Note for Medlyn stomatal conductance model in FATES

1. Introduction
Previous versions of FATES calculated leaf stomatal resistance is using the Ball-Berry conductance model as described by (Collatz et al., 1991). We provide an alternative way to calculating stomatal conductance, Medlyn stomatal conductance model (Medlyn et al., 2011). The Medlyn model calculates stomatal conductance (i.e., the inverse of resistance) based on net leaf photosynthesis, the vapor pressure deficit, and the CO2 concentration at the leaf surface. Leaf stomatal resistance is calculated as Eq. (1) with the information of symbols listed in Table 1.
		(1)		
Table 1. Information of symbols in Eq. (1)
	Symbol
	Standard name
	Unit

	
	Leaf stomatal resistance
	s m2 𝜇mol-1

	
	Leaf stomatal conductance
	𝜇mol m-2 s-1

	
	Minimum stomatal conductance
	𝜇mol m-2 s-1

	
	soil water stress
	unitless

	
	Vapor pressure deficit at the leaf surface
	kPa

	
	Slope for the relationship
	kPa0.5

	
	Leaf net photosynthesis
	𝜇mol CO2 m-2 s-1

	
	CO2 partial pressure at the leaf surface
	Pa

	
	Atmospheric pressure
	Pa



The value for = 1000 𝜇mol m-2 s-1 for all PFTs.
 is a plant functional type (PFT) dependent parameter. According to the  values and PFTs in CLM5,  values for different PFTs for FATES model were listed in Table 2. 










Table 2. Stomatal conductance slope parameters in Medlyn model
	PFT
	 (kPa0.5)

	Broadleaf evergreen tropical tree
	4.1

	Needleleaf evergreen extratrop tree
	2.3

	Needleleaf colddecid extratrop tree
	2.3

	Broadleaf evergreen extratrop tree
	4.1

	Broadleaf hydrodecid tropical tree
	4.4

	Broadleaf colddecid extratrop tree
	4.4

	Broadleaf evergreen extratrop shrub
	4.7

	Broadleaf hydrodecid extratrop shrub
	4.7

	Broadleaf colddecid extratrop shrub
	4.7

	Arctic C3 grass
	2.2

	Cool C3 grass
	5.3

	C4 grass
	1.6



2. Numerical implementation
Photosynthesis is calculated assuming there is negligible capacity to store CO2 and water vapor at the leaf surface so that：
	 	(2)
The information of the symbols was listed in Table 3. The terms 1.4 and 1.6 are the ratios of diffusivity of CO2 to H2O for the leaf boundary layer resistance and stomatal resistance. The transpiration fluxes are related as Eq. (3) with the information of symbols listed in Table 3.
		(3)
	 	(4)










Table 3. Information of symbols in Eq. (2), (3), and (4)
	Symbol
	Standard name
	Unit

	
	Atmospheric CO2 pressure
	Pa

	
	Internal leaf CO2 partial pressure
	Pa

	
	Leaf boundary layer resistance
	s m2 𝜇mol-1

	
	Vapor pressure of air
	Pa

	
	Saturation vapor pressure
	Pa

	
	Vapor pressure at the leaf surface
	Pa

	
	Specific humidity of canopy air
	kg kg-1



In the model, an initial guess of  is obtained assuming the ratio between and  (0.7 for C3 plants and 0.4 for C4 plants) to calculate  based on the Farquhar photosynthesis model (Farquhar et al., 1980). Then Eq. (2) is solved for :
		(5)
 can be represented from Eq. (3) as:
		(6)
Where  is a function of temperature.
Substitution of  into Eq. (1) (according to  gives an expression for stomatal resistance () as a function of photosynthesis (, given here in terms of conductance with  and 
		(7)
Where 
		(8)
		(9)
and
		(10)
	 	(11)
Stomatal conductance, as solved by Eq. (7), is the larger of the two roots that satisfies the quadratic equation. Values for  are given by
		(12)
The equations for  ,  ,  , and  are solved iteratively until  converges. Iteration will be exited if convergence criteria is met or if at least five iterations are completed.
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