-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbicgstabell.hpp
executable file
·293 lines (233 loc) · 10.4 KB
/
bicgstabell.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
//
// bicgstabell.h
// conjugateGradient
//
// Created by Adithya Vijaykumar on 19/02/2019.
// Copyright © 2019 Adithya Vijaykumar. All rights reserved.
//
#ifndef bicgstabell_h
#define bicgstabell_h
#include <vector>
namespace Eigen {
namespace internal {
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bool bicgstabell(const MatrixType& mat, const Rhs& rhs, Dest& xguess,
const Preconditioner& precond, Index& iters,
typename Dest::RealScalar& tol_error)
{
using std::sqrt;
using std::abs;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
int l=5;
//start with k=-l or k+l=0
//TODO Set l=2 as a default**************************
int L = l;
int k = -L;
RealScalar tol = tol_error;
Index maxIters = iters;
typedef Matrix<Scalar, Dynamic,1> VectorType;
typedef Matrix<RealScalar, Dynamic, Dynamic> DenseMatrixType;
//We start with an initial guess x_0 and let us set r_0 as (residual calculated from x_0)
VectorType x0 = xguess;
VectorType r0 = rhs - mat * x0; //r_0
VectorType u0;
u0.setZero();
VectorType rShadow = r0; //shadow of r0 is r0
//write over these variable the successive iteratively got values
VectorType x = x0;
VectorType u = u0;
RealScalar deltaNew = r0.squaredNorm();//r.r
RealScalar delta0 = deltaNew;
RealScalar rhs_sqnorm = rhs.squaredNorm();
//Other vectors and scalars initialisation
RealScalar rho0 = 1.0;
RealScalar alpha = 0.0;
RealScalar omega = 1.0;
//Consequence of A being invertible if Ax=0 ==> x=0
if(rhs_sqnorm == 0)
{
x.setZero();
return true;
}
RealScalar tol2 = tol*tol*delta0;
Index currIter = 0;
std::vector<VectorType> rHat(L+1); //rj hat is a vector of vectors!!!
std::vector<VectorType> uHat(L+1);
//std::vector<VectorType> xHat(L);
rHat[0] = r0;
uHat[0].setZero(r0.rows());
while ( rHat[0].squaredNorm() > tol2 && currIter<maxIters )
{
k = k+L;
rho0 = -omega*rho0;
//std::cout << " uhat0:" <<uHat[0] << " rhat[0] " << rHat[0] << " x " << x;
//std::cout << " rho0: " << rho0 << " alpha: " << alpha << std::endl;
for(Index j=0;j<=L-1;++j) //THIS FOR LOOP IS THE BI-CG PART
{
//std::cout <<"j:" << j << "\n rhat: \n" << rHat[j] << std::endl;
RealScalar rho1 = rHat[j].dot(rShadow);
//std::cout << "rho1: " << rho1 << std::endl;
RealScalar beta = alpha * (rho1/rho0);
rho0 = rho1;
for(Index i=0; i<=j; ++i)
{
uHat[i] = rHat[i] - beta*uHat[i];
}
//std::cout<<"uhatj"<<uHat[j]<<std::endl;
uHat[j+1] = mat * uHat[j];
//std::cout << "alpha: " << alpha << std::endl;
alpha = rho0/(uHat[j+1].dot(rShadow));
//std::cout<<"uhatj_afterA"<<uHat[j+1]<<std::endl;
for(Index i=0; i<=j; ++i)
{
rHat[i] = rHat[i] - alpha*uHat[i+1];
}
//std::cout << "rHat[0]: " << rHat[0] << std::endl;
rHat[j+1] = mat * rHat[j];
//std::cout << "rHat[j+1]: " << rHat[j+1] << std::endl;
x = x + alpha*uHat[0];
}
//std::cout<<"x after bcig:"<<x<<std::endl;
//std::cout<<"alpha:"<<alpha<<std::endl;
//std::cout<<"uhat0:"<<uHat[0]<<std::endl;
//THE MINIMAL RESIDUAL PART STARTS NOW
DenseMatrixType tau(L, L+1);
std::vector<RealScalar> sigma(L+1);
std::vector<RealScalar> gammaP(L+1);
for(Index j=1;j<=L;++j)
{
for(Index i=1;i<=j-1;++i)
{
tau(i,j) = rHat[j].dot(rHat[i])/sigma[i];
rHat[j] = rHat[j] - tau(i,j) * rHat[i];
}
sigma[j] = rHat[j].dot(rHat[j]);
gammaP[j] = rHat[0].dot(rHat[j])/sigma[j];
}
std::vector<RealScalar> gamma(L+1);
gamma[L] = gammaP[L];
omega = gamma[L];
for(Index j=L-1;j>=1; --j)
{
RealScalar sum = 0.0;
for(Index i=j+1; i<=L; ++i)
{
sum += tau(j,i)*gamma[i];
}
gamma[j] = gammaP[j] - sum;
}
std::vector<RealScalar> gammaPP(L);
for(Index j=1; j<=L-1; ++j)
{
RealScalar sum = 0.0;
for(Index i=j+1; i<=L-1; ++i)
{
sum += tau(j,i)*gamma[i+1];
}
gammaPP[j] = gamma[j+1] + sum;
}
x = x + gamma[1] * rHat[0];
rHat[0] = rHat[0] - gammaP[L]*rHat[L];
uHat[0] = uHat[0] - gamma[L]*uHat[L];
//std::cout<<"x at end:"<<x<<std::endl;
for (Index j=1; j<=L-1; ++j)
{
uHat[0] = uHat[0] - gamma[j]*uHat[j];
x = x + gammaPP[j]*rHat[j];
rHat[0] = rHat[0] - gammaP[j]*rHat[j];
}
++currIter;
/*std::cout<<"gammaPP"<<gammaPP[1]<<std::endl;
std::cout<<"x after loop:"<<x<<std::endl;
std::cout<<"tau:"<<tau<<std::endl;
std::cout<<"gammaP"<<gammaP[0]<<" "<<gammaP[1]<<" "<<gammaP[2]<<std::endl;
std::cout<<"gammaPP"<<gammaPP[0]<<" "<<gammaPP[1]<<" "<<gammaPP[2]<<std::endl;
std::cout<<"gammas"<<gamma[0]<<" "<<gamma[1]<<" "<<gamma[2]<<std::endl;
*///return 0;
}
tol_error = sqrt(rHat[0].squaredNorm()/rhs_sqnorm);
iters = currIter;
xguess = x;
return true;
}
}
template< typename _MatrixType,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class BicgstabEll;
namespace internal {
template< typename _MatrixType, typename _Preconditioner>
struct traits<BicgstabEll<_MatrixType,_Preconditioner> >
{
typedef _MatrixType MatrixType;
typedef _Preconditioner Preconditioner;
};
}
template< typename _MatrixType, typename _Preconditioner>
class BicgstabEll : public IterativeSolverBase<BicgstabEll<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<BicgstabEll> Base;
using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
public:
/** Default constructor. */
BicgstabEll() : Base() {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
template<typename MatrixDerived>
explicit BicgstabEll(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
~BicgstabEll() {}
/** \internal */
/** Loops over the number of columns of b and does the following:
1. sets the tolerence and maxIterations
2. Calls the function that has the core solver routine
*/
template<typename Rhs,typename Dest>
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
bool failed = false;
for(Index j=0; j<b.cols(); ++j)
{
m_iterations = Base::maxIterations();
//******************MANUALLY SET NUM ITERATIONS
//m_iterations = 30;
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
if(!internal::bicgstabell(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
failed = true;
}
m_info = failed ? NumericalIssue
: m_error <= Base::m_tolerance ? Success
: NoConvergence;
m_isInitialized = true;
}
/** \internal */
/** Resizes the x vector to match the dimenstion of b and sets the elements to zero*/
using Base::_solve_impl;
template<typename Rhs,typename Dest>
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
{
x.resize(this->rows(),b.cols());
x.setZero();
_solve_with_guess_impl(b,x);
}
protected:
};
}
#endif /* bicgstabell_h */