Skip to content

Latest commit

 

History

History
54 lines (38 loc) · 1.51 KB

Installation.md

File metadata and controls

54 lines (38 loc) · 1.51 KB

Installation

The Installation step is referenced from CenterNet.


Our experimental environment:

Ubuntu 18.04, Python 3.6.9, PyTorch 1.4, torchvision 0.5.0.

8 NVIDIA 2080ti cuda10.0


  1. Create a new conda environment and activate the environment.

    conda create --name MOC python=3.6
    conda activate MOC
  2. Install pytorch1.4:

    pip install in pytorch.org.
    - or you can use conda. 

    Disable cudnn batch normalization(follow CenterNet).

    For other pytorch version, you can manually open torch/nn/functional.py and find the line with torch.batch_norm and replace the torch.backends.cudnn.enabled with False.

  3. Clone this repo:

    git clone https://github.com/NEUdeep/MOC-Detector-Pytorch1.4
  4. Install the requirements

    pip install -r requirments.txt -i https://mirrors.aliyun.com/pypi/simple
  5. Compile deformable convolutional in DLA backbone follow CenterNet.

    cd ${MOC_ROOT}/src/network/DCNv2
    python setup.py build develop
    - or you must check with https://github.com/CharlesShang/DCNv2.git to make sure that is for you.
  6. If you have any problems, please check in CenterNet.