-
Notifications
You must be signed in to change notification settings - Fork 135
/
table.hpp
787 lines (662 loc) · 19.9 KB
/
table.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
#ifndef NETGEN_CORE_TABLE_HPP
#define NETGEN_CORE_TABLE_HPP
/**************************************************************************/
/* File: table.hpp */
/* Author: Joachim Schoeberl */
/* Date: 25. Mar. 2000 */
/**************************************************************************/
#include <atomic>
#include <iostream>
#include <optional>
#include "array.hpp"
#include "bitarray.hpp"
#include "memtracer.hpp"
#include "ngcore_api.hpp"
#include "profiler.hpp"
namespace ngcore
{
template <class T, class IndexType = size_t>
class FlatTable
{
protected:
static constexpr IndexType BASE = IndexBASE<IndexType>();
/// number of rows
size_t size;
/// pointer to first in row
size_t * index;
/// array of data
T * data;
public:
FlatTable() = delete;
FlatTable (const FlatTable &) = default;
NETGEN_INLINE FlatTable(size_t as, size_t * aindex, T * adata)
: size(as), index(aindex), data(adata) { ; }
/// Size of table
NETGEN_INLINE size_t Size() const { return size; }
/// Access entry
NETGEN_INLINE const FlatArray<T> operator[] (IndexType i) const
{
return FlatArray<T> (index[i-BASE+1]-index[i-BASE], data+index[i-BASE]);
}
NETGEN_INLINE T * Data() const { return data; }
NETGEN_INLINE FlatArray<T> AsArray() const
{
return FlatArray<T> (index[size]-index[0], data+index[0]);
}
NETGEN_INLINE FlatArray<size_t> IndexArray() const
{
return FlatArray<size_t, IndexType> (size+1, index);
}
/// takes range starting from position start of end-start elements
NETGEN_INLINE FlatTable<T> Range (size_t start, size_t end) const
{
return FlatTable<T> (end-start, index+start-BASE, data);
}
/// takes range starting from position start of end-start elements
NETGEN_INLINE FlatTable<T> Range (T_Range<size_t> range) const
{
return FlatTable<T> (range.Size(), index+range.First()-BASE, data);
}
NETGEN_INLINE T_Range<IndexType> Range () const
{
return T_Range<IndexType> (BASE, size+BASE);
}
class Iterator
{
const FlatTable & tab;
size_t row;
public:
Iterator (const FlatTable & _tab, size_t _row) : tab(_tab), row(_row) { ; }
Iterator & operator++ () { ++row; return *this; }
FlatArray<T> operator* () const { return tab[row]; }
bool operator!= (const Iterator & it2) { return row != it2.row; }
};
Iterator begin() const { return Iterator(*this, BASE); }
Iterator end() const { return Iterator(*this, BASE+size); }
};
NGCORE_API extern size_t * TablePrefixSum32 (FlatArray<unsigned int> entrysize);
NGCORE_API extern size_t * TablePrefixSum64 (FlatArray<size_t> entrysize);
NETGEN_INLINE size_t * TablePrefixSum (FlatArray<unsigned int> entrysize)
{ return TablePrefixSum32 (entrysize); }
NETGEN_INLINE size_t * TablePrefixSum (FlatArray<int> entrysize)
{ return TablePrefixSum32 (FlatArray<unsigned> (entrysize.Size(), (unsigned int*)(int*)(entrysize.Addr(0)))); }
NETGEN_INLINE size_t * TablePrefixSum (FlatArray<std::atomic<int>> entrysize)
{ return TablePrefixSum32 (FlatArray<unsigned> (entrysize.Size(), (unsigned int*)(std::atomic<int>*)entrysize.Addr(0))); }
NETGEN_INLINE size_t * TablePrefixSum (FlatArray<size_t> entrysize)
{ return TablePrefixSum64 (entrysize); }
/**
A compact Table container.
A table contains size entries of variable size.
The entry sizes must be known at construction.
*/
template <class T, class IndexType = size_t>
class Table : public FlatTable<T, IndexType>
{
protected:
using FlatTable<T,IndexType>::size;
using FlatTable<T,IndexType>::index;
using FlatTable<T,IndexType>::data;
public:
///
NETGEN_INLINE Table () : FlatTable<T,IndexType> (0,nullptr,nullptr) { ; }
/// Construct table of uniform entrysize
NETGEN_INLINE Table (size_t asize, size_t entrysize)
: FlatTable<T,IndexType>( asize, new size_t[asize+1], new T[asize*entrysize] )
{
for (size_t i : IntRange(size+1))
index[i] = i*entrysize;
}
/// Construct table of variable entrysize
template <typename TI>
NETGEN_INLINE Table (FlatArray<TI,IndexType> entrysize)
: FlatTable<T,IndexType> (0, nullptr, nullptr)
{
size = entrysize.Size();
index = TablePrefixSum (FlatArray<TI> (entrysize.Size(), entrysize.Data()));
size_t cnt = index[size];
data = new T[cnt];
}
explicit NETGEN_INLINE Table (const FlatTable<T,IndexType> & tab2)
: FlatTable<T,IndexType>(0, nullptr, nullptr)
{
size = tab2.Size();
if (size == 0) return;
index = new size_t[size+1];
this->IndexArray() = tab2.IndexArray();
// for (size_t i = 0; i <= size; i++)
// index[i] = tab2.index[i];
size_t cnt = index[size];
data = new T[cnt];
this->AsArray() = tab2.AsArray();
/*
for (size_t i = 0; i < cnt; i++)
data[i] = tab2.data[i];
*/
}
explicit NETGEN_INLINE Table (const Table & tab2)
: FlatTable<T,IndexType>(0, nullptr, nullptr)
{
size = tab2.Size();
if (size == 0) return;
index = new size_t[size+1];
for (size_t i = 0; i <= size; i++)
index[i] = tab2.index[i];
size_t cnt = index[size];
data = new T[cnt];
for (size_t i = 0; i < cnt; i++)
data[i] = tab2.data[i];
}
NETGEN_INLINE Table (Table && tab2)
: FlatTable<T,IndexType>(0, nullptr, nullptr)
{
tab2.mt.Free(tab2.GetMemUsage());
Swap (size, tab2.size);
Swap (index, tab2.index);
Swap (data, tab2.data);
}
template<typename ARCHIVE>
auto DoArchive(ARCHIVE& ar)
{
ar & size;
if(size == 0)
return;
if(ar.Input())
{
index = new IndexType[size+1];
mt.Alloc(sizeof(IndexType) * (size+1));
}
ar.Do(index, size+1);
if(ar.Input())
{
data = new T[index[size]];
mt.Alloc(sizeof(T) * index[size]);
}
ar.Do(data, index[size]);
}
NETGEN_INLINE Table & operator= (Table && tab2)
{
mt.Swap(GetMemUsage(), tab2.mt, tab2.GetMemUsage());
Swap (size, tab2.size);
Swap (index, tab2.index);
Swap (data, tab2.data);
return *this;
}
/// Delete data
NETGEN_INLINE ~Table ()
{
mt.Free(GetMemUsage());
delete [] data;
delete [] index;
}
/// Size of table
using FlatTable<T,IndexType>::Size;
/// number of elements in all rows
NETGEN_INLINE size_t NElements() const { return index[size]; }
using FlatTable<T,IndexType>::operator[];
NETGEN_INLINE void StartMemoryTracing (int /* mem_id */)
{
mt.Alloc(GetMemUsage());
}
const MemoryTracer& GetMemoryTracer() const { return mt; }
private:
size_t GetMemUsage() const { return size == 0 ? 0 : sizeof(T)*index[size] + sizeof(IndexType) * size+1; }
MemoryTracer mt;
};
/// Print table
template <class T, typename IndexType>
inline ostream & operator<< (ostream & s, const Table<T,IndexType> & table)
{
for (auto i : table.Range())
{
s << i << ":";
for (auto el : table[i])
s << " " << el;
s << "\n";
}
s << std::flush;
return s;
}
template <class T, typename IndexType=size_t>
class TableCreator
{
protected:
int mode; // 1 .. cnt, 2 .. cnt entries, 3 .. fill table
std::atomic<size_t> nd;
Array<std::atomic<int>,IndexType> cnt;
Table<T,IndexType> table;
public:
TableCreator()
{ nd = 0; mode = 1; }
TableCreator (size_t acnt)
{ nd = acnt; SetMode(2); }
Table<T,IndexType> MoveTable()
{
return std::move(table);
}
bool Done () { return mode > 3; }
void operator++(int) { SetMode (mode+1); }
int GetMode () const { return mode; }
void SetMode (int amode)
{
mode = amode;
if (mode == 2)
{
// cnt.SetSize(nd); // atomic has no copy
cnt = Array<std::atomic<int>,IndexType> (nd);
for (auto & ci : cnt) ci.store (0, std::memory_order_relaxed);
}
if (mode == 3)
{
table = Table<T,IndexType> (cnt);
// for (auto & ci : cnt) ci = 0;
for (auto & ci : cnt) ci.store (0, std::memory_order_relaxed);
// cnt = 0;
}
}
void SetSize (size_t _nd)
{
if (mode == 1)
nd = _nd;
else
{
if (nd != _nd)
throw Exception ("cannot change size of table-creator");
}
}
void Add (IndexType blocknr, const T & data)
{
switch (mode)
{
case 1:
{
size_t oldval = nd;
while (blocknr+1>nd) {
nd.compare_exchange_weak (oldval, blocknr+1);
oldval = nd;
}
break;
}
case 2:
cnt[blocknr]++;
break;
case 3:
int ci = cnt[blocknr]++;
table[blocknr][ci] = data;
break;
}
}
void Add (IndexType blocknr, IntRange range)
{
switch (mode)
{
case 1:
{
size_t oldval = nd;
while (blocknr+1>nd) {
nd.compare_exchange_weak (oldval, blocknr+1);
oldval = nd;
}
break;
}
case 2:
cnt[blocknr] += range.Size();
break;
case 3:
size_t ci = ( cnt[blocknr] += range.Size() ) - range.Size();
for (size_t j = 0; j < range.Size(); j++)
table[blocknr][ci+j] = range.First()+j;
break;
}
}
void Add (IndexType blocknr, const FlatArray<int> & dofs)
{
switch (mode)
{
case 1:
{
size_t oldval = nd;
while (blocknr+1>nd) {
nd.compare_exchange_weak (oldval, blocknr+1);
oldval = nd;
}
break;
}
case 2:
cnt[blocknr] += dofs.Size();
break;
case 3:
size_t ci = ( cnt[blocknr] += dofs.Size() ) - dofs.Size();
for (size_t j = 0; j < dofs.Size(); j++)
table[blocknr][ci+j] = dofs[j];
break;
}
}
};
template <typename TEntry, typename TIndex, typename TRange, typename TFunc>
Table<TEntry, TIndex> CreateTable( const TRange & range, const TFunc & func, std::optional< size_t > cnt )
{
static Timer timer("CreateTable");
RegionTimer rt(timer);
std::unique_ptr<TableCreator<TEntry, TIndex>> pcreator;
if(cnt)
pcreator = std::make_unique<TableCreator<TEntry, TIndex>>(*cnt);
else
pcreator = std::make_unique<TableCreator<TEntry, TIndex>>();
auto & creator = *pcreator;
for ( ; !creator.Done(); creator++)
ParallelForRange
(range, [&] (auto myrange)
{
for (auto i : myrange)
func(creator, i);
}, TasksPerThread(4)
);
return creator.MoveTable();
}
template <typename TEntry, typename TIndex, typename TRange, typename TFunc>
Table<TEntry, TIndex> CreateSortedTable( const TRange & range, const TFunc & func, std::optional< size_t > cnt )
{
static Timer timer("CreateSortedTable");
RegionTimer rt(timer);
Table<TEntry, TIndex> table = CreateTable<TEntry, TIndex>(range, func, cnt);
ParallelForRange
(table.Range(), [&] (auto myrange)
{
for (auto i : myrange)
QuickSort(table[i]);
}, TasksPerThread(4)
);
return table;
}
class NGCORE_API FilteredTableCreator : public TableCreator<int>
{
protected:
const BitArray* takedofs;
public:
FilteredTableCreator(const BitArray* atakedofs)
: TableCreator<int>(), takedofs(atakedofs) { };
FilteredTableCreator(int acnt, const BitArray* atakedofs)
: TableCreator<int>(acnt),takedofs(atakedofs) { };
void Add (size_t blocknr, int data);
void Add (size_t blocknr, IntRange range);
void Add (size_t blocknr, FlatArray<int> dofs);
};
/**
A dynamic table class.
A DynamicTable contains entries of variable size. Entry sizes can
be increased dynamically.
*/
template <class T, class IndexType = size_t>
class DynamicTable
{
protected:
static constexpr IndexType BASE = IndexBASE<IndexType>();
struct linestruct
{
int size;
int maxsize;
T * col;
};
Array<linestruct, IndexType> data;
T * oneblock = nullptr;
public:
/// Creates table of size size
DynamicTable (int size = 0)
: data(size)
{
for (auto & d : data)
{
d.maxsize = 0;
d.size = 0;
d.col = nullptr;
}
oneblock = nullptr;
}
/// Creates table with a priori fixed entry sizes.
DynamicTable (const Array<int, IndexType> & entrysizes, bool setentrysize=false)
: data(entrysizes.Size())
{
size_t cnt = 0;
// size_t n = entrysizes.Size();
for (auto es : entrysizes)
cnt += es;
oneblock = new T[cnt];
cnt = 0;
for (auto i : data.Range())
{
data[i].maxsize = entrysizes[i];
if (setentrysize)
data[i].size = entrysizes[i];
else
data[i].size = 0;
data[i].col = &oneblock[cnt];
cnt += entrysizes[i];
}
}
DynamicTable (DynamicTable && tab2)
{
Swap (data, tab2.data);
Swap (oneblock, tab2.oneblock);
}
~DynamicTable ()
{
if (oneblock)
delete [] oneblock;
else
for (auto & d : data)
delete [] d.col;
}
DynamicTable & operator= (DynamicTable && tab2)
{
Swap (data, tab2.data);
Swap (oneblock, tab2.oneblock);
return *this;
}
/// Changes Size of table to size, deletes data
void SetSize (int size)
{
for (auto & d : data)
delete [] d.col;
data.SetSize(size);
for (auto & d : data)
{
d.maxsize = 0;
d.size = 0;
d.col = nullptr;
}
}
void ChangeSize (size_t size)
{
if (oneblock)
throw Exception ("cannot change size of oneblock dynamic table");
size_t oldsize = data.Size();
if (size == oldsize)
return;
if (size < oldsize)
for (int i = size; i < oldsize; i++)
delete [] data[i+BASE].col;
data.SetSize(size);
for (int i = oldsize; i < size; i++)
{
data[i+BASE].maxsize = 0;
data[i+BASE].size = 0;
data[i+BASE].col = nullptr;
}
}
///
void IncSize (IndexType i)
{
NETGEN_CHECK_RANGE(i,BASE,data.Size()+BASE);
linestruct & line = data[i];
if (line.size == line.maxsize)
{
T * p;
if constexpr (std::is_default_constructible<T>::value)
p = new T[(2*line.maxsize+5)];
else
p = reinterpret_cast<T*>(new char[(2*line.maxsize+5)*sizeof(T)]);
for (size_t i = 0; i < line.maxsize; i++)
p[i] = std::move(line.col[i]);
// memcpy (p, line.col, line.maxsize * sizeof(T));
delete [] line.col;
line.col = p;
line.maxsize = 2*line.maxsize+5;
}
line.size++;
}
void DecSize (IndexType i)
{
NETGEN_CHECK_RANGE(i,BASE,data.Size()+BASE);
linestruct & line = data[i];
#ifdef NETGEN_ENABLE_CHECK_RANGE
if (line.size == 0)
throw Exception ("BaseDynamicTable::Dec: EntrySize < 0");
#endif
line.size--;
}
/// Inserts element acont into row i. Does not test if already used.
void Add (IndexType i, const T & acont)
{
if (data[i].size == data[i].maxsize)
this->IncSize (i);
else
data[i].size++;
data[i].col[data[i].size-1] = acont;
}
/// Inserts element acont into row i, iff not yet exists.
void AddUnique (IndexType i, const T & cont)
{
int es = EntrySize (i);
T * line = data[i].col;
for (int j = 0; j < es; j++)
if (line[j] == cont)
return;
Add (i, cont);
}
/// Inserts element acont into row i. Does not test if already used.
void AddEmpty (IndexType i)
{
IncSize (i);
}
/** Set the nr-th element in the i-th row to acont.
Does not check for overflow. */
void Set (IndexType i, int nr, const T & acont)
{
data[i].col[nr] = acont;
}
/** Returns the nr-th element in the i-th row.
Does not check for overflow. */
const T & Get (IndexType i, int nr) const
{
return data[i].col[nr];
}
/** Returns pointer to the first element in row i. */
const T * GetLine (IndexType i) const
{
return data[i].col;
}
/// Returns size of the table.
size_t Size () const
{
return data.Size();
}
auto Range () const
{
return data.Range();
}
/// Returns size of the i-th row.
int EntrySize (IndexType i) const
{
return data[i].size;
}
///
void DecEntrySize (IndexType i)
{
DecSize(i);
}
/// Access entry i
FlatArray<T> operator[] (IndexType i)
{
return FlatArray<T> (data[i].size, data[i].col);
}
/*
typedef const FlatArray<T> ConstFlatArray;
/// Access entry i
ConstFlatArray operator[] (int i) const
{ return FlatArray<T> (data[i].size, static_cast<T*> (data[i].col)); }
*/
FlatArray<T> operator[] (IndexType i) const
{
return FlatArray<T> (data[i].size, data[i].col);
}
};
/// Print table
template <class T>
inline ostream & operator<< (ostream & s, const DynamicTable<T> & table)
{
for (auto i : Range(table))
{
s << i << ":";
for (int j = 0; j < table[i].Size(); j++)
s << " " << table[i][j];
s << "\n";
}
s << std::flush;
return s;
}
// Helper function to calculate coloring of a set of indices for parallel processing of independent elements/points/etc.
// Assigns a color to each of colors.Size() elements, such that two elements with the same color don't share a common 'dof',
// the mapping from element to dofs is provided by the function getDofs(int) -> iterable<int>
//
// Returns the number of used colors
template <typename Tmask>
int ComputeColoring( FlatArray<int> colors, size_t ndofs, Tmask const & getDofs)
{
static Timer timer("ComputeColoring - "+Demangle(typeid(Tmask).name())); RegionTimer rt(timer);
static_assert(sizeof(unsigned int)==4, "Adapt type of mask array");
size_t n = colors.Size();
Array<unsigned int> mask(ndofs);
size_t colored_blocks = 0;
// We are coloring with 32 colors at once and use each bit to mask conflicts
unsigned int check = 0;
unsigned int checkbit = 0;
int current_color = 0;
colors = -1;
int maxcolor = 0;
while(colored_blocks<n)
{
mask = 0;
for (auto i : Range(n) )
{
if(colors[i]>-1) continue;
check = 0;
const auto & dofs = getDofs(i);
// Check if adjacent dofs are already marked by current color
for (auto dof : dofs)
check|=mask[dof];
// Did we find a free color?
if(check != 0xFFFFFFFF)
{
checkbit = 1;
int color = current_color;
// find the actual color, which is free (out of 32)
while (check & checkbit)
{
color++;
checkbit *= 2;
}
colors[i] = color;
maxcolor = color > maxcolor ? color : maxcolor;
colored_blocks++;
// mask all adjacent dofs with the found color
for (auto dof : dofs)
mask[dof] |= checkbit;
}
}
current_color+=32;
}
return maxcolor+1;
}
typedef DynamicTable<int> IntTable;
} // namespace ngcore
#endif // NETGEN_CORE_TABLE_HPP