
Bugmann Harald (Orcid ID: 0000-0003-4233-0094) 

Bugmann Harald (Orcid ID: 0000-0003-4233-0094) 

 

 

Editor: Pieter Zuidema 

The evolution, complexity and diversity 

of models of long-term forest dynamics 

Harald Bugmann1,2,* & Rupert Seidl2,3 

 

 
1 Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems 

Science, ETH Zurich, 8092 Zürich, Switzerland 
2 Ecosystem Dynamics and Forest Management, Technical University of Munich,  

85354 Freising, Germany 
3 Berchtesgaden National Park, 83471 Berchtesgaden, Germany 

 
* Author for correspondence: e-mail harald.bugmann@usys.ethz.ch, phone +41 44 632 3239 

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1111/1365-2745.13989

This article is protected by copyright. All rights reserved.

Journal of Ecology

http://orcid.org/0000-0003-4233-0094
http://orcid.org/0000-0003-4233-0094
mailto:harald.bugmann@usys.ethz.ch
http://dx.doi.org/10.1111/1365-2745.13989
http://dx.doi.org/10.1111/1365-2745.13989
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2745.13989&domain=pdf&date_stamp=2022-08-26


–  – 

Abstract 

1. To assess the impacts of climate change on vegetation from stand to global scales, models 

of forest dynamics that include tree demography are needed. Such models are now availab le 

for 50 years, but the currently existing diversity of model formulations and its evolution over 

time are poorly documented. This hampers systematic assessments of structural uncertaint ie s 

in model-based studies. 

2. We conducted a meta-analysis of 28 models, focusing on models that were used in the past 

five years for climate change studies. We defined 52 model attributes in five groups (basic 

assumptions, growth, regeneration, mortality and soil moisture) and characterized each 

model according to these attributes. Analyses of model complexity and diversity included 

hierarchical cluster analysis and redundancy analysis. 

3. Model complexity evolved considerably over the past 50 years. Increases in complexity were 

largest for growth processes, while complexity of modelled establishment processes in-

creased only moderately. Model diversity was lowest at the global scale, and highest at the 

landscape scale. We identified five distinct clusters of models, ranging from very simple 

models to models where specific attribute groups are rendered in a complex manner and 

models that feature high complexity across all attributes.  

4. Most models in use today are not balanced in the level of complexity with which they rep-

resent different processes. This is the result of different model purposes, but also reflects 

legacies in model code, modelers’ preferences, and the ‘prevailing spirit of the epoch’. The 

lack of firm theories, laws and ‘first principles’ in ecology provides high degrees of freedom 

in model development, but also results in high responsibilities for model developers and the 

need for rigorous model evaluation. 

5. Synthesis. The currently available model diversity is beneficial: convergence in simulations 

of structurally different models indicates robust projections, while convergence of simila r 

models may convey a false sense of certainty. The existing model diversity – with the ex-

ception of global models – can be exploited for improved projections based on multip le 

models. We strongly recommend balanced further developments of forest models that should 

particularly focus on establishment and mortality processes, in order to provide robust infor-

mation for decisions in ecosystem management and policymaking. 

KEYWORDS: Forest gap model; Dynamic Global Vegetation Model; Forest landscape model; 

Model evolution; Model design; JABOWA; Ecological modelling; Global change ecology 



–  – 

 ‘The complexity of a forest ecosystem makes difficult 

any attempt to synthesize knowledge about forest dynamics 

or to perceive the implications of information and assumptions 

regarding forest growth’ 

(D.B. Botkin et al. 1972, J. Ecol. 60: p. 849). 

Introduction 

Forests provide multiple ecosystem services from local to global scales that are crucial to hu-

mankind (FAO, 2020). However, anthropogenic climate change is jeopardizing the provision-

ing of multiple services in many parts of the globe (e.g., Lindner et al., 2010). Therefore, tools 

are needed to assess the impacts of climate change on forests, to evaluate their climate change 

mitigation potential, and to develop adaptive management strategies. Tree demography plays a 

key role in this regard. For example, tree mortality is pivotal for ecosystem biogeochemistry 

(Bugmann and Bigler, 2011, Brienen et al., 2020), and establishment processes are crucially 

determining ecosystem resilience after disturbance (Seidl and Tuner, 2022) as well as spatial 

shifts of species and ecosystems (Sharma et al., 2022). Thus, models that consider demographic 

processes in addition to growth are needed to study the long-term interactions between forests 

and the climate system. 

JABOWA, published 50 years ago by Botkin et al. (1972b), was the first individual-based tree 

demography model for mixed-species stands, aimed at capturing long-term forest dynamics 

(here focused mainly on succession) along an elevational gradient covering 600 m in the Hub-

bard Brook Experimental Forest (Bormann and Likens, 1979). The success of JABOWA led to 

a proliferation of similar models – termed ‘forest gap models’ – in the late 1970s and 1980s 

(Shugart, 1984). Forest landscape models (Mladenoff et al., 1996) and Dynamic Global Vege-

tation Models (Friend et al., 1997, Smith et al., 2001) were developed in the 1990s, with clear 
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conceptual relations to forest gap models in terms of fundamental model assumptions. From 

the mid-1980s onwards (e.g., Solomon, 1986, Kienast, 1991, Bugmann and Fischlin, 1994), 

forest gap models have increasingly been applied to study the impacts of climate change on 

ecosystem structure, composition, and biogeochemistry. Half a century after their conception, 

forest gap models and models influenced by the early advances made by the gap modelling 

community are still in use for answering a wide range of fundamental and applied scientific 

questions (Maréchaux et al., 2021), including climate change impacts (for a brief review, cf. 

Bugmann, 2014). Subsequently, we refer to these models as ‘Models of Forest Dynamics’ 

(MFDs), acknowledging that there are other types of models (such as yield tables, forest growth 

models, species distribution models, Markov models, etc.) that we do not address here. 

In contrast to physics, there are few fundamental theories, laws or ‘first principles’ in ecology 

based on which a forest model could be constructed. Thus, it remains challenging to mathemat-

ically capture tree demography, growth, competition and other key interactions in ecosystems 

in a way that allows for robust impact assessments under future no-analog conditions (Williams 

and Jackson, 2007). The task of developing any model of long-term forest dynamics is faced 

with a daunting number of degrees of freedom for the mathematical representation of individua l 

processes (e.g., Huber et al., 2020), and this extends to processes that are perceived to be well-

understood, such as photosynthesis (Walker et al., 2021). This problem is even more acute when 

considering the feedbacks and interactions between individual processes within an ecosystem. 

Our understanding of most ecological processes remains incomplete, and the mathematical rep-

resentation of these processes in MFDs is uncertain. It is thus valuable to have different formu-

lations available, either as alternatives within one model, or in the form of different models 

(i.e., using a different model architecture). If differently structured models provide sufficient ly 

similar responses, e.g. to climate change scenarios (e.g., Sebald et al., 2021), our confidence 
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that the simulated response is reflecting the system’s true behaviour – rather than being a model 

artefact – is increased. Thus, model comparisons and ensemble model simulations (e.g., Cramer 

et al., 2001, Morales et al., 2005, Fisher et al., 2018, Bugmann et al., 2019, Petter et al., 2020, 

Mahnken et al., in prep.) are potentially of high value for increasing the robustness of projec-

tions and highlighting conditions under which our current systems understanding as formalized 

in models yields diverging results. 

Yet, high agreement in model comparisons and ensemble simulations does not per se indicate 

low uncertainty. Model comparisons can yield high agreement under future scenarios not only 

if the models are ecologically robust, but also if the key formulations underlying the models are 

sufficiently similar. In the most extreme case, comparing the projections of a group of equally 

ill-designed models could result in the illusion of low model uncertainty. Also in science, we 

are confronted with ‘the prevailing spirit of the epoch’ (Baltensweiler and Fischlin, 1987), 

which is strongly shaping our activities. In the specific context of model development, this 

holds the danger of convergence in model formulations due to shared but not necessarily correct 

views. Thus, it is crucial to know how diverse the models being used actually are. In the past 

years, multiple review papers and comparisons of dynamic vegetation models from stand to 

global scales were published (e.g., Larocque et al., 2016, Shifley et al., 2017, Thurner et al., 

2017, Fisher et al., 2018, Shugart et al., 2018, Bugmann et al., 2019, Petter et al., 2020, Yang 

et al., 2020), but they either covered only a small set of models, focused on selected processes, 

or remained qualitative in describing differences between models. To date, we lack a compre-

hensive approach to quantify the (dis)similarity in models that are used to address the same 

research question. 
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Fifty years provide ample time for a considerable evolution in models at the stand, landscape 

and global scale. Similar to a species that evolves based on changes in genome length and mu-

tations in alleles, models evolve by the addition (or elimination) of features and changes in the 

formulation of individual model properties. This can lead to the convergence of approaches 

(e.g., when consensus model formulations replace previous, more diverse ones), or to diversi-

fication (e.g., when a broadening suite of scientific objectives results in more differentiated 

models). Given the original constraints on model complexity due to limited computationa l 

power (cf. Botkin et al., 1972a) and the strongly increasing ecological and ecophysiologica l 

knowledge over the past 50 years, we expect that the complexity of MFDs has increased con-

siderably over time. 

In this paper, we quantitatively evaluate the structure, complexity and diversity of MFDs, with 

a focus on models that are in use today to assess the impacts of climate change on forests. We 

compare the current models relative to JABOWA (Botkin et al., 1972b) as one of the founda-

tional approaches to simulate forest dynamics, and ask how their complexity has changed over 

time. We furthermore quantify the current diversity in different model classes (stand, landscape, 

and global models) regarding their process formulations. Specifically, our research questions 

are as follows: 

1. How have the complexity and diversity of MFDs changed over the last 50 years? Have de-

velopments at the stand, landscape, and global scales been different? 

2. Can MFDs be clustered based on their attributes? If so, does this clustering reflect different 

fundamental aspects of models such as their scales of application (stand, landscape, global), 

or are other patterns of model (dis)similarity emerging?  
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3. Are MFDs currently being used for climate change impact assessments at different spatial 

scales balanced in their design with respect to the representation of key ecological processes 

such as the establishment, growth, and mortality of trees? 

4. Are the basic assumptions underlying different MFDs (e.g., the entities being modelled and 

their spatial and temporal grain) pivotal for shaping their structure and complexity? 

Material and Methods 

Selection of models 

For the present meta-analysis, we did not aim to cover all individual-based models that have 

been developed since the late 1960s; these were reviewed elegantly and comprehensively e.g. 

by Shugart (1984). Rather, we started from the first forest gap model, JABOWA, and focused 

our analysis on its numerous and widespread descendants to exemplarily illustrate the evolut ion 

of MFDs. Consequently, we used a two-pronged strategy to identify the MFDs to be included 

in our analysis, as described below. 

First, as a benchmark we selected models that we consider pivotal for forest modelling because 

they introduced new concepts or pioneered novel approaches. Starting from the first forest gap 

model, JABOWA (Botkin et al., 1972b), these models constitute distinct ‘founder events’ for 

the forest modelling community. This cohort includes the following models, ordered according 

to the date of their first publication. 

In JABOWA (Botkin et al., 1972a, 1972b), the establishment, growth and mortality of individ-

ual trees as well as their competition for light are modelled based on simple ecological assump-
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tions. JABOWA takes into account key environmental influences such as growing-season tem-

perature, drought, light availability, and crowding in dense stands. Trees interact with each 

other on small patches of land (typically, 100-1000 m2), and the behaviour of the forest as a 

whole is determined by averaging across multiple patches. This allows to consider both even-

aged as well as uneven-aged stands. Within patches, horizontal heterogeneity (e.g., tree posi-

tions) is neglected, and there are no interactions between patches (e.g., via light availability or 

falling dead trees). The simplified structure of JABOWA enables the consideration of a wide 

range of species because requirements for parameter estimation are reasonably low. For more 

details on the basic structure of forest gap models, cf. Shugart (1984). 

FORENA (Solomon, 1986) was the first forest gap model applied along an extended climatic 

gradient, from the Canadian tundra to the subtropical mixed forests of the state of Georgia in 

the United States, spanning a range of mean annual temperature of ca. 27 °C. As such, it had to 

account for climatic influences on tree demography along this large gradient, which is a pre-

requisite for model applications under changing climatic conditions. 

ZELIG (Smith and Urban, 1988) was the first forest gap model that considered horizontal in-

teractions between the patches. It thus conceptually paved the way for forest landscape models, 

where horizontal spatial dynamics are essential. 

FORSKA (Prentice et al., 1993) was designed to inject more biological realism into MFDs by 

basing most process formulations on physiological considerations. It thus provided the founda-

tion for more sophisticated ecophysiological models that have a particular focus on the interac-

tions between tree demography and biogeochemistry. 

HYBRID (Friend et al., 1993) was the first model where a full-fledged biogeochemical model 

(BIOME-BGC) was coupled with elements of ‘conventional’ gap models to combine the 
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strengths of both approaches in simulating tree demography and biogeochemistry. We 

acknowledge that at the same time, several other researchers were working on similar projects, 

including Martin (1992) and Bonan (1993), but HYBRID is the only model of this cohort that 

continues to be in use today. Also, HYBRID was a forerunner of what was to become the class 

of Dynamic Global Vegetation Models (DGVMs; see below). 

SORTIE (Pacala et al., 1993) sought to escape (note the pun: sortie is a synonym of foray) from 

some fundamental constraints of JABOWA by abandoning the assumption of horizontal homo-

geneity of patches. Instead, it tracks individual tree positions explicitly, along with highly de-

tailed calculations of incident radiation at the individual-tree level. While earlier studies with 

forest gap models exist where within-patch heterogeneity was explored (e.g., Busing and 

Clebsch, 1987), SORTIE was the first forest gap model to track individual tree positions. 

LANDIS (Mladenoff et al., 1996) expanded gap model capabilities by including landscape-

scale processes such as seed dispersal, tree migration, and an explicit representation of disturb-

ances such as windthrow, insects and fire. We acknowledge that at the same time, Roberts 

(1996) and Keane et al. (1996) were working on similar ideas, albeit with a more limited scope 

on fire. 

TreeMig (Lischke et al., 1998) was conceived as a landscape model but at the same time pro-

vided a bridge towards truly large-scale applications of MFDs by pioneering model upscaling. 

Specifically, it replaced individual trees or tree cohorts by height classes and introduced a math-

ematical description of tree population dynamics using ordinary differential equations. 
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ED (Moorcroft et al., 2001) pursued the upscaling avenue further by using similar principles as 

in TreeMig, but applying them to a stand model of much higher complexity, particularly re-

garding the representation of ecophysiological processes. This enabled global applications of 

MFDs. 

LPJ-GUESS (Smith et al., 2001) achieved global-scale applicability by further developing the 

principles underlying FORSKA, particularly invoking principles of ecological optimization. 

This resulted in a considerable simplification of computational demand while maintaining 

mechanistic representations of ecophysiological processes. 

Second, we screened the recent (defined here as 2016-2021) literature via WebOfScience for 

applications of models to study the impacts of climate change on forest dynamics in mid-No-

vember 2021. We identified 400+ entries and scrutinized these by hand, resulting in the selec-

tion of nine stand-scale models, eight landscape-scale models, and seven DGVMs (Table 1). 

Besides a focus on climate change, the models had to include processes of tree demography 

(i.e., at minimum tree establishment and mortality) with a reasonable level of detail. For exam-

ple, models that just assume a turnover rate of biomass, rather than considering mortality as a 

demographic process, were excluded. Because some of the models that have recently been used 

in climate change assessments are among the ten founder models (i.e., ED, SORTIE, TreeMig, 

HYBRID, LPJ-GUESS), and because some models have been used at both the stand and global 

scales (ED, ED2), the final set for the analysis comprised 28 unique models (Table 1). Five of 

the founder models (Table 1) are not in use any more today (i.e., JABOWA, FORENA, ZELIG, 

FORSKA and LANDIS). They are subsequently referred to as ‘legacy models’. 
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Selection of model attributes (‘genes’) and their expression (‘alleles’) 

We used a subjective and iterative approach to define model attributes for comparing the 28 

models. Specifically, we distinguished between (1) basic assumptions (BA), (2) growth pro-

cesses (GR); (3) establishment processes (ES), (4) mortality processes (MO), and (5) soil mois-

ture processes (SM). The latter were included because at least some consideration of the water 

balance is needed to assess climate change impacts. Overall, we identified 52 relevant attributes 

in these five categories (Table 2). For each attribute, two to six levels of expression were de-

fined; they are described in detail in Supplementary Material 1. To rephrase in terms of ‘model 

genomes’: The 52 attributes (‘genes’) feature a sum of 178 expressions (‘alleles’) and the po-

tential for a total of ni  ≈  6.7·1030 unique ‘genomes’, where ni is the number of expressions 

of attribute i. 

For each model, the expression of each attribute (if present) was assessed based on published 

papers, technical model documentations, model descriptions available on web pages, and in 

some cases also the model’s source code. We specifically aimed to characterize the version of 

the model that had been used in a recent climate change impact assessment (Table 1). The list 

of attributes and their expressions for each model was subsequently sent to the respective PI of 

each model for cross-checks and corrections. For the legacy models (Table 1), this task was 

accomplished by the first author of this paper. We received feedback from all but two PIs. 

Based on this feedback, we calculated the average error of our initial characterization of the 28 

models. On average, 4.2 out of 52 attributes per model had to be corrected based on the feed-

back of the PIs. This corresponds to an error rate of 8.1% with a median of 3 erroneously as-

signed attributes per model. Extrapolating this to the two models for which no feedback from 

the PIs was received, an error rate of 2·4.2 / (28·52) = 0.6% remains in the entire dataset. We 

deem this error unlikely to affect the outcome of our analyses. 
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All attribute expressions were converted to a numerical scale with equal distances between 

attribute expressions, ranked by increasing complexity. The numerical expressions were scaled 

to an average of zero and a standard deviation of one for each attribute. This approach is an 

established method in clinical psychological research for quantifying the results of qualitat ive 

surveys (cf. Kline, 2015, Schweizer and DiStefano, 2016): our 52 model attributes are equiva-

lent to the questions of a structured survey (test), and the expressions of the attributes are equiv-

alent to the standardized answers of the surveyed persons, which in our case are the 28 models. 

To assess the sensitivity of the method, we evaluated varying distances between attribute ex-

pressions and found the results of the analyses to be robust to such variations (data not shown). 

Analysis of the models 

First, we analysed changes in model complexity over time. We did this based on the year of 

first publication (cf. Table 1) with two exceptions: The FIRE-BGC and 4C models have under-

gone strong conceptual and structural development since their first publication. Therefore, for 

these models we used the year when the currently applied version was published, i.e. Keane et 

al. (2011) and Lasch-Born et al. (2020), respectively. 

We specifically focused on (1) the number of attributes that were considered (‘genome length’), 

and (2) the average complexity in the five attribute groups BA, GR, ES, MO, and SM. Further-

more, radar plots were drawn to visualize the complexity of each model for these five attribute 

groups and the diversity within the classes of stand, landscape and global models. 

Second, numerical distances between the models were calculated using multiple distance 

measures including Euclidean, Manhattan, Canberra, and Minkowski. Results were generally 

found to differ little, and the Canberra distance metric produced the ecologically most plausible 
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results. Similarly, multiple clustering algorithms were tested, including Ward, Ward.2, single, 

complete, and average. Also here, the results differed little. Furthermore, a range of multivariate 

analysis techniques such as metric multi-dimensional scaling and k-means clustering were eval-

uated, yielding similar results compared to those from hierarchical clustering. These analyses 

indicate that our findings are robust to different techniques being applied. Here, we report the 

results for hierarchical clustering with the complete method based on Canberra distances. The 

clustering was done for the models as a whole, and separately for the attribute groups GR, ES, 

and MO. 

Third, heat maps were drawn to visualize the attribute space, both unclustered and clustered, 

using hierarchical clustering based on the methods described above. The optimum number of 

clusters was five, being determined using 22 indices and the majority rule. 

Lastly, to evaluate whether the basic assumptions underlying the models influence their struc-

ture and complexity, we conducted a redundancy analysis (RDA) using the set of BA attributes, 

the model class (stand, landscape, global) and the time of first model publication (Table 1) as 

explanatory variables for the expressions of the other attributes. 

All analyses were conducted in the statistical software R version 4.1.2 (R Core Team, 2021). 

For radar plots, package fmsb (Nakazawa, 2021) was used. Complex hulls were drawn using 

package grDevices. Distance matrices between the models, hierarchical clustering and metric 

multi-dimensional scaling (MDS) were calculated using the stats package. The optimum num-

ber of clusters was determined using package NbClust (Charrad et al., 2014). k-means cluster-

ing was performed using the factoextra package (Kassambara and Mundt, 2020). Heat maps 

were drawn using package pheatmap (Kolde, 2019), and redundancy analysis was performed 

using package vegan (Oksanen et al., 2020). 
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Results 

Temporal evolution of model complexity and diversity 

The number of attributes being modelled (i.e., ‘genome length’) and the complexity of the for-

mulations being used for each attribute increased over time. Increases were strongest for growth 

attributes and weakest for the complexity of basic assumptions and establishment attributes 

(Fig. 1). Genome length increased particularly due to the recent development of complex land-

scape and global models. Global models also contributed strongly to an increase in the com-

plexity of basic assumptions and even more so of growth attributes. In contrast, these models 

tend to feature a comparatively simple representation of establishment attributes. The complex-

ity of mortality attributes increased particularly due to the majority of the more recently devel-

oped landscape models. Finally, also the complexity of soil moisture attributes increased, par-

ticularly due to the development of global models. The models currently being used for climate 

change impact assessments are highly diverse in their overall complexity. Diversity is highes t 

for establishment and mortality attributes, and lowest for soil moisture attributes. 

Differences between stand, landscape, and global models 

When analysing model complexity and diversity for stand, landscape and global models sepa-

rately (Fig. 2), distinctly different patterns emerged for the three model classes (for details see 

Table S1). Global models feature the lowest diversity across all five attribute groups. They are 

characterized by generally high complexity and low diversity in basic assumptions as well as 

growth and soil moisture attributes. At the other end of the spectrum, landscape models were 

found to be the most diverse class of models in all five attribute groups. Their average com-

plexity is highest for establishment and mortality attributes, but lowest with regard to growth 
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and soil moisture attributes. Stand models feature intermediate diversity for all five attribute 

groups. We also found them to have intermediate complexity for all attribute groups except for 

mortality, where stand models are on average applying the simplest model formulations. Part 

of the differences in diversity between stand models and the other two classes might be ex-

plained by the larger number of stand models included in our analysis (n = 13). However, an 

imbalanced sample cannot explain the strong differences in diversity between landscape and 

global models, as nearly the same number of models was analysed for these two classes (n = 8 

and 7, respectively). 

A direct comparison of the complexity of growth, establishment and mortality attributes by 

model class (Fig. 3) revealed a clear ‘niche differentiation’: global models excel in the com-

plexity of growth formulations, whereas landscape models feature the most complex formula-

tions of establishment and mortality attributes, with stand models ranking in between the other 

two classes. The legacy models tend to have lower complexity compared to models that are still 

in use today. 

Emerging model clusters 

When analysing model complexity at the level of individual MFDs using heat maps, no distinc t 

patterns discerning the three model classes are visible (cf. Fig. S1). Thus, the spatial domain of 

a model (stand, landscape, globe) is a weak predictor of its structure and complexity. When the 

models are clustered regardless of their a priori designation to a class, however, clear patterns 

of similarity emerge (Fig. 4; cf. Fig. S2 showing just the clustering and Fig. S3 showing a 

similarity matrix). 

Overall, five distinct model clusters emerged (Fig. 4). We start their analysis with the fourth 

cluster, which includes stand models that have remained relatively similar to the foundationa l 
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model JABOWA. Note that this cluster includes four of the five legacy models in the set. Also 

included in this cluster yet set apart clearly from the rest are FORSKA and FORMIND, which 

feature considerably higher complexity in several attributes, particularly with regard to tree 

growth. 

The fifth cluster is linked closely to the fourth cluster. It contains four stand models that feature 

higher complexity (Fig. 4) particularly with respect to growth and establishment attributes com-

pared to the models in the fourth cluster. SORTIE is part of the fifth cluster as well, but it is 

separated distinctly from the other models, reflecting the fact that its assumptions and structure 

deviate strongly from those of the other models in this cluster. It is further remarkable that two 

landscape models, TreeMig and LandClim, are part of this cluster. Both models were derived 

from the stand model ForClim, and in spite of added spatial features the remainder of their 

structure is broadly similar to that of the stand models in the fifth cluster. 

The third cluster is clearly separated from the others and contains four landscape-scale models 

(Fig. 4). They feature lower complexity with respect to basic assumptions, growth, establish-

ment, and soil moisture attributes compared to all other clusters. However, LANDIS-II is 

clearly different from the other three models in this cluster, as it has more complex formulatio ns 

with regard to a number of attributes. Most models in this cluster have highly complex mortality 

formulations, which is due to the spatially explicit nature of landscape models and their focus 

on disturbance processes. 

The second cluster unites the seven global models of the set and includes the stand model 4C 

(Fig 4). This assignment of 4C to the global model cluster is robust regardless of the distance 

metric or clustering method used (results not shown). The models of this cluster share highly 

complex basic assumptions as well as growth and soil moisture attributes. The diversity of at-

tribute expressions is particularly low in this cluster. 
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Lastly, the first cluster brings together two models developed by scientists who worked together 

for an extensive period of time, i.e. the stand model PICUS (PI Lexer) and the landscape model 

iLand (PI Seidl), along with the landscape model FIRE-BGC. These three models always 

formed a cluster of their own regardless of the clustering method, reflecting the fact that iLand 

(Seidl et al., 2012) was partly inspired by both PICUS (Lexer and Hönninger, 2001, Seidl et al., 

2008) and FIRE-BGC (Keane et al., 2011). This cluster features high complexity across all 

attribute groups. 

Relationships at the level of ecological attribute groups 

Clustering at the level of the three fundamental processes of forest dynamics, i.e., growth, es-

tablishment, and mortality, reinforces and sharpens the interpretations made above. When look-

ing at growth attributes (Fig. 5a), FORSKA and FORMIND are separated from the bulk of the 

other stand models; LANDIS-II is separated from the three low-complexity landscape models; 

and PICUS, iLand and FIRE-BGC are found in the same cluster as all global models (and 4C), 

being characterized by high complexity. 

Regarding establishment attributes (Fig. 5b), models of low complexity (clusters 1-3) from all 

three model classes are separated from those of intermediate (cluster 4, exclusively landscape 

models) and high complexity (cluster 5, no clear model class). 

Regarding mortality attributes (Fig. 5c), five landscape models of higher complexity are 

grouped with ED/ED2 in the first cluster, whereas the other two landscape models (which fea-

ture a lower number of spatially explicit processes) are grouped in the second cluster with most 

stand models. In the third cluster, models with intermediate to relatively high complexity re-

garding the formulation of ‘background’ (attributes #43 & 44) and ‘stress-related’ (#45) mor-

tality but low complexity regarding spatially explicit processes (#47-49) are found. The fourth 
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cluster contains two models that do not contain a ‘background’ mortality rate at all (#43 & 44), 

while both consider fire disturbance (#49). The grouping in the fifth cluster is difficult to inter-

pret. 

Relationship between basic assumptions and model structure 

The redundancy analysis (RDA) had an Radj.2 of 0.43. Yet, the constrained variance was only 

80% larger than the unconstrained variance, suggesting a limited power of the eight basic as-

sumptions along with model class and time of first publication for explaining model structura l 

features. Still, the structure of six global models (top left in Fig. 6; along with FIRE-BGC and 

iLand) is closely related to their focus of application (structure, composition and biogeochem-

ical cycling), their spatial extent (i.e., model class) and the life forms considered (i.e., all global 

models include a representation of the herbaceous understory). Conversely, the structure of five 

landscape models (top right in Fig. 6) is closely related to the presence of horizontal interac-

tions. Lastly, the structure of two models, HYBRID and 4C, is closely related to their vertical 

grain and the modelling of the vertical extent of tree crowns. 

Discussion 

Temporal development of model complexity and diversity 

The increasing complexity of MFDs over the past 50 years reflects enhanced ecological under-

standing. For example, what is now a standard photosynthesis model was formulated only in 

1980 (Farquhar et al., 1980). Similarly, understanding plant carbon allocation was in its infancy 

in the 1970s (Webb, 1977) and remains a challenge even today (Merganicova et al., 2019, 

Hartmann et al., 2020). Furthermore, strongly increasing computational capacities (Waldrop, 
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2016) made it possible to include more complex process formulations in MFDs while main-

taining or even lowering computing time. 

The temporal development of growth and soil moisture complexity was largely driven by global 

models, as their original emphasis was on carbon exchange between the biosphere and the at-

mosphere (Bonan, 1991), which is intricately linked to the water cycle (Sellers et al., 1986), 

thus leading to complex formulations. These, however, can be simplified based on optimality 

theory (e.g., Harrison et al., 2021). At the landscape scale, growth processes are not the major 

driver of vegetation dynamics (Elkin et al., 2012), but demography and disturbances strongly 

determine landscape patterns. This partly explains the relatively simple growth formulations in 

many landscape models (e.g., FATE-HD). However, their high simplicity raises questions re-

garding their suitability to assess climate change impacts comprehensively. Approaches as 

adopted in LANDIS PRO (Duan et al., 2021), where a modified forest gap model (LINKAGES 

v3.0; Dijak et al., 2017) was coupled with a landscape model, might present a way forward. 

However, we posit that it is more coherent and elegant to upgrade the growth process formula-

tions within landscape models themselves (cf. Schumacher et al., 2004, Seidl et al., 2012). 

The increase in complexity regarding mortality and establishment formulations over time is 

largely due to landscape model development. In these models, crucial processes such as seed 

production, dispersal and tree establishment must be considered, and spatially explicit disturb-

ances that kill trees and allow for establishment of new trees play a pivotal role. Consequently, 

current landscape models have high potential for quantifying forest resistance and resilience to 

climate change (Albrich et al., 2020, Turner et al., 2022). The high level of detail in demo-

graphic processes in landscape models is contrasted by a low establishment complexity of many 

global models, which we view as a source of concern. For example, assessing the consequences 

of Amazon rainforest dieback (Boulton et al., 2017) depends not only on accurate modelling of 



–  – 

tree mortality, but also on capturing establishment processes following drought-induced mor-

tality. Ecophysiology alone is unlikely to be sufficient to capture the interactions between cli-

mate and forest dynamics. 

Stand models have contributed least to the overall increase in MFD complexity over the past 

five decades. Yet, notable exceptions of complex stand level models are FORSKA, FORMIND, 

PICUS and particularly 4C. This limited increase is partly due to the fact that most of the rele-

vant processes at the stand level were already included in JABOWA 50 years ago, albeit at a 

much lower level of complexity. The original JABOWA model was developed to capture veg-

etation properties along a 600 m elevation gradient, i.e. a range of ca. 3 °C in mean annual 

temperature, which was possible using a number of simplifying assumptions. For FORENA, 

this range expanded to 27 °C (Solomon, 1986), and the simulation of climate change scenarios 

brought the challenge to represent the ecological impacts of no-analog climate conditions. This 

required comprehensive formulations for the influence of climate in MFDs already 30+ years 

ago, although some of them were inflicted with conceptual problems (cf. Loehle and LeBlanc, 

1996). 

The evolution of process formulations in MFDs over the past 50 years was clearly influenced 

by major ecological developments. The importance to better understand the Earth’s carbon bal-

ance in the context of climate change and the need to resolve the origin of the “missing sink” 

(Gifford, 1994) profited from an improved understanding of tree physiology, and led to more 

elaborate models of tree growth (e.g., 4C, FORMIND). The emergence of new sub-fields of 

ecology, such as landscape ecology (in the 1980s; Turner, 1989) and macroecology (in the 

2000s; Gaston and Blackburn, 2000) fuelled the development of MFDs operating at the land-

scape and global scale. More recently, tree mortality has come into focus of model developers, 

not least because of reports of increasing tree mortality in many parts of the world (Senf et al., 
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2021, Parks and Abatzoglou, 2020, Kharuk et al., 2021), and expectations of pervasive shifts 

in these processes in a changing world (McDowell et al., 2020). The rather moderate increase 

in the complexity of regeneration modelling approaches reflects the fact that the drivers of tree 

regeneration remain difficult to grasp (Bugmann et al., 2019) and aligns with recent calls for a 

renewed focus on regeneration processes in forest ecology (Seidl and Tuner, 2022). 

Overall, increasing the complexity of process formulations in MFDs was motivated by accom-

modating new process understanding and enhancing model accuracy. However, this does not 

imply that higher complexity always leads to better projections. Overly complex models tend 

to be prone to reduced transparency, robustness and predictive power (Franklin et al., 2020). 

After all, the objective of modelling is to simplify a complex reality (cf. Pace, 2003), and the 

objective of any given model application dictates the necessary model structure. For example, 

models aiming to reproduce hourly or daily patterns of net ecosystem productivity over a couple 

of years (e.g., Harrison et al., 2021) need much higher temporal resolution in simulated growth 

and soil processes than models aiming to project annual tree growth over decades to centuries 

(e.g., Irauschek et al., 2021). Thus, the need for model complexity has to be substantiated rela-

tive to model purpose (cf. Albrich et al., 2020), and general statements on what processes need 

to be included in an MFD and at what level of complexity are futile. 

Lastly, we recommend that model development should always proceed in a way that added 

complexity is implemented as optional features, i.e. that previous model versions remain re-

trievable. This avoids the tendency towards ‘baroque’ models (Prentice et al., 2015) and allows 

for tailoring the complexity of models to the research question at hand (Fisher and Koven, 

2020). 
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Differences between stand, landscape, and global models 

While the overall set of models considered here is highly diverse in both the number of pro-

cesses considered and their complexity, this diversity varies strongly between model classes 

(stand, landscape and global) and attribute groups. 

Stand models feature intermediate complexity in most attribute groups, and they are also of 

intermediate diversity compared to the other two classes. Consequently, the structure and com-

plexity of stand models has not converged even 50 years after their first appearance. In fact, 

three paradigms are underlying the current diversity of stand models: (i) models that remain 

quite similar to early model formulations (e.g., SIMA, SIKBBORK); (ii) models that are still 

simple but have a substantially enhanced model structure geared towards wide applicability and 

robustness (e.g., ForClim, UVAFME); and (iii) highly detailed process-based forest gap models 

(e.g., FORMIND, 4C). This provides the opportunity for comparative simulation studies to as-

sess the robustness of simulation results under climate change by using models from more than 

one of the three paradigms. 

The very high diversity of model formulations at the landscape scale partly reflects the fact that 

some of these models (e.g., FATE-HD, to some extent also LANDIS) are inspired by state-and-

transition models (e.g., Noble and Gitay, 1996) and thus build on simple schemes particular ly 

with regard to growth attributes. Other forest landscape models have their roots with ‘classical’ 

gap models (e.g., LandClim, TreeMig). Still others draw heavily on physiology-oriented stand 

models (e.g., PICUS) or biogeochemistry models (e.g., BIOME-BGC), resulting in the most 

complex landscape models in our set, i.e. FIRE-BGC and iLand. This diversity in landscape 

models should be explored more explicitly in comparative studies to understand the robustness 

of landscape level projections (e.g., Sebald et al., 2021). Yet, the first formal forest landscape 

model comparison has emerged only recently (Petter et al. 2020).  
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The global-scale models were the least diverse in our set across all attribute groups. This reflects 

two phenomena. 

On the one hand, a major original objective for these models was to simulate global NPP (e.g., 

Haxeltine and Prentice, 1996). NPP arises from the balance of photosynthesis and autotrophic 

respiration, which are understood reasonably well at the physiological level. This led to the 

inclusion of similar formulations for carbon (C) dynamics and plant hydraulics across multip le 

global models. Examples are the paradigmatic Collatz et al. (1991) photosynthesis model and 

the model of stomatal conductance by Leuning (1995). These similarities raise the expectation 

that simulated outcomes of, for example, global NPP are similar, which paradoxically is not the 

case (Prentice et al., 2015). 

On the other hand, the focus on C exchange led to low complexity regarding demographic 

processes, such that some relevant processes are not simulated at all in some global models 

(e.g., aDGVM includes only one single mortality process, which is stress-related mortality). 

Therefore, an upgrade of global models with regard to tree demographic processes is needed to 

increase their utility for assessing future forest trajectories (cf. Friend et al., 2014, Brienen et 

al., 2020). Recent developments, however, indicate that the focus on photosynthesis and plant 

hydraulics continues (Harrison et al., 2021). We nonetheless agree wholeheartedly with these 

authors that ‘model development should be refocused on the critical analysis and evaluation of 

core process representations, and new processes added only if evidence unambiguously shows 

that they are required’. Yet, our interpretation of ‘core processes’ may differ. 

Emerging model clusters 

The cluster analysis confirmed that model class (stand, landscape, global) is only a weak pre-

dictor of model properties. An exception are global models, which were all part of the same 
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cluster. The stand model 4C was also part of this cluster, as it is highly complex regarding its 

growth and soil moisture attributes, but considerably less so with respect to establishment and 

mortality attributes. 

The fact that the landscape models were distributed across three of the five clusters (Fig. 4) 

reflects their diverse ancestry. Specifically, the placement of LandClim and TreeMig in the 

same cluster as ForClim reflects the fact that these models are closely related to ForClim (Bug-

mann, 1996). Similarly, the placement of iLand with Fire-BGC and PICUS reflects the influ-

ence of the latter in the development of the former. 

The cluster that contains JABOWA and three other legacy stand models is characterized on the 

one hand by models that have remained very similar to the ancestor JABOWA, and on the other 

hand three models that differ considerably from the earlier approach, i.e. SORTIE and two 

models that are characterized by much higher mechanistic detail (FORSKA, FORMIND), 

which may be surprising as their mathematical structure is rather different indeed. It is note-

worthy that with the exception of FORSKA (a legacy model) and FORMID, the rather tradi-

tional formulations used in various parts of the models of this cluster (e.g., degree-day parabola 

in SIMA – cf. Loehle, 1996, or the number of “dry days” as a drought indicator in SIBBORK 

– cf. Fischlin et al., 1995) raise questions how reliable projections from these models will be in 

a changing climate. The other cluster that is dominated by stand models (cluster 5 in Fig. 4) is 

characterized by considerable advances in this regard, while remaining simple in terms of en-

vironmental influences on tree demography (e.g., degree-day asymptote and ratio of soil mois-

ture supply to demand as a drought index in ForClim) and the representation of tree competi-

tion. 
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Again, modelling objectives inevitably determine appropriate model structure. Consequently, 

there is ample scope for models that are not highly ‘mechanistic’ but based on simpler repre-

sentations of tree growth and demography. The fact that there is a large body of knowledge 

about a certain process (e.g., photosynthesis) does not imply that this process has to be included 

with a high level of complexity in all models. High complexity is only warranted if it is crucial 

for accurately and robustly achieving study objectives. 

Relationships at the level of ecological attribute groups 

The most striking insight from the cluster analysis at the level of attribute groups (Fig. 5) com-

pared to the cluster analysis at the level of full model ‘genomes’ was that there are strong dif-

ferences between these two analyses (Fig. 4). This shows that many models are not balanced in 

their complexity across different attribute groups. This is partly due to differences in importance 

of processes for certain applications (e.g., establishment and mortality are more important in 

landscape and partly in global models because disturbances are important at these scales; or 

global models need to simulate a closed carbon budget to infer the climate change mitigat ion 

function of global forests). However, these differences are in part also due to legacies (cf. Har-

rison et al., 2021), modelers’ preferences, and perhaps also ‘the prevailing spirit of the epoch’ 

(Baltensweiler and Fischlin, 1987). For example, within the biogeochemical modelling com-

munity, the use of a specific form of the Farquhar-Caemmerer model of leaf photosynthesis is 

usually taken for granted, although considerable uncertainty exists around this formulation (cf. 

Walker et al. 2021). Similarly, funding agencies sometimes are trapped in mainstream think ing 

regarding what should be funded, thus narrowing the scope of possible model development 

trajectories. 
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Specifically, out of the 23 models still in use today, only one was always found in a cluster that 

was ranked similarly regarding its complexity in the three attribute groups (i.e., iLand, which 

was designed with this goal, cf. Seidl et al. 2012). While a few other models were found in 

clusters of similar complexity (SORTIE, TreeMig, SIMA, SIBBORK and LPJ-GUESS), the 

majority of models (17) were in clusters that indicate highly different complexity with regard 

to growth, mortality and regeneration processes. 

When screening model descriptions in the context of this meta-analysis, it was notable how 

some models excel in the detail that is devoted to physiological growth processes, covering 

many dozen equations and many pages of documentation. However, equally important aspects 

such as establishment and mortality often appear like an afterthought, with a few lines of text 

and code, in comparison. This is in stark contrast to the availability of potentially useful re-

search results, syntheses, and recommendations (e.g., Adams et al., 2017, Cailleret et al., 2017, 

Thrippleton et al., 2021, Sharma et al., 2022) and calls for a more balanced consideration of 

ecological processes in model development. 

Relationship between basic assumptions and model structure 

The fact that the basic assumptions underlying the models were only weak predictors of their 

structural attributes underlines the scarcity of theories, laws and ‘first principles’ in the ecolog-

ical sciences. One possibility is that the attributes to capture basic assumptions were not chosen 

appropriately. Alternatively, they may not provide rigorous constraints on further model attrib-

utes, thus leaving many decisions of model formulation to the developers. We lean towards the 

latter interpretation, as it corresponds to our own multi-decadal experience in developing 

MFDs. This underlines the responsibility that lies on the shoulders of modellers. It is important 

to keep in mind that modelling is a dedicated scientific activity with strong fundaments in the 
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philosophy of science (Winsberg, 2010); it should be performed rigorously and, ideally, based 

on in-depth formal training (Ewing et al., 2003, Seidl, 2017). For example, conceptual models, 

mathematical models and computer code (simulation models) are different entities. It is pivotal 

to clearly recognize the role and importance of each of these steps in modelling. In other words: 

modelling should not be mistaken as the activity of adding code to existing simulation models. 

Methodological considerations 

Our analysis revealed multiple patterns of complexity across different model classes and attrib-

ute groups; all of these patterns were robust to variations in analysis methods. Therefore, we 

are confident that our findings are not artefacts resulting from erroneous assumptions or inap-

propriate data analysis. Specifically, we explored a number of different approaches for statisti-

cal analysis but never obtained substantially different results. 

Yet, it is clear that the definition of the 52 attributes and their expressions is inherently subjec-

tive. We consciously approached this task by iteratively developing attributes and testing them 

on the four models that we are intimately familiar with because we either led their development 

or were involved in it (PICUS, iLand, ForClim and LandClim). A second test case of the itera-

tive development of the attributes were the legacy models, which we also know quite well. The 

attribute expressions were further refined and expanded in the assessment of the other 19 mod-

els of the set. Importantly, our assessment of model expressions for 17 out of these 19 models 

was cross-checked by the respective PIs, such that no errors should remain in 26 of the 28 

models. Also, in the vast majority of cases the PIs found our attributes clear and well-defined, 

which suggests that the system we developed (cf. Supplementary Material 1) is appropriate and 

useful. This also suggests that further models can be added to the model characterization pre-

sented here, serving as a consistent and comprehensive framework for cataloguing MFDs. 
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We also acknowledge that using the year of the first publication of a model (with the exception 

of FIRE-BGC and 4C, as noted in the Methods section) for characterizing model complexity 

over time may induce a bias, since many models are undergoing continuous development. How-

ever, the conceptual basis, fundamental assumptions and structure of a model, i.e., the main 

elements captured in our attributes, normally are rather stable. Thus, while we know that some 

of the scatter that we found in the development of structural diversity over time is due to an 

imprecise estimate of the actual introduction of any given approach, this is unlikely to influence 

the overall pattern reported here. 

Lastly, it is clear that our analysis necessarily remains coarse at the level of individual attributes, 

only considering between two and six different expressions per attribute. Specifically, we did 

not aim to classify models at the grain of individual mathematical equations, because this would 

not have been tractable in both the assessment and analysis phases of this work. Nonetheless, 

given the relatively high number of attributes even our coarse characterization of attributes 

resulted in the potential for 6.7·1030 unique descriptions of models, and our analyses demon-

strating the considerable diversity and variation between models underlines the utility of our 

approach. 

Conclusion 

Over the past 50 years, the complexity of models of forest dynamics has increased substantially. 

This partly reflects enhanced ecological knowledge and strongly increasing computing power, 

but partly also the desire to develop models that more realistically represent natural processes. 

Whether this increased complexity is warranted must be judged based on the objective of indi-

vidual model applications; there are no general rules. Model diversity is generally high – we 

did not find evidence towards a convergence in model formulations, which we view as being 
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beneficial. However, model diversity has developed quite differently for different model clas-

ses. The very low diversity of some formulations in global models may be detrimental, and 

diversification should be sought to improve the robustness of multi-model assessments at the 

global scale. Yet, we note that for some processes such as soil moisture dynamics, where phys-

ical principles are fairly well established, low diversity may not necessarily be a problem. 

While global models were clustered together in our analysis, landscape models fell into three 

different clusters, reflecting different underlying paradigms of model formulation and high 

model diversity. Stand models fell broadly into two clusters, with less complex models that are 

very closely related to JABOWA, and more developed yet still simple models in another cluster. 

We propose that the model diversity documented here should be harnessed more deliberate ly 

in multi-model assessments and ensemble simulations towards more robust forest projections. 

Specifically, we argue that models in multi-model assessments should be selected to cover the 

variety of available approaches. The cluster analysis presented here can help inform such stud-

ies. Furthermore, differences in simulated outcomes in multi-model assessments could be re-

lated to the (dis)similarity of individual models identified here (cf. Figure S3) in order to con-

textualize remaining uncertainties in simulation-based studies. 

Most models in the set were not well balanced in their level of complexity across different 

attribute groups. On the one hand, this reflects the different objectives of the different model 

classes, and is thus an inherent aspect of specific models (i.e., a purpose-driven simplificat ion 

of a complex reality). On the other hand, this imbalance reveals implicit paradigms underlying 

the currently available models, such as the strong focus on growth processes in global models. 

Where such a focus comes at the cost of low resolution in other important processes such as 

mortality and establishment, biased projections under climate change are the likely outcome. 

We thus strongly welcome the ongoing change in perspectives in this regard, with an increased 
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focus of the global modelling community on demographic processes (e.g., Fisher et al., 2018, 

Pugh et al., 2019). 

Lastly, our analysis shows that there are few constraints on the structure and complexity of 

MFDs arising from their basic assumptions, which continues to make the development of a 

computer model of forest growth challenging, even 50 years after the initial gap model 

JABOWA was published. Yet, the resulting diversity of modelling approaches is an asset in the 

context of multi-model applications, enabling the assessment of the robustness of projections 

under climate change. This is a standard in the global modelling community already, and should 

be adopted more widely also in the stand and landscape modelling communities. The large 

diversity of models also makes it imperative that they are evaluated thoroughly against inde-

pendent data before they are applied in the context of decision support, scrutinizing the ability 

of any given model formulation to represent the dynamics of the respective study system. 
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Table 1: Models included in the analysis, listed chronologically according to the date of their first publication. 
‘Founder’ models (see text for details) are printed in italics. In total, 28 unique models were analysed. 

Model First publication Recent1 climate change 
application 

a) Stand models 
JABOWA Botkin et al. (1972b) – 
FORENA Solomon (1986) – 
ZELIG Smith and Urban (1988) – 
SIMA Kellomäki et al. (1992) Alrahahleh et al. (2018) 
FORSKA Prentice et al. (1993) – 
SORTIE(-ND) Pacala et al. (1993) Moran et al. (2021) 
ForClim Bugmann (1996) Huber et al. (2021) 
4C Bugmann et al. (1997) Gutsch et al. (2018) 
FORMIND Köhler and Huth (1998) Hiltner et al. (2021) 
PICUS Lexer and Hönninger (2001) Boulanger et al. (2021) 
UVAFME Shuman et al. (2015) Foster et al. (2019) 
SIBBORK Brazhnik and Shugart (2016) Brazhnik et al. (2017) 
ForCEEPS Morin et al. (2021) Morin et al. (2021) 
b) Landscape models 
LANDIS Mladenoff et al. (1996) – 
Fire-BGC Keane et al. (1996) Keane et al. (2019) 
TreeMig Lischke et al. (1998) Scherrer et al. (2020) 
LANDIS-II Scheller and Mladenoff (2004) Olson et al. (2021) 
LandClim Schumacher et al. (2004) Sebald et al. (2021) 
iLand Seidl et al. (2012) Sebald et al. (2021) 
FATE-HD Boulangeat et al. (2014) Barros et al. (2018) 
LANDIS PRO Wang et al. (2015)2 Duan et al. (2021) 
c) Dynamic Global Vegetation Models 
HYBRID Friend et al. (1993) Thurner et al. (2017) 
LPJ-GUESS Smith et al. (2001) Schurgers et al. (2018) 
ED Moorcroft et al. (2001) Ma et al. (2021) 
SEIB-DGVM Sato et al. (2007) Wu et al. (2019) 
ED2 Medvigy et al. (2009) Longo et al. (2018) 
aDGVM Scheiter and Higgins (2009) Martens et al. (2021) 
FATES Fisher et al. (2015) Holm et al. (2020) 
1 defined as published in the period 2016-2021;    2 as coupled to the LINKAGES v3.0 model. 
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Table 2: Attributes considered in the analysis of 28 models of forest dynamics (cf. Tab. 1). The levels of expression 
of the attributes are described in Supplementary Material 1. Numbers in parentheses indicate the number of attrib-
utes in each category. 

Basic assumptions 
(8) 

Growth 
(21) 

Establishment 
(13) 

Mortality 
(7) 

Soil moisture 
(3) 

Horizontal grain Central state varia-
ble(s) 

Approach Background (BG) 
mortality: level 

Vertical resolution 

Horiz. structure 
within patches 

Time step for tree 
geometry 

Establishment 
probability 

BG mortality for-
mulation 

Temporal resolu-
tion 

Interactions be-
tween patches 

Time step for 
productivity 

Number of estab-
lished trees 

Stress-related mor-
tality 

Drought 

Vertical grain Approach to model 
growth 

Ingrowth threshold Disturbance mor-
tality 

 

Vertical extent of 
crowns 

Allocation Environmental in-
fluences 

Windthrow  

Grain of modeled 
entities 

Height-DBH ratio Light Bark beetles  

Life forms consid-
ered 

Leaf area-DBH ra-
tio 

Moisture Fire  

Focus of applica-
tion 

Crown length Temperature   

 Crown width Frost   

 Crown transpar-
ency 

Browsing   

 Light extinction 
across the canopy 

Seed production   

 Light response Dispersal   

 Environmental in-
fluences 

Vegetative repro-
duction 

  

 Time step for env. 
influences 

   

 Temperature    

 Soil moisture    

 Nutrients    

 CO2    

 WUE    

 Crowding    

 Phenology    
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Fig. 1: Temporal development of genome length (i.e., number of attributes considered by a model) 
and the complexity of the basic assumptions, growth, establishment, mortality, and soil moisture 
attributes. Legacy models (no longer in use today) are shown in light colours. At the right of every 
panel, the models still in use today are shown with light red circles to illustrate current model diver-
sity. Linear trends are provided merely for better visualization; they are not meant to be statistically 
meaningful. 
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Fig. 2: Average values for the attributes of the 28 models by attribute group (basic assumptions 
[BA]; growth [GR], establishment [ES], mortality [MO] and soil moisture [SM] processes), and 
scale of model application (model class). 

 

Fig. 3: Niche differentiation of stand, landscape and global models with respect to growth (GR), 
establishment (ES) and mortality (MO) attributes. Legacy models (no longer in use today) are 
shown in light colours. 
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Fig. 4: Hierarchical clustering and heat map of 28 forest simulation models based on 52 attributes. 
The clustering uses Canberra distances and the ‘complete’ clustering method. Blue and red colours 
indicate low and high complexity for each attribute, respectively. Gaps between columns delineate 
five main clusters, which are identified by numbers in the middle of the heat map for easier reference 
in the text. Gaps between rows indicate the boundaries between the five attribute groups (from top 
to bottom: basic assumptions, growth, establishment, mortality and soil moisture processes). Num-
bers to the right of the rows indicate the respective attribute number (cf. Supplementary Material 
1). 
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Fig. 5: Hierarchical clustering and heat map of 28 forest simulation models for the demographic 
attribute groups a) growth (GR), b) establishment (ES) and c) mortality (MO). The clustering uses 
Canberra distances and the ‘complete’ clustering method. Numbers to the right of the rows indicate 
the respective attribute number (cf. Supplementary Material 1). 
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Fig. 6: Redundancy Analysis (RDA) to explain the expression of attributes of the 28 models as a 
function of the eight basic assumptions (BA), scale of application and time of first publication (ar-
rows). The blue crosses represent the 52 attributes.  
ehGrain: Horizontal grain (#1)  
esubGrid: Structure within patches (#2)  
ehorInter: Interactions between patches (#3)  
evGrain: Vertical grain (#4)  
ecrExt: Vertical extent of crowns (#5)  
eent: Grain of modelled entities (#6)  
elifeF: Life forms considered (#7)  
eappl: Focus of application (#8)  
etime: Year of first model publication  
escale: Scale of model application (stand, landscape, global). 
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