88eKYY44RLpdLaJqWNj7EV199JVRVFR6PRzQ0NGS8Z59++qmoqqoSEA3ydPrpp8cCPI0fP94yr4MQO2Ob/O53v8t4DofccQSC7zEyul+qgc/Mu+++KyAah9wca3zlypXiuOOOE2VlZaK4uFhMmDBB/OMf/xCPP/64AJJ8pe0IBEIIsWTJEnHqqaeK2tpa4Xa7RVVVldh///3FnDlzxJIlSyyPeeGFF8TUqVNFdXW1cLvdorq6WowZM0ZcccUVYtmyZXFlu0IgyLbduQgEQgixcOFCMWHCBFFSUhIbeOzECiiEQCBE1F/+wgsvFAMHDhRer1cMHjxYXHnllaKtrc3yvkqBYOLEiaKxsVH87Gc/E7W1tcLj8Yhhw4aJ2267TUQiEVttkmzYsEFomiaOPfZYy/3yvqT7JAqJ2QoEq1atErfccos46qijxJ577imKioqE1+sVe+yxhzjllFPEK6+8kvb47du3i//7v/8TEyZMEL179xYul0uUlZWJfffdV/zkJz8Rr732mmUExFQCwccffywuvPBCMXr0aNGnTx/hcrlEeXm5+MEPfiBuv/32pGidicydO1eMGTNGFBUViYqKCnH00UeLt956K+0xt9xyiwDEiSeemLacmQ0bNogZM2aImpoa4fF4xF577SWuvfbatAGHjjjiCCeXQTegCNGF5sAO31suuOACHnroIZ566ilOP/30nm6OQw+yfv16Bg0axMSJE7PKuZCJE088kZdffpmvvvqKmpqagtXrsGvx9ddfM2DAAE455RSefvrpnm7OdxrHhsAhZxoaGmI++Gaefvpp/vznP1NRUcFxxx3X/Q1z+F7wm9/8BsMwuO2223q6KQ5dyO9//3tUVU0KuuRQeBy3Q4ec+fTTTxk3bhz7779/zLp49erVrFmzBk3TeOihh+JcnBwcCsm+++7LOeecwwMPPMAVV1wRc0d0+O6wceNG/vjHP/LTn/40KZCTQ+FxlgwccmbLli3ceOONvPHGG9TX19PW1kbv3r0ZP348l19+OePGjevpJjrsAnTVkoGDg0NhcQQCBwcHBwcHB8eGwMHBwcHBwcERCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAwcHBwcHBAUcgcHBwcHBwcMARCBwcHBwcHBxwBAIHBwcHBwcHHIHAweF7z/XXX4+iKD3dDAcHhx7GEQgcHLqJefPmoShK3Ke6uprDDz+cf/zjHz3dvIysWbOGn//854wfPx6fz4eiKKxfv76nm+Xg4FAgXD3dAAeH7xs33ngjgwYNQgjB5s2bmTdvHsceeywvvfQSxx13XE83LyXvvPMOd999N3vvvTcjRoxg5cqVPd0kBweHAuIIBA4O3cwxxxzDgQceGPs+a9Ys+vbty5NPPrlLCwQ/+tGPaGxspLS0lNtuu80RCBwcvmM4SwYODj1MRUUFfr8flytePr/tttsYP348VVVV+P1+xowZw7PPPpt0vKIozJkzhwULFrDvvvvi9XrZZ599ePXVV5PK/uc//+Gggw7C5/Ox55578tBDD9luZ69evSgtLc3+Ah0cHL4VOBoCB4dupqmpiW3btiGEYMuWLdxzzz20trZy1llnxZW76667+NGPfsSZZ55JKBTiqaee4tRTT+Xll19m6tSpcWX/85//8Nxzz/Gzn/2M0tJS7r77bk4++WQ2bNhAVVUVAB988AFHHXUUffr04frrrycSifDrX/+avn37dtu1Ozg47Lo4AoGDQzczefLkuO9er5dHHnmEKVOmxG3/9NNP8fv9se9z5sxh9OjR3HHHHUkCwerVq/n444/Zc889ATj88MMZOXIkTz75JHPmzAHguuuuQwjBv//9b/bYYw8ATj75ZPbbb7+CX6ODg8O3D0cgcHDoZu677z6GDh0KwObNm3n88cf5yU9+QmlpKSeddFKsnFkY2LFjB7quc+ihh/Lkk08m1Tl58uSYMACw//77U1ZWxhdffAGArussXLiQE044ISYMAIwYMYK6ujpeeeWVgl+ng4PDtwtHIHBw6GYOPvjgOKPCadOmMWrUKObMmcNxxx2Hx+MB4OWXX+amm25i5cqVBIPBWHmrmAHmQV5SWVnJjh07ANi6dSsdHR0MGTIkqdywYcMcgcDBwcExKnRw6GlUVeXwww9n48aNrF27FoB///vf/OhHP8Ln83H//ffzyiuvsGjRIqZPn44QIqkOTdMs67Yq6+Dg4GCFoyFwcNgFiEQiALS2tgLwt7/9DZ/Px8KFC/F6vbFyc+fOzan+Pn364Pf7YwKHmTVr1uRUp4ODw3cLR0Pg4NDDhMNh/vnPf+LxeBgxYgQQnfErioKu67Fy69evZ8GCBTmdQ9M06urqWLBgARs2bIhtX716NQsXLsyr/Q4ODt8NHA2Bg0M3849//INPPvkEgC1btjB//nzWrl3LVVddRVlZGQBTp07ljjvu4Oijj2b69Ols2bKF++67j7322ov3338/p/PecMMNvPrqqxx66KH87Gc/IxKJcM8997DPPvvYqrOpqYl77rkHgLfeeguAe++9l4qKCioqKmLeDA4ODt9OHIHAwaGbue6662J/+3w+hg8fzgMPPMD5558f237EEUfw8MMP87vf/Y5LL72UQYMGccstt7B+/fqcBYL999+fhQsXctlll3Hdddex++67c8MNN7Bx40Zbde7YsYNrr702btvtt98OwIABAxyBwMHhW44iHKsjBwcHBweH7z2ODYGDg4ODg4ODIxA4ODg4ODg4OAKBg4ODg4ODA45A4ODg4ODg4IAjEDg4ODg4ODjgCAQODg4ODg4OOHEIuhXDMKivr6e0tNQyQY2Dg4PDtw0hBC0tLdTW1qKqzhzz24wjEHQj9fX19O/fv6eb4eDg4FBwvvrqK3bfffeeboZDHjgCQTdSWloKwCEcy9cPj2HgLOvocM9/+gEnDt0vq7qf//SDpG3Z1iExDhmJ+p9VGIeM5IVHHo/bd/y5Z6H+Z1XctvUP75/yWtK11U777NSd6n6l2p6uTuOQkWyYKVLuNx+bzXXk8kzl/U88LrEN6epNfC9k2VTbs32WVuc7ceh+KetZ//D+SdtWHPpE7O/jzz0rab/VPUhEvrN225crme5Pod5tu+3M93rM70GqetJd0/OffkBzq8GA0etj/ZvDt5ce1e8MHDgQRVGSPrNnzwZg06ZN/PjHP6ampobi4mJGjx7N3/72t7g6GhoaOPPMMykrK6OiooJZs2bFMsZJ3n//fQ499FB8Ph/9+/fn1ltvTWrLM888w/Dhw/H5fOy3335J+eGFEFx33XX069cPv9/P5MmTLTPHpUMuE7hws9dPVuNS3JafU4eN5vWNH8d9UpV1KW7USWMpK9WSPuqksWmPM3/izuHyoU4ay7+eeTKpTs9b8W3Z8OTBqEU+2+eR13fqsNG22rfXT1az4cmDM1671T0qK9WS2upS3Gnb63nrY/b6yeqU91w+t9c3fhy7J3auWbYx3fNMvE7PW9FzJG43ty/T+ROfnzz/qcNGx7adOmx07Pzprt3OOySf6+fHPmW5//Njn0r6mNvncvmSPnbu8b+eedL2u5fuXcp0vNW7I59Ptu9Eqj5A3kc7dZx83k9yelbm4zO1Wb4rVr/DU4eNpqxEjevfHL699KhA8O6777Jx48bYZ9GiRQCceuqpAJx99tmsWbOGF198kQ8++ICTTjqJ0047jRUrVsTqOPPMM/noo49YtGgRL7/8Mm+++SbnnXdebH9zczNHHXUUAwYMYNmyZfz+97/n+uuv549//GOszNtvv820adOYNWsWK1as4IQTTuCEE07gww8/jJW59dZbufvuu3nwwQdZunQpxcXF1NXVEQgEuuTeTJk2k7rakbHvC+tXsbA+fgYkty16Mj4lrjwucbsVX8wfxcL6VUyZNhNj4uhYfVbHmtsjWTtpHoOnr0jabgd1yXJb5RLr/2L+KL6YPypWh1W7INrexHuWiKwn2/1Tps2M/Z3pHLIt8iOPWVi/CmPi6FgZeZ3mbXW1I1k7aZ5lfcbE0XHtSGxvunZZ7bPzHM31y+cg6zK/d4nPZGH9KoYsnhH7TJk2M/aR92XKtJlJ7538Ls+b6nnYedaZ9tt5H62exeDpK9K+R5nesWwx12f3N1QIrK7d4btFjwoEffr0oaamJvZ5+eWX2XPPPZk4cSIQHagvuugiDj74YAYPHsw111xDRUUFy5YtA6KpW1999VX+/Oc/M3bsWA455BDuuecennrqKerr6wF44oknCIVCPPLII+yzzz6cccYZXHzxxdxxxx2xdtx1110cffTR/PKXv2TEiBH85je/YfTo0dx7771AVDtw5513cs0113D88cez//7785e//IX6+vqc0tFaqU3lAGEe5OUPP3HwSRQOzJ2q7IjlMZk6wcHTV8Q6YishwNxpW7W5O5H3Y/D0FUmDlxwQ7LTJ3IHLeszH2akj8V7Z6fSNiaMxJo6ODX6yHnO7jYmjLZ+DuU1mgSGxrLnTThQWCoH5vsvnkPhupBIGZPsGPhQ/kzRfjxWyvnT3eGH9qpSCYap2WZGpLakw35fE8+QqMKc7l7wXmd7VTNdjV6BIde9yvV8Ouya7jEloKBTi8ccf59xzz42pnsaPH8/TTz9NQ0MDhmHw1FNPEQgEmDRpEgDvvPMOFRUVHHjggbF6Jk+ejKqqLF26NFbmsMMOw+PxxMrU1dWxZs0aduzYESszefLkuPbU1dXxzjvvALBu3To2bdoUV6a8vJyxY8fGylgRDAZpbm6O+yQiBwPzgC478rWT5lFXOxJ1yXLLzl2Wt/pRZ/qhy8HJSsMAO4UMdcnylHWZhQ5j4uiCz4QSydSxWnVa5pmj7Ei/mD/KcraTODOXx8j7ZL5niVjVl1hOXbI8JgCkGvTldqvzmIVFc9lEIdHquaYbDBfWr4rTuqRqf7bIeiXpZpjy3ie+51JzJYWPXAdXuwOXHa1aKuwK4emwI9gUGruC45RpM5OuLZ/75bDrscsYFS5YsIDGxkZmzJgR2/bXv/6V008/naqqKlwuF0VFRTz//PPstddeQNTGoLq6Oq4el8tFr1692LRpU6zMoEGD4sr07ds3tq+yspJNmzbFtpnLmOswH2dVxoqbb76ZG264IWn7wFnvs3Djx4B1Ry0H4CnTZsJEYoNyvh2FMXE06pLlnT9q605LnkMl88whsTOQM78v5o/K2HHLDro7VJ5moaCutnNjfXLHbb4eq1l4ps5PXreVtsGsubHTiZoH+2xJtYRkNXOXyMF6ysSZwKrYMpJ8D+w800TqakcymBVQb6o/zeCz6Mm5cfutlh7SnSsdduvKR8tQiMHRfM/TkfiepcLO70uWiT3zFMd05/JEIrquEw6He+z832bcbjeaptkqu8sIBA8//DDHHHMMtbW1sW3XXnstjY2NvPbaa/Tu3ZsFCxZw2mmn8e9//5v99svdsra7+NWvfsVll10W+97c3Ez//v07lww+ttVB2fkRyoE+EbMava52pKnDXZVUzi5yoJSdn1zLNn+3M3DI9qZqe7aYByyrwStxSSHTmnMunfvaSfOg3nrfznPFCwh2B3w7a+SpjsumTvN1x2sYsj513sjBsVDvSCYKNTvvrhl+ru9EOuwITrkIh7kihGDTpk00NjZ2y/m+q1RUVFBTU5PR8HOXEAi+/PJLXnvtNZ577rnYts8//5x7772XDz/8kH322QeAkSNH8u9//5v77ruPBx98kJqaGrZs2RJXVyQSoaGhgZqaGgBqamrYvHlzXBn5PVMZ8365rV+/fnFlDjjggJTX5fV68Xq9lvsKKQzIgT6dilhK/7KM/Ntu55U4ozcfZ7XNLuZrzKdDlh1UXe1IBk5ULOtKNOhLta87SWxjog1BvHYj3sg0U712jR2765rtqqbNwqVdulPV3pXn6qlZuPk9SHd9dbUjYX73tUsKA9XV1RQVFTmeDFkihKC9vT02TprHLyt2CYFg7ty5VFdXM3Xq1Ni29vZ2gKTIV5qmYRgGAOPGjaOxsZFly5YxZswYAN544w0Mw2Ds2LGxMv/v//0/wuEwbrcbgEWLFjFs2DAqKytjZV5//XUuvfTS2HkWLVrEuHHjABg0aBA1NTW8/vrrMQGgubmZpUuXcuGFF2Z9vQNnvQ+KO+X+bDocOair7FxSMCaOZlF98mBv7mhVljNk8YyoStcGdjqqfGcOslMasnhGXvWkamuqgc98nwplPJlqoM30XKW9SCZhLVGAMX9PtURgt61WwlEmdXIuWGlhzNvMWhWzYaHVu1EIg8J8BvmowFwYwSqb37/dJYZMfDF/FHW19t71tZPmMWR+fr9RO+i6HhMGqqqquvRc32X8fj8AW7Zsobq6Ou3yQY8bFRqGwdy5cznnnHNwuXbKJ8OHD2evvfbi/PPP53//+x+ff/45t99+O4sWLeKEE04AYMSIERx99NH89Kc/5X//+x9vvfUWc+bM4YwzzogtPUyfPh2Px8OsWbP46KOPePrpp7nrrrviVPmXXHIJr776KrfffjuffPIJ119/Pe+99x5z5swBov61l156KTfddFPMBfLss8+mtrY21pYuv08WRlGpOg5pbyA7cYnZCyEd2RgHmo3R1k6al2Tglq2hoVxyKOSs1a73QTakMmA03+O62pEx6/pUx1iRKAxkEgwSn3EiVp4pmdpuRa7CgNkdUZLNkow0ZltYv8pyELJjMGj3+ef6nti9N5l+D9la7atLludt6W8lZKW7D1OmzYzZhHSlVkbaDBQVFXXZOb4vyHuYyQ6jxwWC1157jQ0bNnDuuefGbXe73bzyyiv06dOHH/7whzFXv0cffZRjjz02Vu6JJ55g+PDhHHnkkRx77LEccsghcTEGysvL+ec//8m6desYM2YMv/jFL7juuuviYhWMHz+e+fPn88c//pGRI0fy7LPPsmDBAvbdd99YmSuuuIKLLrqI8847j4MOOojW1lZeffVVfD5f3vfA3GGn+nFLy/JskHYDdgUBsDfLNwsBZtczq8Ev11lEIToaO4JALuexmoGnqkfem2zOk22bEgcj6WUgP0MWz4i1IZ2nRCrMzzVfEt1b7SwjZFpCKKTWIp/3zurYRAEg0+8hl2vJVyhIdJnM5OaZ2MZ8IiXawVkmyB+791ARQogubotDJ83NzZSXlzOJ43GZlgwSjaasZv521N1mUg3shTQIsursrNa7c8WYOJr154u07U2MJwD21tdluUztTDSYtMJOPXbVwLk+N3M706n2zZ4QdtosyXcZJ7H95vPHe7+kJ5tlC/PvKhs1fKay6fZbLb1kSy42CoW2a8j0OzafLyLCLOYFmpqaKCsrK1gbAoEA69atY9CgQQWZeH2fsXsve1xD4JBMqhmZWa2badaZqvPOVxiw0g4kUqgZpbpkeZLvujx/4lKFXeyq4iHa6a0/X2Q9w8903nSkWi7J9Nzi7ENsDJhmuwGr+ANWbbCaMdpdEkol5MDOGa5c/kj8mJGaskyBecwGconbMpHO+DTTwCv35RsUKp8lLrtBi+y2I5UtTHcb4H4bWL9+PYqisHLlSgAWL16MoijfGi+JXcKo0CEeGUBHBibalX54Vh17IY2LrGb8GffVp47wJ0k1w003866rHWnb6LInSTWby6RVyMZrIbZmTPw58nn20jgt+vfclMKMXOqQLHpyrunYzK6juf5+rH57mYz4pHFhNh48qc6dL4U4v/xdpRKEvpg/ij2m/S/n8+TDjBkzePTRR5O219XV8eqrr/ZAi5IZP348GzdupLy8vKebYgtHQ7ALYNUJypDCcuZUVzuyyyMBFoIhi2fkFfM8XTS6dPvSCQO5dIzZGKHZ1YjYqTNb1W861a7dwdps55CNdqcQ7+PaSfNi70s6Gxrzb8QcydOMPNZ8nxNn6vkamBbKXqHQIX/NWg1p3FsIMuUKGTx9hWWm1e7i6KOPjsuHs3HjRp588skea08iHo/Hlv//roIjEPQg0sArFYmdT3cFA8mHfNeZsyHdAALxBlLZLqFYzbatzl9oK+tsVM3y/IUUFgdPXxETCnJdlspEpoBQ8neR+JHIQco8CH4xf1SSHYL5Xuaqwk/UTmS77JCKroo3IK+zkO+leQnC6vfW1UaF6fB6vXH5cGpqamLu5Iqi8Oc//5kTTzyRoqIihgwZwosvvhh3/EcffcRxxx1HWVkZpaWlHHrooXz++edA1APuxhtvZPfdd8fr9XLAAQckaR7+97//MWrUKHw+HwceeGBc4j1IXjKYN28eFRUVLFy4kBEjRlBSUhITaiSRSISLL76YiooKqqqquPLKKznnnHPiPNqeffZZ9ttvP/x+P1VVVUyePJm2tra876cjEPQA96+8EdgZknhXp7sSmKQaYBKt5s2zvFSaATsDQKpBtCeXaOy+D13ZRnPCoqh/+s7BJTHDYbakWo82n8Nulk55rNRKpdLWyHch2wyV5vbYFbjsLlN01W/K6v3JRVg0Z5c0/y6lwPZt4YYbbuC0007j/fff59hjj+XMM8+koaEBgG+++YbDDjsMr9fLG2+8wbJlyzj33HOJRCJANOnd7bffzm233cb7779PXV0dP/rRj2Jp71tbWznuuOPYe++9WbZsGddffz2XX355xja1t7dz22238dhjj/Hmm2+yYcOGuONuueUWnnjiCebOnctbb71Fc3NzXBK9jRs3Mm3aNM4991xWr17N4sWLOemkkyiEf4DjZdCNSC+Dzz/5iPNH/LqgdT/XcB8n9ZrdrTkCUlFIT4NcBp58Auh0ZRS6XEPwZuthkguZ7A2s2pCt54HdOjL5wKtLlmf0Lkm8N1a5KQppyW+VxyLde5jJUyGfZ5vv8eneBavfdk95GcyYMYPHH388ad/VV1/N1VdfjaIoXHPNNfzmN78BoK2tjZKSEv7xj39w9NFHc/XVV/PUU0+xZs2aWNA6M7vtthuzZ8/m6quvjm07+OCDOeigg7jvvvv44x//yNVXX83XX38da8ODDz7IhRdeyIoVKzjggANYvHgxhx9+ODt27KCiooJ58+Yxc+ZMPvvsM/bcc08A7r//fm688cZYXpyamhouv/zymJCg6zqDBw9m1KhRLFiwgOXLlzNmzBjWr1/PgAEDCnIvJY6GoAfw+Dw8/vVtANy22l6kw/kbb4/7/uz2u/nb9nt5ruE+nmu4D4gKBVLrYKVqNZMpf3uuKuieFgYgP2GoKwOtWLUr02wr8X7a8TDJFjvPujttC+T1WWl5MtmKJKbqlr8BKxsEK7INyiWRWTHNrD+/8HMtu7PzfJ5BOmHAbGy4K3D44YezcuXKuM8FF1wQ27///jtTzRcXF1NWVhYL47ty5UoOPfRQS2GgubmZ+vp6JkyYELd9woQJrF69GoDVq1ez//77xw2wMrptOoqKimLCAETDCcs2NTU1sXnzZg4++ODYfk3TYpF4IRrC/8gjj2S//fbj1FNP5U9/+lMsc2++OF4GPUDE0AmG2/jDZz8j0BLit8tm4St3ocTCNMd3JAoq7cE2nt12DwYRVEVDQbU0VJGagsS4BhBvNT1kceoOI12SoHz5Yv4oBj6kpFVt5mqUKK8vnadCprYlHmO1LZeZfrqokqnqMyaOZsq0nfu6Qlix+4wHT1+RlLhJJnNKbFc29z1dGNxEgzazxbvV+xt97oKBjE4K1mM30qddr4zEstHfVXzcBtkm6TWUGAAose2yXDrPCWknkcn1cW194cILS48nc6hzs2B2ZL+98z5HrhQXF8ey31qRONgrihILfS9D+nY3Vm3KRlGvaRqLFi3i7bff5p///Cf33HMP/+///T+WLl2alNk3WxwNQQ/Q2t5MwGgC1cBToiEEhNp1ROeLCuaBXqHIU06xv4RgMIymuFMKAxKz1gDi12jlv2snzcs4i9jZQdlHniuVD/faSfNSRl3MtfMyzwozGRGmIlVY3FQDVbak6sDTCRfdYWOSzX3KFKwnV+T6v3ndWv5rthkxD0JmoTUROWia712+qYkTbVfkue3YU9j5DZk9A4YsntGjHkWJcT6kTYk5gdh3gf33359///vfluF8y8rKqK2t5a233orb/tZbb7H33lEBaMSIEbz//vsEAoHY/v/+9795tam8vJy+ffvy7rvvxrbpus7y5fH9gKIoTJgwgRtuuIEVK1bg8Xh4/vnn8zo3OAJBj+DRvGh6EQgFVVXwV7pweTTCHQIjYhYKFIo95VT4+uJxedBcGoFgCCGwJVGahQIz2QyaUijIpcM3q5mtjpdWy2ajwWy1A4m+66lm+Xbq6QqyVa12lSo2k0dLIuYBQT4nO0GArAICSTLdYzkomv9Nh1kosNIKZbrebJ55KrfOgQ9ldieTrpWJ76FZ4JHYqS+bCJPZIO+jvIeZtCW7gmAQDAbZtGlT3Gfbtm22jp0zZw7Nzc2cccYZvPfee6xdu5bHHnuMNWvWAPDLX/6SW265haeffpo1a9Zw1VVXsXLlSi655BIgmidHURR++tOf8vHHH/PKK69w22235X1NF110ETfffDMvvPACa9as4ZJLLmHHjh2xSeDSpUv57W9/y3vvvceGDRt47rnn2Lp1KyNGjMj73M6SQQ/Q0aHjLy5BU0BXW1AwUN0CPSxo2xamqMqDy61R5C6jwleDprhQFAW3K5qlKhgM4fV6AJFWU5BOaJCzeDs/aqkuzsY+QKotE9XMiWQzczNbvqfqrNZOmhcLniPLWalszXRnfnczVtqBrtIIZBvv3jzY1tUSy6ZpvleZBISuwryOPfAhYkaGmdolyVVbkKj5klkppU2CrDeVvYX53YROF8/58XE7zHYHXbVkZ8cFN11gMPP+KdNm8vynf6ZyaEGbaZtXX301KaXvsGHD+OSTTzIeW1VVxRtvvMEvf/lLJk6ciKZpHHDAATG7gYsvvpimpiZ+8YtfsGXLFvbee29efPFFhgwZAkBJSQkvvfQSF1xwAaNGjWLvvffmlltu4eSTT87rmq688ko2bdrE2WefjaZpnHfeedTV1cWyFJaVlfHmm29y55130tzczIABA7j99ts55phj8jovOF4G3Yr0Mli2bBklJSUIDAy1HV1rAgwEgkhAIHQoLS2nqqQWl+qOG/SFEEQiOpGIjtfrQVWtBQIhBMFgGEVV8LhdnFwVzdyYLqa8FYmW24mdrdWx6TrkbCMvmjtdO4NlV3oJFJp0ywXyOsxq5F0tDoWd55jt+5EJeR+shBurJE9mEpMq5SJ8yfV0WYd8NxOFDPPzMl9vqu1yXyLmZ27+7Vq9O1ZCUaLLaC7vUKbjnlmznMqhXzi5DLoIwzAYMWIEp512WsxjIlscL4NvAQoqqlGMplcAKgoKbr9GeXklnlA5oTY9+RhFweXScLk0QqEwhoU8J4QgGAqjdgoDGAaPvhVVc8nZstmPO5uZXjoL8ExR4BLPlU7tKPdJwzKzq1k6CpmZL1/yUf8nBgeSLm35eIDk26ZEzB4PVs/SrNGxOi4fElMpp5v1W2VYzCQ8mNfRze+1VOmbYxtYCRayXOLvwWwrkBg4KdNgbXe/OXaEebknnd1FPuftycBE30W+/PJL/vSnP/Hpp5/ywQcfcOGFF7Ju3TqmT5/e5ed2NATdiNQQfPD+SjzenRauAoGhtmG4WijylFLhq0ZEVJq3teAv8eEv9SUtDQgh6Ah2oBsGxb5iVFWJ+iZIYUBRcLtdKCi0fbGere/8D1dRERf/5B9J7ZIBXez6dEsy5Q9IRM6k5GBnZb2fq4847HragUzeCLnGJejJY+2SrfupeeadC+kG+cR3NJP/fyqh1qydsPLike2AndqKbAVkiR1PmUxxEcCUg8IkICSeK1+cbIeF5auvvuKMM87gww8/RAjBvvvuy+9+9zsOO+ywnOt0NAS7MEV+D+bxXUFBM4opddVQ6euLprhxuTUqqstAUQm0hTD0qLGhEAJD6LSFG2kK19Mc2kJHsAPDEFFhIGgSBjpP4q4op2zoELy9+1i2p652ZFL8czsdhrpkeZKmwGrWKD8y4UuqTi4xJK0V6WY3u5J2ANLbA5hd6Apdt91juyMio5xd2/FoSadtyBW7woDcl06DsnbSvLRCsFkYyKQtg+QB3Vy+UMtD8jeR+AxShSF26Hn69+/PW2+9RVNTE83Nzbz99tt5CQPZ4AgEPYCmabg6DUQkPq+HMn85aqcBoaIoqJqGv9iDHtbZsaWJSDi6hNAa2sGOjo1EjBAlvjLcmotAMEQgGEJR44UBFHD3qqR0/31RK/smtUWqRc0zCDudmcQ8MKWbeSV2fqlcGhNdz3oaO+3Ipa3pksZ0J10lFCQO6nbcXK3qyCYHQaYBzk5diYJWopCZLjSxdBPN5p7K30XiDB4yu/2m09xJzFqXRA+Gb0PYdIfuxREIeoB2dQe+YgWXFr39Pq+bshI/qqrELQ0oUc9Disv9eH0e2lsCGLpBRA8BUO6tptTbC7fbjUtTiUT0mCeCRAhBR2uAYCBMUa+SpLaYMwhazc5yHbTyHdCzTUbUFfSU94Fd8h3Mu0MgyVcoyCd+QKIGK5PGJhWpNE/Z3P902is5W5dtzUZTYBXrY9GTcxk8fUXSEkzivSyUMLj+4f0zF3L4VuAIBD2AThjVY1BW6qe4yGspDEgURUFRFYorivAXe2lr7kAPQpm3DyXeXihEj3O7Xfi8HoKhMEKI2Ke9JUBrYxu+Ig/uIm/ebU/VoSd2eLkOpIlW1XaQnbmdc2YzIOUSmKk7sQoAZW7vrtJ287uRj51AOlIJDlIIyLScJMslCgayvUMWz7CsI/HepzLEzXTdqWxnsnmG5nObBYx05LpskBi8yOG7gSMQ9ADlSjU+pQSP20VpsS+lMGBGURRcHg2Pz41o8+COlMSEgdh+V3QpIhSKgIBwMIIwBL1qytHcGrjshZ1IZ3iUKhFNOh//VHVlws4An22HJq31U0We604KMUOrqx0ZN1BlI4h9MX9U2oHSHJgoW8z3MnEw7A7bBSvsnNdKi7B20ryYJi3d/Uo16Fu56qbK0/DF/FFx+zI9zynTZqZd4ksnFCQmisoGeT8GT1/BwFnvZ328w66JIxD0AIYOgY5wdOCGjMKARFEUvH4PldUVCB1CgTDCiGoCDCPqLOJyaYCgqaGFYEeIolIfmkuLxsvOcB5zx5JtFLdUnUpXqtyltXe2a6GJxmvmKImJxle5umrZbYcdUs3G5LZEg1BJuntvtuq3ipgnjzcmjrbdzlQR9zLNrFO1L9toh1ZagkSBMdvYCeacBPL+F8J4VdqQJA7YayfNY/35wrYdj5UtSqLHhZVQID1+zO99NrZDDt9NHIGgB2hvD6AoCqFwmEAwnDEMsRACXTfQOz0NXG4Nf4mXUHuIpu0thEIRmlraaW0LoOsG4Y4IHa1B/CU+VE2NBkE2wiii3Vb7Cj2bT+XKlY2wYCcQTa6YhYMhi2fErMllB7krWGObbT0St1kZpEHqQdWMDKsrSRwYMq3hW61hy3Vsed8yzZxlObshrM15K9IZHpo9AhKvMZOAZ14iMLvJFlrAtfLUyXZZJXF5QF5zut9Hun2OYPD9xQld3AP4/V58XjfC46KtPUBAgM/nttQUCCHQDUFLawcApcU+NE1FURWKKopo2trM9i1N4OkMa9wRosjrpqLKgxrZgRpohmAjih7ktBGPW7bHPFvMRhiIduT5dRx2Dfe6yyJ68PQV1DEyFqpXDm5AXNjZbEh3jXZCSGe7DAByUEl+NjuFGxETflIh22X2u7cKLJVq8Fh/vmDtk9F90offSoDY2U7775L5fiXGBLDzDpuzLFqp9DPZspjvXaprywaraIeQXdyAVHXkSlfELCgkWzZspWlbS7ecq7x3KdV7WLttf5dwBIIewKVpMdfC4iIfrW0BCAh8Pg8AEd1AVaKJj4xOYSAQjGbkcrs0iou8KIqCpimUVZWiN7QQaA8S6WjFVxSmSA2jiAhEfODyQ8nuGK5intl0B6fWXJbUnoEPKTApux9+fEeemVQD365sxQ/xAV1SDTaZciV0F1YD/JDFM6I5JTqZMm3nrNmO6ls+550zUKsB3RqzkCnT5ubDkMUzYL71O2MWTORzyjQ4yvTNiSQ+57WT5qV1mTV76eQiFJjTW6eLGpr47qUKvGTelyqHxbddA7Blw1ZmDL+EcCA5U2FX4Pa5mffJXVkJBQ888AAPPPAA69evB2CfffbhuuuuS5tz4JlnnuHaa69l/fr1DBkyhFtuuYVjjz023+bbxlky6AHMmgBVVSkp9hGORAgEQgRDYRqb2mhu7UA3BB2BUDQngQJejxufNz6XtuZSKSt1obXX08e7hV6VHpTSPRC99kVUDMcoHYjhq0a4ilFcHsv2yIBBdpEdjFSx27E27u4OqNBr/lYuYbsKsk1Ws/10rmfZqKatwgNnux5vh3TBicxZA7N53/JZ88+kcRiyeEbcgJvPbNquZ4Asmy3ZxHQwY2eJpbtp2tbSbcIAQDgQzlobsfvuu/O73/2OZcuW8d5773HEEUdw/PHH89FHH1mWf/vtt5k2bRqzZs1ixYoVnHDCCZxwwgl8+OGHhbgEWzgCwS5AVCgoIhSO0NjcTkQ3CIbChMMRfF43JcU+KsqKKS/1R5cLOgUKIQSR1u0Y29fSp7aKkoFjoHwQwlMOqhsSliBUVWH+SxfGbVtYvypjR5HYGSQKEF2xtpovXbHWmxgfvivP11MUUj2cizCQjkTXP6tBKpUgkS1SoEj12xj4kEJd7cg448l0KaLN7Uvki/mjYvYO6bQadjwJzJkXE/M35LOckMpw1SE1P/zhDzn22GMZMmQIQ4cO5f/+7/8oKSnhv//9r2X5u+66i6OPPppf/vKXjBgxgt/85jeMHj2ae++9t9va7AgEuwiqqlBaUhRNRoSgyOfF63GhaSrFRTv/jgkDhk7H1q9p21qPt3ov3BX9QfMAqT0JhBAYHaHYdzn7seN6ZHZBy8Ytykx3rUXa6ZhzRV6D2WiuJ8nkOpgLdp5TYvCqKdNm2go9bN5nt7xEvmtrJ81j4ENK0rsnVe6Fei5m+xEzsn65X1rrZxpwUwkXg6eviEt7nKlNqeq2qj/dskIqUsVcSHd+h/Tous5TTz1FW1sb48aNsyzzzjvvMHny5LhtdXV1vPPOO93RRMCxIehxzB4GqqpQUVZMc0s7bpcaszNIOAChhwntWI8eEpTuPgzVYy/gkIjo6I3Waq90A7s5pWpdbdTgzq7xlvm4rkSu4cuZVqr11kIYJ0pDO5moKV/tgB3DQjPxKXjjY+vLjjyVkWi6Dn3I4hlxa/2pjpXl4gMj7Wy/nWuxc63m65S2EHW1xIw+rZI0yfcznTGkXcweJ2ZymWlnyrC4dlJ2daayDbAiW2Egk0alO37P3xU++OADxo0bRyAQoKSkhOeff569997bsuymTZvo2zc+vHzfvn3ZtGlTdzQVcDQEPUo0TXGEto4QQkS/q6pCWWkRYV2PRR00HUAk0E7L15+C6qWkdi80m8IAgAhGUDrzIVitV2bSEnR1J5BP1D05KKeyhzDHK0jlVpXNOql0F7OjSrUT8TCb9V1zh23V2ZtdEa1I9LOXM3SzYGN1vCxnPn+qctlidX9ke6TQZa5XCmTmQTHRtsD8vO0uR5g/hYqqOGTxDEtBVL6T5pgEua7zSxLfh3TCgPlaJVZGqQ65M2zYMFauXMnSpUu58MILOeecc/j44497ulkpcQSCHkCGFQ4EwzS3dtDa1kFbR7BzX1RTUFzkIxQK7xQKhCDS0UhL/We4y6rx9OqPomoZzrQTvT1A0wcfEe4VFSAWPTk3qZPKFMgmF7KZTZhVxwvrV3XZurzZXc68vJDtAJBoV5AP2aaRToWdwXph/aokTYKZbIWXdCp/u1hFwEz3XOT9Mt+3VEGkzEsUctA1xxiwGvTWTpoX224+Ry7agWzeY6u4BFbksyySSQiQSCHR6v7sakaGuyoej4e99tqLMWPGcPPNNzNy5Ejuuusuy7I1NTVs3rw5btvmzZupqanpjqYCjkDQI7S2B2jvCNHSGogFG1KAiABBVCOgKirFRX6CwTDBYIhw0zcEt39Fab9B+Cr7oCj2H53QDXYsX0XzZ58xa9r8nNqc2KnZ7bTyGSi6er1S2k/kO5iZhYJ0ERtzjUsvv5uD/qTDjqYnkxYhHV0ZE8JKe5PYTrPdhFUOjXQDsGx74kBnHhTl34maGDvCQKJdxJRpM20/d9m2TEJBKmEgU/vMgpvVNVqVg+R7JY9zhILsMQyDYDBouW/cuHG8/vrrcdsWLVqU0uagK3BsCHqA9o4QqhYNNKQoCiVFXor8XnaEDBSg0hu1H9BUhWKfi4avPsPrhtJ+Q1FcXtuhjiWKqlAyeA9cpX7gzYJcg51BIdeBI5qOOfr3zuAomY+TM99cfd7NfuCyQzRHuzNjpVKuqx0Z9fmv3/ndjAxek27mXlcrw0DvjHuQOECaLcYT1+1llD+7QZSsrtkOXRl3wY5dxuDpK6De3uw78foS38t0g6NdzO+LuX51yXIGL8m+PimophOKFz0517b3QGJcBfmv+T1O9/wHT1/BkPmFW0b5PvCrX/2KY445hj322IOWlhbmz5/P4sWLWbhwIQBnn302u+22GzfffDMAl1xyCRMnTuT2229n6tSpPPXUU7z33nv88Y9/7LY2OxqCHqbI76GoyAsKNIYMvmmPYAhACIxwO6HtX+Dz+/H3GwwuT9bCAAAK+GprKNtvaGzTlGkzbasdc5kJ5DO7t1rLttuGQhj4mY3lzJ2teeYkZ9iJVvJyVgjWMzlz3fJjvrbEsL1W91EOBImW/uZ/s3lmVoJLJgohDEh3u8Slm0xLV4lRBNNdayYtlR1NSaZ1dPPxhdaeWLXNrK3IRitgRbYRShPvxRfzR/VI+uPy3qW4fe7MBQuE2+emvHdpVsds2bKFs88+m2HDhnHkkUfy7rvvsnDhQqZMmQLAhg0b2LhxY6z8+PHjmT9/Pn/84x8ZOXIkzz77LAsWLGDfffct6LWkQxGZAuk7FIzm5mbKy8tZtmwZJSUlAPh9bspK/ISFwsrtQSKG4IAqD+5AI8HtX+HtVUPEX0RLcDuV/ho8mt+ybiEEugBViS4/JAsOAkM36PjXSn582iNA7pb3zzXcxwknPpxX52dlIZ6KxHC56crsKtbP5jZLC/NEbUPi7CzxOlMJVXauMVtL8GyeB+SuIUh1nN32mo8320Jk2xYpRJiPy0WI7a73LZe2WXk2QLz3BtjTyKQ6tq52JBERZjEv0NTURFlZWdbtTEUgEGDdunUMGjQIn8+XtN8JXWyfTPdS4iwZ9CAK0aBEoOBWYVCpm5AeQW/aSKhlB0V9BhB0GzR11GMIHd2IQBo7wtawQcgQ9PZpFtEIFBRVRS3eKVAkdhbPNdwHwEm9Zqc8hyyT6PaUbTx5c/lMg4tUo2dSV/aUMJAu1S+YZ3HxQstgonkT7CSTydY1caebnr3y2Qp3uWoIMh2XSTCxSvBUKNIZiKZaIsqGfJZZrDwsEpGaKfNv0+p+ynwddjQyicilGskX80exx7T/2T6+kFTv0edbPUjvijhLBj2AIUIoChT5vZQUeVEUUBWFPm6dPh0bcIVbKdttL4Jug8bAZnQj6mkQMUIp69QFhAzBtoBOQE+t9BGqwtz55yRtlwO9/DvxY1VmwfOzUJcs5/nnzuWZbffE9qXLPmelRreTGMY8K0ylIu6pQEHm3PBmNz4rsok1YPXd7kxx8PQVTJk203bmul3BQGxh/aqctEa5YsfQ0+ySKd/rbCN7dhVyeUq20exaa3ZptEoBnetvxZg4Os6g07Ep+G7haAh6AF1rRnNVxpIUKQrowXZaN36By1dCUfUgUDWMYDNuzYemuHCrXrxaUco62yIGnzWHcalR10UrFEVBK/IR2dTAU9/cgQ54ve5OLUV6zMKA1fZTq+YA6Wd4+a6vxiyk63dmqpNYGdol0t0JiHLRWJgNA80kzursYMcwTWLO/tcTxELu1tvPq5GpXDqNSrqEVKmOkfdTJbf32K4BZKbrkjYkKstt/aasyuQaxjjXXBgO3w4cDUEPINQAQdFAe7AdwzAwOhrp2PIZrtI+FFXvgaJF5bRSb2/6FA2gd9HulPuqcWs7137ChiBi7Bz5i1wqw8o9DCv34HelMDwUgN8L4QhaMIxmGAQ6ghiGUZDrMgsDf91yN3/b3jUxuGVwHLNhnjn0a6oZUHcMdvmcI9VAkGjIlY1QYHcmmBiYqKtJNKxcf75g/fnC5GWRHjtCQ7oymYTDQhnFms9nhdSamROGZSqfD4XOfOgELvpu0aMCwcCBA2Phec2f2bNns379est9iqLwzDPPxOrYsGEDU6dOpaioiOrqan75y18SiUTizrN48WJGjx6N1+tlr732Yt68eUltue+++xg4cCA+n4+xY8fyv//Fr4sFAgFmz55NVVUVJSUlnHzyyUlBJOwiEARDbWzZuIGtn35I6+b1+KoGUNSrGlQFQedsXtHQVA1FSQ5jHNQFLWEjFsnQrSpU+TTKPRqqlSeCgNC27TR+9gnBEghu3U7L+x+hhIK0drShG0ZKzYJd1CXLea7hPp7ddg/hcCQWYwEyd2TZzqYTrfutsvoldnS7glrcTKI6P9VySKLXhd1ZP+yc0dlZOihkHoBM50lEZjK0E5DKzrXnu6SQaVkg3UCYrRbHrOqXpLoHMe1AF8aCSIVVVse1k+b1iJeBQ9fQowLBu+++y8aNG2OfRYsWAXDqqafSv3//uH0bN27khhtuoKSkJJZPWtd1pk6dSigU4u233+bRRx9l3rx5XHfddbFzrFu3jqlTp3L44YezcuVKLr30Un7yk5/EfEEBnn76aS677DJ+/etfs3z5ckaOHEldXR1btmyJlfn5z3/OSy+9xDPPPMOSJUuor6/npJNOyum6Q60GoilEb9d2evd24eo9GM1fhqHohAml1vmb6NAFmzt00pgLxCEiERrf/4hAQwPB1mZCjY2ISIRAoInm8Gba2lsRwiBXpxOzrYGqqni9bsIJglk2ZOs2l877wGw8laqz3lWEBXPsfkgvKNkZeLIRtOQ6dFcHhJLRAuVzSxVkKBWZykXjWKS/7kzagUIPuLlqXxJDM0Pu6n7IfdnObMgoXZblc1hx6BM5t8dh12KXcju89NJLefnll1m7dq2lv/2oUaMYPXo0Dz/8MAD/+Mc/OO6446ivr48lhXjwwQe58sor2bp1Kx6PhyuvvJK///3vcTmlzzjjDBobG3n11VcBGDt2LAcddFAszaRhGPTv35+LLrqIq666iqamJvr06cP8+fM55ZRTAPjkk08YMWIE77zzDj/4wQ9sXZ90O3x3yV8Z2MeDt3wgwldNIBTB6/XQwjbCdFBJLZqS2rxDCMH2oMG2oM7gEjcezUZsAiEIN7UQaW0jtO4b8HoIFhtE+nrB46LSuxsYGl6v2zqpUg7ohsGpvS+Kfbfr2mYul0m1myqZkXlfIlb2BlZuaIXEqi2pjLLsDuLZeB2ku0+p6s6mLdmQqm6758z0rDLdFzvLBZkEsXT7s3XhTMfC+lVJwYdydbWU9Vlhxx4D4jUn688XrJ00jz1fOYP1s37T7W6HDvaxey93GRuCUCjE448/zrnnnms5GC1btoyVK1cya9as2LZ33nmH/fbbLy5DVF1dHc3NzXz00UexMulSSoZCIZYtWxZXRlVVJk+eHCuzbNkywuFwXJnhw4ezxx57pE1NGQwGaW5ujvsAVJdo+HrvB/4aUDWEgIgIoRMiQgiDzDPrSo/KoBI3LrtPUFFwV5Th370fnrJK9I07ELuVoXjdlHqr8Hn8uNwawWA4lmshX8zCQCZkJ//F/FExdb80rrNSd8tANukGOXPSGDPmztV8nkIKA7JeY+LolNoHszAg2yiXAwq1jg7Re5pt1j+r+5aJfJcb7GgI7AhumZZUMj3nbAIRWVFo7YK6ZLmt3AP5kMoDKPG3J4MiLXpybqwdjobgu8Mu42WwYMECGhsbmTFjhuX+hx9+mBEjRjB+/PjYtlTpIuW+dGWam5vp6Ohgx44d6LpuWeaTTz6J1eHxeKioqEgqky415c0338wNN9yQtD1UtCeGqzg6EwcUVdAkthBW2gEFHZ10Mbii9gVpQxKkxAiFEW4Fl8dDCVWIiIHL5UdRFFyaBgKCoTBejwcQOWsKrGIZSBcoqw5TdtLSmj6p3RNHs6jePEsaFTe7zxS/PrETl+1IXMMHbNebisQOFIBJ6Y8xt1FqDtKFHzbPUjO1U+7LxvZAtikbLYRdDUSqdkgf93TXk21OiGyJtmtVyntv935kGxjKTh3mOANWnjb5YBYYYx4fJsHZbojk7mTz5iaamjq65Vzl5X769i3vlnP1JLuMQPDwww9zzDHHUFubHLS+o6OD+fPnc+211/ZAy3LnV7/6FZdddlnse3NzM/3796ctYGAYAq1T1a8oEBahzsRGAoMIAoFiEV4oH4Su0/T+R7Rv+AZF01A3b6dpzaf0/sGBaH5fVChwRcWMQDCEz+shF3kgXWAjyK2zTBzUc81XYK4PrAenRKHFKlxuqo44OstKP+hm6lwHT1/BlIkzc3Zvy0Q2go50b7NDYh6JdEsAU6bNTOliaCuPQReRSWjKJjBUPu+o1W9EetKsfXJVTGgshFCQeJ7Ed1MaMdbVjoxb+spWwCwkmzc3MePshwiF9G45n8ejMe8v53/nhYJdYsngyy+/5LXXXuMnP/mJ5f5nn32W9vZ2zj777LjtqdJFyn3pypSVleH3++nduzeapqVNO1lTU0MoFKKxsTFlGSu8Xi9lZWVxHwBDRNfXJZqqoegacvyPEIIusOwQEZ1wSxuKxw0KtH2xHiMYRPN6Y2WkUOB2aQSDIQwj+4akilkAZK26tkOhBgjZMcolC6kSzSY6XqqB3qx+lzNpszFkorrWjto5l0hz0mWz0LNsKyFDLjuY8xRI5OCWuH3I4hk5vxsyr0G+11YIu4lCD9KSxERMcknNDonlzAadqUj0aJCCgWxftstKhaKpqaPbhAGAUEjPWhvx5ptv8sMf/pDa2loURWHBggVx+4UQXHfddfTr1w+/38/kyZNZu3ZtxnozecTlwy4hEMydO5fq6mqmTp1quf/hhx/mRz/6EX36xIepHDduHB988EGcN8CiRYsoKytj7733jpVJl1LS4/EwZsyYuDKGYfD666/HyowZMwa32x1XZs2aNWzYsCGn1JRCRPMKSBRFRRWumBCgE866TjuoHg99DhtHv6MOp3LgXhQrJdQecxSuspK4clIoUDU1yYXTLs813MczW++23JcuRCx0f8TBbDo4O4NNqjpSRbrLRR1biEHLzrXYaZeVMCDrNrvUmeMOZEqqk8ugbo4Y2RVkI6jkKpRYncOORsd8b6UAlvgxY2WYaCUwZBJMe8L98dtCW1sbI0eO5L77rCdIt956K3fffTcPPvggS5cupbi4mLq6OgKBQMo67XjE5UOPCwSGYTB37lzOOeccXK7kFYzPPvuMN99801J7cNRRR7H33nvz4x//mFWrVrFw4UKuueYaZs+ejbdz1nvBBRfwxRdfcMUVV/DJJ59w//3389e//pWf//znsXouu+wy/vSnP/Hoo4+yevVqLrzwQtra2pg5M9pxl5eXM2vWLC677DL+9a9/sWzZMmbOnMm4ceNsexjEoRiERAhDRAdbTVVRjU6rAQX0ziWDgqOAoqkoHjfu6irElsbO7cnrAtH0yypGjsaFQoi4OASJZBIKciVfYSLREDGb9smyZvesxLCyVp1sLp1qvtdp9vtPh1QTp8NqsLLSFliReH6zLUlPYjWgZyOE2Wm/3XPE2ddY7De7qA5ZPCOlEGcOqy3rlMaEVsKAXY4/9yzbZb9PHHPMMdx0002ceOKJSfuEENx5551cc801HH/88ey///785S9/ob6+PkmTYOaOO+7gpz/9KTNnzmTvvffmwQcfpKioiEceeaQgbe5xgeC1115jw4YNnHvuuZb7H3nkEXbffXeOOuqopH2apvHyyy+jaRrjxo3jrLPO4uyzz+bGG2+MlRk0aBB///vfWbRoESNHjuT222/nz3/+M3V1dbEyp59+OrfddhvXXXcdBxxwACtXruTVV1+NMzT8wx/+wHHHHcfJJ5/MYYcdRk1NDc8991xO12yU76DNu4kOpSU28Ltw4xZ+fKIEL0UFth5IRqsoQXG70Bvis4UJ03+qqqLrBqFwmHA4giFEVsGLMi03pOp0CmW81N2xBazWYs2DaSE1H+qS5bFcBdmSuFyR6T4VahaYeH/SxY/IFfO15Pr8jYmju0UgGfiQEvMokamg7WB+fnJwl4JbYj6NxHKJWAVFytq+5z89Y0fwbWbdunVs2rQpznOtvLycsWPHpvRcs+MRly89LhAcddRRCCEYOnSo5f7f/va3bNiwIWW8/QEDBvDKK6/Q3t7O1q1bue2225I0DZMmTWLFihUEg0E+//xzS0+GOXPm8OWXXxIMBlm6dCljx46N2+/z+bjvvvtoaGigra2N5557Lq39QFpcYQwlTFgEY8sEXrWYClFLJbtRQhV0tUjgcaFWlBCRWgKiwkCIAB20YAgdRQGvxw0iOriHgqFOl8TM1QuBLddFK8OkfNYlzZ4DqTp1O+vMidkb5Uwqm3C3ideRaWDNdnCXQkE2WF231BR0hwCVjxdCJhJV67kO6l2lBk9U50uNkVzmyOe85mBKqZZv0h0rySauhUPuSO80K++2VJ5r27ZtS+kRl87bLRt6XCD4PuIVxWi4o9oBRXS6EaqoQkO1CFPcFSiKglZVjtHQRFiEiBDEQKeDZhrFRtrYAYDLpeHxuPF4XGiaRjAUyhinILpcoHPmbpelLFNIEjunTGpu2QHbyXQnkb7XsvNMPNZqAMtG05GrEJRtZMF0qvyudumDrh1I5LVZZYbM9roKuZRl9rZINMorVP3p6rMrxGbzDjq2A99NHIGgB6igH73YnVJ6IzUBiqoWLMmQLRRQKkuINDfTHNlMm2hCF2G8oogipQKX4olTUkhDQ1dMKLCuVtoOnN73kpyaZeXyZ/W3JFWY2URDNiuySX+bK3Y7zmwyE1qR6TrsDoh2175zERxkICmwF4Qo13thNlgshNdBrm1KTFhUaKS2oRD1D1k8wxnkuxGpXU7n3ZaIHY+4fHEEgh5AVTQ8ig+X4o7FGlAVJWcDvpzbUVYMgQhGIIhQDHQlgo9iyqnGT3II0mShIL69QggiEZ3Tqi+23Qa7HVoqS+tMsxppIJiPUGAm0To7U9Igua+r/bXldVgNgIVO+2y25M91sM3UnlwHucQ8BoU2UuzuWbTZ4C/Ra8Aq4FY2mN/JTPen0ILV951BgwZRU1MT57nW3NzM0qVLU3qu2fGIy5ddJjDR9x1VVTAiIjaoGkLgcbu6dOlAKfaiKiqiLUhbadTV0aeUpA2IJIUCgTAFL1IQQkQzHOap5UjMMSAj9qXLX58Js7YgnRW3nbC4ayfNg3pibbQzq89GGJABe2T92ZAuul8h2pau7kILHZJc65XPZcjiGQVtY3fNonc+l1Wxayn0MoND19La2spnn30W+75u3TpWrlxJr1692GOPPbj00ku56aabGDJkCIMGDeLaa6+ltraWE044IXbMkUceyYknnsicOXOAqEfcOeecw4EHHsjBBx/MnXfeGecRly+OhmAXQVEU9IhOS2uAxuZ2WtsCXa4xUL1uKC9BbRG48ePGm/mgzra6XS40TSUYDEcNDju9EHxeD3/bHk0SZceYycry3A5fzB+VVVY6Oxb1meLjm5EBdKz8uxOtu+U2aVSWDvOsLzHTXbpZWrrrKmRehFTYmWFmiwyilEs75L3rCfdF+W7mi3xvIPvnY2UkKtuVKtaBHazewZ5If1xe7sfjySV4e254PBrl5f6sjnnvvfcYNWoUo0ZF79dll13GqFGjYtl4r7jiCi666CLOO+88DjroIFpbW3n11Vfjkg99/vnnbNu2LfbdjkdcPuxS2Q6/68hsh19/+RllZaVx+4SAppZWOgLR2AQej4vKsqKU3hWFQAhB+1sfgd+Fb/ReqIqWVbhkIQThSIRQKIJL25kpEXaGL04165YddqoBPTHdamK5XGdMdo5LN5O009Hb8bm3M+tLF/o3sVyu90JinknninlGbie+gd0687k287tTKC2GnWyGmcpYtUVeq8wnYDdaZap3yep9M2fYTPw73b1JJzDsMe1/LOaFbs926OQysI/dbIfOksEuhNvlIqBE8HrcFPu9XetpIASBjZvRPUA4iLG9hUgkgre6N6j2zhtNiOQihI7HY728kUpdmykRTtz66MTCJIuB9DH0zW1OZ7OQynsgU/vMx8rOOt3AEYsdn6G9+VJXOzLruPtSoFv05NzYdU2ZNpO1T86F+p0GfZCcna+rhQEz5vcsn2WnXMiUpAni0xubrzUbYQCi79b6+SLufObgX1Hbis4cIJ1LXubnkikvgrx3ayfNs2UQ2h307Vv+rR6kd0WcJYNdBEUBl6ZS5PNQVurH7dZyFgikW2C6aIehbQ1se2spLd9soKN5B9v+t4zApuzCX0btHSKWbU3MZ5CPS5tV55hriGHzbLFQbcnm2KyDvtgIQNTV8eTlvTL70C96cm5c5EUrl7rB01cw8CElrn3ZXH8+8QjM0SbNdMXShhXqkuUMfCjz79ecOEhi5x4lCkvqkuUpry2be57u+tdOmhcXNwF6PqKkQ2FxBIJdCLfbhculgiAnYUBGGJTxBNKuBqkqnsoKPL0qIaRHlyZUJeuAybpu4HZZCy+FEgqynSlmmgXKtelM9gSJ+61CvOaKOZVtIonrtHbiyefi3y9nepmeyeDpK2KajMQoh6kwCw75RJ40axrskM19syJbm4V057dz3bkKmIUyODUjrz3V/U4U0Bxh4LuHIxD0IEIIdEMQMaIzekVR8LjdhCMRW1H+rGhjBzuop5WGWBplKzxVlVQffihVB46iKOimYq/hlI0YimJzuUB6Qyhq+iBKzzXcFycYyPXlbMPuJhpDZUofbCe+gB2hwOzyVaiQyubO3Gogt0rQk2m2nI/mIlPHbrbnsEOhgg/JZ57NwJNPciO772O6e90dg2ShPQTMSwAyx0U6ocDcjoX1q3j+0w8K2h6HnsMRCHoQnQjr24K83xCiNRIduDVNxTByT22kEyGotKETxiB9elBFU0FTIRCCxlYUi+RSicjlCKPToNBt0zXSLBjU1Y6MrZlmYwGfalZkVUc2QkEmzAZq8jhz4qLEcnaQA6yMfmg3XkEhI/3ZnQ2ns/dI1GZ8MX9UnOuo+R7lYg/QlbYTEqn5MVv150MhvAzkc7bKXphvG83Hmw0Lzchw1pmuY8q0mU5yo+8QjkDQQwgEHbTQKprYFoiwpWPn4K0oIDIkBkqFRjRroqa40ZTMA7zicaH2rURvT51yUwoBum4QjugEg2GCwTAetxs1y6UNs7ZgYf2qpM4oVTTCdO6J+c7KUgkOiZ1hYl74RLLpqK3Wt6XmJBVSkEpFT8SXT5yRD56+wjJTZD6BhvLBriYqVfKfXDBnJcxVMJDvV6JtRqEM+rKpKzEgkllQWPTkXF545PGCtMmh53EEgh7CIEKINqqKAuxWAh4tOrBG8xioOS0ZKCi4hBtFqGi4UcnsRqioKq4+lYimNoRhRGf/RjQXQSSiEwqFCYbCBAIhQuEwCIHb7cLv8+BKYTuQDumOaB74zAOZHXe/fGZfiQOMXS1BPrNcK1LFtM+k+s/kmZGtUJDJIDGXGWmhllYgf2GvJ8PxWsWTyIdCeEjI99+JOuhghSMQ9BAqGiVUUaYVMbgMdivaGWRDVXMPY+xWvJTRhxJRid2MiWqvUoxgmEB7gEAwRDAYikYd1I1O10INr9eDz+vB43GjaWrOHhBSQ2DO1GdOGiQxd1jmoEJ2OjJz7IPEes2Z/QrVUXeHWttMIW0J1CXL095TOx4MVkKW1XHZDkbSbsKO6jodU6bNLNgAmO07k0mrkw25CgNWyzpmdhU3Qoeex4lD0EMoqHgUPx58CKJDtxxkVUUhoqdf/0+FiotiKjvPYVMgKCuCcBgtGMFV7Iu1o6szLspZsjRaM89GUw3mElnWPGsy/51Jo7B20jyYJAe8+P3ZqrrzXS9OF9ugK5D+5JJ0A00mAcNq1prKCDHbOADm98F8j7OdKatLlrP2yVXUkfpZ2gk2lCtWsS+6Oh6CWSg2R29cOyn5uUyZNhMm5XaeutqRREQY+CLHluZOfVsTDcHuCUzUy+untvi7H/PAiVTYjaSLVGjGEIJgIITX60G1afWfD0YoQvsLb+EePQTvnrVdfj65bJBIrgOrOVKbuY58B9pchIFcIv4l1pEo6KQ7JlvthKw31+MzUQi7Adg5QKd6J3IJ5WvWNJnvbbbCQDblUwmpULh7b1e4SDy/jIGQ6V6nQrY/IsLdHqmwvq2JyX9/kKCR28QpW7yqxmtTL/jWCgV2IxU6Swa7IAqgaRqRSKR7zufSUHuVIbY1pUxrXEgS4xOYkepLq5wAmUICJwoDqQIB2fGjt4s5UpzZMC0bFXWiit2Oq528BqlOL2R643woVJCkxAE38X1IJJMqP50RaldpBswDtTkVslnrUQgXwmyFAfmuyus2GzDapbuXyRJpCHZ0mzAAEDT0rLURN998MwcddBClpaVUV1dzwgknsGbNmrgykyZN6rQb2/m54IIL0tYrhOC6666jX79++P1+Jk+ezNq1a7O+JiscgWAXRFEUNE1F7zTy6/rzgdqnHGNbE+SZrTBXZHS5wdNXpJ1lmwfgVJg7O/Mx6f7Otc1ma+vEoC35rFtns84uz5ctXdGpF3LpQ87qrdqZaPFu57yFjEJoB/MzsYpGaMeNNl0yK7vXYxaWEn8b6UjVxp4WBr4tLFmyhNmzZ/Pf//6XRYsWEQ6HOeqoo2hra4sr99Of/pSNGzfGPrfeemvaem+99VbuvvtuHnzwQZYuXUpxcTF1dXUEAqk9xeziLBl0I3aXDCAqBQYCIXw+j621fPNjzGXtP/zVVoL//Zii48ah+j1ZH58LqZYOUpFO1ZtJjZvKWt5qhmaewdnp/BLX5M2qach+BmeuJxt1sN2OulB5IdLVbybXcyW2007SqXTnyua6M933QtocpGu7nedvFgwy2XNkun5ZPptn1hNLBh82bOL4fz5SsHPZ4YWjzmXfXjU5H79161aqq6tZsmQJhx12GBDVEBxwwAHceeedtuoQQlBbW8svfvELLr/8cgCampro27cv8+bN44wzzrA8zlky+C6gkJWGIGyEMURuM3zF48IwdESk+9Rw2ZLY2a0/f+e9SdU5y84yVQeXqGnIRYMgY7wPWTwjrj67UfPMA0KiStnuzF8aZxaCbGafXYUxcXTWKux00RwTbQgykasQlwvmtie2zU475HuWKCwnak6yWc4pdDREh+jADdCrV6+47U888QS9e/dm33335Ve/+hXt7e0p61i3bh2bNm1i8uTJsW3l5eWMHTuWd955J+82OgLBLoyiKFkJBG7Vjapk/0iFbiDCOorfC0Ig9O5ZNpDRC82fRLp6YDILErmuf0u7h7WT5rHoybkpB2arazGvLZvJJbBNujgE2dxHObjkeu/N15LrPU3npZDp3In3LFEzYPfa0qnu5Xtj9/nYOd+UaTNtRwhMhZUgAPaXCnKxJzAOcZYQMmEYBpdeeikTJkxg3333jW2fPn06jz/+OP/617/41a9+xWOPPcZZZ6WO/Lhp0yYA+vbtG7e9b9++sX354AgEuyjSwMRuPAKzUUo2GMEQ25cuo+WrL9F7F9H8yRqaP/6EbrEutMAsFKRTl8p96TrabFy7cvUXN8/iZSeaqh6rttg5ZzYz/1Sdfi42BvkYIGa6F3ZIfLZ2n2eiEJJL1kM75VNpJXINpZ2YPKoQs/RsDWizXU5aWL/KiVRog9mzZ/Phhx/y1FNPxW0/77zzqKurY7/99uPMM8/kL3/5C88//zyff/55j7QzZ4Hg888/55prrmHatGls2RJNm/uPf/yDjz76qGCN+76jKgpGjiGM7dL6+XpaPvuctq+/JtjeQri1jVBjc5eeMxNSKMgkDGQi27X3bNe6C6Giz2QcCfGDak+p8rM9r7w3+Xgd5JJ58Iv5o7KevaeqxzyIZ7r+dOv4mbanwiwU2DE0BLKyF0hE5nPIlhOH7pf1Md8n5syZw8svv8y//vUvdt9997Rlx44dC8Bnn31mub+mJmrDsHnz5rjtmzdvju3Lh5wEgiVLlrDffvuxdOlSnnvuOVpbWwFYtWoVv/71r/NulEMURVVieQS6iuKB/em13/4UlfTCVVuJd7c+VOwzHLtRDruKdK6JZvJ1ozN3mtkOINkaX1mRbvD6Yv6o2IBqTBzd5cFs0iEHx0z2BYlW/4UyvDMPzJkyVCaSTRtk/eZ6skmSlY3gkA12A0nlcj7zEkUu75eT7dAaIQRz5szh+eef54033mDQoEEZj1m5ciUA/fr1s9w/aNAgampqeP3112PbmpubWbp0KePGjcu7zTkJBFdddRU33XQTixYtwuPZaZF+xBFH8N///jfvRjlEUbO0IbBDooCh+n0g3KAoBGrcGHuU4aos62l5ACEET226k6c23Rnblspqv1Cz5mxmR11tqQ/R65Qhnhc9OTenGbMVU6bNzEm7kWi8Zr7vVuve+d4f8wxZnjMbQ81czm+VrMlObAnZ1kxtMwtWdjDfg1S2BebMiBIpSNod4GVsgmyQ53M0BNbMnj2bxx9/nPnz51NaWsqmTZvYtGkTHR3ReAaff/45v/nNb1i2bBnr16/nxRdf5Oyzz+awww5j//33j9UzfPhwnn/+eSC6NHzppZdy00038eKLL/LBBx9w9tlnU1tbywknnJB3m3MKXfzBBx8wf/78pO3V1dVs27Yt70Y5RJH2AIL8xmcpAEREmKAewq/50ZRo7gQjHCHc3o576AAqS8pxad48z1YYhBBEdIOzdrsMiF8mSJzBWXV6mWbT+cy2Mw02WRlkTRwNRLMcqljPZOXasnlAKJRmIlviB6RVUB/9S6bRNUeNzBcrY0A7RD0U8j59HIlCgVVbhiyewdr6ebHvqe5BpvfSfB+tSI7KmVzOrvZK1pXq3UuFfG97il5eP15V69ZIhb28/qyOeeCBB4Coa6GZuXPnMmPGDDweD6+99hp33nknbW1t9O/fn5NPPplrrrkmrvyaNWtiHgoAV1xxBW1tbZx33nk0NjZyyCGH8Oqrr6Z1J7RLTgJBRUUFGzduTFKBrFixgt122y3vRn3XEUIgkLN00flRk3IPRAUCJZoKWcttkBZCEDSC7Ag20BRqxBAGg0r3xK9GX26jLYDny60UDR+Iy1M4H+JciQkvER2XpvK37fdyctWcghiBFYpMEROzITFaXDpS5a6Hro+ND+n95Qezgjqiro9DFo9iMLm3Jd197MllE0hvHDh4+opYvoRc7Rfk8zXfa6u67IR0thv+Oheky2/0fOGc68mV2uJyXpt6wS6dyyCTdrd///4sWbIk63oUReHGG2/kxhtvzKo9dshJIDjjjDO48soreeaZZ6KW8IbBW2+9xeWXX87ZZ59d6DZ+5wiGO0D1gCIAA1BA9xJdwYkf+DVVQTcMVFUl11xDO4INfNP2NQJBta8aj7ZzmSccDKP364VaWpTr5eSMfNENI7qMYQgDIUB0fvd43RgWkRPNndy8L29hxoAr4/bf9/Gvmb33DVm3Jx9VdHS9PzlJU6GR8QYW1Sda70dn6+Yoj6kGhHQxG1LdAzkjzHRd688XBbHrSHUPM9UtAwZ1ZbIiO0masg1ulS4HhPyeKmmUfCcSrzeTMJBPwCg770JXU1tc/q3NLbCrkpMNwW9/+1uGDx9O//79aW1tZe+99+awww5j/PjxSeoOh2RCIZ1QOIRA3ykUKNHBUcT+MxAYqJrSOSjmbktgCAOBQEWl1FMGQqAbEQxhEAqFEAP7oni6N/GlEIJQKEwgECIUjnRmd1RQVQVFgfaOdjZv3srmLdu496NruffD5PfqoU9vJBwO8/AXv43b7vf7mV9/B09t+gNPb76Tp7fclXRsJrWtFelmVHK9H7JT55vXh+2uK5vd02Dn+q/ZuE22KRvSzX7tqqCtslTmwpRpMwuucTEmji5Y8KZ8Q1ObSQwtnA6zW6K5bLbJmXp6MHfYNckrdPGGDRv48MMPaW1tZdSoUQwZMqSQbfvOIUMXr1+3BlVTKC5VcbmU6FhveKLGfQhQQ6BEhQAhFAJtCn6fL+sYAxAdeLd0bGZD25d4VA97lQ2hI9yEaO7AH/IQrN+Ou7wczeemaPd+KO6uFwyEEARDYVRFwd15PhmEKRAMsn37DoqL/BQVF6GpKoqyUzsi70EwEsbjciUFYopEdCK6jtfjTrpf2YZKNmPOEpgpPC7YFwpyzQ6YaoaaTxZEsBYicgnhnM+AIwfIQnhxWNVXSA2OnSUMq/OlyjyYbT09hbktPRG62CE7uiV08R577MGxxx7Laaed5ggDWaApGkW+YtpbDQy9Ux5TOo1j1AgokahAoAhQjKgmIQ98Lj8lrhIqvJV4VA+iI0j70tWENm7DCAYIbd5Ex1dfE0kTMrNQCAERPbo04Ha7YsGUorkbgmzb1kBVr0oqKsrxejy4XC40TUVV1c5lk+gg73W5k2wuADRNRQhBOKIXzEOju9atCxmIJtu6UlnSZzMIyTpy8WWXyDgChUySpC5Zbpn5shDJp3LRFCRqBLJJOGQm22dcCO2INGzdVQQTh8Jiezp42WWX2a70jjvuyKkx3xcUBdwuDcPw09bWTkmpC0UxAMPSpUDRouvsWg6GhYqiUOouZUj5MBQUdBEGw8BVVIQmVFzl5RhCxwiF0PzZWdFmgxycdd0gHI7g8+6cwQsh6OgIsL1hB316V+H1pk/olGmf1+MhGAyhAC6Xy9L2QsY5EAJC4ejSRXGRD01TOblqTlxZszCQzhsgW6IZHuNn1tkEXUpXNpd2FkLoqasdGbW0r89NS5DYhoX1q2Jul+mSPWUjtGVzb1JpTjJ5uZhJFtBy0+IkXv+QxTNsG2/ma1ORqHlyhILvJraXDA4//PC478uXLycSiTBs2DAAPv30UzRNY8yYMbzxxhuFb+l3gMRsh0II2jsCoIYpKvKA4Y4W1DotZ5XOASsgcClFuFxa3m0IRTrYtuNrfNsNPF824du7P2rf3iAEqrcwWQ6jb5TAMAwMIWJGg8IQoIDX40ZV1c6ygrb2DnbsaKS6T288Fqr+XDCEIBgM4dJcuFyapVAghCAYDBMKhyku8qNqakwWMy8vPNdwn+3lhlxV9vmo+lOp+adMmxmzBrc7WJrry7XTz3UZxOr8EnktayfNS5se2277rJYO0gkbkNlITwouYDL+tNB0pFseSIyQmCj4daeXhd2lG2fJYNfH7r20rSH417/+Ffv7jjvuoLS0lEcffZTKykoAduzYwcyZMzn00EPzaPb3C0WBIr+X1vYIwQ4Fr0ftNC5UiXofRMsoGhi6AeQnEAgh0Nsj+D7aQknDViivwlVVAR53vpeSeCYCwRCgoCoKqqagKCpqQr4FIQStbe00NTVTXd0bj7swwgBEgzr5vB4CgRAgOoWCnXULIegIhIhEdEqK/TEBRZIYKdEsFKTzNMjXN7sQMy+zb/ngzF5NcaydNC/mrZCrL7+cyWYbSClxsEucWcfc+ubbCxWcDit1e6aQw5k0MubB32yJbxZAhiyeweA0M3VzACYz8ty5XGuu2oFURrKOduC7S042BLfffjs333xzTBgAqKys5KabbuL2228vWOO+23TGItDCFJUoBMMBdF16E+xU2ggRFQpyTWu8sx5BuKWDjmWf4V6/A0WJ4PMGoEBagaTzGQKfz4PH68btcuHStDgbACEELa1tNDe3UN2nqqDCgERRFLxeT9TQMNLp0igEkYhOa1sHhmFYCgO5Mnj6Ctux+wthoW6V4Mkc7jhX6mpH5j0LLVQyJWmPYB7QzBETczlPVNiJpqu2k5gocf8X80fFjrPKLmjlBSC3p8vPkYpcrzNXUnljJNoPOCmSv3vkZFLe3NzM1q1bk7Zv3bqVlpaWvBv1XUe6FaKFACM6m/WrtHd0UFLsR6FTJBCCSATCQRCGAbmO3YZA/3orgffWACECRwxBNVrxNYdBy38ZwowccFVVtYx3KEMnNzW30NERoE/vqphxYVegqlGhIBgMoxs6kYiOYRh4vR48WZ5XagnSzY7kwCVnZalmlamy54H95QOr2eTg6SsK5lqXL4kz/FxmlYUK1yyx0kKAeXBbldL+Ie44RnYuE2R2GbTrrtlVZKsdSLdEYN6ejQ1DVyD0ejB2dM/J1EoUrcDhL3dBcpoanXjiicycOZPnnnuOr7/+mq+//pq//e1vzJo1i5NOOqnQbfzuoURAC4D0HjDcuD0qmtugvSNAJAKhoEGgXUGEPHhdRajE5zWQA6uuG4QjETpCAVqDbXREOqLlBIR3NBHe1kj7Z1/S8dHnGF6DwKTdqa8oZauvAqPARoRSGIhEdDwWyxBCCELhMJu3bCMcDlPdp2uFgeg5o7nII3qElpZ2FEWhpLgoL42EnZmR7IRz6ehzGTh7KguiHeRsuScyJppJF/LaHMvBDvIdkJoBqzbuas8kV0FRakES700hYzFki9DrEVuPQmw/sXs+W4+KCiA58rvf/S6Wh0ASCASYPXs2VVVVlJSUcPLJJydlMUy6biG47rrr6NevH36/n8mTJ7N27dqc25VITgLBgw8+yDHHHMP06dMZMGAAAwYMYPr06Rx99NHcf//9tusZOHBgbE3Z/Jk9e6cB1zvvvMMRRxxBcXExZWVlHHbYYbHkEAANDQ2ceeaZlJWVUVFRwaxZs2LZFyXvv/8+hx56KD6fj/79+3PrrbcmteWZZ55h+PDh+Hw+9ttvP1555ZW4/QV9EIpcFlDB8IJwowg3fr+K6jLoaBO0txjoYRWPx4OmqWgujUAwHA3mEwwRCIbY1tLA+sYv+bzxMz5r+ox1zetpbI/GvA41NLJl8X/o+OQLWtatp8MbIdBLQyt1UV2sU1nsQtF1aQEYu8ZcsivKY2IxALweVFVJKtPS2sq2bdspKSmmT++qTg+AwgsDsaUBXaetvYO29gAet5uy0mJcLi0W/ChXcnHry8SUaTMtXf5yDc6TS+ffVSrgXDPpFTrSYLrzm8+V6fnKfVIISOU2mO+sP9/B1vwOyL/TBWdKNfAXKh5EQTF2AKFuPGEoZ23Eu+++y0MPPRSXsAjg5z//OS+99BLPPPMMS5Ysob6+PuOE+tZbb+Xuu+/mwQcfZOnSpRQXF1NXV0cgEMipbYnkJBAUFRVx//33s337dlasWMGKFStoaGjg/vvvp7i42HY97777Lhs3box9Fi1aBMCpp54KRIWBo48+mqOOOor//e9/vPvuu8yZMyduzffMM8/ko48+YtGiRbz88su8+eabnHfeebH9zc3NHHXUUQwYMIBly5bx+9//nuuvv54//vGPsTJvv/0206ZNY9asWaxYsYITTjiBE044gQ8//DBWpqAPwnBFAxHpPhBa1J/ecKMIL36vn9LiYirKywEIhSOAgsftwt1pGOdyaXg9boQ7QpPYTjutGGoYVRMgorkPgl9twgiGEC4F1569EZqBWuajROtFtdaPcm/fqEAQicYhl7kVwkZ0OUMX4bR2C3LQFZ1eBIFgGF038HqshYGmpmba2tqp7tObkuKiLtMKCCHQDZ229gBtbR24XS7KSovweFzohoGmqmQp71iSatZq7nizQV2yPE49bp6t2hEMEgefbAbTQvqWJw5iVr7/2WT7AwoakyAbvpg/Kuk5moUBq9gGVnXkSr4ChfkdkLEY5EcO/vLfhfWrUl5PumvsybwS3wZaW1s588wz+dOf/hRnc9fU1MTDDz/MHXfcwRFHHMGYMWOYO3cub7/9dsqMwUII7rzzTq655hqOP/549t9/f/7yl79QX1/PggULCtLevCIVFppLL72Ul19+mbVr16IoCj/4wQ+YMmUKv/nNbyzLr169mr333pt3332XAw88EIBXX32VY489lq+//pra2loeeOAB/t//+39s2rQplqr5qquuYsGCBXzyyScAnH766bS1tfHyyy/H6v7BD37AAQccwIMPPogQgtraWn7xi19w+eWXA9EH2rdvX+bNm8cZZ5xh6/p2uh2upaysNLZdmP4/ioKCQiQSHdhKS/yxQdZcKhDpoEMP4FJceDQPmqKhd0Qw1m1C/+RLjDG1RGo8RDxhaAojijSKfJWU0gfFEGiff4heMwBREk133EELHaIVQwljoFMsKiimMs4QMDrgCkSnS6F8fdydAYQSB/qd9gId9Ond27JMIYgKJgaBYNRzwOvx4I2LdQC6YRAKhWNuj7k0I5P7oXQ1k52oHZc1SbpBOd+1+FzPmwtSNW92u0vlldGVqYzzJZUQZieqYE8jBRk70Q/TuXHaufc94XYowh8htp9YsHPZQal6HsW9T1bHnHPOOfTq1Ys//OEPTJo0iQMOOIA777yTN954gyOPPJIdO3ZQUVERKz9gwAAuvfRSfv7znyfV9cUXX7DnnnuyYsUKDjjggNj2iRMncsABB3DXXXelbEeXRio8/PDDOeKII1J+ciEUCvH4449z7rnnoigKW7ZsYenSpVRXVzN+/Hj69u3LxIkT+c9//hM75p133qGioiImDABMnjwZVVVZunRprMxhhx0WEwYA6urqWLNmDTt27IiVmTx5clx76urqeOeddwBYt24dmzZtiitTXl7O2LFjY2WsCAaDNDc3x32i7BzchaKDGozaFMiPogMCTdNwuTQCwRBC0RFqeGdZRcfn8tPL0wtfcwQ2NhJYsx59fT2hb74hNKYXof4e3L5ifFoZRqULfK7o7FgIUFWErwjR2hhrT4QgAaWJEO1ECNGhNBFRQkgxRGoCDMNAURTcLhdejwef15Pk1gfRQbq5uYWO9g769K7qEmFALg20dwRpaw+gaRqlJUX4fPHBjRQlmijK43YRDKXXfqTCLAyk0gCoS5YzZdrM2P5sLcRTzSizWd/uaewIA98GpCeCRHondJUwUMhcC4uenGu7nemEgULZb3wfeeqpp1i+fDk333xz0j45QTULAwB9+/Zl06ZNlvXJ7X379rV9TLbk5GVglk4AwuEwK1eu5MMPP+Scc87JqSELFiygsbGRGTNmAFFpCOD666/ntttu44ADDuAvf/kLRx55JB9++CFDhgxh06ZNVFdXx9Xjcrno1atX7AZt2rQpKU2zvKGbNm2isrKSTZs2pb3JuT6Im2++mRtuuMFiT6eXgRqODf4xk3wBqGGEHp3B+n0eWtra8BBBU81lAF0l0tzK1rf+S0ltf8KtrbhLSujorSAGePEqLkqoQmDgowRVuFAVDToNFI3icrTtG9HRQaj4lFIihNBw4VbcuFQFTRgII9o8o1Pl7s0Qt0BqDZpbWmhrb+/UDCQLDPkgjQWDwRBhXcfjduP3eZOWK8woioKmqXhwEQyGYwGLXDbbJmMTpNMSfDF/FAMfyn7dVc7E7Fpt93Qa4ExIYaC7LNHNcSOEEITDEXTD4Mxa+xFWrTDnZujq68jV9sMKO9EYZaRMK8yxLByy56uvvuKSSy5h0aJF36qgSjkJBH/4wx8st19//fVJBn12efjhhznmmGOorY2+oTLt7fnnn8/MmVEpddSoUbz++us88sgjllLXrsavfvWruJDPzc3N9O/fP/pF0TtzFiQcpABCBzWEMLyoqorX4yXQ3kFRSWfEvViZCELXUdEgolM0sD+qz0tQVwmrBgZRYUMVGm7hxzAEumEQiASjAY/cPjztLYRav8FTUotLeKigX3RwFAIIdiZZMjCESkTXcblSvzJySSEQDNLa2oau653Gg4UTBqTNQjAUJhKO4Pa4KPX5UVK4OSZiFgpCoTDSxzObNu4UDHZ2luYBWmoJFtV3nTFWYjS7riZbAUQa5g18SMmolk6HTLucDUpn0iwlkj4HSLr7t1NT073LFYUw4LMrVKR7HoUM0f19ZNmyZWzZsoXRo3c+C13XefPNN7n33ntZuHAhoVCIxsbGOC3B5s2bqampsaxTbt+8eTP9+vWLOyZxkp4rhYnI0slZZ53FI488kvVxX375Ja+99ho/+clPYtvkBe+9995xZUeMGMGGDRuA6A3asmVL3P5IJEJDQ0Ps5tXU1CS5csjvmcqY95uPsypjhdfrpaysLO4TQ7iwvP2C6Haxc+D1etwYEZVIZKcXQNQIMIzY1kRp0EvxwD3wD9gNb3UvPL1qUMIudF0nEA7QFmyPrq3rOsFwhNa2AEKAr6SESJ/+eL6uJxJooyXUjrRfAAV0DxheDAOCwVB0CUNLbnN0RhamqbmFTZu30NTUjN/no7pPn4J6EhiGQUdHkNb2dhQFSkr8+LzelDEPUiGFAr/fi8/rIRyOYBj5mdLkY9SXDYlpgfMVBux6FkgBxGwQmGp5w7xdGqrlEpAHogOkXIJJVTYxqiQQM759anPqdVWr5RxpZCf3ZZuoqSvd8L4NhpgOUY488kg++OADVq5cGfsceOCBnHnmmbG/3W43r7/+euyYNWvWsGHDBsaNG2dZ56BBg6ipqYk7prm5maVLl6Y8JlsKKhC88847OalH5s6dS3V1NVOnTo1tGzhwILW1taxZsyau7KeffsqAAQMAGDduHI2NjSxbtiy2/4033sAwDMaOHRsr8+abbxIOh2NlFi1axLBhw2JWn+PGjYu7ybKMvMmFfxCdA67h3mklGDUoiKZA1r07vQ+Idm4+n49Am44uBM1GEyFC6M0dhN77FNewWrS+FSiqAqpKkbcUVfcSCRs0is20ubfi9iloHoHwBHAXiVjaYVFZjVraB983GyhR3Oi6QSgcJhgKEw4ZhIKCUDCC27XTy2Gnd4FBe3sHW7duY8vWbei6TlWvXtT0raakpLggNgMCKQgEaGlth844Aj6vJ2fDQHlPo5/C2jVYJefpKvL1A8/WWC8xOmC6mbXVdefaVmkZb3U+K2FAErVzsRd4Swo6+c7Qd+VlHDtIO4Zd3WhyV6e0tJR999037lNcXExVVRX77rsv5eXlzJo1i8suu4x//etfLFu2jJkzZzJu3Dh+8IMfxOoZPnw4zz//PEAsjsFNN93Eiy++yAcffMDZZ59NbW0tJ5xwQkHandOSQaKvpBCCjRs38t5773HttddmVZdhGMydO5dzzjknTh2tKAq//OUv+fWvf83IkSM54IADePTRR/nkk0949tlngai24Oijj+anP/0pDz74IOFwmDlz5nDGGWfElh6mT5/ODTfcwKxZs7jyyiv58MMPueuuu+KWPS655BImTpzI7bffztSpU3nqqad47733Yq6J5gcxZMgQBg0axLXXXpvXg1BQEEIDtKj6X7g6kxupsUiFAiFFAtwuF8Ggh0AgTMDTQVgP41/diFJZgmf/fqCFEUbUcFJTVTQPhIwgEV3gDvto1wME9QBtRiOa7kVv13G53WiaC6OqhqL69bR9+SlbKivxefwopSplwodPd+P2emIDr1yfbWtro72jA03TKCkpxu/zxYUmzhcpdARDYUKhCG63i5KSolg+hEIiIK3tQSoy2RRkE68gXSY/M4kdda4DkFkYSDcAZkqsY7XfmDgaJiXXmy5joBXGxNFxa9y52E1kelfMywZ2kx1lqs/OManKTZk2EyZaa5hSZbhM3Ca1Ktmq/O16JjgUhj/84Q+oqsrJJ59MMBikrq4uKY7PmjVraGpqin2/4ooraGtr47zzzqOxsZFDDjmEV199tWB2CjkJBGVlZXE/NFVVGTZsGDfeeCNHHXVUVnW99tprbNiwgXPPPTdp36WXXkogEODnP/85DQ0NjBw5kkWLFrHnnnvGyjzxxBPMmTOHI488MnZz77777tj+8vJy/vnPfzJ79mzGjBlD7969ue666+JiFYwfP5758+dzzTXXcPXVVzNkyBAWLFjAvvvuGyvTNQ9CicYjQHRqBHYKAlH7AoHQo/uFEHg8bra17iBSHEaNRHBtaIChtQRb2tD1ZgwdDF2NGtuJAIaq4FbdoLgJEsbl8lKp1qB5NVRF7VTzNxHWw/TylaNu+5JwnxLUXj40oaCrAlc4qqkwDIP2jg7a2tqJRHSKivz06d07pmkorMFg1HOgoz2Iy6VRWhK1EUCQV0ChdITDesyOoJDnkEKBHVe1gQ/ZO7FVpj67yKRDmYz9rGbzmVzT5IC1dtJOdbWVwGDX9kHO1s3158Lftt+blNI6sQ2pIvFlS6a01Jko1GCcTzKjbwVqJdFY7t0VnMjTec7cWbx4cdx3n8/Hfffdx333pdZyJUYFUBSFG2+8kRtvvDGvtqRil4pD8F1HxiFYt/q9nXEIFAUFFaG50Q1BRA9jECSiRzAMA6F70CNgGFEDqY5AEF0JUaRoFL+zDuXQIQQ8XvxFGi53VDhTVQ1Dj8563R4VxZBLEPErRIYRDSUcCobQQu0oX33O1qGDUMu89AoW4XO5UVEwdIOt27YBCqUlJfj8vi6ZqYMpJXEohN/v67RBKPhpTOfr1HpEIui6gdvt6rSTsCcYRDM2duBxuztTN1trDOwM4JnyHyTWB5ld+hKT0eQjTNhpjyRd3AE712dHbZ1uucCMECJJIDCfpxCGfOk0KXZm9fJ7pudqp65cU2nngjFxNMbipT2S/tjJZWCfgqc/NjN48GDeffddqqqq4rY3NjYyevTomMuggzVasBEtENoZZEhAc/MO9EgQRRFomorL5UbzuNE0D5q3CFUBRXUhStx0BBX8hkaHMPAXefB4PHhLXKiqggACHQYtzQY+H7g9dHojKLS1BSkpLkIIA1AwEHSEQ2gKaB4fwusn0tyB1+3Co2poqBiGoH7bJtr0Fvaq2QtNKaz7oBlpNGgIQXFxEZqFAWOhUZSo1O1xuzC0TsEgouN2uzpDHKe/1nA4AkLg8ewUXKyWEtKpgiVyYLIzu7RrtW/WUEj1eyEHCnO8Abt15zJ77io3y0KF5TULA6n2JW4zX5P817zMlM812xU+80VdspzIISPhPy/kXVe2KFotfIsH6V2RnDQEqqpaxgDYvHkze+yxB8FgsGAN/C4hNQTLFj5KVVUVHe2t7LbHYDTNRVtbC76KWsBAwei0KzBQOvMfCz2IIqLbhQGEDdqXrMd3cA1qkYHiUhDeYoS3jLBw0doUQUOnpFSgKSqhoIuPPlnH3iOG8Pn6evxFRQSDQUKREHqgHV0Hva2VPfbej03btlJWXEIoHGbr1q1UD6yivLyUvkV9uyz3QCQSob0jkBRhsLuJJYwKR1A1FbfLldK+wDAELa3tFBX50hqvScGgK9Zo0832u9o4zG7woWwHNjv3ya52AHZGqPT7vMDO59GVERDzFWBSuWra0T7Yva5ClXtmzXIqh37R7RoCB/t0iYbgxRdfjP29cOFCyjvj7UPUx/L1119n4MCB2bf2e8bnn35I2Zgf0N7WgqHraJoLVDfCUxq14jeVjf9bxDaIiI6hbSISqMS9e1+ItKKEGlGa6/GIMJXChSEg3AAhFCLCQ2tLI5vrv6J5RwNffxOkrKyC4pIS1q6vZ8CAAWheP1+uW8/Whh243BrlvctoaW/h4OrRuAqcJjl2TZ1LBO0dAZTOVMU9JAsA0iVRQ9NUwmGdQDCE26VZxikIBkO4XNaumOlINVDnMoDX1Y7sMatwu5EIMw2MzzXcCyhxGpVCXo+hG3H5T55ruI8TTnyYKdNGZzS8y/Xerp00jzpGZqwj3VKDXZsSB4dCkZVAIC3qFUVJikjodrsZOHAgt99+e8Ea912lV+9qtm3diNvjjRrL2baWU3YGMnJpuPr3Jbz2awLVRXjLXLj9NSD6AAaK4cHQDZob2wkEWnBpLqpqBuAqraDaVc7A4iLa29rx+/2MG9cr6s5HmMbGFrxFRZSVluLyuvEoPtpaAvh8ntgMqxDIAEMdgQCgUF5WQnNrW8Hqz4foo4gGt3G5VELhCJGggccttQVRI8tQOExpSeZETYlLCOnCHheSnjQSyyZoklAiIDSea7gvY64IyE47AKDrBi53vEC74PlZts4FuQsFO+0qUuehSJWOecjiGXC+YO2TPZPHQZJLYCiHby9ZCQQyeuCgQYN499136d27d5c06rvO8H1GU1TkQxjRmYswomv62aAoCu7B/Qh/tI7wFxsxhvbGVS798lWECorwoKltUW8FVPrV9KW0tGTn2nyfeBsQdftmepW60XcfDgK2NzTSu1cVLS1thEKhzkyG8W3IBgHQmSY5GAqjd6ZK9nqiSwSqEvWQ6A7bATtE7QuioZr1TgFAUVQ8bhcdgWCnNiN9W61W5GSIWjuDjFmYSOXmaA55m+3A1VXaBbvq8r813gFEUER0wJZCQeKgb3fwTkS6r5o1BBI7oajVJcuTMhxmUqGnG0RTeZyYbQ/i7Arqd6rsU9knmDULdgfwVNeQqKWQ7eypBFNg/RtyyA6799DxMuhGpA3B5yv/RWlJMTv1/wLVV467uDKrQVaEIjS/sxLF6yHs1indczf0YBhfvz6EgGY6iGxtw6v6KfIXoWoqhi5wuTUMwKWqqOYEQA1bUJsa0AcOQwDt7QE6AkHcbhcejxufNxrnIKiH8Wr21/llpxwKRwiFwlEjPo87aX2+rS2A2+PC487J1rVLkT+TSEQnEAgRikSoLC/N6KZoGIJAIBiN8ujWCAbDnLVbNJy1eRBPNQCmmw2bB7Jnt93DKb0v4rEvbkEJbuOsEb+3fW35CAV2XSoTiV6XYOeimIzJjaVAILfvPDaxk7N+DtIeJJNdSiqhIDFOQTqGLJ4Rl8Ia4jUCicdPmTYzFjMASMqSmViXPIdsT2L7zOfIJLBkY0yZqXxowt68+Z8bC25DoOs6n376KdXV1UkG7A7ZsX37drZs2cLQoUPR0iz/2hYI7r77bs477zx8Pl+cn78VF198cXat/Z6wM/3xZzG3Qys/U1sIQcunn9OwfBUVffsT8QhCLc1ovXrh3X8fwh6dEEFKIh6K3X7UzplsIBjCMAQRVaHY40btPGdYCeLavh13Syv6gKEkvhQyQqEhBO2hAF7Ng6YqsZlXcqZDgGg8gVAwTEQ3cLk0vB53ygiGgU7PC7/Pk7RvV6KlpR1FVdBUFbfbOu2zJBzR0XUDVVUIhyO4XVo0zr4Sv2aerRocooPd5i0tzNnnav62/V4A2psDBNqClPcpRXOpKd3tEslFKEicOSeSzrAul+tNJBokK0goJPB6Pbhcaqcb705CoQgAbrc975hsNRGJXhZSKEhn6Ln+fGE52EvMngbm0Mmx+BFpjArtCAS5zPbTCX5dlf4YYOPGjTQ2NlJdXU1RUeblOYd4hBC0t7ezZcsWKioq4nIgWGFbIBg0aBDvvfceVVVVSdkD4ypUFMftMAVWAkHOCEH7hm/o+Loer68Epbmddi2AWl2DUV2N3+dB8SpEtHYgTLGoQMMdTf1rCAwAI7qOX1LipZUG1G1bKGtT0QcMi2YTFAaGbqAb0X+Nzpm+nBVH4/8rqCqoatS4TgoIEV2PJg8iqg3wuGXQn9Q/6HA4QjAUpqTYn9+96UKkZ0FZaVFnHIcICnS6HcZfnxAQDIVwdRopSgrRqQkhaGruIBTS6V1VEtO0CCFoa+wAoKjMh6IqcUJBqnX6bAWCXNMbF0IQkETtUHR2NAbo6Ajh93spLfHi8cgZkEIgGMTjdttehjrhxIdz0pZkYzOROPu3G9FSChtmLYHZGyGX2BSp2pcqBLfVcV0pEAgh2LRpE42NjQWt9/tGRUUFNTU1GfseZ8mgGymoQCAxBPqWRjreeh/XlJHoLg8ulzvqV49BhCBCEXiEn0Ag3DlAqRT5fUR0g4ghcLkUwpEQ2o5taE3NtNcMjA7sioKqRhMBaaqKqqmoSnz+AEOIqNCg61HBoTNJkKappo7YXpAfXTdobeugrLS4Rz0NUiEEhEJhwpEIxUV+okkhRfQ+hiNomhqb/UPnckEwFBXOCh1uWQh27GihuLgIj0dLEEQEoUCEcCCMv8SL6orXYKSaBWeTlTCX4DeFFAYksvsKBIK0t0foCEbwuDVKij14vS5CoQg+m/f/pF6zsxKMEtf07dpNSIFALhXI8yVqG6yQwoDV0oTd4Ffmc6Zro113xq4UCCS6rsflo3Gwj9vtTrtMYCYngeDGG2/k8ssvp6ioKG57R0cHv//977nuuuuyrfJ7QZcIBIDe3E7T/z7GP3oo3oqS2BJAG9EoXuVUIwS0RBox1AB+UYJqFOF2abQHg7QbTbi9KqXNIdSGJjr6Dcbr9eycVSnR7Io6EXTCGBj4KI6mXU5Avk65DIBCCJpb2igtKc4pt0BXYwhBa0s07oDLFHdALo+EwvHRDqX2wO12F1zAidplGKRKzhTVFLQTaA9S2bccVdPi2pAoFGQTYCiTMJBoGGjHHiJfdtp4GLS1BWnvCFJS7MLtduPzeW2/j9kKBXZJF8kxcY0+lWCWSYtgx5YjV5sP2UarY7tDIHDoHnISCDRNY+PGjUmBibZv3051dTW6nj4P+feVLhMItrfQ/s93KTpmLKLcQ4fSRJtoRFfCqGhUUoOiwg5jMwYGZfTCaPOjKRqBYJiQpxmK2ilpjFDeCKHdhxLUg6henbASJEIInTA6EQx0FKFSRX88SmGDhcgwwH6fN27A3RWQ8RJ0w6DIbz3ASBuLcCiC0fmz6grtgF2EELQ3d6AoKr4SbywqI6TXEkD+AkFPIl1aDUMnFNbxuF2WcSQSSeUWWgjhwI6QYWeGn04osCsQ2PEuyOZYRyD47pCTObdcR05k1apV9OrVK+9GOdhHGAaiIxid/anQxg5aaQAEGi78ShEuVaCg4FV8hMIGkYiKz+XG43ajqhoiYOAziilWgyiiAU3TCIWDdIhtCCVeuFNQUVExiHTB1XRmdQyFC5I6uZAYhojZN6RqV9R1UsHrjbopqoqCkqU7aSFRFIWiMj+hQISWhlZKKqKeJoqipBy063rNjqq06+dFv6ewkt9VhQGQwaWiBq+a5iIQDNl6n6Rmw+zGmS9SEEg3UMvBOJMwEF2iSC0QZPIcSCdMfNvTNjsUhqwEgsrKypjh1NChQ+N+YLqu09raygUXXFDwRjpYo3cEaVz1IR6Xj0CFSnjNWtyDqvFXlaKgUKQW41aia/iGIXAHS3EbbvxuX6fxX3TwcrvLoh4DNHSqXgUexUcw4kXx6Gi4ceHGLbxoijv6EYV3DVSUqHFeS2sHum7sMkJB1Dgw3BmYKL1xWjSmkdJlkR2zRVEUPD4XoQ6Fxi3NVPYtB9X+ko6VqjvVwLIrCANmpEZE01R0Q5Dh0cVRKP97O4JANoOxbEsqe4NU7TV7LaTKcploGJmoNZgybSaL6guT+8Fh1ySrXv3OO+9ECMG5557LDTfcEBe62OPxMHDgQMaNG1fwRjpYYAiaPviY9vUbcPcfSPGeA+nYsgVXSKNI6QOAQhhDhImEFIyIhs/lR0twv1JQUFTQCSMwIBIhGAyhKholeh/8wo2iRFMgR/+nyAO7BEVR8fs8tLZ14PPKDILStbFrzpkZQcRkSPhtQ1EUSiqLCbQFCXaE8Ra5Y9sTkbNkGXbXiinTZiaF/N3VhAEzCnQG/8pPSMslP4HVUkEugkCiAWM6QSOVUGDHYDRV5EQoXCIoh12XrAQCGa540KBBjB8/Hrfb3SWNcrCBAkV9+6I0duCqKsfbry96JILm96GiRq3fQwphXUFT3Pi8qQcBXQmzQ2zCF4lQCtEARIpCMBhG6Cqaq/siByoKuN0uSlSVYChEa1sHmqri8bhtrQN3BXpnJMld0dDRLoqi4Cv2EuoI07ytlZLKYjRXbhqYxMFoVxYGZLIqjydzX5VrNMRsyEWoSOXSaDZCtNqeuG1t/by0gp6dtvZU3gyH7iGnnn7ixIkxYSAQCNDc3Bz3cehahBDo21sQH30FAtpqfDS52okMrEQtL8EwDFrDAQJCx+v243G7M8YA0AkTUYLg2hkvwOXWiET0WKTB7kJRFFwujSK/n5JiPy6XRiAYoqW1nVAo3K1tEZ1Ggq4cB89dCUVR8PjdaC6Nlu2tCKN7n2tPoOtGzH02E1aCzZRpM2P2BKkGcquQwqnK5bpWn+446b4oWVi/ioX1q/K2g5Bhkb+YPyrmnZDJLdLh201OAkF7eztz5syhurqa4uJiKisr4z4OXYQAIxAi9P46Aq8tI1KksXlfP1+Gv2Zdyxesb1vPxraNNERaaCxqxygSqGp6QUAIgTAUjHYvmqqhCgMZTlZTo7kFWtvb6AgG0HWjmwWDaKptr9dDSbEfv99LIBjVGoRCYSKRaOyDrmqTECIadyAcweuxjp4oiNoYyJloJBINyBT9RIhEdAxDsKuMu4qiUFJRhL/UR6A9ZCkUPNdwn+1Z/66uHQhHInhMsSHSYdYQyEFeXbKcRU/OzXlwNc+mcxEG7AgR6pLlSUIBUJDBWy5t1NWOdISB7wE5CQS//OUveeONN3jggQfwer38+c9/5oYbbqC2tpa//OUvhW6jA4AQ6NuaCLy2HP3zb/D8YARFE0biKS1DdP6nCI2AS9BWFsbwQqs7SIcWiqZNTkM4EKF9sxtvpCxqIxALL6/g8bpRNYHLGyEQ7iCi67H48MFQmGAwFBMUulJYUBQFl+aitKQIj8dNKByhIxCira2D5pZ2WlrbaWvvIByJFKQdQkS9CgLBMMXFPktjQhmoqKW1jaaWNlrbOugIBAlH9OgnHKEjEKSltZ2W1jba2gMEg2GTkCBi9XQniqrgLfKgqgo7NjejR6yFql15sM+EFNByXeqRs2Og4DNjOeu2sz1f63+5nFAIr4lUSxQO3x1yMhV/6aWX+Mtf/sKkSZOYOXMmhx56KHvttRcDBgzgiSee4Mwzzyx0O7/fGAaRT74m+OlXKAP64hvWH8UfnbH29fdFICh2ldCqB3H38oMaNQCMYNDk6cATcOES6QyqFCIRCIcFQjdMW6NaAk3xIEQIr98gHAqi6C5URY2lAg6Fw6iKgtvjtp/JOQdkWmKPO2psiGlANYSBHtHp6Aji8XjweuzNCq2QXgWBQIiSkiJUVU26JiEEgWBUe1Dk90Xd+aLma8RbXIpODYIR1SDo0ayJQkRdQTVNxeON5oXoziUJRYkKBZGwTuuONsqqSrLyPvg2CAvhiG47h4EVMhzwlGmFcUE01yuxEgxy8WxQlyxP6QES3VaYbIVmocAxMPzukZNA0NDQwODBgwEoKyujoaEBgEMOOYQLL7ywcK1ziGoGPt9E5IMv8B2yL6HKEoTXHctSWOQqZlDpIAwDXEYbHWoEQ07xFQirBmFVx6VnEggMWlrDlBo7Z4o7Z42CjrYIpeUufD4BhooiXMiBz6VpUY1BMNSZEbFrB7ZY/975h6KAioZLiyYOamvrQBhGp4fCzmvE9KdVCw0hiIR1AsEgHR0BvF4vbW0dKIoSjT7o0lDVqAtnKBjCEIKSYn/CDDSxZhm2WUPTNOTCgwyeEw5HaGvrwO124fO6OyMP5nd/7KIoCsXlfsKBCB2tQXxFnqQwx1a5D3Z1YWCndiAq0NrFKh1yXe1IFtVHtQOpDOrymcVbHlu/M1phtvXX1Y6M0waYNRu5psh2+P6Q05LB4MGDWbduHQDDhw/nr3/9KxDVHJhdER3yRIBoaieyYi2esXuj1Vbh9riT1OJCKIRDEcrUIspD/oQhSRBRjLTLBrqu4/Fo9O5VjKKqoMhOVaepuYHtDZvoaG8jFOysRQ3H1SYHTFDQdTkT1nvEYE1VVYqL/RhC0NbeQWtbgNa2Dlpbo8sKLW3ttLS009LaYfq009jcSmNzK6FwmHBYp7KynPLykliiJSGiaYzb2jro6AiiuTSKk4QB+0j/eJ/PQ2lJNAR4a2sHgWAozu6gq2+hoii4fS4UFRq3NKOHE5+b4LnNt8a+7erCgCQcieSsHUi8RjkTTrVskMqo0K6xoRnzDH/tpHmsnTQvZiRol+4a8HO5Poddm5w0BDNnzmTVqlVMnDiRq/5/e2ceH1V59fHfc9fZMtkIOxEBQRAUxQUUFXBBARVEXFCLCFqVYsXW7dVK69bWqtUW1FotaLXULipW3EAFF1CRXQXZN0PYQjLJLHc97x937s1MMkkm6yThfj+fUTJzlzN3Zu5znvOc8zv33otLLrkEc+bMgaZpeOqpp5raxqMXIhg/7AHrkA2uRwcgPohouu4I92iaAcM0rDa8HAde46ByOqKCBgKBJw7Eah9VTNNqzyuQDgg8TBOIqSrCkXLEYmXweHzICuTANAimaYLnTIDpQEKUwKoM4KCqGhjHQAQIAg9JbHoBo7rgOA4+r4x4i4EEkq+D8zqLLzmQCV0x4Pd7nEQ04qz3YbVkZs4xmjK8z3EMXo8MU7K6UUZjStKSgiBY0YW6EkQbCmMM3oAHpkGIVijwZ1vLTowBMA1wFbvw5t77Qd7aW6e2BoisygJ7uaupaUxzoNpK9tIZ8Bvah8DGdmhqOsaWEfUrS6zv9i6tnwb9YmbNmoXbb78dAHD++edj06ZN+Mc//oFPPvkE3333XZMaeDRDFVHoew5A6F+IRJk1URAQjSmIxqyEQasXvDUb4sCQq/jRMZqFPCWADrEsZGm19xzgOQaflwNTItBFD0rLIyiviIHjeOTldkRebkfIkgeSIENTkBAlSB5gBZ6H1yvDI0uQJTGjPS1sGWGOS3xwSQ+e45xOjgInwFZj9sip+w/YynfNMyhbHSJ9XhkBvw8Bvw9er+w4feFIDOUVEVSEo9C0pkmcTD6/tXwg+yREyxUYug4QgUX3A4wHeTtlUhmqHhA03YCQZmVBTdQWJdj50+RrX7XzYH1J7A1R08Mm3eRGe8BPtc5ftWrCPPcU5++qs/6aogBu/kD7pElc6GOOOQaXX345srOz8dJLLzXFIV2IYOwoBpflB9ch2wnj64YBVbNGLo5jlpxu4o2PAI4YJEOAX5cgmZbKYG2a+j6fBx07ZIGLRaGKHhimiYDfg5xgNnzeAHiOBxjAC9aN0NAJgAlwOhJn3fZgaT9aIuTdVOiGAUXV4E3RuIgBLbr8YZVbWloMsizB5/MgK+CF3++FKAqIxlTEYmqzOAWibC8flMOIloHFDsLMKgRY65Biro2mjA6QWf3a2oPglhHz6wyX17TuXzX8bw/EdQ2wVR2Dus7/QdE6cMtW1xh5WLxgnmPL4gXzHEfDXqKw7er5F1ZLoqJLe6PlJOhc6gVVxGBsK4LQrzsg8FZNvKZD1014ZBF+nydeQ15ZB09EUAwFRZEiHFIOWRn/dST4McbA8TwEjgczdUhZQeQG/fB5rbI0qwrRADgV4BWIMkHT4mmLTI9HCarfPK3ZtJVd39rFb0yTEInE4PPKyc4VKp0cM4PvwdHk5zhIooiA3wvTJITKI06po2GYtWSJ1OdcDN4sD3wBEerhHTC83QCuabtaNh+W7oDQiMoCIoJpmCg7VJ7ydbvef8uI+Ukz63SwKwESaYgcsO0MpJrNJzociYN2Kp2C2rAdBttRqPo+3RLE9onrELRGNAP62m3gsv3guuWDYNXEExE8shgvg+PAC1Z2vz0gR/Qwtpdvxb7IXhyI7INixpBqsE4F0zXAMMB5POB53ooOMwBMA/iY9X8QeMaDkQDTACqjBKkRBB6KoiXV3Lc2iCxnwGqRmzrMzHEczBQzxkxgRw98PhkBvxdyXJK3IhyJLyVUOogNPgcAP3cYoteP8ogHWrVEw9aJFR1gDY4OEBFAQPmRcI3LI4lr74kz68SBsa5B8oJrpqaVKFhTFCBxiSJRSTDx+apLDonOSEPC/anEmS64Zqq7dNDOaPmML5eaIQCqBn3NVpiHQ5BGnASKD/oMDFJCbT1jgCjwiMZUmKalSCjxMrKlHACEoJgNvj5hXiUK8ALA8QllffHIgPUHYIoACeCYDjLiggM16BvYQkIcsxINOZ6DmCCL3BogIqtfAwgej1TjEjnHsXg/g9aD3eKX5zmIogBREBCJxqAwSxOCcVauSUP6PzC1FEwthZDbH3zYQNnBEHI6Zje490FLoetGg6MDToQtokHySpC9qZUpgcrSvqrr+fYAn6r5UyKpIgVA9Z4FieJIQLIjYP/bLk2sal/V49rHTHQK6ju7T4xm2AmSHxStw3ldBtTrOC6tF0b1cP0vv/zyWl8vLS3FsmXLMppM1poJhULIzs7G3l1bEQxmJb9IBArHoH+1CRRRIJ55AlheAGZ80LIGrOo3Oj2uimc1L2IgmNBJh8AEK3MgzZsjt38vmBKD0aN3fHZEVvdDXrEGfVMAwIEBUDXr85VEHuloDlgSsgYM3QDjrBJFrgXr7VPaBEDXdESiMWTFxYdqwjDsa1zzINEaMOOlomRaVRNaPNfE65HTbyVtqOBKN4ECPUByjiXSFFFh6iZkvwyObz0OXSJWWaha4++krn3JJIQOV0CQBPizvc4x0m14VNVBaO6Zc02DeUPOW1VkqDZH4bilNzjOiO1UnNdlAJZiIcrKyhAMBut9fpfWQ70cgqlT01uHmjfP1bxORY0OARHocDm05d+BBbwQTj8ezC/HAwa6lexVw0zPVswTBR6C0JDELytMyu3eAviyYBZ0SXglnjwYdwTswV/TdZgGQZbT73Zpf810w4CmGZBEIf1BqhkwDBMV4Sh8Pg/EOq6baZpWwqFHbiHrmgarF4OOmKJAFMV49UQtJZNkgpVvB2MizEChEzYnImiKjnBZBIEcH4RGqEA2F7puQDdMyEliVOlBJiEcisLQdGTlBcDx1Z3DdByDRKegJULpdakFpttMKR3VwdqchFC5gdy+212HoB1QryUDd6BvBkyC+eMhaF9tBN+zM/gTe4GJQoI4kFljGRwQ72AnClBVrcEDLEEDKeVAfqfkY1v52tW25zkemla5VJEOtl0Cz4PjOCiKBpkTwWdgYCEiRKIxyLIIgU/TicrQErrtSDXkc2WMQZZFiGJlt0iPR6qx2Q9TSsD0KMycY5LW0O3qA9krIXSoAjkdg9UUDTMJEVlOpiTU2xkwTRNKRIUg8vAFvdWSSutDYn5BXYNxYzof2tQ1iKd7fDcPwMXGTSrMJLoJ44e9UFd8D2HgsRBO7gMmCU4U3tAN8Cl09KvCcQyMY/FWxdVft0KiJkxNsx66/dBh6gag6GA6gXgRZBog07QelLppEWOAEBdIqm+yma0PIAhWa+WWhogQjSnWYFmf2SRr2dJDID7DL/kRphJGYzwSjuPg9cjw+zxQVR0V4Wj174qpg4V/BAWOAbjq8wS7+iCQ57eWEFq482Vt6IbpJFvWB9MwUXawHFpMc5o91bQCZneArEupMbEKoTaq5gc0RfOhRJpaRXB015PqXang0vZwHYIMYOo6zKgKbdUP0NZvg3j68eD6dAUxOO1o7XV3axmg7tJBSRSg6TVng2uHD0Av2p3yoRX/CAU81AP7oO7dBXXvTuuxZyfUH3fBjEWrnU8UBZim2aDWvlbCIdfigwoRoGlWS2Kf15P2DJcxZq2stOD4R0QwwkdQ8s2bCO9a0+jrxOJOWMDvgSSJCEeiiMZiTjkl0ysATgCJWajp+8YYg+QRIcgCjuwPQVczX31gmgRdt6ID6WL1kTBRcSQMxhgCuf5miXbUlbSXOIPnlq1uUqegsdGHROz30dhKBZfWj1tlkAGiO/dBkDwwwxGwYztBVxRg+4/Wi/aNiQGGaYLlZMFTkIu6nQLOmbVXCwkTgWJReEQJhmHANAwrUU6JQZAkeLw+xCQDPBG0aBSCKIJME15/AIahQ4+EwXt9Vc8IURCgalqDGhoxxsA4zupI14BM+PpCsJIDozE13s64ISH4prerNvRoCGJ2J5iaCjJ0MKHxSY12ZEQUBMQUBeXlEXg9EmS13HIG6niT9vKBL+hF+ZEKZBcEwdWjS2JTkNi8SNdNZ6ksHRtsZ7v8cAUAINgh0LQy1I3sI1CbvHEm2P6PkzG6a/JziU6Bee4p+O8LL2bAMpfmwI0QZAClPApekqAGfNAFHgIvADrBiGoQwEHkBIhMgIcTYRwpB6VR8sYYrFm7YcKkFLN2ssoEK8pKcXh/MXZv+QE7Nn6PSHk5VEXBzk0bsW/nDvywZjUOFxdj23ffVlaLpLhf2lK7DKxBjYzsqIahGy1S0kemlTfg9UiW8mJ99o1fu5aEMQZPQU90GHolsk8YBcann8CZDlb/BA/8Pg8UVUWs4ghMzpNWFMTqfSAjKzcAJaxCbyGdAitXQLfaTseraxAvv03XGQABSlgF4zhk5Qfimh71+2zTWTpIh6phfdsRaOrlg8ZQV6SBW7Yal914XQtZ49LcuA5BBijetgfR8jAO7i7C/h17UfTDDhRt3oldG36AElWS5H+ButUGbRhjEEQBmposKZwIx/EIh0Ig00QwLw9lhw9BkER4/QHomgbTNAAQDF2HGR+oazo/YwyiJFjCNbXYRaicmZmmNbvTdN2qVjDNZs8lsPIGYhAEAaJY/8QzorhGU4aS6Jq3fwKPLL8HIqejPAZEozEYZt1LOYwxCBIPXuRQeiAETWn6/gpVUTUdumFCEnl4ZBEeWYScZsWD/f0Ll0UAAFm5fjDWPLe/xoTTuWWrnfr+RAnhTJBOHsIHRevAfe6qFbYXXIcgAzAAjOPgzwnCNE2Ey8oROlQC06Skobcht1eB50CoDKlWHsw6mj87G/mdu6Bbr97I6VCAToXHgOd4dOrRA50Lj8Gx/U+AN5CF7r37QBDjs9Jabrgcs8Rx9ISGO5WDvxkvM9ShqDpiMRWKokLTLPVCLu7A2Ps0B0Rw1BK9DahRd2gdCfVNDmMATAOMAEH2wTBNhMNRhCMxKKoG06xMLK2eXGrlFARyfIhWxJo1J6Sy4kaMK2my+jlKBJSXhKFrBmS/BGZ3c2xmasojqKvKwFYYrK2ZUUMSB+uzTzp5CKmEkVzaLhl1CHr27Jn0w7YfM2ZYNb8jRoyo9tott9ySdIzdu3dj7Nix8Pl86NixI+666y7oerKc7tKlS3HKKadAlmX06dMH8+fPr2bL3Llz0bNnT3g8Hpxxxhn4+uuvk16PxWKYMWMG8vPzEQgEMHHiROzfv79B7zu/sDO8AT9yOuajS+9C5HXtiGMG9UO3fj0heqqsE7OaM59TYYXiRaiJHfEYAzweKKoCTdfgDWaBl2R4g0GIoggtHAIvihA9HmTn5yMrJwfBvDyoagxhNQydr3nAtjQSBGvg1w2oqgZF1RBTVCiq5sz+BZ6DLIvweCTIsgRJFCGKlpJec84sdUOHomr1SiKsStWuju0NZsTABBFenw8BvxcBv89KUtWsioTyCusRjsQQjSlQNav9tv25efwyfEEvohVKs0QKiABNN8DzHBrimRERlKgKjucQzG/anAEbW0I41YD7QdG6lM/XNTjXFR1oysTBhtIabHBpOjLqEKxcuRL79u1zHosXLwYATJo0ydnmpptuStrm8ccfd14zDANjx46FqqpYvnw5Xn75ZcyfPx8PPvigs82OHTswduxYjBw5EmvXrsUdd9yB6dOn44MPPnC2ef3113HnnXdi9uzZWL16NU466SSMHj0aBw4ccLaZNWsW/ve//+Hf//43li1bhqKiojqVG2sikJsFw9DASzwkn4yczvnwZfvhyw7ANAxoigJNVaGrqqVJUE84ztJzT6w6kAo6Q+jaA+jYFVpuR1BBF/Cdu0HIyoJgqOA6dQXXqQtYx/ijoDMqcnzY4a1ATKp9ULTKEK1ad8Sz2WVJgke2HlJ84LfXa61H3FbGmi173zRNRKPxpkWN0Lc3dLPR3fNaNXoYJu8BxZUtOY5BkqwGWgG/D36/lWsgiSJAgKpqCEdi8eZKsXi7YR6CyKPsYNMuHziRJt2AKDRgucckVBwJwzBM+LN98chA0zgEiXkEvSavcR5Aes2E0lmfbwoSHY90B/CmLlt0aRtk9C5XUFCAzp07O4933nkHvXv3xrnnnuts4/P5krZJVML68MMP8f333+PVV1/F4MGDcfHFF+Phhx/G3LlzoaqWBv/zzz+PY489Fk8++ST69++Pn/3sZ7jiiivwxz/+0TnOU089hZtuuglTp07FgAED8Pzzz8Pn8+Fvf/sbAKCsrAwvvfQSnnrqKYwaNQpDhgzBvHnzsHz5cnz55Zf1ft/yMZ3h6Wk95GM6Qz6mE+TCTpALOwKdc8F3zYfULR9S9w7wdC2od0KbXRaYWGtugkE1AINxkP0+eAJ+8LLVyIiXZPAeL3iPD7zXenBeH8gjQxUZStQShNSyOs8n8Dx4jgPP8ZY2Qhp229s0/aySEI7EIIlSXM+/YcfQNKujY8NUINsCBKZHwMvBanNv2zngOQ48z0GSBHi9lp5BVsCLrIDVXCkWU1ERjoGTePhyfFakQLMiRoqiWe2aFQ2qapV8pluqSkSWdLeqxjUj0v8Q7SWOiiNh6KoBr19O+zuZLrWpF3LLVldzCho6yKbbcyDdNf90SdfeNzdvSPuYLq2bVjPtUVUVr776Km688cakH+1rr72GDh06YODAgbjvvvsQiUSc11asWIFBgwahU6dKhb3Ro0cjFArhu+++c7Y5//zzk841evRorFixwjnvqlWrkrbhOA7nn3++s82qVaugaVrSNscffzwKCwudbeoDL0ngPTJ4jwzBK0PweiD4POA8HjCPDDnoh5hlPXi5fjdCG8asboOqqkHVdKiKBkHg4ZElCHxlVjbxIqDrNSYsEAhhrQJcHQlYjFnNl1TN6opYHziONWk3QSuJUHWU+ho6CJgmwTDNeEfBdppEQAQYUYD3pn2d7CgPx3EQJcFxDBRFgwGCyQMl+0tRXhaGHl9aME0TqqYjGlNQXhFBRTiCaEyNO62pP3siQFU0SKIYH8zTfUsJ1QQ8h+yCLLAGlJnWRV2VBolOgS1UVNOyQk00ts3wB0XrGhTWT4x21HZst/1x+6LVOARvvfUWSktLccMNNzjPTZ48Ga+++io++eQT3Hffffj73/+O666rLHEpLi5OcgYAOH8XFxfXuk0oFEI0GsWhQ4dgGEbKbRKPIUkScnJyatwmFYqiIBQKJT1qwzTNBpVBpcLuf0CwEhU9Hil15ztRAgwN8X7GSdjLBCInwcN765zF85xdhli/MkKO4xyBnMbSUPGhVBimmZDA1iTmtT7IAAwNJHgatLtdfSHFHYNglg+5uQHk5GXBiGiQeEsl0eeVEfBbSxDBLB88Htly3KIKKiqi1RqiEVl9Lziecz6DtN5OvOS2/IiVQOgLesFlsGcGt2y1k3hXVb0wXccg0SmobQBuyfV889xTXOXCdkirESZ66aWXcPHFF6Nr10oVjJtvvtn596BBg9ClSxecd9552LZtG3r37p0JM+vFb3/7W/zmN79Je3vGMZiapSPQGE11EMVL/UwIHMBYTTMwgs448JoGztBBNej6R40I9oZ3o4e/ECJfsziOPTDEFA1CPW7CHLO0DJoCwzRQEY4iEPA1ehAgogbnHrQVmKEAHA+wpr0VyD4JjGVBjengOM7pfWB9JJazKsYTSlVNRzgSg9crJ0SvKC6ylb68tO2wRkJRGLqBQAdfgwSo6sMbJXPrbHzUa/IaoCj5Oad98T9uSGsgr+oU1FTamPialZTY9DN4yylxIwPtkVZxt9u1axeWLFmC6dOn17rdGWecAQDYunUrAKBz587VMv3tvzt37lzrNsFgEF6vFx06dADP8ym3STyGqqooLS2tcZtU3HfffSgrK3Mee/bsqfX92Rr/qqo1ak3dau2r4nBJGKrOYBJAKSIAgJVbQLwAqEr14ySWEQJp5TKweBmipulpJwsyjqUsa6svpkmIRGLwyFI8FN1IwaP2XVxgYUQBXgaauCafMQbJK0LyiigvCUONpf5O21UxXo+MaFRFJKI4lSkMDHyaA7qzTBBRwXEMwQ5ZKbsWZorEpYPESMGWEfPrvYRgtx2u6Ty202CXLJrnntIoPYPEc7lLBO2bVvGLmTdvHjp27IixY8fWut3atWsBAF26WC16hw0bhg0bNiRVAyxevBjBYBADBgxwtvnoo4+SjrN48WIMGzYMACBJEoYMGZK0jWma+Oijj5xthgwZAlEUk7b54YcfsHv3bmebVMiyjGAwmPSoDTvMD6DeYfck4slYHMfjSGkUum7WOLYRY2CSB0yNpTAI8PJe9Agcg8LAMRDSmEVWliGaaZfrcYyBGplDYIWfYxB4Hl6vDFEUoKoNz3a3HZR2u1QQh2lhkBBonmMzBkHk4QnIlgZADb0PrHwXAQG/F7zAIxJVEI7EnF4ZaUFAeWkYalSFJyA3e2QgkXRVC1OF2BtTx58oXGSee0qSE5DI4gXzsHjBPCd6UJdzkMoBqG25wlUqbD9kfMnANE3MmzcPU6ZMgSBUmrNt2zb84x//wJgxY5Cfn4/169dj1qxZOOecc3DiiScCAC688EIMGDAA119/PR5//HEUFxfjgQcewIwZMyDLVu/6W265BXPmzMHdd9+NG2+8ER9//DH+9a9/YdGiRc657rzzTkyZMgWnnnoqTj/9dDz99NMIh8OYOtX6AWdnZ2PatGm48847kZeXh2AwiJkzZ2LYsGEYOnRok14Pq/EPD90w4uHTBh0EgiDA74OlPEgmuJRyvVb0gHl8QDRc7VUv70O2lIt8TwdwjKuHYqI1yJuGCS4eFk6URKgayidCo6SBiQBF1WCYhKyAB3bzJE3T6965huPpugECte9yQxCgRwB/17o3bSCMMauTIM9BjWmWOqJYPSfA/l7IkqU+qGo6IpEYBIGvs8KDiBALK9BVHdkdsppN2bE2UvUgSBQfstUHq2JHC0bjpHq1RLajBJUOQHoz93TD/XVFAi64ZmqtokkubZOMOwRLlizB7t27ceONNyY9L0kSlixZ4gzOPXr0wMSJE/HAAw842/A8j3feeQe33norhg0bBr/fjylTpuChhx5ytjn22GOxaNEizJo1C8888wy6d++OF198EaNHj3a2ueqqq3Dw4EE8+OCDKC4uxuDBg/H+++8nJRr+8Y9/BMdxmDhxIhRFwejRo/Hss882yzVhTm0+oSHZ7VYGOA9RJOTleMHxNX3M8RZ+gSDYwSLANIH4AMgYg0/wwSA9PlOunx2iKEBRLc15gJz3I4qiEwVxrCCzwTM6gpV8FoupyKqaN9CA6ACR1T1PNwzIUv2bNrUpTB0wVYD3Nutp7IZIjGMoO1SOQI4fkjd19YedYyBLYlwlsfZjE5HVjtkk5BQEm1RnoD7Y3QoTnQJ7cLcHent2nmogtWbv6Z+vufID6sMF10y1pJbJXUZoLzDKdP/So4hQKITs7Gzs3bUVwWBWjdtpug7TIEhp6rTXhB2yZwn/TcQ0CYqiwity4Ld+C7N7L1Agu3L/hK9Gfe2wowJ22J0xq7RQ1XR4q6gxGnGVw/rWmlvvwUR5RQQ+rwdCgnCNncHu9cr1ylDXdKsTpCxLYGjH1QUAWPQAmFICM7tfizRvIiKoUQ0VpRFkd8gCL9aceEoERKKxuMhV6sZOZFq9CTQ7MpAhZ8Bm/ISX0hYTSmcGbmMfM931e3ugbsh5E0lMXLQdmVTH1knDUixEWVlZncuiLq2bjEcIXJKxZ6hWdnXjbm51hfidNX5BBOXkgx3eD/IHncGhMedPzCivfA41z9ob4Jba4kOyVIP4EENSdMMKUtR8Ik3TYZgEj9yIngdtBTLAosWgQGGLdXK0Ew2zxSyoUQ2CyVuRgxTnJ7LUCa3W2tWxIwO6qltyxBl0Buzv1WuvXYtrr01fYTAxf6BqSWJ9w/GJAzWHms+fGOq3lx3s5+xjpHIaanIGXNoXrkPQyjBMa5mgRZKiElYkKLcA3PbvwZQYyNM8IWTGKpvUJKvGsXr3C0hHfEgUBCiKZpUO2i8nnCbxnLbj4GmEkFFbgqllAONAYsvO6Bhj4AUOoiyg7GAIgVx/vESx8poTWZ0NBZ6r9jsgq54WsbACkwjBVhAZsFtr/6THL7G4lpLAREZ3PQm9YC0pNDZzf3TXk2p1AhKp6mjY+1Yd7I9beoNjH1B71MGl/eA6BK0MwzAgCC0ppBKfPUsekC8LrPQgqFOPZps1SpIIRdUsKVxRcORxyaS0cxXs2nVd1xHwp1bYY/ESTo7jaq40YJXLKfayxtHgDIAILLof5O3UYtGBROzWyVl5AUQrYhBEvkqiIUFVdfhSLvcQKkoj0FQN2R0ylzPgWEOEmKLiJz1+Wa/9kksN6+cQ2MsJ9RmgE3MXUjksice64Jqp2LJgHkajcrvFC+Y1qq2zS9ugPadQt0kYEB8cW+hkiNf/MwbK7wx25BBgNCw7v87TxQdpr0dKas/MGAPjuLRiBESAYZiIxVT4fB7U1tPe1kSwM9WrPXje6uXAc02mENkWYHqFpU4o5SJTSZP28kEg1w8lokKNVuoUaJrhfHaJ2DkIRITsDlng+Mw7cLYypo2dOFhbmV6iM1B1qaAmbCfASeSr52y9NmegKqmO7ToDRweuQ9DKEOKthFtCFcc0zORQrS8ACCK40JEGZeg3DkpraCKywrNejwSea2BZ5tEMEVikGOQtsBQKM4izfOARETpcASWiWrkBqlpt6YaIEC2PQdcMBHJ8GZUjTsSOav338BznucQBNdEpsB0FW5wo0Rk4bukNjuhQVWwnoCFSwY0RJHI5+nCXDFoJdlmeqmktIpdrmlZGfdKNl+NAHTqDHdoH5HRo4XBy3W2QrbwBBYIgQBTr3wrXBYAZA/QKUNYxaA0llXZJYrBDwJr9x0tuE7UHiAiRUBSxsIKcjplfJkiH1P0HrP/bA7x57inY+VPClhHzq+kPJO7vJAvGE/7qM1tPzBmw90tH76BqDoHL0YHrELQCbGlgVdFg9wNozhueNQvT4oNq8nnMYB744t1gkXKQP7sZx4z6JhECiqLBNM0a8wZc6oAIXGQ/IOcBXOpSvkzAGIPkESGIAkoOlkH2VNpGRFBjGkyDkF0QbDWRgWRq/i4nDt72QGwnAHLLVqPXMiSt1Vfdp7bj1UaiJkLVfepyBhraptml7eMuGWQYp+d7TAUX7zlfNVSqmxrMxuryO8ezVP14jqVuQMTzoLxOYAf3oTWJ+RuGAUVVG93B8KiGNEAthenpiNYQHUjEXj4QZAHhsoizfBApj0GNavBne8G3aLJt+ti/krokjFMNxHUNvg1du0+UKq7vOVuya6JL68J1CDKIXYKnKNZsXRRSRwaMJnIG4meFaVLK6ICNmdcRLBwCS9HwqKngeR6xmApN02GaZtyy1A6IGS/r8no91RLNXNKHaRUgTgb4hrU6bglkr4RAXgCGbqLiSASxihi8WZ5WvUxg6X1YtqXb1wBIL3TfkNl6XWWM7oDvUhPu3TVD2Kp4qqZDlsR4z/fq2zHGIHFS2n0EmgRBBAVzwUr2171tA7A63AmQJAEmEWKKZmVqE6AZOgyz0gGykwgthymzSXBtHkMBEzwZKTVMF4HnwHirD4YaVS1Fw1YaGXCoYlp9nIKm5oOidU6CYkNxlwyOXtwcggxgmtYaPgBHFa+2+11T3gzTKh5gDNShK7gd3wMduwE19kJoOFZZGW81XRIJkahiKQuCYJIJHpxT4w3g6FAPbGYYCNSKr6GdsV9RGgZnMGTl+lM2Qmp1pOg7kugUXJ43o9ou6TYySnc2bw/io7siKRmwvkmI9nF6TV5Tr2ZLLu0DN0KQARRVBc9xkCUxrtjXcudOt6UveX2A5AFXWtKs9tiCQBzHgQEQOQECxzv13ZpWk0CNS70hE60tdwAAQFZPikgohliFAk7gkNMpaC0blEYa3Ro707xRMrdZowb2wJ04eNvLBg11BhL/XxfmcFejoL3gOgQZQJSEuPZ+JlTiAMM0YaYRKjALuoCVFDe7JoHVCMkEi4sDMcZgmAaiMSWeRNj0X1OTzJoVDNsl8c6WrPUsu1ifO0HXdIQOVkCNqfAGZPgCXoBj8AZkaDENFWWRpBbarQqGBn2PmnLmXfVYTeEM1IV9jg+K1oH7vHHSyy6tB9chyAA8y9yaKGMMAs9D143ab2SMWY2OVAVMU5vNHiKCqmoQeAF27yPDNBGOxOD1yOB5rlkiKJphNHGyZlug9UQIiAimYSJSFkUsosIX9CKnIAheEMDzPAzdAC/yyOkYhCDwiIVVkNn6nDiW4l810RK5BQ0RIqqPM1C5NFHpbLy5eUO9z+nSOnFzCDJAJsPfjDGIogA1nsNQK7wAEiVAjQGS3Cz2EBEMk+D1WDNX3TAQjcbgkaRaKyEai9QMeRGtHjKBFhC9qtWE+ICuxjRUlFRA8srwZ3uTqggEgUckGoOHZHA8B09ARrQ8hiMHQvEkw9ahUEmA06irNWD3K0gUNaotSpCYPJiuM+DmFLRvGLU2l7sdEwqFkJ2djb27tiIYzMqIDUQE3TCgKBr8vtpr+k2TwO3YCC6vAGZuQbPYYxgmNE2HLFtNjxRFg88rZ2xJpd1CBK58B0j0W02NMmICQVd1KFENjGOQZAFCChEuwzRx5EgIuTlBp8yUiBAui8DQTQRy/VW6ZWYGwzBREY7C65Ut5zXN/S7Pm1EtWpAq8bA+VC01bIneA/Y5Q+UGcvtuR1lZGYLBlu2e6dK0HIXTpKOXRGcgnZspxwBOlgEl1qx2mUSIRGIwiRDwe12tgWYjM0sGdq5ANBRDNKzAn+2Fx29FnFJ9D02DwHE8NE0Hz0vOdv5sHzRFR7Q8BkkWIXqaV9GzNkyTUBGOwiNLEAW+Xlc11dLBGyVzASJcnv+zRg/uqdQRXVzSwb3zHiXYuge6bkAUhSSt+JphgChbSwbNYpOVXR6ORMEYc52B5oZMoBkSNGs8HRHIJChRDdGQAsZxyOkYhMcv19pqmuOsrpgxRUnKGbD7HoiSgLJDIUfNMBOomgZB4JtWZjx+HLvJkd3MqC6hIfv1VPoDdvlgU2I3abK57MbrmvT4LpnDjRC0c5ymSaoOIoIsSdbNjE8jJM8ASDJYOBTPUG9KPQSCqulQFBV+ryWWYxhmPInQXSpoHpr2M6z1TEQwdRPlJWGYpoms/AAE0XJC6/p8OY7B7/MgVB6GaRJ4PiF1L942ObsgCDWqghd4CFLLLy+ZhmlFBpr4vG+UzMHleT9zehHY7ZQXF82rdb8LrpmKLQvmVeuL0Bhqii4kNkwC4FYZtCPc6Vg7hghxcR8NYIAsi2DxMql0E6FIEAFDb7LSQysqYC0RqKoGv88Lr1eGLInQdB2KqjlSxi5NDBGa+ydvVw/EwgqiFQo8fhk5nYIQ4gJD6Qygti6FFP9OpHpdlAV4s7yIhRWESyPOskRLQZYhzXBk65iJLZRtxyCRC66Z6kQQRnc9ydmmpVUGWyJXwaXlcB2CdortDCiKCoHnIDU0Y5/nAcNoSssQicYABmeJwB4APLIEnuOcroYuTQgDqqrpNSX2gKzGNBzZXwZN0eELeiD7JUt0qp7fPcYASRSgaXrKgZ4xBo5n8GZ5oERVRMqiTfVWMs5/D8/BG4eeqfa8vZQAWE5CKkchFU25bFDX8oVL28Z1CNohRATTNBFTVAiCAEGo2kER9ZjdMMDQmixCoBsmTNOs1rXQViwUBB68wEPTm9IJqRkigmqY0MyWnWFmBDKbZVZLRDB0A9EKBVpMRyDXj6w8f6NbFfM8D9O0mnGlwuqQyCO3UzYYzyEWVmEaZssIGNmiGc1xaMYALnk1N3FAr80JsAf/qg5ATYmFtTkKW0bMz0j1gkvmcB2CdgYRQdcNqKoGSRIgCNWFfRgAMtNUfuM4MHBgTSTio6oa5Fr6EjDGwHNci8nVqibwQ5mGXRU62n9MgkBNmFRoOZ6ESCiKsgPlYAzwZXshecQmWVu3HUS9FueQMYDjOXgDMgzdQOmBEEyjDtGtpoBarjl4QyoFmqKywE5s/KBoHcxzT6mWTGgvWbi0H9ykwnaGYZjQDSM+6FZP4LJnVbphQOIq27bWCOOsmWUThPBN03JWvB6p7o1ZZbOb5oRAiBkEjrX36ACaNIfA0hQwoMY0kAkEC7KcPIGmgjFAFARoug6JxDqDG76gFxTvieDL9oLjMisC1lRksmzQzmWomkhov2aeewqw9KuWNsulmXAjBO0Iu7RQFIRahVs4jks/2slxTZZUqOtG+lUELTQ+SxzDCbkSemUJ9foxtHQSW5PQBEsG9vJA6HAFKo6EIXlE+HO8jXIGiAgh1UTMqC5NzDgWf672a213DA3k+iH7JERDMWhK6vyDpqFFG5LXyVs7bnf+3ZIORCpHwaXt4kYI2gF26FZVNXA8l0Ytv3WDTecGThxvVRo0wQitalrayY0tNdRyjMEn1O/WTkRQDu4AJ/shBju2oVlo48oOTZOgKTq0mAZe4BDI8YPjG68YqBNwIGagq6+6NoZpmOBYGpEsVEYDRFmAaZgoO1SOYF4AkrdpljCSaAFnsKYWyknCRkQA6UB0P97aMh3jj3uxSW2oKYnQziWw/p+GDLpLm8CNEGSApp61mCZBUTWIkpDWgEtUj/kNYwDHQI3MITBNE4ZhQhDS8EGdjPjWiREtw5G17yK06TOQUb0srnVCDWp/nFg9ULq/DGpEgTcgw5/taxJnAAAMkxAUOXhSHM8wzHhyYvrHY4xB9kkI5gegqTp0rWlyCuxE3XAkhpiiWA5S/NgtFS2qpnLIGMCJMH3dQFm98NaWm5vt3G7OQPvHdQgyQFN22bOWCXSIAg+eSy9sy3NWe2Ez3cRCQqMV7jTdgJDmckFrn2+TacDXfSCkvG6A2VYcApv0r66jNBhREa2IwRvwWH0EhMo21U2BwDHke7iUljV0mGWMQfKI8AY8iJbHEC6LOomqRFUf5LRXrul5XTdQEY464llZAR94nnOchJbwB2rtlsgYSMqGmdsfb+24o9bjJCYIVq0k+KBoXcqoQKLWgb2dS/vDXTLIALqpN0j4j8hKggOsULet9kdE8WZA6R3H7nioqCo8soRaB4l4QiHj+EbN2e3qgjQtrHUkqCpn29KIgXxkDxjR4udtHPFrlub1IiLEwgoioSh8QR+ycv1JHQmbEqEWkSxR5KEqGkiqf4KppVUA+IIelB0st5wEn+j8ZuzvPUtaSkkohY0/b1fueD3xJkYJZhBZUQLr+90MSxNx0m6dzEkwg71TvlQ5iFcfzKtWD1RVRkzsnOgIIP0jswmPLk2P6xBkAK4Rs207dE/goKgaGBg8tZTxpYIxBoHnYRqm09ugRsx4IloDbbbzG4goLvWajn32vqnHLwKgGfrR2cK4mbGVBpWoBiWiICsvAFHOXBMhgecRJaXBytl2VU1Op2zEwgqOHA4hK9sPQRQsFykeAajmE9vONwGM4+D1SGAsRQkvY5bTolrOeYMFwJoSxuGNw3/G5fkzAVS2RQbSa3xU1RkY3fUkJ3Jg72/vt/0fJ8OMxIBpC5vlrbi0LO6SQQYQuYYNZNZyPgeOcdDj6oENba5i1XgLznFq3M60GuJQI+5xkagCSazf7InjrfeYUqUOgMCl05wpGSKCbhowjkYVROc6pv4MiMhq51saQXlJBQSRR05BMKPOAFAZEWvMOpKlhMkgekSQQYiWRcExBlHgIUkiZFmELFV5yCI8sgSPR4Isi3G1xZqPL0kCyCToKSolMgLj8MbhZ6yyQCSrHNqkcga2/+NkHLf0hqRGSdv/cXKNSwVuhKB94ToEGcAukaoLey2z+r7MavrSAEnYRLh4SVetNzA7QtDAOzIRwTANSFL6ThBjDKIgQNeNlGuztnhRgxwhNE/Yu/VDKT9H+/PXNQPhsghMw0QgNx4VaKYlgnQhAlQl3oirkZkl1vsg+LN9ECUR0QolLs7VNIO37RRYUstNcsjGw6zfXGJfhNqwIwb2w2bLiPkA4OYPHAW4DkErw75Bm6adH1B9xtGUWc08zzudEFMe0zQsLYIG3I+JAE0znM6K9bGb4xgEnoOmV68lr0z2qkz6SgfbkeCOVocALOlzJCIYmoGyQ+VQIip8AS+C+QHwQuvoOGmaJlRNj+e5NB4iS9cgkOuD5JEQLos2qVYBYxx4joNhpHZkM8Fbb05Le9vEZYBEEiMLxy29odp+Paetb5hxLq0O1yFoRdidAGMxDeFIDKFQBIqqV9nGEh8iIvB8/cPmyTBIogCTTJTHIpXh2URsh6BBMzSCoqowTRPRmIJoTK1Rlz4VoijASBGC1Q0Dkah1vGhMhW7o0HUDum7AMAwY8X4JyY+qTkTyo93jLJQzp3pAjWkoLwlDlAT4gh7wYtNWDzQGIqsJlixLtYbr64Npmk6jJVG22iaXHQxBizWNU8CYlQRpfw8rv3ONt70x1JaQWHXwT8wrSBUJ6PmXzH83XJoPNyurlWESQdGsZEHZI0KqkvCnGyYMw4AsSY2+SVqtkAFZkmAqVlSCcckZ/MzQAY5vUEaXYZgACAG/v4GDjLXOq2o6ZKkyB8E0CaIoQIw3QTINAmBWujNUXeuB7PcDa13a+nc8y5yzzgOkt5TTNiEniU6NaYiGY5A9EoIdsppMT6CpICJEo4qlJyAJTfKZ2I60z+cBYH0XPH4ZHM9BVXQwDhAamI+TCEto20yaDsTzFzhLRxx2EwTGmCMg1hLX/o2SOWCxw5jQdXbS84lLAzUlGSYmE9rLD4nPubQfXIcgI6SeMjAGCDyHYMDn/G393/qHXf4kiSK4Wkq16oN9bFkSoWkGeJmLCx3p8HpEIBoGebz1cggIgGEYiERj8HjktHMmqtsGq7lNzEoEFOIREXsWyxir5jABNQs/Vc7WKMl5MAwT0ZgKSRRa9CbdopAJMgmRcgXRsAZ/theyr37VKS0Bwar513QDwSxfk9mn6wYYLA0OG0urQIIgmlYipcTDH4yfs4GnZQB4ngPPS070yTAJZFqRLvuwhmlC03RIkthCPRcYSM6vdYuqSwbHLT0ZW0bMr3Hgd52C9oe7ZJABmFYeV41L8Zo9o+AqBz0gvpwQzzJsKmeg8pyIr6tbw6RumDhSGgOZBBYOAf7seh3P0A1Eowo8Hgmi0LgZnpWsJTp5DgBSZ1tW2SfVg+O4+M2ah2A/BB6SJECWBOi6DkXVWrFGYv2xW2FHyhVURABe5JHbKdgqnQEAVgRD1etdSlsXipK6yyZjAMczBHJ8UCKalWzYhImGHMdVVjNIIqT4Q5ZEiJIARdVgmC1UmcAY3jj8p6S+Bw3BVix0nYH2R0Ydgp49e6a8cc+YMSNpOyLCxRdfDMYY3nrrraTXdu/ejbFjx8Ln86Fjx4646667oOvJ6+5Lly7FKaecAlmW0adPH8yfP7+aLXPnzkXPnj3h8Xhwxhln4Ouvv056PRaLYcaMGcjPz0cgEMDEiROxf//+Br1vFt4LLrQNTA+npYlu5RYYUBStds2AJoJjDLpmwFA1QNOsCEGamKa19uuRbWeg8Td1ew25PvkH9cEK3/KOcJJRS7vdtoTViMhERUkEaiQGr4dB9kpxKeBW6AzE0Q0DgtDY/JhKDMOEYZoQxdTHZIw5jhLjGGJhBWYzlw8637m4s9ti5YqMhxnoibe2/jTly1VzCgC3quBoIqMOwcqVK7Fv3z7nsXjxYgDApEmTkrZ7+umnU97ADMPA2LFjoaoqli9fjpdffhnz58/Hgw8+6GyzY8cOjB07FiNHjsTatWtxxx13YPr06fjggw+cbV5//XXceeedmD17NlavXo2TTjoJo0ePxoEDB5xtZs2ahf/973/497//jWXLlqGoqAiXX355g963GewDErxgZVvAKnaBGUpKx8Ce3amaBlW11tHT7hZYTxKXJRhjYBwDZ8+V61Hzr6qaNQNvUoEWgmkQDCOeONhMOgKMsXZRgWB3JKwojSBWocATkJFTEKhxQGyNNHV0QJJq18GwVA05eHwSdE1H6YFQ8zsFsPQ2PLIIXdOdZOFmh5dBWb1q3aTX5DXYMmJ+kh6BTbpljC5tD0atKMX6jjvuwDvvvIMtW7Y4P961a9di3Lhx+Oabb9ClSxe8+eabGD9+PADgvffew7hx41BUVIROnToBAJ5//nncc889OHjwICRJwj333INFixbh22+/dc5z9dVXo7S0FO+//z4A4IwzzsBpp52GOXPmALCykXv06IGZM2fi3nvvRVlZGQoKCvCPf/wDV1xxBQBg06ZN6N+/P1asWIGhQ4em9f5CoRCys7Oxd9dWBLMCgKmAixQDainI0wHk7QRwAuwFTMM0oSgqBEGIJ70131ojkdWNkIvPXMpCMWT7eIjbvoXZawBI9qRxDEKoPAK/3+Os9zcF1hq/AtFujMTgtHhuahTVugYtEYlpDoisjoTlJRUQZdFpQsTpYbCKXTBz+je6L0VzQkQIR2KQRAGSJDb6eIZhoiIcQVbAn/b3hUxCRVkEjDH4sjwtosdgEkFRNPA8F1f0bGbHlAiX5/+s2tOpqgxSLQ0kqh+e12UAlmIhysrKEAwGm9Fol+am1dwZVFXFq6++ihtvvNH5MUQiEUyePBlz585F586dq+2zYsUKDBo0yHEGAGD06NEIhUL47rvvnG3OP//8pP1Gjx6NFStWOOddtWpV0jYcx+H88893tlm1ahU0TUva5vjjj0dhYaGzTb1hDOA9MAPHgLL7ghlRcEe+BYseAMgKWeu6AVEQnNB7c94kGINVQ22aYAzIyfaAs9sop+kzqppurdFzTfu1Mk0ToihYinJxVbnmcAbaMrYjUFEagabqCOZnISsvoT1xEzbUalaYJautNcGyjV266JFlsHp8Xxhn5RTIXsm6nk2oVVATHGPwyCIMw3Q6KDYrKe4licsFieqEqUhsdPTm5g1Nb59LRmg1DsFbb72F0tJS3HDDDc5zs2bNwplnnonLLrss5T7FxcVJzgAA5+/i4uJatwmFQohGozh06BAMw0i5TeIxJElCTk5OjdukQlEUhEKhpEc1GAMJPphZfUDB3mBKCbgjGwHlCAxDB8+n37SosXAcczrCWZnWtkNQ92Bil4pJoojm6FfYYsN/Cl17IoKpKzCUSKvTLLBFrKIVMZQdDIEXOPgCHggSX8WJNOOfZyt3pIigaXqjIzRE1lIBYCkI1vddM8YgSDwkj4jSA2Ut4hQw2ymICzI19/lS6RNULTusq+Wxm1jYvmg1DsFLL72Eiy++GF27dgUAvP322/j444/x9NNPZ9awRvDb3/4W2dnZzqNHjx41b8wYSAzCzO4H8ncFKnZDjhWBQ8sluNnlVo5YD2OAIAJKrM597RmdbhjQdR1GNWGg6kJBzqMWwaDEm2JLjcXVZHKJEN65BmXffwIy6t/uuDnEj5zWxFEVkVAUAENOp2x4AzWEuFN28Gl9WGV6ZqOWnIis76GiavB55QZH1hhjkH0ScjpmQ1N06GrDZu71EcCynQLTpLgMcnM7BXOcf1d1BuyIgd0PoSYm9B3U9Ia5ZIRW4RDs2rULS5YswfTp053nPv74Y2zbtg05OTkQBAFCfP144sSJGDFiBACgc+fO1TL97b/tJYaatgkGg/B6vejQoQN4nk+5TeIxVFVFaWlpjduk4r777kNZWZnz2LNnDwBAqy1ZiXEgOQ/I7Q+RM8CVbQEz6h6QmwI781nV7EGPgbLzgJL9oFoS+YgIiqLC5/NAjt/MVFWD4jz0+CP+t6JBUVUoioqYoiIWq1QdTPWIKapVctlCVFVsNJUwovs2Qzm0E3q4pH7Hoqa/sVsdCQmhw+UIl0YheUR4A3IdksNmyjBxa8NuzR2ORGvsZVEbRHENjEgMPq8HXCOXryxVQwEev4xwWQTh0vpHiQiEmKHW65x2pCCVdHfTEi9F3HZb0rN2P4OdPyUsXjDP6XZYl3Pg0rZpFQ7BvHnz0LFjR4wdO9Z57t5778X69euxdu1a5wEAf/zjHzFvnpXMMmzYMGzYsCGpGmDx4sUIBoMYMGCAs81HH32UdL7Fixdj2LBhAABJkjBkyJCkbUzTxEcffeRsM2TIEIiimLTNDz/8gN27dzvbpEKWZQSDwaQHAOz+sQz7D1Y40qa6YVYvO+IkqxpBCoKV/gCmhlpkiiwKVltkAFa0IKcDuGgFmFqzU2LbLgo8eI6DJAlWpzjnIcYfktNBzv6/1yPD65HhkUV4PVLKhyyJLZb9z3GsWnkjJ/uQf+oEFJx1HQR/XtrHspwBw6ncaCx2a+JYhYJYRQyyT0Zup8qOhLWegwit5OdeKwwMPq8MWZIQjsRgmma9vvamaSIcicHrlSGk2W67TpsYs7QKcv1QYxpi9dQqYGCQ+fomSDLIkmTlFDR39QHjQYFjqj1dKVBUWWlgOwcu7ZOMp1Kbpol58+ZhypQpThQAsGblqWbfhYWFOPbYYwEAF154IQYMGIDrr78ejz/+OIqLi/HAAw9gxowZkGUZAHDLLbdgzpw5uPvuu3HjjTfi448/xr/+9S8sWrTIOeadd96JKVOm4NRTT8Xpp5+Op59+GuFwGFOnWutn2dnZmDZtGu68807k5eUhGAxi5syZGDZsWNoVBomoBOw7UI6YokPwyojFNHC6jsLuuRCEyjsYgcEQc0FKFDiwAQj2AgleOKHf+N2OOU1rGBjHgxM9jQqTMs5SK+R5BhIlICsXXMlBmF2OSbm+rihqUkZ4/c9dx2Bmv88W8Ak4joMRn9HbNjGOB+/Nqvex7NlqKkGc+h+LoKs6QocrIEgCAjn++kkOky1B3Sgzmh9mfZ9FkQeRhIpwFB5ZSqvNt2GaCEeiTSKIVc0sxsALHHI6Bi3p5/IYPH45rQqERJns9M8H2E6BomoAWXLdzVZlJPjx5o8PovzAdvzk5Fed5xOXEdxuh+2fjDsES5Yswe7du3HjjTfWe1+e5/HOO+/g1ltvxbBhw+D3+zFlyhQ89NBDzjbHHnssFi1ahFmzZuGZZ55B9+7d8eKLL2L06NHONldddRUOHjyIBx98EMXFxRg8eDDef//9pETDP/7xj+A4DhMnToSiKBg9ejSeffbZBr3n7CwZHl5CVkCG5BGRnyXh0OEwjpQrKMhNEAEiglZ+ABLjwLwdQXoE0KOVL1f9FwG6aULI7gZe8jXINsDKeDbJBEdWCNrM7wxu1w9Ax26AkPyVMU0ThmHC5224E1InTTTDTgeOY/GchsY7ILZT0ZiKCFtcSI1ajaECOX5I3tpr6lPB9AiIT3AmWzl2O2Ge5xBTVKiqBo9His/6q78H0ySEwzFLCVBsWmcg0SZwVl5BeUkYpQdCyC7IAt+EIkrJ57P+75FFZ7lNrkNPoTEnI09HUBbh1fVTcN2JL6fsawC4iYTtmValQ9DesXUI9uzcgmDQmnHaP+7yqIaysIZu+d5KkSDTgFqyCz6PDEWJ4UDxXng8Pnh9fkiSDE1ToapKXJJXQCArG6oSA/k7QvDUf0ZrYxgmFNWa9fMcBwYCv+07mLkdQfmVThIREI3GwDhmlXY101ijqpqzttzcEFn5D1bDo8bNyKzcAUCS6m83kdUEJxpWEAlF4MvywhPwgLEGRGCIwJWsBwV7g8RAvW3JNHYPj2jM+q57vXJSaSsRoSIchSAI8MjNNGBWsQcEhENRMAZ4Ah5Harw5z6lqOkyT4k5B82iSlJaFAK0CeewAxh/315TbVO1hoJPm6hC0E1r/omI7xF7vFUUZkuwDL4jgQNBiVuIRxwvgBQkcbw0kjJfgze0GMVCASDSC9WuWIxaLYNf2H/Dduq+xbfO3+HHPdhiGDk6QIUg+8PVes6yE46xQpabpUBQNBAbK7wzu8H4gIbmQyEp68nq8EEQJvNB0N2M72zxdf5XjeLAqCWTW7Lx+Ii/W5yJC181GacwT2RGC+u4XzytRDUQqYjBNQkH3zsguyIcgihAlLyTZ53w30sJUATLiy01tD9sZzAr4wPM8IpGY87nY5YV2Il5LRJJsJU9/theiLKKiJAwtpjW71LEkChB4HjFFjSdcNn1rZZ7jYDAZYG1H1dKl6cj4ksHRiiDK8PiCOHjwIAoKChAOx9CpIA9ZOXlgCUpyvkAuOF5AKBRCl75nwIgcRsnBIhiGAcZxEEUJDAzeQB68HftC8FY2IiIiqEoEaixcL9usgdTqgKioGjTdAJeVA7ZvF5gaA3l81oBtAJ26dIcoSkn767oKMgzwggjTNBCLlIPqKYxjkImwFkVQ8ic9zwsSZI8fYIAai8A0dPiycp1rpqkxxCIhCJIHXl/QuQ5KtBxaLYmRiVgOkfXerSY79TI9DsXbNNfsczOOg8cbBMdx0DQFStRKNA2XRqApGrJyA/DnZANMQHl5OQoKCqCqKo4cOYKOHTuiInQorURTZsQgdz0VnJwDXdegRMvTfxeUoEuRYexBv1zTnBwX0zShqBoCfm+L22hXIJi6iNDhCgTzsyB6mm+dnzEGQeDA8SI0TYeuGFYFFm/pSzRNAiWsFUiOx5vFj4GkbFyeZ/WWeaNkrvNvl/aJGyHIELI3gIULF+LBBx8EYwzZufkIBv34wx+ewMknn4yuXbvirLPOwvyXXwFg9X246aabEMjvjkGnjYTfn4XCnn1w/MBT0HfQ6eg39BJ8v2UXJk+ejMLCQgwcOBC///3vQeDhiQ+MzOqzCo4XUs4wrcQpEVy8d0EkqiIcUazZLi+Cy+8CXq8sSczOK8Datetw0UUX4ZhjjkG/fv1w9dVXg4hBlL3427z5KDlSBtkbgJ04aCctWtEE6+vHcXzS3wDAMw5+0WtFS8TKpDyPN4Cvvl6Jzz9fDo8vCEHyoKIijLPOOgu/+MUvIEoeMMZB9vjxr3/9C2eddRaWLFkCQZTjM3brhsoYl1wfzhgIldeG47i4Yl7qsi/bZq5KnwfG8eATjs+YfbPmql1fSfLi0OESzH/5FcgeP8jkES2PQZQl5HTKhuz3QJK9WLFiBa688koAwPr16zF27FhrMJI8YEnnZ9WjJBwHURShkBd/njMXkuyFIFXKUDPGWfZWex+W3SazHs57E8T4dydzDgLHcTDilS0xxWpbnSnlSsYYZL+M7IIs6Kre7AJGjDHwHGd1ThQtZcOYosEwmqYSgTEOJgBinKOY+kbJXEfE6I2SuW4OQTvGzSFoQewcgkMH9iGvQycMHjwY//3vf9G7d28QEUaPHo1AIIDHHnsMffv2xffff48nn3wS8+fPBxHh1FNPxWuvvYZjuxeg/MD2eC4hIdilLzZv34uzzz4bjz/+OKZMmYKioiL8/Oc/BxFh4cKFKWctRIRYJARdU+HxBSBKlSFl0zRRHjoCfyA7qfoDAMg0oWoKAA7dunXDnDlzMHHiREQiEbz77ruYOHEiJEnCwIEDsWDBAgwalL5wiabGEIuWQxAkeLxZSQOcpdwo4NFHH0U4HMZjjz0GACgtLUVubi569+6Nr776CllZAUiSjOHDh2PXrl14/PHHcc0111Qr/zN0HWVlJQhkZUOS5Gq2RMMhhEKl8HoqxW14XoTsywKf4FCRaUKJVVQL5ceiEZCpweMLVrv+9ntZvXo1pk2bhjVrUidwAUA4HMbhw4dRWFiIb775Brfccgu++eabhPehQVWj1vViDIauIRYthy+Q4zhZBw4cwAknnICDBw9aNhPBMDQIQmV0xzB0KNFyeHzBao5OKmKRcmhqtM7tmppoTAWIIEkiykIVyA4GwPOZndvY2hDlJRXgBR6BHF+95JIbc17DtOSOGQOEeOlvQ6MU0WgMofIKdJYOA558kKdDyu3GT3gJdpMjN4eg/eBGCDKA1+fHqlWrIAgC+vTpA9MkrFixAuvXr8ff//53HNenNzQlgv7H93U0FxhjuOKKKzBv3jxI/jxIuT0g5fWAnNcTki8HTz/9NK699lrcdNNNIC2M7t26YP78+Vi2bJnT2Gnq1Kl46aWXMHToUJxyyilYsGABvP5s+IN5qAjHMHPmTPTr1w/Dhw/HkiVLkJ2TD0EQMG7cOPzzn//EKaecgpNPPhnvLFoEWfZi7969qKiowMSJEyGKIrKzs3HNNddAkiTMnTsXO3bswLRp0zBq1Chs2LABr7zyCp544glcddVVOPbYYxEKhbBs2TJceOGFOP744/GTn/wEpWXlCAQ7wOvPxr//8x+ceeaZGDhwIO68806oqoaNGzfipZdewmuvvYZRo0bhT3/6k3Ndr7rqKvzzn/+EJMnYvHkzFEVx9CgAYNmyZTj33HPRr18/jBw5El8sX468/I6QJBmzZs3CX//6VwwfPhwnnXQSnn32WXj9QUiSB7puWPXwYPBl5eKLL5ZjzJgx6NOnD8455xxs274dHl8QX6/8Bueffz4GDBiAadOmIRKNwevPdrpsPvDAA+jbty8uvvhi/PhjEQDgrrvuwpYtWzBq1Chce+21AIDrrrsOr7zyCk4//XRMnz4dmzdvTlLsJCLcf//96N+/P8aOHYvde/bC6wti06ZNmDFjBnhBhCT7sH//AUyePBkA8Mtf/hKlpaUYNWoURo8eDcYYjhwpw5QpUzBgwABceOGFWLNmrbVExfEYM2YMXn31VQwePBj/93//h61bt2LcuHHo378/Bg8ebF1nT+pKlqpKk6ZJMAwTum7E81JUaJpeb40BG563em4oqtZkGg+NJVGrQFd1xCKKIwPe3OcVeB4eWbQiWpqBmKI2WLuA4ziYpmnlEJABVBHpsjuwcstWO5GDV3c92UTvxiXTuDkEGUCSPFi6dCnOOOMMJ/HsvffewznnnINAIICKskNWwp4atWacBEgeH4YOHYr77rsvHnqWYBo6+PgM7/3338df/vIX6LEy6PtXwZCykNv9DAwdOhTvvfceBg0ahK+//hpFRUVYvHgxiouLce6552LgwIE48cQTcdNNN2HAgAHYsGEDtm/fjosuugiffvopCgsL8emnn6J79+747LPPsHr1akyYMAH79u3DMcccg+OOOw4jR450FCQHDx4MxhhuvvlmzJ07F88++ywGDhwISZLw5ptv4s9//jPeeecdDBw4EAcPHsR1112HN954AyeffDKeeeYZ3HTTTXjrrbfw+eef49e//jXeeecddOvWDbfffjsefvhhPPLII/jJT36CSCSChx56CDzPIxy2ciSmTJmCa6+9FjNmzMDLL7+MG264AW+//bZz3Tt16oR//vOf6Ny5M7766itceeWV2LRpE3w+H9asWYPly5fj3XffRTQaxciRI3H88cdj+Fln4tDBYgiCgKxgFnbt2oWJEyfin//8J0aOHIk9e/bA4/Hg0KFDGDduHF5//XUMHz4c99xzD6ZPn4433ngDR44cwdy5c7FgwQL86le/wuzZs/GrX/0KL7/8Mh599FH89Kc/xbvvvusMbF9++SVCoRAWLVoEj8eDb775JimCsHbtWtx0003YsGEDXnjhBUyaNAkrV65EKBTCqlWrrI0YQywWc5pvPfbYY3j33Xfx7rvvOseZMmUKTjzxRKxZswYff/wxxowZg82bNyMnJwfLli1D586dsXTpUgiCgBtvvBHjxo3DT3/6U4TDYauHR5KsdFxgS9OhG4ajwaBpGlTVKhs0TRMmmeB5HqZpgIHB45GRHQzC5/OmPcvnOc5qgw0dfBOJDzUFtlZBdkEW1JiGSFyrgBeaf95l5Rfw4HlrQNfizpcoWjkG6TpNljCXaXVdNavLdKuqgVB5DP85NCfF3i5tHTdCkAE4nseePXvQuXNn6Ia1ThcKhZCTkxOfVVUm4JmGDtPUQaaJzp07O/LHdijY/qE7+zMJZs4AmJKlqJeTk5PUVGnWrFkI+P047rjjMHnyZLz55psoLy/H22+/jXPPPRfLly9HcXExBg4ciI8//tjZ77777oPf78fZZ58Nn8+HoqIiCIKA5cuX45prrsGnn36K8847D2effTYqKiogiiI4joMsy1YiVDz0P2HCBJxxxhnw+/2OIxCJRPD5559j8ODB+PDDD2EYBubPn4/zzz8fe/bswYoVKzBs2DAsWrQIXHxNXBAEyLKUtHbct29fSJKE9evX4/XXX8c111yTdN379euHNWvW4Pe//z3ee+89aJqGrVu3Oq//7Gc/Q15eHrp164abbroJ//3vfyFKMsR4OZsky/jvf/+LcePG4bzzzoMSq0DnTgXo1KkTFi9ejNNOOw3nnXceBIHHQw89hIULF0JRFADAwIEDccUVV0CSJFx55ZXYsMHqECdJEjiOg8fjiSeHWdx9993Iz8tDVlb18tGOHTvipz/9KTiO4ZZbbsGePXuwa9euWr9zkmTlYXg8Hng8HlRUVODDDz/E7NmzIQo8Lr74YgwYMACffPKJs8/999+PYFYAgUAAOTk5WLJkCT777DNIkoQ+ffpA11REYwoOHDyMnbv2YufO3Sg+cABlZWUIhUIoLy+HrmvwemQUdMhFjx5d0PvYQhx7THf06lmIwh7dEPD7UFJaip279mD/gcOIKWqd2fMcxyDLImKxmJPK0FoWPu0KBNknwTQMlB4og9HcSoNVzs/zPGTJ6gyqaXpcSTTtAwAgECdYYlZVEAQOimpAbYmOjC4tjhshyAgESZKgaRp4zmpN27dvX7zxxhvO7N/QVTCOt5LNiAAQNE2DJEnOMQA4PQb69u2LrVu3YtjQMwBOAO8rAABs27YtSRI6Pz8fulIBXvKjQ4cO2LdvnzO4L1682Nlu4MCBjiIkYDkWSiwK2eOFx+OBqlo3br/Pi1tvvQUzZsxARUUFhg4dildeeQW33VapjW4aOsz4mnTHjh2t2SFjKCoqwsGDB/Hee+85295+++1QVRVFRUXgeT7pNTuxzrmKhGpr2FOnTsW0adNwyimnIC8vWWZ41qxZ2LXLSrwMBoNYsGAByssrM+7z8/Ot6844dOjQAWvXrgVjzAmaMsbh8OHD6NSpE4hM6PGqBVHyoKSkBAUF1jXXlCiysrIgiiLKysqc6wcA0YowZFl2HIVENC0GXhCd66RpMXBG9bX8vLw8MMagxqKQvQHk5eWhpKQkfk3iVQGw8kBSYRgajhw5gkAgAK/Xi1ikHB5fFgoKCnD48GFnu44dO0JVoxAEGX/84x/x/PPP46GHHsKGDRvwpz/9CVdccQX27z8IWZZQUJAPMS7QY7VRYhBEwZGcTjVD5XkeohhEdnYQiqIiFCrHj0X7IPACsrODCPi98W6fyfsyxsAxDiInQBYlKCZB4lI0pcoQjDEQWSJSkfIYYhEVHp8Erh4z9aawgWeW46QomlOJUOd+YIClPAKOFFCVfTiOwesRUF4ehZwfaJbGXS6Zw3UIMoCu6zj++OPx8ccfg+N4aEoUV1xxBX75y1/im2++wamnnuokne3cuRM9e/YEAGzfvh39+vUDUHmzNwwrFHvVVVdhzpw5mDx5MvzBDuA4Dp9//jm+//57XHrppc6516xZg9NOOw0AsHr1aowYMQI9e/aE1+vF9OnT0adPnxrtrprJreu6c8MmIgQCARQWFlozN8BxeiS5cq3ZviGahoEhQ4Zg9erV+O1vf1vtRjlkyBAcOXIEv/vd76rZIUkSSktLrZm1NwsxpdR57corr8T8+fNxyy23VNtv0aJFePfdd9G3b1+Ul5dXa2i1Zs0ajBkzxrk2ffv2hWma8cGVQKaBgQMH4rnnngPA4M/KA4vrHBx//PF49tlnQUTw+LKwYcMG+P1+x0mwEauIFNnXCAA8CfLItQ0c27dvR2lpKXJycnDkyBH8+OOP6NWrFw4cOIADBw6AiCCIMr777ruU5+F5EV27doVpmti6dSv69OkDwzCwevVq/PznP69iA4EXBPhFCb/4xS/wi1/8Au+99x7uv/9+XHXVVeh5TCGIjAYPdE71iEeGLEvIz89FOBxBWagcJSVH4PV6kR3MgscjxSs1rP3s778oCqjQCaLUOpwBW7TIdth9WTJ01UB5SRjegAzJI1Ubl5vTSeA5DjzPQdMMiGKlc5nynETgGLOcOMYAYkmvGaoGzTAhMhMRTbP0IABEoi3TfM2l+XEdggygxqIYPXo0Hn74YWddtVOnTnjhhRcwZswYXHHFFejbty82btyIzz//3LmxL126FGPGjIFpGiCzsi2ypkZx++234+OPP8bQoUNx7bXX4scff8Srr76KefPmObNTAPjLX/6CiooKFBUVYfXq1XjppZcgyzIeeughXHTRRbjtttsQCASwYsUKzJw5E6ecktDdrMpNZOfOnbjkkktw+eWXo0uXLli1ahVWrVqFv/zlLwCsxlL33nsvhg4dimnTpiXtq2kxTJgwAX/6059w5ZVX4sILL0RpaSk2bdqEl156CbfddhuGDx+OW2+9Faeddhr27t0LTdPw8MMP44wzzsD1118PSZJw5pln4qyzznKOGwwG8fnnn6e87sOGDcPdd9+NMWPG4I033oDfn6xxsGDBgrjwTQQLFy7EypUroWuWOp6VyR3DpEmT8Mwzz+Cqq67ChRdeiO3bt2PSpEkYNWoUOnTogKuvvhpnn302nn32WTzyyCPVb7xVnKpevXqhpKQEd9xxB3r27Ik77rgjpe2JBINBTJ48GZdeeikWLFiAm2++GTk5OcjKyoLf78eMGTMcyW6b7OxsdO7cGTfffDO6d++OBx98EA8++CAmTJiAW265BR999BGOP/74pGtpfU4mPF4Ot9xyC3r37o2CggL85z//wYh4x1HGmq6tsh3uDgazkJUVgKpqCJWXo/jAQQiCAL/Pi6yAH6IogOPj5ZSaCh8vgAFNIjfdWEjTESs+DIq3A7cNoqiKigPkqE0CDFzACzmvfln5RARFNSCJfOpSS5MA3QDFVEDRAAJExhDTNJg8B8ZzYDwPURadT43IiuJF9xVDCgbhKSmDEpNAhg5JC4HjeUQPH4IeiUJTVchZQfCHDoF16gLBI0MM1U/nxKX14pYdtiBlZWXIycnB9q2bcGzvfrj88ssxY8YMnHP2cJSHSpHXoRNKSkrw5ptv4sCBA+jVqxfGjh2LQCAARVEwaNAgfPXVVxA4IFSW3IY3r6AzPB4fvvzyS3z22WfIzs7GxIkT0aFDB5SHSpEVzMEJJ5yAv/3tb1i/fj0Mw8AVV1yBnOwsREr3I1hQiB9++AGLFi2CaZoYPHgwRowYAUEQ8Oabb2LcuHGIRsoRzM7De++9h+HDhyMQCGDDhg1Yvnw5SktL0b17d1xyySUI+P3QNAWi5MHnn3+OAwcOYOTIkThw4ABM00TfvsfhYPGP6NCxCzhewIcffoh169YhPz8fo0aNwnHHHQfTNBGLxfD2229j+/bt6NatGy688EJ06dIFALBp0yZs3LgRxxxzDAYOHIiFCxdi0qRJOHywGLpmLWd06lqIzz77DD179kRhYSEURcGCBQtw6NAhXHrppdi7dy9OPPFEdOjQASNGjMC9996L4uJihMNhjB8/Hp07d8KBYssR0TQNsiSjoFNXMM7qobFp0yYce+yxuOyyy+Dz+aCqKt566y3s2bMHw4cPxxlnnAHTNHHo0CF8//33GDFiBMrLjsAEhy+//NLpp3Hw4EF8/fXXYIxhzJgxePfdd3H22WfD0BUIvIBITHX2LykpwerVq9GtWze888476NevHy655BKEK8ogyz6UhUJ4/fXXIUkSxo8fj6+//tpZMiorK8Py5csRiUQwceJEEBG++uorLFu2DH369MFll10GjrPUHd944w3rGu3ZhZ7H9sb69evx+eefo7y8HIMGDcJFF12ESEUIZaWH0ZwQEUwyocQUlJaFEIspVr6FKCInmAUmcDBUAxyfLDVtxGfqfLw3hUkAz+zljHrMyqveHevYTauIQCs6BEEQQSaBQE4EzT6gnf+jkwHvsV3B8emrApomYf+BcnTo4LeWaIgAwwRFYqAjFTAPloEOh0AVEYBxYB4JEHln0CcCIEkgiYcQjlnXgXEI8yoUw1p+43gRkiSD6QbEKAMEAWWxw+D8HuiRCLI6d4VWXoGAJwimGiiPRHDibT9BaWkpsrOza38DLq0a1yFoQfbu3YsePXoAsFowd+/eHS+88AKeeuopDBo0COFwGNOnT8dFF12E7OxsFBUV4f3338ftt9+OVatWYfv27fjZz36Gbt26oaioKOnYjDFccsklmD59Oo4//nhEIhEsXrwYzz77LDp16oQVK1bghBNOwOuvv46BAwdi3bp1WLp0KR566CGUlJTgjDPOcJpE8TyP77//HgsXLkS3bt1w5plnYt26dZg9ezZuuukmjBkzBlu2bMHy5ctx4YUXYvDgwQgGg9i3bx+WLVuGZ555BiUlJZg6dSpGjRqFvLw8dOnSBeXl5SguLsaTTz6JFStWQBRFTJ06FVdffbUzU165ciWeffZZ7NixA7feeismTJiALl26YN++ffj888/xpz/9CV27dsUNN9yAHj16gOd5FBQU4ODBg1i5ciV+/etfw4gnal599dW47rrrUFJSgt///ve47LLLMGHCBOTk5KBPnz7YtWsXtm3bhlGjRmHEiBGYPXs2Ro4ciW+//Raff/45HnroIezbty/pOsuyjOnTp+Oaa65B9+7d8eOPP2LRokX485//jKlTp+Kaa65Bbm4uvv/+e8yZMwebN2/G7Nmz0bVrVyxYsADvvvsufvOb36BPnz54++23sXDhQsycORP9+/eHLMvo168ffvjhB2zZsgUPPvgg/H4/fv3rX6Nr16746KOPcNxxx2Hs2LHo0aMHtmzZgh9//BGvvPIK5s2bh7y8PPzmN7/BOeecg2AwiJ49e2LZsmVYuHAh5s+fj5kzZ2Lw4MHw+SzHceXKlbjllltw/PHHY/fu3Vi4cCGeffZZ/N///R/OPPNMrF27FrNnz8aQIUNw880345RTTkF2djY2b96MV199Fa+88oq7fuzisGfPHnTv3j3TZrg0AtchaEFM00RRURGysrLA8zwCgYDzfDgcrvHm6vV6IYpWslksFoOqqvU6L8dxCAQCuPvuuzFz5kx07NgxZVJbKkKhEHr06IE9e/a0SdGRuuxnjCErKwuPPPIILr/8cvTp08fJgWgNtPfr39px7a8bIkJ5eTm6du3qVBO5tE1ch8ClVmx1xbaqQuban1lc+zNLW7ffpWVx3TkXFxcXFxcX1yFwcXFxcXFxcR0ClzqQZRmzZ8+GLFdv/tMWcO3PLK79maWt2+/Ssrg5BC4uLi4uLi5uhMDFxcXFxcXFdQhcXFxcXFxc4DoELi4uLi4uLnAdAhcXFxcXFxe4DoGLi4uLi4sLXIfgqKetF5m49meOtmw74Nrv4lIV1yE4itE0Dfv373f+bms3GF3XUVZWlmkzGkxbtr8t2w60ffvb+m/XpXXiOgRHKU8++ST69euHMWPG4Oqrr8bq1avTbwnbCnjiiSdw0kknYcyYMbj77ruxbds2AG3nxtiW7W/LtgNt3/62/tt1ab24wkRHIU888QTmzp2LP/zhDyguLsbbb7+N9evX4/3338fgwYMzbV6dPPDAA/j73/+O3/72t/juu++wZMkShEIhfPHFF8jLy8u0eXXSlu1vy7YDbd/+tv7bdWnlkMtRg2EYpGkaXXzxxTRz5syk10488US69NJLacuWLRmyrm5M06RQKETDhg2j3/3ud87ze/bsocLCQpo6dSqVlZVl0MLaacv2t2Xbidq+/W39t+vSNnCXDI4iOI6DaZrYsGEDTj75ZABALBYDADz//PNYsWIFPvzwQ+i6nkkza4QxBo7jsHbtWpxyyikArLXg7t274/nnn8fLL7+Mzz//PMNW1kxbtr8t2w60ffvb+m/XpW3gLhm0Y+bNm4cVK1bgpJNOwqWXXooePXoAACZNmoRDhw7hk08+AQCYpgmO43Dddddh8+bNWLJkSavonf73v/8d3377LYYMGYLzzz8feXl5iEajGDduHLp164ZXXnkFQKX9F1xwAQRBwHvvvec859p/9NneHuxv679dlzZKpkMULk3P4cOHaezYsdS1a1eaPHky9erVi3r27EnvvfceERG9+uqr1L17d3r33XeJiCgajRIR0ZYtW4gxRhs2bMiY7URE+/bto1GjRlG3bt1o3Lhx1K1bNxo8eDBt3ryZiIgefvhhGjJkCC1fvpyIiBRFISKixYsXkyAItHfv3ozZTtS27W/LthO1ffvb+m/XpW3jLhm0Q7755hts2bIFK1aswGuvvYZt27ahT58+eOKJJ/D111/joosuwqmnnorHHnsMAODxeAAAPM+jW7du+O677zJpPj799FMUFxdj7dq1eOutt7B27VpEo1Hce++92LNnDyZMmIBAIIDnn38eACBJEgDA5/OhS5cuTtZ4pmjL9rdl24G2b39b/+26tG1ch6AdQfHVn++++w6yLMPv9zuv/fa3v4Vpmpg7dy5ycnJw8803Y+fOnbjrrrtgGAYAYMuWLfB6vTjrrLMyZj8R4YsvvkDnzp0RCATAcRw6dOiA5557Dhs3bsTf/vY3nHDCCbjiiiuwcuVKPPnkk87+P/74I/x+PwYOHOjafxTZ3l7sB9rub9elfSBk2gCXxvHFF18gGAzimGOOcdYOTdNEOBwGYN1oGGM49dRTcfHFF+M///kPPvzwQ1x88cV44okncOONN+LTTz/FwIED8Z///AfXXXcdCgoKnP2am2+++QadO3dGx44dndmaLMsoLi6Gx+OBYRjgeR4jR47Eeeedhw8++ABXXHEFbrjhBoTDYdx1111YunQpCgsL8Y9//AM333wzgsGga387t7092N/Wf7su7ZCWXqNwaRo2b95Mp512GnXs2JF69epFp512Gr311ltERLR//37yeDz08ssvExGRpmlERLR792468cQT6ZFHHiHDMIiI6KOPPqInnniCpkyZQu+8806L2b9x40YaMmQIderUifr06UMXXnghrVq1ioiIVq1aRTzP0+LFi4mIKBaLERHR1q1bKT8/n1577TXnOP/617/ovvvuo/Hjx9P//vc/1/52bnt7sL+t/3Zd2i+uQ9AG0TSNpk2bRldccQXt2rWLVq9eTZdccgmdeOKJ9PbbbxMR0U033USFhYUUiUSIyKrDJiKaNGkSjR07NmO2ExGVl5fThAkT6Cc/+Qlt3ryZli5dSoMGDaJRo0bRihUriIjo0ksvpUGDBjn76LpOREQjR46kqVOnZsRum7Zsf1u2najt29/Wf7su7RvXIWhD2DeG/fv3U1ZWFr3yyivOaz/88AP95Cc/oQEDBhCRJbjSqVMnmjFjhpOJbJomjR8/nn7605+2vPFUaf/WrVspEAjQokWLnNdWrFhB48aNo3HjxhER0WeffUbBYJAeffRRZ5twOExnnnkmPfjggy1reJy2bH9btp2o/djfVn+7LkcHbg5BG6C0tBQ5OTnOumBFRQX69esHTdOcbfr27YspU6bg008/xWOPPYb/+7//w3PPPYfrr78eR44cwVVXXYVdu3ZhxYoVeOmll1rU/kgkAp/P59h/4MAB9OzZ08mQBoChQ4diwoQJeOqpp/Dyyy9jypQpePTRR3H77bejrKwMY8eOxfr167F7926cf/75rv1Hge3twf62/tt1OcrItEfiUjObNm2iCy64gEaOHEk33HADffjhh0REFIlEaMiQIXTHHXckya2WlpbSL3/5SzrttNPo0KFDRET02muv0SWXXEKDBw+mXr160euvv95i9m/cuJHGjh1LEyZMoDvvvJO+++47IrLCvvn5+fT73//emTkREf344480efJkmjRpEpWXlxMR0eOPP07Dhw+n448/ngoLC+nf//63a387t7092N/Wf7suRyeuQ9BKWbVqFXXp0oWmTp1Kf/3rX2nYsGHUvXt3+s9//kNERE888QTl5eU5Ais2r776Kp100knODdRmx44dLWU6EREtW7aM8vPz6frrr6fHHnuMevbsSaeddhp99NFHRET0i1/8gnr06EF79uxJ2u+xxx6jk08+mQ4ePOg8Z5omffvtt679R4Ht7cH+tv7bdTl6cR2CVoY963nsscfonHPOcRKLDhw4QLfddhvl5eXR/v37iYiod+/eNHnyZNq+fbuz/yeffEKMMdq6dSsRkZOR3NLMmjWLxo8f77yf77//niZNmkS9evUiIqKysjIqKCigO+64g0KhkLPfm2++SR6Px7mpu/YfXbYTtX372/pv1+XoxRUmaiVs27YNmqY5a42bN28GYwxerxcAUFBQgIceegh5eXm49957AQBz5szB8uXL8Yc//AE7duyAqqp47733cMkll6BLly4A0GKa7AcOHEjqJ79161ZIkuS8n/79++O+++5DKBTC7NmzEQwG8eSTT+KFF17AX/7yFxQXF4OI8O677+KKK65Afn5+i9pv226aZpu0P5G2arv9GbRV+23a2m/XxcUhg86IC1n1xWPHjqXTTz+d3n//fef5P/zhD3TSSSc5Guz2bOG1114jnuedcOlf/vIXGjJkCHXv3p1OOOEE6tChQ4vWVO/atYtOP/10uuaaS8a6ZwAAEIlJREFUa+jIkSNEZJVWzZgxg8aOHUs//vijs62mafTYY49RVlaWs877wAMPUP/+/alv37500kknUceOHZ311ubGNE06fPgwnXfeefTAAw84z7UV+/fu3UuPP/44/fOf/3Tq8GOxWJuwnYioqKiIFixYQMuXL6fDhw8TkdVboK3YX1xc7LQctksbidrOb9fFpSquQ5AB7FDo4sWLqWvXrjRx4kRau3ZtUmOVt99+m8444wx66qmnkvbbv38/DRw40BnAiKxSpvfff5/mz5/fcm+CiO644w4SBIEuv/xyJxRqv7cXX3yRBg0aRG+88UbSPqtWraIBAwbQ3LlziYhIVVXasmULvfLKK/Tcc8+1qP1ERIsWLSLGGMmynBS+/etf/0oDBw5stfbfdddd5PV6afTo0XTcccfRscceS2vWrCEioueff77VX/u77rqLAoEAjRgxgnw+H02cONEZQNuC/Y8++ihxHEfnnHOO85w98P/vf/9r9b9dF5dUuA5BBpk6dSrdeeedzt/2oGozadIkGj16NH311VfOc5FIhM4++2z61a9+RaZpZmSdsaysjHJzc6lDhw702WefOc/bqmo2p556Kk2ePNmZRRERHTlyhPr27Ut/+9vfiCjz66SzZ8+m2267jS6++GIaPXp00mut0f4jR47QZZddRmeddZZz7desWUNnnnkm3XPPPa3adiKikpISmjZtGg0bNow+/fRTisVi9K9//YvOO+88uvvuu1u9/Yqi0D333ENDhw6l66+/nk488UTHnsTv/5VXXtkqf7suLrXhLlJliKKiImzYsAETJkzAunXrcN5552Hs2LE466yz8MILLwAAZs2ahXA4jMcff9zZzzRNlJSU4NhjjwVjLCPrvMFgEBdccAF69eqFs846CytXrsS0adMwc+ZMPPPMM9i4cSMA4O6778batWud9wMAiqJA13Xk5uYCyNw6qd0URhRF5OTk4K677sKHH36I9957z9nmwQcfxOrVq1uV/Tk5Objsssvw+OOPY/jw4QCAwYMHQ5ZljB8/3tnu3nvvbZXX/tChQ2CM4Z577sHZZ58NWZYxadIkBAIBqKrq5HDcf//9rdJ+SZLQu3dv3HjjjfjVr36F008/Hc899xzKy8shCAJUVQUA3HbbbYhGo63qt+viUieZ9kiOBuyZQOIMoqysjDweD/3nP/+hSZMm0S9/+Ut6/fXXaebMmSSKoqNl/s9//pN69+5NgwYNol/96lc0fPhwGjhwYNLMqSXtt9dKS0tLSRRFOuGEE6h79+50ww030Pjx46lfv37Uv39/Z5+HHnqI+vXrR2effTb9+c9/prPOOotOP/10Kioqyoj9VRk7diy9+uqrREQ0efJkOvHEE6mkpIQWLFhARES/+93vqG/fvhmzP5Xttj4/EdHBgwdp3LhxlJOTQxdeeCHdcccdVFFRQUREjzzySEZtT7RfVVUisnQEEssA7dcnT55Mt912W9K+jzzySKv67tjLYYkz+//97380ZMgQ+tWvflXttddee4369OmT0d+ui0t9cB2CZubXv/41jRkzJuk5+6YxduxYKigooBEjRiSJlEyePJlOP/1057mtW7fSz3/+c7r00ktp5syZpChKRu23B6ennnqK+vbtS19//bVzs1y9ejUVFhbSzJkziciSjP3yyy9p8uTJNHLkSLr11ludwSFT9hNVJoFNnDiRPvjgAyIi+vbbb8nj8RBjjGbOnEmqqlIsFsuY/TXZblNcXEznnXcejR07lt555x164oknqG/fvjR+/HgiskLUrenaJwoJEVX+DnRdp549ezqNh+zvt6Iorcr+VIRCIbrvvvtowIAB9P333xMRJdmYyd+ui0t9cR2CZmLTpk102WWXUUFBATHGHO1yezA1DIPmzJlDubm5dMMNNyS9tm3btqR6ZJuWvBnWZn/ijf3jjz+u9tz9999PJ554ojNTtbF12VuCuq6/zTnnnEPfffcdLVq0iDp27EgFBQXk8/mcionE7PGWsj9d24mqi9a888475PP5aN++fUnPt4Zrn3gtE/n222+psLCQfvjhhxqP2Rrsr3r97e/88uXLaeTIkXT99dc7r1X9rbbkb9fFpaG4i1jNxNq1a+Hz+fDiiy9ixowZeOCBB2CaJgRBgK7r4DgOF1xwAYYOHYoPPvgAJSUlEASrtcTGjRtx3HHHgSyHzTmmKIqtwv5ERo4cCUEQwBhzbF2/fj26du0KSZKS7E/Un8+k/bZNe/bsgaIoOOecc3D11Vdj1qxZWLp0KQoLC/GLX/wCAJL6yreU/enYbtOzZ08AlTX8a9asQY8ePWAYRqu79jzPV7MfAL777jt07twZffv2BQC89957+N3vfpe0TWuwv+r1t78bQ4cOxaWXXopvvvkG77zzDl5//XXcfPPNTp4K0LK/XReXBpMpT6S9Ys8aysrKaOXKlUREtHLlSurdu7eTRZ040/j000+pW7duNGbMGFqwYAF9++23dMEFF9B1111XLcTaWuyvaaZHRPTll1/SmWeemdR3viWpr/3XXHMNzZo1K6nk8LnnnqOsrCynNr6laOy1X7duHY0aNYoefvjh5jc2BQ21/9prr6V77rmH9u/fT+effz6JokiPPfZYyxkepyH22/v88MMPdO655xJjjCRJovvvv78FLXdxaRpch6AFqKiooN///veUnZ1NO3fuJKLkEOI333xDI0aMoAEDBlDnzp3p2muvpXA4nClzq5HK/sQb4/bt2+n111+n6dOnUyAQoJ/97Getaq00lf12Yl7VZQ0ia+29JUPUtVHXtd+xYwf9+9//pptvvpl8Ph/dfPPNrcZ2orrtP3jwIBUWFlLPnj1JFEWaOHFiUj5NpqnLfiJLYGnq1KnEGKNbb73VEU5ycWlruA5BM5A4s7f/vWnTJjrrrLNowoQJSdvaiVWxWIx27dpFu3btajlDa6A+9hNZs6ipU6fS6NGjafXq1S1mZ03U1/7WRH1tX716Nd122200bty4Nnntd+7cSYWFhTR8+PA2aT8R0fz58+mcc86hb775pkVsdHFpLlyHoIlJlfhlP//qq69SMBikjz/+mIisrm5VxYgyTX3sX7p0KZWUlDgqbK2B+l7/AwcOtKR5tdKQa09ETrvcTFNf+0tLSykcDtO6deta0swaqe93p7i4mIiqV0+4uLRVXIegiUi8mWiaRnfeeWe1euOioiKaPHkyHXfccXThhRcSY8xZq8w0DbX/66+/bmlTU9KWr//Reu3buv2t4bvj4tKUuFUGjcTO5raz759++mnk5+dj4cKFSRnq9rYHDx7E1q1bkZeXh6KiIpx66qmZMDvJpsbYf9ppp2XC7CSb2ur1P9qvfVu3P9O/XReXJieT3khbJzG5aMmSJdS7d2/q1KkTvfjii9XCjxs3bqQhQ4ZQ7969acWKFS1takpc+zNHW7adyLXfxaU94joEjWT37t100UUXkSiK9Mtf/rLGUrVwOEyffPJJyxqXBq79maMt207k2u/i0t5wHYJG8O9//5sEQaCxY8fSxo0bM21OvXHtzxxt2XYi134Xl/YII0ohHeaSFtu3b8f+/fsxbNiwTJvSIFz7M0dbth1w7XdxaY+4DoGLi4uLi4sL3CoDFxcXFxcXF9chcHFxcXFxcXEdAhcXFxcXFxe4DoGLi4uLi4sLXIfAxcXFxcXFBa5D4OLi4uLi4gLXIXBxcXFxcXGB6xC4uLi4uLi4wHUIXFxcXFxcXOA6BC4uLi4uLi5wHQIXl3bJzp07wRjD2rVrm+X4jDG89dZbzXJsFxeXzOA6BC4uzcANN9yA8ePHZ+z8PXr0wL59+zBw4EAAwNKlS8EYQ2lpacZscnFxad0ImTbAxcWl6eF5Hp07d860GS4uLm0IN0Lg4tLCLFu2DKeffjpkWUaXLl1w7733Qtd15/URI0bg9ttvx9133428vDx07twZv/71r5OOsWnTJgwfPhwejwcDBgzAkiVLksL4iUsGO3fuxMiRIwEAubm5YIzhhhtuAAD07NkTTz/9dNKxBw8enHS+LVu24JxzznHOtXjx4mrvac+ePbjyyiuRk5ODvLw8XHbZZdi5c2djL5WLi0sL4joELi4tyI8//ogxY8bgtNNOw7p16/Dcc8/hpZdewiOPPJK03csvvwy/34+vvvoKjz/+OB566CFnIDYMA+PHj4fP58NXX32FF154Affff3+N5+zRowf++9//AgB++OEH7Nu3D88880xa9pqmicsvvxySJOGrr77C888/j3vuuSdpG03TMHr0aGRlZeGzzz7DF198gUAggIsuugiqqtbn8ri4uGQQd8nAxaUFefbZZ9GjRw/MmTMHjDEcf/zxKCoqwj333IMHH3wQHGf56CeeeCJmz54NADjuuOMwZ84cfPTRR7jggguwePFibNu2DUuXLnWWBR599FFccMEFKc/J8zzy8vIAAB07dkROTk7a9i5ZsgSbNm3CBx98gK5duwIAHnvsMVx88cXONq+//jpM08SLL74IxhgAYN68ecjJycHSpUtx4YUX1u8iubi4ZATXIXBxaUE2btyIYcOGOQMnAJx11lmoqKjA3r17UVhYCMByCBLp0qULDhw4AMCa5ffo0SMpR+D0009vNnt79OjhOAMAMGzYsKRt1q1bh61btyIrKyvp+Vgshm3btjWLXS4uLk2P6xC4uLRCRFFM+psxBtM0m/w8HMeBiJKe0zStXseoqKjAkCFD8Nprr1V7raCgoFH2ubi4tByuQ+Di0oL0798f//3vf0FETpTgiy++QFZWFrp3757WMfr164c9e/Zg//796NSpEwBg5cqVte4jSRIAK/8gkYKCAuzbt8/5OxQKYceOHUn27tmzB/v27UOXLl0AAF9++WXSMU455RS8/vrr6NixI4LBYFrvwcXFpfXhJhW6uDQTZWVlWLt2bdLj5ptvxp49ezBz5kxs2rQJCxcuxOzZs3HnnXc6+QN1ccEFF6B3796YMmUK1q9fjy+++AIPPPAAACQtRSRyzDHHgDGGd955BwcPHkRFRQUAYNSoUfj73/+Ozz77DBs2bMCUKVPA87yz3/nnn4++fftiypQpWLduHT777LNqCYzXXnstOnTogMsuuwyfffYZduzYgaVLl+L222/H3r17G3LpXFxcMoDrELi4NBNLly7FySefnPR4+OGH8e677+Lrr7/GSSedhFtuuQXTpk1zBvR04Hkeb731FioqKnDaaadh+vTpziDt8XhS7tOtWzf85je/wb333otOnTrhZz/7GQDgvvvuw7nnnotx48Zh7NixGD9+PHr37u3sx3Ec3nzzTUSjUZx++umYPn06Hn300aRj+3w+fPrppygsLMTll1+O/v37Y9q0aYjFYm7EwMWlDcGo6gKii4tLm+OLL77A8OHDsXXr1qQB3cXFxSVdXIfAxaUN8uabbyIQCOC4447D1q1b8fOf/xy5ubn4/PPPM22ai4tLG8VNKnRxaYOUl5fjnnvuwe7du9GhQwecf/75ePLJJzNtlouLSxvGjRC4uLi4uLi4uEmFLi4uLi4uLq5D4OLi4uLi4gLXIXBxcXFxcXGB6xC4uLi4uLi4wHUIXFxcXFxcXOA6BC4uLi4uLi5wHQIXFxcXFxcXuA6Bi4uLi4uLC1yHwMXFxcXFxQXA/wNp+xruzx8m7AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='cantor'\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "253162e4", + "metadata": {}, + "source": [ + "#### Pairing Dictionary\n", + "\n", + "A pairing dictionary can be provided by the user to allow more control when specifying the agreement value outputs.\n", + "\n", + "A pairing dictionary has keys that are tuples corresponding to every unique combination of values in the candidate and benchmark, respectively. The values represent the agreement values for each combination. An example pairing dictionary for the candidate values [1,2] and benchmark values [0, 2] is provided below. A user has full control over the encodings including the combinations of nodata values (which are in this case np.nan)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "a2310a98", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGVCAYAAACB0OntAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9L0lEQVR4nOydeXxM1/vHP5OdkIQQERLSUktIEKLhp9YKohVCUS1iaSmKtLavWltbS1GULkRbUdu30qKNBlVKagkpUlsVY0nsEYKE5Pz+yPdcd+7cdeZOZhLn/XrNi9x77rnnnrlzznOe8ywGQggBg8FgMBiMZxonezeAwWAwGAyG/WECAYPBYDAYDCYQMBgMBoPBYAIBg8FgMBgMMIGAwWAwGAwGmEDAYDAYDAYDTCBgMBgMBoMBJhAwGAwGg8EAEwgYDAaDwWCACQQMAQcPHoTBYIDBYMDMmTPt3RyGjgwcOJD7bt9++23Jcnl5eahYsSJXdvfu3cXXSI0MGjQInp6euH79uslx2na5z8CBA02uqVmzplkZLy8vNGvWDPPnz0d+fr7Z/fPy8rBw4UJERkbC29sbbm5uqFq1Kpo2bYpRo0Zh27Ztkm2/ffs2Zs+ejZdeegl+fn5wdXWFt7c3GjVqhOHDh2PXrl2a+6NNmzayz5ycnCx57erVqxEREYFy5cqhYsWK6NKlC/bv32/RfQwGA5ycxKeXy5cvIy4uDgEBAfDw8MALL7yAadOm4dGjR2ZlMzMzUaZMGbzzzjua+4KhHRd7N4DhWHz33Xfc/xMTEzF16lQ7toYhZPr06ZgxYwYSEhLMJjQtbNy4EUuWLIGbm5vZuW3btuHOnTtWtLJ4OH78OL755hu899578PPzEy0zYMAAyev/7//+T/R4bGwsypUrB0IILly4gNTUVBw+fBhbtmxBSkoK12fZ2dlo3749jhw5AldXV0RGRiIgIAD3799HWloali5dipSUFERHR5vdY/PmzRg4cCBycnJQrlw5NG/eHH5+fsjNzcXJkyexYsUKrFixAl26dJEVKqSgzyCkWrVqouXHjBmDxYsXo0yZMujYsSMePXqElJQU/Prrr9i0aRNiYmJMynfq1Ak1a9YUrSstLQ0nTpxAq1atzM79888/iIyMxM2bN9GgQQO0atUKhw8fxsyZM7Fz507s3LkT7u7uXPmqVavirbfewueff44xY8bghRdeUN8JDO0QBuN/5Ofnk0qVKhEAxN/fnwAgf/75p72bxeAxbdo0AoAkJCRovnbAgAEEAGncuDEBQDZv3ixarnv37sTZ2ZmEhYURAOS3336zqs224tVXXyWurq7k2rVrZucAEK3DW40aNQgAcv78eZPjR48eJd7e3gQAWbJkCXd81KhRBABp1KgRuXz5sll9Bw4cIDNmzDA7vmXLFmIwGIiLiwv5+OOPyaNHj8zKnDx5kgwYMIDUrl1b0zO0bt1a9BnkSElJIQCIr68vOXPmDHd8//79xM3Njfj4+JA7d+6ori8iIoIAIF999ZXZuZYtWxIA5N133+WOPX78mHTv3p0AINOmTTO75vLly8TJyYm89tprqtvAsAwmEDA4fvrpJwKAtGzZksycOZMAICNGjLB3sxg89BAIPv74Y+Lk5ER69uxpVubOnTvE3d2ddOzYkURFRTmsQGA0GomTkxPp2rWr6Hk9BQJCCJkxYwYBQNq3b88dCwgIIABISkqK6nvcu3ePE7q/++47xfKHDx9WXTchlgkEnTt3JgDIwoULzc69++67BACZP3++qrrOnDlDABAPDw+SnZ1tcu7AgQMEAPHz8zMTgrKysoirqyupUKECefz4sVm97du3J66uriQrK0v1czG0w2wIGBxr1qwBALzxxht44403AADr16/H48ePJa85duwYXnnlFfj4+KB8+fJ46aWXkJKSgt27d4vu09J97N27d2P79u1o27YtfHx8YDAYkJ2dzZVLTk5GdHQ0KleuDHd3dzz33HOIj4/HrVu3RNtBCMH333+Pdu3aoUKFCvDw8EC9evUwffp0PHjwwKw83QO9cOEC1q9fj2bNmqFs2bKoVq0axo8fz+0Xnzt3Dn379oWfnx/Kli2Ltm3b4tixY5L9oaXd/L7Ys2cP2rVrh/Lly8PLywvR0dH4+++/TcrXrFkTM2bMAADExcWZ7Ndq2eevWrUq2rVrh61bt+Lu3bsm5zZs2IC8vDzu+xcjPT0d48ePR3h4uMlzvvPOO7h69apZ+QsXLsBgMKBNmzbIycnB6NGjERgYyH1HCxcuRGFhoer2A8CqVatQWFiIvn37arrOUho3bgwAuHTpEnfsxo0bAIDKlSurrmf16tW4efMmWrRoIdvHlPDwcI0t1cbDhw85W4WePXuanafHtmzZoqo+Ooa88sor8Pb2NjlHtz5eeeUVk20BAKhSpQpatWqFO3fu4I8//jCr9/XXX8fjx4+xevVqVe1gWIi9JRKGY5CdnU08PDyIm5sbuXXrFiGEkBYtWhAA5KeffhK9Zv/+/aRs2bIEAAkNDSV9+vQhzZo1I05OTpw6dcCAASbX0FXq0KFDicFgIM2aNeOuoyuKCRMmEADEzc2NtGzZkvTs2ZPUrl2bACDPP/+82SqhoKCA9O3blwAg5cqVI23atCHdu3cngYGBBACJiIggDx48MLmGrqTGjBlDXFxcSIcOHUj37t251Vv//v3JmTNnSKVKlUjdunVJ7969ScOGDQkAUrFiRdGVitZ2076Ij48nzs7OpHnz5uS1114jL7zwAqfCzczM5Mq/9957nBq/ZcuWZMCAAdzn5MmTit8xvd93331HEhISCACycuVKkzIvvfQSKVu2LLl3756khqB3797ExcWFNGnShMTExJCYmBhSs2ZNAoBUrVqVXLlyxaT8+fPnCQDy4osvkvDwcOLj40N69OhBunbtSsqUKSP6nijRtGlTAsDsXhTorCFITEwkAEjDhg25Y8899xwBQIYNG0YKCwtV3aNLly5mWw9aoVoisT6j7/UHH3xAhg8fTkaMGEEWL15MLl68KFrX0aNHCQBSuXJl0fP3798nAEiFChVUte35558nAMiPP/5odq5bt24EAFm2bJnote+//z4BQBYvXmx27ty5cwQAadWqlap2MCyDCQQMQgghX3/9NQFAunXrxh37/PPPCQDSq1cvs/IFBQXcxDVr1izRuuQEAgBk3bp1ZvVu2LCBACANGjQgZ8+e5Y4XFhaSqVOnEgCkd+/eJtd8/PHHBABp06aNyQSal5dHBg8eTACQCRMmmFxDB85y5cqRQ4cOccczMzNJlSpViMFgIPXq1SMTJ07kBvvCwkLy5ptvEgBk6tSpVreb9oWTk5PJfv6TJ09IbGwsAUCmTJlico0eWwbfffcdycnJIWXKlCFt27blzl+8eJEYDAbSt29fQgiRFAh27dolKpRRtXpcXJzJOSoQUMHxxo0b3Ll//vmHU71L2TQIuXfvHnF2diYBAQGSZfQWCPr06UMAkH79+nHH5syZw92nbt26ZOLEiWTz5s3k0qVLkveoVq0aAUD++OMPTW3jo0YgEH5cXV3JzJkzzcr/+OOPnF2JFD4+PgQAycnJkW3X/v37OUE2Pz/f7Dy1XRETFgghZNGiRZyALEalSpWIu7s7efjwoWw7GJbDBAIGIeTpQLJx40bu2M2bN4mrq6vofiA1RKpduzYpKCgwq48aD0kJBNHR0aLtoCvg48ePm50rLCwkjRo1Is7Oztyk8vjxY1KpUiXi6ekpump/8OAB8ff3JxUqVDBpJ38lJWTs2LEEAHnuuefMBra//vqLACCtW7e2qt38vuBPMpTDhw+L3kcvgYAQQl577TXi5OTEGcTNnj2bACDbtm0jhEgLBHJUq1aN+Pr6mhzjCwS//vqr2TXLly8325+Xg+5F84UZIWKTovAjFECEAkFhYSG5cOECp/kxGAxkz549XPmCggIyfvx44urqalZ3SEgIWb58udlvw8PDgwAgp06dMmvz7du3TbQ+UtqfJUuWkDp16pCJEyea1TFlyhTy3XffkXPnzpEHDx6Q06dPk1mzZnGamEWLFpmUp5qPli1bSvYlFWKktDGU4cOHE0Da7ohqy6RsLr766itOeygGHVOOHDki2w6G5TC3QwaMRiP27NkDHx8fvPLKK9xxX19fdOnSBT/++CM2btyIIUOGcOf27dsHoMi9SczfuHfv3lwZMV599VWzY9evX8dff/2F2rVro0GDBmbnDQYDWrZsifT0dKSlpSEqKgpHjhzBzZs38fLLL6NKlSpm15QpUwbh4eHYtm0bzp49izp16pic79ixo9k1zz33HIAiOwNXV1fRc5mZmVa1W6kN1L2Kfx+9eeONN7BhwwasXbsW48aNQ2JiIvz8/ETbI+TWrVv46aefcOLECWRnZ6OgoAAA8PjxY9y6dQu3b99GxYoVTa6pWLEiXn75ZbO6+vbti+HDh2P//v0oLCyU9F+n0JgDFSpUUGynnNthUFCQ6PHg4GCzY25ubli0aJGJK52TkxPmzZuH0aNHY9OmTdizZw8OHToEo9GIjIwMDB8+HNu3b8d///tfxWcCgNzcXHzzzTdmxwcOHIi6detyf48cORIjR44UrUMYO+SFF17Af/7zHzRt2hRRUVGYPn063nrrLZQpU0axPVp4/PgxNmzYAAB48803da2bQt8narvB0B8mEDCQmJgIQgh69uxpZuzzxhtv4Mcff8SaNWtMBAI6UQUGBorWKTXYyp2/cOECAODs2bMwGAyy19+8edPkmpSUFFXXCAUCMb9s6r8tdy4vL8+qdvOpXr262bHy5cub3UdvOnXqBF9fXyQmJqJDhw7IyMjAqFGj4OIiPyx8//33eOutt3D//n3JMvfu3TMTCGrUqCFa1tvbGz4+PsjOzsadO3fg6+sre39qCEn7SA5LjNCoD7/BYEC5cuVQt25ddO/eHQEBAaLlAwIC8O677+Ldd98FAJw8eRLz58/HqlWrkJSUhO+//x79+vUDUCRkX7lyRfRdrF69Oggh3N+dOnXC9u3bNbdfjI4dO6Jp06Y4fPgwDhw4gDZt2gB4+j6LGd5ScnNzAcj39y+//IJbt26hdu3aaN68uWgZpXsp3cfLywsATIyPGfrCBAIGF4xo9+7dZsFaqLX9nj17cPHiRclBXSseHh5mx6ilub+/v9kqWghtB72mVq1aaNmypew1YhON3MpNzaqO3wYt7bbkPnrj6uqK1157DcuXL8d//vMfAFC0fL948SLnObJo0SJER0ejWrVq3IqzRYsWSE1NNZnY9IZar9+7d88m9c+fP18y6I4a6tWrh5UrV+LOnTvYvHkztm3bxgkEYWFhuHLlCo4ePar4vupN7dq1cfjwYROtExXML1++LHpNbm4usrOzUaFCBVmBgO+hJEVQUBCOHj0qeS96XGqMoYKgj4+P5D0Y1sEEgmectLQ0nDx5EkBRFLF//vlHtBwhBImJidzEUbVqVQCmblh8pI7LQVfKlSpVUr2yo9fUrVvXbi5JlrTbUXjjjTewfPlyJCcn44UXXkBERIRs+Z9//hn5+fl4//33MXr0aLPz//77r+S1RqNR9HhOTg6ys7NRpkwZVYM9jUp4+/ZtxbL2pF27dti8ebOJVqhz5874+eefsW7dOkm1v62g0Sc9PT25Y3Xq1IG7uztu3LiBK1eumGnFjhw5AgAIDQ2VrDcnJ4dzS5QTCMLCwvDjjz9ydQpRuhdtvxY3T4Y2WByCZxwq2b///vsgRUamZh/q407LAuBWN5s3bxZdDdL9RC1Ur14ddevWxd9//40zZ86ouqZZs2bw9vbG77//brcJwpJ2WwoNm/vkyRNd6mvRogXCwsLg6+uLQYMGKZang7LYNseePXtw7do1yWtv3bqFnTt3mh1ft24dACAyMhLOzs6KbQgJCYGLiwtOnz6tWNaWKGlBqHDNn2QHDhwIX19f7Nu3z+T3ZGtu3LiBvXv3AgCaNGnCHS9TpgzatWsHoCictZBNmzYBgIltkViZR48eoWXLlpyNjRg0hPOWLVvMtsKuXbuGvXv3okKFCpKak1OnTsHd3R316tWTvAfDOphA8AxTUFCA77//HgBkA7y0atUK1apVw8mTJ5GWlgagaPVTu3ZtnD59Gh9//LFJ+dWrV3ODj1amTJmCwsJCxMbGIj093ez8rVu38NVXX3F/u7u7Y/z48bh37x569OghukK9cuWKSY4GW6C13ZZC97H1nAzT09Nx8+ZNTJgwQbEsNXZcs2YNt+cLFPXxsGHDFK9///33TYI0nT9/njOEGzFihKr2enp6onHjxsjMzMSVK1dUXWMLWrRogYSEBJN+oGzduhUrVqwAYBrwp1y5ckhISIDBYEBcXBw++eQT0aQ+ly9fltSyLV26FHXr1sWkSZNMju/fvx9JSUmcgSflwoUL6N69O3Jzc/Hqq6+aCXPx8fEAgI8++ghnz57ljqempuKLL76Aj48PBg8eLNkPVLBRMiaMiIhAy5Ytcf36dZN37cmTJ3jnnXfw+PFjvPvuu2aGvEBRgLBbt24hIiJCdLuRoRP2cW5gOAI///wzAUBeeOEFxbLx8fEEABk9ejR3jB+YKCwsjPTt25dEREQQg8FARowYIepCRF3f5FzZ/vOf/3D++U2aNCG9evUiPXv2JI0bNybOzs7E29vbpHxBQQEXH8DNzY00b96c9OnTh/To0YOEhIQQg8FAwsLCTK6RC/FKg/aIxVUnpMilrUaNGla3W6kvxO5z5coV4uHhQZydnUmnTp3IoEGDyODBg0Xd2IQI3Q6VEHM7zMvLIyEhIQQoyncRGxtLoqOjSdmyZUmLFi24YFb8fuUHJmrSpAkXmOiVV17h3p833nhDVZso06dPJwDImjVrRM+DFwdD6iOM8SAXh0AMmt/Aw8ODtGjRgvTp04d069aN1K1bl7v/sGHDRK/94YcfiJeXFxcLo3379qRv376ka9euJCwsjDg5OREApHnz5mZ5EqTiEND31t/fn3Tp0oW8/vrrpGXLlpyrY0hIiGjeB0IIGT16NAFAypYtS7p160Y6d+5MXFxciLOzs2x8iEuXLhEnJyfi5uZGbt++rdhnZ86cIb6+vgQoCvLUu3dvLsBTixYtRPM6EPI0tsncuXMV78GwHCYQPMPQ6H5SEx+fQ4cOEaAoDjk/1nh6ejrp2rUr8fLyIp6enqRly5bkl19+IWvWrCEAzHyl1QgEhBDy+++/k169epGAgADi6upKfH19SWhoKBk5ciT5/fffRa/58ccfSXR0NPHz8yOurq7Ez8+PhIeHk/Hjx5O0tDSTsrYQCLS22xKBgBBCtm/fTlq2bEnKlSvHTTxqYgXoIRAQUuQvP3z4cFKzZk3i7u5OnnvuOTJhwgSSm5sr2q9UIGjdujXJzs4m77zzDgkICCBubm6kTp06ZP78+eTJkyeq2kQxGo3E2dmZdOnSRfQ87Re5j1BI1CoQ/PXXX2TevHmkY8eO5Pnnnydly5Yl7u7uJCgoiPTs2ZP8/PPPstffunWLzJo1i7Rs2ZJUqlSJuLi4EC8vL9KgQQMyZMgQsmPHDtEIiFICwd9//02GDx9OmjRpQipXrkxcXFyIt7c3efHFF8mCBQvMonUKSUhIIOHh4aRs2bLEx8eHdOrUiezbt0/2mnnz5hEApHv37rLl+BiNRjJw4EDi7+9P3NzcSK1atciUKVNkAw61a9eO5TIoBgyE2NAcmPHMMmzYMHzxxRdYt24devfube/mMOzIhQsXEBwcjNatW2vKuaBE9+7dsXXrVly6dAn+/v661ctwLC5fvowaNWqgZ8+eWL9+vb2bU6phNgQMi7l9+zbng89n/fr1+Prrr+Hj44OuXbsWf8MYzwQffvghCgsLMX/+fHs3hWFDPvnkEzg5OZkFXWLoD3M7ZFjMmTNnEBkZidDQUM66+OTJkzh9+jScnZ3xxRdfmLg4MRh60qBBAwwYMADLly/H+PHjOXdERukhMzMTX375JYYOHWoWyImhP2zLgGEx169fx8yZM7Fr1y5cvXoVubm5qFSpElq0aIH3338fkZGR9m4iwwGw1ZYBg8HQFyYQMBgMBoPBYDYEDAaDwWAwmEDAYDAYDAYDTCBgMBgMBoMBJhAwGAwGg8EAEwgYDAaDwWCACQQMBoPBYDDABAIGg8FgMBhgAgGDwWAwGAwwgYDBYDAYDAaYQMBgPPNMnz4dBoPB3s1gMBh2hgkEDEYxsXr1ahgMBpOPn58f2rZti19++cXezVPk9OnTGDt2LFq0aAEPDw8YDAbRbJcMBqNkwrIdMhjFzMyZMxEcHAxCCK5du4bVq1ejS5cu2LJli0Oni05NTcVnn32G+vXro169ekhPT7d3kxgMho4wgYDBKGY6d+6Mpk2bcn8PHjwYVapUwffff+/QAsGrr76K7OxslC9fHvPnz2cCAYNRymBbBgyGnfHx8UGZMmXg4mIqn8+fPx8tWrSAr68vypQpg/DwcGzatMnseoPBgJEjRyIpKQkNGjSAu7s7QkJCkJycbFb2jz/+QLNmzeDh4YHnn38eX3zxhep2VqxYEeXLl9f+gAwGo0TANAQMRjFz9+5d3Lx5E4QQXL9+HUuWLMH9+/fxxhtvmJRbvHgxXn31VfTr1w/5+flYt24devXqha1btyI6Otqk7B9//IEffvgB77zzDsqXL4/PPvsMsbGxMBqN8PX1BQAcP34cHTt2ROXKlTF9+nQ8efIE06ZNQ5UqVYrt2RkMhuPCBAIGo5jp0KGDyd/u7u5YtWoVXn75ZZPjZ86cQZkyZbi/R44ciSZNmuDTTz81EwhOnjyJv//+G88//zwAoG3btggLC8P333+PkSNHAgCmTp0KQgj27t2LoKAgAEBsbCwaNmyo+zMyGIySBxMIGIxiZtmyZXjhhRcAANeuXcOaNWswZMgQlC9fHj169ODK8YWBO3fuoKCgAK1atcL3339vVmeHDh04YQAAQkND4eXlhX///RcAUFBQgO3btyMmJoYTBgCgXr16iIqKws8//6z7czIYjJIFEwgYjGImIiLCxKiwb9++aNy4MUaOHImuXbvCzc0NALB161Z89NFHSE9PR15eHldeLGYAf5KnVKhQAXfu3AEA3LhxAw8fPkTt2rXNytWpU4cJBAwGgxkVMhj2xsnJCW3btkVmZibOnj0LANi7dy9effVVeHh44PPPP8fPP/+MlJQUvP766yCEmNXh7OwsWrdYWQaDwRCDaQgYDAfgyZMnAID79+8DAP773//Cw8MD27dvh7u7O1cuISHBovorV66MMmXKcAIHn9OnT1tUJ4PBKF0wDQGDYWceP36MX3/9FW5ubqhXrx6AohW/wWBAQUEBV+7ChQtISkqy6B7Ozs6IiopCUlISjEYjd/zkyZPYvn27Ve1nMBilA6YhYDCKmV9++QWnTp0CAFy/fh1r167F2bNnMXHiRHh5eQEAoqOj8emnn6JTp054/fXXcf36dSxbtgy1atXCsWPHLLrvjBkzkJycjFatWuGdd97BkydPsGTJEoSEhKiq8+7du1iyZAkAYN++fQCApUuXwsfHBz4+Ppw3A4PBKJkwgYDBKGamTp3K/d/DwwN169bF8uXL8fbbb3PH27Vrh5UrV2Lu3LkYM2YMgoODMW/ePFy4cMFigSA0NBTbt29HfHw8pk6diurVq2PGjBnIzMxUVeedO3cwZcoUk2MLFiwAANSoUYMJBAxGCcdAmNURg8FgMBjPPMyGgMFgMBgMBhMIGAwGg8FgMIGAwWAwGAwGmEDAYDAYDAYDTCBgMBgMBoMB5nZYrBQWFuLq1asoX768aDx6BoPBKGkQQnDv3j0EBATAyYmtMUsyTCAoRq5evYrAwEB7N4PBYDB059KlS6hevbq9m8GwAiYQFCPly5cHADz35Vg4l3WXLHcwYgMiDr6mut7wqpexPHC/yTVTQ7ahq2eupnrEoPVQxOoLr3oZaZnqBgL6bGqeMbzqZQBQXbfUvbSUB8Sf0ZryasqJ9aHW9ltyX6kyWr5TPlNDtmFmRrTod0frpOfEWB64HwCwNdcTADAzI5qrUw5r+0orUu8mvz/p75L+Lbxern+L63loewHp9+RgxAYMv9RCtL0HIzYg534hajS5wI1vjJILEwiKEbpN4FzWHZG1r+PgFfOUtQDgVd4ZzmU9AAAR1YyS5Sjpd2vBq/4BnGr/X5PjIan94VxWeztnhSYBAGI4QeBpJj3aLj5u5dxEj4sReaI/5r6YhF3wUrwm/W6t/91Tvs6MyESEpPYzO87vRz5SfRp5oj8A4FR78frE6i9qn/xzRJ7oj4zIRMx9MRmTj8WIlkm/W8vsOSNP9BdtC7/9Us/Ovy//vaBlMyIT/3fE9Blo3WLtUcPr/o9QtnwyfrzVBAevBJnUkX63FiJrGwG4cccSgvaaXJ+UWxS6uez/5pa5LyYjxvMRZp2X7+NdTsrvEyDfX2rg9w9g+m7OCk2Cl+fT/ky/WwuREu8w7Qup33bkCXW/XWufh77DtM1SZRLrH0DI/56Fzy4nL7QrlwNAPC03o2TBNnzshNwkH5LaDxmRiciITERC0F7e4K0NOrGrwdJ7RFQzKhcSMPlYDCYfi1HdPjX3sKQdUoSk9lOsz5L+ivHM5b5Xazh4JYjrO62TAb0//zr6fzrZWdo+Wm+MZ67ZRE/P0+MJQXtFy9gauf7S8nvhQ9+VGJ4mTQ1SY4CW/k/6nybFUtRcby5EPkVKwGWUTOwqENSsWRMGg8HsM2LECABAVlYW3nzzTfj7+8PT0xNNmjTBf/9rugq+ffs2+vXrBy8vL/j4+GDw4MFcClnKsWPH0KpVK3h4eCAwMBAff/yxWVs2btyIunXrwsPDAw0bNsTPP/9scp4QgqlTp6Jq1aooU6YMOnToIJpKVi+Scj1NfqxiP8ZZoUmiE4zSdXwiqhkxKzSJu2ZWaBJiPHNFBzexwTQhaK+iBkMKtUKBsP6IakaTCTsktZ/o5EIFK/51QqQm/oSgvbJCgZY+pm2hH3qN8Nml6pEaiGeFJpnUYemERtEqDND+iahmlBQyKBmRiYgztkKcsRX3XdF3PCnXEyGp/ZCU66l5UqWomZiUnk1NHWLvmdL7r6ewKqxv8rEYq+pnEzqDj10FgkOHDiEzM5P7pKSkAAB69eoFAOjfvz9Onz6Nn376CcePH0ePHj3w2muv4ejRo1wd/fr1Q0ZGBlJSUrB161bs2bMHb731Fnc+JycHHTt2RI0aNZCWloZPPvkE06dPx5dffsmV2b9/P/r27YvBgwfj6NGjiImJQUxMDE6cOMGV+fjjj/HZZ59hxYoVOHDgADw9PREVFYVHjx5pfm6xPVQ6sdNBa/KxGLPBkX8+IzLR5Dx/cKU/cjWDKx3M6OpV7Bo6YPOhk4C1qB2Q+JPPwStBZoNwUq6nRZMZX/Uu5OCVIDPhQw9oXwo1BnzNkLAs/xj9v1Bwm3wsRrIPhCtBqXJaNA607w5eCZK9LqKaEXHGVpLtkXsH6PPR70Hqu1D67meFJlmlWteC8D6WCsxS8OubFZokW7+1QiKluPqOYV/sakNQuXJlk7/nzp2L559/Hq1btwZQNFEvX74cERERAIAPPvgACxcuRFpaGho3boyTJ08iOTkZhw4dQtOmTQEAS5YsQZcuXTB//nwEBAQgMTER+fn5WLVqFdzc3BASEoL09HR8+umnnOCwePFidOrUCePGjQMAfPjhh0hJScHSpUuxYsUKEEKwaNEifPDBB+jWrRsA4Ntvv0WVKlWQlJSEPn36aHrutMzqJvuDchNCnLEVuvkeMRn4xSYMIcLVsRRUIyAGX7gQcvBKECAYh9TYO1gKf/IRY/KxGEyG8p4qbaPcJM+vgy8w0P4Q6zOpZ+cf518nXA2r+a5oG4Tl1ewjS33HccZWZm2kzApNsmgFSbdcaJ0JQXvNNAN8+PcUU2Hzt3Ckvn+l56fCklI5S59ZL9QKtbR/YzxzMdnGbRK7L2VWaBJQaPv7FhQU4PHjx7a/USnE1dUVzs7OygXhQEaF+fn5WLNmDeLj4znjlBYtWmD9+vWIjo6Gj48PNmzYgEePHqFNmzYAgNTUVPj4+HDCAAB06NABTk5OOHDgALp3747U1FS89NJLcHN7asgUFRWFefPm4c6dO6hQoQJSU1MRHx9v0p6oqCgkJSUBAM6fP4+srCx06NCBO+/t7Y3mzZsjNTVVUiDIy8tDXl4e93dOTpHxTXjVy5xREl8Y4P9Lj3fzPWIy2VHUSuxSe4R0cpHaGsiITFQ9MNK6frzVBIBtBQOt0GcJSe3HtSmimrFokoKpsMWfMPgTA3/CkhqwE4L2IuSKuZqc/z1NPhaDGN7qXg4qPAi/Z6nrxDQIlDhjK8ntAE4FHlRUTthG/mSj5XuVup/WPW9aXum+SpO9WuM7PSZYaw39ins1TscBpe83KddT9D23JYQQZGVlITs7u9juWRrx8fGBv7+/ouGnwwgESUlJyM7OxsCBA7ljGzZsQO/eveHr6wsXFxeULVsWmzdvRq1aRZNpVlYW/Pz8TOpxcXFBxYoVkZWVxZUJDg42KVOlShXuXIUKFZCVlcUd45fh18G/TqyMGHPmzMGMGTPMjqdlVsep9qaCgBjCwdOSgYI/wNFJLkNmUhIKJlro5ntE9YRBJ9niWI3xtSWcYBAkvh/Mn8SE3hZKk7iYUZ5Q4FO7T84XUqyFfidi+/p8EoL2Isn3qQaC//5ZIuTxhVs1BoQxnrkm9xQTiJTuZS1K9dh6slYrMKm191Dz+6JCIP3+pa7hC4uUGM9c5NxT02LLoMKAn58fypYtyzwZNEIIwYMHD3D9+nUAQNWqVWXLO4xAsHLlSnTu3BkBAQHcsSlTpiA7Oxs7duxApUqVkJSUhNdeew179+5Fw4YN7dhadUyaNMlE85CTk4PAwEDOhkDN4KLHhClc+QrRMsgJJ8mQ1H7calbtag7QXxDgT1hik5dwO0ZpS8US47aEoL1m2ygUoUZGznJbDLVbQFoQq5P/3FSYtJcanW/oqnR/a1flau+jBjVbVnpgi3dCjYakuDSABQUFnDDg6+tr8/uVVsqUKQMAuH79Ovz8/GS3DxzC7fDixYvYsWMHhgwZwh07d+4cli5dilWrVqF9+/YICwvDtGnT0LRpUyxbtgwA4O/vz0k+lCdPnuD27dvw9/fnyly7ds2kDP1bqQz/PP86sTJiuLu7w8vLy+QDFAVf0UsY4Hsa0I+YSxo1GBROdFLtEO6xCy3a+YaGtJ2WDqa0bmsGN/4qWMpVU9gffIRGb7ZA2PfU0I1+pPbPhf/XMvEplVV6bilDU0tQu/ql72lxCyF6PaccShOpvewX+N+N2KKBjgfWujlqgdoMlC1rQUAMhgm0D5XsMBxCIEhISICfnx+io59GI3vw4AEAmMXGdnZ2RmFhkRVLZGQksrOzkZaWxp3ftWsXCgsL0bx5c67Mnj17TDoiJSUFderUQYUKFbgyO3fuNLlPSkoKIiMjAQDBwcHw9/c3KZOTk4MDBw5wZbQw/FILxTJqB33+ipPvuiW3f8t3f5NCOHDR2AH8j17Q+tT4/6tBrZBDoXvswn5R009SqBk4hX1I+4B/fyF8oUB4XnhOTdulPASKcx9bqJWgiLlmSqGHQGfLyU7Le633ql8N/HdRTDCi48HkYzGKLrl6w7YJrEdtH9pdICgsLERCQgIGDBgAF5enOxh169ZFrVq18Pbbb+PgwYM4d+4cFixYgJSUFMTExAAA6tWrh06dOmHo0KE4ePAg9u3bh5EjR6JPnz7c1sPrr78ONzc3DB48GBkZGVi/fj0WL15sosofPXo0kpOTsWDBApw6dQrTp0/H4cOHMXLkSABFnTlmzBh89NFHnAtk//79ERAQwLVFT9QOCNS3W2i4plYdrccgyncF02OQULs3qvVecvvYYtsL1k6IUgKTmrotub81th+A6WQoVocek5Rw4udrrKRW53xNgZxwoIcKW4sRrVZspWK3dttAGM+DolSnPYJKMWyP3QWCHTt2wGg0YtCgQSbHXV1d8fPPP6Ny5cp45ZVXEBoaim+//RbffPMNunTpwpVLTExE3bp10b59e3Tp0gX/93//ZxJjwNvbG7/++ivOnz+P8PBwvPfee5g6dapJrIIWLVpg7dq1+PLLLxEWFoZNmzYhKSkJDRo04MqMHz8eo0aNwltvvYVmzZrh/v37SE5OhoeHupC9fCyJES+14lfrhkVd5sTiCQiRmmzFfMH596eqevqxVEBQM8ipHWCV4iVYOoFKrdD5x8U0DmoQ9pvcdWqEB+GWklSgI7m6rBEe1XpKSKEU3dEeK2o5pFTutlpVWyMUWCuosPgEply4cAEGgwHp6ekAgN27d8NgMJQYLwkDIYTYuxHPCjk5OfD29kbtNRNN4obzf8xU5S9lES6U4tVMBnIqdLEogGojr4ldS1cO9h4otBjraa1LbCVl7+flI4yTQLdE6DlAnQU/fTYaQ8CaZ5QLmKRWQLD2/np9R3J1Cc9ZYoBnSVv1Nvyk2ke58Mq0jQUPHuHsG3Nx9+5dzk5KDx49eoTz588jODhYdOE1cOBAfPPNN2bHo6KikJycrFs7tHDhwgUEBwfj6NGjaNSoEfLz83H79m1UqVLFrlsfSn1JsbuGgPHUQI/vmiaErtDkVnliyK3sxH7sagYvGilQuF2gt1pUzf6x2MpLTd/QvlZatdE20K0ZqX17sXZpbZMcalaX9L2gk31Iaj+zQf3HW000Txx6qIdp/wnDFQPmYbql0EsTIKcB0wO+hqy44nHQGCB6ovS9F6cdgRSdOnUyiXabmZmJ77//3t7N4nBzc1Pl/+8oMIHAwZh8LEb0x01XaMKPEmKreD0Ri/qnl8W+WCheMZsFLYOuUKWvdC2dXLXcQ8rtUe21YqgJzEPvo+ZeSgaccloRPmrfJ75RGg3LHVHNaGKgKuVpIWwXfztKLpSxUPOmdRtKSvBW2sKh9yvO4FxKMTUsRcqwk3rz2Bt3d3f4+/ubfKixuMFgwNdff43u3bujbNmyqF27Nn766SeT6zMyMtC1a1d4eXmhfPnyaNWqFc6dOwegyL5t5syZqF69Otzd3dGoUSMzzcPBgwfRuHFjeHh4oGnTpiZh9QHzLYPVq1fDx8cH27dvR7169VCuXDlOqKE8efIE7777Lnx8fODr64sJEyZgwIABJvZqmzZtQsOGDVGmTBn4+vqiQ4cOyM213kuGCQQOhthAp1c8ckBf4yZ+OGG9Bz+xlT//b35OA7FgQmKIDeRqQxhrwZq+sCTboNS2hdIKVWjzIad9kjpu7fcuzBTIt2Xge86ICQr8LSop+FoTLXEyAPH3Rem3aJ46vPihfaqX3YeU11JJYMaMGXjttddw7NgxdOnSBf369cPt27cBAFeuXMFLL70Ed3d37Nq1C2lpaRg0aBCePHkCoCik/YIFCzB//nwcO3YMUVFRePXVV7mkdvfv30fXrl1Rv359pKWlYfr06Xj//fcV2/TgwQPMnz8f3333Hfbs2QOj0Why3bx585CYmIiEhATs27cPOTk5XNRcAMjMzETfvn0xaNAgnDx5Ert370aPHj2gx+6/wwQmYhTBH6zEVseOEhLY1nDPGWR6TKoP5AYsSwZGLclw1Nav9P3R83rtdSu9K1qsym0Bnczj8HQ7TOzZuS0O3mTrCKtTR0LYb3rYFNA65fKdZEQmou7OWKvuYw1bt25FuXLlTI795z//wX/+8x8ARXYGffv2BQDMnj0bn332GQ4ePIhOnTph2bJl8Pb2xrp16+Dq6goAeOGFF7h65s+fjwkTJnCh6efNm4fffvsNixYtwrJly7B27VoUFhZi5cqV8PDwQEhICC5fvozhw4fLtvnx48dYsWIFnn/+eQDAyJEjMXPmTO78kiVLMGnSJHTv3h0AsHTpUpPsu5mZmXjy5Al69OiBGjVqAIBugfqYhsABkPrh8m0LHMloTQ5bqxK1CkRyhlFyqF3haZlIlfrl4JUgzdogvYwaLXnPtG4/SVna8/tF+Pw0aJVcAiTaB2IBroShkC0RfPjXqJ1k1Wx92IJZoUlICNqrq4ZCyYX2YMQG3e6llbZt2yI9Pd3kM2zYMO58aGgo939PT094eXlxwezS09PRqlUrThjgk5OTg6tXr6Jly5Ymx1u2bImTJ08CAE6ePInQ0FATIz01cWnKli3LCQNAUThh2qa7d+/i2rVrXEI/oCj2Tnh4OPd3WFgY2rdvj4YNG6JXr1746quvcOfOHcX7qoEJBHZEONAJoZn1KKVdO2BJbAGlLQKlLIlq3TbF2qan5bol0PvrFdCJQjUeSgKC1vdRbItHSIxnrqgQwEfMRZLaIwhTgov9X8tkLLRrUHutkuBg6/dGz/rpuyX1e4s4+Jpu99KKp6cnatWqZfKpWLEid1442RsMBi6wHQ3pW9yItUmLut/Z2RkpKSn45ZdfUL9+fSxZsgR16tTB+fPnrW4bEwjsQLU3iiRMvSP+lXTkXJzov8J9bmtWQnIGaWrbphUlDYDa90Fv41BhbAl+cCsx4cjS+4v1bZyxleZtHXp/6klB7SHE6qGujZYKBVreMVpW6Xu2lYZAr/GEH3Pk4JUgru+owFYaCA0Nxd69e0XD+Xp5eSEgIAD79u0zOb5v3z7Ur18fQFFgvGPHjuHRo0fc+T///NOqNnl7e6NKlSo4dOgQd6ygoABHjhwxKWcwGNCyZUvMmDEDR48ehZubGzZv3mzVvQEmEJQ6HOHHaosQsFoHUEs8MChik4qYGyG9h1phgQaHsgT+Kk0s6qKWtMRaEIuHkRC0V7fwtXRLhy+E8KMYCj98+F4m9Dvjx8HgC9xiQoFa+IF/1Aou9jIq1EvQoN8J3zuELxQ4Cnl5ecjKyjL53Lx5U9W1I0eORE5ODvr06YPDhw/j7Nmz+O6773D69GkAwLhx4zBv3jysX78ep0+fxsSJE5Geno7Ro0cDKIqCazAYMHToUPz999/4+eefMX/+fKufadSoUZgzZw5+/PFHnD59GqNHj8adO3c418UDBw5g9uzZOHz4MIxGI3744QfcuHED9erVs/reTCCwE9VjT6gqJzWB8K+vHnuC+9BtBrqXqpeAoHagoQZIxeF3L4Zan3a5e6gJ1qSXSlbNSpJOwnKugPbwCZcSLrRoXoRIbVMoTUZ8oUD4/QuFAkugQoFW99PiRs1Wlx44itdBcnIyqlatavL5v//7P1XX+vr6YteuXbh//z5at26N8PBwfPXVV5xK/91330V8fDzee+89NGzYEMnJyfjpp59Qu3ZtAEC5cuWwZcsWHD9+HI0bN8bkyZMxb948q59pwoQJ6Nu3L/r374/IyEiUK1cOUVFRnK2Cl5cX9uzZgy5duuCFF17ABx98gAULFqBz585W35tFKixGaKTCNugGF4PpPtLl/zaQuKqI6rEnuDJKwgS/LjpBF9det1KEM4qUxT3/uKWDjqXPqtYmwBILbqm6lepS25+WoiWWg9T3IWyfFk8QuWeTc+Gjk7/wvsJjYgIXrU+rxkbp/RA+n1gb9biPGiyJ0SEHv00ZkYkmfWevSIXPCoWFhahXrx5ee+01fPjhhxbVobYvmduhg6BGY6BWq8AXHiYfiwH+py3gqz7VDDiWujkmBO1Fkq/4YEt9x6Xub4kfPoU+n6WDodRWgS2NOalGR6yvtLg+WoO1zye8Xkt9CUF7gSDx95FLqw151zchSloXqimI8czFZNUtlf/NSAkDgLrJmf4u1GxJqBEY1NalBrFopDGeuYj53zPb0+2wNHLx4kX8+uuvaN26NfLy8rB06VKcP38er7/+us3vzbYMSil84YG//8eX8pXUiWJRCJWgKl+xbQP+3rfUpG9NQiT6Lz+0slqk1MFixyyxA5AawOU0BMVhcKo1yqMU1qqQpd5HfmAhPrTdYtdwgoRCSl+t7ZML2qQnccZWdg0LLExiRu07aJ+XFBfokoqTkxNWr16NZs2aoWXLljh+/Dh27Nihi42A4r1tfgeG3RAKBRQtxnB0YrV20BNbtVEbB2rvIGYspwQ/Jr4QLZOdXqspIY5g5EmxtC1aLOb5HiFC1Kxq6bumlK9jVmiSiVAgXIXrbQ0vZdug5h5SRpj8Z6XvvZr3X6kfrXlutRqxkhQbpaQRGBiIffv24e7du8jJycH+/fvx0ksvFcu9mUDAUIS/p69WMBAOFnL57rVku+NrOqglOR9++9Susp6FCJCWThLUv5+P1GQgJwyoRe2ESNukNWol8PRd1DqhCeuVC5YkhtizCQVRsa0GrdDnk7LRkUMpHLnY9fYMTMTQFyYQPKPw7QmUENodKK3g+IOGWJIZa6BBadQgZnCmVK44kbMdEOZtsBZLY17o7V2h56qSape6+R7hPsDTzIpyWOp+SNEjDgbVHFCUtFTC35XUeT2DSdF6+RoYa+JQMBwbJhCUcqg7IoX/Q5YTCvh+73yUBlpqHEUtkfnEGVtpTtOqV+hme0z6Sh4EcrYDtA+p9sIRBmApLwGtWPNd0vsJNR4xnrmyWgNahp9EiY9Y3hCp+wsFXCl3RrFVtpithCXCidQ1UkKDcBLX+j7xn4P/XGzboHTBBIJnBCoUCCV8KaFAztqfr7oXDkD8FY+YIRj/vNxEL3ZOzSBmK1sAWyCnxqerXL4Kl2pbrBEOrNlfFn4ftH1KQptYe62dSPjvltIqXXhebDKVyqYo1IbR74NfXkywk3Odpb8BfmwFmi5ZTnDln5MTQCKqGc20efzrtW6RKboQ2zF0MUNfWByCYkQuDkFxIRbvQMyNie/mJTV4a9kr5g9+Uv7Z/PosmTDsnVtAiB4Z52xBcfST1qRL1hqtisUUkIpjIPc+K22lhaT2M/texbbE6Hm5uvjRE4WxQtS6KioFh+JHbuS3R8/vn8UhcHzU9qVdNQQ1a9aEwWAw+4wYMQIXLlwQPWcwGLBx40auDrHz69atM7nP7t270aRJE7i7u6NWrVpYvXq1WVuWLVuGmjVrwsPDA82bN8fBgwdNzj969AgjRoyAr68vypUrh9jYWFy7ds0m/VLciA2Ccqsuub1K/mqRfuhgLWfsJLxW6d5i2NtdSwvWRpK0dqWvZxRLOdR6qIi9N3qgVhhQOkeRi4fAFwbUGOBSIUBqta+EFo8EoWapuL5/RsnCroGJDh06hIKCAu7vEydO4OWXX0avXr0QGBiIzMxMk/JffvklPvnkE7MQjQkJCejUqRP3t4+PD/f/8+fPIzo6GsOGDUNiYiJ27tyJIUOGoGrVqoiKigIArF+/HvHx8VixYgWaN2+ORYsWISoqCqdPn4afnx8AYOzYsdi2bRs2btwIb29vjBw5Ej169DBLflFSoXujNFGMHPzBSmlFRa3U9VqZyA2UcgGPbInUSk3RfuB/k4uW4Dj868U0EFrcxjIiEwEbaTHoqpe+S5Z4cmgxfFXTj3rk2KCTt5SWhf+uq4GvlRD+Rqj6X6rf5J5HzF3YlmnJHYHrxhu4e/Nesd3Pu1J5+AVVLrb7FQcOtWUwZswYbN26FWfPnuUSOfBp3LgxmjRpgpUrV3LHDAYDNm/ejJiYGNE6J0yYgG3btuHEiaeGdX369EF2djaSk5MBAM2bN0ezZs2wdOlSAEWhIgMDAzFq1ChMnDgRd+/eReXKlbF27Vr07NkTAHDq1CnUq1cPqampePHFF0XvnZeXh7y8PO7vnJwcBAYGOtSWgXDAEVObKk2yUpM9rVvpvNIxR8eaNttCfa+lPbbePtBqlMpHLnSxEKGqnl+H1lDF/DYrCchi0T+lYjDI2eTwrxNuHch9l0KhkPbZ5GMxnIEvRWj8GJLaT5ffmyNsGVw33sDAuqPx+JF55kJb4erhitWnFmsWCpYtW4ZPPvkEWVlZCAsLw5IlSxARESFZfuPGjZgyZQouXLiA2rVrY968eejSpYume5aILQM++fn5WLNmDQYNGiQqDKSlpSE9PR2DBw82OzdixAhUqlQJERERWLVqlUlu6dTUVHTo0MGkfFRUFFJTU7n7pqWlmZRxcnJChw4duDJpaWl4/PixSZm6desiKCiIKyPGnDlz4O3tzX0CAwNV9kbxoeRWpsarQOp4cU/sjpJwpbiQel5HEqiE6n8t3xF/m8lS+ImNLNWEhKT2kzRWVfM8SoauagQKKYT9Qz0pZoUmmQkywrJS0Tm1El71stV1WMvdm/eKVRgAgMePHmvWSFBt9LRp03DkyBGEhYUhKioK169fFy2/f/9+9O3bF4MHD8bRo0cRExODmJgYkwWunjiMQJCUlITs7GwMHDhQ9PzKlStRr149tGjRwuT4zJkzsWHDBqSkpCA2NhbvvPMOlixZwp3PyspClSpVTK6pUqUKcnJy8PDhQ9y8eRMFBQWiZbKysrg63NzcTLYihGXEmDRpEu7evct9Ll26pNQNDo9QAKADinDQs3SgseQ6uipSs/rUKjQ4sk2C2ASid/wCPbC0HVr2uJUEB7XursJ78iMMqpnYtXrs8K+1NneF8B5qtkisCVjF4hFo59NPP8XQoUMRFxeH+vXrY8WKFShbtixWrVolWn7x4sXo1KkTxo0bh3r16uHDDz9EkyZNOG223jiMQLBy5Up07twZAQEBZucePnyItWvXimoHpkyZgpYtW6Jx48aYMGECxo8fj08++aQ4mqyIu7s7vLy8TD4lAbn9finPACVrZ1uqpbWsIvn7tVoiL9oCve7Nn6j434PSnjG1GZFCKhaFVoTtUFuf3rYNau4rds+EoL2Sgq8l9+W77fKJ8cxFRDUjknI9FX9XFFrWku/IGq0JdXE8eCUIaZnVLarjWUONNlqIkoZbbxxCILh48SJ27NiBIUOGiJ7ftGkTHjx4gP79+yvW1bx5c1y+fJnbu/f39zfzBrh27Rq8vLxQpkwZVKpUCc7OzqJl/P39uTry8/ORnZ0tWaa0YInxn16R0axNbKSlPH9QpgOq2GpJLomOtahtN381xs88R6FBjITHlbw16OTG97fnY0naXrH/WyoMap3kxARDYR2Wqvj5/apHrAuacEwoGCQE7dUk4EpF7uRvlchdKxSOn7Vtt+JEjTZaiJSGW04zbQ0OIRAkJCTAz88P0dHRoudXrlyJV199FZUrKxtvpKeno0KFCnB3dwcAREZGYufOnSZlUlJSEBkZCQBwc3NDeHi4SZnCwkLs3LmTKxMeHg5XV1eTMqdPn4bRaOTKlAboYKCHNTYfueBHcn8rYc3gRb0f+MIBzdDoiAMkf0VG/6bwJ3YxI00hQh91PsJnVjI6lJtw5fpQ6biSAZ7SMUCfxFJxxlaScTOsRauBoxSzQpNMfrNCA0ux37OckaOjvPOM4seubodA0eSbkJCAAQMGwMXFvDn//PMP9uzZg59//tns3JYtW3Dt2jW8+OKL8PDwQEpKCmbPno3333+fKzNs2DAsXboU48ePx6BBg7Br1y5s2LAB27Zt48rEx8djwIABaNq0KSIiIrBo0SLk5uYiLi4OAODt7Y3BgwcjPj4eFStWhJeXF0aNGoXIyEhJDwNHhO9hwA+JK3QjdFSEVufWtFU4uE8+FmPmtkYHxlmhSZpDLquFDsxWP0tQ0QQfh1YmoY4TgvYi5MrTusX2yMWQClZFV5X0nNjEwtcyCTUFcpON0kQkTOHNb5cS/OcU04LRY3HGov6Lw1MhgC9U0b/VuOeqge9+KkTL1gq/D/gumMJzanG0IF+lATXaaCFSGm5baabtriHYsWMHjEYjBg0aJHp+1apVqF69Ojp27Gh2ztXVFcuWLUNkZCQaNWqEL774Ap9++immTZvGlQkODsa2bduQkpKCsLAwLFiwAF9//TUXgwAAevfujfnz52Pq1Klo1KgR0tPTkZycbKKqWbhwIbp27YrY2Fi89NJL8Pf3xw8//KBjT9gWobuhWEhcrSjtQfOhLk5CtBgm0QQ9egaukYPeg/rTSw2siqFdrdxu0LIypUZwwsQ5/DbEeObix1tNVLmTxhlbmbiy0fdEzfuiZttAiyZGSpUuFTVQbfvEfPWFYYTlvgMaZlrtOyl8j+j2gVI75eoT9g29h9Q7q/b7Y0aD+qFGGy1EScOtNw4Vh6C046ihi+mAomWStWSPuCSvOpRsK5TCyMpNKNb2CxUA1Kxa+b7oWla5Ygl81AYOstTtUAy6ghdDizZCCaVYAHwff63Pp2ULRu46uTgN/G0DueiKalB6Nx0hDsHZI//inaYTdLu3Wj4/PA+1mzynuvz69esxYMAAfPHFF5w2esOGDTh16hSqVKmC/v37o1q1apgzZw6AIrfD1q1bY+7cuYiOjsa6deswe/ZsHDlyBA0amI/lUpS4OAQM+6FVGOC7+akNF1zS9yX5BoiOiprJnT8xaFF5W6rS5r9XalTXSqGLqQZEKWGSMLiQpSj56vM1KMI2aEVoC6BUtrjyZDBNgX4oaaONRqNJhN4WLVpg7dq1+PLLLxEWFoZNmzYhKSlJkzCgBSYQPOOoGdSFgwFNyEJRo9JOyvUsUbkGhPCtudUYSDLMjdmUJjCxoFjCY/zJXW0WRUv2+pV+F918jyAktR+6+R7RdJ1UVkXAND2zmjZRQUTMoFAsw6M1xsJ8TxZHFIq9K5WHq0fxal1dPVzhXam85utGjhyJixcvIi8vDwcOHEDz5s25c7t37zbLtdOrVy+cPn0aeXl5OHHihOYohVpgWwbFiCNsGQBPtw0yIhNV+yIrhSFWori3C2x5P7V9IGW4KVafngFprMGSaHn0Ovo+qdE48d89pdWulJGi2u0DWlarYCD3DFrCKivVqRRiWIjSxM6/ll/W2qiPFOEzOMKWAcByGcihti/t7mXAsC90IFazB26JWyK/3uIKZyxnIa8HfBdFpRgMajUilggFWvaGLdlT50/uYhOxWGS8ycdiEKNxK0GNMACYagSScj1lhQHhpGqNlkBq20PrBCv1uxELMSwnFFjiOaC2rVQDUxITIfkFVS4xE7SjwgSCZxThgKLWII6/glQzgdGJw9baAdpOuYFSL6GAuijy91al+k+NUKB1spYry1epC7M/KhkUCvfa+a6YYm3kvwu2+I6FroAR1YxmdgJycQn4bqRahSH+xCh8pyxZaUtp4qjdgFhOAjmkhAKx6/QWBkqycTBDHiYQPMMIVyxiK/jijFEgXJFp0S7Qc1LqajHXNDXZF+VIyvV8aml+RVlTIFe3nsGguPsIbkdX7/zJXUrtLjfRZkQmyj6vJe+JWP8IhRD+eb5bHV/LJSzHtVdB6BIzPNRrlSy3tUHbPhmWb0PIIVeXUHgUe1694i0wSgbMqPAZJcYz12zFYgt1Pk3YorRKpoN2SGo/zApNsqnhEr0PP/AQoH0CsNT/XQyt+Rik4D+D1KQu5nfPR6vhJ/XDtwaxSZy2U9jGiGpGrr/4/SYVZpofREloXMePRMiHunEK72HJNoHa3xWNs6EGa6MwCoUBMUJS+xUFadIhVDOjZMAEgmcMsTgElqA1k5oWozo6KPIHKlsIK1T4oPYAltahxhBPiz2BVF1qg/io2aKwJriT8Do9vxux5xO7Hz1maZZN6jJL4b9rYjEdlDwApNCyRcV355X7fVkqDPADKNFnkxMGKGJ96oieBgzrYQIBQxKxRDoUqYFOGBFPaUBU2gfWa29dCmE+A7k6aBIg/jOK/a1UhxhS1ucAFDUmwklRq6bDEQd3OaFFSeCREwqEq3C+qlz4f0vanJTradZ2LSGIxf6vBBVW5AQWutrnt0fsGaX6XEyTUlJdiBnSMIHgGUXNCl/N3rfUNdTSWwm5VaqWAdVSd0g+k4/FIM7YysTfmv/hTxZUEOCvtpQi1h28EmTit54RaZphUejnTetVM9ALB3K1g7Vw+4S2s7gQ6yel79CS9km9Q3rZxah5j/Wqky8A0HdD7rem9v5KHjPMlqD0wwSCZxg1qkdLBl96jR4W/XwDQzXlrIWvjqYIV330Q5+TPxkrrQz5KWcBmG1XCK+Rm8jkLP8ddfDmf49UoOILXUr2JnLZG8VQIyha++6odaG0tm45pIRGqdW+JfeRsiUIr3pZ8VpGyYB5GTxjVI89gcv/bcC5LVniilc99gSGn/1H9jqlAUbrfROC9gJB8kly9EYPIUMYgIc/cMtZcMtZxfPbpcZwUA1avRz0iCnBF6j4W0d6aiikvkMxw0NL3qHicL+ztG1qv1O1RoM0CyRfUxZypR/SMqtrbpstyLyTgzu5D4vtfhU8y6BqBf0CMTkCTCB4hqETMn9ypgKDJddS1PgpaxEG6KpRadVrL99o/uQi1sYYz1yzYD2cRuFKPxONgRR0UtBi8a1lG0WrUGjppK2XEKFXfXzkNDtiPvpa3zdrhChhcCQpjQA/3oGUwH/wShCSfJ/GPtC6Jch3Z42oZkTqWT/V19uKzDs56Dp3NfKfFBTbPd1cnLF14kDVQsHy5cuxfPlyXLhwAQAQEhKCqVOnonPnzpLXbNy4EVOmTMGFCxdQu3ZtzJs3z6ahi9mWwTNI9dgTJn9PPhaD6rEnuOP0//xjwmuFx/koWUgLtyqEe+lC+AOpoxnA0bbRj5ILnlrr/ohqRpPJnz63msFbGMBHLfY2ErPHd6v0zPT7FO6hy/VvcT0H3crib2mpMUy0xmWRf60juSPeyX1YrMIAAOQ/KdCkkahevTrmzp2LtLQ0HD58GO3atUO3bt2QkZEhWn7//v3o27cvBg8ejKNHjyImJgYxMTE4cUJ67LUWJhAwZCd3el5KOFheu5bJ8YzIRMWBSHg+JLWfrOEcX7VM7yGG0uBuiwlPaoKWskNQUxYwDxSj5Iom1iatRpmOkKBJ7WSqNlqeVH30WcViF4jZiQCmtiRyWKOpUvOO0t+KmjwQYhENLXWhpPC1JY5qq+KIvPLKK+jSpQtq166NF154AbNmzUK5cuXw559/ipZfvHgxOnXqhHHjxqFevXr48MMP0aRJEyxdutRmbWQCwTOK1CRvDTQIkRRaAq9IIZzk6ABKrf3trUEQRnYUW7lJoTTZUINELegZAVFv+M+idrKlqBUG1NanRhhSG4hKalJXisVBy6j5julzqXmv+GWsDWgU45lrIgQ4kpagJFFQUIB169YhNzcXkZGRomVSU1PRoUMHk2NRUVFITU21WbuYQMCwCXoLG3z4QgEVAviDv9IWhKMhFG6ECAddvYUetS6iet+T/psRmYgfbzXRXYMjJwxYaxSp5KKnBv47qmQoKnaNXqh9n8TayzQE2jh+/DjKlSsHd3d3DBs2DJs3b0b9+vVFy2ZlZaFKlSomx6pUqYKsrCybtc+uAkHNmjVhMBjMPiNGjMCFCxdEzxkMBmzcuJGrw2g0Ijo6GmXLloWfnx/GjRuHJ0+emNxn9+7daNKkCdzd3VGrVi2zfNMAsGzZMtSsWRMeHh5o3rw5Dh48aHL+0aNHGDFiBHx9fVGuXDnExsbi2rVrNumXkorQFoGP0kCmVc0qFriGP7BZE32wuBAaEyYE7RWdFMW0DmqfjaqG5QwXqQajuAQpsXZQ9bOWmBPWlpFDqR/UuDoqlbdEW0YzIToSzO1QPXXq1EF6ejoOHDiA4cOHY8CAAfj777/t3SwOuwoEhw4dQmZmJvdJSUkBAPTq1QuBgYEm5zIzMzFjxgyUK1eOs8osKChAdHQ08vPzsX//fnzzzTdYvXo1pk6dyt3j/PnziI6ORtu2bZGeno4xY8ZgyJAh2L59O1dm/fr1iI+Px7Rp03DkyBGEhYUhKioK169f58qMHTsWW7ZswcaNG/H777/j6tWr6NGjRzH1lOOjh0aAPwhrWS3KqZr5kxx/YrW3AZ0UwhWXnj7yasoWhyBFJzRLIxGqQUmVrbSKV5qsta6MLdVGiMWosGb/35otO34QJP5vdXngfovrfNZwc3NDrVq1EB4ejjlz5iAsLAyLFy8WLevv72+26Lx27Rr8/f1t1j67CgSVK1eGv78/99m6dSuef/55tG7dGs7Ozibn/P39sXnzZrz22msoV64cAODXX3/F33//jTVr1qBRo0bo3LkzPvzwQyxbtgz5+fkAgBUrViA4OBgLFixAvXr1MHLkSPTs2RMLFy7k2vHpp59i6NChiIuLQ/369bFixQqULVsWq1atAgDcvXsXK1euxKeffop27dohPDwcCQkJ2L9/v6RBCMMUNTnc+YOVlgFUuGUgnGToQEZDAM8KTTLbqy0OAUHt/WiYWCVvBWHYZLmyWvfmLREK1GoXhKtc2j61+9FxxlaKwYvk3h81ibaUKE4XVzHtjqXvq9SzKX13cq6YDMspLCxEXl6e6LnIyEjs3LnT5FhKSoqkzYEeOIwNQX5+PtasWYNBgwbBYDCYnU9LS0N6ejoGDx7MHUtNTUXDhg1N9lmioqKQk5PDuXIoGWbk5+cjLS3NpIyTkxM6dOjAlUlLS8Pjx49NytStWxdBQUGyBh55eXnIyckx+TDE4Q9wdHDiR7ATc1WkH/7kKRYxkJbnZ8iTChOsJ9TFkn5orgRq+8AfUIVqYDUCkVxaXbG2AOonO0uC4VhrMEq/AzXPpCYVtqXnlVATM8JSxCZ6obBUnBOxXB4NZj+gjUmTJmHPnj24cOECjh8/jkmTJmH37t3o16/ofenfvz8mTZrElR89ejSSk5OxYMECnDp1CtOnT8fhw4cxcuRIm7XRYQSCpKQkZGdnY+DAgaLnV65ciXr16qFFixbcMSmjC3pOrkxOTg4ePnyImzdvoqCgQNZ4IysrC25ubvDx8ZEsI8acOXPg7e3NfQIDA6U7oJRx+b8NNGdWjKhmREQ1I7efzZ/UYzxzRVcxQtcwsfOAvLW9klGfJQgFEDFXL7HtAeotoaZ+tRMb7VOtaNmr1io8iKm91WgJ1H5HarUnYii1QU0UTksRfqf8e/G/j+KajMW+J2vdFp9Vrl+/jv79+6NOnTpo3749Dh06hO3bt+Pll18GUGQPl5mZyZVv0aIF1q5diy+//BJhYWHYtGkTkpKS0KCBPhlrxXCYSIUrV65E586dERAQYHbu4cOHWLt2LaZMmWKHllnOpEmTEB8fz/2dk5PzTAkFQuT8puUGwpDUp2mKacQ//nklFTHnoiVyTmjUh6Cn0d4stUQXGjeqgd8nekfAE4YIVuuOxxfMlKDfkVr3StlVp0yIai1ppC357mhEzJAr0iGP1dgfaHF5lEIYzvnglSDgf9tdCLLOU0IYNpsfWpsKHvx3NynX06GFgAqeZeDm4lzskQoreJZRXX7lypWy53fv3m12rFevXujVq5fWplmMQwgEFy9exI4dO/DDDz+Int+0aRMePHiA/v37mxz39/c38wagRhjU8ELKMMPLywtlypSBs7MznJ2dZY03/P39kZ+fj+zsbBMtgZKBh7u7O9zd3WWevHSipBmwZLCcfCxGdEK3FjWqceHAKzcQq1kdqhlcLckxoRYtKmctWoIfbzUx+VsudDLdPpHKxSCHLQMoCUPzWnpva9X6wr6hQtCPt5pw22QJQXsRB/XbRnzEoi5OPhaDGJ5mi0IF5MkwFXYtzbFgC6pW8MLWiQNZLgMrcYgtg4SEBPj5+SE6Olr0/MqVK/Hqq6+icuXKJscjIyNx/PhxE2+AlJQUeHl5cb6dSoYZbm5uCA8PNylTWFiInTt3cmXCw8Ph6upqUub06dMwGo02NfAoqch5G9BJTs+BxNoJgk56/JVRRmQil6pYS/x8NasougpTCkKkhJZwxnxsoW4WE5JodEUxGxBbvAd0y8narR975MSQylophJ9YiP6rJbqj0JhTDfzcCEJ3X0dygaxawQv1q1cptk9pEwYABxAICgsLkZCQgAEDBsDFxVxh8c8//2DPnj0YMmSI2bmOHTuifv36ePPNN/HXX39h+/bt+OCDDzBixAhuZT5s2DD8+++/GD9+PE6dOoXPP/8cGzZswNixY7l64uPj8dVXX+Gbb77ByZMnMXz4cOTm5iIuLg4A4O3tjcGDByM+Ph6//fYb0tLSEBcXh8jISLz44os26pnSiy33YC1h8rEY0WiCYpO73GQj127+wMlPQMOfNLXUZyl8LwItYXLlkNKYUNsFfmjqiGpG2ZgIccZWFgsJ/JwS1mKtUKG1DWqCKMkJckrfp5TLojBpkly7xIRUW2mxGPbB7gLBjh07YDQaMWjQINHzq1atQvXq1dGxY0ezc87Ozti6dSucnZ0RGRmJN954A/3798fMmTO5MsHBwdi2bRtSUlIQFhaGBQsW4Ouvv0ZUVBRXpnfv3pg/fz6mTp2KRo0aIT09HcnJySaGhgsXLkTXrl0RGxuLl156Cf7+/pJbHAzluARS6kZrE69YO4nS1Q+dwC2pT2gIxhc2+MIARWpQlRts9ViZJQTtVXw+pfvIbZ8Ij1PvCj7CiVDP7QBrJnWxdhSHelzs+xDmppCD733D/wgRbmkIMygqabAYpRMDIYTYuxHPCjk5OfD29kYbdIOLwdXezSkW5OwJpPaYrdk/12vvnT9AajFgFMbnV9sWS+wqLDVcE04QdHKQs4vQo0+lUlgLn4HukVsjHOhh1CfElnYdWusX7uXT91IqNbJcfwrfBy3vLQBMDv4v3mx8HHfv3oWXl35q9EePHuH8+fMIDg6Gh4eHbvU+i6jtS4cwKmQ8m0hpCWI8cy02IFQayKyNYa+FGM9cgDfI22JCsWTiEwv3LNcnerVZaLCnRz4APlQjwM9gqOd3rfd3JyV0qkFMs0LfL62/HaGRq9bnnJkRDeC4xrsyHBG7bxkwnm3EhAJr1eFyanDqtqakThZmtqMBWtRqBwDzlZbcQGvJ3rklK2Cx5y7OLJFqXRjVeH6Iwf9+HCGdMx/6DtH3idpX8GNtWEpGpHTacaV3nX9ftk3wbMMEAobN0BqYSC+UwiRTwzOlgZI/OPKTBAHmg6yUpkPtRGup5b+UQaJahBOArUM4a7XJ0JJKmK8ZsBapOiztazphUwFASq1vad1yaNniYjzbMIGAYRMsFQaEanX+wKwlSh2djOUGS61CgRxSg7mtcwhoUe+qUaHbelWtZRVMc05IIfXdUeGKWt5b4oooJaBpmbSl0htHVDOKvheWBsHSkqtCDuYxwGA2BIwSg5Tlt3AwFLpSWWtgJqbCFrZFD99+awK92GOy17pHLzSEk4P2hdx+uNK96T301HpoeV6pCVaP70EYVdAS+N9HaUhUdOVeDu48LMbARGXKoFr50hWLgAkEDN3Roh2wdrJWGhD5EdakVmX8CUNpsOZn2qNl5SZxel+5qH16IBdJUW7ijqhmtDgsLe07/r96YY1gRMMo89ukVxtt4b2g5p7874gfOVAvlPpF+M47Glfu5aDDt6uQV1B8oYvdnZ2xo/8gi4WCuXPnYtKkSRg9ejQWLVokWW7jxo2YMmUKLly4gNq1a2PevHno0qWLha2Wh20ZMBwOs/wC/0NspadFzSk1yfCD2SitJhOC9nIfMcRWWvS+alZz/HwDlqIlsmJC0F6rjNlsNUFYk4YZKHovEoL26i6oFJcwwI8hIMzgqead1yPFc0nizsOHxSoMAEBeQYHFGolDhw7hiy++QGhoqGy5/fv3o2/fvhg8eDCOHj2KmJgYxMTE4MQJ6Rgv1sAEAobNUDMoCQdYtRN8RDWjJgM1NQO5mgRJFOoVIDaw8sO78gdztRMvvYb/fEr74JaeE97TUtSuMLWgx+RrjxUtjcao9Roh/PdH6/4+FYaESL2zar8fsfcwvOplTW171rl//z769euHr776ChUqVJAtu3jxYnTq1Anjxo1DvXr18OGHH6JJkyZYunSpTdrGBAKG7tAIhZZafauxnO/me0TzIKlmj17tBKLFZkDo908nejmBhgoQ/JC0ajIaakHv0MjCyYK2XSxCoa0QbuNY84yW2h5Y8l0It66UhCHa11LvM02jzX9/aMAniha7AeEz6ZU34llkxIgRiI6ORocOHRTLpqammpWLiopCamqqTdrGBAKGzRGz5pfbi6XuWfz9d2EMAGt9ti2BH9LYGuhEH+OZq2rCSgjaKzvJKLVJ6lpLg+Lw4au26VYKf6JKCNprNvGovZ8e+/X8PtaSOjkktZ9VGS0B5fdMKDwdvBKkervo4JUgdPM9YqJNEoYqphoG+p0IoxUKhTRLtUxpmdUV28soYt26dThy5AjmzJmjqnxWVpZJCH0AqFKlCrKysmzRPGZUyHBcbLFfq9aS35K9Z7WW83zkojKq3Ue3JLKjNSs7OW8BWi8/nK4W7wI94Lv1KXmHiKFH6GRq2CgHv2/4W0tq4WvIfrzVBJOPWa5BEhPcxNpK+4VpBrRz6dIljB49GikpKQ4biplpCBg2QZjcyJpBRK+IfFrOS2GNrzZNHws8fSY1GgelLRSlyUfsWS31eReuPsXqpWF0hcKAVqxxwwSeruS1Gp5aIwxYsj2mRz4KOS8SKpwpIWV3IHYfPTNLPiukpaXh+vXraNKkCVxcXODi4oLff/8dn332GVxcXFAgYhTp7++Pa9eumRy7du0a/P39bdJGJhAwig1LhQIx1bHcRKq0uuerUbW0laplLYU/MclNVsK9WWsDxuhh8EeFGbVBcLREaZRD7WRG0aPf9JrklLa1rMltoVaI4E/gapHqbyqgFXd68tJC+/btcfz4caSnp3Ofpk2bol+/fkhPT4ezs7PZNZGRkdi5c6fJsZSUFERGRtqkjUwgYNgUMU0B9avWMrAI91atsSEA1AsF9J50z18KLbYFSjnoxUIrK62WrREalCYLpWe3FWK2I0pYs2ql76UScn2tR+AiJWzpMsi3AxGD7/bIfT8RG2zWntJE+fLl0aBBA5OPp6cnfH190aBBUeyW/v37Y9KkSdw1o0ePRnJyMhYsWIBTp05h+vTpOHz4MEaOHGmTNjKBgFEs8AUDakGvdkDUur+q1rshKddTlfW7VPKlpFxP7v9aQ/Lyy/OFHf69bKmO1aqpkep7MWNRftwF/nVaVOO2DuTEh2p+4oytdEvzrNceO99YkP5tbZ/wr5eyG1CzfSCsi2E9RqMRmZmZ3N8tWrTA2rVr8eWXXyIsLAybNm1CUlISJ0DoDRMIGMUKX1tAo8nxKU5jJaXBX7h65/uE05XS5GMxnFAg9jxK9+ULBkoaEyUtgRaNi17ChlD44nti0Oe0JNa+nhON2hW1nn2iV3hifkIkoSBpDWq+E+q2SD/Cd9uRhIEKZcrAXUTlbkvcnZ1RoUwZq+rYvXu3SZTC3bt3Y/Xq1SZlevXqhdOnTyMvLw8nTpywWZRCgHkZMOxIjGcuYjz3IuTK04FFTb4CPcPHUoM9sfrEBl+5clpWl3wreBqWNsYzt9gHWaX7zQpNUqVGF3MJtUeYXyFqDRNt1U5r+kD4PukdrtiihE8ick7OPZ0aZAXVynthR/9BLJeBlTANAaNYoXkO5PbRpSKsaUVMuBDWrXXbQm+EEQyVVvlyk7Ml6m6l+2nZ2nkWsCQ6ph5GeHppzmg9/PpKQ2IjoEgoaOBXpdg+pU0YAOwsENSsWRMGg8HsM2LECK5Mamoq2rVrB09PT3h5eeGll17CQ54UKFbH3LlzTe5z7NgxtGrVCh4eHggMDMTHH39s1paNGzeibt268PDwQMOGDfHzzz+bnCeEYOrUqahatSrKlCmDDh064OzZszr3SOmHv2XA338X7p2LRW1TuzcrDPjChx+9TS9raT2FBaXJd/KxGF2NyiYfi5HtUzXaATFVsth1YpORHPygVNY8c1Kup9385rWErJbDmi0I4e+GxRBgSGHXLYNDhw6Z+F6eOHECL7/8Mnr16gWgSBjo1KkTJk2ahCVLlsDFxQV//fUXnJxM5ZiZM2di6NCh3N/ly5fn/p+Tk4OOHTuiQ4cOWLFiBY4fP45BgwbBx8cHb731FoCnCSTmzJmDrl27Yu3atYiJicGRI0c4442PP/4Yn332Gb755hsEBwdjypQpiIqKwt9//+2wQSYcHX4mQsBUvSrmw843AKRl+S6G/P/zrxWbTLi6QpPMVkhaA+lYO0Fb62+vFS3BepQEFCkXT7FJUGvGQf77wG+z1qBRVIgKudJP8lprXACVkNuWsiX0Wenz6mmDQIkztkLqWT8AcxXLMhwfu2oIKleuDH9/f+6zdetWPP/882jdujUAYOzYsXj33XcxceJEhISEoE6dOnjttdfg7u5uUk/58uVN6vH0fLo6SUxMRH5+PlatWoWQkBD06dMH7777Lj799FOujFICCUIIFi1ahA8++ADdunVDaGgovv32W1y9ehVJSUm276hSTpyxlcnAr3ZFKIyRT4UILXHzYzxzkRC0l7PmtlZrYO319Lltma1O7cSk5lmEkyu/D6UCF6lBzOuC9ok1eRGkYmHYQhig96GGp/x325YCoFTuCymbGL63jBbkwjszSiYOY0OQn5+PNWvWYNCgQTAYDLh+/ToOHDgAPz8/tGjRAlWqVEHr1q3xxx9/mF07d+5c+Pr6onHjxvjkk0/w5MkT7lxqaipeeukluLm5cceioqJw+vRp3Llzhysjl0Di/PnzyMrKMinj7e2N5s2byyaZyMvLQ05OjsmHYY5SECGlCUxskKWDnNrJjw6W/EHTkhWdkgpeDWq8DfjqdEuFEKW9Y0smSWogaQ10NS3UDlBBQOx70WJ7Yc0kNvlYjOr+VnJ/1VsooFsDUoa5fIS/Db63DOPZxWEEgqSkJGRnZ2PgwIEAgH///RcAMH36dAwdOhTJyclo0qQJ2rdvb7J3/+6772LdunX47bff8Pbbb2P27NkYP348d14qOQQ9J1eGf55/nVgZMebMmQNvb2/uExgYqLo/SjN8OwI+wnTBQh92Le5r1CUQMN8Ht8QNTgvWxnqP8cxVNWnR1R19Tq3+7918j1jaREmsFQb4eQgoIan9TLRItBx9VjUTtJxwY0vtAFD0PvDdB/lhq8WEAiVXXKnvWI27IxUE+M9syfPb23uEYRscRiBYuXIlOnfujICAAABAYWEhAODtt99GXFwcGjdujIULF6JOnTpYtWoVd118fDzatGmD0NBQDBs2DAsWLMCSJUuQl5dnl+fgM2nSJNy9e5f7XLp0yd5Ncli0WD0rTejCc/wBz9JAOWKIBeWhWKtKVTux840M1fq/WxLjv7jgt19oU8KHRtSjz84XRGy9IlfTb0rfg3BSlrtW7G8twh//udV+51RwEPuNMGGg9OIQAsHFixexY8cODBkyhDtWtWpVAED9+vVNytarVw9Go/QPoXnz5njy5AkuXLgAQDo5BD0nV4Z/nn+dWBkx3N3d4eXlZfJhFCHUEvAHPblELXz4g5bcAEZRO5DxVfJy0HbyBRjhnrelmgKqHlcbLU7LZGfLeAfCeBF6qsWFnif0ww+lC+gTYEip3/X0UJHrJzXaAPqeiZXV0k7+toFQiNaqoWOUTBwiMFFCQgL8/PwQHR3NHatZsyYCAgJw+vRpk7JnzpxB586dJetKT0+Hk5MT/Pz8ABQlh5g8eTIeP34MV1dXAEXJIerUqYMKFSpwZXbu3IkxY8Zw9fATSAQHB8Pf3x87d+5Eo0aNABR5Lxw4cADDhw+3+vkZ6hAO9D/easL9X2rlQ/dUtQgDYv+XIyFoL+fxIDRyVDOx0NWtcM9ci2U6jWQntwJUa50vZZRmCdbsS2uZfPg+/2J9wA+wpKYfitNYjtpdiH3fatoh5TVhzfaNIwSV0srVB3dxJ/9Bsd2vgltZBJT1Lrb7FQd2FwgKCwuRkJCAAQMGwMXlaXMMBgPGjRuHadOmISwsDI0aNcI333yDU6dOYdOmTQCKjAEPHDiAtm3bonz58khNTcXYsWPxxhtvcJP966+/jhkzZmDw4MGYMGECTpw4gcWLF2PhwoXcvUaPHo3WrVtjwYIFiI6Oxrp163D48GF8+eWXXFvGjBmDjz76CLVr1+bcDgMCAhATE1N8nVXKqB57Apf/24D71x7wQ8JK+c6rnRyoMMCflIRCgVRdQkHEEqGAGrxJZVBU+xxibpzFjdTkqNQmatTJLyPcIlH7TFIurbQuLd+NXLv57rdiORy0umpKGXaqaevkYzGI0SgMTA3ZhjdVl7YNVx/cReeUpcgvfKJcWCfcnFzwy8sjVQsF06dPx4wZM0yO1alTB6dOnZK8ZuPGjZgyZQouXLiA2rVrY968eTYNXWz3LYMdO3bAaDRi0KBBZufGjBmDSZMmYezYsQgLC8POnTuRkpKC559/HkCRSn7dunVo3bo1QkJCMGvWLIwdO5abyIEib4Bff/0V58+fR3h4ON577z1MnTqVi0EAqEsgMX78eIwaNQpvvfUWmjVrhvv37yM5OZnFILASunVAkx8JtxKKI4gKNfgSQ8uEKLUalssdL7WKE7ZHi02BVBuU2il2jSX9z2+7tatUsTYpIXRLFIu2qOa5lLaxpLZqxOpWayQqdL9Vey3FGmGA3rckcif/QbEKAwCQX/hEs0YiJCQEmZmZ3EfMa45C4+MMHjwYR48eRUxMDGJiYnDihLhRth4YCCHEZrUzTMjJyYG3tzfaoBtcDK72bo7DQrUFcisjes6eq1hAPM8CoH0AFitPtyCEngRKz6u0daBVHWxJH4tthWiBZh/k31dtO+i9lbYRlFDb12ptMrT2I/97UvotUPjCkJg9gJZ7qi2fc68AFV74F3fv3tXVTurRo0c4f/48goODFRdeGdmZ6Pnbl7JlbMGmtm8hxKeqqrLTp09HUlIS0tPTVZXv3bs3cnNzsXXrVu7Yiy++iEaNGmHFihWa2qm2L+2uIWAwhFAtgZIwoAfWaCD0WE3JrdbpM2pdZevtPaDVqp1vyMbPBKkVsQBEarNJClfvWu/PFzjl7is0aJRD6zurVgMhpYHiu96qwVK7gYiDr2m+5lnl7NmzCAgIwHPPPYd+/frJGsgrxcexBUwgYDgkUrEKhFgrGAjd3LRireGV3IQSUc1ollrZXtoQoUW7FBmRiVzmRuDp81krpFgTi1/LxCgW3EfpfsL9fqX6LUForKoWNfez1hvkYMQGi699lmjevDlWr16N5ORkLF++HOfPn0erVq1w7554ukil+Di2gAkEDIdFzKYAMB8QpQY9rYOvlqxvSqspPbQHNKAN3Re2JmQvH0st/4UrUb67m9ikYq2wRFfI/AlabawFS1e7wvrVCgZxxlbIiExU7b2gdqLmawloeG258hT6HavpK1pWa39RrQvTEKijc+fO6NWrF0JDQxEVFYWff/4Z2dnZ2LDBcQQqJhAwHBox7wMxlakYtlxNixn9aU2KBKiPskcHbb2Mviz1oxczduMLKnq7qhVnvHy1Pv9SZYCnmhwl1E7UfBsT4dbRrNAkTkgQvhd8l1w5qEbHku9N70RJzxo+Pj544YUX8M8//4ieV4qPYwuYQMAoEWhZ7WtNkawVKet3fthltag1vOOrvPUQCqxV4dNJiJ9fQM8okPQeljArNMli7YCa81LvDg2SxI+gqIRYXbRv+ROuMHtnRDWjydYMhQbo0qJNsshu4H/tLmmxChyJ+/fv49y5c1wQPiE0Pg4ffnwcW2BxHIJz584hISEB586dw+LFi+Hn54dffvkFQUFBCAkJ0bONjGcYGqNATSRDteetvU5qELTUBkHtdUKXNL4FOmA+Ycn5vVuCGg8KSydjMcS2cJSeTa8IglKoccXkf09CTwmx+viIaZlk03f/D6FHAQ2UJXdvS7dVSqpror15//338corr6BGjRq4evUqpk2bBmdnZ/Tt2xcA0L9/f1SrVg1z5swBoBwfxxZYpCH4/fff0bBhQxw4cAA//PAD7t+/DwD466+/MG3aNF0byGDIIWZjoNYg0RLkQsxaE5VPy0TG3z6gq3S6KqX72JbEEFAyFgSUV4Q/3mqiW+wIsRj+cjYE/ABEthQM1Pat1pU6v4/FEntJvV9UMyEU9GwhDAjvy1DP5cuX0bdvX9SpUwevvfYafH198eeff6Jy5coAAKPRiMzMTK68mvg4emORQDBx4kR89NFHSElJMUkr3K5dO/z555+6NY7BoMhN/FLnpIIdAfKDpSUTGjUA1Ao/OY9aC3V+5jyKWJx5rZoSNQl51NShh/FjUq6nRZO6kleDXoKCtRkt+fCNBZX6mJ+zw9IJWU8tjqNQwa0s3JyKN/Cum5MLKriVVV1+3bp1uHr1KvLy8nD58mWsW7eOC7IHALt378bq1atNrunVqxdOnz6NvLw8nDhxwqZRCgELtwyOHz+OtWvXmh338/PDzZs3rW4Ug8FHbuIXlpE7rzY8srVGbNZYuKs9L5WjgRqiWbovLNYGLfXpMeGahN/VEFRITgige+3W9I8QNYGx6JaQ2P2E+QaU2iRm/CflGSPVLkuDNPHRmkyrOAgo641fXh7JchlYiUUCgY+PDzIzMxEcHGxy/OjRo6hWrZouDWMwHAVL/P8tmXT0mKj4cfH1MuzTaiRpzX0jqhkRZ2yFbr5HAOgXZMkknPL/JjM94jpYGi2TrxFQO0kL+1Xuu7GVMEDbrcVFt7gIKOtd6ibo4saiLYM+ffpgwoQJyMrKgsFgQGFhIfbt24f3338f/fv317uNDIZN4GsVqseewMnu4vYvlkwaaoPVhKT2kzWek0PvPA9KanBbpGIWq//glSBu5axW4yDXNksnQb36l/YJ302Qj1L7qG2INem01dxHCb4Qo1dMDIZjYZFAMHv2bNStWxeBgYG4f/8+6tevj5deegktWrTABx98oHcbGQxdECZSEv7/ZadeilsPlhgOWuIVYa0nhdZ26uU7T7FEKOAbDNL207TAShOiHkmoxOpUMwkrGe/Re1I3Qb4dgBjC+8UZW4nGYyhOOwCqjaD3dEQNAcN6LBII3Nzc8NVXX+HcuXPYunUr1qxZg1OnTuG7776Ds7Oz3m1kMHRDjQeCsAz/b73zBFiD3IqevzdtyWQvdG20BDqJa4FvOMmHPyFau3KnfSNc5UplKVRjQEg1APwgQfx/1cab4OdQ0FNLZIltB30WqVTUjNKHVYGJgoKC0KVLF7z22muoXbu2Xm1iMOyO0JCRLxTIuR5aix7GWsIB3Jr9ba1EVDOabINY4+nAvz+d0MTCJluC1tTKSkKBMO2wVBjnjMhEWaFSLEQz/96WTMSW2g6IeTPQiJzFkZacUfyoNiqMj49XXemnn35qUWMYDEdCbTwD/mCd5Cuej17qGnqd2HmlwV8qBbQ18RASgvZapRXgT2LQOHeJPTOdaPkTmrWrUxosyFItCE1LbWKoKOItQCdiMQFLLIGSlgBGSsetQUogFB63d+pxhv6oFgiOHj1q8veRI0fw5MkT1KlTBwBw5swZODs7Izw8XN8WMhgOjiUW3WLXUOMztZOUyeTrgNDnUYrWRxEro3e8fH7f8vub/g1IT3T8lTqNk8Cf8IXwowbKoTSxWjvxatUOyLXXGs0Tw/FRvWXw22+/cZ9XXnkFrVu3xuXLl3HkyBEcOXIEly5dQtu2bREdHW3L9jIYdkONxoAmlVETaEgMuXC1cvDv5Uh2DhRr1PtiGg9al9o66f2Fq3S+SlyYn0EMvio/xjPXZG9eS7AgtaG47bEKF7M3sHVIaIZjYFEcggULFuDXX39FhQoVuGMVKlTARx99hI4dO+K9997TrYEMRkmCqsqTcj0tHsjF0v5qQQ9/cz2x1BhQTijSqh1R8uTgT+RKfc8PKKRkLGjthK6HMMCfzJXei1mhSaKZEsXiS9DvM/Wsn9Vt1INbebdw78n9YrtfeZdy8HX3Lbb7FQcWCQQ5OTm4ceOG2fEbN27g3r17quupWbMmLl68aHb8nXfewbJlywAAqampmDx5Mg4cOABnZ2c0atQI27dvR5kyZQAAt2/fxqhRo7BlyxY4OTkhNjYWixcvRrly5bj6jh07hhEjRuDQoUOoXLkyRo0ahfHjx5vcc+PGjZgyZQouXLiA2rVrY968eSZhIgkhmDZtGr766itkZ2ejZcuWWL58OTOmfAaRiz5H0TohJ+V6mk0eCUF7gSDtxn00lr+WNgij5ukJ7Sutkxvt5+IQbvh9z32/V8T7nR/1UCkQkz3V6vQd4Od2kBMO6Dsw+Zi5x4nYM+oZvtlabuXdwoRjk/GYPC62e7oaXDEvdJYmoeDKlSuYMGECfvnlFzx48AC1atVCQkICmjZtKnnN7t27ER8fj4yMDAQGBuKDDz7AwIEDdXgCcyzyMujevTvi4uLwww8/4PLly7h8+TL++9//YvDgwejRo4fqeg4dOoTMzEzuk5KSAqAofjNQJAx06tQJHTt2xMGDB3Ho0CGMHDkSTk5Pm92vXz9kZGQgJSUFW7duxZ49e/DWW29x53NyctCxY0fUqFEDaWlp+OSTTzB9+nSTjFH79+9H3759MXjwYBw9ehQxMTGIiYnBiRNPVcQff/wxPvvsM6xYsQIHDhyAp6cnoqKi8OjRI0u6kFFKoQOuVpX/j7eamKiqxVTZcggnHi2TKHWLs9avXWxbQGxVqXX7QA/PC6WAS1Ihm4Wqcn5cAZpTwtL72hr+O0AFA34SJP67mhGZiB9vNRH9vpQEnvCql/VuumbuPblfrMIAADwmjzVpJO7cuYOWLVvC1dUVv/zyC/7++28sWLDARNMu5Pz584iOjkbbtm2Rnp6OMWPGYMiQIdi+fbsej2CGgRBCtF704MEDvP/++1i1ahUePy76ElxcXDB48GB88skn8PS0zMp5zJgx2Lp1K86ePQuDwYAXX3wRL7/8Mj788EPR8idPnkT9+vVx6NAhTsJKTk5Gly5dcPnyZQQEBGD58uWYPHkysrKyuERMEydORFJSEk6dOgUA6N27N3Jzc7F161au7hdffBGNGjXCihUrQAhBQEAA3nvvPbz//vsAgLt376JKlSpYvXo1+vTpo+r5cnJy4O3tjTboBheDq0V9xLAv/HwIYqtwuspKyvU0Ub2qWSlKrcT4E6JaAz0tCO+r97611HOpvY8Ww0StyLVBThBx9ORA/MyPcmXou6qUB0LueQsePMLZN+bi7t278PLysqLVpjx69Ajnz59HcHAwPDw8ZMteyL2IaRkzdbu3WmaETEVNzxqqyk6cOBH79u3D3r3qozxOmDAB27ZtM1mc9unTB9nZ2UhOTlZdj9q+tEhDULZsWXz++ee4desWjh49iqNHj+L27dv4/PPPLRYG8vPzsWbNGgwaNAgGgwHXr1/HgQMH4OfnhxYtWqBKlSpo3bo1/vjjD+6a1NRU+Pj4mKhbOnToACcnJxw4cIAr89JLL5lkZYyKisLp06dx584drkyHDh1M2hMVFYXU1FQARVJaVlaWSRlvb280b96cKyNGXl4ecnJyTD6MkoswOZLYIEoHWMDUAM2alSJfW6B3yFipYDx61Kmk2dByn+IWBoAiLYAwIp81WQaLE7F0yGJl+P+KoYfmiFHETz/9hKZNm6JXr17w8/ND48aN8dVXX8leozQ36Y1VgYk8PT0RGhqK0NBQiwUBSlJSErKzs7m9kX///RcAMH36dAwdOhTJyclo0qQJ2rdvj7NnzwIAsrKy4OdnatDi4uKCihUrIisriytTpUoVkzL0b6Uy/PP868TKiDFnzhx4e3tzn8DAQHWdwXBI+F4GUlbXYiFd+YKBFGpcDW0xMNtioqU+/hS1IXqtRSrVtRRKz86fKIsjVC/NdaBXXXrAhAH9+Pfffzm7s+3bt2P48OF499138c0330heIzU35eTk4OHDh7q30SKjwrZt28JgMEie37Vrl+Y6V65cic6dOyMgIAAAUFhYCAB4++23ERcXBwBo3Lgxdu7ciVWrVmHOnDkWtLx4mTRpkklAp5ycHCYUlHC4CeesfLkYz1xMtmE7SkpQGGuCJGlBmKiKojbltRg0ABFQJDxIGRnqBd/4r7iQmvD1ypbJeEphYSGaNm2K2bNnAyiaz06cOIEVK1ZgwIABdm5dERZpCBo1aoSwsDDuU79+feTn5+PIkSNo2LCh5vouXryIHTt2YMiQIdyxqlWrAgDq169vUrZevXowGotWFv7+/rh+/brJ+SdPnuD27dvw9/fnyly7ds2kDP1bqQz/PP86sTJiuLu7w8vLy+TDKB0sr11L8hw1NrNlzngt8e7tgZgbnyWo6UOpLJVKqM3sqGVi1CvPgjXoIVQUlyD3LFG1alXZ+UwMqbnJy8uL87TTE4sEgoULF5p8li5dij/++ANjxoyBq6t2Y7mEhAT4+fmZBDWqWbMmAgICcPr0aZOyZ86cQY0aRUYckZGRyM7ORlpaGnd+165dKCwsRPPmzbkye/bs4YwfASAlJQV16tThrDsjIyOxc+dOk/ukpKQgMjISABAcHAx/f3+TMjk5OThw4ABXhsEoDpJyPU0mSWu1BFqEFqGHgNTkJwySJOdyqGYCVZqcXnbqJXlObgtBKsIkDU508EqQzbYKbC3I2cqFlGE5LVu2lJ3PxFCam/TGKhsCIW+88QZWrVql6ZrCwkIkJCRgwIABcHF5uoNhMBgwbtw4fPbZZ9i0aRP++ecfTJkyBadOncLgwYMBFElXnTp1wtChQ3Hw4EHs27cPI0eORJ8+fbith9dffx1ubm4YPHgwMjIysH79eixevNhElT969GgkJydjwYIFOHXqFKZPn47Dhw9j5MiRXFvGjBmDjz76CD/99BOOHz+O/v37IyAgADExMVb2GqM0IZxk9FYB6xnTX61amAoBWoIBiQkalk6CckZvWmwGlOC7X9paXW6JD78aAUwPHC2wVWlh7Nix+PPPPzF79mz8888/WLt2Lb788kuMGDGCKzNp0iT079+f+3vYsGH4999/MX78eJw6dQqff/45NmzYgLFjx9qkjboKBKmpqYruIUJ27NgBo9GIQYMGmZ0bM2YMJk2ahLFjxyIsLAw7d+5ESkoKnn/+ea5MYmIi6tati/bt26NLly74v//7P5MYA97e3vj1119x/vx5hIeH47333sPUqVNNYhW0aNGC+3LCwsKwadMmJCUloUGDp/uP48ePx6hRo/DWW2+hWbNmuH//PpKTkzU/L6P0oDQZCTPgKaFmYBcKGHpMBkqTnzDzHv+4EL7goLSyV/LAmBWaJNs2PYUBQLy91mRrpIg9nyU2IMVhM8KEAdvRrFkzbN68Gd9//z0aNGiADz/8EIsWLUK/fk/f8czMTJMthODgYGzbtg0pKSkICwvDggUL8PXXXyMqKsombbQoDoEw+BAhBJmZmTh8+DCmTJmCadMs29Mr7bA4BKUTOcM1LamE1a7Y9TD40qId4E/cwklJLC2vGt91NRMiP3mQVF1qhALh98NvM78dehnSaclUqUfdwmOWPIeauAVSOEIcgpISqdBeqO1Li7wMvLy8TLwMnJycUKdOHcycORMdO3a0pEoGo1SiJYOhGkMuGjnO0slLrYCiNT4BbU9ENaOJVkRMoFCr1dDLU6N67AkToUBMy2GNMKCHx4e9vUZKulbA190X80JnsVwGVmKRQLB69Wqdm8FglFyEq1ThilSrx4Hc5KB1JcgvQ/+vpi2akwYFQTT2gJrnEIO/XWCNdkAJNdoMJYSaBiFaJnstGiWleorDbXBWaBIm/tnJ5vdRg6+7b6mboIsbi2wInnvuOdy6dcvseHZ2Np577jmrG8VglGTEAuQk5XoqGhjSlbWaySPO2ErVgC+modBrouBHJBTek39euK1gqarcFugViU/OHkIq0yK/LD+xkpr7KKFUD0tnzBDDIoHgwoULKCgoMDuel5eHK1euWN0oBqM0oHUFa4nvt9Jqn660pVLXWoNYREL+fSwVAMQmK2EdWvtWTEiTMlq0pm+oAaaaOqT6hbqWShkj6oVarZVcucnHYnAwYoNeTWLYGU1bBj/99BP3/+3bt8Pb25v7u6CgADt37kTNmjV1axyDUdKh+9c0Cp1eVtxqLPnl1MZ67FfTidsWqmlbuRrSa4ef/UeyjB59kxC0V1VkQ7HthMnHYhATmaiqHZbaHtB7MBh8NAkE1OfeYDCYhVp0dXVFzZo1sWDBAt0ax2CUJvhpZ/Uy4pKzwrd1tDkpl0q+8aCayUprqOHL/21gtf3A8tq1RO8lbLM13xXN0pgQtFc2o6CUJ0dGZKLsdQyG3mjaMigsLERhYSGCgoJw/fp17u/CwkLk5eXh9OnT6Nq1q63aymCUSNQm3bF04A9J7edQe8JatgrE+oX2g1S/6R1/gI9Ym60JQU1zIcR45orWwxcE+DYXccZWiDO2snvEQUd6rxi2xyIbgvPnz6NSpUp6t4XBeCbQksSGPykqCRbCOtUIGI424POfVXjMFvdSqpv2YUZkItdXauw2pODXQxEKIUKBit5PymCRf1zt9ymlVRLeg//8jNKP6i2Dzz77DG+99RY8PDzw2WefyZZ99913rW4Yg1HaoJMP36YAMF0RU4TqbLEJkl9GWIfaLH+0HVq0E1StTSMxWqpWt+VKXwvCOAV86Gq9m+8RxHjmcvvuwgkyKdcTP95qwmkEKMIkT8D/tlp4QZf4ES3FytP/03sItxj4qNEoyAkNYhoSrRE3GSUX1ZEKg4ODcfjwYfj6+iI4OFi6QoMB//77r24NLE2wSIUMCp2A6GRq6eRI65G6Xo1goCVKHX8yssaH31GEASFa0iUrrZrF+kXpGr7NALVBAJ5uPdDgT1LRI9XEMbAkRoHcNY4QqRAAHjzORF5htm73V8LdyQdlXasW2/2sQfdIhefPnxf9P4PB0A7f+8Daeiy5Lx8tWxj8yedZXzXSCXJWaBJ+vNUEgOnELXUNXdULtQnAU+0Bv28TgvZyxol8IYGeo94MtF5rvD7kDEGLK9iRJTx4nIlfL8WgkOQX2z2dDG7oGJikWiioWbMmLl68aHb8nXfewbJly0Sv2bhxI6ZMmYILFy6gdu3amDdvHrp06WJVu+WwyIZg5syZePDggdnxhw8fYubMmVY3isF4FqB72LZcLQttEPTC0j1lWz+vtVhiU8EX6tRkSjx4JYgTBpJyPRGS2s/EI0QoDNB/+dqCiGpGM9sCMQFDiNLzUZsE4VaErT1WrCWvMLtYhQEAKCT5mjQShw4dQmZmJvdJSUkBAPTqJZ6+e//+/ejbty8GDx6Mo0ePIiYmBjExMThxwna/H4sEghkzZuD+ffOY0Q8ePMCMGTOsbhSDwdAXNcZzNKKhFrSsGB1ZEKBo0ZbQiVMswZMYtF5ank6ydNuILxzwtQC0LJ3wqbaAkhC0V3VMiBjPXNVZKPkw10frqVy5Mvz9/bnP1q1b8fzzz6N169ai5RcvXoxOnTph3LhxqFevHj788EM0adIES5cutVkbLcplQAgxSW5E+euvv1CxYkWrG8VgMGyH2LYBfxJUUg0r7VPT+rUaOJY0tAQE4gwKRfpuVmiSSZ/HeObix1vm/Uuvldpq0HMVL3w2+n6w9Mj6kJ+fjzVr1iA+Pl50LgWA1NRUxMfHmxyLiopCUlKSzdqlSSCoUKECDAYDDAYDXnjhBZMHKSgowP379zFs2DDdG8lgMGzL5GMxmAz93MtKgjZACF9w0XPimxWaJBtgSNj3cvYHenw/Yu1QCiJFIxsyYUAfkpKSkJ2djYEDB0qWycrKQpUqVUyOValSBVlZWTZrlyaBYNGiRSCEYNCgQZgxY4ZJ6GI3NzfUrFkTkZGRujeSwWDoi9TqnU46YhPiLJ6xm9RqtLgDCemJWJhpwHp1uRpPDJrWWgk5F0CldNFywoQ9Uy8/i6xcuRKdO3dGQECAvZtigiaBgIYrDg4ORosWLeDqylznGIySjFjqZrpHLRbrnk5IpX2lyHf9k5tklYioZpRV5dOVudq8BVS4YIGCSi4XL17Ejh078MMPP8iW8/f3x7Vr10yOXbt2Df7+/jZrm0VGha1bt+aEgUePHiEnJ8fkw2AwSi406BCFv3K1VdKhkoAlmQYPXgmSVNHT82pJCNrLfRdSQoaUYSg9JjRWFLZJ7hlpFkaGdSQkJMDPzw/R0dGy5SIjI7Fz506TYykpKTbVwlskEDx48AAjR46En58fPD09UaFCBZOPWmrWrMnZJPA/I0aMAAC0adPG7JzQRkHs+nXr1pmU2b17N5o0aQJ3d3fUqlULq1evNmvLsmXLULNmTXh4eKB58+Y4ePCgyflHjx5hxIgR8PX1Rbly5RAbG2smvTEYJR06qU8+FmPiQsf/v3AycnRXQnsi5rFgSYZCGjGRQr0StBBnbKV4X7nzlgahYjylsLAQCQkJGDBgAFxcTBX0/fv3x6RJk7i/R48ejeTkZCxYsACnTp3C9OnTcfjwYYwcOdJm7bNIIBg3bhx27dqF5cuXw93dHV9//TVmzJiBgIAAfPvtt6rrUeOXOXToUJMyH3/8sVk9CQkJJmVoVkagKIhSdHQ02rZti/T0dIwZMwZDhgzB9u3buTLr169HfHw8pk2bhiNHjiAsLAxRUVG4fv06V2bs2LHYsmULNm7ciN9//x1Xr15Fjx49tHQbg1EqKK3bBcXhDWGpMACYT9ZSQoGYFiAktZ+qOAVi9+XjaLkvSho7duyA0WjEoEGDzM4ZjUZkZmZyf7do0QJr167Fl19+ibCwMGzatAlJSUlo0MB276lFbodbtmzBt99+izZt2iAuLg6tWrVCrVq1UKNGDSQmJqJfP3VSZOXKlU3+njt3rplfZtmyZRX3THx8fCTLrFixAsHBwVxa5nr16uGPP/7AwoULERUVBQD49NNPMXToUMTFxXHXbNu2DatWrcLEiRNx9+5drFy5EmvXrkW7du0AFAkh9erVw59//okXX3xR1fMyGAzHRcwdMynXkzOwlJrI1U7ylggDFKnrqPU/n4SgvUCQdREL6T2FwgiNyOhouDv5wMngVuyRCt2dfDRd07FjR0hlC9i9e7fZsV69ekkGLrIFFgkEt2/fxnPPPQcA8PLywu3btwEA//d//4fhw4db1BApv8zExESsWbMG/v7+eOWVVzBlyhSULVvW5NoRI0ZgyJAheO655zBs2DDExcVxdaSmpqJDhw4m5aOiojBmzBjuvmlpaSaqGicnJ3To0AGpqakAgLS0NDx+/Niknrp16yIoKAipqamSAkFeXh7y8vK4v5l9BaMkIJfspzTDf2Y6efM9DuRsAaTgX2OJMKBGiJAyMtQj1LAw4yI/VLIjUda1KjoGJrFcBlZikUDw3HPP4fz58wgKCkLdunWxYcMGREREYMuWLSauiFoQ88t8/fXXUaNGDQQEBODYsWOYMGECTp8+bWKdOXPmTLRr1w5ly5bFr7/+infeeQf379/nMi5K+XLm5OTg4cOHuHPnDgoKCkTLnDp1iqvDzc0NPj4+ZmXkfELnzJnDIjcySiRqhYLSajtAV8cHrwTJBv0Rph+2RTvUYOuMhHyhw1FzGpR1rYqyKF0TdHFjkQ1BXFwc/vrrLwDAxIkTsWzZMnh4eGDs2LEYP368RQ0R88t86623EBUVhYYNG6Jfv3749ttvsXnzZpw7d44rM2XKFLRs2RKNGzfGhAkTMH78eHzyyScWtUFvJk2ahLt373KfS5cu2btJDIZq5Cb70ioIiKH3ZEsFCKEgoWTlr4SY0MKfxK1FTZ4GRsnGIoFg7Nix3Aq8Q4cOOHXqFNauXYvffvsNGRkZmuujfplDhgyRLde8eXMAwD///CNb5vLly5yqXsqX08vLC2XKlEGlSpXg7Ows6+/p7++P/Px8ZGdnS5YRw93dHV5eXiYfBqO0UNqFgoNXgmziZkdX/fxEQnxBwJJ7Tj4WI2nsSevTK7Qxi4NQerFIIBBSo0YN9OjRA97e3li5cqXm69X6ZaanpwMAqlaVVgulp6ejQoUKcHd3B6Dsy+nm5obw8HCTMoWFhdi5cydXJjw8HK6uriZlTp8+DaPRyCIzMko1JTnyoFbE3CdDUvspagesifJHgxLxP4DlK3qaHIl+hDAvAYYcuggE1iDll3nu3Dl8+OGHSEtLw4ULF/DTTz+hf//+eOmllxAaGgqgyNvh66+/xokTJ/DPP/9g+fLlmD17NkaNGsXVM2zYMPz7778YP348Tp06hc8//xwbNmzA2LFjuTLx8fH46quv8M033+DkyZMYPnw4cnNzOa8Db29vDB48GPHx8fjtt9+QlpaGuLg4REZGMg8DRqmHP0mWVmGAj5hQAEhPpnraEPAFARpkiIaSVktxuYUyLUHpwyKjQj2R8st0c3PDjh07sGjRIuTm5iIwMBCxsbH44IMPuDKurq5YtmwZxo4dC0IIatWqxbkQUoKDg7Ft2zaMHTsWixcvRvXq1fH1119zLocA0Lt3b9y4cQNTp05FVlYWGjVqhOTkZBNDw4ULF8LJyQmxsbHIy8tDVFQUPv/8cxv2DIPhODwLgoASSrkC+FgSiVBugtVybz58+wdO0yHhMeGoHgSM4sNApJwiLeCvv/5CkyZNUFBQoFeVpYqcnBx4e3ujDbrBxcDyQDAYjg71tOAndgJMffzFrO7F3AWlXBeFdQPg8kkIkcuaKKyTIqxbqg5hm+WEGtrmOGMrpJ71w9k35uLu3bu62kk9evQI58+fR3BwMDw8PHSr91lEbV9q0hAoReYTGt0xGAxGSYXvdjn5WAzAmwT5iEUGlNIMiAkP1K1ROEnzV+tUe6BWU8CvSxi4KMYzFzGRiSY2BlRoiINpeGOp56Dli84/UtEiRklAk0CgFGPA29sb/fv3t6pBDAaD4YjQqIDCSIBqVe1UqOALBbNCk1St+mn5jMhEE5sFJcFDaRtCCH02ek96fUlwNyQFV4HCO8V3Q6cKMDg7Vvpia9EkECQkJNiqHQwGg1GisMRiXxhqWM+EQRHVjCbbDGLuhlriKagxGsyITETdnbEaWmkbSMFVkBsdARRf6GLADaj8q2qhoKCgANOnT8eaNWuQlZWFgIAADBw4EB988IFJdF4hu3fvRnx8PDIyMhAYGIgPPvjAJICfntjdqJDBYDBKCqJGegKUIvlZm0Y4IWgvt01B9/2F9fEzG/LbI9w+UEvG/7YYqCbD9PkcYMug8A6KVxhA0f0K7wAqBYJ58+Zh+fLl+OabbxASEoLDhw8jLi4O3t7eXFwfITQ537Bhw5CYmIidO3diyJAhqFq1qolhvF4wgYDBYDBUwrcl4KNlgp98LAaTIW5kKOfCyF/9C4UCPkJhhG/jwN+q0Bp9UWi/QOtwBA1BSWD//v3o1q0bF2+nZs2a+P7773Hw4EHJa9Qk59MTu8chYDAYDEdEytVy8rEYbmIV0wSojQgoZjcgFahIrO6EoL3chyLWHjE7A37q5KRcT9VhianwwRdmDkZsULyOUZTOeOfOnThz5gyAIq+8P/74A507d5a8Rio5H028pzdMIGAwGAwJxKIXUvhCAX8y1TvJEBUMQlL7ccKIWqFDTuPAF2wowrrFhISMyETEeOZyWpGIg6+pasuzzsSJE9GnTx/UrVsXrq6uaNy4McaMGYN+/aQFMaXkfHrDtgwYDAZDB2ydcZAPNU6UW9WrSZ0MmG8F0C0NCt/bgGoj+HESDkZsQAXNT/DssWHDBiQmJmLt2rUICQlBeno6xowZg4CAAAwYMMDezQPANAQMBoOhC/wtAFumRKYoqfjVRkm0xMtBLGgSQ55x48ZxWoKGDRvizTffxNixYzFnzhzJa5SS8+kNEwgYDAZDBXLbBxQtGQX5QoPeSYf0Fki0bFMwxHnw4AGcnEynXGdnZxQWFkpeo5ScT2+YQMBgMBgKqM3lQLcM1KygrcmSWJxQYYVviMjQziuvvIJZs2Zh27ZtuHDhAjZv3oxPP/0U3bt358pMmjTJJLifmuR8esIEAgaDwbABWjMU6qkl0FPY+PFWE+7/1BCRbjMwAUE9S5YsQc+ePfHOO++gXr16eP/99/H222/jww8/5MpkZmbCaHyq3aHJ+VJSUhAWFoYFCxaYJefTE12TGzHkYcmNGIySDz/HgRj8mARa9+elEiDZCyXDxFmhSWhXmIMKL/xr1+RG9opUaNAQqdCe2CS5EYPBYDzr0O0DJcFACanJ1pGEAiVNw+RjMZgc/N9iao00BucAoPKvLJeBlTCBgMFgMHREKamQHFQQcISkQmrcFmeFJmHin9EAjhdPo2QwOAeoDiPMEIfZEDAYDIaO8G0B5AQDucmWWvVbk/NADC3eB2rsEPj2BYySDxMIGAwGQyciqhlVTZIR1YyKk7OjbBvIUVI8JRjqYAIBg8FgWAl/gj94JcjE+j4jMtGiuAB6aweAkjmBM7t361Hbh3YVCGrWrAmDwWD2GTFiBACgTZs2ZueGDRtmUofRaER0dDTKli0LPz8/jBs3Dk+ePDEps3v3bjRp0gTu7u6oVasWVq9ebdaWZcuWoWbNmvDw8EDz5s3NMlA9evQII0aMgK+vL8qVK4fY2FizCFIMBuPZgR+bQJiMSM3qXmly1st+gC+MFEcERb1wdS3yxHrw4IGdW1LyoX1I+1QKuxoVHjp0CAUFBdzfJ06cwMsvv4xevXpxx4YOHYqZM2dyf5ctW5b7f0FBAaKjo+Hv74/9+/cjMzMT/fv3h6urK2bPng1AXT7p9evXIz4+HitWrEDz5s2xaNEiREVF4fTp0/Dz8wMAjB07Ftu2bcPGjRvh7e2NkSNHokePHti3b59N+4jBYDgmSl4GwtwGanMLCMlQyFmgpf6EoL0IuaI+q6Ga9toql4GzszN8fHxw/fp1AEVjv8FgsMGdSi+EEDx48ADXr1+Hj48PnJ2dZcs7VByCMWPGYOvWrTh79iwMBgPatGmDRo0aYdGiRaLlf/nlF3Tt2hVXr17lMkKtWLECEyZMwI0bN+Dm5oYJEyZg27ZtOHHiqTTfp08fZGdnIzk5GQDQvHlzNGvWDEuXLgUAFBYWIjAwEKNGjcLEiRNx9+5dVK5cGWvXrkXPnj0BAKdOnUK9evWQmpqKF198UdXzsTgEDEbpQY3b4azQJE4oiDO2MjmnVjhQ63EgJhBkRCYiztiKOy78Wwk5ISOimhEJQXuRc6/AJnEIgKIJLSsrC9nZ2brW+6zh4+MDf39/RYHKYdwO8/PzsWbNGsTHx5s0OjExEWvWrIG/vz9eeeUVTJkyhdMSpKamomHDhibpIaOiojB8+HBkZGSgcePGkvmkx4wZw903LS0NkyZN4s47OTmhQ4cOXM7ptLQ0PH782KSeunXrIigoSFYgyMvLQ15eHvd3Tk6Ohb3DYDAcjeqxJxSFApqVEChanQuFAjVQN8aIakZ08z2i2dhQOKFr0VLIlT14JQiwsUmCwWBA1apV4efnh8ePH9v2ZqUUV1dXRc0AxWEEgqSkJGRnZ2PgwIHcsddffx01atRAQEAAjh07hgkTJuD06dP44YcfAEjniqbn5MrQfNJ37txBQUGBaJlTp05xdbi5ucHHx8esDL2PGHPmzMGMGTPUdwKDwShRqBEKpOISaNlC4NfBT3vMr+PglSCz7QVbhBa2hbGjEs7OzqonNYblOIxAsHLlSnTu3BkBAU8DS7z11lvc/xs2bIiqVauiffv2OHfuHJ5//nl7NFMTkyZNQnx8PPd3Tk4OAgMD7dgiBoNhD4T2BDT5URzUq+/5QoHcNgKNg0DvN9niVoO7V0hqP4eKoMiwDQ4hEFy8eBE7duzgVv5SNG/eHADwzz//4Pnnn4e/v7+ZNwC1/Pf39+f+lcsnTSVPsTL8OvLz85GdnW2iJeCXEcPd3R3u7u6yz8RgMJ4dhFkQE4L2ahYKgKJJWmz1LxQ8aFn+tZYy+ViMXbQDjOLDIeIQJCQkwM/PD9HR0bLl0tPTAQBVq1YFUJQr+vjx45wVKlCUK9rLywv169fnysjlk3Zzc0N4eLhJmcLCQuzcuZMrEx4eDldXV5Myp0+fhtFotFleagaDUTJQmxpZbAK3xKaAEuOZy2kDZoUmISMy0UwY4MNf6cvBn/T5GgkpYWAry3hYarC7l0FhYSGCg4PRt29fzJ07lzt+7tw5rF27Fl26dIGvry+OHTuGsWPHonr16vj9998BFLkdNmrUCAEBAfj444+RlZWFN998E0OGDDFxO2zQoAFGjBiBQYMGYdeuXXj33Xexbds2E7fDAQMG4IsvvkBERAQWLVqEDRs24NSpU5xtwfDhw/Hzzz9j9erV8PLywqhRowAA+/fvV/2szMuAwSidDD/7j6I6XW51bcnq3RardbotoSUfw9osD7zZ+LhNvAwYxYvdtwx27NgBo9GIQYMGmRx3c3PDjh07sGjRIuTm5iIwMBCxsbH44IMPuDLOzs7YunUrhg8fjsjISHh6emLAgAEmcQtoPumxY8di8eLFqF69ulk+6d69e+PGjRuYOnUqsrKy0KhRIyQnJ5sYGi5cuBBOTk6IjY1FXl4eoqKi8Pnnn9uwZxgMRmmBvzoXW8WrjTVga4Q2CkqEpPZDwYNHcITkRgzrsbuG4FmCaQgYjNKLGi0B8NR/XwgVCNQY7ylN2Em5nlwdUkKIGqhNAt82gV83ABQ8eISzb8xlGoJSABMIihEmEDAYpZfL/22g2hJfbkIXTr4UpUmdlpW7P20f39BQqi18jYWcYSITCEoPdt8yYDAYjNJA9dgTwFl1ZZNyPbmsiEJtAX/iV7uy17LdwJ/cI6oZTewG+OfF2swo3TCBgMFgMHTg8n8bIMbzL1V+/yareCuj/WkRBoQCBnV3FE72wjqF2wSM0gkTCBgMBsNK1OQ14KNH1kGtRoj8lb/wWuFkLzRyjPHMtTrAEcPxYQIBg8Fg6ERSrqdiICBrhQFLXRTV2BjQ+oXbBo7gAcGwPQ4RmIjBYDBKMjQ40eRjMYp78ZSEoL1m9gNSE29Iaj8k5XpaPDFTQ0VrDR4ZpRumIWAwGAwbQVXvUq6GccZWSAjaazbR82MW8M9pSYgEmOY1UCtM0PYynj2YQMBgMBg6w9cSyKnfI6oZzcIX0/P81Mn0b0smahpHgH9POaGCCQPPLkwgYDAYDBtBV9taVvV6QOMNiGkGirstjJIDsyFgMBgMG6I0Acudt3Qyj/HMtdgWgAkMzy5MIGAwGAwdqB57QnXmQ8B2qnt+NkMxuwG2JcCQggkEDAaDoSNahAI5Dl4JsthmQKleOZjA8OzCBAIGg8HQGSVtgS0m3YhqRs5IkcUNYFgCEwgYDAbDRsgJBWr26tXu51MB4+CVIJNrMiITNQkf/HoYzx7My4DBYDBsCBUKtIY3VouYLYJStESpegDtwsDBiA2ooOkKhqPCBAIGg8EoweghDEjVJQXfg6HuztcAzNV8L4bjwbYMGAwGoxjgbx/YSiXP9zDQgtZthZDUfpzAcTBig0X3ZDgeTEPAYDAYpQTqYSBMZyyH2q0CZl9Q+rGrhqBmzZowGAxmnxEjRpiUI4Sgc+fOMBgMSEpKMjkndv26detMyuzevRtNmjSBu7s7atWqhdWrV5u1ZdmyZahZsyY8PDzQvHlzHDx40OT8o0ePMGLECPj6+qJcuXKIjY3FtWvXdOkHBoPBsBaqxk/K9cTkYzGKgYmoVwKgfpJnwkDpxq4CwaFDh5CZmcl9UlJSAAC9evUyKbdo0SIYDAbJehISEkzqiYmJ4c6dP38e0dHRaNu2LdLT0zFmzBgMGTIE27dv58qsX78e8fHxmDZtGo4cOYKwsDBERUXh+vXrXJmxY8diy5Yt2LhxI37//XdcvXoVPXr00KknGAzGswDdNqBuiVqDGUnBn/yplkDJhoB6JFgqDLCsiKUPAyGE2LsRlDFjxmDr1q04e/YsJwCkp6eja9euOHz4MKpWrYrNmzebTPgGg8HsGJ8JEyZg27ZtOHHi6Y+uT58+yM7ORnJyMgCgefPmaNasGZYuXQoAKCwsRGBgIEaNGoWJEyfi7t27qFy5MtauXYuePXsCAE6dOoV69eohNTUVL774oqrny8nJgbe3N9qgG1wMrlq7h8FglGKoFwI/MyJd7SvBn5ytyY6oBXrPnHsFqPDCv7h79y68vLxsci9G8eAwRoX5+flYs2YNBg0axAkDDx48wOuvv45ly5bB399f8toRI0agUqVKiIiIwKpVq8CXcVJTU9GhQweT8lFRUUhNTeXum5aWZlLGyckJHTp04MqkpaXh8ePHJmXq1q2LoKAgrowYeXl5yMnJMfkwGAyGGFRTcPBKEDepx3jmKhoKyoUqtjTaoRwZkYkm99yqwV6B4dg4jECQlJSE7OxsDBw4kDs2duxYtGjRAt26dZO8bubMmdiwYQNSUlIQGxuLd955B0uWLOHOZ2VloUqVKibXVKlSBTk5OXj48CFu3ryJgoIC0TJZWVlcHW5ubvDx8ZEsI8acOXPg7e3NfQIDA5W6gcFgPMNQoWBWaBKScj0RktpPVCiYFZqEWaFJyIhMVL1FoBe0TZSZGdHFcl+G7XEYL4OVK1eic+fOCAgIAAD89NNP2LVrF44ePSp73ZQpU7j/N27cGLm5ufjkk0/w7rvv2rS9apg0aRLi4+O5v3NycphQwGAwVEG3CkJS+xVN/BJ79nwjwjhjK922CKS2G5jtQOnFITQEFy9exI4dOzBkyBDu2K5du3Du3Dn4+PjAxcUFLi5FsktsbCzatGkjWVfz5s1x+fJl5OXlAQD8/f3NvAGuXbsGLy8vlClTBpUqVYKzs7NoGbpN4e/vj/z8fGRnZ0uWEcPd3R1eXl4mHwaDwVBCaDcQktrPxJWQag/4ZUNS+0kKA7ZKWMRyJpQuHEIgSEhIgJ+fH6Kjn6qeJk6ciGPHjiE9PZ37AMDChQuRkJAgWVd6ejoqVKgAd3d3AEBkZCR27txpUiYlJQWRkZEAADc3N4SHh5uUKSwsxM6dO7ky4eHhcHV1NSlz+vRpGI1GrgyDwWDogZTnweRjMaJCAB+xiV9Po0KmHSjd2H3LoLCwEAkJCRgwYACnBQCKVuViq++goCAEBwcDALZs2YJr167hxRdfhIeHB1JSUjB79my8//77XPlhw4Zh6dKlGD9+PAYNGoRdu3Zhw4YN2LZtG1cmPj4eAwYMQNOmTREREYFFixYhNzcXcXFxAABvb28MHjwY8fHxqFixIry8vDBq1ChERkaq9jBgMBgMa6AqfLlVOTUiFAoBcpoDLQID3b5glE7sLhDs2LEDRqMRgwYN0nytq6srli1bhrFjx4IQglq1auHTTz/F0KFDuTLBwcHYtm0bxo4di8WLF6N69er4+uuvERUVxZXp3bs3bty4galTpyIrKwuNGjVCcnKyiaHhwoUL4eTkhNjYWOTl5SEqKgqff/65dQ/PYDAYKrCl+6AUB68EISMy0cT10dLQyIySgUPFISjtsDgEDAZDLfy4BFqEAS3l1ZSV0ghQbUHdnbE4+8ZcFoegFOAQNgQMBoPBEEdzOmIWXphhIUwgYDAYDAdFKqwxPwSyXDlbw7wMShdMIGAwGAwHRGqylxIGbCEUyG0XMEofTCBgMBiMUoItNQVaUiozSiZMIGAwGIwSgpoJX00ZGvo4IWgv5zkg505IPQ2oUGCrQEcM+8K8DIoR5mXAYDCKA+qhIERtDAFhvAHhFgE/THLBg0fMy6CUwDQEDAaDUcoQagloIiTAVPUvnOjpOaHgIMxwGGdsBYBpCkobdg9MxGAwGAzbMSs0ySwj4mQ8ncyFQoEwiRKXXMkzF5P/d4y6NkZUMyK86mWctV3zGcUI0xAwGAxGKYWu6vnJkChi8QoiqhkRZ2yFOGMrk/L0/0LNAYt5ULpgAgGDwWCUQvjbBsLsiVIcvBLEfShUCJASChilByYQMBgMRillee1aqoQBvi2A0C6ArymgtgN80jKrW95AhkPBBAIGg8EoxSi5IQrzGfDtA4SwLYLSDRMIGAwG4xlFLrlRQtBeAKZbBNQmgXkXlE6YQMBgMBilnOqxJ0Q1BXLaADHo9gMVFhilCyYQMBgMxjMOX0sQUc3IeRsA0nkLmJag9MEEAgaDwXhG0JLrQMlegNkTlD6YQMBgMBjPEGqFAikNAEtyVHphAgGDwWA8Y0gJBVQIOHgliNkJPIPYVSCoWbMmDAaD2WfEiBEm5Qgh6Ny5MwwGA5KSkkzOGY1GREdHo2zZsvDz88O4cePw5MkTkzK7d+9GkyZN4O7ujlq1amH16tVmbVm2bBlq1qwJDw8PNG/eHAcPHjQ5/+jRI4wYMQK+vr4oV64cYmNjce3aNV36gcFgMEoK1LCQBSgqfdhVIDh06BAyMzO5T0pKCgCgV69eJuUWLVoEg8Fgdn1BQQGio6ORn5+P/fv345tvvsHq1asxdepUrsz58+cRHR2Ntm3bIj09HWPGjMGQIUOwfft2rsz69esRHx+PadOm4ciRIwgLC0NUVBSuX7/OlRk7diy2bNmCjRs34vfff8fVq1fRo0cPvbuEwWAw7MrBK0GKBoNSSZAYJRuHSn88ZswYbN26FWfPnuUEgPT0dHTt2hWHDx9G1apVsXnzZsTExAAAfvnlF3Tt2hVXr15FlSpVAAArVqzAhAkTcOPGDbi5uWHChAnYtm0bTpx4qiLr06cPsrOzkZycDABo3rw5mjVrhqVLlwIACgsLERgYiFGjRmHixIm4e/cuKleujLVr16Jnz54AgFOnTqFevXpITU3Fiy++qOr5WPpjBoPhKIilSKZxCei/GZGJkl4GQJFAkHOvABVe+JelPy4FOIwNQX5+PtasWYNBgwZxwsCDBw/w+uuvY9myZfD39ze7JjU1FQ0bNuSEAQCIiopCTk4OMjIyuDIdOnQwuS4qKgqpqancfdPS0kzKODk5oUOHDlyZtLQ0PH782KRM3bp1ERQUxJURIy8vDzk5OSYfBoPBcASEdgRyQYoYzwYOIxAkJSUhOzsbAwcO5I6NHTsWLVq0QLdu3USvycrKMhEGAHB/Z2VlyZbJycnBw4cPcfPmTRQUFIiW4dfh5uYGHx8fyTJizJkzB97e3twnMDBQugMYDAajmOELBUJhIKKaESGp/bjohGKEpPbDVuZ1UGpwGIFg5cqV6Ny5MwICAgAAP/30E3bt2oVFixbZt2FWMGnSJNy9e5f7XLp0yd5NYjAYDBPkIhgCQIxnruz1MzOidW8Twz44hEBw8eJF7NixA0OGDOGO7dq1C+fOnYOPjw9cXFzg4uICAIiNjUWbNm0AAP7+/maW/vRvusUgVcbLywtlypRBpUqV4OzsLFqGX0d+fj6ys7Mly4jh7u4OLy8vkw+DwWA4GlJCATUuzIhMREZkoqy2gFHycQiBICEhAX5+foiOfippTpw4EceOHUN6ejr3AYCFCxciISEBABAZGYnjx4+beAOkpKTAy8sL9evX58rs3LnT5H4pKSmIjIwEALi5uSE8PNykTGFhIXbu3MmVCQ8Ph6urq0mZ06dPw2g0cmUYDAajNEGFgThjK4Sk9kNSridiPHOZZ0EpxsXeDSgsLERCQgIGDBjAaQGAolW52Oo7KCgIwcHBAICOHTuifv36ePPNN/Hxxx8jKysLH3zwAUaMGAF3d3cAwLBhw7B06VKMHz8egwYNwq5du7BhwwZs27aNqzM+Ph4DBgxA06ZNERERgUWLFiE3NxdxcXEAAG9vbwwePBjx8fGoWLEivLy8MGrUKERGRqr2MGAwGAxHhmoJ+N4H/K2DycdiMBnM1bA0Y3eBYMeOHTAajRg0aJDma52dnbF161YMHz4ckZGR8PT0xIABAzBz5kyuTHBwMLZt24axY8di8eLFqF69Or7++mtERUVxZXr37o0bN25g6tSpyMrKQqNGjZCcnGxiaLhw4UI4OTkhNjYWeXl5iIqKwueff27dwzMYDIaDUT32hKhLIqP041BxCEo7LA4Bg8EoCcgJBMLYBAUPHuHsG3NZHIJSgEPYEDAYDAbDcdCSFZFRemACAYPBYDAYDCYQMBgMBsOc6rEnTDQFTGtQ+rG7USGDwWAwHBehUBDyX+ncBoySDdMQMBgMBkMTLEBR6YQJBAwGg8FQTfXYE5h8LMbezWDYALZlwGAwGAxN8LcRnpDHOGvHtjD0g2kIGAwGg8FgMIGAwWAwGAwGEwgYDAaDwWCACQQMBoPBYDDABAIGg8FgMBhgAgGDwWAwGAwwt8NihSaWfILHAMsxyWAwSgFP8BjA0/GNUXJhAkExcu/ePQDAH/jZzi1hMBgMfbl37x68vb3t3QyGFRgIE+uKjcLCQly9ehXly5eHwWCwd3NUkZOTg8DAQFy6dKlE5jpn7bcvrP32pTjaTwjBvXv3EBAQACcntgtdkmEagmLEyckJ1atXt3czLMLLy6tEDogU1n77wtpvX2zdfqYZKB0wcY7BYDAYDAYTCBgMBoPBYDCBgKGAu7s7pk2bBnd3d3s3xSJY++0La799KentZxQvzKiQwWAwGAwG0xAwGAwGg8FgAgGDwWAwGAwwgYDBYDAYDAaYQMBgMBgMBgNMIGAwGAwGgwEmEDzzlHQnE9Z++1GS2w6w9jMYQphA8Azz+PFjXLt2jfu7pA0wT548wd27d+3dDIspye0vyW0HSn77S/pvl+GYMIHgGWXBggWoU6cOunTpgj59+uDIkSMlJuESAMyfPx9hYWHo0qULxo8fj3PnzgEoOQNjSW5/SW47UPLbX9J/uwzHhQUmegaZP38+li1bhk8++QRZWVn46aefcOzYMSQnJ6NRo0b2bp4iH3zwAb777jvMmTMHGRkZ2LFjB3JycrBv3z5UrFjR3s1TpCS3vyS3HSj57S/pv12Gg0MYzwwFBQXk8ePHpHPnzmTUqFEm50JDQ8mrr75Kzp49a6fWKVNYWEhycnJIZGQkmTt3Lnf80qVLJCgoiMTFxZG7d+/asYXylOT2l+S2E1Ly21/Sf7uMkgHbMniGcHJyQmFhIY4fP47GjRsDAB49egQAWLFiBVJTU/Hrr7/iyZMn9mymJAaDAU5OTkhPT0eTJk0AFO0FV69eHStWrMA333yDP/74w86tlKYkt78ktx0o+e0v6b9dRsmAbRmUYhISEpCamoqwsDC8+uqrCAwMBAD06tULN2/exG+//QYAKCwshJOTE9544w2cOXMGO3bscIjc79999x1OnDiB8PBwdOjQARUrVsTDhw/RtWtXVKtWDd9++y2Ap+1/+eWX4eLigl9++YU7xtr/7LW9NLS/pP92GSUUe6soGPpz69YtEh0dTQICAsjrr79OnnvuOVKzZk3yyy+/EEIIWbNmDalevTr5+eefCSGEPHz4kBBCyNmzZ4nBYCDHjx+3W9sJISQzM5O0a9eOVKtWjXTt2pVUq1aNNGrUiJw5c4YQQsiHH35IwsPDyf79+wkhhOTl5RFCCElJSSEuLi7k8uXLdms7ISW7/SW57YSU/PaX9N8uo2TDtgxKIYcPH8bZs2eRmpqKxMREnDt3DrVq1cL8+fNx8OBBdOrUCU2bNsXs2bMBAB4eHgAAZ2dnVKtWDRkZGfZsPvbs2YOsrCykp6cjKSkJ6enpePjwISZOnIhLly6he/fuKFeuHFasWAEAcHNzAwCULVsWVatW5azG7UVJbn9JbjtQ8ttf0n+7jJINEwhKEeR/uz8ZGRlwd3eHp6cnd27OnDkoLCzEsmXL4OPjg7feegsXLlzAuHHjUFBQAAA4e/YsypQpg5YtW9qt/YQQ7Nu3D/7+/ihXrhycnJxQqVIlLF++HCdPnsSqVasQEhKCnj174tChQ1iwYAF3/ZUrV+Dp6YkGDRqw9j9DbS8t7QdK7m+XUTpwsXcDGNaxb98+eHl5oUaNGtzeYWFhIXJzcwEUDTQGgwFNmzZF586dsWnTJvz666/o3Lkz5s+fj0GDBmHPnj1o0KABNm3ahDfeeAOVK1fmrrM1hw8fhr+/P/z8/LjVmru7O7KysuDh4YGCggI4Ozujbdu2aN++PbZv346ePXti4MCByM3Nxbhx47B7924EBQVh7dq1eOutt+Dl5cXaX8rbXhraX9J/u4xSSHHvUTD04cyZM6RZs2bEz8+PPPfcc6RZs2YkKSmJEELItWvXiIeHB/nmm28IIYQ8fvyYEEKI0WgkoaGh5KOPPiIFBQWEEEJ27txJ5s+fTwYMGEC2bt1abO0/efIkCQ8PJ1WqVCG1atUiHTt2JGlpaYQQQtLS0oizszNJSUkhhBDy6NEjQggh//zzD/H19SWJiYlcPRs2bCCTJk0iMTExZMuWLaz9pbztpaH9Jf23yyi9MIGgBPL48WMyePBg0rNnT3Lx4kVy5MgR8sorr5DQ0FDy008/EUIIGTp0KAkKCiIPHjwghBT5YRNCSK9evUh0dLTd2k4IIffu3SPdu3cn/fv3J2fOnCG7d+8mDRs2JO3atSOpqamEEEJeffVV0rBhQ+6aJ0+eEEIIadu2LYmLi7NLuykluf0lue2ElPz2l/TfLqN0wwSCEgQdGK5du0bKly9Pvv32W+7c6dOnSf/+/Un9+vUJIUUBV6pUqUJGjBjBWSIXFhaSmJgY8vbbbxd/48nT9v/zzz+kXLlyZNu2bdy51NRU0rVrV9K1a1dCCCF79+4lXl5eZNasWVyZ3Nxc0qJFCzJ16tTibfj/KMntL8ltJ6T0tL+k/nYZzwbMhqAEkJ2dDR8fH25f8P79+6hTpw4eP37MlXnhhRcwYMAA7NmzB7Nnz8Z//vOf/2/v3oOqKP8/gL+Xm0hggKJiQiiBYl5DSAJJVEQ9KqhhiTliOk6SmJqKjpplyiheRieL8lJaOkZmVlpq3lDyfgNvYKGgKAgUiqJx0fP+/cHv7JfjJUXlXPTzmnEm9uzueZ+ns2c/u/vss0hMTMTgwYNx5coVvPnmmzh//jz27duH5cuXGzT/zZs3YWdnp+YvKCiAh4eH2kMaADp06IC+fftiwYIFWLlyJYYMGYJZs2Zh9OjRKC4uhkajwfHjx3HhwgV07dpV8j8D2Z+G/Oa+7YpnjLErEnF/GRkZDA0NZUhICKOjo/n777+TJG/evElfX1+OGTNGb7jVq1evcvz48fTz8+Pff/9Nkly9ejV79+7Ntm3bsmnTpkxKSjJY/vT0dGo0Gvbt25fjxo3jqVOnSFae9q1bty7nzJmjHjmR5KVLlxgVFcXIyEhev36dJJmQkMCgoCA2b96c7u7uXLt2reR/yrM/DfnNfdsVzyYpCEzUkSNH6OrqyqFDh3Lp0qUMCAhg48aN+cMPP5Ak582bR2dnZ3WAFZ1Vq1axTZs26g+oTlZWlqGikyR37drFunXrcvDgwYyPj6eHhwf9/Py4fft2kuQHH3xANzc35uTk6C0XHx/Pdu3asbCwUJ2m1Wp58uRJyf8MZH8a8pv7tiueXVIQmBjdUU98fDyDg4PVjkUFBQWMiYmhs7Mz8/PzSZKenp6MioriuXPn1OV37txJRVGYmZlJkmqPZEMbO3YsIyIi1M9z+vRpRkZGsmnTpiTJ4uJiuri4cMyYMbx27Zq63Pr162lra6v+qEv+Zys7af75zX3bFc8uGZjIRJw9exYVFRXqtcY///wTiqKgdu3aAAAXFxfMmDEDzs7OmDRpEgBg8eLF2Lt3L+bOnYusrCyUl5dj06ZN6N27N1xdXQHAYGOyFxQU6D1PPjMzEzY2Nurn8fHxweTJk3Ht2jVMnz4dderUwfz587FkyRJ8+eWXuHz5Mkjit99+wxtvvIG6desaNL8uu1arNcv8VZlrdt3/A3PNr2Nu264QKiMWI4KV9xdrNBr6+/tz8+bN6vS5c+eyTZs26hjsuqOF1atX09LSUj1d+uWXX9LX15eNGzfmyy+/zHr16hn0nurz58/T39+fAwcO5JUrV0hW3lr13nvvUaPR8NKlS+q8FRUVjI+Pp4ODg3qdd+rUqfTx8aG3tzfbtGnD+vXrq9dba5pWq+U///zDLl26cOrUqeo0c8l/8eJFJiQk8LvvvlPvwy8tLTWL7CSZm5vLNWvWcO/evfznn39IVj5bwFzyX758WX3ksO7WRtJ8tl0h7iQFgRHoToVu3bqVjRo1Yv/+/Zmamqr3YJVffvmFr776KhcsWKC3XH5+Plu2bKnuwMjKW5k2b97MFStWGO5DkBwzZgytrKzYr18/9VSo7rMtW7aMrVq14o8//qi3zJEjR9iiRQt+9tlnJMny8nL+9ddf/Oabb5iYmGjQ/CT566+/UlEU1qpVS+/07dKlS9myZUuTzT9hwgTWrl2bYWFh9PLyYpMmTXjs2DGS5BdffGHybT9hwgTa29uzU6dOtLOzY//+/dUdqDnknzVrFi0sLBgcHKxO0+34N2zYYPLbrhD3IgWBEQ0dOpTjxo1T/9btVHUiIyMZFhbGAwcOqNNu3rzJjh07ctq0adRqtUa5zlhcXEwnJyfWq1ePKSkp6nTdqGo67du3Z1RUlHoURZJXrlyht7c3v/rqK5LGv046ffp0xsTEsEePHgwLC9N7zRTzX7lyheHh4QwMDFTb/tixY3zttdcYFxdn0tlJsqioiMOGDWNAQAB3797N0tJSfv/99+zSpQsnTpxo8vnLysoYFxfHDh06cPDgwWzdurWap+r3f8CAASa57QrxX+QilZHk5ubixIkT6Nu3L9LS0tClSxdoNBoEBgZiyZIlAICxY8fixo0bSEhIUJfTarUoKipCkyZNoCiKUa7z1qlTB6GhoWjatCkCAwNx6NAhDBs2DLGxsVi0aBHS09MBABMnTkRqaqr6eQCgrKwMt27dgpOTEwDjXSfVPRTG2toajo6OmDBhAn7//Xds2rRJnefDDz/E0aNHTSq/o6MjwsPDkZCQgKCgIABA27ZtUatWLURERKjzTZo0ySTb/u+//4aiKIiLi0PHjh1Rq1YtREZGwt7eHuXl5WofjilTpphkfhsbG3h6euKdd97BtGnT4O/vj8TERFy/fh1WVlYoLy8HAMTExODff/81qW1XiAcydkXyLNAdCVQ9giguLqatrS1/+OEHRkZGcvz48UxKSmJsbCytra3Vscy/++47enp6slWrVpw2bRqDgoLYsmVLvSMnQ+bXXSu9evUqra2t+fLLL7Nx48aMjo5mREQEmzVrRh8fH3WZGTNmsFmzZuzYsSM//fRTBgYG0t/fn7m5uUbJfyeNRsNVq1aRJKOioti6dWsWFRVxzZo1JMnZs2fT29vbaPnvlV03Pj9JFhYWslevXnR0dGS3bt04ZswYlpSUkCRnzpxp1OxV85eXl5OsHEeg6m2AutejoqIYExOjt+zMmTNN6rujuxxW9ch+w4YN9PX15bRp0+56bfXq1XzppZeMuu0KUR1SENSwjz76iD179tSbpvvR0Gg0dHFxYadOnfQGKYmKiqK/v786LTMzk++//z779OnD2NhYlpWVGTW/bue0YMECent78+DBg+qP5dGjR+nu7s7Y2FiSlUPG7t+/n1FRUQwJCeHIkSPVnYOx8pP/6wTWv39/btmyhSR58uRJ2traUlEUxsbGsry8nKWlpUbLf7/sOpcvX2aXLl2o0Wi4ceNGzps3j97e3oyIiCBZeYralNq+6kBC5P+2g1u3btHDw0N98JDu+11WVmZS+e/l2rVrnDx5Mlu0aMHTp0+TpF5GY267QlSXFAQ1JCMjg+Hh4XRxcaGiKOrY5bqd6e3bt7l48WI6OTkxOjpa77WzZ8/q3Y+sY8gfw//KX/WHfceOHXdNmzJlClu3bq0eqeroxmU3hAe1v05wcDBPnTrFX3/9lfXr16eLiwvt7OzUOyaq9h43VP6HzU7ePWjNxo0baWdnx7y8PL3pptD2VduyqpMnT9Ld3Z1nzpy57zpNIf+d7a/7zu/du5chISEcPHiw+tqd26oht10hHpVcxKohqampsLOzw7Jly/Dee+9h6tSp0Gq1sLKywq1bt2BhYYHQ0FB06NABW7ZsQVFREaysKh8tkZ6eDi8vL7CyYFPXaW1tbRL5qwoJCYGVlRUURVGzHj9+HI0aNYKNjY1e/qrjzxszvy5TTk4OysrKEBwcjLfeegtjx45FcnIy3N3d8cEHHwCA3nPlDZX/YbLreHh4APjfPfzHjh2Dm5sbbt++bXJtb2lpeVd+ADh16hQaNmwIb29vAMCmTZswe/ZsvXlMIf+d7a/7bnTo0AF9+vTB4cOHsXHjRiQlJWHEiBFqPxXAsNuuEI/MWJXI00p31FBcXMxDhw6RJA8dOkRPT0+1F3XVI43du3fzhRdeYM+ePblmzRqePHmSoaGhfPvtt+86xWoq+e93pEeS+/fv52uvvab33HlDqm7+gQMHcuzYsXq3HCYmJtLBwUG9N95QHrft09LS2LlzZ37yySc1H/YeHjX/oEGDGBcXx/z8fHbt2pXW1taMj483XPD/9yj5dcucOXOGr7/+OhVFoY2NDadMmWLA5EI8GVIQGEBJSQnnzJnD559/ntnZ2ST1TyEePnyYnTp1YosWLdiwYUMOGjSIN27cMFbcu9wrf9UfxnPnzjEpKYnDhw+nvb09R40aZVLXSu+VX9cx787LGmTltXdDnqL+Lw9q+6ysLK5du5YjRoygnZ0dR4wYYTLZyQfnLywspLu7Oz08PGhtbc3+/fvr9acxtgflJysHWBo6dCgVReHIkSPVgZOEMDdSENSAqkf2uv/OyMhgYGAg+/btqzevrmNVaWkpz58/z/Pnzxsu6H1UJz9ZeRQ1dOhQhoWF8ejRowbLeT/VzW9Kqpv96NGjjImJYa9evcyy7bOzs+nu7s6goCCzzE+SK1asYHBwMA8fPmyQjELUFCkInrB7dfzSTV+1ahXr1KnDHTt2kKx8qtudgxEZW3XyJycns6ioSB2FzRRUt/0LCgoMGe8/PUrbk1Qfl2ts1c1/9epV3rhxg2lpaYaMeV/V/e5cvnyZ5N13TwhhrqQgeEKq/phUVFRw3Lhxd91vnJuby6ioKHp5ebFbt25UFEW9Vmlsj5r/4MGDho56T+bc/s9q25t7flP47gjxJMldBo9J15tb1/t+4cKFqFu3Ln7++We9Huq6eQsLC5GZmQlnZ2fk5uaiffv2xoitl+lx8vv5+Rkjtl4mc23/Z73tzT2/sbddIZ44Y1Yj5q5q56Jt27bR09OTDRo04LJly+46/Zienk5fX196enpy3759ho56T5LfeMw5Oyn5hXgaSUHwmC5cuMDu3bvT2tqa48ePv++tajdu3ODOnTsNG+4hSH7jMefspOQX4mkjBcFjWLt2La2srKjRaJienm7sONUm+Y3HnLOTkl+Ip5FC3mPoMPFQzp07h/z8fAQEBBg7yiOR/MZjztkByS/E00gKAiGEEEJA7jIQQgghhBQEQgghhJCCQAghhBCQgkAIIYQQkIJACCGEEJCCQAghhBCQgkAIIYQQkIJACCGEEJCCQAghhBCQgkAIIYQQkIJACCGEEJCCQIinUnZ2NhRFQWpqao2sX1EU/PTTTzWybiGEcUhBIEQNiI6ORkREhNHe383NDXl5eWjZsiUAIDk5GYqi4OrVq0bLJIQwbVbGDiCEePIsLS3RsGFDY8cQQpgROUMghIHt2rUL/v7+qFWrFlxdXTFp0iTcunVLfb1Tp04YPXo0Jk6cCGdnZzRs2BAfffSR3joyMjIQFBQEW1tbtGjRAtu2bdM7jV/1kkF2djZCQkIAAE5OTlAUBdHR0QAADw8PLFy4UG/dbdu21Xu/v/76C8HBwep7bd269a7PlJOTgwEDBsDR0RHOzs4IDw9Hdnb24zaVEMKApCAQwoAuXbqEnj17ws/PD2lpaUhMTMTy5csxc+ZMvflWrlyJ5557DgcOHEBCQgJmzJih7ohv376NiIgI2NnZ4cCBA1iyZAmmTJly3/d0c3PDunXrAABnzpxBXl4eFi1a9FB5tVot+vXrBxsbGxw4cABffPEF4uLi9OapqKhAWFgYHBwckJKSgj179sDe3h7du3dHeXl5dZpHCGFEcslACAP6/PPP4ebmhsWLF0NRFDRv3hy5ubmIi4vDhx9+CAuLyhq9devWmD59OgDAy8sLixcvxvbt2xEaGoqtW7fi7NmzSE5OVi8LzJo1C6Ghofd8T0tLSzg7OwMA6tevD0dHx4fOu23bNmRkZGDLli1o1KgRACA+Ph49evRQ50lKSoJWq8WyZcugKAoA4Ouvv4ajoyOSk5PRrVu36jWSEMIopCAQwoDS09MREBCg7jgBIDAwECUlJbh48SLc3d0BVBYEVbm6uqKgoABA5VG+m5ubXh8Bf3//Gsvr5uamFgMAEBAQoDdPWloaMjMz4eDgoDe9tLQUZ8+erZFcQognTwoCIUyQtbW13t+KokCr1T7x97GwsABJvWkVFRXVWkdJSQl8fX2xevXqu15zcXF5rHxCCMORgkAIA/Lx8cG6detAUj1LsGfPHjg4OKBx48YPtY5mzZohJycH+fn5aNCgAQDg0KFD/7mMjY0NgMr+B1W5uLggLy9P/fvatWvIysrSy5uTk4O8vDy4uroCAPbv36+3jldeeQVJSUmoX78+6tSp81CfQQhheqRToRA1pLi4GKmpqXr/RowYgZycHMTGxiIjIwM///wzpk+fjnHjxqn9Bx4kNDQUnp6eGDJkCI4fP449e/Zg6tSpAKB3KaKqF198EYqiYOPGjSgsLERJSQkAoHPnzvj222+RkpKCEydOYMiQIbC0tFSX69q1K7y9vTFkyBCkpaUhJSXlrg6MgwYNQr169RAeHo6UlBRkZWUhOTkZo0ePxsWLFx+l6YQQRiAFgRA1JDk5Ge3atdP798knn+C3337DwYMH0aZNG7z77rsYNmyYukN/GJaWlvjpp59QUlICPz8/DB8+XN1J29ra3nOZF154AR9//DEmTZqEBg0aYNSoUQCAyZMn4/XXX0evXr2g0WgQEREBT09PdTkLCwusX78e//77L/z9/TF8+HDMmjVLb912dnbYvXs33N3d0a9fP/j4+GDYsGEoLS2VMwZCmBGFd15AFEKYnT179iAoKAiZmZl6O3QhhHhYUhAIYYbWr18Pe3t7eHl5ITMzE++//z6cnJzwxx9/GDuaEMJMSadCIczQ9evXERcXhwsXLqBevXro2rUr5s+fb+xYQggzJmcIhBBCCCGdCoUQQgghBYEQQgghIAWBEEIIISAFgRBCCCEgBYEQQgghIAWBEEIIISAFgRBCCCEgBYEQQgghAPwfxwhy8CIFrSIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "\n", + "pairing_dict = {\n", + " (np.nan,np.nan): 0,\n", + " (np.nan, 0): np.nan,\n", + " (np.nan, 2): np.nan,\n", + " (1, np.nan): 3,\n", + " (2, np.nan): 4,\n", + " (1, 0): 5,\n", + " (1, 2): 6, \n", + " (2, 0): 7,\n", + " (2, 2): 8\n", + "}\n", + "\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark,\n", + " comparison_function='pairing_dict',\n", + " pairing_dict=pairing_dict\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\", basemap=None)" + ] + }, + { + "cell_type": "markdown", + "id": "7bf7b2aa", + "metadata": {}, + "source": [ + "Instead of building a pairing dictionary, a user can pass the unique candidate and benchmark values to use and a pairing dictionary will be built for the user. In this case nodata values are not included and will automatically become the nodata value instead of an encoding." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f6567376", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAF/CAYAAAA2D9EJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeYAUxbnAf909994sLOsqAioIXqCgcsSbuAoeqHgbz0QlEjXG+6mIyYvPRIxGDWKiaOIZiWI0CEGNmggaQcELEA9E5WbZe87uen/M1tAz0zPTMzt7qP3LmyfbXV1dXdNT9dVX36EIIQQODg4ODg4O32vUnm6Ag4ODg4ODQ8/jCAQODg4ODg4OjkDg4ODg4ODg4AgEDg4ODg4ODjgCgYODg4ODgwOOQODg4ODg4OCAIxA4ODg4ODg44AgEDg4ODg4ODjgCgYODg4ODgwOOQOCQwn//+18URUFRFG677baebo5DETn//PMT3+0ll1ySsVw4HKZPnz6Jsq+99lr3NTJPLrzwQkpKSti8eXPScdn2bJ/zzz8/6ZpBgwallSkvL+fAAw/kzjvvJBKJpN0/HA7zu9/9jrFjx1JRUYHH42GnnXZi9OjR/OxnP+Mf//hHxrY3NDTw61//mkMPPZSamhrcbjcVFRWMHDmSqVOn8uqrr+bdH4cffnjWZ16wYEHGax955BEOOuggSktL6dOnDxMnTmTx4sUF3UdRFFTVenr5+uuvueCCC6irq8Pn8zF06FCmT59OKBRKK7thwwb8fj8//elP8+4Lh/xx9XQDHHoXf/nLXxL/fvzxx7nlllt6sDUOqdx6663MmDGDOXPmpE1o+fDMM89w77334vF40s794x//YPv27Z1oZffwwQcf8Oijj/KLX/yCmpoayzLnnXdexut/8IMfWB4/5ZRTKC0tRQjB2rVrWbJkCUuXLuWFF15g0aJFiT5rbGzkqKOO4t1338XtdjN27Fjq6upobW1l2bJl3HfffSxatIhJkyal3eO5557j/PPPp7m5mdLSUg4++GBqampoa2tj5cqVPPDAAzzwwANMnDgxq1CRCfkMqey8886W5a+88kruuece/H4/Rx99NKFQiEWLFvHPf/6TuXPnMnny5KTyxxxzDIMGDbKsa9myZXz44Ycccsghaec+/fRTxo4dy9atW9lnn3045JBDWLp0KbfddhuvvPIKr7zyCl6vN1F+p5124uKLL+YPf/gDV155JUOHDrXfCQ75IxwcOohEIqJv374CELW1tQIQb731Vk83y8HE9OnTBSDmzJmT97XnnXeeAMT+++8vAPHcc89ZljvppJOEpmlixIgRAhD/+te/OtXmruKEE04QbrdbbNq0Ke0cIPId3gYOHCgA8cUXXyQdf++990RFRYUAxL333ps4/rOf/UwAYuTIkeLrr79Oq+/tt98WM2bMSDv+wgsvCEVRhMvlEr/5zW9EKBRKK7Ny5Upx3nnniSFDhuT1DIcddpjlM2Rj0aJFAhDV1dXik08+SRxfvHix8Hg8orKyUmzfvt12fQcddJAAxB//+Me0c+PHjxeAuPzyyxPHotGoOOmkkwQgpk+fnnbN119/LVRVFaeddprtNjgUhiMQOCT4+9//LgAxfvx4cdtttwlAXHbZZT3dLAcTxRAIfvOb3whVVcWUKVPSymzfvl14vV5x9NFHi/r6+l4rEKxbt06oqiqOO+44y/PFFAiEEGLGjBkCEEcddVTiWF1dnQDEokWLbN+jpaUlIXT/5S9/yVl+6dKltusWojCB4NhjjxWA+N3vfpd27vLLLxeAuPPOO23V9cknnwhA+Hw+0djYmHTu7bffFoCoqalJE4I2btwo3G63qKqqEtFoNK3eo446SrjdbrFx40bbz+WQP44NgUOCxx57DIBzzjmHc845B4Cnn36aaDSa8Zr333+f448/nsrKSsrKyjj00ENZtGgRr732muU+rdzHfu2111i4cCFHHHEElZWVKIpCY2NjotyCBQuYNGkS/fr1w+v1sttuu3HVVVexbds2y3YIIXjyySc58sgjqaqqwufzMXz4cG699Vba29vTyss90LVr1/L0009z4IEHEggE2Hnnnbn22msT+8WfffYZZ555JjU1NQQCAY444gjef//9jP2RT7vNffHGG29w5JFHUlZWRnl5OZMmTeLjjz9OKj9o0CBmzJgBwAUXXJC0X5vPPv9OO+3EkUceyYsvvkhTU1PSub/+9a+Ew+HE92/F8uXLufbaaxk1alTSc/70pz9l/fr1aeXXrl2LoigcfvjhNDc3c8UVVzBgwIDEd/S73/0OwzBstx/g4YcfxjAMzjzzzLyuK5T9998fgK+++ipxbMuWLQD069fPdj2PPPIIW7duZdy4cVn7WDJq1Kg8W5ofwWAwYaswZcqUtPPy2AsvvGCrPjmGHH/88VRUVCSdk1sfxx9/fNK2AED//v055JBD2L59O//5z3/S6j3rrLOIRqM88sgjttrhUCA9LZE49A4aGxuFz+cTHo9HbNu2TQghxLhx4wQg/v73v1tes3jxYhEIBAQg9ttvP3HGGWeIAw88UKiqmlCnnnfeeUnXyFXqT37yE6EoijjwwAMT18kVxXXXXScA4fF4xPjx48WUKVPEkCFDBCB23333tFWCruvizDPPFIAoLS0Vhx9+uDjppJPEgAEDBCAOOugg0d7ennSNXEldeeWVwuVyiQkTJoiTTjopsXo799xzxSeffCL69u0rhg0bJk4//XSx7777CkD06dPHcqWSb7tlX1x11VVC0zRx8MEHi9NOO00MHTo0ocLdsGFDovwvfvGLhBp//Pjx4rzzzkt8Vq5cmfM7lvf7y1/+IubMmSMA8dBDDyWVOfTQQ0UgEBAtLS0ZNQSnn366cLlc4oADDhCTJ08WkydPFoMGDRKA2GmnncQ333yTVP6LL74QgBgzZowYNWqUqKysFCeffLI47rjjhN/vt3xPcjF69GgBpN1LQpE1BI8//rgAxL777ps4tttuuwlAXHrppcIwDFv3mDhxYtrWQ75ILZFVn8n3+qabbhJTp04Vl112mbjnnnvEl19+aVnXe++9JwDRr18/y/Otra0CEFVVVbbatvvuuwtAPP/882nnTjzxRAGI+++/3/Laq6++WgDinnvuSTv32WefCUAccsghttrhUBiOQOAghBDiT3/6kwDEiSeemDj2hz/8QQDi1FNPTSuv63pi4vrf//1fy7qyCQSAeOqpp9Lq/etf/yoAsc8++4g1a9YkjhuGIW655RYBiNNPPz3pmt/85jcCEIcffnjSBBoOh8VFF10kAHHdddclXSMHztLSUvHOO+8kjm/YsEH0799fKIoihg8fLq6//vrEYG8YhvjRj34kAHHLLbd0ut2yL1RVTdrPj8Vi4pRTThGAuPnmm5OuKcaWwV/+8hfR3Nws/H6/OOKIIxLnv/zyS6EoijjzzDOFECKjQPDqq69aCmVSrX7BBRcknZMCgRQct2zZkjj36aefJlTvmWwaUmlpaRGapom6urqMZYotEJxxxhkCEGeffXbi2O233564z7Bhw8T1118vnnvuOfHVV19lvMfOO+8sAPGf//wnr7aZsSMQpH7cbre47bbb0so///zzCbuSTFRWVgpANDc3Z23X4sWLE4JsJBJJOy9tV6yEBSGEuPvuuxMCshV9+/YVXq9XBIPBrO1wKBxHIHAQQuwYSJ555pnEsa1btwq32225HygNkYYMGSJ0XU+rTxoPZRIIJk2aZNkOuQL+4IMP0s4ZhiFGjhwpNE1LTCrRaFT07dtXlJSUWK7a29vbRW1traiqqkpqp3kllcrPf/5zAYjddtstbWBbsWKFAMRhhx3WqXab+8I8yUiWLl1qeZ9iCQRCCHHaaacJVVUTBnG//vWvBSD+8Y9/CCEyCwTZ2HnnnUV1dXXSMbNA8M9//jPtmlmzZqXtz2dD7kWbhZlUrCbF1E+qAJIqEBiGIdauXZvQ/CiKIt54441EeV3XxbXXXivcbnda3XvvvbeYNWtW2m/D5/MJQKxatSqtzQ0NDUlan0zan3vvvVfsueee4vrrr0+r4+abbxZ/+ctfxGeffSba29vF6tWrxf/+7/8mNDF33313Unmp+Rg/fnzGvpRCTCZtjGTq1KkCMtsdSW1ZJpuLP/7xjwntoRVyTHn33XeztsOhcBy3QwfWrVvHG2+8QWVlJccff3zieHV1NRMnTuT555/nmWee4cc//nHi3JtvvgnE3Zus/I1PP/30RBkrTjjhhLRjmzdvZsWKFQwZMoR99tkn7byiKIwfP57ly5ezbNky6uvreffdd9m6dSs//OEP6d+/f9o1fr+fUaNG8Y9//IM1a9aw5557Jp0/+uij067ZbbfdgLidgdvttjy3YcOGTrU7Vxuke5X5PsXmnHPO4a9//StPPPEE11xzDY8//jg1NTWW7Ull27Zt/P3vf+fDDz+ksbERXdcBiEajbNu2jYaGBvr06ZN0TZ8+ffjhD3+YVteZZ57J1KlTWbx4MYZhZPRfl8iYA1VVVTnbmc3tcNddd7U8Pnjw4LRjHo+Hu+++O8mVTlVV7rjjDq644grmzp3LG2+8wTvvvMO6dev46KOPmDp1KgsXLuRvf/tbzmcCaGtr49FHH007fv755zNs2LDE39OmTWPatGmWdaTGDhk6dCg33ngjo0ePpr6+nltvvZWLL74Yv9+fsz35EI1G+etf/wrAj370o6LWLZHvk7TdcCg+jkDgwOOPP44QgilTpqQZ+5xzzjk8//zzPPbYY0kCgZyoBgwYYFlnpsE22/m1a9cCsGbNGhRFyXr91q1bk65ZtGiRrWtSBQIrv2zpv53tXDgc7lS7zeyyyy5px8rKytLuU2yOOeYYqqurefzxx5kwYQIfffQRP/vZz3C5sg8LTz75JBdffDGtra0Zy7S0tKQJBAMHDrQsW1FRQWVlJY2NjWzfvp3q6uqs95eGkLKPslGIEZr04VcUhdLSUoYNG8ZJJ51EXV2dZfm6ujouv/xyLr/8cgBWrlzJnXfeycMPP8y8efN48sknOfvss4G4kP3NN99Yvou77LILQojE38cccwwLFy7Mu/1WHH300YwePZqlS5fy9ttvc/jhhwM73mcrw1tJW1sbkL2/X3rpJbZt28aQIUM4+OCDLcvkuleu+5SXlwMkGR87FBdHIHBIBCN67bXX0oK1SGv7N954gy+//DLjoJ4vPp8v7Zi0NK+trU1bRaci2yGv2WOPPRg/fnzWa6wmmmwrNzurOnMb8ml3IfcpNm63m9NOO41Zs2Zx4403AuS0fP/yyy8TniN33303kyZNYuedd06sOMeNG8eSJUuSJrZiI63XW1pauqT+O++8M2PQHTsMHz6chx56iO3bt/Pcc8/xj3/8IyEQjBgxgm+++Yb33nsv5/tabIYMGcLSpUuTtE5SMP/6668tr2lra6OxsZGqqqqsAoHZQykTu+66K++9917Ge8njmcYYKQhWVlZmvIdD53AEgu85y5YtY+XKlUA8itinn35qWU4IweOPP56YOHbaaScg2Q3LTKbj2ZAr5b59+9pe2clrhg0b1mMuSYW0u7dwzjnnMGvWLBYsWMDQoUM56KCDspafP38+kUiEq6++miuuuCLt/Oeff57x2nXr1lkeb25uprGxEb/fb2uwl1EJGxoacpbtSY488kiee+65JK3Qsccey/z583nqqacyqv27Chl9sqSkJHFszz33xOv1smXLFr755ps0rdi7774LwH777Zex3ubm5oRbYjaBYMSIETz//POJOlPJdS/Z/nzcPB3yw4lD8D1HSvZXX301Im5kmvaRPu6yLJBY3Tz33HOWq0G5n5gPu+yyC8OGDePjjz/mk08+sXXNgQceSEVFBa+//nqPTRCFtLtQZNjcWCxWlPrGjRvHiBEjqK6u5sILL8xZXg7KVtscb7zxBps2bcp47bZt23jllVfSjj/11FMAjB07Fk3TcrZh7733xuVysXr16pxlu5JcWhApXJsn2fPPP5/q6mrefPPNpN9TV7Nlyxb+/e9/A3DAAQckjvv9fo488kggHs46lblz5wIk2RZZlQmFQowfPz5hY2OFDOH8wgsvpG2Fbdq0iX//+99UVVVl1JysWrUKr9fL8OHDM97DoXM4AsH3GF3XefLJJwGyBng55JBD2HnnnVm5ciXLli0D4qufIUOGsHr1an7zm98klX/kkUcSg0++3HzzzRiGwSmnnMLy5cvTzm/bto0//vGPib+9Xi/XXnstLS0tnHzyyZYr1G+++SYpR0NXkG+7C0XuYxdzMly+fDlbt27luuuuy1lWGjs+9thjiT1fiPfxpZdemvP6q6++OilI0xdffJEwhLvssststbekpIT999+fDRs28M0339i6pisYN24cc+bMSeoHyYsvvsgDDzwAJAf8KS0tZc6cOSiKwgUXXMBvf/tby6Q+X3/9dUYt23333cewYcO44YYbko4vXryYefPmJQw8JWvXruWkk06ira2NE044IU2Yu+qqqwD41a9+xZo1axLHlyxZwuzZs6msrOSiiy7K2A9SsMllTHjQQQcxfvx4Nm/enPSuxWIxfvrTnxKNRrn88svTDHkhHiBs27ZtHHTQQZbbjQ5FomecGxx6A/PnzxeAGDp0aM6yV111lQDEFVdckThmDkw0YsQIceaZZ4qDDjpIKIoiLrvsMksXIun6ls2V7cYbb0z45x9wwAHi1FNPFVOmTBH777+/0DRNVFRUJJXXdT0RH8Dj8YiDDz5YnHHGGeLkk08We++9t1AURYwYMSLpmmwhXmXQHqu46kLEXdoGDhzY6Xbn6gur+3zzzTfC5/MJTdPEMcccIy688EJx0UUXWbqxpZLqdpgLK7fDcDgs9t57bwHxfBennHKKmDRpkggEAmLcuHGJYFbmfjUHJjrggAMSgYmOP/74xPtzzjnn2GqT5NZbbxWAeOyxxyzPY4qDkemTGuMhWxwCK2R+A5/PJ8aNGyfOOOMMceKJJ4phw4Yl7n/ppZdaXvvss8+K8vLyRCyMo446Spx55pniuOOOEyNGjBCqqgpAHHzwwWl5EjLFIZDvbW1trZg4caI466yzxPjx4xOujnvvvbdl3gchhLjiiisEIAKBgDjxxBPFscceK1wul9A0LWt8iK+++kqoqio8Ho9oaGjI2WeffPKJqK6uFhAP8nT66acnAjyNGzfOMq+DEDtim/zf//1fzns4FI4jEHyPkdH9Mk18Zt555x0B8Tjk5ljjy5cvF8cdd5woLy8XJSUlYvz48eKll14Sjz32mADSfKXtCARCCPH666+LU089VdTV1Qm32y2qq6vFfvvtJ6ZNmyZef/11y2uef/55MWnSJFFTUyPcbreoqakRo0aNEtdee61YtmxZUtmuEAjybXchAoEQQixcuFCMHz9elJaWJiYeO7ECiiEQCBH3l586daoYNGiQ8Hq9YrfddhPXXXedaGtrs+xXKRAcdthhorGxUfz0pz8VdXV1wuPxiD333FPceeedIhaL2WqTZN26dULTNDFx4kTL87Jfsn1ShcR8BYIVK1aIO+64Qxx99NFi9913F4FAQHi9XrHrrruKKVOmiPnz52e9ftu2beJ///d/xfjx40Xfvn2Fy+US5eXlYp999hE//vGPxcsvv2wZATGTQPDxxx+LqVOnigMOOED069dPuFwuUVFRIcaMGSNmzpyZFq0zlTlz5ohRo0aJQCAgKisrxTHHHCPefPPNrNfccccdAhAnnXRS1nJm1q1bJ84//3xRW1srPB6P2GOPPcTNN9+cNeDQkUce6eQy6AYUIbrQHNjhe8ull17K7Nmzeeqppzj99NN7ujkOPcjatWsZPHgwhx12WF45F3Jx0kkn8eKLL/LVV19RW1tbtHodehdff/01AwcOZMqUKTz99NM93ZzvNI4NgUPBNDQ0JHzwzTz99NP86U9/orKykuOOO677G+bwveCXv/wlhmFw55139nRTHLqQ3/72t6iqmhZ0yaH4OG6HDgXzySefMHbsWPbbb7+EdfHKlStZvXo1mqYxe/bsJBcnB4diss8++3Deeecxa9Ysrr322oQ7osN3hw0bNvDggw/yk5/8JC2Qk0PxcbYMHApm8+bN3Hbbbbz66qusX7+etrY2+vbty7hx47j66qsZO3ZsTzfRoRfQVVsGDg4OxcURCBwcHBwcHBwcGwIHBwcHBwcHRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgcHBwcHBwccgcDBwcHBwcEBRyBwcHBwcHBwwBEIHBwcHBwcHHAEAgeH7z233noriqL0dDMcHBx6GEcgcHDoJh555BEURUn61NTUcMQRR/DSSy/1dPNysnr1an7+858zbtw4fD4fiqKwdu3anm6Wg4NDkXD1dAMcHL5v3HbbbQwePBghBJs2beKRRx5h4sSJvPDCCxx33HE93byMLFmyhN///vfstddeDB8+nOXLl/d0kxwcHIqIIxA4OHQzxx57LKNHj078fdFFF9G/f3+efPLJXi0QnHDCCTQ2NlJWVsadd97pCAQODt8xnC0DB4ceprKyEr/fj8uVLJ/feeedjBs3jurqavx+P6NGjWLu3Llp1yuKwrRp05g3bx777LMPXq+XvffemwULFqSV/c9//sOBBx6Iz+dj9913Z/bs2bbb2adPH8rKyvJ/QAcHh28FjobAwaGbaWpqYuvWrQgh2Lx5M/feey+tra2cc845SeXuueceTjjhBM4++2wikQhPPfUUp556Ki+++CKTJk1KKvuf//yHZ599lp/+9KeUlZXx+9//nlNOOYV169ZRXV0NwAcffMDRRx9Nv379uPXWW4nFYkyfPp3+/ft327M7ODj0XhyBwMGhm5kwYULS316vl4cffpgf/vCHScc/+eQT/H5/4u9p06ZxwAEHcNddd6UJBCtXruTjjz9m9913B+CII45gxIgRPPnkk0ybNg2AW265BSEE//73v9l1110BOOWUU9h3332L/owODg7fPhyBwMGhm7n//vsZOnQoAJs2beKxxx7jxz/+MWVlZZx88smJcmZhYPv27ei6ziGHHMKTTz6ZVueECRMSwgDAfvvtR3l5OZ9//jkAuq6zcOFCJk+enBAGAIYPH059fT3z588v+nM6ODh8u3AEAgeHbuaggw5KMio888wz2X///Zk2bRrHHXccHo8HgBdffJFf/epXLF++nHA4nChvFTPAPMlLqqqq2L59OwBbtmwhGAwyZMiQtHJ77rmnIxA4ODg4RoUODj2NqqocccQRbNiwgTVr1gDw73//mxNOOAGfz8cf/vAH5s+fz6JFizjrrLMQQqTVoWmaZd1WZR0cHByscDQEDg69gFgsBkBraysAf/vb3/D5fCxcuBCv15soN2fOnILq79evH36/PyFwmFm9enVBdTo4OHy3cDQEDg49TDQa5Z///Ccej4fhw4cD8RW/oijoup4ot3btWubNm1fQPTRNo76+nnnz5rFu3brE8ZUrV7Jw4cJOtd/BweG7gaMhcHDoZl566SVWrVoFwObNm3niiSdYs2YN119/PeXl5QBMmjSJu+66i2OOOYazzjqLzZs3c//997PHHnvw/vvvF3TfGTNmsGDBAg455BB++tOfEovFuPfee9l7771t1dnU1MS9994LwJtvvgnAfffdR2VlJZWVlQlvBgcHh28njkDg4NDN3HLLLYl/+3w+hg0bxqxZs7jkkksSx4888kgeeugh/u///o8rr7ySwYMHc8cdd7B27dqCBYL99tuPhQsXctVVV3HLLbewyy67MGPGDDZs2GCrzu3bt3PzzTcnHZs5cyYAAwcOdAQCB4dvOYpwrI4cHBwcHBy+9zg2BA4ODg4ODg6OQODg4ODg4ODgCAQODg4ODg4OOAKBg4ODg4ODA45A4ODg4ODg4IAjEDg4ODg4ODjgxCHoVgzDYP369ZSVlVkmqHFwcHD4tiGEoKWlhbq6OlTVWWN+m3EEgm5k/fr1DBgwoKeb4eDg4FB0vvrqK3bZZZeeboZDJ3AEgm6krKwMgB8wkeYLf0Cfh9+2LPfcJx9w0tB986r7uU8+SDuWbx2S5rm7Uz7lM5rn7s4r+81LOnfU+5Mpn/JZ0rGGCw/O+CzZ2mqnfXbqztRfmY5nq7N57u7E5vfNeN58bT7PUch3Kvs/9brUNmSrN/W9kGUzHc/3u7S630lD981YT8OFB6cde/36PyX+fdT7k9POW/VBKvKdtdu+QsnVP8V6t+22s7PPY34PMtWT7Zme++QDmlsNBh6wNjG+OXx76VH9zqBBg1AUJe1z2WWXAbBx40Z+9KMfUVtbS0lJCQcccAB/+9vfkupoaGjg7LPPpry8nMrKSi666KJExjjJ+++/zyGHHILP52PAgAH85je/SWvLM888w7Bhw/D5fOy7775p+eGFENxyyy3stNNO+P1+JkyYYJk5Lhtym8CFm5o57+JS3JafU/c8gFc2fJz0yVTWpbhpe2kvysu0tE/bS3tlvc78Md9DK/HS9tJevDP+hbQ6+5y6Lum6pksPQ/P4bN9HPt+pex5gq301c96l6dLDcj67VR+Vl2lpbXUp7qzt7XPqOmrmvJuxz+X39sqGjxN9YueZZRuzfZ+pz9nn1HWUl2lpx83ty3X/1O9P3v/UPQ9IHDt1zwMS98/27HbeIfm9vve/cyzPv/e/c9I+5vZpJd60j50+fmf8C7bfvWzvUq7rrd4d+f3k+05kGgNkP9qp4+jPTi/ouzJfn6vN8l2x+h2euucBlJeqSeObw7eXHhUI3nnnHTZs2JD4LFq0CIBTTz0VgHPPPZfVq1fz97//nQ8++ICTTz6Z0047jffeey9Rx9lnn81HH33EokWLePHFF3njjTe4+OKLE+ebm5s5+uijGThwIMuWLeO3v/0tt956Kw8++GCizOLFiznzzDO56KKLeO+995g8eTKTJ0/mww8/TJT5zW9+w+9//3seeOAB3n77bUpKSqivrycUCnVJ34xZPoX6uhGJvxeuX8HC9SuSyshjb42cm3RcXpd63Iptl4xj4foVjFk+hab5QxL1WV1rbo9k6fRZVM9ebOuZUqmYaE+gSq1/2yXj2HbJuEQdVu2CeHtT+ywVWU++58csn5L4d657yLbIj7xm4foVNM0fkigjn9N8rL5uBEunz7Ksr2n+kKR2pLY3W7usztn5Hs31y+9B1mV+71K/k4XrVzB6xtTEZ8zyKYmP7Jcxy6ekvXfyb3nfTN+Hne8613k776PVd1E9e3HW9yjXO5Yv5vrs/oaKgdWzO3y36FGBoF+/ftTW1iY+L774IrvvvjuHHXYYEJ+of/azn3HQQQex2267cdNNN1FZWcmyZcuAeOrWBQsW8Kc//YmDDz6YH/zgB9x777089dRTrF+/HoDHH3+cSCTCww8/zN57780ZZ5zB5Zdfzl133ZVoxz333MMxxxzDNddcw/Dhw/nlL3/JAQccwH333QfEtQN33303N910EyeeeCL77bcff/7zn1m/fn1B6Wit1KZygjBP8vKHnzr5pAoH5kFVDsTymlyDYPXsxYmB2EoIMA/aVm3uTmR/VM9enDZ5yQnBTpvMA7isx3ydnTpS+8rOoN80fwhN84ckJj9Zj7ndTfOHWH4P5jaZBYbUsuZBO1VYKAbmfpffQ+q7kUkYkO1znbgl6bz5eayQ9WXr44XrV2QUDDO1y4pcbcmEuV9S71OowJztXrIvcr2ruZ7HrkCRqe8K7S+H3kmvMQmNRCI89thjXHjhhQnV07hx43j66adpaGjAMAyeeuopQqEQhx9+OABLliyhsrKS0aNHJ+qZMGECqqry9ttvJ8oceuiheDyeRJn6+npWr17N9u3bE2UmTJiQ1J76+nqWLFkCwBdffMHGjRuTylRUVHDwwQcnylgRDodpbm5O+qQiJwPzhC4H8qXTZ1FfN4KKiWssB3dZ3upHneuHLicnKw0D7BAyKiauyViXWehomj+k6CuhVHINrFaDlnnlKAfSbZeMs1ztpK7M5TWyn8x9lopVfanlKiauSQgAmSZ9edzqPmZh0Vw2VUi0+l6zTYYL169I0rpkan++yHol2VaYsu9T33OpuZLCR6GTq92Jy45WLRN2hfBs2BFsio1dwXHM8ilpz9aZ/nLoffQao8J58+bR2NjI+eefnzj217/+ldNPP53q6mpcLheBQIDnnnuOPfbYA4jbGNTU1CTV43K56NOnDxs3bkyUGTx4cFKZ/v37J85VVVWxcePGxDFzGXMd5uusylhx++23M2PGjLTjfR5+m4UbPgasB+qKiWtgfccPdT6JSbmezg0UTfOHUDFxTceP2nrQku2pIPfKIXUwcJ24BWbHV3K5Bm45QHeHytMsFNTXdRycnj5wvzVyLqxPbl/iOLkHP/ncVtoGs+bGziBqnuzzJdMWktXKXSIn6zEnTgFWJLaR5Htg5ztNpb5uBNUshumm+rNMPm+NnJt03mrrIdu9svHWyLm2fj+d0TIUY3I093k2Ut+zTNj5fcnxJvGdZ7hGlusJdF0nGo32zM2/5bjdbjRNs1W21wgEDz30EMceeyx1dXWJYzfffDONjY28/PLL9O3bl3nz5nHaaafx73//m333Ldyytru44YYbuOqqqxJ/Nzc3M2DAgI4tg49tDXZ2ftByok/FrEavrxsRH3Dnxwf81HJ2kROlHPzkXnbib0bYmjhkezO1PV/ME5bV5JW6pZBrz7mQwX3p9Fkw3frcjnslCwh2J3w7e+SZrsunTvNzmwWk+jq6HTk5FusdyUWxVufdtcIv9J3Ihh3BqRDhsFCEEGzcuJHGxsZuud93lcrKSmpra3MafvYKgeDLL7/k5Zdf5tlnn00c++yzz7jvvvv48MMP2XvvvQEYMWIE//73v7n//vt54IEHqK2tZfPmzUl1xWIxGhoaqK2tBaC2tpZNmzYllZF/5ypjPi+P7bTTTkllRo4cmfG5vF4vXq/X8lwxhQE50WdTEUvpX5aR/7Y7eKWu6M2Dhlw5FDIQmp+xMwOyHKDq60bgmr+FhdPT60o16Mt0rjtJbWOqDUGydiPZyDRXvXaNHbvrme2qps3Cpl26U9XelffqTiNBM+b3INvz1deNgEu6r11SGKipqSEQCDieDHkihKC9vT0xT5rnLyt6hUAwZ84campqmDRpUuJYe3s7QFrkK03TMAwDgLFjx9LY2MiyZcsYNWoUAK+++iqGYXDwwQcnyvzP//wP0WgUt9sNwKJFi9hzzz2pqqpKlHnllVe48sorE/dZtGgRY8eOBWDw4MHU1tbyyiuvJASA5uZm3n77baZOnZr38/Z5+G1Q3BnP5zPgyEm9gh1bCk3zh/DW+vTJ3jzQVrCG0ZdMjat0bWBnoOrsykEOSqNnTO1UPZlUm5kmPnM/Fct4MtNEm+t7rZi4JiHc5Vrdm9tm/jvTFoHdtloJR7nUyYVgpYUxHzNrVeS7nekdK4ZBYWcm+bjAXBzBKp/fv90thlxsu2Qc9XX23vWl02cxms79Ru2g63pCGKiuru7Se32X8fv9AGzevJmampqs2wc9blRoGAZz5szhvPPOw+XaIZ8MGzaMPfbYg0suuYT//ve/fPbZZ8ycOZNFixYxefJkAIYPH84xxxzDT37yE/773//y5ptvMm3aNM4444zE1sNZZ52Fx+Phoosu4qOPPuLpp5/mnnvuSVLlX3HFFSxYsICZM2eyatUqbr31VpYuXcq0adOAuH/tlVdeya9+9auEC+S5555LXV1doi1djZVRVKaBQ7riyUFcYvZCyEY+xoFmY7Sl02elGbjla2hYXzfC9v6oXex6H+RDJgNGcx/X141IWNdnusaKVGEgl2CQ+h2nYuWZkqvtVhQqDFi5weazJSON2RauX2E5CdkxGLT7/Rf6ntjtm1y/h3yt9ismrum0pb+VkJWtH8Ysn5KwCelKrYy0GQgEAl12j+8Lsg9z2WH0uEDw8ssvs27dOi688MKk4263m/nz59OvXz+OP/74hKvfo48+ysSJExPlHn/8cYYNG8ZRRx3FxIkT+cEPfpAUY6CiooJ//vOffPHFF4waNYpf/OIX3HLLLUmxCsaNG8cTTzzBgw8+yIgRI5g7dy7z5s1jn332SZS59tpr+dnPfsbFF1/MgQceSGtrKwsWLMDn83W6D8wDdqYft7QszwdpN2BXEAB7q3yzEGB2PbOa/ApdRRRjoLEjCBRyH6sVeKZ6ZN/kc59825Q6GUkvA/kZPWNqog3ZPCUyYf5eO0uqe6udbYRcWwjF1Fp05r2zujZVAMj1eyjkWTorFKS6TOZy80xtY2ciJdrB2SboPHb7UBFCiC5ui0MHzc3NVFRUcDgn4jJtGaQaTVmt/O2ou81kmtiLaRBkNdhZ7XcXStP8IcSe75e1vanxBMDe/rosl6udSQaTGcraqceuGrjQ783czmyqfbMnhJ02Szq7jZPafvP9k71fspPPtoX5d5WPGj5X2WznrbZe8qUQG4Vi2zXk+h2b7xcTUV7jeZqamigvLy9aG0KhEF988QWDBw8uysLr+4zdvuxxDYFDOplWZGa1bq5VZ6bBu7PCgJV2IJVirSgrJq5J812X90/dqrCLXVU8xAe92PP98l7h57pvNjJtl+T63pLsQ2xMmGa7Aav4A1ZtsFox2t0SyiTkwI4Vrtz+SP2YkZqyXIF5zAZyqcdykc34NNfEK891NihUZ7a47AYtstuOTLYw3W2A+21g7dq1KIrC8uXLAXjttddQFOVb4yXRK4wKHZKRAXRkYKLe9MOzGtiLaVxkteLPeW565gh/kkwr3Gwr7/q6EbaNLnuSTKu5XFqFfLwWEnvGs4sXhU8apwEsHTmLeqyFmXpGpMWF2HFtbtfRQn8/Vr+9XEZ80rjQbtyDbPfuLMXY/pC/q0yC0LZLxlHxwOsF36cznH/++Tz66KNpx+vr61mwYEEPtCidcePGsWHDBioqKnq6KbZwNAS9AKtBUIYUliun+roRXR4JsBiMnjG1UzHPs0Wjy3YumzBQyMCYjxGaXY2InTrzVf1mU+3anazNdg75aHeK8T4unT4r8b5ks6Ex/0bMkTzNyGvN/Zy6Uu+sgWmx7BWKHfLXrNWQxr3FIFeukOrZiy0zrXYXxxxzTFI+nA0bNvDkk0/2WHtS8Xg8tvz/ewuOQNCDSAOvTKQOPt0VDKQzdHafOR+yTSCQbCCV7xaK1Wrb6v7FtrLOR9Us719MYbF69uKEUFDotlQucgWEkr+L1I9ETlLmSXDbJePS7BDMfVmoCl8aYtppe+p12eiqeAPyOYv5Xpq3IKx+b11tVJgNr9eblA+ntrY24U6uKAp/+tOfOOmkkwgEAgwZMoS///3vSdd/9NFHHHfccZSXl1NWVsYhhxzCZ5/F02gbhsFtt93GLrvsgtfrZeTIkWmah//+97/sv//++Hw+Ro8enZR4D9K3DB555BEqKytZuHAhw4cPp7S0NCHUSGKxGJdffjmVlZVUV1dz3XXXcd555yV5tM2dO5d9990Xv99PdXU1EyZMoK2trdP96QgEPcAflt8G7AhJ3NvprgQmmSaYVKt58yovk2bAzgSQaRLtyS0au+9DV7bRnLAo7p++Y3JJzXCYL5n2o833sJulU14rtVKZtDXyXcg3Q6W5PXYFLrvbFF31m7J6fwoRFs3ZJc2/SymwfVuYMWMGp512Gu+//z4TJ07k7LPPpqGhAYBvvvmGQw89FK/Xy6uvvsqyZcu48MILicViQDzp3cyZM7nzzjt5//33qa+v54QTTkikvW9tbeW4445jr732YtmyZdx6661cffXVOdvU3t7OnXfeyV/+8hfeeOMN1q1bl3TdHXfcweOPP86cOXN48803aW5uTkqit2HDBs4880wuvPBCVq5cyWuvvcbJJ59MMfwDHC+DbkR6GXy26iMuGZ4hxm2BPNtwPyf3uaxbcwRkopieBoVMPJ0JoNOVUegKDcGbr4dJIeSyN7BqQ76eB3bryOUDXzFxTU7vktS+scpNUUxLfqs8Ftnew1yeCp35bjt7fbZ3weq33VNeBueffz6PPfZY2rkbb7yRG2+8EUVRuOmmm/jlL38JQFtbG6Wlpbz00kscc8wx3HjjjTz11FOsXr06EbTOzM4778xll13GjTfemDh20EEHceCBB3L//ffz4IMPcuONN/L1118n2vDAAw8wdepU3nvvPUaOHMlrr73GEUccwfbt26msrOSRRx7hggsu4NNPP2X33XcH4A9/+AO33XZbIi9ObW0tV199dUJI0HWd3Xbbjf3335958+bx7rvvMmrUKNauXcvAgQOL0pcSR0PQA3h8Hh77+k4A7lxpb8/2iQ0zk/6eu+33/G3bfTzbcD/PNtwPxIUCqXWwUrWayZW/vVAVdE8LA9A5YagrA61YtSvXaiu1P+14mOSLne+6O20L5PNZaXly2YqkpuqWvwErGwQr8g3KJZFZMc3Enu9nuy672F2dd+Y7yCYMmI0NewNHHHEEy5cvT/pceumlifP77bdf4t8lJSWUl5cnwvguX76cQw45xFIYaG5uZv369YwfPz7p+Pjx41m5ciUAK1euZL/99kuaYGV022wEAoGEMADxcMKyTU1NTWzatImDDjoocV7TtEQkXoiH8D/qqKPYd999OfXUU/njH/+YyNzbWRwvgx4gZuiEo2387tOfEmqJ8OtlF+GrcKEkwjQnK20UVNrDbczdei8GMVRFQ0G1NFSRmoLUuAaQbDU9ekbmASNbkqDOsu2ScbhO3JJVtVmoUaJ8vmyeCrnalnqN1bFCVvrZokpmqq9p/hDGLN9xriuEFbvfcfXsxWmJm2Qyp9R25dPv2cLgpmb4NFu8W72/2y4ZB89D0/z0YD12I33a9cpILRv/XSXHbZBtkl5DqQGAUtsuy2XznJB2ErlcH5euL154YenxNHrGjlDn5sRXR+20V6fvUSglJSWJ7LdWpE72iqIkQt/LkL7djVWb8lHUa5rGokWLWLx4Mf/85z+59957+Z//+R/efvvttMy++eJoCHqA1vZmQkYTqAaeUg0hINKuIzpeVDBP9AoBTwUl/lLC4Sia4s4oDEjMWgNI3qOV/106fVbOVcSOAco+8l6ZfLiXTp+VMepioYOXeVVYaITETGFxM01U+ZJpAM8mXHSHjUk+/ZQrWE+hyP1/8761/K/ZZsSsHTALranISdPcd51NTZxquyLvbceews5vyOwZMHrG1B71KEqN8yFtSswJxL4L7Lfffvz73/+2DOdbXl5OXV0db775ZtLxN998k732igtAw4cP5/333ycUCiXOv/XWW51qU0VFBf379+edd95JHNN1nXfffTepnKIojB8/nhkzZvDee+/h8Xh47rnnOnVvcASCHsGjedH0AAgFVVXwV7lweTSiQYERMwsFCiWeCip9/fG4PGgujVA4ghDYkijNQoGZfCZNKRQUMuCb1cxW10urZbPRYL7agdRAPJlW+Xbq6QryVa12lSo2l0dLKuYJQX5PdoIAWQUEkuTqYzkpmv+bDbNQYKUVyvW8nQ0nXT17Ma4Tt+S8VrpWpr6HZoFHYqe+fCJM5oPsR9mHubQlvUEwCIfDbNy4MemzdetWW9dOmzaN5uZmzjjjDJYuXcqaNWv4y1/+wurVqwG45ppruOOOO3j66adZvXo1119/PcuXL+eKK64A4nlyFEXhJz/5CR9//DHz58/nzjvv7PQz/exnP+P222/n+eefZ/Xq1VxxxRVs3749sQh8++23+fWvf83SpUtZt24dzz77LFu2bGH48OGdvrezZdADBIM6/pJSNAV0tQUFA9Ut0KOCtq1RAtUeXG6NgLucSl8tmuJCURTcrniWqnA4gtfrAURWTUE2oUGu4u38qKW6OB/7AKm2TFUzp5LPys1s+Z5psFo6fVYieI4sZ6WyNdOd+d3NWGkHukojkG+8e/NkW19HIpumua9yCQhdhXkf28WWhJFhrnZJCtUWpGq+ZApxaZMg681kb2F+N6HDxZPkuB1mu4Ou2rKz44KbLTCY+fyY5VP45ydPUzW0qM20zYIFC9JS+u65556sWrUq57XV1dW8+uqrXHPNNRx22GFomsbIkSMTdgOXX345TU1N/OIXv2Dz5s3stdde/P3vf2fIkPjvqLS0lBdeeIFLL72U/fffn7322os77riDU045pVPPdN1117Fx40bOPfdcNE3j4osvpr6+PpGlsLy8nDfeeIO7776b5uZmBg4cyMyZMzn22GM7dV9wvAy6FellsGzZMkpLSxEYGGo7utYEGAgEsZBA6FBWVkF1aR0u1Z006QshiMV0YjEdr9eDqloLBEIIwuEoiqrgcbs4pTqeuTFbTHkrUi23Uwdbq2uzDcj5Rl40D7p2Jsuu9BIoNtm2C+RzmNXIvS0OhZ3vMd/3IxeyH6yEG6skT2ZSkyoVInzJ/XRZh3w3U4UM8/dlft5Mx+W5VMzfufm3a/XuWAlFqS6jhbxDua57ZvW7VA393Mll0EUYhsHw4cM57bTTEh4T+eJ4GXwLUFBRjRI0vRJQUVBw+zUqKqrwRCqItOnp1ygKLpeGy6URiUQxLOQ5IQThSBS1QxjAMHj0zbiaS66WzX7c+az0slmA54oCl3qvbGpHeU4GoTG7mmWjmJn5Oktn1P+pwYGkS1tnPEA626ZUzB4PVt+lWaNjdV1nSE2lnG3Vb5VhMZfwYN5HN7/XUqVvjm1gJVjIcqm/B7OtQGrgpFyTtd3z5tgR5u2ebHYXnblvTwYm+i7y5Zdf8sc//pFPPvmEDz74gKlTp/LFF19w1llndfm9HQ1BNyI1BB+8vxyPd4eFq0BgqG0YrhYCnjIqfTWImErz1hb8pT78Zb60rQEhBMFwEN0wKPGVoKpK3DdBCgOKgtvtQkGh7fO1bFnyX1yBAJf/+KW0dsmALnZ9uiW58gekIldScrKzst4v1Eccep92IJc3QqFxCXryWrvk635qXnkXQrZJPvUdzeX/n0moNWsnrLx4ZDtgh7YiXwFZYsdTJldcBDDloDAJCKn36ixOtsPi8tVXX3HGGWfw4YcfIoRgn3324f/+7/849NBDC67Tbl86AkE3kghMtOZjdBH3LtiBwBeA8kApqhI37TB0g3AwhqKA1+9G1VSEEAgM2qPNtIS3Yegqld5a/F4/igLhcFwz4HbH7Q4QEGnYTutna9FDES6Z/GfLtlkNFHYGj1ShINf2gx07gGz0RluAQuis8FMMulKAslKHF+L5YZdMAoFdYSDbNan3eWvkXMvfiVkYyCfEcTahoLMCAewQClLzjHQmgJcZRyDo/ThbBr0YTdNwdRiISHxeD+X+CtQOA0JFUVA1DX+JBz2qs31zE7FofAuhNbKd7cENxIwIpb5y3JqLUDhCKBxBMQsDAAq4+1RRtt8+qFX909oi1aLmFUQu1b8Z84CSbeWVOnhlcmlMdT3raey0o5C2Zksa0510lQFg6raAHTdXqzryyUGQazvETl2pE2TqFlS20MTSTTSfPpW/i9QVPOR2+82muZOYBYBUD4ZvQ9h0h+7FEQh6gHZ1O74SBZcW736f1015qR9VVZK2BpS45yElFX68Pg/tLSEM3SCmRwCo8NZQ5u2D2+3GpanEYnrCE0EihCDYGiIcihLoU5rWFnMGQau94EInrc5O6PkmI+oKervGobOTeXcIJJ0VCjoTP6Bi4pokISDX9k0mMtml5NP/2Wxb5D6/bGuqUJANq1gfb42cS/XsxWlbMKl9WSxhsOHCg4tSj0PP4wgEPYBOFNVjUF7mpyTgtRQGJIqioKgKJZUB/CVe2pqD6GEo9/aj1NsHhfh1brcLn9dDOBKNbyt0fNpbQrQ2tuELeHAHvJ1ue6YBPXXAK3QiTbWqtoMczO3cM58JqZDATN2JVQAoc3t7S9vN70Zn7ASykUlwkEJALmNTWS5VMDCr263qSO37TIa4uZ470/ZRPt+h+d5mASMbhRqZpgYvcvhu4AgEPUCFUoNPKcXjdlFW4ssoDJhRFAWXR8PjcyPaPLhjpQlhIHHeFd+KiERiICAajiEMQZ/aCjS3Bi57YSey2Q5kSkSTbV8/U125sDPB5zugSWv9TJHnupNirNDq60YkTVT5CGLbLhmXdaI0BybKF6s9bElXxynIhJ37WmkRlk6fldCkZeuvTJO+latupjwN2y4Zl3Qu1/c5ZvmUrFt82YSC1ERR+SD7o3r2Yvo8/Hbe1zv0ThyBoAcwdAgFo/GJG3IKAxJFUfD6PVTVVCJ0iISiCCOuCTCMuIWiy6UBgqaGFsLBCIEyH5pLi8fLznEf88CSbxS3TINKV6rcpbV3vnuhqa5y5iiJ5hC6kD1EbmfJxwLfajUmj5ld2cxk63uzVb9VxDx5fdP8IbbbmSniXq6Vdab25Rvt0EpLkCow5hs7wZyTQPZ/MVxbpQ1J6oS9dPosYs/3s23HY2WLkmosaCUUSONI83ufj+2Qw3cTRyDoAdrbQyiKQiQaJRSO5gxDLIRA1w10PR7W2OXW8Jd6ibRHaNrWQiQSo6mlnda2ELpuEA3GCLaG8Zf6UDU1HgTZiKKIdlvtK/ZqPpMrVz7Cgp1ANIViFg6kJbY5nHJvyOxmtvVIPWZlkAaZJ1UzMqyuJHViyLWHb7WHLfexZb/lWjnLcnZDWJvzVmQzPDR7DKQ+Yy4Bz7xFYHaTLbaAm2rnkNpWO6RuD8hnzvb7yHbOEQy+vzihi3sAv9+Lz+tGeFy0tYcICfD53JaaAiEEuiFoaQ0CUFbiQ9NUFFUhUBmgaUsz2zY3gacjrHEwQsDrprLagxrbjhpqhnAjih7mtOGPWbbHvFrMRxiID+SdGzjsGu51l0V09ezF1M8ekQjVKyc3RpIUdjYfsj2jnRDS+W4DgJxU0r+bhHDzfLobWiqyXWa/e6vAUpkmj/hKd0c4X7ldk3oPWNGROc/+u2Tur4qJaxKZ9+y6UpqzLFqp9HPZspj7LtOz5YNVtEPIL25ApjoKpStiFnQlm9dtoWlrS7fdr6JvGTW7Fj/FdU/iCAQ9gEvTEq6FJQEfrW0hCAl8Pg8AMd1AVeKJj4wOYSAUjmfkcrs0SgJeFEVB0xTKq8vQG1oItYeJBVvxBaIE1CiKiEHMBy4/lO6C4SrhmY13cWrtVent6VDv5vPDTwzkNsk08fVmK35IDuiSabLJlSuhu7Ca4EfPmBrPKdHBmOVDEgKOHdW3/J7HzJcrUKsJ3RqzkCnT5naG0TOmwiXW74xZMJHfU67JUaZvTiX1e146fVZWl1mzl04hQkEivTXZo4amvnuZAi+Zz2XKYfFd0wBsXreF84ddQTSUnrmwq3D73Dyy6p68hYL777+f3/72t2zcuJERI0Zw7733ctBBB2Us/8wzz3DzzTezdu1ahgwZwh133MHEiRM723xLnC2DHsCsCVBVldISH9FYjFAoQjgSpbGpjebWILohCIYi8ZwECng9bnze5FzamkulvMyF1r6eft7N9KnyoJTtiuizD6JyGEbZIAxfDcJVguLyWLYnNdBKLuQAI1XsdqyNu3sAKvaev5VLWG9BtslqtZ/N9Swf1bRVeOB89+PtkC0UsjlrYD7vW2f2/HNpHEbPmJo04XZmNW3XM0CWzZd8YjqYsbPF0tM0bW3pVmEAIBqK5q2RePrpp7nqqquYPn067777LiNGjKC+vp7Nmzdbll+8eDFnnnkmF110Ee+99x6TJ09m8uTJfPjhh8V4hDQcgaAXEBcKAkSiMRqb24npBuFIlGg0hs/rprTER2V5CRVl/vh2QYdAIYQg1roNY9sa+tVVUzpoFFQMRngqQHV3BDIw30fhiReSB8eF61fkHChSB4NUAaIr9lY7S1fs9abGh+/K+/UUxVQPFyIMZCPV9c9qksokSOSLVb4BM64Tt1BfNyLJeDJbimhz+1LZdsm4hL1DNq2GHU8Cc+bF1PwNndlOyGS46pAfd911Fz/5yU+44IIL2GuvvXjggQcIBAI8/PDDluXvuecejjnmGK655hqGDx/OL3/5Sw444ADuu+++LmmfIxD0ElRVoaw0EE9GhCDg8+L1uNA0lZLAjn8nhAFDJ7jla9q2rMdbswfuygGgeYDMngRCCIxgJPG3XP3YcT0yu6Dl4xZlprv2Iu0MzIUin8FsNNeT5HIdLAQ731Nq8Koxy6dkXd2by6YaBeYqL5Hv2tLps3CduCXt3ZMq+2J9Lwn7kRRk/fK8tNbPNeFmEi6qZy9OSnucq02Z6raqP9u2QiYyxVzIdn+H3EQiEZYtW8aECRMSx1RVZcKECSxZssTymiVLliSVB6ivr89YvrM4NgQ9jNnDQFUVKstLaG5px+1SE3YGKRcg9CiR7WvRI4KyXfZE9dgLOCRiOnqjtYor28RuTqlaXxc3uMsnDn5XxsyXyD18udLKtN9aDONEaWj31si5jL6k82mJ7RgWmklOwZsce18O5JmMRLMN6KNnTE3a6890rSyXHBhpBfXs0KDkehY7z2p+TmkLUV9HwujTKkmTfD/ryWwMaRezx4mZQlbauTIsLh2ZnxYjk22AFfkKA7k0Kt3xe/4usnXrVnRdp3//5BDy/fv3Z9WqVZbXbNy40bL8xo0bu6SNjoagB4mnKY7RFowgRPxvVVUoLwsQ1fVE1EHTBcRC7bR8/QmoXkrr9kCzKQwAiHAMpSMfgtV+ZS4tQVcPAp2Juicn5Uz2EOZ4BZncqvLZJ5XuYnZUqXYiHuazv2sesK0Ge7MrohWpfvZyhW4WbKyul+XM989ULl+s+ke2R1rxm+uVApl5Uky1LTB/33a3I8yfYkVVHD1jqqUgKt9Jc0yCQvf5JanvQzZhwPysEiujVIfvD45A0APIsMKhcJTm1iCtbUHaguGOc3FNQUnARyQS3SEUCEEs2EjL+k9xl9fg6TMARdVy3GkHenuIpg8+ItonLkC8NXJu2iCVK5BNIeSzmkhN8tJV+/Jmdznz9kK+E0CqXUFnyDeNdCbsTNYL169I0ySYyVd4yabyt4tVBMxs34vsL3O/ZQoiZd6ikJOuOcaA1aS3dPqsxHHzPQrRDuTzHlvFJbCiM9siuYQAiRQSrfqntxsZ9kb69u2Lpmls2rQp6fimTZuora21vKa2tjav8p3FEQh6gNb2EO3BCC2toUSwIQWICRDENQKqolIS8BMORwmHI0SbviG87SvKdhqMr6ofimL/qxO6wfZ3V9D86adcdOYTBbU5dVCzO2h1ZqLo6v1KaT/R2cnMLBRki9hYaFx6+bc56E827Gh6cmkRstGVMSGstDep7TTbTVjl0Mg2Acu2p0505klR/jtVE2NHGEi1ixizfIrt7122LZdQkEkYyNU+s+Bm9YxW5SC9r+R1jlCQHx6Ph1GjRvHKK68kjhmGwSuvvMLYsWMtrxk7dmxSeYBFixZlLN9ZHBuCHqA9GEHV4oGGFEWhNOAl4PeyPWKgAFXeuP2ApiqU+Fw0fPUpXjeU7TQUxeW1HepYoqgKpbvtiqvMD7xRlGewMykUOnHE0zHH/70jOEru6+TKt1Cfd7MfuRwQzdHuzFiplOvrRsR9/qfv+NuMDF6TbeVeXyfDQO+Ie5A6QZotxs3CiCy7dPos20GUrJ7ZDl0Zd0FuEWSjevZimG5v9Z36fKnvZbbJ0S7m98Vcf/zf+f8OKiauyRqXAOICgF3vgdS4CvK/5vc4V3Cs0RRvG+X7ylVXXcV5553H6NGjOeigg7j77rtpa2vjggsuAODcc89l55135vbbbwfgiiuu4LDDDmPmzJlMmjSJp556iqVLl/Lggw92SfscDUEPE/B7CAS8oEBjxOCb9hiGAITAiLYT2fY5Pr8f/067gcuTtzAAgAK+ulrK9x2aODRm+RTbasdCVgKdWd1b7WXbbUMxDPzMxnLmwda8cpIr7FQrebkqBOuVnLlu+TE/W2rYXqt+lBNBqqW/+b/5fGdWgksuiiEMSHe71K2bXFtXqVEEsz1rLi2VHU1Jrn108/XF1p5Ytc2srchHK2BFvhFKU/ti2yXjekX644q+Zbh97twFi4jb56aib1le15x++unceeed3HLLLYwcOZLly5ezYMGChOHgunXr2LBhQ6L8uHHjeOKJJ3jwwQcZMWIEc+fOZd68eeyzzz5FfRaJInIF0ncoGs3NzVRUVLBs2TJKS0sB8PvclJf6iQqF5dvCxAzByGoP7lAj4W1f4e1TS8wfoCW8jSp/LR7Nb1m3EAJdgKrEtx/SBQeBoRsE/7WcH50W93kt1PL+2Yb7Oeqtuzs1+FlZiGciNVxutjK9xfrZ3GZpYZ6qbUhdnaU+Zyahys4z5msJns/3AYVrCDJdZ7e95uvNthD5tkUKEebrChFiu+t9K6RtVp4NkOy9AfY0Mpmura8bQUxEeY3naWpqory8PO92ZiIUCvHFF18wePBgfD5fzvJO6OLM2O1LZ8ugB1GI+6GCgluFwWVuInoMvWkDkZbtBPoNJOw2aAquxxA6uhGDLHaErVGDiCHo69MsohEoKKqKWrJDoEgdLJ5tuB+Ak/tclvEeskyq25O5LjuDu7l8rslFqtFzqSt7ShjIluoXOlZxplj9CS0D8bwJdpLJ5OuauMNNz175fIW7QjUEua7LJZhYJXgqFtkMRDNtEeVDZ7ZZrDwsUpGaKfNv06o/Zb4OOxqZVORWjWTbJeOoeOB129d3JTW79vvWTNC9FWfLoAcwRARFgYDfS2nAi6KAqij0c+v0C67DFW2lfOc9CLsNGkOb0I24p0HMiGSsUxcQMQRbQzohPbPSR6gKc544L+24nOjlv1M/VmVeGXMlFRPX8PLBV/DM1nsT57Jln7NSo9tJDGNeFWZSEfdUoCBzbnizG58V+cQasPrb7kqxevZixiyfYjtzXW8wEFu4fkVBWqNCsWPoaXbJlO91vpE9uwq5PSXbaHatNbs0WqWALvS30jR/SJJBp2NT8N3C0RD0ALrWjOaqSiQpUhTQw+20bvgcl6+UQM1gUDWMcDNuzYemuHCrXrxaIGOdbTGDT5ujuNS466IViqKgBXzENjbw1Dd3oQNer7tDS5EdszBgdfzU6mlA9hVeZ/dXExbS63dkqpMkjKvWZ550uzsBUSEaC7NhoJnUVZ0d7BimSczZ/3qCRMjd9fbzauQql02jki0hVaZrZH9WsCO7Yj7YNYDM9VzShqSCNQUb9xYaxlgmxoLOGWE69E4cDUEPINQQYdFAe7gdwzAwgo0EN3+Kq6wfgZpdUbS4nFbm7Uu/wED6BnahwleDW9ux9xM1BDFjx8wfcKnsWeFhzwoPflcGw0MB+L0QjaGFo2iGQSgYxjCMojyXWRj46+bf87dtXRNvWwbHMRvmmUO/ZloBdcdk15l7ZJoIUg258hEK7K4EUwMTdTWphpWx5/sRe76fycsiO3aEhmxlcgmHxTKKNd/PCqk1MycMy1W+MxQ786ETuOi7RY8KBIMGDUqE5zV/LrvsMtauXWt5TlEUnnnmmUQd69atY9KkSQQCAWpqarjmmmuIxWJJ93nttdc44IAD8Hq97LHHHjzyyCNpbbn//vsZNGgQPp+Pgw8+mP/+979J50OhEJdddhnV1dWUlpZyyimnpAWMsItAEI60sXnDOrZ88iGtm9biqx5IoE8NqAqCjtW8oqGpGoqSHsY4rAtaokYikqFbVaj2aVR4NFQrTwQBka3baPx0FeFSCG/ZRsv7H6FEwrQG29ANI6NmwS4VE9fwbMP9zN16L9FoLBFjAXIPZPmuplOt+62y+qUOdL1BLW4mVZ2faTsk1esim8FhKnIlaGfroJh5AHLdJxWZydBOQCo7z97ZLYVc2wLZJsJ8tThmVb8kUx8ktANdGAsiE1ZZHZdOn9UrvAwcikOPCgTvvPMOGzZsSHwWLVoEwKmnnsqAAQOSzm3YsIEZM2ZQWlrKscceC4Cu60yaNIlIJMLixYt59NFHeeSRR7jlllsS9/jiiy+YNGkSRxxxBMuXL+fKK6/kxz/+MQsXLkyUsZOS8uc//zkvvPACzzzzDK+//jrr16/n5JNPLui5I60GoilCX9c2+vZ14eq7G5q/HEPRiRLJrPM3EdQFm4I6WcwFkhCxGI3vf0SooYFwazORxkZELEYo1ERzdBNt7a0IYVCo04nZ1kBVVbxeN9EUwSwf8nWby+Z9YDaeyjRY9xZhwRy7H7ILSnYmnnwELbkP3dUBoWS0QPm9ZQoylIlc5eJxLLI/dy7tQLEn3EK1L6mhmaFwdT8Uvm1nNmSULsvye3j9+j8V3B6H3kWvcju88sorefHFF1mzZo2lv/3+++/PAQccwEMPPQTASy+9xHHHHcf69esTfpwPPPAA1113HVu2bMHj8XDdddfxj3/8Iyl/9BlnnEFjYyMLFiwA4OCDD+bAAw9MpJQ0DIMBAwbws5/9jOuvv56mpib69evHE088wZQp8ZXDqlWrGD58OEuWLGHMmDG2nk+6Hb7z+l8Z1M+Dt2IQwldDKBLD6/XQwlaiBKmiDk3JbN4hhGBb2GBrWGe3UjcezUZsAiGINrUQa20j8sU34PUQLjGI9feCx0WVd2cwNLxet3VSpQLQDYNT+/4s8bdd1zZzuVyq3UzJjMznUrEK7GPlhlZMrNqSySjL7iSej9dBtn7KVHc+bcmHTHXbvWeu7ypXv9jZLsgliGU7n68LZzYWrl+RFnyoUFdLWZ8VduwxIFlzEnu+H0unz2L//7mA9x++scfdDh0yY7cve40NQSQS4bHHHuPCCy+0nIyWLVvG8uXLueiiixLHlixZwr777puUDaq+vp7m5mY++uijRJls6SPtpKRctmwZ0Wg0qcywYcPYdddds6ahDIfDNDc3J30Aako1fH33BX8tqBpCQExE0IkQI4JB7pV1lUdlcKkbl91vUFFwV5bj32UnPOVV6Bu2I3YuR/G6KfNW4/P4cbk1wuFoItdCZzELA7mQg/y2S8Yl1P3SuM5K3S0D2WSb5MxJY8yYB1fzfYopDMh6m+YPyah9MAsDso1yO6BY++jQ4RqWZ9Y/q37LRWe3G+xoCOwIbrm2VHJ9z/kEIrKi2NqFiolrbOUe6AyZPIBSf3syKNJbI+cm2uFoCL479Bovg3nz5tHY2Mj5559vef6hhx5i+PDhjBu3Y6DMlBpSnstWprm5mWAwyPbt23OmpNy4cSMej4fKysq0MtnSUN5+++3MmDEj7XgksDuGqyS+EgcUVdAkNhNV2gEFHZ1sMbfi9gVZQxJkxIhEEW4Fl8dDKdWImIHL5UdRFFyaBgLCkShejwcQBWsKrGIZSBcoqwFTDtLSmj6VpvlDeGu9eZU0jvqJO1b3ueLXy9S85vpS1eOpK9RCvRJSB1BplZ0Ncxul5iBb+GHzKjVXO+W5fGwPZJvy0UK8NXJuWj9bkakd0sc92/PkmxMiX+LtWpGx7+32R76BoezUYY4zYOVp0xnMAmPC48MkONsNkdyTbGhoprE12G33qyz1s1Of4mlEegO9RiB46KGHOPbYY6mrSw9aHwwGeeKJJ7j55pt7oGWFc8MNN3DVVVcl/m5ubmbAgAG0hQwMQ6B1qPoVBaIi0pHYSGAQQyBQLMILdQah6zS9/xHt675B0TTUTdtoWv0JfceMRvP74kKBKy5mhMIRfF4PhcgD2QIbQWGDZeqkXmi+AnN9YD05pQotVuFyMw3E8VVW9kk31+BaPXsxY06Mu5V1BfkIOtK9zQ6peSSybQGMWT4lo4uhrTwGXUQuoSmfwFCdeUetfiPSk2bh+rkJobEYQkHqfVLfTWnEWM+IpK2vfAXMrmRDQzMnTX+ESEzvtnt6XBrPzTj/OyUU9Iotgy+//JKXX36ZH//4x5bn586dS3t7O+eee27S8UypIeW5bGXKy8vx+/22UlLW1tYSiURobGzMWMYKr9dLeXl50gfAEPH9dYmmaii6hpz/Y0SgCyw7REwn2tKG4nGDAm2fr8UIh9G83kQZKRS4XRrhcATDyL8hmWIWAHmrru1QrAlCDoxyy0KqRPOJjpdpojer3+U2h9kYMlVda0ftXEikOemyWexVtpWQIbcdzHkKJDsmt+Tjo2dMLfjdkHkNOvtsxbCbKPYkLUlNxCS31OyQWs5s0JmJVI8GuQ0n25fvtlJX0dga7FZhACAS0/PSSLzxxhscf/zx1NXVoSgK8+bNy3mNHQ+5YtIrBII5c+ZQU1PDpEmTLM8/9NBDnHDCCfTrlxyWcuzYsXzwwQdJ3gCLFi2ivLycvfbaK1EmW/pIOykpR40ahdvtTiqzevVq1q1bV1AaSiHieQUkiqKiCldCCNCJ5l2nHVSPh36HjmWno4+gatAelCil1B17NK7y0qRyUihQNTXNhdMuzzbczzNbfm95LluIWOj+iIP5DHB2JptMdWSKdFeIOrYYk5adZ7HTLithQNZtdqkzxx3IlVSnkEndHDGyK8hHUClUKLG6hx2NjrlvpQCW+jFjZZhoJTDkEkx7wv3x20pbWxsjRozg/vszL5jM2PGQKzY9LhAYhsGcOXM477zzcLnSdzA+/fRT3njjDUvtwdFHH81ee+3Fj370I1asWMHChQu56aabuOyyy/B2rHovvfRSPv/8c6699lpWrVrFH/7wB/7617/y85//PFHPVVddxR//+EceffRRVq5cydSpU5NSUlZUVHDRRRdx1VVX8a9//Ytly5ZxwQUXMHbsWNseBkkoBhERwRDxyVZTVVSjw2pAAb1jy6DoKKBoKorHjbumGrG5seO4ReYDRUFTVYwCjQuFEElxCFLJJRQUSmeFiVRDxHzaJ8ua3bNSw8paDbKFDKqdfU6z33826utG5LyX1WRlpS2wIvX+ZluSnsRqQs9HCLPTfrv3SLKvsThvdlEdPWNqRiHOHFZb1imNCa2EAbsc9f5k22W/zxx77LH86le/4qSTTrJV/oEHHmDw4MHMnDmT4cOHM23aNKZMmcLvfve7LmtjjwsEL7/8MuvWrePCCy+0PP/www+zyy67cPTRR6ed0zSNF198EU3TGDt2LOeccw7nnnsut912W6LM4MGD+cc//sGiRYsYMWIEM2fO5E9/+hP19fWJMrlSUgL87ne/47jjjuOUU07h0EMPpba2lmeffbagZzYqttPm3UhQaUlM/C7cuIUfnyjFS6DI1gPpaJWlKG4XekNydjBh+p+qqui6QSQaJRqNYQiRV/CiXNsNmQadYhkvdXdsAau9WPNkWkzNR8XENYlcBfmSul2Rq5+KtQpM7Z9s8SMKxfwshX7/TfOHdItA4jpxS8KjRKaCtoP5+5OTuxTcUvNppJZLxSooUr7fSfmUz/Iq72CPXB5yXUGvikPwXScRh+DLf1BaVkIJVVQQFzqC4TAut4pLdSWMCYsRCyATwhAEF74D/SoJjB4aP4YgQgidKF4RQEVD1w2MjiiGQhh4PJ5E/oVsGIYgHI5w9s5XZS9IugFVZ/247fihQ+5VnHmyNVt42ylv95rUa/MdjDubttjc5nzS4HYGO89aiOFpamrkroih0BlSYwoUs33ZnjefMM35xLWQ711vSH+8ct0mzr79iaLd2y6P33AWw3ftn7tgCoqi8NxzzzF58uSMZYYOHcoFF1zADTfckDg2f/58Jk2aRHt7O36/P+O1qXzr4hB8n/CKEjTcce2AIjrcCFVUoaFahCnuChRFQauuwGhoIioixAhjoBOkmUaxgTa2A+ByaXg8bjweF5qmEY5EcsYpiG8X6LaEgWKQurLKpeaW+8x2Mt1JpO+1HDxTr7Vaqeej6SjUOCvfyILZVPld7dIHXWsfIp/NKjNkvs9VzK0sswCUapRXrPqz1WdXGMjnHXRsB76bOAJBD1DJTvRhF8roi3QtUFS1aEmGbKGAUlVKrLmZ5tgm2kQTuohrBgJKJS7Fg3nfQhoauhJCgXW10nbg9P5XFNQsK5c/q39LMoWZTTVksyKf9LeFYnfglBNFZyzsO3NeYnfvuxDBQQaSAntBiArtC7PBYjG8DgptU2rComIj9/6LUf/oGVOdSb6XkctDritwBIIeQFU0PIoPl+JObA+oilKwAV/B7SgvgVAMIxRGKAa6EsNHCRXU4Cdd9ZcuFCS3VwhBLKZzWs3ltttgd0DLpPbMtaqRBoKdEQrMpFpn50oaJM91tb+2fA6rCbDYaZ/NlvyFTra52lPoJJeax6DYRordvYo2G/yleg1IIbJQzO9krv4ptmDlkJtcHnJdgSMQ9BJUVekw2hNEozHCkWhRwgdnQynxoioqoi1MG9sJ0waKgvl/add0CAWaphIK7xAKZLtjeud8gVOzFJpjARQ6IOWKfWCe3HLdIzWUst2odXaRwkshAkQmt7uuSvNrrrurJotC6zWHgC5mG7trFS3fARmzQgrOqQahnanfoXtpbW1l+fLlLF++HIi7FS5fvpx169YB8UB25lg7djzkio0jEPQSFEVBj+m0tIZobG6ntS3U5RoD1euGilLUFoEbP268uS/qaKvb5ULTVMLhKIYhiHR4Ifi8Hv62LZ4kKtcAbKUdyCc+fz5Z6exY1OeKj29GBtCx8u9OHbjlMekjng3zqi810102gSXbcxUzL0Im7Kww80UGUSqkHbLvesJ9Ub6bnUW+N5D/92OVD0O2K1OsAztYvYO9If1xZakfj6uQYO6F43FpVJbaV90vXbqU/fffn/333x+Iu7vvv//+iey8GzZsSAgHYM9Drtg4XgbdiPQy+PrLTykvL0s6JwQ0tbQSDMVjE3g8LqrKA6hq18lsQgja3/wI/C58B+yBqmh5hUsWQhCNxYhEYri0HZkSYUf44kwW/XLAzjShp6ZbTS1X6N6pneuyqdjtDPR2fO7Nq75sbc1Wn7lcoX0hKYaHwcL1KxL12IlvYLfOzjyb+d0p1taJHc+OXGWs2iKfVXoj2PVOyfQuWb1v5gybqf/O1jfZBIaKB17vcS8DcHIZZMNuX/aaXAYO4Ha5CCkxvB43JX5v13oaCEFowyZ0DxANY2xrIRaL4a3pC6q9+8YTIrmIoOPxuCzba1bXmgecXKl4k3IXzC+eG1m2GPrmNmezWcjkPZCrfeZr5WCdbeKQ3hK52ttZ6utG5B13Xwp0b42cm3iuMcunxCeY6TsM+iA9O19XCwNmzAmXsn2vXUGuJE2Q7IpoftZ8hAGIv1uxS/ol3c8c/CtuW9GRA2R6/Lz5e8mVF0H23dLps2wZhPYEO/Up/9ZM0L0VZ8ugl6Ao4NJUAj4P5WV+3G6tYIFAugVmi3YY2drA1jffpuWbdQSbt7P1v8sIbdycsXym+8RiMcu2puYzKIYNgJlCQwybV4vFaks+1+Y7wdkJQNTV8eRlX5lD4r41cm5S5EUrl7rq2YtxnbglqX35PH+hXhfSsNCqX7pia8OKiolrcJ24JWe5ROIgU7/YtUtJFSAyPVs+fZ7t+ZdOn5UIcNRbIko6FBdHIOhFuN0uXC4VRGFBiWSEQRlPIOtukKriqarE06cKInp8a0JV8g6YrOsGbpe18FIsoSDflWKuVaDcm85lT5B63irEa6FkC1qUuk9rJ558If79cqWX6zupnr04ocmwa9RmFhw6E3nSrGmwQz79ZkW+NgvZ7m/nuQsVMPMVLO1M3PLZM/V3qoDmCAPfPRyBoAcRQqAbgpgRX9ErioLH7SYaixXsYdDGdraznlYaEmmUrfBUV1FzxCFUj96fQNhN5R7DKB8+FMXmdoF0MVTU7EGUnm24P0kwkPvL+YbdTTWGypU+2E58ATtCgdnlq1ghlVOjMlrd1yqAULb+6ozmItfAbrbnsEOxgg/J7zyfiaczyY3svo/Z+ro7Iz0WC/MWgMxxkU0oMLdj4foVPPfJB0Vtj0PP4QgEPYhOjLVtYd5viNAai0/cmqZiGIWnNtKJEVba0IlikN0FUNFU0FQIRaCxFcUiuVQqcjvC6DAodLutbQdSMQsG9XUjEnum+VjAZwvNmko+QkEuzAZq8jpz4qLUcnaQE6x0s7Qbr6CYkf7sroaz2XukajO2XTIuKTSvuY8KsQfojvDDUvNjturvDMXwMpDfs/RMMccf6GwbzdebDQvNpLrXZmLM8ilOcqPvEI5A0EMIBEFaaBVNbA3F2BzcMXkrSjzXQCFoxLMmaoobTck9wSseF2r/KvT2UOa2dggBum4QjemEw1HC4Sgetxs1z60Ns7Zg4foVaYNRpmiE2dwTO7sqyyQ4pA6GqXnhU8lnoLba35aak0xIQSoT3Z02GtJX5NWzF1tmiuxMoKHOYFcTlSn5TyGYsxIWKhjI9yvVNqNYBn351JUaEMksKLw1ci6v7DevKG1y6HkcgaCHMIgRoY3qQIidS8Gj7UhopChqQVsGCgou4UYRKhpuVHK7ESqqiqtfFaKpDWEY8dW/Ec9FEIvpRCJRwpEooVCESDQKQuB2u/D7PLgy2A5kQ7ojmic+80Rmx92vM6uv1AnGrpagM6tcKzLFtM+l+s/lmZGvUJDLILGQFWmxtlag88JeT4bjtYon0RmK4SEh338n6qCDFY5A0EOoaJRSTbkWYLdy2DmwI6iGjFpYCG7FSzn9KBVVYDOmgNqnDCMcJdQeIhSOEA5HiEZj6LrR4Vqo4fV68Hk9eDxuNE0t2ANCagik9TykRyeE5AHLHFTIzkBmjn2QWq9UheaTbjYX3aHWNlNMW4KKiWuy9qkdDwYrIcvqunwnI2k3UWjkRsmY5VOKNgHm+87k0urkQ6HCgNW2jpne6kbo0P04cQh6CAUVj+LHgw9BfOqWk6yqKAWHAFZxUUJVxz1sCgTlAYhG0cIxXCW+RDu6OuOijDUgjdbMq9FMk7lElk0NTWv27zaXTUXWNWb+FCD5fL6q7s7uF2eLbdAVSH9ySbaJJpeAYbVqzWSEmG8cAPP7YO7jfFfK8YyQc6mfnfm77GzK7WxYxb7o6ngIZqHYHL1x6ch0bVhn3Fbr60YQE1Hg84LrKBYbg400Rtq67X6VnhJq/ZXddr/uwIlU2I1ki1RoxhCCcCiC1+tBtWn13xmMSIz259/EfcAQvLvXdfn95LZBKoVOrOZIbeY6OjvRFiIMFBLxL7WOVEEn2zX5aidkvYVen4ti2A3Ajgk60ztRSChfs6bJ3Lf5CgP5lM8kpELx+t6ucJF6fxkDIVdfZ0K2PyaiPR6pcGOwkSn/vouIESva/XPhUV3MPeSqb4VQYLcvnS2DXogCaJpGLNY9L7fi0lD7lCO2NmVMa1xMUuMTmJHqS6ucALlCAqcKA5kCAdnxo7eLOVKc2TAtHxV1qordjqudfAapTi9meuPOUKwgSakTbur7kEouVX42I9Su0gyYJ2pzKmSz1qMYLoT5CgPyXZXPbTZgtEt3b5PlojHS1q3CAEDEiOWlkbj99ts58MADKSsro6amhsmTJ7N69eqc1z3zzDMMGzYMn8/Hvvvuy/z58zvT7Kw4AkEvRFEUNE1F7zDy6/r7gdqvAmNrExhGl9/PChldrnr24qyrbPMEnAnzYGe+Jtu/C22z2do6NWhLZ/at89lnl/fLl64Y1Iu59WHO8Gd1zvyxc99iRiG0g/k7sYpGaMeNNlsyK7vPYxaWUn8b2cjUxt4mDHxbeP3117nssst46623WLRoEdFolKOPPpq2tsxCxeLFiznzzDO56KKLeO+995g8eTKTJ0/mww8/7JI2OlsG3YjdLQOIu/qFQhF8Po+tvXzz11jI3n/0qy2E3/qYwHFjUf2evK8vhExbB5nIpurNpcbNZC1vtUIzr+DsDH6pe/Jm1TTkv4Iz15OPOtjuQF2svBDZ6jdT6L1S22kn6VS2e+Xz3Ln6vZg2B9nabuf7NwsGuew5cj2/LJ/Pd9YbtgxWNX3DuUsyax67ij+PvYxhFTsXdO2WLVuoqanh9ddf59BDD7Usc/rpp9PW1saLL76YODZmzBhGjhzJAw88YPtezpbBdwGFvDQEUSOKIQpb4SseF4ahI2KFGTN2B6mDXez5fol/Zxqc5WCZaYBL1TQUokGQMd5Hz5iaVJ/dqHnmCSFVpWx35V9fN6Ko7m097ZbWNH9I3irsbNEcU20IclGoEFcI5rants1OO+R7liosp2pO8tnOKXY0RId0mpqaAOjTp0/GMkuWLGHChAlJx+rr61myZEmXtMkRCHoxiqLkJRC4VTeqkv9XKnQDEdVR/F4QAqF3z7aBjF5o/qTS1ROTWZAodP9b2j0snT6Lt0bOzTgxWz2LeW/ZTCGBbbLFIcinH+XkUmjfm5+l0D7N5qWQ696pfZaqGbD7bNlU9/K9sfv92LmfzBbZGdsCK0EA7G8VFGJP0Dx39/wa6YBhGFx55ZWMHz+effbZJ2O5jRs30r9//6Rj/fv3Z+PGjV3SLkcg6KXEAxTZj0cgy+e7XWCEI2x7exktX32J3jdA86rVNH+8im6xLrTALBRkU5fKc9kG2nxcuwr1Fzev4uUgmqkeq7bYuWc+K/9Mg34hNgadMUDM1Rd2SP1u7X6fqUJIIVkP7ZTPpJUoNJR2avKoYqzS8zWgzXc7aeH6FU6kwgK47LLL+PDDD3nqqad6uilJFCwQfPbZZ9x0002ceeaZbN4cT5v70ksv8dFHHxWtcd93VEXBKDCEsV1aP1tLy6ef0fb114TbW4i2thFpbO7Se+ZCCgW5hIFc5Lv3nu9edzFU9LmMIyF5Uu0pVX6+95V90xmvg0IyD267ZFzeq/dM9Zgn8VzPn20fP9fxTJiFAjuGhkBe9gKpyHwO+XLS0H3zvub7zLRp03jxxRf517/+xS677JK1bG1tLZs2bUo6tmnTJmpra7ukbQUJBK+//jr77rsvb7/9Ns8++yytra0ArFixgunTpxe1gd9nFFVJ5BHoKkoGDaDPvvsRKO2Dq64K7879qNx7GHajHHYV2VwTzXTWjc48aOY7geRrfGVFtslr2yXjEhNq0/whXR7MJhtycsxlX5Bq9V8swzvzxJwrQ2Uq+bRB1m+uJ58kWfkIDvlgN5BUIfczb1EU8n452Q7tIYRg2rRpPPfcc7z66qsMHjw45zVjx47llVdeSTq2aNEixo4d2yVtLEgguP766/nVr37FokWL8Hh2WKQfeeSRvPXWW0Vr3PcdNU8bAjukChiq3wfCDYpCqNaNsWs5rqrynpYHEELw1Ma7eWrj3Yljmaz2i7Vqzmd11NWW+hB/Thni+a2RcwtaMVsxZvmUgrQbqcZr5n632vfubP+YV8jynvkYahZyf6tkTXZiS8i25mqbWbCyg7kPMtkWmDMjSqQgaXeCl7EJ8kHez9EQ2OOyyy7jscce44knnqCsrIyNGzeyceNGgsFgosy5557LDTfckPj7iiuuYMGCBcycOZNVq1Zx6623snTpUqZNm9YlbSxIIPjggw846aST0o7X1NSwdevWTjfKIY60B+isSCCFgKgRoS3WluSJYERjRNvbcQ0dSFVpHSWePvS4NEC8zTHd4IzaK4HkbQI7lthdtVKD3JNNPgOrHdW62Ye9WMFsCl25m33/zQZwUpgqdPsl072yBRTKRL4eCnYwG1pmendGz5hqK/dCNqHGHNsiUz2p561ygdi13ZB9nO/70BOZNbNR6SnBo3ZvJH6P6qLSU2K7/KxZs2hqauLwww9np512SnyefvrpRJl169axYcOGxN/jxo3jiSee4MEHH2TEiBHMnTuXefPmZTVE7AwF9WBlZSUbNmxIU3m899577LxzYT6Z3yeEEIjENC86Pmpa7oG4QKDEUyFrhU3SQgjCRpjt4QaaIo0YwmBw2e74VT8ARlsIz5dbCAwbhMtTPB/iQpHai1hMx6Wp/G3bfZxSPa0oRmDFIlfExHyomLgG1tuboDPlroeuj40P2f3lq1lM/ey46+PoGeOopvC2ZOvHntw2gezGgdWzFyfyJRQqtMnv19zX2YSCVPLJl9AZwTL2fD8YKe8XLbieYlHrr2TuIVf16lwGdrS9r732WtqxU089lVNPPTWPlhVOQQLBGWecwXXXXcczzzwTt4Q3DN58802uvvpqzj333GK38TtHOBoE1QOKAAxAAd1LXGGTPPFrqoJuGKiqSqG5hraHG/im7WsEghpfDR5txzZPNBxF36kPalmg0McpGPkDMYy4BsMQBkKA6Pjb43VjWERONA9yj3x5B+cPvC7p/P0fT+eyvWbk3Z7OqKLj+/3pSZqKjYw38Nb61BXgCpienEsh04SQLWZDpj6IrwhzP1fs+X5FsevI1Ie56pYBg7oyWZGdJE35BrfKlgNC/p0paZR8J1KfN5cw0JmAUXbehe6m1l/5rcgr0JspaMvg17/+NcOGDWPAgAG0tray1157ceihhzJu3DhuuummYrfxO0ckohOJRhDoO4QCJT45isT/DAQGqqZ0TIqFbxwYwkAgUFEp85SDEOhGDEMYRCIRxKD+KJ7uVbcJIYhEooRCESLRWEd2RwVVVVAUaA+2s2nTFjZt3sp9H93MfR+mv1ezP7mNaDTKQ5//Oum43+/nifV38dTG3/H0prt5evM9addmGywzrQBzqYEL8eE2q3/tbmOY3dNgx/6v2bhNtikfsq1+7RpQWmWpLIQxy6cUrnHBWuhpmj+kaKruzoamNpMaWjgbZrdEc9l8kzP1tsncoXfQqdDF69at48MPP6S1tZX999+fIUN6175Sb0OGLl77xWpUTaGkTMXlUuJzveGJG/chQI2AEhcChFAItSn4fb6CQhILIdgc3MS6ti/xqB72KB9CMNqEaA7ij3gIr9+Gu6ICzecmsMtOKO6uFwyEEIQjUVRFwd1xPxmEKRQOs23bdkoCfgIlATRVRVF2aEdkH4RjUTwuV1ogplhMJ6breD3utP7KN1SyGXOWwFzhccG+UFBodsBMK9TOZEEEayGikBDOnZlw5ARZDC8Oq/qKqcGxs4Vhdb9MmQfzraenMLelN4QudshOt4Qu3nXXXZk4cSKnnXaaIwzkgaZoBHwltLcaGHqHPKZ0hAxWY6DE4gKBIkAx4pqETuBz+Sl1lVLprcKjehDBMO1vrySyYStGOERk00aCX31NrL29k0+WGyEgpse3BtxuVyKYUjx3Q5itWxuo7lNFZWUFXo8Hl8uFpqmoqtqxbRKf5L0ud5rNBYCmqXEDypheNA+N7tq3LmYgmnzrymSwmc8kJOsoxJddIuMIFDNJUsXENZaZL4uRfKoQTUGqRqAQoz7I/30phnZEGjL2FsHEobjYXg5eddVVtiu96667CmrM9wVFAbdLwzD8tLW1U1rmQlEMwIhrC1LmOUWL77NrBRgWKopCmbuMIRV7oqCgiygYBq5AAE2ouCoqMISOEYmg+f1FeT4r5OSs6wbRaAyfd8cKXghBMBhiW8N2+vWtxuvNntAp1zmvx0M4HEEBXC6Xpe2FjHMgBESi8a2LkoAPTVM5pTrZpccsDIxZPoUKiudbX1+XvLLOJ+hStrKFtLMYQk993QiWrp8F0wvTEqS2YeH6FQm3y2zJnvIR2vLpm0yak1TXxGykC2iFaXFSn3/0jKm2jTc7a1ORqnlyhILvJra3DI444oikv999911isRh77rknAJ988gmapjFq1CheffXV4rf0O0BqtkMhBO3BEKhRAgEPGO54Qa3DL1XpmLBCApcSwOXSOt2GSCzI1u1f49tm4PmyCd9eA1D79wUhUL3FyXIYf6MEhmFgCJEwGhSGAAW8HjeqqnaUFbS1B9m+vZGafn3xWKj6C8EQgnA4gktz4XJplkKBEIJwOEokGqUk4EfV1IQsZt5eeLbhftvbDYWq7Duj6s+k5h+zfEoiAZTdydJcX6GDfqHbIFb3l8hnWTp9Vtb02HbbZ7V1kE3YgNxGelJwAZPxp4WmI9v2QGqExFTBrzu9LOxu3ThbBr0fu31ZkA3BXXfdxWuvvcajjz5KVVUVANu3b+eCCy7gkEMO4Re/+EXhLf8Ok57+OD5Rtra34XZ58Ho6PA+0EHFDw/h1kYhA0X143O5O3V8IQailleC771PasAUqqvGMHQ2B4moG4rYAEUBBVRRULb4toKbkWxBC0NrWTlNTM/36VeNxF0cYSGpHKILLpXUIBUrSuWAoQiymU1riSwgo2ZBCQTZPg0L30ItpS9B5C3I6PenKvijGs0DyJFpIRkCrOqE4dhuQ3QPALIAU0q/5pNHO1LZielykvl+OQND76VIbgpkzZ3L77bcnhAGAqqoqfvWrXzFz5sxCqvwe0hGLQIsSKFUIR0PouvQm2CGjCRHfYig0rfGOegTRliDBZZ/iXrsdRYnh84agSFqBtPsZAp/Pg8frxu1y4dK0JBsAIQQtrW00N7dQ0wXCAHRsH3g9cUPDWIdLoxDEYjqtbUEMw6C0xG9LGLBD9ezFtmP3F8NC3SrBkznccaHU143o9Cq0WMmUpD2CeUIzR0ws5D6jZ0xNpKu2k5go9bw5eJBVdkErLwB5PFtAokwU+pyFkskbI9V+wEmR/N2jIJPy5uZmtmzZknZ8y5YttLS0dLpR33WkWyFaBDBQFQWfX6U9GKS0xI9Ch0ggBLEYRMMgDAMKnbsNgf71FkJLVwMRQkcOQTVa8TVHQev8NoQZOeGqqmoZ71BGTWxqbiEYDNGvb3XCuLArUNW4UBAOR9ENnVhMxzAMvF4PnjzvK7cOsq0qZaAhuSrLtKrMlD0P7G8fmMP5mo81ndg7DHxT984L0VoUK1yzJPX7SJ/cVmS0f0i6bvaIjm2C3C6Ddt01u4p8tQPZtgjMx/OxYegOhL4ejO3dd0O1CkWr6777dQMFCQQnnXQSF1xwATNnzuSggw4C4O233+aaa67h5JNPLmoDv5MosY5tgQ4LQsON2xMlFtNpD4bw+uPGd4auouHG63IRiUQRQiStsCFubGgIg5gRQxc6mqbi03woKEQbm0AXRBsa0T/bgOE1CI3dhS2uMiraXZRGW4v6WFIYiMV0vBaaByEEkWiUhoZGNE2lpl81mqZ1mTAQv2c893hMjxFqixAI+CgtCXRsXRRWpx2VvByECxnoC/ES6OkIftmQfZVvG2UwpGIZcqbeP81YNI8sibKM1AxYtbG3fSeFbh3I7ZDUd15qpyoeeL1YTSwYoa9HbDkaiHTjXT3Q75+2hYJZs2Yxa9Ys1q5dC8Dee+/NLbfcwrHHHpvxmmeeeYabb76ZtWvXMmTIEO644w4mTpxYjMZbUpCu9IEHHuDYY4/lrLPOYuDAgQwcOJCzzjqLY445hj/84Q+26xk0aFBiT9n8ueyyHQZcS5Ys4cgjj6SkpITy8nIOPfTQpGQQDQ0NnH322ZSXl1NZWclFF12UyL4oef/99znkkEPw+XwMGDCA3/zmN2lteeaZZxg2bBg+n499992X+fPnJ50XQnDLLbew00474ff7mTBhAmvWFDhIKTvCFWN4QbhRhBu/X0V1GQTbBO0tBnpUxePxoGkqmksjFI7Gg/mEI4TCEba2NLC28Us+a/yUT5s+5YvmtTS2NwEQaWhk82v/Ibjqc1q+WEvQGyPUR0Mrc1FTolNV4kLRdWkBmHjGQrIrymsSMQC8HlRVSSvT0trK1q3bKC0toV/f6g4PgOILA4mtAV2nrT1IW3sIj9tNeVkJLpeWCH5UKMXKVW9mzPIpli5/hQbnKcTFrKtUwIVm0it2pMFs9zffK9f3a7ZrkOWt2tpZYaCz20rmd0D+O1twJrn9kTrxFyseRJdibKd7hQHi98tDI7HLLrvwf//3fyxbtoylS5dy5JFHcuKJJ/LRRx9Zll+8eDFnnnkmF110Ee+99x6TJ09m8uTJfPjhh8V6gDQ6FZiora2Nzz77DIDdd9+dkhL7iR4gvsWg6zt87D/88EN++MMf8q9//YvDDz+cJUuWcMwxx3DDDTdw/PHH43K5WLFiBSeeeCJerxeAY489lg0bNjB79myi0SgXXHABBx54IE888QQQ394YOnQoEyZM4IYbbuCDDz7gwgsv5O677+biiy8G4h1/6KGHcvvtt3PcccfxxBNPcMcdd/Duu+8mkkjccccd3H777Tz66KMMHjyYm2++mQ8++ICPP/7YtsGLNCr86stPKK/wg3ABCgpK3J5AiRHXGGgIAW3tQTwed4cxoUDXjbiWQI0b6G0Nb+Hrtq+AeGwDl+Kmj9aP/qX9aPvgExpXraR80CBifd3EvtmG0reEkuG741PL0CIxtDUfoA8dAW5P/P4CoobApca3NBS0tMA/EulJAHEtRSQaQwE8HrelMNDU1EwwFKJvdZ8uEwTkvXTDIBSKoOs6Pq8XT0cUxmAogsft6tBKFFa/NCzMtNqSqyk7gWZSyRXApqsG5dS4+Z25Ty4jR/MkZzdUtGxbdyINAF0nbkn6Hq2MHLPR27QEEvN7avaMKITeYFQooh8htqUn3OtqlOrnUNx7F3x9nz59+O1vf8tFF12Udu7000+nra2NF198MXFszJgxjBw5kgceeCCv+3Spl0FXceWVV/Liiy+yZs0aFEVhzJgx/PCHP+SXv/ylZfmVK1ey11578c477zB69GgAFixYwMSJE/n666+pq6tj1qxZ/M///A8bN25MpGq+/vrrmTdvHqtWrQJyd7wQgrq6On7xi19w9dVXA9DU1ET//v155JFHOOOMM2w93w4vgzUdXgZxhOn/x4kLCbGYTlt7iLJSf2KSNZcKxYIE9RAuxYVH86ApGnowhvHFRvRVX2KMqiNW6yHmiUJTFBHQCPiqKKMfiiHQPvsQvXYgojSe7jhIC0HRiqFEMdApEZWUUJW0TRGfcAWiw6VQvj7ujgBCqRP9DnuBIP369rUsUwyEiLs5hsJxzwGvx4M3KdYB6IZBJBJNuD0W0oxc7oep6tV8LMSzTcZdKRgU26dcToJmy/tMXhldmcq4s2TSEhQi7HU3UgtgJ/phNs8HO33vCAT5CwS6rvPMM89w3nnn8d5777HXXnulldl111256qqruPLKKxPHpk+fzrx581ixIj9tXpd6GRxxxBEceeSRGT+FEIlEeOyxx7jwwgtRFIXNmzfz9ttvU1NTw7hx4+jfvz+HHXYY//nPfxLXLFmyhMrKyoQwADBhwgRUVeXtt99OlDn00EMTwgBAfX09q1evZvv27YkyEyZMSGpPfX09S5YsAeCLL75g48aNSWUqKio4+OCDE2WsCIfDNDc3J33i7JjchaKDGo7bFMiPogMCTYu7y4XCEYSiI9TojrKKjs/lp4+nD77mGGxoJLR6Lfra9US++YbIqD5EBnhw+0rwaeUYVS7wueIreyFAVRG+AKK1MdGeGGFCShMR2okRIag0EVMimDUBoXAUwzBQFAW3y4XX48Hn9aS59UF8km5ubiHYHqRf3+ouEQbk1kB7MExbewhN0ygrDeDzJQc3UpR4oiiP20U4Ei3Ia8MsDGRSu1ZMXMOY5VMS5/O1EM+kJrayWu+t2BEGvg1ITwSJ9E7oKmGgmLkW3ho513Y7swkDnfVYcUjmgw8+oLS0FK/Xy6WXXspzzz1nKQwAbNy4kf79+ycd69+/Pxs3buyy9hVkVDhy5Mikv6PRKMuXL+fDDz/kvPPOK6gh8+bNo7GxkfPPPx+Azz//HIBbb72VO++8k5EjR/LnP/+Zo446ig8//JAhQ4awceNGampqkupxuVz06dMn0WkbN25MS9MsO3njxo1UVVXl7Hj533y/nNtvv50ZM6yy7nV4GajRxOSfMMkXgBpF6PEVrN/noaWtDQ8xNNVcBtBVYs2tbHnzLUrrBhBtbcVdWkqwr4IY6MWruCilGoGBj1JU4UJVNCAeKtgoqUDbtgEdHYSKTykjRgQNF27FjUtV0ISB6AiJYBgGmqri9WSPhyC1Bs0tLbS1t3doBoprPCiNBcPhCFFdx+N24/d507YrzCiKgqapeHARDkcTAYtcNtsmoxtm0xJsu2QcLrbEtQTYnwjlSsyu1XZvVUVLpDDQXZbo8ruBDhfbaAzdMDi7zn6EVSvMcSW6+jkKtf2wwo4hpoyUaYV8H4sVldMhzp577sny5ctpampi7ty5nHfeebz++usZhYLupiCB4He/+53l8VtvvTXNoM8uDz30EMceeyx1dfE3VKa9veSSS7jgggsA2H///XnllVd4+OGHuf322wu6T3dyww03JIV8bm5uZsCAAfE/FL0jZ0HKRQogdFAjCMOLqqp4PV5C7UECpR1734kyMYSuo6JBTCcwaACqz0tYV4mqBgZxYUMVGm7hxzA69tdjYRQFFLcPT3sLkdZv8JTW4RIeKtkpPjkKAYQ7kiwZGEIlpuu4XJlfGbmlEAqHaW1tQ9f1DuPB4gkDoiPyYTgSJRaN4fa4KPP5UTK4OaZiFgoikSjSxzOfNiYEA3YIBuYJumLiGsbMn8Jb67vOGCs1ml1Xk68AIu0RXCduYeH0wgLywA5Pg3xQOpJmKbHsOUCy9d8OTU33blfkK0haYVeoyPZ9FDNEt8MOPB4Pe+yxBwCjRo3inXfe4Z577mH27NlpZWtra9m0aVPSsU2bNlFbW9tl7StORJYOzjnnHB5++OG8r/vyyy95+eWX+fGPf5w4ttNOOwGkSU7Dhw9n3bp1QLzDNm/enHQ+FovR0NCQ6LRMnSrPZStjPm++zqqMFV6vl/Ly8qRPAuHCsvsF8eNix8Tr9bgxYiqx2A4vAIEAooitTZSFvZQM2hX/wJ3x1vTB06cWJepC13VC0RBt4fb43rquE47GaG0LIQT4SkuJ9RuA5+v1xEJttETakfYLoIDuAcOLYUA4HIlvYWjpbY6vyKI0NbewcdNmmpqa8ft81PTrV1QDQsMwCAbDtLa3oyhQWurH5/VmjHmQCSkU+P1efF4P0WgMw+icKU3q4NpVauXUtMCdFQbsehZIAUR+IPP2hvm4TCpUSEAeIGH41jR/SMayZu2ARFEUXC6Npzbdk7Fuq+0caWkvz+WbqKlYKZE7W3cxk0M5dB1xLWfY8tzYsWN55ZVXko4tWrSIsWPHdll7iioQLFmypKAQk3PmzKGmpoZJkyYljg0aNIi6ujpWr16dVPaTTz5h4MCBQLzDGhsbWbZsWeL8q6++imEYHHzwwYkyb7zxBtFoNFFm0aJF7LnnnolIi7k6fvDgwdTW1iaVaW5u5u233y7wy+mYcA33DivBuEFBPAWy7gWhJbL5KYqCz+cj1KajC0Gz0USECHpzkMjST3DtWYfWvxJFVUBVCXjLUHUvsahBo9hEm3sLbp+C5hEITwh3QCTSDouqGtSyfvi+WUep4kbXDSLRKOFIlGjEIBIWRMIx3C4X7o5VtBRKDMOgvT3Ili1b2bxlK7quU92nD7X9aygtLSmKzYBACgIhWlrbQVEoLQng83oKNgyUfRr/FNeuIVPo3a6gkEx7ZvI11kuNDphtZW313IW2VWYrtLqflTAgidu52Au8JQWdzrrY9eZtHDtIO4bebjT5beSGG27gjTfeYO3atXzwwQfccMMNvPbaa5x99tkAnHvuudxwww2J8ldccQULFixg5syZrFq1iltvvZWlS5cybdq0TLfoNAVtGaQGHxJCsGHDBpYuXcrNN9+cV12GYTBnzhzOO++8JHW0oihcc801TJ8+nREjRjBy5EgeffRRVq1axdy5cel3+PDhHHPMMfzkJz/hgQceIBqNMm3aNM4444zE1sNZZ53FjBkzuOiii7juuuv48MMPueeee5K2Pa644goOO+wwZs6cyaRJk3jqqadYunQpDz74YKItV155Jb/61a8YMmRIwu2wrq6OyZMnF9KFcVdDoQFaXP0vXB3JjdREpEKBkCIBbpeLcNhDKBQl5AkS1aP4VzaiVJXi2W8n0KIII244qakqmgciRpiYLnBHfbTrIcJ6iDajEU33orfruNxuNM2FUV1LYP1a2r78hM1VVfg8fpQylXLhw6e7cXs9iYlX7s+2tbXRHgyiaRqlpSX4fb6k0MSdRQod4UiUSCSG2+2itDSQyIdQTARktT3IRC6bgnziFWTL5GdGRkKUFDoBmYWBbBNgrsQ6VuelytoqkE22v1Npmj8kaY+7ELuJXO+KedvAbrKjXPXZuSZTuTHLp8B8aw1TpgyXqccSbq95qvzteiY4FMbmzZs599xz2bBhAxUVFey3334sXLiQH/7whwCsW7cuKYz6uHHjeOKJJ7jpppu48cYbGTJkCPPmzUu4wncFBQkE5eXlST80VVXZc889ue222zj66KPzquvll19m3bp1XHjhhWnnrrzySkKhED//+c9paGhgxIgRLFq0iN133z1R5vHHH2fatGkcddRRqKrKKaecwu9///vE+YqKCv75z39y2WWXMWrUKPr27cstt9ySiEEA9jr+2muvpa2tjYsvvpjGxkZ+8IMfsGDBgk4m3VDA8ACiQyOwQxCI2xcIhB4/L4TA43GztXU7sZIoaiyGa10DDK0j3NKGrjdj6GDoalwNJUIYqoJbdYPiJkwUl8tLlVqL5o3HF4ir+ZuI6lH6+CpQt35JtF8pah8fmlDQVYErGtdUGIZBezBIW1s7sZhOIOCnX9++CU1DsZMSxXSdYHsYl0ujrDRuI0BHXoeuIBrVE3YExbyHFArsuKq5TtwC6VuJGessZCUrkw7lMvazWs3nck2TE9bSkTvCDVsJDHZtH+R+urn+QvjbtvvSUlqntsGqPwvNx9AZg89iTcaF1POtFgTUKuKx3bs5UqFalbtYBw899FDW86+99lrasVNPPZVTTz0134YVTK+KQ/BdR8Yh+GLl0h1xCBQFBRWhudENQUyPYhAmpscwDAOhe9BjYBhxA6lgKIyuRAgoGiVLvkA5ZAghjxd/QMPljgtnqqph6PFVr9ujohhyCyJ5hygeUChKJBxBi7SjfPUZW4YORi330iccwOdyo6Jg6AZbtm4FFMpKS/H5fV2yUgdTSuJIBL/f12GDUPTbmO7XofWIxdB1A7fb1WEnYU8wiGdsDOJxuztSN1trDOxM4LnyH6TWB7ld+lKT0RQj+FC29kiyxR2w83x21NbZtgvMCCHSBALzfYoRiS+bJsXOql7+net7tVNXdwZzapo/hJJjP+7xOATg5DLIht2+LEhDsNtuu/HOO+9QXV2ddLyxsZEDDjgg4TLoYI0WbkQLRXYEGRLQ3LwdPRZGUQSapuJyudE8bjTNg+YNoCqgqC5EqZtgWMFvaASFgT/gwePx4C11oaoKAggFDVqaDXw+cHvo8EZQaGsLU1oSQAgDUDAQBKMRNAU0jw/h9RNrDuJ1u/CoGhoqhiFYv3UjbXoLe9TugaZ0Xe4BaTRoCEFJSQDNwoCx2ChKXLvhcbswtA7BIKbjdrs6Qhxnf9ZoNAZC4PHsEFysthKyqYIlckVsZ3Vp12rfrKGQ6vdiThSpaX+7KpFPV7lZFissr1kYyHQu9Zj5meR/zdtMnXlmu8JnZ6mYuIaGubtDLwhXoGh18C2ZoHsrBQkEa9euTQo5LAmHw3zzzTedbtR3nS2bvsGIVRNsb2XnXXdD01wEAqX4KocCBgpGh12BgdKR/1joYRQRA6HjcgHRMJob1JYtlAQMlKiC8JYgvOW4NRceNYYS0SEkUBWVSNjFp6u+YK/hQ/hs7Xr8gQDhcJhILIIeakfXQW9rZdfqndm4ZjORknYi0ShbtmyhZlA1lRWVXSYMCBH3DmkPhvB6PAS8xU+FnIu454GCqnYYVkaiqJqK2+XKaF9gGIJgKJ4wyaq9ZsFA+phnG4jzNfCD7JoHea+u8ie3G3xITmx2Jzcrt7nUa+1qBwAMIXh8/V34ffFw51JQ6wpNSTZ7i0xlU5FCwegZuY0wCxUaKiausf38ucq9st887CvOHXozeQkEf//73xP/XrhwIRUVFYm/dV3nlVdeYdCgQUVr3HeVzz75kPJRY2hva8HQdTTNBaob4SmLW/Gbyib/WyQOiJiOoW0kFqrCvUt/iLWiRBpRmtfjEVGqhAtDQLQBIijEhIfWlkY2rf+K5u0NfP1NmPLySkpKS1mzdj0DBw5E8/r58ou1bGnYjsutUdG3nJb2Fg6qOQBXkdMkJ56pY4ugPRhC6UhV3M2yQBJxwUBD01SiUZ1QOILbpVnGKQiHI7hc1q6Y2ciWByHfVVt93Ygeswq3G4kw14T1bMN9gJKkUSnm8xi6kWSs9WzD/Rz11t2MWT4kp6BUaN8unT6L+tkjctaRbavBrk2Jg0OxyEsgkBb1iqKkRSR0u90MGjSImTNnFq1x31X69K1h65YNuD3euLGcbWs5ZUcgI5eGa0B/omu+JlQTwFvuwu2vBdEPMFAMD4Zu0NzYTijUgktzUV07EFdZJTWuCgaVBGhva8fv9zN2bJ+4Ox9RGhtb8AYClJeV4fK68Sg+2lpC+HyexAqrGMgAQ8FQCFCoKC+lubWtaPV3hvhXEQ9u43KpRKIxYmEDj1tqC+JGlpFolLLSQE5tRuoWQrawx8WkJ43E8gmaJJQYCI1nG+7PmSsC8tMOQDyVuMudLNC+MuZKW/eCwoWCHXYVKxKeIdkMF83/lvEPFnZhcCs7FBIYyuHbS14CgYweOHjwYN555x369u3bJY36rjNs7wMIBHwII75yEUZ8Tz8fFEXBvdtORD/6gujnGzCG9sVVIf3yVYQKivCgqW1xbwVUdqrtT1lZ6Y69+X7JNiDqtk30KXOj7zIMBGxraKRvn2paWtqIRCJ4PR5MC6281frxBInxNMnhSBS9I1Wy1xPfIlCVuIdEd9gO2CFuXxAP1ax3CACKouJxuwiGwh3ajOxttbLZldsHdiYZszCRyc3RHPI234mrq7QLdtXYf2u8C4ihiPiELYWC1Enf7uSdinRfNWsIJHZCUUvVOut3JDXKpULPNolm8jixygJZPXsxTN+hss9kn2DWLNidwDM9Q6qWQrq59lSCKbD+DTnkh90+LMiG4IsvvijkMocOwoaKBzeogmDUACFQfRW5L0xBKfWjD6rGFdGJrl5PbPed0cNRfDv1IwI0a23EjCgl/ioC/gCqphKNxhBoGIBLVVFNk7pQFNRoFEXE4yBKjYDb7UpKaxzWo3i17PkMzMhBORKNEYlE40Z8HjcBvy9pf96laei9SCCQKIoSj+3g9cQzULYFicRiBPw2LJ8FhEJhNE3jma33Eg5HOWfnq9Im8VwToPm81US26KDLmdL3Z/zl8ztQwls5Z/hvbT1bPsJJKnKvu5Dr488gIBEhMreWJbVPkgc5a68QwxBxV9I865Zsu2Qco2fEJ8m31s9NrPSt4kuMnjG1I/eBdWZKec1bI+cmBAwZMyCR/8Ki/I5/x0NAp24zmLEToTCb0JApNkK2eo96fzJwV8775ovbHR9j2tvjmkyHwmlvbwd29GkmbLsd/v73v+fiiy/G5/Ml+flbcfnll9ts5veLHemPP024HaZ2v+1VtxC0fPIZDe+uoLL/AGIeQaSlGa1PH7z77U3UoxMhTGnMQ4nbj9qxkg2FIxiGIKYqlHjcqB33jCphXNu24W5pRR84lNSXQkYoNISgPRLCq3nQVCWx8krPdAgQjycQCUeJ6QYul4bX484YwTDU4Xnh93nSzvUmWlraUdS4kOB2W6d9lkRjOrpuoKoK0WgMt0uLx9lXkvfM81WDQ1wVvmlzC9P2vpG/bbsPgPbmEKG2MBX9ytBcakZ3u1QKmdTlhJUpxkI2g7dCnjeVeJCsMJGIwOv14HKpHW68O4hEYgC43fYMYvPVRKR6WUihIJuhZ+z5fomkSVaYPQ3MoZMT8SOyuDTacTksZLWfLZZGV6U/BtiwYQONjY3U1NQQCOTennNIRghBe3s7mzdvprKyMpESIBO2BYLBgwezdOlSqqur07IHJlWoKI7bYQasBIKCEYL2dd8Q/Ho9Xl8pSnM77VoItaYWo6YGv8+D4lWIae1AlBJRiYY7nvrXEBgARnwfv7TUSysNqFs3U96mog/cM55NUBgYuoFuxP9rdKz0ZfCeePx/BVUFVY0b10kBIabr8eRBxLUBHrcM+pP5Bx2NxghHopSW9N7VgGEIWlrbKS8LdMRxiKFAh9th8vMJAeFIBFeHkaKkGIOaEIKm5iCRiE7f6tKEpkUIQVtjEIBAuQ9FVZKEgkyr4XwFgkLTGxdDEJDE7VB0tjeGCAYj+P1eykq9eDzSXkAhFA7jcbtta52OeuvugrQl+dhMyOBQErsRLaWwIYUEGbdACgmFxKbI1L5MIbitrutKgUAIwcaNG2lsbCxqvd83Kisrqa2tzTn2OIGJupGiCgQSQ6BvbiT45vu4fjgC3eXB5XLH/eoxiBFGKAKP8BMKRTsmKJWA30dMN4gZApdLIRqLoG3fitbUTHvtoPjEriioajwRkKaqqJqKqiTnDzCEiAsNuh4XHDpUwJqmmgZie0F+dN2gtS1IeVlJj3oaZEIIiESiRGMxSgJ+4kkhRbwfozE0TU2s/iEuPITCkbhwVuxwy0KwfXsLJSUBPB4tRRARREIxoqEo/lIvqitZg5FpFWyeXHJRSPCbYgoDEjl8hUJh2ttjBMMxPG6N0hIPXq+LSCSGz2b/n9znsrwEo1R1vV27CSkQjFked96X90vVNlghhYFUDYPdgFN2bU0yCQXdLRBIdF1PykfjYB+3241m00usIIHgtttu4+qrryYQCCQdDwaD/Pa3v+WWW27Jt8rvBV0iEAB6cztN//0Y/wFD8VaWJrYA2ohH7aqgBiGgJdaIoYbwi1JUI4DbpdEeDtNuNOH2qpQ1R1AbmgjutBter2fHqkqJZ1fUiaETxcDAR0k87XIK8nUqZAIUQtDc0kZZaUlBuQW6GkMIWlvaCQR8uExJc+T2SCSaHO1Qag/cbnfRBZy4XYaRMTlTXFPQTqg9TFX/ClRNS2pDqlCQT4ChXMJAqmGgvFdXCAQS+d7FYgZtbWHag2FKS1y43W58Pq/t9zFfocAu2SI5pkZLzCSY5dIi2AmPbTeMdiqyjVbXdodA4NA9FCQQaJrGhg0bqKmpSTq+bds2ampqLIMWOXShQLCthfZ/vkPg2IMRFR6CShNtohFdiaKiUUUtigrbjU0YGJTTB6PNj6ZohMJRIp5mCLRT2hijohEiuwwlrIdRvTpRJUyMCDpRdGIY6ChCpZoBeJTO5HFIR4YB9vu8SRNub0DGS9ANg4DfeoKRNhbRSAyj42fVFdoBuwghaG8OoigqvlJvIiojZNcSQOcFgp5EurQahk4kquNxuyzjSKSSyS20GMKBHSHDzgo/m1BgVyCw412Qz7WOQPDdoSAvA7mPnMqKFSvo06dPpxvlYB9hGIhgOL76U6GN7bTSAAg0XPiVAC5VoKDgVXxEogaxmIrP5cbjdqOqGiJk4DNKKFHDKKIBTdOIRMMExVaEkizcKaioqBjEuuBpOrI6RqJFSZ1cTAxDJOwbMrUr7jqp4PXG3RRVRSG7fXvXoigKgXI/kVCMloZWSivjniaKomSctOv7XBZXaa+Pq6QzWb33VmEAzFEnVTTNRSgcsfU+Sc2G2QOks0hBINtELSfjXMJAfIsis0AgQ19nIpsw8W1P2+xQHPISCKqqqhKGU0OHDk36gem6TmtrK5deemnRG+lgjR4M07jiQzwuH6FKlejqNbgH1+CvLkNBIaCW4Fbie/iGIXCHy3AbbvxuX4fxX3zycrvL4x4DNHSoXgUexUc45kXx6Gi4ceHGLbxoijv+EQXJkllRlLhxXktrEF03eo1QEDcOjHYEJspunBaPaaR0WWTHfFEUBY/PRSSo0Li5mar+FaDa39KxUnVnmlh6gzBgRmpENE1FNwQ5vrok5AS+cP2KrJOs3XqsyDekM+wQxDLZG2RaxZu9FjJluUw1jEzVGoxZPoW3ejhQkkPXkteofvfddyOE4MILL2TGjBlJoYs9Hg+DBg1i7NixRW+kgwWGoOmDj2lfuw73gEGU7D6I4ObNuCIaAaUfAApRDBElFlEwYho+lx8txf1KQUFRQSeKwIBYjHA4gqpolOr98As3ihJPgRz/P0Ve2CUoiorf56G1LYjPKzMIStfGrrlnbgQxkyHhtw1FUSitKiHUFiYcjOINuBPHU5GrZBl214oxy6ekhfztbcKAGQU6gn91TkgrJG+A1VZBIYJAqgGjDBhkRSahwI7BaKbIiVC8RFAOvZe8BAIZrnjw4MGMGzcuZ5ADhy5EgUD//iiNQVzVFXh36o8ei6H5faiocev3iEJUV9AUNz5v5klAV6JsFxvxxWKUAT6vBxSFcDiK0FU0V/cFClKUeCCkUlUlHInQ2hZEU1U8HretfeCuQO+IJNkbDR3toigKvhIvkWCU5q2tlFaVoLkK08CkTnC9WRgQQqDrBh5P7rGq0GiI+VCIUJHJpdFshGh1PPXY0vWzsgp6dtraU3kzHLqHgkb6ww47LCEMhEIhmpubkz4OXYsQAn1bC+Kjr0BAW62PJlc7sUFVqBWlGIZBazRESOh43X48bnfOGAA6UWJKGFw74gW43BqxmJ6INNhdKIqCy6UR8PspLfHjcmmEwhFaWtuJRKLd2hbRYSToKnDy7E0oioLH70ZzabRsa0UY3fu99gS6biTcZ3NhJdiMWT4lYU+QaSK3CimcqVyhe/XZrpPui5KF61ckIkh2BhkWedsl4xLeCXYiITp8eylIIGhvb2fatGnU1NRQUlJCVVVV0sehixBghCJE3v+C0MvLiAU0Nu3j58vo13zR8jlr29ayoW0DDbEWGgPtGAGBqmYXBIQQCEPBaPeiqRqqMJApFTU1nlugtb2NYDiErhvdLBiAqqp4vR5KS/z4/V5C4bjWIBKJEovFYx90VZuEEPG4A9EYXo919ERB3MZArkRjsXhApvgnRiymYxiC3jLvKopCaWUAf5mPUHvEUih4tuF+26v+3q4diMZieEyxIbJh1hDISb5i4hreGjm34MnVvJouRBiwI0RUTFyTJhSAvTDGuZBbG/V1Ixxh4HtAQQLBNddcw6uvvsqsWbPwer386U9/YsaMGdTV1fHnP/+52G10ABACfWsToZffRf/sGzxjhhMYPwJPWTmi43+K0Ai5BG3lUQwvtLrDBLVIPG1yFqKhGO2b3Hhj5XEbgUR4eQWP142qCVzeGKFokJgeD8UrowqGw5GEoNCVwoKiKLg0F2WlATweN5FojGAoQltbkOaWdlpa22lrDxKNxYrSDiHiXgWhcJSSEp+lMaEMVNTS2kZTSxutbUGCoTDRmB7/RGMEQ2FaWttpaW2jrT1EOBw1CQkiUU93oqgK3oAHVVXYvqkZPWYtVPXmyT4XUkArdKtHro4hdyz/fJGrbjvHO2v9L7cTiuE1kWmLwuG7Q0Gm4i+88AJ//vOfOfzww7ngggs45JBD2GOPPRg4cCCPP/44Z599drHb+f3GMIit+prwJ1+hDOyPb88BKP74irW/vz8CQYmrlFY9jLuPH9S4AWAMgyZPEE/IhUtkM6hSiMUgGhUI3TAdjWsJNMWDEBG8foNoJIyiu1AVNZEKOBKNoioKbo/bfibnApBpiT3uuLEhpgnVEAZ6TCcYDOPxePB67K0KrZBeBaFQhNLSAKqqpj2TEIJQOK49CPh9cXe+uPkayRaXokODYMQ1CHo8a6IQcVdQTVPxeON5IbpzS0JR4kJBLKrTur2N8urSvLwPvg3CQjSm285hYIUMBzxmeXFcEM31SqwEg0JyDVRMXEM91h4gMjFSMQwCzUKBY2D43aMggaChoYHddtsNgPLychoaGgD4wQ9+wNSpU7Nd6pAvQqB/tpHYB5/j+8E+RKpKEV53IkthwFXC4LLBGAa4jDaCagxDLvEViKoGUVXHpecSCAxaWqOUGTtWijtWjYJgW4yyChc+nwBDRREu5MTn0rS4xiAciRskdrHvfWJ87/iHooCKhkuLJw5qawsiDKPDQ2HHM2L6p1ULDSGIRXVC4TDBYAiv10tbWzCearojuI2qxl04I+EIhhCUlvhTVqCpNcuwzRqapiE3HmTwnGg0RltbELfbhc/r7og82Ln+sYuiKJRU+ImGYgRbw/gCnrQwx1a5D3q7MLBDOxAXaO1ilUWyvm5EPMshmQ3qOrOKt7x2+o5ohfnWX183IkkbYNZsFJoi2+H7Q0FbBrvttlsiBfKwYcP461//CsQ1B2ZXRIdOIkA0tRN7bw2eg/dCq6vG7XGnqcWFUIhGYpSrASoi/pQpSRBTjKzbBrqu4/Fo9O1TgqKqoMhBVaepuYFtDRsJtrcRCXfUokaTapMTJijoulwJ6z1isKaqKiUlfgwhaGsP0toWorUtSGtrfFuhpa2dlpZ2WlqDpk87jc2tNDa3EolGiUZ1qqoqqKgoTSRaEkIQCoVpawsSDIbRXBolacKAfaR/vM/noaw0HgK8tTVIKBxJsjvo6i5UFAW3z4WiQuPmZvRo6vcmeHbTbxJ/9XZhQBKNxQrWDqQ+o1wJZ9o2yGRUaNfY0Ix5hb90+iyWTp+VMBK0S3dN+IU8n0PvpiANwQUXXMCKFSs47LDDuP766zn++OO57777iEaj3HVX8fNif28RAn31Vyh9K1AH9IWOSSQaiyUC90SjOrqhx9PwqipaVCWixgi6oggEmlARSvZZxTDi6XldIgYuDcOAUCRCW3sLoVATPl+AstJKDF1gGAaaaoASA5OWIO4ZoBKJRFFUBSHA5dLwuIsfwCgXqqoS8HvpSDFgIrkfEueVji0HYRAL65SU+BKGaEKNP0c8JbOSqKOY6n1VVfD7vBieeDbKYCictKXgcsW1C7kMRAtFURT8pT4MXRBsDVNSEd92UhTA0FFbv+S5r/8H4c+eOrU3IETcs0BudxWbziQHyuayZ2fCLzQPgUQKNGPmW9exdHp+bon5lnfo/RT0i/n5z3/O5ZdfDsCECRNYtWoVTzzxBP/617/46KOPitrA7zOiNUjsq824hu+KOcya2+UiGAoTDMUNBuO54OOrIRWFqnAJNcEy+oRL6RsqoyyaPeeApioE/CpKuJ2Y20djSzstrSFUVaNPVQ19qmrwenx4XF6iYUxaguQJ1qVp+P1efF4PXo+7R3NayDDCqmr+qEkfTVUTmRxdqgsZjdnntc4/ICPfdc2kHM8QGfB7KS0JUFoSwO/3JoS+tvYQLa3ttLYFiUaLYziZfP/49oE34CHYEkaPxUAIlOAmUDSEv39PRobKA0E0puOy6VmQiWxagtjz/ZLOpWYezBdzbohMH4ld40Y54Vvt86d6TTTNH5L4O3XVn0kL4NgPfDcpigg9cOBATj75ZCoqKnjooYeKUaWDEOhfbEQtK0HtW5FQ48d0nUg0PnOpqhIPp2se+ASoQsGju/6/vfOOj6rM+vjvuXVaJiEhdCJIFUFRLKBYwIICKghYUBdRrIgr7tpeC2tjd111dde6qyu6ui67rooLWEAXLKBSpKggvYbQQjLJlFvP+8edezOTTJJJnSTe7+czSmZuOXNn5j7nOc85vwO/LkEyLZXBmjT1fT4POrTPAheLQhU9MEwTAb8HOcFs+LwB8BwPMIAXrEHI0AmACXA6Emfd9mBpP5oj5N1Y6IYBRdXgTdG4iAHNuvxhlVtaWgyyLMHn8yAr4IXf74UoCojGVMRiapM4BaJsLx+UwYiWgsUOwswqAFjLkGKuicaMDpBZ9drag+DKWS/WGi6vbt2/cvjfHohrG2ArOwa1nf/jwrXIHr252sjD14PfcWz5evA7jqNhL1HYdgmXHKwhUdGlrdF8EnQudYLKYzC2FkLo1w0QeKsmXtOh6yY8sgi/zxOvIa+ogyciKIaCwkghDimHrIz/WhL8GGPgeB4Cx4OZOqSsINoF/fB5rbI0qwrRADgV4BWIMkHT4mmLTI9HCarePK3ZtJVd39LFb0yTEInE4PPKyc4VKpwcM4PvwdHk5zhIooiA3wvTJITKIk6po2GYNWSJ1OVcDN4sD3wBEerh7TC8XQGucbtaNh2W7oDQgMoCIoJpmCg9VJbydbvef+WsF5Nm1umQPXpzlYG/PnLAtjOQajaf6HAkDtqpdApqwnYYbEeh8vt0SxDbJq5D0BLRDOhrtoLL9oPrmgeCVRNPRPDIYrwMjgMvWNn99oAc0cPYVrYF+yJ7cCCyD4oZQ6rBOhVM1wDDAOfxgOd5KzrMADAN4GPW/0HgGQ9GAkwDqIgSpEYQeCiKllRz39IgspwBq0Vu6jAzx3EwU8wYM4EdPfD5ZAT8XshxSd7ycCS+lFDhINb7HAD83GGIXj/KIh5oVRINWyZWdIDVOzpARAABZUfC1S6PJK69J86sEwfG2gbJoWsmppUoWF0UIHGJIlFJMPH5yksOic5IfcL9qcSZhq6Z6C4dtDFch6AlQQAUDfqqTTAPhyAM6QuKD/oMDLIkOgMWY4Ao8DBM0xmsJF5GtpQDn+BDtpQDvi5hXiUK8ALA8QllffHIgJN5JwGmBxwTQYYY/zv1OWwhIUkSLdU+TYfZhKqC9YGIrH4NIHg8UrVL5BzHWpTdQEWVgigK8Hpk+H1exGIKysNRRCIxSyCpnrkGTC0BU0sgtOsBXhJQerB68aKWhK4b9Y4O2BG2WESF5JUsXYZqGNXl+JQzbnuQr202bg/OqZYBEp2AROlge9C3sSsQqrMvkcRjNtQpsLETJN0IQduCUR1+5ZdeemmNr5eUlGDp0qUZTSZryYRCIWRnZ2PPzi0IBrOSXyQChWPQv9kIiigQTzsWLDcAMz5oWQNW1RudHlfFs5oXMRBM6KRDYIKVOZDmzZHbvwdMicHo3is+OyKr+yGvAMQDpgCAAwOgatbnK4k80tEcsCRkDRi6AcZZJYpcM9bbp7QJgK7piERjyIqLD1WHYdjXOLV8cUvBjJeKkmlVTWjxXBOvR06/lbShgivZCAp0B8k5lkhTRIWpm5D9Mji+eQWU0sUqC1Wr/Z3Uti+ZhNDhcgiSAH+21zlGug2PKrcjbuqZc3UDcX3OW1lkqKZB/qSHb3EcEbsV9jmdB2AJ5qG0tBTBYLDO53dpOdTJIZg6dWpa27322mv1NqgtU61DQAQ6XAZt2Q9gAS+EU/qD+a2yOVXTrWSvajr92Yp5osBDEOqT+GWFSbldmwFfFsz8zgmvxJMH446APfhrug7TIMhy+t0u7a+ZbhjQNAOSKKQ/SDUBhmGiPByFz+eBWMt1M03TSjj0yM1kXeNg9WLQEVMUiKIYr56ooWSSTLCybWBMhBkocMLmRARN0REujSCQ44PQABXIpkLXDeiGGY+i1W1fMgnhUBSGpiMrNwCOr+ocpuMYJDoFzRFKr00tMN1mSumoDtbkJITKDLTru811CNoAdSoSdwf6JsAkmHsPQftmA/gencAfdzSYKCSIA5nVlsEB8Q52ogBV1eo9wBI0kFIG5HVMPraVr11le57joWkqTJPSFuax7RJ4HhzHQVE0yJwIPgMDCxEhEo1BlkUIfJpOVIai5bYjVZ/PlTEGWRYhihXdIj0eqdpmP0wpBtOjMHOOSlpDt6sPZK+E0KFy5HQIVlE0zCREZDmZklBnZ8A0TSgRFYLIwxf0VkkqrQvZozcDhda/axuMG9L50Ka2QTzd47t5AC42bg5BJtFNGD/tgbr8RwgDe0I4oTeYJDhReEM3wKfQ0a8MxzEwjsVbFVd93QqJmjA1zXro9kOHqRuAooPpBOJFkGmATNN6UOqmRYwBQlwgqa7ryrY+gCBYrZWbGyJCNKZYg2VdZpOseUsPgfgMv3gvTCWMhngkHMfF8ww8UFUd5eFo1e+KqYOF94ICRwFc1XmCXX0QyPVbSwjN3PmyJnTDdJIt64JpmCg9WAYtpjnNnqpbAbM7QNam1JhYhVATic2TgMZpPpRIY6sIVpc34dK2cB2CDGDqOsyoCm3VT9DWbYV4Sn9wvbuAGJx2tPa6u7UMUHvpoCQK0PTqs8G1wwegF+5K+dCK9kIBD/XAPqh7dkLds8N67N4Bde9OmLFolfOJogAzntBY13HBSjjkmn1QIQI0zWpJ7PN60p7hMsaslZVmHP+ICEb4CIpXvofwzu8afJ1Y3AkL+D2QJBHhSBTRWMwpp2R6OcAJIDEL1X3fGGOQPCIEWcCR/SHoauarD0yToOtWdCBdrD4SJsqPhK120O38TRLtqC3hLnEGnz16c6M6BQ2NPiRiv4+GViq4tHyaX1fWBdEd+yBIHpjhCFjPjtAVBdi213rRvjExwDBNsJwsePLboXangHNm7VVCwkSgWBQeUYJhGDANw0qUU2IQJAkerw8xyQBPBC0ahSCKINOE1x+AYejQI2HwXl/lM0IUBKiaVq+GRowxMI6zOtJVkx/RmBCs5MBoTI23M65PCL7x7aoJPRqCmN0RpqaCDB1MaHhSox0ZEQUBMUVBWVkEXo8EWS2znIFa3qS9fOALelF2pBzZ+UFwdeiS2BgkNi/SddNZKkvHBtvZLjtcDgAItg80qu2Jywb1oSZ540xw+KbTMKpL8nOJTkHpwj74pNfcDFjm0hS4EYIMoJRFwUsS1IAPusBD4AVAJxhRDQI4iJwAkQnwcCKMI2Ug06z1mIzBmrUbJkxKMWsnAhhDeWkJDu8vwq7NP2H7hh8RKSuDqijYsXED9u3Yjp++W43DRUXY+sP3FdUiKe6XttQuA6tXIyM7qmHoBow03l9DIdPKG/B6JEt5sS77xq9dc8IYgye/B9oPvQzZx44E49NP4EwHq3+CB36fB4qqIlZ+BCbnSSsKYvU+kJHVLgAlrEJvJp0CK1dAt9pOx6trEC+/TdcZAAFKWAXjOGTlBeKaHnX7bNNZOkiHymF92xFo7OWDhlBbpCF79Gacs25c8xjj0uS4DkEGKNq6G9GyMA7uKsT+7XtQ+NN2FG7agZ3rf4ISVZLkf4Ha1QZtGGMQRAGamiwpnAjH8QiHQiDTRDA3F6WHD0GQRHj9AeiaBtM0ABAM3dINqOn8jDGIkmAJ19RgF6FiZmaa1uxO03WrWsE0mzyXwMobiEEQBIhi3RPPiOIaTRlKomva/gk8svweiJyOshgQjcZgpKEXwRiDIPHgRQ4lB0LQlMbvr1AZVdOhGyYkkYdHFuGRRchpVjzY379waQQAkNXOD8aa5vbXkHB69ujNTn1/ooRwJkgnD+HjwrUITtzaDNa4NAeuQ5ABGADGcfDnBGGaJsKlZQgdKoZpUtLQW5/bq8BzIFSEVCsOZh3Nn52NvE6d0fXoXshpn4+OBUeB53h07N4dnQqOQs9jjoU3kIVuvXpDEOOz0hpuuFxcIEdPEMGpGPzNeJmhDkXVEYupUBQVmmapF3JxB8bepykggqOW6K1HjbpDy0iob3TsjoaMAEH2wTBNhMNRhCMxKKrmiEmlTi61cgoCOT5Ey2NNmhNSUXEjxpU0Wd0cJQLKisPQNQOyXwKzuzk2MdXlEdRWZWCLFtXUzKg+iYN12SedPISTHr6lzja4tFwy6hD06NGjSkMcxhimT7dqfs8+++wqr918881Jx9i1axfGjBkDn8+HDh064K677oKuJ8vpLlmyBCeeeCJkWUbv3r0xZ86cKrY8//zz6NGjBzweD0499VR8++23Sa/HYjFMnz4deXl5CAQCmDBhAvbv31+v951X0AnegB85HfLQuVcBcrt0wFGD+qFrvx4QPZXWiVn1mc+psELxItRElTrGAI8HiqpA0zV4g1ngJRneYBCiKEILh8CLIkSPB9l5ecjKyUEwNxeqGkNYDUPnqx+wLY0EwRr4dQOqqkFRNcQUFYqqObN/gecgyyI8HgmyLEESRYiiACHep6Gp0A0diqrVKYmwMpW7OrY1mBEDE0R4fT4E/F4E/D4rSVWzKhLKyq1HOK6AqGpW+237c/P4ZfiCXkTLlSaJFBABmm6A5znUxzMjIihRFRzPIZjXuDkDNomKgpX5uHBtyudrG5xriw40ZuJgfWkJNrg0Hhl1CFasWIF9+/Y5j0WLFgEAJk2a5Gxzww03JG3zxBNPOK8ZhoExY8ZAVVUsW7YMr7/+OubMmYOHHnrI2Wb79u0YM2YMRowYgTVr1uCOO+7AtGnT8PHHHzvbzJ07F3feeSdmzZqF1atX4/jjj8eoUaNw4MABZ5uZM2fiv//9L/79739j6dKlKCwsrFW5sToC7bJgGBp4iYfkk5HTKQ++bD982QGYhgFNUaCpKnRVtTQJ6gjHWXruiVUHUn4nCF26Ax26QGvXAZTfGXynrhCysiAYKriOXcB17AzWIf7I74TyHB+2e8sRk2oeFK0yRKvWHfFsdlmS4JGthxQf+O31WusRt5WxJsveN00T0Wi8aVED9O0N3Wxw97wWjR6GyXtAcWVLjmOQJKuBVsDvg99v5RpIoggQoKoawpFYvLlSLN5umIcg8ig92LjLB06kSTcgCvVY7jEJ5UfCMAwT/mxfPDLQOA5BYh5B3svLnAeQXjOhdNbnG4PKcsh13cfl50NG73L5+fno1KmT85g/fz569eqFs846y9nG5/MlbZOohPXJJ5/gxx9/xJtvvonBgwfjwgsvxKOPPornn38eqqoCAF566SX07NkTTz31FI455hjcdtttmDhxIv74xz86x3n66adxww03YOrUqRgwYABeeukl+Hw+/O1vfwMAlJaW4tVXX8XTTz+NkSNHYsiQIXjttdewbNkyfP3113V+3/JRneDpYT3kozpBPqoj5IKOkAs6AJ3age+SB6lrHqRu7eHpkl/nhDa7LDCx1twEg2oABuMg+33wBPzgZauRES/J4D1e8B4feK/14Lw+kEeGKjIUq8UIqaW1nk/gefAcB57jLW2ENOy2t2n8WSUhHIlBEiUIAl+v8LCdxEageqpAtgYITI+Al4NV5t62c8BzHHiegyQJ8HotPYOsgBdZAau5UiymojwcAyfx8OX4rEiBZkWMFEWz2jUrGlTVKvlMt1SViCzpblVN6uOR1ruKL3GUHwlDVw14/XLa38l0qUm9MHv05ipOQX0H2XT7BaS75p8u6dr73qb1aR/TpWXTYqY9qqrizTffxHXXXZf0o33rrbfQvn17DBw4EPfddx8ikYjz2vLlyzFo0CB07FihsDdq1CiEQiH88MMPzjbnnntu0rlGjRqF5cuXO+ddtWpV0jYcx+Hcc891tlm1ahU0TUvapn///igoKHC2qQu8JIH3yOA9MgSvDMHrgeDzgPN4wDwy5KAfYpb14OW63QhtGLO6DdqNhVRFgyDw8MgSBL4iK5t4EdD1ahMWCISwVg6ulgQsxhgkySpDrGv2A8exRu0maCURqo5SX30HAdMkGKYZ7yjYRpMIiAAjCvDetK+THeXhOA6iJDiOgaJoMEAweaB4fwnKSsPQ40sLpmlC1XREYwrKyiMoD0cQjalxpzX1Z08EqIoGSRTjg3m6bymhmoDnkJ2fBVaPMtPaqK3SINEpsIWKqltWqI6Gthn+uHBtvcL6idGOmo7tNjdqW7QYh+D9999HSUkJrr32Wue5yZMn480338T//vc/3Hffffj73/+Oq6++2nm9qKgoyRkA4PxdVFRU4zahUAjRaBSHDh2CYRgpt0k8hiRJyMnJqXabVCiKglAolPSoCdM061UGlQq7/wHBSlT0eOyZcqVjixJgaIj3M07CXiYQOQke3lvrLJ7n7DLEupURchznCOQ0lPqKD6XCMM2EBLZGMa/lQQZgaCDBU6/d7eoLKe4YBLN8aNcugJzcLBgRDRJvqST6vDICfmsJIpjlg8cjW45bVEF5ebRKQzQiq+8Fx3POZ5DW24mX3JYdsRIIfUEvuAz2zMgevdlJvKusXpiuY5DoFNQ0ADfnen7pwj6ucmEbpMUIE7366qu48MIL0aVLhQrGjTfe6Px70KBB6Ny5M8455xxs3boVvXr1yoSZdeK3v/0tHn744bS3ZxyDqVk6Ag3RVAdRvNTPhMABjFU3AyPojAOvaeAMHVSNrn/UiGBPeBe6+wsg8tWL49gDQ0zRINThJswxS8ugMTBMA+XhKAIBX4MHASKqd+5Ba4EZCsDxAGvcW4Hsk8BYFtSYDo7jnN4H1kdiOatiPKFU1XSEIzF4vXJC9IriIlvpy0vbDmskFIWhGwi099VLgKouvFv8fK2Nj/JeXgbMSn7Odg5Owi1pDeSVnYLqShsTX7OSEht/Bm85JW5koC3SIu52O3fuxOLFizFt2rQatzv11FMBAFu2bAEAdOrUqUqmv/13p06datwmGAzC6/Wiffv24Hk+5TaJx1BVFSUlJdVuk4r77rsPpaWlzmP37t01vj9b419VtQatqVutfVUcLg5D1RlMAihFBACwcguIFwBVqXqcxDJCIK1cBhYvQ9Q0Pe1kQcaxlGVtdcU0CZFIDB5ZioeiGyh41LaLCyyMKMDLQCPX5DPGIHlFSF4RZcVhqLHU32m7KsbrkRGNqohEFKcyhYGBT3NAd5YJIio4jiHYPitl18JMkbh0kBgpWDnrxTovIdhth6s7j+002CWLpQv7NEjPIPFc7hJB26ZF/GJee+01dOjQAWPGjKlxuzVr1gAAOne2WvQOGzYM69evT6oGWLRoEYLBIAYMGOBs8+mnnyYdZ9GiRRg2bBgAQJIkDBkyJGkb0zTx6aefOtsMGTIEoigmbfPTTz9h165dzjapkGUZwWAw6VETdpgfQJ3D7knEk7E4jseRkih03ax2bCPGwCQPmBpLYRDg5b3oHjgKBYGjIKQxi6woQzTTLtfjGAM1MIfACj/HIPA8vF4ZoihAVeuf7W47KG12qSAO08IgIdA0x2YMgsjDE5AtDYBqeh9Y+S4CAn4veIFHJKogHIk5vTLSgoCykjDUqApPQG7yyEAi6aoWpgqxN6SOP1G4qHRhnyQnIJGvB7+Drwe/40QPanMOUjkANS1XuEqFbQdGGe5OYpomevbsiSuvvBK/+93vnOe3bt2Kf/zjHxg9ejTy8vKwbt06zJw5E926dcPSpUsBWGWHgwcPRpcuXfDEE0+gqKgI11xzDaZNm4bZs2cDsMoOBw4ciOnTp+O6667DZ599httvvx0LFizAqFGjAFhlh1OmTMHLL7+MU045Bc888wz+9a9/YePGjU5uwS233IKFCxdizpw5CAaDmDFjBgBg2bL01+1CoRCys7OxZ+cWBINZ1W5n9XY3IEtSvbPjTdMSBCorV+H3CvD6qiaNEQExRYX34B4rsa9rz6RjhPUwjijF6OLvCo5xaSsmEhGUeBKjrTOQKIlQ2Q7TJMuOegoHEQGKqkJVdWQFrPdpJxbW55hEgK7r0A2jxtbTrR8Cd2QDyN8FJOU03VmIoCk6NEWH7BXBi9XnBFjfE2sZIRJfRrB6ZdR8/Fi5gmg4hux4ZKC5P7Nzvn6mSplgZfGhmmbXo7ocX+eWyJmcrQ9dM9FxPk7+6iKsnvg0SktLa530uLRsMp5DsHjxYuzatQvXXXdd0vOSJGHx4sV45plnEA6H0b17d0yYMAEPPPCAsw3P85g/fz5uueUWDBs2DH6/H1OmTMEjjzzibNOzZ08sWLAAM2fOxLPPPotu3brhlVdecZwBALj88stx8OBBPPTQQygqKsLgwYPx0UcfJSUa/vGPfwTHcZgwYQIURcGoUaPwwgsvNMk1YU5tPqE+2e1WBjgPUSTk5njB8dV9zPEWfoEg2MFCwDSB+Jo5Yww+wQeD9PhMuW52iKIARbU05wFy3o8oik4UxLGCzHrP6AhW8lkspiKrct5APXxdIkpyyNpsdQEAmDpgqgDvbdLT2A2RGMdQeqgMgRw/JG/q6g87x0CWxLhKYs3HJiKrHbNJyMkPNqrOQF2wuxUmOgX24G4P9PbsPNUs3pq9p3++psoPqAtD10xE9ujNCJIrXdxWyHiE4OdEuhECTddhGgQpTZ326rBD9izhv4mYJkFRVHhFDvyW72F2OxoUyK7YP+GrUfdZtuUE2GF3xqzSQlXT4a2kxmjEVQ7rWmtuvQcTZeUR+LweCAnCNXYGu9cr1ylDXdOtTpCyLIGhDVcXAGDRA2BKMczsfs3SvImIoEY1lJdEkN0+C7xY/UyeCIhEY3GRq9SNnci0ehNoqo7s9lkZcwZsUkUJqqO22X3i8oJ9zHQjAvZAXZ/zJpKYuGg7MqmOrZOGJZjnRgjaABmPELgkY89Qrezqht3cagvxO2v8ggjKyQM7vB/kDzqDQ0POn5hRXvEcqp+118MttcWHZKka8SGGpOiGFaSo/kSapsMwqY0vE8QhAyxaBAoUNFsnRzvRMFvMghrVIJi8FTlIcX4iS52wuuUCOzKgq7olR5xBZ8D+Xn1w3M24eOFLaTsFifkDlUsSk6IIabRTThyos1H9+RND/XZyov2cfYxUTkN1zoBL28J1CFoYhmktEzRLUlTCigS1ywe37UcwJQbyNE0ImbGKJjXJqnGszv0C0hEfEgUBiqJZpYP2ywmnSTyn7Th4GiBk1JpgainAOJDYvDM6xhh4gYMoCyg9GEKgnT9eolhxzYmszoYCz1X5HZBVT4tYWIFJhGALiAzYrbV/0f3X+LpwLUah9m6Ho7ocjzxYSwoNzQUY1eX4Gp2ARCovV9j7Dl2YPNif9PAtjn1AzVEHl7aD6xC0MAzDgCA0Z1JUfPYseUC+LLCSg6CO3Zts1ihJIhRVs6RwRcGRxyWT0s5VsGvXdV1HwJ9aYY/FSzg5jqu+0oBVLKfYyxo/B2cARGDR/SBvx2aLDiRit07Oyg0gWh6DIPKVEg0JqqrDl3K5h1BeEoGmashun7mcAccashJif9H913XaL7nUsG4Ogb2cUJcBOjF3IZWGQeKxhq6ZiJWzXsSolyu2+3rwO2k5Oi6tmxZRduhSAQPig2MznQzx+n/GQHmdwI4cAgy9tj3rd7r4IO31SEntmRljYByXVoyACDAME7GYCp/Pg5p62tuaCHa1Q5UHz1u9HHiu0RQiWwNML7fUCaV2yFTSpL18EGjnhxJRoUYrdAo0zXA+u0TsHAQiilcTZN6Bs5UxbezEwZrK9BKdgcpLBdVhOwH2TL2us/WanIHKpDp2Ovu5tH7cCEELQxAExBQFoiigqW/WpmEmh2p9AUAQwYWOwGxX96ZKDYPSerdEVnjW65HAc/VrWvSzhggsUgTy5lsKhRnEWT7wiCg9WIasXGv5QFHVKnkcRIRoWcwqislp3K6FDcGOav3n8HOYkHcbgPiAGl/3r6wcaA3MVR2Fkx6uUCys7EjYTsDQhXWXCq5c+eDiUhNuhKCFYGfkq5rWLHK5pmll1NthewAAx4HadwI7XFSvkr2GUXsbZCtvQIEgCBDFurfCdQFgxgC9HOTJQ0soqbRLEoPtA9AUHbGoBiIkdZckIkRCUUTLY/D4pRbjDNSErSgIoIpy4NA1EzGqy/EYumaik1hYWX8gcX8nWXD05pQlizVhCxLZxwTS66HQEMEkl9aLGyFoAdjSwKqiOf0AmvKGR0RQVC0+qFYSCQrmgi/aBRYpA/mzm3DMqGsSIaAoGkzTrDZvwKUWiMBF9gNyLsClLuXLBIwxSB4Rgiig+GApZE+FbUQENabBNAjZ+cGMNiqqnuq/y4mhdluPwE4AtAb6zUlr9ZX3qel4NZEYGai8T23iR/Vt0+zS+nEjBBnG6fkeU8HFe85XDpXqpgazobr8zvFgJfVxLHUDIp4H5XYEO7gPLUnM3zAMKKra4A6GP2tIA9QSmJ4OaAnRgUTs5QNBFhAujUCJqFZkoCwGNarBn+0F36zJtulj/0pqkzBONRDXNvjWd+0+Uaq4rudszq6JLi0L1yHIIHYJnqJYs3VRSB0ZMBrJGYifFaZJKaMDNmZuB7BwCCxFw6PGgud5xGIqNE2HaZpxy1I7IGa8rMvr9VRJNHNJH6aVgzgZ4OvX6rg5kL0SArkBGLqJ8iMRxMpj8GZ5WvQygaX3YdmWbl8DoKq0cXXb1JXayhjdAd+lOty7a4awVfFUTYcsifGe71W3Y4xB4qS0+wg0CoIICrYDK95f+7b1wOpwJ0CSBJhEiCmalalNgGboMMwKB8hOIrQcpswmwbV6DAVM8GSk1DBdBJ4D4xlMw4QaVS1FwxYaGXCoZFpdnILG5uPCtTjp4VsaVBXgLhn8fHFzCDKAaVpr+ACcbOqa7neNeTNMK1eQMVD7LuC2/wh06ApU2wuh/lhlZTw4jgdEQiSqWMqCIJhkggfn1HgD+HmoBzYxDARqwdfQztgvLwmDMxiy2vlrbITUYkjRdyTRKbg0d3qVXdJtZJTubN4exEd1QZKgUHXLBrUdJ+/lZXVutuTS+nEdggygqCr8fl9cbrd5b3bptvQlrw+QPOBKimHmdWgye2x5Y47jwACInBC306rv1rTqxYdc6giZaGm5AwAAAkwyES1TYJomOIFDTvssqBGr70Eg2yozbK3YzkEqx6AxSDVwV64sSPc4QIUTkq4zEHqnF1D3ikiXFoi7ZJABREnIiDMAWAOwYZow0wgVmPmdwYqbvgTRaoRkgsXFgRhjMEwD0ZgSTyJs/K+pSWb1CoZtknhnS9Zyll2sz52gazpCB8uhxlR4AzJ8AS/AMXgDMrSYhvLSSFIL7RYFQ72+R405824KZ6A27HN8XLgWwYlut8O2gusQZACeZW5NlDEGgeeh60bNNzLGrEZHqgKmqU1mDxFBVTUIvAC795FhmghHYvB6ZPA81yRL3pphNHKyZmug5UQIiAimYSJSGkUsosIX9CInPwheEMDzPAzdAC/yyOkQhCDwiIVVkNnynDiW4l/V0Ry5BVZb5LpRF2egYmmiwtl4b9P6Op/TpWXiLhlkgEyGvxljEEUBajyHoUZ4ASRKgBoDJLlJ7CEiGCbB67FmrrphIBqNwSNJNVZCNBSpCfIiWjxkAs0gelWjCfEBXY1pKC8uh+SV4c/2JlURCAKPSDQGD8ngeA6egIxoWQxHDoTiSYYtQ6GSAKdRV0vAVkJMFESqKUqQmDyYrjPg5hS0bRi1NJe7DRMKhZCdnY09O7cgGMzKiA1EBN0woCga/L6aa/pNk8Bt3wAuN9+SMm4CDMOEpumQZavpkaJo8HnljC2ptFmIwJVtB4l+q6lRRkwg6KoOJaqBcQySLEBIIcJlmCaOHAmhXU7QKTMlIoRLIzB0E4F2/krdMjODYZgoD0fh9cqW85rmfpfmTq8SLWhofkHlUsPm6D1gnzNUZqBd320oLS1FMNi83TNdGpef4TTp50uiM5DOzZRjACfLgBJrUrtMIkQiMZhECPi9rtZAk5GZJQM7VyAaiiEaVuDP9sLjtyJOqb6HpkHgOB6apoPnJWc7f7YPmqIjWhaDJIsQPU2r6FkTpkkoD0fhkSWIAl+nq5pq6eDd4ucBIlyad1uDB/dU6oguLung3nl/Jti6B7puQBSFJK346mGAKFtLBk1iE2CaJsKRKBhjrjPQ1JAJNEGCZrWnIwKZBCWqIRpSwDgOOR2C8PjlGltNc5zVFTOmKEk5A3bfA1ESUHoo5KgZZgJV0yAIfOPKjMePY/cxsDsc1iY0ZL+eSn/ALh9sTOxujjbnrBvXqMd3yRxuhKCNQ/EaaVXVQUSQJcm6mfFphOQZAEkGC4fiGeqNqYdAUDUdiqLC77XEcgzDjCcRuksFTUPjfoY1nokIpm6irDgM0zSRlReAIFpOaG2fL8cx+H0ehMrCME0Czyek7sXbJmfnB6FGVfACD0Fq/uUl0zCtyEAjn/fd4udwae5tTi+CUbDaKX9dWHNTo6FrJmLlrBer9EVoCNVFFyo3WHKrDNoO7nSsDWN3UIwpGsAAWRbB4mVS6SZCkSACht5opYdWVMBaIlBVDX6fF16vDFkSoek6FFVzpIxdGhkiNPVP3q4eiIUVRMsVePwycjoGIcQFhtIZQBmzdCmk+Hci1euiLMCb5UUsrCBcEnGWJZoLsgxpgiNbx0xsWZw9enOVmf/QNROdCMKoLsc72zS3ymBz5Cq4NB+uQ9BGsZ0BRVEh8Fxym+O6wPOAYTSmZYhEYwCDs0RgDwAeWQLPcU5XQ5dGhAGV1fQaE3tAVmMajuwvhabo8AU9kP2SJTpVx+8eY4AkCtA0PeVAzxgDxzN4szxQoioipdHGeisZ5z+Hn8O7h56t8nzllsipHIVUNOayQW3LFy6tG9chaIMQEUzTRExRIQgCBKFyB0XUYXbDAENrtAiBbpgwTbNK10LG4hoJAg9e4KHpjemEVA8RQTVMaGbzzjAzAplNMqslIhi6gWi5Ai2mI9DOj6xcf4NbFfM8D9O0mnGlwuqQyKNdx2wwnkMsrMI0zOYRMLJFM5ri0IwBXPJqbuKAXpMTYA/+lR2A6hILa3IUVs56MSPVCy6Zw3UI2hhEBF03oKoaJEmAIFQV9mEAyExT+Y3jwMCBNZKIj6pqkGvoS8AYA89xoGoGgcZGNYGfSjXsLNfR9mMSBGrEpELL8SREQlGUHigDY4Av2wvJIzbK2rrtIOo1OIeMARzPwRuQYegGSg6EYBq1iG41BtR8zcHrUynQGJUFdmLjx4VrUbqwT5VkQnvJwqXt4CYVtjEMw4RuGPFBt2oClz2r0g0DElfRtrVaGGfNLBshhG+alrPi9Ui1b8wqmt00JQRCzCBwrK1HB9CoOQSWpoABNaaBTCCYn+XkCTQWjAGiIEDTdUgk1hrc8AW9INNEJBSDL9sLjsusCFhjkcmywezRm4HCqomE9mulC/vAf+GPGbDMpSlwIwRtCLu0UBSEGoVbOI5LP9rJcY2WVKjrRvpVBM00Pkscw7HtJBydJdTpx9DcSWyNQiMsGdjLA6HD5Sg/EobkEeHP8TbIGSAihFQTMaOqNDHjWPy5mq+13TE00M4P2SchGopBU1LnHzQOzdqQvFbe33678+/mdCBSOQourRc3QtAGsEO3qqqB47k0avmtG2w6N3DieKvSoBFGaFXT0k5ubK6hlmMMPqFut3YignJwOzjZDzHYoRXNQhtWdmiaBE3RocU08AKHQI4fHN9wxUCdgAMxA118VbUxTMMEx9KIZKEiGiDKAkzDROmhMgRzA5C8jbOEkUQzOIPVtVBOEjYiAkgHovvx/uZpGNfnlUa1obokQjuXwPp/GjLoLq0CN0KQARp71mKaBEXVIEpCWgMuUR3mN4wBHAM1MIfANE0YhglBSMMHdTLiWyZGtBRH1ixEaOMXIKNqWVzLhOrV/jixeqBkfynUiAJvQIY/29cozgAAGCYhKHLwpDieYZjx5MT0j8cYg+yTEMwLQFN16Frj5BTYibrhSAwxRbEcpPixmytaVEXlkDGAE2H6uoKyjsb7m29ssnO7OQNtH9chyACN2WXPWibQIQo8eC69sC3PWe2FzXQTCwkNVrjTdANCmssFLX2+TaYBX7eBkHK7AmZrcQhs0r+6jtJgREW0PAZvwGP1ERAq2lQ3BgLHkOfhUlpW32GWMQbJI8Ib8CBaFkO4NOokqhJVfpDTXrm653XdQHk46ohnZQV84HnOcRKawx+osVsiYyApG2a7Y/D+9jtqPE5igmDlSoKPC9emjAokah3Y27m0Pdwlgwygm3q9hP+IrCQ4wAp122p/RBRvBpTeceyOh4qqwiNLqHGQiCcUMo5v0Jzdri5I08IaR4LKcrbNjRjIQ/aAs5v9vA0jfs3SvF5EhFhYQSQUhS/oQ1Y7f1JHwsZEqEEkSxR5qIoGkuqeYGppFQC+oAelB8ssJ8EnOr8Z+3vPkpZSEhsaW8/blTteT7yJUYIZRFaUwPp+N8HSRJy0WydzEsxgr5QvVQziVQfzytUDlZUREzsnOgJIN2U24dGl8XEdggzANWC2bYfuCRwUVQMDg6eGMr5UMMYg8DxMw3R6G1SLGU9Eq6fNdn4DEcWlXtOxz9439fhFADRD/3m2MG5ibKVBJapBiSjIyg1AlDPXREjgeURJqbdytl1Vk9MxG7GwgiOHQ8jK9kMQBctFikcAqvjEtvNNAOM4eD0SGEtRwsuY5bSolnNebwGwxoRxePfwn3Fp3gwAFW2RgfQaH1V2BkZ1Od6JHNj72/sdvuk0GGoM+Nu8JnkrLs2Lu2SQAUSufgOZtZzPgWMc9Lh6YH2bq1g13oJznGq3M62GONSAe1wkqkAS6zZ74njrPaZUqQMgcOk0Z0qGiKCbBoyfowqicx1TfwZEZLXzLYmgrLgcgsgjJz+YUWcAqIiINWQdyVLCZBA9IsggREuj4BiDKPCQJBGyLEKWKj1kER5ZgscjQZbFuNpi9ceXJAFkEvQUlRIZgXF49/CzKF3YB0CyyqFNKmfg8E2n4aSHb0lqlHT4ptOqXSpwIwRtC9chyAB2iVRt2GuZVfdlVtOXekjCJsLFS7pqvIHZEYJ63pGJCIZpQJLSd4IYYxAFAbpupFybtcWL6uUIoWnC3i0fSvk52p+/rhkIl0ZgGiYC7eJRgSZaIkgXIkBV4o24GphZYr0Pgj/bB1ESES1X4uJcjTN4206BJbXcKIdsOMz6zSX2RagJO2JgP2xWznoRANz8gZ8BrkPQwrBv0KZp5wdUnXE0ZlYzz/NOJ8SUxzQNS4ugHvdjIkDTDKezYl3s5jgGgeeg6VVrySuSvSqSvtLBdiS4n6tDAJb0ORIRDM1A6aEyKBEVvoAXwbwAeKFldJw0TROqpsfzXBoOkaVrEGjng+SREC6NNqpWAWMceI6DYaR2ZDPBp0PvSHvbxGWARBIjCyc9fEuV/XL/9k39jHNpcbgOQQvC7gQYi2kIR2IIhSJQVL3SNpb4EBGB5+seNk+GQRIFmGSiLBapCM8mYjsE9ZqhERRVhWmaiMYURGNqtbr0qRBFAUaKEKxuGIhEreNFYyp0Q4euG9B1A4ZhwIj3S0h+VHYikh9tHmehnDnVA2pMQ1lxGKIkwBf0gBcbt3qgIRBZTbBkWaoxXF8XTNN0Gi2JstU2ufRgCFqscZwCxqwkSPt7WPGda7jtDaGmhMTKg39iXkGqSIBwycHGNc6lReFmZbUwTCIompUsKHtESJUS/nTDhGEYkCWpwTdJqxUyIEsSTMWKSjAuOYOfGTrA8fXK6DIMEwAh4PfXc5Cx1nlVTYcsVeQgmCZBFAWI8SZIpkEAzAp3hqpqPZD9fmCtS1v/jmeZc9Z5gPSWclon5CTRqTEN0XAMskdCsH1Wo+kJNBZEhGhUsfQEJKFRPhPbkfb5PACs74LHL4PjOaiKDsYBQj3zcRJhCW2bSdOBeP4CZ+mIw26CwBhzBMSa49q/W/wcWOwwxneZlfR84tJAdUmGicmEtpRx4nMubQfXIcgI1XVvAwSeQzDgc/62/m/9wy5/kkQRXA2lWnXBPrYsidA0A7zMxYWOdHg9IhANgzzeOjkEBMAwDESiMXg8cto5E1Vtg9XcJmYlAgrxiIg9i2WMVXGYgOqFnypma5TkPBiGiWhMhSQKzXqTblbIBJmESJmCaFiDP9sL2Ve36pTmgGDV/Gu6gWCWr9Hs03UDDJYGh42lVSBBEE0rkVLi4Q/Gz1nP0zIAPM+B5yUn+mSYBDKtSJd9WMM0oWk6JElspp4LDCTn1bhF5SWDkx4+DStnvVjtwO86BW0Pd8kgAzCtLK4al+I1e0bBVQx6QHw5IZ5l2FjOQMU5EV9Xt4ZJ3TBxpCQGMgksHAL82XU6nqEbiEYVeDwSRKFhMzwrWUt08hwApM62rLRPqgfHcfGbNQ/Bfgg8JEmALAnQdR2KqrVgjcS6Y7fCjpQpKI8AvMijXcdgi3QGAFgRDFWvcyltbShK6i6bjAEczxDI8UGJaFayYSMmGnIcV1HNIImQ4g9ZEiFKAhRVg2E2U2UCY3j38J+S+h7UB1ux0HUG2h4ZdQh69OiR8sY9ffr0pO2ICBdeeCEYY3j//feTXtu1axfGjBkDn8+HDh064K677oKuJ6+7L1myBCeeeCJkWUbv3r0xZ86cKrY8//zz6NGjBzweD0499VR8++23Sa/HYjFMnz4deXl5CAQCmDBhAvbv31+v983Ce8CFtoLp4bQ00a3cAgOKotWsGdBIcIxB1wwYqgZomhUhSBPTtNZ+PbLtDDT8pm6vIdcl/6AuWOFb3hFOMmpot9uasBoRmSgvjkCNxOD1MMheKS4F3AKdgTi6YUAQGpofU4FhmDBME6KY+piMMcdRYhxDLKzAbOLyQec7F3d2m61ckfEwAz3w/pabUr5cOacAcKsKfk5k1CFYsWIF9u3b5zwWLVoEAJg0aVLSds8880zKG5hhGBgzZgxUVcWyZcvw+uuvY86cOXjooYecbbZv344xY8ZgxIgRWLNmDe644w5MmzYNH3/8sbPN3Llzceedd2LWrFlYvXo1jj/+eIwaNQoHDhxwtpk5cyb++9//4t///jeWLl2KwsJCXHrppfV632awN0jwgpVuBivfCWYoKR0De3anahpU1VpHT7tbYB1JXJZgjIFxDJw9V65Dzb+qatYMvFEFWgimQTCMeOJgE+kIMMbaRAWC3ZGwvCSCWLkCT0BGTn6g2gGxJdLY0QFJqlkHw1I15ODxSdA1HSUHQk3vFMDS2/DIInRNd5KFmxxeBmUdXeMmeS8vw8pZLybpEdikW8bo0vpg1IJSrO+44w7Mnz8fmzdvdn68a9aswdixY7Fy5Up07twZ7733HsaNGwcA+PDDDzF27FgUFhaiY8eOAICXXnoJ99xzDw4ePAhJknDPPfdgwYIF+P77753zXHHFFSgpKcFHH30EADj11FNx8skn47nnngNgZSN3794dM2bMwL333ovS0lLk5+fjH//4ByZOtMJlGzduxDHHHIPly5dj6NChab2/UCiE7Oxs7Nm5BcGsAGAq4CJFgFoC8rQHeTsCnAB7AdMwTSiKCkEQ4klvTbfWSGR1I+TiM5fSUAzZPh7i1u9hHj0AJHvSOAYhVBaB3+9x1vsbA2uNX4FoN0ZicFo8NzaKal2D5ojENAVEVkfCsuJyiLLoNCHi9DBY+U6YOcc0uC9FU0JECEdikEQBkiQ2+HiGYaI8HEFWwJ/294VMQnlpBIwx+LI8zaLHYBJBUTTwPBdX9Gxix5QIl+bdVuXpVFUGqZYGEtUPz+k8AEswD6WlpQgGg01otEtT02LuDKqq4s0338R1113n/BgikQgmT56M559/Hp06daqyz/LlyzFo0CDHGQCAUaNGIRQK4YcffnC2Offcc5P2GzVqFJYvX+6cd9WqVUnbcByHc88919lm1apV0DQtaZv+/fujoKDA2abOMAbwHpiBo0DZfcGMKLgj34NFDwBkhax13YAoCE7ovSlvEozBqqE2TTAG5GR7wNltlNP0GVVNt9boucb9WpmmCVEULEW5uKpcUzgDrRnbESgviUBTdQTzspCVm9CeuBEbajUpzJLV1hph2cYuXfTIMlgdvi+Ms3IKZK9kXc9G1CqoDo4xeGQRhmE6HRSblBT3ksTlgkR1wlQkNjp6b9P6xrfPJSO0GIfg/fffR0lJCa699lrnuZkzZ+K0007DJZdcknKfoqKiJGcAgPN3UVFRjduEQiFEo1EcOnQIhmGk3CbxGJIkIScnp9ptUqEoCkKhUNKjCoyBBB/MrN6gYC8wpRjckQ2AcgSGoYPn029a1FA4jjkd4axMa9shqH0wsUvFJFFEU/QrbLbhP4WuPRHB1BUYSqTFaRbYIlbR8hhKD4bACxx8AQ8Eia/kRJrxz7OFO1JE0DS9wREaImupALAUBOv6rhljECQekkdEyYHSZnEKmO0UxAWZmvp8qfQJKpcd1tby2E0sbFu0GIfg1VdfxYUXXoguXboAAD744AN89tlneOaZZzJrWAP47W9/i+zsbOfRvXv36jdmDCQGYWb3A/m7AOW7IMcKwaH5EtzscitHrIcxQBABJVbrvvaMTjcM6LoOo4owUFWhIOdRg2BQ4k2xucbiKjK5RAjv+A6lP/4PZNS93XFTiB85rYmjKiKhKACGnI7Z8AaqCXGn7ODT8rDK9MwGLTkRWd9DRdXg88r1jqwxxiD7JOR0yIam6NDV+s3c6yKAZTsFpklxGeSmdgqec/5d2RmwIwZ2P4TqGN93UOMb5pIRWoRDsHPnTixevBjTpk1znvvss8+wdetW5OTkQBAECPH14wkTJuDss88GAHTq1KlKpr/9t73EUN02wWAQXq8X7du3B8/zKbdJPIaqqigpKal2m1Tcd999KC0tdR67d+8GAGg1JSsxDiTnAu2OgcgZ4Eo3gxm1D8iNgZ35rGr2oMdA2blA8X5QDYl8RARFUeHzeSDHb2aqqkFxHnr8Ef9b0aCoKhRFRUxREYtVqA6mesQU1Sq5bCYqKzaaShjRfZugHNoBPVxct2NR49/YrY6EhNDhMoRLopA8IrwBuRbJYTNlmLilYbfmDkei1fayqAmiuAZGJAaf1wOugctXlqqhAI9fRrg0gnBJ3aNEBELMUOt0TjtSkEq6u3GJlyJuvTXpWbufgT4vH18Pfsfpdlibc+DSumkRDsFrr72GDh06YMyYMc5z9957L9atW4c1a9Y4DwD44x//iNdeew0AMGzYMKxfvz6pGmDRokUIBoMYMGCAs82nn36adL5FixZh2LBhAABJkjBkyJCkbUzTxKeffupsM2TIEIiimLTNTz/9hF27djnbpEKWZQSDwaQHAOzaW4r9B8sdaVPdMKuWHXGSVY0gBcFKfgJTQ80yRRYFqy0yACtakNMeXLQcTK3eKbFtFwUePMdBkgSrU5zzEOMPyekgZ//f65Hh9cjwyCK8HinlQ5bEZsv+5zhWpbyRk33IO2k88k+/GoI/N+1jWc6A4VRuNBS7NXGsXEGsPAbZJ6Ndx4qOhDWegwgt5OdeIwwMPq8MWZIQjsRgmmadvvamaSIcicHrlSGk2W67VpsYs7QK2vmhxjTE6qhVwMAg83VNkGSQJcnKKWjq6gPGgwJHVXm6QqCootLAdg5c2iYZT6U2TROvvfYapkyZ4kQBAGtWnmr2XVBQgJ49ewIAzj//fAwYMADXXHMNnnjiCRQVFeGBBx7A9OnTIcsyAODmm2/Gc889h7vvvhvXXXcdPvvsM/zrX//CggULnGPeeeedmDJlCk466SSccsopeOaZZxAOhzF16lQAQHZ2Nq6//nrceeedyM3NRTAYxIwZMzBs2LC0KwwSUQnYd6AMMUWH4JURi2ngdB0F3dpBECruYAQGQ2wHUqLAgfVA8GiQ4IUT+o3f7ZjTtIaBcTw40dOgMCnjLLVCnmcgUQKy2oErPgiz81Ep19cVRU3KCK/7uWsZzOz32Qw+AcdxMOIzetsmxvHgvVl1PpY9W00liFP3YxF0VUfocDkESUAgx183yWGyJagbZEbTw6zvsyjyIJJQHo7CI0tptfk2TBPhSLRRBLGqmMUYeIFDToegJf1cFoPHL6dVgZAok53++QDbKVBUDSBLrrvJqowEP97b+xDKDmzDL05403k+cRnB7XbY9sm4Q7B48WLs2rUL1113XZ335Xke8+fPxy233IJhw4bB7/djypQpeOSRR5xtevbsiQULFmDmzJl49tln0a1bN7zyyisYNWqUs83ll1+OgwcP4qGHHkJRUREGDx6Mjz76KCnR8I9//CM4jsOECROgKApGjRqFF154oV7vOTtLhoeXkBWQIXlE5GVJOHQ4jCNlCvLbJYgAEUErOwCJcWDeDiA9AujRipcr/4sA3TQhZHcFL/nqZRtgZTybZIIjKwRt5nUCt/MnoENXQEj+ypimCcMw4fPW3wmplUaaYacDx7F4TkPDHRDbqWhIRYQtLqRGrcZQgRw/JG/NNfWpYHoExCc4ky0cu50wz3OIKSpUVYPHI8Vn/VXfg2kSwuGYpQQoNq4zkGgTOCuvoKw4jJIDIWTnZ4FvRBGl5PNZ//fIorPcJteip9CQk5GnAyiL8Oa6Kbj6uNdT9jUA3ETCtkyL0iFo69g6BLt3bEYwaM047R93WVRDaVhD1zxvhUiQaUAt3gmfR4aixHCgaA88Hh+8Pj8kSYamqVBVJS7JKyCQlQ1ViYH8HSB46j6jtTEME4pqzfp5jgMDgd/6A8x2HUB5FU4SERCNxsA4ZpV2NdFYo6qas7bc1BBZ+Q9Ww6OGzcis3AFAkupuN5HVBCcaVhAJReDL8sIT8ICxekRgiMAVrwMFe4HEQJ1tyTR2D49ozPque71yUmkrEaE8HIUgCPDITTRgVrIHBIRDUTAGeAIeR2q8Kc+pajpMk+JOQdNokpSUhgCtHLnsAMb1+WvKbSr3MNBJc3UI2ggtf1GxDWKv94qiDEn2gRdEcCBoMSvxiOMF8IIEjrcGEsZL8LbrCjGQj0g0gnXfLUMsFsHObT/hh7XfYuum77F39zYYhg5OkCFIPvB1XrOsgOOsUKWm6VAUDQQGyusE7vB+ICG5kMhKevJ6vBBECbzQeDdjO9s8XX+V43iwSglk1uy8biIv1uciQtfNBmnME9kRgrruF88rUQ1EymMwTUJ+t07Izs+DIIoQJS8k2ed8N9LCVAEy4stNrQ/bGcwK+MDzPCKRmPO52OWFdiJec0SSbCVPf7YXoiyivDgMLaY1udSxJAoQeB4xRY0nXDZ+a2We42AwGWCtR9XSpfHI+JLBzxVBlOHxBXHw4EHk5+cjHI6hY34usnJywRKU5HyBduB4AaFQCJ37ngojchjFBwthGAYYx0EUJTAweAO58HboC8Fb0YiIiKAqEaixcJ1sswZSqwOiomrQdANcVg7Yvp1gagzk8VkDtgF07NwNoigl7a/rKsgwwAsiTNNALFIGqqMwjkEmwloUQcmf9DwvSJA9foABaiwC09Dhy2rnXDNNjSEWCUGQPPD6gs51UKJl0GpIjEzEcois92412amT6XEo3qa5ep+bcRw83iA4joOmKVCiVqJpuCQCTdGQ1S4Af042wASUlZUhPz8fqqriyJEj6NChA8pDh9JKNGVGDHKXk8DJOdB1DUq0LP13QQm6FBnGHvTLNM3JcTFNE4qqIeD3NruNdgWCqYsIHS5HMC8Loqfp1vkZYxAEDhwvQtN06IphVWDxlr5E4yRQwlqB5Hi8VzQbJGXj0lyrt8y7xc87/3Zpm7gRggwhewOYN28eHnroITDGkN0uD8GgH3/4w5M44YQT0KVLF5x++umY8/obAKy+DzfccAMCed0w6OQR8PuzUNCjN/oPPBF9B52CfkMvwo+bd2Ly5MkoKCjAwIED8fvf/x4EHp74wMisPqvgeCHlDNNKnBLBxXsXRKIqwhHFmu3yIri8zuD1ipLE7Nx8rFmzFhdccAGOOuoo9OvXD1dccQWIGETZi7+9NgfFR0ohewOwEwftpEUrmmB9/TiOT/obAHjGwS96rWiJWJGU5/EG8M23K/Dll8vg8QUhSB6Ul4dx+umn41e/+hVEyQPGOMgeP/71r3/h9NNPx+LFiyGIcnzGbt1QGeOS68MZA6Hi2nAcF1fMS132ZdvMVerzwDgefMLxGbNv1lyV6ytJXhw6XIw5r78B2eMHmTyiZTGIsoScjtmQ/R5IshfLly/HZZddBgBYt24dxowZYw1Gkgcs6fysapSE4yCKIhTy4s/PPQ9J9kKQKmSoGeMse6u8D8tuk1kP570JYvy7kzkHgeM4GPHKlphita3OlHIlYwyyX0Z2fhZ0VW9yASPGGHiOszonipayYUzRYBiNU4nAGAcTADHOUUx9t/h5R8To3eLn3RyCNoybQ9CM2DkEhw7sQ277jhg8eDD+85//oFevXiAijBo1CoFAALNnz0bfvn3x448/4qmnnsKcOXNARDjppJPw1ltvoWe3fJQd2BbPJSQEO/fFpm17cMYZZ+CJJ57AlClTUFhYiF/+8pcgIsybNy/lrIWIEIuEoGsqPL4ARKkipGyaJspCR+APZCdVfwAAmSZUTQHAoWvXrnjuuecwYcIERCIRLFy4EBMmTIAkSRg4cCDefvttDBqUvnCJpsYQi5ZBECR4vFlJA5yl3Cjg8ccfRzgcxuzZswEAJSUlaNeuHXr16oVvvvkGWVkBSJKM4cOHY+fOnXjiiSdw5ZVXVin/M3QdpaXFCGRlQ5LkKrZEwyGEQiXweirEbXhehOzLAp/gUJFpQomVVwnlx6IRkKnB4wtWuf72e1m9ejWuv/56fPfdd9Vek3A4jMOHD6OgoAArV67EzTffjJUrVya8Dw2qGrWuF2MwdA2xaBl8gRzHyTpw4ACOPfZYHDx40LKZCIahQRAqojuGoUOJlsHjC1ZxdFIRi5RBU6O1btfYRGMqQARJElEaKkd2MACez+zcxtaGKCsuBy/wCOT46iSX3JDzGqYld8wYIMRLf+sbpYhGYwiVlaOTdBjw5IE87VNud87XzzhNjtwcgraDGyHIAF6fH6tWrYIgCOjduzdMk7B8+XKsW7cOf//739Gndy9oSgTH9O/raC4wxjBx4kS89tprkPy5kNp1h5TbHXJuD0i+HDzzzDO46qqrcMMNN4C0MLp17Yw5c+Zg6dKlTmOnqVOn4tVXX8XQoUNx4okn4u2334bXnw1/MBfl4RhmzJiBfv36Yfjw4Vi8eDGyc/IgCALGjh2Lf/7znzjxxBNxwgknYP6CBZBlL/bs2YPy8nJMmDABoigiOzsbV155JSRJwvPPP4/t27fj+uuvx8iRI7F+/Xq88cYbePLJJ3H55ZejZ8+eCIVCWLp0Kc4//3z0798fv/jFL1BSWoZAsD28/mz8+513cNppp2HgwIG48847oaoaNmzYgFdffRVvvfUWRo4ciT/96U/Odb388svxz3/+E5IkY9OmTVAUxdGjAIClS5firLPOQr9+/TBixAh8tWwZcvM6QJJkzJw5E3/9618xfPhwHH/88XjhhRfg9QchSR7oumHVw4PBl9UOX321DKNHj0bv3r1x5plnYuu2bfD4gvh2xUqce+65GDBgAK6//npEojF4/dlOl80HHngAffv2xYUXXoi9ewsBAHfddRc2b96MkSNH4qqrrgIAXH311XjjjTdwyimnYNq0adi0aVOSYicR4f7778cxxxyDMWPGYNfuPfD6gti4cSOmT58OXhAhyT7s338AkydPBgD8+te/RklJCUaOHIlRo0aBMYYjR0oxZcoUDBgwAOeffz6++26NtUTF8Rg9ejTefPNNDB48GP/3f/+HLVu2YOzYsTjmmGMwePBg6zp7UleyVFaaNE2CYZjQdSOel6JC0/Q6awzY8LzVc0NRtUbTeGgoiVoFuqojFlEcGfCmPq/A8/DIohXR0gzEFLXe2gUcx8E0TSuHgAygkkiX3YE1e/RmJ3Lw5s6nGunduGQaN4cgA0iSB0uWLMGpp57qJJ59+OGHOPPMMxEIBFBeeshK2FOj1oyTAMnjw9ChQ3HffffFQ88STEMHH5/hffTRR3j55Zehx0qh718FQ8pCu26nYujQofjwww8xaNAgfPvttygsLMSiRYtQVFSEs846CwMHDsRxxx2HG264AQMGDMD69euxbds2XHDBBfj8889RUFCAzz//HN26dcMXX3yB1atXY/z48di3bx+OOuoo9OnTByNGjHAUJAcPHgzGGG688UY8//zzeOGFFzBw4EBIkoT33nsPf/7znzF//nwMHDgQBw8exNVXX413330XJ5xwAp599lnccMMNeP/99/Hll1/iN7/5DebPn4+uXbvi9ttvx6OPPorHHnsMv/jFLxCJRPDII4+A53mEw1aOxJQpU3DVVVdh+vTpeP3113Httdfigw8+cK57x44d8c9//hOdOnXCN998g8suuwwbN26Ez+fDd999h2XLlmHhwoWIRqMYMWIE+vfvj+Gnn4ZDB4sgCAKyglnYuXMnJkyYgH/+858YMWIEdu/eDY/Hg0OHDmHs2LGYO3cuhg8fjnvuuQfTpk3Du+++iyNHjuD555/H22+/jQcffBCzZs3Cgw8+iNdffx2PP/44brrpJixcuNAZ2L7++muEQiEsWLAAHo8HK1euTIogrFmzBjfccAPWr1+Pv/zlL5g0aRJWrFiBUCiEVatWWRsxhlgs5jTfmj17NhYuXIiFCxc6x5kyZQqOO+44fPfdd/jss88wevRobNq0CTk5OVi6dCk6deqEJUuWQBAEXHfddRg7dixuuukmhMNhq4dHkqx0XGBL06EbhqPBoGkaVNUqGzRNEyaZ4HkepmmAgcHjkZEdDMLn86Y9y+c5zmqDDR18I4kPNQa2VkF2fhbUmIZIXKuAF5p+3mXlF/DgeWtA1+LOlyhaOQbpOk2WMJdpdV01q8p0q6qBUFkM7xx6LsXeLq0dN0KQATiex+7du9GpUyfohrVOFwqFkJOTE59VVSTgmYYO09RBpolOnTo58sd2KNj+oTv7MwlmzgCYkqWol5OTk9RUaebMmQj4/ejTpw8mT56M9957D2VlZfjggw9w1llnYdmyZSgqKsLAgQPx2WefOfvdd9998Pv9OOOMM+Dz+VBYWAhBELBs2TJceeWV+Pzzz3HOOefgjDPOQHl5OURRBMdxkGXZSoSKh/7Hjx+PU089FX6/33EEIpEIvvzySwwePBiffPIJDMPAnDlzcO6552L37t1Yvnw5hg0bhgULFoCLr4kLggBZlpLWjvv27QtJkrBu3TrMnTsXV155ZdJ179evH7777jv8/ve/x4cffghN07Blyxbn9dtuuw25ubno2rUrbrjhBvznP/+BKMkQ4+VskizjP//5D8aOHYtzzjkHSqwcnTrmo2PHjli0aBFOPvlknHPOORAEHo888gjmzZsHRVEAAAMHDsTEiRMhSRIuu+wyrF9vdYiTJAkcx8Hj8cSTwyzuvvtu5OXmIiuravlohw4dcNNNN4HjGG6++Wbs3r0bO3furPE7J0lWHobH44HH40F5eTk++eQTzJo1C6LA48ILL8SAAQPwv//9z9nn/vvvRzArgEAggJycHCxevBhffPEFJElC7969oWsqojEFBw4exo6de7Bjxy4UHTiA0tJShEIhlJWVQdc1eD0y8tu3Q/fundGrZwF6HtUNR/coQEH3rgj4fSguKcGOnbux/8BhxBS11ux5jmOQZRGxWMxJZWgpC592BYLsk2AaBkoOlMJoaqXBSufneR6yZHUG1TQ9riSa9gEAEIgTLDGrSggCB0U1oDZHR0aXZseNEGQEgiRJ0DQNPGe1pu3bty/effddZ/Zv6CoYx1vJZkQACJqmQZIk5xgAnB4Dffv2xZYtWzBs6KkAJ4D35QMAtm7dmiQJnZeXB10pBy/50b59e+zbt88Z3BctWuRsN3DgQEcRErAcCyUWhezxwuPxQFWtG7ff58Utt9yM6dOno7y8HEOHDsUbb7yBW2+t0EY3DR1mfE26Q4cO1uyQMRQWFuLgwYP48MMPnW1vv/12qKqKwsJC8Dyf9JqdWOdcRUKVNeypU6fi+uuvx4knnojc3GSZ4ZkzZ2LnTivxMhgM4u2330ZZWUXGfV5ennXdGYf27dtjzZo1YIw5QVPGOBw+fBgdO3YEkQk9XrUgSh4UFxcjP9+65poSRVZWFkRRRGlpqXP9ACBaHoYsy46jkIimxcALonOdNC0Gzqi6lp+bmwvGGNRYFLI3gNzcXBQXF8evSbwqAFYeSCoMQ8ORI0cQCATg9XoRi5TB48tCfn4+Dh8+7GzXoUMHqGoUgiDjj3/8I1566SU88sgjWL9+Pf70pz9h4sSJ2L//IGRZQn5+HsS4QI/VRolBEAVHcjrVDJXneYhiENnZQSiKilCoDHsL90HgBWRnBxHwe+PdPpP3ZYyBYxxEToAsSlBMgsSlaEqVIRhjILJEpCJlMcQiKjw+CVwdZuqNYQPPLMdJUTSnEqHW/cAAS3kEHCmgSvtwHIPXI6CsLAo5L9AkjbtcMofrEGQAXdfRv39/fPbZZ+A4HpoSxcSJE/HrX/8aK1euxEknneQkne3YsQM9evQAAGzbtg39+vUDUHGzNwwrFHv55Zfjueeew+TJk+EPtgfHcfjyyy/x448/4uKLL3bO/d133+Hkk08GAKxevRpnn302evToAa/Xi2nTpqF3797V2l05k1vXdeeGTUQIBAIoKCiwZm6A4/RIcsVas31DNA0DQ4YMwerVq/Hb3/62yo1yyJAhOHLkCH73u99VsUOSJJSUlFgza28WYkqJ89pll12GOXPm4Oabb66y34IFC7Bw4UL07dsXZWVlVRpafffddxg9erRzbfr27QvTNOODK4FMAwMHDsSLL74IgMGflQsW1zno378/XnjhBRARPL4srF+/Hn6/33ESbMRKIkX2NQIAT4I8ck0Dx7Zt21BSUoKcnBwcOXIEe/fuxdFHH40DBw7gwIEDICIIoowffvgh5Xl4XkSXLl1gmia2bNmC3r17wzAMrF69Gr/85S8r2UDgBQF+UcKvfvUr/OpXv8KHH36I+++/H5dffjl6HFUAIqPeA51TPeKRIcsS8vLaIRyOoDRUhuLiI/B6vcgOZsHjkeKVGtZ+9vdfFAWU6wRRahnOgC1aZDvsviwZumqgrDgMb0CG5JGqjMtN6STwHAee56BpBkSxwrlMeU4icIxZThxjALGk1wxVg2aYEJmJiKZZehAAItHmab7m0vS4DkEGUGNRjBo1Co8++qizrtqxY0f85S9/wejRozFx4kT07dsXGzZswJdffunc2JcsWYLRo0fDNA2QWdEWWVOjuP322/HZZ59h6NChuOqqq7B37168+eabeO2115zZKQC8/PLLKC8vR2FhIVavXo1XX30VsizjkUcewQUXXIBbb70VgUAAy5cvx4wZM3DiiSdWGF7pJrJjxw5cdNFFuPTSS9G5c2esWrUKq1atwssvvwzAaix17733YujQobj++uuT9tW0GMaPH48//elPuOyyy3D++eejpKQEGzduxKuvvopbb70Vw4cPxy233IKTTz4Ze/bsgaZpePTRR3HqqafimmuugSRJOO2003D66ac7xw0Gg/jyyy9TXvdhw4bh7rvvxujRo/Huu+/C70/WOHj77bfjwjcRzJs3DytWrICuWep4ViZ3DJMmTcKzzz6Lyy+/HOeffz62bduGSZMmYeTIkWjfvj2uuOIKnHHGGXjhhRfw2GOPVb3xVnKqjj76aBQXF+OOO+5Ajx49cMcdd6S0PZFgMIjJkyfj4osvxttvv40bb7wROTk5yMrKgt/vx/Tp0x3Jbpvs7Gx06tQJN954I7p164aHHnoIDz30EMaPH4+bb74Zn376Kfr37590La3PyYTHy+Hmm29Gr169kJ+fj3feeQdnxzuOMtZ4bZXtcHcwmIWsrABUVUOorAxFBw5CEAT4fV5kBfwQRQEcHy+n1FT4eAEMaBS56YZCmo5Y0WFQvB24bRBFVZQfIEdtEmDgAl7IuXXLyiciKKoBSeRTl1qaBOgGKKYCigYQIDKGmKbB5DkwngPjeYiy6HxqRFYUL7qvCFIwCE9xKZSYBDJ0SFoIHM8jevgQ9EgUmqpCzgqCP3QIrGNnCB4ZYqhuOicuLRe37LAZKS0tRU5ODrZt2Yievfrh0ksvxfTp03HmGcNRFipBbvuOKC4uxnvvvYcDBw7g6KOPxpgxYxAIBKAoCgYNGoRvvvkGAgeESpPb8Obmd4LH48PXX3+NL774AtnZ2ZgwYQLat2+PslAJsoI5OPbYY/G3v/0N69atg2EYmDhxInKysxAp2Y9gfgF++uknLFiwAKZpYvDgwTj77LMhCALee+89jB07FtFIGYLZufjwww8xfPhwBAIBrF+/HsuWLUNJSQm6deuGiy66CAG/H5qmQJQ8+PLLL3HgwAGMGDECBw4cgGma6Nu3Dw4W7UX7Dp3B8QI++eQTrF27Fnl5eRg5ciT69OkD0zQRi8XwwQcfYNu2bejatSvOP/98dO7cGQCwceNGbNiwAUcddRQGDhyIefPmYdKkSTh8sAi6Zi1ndOxSgC+++AI9evRAQUEBFEXB22+/jUOHDuHiiy/Gnj17cNxxx6F9+/Y4++yzce+996KoqAjhcBjjxo1Dp04dcaDIckQ0TYMsycjv2AWMs3pobNy4ET179sQll1wCn88HVVXx/vvvY/fu3Rg+fDhOPfVUmKaJQ4cO4ccff8TZZ5+NstIjMMHh66+/dvppHDx4EN9++y0YYxg9ejQWLlyIM844A4auQOAFRGKqs39xcTFWr16Nrl27Yv78+ejXrx8uuugihMtLIcs+lIZCmDt3LiRJwrhx4/Dtt986S0alpaVYtmwZIpEIJkyYACLCN998g6VLl6J379645JJLwHGWuuO7775rXaPdO9GjZy+sW7cOX375JcrKyjBo0CBccMEFiJSHUFpyGE0JEcEkE0pMQUlpCLGYYuVbiCJygllgAgdDNcDxyVLTRnymzsd7U5gE8MxezqjDrLzy3bGW3bTyCLTCQxAEEWQSCORE0OwD2vk/Ohnw9uwCjk9fFdA0CfsPlKF9e7+1REMEGCYoEgMdKYd5sBR0OAQqjwCMA/NIgMg7gz4RAEkCSTyEcMy6DoxDmFehGNbyG8eLkCQZTDcgRhkgCCiNHQbn90CPRJDVqQu0snIEPEEw1UBZJILjbv0FSkpKkJ2dXfMbcGnRuA5BM7Jnzx50794dgNWCuVu3bvjLX/6Cp59+GoMGDUI4HMa0adNwwQUXIDs7G4WFhfjoo49w++23Y9WqVdi2bRtuu+02dO3aFYWFhUnHZozhoosuwrRp09C/f39EIhEsWrQIL7zwAjp27Ijly5fj2GOPxdy5czFw4ECsXbsWS5YswSOPPILi4mKceuqpTpMonufx448/Yt68eejatStOO+00rF27FrNmzcINN9yA0aNHY/PmzVi2bBnOP/98DB48GMFgEPv27cPSpUvx7LPPori4GFOnTsXIkSORm5uLzp07o6ysDEVFRXjqqaewfPlyiKKIqVOn4oorrnBmyitWrMALL7yA7du345ZbbsH48ePRuXNn7Nu3D19++SX+9Kc/oUuXLrj22mvRvXt38DyP/Px8HDx4ECtWrMBvfvMbGPFEzSuuuAJXX301iouL8fvf/x6XXHIJxo8fj5ycHPTu3Rs7d+7E1q1bMXLkSJx99tmYNWsWRowYge+//x5ffvklHnnkEezbty/pOsuyjGnTpuHKK69Et27dsHfvXixYsAB//vOfMXXqVFx55ZVo164dfvzxRzz33HPYtGkTZs2ahS5duuDtt9/GwoUL8fDDD6N379744IMPMG/ePMyYMQPHHHMMZFlGv3798NNPP2Hz5s146KGH4Pf78Zvf/AZdunTBp59+ij59+mDMmDHo3r07Nm/ejL179+KNN97Aa6+9htzcXDz88MM488wzEQwG0aNHDyxduhTz5s3DnDlzMGPGDAwePBg+n+U4rlixAjfffDP69++PXbt2Yd68eXjhhRfwf//3fzjttNOwZs0azJo1C0OGDMGNN96IE088EdnZ2di0aRPefPNNvPHGG+76sYvD7t270a1bt0yb4dIAXIegGTFNE4WFhcjKygLP8wgEAs7z4XC42pur1+uFKFrJZrFYDKqq1um8HMchEAjg7rvvxowZM9ChQ4eUSW2pCIVC6N69O3bv3t0qRUdqs58xhqysLDz22GO49NJL0bt3bycHoiXQ1q9/S8e1v3aICGVlZejSpYtTTeTSOnEdApcasdUVW6sKmWt/ZnHtzyyt3X6X5sV151xcXFxcXFxch8DFxcXFxcXFdQhcakGWZcyaNQuyXLX5T2vAtT+zuPZnltZuv0vz4uYQuLi4uLi4uLgRAhcXFxcXFxfXIXBxcXFxcXGB6xC4uLi4uLi4wHUIXFxcXFxcXOA6BC4uLi4uLi5wHYKfPa29yMS1P3O0ZtsB134Xl8q4DsHPGE3TsH//fufv1naD0XUdpaWlmTaj3rRm+1uz7UDrt7+1/3ZdWiauQ/Az5amnnkK/fv0wevRoXHHFFVi9enX6LWFbAE8++SSOP/54jB49GnfffTe2bt0KoPXcGFuz/a3ZdqD129/af7suLRdXmOhnyJNPPonnn38ef/jDH1BUVIQPPvgA69atw0cffYTBgwdn2rxaeeCBB/D3v/8dv/3tb/HDDz9g8eLFCIVC+Oqrr5Cbm5tp82qlNdvfmm0HWr/9rf2369LCIZefDYZhkKZpdOGFF9KMGTOSXjvuuOPo4osvps2bN2fIutoxTZNCoRANGzaMfve73znP7969mwoKCmjq1KlUWlqaQQtrpjXb35ptJ2r99rf2365L68BdMvgZwXEcTNPE+vXrccIJJwAAYrEYAOCll17C8uXL8cknn0DX9UyaWS2MMXAchzVr1uDEE08EYK0Fd+vWDS+99BJef/11fPnllxm2snpas/2t2Xag9dvf2n+7Lq0Dd8mgDfPaa69h+fLlOP7443HxxReje/fuAIBJkybh0KFD+N///gcAME0THMfh6quvxqZNm7B48eIW0Tv973//O77//nsMGTIE5557LnJzcxGNRjF27Fh07doVb7zxBoAK+8877zwIgoAPP/zQec61/+dne1uwv7X/dl1aKZkOUbg0PocPH6YxY8ZQly5daPLkyXT00UdTjx496MMPPyQiojfffJO6detGCxcuJCKiaDRKRESbN28mxhitX78+Y7YTEe3bt49GjhxJXbt2pbFjx1LXrl1p8ODBtGnTJiIievTRR2nIkCG0bNkyIiJSFIWIiBYtWkSCINCePXsyZjtR67a/NdtO1Prtb+2/XZfWjbtk0AZZuXIlNm/ejOXLl+Ott97C1q1b0bt3bzz55JP49ttvccEFF+Ckk07C7NmzAQAejwcAwPM8unbtih9++CGT5uPzzz9HUVER1qxZg/fffx9r1qxBNBrFvffei927d2P8+PEIBAJ46aWXAACSJAEAfD4fOnfu7GSNZ4rWbH9rth1o/fa39t+uS+vGdQjaEBRf/fnhhx8gyzL8fr/z2m9/+1uYponnn38eOTk5uPHGG7Fjxw7cddddMAwDALB582Z4vV6cfvrpGbOfiPDVV1+hU6dOCAQC4DgO7du3x4svvogNGzbgb3/7G4499lhMnDgRK1aswFNPPeXsv3fvXvj9fgwcONC1/2dke1uxH2i9v12XtoGQaQNcGsZXX32FYDCIo446ylk7NE0T4XAYgHWjYYzhpJNOwoUXXoh33nkHn3zyCS688EI8+eSTuO666/D5559j4MCBeOedd3D11VcjPz/f2a+pWblyJTp16oQOHTo4szVZllFUVASPxwPDMMDzPEaMGIFzzjkHH3/8MSZOnIhrr70W4XAYd911F5YsWYKCggL84x//wI033ohgMOja38Ztbwv2t/bfrksbpLnXKFwah02bNtHJJ59MHTp0oKOPPppOPvlkev/994mIaP/+/eTxeOj1118nIiJN04iIaNeuXXTcccfRY489RoZhEBHRp59+Sk8++SRNmTKF5s+f32z2b9iwgYYMGUIdO3ak3r170/nnn0+rVq0iIqJVq1YRz/O0aNEiIiKKxWJERLRlyxbKy8ujt956yznOv/71L7rvvvto3Lhx9N///te1v43b3hbsb+2/XZe2i+sQtEI0TaPrr7+eJk6cSDt37qTVq1fTRRddRMcddxx98MEHRER0ww03UEFBAUUiESKy6rCJiCZNmkRjxozJmO1ERGVlZTR+/Hj6xS9+QZs2baIlS5bQoEGDaOTIkbR8+XIiIrr44otp0KBBzj66rhMR0YgRI2jq1KkZsdumNdvfmm0nav32t/bfrkvbxnUIWhH2jWH//v2UlZVFb7zxhvPaTz/9RL/4xS9owIABRGQJrnTs2JGmT5/uZCKbpknjxo2jm266qfmNpwr7t2zZQoFAgBYsWOC8tnz5cho7diyNHTuWiIi++OILCgaD9PjjjzvbhMNhOu200+ihhx5qXsPjtGb7W7PtRG3H/tb623X5eeDmELQCSkpKkJOT46wLlpeXo1+/ftA0zdmmb9++mDJlCj7//HPMnj0b//d//4cXX3wR11xzDY4cOYLLL78cO3fuxPLly/Hqq682q/2RSAQ+n8+x/8CBA+jRo4eTIQ0AQ4cOxfjx4/H000/j9ddfx5QpU/D444/j9ttvR2lpKcaMGYN169Zh165dOPfcc137fwa2twX7W/tv1+VnRqY9Epfq2bhxI5133nk0YsQIuvbaa+mTTz4hIqJIJEJDhgyhO+64I0lutaSkhH7961/TySefTIcOHSIiorfeeosuuugiGjx4MB199NE0d+7cZrN/w4YNNGbMGBo/fjzdeeed9MMPPxCRFfbNy8uj3//+987MiYho7969NHnyZJo0aRKVlZUREdETTzxBw4cPp/79+1NBQQH9+9//du1v47a3Bftb+2/X5eeJ6xC0UFatWkWdO3emqVOn0l//+lcaNmwYdevWjd555x0iInryyScpNzfXEVixefPNN+n44493bqA227dvby7TiYho6dKllJeXR9dccw3Nnj2bevToQSeffDJ9+umnRET0q1/9irp37067d+9O2m/27Nl0wgkn0MGDB53nTNOk77//3rX/Z2B7W7C/tf92XX6+uA5BC8Oe9cyePZvOPPNMJ7HowIEDdOutt1Jubi7t37+fiIh69epFkydPpm3btjn7/+9//yPGGG3ZsoWIyMlIbm5mzpxJ48aNc97Pjz/+SJMmTaKjjz6aiIhKS0spPz+f7rjjDgqFQs5+7733Hnk8Huem7tr/87KdqPXb39p/uy4/X1xhohbC1q1boWmas9a4adMmMMbg9XoBAPn5+XjkkUeQm5uLe++9FwDw3HPPYdmyZfjDH/6A7du3Q1VVfPjhh7jooovQuXNnAGg2TfYDBw4k9ZPfsmULJEly3s8xxxyD++67D6FQCLNmzUIwGMRTTz2Fv/zlL3j55ZdRVFQEIsLChQsxceJE5OXlNav9tu2mabZK+xNprbbbn0Frtd+mtf12XVwcMuiMuJBVXzxmzBg65ZRT6KOPPnKe/8Mf/kDHH3+8o8Fuzxbeeust4nneCZe+/PLLNGTIEOrWrRsde+yx1L59+2atqd65cyedcsopdOWVV9KRI0eIyCqtmj59Oo0ZM4b27t3rbKtpGs2ePZuysrKcdd4HHniAjjnmGOrbty8df/zx1KFDB2e9takxTZMOHz5M55xzDj3wwAPOc63F/j179tATTzxB//znP506/Fgs1ipsJyIqLCykt99+m5YtW0aHDx8mIqu3QGuxv6ioyGk5bJc2ErWe366LS2VchyAD2KHQRYsWUZcuXWjChAm0Zs2apMYqH3zwAZ166qn09NNPJ+23f/9+GjhwoDOAEVmlTB999BHNmTOn+d4EEd1xxx0kCAJdeumlTijUfm+vvPIKDRo0iN59992kfVatWkUDBgyg559/noiIVFWlzZs30xtvvEEvvvhis9pPRLRgwQJijJEsy0nh27/+9a80cODAFmv/XXfdRV6vl0aNGkV9+vShnj170nfffUdERC+99FKLv/Z33XUXBQIBOvvss8nn89GECROcAbQ12P/4448Tx3F05plnOs/ZA/9///vfFv/bdXFJhesQZJCpU6fSnXfe6fxtD6o2kyZNolGjRtE333zjPBeJROiMM86gBx98kEzTzMg6Y2lpKbVr147at29PX3zxhfO8rapmc9JJJ9HkyZOdWRQR0ZEjR6hv3770t7/9jYgyv046a9YsuvXWW+nCCy+kUaNGJb3WEu0/cuQIXXLJJXT66ac71/67776j0047je65554WbTsRUXFxMV1//fU0bNgw+vzzzykWi9G//vUvOuecc+juu+9u8fYrikL33HMPDR06lK655ho67rjjHHsSv/+XXXZZi/zturjUhLtIlSEKC8mIdwAADjNJREFUCwuxfv16jB8/HmvXrsU555yDMWPG4PTTT8df/vIXAMDMmTMRDofxxBNPOPuZponi4mL07NkTjLGMrPMGg0Gcd955OProo3H66adjxYoVuP766zFjxgw8++yz2LBhAwDg7rvvxpo1a5z3AwCKokDXdbRr1w5A5tZJ7aYwoigiJycHd911Fz755BN8+OGHzjYPPfQQVq9e3aLsz8nJwSWXXIInnngCw4cPBwAMHjwYsixj3Lhxznb33ntvi7z2hw4dAmMM99xzD8444wzIsoxJkyYhEAhAVVUnh+P+++9vkfZLkoRevXrhuuuuw4MPPohTTjkFL774IsrKyiAIAlRVBQDceuutiEajLeq36+JSK5n2SH4O2DOBxBlEaWkpeTweeuedd2jSpEn061//mubOnUszZswgURQdLfN//vOf1KtXLxo0aBA9+OCDNHz4cBo4cGDSzKk57bfXSktKSkgURTr22GOpW7dudO2119K4ceOoX79+dMwxxzj7PPLII9SvXz8644wz6M9//jOdfvrpdMopp1BhYWFG7K/MmDFj6M033yQiosmTJ9Nxxx1HxcXF9PbbbxMR0e9+9zvq27dvxuxPZbutz09EdPDgQRo7dizl5OTQ+eefT3fccQeVl5cTEdFjjz2WUdsT7VdVlYgsHYHEMkD79cmTJ9Ott96atO9jjz3Wor479nJY4sz+v//9Lw0ZMoQefPDBKq+99dZb1Lt374z+dl1c6oLrEDQxv/nNb2j06NFJz9k3jTFjxlB+fj6dffbZSSIlkydPplNOOcV5bsuWLfTLX/6SLr74YpoxYwYpipJR++3B6emnn6a+ffvSt99+69wsV69eTQUFBTRjxgwisiRjv/76a5o8eTKNGDGCbrnlFmdwyJT9RBVJYBMmTKCPP/6YiIi+//578ng8xBijGTNmkKqqFIvFMmZ/dbbbFBUV0TnnnENjxoyh+fPn05NPPkl9+/alcePGEZEVom5J1z5RSIio4neg6zr16NHDaTxkf78VRWlR9qciFArRfffdRwMGDKAff/yRiCjJxkz+dl1c6orrEDQRGzdupEsuuYTy8/OJMeZol9uDqWEY9Nxzz1G7du3o2muvTXpt69atSfXINs15M6zJ/sQb+2effVblufvvv5+OO+44Z6ZqY+uyNwe1XX+bM888k3744QdasGABdejQgfLz88nn8zkVE4nZ481lf7q2E1UVrZk/fz75fD7at29f0vMt4donXstEvv/+eyooKKCffvqp2mO2BPsrX3/7O79s2TIaMWIEXXPNNc5rlX+rzfnbdXGpL+4iVhOxZs0a+Hw+vPLKK5g+fToeeOABmKYJQRCg6zo4jsN5552HoUOH4uOPP0ZxcTEEwWotsWHDBvTp0wdkOWzOMUVRbBH2JzJixAgIggDGmGPrunXr0KVLF0iSlGR/ov58Ju23bdq9ezcURcGZZ56JK664AjNnzsSSJUtQUFCAX/3qVwCQ1Fe+uexPx3abHj16AKio4f/uu+/QvXt3GIbR4q49z/NV7AeAH374AZ06dULfvn0BAB9++CF+97vfJW3TEuyvfP3t78bQoUNx8cUXY+XKlZg/fz7mzp2LG2+80clTAZr3t+viUm8y5Ym0VexZQ2lpKa1YsYKIiFasWEG9evVysqgTZxqff/45de3alUaPHk1vv/02ff/993TeeefR1VdfXSXE2lLsr26mR0T09ddf02mnnZbUd745qav9V155Jc2cOTOp5PDFF1+krKwspza+uWjotV+7di2NHDmSHn300aY3NgX1tf+qq66ie+65h/bv30/nnnsuiaJIs2fPbj7D49THfnufn376ic466yxijJEkSXT//fc3o+UuLo2D6xA0A+Xl5fT73/+esrOzaceOHUSUHEJcuXIlnX322TRgwADq1KkTXXXVVRQOhzNlbhVS2Z94Y9y2bRvNnTuXpk2bRoFAgG677bYWtVaayn47Ma/ysgaRtfbenCHqmqjt2m/fvp3+/e9/04033kg+n49uvPHGFmM7Ue32Hzx4kAoKCqhHjx4kiiJNmDAhKZ8m09RmP5ElsDR16lRijNEtt9ziCCe5uLQ2XIegCUic2dv/3rhxI51++uk0fvz4pG3txKpYLEY7d+6knTt3Np+h1VAX+4msWdTUqVNp1KhRtHr16mazszrqan9Loq62r169mm699VYaO3Zsq7z2O3bsoIKCAho+fHirtJ+IaM6cOXTmmWfSypUrm8VGF5emwnUIGplUiV/282+++SYFg0H67LPPiMjq6lZZjCjT1MX+JUuWUHFxsaPC1hKo6/U/cOBAc5pXI/W59kTktMvNNHW1v6SkhMLhMK1du7Y5zayWun53ioqKiKhq9YSLS2vFdQgaicSbiaZpdOedd1apNy4sLKTJkydTnz596PzzzyfGmLNWmWnqa/+3337b3KampDVf/5/rtW/t9reE746LS2PiVhk0EDub286+f+aZZ5CXl4d58+YlZajb2x48eBBbtmxBbm4uCgsLcdJJJ2XC7CSbGmL/ySefnAmzk2xqrdf/537tW7v9mf7turg0Opn0Rlo7iclFixcvpl69elHHjh3plVdeqRJ+3LBhAw0ZMoR69epFy5cvb25TU+Lanzlas+1Erv0uLm0R1yFoILt27aILLriARFGkX//619WWqoXDYfrf//7XvMalgWt/5mjNthO59ru4tDVch6AB/Pvf/yZBEGjMmDG0YcOGTJtTZ1z7M0drtp3Itd/FpS3CiFJIh7mkxbZt27B//34MGzYs06bUC9f+zNGabQdc+11c2iKuQ+Di4uLi4uICt8rAxcXFxcXFxXUIXFxcXFxcXFyHwMXFxcXFxQWuQ+Di4uLi4uIC1yFwcXFxcXFxgesQuLi4uLi4uMB1CFxcXFxcXFzgOgQuLi4uLi4ucB0CFxcXFxcXF7gOgYuLi4uLiwtch8DFpU2yY8cOMMawZs2aJjk+Ywzvv/9+kxzbxcUlM7gOgYtLE3Dttddi3LhxGTt/9+7dsW/fPgwcOBAAsGTJEjDGUFJSkjGbXFxcWjZCpg1wcXFpfHieR6dOnTJthouLSyvCjRC4uDQzS5cuxSmnnAJZltG5c2fce++90HXdef3ss8/G7bffjrvvvhu5ubno1KkTfvOb3yQdY+PGjRg+fDg8Hg8GDBiAxYsXJ4XxE5cMduzYgREjRgAA2rVrB8YYrr32WgBAjx498MwzzyQde/DgwUnn27x5M84880znXIsWLarynnbv3o3LLrsMOTk5yM3NxSWXXIIdO3Y09FK5uLg0I65D4OLSjOzduxejR4/GySefjLVr1+LFF1/Eq6++isceeyxpu9dffx1+vx/ffPMNnnjiCTzyyCPOQGwYBsaNGwefz4dvvvkGf/nLX3D//fdXe87u3bvjP//5DwDgp59+wr59+/Dss8+mZa9pmrj00kshSRK++eYbvPTSS7jnnnuSttE0DaNGjUJWVha++OILfPXVVwgEArjgggugqmpdLo+Li0sGcZcMXFyakRdeeAHdu3fHc889B8YY+vfvj8LCQtxzzz146KGHwHGWj37cccdh1qxZAIA+ffrgueeew6efforzzjsPixYtwtatW7FkyRJnWeDxxx/Heeedl/KcPM8jNzcXANChQwfk5OSkbe/ixYuxceNGfPzxx+jSpQsAYPbs2bjwwgudbebOnQvTNPHKK6+AMQYAeO2115CTk4MlS5bg/PPPr9tFcnFxyQiuQ+Di0oxs2LABw4YNcwZOADj99NNRXl6OPXv2oKCgAIDlECTSuXNnHDhwAIA1y+/evXtSjsApp5zSZPZ2797dcQYAYNiwYUnbrF27Flu2bEFWVlbS87FYDFu3bm0Su1xcXBof1yFwcWmBiKKY9DdjDKZpNvp5OI4DESU9p2lanY5RXl6OIUOG4K233qryWn5+foPsc3FxaT5ch8DFpRk55phj8J///AdE5EQJvvrqK2RlZaFbt25pHaNfv37YvXs39u/fj44dOwIAVqxYUeM+kiQBsPIPEsnPz8e+ffucv0OhELZv355k7+7du7Fv3z507twZAPD1118nHePEE0/E3Llz0aFDBwSDwbTeg4uLS8vDTSp0cWkiSktLsWbNmqTHjTfeiN27d2PGjBnYuHEj5s2bh1mzZuHOO+908gdq47zzzkOvXr0wZcoUrFu3Dl999RUeeOABAEhaikjkqKOOAmMM8+fPx8GDB1FeXg4AGDlyJP7+97/jiy++wPr16zFlyhTwPO/sd+6556Jv376YMmUK1q5diy+++KJKAuNVV12F9u3b45JLLsEXX3yB7du3Y8mSJbj99tuxZ8+e+lw6FxeXDOA6BC4uTcSSJUtwwgknJD0effRRLFy4EN9++y2OP/543Hzzzbj++uudAT0deJ7H+++/j/Lycpx88smYNm2aM0h7PJ6U+3Tt2hUPP/ww7r33XnTs2BG33XYbAOC+++7DWWedhbFjx2LMmDEYN24cevXq5ezHcRzee+89RKNRnHLKKZg2bRoef/zxpGP7fD58/vnnKCgowKWXXopjjjkG119/PWKxmBsxcHFpRTCqvIDo4uLS6vjqq68wfPhwbNmyJWlAd3FxcUkX1yFwcWmFvPfeewgEAujTpw+2bNmCX/7yl2jXrh2+/PLLTJvm4uLSSnGTCl1cWiFlZWW45557sGvXLrRv3x7nnnsunnrqqUyb5eLi0opxIwQuLi4uLi4ublKhi4uLi4uLi+sQuLi4uLi4uMB1CFxcXFxcXFzgOgQuLi4uLi4ucB0CFxcXFxcXF7gOgYuLi4uLiwtch8DFxcXFxcUFrkPg4uLi4uLiAtchcHFxcXFxcQHw/456XTjaTBhCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function='pairing_dict',\n", + " allow_candidate_values=[1, 2],\n", + " allow_benchmark_values=[0, 2]\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "8e4c5a2d", + "metadata": {}, + "source": [ + "#### Registration of Custom Functions" + ] + }, + { + "cell_type": "markdown", + "id": "1b259d70", + "metadata": {}, + "source": [ + "In this case we register the arbitrary pairing function `multiply` with the name \"multi\" and then vectorize it. `Multiply` can also be passed in as a function in the `comparison_function` argument" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "972f07aa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAF/CAYAAAA2D9EJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd4AU5fn4P1O23l7j4IBTBBQUbNgViN2IijHYUNTYozEQJcaoMdGIyS9Go4m9JUZN7BrFGhT1a4lgQ7GLgiIinePa3pYp7++PvVlm92Z3Z8sVcT5mw93MO+/7zrtz8z7v8z5FEkIIPDw8PDw8PL7XyH3dAQ8PDw8PD4++xxMIPDw8PDw8PDyBwMPDw8PDw8MTCDw8PDw8PDzwBAIPDw8PDw8PPIHAw8PDw8PDA08g8PDw8PDw8MATCDw8PDw8PDzwBAIPDw8PDw8PPIHAI4u33noLSZKQJIkrrriir7vjUUFOPfXU9Hd79tln5yyXSCQYMGBAuuzLL7/ce50sktNPP52qqirWrFmTcdzqe77PqaeemnHNiBEjupWpqalh991355prriGZTHZrP5FI8Le//Y3x48dTW1uL3+9n6NCh7LbbbvziF7/gmWeeydn35uZm/vSnP7HPPvvQ2NiIz+ejtraWnXbaiXPOOYeXXnqp6PHYb7/98t7znDlzcl579913s8ceexCJRBgwYACHHXYY8+bNK6kdSZKQZefpZfny5Zx22mk0NTURDAbZeuut+f3vf088Hu9WduXKlYRCIX7+858XPRYexaP2dQc8+hf//ve/0z/fd999XHbZZX3YG49sLr/8cmbNmsVdd93VbUIrhkceeYQbb7wRv9/f7dwzzzzDhg0byuhl7/Dhhx9yzz338Ktf/YrGxkbHMqecckrO63/wgx84Hj/66KOJRCIIIVi6dCnz58/nnXfe4amnnmLu3LnpMWtpaeHAAw/k3XffxefzMX78eJqamujo6GDBggXcdNNNzJ07l8mTJ3dr4/HHH+fUU0+lra2NSCTCnnvuSWNjI9FolE8//ZTbbruN2267jcMOOyyvUJEL6x6y2WyzzRzLz5w5k+uvv55QKMTBBx9MPB5n7ty5PP/88zz66KNMmTIlo/whhxzCiBEjHOtasGABH330EXvvvXe3c4sXL2b8+PGsW7eO7bffnr333pt33nmHK664ghdffJEXX3yRQCCQLj906FDOOussbrnlFmbOnMnWW2/tfhA8ikd4eHSRTCbFwIEDBSCGDBkiAPHGG2/0dbc8bPz+978XgLjrrruKvvaUU04RgNh5550FIB5//HHHckceeaRQFEWMGzdOAOL//u//yupzT3HEEUcIn88nVq9e3e0cIIp9vQ0fPlwA4quvvso4/t5774na2loBiBtvvDF9/Be/+IUAxE477SSWL1/erb4333xTzJo1q9vxp556SkiSJFRVFVdffbWIx+Pdynz66afilFNOEaNHjy7qHvbdd1/He8jH3LlzBSAaGhrE559/nj4+b9484ff7RV1dndiwYYPr+vbYYw8BiL///e/dzk2cOFEA4txzz00f0zRNHHnkkQIQv//977tds3z5ciHLspg6darrPniUhicQeKR58sknBSAmTpworrjiCgGI6dOn93W3PGxUQiC4+uqrhSzL4phjjulWZsOGDSIQCIiDDz5YTJo0qd8KBMuWLROyLIvDDz/c8XwlBQIhhJg1a5YAxIEHHpg+1tTUJAAxd+5c1220t7enhe5///vfBcu/8847rusWojSB4NBDDxWA+Nvf/tbt3LnnnisAcc0117iq6/PPPxeACAaDoqWlJePcm2++KQDR2NjYTQhatWqV8Pl8or6+Xmia1q3eAw88UPh8PrFq1SrX9+VRPJ4NgUeae++9F4CTTjqJk046CYCHHnoITdNyXvPBBx/wox/9iLq6Oqqrq9lnn32YO3cuL7/8suM+rbWP/fLLL/Pcc8+x//77U1dXhyRJtLS0pMvNmTOHyZMnM2jQIAKBAFtuuSXnn38+69evd+yHEIIHHniAAw44gPr6eoLBIGPHjuXyyy+ns7OzW3lrD3Tp0qU89NBD7L777oTDYTbbbDMuvPDC9H7xkiVLmDZtGo2NjYTDYfbff38++OCDnONRTL/tY/Hqq69ywAEHUF1dTU1NDZMnT+aTTz7JKD9ixAhmzZoFwGmnnZaxX1vMPv/QoUM54IADePrpp2ltbc049/DDD5NIJNLfvxMLFy7kwgsvZNddd824z5///OesWLGiW/mlS5ciSRL77bcfbW1tnHfeeQwbNiz9Hf3tb3/DNE3X/Qf45z//iWmaTJs2rajrSmXnnXcG4JtvvkkfW7t2LQCDBg1yXc/dd9/NunXrmDBhQt4xtth1112L7GlxxGKxtK3CMccc0+28deypp55yVZ/1DvnRj35EbW1txjlr6+NHP/pRxrYAwODBg9l7773ZsGED//vf/7rVe8IJJ6BpGnfffberfniUSF9LJB79g5aWFhEMBoXf7xfr168XQggxYcIEAYgnn3zS8Zp58+aJcDgsALHjjjuK448/Xuy+++5CluW0OvWUU07JuMZapf70pz8VkiSJ3XffPX2dtaK46KKLBCD8fr+YOHGiOOaYY8To0aMFILbaaqtuqwTDMMS0adMEICKRiNhvv/3EkUceKYYNGyYAsccee4jOzs6Ma6yV1MyZM4WqquKggw4SRx55ZHr1dvLJJ4vPP/9cDBw4UIwZM0Ycd9xxYocddhCAGDBggONKpdh+W2Nx/vnnC0VRxJ577immTp0qtt5667QKd+XKlenyv/rVr9Jq/IkTJ4pTTjkl/fn0008LfsdWe//+97/FXXfdJQBx5513ZpTZZ599RDgcFu3t7Tk1BMcdd5xQVVXssssuYsqUKWLKlClixIgRAhBDhw4V3377bUb5r776SgBir732Ervuuquoq6sTRx11lDj88MNFKBRyfE4KsdtuuwmgW1sWVFhDcN999wlA7LDDDuljW265pQDEz372M2Gapqs2DjvssG5bD8ViaYmcxsx6rn/3u9+Jc845R0yfPl1cf/314uuvv3as67333hOAGDRokOP5jo4OAYj6+npXfdtqq60EIJ544olu53784x8LQNx8882O115wwQUCENdff323c0uWLBGA2HvvvV31w6M0PIHAQwghxD/+8Q8BiB//+MfpY7fccosAxLHHHtutvGEY6Ynr//2//+dYVz6BABAPPvhgt3offvhhAYjtt99efPHFF+njpmmKyy67TADiuOOOy7jm6quvFoDYb7/9MibQRCIhzjjjDAGIiy66KOMa68UZiUTE22+/nT6+cuVKMXjwYCFJkhg7dqy4+OKL0y970zTFT37yEwGIyy67rOx+W2Mhy3LGfr6u6+Loo48WgLj00kszrqnElsG///1v0dbWJkKhkNh///3T57/++mshSZKYNm2aEELkFAheeuklR6HMUqufdtppGecsgcASHNeuXZs+t3jx4rTqPZdNQzbt7e1CURTR1NSUs0ylBYLjjz9eAOLEE09MH7vyyivT7YwZM0ZcfPHF4vHHHxfffPNNzjY222wzAYj//e9/RfXNjhuBIPvj8/nEFVdc0a38E088kbYryUVdXZ0ARFtbW95+zZs3Ly3IJpPJbuct2xUnYUEIIa677rq0gOzEwIEDRSAQELFYLG8/PErHEwg8hBAbXySPPPJI+ti6deuEz+dz3A+0DJFGjx4tDMPoVp9lPJRLIJg8ebJjP6wV8IcfftjtnGmaYqeddhKKoqQnFU3TxMCBA0VVVZXjqr2zs1MMGTJE1NfXZ/TTvpLK5pe//KUAxJZbbtntxfb+++8LQOy7775l9ds+FvZJxuKdd95xbKdSAoEQQkydOlXIspw2iPvTn/4kAPHMM88IIXILBPnYbLPNRENDQ8Yxu0Dw/PPPd7vm1ltv7bY/nw9rL9ouzGTjNClmf7IFkGyBwDRNsXTp0rTmR5Ik8eqrr6bLG4YhLrzwQuHz+brVvd1224lbb721299GMBgUgPjss8+69bm5uTlD65NL+3PjjTeKbbbZRlx88cXd6rj00kvFv//9b7FkyRLR2dkpFi1aJP7f//t/aU3Mddddl1He0nxMnDgx51haQkwubYzFOeecIyC33ZGlLctlc/H3v/89rT10wnqnvPvuu3n74VE6ntuhB8uWLePVV1+lrq6OH/3oR+njDQ0NHHbYYTzxxBM88sgjnHnmmelzr7/+OpByb3LyNz7uuOPSZZw44ogjuh1bs2YN77//PqNHj2b77bfvdl6SJCZOnMjChQtZsGABkyZN4t1332XdunX88Ic/ZPDgwd2uCYVC7LrrrjzzzDN88cUXbLPNNhnnDz744G7XbLnllkDKzsDn8zmeW7lyZVn9LtQHy73K3k6lOemkk3j44Ye5//77+fWvf819991HY2OjY3+yWb9+PU8++SQfffQRLS0tGIYBgKZprF+/nubmZgYMGJBxzYABA/jhD3/Yra5p06ZxzjnnMG/ePEzTzOm/bmHFHKivry/Yz3xuh1tssYXj8ZEjR3Y75vf7ue666zJc6WRZ5qqrruK8887j0Ucf5dVXX+Xtt99m2bJlfPzxx5xzzjk899xz/Oc//yl4TwDRaJR77rmn2/FTTz2VMWPGpH+fMWMGM2bMcKwjO3bI1ltvzSWXXMJuu+3GpEmTuPzyyznrrLMIhUIF+1MMmqbx8MMPA/CTn/ykonVbWM+TZbvhUXk8gcCD++67DyEExxxzTDdjn5NOOoknnniCe++9N0MgsCaqYcOGOdaZ62Wb7/zSpUsB+OKLL5AkKe/169aty7hm7ty5rq7JFgic/LIt/+185xKJRFn9trP55pt3O1ZdXd2tnUpzyCGH0NDQwH333cdBBx3Exx9/zC9+8QtUNf9r4YEHHuCss86io6MjZ5n29vZuAsHw4cMdy9bW1lJXV0dLSwsbNmygoaEhb/uWIaQ1RvkoxQjN8uGXJIlIJMKYMWM48sgjaWpqcizf1NTEueeey7nnngvAp59+yjXXXMM///lPZs+ezQMPPMCJJ54IpITsb7/91vFZ3HzzzRFCpH8/5JBDeO6554ruvxMHH3wwu+22G++88w5vvvkm++23H7DxeXYyvLWIRqNA/vH+73//y/r16xk9ejR77rmnY5lCbRVqp6amBiDD+NijsngCgUc6GNHLL7/cLViLZW3/6quv8vXXX+d8qRdLMBjsdsyyNB8yZEi3VXQ2Vj+sa0aNGsXEiRPzXuM00eRbublZ1dn7UEy/S2mn0vh8PqZOncqtt97KJZdcAlDQ8v3rr79Oe45cd911TJ48mc022yy94pwwYQLz58/PmNgqjWW93t7e3iP1X3PNNTmD7rhh7Nix3HnnnWzYsIHHH3+cZ555Ji0QjBs3jm+//Zb33nuv4PNaaUaPHs0777yToXWyBPPly5c7XhONRmlpaaG+vj6vQGD3UMrFFltswXvvvZezLet4rneMJQjW1dXlbMOjPDyB4HvOggUL+PTTT4FUFLHFixc7lhNCcN9996UnjqFDhwKZblh2ch3Ph7VSHjhwoOuVnXXNmDFj+swlqZR+9xdOOukkbr31VubMmcPWW2/NHnvskbf8s88+SzKZ5IILLuC8887rdv7LL7/Mee2yZcscj7e1tdHS0kIoFHL1sreiEjY3Nxcs25cccMABPP744xlaoUMPPZRnn32WBx98MKfav6ewok9WVVWlj22zzTYEAgHWrl3Lt99+200r9u677wKw44475qy3ra0t7ZaYTyAYN24cTzzxRLrObAq1ZfW/GDdPj+Lw4hB8z7Ek+wsuuACRMjLt9rF83K2yQHp18/jjjzuuBq39xGLYfPPNGTNmDJ988gmff/65q2t23313amtreeWVV/psgiil36Vihc3Vdb0i9U2YMIFx48bR0NDA6aefXrC89VJ22uZ49dVXWb16dc5r169fz4svvtjt+IMPPgjA+PHjURSlYB+22247VFVl0aJFBcv2JIW0IJZwbZ9kTz31VBoaGnj99dcz/p56mrVr1/Laa68BsMsuu6SPh0IhDjjgACAVzjqbRx99FCDDtsipTDweZ+LEiWkbGyesEM5PPfVUt62w1atX89prr1FfX59Tc/LZZ58RCAQYO3ZszjY8ysMTCL7HGIbBAw88AJA3wMvee+/NZpttxqeffsqCBQuA1Opn9OjRLFq0iKuvvjqj/N13351++RTLpZdeimmaHH300SxcuLDb+fXr1/P3v/89/XsgEODCCy+kvb2do446ynGF+u2332bkaOgJiu13qVj72JWcDBcuXMi6deu46KKLCpa1jB3vvffe9J4vpMb4Zz/7WcHrL7jggowgTV999VXaEG769Omu+ltVVcXOO+/MypUr+fbbb11d0xNMmDCBu+66K2McLJ5++mluu+02IDPgTyQS4a677kKSJE477TT+8pe/OCb1Wb58eU4t20033cSYMWP4zW9+k3F83rx5zJ49O23gabF06VKOPPJIotEoRxxxRDdh7vzzzwfgj3/8I1988UX6+Pz587n99tupq6vjjDPOyDkOlmBTyJhwjz32YOLEiaxZsybjWdN1nZ///Odomsa5557bzZAXUgHC1q9fzx577OG43ehRIfrGucGjP/Dss88KQGy99dYFy55//vkCEOedd176mD0w0bhx48S0adPEHnvsISRJEtOnT3d0IbJc3/K5sl1yySVp//xddtlFHHvsseKYY44RO++8s1AURdTW1maUNwwjHR/A7/eLPffcUxx//PHiqKOOEtttt52QJEmMGzcu45p8IV6toD1OcdWFSLm0DR8+vOx+FxoLp3a+/fZbEQwGhaIo4pBDDhGnn366OOOMMxzd2LLJdjsshJPbYSKRENttt52AVL6Lo48+WkyePFmEw2ExYcKEdDAr+7jaAxPtsssu6cBEP/rRj9LPz0knneSqTxaXX365AMS9997reB5bHIxcn+wYD/niEDhh5TcIBoNiwoQJ4vjjjxc//vGPxZgxY9Lt/+xnP3O89rHHHhM1NTXpWBgHHnigmDZtmjj88MPFuHHjhCzLAhB77rlntzwJueIQWM/tkCFDxGGHHSZOOOEEMXHixLSr43bbbeeY90EIIc477zwBiHA4LH784x+LQw89VKiqKhRFyRsf4ptvvhGyLAu/3y+am5sLjtnnn38uGhoaBKSCPB133HHpAE8TJkxwzOsgxMbYJn/+858LtuFROp5A8D3Giu6Xa+Kz8/bbbwtIxSG3xxpfuHChOPzww0VNTY2oqqoSEydOFP/973/FvffeK4BuvtJuBAIhhHjllVfEscceK5qamoTP5xMNDQ1ixx13FDNmzBCvvPKK4zVPPPGEmDx5smhsbBQ+n080NjaKXXfdVVx44YViwYIFGWV7QiAott+lCARCCPHcc8+JiRMnikgkkp543MQKqIRAIETKX/6cc84RI0aMEIFAQGy55ZbioosuEtFo1HFcLYFg3333FS0tLeLnP/+5aGpqEn6/X2yzzTbimmuuEbquu+qTxbJly4SiKOKwww5zPG+NS75PtpBYrEDw/vvvi6uuukocfPDBYqutthLhcFgEAgGxxRZbiGOOOUY8++yzea9fv369+H//7/+JiRMnioEDBwpVVUVNTY3YfvvtxZlnnileeOEFxwiIuQSCTz75RJxzzjlil112EYMGDRKqqora2lqx1157iWuvvbZbtM5s7rrrLrHrrruKcDgs6urqxCGHHCJef/31vNdcddVVAhBHHnlk3nJ2li1bJk499VQxZMgQ4ff7xahRo8Sll16aN+DQAQcc4OUy6AUkIXrQHNjje8vPfvYzbr/9dh588EGOO+64vu6ORx+ydOlSRo4cyb777ltUzoVCHHnkkTz99NN88803DBkypGL1evQvli9fzvDhwznmmGN46KGH+ro7mzSeDYFHyTQ3N6d98O089NBD/OMf/6Curo7DDz+89zvm8b3gD3/4A6Zpcs011/R1Vzx6kL/85S/Istwt6JJH5fHcDj1K5vPPP2f8+PHsuOOOaeviTz/9lEWLFqEoCrfffnuGi5OHRyXZfvvtOeWUU7j11lu58MIL0+6IHpsOK1eu5I477uCnP/1pt0BOHpXH2zLwKJk1a9ZwxRVX8NJLL7FixQqi0SgDBw5kwoQJXHDBBYwfP76vu+jRD+ipLQMPD4/K4gkEHh4eHh4eHp4NgYeHh4eHh4cnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB55A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh8f3nssvvxxJkvq6Gx4eHn2MJxB4ePQSd999N5IkZXwaGxvZf//9+e9//9vX3SvIokWL+OUvf8mECRMIBoNIksTSpUv7ulseHh4VQu3rDnh4fN+44oorGDlyJEIIVq9ezd13381hhx3GU089xeGHH97X3cvJ/PnzueGGG9h2220ZO3YsCxcu7OsueXh4VBBPIPDw6GUOPfRQdtttt/TvZ5xxBoMHD+aBBx7o1wLBEUccQUtLC9XV1VxzzTWeQODhsYnhbRl4ePQxdXV1hEIhVDVTPr/mmmuYMGECDQ0NhEIhdt11Vx599NFu10uSxIwZM5g9ezbbb789gUCA7bbbjjlz5nQr+7///Y/dd9+dYDDIVlttxe233+66nwMGDKC6urr4G/Tw8PhO4GkIPDx6mdbWVtatW4cQgjVr1nDjjTfS0dHBSSedlFHu+uuv54gjjuDEE08kmUzy4IMPcuyxx/L0008zefLkjLL/+9//eOyxx/j5z39OdXU1N9xwA0cffTTLli2joaEBgA8//JCDDz6YQYMGcfnll6PrOr///e8ZPHhwr927h4dH/8UTCDw8epmDDjoo4/dAIMA///lPfvjDH2Yc//zzzwmFQunfZ8yYwS677MJf//rXbgLBp59+yieffMJWW20FwP7778+4ceN44IEHmDFjBgCXXXYZQghee+01tthiCwCOPvpodthhh4rfo4eHx3cPTyDw8Ohlbr75ZrbeemsAVq9ezb333suZZ55JdXU1Rx11VLqcXRjYsGEDhmGw995788ADD3Sr86CDDkoLAwA77rgjNTU1fPnllwAYhsFzzz3HlClT0sIAwNixY5k0aRLPPvtsxe/Tw8Pju4UnEHh49DJ77LFHhlHhtGnT2HnnnZkxYwaHH344fr8fgKeffpo//vGPLFy4kEQikS7vFDPAPslb1NfXs2HDBgDWrl1LLBZj9OjR3cpts802nkDg4eHhGRV6ePQ1siyz//77s3LlSr744gsAXnvtNY444giCwSC33HILzz77LHPnzuWEE05ACNGtDkVRHOt2Kuvh4eHhhKch8PDoB+i6DkBHRwcA//nPfwgGgzz33HMEAoF0ubvuuquk+gcNGkQoFEoLHHYWLVpUUp0eHh6bFp6GwMOjj9E0jeeffx6/38/YsWOB1IpfkiQMw0iXW7p0KbNnzy6pDUVRmDRpErNnz2bZsmXp459++inPPfdcWf338PDYNPA0BB4evcx///tfPvvsMwDWrFnD/fffzxdffMHFF19MTU0NAJMnT+avf/0rhxxyCCeccAJr1qzh5ptvZtSoUXzwwQcltTtr1izmzJnD3nvvzc9//nN0XefGG29ku+22c1Vna2srN954IwCvv/46ADfddBN1dXXU1dWlvRk8PDy+m3gCgYdHL3PZZZelfw4Gg4wZM4Zbb72Vs88+O338gAMO4M477+TPf/4zM2fOZOTIkVx11VUsXbq0ZIFgxx135LnnnuP888/nsssuY/PNN2fWrFmsXLnSVZ0bNmzg0ksvzTh27bXXAjB8+HBPIPDw+I4jCc/qyMPDw8PD43uPZ0Pg4eHh4eHh4QkEHh4eHh4eHp5A4OHh4eHh4YEnEHh4eHh4eHjgCQQeHh4eHh4eeAKBh4eHh4eHB14cgl7FNE1WrFhBdXW1Y4IaDw8Pj+8aQgja29tpampClr015ncZTyDoRVasWMGwYcP6uhseHh4eFeebb75h88037+tueJSBJxD0ItXV1QD8gMP45qoJjLzobcdyj3/+IUduvUNRdT/++YfdjhVbh5t6ner86qrdc95Lvjrd9M9N3bnGK9fxQnXmO28/V8x9lPKd5rouuw/56s31/eU6Xux3mau/uer56qrdux1beOQ/u/XDqc5KUG5dhcanUs+2236Wez/25yBXPfnu6fHPP6Stw2T4LkvT7zeP7y59qt8ZMWIEkiR1+0yfPh2AVatW8ZOf/IQhQ4ZQVVXFLrvswn/+85+MOpqbmznxxBOpqamhrq6OM844I50xzuKDDz5g7733JhgMMmzYMK6++upufXnkkUcYM2YMwWCQHXbYoVt+eCEEl112GUOHDiUUCnHQQQc5Zo7Lh7VNoOJj9MULUSWf4+fYbXbhxZWfZHxylbU+NdVKt0+ha+wfpzZeXPlJwTq/vn5v5GCwqLaO3WYXjt1mF1dlR1+8kK+v37vgvTv1P7u/Vj2F+jv64oU5x9z63uxj4+Y+rD7m+z6d7rOmWul23N6/Qu1nf39W+8dus0v6mPVdfH393nnv3c0zZNX15cn3OJ7/8uR7un0KPbNuxthtn90+d7k+Ts+O9f0U+0zkegfYx7Gn78f+HBQq4/R8HrvNLtRE5Iz3m8d3lz4VCN5++21WrlyZ/sydOxeAY489FoCTTz6ZRYsW8eSTT/Lhhx9y1FFHMXXqVN577710HSeeeCIff/wxc+fO5emnn+bVV1/lrLPOSp9va2vj4IMPZvjw4SxYsIC//OUvXH755dxxxx3pMvPmzWPatGmcccYZvPfee0yZMoUpU6bw0UcfpctcffXV3HDDDdx22228+eabVFVVMWnSJOLxeI+MzaSmcUxqGpf+/bkV7/PcivczyljHso9b12Ufd2LJdXvx3Ir3M65xqtNer53FU29nq5lvFL6hMsiuf8l1e7Hkur3y9ss6XmgM7PUUcz77uymE9X1mj7Mdp3Gc1DSOxVNvz9l+9r3b+5uvX07n3HyP9vqt78Gqy35v2f16bsX7jHr47PTHPh72j9Mzbm833/dR6Htw8z0Vwum72GrmG3mfo0LPWLFUuj63ON27x6ZFv8plMHPmTJ5++mm++OILJEkiEolw66238pOf/CRdpqGhgauuuoozzzyTTz/9lG233Za3336b3XbbDYA5c+Zw2GGHsXz5cpqamrj11lv57W9/y6pVq/D7/QBcfPHFzJ49O51x7rjjjiMajfL000+n29lrr73YaaeduO222xBC0NTUxK9+9SsuuOACIJX5bfDgwdx9990cf/zxru6vra2N2tpahl/1R0ZfvDDjnNPLatTDZ7N46u0FX3a5JsTsF3U+ctWf79pi6q8ES67bK++k5dQf++Rkvz67rmyhyKonV5vZ4zXq4bOLFozyCXJOAofTODuVLUVYyVdnuVjCAJB+nvOVdbof+ySY6/vojecwXzuV+ntwcy/Wc1mJ+3bb71xtPbLoXeq3/pLW1tZ0tk6P7yb9xiQ0mUxy7733cvrpp6dVTxMmTOChhx6iubkZ0zR58MEHicfj7LfffgDMnz+furq6tDAAcNBBByHLMm+++Wa6zD777JMWBgAmTZrEokWL2LBhQ7rMQQcdlNGfSZMmMX/+fAC++uorVq1alVGmtraWPffcM13GiUQiQVtbW8YnG2ulmL1SgsyXp9MfYrYWoRTyaQMK1Z09gfb0yqXQhJtrjKz+WSu5JdftVXC1Y9VltWkfI6fxcqrPqVw+DUz28XwaIXtZpzqzfy80CWdrXXL1vxisei3crDCz+2n/HqxPT1LOPRejmcvXfm8J2BZu28unwfHYNOg3RoWzZ8+mpaWFU089NX3s4Ycf5rjjjqOhoQFVVQmHwzz++OOMGjUKSNkYNDY2ZtSjqioDBgxg1apV6TIjR47MKDN48OD0ufr6elatWpU+Zi9jr8N+nVMZJ6688kpmzZrV7fjIi97muZWfAPn/GHO9HMulFG2Dm3pyrb77GvuLbFJT18GpzhOuE/aJNx/2VVv2tXbBzs1L1G2b+a61yCVU2stZk/Wkmc5ailK+00lN49iKN2Cqrf4StANu28qH27rcCsG52igXt/eb/ZxVgr4QRtxiGAaapvV1N76T+Hw+FEVxVbbfCAR33nknhx56KE1NTeljl156KS0tLbzwwgsMHDiQ2bNnM3XqVF577TV22KEyVsc9yW9+8xvOP//89O9tbW0MGzasy9L6kx7/47MmH+sPPdcffCn9cNo3tn7vC2Eg33aA1S/7qrnQxFzKy3bx1Nthqrv6il1NuhUknK4rps5cGopJTfQ6vT05VWpC7K1+l/pM5KOY7YreQAjBqlWraGlp6ZX2NlXq6uoYMmRIQcPPfiEQfP3117zwwgs89thj6WNLlizhpptu4qOPPmK77bYDYNy4cbz22mvcfPPN3HbbbQwZMoQ1a9Zk1KXrOs3NzQwZMgSAIUOGsHr16owy1u+FytjPW8eGDh2aUWannXbKeV+BQIBAIOB4rtJ7tNkvh1z7wtkTYqn9qJRg4dTHUrBeUNaq1KmufAZ9lVD3lkIuuwD7+Vy2EYXqdWs/0Fv37Pa7LWUvvjdXt/15JV0q9ucg3/1NahoH1/VevyxhoLGxkXA47HkyFIkQgs7OzvQ8aZ+/nOgXAsFdd91FY2MjkydPTh/r7OwE6Bb5SlEUTNMEYPz48bS0tLBgwQJ23XVXAF566SVM02TPPfdMl/ntb3+Lpmn4fD4A5s6dyzbbbEN9fX26zIsvvsjMmTPT7cydO5fx48cDMHLkSIYMGcKLL76YFgDa2tp48803Oeecc4q+35EXvQ2SL+f5Yl449rKF1K3ZL9pRD5+dUulWiHJXDtZLqRQDPTe4MZwsNEG7JddE61ZtXegZcNLMWL/nsztx01cn4agnJsFcdhROPzsZhtopR9VfTJneoJJbJW5Zct1eTGpy96wvnno7o+iZv1E7hmGkhYGGhoYebWtTJhQKAbBmzRoaGxvzbh/0uVGhaZrcddddnHLKKajqRvlkzJgxjBo1irPPPpu33nqLJUuWcO211zJ37lymTJkCwNixYznkkEP46U9/yltvvcXrr7/OjBkzOP7449NbDyeccAJ+v58zzjiDjz/+mIceeojrr78+Q5V/3nnnMWfOHK699lo+++wzLr/8ct555x1mzJgBpPxrZ86cyR//+Me0C+TJJ59MU1NTui99QSFJPvu8WyPEYowD7cZoi6fe3s3ArVhDQ2vLoZKr1lxGfOWQz8jTPiFb1vW5rnHC6XvL1w83Ak2hMcjueyXJJWAUc73V/1InIbft9bS2pK9cBvPhJGQVelbc2ISUi2UzEA6He6yN7wvWGBayw+hzgeCFF15g2bJlnH766RnHfT4fzz77LIMGDeJHP/oRO+64I//617+45557OOyww9Ll7rvvPsaMGcOBBx7IYYcdxg9+8IOMGAO1tbU8//zzfPXVV+y666786le/4rLLLsuIVTBhwgTuv/9+7rjjDsaNG8ejjz7K7Nmz2X777dNlLrzwQn7xi19w1llnsfvuu9PR0cGcOXMIBoNlj4GbF3Ypk5pdKHD7h+tmlW8XAizL71yTX6kv8Eq8aNyMWSntOK3Ac9VjjU0x7VTy3i2NS3YfinmW7N9rpfpl4eZeS9lCKJVy2nC6NlsA6E/Gthb2PtmfE7fCS6WiSObC2yYoH7dj2K/iEGzqWHEI9uPHqEVuGbhRd9vJNbFX0iDI6WVX6Zd3of7aBRMLt0KAW9VsoXtyU4/btsr53tyMfTH+6/ZxLHcbJ1/cB6f2clHqc1XqNlyx54sVdkppv1LXFKoP3D3zutB4mScqHocgHo/z1VdfMXLkyIosvL7PuB3LPtcQeHQn14rMrtYttOrM9fIuVxhw0g5kU8kVZbbvutV+9laFW9yq4mGjH30lVOlur8+1XVIJYSC7P7m2dXJpVpxWjG5XkbmEnOw+FXrGrb5Z1+YSIuwGctnHCpHP+NStbUe5z0s5WxeFxqbYfuSyheltA9zvAkuXLkWSJBYuXAjAyy+/jCRJ3xkviX5hVOiRiRVAx02Uwt7G6cVeSTWo04q/4LkuV79845RrhZtv5T2paVxFjS57ilzCQCGtQjFbCNlxCizK+e4t4zTr57yW7TaeW/G+7drCrqOl/v04/e1VSsvgpu1yqVT7llCQa0tk+HmvldxOOZx66qncc8893Y5PmjSJOXPm9EGPujNhwgRWrlxJbW1tX3fFFZ6GoJ9i7T3DxpVTfzRIysYKt1wq+aLR5TtXyAiqWIoxQnOrEXFTZ7ETST7NgNvJ2m7nUIx2pxLP4+Kpt6efl2JX8Lmes3xq+54wMO0P2LUalnFvpet2Or7VzDccM632FoccckhGPpyVK1fywAMP9Fl/svH7/a78//sLnkDwHaI/GiRlU+4+czG4sRUoZNyYTztQqG894YpXrDBQaWFxq5lvpIWCUrelClHIeNYN9r7l2kIoZnsoXzul9q8vqNSWhZ1CWxA9bVSYj0AgwJAhQzI+lju5JEn84x//4MgjjyQcDjN69GiefPLJjOs//vhjDj/8cGpqaqiurmbvvfdmyZIlQMoD7oorrmDzzTcnEAiw0047ddM8vPXWW+y8884Eg0F22223jMR70H3L4O6776auro7nnnuOsWPHEolE0kKNha7rnHvuudTV1dHQ0MBFF13EKaeckuHR9uijj7LDDjsQCoVoaGjgoIMOIhqNlj2enkDQB9yy8Iq+7kK/pFDiouyPddyJctwrvwsryJ7so107ZdlQWGRnOCyWXPvRxXpAWN+dpdWwVsVOGg6nSbKY/tsFDjdli62/pylFWLRnlyzGYLe/MWvWLKZOncoHH3zAYYcdxoknnkhzczMA3377Lfvssw+BQICXXnqJBQsWcPrpp6PrOgDXX3891157Lddccw0ffPABkyZN4ogjjkinve/o6ODwww9n2223ZcGCBVx++eXp5Hf56Ozs5JprruHf//43r776KsuWLcu47qqrruK+++7jrrvu4vXXX6etrY3Zs2enz69cuZJp06Zx+umn8+mnn/Lyyy9z1FFHUQn/AM/LoBexvAyWfPYxZ4/9fUXrfqz5Zo4aML2idZZKJT0NSnkBldNuT6z6y6UcocctbjNJ2inW88BtHW62fwp5lxTyEihUJtd1hbx6iulDOV4rpfbTDfmeBaex6ysvg1NPPZV7772327lLLrmESy65BEmS+N3vfscf/vAHAKLRKJFIhP/+978ccsghXHLJJTz44IMsWrQoHbTOzmabbcb06dO55JJL0sf22GMPdt99d26++WbuuOMOLrnkEpYvX57uw2233cY555zDe++9x0477cTLL7/M/vvvz4YNG6irq+Puu+/mtNNOY/HixWy11VYA3HLLLVxxxRXpvDhDhgzhggsuSAsJhmGw5ZZbsvPOOzN79mzeffdddt11V5YuXcrw4cMrMpYWnoagD/AH/dy7/BoArvnUXaTD+1dem/H7o+tv4D/rb+Kx5pt5rPlmgPS/biiUv71UFXRfCwPl0l+FgWx7kp5QCeejN20L8t1jIWHBzdgUcst0S6GUzH1p81NO2/mEgf7297H//vuzcOHCjM/Pfvaz9Pkdd9wx/XNVVRU1NTXpML4LFy5k7733dhQG2traWLFiBRMnTsw4PnHiRD799FMAPv30U3bccceMCdaKbpuPcDicFgYgFU7Y6lNrayurV69mjz32SJ9XFCUdiRdSIfwPPPBAdthhB4499lj+/ve/pzP3lovnZdAH6KZBQovyt8U/J96e5E8LziBYqyKlwzRnKm0kZDoTUR5ddyMmOrKkICE7Gqo4aQrsk4r186iHc78wejJrYb46S3EjtGPdXz5PhWL7VqkxKPVlWol98Hy4vb+tZr7RLXGTlcwpu1/FjFehMLi5jAKdnt9iv3en78StV0Z22WxBxRKgrPHNHudcHiGpe8gvCLtxfVy8onLhhS2PJ3uoc/v9Hjh027LbKJWqqqp09lsnsid7SZLSoe+tkL69jVOfilHUK4rC3LlzmTdvHs8//zw33ngjv/3tb3nzzTe7ZfYtFk9D0Ad0dLYRN1tBNvFHFISAZKeB6HpQwT7RS4T9tVSFIiQSGorkyykMWNi1BpC5R2u30C60itj4gnKP1VYuH257eGOn9krB6f6Kreu5Fc5hcSslEPW3lZVFMffnRg1fCtYzYd+3tv51shuBTKHVTX/K1TY59cGtPYWbvyG7Z8Coh8/uc+1CdrwRy6MA+u+zXCw77rgjr732mmM435qaGpqamnj99dczjr/++utsu21KABo7diwffPAB8Xg8ff6NN8p7X9TW1jJ48GDefvvt9DHDMHj33XczykmSxMSJE5k1axbvvfcefr+fxx9/vKy2wRMI+gS/EkAxwiAkZFkiVK+i+hW0mMDU7UKBRJW/lrrgYPyqH0VViCeSCIEriTLXFkIxk6YlFJTyQrWrmZ2uzw4aYwkMxeDG997Ny3VTeclVCvuEUMhQzn4+X9lCY2xNivZ/82EXCkrRChXznedy63TTnuVamf0c2gUee52l9MVOqcKPNY5WHwppS/rD30wikWDVqlUZn3Xr1rm6dsaMGbS1tXH88cfzzjvv8MUXX/Dvf/+bRYsWAfDrX/+aq666ioceeohFixZx8cUXs3DhQs477zwglSdHkiR++tOf8sknn/Dss89yzTXXlH1Pv/jFL7jyyit54oknWLRoEeeddx4bNmxILwLffPNN/vSnP/HOO++wbNkyHnvsMdauXcvYsWPLbtsTCPqAWMxANiMoZg0gIyEh+wAE0XVJDM1EQqLKV0tdcAiKpCJJEj5VQVEUEi6Fgnzniwl4ZL0YivHhntQ0Lq82wKLYOi2r8lwvJPskYp8kCtlMeGRiTXZ2L4NCY2/R07Yf9rbtk7L9Oc1HOYGKrOvtgk/2eOSyt8gWcOwunhb2Z7Ennst8dTqNZfa12fZFk5rG9Wkcgjlz5jB06NCMzw9+8ANX1zY0NPDSSy/R0dHBvvvuy6677srf//73tEr/3HPP5fzzz+dXv/oVO+ywA3PmzOHJJ59k9OjRAEQiEZ566ik+/PBDdt55Z377299y1VVXlX1PF110EdOmTePkk09m/PjxRCIRJk2alLZVqKmp4dVXX+Wwww5j66235ne/+x3XXnsthx56aNlte14GvYjlZbBgwQIikQgCE1PuxFBaAROBQI8LhAHV1bU0RJpQZV/G9oAQAl030HWDQMCPLDtvHQghSCQ0JFnC71M5uiGVudFNTHk72VbTbiK3FTL8KuaFbJXvrQhx/QXrPuxq5P4Wh8LN91js81GIcsbBrQdAPqz9dKuO7O/JqZ/2c7mOW+eysd+rm7we2XVnu4yWMnaFrntk0bvUb/2ll8ughzBNk7FjxzJ16tS0x0SxuB1LTyDoRbIFAgCB6BIKWgATJImQUoMaryYQCBKuDnazF7CEAsMw8Qd8yA7nE0kNWZLw+VQwTTo+X8IpE68Huhtf5ZpEC03+2de5CRTk9FJ2q152m4mxv02cpZArJa01afTXe3T6fnN9J6VuQ2UnZyrk2eJGiM3GvgrOTvXr9PeSq41CLqPZfa9EdsRsF8hsobrSfyNecqPK8vXXX/P888+z7777kkgkuOmmm7jrrrt4//33S94W8ASCfoglEHz4wUL8gY0WrimhIIqpthP2V1MXbEToMm3r2glFgoRyCAWxRAzDNKkKViHLUso3IUsYkJCIfrmUtfPfQg2HOffM/3brlzXRlOPT7QbrxZRvUivHbXFT0Q5sChT7PdpX3qVQzDNayP8/1zOdSzuR72+lGG1Z9moeCgfryhcXAZyFGad+loMnEFSWb775huOPP56PPvoIIQTbb789f/7zn9lnn31KrtOLQ9CPCYf82Od3CQnFrKJaHUJ9cDCK5EP1KdQ11oAkE48mMY2UsaEQAlMYRLUWWrUVtCXXEEvEME2REgYSNmGgqxFfXS01W48mMHCQY3/s+/32Y27ILmf3Bc/+WC+wcoyV8u2BVjLLYm9QjP1ET7XfG23YPQhyYc+nUEmDtWK0A26MHp3qdLrezXebT8NWqRW89TeR/R305XPnkZ9hw4bx+uuv09raSltbG/PmzStLGCgGTyDoAxRFQVWUjGPBgJ+aUC1ylwGhJEnIikKoyo+hGWxY04quGQB0JDewIbYS3UwSCdbgU1TiiSTxRBJJzhQGkMA3oJ7qHbdHrh/crS+WkVC2wVQpL4x8K6/sl18uQ79s17O+xk0/Su1rf9Bm9NTEkD2pu3FzLVRHJfpULNlCZiGPi0LnnMra7zNbKMg3Zm7ux6516a/bTB79B08g6AM65Q0EqyRUJTX8wYCPmkgIWZYytgaklOchVbUhAkE/ne1xTMNEN5IA1AYaqQ4MwOfzoSoyum7gUzMFDSEEsY44ibhGeECkW1/slsVOq7NyjK/KodhkRD1Bf7dHKHcy7w2BpFyhoD/cYy7NUzF9y6e9ylbjF6MpcIq3YMXUyN6CqXRsBouvrtq9IvV49D2eQNAHGGjIfpOa6hBV4YCjMGAhSRKSLFFVFyZUFSDaFsNIQE1gEJHAACRS1/l8KsGAn0RSQwiR/nS2x+loiRIM+/GFA2X3PdcLPfuFV+pEmm1VXeq1uSimzlICM/UmTgGgetptrRTsz0Y5dgL5KDS5lbqdZPV31MNnO9aRPfa5DGQL3Xeuvf1ivsNSjCdLxckF0eO7jycQ9AG1UiNBKYLfp1JdFcwpDNiRJAnVr+AP+hBRPz49khYG0ufV1FZEMqmDAC2hI0zBgCG1KD4FVHeRqvMZHuVKRFMoHHEpL6eeWJ1b1tdOWyO9/XKrxArNig1gUcyYLblur7wTZaG0t4Xqtii0Uu0tSm138dTb05q0fOOVa9J3mqhzefVkZ5cs9H3migpqP5/vWijtubfGY6uZbzDyorcLX+DxncATCPoA04B4TEtN3FBQGLCQJIlAyE99Yx3CgGRcQ5gpTYBpppxFVFUBBK3N7SRiScLVQRRVScXLLtCO/cVSbBS3XC+V/qhydzJ2tEfIc0pa0xPCQjEW+E6rMetYtkGoRSGfdWsCc4qYZ7++mBgQTm0XWlnn6p9bd1S3dbot4xRkyD7+lTJedRIMrG2VYgN2FfO7dSz7ue9rI1ePvscTCPqAzs44kiSR1DTiCc1VxEHDMDG6PA1Un0IoEiDZmaR1fTvJpE5reycd0TiGYaLFdGIdCUKRILIip4IgmxqS6HTVv0qv5nO5cvUXYcEuHIx6+OwMa/L+8oJ0CpNrHcvl8+4m5LQVVtcie2JwYymf/Xv2uLldOduvz6dit+7XjUeC1Ub2PRYS8OxbBHY32Z54Zp2EgnLqKPeZ7U/PvUfv4mU77ANCoQDBgA/hV4l2xokLCAZ9jpoCIQSGKWjviAFQXRVEUWQkWSJcF6Z1bRvr17SCP2VMmIglCQd81DX4kfUNyPE2SLQgGQmmjr3XsT/Z0dd6k/5muLfVzDeYNHPjhLPx5fh++nix5LtHN5EYi90GAGtSKbyvnm/yKRSAx65hydUX+x68PViOU33FUCiWQCHsWRadVPqFbFnsY5fr3ooh1zgWo7HL912UQk/ELOhJ1ixbS+u69l5rr3ZgNY1bOLtyf1fxAhP1IlZgom+WfkFtbSqAh2madETj+FSFYNAPgG6YyFIq8ZFpCto6YsQTqYxc1VVBqsKBtPCgawYbmtuJdybQYx3UhjUGVGtIQgcliKSGwBdGqFXopsqxQ8537FuxQX1KiVnwXQ4cVOjlWCitc6kBZorpn9MEn33MPmkUEgjsOGkh3E5AlVq9ForSWErfcpHdZydjPychutjxyCbf9fmEoEJlKzUWTvSHwERrlq3l1DHnocW7Zy7sKXxBH3d/dn3RQsHNN9/MX/7yF1atWsW4ceO48cYb2WOPPXKWf+SRR7j00ktZunQpo0eP5qqrruKwww4rqk0vMFE/xq4JkGWZSFUQTdeJx5MkkhotrVHaOmIYpiAWT6ZyEkgQ8PsIBjJzaSuqTE21itK5gkGBNQyo9yNVb4EYsD2ibgxm9QjMYCNCrUJS/Y79KXVCslTsbqyNe1sFWek9/1xq+f6Ak1rcIp9BXzGqaSc1crmTX67yubYC7FkDi3neytnzL/S3kV13uYJdTwrMpdbtZoulr2ld196rwgCAFteK1kg89NBDnH/++fz+97/n3XffZdy4cUyaNIk1a9Y4lp83bx7Tpk3jjDPO4L333mPKlClMmTKFjz76qBK30A1PIOgHpISCMElNp6WtE90wSSQ1NE0nGPARqQpSV1NFbXUotV3QJVAIIdA71mOu/4JBTQ1ERuwKtSMR/lqQfZC1BSHLEvc/dU7GMTfCQPbLwCnIUH9S+0PP2CfkEwr62/2XSl8GAipUPtv1z2mSyiVIFEshjZBlu5HL6yYXTvXZvTlKCXjkFDcku65yNSa5DFc9iuOvf/0rP/3pTznttNPYdtttue222wiHw/zzn/90LH/99ddzyCGH8Otf/5qxY8fyhz/8gV122YWbbrqpR/rnCQT9BFmWqI6E8ftUQBAOBgj4VRRFpiq88ee0MGAaxNYuJ7p2BYHGUfjqhoHiB3J7EgghMGPJ9O/2ib3QCsD+0irGLcpOb24X9NTLq79pCgq5DpaC2/1q+89On1zXORkF5itvYT1rdjfA7LKV3kMvNEHncmF1Ip9w4XYFnk8oKNcDwyJXzIVi6/HIJJlMsmDBAg466KD0MVmWOeigg5g/f77jNfPnz88oDzBp0qSc5cvFMyrsY+wmHLIsUVdTRVt7Jz5VTocwzroAYWgkNyzFSAqqN98G2e8u4JDQDYwWZxVXvondKStiMdsMvWE7kJ36tTdUr9a+fbnaATeGhXYy96+d1eO5jETzvdBHPXw2W7HxXnJda5XL9oEv5tlwc6/ZRomLV9zOpCbyGnfahQ2nvhdDLhuLUuoqdL89FbAJihcG3ARR+q7aAvUl69atwzAMBg/ODCE/ePBgPvvsM8drVq1a5Vh+1apVPdJHT0PQh6TSFOtEY0mESP0uyxI11WE0w0hHHbRdgB7vpH355yAHiDSNQnEpDACIhI7UlQ8Bio+K1tMvgexVVjFR94oRBnKt5kqJte9GlepmBVjM2Ga70Dm1l6++bD97a3VpF2xy+a5b91yoXLE4jY/VH0voKjTJ57ItcPNMWKti+6dSk7QbDY4bF0o3FGPnYb9XCyejVI/vD55A0AdYYYXjCY22jhgd0RjRWKLrXEpTUBUOkkxqG4UCIdBjLbSvWIyvphH/gGFIslKgpY0YnXFaP/wYbUBKgCh2H7xUo6JiVhP2F+JzK97vsX35bHe5fEZ5buqy11EqxVyfbzzdTNaWZiO7vEWxwkslJjKnvfh834tTnIRcQaSctijsMQacJr3FU2/PyBSY3W4xFPsc97TgXUgIsPcjV3TG/m5k2B8ZOHAgiqKwevXqjOOrV69myJAhjtcMGTKkqPLl4gkEfUBHZ5zOWJL2jng62JAE6AIEKY2ALMlUhUMkEhqJRBKt9VsS67+heuhIgvWDkCT3X50wTDa8+z5tixdzxrT7S+qz036tG8p5ufX0fmUu9XKp9eSzxi42L0K+gD+FxsXNhF5Ii9BXON2fkyYrO2iQhVsD1+yJzj4pWj87BWwqhJMtRSmTZynfjRsbBqtep3t0Kgfdx8q6zhMKisPv97Prrrvy4osvpo+ZpsmLL77I+PHjHa8ZP358RnmAuXPn5ixfLp4NQR/QGUsiK6lAQ5IkEQkHCIcCbEiaSEB9IGU/oMgSVUGV5m8WE/BB9dCtkdSA61DHFpIsEdlyC9TqEPBq5W+owqTiuad+3rg/Xfi69J4+pWkW7FqDQr7lTirlSU3jWLzidpi68Xc7VvCafCv3jRPIxpTRThNkrn3751akovy5DaKU654L0ZMBpdzYZWw18w2Y6m71Xej+8k2Obsk3dqWOUyEjyVzPR6H+2e/X/hwXuodRVG4b5fvK+eefzymnnMJuu+3GHnvswXXXXUc0GuW0004D4OSTT2azzTbjyiuvBOC8885j33335dprr2Xy5Mk8+OCDvPPOO9xxxx090j9PQ9DHhEN+wuEASNCSNPm2U8cUgBCYWifJ9V8SDIUIDd0SVH/RwgAAEgSbhlCzw9bpQ8W+/IulnNW901622z5UwsDPbiyX7bpl9cdaYWfv/RZSn2fXna1VsCZ0++/ZWBNBtqW//d9ivjMnwaUQlRAGspMnWf8W2rrKjiJYjn2GG01JoX303jBgtWN/LovRCjhRbITS7LFYct1e/SL9ce3AanxBX+GCFcQX9FE7sLqoa4477jiuueYaLrvsMnbaaScWLlzInDlz0oaDy5YtY+XKlenyEyZM4P777+eOO+5g3LhxPProo8yePZvtt9++ovdi4UUq7EWsSIULFiwgEokAEAr6qImE0ITEwvUJdFOwU4MfX7yFxPpvCAwYgh4K055YT31oCH4l5Fi3EAJDgCylth+6Cw4C0zCJ/d9CfjLV2efVLY8138xRA6aXVUcxZE/K+cr0FzV4rj5newTYX8hu/cbd3GNPW4KXqiHIdZ3b/mZ7kxSKXpivnuzresJ7oFJUsm927w1wp5HJde2kpnH9IlIheKGL8+F2LL0tgz5EIuWHChI+GUZW+0gaOkbrSpLtGwgPGk7CZ9IaW4EpDAxThzx2hB2aSdIUDAwqDtEIJCRZRq5yFiggNdEDeSd7q0w+ip2MCk0ulhq9kLqyr4SBfKl+ofvLPK1lIJU3wa0PezHjutFNr2fGpFQNQbmaBacET5Uin4Fori2iYihnm8WNG6Xb/lj5OtxoZJyutbbEIHVPw897zfX1PUnjFoO+MxN0f8XbMugDTJFEkiAcChAJB5AkkCWJQT6DQbFlqFoHNZuNIuEzaYmvxjBTnga6mcxZpyEgaQrWxQ3iRm6lj5Al7rr/lG7H7RP9Y803d/vkKgPwn/U38ci6G9Pnin1RukkMY18V9jdjJntueLsbnxNux8Yp1TG4XylaqnC3xnD9YUyLWQVXwuDUrTtothFmoe+wt8bSacvKDeWOnd2g07Mp2LTwNAR9gKG0oaj16SRFkgRGopOOlV+iBiOEG0eCrGAm2vApQRRJxScHCCjhnHVGdZPFbRqqnHJddEKSJJRwEH1VMw9++1cMIBDwdWkp8pNLM2AdP7ZhRsE6yiVtIb1iY6Y6+7lC2wa9nVmxlNW53TDQTvaqrtj6CmHP/tcXZBtHFnNNLvLVZQkDTvdbyAakVNwaQJZzX24pVShIXVe6m65H/8bTEPQBQo6TEM10JjoxTRMz1kJszWLU6kGEG7dAUlJyWnVgIIPCwxkY3pzaYCM+ZePej2YKdHPjzB9WZbap9bNNrZ+QmsPwUAChAGg6SkJDMU3isQSmaVb8Hh9ecwP/Wd8z8bYnNW0MCJTLMM+J3pjsymkj10s+25CrJ9wxrVVwb+FkWJnyLnHnpudmQsxXxk0GylJxqtet1qAUo9ByKedevcBFmxZ9KhCMGDEiHZ7X/pk+fTpLly51PCdJEo888ki6jmXLljF58mTC4TCNjY38+te/Rtf1jHZefvlldtllFwKBAKNGjeLuu+/u1pebb76ZESNGEAwG2XPPPXnrrbcyzsfjcaZPn05DQwORSISjjz66W8AItwgEiWSUNSuXsfbzj+hYvZRgw3DCAxpBlhB0reYlBUVWkKTuYYwThqBdM9ORDH2yRENQodavIDt5IghIrltPy+LPSEQgsXY97R98jJRM0BGLYphmTs1CMTzWfDOPrrsRTdPTMRbcUOyKJ1tV6pTVzymSXX8iu4+5tkOyNSFuV/1WnU5t5Svb0zi1Y2UydBOQyk0/y72XcjwPKrWdkavu/mA4a/+76w9eBh6VoU8FgrfffpuVK1emP3PnzgXg2GOPZdiwYRnnVq5cyaxZs4hEIhx66KEAGIbB5MmTSSaTzJs3j3vuuYe7776byy67LN3GV199xeTJk9l///1ZuHAhM2fO5Mwzz+S5555Ll3GTkvKXv/wlTz31FI888givvPIKK1as4KijjirpvpMdJqI1yUB1PQMHqqgDt0QJ1WBKBhrJ3Dp/GzFDsDpmkMdcIAOh67R88DHx5mYSHW0kW1oQuk483kqbtppoZwdCmJTqdGK3KZBlmUDAh5YlmBVDsW5z+bwP7MZTuV7W/UVYsMfuh/wTU7H+527L9kZAKPsnV5ChXBQqZ2ka8tFT2oFS2nNLsXYklSZ7S876HhYeWZ7Xkkf/oV+5Hc6cOZOnn36aL774wtHffuedd2aXXXbhzjvvBOC///0vhx9+OCtWrEj7cd52221cdNFFrF27Fr/fz0UXXcQzzzyTkT/6+OOPp6WlhTlz5gCw5557svvuu6dTSpqmybBhw/jFL37BxRdfTGtrK4MGDeL+++/nmGOOAeCzzz5j7NixzJ8/n732cjeZWG6Hb7/yMCMG+QnUjkAEG4kndQIBP+2sQyNGPU0oUm7zDiEE6xMm6xIGW0Z8+BUXsQmEQGttR++IkvzqWwj4SVSZ6IMD4FepD2wGpkIg4HNOqlQChmly7MBflFWHm33/fKumXNbY2S83Jze0SpPdl1xGWW4n8WJXi8WU70k3zlx1u22z0HdV6D7dbBcUEsR6090wWyNUqqulVZ8TbuwWsstZnj9b/usUvr7od33uduiRG7dj2W9sCJLJJPfeey+nn36642S0YMECFi5cyBlnnJE+Nn/+fHbYYYeMbFCTJk2ira2Njz/+OF0mX/pINykpFyxYgKZpGWXGjBnDFltskTcNZSKRoK2tLeMD0BhRCA7cAUJDQFYQAnSRxCCJThKTwivrer/MyIgP1e03KEn46moIbT4Uf009xsoNiM1qkAI+qgMNBP0hVJ9CIqGlcy2USzHCgPWSX3LdXhl7y3ZbgWys44WMwPK5bNnbqaQwYO9zLu2DU94B6+VfqX307Pbdri6LtVyvBG40BG4Et0JbKoW+574MRJQLN7kHegKnbS373wx4GoJNiX7jZTB79mxaWlo49dRTHc/feeedjB07lgkTJqSP5UoNaZ3LV6atrY1YLMaGDRsKpqRctWoVfr+furq6bmXypaG88sormTVrVrfjyfBWmGpVaiUOSLKgVaxBkzoBCQODfDG3UvYFeUMS5MRMagifhOr3E6EBoZuoaghJklAVBQQkkhoBvx8QJWsKig1cZL2kLWt6J7JXSVY4YzdaBDcaBCetQbmrsLRV9tTc5bP7aGkO8oUftgtChfppnSvG9sCpnUqVzdUPy8c93/0UmxOiWKzvK98z2FuBobLrsP/s5GlTCextug2U1V/4tr2NDbFYr7VXHwqxWXXlNCL9gX4jENx5550ceuihNDV1D1ofi8W4//77ufTSS/ugZ6Xzm9/8hvPPPz/9e1tbG8OGDSMaNzFNgdKl6pck0ESyK7GRwERHIJAcwguVgzAMWj/4mM5l3yIpCvLq9bQu+pyBe+2GEgqmhAI1JWbEE0mCAT+lyAOFhIFSX5b2a0rNV+BUZ6EXnVO43HK9CQqtYN3mIiiFYvpfzPeUnUci3xZAvkBLrvIY9BCFvptiAkOV84w6jY0lCNlzEFRCKCgU9Cg7/oL9e+0vQsK37W0c9K9/kjCMwoUrREBReOHk0zcpoaBfbBl8/fXXvPDCC5x55pmO5x999FE6Ozs5+eSTM47nSg1pnctXpqamhlAo5Col5ZAhQ0gmk7S0tOQs40QgEKCmpibjA2CK1P66hSIrSIaCNf/rJKEHLDuEbqC1R5H8PpAg+uVSzEQCJRBIl7GEAp+qkEgkMc3iO+I2mmGlqNQEYX/h2VWixUTHc7NHa73sy1XLlxJpznLZrPQq20nIsN9fLo8PJ7uKUp8Ny3Wx3HurxJZApSdpi+xETNaWmhucJvpStkfs32t/8HgA2BCL9aowAJAwjKI0EldeeSW777471dXVNDY2MmXKFBYtWlTwukceeYQxY8YQDAbZYYcdePbZZ8vpdl76hUBw11130djYyOTJkx3P33nnnRxxxBEMGpQZlnL8+PF8+OGHGd4Ac+fOpaamhm233TZdJl/6SDcpKXfddVd8Pl9GmUWLFrFs2bKS0lAKkcorYCFJMrJQ00KAgVZ0nW6Q/X4G7TOeoQfvT/2IUVRJEZoOPRi1JpJRzhIKZEXu5sLplseab+aRtTc4nusta3a3FPOCK2dvP1cbpay0KvEidnMvbqMcZk+ATnU77T/nCyJVLPaIkT1BMd9RqUKJUxtuDWvt+/3ZcR6cBC/In8uhv0z2mwqvvPIK06dP54033mDu3LlomsbBBx9MNBrNec28efOYNm0aZ5xxBu+99x5TpkxhypQpGUbylaTPvQxM02TkyJFMmzaNP//5z93OL168mK233ppnn32WQw45JOOcYRjstNNONDU1cfXVV7Nq1Sp+8pOfcOaZZ/KnP/0JSLkdbr/99kyfPp3TTz+dl156iXPPPZdnnnmGSZMmASm3w1NOOYXbb789nZLy4Ycf5rPPPkvbFpxzzjk8++yz3H333dTU1PCLX6QM5ubNm+f6XtPJjd59m8FDBhAJBpElFSEE62KrSYY2gAQBUcUANkeWek5e01dtIPb824SP2hsl4pzfQNcNdMMgGPAXXb8QAk3TOX7IzJxletKSvRLksqzOZ91up6c8AMq5xrrOTm9azDvhpLKu9P57sfRGVMtK2KiAzeakKX/Oj3xJjMp5JvpDcqOP1qzmiAfvrVjbbnny+JPYvnFw4YIOrF27lsbGRl555RX22WcfxzLHHXcc0WiUp59+On1sr732YqedduK2225z3dZ3xsvghRdeYNmyZZx++umO5//5z3+y+eabc/DBB3c7pygKTz/9NIqiMH78eE466SROPvlkrrjiinSZkSNH8swzzzB37lzGjRvHtddeyz/+8Y+0MACFU1IC/O1vf+Pwww/n6KOPZp999mHIkCE89thjJd2zWbuBaGAVMam9y24AVHz4RIigiBAgXGHrge4odREkn4rRnJkdTNj+k2UZwzBJahqapmMKUVTwokLbDcW4CpZCb8cWKLQX2xPtldJG9nZFb8bed+pHJbHfSzn31VtRLS2PklLiblgfe56F7Hwa2eXc1u/R87S2tgIwYMCAnGUKeclVmj7XEHyfSMch+PoZItVVVFFPLSmhI5ZIoPpkVFlNGxNWIhZALoQpiD33NgyqI7zb1qljCJLEMdAIiDAyCoZhYnZFMRTCxO/3p/Mv5MM0BYlEkhM3Oz9/QSrv1+3GDx0Kv/SzrazdtGunWA1BsdeUQvaqNNtzozcmQjf3WsozkZ0aub9NbNkxBXrrmS8mTHMpffI0BMVrCEzT5IgjjqClpYX//e9/Ocv5/X7uuecepk2blj52yy23MGvWrKIi5X5nNATfRwKiCgVfSjsgiS43QhlZKMgOYYp7AkmSUBpqMZtb0UQSnQQmBjHaaBEribIBAFVV8Pt9+P0qiqKQSCYLxikQQmAYhithoCdwE6XObaY7i+y92Oxrc8VJcEsljAvd4GT4Zz/XXyI2loJ1b04Gi8XeVyW1O9kCQKU1I4WEn54UBjxKY/r06Xz00Uc8+OCDfd2VDDyBoA+oYygD2JxqBmK5Fkiy3CNJhnIigVQfQW9ro01fTVS0YoiUZiAs1aFKfuz7FpahoZoWCpyrTQkDJscNPq8i3SykAi704s4V1AiKS3/bG5TjxlXoPtxOiG40BKVa8tu/CzdBiEodC7vBYiW8DsrtU08+P5XShHhJinqPGTNm8PTTT/N///d/bL755nnL5vKSy+fdVg6eQNAHyJKCXwqiSr709oAsSZi9vHsj11RBXMeMJxCSiSHpBKmilkZCdFf9dRcKMvsrhEDXDaY2nuu6D25faKWkqrXO55toi10VZ1tn5xM4rPP2f3sK6z6cJsBKG8jZLflLnWxLDSRViOw8BvaAV5WgL1bRuTwHyu2P/ZksND6VFqy+jwghmDFjBo8//jgvvfQSI0eOLHhNIS+5SuMJBP0EWZa6jPZS1vmJpFaR8MH5kKoCyJKMiCaIsoEEUZAk7P91u6ZLKFAUmXhio1Bg9Vsv0xc4e4K1xwIo94WUTygAdy+97FDKpdgW5MMSXkoRIHK53fVkIp9yBYNClFqvNY52Yei7NKHZJ357EKdKxK+w6vfoXaZPn869997L/fffT3V1NatWrWLVqlXEbLEMTj75ZH7zm9+kfz/vvPOYM2cO1157LZ999hmXX34577zzDjNmzOiRPnoCQT9BkiQM3aC9I05LWycd0XiPawzkgA9qI8jtAh8hfAQKX9TVV5+qoigyiYSGaQqSXV4IwYCf/6xPJYkq9AJ20g64fdFZOQ/c4saivlB8fDtWAB0nF7DsF7d1zG1/ncagUNCdfPdVybwIuXCzwiwWK4hSOf3oDSPJbIp9NnNhPTdQ/PdjCUNO/coV68ANTs9gf0h/XB8KEVBKCeZeOgFFoT7k7LLtxK233kprayv77bcfQ4cOTX8eeuihdJlly5axcuXK9O8TJkzg/vvv54477mDcuHE8+uijzJ49m+23376i92LheRn0IpaXwfKvF1NTU51xTghobe8gFk8FAvL7Veprwshyz8lsQgg6X/8YQirBXUYhS0pR4ZKFEGi6TjKpoyobMyXCxvDF5WQRzLcKL8cH303wIbf+2k64cafMF7o3u3yh/lYiHkElPAyeW/F+up5C4+S2v+Xem9sYEr2NU1+ytQFuyHeN0/Nmz7CZ/XO+scknMAw/77U+9zIAL5dBPtyOpScQ9CKFBILOWJz2aJyA30dVKIDPp/Sct4EQxFauRlu+DkyD0KgtMHWdQONAkN23aZqCzliCcMifIbxk5zNwcncrJ3BPOcZUPSUU9JRrohvBoVKTZil12Ccke5322Pt2eloYsK51aq83hYJiUnfb79XtfWeXy9WeXVCzfnfCjVBg5VGw018EAo/ceG6H3zEkCVRFJhz0U1MdKksYsNwCRZ6ECMl1zax7/U3av11GrG0D695aQHzVmpzlc7Wj67pjX7PzGVTapc3NhF7O+Z6ilAmu0HZDb8QusMhl1ObkUmfZM9j7V0xfS/W6sAwLndrqia2NXLgRPJy2BEoVEnO1V8yY57t/Kxqi3U6lv2hcPCqDJxD0I3w+FVWVQZQWlMiKMGjFE8ir/JFl/PV1+AfUQ9JIre5lqeicSoZh4lOdhZdKCQXFrhQLrcysvelC9gSluDm6pVDgpN4QWKyVXqG27GPp1qjNySK+FOyaBjeUO27F2izka78nDfeKFQLdTNzWvecaw2wBzRMGNj08gaAPEUJgmALdTK3oJUnC7/Oh6XrJHgZRNrCBFXTQnE6j7IS/oZ7G/femYbedCSd81I0aQ83YrZFcbhdYLoaSnD+I0mPNN2cIBtb+crGrv+yJJd+1buMLuBEKsl2+KoHbwEnZ1/TUBOPmxd4XVunWmBcz8ZST3KgS99ibkR4rhX0LYPHU2/P+XTgF63r88w8r2h+PvsMTCPoQA52l0QQfNCfp0FMTt6LImGY+ZX/hOhNSFAMNk/wugJIigyJDPAktHUiqWrB+azvC7DIo9PlUV9oMu2Bg3zMtxgI+X2jWbIoRCgqRK9Jc9kq5WAHH+tcubPTmxOt2NZxPQ5OtzbBb2GePUanbJb2Btc9eifYq5WUAzs9JuX20X283LLST7V6br64jt96hrP549B88gaCPEAhitNMhWlkX11kT2zh5S1Iq10ApKPhS/0o+FKnwBC/5VeTB9Rid8dx97RICDMNE0w0SCY1EQsPv8yEXubVh1xY8t+L9bi+jXGr6fO6J5a7KcgkOxb7Ui90fd2ovXx09qSUolewVud1mIJdhXzGUuwXgdsysvfFKkGsMSiFbCK1URMFi6sre/skWYD0NwaaDJxD0ESY6SaI0hONsFgG/sjGhkSTJJW0ZSEiowockZBR8yBR2I5RkGXVQPaI1ijDN1OrfTOUi0HWDZFIjkdSIx5MkNQ2EwOdTCQX9qDlsB/JheR/kmiDcWPaX85LNnmDcagnKWeXmq7PY+iq9Yu4Jl8ZKCi3f5X3qSn9XlfCQsJ7/71KQJo/ewxMI+ggZhQgN1ChhtqyBzcIbg2pYUQtLwScFqGEQEVEPLmMKyAOqMRMa8c448USSRCKJpukYhpmKTKgoBAJ+ggE/fr8PRZFL9oCwawjsq6jsScT+wrIHFXLzIrPHPsiu11KF9qbHQ6WptJYg31i4uTcnIStXcKVC7WXX0xeGiZWkklqdUoUBp20dO14eAw+Lwjpljx5BQsYvhfATRJCauq1JVpakkkMAy6hUUd/VhkuBoCYMmoaS0FGrgul+9HTGReguFNhd1pwmcwu7DYI9NK2Tr7XTC3nx1Ntham7VfXb/8lEJtXBvbgVY/uQW5aw68/m+Z2PZdbhtL9s3v1Cb+Vg89XYmzeybbH5OgYN6Oh6CXSi2t+OkDZvUNA6mltbOpKZx6EIDviytggoijBVgbui9BuV6JKWp99rrBbzARL1IvsBEdkwhSMSTBAJ+5CKCBJWKmdTpfOJ1fLuMJrBVzz/g2UGLLEqdFJ0C49iPl0opwkApEf+cghW5zWFfrHbCqrcSQYny9atSdZcTBCq7HrumqS+CE5USlKrYNvJRqP1SbWZ0ofV5YCJhrECsPRhIVqz9wviRBj3/nRAKvMBE32EkQFEUdF3vnfZUBXlADWJda860xpUkOz6BHUt96ZQTINcL1MlCP9+efyl797nINvoqJZGOk7eCm2yAdpV6JdMbl0NPbZ9kPw/FUkkjVLc4TdT2/lfKlbVYYSDXGJZrFNunmBvoXWGAVHtlaCT+/Oc/I0kSM2fOzFvukUceYcyYMQSDQXbYYQeeffbZktsshCcQ9EMkSUJRZIwuI7+ebw/kQbWY61rBNHu8PSes6HJbzXwj7yrbjXFfPo+EXD+Xgt29LPvlXm5kxmL22a32iqUnXuqV3PqwVvW5tnWKDX7U23YETsKA/Wc3brT5klmVmjCqmLLlCg4ezrz99tvcfvvt7LjjjnnLzZs3j2nTpnHGGWfw3nvvMWXKFKZMmcJHH33UI/3ytgx6EbdbBpBy9YvHkwSDfld7+favsZS9f+2btSTe+ITw4eORQ/6iry+FXFsHuShH1ZvLWt5pIrGv4Nwa1dn3Zu2qaSg98I+brQP79W5f1JXwZS9Uv51S2ypm393NFkgx992b2wr5+u6mH3bBoJA9h9ttsGK+s36xZaB9jFh/ZMXadovU8DiSb7uiruno6GCXXXbhlltu4Y9//CM77bQT1113nWPZ4447jmg0ytNPP50+ttdee7HTTjtx2223uW7T2zLYFJAoSkOgmRqmKG2FL/lVTNNA6KUZM/YG2S+7YjwOcr3g3GoT8mHFeM8ObOM2al6uQD7FROmr5ATfW6GTC1HKajaXpiDbhqAQvRm90d737L656Yf1nDllTyzVpqO/xbvYlJg+fTqTJ0/moIMOKlh2/vz53cpNmjSJ+fPn90jfPIGgHyNJUlECgU/2IUvFf6XCMBGagRQKgBAIo3e2DazohfZPNr05MZU6qVp2D5ZLYy6Kce+rVGAbN21nY00upY59JbZl8nkpFGo7+9rsFa/be3Ojunf7/biNyOk2QmA+nK7v63gXHikefPBB3n33Xa688kpX5VetWsXgwYMzjg0ePJhVq1b1RPc8gaC/kgpQ5D4egVW+2O0CM5Fk/ZsLaP/ma4yBYdo+W0TbJ5/RK9aFDtiFgnzqUutcvhdtMWrfUj0S7Kv4QpO4W/e8nqAU9Xc5KvNKCDTZ363b7zOf1sei2HtzKp9LK1FqKG17nZVyRS3WCLPY7QIvUqF7vvnmG8477zzuu+++fpvOuWSBYMmSJfzud79j2rRprFmTSpv73//+l48//rhinfu+I0sSZokhjN3SsWQp7YuXEF2+nERnO1pHlGRLW4+2WQhLKCgkDBSi2L33vlgVuTGOzPbB7wsqoS0ollIyD1Yq22C2wFlMOu1cz12xQohdKHCjrYDy3D6tfA7F4uUycMeCBQtYs2YNu+yyC6qqoqoqr7zyCjfccAOqqmI4xJ4ZMmQIq1evzji2evVqhgwZ0iN9LEkgeOWVV9hhhx148803eeyxx+jo6ADg/fff5/e//31FO/h9RpKldB6BnqJqxDAG7LAj4cgA1KZ6ApsNom67MbiNcthT5HNNtFOu4Ve2u18xVNI4z6lty/PC/ntfhfK1JsdC9gWViCzohH1iLpShstx2sse5mCRZxQgOxVBqICk37dm/r1LGz9MQuOPAAw/kww8/ZOHChenPbrvtxoknnsjChQtRFKXbNePHj+fFF1/MODZ37lzGjx/fI30syctg/PjxHHvssZx//vlUV1fz/vvvs+WWW/LWW29x1FFHsXz58p7o63eeYrwMAEzTJJHUCAbceRq4wfq6rfqEELS9txh9zWriewwkHKqlLjgYqQRbhEoihEDTUnEYjh8yE8g9IVZqoiw1il72cSjNgKuQhXyx9fY0+YLuQHl9tQeaKiWgUKU9Kdx4jBTjlVKorux67RSKx5GvTK7rShkrq70Dh27reRmUyH777ZfhZXDyySez2WabpW0M5s2bx7777suf//xnJk+ezIMPPsif/vQn3n33XbbffnvX7bgdy5JCF3/44Yfcf//93Y43Njaybt26Uqr0cCA9aVPeet0SAnShkTCShJQQipSSRk1NR+vsxLf1cOojtahKoMzWKoMQAt0wOWmz84HMySB7YihFSOgJF0aLcgPn5DpvX8n1lWCQOTm9nw55a6XRzZ7Ey22r1IBClR6f7IBTTn0Z9fDZLF7R3f00V11OWC6sbjwm8mlh3H4HPe2C2mvI9YCf3o5UmGq3cixbtgxZ3rgYmzBhAvfffz+/+93vuOSSSxg9ejSzZ88uShgohpIEgrq6OlauXMnIkSMzjr/33ntsttlmFenYpowQAoGlmBFdH7lb7oGUQCClUiErpU3SQggSZoINiWZaky2YwmRk9VaE5BAAZjSO/+u1hMeMQPVXTrovlbTwohuoisx/1t/E0Q0zKmIEVincrNB6gly566F3thPyCSNb8UY6V8Coh89mK0rvSyFPjb7MgJjPOHCrmRvHoNRnwfp+7WPtVJebkM5uw1+XQmoMLGFCK7meSiEpTTDo+e9cLoOXX3457+8Axx57LMcee2xZ7bilJIHg+OOP56KLLuKRRx5JWcKbJq+//joXXHABJ598cqX7uMmR0GIg+0ESgAlIYARImXRkTvyKLGGYJrIsU+quwYZEM99GlyMQNAYb8SsbAw9pCQ1j6ADk6nCpt1My1uRvmik7CVOYCAGi63d/wIfpEDnR/pK7++urOHX4RRnnb/7k90zfdlbR/SknAFBqv797kqZKk9t6P7Vat0d5LHbydFO+0H1VYsLOp2XoD+mQ3SRpKja4VT51fyE7l1I0EeU8o6k+9D/NgqQ0wXcgr0B/pqSN4j/96U+MGTOGYcOG0dHRwbbbbss+++zDhAkT+N3vflfpPm5yJJMGSS2JwNgoFEipyVGk/zMRmMiK1DUplm5YaAoTgUBGptpfA0JgmDqmMEkmk4gRg5H8vZv4UghBMqkRjydJanpXdkcJWZaQJOiMdbJ69VpWr1nHTR9fyk0fdX+ubv/8CjRN484v/5RxPBQKcf+Kv/Lgqr/x0OrreGjN9d2uLaS2dSLfispeXyn2A8XkI7DasHtHWJ9yshjmW/26nUCcslSWQqXc7nqKckNT58LN1lF2AKueaMfj+0lZoYuXLVvGRx99REdHBzvvvDOjR4+uZN82OSyjwqVfLUJWJKqqZVRVSs31ph+EDxAgJ0FKCQFCSMSjEqFgsCTDQiEEa2KrWRb9Gr/sZ1TNaGJaK6ItRijpJ7FiPb7aWpSgj/DmQ5F8PS8YCCFIJDVkScLX1Z4VhCmeSLB+/QaqwiHCVWEUWUaSNmpHrDFI6Bp+Ve0WiEnXDXTDIOD3dRuvYkMl27FnCayk8V+phmCF0g4X+8LPtzdeSgjnnrAhqFR9lazXjUbEqb1SAgf1p/1+e1/6Q+hij/z0SujiLbbYgsMOO4ypU6d6wkARKJJCOFhFZ4eJaXTJY1KXD6qsg6SnBAJJgGSmNAllEFRDRNQIdYF6/LIfEUvQ+eanJFeuw0zESa5eReyb5eidnWXeWWGEAN1IbQ34fGo6mFIqd0OCdeuaaRhQT11dLQG/H1VVURQZWZa7tk1Sk3xA9XWzuQBQFDnloaAbFXPX7K1960oGoim2rlxZGouZhKw6SvFlt7Da7wntQPZ9VCL5VLmagnJW+n2hQenpLTGPvsX1cvD88893Xelf//rXkjrzfUGSwKcqmGaIaLSTSLWKJJmA6ehSICmpfXalBMNCSZKo9lUzunYbJCQMoYFpoobDKEJGra3FFAZmMokSClXk/pywJmfDMNE0nWDAl+H6GIvFWd+8gUEDGwgUcLMsdC7g95NIJJEAVVUdbS+sOAdCQFJLbV1UhYMoiszRDTMyypa6HVAIy+7AvrIuJuhSvrKl9LMSQs+kpnEpS/uplelD9qq+Eq6nxWpinPpVyMslu71KuGVm33+5xpvFkK156k2hwMu/Vz5ux9C1huC9997L+Nx5553cfvvtvPzyy7z88svccccd3HnnnSxcuLDUPn+vSE1cPhQCxKImiK6gFOl/N5aVpfKCE8mSjCqrKLICQqAhCA3bHKU1SbihnprtxlC30w7Ifl8Zd7QRIVIPoGEYaLpOIqmR6LIX0PSUMGC51gghiHbGWN+8gcZBAwsKA26QZYlA0I9uGOi6kY7CnJ0zQQhBIpEkkUgSqQqhqAqSJHULiuQ2SFKxWC/2YiaX7OsL2TsUm6goO9JfubEEisUpGZVdGFg89facoYGL7Ve2x0a+eguNod0WxH7fufIK5BpXpwBM+bwaegNr/CuRo6IYfL7U+6izFzSXmzrWGFpjmouSbAj++te/8vLLL3PPPfdQX5/yw9ywYQOnnXYae++9N7/61a9K6PKmT/fARKmJvqMzik/1E/B3eR4ocVKGhqnrkkmBZATxF/gyCyGEIN7eQezdD4g0r4XaBvzjd4NwZTUDKVuAJCAhSxKyktoWkLPyLQgh6Ih20traxqBBDfh93ff9y+5HPImqKqhdk739XCyeRNcNIlXBDN/fXFg2CPk8DUrdQ6+kLUH5FuSZ3gqlYPenL+Yap3uB7u50dortZ6XtNpzqtddv13KUMq7FBjLqabKfr56yIQBYuXIlLS0tNDY2Eg6HK/p++D4ghKCzs5M1a9ZQV1fH0KFD85YvyYLs2muv5fnnn08LAwD19fX88Y9/5OCDD/YEAld0xSJQNMIRiY72OKqioqipc+lSIrXFUGpa4431CLT2GLEFi/F9vQGpVicQiGMG/IUvLqU9UxAKBwDnMEdCCNo7orS3d9A4qAFfhYUB6NLCBFLbByChqgogMAyTWDyBJElEqkLIcmXatfzQ3ayMK2GXYI+3b1/JTirT82pS07iyVdFbzXwjHbSoqGuycIq9UO64WZPykuv2YvGK27sJG248UOzCjlsDwXzjmq/d/iQIQO9uG1gx+618OR6lUVdX5yr/QUkCQVtbG2vXru12fO3atbS3t5dS5fcKy60QJQmYyJJEMCTTGYsRqQoh0SUSCIGug5YAYZqpQFylYAqM5WuJv7MISBI/YDSy2UGwTQOH+NnlIIRA142UAWCO80IIWtvaicXiDBrYkDYu7Alk2RIKNAwztYVgmiaBgB9/ke0+1nwzRw2YXpFVZa7seeDeU6DcLYeeJnvvvJTJo5QER/nI/j66T+rv57R/yLhuZndvhXyCQCH60/eWb6K3H+8NGwZJkhg6dCiNjY1oWt8HQPou4vP5HPMkOFGSQHDkkUdy2mmnce2117LHHnsA8Oabb/LrX/+ao446qpQqv19Iete2QJcFoenD59fQdYPOWJxAKGV8ZxoyCj4CqkoyqSGEyFC3Q8rY0BQmuqljCANFkQkqQSQktJZWMARacwvGkpWYAZP4+M1Zq1ZT26kS0ToqeluWMKDrBgEHzYMQgqSm0dzcgqLINA5qQFGUHlUDCpHKCaEbOvFoknA4SKQq3LV1UVqdpVjeF0MpXgJ9HcEvH6XkInC6vlzyhbwuFPwnG7vNQK4+9ufvpFicnnlLyzL8vNd6vH1FUVxPah6lU5Lb4W233cahhx7KCSecwPDhwxk+fDgnnHAChxxyCLfccovrekaMGJHeU7Z/pk/f6C8+f/58DjjgAKqqqqipqWGfffYhFoulzzc3N3PiiSdSU1NDXV0dZ5xxRjr7osUHH3zA3nvvTTAYZNiwYVx99dXd+vLII48wZswYgsEgO+ywA88++2zGeSEEl112GUOHDiUUCnHQQQfxxRdfuL7XDKSN4YoxAyB8SMJHKCQjqyaxqKCz3cTQZPx+P4oio6gK8YSWCuaTSBJPJFnX3szSlq9Z0rKYxa2L+aptKS2drQAkm1tY8/L/iH32Je1fLSUW0IkPUFCqVRqrDOqrVCTDAGHfnhAlZVe0rknHAAj4u6nhU1sEHaxbt55IpIpBAxu6PAAqLwxYRo26YRDtjBHtjOP3+aiprkJVlXTwo1LpiaA5ltGcnZ7IGpiPnmqrnEx6laQYL4RCeQKscvZ/S20vF32R6jpXzATPzfD7QUkCQTgc5pZbbmH9+vVpr4Pm5mZuueUWqqqqXNfz9ttvs3LlyvRn7ty5AOm4zfPnz+eQQw7h4IMP5q233uLtt99mxowZGQZgJ554Ih9//DFz587l6aef5tVXX+Wss85Kn29ra+Pggw9m+PDhLFiwgL/85S9cfvnl3HHHHeky8+bNY9q0aZxxxhm89957TJkyhSlTpvDRRx+ly1x99dXccMMN3Hbbbbz55ptUVVUxadIk4vF48QNoqqlAREYQhJLypzd9SCJAKBCiuqqKutpaAJKaDkj4fSq+LsM4VVUI+H0In06rWE8nHZiyhqwIEKncB4lvVmEmkghVQt1qIEIxkWuCRJQBNCpDqQ0MTgkEekoNZ+VW0MzUdoYhtLx2C9akK4TANAXxhIZhmAT8zsJAa2sb0WgnjYMGplfoPYEQAsM0iHbGiUZj+FSVmuowfr+KYZooskyR8o4jPfGCtKvH7VbdbgSDciafSvqWZ09iTr7/xXo+9FXEQqc+uhUG8tXhlt7KTVEoaVa+e+xrIc+jspQVqbDSzJw5k6effpovvvgCSZLYa6+9+OEPf8gf/vAHx/Kffvop2267LW+//Ta77bYbAHPmzOGwww5j+fLlNDU1ceutt/Lb3/6WVatW4fen1NgXX3wxs2fP5rPPPgPguOOOIxqN8vTTT6fr3muvvdhpp5247bbbEELQ1NTEr371Ky644AIAWltbGTx4MHfffTfHH3+8q/vb6GXwRUb6Y2H7/xQSEhK6nprYqiMbDd/speJ6jJgRR5VU/IofRVIwYjrmV6swPvsac9cm9CF+dL8GrRoirBAO1lPNICRToCz5CGPIcESkBiSI0U5MdGBKGiYGVaKOKuoztilSE65AmCamTZvg6woglD3Rb7QXiDFo4EDHMpUgJZiYxBMpz4GA308gI9YBGKZJMqkR8PtKzg3hJtphdspeKC9PgnXOotLCSE+kCs5Oi1yOSr2vVqhuEgh91ynk+eBm7HvSy8CjdylJQ7D//vtzwAEH5PyUQjKZ5N577+X0009HkiTWrFnDm2++SWNjIxMmTGDw4MHsu+++/O9//0tfM3/+fOrq6tLCAMBBBx2ELMu8+eab6TL77LNPWhgAmDRpEosWLWLDhg3pMgcddFBGfyZNmsT8+fMB+Oqrr1i1alVGmdraWvbcc890GScSiQRtbW0ZnxQbJ3chGSAnUjYF1kcyAIGipNzl4okkQjIQsraxrGQQVEMM8A8g2KbDyhbii5ZiLF1B8ttvSe46gOQwP75gFUGlBrNehaCaWh0LAbKMCIYRHS3p/ugkiEutJOlEJ0lMakWXklhiiKUJME0TSZLwqSoBv59gwN/NrQ9Sk3RbWzuxzhiDBjb0iDBgbQ10xhJEO+MoikJ1JEwwmBnPQJJSiaL8PpVEMr/2IxduQx/bX6BbzXyj6ARDuer8rkxEboSB7wKTmsZlRF0c9fDZ35l7KUarUo4w4LFpUZJR4U477ZTxu6ZpLFy4kI8++ohTTjmlpI7Mnj2blpYWTj31VAC+/PJLAC6//HKuueYadtppJ/71r39x4IEH8tFHHzF69GhWrVpFY2NjRj2qqjJgwABWrVoFwKpVq7qlaR48eHD6XH19PatWrUofs5ex12G/zqmME1deeSWzZjll3evyMpC19OSfNskXgKwhjNQKNhT00x6N4kdHke1lAENGb+tg7etvEGkahtbRgS8SITZQQgwPEJBUIjQgMAkSQRYqsqQAqVDBZlUtyvqVGBggZIJSNTpJFFR8kg9VllCEiegKiWB2qdwDBQIYWVqDtvZ2op2dXZqByhoPWsaCiUQSzTDw+3yEgoG8LoSSJKEoMn5UEgmtS4gB1WXfrABF+QQDtzkPsrHKu7Xa7u8GaxnxDHohmp49eJQQAk3TMUyTE5vcR1h1wh5XoreiAlYCt7kncrmoesLA95OSBIK//e1vjscvv/zybgZ9brnzzjs59NBDaWpKPaFW2tuzzz6b0047DYCdd96ZF198kX/+859ceeWVJbXTm/zmN7/JCPnc1tbGsGHDUr9IRlfOgqyLJEAYICcRZgBZlgn4A8Q7Y4QjqQlsYxkdYRjIKKAbhEcMQw4GSBgymmxikhI2ZKHgEyFMU2CYJnE9gSSB5Avi72wn2fEt/kgTqvBTx9DU5CgEkOhKsmRiChndMFDV3I+MtaUQTyTo6IhiGEaX8WDlhAHLZiGR1NA1HZ9fpToYQsrh5piNXShIJjUsH89i+ugkGDi5s/XkS9UepbA3BINiBRDr/i3hqNxAR8UgdSXNkvT8OUDyjd9GTU3vToy9ORG7Sd/s8f2irORG2Zx00kn885//LPq6r7/+mhdeeIEzzzwzfcyKqLTttttmlB07dizLli0DUkErsgNW6LpOc3NzOgjDkCFDWL16dUYZ6/dCZezn7dc5lXEiEAhQU1OT8UkjVByHX5A6LjZOvAG/D1OX0fWNXgApI0ANsa6V6kSAqhFbEBq+GYHGAfgHDEHSVAzDIK7FiSY6U3vrhkFC0+mIxhECgpEI+qBh+JevQI9HaU92YtkvgASGH8wApgmJRDK1haF073NqRabR2tbOqtVraG1tIxQM0jhoUEU9CUzTJBZL0NHZiSRBJBIiGAjkjHmQC0soCIUCBAN+NE3HNMszpemtyS7bAr7cdt2qli0BxE1IXSfDwlz9dBMSONseIxun0NKW8e2Dq6/PWXeu7RxLkNlq5htFJ2rqSc+A74Ihpsd3m4oKBPPnzy8pTeVdd91FY2MjkydPTh8bMWIETU1NLFq0KKPs559/zvDhwwEYP348LS0tLFiwIH3+pZdewjRN9txzz3SZV199NSOoxdy5c9lmm23SkRbHjx/Piy++mNHO3LlzGT9+PAAjR45kyJAhGWXa2tp4880302WKo2vCNX0brQRTBgWpFMhGYKP3AamXWzAYJB41MISgzWwlSRKjLUbync9Rt2lCGVyHJEsgy4QD1chGAF0zaRGrifrW4gtKKH6B8MfxhUU67bCob0SuHkTw22VEJB+GYZLUUrkHtKRJMiFIJnR86kYvh43eBSadnTHWrl3HmrXrMAyDhgEDGDK4kUikqiI2AwJLEIjT3tEJkkSkKkww4C/ZMNAa09SnsnYNuULv9gTlZtordjVqTZJOAZEs8mUrLHeydGovX56JlJ2LO991S9Apd4Xen7dxPDwKUZJAcNRRR2V8jjzySPbaay9OO+00zj67OInaNE3uuusuTjnllAx1tCRJ/PrXv+aGG27g0UcfZfHixVx66aV89tlnnHHGGUBKW3DIIYfw05/+lLfeeovXX3+dGTNmcPzxx6e3Hk444QT8fj9nnHEGH3/8MQ899BDXX399hir/vPPOY86cOVx77bV89tlnXH755bzzzjvMmDEj3ZeZM2fyxz/+kSeffJIPP/yQk08+maamJqZMmVLKEKYme6EASpcwoKbcEE0/UtfXktICbLTil/ATjwviIka70Ub802+Q6iP4dxwKqpZ2HVRkGcUPppogKTrRNZ3Ozjgb2ltYH11DR7yV1pYWWlrbSOoGsYYhCEkm+vXnfN2ykjWxNtb7oiRUHbkr/K+ibExGpGk6LS2trFy1mrb2dsJVYYYMbmRAfV06OVHZgoDlNRBP0N4RQyARiYQJBf0ocmUncQElhS+2J0pyopiJxSkOgRtKnYDsE1++ftr75NS/7PN2gcEpkE32724yBeZrvxCFnhNLENhq5hvdci+UYqfhto/5jEdzkUsALCdltYeHnZJsCGpqajL+0GRZZptttuGKK67g4IMPLqquF154gWXLlnH66ad3Ozdz5kzi8Ti//OUvaW5uZty4ccydO5etttoqXea+++5jxowZHHjggciyzNFHH80NN9yQPl9bW8vzzz/P9OnT2XXXXRk4cCCXXXZZRqyCCRMmcP/99/O73/2OSy65hNGjRzN79my23377dJkLL7yQaDTKWWedRUtLCz/4wQ+YM2dOSRqRjUipeASILo1Al2yA6LIvEAgjdV4Igd/vY13HBvQqDVnXUZc1w9ZNJNqjGEYbpgGmIaeM7UQcU5bwyT6QfCTQUNUA9fIQlICCLMldav5WNENjQLAWed3XaIMiyAOCKELCkAWqltJUmKZJZyxGNNqJrhuEwyEGDRyY1jRUOimRbhjEOhOoqkJ1JGUjQFdeh55A04y0HUEl2yjGlqDYwDmlvPStpEOFjP2KySiYNoi08gPY4ilk51koxvYhO/VxqcLPf9bf1C2ldXYfckXiK5ZCaak9PPoz/SoOwaaOFYfgq0/f2RiHQJKQkBGKD8MU6IaGSQLd0DFNE2H4MXQwzZSBVCyewJCShCWFqvlfIe09mrg/QCisoPpSwpksK5hGatXr88tIprUFkakQMs1UKOFkIomS7ET6Zglrtx6JXBNgQCJMUPUhI2EaJmvXrQMkqiMRgqFgOnNhpUmlJNZIJpOEQsEuG4SKN2Nrr0vroesYhonPp3bZSbgTDFIZG2P4fT78fh+S5OyFUMwE7mZCcevSZ283e4KtJG4S/DglYyoHt2mphRDdBAI7lRgPJ8HH6VyuY3bvFMj9vbqpq7fdPb04BJsOJW0ZbLnllqxfv77b8ZaWFrbccsuyO7WpoyRaUOLrkePrkWPrkDrX0P7tR7R/8y7xlR9grPkCtXU5ocRaqsVaGgJRBofjDInojBjooykSYGgogE+YVIf91IT9RCIBwqEggYAfQ5doaxXEY12ynqwjMOmIxrBcDoUAE0FMS4IEij+IFAiht8WQYgZ+FBRkhAkr1q2ixdjAwEEDCIdDFVfZW6RsEuJouk5VVbgr6VHFm8lAklKCk9+nEvD7MAyDRFesBTeysqbpIAR+/8a+Om0luHk5FxPi161PvN0I0W10vWLJDprkNilTMfSUsV6lhCO7MJDrXPYxe1mnbZZy7tnbMvAohZI0BLIsO8YAWL16NVtssQWJRKJiHdyUsDQEC567h4aGBmKdHWy2xZYoiko02k6wrgkwkTBTboXCROrKfyyMBJJIHRcmoJl0vrKU4B5DkMMmkiohAlWIQA2aUOlo1VEwiFQLFEkmmVD5+LOv2HbsaJYsXUEoHCaRSJDUkxjxTgwDjGgHW2y7A6vWraWmKkJS01i7di2NIxqora1mcHhwj+Ue0HU9ldgpK8JgbyNEKj2ypunIioxPVXPaF5imoL2jk3A4mNd4zW1Ao1Lo6/1iN6vRnlChu9UOwMYIlaFgKh239X305NiVe8+5XDXdaB/c3lelyj2y6F3qt/7S0xBsAhRlQ/Dkk0+mf37uueeo7Yq3D2AYBi+++CIjRoyoWOc2VZZ8/hE1u+5FZ7Qd0zBQFBVkH8JfnbLit5XN/FmkDwjdwFRWocfr8W0+GPQOpGQLUtsK/EKjXqiYArRmSCKhCz8d7S2sXvENbRuaWf5tgpqaOqoiEb5YuoLhw4ejBEJ8/dVS1jZvQPUp1A6sob2znT0ad0HtoUxj1hZBZyyO1JWquI9kAcBySVRQFBlNM4gnkvhUxTFOQSKRRFWdXTF7i/4uDEBhjcBjzTcBUo8JTqZhZuQ/KSWNdbEsnno7k2a6Cw6Ua6vBs0Pw6G2KEggsi3pJkrpFJPT5fIwYMYJrr722Yp3bVBkwsJF1a1fi8wdSxnKureWkjYGMVAV12GC0L5YTbwwTqFHxhYaAGASYSKYf0zBpa+kkHm9HVVQahgxHra6jUa1lRFWYzmgnoVCI8eMHpNz50GhpaScQDlNTXY0a8OGXgkTb4wSD/vQKqxJYAYZi8TggUVsToa0jWrH6yyH1VaSC26iqTFLT0RMmfp+lLUgZWSY1jepI4URNbiIcbmoUEzRJSDoIJT1RF6IY7QCkUomrvkyB1m1b5eDkepnPcNH+86iHz4br6Ob54OHRkxQlEFjRA0eOHMnbb7/NwIEDe6RTmzpjttuFcDiIMFMrF2GadA9ZmB9JkvBtORTt46/QvlyJufVA1FrLL19GyCAJP4ocTXkrIDN0yGCqqyNpF0IGNWTUKa9fzYBqH8bmY0DA+uYWBg5ooL09SjKZ7MpkmNmHYhAAXWmSE0kNoytVcsCf2iKQpZSHhNKHK247kgSSlArVbHQJAJIk4/epxOKJLm1G/r6Wa7NrFya+S4KF29Xtf1r+CuhIIjVhWxN19qRf6j1bMTPsGgILt+OZrQkpZ6sh17VO9gRbzXwDpm68Jpd9QinbE/n6kStYkyeYbPp4Xga9iGVDsGTh/1EdqWKj/l8gB2vxVdUXNcmKpE7b/IVIAT+az6B6q80wEhrBoYNIAm3E0NdGCcghwqEwsiJjGgLVp2ACqiwj2xMANa9Bbm3GGLENAujsjBOLJ/D5VPx+H8FAKkFUwtAIKO73+a2XclLTSSY1JEnC7/d125+PRuP4/Cp+X0nesD2K9Wei6wbxeJKkrlNfW13QTdE0BfF4IhXl0aeQSGictFn3+Pq5JsB8q2H7RPbouhs5ZuAv+PeXVyEl1nHS2L8Uc3slU+pEkbqvjXE20sG6wFEgsI5vvDZb2HL+Hix7kEJ2KbmEArumo1CQqVEPn53hcgmZGgEnTwwnLxCr3ey6rDas/mT3z95GMd4nbshX3vMy2HRwLRDccMMNnHXWWQSDwQw/fyfOPffcinRuU2Nj+uPFabfD7OF3LRAIQfvnS2h+933qBg9D9wuS7W0oAwYQ2HE7NL9BkgQR3U+VL4TctZKNJ5KYpkCXJar8PuSuNjUpgbp+Pb72DozhW5P9UFgRCk0h6EzGCSh+FFlKr7y6ZzoESMUTSCY0dMNEVRUCfl/OCIbxeBJBKqFTf6a9vRNJllBkGZ/POe2zhaYbGIaJLEtomo5PVbq8JzL3zItVg0Nqslu9pp0Z213Cf9bfBEBnW5x4NEHtoGoUVc7rblcupbjIWZRyv9mkgmQlSCYFgYAfVZW73Hg3kkzqAPh87nJVlKKJsE/0llBQyMjSabK3sHuG2EMnp+NH5DEqdCMQlCLEeQLB9wPXAsHIkSN55513aGho6JY9MKNCSUpnKvTIxEkgKBkh6Fz2LbHlKwgEI0htnXQqceTGIZiNjYSCfqSAhK50AhpVog4FXyr1rykwAczUPn4kEqCDZuR1a6iJyhjDt0m5JQoT0zAxzNS/ZtdK31oVp+L/S8gyyHLKuM4SEHTDSCUPIqUN8PusoD+5X8qappNIakSqQuWNTQ9ieRbUVIe74jjoSNDldph5f0JAIplE7TJStKiEB4UQgta2GMmkwcCGSFrTIoQg2hIDIFwTRJKlDKGgknvnpfi7V0IQsEjZoRhsaIkTiyUJhQJURwL4/Za9gEQ8kcDv87nehip1bIqxmcgWCLLzU+TCEjbsWgK7N0KltAO5PBdy1e0JBJsO3pZBL1JRgcDCFBhrWoi9/gHqD8dhqH5U1Yffp2JiopNASAK/CBGPa10TlEw4FEQ3THRToKoSmp5E2bAOpbWNziEjUhO7JCHLqURAiiwjKzKylJk/wBQiJTQYRkpw6EoSpCiy7UXsLsiPYaRiJdRUV/Wpp0EuhIBkUkvFSQiHSCWFFKlx1HQURU6v/qFruyCRTAlnFb4hIQQbNrRTVRXG71eyBBFBMq6jxTVCkQCymqnByDXpFZOVsK+FAQvr9RWPJ+js1IkldPw+hUiVn0BAJZnUCboc/2KFgew9fbf7+JZA4DR2brYlAMetiUru8xfjzugJBJsOJQkEV1xxBRdccAHhcDjjeCwW4y9/+QuXXXZZxTq4KdEjAgFgtHXS+tYnhHbZmkBdJL0FEGUDALU0IgS06y2YcpyQiCCbYXyqQmciQafZii8gU92WRG5uJTZ0y4z8BSmjRIGBjoGGiUmQqlTa5Sysx6mUCVAIQVt7lOpIVUm5BXoaUwg62lNxB1Rb3AFreySpZUY7tLQHPp+v4gJOyi7DzJmcKaUp6CTemaB+cC2yomT0IVc0RYtCKud8ZbINA93YQ5TLRhsPk2g0QWcsQaRKxefzEQwGXD+PPWWwWSiSY7YtgZNgVkhYqGTsgWKu9QSCTYeSzLlnzZpFR0dHt+OdnZ3MmjWr7E55FIlm4Fvbhl9WMCWDDmk9zWI5nbQQp50kUXQlStzXTFzpwFCTJLQEsXiCRFzDQCeutBCT2lAViYDfR0KPE6eddmkdG1jJer5hPd/QzLe0itXoQnPsSrmJjWRZTnuz9CeEECQTGoqqdFM/p7wRuqIdBnwYukEsnkwLBz2h7ZAkCVnOvS8uSRJVdWFCkSCJTi1t2JmPSlqR2yf/QkmgKoH13Pl8CrW1IQY31hIKBTFFyhDUzbqnJ703rAiOuSI5ZkeUdNI29KSVf0+mbfb47lCSObe1j5zN+++/z4ABA8rulId7hGkiYonUpCNDlA100AwIFFRCUhhVFkhIBKQgSc1E12WCqg+/z4csK4i4SdCsokpOIIlmFEUhqSWIiXUIychoT0JGRsZE74G7kfCpKomkVpHUyZXENEXaviHfJJzKDplyU5QlCalId9JKIkkS4ZoQybhOe3MHkbqUp4kkSTkn6EkDpqdU2itSKulcVvL5tAN9TSq4VMrgVVFU4omkq+epN2ITOGGp5wtN+KlJO7eWoNDqP5+GwQuC5AFFagjq6+sZMGAAkiSx9dZbM2DAgPSntraWH/7wh0ydOrWn+uqRhRFL0PzWe8RWrSZWJ9O26AuU9TohUU2YWurlRqrlGmQUhCnhS1RTpQ+k2ldHwJ/yoQ8EfNRV11Al1yHj61pJCfxSEFkPoBIgQIQq6qkTQxjAZgyQNsdP5Q3/JCllnKd3Web3F/OWlHGg1hWYKP+fjERqQlIVpcsOo3f6mLM/koQ/mHLvbFnThjALawrsPLfi/fQH8q9S+4MwYMfKU6EoMoZZ2rPkxtivVIoxRLTIp2WA3P118lpw6k++dNdujR89vrsUpSG47rrrEEJw+umnM2vWrIzQxX6/nxEjRjB+/PiKd9LDAVPQ+uEndC5dhm/YCKq2GkFszRrUpEJYGgSAhIYpNPSkhKkrBNUQSpb7lYSEJIOBhsAEXSeRSCJLChFjECHhQ5JSKZBT/5OsC3sESZIJBf10RGMEA1YGQcu1sWfaLIxAtxkSfteQJIlIfRXxaIJETCMQ9qWPZ5MO65sn7K7TZNTfhAE7EnQF/yov/HalcjJY9RRTVzEq/VyaAjcGo/lCJ3vBiTZ9ihIIrHDFI0eOZMKECfh8vh7plIcLJAgPHozUEkNtqCUwdDCGrqOEgsjIKev3pIRmSCiSj2Ag9yRgSBobxCqCuk41pAIQSRKJhIYwZBS19yIHShL4fCoRWSaRTNIRjaHIMn6/zzGfQG9gdEWS7I+Gjm6RJIlgVYBkTKNtXQeR+ioUtTLbMv1ZGLCSVfn9hd9VvbFdUIpQkUuTYDdCdDqefWzxCnf5Fcrpq8d3m5Le9Pvuu29aGIjH47S1tWV8PHoWIQTG+nbEx9+AgOiQIK1qJ/qIeuTaCKZp0qHFiQuDgC+E3+craOxnoKFLCVA3xgtQfUraIKs31feSJKGqCuFQiEhVCFVViCeStHd0kkxqvdoXIQRaUket0OTZl0iShD/kQ1EV2td3FL198F3EMMy0+2whnAQb++Saa3J0u3ovZ4LNd52Tx0IlVPtWWOQl1+2V1g54WwabNiUJBJ2dncyYMYPGxkaqqqqor6/P+Hj0EALMeJLkB18Rf2EBelhh9fYhvtaW81X7lyyNLmVldCXNejst4U7MsECW8wsCQgiEKWF2BlBkBVmYWOFklS6L/47OKLFEvNf39VN7wDKBgJ9IVYhQKEA8kdIaJJNaytbA7Lk+CSFScQc0nYDfOXqiIGVjYK1EdT0VkCn10dF1A9MU9Jd5V5IkInVhQtVB4p1JR6GgGK+A/q4d0HQdvy02RD7sGgL7JF+pSbAUYcCtEFFKTAM3WFsbnjDw/aAkgeDXv/41L730ErfeeiuBQIB//OMfzJo1i6amJv71r39Vuo8eAEJgrGsl/sK7GEu+xb/XWMITx+GvrkF0/ScJhbgqiNZomAHo8CWIKclU2uQ8aHGdztU+AnpNykYgHV5ewh/wISsCNaAT12LohpGOD59IaiQSybSg0JPCQspQT6U6Esbv95HUdGLxJNFojLb2Tto7Ool2xtB0vSL9ECLlVRBPaFRVBR2NCa1ARe0dUVrbo3REY8TiCTTdSH00nVg8QXtHJ+0dUaKdcRIJzSYkiHQ9vYkkSwTCfmRZYsPqNgzdWajqz5N9ISwBrdStHmt1DJU3pss23st3vFyVfSX7nWuLwmPToSS3w6eeeop//etf7Lfffpx22mnsvffejBo1iuHDh3Pfffdx4oknVrqf329ME/2z5SQ+/wZp+GCC2wxDCqVWrINDgxEIqtQIHUYC34AQyCkDQB2TVn8Mf1xFFfkMqiR0HTRNIAzTdjSlJVAkP0IkCYRMtGQCyVCRJTmdCjipaciShM/vc5/JuQSstMR+X8rYENuEagoz5f8fS+D3+wn43a0KnbC8CuLxJJFIGFmWu92TEIJ4IqU9CIeCKXe+lPkamRaXokuDYKY0CEYqa6IQKVdQRZHxB1J5IXpzS0KSUkKBrhl0bIhS0xAB2X1Aqe+CsKDphuscBk5Y4YArbUiXnYsgm1LbzCW4lBJVMl8bVp2egeGmR0kCQXNzM1tuuSUANTU1NDc3A/CDH/yAc845p3K980hpBpasQv/wS4I/2J5kfQQR8KWzFIbVKkZWj8Q0QTWjxGQd01riS6DJJppsoBqFBAKT9g6Napt71sZVoyAW1amuVQkGBZgyklCxJj5VUVIag0SyKyNiz05s6fd71w+SBDIKqpJKHBSNxhCm2eWhsPEesf3o1ENTCHTNIJ5IEIvFCQQCRKOxroA3KqqqIMtSKodBIokpBJGqUNYKNLtmK2yzgqIoWBsPqTj8Ak3TiUZj+HwqwYCvK/JgeePjFkmSqKoNocV1Yh0JgmF/tzDHTr75/V0Y2KgdSAm0bnFKh+xGO1DOKt7x2qkboxUWW7+TPYGHh1tK2jLYcsst+eqrrwAYM2YMDz/8MJDSHNhdET3KRIBo7UR/7wv8e26L0tSAz+/rphYXQkJL6tTIYWqToawpSaBLZt5tA8Mw8PsVBg6oQurynU+9VA1a25pZ37yKWGeUZKKrFlnLqM2aMEHCMKyVsLvocJVGlmWqqkKYQhDtjNERjdMRjdHRkdpWaI920t7eSXtHzPbppKWtg5a2DpKahqYZ1NfXUlsbSSdaEiKVxjgajRGLJVBUhapuwoB7UsFzZIJBP9WRVAjwjo4Y8UQyw+6gp4dQkiR8QRVJhpY1bRha9vcmeGz11enf+rswYKHpesnagex7LKQqz2VUWEr0P3sbi6fezuKpt1fMSLDSeNENNz1K0hCcdtppvP/+++y7775cfPHF/OhHP+Kmm25C0zT++te/VrqP31+EwFj0DdLAWuRhA6FrEtH0VMx8RZHRNAPDNFJpeGUZRZNJyjoxVUMgUISMkPLPKqaZSs+rCh1UBdOEeDJJtLOdeLyVYDBMdaQO0xCYpokimyDpYNMSpDwDZJJJDUmWEAJUVcHvK+kRKwtZlgmHAnSlGLCROQ7p81LXloMw0RMGVVXBtCGakFP3kUrJLKXrqKR6X5YlQsEApj+VjTIWT2RsKahqSrtQyEC0VCRJIhQJYhqCWEeCqtrUtpMkAaaB3PE1jy//LSI0tOJtVxohUp4F1nZXX1GsR4GbCb9cNX2hrYPFU4tzSyy2vEf/p6S/mF/+8pece+65ABx00EF89tln3H///fzf//0fH3/8cUU7+H1GdMTQv1mDOnYLsL3cfKpKLJ4gFk8ZDKZywadWQzIS9YkqGmPVDEhEGBivploL5m1HkSXCIRkp0YnuC9LS3kl7RxxZVhhQ38iA+kYC/iB+NYCWwKYlyJxgVUUhFAoQDPgJ+H0YhuHYXm9ghRGWZftHzvgospzO5KjKKlY05mDAOTuelbOgZyblVIbIcChApCpMpCpMKBRIC33RzjjtHZ10RGNoWmUMJzPbT20fBMJ+Yu0JDF0HIZBiq0FSEKHBfRkZqggEmm6guvQsyEU+LUH2yjg782Cx2CfqXJ/ssm4p1vsg+95yaQE8+4FNk4qI0MOHD+eoo46itraWO++8sxJVegiB8dUq5Ooq5IG1aTW+bhgktdTMJcuphDqy/cUnQBYSfkOlSvfjN1NRBvPF1A+HgzQOrEaOx0j6ghimSaQqSF1NLeFQBEVWQAJFTU1Chi4AE2Qd+6rbmiytT2+ovCuFbhgkkhqhUPfMeBL06vaHFXJXVRUCAT/hcJDqSIiqqhA+n0osniQeT/aIUOALWNsH7RixVqT4WszqLUAqL8pfb1BJ7YBwCHVsTYKLp95eUF2eSzuQS/1faILNFgwKtW+1kS+UcfYHSG9R2O8jn6Gix6ZF3+nUPPIiOuIYS1agbrM5qErKJ17T0XWTYMBHVTjY5UO+0Q9eCEHCSLCicwXrEutSFv8FDPwkSUJWFFRZQTJ1/NU11NdUEQ6l3NJSXogGyElQEvgCAk3rMluU9C4tQfeXZ2o1nbKu7+/Bb0xT0NkZJxwKZApXbBRyzD68B0szocgyfp+PSFUI0xS0tXemXR0Nw8xjJVJMWxKh6iDhiI/k+q8wQpuBnF/D1H9IxR1Qy/AsEEJgGiat69odz9uFglLIl/bYLZYw4LSat0/ubtNZO5EtKGTjuSBumvT+Bq9HYTQDfeES5Noq5M0aEKR84oEuS/TU6ltRU9b9fn/qa+zUo3zdsZROPUpICVHtixBUgrix+pd0DQwDORhEUhQkqWtDQNJA1kgHK5IUJCFjGgJF6dISmM5hYVVVIZHQ8Pt9yEW4tPUmQqSEAb9PRVWdUxWnUjKLckPhVwRLOAiHA5hmyqZDNww6op2EQkF8qvUn7ZyR1FUbQJW8Hi1URXtnkJBqlDXJ9hYp7YBUsnZACAEC2jdEXW2P2CdD+8ReaJJ3G9cglx3C4qm3pz0QLKEgJaDkFwCsdkuJq+B0Txt/d06F7vHdwxMI+hMCSGro7y3GXN+Gf79xiK5JX0LCb/OtlyTwqQqxeBLTTEUk9CsBav11gKDGV4tSjJo3EQNFBVmxufV1aQZSv6QmfqEiSzrC6Ao4kCO+gRVISJZShoayIuOzhUXuDwghUvkaEASD/pxzgCxLXfkM+g9Wil9FkfH5VHyqSmcsTkJKxYSQ5JStSSn5H6RkC1KyBbV+LErUoHVtG3WNtRXLfdBT6Hrpgktaw9ap4Q/5CYScI1NC7tVxMf7+TmWycxbYgyNBplbC+tkpe2F23XbBwjpXKaHguRXvc+DQbYuqx6P/Ioki9LlHHXVU3vMtLS288sorfWpM1p9pa2ujtraW5V8vpqamOvOkEIhoHP3NzxCdCXwTtkMaEMHsmrRSE1b3F53eFRUvlbxIQmCiCx1VUlOWAy5fjvLq5UiJOMawrbpWRyKV/VBJpCZ9UwVkJCCppb5fv0/BjfYhFULWwNANJDnloij3or+9Y58AXdPpjMWp7go+lAvDsMY49yTRHzC7XEWFmfKa0LpsTULBlHGiq2fBSCK3fIaIDEME6lJBmjqTmLpJoCqArPQfgc5Oyi00mfPvpNC1whS0re9A9atU1YbSdRST8KgcFX2xFFLlF1uXW8PFUQ+fnRZGLKHiwKHb8jJP0NraSk1NTdHte/QfihIITjvtNFfl7rrrrpI7tCmTUyAQArG+HW3ex0iREOoeY5CqAl0KAz1l7JVjpWdFzPOpCqpaik47pSaVl30B4WrMQUNtZ7qMB7sEAWvy13Qd0xAEAu6zXVqPmW4YaJqB36e6n6R6AMMw6YjGCIeD+AqMm2maKYPDYKCXelcZUrkYdOKJBD6fr8t7Is/WjTCR2r9EknyYkS3SanMhBFpCJ9raSaQujFpGFMieQtcNdMMkkBGMyh3CFETbYhiaTvWACLLSXTh0KxhUMiqgm7bytePW9dGNHUM+IaGt3aB+6y89gWAToKgtA2+i7wFMgfntOrQ3P0UZMQRlxy2RfKotOJCZ0w0OujLY+VSSSa3kCVagIRLt0DA4s+6UvXa38oqsoGkbtyrcYPVLVRRkWSaR0AjIPpQ+mFiEEHTG4gQCPlTFpRDVRzaFliBVyvcqSRKBgA+fb2O2yGDQnzPZj5RoRtJjmHXDM/bQLe+DQMhP27oO6hprukU07EuEECkh0+9sA5IP0zRJdCZRfQrhmlA3o9JSKTQZVyK1cKFJ3G39nguhh4XnZdCX6CbGouUk53+Cuv1I1J1HIfnVtBbe0A0Uhzj62ciyhCRLXamKu59PqURNTE1LfXTro2PqBiR0JF0gFB/CNBCmmfoI56RFkgRqV4CkYj0IrPgAqppKrdzbCCGIxROpybKY1aTUu66H0LXCb/4WMxGlHIlElmVCwQBV4SDJpE5HNNb9WTF1pOi3iMhwkLuvEyzvg8iAqtQWQi9nvsyHbphpV81iMA2T1rXtaHEtnewp1w6YlQGyUKRGt14I2fYBlabSdWe7PXpsmngCQR9g6jpmLIm2YBHaB0vw7TEGeVQTQiKdjtbad09tAxR2HfT7VDQ9d7hgbf0a9BXLHD/aqm9JoJBcs5Lk8q9JLl+a+nyzlOS3X2PGY93a8/lUTNMsKbVvyuBQ7vVJRQjQtFRK4nAo6HqFK0lSamelF+c/IQRGdAPN7zxO9Ov3yh4nqUsIi1QF8ft9RDtjxOLxtDulpHeArCJ81eR63iRJwh/0oQZUNqxuQ0/2TXhqO6Yp0HUj7WnjhlQeCZOODdFUOuj6qh7RdvRkDoRCVLJuJ9sITzjYNPG8DPqA2NKVqP4gZrQTaeRg9EQCvvw2ddJ6MUlgmCZSXTXBQfUUFgrk9Kq9m0pYCEQ8RtDnxzAMTMNIGcol4qh+P8FQmLjfQBECLRZD9fkQpkmoKoJh6OidUZRQOLtFfKpKUtNKSmgkSRKSLKcy0pVgCV8sgpRxYCye7EpnXIoKvvL9yocea8NXOxhTSyIMHUkt36jR0oz4VJV4IkF7eyehoJ9Asj0lDBS4SWv74P+3d97xUZVZH/89t07LJCQEQosoSBMQRQQEFVBBCSoIWLAgghVxxbW+FnYt7K6rru6CbXUti6vYcUFU0EVFUBFEUEGqFCG0kEwy7bbz/nFnbjJpTOok4fl+PqNk5pYzd2buc57znPM7Hr8bxYdLkJ7tb/SS0rLNiwzDcpbKkrEh7mwXHyoBAPhb+5rM0kdTZOuTgzCqfeJz5Z2Ct35Z09hmcRoI7hCkgGhxGBnt/Ij4PBAlEW5RgqHpMHUDqsdlNxgCIAsE/XAxKCsd7Ahr3YwBsiwhEtFgSQTB6bIXg+wywZKiQoSDQQQOFyASDKLDcV0gCCJ+3bgBHp8PB/fuRU7uMTh8YD969h8QO3jl5xNFAYbBYJgmJLFmg3o8qhGNarYqX7Jr+bWELDtvwO1SbOXFmuwbu3aNCWMMruzOcGV3bpBZuN0/wQVFNhGOREAlh6H4c5JqX233PlAhKxKiQQ2yS2oUnQIicpIHy9qSrEMZ1xmIBjUwQYCvVfXVJVVRWVfE2lAfeQQNTTL2jevWB8C2hjeG0+DwJYMUkL91F8LFQRzYuQf7tu/Gnl+2Y8+mX7Fj/S+IhqMJ8r/AkdUG4zDGIMkSdC1RUrgsgiAiGAiALAv+zEwUHToISZHh9vpg6DosywRAMA0DVqz2vqrzM8YgKxJ03ax2hZtQOjOzLHt2pxuGXa1gWQ2eS2DnDUQgSRJkueaJZ0S2T5SqmWTD9k8QkeZ1QRYMFEeAcDgC0zryUg5jDJIiQpQFFO4PQI/Wf3+F8mi6AcO0oMgiXKoMlypDTbLiIf79CxaFAABprbxgrGFuf/URTm8KHQ6TyUNItY2c+oU7BCmAAWCCAG+GH5ZlIVhUjMDBAlgWJQy9tbm9SqIAQmlItfRg9tG86enIymmHDsd1QUbrbLTNPQaiIKJtp07IyT0Gx/Y8AW5fGjp26QpJjpUVVnPDFZgtjmOUabhTOvhbsTJDA1HNQCSiIRrVoOu6XaEQc2Di+zQEREA0ap/PXYsadYcWGlVmDIBlghEgqR6YloVgMIxgKIKopsOyShNLKyaX2jkFvgwPwiWRBs0JKa24kSGKYgWn+cgHAIoLgjB0E6pXARNYowR9qmuZXN3sO57EV5NGRMlQk32SiQ5UJozEab6k1CHo3LlzhYY4jDFMn26H4oYNG1bhtRtuuCHhGDt37kReXh48Hg/atGmDO+64A4ZhJGyzbNkynHzyyVBVFV27dsXLL79cwZa5c+eic+fOcLlcGDhwIL799tuE1yORCKZPn46srCz4fD6MHz8e+/btq9X7zsrNgdvnRUabLLTrkovM9m1wTJ/u6NC9M2RXuXViVnXmc2XYoXgZWtmOeIwBLheiWhS6ocPtT4OoqHD7/ZBlGXowAFGWIbtcSM/KQlpGBvyZmdC0CIJaEIZY9YBth2wle+A3TGiajqimIxLVENV0Z/YviQJUVYbLpUBVFSiyDFm2lfQacmZpmAaiml6jJMLylO/q2NJgZgRMkuH2eODzuuHzeuwkVd2uSCgusR/BUAThSBSabrffjn9uLq8Kj9+NcEm0QSIFRIBumBBFAbXxzIgI0bAGQRTgz2qYnIGtTw5yHuWprENifJ+60BSWG5qCDZz6I6U5BKtWrUpQNfzxxx9xzjnnYOLEic5z1157LR588EHnb4+nNLnNNE3k5eUhJycHK1aswN69e3HVVVdBlmXMnj0bALB9+3bk5eXhhhtuwGuvvYZPP/0U06ZNQ7t27TBq1CgAwPz583Hbbbfh2WefxcCBA/Hkk09i1KhR+OWXX9CmTRsAdsvnRYsW4a233kJ6ejpuvvlmXHTRRfjqq69q/L59rdJgmjpERYSoiFA8pYI3Vizpz5YFJjBX8uI/cQTB1nOPJ+wBgJKdAzJNW9lQN+yZvSJBKC4EO7gXZtvjEBcpAgAQoUQrxO7QIXRSABVUzdKBrS8QiWpwqQokUXCUCI908xUYa7DsfcuyEA5H4HG7arVWDMRmpoZV5+55TRojCCvW80Jg9sxZUWyHzV52t78XpmnBNG2nz4pVwwiC4GgdmLKIogMBpGf77a6J9TDwxpeZjJhSZG1Eh0oKgxAkEd50T1LfyWR5t2Cuk0dQfmBMRhq4sQbTstGIZM/ZHPIbOPVPSu9y2dnZyMnJcR4LFy5Ely5dcOaZZzrbeDyehG3KKmF98skn+PnnnzFv3jz069cP5513Hh566CHMnTsXmmZr8D/77LM49thj8fjjj6Nnz564+eabMWHCBPztb39zjvPEE0/g2muvxZQpU9CrVy88++yz8Hg8+Ne//gUAKCoqwosvvognnngCI0aMQP/+/fHSSy9hxYoV+Prrmv9o1GNy4OpsP9RjcqAe0xZqbluouW2AnFYQ22dB6ZAFpWNruNpn1zihLV4WWLbW3AKDZgImE6B6PXD5vBBVF0RRhKioEF1uiC4PRLf9ENwekEuFJjMUaAUIaEVHPJ8kihAFAaIg2toISdgd36b+Z5WEYCgCRVZiev61O4au2x0da6cC2RwgMCMEUfVXcPcYY45zKYoCFEWC223rGaT53EjzuaEqMiIRDSXBCARFhCfDY0cKdDtiFI3qdrvmqA5Ns0s+ky1VJSJbulvTYpoRyX+I8SWOksNBGJoJt1dN+juZLEdKKqysp0BtSHadvr7X/JO1971N65M+Jqdp02SmPZqmYd68ebjmmmsSfrSvvfYaWrdujd69e+Oee+5BKBRyXlu5ciX69OmDtm1LFfZGjRqFQCCAn376ydnm7LPPTjjXqFGjsHLlSue8q1evTthGEAScffbZzjarV6+GrusJ2/To0QO5ubnONjVBVBSILhWiS4XkViG5XZA8LrvToEuF6vdCTrMfolqzG2Ecxuxug5qmQ9MNaFEdkiTGZvClWdkkyoBhVJmwQCAE9RIIR0jAYsxuvqTppZ0Rk0UQmN1NsJ6wkwg1R6mvtoOAZRFMy5bDbbFJBESAGQZEd9LXKb58JwgCZEVyHINoVIcJgiUCBfsKUVwUhBFbWrAsC5puIByJorgkhJJgCOGIFnNaK//siQAtqkOR5dhgnuxbKlNNIApIz04Dq0WZ6ZE4kkgRUFGoqKplhSPtX9vkvY/3/FCrmX6XW78+4n5NIfGRU780GYfg/fffR2FhIa6++mrnuUmTJmHevHn43//+h3vuuQf//ve/ccUVVziv5+fnJzgDAJy/8/Pzq90mEAggHA7j4MGDME2z0m3KHkNRFGRkZFS5TWVEo1EEAoGER3VYlgVBqB9J2Hg5FsFOVHS5lMo738kKYOqAVTHTP752LgsKXKL7iLN4URDAwBLKwpJBEARHIKeu1FZ8qDJMyyqTwFYv5jU9yARMHSS5arV7vPpCiTkG/jQPWrXyISMzDWZIhyLaKoketwqf1wWf1wN/mgcul2o7buEoSkrCFRqiEdl9LwRRcD6DpN4O2dGH4sN2AqHH74aQwp4ZQGniXXn1wmQdg7JOQXUDcGOH+Lk4UcujyegQvPjiizjvvPPQvn2pCsZ1113n/LtPnz5o164dzjrrLGzduhVdunRJhZk14k9/+hP++Mc/Jr09Exgs3YJFVDdNdaJYqZ8FSQAYq2oGRjCYAFHXIZgGqAotgLAZwu7gTnTy5kIWqxbHiQ8MkagOqQY3YYHZWgb1gWmZKAmG4fN56jwIxNfIWzLMjAKCCLD6vRWoHgWMpUGLGBAEwel9YH8ktrMqxxJKNd1AMBSB262WiV5RTGQreXnpuMMaCoRhGiZ8rT21EqCqCWXzCKqiy61fAxcnPue0L8b1SQ3k5Z2CqgbjZBoV1RUeFWi5NIm73Y4dO7B06VJMmzat2u0GDhwIANiyZQsAICcnp0Kmf/zvnJycarfx+/1wu91o3bo1RFGsdJuyx9A0DYWFhVVuUxn33HMPioqKnMeuXbuqfX9xjX9N0+u0pm639tVwqCAIzWCwCKBKIgCAnVtAogRo0YrHKVtGCCSVy8BiZYi6biSdLMgEVmlZW02xLEIoFIFLVWKh6JpFKirQsosLbMwwIKpAPdfkM8aguGUobhnFBUFokcq/0/GqGLdLRTisIRSKOpUpDAxikgO6s0wQsoWu/K3TKu1amCrKLh2UjRRsufi5Gi8hVJewGH+tPsP5ZY/DnYGWTZP4xbz00kto06YN8vLyqt1u7dq1AIB27ewWvYMHD8b69euxf/9+Z5slS5bA7/ejV69ezjaffvppwnGWLFmCwYMHAwAURUH//v0TtrEsC59++qmzTf/+/SHLcsI2v/zyC3bu3OlsUxmqqsLv9yc8qiMe5gdQ47B7ArFkLEEQcbgwDMOwqhzbiDEwxQWmRSoxCHCLbnTyHYNc3zGQkphFlpYhWkmX6wmMgeqYQ2CHnyOQRBFutwpZlqBptS+BizsoLXapIAbTgyDJ1zDHZgySLMLlU20NgCp6H9j5LhJ8XjdESUQoHEUwFHF6ZSQFAcWFQWhhDS6f2uCRgbIkk0sAVB5ir0sdf/nBuSonoKyDkEz0oDIHoDoHw1Yq5LQEUr5kYFkWXnrpJUyePBmSVGrO1q1b8Z///AejR49GVlYW1q1bh5kzZ+KMM85A3759AQAjR45Er169cOWVV+LRRx9Ffn4+7rvvPkyfPh2qapfy3XDDDZgzZw7uvPNOXHPNNfjss8/w5ptvYtGiRc65brvtNkyePBmnnHIKTj31VDz55JMIBoOYMmUKACA9PR1Tp07FbbfdhszMTPj9fsyYMQODBw/GoEH121XMbvwjlpEDrtVBIEkSvB7YyoNkQahUrteOHjCXBwgHK7zqFj1IV1ohy9XaLiNMWjHRHuQt04IQCwuXlUQoH8onQp2kgYmAqKbDtAhpPhfizZN03TjyzlUczzBMEKhllxuCACMEeNsfedNawhizOwmKArSIbqsjViJzHP9eqIqtPqjpBkKhCCRJPGKFBxEhEozC0Aykt05rMGXHmlK+dK+yATUeLRh164k1KvUrGwmoCcluf6Ttkimr5DQ/Uu4QLF26FDt37sQ111yT8LyiKFi6dKkzOHfq1Anjx4/Hfffd52wjiiIWLlyIG2+8EYMHD4bX68XkyZMTdAuOPfZYLFq0CDNnzsRTTz2Fjh074oUXXnA0CADgkksuwYEDB/DAAw8gPz8f/fr1w0cffZSQaPi3v/0NgiBg/PjxiEajGDVqFJ5++ukGuSbMqc0n1Ca73c4AFyHLhMwMNwSxqo851sLP5wc7sAewLCA2ADLG4JE8MMmIzZRrZocsS4hqOnTDlkKOvx9Zlp0oiGMFWbWe0RHs5LNIRENa+byBWkQHSvXyTahKzZs2NSssA7A0QHQ36GniDZGYwFB0sBi+DC8Ud+XVH/EcA1WRYyqJ1R+biOx2zBYhI9sfUyBsGp9ZfHCPD/TVVQzYs/dGNa/OlEYb9JTawak/GKW6f+lRRCAQQHp6Onbv2AK/P63K7XTDgGUSlCR12qsiHrJnZf5bFssiRKMa3LIAccuPsDoeB/Kll+5f5qtRUzviUYF42J0xu7RQ0w24y6kxmjGVw5rWmtvvwUJxSQgetwuSVNqnIJ7B7narNcpQ1w27E6SqKmDlG0S1MFh4P1i0AFZ690Zp3kRE0MI6SgpDSG+dBlGuOvGUCAiF7QiBXfZZyTaW3ZtAj0cGUuwM1KTZUTIz8JruU92+NT1GZcepasnBIB3LsABFRUVHXBblNG1SHiHgJBKfodrZ1XW7uR0pxO+s8UsyKCML7NA+kNfvDA51OX/ZjPLS51D1rL0WbmlcfEhVqhAfYkiIbthBiqpPpOsGTItiingt2BMAADLBwvkgX26jdXKMJxqmy2nQwjokS6xS0ZDIctQJKyMeGTA0w5YjTqEzEP9e/Xv347iy4++T3q9s/kD5ksSahuOTrSwoG+qP/7vs/6s6d2NUL3BSD3cImhimZS8TNEpSVJkVCWqVDWHbz2DRCMjVMCFkxkqb1CSqxrEa9wtIRnxIliREo7pdOhh/ucxpyp4z7ji46iBk1JxgWhHABJDcuDM6xhhESYCsSig6EICvlTdWolh6zYnszoaSKFT4HZBdT4tIMAqLCP4mEBmIt9a+qtPtSQ+co9qfiC6wlxTquhZfk4G6/Lni+5Y/Rtc3r3fsq+k5OM0X7hA0MUzThCQ1ppBKbPasuECeNLDCA6C2nRps1qgoMqKabkvhypIjj0sWJZ2rEK9dNwwDPm/lCnssVsIpCELVlQasdDklvqxxNDgDIAIL7wO52zZadKAs8dbJaZk+hEsikGSxXKIhQdMMeCpd7iGUFIagazrSW6c+Z4CIEIlquKrT7TXaL7HUsGGiAeUpGxk40vG37HkOo24t3Y5HCI4OWnIKdbOEAbHBsZFOhlj9P2OgrBywwwcBs3bZ+Uc8XWyQdruUhPbMjDEwQUgqRkCxJjuRiAaPx4XqetrHNRHimeoVHqJo93IQhXpTiGwOMKPEVidUWiFVSZPx5QNfKy+iIQ1auFSnQNdN57MrSzwHgYiQ3joNgph6By6ujBknGVXBss5A+aWCqqhqJp8syToDRzo/p2XDIwRNDEmSEIlGIcsSGvpmbZlWYqjW4wMkGULgMKxWNW+qVDcoqXdLZIdn3S4FolDLssyjGSKwUD7InW0rFKYQZ/nAJaPoQDHSMu3lg6imVcjjICKEiyN2UUyGJ+WRgbJ2McbwzqE5GJ91c4XXy8+s7YG5oqPQ9c1SxcJkw/ocTn3DHYImQrwsT9P1RpHLtSw7oz5hzVwQQK1zwA7uBTJaN7JDcOQ2yHbeQBSSJEGWJe4M1AYrAhgloLRj0BRKKuMlif7WPnv2Hyu5Las9QEQIBcKIBKPIaJP6ZYJkqC5SUHZg3/rkIGy5+LlK2yfH9y9LTUP3ZfeP75eM3kH5HALO0QF3CJoAcWlgLao7/QAa8oZHRIhqemxQTTyP5c+EmL8TLFQM8qY34JhR0yRCIBrVYVlWlXkDnCNABCG0D1AzAaHyUr5UwBiD4pIhyRIKDhRBdZXaRkTQIjosk5Ce7U95o6LKqfq7XH7wLz8Qd7n164S1+vL7VHe8ZCm/z5Gcgdq2aeY0f3gOQYpxer5HNAixnvPlQ6WGpcOqqy6/czxb1U8UWOUNiEQRlNkW7MBeNCUxf9M0EdW0OncwPKohHdAKYbnaoClEB8oSXz6QVAnBohCiIc2ODBRHoIV1eNPdEBs12TZ54r+SI0kYVzYQH2nwrUvOQFXRhCOds7G7JnKaDtwhSCHxErxo1J6ty1LlkQGznpyB2FlhWVRpdCCOldkGLBgAq6ThUX0hiiIiEQ26bsCyrJhllTsgVqysy+12VUg04yQP00tAggqItWt13BiobgW+TB9Mw0LJ4RAiJRG401xNepnA1vuwbUu2rwGQXOi+NrP1I5Ux8gGfUxX87poi4qp4mm5AVeRYz/eK2zHGoAhK0n0E6gVJBvlbgRXsO/K2tcDucCdBUSRYRIhEdTtTmwDdNGBapQ5QPInQdphSmwTX7DGjYJIrJaWGySKJApho98HQwpqtaNhEIwMO5UyriVNQ33y85wd0ffP6OiUg8iWDoxeeQ5ACLMtewwfgZFNXd7+rz5thUuWMjIFat4ew/WegTQegyl4ItccuKxPtpksyIRSO2sqCIFhkQYTg1HgDODrUAxsYBgI14WsYz9gvKQxCMBnSWnkrbYTU5Kik70hZp6AySeNkGxklO5uPD+Kj2iMhGbCmSYjx43S59esaNVvitAy4Q5ACopoGr9cTk9tt3Jtdsi19ye0BFBeEwgJYWW0azJ64vLEgCGAAZEGK2WnXd+t61eJDnBpCFppa7gAAgACLLISLo7AsC4IkIKN1GrSQ3ffAl26XGTZX4s5BTXod1ITKBu7a6A6UdQbK/p9z9MCXDFKArEgpcQYAewA2LQtWEqECK7sdWEF+rboG1gS7EZIFFhMHYozBtEyEI9FYEmH9f00tsqpWMGyRxDpbsqaz7GJ/7gRDNxA4UAItosHtU+HxuQGBwe1ToUd0lBSFElpoNykYavU9qs/BtiGcgSMRPwdvgdyy4A5BChBZ6tZEGWOQRBGGYVZ/I2PMbnSkRcF0rcHsISJomg5JlBDvfWRaFoKhCNwuFaIoNMiSt26a9Zys2RxoOhECIoJlWggVhREJafD43cjI9kOUJIiiCNMwIcoiMtr4IUkiIkENZDU9J45V8q+qSGVuQXXUxBkoXZoodTbe27S+YQzjNDp8ySAFpDL8zRiDLEvQtCR6mIsSSFYALQIoaoPYQ0QwLYLbZc9cDdNEOByBS1GqrYSoK0oD5EU0ecgCGkH0qloTYgO6FtFRUlACxa3Cm+5OqCKQJBGhcAQuUiGIAlw+FeHiCA7vD8SSDJuGQiUBTqOupkL5roXVRQnKJg8m6wzwZYSWDaOm5nK3YAKBANLT07F7xxb4/WkpsYGIYJgmolEdXk/1Nf2WRRC2b4CQmW1LGTcApmlB1w2oqt30KBrV4XGrKVtSabEQQSjeDpK9dlOjlJhAMDQD0bAOJjAoqgSpEhEu07Jw+HAArTL8TpkpESFYFIJpWPC18pbrlpkaTNNCSTAMt1u1ndck97soc3qFaEFd8wuqU0NsKOLnDBSbaNVtG4qKiuD3N273TE79chROk45eyjoDydxMBQYIqgpEIw1ql0WEUCgCiwg+r5trDTQYqVkyiOcKhAMRhINReNPdcHntiFNl30PLJAiCCF03IIqKs5033QM9aiBcHIGiypBdDavoWR2WRSgJhuFSFciSWKOrWtnSwbsFcwEiXJR1c50H9yOpI3I4VcHvvEcJcd0DwzAhy1KCVnzVMEBW7SWDBrEJsCwLwVAYjDHuDDQ0ZAENkKBZ5emIQBYhGtYRDkTBBAEZbfxwedVqW00Lgt0VMxKNJuQMxPseyIqEooMBR80wFWi6DkkS61dmPHacUe1PdB7AkRP34q9Xpj8QLx+sb8raNK5bn3o/Pic18AhBC8dpmqQZICKoimLfzMQkQvIMgKKCBQOxDPX61EMgaLqBaFSD122L5ZimFUsi5EsFDUP9fobVnokIlmGhuCAIy7KQluWDJNtO6JE+X0Fg8HpcCBQHYVkEUSyTuhdrm5ye7YcW1iBKIiSl8ZeXLNOyIwP1fN53C+bgoszSronJOgWj2p+ILXueq9AXoS5UFV3glQUtFz4da8EQISbuowMMUFUZLFYmlWwiFEkyYBr1VnpoRwXsJQJN0+H1uOF2q1AVGbphIKrpjpQxp54hQkP/5OPVA5FgFOGSKFxeFRlt/ZBiAkPJDKCM2boUSuw7UdnrsirBneZGJBhFsDDkLEs0FmQb0gBHrvyY5Wf+ZSMIZf/f2CqDvCVzy4I7BC2UuDMQjWqQRAFKbTP2RREwzfq0DKFwBGBwlgjiA4BLVSAKgtPVkFOPMKC8ml59Eh+QtYiOw/uKoEcNePwuqF7FFp2q4XePMUCRJei6UelAzxiDIDK401yIhjWEisL19VZSzjuH5uDdg09VeL6sE1D2uSNRn8sGPDrQsuEOQQuEiGBZFiJRDZIkQZLKd1BEDWY3DDD1eosQGKYFy7IqdC1kLKaRIIkQJRG6UZ9OSNUQETTTgm417gwzJZDVILNaIoJpmAiXRKFHDPhaeZGW6a1zq2JRFGFZdjOuyrA7JIpo1TYdTBQQCWqwTKtxBIziohkNcWjGACFxNbfsgF6dExAf/Ms7AFUlFlbnKGy5+LmUVC9wUgd3CFoYRATDMKFpOhRFgiRVFPZhAMhKUvlNEMAggNWTiI+m6VCr6UvAGIMoCKAqBoH6RrOAX4p07Cgx0PJjEgSqx6RC2/EkhAJhFO0vBmOAJ90NxSXXy9p63EE0qnEOGQMEUYDbp8I0TBTuD8AyjyC6VR9Q4zUHr02lQH1UFsQjEmWdgrL/5s5By4MnFbYwTNOCYZqxQbdiAld8VmWYJhShtG1rlTDBnlnWQwjfsmxnxe1SjrwxK21205AQCBGTILCWHh1AveYQ2JoCJrSIDrIAf3aakydQXzAGyJIE3TCgkHzE4IbH7wZZFkKBCDzpbghCakXA6oumUDbIlwqODniEoAURLy2UJala4RZBEJKPdgpCvSUVGoaZfBVBI43PisBwQisFx6VJNfoxNHYSW71QD0sG8eWBwKESlBwOQnHJ8Ga46+QMEBECmoWIWVGamAks9lz11zreMdTXygvVoyAciECPVp5/UD80akPyI/L+9lucfzemA8EdhZYFjxC0AOKhW03TIYhCErX89g02mRs4CaJdaVAPI7Sm60knNzbWUCswBo9Us1s7ESF6YDsE1QvZ36YZzULrVnZoWQQ9akCP6BAlAb4MLwSx7oqBBgH7IybaeypqY1imBYElEclCaTRAViVYpoWig8XwZ/qguOtnCSOBRnAGq2qhnCBsRASQAYT34f3N0zD2+Bfq1YaqBvzECockZNA5zQIeIUgB9T1rsSxCVNMhK1JSAy5RDeY3jAECA9Uxh8CyLJimBUlKwgd1MuKbJma4CIfXfojAxi9BZsWyuKYJ1ar9cdnqgcJ9RdBCUbh9KrzpnnpxBgDAtAh+WYCrkuOZphVLTkz+eIwxqB4F/iwfdM2AoddPTkE8UTcYiiASjdoOUuzYjRUtqqByyBggyLA8HUBpx+H9zdc12Ll5zkDLhzsEKaA+u+zZywQGZEmEKCQXthUFu72wlWxiIaHOCne6YUJKcrmgqc+3yTLh6dgbSmYHwGouDkGc5K+uozQY0hAuicDtc9l9BKTSNtX1gSQwZLmESi2r7TDLGIPikuH2uRAujiBYFHYSVYnKP8hpr1zV84ZhoiQYdsSz0nweiKLgOAmN4Q9U2y2RMZCSDqtVT7y//dakjvfxnh8qVBJ8vOeHSqMC5TUP+FJBy4QvGaQAwzJqJfxHZCfBAXaoO672R0SxZkDJHSfe8TCqaXCpCqodJGIJhUwQ6zRnj1cXJGlhtSNBeTnbxkb2ZSG917BGP2/diF2zJK8XESESjCIUCMPj9yCtlTehI2F9IlUjkiXLIrSoDlJqnmBqaxUAHr8LRQeKbSfBIzu/mfj3niUspZQphY09H6/ccbtiTYzKmEFkRwns73cDLE3ESLp1sqDA8nep9KXqBvHy1QPlty3bOdERQHqyaSQ8cuoP7hCkAKEOs+146J4gIKrpYGBwVVPGVxmMMUiiCMu0nN4GVWLFEtFqaXM8v4GIYlKvydgX37fy8YsA6KZxdLYwbmDiSoPRsI5oKIq0TB9kNXVNhCRRRJiitVbOjlfVZLRNRyQYxeFDAaSleyHJku0ixSIAFXziuPNNABMEuF0KGKukhJcx22nRbOe81gJg9QkT8O6hf+CirBnOU/EBPpnGR5VpD8QjB/H94/ttfXIQrEgEuGtBvb8NTuPDlwxSgCzUbiCzl/MFCEyAEVMPrG1zFbvGW3KOU+V2lt0Qh+pwjwuFo1Dkms2eBNF+j5Wq1AGQhGSaMyVCRDAsE+bRqILoXMfKPwMistv5FoZQXFACSRaRke1PqTMAlEbE6rKOZCthMsguGWQSwkVhCIxBlkQoigxVlaEq5R6qDJeqwOVSoKpyTG2x6uMrigSyCEYllRIpgQl491Cp2mFlKoeVOQNbnxyErm9en9AoaeuTg6pcKuARgpYFdwhSQLxE6kjE1zIr7svspi+1kIQtixAr6ar2BhaPENTyjkxEMC0TipK8E8QYgyxJMAyz0rXZuHhRrRwhNEzYu+lDlX6O8c/f0E0Ei0KwTAu+VrGoQAMtESQLEaBFY4246phZYr8PgjfdA1mRES6JxsS56mfwjjsFttRyvRyy7rCaTTziEYP4I86Wi58DwPMHjga4Q9DEiN+gLSueH1BxxlGfWc2iKDqdECs9pmXaWgS1uB8TAbpuOp0Va2K3IDBIogDdqFhLXprsVZr0lQxxR0I4Wh0CsITPkYhg6iaKDhYjGtLg8bnhz/JBlJpGx0nLsqDpRizPpe4Q2boGvlYeKC4FwaJwvWoVMCZAFASYZuWObCpIOvcAicsAZSkbWej65vUV9jv2rlW1tI7T1OAOQRMi3gkwEtERDEUQCIQQ1Yxy29jiQ0QEUax52DwRBkWWYJGF4kioNDxblrhDUKsZGiGqabAsC+FIFOGIVqUufWXIsgSzkhCsYZoIhe3jhSMaDNOAYZgwDBOmacKM9UtIfJR3IhIfLR5noZw51QNaREdxQRCyIsHjd0GU67d6oC4Q2U2wVFWpNlxfEyzLchotyardNrnoQAB6pH6cAsbsJMj497D0O1d32+tCdU5B+cG/bF5BZZEAvkTQsuFZWU0MiwhR3U4WVF0ylHIJf4ZpwTRNqIpS55uk3QoZUBUFVtSOSjAhMYOfmQYgiLXK6DJNCwDB5/XWcpCx13k13YCqlOYgWBZBliXIsSZIlkkArFJ3hipqPVD8/cBel7b/HcsyF+zzAMkt5TRPyEmi0yI6wsEIVJcCf+u0etMTqC+ICOFw1NYTUKR6+UzijrTH4wJgfxdcXhWCKECLGmACINUyH6csrEzbZtINIJa/INg64og3QWCMOQJijXHt3y2YAxY5hHHtZyU8X3aAry7JsHz+QWXPcZo/3CFICVV1bwMkUYDf53H+tv9v/yNe/qTIMoRqSrVqQvzYqiJD102IqhATOjLgdslAOAhyuWvkEBAA0zQRCkfgcqlJ50xUtA12c5uInQgoxSIi8VksY6yCwwRULfxUOlujBOfBNC2EIxoUWWrUm3SjQhbIIoSKowgHdXjT3VA9NatOaQwIds2/bpjwp3nqzT7DMMFga3DEsbUKFEiyZSdSKiK8/tg5a3laBkAUBYii4kSfTItAlh3pih/WtCzougFFkRup5wIDqVnVblF+yaDrm4Ow5eLnqhz4uVPQ8uBLBimA6cUx1bhKXovPKITSQQ+ILSfEsgzryxkoPSdi6+r2MGmYFg4XRkAWgQUDgDe9RsczDRPhcBQulwJZqtsMz07Wkp08BwCVZ1uW26eyhyAIsZu1CCn+kEQoigRVkWAYBqKa3oQ1EmtOvBV2qDiKkhAgyiJatfU3SWcAgB3B0Iwal9IeiWi08i6bjAGCyODL8CAa0u1kw3pMNBQEobSaQZGhxB6qIkNWJEQ1HabVSJUJjOHdQ39P6HtQG8qLFHFaDil1CDp37lzpjXv69OkJ2xERzjvvPDDG8P777ye8tnPnTuTl5cHj8aBNmza44447YBiJ6+7Lli3DySefDFVV0bVrV7z88ssVbJk7dy46d+4Ml8uFgQMH4ttvv014PRKJYPr06cjKyoLP58P48eOxb9++Wr1vFtwNIbAVzAgmpYlu5xaYiEb16jUD6gmBMRi6CVPTAV23IwRJYln22q9LjTsDdb+px9eQa5J/UBPs8K3oCCeZ1bTbbU7YjYgslBSEoIUicLsYVLcSkwJugs5ADMM0IUl1zY8pxTQtmJYFWa78mIwxx1FiAkMkGIXVwOWDzncu5uw2WrkiE2H5OuP9LRWTA4GKOQUAryo4mkipQ7Bq1Srs3bvXeSxZsgQAMHHixITtnnzyyUpvYKZpIi8vD5qmYcWKFXjllVfw8ssv44EHHnC22b59O/Ly8jB8+HCsXbsWt956K6ZNm4aPP/7Y2Wb+/Pm47bbbMGvWLKxZswYnnngiRo0ahf379zvbzJw5E//973/x1ltv4fPPP8eePXtw0UUX1ep9W/6uIMkNVrQZrGQHmBmt1DGIz+40XYem2evoSXcLrCFllyUYY2ACgxCfK9eg5l/TdHsGXq8CLQTLJJhmLHGwgXQEGGMtogIh3pGwpDCESEkULp+KjGxflQNiU6S+owOKUr0Ohq1qKMDlUWDoBgr3BxreKYCtt+FSZRi64SQLNziiCko7rtpNutz6NbZc/FyCHgGn5cOoCaVY33rrrVi4cCE2b97s/HjXrl2LMWPG4LvvvkO7du3w3nvvYezYsQCAxYsXY8yYMdizZw/atm0LAHj22Wdx11134cCBA1AUBXfddRcWLVqEH3/80TnPpZdeisLCQnz00UcAgIEDB2LAgAGYM2cOADsbuVOnTpgxYwbuvvtuFBUVITs7G//5z38wYcIEAMDGjRvRs2dPrFy5EoMGVfSqKyMQCCA9PR27d2yBP80HWFEIoXxAKwS5WoPcbQFBQnwB07QsRKMaJEmKJb013Fojkd2NUIjNXIoCEaR7RMhbf4R1XC+Q6kriGIRAcQher8tZ768P7DX+KOR4YyQGp8VzfRPV7GvQGJGYhoDI7khYXFACWZWdJkSCEQQr2QEro2ed+1I0JESEYCgCRZagKHKdj2eaFkqCIaT5vEl/X8gilBSFwBiDJ83VKHoMFhGiUR2iKMQUPRvYMSXCRVk3V3i6siqD6nIIAOCsdr2wDAtQVFQEv9/fQAZzGoMmc2fQNA3z5s3DNddc4/wYQqEQJk2ahLlz5yInJ6fCPitXrkSfPn0cZwAARo0ahUAggJ9++snZ5uyzz07Yb9SoUVi5cqVz3tWrVydsIwgCzj77bGeb1atXQ9f1hG169OiB3NxcZ5sawxggumD5jgGldwMzwxAO/wgW3g+QHbI2DBOyJDmh94a8STAGu4bassAYkJHughBvo5ykz6jphr1GL9Tv18qyLMiyZCvKxVTlGsIZaM7EHYGSwhB0zYA/Kw1pmWXaE9djQ60Ghdmy2no9LNvESxddqgpWg+8LE+ycAtWt2NezHrUKqkJgDC5VhmlaTgfFBqWSe0nZ5YKy6oRVEX/9vU3r69c2TspoMg7B+++/j8LCQlx99dXOczNnzsRpp52GCy+8sNJ98vPzE5wBAM7f+fn51W4TCAQQDodx8OBBmKZZ6TZlj6EoCjIyMqrcpjKi0SgCgUDCowKMgSQPrLSuIH8XsGgBhMMbgOhhmKYBUUy+aVFdEQTmdISzM63jDsGRB5N4qZgiy2iIfoWNNvxXomtPRLCMKMxoqMlpFsRFrMIlERQdCECUBHh8LkiKWM6JtGKfZxN3pIig60adIzRE9lIBYCsI1vRdM8YgKSIUl4zC/UWN4hSwuFMQE2Rq6PNVpk9QvuwwWaeA0zJoMg7Biy++iPPOOw/t27cHAHzwwQf47LPP8OSTT6bWsDrwpz/9Cenp6c6jU6dOVW/MGEj2w0rvDvK2B0p2Qo3sgYDGS3CLl1s5Yj2MAZIMRCNH3Dc+ozNME4ZhwKwgDFRRKMh5VCMYVPam2FhjcQWZXCIEf/0eRT//D2TWvN1xQ4gfOa2JwxpCgTAAhoy26XD7qghxV9rBp+lhl+lZdVpyIrK/h1FNh8et1jqyxhiD6lGQ0SYdetSAodVu5l4TAay4U2BZFJNBbminYI7z7/LOQGUJhpUxrluferWJkzqahEOwY8cOLF26FNOmTXOe++yzz7B161ZkZGRAkiRIsfXj8ePHY9iwYQCAnJycCpn+8b/jSwxVbeP3++F2u9G6dWuIoljpNmWPoWkaCgsLq9ymMu655x4UFRU5j127dgEA9OqSlZgAUjOBVj0hCyaEos1g5pEH5Pognvms6fFBj4HSM4GCfaBqEvmICNGoBo/HBTV2M9M0HVHnYcQesb+jOqKahmhUQySqIRIpVR2s7BGJanbJZSNRXrHRigYR3rsJ0YO/wggW1OxYVP83drsjISFwqBjBwjAUlwy3Tz2C5LBVaZi4qRFvzR0MhavsZVEdRDENjFAEHrcLQh2Xr2xVQwkur4pgUQjBwppHiQiEiKnV6JzxSEFl0t31S6wUcetNCc/G+xlsfXKQ0+mQVxu0fJqEQ/DSSy+hTZs2yMvLc567++67sW7dOqxdu9Z5AMDf/vY3vPTSSwCAwYMHY/369QnVAEuWLIHf70evXr2cbT799NOE8y1ZsgSDBw8GACiKgv79+ydsY1kWPv30U2eb/v37Q5blhG1++eUX7Ny509mmMlRVhd/vT3gAwM7firDvQIkjbWqYVsWyI0GxqxEUP1jhL2BaoFGmyLJkt0UGYEcLMlpDCJeAaVU7JXHbZUmEKAhQFMnuFOc85NhDcTrIxf/vdqlwu1S4VBlul1LpQ1XkRsv+FwRWobxRUD3IOmUcsodcAcmbmfSxbGfAdCo36kq8NXGkJIpISQSqR0WrtqUdCas9BxGayM+9WhgYPG4VqqIgGIrAsqwafe0ty0IwFIHbrUJKst32EW1izNYqaOWFFtERqaFWAQODKtY0QZJBVRQ7p6Chqw+YCPIdU+HpUoGi6xMaG3HHoOWS8lRqy7Lw0ksvYfLkyU4UALBn5ZXNvnNzc3HssccCAEaOHIlevXrhyiuvxKOPPor8/Hzcd999mD59OlRVBQDccMMNmDNnDu68805cc801+Oyzz/Dmm29i0aJFzjFvu+02TJ48GaeccgpOPfVUPPnkkwgGg5gyZQoAID09HVOnTsVtt92GzMxM+P1+zJgxA4MHD066wqAsGgF79xcjEjUguVVEIjoEw0Bux1aQpNI7GIHBlFuBomFg/3rAfxxIcsMJ/cbudsxpWsPABBGC7KpTmJQJtlqhKDKQrABprSAUHIDV7phK19ejUS0hI7zm5z7CYBZ/n43gEwiCADM2o4/bxAQRojutxseKz1YrE8Sp+bEIhmYgcKgEkiLBl+GtmeQwxSWo62RGw8Ps77MsiyBSUBIMw6UqSbX5Ni0LwVC4XgSxKpjFGERJQEYbvy39XByBy6smVYFQViY7+fMBcacgqukA2XLdDVZlJHnx3m8PoHj/Nlx10jzn+bLLCLzbYcsn5Q7B0qVLsXPnTlxzzTU13lcURSxcuBA33ngjBg8eDK/Xi8mTJ+PBBx90tjn22GOxaNEizJw5E0899RQ6duyIF154AaNGjXK2ueSSS3DgwAE88MADyM/PR79+/fDRRx8lJBr+7W9/gyAIGD9+PKLRKEaNGoWnn366Vu85PU2FS1SQ5lOhuGRkpSk4eCiIw8VRZLcqIwJEBL14PxQmgLnbgIwQYIRLXy7/LwIMy4KU3gGi4qmVbYCd8WyRBYHsELSVlQNhxy9Amw6AlPiVsSwLpmnB4669E3JE6mmGnQyCwGI5DXV3QOJORV0qIuLiQlrYbgzly/BCcVdfU18ZzAiBxDLOZBMn3k5YFAVEoho0TYfLpcRm/RXfg2URgsGIrQQo168zUNYmCHZeQXFBEIX7A0jPToNYjyJKieez/+9SZWe5TT2CnkJdTkauNqA0wrx1k3FF31eqbGTEEwlbLk1Kh6ClE9ch2PXrZvj99owz/uMuDusoCurokOUuFQmyTGgFO+BxqYhGI9ifvxsulwdujxeKokLXNWhaNCbJK8GXlg4tGgF520By1XxGG8c0LUQ1e9YvCgIYCOLWn2C1agPKKnWSiIBwOAImMLu0q4HGGk3TnbXlhobIzn+wGx7VbUZm5w4AilJzu4nsJjjhYBShQAieNDdcPhcYq0UEhghCwTqQvwtI9tXYllQT7+ERjtjfdbdbTShtJSKUBMOQJAkutYEGzHL2gIBgIAzGAJfP5UiNN+Q5Nd2AZVHMKWgYTZLCogCglyCT7cfY4/9Z6TblexgYpHMdghZC019UbIHE13tlWYWieiBKMgQQ9IideCSIEkRJgSDaAwkTFbhbdYDsy0YoHMK671cgEglhx7Zf8NMP32Lrph/x265tME0DgqRCUjwQa7xmWYog2KFKXTcQjeogMFBWDoRD+4AyyYVEdtKT2+WGJCsQpfq7GcezzZP1VwVBBCuXQGbPzmsm8mJ/LjIMw6qTxjxRPEJQ0/1ieSWaiVBJBJZFyO6Yg/TsLEiyDFlxQ1E9zncjKSwNIDO23NT8iDuDaT4PRFFEKBRxPpd4eWE8Ea8xIklxJU9vuhuyKqOkIAg9oje41LEiS5BEEZGoFku4rP/WyqIgwGQqwJqPqiWn/kj5ksHRiiSrcHn8OHDgALKzsxEMRtA2OxNpGZlgZZTkPL5WEEQJgUAA7boNhBk6hIIDe2CaJpggQJYVMDC4fZlwt+kGyV3aiIiIoEVD0CLBGtlmD6R2B8SopkM3TAhpGWB7d4BpEZDLYw/YJtC2XUfIspKwv2FoINOEKMmwLBORUDGohsI4JlkI6mH4FW/C86KkQHV5AQZokRAs04AnrZVzzXQtgkgoAElxwe3xO9chGi6GXk1iZFlsh8h+73aTnRqZHoNibZqr9rmZIMDl9kMQBOh6FNGwnWgaLAxBj+pIa+WDNyMdYBKKi4uRnZ0NTdNw+PBhtGnTBiWBg0klmjIzArX9KRDUDBiGjmi4OPl3QWV0KVJMfNAv1nUnx8WyLEQ1HT6vu9FtjFcgWIaMwKES+LPSILsabp2fMQZJEiCIMnTdgBE17Qos0daXqJ8EStgrkIKI9/Jng5R0XJRp95Z5t2Cu829Oy4RHCFKE6vZhwYIFeOCBB8AYQ3qrLPj9Xvz1r4/hpJNOQvv27TFkyBC8/MqrAOy+D9deey18WR3RZ8BweL1pyO3cFT16n4xufU5F90Hn4+fNOzBp0iTk5uaid+/e+Mtf/gKCCFdsYGR2n1UIolTpDNNOnJIhxHoXhMIagqGoPdsVZQhZ7SAapSWJ6ZnZWLv2B5x77rk45phj0L17d1x66aUgYpBVN/710ssoOFwE1e1DPHEwnrRoRxPsr58giAl/A4DIBHhltx0tkUuT8lxuH775dhWWL18Bl8cPSXGhpCSIIUOG4Pe//z1kxQXGBKguL958800MGTIES5cuhSSrsRm7fUNlTEisD2cMhNJrIwhCTDGv8rKvuM1CuT4PTBAhljk+Y/GbtVDh+iqKGwcPFeDlV16F6vKCLBHh4ghkVUFG23SoXhcU1Y2VK1fi4osvBgCsW7cOeXl59mCkuMASzs8qRkkEAbIsI0pu/GPOXCiqG5JSKkPNmGDbW+F92HZbzH44702SY9+d1DkIgiDAjFW2RKJ22+pUKVcyxqB6VaRnp8HQjAYXMGKMQRQEu3OibCsbRqI6TLN+KhEYE2ABICY4iqnvFsx1RIzeLZjLcwhaMDyHoBGJ5xAc3L8Xma3bol+/fnjnnXfQpUsXEBFGjRoFn8+H2bNno1u3bvj555/x+OOP4+WXXwYR4ZRTTsFrr72GYztmo3j/tlguIcHfrhs2bduN008/HY8++igmT56MPXv24He/+x2ICAsWLKh01kJEiIQCMHQNLo8PslIaUrYsC8WBw/D60hOqPwCALAuaHgUgoEOHDpgzZw7Gjx+PUCiEDz/8EOPHj4eiKOjduzdef/119OmTvHCJrkUQCRdDkhS43GkJA5yt3CjhkUceQTAYxOzZswEAhYWFaNWqFbp06YJvvvkGaWk+KIqKoUOHYseOHXj00Udx2WWXVSj/Mw0DRUUF8KWlQ1HUCraEgwEEAoVwu0rFbURRhupJg1jGoSLLQjRSUiGUHwmHQJYOl8df4frH38uaNWswdepUfP/991Vek2AwiEOHDiE3NxffffcdbrjhBnz33Xdl3ocOTQvb14sxmIaOSLgYHl+G42Tt378fJ5xwAg4cOGDbTATT1CFJpdEd0zQQDRfD5fFXcHQqIxIqhq6Fj7hdfROOaAARFEVGUaAE6X4fRDG1c5u4NkRxQQlESYQvw1MjueS6nNe0bLljxgApVvpb2yhFOBxBoLgEOcohwJUFcrWudLuykQKeQ9By4BGCFOD2eLF69WpIkoSuXbvCsggrV67EunXr8O9//xvHd+0CPRpCzx7dHM0FxhgmTJiAl156CYo3E0qrTlAyO0HN7AzFk4Enn3wSl19+Oa699lqQHkTHDu3w8ssv4/PPP3caO02ZMgUvvvgiBg0ahJNPPhmvv/463N50eP2ZKAlGMGPGDHTv3h1Dhw7F0qVLkZ6RBUmSMGbMGLzxxhs4+eSTcdJJJ2HhokVQVTd2796NkpISjB8/HrIsIz09HZdddhkURcHcuXOxfft2TJ06FSNGjMD69evx6quv4rHHHsMll1yCY489FoFAAJ9//jlGjhyJHj164KqrrkJhUTF8/tZwe9Px1ttv47TTTkPv3r1x2223QdN0bNiwAS+++CJee+01jBgxAn//+9+d63rJJZfgjTfegKKo2LRpE6LRqKNHAQCff/45zjzzTHTv3h3Dhw/HVytWIDOrDRRFxcyZM/HPf/4TQ4cOxYknnoinn34abq8fiuKCYZh2PTwYPGmt8NVXKzB69Gh07doVZ5xxBrZu2waXx49vV32Hs88+G7169cLUqVMRCkfg9qY7XTbvu+8+dOvWDeeddx5++20PAOCOO+7A5s2bMWLECFx++eUAgCuuuAKvvvoqTj31VEybNg2bNm1KUOwkItx7773o2bMn8vLysHPXbrg9fmzcuBHTp0+HKMlQVA/27duPSZMmAQBuv/12FBYWYsSIERg1ahQYYzh8uAiTJ09Gr169MHLkSHz//Vp7iUoQMXr0aMybNw/9+vXD//3f/2HLli0YM2YMevbsiX79+tnX2VV5JUt5pUnLIpimBcMwY3kpGnTdqLHGQBxRtHtuRDW93jQe6kpZrQJDMxAJRR0Z8IY+rySKcKmyHdHSTUSiWq21CwRBgGVZdg4BmUA5ka54B1agNHIwb8fj9fFWOE0AnkOQAhTFhWXLlmHgwIFO4tnixYtxxhlnwOfzoaTooJ2wp4XtGScBisuDQYMG4Z577omFnhVYpgExNsP76KOP8Nxzz8GIFMHYtxqmkoZWHQdi0KBBWLx4Mfr06YNvv/0We/bswZIlS5Cfn48zzzwTvXv3Rt++fXHttdeiV69eWL9+PbZt24Zzzz0XX3zxBXJzc/HFF1+gY8eO+PLLL7FmzRqMGzcOe/fuxTHHHIPjjz8ew4cPdxQk+/XrB8YYrrvuOsydOxdPP/00evfuDUVR8N577+Ef//gHFi5ciN69e+PAgQO44oor8O677+Kkk07CU089hWuvvRbvv/8+li9fjj/84Q9YuHAhOnTogFtuuQUPPfQQHn74YVx11VUIhUJ48MEHIYoigkE7R2Ly5Mm4/PLLMX36dLzyyiu4+uqr8cEHHzjXvW3btnjjjTeQk5ODb775BhdffDE2btwIj8eD77//HitWrMCHH36IcDiM4cOHo0ePHhg65DQcPJAPSZKQ5k/Djh07MH78eLzxxhsYPnw4du3aBZfLhYMHD2LMmDGYP38+hg4dirvuugvTpk3Du+++i8OHD2Pu3Ll4/fXXcf/992PWrFm4//778corr+CRRx7B9ddfjw8//NAZ2L7++msEAgEsWrQILpcL3333XUIEYe3atbj22muxfv16PP/885g4cSJWrVqFQCCA1atX2xsxhkgk4jTfmj17Nj788EN8+OGHznEmT56Mvn374vvvv8dnn32G0aNHY9OmTcjIyMDnn3+OnJwcLFu2DJIk4ZprrsGYMWNw/fXXIxgM2j08EmSlYwJbugHDNB0NBl3XoWl22aBlWbDIgiiKsCwTDAwul4p0vx8ejzvpWb4oCHYbbBgQ60l8qD6IaxWkZ6dBi+gIxbQKRKnh5112foEIUbQHdD3mfMmynWOQrNNkC3NZdtdVq6JMt6aZCBRH8PbBOZXszWnu8AhBChBEEbt27UJOTg4M016nCwQCyMjIiM2qShPwLNOAZRkgy0JOTo4jfxwPBcd/6M7+TIGV0QuWYivqZWRkJDRVmjlzJnxeL44//nhMmjQJ7733HoqLi/HBBx/gzDPPxIoVK5Cfn4/evXvjs88+c/a755574PV6cfrpp8Pj8WDPnj2QJAkrVqzAZZddhi+++AJnnXUWTj/9dJSUlECWZQiCAFVV7USoWOh/3LhxGDhwILxer+MIhEIhLF++HP369cMnn3wC0zTx8ssv4+yzz8auXbuwcuVKDB48GIsWLYIQWxOXJAmqqiSsHXfr1g2KomDdunWYP38+LrvssoTr3r17d3z//ff4y1/+gsWLF0PXdWzZssV5/eabb0ZmZiY6dOiAa6+9Fu+88w5kRYUcK2dTVBXvvPMOxowZg7POOgvRSAly2majbdu2WLJkCQYMGICzzjoLkiTiwQcfxIIFCxCNRgEAvXv3xoQJE6AoCi6++GKsX293iFMUBYIgwOVyxZLDbO68805kZWYiLa1i+WibNm1w/fXXQxAYbrjhBuzatQs7duyo9junKHYehsvlgsvlQklJCT755BPMmjULsiTivPPOQ69evfC///3P2efee++FP80Hn8+HjIwMLF26FF9++SUURUHXrl1h6BrCkSj2HziEX3fsxq+/7kT+/v0oKipCIBBAcXExDEOH26Uiu3UrdOrUDl2OzcWxx3TEcZ1zkdupA3xeDwoKC/Hrjl3Yt/8QIlHtiNnzgsCgqjIikYiTytBUFj7jFQiqR4FlmijcXwSzoZUGy51fFEWoit0ZVNeNmJJo0gcAQCBBssWsyiFJAqKaCa0xOjJyGh0eIUgJBEVRoOs6RMFuTdutWze8++67zuzfNDQwQbSTzYgAEHRdh6IozjEAOD0GunXrhi1btmDwoIGAIEH0ZAMAtm7dmiAJnZWVBSNaAlHxonXr1ti7d68zuC9ZssTZrnfv3o4iJGA7FtFIGKrLDZfLBU2zb9xejxs33ngDpk+fjpKSEgwaNAivvvoqbrqpVBvdMg1YsTXpNm3a2LNDxrBnzx4cOHAAixcvdra95ZZboGka9uzZA1EUE16LJ9Y5V5FQYQ17ypQpmDp1Kk4++WRkZibKDM+cORM7dtiJl36/H6+//jqKi0sz7rOysuzrzgS0bt0aa9euBWPMCZoyJuDQoUNo27YtiCwYsaoFWXGhoKAA2dn2NdejYaSlpUGWZRQVFTnXDwDCJUGoquo4CmXR9QhESXauk65HIJgV1/IzMzPBGIMWCUN1+5CZmYmCgoLYNYlVBQBOaLc8pqnj8OHD8Pl8cLvdiISK4fKkITs7G4cOHXK2a9OmDTQtDElS8be//Q3PPvssHnzwQaxfvx5///vfMWHCBOzbdwCqqiA7OwtyTKDHbqPEIMmSIzld2QxVFEXIsh/p6X5EoxoCgWL8tmcvJFFCerofPq871u0zcV/GGAQmQBYkqLKCqEVQhEqaUqUIxhiIbBGpUHEEkZAGl0eBUIOZen3YIDLbcYpGdacS4Yj7gQG28ggEioLK7SMIDG6XhOLiMNQsX4M07uKkDu4QpADDMNCjRw989tlnEAQRejSMCRMm4Pbbb8d3332HU045xUk6+/XXX9G5c2cAwLZt29C9e3cApTd707RDsZdccgnmzJmDSZMmwetvDUEQsHz5cvz888+44IILnHN///33GDBgAABgzZo1GDZsGDp37gy3241p06aha9euVdpdPpPbMAznhk1E8Pl8yM3NtWdugOP0KGrpWnP8hmiZJvr37481a9bgT3/6U4UbZf/+/XH48GH8+c9/rmCHoigoLCy0Z9buNESihc5rF198MV5++WXccMMNFfZbtGgRPvzwQ3Tr1g3FxcUVGlp9//33GD16tHNtunXrBsuyYoMrgSwTvXv3xjPPPAOAwZuWCRbTOejRoweefvppEBFcnjSsX78eXq/XcRLiyOVEiuLXCABcZeSRqxs4tm3bhsLCQmRkZODw4cP47bffcNxxx2H//v3Yv38/iAiSrOKnn36q9DyiKKN9+/awLAtbtmxB165dYZom1qxZg9/97nflbCCIkgSvrOD3v/89fv/732Px4sW49957cckll6DzMbkgMms90DnVIy4VqqogK6sVgsEQigLFKCg4DLfbjXR/GlwuJVapYe8X//7LsoQSgyArTcMZiIsWxR12T5oKQzNRXBCE26dCcSkVxuWGdBJEQYAoCtB1E7Jc6lxWek4iCIzZThxjALGE10xNh25akJmFkK7behAAQuHGab7GaXi4Q5ACtEgYo0aNwkMPPeSsq7Zt2xbPP/88Ro8ejQkTJqBbt27YsGEDli9f7tzYly1bhtGjR8OyTJBV2hZZ18K45ZZb8Nlnn2HQoEG4/PLL8dtvv2HevHl46aWXnNkpADz33HMoKSnBnj17sGbNGrz44otQVRUPPvggzj33XNx0003w+XxYuXIlZsyYgZNPPrnU8HI3kV9//RXnn38+LrroIrRr1w6rV6/G6tWr8dxzzwGwG0vdfffdGDRoEKZOnZqwr65HMG7cOPz973/HxRdfjJEjR6KwsBAbN27Eiy++iJtuuglDhw7FjTfeiAEDBmD37t3QdR0PPfQQBg4ciCuvvBKKouC0007DkCFDnOP6/X4sX7680us+ePBg3HnnnRg9ejTeffddeL2JGgevv/56TPgmhAULFmDVqlUwdFsdz87kjmDixIl46qmncMkll2DkyJHYtm0bJk6ciBEjRqB169a49NJLcfrpp+Ppp5/Gww8/XPHGW86pOu6441BQUIBbb70VnTt3xq233lqp7WXx+/2YNGkSLrjgArz++uu47rrrkJGRgbS0NHi9XkyfPt2R7I6Tnp6OnJwcXHfddejYsSMeeOABPPDAAxg3bhxuuOEGfPrpp+jRo0fCtbQ/Jwsut4AbbrgBXbp0QXZ2Nt5++20Mi3UcZaz+2irHw91+fxrS0nzQNB2B4mLk7z8ASZLg9biR5vNCliUIYqycUtfgESUwoF7kpusK6QYi+YdAsXbgcYMorKFkPzlqkwCD4HNDzaxZVj4RIaqZUGSx8lJLiwDDBEU0IKoDBMiMIaLrsEQBTBTARBGyKjufGpEdxQvvzYfi98NVUIRoRAGZBhQ9AEEUET50EEYoDF3ToKb5IR48CNa2HSSXCjlQM50TTtOFlx02IkVFRcjIyMC2LRtxbJfuuOiiizB9+nSccfpQFAcKkdm6LQoKCvDee+9h//79OO6445CXlwefz4doNIo+ffrgm2++gSQAgaLENryZ2TlwuTz4+uuv8eWXXyI9PR3jx49H69atURwoRJo/AyeccAL+9a9/Yd26dTBNExMmTEBGehpChfvgz87FL7/8gkWLFsGyLPTr1w/Dhg2DJEl47733MGbMGIRDxfCnZ2Lx4sUYOnQofD4f1q9fjxUrVqCwsBAdO3bE+eefD5/XC12PQlZcWL58Ofbv34/hw4dj//79sCwL3bodjwP5v6F1m3YQRAmffPIJfvjhB2RlZWHEiBE4/vjjYVkWIpEIPvjgA2zbtg0dOnTAyJEj0a5dOwDAxo0bsWHDBhxzzDHo3bs3FixYgIkTJ+LQgXwYur2c0bZ9Lr788kt07twZubm5iEajeP3113Hw4EFccMEF2L17N/r27YvWrVtj2LBhuPvuu5Gfn49gMIixY8ciJ6ct9ufbjoiu61AVFdlt24MJdg+NjRs34thjj8WFF14Ij8cDTdPw/vvvY9euXRg6dCgGDhwIy7Jw8OBB/Pzzzxg2bBiKiw7DgoCvv/7a6adx4MABfPvtt2CMYfTo0fjwww9x+umnwzSikEQJoYjm7F9QUIA1a9agQ4cOWLhwIbp3747zzz8fwZIiqKoHRYEA5s+fD0VRMHbsWHz77bfOklFRURFWrFiBUCiE8ePHg4jwzTff4PPPP0fXrl1x4YUXQhBsdcd3333Xvka7dqDzsV2wbt06LF++HMXFxejTpw/OPfdchEoCKCo8hIaEiGCRhWgkisKiACKRqJ1vIcvI8KeBSQJMzYQgJkpNm7GZuhjrTWERILL4ckYNZuXl745H2E0vCUHfcxCSJIMsAoGcCFr8gPH8H4NMuI9tD0FMXhXQsgj79hejdWuvvURDBJgWKBQBHS6BdaAIdCgAKgkBTABzKYAsOoM+EQBFASkipGDEvg5MQFDUEDXt5TdBlKEoKphhQg4zQJJQFDkEweuCEQohLac99OIS+Fx+MM1EcSiEvjddhcLCQqSnp1f/BjhNGu4QNCK7d+9Gp06dANgtmDt27Ijnn38eTzzxBPr06YNgMIhp06bh3HPPRXp6Ovbs2YOPPvoIt9xyC1avXo1t27bh5ptvRocOHbBnz56EYzPGcP7552PatGno0aMHQqEQlixZgqeffhpt27bFypUrccIJJ2D+/Pno3bs3fvjhByxbtgwPPvggCgoKMHDgQKdJlCiK+Pnnn7FgwQJ06NABp512Gn744QfMmjUL1157LUaPHo3NmzdjxYoVGDlyJPr16we/34+9e/fi888/x1NPPYWCggJMmTIFI0aMQGZmJtq1a4fi4mLk5+fj8ccfx8qVKyHLMqZMmYJLL73UmSmvWrUKTz/9NLZv344bb7wR48aNQ7t27bB3714sX74cf//739G+fXtcffXV6NSpE0RRRHZ2Ng4cOIBVq1bhD3/4A8xYouall16KK664AgUFBfjLX/6CCy+8EOPGjUNGRga6du2KHTt2YOvWrRgxYgSGDRuGWbNmYfjw4fjxxx+xfPlyPPjgg9i7d2/CdVZVFdOmTcNll12Gjh074rfffsOiRYvwj3/8A1OmTMFll12GVq1a4eeff8acOXOwadMmzJo1C+3bt8frr7+ODz/8EH/84x/RtWtXfPDBB1iwYAFmzJiBnj17QlVVdO/eHb/88gs2b96MBx54AF6vF3/4wx/Qvn17fPrppzj++OORl5eHTp06YfPmzfjtt9/w6quv4qWXXkJmZib++Mc/4owzzoDf70fnzp3x+eefY8GCBXj55ZcxY8YM9OvXDx6P7TiuWrUKN9xwA3r06IGdO3diwYIFePrpp/F///d/OO2007B27VrMmjUL/fv3x3XXXYeTTz4Z6enp2LRpE+bNm4dXX32Vrx9zHHbt2oWOHTum2gxOHeAOQSNiWRb27NmDtLQ0iKIIn8/nPB8MBqu8ubrdbsiynWwWiUSgaVqNzisIAnw+H+68807MmDEDbdq0qTSprTICgQA6deqEXbt2NUvRkSPZzxhDWloaHn74YVx00UXo2rWrkwPRFGjp17+pw+0/MkSE4uJitG/f3qkm4jRPuEPAqZa4umJzVSHj9qcWbn9qae72cxoX7s5xOBwOh8PhDgGHw+FwOBzuEHCOgKqqmDVrFlS1YvOf5gC3P7Vw+1NLc7ef07jwHAIOh8PhcDg8QsDhcDgcDoc7BBwOh8PhcMAdAg6Hw+FwOOAOAYfD4XA4HHCHgMPhcDgcDrhDcNTT3ItMuP2poznbDnD7OZzycIfgKEbXdezbt8/5u7ndYAzDQFFRUarNqDXN2f7mbDvQ/O1v7r9dTtOEOwRHKY8//ji6d++O0aNH49JLL8WaNWuSbwnbBHjsscdw4oknYvTo0bjzzjuxdetWAM3nxtic7W/OtgPN3/7m/tvlNF24MNFRyGOPPYa5c+fir3/9K/Lz8/HBBx9g3bp1+Oijj9CvX79Um3dE7rvvPvz73//Gn/70J/z0009YunQpAoEAvvrqK2RmZqbavCPSnO1vzrYDzd/+5v7b5TRxiHPUYJom6bpO5513Hs2YMSPhtb59+9IFF1xAmzdvTpF1R8ayLAoEAjR48GD685//7Dy/a9cuys3NpSlTplBRUVEKLaye5mx/c7adqPnb39x/u5zmAV8yOIoQBAGWZWH9+vU46aSTAACRSAQA8Oyzz2LlypX45JNPYBhGKs2sEsYYBEHA2rVrcfLJJwOw14I7duyIZ599Fq+88gqWL1+eYiurpjnb35xtB5q//c39t8tpHvAlgxbMSy+9hJUrV+LEE0/EBRdcgE6dOgEAJk6ciIMHD+J///sfAMCyLAiCgCuuuAKbNm3C0qVLm0Tv9H//+9/48ccf0b9/f5x99tnIzMxEOBzGmDFj0KFDB7z66qsASu0/55xzIEkSFi9e7DzH7T/6bG8J9jf33y6nmZLqEAWn/jl06BDl5eVR+/btadKkSXTcccdR586dafHixURENG/ePOrYsSN9+OGHREQUDoeJiGjz5s3EGKP169enzHYior1799KIESOoQ4cONGbMGOrQoQP169ePNm3aREREDz30EPXv359WrFhBRETRaJSIiJYsWUKSJNHu3btTZjtR87a/OdtO1Pztb+6/XU7zhi8ZtEC+++47bN68GStXrsRrr72GrVu3omvXrnjsscfw7bff4txzz8Upp5yC2bNnAwBcLhcAQBRFdOjQAT/99FMqzccXX3yB/Px8rF27Fu+//z7Wrl2LcDiMu+++G7t27cK4cePg8/nw7LPPAgAURQEAeDwetGvXzskaTxXN2f7mbDvQ/O1v7r9dTvOGOwQtCIqt/vz0009QVRVer9d57U9/+hMsy8LcuXORkZGB6667Dr/++ivuuOMOmKYJANi8eTPcbjeGDBmSMvuJCF999RVycnLg8/kgCAJat26NZ555Bhs2bMC//vUvnHDCCZgwYQJWrVqFxx9/3Nn/t99+g9frRe/evbn9R5HtLcV+oPn+djktAynVBnDqxldffQW/349jjjnGWTu0LAvBYBCAfaNhjOGUU07Beeedh7fffhuffPIJzjvvPDz22GO45ppr8MUXX6B37954++23ccUVVyA7O9vZr6H57rvvkJOTgzZt2jizNVVVkZ+fD5fLBdM0IYoihg8fjrPOOgsff/wxJkyYgKuvvhrBYBB33HEHli1bhtzcXPznP//BddddB7/fz+1v4ba3BPub+2+X0wJp7DUKTv2wadMmGjBgALVp04aOO+44GjBgAL3//vtERLRv3z5yuVz0yiuvEBGRrutERLRz507q27cvPfzww2SaJhERffrpp/TYY4/R5MmTaeHChY1m/4YNG6h///7Utm1b6tq1K40cOZJWr15NRESrV68mURRpyZIlREQUiUSIiGjLli2UlZVFr732mnOcN998k+655x4aO3Ys/fe//+X2t3DbW4L9zf23y2m5cIegGaLrOk2dOpUmTJhAO3bsoDVr1tD5559Pffv2pQ8++ICIiK699lrKzc2lUChERHYdNhHRxIkTKS8vL2W2ExEVFxfTuHHj6KqrrqJNmzbRsmXLqE+fPjRixAhauXIlERFdcMEF1KdPH2cfwzCIiGj48OE0ZcqUlNgdpznb35xtJ2r+9jf33y6nZcMdgmZE/Mawb98+SktLo1dffdV57ZdffqGrrrqKevXqRUS24Erbtm1p+vTpTiayZVk0duxYuv766xvfeCq1f8uWLeTz+WjRokXOaytXrqQxY8bQmDFjiIjoyy+/JL/fT4888oizTTAYpNNOO40eeOCBxjU8RnO2vznbTtRy7G+uv13O0QHPIWgGFBYWIiMjw1kXLCkpQffu3aHrurNNt27dMHnyZHzxxReYPXs2/u///g/PPPMMrrzyShw+fBiXXHIJduzYgZUrV+LFF19sVPtDoRA8Ho9j//79+9G5c2cnQxoABg0ahHHjxuGJJ57AK6+8gsmTJ+ORRx7BLbfcgqKiIuTl5WHdunXYuXMnzj77bG7/UWB7S7C/uf92OUcZqfZIOFWzceNGOuecc2j48OF09dVX0yeffEJERKFQiPr370+33nprgtxqYWEh3X777TRgwAA6ePAgERG99tprdP7551O/fv3ouOOOo/nz5zea/Rs2bKC8vDwaN24c3XbbbfTTTz8RkR32zcrKor/85S/OzImI6LfffqNJkybRxIkTqbi4mIiIHn30URo6dCj16NGDcnNz6a233uL2t3DbW4L9zf23yzk64Q5BE2X16tXUrl07mjJlCv3zn/+kwYMHU8eOHentt98mIqLHHnuMMjMzHYGVOPPmzaMTTzzRuYHG2b59e2OZTkREn3/+OWVlZdGVV15Js2fPps6dO9OAAQPo008/JSKi3//+99SpUyfatWtXwn6zZ8+mk046iQ4cOOA8Z1kW/fjjj9z+o8D2lmB/c//tco5euEPQxIjPembPnk1nnHGGk1i0f/9+uummmygzM5P27dtHRERdunShSZMm0bZt25z9//e//xFjjLZs2UJE5GQkNzYzZ86ksWPHOu/n559/pokTJ9Jxxx1HRERFRUWUnZ1Nt956KwUCAWe/9957j1wul3NT5/YfXbYTNX/7m/tvl3P0woWJmghbt26FruvOWuOmTZvAGIPb7QYAZGdn48EHH0RmZibuvvtuAMCcOXOwYsUK/PWvf8X27duhaRoWL16M888/H+3atQOARtNk379/f0I/+S1btkBRFOf99OzZE/fccw8CgQBmzZoFv9+Pxx9/HM8//zyee+455Ofng4jw4YcfYsKECcjKympU++O2W5bVLO0vS3O1Pf4ZNFf74zS33y6H45BCZ4RDdn1xXl4enXrqqfTRRx85z//1r3+lE0880dFgj88WXnvtNRJF0QmXPvfcc9S/f3/q2LEjnXDCCdS6detGranesWMHnXrqqXTZZZfR4cOHicgurZo+fTrl5eXRb7/95myr6zrNnj2b0tLSnHXe++67j3r27EndunWjE088kdq0aeOstzY0lmXRoUOH6KyzzqL77rvPea652L9792569NFH6Y033nDq8CORSLOwnYhoz5499Prrr9OKFSvo0KFDRGT3Fmgu9ufn5zsth+OljUTN57fL4ZSHOwQpIB4KXbJkCbVv357Gjx9Pa9euTWis8sEHH9DAgQPpiSeeSNhv37591Lt3b2cAI7JLmT766CN6+eWXG+9NENGtt95KkiTRRRdd5IRC4+/thRdeoD59+tC7776bsM/q1aupV69eNHfuXCIi0jSNNm/eTK+++io988wzjWo/EdGiRYuIMUaqqiaEb//5z39S7969m6z9d9xxB7ndbho1ahQdf/zxdOyxx9L3339PRETPPvtsk7/2d9xxB/l8Pho2bBh5PB4aP368M4A2B/sfeeQREgSBzjjjDOe5+MD/3//+t8n/djmcyuAOQQqZMmUK3Xbbbc7f8UE1zsSJE2nUqFH0zTffOM+FQiE6/fTT6f777yfLslKyzlhUVEStWrWi1q1b05dffuk8H1dVi3PKKafQpEmTnFkUEdHhw4epW7du9K9//YuIUr9OOmvWLLrpppvovPPOo1GjRiW81hTtP3z4MF144YU0ZMgQ59p///33dNppp9Fdd93VpG0nIiooKKCpU6fS4MGD6YsvvqBIJEJvvvkmnXXWWXTnnXc2efuj0SjdddddNGjQILryyiupb9++jj1lv/8XX3xxk/ztcjjVwRepUsSePXuwfv16jBs3Dj/88APOOuss5OXlYciQIXj++ecBADNnzkQwGMSjjz7q7GdZFgoKCnDssceCMZaSdV6/349zzjkHxx13HIYMGYJVq1Zh6tSpmDFjBp566ils2LABAHDnnXdi7dq1zvsBgGg0CsMw0KpVKwCpWyeNN4WRZRkZGRm444478Mknn2Dx4sXONg888ADWrFnTpOzPyMjAhRdeiEcffRRDhw4FAPTr1w+qqmLs2LHOdnfffXeTvPYHDx4EYwx33XUXTj/9dKiqiokTJ8Ln80HTNCeH4957722S9iuKgi5duuCaa67B/fffj1NPPRXPPPMMiouLIUkSNE0DANx0000Ih8NN6rfL4RyRVHskRwPxmUDZGURRURG5XC56++23aeLEiXT77bfT/PnzacaMGSTLsqNl/sYbb1CXLl2oT58+dP/999PQoUOpd+/eCTOnxrQ/vlZaWFhIsizTCSecQB07dqSrr76axo4dS927d6eePXs6+zz44IPUvXt3Ov300+kf//gHDRkyhE499VTas2dPSuwvT15eHs2bN4+IiCZNmkR9+/algoICev3114mI6M9//jN169YtZfZXZntcn5+I6MCBAzRmzBjKyMigkSNH0q233kolJSVERPTwww+n1Pay9muaRkS2jkDZMsD465MmTaKbbropYd+HH364SX134sthZWf2//3vf6l///50//33V3jttddeo65du6b0t8vh1ATuEDQwf/jDH2j06NEJz8VvGnl5eZSdnU3Dhg1LECmZNGkSnXrqqc5zW7Zsod/97nd0wQUX0IwZMygajabU/vjg9MQTT1C3bt3o22+/dW6Wa9asodzcXJoxYwYR2ZKxX3/9NU2aNImGDx9ON954ozM4pMp+otIksPHjx9PHH39MREQ//vgjuVwuYozRjBkzSNM0ikQiKbO/Ktvj5Ofn01lnnUV5eXm0cOFCeuyxx6hbt240duxYIrJD1E3p2pcVEiIq/R0YhkGdO3d2Gg/Fv9/RaLRJ2V8ZgUCA7rnnHurVqxf9/PPPREQJNqbyt8vh1BTuEDQQGzdupAsvvJCys7OJMeZol8cHU9M0ac6cOdSqVSu6+uqrE17bunVrQj1ynMa8GVZnf9kb+2effVbhuXvvvZf69u3rzFTjxHXZG4MjXf84Z5xxBv3000+0aNEiatOmDWVnZ5PH43EqJspmjzeW/cnaTlRRtGbhwoXk8Xho7969Cc83hWtf9lqW5ccff6Tc3Fz65ZdfqjxmU7C//PWPf+dXrFhBw4cPpyuvvNJ5rfxvtTF/uxxObeGLWA3E2rVr4fF48MILL2D69Om47777YFkWJEmCYRgQBAHnnHMOBg0ahI8//hgFBQWQJLu1xIYNG3D88ceDbIfNOaYsy03C/rIMHz4ckiSBMebYum7dOrRv3x6KoiTYX1Z/PpX2x23atWsXotEozjjjDFx66aWYOXMmli1bhtzcXPz+978HgIS+8o1lfzK2x+ncuTOA0hr+77//Hp06dYJpmk3u2ouiWMF+APjpp5+Qk5ODbt26AQAWL16MP//5zwnbNAX7y1//+Hdj0KBBuOCCC/Ddd99h4cKFmD9/Pq677jonTwVo3N8uh1NrUuWJtFTis4aioiJatWoVERGtWrWKunTp4mRRl51pfPHFF9ShQwcaPXo0vf766/Tjjz/SOeecQ1dccUWFEGtTsb+qmR4R0ddff02nnXZaQt/5xqSm9l922WU0c+bMhJLDZ555htLS0pza+Mairtf+hx9+oBEjRtBDDz3U8MZWQm3tv/zyy+muu+6iffv20dlnn02yLNPs2bMbz/AYtbE/vs8vv/xCZ555JjHGSFEUuvfeexvRcg6nfuAOQSNQUlJCf/nLXyg9PZ1+/fVXIkoMIX733Xc0bNgw6tWrF+Xk5NDll19OwWAwVeZWoDL7y94Yt23bRvPnz6dp06aRz+ejm2++uUmtlVZmfzwxr/yyBpG99t6YIerqONK13759O7311lt03XXXkcfjoeuuu67J2E50ZPsPHDhAubm51LlzZ5JlmcaPH5+QT5NqjmQ/kS2wNGXKFGKM0Y033ugIJ3E4zQ3uEDQAZWf28X9v3LiRhgwZQuPGjUvYNp5YFYlEaMeOHbRjx47GM7QKamI/kT2LmjJlCo0aNYrWrFnTaHZWRU3tb0rU1PY1a9bQTTfdRGPGjGmW1/7XX3+l3NxcGjp0aLO0n4jo5ZdfpjPOOIO+++67RrGRw2kouENQz1SW+BV/ft68eeT3++mzzz4jIrurW3kxolRTE/uXLVtGBQUFjgpbU6Cm13///v2NaV611ObaE5HTLjfV1NT+wsJCCgaD9MMPPzSmmVVS0+9Ofn4+EVWsnuBwmivcIagnyt5MdF2n2267rUK98Z49e2jSpEl0/PHH08iRI4kx5qxVppra2v/tt982tqmV0pyv/9F67Zu7/U3hu8Ph1Ce8yqCOxLO549n3Tz75JLKysrBgwYKEDPX4tgcOHMCWLVuQmZmJPXv24JRTTkmF2Qk21cX+AQMGpMLsBJua6/U/2q99c7c/1b9dDqfeSaU30twpm1y0dOlS6tKlC7Vt25ZeeOGFCuHHDRs2UP/+/alLly60cuXKxja1Urj9qaM5207E7edwWiLcIagjO3fupHPPPZdkWabbb7+9ylK1YDBI//vf/xrXuCTg9qeO5mw7Ebefw2lpcIegDrz11lskSRLl5eXRhg0bUm1OjeH2p47mbDsRt5/DaYkwokqkwzhJsW3bNuzbtw+DBw9OtSm1gtufOpqz7QC3n8NpiXCHgMPhcDgcDniVAYfD4XA4HO4QcDgcDofD4Q4Bh8PhcDgccIeAw+FwOBwOuEPA4XA4HA4H3CHgcDgcDocD7hBwOBwOh8MBdwg4HA6Hw+GAOwQcDofD4XDAHQIOh8PhcDjgDgGH0yL59ddfwRjD2rVrG+T4jDG8//77DXJsDoeTGrhDwOE0AFdffTXGjh2bsvN36tQJe/fuRe/evQEAy5YtA2MMhYWFKbOJw+E0baRUG8DhcOofURSRk5OTajM4HE4zgkcIOJxG5vPPP8epp54KVVXRrl073H333TAMw3l92LBhuOWWW3DnnXciMzMTOTk5+MMf/pBwjI0bN2Lo0KFwuVzo1asXli5dmhDGL7tk8Ouvv2L48OEAgFatWoExhquvvhoA0LlzZzz55JMJx+7Xr1/C+TZv3owzzjjDOdeSJUsqvKddu3bh4osvRkZGBjIzM3HhhRfi119/reul4nA4jQh3CDicRuS3337D6NGjMWDAAPzwww945pln8OKLL+Lhhx9O2O6VV16B1+vFN998g0cffRQPPvigMxCbpomxY8fC4/Hgm2++wfPPP4977723ynN26tQJ77zzDgDgl19+wd69e/HUU08lZa9lWbjooougKAq++eYbPPvss7jrrrsSttF1HaNGjUJaWhq+/PJLfPXVV/D5fDj33HOhaVpNLg+Hw0khfMmAw2lEnn76aXTq1Alz5swBYww9evTAnj17cNddd+GBBx6AINg+et++fTFr1iwAwPHHH485c+bg008/xTnnnIMlS5Zg69atWLZsmbMs8Mgjj+Ccc86p9JyiKCIzMxMA0KZNG2RkZCRt79KlS7Fx40Z8/PHHaN++PQBg9uzZOO+885xt5s+fD8uy8MILL4AxBgB46aWXkJGRgWXLlmHkyJE1u0gcDiclcIeAw2lENmzYgMGDBzsDJwAMGTIEJSUl2L17N3JzcwHYDkFZ2rVrh/379wOwZ/mdOnVKyBE49dRTG8zeTp06Oc4AAAwePDhhmx9++AFbtmxBWlpawvORSARbt25tELs4HE79wx0CDqcJIstywt+MMViWVe/nEQQBRJTwnK7rNTpGSUkJ+vfvj9dee63Ca9nZ2XWyj8PhNB7cIeBwGpGePXvinXfeARE5UYKvvvoKaWlp6NixY1LH6N69O3bt2oV9+/ahbdu2AIBVq1ZVu4+iKADs/IOyZGdnY+/evc7fgUAA27dvT7B3165d2Lt3L9q1awcA+PrrrxOOcfLJJ2P+/Plo06YN/H5/Uu+Bw+E0PXhSIYfTQBQVFWHt2rUJj+uuuw67du3CjBkzsHHjRixYsACzZs3Cbbfd5uQPHIlzzjkHXbp0weTJk7Fu3Tp89dVXuO+++wAgYSmiLMcccwwYY1i4cCEOHDiAkpISAMCIESPw73//G19++SXWr1+PyZMnQxRFZ7+zzz4b3bp1w+TJk/HDDz/gyy+/rJDAePnll6N169a48MIL8eWXX2L79u1YtmwZbrnlFuzevbs2l47D4aQA7hBwOA3EsmXLcNJJJyU8HnroIXz44Yf49ttvceKJJ+KGG27A1KlTnQE9GURRxPvvv4+SkhIMGDAA06ZNcwZpl8tV6T4dOnTAH//4R9x9991o27Ytbr75ZgDAPffcgzPPPBNjxoxBXl4exo4diy5dujj7CYKA9957D+FwGKeeeiqmTZuGRx55JOHYHo8HX3zxBXJzc3HRRRehZ8+emDp1KiKRCI8YcDjNCEblFxA5HE6z46uvvsLQoUOxZcuWhAGdw+FwkoU7BBxOM+S9996Dz+fD8ccfjy1btuB3v/sdWrVqheXLl6faNA6H00zhSYUcTjOkuLgYd911F3bu3InWrVvj7LPPxuOPP55qszgcTjOGRwg4HA6Hw+HwkwcgbQAAAFZJREFUpEIOh8PhcDjcIeBwOBwOhwPuEHA4HA6HwwF3CDgcDofD4YA7BBwOh8PhcMAdAg6Hw+FwOOAOAYfD4XA4HHCHgMPhcDgcDrhDwOFwOBwOB8D/A+nj9RX5/IRoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from gval import Comparison\n", + "from numbers import Number\n", + "\n", + "@Comparison.register_function(name='multi', vectorize_func=True)\n", + "def multiply(c: Number, b: Number) -> Number:\n", + " return c * b\n", + "\n", + "agreement_map = candidate.gval.compute_agreement_map(\n", + " benchmark_map=benchmark, \n", + " comparison_function=\"multi\"\n", + ")\n", + "\n", + "agreement_map.gval.cat_plot(title=\"Agreement Map\")" + ] + }, + { + "cell_type": "markdown", + "id": "6c7e8929", + "metadata": {}, + "source": [ + "A user can also pick which candidate values or benchmark values to use by providing lists to the `allow_candidate_values` and `allow_benchmark_values` arguments. Finally, a user can choose to write nodata to unmasked datasets with the `nodata` value, or to masked/scaled datasets with `encode_nodata`. " + ] + }, + { + "cell_type": "markdown", + "id": "5181e51a", + "metadata": {}, + "source": [ + "### Cross-tabulation Table" + ] + }, + { + "cell_type": "markdown", + "id": "3906909f", + "metadata": {}, + "source": [ + "A cross-tabulation table can be made using an agreement map as follows. (In this particular case the table reflects agreement values made in the previous example.)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "18b9c315", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandcandidate_valuesbenchmark_valuesagreement_valuescounts
011.00.00.011526204.0
111.02.02.0679211.0
212.02.04.02624301.0
\n", + "
" + ], + "text/plain": [ + " band candidate_values benchmark_values agreement_values counts\n", + "0 1 1.0 0.0 0.0 11526204.0\n", + "1 1 1.0 2.0 2.0 679211.0\n", + "2 1 2.0 2.0 4.0 2624301.0" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "crosstab_table_allow = agreement_map.gval.compute_crosstab()\n", + "crosstab_table_allow" + ] + }, + { + "cell_type": "markdown", + "id": "0d94c67e", + "metadata": {}, + "source": [ + "### Metric Table" + ] + }, + { + "cell_type": "markdown", + "id": "3a9aa1cc", + "metadata": {}, + "source": [ + "Although all categorical metrics are computed by default if no argument is provided, `metrics` can also take a list of the desired metrics and will only return metrics in this list." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "2ba3fc06", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandfnfptntptrue_positive_rateprevalence
01639227.0512277.010345720.02473405.00.7946350.222798
\n", + "
" + ], + "text/plain": [ + " band fn fp tn tp true_positive_rate \\\n", + "0 1 639227.0 512277.0 10345720.0 2473405.0 0.794635 \n", + "\n", + " prevalence \n", + "0 0.222798 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table_select = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= [0, 1],\n", + " positive_categories = [2],\n", + " metrics=['true_positive_rate', 'prevalence']\n", + ")\n", + "metric_table_select" + ] + }, + { + "cell_type": "markdown", + "id": "382b1a13", + "metadata": {}, + "source": [ + "Just like registering comparison functions, you are able to register a metric function on both a method and a class of functions. Below is registering a metric function:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "67938408", + "metadata": {}, + "outputs": [], + "source": [ + "from gval import CatStats\n", + "\n", + "@CatStats.register_function(name=\"error_balance\", vectorize_func=True)\n", + "def error_balance(fp: Number, fn: Number) -> float:\n", + " return fp / fn" + ] + }, + { + "cell_type": "markdown", + "id": "bf6e16f4", + "metadata": {}, + "source": [ + "The following is registering a class of metric functions. In this case, the names associated with each function will respond to each method's name." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "1e8eeb59", + "metadata": {}, + "outputs": [], + "source": [ + "@CatStats.register_function_class(vectorize_func=True)\n", + "class MetricFunctions:\n", + " \n", + " @staticmethod\n", + " def arbitrary1(tp: Number, tn: Number) -> float:\n", + " return tp + tn\n", + " \n", + " @staticmethod\n", + " def arbitrary2(tp: Number, tn: Number) -> float:\n", + " return tp - tn" + ] + }, + { + "cell_type": "markdown", + "id": "75deed2d", + "metadata": {}, + "source": [ + "All of these functions are now callable as metrics:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "6a41eee3", + "metadata": {}, + "outputs": [], + "source": [ + "metric_table_register = crosstab_table.gval.compute_categorical_metrics(\n", + " negative_categories= None,\n", + " positive_categories = [2],\n", + " metrics=['error_balance', 'arbitrary1', 'arbitrary2']\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "6ab884b7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bandfnfptntperror_balance
01639227.0512277.0NaN2473405.00.801401
\n", + "
" + ], + "text/plain": [ + " band fn fp tn tp error_balance\n", + "0 1 639227.0 512277.0 NaN 2473405.0 0.801401" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_table_register" + ] + }, + { + "cell_type": "markdown", + "id": "6f930bbd", + "metadata": {}, + "source": [ + "## Save Output" + ] + }, + { + "cell_type": "markdown", + "id": "b3c625d6", + "metadata": {}, + "source": [ + "Finally, a user can take the results and save them to a directory of their choice. The following is an example of saving the agreement map and then the metric table:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "899a1da9", + "metadata": {}, + "outputs": [], + "source": [ + "# output agreement map\n", + "agreement_file = 'agreement_map.tif'\n", + "metric_file = 'metric_file.csv'\n", + "\n", + "agreement_map.rio.to_raster(agreement_file)\n", + "metric_table.to_csv(metric_file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/api.rst.txt b/_sources/api.rst.txt new file mode 100644 index 00000000..b3de48a1 --- /dev/null +++ b/_sources/api.rst.txt @@ -0,0 +1,11 @@ +GVAL API +######## + +.. toctree:: + :maxdepth: 2 + :caption: Table of Contents + + extension + comparison + statistics + utils diff --git a/_sources/categorical_stat_funcs.rst.txt b/_sources/categorical_stat_funcs.rst.txt new file mode 100644 index 00000000..8912bd6f --- /dev/null +++ b/_sources/categorical_stat_funcs.rst.txt @@ -0,0 +1,7 @@ +Categorical Statistics Functions +################################ + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.statistics.categorical_stat_funcs + :members: diff --git a/_sources/categorical_statistics.rst.txt b/_sources/categorical_statistics.rst.txt new file mode 100644 index 00000000..975a1fe4 --- /dev/null +++ b/_sources/categorical_statistics.rst.txt @@ -0,0 +1,7 @@ +Categorical Statistics +###################### + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.statistics.categorical_statistics + :members: diff --git a/_sources/comparison.rst.txt b/_sources/comparison.rst.txt new file mode 100644 index 00000000..e477b801 --- /dev/null +++ b/_sources/comparison.rst.txt @@ -0,0 +1,11 @@ +Comparison +########## + +:doc:`Return to Homepage <../index>` + +.. toctree:: + :maxdepth: 1 + :caption: Table of Contents + + compute_comparison + pairing_functions diff --git a/_sources/compute_comparison.rst.txt b/_sources/compute_comparison.rst.txt new file mode 100644 index 00000000..ccb67778 --- /dev/null +++ b/_sources/compute_comparison.rst.txt @@ -0,0 +1,7 @@ +Compute Comparison +################## + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.comparison.compute_comparison + :members: diff --git a/_sources/continuous_stat_funcs.rst.txt b/_sources/continuous_stat_funcs.rst.txt new file mode 100644 index 00000000..90d5e05d --- /dev/null +++ b/_sources/continuous_stat_funcs.rst.txt @@ -0,0 +1,7 @@ +Continuous Statistics Functions +############################### + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.statistics.continuous_stat_funcs + :members: diff --git a/_sources/continuous_statistics.rst.txt b/_sources/continuous_statistics.rst.txt new file mode 100644 index 00000000..0c317a37 --- /dev/null +++ b/_sources/continuous_statistics.rst.txt @@ -0,0 +1,7 @@ +Continuous Statistics +##################### + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.statistics.continuous_statistics + :members: diff --git a/_sources/contributing.rst.txt b/_sources/contributing.rst.txt new file mode 100644 index 00000000..dcb37339 --- /dev/null +++ b/_sources/contributing.rst.txt @@ -0,0 +1,3 @@ + +.. include:: SPHINX_CONTRIBUTING.MD + :parser: myst_parser.sphinx_ diff --git a/_sources/exceptions.rst.txt b/_sources/exceptions.rst.txt new file mode 100644 index 00000000..613338e5 --- /dev/null +++ b/_sources/exceptions.rst.txt @@ -0,0 +1,7 @@ +Exceptions +########## + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.utils.exceptions + :members: diff --git a/_sources/extension.rst.txt b/_sources/extension.rst.txt new file mode 100644 index 00000000..b5e96254 --- /dev/null +++ b/_sources/extension.rst.txt @@ -0,0 +1,13 @@ +Core Operations +############### + +:doc:`Return to Homepage <../index>` + +.. toctree:: + :maxdepth: 1 + :caption: Table of Contents + + gval_xarray + gval_array + gval_dataset + gval_dataframe diff --git a/_sources/gval_array.rst.txt b/_sources/gval_array.rst.txt new file mode 100644 index 00000000..c8dca812 --- /dev/null +++ b/_sources/gval_array.rst.txt @@ -0,0 +1,7 @@ +Xarray DataArray Functionality +############################## + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.accessors.gval_array + :members: diff --git a/_sources/gval_dataframe.rst.txt b/_sources/gval_dataframe.rst.txt new file mode 100644 index 00000000..0be0ee7a --- /dev/null +++ b/_sources/gval_dataframe.rst.txt @@ -0,0 +1,7 @@ +DataFrame Functionality +####################### + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.accessors.gval_dataframe + :members: diff --git a/_sources/gval_dataset.rst.txt b/_sources/gval_dataset.rst.txt new file mode 100644 index 00000000..07e5059e --- /dev/null +++ b/_sources/gval_dataset.rst.txt @@ -0,0 +1,7 @@ +Xarray Dataset Functionality +############################ + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.accessors.gval_dataset + :members: diff --git a/_sources/gval_xarray.rst.txt b/_sources/gval_xarray.rst.txt new file mode 100644 index 00000000..2834e0c7 --- /dev/null +++ b/_sources/gval_xarray.rst.txt @@ -0,0 +1,7 @@ +Shared Xarray Functionality +########################### + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.accessors.gval_xarray + :members: diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt new file mode 100644 index 00000000..01e883ba --- /dev/null +++ b/_sources/index.rst.txt @@ -0,0 +1,31 @@ +.. GVAL documentation master file, created by + sphinx-quickstart on Mon May 1 14:54:39 2023. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +GVAL Documentation +################## + +.. include:: SPHINX_README.MD + :parser: myst_parser.sphinx_ + + +___________________________________ + +.. toctree:: + :maxdepth: 3 + :caption: Table of Contents + + SphinxTutorial + SphinxMulticatTutorial + SphinxContinuousTutorial + api + contributing + + +Indices and tables +------------------ + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/_sources/loading_datasets.rst.txt b/_sources/loading_datasets.rst.txt new file mode 100644 index 00000000..d2dd9b8d --- /dev/null +++ b/_sources/loading_datasets.rst.txt @@ -0,0 +1,7 @@ +Loading Datasets +################ + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.utils.loading_datasets + :members: diff --git a/_sources/pairing_functions.rst.txt b/_sources/pairing_functions.rst.txt new file mode 100644 index 00000000..7cd4fc6c --- /dev/null +++ b/_sources/pairing_functions.rst.txt @@ -0,0 +1,7 @@ +Pairing Functions +################# + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.comparison.pairing_functions + :members: diff --git a/_sources/schemas.rst.txt b/_sources/schemas.rst.txt new file mode 100644 index 00000000..987a6c47 --- /dev/null +++ b/_sources/schemas.rst.txt @@ -0,0 +1,8 @@ +Schemas +####### + +:doc:`Return to Homepage <../index>` + +.. automodule:: gval.utils.schemas + :members: + :undoc-members: diff --git a/_sources/statistics.rst.txt b/_sources/statistics.rst.txt new file mode 100644 index 00000000..c6e06d06 --- /dev/null +++ b/_sources/statistics.rst.txt @@ -0,0 +1,13 @@ +Statistics +########## + +:doc:`Return to Homepage <../index>` + +.. toctree:: + :maxdepth: 1 + :caption: Table of Contents + + categorical_stat_funcs + categorical_statistics + continuous_stat_funcs + continuous_statistics diff --git a/_sources/tutorials.rst.txt b/_sources/tutorials.rst.txt new file mode 100644 index 00000000..847a6575 --- /dev/null +++ b/_sources/tutorials.rst.txt @@ -0,0 +1,10 @@ +Tutorials +######### + +.. toctree:: + :maxdepth: 1 + :caption: Table of Contents + + SphinxTutorial + SphinxMulticatTutorial + SphinxContinuousTutorial diff --git a/_sources/utils.rst.txt b/_sources/utils.rst.txt new file mode 100644 index 00000000..06d76573 --- /dev/null +++ b/_sources/utils.rst.txt @@ -0,0 +1,12 @@ +Utilities +######### + +:doc:`Return to Homepage <../index>` + +.. toctree:: + :maxdepth: 1 + :caption: Table of Contents + + loading_datasets + exceptions + schemas diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 00000000..81415803 --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 00000000..7577acb1 --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,903 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/css/badge_only.css b/_static/css/badge_only.css new file mode 100644 index 00000000..c718cee4 --- /dev/null +++ b/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} \ No newline at end of file diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff b/_static/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 00000000..6cb60000 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff2 b/_static/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 00000000..7059e231 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff b/_static/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 00000000..f815f63f Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff2 b/_static/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 00000000..f2c76e5b Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/_static/css/fonts/fontawesome-webfont.eot b/_static/css/fonts/fontawesome-webfont.eot new file mode 100644 index 00000000..e9f60ca9 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.eot differ diff --git a/_static/css/fonts/fontawesome-webfont.svg b/_static/css/fonts/fontawesome-webfont.svg new file mode 100644 index 00000000..855c845e --- /dev/null +++ b/_static/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/css/fonts/fontawesome-webfont.ttf b/_static/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 00000000..35acda2f Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.ttf differ diff --git a/_static/css/fonts/fontawesome-webfont.woff b/_static/css/fonts/fontawesome-webfont.woff new file mode 100644 index 00000000..400014a4 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff differ diff --git a/_static/css/fonts/fontawesome-webfont.woff2 b/_static/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 00000000..4d13fc60 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff2 differ diff --git a/_static/css/fonts/lato-bold-italic.woff b/_static/css/fonts/lato-bold-italic.woff new file mode 100644 index 00000000..88ad05b9 Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff differ diff --git a/_static/css/fonts/lato-bold-italic.woff2 b/_static/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 00000000..c4e3d804 Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff2 differ diff --git a/_static/css/fonts/lato-bold.woff b/_static/css/fonts/lato-bold.woff new file mode 100644 index 00000000..c6dff51f Binary files /dev/null and b/_static/css/fonts/lato-bold.woff differ diff --git a/_static/css/fonts/lato-bold.woff2 b/_static/css/fonts/lato-bold.woff2 new file mode 100644 index 00000000..bb195043 Binary files /dev/null and b/_static/css/fonts/lato-bold.woff2 differ diff --git a/_static/css/fonts/lato-normal-italic.woff b/_static/css/fonts/lato-normal-italic.woff new file mode 100644 index 00000000..76114bc0 Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff differ diff --git a/_static/css/fonts/lato-normal-italic.woff2 b/_static/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 00000000..3404f37e Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff2 differ diff --git a/_static/css/fonts/lato-normal.woff b/_static/css/fonts/lato-normal.woff new file mode 100644 index 00000000..ae1307ff Binary files /dev/null and b/_static/css/fonts/lato-normal.woff differ diff --git a/_static/css/fonts/lato-normal.woff2 b/_static/css/fonts/lato-normal.woff2 new file mode 100644 index 00000000..3bf98433 Binary files /dev/null and b/_static/css/fonts/lato-normal.woff2 differ diff --git a/_static/css/theme.css b/_static/css/theme.css new file mode 100644 index 00000000..19a446a0 --- /dev/null +++ b/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 00000000..d06a71d7 --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 00000000..b57ae3b8 --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,14 @@ +var DOCUMENTATION_OPTIONS = { + URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), + VERSION: '', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 00000000..a858a410 Binary files /dev/null and b/_static/file.png differ diff --git a/_static/jquery.js b/_static/jquery.js new file mode 100644 index 00000000..c4c6022f --- /dev/null +++ b/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/_static/js/html5shiv.min.js b/_static/js/html5shiv.min.js new file mode 100644 index 00000000..cd1c674f --- /dev/null +++ b/_static/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/_static/js/theme.js b/_static/js/theme.js new file mode 100644 index 00000000..1fddb6ee --- /dev/null +++ b/_static/js/theme.js @@ -0,0 +1 @@ +!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/_static/minus.png b/_static/minus.png new file mode 100644 index 00000000..d96755fd Binary files /dev/null and b/_static/minus.png differ diff --git a/_static/nbsphinx-broken-thumbnail.svg b/_static/nbsphinx-broken-thumbnail.svg new file mode 100644 index 00000000..4919ca88 --- /dev/null +++ b/_static/nbsphinx-broken-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/nbsphinx-code-cells.css b/_static/nbsphinx-code-cells.css new file mode 100644 index 00000000..a3fb27c3 --- /dev/null +++ b/_static/nbsphinx-code-cells.css @@ -0,0 +1,259 @@ +/* remove conflicting styling from Sphinx themes */ +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt *, +div.nbinput.container div.input_area pre, +div.nboutput.container div.output_area pre, +div.nbinput.container div.input_area .highlight, +div.nboutput.container div.output_area .highlight { + border: none; + padding: 0; + margin: 0; + box-shadow: none; +} + +div.nbinput.container > div[class*=highlight], +div.nboutput.container > div[class*=highlight] { + margin: 0; +} + +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt * { + background: none; +} + +div.nboutput.container div.output_area .highlight, +div.nboutput.container div.output_area pre { + background: unset; +} + +div.nboutput.container div.output_area div.highlight { + color: unset; /* override Pygments text color */ +} + +/* avoid gaps between output lines */ +div.nboutput.container div[class*=highlight] pre { + line-height: normal; +} + +/* input/output containers */ +div.nbinput.container, +div.nboutput.container { + display: -webkit-flex; + display: flex; + align-items: flex-start; + margin: 0; + width: 100%; +} +@media (max-width: 540px) { + div.nbinput.container, + div.nboutput.container { + flex-direction: column; + } +} + +/* input container */ +div.nbinput.container { + padding-top: 5px; +} + +/* last container */ +div.nblast.container { + padding-bottom: 5px; +} + +/* input prompt */ +div.nbinput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nbinput.container div.prompt pre > code { + color: #307FC1; +} + +/* output prompt */ +div.nboutput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nboutput.container div.prompt pre > code { + color: #BF5B3D; +} + +/* all prompts */ +div.nbinput.container div.prompt, +div.nboutput.container div.prompt { + width: 4.5ex; + padding-top: 5px; + position: relative; + user-select: none; +} + +div.nbinput.container div.prompt > div, +div.nboutput.container div.prompt > div { + position: absolute; + right: 0; + margin-right: 0.3ex; +} + +@media (max-width: 540px) { + div.nbinput.container div.prompt, + div.nboutput.container div.prompt { + width: unset; + text-align: left; + padding: 0.4em; + } + div.nboutput.container div.prompt.empty { + padding: 0; + } + + div.nbinput.container div.prompt > div, + div.nboutput.container div.prompt > div { + position: unset; + } +} + +/* disable scrollbars and line breaks on prompts */ +div.nbinput.container div.prompt pre, +div.nboutput.container div.prompt pre { + overflow: hidden; + white-space: pre; +} + +/* input/output area */ +div.nbinput.container div.input_area, +div.nboutput.container div.output_area { + -webkit-flex: 1; + flex: 1; + overflow: auto; +} +@media (max-width: 540px) { + div.nbinput.container div.input_area, + div.nboutput.container div.output_area { + width: 100%; + } +} + +/* input area */ +div.nbinput.container div.input_area { + border: 1px solid #e0e0e0; + border-radius: 2px; + /*background: #f5f5f5;*/ +} + +/* override MathJax center alignment in output cells */ +div.nboutput.container div[class*=MathJax] { + text-align: left !important; +} + +/* override sphinx.ext.imgmath center alignment in output cells */ +div.nboutput.container div.math p { + text-align: left; +} + +/* standard error */ +div.nboutput.container div.output_area.stderr { + background: #fdd; +} + +/* ANSI colors */ +.ansi-black-fg { color: #3E424D; } +.ansi-black-bg { background-color: #3E424D; } +.ansi-black-intense-fg { color: #282C36; } +.ansi-black-intense-bg { background-color: #282C36; } +.ansi-red-fg { color: #E75C58; } +.ansi-red-bg { background-color: #E75C58; } +.ansi-red-intense-fg { color: #B22B31; } +.ansi-red-intense-bg { background-color: #B22B31; } +.ansi-green-fg { color: #00A250; } +.ansi-green-bg { background-color: #00A250; } +.ansi-green-intense-fg { color: #007427; } +.ansi-green-intense-bg { background-color: #007427; } +.ansi-yellow-fg { color: #DDB62B; } +.ansi-yellow-bg { background-color: #DDB62B; } +.ansi-yellow-intense-fg { color: #B27D12; } +.ansi-yellow-intense-bg { background-color: #B27D12; } +.ansi-blue-fg { color: #208FFB; } +.ansi-blue-bg { background-color: #208FFB; } +.ansi-blue-intense-fg { color: #0065CA; } +.ansi-blue-intense-bg { background-color: #0065CA; } +.ansi-magenta-fg { color: #D160C4; } +.ansi-magenta-bg { background-color: #D160C4; } +.ansi-magenta-intense-fg { color: #A03196; } +.ansi-magenta-intense-bg { background-color: #A03196; } +.ansi-cyan-fg { color: #60C6C8; } +.ansi-cyan-bg { background-color: #60C6C8; } +.ansi-cyan-intense-fg { color: #258F8F; } +.ansi-cyan-intense-bg { background-color: #258F8F; } +.ansi-white-fg { color: #C5C1B4; } +.ansi-white-bg { background-color: #C5C1B4; } +.ansi-white-intense-fg { color: #A1A6B2; } +.ansi-white-intense-bg { background-color: #A1A6B2; } + +.ansi-default-inverse-fg { color: #FFFFFF; } +.ansi-default-inverse-bg { background-color: #000000; } + +.ansi-bold { font-weight: bold; } +.ansi-underline { text-decoration: underline; } + + +div.nbinput.container div.input_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight].math, +div.nboutput.container div.output_area.rendered_html, +div.nboutput.container div.output_area > div.output_javascript, +div.nboutput.container div.output_area:not(.rendered_html) > img{ + padding: 5px; + margin: 0; +} + +/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ +div.nbinput.container div.input_area > div[class^='highlight'], +div.nboutput.container div.output_area > div[class^='highlight']{ + overflow-y: hidden; +} + +/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ +.prompt .copybtn, +/* ... and 'sphinx_immaterial' theme */ +.prompt .md-clipboard.md-icon { + display: none; +} + +/* Some additional styling taken form the Jupyter notebook CSS */ +.jp-RenderedHTMLCommon table, +div.rendered_html table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.jp-RenderedHTMLCommon thead, +div.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} +.jp-RenderedHTMLCommon tr, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon td, +div.rendered_html tr, +div.rendered_html th, +div.rendered_html td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} +.jp-RenderedHTMLCommon th, +div.rendered_html th { + font-weight: bold; +} +.jp-RenderedHTMLCommon tbody tr:nth-child(odd), +div.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.jp-RenderedHTMLCommon tbody tr:hover, +div.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} + diff --git a/_static/nbsphinx-gallery.css b/_static/nbsphinx-gallery.css new file mode 100644 index 00000000..365c27a9 --- /dev/null +++ b/_static/nbsphinx-gallery.css @@ -0,0 +1,31 @@ +.nbsphinx-gallery { + display: grid; + grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); + gap: 5px; + margin-top: 1em; + margin-bottom: 1em; +} + +.nbsphinx-gallery > a { + padding: 5px; + border: 1px dotted currentColor; + border-radius: 2px; + text-align: center; +} + +.nbsphinx-gallery > a:hover { + border-style: solid; +} + +.nbsphinx-gallery img { + max-width: 100%; + max-height: 100%; +} + +.nbsphinx-gallery > a > div:first-child { + display: flex; + align-items: start; + justify-content: center; + height: 120px; + margin-bottom: 5px; +} diff --git a/_static/nbsphinx-no-thumbnail.svg b/_static/nbsphinx-no-thumbnail.svg new file mode 100644 index 00000000..9dca7588 --- /dev/null +++ b/_static/nbsphinx-no-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/plus.png b/_static/plus.png new file mode 100644 index 00000000..7107cec9 Binary files /dev/null and b/_static/plus.png differ diff --git a/_static/pygments.css b/_static/pygments.css new file mode 100644 index 00000000..0d49244e --- /dev/null +++ b/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #eeffcc; } +.highlight .c { color: #408090; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #007020; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #408090; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #408090; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #007020 } /* Comment.Preproc */ +.highlight .cpf { color: #408090; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #408090; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #FF0000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #00A000 } /* Generic.Inserted */ +.highlight .go { color: #333333 } /* Generic.Output */ +.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #007020 } /* Keyword.Pseudo */ +.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #902000 } /* Keyword.Type */ +.highlight .m { color: #208050 } /* Literal.Number */ +.highlight .s { color: #4070a0 } /* Literal.String */ +.highlight .na { color: #4070a0 } /* Name.Attribute */ +.highlight .nb { color: #007020 } /* Name.Builtin */ +.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */ +.highlight .no { color: #60add5 } /* Name.Constant */ +.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */ +.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #007020 } /* Name.Exception */ +.highlight .nf { color: #06287e } /* Name.Function */ +.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */ +.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #bb60d5 } /* Name.Variable */ +.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #208050 } /* Literal.Number.Bin */ +.highlight .mf { color: #208050 } /* Literal.Number.Float */ +.highlight .mh { color: #208050 } /* Literal.Number.Hex */ +.highlight .mi { color: #208050 } /* Literal.Number.Integer */ +.highlight .mo { color: #208050 } /* Literal.Number.Oct */ +.highlight .sa { color: #4070a0 } /* Literal.String.Affix */ +.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */ +.highlight .sc { color: #4070a0 } /* Literal.String.Char */ +.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */ +.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #4070a0 } /* Literal.String.Double */ +.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */ +.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */ +.highlight .sx { color: #c65d09 } /* Literal.String.Other */ +.highlight .sr { color: #235388 } /* Literal.String.Regex */ +.highlight .s1 { color: #4070a0 } /* Literal.String.Single */ +.highlight .ss { color: #517918 } /* Literal.String.Symbol */ +.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #06287e } /* Name.Function.Magic */ +.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */ +.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */ +.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */ +.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */ +.highlight .il { color: #208050 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/_static/searchtools.js b/_static/searchtools.js new file mode 100644 index 00000000..97d56a74 --- /dev/null +++ b/_static/searchtools.js @@ -0,0 +1,566 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docUrlRoot = DOCUMENTATION_OPTIONS.URL_ROOT; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = docUrlRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = docUrlRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/_static/sphinx_highlight.js b/_static/sphinx_highlight.js new file mode 100644 index 00000000..aae669d7 --- /dev/null +++ b/_static/sphinx_highlight.js @@ -0,0 +1,144 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + parent.insertBefore( + span, + parent.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(SphinxHighlight.highlightSearchWords); +_ready(SphinxHighlight.initEscapeListener); diff --git a/api.html b/api.html new file mode 100644 index 00000000..2acb3c64 --- /dev/null +++ b/api.html @@ -0,0 +1,150 @@ + + + + + + + GVAL API — GVAL documentation + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/categorical_stat_funcs.html b/categorical_stat_funcs.html new file mode 100644 index 00000000..a7a11ece --- /dev/null +++ b/categorical_stat_funcs.html @@ -0,0 +1,714 @@ + + + + + + + Categorical Statistics Functions — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Categorical Statistics Functions

+

Return to Homepage

+

Categorical Statistics Functions

+
+
+gval.statistics.categorical_stat_funcs.accuracy(tp: Number, tn: Number, fp: Number, fn: Number) float
+

Computes accuracy

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Accuracy from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.balanced_accuracy(tp: Number, tn: Number, fp: Number, fn: Number) float
+

Computes Balanced Accuracy

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Balanced Accuracy from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.critical_success_index(tp: Number, fp: Number, fn: Number) float
+

Computes critical success index

+

https://www.weather.gov/media/erh/ta2004-03.pdf

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Critical success index from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.equitable_threat_score(tp: Number, tn: Number, fp: Number, fn: Number) float
+

Computes Equitable Threat Score (Gilbert Score)

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Equitable threat score from -1/3 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.f_score(tp: Number, fp: Number, fn: Number) float
+

Computes F-score AKA harmonic mean of precision and sensitivity

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

F-score from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.false_discovery_rate(tp: Number, fp: Number) float
+

Computes false discovery rate

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • fp (Number) – Count reflecting false positive

  • +
+
+
Returns:
+

False discovery rate from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.false_negative_rate(tp: Number, fn: Number) float
+

Computes false negative rate

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

False negative rate from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.false_omission_rate(tn: Number, fn: Number) float
+

Computes false omission rate

+
+
Parameters:
+
    +
  • tn (Number) – Count reflecting true negative

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

False omission rate from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.false_positive_rate(tn: Number, fp: Number) float
+

Computes false positive rate AKA fall-out

+
+
Parameters:
+
    +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
+
+
Returns:
+

False positive rate from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.fowlkes_mallows_index(tp: Number, fp: Number, fn: Number) float
+

Computes Fowlkes-Mallows index

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Correlation coefficient from -1 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.matthews_correlation_coefficient(tp: Number, tn: Number, fp: Number, fn: Number) float
+

Computes matthews correlation coefficient, accounting for accuracy and +precision of both true positives and true negatives AKA Phi Coefficient

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Correlation coefficient from -1 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.negative_likelihood_ratio(tp: Number, tn: Number, fp: Number, fn: Number) float
+

Computes negative likelihood ratio

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Negative likelihood from 1 to infinity

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.negative_predictive_value(tn: Number, fn: Number) float
+

Computes negative predictive value

+
+
Parameters:
+
    +
  • tn (Number) – Count reflecting true negative

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Negative predictive value from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.overall_bias(tp: Number, fp: Number, fn: Number) float
+

Computes the degree of correspondence between the mean forecast and the mean observation.

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Overall Bias

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.positive_likelihood_ratio(tp: Number, tn: Number, fp: Number, fn: Number) float
+

Computes positive likelihood ratio

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Positive likelihood rate from 1 to infinity

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.positive_predictive_value(tp: Number, fp: Number) float
+

Computes positive predictive value AKA precision

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • fp (Number) – Count reflecting false positive

  • +
+
+
Returns:
+

Positive predictive value from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.prevalence(tp: Number, tn: Number, fp: Number, fn: Number) float
+

Computes prevalence

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Prevalence from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.prevalence_threshold(tp: Number, tn: Number, fp: Number, fn: Number) float
+

Computes prevalence threshold

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

Prevalence threshold from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.true_negative_rate(tn: Number, fp: Number) float
+

Computes true negative rate, AKA specificity, selectivity

+
+
Parameters:
+
    +
  • tn (Number) – Count reflecting true negative

  • +
  • fp (Number) – Count reflecting false positive

  • +
+
+
Returns:
+

True negative rate from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+
+gval.statistics.categorical_stat_funcs.true_positive_rate(tp: Number, fn: Number) float
+

Computes true positive rate, AKA sensitivity, recall, hit rate

+
+
Parameters:
+
    +
  • tp (Number) – Count reflecting true positive

  • +
  • fn (Number) – Count reflecting false negative

  • +
+
+
Returns:
+

True positive rate from 0 to 1

+
+
Return type:
+

float

+
+
+

References

+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/categorical_statistics.html b/categorical_statistics.html new file mode 100644 index 00000000..d0f29e38 --- /dev/null +++ b/categorical_statistics.html @@ -0,0 +1,244 @@ + + + + + + + Categorical Statistics — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Categorical Statistics

+

Return to Homepage

+

Categorical Statistics Class

+
+
+class gval.statistics.categorical_statistics.CategoricalStatistics
+

Class for Running Categorical Statistics on Agreement Maps

+
+
+registered_functions
+

Available statistical functions with names as keys and parameters as values

+
+
Type:
+

dict

+
+
+
+ +
+
+available_functions() list
+

Lists all available functions

+
+
Return type:
+

List of available functions

+
+
+
+ +
+
+function_signature_check(func)
+

Validates signature of registered function

+
+
Parameters:
+

func (function) – Function to check the signature of

+
+
+
+ +
+
+get_all_parameters()
+

Get all the possible arguments

+
+
Return type:
+

List of all possible arguments for functions

+
+
+
+ +
+
+get_parameters(func_name: str) list
+

Get parameters of registered function

+
+
Parameters:
+

func_name (str) –

+
+
Return type:
+

List of parameter names for the associated function

+
+
+
+ +
+
+process_statistics(func_names: str | list, **kwargs) Tuple[float, str]
+
+
Parameters:
+
    +
  • func_names (Union[str, list]) – Name of registered function to run

  • +
  • **kwargs (dict or keyword arguments) – Dictionary or keyword arguments of to pass to metric functions.

  • +
+
+
Returns:
+

Tuple with metric values and metric names.

+
+
Return type:
+

Tuple[float, str]

+
+
+
+ +
+
+register_function(name: str, vectorize_func: bool = False)
+

Register decorator function in statistics class

+
+
Parameters:
+
    +
  • name (str) – Name of function to register in statistics class

  • +
  • vectorize_func (bool) – Whether to vectorize the function

  • +
+
+
Return type:
+

Decorator function

+
+
+
+ +
+
+register_function_class(vectorize_func: bool = False)
+

Register decorator function for an entire class

+
+
Parameters:
+

vectorize_func (bool) – Whether to vectorize the function

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/comparison.html b/comparison.html new file mode 100644 index 00000000..3a6f2f64 --- /dev/null +++ b/comparison.html @@ -0,0 +1,133 @@ + + + + + + + Comparison — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Comparison

+

Return to Homepage

+
+

Table of Contents

+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/compute_comparison.html b/compute_comparison.html new file mode 100644 index 00000000..ee0d2f2f --- /dev/null +++ b/compute_comparison.html @@ -0,0 +1,256 @@ + + + + + + + Compute Comparison — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Compute Comparison

+

Return to Homepage

+
+
+class gval.comparison.compute_comparison.ComparisonProcessing
+

Class for Processing Agreement Maps and Tabulations

+
+
+registered_functions
+

Available statistical functions with names as keys and parameters as values

+
+
Type:
+

dict

+
+
+
+ +
+
+available_functions() list
+

Lists all available functions

+
+
Return type:
+

List of available functions

+
+
+
+ +
+
+comparison_function_from_string(func: Callable) Callable
+

Decorator function to compose a pairing dict comparison function from a string argument

+
+
Parameters:
+

func (Callable) – Function requiring check for pairing_dict comparison function

+
+
Returns:
+

Function with appropriate comparison function

+
+
Return type:
+

Callable

+
+
+
+ +
+
+function_signature_check(func)
+

Validates signature of registered function

+
+
Parameters:
+

func (function) – Function to check the signature of

+
+
+
+ +
+
+get_all_parameters()
+

Get all the possible arguments

+
+
Return type:
+

List of all possible arguments for functions

+
+
+
+ +
+
+get_parameters(func_name: str) list
+

Get parameters of registered function

+
+
Parameters:
+

func_name (str) –

+
+
Return type:
+

List of parameter names for the associated function

+
+
+
+ +
+
+process_agreement_map(**kwargs) DataArray | Dataset
+
+
Parameters:
+

**kwargs

+
+
Returns:
+

    +
  • Union[xr.DataArray, xr.Dataset]

  • +
  • Agreement map.

  • +
+

+
+
+
+ +
+
+register_function(name: str, vectorize_func: bool = False)
+

Register decorator function in comparison class

+
+
Parameters:
+
    +
  • name (str) – Name of function to register in comparison class

  • +
  • vectorize_func (bool) – Whether to vectorize the function

  • +
+
+
Return type:
+

Decorator function

+
+
+
+ +
+
+register_function_class(vectorize_func: bool = False)
+

Register decorator function for an entire class

+
+
Parameters:
+

vectorize_func (bool) – Whether to vectorize the function

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/continuous_stat_funcs.html b/continuous_stat_funcs.html new file mode 100644 index 00000000..43ac8c9d --- /dev/null +++ b/continuous_stat_funcs.html @@ -0,0 +1,469 @@ + + + + + + + Continuous Statistics Functions — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Continuous Statistics Functions

+

Return to Homepage

+

Continuous Statistics Functions From Error Based Agreement Maps.

+
+
+gval.statistics.continuous_stat_funcs.coefficient_of_determination(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
+

Compute coefficient of determination (R2).

+

Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+
    +
  • error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

  • +
  • benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.

  • +
+
+
Returns:
+

R2 – Coefficient of determination.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.mean_absolute_error(error: DataArray | Dataset) Number
+

Compute mean absolute error (MAE).

+

Either error or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+

error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

+
+
Returns:
+

MAE – Mean absolute error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.mean_absolute_percentage_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
+

Compute mean absolute percentage error (MAPE).

+

Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+
    +
  • error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

  • +
  • benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.

  • +
+
+
Returns:
+

MAPE – Mean absolute percentage error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.mean_normalized_mean_absolute_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
+

Compute mean normalized mean absolute error (NMAE).

+

Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+
    +
  • error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

  • +
  • benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.

  • +
+
+
Returns:
+

NMAE – Normalized mean absolute error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.mean_normalized_root_mean_squared_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
+

Compute mean normalized root mean squared error (NRMSE).

+

Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+
    +
  • error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

  • +
  • benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.

  • +
+
+
Returns:
+

mNRMSE – Mean normalized root mean squared error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.mean_percentage_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
+

Compute mean percentage error (MPE).

+

Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+
    +
  • error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

  • +
  • benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.

  • +
+
+
Returns:
+

MPE – Mean percentage error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.mean_signed_error(error: DataArray | Dataset) Number
+

Compute mean signed error (MSiE).

+

Either error or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+

error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

+
+
Returns:
+

MSiE – Mean signed error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.mean_squared_error(error: DataArray | Dataset) Number
+

Compute mean squared error (MSE).

+

Either error or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+

error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

+
+
Returns:
+

MSE – Mean squared error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.range_normalized_mean_absolute_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
+

Compute range normalized mean absolute error (RNMAE).

+

Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+
    +
  • error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

  • +
  • benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.

  • +
+
+
Returns:
+

rNMAE – Range normalized mean absolute error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.range_normalized_root_mean_squared_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
+

Compute range normalized root mean squared error (RNRMSE).

+

Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+
    +
  • error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

  • +
  • benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.

  • +
+
+
Returns:
+

rNRMSE – Range normalized root mean squared error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.root_mean_squared_error(error: DataArray | Dataset) Number
+

Compute root mean squared error (RMSE).

+

Either error or (candidate_map and benchmark_map) must be provided.

+
+
Parameters:
+

error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

+
+
Returns:
+

RMSE – Root mean squared error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+
+gval.statistics.continuous_stat_funcs.symmetric_mean_absolute_percentage_error(error: DataArray | Dataset, candidate_map: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
+

Compute symmetric mean absolute percentage error (sMAPE).

+

Both candidate_map and benchmark_map must be provided. error can be provided to avoid recomputing it.

+
+
Parameters:
+
    +
  • error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.

  • +
  • candidate_map (Union[xr.DataArray, xr.Dataset]) – Candidate map.

  • +
  • benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.

  • +
+
+
Returns:
+

sMAPE – Symmetric mean absolute percentage error.

+
+
Return type:
+

Number

+
+
+

References

+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/continuous_statistics.html b/continuous_statistics.html new file mode 100644 index 00000000..956cedb3 --- /dev/null +++ b/continuous_statistics.html @@ -0,0 +1,241 @@ + + + + + + + Continuous Statistics — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Continuous Statistics

+

Return to Homepage

+

Continuous Statistics Class

+
+
+class gval.statistics.continuous_statistics.ContinuousStatistics
+

Class for Running Continuous Statistics on Agreement Maps

+
+
+registered_functions
+

Available statistical functions with names as keys and parameters as values

+
+
Type:
+

dict

+
+
+
+ +
+
+available_functions() list
+

Lists all available functions

+
+
Return type:
+

List of available functions

+
+
+
+ +
+
+function_signature_check(func)
+

Validates signature of registered function

+
+
Parameters:
+

func (function) – Function to check the signature of

+
+
+
+ +
+
+get_all_parameters()
+

Get all the possible arguments

+
+
Return type:
+

List of all possible arguments for functions

+
+
+
+ +
+
+get_parameters(func_name: str) list
+

Get parameters of registered function

+
+
Parameters:
+

func_name (str) –

+
+
Return type:
+

List of parameter names for the associated function

+
+
+
+ +
+
+process_statistics(func_names: str | list, **kwargs) Tuple[float, str]
+
+
Parameters:
+
    +
  • func_names (Union[str, list]) – Name of registered function to run

  • +
  • **kwargs (dict or keyword arguments) – Dictionary or keyword arguments of to pass to metric functions.

  • +
+
+
Returns:
+

Tuple with metric values and metric names.

+
+
Return type:
+

Tuple[float, str]

+
+
+
+ +
+
+register_function(name: str)
+

Register decorator function in statistics class

+
+
Parameters:
+

name (str) – Name of function to register in statistics class

+
+
Return type:
+

Decorator function

+
+
+
+ +
+
+register_function_class()
+

Register decorator function for an entire class

+
+
Parameters:
+

vectorize_func (bool) – Whether to vectorize the function

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/contributing.html b/contributing.html new file mode 100644 index 00000000..279641ca --- /dev/null +++ b/contributing.html @@ -0,0 +1,267 @@ + + + + + + + Contributing — GVAL documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Contributing

+
+

All contributions to this project will be released to the public domain. +By submitting a pull request or filing a bug, issue, or +feature request, you are agreeing to comply with this waiver of copyright interest. +Details can be found in our TERMS +and LICENSE.

+
+

There are two primary ways to help:

+
    +
  • Using the issue tracker, and

  • +
  • Changing the code-base.

  • +
+
+

Using the issue tracker

+

Use the issue tracker to suggest feature requests, report bugs, and ask questions. +This is also a great way to connect with the developers of the project as well +as others who are interested in this solution.

+

Use the issue tracker to find ways to contribute. Find a bug or a feature, mention in +the issue that you will take on that effort, then follow the Changing the code-base +guidance below.

+
+
+

Changing the code-base

+

Generally speaking, you should fork this repository, make changes in your +own fork, and then submit a pull request. All new code should have associated +unit tests that validate implemented features and the presence or lack of defects. +Additionally, the code should follow any stylistic and architectural guidelines +prescribed by the project. In the absence of such guidelines, mimic the styles +and patterns in the existing code-base.

+

alt text

+
+

Guidelines

+

If you would like to contribute, please follow the following steps:

+
    +
  1. Fork the project.

  2. +
  3. Clone your fork: git clone <your_username>/gval

  4. +
  5. Create a feature branch: git checkout -b <your_feature>

  6. +
  7. Install the code via pip install . .[dev]

  8. +
  9. Set up pre-commit hooks via pre-commit install. Afterwards when a commit is made it will run +flake8 for code and style linting as well as +flake8-black to autoformat the code. In many cases issues will be rectified +automatically with flake8-black but in some cases manual changes will be necessary.

  10. +
  11. Code Standards: Make sure unit tests pass pytest and there is no significant reduction +in code coverage and increase in memory. Also run local_benchmark_test to make sure there is no significant +cpu time performance loss. To run everything (in root project directory): +pytest --memray --cov=gval --cov-report term-missing && python ./tests/local_benchmark.py.

  12. +
  13. The README is made up of other docs located in /docs/markdown. To make changes to the README edit them directly +then run the following script: python docs/compile_readme_and_arrange_docs.py.

  14. +
  15. To build sphinx documentation locally, change to the docs/sphinx folder and run make clean && make html. +The html will be created in the _build/html folder. Open index.html in a browser to preview docs.

  16. +
  17. Commit your changes: git commit -m 'feature message' This will invoke pre-commit hooks mentioned on step 5 +that will lint the code. Make sure all of these checks pass, if not make changes and re-commit.

  18. +
  19. Push to the branch: git push -u origin, or if the branch is not pushed up yet: +git push --set-upstream origin <your branch>

  20. +
  21. Open a pull request (review checklist in PR template before requesting a review)

  22. +
+
+
+
+

Standards

+ +
+
+

Tooling Dependencies

+ +
+
+

Versioning

+

The repository will adhere to the Semantic Versioning 2.0.0.

+
+
+

Docker Use

+

(In this case, the image name, “gval-image”, and container name, “gval-python” can be changed +to whatever name is more suitable. Script, “test.py”, does not exist and is an arbitrary placeholder for +script of choice.)

+

First setup docker instance and in the root directory of the project:

+

[sudo] docker build -t gval-image --target development .

+

The default user named ‘user’ with UID 1001 is created. To use the same user and permissions you +currently have on your machine override with build arguments:

+

[sudo] docker build -t gval-image --build-arg UID=$(id -u) --target development .

+

Standard run examples from the command line (standard, or overriding user with root):

+
    +
  • [sudo] docker run -v $(pwd):/home/user/gval --name gval-python gval-image

  • +
  • [sudo] docker run -v $(pwd):/home/user/gval --user root --name gval-python gval-image

  • +
+

If given access keys for retrieving test data you can mount the volume as such:

+

[sudo] docker run -v ~/.aws:/home/user/.aws -v $(pwd):/home/user/gval --name gval-python gval-image

+

To keep your container running, try adding tail -f /dev/null as your command ensuring to detach with -d:

+
    +
  • [sudo] docker run -d -v $(pwd):/home/user/gval --name gval-python gval-image tail -f /dev/null

  • +
+

You can also set up your IDE to run this docker image directly:

+ +

If the container already exists you can start as follows:

+

[sudo] docker start gval-python

+

To enter the container interactively: +[sudo] docker exec gval-python bash

+
+
+

Packaging

+

To build the gval package and install locally:

+
    +
  • In the root directory install the gval package:

    +

    pip install . .[dev]

    +
  • +
+

The packaging process using docker container would look as follows (on linux):

+

sudo docker exec -v $(pwd):/home/user/ --user root python -m build && pip install . .[dev]

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/exceptions.html b/exceptions.html new file mode 100644 index 00000000..475379ae --- /dev/null +++ b/exceptions.html @@ -0,0 +1,145 @@ + + + + + + + Exceptions — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Exceptions

+

Return to Homepage

+

Custom exceptions for gval package

+
+
+exception gval.utils.exceptions.RasterMisalignment
+

Exception raised when rasters don’t spatially align.

+
+ +
+
+exception gval.utils.exceptions.RastersDontIntersect
+

Exception raised when rasters don’t spatially intersect.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/extension.html b/extension.html new file mode 100644 index 00000000..6ba3ab4f --- /dev/null +++ b/extension.html @@ -0,0 +1,137 @@ + + + + + + + Core Operations — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+ + +
+
+
+
+ + + + \ No newline at end of file diff --git a/genindex.html b/genindex.html new file mode 100644 index 00000000..bf793a71 --- /dev/null +++ b/genindex.html @@ -0,0 +1,770 @@ + + + + + + Index — GVAL documentation + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Index

+ +
+ _ + | A + | B + | C + | D + | E + | F + | G + | H + | I + | L + | M + | N + | O + | P + | R + | S + | T + | V + | W + | X + | Z + +
+

_

+ + +
+ +

A

+ + + +
+ +

B

+ + + +
+ +

C

+ + + +
+ +

D

+ + +
+ +

E

+ + +
+ +

F

+ + + +
+ +

G

+ + + +
+ +

H

+ + +
+ +

I

+ + +
+ +

L

+ + +
+ +

M

+ + +
+ +

N

+ + + +
+ +

O

+ + + +
+ +

P

+ + + +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

T

+ + + +
+ +

V

+ + + +
+ +

W

+ + +
+ +

X

+ + + +
+ +

Z

+ + +
+ + + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/gval_array.html b/gval_array.html new file mode 100644 index 00000000..d7ab2377 --- /dev/null +++ b/gval_array.html @@ -0,0 +1,160 @@ + + + + + + + Xarray DataArray Functionality — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Xarray DataArray Functionality

+

Return to Homepage

+
+
+class gval.accessors.gval_array.GVALArray(xarray_obj: DataArray)
+

Class for extending xarray DataArray functionality

+
+
+_obj
+

Object to use off the accessor

+
+
Type:
+

xr.DataArray

+
+
+
+ +
+
+data_type
+

Data type of _obj

+
+
Type:
+

type

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/gval_dataframe.html b/gval_dataframe.html new file mode 100644 index 00000000..c6e5b2b7 --- /dev/null +++ b/gval_dataframe.html @@ -0,0 +1,266 @@ + + + + + + + DataFrame Functionality — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

DataFrame Functionality

+

Return to Homepage

+
+
+class gval.accessors.gval_dataframe.GVALDataFrame(pandas_obj)
+

Class for extending pandas DataFrame functionality

+
+
+_obj
+

Object to use off the accessor

+
+
Type:
+

pd.DataFrame

+
+
+
+ +
+
+compute_categorical_metrics(positive_categories: Number | Iterable[Number], negative_categories: Number | Iterable[Number], metrics: str | Iterable[str] = 'all', average: str = 'micro', weights: Iterable[Number] | None = None, subsampling_average: str | None = None) DataFrame[Metrics_df]
+

Computes categorical metrics from a crosstab df.

+
+
Parameters:
+
    +
  • crosstab_df (DataFrame[Crosstab_df]) – Crosstab DataFrame with candidate, benchmark, and agreement values as well as the counts for each occurrence.

  • +
  • positive_categories (Optional[Union[Number, Iterable[Number]]]) – Number or list of numbers representing the values to consider as the positive condition. For average types “macro” and “weighted”, this represents the categories to compute metrics for.

  • +
  • negative_categories (Optional[Union[Number, Iterable[Number]]], default = None) – Number or list of numbers representing the values to consider as the negative condition. This should be set to None when no negative categories are used or when the average type is “macro” or “weighted”.

  • +
  • metrics (Union[str, Iterable[str]], default = "all") – String or list of strings representing metrics to compute.

  • +
  • average (str, default = "micro") – Type of average to use when computing metrics. Options are “micro”, “macro”, and “weighted”. +Micro weighing computes the conditions, tp, tn, fp, and fn, for each category and then sums them. +Macro weighing computes the metrics for each category then averages them. +Weighted average computes the metrics for each category then averages them weighted by the number of weights argument in each category.

  • +
  • weights (Optional[Iterable[Number]], default = None) –

    Weights to use when computing weighted average. Elements correspond to positive categories in order.

    +

    Example:

    +

    positive_categories = [1, 2]; weights = [0.25, 0.75]

    +

  • +
  • subsampling_average (Optional[str], default = None) – Way to aggregate statistics for subsamples if provided. Options are “sample”, “band”, and “full-detail” +Sample calculates metrics and averages the results by subsample +Band calculates metrics and averages all the metrics by band +Full-detail does not aggregation on subsample or band

  • +
+
+
Returns:
+

Metrics DF with computed metrics per sample.

+
+
Return type:
+

DataFrame[Metrics_df]

+
+
Raises:
+
    +
  • ValueError – Value is shared in positive and negative categories.

  • +
  • ValueError – Category not found in crosstab df.

  • +
  • ValueError – Cannot use average type with only one positive category.

  • +
  • ValueError – Number of weights must be the same as the number of positive categories.

  • +
  • ValueError – Cannot use average type with negative_categories as not None. Set negative_categories to None for this average type.

  • +
+
+
+

References

+ +
+ +
+
+create_subsampling_df(geometries: List[Geometry] | None = None, crs: str | None = None, subsampling_type: str | List[str] = 'exclude', subsampling_weights: List[int | float] | None = None, inplace: bool = False) None | SubsamplingDf
+
+
Parameters:
+
    +
  • geometries (List[Geometry], default = None) – Geometries if none are already in the GeoDataFrame

  • +
  • crs (str) – The spatial reference for the geometries provided

  • +
  • subsampling_type (Union[str, List[str]], default = "exclude") – Whether each geometry should be an inclusive subsample or an exclusionary mask

  • +
  • subsampling_weights (List[Union[int, float]], default = None) – Values to scale the numeric impact of a particular sample

  • +
  • inplace (bool, default = False) – Whether to adjust the GeoDataFrame calling the operation or a return a new one

  • +
+
+
Raises:
+
    +
  • ValueError – List provided has more or less entries than the DataFrame

  • +
  • TypeError – CRS must be provided if geometries are provided

  • +
+
+
Returns:
+

GeoDataFrame adhering to subsampling dataframe if not inplace, otherwise None

+
+
Return type:
+

Union[None, SubsamplingDf]

+
+
+
+ +
+
+rasterize_data(reference_map: Dataset | DataArray, rasterize_attributes: list) Dataset | DataArray
+

Convenience function for rasterizing vector data using a reference raster. For more control use make_geocube +from the geocube package.

+
+
Parameters:
+
    +
  • reference_map (Union[xr.Dataset, xr.DataArray]) – Map to reference in creation of rasterized vector map

  • +
  • rasterize_attributes (list) – Attributes to rasterize

  • +
+
+
Returns:
+

Rasterized Data

+
+
Return type:
+

Union[xr.Dataset, xr.DataArray]

+
+
Raises:
+

KeyError

+
+
+

References

+ +
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/gval_dataset.html b/gval_dataset.html new file mode 100644 index 00000000..25f81d6c --- /dev/null +++ b/gval_dataset.html @@ -0,0 +1,160 @@ + + + + + + + Xarray Dataset Functionality — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Xarray Dataset Functionality

+

Return to Homepage

+
+
+class gval.accessors.gval_dataset.GVALDataset(xarray_obj: Dataset)
+

Class for extending xarray Dataset functionality

+
+
+_obj
+

Object to use off the accessor

+
+
Type:
+

xr.Dataset

+
+
+
+ +
+
+data_type
+

Data type of _obj

+
+
Type:
+

type

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/gval_xarray.html b/gval_xarray.html new file mode 100644 index 00000000..3705a00e --- /dev/null +++ b/gval_xarray.html @@ -0,0 +1,467 @@ + + + + + + + Shared Xarray Functionality — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Shared Xarray Functionality

+

Return to Homepage

+
+
+class gval.accessors.gval_xarray.GVALXarray(xarray_obj)
+

Class for extending xarray functionality

+
+
+_obj
+

Object to use off the accessor

+
+
Type:
+

Union[xr.Dataset, xr.DataArray]

+
+
+
+ +
+
+data_type
+

Data type of the _obj

+
+
Type:
+

type

+
+
+
+ +
+
+attribute_tracking(benchmark_map: DataArray | Dataset, agreement_map: Dataset | DataArray | None = None, candidate_suffix: str | None = '_candidate', benchmark_suffix: str | None = '_benchmark', candidate_include: Iterable[str] | None = None, candidate_exclude: Iterable[str] | None = None, benchmark_include: Iterable[str] | None = None, benchmark_exclude: Iterable[str] | None = None) DataFrame[AttributeTrackingDf] | Tuple[DataFrame[AttributeTrackingDf], DataArray | Dataset]
+

Concatenate xarray attributes into a single pandas dataframe.

+
+
Parameters:
+
    +
  • candidate_map (Union[xr.DataArray, xr.Dataset]) – Self. Candidate map xarray object.

  • +
  • benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map xarray object.

  • +
  • candidate_suffix (Optional[str], default = '_candidate') – Suffix to append to candidate map xarray attributes, by default ‘_candidate’.

  • +
  • benchmark_suffix (Optional[str], default = '_benchmark') – Suffix to append to benchmark map xarray attributes, by default ‘_benchmark’.

  • +
  • candidate_include (Optional[Iterable[str]], default = None) – List of attributes to include from candidate map. candidate_include and candidate_exclude are mutually exclusive arguments.

  • +
  • candidate_exclude (Optional[Iterable[str]], default = None) – List of attributes to exclude from candidate map. candidate_include and candidate_exclude are mutually exclusive arguments.

  • +
  • benchmark_include (Optional[Iterable[str]], default = None) – List of attributes to include from benchmark map. benchmark_include and benchmark_exclude are mutually exclusive arguments.

  • +
  • benchmark_exclude (Optional[Iterable[str]], default = None) – List of attributes to exclude from benchmark map. benchmark_include and benchmark_exclude are mutually exclusive arguments.

  • +
+
+
Raises:
+
    +
  • ValueError – If candidate_include and candidate_exclude are both not None.

  • +
  • ValueError – If benchmark_include and benchmark_exclude are both not None.

  • +
+
+
Returns:
+

Pandas dataframe with concatenated attributes from candidate and benchmark maps. If agreement_map is not None, returns a tuple with the dataframe and the agreement map.

+
+
Return type:
+

Union[DataFrame[AttributeTrackingDf], Tuple[DataFrame[AttributeTrackingDf], Union[xr.DataArray, xr.Dataset]]]

+
+
+
+ +
+
+cat_plot(title: str = 'Categorical Map', colormap: str = 'viridis', figsize: Tuple[int, int] | None = None, legend_labels: list | None = None, plot_bands: str | list = 'all', colorbar_label: str | list = '', basemap: TileProvider = {'attribution': '(C) OpenStreetMap contributors', 'html_attribution': '&copy; <a href="https://www.openstreetmap.org/copyright">OpenStreetMap</a> contributors', 'max_zoom': 19, 'name': 'OpenStreetMap.Mapnik', 'url': 'https://tile.openstreetmap.org/{z}/{x}/{y}.png'})
+

Plots categorical Map for xarray object

+
+
Parameters:
+
    +
  • title (str) – Title of map, default = “Categorical Map”

  • +
  • colormap (str, default = "viridis") – Colormap of data

  • +
  • figsize (tuple[int, int], default=None) – Size of the plot

  • +
  • legend_labels (list, default = None) – Override labels in legend

  • +
  • plot_bands (Union[str, list], default='all') – What bands to plot

  • +
  • color_bar_label (Union[str, list], default ="") – Label or labels for colorbar in the case of continuous plots

  • +
  • basemap (Union[bool, xyzservices.lib.TileProvider], default = cx.providers.Stamen.Terrain) – Add basemap to the plot

  • +
+
+
+

References

+ +
+ +
+
+categorical_compare(benchmark_map: GeoDataFrame | Dataset | DataArray, positive_categories: Number | Iterable[Number] | None, comparison_function: Callable | DUFunc | ufunc | vectorize | str = 'szudzik', metrics: str | Iterable[str] = 'all', target_map: Dataset | str | None = 'benchmark', resampling: Resampling | None = Resampling.nearest, pairing_dict: Dict[Tuple[Number, Number], Number] | None = None, allow_candidate_values: Iterable[int | float] | None = None, allow_benchmark_values: Iterable[int | float] | None = None, nodata: Number | None = None, encode_nodata: bool | None = False, exclude_value: Number | None = None, negative_categories: Number | Iterable[Number] | None = None, average: str = 'micro', weights: Iterable[Number] | None = None, rasterize_attributes: list | None = None, attribute_tracking: bool = False, attribute_tracking_kwargs: Dict | None = None, subsampling_df: GeoDataFrame | None = None, subsampling_average: str | None = None) Tuple[Tuple[Dataset | DataArray, DataFrame[Crosstab_df], DataFrame[Metrics_df]] | Tuple[Dataset | DataArray, DataFrame[Crosstab_df], DataFrame[Metrics_df], DataFrame[AttributeTrackingDf]]]
+

Computes comparison between two categorical value xarray’s.

+
+
Conducts the following steps:
    +
  • homogenize: aligns data types, spatial alignment, and rasterizes data

  • +
  • compute_agreement: computes agreement map

  • +
  • compute_crosstab: computes crosstabulation

  • +
  • compute_metrics: computes metrics

  • +
+
+
+

Spatially aligning the xarray’s produces copies of the original candidate and benchmark maps. To reduce memory usage, consider using the homogenize() accessor method to overwrite the original maps in memory or saving them on disk.

+
+
Parameters:
+
    +
  • benchmark_map (Union[gpd.GeoDataFrame, xr.Dataset, xr.DataArray]) – Benchmark map.

  • +
  • positive_categories (Optional[Union[Number, Iterable[Number]]]) – Number or list of numbers representing the values to consider as the positive condition. When the average argument is either “macro” or “weighted”, this represents the categories to compute metrics for.

  • +
  • comparison_function (Union[Callable, nb.np.ufunc.dufunc.DUFunc, np.ufunc, np.vectorize, str], default = 'szudzik') – Comparison function. Created by decorating function with @nb.vectorize() or using np.ufunc(). Use of numba is preferred as it is faster. Strings with registered comparison_functions are also accepted. Possible options include “pairing_dict”. If passing “pairing_dict” value, please see the description for the argument for more information on behaviour. +All available comparison functions can be found with gval.Comparison.available_functions().

  • +
  • metrics (Union[str, Iterable[str]], default = "all") – Statistics to return in metric table. All returns every default and registered metric. This can be seen with gval.CatStats.available_functions().

  • +
  • target_map (Optional[Union[xr.Dataset, str]], default = "benchmark") – xarray object to match the CRS’s and coordinates of candidates and benchmarks to or str with ‘candidate’ or ‘benchmark’ as accepted values.

  • +
  • resampling (rasterio.enums.Resampling) – See rasterio.warp.reproject() for more details.

  • +
  • pairing_dict (Optional[Dict[Tuple[Number, Number], Number]], default = None) –

    When “pairing_dict” is used for the comparison_function argument, a pairing dictionary can be passed by user. A pairing dictionary is structured as {(c, b) : a} where (c, b) is a tuple of the candidate and benchmark value pairing, respectively, and a is the value for the agreement array to be used for this pairing.

    +

    If None is passed for pairing_dict, the allow_candidate_values and allow_benchmark_values arguments are required. For this case, the pairings in these two iterables will be paired in the order provided and an agreement value will be assigned to each pairing starting with 0 and ending with the number of possible pairings.

    +

    A pairing dictionary can be used by the user to note which values to allow and which to ignore for comparisons. It can also be used to decide how nans are handled for cases where either the candidate and benchmark maps have nans or both.

    +

  • +
  • allow_candidate_values (Optional[Iterable[Union[int,float]]], default = None) – List of values in candidate to include in computation of agreement map. Remaining values are excluded. If “pairing_dict” is provided for comparison_function and pairing_function is None, this argument is necessary to construct the dictionary. Otherwise, this argument is optional and by default this value is set to None and all values are considered.

  • +
  • allow_benchmark_values (Optional[Iterable[Union[int,float]]], default = None) – List of values in benchmark to include in computation of agreement map. Remaining values are excluded. If “pairing_dict” is provided for comparison_function and pairing_function is None, this argument is necessary to construct the dictionary. Otherwise, this argument is optional and by default this value is set to None and all values are considered.

  • +
  • nodata (Optional[Number], default = None) – No data value to write to agreement map output. This will use rxr.rio.write_nodata(nodata).

  • +
  • encode_nodata (Optional[bool], default = False) – Encoded no data value to write to agreement map output. A nodata argument must be passed. This will use rxr.rio.write_nodata(nodata, encode=encode_nodata).

  • +
  • exclude_value (Optional[Number], default = None) – Value to exclude from crosstab. This could be used to denote a no data value if masking wasn’t used. By default, NaNs are not cross-tabulated.

  • +
  • negative_categories (Optional[Union[Number, Iterable[Number]]], default = None) – Number or list of numbers representing the values to consider as the negative condition. This should be set to None when no negative categories are used or when the average type is “macro” or “weighted”.

  • +
  • average (str, default = "micro") – Type of average to use when computing metrics. Options are “micro”, “macro”, and “weighted”. +Micro weighing computes the conditions, tp, tn, fp, and fn, for each category and then sums them. +Macro weighing computes the metrics for each category then averages them. +Weighted average computes the metrics for each category then averages them weighted by the number of weights argument in each category.

  • +
  • weights (Optional[Iterable[Number]], default = None) –

    Weights to use when computing weighted average, specifically when the average argument is “weighted”. Elements correspond to positive categories in order.

    +

    Example:

    +

    positive_categories = [1, 2]; weights = [0.25, 0.75]

    +

  • +
  • rasterize_attributes (Optional[list], default = None) – Numerical attributes of a Benchmark Map GeoDataFrame to rasterize. Only applicable if benchmark map is a vector file. +This cannot be none if the benchmark map is a vector file.

  • +
  • attribute_tracking (bool, default = False) – Whether to return a dataframe with the attributes of the candidate and benchmark maps.

  • +
  • attribute_tracking_kwargs (Optional[Dict], default = None) – Keyword arguments to pass to gval.attribute_tracking(). This is only used if attribute_tracking is True. By default, agreement maps are used for attribute tracking but this can be set to None within this argument to override. See gval.attribute_tracking for more information.

  • +
  • subsampling_df (Optional[gpd.GeoDataFrame], default = None) – DataFrame with spatial geometries and method types to subsample

  • +
  • subsampling_average (Optional[str], default = None) – Way to aggregate statistics for subsamples if provided. Options are “sample”, “band”, and “full-detail” +Sample calculates metrics and averages the results by subsample +Band calculates metrics and averages all the metrics by band +Full-detail does not aggregation on subsample or band

  • +
+
+
Returns:
+

    +
  • Union[ – Tuple[Union[xr.Dataset, xr.DataArray], DataFrame[Crosstab_df], DataFrame[Metrics_df]], +Tuple[Union[xr.Dataset, xr.DataArray], DataFrame[Crosstab_df], DataFrame[Metrics_df], DataFrame[AttributeTrackingDf]]

  • +
  • ] – Tuple with agreement map/s, cross-tabulation table, and metric table. Possibly attribute tracking table as well.

  • +
+

+
+
+
+ +
+
+check_same_type(benchmark_map: Dataset | DataArray)
+

Makes sure benchmark map is the same data type as the candidate object

+
+
Parameters:
+

benchmark_map (Union[xr.Dataset, xr.DataArray]) – Benchmark Map

+
+
Raises:
+

TypeError

+
+
+
+ +
+
+compute_agreement_map(benchmark_map: Dataset | DataArray, comparison_function: Callable | DUFunc | ufunc | vectorize | str = 'szudzik', pairing_dict: Dict[Tuple[Number, Number], Number] | None = None, allow_candidate_values: Iterable[int | float] | None = None, allow_benchmark_values: Iterable[int | float] | None = None, nodata: Number | None = None, encode_nodata: bool | None = False, subsampling_df: GeoDataFrame | None = None, continuous: bool = False) Dataset | DataArray | List[Dataset | DataArray]
+

Computes agreement map as xarray from candidate and benchmark xarray’s.

+
+
Parameters:
+
    +
  • benchmark_map (Union[xr.Dataset, xr.DataArray]) – Benchmark map.

  • +
  • comparison_function (Union[Callable, nb.np.ufunc.dufunc.DUFunc, np.ufunc, np.vectorize, str], default = 'szudzik') – Comparison function. Created by decorating function with @nb.vectorize() or using np.ufunc(). Use of numba is preferred as it is faster. Strings with registered comparison_functions are also accepted. Possible options include “pairing_dict”. If passing “pairing_dict” value, please see the description for the argument for more information on behaviour.

  • +
  • pairing_dict (Optional[Dict[Tuple[Number, Number], Number]], default = None) –

    When “pairing_dict” is used for the comparison_function argument, a pairing dictionary can be passed by user. A pairing dictionary is structured as {(c, b) : a} where (c, b) is a tuple of the candidate and benchmark value pairing, respectively, and a is the value for the agreement array to be used for this pairing.

    +

    If None is passed for pairing_dict, the allow_candidate_values and allow_benchmark_values arguments are required. For this case, the pairings in these two iterables will be paired in the order provided and an agreement value will be assigned to each pairing starting with 0 and ending with the number of possible pairings.

    +

    A pairing dictionary can be used by the user to note which values to allow and which to ignore for comparisons. It can also be used to decide how nans are handled for cases where either the candidate and benchmark maps have nans or both.

    +

  • +
  • allow_candidate_values (Optional[Iterable[Union[int,float]]], default = None) – List of values in candidate to include in computation of agreement map. Remaining values are excluded. If “pairing_dict” is set selected for comparison_function and pairing_function is None, this argument is necessary to construct the dictionary. Otherwise, this argument is optional and by default this value is set to None and all values are considered.

  • +
  • allow_benchmark_values (Optional[Iterable[Union[int,float]]], default = None) – List of values in benchmark to include in computation of agreement map. Remaining values are excluded. If “pairing_dict” is set selected for comparison_function and pairing_function is None, this argument is necessary to construct the dictionary. Otherwise, this argument is optional and by default this value is set to None and all values are considered.

  • +
  • nodata (Optional[Number], default = None) – No data value to write to agreement map output. This will use rxr.rio.write_nodata(nodata).

  • +
  • encode_nodata (Optional[bool], default = False) – Encoded no data value to write to agreement map output. A nodata argument must be passed. This will use rxr.rio.write_nodata(nodata, encode=encode_nodata).

  • +
  • subsampling_df (Optional[gpd.GeoDataFrame], default = None) – DataFrame with geometries to subsample data with or use as an exclusionary mask

  • +
  • continuous (bool, default = False) – Whether to return modified candidate and benchmark maps

  • +
+
+
Returns:
+

Agreement map.

+
+
Return type:
+

Union[Union[xr.Dataset, xr.DataArray, List[Union[xr.Dataset, xr.DataArray]]]]

+
+
+
+ +
+
+compute_crosstab(agreement_map: DataArray | Dataset | Iterable[DataArray | Dataset] | None = None, subsampling_df: GeoDataFrame | None = None) DataFrame[Crosstab_df]
+

Crosstab 2 or 3-dimensional xarray DataArray to produce Crosstab DataFrame.

+
+
Parameters:
+
    +
  • agreement_map (Union[xr.Dataset, xr.DataArray], default = None) – Benchmark map, {dimension}-dimensional.

  • +
  • subsampling_df (Optional[gpd.GeoDataFrame], default = None) – DataFrame with spatial geometries and method types to subsample

  • +
+
+
Returns:
+

Crosstab DataFrame

+
+
Return type:
+

DataFrame[Crosstab_df]

+
+
+
+ +
+
+cont_plot(title: str = 'Continuous Map', colormap: str = 'viridis', figsize: Tuple[int, int] | None = None, plot_bands: str | list = 'all', colorbar_label: str | list = '', basemap: TileProvider = {'attribution': '(C) OpenStreetMap contributors', 'html_attribution': '&copy; <a href="https://www.openstreetmap.org/copyright">OpenStreetMap</a> contributors', 'max_zoom': 19, 'name': 'OpenStreetMap.Mapnik', 'url': 'https://tile.openstreetmap.org/{z}/{x}/{y}.png'})
+

Plots categorical Map for xarray object

+
+
Parameters:
+
    +
  • title (str) – Title of map, default = “Categorical Map”

  • +
  • colormap (str, default = "viridis") – Colormap of data

  • +
  • figsize (tuple[int, int], default=None) – Size of the plot

  • +
  • plot_bands (Union[str, list], default='all') – What bands to plot

  • +
  • colorbar_label (Union[str, list], default ="") – Label or labels for colorbar in the case of continuous plots

  • +
  • basemap (Union[bool, xyzservices.lib.TileProvider], default = cx.providers.Stamen.Terrain) – Add basemap to the plot

  • +
+
+
+

References

+ +
+ +
+
+continuous_compare(benchmark_map: GeoDataFrame | Dataset | DataArray, metrics: str | Iterable[str] = 'all', target_map: Dataset | str | None = 'benchmark', resampling: Resampling | None = Resampling.nearest, nodata: Number | None = None, encode_nodata: bool | None = False, rasterize_attributes: list | None = None, attribute_tracking: bool = False, attribute_tracking_kwargs: Dict | None = None, subsampling_df: GeoDataFrame | None = None, subsampling_average: str = 'none') Tuple[Tuple[Dataset | DataArray, DataFrame[Metrics_df]] | Tuple[Dataset | DataArray, DataFrame[Metrics_df], DataFrame[AttributeTrackingDf]]]
+

Computes comparison between two continuous value xarray’s.

+
+
Conducts the following steps:
    +
  • homogenize: aligns data types, spatial alignment, and rasterizes data

  • +
  • compute_agreement: computes agreement map which is error or candidate minus benchmark

  • +
  • compute_metrics: computes metrics

  • +
+
+
+

Spatially aligning the xarray’s produces copies of the original candidate and benchmark maps. To reduce memory usage, consider using the homogenize() accessor method to overwrite the original maps in memory or saving them on disk.

+
+
Parameters:
+
    +
  • benchmark_map (Union[gpd.GeoDataFrame, xr.DataArray, xr.Dataset]) – Benchmark map.

  • +
  • metrics (Union[str, Iterable[str]], default = "all") – Statistics to return in metric table. This can be seen with gval.ContStats.available_functions().

  • +
  • target_map (Optional[Union[xr.Dataset, str]], default = "benchmark") – xarray object to match the CRS’s and coordinates of candidates and benchmarks to or str with ‘candidate’ or ‘benchmark’ as accepted values.

  • +
  • resampling (rasterio.enums.Resampling) – See rasterio.warp.reproject() for more details.

  • +
  • nodata (Optional[Number], default = None) – No data value to write to agreement map output. This will use rxr.rio.write_nodata(nodata).

  • +
  • encode_nodata (Optional[bool], default = False) – Encoded no data value to write to agreement map output. A nodata argument must be passed. This will use rxr.rio.write_nodata(nodata, encode=encode_nodata).

  • +
  • rasterize_attributes (Optional[list], default = None) – Numerical attributes of a GeoDataFrame to rasterize.

  • +
  • attribute_tracking (bool, default = False) – Whether to return a dataframe with the attributes of the candidate and benchmark maps.

  • +
  • attribute_tracking_kwargs (Optional[Dict], default = None) – Keyword arguments to pass to gval.attribute_tracking(). This is only used if attribute_tracking is True. By default, agreement maps are used for attribute tracking but this can be set to None within this argument to override. See gval.attribute_tracking for more information.

  • +
  • subsampling_df (Optional[gpd.GeoDataFrame], default = None) – DataFrame with spatial geometries and method types to subsample

  • +
  • subsampling_average (str, default = None) – Way to aggregate statistics for subsamples if provided. Options are “sample”, “band”, “weighted”, and “none” +Sample calculates metrics and averages the results by subsample +Band calculates metrics and averages all the metrics by band +Weighted calculates metrics, scales by the weight and then averages them based on the weights +Full-detail provides full detailed table

  • +
+
+
Returns:
+

    +
  • Union[ – Tuple[Union[xr.Dataset, xr.DataArray], DataFrame[Metrics_df]], +Tuple[Union[xr.Dataset, xr.DataArray], DataFrame[Metrics_df], DataFrame[AttributeTrackingDf]]

  • +
  • ] – Tuple with agreement map and metric table, possibly attribute tracking table as well.

  • +
+

+
+
+
+ +
+
+homogenize(benchmark_map: GeoDataFrame | Dataset | DataArray, target_map: Dataset | str | None = 'benchmark', resampling: Resampling | None = Resampling.nearest, rasterize_attributes: list | None = None) Dataset | DataArray
+

Homogenize candidate and benchmark maps to prepare for comparison.

+
+
Currently supported operations include:
    +
  • Matching projections and coordinates (spatial alignment)

  • +
  • Homogenize file formats (xarray/rasters)

  • +
  • Homogenize numerical data types (int, float, etc.).

  • +
+
+
+
+
Parameters:
+
    +
  • benchmark_map (Union[gpd.GeoDataFrame, xr.Dataset, xr.DataArray]) – Benchmark map.

  • +
  • target_map (Optional[Union[xr.DataArray, xr.Dataset, str]], default = "benchmark") – xarray object to match candidates and benchmarks to or str with ‘candidate’ or ‘benchmark’ as accepted values.

  • +
  • resampling (rasterio.enums.Resampling) – See rasterio.warp.reproject() for more details.

  • +
  • rasterize_attributes (Optional[list], default = None) – Numerical attributes of a GeoDataFrame to rasterize

  • +
+
+
Returns:
+

Tuple with candidate and benchmark map respectively.

+
+
Return type:
+

Union[xr.Dataset, xr.DataArray]

+
+
+
+ +
+
+vectorize_data() GeoDataFrame
+

Vectorize an xarray DataArray or Dataset

+
+
Returns:
+

Vectorized data

+
+
Return type:
+

gpd.GeoDataFrame

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/index.html b/index.html new file mode 100644 index 00000000..3d40df9b --- /dev/null +++ b/index.html @@ -0,0 +1,276 @@ + + + + + + + GVAL Documentation — GVAL documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

GVAL Documentation

+

alttext

+

Build andTestCoveragePyPIversion

+

GVAL (pronounced “g-val”) is a high-level Python framework to evaluate +the skill of geospatial datasets by comparing candidates to benchmark +maps producing agreement maps and metrics.

+

GVAL is intended to work on raster and vector files as xarray and +geopandas objects, respectively. Abilities to prepare or homogenize maps +for comparison are included. The comparisons are based on scoring +philosophies for three statistical data types including categorical, +continuous, and probabilistic.

+

See the full documentation here.

+

WARNING:

+
    +
  • Our current public API and output formats are likely to change in the +future.

  • +
  • Software is provided “AS-IS” without any guarantees. Please QA/QC your +metrics carefully until this project matures.

  • +
+
+

Installation

+
+

General Use

+

To use this package:

+

pip install gval

+

Or for bleeding edge updates install from the repository:

+

pip install 'git+https://github.com/NOAA-OWP/gval'

+
+
+
+

Using GVAL

+

An example of running the entire process for two-class categorical +rasters with one function using minimal arguments is demonstrated below:

+
import gval
+import rioxarray as rxr
+
+candidate = rxr.open_rasterio('candidate_map_two_class_categorical.tif', mask_and_scale=True)
+benchmark = rxr.open_rasterio('benchmark_map_two_class_categorical.tif', mask_and_scale=True)
+
+(agreement_map,
+ crosstab_table,
+ metric_table) = candidate.gval.categorical_compare(benchmark,
+                                                   positive_categories=[2],
+                                                   negative_categories=[0, 1])
+
+
+
+

Outputs

+

agreement_map

+ +

crosstab_table

+ +

metric_table

+ +

For more details on how to use this software, check out this notebook +tutorial.

+
+
+
+

Contributing

+

Guidelines for contributing to this repository can be found at +CONTRIBUTING.

+
+
+

Citation

+

Please cite our work if using this package. See ‘cite this repository’ +in the about section on GitHub or +refer to +CITATION.cff

+
+
+ +
+

Indices and tables

+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/loading_datasets.html b/loading_datasets.html new file mode 100644 index 00000000..8828b6c6 --- /dev/null +++ b/loading_datasets.html @@ -0,0 +1,230 @@ + + + + + + + Loading Datasets — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Loading Datasets

+

Return to Homepage

+

Functions to load datasets

+
+
+gval.utils.loading_datasets.adjust_memory_strategy(strategy: str)
+

Tells GVAL how to address handling memory. There are three modes currently available:

+

normal: Keeps all of xarray files in memory as usual +moderate: Either creates cloud optimized geotiffs and stores as temporary files and reloads or reloads file +to be in lazily loaded stated +aggressive: Does the same as moderate except loads with no cache so everything is read from disk

+

There are tradeoffs with performance for choosing a strategy that conserves memory, adjust only as needed.

+
+
Parameters:
+

strategy (str, {'normal', 'moderate', 'aggressive'}) – Method to conserve memory

+
+
Raises:
+

ValueError

+
+
+
+ +
+
+gval.utils.loading_datasets.get_current_memory_strategy() str
+

Gets the current memory_strategy

+
+
Returns:
+

Memory optimization strategy

+
+
Return type:
+

str

+
+
+
+ +
+
+gval.utils.loading_datasets.load_raster_as_xarray(filename: str | PathLike | DatasetReader | WarpedVRT, parse_coordinates: bool | None = None, chunks: int | Tuple | Dict | None = None, cache: bool | None = None, lock: Any | None = None, masked: bool | None = False, mask_and_scale: bool | None = False, default_name: str | None = None, band_as_variable: bool | None = False, **open_kwargs) DataArray | Dataset
+

Wraps around rioxarray.open_rasterio providing control over some arguments.

+
+

Deprecated since version 0.0.2: load_raster_as_xarray will be removed in gval 0.0.2. Use rioxarray.open_rasterio instead

+
+
+
Parameters:
+
    +
  • filename (Union[ str, os.PathLike, rasterio.io.DatasetReader, rasterio.vrt.WarpedVRT ]) – Path to the file to open. Or already open rasterio dataset

  • +
  • parse_coordinates (Optional[bool], default = None) – Whether to parse the x and y coordinates out of the file’s +transform attribute or not. The default is to automatically +parse the coordinates only if they are rectilinear (1D). +It can be useful to set parse_coordinates=False +if your files are very large or if you don’t need the coordinates.

  • +
  • chunks (Optional[Union[int, Tuple, Dict]], default = None) – Chunk sizes along each dimension, e.g., 5, (5, 5) or +{'x': 5, 'y': 5}. If chunks is provided, it used to load the new +DataArray into a dask array. Chunks can also be set to +True or "auto" to choose sensible chunk sizes according to +dask.config.get("array.chunk-size").

  • +
  • cache (Optional[bool], default = None) – If True, cache data loaded from the underlying datastore in memory as +NumPy arrays when accessed to avoid reading from the underlying data- +store multiple times. Defaults to True unless you specify the chunks +argument to use dask, in which case it defaults to False.

  • +
  • lock (Optional[Any], default = None) –

    If chunks is provided, this argument is used to ensure that only one +thread per process is reading from a rasterio file object at a time.

    +

    By default and when a lock instance is provided, +a xarray.backends.CachingFileManager is used to cache File objects. +Since rasterio also caches some data, this will make repeated reads from the +same object fast.

    +

    When lock=False, no lock is used, allowing for completely parallel reads +from multiple threads or processes. However, a new file handle is opened on +each request.

    +

  • +
  • masked (Optional[bool], default = False) – If True, read the mask and set values to NaN. Defaults to False.

  • +
  • mask_and_scale (Optional[bool], default = False) – Lazily scale (using the scales and offsets from rasterio) and mask. +If the _Unsigned attribute is present treat integer arrays as unsigned.

  • +
  • default_name (Optional[str], default = None) – The name of the data array if none exists. Default is None.

  • +
  • band_as_variable (Optional[bool], default = False) – If True, will load bands in a raster to separate variables.

  • +
  • open_kwargs (kwargs, default = None) – Optional keyword arguments to pass into rasterio.open().

  • +
+
+
Returns:
+

Loaded data.

+
+
Return type:
+

Union[xr.DataArray, xr.Dataset]

+
+
+

References

+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/objects.inv b/objects.inv new file mode 100644 index 00000000..2f204021 Binary files /dev/null and b/objects.inv differ diff --git a/pairing_functions.html b/pairing_functions.html new file mode 100644 index 00000000..0108fa60 --- /dev/null +++ b/pairing_functions.html @@ -0,0 +1,155 @@ + + + + + + + Pairing Functions — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Pairing Functions

+

Return to Homepage

+
+
Comparison functionality
    +
  • Includes pairing and comparison functions

  • +
  • crosstabbing functionality

  • +
  • Would np.meshgrid lend itself to pairing problem?

  • +
+
+
+
+
+class gval.comparison.pairing_functions.PairingDict(*args, **kwargs)
+

Pairing dictionary class that enables to replace np.nans with a different value as np.nan != np.nan.

+
+
Parameters:
+

dict (dict) – Parent class.

+
+
+
+
+replacement_value
+

Value to use instead of np.nan.

+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/py-modindex.html b/py-modindex.html new file mode 100644 index 00000000..587869b8 --- /dev/null +++ b/py-modindex.html @@ -0,0 +1,190 @@ + + + + + + Python Module Index — GVAL documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Python Module Index

+ +
+ g +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ g
+ gval +
    + gval.accessors.gval_array +
    + gval.accessors.gval_dataframe +
    + gval.accessors.gval_dataset +
    + gval.accessors.gval_xarray +
    + gval.comparison.compute_comparison +
    + gval.comparison.pairing_functions +
    + gval.statistics.categorical_stat_funcs +
    + gval.statistics.categorical_statistics +
    + gval.statistics.continuous_stat_funcs +
    + gval.statistics.continuous_statistics +
    + gval.utils.exceptions +
    + gval.utils.loading_datasets +
    + gval.utils.schemas +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/schemas.html b/schemas.html new file mode 100644 index 00000000..4bef66b1 --- /dev/null +++ b/schemas.html @@ -0,0 +1,530 @@ + + + + + + + Schemas — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Schemas

+

Return to Homepage

+

DataFrame Schemas with Pandera.

+
+
+class gval.utils.schemas.AttributeTrackingDf(*args, **kwargs)
+

Defines the schema for output of _attribute_tracking_xarray() +The attributes could be of any datatype. For instance, if your attributes are of float type, +you can use Series[float] instead of Series[object].

+
+
+class Config
+
+
+coerce = True
+
+ +
+
+name = 'AttributeTrackingDf'
+
+ +
+
+strict = False
+
+ +
+ +
+
+attribute_1_benchmark: Series[object] | None = 'attribute_1_benchmark'
+
+ +
+
+attribute_1_candidate: Series[object] | None = 'attribute_1_candidate'
+
+ +
+
+attribute_2_benchmark: Series[object] | None = 'attribute_2_benchmark'
+
+ +
+
+attribute_2_candidate: Series[object] | None = 'attribute_2_candidate'
+
+ +
+
+classmethod validate_column_suffixes(df: DataFrame, candidate_suffix: str, benchmark_suffix: str) Series[bool]
+

Checks that each column name in the dataframe ends with either ‘_candidate’ or ‘_benchmark’.

+
+ +
+ +
+
+class gval.utils.schemas.Conditions_df(*args, **kwargs)
+

Cateogrical conditions df

+

Inherits columns from Sample_identifiers

+
+
+class Config
+
+
+coerce = True
+
+ +
+
+name = 'Conditions_df'
+
+ +
+
+ordered = False
+
+ +
+ +
+
+fn: Series[float] | None = 'fn'
+
+ +
+
+fp: Series[float] | None = 'fp'
+
+ +
+
+tn: Series[float] | None = 'tn'
+
+ +
+
+tp: Series[float] | None = 'tp'
+
+ +
+ +
+
+class gval.utils.schemas.Crosstab_df(*args, **kwargs)
+

Crosstab DF schema

+

Inherits columns from Sample_identifiers

+
+
+class Config
+
+
+coerce = True
+
+ +
+
+name = 'Crosstab_df'
+
+ +
+
+strict = True
+
+ +
+ +
+
+agreement_values: Series[float] | None = 'agreement_values'
+
+ +
+
+benchmark_values: Series = 'benchmark_values'
+
+ +
+
+candidate_values: Series = 'candidate_values'
+
+ +
+
+counts: Series[float] = 'counts'
+
+ +
+ +
+
+class gval.utils.schemas.Metrics_df(*args, **kwargs)
+

Metrics DF schema

+

Inherits columns from Conditions_df

+
+
+class Config
+
+
+coerce = True
+
+ +
+
+name = 'Metrics_df'
+
+ +
+
+strict = False
+
+ +
+ +
+ +
+
+class gval.utils.schemas.Pivoted_crosstab_df(*args, **kwargs)
+

Pivoted Crosstab DF schema

+
+
+class Config
+
+
+coerce = True
+
+ +
+
+name = 'Pivoted_crosstab_df'
+
+ +
+
+strict = True
+
+ +
+ +
+
+col_idx: Series[str] = 'col_idx'
+
+ +
+
+classmethod column_index_name(df: DataFrame) Series[bool]
+

Checks that column index name is ‘benchmark_values’

+
+ +
+
+row_idx: Index[Int64] = <Schema Index(name=candidate_values, type=None)>
+
+ +
+ +
+
+class gval.utils.schemas.Sample_identifiers(*args, **kwargs)
+

Crosstab DF schema

+
+
+class Config
+
+
+coerce = True
+
+ +
+
+name = 'Sample_identifiers'
+
+ +
+
+strict = True
+
+ +
+ +
+
+band: Series[str] = 'band'
+
+ +
+
+idx: Index[Int64] = 'idx'
+
+ +
+ +
+
+class gval.utils.schemas.Subsample_identifiers(*args, **kwargs)
+

Crosstab DF schema

+
+
+class Config
+
+
+coerce = True
+
+ +
+
+name = 'Subsample_identifiers'
+
+ +
+
+strict = True
+
+ +
+ +
+
+idx: Index[Int64] = 'idx'
+
+ +
+
+subsample: Series[str] | None = 'subsample'
+
+ +
+ +
+
+class gval.utils.schemas.SubsamplingDf(*args, **kwargs)
+

Defines the schema for subsampling DataFrame`

+
+
+class Config
+
+
+coerce = True
+
+ +
+
+name = 'SubsamplingDf'
+
+ +
+
+strict = False
+
+ +
+ +
+
+geometry: Series[Geometry] = 'geometry'
+
+ +
+
+subsample_id: Series[int] = 'subsample_id'
+
+ +
+
+subsample_type: Series[str] = 'subsample_type'
+
+ +
+
+weights: int | float | None = 'weights'
+
+ +
+ +
+
+class gval.utils.schemas.Xrspatial_crosstab_df(*args, **kwargs)
+

Defines the schema for output of xrspatial.zonal.crosstab()

+
+
+class Config
+
+
+coerce = True
+
+ +
+
+name = 'Xrspatial_crosstab_df'
+
+ +
+
+strict = False
+
+ +
+ +
+
+zone: Series[float] = 'zone'
+
+ +
+ +
+
+class gval.utils.schemas.columns_method(*args, **kwargs)
+

Defines base data frame model with columns method

+
+
+class Config
+
+
+name: str | None = 'columns_method'
+

name of schema

+
+ +
+ +
+
+classmethod columns() List[str]
+

Gives access to columns from DataFrameModel

+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/search.html b/search.html new file mode 100644 index 00000000..090563fe --- /dev/null +++ b/search.html @@ -0,0 +1,125 @@ + + + + + + Search — GVAL documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+ +
+
+
+
+ + + + + + + + + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js new file mode 100644 index 00000000..35162e1c --- /dev/null +++ b/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["SphinxContinuousTutorial", "SphinxMulticatTutorial", "SphinxTutorial", "api", "categorical_stat_funcs", "categorical_statistics", "comparison", "compute_comparison", "continuous_stat_funcs", "continuous_statistics", "contributing", "exceptions", "extension", "gval_array", "gval_dataframe", "gval_dataset", "gval_xarray", "index", "loading_datasets", "pairing_functions", "schemas", "statistics", "tutorials", "utils"], "filenames": ["SphinxContinuousTutorial.ipynb", "SphinxMulticatTutorial.ipynb", "SphinxTutorial.ipynb", "api.rst", "categorical_stat_funcs.rst", "categorical_statistics.rst", "comparison.rst", "compute_comparison.rst", "continuous_stat_funcs.rst", "continuous_statistics.rst", "contributing.rst", "exceptions.rst", "extension.rst", "gval_array.rst", "gval_dataframe.rst", "gval_dataset.rst", "gval_xarray.rst", "index.rst", "loading_datasets.rst", "pairing_functions.rst", "schemas.rst", "statistics.rst", "tutorials.rst", "utils.rst"], "titles": ["Continuous Comparisons", "Multi-Class Categorical Comparisons", "Two-Class Categorical Comparisons", "GVAL API", "Categorical Statistics Functions", "Categorical Statistics", "Comparison", "Compute Comparison", "Continuous Statistics Functions", "Continuous Statistics", "Contributing", "Exceptions", "Core Operations", "Xarray DataArray Functionality", "DataFrame Functionality", "Xarray Dataset Functionality", "Shared Xarray Functionality", "GVAL Documentation", "Loading Datasets", "Pairing Functions", "Schemas", "Statistics", "Tutorials", "Utilities"], "terms": {"1": [0, 1, 2, 4, 8, 14, 16, 17, 18], "import": [0, 1, 2, 17], "numpi": [0, 1, 2, 10, 18], "np": [0, 1, 2, 16, 19], "xarrai": [0, 1, 2, 3, 12, 17, 18], "xr": [0, 1, 7, 8, 13, 14, 15, 16, 18], "rioxarrai": [0, 1, 2, 17, 18], "rxr": [0, 1, 2, 16, 17], "In": [0, 1, 2, 10], "thi": [0, 1, 2, 10, 14, 16, 17, 18], "exampl": [0, 1, 2, 10, 14, 16, 17], "variabl": [0, 18], "infiltr": 0, "capac": 0, "model": [0, 20], "total": 0, "annual": 0, "conu": 0, "precipit": 0, "2011": 0, "prism": 0, "also": [0, 2, 10, 16, 18], "livneh": 0, "b": [0, 2, 10, 16], "e": [0, 1, 18], "A": [0, 2, 16], "rosenberg": 0, "c": [0, 2, 16], "lin": 0, "nijssen": 0, "v": [0, 1, 10], "mishra": 0, "k": [0, 1], "m": [0, 10], "andreadi": 0, "p": 0, "maurer": 0, "d": [0, 10], "lettenmai": 0, "2013": 0, "long": 0, "term": [0, 10], "hydrolog": 0, "base": [0, 8, 16, 17, 20], "land": 0, "surfac": 0, "flux": 0, "state": [0, 18], "contermin": 0, "unit": [0, 2, 10], "updat": [0, 17], "extens": 0, "journal": 0, "climat": 0, "26": 0, "9384": 0, "8364": 0, "9392": 0, "http": [0, 4, 16, 17], "psl": 0, "noaa": [0, 17], "gov": [0, 4], "data": [0, 2, 10, 13, 14, 15, 16, 17, 18, 20], "grid": 0, "html": [0, 10], "group": 0, "oregon": 0, "univers": 0, "oregonst": 0, "edu": 0, "creat": [0, 10, 16, 18], "4": [0, 1, 2], "feb": 0, "2014": 0, "access": [0, 10, 17, 18, 20], "16": [0, 2], "dec": 0, "2020": 0, "recent": 0, "2": [0, 1, 2, 10, 14, 16, 17, 18], "candid": [0, 1, 2, 8, 14, 16, 17], "open_rasterio": [0, 1, 2, 17, 18], "livneh_2011_precip": 0, "tif": [0, 1, 2, 17], "mask_and_scal": [0, 1, 2, 17, 18], "true": [0, 1, 2, 4, 16, 17, 18, 20], "vic": 0, "benchmark": [0, 1, 2, 8, 14, 16, 17], "prism_2011_precip": 0, "3": [0, 1, 2, 4, 10, 14, 16], "metric_t": [0, 2, 17], "continuous_compar": [0, 16], "The": [0, 1, 2, 10, 14, 17, 18, 20], "case": [0, 1, 2, 10, 16, 18], "simpli": 0, "differ": [0, 19], "between": [0, 4, 16], "two": [0, 1, 10, 16, 17, 22], "cont_plot": [0, 16], "titl": [0, 1, 2, 16], "figsiz": [0, 1, 16], "6": [0, 1, 2], "lt": [0, 1, 2], "matplotlib": [0, 1, 2, 16], "collect": [0, 1, 2], "quadmesh": [0, 1, 2], "0x7f01f38bba60": 0, "gt": [0, 1, 2], "i": [0, 1, 2, 4, 10, 14, 16, 17, 18, 20], "bit": 0, "difficult": 0, "see": [0, 16, 17], "extrem": 0, "valu": [0, 1, 2, 4, 5, 7, 9, 14, 16, 18, 19], "ar": [0, 1, 2, 10, 14, 16, 17, 18, 20], "mask": [0, 2, 14, 16, 18], "out": [0, 4, 17, 18], "look": [0, 10], "like": [0, 2, 10, 17], "follow": [0, 1, 2, 10, 16], "5": [0, 1, 2, 10, 18], "where": [0, 16], "nanquantil": 0, "0": [0, 1, 2, 4, 10, 14, 16, 17, 18], "0001": 0, "9999": 0, "nan": [0, 2, 16, 18, 19], "0x7f01f385b430": 0, "contain": [0, 2, 10], "inform": [0, 2, 16], "about": [0, 2, 17], "analysi": [0, 2], "singl": [0, 2, 16], "band": [0, 1, 2, 14, 16, 18, 20], "select": [0, 2, 4, 16], "sinc": [0, 2, 18], "we": [0, 1, 2], "did": [0, 2], "provid": [0, 1, 2, 8, 14, 16, 17, 18], "argument": [0, 1, 2, 5, 7, 9, 10, 14, 16, 17, 18], "comput": [0, 2, 3, 4, 6, 8, 14, 16, 17], "all": [0, 1, 2, 5, 7, 9, 10, 14, 16, 18], "avail": [0, 2, 5, 7, 9, 16, 18], "statist": [0, 1, 2, 3, 7, 14, 16, 17], "transpos": [0, 1, 2], "coefficient_of_determin": [0, 8], "685261": 0, "mean_absolute_error": [0, 8], "216": 0, "089706": 0, "mean_absolute_percentage_error": [0, 8], "319234": 0, "mean_normalized_mean_absolute_error": [0, 8], "267845": 0, "mean_normalized_root_mean_squared_error": [0, 8], "372578": 0, "mean_percentage_error": [0, 8], "010022": 0, "mean_signed_error": [0, 8], "8": [0, 1, 2, 10], "085411": 0, "mean_squared_error": [0, 8], "90351": 0, "664062": 0, "range_normalized_mean_absolute_error": [0, 8], "033065": 0, "range_normalized_root_mean_squared_error": [0, 8], "045995": 0, "root_mean_squared_error": [0, 8], "300": 0, "585541": 0, "symmetric_mean_absolute_percentage_error": [0, 8], "269394": 0, "asid": [0, 2], "form": [0, 2], "entir": [0, 1, 2, 5, 7, 9, 17], "process": [0, 1, 2, 7, 10, 17, 18], "possibl": [0, 2, 5, 7, 9, 16], "each": [0, 1, 2, 14, 16, 18, 20], "step": [0, 2, 10, 16], "individu": [0, 17], "homogen": [0, 2, 16, 17], "an": [0, 1, 2, 5, 7, 9, 10, 14, 16, 17], "allow": [0, 2, 16, 18], "flexibl": [0, 2], "workflow": [0, 1, 2], "so": [0, 1, 2, 18], "user": [0, 2, 10, 16], "mai": [0, 2], "much": [0, 2], "littl": [0, 2], "function": [0, 1, 3, 5, 6, 7, 9, 12, 17, 18, 21], "need": [0, 2, 18], "just": [0, 2], "can": [0, 1, 2, 8, 10, 16, 17, 18, 20], "done": [0, 1, 2], "7": [0, 1, 2], "benchmark_map": [0, 2, 8, 16], "target_map": [0, 2, 16], "default": [0, 2, 10, 14, 16, 18], "comparison_funct": [0, 1, 2, 16], "onli": [0, 1, 2, 14, 16, 18], "It": [0, 2, 16, 18], "would": [0, 1, 2, 10, 19], "advis": 0, "categor": [0, 3, 14, 16, 17, 21, 22], "cantor": [0, 1, 2], "szudzik": [0, 1, 2, 16], "pair": [0, 1, 3, 6, 7, 16, 17], "dicitonari": 0, "becaus": [0, 1], "could": [0, 16, 20], "result": [0, 2, 14, 16], "veri": [0, 1, 18], "larg": [0, 18], "number": [0, 2, 4, 8, 14, 16], "class": [0, 5, 7, 9, 13, 14, 15, 16, 17, 19, 20, 22], "agreement_map": [0, 1, 2, 16, 17], "compute_agreement_map": [0, 1, 2, 16], "0x7f01f37525c0": 0, "abritrari": 0, "custom": [0, 11, 17], "regist": [0, 2, 5, 7, 9, 16], "9": [0, 1, 2], "from": [0, 1, 2, 4, 7, 8, 10, 14, 16, 17, 18, 20], "register_funct": [0, 2, 5, 7, 9], "name": [0, 2, 5, 7, 9, 10, 16, 18, 20], "divid": 0, "vectorize_func": [0, 2, 5, 7, 9], "def": [0, 2], "multipli": [0, 2], "return": [0, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "0x7f01f3635cc0": 0, "cateogr": [0, 20], "take": [0, 2, 10], "list": [0, 2, 5, 7, 9, 14, 16, 20], "desir": [0, 2], "10": [0, 1, 2], "_": 0, "215": 0, "106232": 0, "89814": 0, "117188": 0, "you": [0, 2, 10, 18, 20], "abl": [0, 2], "both": [0, 2, 4, 8, 16], "method": [0, 1, 2, 14, 16, 18, 20], "below": [0, 2, 10, 17], "11": [0, 1, 2], "type": [0, 2, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 20], "union": [0, 5, 7, 8, 9, 14, 16, 18], "contstat": [0, 16], "min_error": 0, "error": [0, 4, 8, 16], "dataarrai": [0, 3, 7, 8, 12, 14, 16, 17, 18], "float": [0, 2, 4, 5, 9, 14, 16, 20], "min": 0, "associ": [0, 2, 5, 7, 9, 10], "respond": [0, 2], "": [0, 1, 2, 16, 18], "12": [0, 1, 2], "register_function_class": [0, 2, 5, 7, 9], "metricfunct": [0, 2], "staticmethod": [0, 2], "median_error": 0, "median": 0, "max_error": 0, "max": 0, "13": [0, 1, 2], "3035": 0, "655273": 0, "25": [0, 14, 16], "858208": 0, "4263": 0, "23291": 0, "final": [0, 1, 2], "them": [0, 1, 2, 10, 14, 16], "directori": [0, 2, 10], "choic": [0, 2, 10], "14": [0, 1, 2], "agreement_fil": [0, 1, 2], "continuous_agreement_map": 0, "metric_fil": [0, 1, 2], "continuous_metric_fil": 0, "csv": [0, 1, 2], "rio": [0, 1, 2, 16], "to_rast": [0, 1, 2], "to_csv": [0, 1, 2], "gval": [1, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20], "panda": [1, 14, 16], "pd": [1, 14], "itertool": 1, "product": 1, "set_opt": 1, "displai": [1, 2], "max_column": 1, "none": [1, 2, 14, 16, 18, 20], "candidate_map_multi_categor": 1, "benchmark_map_multi_categor": 1, "depth_rast": 1, "candidate_raw_elevation_multi_categor": 1, "although": [1, 2], "one": [1, 2, 14, 17, 18], "call": [1, 14], "categorical_compar": [1, 2, 16, 17], "run": [1, 5, 9, 10, 17], "creation": [1, 14], "separ": [1, 18], "show": 1, "more": [1, 2, 10, 14, 16, 17], "option": [1, 14, 16, 18], "candidate_r": 1, "benchmark_r": 1, "depth_raster_r": 1, "arb": 1, "del": 1, "dictionari": [1, 5, 9, 16, 17, 19], "which": [1, 2, 16, 18], "combin": [1, 2], "uniqu": [1, 2], "encod": [1, 2, 16], "concaten": [1, 16], "what": [1, 16], "instead": [1, 2, 18, 19, 20], "us": [1, 2, 13, 14, 15, 16, 18, 19, 20], "g": [1, 17, 18], "repres": [1, 2, 14, 16], "pairing_dictionari": 1, "x": [1, 2, 16, 18], "y": [1, 16, 18], "int": [1, 14, 16, 18, 20], "f": [1, 4, 10], "first": [1, 2, 10], "entri": [1, 14], "print": 1, "n": 1, "join": 1, "item": 1, "15": [1, 2], "21": 1, "ha": [1, 2, 14], "extra": 1, "similar": 1, "nodata": [1, 2, 16], "includ": [1, 2, 16, 17, 19], "allow_benchmark_valu": [1, 2, 16], "255": 1, "encode_nodata": [1, 2, 16], "pairing_dict": [1, 2, 7, 16], "allow_candidate_valu": [1, 2, 16], "crosstab": [1, 14, 16, 19, 20], "compute_crosstab": [1, 2, 16], "small": 1, "subset": 1, "memori": [1, 10, 16, 18], "purpos": 1, "cat_plot": [1, 2, 16], "colormap": [1, 16], "tab20b": 1, "0x7f99a1e34b50": 1, "For": [1, 10, 14, 16, 17, 20], "offer": 1, "averag": [1, 14, 16], "No": [1, 16], "metric": [1, 5, 9, 14, 16, 17, 20], "basi": 1, "micro": [1, 14, 16], "sum": [1, 14, 16], "up": [1, 10], "conting": 1, "defin": [1, 20], "either": [1, 8, 16, 18, 20], "posit": [1, 2, 4, 14, 16], "neg": [1, 2, 4, 14, 16], "macro": [1, 14, 16], "weight": [1, 14, 16, 20], "doe": [1, 2, 10, 14, 16, 18], "inclus": [1, 14], "appli": [1, 2], "categori": [1, 2, 14, 16], "methodologi": 1, "report": [1, 10], "no_averaged_metr": 1, "compute_categorical_metr": [1, 2, 14], "positive_categori": [1, 2, 14, 16, 17], "negative_categori": [1, 2, 14, 16, 17], "fn": [1, 2, 4, 14, 16, 20], "1043": 1, "318274": 1, "516572": 1, "364147": 1, "fp": [1, 2, 4, 14, 16, 20], "172762": 1, "561004": 1, "462496": 1, "3775": 1, "tn": [1, 2, 4, 14, 16, 20], "1043592": 1, "653360": 1, "422623": 1, "693617": 1, "852206": 1, "tp": [1, 2, 4, 14, 16, 20], "953": 1, "12967": 1, "2396": 1, "accuraci": [1, 2, 4], "857963": 1, "537927": 1, "358109": 1, "57221": 1, "700622": 1, "balanced_accuraci": [1, 2, 4], "428984": 1, "507741": 1, "258311": 1, "499602": 1, "critical_success_index": [1, 2, 4], "001693": 1, "016337": 1, "004584": 1, "000005": 1, "equitable_threat_scor": [1, 2, 4], "000055": 1, "175401": 1, "000455": 1, "f_score": [1, 2, 4], "00338": 1, "032148": 1, "009125": 1, "000011": 1, "false_discovery_r": [1, 2, 4], "998304": 1, "972728": 1, "611732": 1, "714286": 1, "false_negative_r": [1, 2, 4], "522545": 1, "960853": 1, "995383": 1, "999995": 1, "false_omission_r": [1, 2, 4], "000006": 1, "001594": 1, "429579": 1, "426852": 1, "299376": 1, "false_positive_r": [1, 2, 4], "142033": 1, "461974": 1, "522524": 1, "005413": 1, "fowlkes_mallows_index": [1, 2, 4], "028455": 1, "032675": 1, "042339": 1, "001253": 1, "matthews_correlation_coeffici": [1, 2, 4], "000904": 1, "001257": 1, "440983": 1, "005543": 1, "000072": 1, "negative_likelihood_ratio": [1, 2, 4], "165546": 1, "971226": 1, "01236": 1, "000801": 1, "negative_predictive_valu": [1, 2, 4], "999994": 1, "998406": 1, "570421": 1, "573148": 1, "700624": 1, "overall_bia": [1, 2, 4], "28793": 1, "666667": 1, "281": 1, "541583": 1, "435399": 1, "011891": 1, "000019": 1, "positive_likelihood_ratio": [1, 2, 4], "033511": 1, "074919": 1, "852916": 1, "936112": 1, "positive_predictive_valu": [1, 2, 4], "001696": 1, "027272": 1, "388268": 1, "285714": 1, "preval": [1, 2, 4], "001641": 1, "272322": 1, "426657": 1, "prevalence_threshold": [1, 2, 4], "49588": 1, "785107": 1, "519876": 1, "508252": 1, "true_negative_r": [1, 2, 4], "857967": 1, "538026": 1, "477476": 1, "994587": 1, "true_positive_r": [1, 2, 4], "477455": 1, "039147": 1, "004617": 1, "micro_averaged_metr": 1, "382": 1, "733099": 1, "481259": 1, "1620": 1, "396987": 1, "602749": 1, "002204": 1, "00056": 1, "004398": 1, "997795": 1, "190809": 1, "000793": 1, "603693": 1, "04224": 1, "017033": 1, "481468": 1, "999207": 1, "366": 1, "992507": 1, "340402": 1, "002205": 1, "001646": 1, "463444": 1, "396307": 1, "809191": 1, "equival": 1, "share": [1, 3, 12, 14, 17], "column": [1, 2, 20], "no_averaged_comp": 1, "mean": [1, 4, 8], "macro_averaged_metr": 1, "605366": 1, "438927": 1, "004524": 1, "035161": 1, "008933": 1, "85941": 1, "895755": 1, "231481": 1, "22639": 1, "020944": 1, "089249": 1, "229986": 1, "768519": 1, "5815": 1, "331112": 1, "579492": 1, "14059": 1, "661823": 1, "77361": 1, "104245": 1, "To": [1, 10, 16, 17], "further": 1, "enhanc": 1, "interest": [1, 2, 10], "order": [1, 2, 14, 16, 20], "appropri": [1, 7], "chang": [1, 2, 17], "strength": 1, "evalu": [1, 14, 17], "instanc": [1, 10, 18, 20], "vector": [1, 2, 5, 7, 9, 14, 16, 17], "notebook": [1, 17], "have": [1, 2, 10, 16], "greater": 1, "influenc": 1, "score": [1, 4, 14, 17], "refer": [1, 4, 8, 14, 16, 17, 18], "other": [1, 10], "respect": [1, 2, 16, 17], "caus": 1, "ll": 1, "let": 1, "mention": [1, 10], "weight_averaged_metr": 1, "577454": 1, "476356": 1, "003836": 1, "014789": 1, "007609": 1, "811574": 1, "835662": 1, "239133": 1, "211627": 1, "029953": 1, "03872": 1, "088901": 1, "760867": 1, "2493": 1, "443989": 1, "784138": 1, "188426": 1, "225962": 1, "573022": 1, "788373": 1, "164338": 1, "regardless": 1, "seem": 1, "though": 1, "agre": [1, 10], "now": [1, 2], "multi_categorical_agreement_map": 1, "macro_averaged_metric_fil": 1, "prefer": [2, 16], "scale": [2, 14, 16, 18], "If": [2, 10, 16, 18], "your": [2, 10, 17, 18, 20], "origin": [2, 10, 16], "assign": [2, 16], "pleas": [2, 10, 16, 17], "set_nodata": 2, "your_nodata_valu": 2, "candidate_map_two_class_categor": [2, 17], "benchmark_map_two_class_categor": [2, 17], "command": [2, 10], "minim": [2, 17], "deomnstrat": 2, "crosstab_t": [2, 17], "particular": [2, 14], "wa": 2, "pass": [2, 5, 9, 10, 16, 18], "transform": [2, 18], "nvt": 2, "support": [2, 16], "text": 2, "begin": 2, "geq": 2, "otherwis": [2, 14, 16], "end": [2, 16, 20], "ct": 2, "bt": 2, "Then": 2, "visual": [2, 10], "0x7f29fbe6d960": 2, "frequenc": 2, "presenc": [2, 10], "anoth": 2, "within": [2, 16], "spatial": [2, 11, 14, 16], "sampl": [2, 14, 16], "indic": 2, "denot": [2, 16], "addition": [2, 10], "shown": 2, "count": [2, 4, 14, 20], "occurr": [2, 14], "candidate_valu": [2, 20], "benchmark_valu": [2, 20], "agreement_valu": [2, 20], "10345720": 2, "18": 2, "639227": 2, "20": 2, "512277": 2, "24": 2, "2473405": 2, "specifi": [2, 18], "choos": [2, 18], "note": [2, 16], "requir": [2, 7, 16], "skip": 2, "917577": 2, "873727": 2, "682336": 2, "610939": 2, "811177": 2, "171578": 2, "205365": 2, "058191": 2, "04718": 2, "811352": 2, "758757": 2, "215534": 2, "941809": 2, "959215": 2, "842723": 2, "828422": 2, "222798": 2, "195925": 2, "95282": 2, "794635": 2, "intend": [2, 17], "help": [2, 10], "prepar": [2, 16, 17], "dispar": 2, "current": [2, 10, 16, 17, 18], "handl": [2, 16, 18], "three": [2, 17, 18], "set": [2, 10, 14, 16, 18], "align": [2, 11, 16], "match": [2, 16], "cr": [2, 14, 16], "coordin": [2, 16, 18], "By": [2, 10, 16, 18], "target": [2, 10], "avoid": [2, 8, 18], "precis": [2, 4], "warn": [2, 17], "dtype": 2, "highest": 2, "format": [2, 16, 17], "convers": 2, "geopanda": [2, 17], "datafram": [2, 3, 12, 16, 17, 20], "convert": 2, "same": [2, 10, 14, 16, 18], "object": [2, 13, 14, 15, 16, 17, 18, 20], "altern": [2, 17], "target_map_two_class_categor": 2, "resampl": [2, 16], "nearest": [2, 16], "applic": [2, 16], "bilinear": 2, "cubic": 2, "These": 2, "relev": 2, "continu": [2, 3, 16, 17, 21, 22], "callabl": [2, 7, 16], "0x7f2a16beb9d0": 2, "control": [2, 14, 18], "when": [2, 10, 11, 14, 16, 18], "kei": [2, 5, 7, 9, 10], "tupl": [2, 5, 9, 16, 18], "correspond": [2, 4, 14, 16], "everi": [2, 16], "full": [2, 14, 16, 17], "over": [2, 18], "basemap": [2, 16], "0x7f2a16a4e830": 2, "build": [2, 10], "built": 2, "automat": [2, 10, 18], "becom": 2, "0x7f2a14f90a00": 2, "arbitrari": [2, 10], "multi": [2, 17, 22], "0x7f2a14e29660": 2, "pick": 2, "write": [2, 16], "unmask": 2, "made": [2, 10], "reflect": [2, 4], "previou": 2, "crosstab_table_allow": 2, "11526204": 2, "679211": 2, "2624301": 2, "metric_table_select": 2, "catstat": [2, 16], "error_bal": 2, "17": 2, "arbitrary1": 2, "arbitrary2": 2, "metric_table_regist": 2, "19": [2, 16], "801401": 2, "core": [3, 17], "oper": [3, 14, 16, 17], "dataset": [3, 7, 8, 12, 14, 16, 17, 23], "comparison": [3, 16, 17, 19, 22], "util": [3, 11, 17, 18, 20], "load": [3, 17, 23], "except": [3, 17, 18, 23], "schema": [3, 17, 23], "homepag": [4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "categorical_stat_func": 4, "paramet": [4, 5, 7, 8, 9, 14, 16, 18, 19], "fals": [4, 5, 7, 14, 16, 18, 20], "balanc": 4, "critic": 4, "success": 4, "index": [4, 10, 17, 20], "www": [4, 16], "weather": 4, "media": 4, "erh": 4, "ta2004": 4, "03": 4, "pdf": 4, "equit": 4, "threat": 4, "gilbert": 4, "aka": 4, "harmon": 4, "sensit": 4, "discoveri": 4, "rate": 4, "ii": 4, "omiss": 4, "predict": [4, 14], "fall": 4, "fowlk": 4, "mallow": 4, "correl": 4, "coeffici": [4, 8], "matthew": 4, "account": 4, "phi": 4, "likelihood": 4, "ratio": 4, "infin": 4, "specif": [4, 16], "degre": 4, "forecast": 4, "observ": 4, "overal": 4, "bia": 4, "verif": [4, 14], "glossari": 4, "threshold": 4, "recal": 4, "hit": 4, "categorical_statist": 5, "categoricalstatist": 5, "agreement": [5, 7, 8, 9, 14, 16, 17], "map": [5, 7, 8, 9, 14, 16, 17], "registered_funct": [5, 7, 9], "dict": [5, 7, 9, 16, 18, 19], "available_funct": [5, 7, 9, 16], "function_signature_check": [5, 7, 9], "func": [5, 7, 9], "valid": [5, 7, 9, 10], "signatur": [5, 7, 9], "check": [5, 7, 9, 10, 17, 20], "get_all_paramet": [5, 7, 9], "get": [5, 7, 9, 18], "get_paramet": [5, 7, 9], "func_nam": [5, 7, 9], "str": [5, 7, 9, 14, 16, 18, 20], "process_statist": [5, 9], "kwarg": [5, 7, 9, 18, 19, 20], "keyword": [5, 9, 16, 18], "bool": [5, 7, 9, 14, 16, 18, 20], "decor": [5, 7, 9, 16], "whether": [5, 7, 9, 14, 16, 18], "compute_comparison": 7, "comparisonprocess": 7, "tabul": [7, 16, 17], "comparison_function_from_str": 7, "compos": 7, "string": [7, 14, 16], "process_agreement_map": 7, "continuous_stat_func": 8, "determin": 8, "r2": 8, "candidate_map": [8, 16], "must": [8, 14, 16], "minu": [8, 16], "absolut": 8, "mae": 8, "percentag": 8, "mape": 8, "normal": [8, 18], "nmae": 8, "root": [8, 10], "squar": 8, "nrmse": 8, "mnrmse": 8, "deviat": 8, "mpe": 8, "sign": 8, "msie": 8, "mse": 8, "rang": 8, "rnmae": 8, "rnrmse": 8, "rmse": 8, "symmetr": 8, "smape": 8, "recomput": 8, "continuous_statist": 9, "continuousstatist": 9, "project": [10, 16, 17], "releas": 10, "public": [10, 17], "domain": 10, "submit": 10, "pull": 10, "request": [10, 18], "file": [10, 16, 17, 18], "bug": 10, "featur": 10, "compli": 10, "waiver": 10, "copyright": [10, 16], "detail": [10, 14, 16, 17], "found": [10, 14, 16, 17], "our": [10, 17], "licens": 10, "There": [10, 18], "primari": 10, "wai": [10, 14, 16], "suggest": 10, "ask": 10, "question": 10, "great": 10, "connect": 10, "develop": 10, "well": [10, 14, 16], "who": 10, "solut": 10, "find": 10, "effort": 10, "guidanc": 10, "gener": 10, "speak": 10, "should": [10, 14, 16], "fork": 10, "repositori": [10, 17], "make": [10, 16, 17, 18], "own": 10, "new": [10, 14, 18], "test": 10, "implement": 10, "lack": 10, "defect": 10, "ani": [10, 17, 18, 20], "stylist": 10, "architectur": 10, "prescrib": 10, "absenc": 10, "mimic": 10, "style": 10, "pattern": 10, "exist": [10, 18], "clone": 10, "git": [10, 17], "your_usernam": 10, "branch": 10, "checkout": 10, "your_featur": 10, "instal": 10, "via": 10, "pip": [10, 17], "dev": 10, "pre": 10, "commit": 10, "hook": 10, "afterward": 10, "flake8": 10, "lint": 10, "black": 10, "autoformat": 10, "mani": 10, "rectifi": 10, "some": [10, 18], "manual": 10, "necessari": [10, 16], "sure": [10, 16], "pytest": 10, "signific": 10, "reduct": 10, "coverag": 10, "increas": 10, "local_benchmark_test": 10, "cpu": 10, "time": [10, 18], "perform": [10, 18], "loss": 10, "everyth": [10, 18], "memrai": 10, "cov": 10, "miss": 10, "python": [10, 17], "local_benchmark": 10, "py": 10, "readm": 10, "doc": 10, "locat": 10, "markdown": 10, "edit": 10, "directli": 10, "script": 10, "compile_readme_and_arrange_doc": 10, "sphinx": 10, "document": 10, "local": 10, "folder": 10, "clean": 10, "_build": 10, "open": [10, 18], "browser": 10, "preview": 10, "messag": 10, "invok": 10, "re": 10, "push": 10, "u": 10, "yet": 10, "upstream": 10, "review": 10, "checklist": 10, "pr": 10, "templat": 10, "befor": 10, "higher": 10, "docstr": 10, "hint": 10, "pep8": 10, "monitor": 10, "distribut": 10, "pypi": 10, "github": [10, 17], "sourc": 10, "imag": 10, "pandoc": 10, "jupyt": 10, "adher": [10, 14], "semant": 10, "whatev": 10, "suitabl": 10, "placehold": 10, "setup": 10, "sudo": 10, "t": [10, 11, 16, 18], "uid": 10, "1001": 10, "permiss": 10, "machin": 10, "overrid": [10, 16], "arg": [10, 19, 20], "id": 10, "line": 10, "pwd": 10, "home": 10, "given": 10, "retriev": 10, "mount": 10, "volum": 10, "aw": 10, "keep": [10, 18], "try": 10, "ad": 10, "tail": 10, "null": 10, "ensur": [10, 18], "detach": 10, "pycharm": 10, "studio": 10, "alreadi": [10, 14, 18], "start": [10, 16], "enter": 10, "interact": 10, "exec": 10, "bash": 10, "linux": 10, "packag": [11, 14, 17], "rastermisalign": 11, "rais": [11, 14, 16, 18], "raster": [11, 14, 16, 17, 18], "don": [11, 18], "rastersdontintersect": 11, "intersect": 11, "accessor": [13, 14, 15, 16], "gval_arrai": 13, "gvalarrai": 13, "xarray_obj": [13, 15, 16], "extend": [13, 14, 15, 16], "_obj": [13, 14, 15, 16], "off": [13, 14, 15, 16], "data_typ": [13, 15, 16], "gval_datafram": 14, "gvaldatafram": 14, "pandas_obj": 14, "iter": [14, 16], "subsampling_averag": [14, 16], "metrics_df": [14, 16, 20], "df": [14, 20], "crosstab_df": [14, 16, 20], "consid": [14, 16], "condit": [14, 16, 20], "weigh": [14, 16], "element": [14, 16], "75": [14, 16], "aggreg": [14, 16], "subsampl": [14, 16, 20], "calcul": [14, 16], "per": [14, 18], "valueerror": [14, 16, 18], "cannot": [14, 16], "binari": 14, "classifi": 14, "7th": 14, "intern": 14, "workshop": 14, "quantifi": 14, "qualiti": 14, "create_subsampling_df": 14, "geometri": [14, 16, 20], "subsampling_typ": 14, "exclud": [14, 16], "subsampling_weight": 14, "inplac": 14, "subsamplingdf": [14, 20], "geodatafram": [14, 16], "exclusionari": [14, 16], "numer": [14, 16], "impact": 14, "adjust": [14, 18], "less": 14, "than": 14, "typeerror": [14, 16], "rasterize_data": 14, "reference_map": 14, "rasterize_attribut": [14, 16], "conveni": 14, "make_geocub": 14, "geocub": 14, "attribut": [14, 16, 18, 20], "keyerror": 14, "gval_dataset": 15, "gvaldataset": 15, "gval_xarrai": 16, "gvalxarrai": 16, "attribute_track": 16, "candidate_suffix": [16, 20], "_candid": [16, 20], "benchmark_suffix": [16, 20], "_benchmark": [16, 20], "candidate_includ": 16, "candidate_exclud": 16, "benchmark_includ": 16, "benchmark_exclud": 16, "attributetrackingdf": [16, 20], "self": 16, "suffix": 16, "append": 16, "mutual": 16, "exclus": 16, "viridi": 16, "legend_label": 16, "plot_band": 16, "colorbar_label": 16, "tileprovid": 16, "openstreetmap": 16, "contributor": 16, "html_attribut": 16, "copi": 16, "href": 16, "org": 16, "max_zoom": 16, "mapnik": 16, "url": 16, "tile": 16, "z": 16, "png": 16, "plot": 16, "size": [16, 18], "label": 16, "legend": 16, "color_bar_label": 16, "colorbar": 16, "xyzservic": 16, "lib": 16, "cx": 16, "stamen": 16, "terrain": 16, "add": 16, "figur": 16, "dufunc": 16, "ufunc": 16, "exclude_valu": 16, "attribute_tracking_kwarg": 16, "subsampling_df": 16, "conduct": 16, "compute_agr": 16, "crosstabul": 16, "compute_metr": 16, "produc": [16, 17], "reduc": 16, "usag": 16, "overwrit": 16, "save": [16, 17], "disk": [16, 18], "gpd": 16, "nb": 16, "numba": 16, "faster": 16, "accept": 16, "descript": 16, "behaviour": 16, "tabl": 16, "seen": 16, "rasterio": [16, 18], "enum": 16, "warp": 16, "reproject": 16, "structur": 16, "arrai": [16, 18], "ignor": 16, "decid": 16, "how": [16, 17, 18], "remain": 16, "pairing_funct": [16, 19], "construct": 16, "output": [16, 20], "write_nodata": 16, "wasn": 16, "cross": [16, 17], "track": 16, "possibli": 16, "check_same_typ": 16, "modifi": 16, "dimension": 16, "dimens": [16, 18], "etc": 16, "vectorize_data": 16, "pronounc": 17, "val": 17, "high": 17, "level": 17, "framework": 17, "skill": 17, "geospati": 17, "compar": 17, "work": 17, "abil": 17, "philosophi": 17, "probabilist": 17, "here": 17, "api": 17, "futur": 17, "softwar": 17, "AS": 17, "without": 17, "guarante": 17, "qa": 17, "qc": 17, "carefulli": 17, "until": 17, "matur": 17, "Or": [17, 18], "bleed": 17, "edg": 17, "com": 17, "owp": 17, "demonstr": 17, "tutori": 17, "guidelin": 17, "cite": 17, "section": 17, "cff": 17, "registr": 17, "issu": 17, "tracker": 17, "code": 17, "standard": 17, "tool": 17, "depend": 17, "version": [17, 18], "docker": 17, "modul": 17, "search": 17, "page": 17, "loading_dataset": 18, "adjust_memory_strategi": 18, "strategi": 18, "tell": 18, "address": 18, "mode": 18, "usual": 18, "moder": 18, "cloud": 18, "optim": 18, "geotiff": 18, "store": 18, "temporari": 18, "reload": 18, "lazili": 18, "aggress": 18, "cach": 18, "read": 18, "tradeoff": 18, "conserv": 18, "get_current_memory_strategi": 18, "memory_strategi": 18, "load_raster_as_xarrai": 18, "filenam": 18, "pathlik": 18, "datasetread": 18, "warpedvrt": 18, "parse_coordin": 18, "chunk": 18, "lock": 18, "default_nam": 18, "band_as_vari": 18, "open_kwarg": 18, "wrap": 18, "around": 18, "deprec": 18, "remov": 18, "o": 18, "io": 18, "vrt": 18, "path": 18, "pars": 18, "thei": 18, "rectilinear": 18, "1d": 18, "along": 18, "dask": 18, "auto": 18, "sensibl": 18, "accord": 18, "config": [18, 20], "underli": 18, "datastor": 18, "multipl": 18, "unless": 18, "thread": 18, "backend": 18, "cachingfilemanag": 18, "repeat": 18, "fast": 18, "complet": 18, "parallel": 18, "howev": 18, "offset": 18, "_unsign": 18, "present": 18, "treat": 18, "integ": 18, "unsign": 18, "meshgrid": 19, "lend": 19, "itself": 19, "problem": 19, "pairingdict": 19, "enabl": 19, "replac": 19, "parent": 19, "replacement_valu": 19, "pandera": 20, "_attribute_tracking_xarrai": 20, "datatyp": 20, "seri": 20, "coerc": 20, "strict": 20, "attribute_1_benchmark": 20, "attribute_1_candid": 20, "attribute_2_benchmark": 20, "attribute_2_candid": 20, "classmethod": 20, "validate_column_suffix": 20, "conditions_df": 20, "inherit": 20, "sample_identifi": 20, "pivoted_crosstab_df": 20, "pivot": 20, "col_idx": 20, "column_index_nam": 20, "row_idx": 20, "int64": 20, "idx": 20, "subsample_identifi": 20, "subsample_id": 20, "subsample_typ": 20, "xrspatial_crosstab_df": 20, "xrspatial": 20, "zonal": 20, "zone": 20, "columns_method": 20, "frame": 20, "give": 20, "dataframemodel": 20}, "objects": {"gval.accessors": [[13, 0, 0, "-", "gval_array"], [14, 0, 0, "-", "gval_dataframe"], [15, 0, 0, "-", "gval_dataset"], [16, 0, 0, "-", "gval_xarray"]], "gval.accessors.gval_array": [[13, 1, 1, "", "GVALArray"]], "gval.accessors.gval_array.GVALArray": [[13, 2, 1, "", "_obj"], [13, 2, 1, "", "data_type"]], "gval.accessors.gval_dataframe": [[14, 1, 1, "", "GVALDataFrame"]], "gval.accessors.gval_dataframe.GVALDataFrame": [[14, 2, 1, "", "_obj"], [14, 3, 1, "", "compute_categorical_metrics"], [14, 3, 1, "", "create_subsampling_df"], [14, 3, 1, "", "rasterize_data"]], "gval.accessors.gval_dataset": [[15, 1, 1, "", "GVALDataset"]], "gval.accessors.gval_dataset.GVALDataset": [[15, 2, 1, "", "_obj"], [15, 2, 1, "", "data_type"]], "gval.accessors.gval_xarray": [[16, 1, 1, "", "GVALXarray"]], "gval.accessors.gval_xarray.GVALXarray": [[16, 2, 1, "", "_obj"], [16, 3, 1, "", "attribute_tracking"], [16, 3, 1, "", "cat_plot"], [16, 3, 1, "", "categorical_compare"], [16, 3, 1, "", "check_same_type"], [16, 3, 1, "", "compute_agreement_map"], [16, 3, 1, "", "compute_crosstab"], [16, 3, 1, "", "cont_plot"], [16, 3, 1, "", "continuous_compare"], [16, 2, 1, "", "data_type"], [16, 3, 1, "", "homogenize"], [16, 3, 1, "", "vectorize_data"]], "gval.comparison": [[7, 0, 0, "-", "compute_comparison"], [19, 0, 0, "-", "pairing_functions"]], "gval.comparison.compute_comparison": [[7, 1, 1, "", "ComparisonProcessing"]], "gval.comparison.compute_comparison.ComparisonProcessing": [[7, 3, 1, "", "available_functions"], [7, 3, 1, "", "comparison_function_from_string"], [7, 3, 1, "", "function_signature_check"], [7, 3, 1, "", "get_all_parameters"], [7, 3, 1, "", "get_parameters"], [7, 3, 1, "", "process_agreement_map"], [7, 3, 1, "", "register_function"], [7, 3, 1, "", "register_function_class"], [7, 2, 1, "", "registered_functions"]], "gval.comparison.pairing_functions": [[19, 1, 1, "", "PairingDict"]], "gval.comparison.pairing_functions.PairingDict": [[19, 2, 1, "", "replacement_value"]], "gval.statistics": [[4, 0, 0, "-", "categorical_stat_funcs"], [5, 0, 0, "-", "categorical_statistics"], [8, 0, 0, "-", "continuous_stat_funcs"], [9, 0, 0, "-", "continuous_statistics"]], "gval.statistics.categorical_stat_funcs": [[4, 4, 1, "", "accuracy"], [4, 4, 1, "", "balanced_accuracy"], [4, 4, 1, "", "critical_success_index"], [4, 4, 1, "", "equitable_threat_score"], [4, 4, 1, "", "f_score"], [4, 4, 1, "", "false_discovery_rate"], [4, 4, 1, "", "false_negative_rate"], [4, 4, 1, "", "false_omission_rate"], [4, 4, 1, "", "false_positive_rate"], [4, 4, 1, "", "fowlkes_mallows_index"], [4, 4, 1, "", "matthews_correlation_coefficient"], [4, 4, 1, "", "negative_likelihood_ratio"], [4, 4, 1, "", "negative_predictive_value"], [4, 4, 1, "", "overall_bias"], [4, 4, 1, "", "positive_likelihood_ratio"], [4, 4, 1, "", "positive_predictive_value"], [4, 4, 1, "", "prevalence"], [4, 4, 1, "", "prevalence_threshold"], [4, 4, 1, "", "true_negative_rate"], [4, 4, 1, "", "true_positive_rate"]], "gval.statistics.categorical_statistics": [[5, 1, 1, "", "CategoricalStatistics"]], "gval.statistics.categorical_statistics.CategoricalStatistics": [[5, 3, 1, "", "available_functions"], [5, 3, 1, "", "function_signature_check"], [5, 3, 1, "", "get_all_parameters"], [5, 3, 1, "", "get_parameters"], [5, 3, 1, "", "process_statistics"], [5, 3, 1, "", "register_function"], [5, 3, 1, "", "register_function_class"], [5, 2, 1, "", "registered_functions"]], "gval.statistics.continuous_stat_funcs": [[8, 4, 1, "", "coefficient_of_determination"], [8, 4, 1, "", "mean_absolute_error"], [8, 4, 1, "", "mean_absolute_percentage_error"], [8, 4, 1, "", "mean_normalized_mean_absolute_error"], [8, 4, 1, "", "mean_normalized_root_mean_squared_error"], [8, 4, 1, "", "mean_percentage_error"], [8, 4, 1, "", "mean_signed_error"], [8, 4, 1, "", "mean_squared_error"], [8, 4, 1, "", "range_normalized_mean_absolute_error"], [8, 4, 1, "", "range_normalized_root_mean_squared_error"], [8, 4, 1, "", "root_mean_squared_error"], [8, 4, 1, "", "symmetric_mean_absolute_percentage_error"]], "gval.statistics.continuous_statistics": [[9, 1, 1, "", "ContinuousStatistics"]], "gval.statistics.continuous_statistics.ContinuousStatistics": [[9, 3, 1, "", "available_functions"], [9, 3, 1, "", "function_signature_check"], [9, 3, 1, "", "get_all_parameters"], [9, 3, 1, "", "get_parameters"], [9, 3, 1, "", "process_statistics"], [9, 3, 1, "", "register_function"], [9, 3, 1, "", "register_function_class"], [9, 2, 1, "", "registered_functions"]], "gval.utils": [[11, 0, 0, "-", "exceptions"], [18, 0, 0, "-", "loading_datasets"], [20, 0, 0, "-", "schemas"]], "gval.utils.exceptions": [[11, 5, 1, "", "RasterMisalignment"], [11, 5, 1, "", "RastersDontIntersect"]], "gval.utils.loading_datasets": [[18, 4, 1, "", "adjust_memory_strategy"], [18, 4, 1, "", "get_current_memory_strategy"], [18, 4, 1, "", "load_raster_as_xarray"]], "gval.utils.schemas": [[20, 1, 1, "", "AttributeTrackingDf"], [20, 1, 1, "", "Conditions_df"], [20, 1, 1, "", "Crosstab_df"], [20, 1, 1, "", "Metrics_df"], [20, 1, 1, "", "Pivoted_crosstab_df"], [20, 1, 1, "", "Sample_identifiers"], [20, 1, 1, "", "Subsample_identifiers"], [20, 1, 1, "", "SubsamplingDf"], [20, 1, 1, "", "Xrspatial_crosstab_df"], [20, 1, 1, "", "columns_method"]], "gval.utils.schemas.AttributeTrackingDf": [[20, 1, 1, "", "Config"], [20, 2, 1, "", "attribute_1_benchmark"], [20, 2, 1, "", "attribute_1_candidate"], [20, 2, 1, "", "attribute_2_benchmark"], [20, 2, 1, "", "attribute_2_candidate"], [20, 3, 1, "", "validate_column_suffixes"]], "gval.utils.schemas.AttributeTrackingDf.Config": [[20, 2, 1, "", "coerce"], [20, 2, 1, "", "name"], [20, 2, 1, "", "strict"]], "gval.utils.schemas.Conditions_df": [[20, 1, 1, "", "Config"], [20, 2, 1, "", "fn"], [20, 2, 1, "", "fp"], [20, 2, 1, "", "tn"], [20, 2, 1, "", "tp"]], "gval.utils.schemas.Conditions_df.Config": [[20, 2, 1, "", "coerce"], [20, 2, 1, "", "name"], [20, 2, 1, "", "ordered"]], "gval.utils.schemas.Crosstab_df": [[20, 1, 1, "", "Config"], [20, 2, 1, "", "agreement_values"], [20, 2, 1, "", "benchmark_values"], [20, 2, 1, "", "candidate_values"], [20, 2, 1, "", "counts"]], "gval.utils.schemas.Crosstab_df.Config": [[20, 2, 1, "", "coerce"], [20, 2, 1, "", "name"], [20, 2, 1, "", "strict"]], "gval.utils.schemas.Metrics_df": [[20, 1, 1, "", "Config"]], "gval.utils.schemas.Metrics_df.Config": [[20, 2, 1, "", "coerce"], [20, 2, 1, "", "name"], [20, 2, 1, "", "strict"]], "gval.utils.schemas.Pivoted_crosstab_df": [[20, 1, 1, "", "Config"], [20, 2, 1, "", "col_idx"], [20, 3, 1, "", "column_index_name"], [20, 2, 1, "", "row_idx"]], "gval.utils.schemas.Pivoted_crosstab_df.Config": [[20, 2, 1, "", "coerce"], [20, 2, 1, "", "name"], [20, 2, 1, "", "strict"]], "gval.utils.schemas.Sample_identifiers": [[20, 1, 1, "", "Config"], [20, 2, 1, "", "band"], [20, 2, 1, "", "idx"]], "gval.utils.schemas.Sample_identifiers.Config": [[20, 2, 1, "", "coerce"], [20, 2, 1, "", "name"], [20, 2, 1, "", "strict"]], "gval.utils.schemas.Subsample_identifiers": [[20, 1, 1, "", "Config"], [20, 2, 1, "", "idx"], [20, 2, 1, "", "subsample"]], "gval.utils.schemas.Subsample_identifiers.Config": [[20, 2, 1, "", "coerce"], [20, 2, 1, "", "name"], [20, 2, 1, "", "strict"]], "gval.utils.schemas.SubsamplingDf": [[20, 1, 1, "", "Config"], [20, 2, 1, "", "geometry"], [20, 2, 1, "", "subsample_id"], [20, 2, 1, "", "subsample_type"], [20, 2, 1, "", "weights"]], "gval.utils.schemas.SubsamplingDf.Config": [[20, 2, 1, "", "coerce"], [20, 2, 1, "", "name"], [20, 2, 1, "", "strict"]], "gval.utils.schemas.Xrspatial_crosstab_df": [[20, 1, 1, "", "Config"], [20, 2, 1, "", "zone"]], "gval.utils.schemas.Xrspatial_crosstab_df.Config": [[20, 2, 1, "", "coerce"], [20, 2, 1, "", "name"], [20, 2, 1, "", "strict"]], "gval.utils.schemas.columns_method": [[20, 1, 1, "", "Config"], [20, 3, 1, "", "columns"]], "gval.utils.schemas.columns_method.Config": [[20, 2, 1, "", "name"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:function", "5": "py:exception"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "function", "Python function"], "5": ["py", "exception", "Python exception"]}, "titleterms": {"continu": [0, 8, 9], "comparison": [0, 1, 2, 6, 7], "load": [0, 1, 2, 18], "dataset": [0, 1, 2, 15, 18], "run": [0, 2], "gval": [0, 2, 3, 17], "compar": [0, 2], "output": [0, 1, 2, 17], "agreement": [0, 1, 2], "map": [0, 1, 2], "metric": [0, 2], "tabl": [0, 2, 3, 6, 12, 17, 21, 22, 23], "altern": 0, "us": [0, 10, 17], "oper": [0, 2, 12], "save": [0, 1, 2], "multi": 1, "class": [1, 2], "categor": [1, 2, 4, 5], "homogen": 1, "make": 1, "two": 2, "cross": 2, "tabul": 2, "access": 2, "individu": 2, "pair": [2, 19], "dictionari": 2, "registr": 2, "custom": 2, "function": [2, 4, 8, 13, 14, 15, 16, 19], "api": 3, "content": [3, 6, 12, 17, 21, 22, 23], "statist": [4, 5, 8, 9, 21], "comput": 7, "contribut": [10, 17], "issu": 10, "tracker": 10, "chang": 10, "code": 10, "base": 10, "guidelin": 10, "standard": 10, "tool": 10, "depend": 10, "version": 10, "docker": 10, "packag": 10, "except": 11, "core": 12, "xarrai": [13, 15, 16], "dataarrai": 13, "datafram": 14, "share": 16, "document": 17, "instal": 17, "gener": 17, "citat": 17, "indic": 17, "schema": 20, "tutori": 22, "util": 23}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 57}, "alltitles": {"Continuous Comparisons": [[0, "Continuous-Comparisons"]], "Load Datasets": [[0, "Load-Datasets"], [1, "Load-Datasets"], [2, "Load-Datasets"]], "Run GVAL Continuous Compare": [[0, "Run-GVAL-Continuous-Compare"]], "Output": [[0, "Output"], [2, "Output"]], "Agreement Map": [[0, "Agreement-Map"], [1, "Agreement-Map"], [2, "Agreement-Map"]], "Metric Table": [[0, "Metric-Table"], [2, "Metric-Table"], [2, "id2"]], "Alternative Uses of GVAL Continuous Operations": [[0, "Alternative-Uses-of-GVAL-Continuous-Operations"]], "Save Output": [[0, "Save-Output"], [1, "Save-Output"], [2, "Save-Output"]], "Multi-Class Categorical Comparisons": [[1, "Multi-Class-Categorical-Comparisons"]], "Homogenize Datasets and Make Agreement Map": [[1, "Homogenize-Datasets-and-Make-Agreement-Map"]], "Homogenize": [[1, "Homogenize"]], "Comparisons": [[1, "Comparisons"]], "Two-Class Categorical Comparisons": [[2, "Two-Class-Categorical-Comparisons"]], "Run GVAL Categorical Compare": [[2, "Run-GVAL-Categorical-Compare"]], "Cross-tabulation Table": [[2, "Cross-tabulation-Table"], [2, "id1"]], "Access to Individual GVAL Operations": [[2, "Access-to-Individual-GVAL-Operations"]], "Pairing Dictionary": [[2, "Pairing-Dictionary"]], "Registration of Custom Functions": [[2, "Registration-of-Custom-Functions"]], "GVAL API": [[3, "gval-api"]], "Table of Contents": [[3, null], [6, null], [12, null], [17, null], [21, null], [22, null], [23, null]], "Categorical Statistics Functions": [[4, "categorical-statistics-functions"]], "Categorical Statistics": [[5, "categorical-statistics"]], "Comparison": [[6, "comparison"]], "Compute Comparison": [[7, "compute-comparison"]], "Continuous Statistics Functions": [[8, "continuous-statistics-functions"]], "Continuous Statistics": [[9, "continuous-statistics"]], "Contributing": [[10, "contributing"], [17, "contributing"]], "Using the issue tracker": [[10, "using-the-issue-tracker"]], "Changing the code-base": [[10, "changing-the-code-base"]], "Guidelines": [[10, "guidelines"]], "Standards": [[10, "standards"]], "Tooling Dependencies": [[10, "tooling-dependencies"]], "Versioning": [[10, "versioning"]], "Docker Use": [[10, "docker-use"]], "Packaging": [[10, "packaging"]], "Exceptions": [[11, "exceptions"]], "Core Operations": [[12, "core-operations"]], "Xarray DataArray Functionality": [[13, "xarray-dataarray-functionality"]], "DataFrame Functionality": [[14, "dataframe-functionality"]], "Xarray Dataset Functionality": [[15, "xarray-dataset-functionality"]], "Shared Xarray Functionality": [[16, "shared-xarray-functionality"]], "GVAL Documentation": [[17, "gval-documentation"]], "Installation": [[17, "installation"]], "General Use": [[17, "general-use"]], "Using GVAL": [[17, "using-gval"]], "Outputs": [[17, "outputs"]], "Citation": [[17, "citation"]], "Indices and tables": [[17, "indices-and-tables"]], "Loading Datasets": [[18, "loading-datasets"]], "Pairing Functions": [[19, "pairing-functions"]], "Schemas": [[20, "schemas"]], "Statistics": [[21, "statistics"]], "Tutorials": [[22, "tutorials"]], "Utilities": [[23, "utilities"]]}, "indexentries": {"accuracy() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.accuracy"]], "balanced_accuracy() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.balanced_accuracy"]], "critical_success_index() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.critical_success_index"]], "equitable_threat_score() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.equitable_threat_score"]], "f_score() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.f_score"]], "false_discovery_rate() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.false_discovery_rate"]], "false_negative_rate() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.false_negative_rate"]], "false_omission_rate() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.false_omission_rate"]], "false_positive_rate() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.false_positive_rate"]], "fowlkes_mallows_index() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.fowlkes_mallows_index"]], "gval.statistics.categorical_stat_funcs": [[4, "module-gval.statistics.categorical_stat_funcs"]], "matthews_correlation_coefficient() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.matthews_correlation_coefficient"]], "module": [[4, "module-gval.statistics.categorical_stat_funcs"], [5, "module-gval.statistics.categorical_statistics"], [7, "module-gval.comparison.compute_comparison"], [8, "module-gval.statistics.continuous_stat_funcs"], [9, "module-gval.statistics.continuous_statistics"], [11, "module-gval.utils.exceptions"], [13, "module-gval.accessors.gval_array"], [14, "module-gval.accessors.gval_dataframe"], [15, "module-gval.accessors.gval_dataset"], [16, "module-gval.accessors.gval_xarray"], [18, "module-gval.utils.loading_datasets"], [19, "module-gval.comparison.pairing_functions"], [20, "module-gval.utils.schemas"]], "negative_likelihood_ratio() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.negative_likelihood_ratio"]], "negative_predictive_value() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.negative_predictive_value"]], "overall_bias() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.overall_bias"]], "positive_likelihood_ratio() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.positive_likelihood_ratio"]], "positive_predictive_value() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.positive_predictive_value"]], "prevalence() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.prevalence"]], "prevalence_threshold() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.prevalence_threshold"]], "true_negative_rate() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.true_negative_rate"]], "true_positive_rate() (in module gval.statistics.categorical_stat_funcs)": [[4, "gval.statistics.categorical_stat_funcs.true_positive_rate"]], "categoricalstatistics (class in gval.statistics.categorical_statistics)": [[5, "gval.statistics.categorical_statistics.CategoricalStatistics"]], "available_functions() (gval.statistics.categorical_statistics.categoricalstatistics method)": [[5, "gval.statistics.categorical_statistics.CategoricalStatistics.available_functions"]], "function_signature_check() (gval.statistics.categorical_statistics.categoricalstatistics method)": [[5, "gval.statistics.categorical_statistics.CategoricalStatistics.function_signature_check"]], "get_all_parameters() (gval.statistics.categorical_statistics.categoricalstatistics method)": [[5, "gval.statistics.categorical_statistics.CategoricalStatistics.get_all_parameters"]], "get_parameters() (gval.statistics.categorical_statistics.categoricalstatistics method)": [[5, "gval.statistics.categorical_statistics.CategoricalStatistics.get_parameters"]], "gval.statistics.categorical_statistics": [[5, "module-gval.statistics.categorical_statistics"]], "process_statistics() (gval.statistics.categorical_statistics.categoricalstatistics method)": [[5, "gval.statistics.categorical_statistics.CategoricalStatistics.process_statistics"]], "register_function() (gval.statistics.categorical_statistics.categoricalstatistics method)": [[5, "gval.statistics.categorical_statistics.CategoricalStatistics.register_function"]], "register_function_class() (gval.statistics.categorical_statistics.categoricalstatistics method)": [[5, "gval.statistics.categorical_statistics.CategoricalStatistics.register_function_class"]], "registered_functions (gval.statistics.categorical_statistics.categoricalstatistics attribute)": [[5, "gval.statistics.categorical_statistics.CategoricalStatistics.registered_functions"]], "comparisonprocessing (class in gval.comparison.compute_comparison)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing"]], "available_functions() (gval.comparison.compute_comparison.comparisonprocessing method)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing.available_functions"]], "comparison_function_from_string() (gval.comparison.compute_comparison.comparisonprocessing method)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing.comparison_function_from_string"]], "function_signature_check() (gval.comparison.compute_comparison.comparisonprocessing method)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing.function_signature_check"]], "get_all_parameters() (gval.comparison.compute_comparison.comparisonprocessing method)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing.get_all_parameters"]], "get_parameters() (gval.comparison.compute_comparison.comparisonprocessing method)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing.get_parameters"]], "gval.comparison.compute_comparison": [[7, "module-gval.comparison.compute_comparison"]], "process_agreement_map() (gval.comparison.compute_comparison.comparisonprocessing method)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing.process_agreement_map"]], "register_function() (gval.comparison.compute_comparison.comparisonprocessing method)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing.register_function"]], "register_function_class() (gval.comparison.compute_comparison.comparisonprocessing method)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing.register_function_class"]], "registered_functions (gval.comparison.compute_comparison.comparisonprocessing attribute)": [[7, "gval.comparison.compute_comparison.ComparisonProcessing.registered_functions"]], "coefficient_of_determination() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.coefficient_of_determination"]], "gval.statistics.continuous_stat_funcs": [[8, "module-gval.statistics.continuous_stat_funcs"]], "mean_absolute_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.mean_absolute_error"]], "mean_absolute_percentage_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.mean_absolute_percentage_error"]], "mean_normalized_mean_absolute_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.mean_normalized_mean_absolute_error"]], "mean_normalized_root_mean_squared_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.mean_normalized_root_mean_squared_error"]], "mean_percentage_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.mean_percentage_error"]], "mean_signed_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.mean_signed_error"]], "mean_squared_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.mean_squared_error"]], "range_normalized_mean_absolute_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.range_normalized_mean_absolute_error"]], "range_normalized_root_mean_squared_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.range_normalized_root_mean_squared_error"]], "root_mean_squared_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.root_mean_squared_error"]], "symmetric_mean_absolute_percentage_error() (in module gval.statistics.continuous_stat_funcs)": [[8, "gval.statistics.continuous_stat_funcs.symmetric_mean_absolute_percentage_error"]], "continuousstatistics (class in gval.statistics.continuous_statistics)": [[9, "gval.statistics.continuous_statistics.ContinuousStatistics"]], "available_functions() (gval.statistics.continuous_statistics.continuousstatistics method)": [[9, "gval.statistics.continuous_statistics.ContinuousStatistics.available_functions"]], "function_signature_check() (gval.statistics.continuous_statistics.continuousstatistics method)": [[9, "gval.statistics.continuous_statistics.ContinuousStatistics.function_signature_check"]], "get_all_parameters() (gval.statistics.continuous_statistics.continuousstatistics method)": [[9, "gval.statistics.continuous_statistics.ContinuousStatistics.get_all_parameters"]], "get_parameters() (gval.statistics.continuous_statistics.continuousstatistics method)": [[9, "gval.statistics.continuous_statistics.ContinuousStatistics.get_parameters"]], "gval.statistics.continuous_statistics": [[9, "module-gval.statistics.continuous_statistics"]], "process_statistics() (gval.statistics.continuous_statistics.continuousstatistics method)": [[9, "gval.statistics.continuous_statistics.ContinuousStatistics.process_statistics"]], "register_function() (gval.statistics.continuous_statistics.continuousstatistics method)": [[9, "gval.statistics.continuous_statistics.ContinuousStatistics.register_function"]], "register_function_class() (gval.statistics.continuous_statistics.continuousstatistics method)": [[9, "gval.statistics.continuous_statistics.ContinuousStatistics.register_function_class"]], "registered_functions (gval.statistics.continuous_statistics.continuousstatistics attribute)": [[9, "gval.statistics.continuous_statistics.ContinuousStatistics.registered_functions"]], "rastermisalignment": [[11, "gval.utils.exceptions.RasterMisalignment"]], "rastersdontintersect": [[11, "gval.utils.exceptions.RastersDontIntersect"]], "gval.utils.exceptions": [[11, "module-gval.utils.exceptions"]], "gvalarray (class in gval.accessors.gval_array)": [[13, "gval.accessors.gval_array.GVALArray"]], "_obj (gval.accessors.gval_array.gvalarray attribute)": [[13, "gval.accessors.gval_array.GVALArray._obj"]], "data_type (gval.accessors.gval_array.gvalarray attribute)": [[13, "gval.accessors.gval_array.GVALArray.data_type"]], "gval.accessors.gval_array": [[13, "module-gval.accessors.gval_array"]], "gvaldataframe (class in gval.accessors.gval_dataframe)": [[14, "gval.accessors.gval_dataframe.GVALDataFrame"]], "_obj (gval.accessors.gval_dataframe.gvaldataframe attribute)": [[14, "gval.accessors.gval_dataframe.GVALDataFrame._obj"]], "compute_categorical_metrics() (gval.accessors.gval_dataframe.gvaldataframe method)": [[14, "gval.accessors.gval_dataframe.GVALDataFrame.compute_categorical_metrics"]], "create_subsampling_df() (gval.accessors.gval_dataframe.gvaldataframe method)": [[14, "gval.accessors.gval_dataframe.GVALDataFrame.create_subsampling_df"]], "gval.accessors.gval_dataframe": [[14, "module-gval.accessors.gval_dataframe"]], "rasterize_data() (gval.accessors.gval_dataframe.gvaldataframe method)": [[14, "gval.accessors.gval_dataframe.GVALDataFrame.rasterize_data"]], "gvaldataset (class in gval.accessors.gval_dataset)": [[15, "gval.accessors.gval_dataset.GVALDataset"]], "_obj (gval.accessors.gval_dataset.gvaldataset attribute)": [[15, "gval.accessors.gval_dataset.GVALDataset._obj"]], "data_type (gval.accessors.gval_dataset.gvaldataset attribute)": [[15, "gval.accessors.gval_dataset.GVALDataset.data_type"]], "gval.accessors.gval_dataset": [[15, "module-gval.accessors.gval_dataset"]], "gvalxarray (class in gval.accessors.gval_xarray)": [[16, "gval.accessors.gval_xarray.GVALXarray"]], "_obj (gval.accessors.gval_xarray.gvalxarray attribute)": [[16, "gval.accessors.gval_xarray.GVALXarray._obj"]], "attribute_tracking() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.attribute_tracking"]], "cat_plot() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.cat_plot"]], "categorical_compare() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.categorical_compare"]], "check_same_type() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.check_same_type"]], "compute_agreement_map() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.compute_agreement_map"]], "compute_crosstab() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.compute_crosstab"]], "cont_plot() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.cont_plot"]], "continuous_compare() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.continuous_compare"]], "data_type (gval.accessors.gval_xarray.gvalxarray attribute)": [[16, "gval.accessors.gval_xarray.GVALXarray.data_type"]], "gval.accessors.gval_xarray": [[16, "module-gval.accessors.gval_xarray"]], "homogenize() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.homogenize"]], "vectorize_data() (gval.accessors.gval_xarray.gvalxarray method)": [[16, "gval.accessors.gval_xarray.GVALXarray.vectorize_data"]], "adjust_memory_strategy() (in module gval.utils.loading_datasets)": [[18, "gval.utils.loading_datasets.adjust_memory_strategy"]], "get_current_memory_strategy() (in module gval.utils.loading_datasets)": [[18, "gval.utils.loading_datasets.get_current_memory_strategy"]], "gval.utils.loading_datasets": [[18, "module-gval.utils.loading_datasets"]], "load_raster_as_xarray() (in module gval.utils.loading_datasets)": [[18, "gval.utils.loading_datasets.load_raster_as_xarray"]], "pairingdict (class in gval.comparison.pairing_functions)": [[19, "gval.comparison.pairing_functions.PairingDict"]], "gval.comparison.pairing_functions": [[19, "module-gval.comparison.pairing_functions"]], "replacement_value (gval.comparison.pairing_functions.pairingdict attribute)": [[19, "gval.comparison.pairing_functions.PairingDict.replacement_value"]], "attributetrackingdf (class in gval.utils.schemas)": [[20, "gval.utils.schemas.AttributeTrackingDf"]], "attributetrackingdf.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.AttributeTrackingDf.Config"]], "conditions_df (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Conditions_df"]], "conditions_df.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Conditions_df.Config"]], "crosstab_df (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Crosstab_df"]], "crosstab_df.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Crosstab_df.Config"]], "metrics_df (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Metrics_df"]], "metrics_df.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Metrics_df.Config"]], "pivoted_crosstab_df (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Pivoted_crosstab_df"]], "pivoted_crosstab_df.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Pivoted_crosstab_df.Config"]], "sample_identifiers (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Sample_identifiers"]], "sample_identifiers.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Sample_identifiers.Config"]], "subsample_identifiers (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Subsample_identifiers"]], "subsample_identifiers.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Subsample_identifiers.Config"]], "subsamplingdf (class in gval.utils.schemas)": [[20, "gval.utils.schemas.SubsamplingDf"]], "subsamplingdf.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.SubsamplingDf.Config"]], "xrspatial_crosstab_df (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Xrspatial_crosstab_df"]], "xrspatial_crosstab_df.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.Xrspatial_crosstab_df.Config"]], "agreement_values (gval.utils.schemas.crosstab_df attribute)": [[20, "gval.utils.schemas.Crosstab_df.agreement_values"]], "attribute_1_benchmark (gval.utils.schemas.attributetrackingdf attribute)": [[20, "gval.utils.schemas.AttributeTrackingDf.attribute_1_benchmark"]], "attribute_1_candidate (gval.utils.schemas.attributetrackingdf attribute)": [[20, "gval.utils.schemas.AttributeTrackingDf.attribute_1_candidate"]], "attribute_2_benchmark (gval.utils.schemas.attributetrackingdf attribute)": [[20, "gval.utils.schemas.AttributeTrackingDf.attribute_2_benchmark"]], "attribute_2_candidate (gval.utils.schemas.attributetrackingdf attribute)": [[20, "gval.utils.schemas.AttributeTrackingDf.attribute_2_candidate"]], "band (gval.utils.schemas.sample_identifiers attribute)": [[20, "gval.utils.schemas.Sample_identifiers.band"]], "benchmark_values (gval.utils.schemas.crosstab_df attribute)": [[20, "gval.utils.schemas.Crosstab_df.benchmark_values"]], "candidate_values (gval.utils.schemas.crosstab_df attribute)": [[20, "gval.utils.schemas.Crosstab_df.candidate_values"]], "coerce (gval.utils.schemas.attributetrackingdf.config attribute)": [[20, "gval.utils.schemas.AttributeTrackingDf.Config.coerce"]], "coerce (gval.utils.schemas.conditions_df.config attribute)": [[20, "gval.utils.schemas.Conditions_df.Config.coerce"]], "coerce (gval.utils.schemas.crosstab_df.config attribute)": [[20, "gval.utils.schemas.Crosstab_df.Config.coerce"]], "coerce (gval.utils.schemas.metrics_df.config attribute)": [[20, "gval.utils.schemas.Metrics_df.Config.coerce"]], "coerce (gval.utils.schemas.pivoted_crosstab_df.config attribute)": [[20, "gval.utils.schemas.Pivoted_crosstab_df.Config.coerce"]], "coerce (gval.utils.schemas.sample_identifiers.config attribute)": [[20, "gval.utils.schemas.Sample_identifiers.Config.coerce"]], "coerce (gval.utils.schemas.subsample_identifiers.config attribute)": [[20, "gval.utils.schemas.Subsample_identifiers.Config.coerce"]], "coerce (gval.utils.schemas.subsamplingdf.config attribute)": [[20, "gval.utils.schemas.SubsamplingDf.Config.coerce"]], "coerce (gval.utils.schemas.xrspatial_crosstab_df.config attribute)": [[20, "gval.utils.schemas.Xrspatial_crosstab_df.Config.coerce"]], "col_idx (gval.utils.schemas.pivoted_crosstab_df attribute)": [[20, "gval.utils.schemas.Pivoted_crosstab_df.col_idx"]], "column_index_name() (gval.utils.schemas.pivoted_crosstab_df class method)": [[20, "gval.utils.schemas.Pivoted_crosstab_df.column_index_name"]], "columns() (gval.utils.schemas.columns_method class method)": [[20, "gval.utils.schemas.columns_method.columns"]], "columns_method (class in gval.utils.schemas)": [[20, "gval.utils.schemas.columns_method"]], "columns_method.config (class in gval.utils.schemas)": [[20, "gval.utils.schemas.columns_method.Config"]], "counts (gval.utils.schemas.crosstab_df attribute)": [[20, "gval.utils.schemas.Crosstab_df.counts"]], "fn (gval.utils.schemas.conditions_df attribute)": [[20, "gval.utils.schemas.Conditions_df.fn"]], "fp (gval.utils.schemas.conditions_df attribute)": [[20, "gval.utils.schemas.Conditions_df.fp"]], "geometry (gval.utils.schemas.subsamplingdf attribute)": [[20, "gval.utils.schemas.SubsamplingDf.geometry"]], "gval.utils.schemas": [[20, "module-gval.utils.schemas"]], "idx (gval.utils.schemas.sample_identifiers attribute)": [[20, "gval.utils.schemas.Sample_identifiers.idx"]], "idx (gval.utils.schemas.subsample_identifiers attribute)": [[20, "gval.utils.schemas.Subsample_identifiers.idx"]], "name (gval.utils.schemas.attributetrackingdf.config attribute)": [[20, "gval.utils.schemas.AttributeTrackingDf.Config.name"]], "name (gval.utils.schemas.conditions_df.config attribute)": [[20, "gval.utils.schemas.Conditions_df.Config.name"]], "name (gval.utils.schemas.crosstab_df.config attribute)": [[20, "gval.utils.schemas.Crosstab_df.Config.name"]], "name (gval.utils.schemas.metrics_df.config attribute)": [[20, "gval.utils.schemas.Metrics_df.Config.name"]], "name (gval.utils.schemas.pivoted_crosstab_df.config attribute)": [[20, "gval.utils.schemas.Pivoted_crosstab_df.Config.name"]], "name (gval.utils.schemas.sample_identifiers.config attribute)": [[20, "gval.utils.schemas.Sample_identifiers.Config.name"]], "name (gval.utils.schemas.subsample_identifiers.config attribute)": [[20, "gval.utils.schemas.Subsample_identifiers.Config.name"]], "name (gval.utils.schemas.subsamplingdf.config attribute)": [[20, "gval.utils.schemas.SubsamplingDf.Config.name"]], "name (gval.utils.schemas.xrspatial_crosstab_df.config attribute)": [[20, "gval.utils.schemas.Xrspatial_crosstab_df.Config.name"]], "name (gval.utils.schemas.columns_method.config attribute)": [[20, "gval.utils.schemas.columns_method.Config.name"]], "ordered (gval.utils.schemas.conditions_df.config attribute)": [[20, "gval.utils.schemas.Conditions_df.Config.ordered"]], "row_idx (gval.utils.schemas.pivoted_crosstab_df attribute)": [[20, "gval.utils.schemas.Pivoted_crosstab_df.row_idx"]], "strict (gval.utils.schemas.attributetrackingdf.config attribute)": [[20, "gval.utils.schemas.AttributeTrackingDf.Config.strict"]], "strict (gval.utils.schemas.crosstab_df.config attribute)": [[20, "gval.utils.schemas.Crosstab_df.Config.strict"]], "strict (gval.utils.schemas.metrics_df.config attribute)": [[20, "gval.utils.schemas.Metrics_df.Config.strict"]], "strict (gval.utils.schemas.pivoted_crosstab_df.config attribute)": [[20, "gval.utils.schemas.Pivoted_crosstab_df.Config.strict"]], "strict (gval.utils.schemas.sample_identifiers.config attribute)": [[20, "gval.utils.schemas.Sample_identifiers.Config.strict"]], "strict (gval.utils.schemas.subsample_identifiers.config attribute)": [[20, "gval.utils.schemas.Subsample_identifiers.Config.strict"]], "strict (gval.utils.schemas.subsamplingdf.config attribute)": [[20, "gval.utils.schemas.SubsamplingDf.Config.strict"]], "strict (gval.utils.schemas.xrspatial_crosstab_df.config attribute)": [[20, "gval.utils.schemas.Xrspatial_crosstab_df.Config.strict"]], "subsample (gval.utils.schemas.subsample_identifiers attribute)": [[20, "gval.utils.schemas.Subsample_identifiers.subsample"]], "subsample_id (gval.utils.schemas.subsamplingdf attribute)": [[20, "gval.utils.schemas.SubsamplingDf.subsample_id"]], "subsample_type (gval.utils.schemas.subsamplingdf attribute)": [[20, "gval.utils.schemas.SubsamplingDf.subsample_type"]], "tn (gval.utils.schemas.conditions_df attribute)": [[20, "gval.utils.schemas.Conditions_df.tn"]], "tp (gval.utils.schemas.conditions_df attribute)": [[20, "gval.utils.schemas.Conditions_df.tp"]], "validate_column_suffixes() (gval.utils.schemas.attributetrackingdf class method)": [[20, "gval.utils.schemas.AttributeTrackingDf.validate_column_suffixes"]], "weights (gval.utils.schemas.subsamplingdf attribute)": [[20, "gval.utils.schemas.SubsamplingDf.weights"]], "zone (gval.utils.schemas.xrspatial_crosstab_df attribute)": [[20, "gval.utils.schemas.Xrspatial_crosstab_df.zone"]]}}) \ No newline at end of file diff --git a/statistics.html b/statistics.html new file mode 100644 index 00000000..84510c13 --- /dev/null +++ b/statistics.html @@ -0,0 +1,137 @@ + + + + + + + Statistics — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+ + +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials.html b/tutorials.html new file mode 100644 index 00000000..51e7419b --- /dev/null +++ b/tutorials.html @@ -0,0 +1,117 @@ + + + + + + + Tutorials — GVAL documentation + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+ + +
+
+
+
+ + + + \ No newline at end of file diff --git a/utils.html b/utils.html new file mode 100644 index 00000000..49ce38eb --- /dev/null +++ b/utils.html @@ -0,0 +1,135 @@ + + + + + + + Utilities — GVAL documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Utilities

+

Return to Homepage

+
+

Table of Contents

+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file