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Plant respiration constitutes a massive carbon flux to the atmosphere,
and a major control on the evolution of the global carbon cycle. It
therefore has the potential to modulate levels of climate change due
to the human burning of fossil fuels. Neither current physiological nor
terrestrial biosphere models adequately describe its short-term tem-
perature response, and even minor differences in the shape of the
response curve can significantly impact estimates of ecosystem carbon
release and/or storage. Given this, it is critical to establish whether
there are predictable patterns in the shape of the respiration–temper-
ature response curve, and thus in the intrinsic temperature sensitivity
of respiration across the globe. Analyzing measurements in a compre-
hensive database for 231 species spanning 7 biomes, we demonstrate
that temperature-dependent increases in leaf respiration do not follow
a commonly used exponential function. Instead, we find a decelerating
function as leaves warm, reflecting a declining sensitivity to higher
temperatures that is remarkably uniform across all biomes and plant
functional types. Such convergence in the temperature sensitivity of
leaf respiration suggests that there are universally applicable controls
on the temperature response of plant energy metabolism, such that a
single new function can predict the temperature dependence of leaf
respiration for global vegetation. This simple function enables straight-
forward description of plant respiration in the land-surface compo-
nents of coupled earth system models. Our cross-biome analyses
shows significant implications for such fluxes in cold climates, gener-
ally projecting lower values compared with previous estimates.
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thermal response

Plant respiration provides continuous metabolic support for
growth and maintenance of all tissues and contributes ∼60 Pg

C y−1 to the atmosphere (1, 2), with ∼50% of the carbon (C) re-
leased by whole-plant respiration from leaves (3). As rates of leaf
respiration (R) vary substantially with changes in temperature (T)
(4, 5), even slight increases in ambient T can lead to increases in the
flux of carbon dioxide (CO2) from leaves to the atmosphere. This
has the potential to create concomitant decreases in net primary
productivity, and affect the implications of fossil fuel burning by
contributing additionally to atmospheric CO2 levels due to any
imposed surface-level global warming. Hence, quantification of the
T response of leaf R, and how this response may vary across diverse
ecosystems and plant species, is critical to current estimations and
future projections of the global carbon cycle (6–8). Evaluating how
leaf R relates to T in terrestrial plants will clarify fundamental
controls on energy metabolism and enable more accurate param-
eterization, as leaf R, in addition to photosynthesis (9, 10), has been

identified as a major source of uncertainty in models of the global
carbon cycle (8, 11). The response of leaf R to T differs in both
magnitude and mechanism with time scale (5); herein, we address
how the fundamental short-term response (minutes to hours) varies
among plant species and biomes globally.
The short-term T response of leaf R is strongly regulated by

the T dependence of the reaction rates of enzymes involved in a
variety of respiratory pathways in the cytosol and mitochondria
within plant cells (5, 12). Given that these many processes in-
fluence the realized rates of leaf R across broad ranges in T, the
T dependence of R might be expected to vary widely among
contrasting thermal regimes and environments, or among species
that differ in metabolic capacity or life span. For example, R–T
relations could vary predictably, according to plant functional
types (PFTs; groupings of plant species by life history attributes,
growth strategies and/or geographic location), or with variation
corresponding with types that differ in rates of net photosynthetic
CO2 uptake and potential growth rates (e.g., fast-growing herbs
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versus slower-growing trees). A key issue, therefore, is whether the
T dependence of leaf R has spatially invariant features across the
earth’s surface, or instead varies as a consequence of genotypic
and multiple environmental factors. This is critically important, as
the global estimation of leaf R is a significant uncertainty in ter-
restrial biosphere models (TBMs) and associated land-surface
components of earth system models (ESMs). The latter quantify
the global carbon cycle now and project it into the future (8, 11),
including feedbacks as a consequence of anthropogenic emissions
of CO2 on climate.
Although it has been known for over a century that the near-

instantaneous increase in plant R with rising T is nonlinear (13,
14), there has been uncertainty whether a single general form for
the leaf R–T relationship applies both phylogenetically and bio-
geographically (15–17). A widely adopted physiological model
framework (18, 19) assumes that R exhibits an exponential re-
sponse to T, with R roughly doubling with every 10 °C rise in
T (corresponding to a fixed “Q10-type” formulation, with Q10 ∼
2.0). However, it has long been recognized that the Q10 is often
not constant nor close to 2.0 except over a limited T range (14,
20), and this pattern is consistent when also considering ecosys-
tem respiration (21). For this reason, alternative models have
been developed, including modified Arrhenius formulations,
universal temperature dependence (UTD), and T-dependent Q10
functions (15–17, 22). All of these models attempt to address
the shortcomings of an exponential model that provides a fixed
T-sensitivity term across a wide range of temperatures. Here, we
evaluate a comprehensive set of empirical, thermally high-reso-
lution T-response curves for multiple taxa and environments.
Doing so enables a full assessment of the suitability of these
quantitative physiological models in accurately representing the
variation in the observed short-term R–T relationship, and im-
plications of the short-term response in different seasons. We aim
to significantly improve how the short-term R–T response is
represented, and recognize this is one element of a complex and
dynamic process. As leaf R is also impacted by acclimation to
sustained changes in growth T, future modeling work will deter-
mine the effect of a more accurate short-term T response applied
in concert with recent advances in modeling basal rates of leaf
R (23) and longer-term (weeks to months) acclimation of R to
changing growth Ts (24, 25).
Physiological model representations of leaf respiratory T re-

sponses vary in complexity and in their ability to account for ob-
served biological patterns, such as decreases in the T sensitivity of
R over increasing Ts (5, 17) (see Supporting Information for model
descriptions and Figs. S1 and S2). Modification of the T sensitivity
of leaf R (based on ref. 16) in TBMs and the associated land-
surface component of ESMs results in significant alterations to
modeled carbon fluxes (8, 26), demonstrating the high sensi-
tivity of the carbon cycle simulations to the R–T function, and
thus the need to improve our understanding and quantification
of this relationship. The evidence for apparent complexity in
the leaf R–T response (16, 27) and consequences for carbon
cycling indicates both the need for, and, opportunity to improve
quantification of the leaf R–T relationship in globally wide-
spread, but thermally contrasting, biomes. Here, we report on
filling that critical knowledge gap.
The goals of our study are threefold: (i) to quantify the T response

of leaf R through use of a new and comprehensive set of thermally
high-resolution field measurements of leaf R across large T ranges
for each leaf; (ii) to assess the shape of T-response curves in leaves of
species representing diverse environments and PFTs; and (iii) to
assess the implications of altered T sensitivity of R for simulated
carbon fluxes using the land-surface component of a leading ESM
(28). Using methods (27) that enabled high-resolution measurement
of the T dependence of leaf R in leaves, we present results from 673
short-term T-response curves of 231 species collected in situ
across 18 sites representing contrasting biomes, geographical

locations, and PFTs (Table S1). Based on this unprecedented
dataset of standardized physiological measurements, we pro-
vide evidence of a global, fundamental T response of leaf R in
terrestrial plants and thus a mathematical model that outper-
forms alternative representations of how leaf R responds to T.
We also show that in cross-biome analyses, application of this
mathematical model significantly alters simulated carbon
fluxes, particularly in cold climate ecosystems.

Results
Evaluating Temperature ResponseModels.Our data of high-resolution
measurement of the T response of leaf R enabled a comparison of
commonly applied quantitative physiological models to determine
which offered the best fit for replicate response curves across the
entire 10–45 °C range. A comparison of residuals from model es-
timates for all individual leaf response curves for five models (ex-
ponential fixed-Q10, Arrhenius, Lloyd & Taylor, variable-Q10, and
second-order log-polynomial function; Supporting Information)
demonstrates that a second-order log-polynomial model best
characterized the T response of R (Fig. S2A). This selection is
made on the basis that the polynomial model had the best
projections of leaf R against data from over the entire T range,
has a straightforward application, and is independent from bi-
ological assumptions about activation energies; we applied this
approach to all measured response curves that collectively
comprise the total mean response (Fig. S2B). Accordingly, to
best represent our high-resolution leaf R measurements quan-
titatively, all individual leaf T-response curve data were natu-
ral-log–transformed (ln) and to those values, a second-order
polynomial model was fitted as:

ln R= a+ bT + cT2, [1]

where R is the rate at a given leaf T, and a, b, and c are coeffi-
cients that provided the fit that minimized residuals.
The application of a polynomial model fit to high-resolution ln

R–T response curves provides a three-parameter description of
leaf R across the T range. The a parameter, which indicates ln R
at 0 °C, determines a reference value offset of the response curve.
The b parameter—the slope of ln R vs. T plot at 0 °C—and the c
parameter, which represents any quadratic nonlinearity in ln R vs.
T slope with increasing measuring T, are both key to describing the
fundamental shape of the short-term T response of leaf R. To assess
the influence of site environment and plant form, we analyzed
the variation in values of each model parameter, a, b, and c for
diverse biomes and PFTs based on individual leaf sample curves.
We calculated this variation for both the entire measured T range
(10–45 °C), as well as for shorter, discrete segments (i.e., 15–25 °C)
of the entire measured T range, to evaluate potential influence
of measurement T range on these parameters. No difference
was found between the parameters calculated from shorter,
discrete T ranges and the entire measurement T range, (Tables
S2 and S3, Fig. S3), further justifying the applicability of the
polynomial function for this response. Together, mean values of
a, b, and c parameters create data-derived equations for leaf R
that clearly mirror observed mean respiratory responses aggre-
gated for discrete levels of the two corresponding factors (i.e.,
biome or PFT; Fig. 1). This approach can also fully capture the
deceleration of rates of R observed as Ts increase (Figs. 1 and
S1), clearly demonstrating the utility of the polynomial formu-
lation for creating realistic models of leaf R.

Comparison Among Biomes and Plant Functional Types. Mean species
values for the polynomial model parameters (a, b, and c) at
each site were statistically compared by biome and PFTs using a
nested mixed-model approach (Table 1). The curves presented
in Fig. 1 show that rates of leaf R at a common T were highest in
the coldest biomes (i.e., higher a values for tundra and high-altitude
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tropical rainforests). By contrast, low-altitude tropical forests,
the warmest biome included in this study (Table S1), exhibited
the lowest value of parameter a and the lowest values of leaf R
over the measurement ranges of T (Fig. 1 A and B). Similarly,

variation in leaf R at a common T was found among PFTs (Fig. 1
C and D).
In strong contrast to large differences across biomes and PFTs

in leaf R at a common measurement T, we found that the rise in
R with T as leaves warm follows a remarkably consistent func-
tion, suggesting more universal values of parameters b and c. Fig.
1 illustrates the common shape of the response curve to leaf T
that is almost invariant across plants, despite representing highly
diverse growth environments and functional groups. This low
variation across species means of both b and c parameters is
present when grouped by either biome or PFT (Table 1).
Based on our observation of a near-universal shared response

shape of leaf R to T, we determined the parameters for our global
polynomial R–T model (GPM) of Eq. 1. The mean polynomial
model parameter values for all species included in our study were:
b = 0.1012 and c = −0.0005, which generate the GPM:

ln R= a+ 0.1012T − 0.0005T2, [2]

where ln R and a are as defined for Eq. 1. This equation is an
empirically based mathematical model of the instantaneous T
response of leaf R (Fig. 2A). Average leaf R for all study species
across the 10–45° T range (within 1 °C temperature bins; un-
transformed global mean response in Fig. S2B)—the “global
mean data”—can be effectively summarized by the GPM (Fig.
2A). Values of a do, however, vary significantly across PFTs,
shifting the curve of Eq. 2; thus, the a parameter value should
be appropriately assigned in the GPM to fit the model’s appli-
cation, using a rate measured at a known T or values from our
global survey (Dataset S1).
The input of a known value of leaf R (RTref in the below

equation), measured at a T (Tref in the below equation) with the
universal b and c response curve parameters can be applied to a

Fig. 1. Mean measured leaf respiration (natural log transformed; ±SE) of
biome (A) and PFTs (C) calculated for each degree Centigrade from mea-
sured species respiration response curves of those categories, for the avail-
able temperature ranges. Polynomial models based on species’ mean values
of a, b, and c (Table 1) of those biomes (B) and PFTs (D) are shown across the
same T range.

Table 1. Biome and PFT mean values (with 95% confidence intervals, CI) of a, b, and c
coefficients aggregated across all species (n = 231)

Biome/PFT a 95% CI b 95% CI c 95% CI

Biome
Tu −1.6043a [-1.8372, -1.3713] 0.1277a [0.1190, 0.1364] −0.00107a [-0.0012, -0.0009]
BF −2.0043a [-2.2781, -1.7305] 0.0894a [0.0665, 0.1122] −0.00037a [-0.0008, 0.00003]
TeDF −2.4286a [-2.7959, -2.0612] 0.0923a [0.0757, 0.1089] −0.00026a [-0.0006, 0.00004]
TeW −1.8958a [-2.3435, -1.4481] 0.0974a [0.0716, 0.1232] −0.00040a [-0.0008, -0.00002]
TeRF −2.1544a [-2.4057, -1.9032] 0.1014a [0.0773, 0.1255] −0.00046a [-0.0008, -0.0001]
TrRF_hi −2.0173a [-2.5325, -1.5021] 0.1154a [0.0956, 0.1352] −0.00071a [-0.0010, -0.0004]
TrRF_lw −2.7493a [-2.9831, -2.5155] 0.0998a [0.0879, 0.1117] −0.00047a [-0.0007, -0.0003]

PFT
BlDcTmp −2.2264ab [-2.4829, -1.9699] 0.0993a [0.0829, 0.1158] −0.00050a [-0.0008, -0.0002]
BlDcTrp −2.7270ab [-3.6757, -1.7782] 0.1125a [0.0961, 0.1288] −0.00058a [-0.0008, -0.0003]
BlEvTmp −1.8106a [-2.3349, -1.2864] 0.0896a [0.0577, 0.1215] −0.00021a [-0.0007, 0.0003]
BlEvTrp −2.6105b [-2.8366, -2.3844] 0.1022a [0.0912, 0.1132] −0.00052a [-0.0007, -0.0003]
C3H −1.7507ab [-2.0680, -1.4334] 0.1271a [0.1169, 0.1374] −0.00110a [-0.0013, -0.0009]
NlEv −2.0464ab [-2.5569, -1.5358] 0.1125a [0.0934, 0.1316] −0.00063a [-0.0009, -0.0004]
Sev −1.8150a [-2.4609, -1.1691] 0.0971a [0.0593, 0.1349] −0.00047a [-0.0006, -0.0004]

Global mean −2.2276 [-2.3966, -2.0586] 0.1012 [0.0921, 0.1104] −0.00050 [-0.0006,-0.0004]

Biomes include tundra (Tu; n = 20), boreal forest (BF; n = 25), temperate deciduous forest (TeDF; n = 10),
temperate woodland (TeW; n = 67), temperate rainforest (TeRF; n = 12), high-elevation tropical rainforest (TrRF_hi;
n = 16), and low-elevation tropical rainforest (TrRF_lw; n = 81); PFTs include broadleaf deciduous temperate
(BlDcTmp; n = 40), broadleaf deciduous tropical (BlDcTrp; n = 4), broadleaf evergreen temperate (BlEvTmp; n =
38), broadleaf evergreen tropical (BlEvTrp; n = 88), C3 herbaceous (C3H; n = 13), needle-leaf evergreen (NlEv; n = 13),
and evergreen shrubs (SEv; n = 35). Mean values and confidence intervals were calculated from natural-log–trans-
formed rates of leaf respiration R–T curve data available from the ∼10–45 °C curve range. The global mean value
was calculated from all individual species parameter values. To determine the effect Biome and PFT groups, we used
a mixed model that nested random effects, with Species nested in Site when evaluating Biome, and Species as a
single random effect to evaluate the fixed effect of PFT. Post hoc comparisons of least-square means determined
differences between Biome and PFT groups (denoted by unshared letters).
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derivation of our GPM to predict values of leaf R (RT) at a
desired T, according to:

RT =RTref × e½0.1012 ·ðT−Tref Þ−0.0005 ·ðT2−T2
ref Þ�, [3]

where RTref = exp (a + 0.1012Tref − 0.0005Tref
2). This equation

incorporates the common intrinsic T sensitivity of respiration
(i.e., response curve shape) observed from our field measure-
ments, and when combined with measured or assumed rates of
R at Tref, enables prediction of R at various Ts.
The T sensitivity of the GPM (Fig. 2B), here calculated for

illustrative purposes using Q10 values, shows decreasing sensitivity
of leaf R with increases in T. Up to 35 °C, the decline has simi-
larities to (and a steeper slope than) that reported from more
limited data by Tjoelker et al. (16). Moreover, our GPM dem-
onstrates that leaf R remains more T sensitive at higher leaf Ts
(e.g., near 45 °C) than assessed by Tjoelker et al. (16).

Impacts on Simulated Annual Respiration. The consequence of us-
ing our GPM in existing global models that exclude acclimation
responses to sustained changes in growth T is illustrated in Fig. 3,
which shows annually averaged rates of leaf R for our 18 field
sites, comparing Joint U.K. Land Environmental Simulator
(JULES) estimates modeled with a Q10 = 2 with those from our
GPM derivation Eq. 3.
As a sensitivity study, we replaced the derivation of the GPM

(Eq. 3) with the commonly applied fixed Q10 formulation, setting
Q10 = 2, and compared the two. The difference between annual
rates of leaf R calculated using either the derived GPM (Eq. 3)
or a fixed Q10 equation where Q10 = 2 had almost no impact on
at the warm tropical sites (Fig. 3 A and B); similarly, there was no
effect of the GPM on seasonal variations in leaf R at the tropical
sites (Fig. 3C). By contrast, at colder sites, estimates of annual
leaf R were markedly lower when calculated using the GPM
derivation (e.g., 28% lower in Toolik Lake, Alaska, and 10–20%
lower in the temperate sites) compared with the fixedQ10 function
(Fig. 3B), although recognizing these changes are for generally
lower R values. At temperate woodland sites with evergreen, long-
lived foliage, replacement of a fixed Q10 of 2.0 model with the
GPM had its greatest absolute and proportional effect during the
cold months of winter, but negligible effect during summer months
when leaf T values were near 25 °C. For sites where winters are
characterized by winter freezing (and thus where metabolic activity
is minimal), use of the GPM reduced estimates of leaf R across the
entire growing season (Fig. 3C).

Discussion
Universality of Temperature Response.Despite the huge diversity in
plant growth form and local environment represented in our
comprehensive dataset, we find remarkable convergence in the
functional form of the response of leaf R to T. Basal rates of R
vary widely among biomes and PFTs (Fig. 1), and are known to
be related to differences in growth T, site aridity, and leaf
functional traits (23, 29, 30). That R at a given T is highest in
leaves of arctic tundra plants and lowest in leaves of plants from
low-elevation tropical forests (Fig. 1A) agrees with the concept
that leaf R (when measured at a common T) is higher in plants
grown in colder environments (12), and this pattern can be
consistently modeled based on known growth Ts (23). There is
significant variation in the curve offset between PFTs; C3 herbs
exhibit the highest rates of leaf R across the 10–45 °C range (Fig.
1C), which is also associated with high rates of leaf R at a
common leaf nitrogen compared with other PFT groups (23, 29).
However, here we show the overall shape of the response curve,
and thus intrinsic T sensitivity of R, does not significantly vary;

Fig. 2. Global mean data reflected by modeled R–T and corresponding de-
clining Q10 responses. The mean T response of (A) natural-log–transformed
rates of leaf respiration (ln R ± SE, GlobalMean Data, shown with blue symbols
with error bars) for all measured species (n = 231) across all biomes and PFTs,
overlaid on the GPM of ln R (solid black line, bracketed by dashed lines rep-
resenting 95% confidence intervals), calculated from the species values of a,
b, and c parameters of the polynomial model. The GPM is defined as ln R =
−2.2276 + 0.1012* T − 0.0005*T2. The T response ofQ10 values (B) based on GPM
b and c coefficients as calculated by Q10 = e10*(0.1012+(2*0.0005T)), shown with
95% confidence intervals (dashed lines).

A

B

C

Fig. 3. Impact of two T functions on annual average of modeled instanta-
neous leaf respiration rates (R) using the JULES coupled climate carbonmodel to
extrapolate respiration measurements (42, 43). A shows annual average of leaf
R (averaged over the five years of 2010–2014 inclusive) at 18 globally distributed
field sites (Table S1), with annual rates of R calculated assuming a fixed Q10 of
2.0 (43) or our GPM (Eq. 3). Annual averages of leaf T (same period) in the upper
canopy is shown as green dots. Sites are ordered by temperature, with site
codes as shown in Table S1; B shows percentage changes in annual averages of
rates of leaf R that result from switching from a fixed Q10 to our GPM, plotted
against annual averages of leaf T—the dashed line shows a parabolic curve fit
i.e., with three degrees of freedom; C shows seasonal variation in rates leaf R
(expressed on an LAI basis) for three thermally contrasting sites [Toolik Lake
(tundra), Alaska; Great Western Woodlands (temperate woodland), Western
Australia; and Paracou (tropical rainforest), French Guiana]. Site-averaged leaf
R values at 25 °C, measured in the field, were used for the calculations.
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the only variation is an overall offset of the curve. The consistency
in the response of leaf R to T strongly suggests its universality
among C3 plants and that the T dependencies of underlying en-
zymatic controls of multiple metabolic pathways are widely con-
served, even among the most thermally contrasting biomes on
earth. Further, a global, fundamental T response can be described
in a simple, empirically driven log-polynomial equation, available
for incorporating into the land-surface component of ESMs and
ready to replace current imperfect representations of the short-
term T response of leaf R. Notably, when implemented in a
leading TBM (28) for different geographical regions, this equation
significantly reduces annual rates of leaf-level respiration in cold
climates. We believe this global short-term leaf R–T response,
when applied in conjunction with data-based models of basal leaf
R (23) and the acclimation response to longer-term growth Ts
(24), will have important consequences for predicted rates of
ecosystem and global carbon exchange, estimates of future carbon
storage in vegetation, predicted concentrations of atmospheric
CO2, and impacts of future surface temperatures.

Utility for Predictive Simulation Models. Our finding of a universal
T response provides an opportunity for leaf R to be better represented
in ecosystem models, TBMs, and associated land-surface components
of ESMs. It is well known that the use of a fixed-Q10 or Arrhenius
activation energy leads to inaccuracies in estimations of respiratory
efflux, especially at relatively high and low Ts (5). In particular,
Arrhenius-derived functions may overestimate rates at low Ts and
underestimate the decline in T sensitivity of R (22) (Fig. S1A). To
date, there has been no consensus or consistent assessment based on
comprehensive datasets on how to represent the T response of R in
simulation models (31). Our GPM (Eq. 1) and its parameterization
(Eqs. 2 and 3) against a massive dataset for R is comprised of only
three and two coefficients, respectively, and offers a simple, yet robust,
approach to calculating the T response of R in leaves. Importantly,
our GPM demonstrates that leaf R remains T sensitive at high leaf Ts
(e.g., near 45 °C; seen in our Fig. S1A compared with variable Q10
model; ref. 12), which will have important consequences for predicted
rates of respiratory CO2 efflux at high Ts, particularly as extreme heat-
wave events are predicted to increase in frequency and duration (2).
Application of the GPM requires knowledge of basal rates of

leaf R, designated by the a parameter (Eq. 2) or measured/assumed
rates of R at a standard measurement T = TRef (Eq. 3). In cases
where the basal rate of R is unknown, we suggest application of
specific a parameter values representing appropriate PFTs and/or
biomes (Table 1) or species (Dataset S1). Alternatively, rates of leaf
R at common TRef (25 °C) reported in a recent global compilation
(23) can be used. We believe future integration of the recent global
leaf R dataset (23) with the short-term R–T response model defined
by our GPM and climatically variable estimates of longer-term
T response of R through acclimation will result in a vastly improved
representation of leaf R across scales.

Consequences for Terrestrial C Exchange. Our sensitivity study (Fig. 3)
showed that although replacing a fixed Q10 of 2 with the GPM will
have little impact on calculated rates of leaf R in lowland tropical
forests, impacts are significant for temperate, boreal, and arctic/alpine
ecosystems. In such ecosystems, reliance on a fixed Q10 greatly
overestimates annual leaf R, which in turn will result in underes-
timates of net primary productivity (NPP), as generally TBMs es-
timate NPP by subtraction of total canopy leaf R from modeled
estimates of gross primary productivity (GPP). Though future
model implementations that consider the extent to which leaf R
acclimates to long-term changes in air T across the globe (24, 25)
will likely further improve how leaf R is represented in TBMs, our
findings point to lower rates of modeled respiratory CO2 release—
and thus possible higher rates of simulated NPP—at sites further
away from the equator, compared with current model scenarios. As
replacement of a fixedQ10 formulation with our GPM is likely to have

profound effects on estimates of global plant R and calculations of
NPP, its adoption in ESMs will adjust projections of both contem-
porary and future carbon storage in vegetation. This includes estimates
of PFT composition in TBMs that also calculate biome extent through
NPP-dependent competition rules. Furthermore, via influence on
atmospheric CO2 levels, the GPM will affect estimates of what
constitutes “permissible” fossil fuel emissions needed to stay
below any warming thresholds that society determines as unsafe
to cross. This might include the presently much-debated limit of
2° warming since the preindustrial era (32, 33).
Finally, a priority for environmental science remains the building

and operating of ESMs with robust parameterizations, allowing
trustworthy forward projections of carbon cycle evolution and assess-
ment of the influence of fossil fuel burning on that cycle and associ-
ated implications for future climate change. Plant respiration, and any
adjustment to that in response to global warming, places a strong
control on earth’s carbon cycle andmaymodulate human influence on
future atmospheric CO2 concentrations. The urgency to estimate cli-
mate change implies ESMs must be operated routinely, both now and
in the future. Computational constraints, combined with limited
available data, force a compromise in ESMs where numerical code
“lumps” features of terrestrial ecosystems into low numbers of PFTs
and relatively general parameterizations. Our study across a massive
dataset of leafRmeasurements, and subsequent testing and fitting to a
model of T response, shows a remarkable level of invariance between
geographical sites and biomes. This provides great encouragement
that, for leaf R at least, the generality of ESMs can be viewed as a
neutral, or perhaps, positive feature.

Methods
Field Sites and Species. Details on the 18 field sites used in our study are pro-
vided in Supporting Information and Table S1, and a full list of all 231 species
included in this study can be found, grouped by site and biome, in Dataset S1.

High-Resolution Measurements of the Temperature Response of Leaf Respiration.
At each field site, replicate branches of sunlit leaves were used to generate
high-resolution R–T curves (see Supporting Information for details). In brief,
whole replicate leaves from these branches, or shoot segments for conifers
and small-leaved species, were placed in a T-controlled, well-mixed cuvette,
and allowed to adapt to darkness for 30 min. Leaf cuvettes were T con-
trolled via a thermostatically controlled circulating water bath as in O’Sullivan
et al. (27) and Heskel et al. (34), or via a Peltier system (3010-GWK1 Gas-
Exchange Chamber; Walz, Heinz Walz GmbH). After the 30-min dark
adaption period, the cuvette chamber was cooled to 10 °C. Thereafter, the
cuvette chamber was heated continuously at a rate of 1 °C min−1 until a
maximum rate of respiration was reached (generally leaf T between 55
and 70 °C), although only data up to T = 45 °C was used in our model. The
net release of CO2 from leaves was recorded at 30-s intervals. Post-
measurement, each replicate leaf was removed from the cuvette, placed in
a drying oven at ∼60 °C for a minimum of 2 d, and weighed afterward, so
that rates could be expressed on a dry-mass basis (nmol CO2 g−1 s−1).

Quantification of R–T curves and Model Comparison. The 673 R–T curves col-
lected by the methods described above required thorough quantification for
comparison across replicates, species, sites, biomes, and plant functional types.
For each replicate R–T response curves, we assessed the fits commonly applied
R–T models, including: (i) an exponential model with a fixed-Q10 across the
entire T range (though not specifically a fixed Q10 of 2, as is applied in some
biosphere models of R); (ii) an Arrhenius model; (iii) a model of R responding to
the UTD as defined by Gillooly et al. (15), which contains an activation energy
parameter and uses Boltzmann’s constant; (iv) a model presented by Lloyd and
Taylor (17) to describe the response of soil R to T that includes a temperature-
sensitive activation energy; (v) a model that incorporates a variable-Q10 re-
sponse across the T range as described by two parameters; and (vi) a simple
second-order polynomial model. Equations for these models are shown in
Supporting Information. To compare how these models fit to data, we fitted
each of the aforementioned models to all replicate R–T response curves in JMP
(Version 11; SAS Institute), with parameters calculation controlled by the min-
imal residuals produced from each individual fit for each model. In cases where
model convergence was not possible via the curve-fitting software, those rep-
licate curves were not included to calculate mean residuals for the model fit
over all replicates. Further, to evaluate the impact of different measurement
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temperature span (i.e., 10–45 °C vs. 20–45 °C) on model fits, we compared fit
coefficients across all replicate curves at different segmented intervals of the
response curve (Table S2, Fig. S3, and Supporting Information). Using these
data, we also compared model fit coefficients from the approximate 20 °C T
range that best represents the climate of that species (the “ecologically rele-
vant” T range; Table S3 and Supporting Information) to the fit coefficients
calculated from all available data from the entire measurement T range.

Global Polynomial Model Calculation. After polynomial curve fit analysis, each
replicate curve could be defined by specific a, b, and c parameters. The mean
value of replicates for individual species at given sites were calculated for a, b,
and c, resulting in a total of 231 species-site means of these parameters used
for our study. To create a “global model” of the T response of R, we calculated
the mean of all 231 species-site mean values of the a, b, and c parameters.

Modeling Site-Based Leaf R with JULES. For our 18 field sites, we incorporated
our derived global T response (Eq. 3), with local values of RTref, into an
offline version of Joint U.K. Land Environmental Simulator (JULES) to in-
vestigate the potential impacts of altered T sensitivity of R. JULES is the land-
surface model of the U.K. Hadley Centre HadGEM (Hadley Centre Global
Environment Model) family of global circulation models (28, 35). In its cur-
rent form, JULES assumes that leaf R doubles for every 10 °C rise in T (i.e.,
Q10 = 2); other TBM frameworks have also assumed fixed Q10 [e.g., BIOME-
BGC (36), PnET-CN (37) CLM4 (38), TEM (39)], or modified Q10 [e.g., BETHY
(40)] functions. This is done using both the fixed Q10 and GPM formula-
tions, and with JULES adopting the site-mean values leaf R at RTref = 25 °C
derived from our short-term T response curves. TheQ10 value is set as 2.0 for all

18 sites, and similarly for the GPMmodel, the b and c parameters are invariant,
taking their cross-site means (Table 1 and Eq. 3).

Here we use a version of JULES driven with the WATCH (water and global
change) Forcing Data ERA-interim (WFDEI) surface climatology (41) for each of the
18 sites and for the period 2010–2014 inclusive. Each site uses the WFDEI gridded
data values from its 0.5′ × 0.5′ grid resolution nearest to site location; and in time is
therefore a subset of the WFDEI data, presently covering 1979–2014. The DGVM
(Dynamic Global Vegetation Model) component of JULES is kept switched off, and
therefore known local values of leaf area index (LAI) are prescribed. Four JULES
PFTs were adopted (broadleaf trees, needleleaf trees, shrubs, and C3 grasses/herbs).
With the DGVM off, then the main difference between these PFTs is the inclusion
of deciduous phenology (where observed, affecting the prescribed LAI), and
slightly different response curves for stomatal opening.

Our runs are made for each site, weighed by known fractional covers of the
four PFTs above (predominantly broadleaf trees). The actual JULES model di-
agnostic presented (Fig. 3) is the canopy-top-level R value [μmol CO2 (m

−2 of leaf
cover)−1 s−1), representing those fluxes that might be observed in fully sun-
exposed leaves at the canopy crown, if fluxes from lower leaves were ignored.
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